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Abstract

In this thesis, we discuss various aspects of the phenomenology of axion fields originating from the
compactification of type IIB superstring theory. First, we give an overview of moduli stabilisation and
string axions. Starting from their origin as p-form gauge potentials integrated over p-cycles of the
internal manifold, we discuss how they behave as four-dimensional effective fields and how they relate
with certain swampland conjectures, namely the axionic version of the Weak Gravity Conjecture and
the Festina Lente bound. Moreover, we study the effective theory of thraxions, i.e. ultralight axionic
modes living in warped throats of Calabi-Yau manifolds.

Then, we move to cosmology and in particular we focus on inflation and dark matter, two open
issues which could find a solution once axions are taken into account. After reviewing the inflationary
dynamics and some of the main proposals of axion inflation, we proceed to discuss how to realise hybrid
inflation with axions supplying also a way to UV-complete the model. Moreover, and we provide a
new approach to winding inflation, where the inflationary sector and dynamics arise from the complex
structure moduli and are governed by certain topological invariants of the Calabi-Yau.

Finally, we give a string-theoretical explanation of fuzzy dark matter as made of ultralight axions
coming from type IIB compactifications. We show how it is possible to obtain such light axions in the type
IIB axiverse including also thraxions, and we relate them with the present observational constraints. This
allows us to both restrict the parameter space where future experiments could possibly detect string
axions, and to use the observational bounds to put constraints on the UV theory and the compact
dimensions.



Zusammenfassung

In dieser Dissertation behandeln wir verschiedene Aspekte der Phänomenologie von Axionen, welche in
Kompaktifizierungen der Typ IIB Stringtheorie auftreten. Zunächst geben wir einen Überblick über die
Modulistabilisierung und Axionen in der Stringtheorie. Ausgehend von Ihrem Ursprung als Integral von
p-Form Eichpotentialen über p-Zykel der internen Mannigfaltigkeit diskutieren wir, wie sich Axionen als
vierdimensionale effektive Felder verhalten und wie sie mit bestimmten Swampland Vermutungen wie der
Weak Gravity Conjecture und dem Festina Lente Bound in Verbindung stehen. Weiterhin analysieren
wir die effektive Theorie ultraleichter axionischer Moden in warped throat Regionen von Calabi-Yau
Mannigfaltigkeiten, sogenannter Thraxionen.

Anschließend wenden wir uns der Kosmologie zu, mit besonderem Augenmerk auf die Probleme
der kosmologischen Inflation und der dunklen Materie, welche möglicherweise in der Axionphysik eine
Lösung finden könnten. Nachdem wir die inflationäre Dynamik und einige Modelle der Axion-Inflation
beschreiben, erörtern wir, wie hybrid inflation mittels Axionen realisiert werden kann und schlagen eine
UV-Vervollständigung dieses Modells vor. Außerdem präsentieren wir einen neuen Ansatz für winding
inflation Modelle, in welchem der inflationäre Sektor und dessen Dynamik aus den Moduli der komplexen
Struktur einer Calabi-Yau entspringt und durch topologische Invarianten dieser bestimmt wird.

Schlussendlich liefern wir eine stringtheoretische Erklärung von fuzzy dark matter, in welcher diese
aus ultraleichten Axionen in Typ IIB Kompaktifizierungen besteht. Wir zeigen auf, wie es möglich
ist, solche leichten Axionen im IIB Axiversum zu realisieren und untersuchen die Kompatibilität mit
aktuellen experimentellen Beobachtungen. Dies ermöglicht es uns den Parameterbereich einzuschränken,
in welchem zukünftige Experimente möglicherweise String-Axionen finden könnten. Weiterhin können
wir die UV-Theorie sowie die kompakten Raumdimensionen hierdurch einschränken.
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Chapter 1

Introduction to Axion Cosmology

È geniale questa cosa che i giorni finiscono. È un
sistema geniale. I giorni e poi le notti. E di nuovo i
giorni. Sembra scontato, ma c’è del genio. E là dove la
natura decide di collocare i propri limiti, esplode lo
spettacolo. I tramonti. 1

— Alessandro Baricco, Oceano Mare

A general prediction of String Theory is the presence of axions in the low-energy effective theory. In this
context, axions have several interesting properties. For example, they show features of the ultraviolet
(UV)-completed theory at the level of testable Physics. Furthermore, axions also serve as promising
candidates to solve fascinating puzzles in Cosmology. It is remarkable that at the moment of writing we
still lack for evidence of their existence, while many clues point in that direction. Their (ultra)light masses
and feeble interactions with the Standard Model make them almost invisible, and the experimental effort
to detect them grows every year, spanning from astrophysical observations to lattice simulations. At
the same time, these properties are precisely the reason they are appealing for stringy-inspired model
building.

The phenomenological features of string axions (i.e. axion fields that derive from ten-dimensional
superstring theories) crucially depend on the details of the compactification, namely on the way the extra
dimensions get ‘integrated out’ to obtain a low-energy theory, leaving traces of their presence in our
four-dimensional universe. Hence, in my opinion, it is of great importance to study the axionic parameter
space predicted by String Theory. This allows for targeted searches, as well as to gather hints on the
details of the compactification based on experimental bounds. This thesis adopts this perspective and
is thus devoted to show the deep connections between string axions and the universe. Before turning to
String Theory and Cosmology, we review the genesis of axions as fields endowed with a shift symmetry.
This unique feature will follow us throughout our discussions.

QCD axions

Quantum chromodynamics (QCD) suffers from the so-called strong-CP problem. This originates from
the fact that the QCD Lagrangian allows for a total derivative term of the form

LQCD ⊃
g2

32π2 θ Fµν F̃
µν , (1.1)

1It is brilliant this thing that days end. It is a brilliant system. Days and then nights. And then days again. It seems
obvious, but there is genius. And there, where nature decide to place its own limits, the view explodes. The sunsets.

1



2 CHAPTER 1. INTRODUCTION TO AXION COSMOLOGY

where Fµν is the gluonic field strength whose trace runs over the colour SU(3) indices, g is the strong
coupling constant and θ ∈ [0, 2π] is a parameter coming from the non-trivial structure of the QCD
vacuum [5]. The problem lies in the value that θ should take. The Lagrangian term in (1.1) is odd under
CP since it violates parity but conserves charge symmetry, and so it produces CP-violating effects, such
as a non-vanishing electric dipole moment dn of the neutron. If θ ∼ O(1), the value of dn produced
by (1.1) is ∼ 1010 times larger than the experimental upper bounds. In order to be consistent with
observations, θ should be smaller than 10−10. If there were only CP-conserving strong interactions, then
θ could be simply set to zero. The actual issue arises when we consider also the electroweak sector, since
it violates CP. The Lagrangian term for weak interactions takes the form Lw = q̄i,RMijqj,L + h.c. and
in order to diagonalise the mass matrix, one has to perform a chiral rotation of the quark fields. This
rotation does affect the QCD vacuum as well, as it changes the parameter θ in (1.1) as θ = θ̃+arg detM ,
where θ̃ is the bare parameter. It is now clear that a value of θ < 10−10 represents a fine-tuning problem
called the strong-CP problem.

A possible solution to the strong-CP problem was proposed in 1977 by Roberto Peccei and Helen
Quinn [6] and developed further the year after by Steven Weinberg [7] and Frank Wilczek [8]. In their
work, Peccei and Quinn (PQ) showed that, by introducing a new global U(1)PQ symmetry that is
spontaneously broken, θ can be dynamically set to zero. Then Weinberg and Wilczek independently
pointed out that such a global symmetry also implies the presence of a (pseudo) Nambu-Goldstone
(pNG) boson, i.e. an axion. Therefore, the introduction of the U(1)PQ symmetry in the theory replaces
the static angle with a dynamical field. This procedure is called misalignment mechanism and can be
summarized as follows. First, after the spontaneous breaking of the U(1)PQ symmetry, θ is promoted to
a dynamical field θ(x) with a kinetic term in the Lagrangian of the form

Lkin = 1
2f

2 (∂θ(x))2
,

where f has the dimension of a mass and is known as the axion decay constant. Since conventionally
a scalar field has mass dimension one, we can canonically normalise a(x) ≡ θ(x)f . The contribution to
the total Standard Model Lagrangian given by a(x) reads

L = 1
2 (∂a(x))2 + g2

32π2
a(x)
f

Fµν F̃
µν . (1.2)

Remarkably, (1.2) exhibits a continuous shift symmetry for the axion under a(x)→ a(x) + fc, c being
a constant. This symmetry is preserved at the perturbative level and for energies bigger than ΛQCD.
However, when non-perturbative (QCD instanton) effects switch on at ΛQCD, the shift symmetry is
broken explicitly and a receives a periodic potential of the form

V = Λ4
QCD

(
1− cos

(
a

f

))
.

Minimising the potential with respect to a gives the Peccei-Quinn solution: at ⟨a(x)⟩ = 0, θ is set to zero
dynamically, forcing the theory to be CP-symmetric. The proof of CP-conservation of the instanton-
corrected action is known as the Vafa-Witten theorem [9], which guarantees that the instanton potential
is minimised at the CP-conserving value. Hence, the QCD axion mass is given by m = Λ2

QCD/f .
A combination of collider and astrophysical experiments has given some rigid constraints to the

value of f for the QCD axion, which turns out to be typically rather high, of order 109 ≲ f ≲ 1012

GeV, while the value of the non-perturbative scale is much lower, namely ΛQCD ∼ 200 MeV. In the
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relation above, the lower bound is given by astrophysical observations, whereas the upper bound comes
from dark matter overproduction for θ ∼ O(1) (which means that the upper bound could be relaxed if
θ ≪ 1). Therefore, we can see that the axion has a parametrically small mass and from the last term
in (1.2) it follows that it exhibits very feeble interactions. Such a light particle can have very interesting
implications in Cosmology. Since it is stable on cosmological timescales, if an axionic population had
been produced in the early universe, it would have survived until nowadays, allowing for a possible
detection. Moreover, at very high energies, an axion could drive an epoch of primordial expansion in the
universe. We will delve further on these interesting aspects in Chapter 4 and Chapter 3 respectively.

pNG vs. fundamental axions

So far, we have discussed a particular, semi-classical axion, the QCD one. However, in this thesis we
will be mostly interested in a slightly different type of axions. In the language introduced lately in
the literature [10], we will distinguish pNG bosons from fundamental axions. A pNG boson can be
parametrised as the complex phase of a scalar field, while a fundamental axion is the imaginary part of
a complex modulus. The latter is purely originating from String Theory as a closed string axion, and it
is present in all string compactifications. Actually, in a general Calabi-Yau compactification, hundreds
of them can be present. One source of such fundamental axions are higher-dimensional p-form gauge
potentials (p ≥ 1), with the fields arising from the integral of gauge potentials over p-cycles of the
compact dimensions.

This distinction is useful in the context of Quantum Gravity: for a pNG boson, there is a point in
the field space where the decay constant can vanish, and this point can be described by within the
low-energy EFT. On the contrary, for a fundamental axion the point where the decay constant shrinks
to zero corresponds to an infinite volume limit, where the effective description breaks down and hence
cannot be reached in a consistent effective theory [11, 12]. It is also conjectured that string axions
cannot acquire super-Planckian decay constants while keeping the theory under control [13–16]. This
conjecture goes under the name of Weak Gravity Conjecture (WGC)2 and belongs to a class of Swamp-
land conjectures [17] that aim to distinguish effective theories which can be UV-completed to Quantum
Gravity from those which cannot. While these conjectures are still under inspection, if true they would
put severe constraints also on the phenomenology of string axions. Conversely, experimental bounds on
axion-like particles and possible future astrophysical signatures would prove or modify appropriately
the conjectures, allowing for a better understanding of the correct UV completion.

Outline

Since fundamental axions will play a prominent role in Chapters 3 and 4, in Chapter 2 we review how they
arise from String Theory in the low-energy effective theory and we describe their properties as effective
particles. We will focus on the so-called type IIB string axiverse [18] which arises by compactifying type
IIB superstring theory on a Calabi-Yau (CY) threefold equipped with internal cycles. We choose to
work in this corner of the string landscape as its formulation is at weak coupling in the string coupling
gs, allowing for perturbative control. Indeed, this setup is one of the most studied in the literature, and
this will allow us to perform detailed computations and derive solid conclusions. Nevertheless, when
possible we will try to highlight the connections with the other superstring theories, in particular of
their four-dimensional moduli spaces, see Section 2.1. After deriving the axionic 4d EFT, we explore it

2The name derives from the original formulation: in every consistent low energy EFT of gravity and electromagnetism
there should exist at least one light charged particle with mass m and U(1) charge e such that m ≲ eMP , i.e. gravity
should always be the weakest force. We dedicate Section 2.3 to this topic and its relation with axions.
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in Section 2.3 in the context of the Swampland program, where we give an explicit derivation of the
WGC for axions, and we propose a new EFT criterion, namely the axionic Festina Lente bound [19].
Finally, we present a detailed study on compactification in the presence of warped throats hosting
axionic modes dubbed thraxions. While their 4d effective theory is complex and requires further study,
their phenomenology is appealing and they widen the predicted parameter space of type IIB string
axiverse [2].

In Chapter 3 we start developing the Cosmology of string axions, beginning with inflation. With the
term inflation, we refer to an epoch of accelerated expansion that is believed to have occurred when the
universe was around 10−32 seconds old. These fractions of a second are actually crucial to explain the
universe we observe today, however we lack a precise description of what exactly happened during this
epoch and which particle(s) is(are) responsible for such unique dynamics. Indeed, given that inflation
should have taken place at high energies,3 it must be deeply tied with quantum-gravitational effects.
Therefore, after giving an overview of inflation and its relation with String Theory in Section 3.2, we
introduce some of the most prominent models of axion inflation, namely KNP alignment and axion
monodromy. After that, in Section 3.4 we first present a new way to obtain hybrid inflation with string
axions [4], then in Section 3.5 we discuss how the topological data of the extra dimensions can help in
realising inflationary directions, as well as a positive cosmological constant [3].

After studying the early history of our universe, in Chapter 4 we move to present days and delve into
the problem of the missing mass, i.e. the famous dark matter. We first explain how ‘dark matter came
to matter’ [20] and how ultralight axions can be good dark matter candidates, in particular as fuzzy
dark matter. After reviewing why String Theory naturally populates the universe with these axions, we
inspect how closed string axions and thraxions relate with current astrophysical bounds. Finally, we
also comment on the compactifications that could provide the right candidates, and how likely they are
in the string landscape [1].

To close this introduction, let us point out how exciting it is that so many experiments are now
looking for (string) axions, and what great amount of knowledge about the UV completion a detection
would bring us. In the end, axions may yet turn out to be the missing link towards testing String Theory.

3If it happened at all, but in this thesis we will assume that an inflationary epoch has occurred at some point in the
history of our universe



Chapter 2

String Axions

Ask me, then, if I believe in the spirit of the things as
they were used, and I’ll say yes. They’re all here. All
the things which had uses. All the mountains which had
names. And we’ll never be able to use them without
feeling uncomfortable. And somehow the mountains will
never sound right to us; we’ll give them new names, but
the old names are there, somewhere in time, and the
mountains were shaped and seen under those names.
The names we’ll give to the canals and mountains and
cities will fall like so much water on the back of a
mallard. No matter how we touch Mars, we’ll never
touch it. And then we’ll get mad at it, and you know
what we’ll do? We’ll rip it up, rip the skin off, and
change it to fit ourselves.”

— Ray Bradbury, The Martian Chronicles

A generic prediction of string phenomenology models is the presence of axion-like particles in the
low energy spectrum below the compactification scale. They arise in the compactification process as the
Kaluza-Klein (KK) zero modes of 10d antisymmetric tensor fields by taking integrals of higher p-form
gauge potentials on p-cycles of the internal space. The number and properties of these particles are
determined essentially by their ten-dimensional origin, hence by the topology of the internal manifold.
In this chapter, we will focus on closed string axions: we will show how they generically arise from
compactifying the higher dimensional theory, and we will describe their features in the 4d effective
supergravity description.

Some unique properties of string axions make them interesting from a phenomenological point of
view [18,21–24], for example in the context of inflation, or as possible dark matter constituents. Moreover,
their features are of central prominence in the Swampland program [11,17], especially in the context of
the Weak Gravity Conjecture [13]. Hence, axions represent a promising class of particles which could
provide information about the underlying theory of quantum gravity at the level of testable physics.
Many of the next-generation experiments will partially cover the parametric space where string axions
are expected to live. In addition, thanks to the discovery of gravitational waves [25], there is now a
completely new window where one could detect their effect on gravitational phenomena, such as the
superradiance instability of binary black holes (BHs) [24] (for recent progress in linking large-scale
Calabi-Yau database scans with the BH superradiance constraints for axions see [26]).

5



6 CHAPTER 2. STRING AXIONS

In this chapter, we discuss how string axions appear in the 4d effective theory. We first give an
overview of the compactification from 10d down to 4d, mostly focusing on type IIB string theory, but
highlighting the connections to the other superstring theories. Then we describe the spectrum obtained
from compactifying on a Calabi-Yau threefold, focusing especially on axions fields. Then, we discuss
some properties that these fields should satisfy in the IR in order to have a consistent UV completion,
i.e. we present a part of the Swampland program which concern axions. Finally, we introduce a newly-
discovered class of axionic modes, called thraxions, and we give a 4d effective treatment in the context
of moduli stabilisation.

2.1 Compactification and low-energy EFT

We start by considering type IIB superstring theory in 10d, N = 2. The 10d action in Einstein frame is
given by

SIIB = 1
2κ2

10

∫
d10x
√
−G

(
R− 1

2

∣∣∣∣ ∂τIm τ

∣∣∣∣2 − |G3|2

2Im τ
− 1

4 |F̃5|2
)

+ 1
8iκ2

10

∫
C4 ∧G3 ∧ Ḡ3

Im τ
, (2.1)

where G3 is the complex three-form G3 = F3 − τH3, τ = C0 + ie−ϕ is the axio-dilaton, and we use the
notation |Fp|2 = (p!)−1FM1...Mp

FM1...Mp . The field strengths are defined in terms of the gauge potentials
as

H3 = dB2 , F3 = dC2 , F̃5 = dC4 −
1
2C2 ∧ dB2 + 1

2B2 ∧ dC2 . (2.2)

Self-duality of F̃5 must be supplemented by hand to the equations of motion. In addition to supersym-
metry, the theory enjoys p-form gauge invariance and invariance under an SL(2,R) symmetry which
leaves the metric and C4 invariant and acts on the remaining fields as

τ → aτ + b

cτ + d
,

(
C2

B2

)
→M

(
C2

B2

)
, M =

(
a b

c d

)
, (ad− cb = 1) . (2.3)

This SL(2,R) symmetry is exact at the classical level, but gets broken down to its subgroup SL(2,Z) at
the quantum level. This subgroup is conjectured to be preserved in the full non-perturbative type IIB
string theory.

The presence of this duality group can be beautifully explained in the context of F-theory [27–30].
The transformation (2.3) is identical to the modular transformation of an elliptic curve with complex
structure τ , i.e. a torus. The transformation (2.3) leaves the shape of the torus invariant. This allows
us to give a 12-dimensional interpretation of type IIB where the SL(2,R) duality is geometrized and
where the type IIB field τ represents the complex structure modulus of a torus. The point of view of
F-theory makes also manifest why in type IIB branes are present. When the field τ encircles the brane,
it undergoes a monodromy τ → τ + 1 which can be understood as (2.3) with

M =
(

1 1
0 1

)
. (2.4)

Hence this monodromy is detecting the presence of a D7-brane, as a D7-brane is a magnetic source for
C0. By consistency of (2.3), this monodromy is also acting on the 2-form potentials. It is therefore natural
to include D-branes and O-planes in type IIB, as they are fully encoded in the F-theory geometrical
setup. We will in fact need them to break a certain amount of supersymmetry in 4d. However, before
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doing this, we should reduce the number of dimensions. In the next section, we review the most studied
way to do so.

2.1.1 Calabi-Yau compactification and moduli spaces

Type IIB string theory is a consistent theory in 10d with N = 2 supersymmetry, i.e. 32 supercharges.
Given that we are interested in its phenomenology, we have to first find a way to reduce the number of
dimensions down to the four we observe. This translates into finding a solution for the 10d equations
of motion with non-trivial Riemann tensor, that nevertheless solve the vacuum Einstein’s equations
RMN = 0, i.e. the 6d extra dimensions must be a Ricci-flat manifold. A non-trivial class of such
manifolds actually exists and is called Calabi-Yau (CY) threefold.

Consider a complex manifold X of dimC = 3 where we can define three complex coordinates zm, each
parametrizing a patch, such that on all overlaps of the patches the transition functions are holomorphic.
We choose the metric gmn̄ on the complex manifold to be Hermitian with associate tensor

J ≡ igmn̄dzm ∧ dz̄n̄ , (2.5)

which is a nowhere-vanishing (1, 1)-form called Kähler form. If J is a closed form, i.e. dJ = 0, our
manifold X is Kähler and the metric can be expressed locally in terms of a Kähler potential K as
gmn̄ = ∂m∂̄n̄K(z, z̄), such that J = i∂∂̄K. Note that K is not uniquely defined, as under a Kähler
transformation K → K + f(z) + f̄(z̄), where f and f̄ are holomorphic and anti-holomorphic functions,
the metric gmn̄ is invariant.

We are actually looking for a particular subclass of Kähler manifolds, namely those that have van-
ishing Ricci tensor. We can define the closed Ricci (1, 1)-form on a Kähler manifold as

R = −i∂∂̄ log (det g) . (2.6)

It is now useful to introduce the notion of total Chern class of a manifold M as

c(M) = 1 +
∑
j

cj(M) = det(1 +R) = 1 + trR+ tr (R∧R− 2(trR)2) + . . . , (2.7)

where the k-th Chern class ck(M) is an element of the de Rham cohomology group Hk(M). If the
first Chern class is vanishing, then X is a Ricci-flat Kähler manifold. Therefore, we call CY a Kähler
manifold with vanishing first Chern class.

Admitting a Kähler metric with vanishing Ricci curvature is equivalent to having a reduced holonomy
group contained in SU(n), n ≤ 3. Hence, we can globally define a covariantly constant spinor ψ on X

as the unique 1d subspace that is left invariant upon parallel transport around any loop.1 In the case of
CY threefolds, it is useful to demand that the holonomy group is exactly SU(3). Knowing the holonomy
group of a manifold allows us to compute how many supercharges survive the compactification. A CY
with SU(3) holonomy preserves 1/4 of the 10d supersymmetry, hence compactifying type II on a CY
threefold leads to a 4d theory with 8 supercharges, i.e. N = 2 supersymmetry, while the heterotic
superstring theory on a CY threefold preserves N = 1 in 4d. Considering subgroups of SU(3) leads to
more supercharges in 4d, therefore asking for the maximal holonomy group allowed guarantees having

1This occurs when we require the factorization R10 = R1,3 ×X. The associated group decomposition reads SO(1, 9) ⊃
SO(1, 3)×SO(6), with corresponding decomposition of spinors 16 → (2,4)⊕(2̄, 4̄). Then, since SO(6) ∼= SU(4), the spinors
ψ and ψ̄ are the 4 and 4̄ of SU(4). Decomposing ψ into the irreducible representations of SU(3), we have 4 → 3 ⊕ 1. We
have thus obtained a manifold with a singlet, which is the unique covariantly constant spinor on the CY.
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the minimal amount of supersymmetry in 4d.
We can use the spinor to define a holomorphic, closed (3, 0)-form as

Ω = Ωmnrdzm ∧ dzn ∧ dzr where Ωmnr ∼ ψ̄ Γmnrψ . (2.8)

Therefore, this form is unique and nowhere-vanishing, and it is a special feature of a CY. The Kähler
form and the holomorphic 3-form are not independent, but satisfy

J ∧ J ∧ J = 3i
4 Ω ∧ Ω , J ∧ Ω = 0 . (2.9)

Compactifying on a CY threefold is useful because it preserves a certain amount of supersymmetry
in 4d. Moreover, we can derive some features of the low-energy theory from its topology. This is due to
the fact that the harmonic forms on X corresponds to the elements of the Dolbeault cohomology groups
Hp,q

∂̄
(X). The elements of Hp,q

∂̄
(X) are defined as the set of closed (p, q)-forms quotiented out by the set

of exact (p, q)-forms, where (p, q) denotes the number of holomorphic and anti-holomorphic differentials
of the harmonic forms. In particular, the dimension of the group is given by dimHp,q

∂̄
(X) ≡ hp,q, which

is called Hodge number. In a simply-connected CY threefold, the only independent Hodge numbers are
(h1,1, h2,1).2 The Euler characteristic is then given by the simple relation χ(X) = 2(h1,1 − h2,1).

Now, we can ask whether there exists infinitesimal deformations of the metric δg = δgmn̄dzmdz̄n̄ +
δgmndzmdzn + c.c. such that g+ δg is still a Ricci-flat Kähler metric. By choosing the gauge ∇(δg) = 0
to fix the diffeomorphism invariance, it turns out that the conditions on δgmn̄ and δgmn are decoupled,
so that there are two independent classes of deformations.

First, the gauge choice imposes ∆δgmn̄ = 0 on the mixed-indices contribution, implying that δgmn̄
has to be a harmonic (1, 1)-form. Moreover, the components of δgmn̄ leads to deformations of the
Kähler form (2.5). The Kähler form can be expanded in a basis of harmonic forms ωi, i = 1, . . . , h1,1,
as J = ti(x)ωi, where the ti(x) are real scalar fields called Kähler moduli. In order to make sure that
the ti are such that the corrected metric is still positive definite, we impose the so-called Kähler cone
conditions ∫

C

J > 0 ,
∫
S

J ∧ J > 0 ,
∫
X

J ∧ J ∧ J > 0 , (2.10)

for all complex curves (or 2-cycles) Σ(2) and surfaces (or 4-cycles) Σ(4) on the CY X. The 2- and 4-cycles
(Σ(2),Σ(4)) constitute an integral basis for the homology groups H2(X) respectively H4(X) and are the
Poincaré duals to the basis of 4- and 2-forms (ω̃j , ωi). The Kähler form takes values inside a strongly
convex polyhedral cone spanned by the Kähler moduli, and its interior is known as the Kähler cone or
Kähler moduli space MK , which has dimension equal to h1,1. By defining the topological quantities
known as (triple) intersection numbers

kijk ≡
∫
X

ωi ∧ ωj ∧ ωk , (2.11)

we can see from (2.10) that the ti are the volumes of the 2-cycles, while the volume of 4-cycles are
2This statement can be shown as follows. First, hp,q = hq,p from complex conjugation, while Hodge star duality implies

hp,q = h3−p,3−q and it is guaranteed by the existence and uniqueness of the top-form. h3,0 = 1 because the holomorphic 3-
form is unique. h0,0 = 1 because X is compact and connected. Assuming simply-connectedness implies trivial fundamental
group, i.e. by Hurewicz’s theorem h0,1 = 0. Nevertheless, depending on the definition of CY chosen, one can also have
CYs with non-trivial fundamental group π1 ̸= 0, i.e. with h0,1 ̸= 0. Non-simply connected CYs are usually described by
quotienting a simply connected Calabi-Yau variety by a freely acting discrete symmetry [31–34].
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defined as τi ≡ kijktjtk/2, and the last integral gives the volume of the CY, namely 3

V(X) ≡ 1
6kijkt

itjtk . (2.12)

Since MK is a Kähler manifold, it admits a Kähler metric which reads

KK = −2 ln (V) . (2.13)

If the number of generators ωi of the Kähler cone is equal to the dimensionality of the cone, the Kähler
cone is said to be simplicial. Otherwise, the number of generators outnumbers the dimensionality of the
cone, and the Kähler cone is non-simplicial. The dual cone of the Kähler cone is a cone within the vector
space of 2-cycles of the CY, and it is called the Mori cone. In other words, the Mori cone is the set of
all 2-cycles satisfying the condition

∫
Σ(2) ωi ≥ 0 for all generators ωi of the Kähler cone. Note that if the

Kähler cone is simplicial, the Mori cone is also simplicial, and vice versa.
By contrast, the metric deformation of pure indices δgmn violates hermiticity, and it must hence

be accompanied by a change in complex structure. It can be shown that δgmn must be a harmonic
(2, 0)-form to preserve Ricci-flatness, just as for mixed-indices deformations. However, h2,0 = 0 for a
CY, hence to count these complex structure deformations, we put H2,0(X) in one-to-one correspondence
to H2,1(X) via Ω as follows

χ = Ωp̄mnδgp̄q̄dzmdzndz̄q̄ . (2.14)

Let us consider a basis of 3-forms (αa, βa), a = 0, . . . , h2,1, satisfying∫
X

αa ∧ βb =
∫

Ab

αa = −
∫

Ba
βb = δab , (2.15)

i.e. it is a symplectic basis. The 3-forms are the Poincaré duals to the so-called B and A-cycles that
form a basis of the third homology group which is symplectic, implying that the 3-surfaces intersect as
Aa ∩ Bb = −Bb ∩ Aa = δba. The complex structure moduli space Mcs is special Kähler, and there is a
natural set of h2,1 + 1 special complex coordinates on it which can be defined as

za ≡
∫

Aa

Ω , Fa(z) ≡
∫

Ba
Ω , (2.16)

which allows us to express the unique, holomorphic form as Ω = zaαa − Fbβb. It is useful to write the
above periods in terms of the period vector

Π =
(

za

Fa(z)

)
. (2.17)

Since the za are homogeneous complex projective coordinates on Mcs, we can normalize Ω such that
z0 = 1 away from z0 = 0. Hence, from now on a = 1, . . . , h2,1. The periods Fa(z) are determined in
terms of the za by the prepotential F(z) via Fa(z) = ∂zaF(z) and F0 = 2F(z)− za∂zaF(z).

We take (2.16) (appropriately rescaled) as the definition of complex structure moduli za. Hence, we
can define the metric on Mcs as [35]

gab̄ = ∂2Kcs

∂za∂z̄b̄
, where Kcs = − ln

(
i

∫
X

Ω ∧ Ω̄
)

= − ln
(
iz̄aFa − izaF̄a

)
. (2.18)

3Note from (2.9) that we can also define the CY volume as V(X) ∼
∫

X
Ω ∧ Ω̄. For this reason, the holomorphic 3-form

is also called the volume form, and it is clear now physically why it should be unique.



10 CHAPTER 2. STRING AXIONS

For later purposes, we introduce the exact expression for Kcs. At large complex structure (LCS) we can
write the prepotential as F(z) = Fpert(z) + Finst(z) with

Fpert = −1
6 k̃abcz

azbzc + 1
2aabz

azb + baz
a + c ,

Finst = 1
(2πi)3

∑
β

n0
β Li3

(
e2πiβaza

)
,

(2.19)

where Lik is the polylogarithm function. This expression refers to the mirror CY X̃, hence k̃abc are the
triple intersection numbers of the mirror and the sum runs over effective curves in the mirror [36, 37].
The constants a, b are rational numbers, and c = − ζ(3)

(2πi)3χ(X). The n0
β are the genus 0 Gopakumar-Vafa

(GV) invariants, which count the number of holomorphic curves of genus 0 in a given homology class
[β] of X̃ [38, 39].

To describe the prepotential we had to introduce the concept of mirror of a CY. Mirror symmetry [40]
is a symmetry which corresponds to the interchange of the third cohomology class of a manifold with the
even cohomologies of the putative mirror one. In particular, for a CY X this means that there exists a
mirror CY X̃ given by a map called mirror map which exchanges complex structure and Kähler moduli
between X and X̃ (hence, X and its mirror are in general topologically different manifolds). Mirror
symmetry can then be seen as the statement that type IIB compactifyied on X is mirror-symmetric to
type IIA on X̃. Since the moduli spaces are interchanged, it means that the prepotentials are identical.
This allows us to compute the metric on the Kähler part of the moduli space of type IIA (which receives
both perturbative and worldsheet instantons corrections) by relating the type IIA prepotential via the
mirror map to the type IIB prepotential which can be computed classically.

The complex structure moduli space of type IIB is classically exact because it is the space of vector
multiplets. Upon compactificaton on a CY, type IIB gives a low-energy effective theory in 4d whose
spectrum is composed of N = 2 multiplets. In particular, their massless bosonic components are shown
in table 2.1, where S is the 4d axio-dilaton and the reduction of the 10d metric yields the 4d metric gµν ,
the graviphoton 1-form V 0 and of course h2,1 complex structure moduli za and h1,1 Kähler moduli ti.
All the other fields appear as coefficients in the expansion of the 10d forms in terms of harmonic forms
of X as

B2 = B̂2(x) + bi(x)ωi , C2 = Ĉ2(x) + ci(x)ωi , C4 = di(x)ω̃i + d′
iω
i + V a ∧ αa +A′

b ∧ βb , (2.20)

where the 2-forms B̂2 and Ĉ2 can be dualised to two axions b0, c0. Moreover, there are 2h1,1 model-
dependent axions bi, ci, while from C4 we get the axions di and the ones dual to the 2-form d′

i, which
must be identified from the self-duality of the 5-form field strength, hence giving in total h1,1 C4-axions.
The V a are 1-forms entering the vector multiplet. Therefore, we have thatMK ≡Mh andMcs ≡MV ,
whereMh andMV are the hyper and vector multiplet moduli spaces respectively. Therefore, for mirror
symmetry, in type IIA we have Mcs ≡Mh and MK ≡MV .

Note that, since the dilaton ϕ appears in the universal hypermultiplet, MIIB
h receives (perturbative

number components
gravity multiplet 1 gµν , V 0

vector multiplets h2,1 za, V a
Kähler hypermultiplets h1,1 ti, bi, ci, d

i

universal hypermultiplet 1 S = C0 + ie−ϕ, b0, c0

Table 2.1: 4d, N = 2 multiplets and their bosonic field content [41].
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and non-perturbative) corrections in gs. In contrast to this, the vector multiplet moduli space is exact
at string-tree level. The same is true in type IIA where the dilaton is again part of MIIA

h , while this is
not the case for heterotic string theory, where the dilaton enters the vector multiplet moduli space. Let
us consider type IIA string theory compactified on X̃, where the metric on MIIA

V receives perturbative
and non-perturbative worldsheet corrections in α′. Under mirror symmetry, this is mapped to type IIB
on X, where MIIB

V is classically exact. On the contrary, Mhet
V in the heterotic theory is given by the

h1,1 Kähler moduli plus the heterotic axio-dilaton Sh, and in order to have 4d, N = 2 the heterotic
theory has to be compactified on K3 ×T 2. The existence of a duality between heterotic and type IIA
actually imposes the structure of a K3 fibration onto X̃ [42] and in particular implies h1,1(X̃) ≥ 2. Due
to the product structure of the moduli space in N = 2 and the fact that the dilaton resides in different
multiplets in the two theories, it is possible to compare the heteroticMV in a weak coupling expansion
with theMV of the type IIA vacuum at large volume. The duality between type IIA and heterotic maps
the volume of the base space of X to the heterotic dilaton, in the limit of large volume of the base or
equivalently weak heterotic string coupling [43]. Via the mirror map, we can then relate these limits to
the LCS limit in type IIB.

Let us show this web of dualities in an example. Consider X̃ = P4
11226[12] and its mirror X given by

the Z2
6 × Z2 orbifold of the hypersurface [44]

x12
1 + x12

2 + x6
3 + x6

4 + x12
5 − 12ψ

∏
xi − 2ϕx6

1x
6
2 = 0 (2.21)

in the same weighted projective space. Under the mirror map, the two complex structure ψ and ϕ get
mapped to the two Kähler moduli of X̃, t1 = (ξ1 + iv1) and t2 = (ξ2 + iv2) where ξ is the axion field
and v is the saxion. In particular, let us define the LCS coordinates

x = − 1
864

ϕ

ψ6 , y = ϕ−2 . (2.22)

The mirror map takes the form

t1 = Q1

(
x−1/3, y

)
, t2 = 1

2πi log(y) +Q2

(
x−1/3, y

)
, (2.23)

where Qi are power series in the indicated variables. Then, it was shown in [43] that the map between
the type IIB and the heterotic moduli (for large S) reads

x = 1728
j (T ) + . . . , y = e−S + . . . . (2.24)

By reading backwards these dualities, we see that t1 = T and t2 = iS/(2π). Most importantly, note that
T enters as a modular function in the map [43,44].

The non-perturbative part of the type IIA prepotential in the LV phase reads

F IIA
np =

∑
β>0

n0
β Li3

(
e2πitβ

)
, (2.25)

where n0
β are the genus zero Gopakumar-Vafa invariants. Its counterpart on the heterotic side is [45]

Fh
np =

∑
n>0

fn (T ) e−nS , (2.26)

which indeed perfectly agrees with the above map between type IIA and heterotic. Hence, the heterotic
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Kähler potential in N = 2 will bear a non-perturbative correction which scales as ∼ A e−S where A is
a constant.

The beautiful structure connecting the moduli spaces that we have just briefly summarised is the 4d,
N = 2 realization of the fact that type II and heterotic superstrings (as well as type I) are manifestations
of the same underlying theory.

We have discussed at the beginning of the section how type IIB can be seen as the weak coupling
limit of F-theory, where the latter is defined with a twelve-dimensional formulation as type IIB with
varying axio-dilaton. We can therefore consider F-theory compactified on a CY fourfold elliptically fibred
over a three complex dimensional base manifold. However, this gives in 4d only N = 1 supersymmetry.
This is because type IIB is actually the weak coupling orientifold limit of F-theory: in fact, in F-theory
the presence of D-branes and O-planes is encoded in the geometry, while in type IIB they should
be introduced. Indeed, once in type IIB an orientifold projection is taken into account, half of the
supersymmetry is broken and we are left with N = 1.

In particular, in type IIB given a manifold with discrete Z2 symmetry group σ with even-dimensional
fixed point locus (i.e. with O3/O7-planes), we can project the degrees of freedom of our theory onto the
sector invariant under (−1)FLΩpσ, where Ωp denotes worldsheet parity, FL is the left-moving fermion
number. In order to preserve some supersymmetry, σ must be holomorphic, hence the cohomology groups
split into even and odd eigenspaces as Hp,q = Hp,q

+ ⊕ Hp,q
− . At the level of the spectrum, this means

that we are projecting out half of the fields, and the leftovers must be repackaged in N = 1 multiplets.
The N = 2 gravity multiplet loses the vector and the universal hypermultiplet loses two of its axions,
b0 and c0. The Kähler hypermultiplets are split into h1,1

+ chiral multiplets composed by (ti, di) and h1,1
−

axion chiral multiplets (cα, bα) and in particular, we are left with the following invariant 2- and 4-form
fields:

B2 = bα(x)ωα , C2 = cα(x)ωα , C4 = di(x)ω̃i . (2.27)

where i = 1, . . . , h1,1
+ , α = 1, . . . , h1,1

− . The complex structure deformations divide into h2,1
− complex

structure chiral multiplets and h2,1
+ vector multiplets (see table 2.2). Now, we need to rearrange the

invariant scalar degrees of freedom into the bosonic components of chiral multiplets of N = 1 super-
symmetry. The proper coordinates of the moduli space turn out to be h1,1

− 2-form fields Gα, h1,1
+ Kähler

moduli Ti, h2,1
− complex structure moduli za and the axio-dilaton S [41]:

S = C0 + i e−ϕ , Gα = cα − Sbα , Ti = τi + i di + i κiαβ

2
(
S − S̄

)Gα (G− Ḡ)β . (2.28)

where τi ≡ 1
2kijkt

jtk while κijk and κiαβ are the only non-trivial triple intersection numbers between
all even 4-cycles the i-th orientifold-even 4-cycle and a pair of orientifold-odd 4-cycles. We immediately
see that the axionic content of the theory coming from closed string modes is given by the fields C0, cα,

number components
gravity multiplet 1 gµν
chiral multiplet 1 S = C0 + ie−ϕ

Kähler chiral multiplets h1,1
+ ti, di

chiral multiplets h1,1
− bi, ci

vector multiplets h2,1
+ V a+

c. s. chiral multiplets h2,1
− za−, b0, c0

Table 2.2: 4d, N = 1 multiplets and their bosonic field content in O3/O7-orientifold compactifica-
tions [41].
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bα, di, whose number hence depends on the geometrical structure of the extra dimensions.
To leading order in gs and α′, the resulting low-energy Kähler potential reads

K = −2 ln
(
V(T + T̄ )

)
− ln

(
S − S̄

)
− ln

(
i

∫
X

Ω(z) ∧ Ω̄(z̄)
)
, (2.29)

where V depends implicitly on the real part of the complexified Kähler moduli T . The low-energy
effective theory that we have arrived to is actually a supergravity theory. The F-term 4d supergravity
scalar potential is given in terms of a Kähler potential K and a superpotential W (in units of MP ) by

V = eK
[
KIJ̄DIWDJ̄W̄ − 3|W |2

]
, (2.30)

where DIW ≡ ∂IW +KIW is the Kähler covariant derivative and the indices I, J run over all moduli.
Hence, since for now W is identically vanishing, all the fields we discussed so far are flat directions in
their moduli spaces.

2.1.2 Branes and fluxes

The inclusion of supersymmetry-breaking orientifold planes comes at a cost. In particular, O7-planes
carry negative magnetic charge under C0 (and negative tensions), which we must cancel by including
also a number of D7-branes. Actually, the inclusion of branes also generates a potential for the Kähler
moduli and the axions, which would be otherwise parametrising flat directions of the moduli space.
Moreover, each D-brane comes along with a U(1) gauge theory that lives on its worldvolume, while
placing a number of branes on top of each other give rise to non-Abelian gauge theories. Because we will
need all these features, we now review the basics of branes and fluxes in type IIB CY compactification.

The dynamics of a Dp-brane is described by the DBI action together with a Chern-Simons action
which read

SDBI = −Tp
∫

Σ
dp+1ξ e−ϕ

√
−det (g +B2 + 2πα′F2) ,

SCS = µp

∫
Σ
Cp+1e

2πα′F2+B2 ,

(2.31)

where F2 is the gauge field living on the brane, Tp is the tension and µp the RR-charge of the brane.
The inclusion of branes implies a modification of the chiral Kähler coordinates [46], as one now should
deal also with the open string moduli, which are moduli corresponding to the strings stretching between
branes parametrising the positions and complex deformations of the branes in the internal manifold. In
the F-theory perspective, these are actually just normal geometric moduli of the fourfold, counted by
the h3,1 complex structure moduli.

However, usually fluxes take care of these moduli, stabilising them at high energy scales. In particular,
let us focus on background fluxes: we can add 3-form fluxes F3 and H3 on 3-cycles. By combining them
into the 3-form fluxes G3 ≡ F3−SH3, it was shown in [47] by Giddings, Kachru and Polchinski (GKP)
that the F-terms of the complex structure and the axio-dilaton possess a common solution locus where
the fluxes G3 only have components of Hodge type (0, 3) and (2, 1), i.e. they are imaginary self-dual
(ISD) ⋆6G3 = iG3. The vanishing of the (1, 2) and (3, 0) components corresponds to h2,1 + 1 conditions
on h2,1 complex structure moduli and the axio-dilaton. Therefore, the complex structure moduli and
the axio-dilaton are stabilized by turning on background fluxes, since the latter generate the Gukov-
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Vafa-Witten (GVW) superpotential [48]

W ∼
∫
X

G3 ∧ Ω . (2.32)

Let us note here that due to the modified Bianchi identity, 3-form fluxes carry D3-brane charge which
must be cancelled by other localized objects. This leads to the tadpole cancellation condition

1
(2π)4(α′)2

∫
X

F3 ∧H3 +ND3 −
1
4NO3 = 0 , (2.33)

where ND3 and NO3 are the net number of positive and negative D3-charge sources respectively. Via the
ISD condition, one can show that the flux contribution is always positive, hence requiring the presence
of an object with negative D3-charge.

Since now we have a superpotential, the supergravity potential is non-trivial and reads

e−KV = KSS̄DSWDS̄W̄ +Kzz̄DzWDz̄W̄ +
(
Kij̄KiKj̄ − 3

)
|W |2 . (2.34)

The parenthesis is actually vanishing as K at tree level satisfies the no-scale identity [49], implying the
existence of a classical no-scale structure of the potential for the Kähler moduli, which are therefore still
flat directions. The potential (2.34) is positive semidefinite and allows us to fix the complex structure
moduli in a supersymmetric way, i.e. with FI = DIW = 0. In fact, whether supersymmetry is preserved
or not also depends on the choice of the G3 fluxes: if G3 is of the (2, 1)-type then supersymmetry is
unbroken, while a G3 of the (0, 3)-type breaks the supersymmetry. In both cases, one gets a Minkowski
vacuum at tree level.

2.1.3 Kähler moduli stabilisation

The 4d effective field theory coming from string compactification contains many scalar fields, which
parametrise the size and the shape of the extra dimensions. Since the moduli appear at tree-level as
massless and uncharged scalar fields which, thanks to their effective gravitational coupling to all ordinary
particles, they would mediate some as of now undetected long-range fifth forces. For this reason, it is
necessary to develop a potential for these particles in order to give them a mass. This problem goes
under the name of moduli stabilisation.

The flatness of the F-term scalar potential for the Kähler moduli can be cured by considering pertur-
bative and non-perturbative corrections to the Kähler potential and the superpotential. For the super-
potential, only non-perturbative ones are allowed in the Kähler moduli T due to the non-renormalisation
theorem [50]. These corrections can be generated either by Euclidean D3-brane instantons [51] or by
gaugino condensation effect happening in the worldvolume theories of stacks of D7-branes wrapping
rigid divisors [52,53]. Both these contributions take the form

Wnp =
∑
i

Aie
−aiTi , (2.35)

where ai = 2π for ED3-branes and ai = 2π/h∨(Gi) for the gaugino condensation case. Here h∨(Gi) is
the dual Coxeter number of the gauge group Gi on the i-th stack of D7-branes. The 1-loop Pfaffians
Ai depend on the stabilisation of the complex structure moduli. Additionally, there might be higher
instanton corrections, but these can be neglected as long as aiTi > 1.

In general, the Kähler potential receives corrections both in string loop expansion and in α′, where
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the leading α′3 correction comes from the ten-dimensional R4-term, and induce the so called BBHL
correction parametrised by the constant ξ [54]. The corrected Kähler potential is then

K = −2 ln
(
V + ξ̂

2

)
+ δKgs + δKO(α′4) = K0 + δKgs + δKα′ , (2.36)

where ξ̂ is a constant which controls the strength of α′ corrections and is given by ξ̂ = ξ/g
3/2
s ,

ξ = −χ(X)ζ(3)
2(2π)3 , (2.37)

and χ(X) is the Euler characteristic of the CY 3-fold. In (2.36) by δKgs (resp. δKα′) we collectively
mean all the string loop corrections [55–57] to the Kähler potential (resp. all α′ corrections). In the
N = 1 case, the BBHL correction was shown to be the leading one to contribute thanks to the extended
no-scale cancellation of O(α′2) and the subdominance of higher terms [57].4

Let us specialize the F-term supergravity potential by including the perturbative and non-perturbative
corrections of eqs. (2.35) and (2.36). If we assume that the complex structure moduli and the axio-
dilaton are stabilized at higher energy scales, they contribute only as a constant both in K and in W .
In particular, we can write the superpotential after complex structure and axio-dilaton stabilisation
as W = W0 + Wnp, where W0 is a constant determined by the VEVs of the stabilised fields from the
tree-level W . Therefore, we can consider the potential for the Kähler moduli only, and we can split it
into three terms, namely

V = Vnp1 + Vnp2 + Vα′ where

Vnp1 = eKKjk̄ ∂TjW∂T̄kW̄ , Vnp2 = eKKjk̄
[
W̄∂TjW∂T̄kK + h.c.

]
,

Vα′ ∼ 3ξ̂ ξ̂ + 7ξ̂V + V2

(V − ξ̂)(2V − ξ̂)2
|W |2 .

(2.38)

Hence, we can rewrite V as [59]

V = eK

∑
α,β

KTαT̄βaαAαaβAβe
−aαTα−aβ T̄β


− eK

∑
α,β

KTαT̄β
(
aαAαe

−aαTαW̄∂T̄βK + aβAβe
−aβ T̄βW∂TαK

)
+ 3ξ̂ ξ̂ + 7ξ̂V + V2

(V − ξ̂)(2V − ξ̂)2
|W |2 .

(2.39)

Over the years, many proposals of moduli stabilisation in controlled regimes have been put forward.
Since in this thesis we deal only with the KKLT [60] mechanism and the Large Volume Scenario
(LVS) [61], we will review only these two ideas. Let us anticipate here that both these proposals give
rise to (supersymmetric and non-supersymmetric respectively) AdS minima, and whether these minima
can be uplifted to dS is an active field of research.

KKLT involves a competition between the tree-level superpotential W0 and non-perturbative correc-
tions. To do so, and to render α′ corrections unimportant, W0 should be made very small via a tuning
of fluxes. In particular, by considering h1,1 = 1, K only at tree level and the first non-perturbative

4Note that in the N = 1 case with O7-planes one should trade χ(X) with χeff(X) = χ(X) + 2
∫

X
D3

O7 in ξ̂ [58].
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correction in W , one finds that the F-term is

DTW = −aA e−aT − 3 Ae
−aT +W0

T + T̄
, (2.40)

which has a solution for T ∼ ln(−W0)/a, where T should have a VEV at moderately large value for a
controlled minimum. Indeed, this is consistent only if |W0| ≪ 1. The vacuum energy is supersymmetric
and is given by

VAdS = −3eK |W |2 ∼ − 3
(T + T̄ )3

|W0|2 . (2.41)

It was proposed already in [60] that this negative vacuum can be uplifted by including D3-branes
placed at the tip of a warped throat. The vacuum energy of the anti-brane is positive and scales as
ω4

0/(T + T̄ )−2, where ω0 is the IR warp-factor of the throat [62]. By tuning fluxes appropriately so that
ω4

0 ∼ |W0|2, the anti-brane potential dominates over (2.41), thus giving the possibility for dS vacua of
tunable cosmological constant.

Note that due to the fact that KKLT AdS vacuum is supersymmetric, fields belonging to the same
multiplet get stabilised at the same energy level by the same non-perturbative effects. For example,
Kähler moduli and their axionic supersymmetric partners have the same mass, which is generically of
the same order as the gravitino mass, i.e. eK/2|W0|MP . This fact could actually be a drawback for
phenomenology, as it seems rather difficult to obtain in this way a spectrum of particles with different
mass scales. We will delve further into this topic in Chapter 4. A supersymmetry-breaking AdS vacuum
could therefore in principle allow for more varieties of scales in the effective theory. The LVS procedure
can address exactly this problem, as we review in what follows.

As its name suggests, LVS moduli stabilisation allows the volume of the extra dimensions to be
stabilised at exponentially large values, creating a natural hierarchy between energy scales that can be
parametrised by inverse powers of the overall volume. This is particularly convenient for phenomenology,
since it allows us to perform moduli stabilisation step by step, at different energies. LVS stabilizes the
Kähler moduli via an interplay between α′ corrections to K and non-perturbative corrections to W . In
order to keep control on α′ corrections, the overall CY volume V must be stabilized at exponentially
large values. As a result, |W0| ∼ O(1). However, some topological requirements are needed. First, inside
the α′ correction in (2.36), the Euler number of the CY must be negative, i.e. h2,1 > h1,1 > 1. This in
turn ensures that ξ is positive and so that, as V tends to infinity, the potential goes to zero from below
in the LVS scaling regime (2.43) discussed below. LVS produces an AdS minimum which is no longer
supersymmetric. Second, there must be present at least one blow-up mode, τs ⊂ Ts, corresponding to a
4-cycle modulus resolving a pointlike singularity. In the limit V → ∞, all τi →∞ but τs. This modulus
should be the one inducing the leading non-perturbative corrections to W , namely Wnp ∼ e−asTs . Of
course all moduli could appear in Wnp, but in the above limit their contribution is subleading.

Being interested in large 4-cycles parametrising the overall volume of extra dimensions, we can
consider the (weak) Swiss-cheese parametrisation of the volume, namely

V =
(
f3/2(τi)− τ3/2

s

)
i = 1, . . . , h1,1 − 1 , (2.42)

where f3/2 is a function of degree 3/2 in τi that we assume to be given by a single term for simplicity
and τs is a diagonal contractible blow-up cycle. Given this simplifying assumptions and considering
non-perturbative corrections to W only related to the small cycle Ts, LVS stabilisation is able to fix
three directions in the Kähler moduli space, namely the overall volume V, the small cycle τs and the C4
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axion ds at

⟨τs⟩3/2 ≃ ξ̂

2 , e−as⟨τs⟩ ≃
√
τs |W0|
asAsV

, ds = kπ

as
, (2.43)

where k ∈ Z. From the previous equations, we see that the LVS minimum lies at exponentially large
volume V ∼ easτs ≫ 1 and does not require any fine-tuning on the tree-level superpotential. Non-
perturbative effects do not destabilise the flux-stabilised complex structure moduli and the dilaton.
Moreover, supersymmetry is mostly broken by the F-terms of the Kähler moduli and the gravitino
mass is exponentially suppressed with respect to MP , as m3/2 ∼ V−1MP . This can give low-energy
supersymmetry naturally. Moreover, one can show that all the other relevant scales of the theory scale
with inverse powers of the bulk volume, as e.g. in Planck units the string scale is Ms ∼ V−1/2 while the
KK scale reads MKK ∼ V−2/3.

LVS models are characterised by a non-supersymmetric AdS minimum of the scalar potential at
exponentially large volume, which reads

VAdS = −O(1)gs|W0|2
√

ln (V)
V3 , (2.44)

hence we must find a way to uplift this negative minimum to a dS vacuum. This can be done by switching
on magnetic fluxes on D7-branes [63], adding anti-D3-branes [60, 64–71], hidden sector T-branes [72],
non-perturbative effects at singularities [73], non-zero F-terms of the complex structure moduli [74] or
via the winding mechanism coming from a flat direction in the complex-structure moduli space [3, 75].
We dedicate to the latter proposal Section 3.5. Note that the uplift to de Sitter does not destabilise the
axions, as generically the fields responsible for the uplift are the Kähler moduli.

Axions are stabilised basically in the same way we just described for the moduli. This is true in
particular for the C4 axions d, which are the supersymmetric partners of the Kähler moduli. Some
additional ingredients should be considered for odd axions, such as requiring the stack of branes to be
magnetised, or by considering perturbative effects in the DBI action. In what follows and in the rest of
this thesis, we will focus on this topic, namely how to generate a potential for string axions and what
this implies on our universe.

2.2 Closed string axions

In String Theory, axion-like particles coming from closed string modes arise from the integration of
p-form gauge field potentials over p-cycles of the compact space. In what follows we consider type IIB
string compactifications where axions arise from the integration of the NS-NS 2-form B2 and R-R 2-form
C2 over 2-cycles, Σα2 , or from the integration of the R-R 4-form C4 over 4-cycles, Σi4, namely

bα = 1
(2π)2α′

∫
Σα2
B2 , cα = 1

(2π)2α′

∫
Σα2
C2 , di = 1

(2π)4(α′)2

∫
Σi4
C4 , (2.45)

and another axion is given by the R-R 0-form C0. Since axion fields arise as harmonic zero modes of
p-forms gauge potentials on p-cycles of the compactification space, at the perturbative level the 10d
gauge invariances of the p-form gauge fields descend to continuous shift symmetries of their associated
p-form axions in 4d Φi ∼ Φi + c, c ∈ R. The kinetic part of the 4d Lagrangian contains the following
terms associated to the axions:

L ⊃ gij
2 ∂µΦi∂µΦj , (2.46)
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where gij = 2 ∂2K
∂T i∂T̄ j

for C4 axions, gij = 2 ∂2K
∂Gi∂Ḡj

for C2 and B2 axions, and K is the Kähler potential
of the theory. In order to work with canonically normalised fields, we need to diagonalise the Kähler
metric and find the axion metric eigenvalues λi and eigenvectors Φ̃i. After that, we define the canonically
normalised axion fields as ϕi =

√
λiΦ̃iMP (restoring proper powers of MP ) where [18]

Lkin ⊃
λiM

2
P

2 ∂µΦ̃i∂µΦ̃i = 1
2∂µϕi∂

µϕi . (2.47)

In the case of massless axions, it is quite common to refer to f̂i =
√
λiMP as the axion decay constant.

This derives from the fact that the couplings of the physical axions with all other fields scale as ∝ 1/f̂
after canonically normalising the axions. So far we have only considered massless axions but, as with
the rest of the moduli, these fields need to be stabilised.

Axions acquire a mass through the non-perturbative quantum corrections in (2.35) that break their
continuous shift symmetry down to their discrete subgroup. The typical form of the potential arising
from a single non-perturbative correction reads

V (ϕi) = Λ4
i cos(aiΦi) , (2.48)

where ai = 2π/Ni, with Ni ∈ N+ being the rank of the gauge group living on the branes, and Λ is
a dynamically-generated scale proportional to the instanton action. In general, to work with physical
fields, we need to find the field basis that diagonalises both the mass matrix and the field space metric.
Note that this is not always possible, and in general one is able to diagonalise only either the kinetic
terms or the potential.

In the simplest case where the Kähler metric is approximately diagonal (Φi ∼ Φ̃i) and we have a
single non-perturbative correction, computing the decay constant becomes rather simple. Since the field
periodicity corresponds to that of the potential, the stabilised axion decay constant, fi, derives from

ai Φi → ai Φi + 2π k implying that

ϕi → ϕi + 2πfi k where fi =
√
λi

MP

ai
= f̂i

ai
.

(2.49)

We have seen how string axions behave in the effective field theory. In the next section, we discuss how
the effective theory should behave in order for the axions to have a consistent UV completion.

2.3 String axions and the swampland

The WGC [13] suggests that there must exist (some) charged states whose charge-to-mass ratio is larger
than that of an extremal black hole in the theory, implying that gravity should be the weakest force.
Since axions can be seen as 0-form gauge fields, the WGC should hold for them as well. The axionic
version of the WGC states that there must be an instanton whose action satisfies

Sf ≲ αMP , (2.50)

where α is an O(1) constant depending on the extremality bound entering the formulation of the
conjecture. However, general extremal solutions for instantons have not been found yet, therefore the
precise value of α is known only for special cases (see e.g. [76–79]). Let us mention here that in the
literature many versions of the WGC were proposed up to date (see e.g. [16] for a recent review). First,
we can mainly distinguish between ‘strong’ and ‘mild’ forms of the WGC. By strong WGC we mean that
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all the axions present in a given model will acquire their dominant instanton potential from instantons
satisfying the WGC bound. Instead, with mild WGC we refer to the statement that the WGC-satisfying
instantons may give subleading contributions to the non-perturbative axion potential. This means that
the mild WGC allows for some axions to acquire the leading potential from instantons with an effective
Sf evading the Planck mass.

Let us now study the relation between the decay constant and the instanton action of the closed-
string axion-like particles. The general refined statement for the WGC for p-forms with gauge coupling
ep;d in d dimensions in the absence of a dilaton background reads [14]

p(d− p− 2)
d− 2 T 2

p ≤ e2
p;d q

2Md−2
P ;d , (2.51)

where Tp is the tension of the charged (p− 1)-brane with integer charge q, and MP ;d is the Planck mass
in d-dimensions. Such relation is degenerate for 0-forms (axions), hence it does not directly apply. In
order to get a statement for axions, we are forced to rely on an indirect computation. Extending an
argument proposed in [78], we give a new derivation of the bound on Sf for axions in type IIB by relating
the quantity Sf to the charge-to-mass ratio of a particle in type IIA, to which (2.51) applies. A similar
computation was carried out in [77] using T-duality. As we will show, we do not need the use of T-duality,
as we will express the needed relations in terms of purely geometrical quantities which are independent of
the underlying theory used. In what follows, we first derive a geometrical relation for a charged particle
by wrapping a Dp-brane on a p-cycle. Then, we show that we can get the same geometrical quantity
from a D(p− 1)-brane wrapping the same cycle, hence producing instanton ‘charged’ under an axion in
the non-compact space. Therefore, following [78], a bound for the particle carries through to the axion
via the purely geometrical relation.

We start with a theory in 10d with Dp-branes wrapped on a p-cycle Σp of the CY, namely

1
4κ2

10

∫
M4×X

e
3−p

2 ϕFp+2 ∧ ⋆(E)Fp+2 + µp

∫
Dp on Σp

Cp+1 . (2.52)

Upon compactification on the CY, this action leads to the Maxwell theory for a charged particle in
4d from the reduction of the Cp+1 gauge potential, as we show in what follows. First, we introduce a
symplectic basis of harmonic p-forms ωi of the p-th cohomology of X. Such basis satisfies∫

X

ωi ∧ ⋆ωj = Kij , (2.53)

where Kij is the metric on the space of p-forms and is proportional to the Kähler metric. Note that Kij

depends on the CY volume and on powers of α′. Then, we can expand the (p + 2)-form flux and the
(p+ 1)-form potential in terms of the symplectic basis as Fp+2 = F i2 ∧ ωi and Cp+1 = Ai1 ∧ ωi. The 4d
action is then obtained by integrating on X. By defining the integral charges as

qΣp
i =

∫
Σp
ωi , (2.54)

we can write our 4d theory as

M2
P e

3−p
2 ϕ

4VX

∫
M4

KijF
i
2 ∧ ⋆F

j
2 + µp

∫
Ai1q

Σp
i , (2.55)

where we used the relation κ2
10 = VX/M

2
P and VX is the CY volume in Einstein frame. Since only a

certain linear combination of gauge fields is sourced by the particle with charge qΣp
i , we can define the
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field A1 and its field strength F2 = dA1 as A1 = Ai1K
ijqΣp

j and F2 = F i2K
ijqΣp

j . The 4d action then
reads

M2
P |qΣp |2 e

3−p
2 ϕ

4VX

∫
M4

F2 ∧ ⋆F2 + µp |qΣp |2
∫
A1 , (2.56)

where we introduced the notation |qΣ|2 = KijqΣ
i q

Σ
j . In order to extract the 4d gauge coupling, we should

normalise the gauge potential such that the final action reads

S4 ⊃
1

2e2

∫
M4

F2 ∧ ⋆F2 +
∫

0−brane
A1 . (2.57)

Therefore, the gauge coupling should be given by

1
e2 = e

3−p
2 ϕM2

P

2µ2
pVX |qΣp |2

. (2.58)

The particle descending from the brane wrapped on Σp has mass squared given by

m2 = µ2
p e

p−3
2 ϕ V 2

Σp , (2.59)

where VΣp is the volume of the p-cycle. Finally, the ratio of the mass of the particle and the gauge
coupling reads

e2M2
P

m2 = 2VX |qΣp |2

V 2
Σp

. (2.60)

By imposing the WGC relation (2.51) for a 1-form in 4d, we have that

e2M2
P

m2 ≥ 1
2 . (2.61)

Note that, in order to have a particle in 4d we should wrap Dp-branes on p-cycles, where p = 2, 3, 4
since we are working with CY manifolds. This means in turn that we are implicitly working in type IIA,
where D2- and D4-branes are present, or in type IIB with D3-branes wrapped on 3-cycles.

Our goal now is to derive a geometrical relation similar to the one displayed in (2.60) but for 0-forms.
Hence, we slightly change our starting setup, and we consider the very same cycle Σp wrapped this time
by D(p− 1)-branes, i.e.

1
4κ2

10

∫
M4×X

e
4−p

2 ϕFp+1 ∧ ⋆Fp+1 + µp−1

∫
D(p−1) on Σp

Cp . (2.62)

Indeed, upon compactification on the CY X, we get the action of an axion in 4d. As before, we can
define a basis of harmonic p-forms ωi of X and expand the (p+ 1)-field strength and the p-form gauge
potential as Fp+1 = F i1 ∧ ωi and Cp = θi ∧ ωi, where the θi are our 0-forms. Using the definition of
integral charges of (2.54) and compactifying on X, we get in 4d

M2
P e

4−p
2 ϕ

4VX

∫
M4

KijF
i
1 ∧ ⋆F

j
1 + µp−1 q

Σp
i θi . (2.63)

In order to consider again the right linear combination of fields, we further redefine the field θ and its
field strength F1 = dθ as θ = θiKijqΣp

j and F1 = F i1K
ijqΣp

j . The 4d action then reads

M2
P |qΣp |2 e

4−p
2 ϕ

4VX

∫
M4

F1 ∧ ⋆F1 + µp−1 |qΣp |2θ , (2.64)
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where we used again the notation |qΣ|2 = KijqΣ
i q

Σ
j . After redefining the axionic field such that the final

action is canonically normalized, we obtain

S4 ⊃
f2

2

∫
M4

F1 ∧ ⋆F1 + θ , (2.65)

where the first part of the r.h.s. is the kinetic term of the axion and hence it should be multiplied by
the decay constant f , which we defined to be

f2 = e
4−p

2 ϕM2
P

2µ2
p−1VX |qΣp |2

. (2.66)

For an axion we have that the mass is replaced by the instanton action S from the wrapped D(p− 1)-
brane as

S2 = µ2
(p−1) e

p−4
2 ϕ V 2

Σp . (2.67)

Finally, we arrive at the expression for Sf in terms of purely geometrical quantities, namely

MP

Sf
=
√

2VX |qΣp |
VΣp

. (2.68)

Note that the r.h.s. is the same geometrical ratio that we found previously for a particle (cf. (2.60)).
For p = 2, 4, this computation is valid in type IIB, while for p = 3 we are working in type IIA.

The main point of our computations is the following: the bound (2.61) is actually a bound on
geometrical quantities and does not contain any information on the starting 10d theory, i.e.

2VX |qΣp |2

V 2
Σp

≥ 1
2 . (2.69)

Therefore, as long as the cycle is the same, we are entitled to apply these bounds on the axion as well,
as we managed to express the quantity Sf in the same language as the particle. This finally leads to
the bound

MP

Sf
≥ 1√

2
, (2.70)

where the lower bound is the WGC bound for axions coming from dimensional reduction (see e.g. [16]).
Note that our derivation does not rely on T-duality, but only on the fact that both the relation for the
particle and the one for the axion are expressed in terms of the same geometrical quantities of the CY.

2.3.1 Festina Lente bound for axions

Using the same logic, we are able to extend the Festina Lente (FL) bound to axions. In [80, 81], it was
discovered that for charged black holes in (approximate) de Sitter space with Hubble constant H to
decay consistently, one expects an additional constraint called the FL bound. This bound states that
all charged particles with mass m and U(1) gauge coupling e must obey [80]

eM2
P

m2 ≲
Mp

H
, (2.71)



22 CHAPTER 2. STRING AXIONS

where the ’∼’ accounts for an O(1) constant. Unfortunately, this bound does not geometrize nicely.
However, the gauge theory must be at weak coupling e < 1. This then implies the weaker bound

e2M2
P

m2 ≲
Mp

H
, (2.72)

which as we shall see does geometrize in a clean way. The bound (2.72) can also be directly derived
from ensuring black holes in de Sitter behave consistently under FL for dipoles rather than charged
particles [81]. Let us explain how this works in some more detail.

The bound which we will dualize to axions is the dipole version of the FL bound. While the production
of electric (magnetic) dipoles clearly cannot discharge an electrically (magnetically) charged black hole,
such dipoles locally screen the electric field. A dipole with moment µ in a theory with gauge coupling e
gains an energy −µE (−µB) when favourably aligned in an external electric field. One then expects an
instability against rapid production of dipole for a particle of mass m when −µE > m. Filling in the
field strength for the maximally charged Nariai black hole [82,83],5 one obtains

µ ≲
m

eMPH
. (2.73)

The dipole moment µ is set by eL, with L the length scale of the dipole. As we are dealing with
fundamental particles, we take this to be the Compton length of the particle L = 1/m. From this,
then (2.72) follows. The same result can be derived analogously for magnetic dipoles. Hence, we can
simply apply (2.72) to (2.69) and we get an allowed window for the value of Sf , namely

1√
2
≤ MP

Sf
≲

√
MP

H
, (2.74)

where the lower bound is the usual WGC bound for axions coming from dimensional reduction, while
the upper bound is the new FL bound for axions (aFL). We have found that all instantons with action
S coupled to an axion with decay constant f must obey the aFL bound, which reads

Sf ≳
√
MPH ∼ V 1/4 , (2.75)

with V the vacuum energy density.
Having found the bound for a single axion from dimensional reduction, it would be interesting to

extend it to a setup where multiple axions are present, as was put forward for the WGC [76]. Therefore,
we consider a theory with N canonically-normalized axion fields ϕi, i = 1, . . . , N , such that their kinetic
terms are given in the canonical form. Then, the potential takes the form

V ∼
∑
a

Aae
−Sa cos

(∑
i

ϕi
fai

)
, (2.76)

where the index a runs over the number of instantons contributing to the action. The analogue of the
charge-to-mass ratio vectors is [76]

za = (za)i ui = MP

faiSa
ui , (2.77)

where the ui form an orthonormal basis of the vector space. The WGC translates into the requirement
5The (charged) Nariai black hole is a particular Schwarzschild solution in de Sitter background, whose horizon coincides

with the de Sitter one.
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aFL

WGC

z1

z2

z1

z2

Figure 2.1: Convex shell: allowed axionic states should lay inside the red area, between the inner (WGC)
and the outer (aFL) circle. On the left, the charge vectors satisfy both conjectures, while on the right
we have a violation of the aFL bound. Indeed, charge vectors need to be big enough for all extremal
dyonic black holes (inner circle) to decay, so that the black dotted line lies outside the circle. If we also
impose aFL and in a situation where the outer shell is very thin, having very big charge vectors could
violate the aFL bound. In the right-hand side plot, the basis charge vectors barely satisfy aFL while the
(1, 1) charge vector violates it.

that the convex hull spanned by the vectors za should contain the N -dimensional unit ball, i.e.

||za|| ≡
√

za · za > 1 . (2.78)

The generalization to multi-U(1)s of the FL bound puts an upper bound on every vector. Consider
a U(1)N gauge theory. We denote the gauge fields with i = 1, .., N . Let the theory have M species of
charged particles with masses ma, a = 1, ..,M and coupling eai ≡ (ea)i to the i-th U(1). The multi-U(1)
version of the (dipole version of the) FL bound states [81]6

m2
a ≫

∑
i

||ea||2 HMP . (2.79)

By defining the charge-to-mass ratio vector of the a-th particle as za = (za)iui ≡
(
eiaMP

ma

)
ui, we can

rewrite (2.79) as:

||za|| <
√
MP

H
. (2.80)

Hence, from (2.74), we get a window of allowed values for every vector norm, namely

1 < ||za|| <
√
MP

H
. (2.81)

From the derivation of the previous section, this holds also for a theory with many axions, where za is
now given by (2.77). Note that the relation in (2.81) means that not only the vectors should stay outside
the extremal region constrained by the WGC, but also they should lie inside the bound originating from
all the za of the theory.

The danger then exists that if the allowed window inside the shell is very thin, the WGC convex
6This is the simplest version where the U(1)N gauge fields are not mixed. More generally, if the kinetic term for the

gauge fields is Lkin = 1
4uijF

i
µνF

j µν , the bound is m2
a ≫ qiaqja(u−1)ij HMP for a particle with charge qia under the i-th

U(1).
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hull will be unable to satisfy the aFL bound (see fig. 2.1). In particular, in presence of N axions and
considering the ‘largest’ elementary axionic charge, i.e. an instanton given by a vector zlargest

a such that
zlargest
a · ui = MP /(faSa) ∀i = 1 . . . N , we have that ||zlargest

a || =
√
NMP /(faSa). We then find that

generically we must have
N

f2
aS

2
a

<
1

MPH
, (2.82)

which produces a bound on the number of allowed axions. For this bound to be very constraining, we
need to have a mild hierarchy between H and MP . Since zlargest

a must obey the WGC, faSa < MP , it
then follows that

N <
MP

H
, (2.83)

independently of the specific fa and Sa of the largest elementary axionic charge. However, depending
on the value of fa and Sa, (2.82) may be a significantly stronger constraint than (2.83).

Let us note in passing that eq. (2.75) is bounding from below the values of the decay constant. Given
that S > 1 for consistency, our bound is also stating that the limit f → 0 for a fundamental axion
is not allowed in the EFT. As pointed out in [10, 84], for a fundamental axion the point where the
decay constant shrinks to zero corresponds to an infinite volume limit, where the effective description
breaks down and hence cannot be reached in a consistent EFT. Hence, the aFL bound corroborates this
statement, providing a reason why such limits should not occur.

2.4 Thraxions

Thraxions, or throat-axions [85], are a recently discovered class of ultralight axionic modes arising
whenever the CY admits a system of multiple warped throats (multi-throats) sharing some common
3-cycle B, near a conifold point in complex structure moduli space. In such a case, it is in fact possible to
reduce the 2-form R-R and NS potentials C2 and B2 on the family of sectional S2 ⊂ B, generating new
axions as the lowest-lying radial Kaluza-Klein (KK) mode in the low energy effective theory. These axions
were found to be parametrically lighter than any other particle in the spectrum. Their mass squared is
suppressed by six times the warp factor ωIR of the throats, while the warped-throat KK modes of, e.g.
the throat complex-structure modulus, receive a double suppression only. Since the thraxions own such
unique features, it is important to explore their behaviour in a fully stabilized setup in order to connect
them with axion phenomenology.

The aim of this section is to discuss two relevant questions that were left behind in the original
paper [85]. First, we study the effect of a non-vanishing thraxion VEV at the level of the SU(3)-structure
torsion classes of the compactification space. We find that for a non-vanishing VEV, the compactification
space fails to be CY and becomes simply a complex manifold. We understand this as a breakdown of
the imaginary self-dual condition of the G3-flux, and we relate quantitatively the size of the thraxion
VEV with the size of the ISD breaking. Second, we study the interplay between thraxions and Kähler
moduli stabilisation. In particular, we find that in general the thraxion potential receives potentially
non-vanishing corrections which lift the mass squared to ∼ ω3

IR only. After explaining why this is the
case, we show that these cross terms in general do not vanish in multi-throats consisting of at least three
joined throats. Conversely, in the simplest class of double-throats, avoiding the cross terms reduces to
essentially a single concretely realizable condition on the periods of double-throats.
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bulk CY

ω ≪ 1

ω ∼ 1

S2

B = I × S2

I

Figure 2.2: Example of a double-throat system with one thraxion.

2.4.1 Thraxions in flux compactification

Let us consider type IIB superstring theory compactified on a compact CY threefold X whose volume
is sufficiently larger than the string scale. Let H3(X) be the third homology group of X with integer
coefficients. We fix an integral basis for H3(X) consisting of 2h2,1 +2 3-cycles Ai, Bj , i, j = 1, . . . h2,1 +1.
Generic pointlike singularities of X arise at specific codimension 1 loci inMcs, where one of the complex
structure moduli zi vanishes. Such singularities are called conifold points [86,87].

It is important to discuss now a crucial difference regarding conifold singularities in a compact CY,
compared to a non-compact one. In a non-compact setting, it is possible to have a conifold singularity
in which a single one of the complex structure moduli zi vanishes. From (2.16) this implies that a single
A-cycle vanishes. On the other hand, in a compact setting a conifold singularity is only possible if two
or more A-cycle related in homology shrink to zero volume [88]. The reason for this arises from the
subset of conifold singularities which admit a resolution phase. In such a case, the fact that a single
3-cycle shrinks to zero size will induce a breaking of the Kähler condition on the resolution side of the
transition. Throughout this section, we will call this latter case multi-conifold, to distinguish it with the
non-compact case in which a single A-cycle vanishes.

Let us consider a multi-conifold singularity on X in which a set of n A-cycles vanish, and they satisfy
m homology relations of the form pIi [A]i = 0. This leaves only n −m Ai-cycles independent. For each
one of them, there is a symplectic dual Bi-cycle. Geometrically, this Bi-cycle interpolates between di

singular points. The numerical value of di can be determined as a function of the homology relations
coefficients pIi , essentially determining which independent Bi-cycle intersects which of the original n
Ai-cycles. We depict this schematically in Figure 2.2, for the simplified case of n = 2, m = 1. Note
that in this picture, for ease of exposition, we draw two finite-size long throats rather than two conifold
points. We will see later that this is the relevant setup once fluxes are turned on and the orientifold
projection breaking to N = 1 is imposed. As it can be seen from Figure 2.2, for n = 2, m = 1, the
interpolating B-cycle is, as a topological space, homeomorphic to I ×S2, where I is a finite size interval
connecting the two singular points. The situation generalizes easily for n,m > 1. In such a case, the
n−m interpolating 3-cycles will be topologically homeomorphic to Y idi ×S

2 where i = 1, . . . n−m, and
Ydi is the complete graph with di nodes.

We now define the thraxion field as the dimensional reduction of the R-R 2-form gauge potential on
the interpolating family of S2 sphere discussed above, namely

c :=
∫
S2
C2 . (2.84)
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Hence, on the deformed side c = c(r) does not constitute a true harmonic zero mode, but the lowest
radial KK-mode in the multi-throat. Moreover, the decay constant can be computed from dimensional
reduction of the F3∧⋆F3 term over the sectional S2 on which c is defined and then plug the expansion of
C2 in harmonic forms. In this way, one can show that f depends explicitly on inverse powers of the warp
factor. The result can be found in appendix D of [85]. Here it is shown also how the decay constant gets
an effective enhancement by the flux quantum. This will be important for thraxions phenomenology, as
we will discuss in Section 4.2.3.

Given a conifold singularity, it is often also possible to perform a small resolution of it, producing
extra 2-cycles.7 Going from the deformed to the resolved phase is known as a conifold transition [89].
Let us call X̃ the manifold on the resolution side. In a conifold transition, in a compact setting, the
Hodge numbers change as h̃1,1 > h1,1, h̃2,1 < h2,1. In particular, on the resolved side, there will be
∆h1,1 = h̃1,1 − h1,1 extra resolution 2-cycles compared to the deformed side. This number of 2-cycles
is equal to the number of the homology relations among the conifolds in the deformed side. On the
resolved side, thraxions correspond to massless axions coming from the integrals of the 2-form over
these ∆h1,1 independent resolutions P1. It is believed that the presence of conifold singularities and
conifold transitions is very generic. It has been conjectured that all the CY manifolds are connected
with each other by a web of conifold transitions [89,90]. It has also been shown that this statement holds
true in numerous closed classes of examples [91–96]. Therefore, the existence of thraxions is a generic
prediction of any IIB CY compactification, at least at the N = 2 level.

We now consider the introduction of an orientifold projection, and fluxes, in order to break super-
symmetry to N = 1. For concreteness, we focus on the case in which the orientifold projection has
O3/O7 fixed loci. From the point of view of representation theory of the 4d, N = 1 SUSY algebra,
thraxions are the lowest component of a scalar chiral superfield GI , I = 1, . . . ,m. Clearly, not all CY
orientifolds supports the presence of thraxions: for example, many orientifolds are such that h1,1

− = 0.
In order for thraxions to be present in a N = 1 setup, at least two crucial conditions must hold true:

• The orientifold projection must leave the conifold transition intact.

• In the quotient space, a multi-conifold with interpolating B-cycles must still exist.

It has been shown in [97] that orientifolds supporting thraxions exist within the set of complete in-
tersection CYs. Having included an orientifold, for reasons of both tadpole cancellation and moduli
stabilisation, we will consider the addition of 3-form fluxes. Flux quanta are defined as

Mi = 1
(2π)2α′

∫
Ai

F3 and Ki = − 1
(2π)2α′

∫
Bi
H3 . (2.85)

As shown in [47, 98], generic choices of the fluxes stabilize the complex structure moduli and the axio-
dilaton. Furthermore, if Ki ≫ gsMi, the complex structure modulus associated to the cycle Ai will be
stabilized close to the conifold point,

|zi| = exp
(
−2π Ki

gsMi

)
≪ 1 . (2.86)

Everywhere in this section we will work under this assumption, which we request to hold independently
for each pair of flux quanta Ki, Mi.

When the complex structure moduli are stabilized close to the conifold point, the multi-conifold sys-
tem described in the previous paragraphs is replaced with a system of long multiple throats, which arise

7This is not always the case. A famous example of a compact CY admitting a conifold singularity without resolution
branch is the mirror quintic [88].
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due to the backreaction of fluxes on the geometry. Within the throats, the metric is well approximated
by the Klebanov-Tseytlin [99] solution

ds2 = ω(r)2ηµνdx
µdxν + ω(r)−2

(
dr2 + 22dsT 2

1,1

)
, ω(r)2 ∼ r2

gsMα′ log
(

r

rIR

)− 1
2

, (2.87)

where r is the radial coordinate, ω(r) is the warp factor. The solution ceases to hold at a UV cutoff
rUV, where the multi-throat is attached to the bulk geometry, and also at a IR cutoff rIR near the
bottom of the throats. For r ≲ rIR the metric is given by the full Klebanov-Strassler (KS) solution [100].
An exponential hierarchy, as the one in Randall-Sundrum model [47, 101], is thus engineered by ωIR ≡
ω(rIR) ∼ rIR/rUV ∼ |z1/3|.

We will now review in more detail how the complex structure moduli stabilisation operates in this
setup. For concreteness, we focus on a subset of n ≤ h2,1

− complex structure moduli associated to n

A-cycles subject to m homology relations. The superpotential coupling the thraxion fields GI to the
complex structure moduli can be derived from the GVW superpotential [48] and it reads [85]

W =
n∑
k=1

(
Mk

zk
2πi log zk − τKkzk

)
−

m∑
I=1

GI

2π PI + ˆ̂
W0(z) +O(z2

k) , (2.88)

where Ŵ0(z) is a holomorphic function denoting contributions from other cycles and PI are the m

relations for the n complex structure moduli zi, PI ≡
∑n
k=1

∑m
I=1 p

k
Izk . The n complex structure

moduli are thought to be all independent. The fact that they are subject to m relations is imposed
dynamically, once the thraxions GI are set on-shell by their equation of motion. In particular, the fields
GI act as Lagrange multipliers, imposing the homology relations among the complex structure moduli.

On the other hand, the Kähler potential for the complex structure moduli reads

Kcs(zi, z̄i) = − log
(
−i
∫

Ω ∧ Ω̄
)

= − log
(
igK(z)− gK(z) +

n−m∑
I=1

iz̄IG
I + c.c.

)

= − log
(
igK(z)− gK(z) +

n∑
i=1

[
|zi|2

2π log(|zi|2) + iz̄ig
i(z)− izigi(z)

])
,

(2.89)

where gK(z) is a holomorphic function encoding contributions from the periods of h2,1
− − n complex

structure moduli of the bulk CY, while the gi(z) are related to the periods of the complex structure
moduli of the multi-throat. Being interested in small zi we can Taylor expand these functions as

gk(z) = gK,0 +
∑
j

giK,1zi +O(z2) , gi(z) = gi0 +
∑
j

gijzj +O(z2) . (2.90)

It is also possible to expand ˆ̂
W (z) as

ˆ̂
W (z) = gW,0 +

n∑
i=1

g1
W,1zi +O(z2) , and define Ŵ0 ≡ gW,0 +

n∑
i=1

Mig
i
0 (2.91)

to be the superpotential containing all the contributions of order O(z0). By computing the F-terms for
the complex structure moduli zi using (2.88), one can relate the VEV of the n moduli to the VEV of
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the thraxions, as8

zk = z0,k e
i
∑

I

pI
k
GI

Mk where

z0,k = e
−1−2π Kk

gsMk e
− 2πi
Mk

(∑
j
gkj1 +gkW,1−i

g̃k0 Ŵ0
2Im gK,0

)
+O

(
e

−4π Kk
gsMk

)
.

(2.92)

We remark that at the current level of the discussion, the thraxion fields themselves are not stabilized
yet. Therefore, the complex structure moduli themselves are yet not stabilized, but simply expressed in
terms of the VEV of the thraxion and flux quanta. By plugging (2.92) in (2.88), we find the effective
superpotential for the thraxions we will be using in the stabilisation procedure. Let us consider the
effective thraxion superpotential for n throats and m thraxions [85]:

Weff = Ŵ0 −
n∑
k=1

εke
i
∑m

I=1
pkIG

I/Mk , (2.93)

where

εk ≡
Mk

2πiz0,k

(
1− 2π

Mk

Ŵ0g̃k0
a

)
. (2.94)

We also introduced g̃k0 = gk0 − gkK,1, a ≡ −2Im (gK,0). We remark that the physical deformation param-
eters are the zk defined in (2.92). As we will analyse later, a non-vanishing VEV for GI is necessary to
generate a potential for the thraxions, but whenever they are not stabilized at zero, the CY condition
is broken. Indeed, generically GI does not need to stabilize at zero.

By using some approximations, one can simplify (2.93). In particular, in the explicit examples dis-
cussed later, we will always work with a simplified superpotential. As in [85], supposing that only gW,0
and gK,0 are non-vanishing, the definitions of z0,k, εk and Ŵ0 simplify.9 For the case in which there is
only one thraxion in one multi-throat system composed of n throats, by using a symmetrical choice of
Mk and Kk fluxes, it is possible to rewrite (2.93) as

Wthr(G) = W0 + npε (1− cos (G/M)) , (2.95)

where np is the number of KS throats in the multi-throat system, and we have defined W0 ≡ Ŵ0−np ε.
In this way, we recover the general axion effective potential. When there are k multi-throats in the
CY, each one hosting a single thraxion, the superpotential can approximately be written as q copies of
(2.93), namely

Wthr(GI) = W0 +
q∑
I=1

εI
(
1− cos

(
GI/MI

))
, (2.96)

where we have absorbed the number of KS throats inside each system in the definition of εI .
So far we reviewed the complex structure moduli stabilisation in presence of thraxions. One is then

left with discussing the problem of moduli stabilisation for the thraxions themselves and for the Kähler
moduli. The total Kähler potential actually reads

K
(
G, Ḡ, T, T̄ , z, z̄

)
= Kcs(z, z̄) +Kthr(G− Ḡ, T + T̄ ) , (2.97)

where Kcs has been introduced in (2.89), while Kthr is a Kähler potential coupling the thraxions to
8In (2.92) we have already set C0 to zero.
9Such approximation imposes that Ŵ0 and all the non-logarithmic terms in (2.89) are constants.
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Kähler moduli. We assume that one can invert the relation between the 2- and 4-cycle moduli to write
the Kähler potential Kthr for the T and G fields as

Kthr = −2 log (F ) , where

F =
h1,1

+∑
α=1

h1,1
−∑

a,b=1
cα

(
Tα + T̄α −

gs
4 καab

(
Ga − Ḡa

) (
Gb − Ḡb

))3/2
.

(2.98)

However, we stress that the discussion we will carry out in what follows does not need to assume
any explicit expression for the Kähler potential. The F-term supergravity potential can be computed
from (2.30).

Let us consider for simplicity the case of a single thraxion. Thanks to the no-scale property of Kthr,
one can show that the F-term potential scales as

V
(
G, Ḡ

)
∝ |∂GW (G) |2 . (2.99)

Hence, the potential for the thraxion gets a double suppression in the ε ∼ z0 ∼ ω3
IR parameter. In

turn, by construction this implies that the mass-squared of the G field is of order ω6
IR ≪ 1, making the

thraxion an extremely light particle. This effect generalizes trivially for the case of multiple thraxions.
So far, the Kähler moduli sector is left as a flat direction of the potential. We have considered only

tree-level contributions to the superpotential, which come from the presence of thraxions in the theory.
In what follows, we will study if and how the potential for thraxions gets modified by the inclusion of
perturbative and non-perturbative quantum effects proportional to the Kähler moduli.

First, we discuss the backreaction on the geometry given by the presence of thraxions. Fluxes and lo-
calized objects in general backreact on spacetime, causing the compactification manifold X to cease to be
CY, yet still maintaining a SU(3) structure. Geometrical properties of the backreacted compactification
manifold can be understood by an analysis of its SU(3) torsion classes.

In order for a thraxion to exist, there must be present in X at least one warped multi-throat region,
with at least one homology relation among the shrinking β-cycles. This setting implies the presence
of quantized (2, 1)-form background fluxes. Hence, there is an amount of H(6)

3

∣∣∣
0
, F

(6)
3

∣∣∣
0

stabilizing the
whole complex structure moduli sector and warp factor. On top of this background flux configuration,
turning on the thraxion corresponds to turning on ‘a bit’ of C2 at the IR ends of the multi-throat,
with profile in the throat radial direction. Thus, turning on the thraxion corresponds to turning on
‘a bit’ of pure10 ∆F (6)

3 but without any accompanying H
(6)
3 . Hence, the extra thraxion-flux ∆F (6)

3 is
non-ISD because the complex structure moduli of the multi-throat simply cannot adjust their VEVs
in order to be ISD again with respect to the new configuration. This is impossible for the following
reason. If they could adjust their VEVs to be ISD again, this would imply that the thraxion potential
vanishes. However, this was shown to be impossible since the 10d equations of motion of the perturbed
multi-throat analysed in [85] forbid it, once the multi-throat is embedded in a compact CY. The system
cannot relax back to vanishing vacuum energy at finite thraxion-flux. Schematically, this can be denoted
as:

(ISD ⇒ V = 0 ∧ ∂ziV = 0 ∀i) ⇒ (V ̸= 0 ∨ ∂ziV ̸= 0 ⇒ non-ISD) . (2.100)

The effect of the ISD-violation on the torsion classes of the compactification is non-negligible. The main
backreaction from the thraxion will be its non-ISD nature, which distorts the torsion classes of the

10The thraxion-induced F3-flux lives on a 3-cycle in the throat part of the (2, 1)-homology of the CY, and thus has to
be locally of the same cohomology type as the ISD background fluxes.
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manifold. In glossing over the multiple 3-cycles of an actual CY we can see, that by writing this extra
thraxion-flux ∆F (6)

3 ≡ ε F (6)
3

∣∣∣
0

the classical ISD relation changes as

2abH(6)
3 = 2a(b0 + δb) H(6)

3

∣∣∣
0

= −eϕ(a2 − (b0 + δb)2) ⋆6 F
(6)
3

∣∣∣
0

= −eϕ(a2 − b2
0) ⋆6 F

(6)
3

∣∣∣
0

+ eϕε ⋆6 F
(6)
3

∣∣∣
0
.

(2.101)

Plugging in a = ib0 this becomes

2ib2
0 H

(6)
3

∣∣∣
0

+ 2ib0δb H
(6)
3

∣∣∣
0

= eϕ(2b2
0 + 2b0δb+ δb2) ⋆6 F

(6)
3

∣∣∣
0

= eϕ2b2
0 ⋆6 F

(6)
3

∣∣∣
0

+ eϕε ⋆6 F
(6)
3

∣∣∣
0
.

(2.102)

Cancelling out identical pieces, we see that δb =
√
ε, that is, the thraxion-sourced extra ∆F (6)

3 = O(ε)
deforms the ISD relation a = ib0 to a ̸= ib with deformation O(ε1/2). Hence, the flux with turned-on
thraxion is non-ISD in such a way, that W3 ̸= 0 because now a ̸= ±ib. According to [102] the thraxion
thus ‘wrecks’ the CY in the qualitatively worst fashion, leaving just a complex manifold. Still, the extreme
scale suppression of the thraxion sector due to warping may leave this just-complex non-CY manifold
in some sense ‘near’ the original conformal CY, where the word ‘near’ awaits an appropriate definition
of distance in torsion deformation space and the space of 4d effective actions from KK reduction, which
is beyond the scope of this discussion.

2.4.2 Moduli stabilisation

The GKP-type flux compactification that we considered so far discusses the stabilisation of complex
structure moduli in presence of thraxions. We are still left with the problem of Kähler moduli stabil-
isation, which we will address in this section. Whenever thraxions are present, there are two sources
of no-scale breaking, which contribute to Kähler moduli stabilisation: one is the usual F-term scalar
potential coming from the introduction of non-perturbative corrections to the superpotential, while the
other one is the CY breaking potential of the thraxions reviewed above. In [85], an initial study of the
mixing between these two effects was discussed. However, no detailed analysis was carried out.

We will study the backreaction on the thraxion potential (2.99) when we appropriately stabilize the
Kähler moduli via the leading stabilisation mechanisms. As a main result, we find a 2-fold statement. On
one hand, generically the six-fold warp suppression is spoiled, once the thraxion-carrying multi-throat
consists of at least 3 connected throats. On the other hand, for double-throats there exist classes of CY
flux compactifications where the six-times warp suppression survives Kähler moduli stabilisation. The
survival of the full warp suppression depends on the Kähler moduli stabilisation, potentially inducing
a cross term which is proportional to the warp factor cubed only. Consequently, the mass gets lifted
whenever this cross term does not vanish. The mass squared of the warped-throat KK modes scales as
ω2

IR. Moreover, we will show below that while the stabilized Kähler moduli are parametrically lighter
than the warped KK modes, the thraxion is still parametrically lighter than the Kähler moduli. Hence,
it remains the lightest state inside the throat. The mass-spectrum is still effectively gapped.

The survival of the full warp suppression depends on the Kähler moduli stabilisation, potentially
inducing a cross term which is proportional to the warp factor cubed only. Consequently, the mass gets
lifted whenever this cross term does not vanish. The mass squared of the warped-throat KK modes
scales as ω2

IR. Moreover, we will show below that while the stabilized Kähler moduli are parametrically
lighter than the warped KK modes, the thraxion is still parametrically lighter than the Kähler moduli.
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Hence, it remains the lightest state inside the throat. The mass-spectrum is still effectively gapped.
Nevertheless, we find that in certain classes of setups the O(ε) cross term (which is responsible for
lifting the mass) gets cancelled by Kähler moduli stabilisation. This happens when we set the C4 axion
to its minimum.

Let us specialize the F-term potential in (2.39) for the T and G fields. The pieces corresponding to
the G fields only and the mixing of G and T are subleading in ε. Indeed, in the following analysis we
can disregard the GḠ contribution since it will lead to a double-warp suppressed term as in (2.99). For
a general treatment of the potential, we should add also the cross terms between the Kähler moduli and
the G fields. However, it was shown in [41] that the Kähler metric for these components is proportional
to ba. If the VEV of ba at the minimum is at most order ε as defined in (2.94), they can be neglected in
this analysis because they will produce terms of order O(ε2). If the VEV of ba at the minimum is larger
than ε, they must be considered. For the sake of expositions, we will now assume that the VEV of ba

vanishes at the minimum. This assumption is generically satisfied when D-terms are included [103–105].
The vanishing VEV of ba implies then that the Kähler metric is block diagonal. We do not expect that
a different VEV for ba would change the consequences of our discussion.

The terms that might lift the thraxion mass are those that break the no-scale condition of the
potential and the perturbative corrections in α′, i.e. Vnp2 + Vα′ . This allows us to focus only on the
terms in (2.39), since there will be no contributions to the potential coming from the mixing between
the Ga fields and the Kähler moduli Tα once ba = 0. By decomposing the superpotential and the Kähler
moduli in real and imaginary parts, i.e.

W = Re (W ) + iIm (W ) ≡WR + iW I , Tα = Re (Tα) + iIm (Tα) ≡ TRα + iT Iα , (2.103)

we rewrite Vnp2 + Vα′ as follows:

Vnp2 + Vα′ = eK

2
∑
α,β

KTαT̄βWRaαAαe
−aαTRα ∂T̄βK cos

(
aαT

I
α

)

−2
∑
α,β

KTαT̄βW IaαAαe
−aαTRα ∂T̄βK sin

(
aαT

I
α

)
+ 3ξ ξ2 + 7ξV + V2

(V − ξ)(2V + ξ)2

((
WR

)2 +
(
W I
)2)

.

(2.104)

In Section 2.4.3, we will see that eq. (2.104) can endanger the double suppression of the thraxion
potential found in [85] and displayed in (2.99). Generically, the superpotential for the thraxions will
generate linear terms in the warp factor in presence of Kähler moduli. However, we propose two ways
in which such situation does not occur and the six-time warp suppression is recovered. In Section 2.4.4
we show that by allowing for tuning of fluxes and topological properties of the CY, the linear term in
ε vanishes. In Section 2.4.5 we comment on how an exponentially large CY volume stabilized à la LVS
could compete with ε. For particular cases, this makes the linear term in ε subdominant with respect
to the ε2 ones.

2.4.3 General structure of the superpotential in the presence of thraxions

In this section, we argue that the potential in (2.104) actually generates cross terms that are linear in
the warp factor ε ∼ ω3

IR. We consider a setup of n multi-throats, each one hosting a number mk of
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thraxions, k = 1, . . . n. The superpotential reads:11

Weff = Ŵ0 −
n∑
k=1

εke
i
∑mk

I=1
pkIG

I/Mk +
∑
α

Aαe
−aαTα . (2.105)

It is possible to divide the superpotential in real and imaginary part, defining

Ŵ0 = Re (Ŵ0) + iIm (Ŵ0) = ŴR
0 + iŴ I

0 , εk = Re (εk) + iIm (εk) = εRk + iεIk ,

GI = Re (GI) + iIm (GI) = GI
R + iGI

I , Tα = Re (Tα) + iIm (Tα) = TRα + iT Iα ,
(2.106)

so that

W = ŴR
0 +

∑
α

Aαe
−aαTRα cos

(
aαT

I
α

)
−
∑
k

εRk e
−
∑

I
pkI

GI
I

Mk cos
(∑

I

pkI
GI
R

Mk

)

+
∑
k

εIke
−
∑

I
pkI

GI
I

Mk sin
(∑

I

pkI
GI
R

Mk

)

i

(
Ŵ I

0 −
∑
α

Aαe
−aαTRα sin

(
aαT

I
α

)
−
∑
k

εRk e
−
∑

I
pkI

GI
I

Mk sin
(∑

I

pkI
GI
R

Mk

)

−
∑
k

εIke
−
∑

I
pkI

GI
I

Mk cos
(∑

I

pkI
GI
R

Mk

))
=WR + iW I .

(2.107)

We can try to explicitly compute εk introducing

g̃0,k = Re (g̃0,k) + iIm (g̃0,k) = g̃kR,0 + ig̃kI,0 ,

gjk1 = Re (gjk1 ) + iIm (gjk1 ) = gjkR,1 + igjkI,1 ,

gkW,1 = Re (gkW,1) + iIm (gkW,1) = gkR,W,1 + igkI,W,1 .

(2.108)

In this way we can define z0,k = |R0,k|eiφ0,k , where

|R0,k| = exp

−2π Kk

gsMk
+ 2π
Mk

∑
j

Mjg
jk
I,1 + gkI,W,1 + g̃kR,0

ŴR,0

a
+ g̃kI,0

ŴI,0

a

− 1

 ,
φ0,k = − 2π

Mk

∑
j

Mjg
jk
R,1 + gkR,W,1 − g̃kR,0

ŴI,0

a
+ g̃kI,0

ŴR,0

a

 .

(2.109)

Finally, εk becomes

εk = εRk + iεIk

= Mk

2π |R0,k| sin(φ0,k)− 1
a
|R0,k|

(
g̃kR,0Ŵ

R
0 + g̃kI,0Ŵ

I
0

)
sin(φ0,k)

− 1
a
|R0,k|

(
g̃kR,0Ŵ

I
0 − g̃kI,0ŴR

0

)
cos(φ0,k)

+ i

(
−Mk

2π |R0,k| cos(φ0,k) + 1
a
|R0,k|

(
g̃kR,0Ŵ

R
0 + g̃kI,0Ŵ

I
0

)
cos(φ0,k)

−1
a
|R0,k|

(
g̃kR,0Ŵ

I
0 − g̃kI,0ŴR

0

)
sin(φ0,k)

)
.

(2.110)

11In this section we use I as index to count the number of thraxions, because we reserve I to be the index indicating
the imaginary part of a complex function.
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Assuming that complex structure moduli stabilisation in the bulk is done at energies high enough that
do not interfere with the stabilisation of the Kähler moduli, we can take the functions g in (2.110) to
be approximately zeros except for gW,0 and gK,0. This approximation was done in Section 3.2.3 of [85],
however, in Section 2.4.4, we show that this assumption is necessary, together with other assumptions, in
order to get the six-times suppression of the thraxion masses. As a consequence, εRk in (2.110) vanishes.

Another possible assumption is that Ŵ0 is purely real,12 so that, finally, (2.107) becomes

W = ŴR
0 +

∑
α

Aαe
−aαTRα cos

(
aαT

I
α

)
+
∑
k

εIke
−
∑

I
pkI

GI
I

Mk sin
(∑

I

pkI
GI
R

Mk

)

− i

(∑
α

Aαe
−aαTRα sin

(
aαT

I
α

)
+
∑
k

εIke
−
∑

I
pkI

GI
I

Mk cos
(∑

I

pkI
GI
R

Mk

))
.

(2.111)

Recall that in (2.104), we have ignored the cross terms proportional to ba because we will evaluate the
potential at the minimum. We note that a linear term in ε survives in the scalar potential. Because of
this linear dependence of V in ε we expect that generically the thraxion mass scales linearly with the
warp factor.

One could argue that, in the case in which the minimum is realized at T Iα = κπ/aα, such linear
dependence of V in ε vanishes, as in this case the whole second line of equation (2.104) vanishes.13

However, we remark that this is not the case, as the WR term in (2.111) will still carry a linear
dependence in ε. Moreover, we generically do not expect T I to stabilize at such VEV. Despite this, we
will see in the next section that in some specific models the opposite is true and T I stabilizes at zero.
We will expand on this point later.

2.4.4 Vanishing conditions of the O(ε) cross terms and application to KKLT

We showed that generically, the thraxion potential receives non-trivial contributions of order O(ε) from
Kähler moduli stabilisation, which spoil their characteristic six-time-warp suppressed scale. However,
in some cases, such contributions to the scalar potential can vanish. In this section we first perform the
KKLT moduli stabilisation procedure with a simplified thraxion superpotential. Then, we comment on
some possible ways to cancel the terms of the potential which are linear in ε.

Consider a setup of n multi-throats, each one hosting mk thraxions, k = 1, . . . n. Suppose that the k-
th multi-throat has nk interpolating A-cycles and B-cycles. Then, we allow the following simplifications:

• mk = 1,∀k = 1, . . . n.

• For each multi-throat system, the flux quanta are chosen with the same magnitude, i.e. |Ki,k| =
ck, |Mi,k| = dk, ∀ i = 1, . . . nk and given fixed integer numbers ck, dk.

• The homology relation defining the single thraxion present in the multi-throat is of the form∑
j [Aj ] = 0, namely pkj = 1, ∀j, k.

• All εk are equal.

It is straightforward to show that under these assumptions the superpotential (2.93) in a single multi-
12This assumption is not strictly necessary, but it could be another way to simplify the expression. Note that W0 from

the complex structure moduli stabilisation is related to Ŵ0 by a shift of a function depending on εk. The requirement
that Ŵ0 is completely real, means that we are allowing for small imaginary parts for W0.

13Moreover, the piece proportional to (W I)2 also will not have a linear term in ε.



34 CHAPTER 2. STRING AXIONS

throat system plus the non-perturbative corrections takes the form

W = W0 + ε

(
1− cos

(
G

M

))
+
∑
α

Aαe
−aαTα , (2.112)

where ε = εR + iεI .14

The KKLT scenario achieves Kähler moduli stabilisation by including only the non-perturbative
corrections to the superpotential. All Kähler moduli are stabilized to a SUSY AdS minimum. A necessary
condition for the KKLT scheme to hold is that the complex structure moduli stabilisation is performed
such that W0 is very small. This is needed in order to stabilize at large volume and ignore possible
corrections. Lately, this has been proven to be achievable in a series of controlled setups [106–108]. In
order to include the thraxion in the KKLT scenario, we use the superpotential of eq. (2.112). As a
concrete example, we consider the stabilisation of one Kähler modulus in presence of one thraxion. The
Kähler potential is

Kthr = −3 log (F ) , where F = T + T̄ − gs
4 κ+−−

(
G− Ḡ

)2
. (2.113)

After stabilizing b to zero, the F-term scalar potential reads [109]

e−Kc.s. · V =
aA2e−2aTR (aTR + 3

)
6(TR)2 − |ε|2

6(TR)2M2gsκ+−−
sin
( c

M

)2

+ aA

2(TR)2 Re
[
W̄0e

−aT + ε̄ e−aT
(

1− cos c

M

)]
.

(2.114)

We have some new pieces compared to the usual KKLT potential without thraxions. The first one is
the GḠ term found in (2.99): it scales as ε2 ∼ ω6

IR. Instead, the cross term is new, it is induced by the
presence of no-scale breaking effects and it scales as ε ∼ ω3

IR. Thus, even in the easiest toy model, we
obtain a term which lifts the double suppression of the thraxion mass to a single suppression.

Now, we investigate if we can remove the cross term and restore the six-time warp suppression.
Consider adding to the bullet list above the additional requirement:

• All εk are imaginary, i.e. εRk = 0.

Hence, we see already from the toy model that with this additional request, the cross term cancels
when the C4 axion is stabilized to its minimum. In general, we can show this process as follows. We can
expand (2.112) with εR = 0 in its real and imaginary parts as

W =W0 +
∑
β

Aβe
−aβTRβ cos

(
aβT

I
β

)
+ εI sin

( c
M

)
sinh

(
b

gsM

)

− i

∑
β

Aβe
−aβTRβ sin

(
aβT

I
β

)
+ εI

(
cos
( c
M

)
cosh

(
b

gsM

)
− 1
)

=WR + iW I .

(2.115)

First, we see that, when b = 0, WR does not contain εI , so the cross terms that were present in
Section 2.4.3 cancel out. Moreover, it is possible to see that T Iβ stabilizes at κπ/aβ , with κ ∈ Z. The
only terms that contain εI are those multiplied by W I . However, they cancel when the potential is
evaluated at T I = κπ/aβ . All the terms that could possibly give cross terms are then cancelled and the

14Note that we reabsorbed the factor proportional to n in the definition of ε.
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final potential for the thraxion scales as in (2.99), i.e. with the six-time warp factor.
Now, let us consider the backreaction coming from the presence of a thraxion on the stabilization

of b and θ to their vanishing minima. We have already discussed how the potential is minimised when
⟨ba⟩ ≡ ba0 = 0 and ⟨θα⟩ ≡ θ0,α = 0. Now, we can consider small fluctuations around these minima,
which we parametrise as δba and δθα. By Taylor-expanding around these minima, we can study the
potential at the next-to-leading order in ba = ba0 + δba and θα = θ0,α + δθα as follows. Let us consider
V (x) = V0(x) + εV1(x), with x = b, θ, ε ≪ 1 and α = a = 1. Here V1(x) is the potential induced by
the possible backreaction of the thraxion on the fields, thus it scales as the warp factor. Hence, (writing
x|t0, b0

as x|0 to avoid notation cluttering)

∂θV = ∂θV0|0 + ∂θ∂bV0|0 δb+ ∂2
θV0
∣∣
0 δθ + ε ∂θV1|0 +O(ε2) ,

∂bV = ∂bV0|0 + ∂b∂θV0|0 δθ + ∂2
bV0
∣∣
0 δb+ ε ∂bV1|0 +O(ε2) ,

(2.116)

where the first terms in both the right-hand sides vanish when imposing the equations of motion. To
find δθ and δb we have to solve the system ∂θ∂bV0|0 δb+ ∂2

θV0
∣∣
0 δθ = −ε ∂θV1|0

∂b∂θV0|0 δθ + ∂2
bV0
∣∣
0 δb = −ε ∂bV1|0

(2.117)

and the solution is given by

δθ = ε
∂bV1|0 ∂θ∂bV0|0 − ∂2

bV0
∣∣
0 ∂θV1|0

∂2
θV0|0 ∂

2
bV0|0 − ∂θ∂bV0|0 ∂b∂θV0|0

,

δb = ε
∂bV1|0 ∂2

θV0
∣∣
0 − ∂b∂θV0|0 ∂θV1|0

∂θ∂bV0|0 ∂b∂θV0|0 − ∂2
θV0|0 ∂

2
bV0|0

.

(2.118)

That is, both fluctuations scale at least as ε. By plugging these results back in the potential, we see that
V (δba, δθα) ∼ O(ε2) or higher. Therefore, the potential for the fluctuations is always of order O(ε2) or
higher, meaning it is highly suppressed compared to the potential evaluated in ⟨ba⟩ = ⟨θα⟩ = 0. This
verifies that the stabilisation considered previously is self-consistent.

Many moduli stabilisation scenarios naturally minimise at b = 0. However, stabilizing the b field
to zero carries about another important consequence that could help to reduce the amount of tuning
required to cancel the linear terms in ε. As shown in [85], a non-vanishing VEV for the b field produces
a backreaction on the throats as it changes the relative H3-flux distribution. In other words, this makes
all the throats (in the same multi-throat system) of different lengths. In this case, the warp factors, i.e.
the ε parameters, acquire all different values. In turn, this means that in the case in which b = 0, all the
warp factors in the same multi-throat system could be taken to be equal more easily. As εk ∼ e−Kk/gsMk ,
one still has to require that the ratio of the flux numbers is equal in each throat of the system. Once
these two requirements are met, all the warp factors in the same multi-throat system are actually equal.
We note here that in a double-throat system, this is always the case. Thanks to the homology relation,
we have only one effective A- and B-cycle, hence only one effective flux quantum of F3 and of H3.

We comment now on the conditions listed above. The first condition states that in every multi-throat
system there must be a single homology relation and therefore a single thraxion. It is interesting to note
that in all known examples of CY orientifold supporting thraxions, this is always true. Namely, at the
moment of writing we do not know of any CY orientifold in which a given multi-throat hosts more than
one thraxion. However, in view of how small the set of CICY parents of our CICY orientifold database
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is compared to other known algorithmically constructable sets of CY 3-folds, it seems unwarranted to
assume a priori that manifolds with multi-throats hosting more than one thraxion do not exist.

The second condition implies that all the various throats in the same multi-throat system have the
same length. The third condition requires a specific form of the homology relation. Note that one could
use a rescaling of the base of 3-cycles [Aj ] → nj [Aj ], [Bj ] → n−1

j [Bj ], nj ∈ Z \ {0} in order to ensure
that such condition is always satisfied. We remark that if we have more than one homology relation,
only one of them can be recast in the form

∑
j [Aj ] = 0 by rescaling. Hence, for multi-throats carrying

more than one thraxion the symmetrization of the multi-throat becomes impossible.
The last condition, εRk = 0, is observed to restore the six-times warp suppression of the thraxion

mass. Moreover, for double-throats (provided stabilizing b = 0) ensuring εRk = 0 guarantees the enhanced
warp suppression of the thraxion mass. Hence, it is interesting to note that in the subclass of flux vacua
found in [107], which is determined by the prime condition necessary for well working KKLT vacua (i.e.
small W0), ε is always imaginary to leading order in the conifold modulus z0. This should not be seen
as a physical motivation, but rather as evidence supporting the existence of whole classes of examples
realizing this assumption.

In this section, we argued that under some special conditions, the thraxion mass can still be double-
suppressed. However, these requirements are generically difficult to meet in a more complicated scenario
in which within a given multi-throat system there is more than one thraxion, or unequal flux ratios.

2.4.5 Behaviour of the O(ε) thraxion mass cross terms in LVS

There is another, interesting way which could restore the six-times warp suppression. Such way appears
to be quite generic as long as one stabilizes the CY volume V to exponentially large values, as happens
in LVS. In the following, we show how the interplay between large values of V and small values of ε
could favour the terms proportional to ε2 over the linear ones.

More in detail, by considering a superpotential corrected with (2.35) together with the Kähler po-
tential in (2.36), LVS stabilizes the volume as V ∼ easT

R
s . In turn, this means that in the potential,

each time a term is proportional to e−nasTRs , such term is O(V−n) times suppressed. The standard
LVS potential without the odd sector scales as O(V−3) [61].15 Let us now consider the superpotential
in (2.105). For V → ∞, the no-scale breaking potential of eq. (2.39) scales as16

Vnp1 ∼
KTsT̄s |∂TsW |2

V2 ∼ O
(

1
V3

)
+ . . .

Vnp2 ∼ −
KTsT̄sKT̄s

V2 WRe−asTRs cos
(
asT

I
s

)
−
KTsT̄aKT̄a

V2 e−asTsW̄ ∼ O
(

1
V3

)
+O

( ε

V3

)
+ . . .

Vα′ ∼ ξ̂|W |2

V3 ∼ O
(

1
V3

)
+O

( ε

V3

)
+ . . . .

(2.119)

15See also [110] for the inclusion of the odd sector in LVS, where the odd axions get a potential from fluxed D3-brane
instanton contributions to W , as well as [111] for very recent results on moduli stabilisation with odd axions.

16Here and below we make use of the no-scale breaking property of the Kähler potential and of the following standard
relations about the Kähler metric, as derived in [41], in the V → ∞ limit:

KTα ∼ tαV−1 , KTαT̄β ∼ −Vκαβγt
γ + τατβ , KTαT̄βKTα ∼ −τβ , KGaḠb ∼ −g−1

s V
(
κabγt

γ
)−1

.

Since at this stage we are only interested in the scaling with V, we will drop numerical factors, the signs and the dependence
on the 2-cycles. We will restore them when computing the explicit example.
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However, the GḠ part of the potential has a different scaling, namely

VG,Ḡ = KGḠDGWDḠW̄ = KGḠ|∂GW |2

V2 ∼ O
(
ε2

V

)
. (2.120)

This piece receives volume-suppression only from eK , which is partially compensated by the inverse
of the Kähler metric KGḠ. This results in an O(V−1) suppression, which is milder than the O(V−3)
dependence of the term proportional to ε in the potential (2.119). Therefore, in LVS the stronger
suppression in ε2 is compensated by a milder one in V and hence it could happen that the O(ε2) term
coming from (2.120) would dominate over the O(ε) one. Note that, so far, the discussion is completely
general.

In the following, we show this remarkable behaviour in a specific example. Then, we comment on
the implications of the interplay between ε and V in two phenomenological applications. For the sake
of consistency, we explicitly compute the F-term scalar potential for a CY with one thraxion, h1,1

+ = 2
and whose volume takes the standard Swiss-cheese form

V =
(
Tb + T̄b

)3/2 −
(
Ts + T̄s −

gs
4 κs−−

(
G− Ḡ

)2)3/2
, (2.121)

where we assumed that the only non-trivial even-odd-odd triple intersection number is κs−−. We further
assume that the thraxion superpotential can take the form of eq. (2.95) and hence the total superpo-
tential for this toy model can be written as

W (G,Ts) = W0 + ε (1− cos (G/M)) +Ase
−asTs , (2.122)

where the leading non-perturbative correction comes from the blow-up modulus τs. The field b stabilizes
at zero, and in order for its kinetic terms to be positive definite we should have κs−− > 0. Hence, we
get the following potential

e−Kc.s.V = 2
√

2a2
sA

2
s e

−2asτs√τs
3V + 4asAsW0τse

−asτs cos (asθs)
V2 + 3W 2

0 ξ̂

4V3

− 3ε2 ξ̂

V3 sin
( c

2M

)4
−
ε2√2

(
4V2 − 2V ξ̂ + ξ̂2

)
12gsM2κs−−

√
τs V3 sin

( c

M

)2

+ 4i ε asAsτs e−asτs

V2

(
1− cos

( c

M

))
sin (asθs) .

(2.123)

Note that for ε = 0 we recover the standard LVS potential and the thraxion enters as a correction in
O(ε) and O(ε2): the LVS moduli stabilisation proceeds as usual. Also, this turns out to be one of the
special cases in which the thraxion is independent of the Kähler moduli stabilisation, as the O(ε) term
vanishes once the C4 axion is set to its VEV. However, our main point is the following: in (2.123) the
O(ε) term is twice more suppressed in V than one of the O(ε2) ones. Hence, it could happen that these
effects balance among each other and the O(ε2) term becomes eventually the leading one.

As a first application, we could investigate whether this situation takes place when we require the
thraxion to be the inflaton. Suppose we want to realize an inflationary potential with V ∼ (1015 GeV)4,
i.e. V ∼ 10−12 in Planck units. In order for the O(ε2) term to be the leading one and thus to reproduce
such scaling, we should have V > 250. This guarantees that the O(ε) term is subleading. The value we
found for the CY volume fits perfectly within LVS. Therefore, for inflationary applications, we restore
the double suppression of the thraxion mass as in its original proposal.

Nevertheless, if we consider the thraxion to be a possible Fuzzy Dark Matter (FDM) candidate as
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in [1], this balance turns out to be impossible, or very dangerous for LVS. With FDM we refer to a
particle taken as a possible dark matter candidate that is so light that its nature is basically wave-
like [112]. Such particle should be characterized by a mass of order m ∼ 10−22 eV and a decay constant
of roughly f ∼ 1017 GeV. In [113], it was shown that for a stringy axion-like particle to be a good FDM
candidate, its instanton action (and thus the potential) should scale as exp(−S) ∼ exp(−230) ∼ 10−100

in Planck units, see Chapter 4. Requiring the O(ε2) term to be the leading one entails a large size for the
CY volume, namely V > 1020. However, such value is incompatible with the low energy phenomenology.
Given that the scale of SUSY breaking is m3/2 ∼ V−1MP , we would have SUSY at values smaller than
10−2 GeV. Therefore, for FDM in a LVS moduli stabilisation, the leading term is always the O(ε) one
(if it does not get cancelled by the C4 axion stabilisation).

2.4.6 Mass scales for thraxion setups in KKLT and LVS

We can now apply our results to derive the mass scaling of the low-lying states in setups with volume
moduli stabilisation. These light states include the lightest Kähler moduli, the warped KK modes inside
the multi-throat carrying the thraxion, and the thraxion itself.

KKLT: Fluxes inside a warped throat generically induce perturbations which scales with powers of
r. These perturbations are divided in normalizable and non-normalizable modes. In particular, non-
normalizable modes correlate with the ISD breaking fluxes [114]. Since gaugino condensation (necessary
to stabilize Kähler moduli) breaks both no-scale and sources non-ISD fluxes [115], its presence activates
the non-normalizable perturbation. Following the classification of throat perturbations in [115], we then
have the gaugino condensate sourcing a perturbation

δG3 ∼ ⟨λλ⟩ r−3/2 ∼W0 r
−3/2 . (2.124)

As discussed in [115] we have to require the coefficients of such perturbations in the UV to be small
enough such that at the IR end of the throat they do not become comparable with the background
fluxes. In our case we see that the ⟨λλ⟩-sourced non-ISD flux perturbation becomes O(1) whenever
r3/2 ∼ W0. Hence, for our perturbation to satisfy the condition of [115] we must ask for ε > W 2

0 . We
can use this bound to compare the mass of the thraxions to the masses of the other light particles in the
compactification. In this section we will focus on KKLT scenarios, while in the following we will discuss
similar computations for LVS. From the potential in (2.114), we have that

m2
thr ∼ ε

|W0|
V4/3 ∼ m

2
wKK ε

1/3|W0| , (2.125)

where we used the definition m2
wKK ∼ ε2/3/V4/3 for the mass squared of the warped KK modes. Since

|W0| ≪ 1 in KKLT and ε ≤ 1 by definition, this implies that thraxions stay parametrically lighter than
the warped KK modes even if the cross term lifts the thraxion mass-squared to O(ε). Moreover, the
condition ε > W 2

0 implies that the ratio

m2
thr

m2
wKK

> |W0|5/3 (2.126)
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is bounded from below. Then, we should compare the mass of Kähler moduli with the one of thraxions,
to ensure that the latter are still the lightest particle in the spectrum. The Kähler modulus mass reads

m2
τ ∼
|W0|2

V2 hence m2
thr
m2
τ

∼ V
2/3ε

|W0|
∼ ε

log
(
W−1

0
)

|W0|
, (2.127)

where we used the KKLT relation V ∼ − log(|W0|)3/2 for the CY volume (in case of single modulus).
We see that m2

thr < m2
τ if ε < |W0|. Therefore, to ensure that the thraxion is lighter than the Kähler

modulus and that the IR end of the throat is safe from large corrections, ε should sit in the window
|W0|2 < ε < |W0|.

We can also consider the scaling of the gravitino mass m3/2 ∼ |W0|| log(W0)|−3/2 in Planck units,
then we get the relation

m2
τ

m2
thr
∼
m3/2

ε
| logW0|1/2 . (2.128)

Therefore, the Kähler modulus is heavier compared to the thraxion if

m2
τ > m2

thr ⇐⇒
m3/2

MP
>

ε√
| logW0|

, (2.129)

where in the last relation we restored the Planck mass. By requiring that m2
τ > m2

thr together with the
relation ε > W 2

0 , we have a lower bound on the gravitino mass.

LVS: In this scenario, the thraxion is always lighter than the warped KK modes, as

m2
thr

m2
wKK

∼ ε

V5/3 . (2.130)

Then, we can compare the thraxion mass to the one of the volume-supporting Kähler modulus, as it is
the lightest modulus in the LVS spectrum. The mass squared of the big cycle scales as m2

τb
∼ V−3. We

see that
m2

thr
m2
τb

∼ ε , (2.131)

which means that the thraxion is always lighter.
We note here that both the non-perturbative effect stabilizing τs and the O(α′3) correction inferred

from the 10d R4 term via the induced correction to the volume moduli Kähler potential break no-scale as
well as likely source non-ISD 3-form fluxes. By an analysis similar to the one in the KKLT section above,
this will source perturbations in the thraxion multi-throat which will bound ε from below. However,
doing this properly while including the perturbations sourced by the O(α′3) correction to K is difficult,
as the structure of the direct 10d origin, schematically represented by terms α′3G2

3R
3 is unknown. Hence,

we have to leave a proper analysis for a future time when the corresponding supersymmetric completion
of the R4 term in type IIB string theory will have been determined.

2.4.7 Comments about the 10d origin of the cross terms

We will review here shortly an argument given in [109] concerning the 10d origin of the single-warped
cross term in the thraxion scalar potential with moduli stabilisation in many cases. The starting point
is the observation that as soon as non-perturbative effects like gaugino condensation on a stack of 4-
cycle wrapping D7-branes are involved in Kähler moduli stabilisation, these non-perturbative effects
tend to generate non-ISD 3-form flux contributions. For simplicity, we now focus on the situation of a
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double throat. As thraxions are the lowest lying radial KK-mode of C2 in the double throat, they react
sensitively not just to the change of the IR Dirichlet boundary conditions driven by giving thraxion
a finite VEV, but to changes of the UV boundary conditions as well. The presence of ISD-breaking
non-perturbative effects in the bulk in general will source such UV boundary terms which take the
form [109]

δS[z] = M8
10

2

∫
d4x

∫
dr

r
(JUV z̄ + c.c.) . (2.132)

If we use for moduli stabilisation e.g. gaugino condensation as the non-perturbative effect, this implies
a source JUV = j · r δ(r − rUV ) with j ∼ ⟨λλ⟩. In the dual holographic description of a perturbed KS
throat [115] used to describe each half of the double throat, this corresponds to a dimension ∆ = 3
chiral operator. In presence of this UV perturbation the solution for z(r) takes the form [109]

z(r) = 1
4j (r2 − r2

IR) + z1 + 1
2
r2 − r2

IR
r2

UV − r2
IR

(z2 − z1) (2.133)

in the first throat, and with z1 ↔ z2 in the second throat. If we now insert this back into the 5d effective
action for the complex structure modulus z(r) from [85, 109] and corrected by δS[z], we get a scalar
potential

V (c) = |z1 − z2|2 + Re (j̄(z1 + z2)) + const. = 4|z0|2 − 2Re (j̄z0)(1− cos(c/M)) + const. , (2.134)

which clearly shows the ISD-violating source j generating the cross term, provided that j̄z0 is not purely
imaginary. Moreover, since e.g. j ∼ ⟨λλ⟩ ∼ |W0| in the KKLT scenario, we see that this argument has
the features to reproduce the cross term observed in the 4d EFT computation. We leave a more detailed
construction of this argument for future work.

Finally, a full treatment of our 4d EFT results in a 10d setting is difficult at the current time, in
particular for the case when we choose LVS to stabilize the Kähler moduli. The reason here consists of
the fact that for LVS, the O(α′3) correction in the volume moduli Kähler potential contributes to the
O(ε) cross term in the scalar potential. However, the contributions to the scalar potential at O(α′3)
were derived from 10d in [54] using the known 10d type IIB α′3R4 correction dimensionally reducing to
the known O(α′3) correction to K, from which in turn via 4d N = 1 local supersymmetry [54] inferred
the O(α′3) to the supergravity F-term scalar potential. The direct 10d origin of this correction to V

would arise from terms reading schematically as O(α′3)G2
3R

3 which are part of the supersymmetric
completion of the R4 term in type IIB in 10d. This supersymmetric completion, however, unfortunately
is to date not completely known already at the needed fifth order. Hence, at least for the case of LVS
Kähler moduli stabilisation, a 10d discussion of our 4d EFT results must await future progress on the
supersymmetric completion of the type IIB α′3R4 term.

Discussion and conclusions

We presented a detailed study about thraxions beyond the flux compactification level. Specifically, we
analysed 4d, N = 1 effective supergravity in presence of thraxions and how the results derived in [85]
change when also the Kähler moduli sector is taken into account. We find that in general the thraxion
potential receives potentially non-vanishing corrections which lift the mass squared to ∼ ω3

IR only. After
explaining why this is the case, we show that these cross terms in general do not vanish in multi-
throats consisting of at least three joined throats. Conversely, in the simplest class of double-throats,
avoiding the cross terms reduces to essentially a single concretely realizable condition on the periods of
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double-throats.
By analysing SU(3)-structure’s torsion classes, we find that the CY condition is broken due to the

breakdown of the ISD condition of the G3 flux. This leaves us with just a complex manifold. The amount
of the breaking is related qualitatively to the value of the thraxion VEV. In turn, if the CY condition is
broken already at the KK scale, the use of the 4d supergravity approximation in order to describe the
4d effective theory could be questionable. However, we argue for a sufficiently small thraxion VEV or
a decoupling of the thraxion dynamics coming from the high warping, in such a way that the manifold
is still (almost) CY. Hence, we can be entitled to use the effective supergravity action and include the
Kähler moduli stabilisation.

Then we discussed the relation of thraxions and Kähler moduli in the presence of perturbative and
non-perturbative corrections to the Kähler potential and the superpotential. We find that in general
Kähler moduli stabilisation spoils the high suppression of the thraxion mass coming from the sixth
power of the warp factor. The no-scale breaking terms induce additional contributions to the potential
which are proportional to the warp factor cubed only, hence lifting the thraxion mass. However, the
thraxion is still the lightest particle in the spectrum, and the spectrum is still effectively gapped.

One may ask what are the consequences of this new thraxion behaviour on the axionic version of
the WGC [13]. In [85], it was found a parametric violation of the lattice WGC while the sub-lattice
WGC [14, 15, 116] was still satisfied but with a parametrically coarse sub-lattice. The new scaling of
the thraxion mass still provides a violation of the lattice WGC but milder by a factor of 2, resulting
in a less coarse sub-lattice needed to satisfy the sublattice WGC. The study of the validity of the EFT
whenever the thraxion stabilizes to a VEV different from zero is an important task for future work, as
in this situation the CY condition is broken. It would be interesting to see for how long the EFT is still
valid before new light states must be integrated-in. Indeed, the violation of the lattice-WGC might be a
symptom that some new objects must be considered in order to fully describe the physics of thraxions.

In addition, there may be implications from the finite D3-brane charge tadpole of any given type
IIB CY compactification. While we leave a full discussion of this for future work, we observe that: i)
metastability of a dS uplift from a single anti-D3-brane implies a lower bound M ≳ O(10) on the R-R
3-form flux on the throat A-cycle. ii) Fixing the thraxion mass scale for some physical application on the
other hand fixes the warp factor and thus K/M ≫ 1. This entails the D3-brane charge tadpole placing
an upper bound M <

√
QD3(K/M)−1, which may get tightened by replacing QD3 by Qeff.

D3 < QD3

due to flux stabilisation of the complex structure moduli eating up a part of QD3 [117–119]. Depending
on the size of the available tadpole and the number of non-zero fluxes needed to freeze the complex
structure moduli, this may effectively limit the achievable warp factor suppression of the thraxion mass
scale and/or the existence of meta-stable anti-D3 uplifts.

After our generic discussion, we worked out the conditions sufficient to obtain the original scaling of
the thraxion mass with respect to the warp factor. Such cases require the presence of only one thraxion
in each multi-throat system, a democratic distribution of fluxes in the throats and a particular homology
relation among the interpolating cycles. These requirements need a certain amount of tuning, unless
the multi-throats are double-throats. Therefore, which of the two cases is more prevalent in the string
landscape will depend significantly on the relative frequencies of double versus higher multi-throats.
It is interesting to note here that in the database of the CICY orientifolds built in [97], we always
have one thraxion per multi-throat system. Whether this is the case also for other CY sets as e.g. the
Kreuzer-Skarke database [120] is an important question that we leave to further study.

We then specialized the discussion of no-scale breaking effects to the specific examples of LVS and
KKLT moduli stabilisation approaches. In particular, in LVS the exponentially large values of the CY
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volume allow us to suppress the cross terms which otherwise would be responsible for lifting the mass.
This suppression turns out to be effective only in scenarios where the scalar potential scale is sufficiently
high. This in particular includes the interesting case of high-scale inflation.

Given the obvious phenomenological possibilities of thraxion models, as well as their intrinsic theo-
retical interest, this leaves for the future many interesting open questions we raised here.



Chapter 3

Inflation in String Theory and
Axions as Inflatons

The sky above the port was the color of television,
tuned to a dead channel.

— William Gibson, Neuromancer

An ongoing series of observational cosmological probes, among them cosmic microwave background
(CMB) measurements [121–123], type IA supernova data [124], large-scale structure surveys [125] and
baryon acoustic oscillation (BAO) measurements [126], has so far provided increasing evidence for the
ΛCDM cosmological standard model. In particular, this includes support for a concurrent late-time
accelerating expansion of the universe compatible with a description by de Sitter space with a very small
positive cosmological constant and a very early epoch of extremely rapid exponential expansion called
inflation. Inflation has become the leading paradigm to explain the homogeneity and isotropy of our
universe. The observations by the WMAP [121] and Planck [122] satellites, as well as the BICEP/Keck
telescopes at the South Pole [123], provide us with powerful tools to explore the early stages of the
cosmological history and to understand the inflationary epoch. Moreover, beyond serving as tests for
many inflationary models proposed throughout the years, these data are also beginning to constrain top-
down constructions attempting to embed inflation into a theory of quantum gravity. In fact, inflation is
also one of the most promising means to explore the physics at energy scales that require a candidate
theory of quantum gravity, such as String Theory. The observational background provides the motivation
for continued efforts to search for vacuum solutions (vacua) of String Theory as a candidate theory of
quantum gravity which can realize both controlled dS vacua and an observationally viable epoch of
slow-roll inflation. In many cases, constructing such string vacua involves stabilizing all moduli scalar
fields and stringy p-form axion fields using fluxes and orientifold planes up to typically one or two scalar
field directions left massless and flat at leading order. For these remaining few flat directions a scalar
potential arises from taking into account non-perturbative quantum corrections, in particular if these
flat directions are axions for which perturbative corrections are absent.

In this chapter, we show why and how axions can serve as inflatons. First, in Section 3.1 we review
the basics of inflation from the effective theory point of view. Then, Section 3.2 discusses the problems of
embedding the inflationary dynamics in a UV-completed theory and why considering axions as inflations
could alleviate those problems. Therefore, in Section 3.3 we introduce two of the main proposals of
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Figure 3.1: Temperature fluctuations in the CMB radiation. Figure taken from [130].

axion inflation, namely alignment and axion monodromy. In particular, for the latter, we provide new
phenomenological bounds arising when imposing the Weak Gravity Conjecture and the Festina Lente
bound. Finally, we present a new mechanism of axion inflation based on Linde’s hybrid inflation in
Section 3.4, while in Section 3.5 we show a way to achieve winding inflation via the topological data of
the extra dimensions.

3.1 Basics of inflation

With inflation we refer to an extended period of quasi-dS evolution, in which the Hubble rate of ex-
pansion varies slowly over a Hubble time [127–129]. Inflation is thought to be responsible both for the
large-scale homogeneity that we observe today and for the small fluctuations in the CMB that were
the seeds for the formation of structures, as galaxies and clusters. In particular, the uniformity of the
CMB fluctuations represents an intriguing and challenging puzzle. The CMB is a beautiful picture of
a large patch of the universe at the recombination time, at energies around 0.1 eV. If we compare the
Hubble radius1 evaluated nowadays with the one at the time of recombination, we naively infer that the
part of the universe we see in the CMB should be made of 104 causally disconnected regions: the scales
entering the comoving horizon today have been far outside the horizon at CMB decoupling. Then, how
could it be possible that the radiation we observe is isotropic to one part in 105, as shown in fig. 3.1?
There should have been a point in the history of the universe when these apparently causally-separated
patches have been in contact. For this reason, this homogeneity problem is also called horizon problem:
the comoving horizon, or the fraction of the universe in causal contact strictly increases with time. This
suggests that the horizon problem (as well as other Big Bang puzzles that we have omitted here) could
be solved by a very simple and effective idea: have an epoch in the early universe when the comoving
Hubble radius was decreasing, so that all past light-cones originating from the CMB patch at the time
of recombination intersect before they hit the initial singularity. Therefore, distances greater than the
Hubble radius now were actually in causal contact early on. We can achieve this by postulating an
era before radiation domination, where the universe was dominated by an energy that behaves like the
cosmological constant today: this era is referred to as the inflationary epoch. We explain in what follows
how this idea works, referring mainly to [131,132].

1The Hubble radius (aH)−1 quantifies the distance that can be travelled within an e-fold of cosmological expansion.
During the conventional expansion of the universe, it strictly grows with time. By integrating the Hubble radius over the
logarithm of the scale factor, we get the comoving horizon, i.e. the maximum distance that a light ray can traverse.
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The cosmological principle postulates that the universe is homogeneous and isotropic on large scales,
and the CMB is an evidence of this. Such universe can be described with the Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric

ds2 = −dt2 + a(t)2
(

dr2

1− k r2 + r2dΩ2
)
, (3.1)

where a(t) is the scale factor that encodes the growth of the (maximally symmetric three-dimensional)
spatial slices with time, and the curvature parameter k is vanishing for flat, R3 spatial slices, positive for
S3-like slices or negative for three-dimensional hyperbolic spaces. In this background and assuming that
the stress-energy tensor is that of a perfect fluid with energy density ρ and pressure p, the Einstein’s
equations become two coupled differential equations called Friedmann equations:

H2 ≡
(
ȧ

a

)
= ρ

3 −
k

a2 ,
ä

a
= −1

6 (ρ+ 3p) , (3.2)

where the overdots denote derivatives with respect to t. Note that in (3.2) we have defined the Hubble
parameter H which gives the expansion rate of the universe, hence setting the fundamental scale of
the FLRW spacetime. The Friedmann equations are not independent: they can be combined into the
continuity equation

ρ̇ = −3H(ρ+ p) = −3(1 + w)Hρ , (3.3)

which upon integration gives ρ ∼ a−3(1+w), where w ≡ p/ρ is the equation of state. In order to solve
the horizon problem, we saw that the Hubble radius (aH)−1 should shrink for a certain period of time.
Via the Friedmann equations this leads to

d
dt

(
1
aH

)
< 0 ⇒ ä > 0 ⇒ ρ+ 3 p < 0 , (3.4)

i.e. we have an accelerated expansion given by a violation of the strong energy condition, which implies
w < −1/3. In particular, a simple way to achieve this is a cosmological constant dominating the very
early universe, whose negative pressure is responsible for the accelerated expansion. During this epoch,
the scale factor evolves as

a (t) ∼ eHt . (3.5)

This represents a so-called quasi-dS situation: exact dS expansion corresponds to a constant (rather
than slowly changing) H. The situation just described is what we call inflationary epoch, i.e. the epoch
of accelerated expansion that separates the initial singularity from the radiation epoch, that gives an
explanation to the homogeneity of the CMB.

The accelerated expansion should however last enough time so that quantum fluctuations in the CMB
have time to generate. We can measure this ‘slowness’ requirement by defining two parameters that keep
track of the evolution of the Hubble parameter as follows. From the second Friedemann equation, the
acceleration required for the shrinking Hubble sphere implies

εH ≡ −
Ḣ

H2 = −∂ logH
∂N

< 1 , (3.6)

where we have introduced the number of e-folds N of inflationary expansion, which is expressed in
cosmic time via the relation dN = Hdt. Hence, the accelerated expansion lasts as long as the parameter
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εH stays below the unity. This parameter, together with

ηH ≡ −
1
2
∂ log εH
∂N

, (3.7)

are called slow-roll parameters, and they measure the deviation from an exact dS solution, as the limit
εH → 0 corresponds to the dS limit. The first slow-roll parameter εH measures the relative change of H
in one expansion time of the universe. Similarly, the second slow-roll parameter ηH captures the relative
change of εH , and |ηH | < 1 ensures that this change is small, such that we have a quasi-dS scenario.

In the slow-roll, single-field regime, these parameters can be approximated in terms of derivatives of
the scalar potential, giving conditions on the shape of the inflationary potential. Consider a scalar field
ϕ minimally coupled to gravity with arbitrary potential V (ϕ). The classical dynamics for the inflaton
field ϕ(t) in the slow-roll regime with FRLW background is then described by

Friedmann eq. 3H2 = 1
2 ϕ̇+ V (ϕ) , (3.8a)

Klein-Gordon eq. ϕ̈+ 3Hϕ̇ = −V ′(ϕ) , (3.8b)

where the prime denotes the derivatives with respect to ϕ. By combining these equations, we get the
potential slow-roll parameter as functions of the scalar potential as

ε ≡ 1
2

(
V ′

V

)2
, η ≡ V ′′

V
−
(
V ′

V

)2
, (3.9)

where all the energy scales are in units of MP . The conditions ε < 1 and η < 1 guarantee the presence
of an inflationary expansion: ε parametrises the presence of the slow rolling phase, as inflation lasts as
long as the potential energy dominates over the kinetic energy, V > ϕ̇2, i.e. as long as ε < 1. On the
same footing, η tells us how long the inflationary phase is lasting: as prolonged inflation is given by the
predominance of the Hubble friction over V ′′, we have a prolonged inflationary epoch as long as the η
parameter is less than one. In other words, requiring η < 1 implies requiring that m2

ϕ < 3H2. As we will
review in Section 3.2, it is generally hard to realise such hierarchy from a UV-completed model.

From the slow-roll parameters, we can define two observables,

the spectral tilt ns = 1 + 2 η − 6 ε , (3.10a)

the tensor-to-scalar ratio r = 16 ε . (3.10b)

These should be evaluated at the time when the pivot scale k (i.e. a representative scale among the
ones probed by the CMB) exited the horizon. In fig. 3.2 we report the latest prediction from the Planck
satellite [133] on ns and r, together with predictions from theoretical models.

The spectral tilt parametrises deviations from perfect scale invariance. By taking into account quan-
tum fluctuations during inflation, which effectively become classical once stretched to super-horizon
wavelengths, we generate a primordial curvature perturbation R. Its two-point function can be de-
scribed via its power spectrum, PR(k) ≡ |Rk|2. It is useful to define the dimensionless power spectrum

∆2
R(k) ≡ k3

2π2PR(k) = 1
8π2

H4

M2
P |Ḣ|cs

, (3.11)

where cs is the speed of sound and at horizon crossing we have the relation csk = Ha. Since (3.11) is
supposed to be evaluated at horizon crossing, any time dependence of H and cs translates into a scale
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Figure 3.2: Planck contours [133] constraining the tensor-to-scalar ratio r and the primordial tilt ns,
with inflationary models evaluated at 50 and 60 e-folds. The pivot scale in the Planck data is k⋆ = 0.002
Mpc−1.

dependence of the power spectrum. That is, scale-invariant fluctuations correspond to ∆2
R(k) =const.

and the spectral tilt quantifies the deviation from scale invariance since

ns − 1 ≡ d ln ∆2
R

d ln k . (3.12)

Therefore, from the time-dependence of H during a quasi-dS epoch, we expect a scale dependence of
the power spectrum. Indeed, (3.12) and (3.10a) are equivalent once one derives the power spectrum
(exchanging the derivative in ln k with a derivative in the number of e-folds) and plugging the slow roll
parameters. Hence, we have a deviation from scale invariance (ns ̸= 1) as long as ε is non-vanishing (i.e.
H is a function of t), which in turn also implies η ̸= 0.

We expect that both scalar and tensor perturbations of the metric are generated in an expanding
background. Hence, a clear prediction of inflation is the presence of primordial gravitational waves. Since
the quantization of tensor fluctuations follows the one for scalar fluctuations, we can again define the
tensor power spectrum as [134]

∆2
h(k) ≡ k3

2π2Ph(k) = 12
π2

H2

M2
P

, (3.13)

which we evaluated at horizon crossing already. Note that (3.13) is not a function of Ḣ, but only of the
Hubble parameter. Tensor fluctuations are therefore a direct probe of the energy scale at which inflation
took place. Finally, we can define the tensor-to-scalar ratio r as the ratio between the dimensionless
power spectrum of tensor fluctuations ∆2

h(k) and the amplitude of scalar fluctuations in order to have
an observational constraint on the size of tensor fluctuations, since the amplitude of scalar fluctuations
has been measured. In fact, not only we can place an upper bound on the size of tensor fluctuations
(since so far we have seen none), but using ∆R(k⋆) = 4.7× 10−5 in (3.13) one finds [132]

H = 3× 10−5 r

0.1
1/2
MP ⇒ Einf ≡ (3H2M2

P )1/4 = 8× 10−3 r

0.1
1/4
MP . (3.14)

Apart from side-products of the inflationary dynamics, we can use the pivot scale to estimate how
much our inflationary stage should last. Let us call ϕ⋆ the point in field space at which the number of
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e-folds remaining, away from the critical point ϕend, is

N⋆ =
∫ ϕ⋆

ϕend

dϕ√
2 ε

. (3.15)

The total number of e-folds needs to be at least N⋆ ∼ 50÷ 60 to solve the early universe problems,2 as
CMB fluctuations are created during four e-folds about 50 e-folds before the end of inflation. Hence, a
putative inflationary model should last at least as much. Now, if we assume that ε increases monotoni-
cally with ϕ, we can put an upper bound on N⋆ < ∆ϕ/

√
2 ε. Using (3.10b) and restoring proper powers

of MP , we can write such bound as
∆ϕ
MP

>

√
r

8 N⋆ , (3.16)

which is known as the Lyth bound [135]. This bound gives rise to the distinction between two different
classes of inflationary models: large-field and small-field models. In his work, Lyth showed that a slow-
roll regime combined with sufficiently-lasting inflation and detectable tensor modes in the CMB (i.e.
r > 0.01) requires trans-Planckian field displacements. Models achieving a sufficiently long inflationary
stage via ∆ϕ > MP are called large-field models. As we will see in Section 3.2, it is quite difficult to
UV-complete these models. We could also have models where the field displacement stays sub-Planckian,
and we refer to these as small-field models. However, in general these models are achievable at the price
of giving up with detectable tensor modes. Upcoming CMB B-mode polarization searches (CMB-S3:
e.g. Simons Array [136], Simons Observatory [137], BICEP Array [138], CMB-S4 [139–141] and space
missions such as e.g. PIXIE [142] or LiteBird [143,144]) will be able to possibly detect tensor modes up
to r ≳ 10−4.

3.2 Inflation in String Theory

The inflationary dynamics clearly takes place in an epoch where Quantum Gravity and the UV-physics
could start playing a prominent role, as it is believed that inflation is located at energies around H ∼
1015 GeV. Given that inflation talks to the UV-physics, it is natural to ask how does the UV-physics
arising near the Planck scales affect the inflationary dynamics. We have already seen that having η < 1
requires that the mass of the inflaton is lighter than the Hubble scale at the epoch of interest. We
explain in the following why this requirement is problematic in a UV-completed theory, and why String
Theory is arguably the best candidate that allows us to naturally address these issues arising at energies
approaching the Planck scale.

Consider an effective theory of inflation with cutoff Λ > H. In order to write such theory, we have
integrated out all particles with masses above the cutoff scale. Hence, the low energy effective theory
bears operators of the form Od/Md−4

P , where d is the mass dimension of the operator. In the absence of
any specific symmetry, we could allow in the EFT Lagrangian for a d = 6 Planck-suppressed operator
of the form

O6

M2
P

= O4

M2
P

ϕ2 , (3.17)

which corrects the inflaton mass as ∆m2 ∝ ⟨O4⟩/M2
P . Thus, in a generic effective theory, the mass of

the inflaton is radiatively unstable and runs to the cutoff scale. Moreover, if ⟨O4⟩ ∼ V , this radiative
correction leads to ∆η ≥ 1. This is the origin of the so-called η-problem [145], and it is the reason we
say that inflation is highly UV-sensitive.

2We discussed in details only the horizon problem, but other issues are e.g. the flatness problem and the presence of
relics that could lead to overclosure of the universe.
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From this simple example, we can infer an important consequence. For ∆ϕ > MP , all O4+2n (n > 0)
operators correct η by an order one factor. Therefore, whenever the inflaton traverse a distance of order
MP , the derivatives of the potential receive non-negligible corrections from an infinite series of higher-
dimensional Planck-suppressed operators. This spoils the inflationary expansion by drastically reducing
its duration. Instead, when ∆ϕ < MP , O4+2n contributions are suppressed for n ≥ 2 in (∆ϕ/MP )2n−2.
Hence, the deep distinction between large and small field models is that the UV-sensitivity is much more
dramatic for the former ones [146]. It turns out that in large-field models, maintaining the flat potential
needed for slow roll is difficult, as quantum corrections are naturally significant on Planckian scales.

The upshot of this discussion is that, in order to embed inflation in a theory of quantum gravity, one
needs to ensure that the UV-physics does not induce radiative corrections, or that it bears a mechanism
that suppresses them. The most effective mechanism is a symmetry, as we discuss in the next section.

3.3 Axions as inflatons

We have shown before that the η-problem poses a serious challenge to model building. However, we
can circumvent such problem by including a symmetry in the potential, or equivalently by considering
a UV-completion that naturally produces a symmetry in the four-dimensional effective theory. This
would prevent radiative corrections to affect the potential, thus spoiling the prolonged slow-roll phase.
Unfortunately, in this case we cannot rely on supersymmetry, as it could be already broken at the
inflationary scale.

We could instead consider a potential V (ϕ) which is invariant under a shift symmetry ϕ→ ϕ+ const.
This can be realised by taking the inflaton to be an axion. The unbroken shift symmetry forbids all
non-derivative operators to appear in the Lagrangian, while a weakly broken shift symmetry could in
principle give rise to radiatively stable models of large-field inflation. Hence, axions naturally solve the
η-problem because their mass is protected by their shift symmetry.

However, for axions a super-Planckian field displacement corresponds to a super-Planckian decay
constant f . As explained in Section 2.3, an axion with f > MP appears to be forbidden by the WGC.
Moreover, in all the controlled string-theoretical construction that we know, we are able to get only
sub-Planckian decay constants. Indeed, the WGC in its mild form allows for evasions of the bound,
which usually happens for higher instantons contributions or effective enhancements. One should then
argue why those are the leading effects, and this appears to be challenging while maintaining control
on the compactification. In what follows, we introduce the two main proposals to circumvent these
obstacles, namely alignment and axion monodromy. Then, we will discuss a model of axion inflation
which is of the small-field type but still gives reasonable values for the tensor-to-scalar ratio and can be
embeddable in known string compactifications. We call this model harmonic hybrid inflation. All these
proposals can be derived from String Theory considering closed string axions (see Section 2.2). Finally,
we present a model of (in principle) large-field inflation based on a winding mechanism that generates
inflation via the phase of complex structure moduli. While a proper explicit model for such proposal is
missing, we show that the necessary features can be generically obtained relying on the topology of the
compactification manifold. This would render the future model building easier.

For a comprehensive review of inflationary models with axions we refer the reader to e.g. [146–148]
and references therein.
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Figure 3.3: Example of KNP alignment with f1,2 = 0.98MP , Λa = 1.5Mp, Λb = 1MP , c2,a = 1,
c2,b = 1.4. The resulting decay constant enhancement for these values is fξ ∼ 3.5MP .

3.3.1 Natural inflation and field space alignment

In axion natural inflation [149], the role of the inflaton is played by an axion field ϕ with a potential

V = Λ4
[
1− cos

(
ϕ

f

)]
. (3.18)

In general, this potential originates from weakly breaking the shift symmetry to a discrete subgroup,
which can happen either spontaneously or explicitly (from the stringy perspective) by non-perturbative
effects induced by the presence of branes and worldsheet instanton wrapping the appropriate cycle
(see Section 2.2). Although such a potential is natural from a bottom-up perspective (as it is radiatively
stable against one-loop corrections, as we discussed above), one can show that in order to have enough
inflation, the decay constant should be super-Planckian. To overcome this problem, Kim, Nilles and
Peloso (KNP) proposed a way to achieve a super-Planckian decay constant starting from a sub-Planckian
one [150]. The KNP proposal relies on the presence of two axions ϕ1,2 with decay constants f1,2 entering
the cosines as linear combinations, namely

V = Λ4
a

[
1− cos

(
c1a

ϕ1

f1
+ c2a

ϕ2

f2

)]
+ Λ4

b

[
1− cos

(
c1b

ϕ1

f1
+ c2b

ϕ2

f2

)]
. (3.19)

The mass matrix has determinant det(M2) = (c1bc2a − c1ac2b)/(f2
1 f

2
2 ), hence when c1ac2b = c1bc2a

(i.e. when we have alignment) we have a single, flat direction in the potential. However, ϕ1,2 are not
the physical fields. The true physical fields are the eigenvectors of M2 and are proportional to a linear
combination of ϕ1 and ϕ2. For ease of exposition, consider c1a = c1b = 1 and Λa > Λb. The physical
fields ψ and ξ have masses

m2
ψ = Λ4

a

(
1
f2

1
+ c2

2a
f2

2

)
, m2

ξ = Λ2
b

(c2a − c2b)2

c2
2af

2
1 + f2

2

for ψ = f1f2√
c2

2af
2
1 + f2

2

(
ϕ1

f1
+ c2aϕ2

f2

)
, ξ = f1f2√

c2
2af

2
1 + f2

2

(
ϕ2

f1
− c2aϕ1

f2

)
.

(3.20)

Hence, for c2a = c2b we have perfect alignment, and ξ is a flat direction of V . Now, if we slightly detune
c2a ≃ c2b, ξ becomes very light.3 If this direction is associated with the inflaton field, the inflaton has
a suppressed mass mξ and hence we have a suppression of the η parameter. Moreover, a suppression in

3Note that we should slightly detune these coefficients also because otherwise we would be in the presence of an
unbroken shift symmetry, which is conjectured to be forbidden in a consistent theory of Quantum Gravity [151].
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mξ corresponds to an enhancement in the decay constant, which reads

fξ =
(
c2

2af
2
1 + f2

2
)1/2

|c2b − c2a|
. (3.21)

This means that we could have effective super-Planckian field displacements from sub-Planckian decay
constants. Indeed, due to the difference in the scales, the physical fields evolve independently and during
the proper inflationary stage, mψ ≫ H, hence ψ is settled to its minimum and ξ drives inflation.

Let us note here that the field redefinitions at the core of KNP alignment do not guarantee that
the kinetic terms are canonically normalized as well. Usually, the contrary happens, and in general one
should better normalize the kinetic terms first, risking spoiling the desired structure for alignment.

The idea behind axion alignment was later implemented for N axions, hence the name N-flation [152].
Here, N axions get excited simultaneously and each develops a potential on its own. The Hubble friction
operates on the sum of the potential, resulting in an individual enhancement proportional to

√
N . This

leads to a super-Planckian collective excitation, while the individual field displacement remains sub-
Planckian. However, one can show that loops of the N light axion fields renormalize MP with a factor
that scales as

√
N . Hence, we cannot get parametrically large collective displacements by relying only

on a huge number of fields.
Moreover, from the string-theoretical point of view, we can read this as the fact that the overall

volume of a CY should not grow linearly with N , otherwise MP gets corrections proportional N which
would cancel the gain from travelling along the collective field trajectory. It was then asserted that
suitable cancellations may occur, maintaining a small volume and allowing for parametric enhancement.
In [23], this cancellation was called into question, and it was argued that in the large volume limit,
axion decay constants should scale as 1/

√
N , cancelling the collective enhancement. In the same work,

an alternative proposal was pointed out, which was heavily depending on the details of the CY geometry.
Later [153] proved that it is unrealistic. Crucially, [153] reports a geometric argument (independent on
the number of axions) on why parametric enhancement of the radius of axion moduli space is impossible,
finding an upper bound on such quantity. Finally, N-flation is in tension with the axionic version of the
Convex Hull WGC [76] (cf. Section 2.3).

Hence, it seems that String Theory forbids enhancement of field displacements based on mechanisms
that do not rely on monodromy. For this reason, we devote the next section to such a class of axion
inflation models.

3.3.2 Axion monodromy inflation

In order to avoid all the problems affecting large-scale inflationary models that rely on enhancement of
the field displacement based on Pythagorean logic, one should find a completely different mechanism
that still produces large effective field displacements while maintaining sub-Planckian string-derived
quantities. An example of such mechanism is given by axion monodromy inflation, which we review in
what follows.

When a system reaches a new configuration after being transported around a closed loop in the naive
configuration space is said to undergo a monodromy transformation. Something very similar happens
to a string axion when non-perturbative effects introduce non-periodic terms in the potential, thus
generating a monodromy on top of the harmonic terms. Therefore, we could imagine applying the
shift symmetry to the axion for multiple cycles; this produces an effective field displacement in the
configuration space that greatly exceeds the fundamental period. Moreover, the leftover discrete shift
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symmetry protects the structure of the potential over each cycle, forbidding loop contributions during
the trajectory. Hence, large-field inflation is achieved while keeping a sub-Planckian decay constant.

In the original proposal [154, 155], axion monodromy inflation is realized by considering the non-
perturbative effect coming from a D5-brane (or an NS5-brane, which basically means applying S-duality)
wrapped on an internal 2-cycle Σ.4 Upon integrating on the cycle, the DBI action produces a linear
term for the B2 axion (or, in the case of the NS5-brane, for the C2 axion) in the 4d potential, which is
then no longer a periodic function of the axion. The final effective potential in terms of the canonically
normalized field ϕ takes the form

V = µ3ϕ+ Λ4 cos
(
ϕ

f

)
, (3.22)

where the periodic part is dominant for small VEVs while it gets exponentially suppressed at large
volume, and the monodromy term takes over on large field displacements. Hence, we have effectively
a large-field monomial inflation with tiny periodic modulations on top. Note that many other variants
of chaotic inflation can arise via monodromy, changing the exponents in the monodromy term [156].
Hence, we can write the general parent of the potential in (3.22) as

V = µ4−pϕp + Λ4 cos
(
ϕ

f

)
, where p ≤ 2 (3.23)

Despite the fact that all the ingredients are rather common in string compactification, a concrete
model realising this idea has proven to be challenging to construct.

Later, it was shown that it is possible to get a potential as the one in (3.22) by generating a similar
monodromy and a mass term from background fluxes and their F-term potentials [157]. This would
make the actual model building of axion monodromy inflation more feasible. Consider the Chern-Simons
coupling F̃p = Fp+B2∧Fp−2: the action is invariant under the B2 gauge transformation B2 → B2 +dΛ1

if at the same time Cp−1 → Cp−1−Λ1∧Fp−2 holds. Hence, turning on the Fp−2 flux provides the axion
field b(x) with a mass term, i.e. it provides a non-periodic potential for b(x) of the form

V ∼
∫
X

F̃p
2 ∼ (Np + b(x)Np−2)2

, (3.24)

where Np and Np−2 denote the flux quanta of Fp and Fp−2 fluxes that are turned on. Therefore, the field
range of b(x) no longer shows periodicity and is a priori unbounded: we have parametrically extended
the axion field range along a non-periodic potential coming from fluxes. The full potential then displays
a set of non-periodic branches for the axions labelled by Np−2, and the periodicity of the full theory is
visible when summing over all branches. The effective potential on each branch picked by Fp−2 looks
like the one in (3.22), where as usual the periodic contribution comes from non-perturbative effects.
Moreover, (3.24) gives a string-theoretical derivation of the axion 4-form Lagrangian proposed in [158]
as a 4d model of axion monodromy inflation, namely

L ∼ F 2
4 + (∂ϕ)2 + µϕF4 . (3.25)

An interesting side of axion monodromy inflation is that it produces peculiar phenomenological
signatures. For example, the oscillatory corrections on top of the background dynamics imprint a char-
acteristic oscillating signal in all primordial correlation functions. Moreover, the power spectrum also

4In order to cancel the tadpole, one should also add a D5-brane (or a NS5-brane) wrapping a distinct representative
of the same homology class of Σ.
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Figure 3.4: Theoretically allowed values of b⋆ (left) and f res
NL (right) coming from imposing monotonicity

of the inflationary potential, i.e., b⋆ < 1, aFL and WG conjectures, and requiring that ω⋆ < 102 to
match experimental constraints [161]. These results refer to the monomial monodromy potential, fixing
the number of e-folding in absence of wiggles to be N = 50 and imposing COBE normalization.

carries a signature of the modulations. Calling the monodromy induced term V0, we can introduce the
parameter b⋆, which measures the instanton generated wiggles intensity in the inflationary potential,

b⋆ ≡
Λ4

V ′
0(ϕ⋆)f

(3.26)

where ϕ⋆ is the value of the inflaton as horizon exit. Indeed, to match the experimental constraints
on the power spectrum of density perturbation, the oscillating part of the potential must be highly
suppressed at the pivot scale.

The monotonicity of the potential and the consistency with observational constraints require b⋆ ≪ 1
for p ≥ 1 but this condition is believed to hold in the more general case we consider. By taking b⋆ ≪ 1,
one can treat the cosine as a perturbation in the power spectrum and show that it can modulate the
monomial-generated power spectrum, producing oscillations that can be now searched with e.g. WMAP
and Planck [159]. These are detected as resonant non-gaussianities [160]

f res
NL = 3

√
2π

8 b⋆ ω
3/2
⋆ , (3.27)

where ⋆ denotes evaluation at horizon exit, ω⋆ =
(√

2ε⋆MP

f

)
is the resonance frequency and ε is the

slow-roll parameter derived from the monodromy potential only.
To get the range of admissible values for f res

NL for each value of p, we remove a model degree of
freedom imposing COBE normalization,5 i.e.,

√
Ps(N⋆) ≃

1
10π

√
4
3
VΛ=0(ϕ⋆)
ε⋆M4

P

≃ 2× 10−5 . (3.28)

Moreover, the wiggles in the potential cannot significantly affect the number of e-folds N unless a massive
parameter fine-tuning is performed; therefore, as experimental constraints require 40 < N < 60, we fix
N = 50 when Λ = 0, thus removing another degree of freedom from the model. In this way, we uniquely
identify µ and the value of ϕ⋆. We stress that our results do not significantly change when choosing
other N values within the allowed range. Using the upper and lower bounds in (2.74), also imposing the
relation Λ4 = e−S , we get to the theoretically allowed window for b⋆ and f res

NL, WGC and aFL providing
5Which means we fix the size of the curvature perturbations.
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the lower and upper bound respectively. We plot these results in fig. 3.4.
Finally, requiring that the lower bound on b⋆ coming from WGC is not in contrast with the condition

b⋆ ≪ 1 sets a lower bound on the instanton action S ≳ 25. It can be easily checked that this relation is
almost insensitive to the value of p.

3.4 Harmonic hybrid inflation

Hybrid inflation is a mechanism of slow-roll inflation which achieves the end of the slow-roll phase,
driven by one scalar field, through an instability induced by the coupling with another scalar, which
then undergoes a rapid ‘waterfall’ roll to the minimum. The slow-roll phase itself is dominated by a large
field-independent vacuum energy, i.e. hybrid inflation ‘hybridizes’ between ‘new’ slow-roll inflation and
‘old’ false-vacuum inflation. Interestingly, this vacuum energy domination implies that hybrid inflation
possesses a smallish field displacement corresponding to the last about 60 e-folds of observable inflation,
∆ϕ60 ≲MP , which nevertheless does not become parametrically small. Hence, hybrid inflation naturally
constitutes a mechanism that realises high-scale inflation while accommodating the Swampland Distance
Conjecture [11].

Linde’s original hybrid inflation model [162] considers two scalar fields ϕ, χ. The terms of the scalar
potential relevant for the hybrid mechanism read

V = λ

4 (χ2 − v2)2 + gχ2ϕ2 + ∆V (ϕ) , (3.29)

where ∆V (ϕ) is the non-constant slow roll potential for the inflaton field ϕ along the χ = 0 direction.
Two important features of this model are the presence of two end-of-waterfall minima at χ = ±v, ϕ = 0
and the bi-quadratic coupling that provides the stabilisation of χ = 0 beyond the waterfall critical point
of ϕ. Such coupling between χ and ϕ induces an effective mass for the waterfall field that depends on
the value of the inflaton as

m2
χ = −λv2 + 2gϕ2 ≡ −M2 + 2gϕ2 . (3.30)

This vanishes at the waterfall critical point ϕ = ϕc ≡ M/
√

2g. The dynamics of this model depends
on the value of the inflaton with respect to the critical point and can be described as follows. As long
as ϕ is larger than the critical value, the field χ is frozen and the system resembles the canonical
single-field slow roll driven by the vacuum energy of the universe. This allows for inflation with sub-
Planckian field displacements, without the same amount of fine-tuning of the initial conditions as usually
required in natural inflation. When ϕ approaches ϕc, the field χ starts becoming light and the dynamics
corresponds to a two-field one. Finally, when ϕ < ϕc, the determinant of the Hessian flips sign, i.e.
χ becomes tachyonic and inflation ends rapidly. Indeed, hybrid inflation requires a certain hierarchy
between the masses of the two fields, Vϕϕ ≪ M2. A UV-completion of such model should be able to
explain such feature.

The peculiar way in which hybrid inflation ends allows for the presence of interesting features that
could potentially lead to observational signatures. The most prominent one is tachyonic preheating [163,
164], which induces peculiar peaks in the spectrum of primordial gravitational waves [165,166] and could
lead to the presence of oscillons [167].

Note that hybrid inflation setups generating the hybrid behaviour by means of a bi-quadratic coupling
between the inflaton and the waterfall field usually show a Z2 symmetry between the two degenerate
final vacua of the scalar field trajectory. This Z2 symmetry leads to domain wall production overclosing
the late universe. One should then find a way to break such symmetry and avoid the domain wall
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Figure 3.5: Hybrid inflation potential driven by the two axions ϕ1 and ϕ2, for c2 = 1, c1 = 10, α = 0.01,
corresponding to Λ̃4 = 1+α

1−αΛ4 ≃ 1.02Λ4. The slow-roll regime develops along the valley parametrized by
the ϕ2 direction, while in the ϕ1 direction the waterfall is displayed. Black dot: the inflationary saddle
point. Blue region: complete region of initial conditions supporting at minimum 60 e-folds of slow-roll
inflation. There is no significant fine-tuning of initial conditions in this model. Solid green: slow-roll
part of a sample inflationary trajectory providing 60 e-folds of slow-roll inflation before reaching the
waterfall critical point. Fireball: explosive growth of tachyonic quantum fluctuation and consequent loss
of classical rolling description. Dashed green: would-be classical waterfall evolution neglecting quantum
fluctuations for the same sample inflationary trajectory after crossing the waterfall critical point.

problem.
Motivated by the above features, we proposed a regime of hybrid inflation driven by two axions

acquiring a purely non-perturbative periodic scalar potential. As explained in Section 2.2, axions are a
ubiquitous presence in most models of string compactifications, see e.g. [22–24]. Moreover, string theory
axions appear with an exponentially wide spectrum of masses, suggesting some of them as suitable
inflaton candidates. With this as guidance, we can guess a two-field axion-like potential of the form

V = Λ4 + Λ̃4 −
(
Λ̃4 + Λ4 cos (c1 ϕ1)

)
cos (c2 ϕ2) , (3.31)

where Λ and Λ̃ are energy scales to be specified later (with Λ̃ > Λ) and the coefficients ci ≥ 1 are
proportional to the inverse of the axion decay constants fi in units of MP . We take the two fields ϕ1 and
ϕ2 such that their kinetic terms are canonically normalized. Note that ϕ2 plays the role of the inflaton
field and determines the mass of ϕ1. As ϕ2 evolves in time, its cosine eventually flips sign and renders
ϕ1 tachyonic. This is exactly the dynamic of the classic hybrid inflation model.

It is instructive to perform a backward comparison of our axion model with the original hybrid
inflation model. In (3.29), the potential is given up to quartic terms in the field χ as well as quadratic
in ϕ, and the structure of the potential covers both the position of the hybrid inflation valley and the
minima. We can now expand the axion potential in (3.31) up to quartic order in ϕ1, ϕ2, assuming for
simplicity Λ̃4 = Λ4. If we do this expansion around c1ϕ1 = π, ϕ2 = 0, the resulting scalar potential
resembles eq. (3.29) qualitatively, but the two waterfall minima occur at values which are O(1) shifted
from their position at (c1ϕ1 = {0, 2π}, ϕ2 = 0) in the full potential (3.31). We conclude, that the higher-
order terms of the ‘harmonic’ cosine terms dictated by the instanton expansion are crucial for the full
field space structure of the model, which we are thus motivated to call harmonic hybrid inflation.6

6We note, that in general finding the global minimum and at least a subset of all critical points of such harmonic
potentials is non-trivial but achievable using the methods described in appendix A of [4]
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We can recast the scalar potential (3.31) in the canonical form

V = Λ4
1[1− cos (c1ϕ1 + c2ϕ2)] + Λ4

2[1− cos (c1ϕ1 − c2ϕ2)] + Λ4
3[1− cos (c2ϕ2)] , (3.32)

by a suitable identification of the parameters, namely Λ4
1 = Λ4

2 ≡ Λ4/2, Λ4
3 ≡ Λ̃4. Clearly, the first

equivalence is a tuning condition to be fulfilled by any UV realization of the mechanism. For practical
use, we also define the following quantities

V0 = Λ̃4 + Λ4 , α = Λ̃4 − Λ4

Λ̃4 + Λ4
and c = c2 . (3.33)

In a hybrid inflation model, we require the following three conditions on the parameters to be satisfied:

1. Presence of a dS saddle point in the potential. Inflation will start close to this saddle point in
order to inflate a sufficient number of e-folds. This amounts to Λ̃ > Λ. If this condition is violated,
a local minimum will develop that traps the inflaton field instead.

2. The dominance of vacuum energy, α≪ 1.

3. The inflationary solution should undergo a fast waterfall transition. To achieve this, we additionally
assume c1 ≫ 1. This drives ϕ1 much more massive than H inside the valley for values larger than
the waterfall critical point ϕ2,c = π/(2c), but it becomes strongly tachyonic −m2

ϕ1
/H2 ≫ 1 after

the inflationary trajectory crosses this point.

From the dominance of vacuum energy, we have as an immediate benefit the limited field range ∆ϕ2 ≲

MP , which implies that harmonic hybrid inflation works with sub-Planckian axion decay constants
fa ≲ MP . This renders our realization of hybrid inflation with axions consistent with bounds on the
axion decay constant from controlled string compactifications [21, 22] as well as from arguments about
weak gravity (WGC) [13].

Between the de Sitter saddle point and the waterfall critical point, the waterfall field is stabilized at
ϕ1 = π/c1 and, after integrating out ϕ1, the scalar potential takes the effective form

Vinf(ϕ2) = V0 (1− α cos(c ϕ2)) . (3.34)

We evaluate the viability of our model by computing the slow-roll parameters and the inflationary
observables. In the slow-roll and single-field regime, the slow-roll parameters can be approximated in
terms of derivatives of the scalar potential as in (3.9). In particular, we have that

ε ≈ 1
2

(
V ′

inf
Vinf

)2
= 1

2α
2c2 sin2 (c ϕ2) +O(α4) . (3.35)

The number ∆N of inflationary e-folds away from the waterfall critical point ϕ2,c can be derived
from (3.15), where ϕend ≡ ϕ2,c. By performing the integral and inverting the resulting expression,
we find a relation between the field ϕ2 and the number of e-folds

ϕ2(∆N) = 2
c

arctan
(
eαc

2∆N
)
, (3.36)

discarding higher order corrections in α. Here we assume we inflate from a point close to the saddle
point ϕ2 = π/c towards the waterfall critical point ϕ2,c = π/2c at ∆N = 0, but equivalently inflation
could start close to any of the other saddle points ϕ2 = (π + 2πn)/c towards the transition points
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Figure 3.6: Analytical predictions for ns and r varying log10(γ) ∈ [−3,−1.5] and log10(α) ∈ [−3,−2]
(purple-to-white contour) together with the 1σ and 2σ confidence contours found by Planck [122] (grey
and mint contours, respectively).

ϕ2,c = (2πn± π/2)/c. The above solution allows us to write the first slow-roll parameter as a function
of the e-folds

ε(∆N) = 2αγ e2γ∆N

(1 + e2γ∆N )2 , (3.37)

where we define γ ≡ αc2. The second slow-roll parameter is then given by

η(∆N) ≡ 1
2ε

∂ε

∂∆N = γ
1− e2γ∆N

1 + e2γ∆N . (3.38)

Notice the hierarchy |η| ≫ ε. Therefore, as usual in small field inflation, the tensor-to-scalar ratio
is highly suppressed. The spectral tilt is to a high level of precision determined by the value of γ
only (given some value of ∆N). If we take ∆N between 50 and 60 e-folds, the 1σ constraint that
ns ∈ [0.9627, 0.9703] [122] translates into γ ∈ [0.0185, 0.0229]. In other words, the parameters Λ, Λ̃
and c are degenerate, however, they need to be fine-tuned such that the resulting ns falls within the
observed window. In fig. 3.6 we show the analytical predictions for ns and r based on (3.37) and (3.38)
with ∆N = 60. As discussed before, α only moves the prediction for r up or down and ns is very
sensitive to the value of γ. As we will consider in a moment, we have to break the symmetry in ϕ1 in
order to avoid the formation of domain walls. Therefore, this toy model is not the end of the story, and
we will see that the predictions are also highly sensitive to the amount of symmetry breaking.

3.4.1 Effect of instanton-induced phases

Since axions arising in String Theory enjoy perturbative shift symmetries as non-linear realizations of the
underlying 10d p-form gauge symmetries, they acquire a scalar potential via non-perturbative instanton
effects (unless monodromy-generating sources of stress-energy such as branes or fluxes are present as
well). These instanton effects, which generate the scales Λ4

i of the periodic axion potentials they induce,
possess an ab initio arbitrary complex phase. In string theory realizations, the 1-loop determinants of
such instanton contributions entering the scales Λ4

i become functions of the moduli VEVs. Since we can
tune the VEVs by the choice of quantized background fluxes of p-form field strengths, the value of the
phases of the instanton effects is adjustable. Hence, in principle all the three cosines in (3.32) can have
a non-vanishing but finite adjustable phase, which was omitted in the discussion so far. However, two
phases out of three can be reabsorbed thanks to the shift freedom given by the presence of two axions.
In the following, we evaluate how much the inclusion of the remaining phase will change the model and
how it will affect the inflationary predictions.
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Figure 3.7: Predictions for ns and r after the inclusion of the instanton-induced phase ϑ. We evaluated
which values of the parameters α, ϕ2 (meaning its starting point on the cosine) and especially ϑ fit best
the experimental data. We compare the Planck contours with the numerical predictions for ns and r
keeping c = 1 fixed while varying log10(α) ∈ [−2.0,−1.5] and ϑ ∈ [−1/15, 1/15]. Notice that here we
allow the phase to take both positive and negative values. The purple contour is the region where the
analytical approximation for small ϑ holds. This will be useful to compare the modifications from the
perfect hybrid due to ϑ with the ones following from the Z2-symmetry breaking terms (see 3.4.2).

Without loss of generality, we choose to keep the phase ϑ in the single-axion cosine term. Again,
during the slow-roll evolution of ϕ2 we can integrate out ϕ1. This leaves us with

V
(ϑ)

inf (ϕ2) = V0 − Λ̃4 cos (c2ϕ2 + ϑ) + Λ4 cos (c2ϕ2) , (3.39)

and the equations determining the slow-roll parameters change accordingly. In fact, the first slow-roll
parameter becomes to leading order in α and ϑ

ε(ϑ) ≃ c2
2
2

(
α sin(c2ϕ2) + 1

2ϑ cos(c2ϕ2)
)2

+O(α2ϑ, α2ϑ2) . (3.40)

We require ϑ ≲ 0.1 in order to have vacuum energy domination during the slow-roll regime. Otherwise,
for bigger values of ϑ the hybrid mechanism is spoiled, because the inflaton-dependent part of the scalar
potential controls the inflaton dynamics, which in turn drives the model into the large-field regime. The
results of the analysis for the inclusion of the phase are displayed in fig. 3.7. There is a whole set of
(α, ϑ, ϕ2) combinations that can actually give good hybrid inflation lasting (at least) 60 e-folds. Below
a certain value of α, the value of the phase giving the required ns becomes basically fixed. Thus, one
could balance the values of α and ϑ in order to have the least amount of fine-tuning possible. 7

3.4.2 Z2 symmetry breaking effects

At the end of inflation, the hybrid valley false vacuum has to decay into the true vacuum. The onset
of this transition is controlled by the inflaton field, which allows for tachyonic growth of the waterfall
field as the inflaton crosses the critical point. Tachyonic preheating proceeds similar to a second order
phase transition, via a spinodal decomposition. The spinodal time and the average size of the domains
have been computed originally in [168, 169] and have been refined beyond the quench approximation
in [170–172]. However, in order to avoid the domain wall problem [173] either the tachyonic instability
should be avoided or the vacuum degeneracy needs to be broken such that asymmetry generates a

7We wish to point out in passing, that it may be possible to get the instanton phases discussed in this section to vanish
dynamically in appropriately arranged field theory realizations involving bi- or tri-fundamental matter representations
coupled to three non-Abelian gauge groups.
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pressure pushing the true vacuum domains to grow with a rate that depends on the surface tension of
the domain walls. For the latter option, we need ∆V ≫ V0π

4/c2
1 such that domain walls will not dominate

the energy budget in the universe [174]. In order to break the vacuum degeneracy, we necessarily need
to break the Z2 symmetry around the inflationary trajectory. Our model naturally allows for such a
breaking by assuming different axion decay constants multiplying ϕ1. In what follows, we investigate
this simple generalization. Additionally, such a setup generically removes the tachyonic instability and
hence no domain walls are formed in the first place. This drastically changes the physics of preheating, as
it does not proceed via the spinodal instability. Instead, a period of parametric resonance [175–177] will
most likely follow and the post-inflation phenomenology may be enriched by the formation of two-field
oscillons [167].

As discussed above, the two vacua providing the possible endpoints of the waterfall regime have a
Z2 symmetry in the ϕ1 direction. This leads to the formation of domain walls after inflation. Therefore,
we should break the symmetry to avoid such a scenario incompatible with our universe. The simplest
way to do so is to generalize the potential (3.32) to the form

V = Λ4
1[1− cos

(
c+

1 ϕ1 + c+
2 ϕ2

)
] + Λ4

2[1− cos
(
c−

1 ϕ1 − c−
2 ϕ2

)
] + Λ4

3[1− cos (c2ϕ2)] . (3.41)

Choosing c+
1 ̸= c−

1 will generically break the Z2 vacuum degeneracy, but it also removes the tachyonic
instability at the end of inflation and no domain walls are formed. Moreover, preheating does not
proceed via tachyonic growth (assuming that c+

1 −c
−
1 is not exponentially close to zero, which we expect

to be the case in the possible string embeddings discussed below). To see why the tachyonic instability
characteristic for tachyonic preheating disappears, we notice that the inflationary trajectory proceeds
along a straight line ϕ1 = π/c1 only in the presence of the Z2 symmetry. When the Z2 symmetry is
broken, the waterfall field ϕ1 gets stabilized at a value depending on the expectation value of the inflaton
field ϕ2. This is illustrated with the red solid line in fig. 3.8. More precisely, in presence of the unbroken
Z2 symmetry, the signature of the Hessian changes along the inflationary slow-roll trajectory ϕ1 = π/c1

from (−,+) to (+,−) at a single point (ϕ1 = π/c1, ϕ2 = ϕ2,c). Once the Z2 symmetry is broken, we see
in fig. 3.8 that the path given by ∂ϕ1V = 0 approximating the slow-roll part of the inflaton trajectory
enters a region with Hessian of signature (+,+) while turning away and missing the former critical
point before re-entering a region with signature (−,+). From this, it is self-evident that the point-like
transition from (+,−) to (−,+) signature on a classical trajectory with ϕ1 = const. characteristic of
the tachyonic preheating instability is simply gone once the Z2 symmetry is broken. This means that
ϕ1 never develops the tachyonic preheating instability, except in the presence of a Z2 symmetry.

We will look at a minimal deformation of this kind, choosing a symmetric deformation c±
1 = c1(1±δ)

while keeping c±
2 = c, Λ4

1 = Λ4
2 = Λ4/2 and Λ4

3 = Λ̃4, which should be close but slightly larger than Λ4.
Note that the effect of symmetry breaking becomes larger if we move further away from ϕ1 = 0. At the
same time, a set of global minima are still located at ϕ1 = 0 and ϕ2 = 2πn/c . From here onwards, we
restrict ourselves to inflation in the neighbourhoods of these minima.

We shall now quickly summarize the effects of this Z2-symmetry breaking before providing the
details. Breaking the degeneracy in the minimal fashion described above has consequences. First, the
maximum of the potential in ϕ2 in the hybrid valley around ϕ1 = π/c1 is shifted from its original
position at ϕmax2 (δ = 0) = π/c. Next, the symmetry breaking implies that the waterfall regime, involving
tachyonic preheating as well, in the strict sense is lost and replaced with a waterfall-like rapid exit from
inflation once ϕ2 < ϕ2,c. Furthermore, the loss of degeneracy implies that there are now two inequivalent
inflationary regimes: one starting from ϕ2 < ϕmax2 towards ϕ2 = 0 and another starting at ϕ2 > ϕmax2
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Figure 3.8: Contour plot of the determinant of the Hessian of the deformed potential given in (3.41)
with c±

1 = c1(1 ± δ) and c±
2 = c. We choose the same values of the parameters as in fig. 3.10, namely

δ = 0.02, α = 0.01, γ = 0.011 and c1 = 10. The red solid curve shows where the gradient of the potential
in the ϕ1 direction is vanishing, and provides initially a good proxy of the inflationary trajectory. The
black cross, on the other hand, shows the vanishing of the gradient in case the Z2 symmetry would be
unbroken, that is, for δ = 0. The highlighted central contour specifies where the determinant of the
Hessian changes sign. This contour shrinks to zero size as δ → 0, while the rest of the contours remain
similar.

towards ϕ2 = 2π/c in the neighbouring vacuum region. In addition, with increasing δ the field trajectory
will become more and more curved in its entirety due to the increasingly broken Z2 symmetry of the
inflationary valley, which will cause sizeable changes in ns and r. As we will see in fig. 3.9b, using the
full numerical analysis, maintaining compatibility with observations forces us to keep δ ≪ 1 to maintain
a near-hybrid inflation regime.

First, we study analytically a small breaking of the Z2 symmetry. We start by expanding the potential
to linear order in c1ϕ1δ. The result is

V (δ) = V (0) + c1ϕ1δ
Λ4

2 (sin+− sin−) +O
(
(c1ϕ1δ)2) . (3.42)

Here, V (0) denotes the hybrid potential of (3.32) and we introduced the shorthand notation sin± ≡
sin (c1ϕ1 ± cϕ2). The higher-order terms in the potential are the ones arising from the series expansion
at least quadratic in c1ϕ1δ, the even terms coming with factors of cos±. Hence, we see that choosing
δ ̸= 0 breaks the Z2 vacuum degeneracy between the two vacua left and right of the inflationary valley
with an amount of ∆V ∼ (πδ)2Λ4, allowing us to avoid the domain wall problem. Repeating the same
steps as for the phase ϑ, the effective potential for ϕ2 in the c1ϕ1 = ±π+O(δ) valley is, to leading order
in δ, given by

V
(δ)

inf = V0
(
1− α cos(cϕ2)∓ αδ̃ sin(cϕ2)

)
+O(π2δ2) , (3.43)

where we defined δ̃ ≡ Λ4

Λ4+Λ̃4
πδ
α = 1−α

2
πδ
α . Note that the phenomenology will be close to our hybrid

inflationary toy model only if |πδ| ≪ α. For larger α ≲ |πδ| ≪ 1 the inflationary trajectory might still
be of the hybrid kind, in the sense that inflation happens along a straight line c1ϕ1 ≈ ±π and ends
almost instantaneously at a critical value of ϕ2. However, the potential is twisted and the saddle points
are displaced along the ϕ2 direction. This squeezes or stretches the effective potential and is the reason
the phenomenology is substantially modified. We therefore trust the following analytical predictions only
in the regime |δ̃| ≪ 1 and we will study larger deformations numerically. From the effective potential
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we compute the slow-roll parameter

ε(δ) ≈ 1
2c

2α2 (sin(cϕ2)∓ δ̃ cos(cϕ2)
)2
, (3.44)

where we neglected corrections of order O(α, δ̃2) inside the round brackets. Moreover, using the expres-
sion for V (δ) we find that ϕ1 becomes tachyonic at cϕ(δ)

2,c = 2πn± arctan
( 1
πδ

)
≈ cϕ2,c, i.e. the waterfall

transition point is approximately unchanged. Next, by integrating over the slow-roll parameter, we
express ϕ2 as a function of the e-folds. Two branches of solutions emerge

ϕ
(δ)
2 (∆N) =

2 arctan
(
eγ∆N)

c
± δ̃

c

(
1− eγ∆N)2

1 + e2γ∆N , (3.45)

where as before we defined γ ≡ αc2 and we discarded corrections that are of higher order in δ̃. Moreover,
we assume that we start inflation in the neighbourhood of the saddle point close to cϕ2 = π and move
towards the critical point close to cϕ2 = π/2. The alternative trajectories starting close to cϕ2 = −π
moving towards cϕ2 = −π/2 have equivalent phenomenology with these two solutions, but with the ±
sign swapped. In light of the numerical analysis, we therefore cover all possible outcomes by solving for
the inflationary solution that starts close to cϕ2 = c1ϕ1 = π where δ takes both positive and negative
values. Therefore, we take ± to be + from here onwards. The first slow-roll parameter is then given by

ε(δ)(∆N) = 2αγ
e2γ∆N (1− δ̃ + e2γ∆N (1 + δ̃)

)2

(1 + e2γ∆N )4 . (3.46)

Moreover, the second slow-roll parameter is, to leading order in δ̃, given by

η(δ)(∆N) = γ
1− e2γ∆N

1 + e2γ∆N + 4γδ̃ e2γ∆N

(1 + e2γ∆N )2 , (3.47)

and, as before, provides the dominant contribution to ns. In fig. 3.9a we plot the analytical predictions.
Within the regime of validity of the analytical approximation, the predictions are very sensitive to the
value of γ, and only mildly dependent on δ̃.

Next, we study larger deformations numerically. In order to set appropriate initial conditions we have
to identify the location of the saddle point,8 which we numerically search for in the neighbourhood of
c1ϕ1 = cϕ2 = π, given some δ. Even though the potential might get twisted substantially, it turns out
we do not need much fine-tuning of the initial conditions. In fig. 3.10 we show an example of a deformed
hybrid potential.

We solve for the background solution until the end of inflation using the transport code in [178] and
evaluate the Hubble slow-roll parameters at 60 e-folds before the end of inflation to estimate the tensor-
to-scalar ratio and the spectral tilt. The results are shown in fig. 3.9b. We confirm that the analytical
results capture the predictions well if δ̃ ≪ 1, and that in this regime the inflationary observables
are only mildly dependent on δ̃. However, for larger deformations both δ̃ and γ become important to
determine the observables. On the other hand, changing α only shifts the value of r up and down, and
therefore the degeneracy between c and α remains within the current CMB limits. However, since we
require c ≥ 1 the observational constraints demand α ≲ 0.02 which translates into the upper bound
r ≲ 0.01. Interestingly, even though we are on the boundary of small field and large field inflation, the
tensor-to-scalar ratio approaches r ∼ 0.01 already for deformations δ = O(0.01). If in addition we only

8For a discussion of finding critical points in a more general scalar potential that is a sum of cosines (and/or sines),
but where the coefficients appearing in front of the fields are integers, see appendix A of [4]
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(a) (b)

Figure 3.9: Left: Same as fig. 3.6 but now we compare the Planck contours with the analytical predictions
for n(δ)

s , r(δ) and log10(γ) ∈ [−2.0,−1.5], where we vary log10(|δ̃|) ∈ [−2.0,−1.0] while fixing α = 0.01.
The region δ̃ > 0 corresponds to inflationary trajectories with wide initial condition range of the type
shown in fig. 3.10 ending up in the false minimum at ϕ1 = 2π/c1, ϕ2 = −O(δ̃). The complement δ̃ < 0
corresponds to trajectories which in fig. 3.10 start with ϕ2-values beyond the saddle point with little
allowed initial condition space, and end up in the true minimum at ϕ1 = ϕ2 = 0.
Right: We compare the Planck contours with the numerical predictions for ns and r computed through
the Hubble slow-roll parameters, where we vary log10(|δ̃|) ∈ [−2.0, 1.0] and log10(γ) ∈ [−2.0,−1.5], while
fixing α = 0.01. The black dotted lines correspond to fixed γ to {0.013, 0.017, 0.021, 0.025}, from right
to left, respectively. The region δ̃ > 0 corresponds to inflationary trajectories with wide initial condition
range of the type shown in fig. 3.10 ending up in the false minimum at ϕ1 = 2π/c1, ϕ2 = −O(δ̃). The
complement δ̃ < 0 corresponds to trajectories which in fig. 3.10 start with ϕ2-values beyond the saddle
point with little allowed initial condition space, and end up in the true minimum at ϕ1 = ϕ2 = 0.

Figure 3.10: We illustrate the amount of fine-tuning of initial conditions in a deformed hybrid potential
with δ = 0.02, α = 0.01, γ = 0.011 and c1 = 10. In blue, the patch of the potential around the saddle
point (black dot) from which at least 60 e-folds of inflation will originate is shown. Moreover, in green
two example trajectories of respectively 50 and 60 e-folds are shown. They are separated by 5− 10% of
the total field range of ϕ2 between the saddle point and the minimum of the potential.

require minimal tuning on the parameters the tensor-to-scalar ratio becomes bounded from below as
well, r ≳ 10−4. Maintaining compatibility with observations and at the same time c ≥ 1 forces us to
keep δ = 2α

(1−α)π δ̃ ≲ 3 × 2α
(1−α)π , maintaining a near-hybrid inflation regime. This need to tune δ small

represents a requirement for an embedding of the inflationary mechanism into string theory, as there
the quantities c±

1 and c±
2 will be determined by discrete data of the string compactification such as

intersection numbers and p-form flux quanta.
Let us now compare the results for the inclusions of the phases ϑ and δ̃. By looking at eq.s (3.40)
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and (3.44) we see that the phase ϑ coming from the instanton effects generating the potential and the
asymmetry δ̃ which is needed to break the Z2 vacuum degeneracy produce a similar correction to the
first slow-roll parameter. Thus, by comparing the expressions for ε(ϑ) and ε(δ), we can extract a relation
between these phases, which reads

ϑ = − 2α
1 + α

δ̃ . (3.48)

The above relation was derived analytically and it holds only for ϑ ≲ α. This means that in this regime
ϑ and δ̃ are degenerate. The predictions for the tensor-to-scalar ratio and the spectral tilt in the presence
of ϑ in this regime (fig. 3.7 the small, central purple contour) and of δ̃ (fig. 3.9a) are the same once
the values of ϑ and δ̃ are related by the factor of eq. (3.48) (notice also that in fig. 3.7 α is varied and
c = 1 is fixed while in 3.9a α is fixed while γ ≡ αc2 is varied). For ϑ > α we could not perform the
same analytical comparison, thus we cannot prove the degeneracy for all values of our parameters. The
complete contours were obtained with the slow-roll approximation in fig. 3.7 whereas for fig. 3.9b we
solved the full equations of motion.

3.4.3 Comments about eternal inflation and vacuum decay

The inflationary valley of our harmonic hybrid model by necessity contains an inflationary saddle point
with ε = 0, |η| ≪ 1. We can now apply a comparison between the variance ⟨δϕ2⟩q = H2/(4π2) of
quantum fluctuations of the light inflaton scalar in near-dS space-time and the classical slow-rolling
speed ϕ̇ = −V ′/(3H) to argue for the presence of eternal inflation [179–181] driven by quantum diffusion
near the inflationary saddle point in our model. Arguments based on this comparison between quantum
diffusion and classical rolling (as reviewed e.g. in [182,183]) show that the relevant criterion ε ≲ V/(12π2),
|η| < 1 when applied to exact hybrid inflation (δ = 0), produces a region satisfying it around the saddle
point, which is several hundred times wider than the average quantum fluctuation size H/(2π). For the
exact hybrid limit δ = 0, our models thus supports slow-roll eternal inflation.

However, avoidance of domain walls dictates δ ̸= 0 and the scenarios for string theory realization
of harmonic hybrid inflation we later discuss indicate that |δ| ≳ 0.01. For such values of δ we observe
that the region potentially supporting eternal inflation around the inflationary saddle point shrinks
drastically. Its width reduces to a few times H/(2π), rendering the existence of robust eternal inflation
for these Z2-symmetry broken models doubtful. A much more detailed analysis is clearly necessary. If
the outcome were the continued existence of this tension between model viability in the String Theory
context and ability to support eternal inflation, this would suggest two possible interpretations: we may
either use it as evidence against slow-roll eternal inflation, or conversely, as an opportunity to predict
the most likely size of δ once a well-defined measure for eternal inflation is found.

In presence of the Z2-symmetry breaking, our setup contains a whole set of non-degenerate local
minima with vacuum energy splitting of order V0δ

2, whose vacuum energy increases with increasing
ϕ1-distance from the set of global minima at ϕ1 = 0, ϕ2 = 2πn/c. Between the local minima of this mini-
landscape there will be tunnelling instanton transitions described by Coleman and de Luccia (CdL) [184].

We next recall that the inflationary trajectories starting from wide initial conditions always end
up in one of the two false minima at ϕ1 = 2π/c1 , ϕ2 ≃ 0 or ϕ2 ≃ 2π/c. As we expect these slow-
roll trajectories due to their large region of initial condition space to dominate the inflationary slow-
roll dynamics, we need to tune the vacuum energy of the false minima at (ϕ1 = 2π/c1, ϕ2 ≃ 0 or
ϕ2 ≃ 2π/c) to match the current-day vacuum energy ∼ 10−120M4

P . The adjacent true minima (ϕ1 = 0,
ϕ2 = 2πn/c) then are comparatively deep AdS vacua with vacuum energy of order −V0δ

2. Applying
the CdL tunnelling description to these dS-AdS vacuum neighbours, we find that the so-called bounce
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action of the CdL instanton scales as B ∼ 1/Vcurrent c.c. ∼ 10120. Hence, tunnelling out of the false
post-inflationary minimum into the nearest global AdS minimum is highly suppressed, with a life-time
τ = Γ−1 ∼ eB ∼ 1010120 similar to the dS Poincaré recurrence time.

3.4.4 Towards a String Theory embedding

Consider a type IIB string theory compactified to 4d on an orientifolded CY three-fold. We assume
a choice of 3-form fluxes such that they stabilize the complex structure moduli at a high mass scale
while generating an effectively constant superpotential W0 [47]. As we reviewed in Section 2.1, in the
4d N = 1 low-energy theory, O3/O7 planes project the Kähler moduli space in even and odd subspaces
with dimensions h1,1

+ and h1,1
− respectively. This forces a rearrangement of the scalar degrees of freedom

into h1,1
− axion multiplets coming from the 2-forms B2 and C2, and h1,1

+ complexified Kähler moduli.
When considering only the C4 axions θi, the expression for Ti in (2.28) simplifies to

Ti = 1
2kijkt

jtk + i

∫
Di

C4 ≡ τi + iθi . (3.49)

At the classical level and in the absence of branes, each θi enjoys a continuous shift symmetry. However,
the presence of the O3/O7 orientifold planes induces D3- and D7-brane charges. In order to cancel their
tadpole, we must include D3- and D7- branes in the compactification setup. Such branes will break
the continuous shift symmetry of θi into a discrete one by inducing non-perturbative corrections to the
superpotential. Harmonic hybrid inflation can then be obtained if we allow stacks of multiply-wrapped
D7 branes on some of the 4-cycles. We will now discuss one mechanism to get the harmonic hybrid
potential (3.32) from an LVS embedding.

We start by assuming the volume V of a CY three-fold to be large compared to ls and to have the
following Swiss-cheese like shape

V ∼ ατ3/2
b − βτ3/2

s − γτ3/2
s1
− δτ3/2

s2
, (3.50)

where α, β, γ, δ are constants depending on the geometry of the manifold. For an explicit example of a
CY with such volume, see e.g. [185]. Employing an LVS-type string compactification should allow us to
use moduli stabilisation to obtain a mass hierarchy among the axions. This is necessary to reproduce the
dynamics of hybrid inflation models in general. However, we consider two additional terms compared
to the classic LVS Swiss-cheese volume because θb, the axionic partner of τb, is almost massless as it
receives scalar potential contributions from Tb-dependent non-perturbative corrections which are highly
suppressed by the compactification volume, i.e. mθb ∼ exp(−V2/3) ∼ 0 [186]. Moreover, when one
stabilizes τs, it can be shown that its axion θs gets stabilized as well, and in such a way that they gain
approximately the same mass mθs ∼ mτs ∼ m3/2. Therefore, θs is a rather heavy particle and it is
frozen during inflation. We then infer that these two axions are not good candidates to reproduce our
harmonic hybrid inflation. Thus, we should add two more blow-up moduli and arrange for their axions
θs1 , θs2 to be ultralight but more massive than the axion corresponding to the base. The axionic mass
hierarchy obtained from compactification should be mθb ≪ mθs2

< mθs1
≪ mθs .

Then, we allow the tree-level superpotential W0 to receive non-perturbative corrections Wnp of the
type

W = W0 +Ase
−asTs +As2e

−as2Ts2 +As1e
−as1(n1

s1Ts1 +n2
s1Ts2) +As2e

−as2(n1
s2Ts1 +n2

s2Ts2) . (3.51)
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These corrections can be explained as follows. Consider 4 stacks of D7-branes. One stack wraps the
4-cycle associated to Kähler modulus Ts, and another one wraps the 4-cycle associated to Ts2 . These
two stacks give rise to the usual non-perturbative corrections to the superpotential from gaugino con-
densation (i.e. the second line of eq. (3.51)). Then the other two stacks wrap two different cycles which
are representative of two different divisor classes, each one being a linear combination of the divisor
classes of Ts1 and Ts2 . Finally, we allow for the D7-branes of these last stacks to wrap the cycle multiple
times [105]. This information is encoded in the winding numbers njsi and their inclusion modifies the
superpotential corrections as in (3.51).

Here we will anticipate the crucial point of this type of embedding: in order to recover the effective
potential (3.32), we will need to require n2

s2
< 0. From now on, the negative sign will be extracted. We

might worry about this linear combination with negative coefficients, for the following reason: in order
for the non-perturbative corrections to the superpotential to arise, the stacks of branes must wrap rigid
and ample divisors [53,187]. It is natural to ask if n2

s2
< 0 spoils the ampleness condition. We argue that

this is not always the case. In fact, the divisors corresponding to the Kähler moduli in the exponents
could be themselves linear combinations of toric divisors, and not just toric divisors. Therefore, we may
be able to change base and re-write the exponents of eq. (3.51) in a way in which only toric divisors
appear, and with positive coefficients. If this is the case, we may be able to satisfy the requirements of
rigidity and ampleness. A concrete example of this can be found in [188].

Moduli stabilisation with the LVS mechanism forces

∂TsWnp ∼
W0

V
. (3.52)

To achieve scale separation between the axions θs1 and θs2 with respect to θs, we choose as1 , as2 , τs1

and τs2 such that
∂Ts1

Wnp ∼ ∂Ts2
Wnp ∼ ε

W0

V
, (3.53)

where ε < 1. If V−1 ≪ ε≪ 1, then axions get stabilised after the Kähler moduli. The dominant terms
for the θs1 , θs2 axions are then the ones of order O

(
εV−3). It can be shown that these are given by the

Tsi T̄sj (+ h.c.), i, j = 1, 2, terms in Vnp2 , namely

Vnp2 (θs1 , θs2) = 1
V2

[
Kij̄

0 W0∂TsiWnp∂T̄sj
K0 + h.c.

]
. (3.54)

Plugging in this equation the derivatives of the superpotential with respect to s1,2 and using the fact
that Kij̄

0 K
0
i = − 1

4τj , the potential for the θs1 , θs2 axions can be written as

Vnp2 (θs1 , θs2) = 2W0

V2 τs2as2As2e
−as2τs2 cos (as2θs2)

+ 2W0

V2 as1As1

(
n1
s1
τs1 + n2

s1
τs2

)
e−as1(n1

s1τs1 +n2
s1τs2) cos

[
as1

(
n1
s1
θs1 + n2

s1
θs2

)]
+ 2W0

V2 as2As2

(
n1
s2
τs1 − n2

s2
τs2

)
e−as2(n1

s2τs1 −n2
s2τs2) cos

[
as2

(
n1
s2
θs1 − n2

s2
θs2

)]
.

(3.55)

Our harmonic hybrid inflation potential of eq. (3.32) is recovered if we take θsi = ϕi/fsi as explained
below, by setting

Λ̃4 = 2W0

V2 as2τs2As2e
−as2τs2 , (3.56)

and by requiring the prefactors of the two mixed cosines to be equal.
Let us now discuss how to incorporate the Z2-symmetry breaking. For this, we need to keep in
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mind that we need stacks of at least two coincident D7-branes for each instanton effect to generate a
superpotential and in turn the scalar potential above. Hence, we have that asi = 2π/Nsi with Nsi ≥ 2
in the cosine terms of the scalar potential. The effective coefficients of the two axion fields in the two
cosine terms in the scalar potential thus read

c+
1 ≡

2π
fs1

n1
s1

Ns1

, c−
1 ≡

2π
fs1

n1
s2

Ns2

,

c+
2 ≡

2π
fs2

n2
s1

Ns1

, c−
2 ≡

2π
fs2

n2
s2

Ns2

,

(3.57)

where for simplicity we assume that the string compactification has produced diagonal kinetic terms for
the two axions of the form Lkin = 1

2f
2
s1

(∂θs1)2+ 1
2f

2
s2

(∂θs2)2, implying canonically normalized axion fields
θsi = ϕi/fsi . Hence, maximizing the field range of the inflaton ϕ2 and thus r while keeping fs2 ≤ MP

sub-Planckian implies a relation between wrapping numbers and gauge group ranks: n2
si = Nsi/2π. The

simplest choice achieving this would be Ns1 = Ns2 = 6 which produces c±
2 ≃ 1.

Next, maintaining inflationary dynamics behaving nearly like exact hybrid inflation requires a mass
hierarchy betweenmϕ1 ≫ H ≫ mϕ2 and a small amount of Z2-symmetry breaking by setting c±

1 = c1±δc
with δc ≪ c1 as in Section 3.4.2. The first condition requires c±

1 ≳ 10, implying n1
si ≳ 10n2

si . Since the
n2
si are integers, their smallest difference δc = 1 implies a 10%-level Z2-symmetry breaking. A level of

1% Z2-breaking is possible for the same δc for a choice of Ns1 = Ns2 = 60 and wrapping numbers
n1
s1

= 100 + δc, n1
s2

= 100− δc and n1
si ≈ 10n2

si , for n2
si = 10, while maintaining the ϕ2 field range and

ϕ1-ϕ2 mass hierarchy.
We now discuss a second scenario for generating the potential (3.32). The C2-axions present in CY

orientifolds with h1,1
− > 0 can acquire a periodic scalar potential if the relevant stack of D7-branes present

in the compactification is magnetized [105]. Then, the gauge kinetic function is modified and depends
holomorphically also on the h1,1

− axion multiplets Ga. In this way, the continuous shift symmetry of
the odd axion ca is broken to a discrete one at the level of the superpotential W when we consider
also its non-perturbative corrections. The other axions θi can be stabilized at a higher scale than ca by
considering one additional unmagnetized stack wrapping another representative of the homology class.
With this setup, gaugino condensation on different D7-branes stacks gives rise to the non-perturbative
corrections of the form

Wnp =
∑
ζ

Aζe
−aζ(Tζ+ikζmnFmζ (Gn+ τ

2F
n
ζ )) . (3.58)

Here, kζmn are the triple intersection numbers between the divisors ζ = D1 . . . D3, and the odd 2-cycles
Σ(−)
m/n, m,n = 1, . . . , h1,1

− and ζ runs over the wrapped divisors D1, . . . , Dh1,1
+

, while FmDi are the fluxes
each stack on the divisor Di carries, but they also refer to only one (m) of the two C2-axions each time.

In this setup, we shall consider h1,1
− = 2 and h1,1

+ = 3. As before, consider the complex structure
moduli to be stabilized at a higher scale. Assume also that the τDi , θDi and bm are stabilized by a
combination of the LVS mechanism, string-loop corrections and/or higher order F-term contributions,
D-terms and by unmagnetized D-branes, and that the ba = 0 are at their minimum. Next, assume
that both odd cycles Σ(−)

1,2 intersect with the divisors corresponding to τD1 and τD2 while only Σ(−)
2

intersects with the divisor corresponding to τD3 . These are conditions on the non-vanishing intersection
numbers. They combine with the splitting of the intersection numbers indices kABC , k = 1 . . . 5 into
the even indices A = (ζ,m) and the restructuring of the 2-cycle volume moduli into 4-cycle N = 1
Kähler moduli containing 4-cycle volumes τζ and the 2-form axion chiral multiplets Gm. If the inversion
relation between the 2-cycles vA and the (τζ , Gm) can be performed explicitly, this may result in a
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volume schematically of the form

V ∼
(
τD1 + kD1

mnb
mbn

)3/2 −
(
τD2 + kD2

mnb
mbn

)3/2 −
(
τD3 + kD3

22 (b2)2
)3/2

, (3.59)

where m,n = 1, 2. In this case, the potential for the cm axions takes the form

V =
∑
ζ

Λ4
ζ

[
1− cos

(
aζk

ζ
mnF

m
ζ c

n
)]

= Λ4
D1

[
1− cos

((
aD1k

D1
11 F

1
D1

+ aD1k
D1
21 F

2
D1

)
c1 +

(
aD1k

D1
12 F

1
D1

+ aD1k
D1
22 F

2
D1

)
c2
)]

+ Λ4
D2

[
1− cos

((
aD2k

D2
11 F

1
D2

+ aD2k
D2
21 F

2
D2

)
c1 +

(
aD2k

D2
12 F

1
D2

+ aD2k
D2
22 F

2
D2

)
c2
)]

+ Λ4
D3

[
1− cos

(
aD3k

D3
22 F

2
D3
c2
)]

.

(3.60)

Next, the fact that the stacks of NDi D7-branes are wrapped on each divisor Di producing the
instanton contributions in W implies that aDi = 2π/NDi . The intersection numbers kζmn are fixed
numerical quantities for a given CY manifold, while the fluxes FmDi are integers. Finally, canonically
normalizing the axions cm will replace c1, c2 with ϕ1/f1, ϕ2/f2, where f1, f2 represent the axion decay
constants of the canonically normalized axion fields ϕ1, ϕ2. Hence, the resulting terms(

aD1k
D1
11 F

1
D1

+ aD1k
D1
21 F

2
D1

) ϕ1

f1
≡ c+

1 ϕ1(
aD2k

D2
11 F

1
D2

+ aD2k
D2
21 F

2
D2

) ϕ1

f1
≡ c−

1 ϕ1(
aD1k

D1
12 F

1
D1

+ aD1k
D1
22 F

2
D1

) ϕ2

f2
≡ c+

2 ϕ2(
aD2k

D2
12 F

1
D2

+ aD2k
D2
22 F

2
D2

) ϕ2

f2
≡ c−

2 ϕ2

(3.61)

will typically have c+
1 ̸= c−

1 and c+
2 ̸= c−

2 (unless particular combinations of the aD1,2 , the triple
intersection numbers, and the gauge flux quanta appearing in (3.61) are chosen in very particular
combinations). At most, they typically can be tuned by choosing the flux integers to be nearly the
same to some finite accuracy, leading automatically to the situation of Section 3.4.2. Hence, embedding
harmonic hybrid inflation into string theory along these lines generically avoids the hybrid inflation
domain wall problem. Thus, by tuning appropriately the triple intersection numbers and the flux quanta,
the potential in (3.41) can be recovered. The perks of using the C2-axions instead of C4-axions are that
one has more freedom in tuning parameters to recast the needed potential, and that interestingly they
are better for phenomenological purposes as well.

3.5 Winding inflation and de Sitter uplift

We would like now to go back to large field inflation and introduce a new and rather little studied
class of models which goes under the name of winding inflation [189]. This time, the inflationary sector
and dynamics arise from two complex structure moduli u, v of a CY orientifold compactification of
type IIB. At the leading order, all other h2,1(X)− 2 moduli are stabilized at their minimum by fluxes.
The same happens for the imaginary parts of u and v as well as the real part of a particular linear
combination of these two moduli, Re (Mu+Nv), with N ≫M (M and N being integer flux numbers).9

9We are using a different convention with respect to the one in [189], instead we are using the convention of [75]. One
can restore the convention of [189] setting M = 1, N → −N and z → 2πz.
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However, Re (u) is a flat direction in the superpotential, and it is lifted by the exponential terms coming
from the small instanton corrections. This term induces a cosine potential for this field, which then
displays the effective dynamics of a single slow-rolling axion-like field and realises natural inflation.
Therefore, the field Re (u) is moving along a winding trajectory, whose length is parameterized by the
linear combination Re (Mu+Nv).

Including also the non-perturbative corrections for the complex structure moduli sector, the Kähler
potential for the complex structure moduli is (cf. (2.19))

K = − ln
(
−4

3κijkIm (zi)Im (zj)Im (zk) + ic

− 2
∞∑

β1,β2

nβ1,β2

(
Li3
(
eiβiz

i
)

+ Li3
(
e−iβizi

))

−2
∞∑

β1,β2

nβ1,β2βiIm (zi)
(

Li2
(
eiβiz

i
)

+ Li2
(
e−iβizi

)) .

(3.62)

Here, κijk are the triple intersection numbers of X̃, while c = − i
4π ζ(3)χ(X), where χ(X) is the Euler

characteristic of the compactification manifold X and Lin(x) is the polylogarithm function. The quan-
tities nβ1,β2 in (3.62) are the genus 0 GV invariants, counting the number of holomorphic curves of
genus 0 in a given homology class [β] = [β1, β2] of X̃. Such quantities will play a prominent role in our
proposal. For reviews see [36,37].

A few comments about the above Kähler potential are in order. The 4d N = 1 Kähler potential
in (3.62) is obtained by a projection of the underlying 4d N = 2 Kähler potential to the orientifold-
even subsector. The underlying N = 2 Kähler potential itself is obtained in a large complex structure
(LCS) limit by mirror symmetry considering the instantonic quantum corrections. It is now important
to note that the truncated Kähler potential in (3.62) is tree-level with respect to genuine N = 1
quantum corrections. For a general N = 1 orientifold background, such N = 1 quantum corrections
will mix Kähler and complex structure moduli space. Indeed, the factorization is only preserved at
tree-level [41]. Once quantum corrections are taken into account, there are mixing terms that break
the factorization. These string loop corrections to the tree-level Kähler potential K0 are suppressed
inverse powers of the volume of the compactification space (see for instance [55,56,190,191]). Moreover,
they possess a particular structure and scaling property which leads to Kähler potential corrections
δK ∼ V−p appearing in the scalar potential as δV ∼ V−2−2p instead of the expected scaling ∼ V−2−p.
This automatic cancellation of the ∼ V−2−p-terms in the scalar potential is called ‘extended no-scale’.
Next, the string loop corrections do depend in their coefficients on the complex structure moduli.
These functions become large for parametrically large values of the moduli. However, the full loop
correction coefficients are also suppressed by the usual 1/(16π2) loop factors. Hence, as long as the
dynamics of winding inflation is realized using stabilized values at moderately LCS (corresponding to
⟨Im (zi)⟩ ≳ O(1)), then the extended no-scale structure of the string loop corrections ensures that,
already for quite moderate values of the stabilized volume V, the induced scalar potential terms are
subdominant to any parts of V induced from fluxes, non-perturbative corrections and/or α′-corrections
used for moduli stabilization and the winding complex structure axion dynamics. Hence, provided these
conditions are satisfied, we can neglect the string loop corrections which would spoil the factorization
of the moduli space.
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We can now introduce the usual GVW superpotential (2.32), which we write as

W = (NF − SNH)T · Σ ·Π , (3.63)

where NF , NH ∈ Z are flux integers coming from the integration of F3 and H3 on a symplectic integral
base of the 3-cycles of the orientifold CY, τ is the 10d axio-dilaton and

Σ =
(

0 −1
1 0

)
. (3.64)

Π is the period vector with entries (2.17)

Π =



1
zi

1
2κijkz

jzk + 1
2aijz

j + bi −
∞∑

β1,β2

nβ1,β2βiLi2
(
eiβiz

i
)

− 1
3!κijkz

izjzk + biz
i + c

2 + 2i
∞∑

β1,β2

nβ1,β2Li3
(
eiβiz

i
)
−

∞∑
β1,β2

nβ1,β2βiz
iLi2

(
eiβiz

i
)


. (3.65)

Here aij are related to the triple intersection numbers, while bi are related to the intersections of the
second Chern class and the divisors of X̃.

The model proposed in [189] achieves a long winding trajectory by working in a regime of LCS for
some complex structure moduli. By arranging the desired ratios of complex structure moduli VEVs
via tuning 3-form fluxes, it is possible to generate controlled left-over flat quasi-axion directions in
complex structure moduli space near the LCS point from the instanton contributions encoded by the
GV invariants. Moreover, [189] shows that properly choosing the fluxes can generate flat axion valleys
with a large path length on a small fundamental domain, which allows generating inflationary dynamics
once the long flat valley is lifted by the GV-controlled instanton effects. Hence, in order for the winding
trajectory to exist, the authors require that the F-term conditions stabilize u and v such that

e−Im (u) ≪ e−Im (v) ≪ 1 . (3.66)

As another assumption, they choose appropriate flux integers so that u and v appear only linearly in
the superpotential and include only the instantonic contribution coming from v. The authors proceed
defining an expansion parameter ε = e−Im (v), and expand the Kähler potential and the superpotential
at leading order in ε. The point is that the F-term conditions stabilize in general all complex structure
moduli and the axio-dilaton, but the presence of Re (Mu+Nv) in the superpotential breaks one of the
two remaining shift symmetries of u and v. The shift symmetry parameterized by Re (u) (which does not
appear neither in the Kähler potential nor in the superpotential) is a flat direction before introducing
the corrections proportional to ε. Such corrections generate an oscillating potential, responsible for the
inflationary period. We argue that there is another interesting way to realize this hierarchy, by exploiting
some properties of the geometry of the extra dimensions. In the following, we develop this idea.

We consider a type IIB CY orientifold X with h2,1
− (X) = 2 complex structure moduli {zi} and

h1,1
+ Kähler moduli. X has a mirror X̃ with h̃1,1

+ = 2. We assume further that the stabilization of the
complex structure moduli, the axio-dilaton and the Kähler moduli proceed in hierarchical steps with
the following characteristics

• We supplement the CY orientifold compactification with quantized 3-form fluxes [47]. These gen-
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erate a scalar potential for the complex structure moduli and the axio-dilaton, stabilizing them
at mass scales typically somewhat below the KK scale. At this level, the Kähler moduli remain a
flat direction in a so-called 4d N = 1 no-scale compactification.

• Taking into account both perturbative and non-perturbative quantum corrections, we stabilize the
Kähler moduli at a lower mass scale in either a supersymmetric (KKLT [60]) or supersymmetry
breaking (LVS [61]) AdS vacuum. The stabilization of the Kähler moduli must proceed such, that
large enough values for the 4-cycle volumes (the individual Kähler moduli) as well as the total
CY volume are obtained to guarantee decoupling of the volume moduli stabilization from the flux
stabilization of the complex structure moduli.

• A final step of controlled further supersymmetry breaking and uplifting (a positive contribution
to vacuum energy) is needed to generate classical stable dS vacuum at the end (see e.g. [60]).

Our analysis will show that our model is expected to work in any string vacuum satisfying the above
generic characteristics are met.

3.5.1 Inflationary sector

To begin with, in our setup we assume that the F-term conditions stabilize z1 = u and z2 = v in such a
way that their imaginary parts are comparable, i.e. Im (u) ∼ Im (v). The hierarchy needed for a winding
trajectory is then realized by considering

n1,0e
−Im (u) ≪ n0,1e

−Im (v) ≪ 1 , (3.67)

provided that the corresponding GV invariants n0,1 and n1,0 satisfy n0,1 ≫ n1,0. In order for this
hierarchy to be not spoiled by higher instanton effects, we further need to require that

Im (u) ∼ Im (v)≫ ln n0,2

n0,1
, (3.68)

and
Im (u)≫ ln n1,1

n0,1
and Im (v)≫ ln n1,1

n1,0
. (3.69)

If Eqs. (3.68) and (3.69) are satisfied, all other contributions coming from higher order GV invariants
are suppressed by the exponential terms and we can disregard them. We now need to identify a small ε
parameter to get the inflationary potential via a perturbative expansion, namely we define

ε = n0,1e
−Im (v) . (3.70)

Eq. (3.70) gives another condition on the values that Im (v) (and Im (u)) can assume, since we want
ε≪ 1. Notice that requiring ε≪ 1 implies that Im (u) and Im (v) are stabilized at LCS. In general, this
condition alone is sufficient to satisfy all previous ones.

It is then possible to proceed as in the original model. At leading order Im (u), Im (v), the axio-dilaton
as well as the linear combination Re (Mu+Nv) are stabilized at the minimum. The only remaining flat
direction is aligned with Re (u). It is convenient to reparameterise the fields as

ϕ ≡ u and ψ ≡Mu+Nv , (3.71)

and we thus require N > M to have one of the winding directions which is longer than the other. In
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this way, the expansion parameter becomes

ε = n0,1e
−Im (v) = n0,1e

− Im (ψ)−MIm (ϕ)
N , (3.72)

and
n0,1e

iv = n0,1e
iψ−Mϕ

N = ε ei
Re (ψ)−MRe (ϕ)

N . (3.73)

By choosing appropriately the fluxes and introducing the term W0(τ) which includes all the fields already
stabilized at leading order by the F-terms, we can write the superpotential as

W = W0(τ) + f(τ)ψ + ε g0,1(τ, ψ, Imϕ) e−iMReϕ
N +O(ε2) , (3.74)

where g0,1(τ, ψ, Imϕ) is a function of all stabilized fields. We can repeat the same discussion for the
Kähler potential, obtaining

K = K0(τ, ψ, Im (ϕ)) + ε g̃0,1(τ, ψ, Im (ϕ)) e−iMReϕ
N +O(ε2) . (3.75)

The scalar potential for the complex structure moduli and the axio-dilaton is given by

V = eKKIJ̄DIWDJ̄W . (3.76)

At zeroth order in ε, DIW = 0 sets τ, ψ, Im (ϕ) to their minimum and we are left with a flat direction
parameterized by φ = Re (ϕ). This flat direction is lifted by the first order corrections in ε to K0 and
W0, which induce a shift in the VEVs of the other moduli. To see this, it is useful to write the structure
of the F-terms as

DIW = DI |0W0 +K0,I∆WGV + ∆KGV,IW0 ≡ DIW |0 + ∆DIW |GV . (3.77)

Since on the supersymmetric flux vacua we have DiW |0 = 0, this entails that the scalar potential along
φ is lifted by the GV corrections at O(ε2), because the non-vanishing potential at the supersymmetry
locus of all other fields is given by

Vinf ∼ eK0(K0)IJ̄∆DIW |GV ∆DJ̄W̄ |GV . (3.78)

To give an explicit expression for the effective inflationary axion-like potential in (3.78), in [189] the
authors make an orthogonal transformation on (3.76) to diagonalize the Kähler metric. Hence, the
potential, separated in real and imaginary parts of the moduli, takes the following form

V = eK0

6∑
α=1

w̃2
α , where w̃α = ãα + ε

[
b̃α cos

(
Mφ

N

)
+ c̃α sin

(
Mφ

N

)]
(3.79)

with ãα, b̃α and c̃α being functions of all moduli. From the classical F-terms, ãα = 0 for all values of
α. However, considering the O(ε) corrections coming from the GV invariants, the VEVs of ãα, b̃α and
c̃α get shifted. Since eq. (3.79) is proportional to w̃2

α and we are interested in a potential up to order
O(ε2), it is sufficient to consider order 1 corrections in ε only for ãα, while keeping at leading order b̃α
and c̃α. A further rotation and a change of basis in the fields cancel all six terms but one combination,
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which is the inflaton potential

Vinf (φ) ∼ eK0κ ε2
[
sin
(
M

N
φ+ θ

)]2
∼ eK0κ ε2

[
1− cos

(
2M
N
φ+ 2θ

)]
, (3.80)

where κ encodes numerical and τ -independent factors and θ is a phase.
We would like now to comment about the interplay among Kähler moduli stabilization and the

complex structure axion winding potential. Stabilizing the Kähler moduli e.g. as prescribed in the
KKLT or LVS scenarios leads to a mass hierarchy between the two class of moduli (which is more
pronounced for the LVS) as well as a hierarchy between the terms of the flux scalar potential fixing
the complex structure moduli at O

(
V−2) and the volume moduli scalar potential at O

(
|W0|V−2) for

KKLT, and O
(
V−3) for LVS (see the discussion in [61]). Next, the terms of the winding scalar potential

are controlled by the GV invariants and the VEVs of the complex structure moduli. However, these
VEVs were determined by the 3-form flux scalar potential and hence receive only suppressed corrections
from the stress-energy sources driving Kähler moduli stabilization by virtue of the above hierarchies.
We conclude that the Kähler moduli stabilizing part of the moduli scalar potential, which indeed does
in general spoil factorization of the moduli space, will not affect the axion winding potential at leading
order.

3.5.2 De Sitter uplift

Further investigations of this winding mechanisms showed that it is possible to use it also to construct
a de Sitter uplift [75]. By tuning the flux quanta, the authors were able to generate an oscillating
potential for the complex structure moduli, involving several cosines. This potential has a sequence
of minima of increasing positive vacuum energy contribution, which are responsible for the controlled
supersymmetry breaking. Choosing the parameters of this potential such that the difference between
two adjacent minima is smaller than the depth of the scalar potential produced by the stabilization of
the Kähler moduli, for instance, in LVS [61], it is possible to realize an uplift of either a KKLT-type or
LVS-type AdS vacuum to a de Sitter vacuum. Here, we will focus only on LVS-type vacua and differently
from [75], we will again exploit the relations among the GV invariants.

In order for the uplift to work, this time we have to require that

ε = n0,1e
−Im (v) ∼ n1,0e

−Im (u) , (3.81)

with a relative magnitude given by

α ∝ n1,0

n0,1
eIm (v)−Im (u) ∼ O(1) . (3.82)

By performing a similar analysis as in the previous case and spelled out in details in [3], we get a
potential with the form

VdS(φ) = eK0κ ε2
[
cos (φ+ θ1)− α cos

(
P

Q
φ+ θ2

)]2
. (3.83)

Here, κ encodes numerical and τ -independent factors, θ1,2 are phases and α is the O(1) parameter
introduced in (3.82).
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By tuning the phases to zero, the potential has a stationary point at

VdS(0) = eK0κ ε2(1− α)2 ,

V ′′
dS(0) = 2eK0κ ε2(1− α)

(
P 2

Q2α− 1
)
,

(3.84)

which is a minimum for Q2/P 2 < α < 1, provided that P/Q > 1. The LVS AdS minimum is given
in (2.44). We can consider the superposition of the LVS potential with (3.83) and tune the parameters
to get a controlled supersymmetry breaking and an uplift from AdS to Minkowski or dS vacuum as

V (V, φ) = VLVS(V) + gs
V2κ ε

2
[
cos (φ+ θ1)− α cos

(
P

Q
φ+ θ2

)]2
. (3.85)

Finally, it is possible to scan the flux landscape and to tune α to make an uplift from the AdS vacuum
to a dS one, imposing at the stationary point the relation for (3.83)

κ ε2(1− α)2 = O(1) |W0|2
√

ln (V)
V

. (3.86)

Let us stress that this method provides a new way to uplift AdS vacua, which potentially avoid the
problems affecting e.g. the most used anti-D-brane mechanism [71,192] (see however [193] for a partial
solution).

3.5.3 Combining inflation and uplift

Finally, we could check if it is possible to combine an inflationary sector with the uplift, both arising from
similar winding effects. The idea is to generalize the examples presented before by considering a case
with more complex structure moduli. To simplify the example, we choose a manifold X whose mirror is
a CY with h̃1,1 = 4. Let us call the complex structure moduli u1, v1, u2 and v2. At the minimum, their
imaginary parts, the axio-dilaton, Re (Mu1 +Nv1) and Re (Pu2 +Qv2) are stabilized, but Re (u1) and
Re (u2) are flat directions when we do not consider the exponential terms. By tuning the fluxes, we can
choose

ϕ1 = u1 , ψ1 = Mu1 +Nv1 (3.87)

and define the expansion parameter

ε1 = n0,1,0,0e
−Im (v1) = n0,1,0,0e

− Im (ψ1)−MIm (ϕ1)
N . (3.88)

Here, the hierarchy among the GV invariants must be

n1,0,0,0e
−Im (u1) ≪ n0,1,0,0e

−Im (v1) . (3.89)

Therefore, we can neglect the contributions coming from the instantonic corrections for u1. The idea is
once again to generate an inflationary potential provided that (3.88) is smaller than 1.

A similar discussion can be carried out for the other two moduli u2 and v2, by introducing

ϕ2 = u2 , ψ2 = Pu2 +Qv2 (3.90)
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and

ε2 = n0,0,1,0e
−Im (v2) = n0,0,1,0e

− Im (ψ2)−P Im (ϕ2)
Q ∼ n0,0,0,1e

−Im (u2) = n0,0,0,1e
−Im (ϕ2) . (3.91)

This time, the instanton contributions coming from both the moduli u2 and v2 are comparable and must
be both kept in the expansion. Such conditions can be obtained by tuning the expectation values and
fluxes, but it is also possible to construct such hierarchy and the condition in (3.91) with the invariants.

Another condition that must be guaranteed is the one controlling the order in which inflation and
uplift must happen. We ask that ε1 controls the dynamics of the inflationary regime at an energy smaller
than the one used for the uplift controlled by ε2. Crucially, we should require that ε1 ≪ ε2. Since we
also want the two regimes to happen (almost) independently, we can assume that the effects of the two
expansions are just a superposition of the single effects. The superpotential and the Kähler potential
after these reparametrizations are

W =W0(τ, ψ1, ψ2) + ε1 g0,1,0,0(τ, ψ1, Imϕ1)e−iMN Re (ϕ1)+

+ ε2

[
g0,0,1,0(τ, ψ2, Imϕ2)e−iPQRe (ϕ2) + h0,0,1,0(τ, Imϕ2)eiRe (ϕ2)

]
+O(ε2) ,

K =K0(τ, ψ1, ψ2, Imϕ1, Imϕ2) + ε1 g̃0,1,0,0(τ, ψ1, Imϕ1)e−iMN Re (ϕ1)+

+ ε2

[
g̃0,0,1,0(τ, ψ2, Imϕ2)e−iPQRe (ϕ2) + h̃0,0,1,0(τ, Imϕ2)eiRe (ϕ2)

]
+O(ε2) .

(3.92)

In the previous equations we are neglecting all terms of order ε2
1, ε2

2 and ε1ε2. Let us spend some
more words about this approximation. Suppose we want to realize the situation described in [75] and
reviewed in our set-up in [3]. The potential is found after having integrated out the heavy complex
structure moduli. Similar to the discussion above, the F-terms split as

DIW = DI |0W0 +K0,I∆W (ϕ1)
GV + ∆K(ϕ1)

GV,IW0 +K0,I∆W (ϕ2)
GV + ∆K(ϕ2)

GV,IW0

≡ DIW |0 + ∆DIW |(ϕ1)
GV + ∆DIW |(ϕ2)

GV . (3.93)

Hence, the total scalar potential at O(ε2) scales as

Vtot ∼ eK0(K0)IJ̄
(

∆DIW |(ϕ1)
GV + ∆DIW |(ϕ2)

GV

)(
∆DJ̄W |

(ϕ1)
GV + ∆DJ̄W |

(ϕ2)
GV

)
. (3.94)

This scalar potential has three pieces

Vtot ∼ V
O(ε2

1)
inf + V

O(ε2
2)

dS +
√
Vinf
√
VdS

∣∣∣O(ε1ε2)
, (3.95)

where V O(ε2
1)

inf and V
O(ε2

2)
dS read

Vinf(φ1) = eK0κ ε2
1

[
sin
(
M

N
φ1 + θ1

)]2
, (3.96)

VdS(φ2) = eK0κ ε2
2

[
cos (φ2 + θ2,1)− α2 cos

(
P

Q
φ2 + θ2,2

)]2
, (3.97)

and we have defined φ1 ≡ Re (ϕ1) and φ2 ≡ Re (ϕ2). It is easy to see from (3.95) that
√
Vinf
√
VdS
∣∣O(ε1ε2)

has the same stationary points with respect to φ2 of V O(ε2
2)

dS . The hierarchy ε1 ≪ ε2 may thus enable
us to stabilize into dS using V

O(ε2
2)

dS while having a slow-roll inflation valley given by the suppressed
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Figure 3.11: An example of the potential Vtot in (3.95). We use M/N = 1/10, P/Q = 25, all the phases
set to zero, α2 = 1, ε1 = 0.02, ε2 = 0.1.

cross-term
√
Vinf
√
VdS
∣∣O(ε1ε2) modulated by the far stronger suppressed term V

O(ε2
1)

inf .
Very interestingly, the effective inflaton potential is no longer of the pure natural inflation type. For

instance, a Fourier decomposition of the effective scalar potential V valley
eff (φ1) in a φ1-valley defined by

the condition (∂φ2V )(φ1) = 0 will generically have the form

V valley
eff (φ1) ∼

[
1− cos

(
2M
N
φ1 + 2θ1

)]
+
∑
n≥2

cn cos(ωnφ1) , (3.98)

with rapidly decreasing cn, frequencies ωn being multiples of 2M/N . Therefore, we expect the predictions
for CMB observables like the spectral tilt ns and the tensor-to-scalar ratio r to deviate from pure natural
inflation. We leave an analysis of the ensuing phenomenology for future work.

A natural question one can ask when looking at fig. 3.11 is how likely it is for the two axions to
undergo a tunneling transition between two local minima of the potential Vtot. To avoid complications
coming from considering a CdL tunneling [184] with two fields, we restricted ourselves to compute the
probability for the field φ2 to undergo tunneling, for a fixed value of φ1. Indeed, we set φ1 to the value
where the largest probability of tunneling is expected, i.e. on the plane where eq. (3.95) has a local
maximum for φ1. This happens for φ1 = 5π+10nπ, with n ∈ Z. Looking at the sections of the potential
at fixed φ1 we can apply the well-known formulas for the decay probability for a single field [184]:

Γ = exp(−B) with B = B0 r(x, y) ≡
(

27π2T 4

2(∆V )3

)
r(x, y) . (3.99)

Here B is the bounce action and T is the tension of the domain wall. We have also defined the field
theoretic bounce B0 and its gravitational correction

r(x, y) = 2 1 + xy −
√

1 + 2xy + x2

x2(y2 − 1)
√

1 + 2xy + x2
, (3.100)

with
x = 3T 2

4M2
P∆V , y = Vf + Vt

∆V and ∆V = Vf − Vt . (3.101)

We have denoted the values of the potential in the false and true vacuum, respectively, with Vf ≡
Vtot(5π, φ2 = φf ) and Vt ≡ Vtot(5π, φ2 = φt). In particular, we choose φf ∼ 0.25 and φt ∼ 0.50, for
the plots shown in fig. 3.12. It is clear from those that the decay rate is highly suppressed for a value of
x ≳ 0.004. An important comment is now due: so far, we have not canonically normalized the kinetic
term for the φ2 axion. By doing so, the canonically normalized field space distance between the true
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(a) We show the profile for the potential of Figure 3.11 at φ1 = 5π. The orange and the green dots correspond
to the values of the potential at the two local minima, respectively at φ2 ∼ 0.25 and φ2 ∼ 0.50. The red dot is
the value of the potential at the local maximum, i.e. φ2 ∼ 0.38. This plot is given for f = 1.
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(b) B defined in (3.99) as a function of x.
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(c) Γ defined in (3.99) as a function of x.

Figure 3.12: In fig. 3.12a we show the potential at the fixed value of φ1 = 5π. We notice that since
VB − Vf ≫ Vf − Vt, the thin-wall approximation can be used to compute the domain wall tension T .
From Figures 3.12b and 3.12c we can find a critical value of x ∼ 0.004 for which the tunneling probability
is enough suppressed.

vacuum φt and the false vacuum φf will depend on the axion decay constant f for the φ2 field. We
define then

∆Φ = (φt − φf )f ∼ 0.25f . (3.102)

We further call the difference of the potential between the red and green dots in Figure 3.12a as
∆VB = VB − Vf , i.e. ∆VB is the height of the barrier between the two minima. Since ∆VB ≫ ∆V ,
the thin-wall approximation is well justified in our context. In this approximation, the tension of the
domain wall reads

T =
∫ Φf

Φt
dΦ
√

2 (Vtot(5π,Φ/f)− Vtot(5π,Φf/f)) ∼
√

2∆VB ∆Φ ∼ 0.35f
√

∆VB . (3.103)

From the definition of x in (3.101), we can find a parametric dependence between x and f , i.e.

x ∼ f2

M2
P

∆V
Vt

. (3.104)

In order for the tunneling probability to be sufficiently suppressed, we require B to be larger than an
order O(100) number.

In a full model with moduli stabilization consistent with an inflationary sector producing the right
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CMB-scale curvature perturbation, the typical scale of moduli and inflationary scalar potential will be
fixed for large-field models where the slow-roll parameter is ε ∼ 0.01 to be

∣∣∣V valley
eff

∣∣∣ ∼ 10−10. Rescaling
the scalar potential in fig. 3.12a to these values and reevaluating the bounce action, we get

B ∼ 102
(

f

MP

)2 1
Vt
. (3.105)

The longevity requirement B ≳ 100 thus translates in a lower bound on f , given by

f

MP
≳
√
Vt ≳ 10−5 . (3.106)

Hence, guaranteeing sufficient longevity of a given inflationary valley places a lower bound on the axion
decay constant of the axion direction responsible for generating the valley structure of f ≳ 10−5MP .

To sum up, we have shown that the combined sector providing a mechanism for both inflation and
uplifting works along the same lines as the individual mechanisms discussed in the previous sections. It
is an interesting task for the future to apply this setup to an explicit model.

3.6 Discussion

Postulating an early epoch of accelerated expansion called inflation solves many conceptual problems
originating from e.g. the observation of the CMB and its anisotropies. However, so far we have no
proof for the presence of such early dynamics. Nevertheless, since theoretically inflation appears to be a
solid proposal, it is worth exploring which models could be the right ones in explaining the accelerated
expansion while producing all the cosmological features we observe in the sky. In fact, it is possible to
connect the theory with experiments via a number of observable quantities; this gives a beautiful way
to test the inflationary proposal as well as the properties of a theory of Quantum Gravity such as String
Theory.

In this chapter, we have discussed how inflation and String Theory are tightly related, and how one
can benefit from the other. In particular, String Theory predicts the existence of axion fields, which are
excellent inflatons candidates. The leading proposals for axions inflation are axion alignment and axion
monodromy, which we reviewed with their pros and cons. For axion monodromy inflation, we supplied
the discussion with new bounds on the observables quantities coming from weak gravity arguments on
the infrared theory of string axions.

In addition, we have presented two new models of axion inflation. Harmonic hybrid inflation is a
mechanism for realizing hybrid inflation using two axion fields with a purely non-perturbatively gener-
ated scalar potential. We analysed the influence of initial condition choices on the occurrence of successful
inflation, showing that this model generates observationally viable slow-roll inflation for a wide range
of initial conditions. The structure of the scalar potential is highly constrained by the discrete shift
symmetries of the axions.

We showed that it generates observationally viable slow-roll inflation for a wide range of initial
conditions. This is possible while accommodating certain Swampland conjectures, namely f ≲ MP

and ∆ϕ60 ≲ MP on the axion periodicity and slow-roll field range, respectively. Moreover, the cosine
form of the scalar potential in our model leads to a limited violation of the Lyth bound, as already
noticed [194] in models of hybrid natural inflation involving a single axion [195]. We saw that harmonic
hybrid inflation is capable of producing a tensor to scalar ratio r ∼ 10−4. We also note the recent model
of hybrid monodromy inflation [196] which rather complementarily employs axion monodromy [154]
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from massive 4-forms [158,197] to realize the mechanism of ‘mutated hybrid inflation’ [198]. Moreover,
it was recently pointed out how hybrid inflation could avoid overproduction of dark radiation while
providing a setup where the inflationary sector is not sequestered and the construction support the
presence of a viable QCD axion [199].

Then, we discussed controlled Z2-symmetry breaking of the adjacent axion vacua as a means of
avoiding cosmological domain wall problems. Including a minimal form of Z2-symmetry breaking into
the minimally tuned setup leads to a prediction of primordial tensor modes with the tensor-to-scalar
ratio in the range 10−4 ≲ r ≲ 0.01, directly accessible to upcoming CMB observations. Moreover,
we found that the presence of an inflationary saddle point produces a regime of quantum diffusion
driven slow-roll eternal inflation as long as the Z2-symmetry breaking parameter is small enough. As a
finite amount of symmetry breaking is necessary to avoid the domain wall problem, this may indicate
that harmonic hybrid inflation shrinks the field space region available for eternal inflation and might
conceivably even favour its absence.

Finally, we outlined several avenues towards realizing harmonic hybrid inflation in type IIB String
Theory, which are thus testable with upcoming observations. We provide arguments that the relevant
scalar potential can arise either from C4 axions via multiple-wrapped D7-brane stacks or from C2-axions
acquiring a scalar potential from D7-brane stacks magnetized by quantized gauge flux. Let us note that
the fine-tuning of initial conditions needed to generate enough inflation quickly increases once we choose
the larger of the two axion decay constants to be sub-Planckian by a significant amount. As this implies
rather finflaton ≲MP instead of finflaton ≪MP , a concrete realization of our mechanism needs to check
if higher instanton harmonics with instanton actions of e.g. gravitational instantons generically scaling
as Sinst ∼ nMP /finflaton remain sufficiently suppressed (see e.g. [21,158,200]). We leave a more detailed
analysis, clearly dependent on UV input, for future more complete string theory realizations.

The other inflationary model we have presented is a large-field model provided by the phases of
the complex structure moduli. In particular, we have showed that it is possible to realize winding
inflation [189] (and winding de Sitter uplift [75]) by a hierarchy of the GV invariants of the underlying
CY threefold along tuning the VEVs of the complex structure moduli as in the original proposal.10 The
non-perturbative quantum corrections encoded by the invariants can provide a controlled lifting of flat
directions left over in the complex structure moduli space by properly choosing fluxes in type IIB String
Theory CY orientifold flux compactifications. In particular, we can use CYs with a built-in hierarchy of
the lowest-degree GV invariants to collaborate with the tuning of moduli VEV hierarchies in controlling
the instanton contributions to the scalar potential, and in some cases remove the need to tune the VEVs
at all. This provides explicit examples for the mechanism outlined in [75,189] to generate both dS vacua
and natural-inflation-like slow-roll inflation with the complex structure moduli sector from fluxes and
GV-invariant controlled quantum corrections alone.

However, for the inflationary model, we found that our setup still satisfies the no-go theorem for
aligned winding trajectories with two moduli proposed in [202]. The issues found in [202] for obtaining
a super-Planckian decay constant are still present in our construction, even if we can avoid a hierarchy
among the VEVs of the moduli.

In addition to the inflationary model, we presented a mechanism involving a sector of four moduli
which can realize both supersymmetry-breaking vacua and positive vacuum energy contribution and
(in absence of the no-go theorem) large-field inflation. Upon combination with a proper CY realizing
full moduli stabilization in an AdS vacuum, this may lead to the construction of dS vacua with an

10To show that CY threefolds with the prescribed hierarchy actually exist, we created a database of genus 0 GV invariants
up to total degree 10 for the CICYs up to Picard number 9, based on the use of INSTANTON [201]. The database can be
found at the following link.

https://www.desy.de/~westphal/GV_CICY_webpage/GVInvariants.html
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inflationary sector in type IIB string theory. While the no-go theorem still presents obstacles for this
type of setup, which relies on two out of four axions to arrange for inflation, we use the relative simplicity
of this setup to show that the dS vacuum sector operates rather decoupled from the inflaton sector.
This in turn makes it plausible that extending the inflaton sector to more axions to avoid the no-go
theorem can still co-exist with the dS sector. We leave for future research the task of working out a full
model along these lines. Finally, we estimated the life-time of the inflationary valleys in our combined
mechanism due to CdL tunneling to neighbouring valleys. Interestingly, guaranteeing sufficient longevity
of a given inflationary valley places a lower bound on the axion decay constant of the axion direction
responsible for generating the valley structure of f ≳ 10−5MP .



Chapter 4

Fuzzy Dark Matter from String
Axions

Walking forwards with no sight
’Cause the rhythm leaves you blind
Walking forwards with no sight
Yeah it’s dark as night.

— Blood Red Shoes, Colours Fade

String Theory has been claimed to give rise to natural fuzzy dark matter (FDM) candidates in
the form of ultralight axions. In this chapter, we revisit this claim by a detailed study of how moduli
stabilisation reviewed in Section 2.1.3 affects the masses and decay constants of different axion fields
which arise in type IIB flux compactifications. We find that obtaining a considerable contribution to the
observed dark matter abundance without tuning the axion initial misalignment angle is not a generic
feature of 4d string models since it requires a mild violation of the WGC bound. Our analysis singles
out C4-axions, C2-axions and thraxions as the best candidates to realise FDM in String Theory. For all
these ultralight axions we provide predictions which can be confronted with present and forthcoming
observations. Before turning to the details of these results, we review the problem of the missing mass
in the universe and how dark matter could solve it. Then we give an overview of the different types of
DM candidates and finally explain why FDM is an intriguing proposal both for phenomenology but also
to relate String Theory with observations.

4.1 Basics of dark matter

Let us start by considering the first Friedmann equation (3.2). The value of k can be determined
experimentally by measuring the parameter Ω, defined as the ratio of the energy density of our universe
ρ(t) and the critical density ρcrit (t),

Ω (t) ≡ ρ (t)
ρcrit (t) , where ρcrit (t) ≡ 3H2 . (4.1)

80
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Hence, Ω measures the energy density in units of H2 and is therefore called the density parameter. With
this definition, the first Friedmann equation (3.2) can be rewritten as

Ω− 1 ≡ k

a2H2 ≡
k

ȧ
, (4.2)

from which we see that a flat universe (k = 0) corresponds to Ω = 1, whereas an open (k = −1) and
closed (k = 1) universe lead to Ω < 1 and Ω > 1 respectively. Therefore, we can understand the geometry
of our universe also by comparing ρ(t0) with ρcrit (t0), where t0 corresponds to the present time. In the
case of multiple contributions to the energy density of the universe, we will have Ω =

∑
i Ωi. We have

seen in Section 3.1 that we can treat our universe as a perfect fluid. In particular, we can divide it into
four components:

• non-relativistic (pressure-less) matter which dilutes with the volume growth of the spatial slices
as ρm = ρm(t0)a−3

• relativistic matter and radiation which are red-shifted and therefore their energy densities decrease
more rapidly, i.e. ρr = ρr(t0)a−4

• the spatial curvature in (4.2) also plays a role and its energy density dilutes as ρk = ρk(t0)a−2

• the cosmological constant Λ with energy and pressure related as ρΛ = −pΛ, which are constant
over time.

We can now write the second Friedmann equation (3.2) as

(
H

H(t0)

)2
= Ωra−4 + Ωma−3 + Ωka−2 + ΩΛ . (4.3)

Evaluating this equation today implies that
∑
i Ωi+Ωk = 1. Most importantly, observations of the CMB

and the large-scale structure found that the universe is flat, with Ωk < 0.2%, and composed of [203]

Ωm ≃ 0.31 , ΩΛ ≃ 0.68 . (4.4)

However it turns out that the visible matter (baryonic matter) constitute only the 5% of the content of
the universe!

In 1933, the astronomer Fritz Zwicky first noted that a certain amount of matter was ‘missing’. He
published a pioneering paper where he studied the mass of the Coma cluster, finding that the velocity
dispersion of galaxies was so high that, to keep the system stable, the average mass density of the cluster
had to be much higher than the one deduced from the baryonic matter. He first proposed the existence
of unseen, dark matter. In the following decades, many more clusters were found to have the same mass
discrepancy, but the proposals to solve this issue were many. In 1970, in their study of rotation curves
of the Andromeda nebula, Vera Rubin and Kent Ford showed that the mass profile as computed from
both the distribution of stars in the galactic spiral and the mass-to-light ratio in the stellar disk, did not
match with the masses derived from the observed rotation curves [204]. From Kepler’s Laws, the rotation
velocities were expected to decrease with the distance from the galactic centre. Instead, rotation curves
remained flat as the galactic radius increased: the galaxy had much more mass than the visible one, and
this mass was gravitationally interacting. It was not until 1974, when James Peebles, Jeremiah Ostriker
and Amos Yahil, in their search for the mass density of the universe Ω, synthesized for the first time the
two problems of galaxies and clusters into a single issue, stating that they were both due to a lack of
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mass in the universe [205]. In particular, they found that the galactic masses had been underestimated
by a factor of 10 or more. However, despite long model building efforts, the origin and nature of dark
matter remains one of the biggest puzzles in Physics and Astronomy.

Today, we know experimentally that the dark matter (DM) contribution to the total mass of the
universe is way more significant than that of baryonic matter. In the years, many proposals of possible
DM candidates were put forward, however so far we have been able only to rule some out. We can divide
the candidates into three major groups on the basis of their physical features:

• baryonic and non-baryonic DM. By baryonic DM we refer to objects that are made of known
constituents, such as Standard Model particles and the ordinary matter in general, but that are
not visible either because their light is too faint or because their presence can only be inferred
indirectly. On the contrary, non-baryonic DM is made of brand-new particles from completions of
the Standard Model, and their interaction with photons is so weak that they are not visible.

• thermal and non-thermal DM: based on the way DM constituents are produced. If a DM particle
is in thermal equilibrium with the other components of the universe and suddenly it decouples,
then this particle is said to be produced thermally. Instead, a non-thermal particle is produced
via a dynamical mechanism, in such a way that it may not be in thermal equilibrium with the
universe at the moment of its production.

• hot and cold DM: this distinction depends on the velocity the particles have when they decou-
ple from the primordial plasma. A particle species is said to be hot DM (HDM) if the velocity
dispersion of these particles is relativistic. Instead, cold DM (CDM) is made of particles having
a very slow velocity dispersion compared to the speed of light. Usually, in the term CDM also
non-thermal DM is included.

The distinction between hot and cold is of extreme importance because HDM and CDM decouple from
radiation before ordinary matter, and in turn they give rise to two different scenarios of structure
formation in the early universe. In particular, the CMB showed that at high redshift the first primordial
structures to appear are the smallest ones, which subsequently converge and form bigger structures. This
depends on the value of the Jeans mass1 of the DM present during the epoch of structure formation.
It turns out that this scenario of structure formation is actually possible only in a CDM background,
where also small matter fluctuations can grow. Therefore, HDM has long been ruled out from being
a possible DM candidate, and the Standard Model of cosmology is also called ΛCDM from its main
constituents, CDM and the dark energy Λ.

In CDM models, dark matter is made out of weakly interacting non-relativistic particles with a small
initial velocity dispersion relation inherited from interactions in the early universe that do not erase
structures on galactic and sub-galactic scales. Despite its success in explaining the large scale structure
of the universe, ΛCDM was believed to suffer from some problems related to galaxy formation [206] that
may be actually explained with unaccounted baryonic feedback mechanisms or to new exotic dark matter
physics on small scales [207–211] but a final and exhaustive solution is still lacking. Regardless of the
veracity of small-scale problems, Weakly Interacting Massive Particles (WIMPs) having mass ∼ O(100)
GeV that were considered the most promising CDM candidates have continuously eluded whatever kind
of experimental measurement as collider searches and direct/indirect detection experiments.

1The Jeans mass is a reference mass indicating whether a perturbation of matter can grow (if its mass is bigger than
the Jeans mass of the DM) or must fade away (if on the contrary its mass is smaller than the Jeans mass of the DM). the
Jeans mass scales with the cube of the free-streaming velocity, so that for HDM it is ∼ O(10) bigger than for CDM.
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These concerns about ΛCDM and WIMPs led to the study of alternative DM models. Among those,
in recent years the idea of bosonic ultralight CDM, also called Fuzzy Dark Matter (FDM), has been
proposed [112,113,212,213]. In one of its prominent versions, DM is made of ultralight axion-like particles
that form halos as Bose-Einstein condensates. In this theory, each axionic particle can develop structures
on the scale of de Broglie wavelength thanks to gravitational interactions. This is an ensemble effect given
by the mean properties of every single axion field. A prominent soliton, i.e. a state where self-gravity
is balanced by the effective pressure arising from the uncertainty principle, develops at the centre of
every bound halo. The soliton properties depend on the axion mass, but usually its extension is assumed
to be much smaller than the galaxy or galaxy cluster size. In the original proposal, an axion having
mass around 10−22 eV and decay constant f ∼ 1016÷17 GeV was pointed out as the best candidate
to represent the dominant part of CDM in the universe since the wave nature of such a particle can
suppress kiloparsec-scale cusps in DM halos and reduce the abundance of low mass halos [113,212,214].

Recent studies put severe constraints on the vanilla FDM model without self-interactions, where
the usual cosine axionic potential is approximated as 1 − cos(ϕ/f) ∼ ϕ2/2f2. Various analyses of
Lyman-α forest, satellite galaxies formation, dwarf galaxies, the Milky Way core and Black Hole super-
radiance [215–222] leave as the only viable mass windows mϕ ∼ 10−24 eV and mϕ ∼ 10−15 eV, although
certain of these bounds could be relaxed and open a window near 10−21 eV also. These experimental
bounds imply that FDM cannot solve the alleged small-scale problems affecting ΛCDM, as the Jeans
mass (representing the lower bound on DM halos mass production) rapidly decreases at increasing ul-
tralight boson masses [220]. Nevertheless, even in this case, these problems can be solved by baryonic
physics and a better understanding of galaxy formations may allow us to discriminate between standard
CDM and FDM models. Indeed, it was proven that small-mass halos suppression in the FDM model
causes a delay in the onset of Cosmic Dawn and the Epoch of Reionization. Future experiments, such as
the HERA survey, will measure the neutral hydrogen (HI) 21 cm line power spectrum at high statistical
significance across a broad range of redshifts [217, 220] and their findings may be able to discriminate
between standard WIMP and FDM scenarios. Since experimental bounds and simulations strongly con-
strain the original FDM model with negligible self-interaction, many extensions of it have been studied.
It was shown that for large initial misalignment angles, ALPs self-interactions can affect the baryonic
structure and accelerate star formation in the early universe or induce oscillon formation that can give
rise to detectable low frequency stochastic gravitational waves [223]. Other authors suggest that FDM
may not represent the entirety of DM [224] or that FDM may not be given by a single component, being
made out of multiple ultralight ALPs [225].

The almost-Planckian decay constant together with the possible multiple axionic nature of FDM
have been claimed to be a possible sign in favour of the string axiverse [113, 226], where a plenitude of
axion-like particles (ALPs) naturally emerge from 4D effective theories. However, in this chapter, we
point out that obtaining a FDM axion with the correct mass and decay constant is not automatic in
String Theory. Indeed, even if one would naively think that ultralight axions generically emerge from
String Theory equipped with naturally high decay constants, reproducing the right relic abundance turns
out to be hard and provides sharp predictions for fundamental microscopical parameters. We carry out
a detailed analysis, studying the general features of closed and open string ALPs coming from type
IIB string theory. Focusing on simple extra-dimensions geometries and using the most common moduli
stabilisation prescriptions, for each class of ALPs we provide in what follows general predictions for the
expected mass, decay constant and dark matter abundance. We discuss the settings of the microscopical
parameters that lead to ultralight axions representing non-negligible fractions of DM, and we estimate
how these requirements put stringent predictions for the relevant energy scales of the 4D effective field
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theory, such as the KK scale, the gravitino mass and the scale of inflation. Finally, we compare our
predictions for FDM ALPs with current observational constraints, and we highlight which stringy FDM
candidates occupy a region of the parameter space that will be probed by next generation experiments.

Let us point out that we will only consider the simplest setups, thus neglecting the effects that may
arise from considering numerous axionic fields. Indeed, we assume that the axionic potential does not
create local minima, and that there are no turns in the field dynamics when they start to oscillate at times
when m ∼ H. We also neglect the possibility of having axion alignment, as this is not the most common
situation and its implementation often involves a considerable amount of tuning. Despite our simple
assumptions, we believe the results presented below remain true also for more general extradimensional
geometries. Indeed, we find that among closed string axions only those related to large cycles can be
good FDM candidates. Although it is not possible to write the most generic volume of a CY, the number
of moduli entering the volume with a positive sign must be finite.

4.2 String origin of ultralight axionic DM candidates

Since the number of ALPs is related to the number of moduli, which can easily reach the value of several
hundreds, we can have many ultralight axion candidates which create the so called axiverse [18]. On the
other hand, it is essential to note that, although string compactifications carry plenty of candidates for
axion and axion-like weakly interacting particles, there are several known mechanisms by which they
can be removed from the low energy spectrum. The low energy spectrum below the compactification
scale generically contains many axion-like particles which arise either as closed string axions, which are
the KK zero modes of 10d antisymmetric tensor fields, or as the phase of open string modes. While
the number of closed string axions is related to the topology of the internal manifold, the number
of open string axions is more model dependent since their existence relies upon the brane setup. We
will briefly describe the main properties of both closed and open string axions, trying to understand
what conditions are required in order to reproduce viable FDM particles. In particular, we dedicated
Section 2.2 on closed string axions.

Let us focus here on the most relevant features that our axion fields need to satisfy in order to be
good FDM candidates. Considering for simplicity a single axion, a commonly used set of conventions is

L = 1
2f

2(∂θ)2 −Ae−S cos(θ) , (4.5)

where f is the axion decay constant and S represents the instanton action that gives rise to the axion
potential. From the above expression, where we set the instanton charge to one for simplicity, we see
that the axion mass is given by

m2
ϕ = AM4

P e
−S/f2 . (4.6)

Using this notation the axion periodicity is 2π/f and the value for Sf corresponding to (half of) a
Giddings-Strominger wormhole (for a review see [200]) is

Sf =
√

6π
8 ≃ 0.96 . (4.7)

Given that FDM particles have to be produced through the misalignment mechanism and that a GUT
scale decay constant implies that the PQ symmetry is broken before the inflationary stage, the DM
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abundance of the physical ALP particle, ϕ = fθ, can be expressed as [18]:

Ωϕh2

0.112 ≃ 2.2×
( mϕ

10−22eV

)1/2
(

f

1017GeV

)2
θ2
mi ∼ 1 , (4.8)

where θmi ∈ [0, 2π] is the initial misalignment angle with respect to the minimum of the potential.2

In (4.8) we are considering small field initial displacement, large misalignment will be briefly treated in
Appendix D.4. Therefore, assuming an initial misalignment angle θmi ∼ O(1), a prefactor A ∼ O(1),
and imposing the right value for the axion mass and decay constant, mϕ ∼ 10−22 eV and f ∼ 10−2MP ,
we have that

Sf = −f ln
(
m2
ϕf

2

AM4
P

)
≳ 1 . (4.9)

This means that the existence of a FDM candidate tends to slightly violate the WGC [200,227]. Hence,
in the next sections we are going to check the most generic closed string axion candidates in terms of
their ability to reach a regime where they acquire their mass from an instanton with Sf = O(a few) as
indicated by eq. (4.9). What we find is summarised in table 4.1, showing that only few candidates, C2

axions and thraxions, and to some extent also C4 in certain limits, can violate the bound Sf ≲ 1, thus
potentially allowing for all dark matter to be FDM. We would like to point out that since the axion mass
has an exponential dependence on the instanton action S, the accordance with or the violation of the
WGC crucially depends on the precise extremality bound, i.e. on the value of α entering the formulation
of the WGC in (2.50). It appears indeed quite interesting that experiments constraining the parameter
space of FDM ALPs may be able to probe the upper limit of the axionic WGC, thus shedding some
light on the underlying theory of Quantum Gravity.

The axionic content of the theory coming from closed string modes is given by the fields C0, cα,
bα, di, whose number depends on the geometrical structure of the extra dimensions (cf. Sections 2.1.3
and 2.2). Moreover, a new class of ultralight axions coming from flux compactification of type IIB string
theory was recently discovered [85]: thraxions are axionic modes living at the tip of warped multi-throats
of the compact manifold, near a conifold transition locus in complex structure moduli space. As shown
in [85], at the tip of such throats there exists a 4d mode c that can be thought of as the integral of
the two-form C2 over the S2 collapsing at the conifold point, as measured far away from that point.
Although so far no study has been carried out on the phenomenology of such axions, it was shown
in [97] that they do exist in a quite interesting fraction of orientifolds of the known compact manifolds
realised as complete intersections of polynomial equations in products of projective spaces, also known
as CICYs [228]. More in general, it is expected that Klebanov-Strassler throats with tiny warp factor
are widely present in type IIB CY orientifolds or F-theory models [229–231]. Therefore, in this work we
study how they behave as possible FDM candidates, as they are known theoretically to be ultralight,
and they possess a flux-enhanced decay constant.

Being interested in axions that can nearly saturate the WGC bound, we analyse some simple setups
that allow us to estimate the maximum value of Sf . These results are summed up in table 4.1 and
further details can be found in Appendix D.1. From our analysis, it turns out that C2, C4 axions and
thraxions are the best candidates to satisfy the constraint (4.9). To study the behaviour of C4 axions
having Sf ∼ O(1), we consider two different CY geometries: the Swiss-cheese case and the fibred case,
where the overall volume of the extra dimensions is parametrised by a single or by two degrees of freedom

2Given that Ωϕh2

0.112 ∝ e−S/4f3/2, we see that the representation fraction of every axion in the DM halo changes
depending on its value of S and/or f . In general, for the same value of f , axions with smaller S are more represented,
hence the DM abundance is dominated by the heavier axions (cf. (4.6)). For axions with the same S, those with larger f
have a larger DM abundance and (cf. (4.6)) are also lighter. This last case is less generic.
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Axion Sf

C0 1/
√

2MP

B2 < MP

C2

{
SED1f ≲ MP

SED3f ≲
√
gs V1/3MP

C4 (1 dof) ≲
√

3/2MP

C4 (2 dof) ≲MP

C2,thrax Sefffeff ≲ 3πM3√
gs

V1/3 MP

Table 4.1: Bounds on Sf for different classes of closed string axions. These results arise from the study of
simple extra-dimensions geometries. Further details are contained in Appendix D.1. Our simple explicit
constructions here saturate these bounds (‘∼’), while we expect more general compactifications to satisfy
them (‘<’). C0 and B2 are listed for completeness, but generically they cannot be FDM candidates as
they get very high masses from flux stabilisation.

(dof) respectively. Then, we study C2 axions in the Swiss-cheese geometry. These fields can be viable
FDM candidates in case they get a mass through non-perturbative effects coming from pure ED1 and
ED3/ED1 instanton corrections. In the former case the bound on Sf is similar to the C4-axion case but
these axions tend to be naturally lighter. In presence of ED3/ED1 corrections, it seems that the strong
version of WGC can be slightly violated, as in LVS Sf ∼ V1/3/

√
ln(V) > 1. Nevertheless, it may be not

appropriate to apply the WGC in this case as this is a hybrid setup where we are effectively comparing
the C2-axion decay constant with the C4 ED3 instanton action. These results are in agreement with
what previously stated in the literature about the construction of explicit models and in works where
a full mathematical analysis has been carried out for specific axion classes [79]. Indeed, no cases have
been reported for C4 and C2 axions, where it was possible to clearly violate the constraint of the WGC
even in its weak form while keeping the theory under control.

Concerning thraxions, we analyse both the case in which their mass is independent of the stabilisation
of Kähler moduli and also when it gets lifted by their presence. Since their existence relies only on
the presence of multi-throats and fluxes inside such throats, we do not have to specify any type of
geometry for the compact manifold as thraxion features only depend on in its volume size V. As shown
in table 4.1, we are also concerned with K, M , the flux numbers coming from the integral of the H3, F3

field strengths over B-type and A-type 3-cycles respectively, and the string coupling gs. Thraxions will
acquire a potential due to the constituting warped-down 3-form flux energy density at the IR end of a
throat, as well as from ED1 instanton contributions. As we discuss in Section 4.2.3, the former case is
more appropriate for our purpose, and we will show how to rewrite the intrinsic flux-generated thraxion
potential in terms of an effective ‘instanton’ action Seff which we can arrange to be dominant compared
to ED1 effects. To clear the physical meaning and the values of the parameters used in the following
sections, we summarize them in table 4.2.

Besides looking at the constraint on Sf , we also need to consider that a good FDM axion must be
extremely light. The current techniques developed to perform moduli stabilisation in type IIB are able
to exclude already some possible candidates. The axio-dilaton, together with complex structure moduli,
are stabilised at high energies by background fluxes, so that they are naturally too heavy to represent
FDM. The same conclusion is true for the orientifold-odd B2 axions which are usually much heavier
than the overall volume modulus [232, 233]. The remaining candidates are given by C2, C4 axions and
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description LVS range KKLT range
W0 tree-level superpotential 1÷ 102 exp

(
− 2π
N V

2/3)
gs string coupling (lnV)−1 10−2 ÷ 0.2
A non-perturbative correction prefactor 10−4 ÷ 104 10−4 ÷ 104

N number of D7-branes 1÷ 10 30÷ 60
M, K flux numbers from F3, H3 ≥ 10 ≥ 10

Table 4.2: Description of microscopic parameters and their associated ranges considered in the study of
closed string axions in LVS and KKLT moduli stabilisation. Where we provide a functional form, i.e.
gs in LVS or W0 in KKLT, no a priori range can be given. For instance, W0 cannot be interpreted as a
parameter in KKLT as its value fixes the whole stabilisation. The same reasoning applies to gs in LVS.

thraxions that we analyse in the following sections.

4.2.1 LVS: FDM from C4 axions

We start our study by considering C4 axions in LVS, which we reviewed in Section 2.1.3. If the CY
volume in (2.42) is parametrised by a single Kähler modulus, i.e. (f3/2 = τ3

1 ) LVS is able to stabilise all
the real part of Kähler moduli. If this is not the case, i.e. (f3/2 = τ1

√
τ2 or f3/2 = √τ1τ2τ3) we will be

left with some flat directions in the Kähler moduli space. A potential for these fields can be generated at
lower energies by e.g. higher order α′ and gs-loop corrections. Once these fields get stabilised, the scalar
potential for the axions associated to volume cycles is induced by non-perturbative terms as in (2.35).
The field dependence of the decay constant associated to C4 axions is given by [18]

f ∼


MP

τ volume axion,
MP√

V blow-up axion.
(4.10)

Moreover, in this setup the instanton action appearing in the axion potential (4.5) is given by S = aτ .
By looking for a particle having a high decay constant and an extremely small mass, we immediately see
from (4.10) that a FDM particle is more likely represented by axions related to large cycles parametrising
the overall volume. In fact, while blow-up axion seem to have a higher decay constant (∼ V−1/2)
compared to volume axion (∼ V−2/3), LVS stabilisation requires that V ∼ easτs . This implies that
matching the right FDM mass value tunes the overall volume too large (V ∼ exp(220)) making the
match between m and f unfeasible and, above all, this would cause the string scale to be much lower
than eV where the theory is no longer under control.

In addition, from the τ dependence of the decay constant, the axion mass and the total amount
of FDM, eq. (4.8), we can easily conclude that in the presence of multiple volume axions, the heavier
particles will represent a higher percentage of DM. By assuming that all the other parameters and the
initial misalignment angle are the same for every axion, we have that Ωθ

0.112 ∼ e−S/4 ∝ m
1/2
θ . In what

follows, we are going to analyse two simple examples of concrete 4d effective models coming from type
IIB string theory: Swiss-cheese and fibred CY threefolds.

Swiss-cheese geometry: Consider a CY with the typical Swiss-cheese shape for the volume, namely

V = α
(
τ

3/2
V − λsτ3/2

s

)
, (4.11)
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N = 1 N = 2 N = 10
V 200÷ 300 500÷ 800 6000÷ 9000

Table 4.3: Predicted overall volumes for different values of N imposing 100% of FDM.

where α and λs are positive real coefficients of order one. After LVS stabilisation, all Kähler moduli but
the overall volume axion dV are stabilised. This will represent our FDM candidate, with mass given by

m2
dV

= 8κS3
VAV W0 e

−SV

3V2 M2
P , SV = aVτV , (4.12)

while its decay constant is

fV =
√

3
2
MP

SV
. (4.13)

The previous relations are based on the assumption that both the kinetic Lagrangian and the mass
matrix associated to C4 axions are diagonal. Working in the large volume limit, this can be safely
assumed, as the off-diagonal terms of the Kähler matrix are suppressed by powers of τs/τb ≪ 1 while
the off-diagonal terms of the mass matrix are exponentially suppressed. In what follows, we try to
understand which requirements are needed to match the FDM prescriptions. Supposing to have no prior
knowledge on the cosmological history of the universe, we assume a constant axion field distribution.
Given a uniform probability density on the range [0; 2π], the mean value of dV is given by π and
its standard deviation is σ2

d = π2/3, therefore we consider a misalignment angle dmi = π/
√

3 as it
represents the most likely value. This assumption is supported by [234] where it was shown that for
any inflationary scale H ≳ 1 keV, the misalignment angle distribution becomes flat through stochastic
diffusion. The most stringent constraint on inflationary model building in FDM models comes from
isocurvature perturbation bounds, as we briefly describe in Appendix D.4.

In the Swiss-cheese geometry, the amount of DM depends only on the instanton action SV . This
implies that once we fix the required amount of DM, we can immediately compute the natural value of
mass and decay constant the FDM axion candidate needs to have. Knowing the shape of the instanton
action, we can write V ≃ (SV/aV)3/2, being aV = 2π/N , so that the formula for the DM abundance,
eq. (4.8), becomes:

Ωθh2

0.112 ≃ 6.36× 1027a
3/4
V (c gs)1/4 e

−SV/4

S2
V

, where c = W0AV . (4.14)
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Figure 4.1: Predictions for axion mass (left) and decay constant (right) varying the percentage of axionic
FDM and the non-perturbative effects giving rise to the ALP potential.
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Given that the value of the parameters may vary across different models, we decide to fix the maximum
and minimum values that they may acquire and we choose different values of N = {1, 2, 10}. Moreover,
we use the LVS relation between the string coupling and the overall volume: V ∼ eg

−1
s to reduce the

amount of fine-tuning. The extrema of the values we consider are listed in table 4.2.
Looking at the previous formula it is clear that once we fix the upper and lower bounds for W0, AV

and the fraction of FDM ΩFDM
ΩDM , we can easily determine the mass and decay constant values of our

axion candidate. The natural amount of axionic DM with the right mass and decay constant range can
be found in fig. 4.1. While the predictions for the decay constant are not significantly influenced by
changing the parameters, the particle mass can vary across different setups. As shown in table 4.3, these
setups put strong constraints on the predicted overall volume V. The lightest DM particles representing
a considerable fraction of FDM have m ≲ 10−20 eV. It is worth noticing that neither the mass nor the
decay constant value seem to be sensitive to the gauge theory on the brane stack.

Concerning the implications related to this FDM model, let us now estimate what the relevant energy
scales are going to be. The KK scales, i.e. the maximum energies at which a 4D treatment of the theory
is allowed, that are associated with bulk KK modes and KK replicas of open string modes living on
D7-branes wrapping 4-cycles are given by

M
(i)
KK =

√
πMP√
Vτ1/4

i

. (4.15)

This implies that for the Swiss-cheese geometry MKK =
√
πMP

V2/3 ∼ 1015 ÷ 1016 GeV. Moreover, we have
that the blow-up moduli which are stabilised through LVS prescription receive masses comparable to
the gravitino mass, m3/2 = MPW0/V ∼ 1014 ÷ 1016 GeV. The last relevant energy scale is given by
the inflationary scale. Looking at the ALP decay constant and mass, we can estimate what are the
predictions for inflation that would arise from the ultralight C4 axion detection. These are mainly due
to isocurvature perturbations constraint and imply that the Hubble parameter during inflation, HI ,
needs to be low, HI < 5 · 1011 GeV, giving rise to undetectable stochastic gravitational waves, being the
tensor-to-scalar ratio r < 10−6. An extended derivation of these results can be found in Appendix D.4.
We conclude this paragraph by stressing that since FDM needs to be the dominant DM component, the
mass spectrum of the theory between the inflationary scale and the FDM scale should be nearly empty.
In particular, as we already stressed, since heavier axions naturally represent higher DM fractions, the
axion spectrum in the aforementioned range needs to be exactly empty.

Fibred geometry: Consider a fibred CY, whose volume can be written as

V = α
(
τb
√
τf − λsτ3/2

s

)
, (4.16)

where τf parametrises the volume of a K3-fibre over a P1 base whose volume is controlled by τb, and
τs represents the volume of a rigid del Pezzo divisor. Again, α and λs are positive real coefficients of
order one. After LVS stabilisation, the fibre modulus is still a flat direction and requires additional
corrections to be stabilised. These are usually taken to be α′ corrections or KK and winding gs loop
corrections [55–57,190,191,235]. In this setup, the two good FDM candidates are the closed string axions
related to the base and the fibre modulus.
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The decay constants and the masses are given by
fdb = MP

abτb
= MP

Sb
, m2

db
≃ 4κS3

bAbW0 e
−Sb

V2 M2
P

fdf = MP√
2afτf

= 1√
2
MP

Sf
, m2

df
≃

8κS3
fAf W0 e

−Sf

V2 M2
P .

(4.17)

Again, these relations are based on the assumption that both the kinetic Lagrangian and the mass matrix
associated to C4 axions are diagonal. As the field-space metric related to τf and τb is exactly diagonal,
the same considerations provided in the Swiss-cheese geometry apply. Without loss of generality we can
consider the case where α = 1 so that

V = τb
√
τf =

Sb
√
Sf

ab
√
af

. (4.18)

The masses of the two axions become

m2
df
≃ cfa2

baf
S2
f

S2
b

e−SfM2
P , cf = 2gAf

m2
db
≃ cba2

baf
Sb
Sf
e−SbM2

P , cb = gAb

(4.19)

where g = 4κW0. By fixing the ratio between the two decay constants to be q = fdb/fdf , we immediately
see that the ratio between the abundance of DM components is given by

Ωb
Ωf
≃ 1.09

(
cb
cf

)1/4
q5/4e

−MP
4fb

(
1− q√

2

)
. (4.20)

This result highlights that we can face two opposite scenarios. Isotropic compactification (q ≃
√

2)
implies that the two axions have similar masses and represent similar percentages of DM. On the other
hand, given the exponential sensitivity of Ωb/Ωf on the parameter q, in anisotropic compactifications
(q ≪ 1 or q ≫ 1) just one axion can play the rôle of the FDM particle. As already mentioned in the
previous sections, also in case of nearly isotropic compactifications, the heavier axion will naturally

Figure 4.2: Allowed percentages of axionic DM as a function of the axion decay constants. The coloured
areas satisfy the constraint Ωbh2

0.112 + Ωfh2

0.112 ≤ 1. The blue and yellow areas refer to regions where ultralight
axionic DM represents different percentages of the total amount of DM of the universe. The green area
identifies the region where we have two FDM axions. The black line is given by q = fb/ff =

√
2.
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Figure 4.3: Left: df and db axion masses as a function of the total ultralight axion fraction of DM.
Right: Relative contributions to ΩDM coming from df and db axions. Top panels are referred to equal
values of the perturbative corrections prefactors Ai, i = f, b. Central and bottom panels contain the
results related to the cases where Af = Amax ≫ Ab = Amin and Af = Amin ≪ Ab = Amax respectively.
The extreme values Amin and Amax can be read from table 4.2.

represent the higher fraction of DM. Let us consider for W0, and Ai, i = b, f , the same parameter range
as described in table 4.2. Moreover, given that the mass range of the two particles will follow the same
behaviour as in the Swiss-cheese geometry, we us focus on the case where Nf = Nb = 1. Also considering
the whole parameter space, we can already dramatically restrict the predictions for the allowed decay

V
q = 0.01 (2.4÷ 3.6) · 104

q = 0.1 (2.5÷ 3.8) · 103

q =
√

2 (1.9÷ 2.9) · 102

q = 10 (4.9÷ 7.3) · 102

q = 100 (1.5÷ 2.3) · 103

Table 4.4: Overall volume of the extra-dimensions for different values of q. The range of the values was
chosen so that both τb and τf get stabilised at values ≫ 1, in accordance with instanton expansion and
EFT prescriptions.
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Figure 4.4: mdb and mdf as functions of the axion DM fraction varying the ratio between the decay
constants q = fb/ff . Top: When q ≤ 1 the contributions coming from db are negligible and its mass
becomes ≪ 10−40 eV. Bottom: When q ≥ 2 the contributions coming from df are negligible and its
mass becomes ≪ 10−40 eV. The maximum and minimum values of the parameters used to compute the
allowed mass range can be found in table 4.2. In these plots, we assumed for simplicity that Af = Ab
given that, considering small and large q values, a relative variation of these parameters does not have
any impact on the predictions.

constants. The results of this analysis are represented in fig. 4.2. From this plot, we can identify the
narrow region where we have two suitable FDM candidates. Let us now fix the decay constant ratio q
in order to inspect the green central area and understand what will be the composition and the mass
of the two axions. The results obtained fixing q =

√
2 are represented in Fig. 4.3. If we fix Ab = Af ,

we find two different axions having mass ∼ 10−20 representing similar percentages of DM. If Af and
Ab get different values, one of the axions becomes much lighter than 10−22 eV representing a negligible
fraction of DM.

We now consider the effect coming from an anisotropic compactification. Also in this case, the
predictions for the mass of the two candidates are quite robust. Indeed, as we show in Fig. 4.4, choosing
different values of q = {0.01, 0.1, 1, 2, 10, 100} the results about the mass and DM fraction do not
change. For large values of q, db is the FDM axion which represents a significant fraction of DM when
it acquires a mass m ≳ 10−20 eV, while df is much lighter (≪ 10−44 eV) and has a negligible impact
on DM abundance. On the other hand, when q is fixed to small values, df is the right FDM candidate
representing a large amount of DM when its mass is given by m ∼ 10−19 eV, while the contribution
coming from db is negligible. The predictions for the overall volume V for different values of q and
varying parameters are listed in table 4.4.

For what concerns the relevant energy scales of the model, i.e. KK masses, eq. (4.15) and the gravitino
mass, the results found for the Swiss-cheese geometry are still valid in presence of CY fibrations in the
isotropic compactification limit. Anisotropic compactifications may lead to different results depending
on the overall volume considered. The ratio between the KK masses related to τf and τb 4-cycles scales
as M (b)

KK/M
(f)
KK ∼ q1/4. In this setup, the inflationary scale and the tensor-to-scalar ratio are suppressed

compared to the Swiss-cheese geometry. For both isotropic and anisotropic compactifications and for
any value of initial misalignment angles, we have that the inflationary scale HI < 1011 GeV and the
tensor-to-scalar ratio r < 10−7. Further details can be found in Appendix D.4.

4.2.2 LVS: FDM from C2 axions

Our discussion at the beginning of Sec. 4.2 made it clear that it is the C2-axions which can lay claim to
be the best candidates of the type IIB O3/O7 orientifold closed string axion sector. This is so because
their shift symmetry remains protected even under orientifolding, and they acquire a potential from
non-perturbative effects less easily than C4-axions, as we now summarise (see e.g. [111, 236]). In the
absence of branes [155] or flux monodromy [158,197,237], scalar potentials for C2 axions arise either via
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ED1-brane instantons, via bound states of ED3/ED1-brane instantons or via gaugino condensation on
stacks of 4-cycle-wrapping D7-branes with gauge flux as follows:

• The C2 axion potential can be generated by ED1-branes wrapped on 2-cycles. Such effects induce
non-perturbative contributions to the metric of R-R two-forms axions themselves, but cannot
contribute to the superpotential in our setup [23, 155]. In the following, we will use that both
KKLT and LVS can be arranged to stabilize the B2 axion at vanishing VEV at high mass scale.
In this case, Kähler potential corrections scale like exp(−2πt+/

√
gs) where t+ represents the

Einstein frame volume of the orientifold-even 2-cycle, Σ+
2 wrapped by the ED1-brane. These are

easily suppressed by considering modest t+ volumes potentially giving rise to light C2 fields.

• The structure of the ED3/ED1-bound state instanton contribution to the superpotential is given
by a modular theta function. For large enough real argument, this becomes exponentially damped.
In our cases, the total scalar potential results in stabilising b = 0 so no extra damping from a
finite b-VEV arises in the exponential in W . The suppression of the C2-cosine potential comes
from exp(−T ) dependence of the ED3-parent instanton. Hence in total, if you have an ED3 that
has a dissolved ED1 [23] this gives a non-perturbative correction to W like exp(−T −G). Formally,
the G-dependence of the ED1 dissolved inside the ED3 arises as an ED3 magnetised by 2-form
gauge flux threading 2-cycles in the ED3-wrapped 4-cycles. As the ED3-brane itself is a purely
Euclidean instanton effect, the path integral enforces summation over the unmagnetised ED3 and
all magnetised ED3/ED1-bound states, mandating the appearance of the G-dependence in W for
ED3 contributions to 4-cycles intersecting with orientifold-odd 2-cycle combinations.

• If you use instead a D7-brane stack to stabilise the T moduli, magnetisation of the D7-brane stack
is a choice of compactification data (no path integral forces you to sum over magnetised D7-brane
states, since unlike a purely euclidean instanton the full D7-brane fills 4d spacetime as well). Thus,
by avoiding putting gauge fluxes on the D7-branes you prevent single-suppressed exp(−T − G)
terms in W from arising [46,103–105,238]. However, the path integral will generate contributions
from ED3/ED1-bound state instantons to the gauge kinetic function. Such a correction to the
gauge kinetic function of the 7-brane stack scaling like exp(−T−G) in turn induces a superpotential
correction of order exp(−2T−G) [155]. Compared to the scale of the superpotential terms exp(−T )
stabilising the T moduli, this leads to a double suppression of the potential for the C2 axion.

We shall now summarise the scaling of the scalar potential for the C2 axion arising from these non-
perturbative effects in the concrete scenarios of KKLT and LVS stabilisation of the volume moduli on
Swiss-cheese CY orientifolds with two volume moduli:

• We first look at KKLT: if a harmonic zero-mode C2 axion counted by h1,1
− acquires a single sup-

pressed non-perturbative scalar potential from ED3/ED1-bound state instantons, then in KKLT
it is too heavy to form FDM. Even if its potential comes from the double suppressed contribution
of an unmagnetised 7-brane stack, the C2 axion remains too heavy to constitute FDM. The reason
is that in KKLT the lowest volume moduli masses ∼ exp(−T ) are always around the gravitino
mass scale. Since this in turn is bounded from below by O( TeV) the resulting C2 mass scale
∼ exp(−2T ) is still too heavy. On the other hand, if this axion receives a mass through pure ED1
contributions appearing in the Kähler potential, it may represent a good FDM candidate. Indeed,
in this setup, the C2 axion can become much lighter than the C4 one and its mass would scale as
exp(−2T −

√
T/gs).
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• In LVS we should always have a CY manifold with a volume form such that it has at least two
volume moduli appearing in the Swiss-cheese form. For a C2 axion we can now consider intersection
couplings with either the small LVS blow-up or the CY volume-carrying big cycle. We begin by
looking at the case of C2 intersecting with the small cycle. If you have a double suppressed term
in W from an unmagnetised 7-brane stack on a small cycle, the term in the exponent would scale
as 2(2π/N)τs. For N = 2 this scales like a single ED3/ED1-bound state instanton wrapping the
small cycle. Moreover, in this case N = 2 is the most favourable setup for a potential FDM role
as the volume needs to be V ∼ exp(100), while it would be even large for N > 2 driving the
EFT out of the controlled regime. Also the case of ED1 branes wrapped around a blow-up cycle
does not lead to good FDM candidates. Indeed, being τs ∼ g−1

s , Kähler potential corrections scale
like exp(−2π/gs) and matching the right mass value requires V ≳ 1020 making the axion decay
constant, f ∼MP /

√
V ∼ 108 GeV, way too small. Hence, C2-FDM cannot arise in LVS from the

LVS blow-up cycle or similarly small blow-up cycles.

• Conversely, in LVS a D7-brane stack wrapped around the large volume cycle induces a double
suppressed mass term that would imply either a too light axion or volume too small for control of
the α′-expansion.

• What thus remain are the cases of an ED3/ED1-bound state instanton in LVS or an ED1-instanton
wrapping the volume cycle in both KKLT and LVS. In the first case, the resulting single-suppressed
cosine potential for C2 on the big cycle leads to a borderline situation and the relation between
the C4 and C2 masses, the decay constants and the FDM abundances requires further investiga-
tion. Also the second case of a pure ED1-instanton may lead to interesting results as the Kähler
potential corrections scaling as exp(−V1/3/

√
gs) can give rise to sufficiently light C2 fields for both

stabilisation prescriptions under study.

In what follows we consider the simple setup where we have a single orientifold-odd modulus G, the
extradimensional geometry is Swiss-cheese and there is are non-vanishing intersection number between
the pair of 2-cycles projected by the O7-action onto t+ and a harmonic C2 axion, and the large volume
4-cycle. While extensions to multiple odd moduli lead so similar results, moving towards more complex
geometries is highly non-trivial. Given that we are only interested in the overall scaling of the mass
and the decay constant, we leave this analysis for future work. We separately study the cases where
the C2 axion gets a mass from pure ED1 (in K) or ED3/ED1 instanton effects (in W ). In both cases,
the Kähler potential is given by (2.36) (in what follows we consider only leading α′ corrections) where
V = V(Ti, G, S) is the volume of the compact dimensions.

Pure ED1 effects in LVS: Let us consider the case where the ED1 wraps a 2-cycle tb parametrizing
the overall volume. For simplicity, we assume that the volume dependence on tb is given by V ⊃ κbbb t3b/6,
where κbbb is the big cycle self-intersection number.3 If this condition is satisfied, the 2-cycle volume
can be written as tb = ((Tb + T̄b)/κbbb)1/2. In the simplest Swiss-cheese setup, the CY volume is given
by [155]:

V/α ≃

Tb + T̄b − κb(G− Ḡ)2 + Ce
− 2π√

gs

√
(Tb+T̄b)
κbbb Re

[
eiπG

]3/2

− (Ts + T̄s)3/2 , (4.21)

3Similar results hold for more complex intersection polynomials once we go to the LVS limit, where one of the 2-cycles
dominates over the other ones.
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Figure 4.5: Predictions for C2-axion mass (left) and decay constant (right) in LVS (top) and KKLT
(bottom) scenarios. The axion receives a mass through ED1 instanton effects coming from an ED1-
brane wrapping the volume 2-cycle.

where α = 1
3 (2/κbbb)1/2, κb = κb−−gs/4 being κb−− the intersection number of the big divisor with the

odd cycle and Re(eiG) = eiπ(G−Ḡ) cos
[
π(G+ Ḡ)

]
. We further assume the small blow-up 4-cycle Σs to

be wrapped by an ED3 instanton or a small D7-brane stack generating the following non-perturbative
correction to the superpotential:

W = W0 +Ase
−asTs . (4.22)

Assuming stabilisation of the B2 axion at ⟨b⟩ = 0, the C2 axion decay constant is given by [41]:

2πf = MP

√
gstb|κb−−|

2V , (4.23)

where κb−− ≤ 0. The action for the ED1 wrapped around tb is

SED1 = 2π tb√
gs

. (4.24)

Hence the WGC relation becomes

Sf =
√
t3b |κb−−|

2V MP
LVS−−−→
tb≫1

√
3|κb−−|
κbbb

MP , (4.25)

where on the right side we took the LVS limit. The scalar potential for C2 arising from the aforementioned
corrections to K and W is suppressed compared to the LVS terms and scales like

δV ≃ − CW 2
0

g
1/2
s V11/3

e
−2πγ V1/3

√
gs cos (2πc) , where γ = 31/3

21/6κ
1/3
bbb

, (4.26)
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and we assumed LVS stabilization for τb, τs and ds. Finally, the axion mass is given by

m2
c ≃

CW 2
0

|κb−−|g3/2
s V3

e
−2πγ V1/3

√
gs M2

P . (4.27)

For simplicity from now on we fix κb−− = −1 and C = 1 as their tuning does not really affect our final
predictions. We let W0 and κbbb vary in W0 ∈ [1, 102] and κbbb ∈ {1, . . . , 10} while we set gs = ln−1(V)
according to LVS prescription. Our results are shown in Fig. 4.5 where we see that the C2 axion
coming from an ED1-brane wrapping the volume 2-cycle can actually represent a good FDM candidate.
Just as in the previous cases, the decay constant is not sensitive to the variation of the microscopical
parameters.Instead, here the variation of the mass is more pronounced. We have in fact that the C2 axion
can represent a considerable percentage of DM if it gets a mass m ∼ [7 · 10−22, 10−19] eV corresponding
to volumes of about V ∼ [104, 105] and string couplings gs ∼ [0.08, 0.1].

Pure ED1 effects in KKLT: Here we consider the simplest case where h1,1
+ = 1. The overall volume,

the C2 axion decay constant and the ED1-instanton action coincide with those listed in the previous
section if we neglect the blow-up field contributions. The correction to the superpotential is given by:

W = W0 +Abe
−abTb . (4.28)

Assuming again that ⟨b⟩ = 0, the C2 scalar potential arising from ED1 corrections to K and W is
suppressed compared to the KKLT AdS scale and reads:

δV ≃ C a2
bA

2
bgs

τ2
b

e
−2abτb−2π

√
2 τb
gsκb cos (2πc) . (4.29)

The axion mass is given by:

m2
c ≃

C a2
bA

2
b

τbκb−−
e

−2abτb−2π
√

2 τb
gsκbM2

P . (4.30)

For simplicity from now on we fix |κb−−| = κbbb = 1, C = Ab = 1, ab = 0.1 as their tuning does not
significantly affect our final predictions. We let W0 and gs vary in W0 ∈ [10−12, 10−2] and gs ∈ [0.05, 0.5]
while we set τb = − ln(W0)/ab according to the KKLT prescription. Our results are shown in Fig. 4.5
where we see that the C2 axion can be extremely light in the KKLT scenario, actually too light to
represent FDM. In this case, both the decay constant and the mass are not very sensitive to the variation
of the microscopical parameters. The decay constant is f ∼ 1017 GeV while the mass m ∼ 10−24 eV.
Low mass values correspond to W0 ∼ 10−10, high values to W0 ∼ 10−2.

ED3/ED1 effects: If the axions acquire a mass via ED3/ED1-instanton contributions, the superpo-
tential receives leading order non-perturbative corrections given by

W = W0 +As e
−asTs +Ab e

−abTb + Ce−ab(Tb+iG) . (4.31)

These corrections tend to make the volume C4 axion and the C2 axion degenerate in mass. After LVS
and b axion stabilisation, which we assume to take place at ⟨b⟩ = 0, we are left with two ultralight axion
candidates, namely db and c. The field space metric associated to these fields is diagonal

Lkin = 1
2

[
3

2τ2
b

(∂db)2 − 6κb
τb

(∂c)2
]
, (4.32)
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Figure 4.6: Results for C2 and C4 axionic FDM from ED3/ED1-bound state instanton effects wrapping
the overall volume cycle in the Swiss-cheese geometry. The results are given in terms of the mass matrix
eigenvectors ϕ1 and ϕ2, eq. (4.39). Top: axion masses (left) and decay constants (right) as a function of
the total ultralight axionic DM fraction. Bottom-left: relative abundance of the axionic DM particles.
Bottom-right: eigenvectors components as a function of the overall volume V. At small volumes the
eigenvectors of the mass matrix ϕ1 and ϕ2 are mainly given by the C2 and C4 axion respectively.

while their scalar potential is given by

VF ⊃
abκW0

2τ2
b

e−abτb (Ab cos(abdb) + C cos [ab (db + c)]) . (4.33)

In terms of the canonically normalised fields it becomes

VF ⊃
abκW0

2τ2
b

e−abτb

(
Ab cos

(
d̂b
gdb

)
+ C cos

[(
d̂b
gdb

+ ĉ

gc

)])
, (4.34)

where

gdb =
√

3
2

1
abτb

, gc = 1
ab

√
6|κb|
τb

. (4.35)

As we will show below, we cannot identify gdb and gc with the decay constants, as the physical fields
are given by the mass matrix eigenvectors that may not be aligned with db and c. Let us consider for
simplicity the case where Ab = C. The minimum of the scalar potential is given by

d̂b
gdb

= (2k + 1)π , ĉ

gc
= 2mπ , m, k ∈ Z (4.36)
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so that the mass matrix in a neighbourhood of the minimum becomes

M = ΛM̄ = Λ

 2
g2
db

1
gdbgc

1
gdbgc

1
g2
c

 where Λ = abAbκW0

2τ2
b

e−abτb . (4.37)

The eigenvalues, λi, and eigenvectors, ϕi, of M̄ are

λ1 =
g2
db

+ 2g2
c −

√
g4
db

+ 4g4
c

2g2
db
g2
c

, λ2 =
g2
db

+ 2g2
c +

√
g4
db

+ 4g4
c

2g2
db
g2
c

(4.38)

ϕ1 = 1
|g−|

 2g2
c−g2

db
−
√
g4
c+4g4

db

2gcgdb
1

 , ϕ2 = 1
|g+|

 2g2
c−g2

db
+
√
g4
c+4g4

db

2gcgdb
1

 (4.39)

where |g±| = 1 +
(

2g2
c−g2

db
±
√
g4
c+4g4

db

2gcgdb

)2

is just a normalisation factor so that |ϕi| = 1. Using these
results, we can write the decay constants and the masses of the physical axions as

fϕi = 1√
λi
, m2

ϕi = Λλi . (4.40)

Here we note, that in the limit of large τb ∼ V2/3 we find that the lightest axion ϕ1 has fϕ1 ∼ gc ∼
√
gs/τb

and thus SED3fϕ1 ∼
√
gsτb confirming with our summary in Table 4.1. This implies a violation of certain

strong forms of the WGC.
Also in this case, we find that FDM particles naturally arise from string compactification only if the

overall volume of the extra dimensions is small. For simplicity, in this section we fix W0 = 1 while we let
Ab vary in Ab ∈ [10−4, 104]. The overall volumes which are compatible with having 100% of ultralight
axionic DM are V ∈ 200 ÷ 300. The results related to this setup are shown in Fig. 4.6. Despite the
relation ϕ1 ≡ c and ϕ2 ≡ d̂b only holds at V → ∞, the eigenvectors ϕ1 and ϕ2 are mainly given by
the C2 and C4 axion respectively. Although the shape of the potential in (4.34) may suggest some mass
degeneracy, the hierarchy in the mass scales and in the abundances of the two fields is apparent. While
the two decay constants are comparable and their values lie in the expected range ∼ 1016 GeV, the C2

axion is much lighter and more represented than the C4. The reason why in this context the lighter axion
can represent a higher fraction of DM is that the two fields acquire a mass through instanton corrections
that have a different nature. In this way, they do not share the same dependence of the mass and the
decay constant on the instanton action. The C2 axion field, that would represent the prominent FDM
candidate in this setup, exhibits a mass that is lighter than the original FDM estimate, mc < 10−22 eV.
In this section we are relying again on LVS moduli stabilisation, hence the same energy scales that we
have shown in the case of C4 axions in the Swiss-cheese geometry remain valid.

4.2.3 FDM from Thraxions: KKLT & LVS?

In the KKLT scenario, it is difficult to realise ultralight axions. In this case, axions get stabilised at
the same energy level as their moduli partners by the same non-perturbative effect to W . This is a
consequence of the fact that KKLT AdS vacuum is supersymmetric. Their masses then are generically
of the same order as the gravitino mass. Therefore, axions coming from KKLT moduli stabilisation
behave just like the axionic partner of the small-cycle volume moduli in LVS, they are too heavy to be
FDM candidates.
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However, there is a way out: we could have a viable FDM candidate if the underlying internal manifold
admits the presence of thraxions [85]. Thraxions occupy a special corner of the axion landscape as their
mass is exponentially suppressed by powers of the warp factor ω ∼ exp(−S/3) of the throat. At the
level of complex structure moduli stabilisation via fluxes of [47], their squared mass scales as [85]

m2

M2
P

∼ 4 gs e−2S
√

3S3/2 V2/3M2
, (4.41)

where V is the volume of the bulk CY and M is a flux quantum coming from the integral of a 3-form
field strength F3 over the A-type 3-cycle of the deformed side of the conifold transition. Note that here,
compared to the axions studied so far, the dependence on the instanton action S is enhanced by a factor
of 2, resulting in a bigger suppression of the mass. In principle, we should consider also the possibly
present effects of ED1 instantons coming from ED1-branes wrapping the 2-cycle, which contribute an
action

SED1 ∼

√
KM

gs
, (4.42)

where K is another flux quantum defined as the integral of the 3-form field strength H3 over the B-type
3-cycle. The effective instanton action generating the thraxion potential reads

Seff ∼
2πK
gsM

. (4.43)

Note, that ω ≪ 1 is ensured when K > gsM . The ED1-brane instanton effects come with a shorter
periodicity. Yet, they can remain subdominant in the thraxion scalar potential while satisfying the
WGC in its mild version. We should therefore require ED1-contributions to be suppressed compared
to the flux-backreaction induced thraxion scalar potential scale. This can be achieved by requiring the
following hierarchy among fluxes:

M ≳

√
K

Mgs
. (4.44)

In this way, we are satisfying a milder version of the WGC. The effective decay constant reads

feff ∼
3√gsM
2V1/3 MP , (4.45)

which is enhanced by a factor M compared to the standard f (cf. [85]). Hence, the WGC relation reads

Sefffeff ∼
3πK
√
gs V1/3MP . (4.46)

We can turn eq. (4.46) into an upper bound on Sefffeff by using the relation (4.44) among the flux
numbers. This brings the value displayed in Table 4.1, namely

Sefffeff ≲
3πM3√gs
V1/3 MP . (4.47)

The presence of no-scale breaking terms, which are necessary to stabilise the Kähler moduli sector,
generically induces cross terms between the thraxion and the moduli in the total potential, as we
discussed in Section 2.4. These new terms generate a mass for the thraxion which scales as exp(−S).
Hence, the mass loses the double suppression, and the thraxion potentially becomes slightly heavier
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Figure 4.7: Predictions for the thraxion mass and decay constant as functions of the FDM abundance.
All plots are drawn fixing M = 10: increasing M makes the thraxions lighter. We choose a conservative
approach which allows us to have a wider phenomenology, given that the flux distribution in the land-
scape is an open field of investigation. For LVS, the volume scales as V ∼ exp(1/gs), hence allowing us
to deal with only one free parameter (as we consider W0 ∼ O(1)).

than in (4.41). The mass squared now reads

m2

M2
P

∼ 4 gs e−S

35/4 S3/4 V2/3M2
|W0|
V4/3 for KKLT stabilisation ,

m2

M2
P

∼ 4 gs e−S

35/4 S3/4 V2/3M2
lnV
V3 for LVS stabilisation ,

(4.48)

where we distinguished between KKLT and LVS moduli stabilisation procedures. The decay constant
remains the same as in (4.45), as it is dominated by the physics in the UV. However, for the KKLT
case we should impose the consistency condition that ω3 > W 2

0 [2]. This relation comes from requiring
that gaugino condensation effects in the bulk CY do not become comparable with background fluxes at
the IR end of the throat [115]. Since for FDM the scalar potential should scale as ∼ 10−100 in Planck
units, we find an upper bound for |W0|, namely |W0| < 10−50. Even if we might be able to engineer
such values in the landscape, their presence is highly suppressed by the statistics of the flux vacua
distribution. Thus, we prefer to keep the discussion general and conclude that it is very unlikely that
thraxions in KKLT can behave as FDM.4

We display the results for thraxions as FDM candidates in LVS in Fig. 4.7. First, we point out that
we allowed the parameters to vary between the biggest and smallest values compatible with a consistent
compactification, regardless of FDM astrophysical constraint. Then, it is indeed remarkable that for a
certain parameter space we cover the FDM window. Hence, for the LVS case the thraxion is a viable
candidate. The main difference with the other harmonic axions is that now larger values for the total
volume V are preferred: in Fig. 4.7 we are plotting 102 ≤ V ≤ 5×108, where the upper bound corresponds
to the purple line. The fact that thraxions should rely on large volumes of the extra dimensions to lie in
the FDM range may turn out to be a drawback. As we will discuss in Sec. 4.3, large values of the CY
volume may be statistically less represented in the landscape of string vacua.

As explained in Section 2.4, in certain geometries it can happen that the cross terms with the Kähler
moduli vanish. Hence, the mass scales substantially again as in (4.41). We checked also these setups,
and we found that there is no appreciable difference with the results given in fig. 4.7.

We are now able to estimate the mass of the warped KK modes living inside the warped-throat
systems hosting the thraxion. Indeed, they will be heavier than the thraxion, as their masses scales

4Note that also in the cases where the six-fold warp factor suppression can be restored, the value of |W0| would anyway
remain too low to be fully trusted.
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linearly with the warp factor ω as

mw,KK

MP
∼ ω

R
∼ ω

V1/6
√
α′
, (4.49)

where R is the throat radius which can be rewritten in terms of the bulk CY volume and the parameter
α′. The KK masses change drastically from the double to the single suppression case, as we shall discuss
below. We can express mw,KK in terms of the variables of our setup as

m
(s,LVS)
w,KK ≃ 2× 10−3 g3/4

s e5/(9gs)
( m

10−22 eV

)2/3
K1/4M5/12 eV , (4.50a)

m
(d)
w,KK ≃ 304 g7/12

s

(
104

V

)5/9 ( m

10−22 eV

)1/3
K1/4M1/12 GeV , (4.50b)

where the index s stand for the single suppressed case. We can give a rough estimate of mw,KK for
10−22 eV ≤ m ≤ 10−19 eV by plugging the other parameters accordingly. Hence, we find

50 eV ≲ m
(s,LVS)
w,KK ≲ 300 eV ,

0.4 GeV ≲ m
(d,LVS)
w,KK ≲ 8 GeV .

(4.51)

Note that we expect these modes, which live at the IR ends of the thraxion-carrying multi-throat, to be
nearly completely sequestered. Hence, their interactions with standard model particles are suppressed.
At this point we would like to discuss an intriguing possibility regarding the warped KK modes arising
from the single-suppressed case. With the scaling found above, a warped KK mode might behave as
standard CDM. Therefore, in the single-suppression case we may envision a scenario where the thraxion
represents part of the total DM abundance as FDM, while the warped KK mode may constitute the
rest. We leave this possibility for future work.

In this setup, the bulk energy scales strongly depend on the moduli stabilisation prescription that
we use. In LVS we have that the bulk KK scale ranges in M bulk

KK ∈ 1012 ÷ 1017 GeV while the gravitino
mass is m3/2 ∈ 109 ÷ 1016 GeV. The constraints on inflation coming from isocurvature perturbations
bounds can be shown to be comparable to those related to C4 and C2 axions, implying low inflationary
scale and undetectable tensor modes.

Finally, we must point out that the results above rely on the internal manifold to be (almost) CY.
This is true when the throats in the multi-throat system are all symmetrical and host one thraxion
only: in this particular case the thraxion minimises at vanishing vacuum energy. If this symmetry is not
met by the system, the thraxion will not necessarily minimise at zero, and thus it could break the CY
condition. Moreover, the single-suppressed terms introduced by Kähler moduli stabilisation induce an
additional shift on the thraxion vacuum which pushes it further away from the vanishing VEV. This
tends to increase the amount of CY breaking and could lead also to a non-supersymmetric vacuum.
The fact that vacua at non-zero thraxion VEV break the CY condition implies that the use of the
effective 4D supergravity action derived by compactifying type IIB string theory on CY orientifolds is
questionable in this situation. However, we could be entitled to keep using the results based on the
CY-derived 4D EFT if the CY breaking does not change the EFT (too) drastically. This could happen,
for instance, if the thraxion VEV is sufficiently small, so that the manifold is ‘close to’ the original
conformal CY and the CY-based 4D supergravity approach still gives at least the qualitatively right
behaviour. Alternatively, the CY-breaking effect of a non-vanishing thraxion VEV may turn out to be
largely ‘decoupled’ from the bulk CY (leaving the largest part of the Laplacian eigenvalue spectrum
qualitatively unchanged compared to the actual CY) and stays sequestered in the throats.
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4.3 Overall predictions and comparison with experimental con-
straints

In what follows we wrap up all the results coming from the previous sections and we compare our
findings with current and future experimental constraints. As already mentioned, empirical bounds
coming from Lyman-α forest, black hole superradiance and ultra-faint dwarf galaxies that are DM
dominated put strong constraints on the vanilla FDM model, ruling out a non-negligible area of the
parameter space [215–222]. We sum up these bounds together with our results in Fig. 4.8. We show the
contributions to DM of our light axionic candidates in the mass spectrum [10−34, 10−10] eV. The DM
abundance in (4.8) applies only to axions in the mass range m ≳ 10−28 eV, i.e. to axions which oscillate
before matter-radiation equality. The abundance of the axions oscillating after equality (10−33 eV ≲

m ≲ 10−28 eV) and of those that have not yet begun to oscillate (m ≲ 10−33 eV) is taken from [239].
Our analysis was able to provide some sharp relations between the mass and the abundance of ultralight
ALPs coming from type IIB string theory. We found that non-negligible fractions of DM can only be
given by C2 and C4 ALPs or thraxions under the following conditions:

• C4: 4-form axions can be good FDM candidates in LVS stabilisation only if the ALPs are related
to cycles parametrising the overall volume. The overall extra-dimensions volume needs to be small
V ∈ 102 ÷ 104 and gs ∼ 0.2. We considered for simplicity the case where the ALP mass is given
by non-perturbative corrections coming from ED3-instanton and gaugino condensation on a stack
of N ≤ 10 branes. Results coming from higher numbers of branes do not show any significant
difference and are highly constrained by Eridanus-II and black hole superradiance bounds. These
particles can represent ∼10% of DM when their mass is m ∼ 10−22 eV.

• C2: they can represent FDM in LVS when there is non-vanishing intersection between the har-
monics C2 and the volume cycle in the extra dimensions. In LVS, if the C2 axions acquire a mass
through ED3/ED1 bound state instantons, these particles can represent nearly 50% of DM when
their mass is around 10−23 eV. In this case the overall extra-dimension volume needs to be small
V ∼ O(102). If, on the other hand, these axions gain mass due to pure ED1 effects, in LVS they can
represent 20% of DM if their mass ∼ 10−21 eV (for volumes V ∼ 104 ÷ 105), while in KKLT they
can represent up to 100% of DM for masses m ∼ 10−25 ÷ 10−24 eV (for volumes V ∼ 102 ÷ 103).
Therefore, we can conclude that C2 axions in KKLT are too light to be FDM.

• Thraxions: these particles can be FDM candidates in LVS only. Here the allowed parameter region
is wider compared to the previous cases. The CY volume can vary between V ∈ 102 ÷ 108 and
thus gs ∈ 0.05 ÷ 0.2. These ALPs can represent 20% of DM if m ∼ 10−21 eV and 100% of DM
when m ∈ 10−25 ÷ 10−23 eV.

Note that scaling the WGC relation up or down amounts to shifting a given axion abundance band
up or down.5 Generically, this implies that the bands coming from string axions satisfying but not
saturating the WGC constraint will place below the C4 constraint band in Fig. 4.8 (which also means,
most stringy axions except the ones considered in this work will give negligible FDM abundance). Given

5Consider an axion satisfying Sf = αMP with 0 < α < ∞. Given the axion mass in Eq. 4.6, we see that

S = −2 log(m) + O(log2(m), log(α)) ,

and the axion DM abundance in Eq. (4.8) satisfies

Ωϕh
2

0.112
∝ m1/2f2 = m1/2 α

2

S2 ∼
m1/2

(log(m))2 × α2
(

1 + O(log2(m), log(α))
)
.
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Figure 4.8: Mass and total DM abundance predictions for large cycles C4 axions (blue stripe), C2 axions
(light blue stripe for ED3/ED1 effects, dark/light green stripe for pure ED1 effects in LVS/KKLT), and
thraxions in LVS (sand stripe) stabilisation. These results are compared to the current experimental
bounds coming from CMB (solid grey area), Lyman-α forest (solid red), Eridanus II (solid pink area)
observations and with theoretical predictions based on Black Hole Superradiance (solid purple area).
Future experimental bounds coming from CMB (grey), Lyman-α forest detection (red), Square Kilo-
metre Array (brown) and Pulsar Timing Arrays (orange) are identified with solid lines. The reported
experimental bounds were adapted from the recent review on ultralight bosonic dark matter [222]. We
refer the reader to that text and to the references therein for more details and extended bibliography.
Note that axions moderately evading the WGC (thraxions and C2 axions) are those representing the
lightest FDM candidates.

the variety of possible ultralight axionic DM candidates, it is natural to ask whether some of them are
more probable than others. Recent works have been analysing the relation between the distribution of
string vacua, the axion masses and the decay constants [240, 241]. Despite this is far beyond the scope
of this discussion, we try to provide a very short description of how the number of vacua varies across
our FDM candidates. In LVS, the relation between the overall volume and the string coupling leads to
the following differential relation

dV ≃ −e
1/gs

g2
s

dgs . (4.52)

Given that the distribution of gs was shown to be uniform [240, 242] we can write dgs ∼ dN , N being
the number of flux vacua, so that

dN ∼ d (lnV)−1
. (4.53)

Instead, in KKLT the relation between the tree-level superpotential and the overall volume (considering
a single Kähler modulus for simplicity) leads to

dV ∼ − 3
2a
V1/3

W0
dW0 . (4.54)

The W0 distribution is assumed to be uniformly distributed in the complex plane so that d|W0|2 ∼
|W0|d|W0| ∼ dN for standard values of W0 [230] while it scales as |W0| ∼ e−1/gs for exponentially
suppressed values of W0 [108,243,244]. This implies that in KKLT

dN ∼ d
[
e−2aV2/3

]
for not too small |W0| ,
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dN ∼ d
[
V−2/3

]
for exponentially small |W0| .

The relation between the overall volume and the axion mass for large cycles C4 axions, C2 axions and
thraxions in KKLT scenario scales as m ∼ exp(−a2Vα), α = 1/3, 2/3. Instead, for thraxions in LVS it
reads m ∼ c/V11/6, c ∈ R+. This implies that the relation between the number of vacua and the mass
of the ALP is given by:

dN ∼ d
[
ln
(

2
a

ln(m−1)
)]−1

for C2/C4 axions in LVS ,

dN ∼ d
[
ln(m−1)

]−1 for thraxions in LVS ,

dN ∼ d
[
m4] for thraxions in KKLT ,

dN ∼ d
[

2
a

ln(m−1)
]−1

for thraxions in KKLT (W0 ∼ e−1/gs) .

where we listed only those results corresponding to viable FDM candidates. We can conclude that ALPs
relying on LVS stabilisation do not show a strongly preferred mass value, given that here the number
of vacua distribute at most logarithmic with respect to the thraxion mass. On the contrary, thraxions
living in the KKLT setup show a polynomial distribution for fairly large values of W0, stating that
higher thraxion masses are more likely to appear in the string landscape. This distribution then flattens
out towards a logarithmic distribution for exponentially suppressed W0 values.

We would like to stress that our results provide scaling relationships for the simple setups analysed
here. A more complete and general treatment of the problem as e.g. the number of moduli increases,
also considering different geometries, is well beyond the scope of this discussion. Nonetheless, we would
like to give a hint about why we believe our results do not substantially change as the complexity
of the extra dimensions increases. Thraxion fields depend on the CY geometry only via the overall
volume, therefore changing the compactification manifold do not significantly affect their result. On
the other hand, C4 axions can be good FDM candidates if and only if they are the axion partners
of Kähler moduli parametrising the overall volume V so that they nearly saturate the WCG bound.
Although it is not possible to write the most generic volume of a CY in terms of 4-cycles (the change
from 2-cycle variables to 4-cycle volumes enforced by the O7-orientifold action is in general not feasible
analytically), the number of moduli entering the volume with a positive sign must be finite. Furthermore,
the Kähler cone conditions tend to create a hierarchy between the volumes of the 2-cycles thus reducing
the number of very large cycles. Moreover, the presence of many moduli will have to lower the value of
Sf , as they increase the value of the total volume [245]. It is therefore quite reasonable to think that
as the complexity of the extra dimensions increases, the C4 axions are naturally moved towards lower
masses, away from the desired value to represent FDM that was shown to be exponentially sensitive to V.
Similar arguments also apply to the case of C2 coupled to C4 through ED3/ED1-instanton interactions.
In fact, this effect tends to make C4 and C2 axions almost degenerate in mass.

4.4 Discussion

In this chapter, we systematically dissect the long-standing lore that string axions can represent viable
FDM candidates. We focus on the string axiverse coming from type IIB string theory compactified
down to 4d on a CY orientifold with O3/O7-planes. After studying the properties of the whole axionic
spectrum, we restrict the discussion to those axions that can represent good FDM candidates. In simple
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setups without alignment, tuned parameters and other non-trivial dynamical effects, we find that this
request is closely related to the WGC for axions and implies that FDM saturates the bound Sf ∼MP .
The best candidates turn out to be C2, C4 closed string axions and thraxions.

LVS stabilisation naturally gives rise to ultralight C4 and C2 axions. Indeed, being the LVS vacuum
non-supersymmetric, these axions can be many orders of magnitude lighter than their volume modulus
partners. On the contrary, KKLT stabilisation can only give rise to ultralight C2 axions in presence
of ED1-instanton corrections but an accurate computation reveals that these particles are too light
to be FDM. Thraxions are axionic modes which stay ultralight regardless of the moduli stabilisation
prescription chosen, given that their mass scaling is mostly dominated by the warp factor of the multi-
throat systems they live in.

Our results show that string axions can exist in the FDM window allowed by experiments, but this
translates into requiring specific properties of the compactification. As mentioned before, for this aim
LVS is the preferred stabilisation procedure. For the harmonic zero mode C2 and C4 axions to fit the
FDM window, the results suggest that the CY volume should be ‘smallish’ (with respect to LVS stan-
dard volumes). The masses and decay constants are basically insensitive to all the other microscopical
parameters, making our predictions quite sharp. We also checked the scenario where more C4 ultralight
axions are present by considering a fibred CY. While in general cases heavier axions represent consider-
ably higher DM fractions, in case of isotropic compactifications if we choose similar internal parameters
for all the axions, i.e. same rank of gauge group and prefactor coming from complex structure moduli
stabilisation, we end up having multiple FDM particles. In this specific case, the relative abundance of
the FDM particles is determined by their Sf value. Axions that come closer to saturating the WGC
bound will represent higher percentages of DM.

For the C2 axions, the situation is more involved. After checking many possibilities which can give
rise to ultralight masses for these modes, we find that the only viable FDM scenarios are the case of
a pure ED1 or an ED3/ED1-bound state instanton wrapping the cycle supporting the CY volume. In
the former case we have that a FDM C2 axion is compatible with volumes V ∼ 104, implying that
an eventual DM contribution coming from the volume axion would be suppressed, this particle being
parametrically lighter (potentially constituting dark radiation). In the case of ED3/ED1 effects, C2

axions can be ultralight only in presence of very light C4 axions. Due to different instanton properties,
this setup allows for a moderate mass hierarchy such that here the heavier particle, i.e. the C4 axion,
constitutes the subdominant FDM fraction in the DM halo.

Then, we analyse the predictions for the masses and decay constants as a function of the DM
abundance for the thraxions. These axionic modes allow for a wider range of masses, making them
easier to fit the FDM window. We study both Kähler moduli stabilisation scenarios (KKLT and LVS),
as well as the two possible regimes arising there: i) the thraxion mass keeps its double-suppression
from warping even after Kähler moduli stabilisation; or ii) it receives corrections from Kähler moduli
stabilisation which cut the power of the warp factors suppressing the thraxion mass by half. Surprisingly,
our results for thraxion FDM partially decouple from these details, but show that only in LVS thraxions
can behave as FDM. The most prominent requirement is that in LVS the volume of the bulk CY should
be rather big, as opposite to the cases discussed previously. A few caveats are in order concerning our
results for thraxion FDM. Hence, while they appear to span a large portion of the parameter space in
Fig. 4.8, we leave questions as to their generality for the future.

Finally, we compared our results with current astrophysical and experimental bounds. For each
scenario analysed, we discussed the relation between our predictions and the exclusion bands. Moreover,
we provided a preliminary discussion of the vacuum distribution for the mass of such axions in the
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string landscape. The results show that our FDM candidates from String Theory have a very flat mass
distribution for almost all cases studied. It is particularly exciting that our predictions show overlap
with the regions in reach of future experiments. Hence, if at some point axions were to be found at
these mass scales, we may be able to learn from the data about the type of axion detected, as well as
its couplings, and potentially even something about their underlying microscopic theory.

Given this comparison, we wish to comment in passing on a further observation. Take a final look
at the FDM abundance ΩFDM ∼

√
mϕf

2θ2 ∼ e−S/4f3/2θ2. From this expression we see that for all
axions with f > H during inflation, which get populated via the misalignment mechanism ⟨θ2⟩ ∼ π2/3,
generically heavier axions acquiring their mass from instantons roughly saturating the WGC bound
Sf ≲ MP dominate the DM content. An exception arises if e.g. two different axions acquire masses
such that the heavier of the two acquires its mass from an instanton which does not saturate the WGC
(Sf < MP ), while the instanton giving mass to the lighter axion saturates it (Sf ≃ MP ). A simple
example for the generic case would be e.g. the two C4 axions from the large and the blow-up 4-cycle of a
2-moduli LVS compactification, while the exception is seen e.g. for the case of the C4-C2 2-axion system
arising from the ED3-ED1 bound state instanton on the volume 4-cycle. From this, it becomes clear
that for the generic case the heavier axion states would completely dominate the dark matter content.
An eventual detection of a sizable FDM fraction would therefore imply one of two possible predictions
for the high-scale setup of a UV model: i) all the heavier WGC saturating axion states have m > H

during inflation, and there is a desert of axion states between the FDM mass scale and the inflationary
H. ii) Avoiding the desert requires either fast decay of the heavy m < H axion states significantly before
BBN, or an anthropically selected very small heavy axion misalignment angle. Hence, a detection of
FDM would put serious constraints on the structure of the allowed UV completion.



Chapter 5

Conclusions and Outlook

String Theory is the best candidate we have for a theory of Quantum Gravity. So far, it has proven to
be a solid framework from which we can attempt to explain the phenomena that do not find a solution
in the Standard Model alone. In this thesis, we explored its phenomenology, in order to understand both
how we could detect string-theoretical signatures in the sky, and also what consequences experimental
bounds would imply for the UV-completed theory. For this purpose, we provided a detailed comparison
between the predicted parameter space for ultralight axions coming from type IIB string theory and
the current astrophysical bounds on fuzzy dark matter [1]. Most interestingly, it turns out that a large
portion of this space will be inspected by the next generation of experiments. Indeed, this is very
exciting and fascinating, not only because a possible detection would favour String Theory as the right
UV theory, but also because it would give us hints to understand the right way to connect String Theory
with our world. By this we mean in particular the features that the right compactification should have,
and how the supersymmetric partners of the axions should be stabilised.

To widen the possibilities of this search, we initiated the systematics for the phenomenology of
thraxions [2, 85], studying how they fit in the low-energy EFT when all moduli receive a potential.
These axionic modes are even lighter than closed string axions, allowing for new features in the axiverse
phenomenology. So far, we have inspected how they behave as dark matter candidates [1], but given
their unique properties they could serve as dark radiation or dark energy as well.

String Theory also plays a crucial role during the early history of our universe, where Quantum
Gravity effects kick in. In particular, it should be able to explain the accelerated expansion the uni-
verse underwent some fractions of seconds after the initial singularity. While we have evidence for this
inflationary epoch, we lack the precise model (and in particular the field) responsible for such effect.
Axions have long been pointed out as good inflaton candidates because of their shift symmetry, which
allows for prolonged slow-roll inflation while protecting the axion mass from radiative corrections. In
this spirit, we have proposed a new model of small-field axion inflation [4] which builds up from Linde’s
original proposal called hybrid inflation. Moreover, we have pointed out how the topological data of
the compactification space can help create a good inflationary trajectory, as well as possibly a de Sitter
uplift of AdS vacua [3]. This is based on the winding inflation model of [189,202], where the inflationary
direction is realised along a winding trajectory in the field space of two axionic fields originating from the
complex structure moduli sector. It would be of great interest to build an explicit model in the context
of LVS stabilisation [61], where an inflationary sector together with the uplift to positive cosmological
constant can be realised following [3].

Recently, the Swampland program has put constraints on large-field models of inflation (and also on
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the possibility to derive de Sitter from String Theory at all). These conjectures also apply to axions,
and one of their major consequences is the restriction of the decay constant to sub-Planckian values.
However, there are some ways in which (some of) these conjectures can be evaded, as we argue in [1,2],
by relying on the effective decay constant. Indeed, a sub-Planckian decay constant would limit the
phenomenology of axions, hence parametrically extending it via e.g. flux-enhancement or monodromy
gives more space for model building. For example, a future detection of axions evading the strong forms
of these conjectures would confirm experimentally that to have a UV-completable EFT, one needs the
presence of at least one axion satisfying them.

Complementary to this, we propose a lower bound on the decay constant based on the Festina Lente
bound [80, 81], which depends on the Hubble parameter and is valid in a quasi-de Sitter background,
namely during inflation and at the present time. Our bound shows how the decay constant of a funda-
mental axion can never vanish in a consistent EFT, supporting existing arguments based on distances
in moduli spaces [11]. Moreover, our result has consequences on inflationary observables of some axion
inflation models, as e.g. axion monodromy inflation.

We conclude by stressing how important it is to keep proposing connections between String Theory
and observational signatures. The recent detection of gravitational waves opened up a brand-new window
that is going to be intensively explored in the next years, and Stage 4 of ground based CMB surveys as
well as the LiteBird satellite will allow studying in great details the early history of our universe. It is
an exciting time and a huge opportunity for string phenomenology. Moreover, the swampland program
is helping understand the most plausible ways to carry out UV-completable model building. I believe
that in the near future, astrophysical data and theoretical motivations will converge and point out the
best UV-completed candidate theory for our universe. I am looking forward to that moment.
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Appendix A

Complete Intersection Calabi-Yaus

In this appendix, we firstly review some relevant facts about complete intersection Calabi-Yau manifolds
in an ambient space A given by the product of projective spaces Pn1× ...× Pns [246,247]. A projective
space of dimC = n is defined as

CPn ≃ Cn+1\ {0}
[z1, ..., zn+1] ∼ λ [z1, ..., zn+1] , (A.1)

where z1, ..., zn+1 are n+1 homogeneous coordinates of Cn+1 and λ ∈ C⋆. The quotient is an equivalence
relation which can be used to rescale the homogeneous coordinates and set them to a certain value. This
means that in a given patch Ui ≃ {zi ̸= 0}, i = 1, ..., n+ 1 we can perform the rescaling

[z1, ..., zi−1, zi, zi+1, ..., zn+1] ∼
[
z1

zi
, ...,

zi−1

zi
, 1, zi+1

zi
, ...,

zn+1

zi

]
= [x1, ..., xn] . (A.2)

The xi coordinates on the r.h.s. are called affine coordinates. The projective space is equipped with the
Fubini-Study metric, which is defined as

gij̄ = 1
(1 + |x|2)2


1 + |x|2 − |x1|2 −x̄1x2 · · · −x̄1xn

−x̄2x1 1 + |x|2 − |x2|2 · · · −x̄2xn
...

... . . . ...
−x̄nx1 −x̄nx2 · · · 1 + |x|2 − |xn|2

 , (A.3)

where we have set the Kähler modulus to one. Note that for CPn, dJ = 0, that is the projective space is
Kähler. This can be proven by considering a patch, computing the associated Fubini-Study metric and
applying the exterior derivative to J , remembering that d= ∂ + ∂̄ since the Kähler form is a complex
one. Then it goes that if for one patch we find that dJ = 0, then this is true for every other patch.

An useful property of the Fubini-Study metric is that, in this normalization, the integral over the
manifoldM of the Käler form J is always equal to one. Therefore, computing the volume of the manifold
becomes rather easy, as it is defined as

V =
∫

M
J ∧ ... ∧ J. (A.4)

We saw that projective spaces are Kähler, now we want to understand whether they can be CY or
not. One requisite for a manifold to be CY is to have vanishing first Chern class. For this purpose, we
should first introduce the definition of Chern class for a given manifolds. The k-th Chern class ck(M)

110



111

is an element of the cohomology Hk
d (M) defined from the expansion of the total Chern class

c(M) = 1 +
∑
j

cj(M) = det(1 +R) = 1 + trR+ tr(R∧R− 2(trR)2) + ... (A.5)

where R is the matrix valued curvature 2-form R = Ri
jkl̄

dxk∧dx̄l̄. It is direct to see that if the manifold
X has vanishing Ricci tensor, then the first Chern class, being the trace of the curvature 2-form, also
vanishes. The other direction, that is if a manifold has vanishing first Chern class then it admits a
Ricci-flat metric, is ensured by Yau’s theorem. This is the point that is useful for us, because one can
show that for CPn, the Chern class is given by

c (CPn) = (1 + J)n+1 = 1 + (n+ 1) J + ... (A.6)

where the sum goes on until the n-th form. From (A.6) one can directly see that for CPn the first Chern
class never vanishes. Then, a projective space for any n is never a CY.

Before moving forward and studying how to build proper CY manifolds starting from projective
spaces, let us introduce another useful definition. First, by top Chern class we refer to the highest class
that one can have on a given manifold, so that it has the maximum dimension a form can have on that
manifold. Thus, if we integrate the top Chern class, we have to do it over the whole manifold. This in
turn gives a topological invariant called the Euler characteristic

χ (Mn) =
∫
Mn

cn (M) . (A.7)

Given the ambient space A =
∏
i Pni , where i = 1, . . . , s, a compact Kähler 3-fold can be constructed

as the zero-locus of k homogeneous polynomials pj (z) in A, subject to the constraint

s∑
i=1

ni − k = 3 . (A.8)

Each pj is characterized by its multi-degree qij , where j = 1, . . . , k, which specifies the degree in the
homogeneous coordinates of each Pni . A CY constructed in this way is referred to as Complete Inter-
section Calabi-Yau, or CICY. A convenient way to encode the above information is by means of the
configuration matrix 

Pn1 q1
1 · · · q1

k

Pn2 q2
1 · · · q2

k

...
... . . . ...

Pns qs1 · · · qsk

 . (A.9)

If we require the zero-locus of the pj to be a CY manifold, the vanishing condition for the first Chern
class imposes

ni + 1 =
k∑
j=1

qij ∀ i = 1, ...s . (A.10)

Let X be a CICY with ambient space A. A configuration matrix representing a CY X for which
h1,1(X) = h1,1(A) is said to be favourable. When this happens, all the divisors of the CICY X descend
directly from the ones of the ambient space A.

One could think that the construction outlined above leads to infinitely many topologically distinct
CYs, as one could in principle increase both the number of Pni factors and their dimensions, and add
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more equations accordingly. However, this is false. It was shown [248] that all topologically distinct
CYs realizable with this construction can be obtained from ambient spaces for which both the number
s of Pni factors and the size of the ni is bounded from above. Therefore, the full set of topologically
distinct CICYs can be obtained from a set of finitely many configuration matrices. A database of 7890
configuration matrices was famously built in [228] and it was shown that such a database is complete, in
the sense that any other configuration matrix not present in the database will describe a CY topologically
equivalent to the one already present in the list.

However, not all the 7890 configuration matrices in the old CICY database are favourable, just 4896
of them are. Favorability is not an intrinsic property of the CY X itself, but rather depends on the
choice of the configuration matrix used to describe X. In the work of [249] the old CICY database
was improved: for almost all non-favourable configuration matrices in the old CICY database, a new
configuration matrix representing the same CY was found, such that the new configuration matrix is
now favourable. This was achieved by chains of ineffective splittings, performed on the old configuration
matrix [249]. The number of favourable configurations was then pushed up to 7842. The remaining
CICYs, which still does not admit a favourable configuration matrix, admit nevertheless a completely
different description as a single hypersurface in a product of two del Pezzo surfaces, dPm × dPn and
a theorem by Kollár [250] guarantees that such description is favourable. Furthermore, out of the 7842
favourable CICYs, 22 of them are either 6-tori, or direct products of K3 and 2-tori. A new database was
created by keeping only the 7820 favourable and non-product CICYs.

New Manifolds from Splitting Matrices: In the following, we will briefly describe how to get
new configuration matrices from old ones via chains of contractions and splittings. We can exchange
one configuration matrix with another by means of the determinant splitting/contracting, which can be
summarized as [

Pn 1 1 · · · 1 0
X u1 u2 · · · un+1 M

]
←→

[
X

∑n+1
a=1 ua M

]
, (A.11)

where X is an arbitrary product of projective factors, ua are column vectors with as many entries as
the factors in X, and M is a matrix. Let us call the manifold on the r.h.s.M with Euler number χ and
the manifold on the l.h.s. M̃ with Euler number χ̃. One can show that after splitting a configuration
matrix, we have a relation between their Euler numbers which reads |χ̃| ≤ |χ|. When the two Euler
numbers are equal, we have an ineffective splitting, that is M and M̃ are actually the same manifold.
Instead, when after the splitting of a configuration matrix we find that |χ̃| < |χ|, we made an effective
splitting, which in turn means thatM and M̃ are topologically district manifolds. This was recognized
to be a conifold transition between the two manifolds [86, 87, 251]. This is the reason why |χ̃| is always
smaller than |χ|: M̃ is the resolved side of the conifold transition, during which some 3-cycles of M
have shrinken and were replaced by 2-cycles.

Redundancies in the CICYs: A natural question that can be asked is when two CY manifolds
are the same. In this discussion, every time we say that two CY are the same, we mean that they are
diffeomorphic as real manifolds. A famous theorem by Wall [252] implies that two simply-connected,
closed Calabi-Yau 3-folds X and Y are isomorphic as real manifolds, if

1. The Hodge numbers agree, namely h1,1(X)=h1,1(Y ) and h2,1(X)=h2,1(Y ).

2. There exists a choice of base in H4(X,Z) given by Di, i = 1, . . . h1,1(X), and a choice of base



113

in H4(Y,Z) given by D̂i, i = 1, . . . h1,1(Y ) such that
∫
Di
c2(X) =

∫
D̂i
c2(Y ), where c2(X) (resp

c2(Y )) is the second Chern class of (the tangent bundle) of X (resp Y ).

3. With the same choice of base of the point above for H4(X,Z) and H4(Y,Z) the triple intersection
numbers agree, namely

∫
X
Di ·Dj ·Dk =

∫
Y
D̂i · D̂j · D̂k, ∀i, j, k = 1, . . . h1,1(X) = h1,1(Y ).

Clearly, if two real manifolds are diffeomorphic, then this implies that also they will be homeomorphic
as topological spaces, therefore topologically equivalent.

It is worth stressing that the choice of a configuration matrix for a given CICY X is not unique, in
the sense of Wall’s theorem stated above. The same CY manifold X can be realized in multiple ways
by different configuration matrices. Nevertheless, different choices of the configuration matrix for the
same CICY X can make more explicit (or hide) different features of the CY itself. For example, the
number of complex structure deformations visible as versal deformations of the polynomial equations,
and the fibrations trivially visible from the configuration matrices, both depend on the choice of the
configuration matrix for X.

The new CICY database, despite being maximally favourabilised, is still not a list of unique Calabi-
Yau manifolds. It is therefore important to check for redundancies, to provide for a minimal list of
topologically distinct and favourable CICYs. On the other hand, the existence of redundancies in the
original CICY database was realized many years ago [35,87,253,254], and many of them were identified
in [255], within the subset of the 4896 favourable CICYs of the old database. In such case, the check
of the redundancies was done using Wall’s theorem [252]: the authors of [255] checked whether given
two CICYs X and Y with identical Hodge numbers, they could find a change of basis in H4(X,Z) and
H4(Y,Z) such that also the second Chern classes and triple intersection numbers agree. In particular,
they focused on the change of variables given by permutations of the divisors.1

We perform a similar scan within the new CICY database. Given two CICYs with different configu-
ration matrices, the first trivial check is to look at their Hodge numbers. If they agree, we can check if
a permutation of the basis elements of H4(X,Z) could exist, such that the second Chern class and the
triple intersection numbers of X computed in the new basis agree with those of Y . We find that there
are three qualitatively distinct cases:

1. The CICYs that already have Hodge numbers equal, (the integrals of) c2 (over the base elements
of H4) equal, and also the intersection numbers equal. No change of basis is needed, and Wall’s
theorem trivially applies.

2. The CICYs that have all Hodge numbers equal and (the integrals of) c2 (over the base elements
of H4) equal. The triple intersection numbers can be made equal with a permutation of the basis
elements of H4 that leaves (the integrals of) c2 (over the basis elements of H4) unchanged.

3. Finally, the CICYs that have only Hodge numbers equal, but both (the integrals of) c2 (over the
basis elements of H4) and the intersection numbers can be made equal with a permutation of the
basis elements of H4. These are the most general set.

We list the tuples of redundant CICYs, divided by h̃1,1, in appendix C of [3]. In such a list, each
parenthesis contains all CICYs that are redundant by a permutation of the basis elements in H4. For

1An alternative way to select redundant CICYs was also proposed in [256]. There, not only permutations of the basis
elements of H4(X,Z) and H4(Y,Z) were considered, but also linear transformations with rational coefficients. This allowed
the authors to claim the existence of some other redundancies, by finding a suitable new basis for H4(X,Q) and H4(Y,Q),
which would now match the triple intersection number and second Chern class. However, it is not clear to us why Wall’s
theorem immediately applies in this case. For this reason, we decided to stick to linear changes of basis with integer
coefficients, and only work with integral cohomology. Even less generally, we restrict ourselves to looking for permutations
of the divisors.
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Figure A.1: Distribution of redundant CICYs per h1,1 normalized for the number of favourable CICYs
at fixed h1,1.

some of the CICYs in the cases above, we also give the explicit change of basis matrix. The list of such
matrices can be accessed at link.

We found all redundancies up to h1,1 = 13. We have not been able to check the most general
transformations for the CICYs with h1,1 = 15 (which are 15) and for those with (h1,1, h̃2,1) = (14, 16)
(which are 14). However, even for h1,1 = 14, 15 we managed to find the right change of basis also for
these CICYs belonging to the case 2 above.

We find around 536 equivalence classes involving a total of 1169 non-product favourable CICYs.
This can be compared with the number of equivalence classes found in [255] and in [256]. We find a
larger number of redundancies, essentially for two reasons. Firstly, we consider the new CICY database,
while in [255] the authors perform this scan on the old CICY database. Since more CICYs Xi are now
favourable, it is easier to study change of basis in H4(Xi), since now H4(Xi) ≃ H4(Ai). Secondly, we
push our scan to h1,1 = 13 while the authors of [256] stopped at h1,1 = 6.Therefore, we conclude that at
least 6651 CICYs are topologically distinct, and thus could lead to phenomenologically distinct models.

Normalizing the number of redundant non-product favourable CICYs per h1,1 by the number of total
non-product favourable CICYs with the same h1,1 we get the percentage of redundant CICYs in the plot
shown in Figure A.1. It is very tempting to speculate that for some reasons the percentage number of
redundant CICYs per h1,1 lies on a parabola with minimum at h1,1 = 8. This is also beautifully consistent
with the following fact. Right now we are only considering redundancies in the set of favourable CICYs,
however, for h1,1 = 19 there are 15 non-favourable CICYs which are well known to be all redundant, and
all of them are the Schoen manifold [249]. Therefore, the percentage of redundant CICYs at h1,1 = 19 is
100%. Adding to Figure A.1 this extra case, we would have a point that exactly lies on the interpolating
parabola found from the points in the plot.

We stress the fact that for h1,1 = 15 we have not checked all possible combinations to find redundan-
cies. It is possible that there are more redundant CICYs than the 5 we have found. Looking at Figure A.1,
the interpolation of the shape of the distribution would suggest that there might be over 50% of the
CICYs with h1,1 = 15 which are redundant. There are also 14 CICYs with (h1,1, h2,1) = (14, 16) that
have not been scanned completely for a generic transformation (i.e. the one belonging to the case 3 in
the previous list), but, using the same argument of the interpolation, we may expect that there are no
more redundancies in that sector.

https://www.desy.de/~westphal/GV_CICY_webpage/GVInvariants.html
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It is also possible that some more redundancies can be found by allowing for a more general linear
change of base, and not just permutations. This could maybe improve the situation of points at h1,1 =
2, 13, 15 in Figure A.1. However, it is also perfectly possible that there is no actual distribution of the
redundancies and the percentage is smaller than the one naively expected by fitting the data with a
parabola.



Appendix B

Concrete Calabi-Yau Orientifolds
Supporting Thraxions

In this appendix, we discuss explicit examples of CY orientifolds which support multi-throat systems
hosting thraxions. We work with the set of manifolds known as CICYs [228]. For a review, see appendix A.
In the following, we restrict ourselves to work with favourable CICYs only.

An explicit database listing all the Z2 actions on CICY manifolds which admit fixed loci of codimen-
sion 1 and 3, and that descend from involutions of A was produced in [97]. One important comment
is that at a generic point in complex structure moduli space, a CICY will not admit any geometric Z2

symmetry which could be used in order to define an orientifold projection. However, at special points
in complex structure moduli space, such symmetry exists. Due to this complex structure tuning, Z2

symmetric CYs will generically contain conifold singularities that lie on the fixed locus of the Z2 action.
Being located on top of an O-plane, these singularities cannot be deformed in a way that is compatible
with the Z2 action. However, they can be resolved, just as the usual conifold: they can be resolved
in two different ways, related by a flop. After the orientifold projection, these singularities are called
frozen conifold singularities. We stress that this feature is extremely generic: in Figure B.1 we show the
percentage of CICY orientifolds for which there exists at least one frozen conifold with respect to all
CICY orientifolds, as a function of the Hodge numbers.

We wish now to comment about some aspects of the orientifolds admitting frozen conifolds. From
Figure B.1 we see clearly that, regardless the presence of thraxions, only O(1)% of all orientifolds are
free of frozen conifolds. While the CICYs comprise only a comparatively small set of CY manifolds, this
outcome raises the possibility that a sizable fraction of all O7-orientifolds of CYs may contain frozen
conifolds.

If this is the case, this poses the question of understanding in more details the resolution branches
of the frozen conifold singularities. This is especially important for phenomenological applications. By
entering the resolved phase of a frozen conifold singularity, h1,1

+ increases by ∆h1,1
+,f.c.. Thus, new divisors

will be present in the resolved phase, compared to the divisors of the double-cover, i.e. the original CY
before the orientifold quotient is taken. In turn, this implies that the simple splitting of the H1,1(CY)-
eigenspace of the parent CY into Z2-even and odd subspaces to compute the purely even sector and even-
odd-odd sector intersection numbers will generically fail to be correct in the resolved phase. Furthermore,
such computation is of dubious meaning at the singular point, as the Dolbeault cohomology is not well-
defined for singular varieties. Hence, achieving an understanding of the structure and ubiquity of singular
CY orientifolds characterized by the presence of frozen conifolds, as well as their resolutions, forms a
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Figure B.1: Percentage of orientifolds admitting frozen conifold points, with respect of the total number
of orientifolds, distributed by h1,1 and h2,1. We remark that we are only analyzing favorable CICYs,
therefore the cutoff at h1,1 = 15.

pressing task for the future.
We would like now to bring the attention back to the set of CICY orientifolds constructed in [97]. A

subset of them consists of geometries hosting multi-conifolds and therefore thraxions. We immediately
stress that these multi-conifolds are not the frozen ones discussed in the previous paragraph, as thraxions
are defined in the deformed phase. We will explain this point in more details later. In order for a CICY
orientifold to allow for the presence of thraxions, two conditions must be satisfied:

1. In the double cover, it must be possible to cross a conifold transition locus in a way that preserves
the Z2 symmetry that one uses to define the orientifold. As a consequence, the resolved side must
have h1,1

+ larger than the deformed side.

2. The set of axions that appears in the resolved side must not be fully projected out by the O7-
orientifold projection. This means that h1,1

− must also increase in the resolved side.

The two conditions together imply the following: at the N = 2 level, there are two sets of multi-conifolds,
each one with the same number of conifold points in it, the same number of homology relations, and
the orientifold swaps them. We note that, despite the multi-conifolds do not lie on the Z2 fixed locus, in
principle other sets of conifold singularities can, and generically will, lie on top of the orientifold plane.
Therefore, resulting in frozen conifolds. We depict this in Figure B.2.

Let M be the set of 319, 521 thraxions transitions. With this we mean couples of resolved and
deformed geometries associated with a conifold transition used to define a thraxion. Equivalently,M is
the set of all the possible multi-throat systems that can appear in the CICY orientifold database. We
note that it is possible that the same deformed side of the CY orientifold has more than one multi-throat,
and therefore has more than one resolved phase. We define three interesting subsets of M as follows.
First, we consider a set M1 of multi-throats such that the position and number of O3/O7-planes is
the same both in the deformed phase and the resolved one, related by the conifold transition used to
define the thraxions themselves. We find that M1 consists of 11, 533 elements. In addition to this, we
further restrict to orientifolds that do not have frozen conifolds. This leaves us with a subsetM2 ⊂M1

of 1, 279 examples satisfying both conditions. Finally, we consider only orientifolds that do admit both
O7-planes and O3-planes. This generates a subset M3 ⊂M2 ⊂M1 of 57 examples satisfying all three
conditions.
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Orientifold
plane

^ ^

Figure B.2: A representation of the orientifold projection acting on a CY manifold with two double
throats. The blue dashed line represent the fixed locus of the projection. The double throats are mapped
to each other by the Z2 symmetry. Snowflakes depict frozen conifolds.

The reason why we restrict to these subsets is the following. For CY orientifolds inM\M1 the number
and position of orientifold planes varies in a discontinuous way when crossing the transition locus. This
means that in the proximity of the transition locus, some O-planes are very close to either merging or
splitting. This implies that some extra degrees of freedom become very light in such a region of the
moduli space. We leave the study of this very interesting situation for future work. For CY orientifolds
inM1 \M2 the number and position of O-planes in the two sides of the transition agree, but there are
frozen conifold points on at least one of the O7-planes. While these models are in principle viable for
phenomenology, the presence of frozen conifolds makes it hard to compute topological quantities needed
for writing the low energy effective action, as for example the triple intersection numbers. Finally, CY
orientifolds inM2 \M3 are free of the two possible problems remarked before. However, all orientifolds
in this set have either no O7-planes, or no O3-planes. Therefore, using them for phenomenology can be
challenging or also completely impossible.

We compiled a new database, listing all the couples of deformed/resolved CICY orientifolds contained
inM2. This database is explicitly available at this link. Every element of the database takes the following
form:

{{Resolved CICY info} , {Deformed CICY info} ,# thraxions,# Conifold pts.} . (B.1)

The last two entries are the number of thraxions and the number of conifold points, computed as:

# thraxions :=
∣∣∣∆h1,1

−

∣∣∣ , # Conifold pts. := 1
4 |∆χ| , (B.2)

with χ the Euler number of the two CYs. The first two components contain some useful information
about the orientifold:

1. The number of the CICY following the numeration given in [249].

2. h1,1 and h2,1 of the CICY before the orientifold action.

3. A configuration matrix of the CICY.

4. The triple intersection polynomial of the CICY.1

5. The number of the orientifold given in [97].
1This is computed with respect to a divisor basis given by the pullbacks of the hyperplane classes of the various Pni ∈ A.

https://www.desy.de/~westphal/orientifold_webpage/cicy_thraxions.html
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6. The rows in the configuration matrix that have to be swapped in order to define the thraxion
transition.

7. h1,1
− and h2,1

− of the CICY orientifold.

8. The triple intersection polynomial of the CICY orientifold computed as in [236].

9. The data relative to the number of O7-planes, number of O3-planes, number of frozen conifolds
on each O7-plane, following the notation of [97].
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Figure B.3: Number of CICY orientifolds in M2 for given number of thraxions. The different colors
show the presence of both O7/O3-planes, or only O7- or O3-planes.

Essentially, by construction, for every multi-throat system there is just one thraxion.2 However,
it does happen that the same CICY orientifold admits multiple multi-throats, therefore allowing for
multiple thraxions, still one per multi-throat system. We display in figure B.3 the number of multi-
throats (and therefore the number of thraxions) within the database M2 discussed above.

If we instead consider the setM1, we find a much larger number of orientifolds supporting thraxions.
We report this in fig. B.4.

Note that since in every multi-throat system there is a single homology relation giving rise to a
single thraxion, when we study the moduli stabilisation problem we are in the situation described in
Section 2.4.4. Therefore, it is possible to argue that with a certain amount of tuning of the fluxes, the
thraxion potential does not receive order O(ε) contributions from the stabilisation of the Kähler moduli.
Such needed tuning involves a democratic distribution of the fluxes in the throats and as a result the
thraxion mass is still six-times-warped suppressed. However, if the number of throats in a given multi-
throat system is equal to 2, the tuning of the fluxes is minimal. For this reason, in Figure B.5 we show
the multi-throats inM2 for a given number of throats. In the database we provide, there are, then, 110
multi-throats that have only 2 conifold points. We leave for further study the question of which exact
flux choice must be made so that the discussion in Section 2.4.4 can be realized.

2We stress that this needs not to be the case in general, it is just an artefact of the way in which thraxions transitions
were discovered in [97].
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Appendix C

A database of GV invariants for
CICYs

In this appendix, we recall the usual technique to compute the genus 0 GV invariants of Calabi-Yau
threefolds, as explained in [257, 258]. By using this technique, we created a database of GV invariants
for the set of favourable CICYs, searching for compactification spaces showing the required hierarchy
of invariants to make viable the models of Section 3.5. Suppose we want to compute the GV invariants
of a given CICY X̃. Let ti, i = 1, . . . h̃1,1, be the number of Kähler moduli of such manifold. By mirror
symmetry, there will exist a mirror manifold X with complex structure moduli zi, i = 1, . . . , h2,1 = h̃1,1.1

The main idea of the algorithm will be to explicitly compute the period vector in the mirror side X, and
then from this extract the quantum corrected triple intersection numbers of the CICY X̃. The general
expression for the configuration matrix of X̃ is given in (A.9). From the generators of the Mori cone of
the mirror manifold X, it is possible to define vectors l(i), given by

l(i) =
(
−q(i)

1 , . . .− q(i)
k ; . . . , 0, 1, . . . , 1, 0, . . .

)
≡
({
l
(i)
0j

}
;
{
l(i)r

})
, (C.1)

where i = 1, . . . , h2,1 and j = 1, . . . , k and the number of 1’s in
{
l
(i)
r

}
are equal to ni + 1 at a position

corresponding to the Pni that has been considered. The period vector Π(z) for X is a vector with
2h2,1 + 2 components. The first component, also called the fundamental period, is given by

w0(z) =
∑
n1≥0

. . .
∑

nh2,1 ≥0
c(n)

h2,1∏
i=1

znii , where c(n) =

∏
j

Γ

1−
h2,1∑
s=1

l
(s)
0j ns


∏
i

Γ

1 +
h2,1∑
s=1

l
(s)
i ns

 . (C.2)

Note in particular that it is possible to write down the fundamental period of X, just from the infor-
mation encoded in the configuration matrix of X̃. One then extends such solution of the Picard-Fuchs
equations for arbitrary values of h2,1 parameters ρi, defining

w0(z, ρ) =
∑
n1≥0

. . .
∑

nh2,1 ≥0
c(n+ ρ)

h2,1∏
i=1

zni+ρii . (C.3)

1Following the convention introduced in the main text, we denote h1,1(X̃) as h̃1,1.
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In terms of (C.3), the full period vector Π(z) can be defined as

Π(z) =



w0(z)

∂

∂ρi
w0(z, ρ)

∣∣∣∣
ρ=0

1
2κ

0
ijk

∂

∂ρj

∂

∂ρk
w0(z, ρ)

∣∣∣∣
ρ=0

−1
6κ

0
ijk

∂

∂ρi

∂

∂ρj

∂

∂ρk
w0(z, ρ)

∣∣∣∣
ρ=0


, (C.4)

where κ0
ijk are the classical triple intersection numbers of X̃. At this point one has obtained the GV

invariants for X, but in order to extract them, one needs to rewrite such period vector in terms of the
Kähler moduli of X̃, which are defined by the mirror map

ti(z) = wi(z)
w0(z) , (C.5)

where

wi(z) =
∑
n1≥0

. . .
∑

nh2,1 ≥0

1
2πi

∂

∂ρi
c(n+ ρ)

∣∣∣∣
ρ=0

h2,1∏
i=1

znii + w0(z) ln zi
2πi . (C.6)

At the technical level, the most complicated point of the algorithm is the inversion of eq. (C.5) to get the
complex structure moduli z as a function of t. This is the part which limits the most every attempted
implementation of the code.

The quantum-corrected triple intersection numbers κijk can be expressed as

κijk(t) = ∂

∂ti

∂

∂tj

1
2κ

0
kab

∂

∂ρa

∂

∂ρb
w0(z, ρ)

∣∣∣∣
ρ=0

w0(z) (t) , (C.7)

where it is clear that the fraction is computed first as a function of the complex structure moduli zi,
then, one substitutes the inverse of (C.5), and takes the last two derivatives with respect to the Kähler
moduli ti.

Let us introduce qi = exp (2πiti) and the general expression for κijk as

κijk = κ0
ijk +

∑
d1≥0

. . .
∑

dh̃1,1 ≥0
nd1,...,dh̃1,1didjdk

h̃1,1∏
l=1

qdll

1−
h̃1,1∏
l=1

qdll

. (C.8)

Matching the coefficients of the series expansion in qi for both Eqs. (C.7) and (C.8), it is possible to
extract the GV invariants nd1,...dh̃1,1 for a given CICY.

The algorithm, schematically reviewed above, was coded in the Mathematica program INSTANTON [201].
By using such a program, we collected all genus 0 GV invariants for all the favourable CICYs listed
by [249] up to h̃1,1 = 9. For any CICY in this subset, we computed all GV invariants such that the sum
of their degrees is smaller or equal than 10.

We wish now comment on some empirical properties of the GV invariants in the database, and some
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Figure C.1: Occupation sites for the CICY 7858.

patterns which we recognized. For any given favourable CICY X̃ the Mori cone will be h̃1,1 dimensional.
For every integer point in the Mori cone, there corresponds a curve class [β], and one can compute the
genus 0 GV invariants for this curve class. One can then move further away in the following sense. Pick
any line passing through [β], with rational angular coefficient. Such a line will hit the boundary of the
Mori cone on one side, but will continue indefinitely towards infinity on the other side. In particular,
it will intersect infinitely many integer points inside the Mori cone, each corresponding to a curve
class. One can then compute the GV invariants for curve classes lying on such line. There are three
qualitatively different ways in which the GV invariants behave when moving towards infinity in the Mori
cone, in a specific direction. For some choices of the direction, the GV invariants will grow indefinitely
and exponentially. We will call such directions exponentially infinite rays.

Much more interesting is a second type of behavior, in which for some specific directions the GV
invariants will eventually become zero. We will call these directions vanishing rays. An important role is
played by those vanishing rays which are normal to a boundary of the Mori cone. As already pointed out
in [86,87,258] for the CICYs and in [107] in the context of the Kreuzer-Skarke database, the existence of
such vanishing rays signals the presence of a conifold transition, or a flop.In particular the GV invariants
of a CY Ỹ connected to X̃ by a conifold transition can be recovered by summing all the GV invariants of
X̃ in each of those vanishing ray. We illustrate this in the context of the CICY 7858, which is connected
by a conifold transition to the quintic.

In Figure C.1 we plot the Mori cone of the CICY 7858. We put a blue dot for every curve class [β] for
which we computed that n[β] ̸= 0. We put a red dot for all curve classes for which we have not computed
the GV invariant, but we strongly believe it is going to be non-zero. We finally put a black dot for all
curve classes such that n[β] = 0. We can clearly see that, for example, the ray given by (0, 3)+Span(1, 1)
(corresponding to the green line in Figure C.1) is an infinite ray. On the other hand, the ray given by
(0, 2) + Span(1, 0) (corresponding to the purple line in Figure C.1) is a vanishing ray. We see that in
general, in this example, all rays of the form (0, n) + Span(1, 0), for all n ∈ N are vanishing rays.

The Mori cone of the quintic is then identified with the vertical axis in the figure, and the GV
invariants of the quintic of degree i, can be found by summing over all GV invariants corresponding to
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the same vanishing ray normal to the boundary of the Mori cone, namely,

ni =
∞∑
j=1

nj,i . (C.9)

Although we discussed just one specific example here, we observe that this phenomenon is generic
in the CICY database and can be regarded as a confirmation of the well-known fact that all CICYs
are connected by conifold transitions [87]. For every couple of CICYs connected by a single conifold
transition, the GV invariants of the two manifolds are related in the manner discussed above. This
behavior is expected, as, to access a conifold transition from the resolved side, one shrinks some P1

curves, and therefore projects the Mori cone onto one of its boundaries.
We now move to a third type of interesting direction in the Mori cone, which we call infinite periodic

ray. Along these directions, the GV invariants continue to be always non-vanishing, but they do not
grow exponentially. Instead, they will repeat periodically. We observe this phenomenon, for example, in
13 h̃1,1 = 2 CICYs, in particular for the GV invariants n0,m. We do not have an argument for why such
periodicity arises. However, we note empirically that this is related to the presence of P2 factors in the
ambient space geometry. A peculiar example of this is the bi-cubic CICY (7884), where the invariants
repeat along both the [1, 0] and the [0, 1] direction of the Mori cone and are Z2 symmetric. One can find
that infinite periodic rays also exist for h̃1,1 = 3, anytime a P3 is present in the configuration matrix.
We conjecture that this phenomenon is generic. However, as we go to a larger h̃1,1, it is more difficult
to study such behaviour.

The last thing that we note from our database is the fact that the numerical values of degree 1
GV invariants tend to decrease with h̃1,1. For example, the quintic has h̃1,1 = 1 and its degree 1 GV
invariant is n1 = 2875, the largest one in the whole database. On the other hand, the degree 1 GV
invariants of the CICY number 7858 of Figure C.1 are n0,1 = 366, n1,0 = 36. We wish to address these
empirical properties in a future work.



Appendix D

String Axion Appendices

D.1 Closed string axions: Sf computations

C0 axion: The C0 axion is part of the axio-dilaton field S = i
gs

+C0, and its periodicity is defined as
C0 ≡ C0 + 1. The decay constant can be read from the kinetic part of the 4D Lagrangian arising from
the Kähler potential:

K ⊃ − ln(S − S̄) + · · · . (D.1)

This implies

L = KSS̄ |∂S|2 + · · · = − 1
(S − S̄)2

(∂C0)2 + · · · = g2
s

4 (∂C0)2 + · · · . (D.2)

From the conventions given in Eq. (4.5), this means that 2πf = gs/
√

2. Based on analyticity and
periodicity, the instanton contribution (if present) to the superpotential is ∼ exp(2πiS), such that the
instanton action reads S = 2π/gs. Thus,

Sf = 1√
2
. (D.3)

B2 axions: Let us consider the N = 1 description of a CY geometry in which Kähler moduli are
encoded in 2-cycle superfields, with the real part being the B2 axion b. Note that the results derived in
what follows do not directly apply to an orientifold of type IIB with D3/D7 branes since we are using the
wrong N = 1 part of the original N = 2 SUSY of the CY model. However, the calculation for the two
moduli t1, t2 gives the correct value for Sf in a type IIB N = 2 model which is ‘ready’ for the geometric
projection associated with t1 ↔ t2. This includes the restriction to the combined t1/t2 instanton which
will survive the projection. Thus, since Sf does not depend on which SUSY will eventually survive but
merely characterises the real axion b−, we can trust our result also for the orientifolded D3/D7 case.

In the simplest case with one 2-cycle, the overall CY volume is given by

V = 1
6κ111v

3 , (D.4)

where t = iv + b, and b ≡ b+ 1. The Kähler potential reads

K ⊃ −3 ln(t− t̄) + · · · . (D.5)

The structure of the exponential terms in the non-perturbative corrections is ∼ exp(2πit), such that the
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only difference with the C0 axion case is the famous no-scale prefactor 3. Thus,

Sf =
√

3
2 . (D.6)

Now let us generalise to the case of two moduli t1, t2. The standard form of the volume is given by

V = 1
6κijkv

ivjvk . (D.7)

We require that an orientifolding with Z2 action t1 ↔ t2 is possible. This imposes symmetry constraints
on the triple intersection numbers κijk such that the volume becomes

V = 1
6
(
κ111

[
(v1)3 + (v2)3]+ 3κ112

[
(v1)2v2 + v1(v2)2]) . (D.8)

Changing variables to t± ≡ t1 ± t2 gives

V = 1
24
[
(κ111 + 3κ112)(v+)3 + 3(κ111 − κ112)(v+)(v−)2]

≡ 1
24
[
κ+++(v+)3 + 3κ+−−v

+(v−)2] . (D.9)

We are interested only in the kinetic term for b−, at the locus where v− = 0. For this, we need

K−− = − ∂

∂t−
∂

∂t̄−
lnV(v±) with v± = −i(t± − t̄±)/2 . (D.10)

This leads to
K−− = −1

4
∂2

∂(v−)2 lnV(v±) = −1
4

6κ+−−

κ+++(v+)2 . (D.11)

Since κ+++ must be positive for positive volume, we learn that κ+−− is negative.
The leading instanton for b− is the product of the instantons coupling to t1 and t2. This is enforced

by the Z2 symmetry. The action of this double instanton is 2π(v1 + v2) = 2πv+ and the corresponding
phase factor is exp(2πi(b1 + b2)) = exp(2πib+).

Now everything looks very similar to the C0 axion case discussed before. One difference is the factor√
6|κ+−−|
κ+++

, (D.12)

affecting f . The other is the replacement gs → 1/v+, but this factor drops out in the end anyway. Thus,
since we originally had Sf = 1/

√
2, we now arrive at

Sf =

√
3|κ+−−|
κ+++

. (D.13)

The crucial question is how large the ratio

|κ+−−|
κ+++

= κ112 − κ111

3κ112 + κ111
(D.14)

can become. If κ111 and κ112 are non-negative, then the maximal value of 1/3 is attained for κ111/κ112 =
0, leading to Sf = 1. As κ111/κ112 grows, Sf falls.
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C2 axions: In the case of type IIB superstring theory with D3/D7 branes, the b− axion is paired with
the corresponding c− axion coming from C2. The value of Sf for the latter is most easily inferred by
noting that, first, the 10D kinetic term changes according to

(∂B2)2/g2
s → (∂C2)2 , (D.15)

and, second, the tension changes between the fundamental string and the euclidean D1-brane as 1/(2πα′)→
1/(2πα′gs). Thus, f → fgs and S → S/gs , leading to

Sf =

√
3|κ+−−|
κ+++

≤ 1 . (D.16)

where the upper bound in this simple case comes from the discussion around Eq. (D.14).

C4 axions For a single (or one dominant) Kähler modulus in type IIB with D3/D7 branes one has

K ⊃ −3 ln(T + T̄ ) + · · · , T = τ + id , d ≡ d+ 1 . (D.17)

The non-perturbative term in W is ∼ exp(−2πT ), such that everything is analogous to the B2 axion
without orientifolding:

Sf =
√

3
2 . (D.18)

Let us now consider the case of a fibred geometry. In the simplest fibred geometry, e.g. K3 over S2, one
has

K ⊃ −2 lnV + · · · = −2 ln(T1
√
T2) + · · · . (D.19)

Relative to the C0 axion, one reads off factors 2 and 1 in f2. Thus, one finds for the fibre T1, Sf = 1
and for the base T2, Sf = 1√

2 .

D.2 Open string axions computations

In the following, we focus on an open string complex scalar matter field C = |C|eiσ which lives on a
collapsed cycle. The general form of the Kähler potential and superpotential which describe the theory
for the shrinked cycle near the singularity are given by [259]

K = −2 ln
(
V + ξ̂

2

)
+ λseq

τ2
seq

V
+Kmatter , (D.20)

W = W0 +
h1,1∑
i=1

Ai e
−aiTi +Wmatter , (D.21)

where Wmatter and Kmatter are related to the matter sector contributions depending on the field C. In
presence of more than one matter field the general form of Kmatter is given by [260]

Kmatter = Kγ(Ti, T̄i)CγC̄ γ̄ . (D.22)

In order to understand the properties of the ultralight axion candidate, σ, we have to study the moduli
stabilisation procedure in the sequestering scenario [261]. The leading order contribution to the scalar
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potential, after dilaton and the complex moduli fields stabilisation, comes from the D-term which takes
the following form:

VDD3 = 1
Re(fseq)

(
qC

∂K

∂|C|
|C| − ξseq

)2
, (D.23)

where qC is the charge of the matter field, fseq is the gauge kinetic function related to the U(1) symmetry
while ξseq = − qseq4π

∂K
∂Tseq

and τseq is the cycle on which the U(1) charge is located. Working near the
singularity, Tseq = τseq + idseq, we have that τseq → 0 and the gauge kinetic function

fseq = S + qseq Tseq .

Since we want to find an axion, that is a pseudo Nambu-Goldstone field σ with translational symmetry,
we want the following conditions to be satisfied

• a Peccei-Quinn mechanism related to the breakdown of the U(1) symmetry of the potential related
to |C|, i.e. ⟨|C|⟩ ≠ 0.

• a minimum for the scalar potential which provides an extremely small value of ⟨τseq⟩ ≪ 1 in order
to support the collapsed cycle assumption.

Working with the canonically normalised matter field, |Ĉ|, the D-terms becomes:

VDD3 = 1
Re(fseq)

(
qC |Ĉ|2 + qseq

8π
∂K

∂τseq

)2
. (D.24)

Since the D-term has the same volume dependence as the flux generated F-term potential used to
fix both the dilaton and the complex moduli, we have to set it to zero in order to have a consistent
stabilisation procedure and preserve supersymmetry at this order in the expansion in inverse powers of
V. This implies

|Ĉ|2 = qseq
8π qC

∂K

∂τseq
∼ ∂K

∂τseq
. (D.25)

This relation fixes one direction in the (|C|, τseq) plane which corresponds to the supersymmetric partner
of the axion which is eaten up by the relative anomalous U(1) gauge boson in the process of anomaly
cancellation. The axion which becomes the longitudinal component of the massive gauge boson is a
combination of an open and a closed string axion. The mass of the Abelian gauge boson is given
by [261]

m2
U(1) ≃ g

2
seq

[
(fσ)2 + (fdseq )2

]
, (D.26)

where gseq is the gauge kinetic coupling of the theory living on the sequestered cycle.
If we focus on the U(1) charged complex scalar field C living on a D3-brane at a singularity (τseq ≪ 1),
we will have that the open axion decay constant will be

f2
σ = |Ĉ|2 = qseq λseq

8π qC
τseq
V
M2
P ∼

τseqM
2
P

V
≪M2

s . (D.27)

On the other hand, the decay constant associated to the closed string axion related to the sequestered
cycle is just fdseq = ∂2K

∂τseq∂τseq
= λseq

V . We see that, in this case the open string axion is eaten up
by the gauge boson while the open string axion is still a dynamical field. the same process applies to
anomalous U(1) on D7-brane stacks in the geometric regime. In that case, the open string axion is the
degree of freedom which is eaten up and we are left with just the closed string axion. Coming back to
the sequestered scenario, after D-term stabilisation, we can still consider the open string axion σ as a
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flat direction, while the moduli τseq and dseq are fixed and the gauge boson acquires a mass of the order
of the string scale, namely

MU(1) ∼
MP√
V
∼Ms . (D.28)

The matter field |C| acquires a mass through sub-leading soft terms which look like [261]

VF (|Ĉ|) = r2
|Ĉ|2

Vα2
+ r3

|Ĉ|3

Vα3
+
( r4

Vα4
− γ4

V

)
|Ĉ|4 . (D.29)

The terms proportional to ci come from the expansion of the scalar potential in powers of |Ĉ|, while the
one depending on γ4 comes from the breaking of the no-scale structure by τseq. If r2 > 0, the matter field
has a vanishing VEV and, thanks to the D-term stabilisation condition ⟨τseq⟩ = 0. If instead |C| shows a
tachyonic mass from supersymmetry breaking, i.e. r2 < 0, then, depending on the signs of the different
coefficients, |Ĉ| can develop a non-vanishing VEV. One may think that, given the relation between ⟨|Ĉ|⟩
and ⟨τseq⟩, the collapsed cycles get stabilised at values larger than the string scale, resolving in this way
the singularity. It was shown that in models with just fractional D3-branes, the cycle is still sequestered,
being α3 = 2, α4 = 1 and either α2 = 3 or α2 = 4 depending on the moduli dependence of the Kähler
metric from matter field. The stabilisation of the matter field gives

⟨|Ĉ|⟩ = 2r2

3r3

1
Vα2−2 , ⟨τseq⟩ = p

V2α2−5 , (D.30)

where p = 32π qC r2
2

9qseq λseq r2
3

depends on soft terms and on the terms breaking the no-scale structure. We see
that for both values of α2 we are still in sequestered scenario as

fσ ∝ 1
V , τseq ∝ 1

V when α2 = 3

fσ ∝ 1
V2 , τseq ∝ 1

V3 when α2 = 4 .
(D.31)

At this level of approximation σ is still a flat direction. This field receives a mass through hidden sector
strong dynamics effects as described in the main text.

D.3 Additional corrections for C4 axions

In order to understand whether there can be some more involved constructions leading to a C4 FDM
candidate with mass around 10−22 eV, we examined several setups that we list below.

Non-vanishing 2-form fluxes: Let us consider the fibred geometry described in section 4.2.1 as,
having two Kähler moduli, it is more flexible compared to the Swiss-cheese case. The overall volume is
given by:

V = 2
3 t

3
2 + t1 t

2
2 =
√
τ1 τ2

2 − τ
3/2
1
3 . (D.32)

Let us turn on gauge fluxes as F = mi ωi + . . . where mi = 2π ni, ni ∈ Z, where ωj are orientifold-even
2-forms, i = 1, . . . , h1,1

+ . The presence of non-trivial gauge fluxes F can induce a U(1)-charge qi for the
i-th Kähler modulus together with a flux-dependent correction to the gauge kinetic function fj of the
form

qi =
∫
X

F ∧ ωi ∧ ωj (D.33)
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fi = Ti − hi(F)S , where hi(F) =
∫

CY
F ∧ F ∧ ωi = kijkmjmk , (D.34)

and kijk are the intersection numbers. Considering the simple fibred geometry of eq. (D.32) with just
two divisors, the Kähler form is J = t1ω1 +t2ω2 while the intersection numbers are k122 = 2, k222 = 4. In
this setup, we consider the most general flux form, F = m1 ω1 +m2 ω2 and we compute the corrections
to the gauge kinetic couplings and the induced charges

h1(F) = 2m2
2 , h2(F) = 4m2(m2 +m1) ,

q22 = 2m1 + 4m2 , q21 = 2m2 .
(D.35)

The non-perturbative corrections to the superpotential induced by non-vanishing worldvolume gauge
fluxes are given by:

Wn.p. = Ai e
−aif i = A1 e

−a1(T1+ 2
gs
m2

2) +A2 e
−a2(T2+ 4f2

gs
(m2+m1)) . (D.36)

We see that gauge fluxes can induce an extra suppression in the axion mass. On the other hand, being
interested in the perturbative regime of the theory, we need gs ≪ 1. This implies that the contributions
to W coming from gauge fluxes will induce an exp(−O(10)) correction that can produce considerably
lighter FDM candidates. Nevertheless, the correction coming from 2-form fluxes cannot disrupt the
predictions given in the main text and its precise contribution is model dependent. For this reason, in
the body of this paper we treat the simplest case neglecting gauge flux effects.

Ample divisors: We focus again on the fibred geometry discussed above. In this section we consider
the case where the fibred CY contains an ample divisor of the form τD = τf+τb so that the superpotential
receives non-perturbative corrections of the form [187]:

W = W0 +Ae−a(Tf+Tb) . (D.37)

The leading order contributions to the F-term scalar potential are given by:

VF ⊃ Λ2 cos
(

ϕf
ffmix

+ ϕb
fbmix

)
, where Λ2 ≃

4κ aAW0(τf + τb)
V2 e−a(τf+τb) . (D.38)

The eigenvalues of the mass matrix are:

m2
λ =

{
0,
(

1
f2
fmix

+ 1
f2
bmix

)
Λ2

}
, (D.39)

so that the effective decay constant of the massive axion is then given by

f̄ = ffmixfbmix√
f2
fmix

+ f2
bmix

. (D.40)

A numerical inspection of this setup reveals that the natural amount of DM having mass ∼ 10−22 eV
is around 1%, while the most likely values of the mass and of the decay constant are ∼ 10−19 eV and
1015 GeV respectively. We can therefore conclude that the presence of ample divisors does not affect
the predictions given in the main text.
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Poly-instantons: For completeness, we now check the possibility of getting FDM through poly-
instanton corrections. For instance let us consider let us consider the following corrections to the super
potential given by an Euclidean D3-instanton wrapping the cycle τp yielding to non-perturbative cor-
rections to the gauge kinetic functions of the condensing gauge group on τi [262]:

W = W0 +Ae−aiTi+Ce−2πTp ≃W0 +Ae−aiTi +ACe−aiTi−2πTp . (D.41)

Let us assume that Ti is a blow up cycle which can be stabilised in the usual LVS fashion and that the
real part of Tp is stabilised through gs loops. In this way there is no explicit relation between the overall
volume stabilisation and the VEV of τp. The axion dp receives mass contributions only through these
n.p. corrections. Then the potential related to dp will scale as

V (dp) ∼ VLVSe
−2π⟨τp⟩ ∼ O(V−3−p) , (D.42)

where the value of p depend on the geometry of the cycle Tp and is usually of order unity. The decay
constant of dp also depends on the geometry, for instance is τp is a rigid blow-up cycle or the fibre
modulus, we have

fdp ∼

{
MP

2π
1√
V blow up

MP

2πτp fibre
(D.43)

then we see that in the first case, in order to satisfy the condition on the decay constant, we have to deal
with an extremely small overall volume, in which case it is not possible to get the desired tiny mass for
the axion dp. In the second case there can be a chance of getting extra mass suppression with respect
to the results presented in the main text. Nevertheless, given that this setup is more model dependent
and we cannot provide sharp predictions for the exact mass of the FDM candidate, we consider the
examples provided in the main text as the most general predictions.

D.4 Anharmonicity and isocurvature bounds

All the results presented in the main text assume that ALP self-interaction can be neglected. This is
valid for small misalignment angles θmi ≲ 1. In the most general case, assuming that the PQ symmetry
is broken before inflation, f >> HI , we can have an enhanced axion density which depends on the form
factor function F (θ) as follows [263]:

Ωθh2

0.112 ≃ 1.4×
( m

10−22eV

)1/2
(

f

1017GeV

)2
θ2
mi F (θmi) , (D.44)

where F (θmi) → 1 for θ ∼ 1 and F (θmi) → ∞ for θ ∼ ±π. This function has been found to be given
by [264]

F (θmi) =
[
ln
(

e

1− θ4
mi/π

4

)]
. (D.45)

Let us now focus for simplicity on C4 ALPs in Swiss-cheese geometry. We can estimate the misalignment
angle value that correspond to a FDM particles with mass ∼ 10−22 eV representing 100% of DM without
fine-tuning any of the microscopical parameters W0 = 1 and Ai = 1. This is given by a value that is
extremely near to the maximum of the axion potential, namely θmi ≃ 0.99π. For an extended treatment
of the phenomenology arising in this last regime see [265].

Such a large value for θmi may lead to the over-closure of the universe through the domain wall
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problems. In order to check whether different vacua, separated by domain walls, are populated in space,
we need to compare quantum fluctuations and the classical initial field displacement. Domain walls
problem can be avoided if

∆θin ≫ HI/(2πf) where ∆θin ≃ 10−2π , (D.46)

which for C4 in Swiss-cheese geometry implies HI ≪ 0.1f ∼ 1015 GeV that does not significantly impact
on model building.

Indeed, the most stringent inflationary constraint related to FDM models comes from the experi-
mental boundaries on isocurvature perturbation. This looks like:

∆2
S = ∆2

R
βiso

1− βiso
< 5.6× 10−11 , (D.47)

where the scalar power spectrum ∆2
R and the isocurvature parameter βiso have been constrained to be

∆2
R ≃ 2×10−9 and βiso ≲ 2.6×10−2 at a pivot scale k∗ = 0.05Mpc−1 [122]. When the PQ symmetry is

broken before inflation, the isocurvature perturbations produced by the axion field are given by [264,266]:

∆2
S =

(
HI

πθmif

)2(
1 + θmi

2
F ′(θmi)
F (θmi)

)2
. (D.48)

Given the experimental constraint on ∆2
S , the previous equation induces an upper bound on the infla-

tionary scale. This bound is strongly related to the assumption that the ALP is decoupled from the
inflaton dynamics. In string theory this is not always the case as the field space turns out to be curved
and the shape of the scalar potential is highly non-trivial. Nevertheless, whatever kind of coupling, both
kinetic or in the potential, heavily depends on the inflationary model under study. For this reason, we
decide to focus on the simplest assumption.

Using the bound on the inflationary scale, we can derive a rough estimate of the bound on the
tensor-to-scalar ratio, r that can be expressed as

r = ∆2
t

∆2
R
≃ 2

∆2
sπ

2
H2
I

M2
P

. (D.49)

In [1] we derive the constraints on the inflationary scale and the tensor-to-scalar ratio coming from the
setups discussed in the main text. We consider both the harmonic approximation and the tuned initial
misalignment angle case with θmi = 0.99π. In general, we observe that tensor modes that are produced
during inflation will be undetectable and, as expected, a large misalignment angle is compatible with
lower axion masses. On the other hand, this tuned initial condition implies stronger constraints on HI

and r.
In this section we saw that the requirement of having a FDM particle with the standard FDM

mass coming from C4 axions leads to heavy fine-tuning of either the microscopical parameters, or the
misalignment angle. Since from a statistical perspective it is not clear how to justify the tuning on θmi

and the parameters tuning may lead the EFT out of the controlled regime, we decided to focus on the
most likely cases where the ALP is heavier and the axion self-interactions can be ignored at leading
order.
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