Darstellung und Untersuchung von terminalen Iridium- und Rhodium-Nitrido-Komplexen mit Pyridin,Diimin-Liganden

Dissertation

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

(Dr. rer. nat.)

am Institut für Anorganische und Angewandte Chemie

Universität Hamburg

vorgelegt von Carl Alexander Georg Schiller

Hamburg 2022

Gutachter:Prof. Dr. Peter Burger, Prof. Dr. Michael Steiger.Prüfungskommission:Prof. Dr. Peter Burger, Prof. Dr. Gerrit A. Luinstra, Dr. Dieter Schaarschmidt.Disputation:22.04.2022

Diese Arbeit entstand in der Zeit von April 2016 bis Dezember 2021 in der Arbeitsgruppe von Prof. Dr. Peter Burger am Institut für Anorganische und Angewandte Chemie der Universität Hamburg. Inhalt

1.	1. Zusammenfassung		1			
2.	2. Abstract					
3.	Einl	eitung	5			
3	.1.	Stickstofffixierung durch N ₂ -Spaltung in Nitrido-Komplexen	7			
3	.2.	Terminale Nitrido-Komplexe später Übergangsmetalle	8			
3	.3.	Stand der Forschung zu Pyridin, Diimin-Nitrido-Komplexen in der Arbeitsgruppe	11			
4.	Ziel	setzung	17			
5.	Unt	ersuchung der C-C-Aktivierung an Ferrocen mit Iridium-Nitrido-Komplexen	18			
5	.1.	Untersuchung der Reaktion von Ferrocenium-Derivaten mit Iridium-Nitrido-Kompl	exen 20			
5	.2.	Oxidation des Nitrido-Komplexes 1-IrN mit Triarylaminium	27			
5	.3.	Untersuchungen des Reaktionsmechanismus und der kinetischen Parameter	35			
5	.4.	Ergebnisse der Untersuchung der Reaktion von 1-IrN mit FeCp ₂ ⁺	41			
6.	Dar	stellung neuartiger Pyridin,Diimin-Liganden	42			
6	.1.	Synthese des Trifluormethyl-substituierten PDI-Liganden 4	43			
6	.2.	Synthese Terphenyl-substituierter Pyridin, Diimin-Liganden	53			
7.	Syn	these und Untersuchung von Iridium-Nitrido-Komplexen	61			
7	.1.	Darstellung der Chlorido-Komplexe	61			
7	.2.	Darstellung der Methoxido-Komplexe	67			
7	.3.	Darstellung der Azido-Verbindungen	71			
7	.4.	Thermochemische Untersuchungen der Azido-Komplexe	74			
7	.5.	Darstellung und Untersuchung des Nitrido-Komplexes 4-IrN				
7	.6.	Untersuchung der Terphenyl-substituierten Komplexe 24-IrN und 28-IrN				
7	.7.	Zusammenfassung der Untersuchungen zu Iridium-Nitrido-Komplexen	95			
8.	Syn	these von Rhodium-Pyridin,Diimin-Nitrido-Komplexen				
8	.1.	Unterschiede zwischen Rhodium- und Iridium-Pyridin, Diimin-Komplexen				
8	.2.	Synthese der Rhodium-Chlorido-Komplexe				
8	.3.	Synthese der Rhodium-Methoxido-Komplexe	105			
8	.4.	Darstellung der Rhodium-Azido-Komplexe	111			
8	.5.	Darstellung und Untersuchung von Rhodium-Nitrido-Komplexen	112			
8	.6.	Untersuchung zum photochemischen Zugang zu Rhodium-Nitrido-Komplexen	118			
8	.7.	Zusammenfassung der Ergebnisse zu Rhodium-Nitrido-Komplexen	140			
9.	Exp	erimenteller Teil	141			
9	.1.	Arbeitsmethoden	141			
9	.2.	Analytische Methoden	141			
9	.3.	Synthesen	143			

	Verbindungen aus Kapitel 5	. 144		
	Verbindungen aus Kapitel 61			
	Verbindungen aus Kapitel 7	. 157		
	Verbindungen aus Kapitel 8	. 172		
10.	Literaturverzeichnis	. 187		
11.	Anhang	. 191		
	Verbindungsübersicht	. 191		
	Kristallographische Daten	. 194		
	Cyclovoltammogramme	. 241		
	Kinetik-Schema zu Kapitel 5.3	. 242		
	Gefahrstoffe	. 244		
Dan	Danksagung			
Eidesstattliche Erklärung				

Abkürzungsverzeichnis

Ac	Acetyl
Ad	Adamantyl
Äq.	Äquivalent
Ar	Aryl
ArF	2,6-Difluorphenyl
Atm	Atmosphäre
ATR	attenuated total reflection, dt. abgeschwächte Totalreflexion
BDE	Bindungdissoziationssenergie
B ₂ pin ₂	Bis(pinacolato)diboran
BArF ₄	Tetrakis-[3,5-bis(trifluoromethyl)phenyl]borat
br	breit
COSY	Correlation Spectroscopy
Ср	Cyclopentadien
Cp*	Pentamethylcyclopentadien
CV	Cyclovoltammetrie
d	Dublett
DEPT	Distortionless Enhancement by Polarization Transfer
DFT	Dichtefunktionaltheorie
Dipp	2,6-Diisopropylphenyl
DMSO	Dimethylsulfoxid
dppf	1,1'-Bis(diphenylphosphino)ferrocene
ESR	Elektronenspinresonanz
Fc	Ferrocen
h	Stunde
НМВС	Heteronuclear Multiple Bond Correlation
номо	highest occupied molecular orbital
HSQC	Heteronuclear Single Quantum Coherence
iPr	iso-Propyl
IR	Infrarot

LUMO	lowest unoccupied molecular orbital
m	Multiplett
MALDI	Matrix-assistierte Laser-Desorption-Ionisierung
Me	Methyl
min	Minute
MS	Massenspektrometrie
МТВЕ	<i>tert</i> -Butylmethylether
NMR	Kernspinresonanz (Nuclear Magnetic Resonance)
Pin	Pinacol
PDI	Pyridin,Diimin
Ру	Pyridin
RT	Raumtemperatur
s	Singulett
sec	Sekunde
SCE	Kalomelelektrode (saturated calomel electrode)
t	Triplett
tBu	<i>tert</i> -Butyl
^t Ph	<i>para-(tert-</i> Butyl)phenyl
Terp	5'-Methyl-[1,1':3',1''-terphenyl]-2'
TerpF	2,2",6,6"-Tetrafluoro-5'-methyl-[1,1':3',1"-terphenyl]-2'
TBAPF ₆	Tetrabutylammoniumhexafluorophosphat
TDDFT	Time-dependent density functional theory
TG	Thermogravimetrie
THF	Tetrahydrofuran
UV/Vis	ultraviolet/visible
VT	variable temperature

1. Zusammenfassung

Der Mechanismus für die von *SIEH*^[1] erstmals gezeigte und von *LINDENMAIER*^[2] bzw. *JUNKER*^[3] weiter untersuchte C-C-Bindungsaktivierung an Ferrocen(ium) durch **1-IrN** zu **1-IrPy**⁺, konnte durch die hier gezeigten Ergebnisse weiter untermauert werden. So konnte durch Trennung von Oxidation und Bindungsaktivierung bestätigt werden, dass im ersten Schritt die Oxidation des Nitrido-Komplexes **1-IrN** zum thermisch labilen **1-IrN**⁺ stattfindet und dieser dann mit Ferrocen zum Pyridin-Komplex **1-IrPy**⁺ reagiert. Leider gelang es nicht diese kationische Nitrido-Verbindung **1-IrN**⁺ zu isolieren, sondern nur die Entstehung dieser durch UV/Vis-Spektroskopie zu belegen. Durch quantenchemische Rechnungen wurde ein *exo*-Reaktionsmechanismus für die Bildung des Pyridin-Komplexes **1-IrPy**⁺ vorgeschlagen, bei welchem im ersten Schritt ein Angriff am Cp-Ring des Ferrocens durch **1-IrN**⁺ stattfindet. Die UV/Vis-spektroskopischen Untersuchungen der Reaktion von **1-IrN**⁺ zum Pyridin-Komplex **1-IrPy**⁺ zeigten durch isosbestische Punkte, dass keine langlebigen Intermediate entstehen. Die Untersuchung der Kinetik sowie der Aktivierungsparameter dieser Reaktion, zeigten dass es sich um eine Reaktion 2. Ordnung handelt sowie, dass ΔS^{\dagger} negativ ist. Hieraus kann ein Additionsmechanismus abgeleitet werden, was im Einklang mit dem vorgeschlagenen *exo*-Reaktionsmechanismus steht.

Neben der Untersuchung der C-C-Bindungsaktivierung wurden fünf weitere Pyridin,Diimin-Liganden dargestellt, welche eine höhere Stabilität gegenüber intramolekularen Bindungsaktivierungen aufweisen sollen. In Anlehnung an Arbeiten von *SIEH*^[4] wurde zum einen der 2,6-Bis(trifluormethyl)phenyl-substituierte Pyridin,Diimin-Ligand **4** dargestellt. Hierbei musste eine Synthese im Grammmaßstab für das benötigte 2,6-Bis(trifluormethyl)anilin **15** entwickelt werden, welche für die erfolgreiche Synthese des Liganden notwendig ist. Neben diesen wurden Pyridin,Diimin-Liganden mit Terphenyl-Substituenten an der *N*-Ketimineinheit synthetisiert. Neben dem unhalogenierten Terphenyl-Substituenten konnte auch das an 2,2′,6,6′-Position fluorierte Terphenylamin erfolgreich für die Darstellung von Pyridin,Diimin-Liganden verwendet werden.

Um zu untersuchen, ob diese Liganden die erwartete höhere Stabilität gegenüber intramolekularen Bindungsaktivierungen zeigen, wurden, mit Ausnahme des teilfluorierten Liganden **31**, die Iridium-Azido- sowie Nitrido-Komplexe dargestellt. Eine Komplexierung mit Iridium gelang für den Liganden **31** nicht. Für den 2,6-Bis(trifluormethyl)phenyl-substituierten Iridium-Pyridin,Diimin-Nitrido-Komplex **4-IrN** konnte zwar eine signifikante Erhöhung der thermischen Stabilität gezeigt werden, es wird in Lösung aber die Dimerisierung zum entsprechenden μ-N₂-Komplex beobachtet. Die Terphenylsubstituierten Komplexe weisen keine Dimerisierung auf und sind in Lösung bei Raumtemperatur stabil. Trotz der zum Teil erhöhten thermischen Stabilität der Azido- bzw. Nitrido-Komplexe durch die Veränderung im Ligandensystem, gelang ein thermischer Zugang zu den entsprechenden Rhodium-Nitrido-Komplexen durch Abspaltung von Distickstoff nicht. Da der Fokus auf dem Zugang zu den Rhodium-Nitrido-Komplexen lag, wurden die hierbei entstanden Reaktionsprodukte nicht weiter untersucht.

Durch die Verwendung von UV-Licht zur Spaltung der Azid-Bindung im Azido-Liganden gelang erstmals die Generierung und Charakterisierung von Rhodium-Pyridin, Diimin-Nitrido-Komplexen.

Wie sich zeigte, ist der gegen intramolekulare C-H-Bindungsaktivierung geschützte Ligand **4** zur Darstellung von Rhodium-Nitrido-Komplexen nicht geeignet. Aufgrund der Ergebnisse der Darstellung des Komplexes **4-IrN** wird vermutet, dass auch hier die sterische Abschirmung zu gering ist und es hier zu einem Dimerisierungsprozess kommt.

Mit dem durch *SIEH*^[1] für den thermischen Zugang zu Rhodium-Nitrido-Komplexen untersuchten Ligandensystem mit Dipp-Substituenten an der *N*-Ketimineinheit sowie Phenyl als C-Ketiminsubstituent gelang die *in-situ* Erzeugung durch die photochemische Spaltung des Azido-Liganden. Der Rhodium-Nitrido-Komplexes **33-RhN** konnte hierbei durch ¹H-NMR, UV/Vis sowie Abfangreaktionen belegt werden. Aufgrund der geringen thermischen Stabilität in Lösung wurde die Reaktivität nur oberflächlich untersucht. Eine Aktivierung von H₂ konnte im Gegensatz zur Aktivierung einer Si-H-Bindung nicht beobachtet werden.

Der Wechsel des Liganden von Dipp- zum Terphenyl-substituierten Ligandensystem **28** führte zu einer Erhöhung der thermischen Stabilität des Rhodium-Nitrido-Komplexes in Lösung. Für **28-RhN** konnten so neben den spektroskopischen Untersuchungen in Lösung auch Festkörper ATR-IR-Spektroskopie durchgeführt werden und so durch Isotopenmarkierung die Rhodium-Nitrido-Schwingungsbande mit $\tilde{\nu}$ (Rh-N) = 903 cm⁻¹ eindeutig zugeordnet werden.

2. Abstract

The mechanism of the C-C bond activation of ferrocene(ium) by **1-IrN** leading to **1-IrPy**⁺, first shown by *SIEH*^[1] and further investigated by *LINDENMAIER*^[2] and *JUNKER*^[3], could be further substantiated by the results shown here. Thus, by separating oxidation and bond activation, it could be confirmed that in the first step is the oxidation of the nitrido complex **1-IrN** to the thermolabile **1-IrN**⁺ takes place and then this complex reacts with ferrocene to form the pyridine complex **1-IrPy**⁺. Unfortunately, it was not possible to isolate this cationic nitrido compound **1-IrN**⁺, but its formation could be proven by UV/Vis spectroscopy. Based on quantum chemical calculations, an *exo* reaction mechanism for the formation of the pyridine complex **1-IrPy**⁺ showed by the presence of isosbestic points that no long-lived intermediates are formed. The study of the kinetics as well as the activation parameters of this reaction, showed that it is a 2nd order reaction with a negative ΔS^{\pm} . From this, an addition mechanism can be deduced, which is in agreement with the proposed *exo* reaction mechanism.

In addition to the study of C-C bond activation, five other pyridine, diimine ligands were presented, which are expected to exhibit higher stability to intramolecular bond activation. Following work by *SIEH*^[4], firstly, the 2,6-bis(trifluoromethyl)phenyl-substituted pyridine, diimine ligand **4** was presented. Here, a gram-scale synthesis had to be developed for the required 2,6-bis(trifluoromethyl)aniline **15**, which is necessary for the successful synthesis of the ligand. In addition to these, pyridine, diimine ligands with terphenyl substituents on the N-ketimine moiety were synthesized. In addition to the unhalogenated terphenyl substituent, the terphenylamine fluorinated at 2,2',6,6'-position was also successfully used to prepare the pyridine, diimine ligand **31**.

To investigate whether these ligands show the expected higher stability towards intramolecular bond activations, the iridium azido as well as nitrido complexes were prepared with the exception of the partially fluorinated ligand **31**. Complexation with iridium was not successful for ligand **31**. For the 2,6-bis(trifluoromethyl)phenyl-substituted iridium pyridine, diimine nitrido complex **4-IrN**, a significant increase in thermal stability was shown, but dimerization to the corresponding μ -N₂ complex is observed in solution. The terphenyl substituted complexes do not exhibit dimerization and are stable in solution at room temperature.

Despite the partially increased thermal stability of the azido or nitrido complexes due to the change in the ligand system, the thermal access to the corresponding rhodium nitrido complexes by cleavage of dinitrogen was not achieved. However, since the focus was on accessing the rhodium nitrido complexes, the reaction products formed in this process were not investigated further. By using UV light to cleave the azide bond in the azido ligand, the generation and characterization of rhodium pyridine, diimine nitrido complexes was achieved for the first time.

As it turned out, the ligand **4** while protected against intramolecular C-H bond activation is not suitable for the preparation of rhodium nitrido complexes. Based on the results of the preparation of the complex **4-IrN**, it is suspected that the steric shielding is also too low, resulting in a dimerization process.

With the **DippPyPh**₂ ligand system investigated by $SIEH^{[1]}$ for thermal access to rhodium nitrido complexes, *in situ* generation by photochemical cleavage of the azido ligand was successful. Here, the rhodium-nitride complex **33-RhN** could be evidenced by ¹H-NMR, UV/Vis as well as trapping reactions. Due to the low thermal stability in solution, the reactivity was only superficially investigated. Activation of H₂ could not be observed in contrast to activation with a Si-H bond.

The change of the ligand from dipp- to the terphenyl-substituted ligand system **28** led to an increase of the thermal stability of the rhodium nitrido complex in solution.

Thus, for **28-RhN**, solid-state ATR-IR spectroscopy could be performed in addition to spectroscopic studies in solution, and the rhodium nitrido vibrational band with $\tilde{\nu}$ (Rh-N) = 903 cm⁻¹ could be unambiguously assigned by isotopic labeling.

3. Einleitung

Stickstoffhaltige Moleküle umfassen bei den Grundstoffen eine große Zahl an Verbindungsklassen wie z.B.: Aminosäuren, Nitrile, Amide, Harnstoffe usw. Sie finden Anwendung als Grundstoffe^[5-6], technische Produkte^[7] oder in der Pharmazie^[8].

Für die Einführung von Stickstofffunktionalitäten in organische Moleküle sind Aminierungsreaktionen von großer Bedeutung. Diese lässt sich am stetigen Anstieg der Veröffentlichungen zu Aminierungsreaktionen zwischen 1900 und 2021 veranschaulichen (Abbildung 1)^[9]. So wurden in diesem Zeitraum über 60.000 Veröffentlichungen insgesamt und in den letzten Jahren über 2500 pro Jahr publiziert.

Abbildung 1: Übersicht über Veröffentlichungen zu Aminierungsreaktionen.^[9]

Zu den klassischen Aminierungsreaktionen gehört zum Beispiel die Darstellung von Anilin, einem wichtigen Grundstoff der organischen Synthese, der über eine elektrophile aromatische Substitution von NO₂⁺ an Benzol, gefolgt von der Hydrierung (Reduktion) der Nitrogruppe verläuft.^[6, 10] Als weiteres Beispiel ist die Gabriel-Synthese für die Darstellung von primären Aminen zu nennen,^[11] welche für die gezielte Darstellung von Aminosäuren von Bedeutung ist. Für die Darstellung von sekundären Aminen ist die Jourdan-Ullmann-Reaktion zu nennen, in welcher kupfervermittelt ein Halogenaromat mit einem Anilinderivat verknüpft wird.^[12] Um tertiäre Amine darzustellen, ist die Leuckart-Wallach-Reaktion von Bedeutung, die auf der Umsetzung von Ketonen bzw. Aldehyden mit Aminen und Ameisensäure basiert.^[13]

In den letzten zwei bis drei Jahrzehnten haben neue übergangsmetallkatalysierte Synthesemethoden an Bedeutung gewonnen. Hierbei sind vor allem C-N-Kreuzkupplungsreaktionen hervorzuheben.^[14] Von besonderer Relevanz sind die Palladium-katalysierte Buchwald-Hartwig-Aminierung^[15-17] und mit ihr verwandte Reaktionen.^[18]

Abbildung 2: Mechanistische Darstellung des vereinfachten Katalysezyklus von Palladium-katalysierten C-N-Kreuzkupplungen wie der Buchwald-Hartwig-Aminierung.^[18]

In Abbildung 2 ist der vereinfachte Katalysezyklus der Buchwald-Hartwig-Aminierung^[18] dargestellt. Hierbei wird nach der Reduktion des Pd(II)-Präkatalysators und Verlust eines Liganden der aktive Pd(O)-Katalysator gebildet. Im ersten Schritt wird durch oxidative Addition eines Arylhalogenid eine dimere Pd(II)-Spezies gebildet. Durch Koordination des Amin-Substrats wird dessen Azidität gesteigert und erlaubt so die Deprotonierung durch eine Base. Der gebildete Amido-Komplex kann unter reduktiver Eliminierung ein Arylamin freisetzen und der aktive Pd(O)-Katalysator wird zurückerhalten.^[19]

Neben der guten Atomökonomie und den milden Bedingungen, abgesehen vom Verbrauch einer Base, ist für moderne Aminierungsreaktionen^[18] anzumerken, dass ein Großteil der eingesetzten Amine aus Ammoniak und damit aus dem Haber-Bosch-Prozess erhalten werden.

Im Haber-Bosch-Prozess werden unter Verwendung eines α -Eisen-Katalysators bei hohem Druck von 250 bis 350 bar und Temperaturen von ca. 500 °C drei Moleküle Wasserstoff mit einem Molekül Stickstoff zur Reaktion gebracht um zwei Moleküle Ammoniak zu erhalten (Schema 1).^[20] Mit diesem Verfahren werden ca. 144 000 kt/a NH₃ mit steigender Tendenz dargestellt. Davon werden wiederum 10-20 % als Grundstoff in der chemischen Industrie verwendet.^[21]

N_2 + $3 H_2$ \longrightarrow $2 NH_3$

Schema 1: Allgemeine Reaktionsgleichung Haber-Bosch-Verfahren.

Insgesamt ist der Haber-Bosch-Prozess zurzeit für ca. 1.2 % der globalen CO₂-Emissionen verantwortlich. Der größte Teil der für die Ammoniakproduktion benötigten Energie bzw. der Freisetzung an CO₂ ist nicht das mittlerweile mit 70 % sehr effiziente Haber-Bosch-Verfahren, sondern die Produktion des benötigten Wasserstoffs durch Dampfreformierung aus Methan. Durch die Verwendung von Wasserstoff aus der Elektrolyse, durch erneuerbare Energie betrieben, lassen sich die CO₂-Emissionen um 78 % senken und die Effizienz weiter steigern. Dennoch bleibt der Energiebedarf für einen elektrisch betriebenen Haber-Bosch-Prozess mit 4.2 GJ pro t_{NH_3} sehr hoch.^[22]

Daher wären andere, weniger energieintensive Möglichkeiten zur Fixierung bzw. Spaltung von Stickstoff interessant. Die direkte Verwendung von Stickstoff in der Synthese statt Ammoniak als Stickstoffquelle könnte so den energieintensiven Haber-Bosch-Prozess umgehen. Hierbei sind neben der biogenen Stickstofffixierung über Pflanzen^[23] und Mikroorganismen^[24] auch die mögliche Fixierung von Stickstoff als metallgebundenes Nitrid, welches über N-N-Bindungsspaltung erhalten werden kann, zu nennen. Hierauf wird im Folgenden näher eingegangen.

3.1. Stickstofffixierung durch N₂-Spaltung in Nitrido-Komplexen

Trotz einer Vielzahl an Untersuchungen seit den späten 1960er Jahren zur Aktivierung von molekularem Stickstoff^[25], gelang erst im Jahre 1995 *CUMMINS et al.*^[26] die Fixierung und Spaltung von N₂ bei milden Bedingungen von 30 °C mit einem Molybdän-Komplex (Schema 2).

Schema 2: Spaltung von N₂ durch Mo(NArR)₃ bei 30 °C.^[26]

In dieser Reaktion werden unter Spaltung der N-N-Dreifachbindung zwei Molybdän-Nitrido-Komplexe gebildet. Die Veröffentlichung von *CUMMINS*^[26] eröffnete ein breites Forschungsfeldes zur Stickstoffspaltung bei milden Bedingungen. Mittlerweile ist diese Reaktion für eine Reihe von Übergangsmetallkomplexen bekannt.^[25]

Allerdings ist auffällig, dass vor allem Systeme mit frühen Übergangsmetallen zum Einsatz kommen (Abbildung 3).^[25, 27-29] Dies ist damit zu begründen, dass gerade frühe Übergangsmetalle ein hohes Reduktionspotential in niedrigen Oxidationsstufen besitzen. Sie haben somit die Möglichkeit, Elektronen zur Verfügung zu stellen, um die starke und unpolare N-N-Bindung (226 kcal/mol) mit einem großen HOMO-LUMO-Abstand von 10.8 eV zu schwächen oder sogar zu brechen.^[30]

Cummins 2000Schrock 2012Nishibayashi 2014Abbildung 3: Ausgewählte Beispiele für terminale Nitrido-Komplexe ausgehend von N2.

Das hohe Reduktionspotential ermöglicht zwar die Reduktion des Stickstoffs, somit die N-N-Bindungsspaltung, allerdings ermöglichen die unbesetzten t_{2g} -Orbitalen am Metall in frühen Übergangsmetallkomplexen π -Donor/Akzeptor-Wechselwirkungen mit dem Stickstoffliganden und führen damit zu sehr starken Metall-Stickstoff-Bindungen. Dies führt zu einer signifikanten kinetischen sowie thermodynamischen Barriere, um den später funktionalisierten Stickstoffliganden wieder abzuspalten.^[34]

Beispiele für die Fixierung von Stickstoff durch die Spaltung von N₂ zu Nitriden gefolgt von einer weiteren Umsetzung sind selten. Umsetzung zu Nitrilen^[35-37], Isocyanaten^[38] oder Silylaminen^[39] und deren Freisetzung aus der Ligandensphäre erfordern i.d.R. sehr reaktive Substrate.

Ein neueres Beispiel zur Darstellung von Nitrilen konnte *SCHNEIDER* 2019 durch die Optimierung seines 2014 publizierten Rhenium-Systems zeigen.^[37, 40] Der Mechanismus dieser Umsetzung ist in Schema 3 dargestellt, wobei im ersten Schritt der in der Ligandensphäre als μ -N₂ gebundene und aktivierte Stickstoff photochemisch gespalten wird. Der hieraus entstehende terminale Rhenium-Nitrido-Komplex reagiert mit Benzoylchlorid zu einem Rhenium-Chlorido-Komplex und verschiedenen organischen Produkten, darunter auch Benzonitril. Der Rhenium-Chlorido-Komplex lässt sich elektrochemisch wiederum unter Stickstoffatmosphäre zum μ -N₂-verbrückten Rhenium-Dimer reduzieren.

Schema 3: Dreistufiger Synthese-Zyklus zur Darstellung von Benzonitril aus Benzoylchlorid und N₂ nach *SCHNEIDER*^[37].

3.2. Terminale Nitrido-Komplexe später Übergangsmetalle

Am gezeigten Beispiel wird deutlich (Schema 3), dass die Wahl von Rhenium in einer niedrigen Oxidationsstufe in Kombination mit der hohen Koordinationszahl des Komplexes die Bindung des Nitrido-Liganden schwächt, und dieser somit funktionalisiert werden kann.

Entwickelt man diesen Ansatz konzeptionell weiter, um stabile Metall-Stickstoff-Bindungen zu schwächen und damit die Freisetzung möglicher Reaktionsprodukte zu erleichtern, gelangt man zum Wechsel von frühen zu späten Übergangsmetall-Systemen. Dies wird deutlich, wenn man die im Rahmen des HSAB-Prinzips assoziierten die Bindungspartner analysiert. Frühe Übergangsmetalle sind

harte Lewis-Säuren und bilden daher mit dem ebenfalls harten N³⁻-Ligand eine starke Bindung. Späte Übergangsmetalle in niedrigen Oxidationsstufen sind hingegen weiche Lewis-Säuren und bilden daher mit N³⁻ schwache Bindungen aus.^[41]

Zusätzlich verändert sich die Reaktivität des Stickstoffliganden beim Wechsel von frühen zu späten Übergangsmetallen von einem Nukleophil hin zu einem Elektrophil. Dies kann in Analogie zu den isoelektronischen elektrophilen Fischer- (R-C⁺) bzw. nukleophilen Schrock-Carbinkomplexen (R-C³⁻) veranschaulicht werden.^[42] So sind Nitrido-Liganden an frühen Übergangsmetallen "Schrock-artig" und damit als N³⁻ zu betrachten, wohingegen bei späten Übergangsmetallen von einem N⁺ und damit "Fischer-artigen"-Liganden ausgegangen wird.

Veranschaulicht man sich die an der Bindung beteiligten Orbitale, so fällt auf, dass durch die hohe Anzahl an d-Elektronen aufgrund der niedrigen Oxidationsstufen antibindende M-L π^* -Orbitale besetzt

Abbildung 4: Qualitative Orbitalaufspaltung der Grenzorbitale von oktaedrischen bzw. quadratisch-planaren Nitrido-Komplexen mit 2 bzw. 4 d-Elektronen.

werden. Daher werden Metall-Ligand-Mehrfachbindungen weniger bevorzugt und so auch schwächere Metall-Stickstoff-Bindungen gebildet. In diesem Zusammenhang ist auch das Konzept der "oxo-wall" zu nennen,^[43-45] welches für die verwandten Nitrido-Komplexe gleichermaßen gilt. Hierbei beschreibt BERRY, dass terminale Nitrido-Komplexe mit Übergangsmetallen in oktaedrischen Komplexen nur bis zur Gruppe 8 und maximal vier d-Elektronen, analog zu terminalen Oxo-Komplexen bekannt und stabil sind, da hier bereits die antibindenden Orbitale besetzt werden.^[46] Betrachtet allerdings qualitativ die Aufspaltung man der Grenzorbitale für ein N≡ML₃- bzw. N≡ML₅-Fragment mit d-Elektronen für einen d² - oktaedrischen bzw. d⁴ -

quadratisch-planaren Nitrido-Komplex (Abbildung 4), wird deutlich, dass zwischen diesen eine isolobale Beziehung besteht. Daher ist der Zugang zu Nitrido-Komplexen später Übergangsmetalle synthetisch zwar immer noch sehr anspruchsvoll, aber bei einer quadratisch-planaren Koordinationsgeometrie auch mit Metallen der Gruppe 9 bei vier d-Elektronen möglich.^[47]

Trotz intensiver Forschung sind bis heute nur wenige Beispiele für terminale Nitrido-Komplexe mit mittleren bis späten Übergangsmetallen wie Eisen^[48], Ruthenium^[49], Kobalt^[50], Rhodium^[51] sowie Iridium^[52] bekannt, wobei anzumerken ist, das keins der gezeigten Beispiele durch Spaltung von N₂ dargestellt wurde. Bisher sind nur zwei Beispiele für die erfolgreiche Spaltung von N₂ durch Eisen-^[53] bzw. Osmium-Komplexe^[54] mit anschließender Reduktion zu Ammoniak bekannt.

Der mikroskopisch reversible Prozess, die oxidative Kopplung von Nitrido-Einheiten zu N₂, ist aber für Ammoniak oder Hydrazin betriebene Brennstoffzellen von Bedeutung.^[56] Zum anderen bieten reaktive Nitrido-Verbindungen die Möglichkeit C-H, C-X, E-H, und E-E-Bindungen (E= S, Si, Sn, P) mit hoher Atomökonomie zu funktionalisieren.^[57] Terminale Nitrido-Komplexe sind isolobal mit der Verbindungsklasse von Komplexen mit terminal gebundenen Sauerstoffatom, die für späte Übergangmetalle bis auf wenige Beispiel nahezu unbekannt sind.^[58-60] Für Oxygenierungsreaktionen sind diese aber sehr interessant, weshalb auch die Reaktivität von Nitrido-Komplexen wichtige Informationen als Modellverbindungen für die Oxo-Verbindungen liefern können.

Die in der Literatur beschriebenen Nitrido-Komplexe wurden fast ausschließlich aus Azido-Verbindungen dargestellt. In Schema 4 wird die allgemeine Syntheseroute für Nitrido-Komplexe aufgezeigt. Hierbei wird häufig ein Halogenido-Komplex in einer Salzmetathese mit einem anorganischen Azid wie NaN₃^[47-48, 61] oder mit einem organischen Azid^[51] zur entsprechenden Azido-Verbindung umgesetzt.

Schema 4: Allgemeine Syntheseroute von Nitrido-Komplexen über eine Azido-Verbindung.

Die Reaktivitäten bzw. thermischen Stabilitäten der hieraus resultierenden Nitrido-Komplexe sind höchst unterschiedlich. Der von *MEYER* beschriebene Kobalt-Nitrido-Komplex^[50] wie auch die von *SCHNEIDER* veröffentlichte Rhodium-Nitrido-Verbindung^[51] (Abbildung 5), welche durch Photolyse aus Azido-Komplexen dargestellt wurden, sind nur in gefroren Lösungen bei 10 K stabil und konnten daher nur IR- bzw. ESR-Spektroskopie charakterisiert werden. Die Folgereaktionen der Komplexe sind in Schema 5 gezeigt. Der Rhodium-Nitrido-Komplex dimerisiert in Lösung zum thermodynamisch favorisierten μ-N₂-Komplex, welcher unter N₂-Atmosphäre zum terminalen Distickstoff-Komplex weiterreagiert.^[51] Aufgrund der hohen sterischen Abschirmung des Kobalt-Nitrido-Komplex ist die Bildung eines Dimers unterbunden, so dass es zur Insertion des Nitrido-Stickstoffatoms in eine Co-C-Bindung und nachfolgender C-H-Abstraktion kommt.^[51]

Schema 5: Reaktionsverhalten von transienten Nitrido-Komplexen bei Raumtemperatur.^[50-51]

SCHNEIDER konnte für den homologen Iridium-Komplex die Dimerisierung durch Oxidation unterdrücken. So lässt sich der kationische Iridium-Nitrido-Komplex isolieren und dimerisiert erst nach Reduktion zum μ -N₂-Komplex (Schema 6).^[47]

Schema 6: Reaktion des bei Raumtemperatur stabilen Iridium-Nitrido-Komplex nach Reduktion.^[47]

Andere bekannte Nitrido-Komplexe wie die in Abbildung 5 gezeigten Ru-Komplexe von *CAULTON*^[49], der Fe-Komplex von *MEYER*^[48] und der Iridium-Pyridin, Diimin-Nitrido-Komplex **1-IrN** aus der Arbeitsgruppe *BURGER*^[52] sind in Lösung bei Raumtemperatur als Monomer stabil. Die thermische Stabilität erlaubt die weitere Untersuchung der Reaktivitäten von terminalen Nitrido-Verbindungen. So konnten bereits die C-H- bzw. C-C-Bindungsaktivierung ^[62-63] sowie Aminierungen von aromatischen C-H-Bindungen durch elektrophile Angriffe^[64] gezeigt werden.

3.3. Stand der Forschung zu Pyridin, Diimin-Nitrido-Komplexen in der Arbeitsgruppe

Abbildung 6: Bekannte Pyridin, Diimin-Iridium-Nitrido-Komplexe.^[1, 65]

Die beiden bisher bekannten und von *SCHÖFFEL*^[52, 62, 65] und *SIEH*^[1, 4, 66-67] untersuchten Iridium-Nitrido-Komplexe **1-IrN** sowie **2-IrN** sind in Abbildung 6 gezeigt.

12 | Einleitung

Im Unterschied zu anderen Beispielen aus der Literatur erfolgt die Synthese der Azido-Komplexe 1-IrN₃ und 2-IrN₃ nicht direkt aus den Iridium-Chlorido-Komplexen, sondern durch Reaktion der Methoxido-Verbindungen mit Me₃SiN₃, wie in Schema 7 am Beispiel von **1-IrN₃** abgebildet. In der Umsetzung des Chlorido-Komplexes mit NaN₃ oder Me₃SiN₃ wird hingegen keine Reaktion beobachtet.^[65]

Schema 7: Syntheseweg zur Darstellung der Verbindung 1-IrN₃.

Ausgehend vom Azido-Komplex 1-IrN₃ kann der terminale Iridium-Pyridin, Diimin-Nitrido-Komplex **1-IrN** durch Erwärmen auf 40 °C im Festkörper unter Abspaltung von N₂ quantitativ erhalten werden (Schema 8) und ist anschließend in Lösung bei Raumtemperatur über mehrere Stunden stabil.^[52]

Die Darstellung gilt für 2-IrN aus 2-IrN₃ analog, wobei sowohl 2-IrN in gängigen organischen Lösemitteln praktisch unlöslich ist.^[4]

Schema 8 verdeutlicht die Reaktivität des Nitrido-Komplexes 1-IrN. Bei der Aktivierung von H₂ zum Amido-Komplex reagiert der Nitrido-Komplex 1-IrN als Elektrophil, wohingegen bei der Bildung des Silylamid-, Stannylamid- bzw. des NO-Komplexes der Nitrido-Ligand als Nukleophil agiert.^[1]

Neben diesen Reaktionen ist auch die Bildung von Isocyanat bei der Reaktion mit CO zu beobachten. Die durch SIEH und LINDENMAIER gezeigte C-C-Bindungsaktivierung eines Cp-Rings nach Oxidation zum kationischen Pyridin-Komplex wird in Kapitel 5 eingehend besprochen.^[1-2]

Schema 8: Darstellung des Iridium-Nitrido-Komplexes **1-IrN** und Übersicht über die Reaktivität mit verschieden Substraten.^[52, 66-67]

Bei erhöhter Temperatur wird eine C-H-Bindungsaktivierung der Isopropylgruppe des Liganden beobachtet, welche zur Bildung eines sog. "Tuck-In"-Komplexes führt.^[62]

Abbildung 7: Schematische Darstellung der kollinearen (oben), sowie koplanaren (unten) Annäherung zweier Pyridin,Diimin-Nitrido-Komplexe.

Die Dimerisierung zu einem µ-N₂-verbrückten Komplex, wie sie häufig für terminale Nitrido-Komplexe zu beobachten ist (siehe Schema 5 und Schema 6), wurde für 1-IrN nicht beobachtet. DFT-Berechnungen zeigen eine deutliche Begünstigung des Dimerisierungsprodukts von ca. -110 kcal/mol. Eine analoge Rh-Verbindung wurde von NÜCKEL über eine alternative Syntheseroute durch Reduktion der entsprechenden Chlorido-Verbindung isoliert.^[68] Allerdings ist die kollineare Annährung zweier Nitrido-Komplexe aufgrund der vier-Elektronen-zwei-Zentren-Abstoßung der freien Elektronenpaare des Nitrido-Liganden, welche sich auf der Annäherungsachse der für die kollineare Dimerisierung befindet, stark gehindert

(Abbildung 7, oben). Durch Berechnungen konnte hierfür eine Barriere von -35 kcal/mol identifiziert werden. Hingegen ist die koplanare Annährung nahezu ohne Barriere, da für die seitliche Annäherung diese Abstoßung nicht existiert, wie in Abbildung 7 unten ersichtlich ist. Hierbei kann ein Vergleich mit der Dimerisierung von Singlett-Carbenen, wie z.B. CF₂, gezogen werden welche über einen sog. "non-

least-motion pathway" ebenfalls koplanar erfolgt.^[69] Diese koplanare Annährung ist allerdings durch die Diisopropylphenyl-Substituenten sterisch unterbunden.^[65]

Angesichts der interessanten Reaktivität sowohl als Elektrophil wie auch als Nukleophil, sowie in Bezug auf die Frage, ob die vorliegende Verbindung **1-IrN** mit dem o.g. Konzept der *"oxo-wall"* vereinbar ist (Seite 11), wurde die elektronische Struktur des Iridium-Pyridin, Diimin-Nitrido-Komplexes **1-IrN** durch *SCHÖFFEL*^[52, 65] eingehend untersucht.

Aufgrund des PDI-Liganden und dessen *"non-innocent"* Charakters ist elektronische Struktur von **1-IrN** nicht offensichtlich. Der Begriff *"non-innocent"* bedeutet hier, dass der Ligand in der Lage ist bis zu drei d-Elektronen vom Metallzentrum aufzunehmen und diese in ligandzentrierten π^* -Orbitalen^[70-71] zu übertragen. Daher ist Bestimmung der Oxidationsstufe aus der Valenzstruktur nicht möglich und musste durch quantenchemische Rechnungen sowie physikalische Methoden untersucht werden.

Die Bindungsordnung von 2.8 der Iridium-Stickstoffbindung wurde durch quantenchemische Rechnungen auf Basis der Besetzung der drei beteiligten bindenden sowie anti-bindenden Orbitale ermittelt.^{*[52]} Dies steht im Einklang mit dem sehr kurzen Ir-N-Abstand von 1.646 Å, welcher durch Röntgenbeugung bestimmt wurde. Zudem deuten Röntgenphotoelektronenspektroskopie (XPS) sowie Röntgenabsorptionsspektroskopie (XAS) des Komplexes **1-IrN** auf eine d⁶-Elektronenkonfiguration und somit eine Oxidationsstufe von +III des Iridiumzentrums hin. Weitere Rechnungen zeigen außerdem eine starke Delokalisierung der Orbitale, weshalb eine Beteiligung des Pyridin,Diimin-Liganden unter zweifacher Reduktion angenommen wird. Zum einen erklärt dies, warum die Verbindung **1-IrN** weiterhin mit dem Konzept der *"oxo-wall"* vereinbar ist. Obwohl formal eine d⁶- statt der maximal zulässigen d⁴-Konfiguration vorliegt, sind zwei Elektronen durch die Beteiligung des PDI-Liganden nicht metallzentriert und dadurch nicht in die Betrachtung mit einzubeziehen.

Zum anderen lässt sich hiermit die besondere Reaktivität erklären. Aus der Konfiguration mit PDI²⁻ und Ir(III) ergibt sich die ungewöhnliche Betrachtung des Nitrido-Liganden als N⁻, da der Nitrido-Komplex neutral vorliegt.^[72] Dies erklärt, zusammen mit der Lage zwischen den rein nukleophilen N³⁻ und dem elektrophilen N⁺ (vgl. oben), das ambiphile Reaktionsverhalten der Verbindung **1-IrN**.

^{*} Geometrie: BP-86/cc-pVTZ für C und H, aug-cc-pVTZ für N, def2-TZVPP mit ECP-60-MWB für Ir. NOs: MCQDPT2 (CASSCF(10,10) Referenz Wellenfunktion)

Betrachtet man nun die Versuche die homologen Rhodium-Komplexe darzustellen, zeigen sich deutliche Unterschiede zwischen Rhodium und Iridium als Zentralatom. So gelang es bisher nicht einen Rhodium-Pyridin, Diimin-Nitrido-Komplex zu isolieren oder zu charakterisieren.

Schema 9: Bildung des Rhodium-"Tuck-In"-Komplex.^[62]

Eine leichte Erwärmung auf Temperaturen unter 100 °C des Rhodium-Azido-Komplex **1-RhN**₃ führt im Gegensatz zum analogen **1-IrN**₃ nicht zur Abspaltung von Stickstoff. Ein Grund dafür ist in der energetischen Lage der angenommenen Nitrido-Verbindung **1-RhN** zu sehen. *SCHÖFFEL* zeigte durch DFT-Rechnung, dass **1-RhN** energetisch +13 kcal/mol oberhalb vom Rhodium-Pyridin,Diimin-Azido-Komplexe **1-RhN**₃ liegt. Bei Temperaturen ab ca. 150 °C lässt sich hingegen die Bildung des "Tuck-In"-Komplexes **1-RhTI** unter Stickstofffreisetzung beobachten (Schema 9). Die zweifache Aktivierung des Liganden erfolgt hierbei laut DFT-Rechnungen an einer Modellverbindung ebenfalls über eine Rhodium-Nitrido-Spezies.^[62]

Schema 10: Denkbarer Mechanismus der Bildung des Rhodium-"Tuck-In"-Komplexes anhand eines Model-Systems. Mit den berechneten Energien in kcal/mol (DFT, BP86).^[62, 65]

Um den postulierten Rhodium-Nitrido-Komplex zu isolieren wurden von *SIEH* Versuche unternommen, die Bildung des "Tuck-In"-Komplexes zu unterbinden.^[1]

Wie in Schema 10 zu sehen ist, muss für die Aktivierung des Ligandensystems im ersten Schritt eine Drehung des Substituenten am *N*-Ketimin um die C-N-Bindung erfolgen. Daher versuchte *SIEH* durch die Verwendung einer Phenyl- anstatt Methylgruppe am Ketimin-Kohlenstoffatom diese Rotation sterisch zu unterbinden. Diese konnte jedoch durch *SIEH* weder Isoliert werden, noch zeigte sich signifikante Auswirkungen auf die thermodynamischen Daten in DSC- bzw. TG/MS-Messungen des entsprechenden Azido-Komplexes.^[1] Des Weiteren versuchte *SIEH* die C-H-Bindungsaktivierung am Liganden durch die Einführung von Chlor-Substituenten am Liganden zu verhindern (Abbildung 6). Die thermische Stabilität wurde für den Iridium-Nitrido-Komplex **2-IrN** untersucht. *SIEH* konnte die Zersetzung des Komplexes bei 196 °C beobachten, was im Vergleich zu **1-IrN** eine Erhöhung der thermischen Stabilität um 23 °C bedeutet. Das entsprechende Rhodium-System wurde aufgrund der schlechten Löslichkeit des Ligandensystems **2** daraufhin nicht untersucht.

4. Zielsetzung

Auf Basis der im Arbeitskreis durch *SCHÖFFEL*^[52, 62, 65], *SIEH*^[1, 4, 66-67, 72] und *LINDENMAIER*^[2] erlangten Erkenntnisse zu Pyridin, Diimin-Nitrido-Komplexen, sollten deren Eigenschaften und Reaktivitäten im Rahmen der vorliegenden Arbeit weiter untersucht werden.

Schema 11: Umsetzung von Iridium-Nitrido-Komplex 1-IrN zum Pyridin-Komplex 1-IrPy⁺.

Hierbei sollte die durch *SIEH*^[1] und *LINDENMAIER*^[2] gezeigte C-C-Bindungsaktivierung eines Cyclopentadien-Ringes durch **1-IrN** und Ferrocenium weiter analysiert (Schema 11), sowie reaktive Zwischenstufen isoliert bzw. charakterisiert werden, die Oxidation des Iridium-Nitrido-Komplexes **1-IrN** genauer betrachtet und die Kinetik der Reaktion untersucht werden.

Abbildung 8: geplante Änderungen am Ligandensystem zur Unterbindung der intramolekularen C-H-Bindungsaktivierung analog der "Tuck-In"-Bildung.

Daneben ist auch die allgemeine Reaktivität von Pyridin, Diimin-Nitrido-Komplexen Untersuchungsgegenstand dieser Arbeit. Diese Untersuchungen bauen auf Ergebnissen von *SIEH*^[1, 4] zur Stabilisierung des Pyridin, Diimin-Ligandensystems gegenüber intramolekularer C-H-Bindungsaktivierung auf. Dazu sollten Pyridin, Diimin-Liganden synthetisiert werden, welche an der *N*-Ketimin-Funktionalität Substituenten enthalten, die keine C-H-Bindungen in der Nähe des Metall-Nitrido-Fragments besitzen oder dort zumindest eine erhöhte C-H-Bindungsstärke aufweisen (in Abbildung 8 durch X markiert).

Mit den aus diesen Liganden dargestellten Iridium-Nitrido-Komplexen sollte zuerst die Reaktivität dieser Verbindungen mit den von *SCHÖFFEL*^[52, 62, 65] bzw. *SIEH*^[1, 4, 66-67] bekannten Systemen verglichen und durch diese der bisher nicht mögliche Zugang zu Rhodium-Nitrido-Komplexen untersucht werden.

5. Untersuchung der C-C-Aktivierung an Ferrocen mit Iridium-Nitrido-Komplexen

Nach erfolgreicher Darstellung, Charakterisierung und ersten Reaktivitätsstudien des Iridium-Nitrido-Komplexes **1-IrN** im Arbeitskreis^[4, 52, 62, 66-67], konnte durch *SIEH*^[1] gezeigt werden, dass dieser terminale Stickstoff-Komplex **1-IrN** sowohl als Elektrophil als auch als Nukleophil reagieren kann.

Um die Elektrophile des Nitrido-Komplexes **1-IrN** zu steigern und die Reaktivität der Verbindung dahingehend zu verändern, versuchte *SIEH*^[1] diesen zu oxidieren. Es konnte allerdings nicht die in Schema 12 gezeigte Reaktion zum erwarteten zweifach oxidierten Iridium-Nitrido-Komplex beobachtet werden.

Schema 12: Oxidation des Nitrido Komplex 1-IrN mittels Ferrocenium.

Stattdessen konnte als unerwartetes Reaktionsprodukt der kationische Iridium-Pyridin-Komplex **1-IrPy**⁺ isoliert werden. *LINDENMAIER*^[2] konnte durch Isotopenmarkierung zeigen, dass bei der Reaktion von **1-IrN** mit Ferrocenium der Cyclopentadienring des Ferrocens aktiviert wird und das Nitrido-Stickstoffatom in diesen insertiert. Hierbei wurde wie in Schema 13 gezeigt, zum einen der ¹⁵Nisotopenmarkierte Iridium-Nitrido-Komplex **1-Ir¹⁵N** mit FeCp₂BAr^F umgesetzt. Anschließend konnte durch Zugabe von Acetonitril ¹⁵N-isotopenmarkiertes Pyridin durch GC/MS-Analyse nachgewiesen werden. Außerdem konnte zum anderen durch die Reaktion von unmarkiertem Nitrido-Komplex **1-IrN** mit deuteriertem Ferrocenium nach Aufarbeitung massenspektroskopisch deuteriertes Pyridin-*d*₅ nachgewiesen werden.

Schema 13: Isotopen-Markierungsexperiment zur Bestätigung der Herkunft des Pyridinfragmentes. Links: Reaktion mit ¹⁵N-Markierung des Komplexes **1-IrN**, Rechts: Reaktion mit Deuterium-markiertem Ferrocenium Al(pftb)₄.

Um weiter den Mechanismus der Reaktion aufzuklären, wurden durch *SIEH*^[1] cyclovoltammometrische Messungen des Nitrido-Komplexes **1-IrN** durchgeführt, welche nahe legen, dass zuerst die Oxidation des Nitrido-Komplexes stattfindet, dieser anschließend weiter mit Ferrocen oder Ferrocenium zum Pyridin-Komplex **1-IrPy**⁺ reagiert. Aufgrund der Überlappung der Oxidationswellen des Nitrido-Komplexes **1-IrN** und des Ferrocens war eine eindeutige Aussage hierzu durch die CV-Messungen leider nicht möglich.

Die UV/Vis spektroskopischen Untersuchungen der Reaktion bei tiefen Temperaturen durch *LINDENMAIER*^[2] zeigen zuerst eine schnelle Reaktion des Nitrido-Komplexes **1-IrN** mit FeCp₂BAr^F. Das erhaltene Zwischenprodukt weist ein Absorptionsmaximum von 788 nm auf und ist bei -78 °C für mind. 30 Minuten stabil. Durch Erwärmung auf Raumtemperatur kann eine Folgereaktion zum Produkt beobachtet werden. Das Absorptionsspektrum des Reaktionsproduktes stimmt weitgehend mit dem Spektrum des kationischen Pyridin-Komplexes **1-IrPy**⁺ überein.^[2]

Schema 14: Postulierter Reaktionspfad der Reaktion des Iridium-Nitrido-Komplexes **1-IrN** mit Ferrocenium. Gegenionen sind nicht mit abgebildet.

Von *JUNKER*^[3] wurde statt Ferrocenium das per-methylierte [FeCp*]⁺ eingesetzt, um die Bildung des Pyridin-Komplexes **1-IrPy**⁺ zu verhindern und so ein Zwischenprodukt der Reaktion zu isolieren. Bei -30 °C konnte keine Reaktion mit [FeCp*]⁺ beobachtet werden. Bei Raumtemperatur konnten hingegen eine Trübung, sowie eine Veränderung des UV/Vis-Spektrums der Reaktionslösung beobachtet werden. Die Bildung eines Pentamethylpyridin-Komplexes wurde erwartungsgemäß nicht beobachtet, stattdessen war eine deutliche Tieffeldverschiebung der Signale der Cp*-Ringe von δ = -36.8 ppm auf δ = 16.6 ppm ersichtlich. Eine Isolation oder eine Strukturaufklärung des Reaktionsproduktes durch Einkristallstrukturanalyse gelang nicht.^[3]

Es konnte nicht klar gezeigt werden, ob zuerst eine Oxidation des Nitrido-Komplexes **1-IrN** stattfindet und ob dieser dann mit Ferrocen oder Ferrocenium reagiert. Außerdem ist eine direkte Reaktion des Nitrido-Komplexes **1-IrN** mit Ferrocenium zum Pyridin-Komplex **1-IrPy**⁺ vorstellbar. Weiterhin ist der Verbleib der eisenhaltigen Komponente bisher nicht geklärt.

5.1. Untersuchung der Reaktion von Ferrocenium-Derivaten mit Iridium-Nitrido-Komplexen

Um die Oxidation näher zu untersuchen, eignet sich die Cyclovoltammetrie (CV). Das Oxidationsverhalten von **1-IrN** in THF sowie die Oxidation mit Ferrocen wurde daher durch *SIEH* und *LINDENMAIER* bereits cyclovoltammometrisch untersucht. Im in Abbildung 9 gezeigten CV von **1-IrN** sind bis zu einem Potential von 500 mV zwei Oxidationsprozesse zu erkennen. Die erste Oxidation mit $E_{1/2} = -0.41$ V beschreibt *SIEH* als quasi-reversibel, wohingegen die zweite Oxidation bei einem anodischen Spitzenpotential von $E_{pa} = 0.25$ V irreversibel ist.^[1-2]

Abbildung 9: Cyclovoltammogramme des Iridium-Nitrido-Komplexes **1-IrN** in THF (2 mM). Leitsalz: TBAPF₆ (0.1 M); Arbeitselektrode: Glaskohlenstoff (d = 3 mm); Gegenelektrode: Pt-Draht; Referenzelektrode: Ag/Ag+; Vorschubgeschwindigkeit: 250 mV/s; 2 Segmente; Startpotential: -1.05 V; anodisches Umkehrpotential: blau -0.43 V, schwarz -0.03 V; rot: -0.03 mit 2 Äq. Fc.

Da keine klar von Ferrocen getrennten Oxidations- bzw. Reduktionswellen vorhanden sind (rot, Abbildung 9), konnte keine eindeutige Aussagen getroffen werden, ob die Reaktion vom kationischen Nitrido-Komplex **1-IrN**⁺ oder Ferrocenium ausgeht.^[2]

JUNKER^[3] zeigte bereits, dass der Nitrido-Komplex **1-IrN** auch mit Derivaten des Ferrocenium reagiert. Daher wurden substituierte Ferrocene in Erwägung gezogen, deren Oxidationspotentiale stärker von der des Nitrido-Komplexes separiert sind. Hierbei wurde Mono- bzw. Diacetylferrocen mit in Betracht gezogen, die Redoxpotentiale^[73] mit E⁰ = +0.27 V und +0.49 V gegenüber Fc/Fc⁺ in CH₂Cl₂ aufweisen (Abbildung 10) bzw. gegenüber dem Redoxpotentials von **1-IrN/1-IrN** +0.66 V für Acetyl- bzw. 0.88 V für Diacetylferrocen. Zudem könnten aus dem Substitutionsmuster im Reaktionsprodukt weitere Rückschlüsse auf den Mechanismus der Reaktion gezogen werden.

Abbildung 10: Redoxpotentiale von Ferrocenderivaten vs. Fc/Fc⁺ in CH₂Cl₂.^[73]

Für die CV-Messungen wurde eine 2 mM Lösung des Komplexes **1-IrN** und 2 Äq. Diacetylferrocen in THF mit TBAPF₆ als Leitsalz verwendet. Zwei ausgewählte Cyclovoltammogramme dieser Messung sind in Abbildung 11 gezeigt.

Abbildung 11: Cyclovoltammogramme des Iridium-Nitrido-Komplexes **1-IrN** mit zwei Äq. Diacetylferrocen in THF (2 mM). Leitsalz: TBAPF₆ (0.1 M); Arbeitselektrode: Glaskohlenstoff (d = 3 mm); Gegenelektrode: Pt-Draht; Referenzelektrode: Ag/Ag+; Vorschubgeschwindigkeit: 250 mV/s; 2 Segmente; Startpotential: -0.81 V; anodisches Umkehrpotential: blau 0.79 V, schwarz -0.16 V; referenziert gegen Fc/Fc+.

Man betrachtet das in schwarz gezeigte Cyclovoltammogramme in Abbildung 11, welches bis zu einem anodischen Potential von -0.16 V gemessen wurde. Hier ist die erste Oxidation mit einem Halbstufenpotential bei $E_{1/2} = -0.38$ V zu erkennen und somit analog zu der von *SIEH* und *LINDENMAIER* beobachteten quasi-reversiblen ersten Oxidation von **1-IrN** mit bzw. ohne Ferrocen.^[1] Weitere Oxidations- oder Reduktionsprozesse sind nicht erkennbar. So ist weder eine Reaktion des oxidierten Nitrido-Komplexes **1-IrN**⁺ mit Diacetylferrocen, noch die Bildung neuer Spezies auf der Zeitskala der Cyclovoltammetrie erkennbar.

Wird bis zu einem anodischen Umkehrpotential von 0.79 V (vs. Fc/Fc⁺) (blau, Abbildung 11) gemessen, werden zusätzliche Redoxprozesse erkennbar. Neben der ersten Oxidationswelle des Nitrido-Komplexes **1-IrN** ist eine weitere Welle mit einem anodischen Spitzenpotential von E_{pa} = 0.55 V zu erkennen. Aufgrund des Potentials ist dieser Prozess der Oxidation von Diacetylferrocen zuzuordnen. Außerdem ist bei einem Potential von E_p = 0.15-0.25 V eine Schulter in der Oxidationswelle (mit * gekennzeichnet) des Diacetylferrocens zu beobachten. Diese liegt im Potentialbereich der zweiten und irreversiblen Oxidation des Nitrido-Komplexes (vgl. Abbildung 9).

Betrachtet man die Rückreduktion sind mehrere Wellen erkennbar. Diese besitzen Spitzenpotentiale von $E_{pk} = -0.71 \text{ V}$, -1.17 V bzw. -1.51 V. Eine eindeutige Zuordnung der Reduktionswellen zu Reduktionsprozessen ist hierbei nicht möglich. *LINDENMAIER*^[2] beschrieb für die Reaktion mit Ferrocen allerdings ein vergleichbares Verhalten. Er beschrieb einen von Ferrocen unabhängigen irreversiblen Elektronentransfer mit einem Halbstufenpotential bei $E_{1/2} = -1.08 \text{ V}$. Sowie einen weiteren Elektronentransfer mit einem Halbstufenpotential von $E_{1/2} = -1.41 \text{ V}$, welchen er durch cyclovoltammometrische Untersuchung des individuell dargestellten kationischen Iridium-Pyridin-Komplex **1-IrPy**⁺, diesem zuordnen konnte.

Gibt man statt Diacetylferrocen für die Untersuchung der Oxidation des Nitrido-Komplexes **1-IrN** Acetylferrocen hinzu, verringert man so das Oxidationspotential des Oxidationsmittels von $E^0 = 0.49 V$ auf 0.27 V (vs. Fc/Fc⁺). Der Abstand zwischen den Potentialen der oxidierten Nitrido-Verbindung **1-IrN**⁺ und des Redoxpaars Acetylferrocen/-ium wird so auch kleiner. Dennoch sollte im Vergleich mit der Oxidation mittels Ferrocenium noch eine ausreichende Trennung der Oxidationswellen vorhanden sein.

Um einen Einblick in diese Reaktion zu bekommen, wurden wie zuvor Cyclovoltammogramme des Nitrido-Komplexes **1-IrN** in Anwesenheit von Acetylferrocen aufgenommen, welche in Abbildung 12 gezeigt sind. Bei einem Startpotential von -1.0 V und einem anodischen Umkehrpotential von -0.1 V (vs. Fc/Fc⁺) (schwarz) ist eine erste Oxidationswelle von **1-IrN** bei einem Redoxpotential von -0.38 V zu beobachten. Trotz der Anwesenheit von Acetylferrocen in der Reaktionslösung kann diese als quasi-reversible ($\Delta E_p = 0.08$ V) angesehen werden. Weitere Redoxprozesse sind nicht erkennbar.

Verglichen mit dem Cyclovoltammogramm in Anwesenheit von Diacetylferrocen ergibt sich für Acetylferrocen also ein identisches Bild. Eine Reaktion des einfach oxidierten Nitrido-Komplexes **1-IrN**⁺ ist auch mit Acetylferrocen, wie mit Diacetylferrocen, auf der CV-Zeitskala nicht erkennbar.

Abbildung 12: Cyclovoltammogramme des Iridium-Nitrido-Komplexes **1-IrN** in THF (1 mM). Leitsalz: TBAPF₆ (0.3 M); Arbeitselektrode: Glaskohle (d = 3 mm); Gegenelektrode: Pt-Draht; Referenzelektrode: Ag/Ag+; Vorschubgeschwindigkeit: 50 mV/s; Segmente: 2; Startpotential: - 1.0 V; anodisches Umkehrpotential: schwarz -0.1 V, blau 0.5 V, kathodisches Umkehrpotential - 1.6 V; referenziert gegen Fc/Fc⁺.

Für das in blau gezeigte Cyclovoltammogramm in Abbildung 12 wurde der Messbereich bis zum anodischen Umkehrpotential von 0.5 V erweitert, um auch Acetylferrocen ($\Delta E^0 = +0.27 V^{[73]}$) zu oxidieren. Hierbei ist die Oxidation des Nitrido-Komplexes **1-IrN** als erste Oxidationswelle und eine Oxidationswelle mit einem Halbstufenpotential von $E_{1/2} = -0.23 V$ zu beobachten. Letztere wird der Oxidation von Acetylferrocen zugeordnet. Es kann allerdings nicht ausgeschlossen werden, dass die zweite und irreversible Oxidationswelle von **1-IrN** von Acetylferrocen überlagert wird. Weitere Oxidations- oder Reduktionswellen sind nicht zu beobachten.

Betrachtet man die Rückreduktion des Nitrido-Komplexes **1-IrN**⁺, so ist zu erkennen, dass ΔE_p unverändert bleibt, allerdings ist der katodische Spitzenstrom E_{pk} deutlich verringert. Dies deutet auf einen EC bzw. EEC-Mechanismus hin, d.h. einen Elektronentransfer gefolgt von einer irreversiblen chemischen Reaktion bzw. zwei aufeinanderfolgenden Elektronentransfers gefolgt von einer irreversiblen chemischen Reaktion. Naheliegend wäre eine Reaktion mit Acetylferrocenium, allerdings konnten keine Reaktionsprodukte im CV beobachtet werden, auch nicht bei einer langsameren Scangeschwindigkeit von 30 mV/s. Die Bildung der Reaktionsprodukte könnte hier auch außerhalb der CV-Zeitskala liegen. Auch würde die bereits oben diskutierte zweite und irreversible Oxidation des Nitrido-Komplexes zu einem Abfallen des Spitzenstromes bei der Rückreduktion führen.

Aus den gezeigten cyclovoltammometrischen Untersuchungen mit Acetylferrocen bzw. Diacetylferrocen lassen sich leider keine neuen Erkenntnisse zum Reaktionsmechanismus gewinnen. Auch wenn keine Reaktion der kationischen Verbindung **1-IrN**⁺ mit den Ferrocen-Derivaten auf der CV-Zeitskala beobachtet werden konnte, kann diese nicht ausgeschlossen werden.

Zusätzlich ist denkbar, dass die Reaktion mit den acetylierten-Ferrocen-Derivaten nicht auf Ferrocen übertragen werden kann. Ein weiteres Problem ist, dass vor der Bildung von Acetyl- bzw. Diacetylferrocenium es zur zweiten und irreversiblen Oxidation von **1-IrN**⁺ kommen kann.

Nach den Untersuchungen mittels Cyclovoltammetrie soll nun der Iridium-Nitrido-Komplex mit Diacetyl- bzw. Acetylferrocenium chemisch umgesetzt werden, um unter anderem eine längere Reaktionszeit, verglichen mit der Cyclovoltammetrie, zu gewährleisten. Für die bessere Löslichkeit der Komplexe wurde für die chemische Oxidation mit Ferrocen-Derivaten der *tert*-Butyl-substituierte Nitrido-Komplex **1^{tBu}-IrN** verwendet, der ebenfalls mit Ferrocenium den kationischen Pyridin-Komplex bildet.

Die Reaktion von Komplex **1^{tBu}-IrN** mit Diacetylferrocenium-BArF₄ ist in Schema 15 dargestellt. Als Produkte sind hierbei die verschiedenen Isomere eines Acetylpyridin-Komplexes denkbar.

Schema 15: Reaktionsschema für die chemische Oxidation des Iridium-Nitrido-Komplexes **1^{tBu}-IrN** mit Diacetylferrocenium-BArF4 mit den möglichen Reaktionsprodukten.

Bei der Zugabe von einer Lösung des Komplexes **1^{tBu}-IrN** in THF zum ungelösten grünen Diacetylferrocenium-BArF₄ ist ein direkter Farbumschlag der violetten Lösung zu grün-braun zu beobachten. Die ¹H-NMR-Spektren des Edukts **1^{tBu}-IrN** (violett) sowie des Reaktionsprodukts (rot+braun) sind in Abbildung 13 gezeigt.

Abbildung 13: ¹H-NMR-Spektren (300MHz) in THF-*d*₈ des Iridium-Nitrido-Komplexes **1^{tBu}-IrN** (oben, violett), des Reaktionsgemisches (Mitte, rot) der Umsetzung mit Diacetylferrocenium-BArF₄ und nach Zugabe von CD₃CN (unten, grün).

Im in Abbildung 13 in braun gezeigten ¹H-NMR-Spektrum der Reaktionslösung sind die Resonanzen der Verbindung **1**^{tBu}-IrN nicht mehr zu erkennen, was auf eine vollständige Umsetzung des Edukts schließen lässt. Im aromatischen Verschiebungsbereich von ca. 7 - 8 ppm sind ähnlich wie im aliphatischen Verschiebungsbereich eine Vielzahl an Signalen geringer Intensität zu erkennen. Im Bereich zwischen 2.5 und 3.2 ppm sind mehrere überlagerte Septette zu erkennen, welche den Metin-Protonen der Isopropylgruppe einer PDI-Einheit zugeordnet werden. Dies lässt auf die Bildung mehrerer Spezies bzw. einer mit verringerten Symmetrie schließen. Außerdem sind im erwarteten Verschiebungsbereich der Signale für Diacetylferrocen, bei $\delta = 4.8$ ppm bzw. $\delta = 4.5$ ppm statt je eines Singuletts, mehrere Signale mit höherem Kopplungsmuster zu erkennen, was auf eine Derivatisierung oder einer Koordination von Diacetylferrocen hindeutet. Die Vielzahl an Signalen erlaubte eine Identifizierung des oder der Reaktionsprodukte anhand des ¹H-NMR-Spektrum nicht.

Um mögliche entstandene Acetyl-substituierte Pyridin-Liganden freizusetzen und separat NMRspektroskopisch zu analysieren, wurde Acetonitril zu der Reaktionsmischung gegeben. Bei der Zugabe von CD₃CN wurde ein Farbumschlag von grün-braun nach rot-braun beobachtet.

Im ¹H-NMR-Spektrum sind nach der Zugabe von Acetonitril kleine Veränderungen zu beobachten. So sind im aromatischen wie aliphatischen Verschiebungsbereich weniger Signale mit je einer höheren Intensität zu beobachten. Bei einer Verschiebung von δ = 3.04 ppm ist nun ein einzelnes Septett zu beobachten. Zusätzlich mit den zu erkennenden Signalen bei δ = 7.80, 7.23, 1.90, 1.41, sowie 1.16 und 0.96 ppm ist von der Bildung eines Iridium-PDI-Kations auszugehen (vgl. *SCHÖFFEL*^[65]). Dies spricht dafür, dass CD₃CN koordiniert wurde und verschiedene Reaktionsprodukte aus der Ligandensphäre verdrängt hat. Anschließend wurde das Lösungsmittel und andere flüchtige Verbindungen im Hochvakuum (10⁻⁵ mbar) überkondensiert und mittels ¹H-NMR und GC-MS untersucht. Im Protonenspektrum konnte nur Tetrahydrofuran und Acetonitril sowie Spuren anderer Lösungsmittel detektiert werden. Im GC-MS der Probenlösung sind mind. 7 Signale sehr geringer Intensität bei verschiedenen Retentionszeiten zu erkennen. In den zugehörigen Massespektren ist keine Massenspur zu erkennen, welche Acetylpyridin zugeordnet werden kann. Dies spricht gegen die Bildung von Acetylpyridin bei der Umsetzung des Nitrido-Komplexes **1^{tBu}-IrN** mit Diacetylferrocenium.

Weitere Experimente bei -30 °C bzw. die Verwendung von zwei Äquivalenten Diacetylferrocenium waren ebenfalls nicht erfolgreich bzw. führten nicht zur Isolation eines Reaktionsprodukts. Eine Strukturaufklärung durch Kristallisation gelang nicht.

Schema 16: Reaktionsschema für die Reaktion des Iridium-Nitrido-Komplexes **1^{tBu}-IrN** mit Acetylferroceniumtetrafluoroborat zu den möglichen Reaktionsprodukten.

Außerdem wurde die Reaktion mit Acetylferrocenium-BArF₄ bei -30 °C durchgeführt. Im Unterschied zur Reaktion mit Diacetylferrocenium sind hierbei neben Komplexen mit substituierten Acetylpyridin-Liganden auch der Pyridin-Komplex **1**^{tBu}-**IrPy**⁺ als Produkt denkbar.

Das ¹H-NMR-Spektrum der Reaktionsmischung ist in Abbildung 14 gezeigt. Im Vergleich zur Umsetzung mit Diacetylferrocenium (Abbildung 13) ist ein vergleichbar einfaches Spektrum zu beobachten. Hauptsächlich sind hier die Signale von Acetylferrocen, mit den Verschiebungen zwischen δ = 4.65 -4.05 ppm und bei δ = 2.20 ppm sowie das BArF₄-Gegenion bei δ = 7.70 ppm bzw. δ = 7.46 ppm zu erkennen.

Abbildung 14: ¹H-NMR-Spektrum (300MHz) in THF-*d*₈ des Iridium-Nitrido-Komplexes **1^{tBu}-IrN** des Reaktionsgemisches der Umsetzung mit Acetylferrocenium-BArF₄.

Außerdem sind sowohl zwischen 0.5 ppm und 1.5 ppm, als auch im aromatischen Verschiebungsbereich zwischen 7-7.5 ppm sowie bei 8 ppm, eine Vielzahl von sehr kleinen Signalen zu beobachten, welche auf Grund der Signalintensität, verglichen mit der Intensität der Signale des Acetylferrocens, als Nebenprodukte der Umsetzung zu betrachten sind und nicht weiter identifiziert wurden bzw. werden konnten. Im Verschiebungsbereich von Pyridin bzw. Acetylpyridin sind keine Signale im Spektrum zu erkennen, auch nicht nach weiterer Zugabe von Acetonitril.

Weitere Versuche durch Verwendung anderer Lösungsmittel, wie Toluol oder Et₂O bzw. die Verwendung von BF₄ als Gegenion, ein Reaktionsprodukt zu isolieren, gelangen nicht.

Daher ist auch bei der chemischen Oxidation mit Acetylferrocenium nicht von der Bildung von Pyridin-Derivaten auszugehen. Der Verbleib der PDI-Einheit konnte hierbei auch nicht geklärt werden.

Weder die elektrochemische noch die präparativen Untersuchungen der Reaktion des Nitrido-Komplexes **1^{tBu}-IrN** mit Acetylferrocen bzw. Diacetylferrocen deuten auf die Bildung von Pyridin-Komplexen hin. Eine Isolierung der Reaktionsprodukte sowie eine Charakterisierung dieser gelang im Rahmen dieser Arbeit nicht.

5.2. Oxidation des Nitrido-Komplexes 1-IrN mit Triarylaminium

Nachdem durch die Verwendung von Acetylferrocen und Diacetylferrocen keine neuen Hinweise auf den Reaktionsmechanismus gefunden wurden, sollte die Oxidation der Nitrido-Verbindung **1-IrN** von der Reaktion mit Ferrocen bzw. Ferrocenium getrennt werden und so der oxidierte Nitrido-Komplexe **1-IrN**⁺ isoliert werden. Hierzu hatte bereits *LINDENMAIER*^[2] Versuche mit den folgenden Oxidationsmittel unternommen: Ag[Al(pftb)₄], Thianthrenylium (Thia⁺) sowie Tris-(4-Bromophenyl)aminium. Er konnte allerdings außer für das Silbersalz kein Reaktionsprodukt isolieren. In der Reaktion mit Ag⁺ wird ein silberverbrücktes Ir-N-Dimer erhalten und konnte kristallographisch charakterisiert werden. Wird zusätzlich direkt nach Oxidation mit Ag⁺ Ferrocen zugegeben, kann der Pyridin-Komplex **1-IrPy**⁺ neben

dem silberverbrückten Ir-N-Dimer und weiteren nicht identifizierten Nebenprodukten erhalten werden.^[2]

Eine Gemeinsamkeit dieser Oxidationsmittel ist das hohe Oxidationspotential von 0.41 V für Ag⁺ in THF, 0.70 V für $[N(C_6H_4Br-4)_3]^+$ in CH_2Cl_2 bzw. 0.86 V für Thia⁺ in MeCN gegen Fc/Fc^{+[73]}. In Verbindung mit den Erkenntnissen aus den vorangegangenen Experimenten mit Acetylferrocen und Diacetylferrocen scheint ein Oxidationsmittel mit einem Potential in der Größenordnung von Ferrocenium nötig. Dadurch kann die chemisch irreversible zweite Oxidation des Nitrido-Komplexes **1-IrN** verhindert werden, was eine Isolation des oxidierten Komplexes oder zumindest die Trennung des Oxidationsund C-C-Insertionsschritt ermöglicht. Weiterhin sollte dieses Oxidationsmittel nach dem Elektronenübertrag nicht weiter mit dem Nitrido-Komplex **1-IrN** bzw. der oxidierten Spezies reagieren.

Hierfür bieten sich Triarylaminium-Verbindungen an, da sich bei dieser Verbindungsklasse das Oxidationspotential über die Substituten an den Phenylringen einstellen lässt.^[73] Die Wahl fiel hierbei auf das *para*-Methoxy-Derivat **3**⁺, welches in Abbildung 15 dargestellt ist. Mit einem Oxidationspotential von E₀ = +0.16 V gegenüber Fc/Fc⁺ in MeCN liegt [N(ArOMe)₃]⁺ in Bezug auf die Oxidationsstärke zwischen Ferrocenium (E₀ = 0 V) und Acetylferrocen (E₀ = 0.27 V).

Abbildung 15: Ausgewählte Triarylaminium-Verbindungen mit ihren Oxidationspotentialen gegenüber Fc/Fc+ in MeCN.^[74]

Zuerst sollte nun überprüft werden, ob durch Oxidation mit **3**^{BArF} und anschließender Umsetzung mit Ferrocen aus **1-IrN** analog zu Ferrocenium der kationische Pyridin-Komplex **1-IrPy**⁺ dargestellt werden kann (Schema 17).

Schema 17: Oxidation des Nitrido-Komplexes **1-IrN** mittels [N(ArOMe)₃]BArF₄ (**3^{BArF}**) und anschließender Umsetzung mittels Ferrocens zum kationischen Pyridin-Komplex **1-IrPy**⁺.

Hierzu wurde zu einer auf -30 °C gekühlten Lösung des Komplexes **1-IrN** in THF eine [N(ArOMe)₃]BArF₄ Lösung in THF hinzugetropft. Es konnte direkt ein Farbumschlag von violett nach blau-grün beobachtet
werden. Anschließend wurde Ferrocen hinzugegeben. Nach Entfernung des Lösungsmittels im Vakuum und Waschen mit Hexan konnte im ¹H-NMR-Spektrum des Rückstands die für den kationischen Pyridin-Komplexes **1-IrPy^{BArF}** charakteristischen Verschiebungen beobachtet werden, was die Darstellung von **1-IrPy^{BArF}** damit bestätigt.^[1]

Um nun die Zwischenstufe der Oxidation zu charakterisieren bzw. isolieren, wurde der Iridium-Komplex **1-IrN** mit einem Äquivalent $[N(ArOMe)_3]PF_6$ umgesetzt. Hierzu wurden die Reaktanden in THF gelöst und die Lösungen vor dem Vereinigen auf -30 °C gekühlt. Nach einer Minute Reaktionszeit wurde das Lösungsmittel im Vakuum entfernt und ein schwarzer Rückstand erhalten. Dieser konnte nicht wieder in Lösung gebracht werden, weshalb von einer weiteren Analytik abgesehen wurde.

Weitere Versuche mit anderen Lösungsmitteln, bzw. -gemischen, d.h. *o*-Difluorbenzol bzw. *o*-Difluorbenzol/Diethylether führten ebenfalls zum Ausfallen eines schwarzen, nicht mehr löslichen, Feststoffes.

Zur Verbesserung der Löslichkeit des Reaktionsprodukts wurde das PF₆⁻ Gegenion gegen BArF₄ getauscht, insbesondere um eine Reaktion in Diethylether bei tiefen Temperaturen zu ermöglichen und so denkbare Nebenreaktion durch eine H-Abstraktion aus dem Lösungsmittel zu vermeiden. Hierzu wurde der Nitrido-Komplex **1-IrN** in Diethylether auf -80 °C gekühlt und unter Rühren [N(ArOMe)₃]BArF₄ hinzugegeben. Nach Entfernen des Lösungsmittels im Vakuum in der Kälte wurde der Rückstand in der Kälte mit Pentan gewaschen. Ein Teil des Rückstandes wurde nach Aufkondensation von THF-*d*₈ ¹H-NMR-spektroskopisch bei -43 °C bzw. 20 °C untersucht. Außer den Resonanzen des Triarylamins **3** bei einer Verschiebung von δ = 7.03 ppm, 6.95 ppm sowie 2.30 ppm und des Lösungsmittels wurden keine weiteren Signale beobachtet.

Eine Untersuchung sowohl des Rückstandes, als auch der Reaktionslösung von **1-IrN** mit **3**^{BArF} mittels ESR-Spektroskopie in Toluol zeigte keine ESR-Signale bei Raumtemperatur bzw. 77 K im jeweiligen Spektrum.

Zusätzlich wurde eine Charakterisierung mittels IR-Spektroskopie versucht, um eine Verschiebung der \tilde{v} (Ir-N) Nitridobande im kationischen gegenüber der neutralen Verbindung (**1-IrN** \tilde{v} (Ir-N) = 958 cm^{-1[52]}) festzustellen. Hierzu wurde das Reaktionsprodukt der ¹⁵N-isotopenmarkierten Nitrido-Verbindung **1-Ir¹⁵N** sowie des unmarkierten Komplexes **1-IrN** mittels Pentans aus einer THF-Lösung ausgefällt und der Niederschlag nach Trocknung im Vakuum mittels ATR-IR-Spektroskopie untersucht.

Abbildung 16: ATR-IR-Spektren der Umsetzung von **1-IrN** (schwarz) sowie des ¹⁵N-isotopenmarkierten Komplexes **1-Ir**¹⁵N mit [N(ArOMe)₃]BArF₄ nach Ausfällen mittels Pentan.

Die Ir-N-Schwingung wird im Bereich von 800 - 1000 cm⁻¹ erwartet. Im Spektrum der ¹⁵N-markierten Verbindung sollte durch den Isotopeneffekt eine zusätzliche Schwingung um ca. 28-35 cm⁻¹ rotverschoben[†] zur Ir-N-Schwingung zu beobachten sein. In den in Abbildung 16 gezeigten Schwingungsspektren konnte leider keine Bande mit einem derartigen Isotopeneffekt beobachten werden. Deshalb ist davon auszugehen, dass nicht der kationische Nitrido-Komplexe **1-IrN⁺** erhalten wurde.

Zudem konnten durch Überschichten einer Lösung von **1-IrN** und $[N(ArOMe)_3]BArF_4$ in kaltem THF durch Pentan und Lagerung bei -30° C Einkristalle zur Röntgenkristallstrukturaufklärung erhalten werden. Die Strukturanalyse zeigte, dass es sich bei den in der Raumgruppe $P2_1/m$ vorliegenden Kristallen nicht um den oxidierten Nitrido-Komplex **1-IrN**^{BArF} handelt, sondern um den kationischen, terminalen, Distickstoff-Komplex **1-IrN**^{BArF}, dessen Struktur in Abbildung 17 gezeigt ist.

⁺ $\tilde{v}_{lr^{15}N} = \sqrt{\frac{\mu_{lr^{14}N}}{\mu_{lr^{15}N}}} \tilde{v}_{lr^{14}N}$ mit ν: Wellenzahl; μ: reduzierte Masse

Abbildung 17: Darstellung der Festkörperstruktur des Komplexes **1-IrN₂BArF**. Die Schwingungsellipsoide sind mit 50 % Aufenthaltswahrscheinlichkeit abgebildet. Aus Gründen der Übersichtlichkeit sind die Wasserstoffatome und das BArF₄-Gegenion nicht mit abgebildet.

Eine wahrscheinliche Erklärung für die Entstehung von **1-IrN**^{2^{BArF}} ist die Zersetzung des katonischen Nitrido-Komplexes **1-IrN**^{BArF}. Hierauf deutet auch der Vergleich in Abbildung 18 des UV/Vis-Spektrums der Kristalle von **1-IrN**^{2^{BArF}} in THF (schwarz) mit den UV/Vis-Spektren der Reaktionsverfolgung von **1-IrN** mit [N(ArOMe)₃]BArF₄ über zwei Stunden bei 20 °C (rot) hin. Es bildet sich in dieser Reaktion über die Zeit eine deutliche Absorptionsbande mit einem Maximum bei 409 nm, sowie zwei schwächere Absorptionsbanden bei 600 nm und 685 nm aus. Diese drei Absorptionsbanden sind auch eindeutig im Spektrum der Kristalle von **1-IrN**^{2BArF} zu erkennen und legen die Bildung von **1-IrN**^{2BArF} daher nahe.

Abbildung 18: UV/Vis Spektrum der Einkristalle von **1-IrN₂^{BArF}** in THF (schwarz) sowie der Verfolgung der Reaktion von **1-IrN** mit [N(ArOMe)₃]BArF₄ über zwei Stunden bei 20 °C (rot).

Nach der nicht erfolgreichen Isolation des kationischen Nitrido-Komplexes **1-IrN**⁺ wurde die Oxidation mittels [N(ArOMe)₃]BArF₄, sowie die anschließende Reaktion mit Ferrocen mittels UV/Vis untersucht und mit der Reaktion mit [FeCp₂]BArF₄ verglichen. Hierzu wurde wie in Schema 18 gezeigt, der Nitrido-Komplex **1-IrN** mit [N(ArOMe)₃]BarF₄ (**3**^{BArF}) gefolgt von einem Äquivalent Ferrocen bzw. [FeCp₂]BArF₄ in der Kälte versetzt. Die Reaktionsmischung wurde anschließend langsam auf Raumtemperatur erwärmt.

Schema 18: Reaktionsschema zur UV/Vis-Verfolgung der Oxidation von 1-IrN.

In Abbildung 19 sind die in der Kälte aufgenommen UV/Vis-Spektren der in Schema 18 gezeigten Reaktion direkt nach der Zugabe des Oxidationsmittels dargestellt. Die Oxidation des Komplexes **1-IrN** erfolgt unverzüglich und ohne erkennbares Zwischenprodukt. Vergleicht man das erhaltene Spektrum der Oxidation mit **3**^{BArF} (blau) mit der von *LINDENMAIER*^[2] bereits UV/Vis-spektroskopisch untersuchten Oxidation mittels Ferrocenium, ist eine weitgehende Übereinstimmung der Spektren zu erkennen.

Beide besitzen ein, im Vergleich zum Iridium-Nitrido-Komplex scharfes **1-IrN**, Maximum bei 787 nm mit einer ausgeprägten Schulter bei 680 nm. Außerdem sind weitere schwächere Banden bei 940 nm sowie 483 nm in beiden Spektren zu erkennen. Das Spektrum der Oxidation mit Ferrocenium in rot zeigt außerdem ein Maximum bei 382 nm, welches bei der Oxidation mit [N(ArOMe)₃]BArF₄ nicht auftritt.

Zur weiteren Untersuchung und Bestätigung

des Absorptionsspektrums des oxidierten, kationischen Nitrido-Komplexes **1-IrN**⁺, wurden spektroelektrochemische Messungen durchgeführt. Hierzu wurde eine 3 μ M Lösung in THF des Nitrido-Komplexes **1-IrN** mit 0.5 mM [TBA]B(ArF₅)₄ als Leitsatz bei - 40 °C elektrochemisch oxidiert. Der Potentialbereich zwischen -700 mV und 250 mV (vs. Fc/Fc⁺) wurde in Potentialstufen mit 100 mV bzw. 50 mV und einer Haltezeit von 90 s abgefahren. Während jeder Potentialstufe wurde ein UV/Vis-Spektrum aufgenommen. Die zugehörigen Spektren sind in Abbildung 20 abgebildet.

Abbildung 20: Spektro-elektrochemische Messung von **1-IrN**. c_{IrN}: 3 μM; Leitsalz: 0.5 mM TBAB(ArF₅)₄; - 40 °C; Referenziert gegen Fc/Fc⁺. Stufenscan mit 100 mV bzw. 50 mV Potentialstufen und 90 s Haltezeit. Startpotential -700 mV Endpotential 250 mV.

Zu beobachten ist, dass ab einem Potential von ca. -200 mV gegen Fc/Fc⁺ sich das Spektrum ändert. Die für den Nitrido-Komplex **1-IrN** typische sehr breite Absorptionsbande zwischen 900 nm und 600 nm beginnt sich zu verschmälern, so dass die entstehende Bande ein Maximum bei 787 nm aufzeigt. Weiterhin bildet sich eine Schulter bei ca. 680 nm. Auch ist zu beobachten, dass die Absorptionsbanden des Nitrido-Komplexes **1-IrN** mit den Maxima bei 575 nm bzw. 457 nm deutlich in ihren Intensitäten abnehmen. Dabei sind zwei isosbestische Punkte bei 691 nm bzw. 432 nm zu erkennen.

Vergleicht man das in blau dargestellte Spektrum der elektrochemischen Oxidation aus Abbildung 20 mit den Spektren der chemischen Oxidation aus Abbildung 19, ist eine große Übereinstimmung zu erkennen. Auch die charakteristischen Absorptionsbanden mit dem Maximum bei 787 nm sowie die Schulter bei 680 nm sind deutlich zu sehen. Zusätzlich sind die Banden mit den Maxima bei 940 nm sowie 483 nm vorhanden. Daher ist davon auszugehen, dass das elektrochemisch und das durch chemische Oxidation erzeugte Produkt ein und dasselbe ist und es sich um den oxidierten Nitrido-Komplex **1-IrN**⁺ handelt.

Außerdem wurden ESR-spektro-elektrochemische Messungen durchgeführt. Hierbei konnte bei Raumtemperatur in THF kein ESR-Signal detektiert werden. Trotz der erfolglosen Isolation des oxidierten Nitrido-Komplexes **1-IrN**⁺ konnte somit durch die UV/Vis-Spektren belegt werden, dass sich die kationische Nitrido-Verbindung **1-IrN**⁺ auch im ersten Schritt der Umsetzung von **1** mit Ferrocenium bildet.

5.3. Untersuchungen des Reaktionsmechanismus und der kinetischen Parameter

Die Aktivierung von Ferrocen durch einen elektrophilen Angriff eines Protons wurde von *MALISCHEWSKI* und *MEYER* eingehend untersucht. Hierbei werden zwei Reaktionspfade diskutiert: einen *exo*-Mechanismus über einen Angriff am Cp-Ring bzw. einen *endo*-Mechanismus durch Angriff am zentralen Eisenatom gefolgt von einer Umlagerungsreaktion, wobei für die Protonierung dieser *endo*-Mechanismus als belegt gilt.^[75]

Auf Basis dieser Untersuchungen wurden für die C-C-Bindungsaktivierung durch **1-IrN** an Ferrocen jeweils der *exo-* bzw. *endo-*Mechanismus durch DFT-Berechnungen modelliert und die zugehörigen Energien der Intermediate und Übergangszustände wurden aus *coupled-cluster*-Rechnungen erhalten (Abbildung 21).

Abbildung 21: Mechanistische Alternativen der C-C-Bindungsaktivierung: links: exo; rechts: endo. Energien der Intermediate und Übergangszustände in kcal/mol aus DLPNO-CCSD(T) Berechnungen modelliert in THF (def-2-TZVPP basis; Ir: ECP-60-MWB).

Die Berechnungen durch *BURGER* zeigen, dass ein elektrophiler Angriff am Eisenzentrum durch **1-IrN**⁺, vergleichbar mit der Protonierung von Ferrocen^[75], also ein *endo*-Reaktionsweg bevorzugt scheint, da das Intermediat I_{endo} **1** energetische -10 kcal/mol unterhalb des Edukts liegt. Im *exo*-Reaktionsweg ist hingegen die Bildung des ersten Intermediates I_{exo} **1** +5 kcal/mol oberhalb des Edukts.

Die Barrieren des *exo*-Reaktionsweges sind allerdings mit + 16 kcal/mol zum Wheland-Intermediat I_{exo} **1** und + 8 kcal/mol zum Produkt deutlich geringer als die Barrieren des *endo*-Reaktionsweges. Der Ringöffungsschritt Iendo**3** zum Produkt weist im *endo*-Reaktionsweg eine Barriere von + 34 kcal/mol auf und ist damit mehr als doppelt so groß wie im *exo*-Reaktionsweg. Daher wird davon ausgegangen, dass das Produkt über den *exo*-Mechanismus entstanden sein muss.

Um dies weiter zu bestätigen, wurde die Kinetik der Reaktion des oxidierten Nitrido-Komplexes **1-IrN^{BArF}** mit Ferrocen durch UV/Vis-Spektroskopie verfolgt. Hierbei wurde zuerst der oxidierte Nitrido-Komplex **1-IrN^{BArF}** durch die Reaktion mit [N(ArOMe)₃]BArF₄ *in situ* erzeugt und anschließend Ferrocen hinzugegeben.

Zur Bestimmung der Reaktionsordnung sowie der Geschwindigkeitskonstanten wurde unter Bedingungen pseudo-erster Ordnung mit einem Überschuss von 200 bis 2000 Äquivalenten Ferrocen bei einer **1-IrN^{BArF}** Konzentration von 0.114 mM gearbeitet. Um zum einen eine Zersetzung der oxidierten Nitrido-Verbindung **1-IrN^{BArF}** vorzubeugen und zum anderen eine ausreichend große Reaktionsgeschwindigkeit zu gewährleisten, wurde die Reaktion bei -15 °C durchgeführt.

Abbildung 22: UV/Vis Reaktionsverfolgung der Reaktion von **1-IrN^{BArF}** mit 500 Äq. FeCp₂ in THF bei -15 °C. Konzentration $c_{IrN+} = 0.114$ mM.

In der in Abbildung 22 beispielhaft gezeigten UV/Vis Reaktionsverfolgung sind klare isosbestische Punkte bei 350 nm sowie 821 nm zu erkennen. Dies erlaubt zwar nicht, Intermediate auszuschließen, insoweit vorhanden, müssen diese aber kurzlebig sein. Für die Bestimmung der Geschwindigkeitskonstante *k*_{obs} wurde die Abnahme der Intensität der Absorptionsbande bei 787 nm ausgewertet. Da sich die Absorptionsbanden des Edukts mit denen des Produkts überlagern, kann die Konzentration nicht direkt aus der Absorption erhalten werden. Um die Konzentration des Edukts bzw. Produkts zu erhalten, wurden die Absorption A_t im Zeitverlauf nach Gleichung (1) (nach *Swineborne*^[76]) gefittet, wobei A_a der Produkt Absorption und A_b der Absorption des Edukts entspricht.

$$A_t = A_a * e^{-k_{obs} * t} + A_b (1 - e^{-k_{obs} * t}) \quad (1)$$

Abbildung 23: Auftragung des Abfalls der Absorptionsbanden bei 787 nm der Reaktion von **1-IrN^{BAFF}** mit FeCp₂ bei -15° C, für 200 Äq. bis 2000 Äq.; Konzentration $c_{IrN+} = 0.114$ mM (* $c_{IrN+} = 0.057$ mM). Punkte: Messdaten; Line: Fit nach Gleichung (1).

Die aus den Messdaten erhaltenen Fits sind in Abbildung 23 dargestellt, wobei mit Ausnahme der Reaktion mit 200 Äq. mindestens vier Halbwertszeiten beobachtet wurden. Aufgrund der vorzüglichen Regressionskoeffiezienten ($R^2 > 0.99$) ist von einer Reaktion erster Ordnung bezüglich des kationischen Nitrido-Komplexes auszugehen. Die aus den exponentiellen Fits nach Gleichung (1) ermittelten Geschwindigkeitskonstanten k_{obs} sind in Tabelle 1 aufgeführt.

200 Aq. bis 2000 Aq., bei cimi – 0.114 mm.					
Fc Äquivalente	Fc Konzentration [mmol/L]	k _{obs} [10 ⁻⁴ s ⁻¹]			
200	0.0229	1.3645			
300	0.0343	2.6901			
500	0.0572	2.8759			
700	0.0801	3.8373			
1000	0.1144	4.7734			
1500	0.1716	5.8647			
2000	0.2288*	8.8155			

Tabelle 1: Beobachtete Geschwindigkeitskonstante k_{obs} für die Reaktion von **1-IrN^{BArF}** mit FeCp₂ bei -15° C, für 200 Äq. bis 2000 Äq.; bei c_{IrN+} = 0.114 mM.

*Auf c_{IrN+} = 0.114 mM normiert.

Um die Reaktionsordnung bezüglich des Ferrocens zu ermitteln, wurden die ermittelten Werte für k_{obs} gegen die Ferrocen-Konzentration aufgetragen (Abbildung 24). Die Auswertung belegt eine lineare Korrelation mit R² von 0.96, der Achsenabschnitt beträgt 1.1(3) * 10⁻⁴. Aus der linearen Korrelation und des Achsenabschnittes nahe an 0, lässt sich eine Reaktionsgeschwindigkeit erster Ordnung gegenüber Ferrocen sowie erster Ordnung gegenüber **1-IrN**⁺ annehmen. Dies steht im Einklang mit dem in Abbildung 21 gezeigten Reaktionsmechanismus, welcher im ersten Schritt von einer bimolekularen Reaktion ausgeht.

Für die Betrachtung der Kinetik wird der in Abbildung 21 gezeigte *exo*-Reaktionsweg angenommen. Betrachtet man die Einzelschritte, ergibt sich das in Schema 19 gezeigte kinetische Schema der Reaktion. Entscheidend sind die Geschwindigkeitskonstanten k₂ bzw. k₋₂ und k₃. Aufgrund des geringen Energieunterschieds zwischen den Edukten und **I**_{exo}**1** wird ein Gleichgewicht angenommen, wohingegen die für Produktbildung mit einem berechneten Energieunterschied von -39 kcal/mol keine Rückreaktion zu beachten ist.

IrN⁺ + FeCp₂
$$k_2$$
 $I_{exo}1$
 k_{-2} IrN⁺ + FeCp₂ k_{-2} k_{-3} Produkt

Schema 19: Kinetisches Schema der C-C-Aktivierung nach exo-Reaktionsweg.

Die entsprechenden Geschwindigkeitsgesetzte sind in Gleichung (2) und (3) dargestellt.

$$\frac{d[IrN^+]}{dt} = -k_2 * [IrN^+][FeCp_2] + k_{-2} * [I_{exo}1]$$
⁽²⁾

$$\frac{d[I_{exo}1]}{dt} = k_2 * [IrN^+][FeCp_2] - k_{-2} * [I_{exo}1] - k_3 * [I_{exo}1]$$
(3)

Nach Umformung[‡] ergibt sich unter Annahme quasi-stationärer und Bedingungen pseudo-erster Ordnung der in Gleichung (4) dargestellte Zusammenhang.

$$k_{obs} = [FeCp_2] \frac{-k_2 * k_3}{k_{-2} + k_3}$$
(4)

Hieraus können in Abhängigkeit der Größe von k_3 bzw. k_{-2} drei Fälle abgeleitet werden:

für
$$k_3 \gg k_{-2}$$
 dann: $k_{obs} = k_2$
für $k_{-2} \gg k_3$ dann: $k_{obs} = \frac{k_3}{k_{-2} * k_3}$
für $k_{-2} = k_3$ dann: $k_{obs} = \frac{1}{2}k_2$

Aufgrund der berechneten Barrieren wird angenommen, dass die Bildung des Intermediates $I_{exo}1$ der klar geschwindigkeitsbestimmende Schritt und somit $k_3 >> k_{-2}$ gilt. Daher kann die Geschwindigkeitskonstante nach 2. Ordnung k_2 aus der Steigung mit 3.2(3) * 10⁻³ Lmol⁻¹s⁻¹ direkt ablesen.

Abbildung 24: Beobachtete Geschwindigkeitskonstante k_{obs} der Reaktion von **1-IrN^{BArF}** mit FeCp₂ in Abhängigkeit der Konzentration von Ferrocen in THF bei -15 °C.

Zur Bestimmung der Aktivierungsparameter wurde die Reaktionskinetik des oxidierten Nitrido-Komplexes **1-IrN^{BArF}** mit Ferrocen im Bereich von -9.0 °C und -40.8 °C temperaturabhängig untersucht. Ein größerer Temperaturbereich war durch Zersetzung bei höherer oder zu langsamer

[‡] Die ausführlichen Umformungen sind auf Seite 243f im Anhang ausgeführt.

40 | Untersuchung der C-C-Aktivierung an Ferrocen mit Iridium-Nitrido-Komplexen

Reaktionsgeschwindigkeit bei niedrigeren Temperaturen nicht zu realisieren. Die in Tabelle 2 aufgeführten Geschwindigkeitskonstanten k_2 zeigen bei einer Auftragung nach *EYRING*^[77-78] eine hohe lineare Korrelation (R² > 0.99).

Tabelle 2: Geschwindigkeitskonstanten k_2 für die Reaktion von **1-IrN^{BArF}** mit 500 Äq. FeCp₂ zwischen -9 °C und - 40.8 °C; c_{IrN+} = 0.114 mM.

Temperatur [°C]	k ₂ [s ⁻¹]	
-9.0	0.00825	
-17.7	0.00418	
-26.8	0.00162	
-30.8	0.00101	
-40.8	0.00040	

Über die Eyring-Gleichung^[78] lassen sich aus der Auftragung in Abbildung 25 die Aktivierungsparameter berechnen. Die Aktivierungsenthalpie kann aus der Steigung mit $\Delta H^{\ddagger} = 11.3(4)$ kcalmol⁻¹ bestimmt werden, die Aktivierungsentropie mit $\Delta S^{\ddagger} = -24.9(13)$ calmol⁻¹K⁻¹ aus dem Achsenabschnitt.

Abbildung 25: Eyring-Auftragung der Geschwindigkeitskonstanten der Reaktion von 1-IrNBArF mit 500 Äq. FeCp2

Die Aktivierungsenthalpie ist wie erwartet vergleichsweise klein. Die Aktivierungsentropie spricht aufgrund des deutlich negativen Wertes von $\Delta S^{\dagger} = -24.9(13)$ calmol⁻¹K⁻¹ für einen Additionsmechanismus und bestätigt damit die DFT-Rechnungen zum Mechanismus (Abbildung 21) weiter.

5.4. Ergebnisse der Untersuchung der Reaktion von 1-IrN mit FeCp2⁺

Durch die hier gezeigten Ergebnisse konnte das Bild der durch *SIEH*^[1] erstmals beschriebenen und durch *LINDENMAIER*^[2] und *JUNKER*^[3] weiter untersuchten Reaktion der C-C-Bindungsaktivierung eines Cp-Liganden des Ferrocens durch **1-IrN** weiter vervollständigt werden. So lässt sich zum einen durch die Trennung von Oxidation und der Reaktion mit Ferrocen belegen, dass die Oxidation des Nitrido-Komplexes **1-IrN** der erste Schritt der Reaktion ist.

Durch die UV/Vis-spektroskopischen Kinetik-Untersuchungen konnte bestätigt werden, dass keine langlebigen Intermediate während der Reaktion entstehen, sowie dass durch die ermittelte negative Aktivierungsentropie es sich um einen Additionsmechanismus handelt. Dies steht im Einklang mit den durch quantenchemische Rechnungen gezeigten *exo*-Reaktionsmechanismus (Abbildung 21).

6. Darstellung neuartiger Pyridin, Diimin-Liganden

Wie bereits in den vorherigen Kapiteln gezeigt, haben sich im Arbeitskreis Pyridin, Diimin-Liganden mit Diisopropylphenyl-Substituenten (dipp) am Ketiminstickstoffatom und einer Methyl- bzw. Phenylgruppe am Ketiminkohlenstoffatom etabliert.^[62, 66-67] Dieses System bringt gegenüber den Liganden mit Xylyl- bzw. Mesitylsubstituenten eine bessere sterische Abschirmung des Metallzentrums in entsprechenden Metallkomplexen und verbesserte zudem die Löslichkeit der Komplexe. Die Löslichkeit der Komplexe konnte durch die Einführung einer *tert*-Butylgruppe *para*-ständig zum Pyridinstickstoff weiter erhöht werden.^[55] Die Verwendung der Phenylgruppe am Ketiminkohlenstoffatom kann im Gegensatz zu einer Methylgruppe eine Aktivierung des Liganden durch Deprotonierung unterbinden, da hier eine geringere Azidität der Protonen vorliegt.

Schema 20: Bildung des "Tuck-in"-Komplexes am Beispiel des Iridium-Nitrido-Komplexes **1-IrN** mit Diisopropylphenyl-substituierten PDI-Liganden.

Eine Limitierung des Ligandensystems konnte durch *SCHÖFFEL*^[62] beobachtet werden. So zeigt sich, dass die reaktiven Nitrido-Komplexe unter C-H-Aktivierung der Isopropylgruppe des Liganden zu den "Tuckin"-Komplexen **1-RhTI** bzw. **1-IrTI** führen (Schema 20). Diese unerwünschte Nebenreaktion steht weiteren Untersuchungen der Reaktivität von Gruppe 9-Nitrido-Komplexen mit PDI-Liganden entgegen.

Um diese Aktivierungen zu verhindern, wurden bereits von *SIEH* 2011 erste Versuche durchgeführt.^[4] Hierbei wurden die Isopropylgruppen des Dipp-Substituenten durch Chloratome ersetzt. Dieses von *WARREN et al.*^[79] entliehene Konzept beruht auf der bei einer Ligandaktivierung zu bildenden, vergleichsweisen schwachen, Stickstoff-Chlor-Bindung. So sollte die Aktivierung des Liganden verhindert werden. Es konnte der entsprechende Nitrido-Komplex **2-IrN** dargestellt und die Reaktivität gegenüber Silanen untersucht werden. Ferner konnten in DSC- sowie TG/MS-Messungen eine höhere thermische Stabilität des Nitrido-Komplexes **2-IrN** im Vergleich zum Dipp-substituierten PDI beobachtet werden. Komplexe dieses Ligandensystems zeigen leider eine schlechte Löslichkeit in gängigen organischen Lösungsmitteln.^[4]

6.1. Synthese des Trifluormethyl-substituierten PDI-Liganden 4

Auf dieser Basis wurde das Ligandensystem wie in Schema 21 weiterentwickelt. Dabei wurden die Chloratome durch je eine Trifluormethylgruppe ausgetauscht. Dies sollte zum einen zu einer verbesserten Löslichkeit führen, zum andern soll die starke Kohlenstoff-Fluor Bindung der CF₃-Gruppe für eine weiter erhöhte Stabilität des Liganden gegenüber einer intramolekularen C-F-Aktivierungsreaktion führen. Um zusätzlich zur Verbesserung der Löslichkeit beizutragen, sollte eine *para*-ständige *tert*-Butylgruppe am Pyridinring eingeführt werden, da dies in der Vergangenheit bereits gute Ergebnisse zeigte.^[55]

Schema 21: Entwicklung des Liganden mit unterschiedlichen Substituenten: v. l. n. r.: iPr, Cl, CF₃.

Die Darstellung des Pyridin,Diimin-Liganden erfolgt üblicherweise über eine säurekatalysierte Kondensationsreaktion von Diacetylpyridin und einem entsprechenden Amin bzw. Anilin.^[80-82] Neben dem kommerziell erhältlichen Diacetylpyridin, welches über eine Miniski-Reaktion in das gewünschte 4-*tert*-Butyl-2,6-diacetylpyridin einfach zu überführen ist,^[55] wird 2,6-Bis(trifluoromethyl)anilin benötigt. Dieses ist im vgl. zum Diacetylpyridin nur in kleinen Mengen bzw. zu hohen Kosten kommerziell erhältlich.[§] Da für die Ligandensynthese das Anilin im Grammmaßstab benötigt wird, musste 2,6-Bis(trifluormethyl)anilin selbst dargestellt werden. In der Literatur ist die gewünschte Verbindung nur als Nebenprodukt in 2 %iger Ausbeute,^[83] sowie in einigen technischen Patenten^[84] beschrieben. Daher musste eine Syntheseroute für den Grammmaßstab entworfen werden.

Prinzipiell sind zwei retrosynthetische Ansätze möglich: Zum einen können a) an einem Anilin, welches bereits die NH₂-Funktion enthält, Trifluormethylgruppe eingeführt werden. Zum anderen ist b) die Funktionalisierung eines 1,3-Bis(trifluormethyl)benzols durch eine *ortho*-ständige Aminfunktion denkbar (Schema 22).

[§]Dezember 2020: Günstiges Angebot: 116 €/g bei 5 g www.manchesterorganics.com

44 | Darstellung neuartiger Pyridin, Diimin-Liganden

Schema 22: Retrosynthetische Zerlegung von 2,6-Bis(trifluormethyl)anilin. a) Einführung der CF₃-Gruppen, b) Einführung der NH₂-Funktion.

Neben den Veröffentlichungen von *TORDEUX*^[83] wird die Einführung von CF₃-Gruppen an Aromaten, speziell Anilinen, mehrfach in der Literatur beschrieben. Diese erfolgt durch eine metallvermittelte bzw. katalysierte Kupplungsreaktion mit einer CF₃-Quelle wie z.B. Fluoroform oder CF₃I und meist einer Kupferspezies als Metall. Allerdings sind Kupplungen in *ortho*-Positionen selten beschrieben.^[85-86] Eine Ausnahme ist die von *KINO*^[87] beschriebene Substitution von Anilin in *ortho*- und *para*-Position, welche über einen radikalischen Mechanismus mit Eisensulfat als Katalysator und H₂O₂ in DMSO erfolgt, wie in Schema 23 gezeigt.

Schema 23: Von *KINO* beschriebene Trifluoromethylierung an Anilinen. Bedingungen: Anilin 1.0 mmol; CF₃I 3.0 mmol; DMSO 5 mL, **A:** FeSO₄ 0.3 mmol, H₂O₂ 2.0 mmol, **B** FeSO₄ 0.5 mmol, H₂O₂ 6.0 mmol.^[87]

Aufgrund der strukturellen Ähnlichkeit des 2,4,6-Tris(trifluormethyl)anilins zum 2,6-Bis(trifluormethyl)anilin wurde die von *KINO*^[87] beschriebene einstufige Reaktion zur Darstellung dieses Anilins leicht abgewandelt durchgeführt (Schema 24).

Schema 24: Synthese von 2,4,6-Tris(trifluormethyl)anilin, angelehnt an KINO.^[87]

Hierbei wurde als Substrat *para*-Trifluormethylanilin **5** verwendet, um nur in *ortho*-Position die Substitutionen durchführen zu müssen. Zuerst wurde das Addukt 2 DMSO•CF₃I durch Zugabe von DMSO zu kondensiertem CF₃I bei -78 °C und anschließendem Aufwärmen auf Raumtemperatur in einem verschlossen Young-Schlenk-Rohr dargestellt.^[88] Darauf folgend wurde Eisen(II)sulfat, konz. Schwefelsäure sowie das Anilin hinzugegeben. Die tropfenweise Zugabe von 30 %iger H₂O₂ führte zu einem Farbumschlag von gelb nach rot. Nach zwei Stunden Reaktionszeit konnte nach Aufarbeitung mit NaHCO₃ und Extraktion mit Pentan das Rohprodukt als gelbes Öl erhalten werden.

Abbildung 26: Ausschnitt aus dem ¹H-NMR-Spektrum in CDCl₃ nach Extraktion der Reaktionsmischung der Umsetzung von *para*-Trifluormethylanilin mit CF₃I, H₂O₂ und FeSO₄ in DMSO. Produkt mit rotem *, Nebenprodukt (NH₂) mit blauem *, Edukt (NH₂) mit schwarzem * gekennzeichnet.

Im ¹H-NMR-Spektrum der Reaktion nach erster Extraktion sind die Resonanzen der aromatischen Protonen bei einer Verschiebung von δ = 7.86 ppm, wie die der Amin-Protonen bei δ = 5.05 ppm dem gewünschten Reaktionsprodukt **6** zuzuordnen (*). Weiterhin sind noch Signale zu beobachten, welche dem Edukt, *para*-Trifluormethylanilin, sowie dem mono-substituierten Reaktionsprodukt, welches aufgrund des Kopplungsmuster als 2,4-Bis(trifluormethyl)anilin identifiziert wurde, zuzuordnen. Aus dem Vergleich der Integrale der Amin-Protonen des Produkts (*) mit denen des Edukts (*) bzw. Nebenprodukts (*) ergibt sich eine Rohausbeute von nur 7 %.

Aufgrund der schlechten Ausbeute und vergleichsweise hohen Kosten für die Edukte wurde von einer Optimierung der Reaktion abgesehen und sich der alternativen Route zugewandt. Hierbei sollte wie in Schema 22 gezeigt, anstatt der CF₃-Gruppen, eine Aminfunktion eingeführt werden.

Der klassische Zugang zu Derivaten des Anilins erfolgt über Nitrierung des entsprechenden Aromaten, gefolgt von anschließender Reduktion der Nitrogruppe. Für *ortho*-ständige Trifluormethylgruppen ohne weitere Donorsubstituenten am Aromaten ist dieses Reaktionsschema nicht bekannt. Für 2,4,6-Tris(trifluormethyl)anilin sind hingegen ausgehend von 1,3,5-Tris(trifluormethyl)benzol mehrere Darstellungsmethoden bekannt.^[89-90] Hierbei wird, wie in Schema 25 gezeigt, zuerst *ortho* zu zwei Trifluormethylgruppen metalliert, um anschließend einen Vorläufer für die Umsetzung zum Anilin zu erzeugen. *ROESKY* (Schema 25, oben) fängt in seiner fünfstufigen Synthese den mit *n*BuLi lithiierten Aromaten mit CO₂ ab, um die entstandene Carbonsäure über das Säurechlorid per Hoffmann-Abbau in 43 % Ausbeute zum Anilin umzusetzen.^[89] *HOLLAND* (Schema 25, unten) konnte 2012 diese Synthese auf zwei Stufen verkürzen, indem nach Reaktion mit LDA der lithiierte Aromat mittels lod in der ersten

Stufe zum Halogenaromaten umgesetzt wurde. In der zweiten Stufe erfolgt hier die Umsetzung mit NaN₃, Kupferoxid und Prolin zum Arylamin in 42 % Ausbeute über beide Stufen.^[90]

Schema 25: Darstellung von 2,4,6-Tris(trifluormethyl)anilin nach ROESKY^[89] (oben) bzw. HOLLAND^[90] (unten).

Beim Vergleich der beiden Syntheserouten ist festzustellen, dass *ROESKY*^[89] hier über fünf Stufen zu einer vergleichbaren Ausbeute gelangt, diese Route aber sowohl präparativ als auch zeitlich aufwendiger erscheint. Dafür ist diese Synthese bereits im Multigrammmaßstab bekannt, wohin gegen *HOLLAND*^[90] nur eine Durchführung von 3.76 mmol bzw. 1.06 g Edukt beschreibt.

Da hier nicht 1,3,5-Tris(trifluormethyl)benzol **7**, sondern das wesentlich günstigere 1,3-Bis(trifluormethyl)benzol **11** verwendet werden soll, wurde die zweistufige Syntheseroute von *HOLLAND*^[90] adaptiert. Aufgrund der potentiellen Gefahr der Bildung explosiver Kupferverbindungen bei der Verwendung von Kupfer und NaN₃ wurde außerdem eine Alternative für die Umwandlung von 2-Iod-1,3-bis(trifluormethyl)benzol **12** in das entsprechende Anilin in Betracht gezogen.

Da im Unterschied zur Lithiierung von 1,3,5-Tris(trifluormethyl)benzol **7** die Regioselektivität bei 1,3-Bis(trifluormethyl)benzol **11** eine entscheidende Rolle spielt, müssen die Bedingungen und Reagenzien entsprechend angepasst werden. Mit Standardmethoden, -78 °C und *n-, t*BuLi oder MeLi, wird eine Lithiierung in 5- bzw. 4-Position bevorzugt. Die gewünschte Metallierung in 2-Postition findet nur untergeordnet statt.^[91-94] *SCHLOSSER*^[94] konnte bereits 1998 zeigen, dass durch die Verwendung einer sog. Schlosserbase eine Lithiierung ausschließlich in der gewünschten 2-Position zu erzielen ist.

Schema 26: Darstellung von 2-lod-1,3-bis(trifluormethyl)benzol 12.^[94-96]

Durch *RAUCH*^[96] konnte die von *SCHLOSSER*^[94] publizierte Vorschrift optimiert werden. Es wurde durch die Verwendung von Methyllithium statt *n*Butyllithium und veränderter Aufarbeitung durch zweifache Filtration über Silica und anschließender Sublimation bei einer Ansatzgröße von 80 mmol eine

Ausbeute von 67 % bzw. 18.3 g erhalten. Hierbei zeigte sich, dass das Produkt leicht sublimierbar und in Lösung sehr flüchtig ist.

Im nächsten Schritt muss nun der Halogenligand substituiert und an dieser Position eine Aminfunktion eingeführt werden. Aufgrund der oben genannten potentiellen Explosionsgefahr, durch die Verwendung von Aziden und Kupfersalzen, wurden Alternativen für die von *Holland*^[90] publizierte Umsetzung zum Anilin gesucht.

Hierbei ist die Umsetzung von wässrigem Ammoniak in Gegenwart eines Kupferkatalysators besonders interessant, da diese Reaktion in guten Ausbeuten beschrieben und für eine Vielzahl von Substraten publiziert wurde. Weiter wäre diese Umsetzungen mit Chemikalien ohne besondere Toxizität bzw. Kosten, sowie synthetisch einfach und ohne spezielle Sicherheitsvorkehrungen durchzuführen.^[97-98]

X = CI, Br, I

Schema 27: Umsetzung von Halogenaromaten zu Anilinderivaten. Nach XIA durch die Verwendung von Cul und L = Diketonen^[97] bzw. XU mittels Cu₂O und L = N-Methyl-2-pyrrolidon.^[98]

Leider konnte bei den Reaktionen, die in Schema 27 abgebildet sind, trotz mehrerer Versuche kein Reaktionsumsatz von 2-lod-1,3-bis(trifluormethyl)benzol **12** beobachtet werden. Allerdings ist hierbei auch zu erwähnen, dass laut Literatur eine Umsetzung von elektronenarmen Aromaten bzw. Aromaten mit großen *ortho*-Substituenten zu schlechteren Ausbeuten führen. Auch eine Reaktion mit einem zweifach *ortho*-substituierten Edukt ist bislang nicht bekannt.^[97-98]

Eine weitere Möglichkeit zur Darstellung von primären Aminen aus einer Halogenfunktion ist die Gabriel-Synthese.^[99] Diese ist zwar für die Umsetzung von Alkylhalogenen zu Alkylamin bekannt, in abgewandelter Form lassen sich aber auch Aromaten funktionalisieren. Angelehnt an die Darstellung von 1-Aminoferrocen, aus 1-lodoferrocen mit Kupferphthalimid **13** und anschließender Hydrazinolyse nach *HEINZE*^[100], wurde die Umsetzung von **12** wie in Schema 28 durchgeführt.

Schema 28: Gabriel-analoge Umsetzung von 2-Iod-1,3-bis(trifluormethyl)benzol mit Kupferphthalimid.

Es konnte in diesem Reaktionsansatz keinerlei Reaktion des Kupferphthalimid mit **12** beobachtet werden. Da ausschließlich die Edukte zurückerhalten wurden, wurde diese Syntheseroute nicht weiterverfolgt.

Nachdem sich die vorangezeigten Syntheserouten nicht als Alternative darstellten, wurde die von HOLLAND^[90] publizierte Route näher betrachtet. Der Mechanismus der Reaktion der hier diskutierten Stufe wurde von HELQUIST veröffentlicht.^[101] In einem ersten Schritt erfolgt eine Substitution des Halogens gegen das Azid des Natriumazides durch eine Salzmethathese. In einem zweiten Schritt wird Kupfervermittelt das gebildete organische Arylazid zum Anilin reduziert, wobei ein zweites Äquivalent NaN₃ als Reduktionsmittel dient. Diese ist in Einzelschritten eine gängige Methode zur Einführung von Aminen bzw. Darstellung von Anilinen. Die hierbei als isolierbaren Zwischenstufen gebildeten Arylazide sind im Unterschied zu metallgebundenen Aziden deutlich stabiler und neigen weniger zur explosiven Zersetzung. 2-Azido-1,3-bis(trifluormethyl)benzol 16 lässt sich durch die Lithiierung von 12 mittels Butyllithium bei -78 °C in Et₂O und anschließender Umsetzung mit TosN₃ darstellen. Ein Abfangen der Schlosserbase-Reaktion aus Schema 26 mit TosN₃ anstatt Iod konnte nicht erfolgreich durchgeführt werden. Für die anschließende Reduktion zum Anilin unter Stickstofffreisetzung steht eine Vielzahl von Möglichkeiten zur Verfügung, wie z.B. die Reduktion mittels LiAlH₄ bzw. die Staudinger-Reaktion (Schema 29).^[102-103] Die Staudinger-Reaktion lässt sich auch als Aza-Wittig-Reaktion führen, d.h. anstatt der Hydrolyse des Phosphazens zum Amin, wird analog zur Wittig-Reaktion das Phosphazen mit einem Keton umgesetzt. Das Produkt ist hierbei ein Imin. So könnte entweder direkt mit Diacetylpyridin der PDI-Ligand dargestellt oder ein leicht flüchtiges Keton eingeführt werden, welches anschließend in einer Umiminierung zum PDI-Ligand umgesetzt wird.

Schema 29: Zweistufige Umsetzung von 2-Azido-1,3-bis(trifluormethyl)benzol **16** über das Azid mit anschließender Reduktion zu 2,6-Bis(trifluormethyl)anilin **15**.^[102-103]

Die Reduktion des Azids **16** unter Staudinger-Bedingungen bzw. eine Aza-Wittig-Reaktion gelang nicht. Es konnte zwar eine Reaktion des Azides mit Trimethylphosphan im ³¹P-NMR-Spektrum beobachtet werden. Die Tieffeldverschiebung des Phosphorsignals bei δ = 1.2 ppm, im vgl. zu PMe₃ legt jedoch nahe, dass ein Iminophosphoran gebildet wurde, da vergleichbare Verbindungen ähnliche Verschiebungen besitzen.^[104-106] Eine Reduktion des Iminophosphoran unter Zugabe von Wasser bzw. die Reaktion mit einem Keton direkt zum Imin, wie in Schema 30 gezeigt, konnte auch bei höheren Temperaturen nicht beobachtet werden. In der Literatur sind hydrolysestabile Iminophosphorane bekannt. Diese zeigen eine sterische Abschirmung der N=P-Doppelbindung und lassen sich nur durch die Zugabe von z.B. Hydriden reduzieren.^[107]

Schema 30: Versuch der Spaltung des Iminophosphoran zum Anilin bzw. Imin.

Daher wurde 2-Azido-1,3-bis(trifluormethyl)benzol **16** direkt mit Lithiumalanat analog zu *DITRI et al.* umgesetzt,^[103] anstatt weitere Versuche mit Phosphanen im Rahmen dieser Arbeit durchzuführen. Hierbei wurde das Azid tropfenweise zu einer Suspension von LiAlH₄ in Et₂O gegeben und nach ca. einer Stunde unter Eiskühlung mit Wasser gequenched.

Leider konnte im Gegensatz zur Reduktion des chlorsubstituierten *m*-Terphenylazids (vgl. *DITRI*^[103]) das Anilin nur in sehr geringe Ausbeuten erhalten werden. Wie sich gut im ¹⁹F-NMR-Spektrum erkennen lässt, ist keine saubere Reaktion zum gewünschten Anilin zu beobachten. Neben dem Edukt, welches das Hauptsignal darstellt, sind eine Vielzahl von weitern Reduktionsprodukten vorhanden, welche nicht weiter untersucht und charakterisiert wurden.

Aufgrund der vorangezeigten Ergebnisse wurde die Vorschrift von *HollAND*^[90] nun unter entsprechenden Sicherheitsmaßnahmen auf 2-lod-1,3-bis(trifluormethyl)benzol **12** übertragen.

Schema 31: Synthese von 2,6-Bis(trifluormethyl)anilin 12 in analog zu HOLLAND.

Hierbei wurde zunächst ein Ansatz mit 3.0 mmol bzw. 1.0 g 2-lod-1,3-bis(trifluormethyl)benzol **12** gemäß Schema 31 durchgeführt, neben **12**, wurde L-Prolin und CuO₂ in trockenem DMSO unter N₂

Atmosphäre suspendiert. Der Reaktionsmischung wurde NaN₃ zugegeben. Nach einer Stunde rühren bei 80 °C wurde der abgekühlten Reaktionslösung in gleichen Mengen gesättigte wässrige NH₄Cl-Lösung und EtOAc hinzugegeben. Während einer weiteren Stunde rühren konnte eine Farbänderung von rot-braun nach tiefgrün beobachtet werden. Die vorhandenen Feststoffe wurden durch eine Filtration entfernt und das Filtrat wurde mehrfach mit sat. NaHCO₃ Lösung gewaschen, bis die wässrige Phase keine Blaufärbung durch Kupfersalze mehr zeigte. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und der Rückstand destilliert. Es konnten 458 mg bzw. eine Ausbeute von 52 % von 2,6-Bis(trifluormethyl)anilin **15** als farbloses Öl erhalten werden.

Das ¹H-NMR-Spektrum zeigt neben den erwarteten Resonanzen für das Produkt noch Verunreinigungen durch Lösungsmittel, die in diesem Maßstab nur mit Ausbeuteverlusten abzutrennen wären.

Daher wurden für ein Hochskalieren des Reaktionsansatzes um den Faktor 5 bzw. 10 einige Reaktionsparameter geändert. Es wurde die Reaktionszeit von einer auf drei Stunden verlängert, da hierdurch bessere Ausbeuten beobachtet werden konnten. Um bei der Aufarbeitung eine bessere Phasentrennung zu erreichen, sowie bei destillativen Schritten Ausbeuteverluste durch die hohe Flüchtigkeit der Substanz zu verringern, wurde anstatt Ethylacetat Pentan als organisches Lösungsmittel zur Extraktion verwendet. So konnte die Ausbeute von 52 % bei Ansätzen größer 5 g auf 70 % gesteigert werden.

Nach erfolgreicher Darstellung des 2,6-Bis(trifluormethyl)anilin **15** im Grammmaßstab muss dieses noch in einer Kondensationsreaktion mit 4-*tert*-Butyl-2,6-diacetylpyridin **19** zum Pyridin,Diimin-Liganden **4** umgesetzt werden.

Schema 32: Kondensation von 2,6-Bis(trifluormethyl)anilin mit 4-tert-Butyl-2,6-diacetylpyridin zu 4.

Die Standard-Reaktion zur Darstellung von PDI-Liganden ist die säurekatalysierte Kondensation der Amine bzw. Aniline mit einem Pyridin,Diketon. Hierfür werden die Reaktanden mit katalytischen Mengen (1 - 10 %) *para*-Toluolsulfonsäure am Wasserabscheider in Toluol unter Rückfluss erhitzt.^{[55, ^{72, 108]} Für 2,6-Diisopropylanilin und 2,6-Diacetylpyridin **20** werden für diese Reaktion nahezu quantitative Ausbeuten erzielt, während bei der Darstellung des chlorsubstituieren PDI-Liganden **2** eine deutlich schlechtere Ausbeute von 29 % erzielt wurde.^[4]} Die Kondensation zur Darstellung von **4** wurde daher nach Schema 32 zuerst mit 280 mg bzw. 2.2 Äq. Anilin **15** durchgeführt. Allerdings konnte erst nach einer Vergrößerung des Ansatzes, auf ca. 1 g Anilin, **4** als Produkt mit einer Ausbeute von 19 % bzw. 200 mg isoliert werden. Bei einer weiteren Vergrößerung des Ansatzes, mit 4 g bzw. 5 g Anilin bei 2.5 Äquivalenten konnten in Verbindung mit einer Verlängerung der Reaktionszeit von zwei auf fünf Tagen die Ausbeute auf bis zu 50 % verbessert werden.

Neben der klassischen Synthesemethode, *Brønsted-Säure*-katalysiert am Wasserabscheider, wurden weitere Methoden zur Kondensation von Iminen zur Reaktionsoptimierung untersucht. Neben einer Erhöhung der Ausbeute sollte auch die Durchführung im kleinen Maßstab ermöglicht und die Aufarbeitung durch eine sauberere Reaktion erleichtert werden. Hierbei wurden einerseits anstatt *p*-Toluolsulfonsäure verschiedene Lewis-Säuren als Katalysatoren getestet, wie B(OCH₂CF₃)₃^[109] oder TiCl₄, welche neben der Säurefunktion auch noch starke Hygroskopizität zeigen und so durch Reaktion mit Wasser das Gleichgewicht auf die Produktseite ziehen. Es konnte bei der Verwendung von B(OCH₂CF₃)₃ sowohl bei RT als auch bei erhöhter Temperatur kein Umsatz beobachtet werden. Im Falle von TiCl₄ zeigte sich vor allem eine Zersetzung der Edukte. Des Weiteren wurde in Anlehnung an die Synthese von Brom- bzw. Fluor-substituierten PDI-Liganden *"Silica-Aluminium Catalyst Support 135"* in Verbindung mit Molekularsieb verwendet^[110], wobei auch hier kein Umsatz beobachtet werden konnte. Auch eine Erhöhung der Reaktionstemperatur auf bis zu 200 °C bei kürzerer Reaktionszeit, die Verwendung von Xylol als Schleppmittel am Wasserabscheider oder Reaktion im Autoklaven mit Molekularsieb 4 Å zur Wasserentfernung zeigte keine Reaktion.

#	Katalysator	Bedingungen	Umsatz / Ausbeute
1	<i>p</i> -Toluolsulfonsäure	Toluol, Rückfluss, Wasserabscheider	Bis zu 50%
2	<i>p</i> -Toluolsulfonsäure	Xylol, Rückfluss, Wasserabscheider	Spuren (NMR)
3	<i>p</i> -Toluolsulfonsäure	Benzol, Rückfluss, MS 4 Å	10 %
4	B(OCH ₂ CF ₃) ₃	RT	Kein Umsatz
5	B(OCH ₂ CF ₃) ₃	50 °C	Kein Umsatz
6	TiCl ₄	RT	Zersetzung
7	Si-Al Cat Sup. 135	RT, MS 4 Å	Kein Umsatz
8	Si-Al Cat Sup. 135	200 °C, MS 4Å, Autoklave	Kein Umsatz

Tabelle 3: Auflistung der Syntheseversuche der Kondensation von 2,6-Bis(trifluormethyl)anilin **15** mit 4-*tert*-Butyl-2,6-diacetylpyridin **19**.

Im ¹H-NMR-Spektrum in C₆D₆ von **4** sind die Verschiebungen der Protonensignale im erwarteten Bereich für PDI-Liganden. Charakteristische Resonanzen zeigen hierbei sowohl beide Protonen des Pyridinringes als Singulett bei δ = 8.69 ppm, sowie die Protonen der *C*-Ketimin-Methylgruppen als Singulett bei δ = 2.34 ppm. Das ¹⁹F-NMR-Spektrum zeigt ein Signal ohne Kopplungen bei δ = -61.9 ppm. Außerdem konnten Kristalle zur Röntgenstrukturanalyse erhalten werden. In Abbildung 27 ist die Struktur des Liganden **4** als Ortep-Darstellung gezeigt. Die Struktur liegt in der Raumgruppe $P2_1/c$ vor, wobei sich in der asymmetrischen Einheit zwei Ligandmoleküle (**4**^A, **4**^B) befinden, deren Bindungslängen und -winkel sich nur unwesentlich unterscheiden. Aus den ausgewählten Bindungslängen und -winkeln in Tabelle 4 ist zu erkennen, dass die eingeführte Trifluormethylgruppe keinen nennenswerten Einfluss auf die Struktur des Liganden hat.^[111]

Tabelle 4: Ausgewählte Bindungslängen und -winkel von **4** im Vergleich zu **1**^[111] mit Standardabweichungen in Klammern.

Bindungslängen [Å]	4 ^A	4 ^в	1
N1-C2	1.2780(16)	1.2774(16)	1.273(5)
N3-C8	1.2787(20)	1.2793(17)	1.267(5)
C2-C3	1.4979(17)	1.4982(16)	1.489(5)
C7-C8	1.4985(20)	14.990(17)	1.485(5)
Bindungswinkel [°]	4 ^A	4 ^B	1
Bindungswinkel [°] N1-C2-C3	4 ^A 116.04(11)	4 ^в 116.51(11)	1 116.8(4)
Bindungswinkel [°] N1-C2-C3 N3-C8-C7	4 ^A 116.04(11) 115.95(11)	4 ^B 116.51(11) 116.87(11)	1 116.8(4) 117.2(4)
Bindungswinkel [°] N1-C2-C3 N3-C8-C7 N2-C3-C2	4 ^A 116.04(11) 115.95(11) 116.49(16)	4⁸ 116.51(11) 116.87(11) 116.45(11)	1 116.8(4) 117.2(4) 114.9(4)

Abbildung 27: Ortep-Abbildung der Kristallstruktur des Liganden **4**. Die Schwingungsellipsoide sind mit 50 % Aufenthaltswahrscheinlichkeit abgebildet. Aus Gründen der Übersichtlichkeit sind die Wasserstoffatome nicht mit abgebildet.

6.2. Synthese Terphenyl-substituierter Pyridin, Diimin-Liganden

Der Trifluormethyl-substituierte Pyridin,Diimin-Ligand ist im Vergleich zum Dipp-substituierten Liganden zwar gegen C-H-Bindungsaktivierung des Liganden geschützt, jedoch weniger sterisch anspruchsvoll. Dieser sterische Anspruch kann, insbesondere für die Untersuchung von Nitrido-Komplexen, nötig sein, um Dimerisierungsprozesse zu verhindern (vgl. Einleitung 3.3).^[62]

Ein häufig verwendeter Substituent mit sterisch hohem Anspruch für Liganden in der Komplexchemie ist, neben Dipp, der *meta*-Terphenyl-Substituent und dessen Derivate.^[112-113] Ein Vergleich der Eigenschaften ist in Abbildung 28 dargestellt. Dieser hat im Unterschied zum Dipp-Substituent zusätzlich den Vorteil, dass anstatt vergleichsweise schwach gebundener benzylischer Protonen mit einer BDE von ca. 90 kcal/mol nur aromatische Protonen, mit einer BDE von ca. 113 kcal/mol vorhanden sind,^[114] welche daher schwieriger zu aktivieren sind.

Abbildung 28: Vergleich von Pyridin, Diimin-Liganden mit verschieden Resten, XyF (links), Dipp (Mitte), Terp (rechts).

Aufgrund des einfachen synthetischen Zugangs zum *m*-Terphenylanilin wurde zuerst der entsprechende Pyridin, Diimin-Ligand dargestellt. Eine Methylgruppe als NMR-Sonde wurde *para*-ständig zur Anilinfunktion eingefügt.

Schema 33: Darstellung des *m*-Terphenyl-substituierten Pyridin, Diimin-Liganden 24.

Hierbei wird, wie in Schema 33 gezeigt, in einer Suzuki-Kupplung das *m*-Terphenylanilin aus 2,6-Dibromtoluidin **21** und Phenylboronsäure **22** unter Standardbedingungen, d.h. mit 5 Äq. K₂CO₃ als Base und 5 mol% Pd(dppf)Cl₂ als Katalysator in einem THF-Wasser-Gemisch, in quantitativen Ausbeuten dargestellt. Im folgenden Schritt lässt sich nun durch Iminkondensation am Wasserabscheider mit *p*-Toluolsulfonsäure säurekatalysiert in Toluol der PDI-Ligand mit

Diacetylpyridin **20** umsetzen. So kann nach Umkristallisation der Terphenyl-substituierte Ligand **24** in 67 % Ausbeute als gelbes Pulver erhalten werden.

Abbildung 29: ¹H-NMR-Spektrum (THF-*d*₈; 600 MHz) des Liganden 24.

Das ¹H-NMR-Spektrum in Abbildung 29 zeigt im aliphatischen Bereich zwei Singuletts mit je einem Integral von 6 und im aromatischen Bereich sechs Signalsätze. Die charakteristische Resonanz des Protons in *para*-Position zum Pyridin-Stickstoffatom erscheint bei einer Verschiebung von $\delta = 7.69$ ppm als Triplett mit einem Integral von 1 in THF-*d*₈. Die Resonanz der Protonen der Ketimin-Methylgruppen ist als Singulett bei $\delta = 1.65$ ppm zu beobachten. Anhand der Anzahl der Resonanzen im Spektrum lässt sich auf eine C_{2v}-Symmetrie des Liganden schließen.

Schema 34: Darstellung des m-Terphenyl-substituierten Pyridin, Diimin-Liganden mit aromatischen *C*-Ketimineinheiten.

Um das Ligandensystem gegenüber Deprotonierung, besonders der Ketimin-Methylgruppen, zu schützen, wurde außerdem der Phenyl-substituierte Ligand **26** dargestellt. Die Kondensation wurde mit Dibenzoylpyridin **25** analog zu Diacetylpyridin durchgeführt, wie in Schema 34 dargestellt. **26** wurde in 74 % Ausbeute erhalten. Bei der Aufarbeitung des Liganden **26** zeigte sich bereits die geringe Löslichkeit im Vergleich mit **24**; einzig in Dichlormethan konnte eine gute Löslichkeit beobachtet werden. Diese nimmt nach der Komplexierung mit einem Ir(I)-Salz noch weiter ab (Kapitel 7), weshalb diese Verbindung hier nicht weiter diskutiert wird.

Schema 35: Darstellung des m-Terphenyl-substituierten Pyridin, Diimin-Liganden **28** mit *tert*-Butyl-subsituierten Phenyl-*C*-Ketimineinheiten.

Daher wurde, um die Löslichkeit zu verbessern ohne die Sterik oder die elektronischen Eigenschaften zu verändern, ein Keton verwendet, welches durch je eine *tert*-Butylgruppe an den Benzyl-Einheiten erweitert wurde. Um den Liganden **28** zu erhalten, wurde Di(*p-tert*-Butyl)benzoylpyridin **27** mit Terphenylanilin **23** unter Säurekatalyse am Wasserabscheider umgesetzt. **28** konnte nach Umkristallisation in Methanol als gelbes Pulver in 70 %iger Ausbeute erhalten werden (Schema 35). Er ist löslich sowohl in Hexan und Diethylether als auch in THF, Aromaten und Dichlormethan und weist damit im Vergleich zu Ligand **26** eine deutlich verbesserte Löslichkeit auf.

Von **28** konnten Einkristalle für die Strukturanalyse aus einer gesättigten Et_2O -Lösung erhalten werden. Die Verbindung kristallisiert in der Raumgruppe $P2_1/c$, die Struktur ist in Abbildung 30 dargestellt und ausgewählte Bindungslängen und -winkel sind in Tabelle 5 aufgeführt.

Abbildung 30: Festkörperstruktur des Liganden **28**. Die Schwingungsellipsoide sind mit 50 % Aufenthaltswahrscheinlichkeit abgebildet. Aus Gründen der Übersichtlichkeit sind die Wasserstoffatome nicht mit abgebildet.

Sowohl in der Struktur als auch an den Bindungswinkeln zeigt sich die C₁-Symmetrie der Verbindung im Festkörper. Im Vergleich zum C_s-symmetrischen **1** unterscheiden sich die Verbindungen in den

56 | Darstellung neuartiger Pyridin, Diimin-Liganden

Bindungslängen der Ketimineinheit nicht signifikant. Die Bindungswinkel hingegen weisen Unterschiede sowohl zwischen **1** und **28** auf, als auch innerhalb der einzelnen Molekülseiten des Terphenylliganden. So ist der Winkel zwischen der Pyridin-Einheit (N2-C2 bzw. N2-C7) und den Atomen C2 bzw. C8 um drei Grad aufgeweitet (Tabelle 5).

0 0		0			
Bindungslängen [Å]	28	1	Bindungswinkel [°]	28	1
N1-C2	1.279(2)	1.279(5)	N1-C2-C3	113.73(16)	123.30(13)
N3-C8	1.283(2)	1.279(2)	N3-C8-C7	124.97(12)	122.68(14)
C2-C3	1.516(3)	1.506(2)	N2-C3-C2	118.31(16)	114.91(13)
C7-C8	1.508(3)	1.501(2)	N2-C7-C8	117.58(11)	114.52(13)
N1-C2 N3-C8 C2-C3 C7-C8	1.279(2) 1.283(2) 1.516(3) 1.508(3)	1.279(3) 1.279(2) 1.506(2) 1.501(2)	N1-C2-C3 N3-C8-C7 N2-C3-C2 N2-C7-C8	113.73(16) 124.97(12) 118.31(16) 117.58(11)	123.30(13) 122.68(14) 114.91(13) 114.52(13)

Tabelle 5: Bindungslängen und -winkel von **28** im Vergleich zu **1**^[115].

Im ¹H-NMR-Spektrum in CD₂Cl₂ ist für die Signale der Protonen der Phenyl-Substituenten eine Linien-Verbreiterung zu erkennen, was auf eine gehinderte Rotation in Lösung hindeutet. VT-NMR-Experimente zur Bestimmung der Barriere wurden im Rahmen dieser Arbeit nicht durchgeführt. Im aromatischen Bereich werden zudem die einzelnen Signalsätze der Protonen nicht aufgelöst. Auch im aliphatischen Bereich ist nicht das erwartete Kopplungsmuster mit zwei Singuletts zu erkennen, was auf ein Spektrum höherer Ordnung auch bei einer Spektrometer-Frequenz von 500 MHz schließen lässt. Dieses Verhalten ist für Pyridin,Diimin-Liganden mit einem Phenyl-Substituenten am *C*-Ketiminkohlenstoffatom bekannt.^[115-116] Weiterhin kann auf Grund der Anzahl der Signale im Breitbandentkoppelten ¹³C-NMR-Spektrum, welches in Abbildung 31 gezeigt ist, von einer C₁-Symmetrie in Lösung ausgegangen werden.

Abbildung 31: ¹³C¹H}-NMR-Spektrum bei 126 MHz in CD₂Cl₂ der Verbindung **28**.

Des Weiteren existiert der Zugang zu modifizierten Terphenyl-Einheiten. So können sowohl für den Zentralen als auch für die äußeren Phenylringe, funktionalisierte Aromaten verwendet werden, um den sterischen Anspruch sowie die Löslichkeit weiter zu erhöhen oder die Elektronik zu verändern.^[112-113, 117] Zur Verhinderung von intramolekularer C-H-Aktivierung des Liganden ist die Modifikation der 2,6-Postion der äußeren Phenylringe von besonderem Interesse, da sich diese Positionen in räumlicher Nähe zum Koordinationszentrum befinden. Es lassen sich hier z.B. die Protonen durch Chlor- oder Fluoratome ersetzen^[103, 118-119], wobei Fluor durch die starke C-F- und die sehr schwache N-F-Bindung, die bei der Ligand-Aktivierung durch Nitrido-Komplexe entstehen muss zu bevorzugen ist. Hierdurch lassen sich die beiden vorher beschriebenen Konzepte; Substitution mit Heteroatomen und erhöhtem sterischen Anspruch verbinden.

Schema 36: Modifikation des Liganden **28** durch Einführung von teilfluorierten Phenylringen an der Terphenyl-Einheit **31**.

Um den an den 2,6-Postitonen der äußeren Phenylringe teilfluorierten Terphenylliganden **31** zu erhalten, muss wiederum zuerst das entsprechende Anilin dargestellt werden. Hierfür sind in der Literatur zwei Routen über Suzuki-Kupplungen bekannt (Schema 37). Zum einen lässt sich das Anilin analog zur Darstellung des unsubstituierten Terphenylanilins, ausgehend von 2,6-Difluorobenzolboronsäure und 2,6-Dibromanilin synthetisieren. Aufgrund der elektronenarmen Boronsäure ist für diese Umsetzung ein spezielles Palladium-Katalysatorsystem ([Pd(PAd₃)(C₆H₄F)Br]) zu verwenden. Dieses besteht aus einem dreifach koordinierten Palladiumzentrum, wobei die Koordinationspartner Trisadamantylphosphan, 4-Fluorphenyl sowie Bromid sind.^[119]

Schema 37: Literaturbekannte Syntheserouten für teilfluorierte Terpenylanilinderivate nach *CARROW* ^[119] (oben) bzw. nach *MA* ^[118] (unten).

Zum anderen ist die Synthese des Anilins **30** über eine zweistufige Route möglich. Hierbei wird zuerst das zweifach Pinakolboran-substituierte Anilin über eine Palladium-katalysierte C-X-Miyaura-Borylierung dargestellt. Anschließend wird wiederum mittels Suzuki-Kupplung das Reaktionsprodukt mit 2-Brom-1,3-difluorbenzol zum gewünschten Anilin umgesetzt.^[118] Aufgrund des benötigten Katalysatorsystems wurde der zweiten Syntheseroute der Vorzug gegeben. Im Unterschied zur Literatur wurde für diese Arbeit allerdings 2-lod-1,3-Difluorbenzol als Substrat und Pd(dppf)Cl₂ als Katalysator verwendet. Die Ausbeuten sind analog zur Literatur bei 65 %.

Schema 38: Darstellung des Pyridin, Diimin-Liganden **31** mit aromatischen *tert*-Butyl-subsituierten *C*-Ketimin-Einheiten.

Zur Darstellung des Liganden **31** wird nach Schema 32 wieder die Iminkondensation am Wasserabscheider mit *p*-Toluolsulfonsäure als Katalysator in Toluol durchgeführt. **31** konnte nach Umkristallisation analysenrein als gelbes mikrokristallines Pulver in 71 % Ausbeute erhalten werden.

Das ¹H-NMR- sowie ¹⁹F-NMR-Spektrum des Liganden **31** in CD₂Cl₂ bei RT und 600 MHz Spektrometer-Frequenz ist in Abbildung 32 gezeigt. Im Protonen-Spektrum sind die den *tert*-Butylgruppen zugeordneten Resonanzen bei einer Verschiebung von δ = 1.25 ppm als *pseudo*-Triplet, die den Methylgruppen der Terphenyl-Einheit als Multiplett bei δ = 2.36 - 2.39 ppm zu erkennen. Die für C_{2v}- symmetrische Verbindungen erwartete Homotopizität dieser Protonen wird nicht beobachtet. Im aromatischen Bereich ließen sich auch durch 2D-NMR-Experimente nicht alle Resonanzen nicht eindeutig zu den entsprechenden Protonen der Verbindung zuordnen. Aufgrund des Aufspaltungsmusters wird von einer C₁-Symmetrie der Verbindung **31** ausgegangen. Das ¹⁹F-NMR Spektrum zeigt dies ebenso durch die sechs zu beobachtenden Signale bei δ = -108.3, -108.6, -108.9, -110.9, -111.0, -111.3 und dem Integralverhältnis dieser von 1:1.6:1:1.6:1:1.

Abbildung 32: NMR-Spektren des Liganden **31** in CD₂Cl₂ bei RT; 600 MHz. Oben: ¹H; unten: ¹⁹F.

Abbildung 33: Ortep-Darstellung der Festkörperstruktur des Liganden **31**. Die Schwingungsellipsoide sind mit 50 % Aufenthaltswahrscheinlichkeit abgebildet. Aus Gründen der Übersichtlichkeit sind die Wasserstoffatome und das enthaltene Lösungsmittelmolekül CH₂Cl₂ nicht mit abgebildet.

Auch von **31** konnten Eiskristalle zur Strukturaufklärung erhalten werden und bestätigte hierdurch den Strukturvorschlag. **31** kristallisierte in der Raumgruppe *P*-1 und ist mit einem Molekül Dichlormethan co-kristallisiert. Die Struktur ist in Abbildung 33 dargestellt, ausgewählte Bindungslängen und -winkel sind in Tabelle 6 aufgeführt und mit dem unfluorierten **28** gegenübergestellt. In dieser Gegenüberstellung ist ersichtlich, dass die eingeführten Fluoratome nur eine kleine Auswirkung auf die Struktur des Liganden haben. Die Bindungslängen unterscheiden sich hier nicht und die Winkel nur marginal.

Bindungslängen [Å]	31	28	Bindungswinkel [°]	31	28
N1-C2	1.283(3)	1.279(2)	N1-C2-C3	115.27(17)	113.73(16)
N3-C8	1.278(2)	1.283(2)	N3-C8-C7	124.73(17)	124.97(12)
C2-C3	1.500(3)	1.516(3)	N2-C3-C2	117.39(17)	118.31(16)
C7-C8	1.506(6)	1.508(3)	N2-C7-C8	116.77(17)	117.58(11)

Tabelle 6: Bindungslängen und -Winkel von 31 im Vergleich zu 28.

In diesem Kapitel konnte die Synthese von vier neuen PDI-Liganden gezeigt werden. Diese PDI-Liganden werden in den folgenden Kapiteln mit Iridium und Rhodium komplexiert, um neue Einblicke in die Chemie der Gruppe 9-Nitrido-Komplexe zu erhalten.

7. Synthese und Untersuchung von Iridium-Nitrido-Komplexen

Der Zugang zu Iridium-Nitrido-Komplexen mit Pyridin, Diimin-Liganden ist durch frühere Arbeiten des Arbeitskreises etabliert^[4, 52, 62] und erfolgt über die thermische Abspaltung von molekularem Stickstoff aus einem Azido-Liganden. Die Synthese der notwendigen Vorstufe mit einer Azido-Einheit wird im Folgenden beschrieben.

Schema 39: Umsetzung eines Pyridin, Diimin-Liganden **1** mit Chlorobis(ethylen)iridium(I)-Dimer als Iridium-Vorläufersubstanz zum Iridium-Chlorido-Komplex **1-IrCl**.^[55]

Für Dipp- bzw. Mesityl-Substituenten am Ketimin-Stickstoffatom konnten für die einzelnen Stufen gute bis quantitative Ausbeuten erzielt werden.^[4, 52, 55, 72]

7.1. Darstellung der Chlorido-Komplexe

Die Darstellung der neuen Chlorido-PDI-Komplexe orientiert sich an dem in Schema 39 abgebildeten Syntheseweg durch Umsetzung der Liganden **4**, **24**, **26**, **28** und **31** mit der dimeren Bis-µchloridoverbrückten Bis(ethylen)iridium(I)-Verbindung bei RT. Ein Farbumschlag von gelb nach grün ist dabei ein gutes Indiz für eine erfolgreiche Komplexierung.^[4, 52, 62]

Schema 40: Darstellungsversuch des Iridium-Chlorido-Komplex 4-IrCl.

Daher wurde zuerst versucht den Liganden **4** mit [Ir(C₂H₄)₂Cl]₂ als Iridium-Vorläufersubstanz in THF bei Raumtemperatur zur Reaktion zu bringen (Schema 40). Nach 24 Stunden konnten in THF bei Raumtemperatur keine Komplexierung beobachtet werden, welche bereits bei geringen Umsätzen durch den intensiven Farbumschlag nach grün zu erkennen wäre. Es konnte nur der Beginn der Zersetzung der Vorläufersubstanz durch Bildung eines schwarzen Niederschlags sowie eines Metallspiegels am Reaktionsgefäß beobachtet werden. Ferner war es möglich den freien Liganden **4** nach Filtration und Entfernen des Lösemittels im Vakuum und Waschen mit Ether nahezu quantitativ zurückzugewinnen.

SIEH^[4] hat bereits beobachtet, dass die Substituenten der Pyridin, Diimin-Liganden einen großen Einfluss auf die Komplexierungsgeschwindigkeit und die Ausbeute haben. So wurde für den Chlor-

substituierten Pyridin,Diimin-Liganden **2** nur eine Ausbeute von 42% erzielt, während die Komplexierungsreaktion von Ligand **1** unter identischen Bedingungen nahezu quantitativ verläuft.^[4] Für den Trifluoromethyl-substituierten Pyridin,Diimin-Liganden **4** zeigte sich dieser Einfluss noch deutlicher.

Für die Komplexierung wurden verschiedene Reaktionsbedingungen getestet, welche in Tabelle 7 zusammengefasst sind. In Ethern oder nichthalogenierten Aromaten konnten keine oder nur Spuren einer Komplexierung beobachtet werden. In halogenierten Lösungsmitteln konnten bei Raumtemperatur Ausbeuten von 10 % erhalten werden, bei erhöhter Temperatur bis zu 36 %.

#	Lösungsmittel	Temperatur	Umsatz (¹⁹ F-NMR)	Ausbeute
1	THF, Toluol	Raumtemperatur	Kein Umsatz	-
2	THF, MTBE, 1,4-Dioxan	Siedetemperatur	Kein Umsatz	-
3	Benzol, Toluol, Xylol	Siedetemperatur	Unter 5 %	-
4	CH ₂ Cl ₂ , <i>o</i> -Difluorbenzol	Raumtemperatur	15-25 %	10 %
5	<i>o</i> -Difluorbenzol	50 °C	50 %	36 %
6	Methanol	Raumtemperatur	90 %	57 %

Tabelle 7: Übersicht über Darstellungsversuche von **4-IrCl**, mit Umsatz nach ¹⁹F-NMR- und isolierter Ausbeute.

Die besten Ausbeuten von bis zu 57 % (isolierte Ausbeute) konnten nach Optimierung durch eine Umsetzung in Methanol erzielt werden (Schema 41). Dabei wurde die Iridium-Vorläufersubstanz [Ir(C₂H₄)₂Cl]₂ in zwei Portionen zu 0.35 Äq. bzw. 0.15 Äq. im Abstand von 24 Stunden hinzugegeben und die Reaktionszeit auf 48 Stunden erhöht. Nach Entfernung des Lösungsmittels im Vakuum und Umkristallisation durch Überschichten einer THF-Lösung mit Pentan konnte **4-IrCl** als tiefgrüner kristalliner Feststoff analysenrein erhalten werden.

Schema 41: Reaktionsschema zur optimierten Darstellung des Iridium-Chlorido-Komplex 4-IrCl.

Im ¹H-NMR-Spektrum des Chlorido-Komplexes **4-IrCl** sind in THF-*d*₈ im Hochfeld zwei Singuletts mit dem Integralverhältnis von 6:9 bei δ = 0.45 und 1.44 ppm zu beobachten, welche den homotopen Protonen der *C*-Ketimin-Methylgruppe und der *tert*Butylgruppe am Pyridinring bei δ = 1.44 ppm zuzuordnen sind. Das Signal der *C*-Ketimin-Methylgruppe ist im Vergleich zum freien Liganden (δ = 2.35 ppm) deutlich um 0.91 ppm ins Hochfeld verschoben. Im Tieffeld zeigt sich das gleiche Signalmuster wie im Liganden **4** mit einem Singulett bei δ = 8.51 ppm für die homotopen Protonen des Pyridinringes sowie einem Dublett und einem Triplett bei δ = 8.06 ppm bzw. 7.60 ppm für die *meta*und *para*-ständigen Protonen des aromatischen *N*-Ketimin-Substituenten. Das Integralverhältnis der Resonanzen liegt bei 2:4:2. Im ¹⁹F-NMR-Spektrum ist für die CF₃-Gruppen ein Signal bei δ = -59.1 ppm zu beobachten und im ¹³C-NMR-Spektrum sind 3 Signale im Bereich von 22.7 - 38.7 ppm, sowie 9 Resonanzen zwischen 122.2 und 177.0 ppm vorhanden. Dies lässt auf eine C_{2v}-Symmetrie der Verbindung **4-IrCI** schließen.

Aus Diethylether bei -30 °C konnten für eine Strukturanalyse geeignete Kristalle erhalten werden. Die Ortep-Darstellung der Verbindung von Komplex **4-IrCl** ist in Abbildung 34 dargestellt, ausgewählte Bindungswinkel und -längen sind in Tabelle 8 zusammengefasst.

Abbildung 34: Ortep-Darstellung der Molekülstruktur des Komplexes **4-IrCl**. Die Schwingungsellipsoide sind mit 50 % Aufenthaltswahrscheinlichkeit abgebildet. Aus Gründen der Übersichtlichkeit sind die Wasserstoffatome und ein Lösungsmittelmolekül Et₂O nicht mit abgebildet.

Zum Vergleich sind in Tabelle 8 die Strukturdaten mit **1-IrCl** mit Dipp-Substituenten verglichen. Mit Ausnahme des Iridium-Chlor-Abstandes, der mit 2.3247(6) Å um 0.024 Å länger als für **1-IrCl** ist, sind die Unterschiede zwischen den Strukturen nicht signifikant. Die Winkelsumme um das zentrale Iridiumatom mit 395.95° belegt die erwartete quadratisch-planare Koordinationsumgebung von **4-IrCl**. Die Kristallstrukturanalyse belegt den auf Basis der NMR-Daten gemachten Strukturvorschlag und somit die C_{2v}-Symmetrie des Komplexes.

Bindungslängen [Å]	4-IrCl	1-IrCl [68]	Bindungswinkel [°]	4-IrCl	1-IrCl ^[68]
lr1-Cl1	2.3247(6)	2.306(9)	Cl1-Ir1-N1	179.65(6)	178.29(8)
Ir1-N2	1.8891(19)	1.887(2)	Cl1-lr1-N1/3	101.03(4)	99.80(7)
Ir1-N1	2.0176(14)	2.003(3)	N2-Ir1-N1/3	78.95(4)	80.17(10)
Ir1-N3	-	2.017(2)			
N1-C2	1.332(2)	1.343(4)			
C2-C3	1.442(2)	1.432(4)			

Tabelle 8: Ausgewählte Bindungslängen und -winkel der Iridium-Chlorido-Komplexe 4-IrCl und 1-IrCl^[68]

Nach der Darstellung des Chlorido-Komplexes **4-IrCl** wird nun die Darstellung der Chlorido-Komplexe mit den unfluorierten Terphenyl-substituierten Liganden **24**, **26** und **28** beschrieben.

Schema 42: Darstellung der Terphenyl-substituierten Iridium-Chlorido-Komplexe aus 24, 26 und 28.

Die Liganden werden wie in Schema 42 gezeigt in THF mit Chlorobis(ethylen)iridium(I)-Dimer bei Raumtemperatur zur Reaktion gebracht. Für den Ligand **24** mit einer Methylgruppe an der *C*-Ketimin-Funktion ist der Farbumschlag von gelb nach grün innerhalb von Sekunden zu beobachten, wohingegen die Reaktion mit aromatischen *C*-Ketimin-Substituenten langsamer verläuft. Nach Entfernen des Lösungsmittels und Waschen mit Ether sowie anschließend mit Hexan konnte jeweils das Produkt in guten, bis quantitativen Ausbeuten erhalten werden. Die unfluorierten Terphenyl-substituierten Liganden **24**, **26** und **28** zeigen damit das vom Dipp-substituierten Ligand **1** bekannte Komplexierungsverhalten.

Dabei gilt anzumerken, dass Komplex **26-IrCl** eine äußerst schlechte Löslichkeit in THF, Benzol und Toluol aufweist und aus Erfahrung mit vergleichbaren PDI-Verbindungen die Löslichkeit für Azido- bzw. Nitrido-Verbindungen noch weiter abnimmt. Da die Umsetzung zu Azido- bzw. Nitrido-Komplexen und deren Untersuchung nicht mit Dichlormethan vereinbar ist, welches potentiell ein besseres Lösungsvermögen besitzt, wurde von der weiteren Umsetzung zu der entsprechenden Azido- bzw. Nitrido-Verbindung basierend auf dem Liganden **26** abgesehen. Die beiden anderen Komplexe sind in den o.g. Lösungsmitteln gut zu lösen.

In den ¹H-NMR-Spektren in THF-*d*₈ erscheinen die *para*-ständigen Protonen der Pyridin-Ringe als charakteristische Tripletts bei δ = 8.47, 8.38 und 8.37 ppm (**24-IrCl**, **26-IrCl**, **28-IrCl**), die gegenüber dem freien Liganden leicht in das Tieffeld verschoben sind. Die Signale der *meta*-Pyridin-Protonen sind
homotop und sind jeweils als Dublett mit einem Integral von 2 zu erkennen. Weiterhin sind Singuletts bei δ = 2.44 (**26-IrCl**), 2.34 ppm (**28-IrCl**) bzw. 2.02 ppm (**24-IrCl**) mit einem Integral für 6 homotope Methylprotonen der Terphenyleinheit zu beobachten, die durch ¹H,¹³C-korrelierte 2D-NMR-Spektroskopie (HSQC und HMBC) eindeutig zugeordnet werden konnten. Daher wird für alle drei Komplexe in Lösung auf der NMR-Zeitskala eine C_{2v}-Symmetrie angenommen.

Von allen drei Chlorido-Komplexen war es möglich Einkristalle zur Strukturanalyse zu erhalten. In Abbildung 35 sind die Molekülstrukturen dargestellt; ausgewählte Bindungslängen und -winkel sind in Tabelle 9 zusammengefasst. Komplex **24-IrCl** kristallisiert in der Raumgruppe P2₁/c mit zwei unabhängigen Molekülen in der asymmetrischen Einheit. Die Verbindung **26-IrCl** kristallisierte in der Raumgruppe C2/c mit zwei co-kristallisierten Molekülen THF. Aufgrund der schlechten Qualität der Kristalle war keine vollständige anisotrope Verfeinerung möglich (Atom C4). **28-IrCl** kristallisiert in der Raumgruppe P2₁/n mit drei Lösungsmittelmolekülen Toluol in der asymmetrischen Einheit.

Die Kristallstrukturanalysen bestätigten den Strukturvorschlag von einer idealisierten C_{2v}-Symmetrie der Verbindungen.

Abbildung 35: Darstellung der Iridium-Chlorido-Komplexe **24-IrCl** (links oben), **26-IrCl** (rechts oben) und **28-IrCl** (unten). Die Schwingungsellipsoide sind mit 50 % Aufenthaltswahrscheinlichkeit abgebildet. Aus Gründen der Übersichtlichkeit sind die Wasserstoffatome und die co-kristallisierten Lösungsmittelmolekül nicht mit abgebildet.

Bindungslängen [Å]	24-IrCl	26-IrCl	28-IrCl	1-IrCl ^[68, 72]
Ir1-Cl1	2.3093(9)	2.319(3)	2.3028(14)	2.306(9)
lr1-N1	2.020(3)	1.997(9)	2.014(3)	2.003(3)
Ir1-N2	1.889(3)	1.874(10)	1.884(3)	1.887(2)
Ir1-N3	2.018(3)	2.024(9)	2.011(3)	2.017(2)
Bindungswinkel[°]	24-IrCl	26-IrCl	28-IrCl	1-IrCl ^[68, 72]
Cl1-Ir1-N2	178.32(9)	177.3(3)	179.17(9)	178.29(8)
Cl1-Ir1-N1	99.57(9)	101.2(3)	100.95(9)	99.80(7)
Cl1-Ir1-N3	101.71(5)	100.0(3)	99.83(9)	100.38(8)
N2-Ir1-N1	79.26(13)	78.8(4)	79.48(12)	80.17(10)
N2-Ir1-N3	79.45(12)	80.2(4)	79.74(12)	79.70(11)
N1-Ir1-N3	158.70(12)	158.8(4)	159.20(12)	159.83(10)
Ir1-N1-C10	126.7(2)	125.5(7)	124.4(2)	126.45(18)
Ir1-N3-C16	123.3(2)	128.5(7)	122.9(2)	124.8(2)

Tabelle 9: Ausgewählte Bindungslängen und -winkel mit Standardabweichungen der Iridium-Chlorido-Komplexe **24-IrCl**, **26-IrCl**, **28-IrCl**. Zum Vergleich werden die entsprechenden Werte für **1-IrCl** aufgeführt ^[68, 72]

Die Bindungswinkel der Terphenyl-substituierten Iridium-Chlorido-Komplexe und **1-IrCl** unterscheiden sich nur unwesentlich (< 2°). Für die Bindungslängen werden ebenfalls nur sehr kleine Abweichungen von maximal 0.02 Å beobachtet.

Um die Reihe der Liganden abzuschließen wurde die Synthese von **31-IrCl** mit dem teilfluoriertem Terphenyl-Liganden **31** untersucht (Schema 43).

Schema 43: Darstellungsversuch des Iridium-Chlorido-Komplexes **31-Cl**.

Nach 24 Stunden Rühren in THF bei RT war keine Farbänderung der Reaktionslösung zu beobachten. Dies ließ auf eine fehlende Komplexierung schließen, sodass die Reaktionslösung für 16 h auf 50 °C erwärmt wurde, was zur Bildung eines Metallspiegels führte. Das ¹⁹F-NMR-Spektrum der Reaktionslösung ausschließlich die Signale Verschiebungen zeigte bei von δ = -108.3, -108.6, -108.9, -110.9, -111.0, -111.3 (vgl. Seite 59f), welche dem C₁-symmetischen freien Liganden zugeordnet werden und so die Vermutung der nicht erfolgten Komplexierung bestätigt. Auch mit einer Vergrößerung des Reaktionsansatzes auf 500 mg Ligand konnte dieses Verhalten reproduziert werden. Aufgrund der Übereinstimmungen bei der Komplexierung mit dem ebenfalls teilfluorierten Liganden 4 wurde analog versucht, die Reaktion in MeOH durchzuführen. Auch in Methanol konnte nach 5 Tagen Reaktionszeit bei Raumtemperatur keine Umsetzung mittels ¹⁹F-NMR-Spektroskopie beobachtet werden, sondern nur eine leichte Braunfärbung der Reaktionslösung, welche einer teilweisen Zersetzung der Iridium-Vorläuferverbindung zugeschrieben wird. Eine Erwärmung der Reaktionslösung führte nur zur Zersetzung der Iridium-Vorläuferverbindung und Bildung von einem schwarzen Niederschlag (Ir(0)) sowie einem Metallspiegel.

Es wird vermutet, dass der Ligand **31** einen zu großen sterischen Anspruch in Kombination mit den Elektronen ziehenden Substituenten besitzt, um Iridium(I)-Komplexe zu bilden.

7.2. Darstellung der Methoxido-Komplexe

Nach der erfolgreichen Darstellung der Iridium(I)-Chlorido-Verbindungen, **4-IrCl, 24-IrCl**, und **26-IrCl**, wurden diese zu den entsprechenden Methoxido-Komplexen umgesetzt. Hierzu wurden die Chlorido-Komplexe mit einem Überschuss Natriummethanolat in einer Methanol-THF-Mischung mit unterschiedlichen Mischungsverhältnissen zur Reaktion gebracht. Das überschüssige Methanolat sowie das entstandene NaCl kann anschließend durch Extraktion des Produkts mit einem unpolaren Lösungsmittel wie Toluol abgetrennt werden.

Schema 44: Darstellung von 4-IrOMe.

Zunächst wurde die Umsetzung von **4-IrCl** unter den von *SIEH*^[1] für die Synthese des entsprechenden Komplexes **1-IrOMe** beschriebenen Reaktionsbedingungen durchgeführt, d.h. in THF bei 55 °C. Während der Reaktion konnte eine Farbänderung der Reaktionslösung von Tiefgrün nach Türkis beobachtet werden, nach Entfernen des Lösungsmittels im Vakuum und Extraktion mit Toluol konnte ein türkisfarbener Feststoff erhalten werden, dessen ¹H-NMR-Spektrum in Abbildung 36 gezeigt ist.

Abbildung 36: ¹H-NMR-Spektrum (600MHz, THF- d_8) der in Umsetzung von **4-IrCl** in THF mit NaOMe bei 55 °C.

In diesem sind im aromatischen Verschiebungsbereich je zwei Singuletts bei einer Verschiebung von δ = 8.77 bzw. 8.60 ppm, zu einem Proton, zwei Dubletts von Dubletts bei δ = 8.00 bzw. 7.89 ppm zu je

zwei Protonen, zwei Tripletts bei δ = 7.58 bzw. 7.25 ppm zu je einem Proton sowie ein nicht vollständig aufgelöstes Quartett bei δ = 7.20 ppm, welches auch zu einem Proton zu integrieren ist, zu beobachten. Im aliphatischen Verschiebungsbereich ist die *tert*-Butylgruppe dem Singulett bei 1.50 ppm zuzuordnen. Außerdem ist ein Dublett bei δ = 1.47 ppm, das zu drei Protonen integriert, welches zusätzlich im H-H-COSY-Spektrum ein Kreuzsignal mit δ = 7.20 ppm besitzt, sowie ein weiteres Singulett bei δ = -0.31 ppm, ebenfalls drei Protonen, zu erkennen. Diese können aufgrund ihrer chemischen Verschiebung, sowie der durch ¹H-¹³C-HSQC zugeordneten ¹³C-Signale bei δ = 21.2 bzw. 22.4 ppm den *C*-Ketimin-Methylgruppen zugeordnet werden. Da diese nicht wie für eine C_{2v}symmetrische Verbindung erwartet homotop sind, wird von einer C₁-symmetrie des Reaktionsproduktes ausgegangen.

Aufgrund des Spektrums wird nicht von **4-IrOMe** als Reaktionsprodukt ausgegangen, da hierfür eine C_{2v} -Symmetrie erwartet wird. Außerdem sollte ein Signal, welches dem Methoxido-Liganden mit drei Protonen und einer chemischen Verschiebung zwischen 4 - 6 ppm zugeordnet werden könnte, vorhanden sein.

Durch Überschichtung einer THF-Lösung des Reaktionsproduktes mit Pentan, konnten bei -30 °C Einkristalle zur Strukturaufklärung erhalten werden. Die Ortep-Darstellung der erhaltenen Struktur ist in Abbildung 37 gezeigt, welche in der Raumgruppe *Pnma* vorliegt. Die Struktur als einfach protonierter PDI mit Kohlenstoffmonoxid-Ligand (**4^H-IrCO**) erklärt die erhaltenen NMR-Spektren und bestätigt die C₁-Symmetrie. Zusätzlich sind Bindungslängen und -winkel in Tabelle 10 aufgeführt.

Abbildung 37: Ortep-Darstellung der Molekülstruktur des Komplexes **4^H-IrCO**. Die Schwingungsellipsoide sind mit 50 % Aufenthaltswahrscheinlichkeit abgebildet. Aus Gründen der Übersichtlichkeit sind die Wasserstoffatome und drei Moleküle THF nicht mit abgebildet.

Bindungslängen [Å]		Bindungswinkel [°]	
lr1-C17	1.841(8)	C17-Ir1-N2	178.0(3)
lr1-N2	1.994(7)	C17-Ir1-N1	101.10(13)
lr1-N1	1.987(5)	N1-Ir1-N2	78.97(13)
N1-C2A	1.485(15)		
N1-C2B	1.378(15)		
C2A-C3	1.570(16)		
C2B-C3	1.388(15)		
F5-H2A	1.629		

Tabelle 10: Ausgewählte Bindungslängen und -winkel von **4^H-IrCO**, mit entsprechenden Standardabweichungen.

Das ATR-IR-Spektrum des Reaktionsproduktes zeigt zwei CO-Bande bei 1952 cm⁻¹ sowie bei 1937 cm⁻¹ (Abbildung 38). Dies deutet darauf hin, dass zwei CO-Komplexe im Bulk vorhanden sind. Es wird angenommen, dass zusätzlich zum diamagnetischen **4^H-IrCO** mit protoniertem PDI-Liganden die nicht-

protonierte Spezies **4-IrCO** vorhanden ist. Ein sehr schwaches und stark verbreitetes Signal zwischen 4 und 6 ppm lässt durch *line-broadening* deutlicher im ¹H-NMR-Spektrum erkennen, was auch auf eine weitere paramagnetische Spezies hindeutet. Ein weiteres stark verschobenes Signal ist auch zwischen -170 und 170 ppm nicht zu beobachten. Die Bildung eines solchen paramagnetischen CO-Komplexes wurde bereits von *ANGERSBACH-BLUDAU* für den Syntheseversuch einer Iridium-PDI-OMe Verbindung berichtet. Die von ihm beobachtete IR-Bande bei 1959 cm⁻¹ für den formalen Ir(0)-CO-Komplex stimmt gut mit der

Abbildung 38: Ausschnitt aus ATR-IR-Spektrum des Reaktionsprodukt der in Umsetzung von **4-IrCl** in THF mit NaOMe bei 55 °C.

hier beobachteten Bande bei 1952 cm⁻¹ überein. Wie von ihm vorgeschlagen wird vermutlich der Methoxido-Ligand dehydriert.^[120] Es wird zunächst unter einer β -H-Eliminierung der η^2 -Formaldehyd-Komplex gebildet, der unter C-H-Aktivierung weiter hydriert wird. Nach Abspaltung von H₂ und weiterer C-H-Aktivierung wird der Hydrido-Carbonylkomplex gebildet. Dieser kann nun den PDI-Liganden protonieren **4^H-IrCO** oder von einer vorhandenen Base (hier: NaOMe) deprotoniert werden **4-IrCO** (Schema 45).

Schema 45: Vorgeschlagener Reaktionsmechanismus zur Bildung von **4-IrCO** bzw. **4^H-IrCO**.^[121-122]

Aufgrund dieser Beobachtungen wurde die Darstellung von **4-IrOMe** nun bei RT mit einem Überschuss an Methanolat in einem Methanol-THF-Gemisch (10:1) durchgeführt. Nach 18 h Reaktionszeit und Entfernen des Lösungsmittels im Vakuum wurde das grüne Rohprodukt mit Toluol extrahiert und anschließend über Celite filtriert. Nach Eindampfen des Lösungsmittels im Vakuum wurde der Rückstand aus einer THF-Pentan-Mischung bei -30 °C umkristallisiert. Der grüne Methoxido-Komplex wird dabei analysenrein in einer Ausbeute von 95 % erhalten.

Das ¹H-NMR-Spektrum von **4-IrOMe** in THF-*d*₈ bei 300 MHz zeigt je ein Singulett für die 9 Protonen der *tert*-Butylgruppe und die homotopen *C*-Ketimin-Methylgruppen (6 Protonen) bei δ = 1.43 bzw. 0.28 ppm, die gegenüber den entsprechenden Resonanzen nur leicht verschoben sind. Bei δ = 4.90 ppm ist ein scharfes Singulett für drei Protonen zu beobachten. Dieses zeigt im ¹H-³¹C-HSQC-NMR-Spektrum bei δ = 4.90 ppm ein Kreuzsignal zu einer ¹³C-NMR-Resonanz, welches im ¹³C-NMR-DEPT-Spektrum als Methylgruppe identifiziert wurde. Diese ¹H-NMR-Resonanz kann somit eindeutig den Protonen des Methoxido-Liganden zugeordnet werden. Die Protonen der Pyridin-Einheit erscheinen als Singulett und sind im Vergleich zu dem entsprechenden Signal im Edukt **4-IrCl** um 0.30 ppm auf δ = 8.81 ppm tieffeldverschoben. Die Resonanzen des *N*-Ketimin-Phenyl-Substituenten sind nahezu unverändert gegenüber **4-IrCl** und bei δ = 8.03 ppm als Dublett und bei δ = 7.65 ppm als Triplett mit Integralen für 4 und 2 für die *meta*- und *para*-ständigen Protonen zu erkennen.

Die Terphenyl-substituierten Komplexe **24-IrOMe** und **28-IrOMe** lassen sich durch Umsetzung der jeweiligen Chlorido-Verbindungen mit Natriummethanolat erhalten (Schema 46).

Schema 46: Darstellung der Komplexe 24-IrOMe und 28-IrOMe.

Die Reaktion wird bei 50 °C in einem Methanol-THF-Gemisch (2:1 bzw. 1:1) durchgeführt. Nach Entfernung des Lösungsmittels im Vakuum, anschließendem Abtrennen der Salze durch Extraktion des Rückstandes in Toluol und Filtration über Celite können die Komplexe nach Eindampfen des Lösungsmittels und Umkristallisation aus THF durch Überschichten mit Pentan in Ausbeuten von 90 % für **24-IrOMe** bzw. 78 % für **28-IrOMe** erhalten werden.

Im ¹H-NMR-Spektrum in THF-*d*₈ sind die Resonanzen des Methoxido-Liganden bei δ = 5.31 ppm für **24-IrOMe** bzw. δ = 5.45 ppm für **28-IrOMe** im charakteristischen Bereich mit einem Integral von drei Protonen zu erkennen. Außerdem ist eine deutliche Hochfeld-Verschiebung der Signale der *para*ständigen Protonen am Pyridinring um 0.54 ppm auf δ = 7.93 ppm für **24-IrOMe** bzw. um 0.60 ppm auf δ = 7.78 ppm für **28-IrOMe** erkennbar, welche ebenfalls charakteristisch für Iridium-Methoxido-Verbindungen ist.^[72]

7.3. Darstellung der Azido-Verbindungen

Die Methoxido-Komplexen wurden wie in Schema 47 gezeigt mit Trimethylsilylazid im Überschuss zu den entsprechenden Azido-Verbindungen umgesetzt. Der gebildete Silylether Me₃SiOMe lässt sich aufgrund des niedrigen Siedepunktes im Vakuum entfernen. Dies hat eine leichte Aufarbeitung der Reaktion und damit auch geringe Ausbeuteverluste zur Folge. Zudem lässt sich durch Einsatz von ¹⁵N-TMSN₃ leicht eine ¹⁵N-Isotopenmarkierung erreichen.^[52]

Schema 47: Darstellung der Azido-Komplexe 4-IrN₃ (oben), 24-IrN₃ und 28-IrN₃ (unten).

Bei der Umsetzung ist ein schneller Farbumschlag von grün nach braun zu beobachten. Nach Entfernen aller flüchtigen Bestandteile im Vakuum wird der braune Rückstand mit Pentan oder Ether gewaschen. Nach Trocknen im Vakuum wurden die Azido-Komplexe ohne weitere Aufarbeitung analysenrein in guten bis quantitativen Ausbeuten erhalten.

Im ¹H-NMR-Spektrum zeigen, im Vergleich zu den entsprechenden Methoxido-Verbindungen, alle Resonanzen eine leichte bis deutliche Tieffeldverschiebung für alle drei Verbindungen. Diese Beobachtung wurde bereits für verwandte Iridium-Azido-Komplexen gemacht.^[1, 4] Daher werden die NMR-Daten nicht im Einzelnen diskutiert, sondern nur exemplarisch ¹H-NMR-Spektrum von **4-IrN₃** in THF-*d*₈ kurz besprochen. Das Signal der homotopen *C*-Ketimin-Methylgruppe ist um 0.20 ppm auf δ = 0.48 ppm verschoben, das der Pyridin-Protonen ist hochfeldverschoben auf δ = 8.57 ppm. Die Resonanzen des *N*-Ketimin-Substituenten sowie der *tert*-Butylgruppe sind nahezu unverändert. Im ¹³C-DEPTQ-NMR-Spektrum konnten 12 Signale beobachtet werden, daher ist weiterhin eine C_{2v}-Symmetrie der Verbindung auf der NMR-Zeitskala belegt.

Für Azido-Komplexe ist die Infrarot-Spektroskopie aufgrund der charakteristischen Azid-Bande eine wichtige Analysemethode. Die N₃-IR-Schwingungsbanden der im Rahmen dieser Arbeit synthetisierten Verbindungen sind in Tabelle 11 zusammengefasst. Zum Vergleich sind die entsprechenden Werte bekannter PDI-Azido-Verbindungen **1-IrN₃** ^[52] und **2-IrN₃**^[4] mit aufgelistet.

Wellenzahl [cm ⁻¹]
2027 cm ^{-1 * [52]}
2035 cm ^{-1 * [4]}
2035 cm ⁻¹
2040 cm ⁻¹
2035 cm ^{-1*}

Tabelle 11: Übersicht ATR-IR-*v*(N₃)-Azido-Valenzschwingung verschiedener Iridium-Azido-PDI-Komplexe.

* KBr-Pressling.

Im IR-Spektrum wird für die Komplex **4-IrN₃**, **24-IrN₃**, **28-IrN₃** eine starke Bande bei ca. 2035 cm⁻¹ beobachtet. Ein Vergleich mit den Werten für die literaturbekannten Azido-PDI-Verbindungen lässt auf einen terminalen Azido-Liganden schließen.^[4, 52, 72] Dabei hat das Substitutionsmuster des PDI-Liganden keinen nennenswerten Einfluss auf die Lage der Azid-Valenzschwingung.

Ein eindeutiger Beleg für die Konstitution der Verbindungen konnte durch die exemplarische Einkristallstrukturanalyse von **28-IrN**₃ erbracht werden. Die Kristallstruktur ist in Abbildung 39 dargestellt, ausgewählte Bindungslängen und -winkel sind in Tabelle 12 zusammengefasst. Der Komplex kristallisiert in der Raumgruppe P2₁/c. Die asymmetrische Einheit enthält neben **28-IrN**₃ ein Lösungsmittelmolekül THF. Die Winkelsumme um das Iridium-Zentralatom bildet 360.1 ° und weist damit auf eine quadratisch-planare Koordinationsumgebung hin. Der Azido-Ligand zeigt eine Abwinkelung um 50 ° (Ir1-N4-N5 = 130.6 °) aus der PDI-Ebene. Diese Abwinkelung ist für Gruppe-9-Pyridin,Diimin-Azido-Komplexe typisch und wurde *SUSNJAR* wie *SCHÖFFEL* eingehend untersucht. Diese beschreiben eine "Scheibenwischer"-Bewegung des Liganden in Lösung und erklären damit die im NMR-Spektrum beobachtete C_{2v}-Symmetrie.^[4, 52, 123]

0	0 0	0	0
Bindungslängen [Å]	28-IrN₃	Bindungswinkel [°]	28-IrN₃
Ir1-N4	2.005(7)	N4-Ir1-N2	178.8(2)
Ir1-N1	2.008(5)	N4-Ir1-N1/3	102.0(2)/99.5(2)
Ir1-N2	1.883(5)	N2-Ir1-N1/3	79.2(2)/79.4(2)
Ir1-N3	2.028(5)	N1-Ir1-N3	158.5(2)
N1-C2	1.340(8)	Ir1-N4-N5	130.8(6)
N3-C8	1.345(8)		
C2-C3	1.447(9)		
C7-C8	1.451(9)		

Tabelle 12: Ausgewählte Bindungslängen und Bindungswinkel der Struktur der Verbindung 28-IrN₃.

Abbildung 39: Darstellung der Festkörperstruktur des Komplexes **28-IrN**₃ (oben: Aufsicht; unten: Rückansicht). Die Schwingungsellipsoide sind mit 50 % Aufenthaltswahrscheinlichkeit abgebildet. Aus Gründen der Übersichtlichkeit sind die Wasserstoffatome und ein Lösungsmittelmolekül THF nicht mit abgebildet.

7.4. Thermochemische Untersuchungen der Azido-Komplexe

Um aus den Azido-Komplexen die gewünschten Nitrido-Komplexe zu erhalten muss unter Abspaltung von molekularem Stickstoff eine N-N-Bindung des Azido-Liganden gebrochen werden (Schema 48). Für Iridium-Azido-Komplexe kann die Reaktion entweder photochemisch^[124] oder thermisch^[4, 52, 62, 67] durchgeführt werden (vgl. Kapitel 3.3).

 $[M]-N=N=N \xrightarrow{\Delta T \text{ bzw. } h_{\nu}} [M]\equiv N + N\equiv N$ Schema 48: Allg. Bildung eines terminalen Nitrido-Komplexes durch Abspaltung von N₂.

Erhitzt man die Iridium-PDI-Nitrido-Komplexe weiter führt dies zu einer intramolekularen Folgereaktion (vgl. Kapitel 3.3). Daher muss im Vorfeld die für die Abspaltung von Stickstoff benötigte Temperatur für die Komplexe **4-IrN₃**, **24-IrN₃** und **28-IrN₃** ermittelt werden. Thermodynamische Daten wie Reaktionstemperatur und Enthalpie können aus einer dynamischen Differenzkalorimetrie (DSC) erhalten werden. Weiterhin können durch Differenz-Thermoanalyse (DTA) sowie einer thermogravimetrischen Analyse (TG) mit Massenspektrometrie zusätzlich zur benötigten Temperatur der Reaktion der Gewichtsverlust sowie die flüchtigen Abspaltungsprodukte im Trägergas untersucht werden. So lassen sich auch Einflüsse der unterschiedlichen Substituenten der Liganden auf das Reaktionsverhalten ableiten.

(TG: schwarz, DTA: rot, MS: blau; Heizrate 10 K/min).

In Abbildung 40 sind die Ergebnisse der TG/DTA-MS-Messung der Thermolyse des Komplexes **4-IrN₃** aufgetragen. In der DTA-Kurve sieht man einen vergleichsweisen breiten Prozess mit Beginn bei 122 °C und einem Minimum bei 137 °C. Zudem wurde in der Massenspektrometrie des Ar-Trägergases Stickstoff durch das Signal mit einem m/z = 28 nachgewiesen. Der Massenverlust während dieses

Prozesses beträgt 3.6 % (122 - 155 °C). Für die Abspaltung von N₂ wurde ein Wert von 3.2 % berechnet. Im Rahmen der Toleranz ist dies eine gute Übereinstimmung und deutet zusammen mit dem detektierten Stickstoff auf den Abspaltungsprozess von N₂ und die Bildung der Nitrido-Verbindung hin. Zudem ist bei einer Temperatur von 212 °C ein weiterer Prozess zu beobachten. Bei diesem wird eine geringe Menge N₂ freigesetzt. Dies könnte auf eine beginnende Zersetzung des Nitrido-Komplexes hindeuten.

Zusätzlich wurde auch eine dynamische Differenzkalorimetrie-Messung durchgeführt. Die Auftragung der Messdaten ist in Abbildung 41 zu sehen. In dieser ist ein exothermer Prozess für den ersten Reaktionsschritt bei 141 °C zu beobachten. Ab 170 °C setzt ein zweiter Prozess ein, der ein Maximum bei 221 °C hat, mit einem nachfolgenden und gut separierten dritten Signal mit einem Maximum bei 244 °C. Alle drei Prozesse sind exotherm. Aus der Integration der Flächen der Signale können die Enthalpien mit $\Delta H = -12$ kcal/mol, -9 kcal/mol und -5 kcal/mol für den jeweiligen Prozess bestimmt werden.

Abbildung 41: DSC-Kurven des Komplexes 4-IrN₃ im Bereich von 50 °C bis 300 °C (Heizrate 10 K/min).

Der erste Prozess, welcher der Abspaltung von Distickstoff durch die TG-MS-Messung zugeordnet wurde, ist mit -12 kcal/mol etwas exothermer als der vergleichbare Prozess des Komplexes **2-IrN₃**^[4] mit -11 kcal/mol. Zudem wird eine höhere Temperatur von 141 °C im Vergleich. zu 114 °C^[4] benötigt. In anderen bisher bekannten Iridium-Azido-Komplexen ist nur ein zusätzlicher Prozess bei hohen Temperaturen zu beobachten. Dieser wird für **1-IrN** der Bildung des sog. "Tuck-In"-Komplexes **1-IrTI** zugeschrieben und setzt -21 kcal/mol für **1-IrN** bei einer Temperatur 168 °C^[52] bzw. -23 kcal/mol bei 196 °C für **2-IrN**^[4] frei. Die Prozesse zwei (-9 kcal/mol; 221 °C) und drei (-5 kcal/mol; 244 °C) im vorliegenden Komplex sind hingegen selbst in Summe energieärmer und liegen bei höheren

Temperaturen vor. Dies spricht gegen die Bildung eines "Tuck-In"-analogen-Komplexes und für andere Arten von Folgereaktionen.

Für den Komplex **24-IrN**₃ ist die entsprechende DSC-Kurve in Abbildung 42 dargestellt. In dieser sind zwei exotherme Prozesse zu sehen. Für den ersten exothermen Prozess (Maximum bei 124 °C) konnte eine Enthalpie von $\Delta H = -5$ kcal/mol bestimmt werden. Der zweite Prozess besitzt ein deutlich schärferes Signal mit einem Maximum bei 280 °C. Für diesen konnte die Enthalpie ΔH mit -23 kcal/mol bestimmt werden. Die erhaltenen Werte für die jeweilige Reaktionsenthalpie des Prozesse sprechen zusammen mit der Temperatur für eine Abspaltung von Distickstoff im ersten exothermen Prozess.

Die freiwerdende Energie des zweiten Prozesses liegt mit $\Delta H = -23$ kcal/mol im Bereich einer C-H-Bindungsaktivierung wie es aus der Bildung des "Tuck-In"-Komplexes **1-IrTI** aus **1-IrN** beschrieben wurde.^[4, 52]

Abbildung 42: Auftragung der dynamischen Differenzkalorimetrie (DSC) von Verbindung **24-IrN**₃ im Bereich von 50 °C bis 300 °C (Heizrate 10 K/min).

Die Auftragungen der DSC-Messung (rot) sowie einer TG-Messung (schwarz) des zweiten Terphenylsubstituierten Komplexes **28-IrN**₃ sind in Abbildung 43 gezeigt. In diesen ist keine Basisline über den gesamten Messbereich ersichtlich. In der DSC-Kurve (rot) ist ein exothermer Prozess mit einem Maximum bei 116 °C zu erkennen. Aus der Integration mit einer abgeschätzten Basisline konnte die Enthalpie $\Delta H = -2$ kcal/mol für diesen Prozess erhalten werden. Weitere Prozesse sind aufgrund des Abfallens der DSC-Kurve nicht klar zu erkennen. Dieses Verhalten konnte bei mehreren individuell dargestellten und gemessenen Proben der Verbindung **28-IrN**₃ reproduziert werden. In der Thermogravimetrie ist ein ähnlich abnehmender Trend erkennbar. Eine Stufe mit einem prozentualen Masseverlust von 2.6 % ist zwischen 95 °C und 124 °C erkennbar, eine weitere zwischen ca. 142 °C und 210 °C mit einem Masseverlust von 6.1 %. Für den Abspaltungsprozess von N₂ aus **28-IrN₃** wird ein Massenverlust von 2.5 % erwartet. Dieser stimmt mit der ersten Stufe der Thermogravimetrie (2.6 %) gut überein. Zusammen mit der Temperatur von 116 °C und dem relativ breiten Signal in der DSC ist dies ein Indiz für die Abspaltung von N₂ in diesem Prozess. Die Enthalpie des Prozesses ist im Vergleich mit anderen Azido-Verbindungen mit $\Delta H = -2$ kcal/mol klein (Tabelle 13). Der enthaltene Fehler der Integration ist aufgrund der fehlenden Basisline der Messungen allerdings sehr groß. Aus diesem Grund können die weiteren thermischen Prozesse in der DSC nicht erkannt bzw. analysiert werden. Die zweite Stufe des Massenverlustes in Höhe 6.1 % in der TG könnten der Freisetzung eines Moleküls THF (m = 6.1 %) aus der Verbindung zugerechnet werden. Dieses ist in der Kristallstruktur und im ¹H-NMR-Spektrum der Substanz sichtbar und konnte nicht durch Vakuum (10⁻⁵ mbar) entfernt werden.

Abbildung 43: Auftragung der DSC-Kurven und TG-Messung des Komplexes **28-IrN**₃ im Bereich von 50 °C bis 300 °C (Heizrate 10 K/min).

Die für die Umsetzung zum Nitrido-Komplex wichtigen thermochemischen Daten aus den DSC-Untersuchungen der Azido-Komplexe sind in Tabelle 13 zusammengefasst. Hierbei zeigt sich, dass die N₂ Abspaltung unabhängig vom Liganden in einem ähnlichen Temperaturbereich, zwischen 114 °C und 141 °C stattfindet. Die Abspaltungsenthalpie ΔH ist für die Komplexe mit teilchlorierten bzw. teilfluorierten Liganden mit -11 bzw. -12 kcal/mol ungefähr doppelt so hoch wie für den Dipp- bzw. Terphenyl-substituierten Liganden **24**. Für die Folgeprozesse zeigen sich allerdings größere Auswirkungen des Ligandensystems. So ist ein weiterer exothermer Prozess für **4** erst bei 221 °C bzw. bei 280 °C für **24** zu beobachten. Dies zeigt, dass durch eine Veränderung des Liganden-Systems die thermische Stabilität des Nitrido-Komplexes deutlich gesteigert werden konnte.

78 | Synthese und Untersuchung von Iridium-Nitrido-Komplexen

Ligand	N ₂ -Abspaltung / Prozess 1		Prozess 2		Prozess 3	
	T _{min} [°C]	ΔH	T _{min} [°C]	ΔH	T _{min} [°C]	ΔΗ
		[kcal/mol]		[kcal/mol]		[kcal/mol]
1	122	-6	173	-21	-	-
2	114	-11	196	-23	-	-
4	141	-12	221	-9	244	-5
24	124	-5	280	-23	-	-
28	116	-2*	-	-	-	-

Tabelle 13: Übersicht über die Temperatur der Stickstoffabspaltung und der entsprechenden Entropie der per DSC-Untersuchten Iridium-Azido-Komplexe.

* Aufgrund der abgeschätzten Basisline mit großen Fehlern behaftet.

7.5. Darstellung und Untersuchung des Nitrido-Komplexes 4-IrN

Nach der Bestimmung der thermochemischen Daten zur Abspaltung von Distickstoff aus den Azido-Komplexen erfolgt nun die Darstellung der Nitrido-Komplexe. In der Arbeitsgruppe wurde die lösungsmittelfreie Thermolyse der Azido-Komplexe im Feststoff unter Vakuum etabliert.

4-IrN₃ wurde aufgrund der erhaltenen DSC-Daten für die Abspaltung von Stickstoff für 17 Stunden auf 140 °C im Vakuum erhitzt (Schema 49). **4-IrN** konnte als schwarz-violettes Pulver erhalten werden.

Schema 49: Thermolyse von 4-IrN3.

Ein Vergleich der in Abbildung 44 gezeigten ATR-IR-Spektren des Edukts (grün) und Produkts (violett) zeigt, dass die Azido-Schwingungsbande des Edukts 4-**IrN**³ bei 2035 cm⁻¹ nach der Thermolyse zu **4-IrN** vollständig verschwunden ist und belegt so eine vollständige Umsetzung. Bei 950 cm⁻¹ ist im Produktspektrum (violett) eine neue IR-Schwingungsbande im Schwingungsbereich um 955-958 cm⁻¹ zu beobachten, der für Ir-N_{nitrido}-Schwingungsbanden von bisherigen Iridium-Nitrido-Komplexen bekannt ist. ^[4, 52]

Abbildung 44: ATR-IR-Spektren der Verbindungen 4-IrN₃ (grün) und 4-IrN (violett).

Weiterhin wurde die Verbindung **4-IrN** mittels NMR-Spektroskopie untersucht. Hier wurde nach der Thermolyse ca. 10 mg der Verbindung in THF-*d*₈ bei Raumtemperatur gelöst und direkt im Anschluss gemessen. Hierbei fiel auf, dass die Intensitäten der Signale sehr gering waren und innerhalb von Minuten immer weiter abnehmen. In Abbildung 45 sind die ¹⁹F-NMR-Spektren bei RT der Verbindung **4-IrN** über 10 min direkt nach dem Lösen der Verbindung in THF-*d*₈ gezeigt. Zudem ist eine Farbveränderung der Probe von violett auf braun zu erkennen, was auf eine Folgereaktion in Lösung hindeutet.

Abbildung 45: ¹⁹F-NMR-Spektren (THF-*d*₈; 282 MHz, RT) der Verbindung **4-IrN** über 10 min.

Um die Verbindung besser zu untersuchen wurde eine Probe bei tiefen Temperaturen ¹H-NMRspektroskopisch untersucht. Hierfür wurde bei -196 °C THF-*d*₈ auf die vorgelegte Verbindung kondensiert und im vorgekühlten Probenkopf im Spektrometer auf -60 °C erwärmt. Das ¹H-NMR-Spektrum (Abbildung 46) bei -60 °C zeigt, dass für Komplexe mit Liganden **4** bekannte Signalmuster. Im aromatischen Bereich befinden sich drei Resonanzen, bei δ = 8.70 ppm das Singulett der Protonen der Pyridin-Einheit, bei 8.14 ppm und 7.69 ppm ein Dublett bzw. Triplett für die Protonen des aromatischen *N*-Ketimin-Substituenten. Das Integralverhältnis der Resonanzen beträgt hier wie erwartet 2:4:2. Im aliphatischen Bereich sind zwei Signale bei δ = 1.52 ppm (*t*Bu) und 3.57 ppm (Me) zu beobachten. Im Vergleich zum Azido-Komplex sind die Resonanzen der Ketimin-Methylgruppe am deutlichsten um δ = 3.12 ppm von 0.45 ppm auf 3.57 ppm verschoben.

Abbildung 46: ¹H-NMR-Spektrum (THF-*d*₈, 300 MHz) der Verbindung **4-IrN** bei -60 °C.

Weiterhin wurde ein UV/Vis-Spektrum der Verbindung **4-IrN** aufgenommen, um zu untersuchen, ob eine, wie für **1-IrN** charakteristische, sehr breite Absorptionsbande zwischen 650-900 nm zu beobachten ist. Das UV/Vis-Spektrum von **4-IrN** (schwarz, Abbildung 47 links) wurde in einer 10 mm Quarzküvette in THF bei Raumtemperatur aufgenommen. Es zeigt neben den Absorptionsmaxima bei 440 nm und 605 nm eine breite Absorptionsbande von 650 bis 950 nm. Das Absorptionsspektrum von **4-IrN** zeigt mit dem von **1-IrN** (violett) große Ähnlichkeit, es ist allerdings leicht rotverschoben. Im Unterschied zu den NMR-Messungen konnte über einen Zeitraum von zwei Stunden keine Veränderungen des Spektrums beobachtet werden.

Abbildung 47: UV/Vis Spektren links: Iridium-Nitrido-Komplexe mit **1-IrN**, (violett), **4-IrN**, (schwarz); Rechts: Verfolgung der postulierten Dimerisierung in einer 1 mm Flachküvette.

Ein wesentlicher Unterschied der Probelösungen zwischen NMR- und UV/Vis-Spektroskopie ist die jeweilige Konzentration der Probe, welche bei UV/Vis um den Faktor 100 niedriger ist. Daher wurden um den Einfluss der Konzentration auf die Stabilität der Probe zu belegen, erneut Absorptionsspektren über zwei Stunden in einer 1 mm Flachküvette bei RT und 10facher Konzentration aufgenommen. In den Spektren in Abbildung 47 rechts ist deutlich eine Veränderung des Spektrums über die Zeit zu beobachten. So nimmt die Absorptionsbande bei 605 nm sowie eine breite Bande mit dem Maximum bei ca. 800 nm ab und zwei neue Banden bei 530 nm und 740 nm entstehen. Außerdem ist bei 778 nm ein isosbestischer Punkt zu beobachten. Die Reaktion verläuft immer noch deutlich langsamer als im

NMR-Experiment, was vermutlich an der im Vergleich zum NMR-Experiment 10fach niedrigeren Konzentration liegt.

Der Zusammenhang zwischen Konzentration der Lösung und der Geschwindigkeit der beobachteten Reaktion legt eine bimolekulare Reaktion nahe. Eine mögliche Erklärung hierfür wäre die Dimerisierung zu einem verbrückten μ-N₂-Komplex **32** wie in Schema 50 dargestellt. Wie in der Einleitung bereits erwähnt, ist dieser Reaktionstyp für Iridium-Nitrido-Komplexe bekannt und konnte z.B. durch *SCHNEIDER*^[124] mit einem PNP-*Pincer*-System gezeigt werden. Für PDI-Komplexe wurde dieser Reaktionstyp diskutiert und DFT-Rechnungen zeigten, dass das Dimerisierungsprodukt thermodynamisch stark favorisiert ist und als Triplett vorliegt.^[52, 62] Das hier beobachtete Verschwinden der NMR-Signale könnte durch den Spinzustand der postulierten Verbindung **32** erklärt werden können.

Aus einem Kristallisationsansatz durch Überschichten einer THF-Lösung mit Pentan im Tiefkühlschrank bei -30 °C konnten nach mehreren Monaten Einkristalle zur Strukturaufklärung erhalten werden. Die erhaltene Struktur liegt in der Raumgruppe *P*-1 vor. Neben dem Komplexmolekül **32** (Abbildung 48) liegt ein Molekül THF in der asymmetrischen Einheit vor. Aufgrund der unzureichenden Güte des Kristalles konnte die Struktur nicht vollständig anisotrop verfeinert werden, daher wird von einer Diskussion der Bindungslängen bzw. -winkel abgesehen. Trotzdem konnte hierdurch die Konstitution bestimmt und somit die mögliche und zumindest teilweise Bildung des dimeren μ-N₂-Komplexes gezeigt werden.

Abbildung 48: Darstellung der Festkörperstruktur des dimeren μ-N₂-Ir-Komplexes **32**. Die Schwingungsellipsoide sind mit 50 % Aufenthaltswahrscheinlichkeit abgebildet. Aus Gründen der Übersichtlichkeit sind die Wasserstoffatome und ein Lösungsmittelmolekül THF nicht mit abgebildet.

Um die vermutete Dimerisierung weiter zu bestätigen, wurde versucht den verbrückten Distickstoff-Komplex **32** unabhängig darzustellen. Im Unterschied zu den Iridium-PDI-Komplexen ist für Rhodium ein Zugang zu verbrückten μ -N₂-Komplex bekannt. Für die Darstellung dieser verbrückten Rhodium-Distickstoff-Komplex wird der PDI-Rh-Chlorido-Komplex mit Xylyl-Substituenten an der *N*-Ketimin-Funktion mit Natriumamalgam unter Stickstoff-Atmosphäre reduziert.^[62] Es wurde zunächst mittels Cyclovoltammetrie das Potential für die erste Reduktion von **4-IrCl** in THF mit E⁰ = -1.95 V ermittelt. Für die Reduktion kann daher auch NaHg (E⁰ = -2.36 V) verwendet werden.^[73] Entgegen der Erwartung konnte bei der Umsetzung von **4-IrCl** mit einem Überschuss an 1 %iger NaHg in THF keine Reaktion beobachtet werden und nach Abtrennen des NaHg sowie Entfernen des Lösungsmittels wurde die Ausgangsverbindung **4-IrCl** zurückerhalten.

Schema 50: Dimerisierung zu einem μ-N₂-Komplex **32** (links), rechts Versuch der alternativen Darstellung.

Für einen in unserer Arbeitsgruppe isolierten analogen Distickstoff-verbrückten PDI-Rhodium-Komplex ist die Reaktivität gegenüber Methylenchlorid gut beschrieben.^[68, 125] Hierbei reagiert der Stickstoff-Komplex mit Methylenchlorid zur entsprechenden Chlorido-Verbindung. Dies wurde für die Verbindung **32** in einem NMR-Experiment ebenfalls untersucht. Hierbei wurde wie in Schema 51 gezeigt **4-IrN** in THF-*d*₈ gelöst und nach einer Stunde konnte durch das Verschwinden des Signales bei $\delta = -59.1$ im ¹⁹F-NMR Spektrum die Umsetzung bestätigt werden. Nach Zugabe von CD₂Cl₂ wurde nach einem Tag ein NMR-Spektrum der Reaktionslösung aufgenommen. Es konnte die Bildung des Chlorido-Komplexes **4-IrCl** durch die entsprechenden Signale bei $\delta = 8.51$ (s), 8.06 (d), 7.60 (t), 1.44 (s) sowie 0.45 (s) nachgewiesen werden (vgl. Seite 64f). 84 | Synthese und Untersuchung von Iridium-Nitrido-Komplexen

Schema 51: Dimerisierung des Iridium-Komplexes **4-IrN** zu einem μ-N₂-Komplex mit anschließender Reaktion nach Zugabe von Methylenchlorid zum Iridium-Chlorido-Komplex **4-IrC**I.

Weiterhin wurde die Reaktivität des Komplexes **4-IrN** gegenüber Silanen untersucht. Hierfür wurde eine Lösung von **4-IrN** in THF bei -35 °C mit einem Überschuss an *tert*-Butyldimethylsilan versetzt und zwei Minuten in einem vorgekühlten Kühlblock gerührt. Nach Entfernen des Kühlblocks wurde die Reaktionslösung für 3 Stunden bei Raumtemperatur gerührt (Schema 52) und anschließend das Lösungsmittel im Vakuum abgedampft. Nach Waschen des Rückstandes mit einer THF-Hexan-Mischung sowie Pentan konnte der entsprechende Silylamid-Komplex **4-IrNHSi** als schwarzer Feststoff in 46 % Ausbeute isoliert werden.

Schema 52: Umsetzung des Nitrido-Komplexes 4-IrN zum Silylamid-Komplex 4-IrNHSi.

Im ¹H-NMR-Spektrum in C₆D₆ sind nach der Umsetzung die Resonanzen der Pyridinprotonen bei $\delta = 8.69$ ppm als Singulett sowie die Protonen des *N*-Ketimin-Substituenten bei einer Verschiebung von $\delta = 7.53$ ppm als Dublett bzw. 6.80 ppm als Triplett zu erkennen. Das Integralverhältnis der Signale der aromatischen Protonen beträgt 2:4:2. Außerdem sind die Resonanzen der *tert*-Butylgruppe des PDI-Liganden bei $\delta = 1.23$ ppm und die der *C*-Ketimin-Methylgruppe deutlich im Hochfeld bei -0.23 ppm zu beobachten. Die Resonanzen des Silylamid-Liganden sind als Singuletts bei $\delta = 0.80$ ppm für die *tert*-Butylgruppe mit einem Integral von 9 und -0.05 ppm für die beiden Methylgruppen mit einem Integral von 6 zu beobachten. Das Signal des Silylamid-Protons konnte in C₆D₆ nicht beobachtet werden. Das stark hochfeldverschobene Signal der *C*-Ketimin-Methylgruppe ist charakteristisch für Silylamid-PDI-Verbindungen und liegt im Bereich bekannter Silylamid-Iridium-PDI-Komplexe.^[67] Im ¹⁹F-NMR-Spektrum konnte eine Resonanz bei -65.1 ppm für die CF₃-Gruppen beobachtet werden.

Weiterhin konnten Einkristalle zur Strukturaufklärung erhalten werden. Die Molekülstruktur liegt in der tetragonalen Raumgruppe /4 vor. Die Ortep-Darstellung der Struktur ist in Abbildung 49 dargestellt. Ausgewählte Bindungslängen und -winkel sind in Tabelle 14 zusammengefasst und zeigen keine Auffälligkeiten und werden daher nicht näher diskutiert.

Abbildung 49: Ortep-Darstellung des Komplexes **4-IrNHSi**. Die Schwingungsellipsoide sind mit 50 % Aufenthaltswahrscheinlichkeit abgebildet. Aus Gründen der Übersichtlichkeit sind die Wasserstoffatome und ein Lösungsmittelmolekül nicht mit abgebildet.

			_
Bindungslängen [Å]		Bindungswinkel [°]	
Ir1-N4	1.968(6)	N1-Ir1-N4	65.6(3)
Ir1-N2	1.889(6)	N3-Ir1-N4	107.6(3)
lr1-N1	2.022(6)	N2-Ir1-N4	174.7(3)
Ir1-N3	2.047(7)	N1-Ir1-N2	79.1(3)
N1-C2	1.337(10)	N3-Ir1-N2	77.7(3)
N3-N8	1.339(10)	Ir1-N4-Si1	151.0(5)
C2-C3	1.442(11)		
C7-C8	1.439(11)		
N4-Si1	1.712(7)		

Tabelle 14: Ausgewählte Bindungslängen und Bindungswinkel der Struktur der Verbindung 4-IrNHSi.

Weitere Untersuchungen der Reaktivität von **4-IrN** wurden aufgrund der Thermolabilität des Komplexes **4-IrN** in Lösung nicht durchgeführt, stattdessen wurden die Terphenyl-substituierten Komplexe betrachtet.

7.6. Untersuchung der Terphenyl-substituierten Komplexe 24-IrN und 28-IrN

Der Komplex **24-IrN** wurde gemäß Schema 53 dargestellt. Hierfür wurde die Azido-Verbindung **24-IrN**₃ im Vakuum auf 80 °C erwärmt, um durch Abspaltung von Distickstoff ohne weitere Aufarbeitung quantitativ den Nitrido-Komplex **24-IrN** zu erhalten.

Schema 53: Darstellung des Nitrido-Komplexes 24-IrN.

Um die Vollständigkeit der Reaktion zu bestätigen, wurde ein ATR-IR-Spektrum aufgenommen. In Abbildung 50 ist in grün das Spektrum des Eduktes mit der starken Azido-Schwingungsbande bei 2040 cm⁻¹ sowie das Spektrum nach der Thermolyse in violett gezeigt. In diesem ist zu sehen, dass die Azido-Schwingungsbande nicht mehr vorhanden ist sowie, dass eine neue Bande bei 948 cm⁻¹ zu beobachten ist. Für die eindeutige Zuordnung dieser Bande wurde die 50% ig ¹⁵N-isotopenmarkierte Verbindung **24-Ir¹⁵N** untersucht. Dieser Komplex wurde durch Umsetzung der Verbindung **24-IrOMe** mit ¹⁵N-TMSN₃ und anschließender Thermolyse der Azido-Verbindung **24-Ir¹⁵N**₃ dargestellt. Das IR-Spektrum dieser zu 50 % angereicherten isotopologen Verbindung zeigt eine zusätzliche rotverschobene Schwingungsbande bei $\tilde{\nu}(Ir-^{15}N) = 920 \text{ cm}^{-1}$ ($\tilde{\nu}(Ir-^{15}N)_{\text{berechnet}} = 916 \text{ cm}^{-1}$)**, die es erlaubt, diese Bande eindeutig der Ir=N Valenzschwingung zuzuordnen.

 $^{^{**} \}tilde{\nu}_{Ir^{15}N} = \sqrt{\frac{\mu_{Ir^{14}N}}{\mu_{Ir^{15}N}}} \tilde{\nu}_{Ir^{14}N} \text{ mit } \tilde{\nu}: \text{Wellenzahl}; \mu: \text{reduzierte Masse.}$

Synthese und Untersuchung von Iridium-Nitrido-Komplexen | 87

Abbildung 50: IR-Spektren der Verbindungen 24-IrN₃ (grün), und 24-IrN (violett).

Auch im ¹H-NMR-Spektrum lässt sich die Umsetzung des Azido-Komplexes **24-IrN**₃ zum Nitrido-Komplex beobachten. Dies wird an der Verschiebung der Singuletts der homotopen Methylprotonen der Ketimingruppe besonders deutlich. Diese wird in THF-*d*₈ von δ = 0.67 ppm (**24-IrN**₃) nach 3.05 ppm stark tieffeldverschoben. In Gegensatz dazu ist das Triplett des *para*-ständigen Pyridinprotons von δ = 8.32 ppm weit zu 6.42 ppm im Nitrido-Komplex **24-IrN** hochfeldverschoben. Im ¹³C-NMR-Spektrum ist ebenfalls eine Hochfeldverschiebung um 42.7 ppm auf δ = 119.2 ppm für das *para*-ständige Pyridin-Kohlenstoffatom zu beobachten. Dieses Verhalten ist von den bisher isolierten Iridium-Nitrido-Komplexen ebenfalls bekannt.^[52]

Abbildung 51: Ortep-Darstellung des Komplexes **24-IrN**. Die Schwingungsellipsoide sind mit 50 % Aufenthaltswahrscheinlichkeit abgebildet. Aus Gründen der Übersichtlichkeit sind die Wasserstoffatome und die Lösungsmittelmolekül nicht mit abgebildet.

Auch vom Komplex **24-IrN** konnte eine Einkristallstruktur erhalten werden. Die Kristalle wurden durch Überschichten einer THF-Lösung mit Pentan im Tiefkühlschrank bei -30 °C erhalten. In der Elementarzelle liegt ein Komplexmolekül vor und die Struktur, welche als Ortep-Darstellung in Abbildung 51 gezeigt ist, liegt in der Raumgruppe *P*-1 vor. Ausgewählte Bindungslängen und -winkel sind in Tabelle 15 gezeigt, die Bindungslänge der Ir-N_{Nitrido}-Bindung ist mit 1.699(3) Å um 0.05 Å länger als für den entsprechenden Iridium-Nitrido-Komplexen **1-IrN**.^[52] Die Winkelsumme der Bindungswinkel um das Iridium-Zentralatom bildet 360.0° und bestätigt damit die quadratisch-planare Koordinationsumgebung. Ferner zeigt der Komplex **24-IrN** im Festkörper eine idealisierte C_{2V}-Symmetrie der Pyridin-Einheit. Aufgrund der im Mittel um 0.024 Å verkürzten C_{Imin}-C_{Py}- und um 0.010 Å verlängerten C-N_{imin}-Bindung ist im Vergleich zu **24-IrCl** von einem reduzierten PDI-Liganden auszugehen. Für **1-IrN** konnten vergleichbare Abstände der PDI-Einheit gemessen werden.^[52, 65, 72]

•	Bindungslängen [Å]	24-IrN	Bindungswinkel [°]	24-IrN
	Ir1-N4	1.699(3)	N4-Ir1-N2	177.71(13)
	lr1-N1	2.031(3)	N4-Ir1-N1/3	104.19(12) / 104.44(13
	lr1-N2	1.995(3)	N2-Ir1-N1/3	76.05(11) / 75.39(11)
	Ir1-N3	2.031(3)	N1-Ir1-N3	151.35(11)
	N1-C2	1.338(4)	Ir1-N1-C10	121.0(2)
	N3-C8	1.336(4)	Ir1-N3-C16	120.4(2)
	C2-C3	1.420(5)		
_	C7-C8	1.409(4)		

Tabelle 15: Ausgewählte Bindungslängen und -winkel der Struktur der Verbindung 24-IrN.

Um im Weiteren die Reaktivität des Nitrido-Komplexes **24-IrN** zu untersuchen, wurde **24-IrN** sowohl in THF- d_8 als auch in C₆D₆ auf 60 °C erhitzt. Hierbei wurde festgestellt, dass es in Benzol zu einer Reaktion kommt, in THF dagegen nicht.

Daraufhin wurde der Nitrido-Komplex **24-IrN** in Benzol für 16 h auf 50 °C erwärmt und nach Entfernen des Lösungsmittels im Vakuum das in Abbildung 52 unten gezeigte ¹H-NMR-Spektrum in THF-*d*₈ des Rohproduktes aufgenommen. Die Signalsätze des Edukts sind darin nicht mehr zu beobachten. Im aromatischen Verschiebungsbereich sind eine Vielzahl von Signalen zwischen δ = 7.5 - 8.5 ppm zu erkennen, welche nicht zugeordnet werden konnten. Das Dublett bei δ = 8.13 ppm besitzt ein Integral von zwei und kann den *meta*-Pyridinprotonen einer PDI-Einheit zugeordnet werden. Im aliphatischen Verschiebungsbereich hingegen sind weiterhin zwei einzelne Singuletts bei δ = 2.50 ppm bzw. 0.58 ppm zu beobachten. Diese können der Methylgruppe der Terphenyleinheit bzw. der *C*-Ketimineinheit zugeordnet werden. Außerdem ist ein verbreitertes Singulett mit einem Integral von zwei bei einer Verschiebung von δ = 6.08 ppm zu erkennen. Dieses Singulett konnte im Spektrum der Umsetzung mit C₆D₆ nicht beobachtet werden. Das Vorhandensein je eines Signalsatzes für die Methylgruppen sowie für die *meta*-Pyridinprotonen deutet hierbei auf eine weiterhin erhaltene C_{2v}-Symmetrie des Reaktionsproduktes hin und ist ein Indiz gegen eine intramolekulare C-H-Ligand-Aktivierung, vergleichbar mit der Bildung des Iridium-"Tuck-In"-Komplexes **1-IrTI**.

Abbildung 52: ¹H-NMR-Spektren in THF-*d*₈ (300 MHz). Oben: des Nitrido-Komplexes **24-IrN**; unten: Nach Reaktion mit Benzol.

Das Weiteren spricht auch die geringe Reaktionstemperatur von 50 °C gegen eine thermische intramolekulare Folgereaktion des Komplexes **24-IrN**, da in den thermochemischen Untersuchungen (Abbildung 42, S76) eine thermische Stabilität des Komplexes bis über 250 °C festgestellt wurde.

SCHÖFFEL beobachtete, dass sich der Azido-Komplex **1-IrN**³ in Benzol oder THF bei Raumtemperatur langsam in den Amido-Komplex **1-IrNH**² umwandelt. Vergleicht man die spektroskopischen Daten des Amido-Komplexes **1-IrNH**² sind Übereinstimmungen zu dem in Abbildung 52 unten gezeigten Spektrum zu erkennen. So ist ein verbreitertes Singulett bei einer Verschiebung von 5.99 ppm (vgl. zu 6.08 ppm) den Protonen des Amido-Liganden zuzuordnen und liegt somit im selben Verschiebungsbereich. Weitere zu erkennende Ähnlichkeiten sind das Singulett der *C*-Ketimin-Methylgruppe mit 0.58 ppm sowie das stark tieffeldverschobene Dublett der *meta*-Pyridinprotonen bei $\delta = 8.13$ ppm.^[65]

Schema 54: Postulierte Reaktion von 24-IrN in Benzol bei 50 °C.

Aufgrund der Ähnlichkeiten der Verschiebungen zu **1-IrNH**₂ wurde die in Schema 54 gezeigte Reaktion postuliert. Um diese zu bestätigen wurde die Reaktion mit 50%-¹⁵N-Isotopenmakiertem **24-Ir¹⁵N** durchgeführt. Bei der entsprechenden NMR-Untersuchung des Reaktionsproduktes konnte durch

¹H-¹⁵N-HSQC-Spektroskopie eine ¹⁵N-Resonanz bei einer Verschiebung von 129.7 ppm beobachtet werden. Weiterhin sind im ¹H-NMR-Spektrum drei verbreiterte Singuletts bei δ = 6.14, 6.08 und 6.01 ppm mit einem Integralverhältnis von 0.5:1:0.5 zu erkennen. Die Resonanz im ¹⁵N-NMR-Spektrum deutet aufgrund der Verschiebung auf eine NH₂-Gruppe hin. SCHÖFFEL konnte für **1-IrNH**₂ eine Verschiebung von δ = 133 ppm für die Amido-Resonanz ermitteln. Die drei verbreiterten Signale im ¹H-NMR-Spektrum deuten ebenso auf Amido-Proton hin.^[52] Aufgrund der 50% igen Isotopenmarkierung wird sowohl das Signal aus der nicht markierten Verbindung bei 6.08 ppm zu erkennen sein, sowie ein Signal, welches durch die Kopplung mit dem isotopologen ¹⁵N-Stickstoff ein Dublett mit einer Kopplungskonstante von ca. 74 Hz

Abbildung 53: Ausschnitt aus dem ¹H-NMR-Spektrum (THF-*d*₈); oben **24-IrN;** Mitte **24-IrNH**₂ unten **24-Ir¹⁵NH**₂.

ergibt. Diese wird auch beobachtet (Abbildung 53, δ = 6.14; 6.01 ppm bei 600 MHz).

Eine vollständige Abtrennung der im NMR-Spektrum beobachteten Nebenprodukte durch Waschen mit Pentan bzw. Ether sowie durch Umkristallisation war trotz einiger Versuche nicht erfolgreich, weshalb eine vollständige Charakterisierung des vermuteten Reaktionsproduktes im Rahmen dieser Arbeit nicht erfolgte. Die NMR-spektroskopischen Untersuchungen legten nahe, dass es sich um die postulierte Verbindung **24-IrNH**₂ handelt. Durch das Fehlen der Resonanzen der Amido-Protonen im ¹H-NMR-Spektrum bei der Umsetzung in C₆D₆ kann davon ausgegangen werden, dass die Abstraktion der Protonen aus dem Lösungsmittel erfolgt.

Die Darstellung des ^tPhenyl-substituierten Nitrido-Komplexes **28-IrN** wird analog zu den vorherigen Synthesen von Nitrido-Komplexen im Festkörper bei 80 °C durchgeführt (Schema 55). Der Nitrido-

Komplex lässt sich quantitativ ohne weitere Aufarbeitung erhalten, wobei ein Farbveränderung des Feststoffes von braun-violett nach grün zu beobachten ist.

Schema 55: Darstellung des Nitrido-Komplexes 28-IrN.

Im ¹H-NMR-Spektrum in THF- d_8 ist im Tieffeld ein Dublett bei δ = 7.87 ppm mit einem Integral von 2 zu beobachten, welches den meta-Pyridinprotonen durch H-H-COSY-Spektren eindeutig zugeordnet wurde. Ein weiteres Dublett bei δ = 7.17 ppm mit einem Integral von 4 wird den *ortho*-Protonen des C-Ketimin-Substituenten zugeordnet. Weiterhin sind zwei Multipletts von 7.12-6.96 ppm mit einem Integral von 24, welche den aromatischen Protonen des Terphenyl-Substituenten durch 2D-NMR-Spektroskopie zugeordnet wurden, sowie 6.69 - 6.59 ppm mit einem Integral von 5 zu erkennen. Dieses besteht aus einem überlappenden Triplett δ = 6.59 ppm sowie einem Dublett δ = 6.53 ppm, welches zum einem dem para-Pyridinproton (t) und meta-Protonen des C-Ketimin-Substituenten (d) zugeordnet wurde. Wie für 1-IrN bzw. 24-IrN ist die starke Hochfeldverschiebung des para-Pyridinprotons um 1.69 ppm gegenüber der entsprechenden Resonanz im Edukt 28-IrN₃ charakteristisch zu beobachten. Da für die Methyl-, die tert-Butylgruppen sowie die meta-Pyridinprotonen jeweils nur eine Resonanz zu beobachten sind, können diese als homotop angenommen werden und es ist von einer C2v-Symmetrie des Komplexes in Lösung auf der NMR-Zeitskala auszugehen. Dies wird von den 19 im ¹³C-NMR-Spektrum zu beobachtenden Signalen, wovon drei im Bereich für aliphatische Kohlenstoffe zwischen 21.1 ppm und 31.8 ppm zu finden sind und 16 zwischen 121.7 ppm und 157 ppm weiter unterstützt, wobei das para-Pyridin-Kohlenstoffatom hierbei die niedrigste Verschiebung im aromatischen Bereich mit δ = 121.7 ppm aufweist (vgl. 24-IrN und 1-IrN).

Durch Überschichten einer THF-Lösung mit Pentan konnten bei -30 °C Eiskristalle zur Strukturaufklärung erhalten werden. Die Festkörperstruktur des Komplexes **28-IrN** ist in Abbildung 54 gezeigt und liegt in der Raumgruppe $P2_1/c$ vor. Es sind zwei Komplexmoleküle in der asymmetrischen Einheit vorhanden, welche sich nicht signifikant in Bindungslängen und -winkel unterscheiden. Ausgewählte Bindungslängen und -winkel beider Moleküle sind in Tabelle 16 aufgelistet. In der Struktur ist eine Abwicklung des Nitrido-Stickstoffatoms um ca. 10° aus der Pyridin,Diimin-Ebene sichtbar, der Winkel zwischen N2A-Ir1A-N4A beträgt 170.4(2). Auch das zentrale Iridium-Atom liegt

außerhalb der PDI-Ebene. Die Winkelsumme am Iridium-Zentrum beträgt 361 °, damit ist keine exakt quadratisch-planare Koordinationsumgebung gegeben. Im Unterschied zu **1-IrN** und **24-IrN** weist daher **28-IrN** einen Bruch der C_{2v} -Symmetrie im Festkörper auf.^[52]

Abbildung 54: Ortep-Darstellung des Komplexes **28-IrN**. Oben: Aufsicht, unten: Seitenansicht mit vereinfacht dargestellten Substituenten. Die Schwingungsellipsoide sind mit 50 % Aufenthaltswahrscheinlichkeit abgebildet. Aus Gründen der Übersichtlichkeit ist nur ein Komplexmolekül gezeigt und die Wasserstoffatome sind nicht mit abgebildet.

94 | Synthese und Untersuchung von Iridium-Nitrido-Komplexen

Bindungslängen [Å]	28-IrN ^A	28-IrN ^B	Bindungswinkel [°]	28-IrN ^A	28-IrN ^B
Ir1-N4	1.714(5)	1.711(5)	N4-Ir1-N2	170.4(2)	169.6(2)
Ir1-N1	2.012(4)	2.017(5)	N4-Ir1-N1	101.1(2)	98.8(2)
Ir1-N2	1.986(5)	1.975(5)	N4-Ir1-N3	107.7(2)	109.7(2)
Ir1-N3	2.015(4)	2.020(4)	N2-Ir1-N1	75.77(18)	75.78(18)
N1-C2	1.349(7)	1.333(7)	N2-Ir1-N3	76.39(18)	76.48(18)
C2-C3	1.442(8)	1.440(8)	N1-Ir1-N3	151.0(2)	151.2(18)
N3-C7	1.354(7)	1.345(7)			
C7-C8	1.419(8)	1.435(7)			

Tabelle 16: Ausgewählte Bindungslängen und Bindungswinkel der Struktur der Verbindung 28-IrN

Neben der NMR-Spektroskopie und Kristallstrukturanalyse wurde IR-Schwingungsspektroskopie durchgeführt. Hierbei wurde eine neue Schwingungsbande bei $\tilde{\nu}(\text{Ir-N}) = 956 \text{ cm}^{-1}$ im Vergleich zu **28-IrN**₃ detektiert. Um diese eindeutig der Ir-N-Schwingung zuzuordnen, wurde die 50% ig ¹⁵Nisotopenmarkierte Verbindung **28-Ir¹⁵N** durch Umsetzung der Verbindung **28-IrOMe** mit ¹⁵N-TMSN₃ und anschließender Thermolyse von **28-Ir¹⁵N**₃ dargestellt. Das IR-Spektrum der Verbindung **28-Ir¹⁵N** weist eine zusätzliche Bande bei 930 cm⁻¹ durch die 50% ige ¹⁵N-Isotopenmarkierung des Nitrido-Stickstoffatoms auf. Der hierdurch resultierende Isotopeneffekt von 26 cm⁻¹ bestätigt die Zuordnung.^{+(S.30)} Mit $\tilde{\nu}$ (r-N) = 956 cm⁻¹ liegt die Iridium-Nitrido Schwingungsbande im erwarteten Bereich bei ca. 950 cm⁻¹ und bestätigt zusätzlich die Darstellung des Nitrido-Komplexes **28-IrN**.

Abbildung 55: Ausschnitt aus dem IR-Spektrum (KBr) der Verbindungen 28-IrN (schwarz) und 28-Ir¹⁵N (rot).

Auf weitere Untersuchungen der Reaktivität des dritten erfolgreich dargestellten Iridium-Nitrido-Komplexes **28-IrN** wurde im Rahmen dieser Arbeit verzichtet.

7.7. Zusammenfassung der Untersuchungen zu Iridium-Nitrido-Komplexen

Um die Betrachtung der Iridium-Komplexe abzuschießen lässt sich zusammenfassen, dass im Rahmen dieser Arbeit erfolgreich drei neue Iridium-Nitrido-Komplexe dargestellt werden konnten. Der Vergleich der thermochemischen Daten der Azido-Komplexe zeigt, dass die Abspaltung von molekularem Stickstoff zur Darstellung der Nitrido-Komplexe nahezu unabhängig vom verwendeten Ligandensystem ist und bei ca. 120 °C stattfindet. Einzig der Komplex **4-IrN** mit zeigt hier eine höhere Temperatur von 141 °C. Auch die Reaktionsenthalpie ΔH befindet sich in einem Rahmen von -2 bis -12 kcal/mol. Die thermische Stabilität der Nitrido-Komplexe im Festkörper hingegen unterscheidet sich zwischen den verwendeten Liganden stark und konnte im Vergleich zum bereits bekannten Komplex **1-IrN**^[4, 52] von 173 °C deutlich auf 221 °C (**4-IrN**) bzw. sogar 280 °C (**24-IrN**) erhöht werden.

In Lösung konnte für den Komplex **4-IrN** die Dimerisierung zu einem μ -N₂-verbrückten Iridium-Komplex gezeigt werden. Ansonsten konnten vergleichbare Reaktivitäten zu den bekannten Komplexen **1-IrN** bzw. **2-IrN**, wie der Aktivierung eines Silans (**4-IrNHSi**) oder der Reaktion mit Benzol zur entsprechenden Amido-Verbindung **24-IrNH**₂ gezeigt werden.

8. Synthese von Rhodium-Pyridin, Diimin-Nitrido-Komplexen

8.1. Unterschiede zwischen Rhodium- und Iridium-Pyridin, Diimin-Komplexen

Neben der großen Ähnlichkeit in Struktur und Reaktivität zwischen Rhodium- und Iridium-Pyridin, Diimin-Komplexen^[55, 62, 72] unterscheiden sich die entsprechenden Azido-Komplexe in ihrer thermischen Stabilität deutlich. So war es bisher nicht möglich über die Abspaltung von Distickstoff aus einem entsprechenden Rhodium-Azido-Komplex die entsprechende Nitrido-Verbindung zu isolieren. Ausgehend von **1-RhN**³ wird direkt der "Tuck-In"-Komplex **1-RhTI** erhalten wie in Schema 56 dargestellt ist.^[62]

 Schema 56: Vergleich der thermischen Reaktionen von Rhodium- bzw. Iridium-Azido-Verbindungen. Energiedifferenzen wurden per DFT^[65] an einer Modellverbindung mit H statt Dipp berechnet.
 *BP-86, def2-SVP: C-, H- und N-Atome des Pyridin, Diimin-Liganden, def2-TZVPP, mit zusätzlicher diffuser Basisfunktion: Rh-, Ir- und N-Atome des Azido/Nitrido-Liganden, Ir: ECP-60-MWB, Rh: ECP-28-MWB.

SCHÖFFEL^[65] zeigte durch DFT-Berechnungen an Modellverbindungen (Schema 56), dass ein Grund hierfür in der Thermodynamik der Abspaltung von N₂ liegt. So ist die Abspaltung für Iridium-Komplexe mit -1.8 kcal/mol exotherm. Für die entsprechende Rhodium-Verbindung ist dieser Prozess mit 13 kcal/mol deutlich endotherm. Außerdem ist die Bildung der jeweiligen "Tuck-In"-Komplexe stark exotherm,^[1, 62, 65] was die Isolation des Rhodium-Nitrido-Komplex weiter erschwert.

Erste Versuche von *SIEH*^[1, 4], die Bildung von "Tuck-In"-analogen-Verbindungen bei Iridium-Nitrido-Komplexen durch die Einführung von Chlor-Substituenten zu verhindern, waren nicht erfolgreich. Ebenso gelang es nicht durch die Einführung von Arylgruppen am Ketimin-Kohlenstoffatom (siehe Kapitel 3.3) einen thermischen Zugang zu Pyridin,Diimin-Rhodium-Nitrido-Komplexen schaffen.

Untersuchungen zur photochemischen Spaltung des Azido-Liganden unter Freisetzung von N₂ durch *SCHÖFFEL*^[65] zeigten, dass mit langwelligem Licht oberhalb 400 nm keine Reaktion zu beobachten ist. Die Bestrahlung mittels einer Quecksilber-Hochdrucklampe führte hingegen zur Zersetzung und wurde bisher nicht näher untersucht.

In Kapitel 7.4 wurde höhere thermische Stabilität der Iridium-Nitrido-Komplexe mit dem Liganden **4** und **24** beschrieben. Diese Eigenschaft sollte für den Zugang zu Rhodium-Nitrido-Komplexen genutzt werden. Die Azido-Ausgangsverbindung sollten analog zum Iridium-System ausgehend von den Rhodium-Chlorido-Komplexen, über die Methoxido-Verbindungen dargestellt werden.

8.2. Synthese der Rhodium-Chlorido-Komplexe

Die Synthese der Rhodium-Chlorido-Komplexe wurde analog zu den Iridium-Komplexen durchgeführt. Hierfür werden die einzelnen Liganden **4**, **24**, **28** und **31** mit dem Chlorido-verbrückten Rhodium-Dimer Chlorobis(ethylen)rhodium(I) umgesetzt.

Darstellung der Verbindung 4-RhCl

Für die Synthese des Rhodium-Komplexes **4-RhCl** wurden zuerst die im Arbeitskreis etablierten Bedingungen^[4, 52, 62] gewählt, d.h. zu dem in THF vorgelegtem Liganden wurde bei Raumtemperatur [Rh(C₂H₄)₂Cl]₂ gelöst in THF gegeben. Bei diesen Bedingungen konnte wie bei der Synthese des Iridium-Komplexes **4-IrCl** nur die Zersetzung der Rh-Vorläufersubstanz über die Reaktionszeit von zwei Tagen beobachtet werden. Daher wurden die für die Synthese des Iridium-Komplexes **4-IrCl** verwendeten Reaktionsbedingungen übernommen (Schema 57). Durch die portionsweise Zugabe über zwei Tage von [Rh(C₂H₄)₂Cl]₂ zu dem in Methanol suspendierten Liganden konnte **4-RhCl** nach Entfernung des Lösungsmittels im Vakuum und Umkristallisation aus einer THF-Pentan-Mischung in einer Ausbeute von 56 % als dunkelgrüner Feststoff erhalten werden.

Schema 57: Darstellung des Komplexes **4-RhCl** in verschiedenen Lösungsmitteln.

Das ¹H-NMR-Spektrum von Komplex **4-RhCl** zeigt im aromatischen Bereich das typische Signalmuster mit einem Singulett (8.06 ppm) für die Protonen der Pyridineinheit, einem Duplett (7.97 ppm) und Triplett (7.57ppm) für die Protonen des aromatischen *N*-Ketimin-Substituenten, die wie erwartet eine große Ähnlichkeit mit dem des entsprechenden Iridium-Komplex **4-IrCl** aufweisen. Auch die Resonanz der *tert*-Butylgruppe von δ = 1.45 ppm ist nahezu identisch wie im analogen Iridium-Komplex **4-IrCl** (1.43 ppm). Die Resonanz der *C*-Ketimin-Methylgruppe ist hingegen mit einer Verschiebung von δ = 1.41 ppm weniger stark hochfeldverschoben als in der entsprechenden Iridium-Verbindung **4-IrCl** bei δ = -0.03 ppm. Zusammen mit den insg. 12 Resonanzen im ¹³C{¹H}-NMR-Spektrum weist das Kopplungsmuster des ¹H-NMR-Spektrum auf die erwartete C_{2v}-Symmetrie der Verbindung **4-RhCl** in Lösung hin.

Weiterhin konnten Einkristalle zur Strukturanalyse durch Überschichten einer THF-Lösung mit Pentan bei -30 °C erhalten werden. Die erhaltene Kristallstruktur ist als Ortep-Darstellung in Abbildung 56 gezeigt. Die Verbindung **4-RhCI** kristallisiert in der Raumgruppe *C*222₁ und die Elementarzelle enthält neben dem Rhodium-Komplex zwei Moleküle THF. In Tabelle 17 sind neben ausgewählten Bindungslängen und -winkeln des Rhodium-Komplexes **4-RhCl** zum Vergleich die entsprechenden Winkel und Längen des Iridium-Komplexes **4-IrCl** aufgeführt. Da keine signifikanten Unterschiede zum entsprechenden Iridium-Komplex zu beobachten sind, wird die Struktur an dieser Stelle nicht weiter diskutiert.

Bindungslängen [Å]	4-IrCl	4-RhCl
M1-Cl1	2.3247(6)	2.3403(6)
M1-N2	1.8891(19)	1.897(2)
M1-N1	2.0176(14)	2.051(2)
M1-N3	2.0176(14)	2.049(2)
Bindungswinkel [°]	4-IrCl	4-RhCl
CI1-M-N1	179.65(6)	179.74(7)
Cl1-M-N1/3	101.03(4)	101.40(6)/100.97(7)
N2-M-N1/3	78.95(4)	78.70(9)/78.96(9)

 Tabelle 17: Ausgewählte Bindungslängen und -winkel der Rhodium- und Iridium-Chlorido-Komplexe 4-IrCl und

 4-RhCl.

Abbildung 56: Ortep-Darstellung der Festkörperstruktur des Komplexes **4-RhCl**. Die Schwingungsellipsoide sind mit 50 % Aufenthaltswahrscheinlichkeit abgebildet. Aus Gründen der Übersichtlichkeit sind die Wasserstoffatome und zwei co-kristallisierten THF-Moleküle nicht mit abgebildet.

Darstellung der Verbindungen 24-RhCl und 28-RhCl

Schema 58: Darstellung der Rhodium-Terphenyl-Komplexe **24-RhCl** mit Methyl- bzw. **28-RhCl** mit *para-tert*-Butylphenyl-Rest am Ketimin-Kohlenstoffatom.

Für die Darstellung der Rhodium-Chlorido-Komplexe **24-RhCl** bzw. **28-RhCl** werden die entsprechenden Liganden **24** und **28** mit Chlorobis(ethylen)rhodium(I)-Dimer als Rhodium-Vorläufersubstanz komplexiert. Hierbei erfolgt die Umsetzung in THF bei Raumtemperatur und die Komplexe werden nach Entfernung des Lösungsmittels im Vakuum und anschließendem Waschen mit MTBE sowie Umkristallisation aus THF / Pentan bei -30 °C in sehr guten Ausbeuten von 99 % für **24-RhCl** bzw. 75 % für **28-RhCl** als grüne Feststoffe erhalten. Beide Substanzen sind in gängigen Lösungsmitteln wie THF, Benzol bzw. Toluol gut löslich. Aufgrund der beobachteten schlechten Löslichkeit des Komplexes **26-IrCl** wurde von der Verwendung des entsprechenden Liganden **26** zur Untersuchung der Rhodiumkomplexe abgesehen.

In Abbildung 57 sind die ¹H-NMR-Spektren der beiden Terphenyl-Rhodium-Chlorido-Komplexe **24-RhCl** und **28-RhCl** gezeigt. Trotz des ähnlichen Ligand-Systems sind Unterschiede erkennbar. So ist die Resonanz der Methylgruppe des Terphenylrests in C₆D₆ der Methyl-substituierten Verbindung **24-RhCl** als Singulett bei einer Verschiebung von $\delta = 2.11$ ppm zu erkennen, während diese im ^tPh-substituierten **28-RhCl** leicht hochfeldverschoben bei $\delta = 1.96$ ppm liegt. Ein weiterer deutlicher Unterschied ist für die Resonanzen der Pyridinprotonen in 3,5-Position zu erkennen. Diese weisen im Komplex **24-RhCl** eine Verschiebung von $\delta = 6.79$ ppm auf, im Komplex **28-RhCl** sind diese wiederum ins Hochfeld verschoben und bei $\delta = 6.21$ ppm als Dublett zu erkennen. Die weiteren Resonanzen bilden für beide Komplexe bei einer Frequenz von 300 MHz ein Spektrum höherer Ordnung und bestehen für die aromatischen Protonen aus zwei Multipletts mit einer Verschiebung im Bereich von $\delta = 7.70 - 7.75$ ppm bzw. 6.97 - 7.15 ppm. Im Spektrum der Verbindung **28-RhCl** ist außerdem noch ein Molekül MTBE zu erkennen.

Darstellung der teilfluorierten Terphenyl-PDI-Verbindung **31-RhCl**

Schema 59: Darstellung des Komplexes 31-RhCl.

Im Gegensatz zu der erfolglosen Komplexierung des teilfluorierten Terphenyl-Liganden **31** mit Iridium konnte der Rhodium-Chlorido-Komplex erfolgreich dargestellt werden. Wie in Schema 59 gezeigt wurde der Ligand **31** mit Bis-μ-Chlorobis(ethylen)rhodium(I)-Dimer für 24 h in Methanol bei 50 °C gerührt. Während der Reaktion konnte ein Farbumschlag von rot-orange nach blau-violett beobachtet werden. Nach Entfernung des Lösungsmittels im Vakuum und Umkristallisation durch Überschichten des in THF aufgenommen Rohproduktes mit Pentan konnte der Chlorido-Komplex als tiefvioletter Feststoff erhalten werden. Für PDI-RhCl-Komplexe, die ansonsten grün sind, ist dies ungewöhnlich. Aufgrund der violetten Farbe des Komplexes wurden die UV/Vis-Spektren der Terphenyl-RhCl-Verbindungen mit einander verglichen (Abbildung 58). In diesen ist für alle drei Verbindungen eine starke Absorptionsbande im UV-Bereich mit einem Maximum bei 310-315 nm zu beobachten. Außerdem ist bei 472 nm für **24-Rh-Cl**, 484 nm für **28-RhCl** sowie 499 nm für **31-RhC**l eine weitere Absorptionsbande mittlere Intensität ersichtlich, welche aufgrund der Lage und Intensität einem d-d-Übergang zugeordnet werden kann. Im Bereich der MLCT-Übergänge sind für alle drei Komplexe je drei Absorptionsbanden zu erkennen, welche nicht separiert sind. Die Maxima hierfür sind in Tabelle 18 zusammengefasst. Die Spektren zeigen, dass die Substitution mit einer Aryl-Gruppe an der
C-Ketiminfunktion sowie die Einführung von elektronenziehendem Substituenten am *N*-Ketiminfunktion zu einer Rotverschiebung des Absorptionsspektrums führen. Weiterhin ist zu erkennen, dass die ungewöhnliche violette Farbe des Komplexes **31-RhCl** auf den bathochromen Effekt der Substituenten zurückzuführen ist, da bis auf die Rotverschiebung die Absorptionsbanden zwischen den Verbindungen vergleichbar sind.

Abbildung 58: UV/Vis-Spektren in THF der Verbindungen 24-RhCl, 28-RhCl und 31-RhCl.

Tabelle 18: Übersicht über die Absorptionsbanden der Verbindungen 24-RhCl, 28-RhCl und 31-RhCl.

Verbindung	Absorptionsbanden	
24-RhCl	309, 472, 607, 674, 780 nm	
28-RhCl	313, 484, 627, 690, 818 nm	
31-RhCl	311, 499, 655, 737, 858 nm	

Für die Röntgeneinkristallstrukturanalyse konnten geeignete Einkristalle durch Überschichten einer THF Lösung mit Pentan bei -30 °C erhalten werden. Verbindung **31-RhCl** kristallisierte in der Raumgruppe *P*21/*c*, neben dem Komplex sind zwei THF-Lösungsmittelmoleküle in der Elementarzelle vorhanden. Die Molekülstruktur ist in Abbildung 59 gezeigt, ausgewählte Bindungslängen und -winkel sind in Tabelle 19 aufgeführt. Zu beobachten ist die relative Nähe der Fluoratome F8 bzw. F3 zu Rh1 sowie F2 mit H47. Ein Vergleich der Werte mit anderen Rhodium-Chlorido-PDI-Komplexen zeigt keine Besonderheiten, so dass diese nicht näher diskutiert werden.

Abbildung 59: Ortep-Darstellungen der Festkörperstruktur des Komplexes **31-RhCl** (oben: frontal unten: Aufsicht). Die Schwingungsellipsoide sind mit 50 % Aufenthaltswahrscheinlichkeit abgebildet. Aus Gründen der Übersichtlichkeit sind Wasserstoffatome und zwei co-kristallisierte THF Moleküle nicht mit abgebildet.

Bindungslängen [Å]	31-RhCl	Bindungswinkel [°]	31-RhCl
Rh1-Cl1	2.3318(17)	Cl-Rh1-N2	179.43(16)
Rh1-N1	2.049(5)	Cl-Rh-N1/3	99.84(15) / 101.35(14)
Rh1-N2	1.890(5)	N2-Rh1-N1/3	79.20(19) / 79.6(2)
Rh1-N3	2.047(5)	N1-Rh1-N3	158.8(2)
N1-C2	1.318(8)		
N3-C8	1.314(7)		
C2-C3	1.454(9)		
C7-C8	1.467(8)		
F2-H47	2.341		
F3-Rh1	3.241		
F8-Rh1	3.208		

Tabelle 19: Ausgewählte Bindungslängen und -Winkel der Verbindung 31-RhCl

Im ¹⁹F-NMR-Spektrum der Verbindung **31-RhCl** werden bei Raumtemperatur ein scharfes sowie ein verbreitertes Singulett bei einer Verschiebung von δ = 99.6 ppm und δ = 110.7 ppm mit einem Integralverhältnis von 1:1.5 beobachtet. Im ¹H-NMR-Spektrum (Abbildung 60, oben) sind im

aliphatischen Bereich die beiden Signale der *tert*-Butyl- und Methylgruppen bei δ = 1.36 und 2.36 ppm als Singulett zu sehen. Der Signalsatz des Pyridinringes besteht aus einem tieffeldverschobenen Triplett bei δ = 8.33 ppm und einem Dublett bei 7.34 ppm im Integralverhältnis 1:2. Die Signale der beiden zentralen Phenylringe des Terphenyl-Substituenten sind als Singulett bei einer Verschiebung von δ = 7.11 ppm und einem Integral von 4 zu beobachten. Den äußeren Difluor-substituierten C₆H₃F₂-Ringen sind die beiden Multipletts bei 7.06 - 7.01 ppm sowie 6.52 - 6.47 ppm mit dem Integralverhältnis 4:8 durch 2D-NMR eindeutig zuzuordnen. Für die Resonanzen der *C*-Ketimin-Phenylringe werden ein Dublett bei 7.18 ppm mit einem Integral von 4 sowie ein stark verbreitertes Singulett bei einer Verschiebung von δ = 7.00 ppm beobachtet und konnten durch COSY, HSQC und HMQC-2D-Spektroskopie eindeutig zugeordnet werden. Im ¹³C{¹H}-NMR-Spektrum sind für die Verbindung **31-RhCl** drei Signale im Hochfeld und weitere 16 Resonanzen im Tieffeld zu beobachten, wie bei einer C_{2v}-Symmetrie der Verbindung **31-RhCl** aufgrund der chemisch und magnetisch äquivalenten Gruppen zu erwarten wäre.

Abbildung 60: NMR-Spektren von Verbindung **31-RhCl** in THF-*d*₈. Oben ¹H-NMR-Spektrum bei RT, bei 600 MHz; unten ¹⁹F-NMR-Spektrum jeweils angeben Temperaturen bei 565 MHz.

Die verbreiterten Signale im ¹H- und ¹⁹F-NMR-Spektrum deuten auf eine gehinderte Rotation im Molekül hin und wurden durch temperaturabhängige NMR-Messungen im Bereich von 298 K bis 328 K untersucht (Abbildung 60, unten). Hierbei ist zu erkennen, dass bei Erwärmung des Komplexes in THF-*d*₈ die Linienbreite des Signals bei δ = 99.6 ppm im ¹⁹F-NMR-Spektrum abnimmt und ab ca. 60 °C ein scharfes Signal ergibt. Das Integralverhältnis von 1:1.5 bei 298 K nähert sich mit steigender Temperatur einem Verhältnis von 1:1 an. Zusätzlich bildet das vorher stark verbreiterte Singulett im ¹H-NMR- Spektrum bei δ = 7.00 ppm, welche Protonen der *C*-Ketimin-Phenylringe zugeordnet wurde, bei 328 K ein Dublett wie für diese Gruppe erwartet, welches aber weiterhin verbreitert ist. Eine weitere Erhöhung der Temperatur

Abbildung 61: Ausschnitt aus der Schematischen Darstellung der Verbindung 31-RhCl. Mit eingezeichneter gehinderter Rotation durch CF-HC Wechselwirkung.

bis zur Konvaleszenz wurde aufgrund des Siedepunkts des Lösungsmittels bei 339 K nicht durchgeführt. Aus der Verbreiterung sowohl des Signals bei δ = 99.6 ppm im ¹⁹F-NMR-Spektrum als auch des Signals der *meta*-Protonen der *C*-Ketimin-Phenylringe wird eine gehinderte Rotation sowohl der äußeren Terphenyl-Ringe als auch *C*-Ketimin-Phenylringe durch eine CF-HC Wechselwirkung angenommen, wie in Abbildung 61 schematisch dargestellt. Durch den geringen Abstand der Atome F2 und H47 in der Kristallstruktur von 2.341 Å (Abbildung 59) wird diese Vermutung weiter unterstützt.

8.3. Synthese der Rhodium-Methoxido-Komplexe

Analog zu den Iridium-Komplexen sind die Methoxido-Verbindungen eine wichtige Zwischenstufe in der Darstellung von Azido- und Nitrido-Komplexen. Wie für die Iridium-Verbindungen bereits beschrieben, werden die entsprechenden Chlorido-Verbindungen mit Natriummethanolat in einem Methanol/THF-Gemisch, mit je nach Löslichkeit unterschiedlichem Verhältnis, zum gewünschten Produkt umgesetzt.

Darstellung der Verbindung 4-RhOMe

Bei der Darstellung des Iridium-Methoxido-Komplexes **4-IrOMe** zeigte sich, dass eine zu hohe Reaktionstemperatur zur Bildung eines CO-Komplexes anstatt der gewünschten Methoxido-Verbindung führt. Daher musste diese bei RT durchgeführt und damit längere Reaktionszeiten in Kauf genommen werden (vgl. Kapitel 7.2). In der Synthese des analogen Rhodium-Methoxido-Komplexes konnte dieses Verhalten nicht beobachtet werden. Die Darstellung konnte mit Methanolat bei 60 °C über Nacht durchgeführt werden. Nach Entfernen des Lösungsmittels im Vakuum wurde der Komplex mit Toluol extrahiert und über Celite filtriert. Nach Trocknung konnte der Methoxido-Komplex

Schema 60: Darstellung von Verbindung 4-RhOMe.

Im ¹H-NMR-Spektrum des Produkts in THF-*d*₈ ist ein Singulett bei einer Verschiebung von δ = 3.78 ppm mit dem Integral für drei Protonen zu beobachten. Zusammen mit der zugehörigen ¹³C-NMR-Resonanz bei δ = 67.0 ppm im HSQC-Spektrum wird dieses Signal den Protonen des Methoxido-Liganden zugeordnet. Es ist im Vergleich zum entsprechenden Iridium-Komplex um ca. 1.1 ppm hochfeldverschoben und zeigt somit den typischen Unterschied der ¹H-NMR-chemischen Verschiebungen zwischen den Rh- und Ir-PDI-Methoxido-Komplexen.^[72] Weiterhin ist die charakteristische Tieffeldverschiebung des Signals der C-Ketimin-Methylgruppe im Vergleich zum Chlorido-Komplex um 0.8 ppm auf δ = 1.24 ppm zu beobachten. In Verbindung mit dem erwarteten Integralverhältnis aller erkennbaren Resonanzen wird auf die erfolgreiche Umsetzung zum Methoxido-Komplex 4-RhOMe geschlussfolgert.

Im ¹⁹F-NMR-Spektrum ist von **4-RhOMe** eine leichte Hochfeldverschiebung des Signals der CF₃-Gruppen auf δ = 59.9 ppm im Vergleich zu 4-RhCl (-59.1 ppm) zu beobachten.

Darstellung der Verbindung 24-RhOMe, 28-RhOMe

Schema 61: Darstellung der Komplexe 24-RhOMe und RhOMe.

Die Darstellung der Terphenyl-substituierten Rhodium-Methoxido-Komplexe 24-RhOMe und 28-RhOMe erfolgte analog zur Synthese von 4-RhOMe durch Umsetzung des entsprechenden Chlorido-Komplexes mit frisch hergestelltem Natriummethanolat in einem 1:2 (24-RhOMe) bzw. 3:1 (28-RhOMe) Methanol/THF-Gemisch bei 50 °C (Schema 61). Die Aufarbeitung der Verbindungen erfolgte anlog zur Verbindung 4-RhOMe. Die gewünschten Produkte lassen sich in Ausbeuten von 78 % für 24-RhOMe bzw. 59 % für 28-RhOMe als grüne Feststoffe erhalten und zeigen eine gute Löslichkeit in THF und Toluol. Auch in MTBE oder Diethylether zeigen sie zumindest eine moderate Löslichkeit.

Im Protonen-NMR-Spektrum ähneln die charakteristischen Verschiebungen von 24-RhOMe und 28-RhOMe denen bereits beschriebener Methoxido-PDI-Komplexe. Im Vergleich zum Trifluoromethylsubstituierten Komplex 4-RhOMe sind die Signale des Methoxido-Liganden mit einem Integral von drei bei δ = 4.32 ppm (**24-RhOMe**) bzw. δ = 4.37 ppm (**28-RhOMe**) um ca. 0.5 ppm tieffeldverschoben. Das Triplett des para-Pyridinprotons liegt im Vergleich zu den übrigen aromatischen Signalen deutlich tieffeldverschoben bei δ = 7.92 ppm (**24-RhOMe**) bzw. δ = 7.86 ppm (**28-RhOMe**).

Darstellungsversuch der Verbindung 31-RhOMe

Schema 62: Darstellungsversuch des Rhodium-Methoxido-Komplex 31-RhOMe.

Der Rhodium-Komplex **31-RhOMe** mit dem teilfluorierten Terphenyl-Liganden **31** sollte ähnlich wie die zuvor diskutierten Methoxido-Komplexe dargestellt werden. Dazu wurde wie in Schema 62 gezeigt der Chlorido-Komplex **31-RhCl** bei 50 °C mit einem Überschuss NaOMe in einer THF-MeOH-Mischung umgesetzt. Allerdings konnte auch nach mehreren Tagen keine Umsetzung beobachtet werden. Durch Extraktion mit Toluol konnte die Ausgangsverbindung **31-RhCl** nahezu quantitativ zurückgewonnen werden.

Eine Erhöhung der Reaktionstemperatur im geschlossen Young-Schlenkrohr auf ca. 80 °C führte nicht zur Umsetzung zum Methoxido-Komplex **31-RhOMe,** sondern analog der Iridium-Verbindung **4-IrOMe** (Kapitel 7.2) zur Bildung des neutralen Rhodium-Carbonyl-Komplexes **31-RhCO**. Dieser zeigt im IR-Spektrum eine CO-Schwingungsbande bei 1960 cm⁻¹, welche der CO-Schwingung zugeordnet wurde. Diese Schwingungsbande liegt in dem für neutrale Rhodium-PDI-Carbonyl-Komplexe erwarteten Bereich zwischen 1950 cm⁻¹ und 1970 cm⁻¹.^[126]

Die vorgeschlagene Molekülstruktur konnte durch eine Röntgeneinkristallstrukturanalyse bestätigt werden. Die Struktur des in der Raumgruppe *P*-1 kristallisierten Komplexes **31-RhCO** ist in Abbildung 62 als Ortep-Darstellung ohne die vier co-kristallisierten THF-Lösungsmittelmoleküle gezeigt. Die Rh-C-Bindungslänge der Rhodium-Carbonyl-Einheit (Rh1-C58) beträgt 1.863(5) Å und zeigt gute Übereinstimmungen mit den Werten in dem von *DAMMANN* untersuchten neutralen dinuklearen Rhodium-Carbonyl-Komplex Wert, sowie einer von *ANGERSBACH-BLUDAU* isolierten einkernigen PDI-Ir(0)-CO-Verbindung.^[120, 126] Im Unterschied zu **31-RhCI** sind die C=N Bindungen im Mittel um 0.032 Å verkürzt und die C_{Imin}-C_{Py} Bindungen im Mittel um 0.018 Å verlängert, was auf eine Reduktion des PDI-Liganden hindeutet.^[127]

Abbildung 62: Ortep-Darstellungen der Molekülstruktur des Komplexes **31-RhCO** (oben: Aufsicht unten: in der Ebene). Die Schwingungsellipsoide sind mit 50 % Aufenthaltswahrscheinlichkeit abgebildet. Aus Gründen der Übersichtlichkeit sind Wasserstoffatome und co-kristallisierte THF Lösungsmittelmoleküle nicht mit abgebildet.

Tabelle 20. Ausgewählte	Rindungslängen	und -Winkel	der Verhindun	31-RhCO
Tabelle 20. Ausgewählte	Diffuuligsialigen	unu - winker		S JI-MICO.

	-	<u> </u>	
Bindungslängen [Å]	31-RhCO	Bindungswinkel [°]	31-RhCO
Rh1-C58	1.863(5)	C58-Rh1-N2	179.7(2)
Rh1-N1	2.042(4)	C58-Rh-N1	101.44(17)
Rh1-N2	1.957(4)	C58-Rh-N3	101.37(17)
N1-C2	1.357(5)	N2-Rh1-N1	78.59(15)
N3-C8	1.340(5)	N2-Rh1-N3	78.60(15)
C2-C3	1.434(6)		
C7-C8	1.451(6)		

Ein anderer Zugang zu Rhodium-Azido-Komplexen mit PDI-Ligandensystem wurde bereits durch *SUSNJAR*^[125] berichtet. Hierbei wird, wie in Schema 63 dargestellt, im ersten Schritt der Chlorido-Komplex reduziert und anschließend das Radikal mit TMSN₃ zum Azido-Komplex umgesetzt.

$[Rh]-CI \xrightarrow{NaHg} [Rh]-N_2 \xrightarrow{TMSN_3} [Rh]-N_3$ Schema 63: Alternativer Zugang zu Azido-Komplexen über den radikalischen Distickstoff-Komplex.

Um ein geeignetes Reduktionsmittel zu ermitteln wurde zunächst das Reduktionspotential durch cyclovoltammometrische Messungen von **31-RhCl** durchgeführt. Die Reduktion ist quasi-reversibel, das Redoxpotential beträgt E^0 = 2070 mV und liegt damit im für Rhodium-Pyridin,Diimin-Chlorido-Komplexe erwarteten Bereich um 2050 mV. Als starke Reduktionsmittel bieten sich NaHg bzw. KC₈ an, die bereits erfolgreich zur Darstellung von quadratisch-planaren Rhodium-PDI-Verbindungen mit formalen Rh(0)-Zentren verwendet wurden.^[68, 125-126]

Bei der Umsetzung von Komplex **31-RhCl** konnte weder bei NaHg noch KC₈ eine Reduktion beobachtet werden, weder unter Rühren, noch im Ultraschallbad. Zum einen blieb die Farbe bei der Umsetzung unverändert, zum anderen waren im ¹H-NMR-Spektrum nur die Resonanzen des Edukts nachweisbar. Aufgrund des höheren Reduktionspotentials von Natrium mit $E^0 = 3.04 V^{[73]}$ wurde die Reduktion ebenfalls mit elementarem Natrium durchgeführt. Bei Raumtemperatur konnte keine Reaktion beobachtet werden. Um eine höhere Reaktivität durch die größere Oberfläche des Reduktionsmittels zu erzielen wurde die Reaktion in Toluol bei 110 °C mit geschmolzenem Natrium im Überschuss durchgeführt. Hierbei konnte eine Farbänderung der Reaktionsmischung von violett nach braun beobachtet werden, was für die Bildung von Rh(0)-Spezies nicht ungewöhnlich ist. Im ¹H-NMR-Spektrum in THF-d₈ waren nach Abtrennung von überschüssigem Natrium und Eindampfen des Lösungsmittels nur Restsignale von Toluol zu beobachten, im ¹⁹F-NMR-Spektrum waren keine Signale im Bereich von 175 bis -175 ppm detektierbar. Für das gewünschte Rh(0)-Produkt wäre dies zu erwarten. Um zu überprüfen, ob es sich bei dem Reaktionsprodukt um die gewünschte Rhodium(0)-Spezies handelt, wurden verschieden Reaktanden zugesetzt. So wurde gemäß der in Schema 63 gezeigten Reaktion Trimethylsilylazid zugegeben, um den Azido-Komplex **31-RhN**₃ zu erhalten. Nach der Zugabe konnte auch nach 24 h Reaktionszeit weder die Bildung des erwarteten Azido-Komplexes 31-RhN₃, noch anderer diamagnetischer Produkte im NMR-Spektrum beobachtet werden. Eine Erhöhung der Reaktionstemperatur auf 60 °C zeigte keine Veränderungen in Farbe der Reaktionsmischung oder in den zugehörigen ¹H- wie ¹⁹F-NMR-Spektren. Außerdem wurde die Rückreaktion zum Chlorido-Komplex **31-RhCl** durch Zugabe von Methylenchlorid^[125] untersucht, wobei auch hier keine Reaktion beobachtet werden konnte. Daher wird von einer Zersetzung des Komplexes **31-RhCl** unter den oben genannten Bedingungen ausgegangen.

Schema 64: Übersicht über Umsetzungsversuche der Verbindung **31-RhCl**.

Es konnten hier im Rahmen dieser Arbeit keine erfolgreiche Umsetzung zum Methoxido- bzw. Azido-Komplex **31-RhOMe** bzw. **31-RhN**³ erreicht werden, die entsprechenden Versuche sind in Schema 64 zusammengefasst.

8.4. Darstellung der Rhodium-Azido-Komplexe

Die Rhodium-Azido-Komplexe werden, wie die analogen Iridium-Komplexe, aus den Methoxido-Komplexen **4-RhOMe**, **24-RhOMe** und **28-RhOMe** durch Umsetzung mit TMSN₃ bei Raumtemperatur synthetisiert (Schema 65).

Schema 65: Darstellung der Rh-Azido-Komplexe, 4-RhN₃, 24-RhN₃ und 28-RhN₃.

Die Azido-Komplexe **4-RhN₃**, **24-RhN₃** und **28-RhN₃** lassen sich durch Entfernen aller flüchtigen Bestandteile in nahezu quantitativer Ausbeute als grüne Feststoffe erhalten.

In Tabelle 21 sind die charakteristischen Schwingungsbanden der Azido-Komplexe aufgelistet und mit der Verbindung **33-RhN**³ gegenübergestellt. Es ist zu erkennen, dass für alle Komplexe eine Azido-Valenzschwingung um 2030 cm⁻¹ vorliegt. Wie in Kapitel 2 für die Iridium-Komplexe beschrieben sind für die unterschiedlichen Ligandensysteme keine großen Unterschiede zu erkennen. Daher wird kein Einfluss des Ligandensystem auf die Bindungsverhältnisse im Azido-Liganden und damit der Stabilität des Azids erwartet.

Tabelle 21: Übersicht über ATR-IR-Schwingungsbanden für die Azido-Valenzschwingung verschiedener Rhodium-Azido-PDI-Komplexe.

33-RhN ₃ 2031 cm ^{-1* [1]} 4-RhN ₃ 2027 cm ⁻¹ 24-RhN ₃ 2041 cm ⁻¹ 28-RhN ₃ 2035 cm ⁻¹	Verbindung	Wellenzahl
4-RhN₃ 2027 cm ⁻¹ 24-RhN₃ 2041 cm ⁻¹ 28-RhN₃ 2035 cm ⁻¹	33-RhN₃	2031 cm ^{-1* [1]}
24-RhN₃ 2041 cm ⁻¹ 28-RhN₃ 2035 cm ⁻¹	4-RhN₃	2027 cm ⁻¹
28-RhN ₃ 2035 cm ⁻¹	24-RhN₃	2041 cm ⁻¹
	28-RhN₃	2035 cm ⁻¹

* KBr-Pressling

8.5. Darstellung und Untersuchung von Rhodium-Nitrido-Komplexen

Untersuchung der thermischen Eigenschaften der Rhodium-Azido-Komplexe Nach der erfolgreichen Darstellung der Rhodium-Azido-Komplexe **4-RhN₃**, **24-RhN₃** und **28-RhN₃** wird nun die Umsetzung zu den entsprechenden Nitrido-Komplexen durch N₂-Abspaltung untersucht. Wie bereits erwähnt ist laut DFT-Rechnungen^[62] die Reaktionsenthalpie ΔH dieses Prozesses für Rhodium-Pyridin,Diimin-Azido-Komplexe positiv.

In Kapitel 7 konnte für die dort beschriebenen Ligandensysteme eine höhere thermische Stabilität der Iridium-Nitrido-Komplexe gezeigt werden. Folglich sollte dies auch für die analogen Rhodium-Azido-Komplexe bei thermischer N₂-Abspaltung zu beobachten sein. Hierzu wurden thermochemische Messungen mittels dynamischer Differenzkalorimetrie (DSC) und TG-MS durchgeführt.

In Abbildung 63 ist in Rot die Auftragung der DSC der Verbindung **4-RhN**₃ dargestellt, in schwarz ist die separate thermogravimetrischen Analyse gezeigt. Das massenspektrometrische Signal der gekoppelten TG-MS bei m/z = 28 (N_2^+) ist in blau aufgetragen.

In der DSC-Auftragung ist nur ein exothermer Prozess mit $\Delta H = -66$ kcal/mol zu erkennen. Dieser setzt bei 220 °C ein und weist ein Maximum bei 254 °C mit einer Schulter bei 237 °C auf. Die thermogravimetrische Analyse zeigt bis zum Maximum bei 254 °C einen Massenverlust von 16 %. Bei diesem Prozess kann durch das Massesignal mit m/z = 28 Stickstoff im Gasstrom detektiert werden.

Abbildung 63: Rot: Auftragung der dynamischen Differenzkalorimetrie (DSC) der Verbindung **4-RhN**₃ im Bereich von 50 °C bis 300 °C mit einer Heizrate von 10 K/min. Schwarz: thermogravimetrische Analyse mit Massenanalyse für die N2-Abpaltung bei m/z = 28 (blau) Bereich von 50 °C bis 300 °C bei 5 K/min.

Der Rhodium-Azido-Komplex **4-RhN**³ zeigt nur einen Prozess bei einer Temperatur von 254 °C bis 300 °C. Für die Bildung des Nitrido-Komplexes **4-RhN** wird ein Masseverlust von 3.5 % durch die Abspaltung durch N₂ erwartet. Der gemessene Masseverlust des Prozesses bei 254 °C liegt mit 16 % allerdings deutlich darüber. In Kombination mit der hohen freigesetzten Energie von 66 kcal/mol wird nicht von der Bildung des Nitrido-Komplexes ausgegangen, sondern ein anderes Reaktionsprodukt vermutet. Dies deckt sich mit den bereits besprochenen Beobachtungen von *SCHÖFFEL*^[72], die für den Komplex **1-RhN**³ ein vergleichbares Verhalten zeigen konnte und welches der Bildung des "Tuck-In"-Komplexes zugeschrieben wird. Die um ca. 10 °C erhöhte thermische Stabilität von **4-RhN**³ im Vergleich zu **1-RhN**³ erreichte nicht eine isolierte Abspaltung von Distickstoffs und der damit einhergehenden vermutlich nicht die isolierte Bildung des Nitrido-Komplexes **4-RhN**.

Schema 66: Thermolyse der Verbindung 4-RhN3.

Um die Vermutung zu überprüfen wurde die Verbindung **4-RhN**₃ für 5 Stunden bei 185 °C lösungsmittelfrei im Festkörper erhitzt. Es konnte ein Farbveränderung des vor dem Erhitzen grünen Feststoffes nach schwarz beobachtet werden. Vom Thermolyseprodukt wurde ein ATR-IR-Spektrum aufgenommen, welches in Abbildung 64 in schwarz gezeigt ist. Im für Nitrido-Komplexe erwarteten Bereich zwischen 800 und 1000 cm⁻¹ ist keine weitere Bande verglichen zum Edukt **4-RhN**₃ hinzugekommen. Zu erkennen ist allerdings eine neue IR-Schwingungsbande bei 2120 cm⁻¹. In diesem Bereich sind z.B. die Azid-Valenzschwingung von Kationischen 1,3-verbrückten-Iridium-Pyrdin,Diimin-Azido-Komplexen sowie terminale Rh-N₂-Komplexe bekannt.^[65, 120, 123, 125-126]

Abbildung 64: ATR-IR-Spektrum des Thermolyseprodukt von **4-RhN**³ nach 5 h bei 185 °C (schwarz) und **4-RhN**³ (grün).

Außerdem wurde ein Teil des Thermolyseprodukts in THF-*d*₈ aufgenommen und NMR-spektroskopisch untersucht. Hierbei sind im ¹H-NMR-Spektrum zwischen -2 und 17 ppm nur die Restprotonensignale des Lösungsmittels zu beobachten. Im ¹⁹F-NMR-Spektrum ist ein verbreitertes Signal bei δ = -60.5 bis -63.5 ppm sowie zwei Singuletts niedriger Intensität bei δ = -62.4 und δ = -64.3 ppm zu erkennen. Diese Beobachtungen deuten zusammen mit den IR-Spektren auf die Bildung einer paramagnetischen Verbindung hin. Für einen Rhodium-Nitrido-Komplex wird hingegen Diagmagnetismus analog zu den entsprechenden Iridium-Verbindungen erwartet. Versuche, Einkristalle zur Strukturaufklärung zu erhalten, waren leider nicht erfolgreich.

Für die beiden Terphenyl-substituierten Verbindungen **24-RhN**₃ und **28-RhN**₃ wurden ebenfalls DSCbzw. TG-Messungen durchgeführt. Die Daten der Messung von **24-RhN**₃ sind in Abbildung 65 aufgetragen. In diesen ist ein Signal mit zwei scharfen Maxima bei 243 °C bzw. 249 °C zu erkennen, wobei keine Separation der zugrundeliegenden Prozesse ersichtlich ist. Aus der Integration der Fläche des Signals lässt sich eine Reaktionsenthalpie von $\Delta H = -27$ kcal/mol bestimmen.

Abbildung 65: Auftragung der dynamischen Differenzkalorimetrie (DSC) der Verbindung **24-RhN**₃ im Bereich von 50 °C bis 300 °C (Heizrate 10 K/min).

Analog zu **4-RhN**₃ wurde die Thermolyse der Verbindung **24-RhN**₃ lösungsmittelfrei im Festkörper durchgeführt. Hierfür wurde der grüne Feststoff für 16 h auf 200 °C erwärmt, um so möglichst nur den ersten Prozess bzw. nur die Abspaltung von N₂ ohne Folgereaktion zu erreichen. Nach Abkühlen auf Raumtemperatur wurde ebenfalls bei dieser Probe eine Farbveränderung zu schwarz beobachtet.

Schema 67: Thermolyse der Verbindung 24-RhN₃.

Die Probe wurde anschießend in THF- d_8 gelöst und mittels ¹H-NMR-Spektroskopie untersucht. In diesen ist neben einem stark verbreiterten Signal zwischen δ = 8.5 und 5.5 ppm eine Vielzahl an Signalen mit sehr geringer Intensität im selben Verschiebungsbereich zu beobachten (Abbildung 66). Außerdem sind bei einer Verschiebung von

 9
8
7
6
Abbildung 66: Ausschnitt aus dem ¹H-NMR-Spektrum des
Thermolyseprodukts von 24-RhN₃.
(300 MHz, THF-d₈)

 δ = 2.61 bis 2.38 ppm ein Multiplett sowie zwei Singuletts bei 2.16 bzw. 1.99 ppm zu erkennen. Für den entsprechenden Rhodium-Nitrido-Komplex **24-RhN** wird aufgrund der erwarteten C_{2V}-Symmetrie der Verbindung ein einfacheres Spektrum vergleichbar dem Spektrum von **24-IrN** erwartet. Die Vielzahl an Signalen geringer Intensität sowie des Multipletts bei δ = 2.61 - 2.38 ppm deuten auf die Bildung eines Produkts mit erniedrigter Symmetrie und daher auf einen "Tuck-In"-Analogen-Komplex hin. 116 | Synthese von Rhodium-Pyridin, Diimin-Nitrido-Komplexen

Abbildung 67: Berechnete relative Energien für die postulierten Verbindungen **24-RhN** und **24-RhTI** in kcal/mol, mit **24-RhN** als Basiswert. Freiwerdendes N₂ nicht mit abgebildet. DFT: Basis: def2-TZVPP Rh: ECP-28-MWB; Funktional: rot PBE; schwarz PBE0; blau: PW6b95

Um die Bildung einer "Tuck-In"-Analogen-Verbindung besser einschätzen zu können, wurden die relativen Energien der Abspaltung von N₂ und der Bildung des postulierten "Tuck-In"-Komplexes **24-RhTI** durch DFT-Rechnungen bestimmt (Abbildung 67). Hierbei ist der **24-RhN** je nach verwendeten Funktional zwischen 23.2 und 27.5 kcal/mol energetisch oberhalb der Azido-Verbindung. Der postulierte "Tuck-In"-Komplex **24-RhTI** ist im Vergleich zum Azido-Komplex **24-RhN₃** um -33.0 bis -40.7 kcal/mol thermodynamisch begünstigt. Diese Werte spiegeln die gesamte Reaktionsenergie (**24-RhN₃** \rightarrow **24-RhTI**) wider und sollten daher auch in der DSC-Messung zu beobachten sein. In dieser wurde eine Reaktionsenthalpie von $\Delta H = -27$ kcal/mol gefunden, welche im Rahmen der Genauigkeit der DFT-Rechnungen liegt. Dies unterstützt daher weiter die Bildung des postulierten Komplexes **24-RhTI** und spricht gegen die isolierte Bildung der entsprechenden Rh-Nitrido-Verbindung durch Thermolyse.

In Abbildung 68 sind die Messdaten der dynamischen Differenzkalorimetrie von Verbindung **28-RhN**₃ abgebildet. Der stark exotherme Prozess setzt bei 210 °C ein und hat ein Maximum bei 231 °C. Bei 260 °C wird eine Schulter beobachtet, die auf einen zweiten Prozess hindeutet. Aus der Integration der gesamten Fläche ergibt sich eine Reaktionsenthalpie $\Delta H = -43$ kcal/mol. Aufgrund des vergleichsweisen scharfen Signals mit dem Maximum bei 231 °C sowie der hohen freiwerdenden Energie wird, analog zu **4-RhN**₃ und **24-RhN**₃ nicht von der isolierten Bildung der Nitrido-Verbindung **28-RhN** ausgegangen. Auf eine Untersuchung der Thermolyseprodukte von **28-RhN**₃ wird daher verzichtet.

Abbildung 68: Auftragung der dynamischen Differenzkalorimetrie (DSC) der Verbindung TerpPytPh₂RhN₃ (**28-RhN₃**) im Bereich von 50 °C bis 300 °C (Heizrate 10 K/min).

Bei beiden Terphenyl-substituierten Rhodium-Azido-Komplexen **24-RhN**₃ und **28-RhN**₃ sind im Unterschied zu **4-RhN**₃ zwei Prozesse erkennbar, welche allerdings nicht separiert sind. Daher ist davon auszugehen, dass auch durch Verwendung der Terphenyl-substituierten Liganden kein Zugang zu Rhodium-Nitrido-Komplexen durch thermische Abspaltung von Distickstoff zu erreichen ist.

8.6. Untersuchung zum photochemischen Zugang zu Rhodium-Nitrido-Komplexen

Nachdem ein thermischer Zugang zu Rhodium-Nitrido-Pyridin,Diimin-Komplexen nicht möglich scheint, sollte die photochemische Spaltung der Azid-Bindung für Pyridin,Diimin-Komplexe untersucht werden.

Wie einleitend bereits erwähnt, ist der photochemische Zugang zu Nitrido-Komplexen ausgehend von Aziden eine bewährte Syntheseroute. So gelang es *DE BRUIN*^[61] für NNP-*Pincer*- sowie *SCHNEIDER*^[51] für PNP-*Pincer*-Systeme durch Bestrahlung mit UV-Licht spektroskopische Hinweise auf die Bildung von terminalen Rhodium-Nitrido bzw. Nitridyl-Komplexen zu erhalten.

GALLAGHER^[128] beschrieb, dass bei der Photolyse von Arylaziden zuerst das Licht vom Aromaten absorbiert wird und die absorbierte Energie anschließend durch Schwingungen auf die Azid-Einheit übertragen wird. Dies führt zur Zersetzung des Azids bzw. zur Abspaltung von N₂.

In den Pyridin,Diimin-Komplexen müsste dementsprechend das PDI-Metall-Fragment, die zur Abspaltung von N₂ notwendige Lichtenergie bzw. Wellenlänge absorbieren. *SCHÖFFEL*^[65] zeigte für **1-RhN₃** bereits, dass eine Bestrahlung mit einer Wellenlänge oberhalb von 400 nm zu keiner Reaktion führt. Für die Photolyse im UV-Bereich bieten sich neben Quecksilberhochdrucklichtquellen wie z.B. der Philips HPK 125, die neben einer breiten Emission von 200 bis 600 nm diskrete Maxima bei 253, 313, 365, 404 und 435 nm aufweisen,^[129] zusätzlich monochromatische LEDs mit einer Wellenlänge von 365 nm an.

Photolyse von Verbindung 4-RhN₃

Zur Wahl der geeigneten Lichtquelle wurde zuerst ein Absorptionsspektrum der Verbindung **4-RhN**₃ aufgenommen, welches in Abbildung 69 gezeigt ist.

Abbildung 69: UV/Vis Spektrum des Rhodium-Azido-Komplexes 4-RhN₃ in THF.

Das UV/Vis-Spektrum zeigt neben einer breiten relativ schwachen Absorptionsbande von 550 nm bis 900 nm eine starke Absorptionsbande mit einem Maximum bei 483 nm. Bei ca. 350 nm sind starke Absorptionsbanden im UV-Bereich zu beobachten, die bis 400 nm auslaufen.

Da der Komplex im Emissionsbereich der UV-LED bei 365 nm nur eine geringe Absorption besitzt wurde eine Quecksilberhochdrucklampe (HPK 125W) zur Bestrahlung verwendet. Diese besitzt im Gegensatz zur monochromatischen LED bei 365nm einen breiten Emissionsbereich im UV-Bereich und ermöglicht so eine besser Quantenausbeute durch bessere Absorption. Die Bestrahlung wurde in THF-*d*₈ in einem Young-NMR-Rohr durchgeführt (Schema 68).

Schema 68: Reaktionsschema der Bestrahlung des Rhodium-Azido-Komplexes **4-RhN**³ mit gewünschtem Nitrido-Reaktionsprodukt **4-RhN**.

Nach vier Stunden Bestrahlung des Komplexes bei Raumtemperatur konnte eine Farbveränderung der Lösung von grün nach schwarz beobachtet werden. Im ¹H- sowie ¹⁹F-NMR-Spektrum sind bis auf das Restprotonensignal des Lösungsmittels im Bereich von 150 bis -150 ppm keine Signale mit signifikanter Intensität mehr zu beobachten. Aufgrund des analog zu Iridium- für Rhodium-Nitrido-Verbindungen erwarteten diamagnetischen Reaktionsprodukts weist die NMR-Spektroskopie auf eine Zersetzung oder vollständige Umsetzung zu einem paramagnetischen Produkt hin. Aus der Probenlösung konnte durch Filtration kein Feststoff abgetrennt werden. Versuche der Isolation und Strukturaufklärung des Reaktionsproduktes durch Kristallisation gelangen nicht.

Um zu überprüfen, ob es sich um eine Zersetzung oder eine paramagnetische Spezies handelt, wurde versucht das Reaktionsprodukt weiter umzusetzen.

Der zum gewünschten Rh-Produkt **4-RhN** analoge Iridium-Nitrido-Komplex **4-IrN** reagiert in Lösung zum paramagnetischen μ-N₂-Komplex **32**. Dieser reagiert mit CD₂Cl₂ zur entsprechenden Chlorido-Verbindung **4-IrCl**. Wurde CD₂Cl₂ zur o.g. Reaktionslösung hinzugegeben konnten im ¹H-NMR Spektrum nach 3 Stunden Spuren mindestens einer diamagnetischen Spezies beobachtet werden. Mit zunehmender Reaktionsdauer konnte ein Anwachsen der Intensitäten dieser Resonanzen beobachtet werden. Nach zwei Tagen bei 50 °C konnten diese Spezies aufgrund der Übereinstimmung der Verschiebungen sowie des Integralverhältnis der Resonanzen eindeutig als der Rhodium-Chlorido-Komplex **4-RhCl** identifiziert werden. Aufgrund der Signalintensitäten kann hierbei nur von einer teilweisen Umsetzung der paramagnetischen Spezies innerhalb dieser Zeit zu **4-RhCl** ausgegangen werden. Ferner sind etliche weitere Signale sehr geringer Intensität im ¹H-NMR-Spektrum im Messbereich zwischen -0.5 und 9.5 ppm zu beobachten, die keinem bekannten Produkt zugeordnet werden können.

Schema 69: Bestrahlung der Verbindung **4-RhN₃** über 4 Stunden mit anschließender Reaktion mit Methylenchlorid.

Diese Beobachtungen sprechen für eine, zumindest teilweise, Bildung einer paramagnetischen Spezies durch die Bestrahlung von **4-RhN** mit UV-Licht und gegen eine vollständige Zersetzung.

Um thermische Folgereaktionen bei der Photolyse zu unterdrücken, wurde die Reaktionslösung des Komplexes **4-RhN**₃ bei der Bestrahlung auf -78 °C gekühlt (Schema 70).

Schema 70: Bestrahlung des Rhodium-Azido-Komplexes **4-RhN3** bei -78 °C in THF-*d*8, mit gewünschtem Reaktionsprodukt.

Nach der Bestrahlung wurde die Probe ohne vorheriges Erwärmen im auf -34 °C vorgekühlten Probenkopf im NMR-Spektrometer vermessen. Im Gegensatz zur Bestrahlung bei Raumtemperatur lässt sich nun eine NMR-aktive Spezies im ¹H-NMR-Spektrum beobachten (Abbildung 70). Allerdings ist die Intensität der Signale verglichen mit den Restprotonen des Lösungsmittels sehr gering.

Abbildung 70: ¹H-NMR-Spektren, 300 MHz, THF-*d*₈; oben: -34 °C; Nach der Bestrahlung von **4-RhN₃** bei -78 °C; unten: RT, vor der Bestrahlung.

Um einen weiteren Einblick in die Reaktion und Rückschlüsse auf die Reaktionsprodukte zu erhalten, wurde die Bestrahlung mit einer UV/Vis-Tauchsonde bei -60 °C in THF verfolgt. Aufgrund des Messaufbaus in der Glovebox musste hierfür eine 1 W LED mit der Wellenlänge 365 nm anstatt der vorher genutzten HPK 125 W-Lampe verwendet werden. In Abbildung 71 sind die Absorptionsspektren der Lösung vor der Bestrahlung, nach zwei, drei und sieben Stunden gezeigt.

Abbildung 71: UV/Vis Verfolgung durch Tauchsonde der Bestrahlung (1 W LED bei 365 nm) einer Lösung des Rhodium-Azido-Komplexes **4-RhN₃** in THF bei -60 °C.

In den gezeigten UV/Vis-Spektren ist zu erkennen, dass die Intensität der Absorptionsbanden bei 700 nm und 483 nm über die Zeit geringer werden, sowie dass sich bei 580 nm bzw. 450 nm neue Absorptionsbanden bilden. Weiterhin ist zu beobachten, dass die Reaktion sehr langsam verläuft, was auf eine geringe Quantenausbeute für die photochemische Abspaltung von Distickstoff bei 365 nm hindeutet. Dies war durch die im Aufbau des Experiments verwendete LED bereits erwartet worden. Da weiterhin die Absorptionsbanden des Edukts zu erkennen sind, ist ersichtlich, dass nach sieben Stunden Reaktionszeit ein hoher Anteil der Verbindung **4-RhN**³ nicht umgesetzt ist.

Aus der entsprechenden Reaktionslösung konnten durch Überschichten der THF-Lösung mit Pentan bei -30 °C Kristalle zur Strukturbestimmung erhalten werden. Die Konstitution kann als neutraler µ-1,3- verbrückten-Azido-Komplex **34** belegt werden. Verbindung **34** kristallisiert liegt in der Raumgruppe *P2/c* zusammen mit einem Molekül THF (Abbildung 72). Ausgewählte Bindungslängen und -winkel sind in Tabelle 22 zusammengefasst. Im Gegensatz zu den bisher in der Arbeitsgruppe durch *SCHöFFEL* und *ANGERSBACH-BLUDAU* dargestellten **1**,3-verbrückten-Iridium-Azido-Komplexen, ist der hier gezeigte Rhodium-Komplex **34** ein neutral-Komplex. Die beiden PDI-Einheiten unterscheiden sich in ihren Bindungslängen deutlich; so ist für die mit A bezeichnete PDI-Einheit eine weitgehende Übereinstimmung mit den vergleichbaren Bindungslängen der von bekannten kationischen **1**,3-verbrückten-Iridium-Azido-Komplexen pegeben. ^[65, 120, 123] Die mit B bezeichnete PDI-Einheit hingegen ist in den Abständen N3B-C8B um 0.065 Å sowie C7B-C8B um 0.043 Å verlängert gegenüber der PDI-Einheit A. Die Verlängerung der C=N Bindung wurde für eine reduzierte PDI-Einheit erwartet, wohingegen für die C_{py}-C_{imin}-Bindung eine Verkürzung dieser gegenüber des neutralen PDI erwartet wurden.^[71, 127]

Abbildung 72: Ortep-Darstellung der Festkörperstruktur des Komplexes **34** (oben: diagonal; unten Aufsicht). Die Schwingungsellipsoide sind mit 50 % Aufenthaltswahrscheinlichkeit abgebildet. Aus Gründen der Übersichtlichkeit sind die Wasserstoffatome und ein Lösungsmittelmolekül THF nicht mit abgebildet.

Tabelle 22: Ausgewählte Bindungslängen und -winkel der Verbindung 34.

Bindungslängen [Å]	34	Bindungswinkel [°]	34
Rh1A-N3	2.018(4)	Rh1A-N3-N2	143.5(3)
Rh1A-N1A	2.025(3)	N2A-Rh1A-N3	177.41(14)
Rh1A-N2A	1.880(3)	N1A-Rh1A-N3A	157.80(13)
Rh1A-N3A	2.022(3)	N1A-Rh1A-N3	98.60(15)
N1A-C2A	1.316(5)	N3A-Rh1A-N3	103.50(15)
N3A-C8A	1.324(5)		
C2A-C3A	1.450(6)		
C7A-C8A	1.449(5)		
Rh1B-N1	2.049(4)	Rh1B-N1-N2	146.0(3)
Rh1B-N1B	1.975(4)	N2B-Rh1B-N1	177.96(14)
Rh1B-N2B	1.905(4)	N1B-Rh1B-N3B	159.71(15)
Rh1B-N3B	2.001(4)	N1B-Rh1B-N1	100.71(16)
N1B-C2B	1.340(6)	N3B-Rh1B-N1	99.57(15)
N3B-C8B	1.389(5)		
C2B-C3B	1.440(7)		
C7B-C8B	1.492(6)		

Der Reaktionsweg der Bildung des neutralen µ-1,3-verbrückten Azido-Komplexes **34** wurde im Rahmen dieser Arbeit nicht weiter untersucht, da das Interesse auf der Darstellung und der Untersuchung von terminalen Nitrido-Komplexen liegt. Es wird allerdings ein Reaktionsweg wie in Schema 71 dargestellt vermutet. Hierbei werden in einem ersten Schritt unter Abspaltung von N₂ ein terminaler Stickstoff-Komplex bzw. ein Radikal gebildet. Dieses reagiert dann mit einem weiteren Azido-Komplex zu Verbindung **34**.

Schema 71: Postulierter Reaktionsweg zur Bildung der Verbindung 32.

Auch wurde nicht untersucht, ob der paramagnetische μ-1,3-verbrückte Azido-Komplex **34** das Hauptoder ein Nebenprodukt der Bestrahlung ist, da nur einzelne Kristalle erhalten werden konnten. Die bisher durchgeführten Untersuchungen legen nahe, dass eine Umsetzung zum terminalen Rhodium-Pyridin,Diimin-Nitrido-Komplex oder zumindest die Isolierung dessen mit Ligand **4** auf diesen Reaktionswegen nicht möglich ist.

Um die im ¹H-NMR-Spektrum in Abbildung 70 bei tiefen Temperaturen erhaltene Spezies besser zu charakterisieren, wurde versucht diese durch eine Reaktion abzufangen. Der entsprechende Iridium-Komplex **4-IrN** zeigt mit *tert*-Butyldimethylsilan eine Reaktion innerhalb von Minuten bereits bei -60 °C zum entsprechenden Silylamid-Komplex **4-IrNHSi**.

Daher wurde nach der Bestrahlung des Rhodium-Azido-Komplexes **4-RhN**₃ bei -60 °C, wie in Schema 72 gezeigt, ein deutlicher Überschuss *tert*-Butyldimethylsilan auf die bei -196 °C eingefrorene Lösung kondensiert. Anschließend wurde die Reaktionslösung für fünf Stunden bei -60 °C gerührt und sich anschließend auf RT erwärmen lassen. Im ¹H-NMR-Spektrum des Rohprodukts sind nach Entfernen der flüchtigen Verbindungen im Vakuum eine Vielzahl an Signalen mit geringer bzw. sehr geringer Intensität sowohl im aromatischen als auch aliphatischen Verschiebungsbereich zu beobachten. Bis auf einen geringen Rest nicht umgesetzten Edukts, sind die zu beobachteten Resonanzen keiner bekannten Verbindung zuzuordnen. Dies spricht gegen eine die Bildung eines langlebigen Rhodium-Nitrido-Komplexes, da für das Abfangprodukt ein NMR-Spektrum einer zeitgemittelten C_{2v}- oder C_ssymmetrischen Spezies erwartet wird (vgl. **4-IrNHSi**).

Die Darstellung sowie Isolierung des Rhodium-Nitrido-Komplexes mit Ligand **4** scheint nach diesen Untersuchungen nicht möglich.

Photolyse von Verbindung 33-RhN₃:

Der oben genannte Komplex **4-RhN**₃ zeigte schlechte Löslichkeit sowie eine geringe Absorption bei 365 nm. Daher wurde aufgrund seiner guten Löslichkeit sowie ausreichender Absorption bei 365 nm, die Verbindung **33-RhN**₃ ebenfalls untersucht. **33-RhN**₃ wurde bereits von *SIEH* intensiv thermochemisch untersucht. Die Thermolyse bei 150 °C für 5 Tage im Vakuum führte hierbei ebenfalls nicht zur Bildung der Nitrido-Verbindung. Aufgrund einer Vielzahl an Multipletts im ¹H-NMR-Spektrum des Thermolyseprodukts ging *SIEH* von der Bildung mehrerer Reaktionsprodukte durch intramolekularen Zersetzungsreaktionen aus.^[1]

Um nach der photochemischen Stickstoffabspaltung thermische Neben- oder Folgereaktion zu verhindern, wurde die Bestrahlung bei -70 °C in THF- d_8 im Young-NMR-Rohr durchgeführt (Schema 73).

Schema 73: Bestrahlung der Rhodium-Azido-Verbindung **33-RhN**₃ in THF-d₈ bei -70 °C.

Nach Bestrahlung über Nacht mit einer HPK 125 W Lampe wurde eine Farbänderung von tiefgrün nach blau-grün beobachtet. Die Probe wurde ohne vorheriges Erwärmen im vorgekühlten NMR-Probenkopf bei 193 K vermessen. Nach der Messung und Erwärmung der Probe auf Raumtemperatur konnte ein Farbveränderung der Probe nach braun beobachtet werden. Die ¹H-NMR-Spektren des Edukts und Photolyseprodukts sind in Abbildung 73 gezeigt. Im aufgenommenen ¹H-NMR-Spektrum kann eine klare Veränderung im Vergleich zum Spektrum des Eduktes beobachtet werden. Beide Spektren zeigen vergleichsweise scharfe Resonanzen im Verschiebungsbereich zwischen 1 und 9 ppm. Das Signal der Protonen einer Methylgruppen der Isopropyleinheit, welche im ¹H-NMR-Spektrum des Edukts als pseudo-Triplett bei einer Verschiebung von $\delta = 1.06$ ppm zu beobachten ist, ist nach der Bestrahlung auf δ = 1.38 ppm tieffeldfeldverschoben. Diese Methylgruppen sind als zwei gesonderte Dubletts bei δ = 1.38 ppm bzw. δ = 1.03 ppm mit einem Integral von jeweils 12 zu erkennen. Die Resonanz der Methingruppen ist als ein Signalsatz im Produkt leicht ins Hochfeld nach δ = 3.03 ppm verschoben und besitzt ein Integral von 4. Im Tieffeld ist nun statt des Signals des *para*-ständigen Protons des Pyridinrings bei einer Verschiebung von δ = 8.33 ppm das Signal der *meta*-Protonen als Dublett bei δ = 7.95 ppm mit dem Integral von 2 zu erkennen. Bei einer Verschiebung von δ = 7.62-7.19 ppm sowie bei δ = 7.05-6.92 ppm sind zwei Multipletts zu erkennen, welche keinen einzelnen Protonen zugeordnet werden konnten.

33-RhN₃

Abbildung 73: ¹H-NMR-Spektren; 400 MHz, THF-*d*₈: Rhodium-Azido-Verbindung **33-RhN**₃ (oben, grün, RT) vor Bestrahlung bei RT; Nach Bestrahlung (HPK 125 W) für 18 h mit bei - 70 °C (unten, violett, 193 K).

Um mehr Hinweise auf die Bildung des gewünschten Rhodium-Nitrido-Komplex **33-RhN** zu erhalten, wurden die NMR-spektroskopischen Daten mit dem eindeutig charakterisierten Iridium-Pyridin,Diimin-Nitrido-Komplexe verglichen.^[4, 52, 62] Die beobachteten scharfen Resonanzen und der Bereich der chemischen Verschiebungen belegen klar den Diamagnetismus des Photolyseprodukts von **33-RhN**₃. Das Vorhandensein von jeweils nur einem Signal für die Methingruppen, die *meta*-Pyridin-Protonen sowie der Signalsatz der Isopropyl-Methylgruppen als zwei Dubletts mit dem Integralverhältnis von 2:4:12:12 legen eine C_{2v}-Symmetrie des Photolyseprodukts nahe. Für Gruppe 9-Pyridin,Diimin-Nitrido-Komplexe wird Diamagnetismus und eine C_{2v}-Symmetrie erwartet, zudem weist das Spektrum Ähnlichkeiten mit den bisher untersuchten Iridium-Nitrido-Komplexe wie **1-IrN**, **4-IrN** bzw. **24-IrN** auf. Es ist zu beobachten, dass, wie bei den Iridium-Nitrido-Komplexen, das Signal des *para*-ständigen Protons des Pyridinrings deutlich hochfeldverschoben, sowie das Signal der *meta*-Pyridin-Protonen ins Tieffeld verschoben ist. Eine vergleichbare Beobachtung wurde von *SCHÖFFEL* bereits für den Iridium-Nitrido-Komplex **1-IrN**

Die Analyse der ¹H-NMR-Spektren lieferten erste Hinweise, dass in der Bestrahlung der gewünschte Rhodium-Nitrido-Komplex **33-RhN** gebildet wird.

Um weitere Belege für diese Hypothese zu erbringen wurde ein UV/Vis-Spektrum des Reaktionsprodukts untersucht. Hierzu wurde eine Lösung von Komplex **33-RhN**³ in einer UV/Vis-Küvette bei -70 °C bestrahlt. Das in Abbildung 74 blau dargestellte Spektrum der Verbindung **33-RhN** weist eine sehr breite Absorptionsbande von 700 bis 1050 nm, sowie weitere Absorptionsbanden mit Maxima bei λ_{max} = 625, 364 und 310 nm auf. Im Vergleich zeigt das Edukt (**33-RhN**³) eine intensive Absorptionsbande mit einem Maximum bei λ_{max} = 481 nm sowie eine breite Absorptionsbande zwischen 550 und 850 nm mit zwei nicht separierten Maxima bei 630 und 676 nm auf. Außerdem sind starke Absorptionsbanden im UV-Bereich zwischen 250 und 400 nm mit einer Schulter bei 345 nm zu erkennen.

Als weitere Unterstützung wurden die TDDFT Spektren von **33-RhN** und **33-RhN**₃ berechnet. Diese sind als gestrichelte Linien in Abbildung 74, sowie für das Spektrum von **33-RhN** die Anregungsübergänge als senkrechte Linie dargestellt.

Abbildung 74: Absorptionsspektren der Verbindungen **33-RhN₃** (grün) und **33-RhN** (blau); oben: in THF bei RT; unten: berechnete *TDDFT-Spektren Basis: def2-TZVP, Rh: ECP-28-MWB; Funktional: b3-lyp.

Das berechnete Spektrum der Verbindung **33-RhN**₃ zeigt vier Absorptionsbanden mit Maxima bei λ_{max} = 289, 350, 460 nm sowie 626 nm, wobei diese eine Verbreiterung von 530 bis 800 nm aufweist. Insgesamt weist das berechnete Spektrum eine sehr gute Übereinstimmung mit dem gemessenen Spektrum auf und deshalb ist von einer guten Prognosekraft der TDDFT-Rechnungen auszugehen.

Tabelle 23: Absorptionsmaxima der Verbindungen 33-RhN₃ und 33-RhN gemessen sowie berechnet.

	5
Verbindung	Absorptionsmaxima λ_{max} [nm]
33-RhN₃	345, 481, 360,367
33-RhN ₃ (berechnet)*	289, 350, 460, 626
33-RhN	311, 365, 482, 626, 954
33-RhN₃ (berechnet)*	328, 418, 620, 802

*TDDFT: Basis: def2-TZVP, Rh: ECP-28; Funktional: b3-lyp.

Die den TDDFT-Rechnungen zugrundeliegende optimierte Geometrie der diamagnetischen Verbindung **33-RhN** ist in Abbildung 75 gezeigt. Der Rh-N_{Nitrido}-Abstand beträgt 1.649 Å und ist damit genauso lang wie der durch Röntgenstrukturanalyse gemessene Ir-N_{Nitrido}-Abstand der Verbindung

Abbildung 75: Geometrieoptimierte Struktur von **33-RhN**. DFT: Basis: def2-TZVP, Rh: ECP-28; Funktional: b3-lyp.

1-IrN mit 1.649(9) Å. Im Unterschied zu **1-IrN** weist die Verbindung **33-RhN** laut Rechnungen eine Abwinkelung des $N_{Nitrido}$ -Stickstoffatoms und so anstatt der C_{2v}-Symmetrie (**1-IrN**) eine leicht idealisierte C_s-Symmetrie auf. Die berechneten sowie gemessenen Absorptionsmaxima sind in Tabelle 23 zusammengefasst und die Banden bei 328 nm sowie 626 nm weisen eine gute Übereinstimmung in Lage und Intensität mit den Banden der gemessenen Spektren auf. Die mit $\lambda_{max} = 802$ nm berechnete breite

Absorptionsbande ist im Vergleich zur gemessenen sehr breiten Absorptionsbande mit dem Maximum bei 954 nm deutlich blauverschoben. Trotzdem sind aufgrund der sonst guten Übereinstimmungen die Rechnungen weiteres Indiz für die Bildung des Rhodium-Nitrido-Komplexes **33-RhN**.

Von besonderem Interesse ist dennoch die sehr breite Absorptionsbande im Bereich von 700 nm bis 1050 nm. Auch für Pyridin,Diimin-Iridium-Nitrido-Komplexe wurde eine solche Bande beobachtet. Dabei ist interessant, dass die TDDFT-Rechnung belegt, dass diese Bande nur auf einem einzigen Übergang beruht.

Abbildung 76: Orbitale der Modellverbindung Links: in C_{2V}-Symmetrie LUMO und HOMO, Rechts: in C_s-Symmetrie HOMO.

Um den Ursprung der breiten Absorption zu erkunden wurde der elektronische Zustand der Modellverbindung des Rhodium-Nitrido-Komplexes quantenchemisch untersucht. Die Berechnungen zeigen, dass der Grundzustand in einer C_s-symmetrischen Struktur vorliegt. Der Übergangszustand hingegen besitzt eine C_{2v}-Symmetrie und die hierzu entsprechende imaginäre Mode eine b1-Symmetrie. Eine genauere Analyse der Grenzorbitale 4a₂ und 6b₂ lieferte eine Erklärung für die

Verzerrung. In der C_{2v} -symmetrischen Geometrie liegen das HOMO (b2) und das LUMO (a2) energetisch sehr nahe beieinander. Durch die Verzerrung entlang der o.g. b1-Mode kommt es zu einer Jahn-Teller-Verzerrung zweiter Ordnung (a1 = a2 x b1 x b2), mit dem niedriger liegende angeregte Zustände erlaubt sind.

Diese Mischung der Zustände führt, neben einer Erniedrigung der Symmetrie des Komplexes von C_{2v} zu C_s, zur Abwinkelung des Nitrido-Stickstoffatoms um 8.6 ° von der C₂-Achse in der q.pl. Molekülebene. Die Jahn-Teller-Verzerrung 2. Ordnung führt zu einer Energieabsenkung um 0.1 kcal/mol, die Scheibenwischer-Schwingungsmode besitzt eine sehr niedrige Frequenz von 103 cm⁻¹.

Abbildung 77: oben: Übergangszustand C_{2v}-Symmetrie; unten: Grundzustand C_s-Symmetrie.

Es lag nahe, dass diese Mode zu einer Franck-Condon-Verbreiterung der ungewöhnlich breiten UV/Vis-Absorptionsbande bei λ_{max} = 954 nm (Abbildung 74) der Rh-

Nitrido-Verbindung **33-RhN** führt, die eine Halbwertsbreite von 250 nm besitzt. Die Beantwortung dieser Frage wurde auf zwei verschiedenen Weisen nachgegangen.

1) Hierzu wurde einem von *GRIMME* vorgestellten Ansatz folgend klassische Molekulardynamik-Simulationen der Modellverbindung mit der semiempirischen *extended tight binding* (xtb) Methode durchgeführt.^[130-131] Hierfür wurden über einen Zeitraum 130 ps alle 50 fs für die jeweilige Geometrie ein UV/Vis-TDDFT-Spektrum berechnet. Die elektronischen Anregungen und das daraus superpositionierte Spektrum ist in Abbildung 78 links gezeigt. Hierbei ist zu sehen, dass sich durch die Überlagerung der einzelnen Anregungen eine starke Schwingungsverbreiterung des Spektrums ergibt.

2) Zusätzlich wurde eine Frank-Condon bzw. Frank-Condon/Herzberg-Teller Analyse der Absorptionsbande auf Basis der 2. Ableitungen des geometrieoptimierten Grund- und des entsprechenden Anregungszustandes mit DFT- bzw. TDDFT-Rechnungen durchgeführt. Bei einer Temperatur von 298 °C ergibt sich für die Modellverbindung eine deutliche Verbreiterung der Absorptionsbande des Rhodium-Nitrido-Komplexes (Abbildung 78 rechts).

Abbildung 78: Links Überlagerung der UV/Vis-Spektren aus MD-Berechnungen über 130 ps. Geo: xtb; Ex: TDDFT: Funktional: pbe0. Rechts: Frank-Condon bzw. Frank-Condon/Herzberg-Teller Analyse bei 298 °C.

Die oben ausgeführten Berechnungen zeigen, dass für Pyridin,Diimin-Rhodium-Nitrido-Komplexe eine stark verbreiterte Absorptionsbande im langwelligen Spektralbereich charakteristisch ist. Dies ist ein weiterer Hinweis, dass in der Photolyse des Azido-Komplexes **33-RhN**³ die Nitrido-Verbindung **33-RhN** gebildet wird.

Schema 74: Mögliche Rückreaktion zwischen Rhodium-Azido und -Nitrido-Verbindung.

Nachdem durch die vorangegangenen Beobachtungen die Generierung der Verbindung **33-RhN** durch Bestrahlung des Azido-Komplexes **33-RhN**³ untermauert wurde, sollte sowohl die thermische Stabilität von Verbindung **33-RhN** als auch die Möglichkeit der Rückreaktion zur Azido-Verbindung zu **33-RhN**³ untersucht werden (Schema 74). Nach Berechnungen in Abschnitt 3.3, welche ein deutlich positives ΔH für die Abspaltung von N₂ zeigen, liegt es nahe, dass sich unter N₂-Atmosphäre der Azido-Komplex **33-RhN**³ zurückbilden könnte. Daher sollte eine Probe unter N₂-Atmosphäre^{++ 1}H-NMR-spektroskopisch in THF-*d*₈ untersucht werden. Nach der Bestrahlung im Young-NMR-Rohr über 16 h bei -70 °C wurde diese ohne vorherige Erwärmung im auf 230 K vorgekühlten Probenkopf zuerst bei 240 K für 3 Stunden beobachtet, um zu überprüfen, ob die Probe bei ca. -30 °C stabil ist und ob sich in dieser Zeit eine Rückreaktion beobachten lässt. Anschließend wurde die Probe langsam im Spektrometer auf Raumtemperatur erwärmt und das Verhalten der Probe hierbei spektroskopisch verfolgt (Abbildung 79).

Abbildung 79: ¹H-NMR-Spektren bei 300 MHz in THF-*d*₈ des Rhodium-Nitrido-Komplexes **33-RhN** zwischen 230 K und 293 K über 24 h.

In den ¹H-NMR-Spektren wird im Zeitraum von drei Stunden bei 240 K keine Änderung beobachtet. Anschließend wurde die Temperatur auf 283 K erhöht. Nach 4 h (1 h 283k) erscheint bei einer Verschiebung von δ = 7.20 ppm ein neues mit * gekennzeichnetes Triplett. Dieses könnte durch die Temperaturabhängigkeit der Signale im NMR hervorgerufen sein und das Signal des *para*-ständigen Protons des Pyridinrings, welches nun nicht mehr unter den anderen aromatischen Signalen liegt. Nach 5 h und einer weiteren Temperaturerhöhung auf 293 K sind größere Veränderungen in den Spektren zu beobachten. So ist eine Abnahme der Signalintensität der bisher vorhandenen Signale erkennbar. Ab 6 h ist auch die Bildung neuer Signalsätze eindeutig zu beobachten, welche mit * gekennzeichnet sind. Nach 24 h sind eine Vielzahl von neuen Signalen mit geringer Intensität im Spektrum zu erkennen, wohingegen alle Resonanzen von **33-RhN** vollständig verschwunden sind. Diese neu entstandenen Signale deuten auf mehrere unbekannte Produkte einer Folgereaktion oder auf ein Produkt mit

⁺⁺ Präparation der Probe in der Glovebox unter N₂-Atmosphäre.

132 | Synthese von Rhodium-Pyridin, Diimin-Nitrido-Komplexen

verminderter Symmetrie durch eine intramolekulare Aktivierungsreaktion hin. *SIEH* beobachtete im Thermolyseprodukt der Verbindung **33-RhN**³ ebenfalls mehrere Dubletts im Bereich von 0.25 bis 1 ppm (*), eine Vielzahl an nicht zuordenbaren Signalen geringer Intensität im aromatischen Verschiebungsbereich, sowie viele Signale mittlerer und geringer Intensität im aliphatischen Verschiebungsbereich.^[1] Dies deutet auf vergleichbare Produkte hin.

Weiterhin ließ sich keine Rückreaktion zum Azido-Komplex **33-RhN**₃, weder bei -30°C noch bei RT beobachten. Die oben gezeigten Daten weisen auf eine hohe Reaktivität bei RT und damit eine geringe thermische Stabilität des Rhodium-Nitrido-Komplexes **33-RhN** hin. Isolationsversuche durch Waschen sowie Umkristallisation in verschiedenen Lösemitteln bzw. die Strukturaufklärung der Produkte der Folgereaktion durch Kristallisation waren nicht erfolgreich. Eine weitere Untersuchung der Zersetzungsprodukte wurde nicht weiterverfolgt, da die Synthese nur im Milligrammmaßstab eine vollständige Umsetzung innerhalb von Tagen erlaubt.

Auch machte die geringe thermische Stabilität eine Untersuchung der Verbindung **33-RhN** durch ATR-IR-Spektroskopie im Festkörper nicht möglich, da eine Zersetzung des Komplexes bei der Entfernung des Lösungsmittels im Vakuum, selbst bei 0 °C, beobachtet wurde. Dies konnte durch ein verändertes UV/Vis-Spektrum nach erneutem Lösen belegt werden.

Um einen weiteren Nachweis für die photolytische Bildung des Nitrido-Komplexes **33-RhN** zu erbringen, wurde die Abfangreaktion mit *tert*-Butyldimethylsilan zum Silylamid untersucht. Hierzu wurde der Azido-Komplex **33-RhN**³ bei -70 °C im Young-NMR-Rohr für 16 h bestrahlt. Anschließend wurden 10 Äq. Silan zu der in fl. N₂ gefrorenen Lösung kondensiert. Danach wurde die Probe für 3 h bei -80 °C belassen, wobei eine Farbänderung von grün nach violett beobachtet werden konnte. Anschließend wurde die Probe auf Raumtemperatur erwärmt und die flüchtigen Verbindungen im Vakuum entfernt.

Anschließend wurde der Rückstand in THF- d_8 aufgenommen und ¹H-NMR-spektroskopisch untersucht. Im Tieffeld des NMR-Spektrums konnten neben zwei Tripletts bei einer Verschiebung von δ = 8.28 ppm und δ = 8.09 ppm zwei Multipletts von 7.64 - 7.24 ppm bzw. 7.14 - 6.98 ppm beobachtet werden. Im Hochfeld ist ein Multiplett (3.35 - 3.18 ppm), ein breites Singulett (2.35 ppm), zwei Dubletts (1.17, 0.96 ppm), ein Triplett (1.06 ppm) sowie zwei Singuletts (0.37 ppm, -0.74 ppm) zu beobachten.

Ein Vergleich mit dem Spektrum des Edukts zeigt, dass die Signale bei den Verschiebungen δ = 8.28, 1.06 ppm sowie Teile der erwähnten Multipletts der Verbindung **33-RhN**³ zuzuordnen sind, was auf eine nicht vollständige Umsetzung zu **33-RhN** hindeutet. Die separierten Signale, welche dem Reaktionsprodukt zugeordnet werden, zeigen ein Integrationsverhältnis von 1:1:12:12:9:6. Zusammen mit dem Vergleich ähnlicher Silylamid-Komplexe^[1] kann die Resonanz bei δ = 8.09 ppm dem *para*-Pyridin-Proton, bei δ = 2.35 ppm dem Amid-Proton, bei 1.17 und 0.96 ppm den Isopropyl-Methylgruppen sowie 0.37 ppm, -0.74 ppm der *tert*-Butyldimethylsilylgruppe zugeordnet und damit eine erfolgreiche Umsetzung belegt werden.

Aus dem Vergleich der Integrale konnte der Umsatz innerhalb der Bestrahlungszeit von 20 h auf ca. 2/3 bestimmt werden. Eine Reaktion des Silans mit Rhodium-Azido-Komplexen wurde in Kontrollexperimenten^{‡‡} nicht beobachtet.

Durch Überschichten der THF- d_8 NMR-Probenlösung mit Pentan und Lagerung im Tiefkühlschrank bei -30 °C konnten Einkristalle erhalten werden. Die Struktur des Silylamid-Komplexes **33-RhNHSi** konnte daher durch Röntgenbeugung aufgeklärt werden. Die Kristallstruktur liegt in der Raumgruppe $P2_1/m$ vor und ist als Ortep-Darstellung in Abbildung 80 gezeigt.

Abbildung 80: Ortep-Darstellung der Festkörperstruktur des Komplexes **33-RhNHSi**. Die Schwingungsellipsoide sind mit 50 % Aufenthaltswahrscheinlichkeit abgebildet. Aus Gründen der Übersichtlichkeit sind die Wasserstoffatome nicht mit abgebildet.

In Tabelle 24 sind ausgewählte Bindungslängen und der Bindungswinkel des Silylamid-Liganden aufgeführt und den entsprechenden Bindungsparameter vergleichbaren Iridium-Komplexen mit

^{##} Hierfür wurde die Verbindung 24-RhN₃ mit *tert*-Butyldimethylsilan bei Raumtemperatur gerührt.

Liganden **4** bzw. **1** gegenübergestellt. Bei den Bindungslängen sind keine signifikanten Unterschiede zwischen den einzelnen Verbindungen zu erkennen. Für **33-RhNHSi** ist der Rh1-N4 Abstand 1.988(9) Å 0.032 Å länger als für **4-IrNHSi** (1.956(6) Å) und 0.053 Å als für **1-IrNHSi**^[1] (1.9935(17) Å), wohingegen sich die Abwinkelung des Liganden zwischen den Rhodium- und Iridium-Komplexen deutlich unterscheidet. Für den Rh-Komplex **33-RhNHSi** beträgt der Bindungswinkel (Rh1-N4-Si1) am Amido-Stickstoffatom 165.6(4) °, wohingegen die beiden Iridium-Komplexe für die entsprechenden Winkel (Ir1-N4-Si1) nur Werte von ungefähr 150 ° aufweisen.

Tabelle 24: Ausgewählte Bindungslängen und Bindungswinkel der Strukturen der Verbindung **33-RhNHSi** und vergleichbarer Iridium-Komplexe.

Bindungslängen [Å]	33-RhNHSi	4-IrNHSi	1-IrNHSi ^[1]
M1-N4	1.988(9)	1.956(6)	1.9935(17)
N4-Si1	1.693(9)	1.727(6)	1.7199(19)
M1-N2	1.916(7)	1.880(5)	1.9044(17)
Bindungswinkel [°]			
M1-N4-Si1	165.6(4)	150.8(4)	148.61(11)

Nach der erfolgreichen Umsetzung des Rhodium-Nitrido-Komplexes **33-RhN** mit *tert*-Butyldimethylsilan zum entsprechenden Silylamid-Komplex **33-RhNHSi** sollte die Reaktivität mit molekularem Wasserstoff untersucht werden. *Schöffel* konnte bereits zeigen, dass ein PDI-Iridium-Nitrido-Komplex^[52] mit H₂ bei 40 °C über mehrere Stunden zur Amido-Verbindung **1-IrNH₂** reagiert. Die Reaktion konnte durch Zugabe einer katalytischen Menge einer Säure beschleunigt werden.

Schema 76: Bestrahlung der Verbindung 33-RhN₃ bei tiefen Temperaturen gefolgt von der Umsetzung mit H₂.

In einem NMR-Versuch in THF- d_8 wurde nach der Bestrahlung über 16 h des Azido-Komplexes die Probe in fl. N₂ gekühlt und die Inert-Stickstoffatmosphäre im Vakuum entfernt. Anschließend wurde 1 atm H₂ auf die Probe gegeben und die Probe direkt im vorgekühlten NMR-Probenkopf (236 K) gemessen. Nach der ersten Messung bei 236 K wurde die Probe im Spektrometer auf RT erwärmt und der Verlauf der Reaktion wurde mittels ¹H-NMR-Spektroskopie verfolgt (Abbildung 81).

Abbildung 81: ¹H-NMR-Reaktionsverfolgung der Umsetzung des Rhodium-Nitrido-Komplexes **33-RhN** mit H₂ bei RT.

Direkt nach der Zugabe von H₂ (bei 0 h, 236 K) sind neben den Signalen des Nitrido-Komplexes **33-RhN**, nach 20 h Bestrahlung noch ca. 10 % nicht umgesetzter Azido-Komplex **33-RhN**₃ (*) zu erkennen. Bereits nach einer Stunde Reaktionszeit bei RT ist eine Abnahme der Intensität der Signale des Nitrido-Komplexes **33-RhN** zu beobachten. Nach drei Stunden sind deutlich die mit * gekennzeichnet vier neu entstandene Dubletts im aliphatischen Verschiebungsbereich zwischen δ = 0.5 und 0.9 ppm sowie weitere neue Signale bei 1.2 ppm zu beobachten. Auch im aromatischen Verschiebungsbereich zwischen δ = 6.8 - 7.6 ppm ist die Entstehung neuer Resonanzen sichtbar. Ein ähnliches Verhalten zeigte sich bereits ohne Zugabe von H₂ (Abbildung 79). Nach 20 h sind nur noch Resonanzen vorhanden, die dem nicht umgesetzten Azido-Komplex **33-RhN**₃ zugeordnet werden können. Ein Signal, welches den Protonen eines Amido-Liganden zugeordnet werden kann und im Bereich von 5 - 7 ppm als verbreitetes Singulett erwartet wird, konnte nicht beobachtet werden.

Aus den oben beschriebenen Beobachtungen geht hervor, dass eine Reaktion mit H₂ zum Amido-Komplex nicht erfolgte. Es ist zu vermuten, dass die Zersetzungsreaktion des Nitrido-Komplexes zu schnell verläuft, bzw. die Aktivierung von H₂ eine zu hohe Barriere aufweist, um bereits bei tiefen Temperaturen zu reagieren.

Da der Ligand **28**, wie im Kapitel 5 beschrieben, eine höhere Stabilität gegenüber C-H-Aktivierung aufweisen sollte und somit für die Untersuchung der Reaktivitäten besser geeignet wäre, wurden die Untersuchungen zur Reaktivität des Nitrido-Komplexes **33-RhN** nicht weiterverfolgt, sondern sich dem Terphenyl-substituierten Azido-Komplexes **28-RhN**₃ zugewandt.

Untersuchung der Photolyse der Verbindung 28-RhN₃

Hierzu wurden 13 mg des Azido-Komplexes **28-RhN**₃ in einem Young-NMR-Rohr bei -50 °C mit einer 365 nm 4 W UV-LED über 7 Tage bestrahlt, um eine möglichst vollständige Umsetzung zum Nitrido-Komplex zu erreichen.

Schema 77: Reaktionsschema zur Bestrahlung der Rhodium-Azido-Verbindung 28-RhN₃ in THF-d₈ bei -50 °C.

Während der Reaktion konnte eine leichte Farbänderung von blau-grün nach tiefgrün beobachtet werden. Die Probe wurde direkt im Anschluss der Bestrahlung bei Raumtemperatur NMR-spektroskopisch untersucht.

Abbildung 82: ¹H-NMR-Spektrum (400 MHz; RT) in THF-d₈ des Rhodium-Nitrido-Komplexes 28-RhN.

Im ¹H-NMR-Spektrum der Messung (Abbildung 82) sind im aromatischen Verschiebungsbereich die Signale der *meta*-Pyridin-Protonen zu einer Verschiebung von δ = 7.61 ppm ins Tieffeld gegenüber **28-RhN**₃ (7.27 ppm) verschoben. Das Signal des *para*-ständigen Pyridinprotons ist im Vergleich zum Edukt deutlich um 1.33 ppm ins Hochfeld auf δ = 6.72 ppm verschoben und am charakteristischsten für die Bildung eines Nitrido-Komplexes. Eine solche Beobachtung bei der Bildung von Nitrido-Komplexen wurde bereits bei **33-RhN** gemacht und besprochen (S. 126f) und ist für PDI-Iridium-Nitrido-Komplexen ebenfalls bekannt ^[65]. Im Bereich von δ = 7.15 - 7.03 ppm wird ein Multiplett mit einem Integral von 26 beobachtet, welches den Protonen der Terphenyl-*meta*-Phenylringe sowie den *ortho*-Protonen der Ketimin-Phenyl-Substituenten durch COSY- sowie ¹³C{¹H}-NMR zugeordnet werden konnten. Die Resonanz der Protonen des zentralen Terphenyl-Substituenten ist als Singulett bei δ = 6.96 ppm mit einem Integral von 4 zu beobachten. Ein weiteres Dublett bei einer Verschiebung
von δ = 6.51 ppm ist ebenfalls mit einem Integral von 4 den *meta*-Protonen der *C*-Ketimin-Phenyl-Substituenten zuzuordnen.

Die Signale im aliphatischen Verschiebungsbereich sind für die Methylgruppen δ = 2.34 ppm bzw. 1.31 ppm für die *tert*-Butylgruppe wie erwartet nur geringfügig gegenüber dem Edukt verändert.

Da für die Pyridin-Einheit nur ein Signalsatz aus Dublett und Triplett sowie für die Protonen des zentralen Terphenyl-Substituenten, die *tert*-Butyl- wie Methylgruppen jeweils nur ein Singulett beobachtet wurde, ist von einer C_{2v} -Symmetrie der Verbindung in Lösung auszugehen.

Aufgrund der vorgefundenen C_{2v}-Symmetrie sowie der aufgezählten charakteristischen Verschiebungen im ¹H-NMR-Spektrum im Vergleich zu bereits bekannten Verbindungen wird hier von einer erfolgreichen Umsetzung zum Rhodium-Nitrido-Komplex **28-RhN** ausgegangen.

Jedoch sind trotz der langen Bestrahlungszeit von 7 Tagen noch Spuren des Azido-Komplexes **28-RhN**³ und einer weiteren Spezies vorhanden.

Bei der Untersuchung der Reaktionslösung durch MALDI-Massenspektrometrie^{§§} konnte ein Signal mit dem m/z = 998.23 für das Molekülion erhalten werden. Der Molekülpeak wurde mit m/z = 998.38 berechnet und liegt im Rahmen der Messungenauigkeit. Das berechnete Isotopenmuster des Fragments stimmt mit dem gemessenen ebenfalls überein.

Ein Aliquot der Reaktionslösung wurde bei RT in einer UV/Vis-Küvette mit THF verdünnt. Das UV/Vis-Spektrum (blau) zeigt zwei neue Absorptionsbanden bei einer Wellenlänge von 365 nm und 660 nm, sowie einen Anstieg der Absorption oberhalb 800 nm.

Abbildung 83: Absorptionsspektren in THF der Verbindungen 28-RhN₃ (grün) und 28-RhN (blau).

Wie bereits im vorangegangenen Abschnitt (S. 127f) diskutiert, ist eine sehr breite Absorptionsbande zwischen 800-1100 nm charakteristisch für Rhodium-Pyridin, Diimin-Nitrido-Komplexe. Der in

^{§§} Präparation durch "dry-droplet" Methode in einer Anthracen-Matrix.

Abbildung 83 beobachtete Anstieg der Absorption könnte eine Folge dieser Bande sein, welche für **28-RhN** aufgrund des vorhandenen Messbereiches bis 1100 nm nicht vollständig erfasst wird.

Auch war es im Unterschied zum Dipp-substituierten Komplex **33-RhN** möglich, das Lösungsmittel der Reaktionslösung im Vakuum zu entfernen ohne eine Zersetzung der Verbindung 33-RhN zu beobachten. Hierzu wurde ein Teil des Rückstandes erneut gelöst und unverzüglich ein UV/Vis-Spektrum bei RT aufgenommen. Dieses unterscheidet sich von dem in Abbildung 83 nicht.

Daher konnte von der Verbindung **28-RhN** ein ATR-IR-Spektrum im Festkörper aufgenommen werden, welches als Ausschnitt in Abbildung 84 gezeigt ist. Im Vergleich zu **28-RhN**³ ist nun eine neue Schwingungsbande mittlerer Intensität mit einer Wellenzahl $\tilde{\nu} = 903 \text{ cm}^{-1}$ und die N₃-Bande bei 2035 cm⁻¹ nicht mehr zu erkennen. Es war über eine 50 %ige ¹⁵N-Markierung der Verbindung **33-Rh**¹⁵N₃, welche durch die Reaktion von ¹⁵N-TMSN₃ mit **28-RhOMe** dargestellt wurde, möglich, die Rh≡N Schwingungsbande mit 903 cm⁻¹ $\tilde{\nu}(\text{Rh}^{14}\text{N})$ bzw. 878 cm⁻¹ für $\tilde{\nu}(\text{Rh}^{15}\text{N})$ zu bestimmen. Die beobachtete Isotopenverschiebung mit ca. 25 cm⁻¹ liegt im erwarteten Bereich auf Grundlage des Modells des harmonischen Oszillators^{***}.

Abbildung 84: Ausschnitt aus dem ATR-IR Spektrum der Verbindungen 28-RhN (schwarz) und 28-Rh¹⁵N (rot).

Im Vergleich mit den Iridium-Nitrido-Valenzschwingungen, welche bei ca. 955 cm⁻¹ (Kapitel 7) zu beobachten sind, ist die gemessene Rhodium-Nitrido-IR-Valenzschwingung für **28-RhN** mit $\tilde{\nu}$ (Rh-N) = 903 cm⁻¹ rotverschoben. Aufgrund der geringeren Masse von Rhodium sowie der zu erwartenden höheren Kraftkonstante^[132] der Rh=N-Bindung wird diese Rotverschiebung der Rh=N Schwingung erwartet.

Die beobachtete Rhodium-Nitrido-Valenzschwingung ist ein weiterer Beleg für die erfolgreiche Darstellung des Rhodium-Nitrido-Komplexes **28-RhN**.

 $[\]tilde{\nu}_{Rh^{15}N} = \sqrt{\frac{\mu_{Ir^{14}N}}{\mu_{Ir^{15}N}}} \tilde{\nu}_{Rh^{14}N} \text{ mit } \tilde{\nu}$: Wellenzahl; μ : reduzierte Masse.

Außerdem konnte im ¹⁵N-NMR-Spektrum der Verbindung **28-Rh¹⁵N** ein Signal bei δ = 1602 ppm beobachtet werden. Dies stimmt mit der durch DFT berechneten ¹⁵N-NMR-Verschiebung einer Rh-Nitrido-Modellverbindung bei δ = 1588 ppm gut überein.⁺⁺⁺

Um die thermische Stabilität des Komplexes **28-RhN** abschätzen zu können, wurde wie zuvor eine Probe bei Raumtemperatur über 24 h mittels ¹H-NMR-Spektroskopie in THF-*d*₈ beobachtet und stündlich ein Spektrum aufgenommen.

Abbildung 85: ¹H-NMR Spektren bei 300 MHz in THF-*d*₈ des Rhodium-Nitrido-Komplex **28-RhN** über 24 h bei Raumtemperatur.

In den in Abbildung 85 gezeigten ¹H-NMR-Spektren ist zu sehen wie die Signalintensität des Rhodium-Nitrido-Komplexes **28-RhN** über die Zeit abnimmt, wobei nach ungefähr 12 h keine Resonanz der Verbindung **28-RhN** mehr zu beobachten ist und daher wird von einer vollständigen Umsetzung zu einem unbekannten Folgereaktionsprodukt nach 12h bei RT ausgegangen. Dies ist im vgl. mit dem Dipp-substituierten Komplex **33-RhN** eine signifikante Erhöhung der Stabilität des Komplexes **28-RhN**. Um die Geschwindigkeit dieses Zersetzungsprozesses grob zu quantifizieren, wurde das Signal der *meta*-Pyridin Protonen bei δ = 7.61 ppm gegen MTBE integriert, welches als Referenz zugesetzt wurde. Hieraus ergibt sich eine Halbwertszeit von ungefähr 4 Stunden bei Raumtemperatur.

^{***} Modellverbindung: C+N-Ketiminsubstituent = H; DFT: Basis: def2-TZVP, Rh: ECP-28; Funktional: bp68, auf NH₃ kalibriert.

Das Folgereaktionsprodukt des Rhodium-Nitrido-Komplexes **28-RhN** wurde im Rahmen dieser Arbeit nicht näher untersucht bzw. isoliert. Die Bildung des terminalen N₂-Komplexes **28-RhN**₂ konnte im ¹H-NMR-Spektrum nicht durch die hierfür charakteristischen, paramagnetisch verbreiterten Resonanzen bei δ = 2.47 bzw. 8.0-6.4 ppm beobachtet werden. Aus den im oben gezeigten ¹H-NMR-Spektren ist daher aufgrund des Signalmusters davon auszugehen, dass es sich um ein Produkt mit verminderter Symmetrie handelt und auch für den Komplex mit Ligand **28** eine Aktivierung des Liganden erfolgt sein könnte.

8.7. Zusammenfassung der Ergebnisse zu Rhodium-Nitrido-Komplexen

In diesem Teil der Arbeit wurde der Zugang zu Rhodium-Pyridin, Diimin-Nitrido-Komplexen untersucht. Dieser war auch mit den in dieser Arbeit untersuchten Ligandensystemen auf thermischem Weg, trotz erhöhter Stabilität der entsprechenden Azido-Komplexe **4-RhN**₃, **24-RhN**₃, und **28-RhN**₃ nicht möglich.

Photochemisch gelang allerdings erstmals der Zugang zu Rhodium-Pyridin,Diimin-Nitrido-Komplexen durch N₂-Abspaltung aus dem Azido-Liganden mittels UV-Licht. Aufgrund der geringen thermischen Stabilität der erhaltenen Rhodium-Nitrido-Komplexe ist diese Umsetzung nur bei tiefen Temperaturen möglich. Hierbei zeigte sich der erwartete positive Einfluss des Terphenyl-substituierten Ligand **28** auf die thermische Stabilität des entsprechenden Nitrido-Komplexes **28-RhN**.

In ersten Reaktivitätsuntersuchungen zeigte sich ein mit den entsprechenden Iridium-Nitrido-Komplexen vergleichbares Reaktionsverhalten. So konnte eine vergleichbar schnelle Reaktion mit Silanen beobachtet werden, mit Wasserstoff konnte keine Reaktion bei Raumtemperatur beobachtet werden. Weitere Reaktivitätsuntersuchungen sollten in Folgearbeiten an Rhodium-Nitrido-Komplexen durchgeführt werden.

9. Experimenteller Teil

9.1. Arbeitsmethoden

Allgemein

Die durchgeführten Synthesen wurden sofern nicht anders angegeben, unter Stickstoff-Inert-Atmosphäre und der Verwendung von Schlenktechnik bzw. in einer Glovebox durchgeführt. Die verwendeten Lösungsmittel wurden vor der Benutzung durch Standardmethoden absolutiert^[133] bzw. durch ein *solvent purification system* der Firma MBRAUN getrocknet. Für die NMR-Spektroskopie verwendeten deuterierte Lösungsmittel wurden ebenfalls nach Standardmethoden unter Stickstoff-Inert Atmosphäre getrocknet,^[134] durch die *"freeze-pump-thaw"* Methode entgast und anschließend im Vakuum destilliert. Sofern nicht anders aufgeführt, wurden die Chemikalien kommerziell erworben und ohne weitere Aufbereitung verwendet.

9.2. Analytische Methoden

NMR-Spektroskopie

Die NMR-spektroskopischen Untersuchungen wurden an folgenden Spektrometern durchgeführt:

RS2D NMRCube, 300 MHz (¹H; ¹⁹F; ³¹P);

BRUKER Fourier HD 300, 300 MHz (¹H; ¹³C);

BRUKER Avance I+II+III, 400 MHz (¹H; ¹³C);

BRUKER Avance I, 500 MHz (¹H; ¹³C);

BRUKER Avance III HD, 600 MHz (¹H; ¹³C; ¹⁵N; ¹⁹F);

Falls nicht anders angegeben, wurden die Spektren bei Raumtemperatur aufgenommen. Zur Referenzierung der ¹H-NMR-Spektren dienten die Resonanzen der Restprotonen der verwendeten deuterierten Lösungsmittel. Die Referenzierung der ¹³C-NMR-Spektren erfolgte anhand der Signale des verwendeten Lösungsmittels. Für die ¹⁹F-NMR-Spektren diente CCl₃F als Standard, für die ¹⁵N-NMR-Spektren diente NH₃ als Referenz. Für die Zuordnung der Signale wurden zweidimensionale NMR-Techniken (HSQC, HMBC, NOESY und COSY) durchgeführt.

Für die Beschreibung der Aufspaltungen wurden folgende Abkürzungen verwendet: s: Singulett, d: Dublett, t: Triplett, q: Quartett, m: Multiplett, sept: Septett, br: breit.

IR-Spektroskopie

Die Proben wurden an einem Cary630 ATR-FT-IR Spektrometer der Firma AGILENT unter Stickstoffatmosphäre gemessen, bzw. als KBr Pressling an einem VERTEX 70 FT-IR-Spektrometer der Firma BRUKER. Die Probenpräparation wurde in einer Glovebox durchgeführt. Der Pressvorgang und die Messung fanden an der Atmosphäre statt. Die Intensitäten werden wie folgt angegeben: vs: sehr stark, s: stark, m: mittel, w: schwach.

Elementaranalytik

Die Elementaranalysen wurden von der Zentralen Elementaranalytik der Universität Hamburg mit einem CHN-Elementanalysator Valio EL III der Firma ELEMENTAR ANALYSENSYSTEME GmbH oder einem CHNS-O-Elementanalysator EuroEA Elemental Analyzer mit HEKAtech HAT Sauerstoff-Analysator der Firma EuroVEC-TOR/HEKATECH durchgeführt.

UV/Vis-Spektroskopie

Die Messungen wurden sofern nicht anders aufgeführt in 10 mm Quarzküvetten mit gasdichtem Schraubverschluss durchgeführt. Zur Aufnahme der Spektren wurden folgende Geräte verwendet:

AGILANT Cary 50;

HITACHI 5100-U; in Glovebox mit Küvetten-Temperierung durch Julabo FP 89 Umlaufthermostat; AVANTIS AvaSpec 2048L; mit Faseroptik Tauchsonde.

Dynamische Differenzkalorimetrie (DSC)

Die tarierten Tiegel wurden in einer Glovebox der Substanz befüllt und verschlossen. Die Tiegel wurden kurz vor der Messung durch Anstoßen geöffnet und mit einer Heizrate von 10.0K/min vermessen. Das Gerät war gegen die Schmelzenthalpie von Indium kalibriert. Es wurde mit einem DSC 204 F1 Gerät der Firma Netzsch gearbeitet.

Thermoanalyse/Thermogravimetrie (TA/TG-MS)

Die tarierten Tiegel wurden in einer Glovebox befüllt und bis zur Messung in einem Präparateglässchen unter Stickstoff aufbewahrt. Die Tiegel wurden kurz vor der Messung gegengewogen und mit einer Heizrate von 10.0K/min im Argon Strom vermessen. Folgende Geräte wurden verwendet:

Netzsch STA/TG 409C/CD gekoppelt mit einem Balzers MID Quadrupol-Massenspektrometer; Netzsch STA/TG 449F3 gekoppelt mit einem Netsch QMS 403 C Aëolos Quadrupol-Massenspektrometer.

Cyclovoltammetrie

Die cyclovoltammetrischen Messungen wurden unter Stickstoffatmosphäre an einem BAS C3 Zellstand mit einer Drei-Elektrodenanordnung durchgeführt: Arbeitselektrode Glaskohlenstoff; Gegenelektrode Pt und Referenzelektrode Ag/AgNO₃ sowie TBAPF₆ als Leitzsalz. Als Potentiostat wurde ein IVIUM Vertex 1A, BAS CV-100W bzw. ein BAS CV-50W verwendet.

Kristallstrukturanalyse

Die Messungen der Einkristalle wurden mit einem BRUKER AXS SMART APEX II Einkristall Diffraktometer mit IμS 1.0 Mikrofocus Röntgenquelle mit graphitmonochromatischer MoKαStrahlung. (λ = 0.71073 Å) bei 100 K durchgeführt. Die Einkristalle wurden in hochviskosem Polybutenöl an einem Glasfaden, MITIGEN Kunststoffhalter, oder Kaktusnadel an dem Goniometerkopf befestigt.

Die Struktur wurde mit den Softwarepaketen Shelx^[135-136] und Olex2^[137] gelöst und verfeinert.

ESR-Spektroskopie

Die ESR-Messungen wurden in 4 mm Quarzglasröhrchen bzw. 5 mm Borosilkat NMR-Röhrchen an einem MircoScope-Spektrometer der Firma MAGNETECH durchgeführt.

9.3. Synthesen

Literaturbekannte Synthesen Folgende Verbindungen wurden nach Literaturvorschriften dargestellt:

 $[N(4-MeOC_6H_4)_3]PF_6,^{[74]}$

DippPyMe₂IrN, **1-IrN**^[52]

DippPytMe₂, $\mathbf{1}^{tBu}$

Acetylferrocenium BArF,^[138]

Diacetylferrocenium BArF,^[139]

 $Di-\mu$ -Chlorido-tetrakis(ethen)diiridium(I) [Ir(C₂H₄)₂CI]₂,^[140]

 $Di-\mu$ -Chlorido-tetrakis(ethen)dirhodium(I) [Rh(C₂H₄)₂Cl]₂;^[141]

DippPyPh₂RhN, **33-RhN**,^[1]

¹⁵N-TMSN₃,^[142] mit ¹⁵N-NaN₃ statt NaN₃,

2,2",6,6"-Tetrafluoro-5'-methyl-[1,1':3',1"-terphenyl]-2'-amin, **30**,^[118]

5'-Methyl-[1,1':3',1''-terphenyl]-2'-amin, 23,^[143]

Di(*p-tert*-Butyl)benzoylpyridine, 27,^[144]

Verbindungen aus Kapitel 5

$[N(4-MeOC_6H_4)_3]BArF_4$

167 mg (0.347 mmol) [N(4-MeOC₆H₄)₃]PF₆ und 308 mg (0.347 mmol) NaBArF₄ in 20 mL Diethylether wurden über Nacht gerührt. Die Lösung färbte sich tief blau. Anschließend wurde die Reaktionsmischung über Celite filtriert, im Vakuum auf ca. 50 % eingeengt und mit 10 mL Pentan überschichtet. Durch Lagerung bei -30 °C konnte das Produkt in 94 % Ausbeute (389 mg, 0.33 mmol) als ein fein kristalliner blau-violetter Niederschlag erhalten werden.

DippPytMe₂IrCl, 1^{tBu}-IrCl

Es wurden 2.00 g (3.72 mmol) 1^{tBu} , sowie 1.08 g (1.90 mmol) $[Ir(C_2H_4)_2CI]_2$ in 50 mL THF gelöst. Innerhalb von Sekunden konnte ein Farbumschlag von gelb-rot nach tiefgrün beobachtet werden. Die Reaktionsmischung wurde für 1.5 h bei Raumtemperatur gerührt und anschließend wurde das Lösungsmittel im Vakuum entfernt. Der Rückstand wurde einmal mit 40 mL und zweimal mit 10 mL Pentan gewaschen und anschließend im Vakuum getrocknet. Es konnten 2.58 g (3.38 mmol, 91 %) eines dunkelgrünen fein pulvrigen Feststoffes erhalten werden.

NMR:

¹H-NMR (300 MHz, C₆D₆) [ppm]: δ = 7.72 (s, 2H, H-4), 7.24 (s, 6H, H-10+11), 3.16 (sept, J_{HH} = 6.8 Hz, J_{HH} = 6.8 Hz, H-12), 1.21 (d, J_{HH} = 6.8 Hz, 12H, H-13), 1.20 (s, 9H, H-1), 1.10 (d, J_{HH} = 6.9 Hz, 12H, H-13), 0.56 (s, 6H, H-7).

¹³C{¹H}-NMR (75 MHz, C₆D₆) [ppm]: δ = 171.8 (C-6), 164.3 (C-5), 150.9 (C-8), 145.6 (C-3), 140.9 (C-9), 127.6 (C-11), 123.6 (C-10), 118.2 (C-4), 37.7 (C-2), 28.8 (C-1), 28.2 (C-12), 24.3 (C-13), 24.0 (C-13), 19.9 (C-7).

DippPytMe₂IrOMe; **1^{tBu}-IrOMe**

Es wurden 750 mg (1.00 mmol) **1^{tBu}-IrCl** in 40 mL THF gelöst und eine Lösung aus 265 mg (4.90 mmol) NaOMe in 10 mL MeOH hinzugegeben. Die tiefgrüne Reaktionslösung wurde für 16 h bei 55 °C gerührt. Nach Entfernen des Lösungsmittels im Vakuum wurde der Rückstand in MTBE aufgenommen und über Celite filtriert. Nach Entfernen des Lösungsmittels im Vakuum konnte das grüne Produkt in einer Ausbeute von 87 % (651 mg, 0.850 mmol) erhalten werden.

NMR:

¹H-NMR (300 MHz, C₆D₆) [ppm]: δ = 8.22 (s, 2H, H-4), 7.24-7.19 (m, 6H, H-10+11), 5.40 (s, 3H, H-14), 3.09 (sept, J_{HH} = 6.8 Hz, 4H, H-12), 1.33 (d, 9H, H-1), 1.15-1.08 (m, 24H, H-13), 0.49 (s, 6H, H-7).

¹³C{¹H}-NMR (75 MHz, C₆D₆) [ppm]: δ = 164.1 (C-6), 160.0 (C-5), 151.2 (C-8), 141.0 (C-9), 139.6 (C-3), 127.2 (C-11), 123.8 (C-10), 118.5 (C-4), 66.9 (C-14), 35.5 (C-2), 29.6 (C-1), 28.0 (C-12), 24.2 (C-13), 23.6 (C-13), 19.4 (C-7).

DippPytMe2lrN; 1^t-IrN

Es wurden zu einer Lösung aus 220 mg (289 μmol) **1**^{tBu}-**IrOMe** in 10 mL THF 0.38 mL (333 mg, 2.89 mmol) Me₃SiN₃ gegeben. Es konnte ein direkter Farbumschlag von grün nach braun-violett beobachtet werden. Die Reaktionsmischung wurde bei Raumtemperatur für 2 h gerührt. Es anschließend ca. 7 mL Hexan hinzugegen. Die Reaktionsmischung wurde zweimal mit wenigen mL einer THF/Hexan Mischung coevaporiert.

Ohne weitere Aufarbeitung wurde der dunkle Rückstand für 4 h auf 60 °C erwärmt und anschließend in THF aufgenommen. Die violette Lösung wurde filtriert und mit Pentan überschichtet und bei -30 °C kristallisiert. Es konnten 208 mg (279 μmol) eines schwarz-violetten Feststoffes erhalten werden, was einer Ausbeute von 97 % entspricht.

NMR:

¹H-NMR (300 MHz, THF- d_8) [ppm]: δ = 8.52 (s, 2H, H-4), 7.26 (s, 6H, H-10+11), 3.22 (s, 6H, H-7), 3.00 (sept, J_{HH} = 6.8 Hz, 4H, H-12), 1.56 (s, 9H, H-1), 1.36 (d, J_{HH} = 6.7 Hz, 12H, H-13), 1.14 (d, J_{HH} = 7.0 Hz, 12H, H-13).

¹³C{¹H}-NMR (75 MHz, THF-*d*₈) [ppm]: δ = 155.3 (C-6), 153.1 (C-8), 144.6 (C-3), 142.0 (C-9), 128.1 (C-11), 126.5, 124.1 (C-10), 119.4 (C-4), 34.6 (C-2), 33.2 (C-1), 28.2 (C-12), 25.4 (C-13), 23.8. (C-13), 15.9 (C-7).

UV/Vis Kinetische Untersuchungen der von $\mathbf{1}\text{-IrN}^{+}$ mit Ferrocen

Allgemeines Vorgehen:

1000 μ L einer 0.114 mM Stammlösung von **1-IrN** und [N(4-MeOC₆H₄)₃]BAr^F in THF wurden auf -30 °C gekühlt und mit einer Eppendorf Pipette in eine vorgekühlte UV/Vis Küvette mit Magnetrührstäbchen gegeben. Nach ca. 30 s wurde 1000 μ L einer auf -30 °C gekühlten Ferrocen Stammlösung in THF hinzugegeben und alle 240 s ein UV/Vis-Spektrum im Bereich von 500 nm bis 1000 nm aufgenommen bis keine Veränderung der Absorption mehr erkennbar war.

Bestimmung der Geschwindigkeitskontante:

Es wurden Ferrocen Stammlösungen mit 200 Äq. bis 2000 Äq. verwendet. Jede Messung wurde bei -15 °C dreifach durchgeführt.

Bestimmung der Aktivierungs-Entropie und -Enthalpie:

Es wurden Ferrocen Stammlösungen mit 500 Äq. verwendet. Die Messungen wurden bei -9.0, -17.7, -26.8, -30.8 bzw. -40.8 °C je dreifach durchgeführt.

1^{tBu}-IrN mit Ferrocenium-BArF₄

Es wurden 18 mg (24 µmol) **1**^{tBu}-**IrN** in 2 mL THF gelöst, 25 mg (24 µmol) Ferrocenium-BArF₄ wurden ebenfalls in 2 mL THF gelöst und beide Lösungen auf -30 °C gekühlt. In einem vorgekühlten Kühlblock wurden beide Lösungen unter Rühren vereint und im Kühlblock für eine Stunde gerührt. Anschließend wurden 15 mL Pentan hinzugegeben und die braune Lösung im Tiefkühlschrank bei -30 °C für 16 h gekühlt. Dabei bildete sich ein Niederschlag. Die überstehende Lösung wurde dekantiert, das Lösungsmittel im Vakuum entfernt und der Rückstand in THF-*d*₈ aufgenommen und NMRspektroskopisch untersucht.

NMR:

¹H-NMR (300 MHz, THF- d_8) [ppm]: δ = 8.20 (s, 2H, H-4), 7.78 (s, 8H, **BArF**₄), 7.56 (s, 4H, **BArF**₄), 7.47-7.45 (m, 3H, **H-15+16**), 7.24-716 (m, 3H, **H-10+11**), 7.01-6.96 (m, 3H, **H-14**), 3.10 (sept, J_{HH} = 6.8 Hz, 4H, **H-12**), 1.90 (s, 6H, **H-4**), 1.47 (s, 9H, **H-1**), 1.15 (d, J_{HH} = 6.8 Hz, 12H, **H-13**), 0.83 (d, J_{HH} = 6.8 Hz, 12H, **H-13**).

1^{tBu}-IrN mit Diacetylferrocenium-BArF₄

Es wurden 10 mg (14 μ mol) **1**^{tBu}-**IrN** in 1 mL THF-*d*₈ gelöst und auf -30 °C gekühlt. Die kalte Lösung wurde zu 16 mg (14 μ mol) Diacetylferrocenium-BArF₄ gegeben. Es konnte direkt ein Farbumschlag der Reaktionslösung von violett nach grün-braun beobachte werden. Nach Aufnahme eines ¹H-NMR-Spektrums wurde zu der Lösung 0.1 mL CD₃CN gegeben und die Reaktionslösung mehrfach geschüttelt. Es konnte eine Farbveränderung von grün-braun nach braun beobachtet werden.

Es konnte kein Reaktionsprodukt isoliert werden.

1^{tBu}-IrN mit Acetylferrocenium-BArF₄

11 mg (15 μ mol) **1**^{tBu}-**IrN** wurden 1 mL THF-*d*₈ gelöst und auf -30 °C gekühlt. Die kalte Lösung wurde zu 16 mg (15 μ mol) Acetylferrocenium-BArF₄ gegeben. Es konnte direkt ein Farbumschlag der Reaktionslösung von violett nach braun beobachtet werden.

Es konnte kein Reaktionsprodukt isoliert werden.

1-IrN^{PF6}

In einen vorgekühlten Kühlblock wurden 20 mg (29 μ mol) **1-IrN** in 3 mL in -30 °C gekühlten THF gelöst. Unter Rühren wurde eine auf -30 °C gekühlte Lösung aus 14 mg (29 μ mol) [N(4-MeOC₆H₄)₃]PF⁶ und 3 mL THF hinzugegeben. Nach kurzer Reaktionszeit bildete sich ein schwarzer unlöslicher Niederschlag. Weitere Aufarbeitung oder Analytik fand nicht statt.

1-IrN^{BArF}

In einem vorgekühltem Kühlblock wurden 8 mg (0.01 mmol) **1-IrN** in 1 mL auf -30 °C gekühlten THF gelöst. Unter Rühren wurde eine auf -30 °C gekühlte Lösung von 14 mg (11 μ mol) [N(4-MeOC₆H₄)₃]BarF₄ in 1 mL THF hinzugegeben. Nach kurzer Reaktionszeit wurde das Lösungsmittel in der Kälte im Vakuum entfernt und der Rückstand mit kaltem Pentan gewaschen und erneut getrocknet.

NMR:

Neben Spuren von $[N(4-MeOC_6H_4)_3]$ konnte kein weiteres Signal detektiert werden.

IR (ATR) $\tilde{\nu}_{max}$ [cm⁻¹]: 2966 m, 2932 m, 2875 w, 1605 w, 1504 s, 1465 m, 1390 w, 1354 s, 1277 vs, 1240 m, 1125 vs, 1040 m, 989 w, 935 w, 887 w, 827 w, 802 w, 781 w, 714 w, 681 w.

Analog wurde die Synthese mit **1-Ir¹⁵N** durchgeführt.

1-IrPy^{BArF}

In einem vorgekühltem Kühlblock wurden 16 mg (23 μmol) **1-IrN** in 3 mL auf -30 °C gekühlten THF gelöst. Unter Rühren wurde eine auf -30 °C gekühlte Lösung von 28 mg (23 μmol) [N(4-MeOC₆H₄)₃]BArF₄ in 2 mL THF hinzugegeben. Ein Farbumschlag von violett nach grün konnte direkt beobachtet werden. Nach ca. einer Minute wurden 43 mg Ferrocen (0.23 mmol) hinzugegeben und für 2 h unter Erwärmung auf Raumtemperatur gerührt. Nach Entfernung des Lösungsmittels im Vakuum wurde der Rückstand dreimal mit 10 mL Hexan gewaschen.

Die spektroskopischen Daten stimmen mit der Literatur überein.^[1]

Verbindungen aus Kapitel 6

2,6-Bis(trifluormethyl)anilin

In einem 1 L Schenkkolben wurden unter Stickstoffatmosphäre 15.0 g (44.1 mmol, 1.0 Äq.) 2-lod-1,3-bis(trifluormethyl)benzol, 6.31 g (44.1 mmol, 1.0 Äq.) Kupfer(I)oxid und 6.60 g (57.3 mmol, 1.3 Äq.) L-Prolin in 200 mL trockenem DMSO suspendiert. Danach wurden 5.74 g (88.2 mmol) NaN₃ hinzugegeben. Die rote Reaktionsmischung wurde für zwei Stunden bei 90 °C gerührt. Nach Abkühlen der Reaktionsmischung auf 40 °C wurden unter Raumluft 250 mL gesättigte NH₄Cl-Lösung in Wasser und 250 mL EtOAc zum Quenchen der Reaktion hinzugegeben und für weitere 2 Stunden gerührt. Es wurde eine Farbänderung nach grün beobachtet. Anschließend wurde die Reaktionsmischung über Celite filtriert und der Filterkuchen mit 500 mL gesättigter NH₄Cl sowie 500 mL Pentan nachgewaschen. Die organische Phase des gesammelten Filtrats wurde abgetrennt. Die wässrige Phase wurde zweimal mit 150 mL Pentan gewaschen. Die vereinten organischen Phasen wurden viermal mit ca. 200 mL gesättigter NaHCO₃ Lösung, 200 mL H₂O, sowie 200 mL gesättigter Kochsalz-Lösung gewaschen und anschließend über NaSO₄ getrocknet und am Rotationsverdampfer auf ca. 25 mL eingeengt. Anschließend wurde der Rückstand mittels Kugelrohrdestillation destilliert. Das Produkt konnte als farbloses Öl in einer Ausbeute von 52 % (5.30 g, 44.1 mmol) erhalten werden.

NMR:

¹H-NMR (600 MHz, CD₂Cl₂) [ppm]: δ = 7.63 (d, J_{HH} = 7.9 Hz, 2H, **H-3**), 6.84 (t, J_{HH} = 7.9 Hz, 1H, **H-4**), 4.76 (br, 2H, N**H**₂).

¹³C{¹H}-NMR (151 MHz, CD₂Cl₂) [ppm]: δ = 142.8 (C-1), 130.6 (q, J_{CF} = 6 Hz, C-3), 124.4 (q, J_{CF} = 272 Hz, C-5),116.3 (C-4), 115.1 (q, J_{CF} = 30 Hz, C-2).

¹⁹F-NMR (565 MHz, CD_2Cl_2) [ppm]: δ = -63.4.

Zusätzlich sind Reste von EtOAc im Spektrum zu erkennen.

Xy^FPyMe₂, 4

1.28 g (5.84 mmol) 4-*tert*-Butyl-2,6-diacetylpyridin wurden zusammen mit einer Spatelspitze *p*-Toluolsulfonsäure in 50 mL Toluol am Wasserabscheider für 30 min unter Rückfluss erhitzt. Nach Abkühlen der Reaktionslösung wurden 4.00 g (17.5 mmol) 2,6-Bis(trifluormethyl)anilin gelöst in 10 mL Toluol zu der Reaktionslösung gegeben und anschließend für 5 Tage zum Rückfluss am Wasserabscheider erhitzt. Nach Abkühlen auf Raumtemperatur wurde das Lösungsmittel am Rotationsverdampfer entfernt. Der braune Rückstand wurde zweimal zwei Mal mit Methanol gewaschen. Nach Umkristallisieren aus einer DCM/Hexan-Mischung konnten 1.88 g (2.92 mmol, 50 %) des Produktes als farblose Nadeln erhalten werden. Geeignete Einkristalle für die Röntgeneinkristallstrukturanalyse wurden durch Diffusion von Pentan in eine THF-Lösung bei -30°C gewonnen.

NMR:

¹H-NMR (600 MHz, C₆D₆) [ppm]: δ = 8.69 (s, 2H, H-4), 8.37 (d, J_{HH} = 7.9 Hz, 4H, H-10), 6.46 (t, J_{HH} = 7.9 Hz, 2H, H-11), 2.34 (s, 6H, H-7), 1.04 (s, 9H, H-1).

¹³C{¹H}-NMR (151 MHz, C₆D₆) [ppm]: δ = 171.7 (C-5), 162.7 (C-3), 154.6 (C-6), 148.6 (C-8), 130.3 (q, J_{CF} = 5 Hz, C-10), 124.0 (q, J_{CF} = 272 Hz, C-12), 122.6 (C-11), 121.7 (C-4), 120.0 (q, J_{CF} = 30 Hz, C-9), 34.1 (C-2) 29.7 (C-1), 18.9 (C-7).

¹⁹F-NMR (565 MHz, C₆D₆) [ppm]: δ = -61.9.

Elementaranalyse:

Anal. Berechnet. C₂₉H₂₃F₁₂N₃: C, 54.30; H, 3.61; N, 6.55.

Gefunden: C, 54.16; H, 3.73; N, 6.49.

TerpPyMe₂, 24

Es wurden 1.40 g (8.60 mmol) Diacetylpyridin und 50 mg *p*-Toluolsulfonsäure in 70 mL Toluol am Wasserabscheider für ca. 30 min unter Rühren zum Rückfluss erhitzt. Nach Abkühlen der Reaktionslösung wurden 4.90 g (18.9 mmol) 5'-Methyl-[1,1':3',1''-terphenyl]-2'-amin zu der Reaktionslösung gegeben. Anschließend wurde die Reaktionslösung für 16 h unter Rühren zum Rückfluss erhitzt. Die Reaktionslösung färbte sich gelb/braun. Nach Erkalten der Reaktionslösung wurde das Lösungsmittel am Rotationsverdampfer entfernt und der Rückstand zweimal aus Methanol umkristallisiert.

Es konnten 3.69 g (5.71mm, 67 %) des Produktes als gelbes Pulver erhalten werden.

NMR:

¹H-NMR (600 MHz, THF-*d*₈) [ppm]: δ = 7.98 (d, J_{HH} = 7.9 Hz, 2H, **H-2**), 7.69 (t, J_{HH} = 7.9 Hz, 1H, **H-1**), 7.38-7.34 (m, 8H, **H-12**), 7.20-7.14 (m, 8H, **H-13**), 7.16 (d, J_{HH} = 0.8 Hz, 4H, **H-8**), 7.12-7.08 (m, 4H, **H-14**), 2.39 (s, 6H, **H-10**), 1.65 (s, 6H, **H-5**).

¹³C{¹H}-NMR (151 MHz, THF-*d*₈) [ppm]: δ = 167.56 (C-4), 155.67 (C-3), 145.28 (C-9), 141.70 (C-11), 137.37 (C-3), 134.19 (C-6), 132.89 (C-7), 131.24 (C-8), 130.15 (C-12), 128.66 (C-13), 127.36 (C-14), 122.79 (C-2), 21.0 (C-10), 17.7 (C-5).

Elementaranalyse:

 Anal. Berechnet. C47H39N3 x 0.5 H2O:
 C, 86.20; H, 6.16; N, 6.42.

 Gefunden:
 C, 86.69; H, 6.13; N, 6.38.

TerpPyPh₂, 26

2,6-Dibenzoylpyridin (0.950 g, 3.30 mmol) und eine Spatelspitze *p*-Toluolsulfonsäure wurden in 100 mL Toluol gelöst. Das Reaktionsgemisch wurde unter Rückfluss für 30 min am Wasserabscheider gerührt. Anschließend wurden 4.90 g (18.9 mmol) 5'-Methyl-[1,1':3',1''-terphenyl]-2'-amin hinzugegeben und 24 h unter Rückfluss am Wasserabscheider gerührt. Nach Abkühlen das Reaktionsgemisch wurde das Lösungsmittel am Rotationsverdampfer entfernt. Der braune ölige Rückstand wurde mit 100 mL Methanol versetzt. Unter Erwärmen bildete sich ein gelber Niederschlag. Nach Abtrennen des Niederschlages durch Filtration und Waschen mit Methanol und Hexan wurde dieser im Vakuum getrocknet. Das Produkt konnte in einer Ausbeute von 74 % (4.91 g, 6.36 mmol) als feinkristallines, gelbliches Pulver erhalten werden. Zusätzlich wurde die Substanz aus MTBE umkristallisiert.

NMR: (Spektrum höherer Ordnung)

¹H-NMR (300 MHz, CD₂Cl₂) [ppm]: δ = 8.19 (d, 0.65H), 8.10 (d, 0.5H), 7.88 (t, 0.25H), 7.47-6.68 (m, 33H), 6.07 (m, 1.5H), 5.88 (d, 1.5H), 2.36 (s, 2.5H), 2.33 (s, 3.5H).

¹³C{¹H}-NMR (125 MHz, CD₂Cl₂) [ppm]: δ = 166.8, 166.5, 165.1, 155.3, 152.8, 144.6, 144.2, 140.9, 140.8, 139.3, 136.4, 135.4, 133.8, 132.5, 132.2, 132.0, 131.6, 130.6, 130.5, 130.5, 130.0, 129.9, 129.8, 129.3, 128.8, 128.3, 128.2, 128.0, 127.8, 127.0, 126.9, 126.3, 125.9, 122.5, 21.1, 20.9.

Zusätzlich wurden die Signale eines halben Moleküls MTBE pro Ligand Molekül beobachtet. Sowie Reste von H₂O im Lösungsmittel detektiert.

Elementaranalyse:

Anal. Berechnet. C₅₇H₄₃N₃ x ½ MTBE: C, 87.79; H, 6.07; N, 5.16.

Gefunden: C, 88.01; H, 5.69; N, 5.29.

TerpPytPh₂, 28

2,6-Di(*para*-tert-Butylbenzoyl)pyridin (3.42 g, 8.57 mmol, 1.00 Äq.) und eine Spatelspitze *p*-Toluolsulfonsäure wurden in 50 mL Toluol gelöst. Das Reaktionsgemisch wurde unter Rückfluss für ungefähr 30 min am Wasserabscheider gerührt. Anschließend wurden 5.00 g (19.3 mmol, 2.25 Äq.) 5'-Methyl-[1,1':3',1''-terphenyl]-2'-amin hinzugegeben und 2 Tage unter Rückfluss am Wasserabscheider gerührt. Nach Abkühlen des Reaktionsgemisches wurde das Lösungsmittel am Rotationsverdampfer entfernt. Der ölige Rückstand wurde mit ungefähr 50 mL Methanol versetzt. Unter Erwärmen bildete sich ein gelber Niederschlag. Nach Abtrennen des Niederschlages durch Filtration und Waschen mit Methanol wurde dieser im Vakuum getrocknet. Es konnten 2.4 g des Produktes erhalten werden. Aus der Mutterlauge konnten im Kühlschrank nach 2 Tagen weitere 2.9 g Produktes durch erneute Filtration erhalten werden. Insg. konnten 5.32 g des Produktes als gelbliches Pulver in einer Ausbeute von 70 % (6.00 mmol) erhalten werden. Geeignete Einkristalle für die Röntgeneinkristall-strukturanalyse wurden durch langsames Verdampfen einer gesättigten Et₂O-Lösung erhalten.

NMR: (Spektrum Höherer Ordnung)

¹H-NMR (500 MHz, CD_2Cl_2) [ppm]: δ = 8.15 (d), 7.90 (d), 7.40 (t), 7.33-7.18 (m), 7.08 (br), 7.01 (br), 6.91 (br), 6.71 (s), 6.66 (d), 6.28 (d), 6.03 (d), 5.89 (d), 2.35 (s), 2.34 (s), 1.29 (s), 1.23 (s), 0.94 (s).

¹³C{¹H}-NMR (125 MHz, CD₂Cl₂) [ppm]: δ = 174.7, 167.0, 165.6, 155.9, 153.8, 153.1, 151.0, 147.0, 144.9, 141.5, 141.2, 137.2, 136.8, 134.0, 132.5, 132.1, 131.8, 131.1, 130.9, 130.3, 130.2, 129.6, 129.5, 128.8, 128.5, 128.3, 128.1, 127.1, 126.6, 126.4, 125.7, 124.4, 123.2, 31.7, 31.4, 21.4, 21.3.

Elementaranalyse:

Anal. Berechnet. $C_{65}H_{59}N_3$:	C, 88.50; H, 6.74; N, 4.76.
Gefunden:	C, 88.11; H, 6.75; N, 4.68

TerpFPytPh₂, 31

1.40 g (8.60 mmol) Diacetylpyridin und 50 mg *p*-Toluolsulfonsäure wurden in 70 mL Toluol am Wasserabscheider für ca. 30 min unter Rühren zum Rückfluss erhitzt. Nach Abkühlen der Reaktionslösung wurde 4.90 g (18.9 mmol) 2,2",6,6"-Tetrafluoro-5'-methyl-[1,1':3',1"-terphenyl]-2'- amin zu der Reaktionslösung gegeben. Anschließend wurde die Reaktionslösung für 16 h unter Rühren zum Rückfluss erhitzt. Die Reaktionslösung färbte sich gelb/braun. Nach Abkühlen der Reaktionslösung wurde das Lösungsmittel am Rotationsverdampfer entfernt und der Rückstand zweimal aus Methanol umkristallisiert. Es konnten 3.69 g (5.71mm, 67 %) des Produktes als gelbes Pulver erhalten werden. Durch Kristallisation aus einer Dichlormethan-Lösung konnten Kristalle erhalten werden, welche für die Röntgenstrukturanalyse geeignet waren.

NMR: (Spektrum höherer Ordnung)

¹H-NMR (600 MHz, CD₂Cl₂) [ppm]: δ = 8.05 (d), 7.84 (d), 7.69 (d), 7.49 (d), 7.22-7.09 (m), 7.01 (s), 6.91-6.64 (m), 6.40 (d), 6.30 (d), 6.20 (t), 2.39-2.36 (m, **H-10**), 1.29-1.23 (m, **H-19**).

¹³C{¹H}-NMR (151 MHz, CD₂Cl₂) [ppm]: δ = 165.7, 165.3, 164.8, 162.1, 161.1, 160.6, 158.9, 156.0, 153.2, 152.2, 152.0, 151.2, 146.5, 146.3, 146.0, 137.2, 137.0, 136.1, 132.9, 132.8, 131.2, 130.7, 129.8, 129.4, 129.3, 125.2, 124.6, 124.1, 123.9, 123.7, 120.4, 117.1, 111.9, 111.9, 111.8, 111.6, 111.4, 111.3, 111.2, 34.4, 31.3, 20.8.

¹⁹F-NMR (565 MHz, CD₂Cl₂) [ppm]: -108.3, -108.6, -108.9, -110.9, -111.0, -111.3.

Elementaranalyse:

Anal. Berechnet. $C_{65}H_{51}N_3F_8$: C, 76.08; H, 5.01; N, 4.10.

Gefunden: C, 75.96; H, 5.01; N, 4.05

Verbindungen aus Kapitel 7

Xy^FPyMe₂IrCl, **4-IrCl**

Eine Mischung aus 150 mg [Ir(C₂H₄)₂Cl₂]₂ (0.264 mmol, 0.34 Äq.) und 500 mg **Xy^FPyMe**₂ (0.780 mmol, 1.00 Äq.) wurde für 24 h in 20 mL abs. Methanol bei Raumtemperatur gerührt. Innerhalb von wenigen Minuten wurde ein Farbumschlag von rot nach grün sichtbar. Nach 24 h wurden weitere 70 mg [Ir(C₂H₄)₂Cl₂]₂ (0.123 mmol, 0.16 Äq.) hinzugegeben. Nach Entfernung des Lösungsmittels im Vakuum und Umkristallisation durch Überschichten einer THF-Lösung mit Pentan konnten 387 mg (0.445 mmol, 57%) des Produktes als tiefgrüner kristalliner Feststoff erhalten werden. Durch Kristallisation bei -30 °C aus einer Diethylether-Lösung konnten Kristalle erhalten werden, welche für die Röntgenstrukturanalyse geeignet waren.

NMR:

¹H-NMR (600 MHz, THF-*d*₈) [ppm]: δ = 8.51 (s, 2H, H-4), 8.06 (d, J_{HH} = 8.0 Hz, 4H, H-10), 7.60 (t, J_{HH} = 7.9 Hz, 2H, H-11), 1.44 (s, 9H, H-1), 0.45 (s, 6H, H-7).

¹³C{¹H}-NMR (151 MHz, THF-*d*₈) [ppm]: δ = 177.0 (C-6), 165.1(C-5), 153.4 (C-8), 148.3 (C-3), 131.3(q, J_{CF} = 5 Hz, C-10), 127.6 (C-11), 126.3 (q, J_{CF} = 31 Hz, C-9), 124.3 (q, J_{CF} = 275 Hz, C-12), 122.2 (C-4), 38.7 (C-2) 28.9 (C-1), 22.7 (C-7).

¹⁹F-NMR (565 MHz, THF- d_8) [ppm]: δ = -59.1.

Elementaranalyse:

Anal. Berechnet. $C_{29}H_{23}F_{12}IrN_3CI$:	C, 40.07; H, 2.67; N, 4.83.
Gefunden:	C, 40.29; H, 2.83; N, 4.76.

TerpPyPh2IrCl, 24-IrCl

500 mg (0.774 mmol) **TerpPyMe₂** und 234 mg (0.387 mmol) [Ir(C₂H₄)Cl]₂ wurden in 15 mL THF gelöst. Nach einigen Minuten war ein Farbumschlag von gelb/orange nach tief grün zu beobachten. Die Reaktionslösung wurde über Nacht gerührt und anschließend das Lösungsmittel im Vakuum entfernt. Der grüne Rückstand wurde in wenig THF aufgenommen und durch Überschichten mit Pentan bei -35 °C umkristallisiert. Nach Entfernung des Lösungsmittels konnten 516 mg (0.591mmol, 76 %) des Produktes als kristalliner Feststoff erhalten werden. Durch Überschichten einer THF-Lösung mit Pentan konnten für die Strukturanalyse geeignete Einkristalle erhalten werden.

NMR:

¹H-NMR (300 MHz, C₆D₆) [ppm]: δ = 7.58 (t, J_{HH} = 7.9 Hz, 1H, **H-1**), 7.40-7.36 (m, 8H, **H-13**), 7.18, (s, 4H, **H-8**), 6.90-6.85 (m, 12H, **H-12+14**), 6.66 (d, J_{HH} = 7.9 Hz, 2H, **H-2**), 2.17, (s, 6H, **H-10**), 0.42 (s, 6H, **H-5**).

¹³C{¹H}-NMR (75 MHz, C₆D₆) [ppm]: δ = 172.3 (C-4), 163.5 (C-3), 148.0 (C-6), 141.0, 136.4 (C-9), 136.4 (C-14), 131.3 (C-8), 130.9 (C-13), 127.6 (C-7), 126.6 (C-11), 122.2 (C-2), 121.7 (C-1), 21.0 (C-10), 20.7 (C-5).

Elementaranalyse:

Anal. Berechnet. C₄₇H₃₉IrN₃Cl: C, 64.63; H, 4.50; N, 4.81.

Gefunden: C, 63.95; H, 4.81; N, 5.13.

TerpPytPh2IrCl, 28-IrCl

390 mg (0.440 mmol) **TerpPytPh**₂ und 150 mg (0.260 mmol) [Ir(C₂H₄)Cl]₂ wurden in 40 mL THF gelöst. Nach einigen Minuten war ein Farbumschlag von gelb-orange nach tief grün/braun zu beobachten. Die Reaktionslösung wurde über Nacht gerührt und anschließend das Lösungsmittel im Vakuum entfernt. Der grüne-braune Rückstand wurde zweimal mit ca. 15 mL MTBE gewaschen und anschließend im Vakuum getrocknet. Es konnten 230 mg (0.210 mmol, 47 %) des Produktes als dunkelgrüner Feststoff erhalten werden. Geeignete Einkristalle für die Röntgenbeugung wurden durch langsame Diffusion von Pentan in eine konzentrierte Toluollösung bei -35 °C erhalten.

NMR:

¹H-NMR (600 MHz, THF-*d*₈) [ppm]: δ = 8.38 (t, J_{HH} = 8.0 Hz, 1H, **H-1**), 7.61 (d, J_{HH} = 8.0 Hz, 2H, **H-2**), 7.19, (d, J_{HH} = 8.5 Hz, 4H, **H-16**), 7.05 (s, 4H, **H-8**), 6.99 (d, J_{HH} = 8.5 Hz, 4H, **H-15**), 6.95-6.92 (m, 12H, **H-13+14**), 6.80, (m, 8H, **H-12**), 2.44, (s, 6H, **H-10**), 1.36 (s, 18H, **H-19**).

¹³C{¹H}-NMR (151 MHz, THF-*d*₈) [ppm]: δ = 176.2 (C-4), 166.1 (C-3), 151.6 (C-5), 149.4 (C-6), 141.6 (C-7), 137.2 (C-11), 136.6 (C-9), 136.0 (C-17), 131.6 (C-18), 131.5 (C-13), 127.9 (C-12), 126.9 (C-14), 126.2 (C-16), 125.4 (C-2), 125.0 (C-15), 124.5 (C-1), 35.9 (C-18), 31.3 (C-19), 21.3 (C-10).

Elementaranalyse:

Anal. Berechnet. C₆₅H₅₉IrN₃Cl: C, 70.34; H, 5.36; N, 3.79.

Gefunden: C, 69.80; H, 5.69; N, 3.56.

Terp^FPytPh₂IrCl, **31-IrCl**

Es wurden 500 mg (0.490 mmol) **Terp^FPytPh₂** und 165 mg (0.290 mmol, 0.6 Äq.) [Ir(C₂H₄)Cl]₂ in 40 mL MeOH suspendiert und für zwei Tage bei Raumtemperatur gerührt. Die Reaktionslösung färbte sich über die Zeit braun. Eine Reaktionskontrolle durch ¹⁹F-NMR-Spektroskopie zeigt keinen Umsatz, woraufhin die Reaktionsmischung für einen weiteren Tag bei 50 °C gerührt wurde. Eine Reaktionskontrolle durch ¹⁹F-NMR Spektroskopie zeigt weiterhin keinen Umsatz. Durch Filtration über Alox (neutral, aktiviert) konnte der Ligand **Terp^FPytPh₂** zurückerhalten werden.

Es konnte kein Reaktionsprodukt isoliert werden.

Xy^FPyMe₂IrOMe, **4-IrOMe**

90 mg Natrium (4.0 mmol, 10 Äq.) wurden in 20 mL abs. Methanol gelöst. Nach Beendigung der Gasentwicklung wurden 327 mg **Xy^FPyMe**₂**IrCl** (0.376 mmol, 1.00 Äq.) gelöst in 2 mL THF hinzugegeben und die Mischung für 18 h bei Raumtemperatur gerührt. Anschließend wurde das Lösungsmittel im Vakuum entfernt, der Rückstand mit Et₂O extrahiert und über Celite filtriert. Nach Entfernen des Lösungsmittels im Vakuum konnten 308 mg des Produkts (0.356 mmol, 95 %) als grüner Feststoff erhalten werden.

NMR:

¹H-NMR (300 MHz, C₆D₆) [ppm]: δ = 8.47 (s, 2H, **H-4**), 7.44 (d, J_{HH} = 8.0 Hz, 4H, **H-10**), 6.66 (t, J_{HH} = 8.0 Hz, 2H, **H-11**), 5.44 (s, 3H, **H-13**), 1.19 (s, 9H, **H-1**), -0.03 (s, 6H, **H-7**).

¹H-NMR (600 MHz, THF-*d*₈) [ppm]: δ = 8.81 (s, 2H, **H-4**), 8.03 (d, J_{HH} = 8.0 Hz, 4H, **H-10**), 7.65 (t, 2H, J_{HH} = 8.0 Hz, **H-11**), 4.90 (s, 3H, **H-13**), 1.47 (s, 9H, **H-1**), 0.28 (s, 6H, **H-7**).

¹⁹F-NMR (565 MHz, THF-*d*₈) [ppm]: -60.07.

¹³C{¹H}-NMR (151 MHz, THF- d_8) [ppm]: 168.7 (C-6), 162.0 (C-5), 155.2 (C-8), 142.2 (C-3), 131.6 (q, J_{CF} = 5.2 Hz, C-10), 127.3 (C-11), 126.8 (q, J_{CF} = 31 Hz, C-9), 124.5 (q, J_{CF} = 275 Hz, C-12) 121.3 (C-4), 67.0 (C-13), 37.9 (C-2), 30.1 (C-1), 23.0 (C-7).

Elementaranalyse:

Anal. Berechnet. $C_{30}H_{26}F_{12}IrN_3O$:	C, 41.67; H, 3.03; N, 4.86.
Gefunden:	C, 41.42; H, 2.39; N, 4.95.

TerpPyMe2IrOMe, 24-IrOMe

Es wurden 0.40 g **TerpPyMe**₂**IrCl** (0.62 mmol, 1 Äq.) in THF 10 mL sowie Natriummethanolat (0.33 g, 6.19 mmol, 10 Äq.) in 20 mL Methanol vereinigt und bei 50 °C für 12 h gerührt. Anschließend wurde das Lösungsmittel im Vakuum entfernt, der Rückstand mit Toluol extrahiert und über Celite filtriert. Nach erneutem Entfernen des Lösungsmittels wurde das Rohprodukt in THF aufgenommen, mit Pentan überschichtet und im Tiefkühlschrank auf -35 °C gekühlt. Nach Bildung eines kristallinen Niederschlags wurde die überstehende Lösung dekantiert und das Produkt mit Pentan gewaschen. Nach Trocken im Vakuum konnte das schwarz-grüne Produkt in einer Ausbeute von 65 % (0.25 g, 0.4 mmol) als kristalliner Feststoff erhalten werden.

NMR:

¹H-NMR (600 MHz, THF- d_8) [ppm]: δ = 7.93 (t, J_{HH} = 7.8 Hz, 1H, **H-3**), 7.79 (d, J_{HH} = 7.8 Hz, 2H, **H-2**), 7.19 (d, J_{HH} = 7.8 Hz, 4H, **H-8**), 7.08 (dd, J_{HH} = 7.8 Hz, 1.4 Hz 8H, **H-12**), 6.93 – 6.87 (m, 4H, **H-14**), 6.80 (t, J_{HH} = 7.8 Hz, 8H, **H-13**), 5.31 (s, 3H, **H-15**), 2.48 (s, 6H, **H-10**), 0.48 (s, 6H, **H-5**).

¹³C{¹H}-NMR (151 MHz, THF-*d*₈) [ppm]: δ = 166.4 (C-4), 160.9 (C-3), 150.0 (C-9), 141.7 (C-11), 137.5 (C-7), 136.5 (C-6), 131.7 (C-8), 130.7 (C-12), 128.0 (C-13), 127.0 (C-14), 122.0 (C-2), 115.6 (C-1), 65.8 (C-15), 21.4 (C-5), 21.3 (C-10).

TerpPy^tPh₂IrOMe, **28-IrOMe**

47 mg (2.7 mmol) Natrium wurden in ca. 15 mL Methanol gelöst. Nach Beendigung der Gasentwicklung wurde eine Lösung von 0.23 mg (0.27 mmol) **TerpPytPh₂Cl** in 20 mL THF hinzugegeben. Die tiefgrüne Reaktionslösung wurde bei 50 °C über Nacht gerührt. Nach Entfernen des Lösungsmittels und Extraktion des Rückstandes mit Toluol wurde die schwarze Reaktionslösung über Celite filtriert und anschließend das Lösungsmittel im Vakuum entfernt. Es konnten 0.18 g (0.16 mmol, 79 %) des Produktes als schwarzer fein-pulvriger Feststoff erhalten werden.

NMR:

¹H-NMR (300 MHz, C₆D₆) [ppm]: δ = 7.95 (m, 2H, **H-2**), 7.34-7.27 (m, 14H), 7.08 (s, 4H, **H-8**), 7.03-6.90 (m, 17H), 6.00 (s, 3H, **H-20**), 2.04 (s, 6H, **H-10**), 1.21 (s, 18H, **H-19**).

¹³C{¹H}-NMR (75 MHz, C₆D₆) [ppm]: δ = 168.2 (**C-4**), 161.7(**C-3**), 149.5 (**C-5**), 149.4 (**C-6**), 141.7, 137.5, 137.0, 136.2 (**C-9**), 131.5 (**C-8**), 130.3, 126.4, 125.4, 124.3, 124.2 (**C-2**), 118.2 (**C-1**), 66.4 (**C-20**), 35.0 (**C-18**), 30.9 (**C-19**), 21.0 (**C-10**).

Elementaranalyse:

Anal. Berechnet. $C_{66}H_{H62}IrN_3O$:	C, 71.71; H, 5.65; N, 3.80.
Gefunden:	C, 71.77; H, 5.95; N, 3.54.

Xy^FPyMe₂IrN₃, 4-IrN₃

Es wurden 212 mg **Xy^FPyMe₂IrOMe** (0.245 mmol, 1.00 Äq.) in ca. 8 mL THF gelöst, mit 10 Äq. Trimethylsilylazid (0.282 g, 2.45 mmol) versetzt und bei Raumtemperatur gerührt. Nach wenigen Minuten war ein Farbumschlag von grün nach braun zu erkennen. Nach 17 h wurden die flüchtigen Verbindungen im Vakuum entfernt und das Produkt mit Pentan gewaschen. Es konnten 184 mg (0.210 mmol, 86 %) des Produkts als dunkler Feststoff erhalten werden.

NMR:

¹H-NMR (600 MHz, THF-*d*₈) [ppm]: δ = 8.55 (s, 2H, H-4), 8.10 (d, J_{HH} = 8.0 Hz, 4H, H-10), 7.65 (t, J_{HH} = 8.0 Hz 2H, H-11), 1.45 (s, 9H, H-1), 0.46 (s, 6H, H-7).

¹⁹F-NMR (565 MHz, THF-*d*₈) [ppm]: -61.4.

¹³C{¹H}-NMR (151 MHz, THF-*d*₈) [ppm]: 175.3 (C-6), 163.1 (C-5), 153.6 (C-8), 147.5 (C-3), 132.1 (C-10), 128.1 (C-11), 127.1 (q, C-12), 122.2 (q, C-9), 38.0 (C-2), 29.4 (C-1), 23.07 (C-7).

Elementaranalyse:

Anal. Berechnet. C₂₉H₂₃F₁₂IrN₆: C, 39.77; H, 2.65; N, 9.60.

Gefunden: C, 39.88; H, 2.85; N, 9.23.

IR (ATR) $\tilde{\nu}_{max}$ [cm⁻¹] = 2962 w, 2139 m, 2032 vs (**N**₃), 1600 m, 1455 m, 1435 m, 1409 w, 1366 w, 1337 m, 1296 s, 1260 m, 1238 m, 1208 s, 1164 s, 1128 s, 1085 s, 986 m, 901 m, 877 m, 833 m, 808 m, 765 m, 741 m, 676 s.

TerpPyMe₂IrN₃, 24-IrN₃

200 mg **TerpPyMe₂IrOMe** (0.240 mmol) wurden in ca. 10 mL THF gelöst, mit 0.55 g Trimethylsilylazid (4.76 mmol) versetzt und bei Raumtemperatur gerührt. Nach wenigen Minuten war ein Farbumschlag von grün nach braun zu erkennen. Nach 3 h wurden die flüchtigen Verbindungen im Vakuum entfernt und das Produkt mit 20 mL Pentan gewaschen. Nach Trocknen im Vakuum konnten 190 mg (0.216 mmol, 90 %) des Produkts als schwarzes Pulver erhalten werden.

NMR:

¹H-NMR (600 MHz, THF- d_8) [ppm]: δ = 8.32 (t, J_{HH} = 7.9 Hz, 1H, **H-3**), 7.60 (d, J_{HH} = 7.9 Hz, 2H, **H-2**), 7.22 (s, 4H, **H-8**), 7.05 - 7.02 (m, 8H, **H-12**), 6.96 - 6.93 (m, 4H, **H-14**), 6.84 (t, J_{HH} = 7.7 Hz, 8H, **H-13**), 2.49 (s, **H-10**), 0.67 (s, **H-5**).

¹³C{¹H}-NMR (151 MHz, THF-*d*₈) [ppm]: δ = 166.4 (C-4), 161.9 (C-1), 151.3 (C-9), 141.4 (C-11), 137.1 (C-7), 137.0 (C-6), 130.6 (C-8), 128.8 (C-12), 127.8 (C-13), 124.6 (C-14), 122.3 (C-2), 120.00 (C-3), 20.1 (C-10) 19.7 (C-5).

IR (ATR) $\tilde{\nu}_{max}$ [cm⁻¹] = 3046 w, 3024 w, 2041 vs (**N**₃), 1598 m, 1577 m, 1491 m, 1422 s, 1381 m, 1348 m, 1328 m, 1294 s, 1220 s, 1176 m, 1159 m, 1102 w, 1071 m, 1046 m, 1030 m, 986 m, 948 m, 918 m, 901 m, 864 s, 822 759 vs, 722 m, 699 vs.

Die Darstellung von **TerpPyMe**₂**Ir**¹⁵**N**₃ wurde analog mit 2 statt 20 Äq. ¹⁵N-TMSN₃ durchgeführt.

TerpPy^tPh₂IrN₃, 28-IrN₃

183 mg **TerpPy**^t**Ph**₂**IrOMe** (0.16 mmol) wurden in ca. 10 mL THF gelöst, mit 0.2 mL Trimethylsilylazid (1.66 mmol) versetzt und bei Raumtemperatur gerührt. Nach wenigen Minuten war ein Farbumschlag von grün nach braun zu erkennen. Nach 24 h wurden die flüchtigen Verbindungen im Vakuum entfernt und das Produkt mit 20 mL Pentan gewaschen. Nach Trocknen im Vakuum konnten 183 mg (0.16 mmol, 99 %) des Produkts als schwarzes Pulver erhalten werden. Für die Röntgenstrukturanalyse geeignete Einkristalle wurden aus einer gesättigten THF-Lösung bei -30 °C erhalten.

Die Darstellung von **TerpPyMe**₂**Ir**¹⁵**N**₃ wurde analog mit 2 Äq. statt 10 Äq. ¹⁵N-TMSN₃ durchgeführt.

NMR:

¹H-NMR (300 MHz, THF- d_8) [ppm]: δ = 8.22 (t, J_{HH} = 8.0 Hz, 2H, **H-1**) 7.78 (d, J_{HH} = 8.0 Hz, 2H, **H-2**), 7.18 (d, J_{HH} = 8.5 Hz, 4H, **H-15**), 7.08 (s, 4H, **H-8**), 6.98 (d, J_{HH} = 8.5 Hz, 4H, **H-16**), 6.97 – 6.82 (m, 20H), 2.42 (s, 6H, **H-10**), 1.36 (s, 18H, **H-19**).

¹³C{¹H}-NMR (75 MHz, THF-*d*₈) [ppm]: δ = 173.0, 164.1, 151.2, 141.7, 136.9, 136.8, 136.1, 132.0 (**C-8**), 130.4, 128.1, 128.0, 126.9, 126.2 (**C-16**), 125.0 (**C-2**), 124.8 (**C-15**), 123.2 (**C-1**), 31.7 (**C-18**), 31.3 (**C-19**), 20.7 (**C-10**).

IR (KBr) $\tilde{\nu}_{max}$ [cm⁻¹] = 3031 w, 2963 m, 2903 m, 2864 m, 2035 vs (**N**₃), 1964 m, 1598 w, 1495 m, 1459 m, 1446 m, 1415 s, 1367 s, 1349 m, 1339 m, 1317 m, 1293 s, 1271 s, 1228 m, 1159 m, 1112 m, 1062 m, 1028 w, 1015 w, 866 m, 839 m 792 w, 763 m, 752 m.

Xy^FPyMe₂IrN, **4-IrN**

Es wurden 120 mg **Xy^FPyMe₂IrN**₃ (0.10 mmol) ohne Lösungsmittel im Vakuum für 17 h auf 120 °C erwärmt. Das Produkt wurde ohne weitere Aufarbeitung als Pulver erhalten.

NMR:

¹H-NMR (300 MHz, THF-*d*₈, -60 °C) [ppm]: δ = 8.70 (d, J_{HH} = 7.8 Hz, 4H, 2H, **H-4**), 8.14 (d, J_{HH} = 7.8 Hz, 4H, H-**10**), 7.69 (t, H, **H-2**), 3.57 (s, 6H, **H-7**), 3.57 (s, 18H, **H-1**).

¹⁹F-NMR (282 MHz, THF-*d*₈) [ppm]: -59.9.

IR (ATR) $\tilde{\nu}_{max}$ [cm⁻¹] = 2962 w, 2868 w, 1598 m, 1454 m, 1436 m, 1389 w, 1361, w, 1339 m, 1291 s, 1246 s, 1209 m, 1144 s, 1083 s, 1060 m, 971 m, 952 m (**IrN**), 901 m, 872 w, 811 m, 796 w, 766 m, 743 m, 673 s.

Xy^FPyMe₂IrNSiMe₂tBu, 4-IrNHSi

Zu 15 mg **Xy^FPyMe₂IrN** (0.018 mmol) wurde eine auf -36 °C gekühlten Lösung von 0.40 mL *tert*-Butyldimethylsilan (0.24 mmol) in 7 mL THF gegeben, für zwei Minuten in einem auf -30 °C vorgekühlten Kühlblock stark gerührt und anschließend für 3 h bei RT gerührt. Nach Entfernen des Lösungsmittels im Vakuum wurde das Produkt zuerst mit ca. 3 mL einer Mischung aus THF/Hexan, und anschließend Pentan gewaschen. Nach der Trocknung in Vakuum konnten 8.0 mg (0.0083 mmol, 46 %) des Produktes als Feststoff erhalten werden. Für die Röntgenstrukturanalyse geeignete Einkristalle wurden aus einer gesättigten Hexan-Lösung erhalten.

¹H-NMR (300 MHz, C₆D₆) [ppm]: δ = 8.69 (s, 2H, H-4), 7.53 (d, J_{HH} = 8.0 Hz, 4H, H-10), 6.80 (t, J_{HH} = 8.0 Hz, 2H, H-11), 1.23 (s, 9H, H-1), 0.80 (s, 9H, H-16), -0.05 (s, 6H, H-14), -0.23 (s, 6H, H-7).

¹⁹F-NMR (282 MHz, C₆D₆) [ppm]: -65.1.

TerpPyMe₂IrN, **24-IrN**

103 mg **TerpPyMe**₂**IrN**₃ (0.12 mmol) wurden ohne Lösungsmittel für 2 h auf 100 °C erwärmt. Das Produkt wurde ohne weitere Aufarbeitung als Pulver erhalten.

Durch Überschichten einer Lösung in THF mit Pentan konnten bei -30 °C Einkristalle zur Strukturaufklärung erhalten werden.

TerpPyMe₂Ir¹⁵N wurde analog aus TerpPyMe₂Ir¹⁵N₃ dargestellt.

NMR:

¹H-NMR (600 MHz, C₆D₆) [ppm]: δ = 7.60 (d, J = 7.9 Hz, 8H, **H-12**), 7.29 (d, J = 7.7 Hz, 2H, **H-2**), 7.09 – 6.97 (m, 12H, **H-8+H-13**), 6.94-6.82 (m, 4H, **H-14**), 5.89 (t, J = 7.7 Hz, 1H, **H-3**), 2.95 (s, 6H, **H-4**), 2.04 (s, 6H, **H-10**).

¹³C{¹H}NMR (151 MHz, C₆D₆) [ppm]: δ = 154.37 (C-5), 149.64 (C-9), 140.74 (C-11), 137.72 (C-7), 136.66 (C-6), 130.96 (C-8), 130.76 (C-12), 127.88 (C-13), 126.86 (C-14), 124.47 (C-3), 121.18 (C-2), 119.17 (C-1), 20.78 (C-10), 15.83 (C-4)

IR (ATR) $\tilde{\nu}_{max}$ [cm⁻¹] = 3032 w, 2983 w, 2956 w, 2319 w, 1599 m, 1577 m, 1495 m, 1419 s, 1368 m, 1338 m, 1282 vs, 1216 s, 1181 m, 1153 m, 1123 s, 1071 m, 1029 w, 979 m, 949 s (**IrN**), 904 m, 863 m, 757 vs, 696 vs, 661 m.

IR (ATR) \tilde{v} (Ir¹⁵N) [cm⁻¹] = 920.

TerpPyMe₂IrNH₂, **24-IrNH₂**

15 mg **TerpPyMe**₂**IrN** wurden in 5 mL Benzol gelöst und für 16 h auf 50 °C erwärmt. Nach Entfernen das Lösungsmittel wurde der Rückstand mit Pentan gewaschen und in THF-*d*₈ aufgenommen und ohne weitere Aufarbeitung ein ¹H-NMR-Spektrum aufgenommen.

¹H-NMR (300 MHz, THF- d_8) [ppm]: δ = 8.13 (d, 2H), 7.47 (t, 1H), 7.32 – 6.51 (m, 120H), 6.08 (br, 2H), 2.50 (s), 0.58 (s),

15 mg **TerpPyMe₂Ir¹⁵N** wurden in 10 mL Benzol gelöst und für 48 h auf 60 °C erwärmt. Nach Entfernen das Lösungsmittel wurde der Rückstand mit Hexan gewaschen und zweifach mit THF co-evaporiert und in THF-*d*₈ aufgenommen. Ohne weitere Aufarbeitung wurde die Reaktionslösung NMR-spektroskopisch untersucht.

¹H-NMR (600 MHz, THF- d_8) [ppm]: δ = 8.13 (d, 2H), 7.47 (t, 1H), 7.32 – 6.51 (m, 120H), 6.08 (br, 1H), 6.08 (d, J_{NH} = 74 Hz, br, 1H), 2.50 (s, 6H), 0.58 (s, 6H).

¹H,¹⁵N-HSQC (600MHz/61MHz, THF-*d*₈) [ppm] = 129.7.

Neben nicht zuzuordnenden Signalen zwischen 7.32 – 6.51 ppm sind Spuren von THF, MTBE, Hexan und Schlifffett im Spektrum vorhanden.

TerpPytPh₂IrN, **28-IrN**

Es wurden 91 mg **TerpPytPh**₂**IrN**₃ (0.080 mmol) lösungsmittelfrei für 24 h auf 70 °C erwärmt. Das Produkt wurde ohne weitere Aufarbeitung als Pulver erhalten. Durch Überschichten einer gesättigten Lösung in THF mit Pentan konnten bei -30 °C Einkristalle zur Strukturaufklärung erhalten werden.

 $TerpPytPh_2 Ir^{15}N \ \text{wurde analog aus} \ TerpPytPh_2 Ir^{15}N_3 \ \text{dargestellt}.$

NMR:

¹H-NMR (300 MHz, THF-*d*₈) [ppm]: δ = 7.87 (d, J = 7.9 Hz, 2H, **H-2**), 7.17 (d, J = 8.5 Hz, 4H, **H-15**), 7.12-6.69 (m, 24H), 6.66 (t, J = 7.9 Hz, 1H, **H-1**), 6.61 (d, J = 8.5 Hz, 4H, **16**), 2.37 (s, 6H, **H-10**), 1.33 (s, 18H, **H-19**).

¹³C{¹H}-NMR (75 MHz, THF-*d*₈) [ppm]: δ = 157.0 (C-5), 151.7 (C-4), 151.3 (C-17), 141.6, 138.1, 137.0, 133.2, 131.7 (C-16), 131.3 (C-), 130.9, 128.3, 128.0, 127.3(C-3), 125.6 (C-2), 125.0 (C-15), 121.7 (C-1), 31.8 (C-18), 27.5 (C-19), 21.1 (C-10).

IR (KBr) $\tilde{\nu}_{max}$ [cm⁻¹] = 3081 w, 3054 m, 3032 m, 2960 s, 2904 m, 2865 m, 2061 m, 1598 m, 1577 w, 1512 w, 1495 m, 1459 m, 1445 m, 1413 s, 1363 m, 1345 w, 1314 m, 1285 s, 1252 s, 1229 s, 1152 m, 1128 s, 1104 s, 1068 s, 1027 s, 1015, 980 w, 956 s (**IrN**), 919 w, 908 w, 866 m, 839 s, 779 w, 763 s, 751 s, 695 s.

IR (KBr) $\tilde{\nu}$ (Ir¹⁵N) [cm⁻¹] = 930.

Verbindungen aus Kapitel 8

Xy^FPyMe₂RhCl, **4-RhCl**

Es wurden 0.47 g **Xy^FPyMe₂** (0.73 mmol) und 0.10 g [Rh(C₂H₄)₂Cl₂]₂ (0.26 mmol) für 24 h in 20 mL abs. Methanol bei Raumtemperatur gerührt. Innerhalb von Minuten wurde ein Farbumschlag von rot nach grün sichtbar. Nach 24 h wurden weitere 60 mg [Rh(C₂H₄)₂Cl₂]₂ (0.15 mmol) hinzugegeben. Nach weiteren 24 h wurde das Lösungsmittel im Vakuum entfernt. Aus einer THF/Pentan-Mischung konnten nach Umkristallisation 0.32 g (0.41 mmol, 56 %) des Produktes als tiefgrüner, kristalliner Feststoff erhalten werden. Durch Überschichten einer THF-Lösung mit Pentan konnten bei -30 °C Einkristalle zur Strukturaufklärung erhalten werden.

NMR:

¹H-NMR (600 MHz, THF-*d*₈) [ppm]: δ = 8.07 (s, 2H, H-4), 7.98 (d, J_{HH} = 8.0 Hz, 4H, H-10), 7.57 (t, J_{HH} = 8.0 Hz, 2H, H-11), 1.45 (s, 9H, H-1), 1.41 (s, 6H, H-7).

¹³C{¹H}-NMR (151 MHz, THF- d_8) [ppm]: δ = 170.6 (C-6), 156.9 (C-5), 150.1 (C-8), 148.4 (C-3), 131.4 (q, J_{CF} = 6 Hz, C-10), 127.0 (C-11), 126.1 (q J_{CF} = 31 Hz, C-9), 124.7 (C-4), 124.4 (q, J_{CF} = 275 Hz, C-12), 38.2 (C-2), 29.6 (C-1), 19.8 (C-7).

¹⁹F-NMR (565 MHz, THF- d_8) [ppm]: δ = - 59.9.

Elementaranalyse:

Anal. Berechnet. $C_{29}H_{23}F_{12}N_3RhCl$:	C,44.66; H,2.97; N,5.39.
Gefunden:	C,44.33; H,2.87; N,5.74.
TerpPyMe₂RhCl, 24-RhCl

500 mg (7.74 mmol) **TerpPyMe₂** und 178 mg (3.87 mmol) [Rh(C₂H₄)Cl]₂ wurden 20 mL THF gelöst. Nach einigen Minuten war ein Farbumschlag von gelb-orange nach tiefgrün zu beobachten. Die Reaktionslösung wurde über bei RT Nacht gerührt und anschließend das Lösungsmittel im Vakuum entfernt. Der grüne Rückstand wurde mit MTBE gewaschen, in wenig THF aufgenommen und durch Überschichten mit Pentan bei -35 °C umkristallisiert. Nach Dekantieren der Lösung und Trocknung im Vakuum konnten 606 mg (99 %, 7.73mmol) des Produktes als kristalliner Feststoff erhalten werden.

NMR:

¹H-NMR (300 MHz, C₆D₆) [ppm]: δ = 7.40-7.36 (m, 8H, **H-12**), 7.13, (s, 4H, **H-8**), 7.10-6.96 (m, 13H, **H-1+13+14**), 6.21 (d, J_{HH} = 7.9 Hz, 2H, **H-2**), 2.11, (s, 6H, **H-10**), 0.97 (s, 6H, **H-5**).

¹³C{¹H}-NMR (75 MHz, C₆D₆) [ppm]: δ = 166.2 (C-4), 155.3 (C-3), 144.6 (C-6), 141.2 (C-7), 136.1 (C-6), 135.9 (C-11), 131.4 (C-9), 130.8 (C-12), 127.8 (C-8), 126.8 (C-14), 124.0 (C-2), 121.8 (C-1), 21.0 (C-10), 18.3 (C-5).

Elementaranalyse:

Anal. Berechnet. $C_{47}H_{39}RhN_3Cl x THF$:	C,71.53; H,5.58; N,4.91.
Gefunden:	C,71.00; H,5.67; N,4.83.

TerpPytPh2RhCl, 28-RhCl

0.40 g (0.45 mmol) **TerpPytPh**² und 90 mg (0.27 mmol) [Rh(C₂H₄)Cl]² wurden 15 mL THF gelöst. Nach einigen Minuten war ein Farbumschlag von gelb-orange nach grün-braun zu beobachten. Die Reaktionslösung wurde für zwei Tage gerührt und anschließend das Lösungsmittel im Vakuum entfernt. Der grün-braune Rückstand wurde einmal mal mit ca. 15 mL MTBE gewaschen und anschließend aus einer THF-Lösung durch Überschichten mit Pentan im Tiefkühlschrank bei -30 °C umkristallisiert. Nach Trocknen im Vakuum konnten 0.35 g (75 %, 0.34 mmol) des dunkelgrünen, fein-kristallinen Produkts erhalten werden.

NMR:

¹H-NMR (300 MHz, THF-*d*₈) [ppm]: δ = 8.11 (t, J_{HH} = 8.0 Hz, 1H, **H-1**), 7.36-7.33 (m, 8H, **H-12**), 7.19, (d, 4H, **H-15**), 7.12 (d, J_{HH} = 8.0 Hz, 2H, **H-2**), 6.99 (m, 16H, **H-14+13**), 6.80, (m, 4H, **H-16**), 2.36, (s, 6H, **H-10**), 1.33 (s, 18H, **H-19**).

¹³C{¹H}-NMR (75 MHz, THF-*d*₈) [ppm]: δ = 168.3 (C-4), 158.0 (C3), 152.8 (C-5), 145.9 (C-11), 142.0 (C-7), 137.1 (C-11), 136.0 (C-9), 133.0 (C-6), 131.8 (C-14), 131.6 (C-12), 128.2 (C-17), 128.2 (C-13), 127.7 (C-16), 127.0 (C-2), 125.8 (C-15), 124.0 (C-1), 35.7 (C-18), 31.1 (C-19), 20.7 (C-10).

Elementaranalyse:

Anal. Berechnet. C₆₅H₅₉RhN₃Cl x THF: C,75.85; H,6.18; N,3.85.

Gefunden:

C,75.46; H,6.14; N,3.91.

Terp^FPytPh₂RhCl, **31-RhCl**

530mg (0.520 mmol, 1 Äq.) **Terp^FPytPh**² und 151 mg (0.390 mmol, 0.75 Äq.) [Rh(C₂H₄)Cl]² wurden in 30 mL Methanol suspendiert und für 24 h bei 50 °C gerührt. Während der Reaktionszeit konnte ein Farbumschlag von gelb-rot nach blau-violett beobachtet werden. Nachdem das Lösungsmittel im Vakuum entfernt wurde, wurde der Rückstand aus THF durch Überschichten mit Pentan umkristallisiert und anschließend im Vakuum getrocknet. Es konnten 513 mg (79 %, 0.410 mmol) des Produktes als blau-violetter kristalliner Feststoff erhalten werden. Für die Röntgenstrukturanalyse geeignete Einkristalle wurden aus einer THF-Lösung durch Überschichten mit Pentan bei -30 °C erhalten.

NMR:

¹H-NMR (600 MHz, THF- d_8) [ppm]: δ = 8.33 (t, J_{HH} = 8.0 Hz, 1H, H-1), 7.31 (d, J_{HH} = 8.0 Hz, 2H, H-2), 7.18 (d, J_{HH} = 9.0 Hz, 4H, H-16), 7.11 (s, 4H, H-8), 7.06-7.01 (m, 4H, H-14), 6.98 (br, 4H, H-15), 6.52-6.47 (m, 8H, H-13), 2.36 (s, 6H, H-10), 1.36 (s, 18H, H-19).

¹³C{¹H}-NMR (151 MHz, THF-*d*₈) [ppm]: δ = 168.8(C-4), 162.7 (C-11), 161.8 (d, C-12), 158.9 (C-3), 152.2 (C-6), 147.7 (C-9), 134.8 (C-8), 134.4 (C-5), 133.7 (C-17), 129.5(t, J_{CF} = 11.1 Hz, C-14), 129.2 (C-2), 127.9 (C-15), 126.0 (C-16), 122.0 (C-1), 118.9 (C-7), 111.8 (dd, J_{CF} = 204.1, 22.8 Hz, C-12), 35.8 (C-18), 30.9 (C-19), 21.2 (C-10).

¹⁹F-NMR (565 MHz, THF- d_8) [ppm]: δ = -99.6 (br), -110.7.

Xy^FPyMe₂RhOMe, **4-RhCl**

0.22 g (0.28 mmol) **Xy^FPyMe₂RhCl** in 10 mL THF wurden in eine Lösung aus 150 mg (2.80 mmol) NaOMe in 10 mL Methanol gegeben. Die tiefgrüne Lösung wurde über Nacht bei 60 °C gerührt. Nach Entfernen des Lösungsmittels im Vakuum wurde der Komplex mit Toluol extrahiert und über Celite filtriert. Nach Entfernung des Lösungsmittels konnten 198 mg (90 %, 0.250 mmol) des Produktes als tiefgrüner Feststoff erhalten werden.

NMR:

¹H-NMR (300 MHz, THF-*d*₈) [ppm]: δ = 8.11 (s, 2H, H-4), 7.98 (d, J_{HH} = 8.0 Hz, 4H, H-10), 7.60 (t, J_{HH} = 8.0 Hz, 2H, H-11), 3.78 (s, 3H, H-13), 1.45 (s, 9H, H-1) 1.24 (s, 6H, H-7).

¹H-NMR (300 MHz, C₆D₆) [ppm]: δ = 7.67 (s, 2H, **H-4**), 7.42 (d, J_{HH} = 8.0 Hz, 4H, **H-10**), 6.66 (t, J_{HH} = 8.0 Hz, 2H, **H-11**), 4.42 (s, 3H, **H-13**), 1.11 (s, 9H, **H-1**) 0.88 (s, 6H, **H-7**).

¹³C{¹H}-NMR (75 MHz, C₆D₆) [ppm]: δ = 165.0 (C-6), 155.1(C-5), 151.0 (C-8), 141.4 (C-3), 130.5 (C-10), 125.9 (q, J_{CF} = 31 Hz, C-9), 125.6 (C-11), 124.9 (q, J_{CF} = 31 Hz, C-12), 123.1 (C-4), 60.3(C-13), 36.6 (C-2), 29.3(C-1), 19.6 (C-7).

¹⁹F-NMR (564 MHz, C₆D₆) [ppm]: δ = -59.9 ppm.

Elementaranalyse:

Anal. Berechnet. $C_{30}H_{26}F_{12}ORhN_3$:	C, 46.47; H, 3.38; N, 5.42.
Gefunden:	C, 46.11; H, 3.46; N, 5.34.

TerpPyMe₂RhOMe, 24-RhOMe

Zu 500 mg **TerpPyMe**₂**RhCl** (0.640 mmol, 1 Äq.) in 10 mL THF wurde eine Lösung aus Natriummethanolat 344 mg (6.38 mmol, 10 Äq.) in 20 mL Methanol gegeben und bei 60 °C für 16 h gerührt. Anschließend wurde das Lösungsmittel im Vakuum entfernt, der Rückstand mit Toluol extrahiert und über Celite filtriert. Das Lösungsmittel wurde im Vakuum entfernt und das Rohprodukt in THF aufgenommen, mit Pentan überschichtet und im Tiefkühlschrank auf -35 °C gekühlt. Nach Bildung eines kristallinen Niederschlags wurde die überstehende Lösung dekantiert und das Produkt mit Pentan gewaschen. Nach Trocken im Vakuum konnte das schwarz-grüne Produkt in einer Ausbeute von 78 % (396 mg, 0.490 mmol) als kristalliner Feststoff erhalten werden.

NMR:

¹H-NMR (300 MHz, THF-*d*₈) [ppm]: δ = 7.89 (t, J_{HH} = 7.8 Hz, 1H, H-1), 7.37-7.33 (m, 8H, H-12), 7.22 (d, J_{HH} = 7.8 Hz, 2H, H-2), 7.12 (s, 4H, H-8), 6.98-6.85 (m, 12H, H-13+14), 4.27 (s, 3H, H-15), 2.40 (s, 6H, H-10) 1.06 (s, 6H, H-5).

¹³C{¹H}-NMR (75 MHz, THF-*d*₈) [ppm]: δ = 164.1 (C-4), 155.0 (C-3), 145.8 (C-6), 141.7(C-7), 137.4 (C-11), 135.9 (C-9), 131.6 (C-8), 130.7 (C-12), 128.1 (C-13), 127.0 (C-14), 125.5 (C-2), 117.1 (C-1), 59.0 (C-15), 22.0 (C-10), 18.8 (C-5).

Elementaranalyse:

Anal. Berechnet. $C_{48}H_{42}ORhN_3 \times THF$:	C, 73.32; H, 5.92; N, 4.93.
Gefunden:	C, 72.85; H, 5.44; N, 5.14.

TerpPytPh2RhOMe, 28-RhOMe

Zu 500 mg **TerpPytPh₂RhCl** (0.490 mmol, 1 Äq.) in 30 mL THF wurde in 10 mL Methanol gelöstes Natriummethanolat (132 mg, 2.45 mmol, 5 Äq.) gegeben und bei 50 °C für 24 h gerührt. Anschließend wurde das Lösungsmittel im Vakuum entfernt, der Rückstand mit Toluol extrahiert und über Celite filtriert. Das Lösungsmittel wurde im Vakuum entfernt und das Rohprodukt in THF aufgenommen, mit Pentan überschichtet und im Tiefkühlschrank auf -35 °C gekühlt. Nach Bildung eines Niederschlags wurde die überstehende Lösung dekantiert und das Produkt mit Pentan gewaschen. Nach Trocken im Vakuum konnte das grüne Produkt in einer Ausbeute von 60 % (279 mg, 0.290 mmol) als pulvriger Feststoff erhalten werden.

NMR:

¹H-NMR (300 MHz, THF-*d*₈) [ppm]: δ = 7.86 (t, J_{HH} = 7.9 Hz, 1H, **H-1**), 7.33-7.29 (m, 8H, **H-12**), 7.17-7.13 (m, 6H,**H-14+13**), 7.05-6.93 (m, **17H**), 6.75 (d, J_{HH} = 8.4 Hz, 4H, **H-13**), 4.39 (s, 3H, **H-20**), 2.35 (s, 6H, **H-10**), 1.34 (s, 18H, **H-19**).

¹H-NMR (300 MHz, C₆D₆) [ppm]: δ = 7.69-7-66 (m, 8H), 7.22-7.01 (m, 27H), 4.91 (s, 3H, **H-20**), 1.98 (s, 6H, **H-10**) 1.16 (s, 18H, **H-19**).

¹³C{¹H}-NMR (75 MHz, C₆D₆) [ppm]: δ = 164.3 (**C-4**), 155.9 (**C-17**), 151.0, 145.7, 142.0, 137.0, 135.7, 134.3, 134.3, 131.7, 130.7, 129.3, 127.4, 126.8, 126.6, 124.9, 118.0, 59.5 (**C-20**), 34.8 (**C-8**), 31.6 (**C-19**), 20.3 (**C-10**).

Elementaranalyse:

 Anal. Berechnet. C₆₆H₆₂RhN₃O:
 C, 78.01; H, 6.15; N, 4.14.

 Gefunden:
 C, 77.73; H, 6.03; N, 4.15.

Terp^FPytPh₂RhCO

0.50 g (0.49 mmol) **Terp^FPytPh**² und 0.16 mg (0.41 mmol) [Rh(C₂H₄)Cl]² wurden 50 mL Methanol suspendiert und für 3 d bei 50 °C im Young-Rohr gerührt. Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand mit Diethylether gewaschen. Anschließend wurde der Rückstand in 5 mL THF suspendiert und 263 mg (4.87 mmol) NaOMe gelöst in 25 mL Methanol hinzugegeben. Die Reaktionsmischung wurde anschließend bei 70 °C für 24 h gerührt. Nach Entfernen des Lösungsmittels wurde der Rückstand mit Pentan und Diethylether gewaschen und in THF aufgenommen. Diese Lösung wurde durch Überschichten mit Pentan und Lagerung im Tiefkühlschrank umkristallisiert. Es wurden 372 mg (0.321mmol, 72 %) eines dunklen Pulvers erhalten. Für die Röntgenstrukturanalyse geeignete Einkristalle wurden aus einer gesättigten THF-Lösung erhalten.

NMR: (paramagnetisch)

¹H-NMR (300 MHz, C_6D_6) [ppm]: δ = 3.19 (s, br, 18 H) 2.39 (s, br, 6H).

Es konnten keine Signale im ¹⁹F-NMR-Spektrum detektiert werden.

IR (ATR) $\tilde{\nu}_{max}$ [cm⁻¹] = 2958 m, 2866 w, 2055 w, 1960 s (**Rh-CO**), 1621 m, 1577 m, 1495 w, 1461 s, 1362 w, 1302 w, 1270 m, 1231 s 1209 s, 1152 w, 1124 w, 1095 m, 1052 m, 998 vs, 866 m, 838 m, 782 s, 761 s, 722 s, 699 m, 668 m.

Xy^FPyMe₂RhN₃, **4-RhN₃**

200 mg (0.260 mmol) **Xy^FPyMe₂RhCl** wurden in 15 mL THF gelöst und ca. 0.3 mL Trimethylsilylazid (Me₃SiN₃, 10 Äq.) hinzugegeben. Die Reaktionslösung wurde für 4 h bei Raumtemperatur gerührt. Das Lösungsmittel wurde anschließend im Vakuum entfernt und der Rückstand mit Pentan co-evaporiert. Der schwarz/grüne Feststoff wurde durch Überschichten einer THF-Lösung mit Pentan bei -30 °C umkristallisiert. Es konnten 197 mg (97 %, 0.250 mmol) eines fein kristallinen grünen Feststoffes erhalten werden.

NMR:

¹H-NMR (600 MHz, THF-*d*₈) [ppm]: δ = 8.07 (s, 2H, H-4), 8.03 (d, J_{HH} = 8.0 Hz, 4H, H-10), 7.59 (t, J_{HH} = 8.0 Hz, 2H, H-11) 1.46 (s, 6H, H-7), 1.45 (s, 9H, H-1).

¹³C{¹H}-NMR (151 MHz, THF-*d*₈) [ppm]: δ = 170.5 (**C-6**), 156.0 (**C-5**), 149.7 (**C-8**), 148.0 (**C-3**), 132.1 (q, $J_{CF} = 6$ Hz, **C-10**), 127.4 (**C-11**), 125.9 (q, $J_{CF} = 31$ Hz, **C-9**), 124.6 (**C-4**), 125.6 (q, $J_{CF} = 275$ Hz, **C-12**), 38.0 (**C-2**), 29.7 (**C-1**), 19.6 (**C-7**).

¹⁹F-NMR (565 MHz, THF- d_8) [ppm]: δ = -60.7.

TerpPyMe₂RhN₃, 24-RhN₃

115 mg (0.151 mmol) **TerpPyMe₂RhOMe** wurden in 20 mL THF gelöst und ca. 0.2 mL Trimethylsilylazid (Me₃SiN₃, 10 Äq.) hinzugegeben. Die Reaktionslösung wurde für 16 h bei Raumtemperatur gerührt. Das Lösungsmittel wurde anschließend im Vakuum entfernt und der Rückstand zweimal mit Pentan coevaporiert. Der schlecht lösliche schwarz/grüne Feststoff wurde durch Überschichten einer THF-Lösung mit Pentan bei -30 °C umkristallisiert. Es konnten 109 mg (93 %, 0.140 mmol) eines fein kristallinen Feststoffes erhalten werden.

NMR:

¹H-NMR (600 MHz, THF-*d*₈) [ppm]: δ = 8.07 (t, J_{HH} = 8.0 Hz, 1H, **H-1**), 7.30-7.28 (m, 10H, **H-2+12**), 7.16 (s, 4H, **H-8**), 7.03 (m, 4H, **H-14**), 6.99-6.96 (m, 8H, **H-13**), 2.43 (s, 6H, **H-4**), 1.31 (s, 6H, **H-10**).

¹³C{¹H}-NMR (151 MHz, THF-*d*₈) [ppm]: δ = 166.32 (C-4), 155.96 (C-3), 145.95 (C-6), 141.56 (C-9), 136.80 (C-11), 136.55 (C-7), 132.04 (C-8), 130.63 (C-12), 128.36 (C-13), 127.27 (C-14), 125.30 (C-2), 122.58 (C-1), 21.33 (C-10), 18.86 (C-5).

IR (ATR) $\tilde{\nu}_{max}$ [cm⁻¹] = 2320 s (**N**₃), 1596 w, 1575 w, 1486 m, 1446 m, 1423 m, 1379 m, 1361 w, 1331 w, 1312 m, 1290 m, 1218 m, 1176 w, 1155 w, 1102 w, 1070 m, 1057 w, 1038 m, 987 w, 967 w, 950 w, 918 w, 899 w, 866 m, 856 m, 823 w, 756 s, 724 m, 703 vs.

TerpPytPh2RhN3, 28-RhN3

170 mg **TerpPy^tPh₂RhOMe** (0.16 mmol) wurden in ca. 15 mL THF gelöst und mit ca. 0.25 mL Trimethylsilylazid (1.7 mmol, 10 Äq.) versetzt und bei Raumtemperatur gerührt. Nach 24 h wurden die flüchtigen Verbindungen im Vakuum entfernt und das Rohprodukt mit 10 mL Pentan gewaschen. Der Rückstand wurde in THF aufgenommen und mit Pentan im Tiefkühlschrank umkristallisiert. Nach Trocknen im Vakuum konnten 169 mg (0.16 mmol, 98 %) des Produkts als grün-schwarzes Pulvers erhalten werden.

Die Darstellung von **TerpPytPh₂Rh¹⁵N₃** wurde analog mit 2 Äq. ¹⁵N-TMSN₃ durchgeführt.

NMR:

¹H-NMR (600 MHz, THF- d_8) [ppm]: δ = 8.05 (t, J_{HH} = 8.0 Hz, 1H, **H-1**), 7.27 (d, J_{HH} = 8.0 Hz, 2H, **H-2**), 7.18 (d, J_{HH} = 8.4 Hz, 4H, **H-16**), 7.13-7.11 (m, 8H, **H13**), 7.06-7.03 (m, 8H, **H-8+14**), 6.99-6.96 (m, 8H, **H-12**), 6.78 (dt, J_{HH} = 8.4 Hz, 4H, **H-15**), 2.35 (s, 6H, **H-10**), 1.33 (s, 18H, **H-18**)

¹³C{¹H}-NMR (151 MHz, THF-*d*₈) [ppm]: δ = 166.7 (C-4), 158.4 (C-3), 153.2 (C-17), 145.1 (C-7), 141.4 (C-11), 136.8 (C-5), 136.4 (C-6), 133.0 (C-9), 132.2 (C-8), 130.0 (C-12), 128.3 (C-4), 127.8 (C-15), 127.1 (C-14), 125.9 (C-16), 123.7 (C-1), 35.7 (C-18), 31.5 (C-19), 21.4 (C-10).

¹⁵N-NMR (61 MHz, THF-*d*₈) [ppm]: δ = 172 (**N**_γ), 96 (d, J_{RhN} = 24 Hz, **N**_α).

IR (ATR) ṽ_{max} [cm⁻¹] = 3054 w, 3032 w, 2962 m, 2861 m, 2318 vs (N₃), 1599 m, 1575 w, 1513 w, 1493 m, 1459 m, 1432 s, 1364 s, 1328 s, 1272 s, 1227 m, 1201 w, 1162 m, 1111 m, 1062 s, 1025 s, 1015 s, 983 w, 964 w, 904 br, 863 m, 837 s, 804 m, 759 s, 695 vs, 657 s

Elementaranalyse:

Anal. Berechnet. C₆₅H₅₉RhN₆ x THF: C, 75.39; H, 6.14; N, 7.65.

Gefunden:

C, 75.60; H, 6.00; N, 7.14.

DippPyPh₂RhN, **33-RhN**

Es wurden 3 mg **DippPyPh₂RhN₃** in 0.8 mL THF-*d*₈ gelöst und in ein Young-NMR-Rohr gegeben. Die Reaktionsmischung wurde in einem Isopropanol-Kältebad mittels Eintauchthermostat auf ca. -70 °C gekühlt. Die Reaktionslösung wurde für 16 h mit einer Philips HPK 125 W in der Kälte bestrahlt. Es konnte eine Farbveränderung von tiefgrün nach blau-grün beobachtet werden. Anschließend wurde ein ¹H-NMR-Spektum im vorgekühlten Spektrometer aufgenommen, aus Integration der Signale konnte der Umsatz auf ca. 90 % Bestimmt werden. Eine weitere Aufarbeitung fand nicht statt.

NMR:

¹H-NMR (400 MHz, THF- d_8 , 193 K) [ppm]: δ = 7.97 (d, J_{HH} = 7.8 Hz, 2H, **H-2**), 7.62-7.19 (m), 7.00-6.92 (m), 2.99 (sept, J_{HH} = 6.6 Hz, 4H, **H-10**), 1.37 (d, J_{HH} = 6.3 Hz, 12H, **H-11**) 1.02 (d, J_{HH} = 6.8 Hz, 12H, **H-11**).

Zusätzlich sind noch ca. 10 % des Edukts DippPyPh₂RhN₃ im Spektrum zu Beobachten.

DippPyPh₂RhN, **33-RhN** + H₂

6 mg **DippPyPh₂RhN₃** wurden in ca. 0.8 mL THF-*d*₈ gelöst und in ein Young-NMR-Rohr gegeben. Die Reaktionsmischung wurde in einem Isopropanol-Kältebad mittels Eintauchthermostat auf ca. -70 °C gekühlt. Die Reaktionslösung wurde für 24 h mit einer 4x1 W 365 nm LED in der Kälte bestrahlt. Der Reaktionsfortschritt wurde mittels ¹H-NMR-Spektum verfolgt, wofür die Bestrahlung kurz unterbrochen wurde. Es konnte eine Farbveränderung von tiefgrün nach blau-grün beobachtet werden. Anschließend wurde die Probe auf -196 °C in flüssigem N₂ gekühlt und die Stickstoff-Atmosphäre im Vakuum entfernt und gegen eine atm H₂ getauscht. Die Probe wurde langsam auf Raumtemperatur erwärmt und mehrfach geschüttelt.

Es konnte keine Reaktion mit Wasserstoff beobachte werden.

DippPyPh2RhNHSiMe2tBu, 33-RhNHSi

8 mg **DippPyPh₂RhN₃** wurden in ca. 2 mL THF gelöst und in ein Young-Rohr gegeben. Die Reaktionsmischung wurde in einem Isopropanol-Kältebad mittels Eintauchthermostat auf ca. -70 °C gekühlt. Die Reaktionslösung wurde für 16 h mit einer Philips HPK 125 W in der Kälte bestrahlt. Anschließend wurden ca. 0.1 mL *tert*-Butyldimethylsilan zu der bei -196 °C gefrorenen zu kondensiert. Die Reaktionslösung wurde wieder auf -78 °C erwärmt. Es konnte eine Farbänderung von grün nach violett beobachtet werden. Nach 3 h wurde die Reaktionslösung auf Raumtemperatur erwärmt und die flüchtigen Stoffe im Vakuum entfernt.

NMR:

Die ¹H-NMR-Spektroskopie zeigte durch Integration nur eine Umsetzung zu ca. 66 %, auf eine Aufarbeitung wurde verzichtet.

¹H-NMR (300 MHz, THF- d_8) [ppm]: δ = 8.09 (t, J_{HH} = 7.9 Hz, 1H, H-1), 7.62-7.24 (m), 7.14-6.99 (m), 3.28 (sept, J_{HH} = 6.6 Hz, 4H, H-10), 1.18 (d, J_{HH} = 6.8 Hz, 12H, H-11) 0.96 (d, J_{HH} = 6.9 Hz, 12H, H-11), 0.36 (s, 9H, H-17), -0.74 (s, 6H, H-15).

Weitere Signale des Edukts DippPyPh₂RhN₃ sind zu beobachten.

TerpPytPh₂RhN, 28-RhN

Es wurden 13 mg **TerpPytPh₂RhN₃** in 1 mL THF-*d*₈ gelöst und in ein Young-NMR-Rohr gegeben. Die Reaktionsmischung wurde in einem Aceton/Isopropanol-Kältebad mittels Eintauchthermostat auf ca. -50 °C gekühlt. Die Reaktionslösung wurde für 7 d mit einer 4x1 W 365 nm LED in der Kälte bestrahlt. Der Reaktionsfortschritt wurde mittels ¹H-NMR-Spektum im vorgekühlten Probenkopf verfolgt, wofür die Bestrahlung kurz unterbrochen wurde. Es konnte eine Farbveränderung von tief-grün nach blaugrün beobachtet werden. Nach 7 d konnte ein Umsatz von 95 % durch Integration gegen das Edukt im ¹H-NMR-Spektrum beobachtet werden.

TerpPytPh₂Rh¹⁵N wurde analog aus TerpPytPh₂Rh¹⁵N₃ dargestellt.

NMR:

¹H-NMR (400 MHz, THF- d_8) [ppm]: δ = 7.62 (d, J_{HH} = 7.8 Hz, 2H, **H-2**), 7.15-7.03 (m, 26H), 6.96 (s, 4H, **H-8**) 6.72 (t, J_{HH} = 7.8 Hz, 1H, **H-1**), 6.52 (d, J_{HH} = 8.5 Hz, 4H, **H16**), 2.34 (s, 6H, **H-10**), 1.31 (s, 9H, **H-19**).

¹³C{¹H}-NMR (101 MHz, THF-*d*₈) [ppm]: δ = 160.45, 152.0, 141.5, 137.2, 133.3, 131.3, 131.1, 128.3, 127.1, 124.9, 31.8 (**C-18**), 28.1(**C-19**), 21.2 (**C-10**).

¹⁵N-NMR (61 MHz, zg30, D1 = 30sec, 1024 scans, 273K) [ppm]: δ = 1602.

Die quartären Kohlenstoffe konnten nicht beobachtet werden, zusätzlich sind noch Signale der Verbindung **TerpPytPh₂RhN₃** zu erkennen.

IR (ATR) $\tilde{\nu}_{max}$ [cm⁻¹] = 3054 w, 3032 w, 2957 m, 2923 w, 2865 w, 1598 w, 1578 w, 1493 w, 1458 m, 1437 m, 1410 m, 1364 w, 1316 w, 1285 m, 1249 s, 1223 s, 1152 m ,1131 s, 1106 s, 1063 s, 1043 m, 1026 m, 1012 s, 965 w, 904 s (**IrN**), 863 w, 836 s, 786 s, 758 s, 721 m, 696 vs, 672s.

Masse: MALDI [M]⁺: m/z = 998.23 (gefunden); m/z = 998.38 (berechnet).

TerpPytPh2RhN2, 28-RhN2

Es wurden 73 mg (71 μmol) **TerpPytPh₂RhCl** in 15 mL Toluol gelöst und 273 mg (119 μmol, 1 %wt) NaHg hinzugegeben. Die Mischung wurde für 16 h im Ultraschallbad zur Reaktion gebracht. Es konnte eine Farbänderung von grün nach rot-braun beobachtet werden. Anschließend wurde die Reaktionsmischung über Celite filtriert und das Lösungsmittel im Vakuum entfernt. Das Produkt konnte als rot-braunes Pulver in einer Ausbeute von 82 % (60 mg, 59 μmol) erhalten werden.

NMR: (paramagnetisch)

¹H-NMR (300 MHz, THF-*d*₈) [ppm]: 8.0-6.4 (br+m) 2.47 (br) 1.23 (s).

IR (ATR) $\tilde{\nu}_{max}$ [cm⁻¹] = 3028 w, 2959 m, 2917 m, 2904 m, 2289 br, 2142 s (**N**₂), 1598 w, 1576 w, 1510 w, 1495 m, 1458 m, 1430 m, 1403 m, 1379 m, 1360 m, 1351 m, 1311 m, 1282 m, 1223 s, 1149 m, 1126 s, 1097 s, 1054 s, 1025 s, 1010 s, 965 m, 919 w, 899 w, 868 m, 835 m, 823 m, 797 w, 778 w, 762 m, 747 s, 732 s, 695 vs, 672s.

10. Literaturverzeichnis

- [1] D. Sieh, Dissertation, Universität Hamburg, **2013**.
- [2] N. Lindenmaier, Masterarbeit, Universität Hamburg **2013**.
- [3] N. Junker, Dissertation, Universität Hamburg **2017**.
- [4] D. Sieh, J. Schöffel, P. Burger, *Dalton Trans.* **2011**, *40*, 9512-9524.
- [5] P. F. Vogt, J. J. Gerulis, in *Ullmann's Encyclopedia of Industrial Chemistry*, **2000**.
- [6] H. A. Wittcoff, B. G. Reuben, J. S. Plotkin, *Industrial organic chemicals*, John Wiley & Sons, **2012**.
- [7] A. G. MacDiarmid, *Synthetic Metals* **1997**, *84*, 27-34.
- [8] A. W. Czarnik, Acc. Chem. Res. **1996**, 29, 112-113.
- [9] 21.10.2021 ed., Scifinder-N, **2021**.
- [10] T. Kahl, K.-W. Schröder, F. R. Lawrence, W. J. Marshall, H. Höke, R. Jäckh, in Ullmann's Encyclopedia of Industrial Chemistry.
- [11] J. C. Sheehan, W. A. Bolhofer, J. Am. Chem. Soc. 1950, 72, 2786-2788.
- [12] F. Jourdan, *Chem. Ber.* **1885**, *18*, 1444-1456.
- [13] M. L. Moore, in *Organic Reactions*, pp. 301-330.
- [14] M. Kienle, S. R. Dubbaka, K. Brade, P. Knochel, *Eur. J. Org. Chem.* **2007**, *2007*, 4166-4176.
- [15] D. S. Surry, S. L. Buchwald, *Chem. Sci.* **2011**, *2*, 27-50.
- [16] A. S. Guram, S. L. Buchwald, J. Am. Chem. Soc. **1994**, *116*, 7901-7902.
- [17] F. Paul, J. Patt, J. F. Hartwig, J. Am. Chem. Soc. 1994, 116, 5969-5970.
- [18] P. A. Forero-Cortés, A. M. Haydl, Org. Process Res. Dev. 2019, 23, 1478-1483.
- [19] J. Louie, J. F. Hartwig, *Tetrahedron Lett.* **1995**, *36*, 3609-3612.
- [20] G. Ertl, Angew. Chem. Int. Ed. 2008, 47, 3524-3535.
- [21] L. Apodaca, (Eds.: U. Geological, Survey), **2021**.
- [22] C. Smith, A. K. Hill, L. Torrente-Murciano, Energy Environ. Sci. 2020, 13, 331-344.
- [23] A. Soumare, A. G. Diedhiou, M. Thuita, M. Hafidi, Y. Ouhdouch, S. Gopalakrishnan, L. Kouisni, *Plants (Basel)* **2020**, *9*, 1011.
- [24] J.-P. Bellenger, T. Wichard, Y. Xu, A. M. L. Kraepiel, *Environ. Microbiol.* **2011**, *13*, 1395-1411.
- [25] S. J. K. Forrest, B. Schluschass, E. Y. Yuzik-Klimova, S. Schneider, Chem. Rev. 2021, 121, 6522-6587.
- [26] C. E. Laplaza, C. C. Cummins, *Science* **1995**, *268*, 861-863.
- [27] M. D. Fryzuk, Chem. Rec. 2003, 3, 2-11.
- [28] M. P. Shaver, M. D. Fryzuk, Adv. Synth. Catal. 2003, 345, 1061-1076.
- [29] M. J. Bezdek, P. J. Chirik, Angew. Chem. Int. Ed. 2016, 55, 7892-7896.
- [30] H. P. Jia, E. A. Quadrelli, *Chem. Soc. Rev.* **2014**, *43*, 547-564.
- [31] D. J. Mindiola, K. Meyer, J.-P. F. Cherry, T. A. Baker, C. C. Cummins, *Organometallics* **2000**, *19*, 1622-1624.
- [32] T. J. Hebden, R. R. Schrock, M. K. Takase, P. Muller, *Chem. Commun.* **2012**, *48*, 1851-1853.
- [33] T. Miyazaki, H. Tanaka, Y. Tanabe, M. Yuki, K. Nakajima, K. Yoshizawa, Y. Nishibayashi, *Angew. Chem. Int. Ed.* **2014**, *53*, 11488-11492.
- [34] Y. Nishibayashi, *Inorg. Chem.* **2015**, *54*, 9234-9247.
- [35] J. S. Figueroa, N. A. Piro, C. R. Clough, C. C. Cummins, J. Am. Chem. Soc. 2006, 128, 940-950.
- [36] M. M. Guru, T. Shima, Z. Hou, Angew. Chem. Int. Ed. 2016, 55, 12316-12320.
- [37] F. Schendzielorz, M. Finger, J. Abbenseth, C. Würtele, V. Krewald, S. Schneider, *Angew. Chem. Int. Ed.* **2019**, *58*, 830-834.
- [38] A. J. Keane, W. S. Farrell, B. L. Yonke, P. Y. Zavalij, L. R. Sita, *Angew. Chem. Int. Ed.* **2015**, *54*, 10220-10224.
- [39] Q. Liao, A. Cavaillé, N. Saffon-Merceron, N. Mézailles, *Angew. Chem. Int. Ed.* **2016**, *55*, 11212-11216.
- [40] I. Klopsch, M. Finger, C. Würtele, B. Milde, D. B. Werz, S. Schneider, *J. Am. Chem. Soc.* **2014**, *136*, 6881-6883.
- [41] T.-L. Ho, Chem. Rev. **1975**, 75, 1-20.
- [42] S. E. Vyboishchikov, G. Frenking, *Chem. Eur. J* **1998**, *4*, 1439-1448.

- [43] H. B. Gray, *Chem. Int.* **2019**, *41*, 16-19.
- [44] H. B. Gray, J. R. Winkler, Acc. Chem. Res. **2018**, *51*, 1850-1857.
- [45] V. A. Larson, B. Battistella, K. Ray, N. Lehnert, W. Nam, Nat. Rev. Chem. 2020, 4, 404-419.
- [46] J. F. Berry, *Comments on Inorganic Chemistry* **2009**, *30*, 28-66.
- [47] M. G. Scheibel, B. Askevold, F. W. Heinemann, E. J. Reijerse, B. de Bruin, S. Schneider, *Nat. Chem.* **2012**, *4*, 552-558.
- [48] J. J. Scepaniak, C. S. Vogel, M. M. Khusniyarov, F. W. Heinemann, K. Meyer, J. M. Smith, *Science* **2011**, *331*, 1049-1052.
- [49] A. Walstrom, M. Pink, X. Yang, J. Tomaszewski, M. H. Baik, K. G. Caulton, J. Am. Chem. Soc. 2005, 127, 5330-5331.
- [50] E. M. Zolnhofer, M. Kass, M. M. Khusniyarov, F. W. Heinemann, L. Maron, M. van Gastel, E. Bill, K. Meyer, *J. Am. Chem. Soc.* **2014**, *136*, 15072-15078.
- [51] M. G. Scheibel, Y. Wu, A. C. Stückl, L. Krause, E. Carl, D. Stalke, B. de Bruin, S. Schneider, *J. Am. Chem. Soc.* **2013**, *135*, 17719-17722.
- [52] J. Schöffel, A. Y. Rogachev, S. DeBeer George, P. Burger, *Angew. Chem. Int. Ed.* 2009, 48, 4734-4738.
- [53] M. M. Rodriguez, E. Bill, W. W. Brennessel, P. L. Holland, *Science* **2011**, *334*, 780-783.
- [54] H. Kunkely, A. Vogler, Angew. Chem. Int. Ed. **2010**, 49, 1591-1593.
- [55] S. Nückel, P. Burger, *Organometallics* **2001**, *20*, 4345-4359.
- [56] N. V. Rees, R. G. Compton, *Energy Environ. Sci.* **2011**, *4*, 1255-1260.
- [57] J. M. Smith, *Prog. Inorg. Chem.* **2014**, 417-470.
- [58] D. Delony, M. Kinauer, M. Diefenbach, S. Demeshko, C. Würtele, M. C. Holthausen, S. Schneider, *Angew. Chem. Int. Ed.* **2019**, *58*, 10971-10974.
- [59] E. Poverenov, I. Efremenko, A. I. Frenkel, Y. Ben-David, L. J. W. Shimon, G. Leitus, L. Konstantinovski, J. M. L. Martin, D. Milstein, *Nature* **2008**, *455*, 1093.
- [60] L. Nurdin, D. M. Spasyuk, L. Fairburn, W. E. Piers, L. Maron, *J. Am. Chem. Soc.* **2018**, *140*, 16094-16105.
- [61] C. Rebreyend, V. Mouarrawis, M. A. Siegler, J. I. van der Vlugt, B. de Bruin, *Eur. J. Inorg. Chem.* **2019**, *2019*, 4249-4255.
- [62] J. Schöffel, N. Šušnjar, S. Nückel, D. Sieh, P. Burger, *Eur. J. Inorg. Chem.* **2010**, *2010*, 4911-4915.
- [63] C. C. Hojilla Atienza, A. C. Bowman, E. Lobkovsky, P. J. Chirik, *J. Am. Chem. Soc.* **2010**, *132*, 16343-16345.
- [64] A. K. Musch Long, R. P. Yu, G. H. Timmer, J. F. Berry, J. Am. Chem. Soc. **2010**, 132, 12228-12230.
- [65] J. Schöffel, Dissertation, Hamburg **2008**.
- [66] D. Sieh, P. Burger, Z. Anorg. Allg. Chem. **2015**, 641, 52-55.
- [67] D. Sieh, P. Burger, J. Am. Chem. Soc. 2013, 135, 3971-3982.
- [68] S. Nückel, Dissertation, Universität Zürich **2002**.
- [69] D. Bourissou, O. Guerret, F. P. Gabbai, G. Bertrand, Chem. Rev. 2000, 100, 39-92.
- [70] A. M. Tondreau, C. Milsmann, E. Lobkovsky, P. J. Chirik, *Inorg. Chem.* **2011**, *50*, 9888-9895.
- [71] B. de Bruin, E. Bill, E. Bothe, T. Weyhermuller, K. Wieghardt, *Inorg. Chem.* **2000**, *39*, 2936-2947.
- [72] D. Sieh, M. Schlimm, L. Andernach, F. Angersbach, S. Nuckel, J. Schöffel, N. Susnjar, P. Burger, *Eur. J. Inorg. Chem.* **2012**, 2012, 444-462.
- [73] N. G. Connelly, W. E. Geiger, *Chem. Rev.* **1996**, *96*, 877-910.
- [74] C. R. Waidmann, A. J. M. Miller, C.-W. A. Ng, M. L. Scheuermann, T. R. Porter, T. A. Tronic, J. M. Mayer, *Energy & Environmental Science* **2012**, *5*, 7771-7780.
- [75] M. Malischewski, K. Seppelt, J. Sutter, F. W. Heinemann, B. Dittrich, K. Meyer, *Angew. Chem. Int. Ed.* **2017**, *56*, 13372-13376.
- J. R. Turvey, J. M. Evans, V. P. Bhavanandan, G. P. Wannigama, P. Biddle, E. S. Lane, J. L. Willans,
 E. S. Swinbourne, F. Giral, L. R. Hahn, G. B. Hargreaves, R. D. Peacock, R. Schoental, R. C.
 Cambie, G. R. Nicholson, J. Chem. Soc. 1960, 0, 2371.
- [77] M. G. Evans, M. Polanyi, *Transactions of the Faraday Society* **1935**, *31*, 875-894.
- [78] H. Eyring, J. Chem. Phys. **1935**, *3*, 107-115.

- [79] Y. M. Badiei, A. Dinescu, X. Dai, R. M. Palomino, F. W. Heinemann, T. R. Cundari, T. H. Warren, *Angew. Chem. Int. Ed.* **2008**, *47*, 9961-9964.
- [80] B. L. Small, M. Brookhart, A. M. A. Bennett, J. Am. Chem. Soc. 1998, 120, 4049-4050.
- [81] G. J. P. Britovsek, M. Bruce, V. C. Gibson, B. S. Kimberley, P. J. Maddox, S. Mastroianni, S. J. McTavish, C. Redshaw, G. A. Solan, S. Strömberg, A. J. P. White, D. J. Williams, J. Am. Chem. Soc. 1999, 121, 8728-8740.
- [82] V. C. Gibson, C. Redshaw, G. A. Solan, Chem. Rev. 2007, 107, 1745-1776.
- [83] M. Tordeux, B. Langlois, C. Wakselman, J. Chem. Soc. 1990, 2293.
- [84] M. Tordeux, C. Wakselman, B. Langlois, Rhone-Poulenc Chimie SA, **1989**.
- [85] O. A. Tomashenko, V. V. Grushin, *Chem Rev* **2011**, *111*, 4475-4521.
- [86] T. F. Liu, Q. L. Shen, *Eur. J. Org. Chem.* **2012**, *2012*, 6679-6687.
- [87] T. Kino, Y. Nagase, Y. Ohtsuka, K. Yamamoto, D. Uraguchi, K. Tokuhisa, T. Yamakawa, *J. Fluorine Chem.* **2010**, *131*, 98-105.
- [88] F. Sladojevich, E. McNeill, J. Borgel, S. L. Zheng, T. Ritter, Angew. Chem. Int. Ed. 2015, 54, 3712-3716.
- [89] J.-T. Ahlemann, H. W. Roesky, M. Noltemeyer, H.-G. Schmidt, L. N. Markovsky, Y. G. Shermolovich, J. Fluorine Chem. 1998, 87, 87-90.
- [90] B. L. Edelbach, B. M. Pharoah, S. M. Bellows, P. R. Thayer, C. N. Fennie, R. E. Cowley, P. L. Holland, *Synthesis* **2012**, *44*, 3595-3597.
- [91] A. Castello-Mico, S. A. Herbert, T. Leon, T. Bein, P. Knochel, *Angew. Chem. Int. Ed.* **2016**, *55*, 401-404.
- [92] P. Aeberli, W. J. Houlihan, J. Organomet. Chem. 1974, 67, 321-325.
- [93] L. Heuer, P. G. Jones, R. Schmutzler, J. Fluorine Chem. 1990, 46, 243-254.
- [94] M. Schlosser, F. Mongin, J. Porwisiak, W. Dmowski, H. H. Büker, N. M. M. Nibbering, *Chem. Eur. J.* **1998**, *4*, 1281-1286.
- [95] F. Rauch, persönliche Mitteilung, **2018**.
- [96] A. K. Narsaria, F. Rauch, J. Krebs, P. Endres, A. Friedrich, I. Krummenacher, H. Braunschweig, M. Finze, J. Nitsch, F. M. Bickelhaupt, T. B. Marder, *Adv. Funct. Mater.* 2020, *30*, 2002064.
- [97] N. Xia, M. Taillefer, Angew. Chem. Int. Ed. 2009, 48, 337-339.
- [98] H. Xu, C. Wolf, *Chem. Commun.* **2009**, 3035-3037.
- [99] S. Gabriel, Chem. Ber. 1887, 20, 2224-2236.
- [100] K. Heinze, M. Schlenker, *Eur. J. Inorg. Chem.* **2004**, *2004*, 2974-2988.
- [101] J. T. Markiewicz, O. Wiest, P. Helquist, J. Org. Chem. 2010, 75, 4887-4890.
- [102] S. Brase, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem. Int. Ed. 2005, 44, 5188-5240.
- [103] T. B. Ditri, A. E. Carpenter, D. S. Ripatti, C. E. Moore, A. L. Rheingold, J. S. Figueroa, *Inorg. Chem.* 2013, 52, 13216-13229.
- [104] M. Desamparados Velasco, P. Molina, P. M. Fresneda, M. A. Sanz, Tetrahedron 2000, 56, 4079-4084.
- [105] M. Sundhoro, S. Jeon, J. Park, O. Ramstrom, M. Yan, Angew. Chem. Int. Ed. 2017, 56, 12117-12121.
- [106] F. P. Cossio, C. Alonso, B. Lecea, M. Ayerbe, G. Rubiales, F. Palacios, J. Org. Chem. 2006, 71, 2839-2847.
- [107] N. Kano, K. Yanaizumi, X. Meng, N. Havare, T. Kawashima, Chem. Commun. 2013, 49, 10373-10375.
- [108] M. Seitz, W. Milius, H. G. Alt, J. Mol. Catal. A: Chem. 2007, 261, 246-253.
- [109] J. T. Reeves, M. D. Visco, M. A. Marsini, N. Grinberg, C. A. Busacca, A. E. Mattson, C. H. Senanayake, Org. Lett. 2015, 17, 2442-2445.
- [110] Y. Chen, R. Chen, C. Qian, X. Dong, J. Sun, Organometallics 2003, 22, 4312-4321.
- [111] S. Gambarotta, 08/03/1999 ed., Cambridge Structural Database, **1999**.
- [112] D. L. Kays, Chem. Soc. Rev. 2016, 45, 1004-1018.
- [113] D. L. Kays, in *Organometallic Chemistry: Volume 36, Vol. 36*, The Royal Society of Chemistry, **2010**, pp. 56-76.
- [114] S. J. Blanksby, G. B. Ellison, Acc. Chem. Res. 2003, 36, 255-263.

- [115] N. Kleigrewe, W. Steffen, T. Blomker, G. Kehr, R. Frohlich, B. Wibbeling, G. Erker, J. C. Wasilke, G. Wu, G. C. Bazan, J. Am. Chem. Soc. 2005, 127, 13955-13968.
- [116] T. Jurca, K. Dawson, I. Mallov, T. Burchell, G. P. Yap, D. S. Richeson, *Dalton Trans.* **2010**, *39*, 1266-1272.
- [117] A. Osichow, I. Göttker-Schnetmann, S. Mecking, Organometallics 2013, 32, 5239-5242.
- [118] J. C. Wang, E. D. Yao, Z. T. Chen, Y. G. Ma, *Macromolecules* **2015**, *48*, 5504-5510.
- [119] L. Chen, H. Francis, B. P. Carrow, ACS Catalysis 2018, 8, 2989-2994.
- [120] F. Angersbach-Bludau, Dissertation, Universität Hamburg **2014**.
- [121] D. L. Thorn, J. Mol. Catal. **1982**, *17*, 279-288.
- [122] J. A. Gladysz, in Adv. Organomet. Chem., Vol. 20 (Eds.: F. G. A. Stone, R. West), Academic Press, 1982, pp. 1-38.
- [123] F. Angersbach-Bludau, C. Schulz, J. Schöffel, P. Burger, Chem. Commun. 2014, 50, 8735-8738.
- [124] J. Abbenseth, M. Finger, C. Würtele, M. Kasanmascheff, S. Schneider, *Inorg. Chem. Front.* **2016**, 3, 469-477.
- [125] N. Šušnjar, Dissertation Hamburg **2006**.
- [126] W. Dammann, Dissertation, Hamburg **2020**.
- [127] T. M. Kooistra, D. G. H. Hetterscheid, E. Schwartz, Q. Knijnenburg, P. H. M. Budzelaar, A. W. Gal, *Inorg. Chim. Acta* **2004**, *357*, 2945-2952.
- [128] B. Iddon, O. Meth-Cohn, E. F. V. Scriven, H. Suschitzky, P. T. Gallagher, Angew. Chem. Int. Ed. 1979, 18, 900-917.
- [129] <u>www.hi-techlamps.com/hpk125w/</u>, 07.10.2021.
- [130] J. Seibert, C. Bannwarth, S. Grimme, J. Am. Chem. Soc. 2017, 139, 11682-11685.
- [131] C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher, S. Grimme, *WIREs Comput. Mol. Sci.* **2021**, *11*, e1493.
- [132] P. W.-. Atkins, *Kurzlehrbuch Physikalische Chemie für natur- und ingenieurwissenschaftliche Studiengänge*, 5. Auflage ed., Wiley-VCH Verlag GmbH & Co. KGaA, **2020**.
- [133] P. K. S. Hünig, G. Märkl, J. Sauer, *Integriertes Organisch-chemisches Praktikum -Arbeitsmethoden, Vol. 2*, LOB-Lehmanns, Berlin, **2008**.
- [134] W. L. F. Armarego, *Purification of Laboratory Chemicals*, 8. ed., Butterworth-Heinemann **2017**.
- [135] G. Sheldrick, C. Gilmore, H. Hauptman, C. Weeks, R. Miller, I. Usón, **2012**.
- [136] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112-122.
- [137] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.
- [138] D. Dhar, G. M. Yee, A. D. Spaeth, D. W. Boyce, H. Zhang, B. Dereli, C. J. Cramer, W. B. Tolman, J. Am. Chem. Soc. 2016, 138, 356-368.
- [139] F. S. T. Khan, A. L. Waldbusser, M. C. Carrasco, H. Pourhadi, S. Hematian, *Dalton Trans.* 2021, 50, 7433-7455.
- [140] M. A. Arthurs, J. Bickerton, S. R. Stobart, J. Wang, Organometallics 1998, 17, 2743-2750.
- [141] R. Cramer, J. McCleverty, J. Bray, *Inorg. Synth.* **1990**, *28*, 86-88.
- [142] P. W. L. Birkofer, Organic. Synth. **1970**, 50.
- [143] J. L. Bolliger, C. M. Frech, Adv. Synth. Catal. 2010, 352, 1075-1080.
- [144] M. Stephan, persönliche Mitteilung, **2020**.

11. Anhang

Verbindungsübersicht

11

CF3

13

9

Br∖

10

12

23

1: R: iPr R": H 1^{tBu}: R: iPr R": tBu 2: R: CI R": H 4: R: CF₃ R": tBu

1-lrPy⁺

 1-IrCI:
 R: iPr
 R": H
 M: Ir

 1^{tBu}-IrCI:
 R: iPr
 R": tBu M: Ir

 4-IrCI:
 R: CF₃ R": tBu M: Ir

 4-RhCI:
 R: CF₃ R": tBu M: Rh

 1-IrOMe:
 R: iPr
 R": H
 M: Ir

 1^{tBu}-IrOMe:
 R: iPr
 R": tBu M: Ir

 4-IrOMe:
 R: CF₃ R": tBu M: Ir

 4-RhOMe:
 R: CF₃ R": tBu M: Rh

1-IrN₃: R: iPr R": H M: Ir 1^{tBu}-IrN₃: R: iPr R": tBu M: Ir 4-IrN₃: R: CF₃ R": tBu M: Ir 4-RhN₃: R: CF₃ R": tBu M: Rh

4-IrNHSi: M: Ir 4-RhNHSi: M: Rh

1-IrN: R: iPr R": H M: Ir 1^{tBu}-IrN: R: iPr R": tBu M: Ir 4-IrN: R: CF₃ R": tBu M: Ir 4-RhN: R: CF₃ R": tBu M: Rh

4-IrCO

24: R: Ph R': Me 26: R: Ph R': Ph 28: R: Ph R': ^tPh 31: R: ArF R': ^tPh

 24-IrCI:
 R: Ph
 R': Me
 M: Ir

 26-IrCI:
 R: Ph
 R': Ph
 M: Ir

 28-IrCI:
 R: Ph
 R': ^tPh
 M: Ir

 31-IrCI:
 R: ArF
 R': ^tPh
 M: Ir

 24-RhCI:
 R: Ph
 R': ^tPh
 M: Ir

 24-RhCI:
 R: Ph
 R': Me
 M: Rh

 31-IrCI:
 R: ArF
 R': ^tPh
 M: Ir

 24-RhCI:
 R: Ph
 R': Me
 M: Rh

 31-RhCI:
 R: ArF
 R': ^tPh
 M: Rh

24-IrOMe: R: Ph R': Me M: Ir 28-IrOMe: R: Ph R': ^tPh M: Ir 24-RhOMe: R: Ph R': ^tPh M: Rh 28-RhOMe: R: Ph R': ^tPh M: Rh 31-RhOMe: R: ArF R': ^tPh M: Rh

 N_3 R'

24-IrN₃: R: Ph R': Me M: Ir 28-IrN₃: R: Ph R': ^tPh M: Ir 24-RhN₃: R: Ph R': Me M: Rh 28-RhN₃: R: Ph R': ^tPh M: Rh 33-RhN₃: R: iPr R': Ph M: Rh

24-IrN: R: Ph R': Me M: Ir 28-IrN: R: Ph R': ^tPh M: Ir 28-RhN: R: Ph R': ^tPh M: Rh 33-RhN: R: iPr R': Ph M: Rh

33-RhNHSi

31-RhCO

Kristallographische Daten

Verbindung	1-IrN ₂ ^{BArF}	4	28
Summenformel	$C_{65}H_{54}BF_{24}IrN_{5}$	$C_{29}H_{23}N_3F_{12}$	$C_{65}H_{59}N_3$
Molmasse [g/mol]	782.07	641.50	882.15
Habitus	brown, block	clear, bar	yellow, -
Kristallgröße [mm]	0.192×0.111×0.048	0.22×0.2×0.07	-
Kristallsystem	monoklin	monoklin	monoklin
Raumgruppe	<i>P</i> 2 ₁ /m	P21/c	P21/c
a [Å]	11.963(3)	10.4334(7)	16.768(6)
b [Å]	17.323(3)	39.470(3)	17.216(7)
c [Å]	17.948(3)	14.2772(9)	17.900(9)
α[°]	90	90	90
β[°]	108.7480(10)	98.2100(10)	107.882(2)
γ[°]	90	90	90
V [ų]	3522.3(14)	5819.2(7)	4918(4)
Z	4	8	4
Berechnete Dichte g/cm ³	1.475	1.464	1.191
Strahlung	ΜοΚα	ΜοΚα	ΜοΚα
Anzahl gem. Reflexe	53421	68342	42203
Anzahl unabh. Reflexe	9119	13884	7498
Anz. Daten / restraints / Param.	9119/902/637	13884/0/803	7498/0/622
20 max [°] / Vollständigkeit	58.012 / 99.7	55.998 / 99.5	47.656 / 99.0
R _{int}	0.0364	0.0202	0.0626
R ₁ Wert (I>=2σ (I))	0.0428	0.0414	0.0403
R1 Wert (I>=2σ (I))	0.1087	0.1105	0.0878
R1 Wert (alle Daten)	0.0526	0.0484	0.0618
R1 Wert (alle Daten)	0.1145	0.1164	0.0953
Restelektronendichte [Å ⁻³]	1.23/-0.84	0.69/-0.36	0.17/-0.18
GooF, S	1.048	1.030	1.066

Verbindung	31	4-IrCl	24-IrCl
Summenformel	$C_{66}H_{53}Cl_2F_8N_3$	C ₃₃ H ₃₃ ClF ₁₂ IrN ₃ O	$C_{47}H_{39}CIIrN_3$
Molmasse [g/mol]	1111.01	943.27	873.46
Habitus	yellow, block	metallic dark green,	green, triangle
		block	
Kristallgroße [mm]	0.21×0.12/×0.05	$0.4/4 \times 0.429 \times 0.20/$	$0.5 \times 0.3 \times 0.01$
Kristallsystem	triklin	monoklin	monoklin
Raumgruppe	<i>P</i> -1	<i>P</i> 2 ₁ /m	P21/c
a [Å]	9.967(5)	10.5244(16)	17.9019(15)
b [Å]	10.851(5)	14.617(2)	17.5202(17)
c [Å]	26.565(16)	11.7192(18)	26.7588(19)
α[°]	91.068(3)	90	90
β[°]	97.021(12)	97.164(2)	98.543(2)
γ[°]	101.922(5)	90	90
V [Å3]	2787(2)	1788.8(5)	8299.6(12)
Z	2	2	8
Berechnete Dichte g/cm3	1.324	1.751	1.398
Strahlung	ΜοΚα	ΜοΚα	ΜοΚα
Anzahl gem. Reflexe	44222	25281	299050
Anzahl unabh. Reflexe	13567	4551	26592
Anz. Daten / restraints / Param.	13567/0/720	4551/18/265	26592/0/945
20 max [°] / Vollständigkeit	58.094 / 99.7	57.696 / 99.1	62.2 / 100
Rint	0.0240	0.0285	0.0754
R1 Wert (I>=2σ (I))	0.0607	0.0155	0.0360
R1 Wert (I>=2σ (I))	0.1658	0.0387	0.0813
R1 Wert (alle Daten)	0.0708	0.0161	0.0611
R1 Wert (alle Daten)	0.1733	0.0390	0.0964
Restelektronendichte [Å-3]	1.78/-1.06	1.32/-0.62	1.28/-1.37
GooF, S	1030	1.061	1.041

Verbindung	26-IrCl	28-IrCl	28-IrN₃
Summenformel	$C_{65}H_{59}CIIrN_3O_2$	C ₆₅ H ₅₇ N ₆ Cllr	C ₆₉ H ₆₇ IrN ₆ O
Molmasse [g/mol]	1141.80	1149.81	1188.48
Habitus	green, bar	green, Plate	brown, bar
Kristallgröße [mm]	0.5 imes 0.1 imes 0.1	0.09 × 0.078 × 0.036	$0.141 \times 0.053 \times 0.032$
Kristallsystem	monoklin	monoklin	monoklin
Raumgruppe	<i>C</i> 2/c	<i>P</i> 2 ₁ /m	P21/c
a [Å]	42.881(16)	14.584(6)	14.512(8)
b [Å]	9.635(3)	19.285(12)	18.790(9)
c [Å]	26.158(9)	22.485(15)	21.073(9)
α[°]	90	90	90
β[°]	108.899(11)	97.9670(10)	99.263(3)
γ[°]	90	90	90
V [Å ³]	10225(6)	6263(6)	5671(5)
Z	8	4	4
Berechnete Dichte g/cm ³	1.483	1.219	1.392
Strahlung	ΜοΚα	ΜοΚα	ΜοΚα
Anzahl gem. Reflexe	54088	75620	67618
Anzahl unabh. Reflexe	6372	15635	14253
Anz. Daten / restraints / Param.	6372/75/646	15635/284/838	14253/0/702
20 max [°] / Vollständigkeit	44.35 / 99.2	58.128 / 100	58.134
R _{int}	0.1282	0.0935	0.1770
R1 Wert (I>=2σ (I))	0.0631	0.0429	0.0621
R1 Wert (I>=2σ (I))	0.1593	0.0667	0.1106
R1 Wert (alle Daten)	0.0858	0.0816	0.1430
R1 Wert (alle Daten)	0.1811	0.0759	0.1363
Restelektronendichte [Å ⁻³]	3.06/-2.80	0.82/-0.72	1.36/-2.35
GooF, S	1.063	1.004	0.987

Verbindung	32	4-IrNHSi	24-IrN
Summenformel	$C_{31}H_{26.5}F_{12}IrN_4O_{0.5}$	$C_{35}H_{39}N_{4}F_{12}Silr$	C ₄₇ H ₃₉ IrN ₄
Molmasse [g/mol]	883.26	963.99	852.02
Habitus	-	brown, bar	-
Kristallgröße [mm]	-	0.5 × 0.2 × 0.2	0.138 × 0.074 × 0.02
Kristallsystem	triklin	tetragonal	triklin
Raumgruppe	<i>P</i> -1	/4	P-1
a [Å]	15.661(9)	24.340(4)	12.230(6)
b [Å]	15.756(9)	24.340(4)	12.526(6)
c [Å]	16.717(10)	12.799(2)	13.604(7)
α[°]	97.349(9)	90	67.789(3)
β[°]	115.599(9)	90	71.492(6)
γ[°]	102.962(9)	90	87.886(7)
V [ų]	3505(4)	7583(3)	1821.4(16)
Z	4	8	2
Berechnete Dichte g/cm ³	1.674	1.689	1.554
Strahlung	ΜοΚα	ΜοΚα	ΜοΚα
Anzahl gem. Reflexe	41427	44519	22175
Anzahl unabh. Reflexe	15943	9304	8813
Anz. Daten / restraints / Param.	15943/21/822	9304/1/496	8813/0/473
20 max [°] / Vollständigkeit	55 / 99.8	57.988 / 100	57.98
R _{int}	0.2533	0.0721	0.0431
R1 Wert (I>=2σ (I))	0.1320	0.0360	0.0314
R ₁ Wert (I>=2σ (I))	0.3084	0.0752	0.0616
R ₁ Wert (alle Daten)	0.2835	0.0500	0.0395
R ₁ Wert (alle Daten)	0.4037	0.0805	0.0643
Restelektronendichte [Å ⁻³]	9.78/-2.24	1.56/-1.09	1.33/-0.94
GooF, S	1.007	1.018	1.050
Flack	-	0.023(5)	-

Verbindung	28-IrN	4-RhCl	31-RhCl
Summenformel	C ₆₅ H ₅₇ N ₇ Ir	$C_{37}H_{39}CIF_{12}N_3O_2Rh$	$C_{73}H_{67}CIF_8N_3O_2Rh$
Molmasse [g/mol]	1128.37	924.07	1308.65
Habitus	green	blue, block	black, bar
Kristallgröße [mm]	$0.093 \times 0.081 \times 0.022$	0.132 × 0.089 × 0.062	-
Kristallsystem	monoklin	orthorhombisch	monoklin
Raumgruppe	P21/c	P212121	P21/c
a [Å]	12.435(2)	11.6755(9)	12.105(3)
b [Å]	25.509(5)	14.1836(11)	17.363(2)
c [Å]	33.309(4)	23.0662(18)	30.642(8)
α[°]	90	90	90
β[°]	96.768(9)	90	97.213(11)
γ[°]	90	90	90
V [ų]	10492(3)	3819.8(5)	6390(3)
Z	8	4	4
Berechnete Dichte g/cm ³	1.429	1.607	1.360
Strahlung	ΜοΚα	ΜοΚα	ΜοΚα
Anzahl gem. Reflexe	252798	58080	75894
Anzahl unabh. Reflexe	26285	8777	10570
Anz. Daten / restraints /	26285/40/1271	8777/0/511	10570/0/801
Parameter			
20 max [°] / Vollständigkeit	56.816 / 99.6	55 / 99.9	48.972 / 99.7
R _{int}	0.1888	0.0293	0.0438
R ₁ Wert (I>=2σ (I))	0.0539	0.0211	0.0782
R_1 Wert (I>=2 σ (I))	0.1038	0.0522	0.2240
R ₁ Wert (alle Daten)	0.1101	0.0226	0.0947
R1 Wert (alle Daten)	0.1243	0.0533	0.2441
Restelektronendichte [Å ⁻³]	1.60/-1.85	1.00/-0.46	6.74/-0.57
GooF, S	1.011	1.052	1.057
Flack	-	0.466(19)	-

Verbindung	31-RhCO	34	33-RhNHSi
Summenformel	$C_{41}H_{41.5}F_4N_{1.5}O_{2.5}Rh_{0.5}$	$C_{64}N_7F_{24}Rh_2$	C ₄₉ H ₆₃ N ₄ SiRh
Molmasse [g/mol]	722.71	533.98	839.03
Habitus	orange, plate	green, plate	-
Kristallgröße [mm]	-	-	0.105 \times 0.033 \times
			0.014
Kristallsystem	triklin	monoklin	monoklin
Raumgruppe	<i>P</i> -1	P2/c	<i>P</i> 2 ₁ /m
a [Å]	11.507(8)	20.600(19)	9.346(6)
b [Å]	11.507(8)	12.829(12)	25.519(17)
c [Å]	28.121(11)	24.48(2)	9.619(6)
α[°]	92.874(9)	90	90
β[°]	92.874(9)	91.4210(10)	105.409(8)
γ[°]	109.80	90	90
V [ų]	3490(4)	6468(10)	2212(3)
Z	4	12	2
Berechnete Dichte g/cm ³	1.376	1.645	1.260
Strahlung	ΜοΚα	ΜοΚα	ΜοΚα
Anzahl gem. Reflexe	116511	115202	23729
Anzahl unabh. Reflexe	25280	12879	5175
Anz. Daten / restraints / Param.	25280/0/900	12879/0/898	5175/0/305
20 max [°] / Vollständigkeit	66.394 / 100	52.29	55 / 99.9
R _{int}	0.2587	0.0856	0.1027
R ₁ Wert (I>=2σ (I))	0.0956	0.0464	0.0958
R ₁ Wert (I>=2σ (I))	0.1755	0.1119	0.2376
R ₁ Wert (alle Daten)	0.2400	0.0680	0.1331
R ₁ Wert (alle Daten)	0.2307	0.1316	0.2693
Restelektronendichte [Å ⁻³]	1.67/-1.34	1.88/-0.79	5.65/-1.86
GooF, S	0.995	1.161	1.020

Abbildung 87: 1^{tBu} -IrCl; ¹³C{¹H}-NMR; 75 MHz; C₆D₆;

Abbildung 89: **1^{tBu}-IrOMe**; ¹³C{¹H}-NMR; 75 MHz; C₆D₆.

Abbildung 91: 1^{tBu} -IrN; ¹³C{¹H}-NMR; 75 MHz; C₆D₆.

Abbildung 106: **Xy^FPyMe₂IrCl, 4-IrCl**; ¹³C{¹H}-NMR; 151 MHz, THF-*d*₈.

-44 -45 -46 -47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -7 ppm Abbildung 115: **Xy^FPyHMe₂IrCO**, **4^H-IrCO**; ^{19F}-NMR; 565 MHz, THF-*d*₈.

Abbildung 124: **TerpPyMe₂IrN, 24-IrN**; ${}^{13}C{}^{1}H$ -NMR; 75 MHz; THF- d_8 .

Abbildung 143: TerpPytpy₂RhOMe, 24-RhOMe; ¹³C{¹H}-NMR; 75 MHz; THF-*d*₈.

Abbildung 151: **TerpPytPh₂RhN₃**, **28-RhN₃**; ¹³C-{¹H}-NMR; 151 MHz, THF-*d*₈.

Abbildung 152: **TerpPytPh₂RhN₃**, **28-RhN₃**; ¹⁵N-NMR; 61 MHz, THF-*d*₈.

— 1602.19

Cyclovoltammogramme

Abbildung 161: Cyclovoltammogramme von 31-RhCl in THF (1 mM). Leitsalz: TBAPF₆ (0.3 M); Arbeitselektrode: Glaskohle (d = 3 mm); Gegenelektrode: Pt-Draht; Referenzelektrode: Ag/Ag⁺; Vorschubgeschwindigkeit: 100 mV/s; referenziert gegen Fc/Fc⁺.

Kinetik-Schema zu Kapitel 5.3

IrN⁺ + FeCp₂
$$\stackrel{k_2}{\longrightarrow}$$
 $l_{exo}1$
 $l_{exo}1$ $\stackrel{k_3}{\longrightarrow}$ Produkt

$$\frac{d[IrN^+]}{dt} = -k_2 * [IrN^+][FeCp_2] + k_{-2} * [I_{exo}1]$$
$$\frac{d[I_{exo}1]}{dt} = k_2 * [IrN^+][FeCp_2] - k_{-2} * [I_{exo}1] - k_3 * [I_{exo}1]$$

Im quasi-stationären Zustand:

$$\frac{d[I_{exo}1]}{dt} = 0$$

$$k_{2} * [IrN^{+}][FeCp_{2}] - k_{-2}[I_{exo}1] - k_{3}[I_{exo}1] = 0$$

$$[eta1] = \frac{k_{2} * [IrN^{+}][FeCp_{2}]}{k_{-2} + k_{3}}$$

$$\frac{d[IrN^{+}]}{dt} = -k_{2} * [IrN^{+}][FeCp_{2}] + k_{-2} * \frac{k_{2} * [IrN^{+}][FeCp_{2}]}{k_{-2} + k_{3}}$$

$$\frac{d[IrN^{+}]}{dt} = [IrN^{+}][FeCp_{2}](-k_{2} + k_{-2} * \frac{k_{2}}{k_{-2} + k_{3}})$$

$$\frac{d[IrN^{+}]}{dt} = [IrN^{+}][FeCp_{2}](-k_{2} + \frac{k_{-2} * k_{2}}{k_{-2} + k_{3}})$$

$$\frac{d[IrN^{+}]}{dt} = [IrN^{+}][FeCp_{2}](-k_{2} + \frac{k_{-2} * k_{2}}{k_{-2} + k_{3}})$$

unter Bedingungen pseudo-erster Ordnung: $[FeCp_2] = konstant$

 $f dl \ln ([IrN^+])$ $ln[IrN^+] \int_{[IrN^+]0}^{[IrN^+](t)} = [FeCp_2] \frac{-k_2 * k_3}{k_{-2} + k_3} t$ $ln[IrN^+](t) - ln[IrN^+](0) = [FeCp_2] \frac{-k_2 * k_3}{k_{-2} + k_3} t$ $ln \frac{[IrN^+](t)}{[IrN^+](0)} = [FeCp_2] \frac{-k_2 * k_3}{k_{-2} + k_3} t$

$$k_{obs} = [FeCp_2] \frac{-k_2 * k_3}{k_{-2} + k_3}$$

für $k_3 \gg k_{-2}$ dann: $k_{obs} = k_2$

für $k_{-2} \gg k_3$ dann: $k_{obs} = \frac{k_3}{k_{-2} * k_3}$

für
$$k_{-2} = k_3$$
 dann: $k_{obs} = \frac{1}{2}k_2$

Gefahrstoffe

Tabelle 25: Verwendete Chemikalien mit H- und P-Sätzen sowie Gefahrenpiktogrammen.

Substanzname	H- und P-Sätze	Gefahrenpiktogramme
[1,1'-Bis-(diphenylphosphino)- ferrocen]-dichloropalladium(II) Pd(dppf)Cl ₂	H: 302+312+332, 315, 319, 335 P: 261, 280, 301+312+330, 305+351+338	(1)
1,4-Dioxan	H: 225, 319, 335, 351 EUH: 019, 066 P: 210, 261, 281, 305+351+338	
2,6-Bis(trifluormethyl)anilin	H: 317 P: 280	
2,6-Diacetylpyridin	H: 315, 319, 335 P: 261, 264, 271, 280, 302+352, 304+340, 305+351+338, 312, 321, 332+313, 337+313, 362, 403+233, 405, 501	
2,6-Diisopropylanilin	H: 319, 412 P: 264, 273, 305+351+338+337+313, 5051	$\langle \mathbf{I} \rangle$
2,6-Diphenylanilin	H: 302, 315, 318, 335, 340 P: 273, 280, 301+312+330, 302+352, 305+351+338+310	
Aceton	H: 225, 319, 336 EUH066 P: 210, 240, 305+351+338, 403+233	
Acetonitril	H: 225, 302+312+332, 319 P: 210, 240, 302+352, 305+351+338, 403+233	
Ammoniumchlorid	H: 302, 319 P: 305+351+338	!
Anthracen	H: 315, 410 P: 273, 280, 302+352, 332+313, 501	
Benzol	H: 225, 304, 315, 319, 340, 350, 372, 412 P: 201, 210, 280, 308+378, 403+235	
Bis(pinacolato)diboron	H: 315, 319, 335 P: 261, 280, 304+340	(!)
Celite	H:373	\$
Chloroform	H: 302, 331, 315, 319, 351, 361d, 336, 372 P: 261, 281, 305+351+338, 311	
Dichlormethan	H: 315, 319, 335, 336, 351, 373 P: 261, 281, 305+351+338	
Diethylether	H: 224, 302, 336 EUH: 019, 066 P: 210, 240, 403+235	!
Dimethylsulfoxid	Kein gefährlicher Stoff nach GHS	
---	--	------------------------------
Di-µ-Chlorido-tetrakis- (ethen)diiridium(I) [Ir(C2H4)2Cl]2	H: 315, 319 P: 264, 280, 302 + 352, 337 + 313, 362 + 364, 332 + 313	(!)
Di-µ-Chlorido-tetrakis- (ethen)dirhodium(I) [Rh(C2H4)2Cl]2	H: 319 P: 305+351+338	(!)
Ethylacetat	H: 225, 302, 319, 335, 351 P: 210, 280, 301+312+330, 305+351+338, 370+378, 403+235	
Ferrocen Cp ₂ Fe	H: 228, 302, 411 P: 210, 260, 273	
Ferroceniumhexafluoro- phosphat Cp2FePF6	H: 315, 319, 335 P: 261, 305+351+338	$\langle \mathbf{I} \rangle$
Ferroceniumtetrafluoro-borat Cp ₂ FeBF ₄	H: 314 P: 260, 280, 301+330+331, 303+361+353, 305+351+338+310	
Kaliumcarbonat	H: 315+319+335 P: 302+352, 305+351+338	()
Kaliumgraphit	H: 314, 318 P: 231+232, 280, 305+351+338, 370+378, 422	
Kalium-tert-butanolat	H: 228, 252, 314 EUH: 014 P: 405	
Kupfer(I)-oxid	H: 302, 332, 318, 410 P: 301+330+331, 304+340, 280, 305+351+338, 310	
Methanol	H; 225, 331, 311, 301, 370 P: 210, 233, 280, 302+352, 304+340, 308+310, 403+235	
Methyllithium	H: 225, 250, 260, 302, 314, 336 EUH: 019, 066 P: 210, 222, 223, 231+323, 370+378	
Methyl- <i>tert</i> -butylether	H: 225, 315 P: 210, 233, 240, 302+352, 403+235	
Natrium	H: 260, 314 EUH: 014 P: 223, 231+232, 305+351+338, 370+378	
Natriumamalgam (NaHg)	H: 260, 314+331+360D, 372+410 P: 201, 231+232, 260, 308+313, 370+378, 402+404	
Natriumazid	H: 300+310+330, 373, 410 EUH: 032	

	P: 262, 273, 280, 301+310+303, 302+352+310-304+340+310	
Natriummethanolat	H: 228, 251, 290, 302, 314 EUH: 014 P: 210, 280, 305+351+338, 310, 370+378, 402+404, 406	
Natriumsulfat	Kein gefährlicher Stoff nach GHS	
Natrium-tetrakis(3,5-bis- (trifluoro-methyl)phenyl) borat Na[BAr ^F 4]	H: 315, 319, 335 P: 302, 352	(!)
n-Hexan	H: 225, 361f, 304, 373, 315, 336, 411 P: 210, 261, 273, 281, 301+310, 331	
<i>n</i> -Pentan	H: 225, 336, 304, 411 EUH066 P: 273, 301+310, 331, 403+235	
<i>o</i> -Difluorbenzol	H: 225 P: 210	
para-Toluolsulfonsäure	H: 290, 314, 335 P: 303+361+353, 304+340+310, 305+351+338	
Petrolether 50/70	H: 225, 304, 315, 336, 361f, 373, 411 P: 210, 243, 273, 301+330+331, 370+378, 403	
tert-Butyldimethylsilan	H: 225, 315, 319, 335 P: 210, 302+352, 305+351+338	
Tetrahydrofuran	H: 225, 302, 319, 335, 351 EUH019 P: 210, 280, 305+351+338, 370+378, 403+235	
Tetrakis(triphenylphospin) palladium(0) Pd(PPh₃)₄	H: 302 P: 264, 301+330+331, 312	()
Toluol	H: 225, 304, 315, 336, 361d, 373 P: 210, 303+361+353, 301+310, 264, 304+340, 280	

Trimethylsilylazid	H: 225, 301, 311, 331 P: 210, 261, 280, 301+310, 311	
Wasserstoff	H:220, 280 P: 210, 377, 381, 403	

Danksagung

Zuerst möchte ich mich bei Prof. Dr. Peter Burger für das interessante und fordernde Thema der Dissertation, sowie die Aufnahme in den Arbeitskreis bedanken. Speziell für die Möglichkeit eigenständig zu Arbeiten und Neues zu lernen.

Prof. Dr. Michael Steiger danke ich für die Anfertigung des Zweitgutachtens.

Ein weiterer Dank gilt den ehemaligen und aktuellen Mitgliedern der Arbeitsgruppe Burger für die gute Zeit, insbesondere Wiebke, Max und Michel für die vielen produktiven und lehrreichen Diskussionen über Chemie (und andere Dinge). Für die Unterstützung im Labor und das Interesse an meiner Arbeit möchte ich mich auch bei meinen Bachelorstudenten und Praktikanten Sarah, Suman, Inga und Benedikt bedanken.

Außerdem möchte ich mich bei meinen Freunden und Kommilitonen aus Würzburg: Thorsten, Flo, Benni und Carsten bedanken, die mir bei dem ein oder anderen Problem geholfen haben.

Bedanken möchte ich mich ebenfalls bei den Mitarbeiterinnen und Mitarbeitern der Serviceabteilungen für die vielen Messungen bedanken. Vor allem bei Dr. Thomas Hackl und Claudia Wontorra für die NMR-Messungen und Isabelle Nevoigt beim Lösen von Problemen mit der X-Ray. Sowie bei Uta Sazama für die unkomplizierte Durchführung von Thermoanalysen.

Zuletzt gilt mein besonderer Dank meinen Freunden und meiner Familie, hier im Besonderen bei meiner Frau Ellen, die mich bei dieser Arbeit immer unterstützt hat.

Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt, die vorliegende Dissertation selbst verfasst und keine anderen als die angegebenen Hilfsmittel benutzt zu haben. Die eingereichte schriftliche Fassung entspricht der auf dem elektronischen Speichermedium. Ich versichere, dass diese Dissertation nicht in einem früheren Promotionsverfahren eingereicht wurde.

Hamburg, 05.01.2022 Carl Schiller