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Abstract

With the advent of ultrafast spectroscopy techniques based on attosecond

light pulses, tracing the electronic motions in molecular systems under non-

equilibrium conditions has become feasible. A good example of such kind

of conditions would be the response of the electronic cloud to an ultrafast

perturbation such as ultrafast excitation or ionization. To interpret the experi-

mental data, it is necessary to have a precise computational method to simulate

electron dynamics by properly including quantum many-body effects. In the

recent five years, some algorithms have been developed to extend the density

matrix renormalization group (DMRG) concept and the matrix product state

(MPS) method to describe the time-dependent phenomena in molecules. One

of these algorithms, which has been implemented by Frahm, is based on the

time-evolution of the many-body wave function in the MPS representation. It has

been shown that this method is capable to describe electron dynamics in ionized

molecules efficiently. This work is the continuation of Frahm’s work. In this

thesis, we firstly investigate the role of the ordering of orbitals and of numerical

noise on the performance of variational optimization of the MPS as the heart of

the time-dependent MPS approach. We see that the ordering of the orbitals plays

an important role in the performance of the time-dependent MPS method to

describe the electron dynamics in the core ionized silicon tetrafluoride molecule.

Furthermore, we show that the numerical noise can enhance the efficiency

of the MPS approach by improving the convergence rate of the dynamics in

terms of the MPS bond dimension. Additionally, we study the charge migration

triggered by the ionization of the 2p orbital of the silicon atom in the silicon

tetrafluoride molecule and pinpoint how electronic correlations lead to intense

and fast electron dynamics in the valence orbitals while the initial hole stays

unchanged during the process. Finally, we study the role of the nuclear geometry

on the charge migration process and find out that considering the finite width

of the nuclear wave function may lead to a damping of the charge migration.





Kurzzusammenfassung

Moderne Ultraschnelle Spektroskopiemethoden, auf Basis von Attosekunden-

pulsen ermöglichen es, Elektronenbewegungen in molekularen Systemen außer-

halb des Gleichgewichts zu verfolgen. Ein gutes Beispiel für ein solches System

im Ungleichgewicht ist die Reaktion einer Elektronenwolke auf eine ultra-

schnelle Anregung oder Ionisierung. Zur Interpretation experimenteller Daten

ist eine präzise Berechnungsmethode erforderlich, um mittels dieser die Elek-

tronendynamik unter Berücksichtigung von Quanten-Vielteilchen-Effekten zu

simulieren. In den letzten fünf Jahren wurden mehrere Algorithmen zur Er-

weiterung des Konzepts der Dichtematrixrenormalisierungsgruppe (DMRG)

und der Methode der Matrixproduktzuständen (MPS) entwickelt, um diese auf

zeitabhängige Phänomene zu erweitern. Einer dieser Algorithmen, entwickelt

von Frahm, basiert auf der Zeitentwicklung der Vielteilchen-Wellenfunktion in

der MPS-Darstellung. Es wurde gezeigt, dass diese Methode geeignet ist, um

die Elektronendynamik in ionisierten Molekülen effizient zu beschreiben. Diese

Arbeit ist die Fortführung der Arbeit von Frahm. Wir untersuchen zunächst die

Auswirkung der Ordnung der Orbitale und von numerischem Rauschen auf die

Performanz von variationeller Optimierung der MPS als Kern des zeitabhängigen

MPS-Ansatzes. Bei der Beschreibung von kernionisiertem Siliciumtetraflourid se-

hen wir, dass die Ordnung der Orbitale eine bedeutende Rolle für die Performanz

der MPS-Methode spielt. Außerdem zeigen wir, dass das numerische Rauschen

die Effizienz des MPS-Ansatzes verbessern kann, indem es die Konvergenzrate

der Dynamik hinsichtlich der MPS-Bond-Dimension erhöht. Darüberhinaus un-

tersuchen wir die Ladungsmigration, die durch die Ionisierung des 2p-Orbitals

des Siliciumatoms in Siliciumtetraflourid ausgelöst wird, und stellen fest, wie

elektronische Korrelationen zu intensiver und schneller Elektronendynamik in

den Valenzorbitalen führt, wobei der ursprüngliche Lochzustand während der

Prozesse unverändert bleibt. Abschließend analysieren wir die Bedeutung der

Geometrie der Atomkerne auf den Prozess der Ladungsmigration und stellen

fest, dass die Annahme einer endlichen Breite der nuklearen Wellenfunktion zu

einer Dämpfung der Ladungsmigration führen kann.
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Introduction 1
Quantum mechanics is a fundamental theory in physics which describes

nature at the scale of atoms and subatomic particles. In the 19th century,

several discoveries and experiments showed that existent classical theories

can not explain phenomena correctly. These failures led to the first ideas

in the development of quantum theory in the early 19th century. Quickly

after the introduction of the ideas and principles of the quantum theory,

scientists applied it to physical systems to discover their properties [1, 2].

Simultaneously with the development of the mathematical formulation of

quantum mechanics, several experiments were performed to confirm its

predictions and discover new phenomena. Today, around a hundred years

later, quantum based technology plays an important role in our daily life.

For example, the transistors as the heart of smartphones and other electronic

gadgets, which are widely used in our daily life, work based on the laws of

quantum mechanics [3].

Molecular systems are one of the most interesting manifestations of quantum

mechanics. The electrons which move on Ångstrom length scale and attosecond

time scale are the key cause of formation of molecular bonds [4]. Therefore, a

chemical reaction is a result of quantum mechanics. In this picture, quantum

mechanics emerges in chemistry. The field of quantum chemistry, which was

pioneered by physicists in the early 20th century [5], is an effort to integrate

our understanding of quantum physics and molecular systems to realize the

foundation of chemistry. This framework is essential for promoting physics

and chemistry, since only collaboration between theory and experiment allows

any scientific finding to be interpreted and validated.

The interaction between molecules and light provides the possibility to inves-

tigate the electronic motion in atoms and molecules directly. Photoinduced

processes in atoms and molecules play an important role in physics, chemistry,

and biology [6–9]. Generally, such processes are the foundation of several phe-

nomena ranging from photosynthesis [10] to charge transfer in solar cells [11].

In these processes the first response of the molecule with light is manifested

by initiating extremely fast dynamics of the electrons in the system which

takes place on the femtosecond to attosecond timescale. On these timescales,

only electronic interactions are taken into account and nuclear motion can be
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1 The solution where the com-

plete basis set limit and full CI

method are employed.

neglected. In other words, on these very short timescales, different dynam-

ical effects in a molecular system can occur before nuclear motion initiates

effectively.

Nowadays, with the development of the time-resolved spectroscopic techniques

[12] and availability of attosecond laser pulses [13], scientists acquire a powerful

tool to track dynamics of the electrons in atoms and molecules to study

processes that occur on time scales in which nuclear motion can be neglected

[14]. A good example of this kind of process would be the response of the

electronic cloud to an ultrafast excitation or ionization. More than 20 years ago,

it was shown [15] that after a sudden ionization, the electronic many-body

effects are capable of generating ultrafast electron dynamics . The positive

charge generated after the ionization can migrate throughout the system solely

by electron correlation and electron relaxation [16]. Generally, it is called charge

migration to illustrate the difference between this process and normal electron

and hole transfer, which is driven by nuclear motion [17].

To interpret the experimental results correctly, it is essential to have precise

ab initio calculations which describes the time-evolution of the electronic

cloud under consideration of many-body effects. In other words, for the

proper description of the above-mentioned processes, one needs a dynamical

treatment of the electronic many-body wave function. Considering the fixed

position for nuclei and solve time-dependent Schrödinger equation for the

electronic part of the many-body wave function. Due to the complexity of the

problem, which is caused by the huge number of degrees of freedom, finding an

accurate theoretical method to solve the time-dependent Schrödinger equation

for a many-electron system is one of the main challenges in today’s physical

and chemical science.

So far, various numerical approaches have been developed to solve the time-

dependent Schrödinger equation for the many-electron system ranging from

exact solutions to approximate methods where the number of degrees of

freedom is reduced. The exact numerical solution 1 is highly computationally

costly and it is currently available only for two-electron systems (e.g. see [18]).

Therefore, approximate methods currently are getting attention to treat the

electron dynamics in the molecules. In this kind of methods, the number of

degrees of freedom is significantly reduced to decrease the computational

costs, whereas, the wave function is still proper to represent the fundamental

mechanisms in the many-electron molecules accurately. Until now, a large

family of approximate methods has been developed. This kind of methods can
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be separated into two different approaches. The first approach builds upon the

Hartree-Fock theory where the molecular orbitals are employed to describe

the molecule. In the second approach, which is based on the density functional

theory [19], in the contrast to the first approach, charge density is used instead

of the quantum mechanical states.

The Hartree-Fock method is based on describing the molecular state by a

single Slater determinant. This approximation leads to the reduction of the

many-body problem to a set of coupled single electron problems that are solved

self-consistently. The resulting many-body state of the molecule is a simple

product state of the molecular orbitals which does not describe electronic

correlation. Therefore, to include electronic correlations, the post-Hartree-Fock

methods have been developed. This family of methods is based on Hartree-

Fock molecular orbitals, but in those, more determinants are employed to

describe the molecular states [20].

For example, the configuration interaction (CI) method is one of the most

popular post-Hartree-Fock methods which is also employed in time-dependent

problems in addition to ground state calculations [21–23]. In this method, if

one considers all the possible excited determinants to construct the many-

electron molecular state, which is called full configuration interaction (full

CI), then the system can be described exactly by introducing all the electronic

correlations which exist in the system. However, while the full CI wave function

can describe the molecule exactly, it is computationally expensive and only

can be applied to small systems. To overcome this issue, truncation of the

CI space with respect to the excitation level relative to the Hartree-Fock

ground state is essential. The most common approximation to truncate the CI

wave function is to consider only single and double excitation, configuration

interaction singles and doubles (CISD). Although, this approximation leads to

significant reduction of the number of degrees of freedom and thereby save

the computational resources, but may induce large errors in the calculations,

especially in the time-dependent cases.

In contrast to the above-mentioned approach, where a restricted number of

determinants is employed to describe the molecular state, the so-called density

matrix renormalization group (DMRG) [24] can produce the many-body wave

function precisely and give full CI like results without considering all the

excitations [25–29]. In the representation of the many-body wave function in

DMRG, instead of cutting configurations from the many-body Hilbert space,

electronic correlation is considered and the entanglement from the many-body
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state is cut dynamically. In this case, it is assumed that the entanglement of

the electrons in the system is limited and the many-body wave function of the

molecule can be represented in terms of the matrix product state (MPS) [30].

So far, various methods have been developed to extend the DMRG concept

and MPS method to describe time-dependent phenomena, but most of those

are only applicable to systems with local interactions [31–33]. However, to

date, several studies have been done to implement the time-dependent DMRG

and MPS to describe the dynamics in long-ranged interaction systems [34–41],

but employing these methods for quantum chemical systems is still new and

challenging, and so far only few studies has been done in this field [42–46].

In the recent years an outstanding work to extend the MPS approach to

dynamical phenomena in the quantum chemical system has been done by

Frahm [45, 47]. He has implemented the time-dependent MPS to investigate

the the ultrafast response of electrons in molecules to sudden ionization. He

firstly developed the Hamburg CheMPS2 program to investigate the electron

dynamics in the molecules, and then, to pinpoint the performance of the MPS

approach, he has done several benchmarking tests for small systems such as 10

site hydrogen chain (10 electrons in 10 orbitals), the hydrogen fluoride molecule

(10 electrons in 11 orbitals), the water molecule (10 electrons in 13 orbitals), the

ammonia molecule (10 electrons in 15 orbitals), and the methane molecule (10

electrons in 17 orbitals). To do benchmark tests, he used small basis sets and

compared the MPS based calculation with the quasi exact (full CI) calculations.

In addition, he has employed the MPS approach to resolve the charge migration

in iodoacetylene (16 electrons in 26 orbitals) which is triggered by ionization

out of the linear combination of the outermost valence orbitals namely highest

occupied molecular orbital (HOMO) and second highest occupied molecular

orbital (HOMO-1).

Further to Frahm’s work, other studies have been done by using the Hamburg

CheMPS2 extension. For example, Weißler has been studying the impact of

light pulses on the hydrogen chain using MPS approach by incorporating light

pulse into Hamburg CheMPS2 extension [48], Schaub has been investigated

the charge migration dynamics in an ionized water molecule [49] and van

Hülst has been investigating the electronic response of the water molecule

to light pulses and the induced dynamics [50]. It should be noted that in

all the above-mentioned studies, small molecules with poor basis sets have

been investigated. In the benchmarking part of Frahm’s studies or other

studies by Weißler, Schaub, and van Hülst, simple chemical systems have
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been considered where employing small basis sets provides the possibility to

describe the molecules with a few number of orbitals. In addition, although,

charge migration in the iodoacetylene is a correlated dynamic, but due to

the ionization out of the outer valence orbitals, it is not essentially highly

correlated and can be described in terms of a few excited determinants [51].

This work is a continuation of the work that has been done by Frahm. In this

thesis, we use the MPS approach to study the molecular inner-shell processes.

We specifically investigate the correlation-driven charge migration in the core

ionized silicone tetrafluoride molecule and show how the core ionization

triggers ultrafast electron dynamics in the valence shell of the molecule.

This thesis is organized as follows. Chapter 2 includes a brief introduction

of ab initio quantum chemistry. We briefly introduce the Born-Oppenheimer

approximation and the Hartree-Fock method to describe the many-body state

in molecules in the uncorrelated picture. Finally, we outline the configuration

interaction method as a post-Hartree-Fock method to take into account elec-

tronic correlations. In Chapter 3, we introduce the MPS method in the context

of quantum chemistry and outline its properties. Further, in this chapter,

we discuss the exploitation of the symmetries of the molecule to reduce the

dimension of the many-body Hilbert space and simplify the MPS tensors.

Chapter 4 presents the time-evolution of the MPS in terms of the Krylov space

method. Furthermore, the variational optimization of the MPS method at

the heart of the time-dependent MPS approach which is used throughout

this thesis is discussed. Lastly, Some remarks to improve the performance of

the the variational optimization procedure are provided. In Chapter 5, we

apply the MPS approach to investigate the electron dynamics in the core

ionized silicon tetrafluoride molecule. Firstly, we demonstrate that the orbital

ordering plays an important role in the performance of the MPS approach to

describe the electron dynamics. Furthermore, we investigate the role of the

numerical noise and show that this concept can enhance the efficiency of the

MPS approach by improving the convergence rate of the dynamics in terms

of the MPS bond dimension. In Chapter 6, we analyze the charge migration

triggered by the ionization of the 2p orbital of the silicon atom in the silicon

tetrafluoride. By performing analyses in terms of autocorrelation function and

transition probability, we show how electronic correlation leads to intense and

fast electron dynamics in the valence orbitals whereas the initial hole does

not change during the process. Ultimately, we study the role of the nuclear

geometry on the charge migration process and find out that considering a

finite width of the nuclear wave function may lead to damping the charge
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migration. In the end, a conclusion and an outlook on future directions of

research is given in Chapter 7.



Ab Initio Quantum Chemistry 2
2.1 Introduction

Nowadays, quantum chemistry has become an essential tool for studying a wide

variety of problems in chemistry and molecular physics. In quantum chemistry,

quantum mechanical principles and equations are applied to chemical systems

to provide the possibility to describe the governing mechanisms of this kind

of system. But, since the molecular phenomena take place on atomic unit

scales, appropriate quantum mechanical descriptions, which include all the

necessary degrees of freedom and are optimized for performing on today’s

computational resources, are necessary.

Generally, there are two different computational approaches to describe the

chemical phenomena. The first approach is so-called semiempirical methods

[52–55] where some parameters from empirical data are widely used to

approximate the Hamiltonian which describes the chemical system. In the

second approach, ab initio quantum chemistry [56], only physical constants

and interactions are considered in the calculation, and no experimental data is

required. Although the ab initio methods are commonly more complicated

and computationally more expensive due to their fundamental approach, they

have become an essential tool in the study of atoms and molecules [57].

In this chapter, we will present some of the concepts, necessary approxima-

tions, and numerical techniques which are essential to describe the physical

phenomena in molecular systems. We will start with the Born-Oppenheimer

approximation which is widely applied in ab initio quantum chemistry to

accelerate the computation of molecular wave function and other properties

of molecular systems. Next, we will briefly review the Hartree-Fock method

which is used to construct an optimal single-particle basis set in this thesis,

and finally, we will discuss briefly the configuration interaction approach as a

common method to approximate the many-body wave function in terms of

possible excitations in the system to capture electronic correlations.
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1 The relationship between the

energy and the geometry of a

chemical system is represented

by a potential energy surface.

2.2 Born-Oppenheimer Approximation

One of the main goals in molecular quantum mechanic is to solve the Schrödinger

equation to describe the molecules. If one is interested in the dynamical

properties of the molecules, the time-dependent Schrödinger equation [58]

i~
∂
∂t

|ψ(t , R, r)〉 � Ĥ |ψ(t , R, r)〉 (2.1)

should be considered.

In this equation, |ψ(t , R, r)〉 represents the time-dependent many-body wave

function of the molecules where r and R denote the position of the electrons

and nuclei in molecules respectively, Ĥ is the Hamiltonian of the system, and

~ is the reduced Planck constant.

If only the static properties of the molecule are of interest, then the time-

independent Schrödinger equation would be easily obtained from Equation 2.1.

Generally, solving the time-independent Schrödinger equation to find the

ground state and ground state energy of the molecule and to determine the

electronic structures of atoms and molecules is a remarkable part of quantum

chemistry. There are plenty of methods to determine the ground state and

first excited states of the molecules [59, 60], where some approximations

have been utilized to simplify the underlying Schrödinger equation and make

computations feasible.

One of the approximations which is widely used in ab initio quantum chemistry

is called Born-Oppenheimer approximation [61, 62]. Within this approximation,

the dynamic coupling between electronic and nuclear motion is neglected,

and thereby one solves the electronic part of the Schrödinger equation while

the nuclear positions are considered as fixed parameters. On the other hand,

the resulting potential energy surface
1 provides the foundation for solving the

nuclear motion.

To review the Born-Oppenheimer approximation in more detail, let us first

examine the molecular Hamiltonian in Equation 2.1 in terms of the kinetic

and potential energy operators of the electrons and nuclei. The molecular

Hamiltonian can be written as a sum of five terms.

1. The kinetic energy operators of the Nn nuclei in the system.

T̂n � −
Nn∑
i�1

~2

2Mi

∂2

∂2Ri
. (2.2)
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2. The kinetic energy operators of the Ne electrons in the system.

T̂e � −
Ne∑
i�1

~2

2me

∂2

∂2ri
. (2.3)

3. The potential energy between the electrons and nuclei or in other words,

Coulomb interaction between electrons and nuclei in the system.

Ûen � −
Nn∑
i�1

Ne∑
j�1

Zi e2

4πε0
��Ri − r j

�� . (2.4)

4. The potential energy emerging from Coulomb electron-electron interac-

tion.

Ûee �

Ne∑
i�1

Ne∑
j>i

e2

4πε0
��ri − r j

�� . (2.5)

5. The coulomb interaction between the nuclei in the system.

Ûnn �

Nn∑
i�1

Nn∑
j>i

ZiZ j e2

4πε0
��Ri − R j

�� . (2.6)

Here Mi and Zi are the mass and the atomic number of the nucleus i respec-

tively, and me is the mass of the electron.

After introducing the molecular Hamiltonian in terms of the kinetic and

potential energy operators, we are now in the position to examine the Born-

Oppenheimer approximation. As we mentioned before, within this approxima-

tion we can neglect the coupling between the motion of the electrons and nuclei

in the molecule or in other words, we can separate the Schrödinger equation

into electronic and nuclei parts. The main reason for this simplification is

based on the fact that the nuclei are much heavier than the electrons. It means,

for the same amount of momentum the nuclei move much slower than the

electrons.

From a mathematical point of view, the Born-Oppenheimer approximation

separates the many-body wave function of the molecule in Equation 2.1 into

an electronic and a nuclear many-body wave function. It means

|ψ(t , R, r)〉 � |ψ(t , R, r)〉e · |ψ(t , R)〉n (2.7)

where |ψ(t , R, r)〉e is the electronic part and |ψ(t , R)〉n is the nuclear part

of the many-body wave function. This enables us to separate the molecular

Hamiltonian into electronic and nuclear terms. In addition, based on the
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2 In our study, the Born-

Oppenheimer approximation re-

stricts the time range we are able

to describe. Light elements may

begin to move on the time scale

of femtoseconds as a response to

electronic motion.

above-mentioned assumption, one can assume the electrons in a molecule

to move in the field of the fixed nuclei and neglect the kinetic energy of

the nuclei (Equation 2.2). Further, within this approximation, the repulsion

between nuclei can be considered as a constant. Therefore, the electronic part

of the molecular Hamiltonian in the Born-Oppenheimer approximation can be

written as

Ĥe � T̂e + Ûee + Ûen + En (2.8)

where En only depends on the fixed nuclei positions. It has to be mentioned

that the electronic Hamiltonian in Equation 2.8 is responsible for the dynamics

in the molecule on short time periods. It means the nuclear part of the many-

body wave function on short time periods does not change and consequently,

to study the dynamics in the molecules, only the electronic time-dependent

Schrödinger equation

i~
∂
∂t

|ψ(t , R, r)〉e � Ĥe |ψ(t , R, r)〉e (2.9)

should be solved. 2

As the final point, we would like to mention that if one has solved the electronic

problem, it is possible to investigate the motion of the nuclei under the same

assumptions as used to formulate the electronic problem. As we have already

mentioned, the electrons move much faster than the nuclei in the molecules.

Therefore, one can consider the nuclei to move in the average field of the

electrons which is described by the so-called nuclear Hamiltonian [63].

Ĥn � T̂n + Ee(R) (2.10)

where the nuclear kinetic energy is reintroduced and the electronic energy

Ee(R) represents the average field of the electrons which affects the nuclear

motion in the molecule.

2.3 Hartree-Fock Method

In the previous section, we have seen that Born-Oppenheimer approximation

leads to separation of the molecular many-body Schrödinger equation into

an electronic and a nuclear part. For the reasons outlined above, solving the

electronic part of the many-body Schrödinger equation is one of the main and
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3 In the following, we will con-

centrate exclusively on the elec-

tronic part. That is why we will

use the Schrödinger equation

synonymous term for the elec-

tronic Schrödinger equation and

omit the subscript |.〉e .

challenging problems in quantum chemistry and so far numerous methods

have been developed to solve this equation approximately [20, 64–67] 3. The

simplest approach to the many-body problem is the Hartree-Fock method. This

method is at the core of most approaches in quantum chemistry and that is

why we will briefly present the concept of this method is the following.

The Hartree-Fock method is based on some assumptions. First, it is assumed

that the many-body ground state of the molecule which consists of N electrons

can be described in the form of a single Slater determinant

|φ0〉 � |χ1χ2 · · · χN〉 (2.11)

where χ represents a single electron orbital.

Secondly, a variational principle is employed to find approximate solutions of

the Schrödinger equation. The variational principle states that any approximate

wave function has energy above or equal to the exact ground state energy or

in other words the best ground state wave function is the one that gives the

lowest possible energy [60, 63].

E0 � 〈φ0 |He |φ0〉 (2.12)

where He is the electronic Hamiltonian in Equation 2.8. Based on the variational

principle, we can obtain the optimal many-body wave function by varying its

parameters, the single electron orbitals, until we minimize the energy. Doing

so, the following equation determines the optimal single electron orbital

F̂(r1)χi(r1) � εiχi(r1) . (2.13)

This equation is called Hartree-Fock equation where εi is the energy eigenvalue

associated with orbital χi and F̂(r1) is called Fock operator which is defined

as

F̂(r1) � ĥ(r1) +
∑

j

∫
χ∗

j(r1)
e2

4πε0 |r1 − r2 |
(1 − P̂12)χ j(r2)dr2 . (2.14)

Here P̂12 is permutation operator and ĥ(r1) indicates the one electron Hamilto-

nian which consists of the kinetic energy of electron 1 and its potential energy

in the field of the nuclei

ĥ(r1) �
−~2

2me

∂2

∂2r1
−

Nn∑
i�1

Zi e2

4πε0 |Ri − r1 |
. (2.15)
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The Hartree-Fock equation is an eigenvalue equation with the single electron

orbitals as eigenfunctions and the energy of the single electron orbitals as

eigenvalues. It is possible to solve this equation exactly for only atoms. For

complicated systems such as molecules, it is common practice to introduce a

set of single electron orbitals and solve the equation in the space spanned by

the orbital basis set. It should be noted, in either case the solution depends

on the orbital basis set. When we optimize the single electron orbitals, the

Fock operator changes and it is necessary to solve Hartree-Fock equation

self-consistently. It means, the Hartree-Fock equation as an eigenvalue problem

should be solved iteratively until the Fock operator has converged. For this

reason, the Hartree-Fock method is called a self consistent field (SCF) approach.

In the Hartree-Fock method, one of the most notable features of quantum

mechanics, electronic correlations, are neglected. Considering a single Slater

determinant to approximate the many-body wave function of the molecule

leads to ignoring all the correlations in the system, and the many-body wave

function obtained from the Hartree-Fock method is uncorrelated. Therefore,

to take into account the electronic correlations in the molecules, it is necessary

to go beyond the single determinant representation of the wave function.

In the next section, a description of the configuration interaction (CI) as a

post-Hartree-Fock method is given.

2.4 Configuration Interaction

As we have already mentioned, to capture the electronic correlation in the

molecules it is essential to consider more than a single determinant to represent

the many-body wave function and to go beyond the Hartree-Fock method to

describe the electrons in molecules correctly. Therefore, a family of methods,

namely, post-Hartree-Fock methods have been introduced to describe the

electronic correlation in the molecules on the quantum mechanical level.

In these methods, the molecular orbitals obtained from the Hartree-Fock

approach are used as the starting point of the calculations, and corrections

concerning excited states (which can be described by the Slater determinants)

are introduced in the many-body wave functions of the molecules.

In this section, we would like to introduce one of the most popular post-Hartree-

Fock methods, namely, configuration interaction. In this method, similar to the

other post-Hartree-Fock methods, the Hartree-Fock ground state determinant

(single Slater determinant defined in Equation 2.11) is considered, and to take
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into account the electronic correlation, new Slater determinants in terms of

electronic excitation are added. Such determinants can be constructed as the

following.

Assume the Hartree-Fock ground state |φ0〉 where N electrons occupy the

lowest molecular orbitals. Then, a singly excited determinant where one

electron from the initially occupied orbital i has been promoted to one of the

initially unoccupied orbitals a would be described as:

|φa
i 〉 � ĉ†a ĉi |φo〉 (2.16)

where ĉ and ĉ† represent annihilation and creation operators respectively.

Similar to the singly excited, one can define doubly excited determinants

in terms of the Hartree-Fock ground state and annihilation and creation

operators.

|φab
i j 〉 � ĉ†a c†b ĉ j ĉi |φo〉 (2.17)

where two electrons have been promoted, one from orbital i to orbital a and

another from orbital j to orbital b.

Further, one can consider higher order excited determinants in the system

i.e. triply, quadruply, ..., n-tuply excited determinants. The number of all the

possible determinants that can be considered is [63, 68]

# possible determinants �
(
2L
N

)
�

(2L)!
(2L − N)!N!

∼ O([2L]N) . (2.18)

The many-body wave function in configuration interaction fashion can be

expressed as a linear combination of all possible excitations

|ψ(t)〉 � α0(t) |φo〉 +
∑

ia
αa

i (t) |φ
a
i 〉 +

∑
i jab

αab
i j (t) |φ

ab
i j 〉 + ... (2.19)

where the the many-body wave function includes the Hartree-Fock ground

state, all singly excited or in other words one-hole-one-particle (1h1p) configu-

rations, all doubly excited or two-hole-two-particle (2h2p) configurations and

higher order excited configurations.

If one considers all the possible excitations to construct the many-body wave

function, the result is a full configuration interaction (full CI) wave function. The

full CI wave function can describe the system precisely, but it is computationally

intractable for large systems. The main reason for this is that in the full CI
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representation of the many-body wave function, the number of possible excited

determinants grows rapidly as the number of basis set functions and electrons

increases (see Equation 2.18). For this reason, truncation of the CI space

according to the excitation level relative to the reference state is important to

save computational resources. The most common approximation to truncate

the CI wave function is called configuration interaction singles and doubles (CISD)

where only single and double excitations, as well as the Hartree-Fock ground

state, are considered. In this method, truncation of the CI space and ignoring

higher order excitation leads to a significant reduction of the number of

determinants that need to be taken into account. The total number of the

determinants in this approximation is

# determinants in CISD � 2LN +
N(N − 1)(2L − N − 1)(2L − N)

4
(2.20)

which is significantly smaller than the number of all possible determinants

which should be considered in full CI. Note that in Equation 2.20, the first

term shows the number of singly excited determinants, and the second term

indicates the number of doubly excited determinants.

It is important to note that, the CI method is widely used in ground state

[69–72] and time-dependent calculations [73–77]. In the time-dependent stud-

ies, there is an issue with selection of the excitations. In this method, to

manage the computational resources, a large number of excited determinants

which construct the many-body Hilbert space are removed regardless of the

importance of those in dynamics. In other words, excited determinants which

may play an important role in the dynamics may be artificially removed from

the many-body Hilbert space. This restriction may induce large errors in

the calculations especially when the governing dynamics in the system are

unknown. That is why in the next chapter, we will outline an approach where

a truncation of the Hilbert space has been done in a better suited manner to

study time-dependent phenomena in molecules.
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3.1 Introduction

In the pervious chapter, we have seen that the main challenge in the numerical

study of molecules as quantum many-body systems is the large number

of degrees of freedom. We have also seen that, in this kind of systems,

the dimension of the Hilbert space (number of degrees of freedom) grows

factorially with the system size. That is why exact diagonalization approaches

(eg. Lanczos methods [78]) are strongly restricted to small system size. In

addition, we have outlined a family of methods which are designed to simplify

the representation of the many-body state. These methods are based on the

concept that a limited number of Slater determinants is taken into account,

to approximate the many-body state. In these methods, a specific form of

the excitations is picked and the calculation is done using this reduced, but

fixed Slater determinants. This can be problematic especially when properties

are considered time-dependent. When the calculation of the time-dependent

quantities is desired, it is possible that the excited determinants which represent

the many-body state change with time. Therefore, the space of fixed excitations

is not capable of describing the time-evolved many-body state efficiently as it

may leave this space. There is a possibility that the excitations involved in the

dynamics may change after some femtosecond.

To avoid this issue, we need an approach that simplifies the representation

of the many-body state without cutting any excitations. In this approach,

instead of the cutting configurations from the many-body Hilbert space,

electronic correlations are considered and the entanglement from the many-

body state dynamically is cut. Generally, not all electrons of a system are

strongly correlated to each other, and cutting the Hilbert space regarding the

correlation and entanglement can be a valid approximation. This approach

is taken when representing the many-body state as a matrix product state

[79–82].

In the following chapter, firstly, the matrix product state in the context of

quantum chemistry will be introduced. Furthermore, we will introduce the

area law to discuss the validity of the matrix product state approach in terms

of the properties of the desired system. In addition, graphical representations
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1 DMRG is a numerical vari-

ational method to obtain the

ground state of many-body sys-

tems with high accuracy [24]. In

the initial algorithm of DMRG

which was proposed by White,

the MPS approach does not di-

rectly appear. Later, people used

MPS formulation to represent

many-body states in DMRG vari-

ational algorithms [82, 86, 87].

2 It is a tensor of rank 2L.

of the matrix product state will be introduced. The latter will make it easier

to keep track of the multitude of matrices involved in the computations. Fur-

thermore, matrix product operators will be introduced and discussed. Finally,

symmetry adaption of the matrix product states will be discussed. Exploiting

the symmetries of the quantum chemical Hamiltonian leads to a reduction

of the dimension of the many-body Hilbert space and to a simplification of

the matrix product state representation of the many-body state, leading to

significant computational advantage.

3.2 Definitions and Properties

In quantum many-body physics, Tensor networks (TN) appear as a natural

tool for representing quantum many-body states with a moderate number of

parameters [83, 84]. This is realized via the compression of the originally large

Hilbert space by limiting bond dimensions, while preserving relevant physics

[85]. One of the most famous tensor network is the matrix product states (MPS),

which is closely related to the Density Matrix Renormalization Group (DMRG)

[24]. 1 As we mentioned before, an MPS is an efficient approximation for a

general weakly-entangled quantum state. It has already been shown to be a

successful approximation for one-dimensional systems in condensed matter

physics [24, 88–92]. Nowadays, it has been widely used to investigate atomic or

molecular systems [45, 93–98]. In the following, we introduce the idea behind

it and discuss some of its properties.

The time-dependent many-body state of a molecule in Equation 2.19 can be

rewritten in the occupation number representation of a basis of L orthonormal

orbitals [45]:

|ψ(t)〉 �
∑

n1↑n1↓···nL↑nL↓

cn1↑n1↓···nL↑nL↓(t) |n1↑n1↓ · · · nL↑nL↓〉 , (3.1)

where ni↑ ∈ {0, 1} (ni↓ ∈ {0, 1}) is the number of up (down) electrons in the

orbital i, the coefficient tensor 2 cn1↑n1↓···nL↑nL↓(t) holds the time-dependent

expansion coefficients, and |n1↑n1↓ · · · nL↑nL↓〉 are the occupation number

basis states. The orbital basis may be molecular orbitals, atomic orbitals, or

any other set of orthogonal orbitals. As we saw in the pervious chapter, the

factorially growing number of possible determinants makes working with

|ψ(t)〉 challenging, as it requires too many coefficients to store and handle

for medium to large sets of orbitals. The coefficient tensor in Equation 3.1 can

be exactly decomposed into a sequence of lower rank tensors by a singular
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value decomposition (SVD) [99]. In a first step, the coefficient tensor should be

reshaped into a matrix:

cn1↑n1↓n2↑n2↓···nL↑nL↓(t) � c(n1↑n1↓);(n2↑n2↓···nL↑nL↓)(t). (3.2)

Applying SVD on this matrix gives:

c(n1↑n1↓);(n2↑n2↓···nL↑nL↓)(t) �
∑

a1

U(n1↑n1↓);a1(t)Sa1;a1(t) (3.3)

× Va1;(n2↑n2↓···nL↑nL↓)(t).

By defining

A
n1↑n1↓
a1 (t) � U(n1↑n1↓);a1(t) (3.4)

c̃a1;(n2↑n2↓···nL↑nL↓)(t) � Sa1;a1(t)Va1;(n2↑n2↓···nL↑nL↓)(t) (3.5)

and reshaping and decomposing c̃a1;(n2↑n2↓···nL↑nL↓)(t) with a SVD as follows,

c̃a1;(n2↑n2↓n3↑n3↓···nL↑nL↓)(t) � c̃(a1n2↑n2↓);(n3↑n3↓···nL↑nL↓)(t) (3.6)

�
∑

a2

U(a1n2↑n2↓);(a2)(t) (3.7)

× c̃a2;(n3↑n3↓···nL↑nL↓)(t),

the coefficient tensor would be written as:

cn1↑n1↓n2↑n2↓···nL↑nL↓(t) �
∑
a1a2

A
n1↑n1↓
a1 (t)An2↑n2↓

a1;a2 (t) (3.8)

× c̃a2;(n3↑n3↓···nL↑nL↓)(t),

where A
n2↑n2↓
a1;a2 (t) � U(a1n2↑n2↓);a2(t). The tensor c̃a2;(n3↑n3↓···nL↑nL↓)(t) in Equation

3.8 can be reshaped and decomposed with a subsequent SVD. By repeating

this procedure L-2 times, the coefficient tensor can be exactly rewritten as:

cn1↑n1↓···nL↑nL↓(t) �
∑

a1a2 ···aL−1

A
n1↑n1↓
a1 (t) · · ·AnL↑nL↓

aL−1 (t), (3.9)

� An1↑n1↓(t) · · ·AnL↑nL↓(t), (3.10)

where An1↑n1↓(t) is a row vector, Ani↑ni↓(t) for 1 < i < L is a matrix, and

AnL↑nL↓(t) is also a column vector. In Equation 3.9, indices ni↑ni↓ correspond

to physical indices which characterize a specific electron configuration in a

molecular orbital. The other indices (ai) correspond to virtual or bond indices

which have no clear physical meaning. Figure 3.1 graphically represents the
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Figure 3.1: Graphical representa-
tion of an iterative construction
of decomposed coefficient tensor
by a sequence of singular value
decompositions. Tensors are rep-
resented by rectangles, physical
indices by open lines, and virtual
indices by connected lines.

mentioned iterative construction of the decomposed coefficient tensor. As

already shown, this sequence of matrix products reproduces the original coeffi-

cient tensor cn1↑n1↓···nL↑nL↓(t). The preliminary advantage of this decomposition

is storing all coefficients factorized in 4L vectors and matrices instead of storing

them in a large tensor. There is no approximation behind this decomposition

and such a decomposition is always possible by sequentially applying SVD

on the coefficient tensor. The complete MPS representation of the many-body

state is written as:

|ψ(t)〉 � |ψ(t)〉MPS (3.11)

�
∑

n1↑n1↓···nL↑nL↓

An1↑n1↓(t) · · ·AnL↑nL↓(t) |n1↑n1↓ · · · nL↑nL↓〉 (3.12)

including all Slater determinants |n1↑n1↓ · · · nL↑nL↓〉. At this point, there is

no computational advantage compared to handling the coefficient tensor in

Equation 3.1. The main idea of MPS is finding smaller matrices Ãni↑ni↓(t)
that substitute for the decomposition matrices with little error. The smaller

matrices can be made from the D largest singular values of Ani↑ni↓(t) (Sai ;ai (t)),
decreasing the exponential scaling of the matrix dimension to some fixed

value D. The dimension D of the reduced matrices is called the MPS bond

or virtual dimension. This approach allows to reduce the dimension of the

decomposition matrices, while the sequence of reduced matrix products

Ãn1↑n1↓(t)Ãn2↑n2↓(t) · · · ÃnL↑nL↓(t) ≈ cn1↑n1↓···nL↑nL↓(t) still gives a quasi optimal

representation of the coefficient tensor[100]. The singular value spectrum

decays quickly in most physical situations, especially when the entanglement

in |ψ(t)〉 is limited or short-ranged[82].
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3 Entanglement entropy is a

quantity to measure the quan-

tum entanglement for a many-

body quantum state. The en-

tanglement entropy between

subsystems A and B of the

system can be quantified by

the von Neumann entropy

SA|B � −TrA
[
ρA log ρA

]
�

−TrB
[
ρB log ρB

]
where ρA (ρB)

is the reduced density matrix of

the quantum state for the respec-

tive subsystem A (B) [102].

3.3 Entanglement and Area Law

In the previous section, we introduced the MPS approach as a sequential

decomposition of the coefficient tensor in Equation 3.1 and we highlighted that

by limiting the MPS bond dimension (D), the number of degrees of freedom

could be reduced to an amount that does not increase exponentially with

system size. This feature originates from a theory which is called area law [101].

The area law states that, for systems with short ranged-interaction and a gapped

ground state, the entanglement entropy
3 between the respective ground states

of two subsystems of the system is proportional to the area of the boundary

between them. It means, only the intersection surface of the two subsystems

has an influence on the entanglement entropy and the size of the subsystems

does not directly affect it. However, a general state of the many-body Hilbert

space does not obey the area law, by having an entanglement entropy scaling

with the size of the two subsystems. For the ground state, one only wants

to focus on states where the entanglement entropy is not dependent on the

size of the subsystems. Considering states which obey the area law (area law

states) leads to a significant reduction of the degrees of freedom for ground

state calculations.

For one-dimensional systems, the area of the boundary between two subsys-

tems is constant and the area does not depend on the size of the subsystems.

Therefore, regarding to the area law the entanglement entropy is constant

too. Hence, ground states live in a manifold of the many-body Hilbert space

which shows a constant entanglement entropy, and it frequently corresponds

to a tiny corner of many-body Hilbert space. In other words, entanglement

entropy of the gapped one-dimensional system is bounded by a constant and

there is a particular bond dimension D where MPS can exactly represent the

manifold of the area law state. By restricting the dimension of the matrix in

the MPS, we neglect states which do not obey the area law and we reduce the

computational cost to use the many-body state representation [47, 85].

As already mentioned, the area law is only valid for systems with short-ranged

interaction and there is no guarantee that MPS with restricted bond dimension

is a reliable representation of the many-body state of quantum chemical

systems. For two reasons the Hamiltonian of quantum chemical systems has a

long-ranged interaction. First, electron-electron interaction in different orbitals

is inherently long-ranged and second, mapping delocalized molecular orbitals

into the one-dimensional shape of a sequence of matrix products, makes the

quantum chemical Hamiltonian a long-ranged one.



20 Chapter 3 Matrix Product States

PEPS

TTN

Figure 3.2: Conceptual tensor
network decomposition of many-
body stateψ in terms of two most
famous ways, PEPS and TTN.

4 The type of shapes does

not have any physical meaning,

and generelay different type of

shapes have been used to dis-

criminate tensors with different

quantities. In this thesis we use

rectangles to illustrate tensros.

In addition, the area law does not make any assumptions about the time-

evolution of the entanglement and it is limited to the gapped ground state.

Therefore, in time-dependent conditions, there is the possibility that the many-

body state leaves the part of the Hilbert space we are able to handle using

MPS method. It means that by time evolving, systems may leave the part of

the Hilbert space where MPS are unable to catch. This issue is called runaway

error [33]. Although this seems like an acute problem and could restrict case

study to the short-time behavior, there exist a couple of concepts to reduce the

impact of that [47].

Despite the aforementioned points, MPS demonstrates high efficiency to deal

on long-ranged systems as well as time-dependent situations. MPS has widely

been used to study quantum chemical systems with long-range interaction

to predict different physical properties ranging from ground states to excited

states [103–108]. As well as long-ranged systems, MPS have been successful

to characterize time-dependent many-body states ranging from condensed

matter physics aspects [31, 33, 109–111] to quantum chemical phenomena [45,

108, 112–114].

3.4 Graphical Notation

As it has already been mentioned, the MPS approach is a special case of

the more general concept of tensor networks. Tensor networks also cover

high dimensional decomposition of the many-body state such as projected

entanglement pair states (PEPS) [85, 115, 116], tree-tensor networks (TTN) [117–119],

and multi-scale entanglement renormalization ansatz (MERA) [120, 121]. To give

the reader an idea how these methods work, Figure 3.2 conceptually shows

how the quantum many-body state ψ could be represented (or approximated)

using tensor networks in different ways.

To be able to properly understand tensor network based algorithms, being

familiar with the idea behind the tensor network concept and its notation

is unavoidable. In addition, understanding the analytical formulas of tensor

networks, due to the large number of indices and sums, is usually complicated

and unclear. Thus, it is strongly recommended to use a graphical representation.

Here, tensors are represented by shapes 4 and free indices are represented

by lines which are called bonds in the following and connect to the shapes.

Figure 3.3 illustrates tensors of various ranks. A scalar, or rank 0 tensor, has

no free indices and can be represented by a rectangle without any connected



3.4 Graphical Notation 21

S

scalar

V

i

vector

Mi j

matrix

T

i ··· n

rank n tensor

Figure 3.3: Graphical representa-
tion of a scalar, a vector, a matrix,
and a rank n tensor. A scalar is
depicted as a rectangle without
any connected lines. A matrix is
depicted as a rectangle whit one
connected line. A vector is de-
picted as a rectangle with two
connected lines, and a rank n
tensor is depicted as a rectangle
with n connected lines.

line. A vector, or rank 1 tensor, has one free index and can be represented by

a rectangle with one connected line. A matrix, or rank 2 tensor, has two free

indices and can be represented by a rectangle with two connected lines. Finally,

a rank n tensor has n free indices and can be represented by a rectangle with n

connected lines.

The graphical representation is extremely beneficial to show tensor operations.

For example, the trace of a matrix can be expressed as

Tr(M) �
∑

i
Mii � iM , (3.13)

where a closed bond represents a sum over an index. It is apparent that the

result is a scalar, since it does not have any free bond. Another instructive

example which could be visualized by this notation is matrix multiplication

C � A.B

Ci j �
∑

k
AikBk j � A Bi j

k
(3.14)

where the result of a matrix multiplication is again a matrix. There exist two

open bonds and one closed bond.

In addition, the MPS representation of the many-body state (Equation 3.12)

can be illustrated using the graphical notation as:

|ψ〉MPS �
∑

n1↑n1↓···nL↑nL↓

...A[1] A[2] A[L]

n1↑n1↓ n2↑n2↓ nL↑nL↓

|n1↑n1↓ · · · nL↑nL↓〉 (3.15)

where the sequence of matrix products (An1↑n1↓An2↑n2↓ · · ·AnL↑nL↓) is replaced

with its graphical representation.

The squared norm of the many-body state in the MPS representation is defined

as:

MPS 〈ψ |ψ〉MPS �
∑

n1↑n1↓···nL↑nL↓

A∗n1↑n1↓ · · ·A∗nL↑nL↓An1↑n1↓ · · ·AnL↑nL↓ (3.16)

and can be rewritten in the graphical notation as

MPS 〈ψ |ψ〉MPS �

...A[1] A[2] A[L]

...A[1] A[2] A[L]
. (3.17)

In the above notation, the orthonormality of the occupation number basis and
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5 Because most operators are ex-

tremely sparse

the summation rule for the closed bonds were used. Also, since the result

of MPS 〈ψ |ψ〉MPS is a scalar, hence, there is no open bond in the graphical

representation of the Equation 3.17.

3.5 Matrix Product Operator

Now we want to introduce the concept of a matrix product operator (MPO) and

its similarity with the matrix product states. An MPO is an extension of a

matrix product representation to operators [122].

By successive decomposition of the coefficients characterizing the operator,

MPO generation can be performed equivalently to the MPS method. If we have

an operator which is represented in occupation number basis

ÔMPO �
∑

n1↑n1↓···nL↑nL↓

O
n1↑n1↓···nL↑nL↓
n′

1↑n′
1↓···n

′
L↑n′

L↓
|n1↑n1↓ · · · nL↑nL↓〉 〈n′

1↑n′
1↓ · · · n′

L↑n′
L↓ | ,

(3.18)

then we can decompose the rank 4L tensor O
n1↑n1↓···nL↑nL↓
n′

1↑n′
1↓···n

′
L↑n′

L↓
as a product of lower

rank tensors like we did for an MPS. Therefore, the operator in the MPO

representation can be written

ÔMPO �
∑

n1↑n1↓···nL↑nL↓

O[1]n1↑n1↓
n′

1↑n′
1↓
· · · O[L]nL↑nL↓

n′
L↑n′

L↓
|n1↑n1↓ · · · nL↑nL↓〉 〈n′

1↑n′
1↓ · · · n′

L↑n′
L↓ |

�
∑

n1↑n1↓···nL↑nL↓
n′

1↑n′
1↓···n

′
L↑n′

L↓

...O[1] O[2] O[L]

n1↑n1↓ n2↑n2↓ nL↑nL↓

n′1↑n′1↓ n′2↑n′2↓ n′
L↑n′

L↓

|n1↑n1↓ · · · nL↑nL↓〉 〈n′
1↑n′

1↓ · · · n′
L↑n′

L↓ | ,

(3.19)

where (similarly to MPS representation) O[1]n1↑n1↓
n′

1↑n′
1↓

is a row vector, O[i]ni↑ni↓
n′

i↑n′
i↓

are matrices and, O[L]nL↑nL↓
n′

L↑n′
L↓

is a column vector. The product of the matrices

in Equation 3.19 precisely reconstructs the matrix elements of O
n1↑n1↓···nL↑nL↓
n′

1↑n′
1↓···n

′
L↑n′

L↓
.

In other words, in prefect analogy to the non-truncated MPS representation

of the many-body state (Equation 3.12), the MPO representation of the of a

many-body operator is mathematically exact, and does not cause any error.

Although dealing with the many-body operators is not usually challenging
5, but bringing those to the MPO representation is beneficial. One of the

advantages of the MPO is that it can be applied efficiently to a matrix product



3.6 Matrix Product Operator 23

6 The MPO representation of

the quantum chemical Hamil-

tonian scales like O(L2) with

system size L. On the other

hand, the computational cost

for operator application scales

like O(LD2
O D2

A). Therefore, we

acquire O(L5D2
A) as the cost for

application of the Hamiltonian

to the quantum many-body state

[122].

state. For example, the application of a matrix product operator to a matrix

product state is done as:

ÔMPO |ψ〉MPS �
∑

n1↑n1↓···nL↑nL↓

(
O[1]n1↑n1↓

n′
1↑n′

1↓
· · · O[L]nL↑nL↓

n′
L↑n′

L↓

)
×

(
A[1]n′

1↑n′
1↓ · · ·A[L]n′

L↑n′
L↓

)
|n1↑n1↓ · · · nL↑nL↓〉 (3.20)

�
∑

n1↑n1↓···nL↑nL↓
n′

1↑n′
1↓···n

′
L↑n′

L↓

(
O[1]n1↑n1↓

n′
1↑n′

1↓
A[1]n′

1↑n′
1↓

)
· · ·

×
(
O[L]nL↑nL↓

n′
L↑n′

L↓
A[L]n′

L↑n′
L↓

)
|n1↑n1↓ · · · nL↑nL↓〉 (3.21)

�
∑

n1↑n1↓···nL↑nL↓

B[1]n1↑n1↓ · · · B[L]nL↑nL↓ |n1↑n1↓ · · · nL↑nL↓〉

(3.22)

or in graphical notation:

ÔMPO |ψ〉MPS �
∑

n1↑n1↓···nL↑nL↓

...O[1] O[2] O[L]

n1↑n1↓ n2↑n2↓ nL↑nL↓

...A[1] A[2] A[L]

|n1↑n1↓ · · · nL↑nL↓〉

(3.23)

�
∑

n1↑n1↓···nL↑nL↓

...B[1] B[2] B[L]

n1↑n1↓ n2↑n2↓ nL↑nL↓

|n1↑n1↓ · · · nL↑nL↓〉

(3.24)

where B[i]ni↑ni↓ �
∑

n′
1↑n′

1↓···n
′
L↑n′

L↓
O[i]ni↑ni↓

n′
i↑n′

i↓
A[i]n′

i↑n′
i↓ . It is clear, by applying the

MPO to a MPS that the form of the new MPS is invariant, but the matrix size

was increased. It means that if the MPO representation of the many-body

operator has a bond dimension of DO and the MPS representation of the

many-body state has bond dimension of DA, then the resulting MPS has bond

dimension of DO · DA which is tremendously larger than the initial bond

dimension. 6 Here again, one can apply SVD on the resulting MPS to reduce

the bond dimension, but the necessary truncation steps spoil the result of

direct application of operators in MPO representation. For this reason, people

use the variational operator application as a feasible solution to this issue

[33, 45]. In the next chapter, we will introduce that and will show how one

can apply an MPO to an MPS without increasing the bond dimension of the

result.
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3.6 Symmetry Adaption of Matrix Product States

Generally, symmetries of the physical systems play an important role in

quantum mechanics. Considering the symmetries of the system enables us to

write the many-body Hamiltonian of the system in a block diagonal form and

thus to significantly reduce the dimension of the many-body Hilbert space.

Consequently, it leads to a notable reduction of the required computational

resources to store the data of the many-body state. Therefore, combining the

symmetries of the molecular system with the MPS approach offers remarkable

computational advantage. In the following section, we discuss how to exploit

the symmetries of the molecular system to reduce the dimensionality of the

many-body Hilbert space and therefore simplify the MPS representation of

the many-body state.

When the Hamiltonian of a system is invariant under a symmetry generation

operator Ô, it has block-diagonal structure if it written in terms of eigenvectors

of the operator Ô. This is a result of

[Ĥ , Ô] � 0 . (3.25)

The blocks of the Hamiltonian have associated quantum numbers (eigenvalues

of the operator Ô). These are called the good quantum numbers of the system.

In general, a subspace of the many-body Hilbert space can be constructed by

considering the many-body states with fixed symmetry quantum numbers.

When one focuses on states with fixed quantum numbers, the many-body

Hilbert space can be reduced to subspaces with a fixed quantum number.

It is also worth to mention that the good quantum numbers of the system

are conserved quantities and, in the time-evolution of the system, do not

change with time. It means that if the initial state of the system is chosen from

one of the subspaces (with fixed quantum numbers), the time-evolved state

permanently remains in this subspace of the Hilbert space.

Essentially, the symmetry group of the molecular system Hamiltonian is

U(1) ⊗ SU(2) ⊗ P or in other words, electron number symmetry, total spin

symmetry, and molecular point group symmetry [94]. It is worthwhile to note

that the first mentioned symmetry is abelian whereas the second one is non-

abelian and the last one, the molecular point group, can be either the abelian

or non-abelian with respect to the corresponding symmetry operators.

As we discussed earlier, utilizing the symmetry of the system leads to reduction

of the dimension of the many-body Hilbert space and consequently simplifies
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the MPS representation of the many-body state. In the following, we want to

discuss how the above-mentioned symmetry of the molecular Hamiltonian

offers computational advantage in the MPS representation of the many-body

state.

Let us start with the electron number symmetry. Since, the number of the

electrons is conserved in the molecular system, the molecular Hamiltonian

commutes with the total electron number operator.

[Ĥ , N̂] � [Ĥ ,
∑

i
(n̂i↑ + n̂i↓)] � 0 . (3.26)

Based on the above commutator, we can find a common basis for Hamiltonian

and total electron number where the electron number operator is diagonal

and the Hamiltonian is block diagonal. If one choses the occupation number

basis which consists of eigenvectors of the total electron number operator to

represent the Hamiltonian, then the Hamiltonian becomes block diagonal.

Each block corresponds to a different number of the electrons in the system

· · · ,N − 1,N,N + 1, · · · (see Figure 3.4). Generally, we can take advantage of

the block diagonal structure of Hamiltonian to fix the number of electrons and

thus only solve the block corresponding to that number, neglecting the other

blocks.

By restricting the sum over all possible determinants in the complete many-

body state to determinants where
∑

i(ni↑ + ni↓) � N , one can use the total

electron number symmetry to prune the complete many-body state.

|ψ(t)〉N �
∑

n1↑n1↓···nL↑nL↓∑
i(ni↑+ni↓)�N

cn1↑n1↓···nL↑nL↓(t) |n1↑n1↓ · · · nL↑nL↓〉 . (3.27)

Here, the second condition in the summation removes all the states with

electron number unequal to N from the complete many-body state. Therefore,

the many-body Hilbert space is reduced to the subspace where
∑

i(ni↑ + ni↓) �
N is valid.

Furthermore, one can apply the electron number symmetry on the MPS

representation of the many-body state to take its advantage. There is no

restriction to choose the virtual basis to express the tensors A[i] in Equation

3.15. Therefore, it is possible to write the MPS tensors in the basis of electron

number eigenstates. If one expresses the MPS tensors in this basis, some
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Figure 3.4: Graphical representa-
tion of the many-body Hamilto-
nian in the occupation number
basis consisting of the eigenvec-
tors of the total electron number
operator. In this representation,
the many-body Hamiltonian has
block diagonal structure where
each block corresponds to one
respective eigenvalue of the elec-
tron number operator.

. . .

HN−1

HN

HN+1

. . .
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H �

adaption in terms of the physical and virtual bonds are required as follows.

A[i]

ni↑ni↓

ai−1 ai

−→
A[i]

niγi

Ni−1αi−1 Niαi

(3.28)

Here, Ni indicates the number of the electrons that occupy the orbitals 1 to

i. ni ∈ {0, 1, 2} shows the occupation number of the orbital i. αi and γi are

the free indices. Note that γi includes the additional information about the

orbitals such as spin and irreducible representation of the orbital i which will be

discussed in future. So far, we have seen that to utilize the total electron number

symmetry in MPS representation of the many-body state, the representation

of the tensor A[i] in the basis of electron number eigenstates is essential and it

is not possible unless one makes adaptations of the physical and virtual bonds

of the MPS tensors to the electron number basis. This adaptation leads to local

electron number conservation in indices of the physical and virtual bonds. It

means, the number of the electrons to the right of orbital i, Ni should be equal

to sum of number of electrons in orbital i, ni and number of the electrons to

the left of orbital i, Ni−1 i.e. Ni � ni + Ni−1. This local conservation would be

demonstrated in terms of the delta function straightforwardly.

A[i]niγi
Ni−1αi−1 ,Niαi

� A
′[i]niγi

Ni−1αi−1 ,Niαi
δNi ,ni+Ni−1 (3.29)

or in graphical notation:

A[i]

niγi

Ni−1αi−1 Niαi

�

A
′ [i]

niγi

Ni−1αi−1 Niαi

.
δ

ni

Ni−1 Ni

(3.30)
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A
′ [6]n6�0 γ6

N5�3,N6�3

A
′ [6]n6�0 γ6

N5�4,N6�4

A
′ [6]n6�0 γ6

N5�5,N6�5
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A[6]n6�0γ6 �

Figure 3.5: Schematic representa-
tion of the MPS tensor A[6]n6�0γ6

in the electron number basis. Ac-
cording to Equation 3.29, this ma-
trix has block diagonal structure.
Using electron number symme-
try provides the benefit that one
only needs to store blocks A

′ .

For example, assume the situation where orbital i � 6 is empty (n6 � 0) then

according to Equation 3.29, the matrix element of the A[6]n6�0γ6 at a given

bond index is different from zero if N6 � N5. It means in this situation, the

tensor A[6] has block diagonal form where blocks consist of A
′[6]n6�0 γ6

N5 ,N6
(see

Figure 3.5). Generally, when one considers the electron number symmetry, the

form of the MPS tensors A[i] is simplified and it takes on a block structure.

Therefore, to construct A[i] it is only required to have non-zero elements A
′[i]

which is computationally beneficial.

In addition to the electron number symmetry one can benefit from geometrical

symmetry of the molecular system to reduce the subspace of the many-body

Hilbert space and simplify the MPS representation of the many-body state.

Generally, such a geometrical symmetry is described in terms of the symmetry

point groups. A molecular symmetry point group consists of symmetry

operations, which leave the molecular geometry invariant, and a binary

operation, which describes the application of paired symmetry operations.

These symmetry operations are for example n-fold rotational axis Cn , mirroring

through a plain σ , and the identity operation E. If such symmetry operators do

not commute with one another, then the corresponding molecular symmetry

point group is non-abelian. In other words, in the non-abelian group, the result

of applying paired symmetry operators depends on the order of operations.

Usually, implementation of the non-abelian symmetries is more challenging

and that is why in the CheMPS2 package [93] only abelian point group

symmetries P with real-valued character tables are considered, i.e.

P ∈ {C1 , Ci , C2 , Cs ,D2 , C2ν , C2h ,D2h} (3.31)
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Therefore, all the symmetries which are exploited in the Hamburg CheMPS2

extension are abelian except for spin symmetry.

Before discussing the utilization of the point group symmetry in the MPS

approach, let us introduce the concept of irreducible representations (irreps). As

we previously mentioned, molecular geometries can be described in terms

of a point group that consists of all operations that leave the form of the

molecule invariant. Furthermore, electronic density, which is constructed from

the molecular orbitals, follows the symmetry properties of the molecule. It

means that the molecular orbitals are invariant under the operations of the

point group of the molecule despite the fact that they are free to change their

sign. In general, the molecular orbitals can be classified with respect to their

behavior under operations of the point group of the molecule in terms of their

irreps. For example, C2ν point group which includes the identity E, a two-fold

rotation C2 and two vertical mirroring symmetries at the xz plane σv(xz)
and yz plane σv(yz) contains four irreps A1, A2, B1, and B2. As we noted the

molecular orbitals with same irrep have similar behavior under the operations

of the point group. For instance, the sign of the molecular orbitals with irrep

A1 under any operation of the C2ν point group does not alter or the sign of the

molecular orbitals with irrep B1 will be changed if C2 operation or σv(yz) are

applied. The general behavior of the molecular orbitals with different irreps

under the operations of the point groups is summarized in the character tables

[123].

We know that the complete many-body state can be expanded in terms of the

occupation number basis states and that the electronic density in the molecule

obeys its geometrical symmetry properties. It means that the complete many-

body state also follows the symmetry properties of the molecule or in other

words, it can be attributed to a fixed irrep and, if it is only constructed from

Slater determinants of one irrep, precisely behaves like an irrep. Generally, the

irrep of the Slater determinant is depended on the direct product of the irrep of

the orbitals which are singly occupied in the slater determinant. Consequently,

the irrep I of Slater determinant |n1↑n1↓ · · · nL↑nL↓〉 is given by

I �
⊗

i
Īi (3.32)

where the Ii represent the irrep of the single occupied orbital i. We have to note

that the outcome of the multiplication of the different irreps of a symmetry

point group is shown in the multiplication table [123] and one can extract the

irrep of the given determinant by using these tables.
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Similar to the electron number symmetry, exploiting the point group symmetry

leads to a reduction of the complete many-body Hilbert space to a smaller

subspace of it. It means, when the irrep of the many-body state is fixed,

then sum over all possible determinants in Equation 3.27 reduces to the

determinants which conform the irrep of the many-body state.

|ψ(t)〉NI �
∑

n1↑n1↓···nL↑nL↓∑
i(ni↑+ni↓)�N

⊗i Ii�I

cn1↑n1↓···nL↑nL↓(t) |n1↑n1↓ · · · nL↑nL↓〉 (3.33)

Moreover, using the irrep of the many-body state results in decomposing the

bond of the MPS tensor in terms of the irrep of the orbitals. It implies that if one

utilizes the irrep of the many-body state, then the virtual and physical bonds

of the MPS tensors should be adapted in terms of the irrep of the orbitals,

and every bond gets an additional degree of of freedom which determines

the irrep. This bond adaption together with the electron number degree of

freedom can be illustrated as follows

A[i]

ni↑γi

Ni−1αi−1 Niαi

−→
A[i]

ni iiγi

Ni−1 Ii−1αi−1 Ni Iiαi

(3.34)

where, as before, γi is a free index which includes the information about the

spin of orbital i.

Furthermore, after adaption of the virtual and physical bonds of the MPS

tensors in terms of the irrep of orbitals, one can employ the delta function

to represent the local conservation of the irrep of orbitals and simplify the

representation of the MPS tensors A[i] in Equation 3.29 as

A[i]ni iiγi
Ni−1Ii−1αi−1 ,Ni Iiαi

� A
′[i]ni iiγi

Ni−1Ii−1αi−1 ,Ni Iiαi
δNi ,ni+Ni−1δIi ,ii⊗Ii−1 (3.35)

or in graphical notation:

A[i]

ni iiγi

Ni−1 Ii−1αi−1 Ni Iiαi

�

A
′ [i]

ni iiγi

Ni−1 Ii−1αi−1 Ni Iiαi

.
δ

ni

Ni−1 Ni

. (3.36)

δ

ii

Ii−1 Ii

In this case, similar to the electron number symmetry, one can separate the

MPS tensors A[i] into the blocks that follow local conservation of the irrep of

orbitals which is imposed by the delta function in Equation 3.35. For example,
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Figure 3.6: Schematic represen-
tation of the A

′[6]n6�0 i6�A1 γ6
N5�4,N6�4

Here, we assumed the given
molecule exhibits the C2ν point
group and orbital i � 6 belongs
to the A1 irrep which is the triv-
ial irrep of the C2ν point group.
Therefore, regarding to the lo-
cal conservation of the irrep of
the orbitals (I6 � i6 ⊗ I5) and
multiplication table of the C2ν
point group, it takes on a diago-
nal block structure.

A
′′ [6]n6�0 i6�A1 γ6

I5�A1 ,I6�A1

A
′′ [6]n6�0 i6�A1 γ6

I5�A2 ,I6�A2

A
′′ [6]n6�0 i6�A1 γ6

I5�B1 ,I6�B1

A
′′ [6]n6�0 i6�A1 γ6

I5�B2 ,I6�B2
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A
′[6]n6�0 i6�A1 γ6

N5�4,N6�4 �

Figure 3.6 shows the schematic representation of the A
′[6]n6�0 i6�A1 γ6

N5�4,N6�4 , which

is one of the symmetry blocks of A[6]n6�0γ6 (see Figure 3.6). Here, we assumed

the given molecule exhibits the C2ν point group and orbital i � 6 belongs

to the A1 irrep which is the trivial irrep of the C2ν point group. Therefore,

regarding to the local conservation of the irrep of the orbitals (I6 � i6 ⊗ I5) and

multiplication table of the C2ν point group with respect to the partial irreps

left and right to this site, the MPS tensor A
′[6]n6�0 i6�A1 γ6

N5�4,N6�4 takes on a block

diagonal structure.

So far, we have seen that utilizing two kinds of the abelian symmetries, electron

number symmetry and symmetry of the molecule, results in a reduction of the

many-body Hilbert space and consequently simplifies the representation of

the entire many-body state. We have used the advantages of the corresponding

quantum numbers which are conserved locally in MPS representation of the

many-body state to reduce the complexity of the MPS representation and

rewrite the MPS tensors A[i] in terms of the blocks. In addition, to exploit

the spin symmetry, one can take advantages of this fact that the quantum

chemistry Hamiltonian commutes with all the spin operators and therefore the

Hamiltonian and spin operators have common eigenstates. Thus, if one finds

the eigenbasis of the spin operators S2 and Sz and represents, the Hamiltonian

in this basis, then it will have block diagonal structure where each block

corresponds to one eigenvalue of the spin operators, respectively we stress

again that, similarly to the electron number symmetry and molecular symmetry,
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we can focus on the subspace of the many-body Hilbert space by using spin

symmetry and representing the Hamiltonian in the spin operator eigenvector

basis, but we should be aware of the fact that Sz is conserved locally while S2

contains different orbitals.

As we have already mentioned, all the symmetries which are exploited in

the Hamburg CheMPS2 extension are abelian except the spin symmetry. The

implementation of non-abelian symmetries is challenging, and some tricks

are required. In the CheMPS2 code, a theory by McCulloch and Gulacsi [124–

126] is employed to implement the total spin symmetry. In this method, the

Wigner-Eckart theorem [127, 128] is used to decompose the MPS tensors which

have already been expressed in the eigenbasis of the spin operators. Therefore,

utilizing this theory, one can straightforwardly write the virtual and physical

bonds of the MPS tensors in terms of the eigenbasis of the spin operators as

A[i]

ni iiγi

Ni−1 Ii−1αi−1 Ni Iiαi

−→
A[i]

ni ii si sz
i

Ni−1 Ii−1Si−1Sz
i−1αi−1 Ni Ii Si Sz

i αi

(3.37)

and decompose those in terms of the Wigner-Eckart theorem

A[i]ni ii si sz
i

Ni−1Ii−1Si−1Sz
i−1αi−1 ,Ni Ii Si Sz

i αi
� A

′[i]ni ii si
Ni−1Ii−1Si−1αi−1 ,Ni Ii Siαi

δNi ,ni+Ni−1δIi ,ii⊗Ii−1

× 〈Si−1Sz
i−1si sz

i |SiSz
i 〉 (3.38)

where 〈Si−1Sz
i−1si sz

i |SiSz
i 〉 are the Clebsch-Gordan coefficients [129].

It is noteworthy that in Equation 3.38, the tensor A
′[i] does not depend on

the spin projection quantum numbers which leads to the introduction of

block-sparsity in MPS tensors and reduces their dimension remarkably.

Additionally, we have to mention that, if one considers all the symmetries of

the quantum chemistry Hamiltonian, then the physical basis state of orbital i

can be represented as [47, 130]

ni ii si sz
i �



|ni � 0, ii � I0 , si � 0, sz
i � 0〉

|ni � 1, ii � Ii , si �
1
2 , s

z
i �

1
2〉

|ni � 1, ii � Ii , si �
1
2 , s

z
i � − 1

2〉

|ni � 2, ii � I0 , si � 0, sz
i � 0〉

(3.39)

where I0 denotes the trivial irrep of point group P.
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In this section we have seen that exploiting symmetries of the quantum

chemistry Hamiltonian, namely electron number, the point group, and the

total spin symmetry, provides a systematic method to simplify the MPS

structure and reduces the dimension of the many-body Hilbert space of

interest. Utilizing these symmetries makes it possible for us to define reduced

MPS tensors where physical and virtual basis states are eigenstates of the

electron number and spin operator as well as a fixed irrep.



Time-Evolution of Matrix Product

States 4
4.1 Introduction

In the previous chapter, we have listed the different concepts of the MPS

and seen how they can help us in representing many-body states. Also, we

outlined their properties in terms of entanglement. Further, we saw how

utilizing symmetries of the Hamiltonian simplifies the MPS structure and

offers computational advantages. Now, in this chapter, we want to introduce

time-evolution methods which can be utilized to find the dynamics of the

many-body state using MPS representation.

The underlying differential equation to investigate the dynamics in the quantum

systems is the time-dependent Schrödinger equation. It can be written for a

many-body system in MPS representation:

i~
∂
∂t

|ψ(t)〉MPS � Ĥ |ψ(t)〉MPS . (4.1)

The formal solution to this equation is given by applying the time-evolution

operator. If the initial state at time t0 is known, then the time-evolved state at

time t is:

|ψ(t)〉MPS � e
−i
~ Ĥδt |ψ(t0)〉MPS (4.2)

where δt � t − t0 and H is the time-independent Hamiltonian.

Generally, finding a representation of the time-evolution operator is not

straightforward and it is still the main challenge in time-dependent quantum

mechanics. Various methods have been developed to solve the time-dependent

Schrödinger equation using the MPS approach [31, 33, 110], however, only

a few can be applied to quantum chemical systems due to the long-range

interaction.

In the following chapter, we would like to review some of these methods and in

particular their disadvantages briefly and finally we will introduce the Krylov

space time-evolution method. The latter is one of the general time-evolution

methods to solve the time-dependent Schrödinger equation and is the heart of

the time-dependent MPS approach that is used through this thesis. In Section
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1 Ĥ |ψ(t)〉MPS is not in the tan-

gent space of the MPS manifold,

and projecting this state to the

MPS manifold ensures that the

time-evolved state never leaves

the manifold.

3.5, we have seen that the direct application of an MPO on an MPS results in a

massive increase of the bond dimension of the yield MPS, and applying SVD

is necessary to reduce the bond dimension of the resulting MPS. Although

applying the SVD on the resulting MPS leads to a reduction of the MPS bond

dimension, the truncation of the resulting MPS spoils the outcome of the direct

application of operators in MPO representation. Thus, we need a more effective

method to apply an MPO on an MPS where the bond dimension of the MPS

representation of the resulting many-body state is limited without introducing

significant error. Moreover, in the implementation of the time-evolution of the

MPS, we need to perform other operations on the MPS and as we discussed

before, performing this kind of operations naively is not efficient. For these

reasons, we will discuss the variational optimization of matrix product states in

more detail and finally, we will present some tricks to improve the performance

of the variational method.

4.2 Krylov Space Time-Evolution of Matrix

Product States

As we have already mentioned, there are a lot of methods which have been

developed to solve the time-dependent Schrödinger equation that is presented

in the MPS representation, but, due to the long-ranged interaction which is

present in quantum chemical systems only a few of those can be applied in

such systems.

For example, the time-evolving block decimation (TEBD) method [131], which

is one of the most popular time-evolution methods used for MPS, is not

applicable in quantum chemical systems. If one can write the Hamiltonian

of the system in form of a sum of individual terms Ĥ �
∑

i ĥi ,i+1, then the

corresponding time-evolution operator can be expressed approximately as

product of local exponentials e
−i
~ ĥi ,i+1t/2. This procedure is also known as

Lie-Trotter-Suzuki [132, 133] decomposition of the time-evolution operator.

Obviously, this decomposition is only possible if the Hamiltonian is short-

ranged.

An alternative method for TEBD to deal with long-ranged interaction is the time-

dependent variational principle (TDVP) [36, 134, 135] where the time-dependent

Schrödinger equation is projected to the tangent space of the MPS manifold at

the time 1 t and the resulting equation is solved for each individual tensor A[i]
in the MPS representation of the many-body state |ψ(t)〉MPS. Finally, to obtain
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2 The Runge-Kutta method [140,

141] is one of the methods

for numerical solution of or-

dinary differential equations

e.g. time-dependent Schrödinger

equation. Of a multitude of

higher and lower order Runge-

Kutta methods, the fourth order

method turns out to be the most

efficient one.
3 Runge-Kutta method is based

on the finite expansion of the

time-evolution operator in Equa-

tion 4.2. That is why it fails in

non-unitarily performing time-

evolution. Therefore, the norm

of the time-evolved state is not

conserved and will change with

time. Due to the incurred error

which scales likeO(δt5), a careful

choice of the discrete time step

size δt is critical for this method.

the time-evolved state, sweeps on the local sites of the system are required.

It is worth mentioning that even thought this approach can be applied to

long-ranged systems, its performance detracts for systems with non-local

interaction [136].

The two methods mentioned above are originally developed for MPS. They use

general properties of the tensor networks and operate on local tensors in MPS

representation instead of treating total MPS. However, it has been shown that,

discussed approaches are very efficient when studying systems with limited

entanglement and electronic interaction [36, 134, 135, 137, 138]. In the recent

years, those have been applied to chemical systems [42–44, 46, 139].

Another approach to handle time-evolution for quantum chemistry application

is using general methods. In this approach, the special localized structure of

the MPS representation is ignored and one can apply general time-evolution

methods to the many-body wave function directly. Two of such methods,

namely the fourth-order Runge-Kutta
2 approach and the Krylov space time-

evolution, have already been implemented in Hamburg CheMPS2 extension

code by Frahm [45, 47]. His studies showed that both methods are able to

describe the dynamics of electrons following ionization in quantum chemical

systems with reasonable accuracy. Also, he showed that the Krylov space

time-evolution method brings more advantages in comparison with the fourth-

order Runge-Kutta method, due to its unitarity properties 3. Because of the

considerable advantages of Krylov space time-evolution method and also its

flexibility in the adaption to MPS, we use this method through this thesis.

Therefore, we introduce it in more details in the following.

Krylov space time-evolution [142–145] is one of the general time-evolution

methods to solve the time-dependent Schrödinger equation. This powerful

method is based on Lanczos [146] reduction of the full many-body Hilbert

space to a smaller vector subspace which is called Krylov space. This subspace

is defined by the successive application of the Hamiltonian to the initial vector

[147]. The many-body state in the MPS representation (|ψ(t)〉MPS) is set as an

initial state. In this case, the Krylov space of dimension NK is defined as:

K� span({|ψ(t)〉MPS , Ĥ |ψ(t)〉MPS , Ĥ
2 |ψ(t)〉MPS , · · · , ĤNK |ψ(t)〉MPS}).

(4.3)

Orthogonalization of the Krylov basis can be achieved by applying the Gram-
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Schmidt procedure to the Krylov vectors in Equation 4.3

|φk+1〉MPS � Ĥ |φk〉MPS −
∑
j≤k

MPS 〈φ j | Ĥ |φk〉MPS

MPS 〈φ j |φ j〉MPS
|φ j〉MPS . (4.4)

The state evolved after a time step δt can be constructed as a superposition of

the basis vectors of the Krylov space |φk〉MPS. In the following, we will try to

show how one can derive the time-evolved MPS within the Krylov space.

Generally, the time-dependent many-body state (in MPS representation) can

be projected onto the Krylov space as:

|ψ(t)〉MPS �

NK−1∑
k�0

ak(t) |φk〉MPS . (4.5)

Here, ak(t) are the time-dependent coefficients. This projection of the complete

Hilbert space to a smaller Krylov space decreases the computational effort

significantly. Time-evolution of the many-body state can be obtained by the

solution of the Schrödinger equation in this reduced space. Inserting Equation

4.5 in the time-dependent Schrödinger equation (Equation 4.1) and multiplying

both sides from the left with 〈φk |, leads to an eigenvalue problem as:

i~
NK−1∑
k�0

MPS 〈φ j |φk〉MPS
∂
∂t

ak(t) �
NK−1∑
k�0

ak(t)MPS 〈φ j | Ĥ |φk〉MPS (4.6)

which can be rewritten in the compact form

i~S
∂
∂t

a � Ha (4.7)

where overlap matrix S and Hamiltonian matrix H are defined as

S jk �MPS 〈φ j |φk〉MPS (4.8)

H jk �MPS 〈φ j | Ĥ |φk〉MPS . (4.9)

The exact solution of Equation 4.7 is, of course

a(t) � exp
(
− i

δt
~

S −1H
)

a(t0). (4.10)

By Substituting Equation 4.10 into Equation 4.5, it is possible to get the
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time-evolved many-body state (in MPS representation).

|ψ(t)〉MPS �

NK−1∑
k�0

exp
(
− i

δt
~

S −1H
)

ak(t0) |φk〉MPS . (4.11)

Considering boundary conditions at initial time t0 gives rise to ak(t0) � δk ,0.

Therefore, Equation 4.11 can be written as

|ψ(t)〉MPS �

NK−1∑
k�0

[
exp

(
− i

δt
~

S−1H
) ]

k ,0
|φk〉MPS (4.12)

where, [.]k ,0 denotes the elements at the k-th row and 0-th column of the

exponential matrix.

We saw how one can construct the time-evolved many-body state in terms of

Krylov vectors. Also, both approaches, using orthogonal and non-orthogonal

basis, have advantages and disadvantages. For example, it has been shown that

using non-orthogonal basis improves performance of the MPS time-evolution

approach, but this improved performance is limited to special cases. Generally,

if the initial Krylov vector is close to an eigenvector of the Hamiltonian,

employing orthogonal Krylov vectors from Equation 4.4 is more stable. In this

case, the non-orthogonal Krylov vectors tend to become linearly dependent,

which causes a large numerical error when calculating the inverse of overlap

matrix S−1 in Equation 4.12. Hence, time-evolution method based on the

non-orthogonal Krylov vectors should be employed cautiously [45].

4.3 Variational Optimization of Matrix Product

States

As we have already seen in Section 3.5, direct application of the MPO on the

MPS leads to a significant increase in the dimension of the resulting MPS.

It is also pointed out that we need to truncate the MPS to reduce the bond

dimension of the resulting MPS which could induce huge error and spoil the

result. In this section, we want to describe a more effective method to apply an

MPO on an MPS. The method, we will introduce is based on the variational

optimization of a many-body state in MPS representation, MPO applications

are being performed while simultaneously the bond dimension of the MPS

representation of the resulting many-body state is being limited.

Firstly, let us suppose application of the many-body operator Ô on many-body
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state, in MPO and MPS representation respectively, results in a new many-

body state i.e. |C〉MPS � Ô |A〉MPS. Now, instead of performing the direct

application followed by truncation, we try to seek the global minimum of the

Lagrangian

L[|C〉MPS] � | | |C〉MPS − Ô |A〉MPS | |2 (4.13)

by variation of tensors in |C〉MPS. In other words, we need to take the first

derivative of the Lagrangian with respect of the tensor C[i]∗ in MPS 〈C | and

set it to zero. Which means

∂

∂C[i]∗L[C] � ∂

∂C[i]∗
(

MPS 〈C |C〉MPS − MPS 〈C |Ô |A〉MPS

− MPS 〈A|Ô† |C〉MPS + MPS 〈A|Ô†Ô |A〉MPS
)

� 0 (4.14)

Equation 4.14 can be simplified by ignoring terms not depending on C[i]∗,
namely MPS 〈A|Ô† |C〉MPS and MPS 〈A|Ô†Ô |A〉MPS. Therefore one can write

it in simpler form.

∂

∂C[i]∗L[C] � ∂

∂C[i]∗
(

MPS 〈C |C〉MPS − MPS 〈C |Ô |A〉MPS
)
� 0 (4.15)

Solving Equation 4.15 leads to a minimization of the entire Lagrangian in

Equation 4.13 with respect to C[i], and then brings |C〉MPS close to the

application of the many-body operator (in MPO representation) to the many-

body state (in MPS representation), i.e. Ô |A〉MPS .

Now, with help of the graphical representation, we can understand the deriva-

tive in Equation 4.15 more clearly.

... ...C[h] C[ j]

... ...C[h] C[i] C[ j]
−

... ...C[h] C[ j]

... ...O[h] O[i] O[ j]

... ...A[h] A[i] A[ j]

� 0 (4.16)

where the first sector shows ∂
∂C[i]∗

(
MPS 〈C |C〉MPS

)
and the second sector

shows ∂
∂C[i]∗

(
MPS 〈C |Ô |A〉MPS

)
. Here, due to linear dependency of Equation

4.15 on tensor C[i]∗, it disappears when taking the derivative of Equation

4.15.

To solve Equation 4.16, it is beneficial to use the canonical forms of MPS

representation [82]. One can take advantage of the canonical forms of MPS
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4 The concept of the sweep is

firstly introduced in DMRG vari-

ational algorithm[24]. In this al-

gorithm, one makes effort to min-

imize the Lagrangian

L[ψ] � 〈ψ |Ĥ |ψ〉 − λ 〈ψ |ψ〉

to find the ground state. Sweep-

ing procedure is an essential part

of the variational algorithm to

find the minimum of the above

Lagrangian.

representation, which include (left-) right-normalized matrices to simplify the

first sector of Equation 4.16. Let us assume all matrices located on the left side

of the orbital i are left-normalized and all matrices located on the right side of

the orbital i are right-normalized. In other words, we assume the MPS |C〉MPS

is represented in the mixed-canonical form. Therefore, regarding to the mixed

canonical form of MPS representation, we can simplify Equation 4.16 to

C[i]
−

... ...C[h] C[ j]

... ...O[h] O[i] O[ j]

... ...A[h] A[i] A[ j]

� 0 (4.17)

which can be rearranged to

C[i]
�

... ...C[h] C[ j]

... ...O[h] O[i] O[ j]

... ...A[h] A[i] A[ j]

(4.18)

Here, we used normalization properties of the many-body state in MPS

representation to convert Equation 4.15 to the linear equation Equation 4.18.

Generally, one can find the minimum of the Lagrangian in Equation 4.13 for

the specific tensor C[i] by solving Equation 4.18.

In general, it is very likely that solving Equation 4.18 does not lead to finding

the global minimum of the Lagrangian in Equation 4.13. The reason is that the

solution of Equation 4.15 for one of the orbitals, namely orbital i, depends on

the other tensors. To avoid getting stuck in a local minimum and approach the

global minimum, it is essential to also optimize the other tensors in the MPS

|C〉MPS. In the Hamburg CheMPS2 extension code, this is done in the form

of sweeps, 4 where the process performed on orbital i should be repeated for

the next tensor i + 1 in the MPS |C〉MPS and all following. In this way, until

one reaches convergence to the desired accuracy, MPS |C〉MPS is optimized

variationally. It should be noted that the bond dimension of the MPS |C〉MPS,

in contrast to the direct application, does not change during the optimization

process. That is why the optimization performed in the fixed manifold of a

many-body Hilbert space which makes this procedure more efficient compared

to the direct application.

In addition, this procedure enables us to also perform other operations. Mainly,

we can use the variational method to add two or even more MPS in a single

optimization step. For example, the Lagrangian which corresponding to the
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sum of two many-body states in MPS representation |A〉MPS and |B〉MPS

reads

L[C] � | | |C〉MPS − (|A〉MPS + |B〉MPS)| |2 (4.19)

Here, seeking the global minimum of the Lagrangian in Equation 4.19 leads to

a procedure that is again similar to what was explained earlier for the operator

application. In other words, for adding two MPS, the linear equation to solve

is given by

C[i]
�

... ...C[h] C[ j]

... ...A[h] A[i] A[ j]
+

... ...C[h] C[ j]

... ...B[h] B[i] B[ j]
(4.20)

Here, analogously to the operator application, the normalization property of

the many-body state in MPS representation is used to simplify the left hand

side of Equation 4.20. Also, employing sweeps is required to make sure to

approach global minimum. Another benefit of the variational approach is

that it allows to combine different operations into one. For instance, in the

time-evolution methods that have been covered in Section 4.2, combinations

of the operator applications with sums of MPS appear frequently. To handle

this kind of combination of simultaneous operations , one needs to minimize a

more complicated Lagrangian such as

L[C] � | | |C〉MPS −
(
ĤN |p〉MPS +

∑
q

|q〉MPS

)
| |2 (4.21)

with respect the tensor C[i]∗ in |C〉MPS. Furthermore, variational optimization

introduces a small computational cost compared to direct application. For

instance, the complexity of adding two MPS with bond dimension D in the

variational method is O(LD3) per sweep, and the complexity of applying of

the MPO in quantum chemistry to an MPS is O(L4D2 + L3D3) per sweep [94]

which is one order smaller in system size (L) compared to the direct application

(see Section 3.5).

4.4 Improvement of Variational Optimization

Procedure

As we have already noted, the variational optimization procedure used to min-

imize the Lagrangian mentioned above (for example Lagrangian in Equation
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5 Without loss of generality, we

ignore the symmetry adaption of

the physical and virtual basis of

the MPS tensors in the following.

6 For simplicity, we assume j �

i + 1

4.21) is similar to the DMRG variational algorithm. In DMRG algorithm one

makes effort to minimize a Lagrangian to obtain the ground state energy. Addi-

tionally, it has been shown that if the MPS bond dimension D is inadequately

large, the DMRG algorithm can get stuck in a local minimum [148]. On the

other hand, we know that the bond dimension cannot be increased indefinitely

in practice. Therefore, it is important to utilize some strategies to increase

the performance of the variational optimization procedure. Since the latter is

similar to the DMRG algorithm, we can implement the strategies normally

used to enhance the performance of the DMRG algorithm. Therefore, in the

following we will describe some considerations to improve the variational

optimization algorithm.

4.4.1 Two-Site Object

So far, we described the optimization procedure of a one-site object (optimization

with respect to the single tensor C[i]) , however, in the the Hamburg CheMPS2

extension code the optimization procedure has been implemented with respect

to two-site objects. It means, instead of taking the derivative with respect to a

single tensor C[i]∗, pairs of neighboring tensors e.g. C[i]∗C[i+1]∗ are employed

in the variational optimization procedure. This approach was inspired by the

two-site DMRG algorithm [88, 94] which has better performance in comparison

to the one-site version due to larger variational freedom [130, 149].

In the MPS formalism a two-site object or in other words, two-site tensor can

be constructed as 5

S[i , i + 1]ni↑ni↓ni+1↑ni+1↓
ai−1;ai+1 �

∑
ai

C[i]ni↑ni↓
ai−1;ai C[i + 1]ni+1↑ni+1↓

ai ;ai+1 (4.22)

which is illustrated using graphical notation as 6

S[i , j] � C[i] C[ j] (4.23)

For example, if one wants to find the global minimum of the Lagrangian in

Equation 4.13 in two-site object fashion, the first derivative with respect to the

S[i , j]∗ should be taken. This means,

∂

∂S[i , j]∗L[S] � ∂

∂S[i , j]∗
(

MPS 〈C |C〉MPS − MPS 〈C |Ô |A〉MPS
)
� 0 (4.24)

should be solved to obtain the global minimum of the corresponding La-

grangian. Similar to Equation 4.18, Equation 4.24 can be illustrated in the
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7 Employing numerical noise is

also beneficial to improve one-

site algorithm [149], but since cal-

culations throughout this thesis

are based on two-site algorithms,

we will focus on the application

of numerical noise in two-site al-

gorithms.

graphical representation.

S[i , j]
�

... ...C[h] C[k]

... ...O[h] O[i] O[ j] O[k]

... ...A[h] A[i] A[ j] A[k]

(4.25)

Here, analogous to the process that gave rise to the Equation 4.18 and Equation

4.20, we use the normalization property of an MPS to simplify the right-hand

side of Equation 4.25. Also, similar to the one-site case, solving the resulting

linear equation leads to a minimization of the Lagrangian. It is important

to clarify that by constructing a two-site tensor S[i , j]ni↑ni↓n j↑n j↓
ai ;a j in Equation

4.22, the number of degrees of freedom increases four times in comparison to

the one-site case. This is due to the unrestricted combination of the physical

indices ni↑ni↓ and n j↑n j↓. After solving the linear equation, the two-site tensor

has to be factorized into two one-site object to recover MPS form. This can be

done using the SVD of S[i , j]ni↑ni↓n j↑n j↓
ai−1;a j as

S[i , j]ni↑ni↓n j↑n j↓
ai−1;a j �

∑
κ

U(ai−1ni↑ni↓);κλκ;κV†
κ;(n j↑n j↓a j) (4.26)

�
∑
κ

C[i]ni↑ni↓
ai−1;κλκ;κC[ j]n j↑n j↓

κ;a j (4.27)

4.4.2 Numerical Random Noise

Although the two-site procedure of variational operations improves the overall

MPS performance, it is still possible that this algorithm gets stuck in a local

minimum. To help protect the two-site algorithm from this problem, it is

suggested to use numerical noise [148, 150]. 7 In Section 3.6 we have seen

that if one considers symmetries of the molecular system and combines

these symmetries with the MPS approach, then MPS tensors A[i] in the

MPS representation of the many-body state can be constructed as a block

matrix where each block is associated with a certain quantum number of

the system. On the other hand, from the pervious section we know that the

two-site object S[i , j] is easily constructed from one-site tensors (see Equation

4.22). Hence, two-site object S[i , j] also can be interpreted as block matrix.

During sweep procedure, it is most likely that some of the symmetry blocks

are lost and cannot be restored easily, due to the self-consistent nature of

the sweeping stage in the variational optimization algorithm. Therefore, it is

urgent to add a small amount of noise to S[i , j] at each step just before it is

decomposed in order to restore the missing symmetry block in the last step



4.4 Improvement of Variational Optimization Procedure 43

of the sweep procedure. Nowadays, the numerical noise concept mentioned

above is widely used to enhance the performance of the DMRG algorithms and

consequently its convergence rate [151–155]. Thus, we expect that adding noise

improves the performance. The effect of random noise on the performance of

the optimization procedure as the heart of the time-dependent MPS approach

will be discussed practically in the next chapter.

In the Hamburg CheMPS2 extension code, a small random number is used

as noise to improve the optimization procedure. This noise is bounded in

magnitude by 0.5 γnoise where γnoise is the noise prefactor and defines the

amplitude of the noise added.

4.4.3 Sweep Schedule and Consecutive Instructions

In addition to the two-site tensor and adding numerical random noise, per-

forming sweeps with different parameters can help to increase the efficiency

of the variational optimization procedure. For example, it is predicted that if

one chooses the noise amplitude too large, it is possible that the procedure is

not able to find an optimal MPS, therefore it is important to reduce the noise

to a small value or turn it off during the last few sweeps [156]. Further, it is

suggested that using small bond dimensions in the initial sweeps and then

increasing it in the later ones speeds up convergence [157].

For these reasons, to ensure obtaining converged results, sweep schedule with

different MPS bond dimension and numerical noise is commonly employed in

DMRG based calculations [93, 151, 155, 158–161]. In the CheMPS2 code, this

procedure is accounted for in terms of the consecutive instructions where each

instruction contains a number of sweeps, the MPS bond dimension, and the

noise prefactor.

For instance, the calculations throughout this thesis are done with three

instructions where the first contains one sweep and second and last one

Instruction 1 Instruction 2 Instruction 3
Number of Sweeps 1 2 2
Bond Dimension D D D

Noise Prefactor γ1 γ2 γ3

Table 4.1: The sweep schedule
used throughout this thesis. The
calculations are done with three
instructions where the first con-
tains one sweep and second and
last one include two sweeps. We
fix the bond dimension D to
be the same for all the instruc-
tions whereas the noise prefac-
tor γnoise is variable through the
different instructions
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include two sweeps. It should be noted that we fix the bond dimension D to be

the same for all the instructions whereas the noise prefactor γnoise is variable

and will be reported as noise prefactor = γ1 , γ2 , γ3 wherever it is necessary.

The sweep schedule used throughout this thesis is summarized in Table 4.1.



Numerical Aspect of Electron

Dynamics in Core Ionized Silicon

Tetrafluoride

5

5.1 Introduction

After we have introduced the concept and properties of the MPS representation

of the many-body states in quantum chemical systems and discussed the time-

evolution of MPS, especially the variational optimization approach and the

parameters and properties that can improve its performance, we are now in

the position to apply our understanding of the MPS approach to treat the

correlated electron dynamics in a molecule that has been ionized.

In this chapter, we apply the MPS approach to study electron dynamics in

the silicon tetrafluoride, SiF4 molecule. We investigate the ionization of the

core orbital of silicon tetrafluoride, namely the 2p orbital of the silicon atom.

To assess the validity of the resulting dynamics, it is necessary to do the

convergence test in terms of the MPS bond dimension. In other words, we

should vary the bond dimension, to ensure that the dynamics is stable in terms

of the Hilbert space covered by the MPS representation. Firstly, we perform the

convergence test for two kinds of the ordering of the orbitals, namely orbital

ordering based on the irreducible representations and based on the so-called

Fiedler vector of the exchange matrix. Afterwards, we discuss how the ordering

of the orbitals based on the Fiedler vector leads to an enhanced convergence

rate of the MPS approach in terms of the bond dimension. Unlike the ordering

based on the irreducible representations, the MPS bond dimensions within

a computationally accessible range are sufficient to resolve the dynamics.

Finally, we investigate the role of numerical noise and orbital ordering in the

resulting dynamics as another critical parameter in the performance of the

MPS approach.
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Figure 5.1: Silicon tetrafluoride
molecule at its equilibrium ge-
ometry. Silicon tetrafluoride has
tetrahedral molecular geometry,
where silicon is the central atom
and four fluorine atoms are lo-
cated at the corners. The geome-
try is optimized on the Hartree-
Fock level, using the Stuttgart/-
Cologne pseudopotential and as-
sociated Gaussian basis set for
the fluorine atoms and 6-31G ba-
sis set for silicon atom.

5.2 Electron Dynamics in Core Ionized Silicon

Tetrafluoride

Silicon tetrafluoride has tetrahedral molecular geometry, where silicon is the

central atom and four fluorine atoms are located at the corners of a tetrahedron

(see Figure 5.1). With a tetrahedral structure, silicon tetrafluoride has Td point

group symmetry, which is a non-abelian symmetry group. As we have already

mentioned, the Hamburg CheMPS2 extension is only able to support abelian

points groups, therefore, the molecule is described in terms of one of its

abelian subgroups C2ν . Furthermore, we employ an effective core potential,

as it is widely used to decrease the number of the active electrons treated

in the ab initio calculations [23, 57, 162–165], to describe core electrons of

fluorine atoms. In this study, we use the Stuttgart/Cologne pseudopotential

[166], where 2 electrons from each of the fluorine atoms are removed. We

also use the associated Gaussian basis sets for the fluorine atoms, that were

designed particularly for the desired effective core potential, and the so-called

6-31G basis set [167] for silicone atom. Consequently, we describe the silicone

tetrafluoride molecule using 42 electrons in a set of 45 orbitals.

The starting point of our study is the neutral silicon tetrafluoride molecule

in its Hartree-Fock (uncorrelated) ground state |φ0〉. To perform the SCF

calculation on the Hartree-fock level and obtain molecular orbitals as well as

an optimized molecular geometry, we use the quantum chemistry program

package Molpro[168]. In this case, there are only two parameters to optimize,

the Si-F distance (SiF) and the F-Si-F bond angle (F̂SiF). Performing geometry

optimization on the Hartree-Fock level with the above mentioned effective core

potential and basis sets results in SiF � 1.62Å and F̂SiF � 109.47◦. Figure 5.1

represents the SiF4 molecule at equilibrium geometry.

To prepare the initial state, we suddenly remove one electron from the 2p

orbital of the silicon atom in SiF4 on Hartree-Fock level as follows:

|ψ(t0)〉 � ĉSi2p |φ0〉 (5.1)

Here, ĉSi2p indicates an annihilation operator that annihilates one electron from

the 2p orbital of the silicon atom. |φ0〉 denotes the Hartree-Fock ground state

of SiF4. It is important to note that, in the numerical calculation of this chapter,

we chose the hole to be created in 2p orbital with irreducible representation

A1, which can be assigned to the pz orbital, whereas creating a hole in the

degenerate orbitals with irreducible representation B1 and B2 that can be
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HOMO-7A1 HOMO-7B1 HOMO-7B2

Figure 5.2: Hartree-Fock Molec-
ular orbitals of SiF4 which corre-
spond to the 2p orbitals of the
silicon atom with different angu-
lar momenta. Molecular orbitals
with different angular momen-
tum can be assigned to the differ-
ent irreducible representations
of the C2ν point group. For ex-
ample, HOMO-7A1 , HOMO-7B1 ,
and HOMO-7B2 can be assigned
to the pz , px , and py orbitals re-
spectively

assigned to px and py orbitals respectively, are physically similar. (see Section

A.1)

Furthermore, in the one-body (uncorrelated) fashion, this initial state is still

an eigenstate of the Hamiltonian. Therefore, in this picture, the system would

not experience any dynamics. However, in the correlated universe, the state

|ψ(t0)〉 is not an eigenstate of the Hamiltonian including many-body effects,

and hence the system will exhibit dynamics driven by the existence of the

electronic correlation [15]. We have to note that, using the complete many-body

state to describe this dynamics is beyond today’s computational resources.

For that reason, we are going to employ the MPS approach to resolve the

above-mentioned dynamics. As we discussed in Section 4.2, using a non-

orthogonal Krylov basis improves the performance of the MPS time-evolution

approach, but it is limited to special cases and generally suffers from numerical

instability issues. For that reason, we use the orthogonal Krylov space method

to propagate the MPS in time. In the following calculations, we use a Krylov

space dimension of NK � 6 and time step size of δt � 1as. Based on the

analysis [47] on the performance of the orthogonal Krylov space approach in

terms of the Krylov space dimension and time step size, we expect that these

parameters give rise to stable time-evolution parameters. Consequently, we

only need to vary the bond dimension, to ensure that the dynamics is stable in

terms of the part of the Hilbert space covered by the MPS representation.

5.3 Towards the Stable Dynamics

To do the study on the stability of the dynamics in terms of the MPS bond

dimension, let us introduce the time-dependent one electron reduced density
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matrix (OERDM) as follows:

γi j(t) �
∑
σ

〈ψ(t)| ĉ†iσ ĉ jσ |ψ(t)〉 (5.2)

where ĉ†iσ and ĉ†iσ are annihilation and creation operators respectively. Obvi-

ously, time-dependent occupation numbers of the molecular orbitals can be

extracted from the diagonal elements of the time-dependent OERDM.

Figure 5.3 indicates the time-evolution of the occupation numbers of the 13

molecular orbitals which are most involved in the dynamics following sudden

ionization of the 2p orbitals of the silicon atom in the SiF4 molecule for different

bond dimensions in a range between 100 and 160. For all bond dimensions

after an extended period of shake-up processes, the initial hole starts to be

populated by an electron from an inner valence molecular orbital, and one

electron from the outer valence molecular orbitals is excited to virtual orbitals

(LUMOs). However, it is obvious that the time-evolution of the occupation

numbers of the molecular orbitals do not converge to stable dynamics in this

range of bond dimensions and it seems that increasing the bond dimension

is required to obtain convergent results. It is also worth mentioning that the

complexity of the MPS representation scales like O(D3) with the MPS bond

dimension [47]. This means, for example, that a two times increase in the

bond dimension leads to the computation time eight times larger. Therefore,

increasing the bond dimension to achieve stable results is not feasible due to

the restriction of computational and time resources.

Furthermore, we mentioned in Section 4.4 that the numerical noise only helps

to improve the variational optimization scheme by restoring the missing

symmetry blocks in the sweep procedure. It implies that, if the MPS bond

dimension is large enough to resolve the valid dynamics in the system, then

adding numerical noise at reasonable values does not alter that quantitatively.

Figure 5.4 shows the time-evolution of the occupation number of the initial

hole for various noise prefactors. This figure indicates that a variation of the

noise prefactor alters the filling rate of the initial hole significantly. More

specifically, decreasing the noise prefactor leads to an increasing filling rate of

the initial hole. Also, it means that the dynamics is not stable with respect to

numerical noise. It is another evidence that demonstrates the MPS with a bond

dimension within the range of 100 and 160 is not capable of resolving the exact

driven dynamics. In other words, within this range of bond dimension, the

MPS approach is not able to capture the necessary amount of the electronic

correlations to describe the dynamics reliably.
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Figure 5.3: Time-evolution of the occupation number of the molecular orbitals which are most involved in the dynamics for
various MPS bond dimension. Here irrep orbital ordering is employed and the nosie prefactor = 10−3 , 10−6 , 0 is used in the sweep
instructions.
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Figure 5.4: Time-evolution of the
occupation number of the ini-
tial hole for various noise pref-
actors in the sweep instruction.
Here, an MPS bond dimension
of D � 150 is employed for all
calculations.
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5.3.1 Influence of Orbital Ordering

Ordering of the orbitals in the MPS representation is crucial for its performance.

When one tries to use an MPS approach for three-dimensional molecules, it is

necessary to map the orbitals to a one-dimensional lattice or, in other words,

choose an ordering to place the orbitals in the one-dimensional chain. Such

an orbital ordering should be done such that entanglement between distant

orbitals on the lattice is minimized [169, 170]. If one ignores this condition

and places the orbitals randomly in the one-dimensional lattice, then the

non-local properties of the system are artificially exaggerated or, in the context

of electronic correlations, an artificial correlation length is introduced in the

system which can be a bad approximation. Hence, in this case, to capture

the necessary amount of electronic correlations to describe the dynamics, a

relatively large MPS bond dimension is required.

Until now, all the calculations we have presented are based on the ordering of

the orbitals according to the orbital symmetry and the orbital energy. In other

words, in the MPS representation of the many-body state, firstly, orbitals are

ordered concerning their irreducible representation. Within these symmetry

sectors, they are ordered according to the orbital energy. Such orbital ordering

can give rise to a reduction of the long-range coherence in the system since

due to the different irreducible representations, the OERDM is reduced to

block-diagonal form i.e. matrix elements of the OERDM are zero for orbitals

with different irreducible representation.

As we saw earlier, such orbital ordering is not successful at improving the

performance of the MPS representation in the case of the ionization in the
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2p orbital of the silicon atom in SiF4 molecule with reasonable MPS bond

dimension. This orbital is a core orbital and ionization from the core orbital

can trigger strongly correlated electron dynamics. This means a core ionization

corresponds to a strong excitation which leads to fast emerging correlations.

Therefore, to describe the correlation-driven dynamics in the system in this

case, large MPS bond dimension are still necessary.

We have previously mentioned that ordering the orbitals randomly in the MPS

representation, leads to exaggerating the non-local properties of the system

and a decline in the performance of the MPS approach. Moreover, we have seen

that since ordering orbitals based on the irreducible representations reduces

the long-range coherence of the system, it is not beneficial to describe the

correlation-driven dynamics in the core ionized SiF4 molecule. Therefore, to

reduce the artificial effects caused by placing the orbitals in the one-dimensional

lattice, it is important to place the strongly correlated orbitals close to each other

in the one-dimensional chain in the MPS representation to achieve optimal

performance.

One way to order orbitals to improve the performance of MPS representation

and consequently its convergence rate is based on the minimization of the

bandwidth of the exchange matrix [171, 172]. In practice, a fast approximate

bandwidth minimization is obtained by the so-called Fiedler vector [170]. If

one assumes the position of the n orbitals on the orbital lattice as a continuos

one-dimension variable ®x � (x1 , x2 , . . . , xn), then a cost function to measure

the distance between orbitals on the lattice can be defined as [156]:

F(®x) � 1
2
∑
i, j

Ki j (xi − x j) 2 (5.3)

where Ki j denotes the elements of the exchange matrix

Ki j �

∫
χ∗

i (r1)χ j(r1)
e2

4πε0 |r1 − r2 |
χ∗

j(r2)χi(r2) dr1dr2 . (5.4)

Minimization of the cost function F(x)with respect to the vector of the positions

x results in an optimal position of the orbitals or Fiedler vector. We have to

note that, in the minimization procedure of the cost function, the following

constraints should be imposed in order to fix the translation invariance and
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normalization of the solution. ∑
i

xi � 0 (5.5)∑
i

x2
i � 1 (5.6)

Generally, the first constraint is imposed to prevent rigid translation of all

positions and the second one (normalization of the solution) is applied to

prevent a trivial solution where ®x � (0, 0, . . . , 0).

To obtain the derived ordering, the cost function in Equation 5.3 can be

rewritten as:

F(®x) � x†Lx (5.7)

with the symmetric and positive Laplacian

L � D − K (5.8)

Where D is a diagonal matrix with entires[170]:

Dii �
∑

j
Ki j . (5.9)

Now, minimization of the cost function with respect to the above mentioned

constraints is equivalent to finding the second lowest eigenvector of the Lapla-

cian L [173, 174]. Bear in mind that the constant vector ®1 � (1, 1, . . . , 1) is the

eigenvector of the L with the smallest eigenvalue, i.e. 0 which is discarded due

to the translational invariance constraint (Equation 5.5). Therefore, the second

lowest eigenvector of L is the Fiedler vector, the solution to the constrained

minimization of F(®x). Sorting the entries of the Fiedler vector then gives the

Fiedler ordering.

In the following, we want to study the influence of the ordering of the orbitals

based on the Fiedler vector (let us call it Fiedler ordering) and compare the

dynamics of electrons with those obtained by ordering of the orbitals based

on their irreducible representations (irreps ordering). Figure 5.5 shows the

time-evolution of the occupation numbers of the molecular orbitals with irrep

ordering in comparison to Fiedler ordering. In contrast to the irrep ordering

based results, in the Fiedler ordering case, the initial core hole itself does

not participate in the dynamics and the respective occupation number stays

unchanged at all times. Moreover, one can see that only three molecular
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orbitals significantly contribute to the dynamics (HOMO-4A1, LUMOA1, and

LUMO+2A1) and it seems that this dynamic is an oscillatory one with a defined

period.

Table 5.1 shows the ordering of the orbitals with respect to their irreducible

representation and Fiedler vector of the exchange matrix. In the irrep ordering,

the orbitals that are dominantly contributing to the dynamics (which are

highlighted in bold) are distributed throughout the one-dimensional lattice,

whereas in the Fiedler ordering those are placed close to each other at the

end of the lattice. For this reason, we believe that HOMO-4A1, LUMOA1, and

LUMO+2A1 are strongly correlated, and by putting those close to each other

the artificial correlation length which is introduced in the system is reduced.

Therefore, instead of the 13 orbitals (that include the initial hole, and the

HOMO-7A1), which are previously contributed to the dynamics, only three

participate in the Fiedler dynamics. Moreover, in the irrep ordering the cost

function in Equation 5.3 is equal to F(®x) � 12827 whereas it is reduced to

F(®x) � 5774 by Fiedler ordering. As we expected, employing Fiedler ordering

minimizes the cost function significantly.

In addition, Fiedler ordering unlike irrep ordering leads to conservation of

the norm of the wave function and energy of the system. Figure 5.6 shows the

norm of the wave function (left) and the energy of the system as a function of

time (right)for irrep and Fiedler ordering. It is obvious that the norm of the

wave function and also the energy of the system in the irrep ordering change

with time, while in the Fiedler ordering, these parameters are conserved with

the desired accuracy.

It is worthwhile to mention that the Fiedler ordering leads to convergent results

in terms of the MPS bond dimension. The time-evolution of the occupation

numbers of the initial hole plus the three molecular orbitals which mostly

contribute to the dynamics for various MPS bond dimensions are depicted in

Figure 5.7. One can see that no significant differences occur in the occupation

number dynamics of individual molecular orbitals by increasing the MPS bond

dimension within the range of D � 100 and D � 160. In other words, for all

these bond dimensions, the resulting dynamics are similar and we can assume

that the results resolve the dynamics accurately. It should be noted that, by

ordering the orbitals based on the Fiedler vector, the above mentioned artificial

long-range property of the system is reduced, and unlike the irrep ordering,

an MPS bond dimension D � O(100) is sufficient to resolve the dynamics

triggered by ionization of the core orbital.
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Figure 5.5: Time-evolution of the occupation number of the molecular orbitals which are most involved in the dynamics for normal
ordering and Fiedler ordering. Here, an MPS bond dimension of D � 120 and the noise prefactor = 10−3 , 10−6 , 0 in the sweep
instruction are used for all calculations.
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site irrep ordering Fiedler ordering
1 HOMO-9A1 HOMO-1B1

2 HOMO-8A1 HOMO-7B2

3 HOMO-7A1 HOMO-2A2

4 HOMO-6A1 HOMO-3B1

5 HOMO-5A1 LUMO+4A1

6 HOMO-4A1 LUMO+6A1

7 HOMO-3A1 HOMO-5B2

8 HOMO-2A1 HOMOA2

9 HOMO-1A1 HOMO-5B1

10 LUMOA1 LUMO+6B1

11 LUMO+1A1 LUMO+6B2

12 LUMO+2A1 HOMO-7B1

13 LUMO+3A1 HOMO-2A1

14 LUMO+4A1 HOMO-1B2

15 LUMO+6A1 LUMO+5A2

16 LUMO+7A1 LUMO+9A1

17 LUMO+8A1 LUMO+7A1

18 LUMO+9A1 LUMO+4A2

19 LUMO+10A1 HOMO-3B2

20 HOMO-7B1 LUMO+8A1

21 HOMO-5B1 LUMO+10A1

22 HOMO-3B1 LUMO+1B1

23 HOMO-1B1 LUMO+1B2

24 HOMOB1 HOMO-5A1

25 LUMO+1B1 LUMO+5B2

26 LUMO+3B1 LUMO+5B1

27 LUMO+5B1 HOMO-1A1

28 LUMO+6B1 HOMO-6A1

29 LUMO+8B1 LUMO+3B2

30 LUMO+9B1 LUMO+3B1

31 HOMO-7B1 HOMO-3A1

32 HOMO-5B1 LUMO+1A1

33 HOMO-3B2 LUMO+8B1

34 HOMO-1B2 LUMO+8B2

35 HOMOB2 HOMO-4A1

36 LUMO+1B2 LUMOA1

37 LUMO+3B2 LUMO+2A1

38 LUMO+5B2 LUMO+3A1

39 LUMO+6B2 LUMO+9B1

40 LUMO+8B2 LUMO+9B2

41 LUMO+9B2 HOMOB2

42 HOMO-2A2 HOMOB1

43 HOMOA2 HOMO-7A1

44 LUMO+4A2 HOMO-8A1

45 LUMO+5A2 HOMO-9A1

Table 5.1: Ordering of the or-
bitals based on their irreducible
representations and Fiedler vec-
tor. The orbitals which are dom-
inantly participating in the dy-
namics in each ordering are high-
lighted in bold. In the irrep order-
ing, orbitals firstly are ordered
with respect to their irreducible
representation and within the
symmetry sectors, they are or-
dered according to their energy.
Moreover, in the irrep ordering,
the orbitals irreps follow Molpro
convention.
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Figure 5.6: (left) Norm of the wave function as a function of time. (right) Energy of the system as a function of time for irrep
ordering and Fiedler ordering. Here, a bond dimension of D � 120 and the noise prefactor = 10−3 , 10−6 , 0 in the sweep instruction
are used for all calculations.
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Figure 5.7: Time-evolution of the occupation number of the molecular orbitals which are most involved in the dynamics for various
MPS bond dimension. Here Fiedler orbital ordering is employed and the noise prefactor = 10−3 , 10−6 , 0 is used in the sweep
instruction.

5.3.2 Influence of Numerical Random Noise

As we mentioned before in Section 4.4, we expect that increasing the noise

prefactor leads to an improved convergence rate of the dynamics in terms of

the MPS bond dimension. On the other hand, we have previously seen that

varying the noise prefactor in the sweep instructions alters the dynamics for

irreps ordering. It means, in this case, the dynamics is not stable in terms of the
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Figure 5.8: Time-evolution of the occupation number of the molecular orbitals which are most involved in the dynamics for various
noise prefactors in the sweep instruction. Here Fiedler orbital ordering and the MPS bond dimension of D � 160 are employed.

numerical noise. In contrast to the irrep ordering case, in the Fiedler ordering

case, varying the noise prefactor does not affect the dynamics within the period

of 3 f s after the sudden ionization. Figure 5.8 illustrates the time-evolution of

the initial hole and three molecular orbitals which are most involved in the

dynamics for the two different noise prefactors. It is apparent that for the two

different noise prefactors there is no significant difference in the dynamics. It

is another evidence for numerical stability of the resolved dynamics based on

the Fiedler ordering.

Figure 5.9 depicts the time-evolution of the occupation number of the most

important molecular orbitals considering the dynamics for various MPS

bond dimension with smaller noise prefactor (noise prefactor = 10−6 , 10−8 , 0).

It seems that doing time-evolution with a smaller noise prefactor leads to

diminishing convergence rates of the MPS approach (notable after 2 f s) with

respect to the MPS bond dimension. To perform a quantitative analysis of this

behavior, we will use the square difference between converged occupation

number dynamics n(t)Dcon , and one of the other occupation number dynamics

in terms of the MPS bond dimension n(t)D , as follows:
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Figure 5.9: Time-evolution of the occupation number of the molecular orbitals which are most involved in the dynamics for various
MPS bond dimension. Here Fiedler orbital ordering is employed and the noise prefactor = 10−6 , 10−8 , 0 is used in the sweep
instruction.

d(t)D � ( n(t)Dcon − n(t)D ) 2. (5.10)

We see from Figure 5.7 to Figure 5.9 that the results are convergent for

Dcon � 140 for both noise prefactors and it means that for larger MPS dimension

one does not see a significant dependency of the dynamics on the MPS bond

dimension.

The Top panels of Figure 5.10 demonstrate the obtained square difference

between the converged occupation numbers and occupation numbers with MPS

bond dimension D � 100 based on the Equation 5.10 for different molecular

orbitals and various noise prefactors. It is apparent that the square difference

for smaller noise prefactor (10−6 , 10−8 , 0) is remarkably larger compared to

larger noise prefactor (10−3 , 10−6 , 0). As we already expected, increasing the

noise prefactor leads to an improved convergence rate of the MPS approach

with respect to the bond dimension.

In addition, the bottom panels of Figure 5.10 indicate the same behavior for

D � 120, but it should be noted that the square difference for larger MPS bond
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Figure 5.10: Time-evolution of the square difference between converged occupation number and occupation number with MPS
bond dimension D � 100 (d100) (top) and D � 120 (d120) (bottom) for different molecular orbitals and various noise prefactors in
the sweep instruction.

1 As we mentioned earlier, the di-

agonal elements of the OERDM

are the occupation numbers of

molecular orbitals.

dimension (D � 120) is significantly reduced for both of the noise prefactor

and all the molecular orbitals. Additionally, we observe the square differences

grow with time. Roughly speaking, the square difference parameter can be

interpreted as the error of the occupation number dynamics. On the other

hand, it is shown that the error of the OERDM 1 in the time-dependent MPS

approach grows linearly with time and can be controlled by adjusting the bond

dimension of the MPS representation [45]. Therefore, regarding the Figure

5.10 the error of the occupation number dynamics can be controlled by tuning

the numerical noise as well as adjusting the MPS bond dimension.

5.4 Conclusions

In this chapter, we employed the MPS representation of the many-body state

to investigate the charge migration in silicon tetrafluoride. In this study, we

considered the 2p orbital of the silicon atom in silicon tetrafluoride, which is a

core orbital, suddenly ionized. We found out that orbital ordering is crucial

in the performance of the MPS approach to study the electron dynamics in

the core ionized silicon tetrafluoride. We realized that placing the strongly
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correlated orbitals close to each other in the one-dimensional lattice improves

the performance of the MPS approach. We understood that, unlike the ordering

of the orbitals based on the irreducible representations, MPS bond dimension

D � O(100) is sufficient to resolve the dynamics in this case. In addition,

we saw that the numerical noise, which was introduced in the variational

optimization of the MPS, is another concept that can increase the efficiency

of the MPS approach. By performing quantitative analysis, we showed that

increasing the noise prefactor in the sweep instruction leads to an enhanced

convergence rate of the dynamics in terms of the MPS bond dimension.



Correlated Charge Migration

Following Core Ionization in

Silicon Tetrafluoride

6

6.1 Introduction

In the previous chapter, we have applied the MPS approach to study the

correlated electron dynamics in core ionized silicon tetrafluoride. To obtain

the convergent dynamics we have considered two kinds of the ordering of the

orbitals and found out that the orbital ordering based on the Fiedler vector

leads to convergent dynamics in terms of the MPS bond dimension within a

range which is computationally accessible. Additionally, we have investigated

the role of the numerical noise on the electron dynamics and showed that

increasing the noise prefactor in sweep instructions enhances the convergence

rate of the MPS approaches in terms of the bond dimension.

In the following chapter, we want to investigate the electron dynamics triggered

by the core ionization in silicon tetrafluoride. We show that core ionization of

silicon tetrafluoride triggers intense and fast charge migration in the valence

orbitals while the initial hole remains unchanged during the dynamics. This

charge migration occurs on a shorter time scale than the decay of the core

hole by the Auger process. (The Auger decay time of the 2p hole in silicon

tetrafluoride is around 8 f s [175].) To understand the origin of the time period

of the charge migration, we analyze the dynamics and detect the correlated

cationic eigenstates which are responsible for the charge migration. Finally, we

investigate the role of the nuclear geometry in the charge migration process

and find out that small nuclear displacements along the normal modes of the

molecule can change the time period of the charge migration which can lead

to damping of dynamics similar to the situation that was reported elsewhere

[176].



62 Chapter 6 Correlated Charge Migration Following Core Ionization in Silicon Tetrafluoride

6.2 Charge Migration in Core Ionized Silicon

Tetrafluoride

As we saw in Section 5.3, after obtaining the convergent dynamics which is

induced by the sudden ionization of the 2p orbital of the silicon atom in SiF4,

we understood that only three orbitals (HOMO-4A1, LUMOA1, and LUMO+2A1

which are displayed in Figure 6.1 ) are dominantly involved in the dynamics

while the initial hole does not change during dynamics. To have a closer look at

the spatial distribution of these molecular orbitals we are using the molecular

orbitals composition analysis.

Generally, a molecular orbital can be defined as the linear combination of

atomic orbitals.

φi(r) �
∑
µ

Cµiχµ(r) (6.1)

where Cµi is the molecular orbital coefficient and χµ is the atomic orbital.

Inserting Equation 6.1 into the orthonormality condition of the molecular

orbitals yields ∑
µ

C2
µi + 2

∑
µ

∑
ν>µ

CµiCνiSµν � 1 (6.2)

where Sµν is the overlap matrix among atomic orbitals given by:

Sµν �
∫
χµ(r)χ∗

ν(r) dr (6.3)

Figure 6.1: Molecular geome-
try of silicon tetrafluoride deter-
mined by geometry optimization
on the Hartree-Fock level and
three relevant valence molecular
Hartree-Fock orbitals participat-
ing in the dynamics following
ionization of the 2p orbital of the
silicon atom in silicon tetraflu-
oride molecule. Shown are the
HOMO-4A1 orbitals occupied in
the electronic ground state of this
molecule and the unoccupied or-
bitals LUMOA1 and LUMO+2A1.

SiF4 HOMO-4A1

LUMOA1 LUMO+2A1
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1 In the context of quantum

chemistry, when a molecular cal-

culation is performed, it is com-

mon practice to use a basis com-

posed of atomic orbitals. There-

fore, in this context, basis func-

tions and atomic orbitals are

sometimes used interchangeably,

however, the basis functions are

generally not true atomic or-

bitals.

The first term in Equation 6.2 is a local term that characterizes the net population

of the atomic orbital in molecular orbital i. The second term is a cross term that

characterizes the shared electrons between atomic orbital pairs in molecular

orbital i. Once the basis functions 1 are set and the coefficients of the atomic

orbitals obtained, the molecular orbital compositions can be calculated directly

according to their different definitions. In the Mulliken analysis [177], the

cross terms are equally partitioned to the corresponding atomic orbitals.

Consequently, the composition of atomic orbital µ to molecular orbital i is

defined as [178]:

Θµi � C2
µi +

∑
ν,µ

CµiCνiSµν . (6.4)

In practical applications, the composition analysis based on the Mulliken

method has the disadvantage that the result of the composition analysis can

be meaningless due to negative values. To avoid this issue we use the method

proposed by Ros and Schuit [179]. In this method, the composition of the

atomic orbital µ in molecular orbital i is defined as:

Θµi �
C2
µi∑

ν C2
νi

. (6.5)

By inserting identity which has been already introduced in Equation 6.2 into

the above formula,Θ can be rewritten as:

Θµi � C2
µi +

C2
µi∑

ν C2
νi

∑
ν,µ

CµiCνiSµν (6.6)

It is clear that in this decomposition of molecular orbital i into atomic orbital

µ, the total terms of all atom pairs are partitioned instead of the cross terms

between atomic orbitals µ and other ones. The advantage of the method which

was introduced by Rose and Schuit is that negative values of the Θ never

occur.

In addition, the molecular composition analysis can be done in terms of the

different atoms. Considering the total contribution of orbitals belonging to a

specific atom, one can define:

Θi ,A �
∑
µ∈A

Θµi (6.7)

where Θi ,A indicates the weight of the molecular orbital i which can be

attributed to atom A.
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Table 6.1: Composition analysis
based on the Ros-Schuit partition
of the molecular orbitals which
contribute the most to the dy-
namics after sudden ionization
of the 2p electron of the silicon
atom in SiF4. This analysis has
been done using the composition
analysis implementation of the
Multiwfn program [180].

Orbital Silicon Tetrafluoride
HOMO-4A1 39.98 % 60.02 %
LUMOA1 73.22 % 26.78%

LUMO+2A1 94.94 % 5.06 %

In Table 6.1 the result of the composition analysis in terms of the different

parts of the SiF4 molecule, i.e. silicon atom and tetrafluoride part, for the

molecular orbitals contribute the most to the dynamics after sudden ionization

of the 2p electron of the silicon atom (HOMO-7A1) is reported. LUMOA1, and

LUMO+2A1 are mostly located at the silicon atom, while HOMO-4A1 has a

substantial contribution of the tetrafluoride part. Thereby, by removing one

electron from the silicon core, excitations in the valence space are generated to

screen the core hole. These excitations thus correspond to charge migration

from the silicon atom to the tetrafluoride part.

To illustrate this charge migration mechanism in space and time, we calculate

the time-dependent hole density which is given by:

ρh(r, t) � ρHF(r) − ρ(r, t) (6.8)

where ρHF(r) is the electron density in the Hartree-Fock ground state and

ρ(r, t) is the time-dependent electron density which is given by:

ρ(r, t) �
∑

i j
γi j(t)φi(r)φ∗

j(r) . (6.9)

Here γi j(t) is the time-dependent OERDM and φi(r) are molecular orbitals

obtained from the Hartree-Fock calculation.

In Figure 6.2 we see snapshots of the time-dependent hole density at four

different points in time. Obviously, at the time t � 0 the initial hole is completely

localized on the silicon atom. Following the sudden ionization at time t � 0,

valence electrons start flowing from the tetrafluoride part to the silicon atom.

Accordingly, at time t � 0.11 f s the hole migrates from the valence orbitals of

the silicon atom to the tetrafluoride part while the initial hole at the core of

the silicon atom stays unchanged. After a short time, t � 0.21 f s, the electrons

partially flow back to the fluoride atoms and therefore the hole migrates back

to the silicon atom incompletely, and the whole process begins again while the

initial hole remains unaffected. Note that the holes density is positive where
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a)

b)

0fs

c)

0.11fs

d)

0.21fs

e)

0.32fs

Figure 6.2: Hole density of the
silicon tetrafluoride molecule at
four different points in time. We
use an MPS bond dimension D �

160 to represent many-body state.
a) molecular structure of the sili-
con tetrafluoride molecule, b) in
the initial state, the hole is com-
pletely localized on the silicon
atom. c) the hole from valence
orbitals of the silicon atom mi-
grates to the tetrafluoride while
the initial hole stays unchanged.
d) after 0.21 f s, the hole migrates
back to the valence orbitals of
the silicone atom partially. e) the
valence hole has moved to the
tetrafluoride part again.

electrons are deficient (red) and negative (blue) where they are surplus.

6.3 Population Analysis

We have seen that sudden ionization of the 2p orbitals of the silicon atom in

a silicon tetrafluoride molecule leads to electron dynamics that gives rise to

charge migration in the valence orbitals. To quantify such charge migration we

use Löwdin population analysis [63]. Doing so, we will be able to quantify how

the hole spreads over the individual parts of the molecule and then extract

the oscillation period of the hole migration that we have observed above.

Moreover, we can attribute each electron in the molecule to one respective

atom. In particular, we are capable of examining how many electrons are located

at the silicon atom and how many electrons are located at the tetrafluoride

part. To do this, we transform the electron density into the orthogonalized

atomic orbitals that are localized at the nuclei.

Let us start with the definition of the the number of the electrons. The total

number of the electron N can be calculated by integrating the electron density
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in Equation 6.9 as follows:

N(t) �
∫
ρ(r, t) dr (6.10)

�
∑

i j
γi j(t)

∫
φi(r)φ∗

j(r) dr (6.11)

In addition, we already saw that the molecular orbital can be expanded in

terms of the atomic orbitals (see Equation 6.1). On the other hand, the atomic

orbitals that are used in molecular calculations are not orthonormal. Generally,

these orbitals are normalized, but they are not orthogonal to one another. In the

population analysis, it is advantageous to use the orthogonal atomic orbitals.

A common way to orthogonalize the atomic orbitals is the so-called symmetric

orthogonalization, which uses the inverse square root of the overlap matrix

(Equation 6.3) as the transformation matrix to construct orthogonalized atomic

orbitals[63]

χ′α �
∑
β

(
S− 1

2

)
αβ
χβ . (6.12)

Now, the molecular orbitals can be expanded in terms of the orthogonal atomic

orbitals:

φi(r) �
∑
µα

Cµi

(
S

1
2

)
αµ
χ′α(r) . (6.13)

Inserting Equation 6.13 into Equation 6.11 yields:

N(t) �
∑
µν

(∑
i j

Cµiγi jC∗
jν

) (∑
αβ

(
S

1
2

)
αµ

(
S

1
2

)
βν

)
(6.14)

×
∫
χ′α(r)χ′∗β (r) dr

Using the orthonormality of the χ′α∫
χ′α(r)χ′∗β (r) dr � δαβ (6.15)

and defining

γ̄µν �
∑

i j
Ciµγi jC∗

jν , (6.16)



6.3 Population Analysis 67

Equation 6.14 can be rewritten as:

N(t) �
∑
µνα

(
S

1
2

)
αµ
γ̄µν

(
S

1
2

)
αν

[(6.17)

�
∑
α

(
S

1
2 γ̄S

1
2

)
αα

(6.18)

� Tr(S 1
2 γ̄S

1
2 ) . (6.19)

Here, it is possible to interpret
(
S

1
2 γ̄S

1
2

)
αα

as the occupation number of the

orthogonalized atomic orbital χ′α(r) which is maximally doubly occupied.

Assuming the atomic orbitals are centered on atomic nuclei, the corresponding

number of electrons in orbitals located at the nuclei can be obtained. This

procedure is called Löwdin population analysis. Note that if one employs

the non-orthogonal atomic orbitals in the above-mentioned procedure, the

occupation number of the non-orthogonal atomic orbital χµ can be understood

as
(
γ̄S

)
µµ and similarly, the total number of electrons located on the different

nucleus can be obtained. This method is called Mulliken population analysis.

We have to mention that the Mulliken population analysis suffers from two

acute problems. First: the occupation numbers of the atomic orbitals can be

larger than two. Second, the occupation numbers can have a negative values

which is unphysical and cannot be interpreted in a classical sense. Therefore,

it is beneficial to use orthogonalized atomic orbitals (Löwdin population

analysis).

We see the results of this hole population analysis in Figure 6.3, which shows

the partial hole charge at the silicon atom and at the tetrafluoride part of the

molecule for the first 3 f s after a sudden ionization. Initially, at time t � 0,

the hole is completely located on the silicon atom. The partial hole charge

dynamics indicate the behavior we previously saw in Figure 6.2, but now, the

oscillation period can be observed. In addition, Figure 6.3 illustrates the hole

population for various MPS bond dimensions. Similar to the time-evolution

of the occupation number of the molecular orbitals (Figure 5.7) within the

range of D � 100 and D � 160, no significant dependency of the dynamics is

observed. It means that for all the bond dimensions, the resulting dynamics

are similar and we can assume that the results resolve the dynamics accurately

(within the chosen atomic basis set).
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Figure 6.3: Time-dependent par-
tial hole charge at the silicon
atom and at the tetrafluoride
part of the silicon tetrafluoride
molecule. Here, the noise prefa-
cort = 10−3 , 10−6 , 0 is employed
in the sweep instruction and the
many-body state is represented
with different bond dimensions
D to indicate convergence.
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6.4 Autocorrelation Function

To analyze the charge migration following the core ionization, we would like to

compute the ionization spectrum of core ionized SiF4. It is well-known that in

the time-dependent calculations the ionization spectrum of a molecule can be

easily extracted from the Fourier transformation of the autocorrelation function

[181–183].

Generally, the autocorrelation function is defined as the overlap between the

wave function at time t � 0 and time t [184].

C(t) � 〈ψ(0)|ψ(t)〉 (6.20)

On the other hand, the time-evolved wave function can be expanded in terms

of the cationic eigenstates |I〉

|ψ(t)〉 �
∑

I
〈I |ψ(t)〉 |I〉 �

∑
I

〈I | exp
(
−iHt
~

)
|ψ(0)〉 |I〉 (6.21)

�
∑

I
〈I | exp

(
−iEI t
~

)
|ψ(0)〉 |I〉 (6.22)

where EI indicates cationic energy eigenvalues. Inserting Equation 6.22 into

Equation 6.20 yields:

C(t) �
∑

I
〈I |ψ(0)〉 〈ψ(0)|I〉 exp

(
−iEI t
~

)
(6.23)

�
∑

I
αI exp

(
−iEI t
~

)
(6.24)

where αI � | 〈ψ(0)|I〉 |2.

The autocorrelation function includes all information necessary for determining
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Figure 6.4: Energy-dependent
autocorrelation function for the
sudden ionization of the 2p or-
bital of the silicon atom at the
center of the molecule. The final
time is 3 f s which leads to a res-
olution of 1.38eV in energy do-
main. A broadening of 0.14eV
is applied to resolve the major
peaks.

the ionization spectrum. By Fourier transformation of the autocorrelation

function into the energy domain C(E), we can derive the ionization energy of

the states which contribute to the dynamics.

In Figure 6.4, we see the energy-dependent autocorrelation function extracted

from an MPS based calculation with bond dimension D � 160. The energy-

dependent autocorrelation function has two major peaks, each corresponding

to one correlated eigenstate of the cationic molecule i.e. |Im〉 and |Is〉. The

cationic eigenstate |Im〉 can be assigned to the core level, at EIm � 121.43eV ,

and |Is〉 can be assigned to the dominant satellite line at EIs � 140.75eV .

Generally, one can determine the oscillation period of the electron dynamics

by the energy differences between the cationic states involved [16]. The energy

difference between the two peaks is about ∆E � 19.32eV corresponding to the

oscillation period 0.21 f s which resolves the oscillation period extracted from

partial hole charge dynamics.

6.5 Transition Probability

In the last section, we found two cationic states which contribute to the electron

dynamics. Moreover, it is well known that the main line |Im〉 in the ionization

spectrum is dominated by a 1h configuration and the satellite state |Is〉 can be

described by a 2h1p configuration [185]. In the following, we would like to take

a closer look at the satellite states using the transition probability concept.

Let us start with the spin-dependent version of the two-hole-one-particle

configuration which can be defined as:

|φai j,s〉 � ĉ†aτ ĉiσ ĉ jτ |φo〉 (6.25)
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where |φo〉 is the Hartree-Fock ground state of the molecule, ĉ and ĉ† represent

annihilation and creation operators respectively, i and j represent the indices

of initially occupied and a labels initially unoccupied spin orbitals. τ and σ

indicate the spin of spin orbitals, and s represents the final spin configuration.

A transition amplitude can be defined as the overlap of the time-dependent

state and the spin-dependent 2h1p configuration.

Aai j,s(t) � 〈ψ(t)|φai j,s〉 . (6.26)

Then the transition probability can be constructed from the transition ampli-

tudes as follows:

Pai j(t) �
∑

s
|Aai j,s(t)|2 . (6.27)

Note that, by taking the sum over spin configurations, the transition probability

becomes a spinless quantity.

Figure 6.5 shows the transition probability for four different virtual orbitals

(LUMOA1, LUMO+1A1, LUMO+2A1, and LUMO+3A1) at three different points

in time (the transition probabilities for other virtual orbitals are zero). From

this, we can see that a few elements of the transition probability have non-

zero values, many of them are smaller than 0.01. For example, the transition

probabilities for virtual orbital LUMO+3A1 are smaller than 0.0001 and that is

why this orbital does not contribute to the dynamics significantly (see Figure

5.5). On the other hand, we can find larger transition probabilities for other

virtual orbitals. For instance, the transition probabilities for virtual orbital

LUMOA1 and LUMO+2A1 are of order 0.1 for i � 5 (referred to Si2p orbital)

and j � 10 (referred to HOMO-4A1
). In addition, for virtual orbital LUMO+1A1

the transition probability is of order 0.01 when i � 5 and j � 13 (referred

to HOMO-3A1). To gain an understanding of the underlying process, it is

beneficial to take a closer look at the dynamics of the dominant transition

probabilities. Figure 6.6 shows the time-evolution of the dominating elements

of the transition probability. As we have mentioned above, only three of the

transition probabilities belonging to the 2h1p configurations |φLA1Si2p H−4A1〉,
|φL+2A1Si2p H−4A1〉, and |φL+1A1Si2p H−3A1〉, dominantly contribute to the dynamics.

In addition, the element associated to the configuration |φL+1A1Si2p H−3A1〉 is one

order of magnitude smaller than the other ones. In other words, the related

transition to this configuration is significantly smaller than other configurations

and corresponding orbitals do not contribute to the dynamics notably. It can
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Figure 6.5: The transition probability after the prompt removal of an electron from 2p orbital of the silicon atom in silicon
tetrafluoride for four different virtual orbitals (LUMOA1, LUMO+1A1, LUMO+2A1, and LUMO+3A1) at three different points in time.
In this figure, the indices refer to the initially occupied molecular orbitals which are sorted based on their energies. The transition
probabilities for other virtual orbitals are zero. Here, the noise prefactor = 10−3 , 10−6 , 0 is employed in the sweep instruction and
the many-body state is represented using the MPS approach with bond dimensions D � 140.



72 Chapter 6 Correlated Charge Migration Following Core Ionization in Silicon Tetrafluoride

also be understood from Figure 5.6 where the HOMO-3A1 and LUMO+1A1 have

negligible contribution to the dynamics in comparison with other contributed

orbitals.

By Fourier transformation of the transition probabilities into the frequency

domain, we can derive the frequencies which are present in those. Figure 6.7

shows the Fourier transform of the transition probability for the dominating

2h1p configurations indicated in Figure 6.6. The frequency-dependent tran-

sition probabilities for both of 2h1p configurations have three major peaks

which are located at ~ω1 � 9.66eV , ~ω2 � 19.32eV , and ~ω3 � 28.98eV

respectively. It should be noted that the height of the first and third peak

for the |φLA1Si2p H−4A1〉 configuration is smaller than the height of the second

one. Therefore, the former ones have a small contribution. For that reason,

the second frequency, ~ω2 � 19.32eV , is the dominant frequency in the

corresponding transition probability.

In contrast to the transition probability regarding to the |φLA1Si2p H−4A1〉 config-

uration, the height of the major peaks observed in the Fourier transformation

of the transition probability for configuration |φL+2A1Si2p H−4A1〉 are comparable

to each other. However, the second peak is related to the main frequency of

the transition probability while other ones also have a significant contribution

in the time-dependent behavior. Hence, one can interpret the beating pattern

observed in the transition probability of |φL+2A1Si2p H−4A1〉 configuration as well

as dynamics of the occupation number of LUMO+2A1 (see Figure 5.7) using

the contribution of these frequencies. Moreover, the main peak of the Fourier

transform of the transition probabilities, ~ω2 � 19.32eV , perfectly fits the

energy difference between cationic eigenstates which is observed in Figure 6.4.

Roughly speaking, it means that the satellite state |Is〉 can be interpreted as a

linear combination of |φLA1Si2p H−4A1〉 and |φL+2A1Si2p H−4A1〉 configurations.

Figure 6.6: The time-dependent
transition probability after the
prompt removal of an electron
from the 2p orbital of silicon
atom in silicon tetrafluoride for
the dominant 2h1p configura-
tions.
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calculation, the frequency reso-
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6.6 Impact of Nuclear Geometry

So far, we have characterized the electron dynamics in the silicon tetrafluoride

molecule using fixed molecular geometry that stays constant during the

investigation period. This assumption has been made based on the Born-

Oppenheimer Approximation (see Section 2.2) i.e. since the nuclei are heavier

than the electrons, the electrons move much faster than the nuclei, and

considering static molecular geometry is a valid assumption.

Recently, a series of theoretical studies [176, 186–188] has investigated the

impact of the finite width of the wave packet of the nuclei on electronic

dynamics in the molecules. These studies show that the spatial delocalization

of the nuclei induces dephasing that can lead to damping of the electronic

charge migration. In these studies, to take into account the quantum nature

of the nuclei approximately, the nuclear positions within the width of the

Gaussian wave packet of the nuclear ground state have been considered and

the resulting electron dynamics has been averaged. This consideration gives

rise to a superposition of coherent oscillations with various oscillation periods

that average out within a few femtoseconds. It should be noted that the cationic

spectrum at the different nuclear geometries is different and it leads to the

cancellation of the oscillations in the averaged dynamics. Therefore, it served

as a motivation for us to study the impact of this nuclear induced dephasing

of the charge migration discussed previously.

To investigate the influence of the nuclear geometry on the above-discussed

charge migration in the silicon tetrafluoride molecule, let us start with con-

sidering an artificial molecular geometry where the length of one of the Si-F

bonds is not fixed and can change (see Figure 6.8). In this artificial geometry,

we only consider displacement of fluorine atoms, since these are the ones
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d

Figure 6.8: Silicon tetrafluoride
molecule at an artificial molec-
ular geometry. In this geometry
one of the Si-F bonds is not fixed
and its position can alter. The
displacement of this bond is rep-
resented by d.

whose ground state wave function has the largest spread. Furthermore, for

the sake of simplicity, we only consider the impact of the displacement of one

of the fluorine atoms on the electronic dynamics and assume other atoms are

fixed.

Let us introduce d as the bond distance between the silicon atom and the

movable fluorine atom (see Figure 6.8). When the bond distance changes, the

electronic ground state energy of the molecule changes and forms a potential

energy surface as illustrated in Figure 6.9. The shape of this potential energy

surface characterizes how strongly the fluorine atom is bound to the molecule

and determines the width of the nuclear wave function. The wave function of

the nuclei can be obtained by solving the Schrödinger equation with respect

to the external potential which is given by the potential energy surface. From

the nuclear wave function, which is shown in Figure 6.9, one can determine

the spatial delocalization of the considered fluorine atom. To study the impact

of displacement of this fluorine atom on the charge migration dynamics, we

increase d from its equilibrium by 1%, i.e we stretch one of the Si-F bonds by 1%,

and then carry out a charge migration calculation using the MPS method.

Figure 6.10 indicates the partial hole charge at the silicon atom and the

tetrafluoride part of the silicon tetrafluoride molecule after sudden ionization

of the 2p orbital of the silicon atom for equilibrium and artificially stretched

molecular geometry. It is obvious that in the stretched molecule, the charge

migration still survives, but its oscillation period is enhanced, i.e. by stretching

one of the Si-F bonds by 1%, the charge migration slowed down by 5%. Note

that the nature of the electron dynamics does not change in the stretched

geometry. Figure 6.11 shows the time-evolution of the occupation number of

the initial hole plus the molecular orbitals which contribute dominantly to

the dynamics. Similar to the equilibrium geometry in the stretched geometry,

the occupation number of the initial hole does not alter and the initial hole

Figure 6.9: Potential energy sur-
face of the HartreeFock ground
state with respect to one of
the silicon-fluorine bond lengths
(blue). For specific fluorine atom,
a nuclear wave function (red)
with finite width is develops in
this potential energy surface.
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Figure 6.10: Time-dependent
partial hole charge at the sili-
con atom and at the tetrafluoride
part of the silicon tetrafluoride
molecule for equilibrium and ar-
tificially stretched molecular ge-
ometry. Here, the noise prefactor
= 10−6 , 10−8 , 0 in the sweep in-
struction is employed and the
many-body state is represented
using the MPS approach with
bond dimensions D � 120.

remains unaffected during the dynamics. Furthermore, HOMO-4A1, LUMOA1,

and LUMO+2A1 leave similar as before, they oscillatory contribute to the

dynamics, but the oscillation period is slightly increased in comparison to the

equilibrium molecular geometry. Therefore, we can deduce that stretching of

one of the Si-F bonds in the silicon tetrafluoride molecule leads to a change

of the oscillation period of the charge migration, but underlying dynamics

does not change. It means, if one considers the ionization spectrum of the

stretched geometry, there are still two lines corresponding to the main state

and a satellite state, but the energy gap between these states is different in

comparison to the equilibrium geometry.
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Figure 6.11: Time-evolution of the occupation number of the molecular orbitals which are dominantly involved in the dynamics for
equilibrium and stretched molecular geometry.
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Until now, to investigate the impact of the nuclear geometry on the charge

migration in the silicon tetrafluoride molecule, we have only considered the

role of one of the fluorine atoms by introducing one simple artificial molecular

geometry where the Si-F bond is not fixed and can alter. We took into account

this modification under the assumption that the lightest nucleus in the molecule

has the broadest wave function spread. This assumption does not reflect all the

physical realities. That is why we would like to use the molecular vibration

approach and consequently the normal mode concept to study the impact of the

nuclear geometry on charge migration.

6.7 Molecular Vibration

In general, molecular vibrations describe the harmonic motion of the atoms in

a molecule relative to one another, where the center of mass of the molecule

stays fixed. Commonly, vibrations of polyatomic molecules are characterized in

terms of the normal modes. Normal modes describe the pattern of independent

vibrational motion of atoms in the molecule that happen without moving

to any other ones. Normally, for a non-linear molecule with N atoms, there

are 3N − 6 normal modes of vibration, whereas a linear molecule has 3N − 5

normal modes [189].

To investigate the molecular vibration in terms of the normal modes, let us

start with expanding the nuclear Hamiltonian (Equation 2.10) around the

equilibrium position of the nuclei Req .

Ĥn �
∑

i
− ~2

2Mi

∂2

∂2Ri
+ Ee(Ri) (6.28)

�
∑

i
− ~2

2Mi

∂2

∂2xi
+ Ee(Req)

+
∑

i

(
∂Ee

∂xi

)
0

xi +
1
2
∑

i j
ki j xi x j (6.29)

Here the displacement from the equilibrium position of the nucleus is defined

as xi � Ri − Req and subscript 0 denotes that the derivatives are to be assessed

at the equilibrium position (at xi � 0). Additionally, the first derivatives are all

zero at equilibrium (all xi � 0) because there is a minimum at the equilibrium

position of nuclei on the potential energy surface. Moreover, the force constant,
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2 For simplification we write

Ee (Req) � E0

ki j , is defined as:

ki j �

(
∂2Ee

∂xi∂x j

)
0

(6.30)

From the definition of the ki j , one can understand that a displacement of one

atom can affect restoring forces experienced by the other atoms. It is worth

mentioning that the sum in Equation 6.29 is overall 3N displacements of

the N atoms, but some displacements, which are related to the translation

(3 displacements) and rotation (3 displacements) of the molecule, have zero

force constant. Therefore, it is essential to distinguish these zero force constant

displacements from the real vibrations.

To simplify the problem one can introduce the mass weighted normal mode coor-

dinates. These are defined in terms of the mass weighted coordinates qi �
√

Mi xi

by the linear equation

Qk �
∑

i
lki qi (6.31)

where lki are the eigenvectors of the mass weighted force constant matrix K

which is defined as:

Ki j �

(
∂2Ee

∂qi∂q j

)
0

(6.32)

Using mass weighted normal mode coordinates, Hamiltonian in Equation 6.29

turns into 2 :

Ĥ � E0 +
∑

i
−~2

2
∂2

∂2Qi
+

1
2
∑

i
λiQ2

i (6.33)

where λi are the eigenvalues of the mass weighted force constant matrix and

are directly related to the frequency of the mass weighted normal mode i as:

fi �

√
λi

2π
(6.34)

consequently, the wavenumber related to the mass weighted normal mode i is

given by

νi �

√
λi

2πc
(6.35)

Where c is the speed of the light.
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We have to mention that using the mass weighted normal mode coordinate

leads to disappearing cross terms in the Hamiltonian and thus one can rewrite

the Hamiltonian as the independent terms.

Ĥ � E0 +
∑

i
hi (6.36)

hi �
∑

i
−~2

2
∂2

∂2Qi
+

1
2
∑

i
λiQ2

i (6.37)

We have seen that by constructing the mass weighted force constant ma-

trix and diagonalizing, the normal modes and corresponding frequency and

wavenumber can be derived. Also, we have understood that the number of

normal modes for a nonlinear molecule with N atoms is given by 3N − 6. For

example, silicon tetrafluoride which consists of 5 atoms, in total has 9 normal

modes some of those, depending on the geometry and symmetries of the

molecule, degenerate. Figure 6.12 illustrates the normal modes of the silicone

tetrafluoride molecule where the symmetric stretch normal mode is nondegen-

erate, symmetric bend normal mode is doubly degenerate, and asymmetric

stretch and asymmetric bend normal modes are triply degenerate. In order to

determine the normal modes and corresponding wavenumber, we employed

the quantum chemistry program package Molpro [168]. The wavenumber of

the different normal modes of the SiF4 molecule are summarized in Table 6.2.

Furthermore, the Hartree-Fock ground state of the SiF4 molecule with respect

to the displacement of the different normal modes coordinates is illustrated in

the Figure 6.13. From these potential energy surfaces, it can be understood that

the asymmetric stretch normal modes are the fastest ones and consequently

nuclear wave functions with respect to these normal modes have the smallest

width.
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Figure 6.12: The normal modes of the silicone tetrafluoride molecule where the symmetric stretch normal mode is nondegenerate,
symmetric bend normal mode is doubly degenerate and asymmetric stretch and asymmetric bend normal modes are triply
degenerate. Arrows demonstrate the relative displacement of the atoms in a mass weighted coordinate system, qi , when the
molecule vibrates.
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Figure 6.13: Potential energy sur-
face of the Hartree-Fock ground
state of the SiF4 molecule with
respect to the displacement of
the different normalized normal
mode coordinate Q̄.
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Table 6.2: The wavenumber of
the different normal modes of
the SiF4 molecule. To achieve the
normal modes and correspond-
ing wavenumbers, the quantum
chemistry program package Mol-
pro [168] is used.

Normal mode Wavenumber (cm−1)
Symmetric Stretch 751.07
Symmetric Bend 228.66

Asymmetric Stretch 1026.87
Asymmetric Bend 350.49

As we mentioned before, in order to take into account the quantum nature of

the nuclei on the charge migration after sudden ionization in the molecules,

sampling the nuclear position within the width of the Gaussian wave packet

of the nuclear ground is required. It means that to investigate the impact

of the delocalization of the nuclei on the charge migration one should first

consider different nuclear geometries corresponding to displacements along

with different vibrational modes of the molecule and then perform a charge

migration calculation and finally take the average with respect to the probability

of the nuclear geometries.

In Section 3.6, we have seen that exploiting the point group symmetry de-

scribing the spatial symmetry of the molecule leads to simplification of the

MPS representation of the many-body state and one can rewrite the MPS

tensors A[i] in block diagonal form reflecting the irreps of the symmetry point
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Figure 6.14: (top) Time-dependent partial hole charge at the silicon atom and at the tetrafluoride part of the silicon tetrafluoride
molecule. (bottom left) Norm of the wave function as a function of time. (bottom right) Energy of the system as a function of
time for Sym and NoSym cases. The noise prefactor = 10−3 , 10−6 , 0 is used in the sweep instruction and the many-body state is
represented using the MPS approach with bond dimensions D � 140.

group. On the one hand, simplification of the MPS representation by employ-

ing spatial symmetry of the molecule (or other symmetry of the quantum

chemical systems) results in improved convergence behavior. In this case, we

basically aided the variational optimization to focus on the states that follow

the symmetries of the system. On the other hand, small displacement along

the normal modes of the molecule can lead to a reduction of the geometrical

symmetry of the molecule. The performance of our MPS approach depends

on the symmetry group of the molecule, therefore, we expect that our MPS

approach can not resolve the correct dynamics in situations where the spatial

symmetry of the molecule is reduced.

For example, Figure 6.14 (top) shows the time-evolution of the partial hole

charge on the Si atom in the silicon tetrafluoride molecule based on the two

different situations, Sym and NoSym. In such situations, we have considered

C2ν and C1 as the point groups of the molecule in the equilibrium geometry

and did the charge migration calculation using the MPS approach. Since point

group C1 is the point group with the lowest symmetry and only includes
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the identity as symmetry element, we called it NoSym case, and since C2ν

is the highest symmetry point group which we can employ for the silicon

tetrafluoride molecule, we called it Sym case for simplicity.

For the NoSym case, the partial hole charge on the silicon atom intensively

oscillates within 0.2 f s, but after this time period, it seems to be damped.

We have seen the same behavior for the irrep orbital ordering (see Figure

5.3) where the dominant dynamics was oscillatory, but after one time period

(around 0.2 f s) the oscillation was damped out. In this case, the damping of

the dynamics is an artifact of orbital ordering and by reordering the orbitals

and putting the strongly correlated orbitals close to each other, one can resolve

the correct dynamics.

In the NoSym case, as before, the damping of the partial hole charge dynamics

is an artifact due to the long-range coherences in the system. Since the C1

symmetry point group consists of only one irrep, there are no zero elements

among the non-diagonal elements of the OERDM, which hold electronic

coherences, hence, the long-range coherences in the system are maximal.

Furthermore, in the molecule with C1 symmetry point group, the norm of

the wave function and energy of the system are not conserved during the

dynamics. From Figure 6.14 (bottom) one can understand that in contrast to

the calculation with the C2ν symmetry point group, in the NoSym case, the

norm of the wave function and the energy of the system change with time and

are not conserved due to the electronic coherences which appear in the system.

Therefore, reduction of the symmetry point group of the molecule leads to an

introduction of artificial electronic coherences in the system which spoils our

MPS approach performance.

Moreover, one can clarify the role of the reduction of the symmetry point

group on the performance of our MPS approach in terms of the dimension of

Hilbert space. In Section 3.6, we saw that employing the point group symmetry

results in a reduction of the dimension of the Hilbert space. For example, if

one ignores any geometrical symmetry of SiF4 and employs C1 symmetry

(NoSym case) then full CI bond dimension is as large as DFCI � 213, 005, 990

whereas by employing C2ν it reduces to DFCI � 57, 183, 556. In other words, by

employing C2 the dimension of the effective many-body Hilbert space reduces

significantly. Therefore, in the NoSym case, we need to increase the necessary

bond dimension to obtain correct results. It means when one keeps the bond

dimension fixed the truncation error in the NoSym case is much larger than

in the Sym case which spoils the results. Therefore, to consider the impact of
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Geometry Atom x y z

#1

Si 0.0 0.0 0.0
F1 1.246 0.0 1.047
F2 -1.246 0.0 1.047
F3 0.0 1.246 -1.047
F4 0.0 -1.246 -1.047

#2

Si 0.0 0.0 0.088
F1 1.419 0.0 0.904
F2 -1.419 0.0 0.904
F3 0.0 1.230 -0.969
F4 0.0 -1.230 -0.969

#3

Si 0.0 0.0 0.0
F1 1.386 0.0 0.980
F2 -1.386 0.0 0.980
F3 0.0 1.386 -0.098
F4 0.0 -1.386 -0.098

#4

Si 0.0 0.0 0.082
F1 1.286 0.0 0.906
F2 -1.286 0.0 0.906
F3 0.0 1.363 -0.967
F4 0.0 -1.363 -0.967

Table 6.3: The actual nuclear po-
sitions used for four different
geometries. The coordinates are
given in angstrom.

the nuclear geometry on the charge migration in silicon tetrafluoride, instead

of sampling the nuclear geometries to mimic spatial nuclear delocalization,

we only consider geometries that conserve the symmetry point group of the

molecule. It means, we restrict ourselves to a few nuclear geometries and ignore

a significant number of geometries which would be achievable by displacing

the nucleus along with the normal modes. To obtain such geometries, we

consider normal modes where the displacement of the nuclear positions does

not reduce the symmetry point group of the molecule and then displace

the nuclear positions along with the normal mode coordinates. So that the

probability density of the nuclear wave function equals 0.89. The actual nuclear

positions used for four different geometries are given in Table 6.3.

Results of the charge migration calculation for different nuclear geometries are

illustrated in Figure 6.15. These results show that the time period of the partial

hole charge at the silicon atom changes with respect to the geometry of the

nucleus. For example, the time period of the above mentioned dynamics for

different nuclear geometries is T1 � 0.180 f s, T2 � 0.165 f s , T3 � 0.217 f s, T4 �

0.215 f s. (Keep in mind that the time period of the dynamics corresponding

to equilibrium geometry is 0.21 f s.) Consequently, if one samples the nuclear
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positions within the width of the Gaussian wave function of the nuclear

ground state, a damping of the electronic charge migration is to be expected.

Furthermore, Figure 6.15 shows the hole population on the silicon atom for

the NoSym case where the C1 point group is employed. In this case, same

as before, dynamics are damped with time due to the artificial electronic

coherences which are induced in the system as a result of using C1 point group.

In addition, Figure 6.16 and Figure 6.17 depict the the energy of the system and

the norm of the wave function as a function of the time for different nuclear

geometries. As we expect, in the NoSym case, the norm of the wave function

and the energy of the system change with time and are not conserved. These

results are another evidence of the dependency of the performance of our MPS

approach on the used symmetry point group.
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Figure 6.15: Time-dependent partial hole charge at the silicon atom of the silicon tetrafluoride molecule for different nuclear
geometries and for Sym and NoSym cases. Here, the noise prefactor = 10−3 , 10−6 , 0 is used in the sweep instruction and the
many-body state is represented using the MPS approach with bond dimensions D � 140.
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Figure 6.16: Energy of the system as a function of time for different nuclear geometries and for the Sym and NoSym case.



86 Chapter 6 Correlated Charge Migration Following Core Ionization in Silicon Tetrafluoride

0fs 0.2fs 0.4fs 0.6fs 0.8fs 1fs

0.94

0.95

0.96

0.97

0.98

0.99

1

n
o
rm

o
f
th
e
w
av
e
fu
n
ct
io
n

Geometry #1

0fs 0.2fs 0.4fs 0.6fs 0.8fs 1fs

0.94

0.95

0.96

0.97

0.98

0.99

1

Geometry #2

0fs 0.2fs 0.4fs 0.6fs 0.8fs 1fs

0.94

0.95

0.96

0.97

0.98

0.99

1

time

n
o
rm

o
f
th
e
w
av
e
fu
n
ct
io
n

Geometry #3

Sym NoSym

0fs 0.2fs 0.4fs 0.6fs 0.8fs 1fs

0.94

0.95

0.96

0.97

0.98

0.99

1

time

Geometry #4

Figure 6.17: Norm of the wave function as a function of time for different nuclear geometries and for the Sym and NoSym case.
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6.8 Conclusions

In Chapter 5, we understood that the ionization of the 2p orbital of the

silicon atom triggers the electron dynamics in the valence orbitals while the

created hole in the core does not alter during the process up to 3 f s after

ionization. In this chapter, we aimed to analyze the electron dynamics in the

core ionized silicon tetrafluoride. We demonstrated that the above-mentioned

dynamics in the valence orbitals lead to the migration of the hole charge

between the silicon atom and the tetrafluoride part on a time scale of 0.21 f s

which is faster than the decay time of the core electron by an Auger process.

Moreover, we showed that the time period of the charge migration can be

extracted from the energy-dependent autocorrelation function which includes

the correlated states of the cation. In addition, our analysis based on the

transition probabilities indicated that only two 2h1p configurations contribute

the most to the dynamics which is in agreement with results obtained from

the dynamics of the occupation number of the molecular orbitals. Lastly, we

discussed the impact of the geometry of the molecule on the charge migration,

most importantly by introducing two approaches. First, we stretched one of

the fluorine atoms artificially, and second, considering small displacements

along with the normal modes of the molecule. The results obtained for the

different molecular geometries showed that small displacements along the

normal modes lead to an alteration of the time period of the charge migration

which can give rise to a damping of the charge migration if one accounts the

finite width of the nuclear wave function same procedure as discussed in

[176].
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In this thesis, we used the time-dependent MPS approach to study molecu-

lar inner-shell processes. We specifically investigated the correlation-driven

electron dynamics in the core ionized silicon tetrafluoride molecule and demon-

strated how the core ionization triggers ultrafast electron dynamics in the

valence shell of the molecule. Furthermore, we studied the role of orbital

ordering and numerical noise in the time-dependent MPS approach.

Summary

In Chapter 1, we outlined some theoretical methods to describe ultrafast

processes in molecular systems. In addition, we outlined the time-dependent

MPS method developed by Frahm and its implementation in the Hamburg

CheMPS2 extension.

The basic concepts of the ab initio quantum chemistry were introduced

in Chapter 2. We outlined Born-Oppenheimer approximation as well as

the Hartree-Fock method as the simplest method to describe many-body

wave functions in an uncorrelated fashion. In addition, we discussed the

configuration interaction as a post-Hartree-Fock method to expand the many-

body wave function in terms of the excited determinants.

We reviewed the general theory of MPS in the context of quantum chemistry

in Chapter 3. In this chapter, the MPS formalism is introduced as a general

representation of the many-body state. We discussed how exploitation of the

symmetries of the quantum chemical Hamiltonian leads to a reduction of the

dimension of the desired many-body Hilbert space and a simplification of the

MPS tensors.

Next, in Chapter 4, the time-evolution of MPS to describe the time-dependent

phenomena in the quantum chemical systems was outlined. First, we reviewed

the Krylov space time-evolution method as the main time-dependent method

which was used through this thesis. Further, we discussed the variational

optimization procedure to perform operations (addition or operator appli-

cation). We finished this chapter with some remarks on how to improve the

performance of the variational optimization procedure. We introduced two-site
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object, numerical random noise, and sweep schedule as the main tactics which

can lead to an improvement of the optimization procedure.

We applied the time-dependent MPS approach to investigate the correlated

electron dynamics in core ionized silicon tetrafluoride molecule in Chapter 5.

We studied the electron dynamics after a sudden ionization of the 2p orbitals

of the silicon atom in silicon tetrafluoride. We understood that orbital ordering

plays a crucial role in the performance of the MPS approach. In a first attempt,

we ordered the orbitals based on their irreps and their energies. We noticed that

employing such orbital ordering spoils the performance of the MPS approach

in the case of core ionization of SiF4 and the dynamics do not converge even

after increasing the MPS bond dimensions within the range of 100 to 180. It

seems to obtain converged results, much larger bond dimensions are required

which is not feasible practically.

We found out that if one puts the strongly correlated orbitals close to each

other in the one-dimensional arrangement of system sites, then the non-local

properties of the system which are artificially exaggerated by the inappro-

priate ordering of the orbitals disappear. Resolving the correct dynamics

then becomes feasible with a reasonably large MPS bond dimension. We

concluded that, unlike the ordering of the orbitals based on the irreducible

representations, an MPS bond dimension of D � O(100) is sufficient to resolve

the dynamics in this case. Further, we investigated the role of the numerical

noise which was introduced in the variational optimization of the MPS. By

performing quantitative analysis, we demonstrated that this concept can lead

to an enhancement of the efficiency of the MPS approach by improving the

convergence rate of the dynamics in terms of the MPS bond dimension.

In Chapter 6, we demonstrated that ionization of the 2p orbital of the silicon

atom in the silicon tetrafluoride molecule triggers intense and fast electron

dynamics in the valence orbitals while the initial core hole does not change

during this initial process. We showed that this process results in a charge

migration between the silicon atom and the tetrafluoride part on a time scale

of 0.21 f s which is faster than the decay time of the core electron by an Auger

process. To understand the origin of the time period of the charge migration,

we analyzed the dynamics in terms of the energy-dependent autocorrelation

function and transition probability and identified the correlated cationic

eigenstates which are responsible for the charge migration. We showed that

the time period of the charge migration can be extracted from the energy-

dependent autocorrelation function which includes the correlated states of
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the cation. In addition, our analysis based on the transition probabilities

indicated that only two 2h1p configurations had a dominant contribution

to the dynamics which is in agreement with the results obtained from the

dynamics of the occupation numbers of the molecular orbitals.

Finally, we studied the role of the nuclear geometry on the charge migration

in SiF4 by considering two approaches. First, we considered stretching one of

the fluorine bonds artificially, and second, we examined a small displacement

along with the normal modes of the molecule. We noticed that the small

displacement along the normal modes leads to an altering of the time period of

the charge migration which can give rise to a damping of the charge migration

if one accounts for the finite width of the nuclear wave function. We observed

that due to the computational restrictions of our MPS approach, considering

the finite width of the nuclear wave function reliably is not possible.

Outlook

In this thesis, we studied the electron dynamics following core ionization

in SiF4. We found out that the triggered dynamics leads to an intense and

ultrafast charge migration in the system which is faster than the decay time

of the core electron by an Auger decay. Auger decay [190] is one of the best

studied processes in light-induced electron emission and is the most direct

probe of electron-electron interaction in atoms and molecules where the filling

of the inner-shell vacancy of an atom or molecule is accompanied by the

emission of the secondary electron. This process has commonly been described

with the help of decay rates [191–197], but in recent years, the study of the

real-time dynamics of this process has attracted attention [198–200]. Generally,

Auger relaxation times are in the interval of hundreds of attoseconds to a

few femtoseconds and principally our MPS approach is able to model this

process.

To model Auger decay theoretically, it is essential to have a good description of

the continuum [198]. For this reason, it is common practice to employ basis sets

that consist of diffuse functions to describe the emitted electron. For example,

it is shown [175, 201] that the valence electrons from the fluorine atoms of

silicon tetrafluoride play an important role in the Auger decay of the silicon

2p hole, therefore, to mimic the Auger decay in the silicon tetrafluoride it is

important to include some diffuse functions on the fluorine atoms in the basis

set.
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Roughly speaking, applying such kind of basis sets enlarges the dimension

of the many-body Hilbert space significantly and makes the treatment of the

electron dynamics using our MPS approach computationally challenging or

even impossible. In the following, we outline some ideas for future development

of the MPS approach, especially, to make the study of the real-time dynamics

of the Auger process in the molecular system possible.

In Chapter 2, we have mentioned that to reduce the dimension of the many-

body Hilbert space and thereby the required computational resources in

the CI method, a truncation of the CI space concerning the excitation level

is commonly used. On the other hand, we have understood that the MPS

approach incorporates n-fold excitations into the wave function to approximate

the full CI state. Therefore, it is beneficial to combine the MPS ansatz with

the restricted excitation approach to reduce the computational cost. This

combination has already been incorporated by Schaub into the Hamburg

CheMPS2 extension [49], but in his implementation, he only considered the

single and double excitation and ignored exploiting the point group symmetry.

In Chapter 3 and Chapter 6, we have observed that the exploitation of the

geometrical symmetry of the molecule reduces the dimension of the many-body

Hilbert space and improves the performance of the MPS approach. Therefore,

generalizing Schaub’s implementation to a higher excitation level (e.g. triple,

quadruple, and so on) while the geometrical symmetry of the molecule is

imposed would allow treating electron dynamics in more complicated systems

with the time-dependent MPS approach.

Further, as we have mentioned in Chapter 3, Hamburg CheMPS2 code can

only deal with abelian point groups whereas several molecules exhibit non-

abelian point groups. For example, centrosymmetric linear molecules such

as acetylene , C2H2, diacetylene , C4H2, and carbon suboxide , C3O2 belong

to D∞h molecular point group which is non-abelian. Additionally, highly

symmetric molecules such as tetrahedral and octahedral ones exhibit none-

abelian point groups. Therefore, the implementation of the non-abelian point

groups can enhance the capabilities of the MPS approach.

Another direction to increase the capabilities of the MPS approach of treating

the electron dynamics in the molecular system is to incorporate new algorithms

to order the orbitals in the one-dimension arrangement. In Chapter 6, we have

understood that the orbital ordering plays a crucial role in the performance

of the time-dependent MPS approach. We have seen that putting strongly

correlated orbitals close to one another in a one-dimensional lattice leads to
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a reduction of the non-local properties of the system, and thus the efficiency

of our MPS approach significantly improves. This kind of orbital ordering

is inspired by the DMRG algorithms where the Fiedler ordering is utilized

to increase the efficiency. So far, a variety of methods to sort the orbitals on

the one-dimensional lattice in DMRG algorithms has been proposed [148, 169,

171, 202] of which the methods according to orbital entropies and methods

based on the genetic algorithms have been demonstrated to be very efficient.

Therefore, it would be of great benefit to incorporate the above-mentioned

methods into the time-dependent MPS approach to enhance the performance

and accuracy of this method.





Appendix A
A.1 Dynamics Following the Ionization of

Degenerated Orbitals
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Figure A.1: Time-dependent partial hole charge at the silicon atom, (top) and tetrafluoride part (bottom) of the silicon tetrafluoride
molecule after ionization of the HOMO-7 orbital with different irreducible representation. Resulting dynamics after ionization of
the degenerated orbitals are physically similar, but the small divergence in the longer time period comes from the order of the
orbitals in the one-dimensional lattice (see Table 5.1). The time-evolution is done using the Krylov space method with a Krylov
space dimension NK � 6 and a time step size δt � 1as. Also, the noise prefactor = 10−3 , 10−6 , 0 is used. The many-body state is
represented using the MPS approach with bond dimensions D � 140.
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