
On cofinal functors of
∞-bicategories

Dissertation
zur

Erlangung des Doktorgrades
der

Fakultät für Mathematik,
Informatik und Naturwissenschaften

der

Universität Hamburg

vorgelegt

im
Fachbereich Mathematik

von
Fernando Abellán García

aus
Cádiz, Spanien

Hamburg, April 2022



Als Dissertation angenommen vom Fachbereich
Mathematik der Universität Hamburg

Auf Grund der Gutachten von Prof Dr. Tobias Dyckerhoff
und Prof Dr. Julie Bergner

Datum der Abgabe: 20.04.2022

Datum der Disputation: 08.07.2022





Declaration of original work
This thesis contains results which have appeared in the following list of publi-
cations:

• [AGDS20]: F. Abellán García, T. Dyckerhoff & W.H. Stern. A relative
2-nerve. Algebr. Geom. Topol. 20-6 (2020), 3147-3182

• [AGS22]: F. Abellán García & W.H. Stern. Theorem A for marked 2-
categories. J. Pure & Applied Algebra, Vol. 226, Issue 9, 2022

• [AG22]: F. Abellán García. Marked colimits and higher cofinality. Homo-
topy Relat. Struct. 17, 1–22 (2022).

• [AGS21]: F. Abellán García & W.H. Stern. Enhanced twisted arrow cate-
gories. arXiv:2009.11969

• [AGS22I]: F. Abellán García & W.H. Stern. 2-Cartesian fibrations I: A
model for ∞-bicategories fibred in ∞-bicategories. arXiv: 2106.03606

• [AGS22II]: F. Abellán García & W.H. Stern. 2-Cartesian fibrations II:
Higher cofinality. arXiv: 2201.09589

I declare that I have made substantial and original contributions to all parts
of the above joint works and that the information derived from the literature
which appears in this thesis has been clearly referenced. The main results of
this thesis appeared originally in the preprints [AGS22I], [AGS22II] (which
correspond to chapters 2-4 in this document) with the exception of the last
chapter which contains unpublished original work. The results presented in
the aforementioned publications generalize [AGDS20], [AGS22] and [AG22].
Moreover, the proof of the main theorem of this thesis Theorem 4.0.31, is the
result of a generalization of the results I developed in the single authored paper
[AG22]. Whereas most of the work has been done in joint publications the core
ideas and proofs of this thesis were already developed in [AG22]. I declare that
my contributions constitute 60% of the results of the aforementioned papers
and that none of the works above are part of the doctoral dissertation of Walker
H. Stern.

https://arxiv.org/abs/2009.11969
https://arxiv.org/abs/2106.03606
https://arxiv.org/abs/2201.09589


Eidesstattliche Versicherung
Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbst-
ständig verfasst und keine anderen als die angegebenen Hilfsmittel – insbeson-
dere keine im Quellenverzeichnis nicht benannten Internet-Quellen – benutzt
habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen ent-
nommen wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin,
dass ich die Arbeit vorher nicht in einem anderen Prüfungsverfahren eingere-
icht habe und die eingereichte schriftliche Fassung der auf dem elektronischen
Speichermedium entspricht.

Hamburg, den 20. April 2022

Fernando Abellán García





Acknowledgments

It is a great pleasure to thank the people who made this thesis a reality:

Tobias, for giving me the opportunity to spend three years studying
the mathematics that I love, for his continuous support

and contagious excitement.

Walker, for sharing so many mathematical adventures with me,
being a fantastic collaborator and a good friend.

Sophia, for bringing joy to my life even in the greyest of days.

Rayita, for sharing with me the feline secrets
of the theory of ∞-cats

Finally, I would like to thank my family and friends who have always been
there for me.





Summary

In this thesis we investigate the notion of cofinal functor of ∞-bicategories and
establish foundational results in the theory of ∞-bicategories along the way.

We start with an introductory section where we present and motivate the main
results achieved to later move into the main body of the thesis which is

structured as follows:

• In Chapter 1 we review the relevant (∞, 1)-categorical theory that will be
later generalized to the (∞, 2)-categorical realm.

• In Chapter 2 we construct a model structure on the category of marked
biscaled simplicial sets over a scaled simplicial set S which models outer
2-Cartesian fibrations: An (∞, 2)-categorical upgrade of the notion of
Cartesian fibration.

• In Chapter 3 we prove an ∞-bicategorical Grothendieck construction
relating outer 2-Cartesian fibrations and contravariant functors with values
in ∞-bicategories.

• In Chapter 4 we characterize cofinal functors of ∞-bicategories via gener-
alizations of the conditions of Quillen’s Theorem A.

• In Chapter 5 we provide applications of our cofinality criterion as well
pointing out the next steps in the research programme of the author.



Zusammenfassung

In dieser Arbeit untersuchen wir den Begriff eines kofinalen Funktors zwischen
∞-Bikategorien. Weiterhin zeigen wir grundlegende Resultate in der Theorie
von ∞-Bikategorien.

Nach der Einleitung, in der die Hauptresultate motiviert und gesammelt
sind, folgt der Hauptteil der Arbeit, der wie folgt strukturiert ist:

• In Kapitel 1 führen wir das nötige (∞, 1)-kategorielle Hintergrundmaterial
ein, welches in den späteren Kapiteln auf (∞, 2)-Kategorien verallgemeinert
wird.

• In Kapitel 2 konstruieren wir eine Modellstruktur auf der Kategorie der
markierten biskalierten simplizialen Mengen über einer skalierten sim-
plizialen Menge. Diese Modellstruktur modelliert 2-Cartesische Faserungen
und ist daher eine (∞, 2)-kategorielle Verallgemeinerung des Begriffs einer
Kartesischen Faserung.

• In Kapitel 3 beschreiben wir eine∞-bikategorielle Grothendieck-Konstruktion,
welche äußere 2-Kartesische Faserungen und kontravariante Funktoren mit
Werten in ∞-Bikategorien in Verbindung setzt.

• In Kapitel 4 charakterisieren wir kofinale Funktoren zwischen∞-Bikategorien
über eine Verallgemeinerung von Quillens Theorem A.

• In Kapitel 5 beschreiben wir Anwendungen des Konfinalitätskriteriums
und schildern die nächsten Schritte im Forschungsprogramm des Autors.
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Introduction

In this thesis we study colimits in ∞-bicategories1 and the universal properties
that characterize them. This section begins with an informal discussion of the
notion of universal property and its relevance throughout mathematics. We
discuss the theory of∞-categorical colimits and cofinality to motivate the main
result of this document: A characterization of cofinal functors of∞-bicategories.

Spaces, categories, universal properties and coherence

Since its early days [EM45], an important contribution of category theory is
the notion of universal property. Informally speaking, universal properties can
be understood as the characterizing features of a mathematical object. This
fundamental property of a mathematical object is sufficient to determine it up
to adequate notion of equivalence, in other words, if a pair of mathematical
objects X and Y satisfy a given universal property then both objects must
be equivalent X ∼ Y , even more, they must be equivalent in a canonical way.
Let us illustrate this concept with the following elementary example: Suppose
that we are given three sets A,B,X and a pair of functions iA : A→ X and
iB : B → X. We will further suppose that X satisfies the following property

• For every pair of functions fA : A→ Y , fB : B → Y there exists a unique
map f : X → Y such that fA = f ◦ iA and such that fB = f ◦ iB.

A direct inspection reveals that any such set X as above must be isomorphic to
the disjoint union A∐B. The main advantage of this a priori seemly complicated
definition of the disjoint union of two sets is that it can be implemented in
any category. For example, if we assume that A,B,X are all R-algebras with
R a commutative ring and that all of the morphisms above are morphisms of
R-algebras then X is equivalent to the tensor product A⊗R B. Consequently,
we see that by abstracting the essential information present in a mathematical
construction using the language of category theory we can implement a certain
definition in a wide variety of contexts. This has allowed a fruitful interplay
between different areas of mathematics. For example, in algebraic topology
where topological spaces are studied by means of algebraic methods, the
language of category theory was quickly adopted as an efficient way of dealing
with the theory of algebraic invariants.

A central source of universal properties is the theory of colimits in categories.
Given a functor F : C → A, the colimit of F is an object colimA F ∈ A satisfying

1We will use the terminology ∞-category (resp. ∞-bicategory) to denote (∞, 1)-categories (resp. (∞, 2)-
categories).
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a certain universal property which we will explain later in the introduction. This
notion is defined in such a way that it is invariant with respect to isomorphisms
of functors. For example, if F,G : C → Top are functors with values in
topological spaces and we have a natural transformation α : F =⇒ G which
is pointwise an homeomorphism then we have a homeomorphism of spaces
colimC F ' colimC G. However, from the point of view of homotopy theory
where we are only interested in spaces up to weak homotopy equivalence, the
notion of equivalence of functors is given by natural transformations which are
pointwise weak homotopy equivalences. Therefore, in order for the universal
property of the colimit to be meaningful in the homotopical sense both colimits
should be homotopy equivalent whenever both functors are equivalent in this
weaker sense. Unfortunately, the classical theory of colimits is unable to capture
this homotopical behaviour (it rather fails spectacularly at doing so) as witnessed
by the next example.

Let Λ2
0 be the category consisting in 3 objects 0, 1, 2 and morphisms 0→ 1

and 0→ 2. Suppose we are given a functor F : Λ2
0 → A which we diagrammati-

cally represent as
X0 X1

X2

f01

f02

The colimit of F is given by an object P ∈ A together with a pair of morphisms
u : X1 → P and v : X2 → P such that u ◦ f01 = v ◦ f02 satisfying the following
universal property

• For every pair of morphisms θ : X1 → Y , ν : X2 → Y such that θ ◦ f01 =
ν ◦ f02 there exists a unique morphism γ : X → Y such that θ = γ ◦ u and
such that ν = γ ◦ v.

Let us consider a couple of diagrams in Gi : Λ2
0 → Top for i = 1, 2 given by

{∗}∐{∗} I {∗}∐{∗} {∗}

I {∗}

ι

ι

where I denotes the unit interval, {∗} denotes the point and ι is the inclusion of
the end-points. It is immediate to see that both diagrams are weakly equivalent
since the interval is a contractible space. A simple inspection now reveals that
the colimit of G1 is homeomorphic to S1 whereas the the colimit of G2 is again
a point.

There are various ways of solving this issue which involve producing homo-
topical upgrades of the ordinary theory of categories. In this document we will
make use of two of these approaches: Model categories and ∞-categories.

Quillen ([Qui67]) introduced model categories in order to give an axiomatic
framework to study homotopy theory in categories. The main idea behind of
that of a model category, is that certain categories (for example, Top) can be
equipped with distinguished classes of morphisms which allow us to perform
homotopy theoretic constructions in that particular category. These classes
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of morphisms are abstractions of their topological counterparts: Inclusions of
CW-complexes, fibrations and weak homotopy equivalences. There is a robust
theory of colimits in model categories, homotopy colimits, which addresses
completely the question of invariance up to weak equivalence.

Let F : Λ2
0 → Top be a diagram with values in CW-complexes. The theory

of homotopy colimits tells us that in order to compute the homotopy colimit
we must replace one of the morphisms in the diagram with an inclusion of
CW-complexes and then compute the ordinary colimit. Going back to the
previous example we see that the colimit of G1 already represents the homotopy
colimit. To compute the homotopy colimit of G2 we replace the original diagram
with

{∗}∐{∗} I

{∗}

ι

and compute the ordinary colimit, which is as expected given by S1.
Although model categories are up to this day a useful tool in category theory

(and will be used in the coming chapters) this thesis is concerned with a different
way of solving the previous problem: ∞-categories. Let S ⊂ Top be the full
subcategory of CW-complexes. An essential feature of S is that given a weak
homotopy equivalence f : X → Y then there exists a morphism g : Y → X
which is a homotopy inverse to f . Observe that the notion of homotopy can be
understood as a 2-morphism: A morphism between morphisms. Moreover, since
we can reverse the direction of the homotopy it follows that each homotopy is
in fact an invertible 2-morphism. We can keep extracting higher categorical
information from S by observing that we can produce homotopies between
homotopies and so on. As it happened before, these n-morphisms are always
invertible for n > 2. Abstracting this phenomena present in the category of
spaces we can give the next informal definition of an ∞-category:

Definition. An ∞-category C consists in a collection of objects and for every
n > 1 a collection of n-morphisms such that every n-morphism with n > 2 is
invertible.

The theory of ∞-categories offers a vast generalization to the theory of
ordinary categories. However, in order to have access to this greater generality
we must rebuild the classical theory in a way that takes into account the
existence of the higher dimensional morphisms. Whereas in ordinary category
theory we mostly deal with morphisms and equations among them in form of
commutative diagrams, the∞-categorical theory considers diagrams commuting
up to higher-dimensional coherence data. The success of this homotopy-coherent
approach to category theory can be partly attributed to its ability to capture
sophisticated universal properties in a homotopy invariant way.

Returning to our example let us try to understand how to compute the
colimit ofG2 using the theory of∞-categories. In this context, the∞-categorical
colimit of a functor F : Λ2

0 → S is given by an object X ∈ S fitting into a

15



(homotopy-coherent) diagram

X0 X1

X2 X

f01

f02
θ α1

α2

where Xi = F (i), fij = F (i→ j) and such that θ is homotopic to α1◦f01 and to
α2◦f02. In order for the previous diagram to represent the∞-categorical colimit
it must satisfy a certain universal property. We will not give a precise definition
of the∞-categorical universal property of the colimit in the introduction but we
will illustrate it by analyzing the case where our diagram is given by F = G2.

Let us suppose we are given a homotopy-coherent diagram

{∗}∐{∗} ∗

∗ X.

t

t
θ α1

α2

Note that a homotopy between αi ◦ t and θ is precisely given by a morphism
u : I → X such that:

• The restriction of u : I → X to the endpoints equals θ.

• The value of u at the middle point of I equals αi.

Combining both homotopies we obtain a morphism S1 → X. This shows that
we have a canonical choice of colimit diagram

{∗}∐{∗} ∗

∗ S1.

t

t
θ α1

α2

such that any other homotopy-coherent diagram is determined up to homotopy
by a morphism S1 → X. Note that in this approach the use of higher dimensional
morphisms (homotopies) is the key ingredient in order to show that S1 satisfies
the ∞-categorical universal property of the colimit.

There exist several equivalent models for defining ∞-categories. We will
mostly be interested in the model given by simplicial sets satisfying the inner
horn lifting condition (see [Lur09a, Definition 1.1.2.4]). Recall that the simplex
category ∆ is the full subcategory of Cat, the ordinary 1-category of categories,
spanned by the posets

[n] = {0 < 1 < · · · < n}, for n > 0

The category of simplicial sets Set∆ is defined to be the presheaf category
Fun(∆op, Set). We define the (ordinary category) of ∞-categories denoted by
Cat∞ as the full subcategory on those simplicial sets satisfying the inner horn
lifting condition. The next definition allows us to formalize that ∞-categories
generalize ordinary 1-categories.

16



Definition. There is a fully faithful functor N : Cat → Cat∞ which sends a
category C to the simplicial set N(C) whose n-simplices are given by functors
[n]→ C.

Up to this point, we have considered spaces simply as a source of inspiration
for giving a sensible definition of what an ∞-category should be. It is natural
then to ask ourselves the next question:

Q: What is the role of the∞-category of spaces in the theory of∞-categories?

The answer to this question is a particularly satisfactory one: Spaces are to
∞-categories what sets are to ordinary 1-categories. Let us unravel the last
claim by carefully translating what sets are into relation to 1-categories into
the ∞-categorical realm.

Sets Spaces
The category Set

is the prototypical example of 1-category
The ∞-category S

is the prototypical example of ∞-category
For every pair of objects x, y

in a category C we have a set HomC(x, y)
of morphisms from x to y

For every of objects x, y
in an ∞-category C we have a space C(x, y)

of morphisms from x to y

We further see that we can view the category Set as the full subcategory
of Cat on those categories such that each morphism is an identity morphism.
Similarly, we can be view S as the full subcategory of the ∞-category of ∞-
categories �at∞, consisting in those ∞-categories such that each morphism is
given by an equivalence. We summarize this discussion in the following diagram

Set Cat

S �at∞

(1)

where the vertical maps are all fully-faithful inclusions of ∞-categories. Later
in this document we will extend the following commutative diagram to accom-
modate the 2-dimensional theory. We will view ∞-categories a as an special
instance of an even more general entity called an ∞-bicategory which also
simultaneously generalizes the classical notion of 2-category.

Colimits in ∞-categories

From ordinary colimits to ∞-categorical colimits

To better understand, how the theory of ∞-categorical colimits relates to the
strict 1-categorical theory let us start by reviewing the definition of a colimit
in an ordinary category.

Let F : C → A be a functor of ordinary categories and recall that a cone
for F is given by the following data

• An object a ∈ A known as the “tip of the cone“.

17



• For every c ∈ C a morphism αc : F (c)→ a such that for every morphism
e : c→ c′ the equality αc = αc′ ◦ F (e) holds.

We will denote the data of a cone as pair (a, {αc}c∈C). The colimit of F is the
universal cone (a, {αc}c∈C) satisfying the following universal property:

∗ For every cone (b, {βc}c∈C) there exists a unique morphism u : a→ b in A
such that βc = u ◦ αc for every c ∈ C.

Let ∗C : C → S be the constant functor that sends each object to one-point
space ∆0. For simplicity, we will assume that C is an ordinary category. It
follows by direct inspection that the colimit of ∗C is a discrete space (or set)
π0|C| which is obtained from the set of objects of C by identifying a pair of
objects x ∼ y whenever there exists a zig-zag of morphisms connecting both
objects

x←− a0 −→ a1 −→ · · · ←− an −→ y

Without a doubt the value of the colimit is not particularly interesting: It just
measures the set of connected components of the category C. One could argue
that this is an expected output, after all this is the colimit of a “boring“ functor.
This is actually not the case, π0|C| is the set of connected components of a
space |C| which is the result of taking the correct ∞-categorical colimit of ∗C .
In order to understand this new notion of colimit let us explain what a cone in
this context should look like.

We define category C. with objects given by Ob(C.) = Ob(C)∐{∗}. The
Hom-sets of this category are given by

HomC.(x, y) =


HomC(x, y), if x, y ∈ C
{∗}, if y = ∗
∅, otherwise

Observe that an ordinary functor cF : C. → A that restricts to F when
evaluated at C is precisely the data of a cone with tip cF (∗). Going back to
our original example let us analyze what a cone for the constant value functor
looks like with this new definition c∗ : C. → S. We would like to remark that
from this point on we will be viewing S as an ∞-category otherwise both cone
definitions would agree. Let X = c∗(∗) be the value of the functor on the cone
point. First, let us observe that for every object c ∈ C we have a morphism
c → ∗ in C. defining a morphism αc : ∆0 → X of spaces which amounts to
specifying a point in the space X. Similarly given a morphism u : c→ c′ in C
we have a 2-simplex in C. which gets mapped under c∗ to a homotopy ∆1 → X
between αc and αc′ this is nothing more than specifying a path in the space X.
Carefully unpacking all the information specified by c∗ we see that the data of
this functor is equivalent to the data a functor C → X where we are viewing X
as an∞-category where all morphisms are equivalences. One can show that the
∞-categorical colimit of the constant point value functor is given by formally
inverting all of the morphisms of C to obtain a space. This space turns out
to be equivalent to the geometric realization of C which is usually denoted by
|C|. The ordinary colimit of the functor is precisely the set of path components
of the space |C|. Thus we see that the colimit of our “boring functor“ is a

18



rather interesting space which can be regarded as a higher generalization of
the groupoid completion2 of the category C. Whereas the groupoid completion
|C|61 (viewed as a space) has vanishing homotopy groups for i > 2 the space
|C| can have highly complicated homotopy groups: A prominent example is
given by Quillen’s Q-construction [Qui73] where the higher homotopy groups of
the geometric realization of an ordinary category compute the higher algebraic
K-groups.

We will postpone the precise definition of the universal property of the
colimit in this ∞-categorical context to Chapter 1 where we will review the
main∞-categorical constructions that will be generalized later in this document
to the ∞-bicategorical realm. We would like to emphasize that showing that a
certain cone is universal in the ∞-categorical sense is not a simple task. That
is the reason why it is important to develop the necessary technology that will
assist us in the computation of ∞-categorical colimits.

Cofinality

Among the tools devised to simplify the computation colimits perhaps the
most important is the notion of a cofinal functor of ∞-categories. Suppose that
we are given a pair of functors F : D → A, f : C → D. It follows that via
restriction along f we can produce from the universal cone for F a cone for
the diagram F ◦ f . The universal property of the colimit implies the existence
of a morphism

colim
C

F ◦ f colim
D

F

which we refer to as the canonical comparison map. We will say that f is
cofinal if for every functor F as above the canonical comparison map is an
equivalence in A. To better understand this idea, let us look at a simple
example. Let f : C→ D denote a fully faithful inclusion of categories depicted
diagrammatically as

s r s t

x y x y

Here the letters r, x, s, y and t denote the objects of the category D and the
arrows denote the (unique) morphisms between these objects. Given a diagram

2By groupoid completion we mean the left adjoint to the inclusion of (strict) groupoids into categories.
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F : D→ A let us consider a cone for F which we can also draw as
a

F (r) F (s) F (t)

F (x) F (y)

We already know that restricting the diagram will yield a cone for F ◦ f . Let
us suppose that we have a cone for the functor for F ◦ f . Then it is immediate
to produce the next diagram in A

a

F (r) F (s) F (t)

F (x) F (y)

Moreover, to obtain a cone for F we only need to pick some composites which
are, since we are working with ∞-categories, unique up to contractible choice.
This behaviour extends all the way up to the n-simplices of the category
of cones Con(F ) and Con(Ff) which control the colimit of both functors.
With some effort one can show that the morphism induced by restriction
Con(F ) → Con(Ff) is an equivalence of ∞-categories (it is in fact a trivial
fibration) which in turn implies that the canonical comparison map between the
colimits is an equivalence. The proof of this later fact is essentially independent
of the functor F , which shows that f is indeed a cofinal functor.

In practice, to show that a morphism is cofinal by tracking its behaviour
on the associated categories of cones is not a feasible task. The power of the
theory of cofinal functors is due to the existence of a checkable criterion.

The conditions that characterize cofinal functors date back to Quillen
([Qui73]) and his famous Theorem A. Before commenting on this important
result let us introduce some preliminary notation.
Definition. Let f : C → D be a functor of ordinary categories. For every
d ∈ D we define a category Cd/ whose objects are given by an object c ∈ C
together with a morphism u : d → f(c). A morphism from u : d → f(c) to
v : d→ f(c′) is given by a morphism α : c→ c′ such that v = f(α) ◦ u. We will
refer to Cd/ as the comma category.

The categories Cd/ for d ∈ D completely control cofinality for the functor f .
Historically though, these categories where utilized by Quillen to give sufficient
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conditions for a functor f : C → D of ordinary categories to induce a homotopy
equivalence upon passage to geometric realizations.

Theorem. Let f : C → D be a functor of ordinary categories and assume
that for every d ∈ D the geometric realization of the category |Cd/| ' ∗ is
contractible. Then f induces a homotopy equivalence upon passage to geometric
realizations

|f | : |C| |D|'

The previous theorem has been extensively used in algebraic K-theory where
it historically originated. Theorem A is an essential ingredient of the proof of
the additivity theorems of Quillen’s Q-construction ([Qui73]) and Waldhausen’s
S-construction ([Wald83]).

The original theorem of Quillen is nowadays interpreted as a cofinality
statement. It was proved by Joyal ([Joy]) that a functor of ∞-categories is
cofinal if and only if the conditions of Quillen’s Theorem A (after taking
adequate ∞-categorical comma categories) are satisfied. Going back to our
example of the constant point valued functor we see that Theorem A can
be recovered after noting that the geometric realization of a category can be
obtained as the colimit of the constant point valued functor.

The conditions of Theorem A are in practice relatively easy to check due to
two main reasons:

1. Many categories are contractible: Categories with terminal or initial objects
are contractible and so are filtered categories, categories with products
and many other examples.

2. If our starting functor f : C → D is a functor of ordinary categories then
we need to check contractibility of an ordinary category.

Let us verify that the conditions of Theorem A are satisfied in the example
we discussed above. Note that given a fully-faithful functor of ∞-categories
f : C→ D3 it follows that we have an equivalence Cd/ ' Dd/ for every d in the
essential image of f . Note that we are denoting by Dd/ the comma category
associated to the identity functor. We can also see that for every d ∈ D the
identity morphism on d defines an initial object in Dd/ which in turn implies
that |Dd/| ' ∗. This reduces the computations in our example to show that Cd/
for d = r, t. It follows immediately after inspection that in both cases Cd/ = ∗
is precisely the point.

We can also characterize cofinality with respect to ordinary colimits: Given
a functor of ordinary categories f : C → D it follows that f is strict cofinal if
and only if π0|Cd/| = ∗ for every d ∈ D. We finish this section by studying an
example of strict cofinal functor which is not cofinal in the ∞-categorical sense.
Let ∆ denote the simplex category and consider the (non-full) inclusion

Γ =
(

[1]
d1−−→−−→
d0

[0]
)

∆op

3In general we use roman majescules C,D to denote ordinary categories and caligraphic majescules C,D
to denote ∞-categories.
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It is easy to see that for every n > 0 the category Γ[n]/ is non-empty and path
connected. Note that ∆op has an initial object which implies that |∆op| ' ∗.
We further see that |Γ| ' S1. Since cofinal functors must induce homotopy
equivalences upon passage to geometric realizations it follows that our functor
cannot be cofinal.

When 2-morphisms are no longer invertible: The theory
of ∞-bicategories
Much in the same way as sets organize themselves into a category, the collection
of (ordinary) categories is the prototypical example of a (strict) 2-category.
This 2-category which we denote by Cat has as objects categories, 1-morphisms
are given by functors and 2-morphisms are given by natural transformations.
In a similar way, given a pair of ∞-categories we can define the functor ∞-
category Fun(C,D) whose n-simplices are given by morphisms of simplicial
sets σ : C×∆n → D. Before delving into how to generalize the ∞-categorical
theory into the realm of (∞, 2)-categories (also called ∞-bicategories in our
preferred model) we must first ask the next question:

Q Why should we care about ∞-bicategories ?

It is worth giving a convincing answer to this question, after all, computations
with∞-categories are daunting in comparison with their ordinary counterparts.
There are several ways to answer this question but here we will comment the
main points that motivated the work of the author:

1. Better structural understanding of the theory of ∞-categories:
Many constructions in ordinary category theory are nothing more than
certain general 2-categorical construction particularized to Cat. For ex-
ample, the notion of adjunction of categories is precisely an adjunction
internal to Cat. A general 2-dimensional theory will help us to understand
the specifics of �at∞ the ∞-bicategory of ∞-categories.

2. Computations with ∞-categories can be simplified using the
2-dimensional theory: Some constructions in ∞-category theory are
essentially controlled by the theory of ∞-bicategories. This is better
understood through the next example which plays a major role in this
thesis. Let C be an ∞-category and suppose we are given a collection of
morphisms E ⊂ C1 containing every identity. We will say that an edge
of C is marked if it belongs to E and will use a superscript notation
to denote the pair C† := (C, E). Pairs as before will be refered to as
marked ∞-categories. The localization of C at the collection of edges E is
another ∞-category LW

(
C†
)
equipped with a morphism ι : C→ LW

(
C†
)

satisfying the following universal property: For every ∞-category A the
functor induced by restriction

ι∗ : Fun(LW
(
C†
)
,A) Fun(C,A)

is fully-faithful with essential image given by those functors F : C → A

mapping each element of E to an equivalence in A. Many important
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categories are obtained via localizations, for example, the ∞-category
of spaces is obtained as the ∞-categorical localization of the ordinary
category of spaces at the set of weak homotopy equivalences. Another
important example, this case in homological algebra is given by localizing
the category of chain complexes Ch(A) on an abelian category with respect
to quasi-isomorphisms. The resulting ∞-category is a generalization of
the derived category D(A).

In this thesis we will develop an∞-bicategorical theory of cofinality which
in particular can be used to give sufficient conditions for a marking-
preserving functor f : C† → D† to induce an equivalence upon passage to
∞-categorical localizations.

3. Some important 1-categories admit a 2-categorical enhance-
ment: The main example we would like to discuss here is that the simplex
category ∆. We can give a poset structure on the set of maps Hom∆([n], [m])
by declaring f 6 g if and only if for every i ∈ [n] we have f(i) 6 g(i). It
is easy to see that composition in the simplex category is compatible with
the pointwise order on the Hom-sets thus producing a 2-category which
we denote by �. The pointwise order of monotone morphisms is used in
Waldhausen’s original proof of the Additivity Theorem ([Wald83]). This
hints at the possibility that the 2-categorical structure of ∆ could play a
role in K-theory.

The study of 2-simplicial objects, that is, functors �op → � with values in
an ∞-bicategory was the main motivation of the author to develop the
2-categorical technology presented in this thesis. In [Dyck21] Dyckerhoff
utilizes 2-simplicial objects in stable ∞-categories to produce a categorifi-
cation of the celebrated Dold-Kan correspondence ([Dold58]). To develop
a rich theory of categorified homological algebra it will be necessary to
understand the simplex 2-category as having a certain universal property
which we will explain at the end of the introduction.

We would like to implement a model for ∞-bicategories that resembles as
much as possible the simplicial model for ∞-categories. A practical way of
implementing models for (∞, n)-categories is to use simplicial sets equipped
with additional decorations known complicial sets [Ver08]. We will take a similar
approach to that of Verity used by Lurie in [Lur09b]: The framework of scaled
simplicial sets.

Definition. A scaled simplicial set is given by a pair (X,CX) where X is a
simplicial set and CX ⊆ X2 is a subset of the set of 2-simplices containing
every degenerate 2-simplex. We refer to the elements of CX as thin triangles or
scaled triangles. A morphism of scaled simplicial sets (X,CX)→ (Y,CY ) is a
morphism of the underlying simplicial sets such that f(CX) ⊆ CY .

The idea behind the definition is that the collection of thin triangles should
represent those 2-morphisms which are invertible. For example, in the ∞-
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bicategory �at the data of a 2-simplex σ can be represented as

D

C A

f g

h

where we have a natural transformation Hσ : C×∆1 → A between h and g ◦ f .
The collection of thin simplices of �at∞ is given precisely by those triangles
such that Hσ is an equivalence of functors. One then defines ∞-bicategories
as those scaled simplicial sets satisfying some adequate right-lifting properties.
We can organize ∞-bicategories into another ∞-bicategory that we denote by
�icat∞.

The next family of 2-categories (where the notation On makes reference to
the notion of oriental appearing in [Str87]) will be play a very important role
in this document and can be used to extend diagram 1 to accommodate the
2-categorical theory as we will soon explain.

Definition 0.0.1. Let n > 0 and define a 2-category On as follows:

• Objects are given by the elements of the poset [n].

• For every i, j ∈ [n] the category On(i, j) is either empty if i > j or given
by the poset of subsets S ⊆ [n] such that min(S) = i and max(S) = j
ordered by inclusion. The non-trivial composition functors for i 6 j 6 k
are induced by union of subsets

On(i, j)× On(j, k) On(i, k), (S, T ) S ∪ T.

The action on morphisms of the composition functors is the obvious one
since union preserves our given order.

We think of the 2-categories On as thickened versions of the usual ordinals
[n] and use them to produce for every 2-category D a scaled simplicial set
(in fact an ∞-bicategory) via the scaled nerve functor. The scaled simplicial
set Nsc(D) has as n-simplices the set of 2-functors Fun(On,D). Observe that a
functor u : O2 → D specified by the following data:

• Three objects d0, d1, d2.

• Three morphisms uij : di → dj for 0 6 i < j 6 2 and a composite
morphism u12 ◦ u01 : d0 → d2.

• A 2-morphism α : u02 =⇒ u12 ◦ u01.

Then we define the collection of thin triangles of Nsc(D) to consist in those
functors O2 → D such that its associated 2-morphism is invertible in D. The
scaled nerve construction allows us produce the following diagram

Set Cat 2Cat

S �at∞ �icat∞
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where 2Cat denotes the strict 2-category of 2-categories. We would like to remark
that right-most functor is faithful but not full: Given a pair of 2-categories C
and D a map of scaled simplicial sets f : Nsc(C)→ Nsc(D), then f corresponds
to a lax unital functor f̂ : C → D. In particular, it preserves composition of
1-morphisms up to invertible 2-morphism.

Colimits in ∞-bicategories
As one tries to generalize even strict colimits to 2-categories one runs into an
immediate problem: which definition of colimit to use. Loosely speaking, any
definition of a colimit should come equipped with a universal cone. However, if
we consider a strict 2-functor F : C→ D, we run into an issue defining cones
over F . A cone over F with tip d should consist of:

• For every object c ∈ C, a morphism αc : F (c)→ d.

• For every morphism u : b→ c in C, a diagram

F (b)

d

F (c)

F (u)

αb

αc

that commutes appropriately.
It is here that the definition flounders — there are multiple 2-categorical notions
which could be described as the diagram “commuting appropriately“, and each
yields different notions of colimit. If one requires the triangles to commute up to
non-invertible 2-morphism, for instance, one obtains the notion of a lax colimit.
If, on the other had, one requires commutativity up to invertible 2-morphism,
the corresponding notion of colimit is the pseudo-colimit.

Before continuing with our general discussion we present some examples.
Let Λ2

2 be the poset consisting in three objects 0, 1, 2 and morphisms 1 → 2
and 0→ 2 . Suppose we are given a diagram

A

C D : Λ2
2 �at∞

B

F

G

and let us compute the lax limit of D. We informally describe the lax limit
which we denote by A×[C B as follows:

• Objects are given the following data: A triple of objects a ∈ A, b ∈ B and
c ∈ C together with morphisms αa : F (a)→ c and αb : G(b)→ c.
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• A morphism between (a, b, c, αa, αb)→ (a′, b′, c′, αa′ , αb′) is given by mor-
phisms a→ a′, b→ b′ and c→ c′ and a commutative diagram in C

F (a) c G(b)

F (a′) c′ G(b′).

αa αb

αa′ αb′

This construction is known as the lax pullback and has been used in [LT19] to
understand the failure of excision for any localising invariant. The pseudolimit
A ×]C B (which coincides with the usual ∞-categorical pullback) is the full
subcategory of A×[C B on those tuples (a, b, c, αa, αb) such that both αa and
αb are equivalences.

Even in simpler examples the theory of (co)limits in∞-bicategories is capable
of capturing interesting phenomena. For example, given an exact functor of
stable ∞-categories F : A → B (which be view as a diagram E : ∆1 → St
with values in the ∞-bicategory of stable ∞-categories and exact functors) the
lax limit of E is a stable ∞-category which corresponds to a semiorthogonal
decomposition (see [BK89]) of A and B along the gluing functor F . In particular,
this allows us to view (in the setting of stable ∞-categories) the notion of
semiorthogonal decomposition along a gluing functor as being characterized by
a certain 2-dimensional universal property.

One traditional way of resolving the multiplicity of definitions of 2-dimensional
colimits is by defining the more general notion of weighted colimits, which spe-
cialize to each of the above cases (see for example [Kel06]). However, in the
past two years, a different approach has become relevant due to its amenabil-
ity to applications in simplicial models for higher categories: marked colimits.
In defining marked colimits, one considers the 2-category C to be equipped
with a collection of marked 1-morphisms, and then requires that the chosen
2-morphism making the triangle above commute is invertible whenever u is
a marked morphism. This resolution of the above issue loses nothing in com-
parison to Cat-weighted or �at∞-weighted limits, as the two theories turn out
to be equivalent (see [AG22, Theorem 4.7] and [GHL21a, Section 5] for more
details). Although this definition of 2-categorical limit is in fact a novel concept
in the study of ∞-category theory its use in the strict 2-categorical realm was
already established as in seen in [DS18].

The degree to which marked colimits are well-suited to higher-categorical
settings is underlined by the fact that, within the span of a year, three groups
independently arrived at more or less the same definition: the author in [AGS22]
and [AG22]; Berman in [Berm21]; and Gagna, Harpaz, and Lanari in [GHL21a].
The last of these three provides a complete definition of marked limits and
colimits in terms of marked-scaled simplicial sets. Their definitions coincide
with those given in [AGS22], [AG22], and [Berm21] whenever both versions
apply.

Before diving into presenting the main results obtained in this thesis let us
illustrate how the theory of marked colimits gives a new perspective to familiar
constructions in∞-category theory. First of all we will introduce some notation
that will be used throughout this document: Given a marked ∞-bicategory �†
we will denote the marked colimit of a functor F : �→ � as colim†� F .
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Ordinary colimit ∞-categorical colimit ∞-bicategorical colimit
Connected components of

|C|
∞-groupoid completion

|C|
partial ∞-groupoid completion

LW (C†)

Let C† be a marked ∞-category and recall the constant point valued functor
∗C : C → S ⊂ �at∞ discussed before which we now view as taking values in
∞-categories. Then after some unraveling we see that the data of a marked cone
for ∗C with tip an ∞-category D is equivalent to specifying a functor C→ D

which maps every marked edge in C† to an equivalence in D. This identifies
the universal property of the marked colimit with that of the localization of C
at the collection of marked edges thus yielding an equivalence of ∞-categories

LW (C†) colim†
C
∗C

'

Note that we can identify the geometric realization |C| (also known as the
∞-groupoid completion) as the localization of C at the collection of all edges
namely LW (C]).

We summarize in the next table the different kinds of colimits studied so far
for a constant point valued functor ∗C : C → Set ⊂ S ⊂ �at∞ indexed by an
ordinary 1-category:

This computation will be generalized in Theorem 4.1.1. Recall (Chapter
3 in [Lur09a]) that for any functor of ∞-categories F : C → �at∞ there is a
coCartesian fibration Unco

C (F )→ C called the (coCartesian) unstraightening of
F . We can now state the result.
Theorem (4.1.1). Let C† be a marked ∞-category. Given F : C �at∞
there is an equivalence of ∞-categories

LW
(
Unco

C (F )†
)
' colim†

C
F

where LW
(
Unco

C (F )†
)
denotes the ∞-categorical localization at the collection

of coCartesian edges lying over marked edges of C†

Let us return to the example of the (lax) pullback D : Λ2
2 → �at∞ and

suppose that Λ2
2 comes equipped with a marking consisting on the edge 0→ 2

which corresponds to the functor G : B→ C. In this case we denote the marked
limit by A

→
×CB. One can show that the marked limit is given by the subcategory

consisting in tuples (a, b, c, αa, αb) such that αb is an equivalence in C. In this
situation we can describe the ∞-category A

→
×C B as follows:

• Objects are given by triples (a, b, α) where a ∈ A, b ∈ A and α : F (a)→
G(b).

• A morphism (a, b, α) → (a′, b′, α′) is given by morphisms a → a′, b → b′

together with a commutative diagram

F (a) F (b)

F (a′) F (b′)

α

α′
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One analogously defines the ∞-category A
←−
×C B which corresponds to the

marked limit of D : Λ2
2 → �at∞ where we are marking the edge 0→ 1 in Λ2

2.
We summarize our discussion of marked pullbacks in the next commutative
diagram

A×]C B A
→
×C B

A
←−
×C B A×[C B

consisting in fully faithful functors of ∞-categories.
We conclude the section with an example of lax colimit where the indexing

diagram is a 2-category. Let Q2 denote the free living 2-morphism which we
view pictorially as

0 1
f

g

and consider a diagram T : Q→ �at∞ which amounts to a pair of functors of
∞-categories F,G : A→ B together with a natural transformation F =⇒ G. For
the sake of simplicity let us assume that T takes values in ordinary categories.
We consider the 2-category El(T ) obtained as the 2-categorical Grothendieck
construction of the functor T which is given by:

• Objects are given by pairs (ε, x) where ε is an object of Q and x ∈ T (ε).

• A morphism (ε0, x) → (ε1, y) is given by a pair (u, s) consisting of a
morphism u : ε0 → ε1 in Q and a morphism s : T (u)(x)→ y.

• A 2-morphism (u, s) =⇒ (v, t) is given by a 2-morphism u
θ=⇒ v and a

commutative diagram

T (u)(x)

y

T (v)(x)

T (θ)x

s

t

We claim that the lax colimit of T is the ∞-category obtained by formally
inverting the 2-morphisms of El(T ). Observe that El(T ) comes equipped with
a canonical functor El(T ) → Q. We define El(T )61 by means of the pullback
diagram

El(T )61 El(T )

∆1 Q

i

f

Note that the only non-trivial 2-morphisms in El(T ) are those living over the
unique non-invertible morphism in Q. In particular, it follows that El(T )61 is
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a strict 1-category. We further note that El(T )61 is, by the previous theorem,
the lax colimit of T ◦ f .

We define a functor r : El(T )→ El(T )61 which is the identity on those objects
and morphisms living over f and that sends an edge (g, s) : (0, x)→ (1, y) to
the morphism over f given by the composite T (f)(x) → T (g)(x) → y. It is
immediate to see that this defines a functor which collapses the non-identity
2-morphisms of El(T ). One can show that there is a lax natural transformation
between i ◦ r and the identity on El(T ) which in turn implies that i induces an
equivalence after inverting the 2-morphisms of El(T ). In the next section we
will show that the map f : ∆1 → Q is cofinal in the ∞-bicategorical sense thus
proving our claim.

Higher cofinality: The main theorem

Let f : �† → �† be a marking-preserving functor of∞-bicategories. We say that
f is marked cofinal if for every diagram F : �→ � the canonical comparison
map

colim†� Ff colim†� F
'

is an equivalence in �. The central theorem of this thesis gives a positive answer
to the following question
Q: Can we efficiently characterize marked cofinal functors of ∞-bicategories?

Moreover, our characterization of cofinal functors is given by a direct gener-
alization of the conditions of Quillen’s Theorem A. Let us introduce some
preliminary notation to better understand our main result.

Definition 0.0.2. Let f : C† → D† be a functor of marked 2-categories. Given
an object d ∈ D we define the marked comma 2-category C†

d →

as follows:

• Objects are given by pairs (u, c) where u : d→ f(c) is a morphism in D
with source d and c is an object of C.

• A 1-morphism from u : d→ f(c) to v : d→ f(c′) is given by a 1-morphism
α : c→ c′ in C and a 2-morphism f(α) ◦ u =⇒ v.

• A 2-morphism in C†
d →

is given by a 2-morphism ε : α⇒ β such that the
diagram below commutes

f(α) ◦ u

v

f(β) ◦ u

f(ε)∗u

• A morphism in C†
d →

is marked precisely when α : c→ c′ is marked in C†

and the associated 2-morphism is invertible.
If the functor f is the identity on the marked 2-category D† we will use the
notation D†

d →

.
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We would like to point out that an analogous construction can be performed
for functors of general ∞-bicategories but for the purpose of clarity we choose
to present here the strict version. We refer the reader to Chapter 4 for the
general definition. We are ready to present our main theorem.
Theorem (4.0.31). Let f : �† → �† be a marking-preserving functor of
∞-bicategories. Then the following statements are equivalent:
1. The functor f is marked cofinal.

2. For every d ∈ � the functor f induces an equivalence of ∞-categorical
localizations LW (�†

d →

)→ LW (�†
d →

).

First, let us derive some corollaries from the previous theorem. Let us suppose
that �† = C], �† = D], that is, both ∞-bicategories are actually ∞-categories
with all morphisms being marked. Then since for every d ∈ D the ∞-category
Dd/ has an initial object it follows that the ∞-categorical localization at all
morphisms is given by the geometric realization functor and thus we see that
LW (D]

d/) ' |Dd/| ' ∗. Then the second statement in our theorem collapses to:

• For every d ∈ D, the geometric realization of the comma category |Cd/| ' ∗
is contractible.

In order words, our theorem recovers the characterization of cofinal functors of
∞-categories due to Joyal. In a similar way as the original theorem of Quillen
can be recovered from the main cofinality statement, in our situation we can
obtain the following generalization of Quillen’s Theorem A.
Corollary (4.0.32). Let f : �† → �† be a marking-preserving functor of
∞-bicategories and suppose that the following condition holds

• For every d ∈ � the functor f induces an equivalence of ∞-categorical
localizations LW (�†

d →

)→ LW (�†
d →

).

Then f induces an equivalence upon passage to ∞-categorical localizations

LW (f) : LW
(
�†
)

LW (�†).'

We conclude this section by describing simple applications of our cofinality
criterion. First, let us return to the final example in the previous section, namely,
the free living 2-morphism Q. There we claimed that the inclusion f : ∆1 → Q
of the initial object in the mapping category Q(0, 1) is cofinal. We will show
that the morphism

f0 : ∆1
0 →

Q0 →

induces an equivalence after localizing the 2-morphisms in Q0 →. We visualize
the morphism f0 schematically as follows

0 0

0 1 1 0 1 1

id
f

g

f id

g

f id

id
f

g
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Note that f0 induces isomorphisms in mapping categories except in the case:

Map∆1
0 →

(id, g)→ MapQ0 →

(id, g).

In this latter instance however, the morphism on mapping categories can be
identified with the inclusion of the initial vertex of ∆1 which clearly becomes
an equivalence after localizing 2-morphisms. Since ∆1

1 →

' Q1 → ' ∗ we conclude
that f : ∆1 → Q is cofinal.

We provide further examples of cofinal maps which are similar in spirit to
the previous example.

• • • •

f

h

g
f

• • • •

f

h

g
g

We can, in a similar way as before, verify that the morphisms above are (lax)
cofinal. However, it will instructive to see those examples as being part of a
general class of cofinal maps.

Let K be an ordinary category. We define a 2-category 2[K] as follows:
• We have a pair of objects 0, 1.

• The mapping categories are given by 2[K](ε, ε) = ∆0 for ε ∈ {0, 1},
2[K](0, 1) = K and 2[K](1, 0) = ∅.

Given a functor of 1-categories p : K → S we obtain a (strict) 2-functor
p : 2[K]→ 2[S]. We will study study the morphisms

pi : 2[K]i → 2[S]i →, for i = 0, 1.

The case i = 1 is trivial since the functor p1 is an isomorphism. We turn our
attention to the case i = 0. Observe that since p is an isomorphism on objects it
follows that both 2[K]0 → and 2[S]0 → have the same objects which are precisely
represented by objects s ∈ S together with the identity morphism on the object
0. Let s1, s2 ∈ S. Then p0 induces an isomorphism

2[K]0 →(s1, s2) ' 2[S]0 →(s1, s2) ' HomS(s1, s2)

We similarly obtain

2[K]0 →(s, id) ' 2[S]0 →(s, id) ' ∅, 2[K]0 →(id, id) ' 2[S]0 →(id, id) ' ∆0

The final case to analyze then yields

K/s = 2[K]0 →(id, s) 2[S]0 →(id, s) = S/s

where K/s is the dual version4 of Ks/ whose objects are given by morphisms
u : p(k) → s in S and whose morphisms are given by maps k → k′ making

4These categories control the dual notion of coinitial functor: A functor is f is coinitial if restriction along
f preserves limits

31



the obvious diagram commute. We can now use our characterization of cofinal
functors of ∞-bicategories to arrive at the following result.

Proposition. Let p : K → S be a functor of ordinary 1-categories. Then
p : 2[K]→ 2[S] is a cofinal functor of 2-categories (with respect to the minimal
marking) if and only if pop : Kop → Sop is a cofinal functor of 1-categories.

Fibrations of ∞-bicategories & the Grothendieck con-
struction

The proof of our cofinality theorem required some technology to be develop,
much of which is of independent interest. In this section we will introduce the
foundational ∞-bicategorical theory developed to assist in the proof of our
main theorem.

The main foundational results obtained in this thesis are the construction of
a model structure modeling ∞-bicategories fibred in ∞-bicategories (Chapter
2) and its corresponding Grothendieck construction (Chapter 3). Before diving
deeper into the discussion of these results let us point out the role that they
will play in the theory of ∞-bicategorical colimits and cofinality.

In the∞-categorical theory, there is an alternative characterization of cofinal
functors which admits an easy generalization to the ∞-bicategorical context.
Namely, a functor f : C→ D of∞-categories is cofinal if the induced morphism

C] D]

D

f

is a weak equivalence in the Cartesian model structure on (Set+
∆)/D. In Chapter

2, we will construct a model structure modeling what we call outer 2-Cartesian
fibrations. Given a marking preserving functor of ∞-bicategories f : �† → �†
we will define marked cofinal functors as those inducing equivalences (see
Definition 4.0.21) in the 2-Cartesian model structure over �.

The connection between the Grothendieck construction and the∞-bicategorical
theory of colimits was already exposed in the previous section where it was
heavily utilised as a universal recipe for computing marked colimits in �at∞.
Moreover, the Grothendieck construction plays a crucial role in our proof of our
cofinality statement since it allows us to derive important formal properties of
the functor f : �† → �† when viewed as a morphism in the 2-Cartesian model
structure (see Proposition 4.0.27).

The ∞-bicategorical Grothendieck construction

In its most basic form, for 1-categories fibred in sets, the Grothendieck con-
struction predates Grothendieck’s work on the subject (see, e.g. [MM00, pg.
44] for discussion). In this context, the Grothendieck construction reconstitutes
the information of a functor of 1-categories

F : Cop Set
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into the associated category of elements, a category whose objects consist of an
object c ∈ C, and an element x ∈ F (c), and whose morphisms are morphisms
in C whose associated maps of sets preserve the chosen element.

The Grothendieck construction in its modern form emerged as a tool to study
descent (see, e.g. [Groth71]). In this case, it takes the form of an equivalence

Fib(C) ' Funps(Cop,Cat),

for any category C, between the category of fibred categories over C, and
the category of pseudo-functors Cop → Cat. The underlying idea is that
certain conditions on a functor p : D → C mean that the fibres of p vary
(pseudo-)functorially in C. Indeed, the original definition of a fibred category,
in [Groth60], was what we today would call a pseudo-functor F : Cop → Cat.
More precisely, an assignment of a category F (x) ∈ Cat for every x ∈ C, a
functor F (f) : F (y)→ F (x) for every morphism f : x→ y in C, and natural
isomorphisms F (g) ◦ F (f) ∼= F (f ◦ g) for every composable pair of morphisms,
satisfying additional coherence conditions.

The Grothendieck construction, as first exposed in [Groth71], reformulates
the data of a pseudo-functor into a Cartesian fibration. Given a functor P :
F → C, a morphism f : x→ y in F is called Cartesian if, for every g : z → y
in F, and every commutative diagram

P (x)

P (z) P (y)

P (f)

P (g)

h

in C, there is a unique morphism h̃ : z → x with P (h̃) = h, such that f ◦ h̃ = g.
The functor P is said to be a Cartesian fibration if, for every f : c→ P (y) in
C, there is a Cartesian morphism f̃ : x→ y in F such that P (f̃) = f .

The equivalence between pseudo-functors F : Cop → Cat and Cartesian
fibrations over C is achieved by constructing a Cartesian fibration P : El(F )→ C

as follows:

• The objects of El(F ) consist of pairs (c, x), where c ∈ C, and x ∈ F (c).

• A morphism (f, f̃) : (c, x)→ (d, y) consists of a morphism f : c→ d in C,
together with a morphism f̃ : x→ F (f)(y) in F (x).

The Cartesian morphisms of El(F ) are precisely those (f, f̃) such that f̃ is an
isomorphism.

More recent incarnations of the Grothendieck construction have focused on
∞-categorical variants. By their very nature, functors of∞-categories generalize
pseudo-functors of (2, 1)-categories, so that higher Grothendieck constructions
now take the form of equivalences

Cart(C) ' Fun(Cop,�at∞)

of∞-categories. This equivalence was proven by Lurie in [Lur09a], using model-
categorical techniques.
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The basic form of the proof goes as follows: Given an∞-category C, presented
as a quasi-category, Lurie defines marked simplicial sets over C to be pairs
(X,MX) consisting of a simplicial set X ∈ Set∆ and a subset MX ⊂ X1
of marked edges containing all degenerate edges, equipped with a morphism
p : X → C of simplicial sets. Requiring maps to preserve these marked edges
yields a category (Set+

∆)/C. Lurie then constructs a model structure on this
category, the fibrant objects of which satisfy lifting properties akin to those
defining 1-categorical Cartesian fibrations. In particular, the corresponding
model structure on Set+

∆
∼= (Set+

∆)/∆0 models ∞-categories.
With these model structures in place, one can consider the category (Set+

∆)C[C]op

of simplicially-enriched functors C[C]op → Set+
∆, and equip it with the projective

model structure. The ∞-categorical Grothendieck construction then takes the
form of a Quillen equivalence

StC : (Set+
∆)/C −→←− (Set+

∆)C[C]op : UnC

between these two model categories.
In the ∞-categorical context, Grothendieck constructions have become an

indispensable tool, as the added computational complexity of ∞-categorical
constructions renders many ad-hoc constructions of functors nearly impossible
to work with. It is often far easier to work with the fibration associated
to a functor of ∞-categories than with the functor itself. Examples of such
applications include the study of monoidal ∞-categories in [Lur11] and [Lur17]
and the approach to lax colimits presented in [GHN15]. The study of higher
forms of cofinality presented in this thesis, is another case in which it is essential
to use the Grothendieck construction.

Recall that the ∞-categorical Grothendieck construction comes in two
variances. One can either consider the aforementioned Cartesian fibrations of
∞-categories over C, or consider coCartesian fibrations over C. The former
correspond to ∞-functors

F : Cop
�at∞

whereas the latter correspond to ∞-functors

F : C �at∞

Additionally, if one treats the case of functors

F : Cop S ⊂ �at∞ .

valued in ∞-groupoids (spaces), one obtains more restrictive variants of Carte-
sian/coCartesian fibrations, called right fibrations and left fibrations, respec-
tively, in [Lur09a, Ch. 2].

Each variance can be obtained from the other by appropriate dualization
procedures, and so, in practice it is only necessary to prove one correspondence
to obtain the other. In the world of∞-bicategories, where there are four possible
variances, a similar principle applies, although the dualization procedures can
become more complicated. As a result, we have focused on a single variance in
our exploration of the ∞-bicategorical Grothendieck construction.
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In Chapter 3 we will provide a complete ∞-bicategorical Grothendieck
construction. Loosely speaking, for every scaled simplicial set S, we provide an
equivalence of (∞, 2)-categories (or simply ∞-bicategories as in [Lur09b])

2�art(S) ' Fun(Sop,�icat∞)

between 2-Cartesian fibrations5 over S, and ∞-bifunctors Sop → �icat∞ with
values in ∞-bicategories.

To understand this construction on an intuitive level, it is helpful to first
consider the strict 2-categorical variant, developed by Buckley in [Buc14]. In
this setting, we consider strict 2-functors p : C→ D. A 1-morphism f : c→ c in
C is called Cartesian if, for every a ∈ C there is a pullback square of categories

C(a, c) C(a, c)

D(P (a), P (c)) D(P (a), P (c))

f∗

P P

P (f)∗

A 2-morphism α : f ⇒ g in C(x, y) is called coCartesian if it is a coCartesian
1-morphism for the map

P : C(x, y) D(P (x), P (y)).

The functor P is then called a 2-Cartesian fibration if it admits Cartesian lifts
of all 1-morphisms, and coCartesian lifts of all 2-morphisms.

As a first step towards our ∞-bicategorical Grothendieck construction we
will construct a model structure which models an ∞-bicategorical variant of
the above definitions. To keep track of the data of (1) invertible 2-morphisms,
(2) Cartesian 1-morphisms, and (3) coCartesian 2-morphisms in the simplicial
setting, we consider a 3-part decoration on simplicial sets. Given a simplicial
set X ∈ Set∆, we define a marking and biscaling on X to consist of

• As in [Lur09b], invertible 2-morphisms are encoded as a collection TX ⊂ X2
of 2-simplices, which is required to contain degenerate simplices. The 2-
simplices in TX are called thin 2-simplices.

• As in [Lur09a], Cartesian 1-morphisms are encoded as a collection MX ⊂
X1 of 1-simplices, which is required to contain the degenerate 1-simplices.
The 1-simplices in MX are called marked 1-simplices.

• The coCartesian 2-morphisms are encoded as a collection CX ⊂ X2.
Since every invertible 2-morphism should be coCartesian, we require that
TX ⊂ CX . We refer to the 2-simplices in CX as lean 2-simplices.

A tuple (X,MX , TX ⊂ CX) is referred to as a marked-biscaled simplicial set
(or MB simplicial set for short). We denote the category of MB simplicial
sets by Setmb

∆ . The main model category theoretic result of this thesis can be
summarized as,

Theorem. Let (S, TS) be a scaled simplicial set.
5What we call 2-Cartesian fibrations are called outer 2-Cartesian fibrations in [GHL21b]. Because we

focus on a single variance, we trim the terminology for ease of reading.
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1. There is a left proper, combinatorial, simplicial model structure on6
(Setmb

∆ )/(S,],TS⊂]), called the 2-Cartesian model structure.

2. If S = ∆0 is the terminal scaled simplicial set, the resulting model structure
models ∞-bicategories.

3. If (S, TS) is the scaled nerve of a strict 2-category D, every 2-Cartesian
fibration of strict 2-categories P : C→ D gives rise to a fibrant object of
(Setmb

∆ )/(S,],TS⊂]).
This result can be found in Theorem 2.2.43, Theorem 2.2.44 and The-

orem 2.3.32. In the second of these results, our decoration becomes highly
redundant. In a fibrant object, the marked 1-morphisms correspond to equiva-
lences, the thin 2-simplices correspond to invertible 2-morphisms, but the lean
2-simplices are identical to the thin 2-simplices. To simplify our later computa-
tions, we rectify this redundancy by also considering marked-scaled simplicial
sets, i.e., triples (X,MX , TX) consisting of a simplicial set X, a collection of
marked 1-simplices MX , and a collection of thin 2-simplices TX . The category
of marked-scaled simplicial sets is denoted by Setms

∆ . We will formalize the fact
that marked-scaled simplicial sets should also model ∞-bicategories, as seen in
the next theorem.
Theorem. There is a left proper, combinatorial, Set+

∆-enriched model structure
on Setms

∆ . Moreover, it is Quillen equivalent to the 2-Cartesian model structure
on Setmb

∆ , and thus models ∞-bicategories.
The existence of the model structure is proved Theorem 2.4.7 and we show

in Proposition 2.4.20 that is Set+
∆-enriched.

The main construction of this thesis yields a functor for each scaled simplicial
set S

StS : (Setmb
∆ )/S Fun(Csc[S]op, Setms

∆ )
called the bicategorical straightening over S. The functor itself is simply a
more highly decorated version of previous straightening functors (e.g., that of
[Lur09a]), and is discussed in detail in Chapter 2. We then show that StS admits
a right adjoint UnS which we call the (bicategorical) unstraightening over S.
As already mentioned, the category (Setmb

∆ )/S carries a model structure which
models 2-Cartesian fibrations. If we equip the category of Set+

∆-enriched functors
C[S]op → Setms

∆ with the projective model structure, we obtain an enriched
model category which models the ∞-category of ∞-bifunctors Sop → �icat∞.
The main technical result of this paper is that this adjunction is in fact a
Quillen equivalence.
Theorem (3.2.85). Let S be a scaled simplicial set. Then the bicategorical
straightening-unstraightening adjunction defines a Quillen equivalence

StS : (Setmb
∆ )/S −→←− (Setms

∆ )C[S]op
: UnS

between the model structure on (outer) 2-Cartesian fibrations over S and the
projective model structure on Set+

∆-enriched functors C[S]op → Setms
∆ with

values in marked-scaled simplicial sets.
6We denote by (S,ES , TS ⊂ CS) = (S, ], TS ⊂ ]) the MB simplicial set such that every edge belongs to

ES and every triangle belongs to CS
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Observe that both model categories are in fact Set+
∆-enriched categories.

After performing elementary explicit verifications we prove that the functor
UnS is compatible with the (co)tensoring yielding an upgrade of the previous
theorem to an intrinsic bicategorical result.
Theorem (3.2.90). The bicategorical straightening is a left Quillen equiva-
lence for any scaled simplicial set S. Moreover, the functor UnS provides an
equivalence of ∞-bicategories

2�art(S) ' Fun(Sop,�icat∞).

A relative 2-nerve

Although it is desirable to have an ∞-bicategorical Grothendieck construction
that works in the most the general context possible, many practical applications
make use of ∞-bicategories which arise as scaled nerves of strict 2-categories.
We provide a version of the Grothendieck construction better suited to this
particular situation in the appendix. In this context, we define an explicit
version �C of the unstraightening functor over Nsc(C), which we call the relative
2-nerve.
Theorem (3.3.20). Let C be a strict 2-category. Then there is a Quillen
equivalence

�C : (Setmb
∆ )/Nsc(C) −→←− (Setms

∆ )C
(op,−)

: �C
and an equivalence of left-derived functors7 LStC '=⇒ L�C.

As in the ∞-categorical setting (see Section 3.2.5 in [Lur09a]) the benefits
of a relative nerve construction are twofold: on the one hand, the relative
2-nerve is particularly computationally tractable and well-suited to explicit
examples; on the other, the relative 2-nerve allows us to compare our ∞-
bicategorical Grothendieck construction to preexisting strict Grothendieck con-
structions. We apply our relative nerve construction to obtain a comparison with
the Grothendieck construction appearing in [Buc14]. The strict 2-categorical
Grothendieck construction of [Buc14] takes the form of an equivalence

El : Funps(Cop,Cat2) 2 Cart

for a 2-category C. The final result of our appendix shows that the relative
2-nerve coincides with El for every strict 2-functor with values in 2-categories.
Theorem (3.3.21). Let F : C(op,−) 2Cat be a 2-functor, and let F̃ denote
the composite

C(op,−) 2Cat Setms
∆

Then there is an equivalence

�C(F̃ ) (N2(El(F )),M, T ⊂ C)

Nsc(C)

'

of 2-Cartesian fibrations over Nsc(C).
7see section 3.3.2 for a precise definition of StC
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Application: 2-simplicial objects and generic adjunctions

The main motivation to develop this ∞-bicategorical theory of fibrations and
cofinality was to establish that the simplex 2-category � satisfies a 2-dimensional
universal property. Let us recall that a morphism f : [n]→ [m] in ∆ is given
by an order preserving map between the totally ordered sets [n] and [m]. The
2-categorical enhancement of ∆ can be explained in simple terms: Given a
pair of morphisms f, g : [n] → [m] we say that f 6 g if and only if for every
i ∈ [n], we have f(i) 6 g(i). This equips the Hom-sets of ∆ with the structure
of a poset. The resulting 2-category is precisely �. We will call a functor of
∞-bicategories F : �op → � a 2-simplicial object in �.

In [Dyck21] Dyckerhoff makes extensive use of 2-simplicial objects, to prove
a categorified version of the Dold-Kan correspondence.

Theorem. The categorified normalized chains functor C furnishes an equiva-
lence

C : St� Ch>0(St) : N

between the ∞-category St� of 2-simplicial stable ∞-categories and the ∞-
category Ch>0(St) of connective chain complexes of stable ∞-categories with
explicit inverse given by the categorified Dold-Kan nerve N.

In the program proposed in [Dyck21] to categorify homological algebra, we
see that the study of 2-simplicial objects will play a relevant role. It is therefore
desirable to have a systematic way of analyzing the bicategory Fun(�op,�) for
an arbitrary �.

Let di (resp. si) denote the face (resp. degeneracy) operators in �op. One
easily checks that the inequalities id 6 sidi and sidi+1 6 id show that the
identity 2-morphisms disi = id and id = di+1si = id are the counit and the
unit respectively of a pair of adjunctions exhibiting di a si and si a di+1. The
universal property we are after identifies these adjunctions as the generators of
�op as a 2-category.

In order to state the universal property we fix some notation. Observe that
we have equalities disi = id and di+1si which we view as thin 2-simplices

n+ 1 n+ 1

n n n n

si di

id

si di+1

id

ε η

Then we can formulate the universal property of �op in the following terms.

Conjecture. Let � be an ∞-bicategory. Then restriction along ι induces an
equivalence of ∞-bicategories

ι∗ : Fun(�op,�) ' Funa(∆op,�)

between the ∞-bicategory of 2-simplicial objects in � and the ∞-bicategory of
simplicial objects in � that send di and si (resp di+1 and si) to an adjunction
F (di) a F (si) with counit given by F (ε) (resp. F (si) a F (di+1) with unit given
by F (η)).
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We would like to point out that the previous conjecture has been proved by
the author (in an unpublished note) in the case when � is replaced by a strict
2-category A using the well-established theory of 2-categorical Kan extensions.
The proof of the general ∞-bicategorical statement will appear in [AG22b].

The necessary technology for the proof of the ∞-bicategorical statement is
not fully developed: We need a theory of∞-bicategorical Kan extensions in the
language of scaled simplicial sets. Recall that given a functor of ∞-categories
f : C→ D and a sufficiently cocomplete ∞-category A we can produce a left
adjoint to the restriction functor

f! : Fun(C,A) −→←− Fun(D,A) : f ∗

Given a functor G : C→ A the value of f!G(d) is computed by the colimit of
the functor

C/d C
G

A

where C/d is the category having as objects morphisms u : f(c)→ d with c ∈ C

and with morphisms given by commutative diagrams

f(c) f(c′)

d

u

f(α)

v

Moreover the counit η : f! ◦ f ∗ =⇒ id gives for every T : D → A a natural
transformation ηT : f!f

∗T =⇒ T . In order to show that f ∗ is fully-faithful it is
enough to show that ηT is an equivalence of functors for every T . Let us explain
how to use the theory of cofinality in this context. For every d ∈ D we consider
the commutative diagram

C/d D/d

C D A

ρ

pC pD

f T

We observe that the colimit of T̂ = T ◦ f ◦ pC is precisely the value of f!f
∗T (d).

We can also see that since D/d has a terminal object given by the identity
morphism we have a canonical comparison map

colimC/d T̂ = colimC/d(T ◦ pD ◦ ρ) colimD/d(T ◦ pD) ' T (d)

After unraveling the definitions we can see that the morphism above can be
identified with the component of ηT at the object d. Therefore it follows that if
the map C/d → D/d is cofinal for every d ∈ D then the restriction functor f ∗
must be fully-faithful.

In Chapter 5 we will explain how to generalize the previous statement to
the setting of ∞-bicategories conditional to the existence to a well-behaved
theory of Kan extensions of ∞-bicategories. In particular we will show in8

8We are using the notation � to denote statements which are proved conditional to the existence of a
2-dimensional theory of Kan extensions
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Proposition� 5.0.4 that given a functor f : �→ � of ∞-bicategories such that
for every d ∈ � the induced morphism

fd : �\

→d
�
\

→d

is cofinal with respect to the marking given by the Cartesian edges of the
2-Cartesian fibration �\

→d
→ � (resp. �\

→d
→ �) then it follows that for every

∞-bicategory � the restriction functor

f ∗ : Fun(�,�) Fun(�,�)

is fully faithful. This will allow us to prove the following theorem:

Theorem� (5.2.1). Let � be an ∞-bicategory. Then the restriction functor
ι : ∆op → �op induces a fully-faithful functor of ∞-bicategories

ι∗ : Fun(�op,�) Fun(∆op,�)

It is clear by analogy with the ∞-categorical case that in order to identify
the essential image of the restriction functor ι∗ it will suffice to show that
for every functor F : ∆op → � satisfying the adjunction property we have a
natural equivalence F =⇒ ι∗ι!F . We will show in Theorem� 5.0.2 how to reduce
the question of essential surjectivity to the case where � = �at∞ but we will
postpone the computation for future work.

As a warm-up for the proof of essential surjectivity for � we will do a careful
study of the 2-category AdjR which incorporates several features of �.

Definition. We define a 2-category AdjR consisting in:

• A pair of objects − and +.

• The mapping categories AdjR(x, y) are given by the terminal category ∗
except when x = y = −, in which case AdjR(−,−) is given by a unique
morphism which we denote as η : id− =⇒ RL where L is the unique object
in AdjR(−,+) and R is the unique object in AdjR(+,−).

We depict the 2-category AdjR diagrammatically as follows:

− +
L

R

, id−
η

RL

This data is required to satisfy the following relations:

• LR = id+.

• L ∗ η = 1L, where the notation ∗ stands for horizontal composition.

• η ∗R = 1R.

This definition yields a 2-category that we will call the walking adjunction with
fully faithful right adjoint.
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We will denote by AdjR the underlying 1-category of AdjR. We will show
that for ε ∈ {−,+} the morphism

(AdjR)\

→ε
(AdjR)\

→ε

is marked cofinal. Apart from this fully-faithfulness computation we will show
that given F : AdjR → �at∞ sending the unique morphism R : + → − to a
fully faithful right adjoint we have equivalences

\

colim
AdjR

F ◦ pε ' F (ε)

where pε : (AdjR)\

→ε
→ AdjR. This will imply that the conditions of Theorem� 5.0.2

are satisfied yielding the next result.

Theorem� (5.1.1). Let � be an ∞-bicategory. Then restriction along ι :
AdjR → AdjR induces an equivalence of ∞-bicategories

Fun(AdjR,�) Funa(AdjR,�)'

where Funa(AdjR,�) the full subcategory on those functors F : AdjR → �at∞
sending the unique morphism R : +→ − to a fully faithful right adjoint.
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Chapter 1

Fibrations and colimits of
∞-categories

The aim of this chapter is to introduce the concepts that will be later generalized
to the setting of ∞-bicategories. This is not intended as an exhaustive review
of the theory of fibrations and colimits in ∞-categories but as a warm-up
discussion. We will refer the reader to [Lur09a] and [Cis19] for an extensive
treatment of the theory of ∞-categories. We would also like to point out that
in order to avoid a duplication of preliminary sections we will postpone our
recapitulation of basic definitions and constructions to the next chapter.

1.1 Marked simplicial sets and the Cartesian model struc-
ture

In this section we will review the basics of the theory of marked simplicial
sets and the key steps necessary for the construction of the Cartesian model
structure. We will generalize this section to the setting of ∞-bicategories in
chapter 2.

Definition 1.1.1. A marked simplicial set is a pair (X,EX) consisting of a
simplicial set X together with a subset EX ⊆ X1 of the set of 1-simplices
containing the every degenerate edge. We say that an edge of X is marked if it
belongs to EX .

A morphism of marked simplicial sets (X,EX)→ (Y,EY ) is given by a map
of the underlying simplicial sets f : X → Y such that f(EX) ⊆ EY . We denote
by Set+

∆ the category of marked simplicial sets.

Remark 1.1.2. We will frequently use a superscript notation X† := (X,EX)
to denote a marked simplicial set. The notation X[ := (X, [) will denote a
marked simplicial set where only the degenerate edges are marked. Analogously
the notation X] := (X, ]) will denote a marked simplicial set in which all edges
are marked. We observe that given a marked simplicial set (X,EX) the set of
marked edges is precisely given by the set of maps (∆1, ])→ (X,EX).

Remark 1.1.3. We will abuse notation and define the marking of a simplicial
set X by just specifying the marked non-degenerate edges.
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44 CHAPTER 1. FIBRATIONS AND COLIMITS OF ∞-CATEGORIES

Remark 1.1.4. It is not hard to verify explicitly that the category Set+
∆ is

locally presentable in the sense of [AR94, Definition 1.17]. However, we will
present here a somewhat conceptual proof of this fact which will easily generalize
to the bicategorical setting.

Definition 1.1.5. We define a category ∆M by appending to the simplex
category ∆ an extra object which we denote by [1]+ and morphisms

i+ : [1]→ [1]+ , s0
+ : [1]+ → [0]

such that s0
+ ◦ i+ = s0. We observe that we have a fully-faithful functor

R : Set+
∆ → Fun(∆op

M, Set) which sends the pair (X,EX) to the functor R(X)
such that R(X)([n]) = Xn and R(X)([1]+) = EX . The functor i+ gets mapped
under R(X) to the inclusion EX ⊆ X1 and similarly the map s0

+ gets mapped
to the inclusion of degenerate edges into EX . We note that the functor R
has essential image those functors F : ∆op

M → Set sending the map i+ to a
monomorphism.

Remark 1.1.6. Note that Fun(∆op
M, Set) is locally presentable since it is a

presheaf category. In order to show that Set+
∆ is locally presentable one easily

checks the following:

• The functor R in the previous definition admits a left adjoint.

• The essential image of R is stable under directed colimits.

The conclusion follows from [AR94, Theorem 1.46].

Definition 1.1.7. Let (X,EX) and (Y,EY ) be a pair of marked simplicial sets.
We define the product (X,EX)× (Y,EY ) as follows:

• The underlying simplicial set is given by the product of the underlying
simplicial sets X × Y .

• An edge in the product ∆1 → X × Y is declared to be marked if both of
its projections are marked in the target.

Definition 1.1.8. Given a pair of marked simplicial sets X, Y ∈ Set+
∆ (where

we have omitted the notation specifying the marking for clarity) we define the
a marked simplicial set Fun+(X, Y ) characterized by the following universal
property

HomSet+
∆

(
Z,Fun+(X, Y )

)
∼= HomSet+

∆
(Z ×X, Y )

Definition 1.1.9. The set of generating marked anodyne morphisms M is the
set of maps of marked simplicial sets consisting of:

A1) The inner horn inclusions

(Λn
i , [)→ (∆n, [) , n > 2 , 0 < i < n.

A2) The right horn inclusions(
Λn
n,∆{n−1,n}

)
→
(

∆n,∆{n−1,n}
)

, n > 2.
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A3) The inclusion of the terminal vertex

(∆0, ])→ (∆1, ]).

S1) The map (
∆2, {∆{0,1},∆{1,2}}

)
→
(

∆2, ]
)
.

K) For every Kan complex K the map

(K, [)→ (K, ]).

A map of marked simplicial sets is said to be marked anodyne (or M-anodyne)
if it belongs to the weakly saturated closure (see [Lur09a, Definition A.1.2.2])
of M.

Remark 1.1.10. Observe that the morphisms of type K do not form a set.
However, in the previous definition it suffices to allow K to range over a set
of representatives for all isomorphism classes of Kan complexes with only
countably many simplices as noted in [Lur09a, Remark 3.1.1.3].

Definition 1.1.11. Let f : (X,EX)→ (Y,EY ) be a map of marked simplicial
sets. We say that f is a M-fibration if it has the right lifting property against
the class of marked anodyne morphisms.

Remark 1.1.12. Let X\ → ∆0 be a M-fibration. The existence of lifts against
of morphisms of type A1) in Definition 1.1.9 guarantees that the underlying
simplicial set of X\ is an ∞-category. Lifts against morphisms of type A2)
imply that marked edges are equivalences. Finally the existence of lifts against
morphisms of type K) guarantees that every equivalence is marked.

Definition 1.1.13. Let f : (X,EX)→ (Y,EY ) be a map of marked simplicial
sets. We say that f is a cofibration if it is a monomorphism in Set+

∆. Equivalently,
the underlying map of simplicial sets X → Y is a monomorphism in Set∆.

The next technical result is of key importance in the construction of the
Cartesian model structure. In the next chapter we will prove a generalization
of this result Proposition 2.2.14, which will also be essential in establishing the
2-Cartesian model structure.

Proposition 1.1.14. Let f : (A,EA) → (B,EB) be a marked anodyne mor-
phism. Given a cofibration g : (X,EX)→ (Y,EY ) then the pushout-product1

f ∧ g : B ×X
∐
A×X

A× Y → B × Y

is marked anodyne.

Proof. A proof of this fact we can found in [Lur09a, Proposition 3.1.2.3.].

We can now derive some formal properties from Proposition 1.1.14.
1We have omitted the marking in the notation for readability
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Lemma 1.1.15. Let (Y,EY ) → (S,ES) be an M-fibration. Then for every
marked simplicial set (X,EX) the induced morphism

Fun+(X, Y ) Fun+(X,S)
is an M-fibration.

Proof. Given a marked anodyne morphism A→ B we can construct a the pair
of adjoint lifting problems

A Fun+(X, Y ) A×X Y

B Fun+(X,S) B ×X S

The solution of the right-most lifting problem follows from Proposition 1.1.14
in the special case where the cofibration is of the form ∅→ X.

Definition 1.1.16. Let p : X → S and q : Y → S be a pair of morphisms
of marked simplicial sets where q is a M-fibration. We define the mapping
∞-category over S as the following pullback

MapS(X, Y ) Fun+(X, Y )

∆0 Fun+(X,S)p

where the left-most vertical map is also a M-fibration by Lemma 1.1.15.

Remark 1.1.17. The objects of MapS(X, Y ) are given by morphisms of marked
simplicial sets α : X → Y such that q ◦ α = p. Similarly the morphisms of the
mapping ∞-category are given by fibrewise homotopies.

Proposition 1.1.18. Let p : X → S be a M-fibration. Suppose that we are
given maps A u−→ B → S such that u is a cofibration (resp. M-anodyne). Then
the induced morphism

u∗ : MapS(B,X) MapS(A,X)
is a fibration in the Joyal model structure (resp. trivial fibration).

Proof. Given a morphism K → L→ S we observe that we have adjoint lifting
problems

K MapS(B,X) B ×K ∐
A×K

A× L X

L MapS(A,X) B × L S

If u is a cofibration and K → L is M-anodyne then the existence of dotted
arrow follows from Proposition 1.1.14. It follows that u∗ satisfies the conditions
of [Lur09a, Corollary 2.4.6.5] that is, u∗ is an inner fibration and an isofibration
which implies that u∗ is a fibration in the Joyal model structure. The other
case follows immediately.
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Definition 1.1.19. Let S be a simplicial set. We denote by (Set+
∆)/S the

category of marked simplicial sets over (S, ]). We say that an object p : X → S
in (Set+

∆)/S is a Cartesian fibration if p is a M-fibration.

Definition 1.1.20. We have the following distinguished classes of morphisms
in (Set+

∆)/S:

• A morphism A
u−→ B → S is said to be a cofibration if u is a monomorphism

in Set+
∆.

• A morphism A
u−→ B → S is said to be a Cartesian equivalence if for every

Cartesian fibration X → S the induced map

u∗ : MapS(B,X) MapS(A,X)

is a categorical equivalence, i.e, a weak equivalence in Joyal’s model
structure.

• We say that a morphism is a trivial cofibration if it is simultaneously a
cofibration and a Cartesian equivalence.

Remark 1.1.21. Observe that it follows from Proposition 1.1.18 that if u is a
trivial cofibration then the induced morphism u∗ : MapS(B,X)→ MapS(A,X)
is a trivial fibration in Joyal’s model structure.

Remark 1.1.22. Let p : X → S be a Cartesian fibration and suppose we are
given a lifting problem

A X

B S

u p

such that the map u is a trivial cofibration. Let us view the composite A→
X → S as an object in ρ ∈ MapS(A,X). Then it follows that a solution to the
lifting problem is given by a preimage of ρ under the map

u∗ : MapS(B,X) MapS(A,X).

Note that the previous remark implies that u∗ is a trivial fibration and therefore
the preimage of ρ exists. We conclude that the dotted arrow also exists.

Up to this point we have defined the necessary classes of morphisms for the
construction of the Cartesian model structure. Moreover, Remark 1.1.22 will
allow us to identify the fibrant objects. Before formally stating the existence of
the Cartesian model structure we need to introduce a result which is essential
both for the construction of the model structure and for the ∞-categorical
Grothendieck construction that we will review later in this chapter.

Proposition 1.1.23. Suppose that we have a morphism

X Y

S

f
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of Cartesian fibrations over a simplicial set S. Then the following statements
are equivalent:

i) The map f is a Cartesian equivalence.

ii) There exists a morphism g : X → Y over S which is an inverse up to
homotopy for f .

iii) For every s ∈ S the induced morphism on fibres fs : Xs → Ys is a
categorical equivalence.

Proof. See [Lur09a, Proposition 3.1.3.5].

Remark 1.1.24. The importance of the previous proposition is twofold: First it
is of practical relevance since checking that a map is an equivalence upon passage
to fibres is usually way easier than verifying that it induces an equivalence on
mapping∞-categories. The second reason is that if we want Cartesian fibrations
to be able to model �at∞-valued functors, it is necessary that equivalences are
detected fibrewise. In other words, under the Grothendieck construction a map
of Cartesian fibrations corresponds to a natural transformation η : F =⇒ G of
functors Sop → �at∞. Since η is an equivalence if and only if ηc : F (c)→ G(c)
is an equivalence of ∞-categories we see that in the realm of fibrations we need
“pointwise criterion“ for detecting weak equivalences as well.

The proof of Proposition 1.1.23 found in [Lur09a] will be greatly general-
ized later in this document (see Proposition 2.2.39). We comment the main
differences with respect to the bicategorical case. First let us point out that in
both situations the implications i) =⇒ ii) =⇒ iii) follow quite easily from
each other. The key part of the argument is to show that iii) =⇒ i). One
sees that it is sufficent in order to show the claim to restrict our attention to
the case where the base is S = ∆n. In the setting of ∞-categories we are quite
lucky: The base ∆n is itself an ∞-category so we have plenty of structure to
play with. This used heavily by Lurie in his proof of the fibrewise criterion for
equivalences. However, we would like to point out that when working in the
∞-bicategorical situation the (flat scaled) simplices ∆n are no longer fibrant
which increases the complexity of the proof in this situation.

We are ready to state the main result of this section whose ∞-bicategorical
generalization will appear as Theorem 2.2.43 in the next chapter.

Theorem 1.1.25. Let S be a simplicial set. There exists a simplicial combina-
torial model structure on

(
Set+

∆

)
/S

which may be described as follows:

C) The cofibrations are given by those morphisms X → Y which are monomor-
phisms in Set+

∆.

W) The weak equivalences are given by Cartesian equivalences (see Defini-
tion 1.1.20).

F) The fibrations in
(
Set+

∆

)
/S

are given by those maps having the right lifting
property against every morphism which is simultaneously a cofibration and
a weak equivalence.
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Proof. See [Lur09a, Proposition 3.1.3.7].

Remark 1.1.26. We would like to remind that reader that the notion of
Cartesian fibration can be dualized to obtain coCartesian fibrations. More
precisely, a map of marked simplicial sets X\ → S] is a coCartesian fibration
if and only if (X\)op → (S])op is a Cartesian fibration. There is consequently
a model structure on

(
Set+

∆

)
/S

which models coCartesian fibrations. One can
construct the model structure starting with the dual class of marked anodyne
morphisms and repeating each step in this section.

1.2 The ∞-categorical Grothendieck construction

In this section we will review one of the main theorems of [Lur09a] and probably
one of the most important tools in the study of∞-categories: The Grothendieck
construction. Given a simplicial set S, the Grothendieck construction yields an
equivalence of ∞-categories

StS : Cart(S) −→←− Fun(Sop,�at∞) : UnS

between the ∞-category of Cartesian fibrations over S and the ∞-category
of functors Sop → �at∞. The functors realizing this equivalence are known as
straightening and unstraightening respectively.

When dealing with homotopy coherent situations the study of functor
categories becomes substantially more complicated than in the ordinary setting.
This is the main reason why, the use of Cartesian fibrations is an indispensable
tool that allows us to effectively work with functors with values in∞-categories.

The equivalence between these two ∞-categories is obtained by exhibiting a
Quillen equivalence between certain model categories modelling the left and
right-hand side respectively. On the left, we will use the Cartesian model
structure discussed in the previous section. We will now define the model
category which will model the right-hand side of our equivalence.

Remark 1.2.1. We will identify Set+
∆ with

(
Set+

∆

)
/∆0

and view it as a model
category using Theorem 1.1.25. It follows that the fibrant objects of Set+

∆ are
given by∞-categories where the marking is given by the equivalences. It is easy
to verify that this category is Quillen equivalent to the category of simplicial
sets equipped with the Joyal model structure.

Definition 1.2.2. We will endow Set+
∆ with the structure of a Set∆-enriched

cateogory as follows. Given a pair of marked simplicial sets X, Y we define
Map'(X, Y ) to be the simplicial subset of Fun+(X, Y ) (see Definition 1.1.8)
given by those simplices σ : ∆n → Fun+(X, Y ) mapping each edge of ∆n to a
marked edge in Fun+(X, Y ). Note that if X, Y are fibrant marked simplicial
sets then Map'(X, Y ) is a Kan complex.

Theorem 1.2.3 (A.3.3 [Lur09a]). Let C be a Set∆-enriched category. We
endow the category of simplicially enriched functors Fun(C, Set+

∆) with the
projective model structure which is uniquely characterized by the following
classes of morphisms:
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W) A natural transformation F =⇒ G is a weak equivalence if for every c ∈ C

the morphism F (c)→ G(c) is a weak equivalence in Set+
∆.

F) A natural transformation F =⇒ G is a fibration if for every c ∈ C the
morphism F (c)→ G(c) is a fibration in Set+

∆.
The∞-categorical Grothendieck construction is realized in the next theorem

which appears as Theorem 3.2.0.1 in [Lur09a].

Theorem 1.2.4. Let S be a simplicial set, C a simplicial category and φ :
C[S]→ C (see section 1.1.5 in [Lur09a] for a definition of C) a functor between
simplicial categories. Then there exists a pair of adjoint functors

Stφ :
(
Set+

∆

)
/S
−→←−

(
Set+

∆

)Cop

: Unφ

with the following properties:
1. The functors (Stφ,Unφ) determine a Quillen adjunction between the cat-

egory
(
Set+

∆

)
/S

(with the Cartesian model structure) and the category(
Set+

∆

)Cop

(with the projective model structure).

2. If φ is an equivalence of simplicial categories, then (Stφ,Unφ) is a Quillen
equivalence.

Remark 1.2.5. There is a subclass of the class of Cartesian fibrations known as
right fibrations. A Cartesian fibration p : X\ → S is said to be a right fibration
if every edge in X\ is Cartesian. Under the Grothendieck construction right
fibrations correspond to those functors F : Sop → �at∞ that factor through S,
the ∞-category of spaces.

Remark 1.2.6. It is also worth pointing out for the sake of completeness that
there exists a coCartesian version (see Remark 1.1.26) of the straightening-
unstraightening construction which models an equivalence of ∞-categories

Stco
S : coCart(S) −→←− Fun(S,�at∞) : Unco

S

between the ∞-category of coCartesian fibrations over S and the ∞-category
of covariant functors F : S → �at∞. A coCartesian fibration whose edges are
all coCartesian is called a left fibration [Lur09a, Section 2.1] and corresponds
via the coCartesian version of the Grothendieck construction to a covariant
functor with values in spaces.

Before doing a quick overview of the main constructions involved in the
previous theorem we would like to point out that in Chapter 3 we will produce
a generalization of Theorem 1.2.4 to the ∞-bicategorical setting in Theo-
rem 3.2.85.

Let us start by recalling that we have a Quillen equivalence

C : Set∆ −→←− CatSet∆ : N

between the Joyal model structure on the category of simplicial sets and the
Bergner model structure on the category of simplicially enriched categories. The
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functor C is completely determined by specifying the values C[∆n] = On. We
refer the reader to Definition 2.1.7 for a description of the ordinal 2-categories
On for n > 0.

Suppose we are given an object in
(
Set+

∆

)
/S

represented by a morphism
p : X → S and a map of simplicial categories C[S]→ C. Let X. := X ∗∆0 (see
section 1.2.8 in [Lur09a]). We will denote by ∗ the cone point of X.. We can
now consider the pushout diagram of simplicial sets

X X.

S XS

p

To define the functor Stφ(p) : Cop → Set+
∆ we consider a pushout diagram of

Set∆-categories
C[S] C[XS]

C Xφ

φ

The functor Stφ(p) will be given by a decorated version of the restricted
representable functor

Cop Set∆, c Xφ(c, ∗)
which we will explain immediately. Let e : ∆1 → X be a marked edge. This
edge defines a 2-simplex e ∗∆0 : ∆2 → X.. Applying the functor C we obtain
a morphism on mapping spaces

O2(0, 2) XS(a, ∗)
which determines an edge in ê : ∆1 → XS(a, ∗). We will declare the image of that
edge to be marked in Xφ(p(a), ∗). To finish the definition of the straightening
functor we need to extend the marking by functoriality. In other words, given
a pair of elements c, c′ ∈ C, an edge u : ∆1 → C(c, c′) and a marked edge
e : ∆1 → Xφ(c, ∗) then its image under the morphism

C(c, c′)×Xφ(c′, ∗) Xφ(c, ∗)
is also marked in the target. The marking on Xφ(c, ∗) is thus the unique marking
containing those edges arising from marked edges in X which is closed under
functoriality.

In Chapter 3 we will give an upgrade of this construction to yield an ∞-
bicategorical enhacement of Stφ which we will denote by Stφ. We will show
in Proposition 3.2.15 that our ∞-bicategorical straightening functor restricts
under adequate conditions to the functor Stφ discussed in this section. We
refer the reader to section 3.2.1 in [Lur09a] for an in depth discussion of the
∞-categorical straightening functor.

Definition 1.2.7. Let p : X\ → S be a Cartesian fibration. We say that p
is the Cartesian fibration classifying the functor F : Sop → �at∞ if there
exists an equivalence of Cartesian fibrations X\ '−→ UnS(F ) and similarly in
the coCartesian case.
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1.3 Colimits in ∞-categories

As pointed out in the introduction, the theory of colimits in ∞-categories is
a powerful tool that allows us to study a wide range of homotopy-coherent
universal properties. The goal of this section is to give an overview of how one
sets up the theory of colimits in ∞-categories and to introduce the classical
notion of cofinality as well as the conditions that characterize cofinal functors.

Let us suppose that we are given a map of simplicial sets F : K → A

where A is an ∞-category. For every object a ∈ A we denote by a : K → A

the constant functor on the object a. A cone for the functor F with tip a is
given by a natural transformation F =⇒ a. Observe that we have a functor of
∞-categories cK : A→ Fun(K,A) which sends a simplex σ : ∆n → A to the
composite

K ×∆n ∆0 ×∆n σ
A

and note that given a ∈ A we have cK(a) = a. One can then define the colimit
of F to be an object colimK F ∈ A corepresenting the functor

A Fun(K,A) S
cK NatK(F ,−)

where NatK(−,−) is the mapping space functor in Fun(K,A). To make this
definition more computationally tractable one defines a coCartesian fibration
classifying the previous functor and translates the representability condition
to the language of fibrations of ∞-categories. Note that since the functor
NatK(F, cK(−)) takes values in spaces it is classified by a left fibration.

Definition 1.3.1. Let p : X → A be a left fibration and let a : ∆0 → A. We
say that p is represented by the object a if there exists a morphism over A

∆0 X

A

a

u

p

such that u is an equivalence in the coCartesian model structure.

Let us unravel the previous definition. Given a : ∆0 → A we can construct a
left fibration Aa/ → A whose simplices σ̂ : ∆n → Aa/ are given by morphisms
σ : ∆n+1 → A such that σ(0) = a. It is not hard to see that this left fibration
is classified by the corepresentable functor

A(a,−) : A S

a′ A(a, a′)

Note that we have a morphism ιa : ∆0 → Aa/ which selects the identity
morphism on a. We claim that ιa is an equivalence in the coCartesian model
structure. Since every edge in Aa/ is coCartesian it will suffice to show that ιa
is in the weakly saturated hull of morphisms of type

L) (Λn
0 , ])→ (∆n, ]) for n > 1.
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To achieve this goal we produce a filtration by defining Zn to be the simplicial
subset of Aa/ containing the (n + 1)-simplices σ̂ : ∆n+1 → Aa/ such that its
associated σ : ∆n+2 → A is of the form s0(θ) for some θ : ∆n+1 → A such that
θ(0) = a. Note that by construction Zn contains every n-simplex of Aa/. We
set the convention Z−1 = ∆0. Note that Aa/ can be obtained as the directed
colimit of the Zn’s which in turn implies that in order to show the claim the
next lemma will suffice.

Lemma 1.3.2. For every ` > 0 the morphism Z`−1 → Z` is in the weakly
saturated hull of morphisms of type L).

Proof. Let σ̂ : ∆`+1 → Z` such that σ̂ does not factor through Z`−1. We claim
that we have a pullback diagram

Λ`+1
0 ∆`+1

Z`−1 Z`

σ̂

If the claim holds then we can add the simplex σ̂ via a pushout of a morphism
of type L). Repeating this process for every simplex then the result will follow.
To verify that the claim holds we note that for i > 0 di(σ̂) is represented by
the simplex di+1(s0(θ)) = s0(di(θ)) which factors through Z`−1.

In particular we now see that if p : X → S is a representable left fibration
then we have an equivalence of left fibrations

Aa/ X

A

v

p

which implies that the functor F : A→ S classifying p is representable in the
expected sense.

Definition 1.3.3. Let F : K → A be a functor and let Con(F )→ A denote
the left fibration classifying the functor NatK(F, cK(−)). The colimit of F is
an object ∆0 → Con(F ) which represents the left fibration in the sense of
Definition 1.3.1.

Example 1.3.4. We give models for the left fibration Con(F )→ A. We can
construct the desired left fibration as the pullback

Con(F ) Fun(K,A)F/

A Fun(K,A)cK

This is the approach for the category of cones described in [Cis19]. For the
sake of completeness we explain the model used in [Lur09a] which is denoted
by AF/. A simplex σ̂ : ∆n → AF/ is given by a morphism

σ : K ∗∆n → A
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such that the restriction σ|K = F . Restriction along the other factor induces a
morphism AF/ → A. Let us point out that if K = ∆0 and the functor F selects
an object a ∈ A then AF/ = Aa/; in particular the colimit is (as expected) the
object a ∈ A.

Remark 1.3.5. There is a dual theory of limits which we briefly describe here
for completeness. Given a functor F : K → A where A is an ∞-category the
limit of F is given by an object a ∈ A representing the functor

NatK(cK(−), F ) : Aop S, a NatK(a, F )

The theory is constructed in a totally analogous way using instead of left
fibrations, the dual notion of right fibrations and its associated notion of
representability.

1.3.1 Cofinality

The theory of cofinality is an essential tool for computing colimits. Cofinality
can be understood as a way to identify which diagram shapes are equivalent
when it comes to computing colimits. The main theorem of this thesis is the
characterization of cofinal functors of ∞-bicategories which will appear in
Theorem 4.0.31. In this section we aim to review the ∞-categorical theory of
cofinality as well as the characterization theorem that will be later generalized
in this document.

Suppose that we are given a morphism of simplicial sets f : L → K and
a diagram functor F : K → A. It is not hard to see that restriction along f
induces a morphism over A

Con(F ) Con(Ff)

A .

f∗

In particular if both the colimit of F and of Ff exist we obtain a morphism

colim
L

Ff colim
K

F

which we call the canonical comparison map. The theory of cofinality identifies
those functors f : K → L for which the canonical comparison map is always
an equivalence.

Remark 1.3.6. In this section we will restrict attention to cofinal functors of
∞-categories. It is possible to work with cofinal maps of arbitrary simplicial
sets, however, the characterization of cofinal functors requires some fibrancy
assumptions (see [Lur09a, Theorem 4.1.3.1]). Since our characterization in the
∞-bicategorical case is restricted to functors of ∞-bicategories we will take the
analogous assumptions in this section.

Definition 1.3.7. Let f : C→ D be a functor of ∞-categories. We say that f
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is cofinal if the induced morphism

C] D]

D

f

f

id

is a weak equivalence in the Cartesian model structure.

The first task we need to perform is to connect the previous definition with
the theory of colimits. To this end we will need to introduce a key construction
that will play relevant role in the proof of the bicategorical statement.

Definition 1.3.8. Let f : C→ D be a functor of∞-categories. Let us consider
a pullback diagram

F(C) Fun(∆1,D)

C D

ev1

f

where the right-most vertical morphism is given by evaluation at the terminal
vertex in ∆1. We have a morphism F(f) : F(C) → D which is induced by
evaluation at the initial vertex. We equip F(C) with a marking by declaring an
edge to be marked if and only if its image in C under ev1 is an equivalence in
C. We denote the resulting marked simplicial set by F(C)\.

Remark 1.3.9. Let f : C → D be as before and let C\ denote the marked
simplicial set where we are marking the equivalences in C. Observe that we
have a morphism γC : C\ → F(C)\ over D which sends a simplex ∆n σ−→ C to
the simplex

∆1 ×∆n → ∆0 ×∆n σ−→ C
f−→ D

We will show in Theorem 4.0.17 (in a much more general case) that γC is
M-anodyne. We note that it follows from Corollary 2.4.7.1 in [Lur09a] that
F(f) : F(C)\ → D is a Cartesian fibration. Therefore we see that F(f) is a
fibrant replacement for the object C\ → D in the Cartesian model structure.
Following the terminology of [GHN15] we will call F(f) the free Cartesian
fibration on the functor f .

Remark 1.3.10. Let f : C→ D and recall that for every d ∈ D we have a left
fibration Cd/ → C obtained as the pullback

Cd/ Dd/

C D
f

It is not hard to see that the fibres of F(f) : F(C)\ → D are equivalent to the
comma categories Cd/. In particular we can see the Cartesian fibration F(f) as
being classified by the functor

CD/ : Dop
�at∞, d Cd/
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We will use the free Cartesian fibration to characterize cofinal functors. Let
us consider a pushout diagram

C\ C]

F(C)\ F(C)�

where the right-most vertical morphism is again M-anodyne. It is an easy
exercise to verify that F(C)� → F(C)] is also marked anodyne. In particular we
obtain a commutative diagram over D

C] D]

F(C)] F(D)]

f

' '

where the marked simplicial set on the bottom-right corner corresponds to
the free fibration of the identity functor on D. The previous diagram makes
apparent that the functor f is cofinal if and only if the bottom horizontal
morphism is a Cartesian equivalence.

Remark 1.3.11. It is not hard to see (and we will verify this explicitly in the
∞-bicategorical case) that the fibrant replacement of F(C)] is classified by the
functor

|CD/| : Dop S, d |Cd/|
which send d ∈ D to the geometric realization of the category Cd/. Similarly
we have a functor classifying F(D)]

|DD/| : Dop S, d |Dd/|

The morphism over D

F(C)] F(D)]

D

induces a natural transformation ηf : |CD/| =⇒ |DD/|. Consequently, we see that
f is cofinal if and only if ηf is a levelwise equivalence.

It is easy to construct a natural transformation Dd/ ×∆1 → Dd/ between
the constant functor on the object represented by the identity morphism on d
and the identity functor on Dd/. This shows that |Dd/| ' ∗. We have proven
the following result.

Theorem 1.3.12. Let f : C → D be a functor of ∞-categories. Then f is
cofinal if and only if for every d ∈ D the geometric realization of the comma
category |Cd/| ' ∗.

The previous theorem is precisely the Joyal’s characterization of cofinal
functors of ∞-categories. However, in order for this characterization to be of
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practical use we still need to relate the notion of cofinality to the theory of
colimits. We finish the section giving a quick overview of how one builds such
connection.

Lemma 1.3.13. Let F : D → A be a diagram. There is an equivalence of
functors

NatD(F, a) NatDop

(
|DD/|,A(F (−), a)

)
'

which is natural in A.

Proof. Observe that since each of the categories Dd/ is contractible it follows
that |DD/| is equivalent to the constant functor on the point which we will
denote by ∗. Using [GHN15, Proposition 5.1] we can produce equivalences

NatDop (∗,A(F (−), a)) ' lim
Tw(D)op

S(∗,A(F (d), a)) ' lim
Tw(D)op

S(F (d), a)

lim
Tw(D)op

S(F (d), a) ' NatD(F, a)

which are natural in A thus completing the proof.

Lemma 1.3.14. Let F : D→ A be a diagram and let f : C→ D be a functor
of ∞-categories. Then there is an equivalence of functors

NatC(Ff, a) NatDop

(
|CD/|,A(F (−), a)

)
'

which is natural in A.

Proof. The lemma follows immediately after noting that |CD/| can be identified
with the left Kan extension f!|CC/| ' |CD/|.

Remark 1.3.15. Recall that we have a natural transformation ηf : |CD/| =⇒
|DD/|. Tracing through the equivalences in the previous lemmas we can see
that ηf induces the natural transformation

NatD(F,−) =⇒ NatC(Ff,−)

In particular it follows that if ηf is a levelwise equivalence then the comparison
map

colim
C

Ff
' colim

D
F

is always an equivalence in A.

Proposition 1.3.16. Let f : C → D be a functor of ∞-categories. Then the
following statements are equivalent:

1. The functor f is cofinal.

2. For every diagram F : D→ A the canonical comparison map (whenever
defined)

colim
C

Ff
' colim

D
F

is an equivalence in A.
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Proof. Let us suppose that f is cofinal. Then it follows that ηf : |CD/| =⇒ |DD/|
must be an equivalence of functors. The conclusion follows from Remark 1.3.15.
To prove the converse given d ∈ D we consider the functor

D(d,−) : D S

and its restriction along f , namely D(d, f(−)). It follows from Corollary 3.3.4
in [Lur09a] that the comparison map

colim
C

D(d, f(−)) ' colim
D

D(d,−)

can be identified with the morphism on geometric realizations

|Cd/|
' |Dd/|

This implies that ηf must be a levelwise equivalence and thus f is cofinal.



Chapter 2

Fibrations of ∞-bicategories

In this chapter we construct a model structure on the category of marked
biscaled simplicial sets over a scaled simplicial set S. These highly decorated
simplicial sets will be used to model a bicategorical notion of fibration that we
will call (outer) 2-Cartesian fibrations. After constructing the model structure
we will compare our notion of 2-Cartesian fibration with certain notions of
fibrations of Set+

∆-enriched categories. This will allow us to show that our
definition restricts to the well-known definition of 2-Cartesian fibration already
established in the strict 2-categorical literature. The majority of this chapter is
based on [AGS22I] where the results we present here originally appeared.

Later in this document we will prove an ∞-bicategorical Grothendieck
construction relating our definition of 2-Cartesian fibrations with contravariant
functors Sop → �icat∞ taking values in ∞-bicategories.

2.1 Preliminaries
Recapitulating even the basics of the theory of quasi-categories,∞-bicategories,
and the various types of fibrations between them would take more space than
the rest of the paper. Consequently, we here confine ourselves to fixing some
notational conventions, and establishing definitions for later reference. Where
possible, we will follow the notational conventions established in [Lur09a] and
expanded in [Lur09b] and [Lur17]. In referring to the works of Gagna, Harpaz,
and Lanari [GHL20, GHL21a, GHL19], we will endeavor to either follow their
notation, or explain where our conventions differ.

Definition 2.1.1. The inclusion of ∆ ⊂ Cat defines a functor N : Cat→ Set∆
which sends a category C to the simplicial set N(C) whose n-simplices are
given by functors σ : [n]→ C.

Definition 2.1.2. We say that a 2-simplex σ : ∆2 → X is left degenerate if its
restriction σ|∆{0,1} is a degenerate simplex in X.

Definition 2.1.3. Let n > 0. Given 0 6 i 6 j 6 n we denote by ∆[i,j] the
nerve of the subposet of [n] consisting of those objects ` such that i 6 ` 6 j.

Definition 2.1.4. A scaled simplicial set is given by a pair (X,CX) where X is
a simplicial set and CX ⊆ X2 is a subset of the set of 2-simplices containing every
degenerate 2-simplex. We refer to the elements of CX as thin triangles or scaled
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triangles. A morphism of scaled simplicial sets (X,CX)→ (Y,CY ) is a morphism
of the underlying simplicial sets f : X → Y such that f(CX) ⊆ f(CY ). We
denote by Setsc

∆ the category of scaled simplicial sets.

Notation. Given a simplicial set X we denote by X[ := (X, [) the scaled
simplicial set whose thin triangles are precisely the degenerate 2-simplices. We
similarly denote by X] := (X, ]) the scaled simplicial set where all triangles
are thin.

Remark 2.1.5. By 2-category we mean a category enriched over the symmetric
monoidal category of categories. Similarly the notion of 2-functor will refer
to an enriched functor. We denote by 2Cat the ordinary 1-category of strict
2-categories.

Definition 2.1.6. We define a functor N : 2Cat→ CatSet+
∆
with values in the

category of Set+
∆-enriched categories which sends an strict 2-category D to the

Set+
∆-enriched category N(D) defined as follows:

• The objects of N(D) are given by the objects of D.

• Given a pair of objects x, y ∈ D we define a marked simplicial set N(D)(x, y)
with underlying simplicial set given by N(D(x, y)) (see Definition 2.1.1),
where the marking is given by the equivalences in D(x, y).

We call N the Hom-wise nerve functor. Note that since the functor N is fully
faithful it follows that the Hom-wise nerve N, is also fully faithful.

Definition 2.1.7. Let n > 0 and define a 2-category On as follows:

• Objects are given by the elements of the poset [n].

• For every i, j ∈ [n] the category On(i, j) is either empty if i > j or given
by the poset of subsets S ⊆ [n] such that min(S) = i and max(S) = j
ordered by inclusion. The non-trivial composition functors for i 6 j 6 k
are induced by union of subsets

On(i, j)× On(j, k) On(i, k), (S, T ) S ∪ T.

The action on morphisms of the composition functors is the obvious one
since union preserves our given order.

This definition extends to a functor O• : ∆→ 2Cat→ CatSet+
∆
where the last

functor is given by the Hom-wise nerve.

Remark 2.1.8. We will abuse notation and denote by On the 2-category
defined in Definition 2.1.7 together with its image under the Hom-wise nerve.

Definition 2.1.9. Let C be a Set+
∆-enriched category. We define a scaled

simplicial set Nsc(C) whose n-simplices are given by functors of Set+
∆-enriched

categories On → C. A 2-simplex O2 → C is thin if and only if it factors through
O2
] → C where O2

] denotes the Set+
∆-enriched category obtained from O2 by

maximally marking all mapping spaces.
The definition extends to a functor Nsc : CatSet+

∆
→ Setsc

∆ which has as left
adjoint which we denote by Csc : Setsc

∆ → CatSet+
∆
. It follows from [Lur09b,
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Theorem 4.2.7] that the adjunction

Csc : Setsc
∆
−→←− CatSet+

∆
: Nsc

is a Quillen equivalence between the model structure of scaled simplicial sets
and the model structure on Set+

∆-enriched categories (see Definition A.3.2.1 in
[Lur09a] with S = Set+

∆).

Definition 2.1.10. The set of generating scaled anodyne maps S is the set of
maps of scaled simplicial sets consisting of:
(i) the inner horn inclusions(

Λn
i , {∆{i−1,i,i+1}}

)
→
(
∆n, {∆{i−1,i,i+1}}

)
, n > 2 , 0 < i < n;

(ii) the map
(∆4, T )→ (∆4, T ∪ {∆{0,3,4}, ∆{0,1,4}}),

where we define

T
def= {∆{0,2,4}, ∆{1,2,3}, ∆{0,1,3}, ∆{1,3,4}, ∆{0,1,2}};

(iii) the set of maps(
Λn

0
∐

∆{0,1}
∆0, {∆{0,1,n}}

)
→
(

∆n
∐

∆{0,1}
∆0, {∆{0,1,n}}

)
, n > 3.

A general map of scaled simplicial sets is said to be scaled anodyne if it belongs
to the weakly saturated closure of S.

Definition 2.1.11. We say that a map of scaled simplicial sets p : X → S is a
weak S-fibration if it has the right lifting property with respect to the class of
scaled anodyne maps.

Definition 2.1.12. We say that a scaled simplicial set X := (X,CX) is an
∞-bicategory if the unique map X → ∆0 is a weak S-fibration.

Example 2.1.13. For every 2-category D the scaled nerve functor yields a
∞-bicategory Nsc(D).

In general, we will denote fibrant objects in Setsc
∆ using blackboard characters,

e.g. �. We will use undecorated roman majescules, e.g. X, to denote objects of
any category, adding explicit decorations as necessary for clarity.

Definition 2.1.14. Consider the cosimplicial object

Q : ∆ Setsc
∆

[n] ∆0∐
∆n

(∆n ?∆0),

equipped with the minimal scaling. Given an ∞-bicategory X ∈ Setsc
∆, for any

a, b ∈ X, we define a simplicial set X(a, b) whose n-simplices are maps Qn → X
which send the first vertex to a and the second to b. It was shown in [GHL19,
Proposition 2.24] that X(a, b) is a model for the mapping ∞-category from a
to b in X.
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2.2 The model structure on marked-biscaled simplicial
sets

2.2.1 Marked biscaled simplicial sets and MB-anodyne morphisms.

Definition 2.2.1. A marked biscaled simplicial set (MB simplicial set) is given
by the following data

• A simplicial set X.

• A collection of edges EX ⊆ X1 containing all degenerate edges. We will
refer to the elements of this collection as marked edges

• A collection of triangles TX ⊆ X2 containing all degenerate triangles. We
will refer to the elements of this collection as thin triangles.

• A collection of triangles CX ⊆ X2 such that TX ⊆ CX . We will refer to
the elements of this collection as lean triangles.

We will denote such objects as triples (X,EX , TX ⊆ CX). A map (X,EX , TX ⊆
CX)→ (Y,EY , TY ⊆ CY ) is given by a map of simplicial sets f : X → Y which
maps marked edges in X (resp. thin triangles, resp. lean triangles) to marked
edges in Y (resp. thin triangles, resp. lean triangles). We denote by Setmb

∆ the
category of MB simplicial sets.

Notation. Let (X,EX , TX ⊆ CX) be anMB simplicial set. If the collection EX
consists only of degenerate edges then we will use the notation (X,EX , TX ⊆
CX) = (X, [, TX ⊆ CX) and do similarly for the collection TX . If CX consists
only of degenerate triangles we fix the notation (X,EX , TX ⊆ CX) = (X,EX , [).
In an analogous fashion we use the symbol “]“ to denote a collection containing
all edges (resp. all triangles). Finally, we will employ the notation (X,EX , TX)
whenever we have TX = CX .

Remark 2.2.2. We will often abuse notation when defining the collections EX
(resp. TX , resp. CX) and just specify its non-degenerate edges (resp. triangles).

Definition 2.2.3. We define a category ∆MB by appending to the simplex
category ∆ three objects [1]+, [2]t and [2]l and morphisms

[1] i+−→ [1]+, [2] il−→ [2]l
il−→ [2]t,

s0
+ : [1]+ → [0], sit : [2]t → [1], for i = 0, 1

such that s0
+ ◦ i+ = s0 and such that sit ◦ it ◦ il = si. We can produce a functor

R : Setmb
∆ → Fun(∆op

MB, Set) which sends an MB simplicial set (X,EX , TX ⊆
CX) to the functor R(X) which maps [1]+ to the collection of marked edges, [2]l
to the collection of lean 2-simplices and [2]t to the collection of thin triangles.
The functor R(X) maps the new morphisms to the obvious inclusions

EX ⊆ X1, TX ⊆ CX ⊆ X2

between the collections and to the inclusion of degenerate edges (resp. triangles)
into the marked edges (resp. thin simplices).
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Remark 2.2.4. It follows by direct inspection that the functor R : Setmb
∆ →

Fun(∆op
MB, Set) is fully faithful with essential image those presheaves mapping

the morphisms i+, il and it to monomorphisms in Set. It is also straightforward
to verify that R has a left adjoint L. This implies that the category of MB
simplicial sets is a reflective subcategory of a presheaf category. Since the
essential image of R is stable under directed colimits we can use Theorem
1.46 in [AR94] to show that Setmb

∆ is locally presentable (see [AR94, Definition
1.17]).

Remark 2.2.5. Let X, Y ∈ Setmb
∆ . The product X × Y ∈ Setmb

∆ is given
by the underlying product of the simplicial sets equipped with the following
decorations:

• An edge ∆1 → X × Y (resp. triangle) is declared marked (resp. thin resp.
lean) if and only if its image in X and its image in Y is marked (resp. thin
resp. lean).

Remark 2.2.6. Observe that we have a functor, L : Setsc
∆ Setmb

∆ send-
ing a scaled simplicial set (X,TX) to (X, [, TX) which is left adjoint to the
forgetful functor U sending (X,EX , TX ⊆ CX) to (X,TX).

Definition 2.2.7. The set of generating marked-biscaled anodyne maps MB
is the set of maps of MB simplicial sets consisting of:
(A1) The inner horn inclusions(

Λn
i , [, {∆{i−1,i,i+1}}

)
→
(
∆n, [, {∆{i−1,i,i+1}}

)
, n > 2 , 0 < i < n;

which are a direct generalization of the inner-horns of∞-categories. For n =
2 these morphisms guarantee the existence of composites of 1-morphisms.

(A2) The map
(∆4, [, T )→ (∆4, [, T ∪ {∆{0,3,4}, ∆{0,1,4}}),

where we define
T

def= {∆{0,2,4}, ∆{1,2,3}, ∆{0,1,3}, ∆{1,3,4}, ∆{0,1,2}};
These morphisms encode a general 2-out-of-3 property for thin triangles.

(A3) The set of maps(
Λn

0
∐

∆{0,1}
∆0, [, [ ⊂ {∆{0,1,n}}

)
→
(

∆n
∐

∆{0,1}
∆0, [, [ ⊂ {∆{0,1,n}}

)
, n > 2.

These maps force left-degenerate (Definition 2.1.2) lean-scaled triangles
to represent coCartesian edges of the mapping category. For n = 2 this
requires the existence of p-coCartesian lifts of edges in the mapping
category of the base.

(A4) The set of maps(
Λn
n, {∆{n−1,n}}, [ ⊂ {∆{0,n−1,n}}

)
→
(

∆n, {∆{n−1,n}}, [ ⊂ {∆{0,n−1,n}}
)

, n > 2.

This forces the marked morphisms to be p-Cartesian with respect to the
given thin and lean triangles.
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(A5) The inclusion of the terminal vertex(
∆0, ], ]

)
→
(

∆1, ], ]
)
.

This requires p-Cartesian lifts of morphisms in the base to exist.

(S1) The map (
∆2, {∆{0,1},∆{1,2}}, ]

)
→
(

∆2, ], ]
)
,

requiring that p-Cartesian morphisms compose across thin triangles.

(S2) The map (
∆2, [, [ ⊂ ]

)
→
(

∆2, [, ]
)
,

which requires that lean triangles over thin triangles are, themselves, thin.

(S3) The map(
∆3, [, {∆{i−1,i,i+1}} ⊂ Ui

)
→
(

∆3, [, {∆{i−1,i,i+1}} ⊂ ]
)

, 0 < i < 3

where Ui is the collection of all triangles except i-th face. This and the
next two generators serve to establish composability and limited 2-out-of-3
properties for lean triangles.

(S4) The map (
∆3 ∐

∆{0,1}
∆0, [, [ ⊂ U0

)
→
(

∆3 ∐
∆{0,1}

∆0, [, [ ⊂ ]
)

where U0 is the collection of all triangles except the 0-th face.

(S5) The map (
∆3, {∆{2,3}}, [ ⊂ U3

)
→
(

∆3, {∆{2,3}}, [ ⊂ ]
)

where U3 is the collection of all triangles except the 3-rd face.

(E) For every Kan complex K, the map(
K, [, ]

)
→
(
K, ], ]

)
.

which requires that every equivalence is a marked morphism.
A map of MB simplicial sets is said to be MB-anodyne if it belongs to the
weakly saturated closure of MB.

Remark 2.2.8. We would like to point out that a priori the collection (E)
is not a set. This issue can be solved by allowing K to range over a set of
representatives for all isomorphism classes of Kan complexes with only countably
many simplices as explained in [Lur09a, Remark 3.1.1.3].

Definition 2.2.9. Let f : (X,EX , TX ⊆ CX) → (Y,EY , TY ⊆ CY ) be a map
of MB simplicial sets. We say that f is an MB-fibration if it has the right
lifting property against the class of MB-anodyne morphisms.
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Lemma 2.2.10. Let f : (X,EX , TX ⊆ CX) → (Y,EY , TY ⊆ CY ) be a MB-
fibration and denote by Xy the fibre of f over y ∈ Y . Then Xy is an∞-bicategory
with precisely the equivalences marked.

Proof. Observe that it follows from (S2) that the thin triangles and the lean
triangles of Xy must coincide. Since Xy has the right lifting property against
maps (A1)-(A3) it follows that Xy is an ∞-bicategory. It follows from (E) that
all equivalences must be marked.

Now we will show every marked edge is an equivalence. Let u : a→ b be a
marked edge in Xy and let s : Λ2

2 → Xy be the map that sends the edge 1→ 2
to u and the edge 0→ 2 to the identity morphism on b. It follows that we can
provide an extension of s to a thin 2-simplex σ : ∆2 → Xy which provides a
morphism v : b → a such that u ◦ v ' id. To finish the proof we construct a
morphism (Λ3

3,∆{2,3}, ])→ Xy as depicted by the diagram below

b

a b

a

u

vid

u

idu

where the only non-degenerate triangle is given by the 0-th face which is
precisely σ. An extension of this map to (∆3,∆{2,3}, ]) where we scale the face
missing the vertex 3 using a morphism of type (S5) yields a thin 2-simplex
exhibiting v ◦ u ' id.

Lemma 2.2.11. The morphism

θ :
(

∆2, {∆{1,2},∆{0,2}}, ]
) (

∆2, ], ]
)

is MB-anodyne.

Proof. We first note that, given an MB-fibration f : (X,EX , TX ⊆ CX) →
(S, ], TS), we can find a lift of θ as follows. Suppose we have a lifting problem(

∆2, {∆{1,2},∆{0,2}}, ]
)

X

(
∆2, ], ]

)
S

σ

θ f

where the top arrow corresponds to the thin 2-simplex

σ :
b

a c ,

uv

w

Since f : X → S is an MB-fibration, we can choose a marked lift v̂ : â→ b of
f(v). Using a lift of type (A1) to compose u and v̂ and a lift of type (A4) to
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obtain a morphism from a to â, we can obtain a Λ3
2-horn, all of whose sides

are thin-scaled. We can fill this to a maximally thin-scaled 3-simplex using a
pushout of type (A1) and a pushout of type (A2). This three-simplex has the
form

c

a â

b

w

v

p

v̂

q

u

Since every triangle is scaled, we can apply lifts of type (S1) to show that q is
marked. This implies that p is an equivalence in the fibre over f(a), and so p is
marked. Thus, a lift of type (S1) shows that v is marked as desired.

To finish the proof we use the small object argument to produce a factoriza-
tion (

∆2, {∆{1,2},∆{0,2}}, ]
)

X
(

∆2, ], ]
)

α β

where the first morphism is MB-anodyne and the second morphism is an MB-
fibration. The first part of the proof then implies that there exists a section
γ : (∆2, ], ]) → X such that γ ◦ θ = α and such that id = β ◦ γ. This shows
that θ is a retract of an MB-anodyne morphism and thus the claim holds.

Definition 2.2.12. We say that a map f : (X,EX , TX ⊆ CX)→ (Y,EY , TY ⊆
CY ) of MB simplicial sets is a cofibration if its underlying map of simplicial
sets is a cofibration. Equivalently, a cofibration of MB simplicial sets is given
by a monomorphism in the category Setmb

∆

Remark 2.2.13. The generators of the class of cofibrations are given by

(C1)
(
∂∆n, [, [

)
→
(

∆n, [, [
)
for n > 0 where ∂∆0 = ∅

(C2)
(

∆1, [, [
)
→
(

∆1, ], [
)
.

(C3)
(

∆2, [, [
)
→
(

∆2, [, [ ⊂ ]).

(C4)
(

∆2, [, [ ⊂ ]
)
→
(

∆2, [, ]
)
.

Note that (C4) and (S2) are the same morphism.

Proposition 2.2.14. Let f : (X,EX , TX ⊆ CX) → (Y,EY , TY ⊆ CY ) be a
cofibration and let g : (A,EA, TA ⊆ CA) → (B,EB, TB ⊆ CB) be an MB-
anodyne morphism. Then the pushout-product

f ∧ g : X ×B
∐
X×A

Y × A Y ×B

is MB-anodyne.1
1Note that this proposition is about the pushout-product of marked biscaled simplicial sets. For readability,

we have omitted the marking and biscaling from the notation in the conclusion.
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Before embarking on our proof of the pushout-product, we will tackle one
particularly recalcitrant case by itself. As it so happens, a case nearly precisely
dual to this one also occurs in checking the pushout-product. To save paper
(and the reader’s eyesight), we will only provide the proof of one of these cases,
trusting that it will be apparent how to dualize the argument.

We we first prove two quick lemmata, which will somewhat ease the coming
proof.
Construction 2.2.15. Letm > 2 and consider a list of vertices~i = {i1, . . . ik+1}
of ∆m with k < m. We denote by Λm

~i
the simplicial subset of ∆m whose non-

degenerate simplices are given by subsets J ⊂ [n] satisfying the following
property

• There exists ` ∈ [m] such that ` /∈ J and ` /∈~i.
Lemma 2.2.16. Let ~i = {i1, . . . ik+1} be a list of non-consecutive vertices of
∆m which does not contain 0,m. We define a biscaling T~i on ∆m by declaring
that ∆{i−1,i,i+1} is thin for every i ∈~i. Then the morphism

(Λm
~i
, [, T~i) (∆m, [, T~i)

is in the weakly saturated hull of morphisms of type (A1) for m > 2.

Proof. We proceed by induction on the length of ~i. When length(~i) = 1, this is
simply a morphism of type (A1).

Now suppose that this holds for length(~i) < k + 1 and let i1, . . . , ik+1 be a
k + 1-tuple satisfying the hypotheses above. Define ~j =~i \ {i1}, and consider
the m− 1-simplex

σ : ∆m−1 → ∆m

given by the i1-th face map. Then σ ∩ Λm
~i

= Λm−1
~j

, and so, by the inductive
hypothesis, we can fill this simplex to obtain a new simplicial subset

Λm
~i
⊂ X ⊂ ∆m.

We then see that X will consist of precisely those subsimplices of ∆m which
either (a) skip i1 or (b) skip a vertex j not belonging to ~i. More simply put,
X consists precisely those simplices which skip a vertex not contained in
{i2, . . . , ik+1}. Consequently,

X = (Λm
~i\{i1}, [, T~i)

and so, by the inductive hypothesis, this map is in the weakly saturated hull of
morphisms of type (A1).

Lemma 2.2.17. Let ~i := {0, i1, . . . , ik+1} be a set of distinct vertices of
∆m∐

∆{0,1} ∆0 with m > 2 such that
• 1 < i1 6 i2 6 · · · 6 ik+1 < n

• The simplex {0, 1,m} is lean-scaled.
Then the map

(Λm
~i

)
∐

∆{0,1}
∆0 → ∆m

∐
∆{0,1}

∆0

is MB-anodyne.
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Proof. We once again proceed by induction on the length of ~i. If ~i = {0}, then
this is a morphism of type (A3). If ~i = {0, i1}, then we can fill the simplex
obtained by deleting i1 using a pushout of type (A3), the resulting inclusion is
again an inclusion of type (A3).

We now assume, inductively, that the statement holds for any~i of length less
than k + 2, and let ~i = {0, i1, . . . , ik+1}. Consider the simplex σ : ∆m−1 → ∆m

obtained by deleting i1. Then we see that

(Λm
~i

∐
∆{0,1}

∆0) ∩ σ = Λm−1
~i\i1

∐
∆{0,1}

∆0

so that, by the inductive hypothesis, we can fill σ using an MB-anodyne
morphism. The resulting simplicial subset X in

(Λm
~i

)
∐

∆{0,1}
∆0 → X → ∆m

∐
∆{0,1}

∆0

consists of precisely those subsimplices of ∆m which skip i1 or which skip an
element not in ~i. More precisely

X = Λm
~i\{i1}

∐
∆{0,1}

∆0

and thus, by the inductive hypothesis,

X → ∆m
∐

∆{0,1}
∆0

is MB-anodyne, completing the proof.

Proposition 2.2.18. Denote by

f : (∂∆n, [, [) (∆n, [, [)

a morphism of type (C1), and by

g :
(

Λm
0

∐
∆{0,1}

∆0, [, [ ⊂ {∆{0,1,m}}
) (

∆m
∐

∆{0,1}
∆0, [, [ ⊂ {∆{0,1,m}}

)

a morphism of type (A3). Then the pushout-product f ∧ g is MB-anodyne.

Before beginning the proof, we create a diagram for reference. We visualize
the product of the targets as a grid, with some simplices which get collapsed.
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00

10

20

30

40

01

11

21

31

41

02

12

22

32

42

03

13

23

33

43

In the diagram above, we are looking at ∆4 ×∆3, and the 1-simplices in red
are those which get collapsed.

Proof. Since the case n = 0 is simply the original type (A3) morphism, we may,
without loss of generality, assume n > 1. To prove the claim we will provide a
filtration

X0 → X1 → · · · → Xk−1 → Xk = ∆n ×

∆m
∐

∆{0,1}
∆0


X0 = ∂∆n ×

∆m
∐

∆{0,1}
∆0

 ∐
∂∆n×(Λm0

∐
∆{0,1} ∆0)

∆n ×

Λm
0

∐
∆{0,1}

∆0



and show that each step Xα → Xα+1 is MB-anodyne. Let us remind the
reader that the marking and biscaling on ∆n × ∆m is determined by the
universal property of the product as discussed in Remark 2.2.5 and each object
in the filtration carries the inherited marking and biscaling from ∆n ×∆m.

We begin by fixing some notation for the n+m simplices in ∆n ×∆m. We
denote the objects of (a, b) ∈ ∆n ×∆m simply as ab according to the diagram
above. A non-degenerate simplex σ : ∆k → ∆n ×∆m is specified by a sequence
of vertices {aibi}ki=0 such that ai < ai+1 or bi < bi+1. The non-degenerate
simplices of maximal dimension are precisely those such that either ai+1 = ai
and bi+1 = bi + 1 or ai+1 = ai + 1 and bi+1 = bi.

Let σ : ∆k → ∆n ×∆m with vertex sequence given by {aibi}ki=0. Then σ
factors through X0 if at least one of the following conditions is satisfied:

• There exists j ∈ [n] such that ai 6= j for 0 6 i 6 k. In other words, the
path in our grid determined by the vertex sequence skips the j-th row.

• There exists j ∈ [m] such that j 6= 0 and bi 6= j for 0 6 i 6 k. As before,
this means that the path determined by the vertex sequence skips the j-th
column.
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The next step in our proof is to define a total order on the set of non-
degenerate simplices of maximal dimension. Once this order is provided {σ1 <
σ1 < · · · < σk} we will define X` as the subsimplicial set of ∆n×∆m containing
the non-degenerate simplices θ of maximal dimension such that θ 6 σ`. Let
θ, σ : ∆m+n → ∆n × ∆m be two distinct simplices of maximal dimension
with associated vertex sequences {aibi}m+n

i=0 and {cidi}m+n
i=0 . By maximality it

follows that a0b0 = c0d0 = 00. Let 1 6 ν < m+ n be the first index such that
aνbν 6= cνdν . Then we say that θ < σ if bν < dν .

We observe that the decorations of ∆n ×∆m are already contained in X0
unless n = 1 and m = 2. We will deal with this case separately. Let us suppose
that n = 1 and m = 2 then it follows that every triangle in ∆1 ×∆2 is lean.
The filtration in this case is given by

X0 → X1 → X2 → ∆1 ×

∆2 ∐
∆{0,1}

∆0


Let σ1 : ∆3 → X1 be simplex specified by 00 → 10 → 11 → 12. We observe
that the restriction of σ1 to X0 is given by (Λ3

1)† := (Λ3
1,∆{1,2},∆{0,1,2} ⊂ ]).

We observe that the morphism

(Λ3
1)† := (Λ3

1,∆{1,2},∆{0,1,2} ⊂ ])→ (∆3,∆{1,2},∆{0,1,2} ⊂ ]) = (∆3)†

is MB-anodyne since can be obtained via pushouts from a morphism of type
(A1) and a morphism of type (S3). It follows that we have a pushout diagram

(Λ3
1)† (∆3)†

X0 X1

which shows that the first step isMB-anodyne. Now we consider the simplex σ2 :
00→ 01→ 11→ 12 in X2. The restriction of σ2 is given by (P,∆{0,1},∆{0,1,2} ⊂
]) where P is the union inside of ∆3 of the face that skips 1 and the face that
skips 3. We can add the 0-th face using a pushout along a morphism of type
(A1) thus yielding

(P,∆{0,1},∆{0,1,2} ⊂ ])→ (Λ3
2,∆{0,1}, V ⊂ ])→ (∆3,∆{0,1}, V ⊂ ])

where V = {∆{0,1,2},∆{1,2,3}}. The first map is in the weakly saturated hull
of morphisms of type (A1) and the second is in the weakly saturated hull of
morphisms of type (A1) and (S3). It follows by an analogous reasoning that
X1 → X2 is MB-anodyne.

The last 3-simplex to add is given by σ3 = 00→ 01→ 02→ 12 which we
view as a map

σ3 : ∆3 ∐
∆{0,1}

∆0 → ∆1 ×

∆2 ∐
∆{0,1}

∆0

 .
As before we compute the restriction of σ3 to X2 which is precisely given by
A� = (Λ3

0
∐

∆{0,1} ∆0, [, [ ⊂ ]). We define B� =
(
∆3∐

∆{0,1} ∆0, [,∆{1,2,3} ⊂ ]
)
.
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It follows by direct inspection that we have a pushout square

A� (B)�

X2 (∆2∐
∆{0,1} ∆0)

so it will suffice to show that the top horizontal morphism is MB-anodyne. We
construct the following factorizationΛ3

0
∐

∆{0,1}
∆0, [, [ ⊂ ]

→
∆3 ∐

∆{0,1}
∆0, [, [ ⊂ ]

→
∆3 ∐

∆{0,1}
∆0, [,∆{1,2,3} ⊂ ]


where we note that the first map is in the weakly saturated hull of morphisms
of type (A3) and (S4). The second morphism is in the weakly saturated hull of
morphisms of type (S2) and so the claim holds.

From this point on we will assume that X0 contains all the decorations.
We proceed by cases. First we will assume that σα : ∆n+m → Xα satisfies
σα(0→ 1) = 00→ 10. Just as we did before we will compute the restriction of
σα to Xα−1. Let {aibi}n+m

i=0 be the vertex sequence associated to σα. We define
~i = {0 < i < n+m | ai−1 < ai, ai = ai+1} and observe that the restriction of
σα to Xα−1 is precisely given by Λn+m

~i
as in Construction 2.2.15. It follows by

construction that for every j ∈~i the triangle {i−1, i, i+1} is thin. Consequently
we can apply Lemma 2.2.16 to show that Xα−1 → Xα is MB-anodyne.

To finish the proof we consider a morphism σα : ∆m+n∐
∆{0,1} ∆0 → Xα

such that σα(0 → 1) = 00 → 01. Now we define ~i = {0 < i < n + m |
ai−1 < ai, ai = ai+1}∪{0} and observe that 1 /∈~i. It follows that the restriction
of σα to Xα−1 is given by Λn+m

~i
and that the conditions of Lemma 2.2.17 apply.

Therefore we see that the morphism Xα−1 → Xα is MB-anodyne and thus the
proof is finished.

While a significant majority of the cases of the pushout-product remain, all
of the remaining cases involve far less difficulty than this one. We can now turn
to the main event.

Proof (of Proposition 2.2.14). The proof will consist of the usual rigmarole —
checking on pairs of generators. While there are 44 cases in all, the vast majority
of these turn out to be trivial, extremely simple or even already known. The two
cases dealt with by the preceding propositions are by far the most complicated
cases.

We will label our cases first by the generating cofibration, and then by the
generating MB-anodyne morphism.

(C1) The cofibration is of the form
(
∂∆n, [, [

)
→
(

∆n, [, [
)
.

(A1) Since the marking is trivial, and the thin and lean scalings agree, we
can consider only the thin scalings. Case (1A) from 3.1.8 in [Lur09b]
then shows that this can be obtained as a pushout of morphisms of
type (A1) and morphisms for the type from remark 3.1.4 in [Lur09b].
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Figure 2.1: Above, we depict in blue and in red two simplices of maximal dimension. Note
that in our ordering the simplex depicted by the red path is smaller than the simplex in blue.

(A2) This is precisely case (1B) from 3.1.8 [Lur09b]
(A3) This is Proposition 2.2.18.
(A4) The dual of the argument given for Proposition 2.2.18 suffices once

we have replaced "degenerate 1-simplices" with "marked 1-simplices".
(A5) We note that the map of underlying simplicial sets is

Y0 := (∆n × {1})
∐

∂∆n×{1}
(∂∆n ×∆1)→ ∆n ×∆1

We can define a sequence of n+ 1 simplices in ∆n ×∆1 via the maps

σk : [n+ 1] [n]× [1]

i

(i, 0) i 6 k

(i− 1, 1) i > k

We then define Yi inductively as Yi−1∪σi−1 (following [Lur09a, 2.1.2.6]).
We see that the morphism Yi−1 Yi is a pushout with a Λn+1

i+1 -horn.
It will thus suffice for us to note two things:

∗ When i < n, the 2-simplex σi|∆{i−1,i,i+1} is the simplex

(i, 0)→ (i, 1)→ (i+ 1, 1)

in ∆{i−1,i}×∆1, and thus is necessarily thin-scaled. We thus obtain
a pushout of type (A1).

∗ when i = n, the 2-simplex σn|∆{0,n−1,n} is the simplex

(0, 0)→ (n, 0)→ (n, 1)
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in ∆{0,n} ×∆1, and thus is necessarily thin-scaled. Moreover, the
morphism σn+1|∆{n−1,n} is

(n, 0)→ (n, 1)

and thus is marked. Hence, we obtain a pushout of type (A4).
(S1) This is an isomorphism when n > 1, and is a morphism of type (S1)

when n = 0.
(S2) This is an isomorphism on underlying marked lean scaled simplicial

sets, and thus in the saturated hull of morphisms of type (S2).
(S3) We will treat the case i = 2 — the case i = 1 follows virtually

identically. When n > 2 this is an isomorphism and when n = 0, this
is a morphism of type (S3). This means that we may consider the
following two cases:

∗ If n = 2, we note that this is an isomorphism on the underlying
marked simplicial sets, and indeed differs only in the lean-scaling.
The only missing lean-scaled simplex is 00→ 11→ 23 in ∆2×∆3.
We may expand this to a 3-simplex 00 → 11 → 12 → 23. It is
easily checked that this 3-simplex gives us a pushout of type (S3)
(with i = 1), showing that the morphism is MB-anodyne.

∗ If n = 1, we again have that the source and target differ only in
their lean-scaling. It is easy to check that the missing simplices are
the simplices 00→ 11→ 13 and 00→ 01→ 13 in ∆1×∆3. In the
former case, we can extend to the 3-simplex 00→ 11→ 12→ 13
and scale the desired 2-simplex with a pushout of type (S3), and in
the latter case we can extend to the 3-simplex 00→ 01→ 02→ 13
and scaled the desired 2-simplex with a pushout of type (S3).

(S4) This case is almost dual to the next one and left as an exercise.
(S5) When n > 2, this is an isomorphism. When n = 0, this is a morphism

of type (S5). When n = 1, we get the identity on underlying marked
simplicial sets

(∆3)† × (∆1)[ → (∆3)† × (∆1)[, (∆3)† = (∆3,∆{2,3})

The lean scaling on the target is maximal. The missing scaled simplices
in the source are 00→ 10→ 21, 00→ 11→ 21. One can then note
that the 3-simplex 00→ 11→ 21→ 31 is of type (S5), and can thus
be filled. Similarly, the 3-simplex 00→ 10→ 21→ 31 is of type (S5),
and can be filled.

(E) If n > 1, this is an isomorphism. If n = 0, this is again a morphism of
type (E).

(C2) The cofibration is of the form
(

∆1, [, [
)
→
(

∆1, ], [
)
.

(A1) This is isomorphism on underlying marked, lean-scaled simplicial sets,
and thus MB-anodyne.

(A2) This is an isomorphism.
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(A3) This is an isomorphism.
(A4) This is an isomorphism.
(A5) This gives us the inclusion

(∆1 ×∆1, E†, ]) (∆1 ×∆1, ], ])

Where E† is the marking containing ∆1×{0}, ∆1×{1}, and {1}×∆1.
A pushout of type (S1) marks the diagonal, and a pushout by the
morphism (

∆2, {∆{1,2},∆{0,2}}, ]
)
→
(

∆2, ], ]
)

marks the remaining edge. By Lemma 2.2.11, this is MB-anodyne.
(S1) This is the identity on (∆2 × ∆1) the underlying simplicial sets.

Moreover, every triangle in both simplicial sets is thin scaled. The
only 1-simplex which is not marked in the source is 00→ 21, and the
target is maximally marked. We can add the remaining marked edge
using a pushout of type (S1).

(S2) This is an isomorphism.
(S3) This is an isomorphism.
(S4) This is an isomorphism.
(S5) This is an isomorphism.
(E) The source and target of the pushout-product differ only in their

marking. However, every edge which is marked in the target by not
in the source will be the product of a non-degenerate edge in K and
the non-degenerate edge in ∆1. Consequently, it will be the diagonal
in a square ∆1 ×∆1 ⊂ ∆1 ×K. Since every other 1-simplex of this
square will be marked, the diagonal can be marked with a pushout of
type (S1).

(C3) The cofibration is of the form
(

∆2, [, [
)
→
(

∆2, [, [ ⊂ ]
)
.

(A1) When n > 2, this is an isomorphism. If n = 2, this is an isomorphism
on the underlying marked thin-scaled simplicial sets, so we can consider
only the lean scaling.
The target is maximally lean scaled. In the source, there are precisely
three 2-simplices which are not lean scaled:

00→ 12→ 22 (2.1)
00→ 11→ 22 (2.2)
00→ 10→ 22 (2.3)

For the first, we can extend to the 3-simplex 00 → 02 → 12 → 22,
and obtain obtain a pushout of type (S3) with i = 1. For the third,
we can extend to the 3-simplex 00 → 10 → 20 → 22, and obtain a
pushout of type (S3) with i = 2. For the second, we can then extend
to the 3-simplex 00→ 10→ 11→ 22, and obtain a pushout of type
(S3) (with i = 1).
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(A2) The pushout-product is an isomorphism on underlying marked thin-
scaled simplicial sets, so once again we consider the lean triangles. The
underlying simplicial sets are both ∆2 ×∆4. There are two triangles
which are lean in the target, but not the source, namely:

00→ 13→ 24 (2.4)
00→ 11→ 24 (2.5)

For (4), if we extend to the 3-simplex 00→ 03→ 13→ 24, we obtain a
pushout of type (S3) with i = 1. For (5), if we extend to the 3-simplex
00→ 11→ 21→ 24, we obtain a pushout of type (S3) with i = 2.

(A3) This is an isomorphism when n > 2. When n = 2, we first note that
we can neglect the thin scaling and the marking. Since this is the case,
we consider the corresponding inclusion of lean-scaled simplicial sets.
The underlying map is

id : ∆2 × (∆2∐∆0) ∆2 × (∆2∐∆0)

and the target carries a maximal scaling. The only unscaled simplex
in the source is

00 11 22
We can then consider the simplex

00→ 01→ 11→ 22

Since 00→ 01 is degenerate, we can scale the remaining simplex via
a pushout of type (S4).

(A4) This is an isomorphism when n > 2. When n = 2, we again note that
is sufficient only to consider the marking and the lean scaling since
the source of our morphism already contains every thin triangle. In
this case, we obtain an isomorphism on the underlying simplicial set
∆2 ×∆2. The markings are identical on the source and target, so we
are again left to consider only the lean scaling. The target is maximally
scaled, and the only unscaled simplex in the source is 00→ 11→ 22.
Considering the 3-simplex

00→ 11→ 21→ 22,

we note that 21→ 22 is marked. Thus, a pushout of type (S5) suffices.
(A5) The underlying map of simplicial sets is the identity on ∆2 ×∆1. It

is, as above, and isomorphism on the marking and thin-scaling. There
are precisely three simplices which we need to lean-scale:

00→ 11→ 21 (2.6)
00→ 10→ 21 (2.7)
00→ 10→ 20 (2.8)

For (6), we can extend to the 3-simplex 00→ 01→ 11→ 21, and then
obtain the desired scaling via a pushout of type (S3) with i = 1. For
(7), we can extend to the 3-simplex 00→ 10→ 11→ 21 and obtain
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the desired scaling via a pushout of type (S3) with i = 2. Finally, for
(8), we can extend to the 3-simplex 00→ 10→ 20→ 21, and obtain
a pushout of type (S5) (since the morphism 20→ 21 is marked).

(S1) This is an isomorphism.
(S2) This is an isomorphism on the underlying marked lean-scaled simplicial

sets, and thus a sequence of pushouts of type (S2).
(S3) In both cases, the underlying map of simplicial sets is the identity on

∆2 ×∆3, and in both cases, there is only one 2-simplex we need to
lean scale.

∗ When i = 2, the missing scaling is on 00 → 11 → 23. We can
extend to the 3-simplex 00→ 11→ 21→ 23, and scale the missing
2-simplex using a pushout of type (S3) with i = 2.

∗ When i = 1, the missing scaling is on 00 → 12 → 23. We can
extend to the 3-simplex 00→ 02→ 12→ 23, and scale the missing
2-simplex using a pushout of type (S3) with i = 1.

(S4) This is effectively dual to the next case.
(S5) On the underlying marked simplicial sets, this is the identity on the

marked simplicial set

(∆3, {∆{2,3}})× (∆2)[.

The only simplex which is lean-scaled in the target but not the source
is 00→ 11→ 22. However, if we consider the 3-simplex

00→ 11→ 22→ 32

in ∆3 ×∆2 whose edge 22→ 32 is marked, we obtain a pushout of
type (S5) giving the desired scaling.

(E) This is an isomorphism.

(C4) The cofibration is of the form
(

∆2, [, [ ⊂ ]
)
→
(

∆2, [, ]
)
.

(A1)-(E) All of these are, necessarily, isomorphisms on the underlying marked
lean-scaled simplicial sets (since, forgetting about thin simplices, the
morphisms of type (C4) are isomorphisms of marked lean-scaled
simplicial sets), since every thin triangle in the target is lean scaled
in the source we see that the morphisms are MB-anodyne.

Though the preceding arguments may seem an abuse of the reader’s patience,
now that the pushout-product is established, we can freely use it without directly
working with these technicalities. In particular, we gain access to well-behaved
mapping spaces, mapping categories, and mapping bicategories for (Setmb

∆ )/S —
a key convenience in the work to come.

Definition 2.2.19. Given twoMB simplicial sets (K,EK , TK ⊆ CK), (X,EX , TX ⊆
CX) we define another MB simplicial set denoted by Funmb(K,X) and char-
acterized by the following universal property

HomSetmb
∆

(
A,Funmb(K,X)

)
∼= HomSetmb

∆

(
A×K,X

)
.



2.2. THE MODEL STRUCTURE ON MARKED-BISCALED SIMPLICIAL SETS 77

As a direct consequence of Proposition 2.2.14 we obtain the following corol-
lary.

Corollary 2.2.20. Let f : (X,EX , TX ⊆ CX)→ (Y,EY , TY ⊆ CY ) be an MB-
fibration. Then for every K ∈ Setmb

∆ the induced morphism Funmb(K,X) →
Funmb(K,Y ) is a MB-fibration.

Definition 2.2.21. Let f : X → Y be a MB-fibration and consider another
map ofMB simplicial sets g : K → Y . The previous corollary and Lemma 2.2.10
allow us to define an∞-bicategory MapY (K,X) by means of the pullback square

MapY (K,X) Funmb(K,X)

∆0 Funmb(K,Y )g

Proposition 2.2.22. Let f : X → Y be a MB-fibration. Suppose that we are
given morphisms of MB simplicial sets

L
h

K
g

Y

such that h is a cofibration (resp. MB-anodyne). Then the induced morphism

h∗ : MapY (K,X) MapY (L,X)

is a fibration of scaled simplicial sets (resp. trivial fibration).

Proof. Suppose that h is a cofibration and let A → B be a MB-anodyne
morphism. To show that h∗ has the right lifting property against the class of
scaled anodyne maps we consider the adjoint lifting problem

A MapY (K,X) L×B ∐
L×A

K × A X

B MapY (L,X K ×B Y

h∗

and conclude that the dotted arrow exists due to Proposition 2.2.14.
Note that according to Lemma 2.2.10 the marking on both ∞-bicategories

is precisely given by equivalences. Therefore using (A5) in Definition 2.2.7 we
see that h∗ is an isofibration. We can conclude from the construction of the
model structure on Setsc

∆ as a Cisinski model structure in [GHL19] that h∗
is a fibration of ∞-bicategories. The case where h is a MB-anodyne follows
immediately from Proposition 2.2.14.

2.2.2 The model structure

Let S ∈ Setsc
∆. For the rest of the section we will denote (Setmb

∆ )/S the category
of MB simplicial set over (S, ], TS ⊂ ]). In this section we will establish the
existence of model structure on (Setmb

∆ )/S using a refinement of Jeff Smith’s
theorem due to Lurie [Lur09a, Prop. A.2.6.13].
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Definition 2.2.23. We say that an object π : X → S in (Setmb
∆ )/S is an outer

2-Cartesian fibration if it is an MB-fibration.

Remark 2.2.24. We will frequently abuse notation and refer to outer 2-
Cartesian as 2-Cartesian fibrations.

Remark 2.2.25. Given a scaled simplicial set (S, TS) we will frequently abuse
notation and denote the MB simplicial set (S, ], TS ⊂ ]) simply by S.

Definition 2.2.26. Let π : X → S be a morphism ofMB simplicial sets. Given
an object K → S, we define Mapth

S (K,X) to be the MB simplicial subset of
MapS(K,X) consisting only of the thin triangles. Note that if π is a 2-Cartesian
fibration this is precisely the underlying ∞-category of MapS(K,X).

We similarly denote by Map'S (K,X) the MB simplicial subset consisting of
thin triangles and marked edges. As before, we note that if π is a 2-Cartesian
fibration, the simplicial set Map'S (K,X) can be identified with the maximal
Kan complex in MapS(K,X).

Definition 2.2.27. We define a functor I : Set+
∆ Setmb

∆ mapping a marked
simplicial set (K,EK) to the MB simplicial set (K,EK , ]). If K is maximally
marked we adopt the notation I(K]) = K]

] .

Remark 2.2.28. Note that we can endow the (Setmb
∆ )/S with the structure of

a Set+
∆-enriched category by means of Mapth

S (−,−). In addition given K ∈ Set+
∆

and π : X → S we define K ⊗X := I(K)×X equipped with a map to S given
by first projecting to X and then composing with π. This construction shows
that (Setmb

∆ )/S is tensored over Set+
∆. One can easily show that (Setmb

∆ )/S is
also cotensored over Set+

∆.
In a similar way one can use Map'S (−,−) to endow (Setmb

∆ )/S with the
structure of a Set∆-enriched category. In this case the cotensor is given by
K ⊗X = I(K])×X.

Definition 2.2.29. Let L h
K

p
S be a morphism in (Setmb

∆ )/S. We
say that h is a cofibration when it is a monomorphism of MB simplicial sets.
We will call h a weak equivalence if for every 2-Cartesian fibration π : X → S
the induced morphism

h∗ : MapS(K,X) MapS(L,X)

is a bicategorical equivalence.

Definition 2.2.30. Given two MB simplicial sets p : X → S and q : Y → S
over S, we call a morphism

(∆1, ], ])×X Y

S

h

p q

a marked homotopy over S from h|{0}×X to h|{1}×X . We say that a morphism
f : X → Y is a marked homotopy equivalence if there is a morphism g : Y → X
over S and marked homotopies from f ◦ g to idY and from g ◦ f to idX .
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Proposition 2.2.31. Suppose we are given a pushout diagram in (Setmb
∆ )/S

L K

R P

u

v

w

where u is a cofibration and v is a weak equivalence. Then w is also a weak
equivalence.

Proof. Let π : X → S be a 2-Cartesian fibration. Then it follows that we have
a pullback diagram of fibrant scaled simplicial sets

MapS(P,X) MapS(R,X)

MapS(K,X) MapS(L,X)

w∗

u∗

v∗

where u∗ is a fibration according to Proposition 2.2.22 and v∗ is a bicategorical
equivalence. Since this pullback already represents the homotopy pullback it
follows that w∗ is also a bicategorical equivalence.

Proposition 2.2.32. Let L h
K

p
S be a morphism in (Setmb

∆ )/S. Then
the following are equivalent

i) The map h : L→ K is a weak equivalence.

ii) For every 2-Cartesian fibration π : X → S the induced morphism

Mapth
S (K,X) ' Mapth

S (L,X)

is an equivalence of ∞-categories.

iii) For every 2-Cartesian fibration π : X → S the induced morphism

Map'S (K,X) ' Map'S (L,X)

is a homotopy equivalence of Kan complexes.

Proof. The implications i) =⇒ ii) =⇒ iii) are obvious. To show iii) =⇒ i)
we apply the small object argument to factor the morphism p (resp. q = p ◦ h)

K FK S

where the first morphism is MB-anodyne and the second has the right lifting
property against the class of MB-anodyne morphisms and similarly for q. In
particular we obtain 2-Cartesian fibrations πK : FK → S and πL : FL → S. The
functoriality of the small object argument implies the existence of a commutative
diagram over S

L FL

K FK

ϕ
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Using Proposition 2.2.22 we obtain for every 2-Cartesian fibration π : X → S
a commutative diagram

MapS(FK , X) MapS(FL, X)

MapS(K,X) MapS(L,X)

' '

where the horizontal morphisms are trivial fibrations of ∞-bicategories. This
shows that the map FL → FK satisfies condition iii). It will therefore suffice to
show that FL → FK is a weak equivalence.

We observe that we have an equivalence of Kan complexes

Map'S (FK , FL) ' Map'S (FL, FL)

It follows that we have a morphism γ : FK → FL over S and a homotopy (again
over S) expressing γ ◦ ϕ ∼ idπL . Observe that both ϕ ◦ γ and idπK get mapped
under

Map'S (FK , FK) ' Map'S (FL, FK)
to equivalent objects. Using our hypothesis it follows that ϕ ◦ γ ∼ idπK . To
finish the proof we observe that given a 2-Cartesian fibration X → S we can
use the morphism γ to construct an inverse up to marked homotopy for the
map

MapS(FK , X) MapS(FL, K)
thus concluding the proof.

Lemma 2.2.33. Let L h
K

p
S be a morphism in (Setmb

∆ )/S such that
p : K → S and p ◦ h : L→ S are 2-Cartesian fibrations. Then the conditions
i)-iii) in Proposition 2.2.32 are additionally equivalent to

iv) The morphism f is a marked homotopy equivalence over S.

Proof. The equivalence of iv) and iii) is purely formal, so the result follows
from Proposition 2.2.32.

Definition 2.2.34. We say that a morphism L
h

K S is a trivial
fibration it it has the right lifting property against the class of cofibrations.

Remark 2.2.35. Observe that every trivial fibration is in particular a weak
equivalence. Indeed, if h : L → K has the right lifting property against all
cofibrations we can produce a section s : K → L (over S) and an a marked
homotopy L × (∆1)] → L between the identity on L → S and s ◦ h. This
provides us with a deformation retract on the mapping ∞-bicategories.

Definition 2.2.36. Suppose we have a morphism

X Y

∆n
[

f

p q
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of 2-Cartesian fibrations over ∆n
[ , for n > 1, and a commutative diagram

(∂∆m, [, [) X

(∆m, [, [) Y

α

f

β

such that r = q ◦ β : ∆m → ∆n is surjective.
We define jβ ∈ [m] to be the largest element such that r(jβ) < r(m). We

additionally define a simplicial subset Sm+1
jβ
⊂ ∆m+1 to be the union of:

• all m-simplices of ∆m+1 other than the faces missing jβ + 2 or jβ + 1;

• the (m− 1) simplex which misses both jβ + 2 and jβ + 1.

See Figure 2.2 for a geometric interpretation. We equip ∆m+1 with a marking
and biscaling as follows:

• The only non-degenerate marked edge is given by jβ + 1→ jβ + 2.

• A 2-simplex is lean if it contains the edge jβ + 1→ jβ + 2.

• A 2-simplex is thin if it is lean and its image in ∆n
[ under the morphism

r ◦ sjβ is degenerate where sjβ denotes the jβ-th degeneracy map.

We denote the resulting MB simplicial set by (∆m+1, Eβ, Tβ ⊆ Cβ) and view
it as an object of (Setmb

∆ )/∆n
[
by means of the map r ◦ sjβ . We similarly

denote (Sm+1
jβ

, ES
β , T

S
β ⊆ CS

β ) the MB simplicial set obtained from the inherited
decorations.

Figure 2.2: The simplicial subset S3
1 ⊂ ∆3.

Lemma 2.2.37. Let n > 1. Suppose we are given a morphism f : X → Y of
2-Cartesian fibrations over ∆n

[ and a lifting problem

(∂∆m, [, [) X

(∆m, [, [) Y

α

f

β

as in Definition 2.2.36. Suppose further that f satisfies condition ii) from
2.2.38.
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Then there exists a commutative diagram

(Sm+1
jβ

, ES
β , T

S
β ⊆ CS

β ) X

(∆m+1, Eβ, Tβ ⊆ Cβ) Y

ε

f

θ

such that the following conditions hold:

1. The restriction of θ to be face missing jβ + 1 equals β and similarly, the
restriction of ε to face missing jβ + 1 equals α.

2. Let ξ denote the restriction of θ to the face missing jβ + 2. Then either
jξ = jβ + 1 if jβ < m− 1 or ξ factors through ∆n−1 and similarly for ε.

Proof. We start the proof by fixing the notation α(i) = xi (resp. β(i) = yi).
Let us pick a marked morphism e : x̂jβ → xjβ+1. To ease notation, let us just
denote jβ simply by j. We define MB simplicial sets

Bm
j = (∆m, [, [)

∐
∆{j+1}

(∆1, ], ]) , ∂Bm
j = (∂∆m, [, [)

∐
∆{j+1}

(∆1, ], ]).

For the rest of the proof we will omit the marking and biscalings to ease the
notation. Note that we have commutative diagrams

Bm
j Y

∆m+1 ∆n

γmj
q

r◦sj

∂Bm
j X

Sm+1
j ∆n

ιmj p

where bottom horizontal map in the second diagram is the restriction of r◦sj to
Sm+1
j . We claim that the left vertical maps in both diagrams are MB-anodyne.

Once this is proven, we let θ be a solution to the left-most commutative square.
Note that we can form another diagram

∂Bm
j X

Sm+1
j Y

f

where bottom horizontal map is the composite Sm+1
j ∆m+1 θ

Y . Since
f has the right lifting property against MB-anodyne morphisms our result
follows.

First we will prove the family of cases where j = m−1 by using induction on
m. The casem = 1 is obviously true. Suppose that our claim holds form−1 and
let us prove the case m. Let Wm

−1 = Bm
m−1 and define for 0 6 i 6 m− 1 a MB

simplicial subsetWm
i ⊂ ∆m+1 (with the decorations defined in Definition 2.2.36)

consisting in those simplices that are either in Wm
i−1 or are contained in the

i-th face for 0 6 i 6 m− 1. This yields a filtration

Wm
−1 Wm

0 · · · Wm
m−1 = Λm+1

m+1
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We similarly set ∂Wm
−1 = ∂Bm

m−1 and produce an analogous filtration by adding
step-wise the faces 0 6 i 6 m− 1

∂Wm
−1 ∂Wm

0 · · · ∂Wm
m−1 = Sm+1

j

It will then suffice to show that each step in both filtrations is MB-anodyne.
Let 0 6 i 6 m− 1 then we can produce a pushout squares

Wm−1
i−1 ∆m

Wm
i−1 Wm

i

Wm−1
i−1 ∆m

∂Wm
i−1 ∂Wm

i

where the morphism Wm−1
i−1 → Wm

i−1 is given by the restriction of the inclusion
of the i-th face ∆m → Wm

i to Wm
i−1 and similarly for the other diagram. The

claim now follows from the inductive hypothesis.
The general proof will employ induction on j and each case will be proved

using induction on m. Note that given j > 0 the ground case for the induction
on m is given by m = j + 1. In particular we have proved all the ground cases
already. Now we will deal with ground case of the induction on j, namely
j = 0. Assume the claim to hold for m − 1 > 1 and let us prove the case m.
Let Zm

m+2 = Bm
0 and define for every 3 6 i 6 m + 1 a MB subsimplicial set

Zm
i−1 ⊂ ∆m+1 consisting in those simplices that are either contained in Zm

i or
are contained in the (i−1)-th face of ∆m+1. We similarly denote ∂Zm

m+2 = ∂Bm
0

and consider a pair of filtrations

Zm
m+2 Zm

m+1 · · · Zm
3 Λm+1

2

∂Zm
m+2 ∂Zm

m+1 · · · ∂Zm
3 Sm~j

where the last step in both filtrations is given by attaching the face missing 0.
A similar argument as above shows that the claim follows from the inductive
hypothesis for the every step except the last one. To prove that the last map
in both filtrations is MB-anodyne we consider a pushout diagram

Λm
1 ∆m

Zm
3 Λm+1

2

where the morphism Λm−1
1 → Zm

3 is the restriction to Zm
3 of the inclusion of

the 0-th face into Λm+1
2 . Note that the triangle {0, 1, 2} must be already be thin

if m > 3 or it can be chosen to be thin since it lies above a degenerate triangle
in ∆n. The analogous conclusion also holds for ∂Zm

3 . Finally let us assume
the claim holds for j − 1 > 0. The proof of this final inductive hypothesis is a
mix of both previous cases. We will give a sketch here and leave the details for
the interested reader. The idea is to add stepwise to Bn

j (resp. ∂Bn
j ) the faces

missing i for n 6 i 6 j + 3. One can check that at each step this result map is
MB-anodyne using the induction hypothesis. Then we add the faces missing `
for 0 6 ` 6 j and again we find that each step in this process is MB-anodyne.
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In the case of ∂Bm
j we have already reached Sm+1

j . For Bm
j after this process we

reach Λm+1
j+2 where the triangle {j + 1, j + 2, j + 3} must be thin since it is lean

by construction and lies over a thin triangle. The conclusion now follows.

Proposition 2.2.38. Given a diagram of the form

X Y

S

f

p q

where both p and q are 2-Cartesian fibrations, then the following statements
are equivalent:

i) The map f is a trivial fibration.
ii) The map f has the right lifting property against MB-anodyne maps and

for every s ∈ S the induced map on fibres fs : Xs
'

Ys is a bicategorical
equivalence.

Proof. The implication i) =⇒ ii) is clear. Now suppose that ii) holds. Then
we immediately see that for every s ∈ S the map fs is a trivial fibration of
scaled simplicial sets. First we will show that we can lift the maps(

∂∆m, [, [
) (

∆m, [, [
)

, m > 0.

Suppose we are given a lifting problem of the form

∂∆m X

∆m Y

α

f

β

and let κβ be the smallest integer such that q ◦ β : ∆m → ∆κβ → S. We
will use induction on κβ. Note that when κβ = 0 the lifting problem occurs
in one of the fibres and thus the solution exists. Suppose the claim holds for
0 < κβ − 1 6 m− 1. We will assume without loss of generality that S = ∆κβ .
Let us remark that by construction the map r = q ◦ β : ∆m → ∆κβ must be
surjective. Let jβ ∈ [m] be the biggest element such that r(jβ) < r(m) = κβ.
We can now use Lemma 2.2.37 to produce a commutative diagram

Sm+1
jβ

X

∆m+1 Y

ε

f

θ

satisfying the conditions of the lemma. It follows from the proof Lemma 2.2.37
that the triangle θ({jβ, jβ + 1, jβ + 2}) must be scaled. Restricting this diagram
along the face missing jβ + 2 yields another commutative square

∂∆m X

∆m Y

f

ξ



2.2. THE MODEL STRUCTURE ON MARKED-BISCALED SIMPLICIAL SETS 85

We claim that our original lifting problem admits a solution if this later lifting
problem admits a solution. Indeed, given a solution of this later lifting problem
we can produce a commutative diagram

Sm+1
jβ

Λm+1
jβ+1 X

∆m+1 ∆m+1 Y

where the dotted arrow exists since the triangle θ({jβ, jβ + 1, jβ + 2}) is scaled.
It follows from Lemma 2.2.37 that the restriction of this solution to the face
missing jβ + 1 is a solution for our original lifting problem.

We can further see that if jβ = n− 1 then ξ must factor through ∆κβ−1 and
the existence of the solution follows from the inductive hypothesis. If jβ < m−1
it follows that q ◦ ξ must be surjective and that jξ > jβ so we can keep applying
Lemma 2.2.37 until we obtain the solution. The inductive step is proved and
the claim holds.

To finish the proof we must show that f detects marked edges and lean
(resp. thin) triangles. Let e : ∆1 → X be such that f(e) is marked. Let us
denote e(i) = xi for i ∈ {0, 1} and similarly denote f(xi) = yi. Pick a marked
lift ẽ : x̂0 → x1 and observe that we can produce a 2-simplex σ : ∆2 → X
such that σ|∆{1,2} = ẽ and σ|∆{0,2} = e. It follows from Lemma 2.2.11 that f(σ)
is fully marked and since its restriction to ∆{0,1} lies in Yq(y0) that particular
edge must be an equivalence. However f detects equivalences in the fibres so it
follows that σ|∆{0,1} is marked in X. The claim follows from Definition 2.2.7
(S1).

Suppose we are given ϕ : ∆2 → X such that f(ϕ) is lean-scaled in Y . As
usual we will assume without loss of generality that S = ∆2

[ a minimally scaled
2-simplex. We can additionally assume that ϕ is not contained in some Xi for
i ∈ [2], otherwise the claim follows immediately. Let s : ∆2 ϕ−→ X

p−→ S = ∆2
[

and define define jϕ as the biggest integer such that s(jϕ) < s(2). Then a totally
analogous argument to that of Lemma 2.2.37 shows that we can produce a
3-simplex T : ∆3 → X such that:

• The restriction of T to the face missing jϕ + 1 equals ϕ.

• The edge jϕ + 1→ jϕ + 2 is marked.

• Every triangle of T containing the edge jϕ + 1→ jϕ + 2 is lean.

We claim that by construction f(T ) must be fully lean-scaled in Y . There are
two cases to study: jϕ = 0 and jϕ = 1. If jϕ = 0 then it follows that every
triangle in f(T ) is lean except the 2-nd face. However the triangle given by
the vertices {1, 2, 3} is lean by construction and lies over an edge. Since lean
triangles lying over thin triangles are themselves thin it follows that we can
lean-scale the missing face using a morphism of type (S3). If jϕ = 1 then it
follows that every triangle in f(T ) is lean except the 3-rd face. We can lean-scale
this face using a morphism of type (S5).

We proceed now by cases:
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a) The map s is given by a→ a→ b. Note that in this case we have jϕ = 1
and let us consider T : ∆3 → X as before. We see that the face missing 3
is contained in Xa and since its image in Y is lean (it is in fact thin) it
follows that it must be lean in X. It follows that we can scale ϕ : ∆2 → X
using a morphism of type (S3) since the triangle {1, 2, 3} gets mapped
under T to a thin 2-simplex.

b) The map s is given by a → b → b. Now we see that we can scale the
face missing 2 in T : ∆3 → X using the previous case. We can scale
ϕ : ∆2 → X using a morphism of type (S3) since the triangle {0, 1, 2} gets
mapped under T to a thin 2-simplex.

c) The map s is given by a → b → c. It follows that we can scale the face
missing 3 in T : ∆3 → X using case b). Since the triangle {1, 2, 3} gets
mapped under T to a thin 2-simplex we can scale ϕ : ∆2 → X using a
morphism of type (S3).

To prove that f detects thin triangles we only need to observe that if the
image of a 2-simplex ϕ : ∆2 → X gets mapped under f to a thin triangle then
by the discussion for lean-triangles it follows that ϕ is a lean in X. We can
then thin-scale ϕ using a morphism of type (S2).

Proposition 2.2.39. Suppose we are given a morphism of 2-Cartesian fibra-
tions

X Y

S

f

p q

Then the following are equivalent

i) The map f is a weak equivalence.

ii) For every s ∈ S the induced morphism fs : Xs → Ys is an equivalence of
scaled simplicial sets.

Proof. The implication i) =⇒ ii) is clear since we can construct an inverse up
to homotopy for f as we did in the proof of Proposition 2.2.32. To prove the
converse we will apply the small object argument and obtain a factorization of
f

X
u

L
v

Y

where the map u isMB-anodyne and v has the right lifting property against the
class of MB-anodyne maps. It follows from Proposition 2.2.22 that u must be a
weak equivalence. Now we observe that L→ S must be a 2-Cartesian fibration.
It follows from 2-out-of-3 that the induced morphism on fibres Ls → Ys must be
a bicategorical equivalence for every s ∈ S. We can now apply Proposition 2.2.38
to obtain that v must be a trivial fibration. This finishes the proof.

Definition 2.2.40. Recall from [Lur09a, A.2.6.10] that a class of morphisms
W in a presentable category A is perfect if it satisfies the following conditions

1. Every isomorphism belongs to W .
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2. Given a pair of composable morphisms X f−→ Y
g−→ Z if any two of the

morphisms f, g and g ◦ f belong to W , then so does the third.
3. The class W is stable under filtered colimits.
4. There exists a (small) subsetW0 ⊆ W such that every morphism belonging

to W can be obtained as a filtered colimit of morphisms belonging to W0.
Lemma 2.2.41. The class of weak equivalences in (Setmb

∆ )/S is perfect in the
sense of Definition 2.2.40.

Proof. Using the small object argument we produce a functor (which preserves
filtered colimits)

T : (Setmb
∆ )/S (Setmb

∆ )/S
equipped with a natural transformation id =⇒ T such that for every K ∈
(Setmb

∆ )/S the map K → T (K) is MB-anodyne and T (K) is a 2-Cartesian
fibration. It follows that a morphism h : K → L is a weak equivalence if and
only if T (h) is a weak equivalence. We finally consider the composite

WS : (Setmb
∆ )/S

T (Setmb
∆ )/S

∏
s∈S

Setmb
∆

∏
s∈S

Setsc
∆

where the second functor is given by taking pullback along each fibre and
the second functor is a product of forgetful functors. It follows from a simple
inspection that WS preserves filtered colimits. Let ES = ∏

s∈S
E where E denotes

the collection of weak equivalences in Setsc
∆. Since E is perfect then so is ES. We

claim that the collection of weak equivalences in (Setmb
∆ )/S is precisely given

by W−1
S (ES). Once this is proved the result will follow from [Lur09a, A.2.6.12].

Let E denote the collection of weak equivalences in (Setmb
∆ )/S and let α :

X → Y be a morphism. Let us suppose that α ∈ W−1
S (ES) then it follows from

Proposition 2.2.39 that T (α) ∈ E. Since α ∈ E if and only if T (α) ∈ E it follows
that W−1

S (ES) ⊆ E. The converse follows easily.

Lemma 2.2.42. Let p : X → S and n > 0. Then the morphism r : X ×
(∆n)]] → X given by projection to X is a weak equivalence.

Proof. Note that the inclusion of the terminal object tn : (∆0)]] → (∆n)]] induces
a section s : X → X × (∆n)]]. Since our class of weak equivalences satisfies
2-out-of-3 it follows that it is enough to show that s is a weak equivalence. We
will show that the map tn is MB-anodyne. Then the claim will follow from
Proposition 2.2.14.

We prove that tn is MB-anodyne using induction on n. If n = 1 then t1
is the generator (A5). We define for 0 6 i 6 n − 1 a MB subsimplicial set
Ai ⊂ (∆n, ], ]) consisting in those simplices that are contained in the j-th face
fo j 6 i. This produces a filtration

∆0 → A0 → · · · → An−2 → An−1 = (Λn
n, ], ])→ (∆n, ], ]).

It is easy to verify that each step in this filtration is MB-anodyne.

Theorem 2.2.43. Let S be a scaled simplicial set. Then there exists a left proper
combinatorial simplicial model structure on (Setmb

∆ )/S, which is characterized
uniquely by the following properties:
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C) A morphism f : X → Y in (Setmb
∆ )/S is a cofibration if and only if f

induces a monomorphism betwee the underlying simplicial sets.

F) An object X ∈ (Setmb
∆ )/S is fibrant if and only if X is a 2-Cartesian

fibration.

Proof. We will use [Lur09a, Prop. A.2.6.13] to deduce the existence of a left
proper combinatorial model structure in (Setmb

∆ )/S. Lemma 2.2.41 shows that
the class of weak equivalences is perfect. We proved in Proposition 2.2.31
that weak equivalences are stable under pushouts along cofibrations. It is also
immediate to see that trivial fibrations are in particular weak equivalences so
the conditions of [Lur09a, Prop. A.2.6.13] apply. Now we wish to show that
this model structure is compatible with the simplicial structure. This follows
from [Lur09a, Prop. A.3.1.7] coupled with Lemma 2.2.42.

It is clear that every MB-anodyne morphism is a trivial cofibration which
implies that every fibrant object is a 2-Cartesian fibration. To show that every
2-Cartesian fibration defines a fibrant object we consider a lifting problem

A X

B S

α

i p

β

where i is a general trivial cofibration and p : X → S is a 2-Cartesian fibration.
We consider the induced morphism of mapping ∞-bicategories

i∗ : MapS(B,X) MapS(A,X)

and observe that due to Proposition 2.2.22 the induced morphism is simultane-
osly a bicategorical equivalence and a fibration. Therefore i∗ is trivial fibration
of ∞-bicategories. The solution to our lifting problem is obtained by taking a
preimage of the object α ∈ MapS(A,X).

Theorem 2.2.44. The adjunction presented in Remark 2.2.6

L : Setsc
∆ Setmb

∆ : U

is a Quillen equivalence where the right-hand side is equipped with the model
structure of MB simplicial sets over the point constructed in Theorem 2.2.43.

Proof. First we will show that L preserves cofibrations and trivial cofibrations.
The case of cofibrations is immediate. Now let us suppose that (A, TA)→ (B, TB)
is a trivial cofibration of scaled simplicial sets. Let D be a fibrant object in Setmb

∆
and note that as stated before D is an ∞-bicategory with all the equivalences
marked. It is immediate that the morphism

Funmb(L(B),D) Funmb(L(A),D))

can be identified with the analogous morphism

Funsc(B,U(D)) Funsc(A,U(D))



2.3. 2-CARTESIAN FIBRATIONS OVER A FIBRANT BASE. 89

between the underlying scaled simplicial sets. It follows that L a U is a Quillen
adjunction. Note that U ◦ L = id. To conclude the proof suppose that B is a
fibrant mb simiplicial set. In particular, we need to show that the map

(B, [, TB) (B, EB, TB)

is a weak equivalence. However the above morphism is a pushout of a morphism
of type (E) in Definition 2.2.7.

2.3 2-Cartesian fibrations over a fibrant base.
The goal of this section is to give a characterization of 2-Cartesian fibrations
in the specific case where S ∈ Setsc

∆ is an ∞-bicategory. For the rest of this
section we will fix a functor of ∞-bicategories p : X → S.

Definition 2.3.1. Let p : X S be a weak S-fibration (Definition 2.1.11).
We call a left-degenerate (Definition 2.1.2) 2-simplex σ : ∆2 → X, p-coCartesian
if there exists a solution for any lifting problem of the form

Λn
0 X

∆n S

f

p

provided f |∆{0,1,n} = σ.

Remark 2.3.2. Recall the definition of the mapping ∞-category X(a, b) de-
scribed in Definition 2.1.14. Let σ : ∆2 → X be a p-coCartesian simplex such
that σ(0) = a and σ(1) = b. Since σ is left-degenerate it can be viewed as an
edge in X(a, b). We can further observe that by definition the dotted arrow in
the diagram

Λn
0 X(a, b)

∆n

ρ

exists provided the restriction of ρ to ∆{0,1} is precisely σ. This shows that
p-coCartesian triangles define coCartesian edges in the mapping space. We wish
to show that this property precisely characterizes coCartesian triangles. The
proof of this later fact will involve a little bit of work.

Lemma 2.3.3. Let X be an ∞-bicategory and consider an n-simplex σ : ∆n →
X with n > 2. Suppose that there exists some 0 < k < n such that the restriction
of σ to ∆[0,k], see Definition 2.1.3, is degenerate on σ(0) = a. Then there exists
a morphism

σ̂ : ∆n+1 X

with the following properties:

• The restriction of σ̂ to its (k + 1)-face equals σ.

• The restriction of σ̂ to ∆[0,k+1] is degenerate on a.



90 CHAPTER 2. FIBRATIONS OF ∞-BICATEGORIES

• For every k + 2 6 j 6 n+ 1 the 2-simplex ∆{k+1,k+2,j} is thin in X.

Proof. Our first observation is that if k = n− 1 then we can define σ̂ = sn−1(σ)
and this provides the desired solution. We will assume for the rest of the proof
that n−k > 1. We define a simplicial subset ι : Rn

k → ∆n+1 consisting precisely
of those simplices θ : ∆k → ∆n+1 satisfying at least one of the following
conditions

a) The simplex θ skips the vertex k + 1.

b) The simplex θ skips the vertex n+ 1.

c) The simplex θ is one of the triangles ∆{k+1,k+2,j} for k + 2 < j 6 n+ 1

We endow ∆n+1 with a scaling by scaling those triangles contained in ∆[0,k+1]

in addition to the triangles ∆{k+1,k+2,j} for k + 2 < j 6 n+ 1. The proof will
be performed in two steps: First we will show that ι is an scaled anodyne
morphism. Finally, we will produce an extension of σ to Rn

k .
We inductively define scaled simplicial subsets An(k,i) ⊂ ∆n+1 (where ∆n+1

carries the scaling defined above) consisting in those simplices that either
belong to An(k,i−1) or are contained in the face missing i for 1 6 i 6 k and where
we are using the convention An(k,0) = Rn

k . Let Bn
(k,n) ⊂ ∆n+1 be the simplicial

subset whose simplices either belong to An(k,k) or factor through the n-th face.
We inductively define Bn

(k,j) from Bn
(k,j+1) by adding the face missing j for

k + 3 6 j 6 n with the convention An(k,k) = Bn
(k,n+1). This yields a filtration

Rn
k An(k,1) · · · An(k,k) Bn

(k,n) · · · Bn
(k,k+3) ∆n+1

We wish to show that each step in the filtration is given by a scaled anodyne
morphism. Note that Bn

(k,k+3) contains all faces except the face missing 0 and
the face missing k + 2. Since the triangle ∆{k+1,k+2,k+3} is thin it is easy to
verify that the last step in our filtration is scaled anodyne. We observe that we
can produce pushout diagrams

An−1
(k−1,i) ∆n

An(k,i) An(k,i+1)

di+1

Bn−1
(k,j−1) ∆n

Bn
(k,j) Bn

(k,j−1)

dj+1

where the morphism An−1
(k−1,i) → An(k,i) (resp.Bn−1

(k,j−1) → Bn
(k,j)) is the restriction

of the inclusion of the i-th face (resp (j − 1)-th face) into An(k,i−1) (resp. Bn
(k,j)).

Suppose that each step in our filtration is scaled anodyne for κ 6 n− 1. Then
it follows that each An−1

(k,i) → ∆n is scaled anodyne. Therefore we can use the
pushout diagrams above to show that each step in the filtration is scaled
anodyne for κ = n. The ground case we need to show is n = 3 and k = 1. In
this setting the filtration is of the form

R3
2 A3

(1,1) ∆4.

Note that in this case k + 3 = n + 1 so the filtration terminates at A3
(1,1). In

particular, the morphism B3
(1,4) = A3

(1,1) → ∆4 is scaled anodyne. To verify
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that the first morphism is scaled anodyne we add to R3
2 the face that misses

the vertices 0 and 1 by taking a pushout along the morphism (Λ2
1, ])→ (∆2, ])

obtaining a factorization
R3

2 → Q→ A3
(1,1)

It follows that the restriction of the face missing 1 to Q is given by a horn Λ3
2

where the triangle {1, 2, 3} is thin. The ground case now follows.
To finish the proof we need to produce the extension from σ : ∆n → X to a

map ρ : Rn
k → X. We define Lnk as the subsimplicial of Rn

k consisting in those
simplices satisfying conditions a) or c). We define ρ(k+1→ k+2) = σ(k → k+1)
and extend σ to Lnk by picking the obvious composites of morphisms. Note
that if n − k = 2 then we can produce the desired extension by just setting
dn+1(ρ) = sk(dn(σ)). Therefore will assume that Lnk already contains those
simplices that factor through ∆[0,k+2]. To finish the proof we will show that
Lnk → Rn

k is scaled anodyne. We consider morphisms

αk+j : ∆[0,k+j] → ∆[0,n] ⊂ Rn
k , for 3 6 j 6 n− k.

Let us set Cn
(k,2) = Lnk . We define inductively Cn

(k,j) by attaching the simplices
αk+j to Cn

(k,j−1). We obtain our final filtration

Lnk Cn
(k,3) · · · Cn

(k,n−k) = Rn
k .

Note that we have pushout diagrams

R
[0,k+j]
k ∆[0,k+j]

Cn
(k,j) Cn

(k,j+1)

αk

where the top horizontal morphism is scaled anodyne by the first part of this
proof. The result follows.

Proposition 2.3.4. Let p : X → S be a weak S-fibration. Then a left-
degenerate triangle σ : ∆2 → X with σ(0) = a and σ(2) = b is coCartesian if
and only if it defines as coCartesian edge in the mapping space X(a, b).

Proof. It is immediate that if σ is coCartesian then it defines a coCartesian
edge in the corresponding mapping space. For the converse let n > 3 and
consider a lifting problem

Λn
0 X

∆n S

f

p

α

such that f |∆{0,1,n} = σ. We define 1 6 k 6 n− 1 to be the biggest integer such
that the restriction of f to ∆[0,k] is degenerate on a. Note that if n−k = 1 then
the lifting problem takes place in the mapping space X(a, b) and the solution
is guaranteed. We define a subsimplicial set P n

k ⊂ ∆n+1 consisting of those
simplices ρ : ∆k → ∆n+1 satisfying at least one of the following conditions

a) The simplex ρ skips the vertex n+ 1.
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b) The simplex ρ skips a pair of vertices (k + 1, i) with i 6= 0.

c) The simplex ρ factors through ∆{k+1,k+2,j} with k + 2 < j 6 n+ 1.

Now we can apply Lemma 2.3.3 to the simplex α to obtain a map α̂ : ∆n+1 → S
satisfying the conditions stated in the lemma. Our first goal is to produce a
commutative diagram

Λn
0 P n

k X

∆n ∆n+1 S

f

f̂

p

dk+1 α̂

ε

since any dotted arrow as above will provide a solution to the original lifting
problem. We define f̂ as follows:

• On simplices satisfying condition b) the value of f̂ is completely determined
by f .

• We want to define the map f̂ on simplices satisfying condition a). We
consider a simplex

σk+1 : ∆[0,k+1] −→ Λn
0 → X

We define the image ∆[0,k+2] → P n
k in X to be the value of the k-th

degeneracy operator on σk+1. This is compatible with the morphism α̂ as
seen in the proof of Lemma 2.3.3. Moreover, if n− k = 2 this completes
the definition of f̂ on simplices satisfying a). Let us suppose that n−k > 2
and let Mn

k ⊂ P n
k be the simplicial subset consisting in those simplices

satisfying b) in addition to those simplices contained in ∆[0,k+2]. It follows
from the previous discussion that we have a commutative diagram

Λn
0 Mn

k X

∆n ∆n+1 S

f

p

dk+1 α̂

To finally construct f̂ it will be enough to show that Mn
k → P n

k is scaled
anodyne.

We define Qn
k ⊂ P n

k as the simplicial subset consisting in those simplices
satisfying condition a) and b). We will show that each step in the factorization

Mn
k → Qn

k → P n
k

is scaled anodyne. It is easy to see that Qn
k → P n

k is scaled anodyne since we
can add the missing triangles by taking the adequate composites. To show the
claim for Mn

k → Qn
k we proceed in an almost identical way as in the proof of

Lemma 2.3.3 we produce a filtration by inductively adding to Mn
k the simplex

∆[0,k+j] for 3 6 j 6 n − k. We leave the standard verification that each step
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in this filtration is scaled anodyne to the interested reader.It follows that the
desired extension f̂ : P n

k → X exists.
To finish the proof we will construct the dotted arrow ε above. Let Snk

be the simplicial subset of ∆n+1 consisting in those simplices belonging to
P n
k in addition to the faces that skip the vertices i for 1 6 i 6 k. A totally

analogous argument as that for Lemma 2.3.3 shows that the map inclusion
P n
k → Snk is scaled anodyne. We can now add the faces that skip the vertices
k + 2 6 j 6 n to obtain a new simplicial set T nk . We observe that T nk only
misses the (k + 1)-face and the 0-face since the triangle ∆{k,k+1,k+2} must be
thin. It is easy to see that T nk → ∆n+1 is scaled anodyne. To finish the proof
we need to provide a solution to the lifting problem

Snk X

T nk S

p
ϕ

We define Dn
(k,n) by adding to Snk the face missing the vertex n. We define

Dn
(k,j−1) by adding to Dn

(k,j) the face missing j for k+ 2 6 j 6 n. This produces
a filtration

Snk Dn
(k,n) · · ·Dn

(k,k+2) = T nk

We will show how to produce the solution by extending the map stepwise. As
usual, we produce a pushout diagram

Dn−1
(k,j−1) ∆n

Dn
(k,j) Dn

(k,j−1)

Now we observe that if n− k = 2 then original filtration is of the form

Snn−2 Dn
(n−2,n) = T nn−2

the previously depicted pushout diagram particularizes now to

Λn
0 ∆n

Snn−2 T nn−2

where the left-most Λn
0 represents an 0-horn in the mapping space and thus the

existence of the extension is guaranteed. An inductive argument shows that we
can produce the map ϕ and the proof is concluded.

Definition 2.3.5. We say that p : X → S is locally fibred if it satisfies the
conditions

i) The map p : X → S is a weak S-fibration.

ii) For every left-degenerate σ̃ : ∆2 → S together with τ : ∆1 → X such that
σ̃|∆{0,2} = p(τ), then there exists a left-degenerate simplex σ : ∆2 → X
such that σ is coCartesian and p(σ) = σ̃.



94 CHAPTER 2. FIBRATIONS OF ∞-BICATEGORIES

The following proposition follows immediately from our definitions.

Proposition 2.3.6. Let p : X → S be locally fibred. The given a, b ∈ X a pair
of objects it follows that the induced morphism on mapping spaces

pa,b : X(a, b) S(p(a), p(b))

is a coCartesian fibration of ∞-categories.

Definition 2.3.7. Let σ, τ : ∆2 → X be a pair of 2-simplices such that τ is
left-degenerate. We say τ is the left-degeneration of σ if there exists a 3-simplex
ρ : ∆3 → X with the following properties:

• The face d3(ρ) equals s0(d2(σ)).

• The face d2(ρ) equals τ .

• The face d1(ρ) equals σ.

• The face d0(ρ) is thin in X.
Remark 2.3.8. We remark that ifX is an∞-bicategory then the left-degeneration
of a 2-simplex always exists. It is trivial to see that every left-degenerate triangle
is its own left-degeneration.

Definition 2.3.9. We say that a triangle σ : ∆2 → X is coCartesian if its left-
degeneration is coCartesian. We denote the collection of coCartesian triangles
by CX .

Lemma 2.3.10. Let p : X → S be locally fibred. Suppose that we are given a
2-simplex σ : ∆2 → X such that σ is p-coCartesian and its image under p is
thin in S. Then σ is a thin simplex of X.

Proof. If σ is left-degenerate the claim follows immediately from Proposi-
tion 2.3.6 since σ represents a coCartesian edge in the mapping space X(a, b)
whose image in S(p(a), p(b)) is an equivalence. To show the general case we let
τ be the left-degeneration of ρ witnessed by a 3-simplex ρ : ∆3 → X. Note that
since S is an ∞-bicategory it follows that p(τ) is thin in S since every face of
p(ρ) is thin except possibly the 2-face. Using the first part of the proof we see
that τ must be thin in X. It follows that we can scale σ in X.

Definition 2.3.11. Let p : X → S be a weak S-fibration. We say that the
collection of coCartesian triangles CX , is a functorial family if the following
holds:

• Let 0 < i < 3 and suppose we are given a three simplex ρ : ∆3 → X such
that the face ∆{i−1,i,i+1} is thin and all of the faces of ρ are coCartesian
except possibly the face missing i. Then the image of ρ only consists in
coCartesian triangles.

Definition 2.3.12. Let p : X → S be a locally fibred morphism. We say that
p is functorially fibred if the collection of coCartesian triangles is functorial.

Lemma 2.3.13. Let p : X → S be a functorially fibred map. Given a left-
degenerate three simplex ρ : ∆3 → X such that all of its faces except possibly
the 0-face belong to CX then it follows that the 0-face must also belong to CX .
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Proof. Let us first suppose that restriction of ρ to ∆[0,2] is a degenerate simplex
of ρ(0). Then ρ defines a 2-simplex in the mapping space X(a, b) where all
edges are coCartesian except the edge 1→ 2. By the limited 2-out-of-3 property
of coCartesian edges it follows that 1→ 2 is also coCartesian. Then the result
follows from Proposition 2.3.4.

We suppose now that ∆[0,2] is not degenerate on ρ(0). We apply Lemma 2.3.3
to obtain a simplex Ξ : ∆4 → X. Note that 4-th face of Ξ can be chosen to be
s1(d3(ρ)). It follows that every triangle in the 4-th face of Ξ is coCartesian. We
further note that the triangle ∆{1,2,4} is the left-degeneration of d0(ρ). We claim
that every triangle in d1(Ξ) = σ is coCartesian: First we observe that d0(σ) is
thin and that d1(σ) = d1(ρ). Since every triangle of d4(Ξ) is coCartesian we
see that d3(σ) is coCartesian. It follows that every triangle of σ is coCartesian
except possibly the 2-nd face. Since the map is functorially fibred the claim
follows.

To finish the proof we consider d3(Ξ) = θ and observe that the restriction of
θ to ∆[0,2] is degenerate of θ(0) = ρ(0). Moreover it follows that d1(θ) = d2(σ).
We see that every triangle of θ is coCartesian except possible the 0-th face. We
can apply now the first part of the proof to conclude.

Definition 2.3.14. Let p : X → S be a functorially fibred map. We say that
an edge e : ∆1 → X is strongly p-cartesian (resp. p-Cartesian) if every lifting
problem

Λn
n X

∆n S

f

p

σ

f̂

admits a solution for n > 3 provided the following conditions are satisfied:

i) f |∆{n−1,n} = e.

ii) f |∆{0,n−1,n} is coCartesian (resp. thin).

In the case n = 2, we distinguish two cases:

• If f |∆{1,2} = e is strongly p-Cartesian the solution of the lifting problem f̂
exists and defines a coCartesian triangle in X.

• If f |∆{1,2} = e is p-Cartesian and σ : ∆2 → S is thin then the solution of
the lifting problem f̂ exists and defines a thin triangle in X.

Definition 2.3.15. We say that a functorially fibred map p : X → S is an outer
2-fibration or O2-fibration, if every degenerate edge is strongly p-Cartesian.

Remark 2.3.16. Recall from [GHL21a, Definition 2.1.1] that a map of scaled
simplicial sets p : X → S is a weak fibration if it has the right lifting property
against the following types of maps

i) The inner horn inclusions(
Λn
i , {∆{i−1,i,i+1}}

)
→
(
∆n, {∆{i−1,i,i+1}}

)
, n > 2 , 0 < i < n;
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ii) The left-horn inclusions(
Λn

0
∐

∆{0,1}
∆0, {∆{0,1,n}}

)
→
(

∆n
∐

∆{0,1}
∆0, {∆{0,1,n}}

)
, n > 2.

iii) The right-horn inclusions(
Λn
n

∐
∆{n−1,n}

∆0, {∆{0,n−1,n}}
)
→
(

∆n
∐

∆{n−1,n}

∆0, {∆{0,n−1,n}}
)

, n > 2.

Observe that an O2-fibration is a weak fibration in the terminology of [GHL21a].

Lemma 2.3.17. Let p : X → S be a O2-fibration. Given a 3-simplex ρ : ∆3 →
X such that

• The restriction ρ|∆{2,3} is a p-Cartesian edge.

• Every face of ρ belongs to CX except possibly the face missing 3.
Then every face of ρ belongs to CX .

Proof. Let us fix some notation before diving into the proof. We denote a = ρ(0),
c = ρ(2), d = ρ(3) and ρ|∆{2,3} = α. First let us assume that ρ|∆{0,1} is degenerate
on a. Using Proposition 2.3.3 in [GHL21a] we obtain a homotopy pullback
diagram

X(a, c) X(a, d)

S(p(a), p(c)) S(p(a), p(d))

α◦−

p(α)◦−

Let ε ∈ X(a, c) denote the morphism represented by the 3-face in ρ. We claim
that our hypothesis imply that its image under postcomposition with α must
be coCartesian. Let ρ(0→ 2) = u and ρ(1→ 2) = v and pick composites α ◦ u
and α ◦ v represented by the corresponding thin 2-simplices. We construct a
3-simplex τ : ∆3 → X such that d3(τ) = d3(ρ), d0(τ) = α ◦ v and d1(τ) = α ◦ u.
This definitions gives a Λ3

2 → X such that the triangle {1, 2, 3} is thin and thus
we can pick an extension to ∆3 to yield the desired τ . It is clear that d2(τ) = γ
is the image of ε under post-composition with α.

We now apply Lemma 2.3.3 to ρ to obtain a 4-simplex ν : ∆4 → X. Observe
that the 0-th face of d3(ν) is the left-degeneration of d0(ρ) which implies that
it must be coCartesian. We see that every face of d3(ν) must be coCartesian
except possibly the face missing 1. Since the triangle {0, 1, 2} is thin it follows
every face of d3(ν) is coCartesian.

To finish the proof of the claim we construct a map κ : Λ4
3 → X as follows:

• The 4-th face is given by s0(d3(ρ)).

• The 1-st face is given by d1(ν).

• The 0-th face is given by τ .

• The 2-nd face is given by picking a lift of the morphism Λ3
2 → X which

sends the 0-th face to α ◦ u, the 1-st face to d1(ρ) and the 3-rd face to
s0(u). Let us note that the 2-nd face of any extension must be coCartesian.
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Since the triangle {2, 3, 4} is thin we can pick an extension κ : ∆4 → X. It
follows that every face of d3(κ) is coCartesian except possibly the face missing
0 which is precisely γ. The claim now follows from Lemma 2.3.13.

Since X(a, c) can be expressed as a homotopy pullback it follows that
ε must be coCartesian as an edge in X(a, c). The claim now follows from
Proposition 2.3.4

To prove the general version of the lemma we will reduce it to the previous
case. We will fix once and for all the notation regarding ρ by means of the
diagram below

a b c

d

u

w

f

v

g
h

Let us consider Λ2
1 sitting inside the 3-face of ρ and another such horn sitting

inside the 2-face of ρ. Let σ3 (resp. σ2) denote the corresponding thin 2-simplices
obtained by extending the horns. We denote the 1-face of these thin simplices
by v ◦ u (resp. g ◦ u). We define a morphism

Λ3
2 X

by sending the 0-face to σ3, the 1-face to d3(ρ), the 3-face to s0(u). Since X is
an ∞-bicategory we can produce a lift to a 3-simplex that we call θ4. Observe
that if d2(θ4) belongs to CX then every face of θ4 is coCartesian except possibly
the 1-face. Since {0, 1, 2} is thin (in fact degenerate) it follows that d3(ρ) ∈ CX .
We define a morphism

Λ3
1 X

by sending the 0-face to d0(ρ), the 2-face to σ2 and the 3-face to σ3. We extend
this horn to a 3-simplex that we call θ0. By construction it follows that every
face of θ0 is coCartesian except possibly the face missing 1. Since the triangle
{0, 1, 2} is thin by definition we see that every face of θ0 belongs to CX . Finally,
let us define

Λ3
2 X

by sending the 0-face to σ2, the 1-face to d2(ρ) and the 3-face to s0(u). We call
θ3 the extension of this horn to a 3-simplex. We observe that every face of θ3
belongs to CX .

Let θ1 = ρ and observe that the 3-simplices θi for i ∈ [4], i 6= 2 assemble
into a Λ4

2 and that the face ∆{1,2,3} is thin by construction. We take our final
extension θ : ∆4 → X and observe that d2(θ) satisfies the conditions of the
lemma and its first edge is degenerate. We finish the proof by noting that
d3d2(θ) is coCartesian if and only if d3(ρ) is.

Given an O2-fibration p : X → S, the condition that an edge e of X be
strongly p-Cartesian edge is prima facie stronger than the condition that e be
p-Cartesian. It turns out, however, that these two notions coincide. To prove
this, we must first establish a purely technical result (Corollary 2.3.19). The
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reader interested only in the characteristics of p-Cartesian edges may safely
skip to Proposition 2.3.20.

Lemma 2.3.18. Let S be an ∞-bicategory. There is a map

E : ∐n>2 Sn
∐
n>3 Sn

which raises the dimension of each simplex by 1, and such that, for σ : ∆n → S,
the map E(σ) : ∆n+1 → S has the following properties.

• Every triangle in ∆n+1 which contains the edge (n− 1)→ n is mapped to
a thin triangle in S.

• The nth face of E(σ) is σ.

• E(σ) sends the triangle ∆n−1,n,n+1 to s1(σ|∆{n,n+1}).

• When the dimension of σ is greater than 2, the following identities hold:

diE(σ) =

E(di(σ)) i 6 n− 2, n > 2
σ i = n

Proof. We will prove the lemma by induction on the dimension of a simplex
σ. For simplicity, we denote the last edge in the spine of an n-simplex σ by
eσ = σ|∆{n,n+1} .

We begin by defining E on simplices of dimension 2. Consider the restriction

Ξ: Λ2
1 ∆2 σ

S

and pick an extension of Ξ to a thin 2-simplex σ̂. We fix the notation ĥ = d1(σ̂)
and h = d1(σ). We construct a morphism Λ3

1 → S as follows:
• The face missing the vertex 0 equals s1(eσ).

• The face missing the vertex 2 equals σ.

• The face missing the vertex 3 equals σ̂
Since the triangle ∆{0,1,2} = σ̂ is thin by construction we can extend this inner
horn to a 3-simplex E(σ) : ∆3 → S.

We then proceed by induction. Suppose we have defined E for k < n, and
let σ : ∆n → S. Define a simplicial subset An ⊂ ∆n+1 which consists of all of
the n-dimensional faces except two. The face which skips the vertex (n− 1),
and the face which skips the vertex n+ 1. The final condition on E requires
that E(σ) restrict to a map

α : An S

such that

diE(σ) =

E(di(σ)) i 6 n− 2, n > 2
σ i = n.

To assure that this definition is valid, we must show that it agrees on shared
(n− 1)-dimensional faces. We must check the case n = 3 separately, since we
do not have recourse to the above identities for 2-simplices.
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• The case n = 3. We consider the intersection of the ith and jth faces,
where i < j. We will abusively denote our presumptive definition for the
ith face of α by di(α)
First suppose that i = 0 and j = 1. Then

d0(d1(α)) = d0(E(d1(σ)))

By construction, the latter is s1(ed1(σ)) = s1(e(σ)). On the other hand, we
have that

d0(d0(α)) = d0(E(d0(σ))) = s1(ed0(σ)) = s1(σ).

so that the simplices agree on the overlap.
We then consider i 6 1 and j = 3. On the one hand,

di(d3(α)) = di(σ).

On the other hand,

d2(di(α)) = d2(E(di(σ))) = di(σ)

by construction. We thus see that the map α : A3 → S is well-defined.

• The case n > 3. We once again consider i < j, and abusively denote the
presumptive definition of the ith face of α by di(α).
First suppose i < j 6 n− 2. We then compute

di(dj(α)) = di(E(dj(σ)) = E(di(dj(σ))) = E(dj−1(di(σ))) = dj−1(E(di(σ))) = dj−1(di(α))

so that the definitions of α agree on the intersection of the ith and jth

faces. Notice that we have used the final defining identity of E(σ) twice,
thus necessitating the hypothesis that n > 3.
Finally, suppose i 6 n− 2 and j = n. Then

di(dn(α)) = di(σ) = dn−1(E(di(σ))) = dn−1(di(α))

as desired. Thus, the map α : An → S is well-defined.

We can then complete the inductive argument. It is easy to see that we have
pullback diagram

Λn
n−1 ∆n

An ∆n+1

dn+1

Note that the triangle ∆{n−2,n−1,n} in An gets mapped to a thin triangle in
S by the inductive hypothesis. In particular we can extend α to a morphism
Λn+1
n−1 → S. We finish the proof of the lemma by choosing an extension to
E(σ) : ∆n+1 → S.
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Corollary 2.3.19. Let p : X → S be an O2-fibration. Then for each simplex
θ : ∆n → X, the simplices E(θ) and E(p(θ)) from Lemma 2.3.18 can be chosen
so that the diagram

∆n+1 X

∆n+1 S

E(θ)

p

E(p(θ))

commutes and the simplex E(θ) satisfies the following properties:

i) The map E(θ) sends every triangle containing the edge n − 1 → n to a
thin triangle.

ii) The map E(θ) sends the triangle ∆{n−1,n,n+1} to s1(e), where e is the final
edge of θ.

iii) The nth face of E(θ) equals θ.

iv) If the triangle ∆{0,n−1,n} gets mapped under θ to an element of CX then
E(θ) sends the triangle ∆{0,n,n+1} to an element of CX .

Proof. This is virtually identical to the proof of Lemma 2.3.18. One simply
performs each step of the argument there relative to the fibration p. Property
(iv) holds precisely because CX is a functorial family.

Proposition 2.3.20. Let p : X → S be an O2-fibration. Then an edge e :
∆1 → X is strongly p-Cartesian if and only if it is p-Cartesian.

Proof. The ‘only if’ direction is definitional. To show the other direction, let us
suppose that e is p-Cartesian and consider a lifting problem

Λn
n X

∆n S

f

p

σ

f̂

such that f |∆{n−1,n} = e and f |∆{0,n−1,n} belongs to CX . Fix a choice of maps E
guaranteed by Corollary 2.3.19.

Define a simplicial subset Bn ⊂ ∆n+1 to be the subset containing the ith
face for 0 6 i 6 n− 2, as well as the face which skips both the vertices n and
n− 1. We construct a commutative diagram

Bn X

∆n+1 S

β

p

E(σ)

as follows:

• The map β sends the ith face to E(di(f)) (as constructed above) for
0 6 i 6 n− 2.

• The map β sends the face skipping the vertices n and n− 1 to dn−1(f).



2.3. 2-CARTESIAN FIBRATIONS OVER A FIBRANT BASE. 101

We then consider the pullback diagram

Λn
n ∆n

Bn ∆n+1

dn−1

and observe that by construction the restriction of β along the composite

Λn
n Bn X

β

maps the final edge of Λn
n to an identity morphism and the triangle ∆{0,n−1,n}

to a coCartesian triangle.
Let B̂n ⊂ ∆n+1 be the simplicial subset obtained from Bn by adding the

face that skips the vertex n− 1. Since p is an O2-fibration we can extend β to
a morphism γ : B̂n → X. We thus obtain a commutative diagram

B̂n X

∆n+1 S

γ

p

E(σ)

We can now consider the pullback diagram diagram

Λn
n ∆n

B̂n ∆n+1

dn+1

and observe that, since γ maps the final edge of Λn
n to e and maps the triangle

∆{0,n−1,n} to a thin triangle, it follows from the fact that e is p-Cartesian that
we have a commutative diagram

Λn+1
n X

∆n+1 S

ε

p

E(σ)

Since ε maps ∆{n−1,n,n+1} to a thin triangle, the dotted arrow in the diagram
exists. This arrow is the desired morphism E(f), completing the proof.

Corollary 2.3.21. Let p : X → S be a O2-fibration and let σ : ∆2 → X be a
thin 2-simplex as pictured below

b

a c

gf

h

Suppose that g is strongly p-Cartesian. Then f is strongly p-Cartesian if and
only if h is strongly p-Cartesian.
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Proof. By Proposition 2.3.20 it will suffice to prove the claim replacing strongly
p-Cartesian with simply p-Cartesian. This is shown in Lemma 2.3.8 and Lemma
2.3.9 in [GHL21a].

Corollary 2.3.22. Let p : X → S be a O2-fibration. Then an edge e : b→ c in
X is strongly p-Cartesian if and only if for every object a ∈ X post-composition
with e induces a homotopy pullback diagram

X(a, b) X(a, c)

S(p(a), p(b)) S(p(a), p(c))

e◦−

p(e)◦−

Proof. Combine Proposition 2.3.20 with [GHL21a, Prop. 2.3.3].

Proposition 2.3.23. Let p : X → S be an O2-fibration. Given a pair of objects
a, b ∈ X and an (strongly) p-Cartesian edge e : a′ → b such that p(a) = p(a′)
we have a pullback diagram in �at∞

Xp(a)(a, a′) X(a, b)

∆0 S(p(a), p(b))

e◦−

p(e)

Proof. Let Xp(e) → ∆1 denote the pullback of X → S along the map selecting
the edge p(e). We claim that we have a pullback diagram of simplicial sets

Xp(e)(a, b) X(a, b)

∆0 S(p(a), p(b))p(e)

Let σ : ∆n → Xp(e)(a, b) with associated (n+ 1)-simplex σ : ∆n+1 → Xp(e). We
note that the composite

κ : ∆n+1 σ−→ Xp(e) → ∆1 p(e)−−→ S

defines an degenerate (n+ 1)-simplex in S. We can further see that κ represents
a simplex ∆n → S(p(a), p(b)) which is degenerate on the object p(e). This
proves the existence of the commutative diagram above. It is immediate to see
that every simplex ∆n → X(a, b) whose image on S(p(a), p(b)) is degenerate
on p(e) factors through Xp(e)(a, b) which implies that the diagram in question
is in fact, a pullback diagram.

We observe that it follows from Proposition 2.3.6 that the right-most vertical
map is a coCartesian fibration. This in turn implies that this diagram is a
pullback diagram in �at∞. Therefore to show our claim we need to verify that
the induced morphism

Xp(a)(a, a′) Xp(e)(a, b)

is an equivalence of ∞-categories. It is immediate to check that Xp(a)(a, a′) =
Xp(e)(a, a′). The claim now follows from Corollary 2.3.22.
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Definition 2.3.24. Let p : X → S be an O2-fibration. We say that p is an
O2C-fibration if for every edge e : s→ p(x) in S there exists a p-Cartesian lift
ê : ∆1 → X such that p(ê) = e.

Remark 2.3.25. The terminology O2C-fibration is reminiscent of to the
already defined notion of outer 2-Cartesian fibration. We will show that both
definitions are equivalent whenever S is an ∞-bicategory in Theorem 2.3.27.

Corollary 2.3.26. Let p : X → S be an O2C-fibration and let pc : Xc → S
denote the restriction to p to the simplicial subset Xc consisting only in simplices
whose triangles are in CX . Then pc is an outer Cartesian fibration in the sense
of [GHL21a]. In particular, p is an outer Cartesian fibration if and only if all
of its triangles belong to CX .

Theorem 2.3.27. Let p : X → S be a locally fibred map equipped with a
coCartesian family of triangles CX . Let EX denote the collection of p-cartesian
edges. Then p is a O2C-fibration if and only if the map (X,EX , TX ⊆ CX)→
(S, ], TS ⊂ ]) is a 2-Cartesian fibration in the sense of Definition 2.2.23.

Proof. Let us suppose that p is a O2C-fibration. We need to show that p has
the right lifting property with respects to the maps of Definition 2.2.7. The
only cases that are not hardcoded into the definitions are: (S1), (S2), (S4), (S5),
and (E). (S1) follows from Corollary 2.3.21, (S2) follows from Lemma 2.3.10,
(S4) follows from Lemma 2.3.13, (S5) follows from Lemma 2.3.17 and finally
(E) follows from Corollary 2.3.22. The converse is clear.

Proposition 2.3.28. Suppose we are given a morphism of 2-Cartesian fibra-
tions

X Y

S

f

p q

Then the following statements are equivalent:
i) For every s ∈ S the map fs : Xs → Ys is a bicategorical equivalence.

ii) The map f is a bicategorical equivalence.
Proof. The implication i) =⇒ ii) is a direct consequence of Proposition 2.2.39.
To prove the converse let us u, v ∈ X such that p(u) = p(v) = s. Then it follows
from Proposition 2.3.23 that we can identify the morphism

Xs(u, v) Ys(f(u), f(v))

with the the fibre over ids of the map

X(u, v) Y (f(u), f(v))

S(s, s)

fuv

Since f is a bicategorical equivalence it follows (see [Lur09b, Theorem 4.2.2])
that fuv is a categorical equivalence and we can use [Lur09a, Prop. 3.3.1.5]
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to show that the map fs is fully faithful. To finish the proof we will show
that fs is essentially surjective. Let y ∈ Ys and pick x ∈ X together with an
equivalence α : f(x)→ y. Let us pick an inverse to p(α) namely γ : s→ p(x)
and a p-Cartesian lift of γ which we call β : x̂ → x. It is easy to see that β
must be an equivalence. To finish the proof we can assemble f(β) and α into a
Λ2

1 and construct a extension to σ : ∆2 → X such that the edge ∆{0,2} belongs
to Ys.

2.3.1 Fibrations of simplicially enriched categories

Definition 2.3.29. We say that a Set+
∆-enriched category C is a �at∞-category

if it is a fibrant object in the model structure of Set+
∆-enriched categories.

Proposition 2.3.30. Let f : C → D be a fibration of �at∞-categories and
recall the functor Nsc : CatSet+

∆
→ Setsc

∆ from Definition 2.1.9. Then the map

Nsc(f) : Nsc(C) Nsc(D)

is a functorially fibred morphism if and only if the following hold:

i) For every x, y ∈ C the map C(x, y) → D(f(x), f(y)) is a coCartesian
fibration of ∞-categories.

ii) Let x, y, z ∈ C and consider a pair of coCartesian edges e1 : ∆1 → C(x, y)
and e2 : ∆1 → C(y, z). Then the composite

∆1 C(x, y)× C(y, z) C(x, y)e1×e2

defines a coCartesian edge in the target.

Proof. Observe that since Nsc is a right Quillen functor it follows it follows
that Nsc(f) is a fibration in the model structure on scaled simplicial sets. In
particular, it is a weak S-fibration. We will show that condition i) is satisfied if
and only if Nsc(f) is locally fibred and that condition ii) is satisfied if and only
if the collection of coCartesian triangles is functorial.

Let us suppose that f is functorially fibred and recall the Set+
∆-categories

On for n > 0 defined Definition 2.1.7. Given a simplex ∆n → C(x, y), we define
a Set+

∆-category by means of the pushout

On O0

On+1 Qn

where the left-most horizontal morphism is induced by the map of posets
dn+1 : [n]→ [n+ 1]. We construct a morphism l̂σ : On+1 → C as follows:

• On objects we set l̂σ(i) = x if 0 6 i 6 n and l̂σ(n+ 1) = y.

• Given 0 6 i 6 j 6 n the morphism On+1(i, j) → C(x, x) is constant on
the identity on x and similarly for On+1(n+ 1, n+ 1)→ C(y, y).
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• The morphism On+1(i, n+ 1)→ C(x, y) for 0 6 i 6 n factors through
On(i, n+ 1)→ ∆n σ−→ C(x, y)

where the first morphism sends S ⊆ [n+ 1] to max(S \ {n+ 1}) ∈ ∆n.
It is easy to see that our definition of l̂σ factors through the pushout producing
a morphism lσ : Qn → C. Since Csc is a left adjoint it follows that Qn '
Csc[∆n+1∐

∆n ∆0].
Suppose we are given a lifting problem

Λn
0 C(x, y)

∆n D(f(x), f(y))

u

and let e : ∆1 → C(x, y) denote the restriction of u to ∆{0,1} ⊂ Λn
0 . Let us

further suppose that the morphism Q2 le−→ C corresponds to a left-degenerate
coCartesian triangle in Nsc(C). We will show that we can construct the dotted
arrow in the diagram. We define Qn0 = Csc[Λn+1

0
∐

∆n ∆0] and observe that we
can construct another commutative diagram

Qn0 C

Qn D

f
ω

which admits a solution since its adjoint lifting problem admits one. The
definition of the top horizontal morphism is induced by our construction lσ
applied to the left-horn. We provide a solution to the original lifting problem
by considering the simplex

∆n ι−→ Qn(0, n+ 1) ω−→ C(x, y)
where ι sends the vertex i to the subset [0, i]. An analogous argument as before
shows that we can produce coCartesian lifts of morphisms in the base. We
conclude that i) holds.

Let σ : ∆2 → Nsc(C) be a left degenerate simplex whose adjoint morphism
Q2 → C defines a coCartesian edge. Let n > 3 and consider a lifting problem

Λn
0
∐

∆{0,1}
∆0 Nsc(C)

∆n ∐
∆{0,1}

∆0 Nsc(D)

It follows from unraveling the definitions that we only need to solve the
adjoint lifting problem

Pn0 = Csc[Λn
0
∐

∆{0,1} ∆0](∗, n) C(x, y)

Pn = Csc[∆n∐
∆{0,1} ∆0](∗, n) D(f(x), f(y))
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where ∗ denotes the collapsed vertex where the vertices 0, 1 get mapped onto.
We identify Pn with the nerve of the poset of subsets S ⊆ [n] such that
min(S) = 0 and max(S) = n ordered by inclusion. It follows that Pn0 ⊂ Pn is
the simplicial subset consisting in those simplices σ : ∆k → Pn represented
by a chain of inclusions S0 ⊆ S1 ⊆ · · · ⊆ Sk satisfying at least one of the the
following conditions:

• There exists 1 < j 6 n− 1 such that j ∈ Si for 0 6 i 6 k.

• There exists 1 6 j 6 n− 1 such that j /∈ Si for 0 6 i 6 k.

Note that we can view Pn geometrically as a (n− 1)-dimensional cube. Then it
follows that Pn0 is the union of all of the (n− 2)-dimensional faces of Pn except
the face consisting in subsets S such that 1 ∈ S. We will further equip both
simplicial sets with a marking given by the edge 0n→ 01n. Since the image
of that particular edge is a coCartesian edge in C(x, y) it will suffice to show
that the inclusion Pn0 → Pn is an anodyne morphism in the coCartesian model
structure.

Let σi : Si0 ⊂ Si1 ⊂ · · · ⊂ Sin−1 for i = 1, 2 be a pair of distinct non-degenerate
simplices of maximal dimension. Observe that by maximality Si0 = 0n for
i = 1, 2. Let 0 6 ν 6 n−2 be the first index such that S1

ν 6= S2
ν . We say σ1 < σ2

if and only if max(S1
ν \ {n}) < max(S2

ν \ {n}). Let us considered the totally
ordered set of non-degenerate simplices of maximal dimension {σ1 < σ2 · · ·σn!}.
We can now produce a filtration

Pn0 → Xn! → Xn!−1 → · · ·X2 → X1 = Pn

where Xj ⊂ Pn consists in those simplices ρ that either factor through Pn0 or
are contained in a non-degenerate simplex of maximal dimension ρ ⊂ σ` for
` > j. The proof is by now routine and left as an exercise to the reader.

To finish the proof we will show that condition ii) holds if and only if
the collection of coCartesian triangles is functorial. Let us suppose that ii)
holds and consider a simplex ρi : ∆3 → Nsc(C) such that the image triangle
{i− 1, i, i+ 1} is thin in Nsc(C). Let us assume that every triangle of ∆3 except
the i-th face corresponds via the adjoint map αi : O3 → C to a coCartesian
edge in the mapping space of C. We consider a pair of commutative diagrams

013 0123

03 023
'

013 0123

03 023

'

that we interpret as the image of the morphism O3(0, 3)→ C(αi(0), αi(3)) for
i = 1, 2. We have circled in both diagrams the coCartesian edges and denoted
by “'“ the equivalences associated to the thin triangle {i−1, i, i+1}. Note that
in the first diagram the edge 013→ 0123 can be obtained from the coCartesian
edge 13→ 123 via precomposition with a degenerate edge. Our assumptions
then imply that 013→ 0123 is coCartesian and thus the whole diagram must
consist of coCartesian edges. Since the edge 03→ 023 corresponds to the face
missing 1 of ρ1 the claim holds. The argument for the second diagram is totally
analogous.
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To finish the proof let us suppose that the collection of coCartesian triangles
is functorial. Let x, y, z ∈ C, we claim that in order to show that the map

γx,y : C(x, y)× C(y, z) C(x, z)

preserves coCartesian edges it suffices to prove the particular cases where
one of the two morphisms we want to compose is degenerate. Indeed, given
e : ∆1 → C(x, y) × C(y, z) determined by a pair of edges (f → g, u → v) we
can produce a 2-simplex

θ : ∆2 → C(x, z), θ : u ◦ f → v ◦ f → v ◦ g

such that d1(θ) = γx,y(e) and where di(θ) is given by a composition with a
degenerate edge for i = 0, 2.

Let f → g be a coCartesian edge in C(x, y) and let u be an object of C(y, z).
We consider a map τ : O3 → C defined as follows:

• We have τ(0) = τ(1) = x, τ(2) = y and τ(3) = z.

• The map O3(0, 1)→ C(x, x) is degenerate on the identity morphism.

• The map O3(0, 2)→ C(x, y) selects the morphism f → g

• The map O3(1, 2)→ C(x, y) selects the object g.

• The map O3(2, 3)→ C(y, z) selects the object u.

• The map O3(1, 3)→ C(x, z) selects the degenerate edge on u ◦ g.

• The map O3(0, 3)→ C(x, z) factors as O3(0, 3) π−→ ∆1 → C(x, y) where the
second morphism selects the edge u ◦ f → u ◦ g and the first morphism is
determined by π(03) = π(023) = 0 and π(013) = π(0123) = 1.

It follows that the adjoint map κ : ∆3 → Nsc(C) maps the triangle {1, 2, 3} to a
thin triangle in Nsc(C) and that every triangle of κ gets mapped to a coCartesian
triangle except possible the face missing 2. Since the collection of coCartesian
triangles is functorial it follows that {0, 1, 3} is also a coCartesian triangle. This
shows that u ◦ f → u ◦ g must be a coCartesian edge in C(x, z). We leave the
completely analogous verification that precomposition with degenerate edges
preserves coCartesian edges as an exercise for the reader.

Definition 2.3.31. Let f : C → D be a map of �at∞-categories. An edge
e : x→ y is said to be f -Cartesian if for every z ∈ C the following diagram

C(z, x) C(z, y)

D(f(z), f(x)) D(f(z), f(y))

is a homotopy pullback square in Set+
∆.

The next theorem follows readily from Proposition 2.3.30.

Theorem 2.3.32. Let f : C → D be a fibration of �at∞-categories. Then
Nsc(f) is a 2-Cartesian fibration if and only if the following conditions hold:
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i) For every x, y ∈ C the map C(x, y) → D(f(x), f(y)) is a coCartesian
fibration of ∞-categories.

ii) Let x, y, z ∈ C and consider a pair of coCartesian edges e1 : ∆1 → C(x, y)
and e2 : ∆1 → C(y, z). Then the composite

∆1 C(x, y)× C(y, z) C(x, y)e1×e2

defines a coCartesian edge in the target.

iii) For every morphism e : d→ f(y) in D. There exists an f-Cartesian lift
ê : d̂→ y with f(ê) = e.

Remark 2.3.33. We say that a functor of 2-categories f : C → D is a 2-
Cartesian fibration if and only if N(f) (see Definition 2.1.6) satisfies the condi-
tions of Theorem 2.3.32. It follows that this definition (after taking the pertinent
duals) recovers the notion of 2-fibration presented in [Buc14]. In particular, it
follows from Theorem 2.3.32 that our definition generalises the classical notion
of a 2-fibration to the realm of ∞-bicategories.

2.4 The model structure on marked scaled simplicial
sets

A special case of the model structure of Theorem 2.2.43 of particular interest
occurs when S = ∆0 is the terminal scaled simplicial set. Then, by Theo-
rem 2.2.44, the resulting model structure on Setmb

∆ is Quillen equivalent to the
model structure for ∞-bicategories on Setsc

∆ . In this case, the data of the two
scalings becomes highly redundant — for any fibrant object the two scalings
coincide, and heuristically they no longer encode different information.

We can avoid this redundancy by defining a further model structure which
includes both markings and scalings, but avoids the redundancies created by a
biscaling. The aim of this section is to define this model structure, and relate
it to the MB model structure.

Definition 2.4.1. A marked-scaled simplicial set consists of

• A simplicial set X.

• A collection of edges EX ⊆ X1 containing all degenerate edges. We call
the elements of EX marked edges.

• A collection of triangles TX ⊆ X2 containing all degenerate triangles. We
call the elements of TX thin triangles.

We denote by Setms
∆ the category of marked-scaled simplicial sets. We view

this as a Set+
∆-enriched category by defining

HomSet+
∆

(X, Setms
∆ (Y, Z)) := HomSetms

∆
(X] × Y, Z)

where X] = (X,EX , ]).
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Before continuing with the construction of the model structure, we briefly di-
gress to explore the relations between Setmb

∆ and Setms
∆ . The primary component

of our comparison will be the adjunction:

Setms
∆ Setmb

∆
D

R

where D is given on objects by

D : (X,EX , TX) (X,EX , TX ⊆ TX)

and R is given on objects by

R : (Y,EY , TY ⊆ CY ) (Y,EY , TY )

We will show that this adjunction becomes a Quillen equivalence once we have
equipped Setms

∆ with the appropriate model structure.
This model structure itself is constructed exactly analogously to the model

structure on Setmb
∆ . We begin with a set of generating anodyne morphisms:

Definition 2.4.2. The set of generating MS-anodyne maps MS is the set of
maps of marked-scaled simplicial sets consisting of:

(MS1) The inner horn inclusions(
Λn
i , [, {∆{i−1,i,i+1}}

)
→
(
∆n, [, {∆{i−1,i,i+1}}

)
, n > 2 , 0 < i < n;

(MS2) The map
(∆4, [, T ) (∆4, [, T ∪ {∆{0,3,4},∆{0,1,4}})

where T is defined as in Definition 2.2.7, (A2).

(MS3) The set of maps(
Λn

0
∐

∆{0,1}
∆0, [, {∆{0,1,n}}

)
→
(

∆n
∐

∆{0,1}
∆0, [, {∆{0,1,n}}

)
, n > 2.

(MS4) The set of maps(
Λn
n, {∆{n−1,n}}, {∆{0,n−1,n}}

)
→
(

∆n, {∆{n−1,n}}, {∆{0,n−1,n}}
)

, n > 2.

(MS5) The inclusion of the terminal vertex(
∆0, ], ]

) (
∆1, ], ]

)
(MS6) The map (

∆2, {∆{0,1},∆{1,2}}, ]
)
→
(

∆2, ], ]
)
,

(MS7) The map (
∆3 ∐

∆{0,1}
∆0, [, U0

)
→
(

∆3 ∐
∆{0,1}

∆0, [, ]
)

where U0 is the collection of all triangles except the 0-th face.
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(MS8) The map (
∆3, {∆{2,3}}, U3

)
→
(

∆3, {∆{2,3}}, ]
)

where U3 is the collections of all triangles except the 3-rd face.
(MSE) For every Kan complex K, the map(

K, [, ]
)
→
(
K, ], ]

)
.

We will call a morphism in Setms
∆ MS-anodyne if it lies in the saturated hull of

MS.

We can immediately obtain two useful lemmata.

Lemma 2.4.3. The morphism(
∆3, [, {∆{i−1,i,i+1}} ⊂ Ui

)
→
(

∆3, [, {∆{i−1,i,i+1}} ⊂ ]
)

, 0 < i < 3,

where Ui is the collection of all triangles except i-th face, is MS-anodyne.

Proof. See [Lur09b, Rmk 3.1.4].

Lemma 2.4.4. The morphism

θ : (∆2, {∆{1,2},∆{0,2}}, ]) (∆2, ], ])

is MS-anodyne.

Proof. The proof follows exactly as in Lemma 2.2.11.

Finally, in total analogy to the marked biscaled case, we can establish a
pushout-product axiom, and thereby a model structure.

Proposition 2.4.5. Let f : X → Y be an MS-anodyne morphism in Setms
∆ ,

and let g : A→ B be a cofibration in Setms
∆ . The morphism

f ∧ g : X ×B
∐
X×A

Y × A Y ×B

is MS-anodyne.

Proof. Every case is, mutatis mutandis, the same as the corresponding case in
the proof of Proposition 2.2.14.

As in the marked-biscaled case, we can immediately define several mapping
spaces.

Definition 2.4.6. Let X := (X,EX , TX) be a fibrant marked-scaled simplicial
set and Y := (Y,EY , TY ) any marked-scaled simplicial set. We can define a
marked-scaled simplicial set Funms(Y ,X) via the universal property

HomSetms
∆

(A,Funms(Y ,X)) ∼= HomSetms
∆

(A× Y ,X).

It follows from the pushout-product that this is a fibrant marked-scaled simpli-
cial set, and thus that the underlying scaled simplicial set is an ∞-bicategory.
We denote this ∞-bicategory by Mapms(Y ,X).

We can similarly define
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• A marked simplicial set Mapth
ms(Y ,X) be the full subsimplicial set of

Funms(Y ,X) consisting of the thin triangles.
• A simplicial set Map'ms(Y ,X), which consists of precisely the marked

edges in Mapth
ms(Y ,X).

Finally, we can establish the existence of the model structure:

Theorem 2.4.7. There is a left-proper combinatorial simplicial model category
structure on Setms

∆ uniquely characterized by the following properties:
C) A morphism f : X → Y in Setms

∆ is a cofibration if and only if it is a
monomorphism on underlying simplicial sets.

F) An object X ∈ Setms
∆ is fibrant if and only if the unique map X → ∆0 has

the right lifting property with respect to the morphisms in MS.
Remark 2.4.8. It is not hard to see that we can tensor Setms

∆ over Set+
∆ and

Set∆ in a way compatible with the enrichments provided by Mapth
ms(−,−) and

Map'ms(−,−), respectively. The latter of these provides the simplicial structure
in the preceding proposition.

The weak equivalences in the model structure are precisely those f : A→ B,
which satisfy the equivalent conditions for any fibrant marked-scaled simplicial
set X:

• The induced map
Mapms(B,X) Mapms(A,X)

is a bicategorical equivalence.
• The induced map

Mapth
ms(B,X) Mapth

ms(A,X)
is a weak equivalence of marked simplicial sets.

• The induced map
Map'ms(B,X) Map'ms(A,X)

is a weak equivalence of Kan complexes.
It is not hard to see that the adjunction D a R can be promoted to a

simplicial adjunction. By construction, L preserves cofibrations and R preserves
fibrant objects, and thus we see that

Lemma 2.4.9. The adjunction

Setms
∆ Setmb

∆
D

R

is a simplicial Quillen adjunction.

Further, we can define an adjunction

Setsc
∆ Setms

∆
(−)[

G

where G(X,EX , TX) = (X,TX).
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Lemma 2.4.10. The adjunction

Setsc
∆ Setms

∆
(−)[

G

is a Quillen adjunction.

Proof. It is immediate that (−)[ preserves cofibrations. Suppose that f :
(X,TX) → (Y, TY ) is a weak equivalence. Let (Z,EZ , TZ) be a fibrant ob-
ject in Setms

∆ . It is easy to see that G(Z,EZ , TZ) = (Z, TZ) is a fibrant object in
Setsc

∆ . We can then note that, by definition, there is an isomorphism of mapping
scaled simplicial sets

Mapsc((X,TX), (Z, TZ)) ∼= Mapms((X, [, TX), (Z,EZ , TZ)).

Thus, since f induces a bicategorical equivalence

Mapsc((Y, TY ), (Z, TZ))→ Mapsc((X,TX), (Z, TZ))

we see that the map

Mapms((Y, [, TY ), (Z,EZ , TZ))→ Mapms((X, [, TX), (Z,EZ , TZ))

induced by (f)[ is also an equivalence. We therefore see that (f)[ is a weak
equivalence in Setms

∆ , as desired.

Lemma 2.4.11. The functor G preserves weak equivalences.

Proof. If, for any ∞-bicategory (Z, TZ), there exists a set EZ of marked edges
for Z such that (Z,EZ , TZ) is a fibrant marked-scaled simplicial set, then this
follows from the characterization in terms of mapping ∞-bicategories.

To see that this is the case, let (Z, TZ) be an ∞-bicategory. Then Zth is an
∞-category, and so we can define a marking EZ on Z by declaring an edge to
be marked if it lies in the maximal Kan complex in Zth. From the definition,
it is immediate that (Z,EZ , TZ) has the extension property with respect to
(MS1), (MS2),(MS3),(MS5),(MS6), and (MSE).

It follows from Corollary 2.3.22 and Corollary 2.3.26 that Z → ∆0 is a
2-Cartesian fibration in which the strongly Cartesian edges are precisely the
equivalences, and so we see that (Z,EZ , TZ) has the extension property with
respect to (MS4), (MS7), and (MS8) as well.

Lemma 2.4.12. Given a fibrant marked-scaled simplicial set (Y,EY , TY ), the
full simplicial subset Y ' on the marked edges and scaled triangles is a Kan
complex.

Proof. It is immediate from the definitions that (Y th, EY ) is a fibrant marked
simplicial set, and the lemma follows.

We now can state and prove the main proposition of this section.

Theorem 2.4.13. The Quillen adjunctions

Setms
∆ Setmb

∆
D

R
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and

Setsc
∆ Setms

∆
(−)[

G

are Quillen equivalences.

Proof. By Theorem 2.2.44, the composite adjunction D ◦ (−)[ a G ◦ R is a
Quillen equivalence. It thus suffices for us to check that the adjunction (−)[ a G
is a Quillen equivalence. We will check explicitly that the derived adjunction
unit and counit are equivalences.

First, let (X,TX) ∈ Setsc
∆ . The derived adjunction unit on (X,TX) is the

composite
(X,TX) G(X, [, TX) G((X, [, TX)fib)

where the superscript fib denotes fibrant replacement. The first of these maps
is the identity (since G(X, [, TX) = (X,TX)) and the latter is the image under
G of an equivalence of marked-scaled simplicial sets. By Lemma 2.4.11, this is
an equivalence.

Now, let (Y,EY , TY ) ∈ Setms
∆ be a fibrant object. The derived adjunction

counit on (Y,EY , TY ) is the composite

(G(Y,EY , TY )cof)[ G(Y,EY , TY )[ ηY (Y,EY , TY )

Since every scaled simplicial set is cofibrant, the first map is an isomorphism,
leaving us to check that the usual adjunction counit ηY is an equivalence. Note
that ηY is simply the inclusion (Y, [, TY )→ (Y,EY , TY ).

We have a pushout square

(Y ', [, ]) (Y ', ], ])

(Y, [, TY ) (Y,EY , TY )

ψ

ηY

and, by Lemma 2.4.12 the morphism ψ is a morphism in MS of type (MSE).
Thus, ηY is MS-anodyne, and is a weak equivalence.

The Set+
∆-enrichment on Setms

∆

We have already constructed a model structure on the category Setms
∆ of marked-

scaled simplicial sets, and shown that it is a simplicial model category with
respect to the mapping spaces Map'ms(−,−). However, we will need to consider
Set+

∆-enriched functors in our analysis of the Grothendieck construction. Our
aim in this section is therefore to show that our model structure can, additionally,
be viewed as Set+

∆-enriched. The following lemma constitutes an easy first check
in this direction.

Lemma 2.4.14. The category Setms
∆ is powered and tensored over Set+

∆ via the
maps

Set+
∆× Setms

∆ Setms
∆

(K,X) K] ×X
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and
[−,−] : Set+

∆× Setms
∆ Setms

∆

(K,X) Funms(K], X)

The tensoring and powering is compatible with the mapping spaces Mapth
ms(−,−).

Our aim throughout the rest of the section will be to show that the tensoring
is a left Quillen bifunctor. We will follow the strategy of [GHL20], showing
first that the model structure on Setms

∆ is a Cisinski-Olschok model structure
(as with Setsc

∆ in [GHL19]), and then using testing pushout-products with the
concomitant interval objects.

We first show that the model structure on Setms
∆ is Cartesian-closed. This

will follow immediately from Proposition 2.4.5 and the following

Lemma 2.4.15. Let f : X → Y and g : A → B be two weak equivalences in
Setmb

∆ , then the product

f × g : X × A Y ×B

is a weak equivalence.

Proof. Precisely the same argument as in [Lur09b, Lemma 4.2.6] allows us to
reduce to the case of the morphism

Y × A Y ×B

where Y , A, and B are all fibrant objects. By the characterization of fibrant
objects, this morphism is a weak equivalence if and only if the morphism
on underlying scaled simplicial sets is an equivalence, which follows from loc.
cit.

Corollary 2.4.16. For any cofibrations f : X → Y and g : A → B, the
pushout-product

f ∧ g : Y × A
∐
X×A

X ×B Y ×B

is an equivalence if one of f or g is.

Proof. We can use the small object argument to factor f as

X
h

Z
k

Y

where h is MS-anodyne. Consequently, k is a weak equivalence. We consider
the diagram

Y × A∐X×AX ×B Z × A∐X×AX ×B

Y ×B Z ×B

It follows from the lemma that the bottom horizontal arrow is a weak equiva-
lence, and the top horizontal arrow is the induced map on homotopy colimits
by a natural weak equivalence. from Proposition 2.4.5, it follows that the
right-hand morphism is an equivalence, and the corollary follows.
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Corollary 2.4.17. The model structure on Setms
∆ is Cartesian-closed.

We now wish to show that the Cisinski-Olschok model structure on Setms
∆

with interval ∆0q∆0 → (∆1)]] and generating anodyne maps the MS-anodyne
maps is, in fact the model structure constructed in our previous section. We
first note that, since one of the morphisms ∆0 → (∆1)]] is MS-anodyne, it
follows that both such morphisms are trivial cofibrations.

Definition 2.4.18. We write (Setms
∆ )CO for the Cisinski-Olschok model struc-

ture on Setms
∆ with interval ∆0 q∆0 → (∆1)]], and generating set of anodyne

morphisms the set of MB-anodyne morphisms.
For ease, we will write (Setms

∆ )AH for the model structure previously defined

Proposition 2.4.19. The two model structures (Setms
∆ )CO and (Setms

∆ )AH co-
incide.

Proof. It will suffice to show that the fibrant objects coincide. By construction,
every fibrant object of (Setms

∆ )CO is a fibrant object of (Setms
∆ )AH. However,

since (Setms
∆ )AH is a Cartesian-closed model category, and the interval object

for (Setms
∆ )CO is a cylinder in (Setms

∆ )AH, every anodyne map in (Setms
∆ )CO is

a trivial cofibration in (Setms
∆ )AH. Thus every fibrant object of (Setms

∆ )AH is a
fibrant object of (Setms

∆ )CO.

As a consequence, we will now drop the unwieldy subscript notation for the
model structure on Setms

∆ . We can now prove the following.

Proposition 2.4.20. The model category Setms
∆ is a Set+

∆-enriched model cat-
egory.

Proof. We need only show that the tensoring satisfies the pushout-product
axiom, i.e., that for cofibrations f : K → S in Set+

∆ and g : X → Y in Setms
∆ ,

the pushout-product f ∧ g is a trivial cofibration that either f or g is. Since
both model structures are Cisinski-Olschok model structures, it suffices to test
generating monomorphisms against the two interval inclusions and against the
generating anodyne morphisms.

It is immediate from Proposition 2.4.5 that if f (resp. g) is marked (resp.
MS) anodyne, then f ∧ g is a trivial cofibration. It remains for us to test
the cases when f is {0} → (∆1)] or {1} → (∆1)], and the cases when g is
{0} → (∆1)]] or {1} → (∆1)]].

However, since the morphisms {0} → (∆1)]] or {1} → (∆1)]] are trivial
cofibrations, and the model structure on Setms

∆ is Cartesian-closed, this follows
immediately.
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Chapter 3

The ∞-bicategorical
Grothendieck construction

In this chapter we produce a∞-bicategorical Grothendieck construction relating
2-Cartesian fibrations over a scaled simplicial set S with contravariant functors
Sop → �icat∞ with values in ∞-bicategories. Our construction can be seen
as a direct generalization of Lurie’s Cartesian straightening-unstraightening
equivalence appearing in [Lur09a]. This chapter is based on [AGS22II].

3.1 Preliminaries: MB-anodyne morphisms and dull sub-
sets

Before proceeding, we here record two variants of the pivot point trick [AGS21,
Lem. 1.10] which will be of use later.

Definition 3.1.1. Let P(n) be the power set of [n]. Given A ⊂ P(n) and
X ∈ P(n) we say that X ⊂ A is A-basal if it contains precisely one element
from each S ∈ A. We denote the set of A-basal sets by Bas(A).

Definition 3.1.2. Given subset A ⊂ P(n) such that ∅ /∈ A, and a marked-
biscaled simplex (∆n)†, we define a marked-biscaled simplicial subset

(SA)† =
⋃
S∈A

∆[n]\S.

Definition 3.1.3. We call a subset A ⊂ P(n) inner-dull if the following
conditions are satisfied

1. A does not contain ∅.

2. There exists 0 < i < n such that i /∈ S for every S ∈ A.

3. For any S, T ∈ A, S ∩ T = ∅.

4. For every A-basal set X ∈ P(n) there exists u, v ∈ X such that u < i < v.

We call the element i in the second condition the pivot point.

Definition 3.1.4. Given an inner-dull subset A ⊂ P(n), we define MA to be
the set of subsets X ∈ P(n) satisfying:

117
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A1) X contains the pivot point i ∈ X.

A2) The simplex σX : ∆X → (∆n)† does not factor through (SA)†.

We define M
j
A = {X ∈ MA | |X| = j}. Note that those elements X ∈ MA of

minimal cardinality are of the form X0 ∪ {i} for X0 ∈ Bas(A).

Definition 3.1.5. Let A ⊂ P(n) be an inner-dull subset with pivot point i.
Given an A-basal subset X we denote by lX < uX the pair of consecutive
elements such that lX < i < uX .

Lemma 3.1.6 (The pivot trick). Let A ⊂ P(n) be an inner-dull subset and
let (∆n)† be a marked biscaled simplex. Suppose that the following conditions
hold:

1. Every marked edge (resp. thin triangle) which does not contain the pivot
point i factors through (SA)†.

2. For every X ∈ Bas(A) and every lX 6 r < i < s 6 uX the triangle
{r, i, s} is thin.

3. Let σ = {a < b < c} be a lean simplex not containing the pivot point i.
Then either σ factors through (SA)† or we have a < i < c and the simplex
σ ∪ {i} is fully lean scaled.

Then the inclusion
(SA)† (∆n)†

is in the weakly saturated hull of morphisms of type (A1) and (S3).

Proof. Observe that since A is inner-dull it follows that every A-basal set has
the same cardinality which we denote ε. For every ε 6 j 6 n we define

Yj = Yj−1 ∪
⋃

X∈Mj
A

σX

where Yε−1 = (SA)† and we view σX as having the inherited decorations. This
yields a filtration

(SA)† → Yε → · · · → Yn−1 → (Λn
i )† → (∆n)†

We will show that each step of this filtration can be obtained as an iterated
pushout along morphisms of type (A1). Let X ∈ Mj

A for ε 6 j 6 n− 1 and
consider the pullback diagram

ΛX
i ∆X

Yj−1 Yj

σX

We claim that the top horizontal morphism is in the weakly saturated hull of
morphisms of type (A1) and (S3). First we notice that the triangle {i−1, i, i+1}
is thin in ∆X in virtue of our assumptions. Observe that if the dimension of ∆X

is bigger than 3 then all the possible decorations factor through ΛX
i . We will
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therefore assume that the dimension is at most 3 otherwise the claim follows
directly. Suppose that ε = 2 then we can have some ∆X of dimension 2. In this
case our assumptions guarantee that the edge that does not have the vertex
i cannot be marked. If ε = 2 and the dimension of ∆X is 3 then it follows
that the face that misses the vertex i cannot be thin-scaled. If that face is
not lean-scaled then the claim follows immediately. Otherwise our assumptions
imply that ∆X is fully lean scaled the the map ΛX

i → ∆X is a composite of a
morphism of type (A1) and a morphism of type (S3). The final case ε = 3 is
similar and left as an exercise.

We finish the proof by noting that X, Y ∈M
j
A it follows that σX ∩σY ∈ Yj−1

which implies that the order in which the add the simplices is irrelevant. We
conclude that each step in the filtration belongs to the weakly saturated hull
of morphisms of type (A1) and (S3).

We finish the discussion on dull subsets by giving a right-horn variant of
the previous construction.

Definition 3.1.7. We call a subset A ⊂ P(n) right-dull if the following condi-
tions are satisfied
1. A does not contain ∅.

2. For every S ∈ A, n /∈ S.

3. For any S, T ∈ A, S ∩ T = ∅.

4. For every A-basal subset X we have u, v ∈ X such that u < v < n.
In this case we call n the pivot point.

Lemma 3.1.8. Let A ⊂ P(n) be a right-dull subset. Let (∆n)† be a marked-
biscaled simplex whose thin triangles are degenerate. Suppose that the following
conditions holds

• For every A-basal subset X and for every s, r ∈ [n] such that s 6 min(X) <
max(X) 6 r < n, the triangle {s < r < n} is lean, and the edge r → n is
marked.

• Let e be a marked edge in (∆n)† not containing the vertex n. Then e factors
through (SA)†.

• Let σ = {a < b < c} be a lean triangle in (∆n)† not containing the vertex
n. Then either σ factors through (SA)† or σ ∪ {n} is fully lean-scaled and
c→ n is marked.

Then (SA)† → (∆n)† is in the saturated hull of morphisms of type (A4)

Proof. The argument is nearly identical to the proof of Lemma 3.1.6.

Lemma 3.1.9. Let A ⊂ P(n) be a right-dull subset. Let (∆n)† = (∆n, En, Tn ⊂
Cn) be a marked-biscaled simplex such that (∆n)� := (∆n, En, [ ⊂ Cn) satisfies
the hypothesis of Lemma 3.1.8. Suppose that we are given a morphism

(∆n, En, Tn ⊂ Cr) (X, ], TX ⊂ ])

Then the morphism (SA)† → (∆n)† is an MB-anodyne morphism over (X,TX).
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Proof. By Lemma 3.1.8 we obtain a pushout diagram

(SA)� (∆n)�

(SA)† P

where the top horizontal morphism is MB-anodyne. Note P only differs from
(∆n)† in its thin-scaling. Moreover every lean triangle in P whose image in
(∆n)† is thin gets mapped to a thin triangle in (X,TX) so it can be scaled using
a morphism of type (S2).

3.2 The bicategorical Grothendieck construction

Our first step towards an∞-bicategorical Grothendieck construction is defining
the functors which will realize the desired equivalence. These definitions will
constitute an upgrade of the straightening and unstraightening constructions of
[Lur09a, Section 3.2] to the more highly decorated setting of marked-biscaled
simplicial sets and marked-scaled simplicial sets. These functors will define
a Quillen equivalence of model categories between (Setmb

∆ )/S and a model
category we now define.

Definition 3.2.1. Let C be a Set+
∆-category. We denote by (Setms

∆ )C the cat-
egory of Set+

∆-enriched functors and natural transformations. We endow the
category of enriched functors with the projective model structure (See, e.g.,
[Lur09a, A.3.3.2]).

Definition 3.2.2. Let (Y,EY , TY ) be a marked scaled simplicial set. We define
a scaled simplicial set which we denote (Y ., TY .) whose underlying simplicial set
is given by Y . = Y ∗∆0 and whose non-degenerate scaled simplices are either
those that factor through Y or those of the form f ∗ id∆0 where f : ∆1 → Y
belongs to EY .

Remark 3.2.3 (Important convention). Let (X,MX , TX ⊆ CX) be anMB
simplicial set. By the underlying scaled simplicial set, we will mean the scaled
simplicial set (X,TX).

Remark 3.2.4 (Notation for ops). Given a simplicial set X with any deco-
ration (marking, scaling, etc.), we will denote by Xop the opposite simplicial
set with the same decoration.

Given an enriched category C (a Set+
∆-enriched category, a 2-category, etc.),

we will denote Cop the enriched category with the same objects and Cop(x, y) =
C(y, x). In the specific case of a 2-category C, we will occasionally write C(op,−)

to denote Cop. We will only rarely make use of the 2-morphism dual C(−,op).

We now provide the underlying left Quillen functor of our bicategorical
Grothendieck construction.
Construction 3.2.5. Fix a scaled simplicial set S ∈ Setsc

∆ and a functor of
Set+

∆-enriched categories φ : Csc[S] → C. Let p : X → S be an object of
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(Setmb
∆ )/S. We define a scaled simplicial set XS via the pushout diagram

X X.

S XS

p

We generically denote both the cone point of X. and its image in XS by ∗. We
then define a Set+

∆-enriched category

Xφ := C
∐

Csc[S]
Csc[XS].

Note that this is equivalently the pushout

Csc[X] Csc[X.]

C Xφ

φ◦C[p]

of Set+
∆-enriched categories.

Applying the enriched Yoneda embedding on the cone point ∗, this provides
a Set+

∆-enriched functor

St+
φ (X) : Cop Set+

∆

s Xφ(s, ∗).

We promote this functor to a Set+
∆-enriched functor

Stφ(X) : Cop Setms
∆

by equipping its values on objects with a scaling.
After a single, fairly ad-hoc definition, we are able to do this in a highly

functorial way. The ad-hoc definition will be a promotion of Csc[X.] to a Setms
∆ -

enriched category, such that the subcategory Csc[X] ⊂ Csc[X.] has all mapping
spaces maximally scaled. We will denote the resulting Setms

∆ -enriched category
Csc[X.]†. More generally, we will denote scalings on the mapping spaces of a
marked-simplicially enriched category C using subscripts, e.g. C] for maximally
marked mapping spaces.

We will define the scaling on Csc[X.] in three steps:

1. We define the scaling

Csc[X.]†(s, t) := Csc[X.](s, t)]

for s, t ∈ X.

2. We define an auxiliary scaling P s
X. on each marked simplicial set Csc[X.](s, ∗).

iven a map σ : ∆n X, we can pass to the associated n + 1-simplex
σ ? id0 : ∆n+1 X. and obtain a map of simplicial sets

Csc[∆n+1](0, n+ 1) Csc[X.](σ(0), ∗).
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Each 2-simplex in Csc[∆n+1](0, n+ 1) is of the form

S0 ∪ {n+ 1} ⊂ S1 ∪ {n+ 1} ⊂ S2 ∪ {n+ 1}

where Si ⊆ [n] contains 0. We declare the image of such a 2-simplex to be
scaled in Csc[X.](s, ∗) precisely when either

• max(Si) = max(Sj) for some i, j ∈ {0, 1, 2}; or
• the simplex σ is lean in X (i.e., lies in CX) and the 2-simplex is

03→ 013→ 0123.

The auxiliary scaling P s
X. then consists of all such 2-simplices.

3. We extend the scaling P s
X. by functoriality. That is, we declare a 2-simplex

σ : ∆2 → C[X.](s, ∗) to be scaled if there is a t in X and a 2-simplex

θ = (θ1, θ2) : ∆2 Csc[X.](s, t)× Csc[X.](t, ∗)

such that θ2 ◦θ1 = σ, where θ2 ∈ P s
X. . We would like to stress to the reader

that this also adds scaled 2-simplices in the case where θ2 is degenerate.

We can then define a Setms
∆ -enriched variant of Xφ to be the pushout of

Setms
∆ -enriched categories

Csc[X]] Csc[X.]†

C] Xφ

φ◦C[p]

Unwinding the definitions, we see that a 2-simplex σ : ∆2 → Xφ(s, ∗) is scaled
if and only if it satisfies the following condition:

• There is a t ∈ Xφ and a 2-simplex

θ = (θ1, θ2) : ∆2 Xφ(s, t)×Xφ(t, ∗)

such that (1) σ = θ2 ◦ θ1, and, (2) θ2 is either in the image of an element
of P s

X. or is degenerate.

The bicategorical straightening of X is then the restriction of the Setms
∆ -enriched

Yoneda embedding:
Stφ(X) : Cop Setms

∆

s Xφ(s, ∗).
A priori, this is an Setms

∆ -enriched functor. However, since we required the
mapping spaces in C to be maximally scaled, this formula in fact defines an
Set+

∆-enriched functor. This construction then yields a functor

Stφ : (Setmb
∆ )/S (Setms

∆ )Cop

which we call the (bicategorical) straightening functor.
Notation. We will denote by StS(X) the special case in which φ : Csc[S] →
Csc[S] is the identity.
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Remark 3.2.6. In line with the philosophy of [Ver08], there should be a model
for (∞, 3)-categories on the category of simplicial sets with decorations on 1-,
2-, and 3-simplices. The ad-hoc construction of the Setms

∆ -enriched category Xφ

above seems likely to fit into some — as-yet-undefined — (∞, 3)-categorical
version of the rigidification functor, which turns decorated 3-simplices in scaled
2-simplices in the corresponding mapping space.

Remark 3.2.7. Given a 2-Cartesian fibration p : X → S, we note that if every
triangle in X is lean, the map StS(X)(i) → StS(X)(i)] is an equivalence of
marked-scaled simplicial sets. More generally, we obtain a diagram

(Setmb
∆ )/S (Setms

∆ )Csc[S]op

(Setms
∆ )/S (Set+

∆)Csc[S]op

StS

St+

(−)T⊂] (−)]

which commutes up to natural weak equivalence.
While we will not formalize this statement here, there should be a model

structure on (Setms
∆ )/S modeling ∞-bicategories fibred in (∞, 1)-categories,

such that St+ becomes a left Quillen equivalence to the projective model
structure. The diagram above would then represent the restriction of our
straightening-unstraightening equivalence to this special case.

3.2.1 First properties

Before proceeding to the technical nitty-gritty of the Quillen equivalences, we
establish some basic properties of the straightening functor.

Proposition 3.2.8. Let S ∈ Setsc
∆ and let φ : Csc[S] → C be a Set+

∆-enriched
functor. Then the following hold

1. The straightening functor Stφ preserves colimits.

2. (Base change for scaled functors) Given a morphism of scaled simplicial
sets f : T → S there a diagram

(Setmb
∆ )/S

(Setms
∆ )Cop

(Setmb
∆ )/T

Stφ

Stφ◦C[f ]

f◦−

which commutes up to natural isomorphism of functors.

3. (Base change for Set+
∆-functors) Given a Set+

∆-enriched functor ψ : C→ D
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there is a diagram

(Setms
∆ )Dop

(Setmb
∆ )/S

(Setms
∆ )Cop

Stψ◦φ

Stφ

ψ!

which commutes up to natural isomorphism of functors.

Proof. All three statements hold on the level of St+
φ , and so the proof amounts

to checking scalings. We prove (1), and leave the other two statements to the
reader.

It is follows from the definition that

St+
φ : (Setmb

∆ )/S (Set+
∆)Cop

preserves colimits. Since colimits in functor categories are computed pointwise,
it will thus suffice to show that, given a diagram

D : I (Setmb
∆ )/S

the scalings on colimI Stφ(D(i)) and Stφ(colimI D(i)) coincide. Indeed, applying
the universal property, it will suffice to show that the map

Stφ(colim
I

D(i)) colim
I

Stφ(D(i))

which is the identity on underlying marked simplicial sets preserves the scalings.
Fix s ∈ C, we will first show that the map

fs : (Stφ(colim
I

D(i)))(s) (colim
I

Stφ(D(i)))(s)

preserves the scalings inherited from P s
X. . To this end, suppose given a scaled

simplex σ in P s
(Stφ(colimI D(i)))S which does not come from a lean simplex in the

colimit. Tracing through the definition, we note that there must be a simplex
η : ∆n → colimI(D(i)) and a simplex µ := {S0 ∪ {n + 1} → S1 ∪ {n + 1} →
S2∪{n+1}} in Csc[∆n+1](0, n+1) with max(Si) = max(Sj) for some i, j = 0, 1, 2
such that σ is the image of µ under the canonical map

g1 : Csc[∆n+1](0, n+ 1) (Stφ(colim
I

D(i)))(s)

is not scaled.
By the construction of colimits in simplicial sets, this means that there is an

k ∈ I and a simplex η̂ : ∆n → D(k) such that η factors through the canonical
map D(k)→ colimI D(i) as η̂. We can then note that η̂ will yield a map

g2 : Csc[∆n+1](0, n+ 1) Stφ(D(k))(s) (colim
I

Stφ(D(i)))(s)
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such that the diagram

(Stφ(colimI D(i)))(s)

Csc[∆n+1](0, n+ 1)

(colimI Stφ(D(i)))(s)

fs

g1

g2

commutes. We thus see that g2(µ) = fs(g1(µ)) = fs(σ) is scaled, as desired.
The same argument holds, mutatis mutandis, for σ ∈ P s

(Stφ(colimI D(i)))S coming
from a lean 2-simplex in the colimit.

We can now easily check that the full scalings T sXS are preserved by fs by
simply noting that the diagram

C(s′, s)× (St+
S (colimI D(i)))(s) (St+

S (colimI D(i)))(s′)

C(s′, s)× (colimI StS(D(i)))(s) (colimI StS(D(i)))(s′)

fs

◦

fs′

◦

commutes.
To show (2) and (3), we again note that the statements are immediate if we

replace Stφ with St+
φ (cf. [Lur09b, Rmk 3.5.16] and [Lur09a, Prop 3.2.1.4]). A

similar check to the above assures us that the scalings coincide.

Remark 3.2.9. Note that, in the case where we consider φ to be the identity
on Csc[S] and are given a morphism f : T → S, combining (2) and (3) in
Proposition 3.2.8 yields a diagram

(Setmb
∆ )/S (Setms

∆ )Csc[S]op

(Setmb
∆ )/T (Setms

∆ )Csc[T ]op

StS

StT

f◦− Csc[f ]!

which commutes up to natural isomorphism.

Corollary 3.2.10. Let S be an scaled simplicial set and φ : Csc[S] → C a
Set+

∆-enriched functor. Then the straightening functor Stφ has a right adjoint

Unφ : (Setms
∆ )C

op
(Setmb

∆ )/S

which we call the (bicategorical) unstraightening functor.

Proof. This follows from the first part in Proposition 3.2.8 using the adjoint
functor theorem.

Let ∆n
[ denote the minimally scaled n-simplex and consider (∆n)[[ = (∆n, [, [)

as an object of (Setmb
∆ )/∆n

[
via the identity map. To ease the notation we will

denote the straightening of this object as St∆n
[
(∆n).
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Definition 3.2.11. Let n > 0 and 0 6 s 6 n. We denote by Ln(s) the poset of
subsets S ⊆ [n] such that min(S) = s ordered by inclusion. Let σ : S0 ⊆ S1 ⊆ S2
be a 2-simplex in the (nerve of) Ln(s) and denote si = max(Si) for i = 0, 1, 2.
We say that σ is thin if there exists a pair of indices i, j such that si = sj.
We endow Ln(s) with a scaling given by thin simplices and with the minimal
marking. The resulting marked scaled simplicial set will be denoted by Ln[ (s)

Lemma 3.2.12. Let n > 0 and 0 6 s 6 n. Then there is an isomorphism

St∆n
[
(∆n)(s) ' Ln[ (s)

of marked scaled simplicial sets

Proof. Immediate from unraveling the definitions.

Definition 3.2.13. Let n > 0 and consider a MB simplicial set ∆n
T :=

(∆n, [, [ ⊆ T ) for some scaling T . Given 0 6 s 6 n we define a new scal-
ing on Ln(s) (see Definition 3.2.11) by declaring a 2-simplex S0 ⊆ S1 ⊆ S2 if
and only if the simplex defined by max(S0) 6 max(S1) 6 max(S2) is lean in
∆n
T . We denote the resulting scaled simplicial set by LnT (s).

Lemma 3.2.14. Let ∆n
T := (∆n, [, [ ⊆ T ) and denote by St∆n

[
(∆n

T ) the straight-
ening of the map ∆n

T → ∆n
[ . Then for every 0 6 s 6 n the canonical map

St∆n
[
(∆n

T )(s) LnT (s)

is MS-anodyne.

Proof. The existence of the morphism is clear from the definitions. Suppose
that we are given a thin 2-simplex σ : S0 ⊆ S1 ⊆ S2 in LnT (i). As before, we
adopt the convention that si := max(Si). We will show that σ can be scaled
by taking pushouts along MS-anodyne morphisms. First let us consider the
3-simplex

θ : S0 ⊆ S0 ∪ {s1} ⊆ S0 ∪ {s1, s2} ⊆ S2

We immediately observe that all of its faces are scaled in St∆n
[
(∆n)T (s) except

the face missing 2. It follows we can scale the remaining face using a pushout
along a MS-anodyne map of the type described in Lemma 2.4.3. Now we
consider another 3-simplex

ρ : S0 ⊆ S0 ∪ {s1} ⊆ S1 ⊆ S2

Again we observe that all of its faces are scaled except possibly the face missing
1 which is precisely σ. The conclusion easily follows from Lemma 2.4.3

Let S] be a scaled simplicial set and assume every triangle is thin. Denote by
S its underlying simplicial set and let (Set+

∆)/S denote the category of marked
simplicial sets over S. We define a functor

ι : (Set+
∆)/S (Setmb

∆ )/S, (X,EX) (X,EX , ])

We view the∞-categorical straightening functor StS (see 3.2.1 in [Lur09a]) as a
functor with values (Setms

∆ )C
sc[S]op

by maximally scaling the values of StSX(s).
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Proposition 3.2.15. There exists a natural transformation

ε : StS ◦ι StS

which is objectwise a weak equivalence of marked scaled simplicial sets.

Proof. The existence of the natural transformation is automatic since both
functors only differ on the scaling. It is clear that both functors preserve colimits
and that they satisfy base change to respect to morphisms of simplicial sets
S → T . In addition, it is routine to verify that both functors respect cofibrations.
An standard argument then shows that it suffices to check that the natural
transformation is an equivalence (1) when S = (∆n)[ with n > 0 and X → S is
the identity morphism, and (2) on (∆1)] → ∆1 when S = ∆1. This is a direct
consequence of Lemma 3.2.14.

We conclude this section with a first step towards showing that the bicate-
gorical straightening is left Quillen.

Proposition 3.2.16. Let S be a scaled simplicial set and let φ : Csc[S]→ C be
a Set+

∆-enriched functor. Then the straightening functor

Stφ: (Setmb
∆ )/S (Setms

∆ )C[C]op

preserves cofibrations.

Proof. The generators of the class of cofibrations of marked biscaled simplicial
sets are given by

(C1)
(
∂∆n, [, [

)
→
(

∆n, [, [
)
.

(C2)
(

∆1, [, [
)
→
(

∆1, ], [
)
.

(C3)
(

∆2, [, [
)
→
(

∆2, [, [ ⊂ ]).

(C4)
(

∆2, [, [ ⊂ ]
)
→
(

∆2, [, ]
)
.

Note that (C4) and (S2) are the same morphism. Therefore using standard
arguments it will suffice to check our claim on those generators.

Let i : A→ B be a cofibration. As stated above it will suffice to check in
the case where i is one of the generating cofibrations. Furthermore we can
use Proposition 3.2.8 to reduce to the case where S is the underlying scaled
simplicial set of B, and φ is id : Csc[S] → Csc[S]. The result follows from a
straightforward computation.

3.2.2 Products and tensoring

Before we can proceed to proving that the straightening-unstraightening ad-
junction is a Quillen equivalence (indeed, before we can prove the straightening
is left Quillen), we need to establish the relation of the straightening to the
Set+

∆-tensoring. We will prove this as a corollary of a more general result — on
products of MB simplicial sets — which will be of use to us in the sequel.
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Let A,B ∈ Setsc
∆ and consider a pair of objects XA ∈ (Setmb

∆ )/A , XB ∈
(Setmb

∆ )/B giving rise to X ∈ (Setmb
∆ )/A×B then we can form a pushout diagram

Csc[X] Csc[XB]

Csc[A]× Csc[B] XA,B

φ

where the left-most vertical morphism is the composite Csc[X]→ Csc[A×B]→
Csc[A]× Csc[B]. Let

StAXA � StBXB : Csc[A]op × Csc[B]op → Setms
∆

be the pointwise product of StAXA and StBXB and observe there is a canonical
natural transformation

εX : StφX =⇒ StAXA � StBXB

We will prove the following theorem:

Theorem 3.2.17. The map εX : StφX =⇒ StA(XA)� StB(XB) is a pointwise
weak equivalence.

Before proceeding with the proof of the theorem we need to do some
preliminary work. First we will do a careful study of the case where A = (∆n, [)
and B = (∆k, [), XA = (∆n, [, [) and XB = (∆k, [, [). We will assume that
the maps XA → A and XB → B are the identity on the underlying scaled
simplicial sets. In this particular situation we will denote StφX(i, j) := Pn,k(i,j)

and St∆n ∆n(i)× St∆k ∆k(j) := Sn,k(i,j).

Definition 3.2.18. Let n, k > 0 and let i ∈ [n], j ∈ [k]. We define marked
scaled simplicial set En,k(i,j) whose underlying simplicial set is given by C[(∆n ×
∆k).]((i, j), ∗). To define the marking and the scaling we construct a morphism

ξn,k(i,j) : En,k(i,j) Sn,k(i,j)

an equip En,k(i,j) with the induced marking and scaling. Recall that objects of En,k(i,j)
are given by a chain or sequence of inequalities (a0, b0) < (a1, b1) < · · · (a`, b`)
where ai ∈ [n] and bi ∈ [n] for i = 0, . . . , ` and with the property that
(a0, b0) = (i, j). We will use the notation C = {(ai, bi)}`i=0. A morphism
between chains C1 → C2 is simply given by an inclusion C1 ⊂ C2 which
we call a refinement of the chain C1. Then we define ξ(C) = (Sa, Sb) where
Sa = {a0, a1, . . . , a`} and similarly for Sb.

Remark 3.2.19. It is immediate to see that the map ξn,k(i,j) constructed before
factors as

En,k(i,j) Pn,k(i,j) Sn,k(i,j)

where the second morphism is the component of the natural transformation εX
at the object (i, j) and the first morphism is a canonical collapse map. We will
denote the first morphism by πn,k(i,j) and the second morphism by εn,k(i,j).
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Definition 3.2.20. Let C ∈ En,k(i,j) be a chain denoted by C = {(ai, bi)}`i=0. We
set |C| = ` and we call it the length of the chain.

Definition 3.2.21. Let C ∈ En,k(0,0). We define EC to be the full subposet (with
the induced marking and scaling) of En,k(0,0) consisting of those chainsK contained
in C.

Definition 3.2.22. Let C ∈ En,k(0,0) be a chain. We say that K ∈ EC is a rigid
chain if there is no marked morphism in EC with source K. We denote the by
ErC the full subposet of EC on rigid chains.

Lemma 3.2.23. Let C ∈ En,k(0,0) be a chain and denote by UC the image of the
morphism EC → Sn,k(0,0). Then ξn,k(0,0) induces an isomorphism of marked scaled
simplicial sets

ξrC : ErC UC
∼=

Proof. The map ξrC is clearly surjective on vertices. Moreover, given a morphism
U → K in EC , choose a marked morphism U → U r to a rigid chain in EC .
Then for every (a, b) ∈ U r \ U , the object K ∪ {(a, b)} will lie in EC over the
same element of UC as K. We thus obtain a morphism U r → K̂ lying over the
original morphism in UC , showing that ξrC is surjective on morphisms, and thus
on higher simplices.

Moreover ξrC detects and preserves marked edges and thin simplices. It will
therefore suffice to show that ξrC is injective. Let Ki ∈ ErC for i = 1, 2 such
that ξrC(K1) = ξrC(K2). Let us denote Ki = {(aij, bij)}`ij=0 for i = 1, 2 . Without
loss of generality let us assume that we have some (a1

s, b
1
s) such that this pair

is not an element in K2. However, note that since Ki ⊂ C for i = 1, 2 then
there exists a map K2 → K̂2 where K̂2 is obtained from K2 by appending the
element (a1

s, b
1
s). By construction it follows that ξrC(K2) = ξrC(K̂2) since K2 is

rigid it follows that K̂2 = K2 and therefore K1 = K2.

Lemma 3.2.24. Let C ∈ En,k(0,0). Then the induced morphism

ξC : EC
' UC

is an equivalence of marked scaled simplicial sets.

Proof. Let ι : ErC → EC denote the obvious inclusion. Using Lemma 3.2.23 we
can construct a map sC = ι ◦ (ξrC)−1. It is clear that ξC ◦ sC = id. Given K,
observe that by construction sC ◦ ξC(K) is rigid. Let K → Kr be a marked
edge where Kr is rigid. Since the restriction of ξC to rigid objects is injective it
follows that sC ◦ ξC(K) = Kr. This yields a marked homotopy from sC ◦ ξC to
the identity and the result follows.

Lemma 3.2.25. Let Ci ∈ En,k(0,0) for i = 1, 2. Then there exists a chain K such
that the intersection EC1 ∩ EC2 = EK.

Proof. Immediate.
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Proposition 3.2.26. Let n, k two non-negative integers and consider i ∈ [n]
and j ∈ [k]. Then the morphism

ξn,k(i,j) : En,k(i,j) Sn,k(i,j)

is an equivalence of marked scaled simplicial sets.

Proof. First let us observe that the map ξn,k(i,j) is an isomorphism if either n or k is
equal to 0. Using an inductive argument it will suffice to show that the map ξn,k(0,0)

is an equivalence. Note that we can cover En,k(i,j) with the subsimplicial sets EC
where C is a chain of maximal length. Since ξn,k(0,0) is surjective is covered by the
subsimplicial sets UC . Applying [AGDS20, Lemma 3.2.13], we express En,k(0,0) and
Sn,k(0,0) as the colimit over the same diagram of two homotopy cofibrant diagrams.
We can now identify ξn,k(0,0) as the map induced by the natural transformation
whose components are ξC . Therefore using Lemma 3.2.24 it follows that ξn,k(0,0)
is a weak equivalence.

Definition 3.2.27. Let On,k = C[∆n×∆k]. We define a marking on On,k((i, j), (a, b))
by declaring an edge marked if an only if its image in On(i, a) × Ok(j, b) is
degenerate. If a, b = n, k we set the notation On,k((i, j), (a, b)) = On,k(i,j).

Lemma 3.2.28. The canonical morphism p : On,k((i, j), (a, b)) → On(i, a) ×
Ok(j, b) is a weak equivalence of marked simplicial sets.

Proof. The argument here is virtually identical to that given in Lemma 3.2.23,
Lemma 3.2.24, and Proposition 3.2.26.

Definition 3.2.29. Let σ : K0 ⊂ K1 · · · ⊂ K` be a simplex in On,k((i, j), (a, b))
such that K0 6= (i, j). Given (x, y) ∈ K0 then it follows that σ is in the image
of the map

γx,y : On,k((i, j), (x, y))× On,k((x, y), (a, b)) On,k((i, j), (a, b)).

Given a pair of simplices σ1, σ2 as above, let (Ai, Bi) denote the preimages
of γi for i = 1, 2 under γx,y. We define On,k((i, j), (a, b)) as a quotient of
On,k((i, j), (a, b)) by identifying those simplices σ1, σ2 as above such that their
corresponding Ai’s get identified in On(i, x)× Ok(j, y) and B1 = B2.

Remark 3.2.30. Observe that the previous definition yields a factorization

On,k((i, j), (a, b)) α On,k((i, j), (a, b)) β
On(i, a)× Ok(j, b)

Lemma 3.2.31. The morphisms in Remark 3.2.30 are equivalences of marked
simplicial sets.

Proof. By Lemma 3.2.28, it suffices to show that α is an equivalence. For
(i, j) < (x, y), let the distance from (x, y) to (i, j) be the maximal length of a
chain in On,k((i, j), (x, y)), using the convention that we count neither (i, j) nor
(x, y) towards this length.

It is clear that if the distance from (a, b) to (i, j) is 0, α is an isomorphism.
We then proceed by induction. Suppose that that statement is true for all (i, j)
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and (a, b) with distance less than r, and let (i, j) and (a, b) be distance r apart.
We define a sequence of marked simplicial sets by setting

X0 = On,k((i, j), (a, b))

and then defining∐
d((i,j),(x,y))=`

On,k((i, j), (x, y))× On,k((x, y), (a, b)) X`

∐
d((i,j),(x,y))=`

On(i, x)× Ok(j, y)× On,k((x, y), (a, b)) X`+1

We then note two facts:

• For (i, j) < (x, y) distance 0 apart, the canonical map

On,k((i, j), (x, y))× On,k((x, y), (a, b))→ X0

descends through an isomorphism to a map

On,k((i, j), (x, y))× On,k((x, y), (a, b))→ X0

• For (i, j) < (x, y) distance ` apart, the canonical map

On,k((i, j), (x, y))× On,k((x, y), (a, b))→ X`

descends to a map On,k((i, j), (x, y)) × On,k((x, y), (a, b)) → X`, since
we have already quotiented out by the relations involving intermediate
elements of lesser distance.

We can thus replace the pushout above with the pushout∐
d((i,j),(x,y))=`

On,k((i, j), (x, y))× On,k((x, y), (a, b)) X`

∐
d((i,j),(x,y))=`

On(i, x)× Ok(j, y)× On,k((x, y), (a, b)) X`+1

where the upper horizontal map is now a cofibration. This means that, by
our inductive hypothesis and Lemma 3.2.28, X` → X`+1 is an pushout of an
equivalence along a cofibration, and thus an equivalence of marked simplicial
sets.

Since any intermediate element (i, j) < (x, y) < (a, b) must have distance
from (i, j) strictly less than r, we see that Xr = On,k((i, j), (a, b)). Thus, the
composite map

α : On,k((i, j), (a, b)) = X0 Xr = On,k((i, j), (a, b))

is an equivalence, as desired.

Proposition 3.2.32. Let n, k > 0 then the morphism πn,k(i,j) : En,k(i,j) → Pn,k(i,j) is a
weak equivalence of marked scaled simplicial sets.
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Proof. Since πn,k(i,j) is an isomorphism whenever either n or k is equal to 0 it
follows by an inductive argument that it will suffice to show that πn,k(0,0) is an
equivalence. We define a sequence of marked scaled simplicial sets beginning
with

Y0 = En,k(0,0).

Then we define
∐

d((0,0),(x,y))=`
On,k((0, 0), (x, y))× En,k(x,y) Y`

∐
d((i,j),(x,y))=`

On(0, x)× Ok(0, y)× En,k(x,y) Y`+1

and observe that the top horizontal morphism is a cofibration. Additionally one
sees that the left-most vertical morphism is an equivalence due to Lemma 3.2.31.
It follows by construction that Yn+k = Pn,k(0,0) and since each Y` → Y`+1 is a weak
equivalence the result now follows.

Corollary 3.2.33. Let n, k two non-negative integers and consider i ∈ [n] and
j ∈ [k]. Then the morphism

εn,k(i,j) : Pn,k(i,j) Sn,k(i,j)

is an equivalence of marked scaled simplicial sets.

Proof of Theorem 3.2.17. As in [Lur09a, 3.2.1.13], it suffices to check this in the
special case when XA → A and XB → B are identity morphisms on underlying
simplicial sets, and both A and B are one of the following cases

• The scaled 2-simplex ∆2
] .

• The unscaled n-simplex ∆n
[ .

In the case where A = ∆n
[ and B = ∆k

[ , the morphism

εX : Stφ(∆n ×∆k)(i, j)
(
St∆n(∆n)� St∆k(∆k)

)
(i, j)

is precisely the morphism

εn,k(i,j) : Pn,k(i,j) Sn,k(i,j)

and thus is an equivalence of marked-scaled simplicial sets by Corollary 3.2.33.
Each other case is a pushout of some εn,k(i,j) by a cofibration, and thus is also an
equivalence.

3.2.3 Straightening and anodyne morphisms

This section serves as a stepping-stone to see that the bicategorical straightening
is a left Quillen functor. in particular, we will show that StS preserves MB-
anodyne morphisms for any S ∈ Setsc

∆ .
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Definition 3.2.34. Consider Λn
i for 0 6 i 6 n. For every 0 6 s 6 n we define

ΛLni (s) to be the scaled subsimplicial set of Ln[ (s) consisting of those simplices
σ : S0 ⊆ S1 ⊆ · · · ⊆ Sn satisfying at least one of the following conditions:

• There exists k ∈ [n] with k 6= i such that, for every j ∈ [n], k /∈ Sj.

• There exists some 0 < j 6 n such that j ∈ S0 and there exists 0 6 ` < j
such that ` 6= i.

Given ∆n
T as in Definition 3.2.13 we define (ΛLni )T (s) using the inherited scaling

from LnT (s).

Definition 3.2.35. Given a MB simplicial set of the form ∆n
T := (∆n, [, [ ⊂ T )

for some T , we denote by (Λn
i )T the horn with the induced marking and biscaling.

We write St∆n
[
(Λn

i )T for the functor associated to the object (Λn
i )T → ∆n

[ .

Remark 3.2.36. In some specific instances we will have ∆n
T := (∆n, [, [ ⊂ T )

where T = ∆{i,j,k} a chosen 2-simplex in ∆n. In that situation we will chose a
subscript notation ∆n

† = (∆n, [, [ ⊂ ∆{i,j,k}). This convention will also applied
to previously defined constructions like for example (Λn

i )† or St∆n(∆n)†.

Lemma 3.2.37. Let ∆n
T = (∆n, [, [ ⊆ T ). Then for every 0 6 s 6 n the

canonical morphism

St∆n
[
(Λn

i )T (s) ' (ΛLni )T (s)

is MS-anodyne.

Proof. It is clear that for every 0 < s 6 n we can pick the morphism to be an
isomorphisms on the underlying simplicial sets. We further note that the proof
of Lemma 3.2.14 still holds in this setting. Consequently, the claim follows.

Definition 3.2.38. Let n > 0 and 0 6 s 6 n. We say that a (non-degenerate)
simplex σ in Ln(s) is a path if it is of maximal dimension. Let Pns be the set of
such paths. We will define an total order on Pns as follows:

Given a path σ : S0 ⊂ S1 ⊂ S2 ⊂ · · ·S` one sees that Si+1 \ Si = {ai+1}
consists precisely in one element. Therefore we can identify σ with a list of
elements

Sσ = {ai}`i=1.

Note that by the maximality of σ, S0 = {s}.
Suppose we are given two such lists Sσ = {ai}`i=1 and Sθ = {bi}`i=1. We

declare σ < θ if for the first index j for which aj 6= bj then we have aj < bj.

Lemma 3.2.39. Let ∆n
� = (∆n, [, [ ⊂ ∆{0,1,n}) and consider the induced

morphism (ΛLn0 )�(0)→ Ln� (0). Collapsing the morphism 0→ 01 to a degenerate
edge on both sides yields a map of scaled simplicial sets

ΛRn
0 Rn

which is scaled anodyne.

Proof. We use the order from Definition 3.2.38 to add simplices to ΛRn
0 . We

will add simplices in reverse order, i.e. for any path σ, we denote by X>σ the



134 CHAPTER 3. THE ∞-BICATEGORICAL GROTHENDIECK CONSTRUCTION

scaled simplicial subset of Rn obtained by adding to ΛRn
0 all paths θ such that

θ > σ.
The procedure yields a filtration

ΛRn
0 = X>σ0 X>σ1 X>σ2 · · · Rn

where we have labeled our paths σi so that σi > σi+1. The proof proceeds by
showing that X>σi−1 → X>σi is scaled anodyne for any i.

The proof proceeds by cases. We fix the notation that Sσi = {ak}nk=1.

1. Suppose that a1 6= 1. We prove this case by showing that the top horizontal
map in the pullback diagram

Aσi ∆n

X>σi−1 X>σi

αi

σi

is itself scaled anodyne.
We see that Aσi is the union of the following faces of σi:

• The face d0(σi), since we will have 0 6 1 < a1 in each Sk.
• The face dn(σi), since this face will always be missing an 6= 0.
• The face dj(σi) for every j such that aj+1 > aj. This is because this

will, equivalently, be the jth face of the (greater) simplex with vertex
list

{a1, . . . , aj−1, aj+1, aj, aj+2, . . . , an}.

To see that the inclusion of Aσi → ∆n is scaled anodyne, we first note
that, by necessity, there is at least one face of ∆n not contained in Aσi .
We then choose t ∈ [n] such that dt(∆n) is not contained in Aσi .
If we let j ∈ [n] be the an element such that j < t and dj(∆n) ⊂ Aσi .
Similarly, let ` ∈ [n] be the smallest element such that ` > t and d`(∆n) ⊂
Aσi . A similar argument to [AGS21, Lemma 1.10] (or Lemma 3.1.6) shows
that it will suffice to see that the simplex ∆{j,t,`} is scaled for every such
j, t, and `. It is easy to see that max(S`) = max(St). Consequently, we
see that αi is scaled anodyne, as desired.

2. Now suppose that a1 = 1, and Sσi 6= {1, 2, . . . , n − 1, n}. We now must
instead consider the pullback diagram

Bσi ∆n∐
∆{0,1} ∆0

X>σi−1 X>σi

βi

as above, we see that Bσi consists of the faces

• dn(σi)
• dj(σi) for each j such that aj < aj+1.
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Since Sσi 6= {1, 2, . . . , n− 1, n}, there exists some 1 < t < n such that Bσi

does not contain the tth face of ∆n∐
∆{0,1} ∆0.

We can then consider the pullback diagram

Cσi ∆n−1

Bσi ∆n∐
∆{0,1} ∆0

γi

d0

an apply precisely the argument from the first case to t ∈ [n− 1] described
above to find that γi is scaled anodyne. This means that, via a pushout, we
may assume that Bσi contains the 0th face of ∆n∐

∆{0,1} ∆0. We can then
repeat essentially the same argument, and thereby see that βi is scaled
anodyne.

3. If Sσi = {1, 2, . . . , n− 1, n}, then the map X>σi−1 X>σi = Rn is an
inclusion

Λn
0
∐

∆{0,1}
∆0 ∆n

∐
∆{0,1}

∆0

where ∆{0,1,n} is scaled.

Lemma 3.2.40. Let ∆n
† = (∆n, [, [ ⊂ ∆{0,n−1,n}) and consider the induced

morphism (ΛLnn)†(0) → Ln† (0). Denote by T n (resp. ΛT nn ) the marked scaled
simplicial set obtained from Lnn(0) (resp. (ΛLnn)†(0)) by marking the edges
associated to the edge (n− 1) n in ∆n. Then the associated map

ΛT nn T n

is MS-anodyne.

Proof. The argument is nearly identical to the proof of Lemma 3.2.39. Using
the same order as in that proof, we produce a filtration

ΛT nn = X>σ0 X>σ1 · · · T n

and show each step is scaled anodyne.
As before, we set Sσi = {aj}j=1n , and consider the pullback diagram

Aσi ∆n

X>σi−1 X>σi

αi

σi

The case distinction now rests on whether or not dnσi factors through Aσi .
The case when it does is formally identical to case (1) from Lemma 3.2.39.

If dn(σi) does not factor through Aσi , then an = n. There are again two cases,
based on whether Sσi = {1, 2 . . . , n− 1, n}. The case Sσi 6= {1, 2 . . . , n− 1, n}
is identical to the corresponding case in Lemma 3.2.39. In the case Sσi =
{1, 2 . . . , n−1, n} we find that Aσi = Λn

n, the last edge is marked, and ∆{0,n−1,n}

is scaled. This is a morphism of type (MS4), and thus is MS-anodyne.
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Lemma 3.2.41. Let ∆n
∗i = (∆n, [, [ ⊂ ∆{i−1,i,i+1}) and consider the induced

morphism (ΛLni )∗i(0)→ L∗i(0). Let Sn (resp ΛSni ) denote the marked scaled
simplicial set obtained by marking the edges of the form S → S ′ such that
i, i+ 1 ∈ S but i /∈ S and such that S ′ = S ∪ {i}. Then the induced morphism

ΛSni Sni

is MS-anodyne.

Proof. Let Sτ = {1, 2, . . . , i−1, i+1, . . . , n−1, n, i} and denote by τ̂ the smallest
maximal simplex such that τ̂ > τ . We define a filtration as in Lemma 3.2.39
and Lemma 3.2.40 up until the stage X>τ̂ , yielding

ΛSni X>σ1 · · · X>τ̂ Sni .

We will first prove that that each step of this factorization is MS-anodyne,
making a distinction into 2 cases.

We consider the map X>σk−1 → Xσk , and set Sσk := {aj}nj=1. We again form
the pullback

Aσk ∆n

X>σk−1 X>σk

αk

σk

We then have two cases.

1. If Sσk has as its last entry anything other than i, then Aσk consists of

• The face d0(σk).
• The face dn(σk).
• The face dj(σk) for each j such that aj+1 > jj.

The argument is then nearly identical to case (1) from Lemma 3.2.39.

2. If the last entry of Sσk is i, then Aσk consists of

• The face d0(σk).
• The face dj(σk) for each j such that aj+1 > aj.

The remainder of the argument is nearly identical to case (2) of Lemma 3.2.39.

It now remains only for us to show that X>τ̂ → Sni is MS-anodyne. For ease
of notation, we set Z := X>τ̂ .

We now need to add the remaining simplices. Write Σ6 for the set of maximal
simplices which are less than or equal to τ . Given θ ∈ Σ6, we write Sθ = {bj}nj=1

for the ordered vertex sequence, as usual. We further denote by Ŝθ the vertex
sequence obtained by removing i. We will call a simplex θ ∈ Σ6 disordered if
Ŝθ > Ŝτ . If Ŝθ = Ŝτ , we will call θ calm.1

Our first order of business is to add the disordered simplices in Σ6. For each
disordered θ, we define Z>θ to be obtained from Z by adding all the disordered

1If θ ∈ Σ6 is calm, then the entries of Ŝθ are in the linear order induced by the order on the integers. If θ
is disordered, they are not.
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simplices σ for which σ > θ. Applying the order induced on disordered simplices,
we again obtain a filtration

Z Z>σ1 Z>σ2 · · · Z>γ

where γ is the minimal disordered simplex under the order <.
As before, we form a pullback diagram

Bσk ∆n

Z>σk−1 Z>σk

βk

σk

and show that βk is MS-anodyne. Note that Bσk consists precisely of

• The face d0(σk).

• The face dn(σk) (since the final entry of Sσk cannot be i).

• The face dj(σk) for each j such that aj+1 > aj.

The argument that βk is anodyne is, by now, routine.
We now turn to adding the calm simplices. Notice that τ is the maximal

calm simplex. We now set Y := Z>γ, and define a filtration

Y Y 6σ1 Y 6σ2 · · · Y 6τ = Sni

By defining Y 6θ to be the union of Y with all of the calm simplices less than
or equal to θ.

For every calm σk other than τ itself, we obtain a pullback diagram

Λn
` ∆n

Y 6σk−1 Y 6σk

ηk

σk

where Λn
` is an inner horn. If Sσk = {1, 2, 3, . . . , n − 1, n}, then this is a Λn

i ,
and the scaling on ∆n

∗i shows us that the simplex ∆{i−1,i,i+1} ⊂ σk is scaled. On
the other hand, if Sσk 6= {1, 2, 3, . . . , n− 1, n}, the simplex ∆{`−1,`,`+1} ⊂ Λn

` is
already scaled in Ln

[ (0) ⊆ Ln
∗i(0). The morphism ηk is thus a scaled anodyne

map, and the pushout is therefore MS-anodyne.
We are left only to add τ . However, in this case, we obtain a pullback

diagram
Λn
n ∆n

Y <τ Sni

µ

τ

where the 2-simplex ∆{0,n−1,n} is scaled and the edge ∆{n−1,n} is marked. The
result then follows from a pushout of type (MS4).
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Proposition 3.2.42. Let S be a scaled simplicial set and let Csc[S] → C be
a functor of Set+

∆-enriched categories. Consider an MB-anodyne morphism
i : A→ B in (Setmb

∆ )/S. Then for every s ∈ S then induced map
StφA(s) StφB(s)

is a trivial cofibration of marked scaled simplicial sets.

Proof. As in the proof of Proposition 3.2.16, we can assume that S = B, that
φ is id : Csc[S]→ Csc[S], and that i is one of the generators in Definition 2.2.7.
We proceed to verify each case.
A1) It is immediate that StB A(s)→ StB B(s) is an isomorphism when s 6= 0.

Lemma 3.2.41 shows that the map is MS-anodyne when s = 0.
A2) Note that the morphism StBA(s)→ StBB(s) is an isomorphism for s 6= 0.

If s = 0 the map is an isomorphism on the underlying marked simplicial
sets. Let T̂ = T ∪∆{0,1,4}∪∆{0,3,4} (see Definition 2.2.7) and let L4

T (0) and
L4
T̂
be the simplicial sets defined in Definition 3.2.13 equipped with the

marking given by the thin simplices in the base. We obtain a commutative
diagram

StBA(0) StBB(0)

L4
T (0) L4

T̂
(0)

' '

where the vertical morphisms are equivalences due to Lemma 3.2.14. We
will show that the bottom morphism is an equivalence. Observe that once
we manage to scale the simplices 0→ 01→ 014 and 0→ 03→ 034 then
rest of the scaling follows using the argument given in Lemma 3.2.14. We
start by considering the 4-simplex given by

0→ 01→ 012→ 0123→ 01234
The only faces that are not scaled are precisely {0, 01, 01234} and {0, 0123, 01234}.
Consequently we can scale them using a pushout of type (MS2). Now we
consider a 3-simplex

0→ 01→ 014→ 01234
where all of its faces are now scaled except possibly the 3rd face. We
further note that we can factor the last morphism as 014→ 0134→ 01234
where both morphisms are marked. Therefore we can assume without loss
of generality that the map 014→ 01234 is also marked. This allows us to
scale the 3rd face using a pushout along a map of type (MS8). Inspecting
the 3-simplex

0→ 03→ 0123→ 01234
we see that we can add to the scaling {0, 03, 01234}. Finally let us consider

0→ 03→ 034→ 01234.
As we did before we factor the last map as a composite of marked mor-
phisms 034 → 0134 → 01234. The claim follows by a totally analogous
argument as before.
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A3) Let ∗ denote the vertex to which 0 and 1 get identified. Then it follows
that the induced map StBA(s)→ StBB(s) is an isomorphism for s 6= ∗.
Lemma 3.2.39 shows that the map is MS-anodyne when s = 0.

A4) It is immediate that StBA(s) → StBB(s) is an isomorphism for s 6= 0.
Lemma 3.2.40 shows that the map is MS-anodyne when s = 0.

S2) The induced map is an isomorphism for every object of ∆2.

S3) The map is an isomorphism for every s ∈ ∆3 such that s 6= 0. We will
prove the case i = 1 leaving the case i = 2 as an exercise to the reader.
Let L3

U1(0) and L3
] (0) be as in Definition 3.2.13 and equip them with the

marking induced by the thin simplex ∆{0,1,2}. We obtain a commutative
diagram

StBA(0) StBB(0)

L3
U1(0) L3

] (0)

' '

where the vertical morphisms are equivalences due to Lemma 3.2.14. There-
fore it will enough to show that the bottom morphism is an anodyne map of
marked scaled simplicial sets. Consider the simplex 0→ 01→ 012→ 0123
and observe that all of its faces are scaled except the face missing 1. There-
fore we can scale the 1-face using a pushout along an anodyne morphism
as described in Lemma 2.4.3. Now we consider 0 → 02 → 012 → 0123
and we observe that we can scale the face missing 2 by another pushout.
Finally we look at 0→ 02→ 023→ 0123 and we note that the last edge
must be marked and that all of the faces are scaled except the face missing
the vertex 3. Thefore another pushout along a morphism of type (MS8)
yields the result.

S4) & S5) The proof is very similar to the previous case and left to the reader.

A5,S1 & E) Since these maps are always maximally thin scaled we can use Propo-
sition 3.2.15 and apply the pertinent proofs in Proposition 3.2.1.11 in
[Lur09a].

3.2.4 Straightening over the point

In this section, we will prove two important results. We will show that the the
bicategorical straightening functor is left Quillen over any scaled simplicial set,
and we will show that the straightening is an equivalence over the point. We
fix the notation St∆0 = St∗.

Definition 3.2.43. We define a an adjunction

L : Setmb
∆
−→←− Setms

∆ : R

where L(X,EX , TX ⊆ CX) := (X,EX , CX) and R(Y,EY , TY ) = (Y,EY , TY ⊆
TY ). We note that L ◦ R = id and that the unit natural transformation
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(X,EX , TX ⊆ CX) → (X,EX , CX ⊆ CX) is MB-anodyne. It is easy to see
that L preserves cofibrations and trivial cofibrations. In particular, we see that
L a R is a Quillen equivalence.

Our goal in this section is to construct a natural transformation St∗ =⇒ L
which is a levelwise weak equivalence. By general abstract nonsense, it will
suffice to construct morphisms αX : St∗(X)→ L(X) whenever X is one of the
following generators

• ∆n
[ := (∆n, [, [), for n > 0,

• ∆2
† := (∆2, [, [ ⊂ ∆2),

• ∆2
] := (∆2, [,∆2),

• (∆1)] := (∆1,∆1, [),

and to prove that that the maps αX are natural with respect to morphisms
among generators. The next step is to give a precise description of the straight-
ening functor applied to those generators.

Definition 3.2.44. Let n > 0 and define a simplicial set

Qn :=
⊔

06i6n
On+1(i, n+ 1)/

∼

where the relation ∼ identifies simplices n-simplices σ1 ∈ On+1(i, n + 1) and
σ2 ∈ On+1(j, n+ 1) with i 6 j whenever σ1 is in the image of the map

On+1(i, j)×∆n On+1(i, j)× On+1(j, n+ 1) On+1(i, n+ 1)id×σ2

We further observe that the morphisms

On+1(i, n+ 1) ∆n, S max (S \ {n+ 1})

assemble into a map αn : Qn → ∆n. We wish now to upgrade Qn to a scaled
simplcial set. We do so by declaring a triangle σ : ∆2 → Qn thin if and only
if its image under p is degenerate in ∆n. We denote this collection of thin
triangles by TQn .

Remark 3.2.45. Given an order preserving morphism f : [n]→ [m] then it is
straightforward to check that we can produce a commutative diagram

Qn Qm

∆n ∆m

Q(f)

αn αm

f

Lemma 3.2.46. We have the following isomorphisms of marked scaled simpli-
cial sets

• St∗(∆n
[ ) ' (Qn, [, TQn).

• St∗(∆2
†) = St∗(∆2

] ) ' (Q2, [, ]).
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• St∗((∆1)]) = (Q1, ], [).
Lemma 3.2.47. The morphism

αn : Qn ∆n
[

is a weak equivalence of marked scaled simplicial sets.

Proof. We construct a section s : ∆n
[ → Qn by sending i ∈ [n] to the set

[0, i]∪{n+ 1} and note that αn ◦ s = id∆n . To finish the proof we will construct
a marked homotopy between idQn and s ◦ αn.

Let σ : ∆k → Qn and pick a representative S0 ⊆ S1 ⊆ · · · ⊆ Sk with
Sj ∈ On+1(i, n+ 1) for 0 6 j 6 k. To ease the notation we will omit the element
n + 1 from the subsets Sj. Let us denote sj = max(Sj) and observe that we
can produce a diagram H(−, σ) : ∆1 ×∆n → Qn

S0 S1 · · · Sk−1 Sk

[i, s0] [i, s1] · · · [i, sk−1] [i, sk]

It is straightforward to check that if σ ∼ θ then H(−, σ) = H(−, θ). We have
constructed now a natural transformation ∆1 × Qn → Qn. It is immediate
to see that H(0,−) = idQn . In addition the fact that the bottom row in the
diagram is equivalent to

[i, s0] [i, s1] · · · [i, sk−1] [i, sk]

ensures that H(1,−) = s ◦ αn. We conclude the proof by noting that the mor-
phism S0 → [i, s0] gets collapsed to a degenerate edge and thus the homotopy
is marked.

Proposition 3.2.48. There exists a natural transformation α : St∗ =⇒ L which
is a levelwise weak equivalence.

Proof. Using Lemma 3.2.46 is immediate to verify that the maps (together
with decorated variants) αn : Qn → ∆n assemble into a natural transformation
α : St∗ L=⇒. To check that α is a levelwise equivalence, we note that due to the
fact that both St∗ and L are left adjoints which preserve cofibrations it will
suffice to check on generators. We proceed case by case

• αn : (Qn, [, TQn)→ (∆n, [, [) is an equivalence due to Lemma 3.2.47.

• α]2 : (Q2, [, ])→ (∆2, [, ]) is an equivalence since we can repeat the proof
above with maximally scaled simplicial sets.

• α]1 : (Q1, ], [)→ (∆1, ], [) is an isomorphism.
Theorem 3.2.49. Let S be an scaled simplicial set, then the bicategorical
straightening functor

StS: (Setmb
∆ )/S (Setms

∆ )C
sc[S]op

is a left Quillen functor.
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Proof. Given a weak equivalence f : X Y in (Setmb
∆ )/S, we can apply

fibrant replacement to obtain a commutative diagram

X X̃

Y Ỹ

f

where the horizontal morphisms areMB-anodyne, and there vertical morphisms
are weak equivalences.

Since StS preserves MB-anodyne morphisms, we may thus assume without
loss of generality that X and Y are fibrant objects. By Lemma 2.2.33, f then
has a homotopy inverse g. Let

H : (∆1)]] ×X X

be a marked homotopy between g ◦ f and idX over S. Then StS(H) factors as

StS(X × (∆1)]]) StS(X)� St∗((∆1)]]) StS(X)� (∆1)]] St∆0
[
(K])ε α

Where ε is an equivalence by Theorem 3.2.17, α is an equivalence by Propo-
sition 3.2.48, and the final map is an equivalence since (∆1)] → ∆0 is an
equivalence of marked simplicial sets. Since StS(g ◦ f) and StS(idX) = idStS(X)
are both sections of StS(H), they are thus equivalent in the homotopy cate-
gory. An identical argument shows that StS(f ◦ g) ' idStS(Y ), completing the
proof.

Corollary 3.2.50. In particular the adjunction

St∗ :
(
Setmb

∆

)
/∆0
−→←− Setms

∆ : Un∗

is a Quillen equivalence.

Proof. By Proposition 3.2.48, St∗ is naturally equivalent to a left Quillen
equivalence. The corollary follows immediately.

3.2.5 Straightening over a simplex

As in [Lur09b, Ch. 2], the proof that our Grothendieck construction is a Quillen
equivalence over a general scaled simplicial set will be bootstrapped from a
proof over the n-simplices (∆n)[. In analogy to the method in op. cit., we will
prove this case by constructing a mapping simplex for each 2-Cartesian fibration
X → ∆n

[ — a tractible MB simplicial setMX → ∆n
[ which is equivalent to

X over ∆n
[ .2 The majority of this section is given over to showing that we can

decompose a 2-Cartesian fibration X → ∆n
[ as a homotopy pushout of the

restriction of X to ∆n−1, which enables the inductive step of our proof.

Remark 3.2.51. The term “mapping simplex” used above is potentially mis-
leading. in [Lur09a] and [Lur09b], a mapping simplex is a fibration over ∆n

2In contrast to the approach in [Lur09b, Ch. 2], we will not construct this ‘mapping simplex’ from an
enriched functor, but rather as a pushout of MB simplicial sets over ∆n

[
.
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explicitly constructed from a functor F : [n] → Set+
∆ or a F : C[∆n] → Set+

∆.
Our construction makes use of no such functor, and thus is not a true mapping
simplex in this sense. The abuse of the term mapping simplex in the above
exposition should be seen as suggestive of the role this construction fills in our
proof — one roughly analogous to the role of the mapping simplex in the proof
of the (∞, 1)-categorical Grothendieck construction in [Lur09a, §3.2].

Definition 3.2.52. We define a marked biscaled simplicial set (∆n)� :=
(∆n, En

� , [ ⊂ ]) where En
� is the collection of all edges containing the vertex n.

It is not hard to verify that the inclusion of the terminal vertex ∆{n} → (∆n)�
is MB-anodyne.

For the rest of this section, we fix be a 2-Cartesian fibration p : X → ∆n

over the minimally scaled n-simplex. We consider the commutative diagram

Xn ×∆{n} X

Xn × (∆n)� ∆n

p
α

where Xn denotes the fibre over the vertex n and the dotted arrow exists due
to the fact that the left vertical morphism is MB-anodyne.

Consider the inclusion morphism ι : ∆[0,n−1] → ∆n and equip ∆[0,n−1] with
the structure of an MB simplicial set by declaring and edge (resp. triangle)
marked (resp. thin, resp. lean) if its image in ∆n is marked (resp. thin, resp.
lean) in (∆n)�. Notice that this amounts to equipping ∆n−1 with the minimal
marking and thin-scaling, and the maximal lean-scaling.

We denote the restriction of X to ∆n−1 by X|∆n−1 := X ×∆n ∆n−1, and
denote the restriction of α to Xn × (∆n−1)� by α′. We construct an MB
simplicial setMX over ∆n by means of the pushout square

Xn × (∆n−1)� Xn × (∆n)�

X|∆n−1 MX

α′

Note that, since the top horizontal map is a cofibration, this is a homotopy
pushout square in (Setmb

∆ )/∆n
[
. The morphism α and the inclusion X|∆n−1 → X

yield a cone over this diagram, and thus a canonical morphism ω :MX → X
over ∆n. The key technical element in this section will be to show that ω is a
weak equivalence in the 2-Cartesian model structure.

Definition 3.2.53. Let σ : ∆k → X. Given I ⊂ [k], we define

FI(σ) = {θ : ∆I →MX | ω(θ) = dI(σ)} ∪ {∗}.

Given J ⊂ I ⊆ [k] and θ ∈ FI(σ) such that θ 6= ∗ we denote by dJ,I(θ) the
image of θ in MX under the degeneracy operator induced by the inclusion
J ⊂ I.

Definition 3.2.54. We define a MB simplicial set LX whose simplices σ :
∆k → LX are given by:
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• A simplex σ̂ : ∆k → X.

• For every non-empty subset I ⊆ [k] an element θI ∈ FI(σ). If θI = ∗ we
use the empty set notation θI = ∅.

We impose to this data the following compatibility conditions

H1) Given J ⊂ I ⊆ [k] and θI ∈ FI(σ) such that θI 6= ∅ it follows that
dJ,I(θI) = θJ .

H2) Given I ⊆ [k] with im = max(I), then if p ◦ σ̂(im) 6= n it follows that
θI 6= ∅.

H3) Given I ⊆ [k] such that for every i ∈ I we have p ◦ σ̂(i) = n, then it
follows that θI 6= ∅.

Notice that by construction there is a canonical projection map v : LX → X.
We equip LX with the marking and biscaling induced by v.

Given a simplex σ : ∆k → LX , we refer to the collection {θI}I⊂[k] as the
restriction data of σ.

Lemma 3.2.55. The projection map v : LX → X is a trivial fibration of MB
simplicial sets.

Proof. Since v by definition detects all possible decorations, it will suffice to
show that v is a trivial fibration on the underlying simplicial sets. Note that v
is a bijection on 0-simplices. Given k > 1 we consider a lifting problem

∂∆k LX

∆k Xσ̂

To produce the dotted arrow we use the bottom horizontal morphism as our
choice for simplex in X. If p ◦ σ̂(k) 6= n or p ◦ σ̂ is constant on n, we set θ[k]
to be the unique preimage of σ̂ inMX . If p ◦ σ̂(k) = n and it is not constant
on n, we set θ[k] = ∅. The rest of the θI are always chosen according to top
horizontal morphism. The compatibilities are clearly satisfied.

We construct a morphism u :MX → LX that sends a simplex θ : ∆k →MX

to the simplex ω(θ) in X. For every I ⊆ [k] we set θI = dI(θ). It is clear that u
is a cofibration. It is not hard to see that u induces a bijection on the restriction
to ∆[0,n−1] and on the fibre over n.

Remark 3.2.56. Let π = p ◦ v : LX → ∆n. Given σ : ∆k → LX we fix the
notation σ = π ◦ σ.

Definition 3.2.57. Let σ : ∆k → LX be a simplex such that σ(k) = n. Let
κσ be the first element in [k] such that σ(κσ) = n. We define a full subposet
Zσ ⊂ [k]× [n] consisting of

• Those vertices of the form (x, σ(x)) with x < κσ.

• Those vertices of the form (x, y) with x > κσ and y > σ(0).
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Figure 3.1: The poset Zσ corresponding to the map [5]→ [4] given by the sequence of values
0, 1, 1, 2, 4, 4.

We denote by Zσ the nerve N(Zσ). Note that the projection [k]× [n]→ [n]
yields a canonical map Zσ → ∆n. We endow Zσ with the structure of an MB
simplicial set by declaring an edge (x1, y1)→ (x2, y2) marked if x1 = x2 > κσ
and y2 = n. A triangle is declared to be lean if the associated 2-simplex in ∆k

is degenerate. Finally we say that a triangle in Zσ is thin if it is already lean
and its image in ∆n is degenerate.

We call those non-degenerate simplices ρ : ∆` → Zσ which are not contained
in any other non-degenerate simplex essential.

Remark 3.2.58. The avid reader might complain that our definition of Zσ
only depends on σ and so should be denoted by Zσ. The next definition will
justify our notation.

Definition 3.2.59. Let σ : ∆k → LX such that σ(k) = n. We define a
subsimplicial set Xσ ⊂ Zσ (with the inherited marking and scalings) consisting
of those simplices {(xi, yi)}`i=0 satisfying at least one of the conditions below

i) We have yi = σ(xi) for i = 0, . . . , `.

ii) There exists I ⊆ [k] such that θI 6= ∅ with σ(max(I)) = n and xi ∈ I for
i = 0, . . . , `.

Definition 3.2.60. Let σ : ∆k → LX such that σ(k) = n and suppose we are
given a subset I ⊂ [k] such that θI 6= ∅ and such that σ(max(I)) = n. We
construct a morphism

∆I ×∆[σ(0),n] (∆n)� ×Xn

whose component at (∆n)� is given by ∆I ×∆[σ(0),n] → ∆[σ(0),n] → (∆n)� and
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whose component at Xn is given by ∆I ×∆[σ(0),n] → ∆I → Xn where the last
morphism is induced from θI .

We define a subposetKI ⊂ ∆I×∆[σ(0),n] to be the intersection of ∆I×∆[σ(0),n]

with Zσ. We denote KI the MB simplicial set obtained by equipping KI with
the decorations induced from (∆n)� ×Xn.

Remark 3.2.61. Observe that we can construct Xσ as the union of ∆k and
every KI inside of Zσ.

Remark 3.2.62. Let σ : ∆k → LX such that σ(k) = n. We define a morphism
f̃σ : Xσ → LX as follows:

• For simplices satisfying condition i) in Definition 3.2.59, f̃σ is simply σ.

• For simplices satisfying condition ii) in Definition 3.2.59, f̃σ is given by
the composite

KI ∆I ×∆[σ(0),n] (∆n)� ×Xn
u LX .

One observes that this definition is compatible in the various intersections
KI ∩ KJ thus defining the desired morphism.

Definition 3.2.63. Let σ : ∆k → LX such that σ(k) = n. We define a
subsimplicial subset X ↑σ → Zσ (with the induced decorations) consisting of
those simplices {(xi, yi)}`i=0 that are either in Xσ or satisfty the property:

• There exists j ∈ [k] such that xi 6= j for every i = 0, . . . , ` and such that
σ(dj(k − 1)) = n.

Remark 3.2.64. Note that we can equivalently define X ↑σ to consist of those
simplices that are either in Xσ or that are contained in the image of

Zdj(σ) Zσ

where dj(σ)(k − 1) = n.

Definition 3.2.65. We define an order on the set of essential simplices of Zσ
which we denote by “≺”. Let ρi for i = 1, 2 be two essential simplices determined
by the sequence of vertices {(xij, yij)}rij=0 for i = 1, 2. Let ε be the first index
such that ρ1(ε) 6= ρ2(ε). We say that ρ1 ≺ ρ2 if precisely one the following
conditions is satisfied:

• We have that x1
ε = κσ.

• We have xiε > κσ for i = 1, 2 and y1
ε > y2

ε .

Lemma 3.2.66. Let σ : ∆k → LX such that σ(k) = n. Then the following
morphisms are MB-anodyne:

Xσ X ↑σ Zσ.

Proof. If σ factors through MX , then Xσ = Zσ, so we may assume without
loss of generality that σ does not factor throughMX .

We proceed by induction on k. Consider k = 1, and note that Xσ = X ↑σ .
Since σ does not factor through MX , we may assume σ(0) 6= n. There is
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thus some ` > 1 such that the morphism Xσ → Zσ can be identified with the
inclusion

ψ` : ∆1∐
∆0

(∆`)� (∆`+1)†

Where † indicates marking where i → n is marked when i 6= 0, where every
triangle is lean, and only those over degenerate triangles in ∆n are thin. It
follows immediately from Lemma 3.1.9 that this morphism is MB-anodyne.

We now suppose that the lemma holds in dimension k− 1. By the inductive
hypothesis,

Xσ X ↑σ
is MB-anodyne. Thus, it is sufficient for us to show that the morphism X ↑σ
Zσ is MB-anodyne.

We will add essential simplices of Zσ according to the order ≺. Given an
essential simplex ρ, we denote by Nρ the MB simplicial subset of Zσ obtained
by adding every essential simplex ρ′ such that ρ′ � ρ. We consider a pullback
diagram

Qρ ∆r

Nρ′ Nρ

ρ

and we turn our attention to proving that the top horizontal morphism is
MB-anodyne. Let us fix the notation ρ = {(xj, yj)}rj=0 and denote by θ the
first index such that xθ = κσ.

We define three types of vertices ε ∈ [r] of ρ.

Anterior vertices are those ε which have xε < κσ.

Recumbent vertices are those ε ∈ [r] which have xε > κσ and xε−1 < xε.
Note that this necessarily implies yε−1 = yε

Plumb vertices are those ε ∈ [r] which have xε > κσ and xε−1 = xε. Note
that this necessarily implies that yε−1 < yε. Note also that every ρ has at
least one plumb vertex.

Notice that the only vertex which is not anterior, recumbent or plumb is θ. We
call a vertex ε ∈ [r] a downturn if ε is either recumbent or ε = θ and xε+1 = xε.
Note that ρ is uniquely determined by its set of downturns and the fact that it
is essential.

We will prove three claims about these types of vertices, which then will
enable us to complete the proof.

Claim 1: If ε is an anterior vertex, then dε(∆r) ⊂ Qρ.

Subproof. Since ε is anterior, it is the only vertex of ρ whose first coordinate is
xε. Consequently, dε(ρ) factors through Zdε(σ). �

Claim 2: Let ε be a recumbent vertex. Then dε(∆r) ⊂ Qρ.
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Subproof. There are two cases. If xε+1 > xε, then as before dε(ρ) factors through
Zdj(σ) for some face operator dj. If, on the other hand, xε+1 = xε, then dε(ρ)
factors through a previous essential simplex. �

Claim 3: Let X be a set of plumb vertices. Then dX(∆r) * Qρ.

Subproof. Since dX(ρ) contains a point with first coordinate j for every j ∈ [k],
we see that dX(ρ) cannot factor through Zdj(σ). Similarly, if dX(ρ) factors
through KI for I ⊂ [k], then I = [k], which would imply that σ factors through
MX . Moreover, dX(ρ) cannot factor through σ, since it contains the vertex
(xθ, yθ).

Finally, if γ ≺ ρ is a previous simplex in our factorization, then dX(ρ) cannot
factor through γ, since γ and ρ are uniquely determined by their sequences of
downturns, and the only sequence of downturns containing dX(ρ) determine
simplices greater than ρ under the order ≺. �

To finish the proof we will consider two different cases. Each of this cases
will be solved used inner-dull subsets (resp. right-dull) subsets. It is important
to remark that since we can assume that dim(σ) > 1 it follows that all the
decorations in Zσ factor through X ↑σ .

The first case is given precisely when the vertex r is recumbent. In this
situation it follows that we can use Lemma 3.1.6 where the pivot point is given
by the biggest plumb vertex. Since r 6= θ it follows that if r is not recumbent it
must be plumb. In this cases the claim follow from Lemma 3.1.9.

Definition 3.2.67. Let σ : ∆k → LX such that σ(k) = n and let ` = n −
σ(κσ − 1). For every morphism fσ : Zσ → LX such that its restriction to Xσ
equals f̃σ as in Remark 3.2.62, we define a (k + `)-simplex B(σ) ∈ LX to be
the composite

∆k+` ρσ Zσ
fσ LX

Where
ρσ : [k + `] Zσ

j


(j, σ(j)) 0 6 j 6 κσ − 1
(κσ, σ(κσ − 1)) j = κσ

(κσ, j), κσ < j 6 κσ + `

(j − `, n), κσ + `+ 1 6 j 6 k + `

Remark 3.2.68. We can equivalently characterise the simplex B(σ) in Def-
inition 3.2.67 as the smallest essential simplex of Zσ under the order ≺ of
Definition 3.2.65 that does not factor through X ↑σ .

Remark 3.2.69. There are two key parameters which we will use to analyze
the simplices B(σ), for σ : ∆k → LX . One is the fundamental vertex κσ — the
first vertex such that σ(κσ) = n. The other is the terminal size of σ: the number
of vertices j ∈ [k] such that σ(j) = n. We will denote the terminal size of σ by

νσ = |{j ∈ [k] | σ(j) = n}|.

Notice that the terminal size of B(σ) is always equal to the terminal size of σ.
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To make use of the simplices B(σ) in an inductive pushout argument, we
will need to ensure we can make sufficiently compatible choices of maps

fσ : Zσ LX

to define our choices of B(σ).

Proposition 3.2.70. There exists a collection indexed by the simplices of LX

I := {fσ : Zσ → LX | σ : ∆k → LX}.

With the following properties:

i) The restriction of fσ to Xσ equals f̃σ as in Remark 3.2.62.

ii) Given a face operator dj : [k − 1] → [k] such that σ(dj(k − 1)) = n we
have that the composite

Zdj(σ) Zσ
fσ LX

equals fdj(σ).

iii) If σ ⊆ B(τ), where τ ( σ, then B(σ) is degenerate on a simplex ρ ⊆ B(τ).

Remark 3.2.71. Of key importance to our argument is the fact that, if σ ⊆
B(τ) and τ ( σ, then σ−1(n), τ−1(n), and B(τ)−1(n) have the same cardinality,
and σ, τ , and B(σ) agree on corresponding simplex.

Definition 3.2.72. Set Ξk = {σ : ∆r → LX | r 6 k}. We will call a collection

I := {fσ : Zσ → LX}σ∈Ξk

a compatible k-collection if it satisfies conditions i), ii), and iii) above.

Lemma 3.2.73. Let Ik−1 be a compatible (k − 1)-collection, and let σ : ∆k →
LX such that σ does not factor throughMX . Suppose that there is a simplex
τ : ∆s → LX with s < k such that

• There is an inclusion σ ⊂ B(τ).

• The terminal sizes agree, i.e. νσ = νB(τ).

Then there is a subsimplex γ ⊂ τ such that

1. There is an inclusion γ ( σ

2. There is an inclusion σ ⊂ B(γ)

3. The terminal sizes νσ and νB(γ) agree.

Proof. One need only restrict to the maximal sub-simplex τ ∩ σ that factors
through τ and σ both. Conditions (1) and (3) are immediate, and it is an easy
check to see that σ ⊂ B(τ ∩ σ).

Lemma 3.2.74. Let Ik−1 be a compatible (k − 1)-collection. Let σ : ∆k → LX
and assume that σ does not factor throughMX . Let us suppose there exists a
pair τi : ∆si → LX with si < k for i = 1, 2; such that σ ⊆ B(τi) and τi ( σ.
Then τ1 ⊆ τ2 or τ2 ⊆ τ1.
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Proof. We can partition ∆si into two parts: τ−1
i ([0, n − 1]) and τ−1

i (n). We
identify each of these with subsets of ∆k. By Remark 3.2.71, τ−1

1 (n) = τ−1
2 (n) =

σ−1(n). Since σ does not factor throughMX , the initial vertex of σ must factor
through each τi. Since the only vertices j of B(τi) which are not vertices of τi
satisfy with j > κτi , we see that for j ∈ [k] such that j < κτi , σ(j) must factor
through τi.

Thus, we see that τi obtained from σ by deleting the vertices j ∈ [k] such
that κτi < j < κσ. Thus, if κτ1 6 κτ2 , then τ1 ⊆ τ2.

Corollary 3.2.75. Let Ik−1 be a compatible (k−1)-collection, and let σ : ∆k →
LX be a simplex that does not factor through LX . If there is any τ : ∆s → LX
with σ ⊆ B(τ) and τ ( σ, then there is a unique minimal such simplex.
Moreover, if there is such a simplex τ with σ = B(τ), then one such simplex is
minimal.

Proof. The first statement is an immediate consequence of the previous lemma.
To prove the second claim suppose that we have ρ ⊆ τ such that B(τ) ⊆ B(ρ).
First we observe that ντ = νρ. Let µρ be the biggest element of B(ρ) that does
not lie over n and such that µρ and µρ − 1 lie over the same vertex of ∆n. We
similarly define µτ as the biggest element of B(ρ) contained in B(τ) satisfying
the analogous property as before. Note that such elements always exist by
construction. An easy argument then shows that µτ = µρ and our claim follows
from dimension counting.

Definition 3.2.76. Suppose given a compatible (k − 1)-collection Ik−1 and
σ : ∆k → LX . If it exists, we call the minimal simplex of Corollary 3.2.75 the
capsule of σ. We say that σ is encapsulated if it admits a capsule.

There is one final fact to establish: that there is a way of choosing a
compatible degeneracy to ensure condition iii). Given σ : ∆k → LX which does
not factor throughMX , we denote by Rσ the pullback

Rσ ∆k+`

X ↑σ Zσ

ρσ

Given a compatible (k − 1)-collection I(k−1), the compatibilities (1) and (2)
allow us to define a map

f̃ ↑σ : X ↑σ LX
for each σ : ∆k → LX which extends f̃σ, and which agrees with fdj(σ) for each
face operator dj such that dj(σ)(k − 1) = n.

Lemma 3.2.77. Let Ik−1 be a compatible (k − 1)-collection, and suppose that
σ : ∆k → LX is encapsulated with capsule τ . Then for each ζ : ∆r → Rσ

such that ζ hits both ρσ(κσ − 1) and ρσ(κσ), then f̃ ↑σ(ζ) is degenerate on those
vertices.

Proof. Note that our assumption means that ζ does not factor through σ.
First suppose that ζ factors through Zdj(σ) for j 6 κτ − 1. Then we note

that dj(σ) ⊂ B(dj(τ)), and νdj(σ) = νB(dj(τ)), so by Lemma 3.2.73 and the fact
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that Ik−1 satisfies iii′) we see that f̃ ↑σ(ζ) is degenerate. An identical argument
holds when j > κσ.

If ζ factors through Zdj(σ) for κτ 6 j 6 κσ, then σ(j) is not in τ . Thus τ ⊂
dj(σ), dj(σ) ⊂ B(τ), and so since Ik−1 satisfies condition iii′), ζ is degenerate.

Finally, suppose that ζ factors through Kσ
I for some θσI 6= ∅. Then I∩ [s] = J

has θτJ 6= ∅, and we can factor f̃ ↑σ(ζ) through u as

∆r ∆I ×∆[σ(0),n] ∆n ×Xn

By construction, the first factor of this simplex is degenerate at the desired
vertex. The second factor can be equivalently factored through ∆J×∆[τ(0),n] and
thus is degenerate at the desired vertex as well. Thus f̃ ↑σ(ζ) is degenerate.

Corollary 3.2.78. Let Ik−1 be a compatible (k − 1)-collection. Suppose that
σ : ∆k → LX is encapsulated, and let τ be the capsule for σ. Then there is a
subsimplex γ ⊂ B(τ) and a degeneracy operator sα such that the diagram

Rσ ∆k+`

X ↑σ LX

sα(γ)

f̃↑σ

commutes.

With this corollary in hand we can now return to Proposition 3.2.70.

Proof (of Proposition 3.2.70). First let us observe that the choices of fσ for
every σ : ∆k →MX ⊂ LX are already made since Xσ = Zσ. It is also easy to
check that the rest of the conditions hold for those choices. Therefore we can
restrict our attention to producing the choices for simplices σ : ∆k → LX that
do not factor throughMX .

We will inductively compatible k-collections Ik for every k > 1. Before
commencing our argument we will make a preliminary definition. Given σ :
∆k → LX we define Y↑σ to be the subsimplicial subset (with the inherited
decorations) of Zσ whose simplices are those of X ↑σ in addition to the simplex
B(σ). It follows from the argument given in Lemma 3.2.66 that the inclusion
Y↑σ → Zσ is MB-anodyne.

For every e : ∆1 → LX we fix the choice of fe which is guaranteed by
Lemma 3.2.66. In this ground case, there are no conditions to check. Let us
consider a triangle σ : ∆2 → LX . Using the previous choices the can extend
the map f̃σ to a morphism

f ↑σ : X ↑σ LX

We distinguish now two cases. Suppose that σ is not contained in some B(e) for
e : ∆1 → LX . Then we define fσ to be an extension of f ↑σ to Zσ. If σ ⊆ B(e) we
can assume that e ⊂ σ since otherwise we have σ ∈ MX . We extend f ↑σ to a
map Y↑σ → LX by sending B(σ) to the following simplex: Let σe : ∆r → LX be
the simplex obtained by forgetting every vertex j in B(e)such that j 6 κσ − 1
and such that is not in σ. We can now map B(σ) to sα(σe) where α = κσ − 1
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and consequently condition iii) is satisfied. This means that we can construct
a compatible 1-collection I1.

Now suppose we have a compatible (k− 1)-collection Ik−1. Let σ : ∆k → LX
be a simplex. If σ is not encapsulated, then we may define fσ by solving the
lifting problem

X ↑σ LX

Zσ

f̃↑σ

using 3.2.66. If σ is encapsulated with capsule τ , we can use Corollary 3.2.78
to define a map

Y↑σ LX
which sends B(σ) to the degenerate simplex described in Corollary 3.2.78.
Solving the corresponding lifting problem yields an fσ satisfying i), ii), and iii).
Thus, we can extend Ik−1 to a compatible k-collection, as desired.

Proposition 3.2.79. The cofibration u :MX → LX is MB-anodyne.

Proof. We say that a simplex σ : ∆k → LX is wide if it is not contained in
the image of u. Let σ : ∆k → LX and recall the definition νσ = |{j ∈ [k] |
σ(j) = n}|. We produce a filtration

MX → S1 → S2 → · · · → LX
where S` consists of those simplices σ in LX that either factor throughMX

or they satisfy νσ 6 `. We will fix the convention S0 = MX . We will show
that each step in the filtration is MB-anodyne. Let us fix once and for all
a choice of fσ : Zσ → LX for every σ : ∆k → LX with the properties listed
in Proposition 3.2.70. First, let us observe that given σ : ∆k → S` it follows
that the morphisms fσ also factor through S`. We can now define S(`,s) to
consist in those simplices contained in S` in addition to the simplices B(σ) for
σ : ∆k → LX wide and non-degenerate, such that k 6 s and νσ = `+ 1. This
produces a filtration

S`−1 → S(`−1,`) → S(`−1,`+1) → · · · → S`

We fix the convention S` = S(`,`). Let us consider a pullback diagram

Aσ Zσ

S(`,s−1) S(`,s)

fσ

where σ : ∆s → LX does not factor through S(`,s−1). Then it follows by
construction that Aσ contains every simplex of Zσ except the simplex B(σ). To
check that the top horizontal morphism is MB-anodyne, it suffices to apply
Lemma 3.1.6 with pivot point κσ after observing that the restriction of B(σ) to
Aσ consists precisely in the union of the following (s+ `− 1)-dimensional faces:

• The face that misses the vertex j for 0 6 j 6 κσ − 1. This is because this
simplex either factors through Zdj(σ) or it is contained inMX .



3.2. THE BICATEGORICAL GROTHENDIECK CONSTRUCTION 153

• The face that misses the vertex j for κσ + ` 6 j 6 s+ `. This is because
those faces have strictly smaller parameter νdj(σ) if νσ > 1 or they are
already inMX if νσ = 1.

To finish the proof we observe that given σ : ∆s → LX such that σ
factors through S(`,s−1) but νσ = ` + 1 then it follows by condition iii) in
Proposition 3.2.70 that B(σ) is already contained in S(`,s−1). This together with
previous discussion implies that S(`,s−1) → S(`,s) is MB-anodyne.

We can distill the key upshot of the preceding technical arguments into a
single, simple corollary.

Corollary 3.2.80. For any 2-Cartesian fibration X → ∆n
[ , the square

Xn × (∆n−1)� Xn × (∆n)�

X|∆n−1 X

is homotopy pushout.

The equivalence over a simplex

Having now established the necessary preliminaries, we turn to the proof that
the straightening is an equivalence over the minimally-scaled simplex. With
few exceptions, the arguments from here on out are standard, and follow the
general shape of the analogous arguments given in [Lur09a] and [Lur09b]. We
begin with a lemma, which allows us to more easily apply the straightening to
our homotopy pushout.

Lemma 3.2.81. Consider the inclusion (∆n−1)� → (∆n)� as a morphism in
(Setmb

∆ )∆n
[
. Then for every 0 6 i < n, the induced morphism

ψ : St∆n
[
((∆n−1)�)(i) St∆n

[
((∆n)�)(i)

is an equivalence of marked-scaled simplicial sets.

Proof. To begin, we examine the morphism on underlying marked simplicial
sets. Consider the pushouts

(∆n−1)� ((∆n−1)�).

∆n X

and
(∆n)� ((∆n)�).

∆n Y

and the induced map

φ : Csc[X](i, ∗) Csc[Y ](i, ∗)
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We first note that, since i < n, we have that Csc[X](i, ∗) = C[((∆n−1)�).](i, ∗).
From the definition, we then have that

Csc[X](i, ∗) ∼= N(P({i+ 1, . . . , n− 1}))[

and
Csc[Y ](i, ∗) ∼= N(P({i+ 1, . . . , n}))†

where † indicates the marking in which precisely the non-degenerate morphisms
S → S ∪ {n} are marked.

We note that, on underlying marked simplicial sets, this means that φ can
be identified with the morphism

Csc[X](i, ∗)× {0} Csc[X](i, ∗)× (∆1)].

We will show that this yields an equivalence of marked-scaled simplicial sets by
showing that both scalings are equivalent to the maximal scaling.

We claim that the morphisms

f in : St∆n
[
((∆n)�)(i) (St∆n

[
((∆n)�)(i))]

and
gin : St∆n

[
((∆n−1)�)(i) (St∆n

[
((∆n−1)�)(i))]

areMS-anodyne. To show that f in isMS-anodyne it suffices to apply Lemma 3.2.14.
The argument for gin is similar and left as an exercise. We thus obtain, for any
i < n a commutative diagram

St∆n
[
((∆n−1)�)(i) St∆n

[
((∆n)�)(i)

St∆n
[
((∆n−1)�)(i)] St∆n

[
((∆n)�)(i)]

φ

g ∼ f∼

φ]
∼

Showing that φ is an equivalence of marked-scaled simplicial sets by 2-out-of-
3.

Lemma 3.2.82. Let X → ∆n
[ be a 2-Cartesian fibration, and denote by Xi

the fibre over i. Let St∗ denote the straightening over ∆0. Then the map

ψXi : St∗(Xi) St∆n
[
(X)(i)

is an equivalence of marked-scaled simplicial sets.

Proof. Following [Lur09a, 3.2.3.3], we proceed by induction on n. We have
already shown the case n = 0 in Corollary 3.2.50

By construction, ψn is an isomorphism. For i < n, we get a canonical
commutative diagram

St∆n
[
(X|∆n−1)(i)

St∗(Xi) St∆n
[
(X)(i)

γi

ψXi
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We can identify the upper-left map with ψ
X|∆n−1
i , and so by the inductive

hypothesis, it is an equivalence. It thus suffices for us to show that γi is an
equivalence.

By Corollary 3.2.80, we get a homotopy pushout diagram

Xn × (∆n−1)� Xn × (∆n)�

X|∆n−1 X

in (Setmb
∆ )/∆n

[
. Applying the left Quillen functor St∆n

[
yields a homotopy pushout

diagram
St∆n

[
(Xn × (∆n−1)�) St∆n

[
(Xn × (∆n)�)

St∆n
[
(X|∆n−1) St∆n

[
(X)γ

We have a commutative diagram

St∆n
[
(Xn × (∆n−1)�) St∆n

[
(Xn × (∆n)�)

St∗(Xn)� St∆n
[
((∆n−1)�) St∗(Xn)� St∆n

[
((∆n)�)

where the vertical maps are equivalences of marked-scaled simplicial sets by
Theorem 3.2.17. It thus suffices to note that, by Lemma 3.2.81, the induced
morphism

ψi : St∆n
[
((∆n−1)�)(i) St∆n

[
((∆n)�)(i)

is an equivalence for any i < n.

Before continuing, we fix some notation to ease the coming discussion. We will
in the following theorem denote the straightening-unstraightening equivalence
over the point by

S : (Setmb
∆ )/∆0

[
(Setms

∆ )Csc[∆0
[
]op : U

Proposition 3.2.83. The Quillen adjunction

St∆n
[

: (Setmb
∆ )/∆n

[
(Setms

∆ )Csc[∆n
[

]op : Un∆n
[

is a Quillen equivalence.

Proof. As in [Lur09a, Lem. 3.2.3.2], we see that Un∆n
[
reflects weak equivalences

between the images of fibrant objects. It is thus sufficient to show that the
derived adjunction unit

Id⇒ R(Un∆n
[
) ◦ St∆n

[

is an equivalence. Since R(Un∆n
[
) preserves weak equivalences and St∆n

[
preserves

trivial cofibrations, it is sufficient to check this for fibrant objects.
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Let X → ∆n
[ be a 2-Cartesian fibration, and let

St∆n
[
(X) ∼

F

be a fibrant replacement in (Setms
∆ )Csc[∆n

[
]op . We are thus left to show that the

induced map
X Un∆n

[
(F)

is an equivalence in (Setmb
∆ )/∆n

[
. Since both objects are fibrant, it suffices to

show that this map is a fibrewise equivalence.
We can identify Un∆n

[
(F) with U(F(i)). Using the equivalence of Corol-

lary 3.2.50, we see that the map
Xi U(F(i))

is an equivalence if and only if the adjoint map
S(Xi) F(i)

is an equivalence. However, we can factor this map as

St∆n
[
(X)(i)

S(Xi) F(i)

ψXi

The upper-right map is an equivalence since F was a fibrant replacement, and
ψXi is an equivalence by Lemma 3.2.82. The proposition is thus proven.

Corollary 3.2.84. Consider the scaled simplicial set (∆2)] := Nsc([2]). Then
Quillen adjunction

St∆n
]

: (Setmb
∆ )/∆n

]
(Setms

∆ )Csc[∆n
] ]op : Un∆n

]

is a Quillen equivalence.

Proof. The key point to note is that base change along the cofibration
(∆2)][⊂] → (∆2)]]⊂]

induces a fully faithful inclusion
(Setmb

∆ )◦/∆2
[
→ (Setmb

∆ )◦/∆2
]

and similarly, composition with the induced map Csc[∆2
[ ]→ Csc[∆2

] ] induces a
fully faithful inclusion(

(Setms
∆ )Csc[∆2

] ]
op)◦
→
(
(Setms

∆ )Csc[∆2
[
]op)◦

and so we obtain a commutative diagram(
(Setms

∆ )Csc[∆2
] ]

op)◦ (Setmb
∆ )◦/∆2

]

(
(Setms

∆ )Csc[∆2
[
]op
)◦

(Setmb
∆ )◦/∆2

[

Un

Un
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of simplicial categories.
The remainder of the proof is, mutatis mutandis, that of [Lur09b, Prop.

3.8.7].

3.2.6 Straightening in general

We now prove the main theorem of this paper.

Theorem 3.2.85. Let S ∈ Setsc
∆ be a scaled simplicial set, and let φ : Csc[S]→

C be an equivalence of Set+
∆-enriched categories. The Quillen adjunction

Stφ : (Setmb
∆ )/S (Setms

∆ )Cop : Unφ

is a Quillen equivalence.

Coupled with the fact, discussed immediately hereafter, that Unφ is a Set+
∆-

enriched functor, this will immediately imply a stronger result — the functor
of Set+

∆-enriched categories of fibrant-cofibrant objects induces an equivalence
of ∞-bicategories.

The argument from here on out is standard, and follows the same path
as [Lur09b, Section 3.8]. Our first aim will be to show that, for any scaled
simplicial set S, the functor

Unφ : (Setms
∆ )Csc[S]op (Setmb

∆ )/S
is, in fact, an Set+

∆-enriched functor.
The Set+

∆-enrichment on Unφ is given as follows. Let F,G : Cop → Setms
∆ be

Set+
∆-enriched functors, and K ∈ Set+

∆. A map
K Map+(F,G)

is equivalently a map F ⊗K → G, where (F ⊗K)(s) := F(s)×K]. We then
have a natural map

Unφ(F)×K]⊂] → Unφ(F)× Un∗(K])
Where the second component is induced by the natural transformation α :
St∗ ⇒ L. We can then write down a natural composite map

Unφ(F)×K]⊂] → UnS(F)× Un∗(K])→ Unφ(F ⊗K)→ Unφ(G)

Which is equivalently a map K → Mapth(UnS(F),UnS(G)). The naturality
guarantees that this defines a map of simplicial sets

Map+(F,G)→ Mapth(Unφ(F),Unφ(G)).
Similarly, since the composition maps in both cases are defined via the diagonal
∆n → ∆n × ∆n, naturality ensures that this defines an enriched functor. A
wholly analogous argument shows that UnS can also be viewed as a simplicially-
enriched functor.

Proof (of Theorem 3.2.85). The proof is now nearly identical to that of [Lur09b,
Prop. 3.8.4]. The argument hangs on the claim that the functor

F : (Setsc
∆ )op Cat∆

S ((Setms
∆ )C

sc[S]op

f )[W−1
S ]
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sends pushouts along cofibrations to homotopy pullbacks, and sends transfinite
composites of cofibrations to homotopy limits, which follows from the argument
given in loc. cit.

Corollary 3.2.86. Let S ∈ Setsc
∆ be an ∞-bicategory. The Set+

∆-enriched
functor UnS induces an equivalence of ∞-bicategories

Nsc
((

(Setms
∆ )Csc[S]op)◦) Nsc

((
(Setmb

∆ )/S
)◦)

.

Proof. This follows immediately from Theorem 3.2.17, Theorem 3.2.85, and
[Lur09a, A.3.1.10].

One final step is left: to interpret this result internally to marked-scaled
simplicial sets.

Definition 3.2.87. The Set+
∆-enrichment on Setms

∆ equips the full subcategory
(Setms

∆ )◦ of fibrant-cofibrant objects with the structure of a fibrant Set+
∆-enriched

category. We denote by �icat∞ := Nsc((Setms
∆ )◦) the homotopy-coherent scaled

nerve of this Set+
∆-category (considered as a scaled simplicial set). We refer to

�icat∞ as the ∞-bicategory of ∞-bicategories.
Similarly, for S ∈ Setsc

∆ , we denote by 2�art(S) := Nsc
((

(Setmb
∆ )/S

)◦)
the

∞-bicategory of 2-Cartesian fibrations over S.

Remark 3.2.88. Formally, considering Setms
∆ as the category of all U-small

marked-scaled simplicial sets for some Grothendieck universe U, the marked-
scaled simplicial set �icat∞ is no longer small. We thus resort to fixing a new
Grothendieck universe V in which U, and thus �icat∞, becomes V-small.

Proposition 3.2.89. Let C be a small Set+
∆-enriched category, S a small scaled

simplicial set, φ : Csc[S]→ C an equivalence of Set+
∆-enriched categories, and A

a combinatorial, Set+
∆-enriched model category. Endow AC with the projective

model structure. Then the functor

Nsc((AC)◦)→ Fun(S,Nsc(A◦))

is a bicategorical equivalence of scaled simplicial sets.

Proof. The proof is that of [Lur09a, Prop. 4.2.4.4]. The only thing that changes
is the exchange of Set∆ for Setms

∆ , and as both of these are excellent model
categories, no further emendation is necessary.

Corollary 3.2.90. Let S ∈ Setsc
∆ . There is an equivalence of ∞-bicategories

2�art(S) ' Fun(Sop,�icat∞).

3.3 The Relative 2-Nerve

There is a special case of most ∞-categorical Grothendieck constructions in
which the computation of the right adjoints can be greatly simplified. When the
base is suitably strict, it is possible to define a relative nerve, which computes
the Grothendieck construction of a functor. The aim of this appendix is to
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provide a relative nerve construction which takes as input a Set+
∆-enriched

functor
F : Cop Setms

∆

and yields as output a 2-Cartesian fibration �C(F ) → Nsc(C). In form, this
relative nerve will actually seem slightly more complicated than the associated
straightening functor. However, it will enable us to more easily make the
comparison with the strict 2-categorical relative nerve construction of [Buc14].
The particular virtue of our relative 2-nerve construction in this regard is that,
given a strict 2-functor

F : Cop 2Cat,

we can compute the relative 2-nerve in terms of strict 2-functors into C and
F (x), without first passing to simplicial sets.

In our previous papers [AGDS20] and [AGS22], we defined two variants of
the relative 2-nerve, which provided ∞-bicategories fibred in (∞, 1)-categories.
In this section, we will upgrade the later of these constructions to provide the
desired �C.

Remark 3.3.1. Our choice of notation �C for the relative 2-nerve of a functor
F : Cop → Setms

∆ does in fact collide with the choice of notation in [AGDS20]
and [AGS22]. An ideal choice of notation would involved a superscript �εC where
ε denotes one of the four variances for bicategorical fibrations. We will use this
rather abusive notation to improve readibility since we will only consider the
outer Cartesian variance.

Definition 3.3.2. Given a totally ordered set I, the 2-category OIi → has

• Objects given by subsets S ⊆ I such that min(S) = i.

• Each mapping category OIi →(S, T ) is a poset whose objects U : S T

are given by subsets U ⊆ I such that

min(U) = max(S), max(U) = max(T ), S ∪ U ⊆ T,

ordered by inclusion.

• Composition is given by union.

These lax slice categories piece together into a 2-functor

(OI)op 2Cat
i OIi →

so that, in particular for any J ⊂ I with i = min(I) and j = min(J), we have
2-functors

ωI,J : OI(i, j)× OJj → OIi →

given on objects by the union of sets. It is an easy check that these functors
are injective on objects, 1-morphisms, and 2-morphisms.

The 2-categories OIi → play a central role in our relative nerve construction.
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Construction 3.3.3. Let

F : Cop Setms
∆

be a Set+
∆-enriched functor. We define a marked-biscaled simplicial set �C(F )

as follows. An n-simplex ∆n → �C(F ) consists of

• A simplex σ : ∆n
[ → Nsc(C).

• For every ∅ 6= I ⊂ [n] with min(I) = i, a map of marked-scaled simplicial
sets

θI : Nms(OIi →)
[ F (σ(i))

such that, for every ∅ 6= J ⊂ I ⊂ [n] with min(J) = j and min(i) = i, the
diagram

Nms(OI(i, j))× Nms(OJj →) Nms(OIi →)

Nms(C(σ(i), σ(j)))× F (σ(j)) F (σ(i))

N(σ)×θJ θI

F (−)

commutes.

We then define markings and scalings on ρC(F ).

• A 1-simplex ∆1 → �C(F ) is marked if the corresponding map θ[1] :
Nms(O1

0 →

)→ F (σ(i)) descends to a map

Nms(O1
0 →

)] F (σ(0)).

• A 2-simplex ∆2 → �C(F ) is lean if the corresponding map

Nms(O2
0 →

) F (σ(0))

descends to a map
Nms(O2

0 →

)] F (σ(0)).

• A 2-simplex ∆2 → �C(F ) is thin if and only if it is lean and the corre-
sponding 2-simplex σ : ∆2 → Nsc(C) is thin.

Note that there is a canonical forgetful functor

�C(F ) Nsc(C)
(σ, {θI}) σ

which sends thin triangles to thin triangles.

Definition 3.3.4. The relative bicategorical nerve over a 2-category C is the
functor

�C : (Setms
∆ )C

op
(Setmb

∆ )/Nsc(C)

F �C(F )
By the adjoint functor theorem, �C admits a left adjoint, which we will denote
by

�C : (Setmb
∆ )/Nsc(C) (Setms

∆ )C
op
.
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Lemma 3.3.5. The functor �C preserves trivial fibrations.

Proof. We need only check that the lifting problems

A �C(F )

B �C(G)

f �C(µ)

have solutions when µ : F ⇒ G is a projective (pointwise) trivial fibration and
f : A→ B is a generating cofibration of marked-biscaled simplicial sets. The
proof is virtually identical to the proof of [AGS22, Prop. 3.0.11].

Corollary 3.3.6. The functor �C preserves cofibrations.

3.3.1 Identifying �On

Let C be a 2-category. Then we can define a 2-functor

Cop 2Cat, c Cc →

that maps a 1-morphism f : c → d to the functor f ∗ : Cd → → Cc → given by
precomposition with f . It easy to verify that given a 2-morphism α : f ⇒ g we
can construct a natural transformation f ∗ ⇒ g∗ whose component at an object
u : d→ x is given by α ∗ u. Passing to Set+

∆-enriched categories we thus obtain,
for any strict 2-category C, a Set+

∆-enriched functor

C− → : C
op Setms

∆ , c Nms(Cc →)

Definition 3.3.7. In the particular case where C = On, we will denote the
functor constructed above by

On : (On)op Setms
∆

Notation. The canonical normal lax functor ξn : [n] → On gives rise to an
inclusion of scaled simplicial sets which we denote by

pn : ∆n
[ Nsc(On).

We will equip ∆n with the minimal marking and lean scaling, and conventionally
view pn as an object in

(
Setmb

∆

)
/Nsc(On)

.

Lemma 3.3.8. Let F : (On)op → Setms
∆ be a Set+

∆-enriched functor. There is a
natural bijection

NatCop(On, F ) ∼= Hom(Setmb
∆ )

/Nsc(On)
(pn, �O(F )).

Consequently, we have an equivalence of Set+
∆-enriched functors �On(pn) ∼= On.

Proof. Follows immediately from unwinding the definitions.

Corollary 3.3.9. Denote by

p]1 : (∆1)] Nsc(O1),
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(p2)[⊂] : (∆2)[[⊂] Nsc(O2), and

(p2)] : (∆2)[] Nsc(O2)]
the obvious decorated versions of the pn. Then

�O1(p]1) : (O1)op (Setms
∆ ), i Nms(O1

i →

)]

�O2((p2)[⊂]) : (O2)op (Setms
∆ ), i Nms(O2

i →

)], and

�O2((p2)[⊂]) : (O2)op
] (Setms

∆ ), i Nms(O2
i →

)†]
where † denotes the marking in which the unique morphism 02→ 012 is marked.

Proof. All identifications except the last are immediate from the definitions.
The additional marking in the final case follows from the necessity that the
functor have source O2

] .

Notation. We will denote the three functors above by (O1)], (O2)[⊂], and
(O2)], respectively.

3.3.2 Identifying StOn

Our comparison will be with a very specific version of the straightening functor:
Notation. For a 2-category C, we view C as a Set+

∆-enriched category. The
counit εC : Csc(Nsc(C))→ C is an equivalence of Set+

∆-enriched categories. We
will denote by

StC : (Setmb
∆ )/Nsc(C) (Setms

∆ )Cop

the relative straightening functor StεC .
We now unravel the definitions to characterize StOn(pn). By construction,

the underlying functor to Set+
∆ is given by the Yoneda embedding on the

Set+
∆-enriched category

On
∐

Csc(Nsc(On))
Csc(Nsc(On))

∐
Csc(∆n

[
)
Csc((∆n

[ ).)

We note that On = Csc(∆n
[ ), and by the triangle identities for the adjunction

Csc a Nsc, we see that the induced map

Csc(∆n
[ )→ On

is simply the identity. The pushout above thus collapses to simply Csc((∆n
[ ).).

We can then describe the marked-scaled simplicial set StOn(∆n
[ )(i) as the poset

Ln[ (i) described in Definition 3.2.11. To ease the notation let us denote Ln[ (i)
simply by Lni .
Construction 3.3.10. We construct a morphism of marked-scaled simpliial
sets ηni : Lni → Nms(Oni →) whose underlying map of simplicial sets is given by
(the nerve of) a normal lax functor defined as follows:

• On objects, S 7→ S.

• On morphisms S ⊂ T is sent to the mophism {max(S),max(T )} : S → T .
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The fact that, for S ⊂ T ⊂ V , we have

{max(S),max(V )} ⊂ {max(S),max(T ),max(V )}

gives us our compositors. The fact that if S = T , we have {max(S),max(T )} =
{max(S)} gives strict unitality. Since both marked-scaled simplicial sets carry
the minimal marking we only need to check that ηni preserves the scaling. Let
S0 ⊂ S1 ⊂ S2 be a 2-simplex in the source. If there are i, j such that max(Si) =
max(Sj), then it follows immediately that {max(S0),max(S1),max(S2)} =
{max(S0),max(S2)}.

The following lemma follows immediately from our definitions.

Lemma 3.3.11. The maps ηni define natural transformations of Set+
∆-enriched

functors ηn : StOn(∆n
[ )→ On.

Proposition 3.3.12. The morphisms ηni : StOn(∆n
[ )(i) → On(i) are equiva-

lences of marked-scaled simplicial sets.

We will prove this proposition in a series of lemmata. Since both simplicial
sets are equipped with the minimal marking, it suffices to show that the map
is an equivalence on underlying scaled simplicial sets by Theorem 2.4.13. Since
On(i) = Nsc(Oni →), it suffices to show that the induced map

ξni : Csc[(StOn(∆n
[ ))(i)] Oni →

is an equivalence of Set+
∆-enriched categories. Since this map is clearly bijective

on objects, it suffices to check that the induced morphisms on mapping spaces
are equivalences.

In both cases, the mapping spaces are nerves of posets.

• For S, T ∈ Oni →, the mapping space On
i (S, T ) is the poset of chains U ⊂

[n] such that min(U) = max(S), max(U) = max(T ), and S ∪ U ⊂ T .
Equivalently, this is the poset OT (max(S),max(T )), equipped with the
minimal marking.

• For S, T ∈ Qn
i , the mapping space Csc[(StOn(∆n

[ ))(i)](S, T ) is the poset of
chains

S ⊂ S1 ⊂ · · · ⊂ Sk ⊂ T

in Lni . An inclusion ~S ⊂ ~U is marked if and only if, for every Si ⊂ Si+1
in ~S, every U` ∈ ~U between Si and Si+1, either max(U`) = max(Si) or
max(U`) = max(Si+1). Notice that T \ S could have elements lower than
max(S).

The map
ξni : Csc[(StOn(∆n

[ ))(i)](S, T )→ On
i (S, T )

sends a chain S ⊂ S1 ⊂ · · · ⊂ Sk ⊂ T to the chain

ξni (~S) =
⋃
V ∈~S

{max(V )}.
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Definition 3.3.13. For ease of notation, we define

Lni := Csc[(StOn(∆n
[ ))(i)]

For any S, T ∈ Lni , we define a full subposet Bni (S, T ) ⊂ Lni (S, T ) consisting of
chains

S ⊂ [T, s1] ⊂ · · · ⊂ [T, sk] ⊂ T

where we define for every s ∈ T the subset [T, s] = {r ∈ T | r 6 s}.

Lemma 3.3.14. An inclusion ~S ⊂ ~U represents a marked morphism in
Lni (S, T ) if and only if its image under ξni is degenerate.

Proof. Immediate from the definition.

Lemma 3.3.15. The restriction of the map ξni
ξni : Bni (S, T ) OT (max(S),max(T ))

is an equivalence of marked simplicial sets.

Proof. We define a map

γ : OT (max(S),max(T )) Bni (S, T )

which sends max(S) < s1 < · · · < sk < max(T ) to the chain

S ⊂ [T, s1] ⊂ · · · ⊂ [T, sk] ⊂ T.

We then note that ξni ◦γ = id. We claim that γ ◦ ξni 6 id, which yields a marked
homotopy γ ◦ ξni to id. To prove the claim we note that γ ◦ ξni (~S) is given by ~S
if S1 6= [T, s0] with s0 = max(S) or by ~S \ [T, s0] in which case the existence of
the marked morphism γ ◦ ξni (~S)→ ~S follows immediately.

Lemma 3.3.16. The inclusion ι : Bni (S, T ) → Lni (S, T ) is an equivalence of
marked simplicial sets.

Proof. Let sj ∈ T . We define Ls ⊂ L as the full subposet consisting of those
chains

~S = S ⊂ S1 ⊂ · · · ⊂ Sk ⊂ T,

such that Si = [T, si] whenever si > sj. Note that if sj 6 s0 = max(S) then it
follows that Ls = B. Let TS = {sj ∈ T | sj > s0} and consider a filtration

B = Ls0 ⊂ Ls1 ⊂ · · · ⊂ Lsm ⊂ Lsm+1 = L, with sm = max(T )

Our goal is to show that each step in the filtration is a weak equivalence of
marked simplicial sets. We denote by ιj : Lj → Lj+1 for j = 0, . . . , sm. Let
~S = S ⊂ S1 ⊂ · · · ⊂ Sk ⊂ T be an object of Lj+1 we construct a new chain
πj(~S) by replacing each S` with s` > sj with its corresponding [T, s`]. This
definition yields a functor

πj : Lj+1 Lj, ~S πj(~S)

such that πj ◦ ιj = id. Let ζj = ιj ◦ πj. We construct a functor

θj : Lj+1 Lj+1
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that appends to each chain ~S ∈ Lj+1 the object [T, sj] if there exists some
S` ∈ ~S such that max(S`) = sj or leaves the chain untouched otherwise. Note
that if sj = sm then this functor is the identity. We also observe that we have
a natural transformation id 6 θj and ζj 6 θj whose components are marked. It
follows that each ιj is a weak equivalence and consequently so is ι.

Proof (of Proposition 3.3.12). We simply apply Lemma 3.3.16, Lemma 3.3.15,
and 2-out-of-3.

Turning now to the cases (p1)], (p2)[⊂], and (p2)], we see that the corre-
sponding straightenings are obtained from StO1(p1) and StO2(p2) by maximally
marking or maximally scaling the values of the functors, respectively. We then
have the following

Corollary 3.3.17. The transformations ξn, n = 1, 2 induce equivalences of
enriched functors

(ξ1)] : StO1(p]1) (O1)],
(ξ2)[⊂] : StO2((p2)[⊂]) (O2)[⊂], and

(ξ2)] : StO2
]
((p2)]) (O2)]

Proof. The morphism (ξ1)] is an isomorphism, and it is a quick check to extend
the previous arguments to cover the case (ξ2)[⊂]. One then notes that, for each
i ∈ O2, the i-component of (ξ2)] is a pushout of the i-component of (ξ2)[⊂]
along the inclusion (∆1)[ → (∆1)], and thus is an equivalence.

Remark 3.3.18. As in [AGDS20, Prop. 4.1.1] any 2-functor f : C→ D yields
diagrams

(Setms
∆ )Dop (Setms

∆ )Cop

(Setmb
∆ )/Nsc(D) (Setmb

∆ )/Nsc(C)

f∗

�D �C

Nsc(f)∗

and
(Setms

∆ )Dop (Setms
∆ )Cop

(Setmb
∆ )/Nsc(D) (Setmb

∆ )/Nsc(C)

f!

�D �C

Nsc(f)!

which commute up to natural isomorphism.

Theorem 3.3.19. There exists a unique family of natural weak equivalences

ξC(X) : StC �C

indexed by pairs (C, X) consisting of a 2-category C and X ∈ (Setmb
∆ )/Nsc(C)

with the following properties.
1. On the maps pn for n > 0, p]1, (p2)[⊂], and (p2)], the transformations
ξC(X) coincide with the transformations ξn from Proposition 3.3.12 and
Corollary 3.3.17.
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2. For every map g : X → Y in (Setmb
∆ )Nsc(C), the diagram

StC(X) �C(X)

StC(Y ) �C(Y )

StC(g)

ξC(X)

�C(g)

ξC(Y )

commutes

3. For every 2-functor f : C→ D, the diagram

f!StC(X) f!�C(X)

StD(f!X) �C(f!X)

f!ξ
C(X)

∼= ∼=

ηC(f!X)

commutes.
Proof. This is identical to the proofs of [AGDS20, Prop 4.3.1 and 4.3.1].

Corollary 3.3.20. The adjunction

�C : (Setmb
∆ )/Nsc(C) (Setms

∆ )Cop : �C

is a Quillen equivalence.

Proof. Since �C preserves cofibrations, and is naturally weakly equivalent to
StC, it preserves trivial cofibrations, and thus is left Quillen. Moreover, the
left-derived functors of StC and �C agree, and the former is an equivalence.

3.3.3 Comparison to the strict case

We now establish a comparison result with the strict 2-categorical case, as
worked out by Buckley in [Buc14]. We will heavily leverage two facts to ease
the proof of this comparison results

• For a strict 2-functor F : Cop → 2Cat, we can describe �C(F ) entirely in
terms of 2-functors into C and F (x), for x ∈ C.

• The Duskin 2-nerve N2(C) of any strict 2-category C is 3-coskeletal.
Making use of these two facts allows us to construct a comparison map by
checking a finite number of cases by hand. Once the comparison is established,
we can work with strict 2-categories to prove that it is a fibre-wise equivalence.

Let us now introduce the 2-categorical Grothendieck construction we wish
to compare with. Appropriately dualizing Buckley’s construction3, the strict
2-categorical Grothendieck construction of a 2-functor

F : Cop 2Cat

is the 2-category El(F ) which has
3Buckley defines a construction that takes as input a functor F : C(op,op) → 2Cat where both 1- and

2-morphisms have been reversed.
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• Objects: pairs (x, x−) with x ∈ C and x− ∈ F (x).

• Morphisms:
(f, f−) : (x, x−) (y, y−)

where f : x→ y in C, and f− : x− → F (f)(y−).

• 2-Morphisms: (α, α−) : (f, f−)⇒ (g, g−), where α : f ⇒ g is a 2-morphism
in C, and α− fits in the diagram

F (f)(y−)

x−

F (g)(y−)

F (α)y−

f−

g−

α−

The resulting functor El(F )→ C is a 2-Cartesian fibration, where

• (f, f−) is Cartesian if f− is an equivalence, and

• (α, α−) is coCartesian if α− is an isomorphism.

Our aim is to prove the following

Theorem 3.3.21. Let
F : C(op,−) 2Cat

be a 2-functor, and let F̃ denote the composite

C(op,−) 2Cat Setms
∆

Then there is an equivalence

(N2(El(F )),M, T ⊂ C) �C(F̃ )

Nsc(C)

'

of 2-Cartesian fibrations over Nsc(C).

We begin by showing there is a map in one direction. For ease of notation,
given a morphism φ : x → y in C, we will write φ∗ := F (φ). We will employ
the same convention for 2-morphisms.

Since the 2-nerve of a 2-category is 3-coskeletal, it suffices to define a map

sk3(�C(F )) N2(El(F ))

which is compatible with markings and scalings.
On 0- and 1-simplices, the data specified by the simplices in both construc-

tions is identical. A 2-simplex in �C(F ) consists of the following data:
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• A 2-simplex
x1

x0 x2

φ1,2φ01

φ02

α

• Three 1-simplices
f12 : x1

− φ∗12(x2
−)

f01 : x0
− φ∗01(x1

−)
and

f02 : x0
− φ∗02(x2

−)

• A diagram
φ∗01(x1

−) φ∗01φ
∗
12(x2

−)

x0
− x2

−

φ∗01f12

f02

f01 (α∗)
x2
−µ

	

	

in C.

These data are identical to the data of a 2-simplex in El(F ). It is immediate
that markings and scalings coincide under these correspondences.

Finally, we note that 3-simplices in El(F ) are simply compatibility conditions
on 2-morphisms. It is a long but easy check to see that, given a 3-simplex in
�C(F ), the corresponding 2-simplices in El(F ) are compatible. We have thus
shown

Proposition 3.3.22. There is a morphism of 2-Cartesian fibrations

τ : �C(F ) El(F ).

The final ingredient in our proof will involve a comparsion of 2-functors.

Definition 3.3.23. We denote by πn : On0 → → On the canonical projection.
This sends S 7→ max(S), and sends a morphism U : S → T to the set U.

Given a 2-category C, we call a 2-functor

f : On0 → → C

peripatetically constant if it sends every morphism U : S → T where max(S) =
max(T ) to an identity, and every 2-morphism between such morphisms to an
identity as well. We denote the set of peripatetically constant functors On0 → → C
by

HomPC(On0 →,C).
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Lemma 3.3.24. For any n > 0, the 2-functor πn : On0 → → On induces a
bijection

(πn)∗ : Hom(On,C) HomPC(On0 →,C)∼=

Proof. We can define a strict 2-functor

sn : On On0 →

j [0, j]

which acts as the identity on 1- and 2-morphisms. Since πn ◦ sn = id, we have
(sn)∗ ◦ (πn)∗ = id, and thus, πn∗ is injective. It is immediate from unraveling
the definitions that the image of (πn)∗ is precisely the peripatetically constant
functors.

Corollary 3.3.25. Let D be a 2-category, and denote by ∗ the terminal 2-
category. There is an isomorphism

�∗(D) ∼= Nsc(D).

Proof. An n-simplex in �∗(D) consists of 2-functors

θI : OIi → D

for every non-empty I ⊂ [n], such that for every J ⊂ I ⊂ [n], the diagram

OI(i, j)× OJj → OIi →

∗ × D D

commute. Such functors are uniquely determined by the map θ[n] : On0 → → D,
and the commutativity of the diagrams above is equivalent to requiring that
θ[n] be peripatetically constant.

Consequently, we obtain a bijection on sets of n-simplices Nsc(D)n ∼= (�∗(D))n
by pulling back along πn. The corollary follows from checking directly that
these bijections respect face and degeneracy maps.

Proof (of Theorem 3.3.21). By Proposition 2.2.39, it will suffice for us to show
that this morphism is an equivalence on fibres. By construction, the fibre of
El(F ) over x ∈ C is precisely the 2-category F (x), and the fibre of �C(F ) over
x is also precisely �x(F (x)) ∼= Nsc(F (x)).

It is a quick explicit check that, on 0-,1-,2-, and 3-simplices, the map
τ : �x(F (c))→ Elx(F (x)) ∼= Nsc(F (x)) agrees with the isomorphism of Corol-
lary 3.3.25. The theorem then follows from 3-coskeletalness.
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Chapter 4

Marked colimits and higher
cofinality

In previous work [AG22], [AGS22] we have studied 2-categorical notions of
(co)limits in ∞-bicategories. In this section we will prove the cofinality con-
jecture as stated in [AGS22]. Let us remark that in previous work we only
considered specific instances of colimits:

• In [AGS22] we considered diagrams F : D† → A where both D and A are
strict 2-categories and D† comes equipped with a collection of marked
edges.

• In [AG22] we considered diagrams F : D† → � where D† is an∞-category
equipped with a collection of marked edges and � is an ∞-bicategory.

The general notion of marked colimit has been extensively studied by Gagna,
Harpaz and Lanari in [GHL21a]. It was noted by the authors that their notion
coincides with ours in the cases we studied as shown in [GHL21a, Remark
5.2.12.]. Moreover, the notion of cofinality studied in [AG22] also agrees with
the definition of cofinal functor given in [GHL21a]. However, in the previous
document no computational criterion is given to determine whether a functor of
marked∞-bicategories f : �† → �† is cofinal. We will provide such criterion as
the main result in this section extending the well-known conditions of Quillen’s
Theorem A.

Recall that in [GHL21a] the authors define in Section 4.1 a marked-scaled
version of the Gray product. Given a marked scaled simplicial set K and a
∞-bicategory � it follows that we have a∞-bicategory Fungr(K,�) of functors
and partially lax natural transformations where the level of laxness is specified
by the marking of K (see Remark 4.1.13 in [GHL21a]). Following their notation
we will denote the mapping ∞-category of Fungr(K,�) by Natgr

K(−,−).

Remark 4.0.1. The theory of marked colimits comes in two variances: inner
and outer colimits. In this document we will only study outer (marked) colimits
which we will simply call marked colimits.

Definition 4.0.2. Let K† be a marked scaled simplicial set and let F : K → �
be a functor of scaled simplicial sets where K denotes the underlying scaled
simplicial set of K†. The outer marked colimit of F denoted by colim†K F is

171
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an object of � corepresenting the functor1

Natgr
K(F, cK(−)) : � �at∞, a Natgr

K(F, a)

where a : K → � is the constant functor with value a ∈ �.

4.0.1 The free 2-Cartesian fibration

Throughout this section, we fix an ∞-bicategory �, and aim to construct,
for each functor of ∞-bicategories p : � → �, a 2-Cartesian fibration F(p) :
F(�)→ �. We will characterize this fibration as the free 2-Cartesian fibration
on p.

To construct this 2-Cartesian fibration, we will make use of the Gray tensor
products constructed in [GHL20, §2.1] and [GHL21a, §4.1]. To this end, we
briefly recall the definitions we will need from [GHL20].

Definition 4.0.3. Let X, Y ∈ Setsc
∆ . We define the Gray product X ⊗ Y to be

the scaled simplicial set with underlying simplicial set X ×Y , where we declare
a 2-simplex (σX , σY ) to be scaled if and only if the following two conditions
are both satisfied

• (σX , σY ) ∈ TX × TY .

• Either the image of σX degenerates along ∆{1,2} or σY degenerates along
∆{0,1}.

Given scaled simplicial sets X and Y , we define the Gray functor category
Fungr(X, Y ) by the adjunction

HomSetsc
∆

(S,Fungr(X, Y )) ∼= HomSetsc
∆

(X ⊗ S, Y ).

There is a dual version, defined by replacing X ⊗S by S⊗X, which we denote
by Funopgr(X, Y ).

Proposition 4.0.4. Let � an∞-bicategory. Then the map ev0 : Fungr(∆1,�)
� is a 2-Cartesian fibration. The collection of Cartesian edges, thin triangles,
and lean (coCartesian) triangles can be described as follows:

• An edge represented by a map e : ∆1 ⊗ ∆1 → � is Cartesian if and
only if it factors through ∆1 ×∆1 and the restriction to ∆{1} ×∆1 is an
equivalence in �.

• A triangle represented by a map σ : ∆1 ⊗∆2 → � is lean if and only if
its restriction to ∆{1} ×∆2 is thin in �.

• A triangle represented by a map σ : ∆1 ⊗∆2 → � is thin if and only if it
is lean and its restriction to ∆{0} ×∆2 is thin.

Proof. Since, over an ∞-bicategory, the definition of 2-Cartesian we provided
in [AGS22I] coincides with the notion of outer 2-Cartesian fibration from
[GHL21b], this follows immediately from [GHL21b, Thm 2.2.6].

We can leverage this definition to give an extension of the Gray product,
which more fully captures the decoration in this case.

1see section 1.3 for a definition of the functor cK in the context of ∞-categories
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Definition 4.0.5. Let X ∈ Setmb
∆ and denote by X̃ its underlying scaled

simplicial set. We define ∆1⊗̂X ∈ Setms
∆ extending ∆1 ⊗ X̃ by declaring

• A 1-simplex (σ1, σX) is marked if it is degenerate, or if σ1 is degenerate
on {1}, and σX is marked in X.

• A 2-simplex (σ1, σX) is thin if any of the following conditions hold.

– The simplex (σ1, σX) is thin in ∆1 ⊗ X̃.
– The simplex σX is lean in X and σ1(1→ 2) is degenerate on 1.
– The simplex σX is lean in X, σX(0 → 1) is marked in X and the
simplex σ1 is of the form 0→ 0→ 1.

For X, Y ∈ Setms
∆ , we can then define Funĝr(∆1, Y ) ∈ Setmb

∆ via the adjunction

HomSetmb
∆

(S,Funĝr(∆1, Y )) ∼= HomSetms
∆

(∆1 ⊗ S, Y ).

Remark 4.0.6. ForX = (X,MX , TX ⊂ CX), we will denote by {0}⊗̂X the full
MS simplicial subset of ∆1⊗̂X corresponding to {0} ×X. This is isomorphic
to the MS simplicial set (X, [, TX). Similarly, we denote by {1}⊗̂X the MS
simplicial set (X,MX , CX).

We can then define the free 2-Cartesian fibration.

Definition 4.0.7. Let p : � → � be a functor of ∞-bicategories. Denote
by �\ = (�,MX , TX ⊂ TX) the associated MB simplicial set in which the
equivalences are marked. We define an MB simplicial set F(�)\ as the pullback

F(�)\ Funĝr(∆1,�)

�\ �

ev1

p

We denote the natural map induced by evaluation at 0 by F(p) : F(�)\ �.

Proposition 4.0.8. Let p : �→ � be a functor of ∞-bicategories. Then

F(p) : F(�)\ �

is a 2-Cartesian fibration

This proposition will follow from a somewhat technical lemma.

Lemma 4.0.9. Let f : A B be an MB-anodyne morphism. Then

∆1⊗̂A
∐
{0}⊗̂A

{0}⊗̂B ∆1⊗̂B

is MS-anodyne.

Proof. As usual, we can check on generating MB-anodyne morphisms. Before
commencing the proof, we will make a preliminary definition. We say that a
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morphism of MS simplicial sets is of type (♥) if it is in the weakly saturated
hull of morphisms of the type described in Lemma 2.4.3. We can now proceed
to perfom our case-by-case analysis.

(A2) We can scale {1}⊗̂∆4 using a pushout of type (MS2). The remaining
2-simplices can be scaled using morphisms of type (♥).

(A5) Is a pushout of type (MS1), a pushout of type (MS5), and a pushout of
type (MS4).

(S1) Is an iterated pushout of type (MS6) and morphisms of type (♥).

(S2) Is an isomorphism.

(S3) Is a pushout along a morphism of type (♥).

(S4) Is a pushout along morphisms of type (MS7) and (♥).

(S5) Is a pushout along morphisms of type (MS8) and (♥).

The remaining three cases are the horn inclusions.

(A1) Since no morphisms are marked on either side and the lean and thin
scalings are identical, this is a consequence of [GHL21a, Prop 4.1.9].

(A4) Let us set the notation (∆n)† = (∆n,∆{n−1,n}, [ ⊂ ∆{0,n−1,n}) and let us
similarly define (Λn

n)† . First we will define an order for the simplices
of maximal dimension in ∆1⊗̂(∆n)†. Let θε : ∆n+1 → ∆1⊗̃(∆n)† for
ε ∈ {0, 1} and let νθε be the first element in ∆n+1 such that the value of
θε at νθε has the first coordinate equal to 1. We say that θ1 < θ2 if and
only if νθ1 < νθ2 . We further observe every simplex of maximal dimension
is uniquely determined by the value νθ. Consequently we will denote by
θi for i ∈ {1, 2, . . . , n+ 1} the unique simplex of maximal dimension that
has νθi = i. We can produce now a filtration

∆1⊗̂(Λn
n)† → Yn+1 → Yn → · · · → Y2 → Y1 = ∆1⊗̃(∆n)†

where Yj is the full MS subsimplicial set of ∆1⊗̃(∆n)† containing the
simplices of Yj+1 in addition to the simplex θj. It is an straightforward
to see that the first map is a pushout along the inner-horn inclusion
Λn+1
n → ∆n+1. Since the edge n− 1→ n is marked in (∆n)† it follows that

the triangle {n− 1, n, n+ 1} is thin in θn+1. The rest of the morphisms
are in the weakly satured hull of morphisms of type (MS4). Each map
Yj+1 → Yj is obtained precisely after taking two pushouts of type (MS4).
First we had the face missing j − 1 of θj and then we add the whole
simplex missing.

(A3) The argument here is precisely dual to the previous case, replacing ‘marked
edge” with “degenerate edge” and “(MS4)” with “(MS3)”. Note that we
also need to reverse the order in which the add the simplices of maximal
dimension that are missing.
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Proof (of 4.0.8). Given a lifting problem

A F(�)\

B �

f

where f is MB-anodyne, we need to find a diagram

{1}⊗̂B �

∆1⊗̂B �

p

extending the diagram

{1}⊗̂A �

∆1⊗̂A ∐
{0}⊗̂A

{0}⊗̂B �

p

defined by the lifting problem. We first note that, since {1}⊗̂A→ {1}⊗̂B is,
in particular, MS-anodyne, we can solve the lifting problem on the bottom. It
thus remains for us to solve the extension problem

{1}⊗̂B ∐
{1}⊗̂B

∆1⊗̂A ∐
{0}⊗̂A

{0}⊗̂B �\

∆1⊗̂B

However, the morphism on the left fits into a composite.

∆1⊗̂A ∐
{0}⊗̂A

{0}⊗̂B {1}⊗̂B ∐
{1}⊗̂B

∆1⊗̂A ∐
{0}⊗̂A

{0}⊗̂B ∆1⊗̂B

where the first morphism is a pushout by an MS -anodyne morphisms, and
the composite is one of the morphisms from Lemma 4.0.9. Consequently, the
morphism on the left is an MS trivial cofibration by 2-out-of-3, and thus the
lifting problem has a solution.

Definition 4.0.10. Let p : �→ � be a functor of ∞-bicategories. We denote
by �d → the fibre of F(p) : F(�)\ � over d ∈ �. Note that Proposition 4.0.8
implies that �d → is an ∞-bicategory.

Remark 4.0.11. Unwinding the definition of �d →, we see that a morphism
from f : d→ p(x) to g : d→ p(y) is given by a diagram

d p(x)

d p(y)

f

p(u)

g
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which, in a strict 2-category, we could view as a diagram

p(x)

d

p(y)

p(u)

f

g

which justifies our notation. We will later see that, for a functor F : C→ D of
strict 2-categories, there is an equivalence of ∞-bicategories

Nsc(Cd →) ' Nsc(C)d →.

connecting our free fibration to more familiar notions.

Remark 4.0.12. Let p : � → � be a functor of ∞-bicategories. There is a
cofibration

γ� : � F(�)\

over �, which sends a simplex ∆n → � to the map ∆1⊗̂∆n → ∆0 ⊗∆n →
�→ �.

To simplify our examination of this map, we provide a way of constructing
‘almost degenerate’ (n+ 1)-simplices in F(�)\ from n-simplices in F(�)\.
Construction 4.0.13. For every 0 6 j 6 n, we define a map

Ej : ∆1 ×∆n+1 ∆1 ×∆n

(m, r)

(m, r) r 6 j

(1, r − 1) r > j

It is easy to check that this map respects scalings, and thus yields Ej : ∆1 ⊗
∆n+1 → ∆1 ⊗ ∆n. Moreover, the induced map {1} × ∆n+1 → {1} × ∆n is
precisely the degeneracy map sj.

Given an n-simplex σ : ∆n → F(�) (possibly having some non-trivial
decorations) defined by φσ : ∆1⊗̂∆n → � and ρσ : {1} ×∆n → �, we define
an (n+ 1)-simplex E∗j (σ) by

∆1 ⊗∆n+1 ∆1⊗̂∆n �

∆n+1 × {1} {1} ×∆n �

Ej φσ

sj ρσ

p

We will call E∗j (σ) the jth extension of σ.
Given a simplex σ : ∆n → F(�) as above, we will denote by `σ0 the corre-

sponding map {1} ×∆n → �.
The following lemmata follow immediately from the definition.

Lemma 4.0.14. Let σ : ∆n → F(�). Then the faces of E∗j (σ) can be written
as follows.



177

• If j = n, and s = n+ 1, then ds(E∗j (σ)) = σ.

• If j + 1 < s 6 n+ 1, then ds(E∗j (σ) = E∗j (ds−1(σ)).

• If 0 6 s < j, then ds(E∗j (σ)) = Ej−1(ds(σ)).

• If s = j + 1, then dj+1(E∗j (σ)) = dj+1(E∗j+1(σ)).

• If s = j and s 6= 0, then dj(E∗j (σ)) = dj(E∗j−1(σ))

• If s = j = 0, then d0(E∗0(σ)) = γ�(d0(`σ0 )).

Lemma 4.0.15. If σ : ∆n → F(�) is degenerate, then for every 0 6 j 6 n,
the jth extension E∗j (σ) is degenerate.

Lemma 4.0.16. Let σ : ∆n−1 → F(�). Then for every 0 6 j 6 n − 1 and
every 0 6 i 6 n, the simplex E∗i (E∗j (σ)) is degenerate.

Theorem 4.0.17. Let p : � � be a functor of ∞-bicategories. Then the
morphism

γ� : �\ F(�)\

is MB-anodyne over �.

Proof. Let us start by defining Z0 to be the subsimplicial set of F(�) consisting
of all of the simplices belonging to �, all of the 0-simplices of F(�) and all of the
possible j-extensions of the 0-simplices. We extend this definition inductively
by defining Zn to consist of all of the simplices of Zn−1, all of the n-simplices
of F(�) and the (n+ 1)-simplices appearing as extensions of n-simplices. We
set the convention Z−1 = X and we fix the notation

γn−1 : Zn−1 Zn.

Observe that since MB-anodyne maps are stable under transfinite composition
it will suffice to show that each γn−1 is MB-anodyne.

We start by analyzing γ−1. Observe that given an object σ : ∆0 → F(�)
we can consider the Cartesian edge E∗0(σ) : ∆1 → F(�). Since the target of
E∗0(σ) is already contained in � it follows that we can add σ by means of a
pushout along a MB-anodyne map. Repeating this process for each object in
F(�) conclude that γ−1 is MB-anodyne.

Now we will tackle the general case for γn−1 with n > 1. Let us pick an order
on the set of non-degenerate n-simplices of F(�) that are not already contained
in Zn−1. For every σ ∈ F(�)n we define Zn−1(σ) as the subsimplicial subset of
Zn containing all of the simplices of Zn−1 in addition to the n-simplices θ 6 σ
and its corresponding extensions. Let suc(σ) be the successor of σ in our chosen
order. We will adopt the convention Zn−1(∅) = Zn−1 and suc(∅) = σ0 is the
first element in our ordering. To show that γn−1 is MB-anodyne it will suffice
to prove that

Zn−1(σ) Zn−1(ρ)
is MB-anodyne where ρ = suc(σ).

The proof will be divided into three cases. First let us assume that for every
1 6 j 6 n all of the faces of E∗j (ρ) are contained in Zn−1(σ) except the faces
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missing j + 1, j. Applying Lemma 4.0.14 for j = 0 yields

dsE
∗
0(ρ) =


E∗0 (ds(ρ)) , if 1 < s 6 n+ 1
d1 (E∗1(ρ)) , if s = 1
γX(d0(`0)), if s = 0.

which shows that all of the faces of E∗0(ρ) are already in Zn−1(σ) except the
1-face. By construction the triangle ∆{0,1,2} is thin in E∗0(ρ), which shows that
we can add the simplex E∗0(ρ) via a pushout along a MB-anodyne map. Let
us denote by V0 the resulting simplicial set Zn−1(σ) → V0 → Zn−1(ρ). Using
Lemma 4.0.14 again, we see that all of the faces of E∗1(ρ) are in V0 except
the 2-face. A similar argument as above shows that we can add E∗1(ρ) in a
MB-anodyne way and thus obtaining a new subsimplicial set that we denote
V1. We can repeat this process until we reach Vn−1. In our final step we observe
that we have a pullback diagram

Λn+1
n+1 ∆n+1

Vn−1 Zn−1(ρ)

E∗n(ρ)

where the last edge of Λn+1
n+1 is 2-Cartesian in F(�) and the triangle ∆{0,n,n+1} is

coCartesian. Therefore we can add E∗n(ρ) using a pushout along a MB-anodyne
map and conclude that Zn−1(σ)→ Zn−1(ρ) is in this case MB-anodyne.

For the second case let us suppose that there exists some 1 6 α 6 n such
that dα (E∗α(ρ)) is already in Zn−1(σ) and that for every j > α we have that
the faces missing j + 1, j in E∗j (ρ) are not contained in Zn−1(σ). We claim that
for every 0 6 k < α the simplex E∗k(ρ) ∈ Zn−1(ρ). One can easily check that

E∗k(ρ) = E∗k(dα (E∗α(ρ))), 0 6 k < α.

In particular, this shows that it will suffice to show that all of the extensions
of dα (E∗α(ρ)) are contained in Zn−1(σ). To provide a proof of this latter claim
we observe that dα (E∗α(ρ)) ∈ Zn−1(σ) if and only at least one of the following
conditions hold:
*) The face dα (E∗α(ρ)) is contained in �.

i) The face dα (E∗α(ρ)) is degenerate.

ii) The face dα (E∗α(ρ)) is the extension of an (n− 1)-simplex.

iii) There exists θ 6 σ, such that dα (E∗α(ρ)) is a face of an extension of θ
If condition *) holds then it is easy to see that all of the possible extensions are
already in Zn−1(σ). Using Lemma 4.0.15 and Lemma 4.0.16 we see that the
claim holds if the conditions i) or ii) are satisfied. Suppose now that condition
iii) holds. We can assume without loss of generality that dα(E∗α(ρ)) = dβ(E∗β(θ)).
A straightforward computation shows that

E∗j (dβ(E∗β(θ))) =

sj(dβ(E∗β(θ))), if j > β

E∗j (θ), if j < β
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so again, the claim holds. We have shown Zn−1(σ) = Vα−1 and thus the previous
argument runs exactly the same way.

The last case to analyze is the degenerate situation where ρ is already in
Zn−1(σ). In this case we need to show that Zn−1(σ) = Zn−1(ρ), i.e. we need to
show that we already have all of the extensions of ρ. Since ρ /∈ Zn−1 and it is
not degenerate it follows that ρ = dβ(Eβ(θ)) for some θ 6 σ. Using the same
reasoning as before we can see that Ek(ρ) ∈ Zn−1(σ) for all 0 6 k 6 n and the
claim follows.

In order to finish the proof there is one last thing we have to take care of in
the filtration, namely, the decorations. We need to show that whenever we add
a marked edge (resp. lean, resp. thin triangle) in our filtration we can add the
decoration to our filtration in a MB-anodyne way. For the marked edges this
essentially an specific case of the proof given in Corollary 4.0.20. We leave the
rest of the decorations as an exercise for the reader.

Remark 4.0.18. The morphism γ� : �\ → F(�)\ we can viewed as the unit
of a bicategorical free-forgetful adjunction between the ∞-bicategory of of
∞-bicategories over � and the ∞-bicategory of 2-Cartesian fibrations over �.
We will not pursue this direction further in this document. A detailed study of
bicategorical adjunctions is part of the research program of the authors and
will appear in future work.

Definition 4.0.19. Let p : � � be a functor of ∞-bicategories. Assume
that � comes equipped with a marking containing all of the equivalences and
denote the resulting marked ∞-bicategory by �†. We define new marking on
F(�) as follows. We declare and edge represented by ∆1 ⊗∆1 → � marked if
and only if it factors through ∆1 ×∆1 and its restriction to ∆{1} ×∆1 factors
through a marked edge in �. We define marked-scaled simplicial F(�)† having
the same lean and thin triangles as F(�)\ but equipped with this new collection
of marked edges.

Corollary 4.0.20. Let p : � � be a functor of ∞-bicategories. Assume
that X comes equipped with a marking (containing the equivalences) and denote
the corresponding marked ∞-bicategory by �†. Then the morphism

�
† F(�)†

is MB-anodyne.

Proof. Let us consider the pushout diagram

� �†

F(�)\ F(�)�

where it follows from Theorem 4.0.17 that the left-most vertical map is MB-
anodyne. To finish the proof we just need to show that the morphism F(�)� →
F(�)† is again anodyne. Let e : ∆1⊗∆1 → � be a marked edge of F(�)†. First
we observe that E∗0(e) is a thin 2-simplex such that d0(E∗0(e)) and d2(E∗0(e))
are marked in F(�)�. It particular it follows that we can marked the edge
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d1(E∗0(e)) using a pushout along a morphism of type (S1). Using a pushout
along a morphism of the type described in [AGS22I, Lem. 3.7] we can mark all
edges in E∗1(e). We conclude the proof after noting that d2(E∗1(e)) = e.

4.0.2 Marked colimits and cofinality

We now turn to our main result of this section, a criterion for higher cofinality.
We will not here recapitulate the theory of higher (co)limits expounded in
[GHL21a], but see Remark 4.0.22 for details on the connection with (∞, 2)-
categorical colimits.

Definition 4.0.21. Let X†, Y † be a pair of marked-scaled simplicial sets and
consider a marking preserving functor, f : X† → Y †. We say that f is a marked
cofinal functor if the associated functor of marked-biscaled simplicial sets

f : (X,EX , TX ⊂ ]) (Y,EY , TY ⊂ ])
is a weak equivalence in model structure of MB simplicial sets over Y .

Remark 4.0.22. The theory of marked colimits in ∞-bicategories was inde-
pendently developed by Berman in [Berm21], the present author in [AGDS20]
and [AG22], and Gagna, Harpaz, and Lanari in [GHL21a]. The latter provides
a full characterization of marked (co)limits in ∞-bicategories, including the
four variances which arise from changing the directions of 2-morphisms in
the corresponding notion of cone. The theory of marked colimits described in
[AG22] corresponds to the case of outer colimits in the language of [GHL21a].

By [GHL21a, Thm 5.4.4], a functor of marked ∞-bicategories f : �† → �†
is outer cofinal — i.e., pullback along f preserves outer colimits — if and only
if f is marked cofinal in the sense of Definition 4.0.21 above (compare [GHL21a,
Defn 4.3.3] to [AGS22I, Defn 3.25] and [AGS22I, Prop. 3.28] to see that these
conditions do indeed coincide).

Remark 4.0.23. Let f : (�, E�, T�) → (�, E�, T�) be a functor of marked
∞-bicategories. Observe that in order to see if f is cofinal we can assume
that the markings of both ∞-bicategories contain all equivalences. Indeed, this
follows easily after taking pushouts along morphisms of type (E). Consequently
for the rest of the section we will assume that the markings satisfy this property.

Lemma 4.0.24. Let f : �† → �† be a functor of marked∞-bicategories and re-
call from Definition 4.0.19 the associated marking on F(�)† = (F(�), EF(�)† , TF(�)†).
Then the induced morphism

(�, E�† , T�† ⊂ ]) (F(�), EF(�)† , TF(�)† ⊂ ])
is MB-anodyne.

Proof. Let us denote �†] = (�, E�† , T�† ⊆ ]) and similarly F(�)†] . We consider a
pushout diagram over �

�† �
†
]

F(�)† F(�)†�

' '
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whose vertical morphisms are all weak equivalences. We will show that the
induced map s : F(�)†� → F(�)†] is anodyne. Let σ : ∆2 → F(�)†� be a triangle.
Note that by construction E∗0(σ) is fully lean scaled. This implies that E∗0(σ)
has all faces lean except possibly the face missing the vertex 1. Since the triangle
{0, 1, 2} is thin we can take a pushout along an MB-anodyne morphism to
lean scaled the face missing 1.

Now we consider E∗1(σ) and observe that the face missing 0 and 3 are lean.
Additionally we see that d1(E∗1(σ)) = d1(E∗0(σ)) so it follows that all faces are
already lean except the face missing the vertex 2. We scale the aforementioned
face after noting that {1, 2, 3} is a thin triangle. A similar argument then shows
that all of the faces of E∗2(σ) are scaled except possible d3(E∗2(σ)) = σ. However
since the last vertex is marked and the triangle {0, 2, 3} is scaled the result
follows.

Definition 4.0.25. Let f : �† → �† be a functor of marked ∞-bicategories.
Given d ∈ � we denote by �†

d →

the fibre over the object d of the morphism
F(�)† → �.

Definition 4.0.26. Let f : �† → �† be a functor of marked ∞-bicategories.
We define the 2-Cartesian fibration �†

� →

→ � to be a fibrant replacement of
the object (F(�), EF(�)† , TF(�)† ⊂ ]) in (Setmb

∆ )/�.

Proposition 4.0.27. Let f : �† → �† be a functor of marked ∞-bicategories.
Then the following statements are equivalent:

i) The map f is marked cofinal.

ii) The morphism (F(�), EF(�)† , TF(�)† ⊂ ])→ (F(�), EF(�)† , TF(�)† ⊂ ]) is a
weak equivalence.

iii) For every d ∈ � we have an equivalence of ∞-categorical localizations
LW (�†

d →

)→ LW (�†
d →

).

Proof. The equivalence i) ⇐⇒ ii) follows from Lemma 4.0.24 and the functo-
riality of the free fibration. To finish the proof we will show that ii) ⇐⇒ iii).

Consider projective-fibrant functors F�,F� : Csc[�]op → Setms
∆ equipped

with equivalences Un�(FC) ' F(�) and Un�(F�) ' F(�). We can define new
functors F †� and F †� and a morphism F †� → F

†
� via pushout, e.g.,

St�(F(�)) F�

St�(F(�)†) F †�

∼

∼

We thus see that the induced map on fibrant repaclements R(Un�(F †�)) →
R(Un�(F †�)) is a model for �†

� →

→ �†
� →

. Moreover, the pushout is computed
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pointwise. Unraveling the definition, we note that for each d ∈ � the square

St∗(�d →) St�(F(�))(d)

St∗(�†d →) St�(F(�)†)(d)

∼

∼

is a homotopy pushout. We thus have natural equivalences

�
†
d →

' St∗(C†d →) ' St�(F(�)†)(d) ' F †�(d).

Finally, we note that there are canonical natural identifications

�
†
� →

×� {d} ' R(F †�)(d) ' LW (F †�(d))

so that we get a commutative diagram

�
†
� →

×� {d} LW (�†
d →

)

�
†
� →

×� {d} LW (�†
d →

)

'

'

The proposition then follows from [AGS22I, Prop. 4.25].

Proposition 4.0.28. Let p : �→ � be a 2-Cartesian fibration such that every
triangle in � is lean. Suppose that for every d ∈ � there exists an initial object
id ∈ �d in the fibre over d. Then the restriction of p to the the marked biscaled
simplicial set spanned by initial objects p̂ : �̂→ � is a trivial fibration of scaled
simplicial sets.

Proof. We first show that p̂ is a fibration in the model structure on Setsc
∆ . Since

p is a 2-Cartesian fibration, it is easy to see that p̂ has the right lifting property
against all scaled anodyne morphisms. By virtue of [GHL19, Cor 6.4] it will
suffice to check that p̂ is an isofibration. Let d0 → d1 = p(x1) be an equivalence
in � and pick a lift x0 → x1 such that x1 is initial in the fibre over d1. Let us
pick an initial object x̂0 and consider the composite morphism u : x̂0 → x1. We
claim that u is an equivalence. Let D ⊂ � denote the underlying ∞-category
of � and let us consider a pullback diagram

�D �

D �

p

where the left-most vertical morphism is a Cartesian fibration of ∞-categories.
Let �̂D denote the restriction to the full subcategory on fibrewise initial objects.
Then it follows from [Lur09a, Prop. 2.4.4.9] that the restriction �̂D → D is a
trivial Kan fibration. In particular it detects equivalences and the claim follows.

We have thus reduced our problem to showing that p̂ is a bicategorical
equivalence. By our hypothesis it follows that p̂ is surjective on objects. To
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finish the proof we will check that for every pair of objects x, y ∈ � the induced
morphism of mapping ∞-categories

p̂x,y : Map�̂(x, y) Map�(p̂(x), p̂(y))

is an equivalence. Note that since every 2-simplex in � is lean it follows that
not only is px,y a coCartesian fibration, it is also a left fibration. Therefore we
reduce our problem to showing that the fibres of p̂x,y are all contractible. This
follows from our hypothesis using [AGS22I, Proposition 4.21]

Lemma 4.0.29. Let �† be a marked ∞-bicategory. Then the 2-Cartesian
fibration �†

� →

→ � satisfies the hypothesis of Proposition 4.0.28.

Proof. Recall the model for �†D → given in Proposition 4.0.27. As a direct
consequence we observe that every triangle in �†D → is lean. We claim that for
every d ∈ D the identity morphism idd on d is initial in its corresponding fibre.
Note that we can identify the fibre over d with LW (D†

d →

). Since for every object
f : d → d′ , the mapping ∞-category MapDd →

(idd, f) is contractible due to
Lemma 4.0.30 it follows that idd is initial in the localisation.

Lemma 4.0.30. Let � be an ∞-bicategory. Let idd : d→ d and e : d→ d′ be
a pair of edges in � such that idd is degenerate. Let r : ∆1 ×∆1 → ∆1 be the
morphism that sends every vertex to 0 except (1, 1) which gets sent to 1. Then
the composite

ηe : ∆1 ×∆1 r ∆1 e
�

defines a terminal object in the mapping ∞-category Map�d →(idd, f).

Proof. We will show that every boundary ∂α : ∂∆n → Map�d →(idd, f) such
that ∂α(n) = ηe can be extended to an n-simplex α : ∆n → Map�d →(idd, f).

We define a subsimplicial subset (with the inherited scaling) Sn+1 ⊂ ∆1 ⊗
∆n+1 consisting of precisely those simplices σ satisfying at least one of the
conditions below:

• The simplex σ is contained in ∆{0} ×∆n+1.

• Given j ∈ [n + 1] the simplex σ skips vertices of the form (ε, j) with
ε ∈ {0, 1}.

Unraveling the definitions we see that we need to solve the associated lifting
problem

Sn+1 �

∆1 ⊗∆n+1

ι

∂α

We will abuse notation and denote by ∆1 ⊗∆n+1 the Gray product where we
are additionally scaling the triangles (0, j)→ (0, j + 1)→ (1, j + 1) whenever
j < n and the triangle (n, 0) → (n + 1, 0) → (1, n + 1, 1). We will carry this
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additional scaling to Sn+1. Note that by construction ∂α sends those triangles
to thin simplices in �. We produce a factorization

Sn+1 u Rn+1 v ∆1 ⊗∆n+1

where Rn+1 consists of those simplices of ∆1 ⊗∆n+1 that skip the vertex (1, 1).
It is easy to see that u is scaled anodyne and that v fits into a pushout square

Λn+1
0

∐
∆{0,1}

∆0 ∆n+1 ∐
∆{0,1}

∆0

Rn+1 ∆1 ⊗∆n+1v

since the triangle {0, 1, n} is thin by construction it follows that v is also scaled
anodyne. The result now follows.

We now arrive at the main theorem of this section, which provides a compu-
tational criterion for cofinality.

Theorem 4.0.31. Let f : �† → �† be a functor of marked ∞-bicategories.
Then the following statements are equivalent

1. The functor f is marked cofinal.

2. For every d ∈ � the functor f induces an equivalence of ∞-categorical
localizations LW (�†

d →

)→ LW (�†
d →

).

3. The following conditions hold:

i) For every d ∈ � there exists a morphism gd : d→ f(c) which is initial
in LW (�†

d →

) and LW (�†
d →

).

ii) Every marked morphism d→ f(c) defines an initial object in LW (�†
d →

).

iii) For any marked morphism d→ b in � the induced functor LW (�†
b →

)→
LW (�†

d →

) preserves initial objects.

Proof. By Proposition 4.0.27 it will suffice to show that 2 holds if and only
if 3 holds. Let us suppose that 2 holds. Since by hypothesis the morphism
LW (�†

d →

)→ LW (�†
d →

) is an equivalence of ∞-categories we can pick an object
d → f(c) whose image in LW (�†

d →

) is equivalent to idd. Since equivalences
preserve and detect initial objects we see that condition i) is satisfied. To see
that condition ii) holds we just note that every marked morphism in LW (�†

d →

)
is equivalent to idd. Using again that equivalences detect initial objects the
claim follows. For the final condition we consider a commutative diagram

LW (�†
b →

) LW (�†
b →

)

LW (�†
d →

) LW (�†
d →

)

'

'
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It is now clear that condition iii) holds if the right-most vertical morphism
preserves initial objects. We observe that this map sends the identity on b to
an object represented by a marked morphism and thus preserves initial objects.

Now let us suppose that the conditions in 3 are satisfied. Using Proposi-
tion 4.0.27 we see that it will suffice to show that the induced morphism of
fibrant replacements Af : �†D → → �

†
� →

is an equivalence of 2-Cartesian fibra-
tions. Notice that by assumption it follows that �†

� →

satisfies the hypothesis of
Proposition 4.0.28. Let us denote by �̂†

� →

the full marked-biscaled simplicial
set spanned by fibrewise initial objects and similarly for �̂†

� →

. Observe that
due to Proposition 4.0.28 we have a section

sf : �] �̂
†
� →

�
†
� →

where �] = (�, E�, T� ⊂ ]).

We can pick the section so that each d gets sent to gd : d→ f(c) as in condition
i). We claim that sf sends marked edges in �†] = (�, E�† , T�† ⊂ ]) to Cartesian
edges in �†

� →

. Let e : d→ b be a marked edge in �†] and pick a Cartesian lift
of e, ê : ∆1 → �†

� →

such that ê(1) = gb. By condition iii), we have that ê(0) is
initial in the fibre over d. We consider the commutative diagram

Λ2
2 �

†
� →

∆2 �

σ

s0(e)

θ

with σ(1→ 2) = ê and σ(0→ 2) = sf (e). The triangle θ is thin by construction
and the edge 0 → 1 is an equivalence since it is a morphism between initial
objects. It follows that sf(e) is Cartesian. We can now use Lemma 4.0.24 to
produce a solution to the lifting problem

�
†
] �

†
� →

�
†
� →

i�

sf

If

We claim that Af and If are mutually inverse. First we observe that Af ◦ sf
is a section of �†

� →

that maps each object d ∈ � to an initial object in the
fibre. Using the fact that �̂†

� →

→ � is a trivial fibration we can construct a
homotopy over �,

H� : ∆1 ×�] �
†
� →

between i� and Af ◦ sf . Observe that i�(d) = idd so it maps every object
to an initial object in the fibre. By construction the components of H� are
morphisms between initial objects and thus equivalences. Let e : d → b be
a marked morphism in �†] then it follows that H�(0 → 1, e) is marked in
�
†
� →

. We can therefore upgrade the homotopy H� to a marked homotopy
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H� : (∆1)] × �†] → �
†
� →

. To see that Af ◦ If ' id it suffices to check that
Af ◦ If ◦ i� ' i�, however we have

Af ◦ If ◦ i� = Af ◦ sf ' i�.

Let us fix some notation if : �†] → �
†
� →

and i� : �†] → �
†
� →

. In order to show
that If ◦ Af ' id we will show that If ◦ Af ◦ if ' if . Consider the following
pullback square

f ∗
(
�
†
� →

)
�
†
� →

� �

φ

f

and note that if = φ ◦ Bf ◦ i� where Bf : �†
� →

→ f ∗
(
�
†
� →

)
is the obvious

morphism. We now observe that If ◦ Af ◦ φ = φ ◦ f ∗(If) ◦ f ∗(Af). A similar
argument as before shows that

f ∗(If ) ◦ f ∗(Af ) ◦ Bf ◦ i� ' Bf ◦ i�.

This is due to the fact that both sides of the equation describe sections of
f ∗
(
�
†
� →

)
with values in initial objects. Note that Bf ◦ i�(c) is initial as a

consequence of condition ii). We conclude the proof by finally noting

If ◦Af ◦ if = If ◦Af ◦φ◦Bf ◦ i� = φ◦f ∗(If )◦f ∗(Af )◦Bf ◦ i� ' φ◦Bf ◦ i� = if

We have shown that If ◦ Af ' id and the theorem now follows.

We derive as an immediate corollary a ∞-bicategorical upgrade of Quillen’s
Theorem A.

Corollary 4.0.32. Let f : �† → �† be a functor of marked ∞-bicategories
and suppose that for every d ∈ � the induced functor

LW (�†
d →

) '
LW (�†

d →

)

is an equivalence of ∞-categories. Then the functor f induces an equivalence
upon passage to ∞-categorical localizations

LW (�†) '
LW (�†).

Proof. By Theorem 4.0.31 it follows that f is marked cofinal. Note that its
follows directly from the definitions that the pushforward functor

t∗ :
(
Setmb

∆

)
/�

Setmb
∆

preserves weak equivalences. The image of the map f : (�, E�, T� ⊂ ]) →
(�, E�, T� ⊂ ]) under t∗ is equivalent to the morphism t∗(f) : (�, E�, ]) →
(�, E�, ]). The claim follows after taking a fibrant replacement of the map
t∗(f).
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We finish this section by studying the case where f : C† → D† is a functor
between strict 2-categories equipped with a marking. For the rest of the section
we will denote �† = Nsc(C)† (resp. �† := Nsc(D)†) where the marking comes
from the marking in C† (resp. D†). Our goal is to relate (nerves of) the comma
2-categories of Definition 0.0.2 with the fibres of the free 2-Cartesian fibration
thus simplifying the conditions of Theorem 4.0.31.

Definition 4.0.33. Let f : C→ D be a functor of strict 2-categories. We define
a new 2-category Fr(C) as follows:

• Objects are given by morphisms u : d0 → f(c0) where d0 ∈ D and c0 ∈ C.

• A morphism ϕ0 : u → v from u : d0 → f(c0) to v : d1 → f(c1) is given
by a pair of morphisms a0 : d0 → d1 and α0 : c0 → c1 and a 2-morphism
θϕ0 : f(α) ◦ u =⇒ v ◦ a.

• A 2-morphism ε : ϕ0 → ϕ1 is given by a pair of 2-morphisms ψ : a0 =⇒ a1
and ζ : α0 =⇒ α1 such that the followign diagram commutes

f(α0) ◦ u f(α1) ◦ u

v ◦ a0 v ◦ a1

f(ζ)∗u

θϕ0 θϕ1
v∗ψ

There is an obvious 2-functor Fr(C) → D which is easily verified to be a
2-Cartesian fibration. In particular one observes the following:

• A morphism in Fr(C) is Cartesian if the associated morphism α : c0 → c1
is an equivalence in C and the 2-morphism ϕ0 is invertible.

• A 2-morphism in Fr(C) is coCartesian if the associated 2-morphism ζ :
α0 =⇒ α1 is invertible.

One immediately sees that the fibres of Fr(C) are precisely the categories Cd →
of Definition 0.0.2.

Remark 4.0.34. As a direct consequence of [AGS22I, Theorem 4.29] we see
that the induced morphism Nsc(Fr(C)) → � is a 2-Cartesian fibration. We
further observe that there is an strict 2-functor C→ Fr(C). We will see at the
end of the section that Fr(C) is another model for the free 2-Cartesian fibration
on the functor f .

Remark 4.0.35. Suppose we are given a morphism of marked strict 2-categories
f : C† → D†. Then we can construct a marked 2-category Fr(C)† by declaring
an edge in Fr(C) to be marked if and only if it is Cartesian or the associated
morphism α : c0 → c1 is marked in C† and the 2-morphism ϕ0 is invertible. We
denote by Nsc(Fr(C))† the associated MB simplicial set.

Before we continue, we must provide a good characterization of the simplices
of Nsc(Fr(C)). As it turns out, we can view Nsc(Fr(C)) as a simplicial subset
of F(�), and we will use this to provide an alternate characterization of the
simplices of the former. To this end we fix some terminology. Let us call a
2-simplex of ∆1⊗̂∆n contrary if it is scaled.
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An n-simplex σ of F(�) consists of a commutative diagram

∆1⊗̂∆n �

{1} ×∆n �

φσ

ρσ

f

We will call such a simplex tame if it sends contrary 2-simplices to identities.2
By construction, the tame simplices form a simplicial subset of F(�), which
we will denote by Tame(�,�). When this is equipped with the marking and
biscaling induced by F(�), we denote it by Tame(�,�)†.

Lemma 4.0.36. There is an isomorphism

Tame(�,�)† ∼= Nsc(Fr(C))†

of marked-biscaled simplicial sets.

Proof. We will prove that the underlying simplicial set Tame(�,�) is 3-
coskeletal, reducing the proof to a straightforward check on 3-truncations.

Consider a morphism ∂∆n → Tame(�,�) where n > 3. This corresponds
to a diagram

∆1 × ∂∆n �

{1} × ∂∆n �

φ

ρ

f

We now note that � and � are, themselves 3-coskeletal, and thus, in particular,
they admit unique horn fillers for all horns of dimension 5 or higher. Using, e.g.,
the filtration of [Lur09a, Prop. 2.1.2.6], we see that φ has a unique extension to
a map ∆1×∆n → �. Since ρ clearly has a unique extension to a map ∆n → �,
we can obtain an extension

∆1 ×∆n �

{1} ×∆n �

φ̃

ρ̃

f (∗)

of the diagram above.
Moreover, since n > 3, every 2-simplex of ∆1×∆n is contained in ∆1×∂∆n.

Consequently, the fact that φ arises from a map ∂∆n → Tame(�,�) implies
that the diagram (∗) defines an n-simplex in Tame(�,�).

The remaining low-dimensional checks are left to the reader.

Remark 4.0.37. Note that the argument above can in fact be repurposed to
show that F(�) is itself 3-coskeletal in our present setting. However, in spite of
their equivalence, F(�) will not be isomorphic to Nsc(Fr(C)), as the former has
significantly more 1- and 2-simplices.

2Notice that this definition is only sensible because � := Nsc(D). Otherwise, there is no good notion of
identity 2-simplices which are neither left nor right degenerate.
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Remark 4.0.38. By construction, the canonical morphism �→ F(�) factors
through Tame(�,�).

Lemma 4.0.39. Let σ : ∆n → Tame(�,�) be an n-simplex. Then each exten-
sion E∗j (σ) : ∆n+1 → F(�) factors through Tame(�,�).

Proof. This follows immediately from unraveling the definitions.

Definition 4.0.40. We denote by Tame(�,�)\ the marking and biscaling in-
duced by F(�)\. Similarly, we denote by Tame(�,�)† the marking and biscaling
induced by F(�)†.

Proposition 4.0.41. The morphism �\ → Tame(�,�)\ is MB-anodyne over
�.

Proof. This is identical to the proof of Theorem 4.0.17 once we redefine Zn
to consist of n-simplices of Tame(�,�), together with j-extensions of these
simplices.

Theorem 4.0.42. Let f : C† → D† be a functor between marked strict 2-
categories, and let f : �† → �† denote the induced morphism of MS simplicial
sets. Then the following hold:

• There exists a commutative diagram over �

�† Nsc(Fr(C))

F(�)†
Ξ

such that each morphism in the diagram is a 2-Cartesian equivalence.
• For every d ∈ D the map Ξ induces an equivalence of MS simplicial sets
�
†
d →

'−→ Nsc(C†
d →

).

Proof. First let us assume that the marking on both C† = C\ and D† = D† only
consists of equivalences so that the marking on both F(�) and Nsc(Fr(C)\) is pre-
cisely given by Cartesian edges. Recall the filtration defined in Theorem 4.0.17.
First we will define a morphism

�\ Nsc(Fr(C)\)

Z1

Ξ1

Since Z1 → F(�) is MB-anodyne and Nsc(Fr(C)) is a 2-Cartesian fibration,
we can pick an extension of Ξ1 to the desired Ξ. Observe that we can map
the objects of Z1 isomorphically to those of Nsc(Fr(C)). Given e : ∆1 → Z1
we see that this data precisely amounts to morphisms ui : di → f(ci) for
i = 0, 1, a : d0 → d1, α : c0 → c1 and g : d0 → f(c1) together with a pair of
2-morphisms ε : g '=⇒ f(α) ◦ u0 and θ : g =⇒ u1 ◦ a such that ε is invertible. We
can then map e to an edge Ξ1(e) defined by the same 1-morphisms but with
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associated 2-morphism θ ◦ ε−1. One perfoms a similar construction for mapping
the non-degenerate 2-simplices contained in Z1 thus giving a definition for Ξ1.

We can now observe that in the case that C† comes equipped with a general
marking (containing the equivalences) we have a homotopy pushout (Setmb

∆ )/�

F(�)\ Nsc(Fr(C)\)

F(�)† Nsc(Fr(C)†)

This shows it will suffice to prove the case where only the equivalences are
marked. This follows from 2-out-of-3 after noting that �\ → Nsc(Fr(C)\) is an
equivalence. This follows immediately from Proposition 4.0.41.

Remark 4.0.43. The significance of this result is twofold. Most importantly,
it shows that, when considering diagrams indexed over strict 2-categories, the
criteria for marked cofinality can be expressed in terms of the strict slice
2-categories. Consequently, the criteria for cofinality become much easier to
explicitly check in this case.

Of lesser significance, but still of interest, is the second consequence. Since
we can identify Nsc(Cd →) and �d →, the criteria of Theorem 4.0.31 precisely agree
with those of [AGS22, Thm 4.0.1]. Theorem 4.0.31 thus generalizes [AGS22,
Thm 4.0.1], as expected.

4.1 Computing marked colimits with the Grothendieck
construction

It is well known that the Grothendieck construction can be used as a universal
recipe to compute the value of the ∞-categorical colimit of a functor F : C→
�at∞ as stated in [Lur09a, Corollary 3.3.4]. An analogous result was proved
Gepner-Haugseng-Nikolaus in [GHN15, Theorem 7.4] showing that the lax
colimit (i.e. the marked colimit with respect to the minimal marking) can be
also computed by means of the Grothendieck construction.

In this section we will give a result that interpolates between both theorems
which was originally proved in [AG22].

Theorem 4.1.1. Let F : C→ �at∞ where C is an ∞-category. Let us suppose
that C comes equipped with a collection a marked edges and denote the resulting
marked ∞-category by C†. Then there is an equivalence of ∞-categories

colim†
C

F
'

LW
(
Unco

C (F )†
)

where Unco
C (F )† denotes the coCartesian straightening of F equipped with a

marking consisting in those coCartesian edges lying over a marked edge in C†.

Remark 4.1.2. As seen in section 5.2 of [GHL21a], given a marked∞-category
C† the marked colimit of a functor F : C → �at∞ can be computed as the
weighted colimit of F where the weight functor is given by the associated
functor of the Cartesian fibration C

†
C/ (see Definition 4.0.26). Using Corollary 2
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in [AG22] we can compute this weighted colimit as the ∞-categorical colimit
of the functor:

Tw(C) Cop × C �at∞
LW

(
C
†
−/

)
×F

Before embarking upon the proof of the theorem we will need some prelimi-
nary definitions.

Definition 4.1.3. Let F : C �at∞ be a functor and denote by F C

its associated coCartesian fibration. Given X ∈ �at∞ we define a simplicial set
ΦF

X over C via the universal property MapC(K,ΦF
X) ' Hom(K ×C F,X).

Remark 4.1.4. As a special case of (the dual of) Corollary 3.2.2.12 in [Lur09a]
we see that ΦF

X C is a Cartesian fibration. An edge ∆1 ΦF
X is Cartesian

if and only if the associated functor ∆1 ×C F X maps coCartesian edges
in ∆1 ×C F to equivalences in X.

Proposition 4.1.5. The Cartesian fibration ΦF
X C classifies the functor

Fun(F (−),X) : Cop
�at∞ .

Proof. This is Proposition 7.3 of [GHN15].

Definition 4.1.6. Let C† be a marked ∞-category and consider a Cartesian
(resp. coCartesian) fibration X C. We equip X with a marking by declaring
an edge marked if and only if it is Cartesian (resp. coCartesian) and its image
in C is marked. We will denote this marked ∞-category over C by X†.

Remark 4.1.7. Let C† be a marked ∞-category and consider a functor
F : C �at∞. Denote its associated coCartesian fibration by F. Then
given X ∈ �at∞ we have a natural equivalence of ∞-categories

Fun
(
LW

(
F†
)
,X
)
' Fun(F†,X) ' MapC(C†,ΦF

X).

where the first equivalence is the universal property of the localization and the
second is given by the universal property of ΦF

X.

Proposition 4.1.8. Let C be an ∞-category. Given F,G : Cop Cat∞
classified by the Cartesian fibrations F and G respectively, there is a natural
equivalence of ∞-categories

MapC(F,G) ' lim
Tw(C)op

Fun(F (−), G(−))

Proof. See Proposition 6.9 in [GHN15].

Proof of Theorem 4.1.1. We fix the notation Unco
C (F )† = F†. Note that by

Remark 4.1.7 and Theorem 4.0.17 we have natural equivalences

Fun
(
LW (F†),X

)
' MapC(C†,ΦF

X) ' MapC(F(C)†,ΦF
X) ' MapC(C†C/,Φ

F
X)

where C
†
C/ denotes the fibrant replacement3 of F(C)† as in Definition 4.0.26.

Using Proposition 4.1.8 we produce natural equivalences

MapC(C†D/,Φ
F
X) ' lim

Tw(C)op
Fun

(
LW

(
C
†
−/

)
,Fun(F (−),X)

)
3We are using the notation F(C) (instead of F(C)) to denote the free Cartesian fibration as in Definition 1.3.8.
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lim
Tw(C)op

Fun
(
LW

(
C
†
−/

)
,Fun(F (−),X)

)
' Fun

(
colim
Tw(C)

LW
(
C
†
−/

)
× F,X

)
The result now follows from the Yoneda lemma and Remark 4.1.2.
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Applications and future
directions

In this section we will apply the theory of marked colimits and higher cofinality
to understand 2-dimensional universal properties of certain 2-categories. Unfor-
tunately, some of the theory necessary for the proofs we will present here is
still undeveloped. We will prove these statements conditional to the existence
of an ∞-bicategorical theory of Kan extensions which is part of the author’s
current research program.

Definition 5.0.1. Let � be an ∞-bicategory. We say that � is marked cocom-
plete if given a marked-scaled simplicial set K† and a functor F : K → � the
marked colimit of F exists.

Recall that in the setting of ordinary strict 2-categories given a 2-functor
f : C→ D and a 2-category A having all weighted colimits we can produce a
2-categorical adjunction

f! : Fun(C,A) −→←− Fun(D,A) : f ∗

such that f! is left adjoint to the restriction functor f ∗. Given a functor
F : C→ A the value of f!F (d) is computed as the weighted colimit of F with
weight functor given by

Cop Cat
c D(f(c), d)

Using the equivalence between marked colimits and weighted colimits (see
section 5.2 in [GHL21a]) we see that the value of f!F (d) can be alternatively
described as the marked colimit of the functor

C\

→d
C

F
A

where the marking C\

→d
corresponds to those edges whose associated 2-morphism

is invertible. The next conjectural theorem (denoted with the symbol �) states
that this construction will extend to the setting of ∞-bicategories
Theorem� 5.0.1. Let f : � → � be a functor of ∞-bicategories. Given a
marked cocomplete ∞-bicategory � we have an adjunction of ∞-bicategories

f! : Fun(�,�) −→←− Fun(�,�) : f ∗

193
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such that f! is left adjoint to the restriction functor f ∗, satisfying the following
properties:

K1) Let F : � → � be a functor and let d ∈ �. We denote by pd : � →d → �
the canonical projection. Observe that pd is a 2-Cartesian fibration and let
us denote by �\

→d
the marking given by Cartesian edges. Then we have

colim\

�

→d
F ◦ pd ' f!F (d).

K3) The restriction functor f ∗ is fully faithful if and only if the counit map
εG : (f! ◦ f∗)G =⇒ G is an equivalence for every functor G : �→ �.

K4) Given d ∈ � and G : �→ � let us consider the diagram

�
\

→d
�
\

→d

� �

pd

fd

πd

f

Then it follows that the morphism f!f
∗(G)(d)→ G(d) can be identified as

the canonical comparison map

colim\

�
\

→d

(G ◦ f ◦ pd) = colim\

�
\

→d

(G ◦ πd ◦ fd) colim\

�
\

→d

G ◦ πd ' G(d)

K5) If f ∗ is fully faithful then its essential is given by those functors F : �→
� such that the unit natural transformation ηF : F =⇒ f ∗f!(F ) is an
equivalence of functors.

K6) Given c ∈ � and F : � → � then the morphism F (c) → f ∗f!F (c) is
induced by the inclusion of the identity on f(c), idf(c) : ∆0 → �\

→f(c).

Remark 5.0.2. Let f : �→ � be a functor of ∞-bicategories and let � be a
marked cocomplete ∞-bicategory. It follows from conditions K3) and K4) in
the previous theorem that if for every d ∈ � the map

fd : �\

→d
�
\

→d

is marked cofinal then the restriction functor f ∗ : Fun(�,�)→ Fun(�,�) is
fully faithful. Our next goal is to show how that if fd is cofinal for every d ∈ �
then the restriction functor is fully faithful regardless of the cocompletness
assumptions on �. This will also necessitate an extension of the results obtained
in [AGS21] which we will not prove here.

Let C be an∞-category and let � be an∞-bicategory. In [AGS21, Theorem
4.3] we proved that given a pair of functors F,G : C→ � the ∞-category of
natural transformations can be computed as the limit of functor

N(F,G) : Tw(C)op C× Cop �×�op �at∞
F×Gop �(−,−)
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where Tw(C) denotes the twisted arrow ∞-category [Lur17, Prop. 4.2.3]. We
would like to remind the reader that in [AGS21] we constructed a Cartesian
fibration classifying the restricted functor

Aop ×A �op ×� �at∞
�(−,−)

where A denotes the underlying ∞-category of �. The proof of the previous
limit formula depends heavily on this construction which we call the enhanced
twisted arrow category.

Let us suppose that we are given a fully faithful functor of ∞-bicategories
ω : � → �. Then this yields a morphism between the diagrams N(F,G) →
N(ω◦F,ω◦G) which is levelwise a weak equivalence. Since both colimits model
respective ∞-categories of natural transformations it follows that the functor

ω∗ : Fun(C,�) Fun(C,�)

is a fully faithful.
Let us suppose that for every∞-bicategory �, we can produce a 2-Cartesian

fibration Tw(�) → � × �op classifying the mapping ∞-category functor
�(−,−) : �op × � → �at∞. It is expected that the limit formula for the
∞-category of natural transformations we discussed will generalize to this
context thus yielding the next result.
Proposition� 5.0.3. Let ω : �→ � be a fully faithful functor of∞-bicategories
with essential image �0 ⊆ �. Then for every∞-bicategory � the functor induced
by post-composition with ω

ω∗ : Fun(�,�) Fun(�,�)

is fully faithful with essential image given by those functors F : �→ � which
factor through �0.
Proposition� 5.0.4. Let f : � → � be a functor of ∞-bicategories and
suppose that for every d ∈ � the morphism

fd : �\

→d
�
\

→d

is marked cofinal. Then for every ∞-bicategory � the restriction functor
f ∗ : Fun(�,�) Fun(�,�)

is fully faithful.

Proof. By Remark 5.0.2 the claim holds if � is marked cocomplete. For a
general �, we consider the Yoneda embedding Y : � → �at�op

∞ and observe
that the target is marked cocomplete. We can construct a commutative diagram

Fun(�,�) Fun(�,�)

Fun(�,�at�op
∞ ) Fun(�,�at�op

∞ )

f∗

Y∗ Y∗

f∗

where the vertical morphisms are fully faithful by Proposition� 5.0.3. Since the
bottom horizontal morphism is fully faithful by cocompleteness of the presheaf
category it follows that the top horizontal morphism is also fully faithful.
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Theorem� 5.0.2. Let f : �→ � be a functor of ∞-bicategories and assume
that f is surjective on vertices. Suppose that for every ∞-bicategory � we have
a full subcategory Fun�(�,�) ⊂ Fun(�,�) such that:

i) For every G : �→ � the restricted functor G ◦ f belongs to Fun�(�,�).

ii) For every functor ω : �→ � and every F ∈ Fun�(�,�) then ω◦F belongs
to Fun�(�,�).

Let us further suppose that the following conditions are satisfied:

1) For every d ∈ � the functor fd : �\

→d
→ �\

→d
is marked cofinal.

2) For every functor F ∈ Fun�(�,�at∞) the unit morphism ηF : F =⇒ f ∗f!F
is an equivalence.

Then for every ∞-bicategory �, the restriction functor induces an equivalence
of ∞-bicategories

Fun(�,�) Fun�(�,�)'

Proof. It follows from Proposition� 5.0.4 that condition 1) implies that the
restriction functor f ∗ is always fully faithful. We also see that condition 2)
implies that the conclusion of the theorem holds for � = �at∞.

We now prove that the claim holds for �at�op
∞ . Let us consider F ∈

Fun�(�,�at�op
∞ ) and let us show that ηF : F =⇒ f ∗f!F is an equivalence.

First, let us observe that in order to show that ηF is an equivalence it will
suffice to show that the image of ηF under the map

(eva)∗ : Fun�(�,�at�op

∞ ) Fun�(�,�at∞)

is an equivalence for every a ∈ �, where eva : �at�op
∞ → �at∞ denotes

evaluation at a. We further observe that since eva preserves all marked colimits
we have that (eva)∗(ηF ) ' ηFa where Fa = eva ◦ F . Condition 2) then implies
that ηF is also an equivalence.

For the final case let us consider the Yoneda embedding Y : � → �at�op
∞ .

Given F ∈ Fun�(�,�) we set the notation Y ◦ F = F̂ . We claim that f!F̂ is in
the essential image of

Y∗ : Fun(�,�at∞) Fun(�,�at�op

∞ )

To prove the claim we need to show that for every d ∈ � the functor F̂ (d) is
representable. Since the claim is already established for presheaf categories we
have an equivalence F̂ =⇒ f ∗f!F̂ . Note that by construction F̂ is pointwise a
representable functor. We conclude that f!F̂ is also pointwise representable
after noting that f : �→ � is surjective on objects by our assumptions. We
can now pick some G : � → � such that Y ◦ G ' f!F̂ . By fully faithfulness
of postcomposition with the Yoneda embedding we obtain an equivalence
F =⇒ f ∗G which shows that F is in the essential image of the restriction
functor.



5.1. ADJUNCTIONS WITH FULLY FAITHFUL RIGHT ADJOINT 197

5.1 Adjunctions with fully faithful right adjoint

In this section we will see a prototypical situation where Theorem� 5.0.2 can
be applied. Let � be an ∞-bicategory and consider a pair of morphisms

a a′
L

R

Our goal is to show that 2-categorical data which encodes coherent adjunc-
tions with fully faithful right adjoint in an ∞-bicategory � can be recovered
from the underlying 1-categorical data as a property of the morphisms L and
R and the counit. To this end we will consider the walking adjunction with
fully faithful right adjoint AdjR (see Definition 5.1.5 for more details) which we
schematically represent as

− +
L

R

, id−
η

RL

and its underlying 1-category AdjR which only contains the data of the mor-
phisms L and R and the (invertible) counit ε : LR =⇒ id+.

We will show that for every ∞-bicategory the restriction functor to the
underlying 1-category of AdjR

Fun(AdjR,�) Fun(AdjR,�)

is fully faithful with essential image given by those functors F : AdjR → �
sending the data L,R, η in AdjR to an adjunction with fully faithful right
adjoint where the counit is given by F (η).

5.1.1 Preliminaries

Definition 5.1.1. Let f : x→ y be a morphism in C. We define a simplicial
set Cf whose simplices are given by maps σ̃ : ∆n+2 → C satisfying the following
properties

• The (n+1)-face of σ̃ factors through the map ∆n+1 θn ∆1 f
C where

θn : ∆n+1 ∆1, i

0, if i 6 n

1, if i = n+ 1

• The image of the edge n+ 1→ n+ 2 under σ̃ is degenerate on y.
Given a simplex τ : ∆m → Cf and a monotone map ` : [n] → [m] we define
`∗(τ) to be the composite

`∗ : ∆n+2 ∆m+2 C

where `∗(n + 1) = m + 1, `∗(n + 2) = m + 2 and `∗(i) = `(i) if i 6 n. This
definition comes equipped with a canonical map pf : Cf C(x, y) that only
remembers the (n+ 2)-face.
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Lemma 5.1.2. The morphism pf : Cf C(x, y) is a Kan fibration. In
particular Cf is an ∞-groupoid.

Proof. Since the base of this map is an ∞-groupoid it suffices to show that
pf is a right fibration by [Lur09a, Lem. 2.1.3.3]. Let 0 < i 6 n, after some
unraveling we see that we need to provide a solution to the lifting problem

Ani C

∆n+2

α

for n > 1 where Ani is the subsimplicial set consisting containing all faces except
the face missing i and the face missing n+ 1. We observe that we can extend
the map α to Λn+2

i due to the fact that the (n+ 1)-face must be degenerate on
the edge f . Since Λn+2

i is an inner horn and C is an ∞-category the desired
lift exists. One easily verifies that any lift must satisfy by construction the two
conditions in Definition 5.1.1.

Lemma 5.1.3. Cf is a contractible ∞-groupoid.

Proof. We will show that that we can lift boundary inclusions ∂∆n → ∆n for
n > 0 against Cf . For n = 0 it is enough to note that Cf is non empty since
we always have an object given by a degenerate 2-simplex on f . For n > 1 we
proceed as in the previous lemma and arrive to the following lifting problem

Bn C

∆n+2

β

where Bn contains all the faces except those missing the vertex n+ 1 and n+ 2
respectively. In a similar way as we did before we can extend β to an outer
horn Λn+2

n+2. We note that β maps the last edge to an equivalence so the desired
lift exists.

Proposition 5.1.4. Let L : C D be a functor of ∞-categories. Given
x, y ∈ C denote by

Lx,y : C(x, y) D (L(x), L(y))

the induced morphism on mapping spaces. Let g ∈ D(L(x), L(y)) and consider
the pullback diagram

L∗(Dg) Dg

C(x, y) D (L(x), L(y))

pg

Then Lx,y is an equivalence of ∞-groupoids if and only if L∗(Dg) ' ∆0 for
every g ∈ D (L(x), L(y)).
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Proof. By Lemma 5.1.2 it follows that the pullback diagram above is a homotopy
pullback. In addition, Lemma 5.1.3 shows that pg is equivalent to the map
selecting the object g in the mapping space. We conclude that L∗(Dg) represents
the homotopy fiber and the result follows.

5.1.2 The main result

Definition 5.1.5. We define a 2-category AdjR consisting in:

• A pair of objects − and +.

• The mapping categories AdjR(x, y) are given by the terminal category ∗
except when x = y = −, in which case AdjR(−,−) is given by a unique
morphism which we denote as η : id− =⇒ RL.

We depict the 2-category AdjR diagrammatically as follows:

− +
L

R

, id−
η

RL

This data is required to satisfy the following relations:

• LR = id+.

• L ∗ η = 1L.

• η ∗R = 1R.

This definition yields a 2-category that we will call the walking adjunction with
fully faithful right adjoint.

Definition 5.1.6. Let AdjR be the underlying 1-category of AdjR. We denote
by ι : AdjR AdjR the canonical inclusion functor.

Remark 5.1.7. To ease the notation we will denote the 2-category AdjR simply
by A and similarly we will use the notation A for AdjR.

Proposition 5.1.8. Let x ∈ {−,+} and consider the following pullback dia-
gram

A\

→x
A\

→x

A A

ιx

ι

where we are marking those morphisms in A →x (resp. A →x) such their associated
2-simplex is thin. Then ix is marked cofinal.

Before embarking upon the proof of this fact we will need to prepare the
necessary notation for the proof. Given f ∈ A\/x we set(

A →x
)
f →

:= Af →, and similarly
(
A →x

)
f →

:= Af →.
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Since all the 2-categories we we will be considering for the proof of Proposi-
tion 5.1.8 are enriched in posets we will denote 2-morphisms with “6“. Let
f : a→ x and recall that the objects X ∈ Af → are given by diagrams

a b

x

α

f g
6

where f 6 g ◦ α. We will use the notation X = (α, g). We say that X is a
marked object if and only if f = g ◦ α.

A morphism (α, g) θ (β, h) is given by a 2-commutative diagram

a b c

x .

α

f

β

g

θ

h
6 6

6

It follows that θ is marked if and only if g = h ◦ θ and θ ◦ α = β. This choice
of marking defines a marked category that we will denote A�f →.

Proof of Proposition 5.1.8. We start by proving the case x = +. Observe that
for every 2-category B and every b ∈ B the morphism ∆0 B\

→b
selecting

the identity on b is marked cofinal. Therefore it will suffice to show that id+ is
terminal (in the marked sense) in A\

→+
. A quick inspection shows that all the

morphisms in this category are marked and that id+ is terminal in the usual
sense.

The case x = − is slightly more delicate and will require the use of The-
orem 4.0.31. We will prove the conditions of the theorem are satisfied for
f ∈ {id−, R,RL}. Let f ∈ {R,RL}. Then it follows that all objects of A�f → are
marked. This in turn implies that the conditions of Theorem 4.0.31 reduce to
showing that LW

(
A�f →

)
' ∆0. Observe that for every marked object X ∈ A�f →

we have a canonical choice of marked morphism,

a b −

x .

α

f

f

g

g

id
= =

=

If f = R it follows that X = (id+, R) is already initial in A�R → and consequently
we have that the localization of A�R → is given by ∆0. If f = RL the object
Y = (L,R) is terminal in A�RL → and the conclusion also holds.

In the case when f = id (where we are abusing notation by omitting
the subscript “-”) we observe that A�id → only has one marked object, namely
∇ = (id, id). Furthermore a similar argument as before shows that all the non-
marked objects are equivalent to each other in the localization. Let η = (L,R)
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be one of those non-marked objects and denote by Af → = LW
(
A�f →

)
. We will

show that
Aid →(∇, η) ' Aid →(∇,∇) = ∗.

Suppose we are given a zig-zag of morphisms with source and target ∇. It
is easy to see that all the intermediate objects in this zig-zag must be equal
to ∇ and that all the morphisms must be the identity. Using the hammock
localization as a model for Aid → ([DK80]) we deduce that Aid →(∇,∇) = ∗. To
finish the proof we construct a pair of marking preserving adjoint functors

R∗ : A�id → A�R →

: L∗

with R∗ a L∗. Let Z = (α, β) ∈ A�R → then L
∗(α, β) = (α ◦ L, β). The action on

morphisms is the obvious one. It is immediate to see that L∗ preserves marked
morphisms. The definition of R∗ given in an analogous way by precomposition
with R. It is easy to see that our definitions yield a pair of adjoint functors. Since
both functors are marking preserving it follows that the adjunction descends
to the localization. We can finish the proof after observing that

Aid →(∇, η) = Aid →(∇, L
∗(id+, R)) ' AR → ((R, id−), (id+, R)) ' ∗ .

Definition 5.1.9. Let F ∈ Fun(A,�at∞) and denote F (−) = C−, F (+) = C+.
We define an ∞-bicategory, Funa(A,�at∞) consisting in those functors F
satisfying the following condition:

• Given x ∈ C− and y ∈ C+ the canonical map

C− (x, F (R)(y)) C+ (F (L)(x), y))

is an equivalence of Kan complexes.

Remark 5.1.10. Unraveling the definitions we see that Funa(A,�at∞) consists
in those functors mapping L,R to an adjunction F (L) a F (R) with the counit
being an equivalence. Let us remark that the previous definition is stable under
natural equivalence. In addition, we observe that we can produce a factorization
of the restriction functor

ι∗ : Fun(A,�at∞) Funa(A,�at∞).

Remark 5.1.11. When no confusion should arise we will abuse notation by
denoting F (L) (resp. F (R)) simply by L (resp. R). We further set the notation

F/x : A →x A �at∞

for x ∈ {−,+}.

Lemma 5.1.12. Let [2] be the usual ordinal category. We define a marking
on [2] by declaring all morphisms marked except 1 → 2. The corresponding
marked category will be denoted by [2]F. We define a marked functor

T : [2]F A\

→−
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by sending T (0) = R, T (1) = id− and T (2) = R. The action on morphisms is
specified by the diagram

+ − +

− .

R

R

id−

id−

L

R

= 6

=

Then T is marked cofinal.

Proof. Although the proof is quite elementary we include it in this document
for the sake of completeness. As usual, we will show that the conditions of
Theorem 4.0.31 are satisfied. In order to do so, we compute the comma categories
[2]F

f →

for f ∈ A →−.

f = R : After inspection we arrive at the diagram

R

T (0) T (1) T (2)

id+
R

id+

This shows that LW
(
[2]F

R →

)
' ∆0.

f = RL : In this case we have

RL

T (0) T (1) T (2)

L
RL

L

Again, this shows that LW
(
[2]F

RL →

)
' ∆0.

f = id− : For the final case we compute

id−

T (0) T (1) T (2) T (1)

L
RL

L id−
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We immediately conclude that LW
(
[2]Fid →

)
' ∆1 so again the conditions

of Theorem 4.0.31 are clearly satisfied. This finishes the proof.
Proposition 5.1.13. Let F ∈ Funa(A,�at∞) and let 1x : (∆0)] (A/x)\ be
the functor selecting the object idx. Then the morphism induced via restriction
along 1x

Cx
' colim\

A/x
F/x

is an equivalence of ∞-categories.

Proof. Since the property of belonging to Funa(A,�at∞) is stable under equiv-
alence, we can assume that F arises as the homotopy coherent nerve of a
projectively fibrant functor

F : A Set+
∆ .

In particular, it follows that the composite LR is the identity functor on C+.
We will analyze each case separately. The case x = + is obvious since 1+ is

marked cofinal as seen in the proof of Proposition 5.1.8. One could be tempted
to think that 1− is also marked cofinal. If that were the case, then id− would
be a terminal object (in the usual sense) in A →− which is not true. Observe
that we can factor 1− as

(∆0)] [2]F A\
→−

This fact coupled with Lemma 5.1.12 shows that it suffices to show that the
induced morphism

C−
' colimF

[2]
T ◦ F/−

is an equivalence of ∞-categories. Let G = T ◦ F/− and consider the marked
functor t : (∆1)] [2]F selecting 0 → 1. We further denote G61 = G ◦ t.
To finish the proof it will suffice to show that restriction along t induces an
equivalence of ∞-categories.

ϕ : colim]

[1]
G61 colimF

[2]
G.

Let χ (G)F → ∆2 be relative nerve of the functor G (and similarly for G61)
where the marking is given by those coCartesian edges lying over marked edges
in (∆2)F. Restriction along t produces a marked functor

Φ: χ(G61)\ χ(G)F.
where the marking of χ(G61)\ is given by all coCartesian edges. According
to Theorem 4.1.1 it is only left to show that Φ descends to an equivalence
after localization. To achieve our goal we will show that Φ satisfies the dual
conditions of Theorem 4.0.31. As customary we will denote the objects in the
Grothendieck construction χ(G) as pairs (i, x) where i ∈ [2] and k ∈ G(i).
Given such pair (i, x) we consider a pullback square

χ(G61)\/(i,x) χ(G)F/(i,x)

χ(G61)\ χ(G)F
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and observe that in the case where i ∈ {0, 1} then top horizontal arrow is an
isomorphism. This shows that the conditions of Theorem 4.0.31 are trivially
satisfied in this case. Let (2, y) ∈ χ(G) and note that every marked morphism
with target (2, y) is of the form (0, x)→ (2, y). We further observe that we can
produce a marked morphism χ(G61)\/(2,y) as follows

(0, x) (1, R(y))

(2, y)
η

where horizontal morphism is obtained by simply applying R to x → y and
the last object is induced by the identity morphism LR(y) = y. We conclude
that it suffices to show that η : (1, R(y))→ (2, y) becomes a terminal object
in the localization of χ(G61)\/(2,y). We will actually prove something stronger,
namely that η is already terminal in χ(G61)/(2,y). This is clearly enough since
localization maps are cofinal as shown in [Cis19, Prop. 7.1.10].

Let γ : (1, x) → (2, y) be an object of χ(G61)/(2,y) with associated map
u : L(x)→ y. After some unraveling one sees that Map(γ, η)1 can be identified
with the model of the homotopy fiber of the map

C−(x,R(y)) C+(L(x), y)

provided in Proposition 5.1.4 at the object u. By hypothesis this fiber is always
contractible thus showing that η is a terminal object. The case Map(κ, η) with
κ : (0, x) → (2, y) is analogous and left as an exercise to the reader. This
finishes the proof.

Definition 5.1.14. Let � be an ∞-bicategory. We define Funa(AdjR,�) as
the full subcategory of Fun(AdjR,�) consisting in those functors F : AdjR → �
such that F (L) a F (R) with counit given by the image under F of the 2-simplex

−

+ +

R L

id+

Theorem� 5.1.1. Let � be an ∞-bicategory then restriction along ι : AdjR →
AdjR induces an equivalence of ∞-bicategories

Fun(AdjR,�) Funa(AdjR,�)'

Proof. This follows from the previous discussion together with Theorem� 5.0.2.

5.2 2-simplicial objects in ∞-bicategories
In this section we will study the simplex 2-category � which is a 2-categorical
enhancement of the simplex category ∆. The 2-category � plays an important

1We are using an alternative notation for the mapping space to improve readability
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role in the program of Dyckerhoff begun in [Dyck21] to produce a categorified
theory of homological algebra. In the aforementioned document 2-simplicial
objects (see Remark 5.2.3 below) are used to provide a categorified Dold-Kan
correspondence. It is expected that a deep understanding of the simplex 2-
category will be useful in developing a solid and usable categorified theory of
homological algebra.

The motivation for most of the foundational results in ∞-bicategories that
are part of the thesis was to prove that � satisfies a certain 2-dimensional
universal property that we shall explain now. To this end we will introduce
some definitions.

Definition 5.2.1. Let us denote by Cat the 2-category of small categories and
by � ⊂ Cat the full 2-subcategory spanned by the standard ordinals {[n]},
considered as categories. We call � the simplex 2-category.

Remark 5.2.2. First, let us observe that the underlying 1-category of � is
the usual simplex category ∆. In addition, it is straightforward to see from
the definition that �(n,m) is the poset of monotone maps equipped with
the pointwise order. We will use the notation f 6 g whenever there exists a
2-morphism (which is necessarily unique) between f, g ∈ �(n,m).

Remark 5.2.3. Since we will be mainly interested in 2-simplicial objects, i.e.
2-functors X : �(op,−) � where � is an ∞-bicategory, we will work with
the 2-category �(op,−). We set the notation �op = �(op,−).

It is apparent from the definitions that given two face maps di, dj ∈ �op(n, n−
1) we have di 6 dj if and only if i > j. Dually si 6 sj if and only if i 6 j for
degeneracy maps si, sj ∈ �op(n− 1, n). We will show in this section is to show
that previous inequalities are the generators of the 2-morphisms in �op.

Remark 5.2.4. Using the inequality si 6 si+1 we can postcompose with di
and obtain.

id 6 disi+1 = sidi. (5.1)

This shows that di a si. Similarly, we can precompose in the inequality di+2 6
di+1 with si and obtain

di+2si = sidi+1 6 id (5.2)

thus showing that si a di+1.

In order to state our main result we will fix some notation for two important
families of thin 2-simplices in �op using the diagrams below.

n+ 1 n+ 1

n n n n

si di

id

si di+1

id

ε η

Definition 5.2.5. Given an ∞-bicategory � we denote by Funa(∆op,�) the
full subcategory on those simplicial objects in � that send di and si (resp
di+1 and si) to an adjunction F (di) a F (si) with counit given by F (ε) (resp.
F (si) a F (di+1) with unit given by F (η)).
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Definition 5.2.6. We denote by ι : ∆op → �op the canonical inclusion.

The universal property of � can be then expressed as follows.
Conjecture 5.2.1. Let � be ∞-bicategory. Then restriction along ι induces
an equivalence of ∞-bicategories

ι∗ : Fun(�op,�) ' Funa(∆op,�)

In this document we will however, only prove one part of the previous
conjecture. We will show that ι∗ is fully faithful in Theorem� 5.2.1. The proof
of this theorem will be very similar (although computationally considerably
more challenging) to the proof of Proposition 5.1.8. Before diving into our main
computation we establish some auxiliary lemmata.

Lemma 5.2.7. Let f, g : [n− l] [n] be two injective monotone functions
and write them in canonical form,

f = di1 · · · dil , g = dj1 · · · djl ,

where i1 > i2 > · · · > il, j1 > j2 > · · · > jl. Then f 6 g if and only if ik > jk
for 1 6 k 6 l.

Proof. The only if direction is clear from horizontal composition. Let us assume
that il < jl. Then we have that f(il) > il + 1 > il = g(il), a contradiction.
Assume that ik > jk for k = l, l − 1, . . . , t + 1 with t > 1 and suppose that
it < jt. Then we observe that,

f(it − t− 1) > it + 1 > it = g(it − t− 1).

This is again a contradiction, so it > jt. Repeating inductively this argument
shows the result.

In a very similar way one can prove the dual statement.

Lemma 5.2.8. Let f, g : [n] [n − l] be two monotone functions only
consisting of degeneracy maps and write them in canonical form,

f = sil · · · si1 , g = sjl · · · sj1 ,

where il < il−1 < · · · < i1, jl < jl−1 < · · · < j1. Then f 6 g if and only if
ik 6 jk for 1 6 k 6 l.

5.2.1 The main computation

In this section we will prove the following statement.

Proposition 5.2.9. Let n > 0, then the canonical map ιn :
(
∆op
/n

)\ (
�op
/n

)\
is marked cofinal.

As we did in the previous section we will show that ιn satisfies the conditions
of Theorem 4.0.31. We will freely borrow the notation that we introduced while
dealing with the category AdjR. Let us recall that the objects X ∈ ∆op

f →

are
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given by diagrams
m k

n

α

f g
6

where f 6 g ◦α. We will use the notation X = (α, g). We say that X is marked
object if and only if f = g ◦ α.

A morphism (α, g) θ (β, h) is given by a 2-commutative diagram

m k l

n .

α

f

β

g

θ

h
6 6

6
It follows that θ is marked if and only if g = h ◦ θ and θ ◦ α = β.

Definition 5.2.10. We define a marked 1-category
(
∆op
f →

)+
as the full subcat-

egory of ∆op
f →

consisting on marked objects equipped with the induced marking.

Proposition 5.2.11. The induced map in∞-localizations LW
((

∆op
f →

)+
)

LW
(
∆op
f →

)
is fully faithful.

Proof. Let X, Y ∈ ∆op
f →

such that X = (α, g), Y = (β, h) and suppose that we
are given a morphism X

θ
Y . Then it is immediate from the definitions

that g ◦ α 6 h ◦ β. We also see that if θ is marked then g ◦ α = h ◦ β. We can
compute LW

(
∆op
f →

)
using the hammock localization ([DK80]). Suppose that

X, Y ∈
(
∆op
f →

)+
, and consider an arbitrary zigzag in ∆op

f →

X A1 A1 · · · As Y

then it follows from the previous discussion that Ai ∈
(
∆op
f →

)+
for i = 1, 2, . . . , s.

This finishes the proof.

The key technical part of this section is to show that LW
((

∆op
idn →

)+
)
' ∗.

For this purpose, it will be necessary to introduce some definitions.

Remark 5.2.12. Let X ∈
(
∆op

idn →

)+
with X = (α, α) and α 6= idn. Since

α ◦ α = idn. It follows that

α = sα1 · · · sαm , α1 > α2 > · · · > αm

α = dαm · · · dα1 αm < αm−1 < · · · < α1

where dαisαi = id for i = 1, 2, . . . ,m.
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Definition 5.2.13. Let X ∈
(
∆op

idn →

)+
we define d(X) ∈ N by the formula

d(X) =


1, if X = (idn, idn)
1
m

m∑
i=1

αi − αi, otherwise.

and call it the discrepancy of X.

Definition 5.2.14. Let �1
n be the full subcategory of

(
∆op

idn →

)+
on those objects

such that d(X) = 1. We regard �1
n as marked category by means of the induced

marking.

Proposition 5.2.15. There is an equivalence of ∞-categories LW (�1
n) ' ∗.

Proof. Let ∇n ∈ �1
n with ∇n = (idn, idn). It will suffice to show that ∇n is

initial in �1
n and that for every X ∈ �1

n the unique morphism ∇n X is
marked. Let X = (α, α) then we see that any morphism ∇n

θ
X satisfies

α ◦ θ = idn with θ 6 α. Let θ = sθ1 · · · sθm then it follows from Lemma 5.2.8
that θi 6 αi for i = 1, 2, . . . ,m. Since d(X) = 1 it follows that αi = αi + 1 for
i = 1, 2, . . . ,m. This finally implies that θi = αi for all indices i = 1, 2, . . . ,m
and thus the proof is finished.

Our strategy will be to show that the canonical map i : �1
n

(
∆op

idn →

)+

induces an equivalence on ∞-localizations.

Remark 5.2.16. Let X ∈
(
∆op

idn →

)+
with X = (α, α) such that d(X) 6= 1. We

express α in canonical form α = sα1 · · · sαm and we let i1 be the first index such
that αi1 −αi1 = 0. We define X̃ ∈

(
∆op

idn /

)+
with X̃ = (β, β), β = sβ1 . . . sβm−1 ,

β = dβm−1
· · · dβ1

as follows

βj =

αj − 1, if j < i1

αj+1, if j > i1
βj =

αj − 1, if j < i1
αj+1, if j > i1

It follows from the simplicial identities that we have a marked morphism

X X̃
dαi1 . In addition, we see that by construction we get d(X̃) > d(X).

Repeating this process inductively we can produce a marked morphism

ξX : X r(X)

with ξX = dαil · · · dαi1 , where {i1 < · · · < il} ⊆ {1, . . . ,m} is the subset of
those indices such that αik −αik = 0 for k = 1, . . . , l. It is clear that r(X) ∈ �1

n.

Lemma 5.2.17. Let θ : X Y be a morphism in
(
∆op

idn →

)+
such that

Y ∈ �1
n. If θ = su1 · · · sus then X ∈ �1

n.

Proof. Let X = (α, α) and Y = (β, β) with β = sβ1 · · · sβm we will assume that
α 6= idn since otherwise X = ∇n. We will use induction on s. For the case
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s = 1 we note as usual that β ◦ su ◦ α = idn. Let i1 be the first index such that
dβi1

su = id. We construct the object Ỹ = (ε, ε) with ε = sε1 · · · sεm−1 as follows

εj =

βj − 1, if j < i1
βj+1, if j > i1

εj =

βj − 1, if j < i1
βj+1, if j > i1

It is clear from construction that Ỹ ∈ �1
n and that we have a marked morphism

Y Ỹ
d
βi1 . It follows immediately that α 6 ε, α 6 ε. Then we can use

effectively the same argument as in Proposition 5.2.15 to show that α = ε and
that α = ε. The induction step is clear and left as an exercise to the reader.

Remark 5.2.18. Let θ : X Y be a morphism in
(
∆op

idn →

)+
such that

θ = dus · · · du1 . Let X = (α, α) with α = sα1 · · · sαm . Since β ◦ θ ◦ α = idn
(where Y = (β, β)) it follows that θ ◦α consists only of degeneracy maps. Given
j ∈ {1, . . . , s} let ij ∈ {1, . . . ,m} be the smallest index such that dujsαij = id.
It is an easy exercise to check that i1 < · · · < is.

Lemma 5.2.19. Let θ : X Y be a morphism in
(
∆op

idn →

)+
as in Re-

mark 5.2.18. Then αil > ul for l = 1, . . . , s.

Proof. We will proceed by induction on s. Let θ = du and suppose for con-
tradiction that αi1 = αi1 = u− 1. Since du ◦ α 6 β we see that Lemma 5.2.8
implies that αj − 1 6 βj, if j < i1. Recall that α 6 β ◦ du, so after rearranging
β ◦ du we obtain the following canonical form

β ◦ du = dβ(m−1)
· · · dβkdudβ(k−1)−1 . . . dβ1−1

where βk < u. We find as consequence of Lemma 5.2.7 that k < i1 and that

αk+1 > βk, αk > u.

Moreover, since αk+1 < αk we see that αk > βk. Therefore, we obtain the
following system of inequalities

αk − 1 6 βk (5.3)

αk > βk (5.4)
αk > u (5.5)
βk < u (5.6)

There are two cases to check αk = αk and αk + 1 = αk. For the first case we
can use equations (3), (4) to obtain αk = βk + 1. This together with equations
(5), (6) shows that αk = u. Then it follows that dusαk = id which contradicts
minimality of i1. If αk + 1 = αk equations (3), (4) imply that αk = βk and
similarly equations (5), (6) imply that u−1 = αk which is again a contradiction.
We have shown that αi1 > u.

Suppose that the claim holds for s − 1 and let θ = dus · · · du1 . Given k ∈
{1, . . . , s} we define Xk ∈

(
∆op

idn /

)+
with Xk = (εk, εk), εk = sεk1 · · · sεkm−1

as
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follows

εkj =

αj − 1, if j < ik

αj+1, if j > ik
εkj =

αj − 1, if j < ik
αj+1, if j > ik

We observe that there is a marked morphism sαik : Xk X. . It is imme-
diate that

θ ◦ sαik = dus · · · duk+1du(k−1)−1 · · · du1−1.

Then induction hypothesis now shows that αil > ul for l ∈ {1, . . . , s} \ {k}.
Repeating the same argument with k′ 6= k gives the result.

Remark 5.2.20. Let θ : X Y be a morphism in
(
∆op

idn →

)+
such that

θ = sv1 . . . svtdus · · · du1 and let us define {i1 < · · · < is} ⊆ {1, 2, . . . ,m}
in an analogous way as before. Then it is also true that αij > uj for every
j = 1, . . . , s. Indeed it is easy to construct a morphism γ : Y Z such that
γ ◦ β = dus · · · du1 and the conclusion follows from Lemma 5.2.19.

Proposition 5.2.21. Let θ : X Y be a morphism in
(
∆op

idn →

)+
such that

d(X) 6= 1 and Y ∈ �1
n. Then there exists a unique morphism r(θ) : r(X) Y

such that r(θ) ◦ ξX = θ.

Proof. First, let us remark that uniqueness of the map r(θ) follows immediately
from the fact that ξX is an epimorphism in ∆op. Using Lemma 5.2.17 we see
that θ = sv1 · · · svrdus · · · du1 since otherwise X ∈ �1

n. Let X = (α, α) with
α = sα1 · · · sαm and let {i1 < i2 < · · · < is} ⊆ {1, 2, . . . ,m} as in the proof of
Lemma 5.2.19. Since αi1 > u1 (see Remark 5.2.20) we can factor θ as

X X1 Y.
du1 θ̂

with X1 also as in Lemma 5.2.19. Repeating this procedure we can factor
θ = θs ◦ θd where θs = sv1 . . . svr and θd = dus · · · du1 . Using Lemma 5.2.17 we
conclude that we can assume that θ = dus . . . du1 .

It is easy to check that αj + 1 = αj for every j ∈ {1, . . . ,m} \ {i1, i2, . . . , is}.
Let l ∈ {1, . . . , s} such that αil = αil then by definition αil 6 ul and by
Lemma 5.2.19 αil = αil > ul so it follows that αil = ul. This shows that after
rearranging the face maps we obtain θ = r(θ) ◦ ξX thus finishing the proof.

Proposition 5.2.22. There is an equivalence of∞-categories LW
((

∆op
idn →

)+
)
'

∗.

Proof. By Proposition 5.2.15 it will suffice to show that the functor i : �1
n(

∆op
idn /

)+
induces an equivalence on ∞-localizations. We define a functor

R :
(
∆op

idn →

)+
�1
n whose action on objects is given by

R(X) =

X, if d(X) = 1
r(X), if d(X) 6= 1.
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Given X θ
Y we can use Proposition 5.2.21 to define

R(θ) =

r(θ), if d(Y ) = 1
r(ξY ◦ θ), if d(Y ) 6= 1.

It is straightforward to check that R is a well defined functor and that it maps
marked edges to marked edges. Observe that by construction R◦ i = 1. Finally
we define a natural transformation Ξ: 1 i ◦ R given by

ΞX =

idX , if d(X) = 1
ξX , if d(X) 6= 1.

Finally we note that ΞX is always a marked morphism so R and i descend to
mutually inverse functors in the ∞-localizations.

Now that we have established the preliminary lemmata regarding the cat-
egories ∆op

idn →

we turn our attention to the categories
(
∆op

→n

)
f →

for a general
morphism f : [m]→ [n].

Lemma 5.2.23. Let f : [m] [n] be a morphism in ∆op. Let di : [m+1]
[m] be a face operator with i > 0, then the adjunction si−1 a di induces the
following pair of adjoint functors,

(di)∗ :
(
∆op

→n

)
f →

(
∆op

→n

)
fdi →

: (si−1)∗

In addition, both functors preserve the markings thus descending to adjoint
functors in the localization.

Proof. We define
(di)∗ :

(
∆op

→n

)
f →

(
∆op

→n

)
fdi →

(α, g) (αdi, g)
and note that is clearly functorial an preserves the marking. Similarly we define,

(si−1)∗ :
(
∆op

→n

)
fdi →

(
∆op

→n

)
f →

(γ, h) (γsi−1, h)
where we define the 2-morphism necessary via f = fdisi−1 6 hγsi−1. We
observe that

1 = (si−1)∗ ◦ (di)∗,
and that we have a natural transformation (di)∗ ◦ (si−1)∗ 1. One easily
checks that the snake relations are satisfied.

Lemma 5.2.24. Let f : [m] [n] be a morphism in ∆op and let di : [n]
[n− 1] be face operator with i < n. The adjunctions di a si induce the following
pair of adjoint functors,

(di)∗ :
(
∆op

→n

)
f →

(
∆op

→n−1

)
dif →

: (si)∗

preserving the respective markings and thus inducing an adjunction of the
localization.
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Proof. We define,
(si)∗ :

(
∆op

→n−1

)
dif

(
∆op

→n

)
f →

(γ, g) (γ, sig)
where the 2-morphism is obtained as the composite f 6 sidif 6 sigγ. The defi-
nition of (di)∗ and the construction of the unit and the counit is straightforward
and left to the reader.

Remark 5.2.25. In the next proofs we will have to use the mapping space in
the categories ∆op

→f
. To ease the notation given a pair of objects X, Y ∈ ∆op

→f
we will denote ∆op

→f
(X, Y ) simply by Map(X, Y ) hoping it will be clear from

the context in which ∞-category we are considering the mapping space.

Proposition 5.2.26. Let n > 0 and let X ∈ LW
(
∆op

idn →

)
be a marked object.

Then X is initial.

Proof. By Proposition 5.2.11 and Proposition 5.2.22 we only need to check
that Map(X, Y ) ' ∗ when Y is not marked. We will assume X = ∇n since all
marked objects are equivalent in the localization. The proof will use induction
on n. The case n = 0 follows from the fact that all the objects of ∆op

id0 →

are
marked and Proposition 5.2.22. Assume that the claim holds for n− 1. It is
straightforward to check that every non-marked object is equivalent to an object
of the form Y = (u, v) with u = dum · · · du1 and v = sv1 · · · svm where vj > uj
for j = 1, . . . ,m. There are two cases to check v1 = 0 and v1 > 0.

If v1 = 0 it follows that m = 1 and that u1 = 0. Then we can express Y =
(d0)∗Z with Z = (idn−1, s0). An analogous argument as in Lemma 5.2.23 shows
that (s0)∗ a (d0)∗ which in turn implies that Map(∇n, Y ) ' Map((s0)∗∇n, Z).
Note since (s0)∗ is a left adjoint it preserves initial objects. Then (s0)∗∇n−1
is initial and it follows that every marked object in ∆op

s0 →

is also initial. This
shows that Map((s0)∗∇n, Z) ' ∗.

For the case v1 > 0 we use that Y = (sv1)∗Z and that (dv1)∗ a (sv1)∗
to get Map(∇n, (sv1)∗Z) ' Map((dv1)∗∇n, Z). Since v1 > 0 we have an ad-
junction (dv1)∗ a (sv1−1)∗ which shows that (dv1)∗∇n−1 is initial. This implies
Map((dv1)∗∇n, Z) ' ∗, so ∇n is initial and the proof is finished.

Theorem� 5.2.1. Let f : m n be a morphism in ∆op with and let X ∈
LW

(
∆op
f →

)
be a marked object. Then X is initial. In particular, the map ιn :

(∆op)\

→n
→ (�op)\

→n
is marked cofinal and thus for every ∞-bicategory �, the

restriction functor

ι∗ : Fun(�op,�) Fun(∆op,�)

is fully faithful.

Proof. First we will show the case where f is injective. Let s be the number
of face maps appearing in the canonical form of f . We will show the claim
by applying induction on s. If there are no face maps then f = idn for and
the claim follows from Proposition 5.2.26. Suppose that the claim holds for
s − 1 and let f = dus · · · du1 . If u1 = 0 it follows that f = d0 : n + 1 n.
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Since (d0)∗ is a left adjoint Proposition 5.2.26 implies that (d0)∗∇n+1 is initial
and the claim holds. If u1 > 0, let f̂ = dus · · · du2 and consider the marked
object X = (dus · · · du2 , idm−1) in LW

(
∆op
f̂ →

)
which is initial by the induction

hypothesis. The result now follows after observing that (dv1)∗ is a left adjoint.
For the general case we let f = sv1 · · · svtdus · · · du1 and proceed by induction

on t. If t = 0 the f must be injective and the claim holds. Assume the claim to
hold for t− 1 and write f = sv1 ◦ f̂ . We observe that we have an adjunction,

(sv1)∗ :
(
∆op

→n−1

)
f̂ →

(
∆op

→n

)
f →

: (dv1+1)∗

which shows that the claim holds for t. Therefore, the map ιn satisfies the
condition of Theorem 4.0.31. The final part of the statement follows from
Proposition� 5.0.4.
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