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Abstract

Axions and axion-like particles are very well-motivated candidates for physics be-
yond the Standard model, which can be probed by multiple existing and projected
experiments and astrophysical observations. Theoretical determination of the rele-
vant low energy axion interactions is essential for guiding the corresponding exper-
imental and observational efforts. In this thesis, we revisit the previous theoretical
investigations in this direction. In particular, we show that, contrary to assertions
in the literature, the main contribution to the axion-photon coupling need not be
quantized in units proportional to e2. We discuss a loophole in the argument for this
quantization and then provide explicit counterexamples. Based on this, we construct
a generic axion-photon effective Lagrangian and find that the axion-photon coupling
may be dominated by previously unknown Wilson coefficients. We show that this
result implies a significant modification of conventional axion electrodynamics and
sets new targets for axion experiments. We find that the electromagnetic interac-
tions of axions can violate the CP symmetry and that future experiments could be
sensitive to the corresponding coupling. At the core of our theoretical analysis lies a
critical reexamination of the interactions between axions and magnetic monopoles.
We develop the effective field theory approach to the Zwanziger theory of quan-
tum electromagnetodynamics and show that, contrary to claims in the literature,
magnetic monopoles need not give mass to axions. Moreover, we find that a future
detection of an axion or axion-like particle with certain parameters can serve as
evidence for the existence of magnetically charged matter.

Besides studying the structure of the low energy axion interactions in the effective
field theory approach, we explicitly construct new theoretical models for the axion
which realize the newly found interactions. In these models, the PQ mechanism is
realized through a coupling of the Peccei-Quinn complex scalar field to magneti-
cally charged fermions at high energies. We consider both the cases of Abelian and
non-Abelian magnetic charges. We show that these models indeed solve the strong
CP problem and then integrate out heavy magnetic monopoles using the Schwinger
proper time method. We find that the models discussed yield axion couplings to
the Standard Model which are drastically different from the ones calculated within
the KSVZ/DFSZ-type models. As a consequence, large part of the corresponding
parameter space can be probed by various projected experiments. Moreover, the
axion we introduce is consistent with the astrophysical hints for axions suggested
both by the anomalous TeV-transparency of the Universe and by the excessive cool-
ing of horizontal branch stars in globular clusters. We argue that the leading term
for the cosmic axion abundance is not changed compared to the conventional pre-
inflationary scenario for an axion decay constant fa > 1012 GeV.



Zusammenfassung

Axionen und axionähnliche Teilchen sind sehr motivierte Kandidaten für Physik jen-
seits des Standardmodells, die durch mehrere bestehende und geplante Experimente
und astrophysikalische Beobachtungen untersucht werden können. Die theoretische
Bestimmung der relevanten Niederenergie-Axion-Wechselwirkungen ist unentbehr-
lich, um einen Leitfaden für die entsprechenden experimentellen und beobachtenden
Bemühungen zu erstellen. In dieser Arbeit überdenken wir die bisherigen theoreti-
schen Untersuchungen in dieser Richtung. Insbesondere zeigen wir, dass entgegen
den Behauptungen in der Literatur der Hauptbeitrag zur Axion-Photon-Kopplung
nicht in zu e2 proportionalen Einheiten quantisiert werden muss. Wir diskutieren
eine Lücke im Argument für diese Quantisierung und liefern dann explizite Ge-
genbeispiele. Darauf beruhend konstruieren wir einen generischen Axion-Photon-
effektiven Lagrange-Operator und stellen fest, dass die Axion-Photon-Kopplung
möglicherweise von zuvor unbekannten Wilson-Koeffizienten dominiert wird. Wir
zeigen, dass dieses Ergebnis eine signifikante Modifikation der konventionellen Axion-
Elektrodynamik impliziert und neue Ziele für Axion-Experimente schafft. Wir fin-
den, dass die elektromagnetischen Wechselwirkungen von Axionen die CP-Symmetrie
verletzen können und dass zukünftige Experimente sensitiv zu der entsprechenden
Kopplung sein könnten. Im Zentrum unserer theoretischen Analyse steht eine kriti-
sche Überprüfung der Wechselwirkungen zwischen Axionen und magnetischen Mono-
polen. Wir entwickeln den Ansatz der effektiven Feldtheorie zur Zwanziger-Theorie
der Quantenelektromagnetodynamik und zeigen, dass magnetische Monopole im Ge-
gensatz zu Behauptungen in der Literatur Axionen keine Masse verleihen müssen.
Darüber hinaus stellen wir fest, dass ein zukünftiger Nachweis eines Axions oder ei-
nes axionähnlichen Teilchens mit bestimmten Parametern als Indiz für die Existenz
magnetisch geladener Materie dienen kann.

Neben der Untersuchung der Struktur der niederenergetischen Axion-Wechsel-
wirkungen im Ansatz der effektiven Feldtheorie konstruieren wir explizit neue theo-
retische Modelle für das Axion, die die neu gefundenen Wechselwirkungen realisieren.
In diesen Modellen wird der PQ-Mechanismus durch eine Kopplung des komplex-
ten Peccei-Quinn-Skalarfelds an magnetisch geladene Fermionen bei hohen Energien
realisiert. Wir betrachten sowohl die Fälle Abelscher als auch nicht-Abelscher magne-
tischer Ladungen. Wir zeigen, dass diese Modelle tatsächlich das starke CP-Problem
lösen und integrieren dann schwere magnetische Monopole unter Verwendung der
Schwinger-Eigenzeitmethode aus. Wir stellen fest, dass die diskutierten Modelle Axi-
onkopplungen zu den Teilchen des Standardmodells ergeben, die sich drastisch von
denen unterscheiden, die innerhalb der KSVZ/DFSZ-Modelle berechnet wurden. Als
Folge davon kann ein großer Teil des entsprechenden Parameterraums durch ver-



schiedene geplante Experimente untersucht werden. Darüber hinaus ist das Axion,
das wir einführen, konsistent mit den astrophysikalischen Hinweisen für Axionen, die
sowohl von der anomalen TeV-Transparenz des Universums als auch von der über-
mäßigen Abkühlung Horizontalast-Sterne in Kugelsternhaufen nahegelegt werden.
Wir argumentieren, dass der führende Term für die kosmische Axion-Häufigkeit im
Vergleich zum konventionellen vorinflationären Szenario nicht geändert wird, falls
die Axion-Zerfallskonstante größer als 1012 GeV ist.
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Introduction

The Standard model of particle physics provides a very good description of the

interactions of elementary particles. Its structure alone predicts many low energy

symmetries which were never disproved by any experiment, such as for instance

baryon number conservation or time reversal symmetry of quantum electrodynam-

ics. Not all of the possible symmetries of the theory can be however inferred from

the structure of the Standard model. In particular, this is the case of time reversal

symmetry of Quantum Chromo-Dynamics (QCD). Namely, there is a special free

parameter θ̄ in the Standard model which indicates whether this symmetry holds.

Fortunately, there is also an experimentally accessible observable proportional to θ̄

– the neutron electric dipole moment. While any measured value of this observable

would call for some explanation in terms of a more fundamental theory, it is espe-

cially challenging that the measurements of the neutron electric dipole moment re-

veal it to be consistent with zero with an unprecedented precision of 10−26 e · cm [55].

The question of why QCD is symmetric under time reversal constitutes the core of

the so-called strong CP problem. As science aims to explain what we observe, one

is tempted to hypothesize a new model where the neutron electric dipole moment

is constrained to be practically zero. In particular, one of the ideas proposed is to

drive this observable to zero dynamically by introducing a new pseudoscalar particle

called axion, which is a pseudo Nambu-Goldstone boson associated to spontaneous

breaking of the anomalous Peccei-Quinn (PQ) symmetry [66–99]. The great advantage

of this mechanism is that the introduction of the axion can naturally solve not only

the strong CP problem, but also a much more pressing problem of missing mass in

the Universe, i.e. the axion is a perfect candidate for dark matter [1010–1212].

The problem of dark matter has its origins in the work by Fritz Zwicky back

in the 1930s [1313]. The latter astronomer investigated the motion of the galaxies of
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the Coma cluster and found that the real mass of the cluster is much larger than

the mass associated to the visible matter only. Later, in the 1970s, it was found

that the problem of the missing mass manifests itself also in the rotation curves of

galaxies [1414, 1515]: stars on the galaxy outskirts move much faster than one would

expect taking into account the gravitational pull of the baryonic matter only. Since

then, a lot of different astronomical observations have been made which support the

hypothesis of dark matter. Nowadays, there exists vast evidence that the baryonic

matter makes up on average only around 20% of the total mass of galaxies. It

is reassuring that the energy density of dark matter inferred from astronomical

observations is consistent with the standard model of cosmology (ΛCDM), which

successfully describes the features of the observed cosmic microwave background and

the structure formation in the Universe11, both these probes being highly dependent

on the abundance of dark matter. Although given the fact that our knowledge

about dark matter comes only from its gravitational interactions one could think

that a suitable modification of gravity would resolve the problem, it is becoming

increasingly difficult to describe all the spectrum of astronomical observations in

this way. A much more simple explanation is that dark matter is composed of

some non-relativistic objects of a new type, which could be either particles beyond

the Standard model or primordial black holes. Primordial black holes are good

candidates for dark matter, as they do not require any physics beyond the Standard

model, however the models of their production in the early Universe normally require

large fine-tuning [1717]. While the latter fine-tuning problem can be resolved in some

clever models [1818], in this thesis we will discuss a different scenario where the cold

dark matter is produced in a simple way via the so-called misalignment mechanism.

The latter scenario is relevant for axion particles, the properties of which will be the

main subject of this thesis.

Although many properties of axions have been extensively studied in the lit-

erature before, we found that some very important class of axion interactions has

been missed. The reason is that while constructing the low energy effective axion

theories and the corresponding high energy models, one has always paid attention

only to the electric sector of the theory. For instance, in the case of electromag-
1Although ΛCDM has its own problems such as the Hubble tension [1616], this does not affect

the conclusion about the presence of dark matter.
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netic interactions, using the terms we review in Chapter 11 sec. 1.11.1, the axion has

always been coupled to the electric part of the helicity of the electromagnetic field.

The magnetic part of the helicity is however by no means less important. What we

find is that the coupling of the axion to this magnetic part is significantly different

compared to the conventional axion-photon coupling and thus has to be thoroughly

studied. In general, we find that the neglect of the magnetic sector of the theory

is absolutely not justified. In fact, not only is it unjustified in the framework of

low energy effective theory, but also in the construction of particular high energy

models. For example, consider the well-known class of axion models called hadronic

axion models [1919, 2020], where one introduces at least one new heavy quark beyond

the Standard model. If one wants to keep the model as minimal as possible, one

has to allow this heavy quark to carry magnetic charge, which means that one has

to consider the magnetic sector of the theory. The reason for this is that due to the

quantization of the electric charge observed in nature, one expects to have at least

one particle with magnetic charge in the spectrum of the theory [2121]. As no mag-

netic charge has yet been observed, one expects this magnetically charged particle

to be quite heavy. This means that if we introduce a new heavy quark like we do

in hadronic axion models, it is preferred that this quark carries magnetic charge.

Note that the connection between the quantization of charge observed in nature and

the existence of magnetically charged matter is actually very strong. Indeed, as it

was found recently in a number of works [2222, 2323], in the quantum world like ours

where the quantization of charge coexists with the force of gravity, the existence of

magnetically charged particles is inevitable.

Thus, it is important to investigate axion interactions which arise from the mag-

netic sector of the theory. Although the magnetic sector has always been neglected

in its full generality before, there have been a few works studying the interactions of

axions with magnetic monopoles. In particular, it has been long believed that the

interactions between axions and magnetic monopoles are necessarily induced by the

Witten effect [2424]. What we show is that there are more possibilities, so that the shift

of the axion field need not induce electric charge on monopoles. The corresponding

non-conventional electromagnetic couplings of axions enter the axion-photon effec-

tive field theory (EFT) whenever one admits the no global symmetries [2222, 2525–2828]
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and completeness of the charge spectrum [2222,2323,2727] conjectures of quantum gravity,

since these conjectures imply the existence of magnetic monopoles with any charge

allowed by the Dirac-Schwinger-Zwanziger (DSZ) quantization condition [2121,2929,3030].

The same new interaction terms enter the low energy EFT of axion-like particles

(ALPs) – pseudo Nambu Goldstone bosons of any spontaneously broken anomalous

global U(1) symmetry. We derive phenomenological consequences of the new elec-

tromagnetic couplings of axions and ALPs, showing that they would represent new,

distinctive features, which are possible to detect in various axion experiments. More-

over, we argue that the detection of axions or ALPs with such features would provide

circumstantial experimental evidence for the existence of magnetically charged mat-

ter.

Besides purely theoretical arguments for considering the new class of axion in-

teractions mentioned above, there are also quite strong phenomenological reasons

to investigate these interactions. Nowadays, there is a vast number of ideas how

one can potentially discover axions, both directly in the laboratory and indirectly

through astrophysical data. Many of them have been already put into practice and

more are yet to be implemented in the future. Although the axion has not been

discovered so far, its parameter space has been constrained and even some hints

pointing to a particular range of parameters have been found [3131–3333]. Since most

of the axion searches exploit especially its coupling to photons, it is very important

to understand which values of this coupling are theoretically preferred. It turns

out that large part of the parameter space of conventional axion models cannot be

probed in the near-future experiments. Thus, it seems that these models cannot be

falsified in the nearest future. In this thesis, we find that accounting for the magnetic

sector of the theory allows one to significantly alleviate the latter problem. The new

electromagnetic interactions of axions which we find are much stronger than the

conventional one and are in an immediate reach of multiple projected experiments.

This thesis is structured as follows: in Chapter 11, we discuss the electric-magnetic

duality symmetry and magnetic monopoles, both Abelian and non-Abelian; in Chap-

ter 22, we briefly review the physics of axions; in Chapter 33, we elaborate our ar-

guments about why the structure of the electromagnetic interactions of axions as

presented in the literature has to be revised; in Chapter 44, we discuss an exhaus-

4



tive quantum field-theoretical framework required to take into account the magnetic

sector of the theory and develop an EFT approach to the theories with magnetic

charges; in Chapter 55, we build a generic axion-photon EFT and classify the new

electromagnetic interactions of axions, discussing some of the implications of the

Witten-effect induced coupling; in Chapter 66, we build explicit axion models solv-

ing the strong CP problem which realize the newly found interactions and derive

the low energy axion couplings in these models, studying both the models with

heavy Abelian and non-Abelian magnetic charges; in Chapter 77, we discuss the phe-

nomenology of the new electromagnetic couplings and their implications for axion

search experiments; finally, in Conclusions, we sum up the most important results

of this thesis.

This Introduction is partly written based on the publications [11, 22] of the author

of this thesis.
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Chapter 1

Electric-magnetic duality and

magnetic monopoles

1.1 Electric-magnetic duality symmetry

The Maxwell equations for the electric E and magnetic H fields are:

∇∇∇×H− Ė = je , (1.1)

∇∇∇×E+ Ḣ = 0, (1.2)

∇∇∇·H = 0 , (1.3)

∇∇∇·E = ρe , (1.4)

where ρ and je are electric charge and current densities, respectively. In the space-

time regions where ρe = 0, je = 0, these equations have a symmetry with respect to

the rotations in the (E, H) plane:

E → E cos θ +H sin θ ,

H → H cos θ − E sin θ .
(1.5)

This symmetry is however not manifest in the action for the electromagnetic

field:

SEM =
1

2

∫
d4x

(
E2 −H2

)
. (1.6)

To see the electric-magnetic duality symmetry (1.51.5) in the Lagrangian description,
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one has to remember that the action for the electromagnetic field (1.61.6) is introduced

as a functional of the four-potential Aµ = (A0, A), which is connected to the physical

fields as follows:

E = −Ȧ−∇∇∇A0 , H =∇∇∇×A . (1.7)

The description of a physical system in terms of the four-potential is redundant.

To discuss transformations of Aµ describing the free electromagnetic field, we first

fix the redundancy by requiring A0 = 0 and ∇∇∇·A = 0. Performing the Helmholtz

decomposition of the vector-potential A = AT+AL, where∇∇∇·AT = 0 and∇∇∇×AL =

0, we see that the dynamics is determined by the transverse component of the vector-

potential AT, in terms of which the action (1.61.6) can be rewritten as follows:

SEM =
1

2

∫
d4x

{(
ȦT
)2

−
(
∇∇∇×AT)2} . (1.8)

Now, let us consider the following infinitesimal transformation of the physically

meaningful component of A [3434]:

δAT = −θ∇∇∇−2∇∇∇×ȦT , (1.9)

where θ ≪ 1 and (∇∇∇−2∇∇∇×) = −(∇∇∇×)−1 is the inverse curl operator, which is

well-defined while acting on the transverse component of a given vector field. The

transformation (1.91.9) leaves the action (1.81.8) invariant, not taking into account the

boundary term which does not contribute to the equations of motion:

δSEM = −θ
2

∫
d3x

{
ȦT ·∇−2

(
∇∇∇×ȦT

)
+AT (∇∇∇×AT)}∣∣∣∣∣

t2

t1

. (1.10)

Thus, there exists an internal U(1) symmetry of the electromagnetic field with

respect to the transformations arising from the exponentiation of the infinitesimal

transformation (1.91.9). Although such transformations are in general different from

the transformations corresponding to the electric-magnetic duality symmetry (1.51.5),

it turns out that these two kinds of variations of AT are equivalent as long as one

assumes the equation of motion (1.11.1) to hold. Indeed, the variations of electric and
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magnetic fields corresponding to the transformation (1.91.9) in this case are:

δH = ∇×δAT = θȦT = −θE , (1.11)

δE = −δȦT = θ∇∇∇−2∇∇∇×ÄT = θH , (1.12)

where in the last line we used the equation of motion (1.11.1) rewritten in terms of the

vector-potential:

ÄT =∇∇∇2AT . (1.13)

Exponentiation of the infinitesimal transformations (1.111.11) and (1.121.12) gives indeed

the electric-magnetic duality rotations (1.51.5).

According to the Noether’s theorem, the symmetry of the action (1.81.8) with re-

spect to the transformations (1.91.9) gives rise to a conservation law. The conserved

charge is known as the helicity of the electromagnetic field [3030, 3434–3939] and is given

by the following expression:

S0 =

∫
d3x s0 =

1

2

∫
d3x

{
ȦT · ∇∇∇−2∇∇∇×ȦT −AT · ∇∇∇×AT

}
=

1

2

∫
d3x
{
H · ∇∇∇−2∇∇∇×H+ E · ∇∇∇−2∇∇∇×E

}
. (1.14)

The two terms in Eq. (1.141.14) have similar bilinear structure in terms of E and H and

their time derivatives cancel each other due to the similarity of the structure of the

Maxwell equations (1.11.1) and (1.21.2) for Ė and −Ḣ. Introducing the dual-symmetrized

spin angular momentum density of the electromagnetic field s, one can rewrite the

conservation law in terms of the conservation of the four-current ∂µsµ = 0.

The transformation (1.91.9) as well as the corresponding conserved charge den-

sity (1.141.14) are given by spatially non-local expressions. It is often convenient to

deal with local expressions instead, which can be achieved by introducing a second

(electric) four-potential Bµ = (B0, B). The latter four-potential is related to the

physical fields as follows:

E = −∇∇∇×B , H = −Ḃ−∇∇∇B0 . (1.15)
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The conserved charge (1.141.14) can then be rewritten in the following simple form:

S0 =

∫
d3x s0 = −1

2

∫
d3x (H ·A− E ·B) , (1.16)

while the corresponding three-current density, which equals to the dual-symmetrized

spin angular momentum density of the electromagnetic field, is:

s = −1

2
(E×A+H×B) . (1.17)

While introducing a second four-potential for the electromagnetic field, one has

to make sure that the number of degrees of freedom of the theory is not changed.

The Lagrangian description of the theory of electromagnetic field in terms of two

four-potentials was found by Zwanziger [4040]. We will give a description of this

theory in Chapter 44. A nice feature of this theory is that it allows one to introduce

the coupling of electromagnetic field to magnetic currents jµm = (ρm, jm), which

is completely analogous to the coupling between the electromagnetic field and the

electric currents jµe = (ρe, je):

Lint = −jµeAµ − jµmBµ . (1.18)

Indeed, the duality symmetry tells us that the existence of magnetic charges, and

more generally dyons, is perfectly consistent with the structure of the classical the-

ory, the Maxwell equations being extended as follows:

∇∇∇×H− Ė = je , (1.19)

∇∇∇×E+ Ḣ = −jm, (1.20)

∇∇∇·H = ρm , (1.21)

∇∇∇·E = ρe . (1.22)

It turned out that the existence of magnetic monopoles and dyons is also fully con-

sistent in the quantum theory. Moreover, not only is it fully consistent theoretically,

but it also implies a restriction on the allowed charges of particles corresponding to

the one observed in nature. Let us proceed to the next section, where we discuss
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the perfect fit of magnetic monopoles into the quantum theory as well as why the

magnetic monopoles are probably the best motivated hypothetical particles beyond

the Standard model.

1.2 Magnetic charges in quantum theory

In 1894, Pierre Curie noted that the existence of magnetic monopoles would be per-

fectly consistent with the classical theory of electromagnetism [4141]. His motivation

for considering magnetic charges stemmed from the desire to give magnetism an

analogous status to the one of electricity. Now we know that this desire was never

to come true: all magnetic phenomena observed so far can be perfectly described by

the motion and interactions of electrically charged particles. However, the funda-

mental quantum theory which provided for such a successful electric description of

the magnetic phenomena has also revolutionized our views on magnetic monopoles.

Whereas Pierre Curie and his contemporaries regarded magnetic charges as a purely

phenomenological construct, Paul Dirac argued in 1931 that the quantum theoreti-

cal formalism itself suggests their existence [2121]. In particular, he pointed out that,

in a consistent quantum theory, the change in the phase of a wave function around

any closed curve must be the same modulo 2πn for all the wave functions, where n

is an integer. In case n = 0 one recovers the standard gauge principle, introduced

earlier by Hermann Weyl [4242]. This is the case where there are only electrically but

no magnetically charged particles in the theory and which is known to be realized

in the Standard model of particle physics. The quantum theory itself however does

not tell us any reason for why only the case n = 0 should be realized in nature, so

that for a generic quantum mechanical model of particle physics one would expect

that any n is allowed. As Dirac showed, the n ̸= 0 case corresponds to a model

with both electric and magnetic monopoles involved. Moreover, he found that the

corresponding electric (q) and magnetic (g) gauge charges are necessarily related via

the quantization condition qg = 2πn, which conveniently explains quantization of

the electric charge observed in nature. Note that this is still the simplest explana-

tion for the latter phenomenon to date, since it follows directly from the formalism

of quantum mechanics given one does not put any additional restrictions on the

10



quantum states of the theory.

One can wonder if the results which Dirac obtained in the framework of quantum

mechanics can be derived in the more fundamental formalism of quantum field the-

ory. Does a generic quantum field theory of gauge interactions predict quantization

of the electric gauge charge? The answer is positive and it was found by Daniel

Zwanziger [4343, 4444]. In order to address this question, Zwanziger had to revisit the

very basis of any Poincaré-invariant quantum field theory – irreducible unitary rep-

resentations of the Poincaré group under which particles of the theory can transform.

One-particle irreducible representations were studied in 1939 by Eugene Wigner [4545],

however what Zwanziger found is that there exist also two-particle irreducible repre-

sentations. The latter are parameterized by an angular momentum variable, which is

quantized. The two-particle irreducible representations correspond to pairs of parti-

cles, each pair containing both an electric and a magnetic monopole. The quantized

angular momentum variable for a given pair is proportional to the product of the cor-

responding electric and magnetic charges, hence one automatically recovers charge

quantization. Even more, a quantum field theory of gauge interactions which allows

for the two-particle irreducible representations was explicitly constructed in the case

of the Abelian gauge group, both in Hamiltonian and Lagrangian formulations, in

the works by Julian Schwinger and Daniel Zwanziger [4040, 4646]. The latter authors

also showed that in an Abelian gauge theory a particle can have both electric and

magnetic charges, i.e. it can be a dyon, in which case the quantization condition is

generalized: qigj − qjgi = 2πn for any pair of particles (i, j) [2929,3030]. This means the

right statement is not that the known charged particles have no magnetic charge, as

it is usually claimed, but rather that their magnetic charges happen to be propor-

tional to their electric charges. One of the essential features of both Schwinger and

Zwanziger formulations is the introduction of two four-potentials for the description

of the photon field, one of which couples to the electric and another to the mag-

netic currents. The advantage of the Zwanziger formulation is that it is based on

a Lagrangian which preserves locality and which treats electric and magnetic vari-

ables symmetrically. We will review Zwanziger’s Lagrangian formulation and take

advantage of it later in this thesis.

So far we have been discussing generic magnetic monopoles, i.e. essentially the
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possibility of having two different kinds of gauge charges deeply rooted in the for-

malism of both quantum mechanics and quantum field theory. Let us now con-

sider ’t Hooft-Polyakov magnetic monopoles – topological solitons arising in the

spontaneously broken symmetry phase of purely electric non-Abelian gauge the-

ories, discovered by Gerardus ’t Hooft and Alexander Polyakov in 1974 [4747, 4848].

These topological solitons were called magnetic monopoles because they create a

monopole-like magnetic field far from their cores. Note however that they are more

complicated constructs compared to their fundamental counterparts which we dis-

cussed earlier. It is important that the difference can reveal itself even at energies

much lower than the inverse monopole core size, for which one would expect ’t Hooft-

Polyakov monopoles to behave similarly to fundamental ones due to the identical

monopole-like configuration of the long-range magnetic field. The reason for this

is that the instanton effects of the full non-Abelian theory are not suppressed on

monopoles [4949], thus contributing an extra rotor degree of freedom to the EFT

describing infrared (IR) physics [5050]. The best known phenomenological implica-

tion of this extra degree of freedom is the Rubakov-Callan effect [4949, 5151]: as Valery

Rubakov and Curtis Callan showed in the beginning of 1980s, the Grand Unified

Theory (GUT) magnetic monopole can induce proton decay at a strong interaction

rate. If one is interested only in the processes which do not involve the rotor degree

of freedom, the ’t Hooft-Polyakov monopoles behave similarly to Dirac monopoles

in the IR, i.e. their EFT is given by the above-mentioned Zwanziger theory [5252].

Since ’t Hooft-Polyakov monopoles (more generally, Julia-Zee dyons [5353]) are an in-

evitable prediction of GUTs, they represent a well motivated case for the existence

of magnetic monopoles (more generally, dyons). Explicit constructions show that

such dyons can be bosonic as well as fermionic [5454–5656]. In this work, we will not

adhere to any particular GUT, keeping our discussion as generic as possible.

From what has been already discussed, we see that the existence of magnetically

charged matter would fit very well both in the structure of quantum mechanics,

completing the gauge principle, and in the structure of relativistic quantum theory,

completing the irreducible unitary representations of the Poincaré group realized in

nature. The observed quantization of the electric charge would be explained. More-

over, the existence of magnetic monopoles would be a natural consequence of the
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unification of fundamental interactions, if the latter unification takes place. This is

however not an exhaustive list of arguments in support of the existence of magnet-

ically charged particles. Another strong motivation comes from our understanding

of gravity: the consistency of a quantum theory of the latter was shown to imply

a number of restrictions on the structure of admissible field theories. In particular,

it was argued that there can be no global symmetries in a consistent theory which

includes quantum gravity [2222, 2525–2828] and that in such a theory, the charge spec-

trum is complete [2222, 2323, 2727]. These conjectures were shown to imply the existence

of magnetic monopoles with any magnetic charge allowed by the DSZ quantization

condition [2222,2323].

What are the ways to probe magnetic monopoles experimentally? Many direct

search techniques have been proposed [5757], such as searches for monopoles bound

in matter, searches in cosmic rays, searches at colliders and, in the case of some

GUT monopoles, searches via the catalysis of nucleon decay. None of the direct

detection experiments have however yielded a conclusive signal so far. Moreover,

it is quite difficult to derive accurate exclusion limits on the monopole mass due

to the large theoretical uncertainty. In fact, the quantum field theory of magnetic

monopoles is an essentially non-perturbative theory and there is still no reliable

method to calculate cross-sections of the quantum field theory processes involving

magnetic charges. The interpretation of the indirect searches for virtual monopoles

at colliders [5858] suffers from the same problem. In this thesis, we will point out a new

possible signature for virtual magnetic monopoles, which has the advantage of being

independent of any non-rigorous statements within the non-perturbative theory of

magnetic charges. In particular, we will show that there is a certain modification

of free electrodynamics which, if experimentally detected, would favor the existence

of magnetic monopoles. A complication is that such a modification must involve a

new hypothetical particle – the axion or, more generally, an ALP.

Till now, we considered only the magnetic monopoles charged under the U(1)EM

gauge group of electromagnetism. However, the electromagnetic field is not unique

in this sense and any other U(1) gauge field could be coupled to magnetic monopoles

as well, which would be described in a complete analogy to the magnetic charges of

electromagnetism. A particularly important example of such non-electromagnetic
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magnetic charges can arise in the description of non-Abelian gauge theories, such

as QCD. Indeed, in the Abelian ’t Hooft gauges, the non-Abelian gauge symmetry

of the Yang-Mills theory is reduced to the number of Abelian subgroups. The

gauge fixing procedure introduces singularities which turn out to be magnetically

charged under the surviving U(1) gauge groups. Understanding the dynamics of

these magnetic monopoles can shed some light on the dynamics of the Yang-Mills

theory and QCD in particular. The dual superconductor picture of confinement

suggests that these magnetic charges play a very important role in the IR. Studying

magnetic charges can help one to understand better various phenomena in low energy

QCD.

Considering magnetic monopoles which are charged under different gauge groups,

not necessarily the U(1)EM of electromagnetism, brings us to the next section, where

we will discuss the general case for which the magnetic monopoles could be charged

under non-Abelian gauge symmetries as well.

1.3 Non-Abelian magnetic monopoles

As it was discussed in the previous section, the consistency condition for a theory

with both electric and magnetic currents is:

eg = 2πn , n ∈ Z . (1.23)

With the advent of the Standard model of particle physics, this condition was ex-

tended [5959] to include all possible types of magnetic charges Q⃗Mi
in the theory:

exp

(
i

r∑
i=1

Q⃗Mi
H⃗

)
= 1 , (1.24)

where Hk ≡ ek ·hk are Cartan generators of the Lie algebra G of rank r of the gauge

group multiplied by the corresponding electric charges ek. In case of a non-Abelian

gauge theory, ek are equal to the gauge couplings of the theory. For the Standard

model, at low energies, we have G = su(3)⊕ u(1), which means that a magnetically

charged particle has generally Abelian as well as non-Abelian magnetic charges. In

this theory, the minimal magnetic charge corresponding to the electromagnetic sub-
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group, is still g = 2π/e, although there are now fractionally charged quarks. The

reason is that quarks interact strongly with the monopole that has a color mag-

netic charge, compensating the would-be observable phase which results from the

electromagnetic interaction. In particular, for a down-type quark the quantization

condition (1.241.24) can be written as:

ξgst3 + ζ
√
3 gst8 −

e

3
g = 2π · diag (n1, n2, n3) , (1.25)

where ξ, ζ ∈ R, n1, n2, n3 ∈ Z, t3 = λ3/2, t8 = λ8/2; λa are Gell-Mann matrices;

gs is the strong coupling. Coexistence of a monopole with charged leptons requires

eg = 2πm, m ∈ Z. Then Eq. (1.251.25) can be solved with respect to the coefficients

ξ, ζ:

ξ =
2π

gs
· (2n1 + n3 +m) , ζ = −2π

gs
·
(
n3 +

m

3

)
. (1.26)

Note that the quantization condition for up-type quarks is satisfied automatically as

long as Eq. (1.251.25) holds, for their electric charges differ by one elementary charge e

from those of the down-type quarks. One can see that m = 1, which corresponds to

the minimal Dirac magnetic charge, is still possible, although the magnetic monopole

must carry non-Abelian magnetic charge as well. The latter is not necessary in the

case m = 3 where viable solutions include ξ = ζ = 0, which means vanishing

non-Abelian magnetic charge.

Having discussed the Abelian magnetic monopoles and the generic quantization

condition pertinent to both Abelian and non-Abelian magnetic charges, let us outline

the status of the theory of the latter. First, we note that the condition (1.241.24)

can be expressed in a simple way using the language of the Lie group theory. In

particular, Goddard, Nuyts and Olive [6060] showed that the condition (1.241.24) in a

theory with gauge group G can be regarded as a one-to-one correspondence between

the magnetic charges of monopoles in this theory and the weights of the Langlands

dual gauge group GV , which is now also known as the GNO group. For example,

the gauge group of electromagnetism is self-dual in this sense: (U(1))V = U(1); and

the GNO group corresponding to the gauge theory of QCD can be inferred from the

following identity: (SU(3)/Z3)
V = SU(3). Based on the derived relation between

magnetic charges and the dual gauge group GV , which is completely analogous to
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the relation between electric charges and the gauge group G, Goddard, Nuyts and

Olive suggested that magnetic monopoles of a gauge theory with a group G generally

transform in the representations of the group GV . The above conjecture, known as

the GNO conjecture, obviously holds in the case of the Abelian group G = U(1), for

which the Zwanziger theory mentioned earlier in this Chapter can be constructed.

The GNO conjecture for the non-Abelian monopoles, in its stronger form known

as the Montonen-Olive conjecture [6161], has recently been proven by Kapustin and

Witten [6262] for a twisted N = 4 supersymmetric Yang-Mills (YM) theory. In this

thesis, we assume that the GNO conjecture holds for the gauge theory of QCD as

well, inspired by the findings of Hong-Mo, Faridani and Tsun [6363] that the classical

(nonsupersymmetric) YM equations possess a generalized dual symmetry similar to

the electric-magnetic Z2 symmetry of the Zwanziger theory mentioned above. Let

us also note, that although non-Abelian magnetic charges are often introduced as

emergent from spontaneous breaking of some larger gauge symmetry, the results by

Goddard, Nuyts and Olive do not depend on such a construction and can be as well

stated for generic magnetic monopoles defined in the fiber bundle framework of Wu

and Yang [6464].

This Chapter is partly written based on the publications [11, 22] of the author of

this thesis.
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Chapter 2

Axions and axion-like particles

2.1 Strong CP problem

In QCD, configurations of the pure gauge, i.e. vacuum, gluon fields Aaµ, where

a = 1..8, can be classified by the winding number K ∈ Z, which is given by the

following expression:

K =
g2

32π2

∫
K0(x) d

3x , (2.1)

where K0(x) is the Chern-Simons charge density, which is the zeroth component of

the Chern-Simons four-current:

Kµ = 2ϵµνρλ
(
Aaν ∂ρA

a
λ +

gs
3
fabcAaνA

b
ρA

c
λ

)
, (2.2)

where gs is the strong coupling constant, ϵ0123 = 1, and fabc are the structure

constants of su(3). Such classification of the vacuum configurations implies that

the space of pure gauge gluon fields is topologically a circle, with K indicating the

number of times a given configuration winds around this circle. Invariance of the

theory with respect to "large" gauge transformations, i.e. the gauge transformations

that can change K, as well as independently the cluster decomposition principle are

well-known to yield the following structure of the quantum theory vacuum state:

|θ⟩ =
∑
n∈Z

einθ |n⟩ , (2.3)
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where |n⟩ are the formal vacuum states corresponding to the classical configurations

with definite K, and θ ∈
[
0, 2π

)
.

Note that θ is an additional parameter of the theory, the value of which can

influence various physical processes. To be more precise, this parameter enters the

QCD Lagrangian in the following way:

Lθ = (θ − Arg detM)
g2s

32π2
GaµνGd a

µν , (2.4)

where M is the quark mass matrix,

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAbµA
c
ν (2.5)

is the QCD field strength tensor, and for any tensor Bµν its Hodge dual is defined as

Bd
µν = ϵµνλρB

λρ/2. Let us introduce the notation θ̄ = θ − Arg detM for simplicity.

Although the term (2.42.4) is a total derivative proportional to ∂µK
µ, it yields in

general a non-vanishing contribution to the action due to the instanton processes,

i.e. non-triviality of the boundary integral. Moreover, the term (2.42.4) violates the

CP symmetry which is otherwise conserved in QCD. This violation of CP yields

generally non-vanishing electric dipole moment of neutron proportional to θ̄ [6565]:

dn = 2.4 (1.0) · 10−16 θ̄ e·cm . (2.6)

The latter theoretically calculated value of the dipole moment is to be compared

with the experimental measurement, which yields [55]:

|dn| < 1.8 · 10−26e·cm . (2.7)

The comparison implies |θ̄| ≲ 10−10, which means that the CP symmetry is actually

conserved with a very good accuracy. The question of why QCD is symmetric

under time reversal constitutes the core of the so-called strong CP problem. To get

rid of the extreme fine-tuning of the CP-violating parameter of the theory, one is

tempted to hypothesize a new model where the latter parameter is constrained to

be practically zero due to the properties of the model.
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2.2 Axions

One of the ideas proposed to explain the absence of CP violation in QCD is to drive

the θ̄-parameter to zero dynamically by introducing a new pseudoscalar particle

called axion, which is a pseudo Nambu-Goldstone boson associated to spontaneous

breaking of anomalous Peccei-Quinn (PQ) symmetry [66–99]. The great advantage of

this mechanism is that the introduction of the axion can naturally solve not only

the strong CP problem, but also a much more pressing problem of missing mass in

the Universe, i.e. the axion is a perfect candidate for dark matter [1010–1212], as we will

outline later in this Chapter.

The PQ mechanism yields the following axion coupling to gluons:

L =

(
a

fa
− θ̄

)
g2s

32π2
GaµνGd a

µν , (2.8)

where a is the axion field and fa is the axion decay constant – a parameter of the

axion models directly related to the high energy scale of the PQ symmetry breaking

va. Due to the instanton processes, the latter coupling does not have the symmetry

with respect to arbitrary shifts of the axion field a→ a+C for C ∈ R, which means

that such interaction with topologically non-trivial gluon field fluctuations generates

a non-flat contribution to the axion potential. It is straightforward to show that the

minimum of this potential is CP-conserving [6666]. Thus the axion dynamically relaxes

the value of θ̄eff ≡ ⟨a⟩/fa − θ̄ to zero solving the strong CP problem.

The axion potential can be calculated explicitly using the dilute instanton gas

approximation at high temperatures (T > 1 GeV), chiral perturbation theory at

low temperatures (T ≲ ΛQCD ≃ 0.2 GeV) or lattice QCD methods [6767] in the

intermediate temperature region. In particular, at low temperatures, below the

QCD scale ΛQCD, the chiral perturbation theory gives the following result for the

axion mass:

m2
a ≃ f 2

πm
2
π

f 2
a

mumd

(mu +md)2
, (2.9)

so that it is inversely proportional to the axion decay constant fa. Note that mπ

is the pion mass, fπ is the pion decay constant, and mu and md are the up- and
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down-quark masses. The most precise computation to date [6868] yields:

ma = 5.691(51)µeV (1012GeV/fa) . (2.10)

The expression for the axion mass in Eq. (2.92.9) is a robust prediction of the PQ mech-

anism. However, one should keep in mind that some extensions of the mechanism

predict axions that are parametrically lighter [6969–7171], or heavier [7272–8787].

Details of particular axion models can vary. The first axion model proposed,

which is the PQWW model [66–99], identified the axion field with a phase of the

Higgs in a two-Higgs-doublet model (2HDM) and was ruled out experimentally soon

after the proposal. Then the KSVZ [1919, 2020] and DFSZ [8888, 8989] axion models were

constructed, which were called invisible, because interactions of the corresponding

axion particles with the Standard model are very faint. Such faint they are that even

after four decades of exploration the parameter space of these models is still largely

terra incognita. Appeal of the invisible models is their simplicity: the DFSZ model

exploits the 2HDM just as in the case of the PQWW axion but the axion is now

identified with the phase of a new Standard-model-singlet complex scalar field which

couples to the Higgses at high energies; while the KSVZ model exploits coupling of

a new Standard-model-singlet complex scalar field, the phase of which is identified

with the axion, to a new heavy quark. Over the years, there have been attempts

of constructing axion models which would be more "visible" than the DFSZ and

KSVZ models, however it always turned out that simplicity was to be sacrificed. For

example, in the clockwork axion model [9090], in order to get an enhancement of the

axion-photon coupling by six orders of magnitude compared to the KSVZ model, one

has to introduce at least 13 new scalar fields. A similar enhancement by six orders

of magnitude in all couplings to the Stadard model particles is achievable in the ZN

axion model [6969,7070], but it requires N = 45 copies of the SM. Although quite non-

minimal from the theory side, such an enhancement would allow one to explain some

uneven astrophysical observations concerning cooling of the horizontal branch stars

in globular clusters [3333] and anomalous TeV-transparency of the Universe [3131, 3232],

not to mention that such photophilic axions can be well probed experimentally in

the nearest future.

The main properties of the QCD axion, such as its lightness and feeble derivative
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or anomalous interactions, stem from its pseudo Nambu-Goldstone nature. This in-

forms us about the low energy processes that would be affected by the existence

of this hypothetical particle and thus which detection strategies we should pursue.

Since our detectors are particularly sensitive to the electromagnetic (EM) interac-

tions, most of the axion experiments take advantage of the axion-photon coupling,

Laγγ = −gaγγ
4

aF µνF d
µν = gaγγaE ·H , (2.11)

where F µν is the field strength tensor of Quantum Electrodynamics (QED) and E

and H are electric and magnetic fields. With this interaction included the Maxwell

equations get modified as follows [9191],

∇∇∇·E = ρ− gaγγH·∇∇∇a , (2.12)

∇∇∇·H = 0 , (2.13)

∇∇∇×E = −∂H
∂t

, (2.14)

∇∇∇×H =
∂E

∂t
+ J− gaγγ

(
E×∇∇∇a− ∂a

∂t
H

)
. (2.15)

In general the axion-photon coupling has a contribution which depends on the

fermionic content of the specific model and another contribution originating from

the axion mixing with neutral mesons [9292],

gaγγ =
α

2πfa

(
E

N
− 1.92(4)

)
. (2.16)

Here, E and N are the EM and QCD anomaly coefficients and α = e2/(4π) is

the fine structure constant. The original KSVZ model predicts E/N = 0 while the

original DFSZ model predicts E/N = 8/3. Due to their simplicity, the latter models

are normally taken as benchmarks.

Although the axion-photon coupling is the most popular one to search for in

experiments, the Lagrangian (2.112.11) is actually not specific to axions. The same

kind of coupling is shared by any ALP, which need not solve the strong CP problem.

To discover the QCD axion, one has to probe its coupling to gluons (2.82.8). At low

energies, the latter coupling induces interactions of axions with the electric dipole
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moments of nucleons. The corresponding Lagrangian is,

LaNγ = − i

2
gaNγaΨ̄Nσµνγ5ΨNF

µν , (2.17)

where σµν = 1
2
[γµ, γν ] and the nucleon N can be the neutron n or the proton p. The

coupling constants gaNγ corresponding to each of the nucleons depend only on the

PQ scale fa and are given by the following expression [5757]:

gapγ = −ganγ = −(3.7± 1.5)× 10−3

(
1

fa

)
1

GeV
. (2.18)

Axions are also predicted to couple to leptons at tree level in a wide range of

models, such as those based on Grand Unified Theories (GUTs). Even though it is

challenging to probe these interactions with current experiments, a promising avenue

is to study the influence they exhibit on various astrophysical processes, where

the interactions of axions with electrons can play a crucial role. The interaction

Lagrangian with leptons reads,

Laℓℓ =
Cℓ
2fa

∂µa Ψ̄ℓγ
µγ5Ψℓ , (2.19)

where the coefficient Cℓ depends on the particular lepton flavor under consideration.

Note that in hadronic axion models, such as KSVZ, the couplings to leptons are

suppressed, since they are generated only at the loop level through the axion-photon

coupling (2.162.16), whereas DFSZ constructions predict tree-level couplings to leptons.

2.3 Axion-like particles

ALPs are the particles which need not solve the strong CP problem, i.e. couple to

gluons via the interaction term (2.82.8), but which have couplings with the structure

similar to the structure of the couplings discussed in the previous section. From

the EFT perspective, the similarity of the structure is ensured by these particles

being pseudoscalars and having the shift symmetry a → a + 2πnva, n ∈ Z, where

va is some high energy scale. In field-theoretic models, ALPs emerge as Nambu-

Goldstone bosons of spontaneously broken global U(1) symmetries. In string theory,
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ALPs emerge as Kaluza-Klein zero modes of antisymmetric tensor fields living in

ten dimensions [9393–9595]. Apart from string theory ALPs, examples of ALPs are the

majoron, which arises as Nambu-Goldstone boson of the broken U(1) lepton number

symmetry [9696,9797], or the familon, which is associated to the breaking of global family

symmetries [9898–100100].

For ALPs, the relation between the mass and the decay constant (2.92.9) need

not be satisfied. Moreover, explicit expressions for the couplings, such as (2.162.16)

or (2.182.18), can in general be different from the axion case discussed in the previous

section. Note that the structure of the axion Maxwell equations (2.122.12)-(2.152.15) is

unchanged.

2.4 Axions as dark matter candidates

In this section, we will consider axions as dark matter candidates. First of all,

a good dark matter candidate should be stable over the cosmological timescales.

Axions have a decay channel into two photons due to the coupling (2.162.16). Assuming

E/N = 0 for certainty and taking advantage of Eq. (2.92.9), one obtains the following

expression for the axion decay time:

τa =
1

Γa→γγ

=
64π

g2aγγm
3
a

≃ 64π3m2
πf

2
π

α2m5
a

, (2.20)

where Γa→γγ is the corresponding decay rate. The decay time being large on cos-

mological timescales then implies ma < O (10) eV. This upper bound on the mass

means that we should consider a non-thermal mechanism of dark matter production,

otherwise it would be hard to produce the required dark matter abundance and keep

the dark matter cold.

It turns out that in the case of axions, non-thermal mechanisms for dark matter

production do exist. Let us consider the evolution of the axion field in the expanding

Universe [1010–1212]. There are two important epoques during this evolution: the PQ

phase transition and the QCD crossover. At the PQ phase transition, the PQ

symmetry U(1)PQ becomes spontaneously broken and the axion field takes some

random value in the vacuum manifold ai ∈ [0, 2πva), these values being uncorrelated

between different Hubble patches. At the QCD crossover, the PQ symmetry U(1)PQ
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becomes explicitly broken by instanton effects, which yield a non-flat potential for

the axion field. In the dilute instanton gas approximation, this potential is given by

the following expression:

V (a, T ) = χ(T ) ·
[
1− cos

(
a

fa

)]
, (2.21)

where χ(T ) = f 2
am

2
a(T ) is the topological susceptibility of QCD, and T is the tem-

perature of the early Universe thermal bath.

Let us approximate the potential assuming that the axion field is close to the

minimum of its potential: V (a, T ) = m2
aa

2/2. In this case, the equation of motion

for the axion field in the expanding Universe is:

ä+ 3H(T ) ȧ+m2
a(T ) a = 0 , (2.22)

where H(T ) is the Hubble parameter. The equation (2.222.22) is analogous to the

equation for a harmonic oscillator with frequency ma and friction 3H. Before the

QCD crossover, the friction term obviously dominates, and the axion field is frozen at

its initial value ai = θifa, where θ ∈ [0, 2π) is usually called the misalignment angle.

During the crossover, the axion mass starts to increase and given the decrease of the

Hubble parameter with time, at some point ma(Troll) ∼ 3H(Troll) and the oscillations

start, where Troll is the corresponding temperature. Knowing the dependence of the

topological susceptibility on temperature, which can be found from lattice QCD

simulations, one can determine the value of Troll as a function of zero-temperature

axion mass ma ≡ ma(0). The mean energy density of the oscillating axion field is:

ρa(Troll) =

〈
ȧ2

2
+
m2
a(Troll)a

2

2

〉
= m2

a(Troll) f
2
a

〈
θ2i
〉
. (2.23)

Using na(T )/s(T ) = const, where s(T ) is the entropy density of the early Universe

thermal bath, and the relation between Troll and ma, one can obtain the expression

for the present day energy density of the axion field normalized to the critical energy

density ρc = 3M2
plH

2
0/8π, where Mpl is the Planck mass and H0 ≡ 100h km/s/Mpc
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is the Hubble constant:

Ωah
2 ≃ 0.12

(
28 µeV
ma

)7/6 ⟨θ2i ⟩
4.62

, (2.24)

while the observed cold dark matter abundance satisfies

ΩCDMh
2 = 0.12 . (2.25)

The mechanism of the generation of the axion dark matter which we discussed

in the previous paragraph is called the misalignment mechanism. It is easy to see

that the oscillating axion field has the equation of state corresponding to the cold

dark matter, as the pressure of such dark matter is zero:

pa(T ) =

〈
ȧ2

2
− m2

a(T )a
2

2

〉
= 0 . (2.26)

To determine the masses of axions which could allow for Ωa = ΩCDM, one has to find

the value of the average square of the initial misalignment angle ⟨θ2i ⟩. The latter

value depends on the point in the cosmological history where the PQ phase transi-

tion occurs. If the PQ symmetry is broken during inflation and is never restored,

the value of the initial misalignment angle is homogeneous and completely random.

In this case, which is normally called the pre-inflationary scenario, ⟨θ2i ⟩ in Eq. (2.242.24)

is an arbitrary number between 0 and (2π)2, which means that axions could com-

prise dark matter for any mass ma ≲ 10−4 eV. In the other case, where the PQ

symmetry is broken spontaneously after inflation and which is normally called the

post-inflationary scenario, the Hubble patches with the different values of θi reenter

the horizon later in the history of the Universe, and one has to average over the

random uniformly distributed values of θi. Taking into account the unharmonicities

of the potential (2.212.21), one obtains ⟨θ2i ⟩ = 4.62. Naively, this could mean that the

mass of the dark matter axions in the post-inflationary scenario is fixed, however the

situation is not so simple. Indeed, in the latter scenario, due to the difference in the

initial misalignment angles between different regions, there arise topological defects,

which emit axions in the process of their evolution and thus make an additional con-

tribution to the axion dark matter abundance. The evolution of these topological
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defects is an essentially non-linear phenomenon which is quite challenging to study

even numerically. We will not deal with the post-inflationary scenario in this thesis.

This Chapter is partly written based on the publication [44] of the author of this

thesis.
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Chapter 3

Structure of the axion-photon

coupling – need for revision

3.1 Previous arguments supporting quantization

As it was discussed in the previous Chapter, the axion is the pseudo Nambu-

Goldstone boson of the spontaneously broken U(1)PQ Peccei-Quinn (PQ) symme-

try [66–99]. Since the PQ symmetry is anomalous, the low energy axion Lagrangian

generally contains non-derivative couplings of the axion to CP-odd combinations of

the gauge fields of the low energy Standard model:

La ⊃ −1

4
gaγγ aF

µνF d
µν +

ag2s
32π2fa

GaµνGd a
µν , (3.1)

where a is the axion field, Fµν (Gµν) is the field strength tensor of the QED (QCD)

gauge field, gaγγ is the axion-photon coupling, gs is the coupling constant of QCD,

fa is the axion decay constant; summation over the index a = 1 . . . 8 for gluons is

implied and for any tensor Bµν its Hodge dual is defined as Bd
µν = ϵµνλρB

λρ/2, where

ϵ0123 = 1.

Both axion-photon and axion-gluon couplings are probed in various experiments.

Interactions of the axion with photons are particularly well constrained. In fact, a

large parameter region on the (gaγγ, fa) plane has been excluded already and there

are a lot of new different experiments planned which are going to explore the axion-

photon coupling further in the nearest future. A natural question then arises: where
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should we look in the first place? What are the best motivated values for gaγγ and

fa from the theoretical viewpoint? In the last years, it has been claimed by many

authors that this question can be answered by considering a consistency condition

for the axion EFT [101101–103103]. The latter condition takes advantage of the fact that

the axion is essentially an angular variable with a period 2πva, where va is the PQ

symmetry breaking scale, so that the effective low energy action must be symmetric

under the following shifts:

a→ a+ 2πvan, n ∈ Z . (3.2)

Let us review the argument of Refs. [101101,102102]. First, since the topological charge

of QCD,

Qt =
g2s

32π2

∫
d4x GaµνGd a

µν , (3.3)

is an integer, symmetry of the axion-gluon interaction under the transformation (3.23.2)

requires

fa = va/NDW, NDW ∈ Z , (3.4)

in which case under the transformation (3.23.2), the action changes by 2πk, k ∈ Z,

and the path integral is unchanged. Second, since one cannot generically exclude

the presence of magnetic monopoles at high energies, it has been claimed that the

Witten effect [104104] makes the term

θem · e2

16π2

∫
d4x F µνF d

µν , (3.5)

which enters the QED action, physically relevant. The parameter θem is cyclic with

a period that depends on the global structure of the Standard model gauge group,

see Ref. [105105]. For the following argument, it is important that the period of θem

is always an integer multiple of 2π. Identification of the two similar structures in

Eqs. (3.13.1) and (3.53.5) restricts the values of the axion-photon coupling gaγγ due to the

periodicity of the axion field Eq. (3.23.2):

gaγγ =
E

N
· e2

8π2fa
, (3.6)
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where N = NDW/2 , E ∈ Z , and we used Eq. (3.43.4) in order to relate gaγγ to fa.

The authors of Refs. [101101, 102102] then proceed to argue that any contribution to gaγγ

that is not quantized, i.e. which does not satisfy Eq. (3.63.6), must be proportional

to the mass of the axion squared and can be significantly larger than the order of

magnitude of the quantized contribution e2/(8π2fa) only in non-minimal models

which introduce new unnecessary energy scales and/or particles.

Let us highlight the step in the derivation where one identifies the two similar

F µνF d
µν structures in Eqs. (3.13.1) and (3.53.5) in the presence of magnetic monopoles.

Physically, it is equivalent to stating that electromagnetic interactions between ax-

ions and magnetic monopoles are necessarily induced by the Witten effect. What

we found is that the latter statement has actually never been consistently derived;

moreover, it does not necessarily hold. Before we explain the loophole that has been

overlooked, let us briefly review the Witten effect and its low energy description

since they are central to the following discussion.

3.2 Witten effect and its low energy description

The Witten effect is an effect in a theory with spontaneously broken non-Abelian

gauge symmetry derived in 1979 by Edward Witten [104104]. The latter author showed

that if the full non-Abelian SO(3) theory with coupling constant ḡ and field strength

Gµν has a CP-violating parameter θ in the Lagrangian:

Lθ = − θḡ2

32π2
GaµνGd a

µν , θ ̸= 2πn , (3.7)

where n ∈ Z, then ’t Hooft-Polyakov monopoles of the broken phase of such a theory

get an additional contribution δq to their electric charges q = mḡ + δq, m ∈ Z:

δq = − θḡ

2π
k, k ∈ Z , (3.8)

which is not quantized in units of ḡ, but which is proportional to the CP-violating pa-

rameter θ. One can wonder if there exists a low energy Lagrangian, which would ac-

count for the Witten effect, i.e. which would ensure that any monopole-like magnetic

field comes together with the monopole-like electric field of strength corresponding
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to the non-quantized electric charge δq from Eq. (3.83.8). One would normally write

such a Lagrangian in the following form11:

L = −1

4
FµνF

µν − θe2

32π2
F µνF d

µν , (3.9)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field strength tensor, Aν is the

electromagnetic four-potential and e is the low energy electric gauge coupling. The

non-trivial topology of the Aν field in the vicinity of the magnetic monopole ensures

that the second term of Eq. (3.93.9) has physical importance. Indeed, if one imposes

∂µF
dµν =

4πk

e
jνm , k ∈ Z , (3.10)

where jνm is the current of magnetic monopoles and 4π/e is the minimal allowed

charge of the SO(3) ’t Hooft-Polyakov monopole, then one obtains the following

equations of motion corresponding to the Lagrangian (3.93.9):

∂µF
µν = − θe

2π
k jνm . (3.11)

Comparing the latter equation with the expression (3.83.8) for the non-quantized con-

tribution to the electric charge of the ’t Hooft-Polyakov monopole, we see that the

low energy Lagrangian (3.93.9) does allow us to account for the Witten effect.

3.3 Loophole in the previous arguments

Suppose now that we know nothing about the high energy non-Abelian theory and

want to justify the Witten effect merely by means of the low energy EFT. In this

EFT, we introduce the topological term, which coincides with the second term of

the low energy Lagrangian Eq. (3.93.9). The coefficient θe2/(32π2) is fixed by topo-

logy. Derivation of the Witten effect then proceeds on the lines reviewed in the

previous section. Let us however stress an essential assumption that enters such
1Note the difference in the coefficients of the θ-terms in Eqs. (3.53.5) and (3.93.9). The reason is that

defining the Abelian theory of Eq. (3.93.9) we made a definite choice for the underlying non-Abelian
gauge group SO(3) = SU(2)/Z2. The spectrum of line operators in the non-Abelian theory with
this gauge group fixes the period of θ to be 4π [105105], so that an extra factor of 2 accumulates in
the denominator of the corresponding θ-term.
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considerations. Namely, one assumes that the electromagnetic field is quantized in

terms of the four-potential Aµ in the presence of magnetic monopoles. The latter

quantization procedure is only valid if all the magnetic monopoles of the theory are

treated as merely quasi-classical external sources. Only then is the second term in

Eq. (3.93.9) topological. This description of nature, where the magnetic monopoles

are non-dynamical, is incomplete. An exhaustive quantization of the system with

magnetic charges has to follow the works by Schwinger and Zwanziger [4040,4646]. Note

that the particular case of GUT monopoles is not an exception [5252].

The interactions between axions and magnetic monopoles have never been de-

rived from a high energy theory, such as a GUT, but only from the low energy axion

EFT, namely from the first term in the Lagrangian (3.13.1) – see Ref. [2424], which is

followed by all other works on the subject. Such derivation suffers from the same

supposition as that discussed in the previous paragraph. Quantum dynamical ef-

fects of the monopoles are neglected. This means for example that the loop effects

of magnetic charges cannot be reliably accounted for. Such truly quantum field-

theoretical effects involving magnetic monopoles can however play a very important

role in low energy physics: in particular, as we show in the following Chapters,

they dominate the axion-photon coupling and can lead to novel experimental signa-

tures for axions. Thus, the conventional derivation of the axion-monopole Witten

effect induced interactions from the low energy EFT (3.13.1) has a limited range of

applicability.

What are the ultraviolet (UV) models in which it is possible to prove that the

interactions between axions and magnetic monopoles are the ones induced by the

Witten effect? We can find the answer to this question by deliberately preserving

the full analogy to the case of constant θ. Note that the second term on the right-

hand side of the Eq. (3.93.9) is derived from the θ-term (3.73.7) of the corresponding high

energy Lagrangian, either by requiring that the Witten effect is reproduced, as we

did in sec. 3.23.2, or by simply neglecting the contribution from the heavy gauge fields

in the symmetry broken phase. The latter consideration allows us to substitute θ

with the axion field, but only both at low and high energy scales:

LUV
a = − aḡ2

32π2fa
GaµνGd a

µν ⇒ L IR
a = − ae2

32π2fa
F µνF d

µν , (3.12)
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where the notations are adopted from sec. 3.23.2. The logic outlined in (3.123.12) is possible

only in a theory where the PQ scale va is much larger than the GUT scale: va ≫

vGUT. It is thus not applicable to the vast majority of axion GUT models (starting

from the model of Ref. [106106]), where one normally identifies some part of the PQ

field with the scalar Higgs fields which govern the breaking of the unifying gauge

group.

In closing, we see that there is really no robust theoretical argument showing

that the electromagnetic interactions between axions and magnetic monopoles are

necessarily induced by the Witten effect. Thus, the argument for the axion-photon

coupling quantization from sec. 3.13.1 is inconclusive. But then, how can one infer

the structure of the axion-photon coupling relevant for experimental searches? The

answer to this question follows straightforwardly from the nature of the loophole

discussed: we have to consider a proper quantum field theory with magnetic charges,

e.g. Zwanziger theory. Let us proceed to the next Chapter, where we will outline

the main features of the Zwanziger theory and develop an EFT approach to it.

This Chapter is written based on the publication [11] of the author of this thesis.
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Chapter 4

Quantum electromagnetodynamics

4.1 Zwanziger theory

Quantum electromagnetodynamics (QEMD) is the quantum field theory describing

interactions of electric charges, magnetic charges and photons. Local-Lagrangian

QEMD was constructed by Zwanziger [3030]. In the latter theory, the photon is

described by two four-potentials Aµ and Bµ, which are regular everywhere. The

gauge group U(1) of electrodynamics is substituted with the new one U(1)E×U(1)M,

where the electric (E) and magnetic (M) factors act in the standard way on Aµ and

Bµ, respectively. One fixes the gauge freedom and restricts the physical states by

requiring that they be vacuum states with respect to the free scalar fields11 (n ·A)

and (n·B), where nµ = (0, n⃗) is an arbitrary fixed spatial vector. The right number

of degrees of freedom of the photon is preserved due to the special form of the

equal-time commutators between the potentials:

[Aµ(t, x⃗), Bν(t, y⃗)] = iϵµνρ0 n
ρ (n·∂)−1(x⃗− y⃗) , (4.1)

[Aµ(t, x⃗), Aν(t, y⃗)] = [Bµ(t, x⃗) , Bν(t, y⃗)] = −i (g µ
0 n

ν + g ν
0 n

µ) (n·∂)−1(x⃗− y⃗) ,

(4.2)

1We use the following simplified notations: a·b = aµb
µ.
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where (n·∂)−1(x⃗− y⃗) is the kernel of the integral operator (n·∂)−1 satisfying n ·

∂ (n·∂)−1(x⃗) = δ(x⃗):

(n·∂)−1(x⃗) =
1

2

∫ ∞

−∞
δ3 (x⃗− n⃗s) ε(s)ds , (4.3)

ε(s) is the signum function. The commutation relations Eqs. (4.14.1), (4.24.2) thus make

the theory essentially different from the simple case of the gauge theory with two

electric U(1) gauge groups, used e.g. in models with a hidden photon. The two four-

potentials are not independent and their relation absorbs the non-locality which is

inherent to any quantum field theory with both electric and magnetic charges. The

Lagrangian of the Zwanziger theory is local and is given by the expression22:

L =
1

2n2

{
[n·(∂ ∧B)] · [n·(∂ ∧ A)d] − [n·(∂ ∧ A)] · [n·(∂ ∧B)d] −

[n·(∂ ∧ A)]2 − [n·(∂ ∧B)]2
}

− je ·A − jm ·B + LG , (4.4)

where je and jm are electric and magnetic currents, respectively, and LG is the

gauge-fixing part:

LG =
1

2n2

{
[∂ (n·A)]2 + [∂ (n·B)]2

}
. (4.5)

The Lagrangian (4.44.4) is invariant under those SO(2) transformations which ro-

tate the two-vectors (A,B) and (je, jm) simultaneously. This symmetry ensures

that the absolute directions in the gauge charge space (q, g) are not observable. An-

other important symmetry is however not manifest in the Lagrangian (4.44.4) – the

Lorentz-invariance seems to be lost. This appearance is in fact deceptive. The rea-

son is intimately connected to the non-perturbativity of the theory and to the DSZ

quantization condition. It was shown in Refs. [107107,108108] that, after all the quantum

corrections are properly accounted for, the dependence on the vector nµ in the ac-

tion S factorizes into a linking number Ln, which is an integer, multiplied by the

combination of charges entering the quantization condition qigj − qjgi, which is 2π

times an integer. Since S contributes to the generating functional as exp(iS), this

Lorentz-violating part does not play any role in physical processes. The same result

has been obtained directly at the level of amplitudes in the toy model where the
2The notations are further simplified: (a ∧ b)µν = aµbν − aνbµ, (a·G)ν = aµG

µν .
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magnetic charge is made perturbative [109109].

4.2 Classical limit and its peculiarities

Let us now show that the classical limit of the theory with the Lagrangian (4.44.4)

indeed corresponds to classical electromagnetism with magnetic currents. The clas-

sical equations of motion for the potentials corresponding to the Lagrangian (4.44.4)

are:

n·∂
n2

(
n·∂Aµ − ∂µn·A − nµ∂ ·A − ϵµνρσn

ν∂ρBσ
)

= j µe , (4.6)

n·∂
n2

(
n·∂Bµ − ∂µn·B − nµ∂ ·B − ϵµνρσn

ν∂ρAσ
)

= j µm . (4.7)

They are first-order equations in the time derivative, which allows the two different

four-potentials to describe a sole particle – the photon. To transform these equations,

it is convenient to use the identity

X =
1

n2

{
[n ∧ (n·X)] − [n ∧ (n·Xd)]d

}
, (4.8)

which holds for any antisymmetric tensor X. Namely, assume X = F , where F is

the field strength tensor introduced such that n·F = n·(∂∧A) and n·F d = n·(∂∧B).

Then, recalling that the scalar expressions n·A and n·B are free fields by definition, one

can transform Eqs. (4.64.6), (4.74.7) into the Maxwell equations with magnetic currents:

∂µF
µν = j νe , (4.9)

∂µF
dµν = j νm . (4.10)

Thus the Lagrangian (4.44.4) gives us the correct classical equations of motion for the

electromagnetic field.

What remains to be seen is whether the classical equations of motion for the

charged particles are recovered. Classical expressions for the electric and magnetic

currents are:

jνe (x) =
∑
i

qi

∫
δ4(x− xi(τi)) dx

ν
i , (4.11)
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jνm(x) =
∑
i

gi

∫
δ4(x− xi(τi)) dx

ν
i , (4.12)

where xi(τi) is the trajectory of the i-th particle. Supplementing the Lagrangian (4.44.4)

with the standard kinetic terms for the particles, one obtains the following classical

equations of motion for the i-th particle:

d

dτi

(
miui
(u2i )

1/2

)
= (qi [∂ ∧ A(xi)] + gi [∂ ∧B(xi)] )·ui , (4.13)

where uµi = dxµi /dτi. The way the electromagnetic field strength tensor was intro-

duced above (n·F = n·(∂ ∧A) and n·F d = n·(∂ ∧B)) and Eqs. (4.94.9), (4.104.10) suggest

that

∂ ∧ A = F + (n·∂)−1(n ∧ jm)d , (4.14)

∂ ∧B = F d − (n·∂)−1(n ∧ je)d , (4.15)

so that the final expression describing the classical force exerted on the i-th particle

by the electromagnetic field is:

d

dτi

(
miui
(u2i )

1/2

)
=

(
qiF (xi) + giF

d(xi)
)
·ui

−
∑
j

(qigj − giqj)n·
∫
(n·∂)−1(xi − xj) (ui ∧ uj)d dτj . (4.16)

This expression correctly accounts for the Lorentz force law only if the non-local

term in the second row does not contribute. It is easy to see that the latter term

indeed cannot play any role in classical dynamics, since the support of the kernel

(n·∂)−1(xi − xj) is restricted by the condition

x⃗i(τ)− x⃗j(τ) = n⃗s , (4.17)

which contains three equations, but only two independent variables and is thus

satisfied only for exceptional trajectories. At the points of these trajectories where

Eq. (4.174.17) is satisfied, Eq. (4.134.13) should be solved by continuity, which makes it

basically equivalent to the conventional equation for the Lorentz force given by the

first row of Eq. (4.164.16). As it was mentioned before, the full quantum dynamics
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does not depend on the choice of n⃗, so that the appearance of the non-local n⃗-

dependent term in Eq. (4.164.16) is a mere artifact of the classical approximation. For

instance, in the path integral formulation, exceptional trajectories form a measure

zero subset of all trajectories and thus do not contribute to physical amplitudes.

The practical prescription which one can use for deriving the classical equations of

motion is simple: in the resulting equations, one should omit any singular terms

proportional to (n·∂)−1G, where G is some function of the currents.

4.3 EFT approach to QEMD

Let us consider the QEMD Lagrangian (4.44.4) from the EFT perspective. In par-

ticular, we want to find all independent marginal operators respecting the gauge

invariance of the theory and preserving the number of degrees of freedom of QEMD.

Such operators can be constructed from the gauge invariant tensors and the vector

nµ. For now, we will not consider the operators containing the gauge currents je

and jm, which will be discussed in the next section. We find six classes of dimension

four operators, each class containing operators of the form tr(X·Y ) and (n·X)(n·Y ),

where X and Y can stand for any of the two tensors ∂ ∧ A and ∂ ∧ B. From the

identity (4.84.8), one can find the relation between the operators pertaining to the same

class:

tr(X ·Y ) =
2

n2

[
(n·Xd)(n·Y d)− (n·X)(n·Y )

]
. (4.18)

Let us name the classes depending on the pair (X, Y ):

x for (∂ ∧ A, ∂ ∧B) , y for (∂ ∧ A, [∂ ∧B]d ) ,

α for (∂ ∧ A, ∂ ∧ A) , β for (∂ ∧B, ∂ ∧B) ,

a for (∂ ∧ A, [∂ ∧ A]d ) , b for (∂ ∧B, [∂ ∧B]d ) .

The members of the same class are distinguished by indices:

x1 ≡
2

n2
(n·(∂ ∧ A)) (n·(∂ ∧B)) ,

x2 ≡
2

n2
(n·(∂ ∧ A)d ) (n·(∂ ∧B)d ) ,
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x+ ≡ x1 + x2 =
2

n2

{
(n·(∂ ∧ A)) (n·(∂ ∧B)) + (n·(∂ ∧ A)d ) (n·(∂ ∧B)d )

}
,

x− ≡ x1 − x2 = −tr ((∂ ∧ A) (∂ ∧B)) ,

where we used Eq. (4.184.18); indices are assigned analogously for the operators in

the other five classes. In each of the classes x, y, α or β, the basis is formed

by any two members. The classes a and b each contain only one operator, since

a1 = −a2 = a−/2, a+ = 0 and b1 = −b2 = b−/2, b+ = 0. Disregarding the source

terms, there are thus 10 independent gauge-invariant dimension four operators in

the Zwanziger theory, which we choose to be x1, x−, y+, y−, α1, α−, β1, β−, a−,

b−. From these, only three enter the Lagrangian (4.44.4), the free part of which can be

rewritten as follows:

Lγ = −1

4
(y+ + α1 + β1) . (4.19)

Let us see which operators can be added to this Lagrangian without conflicting

with the structure of the theory. The inclusion of the terms

x− = −tr ((∂ ∧ A) (∂ ∧B)) , (4.20)

α− = −tr ((∂ ∧ A) (∂ ∧ A)) , (4.21)

β− = −tr ((∂ ∧B) (∂ ∧B)) (4.22)

is incompatible with the number of degrees of freedom in QEMD, since these oper-

ators give rise to second order time derivatives of the four-potentials Aµ or Bµ in

the classical equations of motion. There is no such problem with the four remaining

independent operators, three of which correspond to the total derivative terms in

the Lagrangian:

a− = −tr
{
(∂ ∧ A) (∂ ∧ A)d

}
, (4.23)

b− = −tr
{
(∂ ∧B) (∂ ∧B)d

}
, (4.24)

y− = −tr
{
(∂ ∧ A) (∂ ∧B)d

}
, (4.25)

and thus do not contribute to the equations of motion. The last operator from our
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basis is:

x1 =
2

n2
(n·(∂ ∧ A)) (n·(∂ ∧B)) , (4.26)

which does modify the equations of motion and should be added to the Zwanziger

Lagrangian (4.44.4) in the EFT approach. Note that since the two four-potentials Aµ

and Bµ have different parities33, the operators a−, b− and x1 are CP-odd, while the

operator y− is CP-even. This means that one can expect the operator x1 to be

responsible for CP-violation in QEMD. Let us proceed to the next section to see

that x1 is directly related to the Witten effect.

4.4 CP-violation in QEMD

Contrary to QED, the theory of QEMD has an intrinsic source of CP-violation.

The reason is that the magnetic charge changes its sign under any of the discrete

transformations C, P or T [110110], so that a dyon with charges (q, g) is mapped into a

dyon with charges (−q, g) under a CP-transformation. The spectrum of charges is

not CP-invariant if there exists a state (q, g) while its CP-conjugate state (−q, g) is

missing. In this case, it is impossible to define a CP transformation in such a way

that the theory is invariant under it [111111]. Note that due to the DSZ quantization

condition,

qigj − qjgi = 2πn, n ∈ Z, (4.27)

and our choice for the gauge charges carried by the electron (e, 0), any magnetic

charge must be quantized in the units of the minimal magnetic charge g0 = 2π/e:

gi = nmi g0 , nmi ∈ Z . (4.28)

The case of electric charges is however different: what one can infer from the quan-

tization condition (4.274.27) applied to dyons with charges (q1, g1) and (q2, g2) is that

only the difference of some multiples of the electric charges of dyons is quantized:

nm2 q1 − nm1 q2 = ne, n ∈ Z. The latter condition leads to the quantization of the

electric charges themselves only if q1 = −q2 and g1 = g2, i.e. only if the theory is

CP-invariant. Thus, absolute values of the electric charges introduce a CP-violating
3Parities of Aµ and Bµ can be inferred for instance from Eqs. (4.144.14) and (4.154.15).
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parameter θ into the theory:

qi =

(
nei +

θ

2π
nmi

)
·e , nei ∈ Z . (4.29)

Since only the total value of the charge, and not any separate contribution, is phys-

ical, the parameter θ introduced in this way is defined on the unit circle θ ∈ [0, 2π) .

The additional contribution to the electric charge which is proportional to θ is in

perfect consistency with Eq. (3.83.8) derived from the Witten effect, which means that

in the particular case of ’t Hooft-Polyakov monopoles the parameter θ is the vacuum

angle of the full non-Abelian theory.

Let us now find the connection between the CP-violation in QEMD discussed

in the previous paragraph and the CP-violating operator x1 introduced in the pre-

vious section. We will show that it is possible to remove θ from the definition of

charges (4.294.29) at the cost of adding the operator x1 with an appropriate coefficient to

the kinetic part of the Lagrangian as well as modifying the coefficient in front of the

[n·(∂ ∧ A)]2 term. First, we redefine the electric current je → j̄e so that it contains

only the contribution proportional to nei e . The QEMD Lagrangian becomes:

L =
1

2n2

{
[n·(∂ ∧B)] · [n·(∂ ∧ A)d] − [n·(∂ ∧ A)] · [n·(∂ ∧B)d] −

[n·(∂ ∧ A)]2 − [n·(∂ ∧B)]2
}

−
(
j̄e +

e2θ

4π2
jm

)
·A − jm ·B . (4.30)

Next, we make the following SL(2,R) transformation in the space of four-potentials:

 A

B

 −→

 1 0

− e2θ
4π2 1


 A

B

 . (4.31)

The first row of the Lagrangian (4.304.30), which corresponds to the operator y+ from

the previous section, is not affected by this transformation. The second row is trans-

formed yielding the conventional source terms and an extra x1 term as promised:

L =
1

2n2

{
[n·(∂ ∧B)] · [n·(∂ ∧ A)d] − [n·(∂ ∧ A)] · [n·(∂ ∧B)d] −(

1 +
e4θ2

16π4

)
[n·(∂ ∧ A)]2 − [n·(∂ ∧B)]2 +

e2θ

2π2
(n·(∂ ∧ A)) (n·(∂ ∧B))

}
−
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j̄e ·A − jm ·B ,

(4.32)

which can be rewritten more compactly in our operator notation:

L = −1

4

(
y+ +

(
1 +

e4θ2

16π4

)
α1 + β1 −

e2θ

2π2
x1

)
− j̄e ·A − jm ·B . (4.33)

Several important comments are in order. First, note that the periodicity of θ

is no longer explicit in the Lagrangian (4.334.33). In fact, to see the symmetry under

θ → θ + 2π transformation, we have to account for the implicit dependence of the

four-potential Bµ on θ arising from the transformation (4.314.31). The term

1

4
· e

2θ

2π2
x1 =

e2θ

4π2n2
(n·(∂ ∧ A)) (n·(∂ ∧B))

=
e2θ

4π2n2
(n·F ) (n·F d) = − e2θ

16π2
tr
(
FF d

)
, (4.34)

is similar to the conventional QED θ-term (3.53.5), but is by no means symmetric under

the transformation θ → θ + 2π by itself. We see that in the theory where magnetic

currents are properly included in the Lagrangian of the theory, not only does the

term (3.53.5) lose its total derivative structure, but it is also no longer topological.

The second comment which we would like to make is about Lorentz-invariance of

QEMD with CP-violation. Although the Lagrangian (4.334.33) contains an extra term

with nµ-dependence, added to the Zwanziger Lagrangian (4.44.4), and a change in the

coefficient in front of the α1 term, it is clear that the theory is Lorentz-invariant,

since one can get rid of the unusual nµ-dependence by performing a SL(2,R) trans-

formation of the potentials. Since it is always possible to get rid of the x1 term

in this way, we see that the three operators y+, α1 and β1 entering the Zwanziger

Lagrangian (4.194.19) are indeed the only independent gauge-invariant four-dimensional

operators which are relevant for the kinetic part of QEMD. The possible CP-violation

is most elegantly accounted for in the expression (4.304.30) for the QEMD Lagrangian,

since in this form the periodicity of the θ-parameter is made obvious. The latter

form of the QEMD Lagrangian is also convenient for finding the extension of QEMD

which incorporates axions – the endeavor we accomplish in Chapter 55.
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4.5 QEMD of ’t Hooft-Polyakov monopoles

Let us now consider the QEMD of ’t Hooft-Polyakov monopoles. After introducing

the CP-violating parameter θ into the Zwanziger theory, we identified it with the

instanton angle of the UV non-Abelian theory through the Witten effect. Still, the

modified Zwanziger Lagrangian (4.304.30) misses some of the effects associated with the

’t Hooft-Polyakov monopoles, since, as we discussed in Chapter 11 sec. 1.21.2, the latter

monopoles cannot be modeled by simple point-like magnetic field sources even in

the IR.

Consider instanton effects of the UV non-Abelian theory. At low energies, in

the symmetry-broken phase, they are known to be suppressed everywhere, but on

’t Hooft-Polyakov monopoles [4949]. As a result, some of the good symmetries of the

low energy EFT can be violated by unsuppressed instanton-induced effects on the

monopole. The most famous example is the Rubakov-Callan effect [4949, 5151]: the de-

cay of a proton catalyzed by a monopole. A consistent QEMD of ’t Hooft-Polyakov

monopoles has to account for such instanton effects. To satisfy this requirement, we

introduce an extra degree of freedom ϕ (xµ) into QEMD, which interacts with the

electric current jµe via the following Lagrangian: L = (je · ∂)ϕ. The field ϕ does not

contribute to the classical equations of motion, as it should be for a variable describ-

ing instanton effects. As the latter effects are localized on the monopole, we require

that the interaction Hamiltonian H = − (je · ∇∇∇)ϕ vanishes outside the monopole

core, so that ∇∇∇ϕ is zero everywhere but on the monopole. The latter localization

property also means that in our low energy EFT, only s-wave fermions can interact

with ϕ, because wave-functions of scalars and higher partial wave fermions vanish

on the monopole due to the centrifugal barrier [112112,113113] 44.

Let us now show that the interaction Hamiltonian H introduced in the previous

paragraph can provide a valid description for the Rubakov-Callan effect. For this, we

take advantage of the work by Joseph Polchinski [5050]. In the latter work, the author

showed that the Rubakov-Callan effect can be described as an interaction between

s-wave fermions and a rotor coordinate α(t). One can show that this description is

equivalent to ours as long as one identifies α(t) with the temporal dependence of eϕ.
4In this section, we assume the magnetic monopole to be a scalar particle, since to our knowledge

this is the only case which has been studied in the literature on the Rubakov-Callan effect.
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For the sake of comparison, consider the case of a left-handed Weyl fermion χ inter-

acting with an SU(2) monopole. The only part of the electric current contributing

to H is associated to s-wave fermions jie = e χ̄k(s)σ
iχk(s)/ 2, where k is a flavor index,

so that the theory can be reduced to (1+1) dimensions:

H = −
∫
d3x (je · ∇∇∇)ϕ = −e

2

+∞∫
0

dr
(
ξ†+ξ+ − ξ†−ξ−

)
∂rϕ =

+∞∫
−∞

dr ψ†
kαq

′(r)ψk , (4.35)

where, following the notations of Ref. [5050], we define ξ± spinors as charge eigenstates,

ψk(±r) ≡ ξ
(k)
± (r); q(r | r<−r0) = 1/2 and q(r | r>r0) = −1/2; r0 is the size of the

monopole core; we omitted the terms which are suppressed by the high energy scale

1/r0. One sees that the interaction Hamiltonian (4.354.35) is equivalent to the one used

in Ref. [5050] 55. Thus, to account for the Rubakov-Callan effect, the source term of

the QEMD Lagrangian has to be modified as follows: −je ·A → −je · (A− ∂ϕ).

In the case of non-zero θ, one obtains:

L ⊃ −
(
j̄e +

e2θ

4π2
jm

)
·(A− ∂ϕ) . (4.36)

The term e2θ (jm · ∂)ϕ/4π2 corresponds to the θ-term in the worldline action for the

collective coordinate eϕ:

S[eϕ] ⊃
∑
i

∫
γi

θ

2π
d(eϕ) , (4.37)

where γi are the monopole worldlines.

There is yet another way to understand why in the case of ’t Hooft-Polyakov

monopoles, the θ-term of the QEMD Lagrangian (4.304.30) has to be modified. In par-

ticular, consider the case of a varying θ. It is clear that in the full non-Abelian theory

the coupling of the new pseudoscalar field θ to GGd is legitimate. However, varying θ

in the Lagrangian (4.304.30) would be inconsistent with electric charge conservation: the

gauge invariance of the theory would require ∂µθ = 0. A way to resolve this paradox

is to introduce a Stückelberg field ϕ localized on the monopole, so that jm· (A− ∂ϕ)

is gauge invariant [114114], which leads us again to the coupling (4.364.36). Note that the
5The other two terms in the Hamiltonian of the model of Ref. [5050] containing only the collective

coordinate α and its canonical momentum Π correspond to the potential and kinetic energy terms
for ϕ, respectively.
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dependence of the vacuum energy on θ, which was calculated in Ref. [5050] using the

low energy theory with the interaction Hamiltonian (4.354.35), agrees with the high

energy non-Abelian theory result obtained in dilute instanton gas approximation

V (θ) ∝ − cos θ. A similar dependence was found in Ref. [115115] where the authors

took advantage of the worldline action (4.374.37) and computed the self-energy of ϕ.

4.6 Scattering in QEMD

4.6.1 Basic features of scattering

Dirac quantization condition [2121] tells us that for any particle with magnetic charge

g, the following identity holds:

eg = 2πn , n ∈ Z . (4.38)

Since the unit of electric charge is small e ≃ 0.3, the interaction between a given

electric and a given magnetic charge as well as the interaction between any two

given magnetic charges are strong. This means that the perturbation theory is of

no help while calculating the scattering amplitudes involving magnetically charged

particles. The scattering theory has to be built differently. For an illustration, let

us consider again the work by D. Zwanziger [3030], where he finds a local Lagrangian

for QEMD. As it was mentioned in sec. 4.14.1, due to the presence of the fixed vector

n in its formulation, this Lagrangian is not Lorentz-invariant. It was shown both

in path integral formalism [107107,108108] and in a toy model with perturbative magnetic

charge [109109], that one has to take into account all quantum corrections to recover

Lorentz-invariance of the theory. Although formal Feynman rules can be formulated,

the tree-level (or any finite order) amplitudes do not make sense in this case, since

they are not even Lorentz-invariant. The Lagrangian approach is not useful for

studying the scattering of electric and magnetic charges.

An option which is left and which has been successfully pursued in the literature

is to assume that the magnetic charge is static, i.e. that electric particles scatter on

the classical electromagnetic field created by the heavy magnetic monopole. In this

case, it is convenient to make use of the axial symmetry of the problem and expand
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the scattering amplitude as a series of partial waves, each of which corresponds to

the fixed value of total angular momentum j.

Beyond non-perturbativity, another important property of the existing field-

theoretical constructions of QEMD is non-locality. While Zwanziger theory La-

grangian (4.44.4) is local, the connection between the two four-potentials A and B

describing the electromagnetic field in this formulation is non-local, see Eqs. (4.14.1)

and (4.24.2). Another formulation of QEMD due to J. Schwinger [4646] reveals its non-

local properties already at the level of the theory Hamiltonian.

So why is QEMD essentially non-local? To answer this question, let us investigate

a system of particles with charges (ei, gi) which move in the asymptotically distant

past or future [4444]. Such particles can be approximated as moving along the straight

lines limt→±∞ xµi (t) = uµi t with the constant four-velocity uµi . The electromagnetic

field which is spatially far from particle trajectories can be calculated classically.

Solving the Maxwell equations

∂µF
µν = j νe , (4.39)

∂µF
dµν = j νm , (4.40)

one obtains

lim
t→±∞

F (x) = F free(x) +

∫
d4y G(x− y)

(
∂ ∧ je − (∂ ∧ jm)d

)
, (4.41)

where G(x− y) is the Green function (retarded or advanced) for the wave equation,

F free(x) is a solution of the free Maxwell equations. Due to the simplicity of the

motion of the particles in the asymptotic region, the integral in the right-hand side

of Eq. (4.414.41) is nothing more than the well-known Liénard-Wiechert solution for

uniformly moving electric charge plus the dual solution for the magnetic charge:

lim
t→±∞

F (x) = F free(x) +
1

4π

∑
i

ei(x ∧ ui)− gi(x ∧ ui)d

[(x·ui)2 − x2]3/2
. (4.42)

The source contribution to F vanishes as t−2, so that the corresponding energy-

momentum tensor Tµν scales as t−4. Since the volume scales as t3, total energy and

momentum associated to the charges vanish for t → ±∞, however there is a finite
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contribution to the angular momentum tensor:

Mµν = lim
t→±∞

∫
d3x

(
xµT ν0 − xνT µ0

)
, (4.43)

where T = (F ·F +F d·F d)/2. Let us keep only the source contribution to F since we

are interested in the self-fields of the charges. After a straightforward calculation,

one arrives at the following expression for the asymptotic angular momentum tensor:

Mµν =
∑
i>j

±eigj − ejgi
4π

ϵµνκλu
κ
i u

λ
j

[(ui ·uj)2 − 1]3/2
, (4.44)

where the sum is over all possible pairs of particles. The term for each pair comes

with the plus sign if the pair is incoming (in-state) and with the minus sign if the

pair is outgoing (out-state). In the non-relativistic limit, summing over all pairs of

particles (i,j) with the relative velocities v⃗ij one obtains:

M0k = 0 , J⃗ =
∑
i>j

±eigj − ejgi
4π

v⃗ij
|v⃗ij|

, (4.45)

where Jk = ϵklmM
lm/2 is angular momentum. The angular momentum does not

depend on the values of the relative speeds and agrees with the expression for the

angular momentum of the static system of electric and magnetic charges.

The presence of extra angular momentum in the in- and out-states associated

to the pairs of particles implies that these pairs are quantum mechanically entan-

gled: the quantum state of the pair cannot be reduced to the product of one-particle

states. This non-locality is connected to the failure of the quantum-field-theoretical

Lagrangian methods in providing the scattering matrix: note that the usage of

quantum fields for calculating scattering processes is motivated by the cluster de-

composition principle [116116], which is basically the principle of locality. This means

that for the calculation of the electric-magnetic S-matrix we have to resort to on-shell

methods.

Another important property of the scattering amplitudes in QEMD is the absence

of the crossing symmetry. This property follows immediately from the non-locality

we have just discussed. Since each given pair of particles (i,j) in the in- or out-state

is entangled as long as eigj − ejgi ̸= 0, one cannot CPT-transform one particle from
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the pair without affecting the other. Moreover, all the incoming pairs have different

sign in front of their additional angular momenta compared to all the outgoing pairs.

This means that no single particle from the in-state can be transferred to the out-

state without modifying the amplitude unless all particles in the in- and out-states

are either purely electric or purely magnetic.

4.6.2 Pairwise helicity

The asymptotic properties of in- and out-states can be inferred from the analysis of

the irreducible projective unitary representations of the Poincaré group [4545]. Nor-

mally, in- and out-states of the S-matrix approach the product of states transforming

under one-particle irreducible representations of the Poincaré group. In fact, this

is the basis of the normal "electric" quantum field theory, where the particles are

defined by these representations. For example, any state of a single massive particle

in the reference frame where it is at rest generically has extra degrees of freedom as-

sociated to the rotations in the SU(2) double covering of the SO(3) rotation group.

All the massive particles are then parameterized not only by their mass, but also

by their spin s which fixes the (2s + 1)-dimensional representation of the Poincaré

group. Similarly, it can be derived that the massless particles are parameterized by

an extra degree of freedom called helicity which is an integral multiple of 1/2.

Let us apply Wigner’s method to the particle states in QEMD. Allowed ex-

tra degrees of freedom will follow from the little group transformations, i.e. the

Poincaré group actions which do not affect particle momenta. Wigner classified all

the little groups for one-particle states. Let us now follow Zwanziger [4444] and con-

sider multi-particle states, too. An arbitrary two-particle state can be transformed

into COM frame (or simply the frame where momenta are collinear) via a Lorentz

transformation:

|p1, p2 ⟩ −→ |k1, k2 ⟩ , (4.46)

so that k⃗1 ⇈ k⃗2. It is now easy to see that the little group which preserves both

momenta is the U(1) subgroup of the Poincaré group: both momenta are invariant

under rotations around the axis directed along k⃗1. This means that one can associate

an extra helicity with each electric-magnetic pair which is called pairwise helicity qij.
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Pairwise helicity parameterizes a finite-dimensional representation of the little group

and thus is an integral multiple of 1/2. Under a generic Lorentz transformation Λ,

any two-particle state must transform as follows:

U(Λ)|p1, p2;σ1, σ2; q12 ⟩ = eiq12ϕ12 Dσ′
1σ1

(W1)Dσ′
2σ2

(W2) |Λp1,Λp2;σ′
1, σ

′
2; q12 ⟩ ,

(4.47)

where σ1, σ2 are little group parameters (spins, their projections or helicities) of the

one-particle states |p1 ⟩ and |p2 ⟩, respectively; W1 and W2 are the corresponding

little groups and D(Wi) are their representations. Extension of the transformation

law (4.474.47) to generic multi-particle states is straightforward. Indeed, there is no

subgroup of the Poincaré group that would leave more than two momenta invariant,

which means that a generic n-particle state transforms as a product of n one-particle

states and n(n− 1)/2 two-particle states.

Let us now connect the pairwise helicity q12 to the observables in QEMD. Con-

sider a pair of massive spinless particles with charges (e1, g1) and (e2, g2) in the in-

or out-state. In the frame where the first particle is at rest p1 = (m, 0, 0, 0) and

the second is moving along the z-axis p2 = (
√
m2

2 + p⃗2, 0, 0, p), the expression for

non-vanishing component of the angular momentum tensor derived in subsec. 4.6.14.6.1

is

M12 = ±e1g2 − e2g1
4π

, (4.48)

where plus sign is for in-state and minus sign for the out-state. Thus, under the

rotation around the z-axis the two-particle state transforms as follows:

|p1, p2 ⟩ −→ eiM12ϕ12 |p1, p2 ⟩ . (4.49)

Comparing this transformation with the transformation given by eq. (4.474.47), we

obtain the value for the pairwise helicity in terms of electric and magnetic charges:

q12 = ±e1g2 − e2g1
4π

. (4.50)

Note that we have derived the Dirac quantization condition once again, since the
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representation theory restricts pairwise helicity q12 to the integral multiples of 1/2:

q12 =
n

2
⇒ e1g2 − e2g1 = 2πn , n ∈ Z . (4.51)

4.6.3 Electric-magnetic S-matrix

Now that we determined the Lorentz transformations of in- and out-states of electric-

magnetic scattering, we can infer the corresponding transformations of the S-matrix:

S(p′1, . . . , p
′
m|p1, . . . , pn) ≡ ⟨p′1, . . . , p′m;−|p1, . . . , pn; +⟩ =

⟨p′1, . . . , p′m;−|U(Λ)† U(Λ)|p1, . . . , pn; +⟩ =

ei(Σ++Σ−)

m∏
i=1

D(Wi)
†

n∏
i′=1

D(Wi′) S(Λp
′
1, . . . ,Λp

′
m|Λp1, . . . ,Λpn) , (4.52)

where

Σ+ ≡
n∑
i>j

µijϕij , Σ− ≡
m∑

i′>j′

µi′j′ϕi′j′ , (4.53)

(i, j) and (i′, j′) are indices for incoming and outgoing particles, respectively, and

µab = (eagb − ebga)/4π. Thus, S-matrix transforms as follows:

S(Λp′1, . . . ,Λp
′
m|Λp1, . . . ,Λpn) = e−i(Σ++Σ−)

m∏
i=1

D(Wi) ·

n∏
i′=1

D(Wi′)
† S(p′1, . . . , p

′
m|p1, . . . , pn) . (4.54)

The transformation law (4.544.54) restricts the explicit form of the S-matrix in each

particular process. To see what these restrictions are, it is convenient to work with

spinor-helicity variables, since they transform under the little group in a simple way.

S-matrix depends on momenta pi which transform in the (1/2, 1/2) representation

of the Lorentz group (note the isomorphism so(1, 3) ≃ su(2)⊕ su(2)). This means

that every momentum can be represented as a bispinor:

pαα̇ = σαα̇µ pµ =

 p0 − p3 −p1 + ip2

−p1 − ip2 p0 + p3

 , (4.55)

where σµ = (1, σ⃗). Note that det pαα̇ = m2. For massless particles, det pαα̇ = 0,
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which ensures that one can decompose the momentum matrix into the product of

two spinors:

pαα̇ = λαλ̃α̇ ≡ p⟩[p . (4.56)

For massive particles, the momentum can be represented as rank two matrix, which

means that it can be decomposed into the sum of two rank one matrices as follows:

pαα̇ = λαI λ̃
α̇ I ≡ pI⟩[pI , I = 1, 2 . (4.57)

In the spinor-helicity variables, we will denote the momentum of the ith particle pi

simply by i. Then our building blocks for the S-matrix are i⟩, jI⟩, [i and [jI , where i

runs over all the massless particles and j runs over all the massive ones. Under the

action of the corresponding little groups, these spinors transform in a simple way:

i⟩ → eiϕ/2|i⟩ , [i → e−iϕ/2[i , jI⟩ → W I
K |jI⟩ , [jI → (W †)KI [j

I , (4.58)

where W ∈ SU(2). For simplification, let us work in the out-out framework, in

which all of the particles in the process are formally considered outgoing. This is

possible if we always keep in mind which particles are really incoming and do not

pair particles one of which is in the in-state and another is in the out-state. Helicities

and spins of the particles in the scattering process put a constraint on how many

helicity spinors of each type we are supposed to have in the S-matrix. For example,

if the particle 1 is massless and has helicity h1, we will have n spinors 1⟩ and m

spinors [1, such that m−n = 2h1. The massive particle of spin s enters the S-matrix

as a symmetric rank 2s tensor which forms an irreducible spin-s representation of

the SU(2) group. For this reason, the S-matrix is always symmetrized over I indices.

Keeping this in mind, we will omit them and write massive spinors in bold, like i⟩.

Let us first consider an example which involves only electrically charged particles.

In this case, we already have all the helicity spinors necessary to construct the S-

matrix. Our example will be a massive particle decaying into the two massless

particles. Suppose that the massive particle has spin 1/2. The S-matrix can then

be given by the following expressions:

S ∝ ⟨12⟩[23]n⟨23⟩m or [12][23]n⟨23⟩m or 2 ↔ 3 , (4.59)
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from which we infer that precisely one of the massless particles must be a fermion. In

general, it is clear that using this method one can find no-go theorems (or selection

rules) for various processes. In particular, using the same setup of one massive and

two massless particles, one can prove that a massive spin one particle cannot decay

to a pair of photons and that a massive spin three particle cannot decay to a pair

of gravitons [117117].

Let us now adapt this method to the electric-magnetic scattering [118118]. In this

case, we have to account for the extra little group transformations associated to the

pairwise helicities. Since these transformations are U(1) rotations, similar to the

massless particle case, we have to introduce new spinor helicity variables associated

with null momenta. The required null momenta must be linear combinations of the

particle momenta in the pair, so that they have the same Lorentz transformation

properties. It is especially easy to build the reference null momenta in the COM

reference frame: (
k±ij
)µ

= pc (1, 0, 0,±1) , (4.60)

where pc is the COM momentum of the (i, j) pair. Boosted to any other frame,

the null momenta are given by the following covariant expressions in terms of the

particle momenta:

p+ij =
1

Ec
i + Ec

j

[(
Ec
j + pc

)
pi − (Ec

i − pc) pj
]
, (4.61)

p−ij =
1

Ec
i + Ec

j

[
(Ec

i + pc) pj −
(
Ec
j − pc

)
pi
]
. (4.62)

Now that we defined the pairwise null momenta, it is straightforward to define the

corresponding spinor helicity variables, in full analogy to the case of the massless

particles discussed above:

(
p±ij
)αα̇

= σαα̇µ
(
p±ij
)µ

= p±ij⟩[p±ij . (4.63)

Their little group transformations are given by the following U(1) rotations:

p±ij⟩ → e±iϕ/2|p±ij⟩ , [p±ij → e∓iϕ/2[p±ij . (4.64)
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Note that p+ij⟩ and p−ij⟩ have opposite pairwise helicities ±1/2. Explicit contractions

with the other spinors in the massless limit are:

[
p+iji
]
= ⟨ip+ij⟩ = [ηip

−
ij] = ⟨p−ijηi⟩ = 0 , (4.65)[

p−iji
]
= ⟨ip−ij⟩ =

√
2pc[ηip

+
ij] =

√
2pc⟨p+ijηi⟩ = 2pc , (4.66)

where ηi are Parity-conjugate massless spinors which appear in the massless limit

of the massive spinors i [117117]. Note that in constructing the S-matrix we require

that the helicity weights under each individual particle as well as the pairwise he-

licity weights are matched for both the initial and the final states, since only the

diagonal Lorentz transformation for which each particle and each pair of particles

are transformed simultaneously is physical.

Let us construct the S-matrix of a massive vector decaying to two different mass-

less fermions with the pairwise helicity µ23 = −1. For the massive vector, we need

two spinors 1⟩. For the massless fermions, it is enough to take spinors 2⟩ and

3⟩. Now, there are four spinor indices from the normal spinors which need to be

contracted with the pairwise spinors. In total, we should have 4 pairwise spinors,

three of which should have negative helicity and one positive, since we require that

µ23 = −1. The scattering matrix for positive helicity fermions is then:

S
(
1s=1|2−1/2, 3−1/2

)
µ23=−1

∼ ⟨2p−23⟩⟨p+233⟩⟨1p−23⟩2 , (4.67)

up to a little group invariant. We also see that the decay to the different helicity

fermions h2 = −h3 = 1/2 is forbidden in this case, since [p−233] = 0.

Now let us consider the same example where the pairwise helicity of the massless

fermions is µ23 = −2. In this case, the situation is the opposite: the S-matrix for

the same helicity fermions vanishes, while for the different helicity fermions it does

not vanish:

S
(
1s=1|2−1/2, 3+1/2

)
µ23=−2

∼ ⟨2p−23⟩[p+233]⟨1p−23⟩2 , (4.68)

up to a little group invariant. Same helicity fermions are forbidden in this case since

⟨p−233⟩ = [p+232] = 0.

Finally, let us deal with a more general case of a massive particle decaying into

52



two other massive particles. The S-matrix is a contraction of the massive part:

(
⟨1|2s1

){α1...α2s1} (⟨2|2s2){β1...β2s2} (⟨3|2s3){γ1...γ2s3} (4.69)

with a massless part involving the pairwise spinors:

Sq{α1...α2s1}{β1...β2s2}{γ1...γ2s3}
=

C∑
i=1

ai
(
|p−23⟩ŝ−µ23 |p+23⟩ŝ+µ23

)
{α1...α2s1}{β1...β2s2}{γ1...γ2s3} ,

(4.70)

where ŝ = s1 + s2 + s3 and C counts all the ways to group the spinors into α, β, γ

indices. Since we cannot have negative powers of pairwise spinors, a selection rule

follows:

|q| ≤ ŝ , (4.71)

which restricts the charges and spins of individual particles.

This Chapter is partly written based on the publication [11] of the author of this

thesis.
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Chapter 5

Generic low energy axion-photon

EFT

5.1 Anomalous axion-photon interactions

Let us now find the extension of QEMD which incorporates axions. We first limit

ourselves to the CP-conserving axion interactions, which means that the dimension

five operators containing the axion field are obtained from the CP-odd dimension

four operators of QEMD: a−, b− and x1. Axion EFT must be symmetric under the

transformation a→ a+2πvan, n ∈ Z, which suggests that we use the operator jmA

instead of x1, since ax1 would not have the discrete shift symmetry required, as

outlined in Chapter 44 sec. 4.44.4. The operator jmA corresponds to the Witten-effect

induced axion interaction and we postpone its discussion until the next section,

limiting ourselves to the pure axion-photon couplings first. Thus, the Lagrangian

for a generic CP-conserving axion-photon EFT is:

L =
1

2n2

{
[n·(∂ ∧B)] · [n·(∂ ∧ A)d] − [n·(∂ ∧ A)] · [n·(∂ ∧B)d] −

[n·(∂ ∧ A)]2 − [n·(∂ ∧B)]2
}

−

1

4
gaAA a tr

{
(∂ ∧ A) (∂ ∧ A)d

}
− 1

4
gaBB a tr

{
(∂ ∧B) (∂ ∧B)d

}
, (5.1)
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or written in a more compact operator notation:

L = −1

4
(y+ + α1 + β1) +

1

4
gaAA a a− +

1

4
gaBB a b− . (5.2)

The coefficients gaAA and gaBB cannot be determined by symmetry arguments,

since both a− and b− terms are total derivatives, which ensures shift symmetry

regardless of their coefficients. However, to compute the coefficients, we can take

advantage of the fact that these terms arise from the anomalous divergence of the

Peccei-Quinn current, so that gaAA and gaBB are determined by the U(1)PQ (U(1)E)
2

and U(1)PQ (U(1)M)2 anomalies, respectively11:

gaAA =
Ee2

4π2va
, E =

∑
ψ

q2ψ · d(Cψ) , (5.3)

gaBB =
Mg20
4π2va

, M =
∑
ψ

g2ψ · d(Cψ) , (5.4)

where E and M are electric and magnetic anomaly coefficients, respectively; qψ and

gψ are electric and magnetic charges of heavy PQ-charged fermions ψ in units of e

and g0, respectively; d(Cψ) is the dimension of the color representation of ψ. Due

to the DSZ quantization condition, g0 ≫ e so that the Wilson coefficient gaBB is

expected to dominate the axion-photon coupling.

Let us now consider the CP-violating axion interactions. We have not yet taken

advantage of the CP-even four-dimensional operator y−, which can be coupled to the

axion since the resulting CP-odd five-dimensional operator ay− respects the axion

shift symmetry. The corresponding term in the Lagrangian is:

L��CP ⊃ −1

2
gaAB a tr

{
(∂ ∧ A) (∂ ∧B)d

}
, (5.5)

where the coefficient gaAB is determined by the U(1)PQ U(1)E U(1)M anomaly. Note

that the latter anomaly is non-zero only in the case where the spectrum of dyons

violates CP. In this case, the intrinsic CP-violation of high energy QEMD is trans-

ferred to the low energy axion-photon EFT after integrating out heavy dyons. As

we show later in Chapter 66 sec. 6.36.3, the coefficient gaAB is given by the following
1For the detailed derivation, see Chapter 66 sec. 6.36.3.
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expression:

gaAB =
Deg0
4π2va

, D =
∑
ψ

qψgψ · d(Cψ) , (5.6)

where D is the mixed electric-magnetic CP-violating anomaly coefficient, which de-

pends on the spectrum of heavy PQ-charged dyons. The DSZ quantization condition

ensures g0 ≫ e, so that the CP-violating axion-photon coupling gaAB is naturally

suppressed compared to the CP-conserving gaBB coupling, but dominates over the

CP-conserving gaAA coupling: gaBB ≫ |gaAB| ≫ gaAA.

Not only do the values of the anomaly coefficients E, M and D depend on the

details of the UV model, but also the value of the minimal magnetic charge g0

does. While we used g0 = 2π/e for pure QEMD in Chapter 44 sec. 4.44.4, the real

low energy theory describing nature involves also the SU(3)c color gauge group,

and the quarks charged under this group have minimal electric charge |e0| = e/3.

Naively, this implies that the minimal magnetic charge is g0 = 2π/|e0| = 6π/e.

However, this is true only if the magnetic monopoles are Abelian, i.e. if they do

not carry color magnetic charge. As we discussed in Chapter 11 sec. 1.31.3, if the

monopoles are to the contrary non-Abelian, i.e. if they carry also color magnetic

charge22, the DSZ quantization condition generalizes to include such extra magnetic

charges [5959, 122122, 123123] and allows for a minimal U(1)M magnetic charge similar to

the one of pure QEMD: g0 = 2π/e. In Chapter 66, we build an axion model with

heavy PQ-charged fermions ψi carrying SU(3)M color magnetic charges and show

that it indeed solves the strong CP problem. In the explicit calculations, it will be

convenient to parameterize the minimal magnetic charge g0 by an integer ζ :

g0 =
2πζ

e
, ζ =

 3 , ψi ∈ U(1)E×U(1)M×SU(3)E
1 , ψi ∈ U(1)E×U(1)M×SU(3)M

. (5.7)

As we derived the axion-photon couplings (5.15.1) and (5.55.5) from general symmetry

arguments, the field a entering our EFT need not be the QCD axion, but could as

well correspond to a generic ALP. In this case, Eqs. (5.35.3), (5.45.4) and (5.65.6) need

not hold. Nevertheless, the scaling of the corresponding ALP-photon couplings with

electric and magnetic elementary charges e and g0 given in Eqs. (5.35.3), (5.45.4) and (5.65.6)
2Note that contrary to the Abelian case, there are no non-Abelian dyons, i.e. particles which

carry both color electric and color magnetic charges [119119–121121].
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persists for any ALP, because with our normalisation of Aµ and Bµ four-potentials,

the former four-potential always enters the interaction Lagrangian with a factor of

e while the latter one always enters the interaction Lagrangian with a factor of g0.

This means that for a generic ALP, one still expects the above-mentioned hierarchy

of couplings: gaBB ≫ |gaAB| ≫ gaAA.

5.2 Witten-effect induced axion interaction

Let us return to the discussion of the CP-conserving O = a (jm · A) operator of a

generic axion EFT. The coefficient in front of this operator is determined by the

discrete shift symmetry requirement. The corresponding term in the Lagrangian is

obtained by the substitution θ → a/va in Eq. (4.304.30):

L ⊃ −
(
j̄e +

e2a

4π2va
jm

)
· A . (5.8)

Indeed, the results on the periodicity of θ obtained in Chapter 44 sec. 4.44.4 show that

the axion field has the required discrete shift symmetry a → a + 2πvan, n ∈ Z.

Note also that, as we discussed in Chapter 44 sec. 4.44.4 for the analogous case of the

θ-parameter, the latter symmetry would no longer be explicit if we were to redefine

the fields and move the axion dependence into the kinetic part of the Lagrangian.

The term (5.85.8) is not gauge invariant unless ∂µa = 0, which tells us that our

axion EFT has to be modified. A way to restore the gauge invariance is to introduce

a Stückelberg field ϕ into the Lagrangian:

L ⊃ −
(
j̄e +

e2a

4π2va
jm

)
· (A− ∂ϕ) . (5.9)

As we discussed in Chapter 44 sec. 4.54.5, such an extra degree of freedom ϕ arises

naturally while considering the case of ’t Hooft-Polyakov monopoles, where it plays

the role of the dyon collective coordinate. Let us then consider the case where the

interaction Lagrangian (5.95.9) corresponds to the low energy phase of a non-Abelian

gauge theory. Comparing Eq. (5.95.9) with the θ-term (4.364.36) of the low energy phase,

we see that the CP-violating θ-parameter of a non-Abelian theory is simply sub-

stituted with the axion field θ → a/va, so that the a (jm · A) operator corresponds
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to the aGGd operator at high energies. This means that the coupling (5.95.9) de-

scribes Witten-effect induced axion interactions. Indeed, as we discussed in Chap-

ter 33 sec. 3.23.2, one expects the Witten-effect kind of coupling between axions and

monopoles whenever one considers the spontaneously broken symmetry phase of a

high energy non-Abelian theory with aGGd term.

Contrary to the three anomalous axion couplings described in the previous sec-

tion, the coupling (5.95.9) does not respect the continuous shift symmetry a→ a+C,

where C is an arbitrary constant. This means that the latter coupling generates

a non-flat contribution to the potential for the axion field. Since the axion cou-

pling (5.95.9) arises in the low energy EFT of a non-Abelian theory with aGGd in-

teraction, such a contribution to the axion potential is not unexpected: in fact, it

has to correspond to the potential created by instantons of the high energy non-

Abelian theory. As it was discussed in the end of Chapter 44 sec. 4.54.5, explicit cal-

culations [5050, 115115] support the latter correspondence. Note, however, that contrary

to the claim made in Ref. [115115], additional contribution to the axion potential need

not arise in every theory of an axion coupled to an Abelian gauge field whenever

there are monopoles magnetically charged under the latter field. The axion mass

is generated not by magnetic monopoles, but always by instantons, even if these

instantons happen to live on the monopole worldvolume in the low energy EFT.

Indeed, consider the simplest example of a QEMD theory (4.44.4) which has no extra

degrees of freedom. In such a theory, there cannot exist a consistent Witten-effect

induced axion coupling, although there can exist the anomalous axion-photon cou-

plings discussed in the previous section. Thus, such a theory has both axions and

magnetic monopoles interacting with the Abelian gauge field, but no axion mass is

generated through these interactions, which contradicts the statement of Ref. [115115].

In general, we see that the anomalous axion-photon couplings and the Witten-effect

induced axion coupling are independent. The Witten-effect induced coupling arises

only in theories which have instanton degrees of freedom, e.g. in the spontaneously

broken symmetry phase of a high energy non-Abelian gauge theory.
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5.3 Axion Maxwell equations

Having analyzed different axion-photon interactions in the previous two sections, we

are now ready to collect them all together in a generic axion-photon EFT Lagrangian:

L =
1

2n2

{
[n·(∂ ∧B)] · [n·(∂ ∧ A)d] − [n·(∂ ∧ A)] · [n·(∂ ∧B)d] −

[n·(∂ ∧ A)]2 − [n·(∂ ∧B)]2
}

− 1

4
gaAA a tr

{
(∂ ∧ A) (∂ ∧ A)d

}
−

1

4
gaBB a tr

{
(∂ ∧B) (∂ ∧B)d

}
− 1

2
gaAB a tr

{
(∂ ∧ A) (∂ ∧B)d

}
−(

j̄e +
e2a

4π2va
jϕm

)
· (A− ∂ϕ) − jm ·B + LG , (5.10)

or written in a more compact operator notation:

L = −1

4

(
y+ + α1 + β1 − gaAA a a− − gaBB a b− − 2 gaAB a y−

)
−(

j̄e +
e2a

4π2va
jϕm

)
· (A− ∂ϕ)− jm ·B + LG , (5.11)

where we denoted the part of the magnetic current jm carrying an instanton degree of

freedom ϕ by jϕm. For instance, jϕm can correspond to a current of ’t Hooft-Polyakov

monopoles. Let us remind the reader that LG is the gauge-fixing Lagrangian given

by Eq. (4.54.5), j̄e is the part of the electric current which is quantized in units of ele-

mentary electric charge and y+, α1, β1, a−, b−, y− are the QEMD operators defined

in sec. 4.34.3. Note that since we derived the Lagrangian (5.115.11) from general symmetry

arguments, the field a entering our EFT need not be the QCD axion, but could as

well correspond to a generic ALP.

Let us derive the classical equations of motion corresponding to the Lagrangian

(5.115.11). For this, we follow the standard procedure outlined in Chapter 44 sec. 4.24.2.

Varying over the two four-potentials, we obtain:

n·∂
n2

(
n·∂Aµ − ∂µn·A − nµ∂ ·A − ϵµνρσn

ν∂ρBσ
)
−

gaAA ∂νa
{
(∂ ∧ A)d

}νµ − gaAB ∂νa
{
(∂ ∧B)d

}νµ − e2a

4π2va
jϕµm = j̄ µe ,

(5.12)
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n·∂
n2

(
n·∂Bµ − ∂µn·B − nµ∂ ·B − ϵµνρσn

ν∂ρAσ
)
−

gaBB ∂νa
{
(∂ ∧B)d

}νµ − gaAB ∂νa
{
(∂ ∧ A)d

}νµ
= j µm .

(5.13)

Then, transitioning to the description in terms of the field strength tensor F , we

find the following axion Maxwell equations:

∂µF
µν − gaAA ∂µaF

dµν + gaAB ∂µaF
µν − e2a

4π2va
jϕ νm = j̄ νe , (5.14)

∂µF
dµν + gaBB ∂µaF

µν − gaAB ∂µaF
dµν = j νm . (5.15)

Note that the terms proportional to (n·∂)−1 (n ∧ jm)µν and (n·∂)−1 (n ∧ je)µν do

not contribute to the classical equations of motion, as it was discussed in Chapter 44

sec. 4.24.2 33. Eqs. (5.145.14) and (5.155.15) are to be supplemented by the following equation

of motion for the axion field:

(
∂2 −m2

a

)
a = −1

4
(gaAA + gaBB)FµνF

dµν − 1

2
gaABFµνF

µν , (5.16)

where the right-hand side is obtained by varying the Lagrangian (5.115.11) with respect

to the axion field and transitioning to the description in terms of the field strength

tensor F . According to the discussion of the previous section, the axion mass ma

receives an additional contribution from the Witten-effect induced interaction in the

case jϕm ̸= 0.

Let us now bring Eqs. (5.145.14), (5.155.15) and (5.165.16) into the form convenient for

their experimental study. First, we set jm = jϕm = 0, since there are no magnetic

monopoles in the laboratory. Second, we expand the electromagnetic field in powers

of the anomalous axion-photon couplings gaAA, gaBB and gaAB, keeping only the zeroth

and the first orders F = F0 + Fa. At zeroth order, Eqs. (5.145.14), (5.155.15) and (5.165.16)

decouple and give the ordinary Maxwell equations as well as the homogeneous Klein-

Gordon equation for the axion field. At first order, Eqs. (5.145.14), (5.155.15) and (5.165.16)
3That such terms cannot contribute to the classical equations of motion is also clear from

the fact that the interaction of axions with electromagnetic field cannot depend on the kind of
currents sourcing the latter field: for instance, in a given setting the axion field could be causally
disconnected from these currents. In fact, one can obtain the axion Maxwell equations (5.175.17),
(5.185.18) and (5.195.19) by using an even simpler two-potential framework of Ref. [3939] which does not
involve currents at all.
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yield:

∂µF
µν
a − gaAA ∂µaF

dµν
0 + gaAB ∂µaF

µν
0 = 0 , (5.17)

∂µF
dµν
a + gaBB ∂µaF

µν
0 − gaAB ∂µaF

dµν
0 = 0 , (5.18)(

∂2 −m2
a

)
a = −1

4
(gaAA + gaBB)F0µνF

dµν
0 − 1

2
gaABF0µνF

µν
0 , (5.19)

so that Fa is an axion-induced part of the electromagnetic field sourced by the

following effective electric and magnetic currents:

jνe, eff = gaAA ∂µaF
dµν
0 − gaAB ∂µaF

µν
0 , (5.20)

jνm, eff = −gaBB ∂µaF
µν
0 + gaAB ∂µaF

dµν
0 , (5.21)

which depend on the external field F0 created in the laboratory. Eqs. (5.205.20) and

(5.215.21) extend the results of the axion EFT of Ref. [9191], which yields

jνe, eff = gaAA ∂µaF
dµν
0 and jνm, eff = 0 . (5.22)

As we discussed in sec. 5.15.1, in an axion model with a generic spectrum of heavy

PQ-charged dyons the couplings satisfy gaBB ≫ |gaAB| ≫ gaAA, so that the additional

terms we obtain dominate the conventional contribution to the effective currents.

Finally, in terms of electric and magnetic fields, Eqs. (5.175.17), (5.185.18) and (5.195.19)

are given by the following expressions:

∇∇∇×Ha − Ėa = gaAA (E0×∇∇∇a− ȧH0) + gaAB (H0×∇∇∇a+ ȧE0) , (5.23)

∇∇∇×Ea + Ḣa = −gaBB (H0×∇∇∇a+ ȧE0)− gaAB (E0×∇∇∇a− ȧH0) , (5.24)

∇∇∇·Ha = −gaBB E0 ·∇∇∇a+ gaAB H0 ·∇∇∇a , (5.25)

∇∇∇·Ea = gaAA H0 ·∇∇∇a− gaAB E0 ·∇∇∇a , (5.26)(
∂2 −m2

a

)
a = (gaAA + gaBB)E0 ·H0 + gaAB

(
E2

0 −H2
0

)
, (5.27)

where Ea and Ha are axion-induced electric and magnetic fields, while E0 and H0 are

background electric and magnetic fields created in the detector. Note that to study

the propagation of light with Eqs. (5.235.23)–(5.275.27), it is convenient not to perform the

61



expansion of the electromagnetic fields Eγ and Hγ, in which case the equations are

the same, but with the substitutions Ea, E0 → Eγ and Ha, H0 → Hγ.

This Chapter is written based on the publication [11] of the author of this thesis.
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Chapter 6

General hadronic axion

6.1 KSVZ-like models are intrinsically biased

Normally, construction of the KSVZ-like axion models proceeds as follows. One in-

troduces a complex scalar field Φ, which breaks the U(1)PQ symmetry spontaneously

after relaxing to its non-zero vacuum expectation value va/
√
2. For consistency with

observations, va must correspond to some high energy scale. Moreover, in order to

solve the strong CP problem, the U(1)PQ symmetry has to be color anomalous. This

is achieved via introducing a new vector-like colored fermion ψ = ψL + ψR, so that

U(1)PQ acts differently on the two chirality components of ψ. These requirements

lead naturally to the following Lagrangian:

L ⊃ iψ̄γµDµψ + y
(
Φ ψ̄LψR + h.c.

)
− λΦ

(
|Φ|2 − v2a

2

)2
, (6.1)

where y and λΦ are some dimensionless constants and Dµ is a covariant derivative

encoding the interaction of ψ with the gauge fields of the Standard model. Note that

as a result of the spontaneous symmetry breaking ψ gets a mass m = yva/
√
2, which

is very large for reasonable values of y. What remains as a low energy degree of

freedom is a pseudo Nambu-Goldstone boson of the spontaneous symmetry breaking

a – the axion – which can be thought of as an angular mode of Φ. The axion interacts

with the gauge fields of the Standard model through loops of ψ. In particular, as

it was discussed in Chapter 22, at low energies where the relevant gauge bosons

are photons and gluons, these interactions are given by the axion field times the
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expressions for axial electromagnetic and color anomalies, respectively, with some

coefficients:

La ⊃ −1

4
g0aγγ aF

µνF d
µν − ag2s

32π2fa
GaµνGd a

µν , (6.2)

where

fa =
va
2N

, g0aγγ =
E

N
· e2

8π2fa
, (6.3)

and the parameters E and N are called electromagnetic and color anomaly co-

efficients, respectively. They depend on the representation of ψ under the gauge

symmetries of the Standard model. Since the latter representation is unknown, E

and N can in principle vary considerably, which gives rise to an uncertainty in the

parameter g0aγγ [124124]. This uncertainty translates into a band on the plot of possible

axion-photon couplings gaγγ versus axion mass ma, see fig. 6.16.1, due to the following

relations11:

gaγγ = g0aγγ −
e2

12π2fa
· 4md +mu

mu +md

, ma =
mπfπ

√
mumd

(mu +md) fa
. (6.4)

Let us now elaborate why the construction presented in the previous paragraph

contains an implicit far-reaching assumption. While allowing the new heavy fermion

ψ to be charged under any possible gauge symmetry at hand is indeed the most

generic option, it is not consistently implemented in the KSVZ-like models. The rea-

son is that these models consider only electric representations of the gauge groups.

Meanwhile, as it was shown back in 1931 by Dirac [2121], gauge interactions in the

quantum theory need not be limited to the electric ones: gauge charges can be elec-

tric as well as magnetic. Although we do not see magnetic charges at low energies,

their existence is actually indirectly evidenced by the quantization of the electric

charge observed in nature. Indeed, as Dirac found, quantum theory requires that the

electric gauge charge e is related to the magnetic one g as follows: eg = 2πn , n ∈ Z,

so that the charges are quantized. Moreover, as it was advocated in ref. [2323] and

mentioned in Chapter 11, there is a mounting evidence supporting the conjecture

that charge quantization is not only a necessary but also a sufficient condition for

the magnetic monopoles to exist. Quantum field theory coupled to gravity suggests

that any possible electric or magnetic charge should have a physical realization. The
1mu,md,mπ are masses of u-quark, d-quark and pion, respectively; fπ is pion decay constant.
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construction of KSVZ-like models is thus too restrictive, so that the gauge charges

assigned to the heavy fermion ψ are not generic and the resulting predictions for

axion couplings are biased.

6.2 Axion-photon coupling from the axial anomaly

of magnetic currents

Let us now relax the above-mentioned assumption on the representations of the

heavy fermion ψ under the gauge groups of the Standard model and consider a

truly generic setting. In this setting, ψ is a dyon, i.e. a particle carrying both

electric and magnetic charges. We limit our investigation to axion phenomenology

at low energies, so that the relevant gauge interactions are electromagnetic and

color ones. For simplicity, in this section we do not consider the case where ψ has

a color magnetic charge, which is studied in detail later in this Chapter. Since this

means we do not modify the strong sector of the model, phenomenology of the strong

interactions of axions is fully analogous to the one in the KSVZ model: in particular,

the strong CP problem is solved and the relation between axion mass ma and decay

constant fa is standard. What is modified are axion-photon interactions. Let us

proceed to derive the latter interactions from the UV theory with the Lagrangian

given by eq. (6.16.1). As it was shown by Zwanziger [4040], a local quantum field theory

with both electric and magnetic charges necessarily involves two vector-potentials,

Aµ and Bµ, each having the standard coupling to the corresponding current, electric

or magnetic, respectively. The covariant derivative entering eq. (6.16.1) is thus Dµ =

∂µ− e0 qeAµ− g0 qmBµ, where e0 = e/3 and g0 are elementary electric and magnetic

charges, respectively. Due to the Dirac quantization condition, g0 = 2π/e0.

Below the PQ symmetry breaking scale, one can expand

Φ = (va + ρ) exp (ia/va)/
√
2 , (6.5)

where ρ is a heavy radial mode and a is a pseudo Nambu-Goldstone boson (axion).

The terms in the resulting Lagrangian which are relevant for the low energy phe-
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nomenology are:

L ⊃ iψ̄γµDµψ +
yva√
2

{
exp

(
ia

va

)
ψ̄LψR + h.c.

}
. (6.6)

We perform then an axial rotation of the fermion ψ → exp (iaγ5/2va) ·ψ, after which

there arise an anomalous term LF from the transformation of the measure of the

path integral and a derivative coupling of a to the axial current of ψ:

L ⊃ iψ̄γµDµψ +
yva√
2
ψ̄ψ − ∂µa

2va
ψ̄γµγ5ψ − LF . (6.7)

The axial anomaly in a theory with dyons was found in ref. [111111], from where one

infers the expression for the anomalous term:

LF =
a · d(Cψ)
16π2va

·
{(
e20q

2
e − g20 q

2
m

)
F µνF d

µν − 4πqmqeFµνF
µν
}
. (6.8)

The dimension d(Cψ) of the color representation of ψ in the numerator on the right-

hand side comes from summing over the color indices. We corrected a mistake which

crawled into the coefficient of the last term on the right-hand side in the original

expression for the anomalous current in ref. [111111]. This term is CP-violating and

arises only if there is CP-violation in the UV theory. As it was shown in Chapter 44,

a generic theory with dyons does violate CP, unless for any dyon with charges (qe,

qm) there is another dyon with charges (qe, −qm). Anyway, be there CP-violation

or not, it is easy to see that the second term on the right-hand side of eq. (6.86.8)

dominates over all other terms: if we assume qe, qm ∼ 1, its coefficient is by a factor

of 4π2/e40 larger than the coefficient in front of the first term and by a factor of

π/e20 – than the coefficient in front of the third term. At the leading order, as long

as m = yva/
√
2 is very large, the derivative axion coupling from eq. (6.76.7) does not

contribute to the low energy Lagrangian of axion-photon interactions, for the same

reason as in the KSVZ-like models22. The leading effect in the interactions between

axion and photons is thus given by the following Lagrangian:

Laγ =
1

4
g̃aγγ aF

µνF d
µν , g̃aγγ =

q2m d(Cψ) g
2
0

4π2va
, (6.9)

2The reason is the behaviour of the Ward identities for the correlation functions which involve
the axial current of ψ in the limit m→ ∞.
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where we took into account that the contribution to the axion-photon coupling g̃aγγ

from the strong sector, see eq. (6.46.4), is now absolutely negligible. The axion-photon

coupling can be rewritten in terms of the magnetic anomaly coefficients Mψ:

g̃aγγ =
M

N
· g20
8π2fa

, M =
∑
ψ

Mψ =
∑
ψ

q2m(ψ) · d(Cψ) , (6.10)

where qm(ψ) ∈ Z are magnetic charges of new heavy fermions ψ.

The effective axion-photon Lagrangian (6.86.8) is however not fully satisfactory, as

it seems to lack the axion shift symmetry a → a + 2πnva, n ∈ Z. The reason for

this is simple. As it was argued in Chapter 33, to obtain reliable EFT from the UV

model containing magnetic monopoles and dyons, one has to stick to the QEMD

formalism discussed in Chapter 44 until the very end of the calculation. In fact, the

fully consistent EFT derived from the Zwanziger theory has to contain two four-

potentials, not one as in Eq. (6.86.8). Let us proceed to the next section where we

derive the effective Lagrangian using the Zwanziger theory from start till finish and

show that the relevant anomaly coefficients are given by the expressions derived in

this section.

6.3 Calculation of the anomaly coefficients

Let us calculate the anomaly coefficients E, M and D, which enter the expres-

sions (5.35.3), (5.45.4) and (5.65.6) for the axion-photon couplings. We start with a high-

energy QEMD theory and integrate out heavy fermions ψ carrying PQ charges. In

the PQ-symmetric phase, the Lagrangian includes the following terms for each of

the fermions ψ:

L ⊃ iψ̄γµDµψ + y
(
Φ ψ̄LψR + h.c.

)
, (6.11)

where y is a dimensionless Yukawa constant, Dµ = ∂µ − e0 qψAµ − g0 gψBµ is a

covariant derivative including both magnetic and electric four-potentials multiplied

by the corresponding electric and magnetic charges, and Φ is the PQ complex scalar

field.

67



As in the previous section, for energies below the PQ scale, we expand

Φ = (va + ρ) exp (ia/va)/
√
2 , (6.12)

perform an axial rotation of the fermion ψ, and obtain

L ⊃ iψ̄γµDµψ +
yva√
2
ψ̄ψ − ∂µa

2va
ψ̄γµγ5ψ − LF . (6.13)

The fermion ψ gets its mass m = yva/
√
2, which we assume to be large compared

to the energy scales probed in experiments. In the large m limit, the derivative

axion coupling from eq. (6.136.13) does not contribute to the low energy Lagrangian of

axion-photon interactions due to the Sutherland-Veltman theorem [125125, 126126]. The

axion-photon couplings are thus given by the anomalous terms LF which can be

calculated using the Fujikawa method [127127]. In particular, following Fujikawa, we

apply the gauge invariant heat kernel regularization to the path integral measure

which yields:

LF = − a

va
· lim
Λ→∞
x→y

tr
{
γ5 exp

(
D/ 2/Λ2

)
δ4(x− y)

}
. (6.14)

We then notice that the commutators eqs. (4.14.1) and (4.24.2) vanish if the four-potentials

are taken at the same space-time point. This means that these commutators do not

contribute to the expression for D/ 2, which becomes:

D/ 2 = D2 − iγµγν (e0qψ ∂
µAν + g0gψ ∂

µBν) . (6.15)

It is then convenient to express the delta-function as a superposition of plane waves:

δ4(x− y) =
∫
d4k eik(x−y)/ (2π)4, each of which shifts the derivative operator Dµ →

Dµ + ikµ. Taking into account eq. (6.156.15), we obtain:

LF = − a

va
· lim
Λ→∞

∫
d4k

(2π)4
tr
{
γ5 exp

(
−iγµγν (e0qψ ∂µAν + g0gψ ∂

µBν) /Λ2 +

(D + ik)2 /Λ2
)}

. (6.16)

Any terms in the integrand which are o(1/Λ4) vanish after performing the integration
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and sending Λ → ∞. Taylor expanding the exponent, we are then left with a finite

number of terms, which after taking the trace, the integral and the limit simplify

into:

LF =
a d(Cψ)

8π2va
· ϵµνλρ

(
e0qψ ∂

µAν + g0gψ ∂
µBν
) (
e0qψ ∂

λAρ + g0gψ ∂
λBρ
)
, (6.17)

where d(Cψ) is the dimension of the color representation of ψ. Using the notations

of sec. 44, eq. (6.176.17) can be rewritten as follows:

LF = −a d(Cψ)
16π2va

·
(
q2ψe

2
0 tr
{
(∂ ∧ A) (∂ ∧ A)d

}
+ g2ψg

2
0 tr
{
(∂ ∧B) (∂ ∧B)d

}
+

2 qψgψ e0g0 tr
{
(∂ ∧ A) (∂ ∧B)d

})
. (6.18)

If there are multiple dyons ψ, each of them gives a similar contribution to the result-

ing axion-photon Lagrangian. Thus, the expressions for the axion-photon couplings

gaAA, gaBB, gaAB and the corresponding anomaly coefficients E,M,D are:

gaAA =
Ee20
4π2va

, E =
∑
ψ

q2ψ · d(Cψ) , (6.19)

gaBB =
Mg20
4π2va

, M =
∑
ψ

g2ψ · d(Cψ) , (6.20)

gaAB =
De0g0
4π2va

, D =
∑
ψ

qψgψ · d(Cψ) . (6.21)

Note that these expressions for the anomaly coefficients agree with the results of the

previous section.

6.4 Solution to the strong CP problem

Now that we derived the effective Lagrangian and explicit expressions for the axion-

photon couplings in the case of Abelian magnetic charges, it is time to consider the

case where the heavy magnetic monopoles carry also non-Abelian magnetic charges,

in particular if they are magnetically charged under the SU(3)c of QCD. We remind

the reader that we had a general discussion of the non-Abelian magnetic monopoles

in Chapter 11 sec. 1.31.3.
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Suppose there exist a vector-like fermionic magnetic monopole ψ = ψL + ψR

which transforms under an anomalous PQ symmetry U(1)PQ [66, 77] and a complex

scalar field Φ which breaks the PQ symmetry spontaneously at some high energy

scale va. For a moment, assume that ψ transforms in a fundamental representation

of the QCD gauge group, i.e. it is a new quark. As far as we do not consider the

electromagnetic interaction, such model with a new quark is an exact analog of the

KSVZ axion model and thus it provides a solution to the strong CP problem in the

same way the KSVZ model does. The aim of this section is then to show that the

model with the non-Abelian color-magnetic monopole solves the strong CP problem

as well. The high-energy Lagrangian in this case includes the following terms:

L ⊃ iψ̄γµ∂µψ + ψ̄γµCµψ + y
(
Φ ψ̄LψR + h.c.

)
− λΦ

(
|Φ|2 − v2a

2

)2
, (6.22)

where Cµ is a connection on a GNO group SU(3) multiplied by the corresponding

magnetic coupling: Cµ = gm taC
a
µ. In the broken phase, there exists a pseudo

Goldstone boson a (axion), which can be introduced via the polar decomposition of

the PQ scalar field Φ = 1√
2
(va + σ) · exp (−ia/va) near the vacuum. Let us dispose

of the axion dependence in the Yukawa term by performing a chiral rotation of the

fermions ψ → exp (iaγ5/2va) ·ψ. Omitting the terms containing a heavy radial field

σ, one then obtains:

L ⊃ iψ̄γµ∂µψ + ψ̄γµCµψ +
yva√
2
ψ̄ψ − ∂µa

2va
ψ̄γµγ5ψ + LF, (6.23)

where LF is a Fujikawa contribution coming from the transformation of the fermion

measure in the path integral, i.e. the density of the index of the Dirac operator

γµDµ = γµ(∂µ−Cµ). By the Atiyah-Singer index theorem, the latter is equal to the

characteristic class of the GNO group bundle, so that:

LF =
a

16π2va
trCµνCd

µν , (6.24)

where Cµν is the curvature of the GNO group connection and Cd
µν = ϵµνλρC

λρ/2 ,

ϵ0123 ≡ 1.

In order to see that such a model provides a solution to the strong CP problem,
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we invoke Abelian gauge fixing introduced by ’t Hooft [128128]. In the Abelian gauges

there arise singularities corresponding to effective color magnetic currents which

result in the violation of the non-Abelian Bianchi identities (VNABI) [129129]. The

time reversal violating term of the QCD action can then be expanded as follows:

SQCD ⊃ − θ̄g2s
32π2

∫
d4x

8∑
a=1

GaµνGd a
µν = − θ̄g2s

32π2
×{∫

d4x ϵµνλρ ∂
µ

8∑
a,b,c=1

(
AνaG

λρ
a − 1

3
gsfabcA

ν
aA

λ
bA

ρ
c

)
− 2

∫
d4x

8∑
a=1

Aaν
(
DµG

dµν
)
a

}
, (6.25)

where Ga
µν (Aaµ) are components of the non-Abelian field strength tensor Gµν (four-

potential Aµ) of QCD, fabc are su(3) structure constants, θ̄ is QCD vacuum angle,

Gd a
µν = ϵµνλρG

aλρ/2 .

Let us consider the first term on the right-hand side of Eq. (6.256.25). Since all the

singularities characteristic of the Abelian ’t Hooft gauges arise in the diagonal part

of the gluon field, i.e. in the components A3
µ and A8

µ, the terms of the integrand

which contain solely off-diagonal fields can be safely integrated with the use of the

Stokes theorem:

∫
d4x ϵµνλρ ∂

µ

8∑
a,b,c=1

(
AνaG

λρ
a − 1

3
gsfabcA

ν
aA

λ
bA

ρ
c

)
=

∫
d4x ϵµνλρ ∂

µ
∑
α=3,8

8∑
b,c=1

(
AναG

λρ
α + 2 gsfαbcA

ν
αA

λ
bA

ρ
c

)
+

∫
Ω∞

dSµ Kµ [Aoff-diag] , (6.26)

where G µν
α = ∂µAνα − ∂νAµα (α = 3, 8) are Abelian field strength tensors. As it

is derived both from theoretical considerations [130130] and lattice calculations [131131],

in the Abelian gauges off-diagonal gluons obtain finite mass, which means that the

functional Kµ [Aoff-diag] vanishes at the surface at infinity, Ω∞. For the same reason

the integrand in Eq. (6.266.26) proportional to ∂µ(AναAλbAρc) is restricted to arbitrarily

small surfaces around the singularities after application of the Stokes theorem and

finally integrates to zero due to regularity of the off-diagonal fields.

Equation (6.256.25) can now be rewritten in the following way:

∫
d4x

8∑
a=1

GaµνGd a
µν =

∫
d4x

∑
α=3,8

G αµνG dα
µν +
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2

∫
d4x

(∑
α=3,8

Aαν∂µG
dµν
α −

8∑
a=1

Aa ν
(
DµG

dµν
)
a

)
. (6.27)

Let us show that the VNABI, DµG
dµν , is diagonal in color space, so that the second

row in Eq. (6.276.27) equals to zero. First, note that the only contribution to VNABI

comes from singularities, where topological defects associated with the monopoles

hamper commutation of partial derivatives, so that in the expression for a commu-

tator of covariant derivatives,

[Dρ, Dλ] = −iGρλ + [∂ρ, ∂λ] , (6.28)

the second term on the right does not vanish. After taking advantage of Eq. (6.286.28)

and Jacobi identities for partial as well as covariant derivatives, the expression for

VNABI can be simplified [132132]:

DµG
dµν =

1

2
ϵµνρλ

[
Dµ, Gρλ

]
=

1

2
ϵµνρλ

[
∂ρ, ∂λ

]
Aµ = ∂ρG

d ρν , (6.29)

where in the last step only diagonal gluons survive. One can see that the diagonal

form of VNABI is ensured by its linearity in the Aµ field. We note that the sec-

ond term on the right-hand side of Eq. (6.256.25) is then nothing but a manifestation

of the Witten effect [104104]: QCD monopoles are dyons with color electric charges

proportional to the vacuum angle θ̄.

Due to the identities Eqs. (6.276.27) and (6.296.29) the CP violating term of the QCD

Lagrangian reduces in the Abelian gauges to

− θ̄g2s
32π2

∑
α=3,8

G αµνG dα
µν , (6.30)

which involves now only Abelian four-potentials. By the analogous transformation

of the Fujikawa contribution (6.246.24) to the axion Lagrangian (6.236.23), i.e. choosing

the same Abelian gauge in the GNO gauge group, one obtains the term for the

interaction of the axion with the Abelian dual four-potentials:

LF =
ag2m

32π2va

∑
α=3,8

CαµνCdα
µν , (6.31)
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where the axion field is assumed to be constant and homogeneous, since this is a

vacuum expectation value of it which is a key to the PQ mechanism. Now that we

have abelianized the relevant terms, we are in the realm of the Zwanziger theory,

so that the electric and magnetic four-potentials can be related due to the dual

symmetry33, Cα
µν = G dα

µν , which yields:

LQCD ⊃ −vag
2
s θ̄ + ag2m
32π2va

∑
α=3,8

G αµνG dα
µν . (6.32)

Physically, this is just an instantiation of the fact that the U(1) electric and magnetic

fields enter the expressions (6.306.30) and (6.316.31) symmetrically, as products E⃗ · B⃗. The

standard PQ mechanism is now in order: redefinition of the pseudo Goldstone axion

field a→ a−vaθ̄ g2s/g2m absorbs the θ̄-term into the axion-gluon term and subsequent

application of the Vafa-Witten theorem [133133] ensures ⟨a⟩ = 0. The strong CP

problem is thus solved.

6.5 Calculation of the effective Lagrangian

Let us return to the original Lagrangian (6.226.22) and derive the corresponding low

energy physical phenomena. For that, we use a linear decomposition of the PQ

field, Φ = (va + σ + ia)/
√
2, where a is a pseudo Goldstone axion field.44 Below the

PQ scale, the field σ decouples and we are left with the Lagrangian involving axion

and heavy monopoles:

L ⊃ iψ̄γµ∂µψ + ψ̄γµCµψ +
yva√
2
ψ̄ψ +

iy√
2
aψ̄γ5ψ , (6.33)

where Cµ now also includes the electromagnetic four-potential and corresponds in

general to the connection on either of the two GNO gauge groups, Abelian or non-

Abelian, discussed in Chapter 11 sec. 1.31.3. The aim of this section is to integrate out

the heavy field ψ. The beauty of the pseudoscalar interaction is that in this case
3The existence of the Standard model quarks – given the absence of their magnetic partners –

obviously violates the electric-magnetic symmetry of this U(1)2 Zwanziger-like theory. However,
these quarks are known to be massive. This means they have no relevance for the instanton vacuum
effects which are responsible for the generation of the θ̄-term

4σ and a introduced here are different from the fields denoted by the same letters in Sec. 6.46.4,
but there should be no confusion, since different notations are restricted to different sections.
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the calculations can be done exactly, without the need of perturbative expansion in

the coupling constant. In order to get an effective Lagrangian at low energy we use

the proper time method [134134] developed by Schwinger. The effective pseudoscalar

current is

Ja = i
〈
C
∣∣ψ̄(x)γ5ψ(x)∣∣C〉 = − i

yva√
2

∫ ∞

0

ds e−isy
2v2a/2 tr

[
⟨x|γ5e−iĤs|x⟩

]
, (6.34)

with the proper time Hamiltonian

Ĥ = − (p̂/− C/ (x̂))2 = − (p̂µ − Cµ(x̂))
2 +

1

2
σµνCµν(x̂) , (6.35)

where σµν = i
2
[γµ, γν ], Cµν = ∂µCν − ∂νCµ + [Cµ, Cν ] and a/ ≡ aµγ

µ.

First, our goal is to evaluate the matrix element entering Eq. (6.346.34), which

modulo γ5 denotes the probability amplitude of returning to the same point xµ

in Minkowski space after proper time s. Note that since we are interested in the

phenomenology at energies much less than the PQ scale va and the fluctuations of

heavy fields ψ are possible only at the spatial and temporal extent ∼ v−1
a , external

gauge fields in the following calculation can be considered constant. Our calculation

of the pseudoscalar current then closely follows that performed by Schwinger [134134],

although we are considering a generic non-Abelian GNO group connection instead

of the electromagnetic four-potential. We solve the Heisenberg equations of motion

in a constant field Cµν ,

dπ̂µ
ds

= i
[
Ĥ, π̂µ

]
= 2Cµν π̂

ν , (6.36)

dx̂µ
ds

= i
[
Ĥ, x̂µ

]
= 2 π̂µ , (6.37)

and find the generalized momentum π̂µ = p̂µ − Cµ and position x̂µ as a function of

proper time s:

π̂µ(s) = e2sCµν π̂ν(0) , (6.38)

x̂µ(s) = x̂µ(0) + 2
(
Cµλ

)−1 · esCλν

sinh sCνρ · π̂ρ(0) . (6.39)

Next, with the use of Eqs. (6.386.38) and (6.396.39) we rewrite the Hamiltonian (6.356.35) in

74



terms of position operators x̂µ(s) and x̂µ(0):

Ĥ ⊃ − 1

4
(sinh sCκλ)

−1CλνC
νρ (sinh sCρσ)−1 ×

[x̂κ(s), x̂
σ(0)] +

1

2
σµνC

µν , (6.40)

leaving only the terms that do not vanish after taking the matrix element

⟨x(0)|Ĥ|x(s)⟩ ∝ ⟨x(0)|x(s)⟩ . (6.41)

Note that the exponents coming from Eqs. (6.386.38), (6.396.39) contract into the identity

matrix due to antisymmetricity of the field strength tensor Cµν . The commutator in

Eq. (6.406.40) is easily calculated with the help of Eq. (6.396.39) and canonical commutation

relations. Since the Hamiltonian (6.406.40) is a generator of proper time translations,

one can write now a differential equation for the sought-after matrix element:

i∂s⟨x(0)|x(s)⟩ = ⟨x(0)|Ĥ|x(s)⟩ = ⟨x(0)|x(s)⟩ ×{
i

2
Cµν coth sC

µν +
1

2
σµνC

µν

}
. (6.42)

The solution is:

⟨x(0)|x(s)⟩ = A
pfCαβ

pf sinh sCαβ
· exp

(
−is

2
σµνC

µν

)
, (6.43)

where A = −i/(4π)2 is an integration constant which is calculated by matching

with the elementary case of vanishing field strength G α = 0. A skew-symmetric

four-by-four matrix has two pairs of opposite sign eigenvalues, which we denote as

±Λ1, ±Λ2 in the particular case of Cαβ. The trace entering Eq. (6.346.34) can be now

rewritten in the following form:

tr
[
⟨x|γ5e−iĤs|x⟩

]
= − i

16π2
trc
[

Λ1Λ2

sinh sΛ1 sinh sΛ2

×

trγ
{
γ5 exp

(
−is

2
σµνC

µν

)}]
, (6.44)

where we have explicitly separated traces over colour (trc) and spinor (trγ) indices.
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Sums over the spinor indices can be performed using simple algebraic relations,

namely (σµνC
µν)2 = 8I1 + 8iγ5I2, γ25 = 1, tr γ5 = trσµν = tr γ5σµν = 0, where

I1 ≡ CµνC
µν/4, I2 ≡ ϵµνλρC

µνCλρ/8 :

trγ
{
γ5 exp

(
−is

2
σµνC

µν

)}
= 4i Im cosh sX =

4 sinh

(
s
X +X∗

2

)
sinh

(
s
X −X∗

2

)
, (6.45)

whereX ≡ i
√
2·
√
I1 + iI2. Quite conveniently, by solving the characteristic equation

for the matrix Cαβ, which has the form Λ4 + 2I1Λ
2 − I22 = 0, one can infer that

Λ1 =
X +X∗

2
, Λ2 =

X −X∗

2
, (6.46)

and the overall expression for the current simplifies into

Ja =
iyva

4
√
2π2

trc(I2)
∫ ∞

0

ds e−isy
2v2a/2 =

1

16
√
2π2yva

ϵµνλρ trc
(
CµνCλρ

)
. (6.47)

Finally, we calculate the trace over color indices and expand in terms of the

electromagnetic and color gauge fields:

Ja =
1

8
√
2π2yva

×


3g21F

V µνF V d
µν +

g2m
2

(
GV
)aµν(

GV
)d a
µν
,

3g22F
V µνF V d

µν +
g2s
2
GaµνGd a

µν ,

(6.48)

where summation over a = 1 . . . 8 is implied. We also introduced notation for the

dual gluon fields
(
GV
)aµν , which are components of the connection on the color

GNO group, and the dual electromagnetic field strength tensor F V µν .

For concreteness, in phenomenological applications, we limit ourselves to the two

minimal magnetic charge assignments: a pure Abelian magnetic monopole with a

charge 6π/e and a non-Abelian color-magnetic monopole with an Abelian magnetic

charge 2π/e, which correspond respectively to the cases m = 3 and m = 1 discussed

after Eq. (1.261.26) in Chapter 11 sec. 1.31.3. For the non-Abelian case, we will consider

only magnetic charges transforming in the fundamental representation of SU(3)

with the coupling constant 2π/gs , bearing in mind that the higher representation

GNO monopoles are unstable due to the Brandt-Neri-Coleman analysis [135135, 136136].
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Thus, g1 = 2π/e and g2 = 6π/e are the two cases, corresponding to the stable non-

Abelian monopole and the minimal Abelian one, respectively. The effective axion

Lagrangian is then given by the following expression:

Leff ⊃ y√
2
aJa =

a

16π2va
×


3

4α2
e2F V µνF V d

µν +
1

8α2
s

g2s
(
GV
)aµν(

GV
)d a
µν
,

27

4α2
e2F V µνF V d

µν +
1

2
g2s G

aµνGd a
µν ,

(6.49)

where we introduced the fine-structure constant α = e2/4π and its QCD analogue

αs = g2s/4π.

6.6 Axion couplings

6.6.1 Axion couplings to gauge bosons

Let us introduce the axion decay constant fa = 4α2
sva (fa = va), for the case of

the non-Abelian (Abelian) monopole. Assuming the dual symmetry of a Zwanziger-

like theory describing diagonal gluons and photons, we obtain the relation between

the magnetic and electric U(1) field strength tensors G V α = G dα (α = 3, 8) and

F V = F d. The effective Lagrangian Eq. (6.496.49) can then be rewritten in the following

form:

Leff ⊃


− 1

4

(
g0aγ
)
1
aF µνF d

µν − ag2s
32π2fa

GaµνGd a
µν + Loff ,

− 1

4

(
g0aγ
)
2
aF µνF d

µν +
ag2s

32π2fa
GaµνGd a

µν ,

(6.50)

where

g0aγ =


3α2

s/ (παfa) ,

27/ (4παfa) ,
(6.51)

is a coupling of axion to photons. For convenience, we separated some axion-gluon

interactions into Loff, which is given by the following expression:

Loff =
ag2s

32π2fa
×

(
GaµνGd a

µν −
∑
α=3,8

G αµνG dα
µν +

(
A→ AV

))
=

− g2s ∂
µa

16π2fa
ϵµνρλ ×

{ ∑
i,j,k∈Ioff

(
Aνi ∂

ρAλi +
1

3
gs fijkA

ν
iA

λ
jA

ρ
k

)
+
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∑
α=3,8

∑
j,k∈Ioff

gsfαjkA
ν
αA

λ
jA

ρ
k +

(
A→ AV

)}
, (6.52)

where Ioff = [1; 7]/{3}55. Note that each of the interactions presented in Eq. (6.526.52)

contains two or three off-diagonal (dual) gluon fields. Restricting our study in what

follows to the field of low energy QCD, we neglect contribution from these terms. The

reason are strong indications [130130,131131,137137,138138] of Abelian dominance in QCD below

the energies of 1 GeV, which means that the processes involving off-diagonal gluons

are suppressed in the IR. Moreover, as we will show in sec. 6.6.26.6.2, the term (6.526.52) is

exactly zero in the classical approximation. Let us note, however, that in the future

it would be very interesting to study if the quantum effects can generate non-zero

Loff, because, although such effects are expected to be small in IR, they would be a

very distinctive feature of the model we discuss.

The effective Lagrangian Eq. (6.506.50) without the term Loff has the form of the

conventional axion effective Lagrangian. As we will show, however, the correspond-

ing axion particle has couplings with the Standard model particles which differ a lot

from the ones calculated in DFSZ and KSVZ models. In particular, the coupling to

photons gaγ is enhanced by many orders of magnitude compared to the conventional

models. Namely, after the standard chiral rotation of quarks

q → exp

(
iγ5

aM−1
q

2fatrM−1
q

)
· q, Mq = diag (mu,md) , (6.53)

which eliminates the GGd term, is performed, one finds that the coupling to photons

is

gaγ = g0aγ −
α

3πfa

(
4md +mu

md +mu

)
≃ g0aγ, (6.54)

so that it is practically not affected by the quark masses. In the conventional

notation used to parameterize the strength of the axion-photon coupling,

gaγ =
α

2πfa
· E
N
, (6.55)

5By this notation we mean all integers from 1 to 7 excluding 3.
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our model predicts

E

N
=


6α2

s/α
2 ,

27/(2α2) ,
(6.56)

so that the coupling gets increased by 5-6 orders of magnitude. Bearing in mind

that the standard expression for the axion mass,

ma =
mπfπ

√
mumd

(mu +md) fa
, (6.57)

is derived from the conventional axion-gluon coupling and thus holds in our case au-

tomatically as long as Loff is small, we plot the axion-photon coupling as a function

of axion mass and decay constant in Fig. 6.16.1 together with the hints and existing as

well as projected constraints from various experiments and astrophysical observa-

tions.66 For reference, we show axion-photon couplings in KSVZ models with heavy

fermions in one representation of the Standard model gauge group [124124] and in DFSZ

model.

In Fig. 6.16.1, possible values for the axion-photon coupling in the model with

the non-Abelian monopole are organized in a vertically hatched band, while the

model with the minimal Abelian monopole yields a single line inside this band.

The band denotes the uncertainty we estimate for the model with the non-Abelian

monopole, which is associated to the dependence of the first line of Eq. (6.516.51) on

the strong coupling αs in the IR. The state of the art in studies of the behavior

of the latter was discussed in detail in a recent review [149149], where it was shown

that there exists a definition of αs in the IR, which is analytic, independent of the

choice of renormalization scheme or gauge, universal, based on first principles and

IR-finite (see Table 5.4 in Ref. [149149]). This choice of definition for IR αs corresponds

to the so-called effective charges αg1 , αF3 and ατ , which are directly related to the

observables of low energy QCD. The measurements show that the IR strong coupling
6Hints and most constraints are discussed in detail in Ref. [139139]. We present updated astro-

physical constraints from Ref. [140140] together with the constraints derived from Chandra data on
NGC 1275 [141141] (see however Ref. [142142]), as well as constraints derived from the data on SN1987A
from the GRS instrument of the SMM satellite [143143], constraints from NuSTAR data on super star
clusters [144144], constraints from GBT data on neutron stars in the Galactic Center [145145], and pro-
jected constraints from advanced LIGO [146146]. Constraints from ADMX SLIC [147147] search for dark
matter axions include three very narrow close exclusion regions which are impossible to resolve in
our plot. SHAFT constraint is discussed in Ref. [148148].
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Figure 6.1: Comparison between the axion-photon couplings predicted in the con-
ventional DFSZ- and KSVZ-like models (orange band) and the ones predicted in
the general hadronic models (blue band). Axion-photon coupling is plotted as a
function of axion mass and decay constant together with the existing and projected
(dashed lines) constraints on the corresponding parameter space from experiments
as well as from astrophysical data. Note that the haloscope experiments search-
ing for light axions (ma ≪ µeV) are blind to the new axion-photon couplings of
the general hadronic models, as it will be discussed in Chapter 77 sec. 7.37.3. Astro-
physical hints are also shown. The dash-dotted line corresponds to the model with
the non-Abelian monopole where the IR strong coupling αs value calculated in the
AdS/QCD framework is adopted. The line in the center of the vertically hatched
band corresponds to the model with the minimal Abelian monopole. For further
discussion, see main text.

αs defined in such a way freezes at low energies. The freezing behavior of IR αs

is also supported by the success of the AdS/QCD technique in the description of

hadron properties [150150]. Moreover, the value of the IR strong coupling calculated

in AdS/QCD, αAdS (0) = π, is consistent with the values αg1(0) and αF3(0)
77. All

this convinces us to assume that the AdS/QCD value of IR strong coupling is a
7Although the effective charge ατ (0) is different, it is known that it contains an unsubtracted

pion pole.
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relevant one, that is why we highlight the corresponding values of gaγ in Fig. 6.16.1

with a dash-dotted line. However, bearing in mind that low energy QCD is still

largely terra incognita, we allow for uncertainty in αs which results in a band in

Fig 6.16.1 where the lower edge αs(0) = 0.7 is chosen. Such choice is suggested by

the observation in Ref. [149149] that most of the values of αs(0) in the literature are

clustered around αs(0) ∼ 3 (close to the AdS/QCD value) and αs(0) ∼ 0.7, not

taking into account the decoupling solution αs(0) = 0 disfavored for a number of

reasons [151151, 152152]. Let us note as well that too large values of αs are disfavored

by calculations in Ref. [153153], where it was shown that the magnetic coupling (i.e.

the coupling inverse to αs) never gets too small in pure SU(2) gluodynamics, these

results being extended to the pure SU(3) case in Ref. [154154].

Finally, let us mention that there is yet another source of uncertainty in our

predictions, both for the models with Abelian and non-Abelian monopoles, which is

associated with the U(1) magnetic charges of the monopoles. Whereas we consider

them to be minimal in each of the model, they are in principle not constrained by

the stability arguments. This means that gaγ can be further increased in Fig. 6.16.1

for the general hadronic axion models discussed in this chapter.

6.6.2 Axion-gluon coupling in the classical approximation

In this section, we show that the axion-gluon coupling in the model with a heavy

non-Abelian monopole preserves its universality in the classical approximation, i.e.

it is given by the expression:

− ag2s
32π2fa

GaµνGd a
µν , (6.58)

so that Loff = 0 in Eq. (6.506.50), at least classicaly. We use the formalism of loop

space variables pioneered by Polyakov [155155] and developed with the focus on the

electric-magnetic dual symmetry of the YM theory by Hong-Mo, Faridani and

Tsun [6363]. Central object of the formalism is the parallel phase transport along

the loop ξ(s), s ∈ [0, 2π] from one point s1 to another s2:

Φξ(s2, s1) = Ps exp

(
igs

∫ s2

s1

dsAµ (ξ(s)) ξ̇
µ(s)

)
, (6.59)
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where Ps is the Dyson ordering. Loop derivative of the holonomy defines the

Polyakov variables:

Fµ[ξ|s] =
i

gs
Φ−1
ξ (2π, 0) · δΦξ (2π, 0)

δξµ(s)
, (6.60)

which are known to constitute a valid set for a full description of the YM field [156156,

157157]. It was shown in Ref. [6363] that another complete set of variables is better

suited for dealing with the electric-magnetic dual symmetry of the classical YM

theory, namely:

Eµ [ξ|s] = Φξ (s, 0)Fµ [ξ|s] Φ−1
ξ (s, 0) , (6.61)

which can be connected to the local quantities by the expression:

ω−1(x) Gd
µν (x) ω (x) =

2

N
ϵµνρσ

∫
δξdsEρ [ξ|s] ξ̇σ(s) ξ̇−2(s) δ(x− ξ(s)) , (6.62)

where ω (x) is an arbitrary local SU(3) matrix and N is a normalization factor. The

dual (magnetic) variables E(d)
µ were shown to be related to the electric ones Eµ in

the pure YM theory in the following way:

ω−1(η(t))E(d)
µ [η|t] ω (η(t)) =

2

N
ϵµνρση̇

ν(t)

∫
δξdsEρ [ξ|s] ·

ξ̇σ(s) ξ̇−2(s) δ(ξ(s)− η(t)) , (6.63)

while the inverse transformation is:

ω(η(t))Eµ [η|t] ω−1 (η(t)) =

− 2

N
ϵµνρση̇

ν(t)

∫
δξdsE(d) ρ [ξ|s] ξ̇σ(s) ξ̇−2(s) δ(ξ(s)− η(t)) . (6.64)

Since in the derivation of the axion effective Lagrangian external fields can be con-

sidered constant and homogeneous, as discussed in sec. 6.56.5, we can apply Eqs. (6.636.63)

and (6.646.64) in order to find the relation between the expression (6.586.58) and its dual

analogue, constructed from the GNO group connection, in the classical theory. The
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calculation proceeds as follows:

∫
d4x a(x)Gaµν(x)Gd a

µν (x) =

2

∫
d4x a(x) tr

{
ω−1(x)Gµν(x)ω (x)ω−1(x) Gd

µν (x) ω (x)
}
=

8

N

∫
d4x δξds a(x) tr

{
ω−1(x) Gd

µν (x) ω (x)Eµ [ξ|s]
}
ξ̇ν(s) ξ̇−2(s) δ(x− ξ(s)) =

16

N2
ϵµνρσ

∫
δηdt δξds a(η(t)) tr {Eρ [η|t]Eµ [ξ|s]} ·

η̇σ(t) η̇−2(t) ξ̇ν(s) ξ̇−2(s) δ(η(t)− ξ(s)) =

8

N

∫
δηdt a(η(t)) tr

{
Eµ [η|t] ω−1(η(t))E(d)

µ [η|t] ω (η(t))
}
η̇−2(t) =

8

N

∫
δηdt a(η(t)) tr

{
ω (η(t))Eµ [η|t] ω−1(η(t))E(d)

µ [η|t]
}
η̇−2(t) =

− 16

N2
ϵµνρσ

∫
δηdt δξds a(η(t)) tr

{
E(d)
ρ [η|t]E(d)

µ [ξ|s]
}
·

η̇σ(t) η̇−2(t) ξ̇ν(s) ξ̇−2(s) δ(η(t)− ξ(s)) =

−
∫
d4x a(x)

(
GV
)aµν

(x)
(
GV
)d a
µν

(x) , (6.65)

where we took advantage of Eqs. (6.626.62), (6.636.63) and (6.646.64), as well as of the cyclic

property of the trace. The last identity follows automatically as far as one notices

that the third and the sixth lines of the Eq. (6.656.65) are identical but for the overall

sign and electric-magnetic variables interchange. Now, one can clearly see that

classically we recover the universal axion-gluon coupling even in the model with the

non-Abelian magnetic monopole:

Seff, classical ⊃
∫
d4x

ag2s
32π2fa

(
GV
)aµν(

GV
)d a
µν

= −
∫
d4x

ag2s
32π2fa

GaµνGd a
µν .

(6.66)

6.6.3 Axion couplings to fermions

Let us consider the following couplings of axions with matter:

gai ≡ Caimi/fa , (6.67)
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where mi is the mass of fermion i, which correspond to the following terms in the

effective Lagrangian:

Leff ⊃ Cai
∂µa

2fa
ψ̄iγ

µγ5ψi . (6.68)

As electrons do not carry PQ charge in the general hadronic models we consider,

the axion-electron coupling gae is generated radiatively [158158,159159]:

gae = g0aγ ·
3α

2π
me ln

fa
me

, (6.69)

where g0aγ is given by the expressions (6.516.51), for the models with the minimal Abelian

or non-Abelian monopole, and we took into account that the term associated to the

axion-pion mixing is negligibly small compared to the leading contribution88. We

find that the experiments and astrophysical observations probing axion-electron in-

teractions do not yield new constraints on the model. Indeed, the CAST bound [160160]

on the axion-photon coupling, gaγ < 0.66 · 10−10 GeV−1, constrains the phenomeno-

logically viable region for axion-electron coupling: gae < 1.2 · 10−16 ln fa/me. This

constraint is stronger than any existing or projected bound from interaction with

electrons. As to the interactions of the axion with nucleons, it turns out that con-

tributions from radiatively generated axion-quark couplings are non-negligible and

actually enhance axion-nucleon couplings with respect to the conventional DFSZ

case in much of the parameter space. One can find that the coefficients Cap and Can

are

Cap = −0.47− 0.39 δcd + 0.88 δcu , (6.70)

Can = −0.02 + 0.88 δcd − 0.39 δcu , (6.71)

where the numerical coefficients were calculated in [161161] and the radiatively gener-

ated quark couplings read as follows:

δcu = g0aγfa ·
8α

27π
ln

fa
mN

, (6.72)

8Note that in principle the axion-fermion couplings discussed in this section have to be calculated
within the full non-perturbative QEMD formalism of Chapter 55; however, as it was discussed in
Chapter 44 sec. 4.64.6, there exist no reliable methods for such an exact calculation, so we assume that
the result can be approximated by the one obtained in the QED framework.
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δcd = g0aγfa ·
α

54π
ln

fa
mN

, (6.73)

where mN is the nucleon mass. Constraints on axion-neutron interactions are more

stringent than constraints on interactions with protons. We plot gan as a function of

axion mass and decay constant in Fig. 6.26.2 together with the constraint from neutron

star cooling [162162] and the projected reach of the CASPEr Wind experiment [163163].

For reference, we show the neutron-axion coupling in DFSZ models, the range of

which is constrained by the requirement of perturbative unitarity of the Yukawa

couplings of the Standard model fermions [164164]. Note that the slope of the DFSZ

band in Fig. 6.26.2 is different from the slope of the band corresponding to the axion

model of this paper. The difference arises because, in the DFSZ case, one obtains a

linear dependence of the coupling on the axion mass, gan ∝ ma, characteristic of the

tree-level couplings to quarks, while in the case of our model the linear dependence

is superseded by a nonlinear one, gan ∝ ma ln (const/ma), due to the radiative origin

of the coupling.

In Fig. 6.26.2, we show also the CAST bound [160160] which is translated to a constraint

on the axion-neutron coupling with the use of Eqs. (6.716.71)-(6.736.73). Uncertainty in the

prediction of the axion-neutron coupling in the axion models of this Chapter comes

from the uncertainty in the prediction of the axion-photon coupling, the latter being

discussed at length in sec. 6.6.16.6.1.

6.7 Axion dark matter

Let us discuss if the axions we propose can comprise dark matter. In order to

avoid the cosmological magnetic monopole problem [165165, 166166], i.e. overproduction

of monopoles during the hot Big Bang epoch, we will set their masses and there-

fore the axion decay constant fa to be larger than the reheating temperature. This

means that we have to deal only with the pre-inflationary scenario of axion dark

matter production, which hinges upon the misalignment mechanism [1010–1212]. Our

model with a heavy Abelian magnetic monopole charged electrically under SU(3)

will then give exactly the same dark matter abundance as in the case of the KSVZ

model. This follows from the fact that the axion-gluon couplings are identical in the
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Figure 6.2: Axion-neutron coupling as a function of axion mass and decay constant
for various axion models together with the existing and projected (dashed lines)
constraints on the corresponding parameter space from experiments as well as from
astrophysical data. The dash-dotted line corresponds to the model of this Chapter
with the non-Abelian monopole where the IR strong coupling αs value calculated
in the AdS/QCD framework is adopted. The line in the center of the vertically
hatched band corresponds to the model with the minimal Abelian monopole. For
further discussion, see main text.

latter two models. Meanwhile, calculation of the dark matter abundance is generally

not so simple in the case of our model with a non-Abelian magnetic monopole. Note

that while Abelian dominance suggests that the low temperature axion mass ma(fa)

in this case is given approximately by the familiar expression for the standard QCD

axion, at higher temperatures, T ≳ 1 GeV, the axion mass can differ significantly

from the standard case. The cosmic axion abundance resulting from the misalign-

ment production mechanism ρmis
a is inversely proportional to the square root of the

axion mass at the moment where oscillations of the axion field start:

ρmis
a ∝ fa√

ma(Troll)
· F (Troll) , (6.74)
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where Troll is the temperature at which ma(Troll) = 3H(Troll), H being the Hubble

expansion rate, and F a fixed function of temperature. Due to Abelian dominance,

we expect that ρmis
a does not change too much with respect to the conventional

QCD axion models if Troll < 1 GeV. The latter condition can be recast into the

form ma(GeV) < 3H(GeV), which yields fa > 1012 GeV assuming the axion mass

at 1 GeV is not much off the values given in Ref. [6767]. Combining it with the CAST

bound, we see that in much of the allowed parameter space axions produced via the

misalignment mechanism have approximately the same abundance as axions with

the same mass in KSVZ and DFSZ-like models. The case fa ≲ 1012 GeV is more

difficult: in order to infer the abundance of cosmic axions in the model with a non-

Abelian monopole in this case, one has to calculate the axion mass as a function of

temperature in the energy range where there is no Abelian dominance.

This Chapter is written based on the publications [22, 33] of the author of this

thesis.
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Chapter 7

New experimental targets for axions

and magnetic monopoles

7.1 General lessons

Let us discuss the phenomenology of the new electromagnetic couplings of axions

and ALPs found in the previous Chapters. In our discussion, we will always consider

first the general case of ALPs, i.e. Nambu-Goldstone bosons of an arbitrary spon-

taneously broken global U(1) symmetry, which by definition include QCD axions

as a special case, and only then make quantitative predictions in particular axion

models.

Due to the scaling of the new gaBB and gaAB couplings with the elementary electric

and magnetic charge units found in Chapter 55 sec. 5.15.1, in any model where gaAB ̸= 0,

one expects the ratio gaBB/|gaAB| to be proportional to a large number g0/e≫ 1. This

means that the possible effects associated to the gaAB coupling play the dominant

role only for those observables, which do not get any sizable contribution from the

gaBB coupling. As we will discuss in the next sections, such observables do exist and

can be probed in various experiments by studying the interactions of ALPs with

polarized light, searching for electric dipole moments of charged particles and a fifth

force or by looking for light ALP dark matter in an external magnetic field with

haloscopes.

Still, for most of the processes involving ALP-photon interactions, the dominant

effect is associated to the gaBB coupling. Symmetry of Eq. (5.275.27) with respect to the
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interchange of the gaAA and gaBB couplings suggests that in any process of creation

or disappearance of a certain number of ALPs, the effect of the gaBB coupling is

analogous to the effect of the conventional gaγγ coupling11. This means that the rates

of such processes as ALP-photon conversion in external electromagnetic fields [167167],

ALP decay, ALP emission through Primakoff effect [168168] or photon coalescence, are

all given by the conventional expressions, but with the gaγγ coupling substituted by

the gaBB one.

The same simple rule of replacing the gaγγ coupling with the gaBB coupling in

conventional expressions applies to the dispersion relation of light in an ALP back-

ground. Indeed, after we omit the subdominant |gaAB| ≪ gaBB coupling and put

Ea, E0 → Eγ and Ha, H0 → Hγ, the axion Maxwell equations (5.235.23)–(5.265.26) be-

come invariant under the interchange of the couplings gaAA and gaBB supplemented

by the electric-magnetic duality transformation Eγ → Hγ, Hγ → −Eγ. Since the

propagation of light is electric-magnetic duality invariant, the gaBB coupling enters

the dispersion relation in the same way as the conventional gaAA coupling. It can

also be explicitly checked that the form of the second-order differential equations

for Eγ and Hγ does not change.

Let us consider the existing constraints on the ALP-photon gaγγ coupling which

take advantage of the effects discussed in the previous two paragraphs. It is now

clear that the same constraints hold also for the new gaBB coupling and the cor-

responding search strategies need not be updated. In particular, this is the case

of astrophysical and cosmological constraints [139139], helioscope searches [169169–171171],

light-shining-through-wall (LSW) [172172–178178] and axion interferometry [146146,179179–182182]

experiments as well as the ones of those haloscope searches, where the ALP Comp-

ton wavelength fits into the experimental apparatus and thus where the interaction

between an ALP and a magnetic field can be described as an ALP-photon conversion

in an external field. We present the corresponding constraints on the gaBB coupling

in Fig. 7.17.1. Note that as |gaAB| ≪ gaBB, the same constraints obviously hold for

|gaAB| and
√

|gaAB| gaBB.

The qualitative distinction between the new gaBB coupling and the conventional

gaγγ coupling arises whenever a given process cannot be described by Eq. (5.275.27)
1This statement need not hold for loop effects, as Eq. (5.275.27) is classical.
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Figure 7.1: Existing and projected (dashed lines) constraints on the parameter
space of ALP-photon gaBB and gaAB couplings versus ALP mass and decay constant
together with the lines corresponding to gaBB (solid), |gaAB| (dashed) and

√
|gaAB| gaBB

(dash-dotted) in different hadronic axion models with one heavy PQ-charged fermion
ψ with the parameters given in a box and NDW = 1. Astrophysical hints are also
shown. For further discussion, see main text.

and involves observables which are not invariant under the electric-magnetic dual-

ity symmetry. In this case, the values of these observables derived from the axion

Maxwell equations (5.235.23)–(5.265.26) are not symmetric with respect to the interchange

gaAA ↔ gaBB of the two couplings, so that there is a qualitative difference in the

effects of these couplings. We give a particular example where the latter difference

plays a crucial role in sec. 7.37.3. In particular, in the latter section, we discuss halo-

scope experiments searching for light ALP dark matter (ma ≪ µeV). We find that

in this case, the constraints obtained for the gaγγ coupling need not hold for the gaBB

coupling. This means that to probe the latter coupling, these experiments should

exploit a search strategy which is different from the one normally used.

To be more specific, when we make quantitative predictions in the next sec-
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tions, we will consider a particular kind of ALP: the axion particle arising in general

hadronic models discussed in the previous Chapter. In this case, we will take advan-

tage of Eqs. (5.35.3), (5.45.4) and (5.65.6) for the axion-photon couplings. As we discussed

in Chapter 55 sec. 5.15.1, there are two families of axion models where the new electro-

magnetic couplings gaAB and gaBB can arise: those with Abelian (ζ = 3) and those

with non-Abelian (ζ = 1) magnetic monopoles, cf. Eq. (5.75.7). In the former case,

the axion decay constant fa is obviously related to the QCD anomaly coefficient

N and PQ scale va in the standard way: fa = va/2N , while in the latter case,

as it was shown in Chapter 66, the relation is non-standard: fa = 2α2
sva/N , where

αs = g2s/4π. Using these relations, we plot the lines corresponding to gaBB, |gaAB|

and
√

|gaAB| gaBB
22 in different hadronic axion models. For simplicity, we choose the

models having only one heavy vector-like PQ-charged fermion ψ, which transforms

trivially under the SU(2)L gauge group of the weak interactions and in the funda-

mental representation under the color SU(3)c gauge group (electric SU(3)E in the

Abelian monopole case or magnetic SU(3)M in the non-Abelian monopole case), and

has charges qψ and gψ, see Fig. 7.17.1 and the legend therein. In these models, the QCD

anomaly coefficient is N = 1/2, so that NDW = 1. In the non-Abelian monopole

case ζ = 1, there is an uncertainty associated to our ignorance of the exact value of

αs at low energies [149149], see the discussion in Chapter 66 sec. 6.6.16.6.1. Note that the

axion models populate a region of the parameter space, which in the analogous plot

for the gaAA coupling would be extensively probed by existing and projected halo-

scope experiments searching for light ALP dark matter (ma < µeV), see Fig. 6.16.1.

However, as we discussed briefly in the previous paragraph and will elaborate later

in sec. 7.37.3, the constraints from such haloscopes cannot be translated to Fig. 7.17.1.

Also, note that the conventional KSVZ and DFSZ axion lines are obviously missing

from the plot in Fig. 7.17.1, since this plot depicts the gaBB and |gaAB| couplings, but

not the gaAA coupling.
2The

√
|gaAB| gaBB line is relevant for LSW searches, see Eq. (7.27.2) and discussion in sec. 7.27.2.
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7.2 Purely laboratory-based experiments

A particularly clean way to measure the gaAB coupling is provided by LSW exper-

iments [183183]. As one can see from Eq. (5.275.27), contrary to the CP-conserving cou-

plings, the CP-violating gaAB coupling allows interaction between ALPs and light

polarized in a plane perpendicular to the external magnetic field. As one can con-

trol the polarization of the incoming light in a LSW experiment, it is straightforward

to artificially turn off the CP-conserving ALP-photon interaction on the photon to

ALP conversion side before the wall. Using gaBB ≫ |gaAB| ≫ gaAA, we find the fol-

lowing LSW probabilities corresponding to different linear polarizations of incoming

light:

P (γ∥ → a→ γ) ≃ 16
(gaBBωH0)

4

m8
a

sin4

(
m2
a LH0

4ω

)
, (7.1)

P (γ⊥ → a→ γ) ≃ 16
(gaABωH0)

2(gaBBωH0)
2

m8
a

sin4

(
m2
a LH0

4ω

)
, (7.2)

where γ∥ (γ⊥) denotes the incoming light with frequency f = ω/(2π) and with

polarisation parallel (perpendicular) to the magnetic field H0, which is supposed to

be transverse to the direction of the light beam and which is sustained in a cavity

of length LH0 , both before and behind the wall. Clearly, from a detection of LSW

with some probability P (γ∥ → a → γ), one can determine the gaBB coupling in

a first measurement. In a second measurement, one can also search for LSW via

γ⊥ → a → γ. Then, for the case of axions, using Eqs. (5.45.4), (5.65.6) and (5.75.7), we see

that the coupling gaAB can be determined from the following ratio:

P (γ⊥ → a→ γ)

P (γ∥ → a→ γ)
≃ g2aAB

g2aBB

=

(
D

M

e

g0

)2

= 4

(
D

ζM

)2

α2 ≃ 2.13× 10−4

(
D

ζM

)2

.

(7.3)

For example, the experiment ALPS II (H0 = 5.3T, LH0 = 105.6m, ω = 1.17 eV)

has the capability to search for LSW using incoming light with both polarisations, γ∥

and γ⊥ [184184]. For both of them, ALPS II has the projected sensitivity Psens ≈ 10−29

to the corresponding LSW probabilities. This would allow for the detection of a

light, ma ≲ 10−4 eV, axion featuring a CP-conserving coupling (gaAA + gaBB) ≃

gaBB ≳ 2 × 10−11 GeV−1 via γ∥ → a → γ, as can be inferred from Eq. (7.17.1). If this

newly discovered axion features also a CP-violating coupling, then the latter has to
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be in the range

|gaAB| = 2α(|D|/ζM)gaBB ≳ 3× 10−13GeV−1(|D|/ζM) . (7.4)

If |D| ≃ M , to detect such a coupling via γ⊥ → a→ γ requires a sensitivity im-

provement by four order of magnitudes, to Psens ∼ 10−33, as can be seen from

Eqs. (7.17.1) (7.27.2), and (7.37.3). Intriguingly, such a sensitivity has been argued to be

achievable by the next generation LSW experiment JURA (also known as ALPS

III [185185,186186]). Indeed, see Fig. 7.17.1, where we showed the gaBB (
√

|gaAB| gaBB) param-

eter space probed by JURA according to Eq. (7.17.1) (Eq. (7.27.2)) together with the lines

corresponding to gaBB and
√

|gaAB| gaBB in the axion model with |D| = M = ζ = 1.

Thus, our considerations show that an eventual detection of an ALP by ALPS II

would strongly motivate the construction of JURA. After all, an experimental veri-

fication of Eq. (7.37.3) would allow a deep view into the UV, provide strong evidence

for the existence of heavy dyons and even an insight into their spectrum via the

ratio |D|/ζM .

Although LSW experiments can probe the gaAB coupling, we saw that the effects

of the gaBB coupling are dominant and are expected to be discovered first. To the

contrary, there exist purely-laboratory experiments which are primarily sensitive to

the gaAB coupling. These are the experiments which probe CP-violating observ-

ables, since only the gaAB coupling violates CP. One can probe the corresponding

CP-violating effects by searching for electric dipole moments of charged particles,

such as electrons, protons and muons [187187]. Moreover, the CP-violating axion-

photon coupling can be probed in various experiments searching for fifth force or

monopole-dipole axion-induced interactions [188188], since one expects the gaAB cou-

pling to radiatively induce CP-violating interactions between axions and charged

fermions f of the form gfaf̄f . Naively, one could argue that there exist strong

constraints on the gaAB coupling already, analogously to the constraints obtained in

Ref. [189189]. Note however, that although all the couplings of the ALP EFT (5.105.10)

are small, the theory is still essentially non-perturbative, so predicting the exact val-

ues for the discussed CP-violating observables is not straightforward and requires

further investigation.
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7.3 Haloscope experiments

As we mentioned in sec. 7.17.1, the effect of the dominant gaBB coupling on the ALP-

photon conversion in an external electromagnetic field is the same as the effect of

the conventional gaγγ coupling. This means that in the case of the haloscopes that

search for cosmic ALPs with masses ma ≳ (0.1− 1)µeV, such as ADMX [190190],

CAPP [191191], HAYSTAC [192192], KLASH [193193], MADMAX [194194], ORGAN [195195] and

others, all the constraints obtained for the gaγγ coupling are valid also for the gaBB

coupling. Indeed, in this case, the Compton wavelength of an ALP λa = 2π/ma is

comparable to the physical size of the utilized detectors, or even smaller, and thus

one can use a particle-like description of the process.

The same cannot be stated in the case where ALPs have large Compton wave-

lengths λa compared to the length scale L of the experiment. In particular, this is

the case of light cosmic ALPs with masses ma ≪ µeV, which one aims to detect

with such haloscope experiments as ABRACADABRA [196196,197197], ADMX SLIC [147147],

DM Radio [198198], SHAFT [199199], and others. In these experiments, one maintains a

constant magnetic field H0 in a laboratory and searches for an ALP-induced oscil-

lating magnetic field Ha. Note that due to the condition λa ≫ L, interactions of

ALPs with the field H0 cannot be described as a conventional ALP-photon con-

version phenomenon. To determine the expected magnitude of the induced fields

in this case, one has to use the axion Maxwell equations (5.235.23)–(5.265.26). The latter

equations can be significantly simplified since most of the terms on the right-hand

side are normally suppressed. Indeed, considering the case of axions and assuming

E ≃ M ≃ |D|, the axion-photon couplings satisfy gaAA/gaBB ≃ (e/g0)
2 ≲ 2 · 10−4

and |gaAB|/gaBB ≃ e/g0 ≲ 10−2. Moreover, the cosmic axions that form dark matter

have typical velocities va ∼ 10−3, so that the gradient of the oscillating axion field

is suppressed with respect to its time derivative: |∇∇∇a| ∼ 10−3 ȧ.

Leaving only the first three dominant terms, we obtain the following simplified

axion Maxwell equations:

∇∇∇×Ha − Ėa = 0 , (7.5)

∇∇∇×Ea + Ḣa = −gaBB (H0×∇∇∇a+ ȧE0) + gaABȧH0 , (7.6)
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∇∇∇·Ha = 0 , (7.7)

∇∇∇·Ea = 0 , (7.8)

where we included the dominant effect arising from an external electric field E0.

Note that all the existing haloscopes use an external magnetic field H0 instead,

partly because the dominant effect for the usually considered gaAA coupling is due

to the term with an external magnetic, but not electric, field and partly because it

is technologically challenging to sustain a large enough electric field in a big enough

volume. It is clear from Eq. (7.67.6) that if the latter technological problem is solved,

so that E0 ≳ 10−2 (|D|/ζM)H0 in the CP-violating case or E0 ≳ 10−3H0 in the

CP-conserving case, the gaBBȧE0 term will allow one to search for dark matter axions

in an external electric field with the sensitivity which is not worse than the one of

the conventional searches conducted in an external magnetic field.

Returning to the case of the existing haloscopes where E0 = 0, H0 ̸= 0, we

see that the axion Maxwell equations (7.57.5)–(7.87.8) have significantly different struc-

ture compared to the conventional axion Maxwell equations which take into account

solely the gaAA coupling. While in the latter case axions generate an effective elec-

tric current jeeff = −gaAAȧH0, in the former case an effective magnetic current is

generated:

jmeff = gaBBH0×∇∇∇a− gaABȧH0 . (7.9)

Note that in the case M ≃ |D|, the term proportional to the CP-violating gaAB

coupling is dominant. To the contrary, if the underlying UV theory is CP-conserving,

then D = 0 and gaAB = 0, so that only the term proportional to the gaBB coupling

contributes.

Let us now find experimental implications of the magnetic current (7.97.9). Ap-

plying the curl differential operator to the Eqs. (7.57.5) and (7.67.6), and using the other

equations from the system (7.57.5)–(7.87.8), we obtain:

∆Ea − Ëa =∇∇∇×jmeff , (7.10)

∆Ha − Ḧa = ∂jmeff/∂t . (7.11)
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The leading terms contributing to the right-hand side are:

∇∇∇×jmeff = gaBB (∇∇∇a· ∇∇∇)H0 − gaABȧ∇∇∇×H0 , (7.12)

∂jmeff/∂t = gaBBH0×∇∇∇ȧ− gaABäH0 . (7.13)

The axion dark matter field is given by the following expression:

a(t, r) = a0 cos(ωat− ka·r) , (7.14)

where ωa = ma and ka = mava. The leading CP-conserving effect then depends on

the direction of the axion wind and thus experiences modulations with the periods

of one sidereal day Td and one sidereal year Ty due to the rotation of the Earth

around its axis and around the Sun, respectively. To find the axion-induced Ea and

Ha fields, Eqs. (7.107.10) and (7.117.11) have to be solved for a particular geometry of a

given haloscope experiment.

Let us illustrate the general features of the solution by considering the example

of a very long solenoid of radius R with magnetic field H0 directed along the z-axis.

In this case, Eqs. (7.107.10) and (7.117.11) become:

∆Ea − Ëa = − (gaBB ∂ρa ez + gaABȧ eϕ)H0 δ(ρ−R) , (7.15)

∆Ha − Ḧa = gaBBH0×∇∇∇ȧ− gaABäH0 , (7.16)

where we work in cylindrical coordinates (ρ, ϕ, z) with unit vectors (eρ, eϕ, ez). Let

us parameterize the direction of the axion wind

v̂̂v̂va = (sin θ cos(ϕ− ξ), − sin θ sin(ϕ− ξ), cos θ) (7.17)

in cylindrical coordinates by two angles θ and ξ. Assuming Td ≫ 2π/ωa, which

corresponds to ma ≫ 5 · 10−20 eV, we neglect the terms proportional to ξ̇ and θ̇ in

the Eqs. (7.157.15) and (7.167.16). It is then straightforward to obtain the solutions of these

equations in terms of Bessel functions. All we need however are these solutions in

the limit ωaR ≪ 1, as we are interested in axions with large Compton wavelengths.

In the latter limit, solutions to Eqs. (7.157.15), (7.167.16) with physical boundary conditions
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are:

Ea =


1
2
a0 ωaρH0

(
gaAB eϕ − gaBB va sin θ cos(ϕ− ξ) ez

)
sinωat , ρ < R

1
2
a0 ωa

R2

ρ
H0

(
gaAB eϕ − gaBB va sin θ cos(ϕ− ξ) ez

)
sinωat , ρ > R

, (7.18)

Ha =



1
2
a0 (ωaR)

2H0

(
gaAB ez + gaBB va sin θ

{
cos(ϕ− ξ) eϕ+

sin(ϕ− ξ) eρ
})(

lnωaR + ρ2

2R2

)
cosωat , ρ < R

1
2
a0 (ωaR)

2H0

(
gaAB ez + gaBB va sin θ

{
cos(ϕ− ξ) eϕ+

sin(ϕ− ξ) eρ
})

lnωaρ cosωat , ρ > R

. (7.19)

It is immediately clear that Ea ≫ Ha, which means that in an experiment with

the geometry of our example one has to search for axion-induced electric, but not

magnetic, fields. Moreover, it turns out that this feature persists for any other

possible geometry as well. Indeed, our Eqs. (7.107.10) and (7.117.11) can be rendered

equivalent to the equations studied in Ref. [200200] by substituting Ea → Ha, Ha →

−Ea and jmeff → jeeff. In the latter work, it was found that for any haloscope geometry

with characteristic length scale L, equation involving the time derivative of the

effective current yields solutions which are suppressed by powers of ωaL ≪ 1 with

respect to the solutions of the equation involving the curl of this current. In our case,

this means that in any haloscope probing ma ≪ µeV, the axion-induced magnetic

field Ha is suppressed with respect to the axion-induced electric field Ea.

Note however that all the existing as well as many projected haloscopes search-

ing for such light axions – such as ABRACADABRA, ADMX SLIC, DM Radio,

SHAFT, ... – aim to measure only the axion-induced magnetic, but not electric,

fields. Thus, the constraints on the conventional gaAA coupling obtained by these

experiments do not hold for the dominant axion-photon couplings gaAB and gaBB.

The latter couplings can be probed by future haloscopes equipped with electric field

sensors. One haloscope of such kind has already been proposed, see Refs. [201201,202202].

We hope that our work will encourage more experimental effort in this direction,

as we provided a sound theoretical motivation for such an endeavor. Since the
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electromagnetic fields generated in a haloscope by the gaBB and gaAB couplings are

qualitatively different from the fields generated by the conventional gaAA coupling,

for which Ha ≫ Ea [200200], the first detection of cosmic axions with electric, but

not magnetic, sensor haloscope would not only constitute the discovery of axions

and dark matter, but also provide a circumstantial experimental evidence for the

existence of heavy magnetically charged particles. Furthermore, as one can see from

Eq. (7.187.18), the direction of the detected electric field could allow one to infer the

ratio gaAB/gaBB = 2α(D/ζM) and thus get information about the spectrum of dyons

in the UV.

Finally, to compare different extensions of electrodynamics which could be probed

by haloscope experiments, it is convenient to reexpress the axion Maxwell equations

in terms of the axion-induced polarization and magnetization vectors [200200, 203203],

which are defined as follows:

∇∇∇×Ha − Ėa =
∂Pe

eff

∂t
+∇∇∇×Me

eff , (7.20)

∇∇∇×Ea + Ḣa = −∂P
m
eff

∂t
+∇∇∇×Mm

eff , (7.21)

∇∇∇·Ha = −∇∇∇·Pm
eff , (7.22)

∇∇∇·Ea = −∇∇∇·Pe
eff . (7.23)

Note that along with the ordinary effective electric polarization and magnetization

vectors Pe
eff and Me

eff, we introduced effective magnetic polarization and magnetiza-

tion vectors Pm
eff and Mm

eff, which describe electromagnetic properties of an effective

medium consisting of magnetically charged particles. The explicit expressions for

the effective polarization and magnetization vectors corresponding to a generic axion

in an external electromagnetic field are:

Pe
eff = −gaAA aH0 + gaAB aE0 , (7.24)

Mm
eff = gaBB aH0 + gaAB aE0 , (7.25)

Me
eff = −gaAA aE0 − gaAB aH0 , (7.26)

Pm
eff = gaBB aE0 − gaAB aH0 . (7.27)

The fact that it is possible to bring the axion Maxwell equations (5.235.23)–(5.265.26) into
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the form (7.207.20)–(7.237.23) suggests that the effects of axions in external electromagnetic

fields are analogous to the effects of a certain medium consisting of both electri-

cally and magnetically charged particles. From what has been discussed before, it is

clear that for a generic axion, effects of the magnetic polarization (magnetization)

vectors Pm
eff (Mm

eff) in an external magnetic field dominate the effects of the electric

polarization (magnetization) vectors Pe
eff (Me

eff). Such asymmetry between the ef-

fects exhibited by electric and magnetic constituents of the effective medium is to

be contrasted with the case of gravitational wave electrodynamics [204204], where there

exists an electric-magnetic U(1) duality symmetry rendering electric and magnetic

variables equivalent. This difference in the symmetry properties of the two theories

can be easily understood from the fact that the axion-photon interactions are fun-

damentally mediated by heavy charged particles which break the duality symmetry,

while in General Relativity, the interaction between gravity and electromagnetic field

is direct and independent of any charges. For an experimentalist, this distinction

signifies a substantial difference in the distribution of the induced electromagnetic

fields inside the haloscope. Indeed, as it was discussed before, for a generic light

axion (ma ≪ µeV, gaBB ≫ |gaAB| ≫ gaAA) in an external magnetic field one expects

jmeff ≫ jeeff and thus Ea ≫ Ha, while for a gravitational wave in an external magnetic

field, due to the electric-magnetic duality symmetry, one obtains jmeff ∼ jeeff and thus

Ea ∼ Ha.

This Chapter is written based on the publication [11] of the author of this thesis.
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Conclusions

As it was asserted by J. Polchinski [2323], “the existence of magnetic monopoles seems

like one of the safest bets that one can make about physics not yet seen”. Indeed, in

Chapter 11, we reviewed a number of theoretical arguments which together provide

an overwhelming theoretical evidence for magnetic monopoles, like there probably

exists for no other kind of hypothetical particles. There are nevertheless multiple

practical challenges behind the experimental study of monopoles. While some of

the discussed arguments for the existence of monopoles do not restrict their masses,

another part of these arguments suggests that monopoles are super heavy, with

masses well beyond the energy reach of the present-day collider experiments. Thus,

although monopoles almost certainly exist from the theoretical point of view, it

might be difficult to directly probe them with existing and near-future experiments.

In this thesis, we developed a framework which allows one to study the indirect

effects magnetic monopoles could exhibit on the interactions of other particles. In

particular, in Chapter 44 we applied the EFT approach to QEMD by classifying all the

possible marginal operators consistent with the symmetries and degrees of freedom

of the theory. We found the CP-violating operator responsible for the Witten effect

and showed that it does not have a total-derivative structure, contrary to the case

of the conventional QED approach. Moreover, we incorporated the Rubakov-Callan

effect for the ’t Hooft-Polyakov monopoles into the QEMD framework by means of

introducing a Stückelberg scalar into the Lagrangian and showing that the latter

scalar corresponds to the instanton degree of freedom known as the dyon collective

coordinate.

We then showed that our research in QEMD allows one to introduce novel elec-

tromagnetic couplings for axions and ALPs in the EFT approach. As we discussed

in Chapter 22, axions and ALPs form a class of very well-motivated candidates for
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physics beyond the Standard model, since different particles of this class are indis-

pensable ingredients to various new physics models and theories which solve the

long-standing physics puzzles, such as the quantization of gravity (string theory),

the strong CP problem (models implementing the PQ mechanism), the smallness

of neutrino masses (models with spontaneously broken global lepton number sym-

metry) etc. Furthermore, axions and ALPs are perfect candidates for cold dark

matter. All this suggests that the experimental searches for these particles are of

paramount importance. As the main search strategies exploit the electromagnetic

interactions of axions and ALPs, we decided to analyze all such interactions, and

in Chapter 55, we found that instead of the only one kind of coupling considered in

the literature, there are actually four different types of axion-photon couplings. The

three new couplings are associated to the effects of magnetic monopoles and dyons

– two of the couplings are generated by virtual monopoles and dyons, while the

remaining one is the Witten-effect induced coupling which describes the interaction

vertex including an axion, a photon and a ’t Hooft-Polyakov monopole. Although

the Witten-effect induced coupling has been described in the literature before, it has

never been distinguished from the conventional axion-photon coupling. We clarified

the physics of the Witten-effect induced coupling showing that it is not generic to

all possible models containing monopoles, but only to the models which contain an

instanton degree of freedom localized in the monopole worldvolume, such as the

models with ’t Hooft-Polyakov monopoles. We also found the scaling of the dif-

ferent axion-photon couplings with the elementary electric and magnetic charges,

and showed that the two new electromagnetic couplings of axions associated to the

virtual monopoles and dyons dominate the conventional axion-photon coupling.

Based on our theoretical analysis of the axion extension to QEMD, in Chap-

ter 77 we proposed experiments which could probe magnetic monopoles indirectly,

in particular through the influence virtual monopoles would exhibit on the inter-

actions of axions and ALPs with an electromagnetic field. We found that the new

electromagnetic couplings of axions give rise to unique experimental signatures in

LSW experiments and in some kinds of axion searches, such as haloscopes search-

ing for low-mass axions (ma ≪ µeV). In the latter case, we showed that the best

sensitivity to the new electromagnetic couplings of axions could be achieved by mea-
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suring an induced oscillating electric field, instead of an induced oscillating magnetic

field, contrary to the setup of existing experiments. The case of low mass axions

is particularly interesting, since, as it can be seen from Fig. 7.17.1, the simplest axion

models predict rather large gaBB and gaAB couplings, which can be probed by many

projected experiments. Thus, we encourage the development of electric sensor halo-

scopes which would search for axion dark matter in the corresponding parameter

region.

In the case of the LSW experiments and the ALPS II experiment in particular, we

found that due to the new electromagnetic couplings of axions, ALPS II is sensitive

to the QCD axion. Moreover, it probes the very interesting region in the parameter

space of the gaBB coupling between the QCD axion and photons where there have

been claimed several astrophysical hints, see Fig. 7.17.1. The axions with the gaBB

couplings in the latter parameter region could also form the cold dark matter, which

hypothesis can be probed by future haloscope experiments with electric field sensors.

Moreover, in the case of the detection of the axion signal in ALPS II due to the gaBB

coupling, we found that the projected LSW experiments of the next generation, such

as JURA, would be sensitive to the corresponding CP-violating gaAB axion-photon

coupling in the channel where the incoming light is polarized perpendicular to the

magnetic field. The ratio of the two couplings would give information about the

spectrum of heavy dyons.

Apart from unveiling these intriguing experimental applications, our work re-

considered several questions in axion theory. First, in Chapter 33 we showed that

contrary to the existing statements, the main contribution to the axion-photon cou-

pling need not be quantized in units proportional to e2. Second, contrary to what

has been advocated recently in the literature, we found that magnetic monopoles

of an Abelian gauge field need not give mass to axions coupled to this gauge field.

We showed that the axions do get mass in theories with magnetic monopoles only

if these monopoles carry an additional instanton degree of freedom interacting with

the axion a, e.g. in the case of the spontaneously broken symmetry phase of a non-

Abelian gauge theory with aGGd term in the Lagrangian, where G (Gd) is the (dual)

field strength tensor of the non-Abelian gauge field. This axion mass is generated via

the conventional mechanism through instantons of the non-Abelian theory, which
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however live on the ’t Hooft-Polyakov monopoles in the low energy phase. Finally,

we found that the interaction between axions and an electromagnetic field need not

preserve CP. In particular, as long as one has heavy dyons in the high energy theory,

there exists a natural source of CP-violation which can be transferred to low energy

physics through axion-photon interactions. We discussed experiments which can

probe this new CP-violating axion coupling.

In Chapter 66, we built novel models of axion which provide UV-completions

to the axion-photon EFTs discussed in this thesis. In particular, we introduced

two new families of hadronic axion models which involve a very heavy vector-like

fermion magnetically charged either under the full non-Abelian symmetry of the

low energy Standard model or only under its electromagnetic subgroup. In the

case of the models with non-Abelian magnetic monopoles, we assumed that these

monopoles transform in the representations of the Langlands dual (GNO) group of

the SU(3)c QCD gauge group, in accord with the GNO conjecture. We showed

that both models with the Abelian and non-Abelian magnetic monopoles realize

the PQ mechanism and thus solve the strong CP problem. We calculated the low

energy axion couplings in these models. We argued that in the models involving

non-Abelian magnetic monopoles there could arise a deviation from the property

of universality of the axion-gluon coupling, however we showed that the latter cou-

pling recovers its universal form in the classical approximation. If the quantum

corrections are not negligible, difference in the electric dipole moment coupling with

respect to the conventional QCD axion models can offer an exciting opportunity

of distinguishing the model involving non-Abelian magnetic monopoles from other

QCD axion models in the experiments such as CASPEr Electric [163163].

These Conclusions are partly written based on the publications [11,22] of the author

of this thesis.
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