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Preface

The work leading up to this cumulative dissertation was conducted from October 2018 to April
2022 at the Max Planck Institute for the Structure and Dynamics of Matter and the University
of Hamburg under the supervision of Dr. Michael Sentef and Prof. Dr. Dante Kennes, as
well as at the Center for Computational Quantum Physics at the Simons Foundation’s Flatiron
Institute, New York City, under the supervision of Prof. Dr. Andrew Millis. This thesis is based
on the publications presented in Sec. 3, in which we investigate non-equilibrium phenomena in
driven magnetic systems.
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1 | Abstract

The investigation of nonequilibrium phenomena in strongly correlated systems is an intense
and increasingly important field of research, both from a theoretical and from an experimental
perspective. Experimental advances regarding the creation of ultrashort laser pulses and large
field intensities are making it feasible to avoid the decoherences that historically have made the
dynamics in driven solid state systems hard to access. However, many of the powerful analytical
and numerical equilibrium methods are not applicable in a nonequilibrium setup, largely because
of the increasing mixing of energy scales due to the external driving. It is therefore essential to
gain a deeper theoretical understanding of systems far from equilibrium. In particular, driven
dissipative systems allow for the formation of nonequilibrium steady states and the possibility
of phase transitions between them. Here, we present theoretical results on driven quantum
spin systems that help to gain an understanding of the different control knobs for driving such
nonequilibrium phase transitions. This is of great interest because it paves the way to optically
control the properties of quantum many body states.

A numerical method that has been shown to generate reliable results for periodically driven,
one dimensional systems is the time-dependent density matrix renormalization group (t-DMRG).
By simulating the dynamics of a quantum chain with Luttinger liquid and charge-density wave
phases under both continous and pulsed laser driving with t-DMRG calculations, we show that
the drive causes a light-cone spreading of density-density correlations with a Floquet-engineered
propagation velocity through the system. At large time scales, the employed continuous, off-
resonant, large frequency driving protocol leads to the formation of a Floquet steady state
with negligible heating. Strikingly, the formation of a discontinuity in form of a kink at the
edge of the light cone is observed. This kink shows similarities with the discontinuity that has
been analytically shown to exist in quenched systems, which indicates that dynamical quantum
criticality can be achieved in Floquet-driven systems. These results directly connect to the field
of time-resolved spectroscopy, aiming at measuring correlations in strongly correlated materials.

Emergent nonequilibrium states of matter prominently feature a high degree of many-body
entanglement, which may have a significant effect on the macroscopic finite-temperature be-
havior of the systems in question. This makes the identification of entanglement in driven
quantum systems an important area of research. A quantity that has been shown to act as an
entanglement witness is the Quantum Fisher Information (QFI), which can be used to discrim-
inate criticality at nonzero temperatures from thermal behavior. We investigate the QFI in an
interaction-quenched one dimensional XXZ quantum chain, transitioning from from adiabatic
to nonadiabatic dynamics.

In order to identify critical behavior in a driven-dissipative spin system with magnon interac-
tions we study the nonequilibrium steady states of a two-dimensional Heisenberg antiferromag-
net which is driven by a high frequency laser and coupled to a reservoir. The interplay between
interactions and the flow of energy due to to drive and dissipation is crucial to describe the
resulting steady state system. We demonstrate a nonthermal transition that is characterized by
a qualitative change in the magnon distribution, from subthermal at low drive to a generalized
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1 Abstract

Bose-Einstein form including a nonvanishing condensate fraction at high drive and find that
this transition shows static and dynamical critical scaling. An analysis of the linearized kinetic
equation and its spectrum of eigenvalues allows us to draw conclusions about the role of hy-
drodynamic slow modes in the critical behavior near the transition point. Understanding these
mechanisms that determine the critical behavior could help understand nonthermal pathways
for controlling emergent properties of driven quantum materials.
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2 | Zusammenfassung

Die Untersuchung von Nicht-Gleichgewichtsphänomenen in stark korrelierten Systemen ist ein
breites und zunehmend an Bedeutung gewinnendes Forschungsgebiet, sowohl aus theoretischer
als auch aus experimenteller Sicht. Experimentelle Fortschritte bei der Erzeugung ultrakurzer
Laserpulse und großer Feldstärken machen es möglich, Dekohärenzen zu vermeiden, die in der
Vergangenheit die Messung der Dynamik angetriebener Festkörpersysteme erschwert haben.
Allerdings sind viele der mächtigen analytischen und numerischen Methoden der Gleichgewichts-
physik in einem Nichtgleichgewichtskontext nicht anwendbar, was vor allem auf die zunehmende
Vermischung der Energieskalen aufgrund des externen Antriebs zurückzuführen ist. Daher ist
es wichtig, ein tieferes theoretisches Verständnis von Systemen fernab des Gleichgewichts zu
erlangen. Besonders interessant sind in diesem Zusammenhang getriebene dissipative Systeme,
da sie die Ausbildung von stationären Nichtgleichgewichtszuständen ermöglichen, zwischen de-
nen es zu dynamischen Phasenübergängen kommen kann. In dieser Dissertation stellen wir
theoretische Ergebnisse zu angetriebenen Quantenspinsystemen vor, die zum Verständnis der
verschiedenen Mechanismen zur Steuerung solcher Nichtgleichgewichtsphasenübergänge beitra-
gen. Dies ist von großem Interesse, da es den Weg zur optischen Kontrolle der Eigenschaften
von Quantenvielkörperzuständen ebnet.

Eine numerische Methode, die nachweislich zuverlässige Ergebnisse für periodisch angetriebene,
eindimensionale Systeme liefert, ist die zeitabhängige Dichte-Matrix-Renormierungsgruppe (t-
DMRG). Wir nutzen t-DMRG-Berechnungen um die Dynamik einer Quantenkette, die einen
Phasenübergang zwischen einer Luttinger-Flüssigkeit und einer Ladungsdichtewelle aufweist,
sowohl unter kontinuierlichem als auch unter gepulstem Treiben zu simulieren. Dabei wird
deutlich, dass es unter dem Treiben zu einer lichtkegelförmigen Ausbreitung von Dichte-Dichte-
Korrelationen mit Floquet-modelierter Ausbreitungsgeschwindigkeit kommt. Auf großen Zeit-
skalen führt das verwendete kontinuierliche, nicht-resonante, hochfrequente Antriebsprotokoll
zur Bildung eines stationären Floquet-Zustandes mit vernachlässigbarer Aufheizung. Eine Auf-
fälligkeit ist die Bildung einer Diskontinuität in Form eines Knicks am Rande des Lichtkegels.
Dieser Knick weist Ähnlichkeiten mit der Diskontinuität auf, die analytisch in gequenchten
Systemen nachgewiesen wurde, was darauf hindeutet, dass dynamische Quantenkritikalität
in Floquet-getriebenen Systemen erreicht werden kann. Diese Ergebnisse stehen in direktem
Zusammenhang mit dem Forschungsgebiet der zeitaufgelösten Spektroskopie, die darauf abzielt,
Korrelationen in niedrigdimensionalen Materialien zu messen.

Emergente Nichtgleichgewichtszustände der Materie zeichnen sich durch eine hohe Vielteilchen-
verschränkung aus, die einen erheblichen Einfluss auf das makroskopische Verhalten von Syste-
men bei endlichen Temperaturen haben kann. Dies macht die Identifizierung von Verschränkun-
gen in angetriebenen Quantensystemen zu einem wichtigen Forschungsgegenstand. Eine Größe
die nachweislich dynamische Verschränkungen bezeugt, ist die quanten Fischer information (QFI),
die zur Unterscheidung von Kritikalität bei endlichen Temperaturen und thermischem Verhalten
verwendet werden kann. Wir untersuchen die QFI in einer eindimensionalen XXZ-Quantenkette,
deren Wechselwirkungen sprunghaft verstärkt werden, und zeigen einen Übergang von adiabatis-
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2 Zusammenfassung

cher zu nichtadiabatischer Dynamik.

Um kritisches Verhalten in einem angetriebenen dissipativen Spinsystem mit wechselwirkenden
Spinwellen zu identifizieren, untersuchen wir die stationären Nichtgleichgewichtszustände eines
zweidimensionalen Heisenberg-Antiferromagneten, der durch einen Hochfrequenzlaser getrieben
wird und an ein Reservoir gekoppelt ist. Das Zusammenspiel zwischen Wechselwirkungen und
dem Energiefluss aufgrund von Antrieb und Dissipation ist entscheidend für die Beschreibung
des resultierenden Systems stationärer Zustände. Wir zeigen einen nicht-thermischen Übergang,
der durch eine qualitative Änderung der Magnonenverteilung charakterisiert ist. Bei niedrigem
Antrieb zeigt das Quantensystem subthermisches Verhalten, während ein starkes Treiben zu
einer verallgemeinerten Bose-Einstein-Form mit einem nicht-verschwindenden Kondensatanteil
führt. Der Übergang zwischen diesen Phasen zeigt kritisches Skalierungverhalten, sowohl in
statischen als auch in dynamischen Messgrößen. Eine Analyse der linearisierten kinetischen
Gleichung und ihres Eigenwertspektrums erlaubt Rückschlüsse auf die Rolle der hydrodynamis-
chen langsamen Moden im kritischen Verhalten nahe dem Übergangspunkt. Das Verständnis der
Mechanismen, die die Nichtgleichgewichtsdynamik und das kritische Verhalten des Spinsystems
bestimmen, könnte dazu beitragen neue, nicht-thermische Wege zur Kontrolle von getriebenen
Quantenmaterialien zu verstehen.
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3 | List of Publications

This cumulative dissertation is based on publications I, II and III. These publications are
listed chronologically below, but they are presented starting with publication II - the paper
investigating a driven-dissipative quantum antiferromagnet - in this thesis. In chapter 5 we
provide a derivation of the vertices encoding spin wave interactions in the two-dimensional
antiferromagnet using spin wave theory and proceed by introducing the Boltzmann formalism,
which we use to simulate the interacting magnon system under drive and dissipation. The
following analysis of the properties of the eigenvalues and the kinetic equation is not part of
publication II, but a corresponding publication is currently in preparation.

In both publication I and manuscript III we are employing t-DMRG calculations in order to
simulate a one-dimensional XXZ spin chain under the influence of a nonequilibrium drive. Pub-
lication I is presented in chapter 6, where the spin-flip terms are periodically driven and we
demonstrate a light-cone-like spread of correlations through the quantum chain. Here, we also
introduce how the XXZ spin chain can be mapped onto a half-filled chain of spinless fermions
through the Jordan-Wigner transformation. In chapter 7 we present results on using the quan-
tum Fisher information as a nonequilibrium entanglement witness, which is the main focus of
manuscript III.

I Mona H. Kalthoff, Dante M. Kennes and Michael A. Sentef, "Floquet-engineered light-
cone spreading of correlations in a driven quantum chain" Physical Review B 100 (16),
165125, Oct 2019, DOI: 10.1103/PhysRevB.100.165125

II Mona H. Kalthoff, Dante M. Kennes, Andrew. J. Millis, Michael A. Sentef, "Nonequi-
librium phase transition in a driven-dissipative quantum antiferromagnet" Accepted at
Physical Review Research, Apr. 2022, http://arxiv.org/abs/2107.03841

III Denitsa R. Baykusheva, Mona H. Kalthoff, Damian Hofmann, Martin Claassen, Dante
M. Kennes, Michael A. Sentef, Matteo Mitrano "Witnessing Nonequilibrium Entanglement
Dynamics in a Quenched Quantum Chain", in preparation

3.1 Declaration of contribution

I M. H. Kalthoff modified the t-DMRG code written by D.M. Kennes, performed all simu-
lations and created all plots. All authors participated in the planning of the project, the
analysis of the data and the writing of the paper.

II M. H. Kalthoff wrote the code and did the analytics needed to implement the magnon
interactions with the assistance of M. A. Sentef. All authors participated in the planning
of the project, the writing of the paper and the analysis of the data. The full code is
available at https://github.com/MonaHKa/Boltzmann-simulation
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3 List of Publications

III M. H. Kalthoff modified the t-DMRG code written by D.M. Kennes, wrote the script to
extract the QFI from the correlations and plotted the DMRG data. All authors partic-
ipated in the discussions and the analysis of the data. The main draft of the paper was
written by D. R. Baykusheva and M. Mitrano, M. H. Kalthoff contributed the section
about the DMRG data and the Jordan-Wigner transformation.
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4 | Introduction

Understanding the dynamics and phase transitions of driven solid state systems far from equilib-
rium is a crucial aspect of modern physics with many possible applications in future technologies,
such as quantum computing, the creation of memory devices and the engineering of quantum
materials with desired properties [1]. However, even some of the most basic questions in the
field remain to be answered and a schematic framework to explain nonequilibrium phenomena
is yet to be developed [2]. In quantum materials, an equilibrium ground state is determined by
the interactions between many intertwined degrees of freedom, such as spin, charge, orbitals and
the lattice [3, 4]. Our general understanding of the equilibrium properties of strongly correlated
materials and their phase transitions has majorly advanced over the last century, largely due
to powerful equilibrium methods, such as mean field theory and renormalization group tech-
niques [2]. Conceptually, these theoretical frameworks make use of the separable hierarchy of
energy scales in equilibrium systems, which allows the formation of a theory that starts from a
microscopic picture and correctly describes the long wavelength behavior of a system by inte-
grating out fluctuations at each intermediate energy scale [5]. Introducing perturbations in an
equilibrium system does not necessarily mean that the system needs to be seen in a nonequilib-
rium context, in fact measurements of equilibrium systems are in general performed by applying
an external force, which introduces a localized change in the system and then studying the
response function of the system [6]. As long as the external force is sufficiently weak for the
response of the system to be linear, the perturbation does not majorly influence the separability
of energy scales.

However, the abundance of interactions and energy scales involved in strongly correlated ma-
terials leads to a variety of many-body states far beyond the linear response regime, so that
even slight external perturbations introduce the possibility of a rich spectrum of new phases of
matter [7]. Controlling these phase transitions through ultrafast light matter interaction is a
vibrant field of research with many open questions, since the study of nonequilibrium systems
is more challenging, both from an experimental and a theoretical point of view [8]. A major
reason for this is that external perturbations can lead to a mixing of energy scales, such that the
framework in which systems in equilibrium are understood is no longer applicable. Two major
points of research are:

1. How can we understand new nonequilibrium phenomena, like exotic topological states,
that have no counterpart in equilibrium? Do these new, transient nonequilibrium states of
matter have properties that are robust, in the same way that equilibrium phase properties
are robust?

2. How can we reproduce phenomena that do exist but that are hard to realize in equilibrium,
in a feasible nonequilibrium setup? Can we, for example, use light-matter-interaction to
increase the temperature at which a material becomes superconducting?

Progress in this field has been largely driven by the improvement of experimental techniques such
as the manipulations of ultracold gases in optical lattices created by standing laser waves [9, 10]
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4 Introduction

as well as ultrafast measurements in solid state systems [11–13], where laser pulses on femto-
and even attosecond timescales allow the study of systems undergoing phase transitions far from
equilibrium and to access transient states that have no analogue in equilibrium. Examples for
such phase transitions are light induced superconductivity [14–17], insulator-to-metal transitions
[18–21] and photoinduced melting of orbital order [22, 23].

In general, nonequilibrium problems fall into two categories. The first one is a quench where
there is a sudden change to the system properties. Theoretically, this can be achieved by
an instantaneous change in the Hamiltonian parameters, which corresponds to experimentally
hitting a system with a short pulse [24]. In particular, ultrafast laser spectroscopy allows to
access time and angle resolved information about the relaxation of a system after excitation with
periodic and pulsed electric fields [25]. Then one may ask how the system relaxes, which transient
states it evolves through and whether or not the resulting steady state corresponds to thermal
equilibrium [26]. It has been shown that such an instantaneous change in the system parameters
can indeed lead to dynamical phase transitions and nonequilibrium critical behavior [27–29] that
persists on timescales that are larger than the duration of the pump pulse due to a critical slowing
down of the relaxation dynamics close to critical points [30, 31].

In recent times, the field has moved from describing relaxation dynamics after a laser pulse
towards the growing field of dressed-state dynamics and light-induced states of matter during
the laser pulse [32]. This is particularly interesting because driven systems have a quasi energy
spectrum which can be tailored by the external drive, known as Floquet engineering of desired
system properties [33–36]. There are multiple advantages in exposing a system to a high fre-
quency drive with frequencies larger than the intrinsic time and energy scales in the system, one
of them being that under such driving conditions the long time physics can be described by a
renormalized Hamiltonian that is averaged over one period of the drive [3, 37]. One phenomenon
resulting from this renormalized description is known as dynamical localization because, at this
level of perturbation theory, the averaging leads to an effective hopping amplitude which is
reduced with regard to the equilibrium value, meaning the electrons are more localized [38].
Moreover, Floquet theory [39] provides an effective analytical tool to describe the stationary
states and the corresponding quasienergy-spectrum of periodically driven systems [40] because
it applies to time-periodic systems in analogy to Bloch theory for spatially periodic systems.

A feature systems with periodic lattice potentials that is observed experimentally during the
periodic driving, is the formation of so called Floquet-Bloch-Bands that repeat in both momen-
tum and energy [41, 42]. These findings are particularly notable since the interactions of the
degrees of freedom in quantum materials with light lead to an increased decoherence due to
additional scattering mechanisms, and high field intensities are required to overcome these deco-
herences [3, 43]. Another important aspect is that solid state systems may absorb energy from
the driving field, which leads to a growing number of excitations in the system which cause an
increase in its local entropy density so that the system is driven towards the infinite temperature
limit with no local correlations [44, 45]. While this is less of a problem when studying ultracold
atoms in optical lattices [9, 10] due to the almost perfect decoupling from the environment [46],
it is a major challenge in solid-state physics, where strong correlations make probes prone to
heating and eventually melting. However, this runaway heating can be significantly slowed down
or avoided by choosing a high frequency driving protocol that is detuned from the excitation
energies of the system [47–49] or has a with quasi-periodic time dependence [50]. Moreover, even
though Floquet theory strictly assumes an infinite drive, meaning a drive which has been turned
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on in the infinitely distant past [36, 51, 52], it has been shown that the framework of Floquet
theory is still largely applicable for systems which are exposed to pulses with finite duration [53],
as long as a certain hierarchy between the pump and the probe pulse as well as the period of
the laser is maintained [54].

In one dimension, the time-dependent density matrix renormalization group (t-DMRG) [55] is
a versatile numerical tool to simulate quantum chains which are exposed to such a ramped
or pulsed high frequency periodic drive [47]. Amongst other applications, it can be used to
obtain information about the spread of correlations, which in quantum many body systems is
restricted to a maximum velocity, namely the Lieb-Robinson bound [56], analogously to the
speed of light bounding the velocity with which information can spread in relativistic quantum
field theory [24, 46, 57, 58]. One major part of this thesis is an investigation on how this light-
cone-like spread of electronic correlations in an infinite quantum chain exposed to modulated
periodic driving can be described using Floquet-renormalized effective Hamiltonian parameters,
and how drives that are ramped up over a short time interval can lead to kink-like discontinuity,
which resembles the discontinuity observed in the context of dynamical phase transitions after
quantum quenches.

While the study of periodically driven systems is a vast field of research with many open questions
on its own, the coupling of such a driven system to a reservoir leads to further rich physical
phenomenology and in particular allows the formation of a nonequilibrium steady state. This is
of great interest, because the effective Hamiltonians obtained through Floquet theory can only
be used to describe dynamics in systems where dissipation is negligible, which is a challenge to
realize experimentally [59]. In contrast, it is a flow of energy that characterizes a nonequilibrium
steady state obtained by a drive that adds energy to the system, a redistribution of energy due
to the interaction dynamics within the system and a dissipation into a bath such that energy can
go out of the system as well [60–63]. The interplay between these factors determining the flow of
energy through a system can potentially drive the system through phase transitions that do not
have an analogue in equilibrium, where phase transitions are commonly characterized through an
order parameter that indicates the breaking or recovery of symmetries [64]. Distinct from these
symmetry breaking phase transitions, which have been shown to also exist in nonequilibrium
setups [65–67], there can be another type of phase transition in a nonequilibrium steady state,
whose main feature is a qualitative change in the low frequency distribution of the collective
excitations [68]. Such phase transitions are exclusive to nonequilibrium scenarios, because in
equilibrium the shape of the distribution function is determined through thermodynamics.

Another feature of equilibrium phase transitions is, that the behavior in the vicinity of critical
points obeys well defined scaling laws with universal exponents [69, 70]. However, it is a priori
less clear if phase transitions in driven quantum systems share universal critical behavior dis-
tinct from equilibrium [71–75], and while it has been shown that some universality arguments
may persist out of equilibrium, there are indications that the out of equilibrium dynamics in
strongly correlated systems go beyond what can be captured by a theory of universal critical
exponents [2, 24, 76]. Theoretically, the question of whether universality persists in nonequilib-
rium has been mostly addressed in the context of global quenches, so understanding the role of
critical exponents in driven-dissipative systems is an important open point of research which is
relevant for many experimental setups.
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4 Introduction

4.1 Nonequilibrium phenomena in magnetic materials

Nonequilibrium phenomena in magnetic materials are of particular interest because magneti-
cally ordered ensembles of magnetic moments can host collective excitations that are quantized
spin waves, commonly referred to as magnons[77, 78]. Controlling the magnetization and the
dynamic excitations of quantum materials is of fundamental technological importance, for ex-
ample for information transport and processing [79] as well as for the creation of devices which
store and manipulate data [13]. Over the last decade multiple ultrafast thermal and nonther-
mal pathways to optically control magnetism have been discovered [1, 80]. One example of a
novel state of matter in magnetic materials is Bose-Einstein condensation (BEC) of magnons, in
which an excitation with a pulse causes the distribution of excitations to form a single coherent
macroscopic quantum state in which the lowest energy excited state is macroscopically popu-
lated [81–83]. The most prominent example of materials in which such BEC of magnons has
been observed are thin, ferromagnetic yttrium iron garnet (YIG) films [83–90]. Magnon–magnon
interactions have been shown to be essential for many phenomena in magnetic materials, like
magnon thermalization and Bose-Einstein condensation [79, 91, 92].

In this thesis we investigate magnon interactions in a nonequilibrium system where the cru-
cial physics is determined by the interplay of the interactions as well as the particle addi-
tion and dissipation processes. In particular, we study the nonequilibrium steady states of a
driven-dissipative Heisenberg Antiferromagnet using a semiclassical magnon Boltzmann equa-
tion [93, 94] and thereby treating interactions among the excitations on a microscopic level.
This adds a new direction to past theoretical approaches for the study of spin systems that
feature condensates, which have been based on semi-phenomenological continuum approxima-
tions using Landau-Lifshitz-Gilbert equations [95, 96], Gross-Pitaevskii equations [82, 84, 97]
or field theoretical analyses [65, 75]. We identify an intrinsically nonequilibrium phase tran-
sition characterized by a qualitative change in the magnon distribution function and showing
characteristic scaling behavior between an ordered low drive state and a disordered phase with
a finite condensate fraction. This work is complimentary to the existing largely experimental
literature on BEC of magnons, which concerns systems with very long relaxation times, where a
population of magnons is transiently induced and then thermalizes into a Bose condensed state,
because we focus on a system where the drive strength is varied and the competition between the
effects of the particle addition and removal processes as well as the magnon interactions qual-
itatively changes the system properties. Furthermore our work bears interesting relationships
with exciton-polariton condensates [73, 98, 99] and possible extensions of our numeric method
to ferromagnetic materials and polariton systems are being discussed.
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5 | Nonequilibrium phase transition

In this chapter, we focus on the identification of critical behavior, and in particular a nonequi-
librium phase transition in a two-dimensional Heisenberg antiferromagnet which is driven by
high-frequency light and coupled to a dissipative reservoir. The general motivation for in-
vestigating a nonequilibrium phase transition in the driven-dissipative Heisenberg model were
recent theory results demonstrating a dynamical phase transition involving nonthermal magnon
populations in the antiferromagnetic phase of the two-dimensional Hubbard model upon laser
driving [68]. However, these results were obtained in a one loop non-interacting magnon theory.
In this project, we investigate the effects of magnon-magnon interactions on the dynamical phase
transition using an interacting spin-wave theory with a large spin expansion and a Boltzmann
formalism. In particular, we are interested in whether the redistribution of energy amongst
magnon modes due to scattering transfers energy to places where it can be relaxed more easily
and therefore makes the phase transition disappear. What we find is that the dynamic phase
transition survives the inclusion of interactions, but that the influence of magnon-magnon scat-
tering leads to qualitative and quantitative changes with respect to the noninteracting results.
Crucially, magnon-magnon scattering is shown to lead to a high drive steady state in the driven-
dissipative system that can be characterized by a generalized Bose-Einstein distribution with a
condensate fraction at zero momentum.

Section 5.1 provides a summary of the standard Holstein-Primakoff spin wave theory, which is
used to implement magnon interactions in the code simulating a driven-dissipative system with
magnon-magnon scattering. We proceed by introducing the Boltzmann formalism in section 5.2
before briefly summarizing the findings leading up to this project in chapter 5.3 and presenting
computational details in section 5.4, such that researchers interested in similar problems can
understand the theoretical and numerical background of the simulation used to obtain the results
presented in publication II. In section 5.5 we proceed to present so far unpublished results on
the linearized kinetic equation, its eigenvalues and possible implications for the slow modes in
the system.

5.1 Spin wave theory

In order to investigate the effect of magnon interactions on the steady states in a driven-
dissipative square lattice Heisenberg antiferromagnet, we consider the Hamiltonian

HHeis =
∑
ij

Jij

{1
2
(
S+
i S
−
j + S−i S

+
j

)
+ ∆Szi Szj

}
with Jij > 0 (5.1)

where the local spin operators Si satisfy S2 = S (S + 1) and the coupling strength Jij is taken to
be positive to ensure an antiferromagnetic ground state. The spin magnitude S also determines
the magnitude of quantum fluctuations in the system, which for sufficiently large spin length is
ordered. By including the Hamiltonian parameter ∆, we allow for anisotropies of the exchange
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5 Nonequilibrium phase transition

interaction. While this model is isotropic at ∆ = 1, spin rotation symmetry is broken for ∆ > 1
yielding the antiferromagnetic Ising model for ∆ → ∞. While the ferromagnetic (Jij < 0)
ground state is well known, defining a ground state is more difficult in the antiferromagnetic
case and dependent on both the dimensionality and the anisotropy [100, 101].

We restricting the system to nearest neighbor interactions by defining the the exchange coupling
to be

Jij =

J if Ri + δ = Rj

0 otherwise
, (5.2)

where δ are the unit vectors connecting a given site with its nearest neighbors and J determines
the energy scale. The coordination number z states how many of these vectors δ exist for each
lattice point, i.e. how many nearest neighbors there are. On a two-dimensional square lattice,
the coordination number is z = 4 and the unit vectors are given by

δ ∈ {+x,−x,+y,−y} , (5.3)

where for simplicity we have set the lattice constant to be a = 1. Classically, the spins would favor
alternating spin orientations, but while the Néel state is an eigenstate of HZZ = J

∑
〈ij〉 S

z
i S

z
j ,

it is not an eigenstate of the general Hamiltonian

HHAFM = J
∑
〈ij〉

{1
2
(
S+
i S
−
j + S−i S

+
j

)
+ ∆Szi Szj

}
, (5.4)

where the sum 〈ij〉 runs over nearest neighbors on the square lattice. Spin waves, i.e. magnons
can be described as bosons and there are different expansions around the Néel state that map the
local spin operators onto bosonic operators. Two of the most common expansions are the Hol-
stein–Primakoff transformation and the Dyson-Maleev representation, which will be explained
in detail in the following.

5.1.1 The Holstein–Primakoff representation

The Holstein–Primakoff representation maps the spin Hamiltonian given in Eq. (5.1) onto a
hermitian bosonic Hamiltonian. Both representations consider two sublattices, one where the
magnetic moments are pointing up and one where the magnetic moments are pointing down.
The formalisms assume bipartite lattices, meaning that next neighbors always belong to different
sublattices, as displayed in Fig. 5.1.

The Holstein–Primakoff transformation on one sublattice is given by

S+
i =

√
2S

√
1− a†iai

2S ai (5.5a)

S−i =
√

2S a†i

√
1− a†iai

2S (5.5b)

Szi = S − a†iai (5.5c)

12



5.1 Spin wave theory

and on the other sublattice by

S+
j =

√
2S b†j

√
1−

b†jbj

2S (5.6a)

S−j =
√

2S

√
1−

b†jbj

2S bj (5.6b)

Szj = −S + b†jbj , (5.6c)

where both a and b are bosonic operators that follow the commutation rules[
ai, a

†
i′

]
= δii′ (5.7a)[

βjβ
†
j′

]
= δii′ (5.7b)[

a
(†)
i , b

(†)
j

]
= 0 . (5.7c)

Under the assumption that the spin S is large, we can Taylor expand the square roots in the
expressions above, yielding

S+
i =

√
2S

(
1− a†iai

4S

)
ai +O

( 1
S

)
(5.8a)

S−i =
√

2S a†i

(
1− a†iai

4S

)
+O

( 1
S

)
(5.8b)

and the analogous for S+
j and S−j . At this point it becomes apparent that while the exact

Hamiltonian is not maintained due to the expansion, the hermitian nature of the Hamiltonian
is conserved as

(
S+
i

)†
= S−i . The lattice has N sites, i.e. N/2 sites on each sublattice, so we

use ∑
〈ij〉

1 =
∑
i∈A

∑
bonds attached to i

1 = Nz

2 (5.9)

where the number of the bonds attached to i is z and ∑i∈A = N/2 (only the A sublattice).

Figure 5.1: Schematic display of a bipartite lattice in the Néel state with magnetic moments
pointing up (blue) only directly neighboring magnetic moments pointing down (blue) and
vice versa.
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5 Nonequilibrium phase transition

With this, we can evaluate the components of the Hamiltonian in Eq. (5.1) as

J∆
∑
〈ij〉

Szi S
z
j = −J∆S2Nz

2 + J∆Sz

∑
i

a†iai +
∑
j

b†jbj

− J∆
∑
〈ij〉

{
a†iaib

†
jbj
}

(5.10a)

J

2
∑
〈ij〉

S+
i S
−
j = J

2
∑
〈ij〉

2S aibj −
aib
†
jbjbj

2 − a†iaiaibj
2 +

a†iaiaib
†
jbjbj

8S

 (5.10b)

J

2
∑
〈ij〉

S−i S
+
j = J

2
∑
〈ij〉

2S a†ib
†
j −

a†ia
†
iaib

†
j

2 −
a†ib
†
jb
†
jbj

2 +
a†ia
†
iaib

†
jb
†
jbj

8S

 , (5.10c)

such that the full Hamiltonian is given by

HHP = E′0 +H ′0 + V ′HP + V ′′HP (5.11a)

E′0 = −Nz2 ∆JS (S + 1) (5.11b)

H ′0 = JSz∆

∑
i

aia
†
i +

∑
j

b†jbj

+ JS
∑
〈ij〉

(
a†ib
†
j + aibj

)
(5.11c)

V ′HP = −J
∑
〈ij〉

{
∆ a†iaib

†
jbj + 1

4
(
aib
†
jbjbj + a†iaiaibj + a†ia

†
iaib

†
j + a†ib

†
jb
†
jbj
)}

(5.11d)

V ′′HP = J

16S
∑
〈ij〉

{
a†ia
†
iaib

†
jb
†
jbj + a†iaiaib

†
jbjbj

}
. (5.11e)

Since we are using the Holstein-Primakoff transformation in the limit of large S, we will neglect
V ′′HP in the following. Fourier transforming the boson operators into momentum space via

ai =
√

2
N

∑
k

e−ikRiak (5.12a)

bj =
√

2
N

∑
k

e+ikRjbk , (5.12b)

where k runs over the (antiferromagnetic-)Brillouin zone, yields the momentum space represen-
tation of HHP. We define the Fourier transform with opposite signs in the exponent to facilitate
the notation and restrict the indices to positive k. This implies that a-bosons and b-bosons
carry opposite momenta. Transforming the number operators on a given sublattice gives

∑
i

a†iai = N

2
∑
i

∑
k1,k2

e+ik1Ri a†k1
e−ik2Ri ak2 (5.13a)

=
∑
k1,k2

a†k1
ak2

(
N

2
∑
i

e+i(k1−k2)Ri

)
(5.13b)

=
∑
k1,k2

a†k1
ak2 δ (k1 − k2) (5.13c)

=
∑
k

a†kak , (5.13d)
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5.1 Spin wave theory

and, following the same steps, ∑
j

b†jbj =
∑
k

b†kbk . (5.14)

For the mixed quadratic operators, we get

∑
〈ij〉

a†ib
†
j = N

2
∑
i

∑
k1,k2

∑
δ

eik1Ria†k1
e−ik2(Ri+δ)b†k2

(5.15a)

=
∑
k1,k2

∑
δ

e−ik2δa†k1
b†k2

(
N

2
∑
i

eiRi(k1−k2)
)

(5.15b)

=
∑
k

a†kb
†
k

∑
δ

e−ikδ (5.15c)

where δ runs over the unit vectors given in Eq. (5.3). In two dimensions we have
∑
δ

e−ikδ
2d= e−ikx + e−iky + eikx + eiky (5.16a)

= 2 [cos (kx) + cos (ky)] , (5.16b)

and more generally we can define the function

γk = 1
z

∑
δ

eiakδ (5.17a)

= 1
d

d∑
η=1

cos (kηa) , (5.17b)

where d is the number of dimensions and a is the lattice constant. This allows us to write the
mixed operator products as ∑

〈ij〉
a†ib
†
j = z

∑
k

γka
†
kb
†
k (5.18a)

∑
〈ij〉

aibj = z
∑
k

γkakbk . (5.18b)

In order to transform the interaction part V ′HP, as defined in Eq. (5.11d), into momentum space,
we compute

∑
〈ij〉

a†iaib
†
jbj =

( 2
N

)2 ∑
k1k2k3k4

∑
〈ij〉

eik1Ria†1e
−ik2Ria2e

−ik3Rjb†3e
ik4Rjb4 (5.19a)

=
( 2
N

)2 ∑
k1k2k3k4

∑
i

∑
δ

ei(k1−k2)Rie−ik3(Ri+δ)eik4(Ri+δ)a†1a2b
†
3b4 (5.19b)

= 2
N

∑
k1k2k3k4

∑
δ

eiδ(k4−k3) 2
N

∑
i

ei(k1−k2−k3+k4)Ria†1a2b
†
3b4 (5.19c)

= 2z
N

∑
k1k2k3k4

γ(4−3) δ (k1 − k2 − k3 + k4) a†1a2b
†
3b4 (5.19d)

= 2z
N

∑
k1k2k3k4

γ(2−4) δ (k1 + k2 − k3 − k4) a†1a3b
†
4b2 , (5.19e)
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5 Nonequilibrium phase transition

where all delta-functions in this context are to be taken modulo a reciprocal lattice vector of
the antiferromagnetic Brillouin zone. Similarly, we can transform

∑
〈ij〉

a†iaiaibj = 2z
N

∑
k1k2k3k4

γ(2) δ (k1 + k2 − k4 − k3) a†1a3a4b2 (5.20a)

∑
〈ij〉

a†ia
†
iaib

†
j = 2z

N

∑
k1k2k3k4

γ(4) δ (k1 + k2 − k3 − k4) a†1a
†
2a3b

†
4 (5.20b)

∑
〈ij〉

aib
†
jbjbj = 2z

N

∑
k1k2k3k4

γ(2−3−4) δ (k1 + k2 − k3 − k4) a1b
†
2b3b4 (5.20c)

∑
〈ij〉

a†ib
†
jb
†
jbj = 2z

N

∑
k1k2k3k4

γ(2−3−4) δ (k1 + k2 − k3 − k4) a†1b
†
3b
†
4b2 . (5.20d)

Transforming the components of the real space Hamiltonian in Eq. (5.11) in momentum space
yields

H ′0 = JSz
∑
k

[
∆
(
aka

†
k + b†kbk

)
+ γk

(
a†kb
†
k + akbk

)]
(5.21)

for the bilinear Hamiltonian and

V ′HP = −J 2z
N

∑
k1k2k3k4

δ (k1 + k2 − k3 − k4) ∆γ(2−4) a
†
1a3b

†
4b2 (5.22)

− J 2z
N

∑
k1k2k3k4

δ (k1 + k2 − k3 − k4) 1
4
(
γ(2) a

†
1a3a4b2 + γ(1) a

†
1b
†
3b
†
4b2
)

− J 2z
N

∑
k1k2k3k4

δ (k1 + k2 − k3 − k4) 1
4
(
γ(4) a

†
1a
†
2a3b

†
4 + γ(1) a1b

†
2b3b4

)
for the magnon scattering. Here we have used that∑

k1k2k3k4

δ (k1 + k2 − k3 − k4) γ(2−3−4) =
∑

k1k2k3k4

δ (k1 + k2 − k3 − k4) γ(1) . (5.23)

5.1.2 The Dyson-Maleev representation

Just like the Holstein-Primakoff representation, the Dyson-Maleev representation uses a trans-
formation on two sublattices, namely

Szi = S − a†iai (5.24a)

S+
i =

√
2S
(

1− a†iai
2S

)
ai (5.24b)

S−i =
√

2S a†i (5.24c)

and

Szj = −S + b†ibj (5.25a)

S+
j =

√
2S b†j

1−
b†jbj

2S

 (5.25b)
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5.1 Spin wave theory

S−j =
√

2S bj (5.25c)

to map the spin Hamiltonian in Eq. (5.1) onto a bosonic Hamiltonian. The major difference
between the Holstein-Primakoff representation and the Dyson-Maleev representation is that the
Dyson-Maleev representation maintains the full Hamiltonian because there is no need for a
truncation of a power series. However, in contrast to the Holstein-Primakoff representation, it
is not hermitian because (

S+
i

)†
6= S−i . (5.26)

Following the same steps as described in section 5.1.1, we can divide the Hamiltonian into
a ground state energy, a bilinear Hamiltonian and a term encoding the magnon interaction,
yielding

HDM = E′0 +H ′0 + V ′DM (5.27a)

E′0 = −Nz2 ∆JS (S + 1) (5.27b)

H ′0 = JSz∆

∑
i

aia
†
i +

∑
j

b†jbj

+ JS
∑
〈ij〉

(
a†ib
†
j + aibj

)
(5.27c)

V ′DM = −J
∑
〈ij〉

[
∆a†iaib

†
jbj + 1

2
(
a†iaiaibj + a†ib

†
jb
†
jbj
)]

(5.27d)

where both E′0 and H ′0 are identical to the Holstein-Primakoff Hamiltonian. However, the term
encoding the magnon scattering is different, and it’s momentum space representation is given
by

V ′DM = −J 2z
N

∑
k1k2k3k4

δ (k1 + k2 − k3 − k4) ∆γ(2−4) a
†
1a3b

†
4b2 (5.28)

− J 2z
N

∑
k1k2k3k4

δ (k1 + k2 − k3 − k4) 1
2
(
γ(2) a

†
1a3a4b2 + γ(1) a

†
1b
†
3b
†
4b2
)
.

5.1.3 Diagonalizing the bilinear Hamiltonian H ′0

The bilinear Hamiltonian, which is identical in the two previously discussed formalisms, can be
written as the matrix equation

H ′0 = JSz
∑
k

[
ak b†k

] [∆ −γk
γk ∆

] [
a†k
−bk

]
. (5.29)

where the eigenvalues of the matrix are given by ±
√

∆2 − γ2
k . We define

λk =
√

∆2 − γ2
k , (5.30)

which allows us to write the diagonal Hamiltonian as

H ′0 = JSz
∑
k

[
ak b†k

] [λk 0
0 −λk

] [
a†k
−bk

]
(5.31a)
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= JSz
∑
k

λk
(
aka

†
k + b†kbk

)
. (5.31b)

Figure 5.2 displays λk for three different anisotropies ∆ along high symmetry cuts through the
antiferromagnetic Brillouin zone and it is visible, that while the system is gapless in the isotropic
case, a gap opens at ∆ > 1. Note that the derivative of λk perpendicular to the Brillouin zone
boundary (BZB) is independent of the value of ∆, as it is required for a dispersion. In general,
we know that

lim
k→0

γk = 1 (5.32a)

lim
k→BZB

γk = 0 (5.32b)

and therefore

lim
k→0

λk =
√

∆2 − 1 (5.33a)

lim
k→BZB

λk = ∆ . (5.33b)

In order to eliminate off-diagonal terms in the corrections to the bilinear Hamiltonian, we write
a and b in terms of the Bogoliubov operators

ak = ukαk + vkβ
†
k (5.34a)

bk = ukβk + vkα
†
k . (5.34b)

Just like the original operators a and b, the Bogoliubov operators α(†)
k and β

(†)
k are canonical

bosonic annihilation (creation) operators and therefore need to obey the same bosonic commuta-
tion laws. Assuming uk and vk to be real without loss of generality, we evaluate the commutators

X Γ M X
0.0

0.4

0.8

1.2

λ
(k
x
,k
y
,∆

)

∆ = 1

∆ = 1.05

∆ = 1.25

−π 0 π
−π

0

π

ky

kx

Γ X

M

Figure 5.2: Magnon dispersion λk for three different values of ∆ along high symmetry cuts
(shown in the inset, red) through the antiferromagnetic Brillouin zone. For ∆ > 1 a gap
opens at Γ, which corresponds to the center of the Brillouin zone
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1 !=
[
ak, a

†
k

]
= u2

k

[
αk, α

†
k

]
+ v2

k

[
β†k, βk

]
= u2

k − v2
k (5.35a)

1 !=
[
bk, b

†
k

]
= u2

k

[
βk, β

†
k

]
+ v2

k

[
α†k, αk

]
= u2

k − v2
k (5.35b)

and find that the Bogoliubov factors uk and vk need to satisfy

u2
k − v2

k
!= 1 . (5.36)

In order to write the momentum space Hamiltonian in Eq. (5.21) in terms of these operators,
we compute

γkakbk = γk
[
u2
kαkβk + v2

kα
†
kβ
†
k + ukvk

(
αkα

†
k + β†kβk

)]
(5.37a)

γkα
†
kβ
†
k = γk

[
u2
kα
†
kβ
†
k + v2

kαkβk + ukvk
(
αkα

†
k + β†kβk

)]
(5.37b)

∆aka†k = ∆
[
u2
kαkα

†
k + v2

kβ
†
kβk + ukvk

(
αkβk + α†kβ

†
k

)]
(5.37c)

∆b†kbk = ∆
[
u2
kβ
†
kβk + v2

kαkα
†
k + ukvk

(
αkβk + α†kβ

†
k

)]
, (5.37d)

which yields the Hamiltonian

H ′0 =
[
2γkukvk + ∆

(
u2
k + v2

k

)] (
αkα

†
k + β†kβk

)
(5.38)

+
[
2∆ukvk + γk

(
u2
k + v2

k

)] (
αkβk + α†kβ

†
k

)
.

Identifying this with the bilinear Hamiltonian in Eq. (5.31b), we set

2γkukvk + ∆
(
u2
k + v2

k

) != λk (5.39a)

2∆ukvk + γk
(
u2
k + v2

k

) != 0 . (5.39b)

This determines two further criteria that need to be satisfied by uk and vk, namely

u2
k + v2

k
!= ∆
λk

(5.40a)

ukvk
!= − γk

2λk
. (5.40b)

One choice of Bogoliubov factors that meets all the requirements from Eq. (5.36) and Eq. (5.40)
is given by

uk =
√

∆ + λk
2λk

(5.41a)

vk = −sign (γk)
√

∆− λk
2λk

. (5.41b)

The Bogoliubov transformation implies a new ground state, which is defined by

αk |ΦGS〉 = 0 (5.42)

and defines the vacuum at temperature T = 0.
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5.1.4 The interaction term

The magnon interactions are contained in the interaction term V , whose momentum space
representations are given in Eq. (5.22) for the Holstein-Primakoff representation and in Eq. (5.28)
for the Dyson-Maleev representation. Both terms have the four-operator products{

a†1a3b
†
4b2, a

†
1a3a4b2, a

†
1b
†
3b
†
4b2
}

(5.43)

in common, the products {
a†1b
†
4a
†
2a3, b

†
2b3a1b4

}
(5.44)

are unique to the Holstein-Primakoff representation. Writing these products in terms of the
Bogoliubov operators, as defined in Eq. (5.34), and normal ordering the result yields lengthy
expressions given in appendix A, starting at Eq. (A.2). Each of the products has terms with
two delta-functions, which do not depend on the Bogoliubov operators and therefore contribute
to the magnon vacuum. Furthermore, the products consist of terms that contain one delta-
function and that are bilinear in the Bogoliubov operators. These terms contribute to the
bilinear Hamiltonian. The terms which are not multiplied by a delta-function and which have
products of four Bogoliubov operators will lead to the vertices which we use to implement the
magnon interactions in our simulation. To simplify the notation, we will now split up each of
the five terms in Eq. (5.43) and Eq. (5.43) with the prefactors γk from the momentum space
representation of the magnon interactions in Eq (5.22), in these three categories, meaning we
define

P1 =
∑

k1k2k3k4

∆ δ (k1 + k2 − k3 − k4) γ(2−4)a
†
1a3b

†
4b2 = P E

1 + P bilinear
1 + P V

1 , (5.45)

where PE is the contribution to the ground state energy, P bilinear is the contribution to the
bilinear Hamiltonian and P V is the contribution to the magnon interactions. The analogous
definitions for the remaining products are

P2 =
∑

k1k2k3k4

δ (k1 + k2 − k3 − k4) γ(2) a
†
1a3a4b2 = P E

2 + P bilinear
2 + P V

2 (5.46a)

P3 =
∑

k1k2k3k4

δ (k1 + k2 − k3 − k4) γ(1) a
†
1b
†
3b
†
4b2 = P E

3 + P bilinear
3 + P V

3 (5.46b)

P4 =
∑

k1k2k3k4

δ (k1 + k2 − k3 − k4) γ(4) a
†
1a
†
2a3b

†
4 = P E

4 + P bilinear
4 + P V

4 (5.46c)

P5 =
∑

k1k2k3k4

δ (k1 + k2 − k3 − k4) γ(1) a1b
†
2b3b4 = P E

5 + P bilinear
5 + P V

5 . (5.46d)

The first contribution to the magnon vacuum is given by

P E
1 =

∑
k1k2k3k4

∆ δ (k1 + k2 − k3 − k4) γ(2−4)
[
v2

1v
2
2 δ (k1 − k3) δ (k2 − k4)

]
(5.47a)

+
∑

k1k2k3k4

∆ δ (k1 + k2 − k3 − k4) γ(2−4) [u1u2 v1v2 δ (k1 − k4) δ (k2 − k3)]

=
∑
k1k2

∆
(
v2

1v
2
2 + γ(2−1)u1u2 v1v2

)
(5.47b)
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and the first correction to the bilinear Hamiltonian yields

P bilinear
1 =

∑
k1k2

∆
[
v2

2

(
u2

1 + v2
1

)
+ 2 γ(2−1) u1u2 v1v2

] (
α†1α1 + β†1β1

)
(5.48)

+
∑
k1k2

∆
[
2u1v1v

2
2 + γ(2−1) u2v2

(
u2

1 + v2
1

)] (
α†1β

†
1 + α1β1

)
.

Analogously, we get

P E
2 =

∑
k1k2

2 v2
1u2v2γ(2) (5.49a)

P bilinear
2 =

∑
k1k2

[
2u1v1v

2
2γ(1)

] (
α†1α1 + β†1β1

)
+
∑
k1k2

[
2u2v2γ(2)

] (
u2

1α
†
1α1 + v2

1β
†
1β1
)

(5.49b)

+
∑
k1k2

[
2u1v1u2v2γ(2)

] (
α†1β

†
1 + α1β1

)
+
∑
k1k2

[
2v2

2γ(1)
] (
v2

1α
†
1β
†
1 + u2

1α1β1
)

and

P E
3 =

∑
k1k2

2 v2
1u2v2γ(2) (5.50a)

P bilinear
3 =

∑
k1k2

[
2u1v1v

2
2γ(1)

] (
α†1α1 + β†1β1

)
+
∑
k1k2

[
2u2v2γ(2)

] (
v2

1α
†
1α1 + u2

1β
†
1β1
)

(5.50b)

+
∑
k1k2

[
2u1v1u2v2γ(2)

] (
α†1β

†
1 + α1β1

)
+
∑
k1k2

[
2v2

2γ(1)
] (
u2

1α
†
1β
†
1 + v2

1α1β1
)
.

The products that are unique to the Holstein-Primakoff formalism yield

P E
4 =

∑
k1k2

2 v2
1u2v2γ(2) (5.51a)

P bilinear
4 =

∑
k1k2

[
2u1v1v

2
2γ(1)

] (
α†1α1 + β†1β1

)
+
∑
k1k2

[
2u2v2γ(2)

] (
u2

1α
†
1α1 + v2

1β
†
1β1
)

(5.51b)

+
∑
k1k2

[
2u1v1u2v2γ(2)

] (
α†1β

†
1 + α1β1

)
+
∑
k1k2

[
2 v2

2γ(1)
] (
u2

1α
†
1β
†
1 + v2

1 α1β1
)

and

P E
5 =

∑
k1k2

2 v2
1u2v2γ(2) (5.52a)

P bilinear
5 =

∑
k1k2

[
2u1v1v

2
2γ(1)

] (
α†1α1 + β†1β1

)
+
∑
k1k2

[
2u2v2γ(2)

] (
v2

1α
†
1α1 + u2

1β
†
1β1
)

(5.52b)

+
∑
k1k2

[
2u1v1u2v2γ(2)

] (
α†1β

†
1 + α1β1

)
+ +

∑
k1k2

[
2v2

2γ(1)
] (
v2

1 α
†
1β
†
1 + u2

1 α1β1
)
.

Collecting the contributions to the ground state energy, it is easy to see that the corrections to
E′0, as defined in Eq. (5.11b) are the same for both formalisms, because P E

2 = P E
3 = P E

4 = P E
5 .

Overall, we obtain

E0 = E′0 −
2Jz
N

∑
k1k2

∆
(
v2

1v
2
2 + γ(2−1)u1u2v1v2

)
+ 2v2

1u2v2γ(2) (5.53a)

= E′0 −
2Jz
N

∑
k1k2

∆
[(∆− λ1) (∆− λ2)

4λ1λ2
+
γ(2−1)γ(1)γ(2)

4λ1λ2

]
−
γ2

(2)
λ2

[∆− λ1
2λ1

]
, (5.53b)
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where we have used the properties of the Bogoliubov factors in Eq. (5.40). To compute integrals
in momentum space, it is useful to recall that k only runs over the antiferromagnetic Brillouin
zone and not the full Brillouin zone, which means the corresponding integrals read

∑
k

1 = N

2 (2π)2

∫ π

−π
dkx

∫ π

−π
dky = N

2 (5.54)

and correspondingly

∑
k1k2

1 = N

2 (2π)2

∫ π

−π
dkx1

∫ π

−π
dky1

N

2 (2π)2

∫ π

−π
dkx2

∫ π

−π
dky2 = N2

4 . (5.55)

Furthermore, recalling the definition of γk in Eq. (5.17b) and the trigonometric addition formulas
allows to write

∑
k2

γ(2−1)f (k2) ∝
∫ π

−π

∫ π

−π
dkx2 dky2

cos (kx2 ) cos (kx1 ) + cos (ky2) cos (ky1)
2 f (kx2 , k

y
2) (5.56a)

+ sin (kx1 )
2

∫ π

−π

∫ π

−π
dkx2 dky2 sin (kx2 ) f (kx2 , k

y
2) (5.56b)

+ sin (ky1)
2

∫ π

−π

∫ π

−π
dkx2 dky2 sin (ky2) f (kx2 , k

y
2) , (5.56c)

where both Eq. (5.56b) and Eq. (5.56c) are zero for any given function f (kx2 , k
y
2) that satisfies

f (kx2 , k
y
2) = f (−kx2 ,−k

y
2). Similarly, we get

∑
k2

γ(2)γ(1)f (k2) ∝
∫ π

−π

∫ π

−π
dkx2 dky2

cos (kx2 ) cos (kx1 ) + cos (ky2) cos (ky1)
4 f (kx2 , k

y
2) (5.57a)

+
∫ π

−π

∫ π

−π
dkx2 dky2

cos (kx2 ) cos (ky1) + cos (ky2) cos (kx1 )
4 f (kx2 , k

y
2)

∝
∫ π

−π

∫ π

−π
dkx2 dky2

cos (kx2 ) cos (kx1 ) + cos (ky2) cos (ky1)
2 f (kx2 , k

y
2) , (5.57b)

where in Eq. (5.57b) we have used that we can swap kx2 and ky2 since f (kx2 , k
y
2) = f (ky2 , kx2 ). So

we see, that∑
k2

γ(2)γ(1)f (k2) =
∑
k2

γ(2−1)f (k2) ∀ f (kx2 , k
y
2) = f (−kx2 ,−k

y
2) = f (ky2 , kx2 ) . (5.58)

Since we know that

γ (kx2 , k
y
2) = γ (−kx2 ,−k

y
2) = γ (ky2 , kx2 ) (5.59a)

λ (kx2 , k
y
2) = λ (−kx2 ,−k

y
2) = λ (ky2 , kx2 ) (5.59b)

we can write the magnon vacuum as

E0 = E′0 −
Jz∆
2N

∑
k1k2

(∆− λ1) (∆− λ2)
λ1λ2

[
1 + (∆ + λ1) (∆ + λ2)− 2 (∆ + λ2)

∆

]
(5.60a)

= E′0 −
Jz∆
2N

∑
k1k2

[
1 +

(
∆2 − 1

)( ∆2

λ1λ2
− 2λ2

λ1

)
− 2λ2

∆ + λ1λ2

]
(5.60b)
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= E′0 −
Jz∆
2N

N2

4 −
2
∆
∑
k

λk +
(∑

k

λk

)2

+
(
∆2 − 1

) ∑
k1k2

(
∆2

λ1λ2
− 2λ2

λ1

) (5.60c)

= E′0 −
Jz∆
2N

(N
2 −

∑
k

λk

)2

+
(
∆2 − 1

) ∑
k1k2

(
∆2

λ1λ2
− 2λ2

λ1

) , (5.60d)

where it becomes apparent, that in the isotropic case of ∆ = 1, Eq. (5.60d) further simplifies to

Eisotropic
0 = −JNz2

S (S + 1) + 1
4

(
1− 2

N

∑
k

λk

)2
 , (5.61)

which corresponds to the result in Ref. [102].

Just like the corrections to the ground state energy, the corrections to the bilinear Hamiltonian
H ′0 (see Eq. (5.31b)) are independent of whether one uses the Holstein-Primakoff or the Dyson-
Maleev Formalism because P bilinear

2 + P bilinear
3 = P bilinear

4 + P bilinear
5 , namely

H0 = H ′0 −
2Jz
N

∑
k1k2

∆
[
v2

2

(
u2

1 + v2
1

)
+ 2 γ(1)γ(2) u1u2 v1v2

] (
α†1α1 + β†1β1

)
(5.62)

− 2Jz
N

∑
k1k2

[
2u1v1v

2
2γ(1) + u2v2γ(2)

(
u2

1 + v2
1

)] (
α†1α1 + β†1β1

)
− 2Jz

N

∑
k1k2

∆
[
2u1v1v

2
2 + γ(1)γ(2) u2v2

(
u2

1 + v2
1

)] (
α†1β

†
1 + α1β1

)
− 2Jz

N

∑
k1k2

[
2u1v1u2v2γ(2) + v2

2γ(1)
(
u2

1 + v2
1

)] (
α†1β

†
1 + α1β1

)
.

Using the properties of the Bogoliubov factors, this can be written as

H0 = H ′0 + 2Jz
N

∑
k2

[(
∆2 − λ2

2
2λ2

)
−∆

(∆− λ2
2λ2

)]∑
k1

(∆
λ1

)(
α†1α1 + β†1β1

)
(5.63)

+ 2Jz
N

∑
k2

[(∆− λ2
2λ2

)
−∆

(
∆2 − λ2

2
2λ2

)]∑
k1

(
∆2 − λ2

1
λ1

)(
α†1α1 + β†1β1

)

+ 2Jz
N

∑
k2

(
∆2 − λ2

2
2λ2

)∑
k1

(
1−∆2) γ(1)

λ1

(
α†1β

†
1 + α1β1

)
,

where the terms that mix the two sublattices (α(†)
1 β

(†)
1 ) cancel out for the isotropic system and

we obtain

H isotropic
0 = H ′0 + Jz

2

1− 2
N

∑
k2

λ2

∑
k1

λ1
(
α†1α1 + β†1β1

)
(5.64a)

= JSz

1 + 1
2S

1− 2
N

∑
k′

λk′

∑
k

λk
(
α†kαk + β†kβk

)
, (5.64b)

which also corresponds to Ref. [102]. To simplify notation we define

H isotropic
0 =

∑
k

ωk
(
α†kαk + β†kβk

)
(5.65)
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with

ωk = JSz

1 + 1
2S

1− 2
N

∑
k′

λk′

λk , (5.66)

and we can numerically evaluate the constant

1− 2
N

∑
k′

λk′ = 1− 2
N

∑
k

√
1−

(cos (kx) + cos(ky)
2

)2
= 0.157947421 . (5.67)

Assuming an isotropic system with S = 1/2, this yields1 + 1
2S

1− 2
N

∑
k′

λk′

 = 1.157947421 ∀ ∆ = 1, S = 1
2 . (5.68)

Considering the limits k→ 0 and k→ BZB in Eq. (5.32) and Eq. (5.33), we see that

ωmax = JSz

1 + 1
2S

1− 2
N

∑
k′

λk′

∆ (5.69)

at the Brillouin zone boundary. In the system with an anisotropy (Eq. (5.63), ∆ 6= 1), the
off-diagonal terms that do not only renormalize the overall energy scale but also change the
dispersion itself, are proportional to

(
1−∆2) (γ(k)/λk

)
. This term goes like

lim
k→0

(
1−∆2) γ(k)

λk
= −

√
∆2 − 1 (5.70a)

lim
k→BZB

(
1−∆2) γ(k)

λk
= 0 . (5.70b)

The vanishing of the off-diagonal terms at the Brillouin zone boundary for arbitrary anisotropies
is a direct consequence of the symmetry due to the bipartite lattice. Only if a hopping between
next-nearest neighbors is introduced, γ(k) does not vanish at the boundary and the off-diagonal
terms remain finite at ∆ 6= 0. However, at the center of the Brillouin zone the off-diagonal
term only vanishes at the Heisenberg-Point ∆ = 1, meaning spin rotational symmetry, i.e. the
same symmetry that conserves magnons with k → 0 and causes them to be massless (Goldstone
modes), is strictly required for the Hamiltonian to be bilinear at this level of perturbation theory.
At ∆ > 1 spin rotational symmetry is broken and a gap opens (see Fig 5.2), meaning there are
further corrections to the dispersion.

The difference between the Holstein-Primakoff formalism and the Dyson-Maleev formalism man-
ifests itself in the term that encodes the magnon interactions. We define

V = −2Jz
N

∑
k1k2k3k4

δ (k1 + k2 − k3 − k4)×
[
Ṽ(2:2)

1234

(
α†1α3β

†
4β2
)

(5.71)

+ V(2:2)
1234

(
α†1α

†
2α3α4 + β†3β

†
4β1β2

)
+ Ṽ(3:1)

1234

(
α†1α

†
2α4β

†
3 + α3β

†
4β1β2

)
+ V(3:1)

1234

(
α†2β

†
3β
†
4β1 + α†1α3α4β2

)
+ V(4:0)

1234

(
α†1α

†
2β
†
3β
†
4 + α3α4β1β2

)
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5.1 Spin wave theory

and in the Holstein-Primakoff formalism, the vertices V are given by

ṼHP(2:2)
1+
α 2−

β
3−α 4+

β

= ∆γ(2−4) [u1u2u3u4 + v1v2v3v4] + ∆γ(2−3) [u1u2 v3v4 + u3u4 v1v2] (5.72a)

+ 1
2
{
γ(1) [u3 v1v2v4 + u1u2u4 v3] + γ(2) [u1u2u3 v4 + u4 v1v2v3]

}
+ 1

2
{
γ(3) [u2u3u4 v1 + u1 v2v3v4] + γ(4) [u2 v1v3v4 + u1u3u4 v2]

}
VHP(2:2)

1+
α 2+

α 3−α 4−α
= ∆γ(2−4)u1u3 v2v4 (5.72b)

+ 1
4
[
γ(2) (u2 v1v3v4 + u1u3u4 v2) + γ(4) (u4 v1v2v3 + u1u2u3 v4)

]
ṼHP(3:1)

1+
α 2+

α 3+
β

4−α
= ∆γ(2−3) [u1u3u4 v2 + u2 v1v3v4] (5.72c)

+ 1
2
{
γ(2) [u2u3 v1v4 + u1u4 v2v3]

}
+ 1

4
{
γ(3) [v1v2v3v4 + u1u2u3u4] + γ(4) [u3u4 v1v2 + u1u2 v3v4]

}
VHP(3:1)

1+
α 2−

β
3−α 4−α

= ∆γ(2−4) [u4 v1v2v3 + u1u2u3 v4] (5.72d)

+ 1
2
{
γ(4) [u2u4 v1v3 + u1u3 v2v4]

}
+ 1

4
{
γ(2) [v1v2v3v4 + u1u2u3u4] + γ(1) [u1u2 v3v4 + u3u4 v1v2]

}
VHP(4:0)

1+
α 2+

α 3+
β

4+
β

= ∆γ(2−4)u1u4 v2v3 (5.72e)

+ 1
4
[
γ(2) (u1 v2v3v4 + u2u3u4 v1) + γ(4) (u3 v1v2v4 + u1u2u4 v3)

]
while the vertices in the Dyson Maleev formalism yield

ṼDM(2:2)
1+
α 2−

β
3−α 4+

β

= ∆γ(2−4) (u1u2u3u4 + v1v2v3v4) + ∆γ(2−3) (u1u2 v3v4 + v1v2 u3u4) (5.73a)

+ γ(2) (u1u2u3 v4 + u4 v1v2v3) + γ(1) (u1u2u4 v3 + u3 v1v2v4)

VDM(2:2)
1+
α 2+

α 3−α 4−α
= ∆γ(2−4)u1u3 v2v4 + 1

2γ(2) [u2 v1v3v4 + u1u3u4 v2] (5.73b)

ṼDM(3:1)
1+
α 2+

α 3+
β

4−α
= ∆γ(2−3) (u1u3u4 v2 + u2 v1v3v4) + γ(2) (u1u4 v2v3 + u2u3 v1v4) (5.73c)

VDM(3:1)
1+
α 2−

β
3−α 4−α

= ∆γ(2−4) (u1u2u3 v4 + u4 v1v2v3) (5.73d)

+ 1
2
[
γ(1) (u3u4 v1v2 + u1u2 v3v4) + γ(2) (v1v2v3v4 + u1u2u3u4)

]
VDM(4:0)

1+
α 2+

α 3+
β

4+
β

= ∆γ(2−4)u1u4 v2v3 + 1
2γ(2) [u1 v2v3v4 + u2u3u4 v1] . (5.73e)

All components PV used to construct these vertices, can be found in appendix A. At the
quadratic level, α and β annihilate the ground state. This means that α†α†β†β† is the only
term that changes the ground state. The vertices in both formalisms are closely related by a
symmetry transformation [103]. In particular, we find

V(2:2)HP
k+
α 2+

α 3−α 4−α
= 1

2

(
V(2:2)DM
k+
α 2+

α 3−α 4−α
+ V(2:2)DM

3+
α 4+

αk
−
α 2−α

)
(5.74a)

Ṽ
HP(2:2)

1+
α 2−

β
3−α 4+

β

= 1
2

(
Ṽ

DM(2:2)
1+
α 2−

β
3−α 4+

β

+ Ṽ
DM(2:2)

3+
α 4−

β
1−α 2+

β

)
, (5.74b)
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5 Nonequilibrium phase transition

which we use in the code presented in Sec. 5.4 to ensure that the vertices remain nonnegative,
meaning that small deviations from an equilibrium state decay back into equilibrium and do not
amplify.

5.1.5 The staggered magnetization

The staggered magnetization m is defined as the expectation value of the staggered magnetiza-
tion operator [101] given by

m = 1
N

∑
i

〈ΦGS|Szi |ΦGS〉 (5.75a)

Sstag =
∑
i∈A

Szi −
∑
j∈B

Szj . (5.75b)

Writing this operator in terms of the Bogoliubov operators in Eq. (5.34) yields∑
i∈A

Szi =
∑
i

(
S − a†iai

)
(5.76a)

= NS

2 −
∑

k∈BZA
a†kak (5.76b)

= NS

2 −
∑

k∈BZA

[
v2
k + u2

k α
†
kαk + v2

k β
†
kβk + ukvk

(
α†kβ

†
k + αkβk

)]
, (5.76c)

and, following the same steps,

−
∑
j∈B

Szj = NS

2 −
∑

k∈BZB

[
v2
k + v2

k α
†
kαk + u2

k β
†
kβk + ukvk

(
α†kβ

†
k + αkβk

)]
. (5.77)

We can now write the staggered magnetization operator as

Sstag = NS −
∑

k∈BZA

[
2 v2

k +
(
v2
k + u2

k

) (
α†kαk + β†kβk

)
+ 2ukvk

(
α†kβ

†
k + αkβk

)]
. (5.78)

In order to compute the staggered magnetization we recall that 〈ΦGS|α†kβ
†
k |ΦGS〉 = 0 and

〈ΦGS|αkβk |ΦGS〉 = 0, as well as that the expectation values of the occupation operators α†kαk
and β†kβk at a given temperature T are given by

〈ΦGS|α†kαk |ΦGS〉 = 〈ΦGS|β†kβk |ΦGS〉 = nT (k) , (5.79)

where n(T,k) is a thermal distribution with

nT (k) = 1
exp

[ωk
T

]
− 1 . (5.80)

We will from now on refer to Eq. 5.80 as thermal distribution, assuming there is no chemical
potential µ. For µ 6= 0 we will specify the chemical potential separately. Now we can write the
staggered magnetization as

m (T ) = S − 2
N

∑
k∈BZA

[
v2
k +

(
v2
k + u2

k

)
nT (k)

]
(5.81)
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and recall that we can write the Bogoliubov operators as functions of the magnon mode energy
ωk, namely

v2
k = 1

2

(∆
λk
− 1

)
= 1

2

(
ωmax
ωk
− 1

)
(5.82a)

u2
k + v2

k = ∆
λk

= ωmax
ωk

. (5.82b)

With this, we obtain

m(T ) = S − 2
N

∑
k∈BZA

{1
2

(
ωmax
ωk
− 1

)
+
[(
ωmax
ωk

)
nT (k)

]}
(5.83a)

=
(
S + 1

2

)
− 2
N

∑
k∈BZA

{1
2

(
ωmax
ωk

)
+
[(
ωmax
ωk

)
nT (k)

]}
(5.83b)

=
(
S + 1

2

)
− 2ωmax

N

∑
k∈BZA

{ 1
ωk

[
nT (k) + 1

2

]}
. (5.83c)

The numerical value for a thermal distribution with S = 1/2, ∆ = 1 and T = 0 is m = 0.303398.
Note that for sufficiently small spin S the staggered magnetization mathematically becomes
negative. The physical interpretation behind this is that quantum and thermal fluctuations
increase for shorter spin length and are eventually large enough to destabilize the ordered state.
At this point there is no long range order, so the definition of the staggered magnetization in
the magnon picture becomes invalid. We can use the density of states summed over the two
magnon branches, namely

ρ(ω) = 2
∫
d2kδ(ω − ωk) . (5.84)

and the distribution function of energy ω, which is given by

n(ω) =
∫
d2knkδ(ω − ωk)/ρ(ω) (5.85)

to write the staggered magnetization as

m (S, n(ω)) = S + 1
2 − ωmax

ωmax∑
m=1

ρ (ωm)
ωm

(
n (ωm) + 1

2

)
, (5.86)

where n (ω) is not restricted to the subspace of thermal distributions.

5.2 The Boltzmann formalism

We use the interaction vertices V, which are derived in Sec. 5.1.4 in a semiclassical Boltzmann
approach. The disribution of magnons in a branch α at a given momentum k is given by

dnα (k)
dt =2π

(2Jz
N

)2 (
S̃(2:2)
α (k) + S(2:2)

α (k) + S̃(3:1)
α (k) + S(3:1)

α (k) + S(4:0)
α (k)

)
, (5.87)

where the scattering integrals S are corresponding to the self energy diagrams of the different
scattering processes. In particular, the vertices for processes in which two magnons scatter into
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5 Nonequilibrium phase transition

two other magnons are given by

V(2:2) =− 2Jz
N

∑
k1k2k3k4

δ (k1 + k2 − k3 − k4)×
[
Ṽ(2:2)

1+
α 2−

β
3−α 4+

β

α†1α3β
†
4β2

]
(5.88)

− 2Jz
N

∑
k1k2k3k4

δ (k1 + k2 − k3 − k4)×
[
V(2:2)

1+
α 2+

α 3−α 4−α
α†1α

†
2α3α4 + V(2:2)

1−
β

2−
β

3+
β

4+
β

β†3β
†
4β1β2

]

and the corresponding α-scattering integrals are

S̃(2:2)
α (k) =

∑
k2k3k4

δk+k2−k3−k4δ (ωk + ωk2 − ωk3 − ωk4) Ṽ(2:2)
k+
α 4−

β
3−α 2+

β

Ṽ(2:2)
3+
α 2−

β
k−α 4+

β

× (5.89)
[
(1 + nαk)

(
1 + nβk2

)
nαk3n

β
k4
−
(
1 + nαk3

) (
1 + nβk4

)
nαkn

β
k2

]
,

where both magnon branches are involved in the scattering process, and

S(2:2)
α (k) =

∑
k2k3k4

δk+k2−k3−k4δ (ωk1 + ωk2 − ωk − ωk4)V(2:2)
k+
α 2+

α 3−α 4−α
V(2:2)

3+
α 4+

αk
−
α 2−α
× (5.90)

[
(1 + nαk)

(
1 + nαk2

)
nαk3n

α
k4 − n

α
kn

α
k2

(
1 + nαk3

) (
1 + nαk4

)]
,

where the scattering consists of α magnons only. The β scattering integrals can be written
down analogously. All processes in the system can be visualized using self energy diagrams, the
diagrams corresponding to Eq. (5.89) and Eq. (5.90) are displayed in Fig. 5.3.

Ṽ(2:2)
k+
α 4−

β
3−α 2+

β

Ṽ(2:2)
3+
α 2−

β
k−α 4+

β

αk
αk

α3

β4

β2

V(2:2)
k+
α 2+

α 3−α 4−α
V(2:2)

3+
α 4+

αk
−
α 2−α

αk
αk

α3

α2

α4

Figure 5.3: Self energy disgrams corresponding to Eq. (5.89) (above) and Eq.(5.90) (below).

Note that the difference of the occupations ensures that any thermal distribution, even with a
possible chemical potential µ, which is given by

n (k, µ) = 1
exp

[
ωk−µ
T

]
− 1

, (5.91)

stays constant in time, meaning the thermal distribution is a steady state of the system with-
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5.2 The Boltzmann formalism

out drive and dissipation. This is because the delta function of the energies ensures that
(ωk1 + ωk2 = ωk3 + ωk4). At this point we find the Holstein-Primakoff model advantageous,
since the hermitian nature of the Hamiltonian ensures that

VHP(2:2)
k+
α 2+

α 3−α 4−α
× VHP(2:2)

3+
α 4+

αk
−
α 2−α

=
(
VHP(2:2)
k+
α 2+

α 3−α 4−α

)2
(5.92a)

Ṽ
HP(2:2)

1+
α 2−

β
3−α 4+

β

× Ṽ HP(2:2)
3+
α 4−

β
1−α 2+

β

=
(
ṼHP(2:2)

1+
α 2−

β
3−α 4+

β

)2
, (5.92b)

meaning that the vertex products are inherently nonnegative. This is in general not the case for
the Dyson-Maleev vertex products, which may lead to an amplification of small deviations from
the equilibrium distribution.

Analogously we can write down scattering integrals for processes where three magnons scatter
into one magnon, like for example

S(3:1)
αααβ =

∑
k1k2k4

δk1+k2−k−k4δ (ωk1 − ωk2 − ωk − ωk4) Ṽ3:1
k+
α 4+

α 2+
β

1−α
V3:1

1+
α 2−

β
k−α 4−α

× (5.93)
[
(1 + nαk)

(
1 + nβk2

) (
1 + nαk4

)
nαk1 −

(
1 + nαk1

)
nαkn

β
k2
nαk4

]
.

However, we find that for an evenly spaced momentum grid which avoids the k = 0 point, these
integrals do not contribute to Eq.(5.87) because the two delta-functions δ (ωk1 − ωk2 − ωk3 − ωk4)
and δk1+k2−k3−k4 are never satisfied at the same time. This is easy to show mathematically in
the isotropic case, because we know that for small k-vectors, the energy is proportional to the
magnitude of the momentum vector so

ω (ki) ∼ v |ki| ∀ |ki| � π (5.94)

which means that

ωk1 = ωk2 − ωk − ωk4 ⇒ |k1| ≈ |k2|+ |k3|+ |k4| . (5.95)

Given that we know k4 = k1 + k2 − k3 from momentum conservation, the delta functions only

k1k3k2

ky

kx

Figure 5.4: Schematic illustration of the momentum points in a subsection of the magnetic
Brillouin zone around k = 0. The three highlighted vectors are the smallest three vectors
that fulfill |k1| − |k2| − |k3| ≈ |k1 + k2 − k3|.
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5 Nonequilibrium phase transition

contribute at

|k1| ≈ |k2|+ |k3|+ |k1 + k2 − k3| (5.96a)
|k1| − |k2| − |k3| ≈ |k1 + k2 − k3| . (5.96b)

Using the uniformly distributed momentum points described in detail in publication II and
partially shown in Fig. 5.4, we know that the smallest three vectors that fulfill this requirement
satisfy

k1 = 3k4 (5.97a)
k2 = −k4 (5.97b)
k3 = k4 (5.97c)

and that the deviation from zero of the argument of the energy delta function becomes larger as
the magnitude of the vectors gets larger. So no matter how dense the k-points are distributed,
there is a deviation from zero as long as none of the k-vectors is the null-vector. From Eq. (5.97)
we also know that ω2 = ω3 = ω4, so the minimal energy in this finite grid is given by

min (|ωk1 − ωk2 − ωk3 − ωk4 |) = |ωk1 − 3ωk2 | if k4
!= k1 + k2 − k3 . (5.98)

While the Taylor expansion in Eq. (5.94) is not accurate in case of a system with an anisotropy,
where a gap opens for small momentum vectors, we find numerically that the scattering of three
magnons into one magnon is kinetically forbidden for all ∆ ≥ 1.

5.3 The noninteracting steady state and the time evolution

In order to study how the magnon interactions derived in the previous chapter influence the
nonequilibrium steady states in a driven-dissipative system, we start from the results of a pre-
vious theoretical analysis of a half-filled large U Hubbard model coupled to a high frequency,
off-resonant drive and a dissipative reservoir at zero temperature [68]. This analysis largely
neglects magnon-magnon scattering and finds a steady state system which can be understood
in terms of the differential equation

∂tn (ω) = γin (1 + n (ω))− γout

n (ω) +
[
n (ω)
nT̃ (ω)

]2
 , (5.99)

where nT̃ (ω) is a thermal distribution at temperature T̃ without a chemical potential, as given
in Eq. (5.80). In this notation, γin is proportional to the drive strength and γout regulates how
magnons dissipate into the bath. The term describing the relaxation of magnons into the bath
has a nonlinearity in order to allow for the formation of a steady state. This means magnons are
created equally at all energies, but dissipate in an energy-dependent way where the dissipation
is faster at low energies. Equation (5.99) obtains steady states that can be characterized by a
dimensionless tuning parameter g, which is the ratio of in and out scattering, namely

g = γin
γout

. (5.100)
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5.4 Computational remarks

The analytic form of the steady states is given by

n
(
g, nT̃

)
=
n2
T̃

2 ·
(
g − 1±

√
(g − 1)2 + 4 g

n2
T̃

)
, (5.101)

where only the + solution gives the desired physical result, which is displayed in Fig. 5.5 and
reproduces all features from the noninteracting result. At g = 1, meaning γin = γout, the
solution is n

(
g, nT̃

)
= nT̃ , meaning a thermal distribution that diverges like 1/ω as ω → 0. For

weak and intermediate driving (g < 1, blue) the magnon modes at larger mode energies are
not occupied and they go to a finite value as ω → 0. However, the distribution of spin waves
diverges even faster than the thermal distribution when the drive is dominating (g > 1, red), so
in this case the noninteracting theory predicts nonthermal, in fact superthermal magnons. We
take this drive and dissipation and include it in our interacting Boltzmann simulation in order
to study how this changes the noninteracting theory. In particular, we are interested in whether
the redistribution of energy due to magnon interactions transfers the magnon occupation to
energies where dissipation is faster and therefore changes the theory.
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Figure 5.5: The steady states of the noninteracting analysis. At g < 1 the distribution of
spin waves is finite for all ω, at g = 1 the distribution is thermal and therefore diverges like
1/ω and at g > 1 the distribution diverges faster than 1/ω.

5.4 Computational remarks

Implementing the Boltzmann simulation for interacting magnons posed various computational
challenges, and we describe our solutions to these in detail in the appendix of publication II. In
particular, we need to avoid the k = 0 momentum point because a Bose-Einstein distribution
without a chemical potential diverges at the center of the Brillouin zone and can therefore not
be treated numerically. Furthermore, we need to numerically ensure momentum and energy con-
servation at the same time over comparatively large timescales, and we found that a broadening
of one of the delta functions in the scattering integrals S leads to an accumulation of errors
such that one of the quantities is not conserved. In order to avoid this, we map a uniformly
distributed momentum grid onto an energy grid which is uniformly distributed as well. The full
code is available at https://github.com/MonaHKa/Boltzmann-simulation
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A deeper theoretical understanding of driven-dissipative interacting systems and their nonequi-
librium phase transitions is essential both to advance our fundamental physics understanding and
to harness technological opportunities arising from optically controlled quantum many-body states.
This paper provides a numerical study of dynamical phases and the transitions between them in the
nonequilibrium steady state of the prototypical two-dimensional Heisenberg antiferromagnet with
drive and dissipation. We demonstrate a nonthermal transition that is characterized by a qualitative
change in the magnon distribution, from subthermal at low drive to a generalized Bose-Einstein form
including a nonvanishing condensate fraction at high drive. A finite-size analysis reveals static and
dynamical critical scaling at the transition, with a discontinuous slope of the magnon number versus
driving field strength and critical slowing down at the transition point. Implications for experiments
on quantum materials and polariton condensates are discussed.

I. INTRODUCTION

Nonequilibrium phase transitions in driven interacting
quantum systems constitute a fundamental and largely
open research problem1,2. Quenches, i.e., abrupt changes
in Hamiltonian parameters or initial conditions, followed
by a time evolution, have been extensively studied and
can lead to dynamical phase transitions3,4 characterized
by qualitative modifications of the dynamical response
as the quench magnitude is varied. A nonequilibrium
steady state presents additional issues involving the flow
and redistribution of energy: the drive adds energy, the
dissipation removes energy, and the internal dynamics re-
distribute energy among modes 5,6. As the drive strength
is varied, the competition between these effects can qual-
itatively change system properties in the same sense that
changing temperature or a Hamiltonian parameter can
drive a system through an equilibrium phase transition.

Equilibrium phase transitions are typically analyzed in
terms of the onset or disappearance of order parameters
that encode broken symmetries, for example, the stag-
gered magnetization in an antiferromagnet that appears
when the temperature is reduced below a critical tem-
perature. We label such phase transitions as symmetry
breaking transition in the following. In a nonequilibrium
setting, an additional type of phase transition can ex-
ist that is characterized by a qualitative change in the
low-frequency distribution of the collective excitations of
a system. Such a transition cannot exist in equilibrium
where the form of the distribution is fixed by equilibrium
thermodynamics. We refer to the latter as a subthermal-
to-superthermal transition. Phase transitions occurring
in a nonequilibrium steady state are the subject of an
interesting and growing literature7–15 but are less well
understood. A deeper theoretical understanding of these

issues could open nonthermal pathways for controlling
emergent properties of driven quantum materials2.

Driven magnetic systems are of particular interest
in this context, for both fundamental and technologi-
cal reasons16. A specific focus of attention has been
the possibility of magnon Bose-Einstein condensation
(BEC), in which a system is excited by a radiation pulse
and the resulting excitation distribution forms a sin-
gle coherent macroscopic quantum state with the low-
est energy excited state being macroscopically popu-
lated. The existing experimental literature on magnon
BEC17–32 concerns systems with very long energy re-
laxation times, where a population of magnons is tran-
siently induced (often by a short duration frequency-
coherent excitation) and then evolves into a BEC16,33–35.
This physics is very similar to the Bose-Einstein con-
densation of excitons and exciton-polaritons which has
been studied experimentally36–40 and theoretically41–43.
Theoretical analyses of the magnon case to date have
been based on semi-phenomenological continuum approx-
imations using Landau-Lifshitz-Gilbert equations44,45,
Gross-Pitaevskii equations18,26,27 or field theoretical
analyses8,10,12–15,42,43. Here, we focus on the distribu-
tion function of excitations.

In this work we aim to add a new dimension to the un-
derstanding of this field. We study a steady state system
in which the crucial physics is the interplay of interac-
tions and the flow of energy and particles from the drive
through the system to a dissipative reservoir. We provide
a precise microscopic treatment of the interaction among
excitations, which is known35,46–57 to be crucial for the
long time physics. Fig. 1 shows the behavior of the spin
system under consideration as a function of the critical
parameter g, which parametrizes the nonequilibrium ex-
citation strength relative to dissipative losses and will be
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FIG. 1. Nonequilibrium phase diagram of driven dis-
sipative steady states. Steady states as a function of drive
strength g and quantum fluctuations, parametrized here by
the inverse spin length 1/S, but controlled in physical systems
by many factors, including geometrical frustration. The red
section along the vertical axis marks the antiferromagnetically
ordered ground state at T = 0. The black curve separating
the ordered (orange) from the disordered (green) subthermal
phase is obtained by determining the value of 1/S at which
the staggered magnetization (as defined in Eq. (A10)) van-
ishes for a given g. The grey vertical line at g = 1 separates
the subthermal from the superthermal regime, which turns
into a thermal distribution plus a δ function in the inter-
acting system in the thermodynamic limit. The critical end
point at g = 1, 1/S = 0 is a specific feature of the Heisen-
berg antiferromagnet in two dimensions. The grey dashed
curve indicates the expected behavior in three dimensions, or
in the anisotropic xy or xxz (Ising, gapped) regimes in two
dimensions.

introduced in more detail below. The figure displays two
distinct phase transitions, namely an order-to-disorder
phase transition, which is conceptually similar to known
equilibrium transitions but occurs here for nonthermal
distributions, and an intrinsically nonequilibrium sub-
thermal to superthermal transition, which we study in
this paper. This new phase transition is characterized by
a qualitative change in the distribution function.

II. MODEL AND FORMALISM

A. Hamiltonian and kinetic equation

We study the driven-dissipative square-lattice Heisen-
berg antiferromagnet with nearest neighbor interactions,

described by the Hamiltonian

HHeis = J
∑

〈ij〉

{
1

2

(
S+
i S
−
j + S−i S

+
j

)
+ Szi S

z
j

}
, (1)

with canonical spin operators Si at site i of the lattice.
The Heisenberg Hamiltonian has two parameters, the ex-
change coupling strength J , which sets the energy scale
and which we take to be positive so that the ground state
is antiferromagnetic, and the spin magnitude |S| which
sets the strength of the quantum fluctuations and of the
interactions between the spin waves. At |S| = ∞ the
model is straightforwardly solvable and has a two-fold
degenerate set of spin wave excitations (magnons) with
dispersion ωk. The primary object of interest will be the
magnon distribution function nk counting the number of
magnons excited above the ground state into the mode
with energy ωk. Key to our analysis will be the interac-
tions between magnons. Because we are interested in the
qualitative effects of the interactions we use a standard
Holstein-Primakoff method58 to obtain the spin-wave in-
teractions at leading nontrivial order in 1/|S| (See ap-
pendix A). The important points here are that the inter-
spin-wave interactions conserve both total energy and the
total number of spin waves and that their effect on the
distribution may be studied using the Boltzmann equa-
tion with a collision integral S derived via standard meth-
ods from the magnon-magnon interactions.

The Heisenberg model is an effective model describing
the low energy physics of a more fundamental system of
strongly correlated electrons moving in a periodic lattice
potential such as the Hubbard model. These more fun-
damental models enable a calculation of the drive due to
electromagnetic radiation and dissipation due to coupling
with a reservoir. We specifically adopt the model stud-
ied in Ref. 59 in which the Heisenberg model is obtained
as the low-energy limit of the half-filled large U Hub-
bard model. The drive emerges from a Floquet analysis
of minimally coupled high frequency radiation detuned
from the upper Hubbard band. The dissipation results
from particle exchange with a reservoir, which we take
to be at zero temperature. The particle exchange is vir-
tual because of the Mott-Hubbard gap, but dissipation
of energy and magnons into the reservoir are allowed.

Since we consider only a spatially uniform drive, we
restrict our attention to a distribution function of en-
ergy ω (instead of momentum k) defined60 as n(ω) =∫
d2knkδ(ω − ωk)/ρ(ω) with ωk the magnon energy and

nk the magnon distribution as a function of wavevec-
tor. The density of states summed over the two magnon
branches is

ρ(ω) = 2

∫
d2kδ(ω − ωk) . (2)

We take the drive and dissipation from a previous
analysis59 of the driven-dissipative Hubbard model, spe-
cializing to the particular case of a high-frequency drive
detuned from any charge excitations, and a dissipation



3

arising from particle exchange with a reservoir. Refer-
ence59 found, using an approximation that neglected the
magnon-magnon interactions, that the effect of a high
frequency detuned drive is the addition of magnons to
the system, such that the number of magnons in the
mode with energy ω increases at the rate γin(1 + n(ω)).
γin is proportional to the drive strength and the simple
form of the in-scattering follows from the very high fre-
quency, detuned drive. The calculation also implies a de-
cay of magnons into the charge reservoir at a rate given

by γout

(
n(ω) +

(
n(ω)
nT̃ (ω)

)2
)

with nT̃ (ω) = 1/(e
ω
T̃ − 1)

and parameters T̃ ≈ 0.6J . Note that T̃ from Eq. (3)
is not the equilibrium temperature of the system, but
is a parameter describing the nonlinearity of the relax-
ation to the bath. The nonlinearity ensures a steady
state at any drive amplitude. The key features of the
out scattering are that the basic rate is determined by
the particle-reservoir coupling and that the nonlinearity
vanishes quadratically as ωk → 0. The latter feature
stems from the large charge gap and the vanishing of
the charge-magnon coupling at low energies due to the
Goldstone theorem.

This allows us to write down a kinetic equation that
encodes magnon-magnon scattering through the collision
integral S as well as the effects of drive and dissipation

∂tn(ω) =γin(1 + n(ω))− γout

(
n(ω) +

(
n(ω)

nT̃ (ω)

)2
)

+ S [{n(ω)}] . (3)

B. Numerical implementation

We discretize the system and solve the resulting set of
coupled nonlinear equations numerically by integrating
forward in time from an initial condition until a steady
state is reached. We choose a uniform ` × ` momentum
space grid containing N = `2 points shown in appendix D
and therefore a discrete set of momentum points ωk. We
replace all momentum/frequency integrals by sums. The
largest linear dimension ` used throughout the paper is
` = 120, which is the default discretization parameter for
the results shown below, unless otherwise indicated. The
discretized momentum grid is chosen in a way such that
k = 0 is avoided because a Bose-Einstein distribution
with µ = 0 diverges as k → 0, implying that k = 0 can-
not be treated directly numerically (see appendix D, Fig-
ure 7). Below we employ a careful finite-size scaling anal-
ysis and extrapolation to infinite system size to extract
information about k→ 0 and possible Bose-Einstein con-
densation. In the numerical results presented here we fix
the parameter T̃ describing the nonlinear term in the
dissipation to be T̃ = 0.6 and set γout = 0.002, unless
explicitly denoted otherwise. Our conclusions are inde-
pendent of the specific parameter values.

As noted above, the collision integral S conserves the

magnon number N and energy E which are discretized
as

N =

ωmax∑

m=1

ρ (ωm)n (ωm) (4a)

E =

ωmax∑

m=1

ρ (ωm)n (ωm)ωm , (4b)

where ρ (ωm) is the discretization of the density of states
given in Eq. (2) We parametrize the drive strength via
the dimensionless tuning parameter, that controls the ex-
citation density,

g ≡ γin

γout
. , (5)

and consider the qualitative form of the computed
magnon distribution function.

III. RESULTS

A. Nonequilibrium phase diagram

Fig. 1 summarizes our findings in terms of a phase
diagram in the plane defined by the amplitude of quan-
tum fluctuations (inverse spin length 1/S, vertical axis)
and the drive strength (g, horizontal axis). In equilib-
rium (g = 0), increasing quantum fluctuations drives a
transition to a quantum disordered state. Increasing the
drive strength at a fixed value of quantum fluctuations
produces two conceptually distinct effects.

The drive adds energy to the system, exciting magnons
above the ground state and thereby weakening the or-
der. For drive strengths less than a critical value (here,
g = 1) the magnon distribution retains a subthermal
form, with the magnon occupation n(ω) remaining fi-
nite as the magnon energy ω vanishes, in contrast to the
∼ T/ω behavior of the thermal distribution. Although
the distribution is subthermal, the increase in magnon
number may be sufficient to drive the system into a dis-
ordered state, as indicated by the phase boundary in
Fig. 1. This symmetry breaking phase transition is a
nonequilibrium version of the standard equilibrium phase
transition driven by raising temperature. Distinct from
this transition Walldorf et al. also found a change in the
magnon distribution from subthermal to superthermal,
occurring as the relative drive strength was increased be-
yond the critical value g = 159. It is this subthermal-
to-superthermal transition, which is characterized by a
qualitative change in the distribution and is not directly
related to the disappearance of a conventional order pa-
rameter, that we investigate here. Because the distribu-
tion function is at least thermal, in the two-dimensional
Heisenberg-symmetry case studied in detail here, long-
range order is necessarily destroyed at g = 1. However,
in two-dimensional xy/xxz or in three-dimensional sys-
tems, the ordered phase may persist into the superther-
mal phase.
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FIG. 2. Nonequilibrium phase transition. a) Interaction-induced changes of steady-state magnon occupation n(ω).
Plotted is ωn(ω) as a function of magnon frequency ω, in order to highlight the difference between subthermal (ωn(ω)→ 0 for
ω → 0), thermal (ωn(ω) → const), and superthermal (ωn(ω) → ∞) regimes. The blue (red) data points show the interacting
results for representative subthermal, g = 0.5 (superthermal, g = 1.5) cases, in comparison with the noninteracting results
shown by blue (red) curves. The dark grey solid line indicates a thermal state at g = 1 and T = 0.6; the light grey dashed line
is a best fit to the high-frequency part of the the interacting distribution function at g = 1.5, and corresponds to a thermal
state with an effective temperature T > T̃ . Inset: The same results plotted as n(ω) versus ω focussing on the low-frequency
part to highlight that the interacting superthermal system shows a low-frequency divergence that is stronger than both the
noninteracting system and the best thermal fit. b) Points: magnon number vs total energy curve defined from Eq. 4 with g as
an implicit parameter for both noninteracting and interacting steady state. Solid black line: magnon-number vs. total energy
relation obtained from Bose distribution with chemical potential µ = 0 with temperature as implicit parameter. States below
this critical Bose-Einstein condensation line have a lower number of magnons per energy than a thermal state. States above the
critical line have a number of magnons that exceeds the maximal number in states with ω (k) > 0 that is compatible with the
given system energy in a thermal state, implying the existence of a δ-function contribution at zero energy (condensate fraction)
in the thermodynamic limit.

B. Nonequilibrium steady state

Fig. 2 (a) compares the magnon distribution function
calculated with and without magnon-magnon scattering.
We find that the clear qualitative difference between
the subthermal and superthermal cases is still evident
in the interacting case, confirming that the nonequilib-
rium phase transition is preserved under magnon-magnon
scattering. In the subthermal steady state, the impact
of magnon-magnon scattering is rather small, produc-
ing only a slight shift of magnon occupation towards
lower frequencies. In striking contrast, the superthermal
steady state is strongly affected by magnon-magnon scat-
tering. At all but the lowest frequency the effect of the
scattering is to drive the distribution close to a thermal
distribution, but the occupancy at the lowest frequency
is strongly enhanced relative to the noninteracting case
(see inset of Fig. 2 (a)).

To interpret our results, we recall equilibrium BEC,
where the occupancy is given by a Bose Einstein distri-
bution with µ = 0 and a δ-function at ωk = 0 describing

the condensate fraction. This distribution has a temper-
ature that is fixed by the total energy; the number of
uncondensed bosons is then uniquely determined by this
temperature, and any excess over the uncondensed num-
ber makes up the condensate fraction. With this in mind
we plot in Fig. 2 (b) the magnon number as a function
of magnon energy with g as an implicit parameter, along
with the magnon number-energy relation implied by the
Bose distribution with chemical potential µ = 0 and no
condensate, with temperature as an implicit parameter.
In ordinary BEC, decreasing the temperature decreases
the energy moving the system to the left along a line
at fixed N . Crossing the solid line signals the BEC. In
our system for g < 1 the number-energy trace remains
below the solid line. At g = 1 the curves for both non-
interacting and interacting systems cross the solid line,
implying for g > 1 an excess of magnons. Importantly
magnon-magnon interactions push the system even fur-
ther away from the thermal distribution rather than to-
wards it because magnon-magnon scattering tends to re-
distribute magnons towards lower energy, thus accommo-
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FIG. 3. Finite-size scaling analysis revealing δ-function
contribution at g > 1 in the thermodynamic limit. (a),
(b) Ratio of the magnon density at the lowest frequency and
the total number of magnons in the system, N0/N , and (c),
(d) ratio of the magnon density at the second lowest frequency
and the lowest frequency, N1/N0, for g = 1.25 (left panels)
and g = 1.5 (right panels). Different colors correspond to
different values of γout = 0.002, 0.02, 0.2 as indicated. Black
points correspond to the noninteracting stationary state, gray
points show thermal behavior (g = 1), and red stars corre-
spond to the stationary state to which the interacting, closed
system evolves when initialized with the respective noninter-
acting stationary state at given g.

dating more magnons per energy compared to the non-
interacting steady state.

C. Finite size scaling analysis

To further interpret the data we present a finite-size
scaling analysis. We define the magnon occupancy at
the m-th frequency weighted by the discretized density
of states, Nm = ρ(ωm)n(ωm). Fig. 3 (a) and (b) strongly
suggest that the occupancy N0 of the the lowest fre-
quency magnon mode remains a nonvanishing fraction
of the overall number of magnons N as the system size
increases in any interacting system with g > 1. This
is different from the case g = 1, which has no conden-
sate, and where the contribution of the lowest frequency
vanishes as the system size increases. Fig. 3 (c) and
(d) shows that the ratio of the occupancy at the sec-
ond smallest frequency to the occupancy at the smallest
frequency, N1/N0, is decreasing as the system size in-
creases. The decrease is apparently linear in 1/`, but
the system sizes available are not sufficient to allow for a
precise determination. The combination of a nonvanish-
ing N0/N and a vanishing N1/N0 in the thermodynamic
limit strongly suggests the existence of a δ-function con-
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FIG. 4. Static and dynamical critical behavior in the
interacting driven-dissipative steady state. (a) Rate of
change of magnon numberN as a function of g. Inset: Scaling
behavior with linear system size collapses the data points onto
a single curve. (b) Rate of decay of total magnon number N
towards the stationary state, plotted as a function of g for
different system sizes as indicated. Inset: Scaling behavior
with linear system size consistent with collapse onto a single
curve, suggesting critical slowing down as g → 1. (for critical
behavior in the strength of the condensate fraction, see SM)

tribution at ω = 0. For reference, we also show data
points for a system that is initialized with the noninter-
acting steady state at a given value of g and then evolved
as a closed system under magnon-magnon scattering. At
g > 1 this closed system is positioned above the critical
line for BEC in the N -E diagram in Fig. 2 (b). Therefore,
in the thermodynamic limit this closed system necessarily
develops a finite condensate fraction because this is the
only possible thermalized solution to the closed-system
kinetic equation. The comparison between the interact-
ing driven-dissipative steady states and the closed-system
thermalized states drives home our point that the inter-
acting g > 1 system develops a nonvanishing condensate
fraction in the thermodynamic limit61.

D. Static and dynamic criticality

Fig. 4 examines the nature of static and dynamic crit-
icality occurring as g is tuned through g = 1. The main
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panels show both the dependence of the static observable
dN/dg [Fig. 4 (a)] and the dynamic decay rate λN [Fig. 4
(b)], as defined by

N (t) = Nfinal + ∆N exp (−λN t) (6)

on the tuning parameter g. Equation (6) is the empiri-
cally observed long-time behavior of the excitation den-
sity in the system62. Data are shown for different system
sizes. For both quantities there is a clear difference be-
tween g < 1 and g > 1 with weak system-size dependence
for g < 1 and strong system-size dependence for g > 1.
The inset shows an approximate data collapse that is con-
sistent with a critical scaling as g → 1 from above and
`→∞. The implication of the data collapse is that

dN
dg

= f1 [(g − 1) `]
√
` , (7a)

λN =
f2 [(g − 1) `]√

`
. (7b)

If dN/dg and λN are to be finite and non-zero as `→∞,
the two functions f1(x) and f2(x) need to have the form
f1(x) ∝ (1/

√
x) and f2(x) ∝ √x as x → ∞, imply-

ing that at ` = ∞ dN/dg ∼ 1√
g−1

, i.e., a square-root

singularity of N (g) in the thermodynamic limit, and
λN ∼

√
g − 1 as g → 1+, i.e., a critical slowing down

as g → 1 from above. This asymmetric criticality is not
present in the noninteracting theory and is a consequence
of magnon-magnon interactions.

IV. DISCUSSION

A driven-dissipative system may exhibit two phase
transitions as a function of drive strength. One is
the nonequilibrium analogue of a conventional symme-
try breaking transition, occurring because the drive
creates excitations which push the system away from
the ordered state. This transition has been previously
studied8,10,12–15,42,43. The other type, studied here, is
that when the drive exceeds a critical value set by the
linear dissipation mechanism, a kind of “order from
disorder” transition may occur, with some fraction of
the drive-induced excitations condensing into a zero-
momentum ground state. Our finding bears an inter-
esting relationship to the existing literature on Bose-
Einstein condensation of magnons, where an evolution
into a condensed state of a transiently induced magnon
population is analysed.

Crucial to our analysis is a numerically exact solution
of the Boltzmann equation derived by considering the
interactions among excitations, which enables an analy-
sis of the interplay between the frequency dependence of
the dissipation mechanism and the tendency to conden-
sation. This comprehensive numerical solution extends
previously published theory which typically uses either
a phenomenological relaxation rate or a simple approx-
imation to the magnon-magnon scattering term. A key

finding is that the condensation occurs in a high-drive
limit, where the drive induced energy density is large
and the number of excited magnons is also large, and is
associated with a dynamical (drive-strength driven) crit-
icality. On the level of theory used here, this criticality
is described by a new set of static and dynamic critical
exponents.

Our work raises many important questions. First,
while we have demonstrated a qualitative change in the
magnon distribution consistent with the formation of a
condensate, the physics of fluctuations around this state
has not yet been studied, and therefore a full analy-
sis of the criticality, beyond the Boltzmann approxima-
tion used here, cannot be undertaken. Understanding
how to characterize the differences between the nonther-
mal symmetry breaking transition and the usual thermal
one, how to understand transitions involving distribu-
tion functions and not conventional order parameters,
and how to generalize the standard equilibrium theory
of spatial and temporal fluctuations in a critical state to
strongly nonequilibrium situations such as that consid-
ered here, are important open problems. The issues are
of particular importance in two dimensions, where the
obvious generalization of the Hohenberg-Mermin-Wagner
theorem to nonequilibrium situations would suggest that
the Bose-Einstein condensation we find signals a phase
with power law correlations.

Observation of the nonthermal critical behavior
predicted here is an important experimental chal-
lenge. Possible techniques include time-resolved sec-
ond harmonic optical polarimetry or inelastic x-ray
scattering63. Our work also has a close connection
to Bose-Einstein condensation in exciton-polariton sys-
tems, where interesting field-theory-based studies of crit-
icality have appeared.42,43. Investigations of possible
nonequilibrium-induced spatial structure, analogous to
the structures observed in turbulence64, and clarifying
the relation of our work to nonthermal fixed points in
closed systems after quenches65–67 are also important di-
rections for future research.
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Appendix A: Methods

Interacting spin-wave theory We consider the
isotropic Heisenberg antiferromagnet as given in Eq. (1)
and apply standard Holstein-Primakoff spin-wave
theory58 resulting in

HHP = E0 +H0 + V . (A1)

with an irrelevant ground state energy E0 and bilinear
Hamiltonian

H0 =
∑

k

~ωk

(
α†kαk + β†kβk

)
. (A2)

The magnon dispersion is

ωk =
JSz

~

[
1 +

1

2S

(
1− 2

N

∑

k′

λk′

)]
λk (A3)

with

λk =
√

1− γ2
k (A4a)

γk =
cos (kx) + cos (ky)

2
. (A4b)

The interaction term for the kinematically allowed
magnon energy and momentum conserving scatter-
ing processes is given by V with interaction vertices

V
(2:2)

1+
α2+

α3−α 4−α
and Ṽ

(2:2)

1+
α2−β 3−α 4+

β

, namely

V = −J 2z

N

∑

k1k2k3k4

δ (k1 + k2 − k3 − k4)
{
V (2:2)

(
α†1α

†
2α3α4 + β†3β

†
4β1β2

)
+ Ṽ (2:2)

(
α†1α3β

†
4β2

)}
(A5a)

V
(2:2)

1+
α2+

α3−α 4−α
= γ(2−4)u1u3 v2v4 +

1

4
[γ1 u1 v2v3v4 + γ2 u1u3u4 v2 + γ3 u3 v1v2v4 + γ4 u1u2u3 v4] (A5b)

Ṽ
(2:2)

1+
α2−β 3−α 4+

β

= γ(2−4) [u1u2u3u4 + v1v2v3v4] + γ(2−3) [u1u2 v3v4 + u3u4 v1v2] (A5c)

+
1

2
γ1 [u3 v1v2v4 + u1u2u4 v3] +

1

2
γ2 [u1u2u3 v4 + u4 v1v2v3]

+
1

2
γ3 [u2u3u4 v1 + u1 v2v3v4] +

1

2
γ4 [u2 v1v3v4 + u1u3u4 v2] .
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Here we have used

uk =

√
1 + λk

2λk
(A6a)

vk = −sign (γk)

√
1− λk

2λk
. (A6b)

In Eq. (A5a), the momentum-conserving δ function is
to be understood as modulo a reciprocal lattice vector
of the standard two-dimensional antiferromagnetic Bril-
louin zone.

Boltzmann equation The semiclassical magnon Boltz-
mann equation for the magnon distribution in branch α

at a given momentum k1 is

dnα (k1)

dt
=

2π

~

(
2Jz

N

)2 (
S(2:2)
α (k1) + S̃(2:2)

α (k1)
)

(A7)

where S are the relevant scattering integrals. To leading
order in 1/S, only scattering processes with two magnons
scattering into two other magnons are kinematically al-
lowed. Consequently, the scattering conserves the num-
ber of magnons term by term at this level of approxi-
mation. The corresponding scattering integrals are given
by

S(2:2)
α (k1) =

∑

k2k3k4

δ (k1 + k2 − k3 − k4) δ (ωk1
+ ωk2

− ωk3
− ωk4

)V(2:2)

1+
α2+

α3−α 4−α
V(2:2)

3+
α4+

α1−α 2−α
× (A8)

[(1 + nα (k1)) (1 + nα (k2))nα (k3)nα (k4)− nα (k1)nα (k2) (1 + nα (k3)) (1 + nα (k4))]

S̃(2:2)
α (k1) =

∑

k2k3k4

δ (k1 + k2 − k3 − k4) δ (ωk1
+ ωk2

− ωk3
− ωk3

) Ṽ(2:2)

1+
α2−β 3−α 4+

β

Ṽ(2:2)

3+
α4−β 1−α 2+

β

× (A9)

[
(1 + nα (k1))

(
1 + nβ (k4)

)
nα (k3)nβ (k2)− nα (k3)nβ (k2) (1 + nα (k1))

(
1 + nβ (k4)

)]
.

Computational remarks We compute the time evolu-
tion on the two-dimensional antiferromagnetic Brillouin
zone, that is discretized into square tiles and subse-
quently mapped onto an energy grid (see appendix D for
details). The time propagation of the full kinetic equa-
tion in the main text is performed using the two-step
Adams–Bashforth method. We have carefully checked
convergence in the time step discretization.

The staggered magnetization is computed via

m (S, n(ω)) = S +
1

2
− ωmax

ωmax∑

m=1

ρ (ωm)

ωm

(
n (ωm) +

1

2

)
.

(A10)

Specifically, the black curve in Fig. 1 that separates
the subthermal disordered phase from the subthermal
ordered phase is computed by solving the equation
m (S, n(ω)) = 0 (with the noninteracting magnon dis-
tribution at given g inserted to compute m) for 1/S.

Appendix B: Strength of the condensate fraction

The strength of the condensate faction is determined
by the ratio of the number of magnons N to the system
energy E . Projecting each individual point in Fig. 2b)
vertically onto the thermal distribution gives the number
of magnons Nth that can be accommodated by the ther-
mal distribution. The excess of magnons determines the
strength of the delta function, D0 ≡ N −Nth. Therefore

0.8 1.0 1.2 1.4

g

0.00

0.01

0.02

0.03

0.04

0.05

D 0

` = 120

` = 100

` = 80

FIG. 5. Condensate fraction D0 as a function of dimension-
less tuning parameter g for different linear system sizes as
indicated.

the steady state has the form

N (ω) = D0N∆ (ω) +Nth,TE (ω) , (B1)

where N∆ (ω) is a normalized function (integrating to
unity) and, as discussed above, turns into a δ-function in
the thermodynamic limit. Since the number of magnons
only exceeds the number of magnons in a thermal distri-
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bution at g > 1, the weight of the δ-function D0 vanishes
for g < 1. The decrease of the weight of the delta func-
tion D0 to 0 at g = 1 is marking the phase transition
[Fig. 5].

Appendix C: Scaling of the magnon number in the
limit of weak driving

In the low driving phase g < 1 the scaling behavior
is substantially different from the results in the strong

drive phase. As it is visible in Fig. 6 a) where the con-
tribution of the lowest frequency in the interacting phase
goes to zero as system size is increased, just as in the
thermal system. So at g < 1 there are no indications for
a condensate fraction at ω = 0. Similarly, there is only a
minimal shift from the non-interacting results in the ra-
tio of the magnon density at the second lowest frequency
and the lowest frequency, N1/N0. This is behavior in the
low drive ordered phase is substantially different from the
findings in the high drive, disordered phase.

0 0.006 0.012

1/`

0

0.02

0.04

0.06

N
0
/
N

a)

0 0.006 0.012

1/`

0

0.5

1

1.5

2

N
1
/
N

0

b)

γout = 0.002 γout = 0.02 γout = 0.2

FIG. 6. Finite-size scaling analysis analogous to Fig. 4 for the subthermal regime (g = 0.875). (a) Ratio of the magnon density
at the lowest frequency and the total number of magnons in the system, N0/N , and (b) ratio of the magnon density at the second
lowest frequency and the lowest frequency, N1/N0. Different colors correspond to different values of γout = 0.002, 0.02, 0.2 as
indicated. Black points correspond to the non-interacting stationary state, gray points show thermal behavior (g = 1), and
red stars correspond to the stationary state to which the interacting, closed system evolves when initialized with the respective
non-interacting stationary state at given g.

Appendix D: Pseudocode

We numerically consider a quadratic lattice of momentum vectors as displayed in Fig 7 with linear dimension `
and `2 lattice sites. To make our compuation numerically feasible even for comparatively large ` we then reduce this
MBZ using symmetry relations to

(
`2 + 2`

)
/8 lattice sites (green). These reduced MBZ vectors (kPZ) are associated

with different weights due to their multiplicity as indicated. Please note that in the following pseudocode # denotes
the number of a quantity in an array while names like kPZ without a # are the actual quantity. For example kPZ

without a # is the actual vector in the reduced MBZ.

1) Building the full (yellow) and reduced (green) MBZ as displayed in Fig. 7

1: Save MBZ vectors sorted by length in MBZ [#kMBZ] [kx, ky]
2: Save vectors within the reduced MBZ sorted by length in PZ [#kPZ] [kx, ky]
3: for k ∈ PZ do
4: save the precise Energy associated with this vector as Ω [#kPZ]
5: save the weight associated with this vector as kweight [#kPZ]
6: end for
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The scattering conserves both momentum and energy. This is implemented numerically by mapping the MBZ in
momentum space on an energy grid as displayed in Fig. 8. To do so, we divide the interval {0,Ωmax} into ` equidistant
energy bins and determine with which bin the vectors in the momentum grid are associated. The different colors of
the bins in Fig. 8 are simply to distinguish them from each other and have no further meaning. Since not all bins
will have energies not all bins need to be taken into account. Note that in the example of ` = 8 only 5 of the bis are
occupied (purple ω). Each bin is then associated with the total weight of the MBZ vectors in it (red numbers).

−π −π/2 0 π/2 π
kx

−π

−π/2

0

π/2

π

k
y

` = 8

dk

weight = 1

weight = 2

FIG. 7. Magnetic Brillouin zone (MBZ) for ` = 8. The full MBZ (yellow) can be reduced to
(
`2 + 2`

)
/8 lattice sites (green)

due to the symmetry of the lattice. The multiplicity weights of these reduced lattice vectors that are sufficient to simulate the
dynamics in the system is marked as indicated.

2) Map the reduced MBZ in k space onto an energy grid as illustrated in Fig. 8

1: Divide the interval {0,Ωmax} into ` equidistant energy bins
(see Fig. 8, blue and magenta boxes)

2: for k ∈ PZ do
3: identify in which energy bin Ω [#k] falls
4: end for
5: Discard empty energy bins
6: Save the center of the remaining energy bins as energybin [#ω]

(see purple {ω1, ω2, ω3, ω4, ω5} in Fig. 8)
7: Save the numbers of the reduced MBZ vectors in each bin as kpz@energybin [#ω] [#kPZ]
8: Compute the total kweight in each bin and save it as kweight@energybin [#ω] [#kPZ]

The next step is to find the quadruples in momentum space that satisfy momentum and energy conservation
simultaneously. Note that we use the centers of the energy bins and not the precise energies of the momentum vectors
to determine weather energy conservation is satisfied. The factor 4 in the cutoff is needed because each quadruple
consists of 4 momentum vectors. Furthermore, all entries of the 2 dimensional array ”integrals” are the same. Here
the cutoff has to be divided by `4 because there are 4 free dimensions in the integration. The vertices are then
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symmetrized by computing

(VV)sym = 0.125
[
V1+

α2+
α3−α 4−α

+ V3+
α4+

α1−α 2−α

]
+ 0.125

[
V1+

α2+
α4−α 3−α

+ V3+
α4+

α2−α 1−α

]
(D1)

+ 0.125
[
V2+

α1+
α3−α 4−α

+ V4+
α3+

α1−α 2−α

]
+ 0.125

[
V2+

α1+
α4−α 3−α

+ V4+
α3+

α2−α 1−α

]

and
(
ṼṼ
)

sym
= 0.25

[
Ṽ1+

α4−β 3−α 2+
β

+ Ṽ3+
α2−β 1−α 4+

β

]
+ 0.25

[
Ṽ2+

α3−β 4−α 1+
β

+ Ṽ4+
α1−β 2−α 3+

β

]
(D2)

This vertex symmetrization ensures energy- and particle number conservation by enforcing detailed balance and is a
necessary step in the energy-grid-representation.

3) Find Quadruples that satisfy momentum and energy conservation in momentum space

1: cutoff = 4 ∗ Ωmax/`
2: for k1 ∈ PZ do
3: for k2 ∈ MBZ do
4: for k3 ∈ MBZ do
5: k4 = k1 + k2 − k3

6: Find bin energy ωi associated with each of {k1,k2,k3,k4} → {ω1, ω2, ω3, ω4}
7: if ω1 + ω2 − ω3 − ω4 < 0.05 ∗ cutoff then
8: Save quadruple as kquadruple [#k1] [#quadruple] [{k1,k2,k3,k4}]
9: Compute (VV)sym =

(
symmetrize

[
V1+

α2+
α3−α 4−α

])2

10: Compute
(
ṼṼ
)

sym
=
(

symmetrize
[
Ṽ1+

α2−β 3−α 4+
β

])2

11: Set vertices [#k1] [#quadruple] = VVsym + ṼṼsym

12: Set integrals [#k1] [#quadruple] = cutoff/(`4)
13: end if
14: end for
15: end for
16: end for

Now we have found the quadruples in momentum space, but in order to compute the time evolution using the
energy grid in Fig. 8 we need to turn the quadruple list into an energy list with ω1, ω2, ω3 and ω4 and then average
for each given ω1 over the multiple entries. This gives a consolidated list of energy quadruples and their weights.

0

Ω

Ωmax

k1 k2 k3 k4

k5 k6
k7 k8
k9 k10

ω1 ω2 ω3 ω4 ω5

1 2 1 2 10

FIG. 8. Mapping of momentum grid onto an energy grid for ` = 8. The Interval {0,Ωmax} into ` equidistant energy bins (blue
and magenta) and for each momentum vector kPZ the associated bin is determined. The red numbers give the total weight
of all vectors within the energy bin, so for example the energy bin ω5 has the momentum vectors {k5,k6,k7,k8,k9,k10} that
have a total weight of 10.
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4) Convert Momentum Quadruples into Energy Quadruples

1: for ω ∈ energybins do
2: for k ∈ kweight@energybin [#ω] do
3: for q ∈ kquadruple [#k1] do
4: {k1, k2, k3, k4} = kquadruple[#k][#q]
5: Find energy bins associated with k1, k2, k3 and k4 → {ω1, ω2, ω3, ω4}
6: Safe energyquadruples [#ω] [#equadruple] [{ω1, ω2, ω3, ω4}]
7: enegryweight = integrals [#k] [#q] ∗ vertices [#k] [#q] ∗ kweight [#k]
8: Set energyweights [#ω] [#equadruple] = energyweight
9: end for

10: end for
11: for equad ∈ energyquadruples [#ω] do
12: Check if the combination {ω1, ω2, ω3, ω4} has already been found
13: if No then
14: Save energyquadruples consolidated [#ω] [#equad c] [{ω1, ω2, ω3, ω4}]
15: energyweight averaged = energyweights [#ω] /kweight@energybin [#ω]
16: Save energyweights consolidated [#ω] [#equad c] = energyweight averaged
17: else if Yes then
18: energyweight averaged = energyweights [#ω] /kweight@energybin [#ω]
19: Add energyweights consolidated [#ω] [#equad c] + = energyweight averaged
20: end if
21: end for
22: end for

We then use the consolidated quadruples in energy space to compute the time evolution using the two-step
Adams–Bashforth linear multistep method.



5 Nonequilibrium phase transition

5.5 Linearized kinetic equation

The so far unpublished results in this chapter build on the results about the nonequilibrium
phase transition and the nonequilibrium condensed phase in publication II, focusing on the
dynamics of the system that lead up to the steady state. In order to analyze the slow modes of
the system in the limit of weak driving, we start from the full kinetic equation given by

∂tnω = γin(1 + nω)− γout (nω + n2
ω

n2
Tni

) + S [{nω}] (5.102a)

∂tnω = γin + (γin − γout)nω − γout

(
nω
nTni

)2
+ S [{nω}] (5.102b)

with the full collision integral S encoding the rearrangement of magnon occupations due to
magnon-magnon interactions and nTni being a thermal distribution without a chemical potential
at temperature Tni (noninteracting temperature), as defined in Eq. (5.80). These scattering
processes conserve both the number of magnons N and the energy E , which in the discretized
system are given by

N =
ωmax∑
m=1

ρ (ωm)n (ωm) (5.103a)

E =
ωmax∑
m=1

ρ (ωm)n (ωm)ωm , (5.103b)

where ρ (ωm) is the discretized density of states. We linearize the scattering matrix S around a
thermal distribution nth (T ) at a given temperature T by initializing the system with a distri-
bution where just one frequency deviates from the thermal distribution by a shift ν, i.e.

n (t0) = nth (T ) + νδ (wi) (5.104)

ωj that is altered

S
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ω
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Sij

Figure 5.6: Schematic illustration of the linearized scattering matrix. Multiplying this
matrix by a vector that only deviates from zero at a frequency ωj will extract the orange
column and therefore give the change within one timestep.
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5.5 Linearized kinetic equation

and then computing the scattering integrals for each frequency in the first timestep as the system
evolves without drive or dissipation. By determining these scattering integrals for a deviation
in all frequencies wi and deviding the resulting matrix elements by the shift ν, we can build the
full linearized scattering matrix Slin that satisfies the equation

ni (dt) = ni (t0) + dt
∑
j

Sijlin δnj (5.105)

where we have defined δn to be a small deviation of the initial distribution n (t0) from the
thermal distribution nth (T ). The precise form of the linearized scattering matrix is displayed in
Fig. 5.6. Note that the linearized scattering matrix is non-symmetric, but has real, nonnegative
eigenvaules Γ which are directly related to the relaxation times to equilibrium when the system is
initialized with a distribution that deviates slightly from the equilibrium distribution. We know
that by construction every thermal distribution is an eigenfunction of the full scattering matrix
S, and that S conserves both the energy E and the number of magnons N . The numerically
extracted scattering matrices for different system sizes all show two zero modes. However, all
other modes have eigenvalues, and therefore relaxation rates, that remain nonzero even in the
infinite system size limit, meaning that there is not a continuum of relaxation rates going down
to zero. The spectrum of eigenvalues for four different system sizes and the finite-size scaling
analysis revealing that the smallest eigenvalue remains nonzero as `→∞ is displayed in Fig. 5.7.

It is due to the smallest eigenvalue remaining nonzero, that we can assume that for small γin
and γout the distribution has relaxed to a distribution that is close to, though not identical
to a thermal distribution, and that the remaining dynamics can be characterized by the slow
variables. In this case, the stationary states of the kinetic equation have two degrees of freedom,
the distribution is fully described by an energy E and a number of magnons N . Differentiating
between the high drive and low drive phase, the distribution can also be fully characterized by a

0.0 0.2 0.4 0.6 0.8 1.0
Position sorted by size of the eigenvalue

0.00

0.05

0.10

0.15

0.20

0.25

E
ig

en
va

lu
e

Γ
[J
/
h̄

]

` = 60

` = 80

` = 100

` = 120

0 0.01 0.02
1/`

0

0.01

0.02

0.03

sm
al

le
st

no
nz

er
o

Γ
[J
/
h̄

]

a) b)

Figure 5.7: Analysis of the numerically extracted spectrum of eigenvalues: a) Eigenvalues
Γ of the linearized scattering operator Slin for different system sizes ` sorted by magnitude,
b) Scaling analysis for the smallest nonzero eigenvalue, revealing that the eigenvalue stays
nonzero in the thermodynamic limit.

47



5 Nonequilibrium phase transition

given temperature T and a chemical potential µ for g < 1 or a temperature T and a condensate
fraction Nc for g > 1. So the two dimensional space of states that is stationary under the
collision integral S is spanned by either of these two sets of values and the most general form of
the long time distribution is given by

n(ω;T, µ) = Nc(t)δ(2)(ω) + 1

e
ω−µ(t)
T (t) − 1

. (5.106)

The two-dimensional delta-function δ(2)(ω) is defined as the limit of some integrable function
whose area stays at one and which gets narrower and higher as the system size approaches the
thermodynamic limit. Furthermore, it needs to satisfy

∫∞
0 dωρ(ω)δ(2)(ω) = 1. For ω → 0 the

density of states goes like ρ(ω) ∼ ρ0ω, thus

δ(2) (ω) = lim
σ→0

[
e−

ω2
2σ2 /(ρ0σ

2)
]

(5.107)

with

1
ρ0σ2

∫ ∞
0

exp
[
− ω2

2σ2

]
ρ0ω dω = 1 (5.108)

is a possible definition that matches all criteria. The steady state for g > 1, in which there is
no chemical potential and the condensate fraction is given by Nc (tfinal) = D0, is discussed in
detail in publication II. Due to the diverging magnon occupation at ω → 0, which can not be
directly treated numerically, the condensate fraction needs to be extracted via a careful finite-
size analysis. However, the distribution for g < 1 remains finite for all frequencies, so we can
directly fit the interacting steady state with a negative chemical potential and a temperature T
to the numerical data. This fit is displayed in Fig. 5.8, where it is visible that the thermal fit
very accurately corresponds to the steady state distribution.

5.5.1 The nonequilibrium condensed steady state

Starting from Eq. (5.103) we remember that the collision integral S conserves both the number
of magnons and the energy and use Eq. (5.102b) to write

∂tN =γin

(∑
ω

ρ (ω)
)

+ (γin − γout)N − γout
∑
ω

ρ (ω)
(

n (ω)
nTni (ω)

)2
(5.109a)

∂tE =γin

(∑
ω

ωρ (ω)
)

+ (γin − γout) E − γout
∑
ω

ωρ (ω)
(

n (ω)
nTni (ω)

)2
. (5.109b)

At γin = γout = 0 the distribution n (ω) is thermal with a possible condensate fraction and
chemical potential (depending on the initial values of E and N ), because a thermal distribution
is a fix point of the scattering operator S. Therefore, we expect in the limit of weak driving,
meaning γin and γout being small compared to the smallest eigenvalue Γ, that the distribution
is given by thermal distribution with corrections γout/Γ. This justifies to consider Eq. (5.109)
at (g − 1) > 0 and to replace the general distribution n (ω) with a thermal distribution at
T = Tni + T∆, where T∆ is small and µ = 0, plus a condensate fraction which has no effect on
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5.5 Linearized kinetic equation

the system energy. In order to facilitate notation we define

N0 =
∑
ω

ρ (ω) E0 =
∑
ω

ωρ (ω) (5.110a)

NT =
∑
ω

ρ (ω)nT (ω) ET =
∑
ω

ωρ (ω)nT (ω) (5.110b)

where nT (ω) is a thermal distribution at temperature T . Using these definitions to reformulate
Eq. (5.109b) in the stationary state, we obtain

0 = γinE0 + (γin − γout) ET − γout
∑
ω

ωρ (ω)

 exp
[
ω
Tni

]
− 1

exp
[

ω
Tni+T∆

]
− 1

2

. (5.111)

We can now Taylor expand

f (T∆) =
(

exp
[

w

Tni + T∆

]
− 1

)−2
(5.112)

using the derivative

f ′ (T∆) = −2
(

exp
[

ω

Tni + T∆

]
− 1

)−3
[

−ω
(Tni + T∆)2

]
exp

[
ω

Tni + T∆

]
, (5.113)

so the leading order of f (T∆) is given by

Taylor [f (T∆)]|T∆=0 = 1(
exp

[
ω
Tni

]
− 1

)2 +
2 ω

T 2
ni

exp
[
ω
Tni

]
(
exp

[
ω
Tni

]
− 1

)3 T∆ +O
[
T 2

∆

]
. (5.114)
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Figure 5.8: Steady state analysis for the subthermal regime (g < 1) in the limit of small
γin and γout (here: γout = 0.002). The dashed lines indicate the noninteracting results for
g = {0.5, 0.75} and the dots show the interacting results. The solid green and orange lines
are fits for thermal distributions with a negative chemical potential µ and a temperature T .
The errors of both quantities are on the order of 0.0001.
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5 Nonequilibrium phase transition

Linearizing in T∆ we have

0 = γinE0 + (γin − γout)ET − γout
∑
ω

ρ (ω)ω

1 +
2 ω

T 2
ni

exp
[
ω
Tni

]
exp

[
ω
Tni

]
− 1

T∆

 (5.115a)

0 = (γin − γout) (E0 + ET )− 2T∆γout
∑
ω

ρ (ω)
[
ω

Tni

]2 exp
[
ω
Tni

]
exp

[
ω
Tni

]
− 1

(5.115b)

and solving for T∆ yields

T∆ = (g − 1)(E0 + ET )T 2
ni

2∑ω ρ (ω)ω2 exp
[
ω
Tni

] (
exp

[
ω
Tni

]
− 1

)−1 . (5.116)

Analogous to the energy analysis of the stationary state, we can analyze the stationary state
of the magnon number for small driving. However, while the condensate fraction does not
contribute to the system energy, it does contribute to the number of magnons in the system.
We consider the stationary state with Nc (tfinal) = D0 and write

0 = γinN0 − γout
∑
ω

ρ (ω)
(
e
ω

Tni − 1
)2 (
D0δ

(2)(ω) + 1
e
ω
T − 1

)2
+ (γin − γout)(D0 +NT )

(5.117a)

0 = γinN0 + (γin − γout)(D0 +NT )− γout
∑
ω

ρ (ω)

(
e
ω

Tni − 1
)2

(
e
ω
T − 1

)2


− γout

∑
ω

ρ (ω)
(
D0δ

(2)(ω)
)2
(
e
ω

Tni − 1
)2

+ 2ρ (ω)D0δ
(2)(ω)

(
e
ω

Tni − 1
)2

e
ω
T − 1

 . (5.117b)

Here, we need to remember our definition of the two-dimensional delta-function as the limit of
a Gaussian function in Eq. (5.107). For small frequencies we know that

Taylor
[(
e
ω

Tni − 1
)2
]∣∣∣∣∣
ω=0

=
(
ω

Tni

)2
+O

[(
ω

Tni

)3
]
. (5.118)

Using (
D0δ

(2)
)2
∼ D

2
0e
−ω

2
σ2

ρ2
0σ

4 (5.119)

we can now write the blue term in Eq. (5.117b) as

D2
0

T 2
niρ

2
0σ

4

∫ ∞
0

dω ρ0ω
3e−

ω2
σ2 = D2

0
2T 2

ni ρ0
(5.120)
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where we have used Eq. (5.118) to express the integrand. The green term in Eq. (5.117b)
becomes

2T
Tniρ0σ2

∫ ∞
0

ρ0ω
2e−

1
2(ωσ )2

= σ
√

2π
(
T

Tni

)
. (5.121)

In this form it is visible that the green term vanishes as σ → 0. Keeping this in mind, we can
write Eq. (5.117b) as

0 = γinN0 −
γout

2ρ0 T 2
ni
D2

0 − γout
∑
ω

ρ (ω)

(
e
ω
Tni − 1

)2

(
e
ω
T − 1

)2 + (γin − γout)(D0 +NT ) . (5.122)

Linearizing in T − Tni in the same way as in the energy analysis we get

0 = (γin − γout)(D0 +NT +N0)− γout
2ρ0 T 2

ni
D2

0 − γout
∑
ω

ρ (ω)

2 ω
T 2
W

exp
[
ω
TW

]
exp

[
ω
TW

]
− 1

T∆

 (5.123)

0 = (γin − γout)(D0 +NT +N0)− γout
2ρ0 T 2

ni
D2

0 − 2T∆γout
T 2
W

∑
ω

ρ (ω)ω

1 + 1
exp

[
ω
TW

]
− 1


(5.124)

0 = (γin − γout)(D0 +NT +N0)− γout
2ρ0 T 2

ni
D2

0 − 2T∆γout
T 2
W

(E0 + ET ) , (5.125)

where dropping the part linear in D0 and solving for D2
0 yields

D2
0 = 2 ρ0 T

2
ni

[
(g − 1)(NT +N0)− 2

T 2
W

(E0 + ET )T∆

]
. (5.126)

Finally we can use Eq. (5.116) for T∆ to obtain

D2
0 = 2 ρ0 T

2
ni (g − 1)

(NT +N0)− (E0 + ET )2

∑
ω ρ (ω)ω2

1 + 1
exp
[
ω

Tni

]
−1



 . (5.127)

Equation (5.127) states, that the squared condensate fraction D2
0 in the stationary state of a

system with g > 1 and weak drive/dissipation is proportional to (g − 1). Figure 5.9 shows
that scaling the y-axis with the square root of the linear system size and the x-axis with the
linear system size collapses the curves for three different system sizes onto one function. Similar
to the discussion of the finite-size scaling of the magnon numer N and the decay rate λN in
publication II, the data-collapse of the condensate fraction implies that there is a function f (x),
such that

D0 = f ((g − 1) `)√
`

. (5.128)

Since we can assume that the condensate fraction is finite and nonzero in the thermodynamic
limit, the function f (x) needs to satisfy f (x) ∝

√
x, which means that in the thermodynamic
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limit the condensate fraction satisfies D0 ∝
√
g − 1 , which is in agreement with Eq. (5.127).
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Figure 5.9: Finite size scaling analysis of the condensate fraction D0 as a function of
the dimensionless tuning parameter g. It is visible that a scaling with D0

√
` and (g − 1) `

collapses the curves for three different linear system sizes ` onto one function, which is in
agreement with the analysis of the linearized kinetic equation.

5.5.2 Long time limit of the kinetic equation

Up to now, we have been concentrating on the behavior in the nonequilibrium steady state,
where it was advantageous to consider the discrete notation of the system energy as well as
the kinetic equation in terms of γin and γout. We now focus on the dynamics that lead to the
stationary state. Numerically, we find that at fixed γout and g there is a short, initial decay
which depends on the observable, followed by an exponential decay which has the same decay
rate for all observables. This observation confirms our analysis of the spectrum of eigenvalues,
revealing that there is a smallest nonzero eigenvalue and therefore a smallest decay rate, which
dominates the decay at long times.

Figure 5.10 shows the dynamics of the magnon distribution function n (ω) for two different
magnitudes of γout at a fixed tuning parameter g = 1.25 at seven different magnon mode energies
ω. In the left panel, it is visible that for large values of γin and γout, i.e. a system with strong
drive and dissipation, the decay time is comparatively short, meaning the decay rate is large,
and that the initial decay makes up a large part of the overall decay towards the stationary
state. However, in the limit of small drive and dissipation, which is displayed in the right panel,
the initial decay is short and the majority of the decay is dominated by a universal decay rate λ.
For the displayed system size of ` = 120, the difference between the magnitude of the smallest
eigenvalues of S (Γ ≈ 0.05) is one order of magnitude larger than the decay rates in the system
with drive and dissipation (λ < 0.005).

One explanation for the two different decay regimes with the universal decay rate λ in the long
time limit would be, that the system first evolves on a fast time scale mainly under S until
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5.5 Linearized kinetic equation

the two-dimensional space spanned by T and µ is reached and then evolves on a much smaller
timescale within this space, where the decay rate is determined by drive and dissipation while
S can be neglected. However, if this was the case, the decay rate on the long time scale should
be independent of the system size ` since the noninteracting distribution is independent at each
frequency. However, the decay rate depends majorly on ` (see publication II). So while it is
likely that S indeed determines the relaxation on short time scales and brings the distribution
close to the space spanned by T and µ, the assumption that S can be neglected in the long time
behavior seems to be wrong. Drive and dissipation are likely to cause the system to leave the
subspace where S can be neglected, such that the long time decay rate is an interplay of the
decay rate determined by the eigenvalues Γ and the decay rates determined by g.

In order to gain further insight on the dynamics of the system in leading up to the steady state
in the limit of weak driving, we write the kinetic equation in Eq. (5.102b) in units of γ−1

out to
obtain the dynamics in terms of the tuning parameter g, which yields

∂n(ω;T, µ)
∂ (γoutt)

= g + (g − 1)n(ω;T, µ)−
(
n(ω;T, µ)2

n2
Tni

)
+ 1
γout
S [{nω}] , (5.129)

and consider the integral representation of the magnon number and the energy, which is given
by

N =
∫

dω ρ (ω)n(ω;T, µ) (5.130a)
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Figure 5.10: Decay of the magnon distribution function n (ω) at different magnon mode
energies ω as a function of time. Displayed is the natural logarithm of the difference between
the occupation at a time t and the occupation at the final time tf in the stationary state.
The dashed, grey lines are linear fits to the long time decay, which are used to extract the
decay rate λ, the system size is ` = 120. While the initial decay with individual decay rates
for each frequency makes up a major part of the decay at γout = 0.2, the initial decay is very
short for γout = 0.002 and the decay rate of the long term relaxation is independent of the
frequency ω.
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E =
∫

dω ωρ (ω)n(ω;T, µ) . (5.130b)

Using that both quantities are conserved under the scattering integral S but are time dependent
through drive and dissipation, the derivative of the magnon number N yields

∂N
∂ (γoutt)

=
∫

dω ρ (ω)
(
g + (g − 1)n(ω;T, µ)−

(
n(ω;T, µ)2

n2
Tni

))
(5.131a)

= g

[∫
dω ρ (ω)

]
+ (g − 1)

[∫
dω ρ (ω)n(ω;T, µ)

]
−
∫

dω ρ (ω) n(ω;T, µ)2

n2
Tni

(5.131b)

= (g − 1) (N +N0) +N0 −
∫

dω ρ (ω) n(ω;T, µ)2

n2
Tni

(5.131c)

and the derivative of the system energy E yields

∂E
∂ (γoutt)

= (g − 1) (E + E0) + E0 −
∫

dω ωρ (ω) n(ω;T, µ)2

n2
Tni

, (5.132)

where we have defined the constants

N0 =
∫

dω ρ (ω) (5.133a)

E0 =
∫

dω ωρ (ω) . (5.133b)

In order to derive the time dependence of the condensate fraction, we now need to consider the
low drive regime (g < 1) and the high drive regime (g > 1) in the limit of weak driving (γin < Γ
and γout < Γ) separately. To do so, we use the same argumentation as before, namely that in
the long time limit the dynamics are such, that the distribution n (ω) is close, but not identical
to a thermal distribution with an a priori unknown temperature and either a chemical potential
for g < 1, or a condensate fraction for g > 1.

In the subthermal phase the chemical potential is negative (µ < 0) and there is no condensate
(Nc = 0), meaning we can use Eq. (5.106) to define

IN (T, µ) =
∫

dω ρ (ω)

 exp
[
ω

Tni

]
− 1

exp
[
ω−µ
T

]
− 1


2

(5.134a)

IE (T, µ) =
∫

dω ωρ (ω)

 exp
[
ω

Tni

]
− 1

exp
[
ω−µ
T

]
− 1


2

(5.134b)

and use IN (Tni, 0) = N0 and IE (Tni, 0) = E0 to rewrite Eq. (5.131) and Eq. (5.132) as

∂N
∂ (γoutt)

= (g − 1) (N0 +N (T, µ))− [IN (T, µ)− IN (Tni, 0)] (5.135a)

∂E
∂ (γoutt)

= (g − 1) (E0 + E (T, µ))− [IE (T, µ)− IE (Tni, 0)] . (5.135b)

SinceN and E are dependent on the time t only via the chemical potential µ and the temperature
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T , we can define

AµN (T, µ) = ∂N
∂µ

=
∫

dω ρ (ω) e
ω−µ
T

T
(
e
ω−µ
T − 1

)2 (5.136a)

ATN (T, µ) = ∂N
∂T

=
∫

dω ρ (ω) (ω − µ) e
ω−µ
T

T 2
(
e
ω−µ
T − 1

)2 (5.136b)

AµE (T, µ) = ∂E
∂µ

=
∫

dω ρ (ω)ω e
ω−µ
T

T
(
e
ω−µ
T − 1

)2 (5.136c)

ATE (T, µ) = ∂E
∂T

=
∫

dω ρ (ω)ω (ω − µ) e
ω−µ
T

T 2
(
e
ω−µ
T − 1

)2 (5.136d)

and rewrite Eq. (5.135) as

1
γout

(
AµN (T, µ) ∂tµ+ATN (T, µ) ∂tT

)
= (g − 1) (N0 +N (T, µ))

− [IN (T, µ)− IN (Tni, 0)] (5.137a)
1
γout

(
AµE (T, µ) ∂tµ+ATE (T, µ) ∂tT

)
= (g − 1) (E0 + E (T, µ))

− [IE (T, µ)− IE (Tni, 0)] . (5.137b)

Given that µ is negative when g < 1, all derivatives in Eq. (5.136) except for Eq. (5.136a) are
finite when T → Tni and µ→ 0−. However, AµN diverges as µ→ 0−. Using ρ (ω) ∼ ρ0ω we can
write the integral as

AµN (Tni, µ) ∼ ρ0

Tni

∫ ωmax

0
dω ωe

ω−µ
Tni(

e
ω−µ
Tni − 1

)2 (5.138a)

= ωmax

 1

1− e
ωmax+|µ|

Tni

− 1

+ Tni ln

e
ωmax+|µ|

Tni − 1

e
|µ|
Tni − 1

 . (5.138b)

So for a chemical potential going to zero from the negative side (µ→ 0−), this integral diverges
like

AµN (Tni, µ) µ→0−−−−−→ Tni ln
[
Tni
|µ|

]
. (5.139)

The steady state distribution at g < 1 has a temperature that satisfies T = Tni − T∆, so we can
linearize the right hand side of Eq. (5.137) by writing

Taylor [IN (T, µ)− IN (Tni, 0)]|µ=0,T=Tni
= IµN (Tni,0)µ+ ITN (Tni,0) (T − Tni) (5.140a)
= IµN (Tni,0)µ− ITN (Tni,0)T∆ (5.140b)

Taylor [IE (T, µ)− IE (Tni, 0)]|µ=0,T=Tni
= IµE (Tni,0)µ− ITE (Tni,0)T∆ (5.140c)
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with

IµN (Tni, 0) = ∂IN
∂µ

∣∣∣∣
µ=0,T=Tni

= 2
Tni

∫
dω

ρ (ω) e
ω

Tni(
e
ω

Tni − 1
) = 2 (N0 +N (Tni, 0))

Tni
(5.141a)

ITN (Tni, 0) = ∂IN
∂T

∣∣∣∣
µ=0,T=Tni

= 2
T 2

ni

∫
dω

ρ (ω)ωe
ω

Tni(
e
ω

Tni − 1
) = 2 (E0 + E (Tni, 0))

T 2
ni

(5.141b)

and

IµE (Tni, 0) = ∂IE
∂µ

∣∣∣∣
µ=0,T=Tni

= 2
Tni

∫
dω

ρ (ω)ωe
ω

Tni(
e
ω

Tni − 1
) = 2 (E0 + E (Tni, 0))

Tni
(5.142a)

ITE (Tni, 0) = ∂IE
∂T

∣∣∣∣
µ=0,T=Tni

= 2
T 2

ni

∫
dωρ (ω)ω2

(
1

e
ω

Tni − 1
+ 1

)
, (5.142b)

where all terms are finite. Equation (5.137) can now be written as

1
γout

(
AµN (Tni, 0) ∂tµ+ATN (Tni, 0) ∂tT

)
= (g − 1) [N0 +N (Tni, 0)] (5.143a)

− IµN (Tni,0)µ+ ITN (Tni,0)T∆
1
γout

(
AµE (Tni, 0) ∂tµ+ATE (Tni, 0) ∂tT

)
= (g − 1) (E0 + E (Tni, 0)) (5.143b)

− IµE (Tni,0)µ+ ITE (Tni,0)T∆ ,

or, in matrix notation

1
γout

[
AµN (Tni, 0) ATN (Tni, 0)
AµE (Tni, 0) ATE (Tni, 0)

](
∂tµ

∂tT

)
= (g − 1)

(
N0 +N (Tni, 0)
E0 + E (Tni, 0)

)
(5.144)

+
[
−IµN (Tni,0) ITN (Tni,0)
−IµE (Tni,0) ITE (Tni,0)

](
µ

T∆

)
.

This is an intrinsically nonlinear equation because the matrix element AµN (Tni, 0), here marked
in green, is diverging like AµN (Tni, 0) ∼ Tni ln [Tni/ |µ|] and the coefficients of the matrices on
both sides depend upon T and µ, so the general time evolution is complicated. However, we
numerically find that the long time value of µ is different from zero for g < 1, so to analyze
the equation it is useful to first consider the steady state in which the stationary values are
T∆ (tfinal) = T ∗∆ and µ (tfinal) = µ∗ and the derivatives on the left side of Eq. (5.144) are zero.
The steady state equation is

(g − 1)
(
N0 +N (Tni, 0)
E0 + E (Tni, 0)

)
= −

[
−IµN (Tni,0) ITN (Tni,0)
−IµE (Tni,0) ITE (Tni,0)

](
µ∗

T ∗∆

)
, (5.145)

and there is an implicit dependence on (g − 1) in both µ∗ and T ∗. With this, we can write
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Eq. (5.144) in terms of the stationary values, yielding

1
γout

[
AµN (Tni, 0) ATN (Tni, 0)
AµE (Tni, 0) ATE (Tni, 0)

](
∂tµ

∂tT

)
=
[
−IµN (Tni,0) ITN (Tni,0)
−IµE (Tni,0) ITE (Tni,0)

]((
µ

T∆

)
−
(
µ∗

T ∗∆

))
.

(5.146)

This equation has no direct dependence on (g − 1), meaning the relaxation for g < 1 is not
explicitly dependent on the distance from criticality. Yet, there is the implicit dependence on
(g − 1) through the values of µ∗ and T ∗∆, and we now consider the very long time limit in which
the chemical potential µ is close to µ∗ and the temperature T∆ is close to T ∗∆. Given that ATN , A

µ
E

and ATE are smooth functions we can simply set µ = 0 when evaluating these three integrals, but
we need to explicitly denote the dependence on the chemical potential in the diverging function
AµN , which is marked green in Eq. (5.146). This diverging factor multiplies the time derivative
of the chemical potential, which will make the relaxation of µ (t) slow, and we can solve for the
temperature T assuming µ− µ∗ is varying very slowly in time, meaning that T (t) will depend
on the deviation of the chemical potential from its final value. Under the assumption that µ−µ∗
is constant in time, we get

T (t) ∝ exp
[
−γout t

ITE
ATE

]
+ IµE
ITE

(µ− µ∗) + (Tni − T ∗∆) . (5.147)

Given the rapid relaxation of T (t) (rapid meaning on the scale of γout) we can now study the
time dependence of µ (t) and find that due to the divergence of AµN the differential equation
goes like

1
γout

log
[
Tni
µ∗

]
µ ∝ (µ− µ∗) (5.148)

which means that there is a logarithmic divergence of the time constant as the coupling ap-
proaches the critical value from the subthermal side. Due to the implicit dependence of the
stationary state value of the chemical potential on distance from criticality µ∗ ∼ (1− g) from
Eq. (5.145), these analytics predict the relaxation time to diverge like log [1/ (1− g)], meaning
a weak divergence which is difficult to extract from finite-size data.

At g > 1 the chemical potential is zero and there is a time dependent condensate fraction Nc(t).
In this case, Eq. (5.131c) becomes

1
γout

ATE (Tni, 0) ∂tT = gE0 + (g − 1) E (T, 0)− IE (T, 0) (5.149a)

= (g − 1) (E0 + E (T, 0))− [IE (T, 0)− IE (Tni, 0)] . (5.149b)

Linearizing around T = Tni + T∆ yields

Taylor [IE (T, 0)− IE (Tni, 0)]|T=Tni
= ITE (Tni,0) (T − Tni) (5.150a)
= ITE (Tni,0)T∆ , (5.150b)

here with the opposite sign of the previous analysis because the steady state temperature is
larger than the noninteracting temperature Tni for g > 1. This allows to write a linearized form
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of Eq. (5.149b), namely

1
γout

(
ATE (Tni, 0)
ITE (Tni,0)

)
∂tT∆ = (g − 1)

(
E0 + E (T, 0)
ITE (Tni,0)

)
− T∆ , (5.151)

which means that the relaxation rate towards the steady state remains nonzero as g → 1. In
order to compute ∂tN , we need to consider the condensate fraction and write

N = Nc +
∫

dωρ (ω)n (ω;T ) . (5.152)

Following the same steps as in section 5.5.1 up to Eq. 5.125, but this time keeping the derivative
of N on the left side, we obtain

∂N
∂ (γoutt)

= (g − 1)(Nc +N +N0)− 2T∆
T 2

ni
(E0 + E)− 1

2ρ0 T 2
ni
N 2

c , (5.153)

where the time dependence is in the temperature T and the condensate fraction Nc, which means
the left side yields

1
γout

(
∂N
∂Nc

∂tNc + ∂N
∂T

∂tT

)
= (g − 1)(Nc +N +N0)− 2T∆

T 2
ni

(E0 + E)− 1
2ρ0 T 2

ni
N 2

c . (5.154)

On timescales such that T∆ has relaxed to its final value, this simplifies to

1
γout

∂tNc = (g − 1)(Nc +N +N0)− 2T∆
T 2

ni
(E0 + E)− 1

2ρ0 T 2
ni

(Nc) 2 . (5.155)

From Eq. (5.116) we know that T∆ is proportional to g − 1, and the steady state analysis
in section 5.5.1 revealed that N2

c ∼ (g − 1) , so to leading order in g − 1 we can drop Nc in
Eq. (5.155), yielding an equation of the form

1
γout

∂tNc = (g − 1)C1 − C2 (Nc) 2 , (5.156)

meaning the relaxation time diverges as
√
g − 1.

So in both the subthermal phase at g < 1 and the high drive phase at g > 1, the slow time
dependence is driven by the slow time dependence of the chemical potential µ (t) and respectively
the condensate fraction Nc (t), while the temperature T (t) relaxes on a faster timescale. Due to
the comparatively strong divergence (∼

√
g − 1 ) in the high drive phase, the divergence of the

relaxation time is in agreement with the numerical data and can be shown through an appropriate
finite-size scaling analysis, as it is presented in publication II. However, the divergence is weak
in the subthermal phase (∼ log [1/ (1− g)]), and while we perceive a small dependence of the
relaxation rate on the distance from criticality in publication II, it is difficult to extract the
logarithmic divergence from our finite-size data. Hence the analysis presented in this chapter
is consistent with the numeric computations, but the exponent of the critical slowing down can
only be verified numerically for the condensed phase at g > 1.
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Over the last two decades, there has been a variety of time-resolved spectroscopy experiments
which measure the transient physical response of strongly correlated systems [7]. One power-
ful experimental technique is time- and angle-resolved photoemission spectroscopy (trARPES),
which measures the single-particle spectral properties of quantum systems [3, 104–107]. Most
other groups of spectroscopy experiments directly or indirectly measure two-point correlation
functions, prominent examples being time resolved X-ray diffraction measuring equal time
density-density correlations of the electron cloud as well as the nuclear lattice [108–112], time-
resolved resonant inelastic X-ray scattering (tr-RIXS) gaining information about short-range
spin correlations as well as valence density-density and charge-density correlations [113, 114]
and a vast variety of optical methods (infrared spectroscopy, time-resolved Raman spectroscopy
etc.) measuring, amongst others, current correlation functions [115, 116]. In publication I,
we investigate the spread of density-density correlations in a one-dimensional correlated chain
of spinless fermions under the influence of an electromagnetic field by using t-DMRG calcula-
tions [47]. In this chapter, we provide an introduction to the theory behind publication I by
elucidating the duality between the Hamiltonian of the half-filled chain of spinless fermions and
the XXZ-spin chain, as well as explaining the concept of dynamical localization.

6.1 The dual charge/spin Hamiltonian and dynamical localization

The Hamiltonian of the chain at half filling and with nearest neighbor Coulomb interactions is
given by

Hferm (t) =
∑
j

[
−J(t)

2
(
c†jcj+1 + c†j+1cj

)
+ U

(
nj −

1
2

)(
nj+1 −

1
2

)]
. (6.1)

The fermionic creation operator c†j creates a fermion at lattice site j and the annihilation operator
cj destroys an electron at lattice site j. The particle number conserving local number operator
is given by nj = c†jcj . Here, the nearest neighbor Coulomb interaction U > 0 is constant
in time, while the hoppinig amplitude J (t) is time dependent once the chain is driven by an
electromagnetic field. This charge Hamiltonian can be mapped onto a fermionic Hamiltonian
by the Jordan-Wigner transformation [117], namely

c†j = S+
j e
−iΦj (6.2a)

cj = S−j e
iΦj (6.2b)

c†jcj = Szj + 1
2 , (6.2c)

where the phase Φ is given by

Φj = π
∑
l<j

S+
l S
−
l . (6.3)
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6 Light-cone spreading of correlations

In order to write the charge Hamiltonian in terms of the spin-operators, we compute

c†jcj+1 =S+
j S
−
j+1e

iπnj (6.4a)

= S+
j S
−
j+1

(
1 + nj

∞∑
m=1

(iπ)m

m

)
(6.4b)

= S+
j S
−
j+1 (1− 2nj) (6.4c)

c†j+1cj = (1− 2nj)S+
j+1S

−
j (6.4d)

such that the Hamiltonian in Eq. (6.1) becomes

HXXZ (t) =
∑
j

[
−J(t)

2
(
S+
j Sj+1 + S+

j+1S
−
j

)
+ U SzjS

z
j+1

]
. (6.5)

Here we have made use of the fact that we can write

S+
j (1− 2nj)

(
|↑〉
|↓〉

)
= S+

j

((
|↑〉
|↓〉

)
− 2

(
|↑〉
0

))
=
(

0
|↑〉

)
= S+

j

(
|↑〉
|↓〉

)
(6.6a)

(1− 2nj)S−j

(
|↑〉
|↓〉

)
= (1− 2nj)

(
↓
0

)
=
(
↓
0

)
= S−j

(
|↑〉
|↓〉

)
, (6.6b)

which implies that S+
j (1− 2nj) = S+

j and (1− 2nj)S−j = S−j . It is useful to keep in mind
that the formulation in terms of the spin operators and the charge picture are equivalent, since
some observations are more intuitive considering one of them. The interaction U between two
neighboring occupied lattice sites in the charge picture corresponds to the Ising-type coupling
between two spins, and the hopping J between two lattice sites is equivalent to a spin-flip.
The Hamiltonian in Eq. (6.1) is schematically displayed in Fig. 6.1. Note that the Hubbard
interaction is defined relative to half filling, so two neighboring filled (empty) sites, as displayed
by the two neighboring red dots, mean an energy penalty of U/2.

E (t)

J (t) J (t) J (t) J (t) J (t) J (t)U

E (k) E (k)
dynamical localization

reduced
⇓

⇓
bandwidth

reduced hopping Jeff

Figure 6.1: Schematic illustration of the influence of a periodic driving field on a half-
filled chain of spinless fermions with hopping amplitude J (t) and nearest neighbor Coulomb
interaction U . The drive (top panel) adds a time dependence to the hopping J , which drives
the the electron along the band (displayed in the bottom panel) such that the hopping is
effectively reduced.
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6.1 The dual charge/spin Hamiltonian and dynamical localization

Two ways to add energy to the system are a quench or, as displayed in the upper panel of
Fig. 6.1, a spatially uniform, time-periodic electric field. The field adds a time dependence to
the hopping J which can be taken into account via the Peierls substitution [118], yielding

J(t) = J0 e
iA(t) (6.7a)

E(t) = −∂tA (t) , (6.7b)

where E (t) is the electric driving field and A (t) is the corresponding vector potential. Since we
consider the drive to be uniform, we can assume both to be scalar functions. For simplicity, we
now consider an infinite sinusoidal driving protocol with E (t) = E0 sin (Ωt) where E0 is the field
strength and Ω is the driving frequency. In the high frequency limit also known as Magnus limit,
in which Ω � J, U , meaning the driving frequency is larger than the intrinsic time and energy
scales in the system [3], the steady state can be defined in a parametrically long intermediate
time regime and the long time behavior can be characterized using a renormalized Hamiltonean,
i.e. a Hamiltonian that is averaged over a period of the drive (2π/Ω). In this case, the time
dependent hopping J (t) gets replaced with an effective hopping Jeff given by

Jeff = J0 J0

(
E0
Ω

)
, (6.8)

where Jα is the Bessel function of first kind. Note that the argument of the Bessel function is
smaller or equal to one, meaning the hopping is smaller than in equilibrium. This is schemati-
cally displayed in the bottom panel of Fig. 6.1, which displays the single particle band energy.
In equilibrium, when both the hopping and the interaction are constant in time, the electron is
at the bottom of the band. Once a periodic drive adds energy to the system and the hopping
becomes time dependent, the electron is driven along the band and sees a band with reduced
bandwidth. This effectively leads to a reduced hopping, which is known as dynamical localiza-
tion. While we study a more complex drive, namely a drive that is ramped up over a certain
time interval and a drive which is modulated with a Gaussian, in publication I, the general
concept of dynamical localization in the Magnus limit is still applicable.

In equilibrium, the system displays a well defined phase transition at U/J = 1. If U/J is
smaller then one, meaning the interaction is small compared to the hopping, the system is a
Luttinger liquid, which is a gapless metal and does not display long range order. In this phase,
the comparatively large hopping causes the charge density to be almost evenly distributed. In
contrast, in the charge-density wave phase at U/J > 1, the interaction dominates, so the system
does display long range correlations and the charge alternates between the lattice sites. In this
case, the system is insulating and could be described as an antiferromagnet in the spin picture.

The metric or characterization tool of the phase transition is the density-density correlation
function

Cferm (`, t) =
〈(

n0 (t)− 1
2

)(
n` (t)− 1

2

)〉
, (6.9)

whose equivalent in the spin picture is given by

CXXZ (`, t) = 〈Sz0 (t)Sz` (t)〉 . (6.10)

The correlation function states to what extent a spin at a certain lattice site ` is correlated with
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6 Light-cone spreading of correlations

the spin at a certain distance. Considering two spins that are far away from each other, the
correlation function is zero in the Luttinger liquid, while there is a finite offset in the charge-
density wave phase, since only the charge-density wave phase displays long range order. The
equilibrium correlation function for two spins which are separated by 49 sites is displayed in
Fig. 6.2 (orange), where it is visible that C (t0) is nonzero only in the charge-density wave phase
at U/J > 1, where there are staggered long-range density-density correlations.

In contrast to the correlation function, the fluctuations which are computed by subtracting the
classical part 〈Sz0 (t)〉 〈Sz` (t)〉 off the correlation function, and therefore are given by

FXXZ (`, t) = 〈Sz0 (t)Sz` (t)〉 − 〈Sz0 (t)〉 〈Sz` (t)〉 , (6.11)

are largest around the phase transition, as it is visible in Fig. 6.2 (purple). While we focus
on the spread of density-density correlations through the quantum chain upon laser driving in
publication I, the fluctuations become important in manuscript III when extracting information
about the entanglement in the driven system.

In an exact calculation for two infinitely distant spins, we would expect the fluctuations to diverge
at the phase transition and the correlations to be exactly zero in the Luttinger liquid [119].
However, the DMRG-data in Fig 6.2 shows a peak which is not diverging and is slightly shifted
towards U/J > 1 as well as a correlation function that has small deviations from zero in the
Luttinger liquid phase. Despite our use of the t-DMRG method in the infinite system size
limit [47], we can only evaluate fluctuations and correlations between two spins which are a
finite distance apart from each other, which causes the fluctuations to be finite and the slight
offset in the correlations at U/J < 1.
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Figure 6.2: Equilibrium correlations and fluctuations of two lattice sites which are 49 sites
apart in a half-filled chain of spinles fermions. The density-density correlation function C(t)
(orange, left y-axis) is zero in the Luttinger liquid, because the charge-density is evenly dis-
tributed (as indicated by the light blue points) and nonzero in the charge-density wave phase
at U/J > 1, where there are long range correlations and the charge alternates (visualized
through alternating blue points). The fluctuations (purple, right y-axis) peak at the phase
transition at U/J = 1
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We investigate the light-cone-like spread of electronic correlations in a laser-driven quantum chain. Using the
time-dependent density matrix renormalization group, we show that high-frequency driving leads to a Floquet-
engineered spread velocity that determines the enhancement of density-density correlations when the ratio of
potential and kinetic energies is effectively increased both by either a continuous or a pulsed drive. For large times
we numerically show the existence of a Floquet steady state at not too long distances on the lattice with minimal
heating. Intriguingly, we find a discontinuity of dynamically scaled correlations at the edge of the light cone,
akin to the discontinuity known to exist for quantum quenches in Luttinger liquids. Our work demonstrates the
potential of pump-probe experiments for investigating light-induced correlations in low-dimensional materials
and puts quantitative speed limits on the manipulation of long-ranged correlations through Floquet engineering.

DOI: 10.1103/PhysRevB.100.165125

I. INTRODUCTION

The control of materials properties with light is a growing
research field [1]. Theoretical proposals for using light to
change properties of interacting-electron systems range from
spin systems [2–5] via one-dimensional Luttinger liquids and
charge-density waves [6,7] and nonequilibrium superconduc-
tors [8–21] to correlated insulators [22–27]. However, in
practice one often has to deal with heating effects that can
blur Floquet-engineered properties [28,29].

A sweet spot in laser-driven correlated systems was iden-
tified in Ref. [6], where it was shown that high-frequency
driving avoids runaway heating and tunes the system across
a phase transition. Similarly, resonant laser excitation with
phonons [30] has been demonstrated experimentally to lead to
light-induced phases with enhanced interactions and induced
order parameters [31–33]. However, in ultrafast materials
science it is difficult to assess the actual correlation lengths
involved in the buildup of correlations in real time. This is
drastically different, for instance, in cold atoms in optical
lattices, where light-cone-like spreading of correlations was
demonstrated [34].

Here we show how light-cone spreading of correlations can
also be triggered by high-frequency laser driving. By inves-
tigating a laser-driven one-dimensional quantum chain with
real-time density matrix renormalization group (t-DMRG)
calculations, we demonstrate how the spread of correlations
is dictated by an instantaneous effective mode velocity that
can be understood in terms of Floquet-renormalized effective
Hamiltonian parameters. Moreover, we investigate the buildup
of a Floquet steady-state for continuous laser driving and com-
pare against thermal states. Finally, we find that a sufficiently
fast switch-on of the drive leads to a kink at the edge of the

*mona.kalthoff@mpsd.mpg.de
†michael.sentef@mpsd.mpg.de

light cone, reminiscent of a dynamical phase transition after
a quantum quench. Our combined results demonstrate the
rich opportunities to tune correlations in periodically driven
systems, provided that adequate off-resonant driving regimes
can be identified.

II. MODEL AND METHOD

To analyze the influence of an electromagnetic driving field
on a one-dimensional correlated chain of spinless fermions,
we consider the Hamiltonian

H (t ) =
∑

j

[
−J (t )

2
c†

j c j+1 + H.c.

+ U

(
n j − 1

2

)(
n j+1 − 1

2

)]
. (1)

Here U > 0 is the nearest-neighbor Coulomb interaction and
J (t ) the hopping amplitude, which becomes time-dependent
in the driven case (see below). The operator c(†)

j annihilates

(creates) a fermion on lattice site j, and nj = c†
j c j is the

local number operator. Throughout this paper we assume
an infinite chain at half filling. The influence of a spatially
uniform, time-dependent electric field is taken into account
by performing the Peierls substitution [35], yielding the time-
dependent hopping J (t ) = J0 exp[iA(t )], where A(t ) is the
vector potential corresponding to an electric field E (t ) =
−∂t A(t ). In the following we use J0 = 1 as our unit of energy.

To set the stage for the nonequilibrium dynamics, we first
characterize the well-known equilibrium phase diagram. The
system has a quantum phase transition at U/J = 1. To char-
acterize this phase transition, we compute the density-density
correlation function

C(�, t ) = 〈(
n0(t ) − 1

2

)(
n�(t ) − 1

2

)〉
. (2)

This correlation function is shown for the ground state (t = 0)
in Fig. 1 for the tenth (red) and the 50th (blue) lattice site

2469-9950/2019/100(16)/165125(8) 165125-1 ©2019 American Physical Society
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FIG. 1. Equilibrium quantum phase transition showing the tran-
sition from a Luttinger liquid (LL) to a charge-density wave (CDW)
at U/J = 1 with nonzero long-ranged correlations.

as a function of U/J . When U/J < 1 the system is a gapless
Luttinger liquid (LL), which does not display long-range
charge density wave order. For U/J > 1 a gapped charge
density wave (CDW) phase emerges with staggered long-
range density-density correlations.

We now turn to the nonequilibrium dynamics. In the
following we consider two different harmonic drives with
frequency � in the high-frequency (Magnus) limit � � J,U .
The first is a drive that is ramped on over a time interval τ ,
with vector potential

AD(t ) = E0

�
sin(�t )

[
0.5 + 0.5tanh

(
t − 5τ

τ

)]
. (3)

This continuous-wave drive (CW-Drive) has previously been
studied with the same DMRG method that we use in this
paper [6]. Hence, it is known that in the Magnus regime
the growth of entanglement limiting the DMRG calculations
remains manageable due to the absence of runaway heating,
and the long-time limit is accessible.

For high driving frequencies, it is known that a steady
state can be defined in a parametrically long intermediate
time regime [4,6,36]. Therefore, long-time physics can be de-
scribed by a renormalized Hamiltonian, i.e., by a Hamiltonian
that is averaged over a period of the drive. Averaging the
time-dependent hopping J (t ) over the 2π/� period yields the
effective hopping

Jeff = J0J0

(
E0

�

)
, (4)

where Jα is the Bessel function of the first kind [37]. Because
the absolute value of the Bessel function is smaller than unity
for any nonzero argument, the effective hopping is generically
reduced compared to the equilibrium hopping. This implies
that U/J is increased by the drive. Therefore the laser drive
moves the system to the right in the phase diagram shown
in Fig. 1, provided that the renormalization of U/J is the
dominant effect of the laser. Below we will show that this is
indeed the case provided that the parameters of the problem
are carefully chosen.

Floquet theory [38] allows for an effective analytical study
of periodically driven systems, but is restricted to time-
periodic systems in analogy to Bloch theory for spatially pe-
riodic systems. Therefore most theoretical studies of Floquet-
driven systems [4,39–56] assume the limit in which the drive
was turned on in the infinitely distant past, which is impossible

to realize within an experiment. Nevertheless it has been
shown that Floquet theory still captures the essential spectral
features for a system driven by laser pulses of finite duration
[57,58] if the system is probed on timescales sufficiently
longer than the period of the driving field [59], and if the
pulse envelope is even longer than the probe duration. We
therefore also consider a periodic drive that is modulated with
a Gaussian envelope, given by

AG(t ) = E0

�
sin(�t )exp

[
− (t − t0)2

2σ 2

]
, (5)

and compare our results to the system where the driving field
is switched on and is kept switched on for long times.

The spread of correlations within a quantum many-body
system is restricted by a maximal velocity, known as the
Lieb-Robinson bound [60]. This bound is similar to the speed
of light for the propagation of information in a relativistic
quantum field theory. The corresponding light-cone effect
has been demonstrated experimentally by quenching a one-
dimensional quantum gas in an optical lattice [34]. The spread
of correlations can be visualized as modes departing from two
lattice sites and the information being propagated when the
modes interfere in the middle [61]. Therefore the velocity with
which correlations spread through the lattice after it is excited
by a quench is given by twice the maximal mode velocity [62].
In the case of a LL, this means the expected velocity is given
by

2vLL = Jπ

h̄
· sin[arccos(−U/J )]

π − arccos(−U/J )
. (6)

To compare this velocity to our numerical data, where the
system is not excited by a sudden quench, but rather an
oscillatory laser drive that is turned on smoothly, we define a
time-dependent effective hopping Jeff (t ), which is calculated
via the envelope functions of the drives. For the ramped case
and the Gaussian pulse, this effective time-dependent hopping
is given by

JD
eff (t ) = J0J0

{
E0

�

[
0.5 + 0.5tanh

(
t − 5τ

τ

)]}
, (7a)

JG
eff (t ) = J0J0

[
E0

�
exp

(
− (t − t0)2

2σ 2

)]
, (7b)

respectively. Replacing J in Eq. (6) with Jeff (t ) yields the
spread velocity

2vLL(t ) = Jeff (t )π

h̄
· sin {arccos [−U/Jeff (t )]}

π − arccos [−U/Jeff (t )]
. (8)

Note that this implies that Jeff (t ) decreases as the amplitude
of the drive increases, and the velocity, which is dominated
not by U/J but by J , decreases because Jeff is smaller than 1.
This is illustrated in Fig. 2, which displays the vector potential
AG(t ), the corresponding renormalized hopping Jeff (t ), and
the spread velocity 2vLL(t ) as a function of time. Below we
will investigate to which extent the spread of correlations
is indeed captured by the effective spread velocity given in
Eq. (8) by comparing against the numerical data.
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FIG. 2. Vector potential AG(t ) as a function of time with driv-
ing frequency �/J0 = 15, maximal amplitude E0/� = 1.421, width
σJ0/h̄ = 10, and t0J0/h̄ = 36.77 (purple, left y axis). The Gaussian
envelope is displayed in blue, and the resulting Floquet-engineered
hopping Jeff/J0 is displayed in green. The right y axis refers to
the time-dependent spread velocity 2vLL(t )h̄/J0 (twice the Luttinger
velocity), which is displayed in red.

III. RESULTS

In this paper we consider three different interactions in the
LL phase U/J0 = {0.429, 0.500, 0.643} and three different
maximal amplitudes E0/� = {0.835, 1.111, 1.421}, which
we found to be representative. This yields values of U/Jeff

between 0.52 (LL) and 1.16 (CDW) at the maximal driving
amplitude. The corresponding driving field profiles are shown
in the upper panels of Figs. 3 and 4, respectively. Note that
the values for the interaction and the driving amplitudes are
chosen such that even though nine different combinations of

U/J0 and E0/� are given, there are only six corresponding
values of U/Jeff . Thus the pairs Figs. 3(g) and 3(e), 3(f) and
3(j), as well as 3(i) and 3(k), and analogously for the corre-
sponding pairs of panels in Fig. 4, have the same U/Jeff . The
driving frequency is chosen to be � = 15J0, the ramp time of
the ramped drive is τJ0/h̄ = 5 unless denoted otherwise, and
the parameters of the Gaussian pulse are given by σJ0/h̄ = 10
and t0J0/h̄ = 36.77. The lower panels in Figs. 3 and 4 display
the heat maps of the light-induced changes of correlations
at even distances � (odd distances have opposite sign) as a
function of time t . Here we subtract off the initial correlations,
and C(�, t ) − C(�, 0) is displayed on a logarithmic scale.

The green lines show the expected spread of correlations,
with twice the largest possible mode velocity in the LL, as
defined in Eq. (4), integrated from tstartJ0/h̄ = 22.2 for the
CW-Drive and tstartJ0/h̄ = 23.0 to t for the pulse

�eff (t, tstart ) =
∫ t

tstart

2vLL(t ′) dt ′. (9)

The starting time tstart is chosen to best match the onset of
enhanced correlations in the numerical data. Note that we
tried to automatize the extraction of the wave front position as
well as of tstart from the numerical data. However, we found
that this requires the introduction of a somewhat arbitrary
threshold value for the signal, which is why we prefer to
not use an automatic extraction method to analyze the re-
sults. Nevertheless we find that, especially for small distances
on the lattice, the wave front of the correlations computed
with t-DMRG matches the green curves quite well. This
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FIG. 3. Spread of correlations in the continuously driven chain. (a)–(c) Vector potential AD(t ) of the ramped drives as a function of time
with driving frequency �/J0 = 15 and ramp time τJ0/h̄ = 5. (d)–(l) Heatmaps of correlation changes C(�, t ) − C(�, 0) as a function of time
t for even distances � and three different values of U and E0/�, as indicated. Jeff (t0) is the maximal amplitude of AD(t ).
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FIG. 4. Spread of correlations in the pulse-driven chain. (a)–(c) Vector potential AG(t ) of the Gaussian drives as a function of time with
driving frequency �/J0 = 15, width σJ0/h̄ = 10, and t0J0/h̄ = 36.77. (d)–(l) Heatmaps of correlation changes C(�, t ) − C(�, 0) as a function
of time t at even distances � for three different values of U and E0/�, as indicated.

hints towards the validity of the concept of a time-dependent
Floquet-engineered spread velocity. Moreover, the magnitude
of the correlations increases as U/Jeff increases.

At the maximal drive envelope amplitude (t → ∞), only
the cases in Figs. 3(d) to 3(k) correspond entirely to
the LL phase with (U/Jeff (t0) = {0.52, 0.6, 0.7, 0.77, 0.9}).
The green curves match the data to a large extent in all
of the shown cases. However, there are tails of correlations
that exceed the 2vLL limit, which have a suppressed magnitude
compared to the major wave front that spreads with 2vLL to a
good approximation.

To compare more closely against time-resolved exper-
iments, which typically employ a pump-probe setup with
a pulsed driving envelope, we consider a sinusoidal field
that is modulated with a Gaussian envelope. The correlation
changes for such a Gaussian drive are displayed in Fig. 4.
Here the time-dependent effective velocity also matches the
major wave front. For the pulse we can also also observe the
relaxation dynamics after the pulse. While C(�, t ) − C(�, 0) is
always nonnegative for the ramped drive, it does take slightly
negative values when the field is switched off after the peak
of the Gaussian pulse (see slightly blue areas in Fig. 4). This
effect can be understood as a consequence of heating (see
discussion below and Appendix), with reduced correlations at
effective nonzero temperatures compared to zero temperature.
Moreover, we find that enhanced correlations last longer at
larger distances, as can be seen from the red areas bending
over to the right in Fig. 4. This implies slower relaxation
dynamics at longer distances, which is in accordance with

the same light-cone effect that causes slower enhancement of
correlations at longer distances when the drive is first switched
on.

According to Floquet theory, a periodic drive with a driv-
ing frequency in the high-frequency Magnus regime should
induce a Floquet steady state at sufficiently long times. In
Fig. 5 the correlations for three different distances on the
lattice are displayed as a function of time. The panels on the
left Figs. 5(a), 5(c), and 5(e)] display the correlations for a
pulsed system, and the panels on the right (Figs. 5(b), 5(d),
and 5(f)] display the correlations for the ramped drive. Note
that the scale of the y axis is different for all three distances
(three rows) since the correlations are roughly ten times larger
at � = 6 than at � = 26.

For the ramped case, the correlations are stabilized to a
steady state at short [Fig. 5(b)] and intermediate [Fig. 5(d)]
distances, but as expected we find longer thermalization times
for larger distances in the lattice [Fig. 5(f)]. For the pulsed
case, we find that the correlations at short [Fig. 5(a)] and
intermediate [Fig. 5(d)] distances basically follow the driving
pulse profile and return to the initial value almost perfectly
shortly after the pulse, whereas for the longest distance shown
here [Fig. 5(e)] the correlations are slightly suppressed below
the initial value before thermalizing at longer times.

The dashed grey lines in the panels on the right indicate
the correlations at thermal equilibrium for the U/Jeff (whose
value is indicated by the arrows on the right) corresponding to
the curves. The magnitude of these equilibrium correlations
does not depend on U/J0 and E0/� separately, but is solely

165125-4



FLOQUET-ENGINEERED LIGHT-CONE SPREADING OF … PHYSICAL REVIEW B 100, 165125 (2019)

← 0.52

← 0.60

← 0.77

← 0.70

← 0.90(b)

CW-Drive

← 0.52

← 0.60

← 0.70

← 0.77

← 0.90
(d)

0 50

tJ0/h̄

← 0.52
← 0.60

← 0.70

← 0.77

← 0.90

(f)

0.005

0.010

0.015

0.020

C
(�

=
6,

t)

(a)

Pulse

0.002

0.004

0.006

0.008

C
(�

=
16

,t
)

(c)

0 50

tJ0/h̄

0.001

0.002

0.003

0.004

0.005

C
(�

=
26

,t
)

(e)

E0/Ω=0.83

E0/Ω=0.83

E0/Ω=0.83

E0/Ω=1.11

E0/Ω=1.11

E0/Ω=1.11

E0/Ω=1.42

E0/Ω=1.42

FIG. 5. Temporal evolution of correlations at short, intermediate,
and long distances. Correlations C(�, t ) for a continuously driven
system (left panels) and a pulsed system (right panels) with �/J0 =
15 and � = 6 (top), � = 16 (middle), and � = 26 (bottom). Note the
different scale on the y axis for each �. Driving: τJ0/h̄ = 5. Pulse:
σJ0/h̄ = 10, t0J0/h̄ = 36.77. The grey lines indicate the correlations
at thermal equilibrium (zero temperature) for the values of U/Jeff that
are indicated with the arrows on the right.

determined by the value of U/Jeff (t → ∞). Note that due
to the fact that three combinations of interaction strengths
U/J0 and maximal driving amplitudes E0/� yield the same
U/Jeff (t → ∞), there are only five different equilibrium cor-
relations and corresponding steady-state values for the eight
different cases shown. Indeed, we show in the Appendix that
heating is negligible by computing the time-dependent energy
absorption. The system evolves essentially adiabatically de-
spite the fact that the LL phase is gapless and adiabaticity is
not well defined in this case [63–65].
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FIG. 6. Renormalized correlations as a function of dimensionless
distance at increasing distances � in the lattice for ramp times
(a) τJ0/h̄ = 5 [same parameters as Fig. 3(i)], and (B0 τJ0/h̄ = 3.
Here U/J0 = 0.5 and U/Jeff(t → ∞) = 0.9. Different curves corre-
spond to increasing even lattice distances as indicated.

We finally turn to the question of dynamical critical be-
havior when the system is driven between states with differ-
ent correlation power laws. Within the LL phase, a scaling
analysis shows that the correlations after a quench follow
a different power law inside compared to outside the light
cone, which necessarily leads to a kink in the renormalized
correlation function at the edge of the light cone. This can
be shown analytically for quenched systems, for example,
in the interacting Tomonaga-Luttinger model [66,67]. In the
following we identify an analogous kink at the edge of the
light cone in our numerical data for driven systems.

To this end we show in Fig. 6 the correlation function
C(�, t )/C(�, t = 0), for two different switch-on times of the
ramped drive, as a function of the effective dimensionless
spreading distance, given by �eff(t, tstart )/�. The initial and
final values of U/J are within the LL phase in both cases.
For large distances, where a power-law decay of correlations
is expected, the kink should be located at �eff(t, tstart )/� = 1,
i.e., at the edge of the light cone, which is indicated by the
dashed line in Fig. 6.

Indeed no clear peak can be identified at short distances in
both cases, but a peak emerges and moves towards the edge of
the cone at intermediate distances. At large distances the peak
is well defined and approaches a kink-like discontinuity. As
expected, the peak develops more clearly when the ramp time
is shorter [Fig. 6(b)] compared to the slower ramp [Fig. 6(a)].
Interestingly this result proves that dynamical quantum crit-
icality with nonanalytic behavior can indeed not only be
observed for quantum quenches but also for Floquet-driven
systems, paving the way for the potential observation of such
critical behavior in pump-probe experiments on solids.

IV. SUMMARY AND OUTLOOK

In this work we investigated in detail the Floquet-
engineered spread of correlations in a driven quantum chain
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with Luttinger liquid and charge-density wave phases. In par-
ticular, we showed that light-cone effects exist even in driven
systems with finite ramp times and finite laser pulses when the
velocity renormalization due to the driving field is properly
taken into account. Our findings prove that thermalization of
correlations at moderate distances happens relatively quickly,
provided that heating can be largely avoided in the first place.
In our study heating is effectively suppressed although the
Luttinger liquid is gapless and the switch-on timescale of
the laser drive is relatively fast. The suppression of heating
is enabled by the choice of an off-resonant, large driving
frequency.

The upshot from our results for laser-driven materials is
that light-induced phase transitions and nonequilibrium ma-
terials engineering can be rationalized. In analogy with ex-
periments on cold atomic gases [34] the effective correlation
length that can be induced by nonequilibrium engineering of
microscopic interactions is speed-limited only by the largest
available relevant mode velocity. For example, for velocities
on the order of 106 ms−1, which is a typical scale for the Fermi
velocity in graphene, a correlation length on the order of
10−6 m is established within half a picosecond. Correspond-
ingly, for slower modes like phonons, magnons, or plasmons,
the times for correlations on the micrometer level are longer. It
would be highly intriguing to devise experiments that are able
to measure such timescales for the buildup of correlations in
Floquet-engineered materials, which might be possible with
time-resolved scattering at x-ray free-electron lasers [68–70].
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APPENDIX: ENERGY ABSORPTION

Here we briefly comment on the extraction of a Floquet
steady-state energy in comparison to the ground-state energy
of the Floquet-renormalized Hamiltonian, which proves that
energy absorption is minimal and heating is avoided in the
high-frequency driving regime. The upper two panels in Fig. 7
display the energy h(t ) as a function of time. The values
of U/J0 and E0/� are chosen such that U/Jeff (t → ∞) =
0.60 for both panels [analogous to Figs. 3(e) and 3(g)]. The
numerically extracted period duration of the time-dependent
energy, hav(t ) = 0.838, equals twice the period of the drive.
By comparison to the ground-state energy for the Floquet-
renormalized parameters with U/Jeff = 0.60, it becomes ev-
ident that the time-averaged energy of the driven system
approaches exactly this ground-state energy in the long-time
limit. This proves that heating is indeed minimal, as discussed
in the main text in the context of Fig. 5.

Finally we illustrate that the energies corresponding to
parameters that have the same U/Jeff (t → ∞) = 0.60 are
directly related to each other. Figure 7(c) displays the energy
as a function of the inverse temperature β and shows that they
are simply related by rescaling of all energies in the problem
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FIG. 7. Energy h(t ) as a function of time for (a) U1/J0 = 0.429
and E0/J0 = 1.111 and (b) U2/J0 = 0.500 and E0/J0 = 0.835, re-
spectively, shown as rapidly oscillating blue curves. Averaging over
the numerically determined period duration tpJ0/h̄ leads to the
period-averaged energy hav(t ) (yellow). In addition, we indicate in
the legend the long-time limit hav

t→∞. Green lines indicate the respec-
tive equilibrium energies of the Floquet-renormalized Hamiltonian at
zero temperature. The frequency of the drive is �/J0 = 15 and the
ramp time is τJ0/h̄ = 5. (c) Energy h(β ) as a function of inverse
temperature for U1/J0 = 0.429 and E0/J0 = 1.111 [purple, same
parameters as Fig. 3(g)] and U2/J0 = 0.500 and E0/J0 = 0.835 [red,
same parameters as Fig. 3(e)]. A renormalization of h(β ) for the
red curve (U1/J0 = 0.500, E0/J0 = 0.835) of both the x axis and
the y axis with the ratio of energy scales, namely U1/U2 = 0.858,
leads to the dashed magenta curve, which is identical to the purple
curve (U1/J0 = 0.429 and E0/J0 = 1.111), showing that the curves
are related by simple rescaling of all energies, as they should.

for the two cases shown. The nonequilibrium parameter E0/�

enters the equilibrium calculation as a parameter that renor-
malizes the effective hopping Jeff (E0/�) [cf. Eq. (4) in the
main text]. We show this parameter as a label in Fig. 7(c)
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to allow for a direct comparison to the nonequilibrium cases
shown in Figs. 7(a) and 7(b). Figure 7(c) indeed shows that
the dashed magenta curve, which is the red curve rescaled by

the ratio of respective Jeff values for the two cases discussed
here, is identical to the purple curve, confirming the expected
behavior.
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7 | Entanglement dynamics

Strongly correlated materials in and out of equilibrium may feature phases that are characterized
through short- or long-ranged many body entanglement and the identification of these phases
requires knowledge of the entanglement content [120, 121]. Understanding and measuring this
entanglement through quantities commonly referred to as entanglement witnesses is therefore
essential for gaining a deeper insight of emergent phases of matter, especially in a nonequilibrium
context where a quantification of the entanglement would allow for the distinction between ther-
mal and nonthermal photoinduced states. The quantum Fisher information has been identified
as a dynamic measure for entanglement, which is accessible through Bragg or neutron scattering
experiments and can be used to detect multipartite entanglement in complex condensed-matter
systems [122, 123]. In manuscript III we study the quantum Fisher information in a half filled
chain of spinless fermions, as it is introduced in section 6.1. However, instead of considering
a driven chain with a Floquet engineered hopping J (t), we focus on a quench of the Coulomb
repulsion U (t) with a varying ramp speed v, i.e.

U (t) = vt . (7.1)

This excitation protocol is experimentally relevant because interaction-quenches can effectively
be achieved through laser driving of correlated materials [124, 125].

The quantum Fisher information can then be extracted from the t-DMRG data by taking the
Fourier transformation of the fluctuations introduced in Eq. (6.11), namely

F (q, t) = 2L
N

∑
`

eiq` {〈Sz0 (t)Sz` (t)〉 − 〈Sz0 (t)〉 〈Sz` (t)〉} (7.2)

and evaluating the resulting function at q = π, i.e.

FQ (t) = F (π, t) . (7.3)

Although the t-DMRG simulations are performed on an infinite chain [47, 126, 127], the Fourier
transformation in Eq. (7.2) is computed over a finite number of lattice sites (L = 198 if not
denoted differently), so there are weak finite-size effects in the data presented in this chapter. In
addition to the t-DMRG data, we present exact diagonalization (ED) data 1 for spin-chains up
to 24 lattice sites, using the python QuSpin package [128]. However, due to the comparatively
small system size accessible through ED, the ground state features nearly degenerate states and
the computations require an infinitesimal staggered magnetic field. It is important to keep in
mind that this staggered magnetic field noticeably influences both the height and the shape of
the ED quantum Fisher information, while the quantum Fisher information extracted from the
t-DMRG data is not computed using an additional field.

Figure 7.1 displays the quantum Fisher information both in equilibrium setup and in the
quenched chain. The equilibrium curve computed with t-DMRG is given by the solid black

1The ED compuations were performed by Denitsa R. Baykusheva
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7 Entanglement dynamics

line, which in the gapless phase is continuously increasing with distance to criticality at U = 1,
reaches a maximum at the critical point and decays to zero in the antiferromagnetic phase. The
equilibrium ED data, given by the dashed dark blue line, qualitatively agrees with the equilib-
rium DMRG data, but the exact height and the position of the maximum computed via ED is
dependent on the staggered magnetic field. The four solid multicolored curves show the time
evolution of the quantum Fisher information following an interaction quench starting at U = 0.
The t-DMRG data displayed for different ramp velocities v ∈ {0.6, 0.8, 1.0, 1.2} reveals that the
quench generally increases the quantum Fisher information, and that the increase is larger for
smaller ramp velocities. In contrast to the equilibrium curve, the dynamical quantum Fisher
information shows not only a global first maximum, but also multiple local maxima at U > 1,
and the position of the global maximum moves to the right upon increasing the ramp velocity.

The inset shows that the dynamical quantum Fisher information computed via ED for the
same ramp velocities (dashed, shades of blue), approximately agrees with the t-DMRG data at
U (t) < 2. After this initial increase, ED finite-size effects become important and the curves
start to differ. However, while the bond dimension rapidly grows in the t-DMRG computations
and restricts our simulation to shorter time scales, the ground state wavefunction is computed
individually at each time step with ED, which allows to simulate comparatively large time spans.
Overall, the enhancement of the quantum Fisher information following a quench shows that the
quantum Fisher information is indeed a sensitive probe for criticality and phase transitions out
of equilibrium.
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Figure 7.1: Dynamical quantum Fisher information for an interaction quenched chain com-
puted via ED (blue lines, dashed) and t-DMRG (solid black and multicoloured lines). The
solid black line is the DMRG equilibrium curve and the dashed dark blue curve is the ED
equilibrium result. Both equilibrium curves feature a local maximum at U (t) = 1 and ap-
proach zero in the antiferromagnetic phase at U > 1. Note that the exact shape of the ED
equilibrium curve depends on the staggered magnetic field, which is here given by hz = 0.05.
The multicolored solid lines (t-DMRG) for the quenched system at different ramp speeds v
show an enhancement of the quantum Fisher information upon laser driving. The dahsed
lines in shades of blue are the corresponding ED results and the inset shows that the ED data
qualitatively agrees with the t-DMRG data (computed for an infinite chain) below U (t) = 2.
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Quantum materials driven out of equilibrium can host highly-entangled emergent states. The
experimentally detection these many-body states requires the identification of entanglement sig-
natures in the measured response functions both in and out of equilibrium. A possible protocol
relies on the use of entanglement witnesses, such as the Quantum Fisher Information, in tandem
with operator-specific quantum bounds. However, this method hinges upon the validity of the
fluctuation-dissipation theorem and has not yet been applied to the physical response of nonequilib-
rium systems. Here, we investigate the entanglement dynamics in an XXZ quantum chain following
an interaction quench. By linearly ramping the spin anisotropy, we observe an enhancement of
multipartite entanglement, which manifests itself as a peak and subsequent oscillations of the dy-
namical quantum Fisher information. These features are nonadiabatic, i.e., not connected to the
equilibrium XXZ phase diagram, and resilient to the introduction of different decoherence channels.
We finally map our findings onto the experimentally relevant scenario of a quenched Hubbard U in
a dual charge chain and discuss implications for time-resolved spectroscopic probes of both charge
and spin degrees of freedom.

Introduction.— Many-body entanglement is a ubiqui-
tous phenomenon in condensed matter physics [1–5]. Su-
perconductors, quantum spin liquids, and certain quan-
tum magnets, all feature complex wavefunctions involv-
ing entangled building blocks with either short- or long-
ranged correlations [6–8]. Examples of such states in-
clude resonating valence-bond states comprised of dimer-
ized singlet excitations [9], which have recently been ex-
perimentally realized in a programmable quantum sim-
ulator [10, 11], anyonic excitations in the Kitaev toric
code model [12], or suggested wavefunctions potentially
at the root of the strange metal that is observed in high-
temperature superconductors []. While typically consid-
ered a microscopic phenomenon best observed in small
atomic ensembles [13], quantum entanglement can per-
sist in the thermodynamic limit and can have significant
effects on the finite-temperature behavior of macroscopic
systems [14–16]. This realization ignited an intense ex-
perimental and theoretical interest in devising means to
probe many-body entanglement in quantum materials.

Entangled states in thermodynamic equilibrium can
be diagnosed from response functions through the use
of ”entanglement witnesses” [1, 17], such as one- [18–
20] and two-tangles [14, 20, 21], or the Quantum Fisher
Information (QFI) [22–24]. In particular, the QFI is rig-
orously related to a sum-rule integral of the imaginary
dynamical susceptibility [25] and has been recently used
to quantify multipartite entanglement in neutron scatter-
ing experiments on low-dimensional spin systems [16, 26].
Crucially, by extracting information about quantum cor-
relations encoded in the dynamical response of a mate-

rial, the QFI is able to discriminate quantum criticality
at non-zero temperatures from thermal phase transitions
[1, 25]. The QFI with respect to nonlocal operators can
be used to detect topological quantum phase transitions
in models such as the Kitaev chain [27], the Kitaev hon-
eycomb model [28], and the toric code [29].

A particularly intriguing new application of entan-
glement witnesses, such as the QFI, would be the de-
tection of entanglement correlations in driven quantum
materials. Intense laser pulses have recently enabled
the observation of emergent topological Floquet [30–32]
and superconducting-like [33–35] states of matter, thus
paving the way to the synthesis of coherent light-matter
hybrids with novel electronic properties [36–39]. Cer-
tifying the presence of quantum entanglement far from
equilibrium would allow the distinction between ther-
mal and nonthermal photoinduced states [40, 41] and the
identification of entangled nonequilibrium states with-
out obvious order parameters. However, whether entan-
glement witnesses can detect and characterize nonequi-
librium phase transitions in driven quantum materials
through time-resolved response functions is still an open
problem.

In this Letter, we tackle this challenge by witnessing
the time-dependent entanglement dynamics in a quan-
tum chain undergoing an interaction quench. We con-
sider the experimentally relevant case of a quench of
the Coulomb repulsion [42–45] in a dual spinless fermion
(charge) chain, or anisotropic Heisenberg (spin) chain,
and calculate the time-dependent QFI in both the charge
and spin sectors. Upon globally ramping the interaction
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strength, both models exhibit a time-dependent increase
of the QFI, which is robust against decoherence and the
presence of additional interactions that break integrabil-
ity in the thermodynamic limit. The QFI dynamics qual-
itatively changes from an adiabatic to a diabatic quench
regime with varying ramping speed, thus indicating that
the quench speed crucially influences the multipartite en-
tanglement of a quantum system. Our results indicate
that the QFI is able to witness nonequilibrium entangle-
ment dynamics and could be used to distinguish different
dynamical regimes in driven materials.

Model.— We consider a half-filled chain of spinless
fermions interacting through nearest neighbor Coulomb
repulsion. The model Hamiltonian is given by

Ĥch(t) = −Jxy
2

∑

j

(ĉ†j ĉj+1+H.c.)+U(t)
∑

j

ñj ñj+1, (1)

where ĉ†j (ĉj) is a fermionic creation (annihilation) oper-

ator at site j, ñj = ĉ†j ĉj − 1/2 is the number operator
relative to half filling, and Jxy is a constant hopping am-
plitude which determines the energy scale of our model.
The nearest-neighbor Coulomb interaction U(t) = vt is
time-dependent and ramped up at constant velocity v
starting at t = 0. By applying a Jordan-Wigner trans-
formation [46], this charge Hamiltonian maps onto an
equivalent spin-1/2 anisotropic Heisenberg (XXZ) chain
(Fig. 1a)

Ĥsp(t) =
∑

j

[
−Jxy

2
(Ŝ+
j Ŝ
−
j+1 + H.c.) + U(t)Ŝzj Ŝ

z
j+1

]
,

(2)

where Ŝ±j = 1
2

(
Ŝxj ± Ŝyj

)
and Ŝαj (α = x, y, z) are the

usual spin operators defined in terms of the Pauli matri-
ces Ŝα = 1

2 σ̂α. In this picture, the hopping amplitude Jxy
becomes the exchange coupling while ∆(t) = U(t)/Jxy
quantifies the anisotropy of the spin interactions.

At equilibrium, this dual quantum chain exhibits well-
known quantum phase transitions. Upon increasing ∆,
the fermionic chain evolves from a gapless Luttinger Liq-
uid (LL) phase with short-range correlations to a charge
density wave (CDW) phase with long-range correlations.
The XXZ chain instead undergoes two separate transi-
tions into an Ising ferromagnet (∆ < −1) and antiferro-
magnet (∆ > 1), while for (|∆| < 1) it exhibits an XY
phase.

Since the dual charge and spin formulations are one-to-
one equivalent, we choose to study the time-dependent
dynamics of the quantum spin chain by using the Qu-
Spin package [47, 48]. We diagonalize Eq. 2 and cal-
culate the ground state wavefunction at each time step
for finite-size chains up to L = 24 sites. The anti-
ferromagnetic XXZ ground state in a finite-size system
contains a mixture of nearly-degenerate states (notably
|↑↓ . . . ↑↓〉 ± |↓↑ . . . ↓↑〉). In order to break this near de-
generacy, which vanishes in the thermodynamic limit, we
also introduce an infinitesimal staggered magnetic field

FIG. 1. Equilibrium phase diagram of the XXZ chain. (a)
Sketch of half-filled chain of spinless fermions with Coulomb-
type nearest-neighbor interaction [Eq. (1)] (lower part). Via
the Jordan-Wigner transform, this is equivalent to a spin-
1/2 XXZ chain [Eq. (2)] (upper part) where the fermionic
hopping amplitude corresponds to the exchange coupling Jxy
and the Hubbard interaction constant becomes the z-direction
exchange coupling Jzz. Note that since the Hubbard interac-
tion in Eq. (1) is defined relative to half-filling, pairs of ad-
jacent sites incur an energy penalty of Jzz/2 when they are
both occupied and when they are both unoccupied, match-
ing the physics of the ŜzŜz coupling in the XXZ chain. (b)
Equilibrium QFI density, calculated as a function of the spin
anisotropy response. Coulomb interaction for the spin-1/2
chain system of length L = 10 computed using ED (purple)
and for an infinite chain computed using i-DMRG (red), re-
spectively. The bound of fQ for detecting entanglement is
given by fQ = 1.

Ĥext =
∑
j(−1)jhzŜ

z
j to select a specific spin configura-

tion. This ensures that the disconnected part of the spin
correlation function in Eq. (3) attains a finite value in
the limit ∆ → ∞. Our spin sector quench dynamics is
then benchmarked for selected conditions against real-
time density matrix renormalization group (t-DMRG)
calculations [49] of the time evolution of an infinite chain.

To witness the multipartite entanglement content, we
directly calculate the QFI of our system. For a pure state
ψ̃0, the QFI, defined in terms of the generator Ôq assumes
the particularly simple form of the connected correlation
function:

FQ = 4∆
(
Ôq
)2

= 4
(
〈ψ̃0| Ô2

q |ψ̃0〉 − 〈ψ̃0| Ôq |ψ̃0〉
2
)
.

(3)
Here we focus on the gapless and the antiferromagnetic
regions of the quantum XXZ chain phase diagram
(resp. the LL/CDW regions of the spinless fermion
counterpart). These phase transitions are characterized
by a divergent correlation function at q = π, identifying
the onset of staggered spin (charge) order [46]. Hence,

we choose Ôπ =
∑
l(−1)lŜzl to interrogate the entangle-

ment content of these quantum chains. In the presence
of genuine multipartite entanglement, a value of the QFI
density fQ ≡ FQ/L > m, where m is a divisor of the

system size L, signals that the state |ψ̃0〉 must be at
least m+ 1-partite entangled.
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(a) (b)

(c)

20 0

FIG. 2. Nonequilibrium QFI in the driven XXZ chain.
(a) Dynamical QFI density fQ = FQ/L as a function of time
and ramp velocity. The lower part represents a zoom on the
dynamics for low ramp velocities, emphasizing the adiabatic
region and the region of superextensive QFI density. (b) Se-
lected one-dimensional line cuts of the time-dependent QFI
density for various ramp velocities.

QFI in and out of equilibrium.— In Fig. 1b, we show
the equilibrium QFI density fQ as a function of the
anisotropy parameter ∆ for both spin (ED, blue) and
charge (t-DMRG, red) sectors. Focusing on the ∆ > 0
portion of the phase diagram, the QFI density shows crit-
ical behavior in the vicinity of ∆ = 1, manifested in the
appearance of a local maximum of the QFI where fQ ex-
ceeds the classical bounds. On approaching the critical
point, the spin (charge) system becomes three (seven)-
partite entangled, and both systems exhibit a robust re-
gion of a enhanced QFI throughout the entire critical
gapless (LL) phase. The fine details of the phase dia-
gram in the spin sector also feature a dependence on the
additional staggered magnetic field hz, as elaborated in
the supplementary material. Deep into the AFM regime,
the QFI becomes featureless. For the ED calculations,
we also extend the phase diagram mapped by the equi-
librium QFI to the ferromagnetic region, which is the
result of a q = 0 instability. fQ features a discontinuity
at the phase boundary point ∆ = −1. These findings
establish the QFI density as a sensitive probe of quan-
tum phase transitions in both spin and charge sectors at
equilibrium.

Having discussed the multipartite entanglement in the
static limit, we now turn to the nonequilibrium case. Un-
less stated otherwise, we focus entirely on the spin sec-
tor, and validate our results through comparison with
t-DMRG. In Fig. 2a, we present the main result of
this work, namely the unitary time evolution of the
QFI density following an interaction quench. We start

from the XY limit ∆ = 0, with ramp velocities rang-
ing from 5 · 10−4Jmax

zz to 0.3Jmax
zz (with Jmax

zz ranging
up to 200Jxy), and calculate the QFI using Eq. (3)

for the time-evolved pure initial ground state |ψ̃0(t)〉 =

T exp
[
−i
∫ t
t0
ĤXXZ(t)dt

]
|ψ̃0(t0)〉.

While the QFI density generally decreases upon in-
creasing ramp speed, a region with extensive QFI den-
sity scaling (i.e. fQ ∼ L, thus saturating the upper
bound) emerges at low-to-intermediate ramp velocities
v/Jzeff,max ∼ 0.005 − 0.025. On further analysis, this
highly entangled state features low-energy excitations
giving rise to a “Schrödinger-cat”-like state featuring a
superposition of nearly-degenerate Nèel states.

At sufficiently high ramp speeds (v > 0.01Jmaxzz ), the
temporal evolution of the QFI assumes a more regular
structure, characterized by the emergence of a pro-
nounced broad main peak encoding a region of enhanced
entanglement content with respect to the static case.
This main front is robust with respect to the inclusion
of decoherence terms or additional interactions, that
break integrability in the infinite system. The position
of the main propagation front (marked with a white line
in Fig. 2a) moves towards larger values of the effective
spin anisotropy Jzz(t) with increasing ramp speed v,
which corresponds to earlier times in the time evolution
in the SM for analysis in the time domain. Moreover, its
position is essentially size-independent. The analysis in
the supplementary material reveals that the main front
bears no link with the specific details of the equilibrium
model (i.e. presence of additional interaction terms),
making it a generic feature that emerges out of thermal
equilibrium. Instead, its origin can be associated with
the existence of a critical ramp speed v∗ separating
the dynamical evolution of the QFI into an adiabatic
regime (v < v∗) where the time-dependent fQ essentially
traces out the equilibrium phase diagram (cp. Fig. 1b)
as a function of time, and a nonadiabatic, “impulsive”
region. Before discussing the physical origin of the nona-
diabatic phase and its implication for nonequilibrium
entanglement spectroscopy, we first examine the tem-
poral features of the QFI density at v > v∗ in more detail.

Apart from the main “jet”, the time-dependent QFI
exhibits a rich dynamical texture, as revealed by selected
the 1D “cuts” presented in Fig. 2b. A detailed time-
frequency analysis performed with the aid sliding-window
Fourier transform offers additional insight into the origin
of the various dynamical features. Both the system-size-
dependent slow “revivals” following the main peak and
the size-independent rapid oscillations (dominating the
dynamics for slower ramps at short time scales) can be
linked to the energy level structure of the ground state
and the separation between the states dominating the
formed wave packet in the nonadiabatic limit.

Stability of the QFI dynamics.— Realistic protocols
aimed at an experimental detection of macroscopic en-
tanglement face the problem of coupling to an external
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FIG. 3. Stability of the nonequilibrium QFI. Effect
of decoherence and additional interactions on the nonequi-
librium QFI. The QFI density fQ = FQ/L is plotted as a
function of time and ramp velocity as 2D maps (left) as well
as selected 1D cuts (right). Panels (a) and (b) show the evolu-
tion of fQ in the presence of the Lindbladian jump operators

L̂z and L̂+−, whereas panel (c) shows the unitarily evolved fQ
for a Hamiltonian featuring a static second-order interaction
term Ĥ(2) (see text for more details).

environment, usually detrimental for the presence of en-
tanglement. To investigate the QFI dynamics in pres-
ence of quantum dissipation, we evolve the density ma-
trix ρ̂(t) = |ψ̃0(t)〉 〈ψ̃0(t)| according to a Lindblad master
equation with a decoherence rate γ:

ρ̂(t) = −i
[
Ĥsp(t), ρ̂(t)

]
+2γ

(
L̂ρ̂(t)L̂† − 1

2

{
L̂†L̂, ρ̂(t)

})
.

(4)
The temporal evolution of the QFI following the lin-
ear ramp protocol in the presence of decoherence is dis-
played in Fig. 3 a and b for two different choices of
the Lindbladian jump operator, L̂z ≡

∑
l(−1)lσ̂zl and

L̂+− ≡
∑
l σ̂

+
l σ̂
−
l+1, respectively, and for a fixed decoher-

ence rate of γ = 0.005. As anticipated, the decoherence
term eradicates the highly entangled “Schrödinger-cat”-
like region located at low ramp speeds barely exceeding
the adiabatic limit, reducing the temporal profile of fQ in
this region to a single main peak followed by a slow decay
as the effective anisotropy increases. At higher ramp ve-
locities, the effect of decoherence is mainly discernible at
longer times, where it quenches the dynamical fQ to val-
ues below the classical bound fQ = 1, in contrast to the
case of unitary evolution. The latter is consistent with
the equilibrium evolution of the QFI density for increas-
ing anisotropy. The most striking aspect that emerges
on examining Fig. 3, however, is the fact that the main
nonequilibrium feature identified in the unitary case - the
“entanglement fan” at v > v∗, is preserved throughout
the entire region, and persists up to significant coupling

0 =

2 =

4 =

6 =

(a) (b) (c)

(d) (e) (f)
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FIG. 4. QFI and defect density. Nonequilibrium QFI
(upper row) and time-dependent density of defects (bottom
row) for three different velocities: panel (a): v = 0.005; (b):
v = 2; (c): v = 50. Dashed grey lines indicate the position of
the first QFI maximum. The density of defects is quantified
by the sum of the weights of the spin configurations featuring
zero to three domain walls (cf. color legend) comprising the

time-evolved ground state ψ̃0(t).

rates of γ ≈ 0.1, only undergoing minor shifts in the exact
location of the maximum as well as its magnitude.

Finally, we take a step to further corroborate the
stability (or universality) of the nonequilibrium features
by also considering the role of additional interactions,
that break integrability in the infinite system, and study
the dynamical QFI for a spin-1/2 XXZ chain (Eq. (2))
featuring next-nearest-neighbor interactions of the form

Ĥ(2) = J
(2)
zz
∑
l Ŝ

z
l Ŝ

z
l+2. The results presented in Fig. 3c

for an exchange coupling of J
(2)
zz = 2Jxy illustrate that

the main traits of the nonequilibrium QFI dynamics
are preserved also in this case. Importantly, this obser-
vation further demonstrates the generic character and
robustness of our main findings and suggests that they
should be observable across many different experimental
platforms, irrespective of microscopic details.

The formation of the extended entanglement “jet”, its
spreading out and suppression at progressively higher ve-
locities, and its stability against decoherence, constitute
the main features of the nonequilibrium entanglement dy-
namics. We now provide a rationalization for these ob-
servations. We plot the temporal evolution of the weights
of the various spin configurations comprising the ground
state of the quantum chain, classified according to the
relative number of domain walls (or defects) separating
Néel-like phases within each configuration. The zero-
defect spin arrangements correspond to the pure Néel
states. In the AFM limit, the two possible superposi-
tions of the latter form the doubly degenerate (in the
thermodynamic limit) ground state, whereas states with
two domain walls constitute the low-energy excitations.
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The equally-weighted superposition of Néel states in fact
constitutes a maximally entangled state and saturates
the QFI (fQ ≥ 5) as the underlying wavefunction cannot
be represented as a product state. With this information,
we can not only explain formation of the “entanglement
jet” but also delineate two distinctly different regimes of
the buildup of entanglement: adiabatic versus impulsive.
At t0 = 0, the system is initialized in the critical regime
∆ = 0, where the ground state ψ̃0(t0) has a complex
form interpolating between the AFM and FM limits, and
exhibits a high density of defects. During an adiabatic
ramp-up of the spin anisotropy v < 0.005Jmax

zz , ψ̃0(t) es-
sentially follows the GS of the XXZ Hamiltonian with the
effective anisotropy Jzeff = Jxyvt, thus increasing the pro-
portion of the the zero-defect Néel superposition in the
time-evolved wavefunction ψ̃0(t). This is reflected in an
initial rise of the QFI density fQ, which is followed by a
steady decay as the staggered magnetic field term favors
one of the Néel configurations as Jzeff grows, quenching
the created entanglement. At finite but still sufficiently
small ramp velocities (0.05 < v/Jmax

zz < 30), the entan-
glement dynamics take a nonadiabatic course and pro-
ceed via via coherent (?) excitations to a cluster of states
with lower defect density at higher energies with respect
to the GS configuration at ∆ = 0. These excitations
also lead to a net growth of the weight of the zero-defect
configuration (and thus of the QFI) Finite (but still suf-
ficiently small) ramp speeds v > v∗ also lead to a net
growth of the weight of the zero-defect configuration (and
thus of the QFI), however, after the initial maximum of
the zero-defect configuration (coinciding with the maxi-
mum of fQ), the temporal defect redistribution develops
a highly oscillatory structure. As we show in the supple-
ment, the frequency content of these oscillations can be
traced back to the energy separations between the states
composing the wave packet.
At very high ramp velocities (v > 30), the defect cre-
ation and the QFI dynamics are situated deep in the
nonadiabatic regime. As shown in the Kibble-Zurek scal-

ing analysis in the SM, the domain wall density follows
the power law. In this regime, the peak of the QFI co-
incides with the emergence of low-defect states (mainly
exhibiting two domain walls) in the GS configuration.
The maximally achievable entanglement in this regime is
lower (2 < fQ < 3), thus suppressing the amplitude of
the entanglement fan at higher ramp velocities.
Conclusions.— We have investigated the nonequilib-

rium evolution of a driven quantum chain in terms of its
many-body entanglement properties. By using an experi-
mentally accessible quantity, the QFI, we find that multi-
partite entanglement grows across a quantum phase tran-
sition both in and out of equilibrium, with distinct dy-
namical behavior for adiabatic and nonadiabatic regimes.
Owing to the dual nature of our model, such dynamics
is expected to occur both in the spin and charge sectors,
thus underscoring the possibility to measure multipar-
tite entanglement through multiple time-resolved exper-
imental probes. While experimental studies of entangle-
ment in quantum materials at equilibrium have mainly
focused on spin systems, where quantum operators are
local and inelastic neutron scattering is an established
method to interrogate the spin-spin correlation function,
our conclusions could be tested with time-resolved res-
onant inelastic x-ray scattering (sensitive to both spin
and charge degrees of freedom), or via optical methods
(mainly charge-sensitive).

Our findings are immediately relevant to the study of
photoinduced phase transitions in quasi-one-dimensional
correlated materials [49] and to the search for dynam-
ical coherence in higher dimensions. By establishing a
direct relationship between the instantaneous response
function of a material and the time-dependent QFI, we
anticipate the possibility to identify dynamical critical-
ity and nonequilibrium long-range ordered states, such
as photoinduced superconductivity and quantum spin
liquidity. More generally, the use of entanglement wit-
nesses provides an opportunity to detect coherent states
in light-driven quantum materials without the need for
well-defined order parameters.
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and P. Verrucchi, Phys. Rev. A 74, 022322 (2006).
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8 | Comprehensive discussion

In this thesis, we aimed at shedding light on the nature of nonequilibrium steady states in
correlated materials and the phase transitions between them. To do so, we studied criticality
from different angles, namely by simulating an interacting, two-dimensional, driven-dissipative
magnon system using a Boltzmann formalism, by analyzing the Floquet-engineered spread of
density-density correlations in a driven quantum chain with Luttinger liquid and charge-density
wave phases, and by investigating the multipartite entanglement that is created through an
interaction-quench in a spin-1/2 XXZ chain. The presented results help with understanding
different aspects of driving systems out of equilibrium and achieving nonequilibrium steady-
states with distinct phase properties. Throughout these projects, we aimed at maintaining close
relation to experimental pump-probe spectroscopy by choosing realistic driving protocols and
discussing experimentally accessible dynamic quantities.

Investigating the spread of electronic correlations in a one-dimensional correlated chain of spin-
less fermions driven by a high frequency laser, we find that the velocity with which the corre-
lations spread through the system, is restricted by an upper bound that is renormalized with
respect to the driving field. This renormalized upper bound causes light-cone effects, which
can be shown even if the periodic drive is ramped up over a finite time and when the drive is
modulated with a Gaussian. The modulation of the drive is chosen in order to connect our re-
sults to time-resolved experiments, which typically use pulsed driving envelopes and require the
drive to be ramped up over a given time [53, 54]. In this context, the renormalized bound to the
spread of correlations sets the time that is required for experimentally realizing a nonequilibrium
phase transition, given that the correlations need to build up over macroscopic distances [46].
Despite the modulation, we find that heating is suppressed as long as the high-frequency, off
resonant driving protocol is employed. For the quenched Luttinger liquid, it is known that the
correlations follow a different power law behavior inside and outside of the light-cone, leading
to a discontinuity in the form of a kink at the edge of the light-cone [129–131]. This dynamical
critical behavior in the form of a discontinuity is also present in the correlation function of the
Floquet-driven system, making the observation of Floquet-engineered spreading of correlations
in time-resolved spectroscopy experiments a thrilling future perspective.

Investigating the same equilibrium model, namely a half-filled chain of spinless fermions, but
introducing a quench in the Coulomb repulsion [125, 132] instead of an external driving field, we
identify the quantum Fisher information as a dynamical witness of multipartite entanglement
which can be used to characterize nonequilibrium phase transitions. Both t-DMRG and ED
calculations reveal that the quantum Fisher information shows critical behavior at the phase
transition between a gapless and an antiferromagnetic phase, and reaches its maximum value at
the critical point. The entanglement is generally enhanced in the interaction quenched system
and continues to show distinct critical features out of equilibrium. Upon increasing the ramp
speed, we find a qualitative change from adiabatic to nonadiabatic behavior, meaning that the
entanglement is sensitive to the ramp-time of the quench. Due to the accessibility of the quantum
Fisher information through inelastic neutron scattering [122, 123] and time-resolved resonant
inelastic X-ray scattering [113, 114] as well as various optical methods, it is a promising candi-
date for identifying dynamical criticality and nonequilibrium long-range order in photoinduced
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nonequilibrium states [3].

In the project presented in publication II, we move from studying criticality in one-dimensional
systems to a two-dimensional quantum magnet. Simulating a driven-dissipative Heisenberg anti-
ferromagnet, we find two distinct phase transitions that are determined through the interplay of
drive, dissipation and interactions amongst excitations (magnons). In the subthermal regime the
driving term is small compared to the parameter that regulates the dissipation into a reservoir,
and we find a nonequilibrium steady state which is ordered for sufficiently large spin-length. The
Holstein-Primakoff expansion allows us to mathematically decrease the spin-length and find a
transition where at sufficiently short spin length, the number of fluctuations is large enough to
destabilize the ordered state, and spin rotation invariance is broken. Due to the employed large
spin expansion, the precise location of the ordered subthermal to disordered subthermal phase
boundary will be different from the curve presented in publication II, but the qualitative aspects
of this order-to-disorder transition are captured by our theory. This nonequilibrium phase tran-
sition is closely related to equilibrium transitions where a magnetic order parameter vanishes
as temperature is raised, and similar nonequilibrium transitions have been studied in previous
literature [66, 73, 133–135]. Furthermore, the subthermal population of magnons indicates that
nonthermal situations in perturbed magnetic materials exist in which low energy excitations are
less populated then one would a priori expect. This could lead to interesting effects such as
avoiding the Mermin-Wagner-Hohenberg theorem. Although this subthermal phase transition
is contained in our theory, it is not the main focus of our results.

However, in addition to the phase transition that is characterized by the disappearance of an
order parameter, there is a conceptually different phase transition where the functional form of
the distribution of excitations changes. This phase transition occurs when the drive exceeds a
critical value set by the dissipation mechanism and causes an excess of magnons with regard to to
the system energy, which in the interacting system condenses at zero momentum. To determine
the precise properties of the condensed phase, we perform a careful finite-size scaling analysis,
and find that the high drive phase is given by a thermal distribution with a condensate fraction
and it can therefore be fully characterized by a temperature and the excitation density in the
condensate. Importantly, the condensation is a direct consequence of the inclusion of magnon
interactions; there is no condensate in the noninteracting driven-dissipative system, as has been
shown for various other nonequilibrium phenomena in magnetic materials [79, 91, 92]. Our
results are fully consistent with the known occurrence of Bose-Einstein condensates in particle-
number conserving systems with an excess number of particles [101, 136], but differ in various
ways. At the nonequilibrium phase transition, the system shows characteristic critical scaling
behavior in static and dynamic observables. We show a discontinuity of the magnon number with
respect to the tuning parameter and a critical slowing down in all computed dynamic quantities.
On the level of the Boltzmann approximation, we extract the corresponding critical exponents
and further analyze the behavior close to criticality by considering the linearized kinetic equation
and its eigenvalues. The spectrum of eigenvalues reveals two zero modes corresponding to the
conserved quantities as well as a smallest eigenvalue that remains nonzero in the thermodynamic
limit. The existence of a smallest nonzero eigenvalue is not only consistent with the existence
of a smallest relaxation rate that dominates the long term decay of the occupation function,
but also justifies a hydrodynamic approach to the slow modes close to criticality. Therefore, the
derivation of a hydrodynamic nonequilibrium theory of this critical behavior in close relation to
the derivation of the Navier-Stokes equation from the Boltzmann equation [137] is an exciting
point of future research.
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The condensed nonequilibrium phase we find numerically, shows interesting similarities to the
phenomena studied in largely experimental literature on Bose-Einstein condensation of magnons
in systems with long relaxation times, where a population of magnons is transiently introduced
and evolves into a coherent quantum state where the lowest energy state is macroscopically
populated [81–83]. The most prominent materials in which such a condensation of magnons
is observed are ferromagnetic yttrium iron garnet (YIG) films [83–90], and a modification of
our Boltzmann approach to simulate ferromagnetic materials could possibly help understand
the mechanisms of the evolution into the condensed state. Similarly, our results bear a close
relationship to exciton-polariton condensates [98, 138–141], which are bosonic systems and can
be modeled by a Boltzmann equation as well. Because we consider a spatially uniform drive,
our approach in its current form does not answer the question as to whether there can be
an interesting spacial structure to the nonequilibrium phase transition. And importantly, our
numerical observation of a high-drive condensed phase in a Heisenberg antiferromagnet requires
further study because we used a large spin expansion around the ordered Néel state to find a
condensed phase with a distribution function that is at least thermal for any nonzero momentum,
meaning long-range order is necessarily destroyed. This implicit contradiction could be avoided
using the Schwinger representation of the antiferromagnet [101, 142, 143], which would require
implementing a change in the dispersion in every time step. Furthermore, it would be fascinating
to see a full quantum critical analysis revealing the physics beyond the Boltzmann formalism,
including a connection of nonequilibrium critical exponents to a possible new universality class.
Another point of relevance is that our computations are based on a theory up to leading order
in the magnon expansion. We believe, although we have not investigated in detail, that if we
included terms to higher order (which are not necessarily particle number conserving) the system
would eventually thermalize at much longer time scales. The critical behavior in our analysis
could therefore possibly be interpreted as intermediate time asymptotics of the magnon system.

Observing the nonthermal behavior and particularly measuring a nonequilibrium phase transi-
tion in the distribution function rather than in a conventional order parameter, would be highly
intriguing. Promising experimental setups for probing such a transition are time-resolved second
harmonic optical polarimetry or inelastic x-ray scattering [144, 145], especially given that at the
level of the Boltzmann approximation, we find different critical exponents when approaching
the phase transition from the subthermal phase and from the nonequilibrium condensed phase.
While the determined spin condensate occurs in the limit of low energy spin waves, a mea-
surement of the dynamical excitations approaching the phase transition from both sides could
reveal the critical slowing down in proximity of the critical point. Possible probe-candidates for
such measurements would be for example antiferromagnetic, two-dimensional transition metal
oxides [146] because of their large magnetic exchange energy and strong spin-orbit coupling.

Summarizing, the projects presented in this thesis contribute to our understanding of the ver-
satile physical mechanisms involved in inducing nonequilibrium phase transitions and criticality
through light-matter interaction. This is important given that the enormous progress in the
field of time-resolved spectroscopy goes hand in hand with the need for the development of
out-of-equilibrium computational methods. Furthermore, improving our understanding of the
control knobs for achieving nonequilibrium steady states is essential to optically control emer-
gent states of strongly correlated materials, and thus achieving engineered quantum materials
with distinct desired system properties. This deterministic engineering of quantum materials
and phases presents a rich new landscape of technological applications.

81



Bibliography

1. Feliciano Giustino, Jin Hong Lee, Felix Trier, Manuel Bibes, Stephen M. Winter, Roser
Valentí, Young Woo Son, Louis Taillefer, Christoph Heil, Adriana I. Figueroa, Bernard
Plaçais, Quan Sheng Wu, Oleg V. Yazyev, Erik P.A.M. Bakkers, Jesper Nygård, Pol
Forn-Díaz, Silvano de Franceschi, J. W. McIver, L. E.F. Foa Torres, Tony Low, An-
shuman Kumar, Regina Galceran, Sergio O. Valenzuela, Marius V. Costache, Aurélien
Manchon, Eun Ah Kim, Gabriel R. Schleder, Adalberto Fazzio, and Stephan Roche.
The 2021 quantum materials roadmap. JPhys Materials, 3(4), October 2020. URL
https://iopscience.iop.org/article/10.1088/2515-7639/abb74e.

2. Anatoli Polkovnikov, Krishnendu Sengupta, Alessandro Silva, and Mukund Vengalat-
tore. Colloquium: Nonequilibrium dynamics of closed interacting quantum systems.
Rev. Mod. Phys., 83:863–883, Aug 2011. URL https://link.aps.org/doi/10.1103/
RevModPhys.83.863.

3. Alberto de la Torre, Dante M. Kennes, Martin Claassen, Simon Gerber, James W. McIver,
and Michael A. Sentef. Colloquium: Nonthermal pathways to ultrafast control in quan-
tum materials. Rev. Mod. Phys., 93:041002, Oct 2021. URL https://link.aps.org/doi/
10.1103/RevModPhys.93.041002.

4. Masatoshi Imada, Atsushi Fujimori, and Yoshinori Tokura. Metal-insulator transitions.
Rev. Mod. Phys., 70:1039–1263, Oct 1998. URL https://link.aps.org/doi/10.1103/
RevModPhys.70.1039.

5. Kenneth G. Wilson. The renormalization group and critical phenomena. Rev. Mod. Phys.,
55:583–600, Jul 1983. URL https://link.aps.org/doi/10.1103/RevModPhys.55.583.

6. Gerald D. Mahan. Many-Particle Physics. Springer US, 2000. URL https://doi.org/
10.1007%2F978-1-4757-5714-9.

7. D. N. Basov, Richard D. Averitt, Dirk van der Marel, Martin Dressel, and Kristjan Haule.
Electrodynamics of correlated electron materials. Rev. Mod. Phys., 83:471–541, Jun 2011.
URL https://link.aps.org/doi/10.1103/RevModPhys.83.471.

8. Jens Klinder, Hans Keßler, Matthias Wolke, Ludwig Mathey, and Andreas Hemmerich. Dy-
namical phase transition in the open dicke model. Proceedings of the National Academy of
Sciences, 112(11):3290–3295, 2015. URL https://www.pnas.org/content/112/11/3290.

9. Tilman Esslinger. Fermi-hubbard physics with atoms in an optical lattice. Annual Review of
Condensed Matter Physics, 1(1):129–152, 2010. URL https://doi.org/10.1146/annurev-
conmatphys-070909-104059.

10. Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-body physics with ultracold
gases. Rev. Mod. Phys., 80:885–964, Jul 2008. URL https://link.aps.org/doi/10.1103/

82

https://iopscience.iop.org/article/10.1088/2515-7639/abb74e
https://link.aps.org/doi/10.1103/RevModPhys.83.863
https://link.aps.org/doi/10.1103/RevModPhys.83.863
https://link.aps.org/doi/10.1103/RevModPhys.93.041002
https://link.aps.org/doi/10.1103/RevModPhys.93.041002
https://link.aps.org/doi/10.1103/RevModPhys.70.1039
https://link.aps.org/doi/10.1103/RevModPhys.70.1039
https://link.aps.org/doi/10.1103/RevModPhys.55.583
https://doi.org/10.1007%2F978-1-4757-5714-9
https://doi.org/10.1007%2F978-1-4757-5714-9
https://link.aps.org/doi/10.1103/RevModPhys.83.471
https://www.pnas.org/content/112/11/3290
https://doi.org/10.1146/annurev-conmatphys-070909-104059
https://doi.org/10.1146/annurev-conmatphys-070909-104059
https://link.aps.org/doi/10.1103/RevModPhys.80.885
https://link.aps.org/doi/10.1103/RevModPhys.80.885
https://link.aps.org/doi/10.1103/RevModPhys.80.885


Bibliography

RevModPhys.80.885.

11. A. L. Cavalieri, N. Müller, Th. Uphues, V. S. Yakovlev, A. Baltuška, B. Horvath,
B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. M.
Echenique, R. Kienberger, F. Krausz, and U. Heinzmann. Attosecond spectroscopy in con-
densed matter. Nature, 449(7165):1029–1032, Oct 2007. URL https://doi.org/10.1038/
nature06229.

12. D. Nicoletti and A. Cavalleri. Nonlinear light–matter interaction at terahertz frequen-
cies. Adv. Opt. Photon., 8(3):401–464, Sep 2016. URL http://opg.optica.org/aop/
abstract.cfm?URI=aop-8-3-401.

13. Andrei Kirilyuk, Alexey V. Kimel, and Theo Rasing. Ultrafast optical manipulation of
magnetic order. Rev. Mod. Phys., 82:2731–2784, Sep 2010. URL https://link.aps.org/
doi/10.1103/RevModPhys.82.2731.

14. M. Mitrano, A. Cantaluppi, D. Nicoletti, S. Kaiser, A. Perucchi, S. Lupi, P. Di Pietro,
D. Pontiroli, M. Riccò, S. R. Clark, D. Jaksch, and A. Cavalleri. Possible light-induced
superconductivity in k3c60 at high temperature. Nature, 530(7591):461–464, Feb 2016.
URL https://doi.org/10.1038/nature16522.

15. R. Mankowsky, A. Subedi, M. Först, S. O. Mariager, M. Chollet, H. T. Lemke, J. S.
Robinson, J. M. Glownia, M. P. Minitti, A. Frano, M. Fechner, N. A. Spaldin, T. Loew,
B. Keimer, A. Georges, and A. Cavalleri. Nonlinear lattice dynamics as a basis for enhanced
superconductivity in yba2cu3o6.5. Nature, 516(7529):71–73, Dec 2014. URL https://
doi.org/10.1038/nature13875.

16. R. D. Averitt, G. Rodriguez, A. I. Lobad, J. L. W. Siders, S. A. Trugman, and A. J. Taylor.
Nonequilibrium superconductivity and quasiparticle dynamics in yba2cu3o7−δ. Phys. Rev.
B, 63:140502, Mar 2001. URL https://link.aps.org/doi/10.1103/PhysRevB.63.140502.

17. D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C. Hoffmann, S. Pyon,
T. Takayama, H. Takagi, and A. Cavalleri. Light-induced superconductivity in a stripe-
ordered cuprate. Science, 331:189–191, Jan 2011. URL https://www.science.org/doi/
10.1126/science.1197294.

18. A. Cavalleri, Th. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein. Evidence
for a structurally-driven insulator-to-metal transition in vo2: A view from the ultrafast
timescale. Phys. Rev. B, 70:161102, Oct 2004. URL https://link.aps.org/doi/10.1103/
PhysRevB.70.161102.

19. Mengkun Liu, Harold Y. Hwang, Hu Tao, Andrew C. Strikwerda, Kebin Fan, George R.
Keiser, Aaron J. Sternbach, Kevin G. West, Salinporn Kittiwatanakul, Jiwei Lu, Stu-
art A. Wolf, Fiorenzo G. Omenetto, Xin Zhang, Keith A. Nelson, and Richard D. Averitt.
Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial.
Nature, 487(7407):345–348, Jul 2012. URL https://doi.org/10.1038/nature11231.

20. M. Zahradnik, M. Kiaba, S. Espinoza, M. Rebarz, J. Andreasson, O. Caha, F. Abadizaman,
D. Munzar, and A. Dubroka. Photo-induced insulator-to-metal transition and coherent

83

https://link.aps.org/doi/10.1103/RevModPhys.80.885
https://link.aps.org/doi/10.1103/RevModPhys.80.885
https://link.aps.org/doi/10.1103/RevModPhys.80.885
https://doi.org/10.1038/nature06229
https://doi.org/10.1038/nature06229
http://opg.optica.org/aop/abstract.cfm?URI=aop-8-3-401
http://opg.optica.org/aop/abstract.cfm?URI=aop-8-3-401
https://link.aps.org/doi/10.1103/RevModPhys.82.2731
https://link.aps.org/doi/10.1103/RevModPhys.82.2731
https://doi.org/10.1038/nature16522
https://doi.org/10.1038/nature13875
https://doi.org/10.1038/nature13875
https://link.aps.org/doi/10.1103/PhysRevB.63.140502
https://www.science.org/doi/10.1126/science.1197294
https://www.science.org/doi/10.1126/science.1197294
https://link.aps.org/doi/10.1103/PhysRevB.70.161102
https://link.aps.org/doi/10.1103/PhysRevB.70.161102
https://doi.org/10.1038/nature11231


Bibliography

acoustic phonon propagation in lacoo3 thin films explored by femtosecond pump-probe
ellipsometry, 2022.

21. A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kief-
fer. Femtosecond structural dynamics in vo2 during an ultrafast solid-solid phase transi-
tion. Phys. Rev. Lett., 87:237401, Nov 2001. URL https://link.aps.org/doi/10.1103/
PhysRevLett.87.237401.

22. R. Singla, A. Simoncig, M. Först, D. Prabhakaran, A. L. Cavalieri, and A. Cavalleri.
Photoinduced melting of the orbital order in la0.5sr1.5mno4 measured with 4-fs laser
pulses. Phys. Rev. B, 88:075107, Aug 2013. URL https://link.aps.org/doi/10.1103/
PhysRevB.88.075107.

23. R. I. Tobey, D. Prabhakaran, A. T. Boothroyd, and A. Cavalleri. Ultrafast electronic
phase transition in la1/2sr3/2mno4 by coherent vibrational excitation: Evidence for non-
thermal melting of orbital order. Phys. Rev. Lett., 101:197404, Nov 2008. URL https:
//link.aps.org/doi/10.1103/PhysRevLett.101.197404.

24. J. Eisert, M. Friesdorf, and C. Gogolin. Quantum many-body systems out of equilibrium.
Nature Physics, 11(2):124–130, Feb 2015. URL https://doi.org/10.1038/nphys3215.

25. J.A. Sobota, S.-L. Yang, D. Leuenberger, A.F. Kemper, J.G. Analytis, I.R. Fisher,
P.S. Kirchmann, T.P. Devereaux, and Z.-X. Shen. Ultrafast electron dynamics in the
topological insulator bi2se3 studied by time-resolved photoemission spectroscopy. Jour-
nal of Electron Spectroscopy and Related Phenomena, 195:249–257, 2014. URL https:
//www.sciencedirect.com/science/article/pii/S0368204814000231.

26. Herbert F. Fotso, Eric Dohner, Alexander Kemper, and James K. Freericks. Bridging the
gap between the transient and the steady state of a nonequilibrium quantum system, 2021.

27. Naoto Tsuji, Martin Eckstein, and Philipp Werner. Nonthermal antiferromagnetic order
and nonequilibrium criticality in the hubbard model. Phys. Rev. Lett., 110:136404, Mar
2013. URL https://link.aps.org/doi/10.1103/PhysRevLett.110.136404.

28. Philipp Werner and Yuta Murakami. Nonthermal excitonic condensation near a spin-
state transition. Phys. Rev. B, 102:241103, Dec 2020. URL https://link.aps.org/doi/
10.1103/PhysRevB.102.241103.

29. Bojan Žunkovič, Markus Heyl, Michael Knap, and Alessandro Silva. Dynamical quantum
phase transitions in spin chains with long-range interactions: Merging different concepts
of nonequilibrium criticality. Phys. Rev. Lett., 120:130601, Mar 2018. URL https://
link.aps.org/doi/10.1103/PhysRevLett.120.130601.

30. Alfred Zong, Pavel E. Dolgirev, Anshul Kogar, Emre Ergeçen, Mehmet B. Yilmaz, Ya-
Qing Bie, Timm Rohwer, I-eg Tung, Joshua Straquadine, Xirui Wang, Yafang Yang, Xi-
aozhe Shen, Renkai Li, Jie Yang, Suji Park, Matthias C. Hoffmann, Benjamin K. Ofori-
Okai, Michael E. Kozina, Haidan Wen, Xijie Wang, Ian R. Fisher, Pablo Jarillo-Herrero,
and Nuh Gedik. Dynamical slowing-down in an ultrafast photoinduced phase transi-
tion. Phys. Rev. Lett., 123:097601, Aug 2019. URL https://link.aps.org/doi/10.1103/

84

https://link.aps.org/doi/10.1103/PhysRevLett.87.237401
https://link.aps.org/doi/10.1103/PhysRevLett.87.237401
https://link.aps.org/doi/10.1103/PhysRevB.88.075107
https://link.aps.org/doi/10.1103/PhysRevB.88.075107
https://link.aps.org/doi/10.1103/PhysRevLett.101.197404
https://link.aps.org/doi/10.1103/PhysRevLett.101.197404
https://doi.org/10.1038/nphys3215
https://www.sciencedirect.com/science/article/pii/S0368204814000231
https://www.sciencedirect.com/science/article/pii/S0368204814000231
https://link.aps.org/doi/10.1103/PhysRevLett.110.136404
https://link.aps.org/doi/10.1103/PhysRevB.102.241103
https://link.aps.org/doi/10.1103/PhysRevB.102.241103
https://link.aps.org/doi/10.1103/PhysRevLett.120.130601
https://link.aps.org/doi/10.1103/PhysRevLett.120.130601
https://link.aps.org/doi/10.1103/PhysRevLett.123.097601
https://link.aps.org/doi/10.1103/PhysRevLett.123.097601
https://link.aps.org/doi/10.1103/PhysRevLett.123.097601


Bibliography

PhysRevLett.123.097601.

31. Wojciech H. Zurek, Uwe Dorner, and Peter Zoller. Dynamics of a quantum phase transi-
tion. Phys. Rev. Lett., 95:105701, Sep 2005. URL https://link.aps.org/doi/10.1103/
PhysRevLett.95.105701.

32. Fahad Mahmood, Ching-Kit Chan, Zhanybek Alpichshev, Dillon Gardner, Young Lee,
Patrick A. Lee, and Nuh Gedik. Selective scattering between floquet–bloch and volkov
states in a topological insulator. Nature Physics, 12(4):306–310, Apr 2016. URL https:
//doi.org/10.1038/nphys3609.

33. Takashi Oka and Sota Kitamura. Floquet engineering of quantum materials. Annual Re-
view of Condensed Matter Physics, 10(1):387–408, 2019. URL https://doi.org/10.1146/
annurev-conmatphys-031218-013423.

34. D. N. Basov, R. D. Averitt, and D. Hsieh. Towards properties on demand in quantum ma-
terials. Nature Materials, 16(11):1077–1088, Nov 2017. URL https://doi.org/10.1038/
nmat5017.

35. Jun-Yi Shan, M. Ye, H. Chu, Sungmin Lee, Je-Geun Park, L. Balents, and D. Hsieh. Giant
modulation of optical nonlinearity by floquet engineering. Nature, 600(7888):235–239, Dec
2021. URL https://doi.org/10.1038/s41586-021-04051-8.

36. Götz S. Uhrig, Mona H. Kalthoff, and James K. Freericks. Positivity of the spectral
densities of retarded floquet green functions. Phys. Rev. Lett., 122:130604, Apr 2019. URL
https://link.aps.org/doi/10.1103/PhysRevLett.122.130604.

37. Luca D’Alessio and Anatoli Polkovnikov. Many-body energy localization transition
in periodically driven systems. Annals of Physics, 333:19–33, 2013. URL https:
//www.sciencedirect.com/science/article/pii/S0003491613000389.

38. Adhip Agarwala, Utso Bhattacharya, Amit Dutta, and Diptiman Sen. Effects of periodic
kicking on dispersion and wave packet dynamics in graphene. Phys. Rev. B, 93:174301,
May 2016. URL https://link.aps.org/doi/10.1103/PhysRevB.93.174301.

39. G. Floquet. Sur les équations différentielles linéaires à coefficients périodiques. Annales
scientifiques de l’École Normale Supérieure, 12:47–88, 1883. URL http://www.numdam.org/
articles/10.24033/asens.220/.

40. Mark S. Rudner and Netanel H Lindner. The floquet engineer’s handbook. arXiv, 2020.
URL https://arxiv.org/abs/2003.08252.

41. Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik. Observation of floquet-bloch
states on the surface of a topological insulator. Science, 342:453–457, Oct 2013. URL
https://www.science.org/doi/10.1126/science.1239834.

42. J. W. McIver, B. Schulte, F.-U. Stein, T. Matsuyama, G. Jotzu, G. Meier, and A. Cavalleri.
Light-induced anomalous hall effect in graphene. Nature Physics, 16(1):38–41, Jan 2020.
URL https://doi.org/10.1038/s41567-019-0698-y.

85

https://link.aps.org/doi/10.1103/PhysRevLett.123.097601
https://link.aps.org/doi/10.1103/PhysRevLett.123.097601
https://link.aps.org/doi/10.1103/PhysRevLett.123.097601
https://link.aps.org/doi/10.1103/PhysRevLett.95.105701
https://link.aps.org/doi/10.1103/PhysRevLett.95.105701
https://doi.org/10.1038/nphys3609
https://doi.org/10.1038/nphys3609
https://doi.org/10.1146/annurev-conmatphys-031218-013423
https://doi.org/10.1146/annurev-conmatphys-031218-013423
https://doi.org/10.1038/nmat5017
https://doi.org/10.1038/nmat5017
https://doi.org/10.1038/s41586-021-04051-8
https://link.aps.org/doi/10.1103/PhysRevLett.122.130604
https://www.sciencedirect.com/science/article/pii/S0003491613000389
https://www.sciencedirect.com/science/article/pii/S0003491613000389
https://link.aps.org/doi/10.1103/PhysRevB.93.174301
http://www.numdam.org/articles/10.24033/asens.220/
http://www.numdam.org/articles/10.24033/asens.220/
https://arxiv.org/abs/2003.08252
https://www.science.org/doi/10.1126/science.1239834
https://doi.org/10.1038/s41567-019-0698-y


Bibliography

43. Sven Aeschlimann, Shunsuke A. Sato, Razvan Krause, Mariana Chávez-Cervantes, Um-
berto De Giovannini, Hannes Hübener, Stiven Forti, Camilla Coletti, Kerstin Hanff, Kai
Rossnagel, Angel Rubio, and Isabella Gierz. Survival of floquet–bloch states in the pres-
ence of scattering. Nano Letters, 21(12):5028–5035, 2021. URL https://doi.org/10.1021/
acs.nanolett.1c00801. PMID: 34082532.

44. Mark S. Rudner and Netanel H. Lindner. Band structure engineering and non-equilibrium
dynamics in floquet topological insulators. Nature Reviews Physics, 2(5):229–244, May
2020. URL https://doi.org/10.1038/s42254-020-0170-z.

45. Sein Park, Wonjun Lee, Seong Jang, Yong-Bin Choi, Jinho Park, Woochan Jung, Kenji
Watanabe, Takashi Taniguchi, Gil Young Cho, and Gil-Ho Lee. Steady floquet–andreev
states in graphene josephson junctions. Nature, 603(7901):421–426, Mar 2022. URL https:
//doi.org/10.1038/s41586-021-04364-8.

46. Marc Cheneau, Peter Barmettler, Dario Poletti, Manuel Endres, Peter Schauß, Takeshi
Fukuhara, Christian Gross, Immanuel Bloch, Corinna Kollath, and Stefan Kuhr. Light-
cone-like spreading of correlations in a quantum many-body system. Nature, 481(7382):
484–487, Jan 2012. URL https://doi.org/10.1038/nature10748.

47. D. M. Kennes, A. de la Torre, A. Ron, D. Hsieh, and A. J. Millis. Floquet engineering in
quantum chains. Phys. Rev. Lett., 120:127601, Mar 2018. URL https://link.aps.org/
doi/10.1103/PhysRevLett.120.127601.

48. Pedro Ponte, Z. Papić, Fran çois Huveneers, and Dmitry A. Abanin. Many-body local-
ization in periodically driven systems. Phys. Rev. Lett., 114:140401, Apr 2015. URL
https://link.aps.org/doi/10.1103/PhysRevLett.114.140401.

49. Dmitry A. Abanin, Wojciech De Roeck, Wen Wei Ho, and Fran çois Huveneers. Effective
hamiltonians, prethermalization, and slow energy absorption in periodically driven many-
body systems. Phys. Rev. B, 95:014112, Jan 2017. URL https://link.aps.org/doi/
10.1103/PhysRevB.95.014112.

50. Philipp T. Dumitrescu, Romain Vasseur, and Andrew C. Potter. Logarithmically slow
relaxation in quasiperiodically driven random spin chains. Phys. Rev. Lett., 120:070602,
Feb 2018. URL https://link.aps.org/doi/10.1103/PhysRevLett.120.070602.

51. Marin Bukov, Luca D’Alessio, and Anatoli Polkovnikov. Universal high-frequency be-
havior of periodically driven systems: from dynamical stabilization to floquet engi-
neering. Advances in Physics, 64(2):139–226, 2015. URL https://doi.org/10.1080/
00018732.2015.1055918.

52. André Eckardt and Egidijus Anisimovas. High-frequency approximation for periodically
driven quantum systems from a floquet-space perspective. New Journal of Physics, 17(9):
093039, sep 2015. URL https://doi.org/10.1088/1367-2630/17/9/093039.

53. Mona H. Kalthoff, Götz S. Uhrig, and J. K. Freericks. Emergence of floquet behavior
for lattice fermions driven by light pulses. Phys. Rev. B, 98:035138, Jul 2018. URL
https://link.aps.org/doi/10.1103/PhysRevB.98.035138.

86

https://doi.org/10.1021/acs.nanolett.1c00801
https://doi.org/10.1021/acs.nanolett.1c00801
https://doi.org/10.1038/s42254-020-0170-z
https://doi.org/10.1038/s41586-021-04364-8
https://doi.org/10.1038/s41586-021-04364-8
https://doi.org/10.1038/nature10748
https://link.aps.org/doi/10.1103/PhysRevLett.120.127601
https://link.aps.org/doi/10.1103/PhysRevLett.120.127601
https://link.aps.org/doi/10.1103/PhysRevLett.114.140401
https://link.aps.org/doi/10.1103/PhysRevB.95.014112
https://link.aps.org/doi/10.1103/PhysRevB.95.014112
https://link.aps.org/doi/10.1103/PhysRevLett.120.070602
https://doi.org/10.1080/00018732.2015.1055918
https://doi.org/10.1080/00018732.2015.1055918
https://doi.org/10.1088/1367-2630/17/9/093039
https://link.aps.org/doi/10.1103/PhysRevB.98.035138


Bibliography

54. M. A. Sentef, M. Claassen, A. F. Kemper, B. Moritz, T. Oka, J. K. Freericks, and T. P.
Devereaux. Theory of floquet band formation and local pseudospin textures in pump-
probe photoemission of graphene. Nature Communications, 6(1):7047, May 2015. URL
https://doi.org/10.1038/ncomms8047.

55. U. Schollwöck. The density-matrix renormalization group. Rev. Mod. Phys., 77:259–315,
Apr 2005. URL https://link.aps.org/doi/10.1103/RevModPhys.77.259.

56. Elliott H. Lieb and Derek W. Robinson. The finite group velocity of quantum spin
systems. Communications in Mathematical Physics, 28(3):251–257, Sep 1972. URL
https://doi.org/10.1007/BF01645779.

57. Daniel A. Roberts and Brian Swingle. Lieb-robinson bound and the butterfly effect in quan-
tum field theories. Phys. Rev. Lett., 117:091602, Aug 2016. URL https://link.aps.org/
doi/10.1103/PhysRevLett.117.091602.

58. John Sous, Benedikt Kloss, Dante M. Kennes, David R. Reichman, and Andrew J. Millis.
Phonon-induced disorder in dynamics of optically pumped metals from nonlinear electron-
phonon coupling. Nature Communications, 12(1):5803, Oct 2021. URL https://doi.org/
10.1038/s41467-021-26030-3.

59. Tatsuhiko N. Ikeda and Masahiro Sato. General description for nonequilibrium steady
states in periodically driven dissipative quantum systems. Science Advances, 6(27):
eabb4019, 2020. URL https://www.science.org/doi/abs/10.1126/sciadv.abb4019.

60. M. Yarmohammadi, C. Meyer, B. Fauseweh, B. Normand, and G. S. Uhrig. Dynamical
properties of a driven dissipative dimerized s = 1

2 chain. Phys. Rev. B, 103:045132, Jan
2021. URL https://link.aps.org/doi/10.1103/PhysRevB.103.045132.

61. A. F. Kemper, O. Abdurazakov, and J. K. Freericks. General principles for the nonequilib-
rium relaxation of populations in quantum materials. Phys. Rev. X, 8:041009, Oct 2018.
URL https://link.aps.org/doi/10.1103/PhysRevX.8.041009.

62. Daniel Vorberg, Waltraut Wustmann, Roland Ketzmerick, and André Eckardt. Gen-
eralized bose-einstein condensation into multiple states in driven-dissipative systems.
Phys. Rev. Lett., 111:240405, Dec 2013. URL https://link.aps.org/doi/10.1103/
PhysRevLett.111.240405.

63. E. M. Kessler, G. Giedke, A. Imamoglu, S. F. Yelin, M. D. Lukin, and J. I. Cirac. Dissipative
phase transition in a central spin system. Phys. Rev. A, 86:012116, Jul 2012. URL https:
//link.aps.org/doi/10.1103/PhysRevA.86.012116.

64. L.Landau. The theory of phase transitions. Nature, 138(3498), Nov 1936. URL https:
//doi.org/10.1038/138840a0.

65. Ferdinand Brennecke, Rafael Mottl, Kristian Baumann, Renate Landig, Tobias Donner,
and Tilman Esslinger. Real-time observation of fluctuations at the driven-dissipative dicke
phase transition. Proceedings of the National Academy of Sciences, 110(29):11763–11767,
2013. URL https://www.pnas.org/doi/abs/10.1073/pnas.1306993110.

87

https://doi.org/10.1038/ncomms8047
https://link.aps.org/doi/10.1103/RevModPhys.77.259
https://doi.org/10.1007/BF01645779
https://link.aps.org/doi/10.1103/PhysRevLett.117.091602
https://link.aps.org/doi/10.1103/PhysRevLett.117.091602
https://doi.org/10.1038/s41467-021-26030-3
https://doi.org/10.1038/s41467-021-26030-3
https://www.science.org/doi/abs/10.1126/sciadv.abb4019
https://link.aps.org/doi/10.1103/PhysRevB.103.045132
https://link.aps.org/doi/10.1103/PhysRevX.8.041009
https://link.aps.org/doi/10.1103/PhysRevLett.111.240405
https://link.aps.org/doi/10.1103/PhysRevLett.111.240405
https://link.aps.org/doi/10.1103/PhysRevA.86.012116
https://link.aps.org/doi/10.1103/PhysRevA.86.012116
https://doi.org/10.1038/138840a0
https://doi.org/10.1038/138840a0
https://www.pnas.org/doi/abs/10.1073/pnas.1306993110


Bibliography

66. Aditi Mitra, So Takei, Yong Baek Kim, and A. J. Millis. Nonequilibrium quantum
criticality in open electronic systems. Phys. Rev. Lett., 97:236808, Dec 2006. URL
https://link.aps.org/doi/10.1103/PhysRevLett.97.236808.

67. Aditi Mitra and Andrew J. Millis. Current-driven quantum criticality in itinerant electron
ferromagnets. Phys. Rev. B, 77:220404, Jun 2008. URL https://link.aps.org/doi/
10.1103/PhysRevB.77.220404.

68. Nicklas Walldorf, Dante M. Kennes, Jens Paaske, and Andrew J. Millis. The antiferro-
magnetic phase of the floquet-driven hubbard model. Phys. Rev. B, 100:121110, Sep 2019.
URL https://link.aps.org/doi/10.1103/PhysRevB.100.121110.

69. Subir Sachdev. Quantum Phase Transitions. Cambridge University Press, 2 edition, 2011.

70. Piers Coleman. Introduction to Many-Body Physics. Cambridge University Press, 2015.

71. Baoquan Feng, Shuai Yin, and Fan Zhong. Theory of driven nonequilibrium critical phe-
nomena. Phys. Rev. B, 94:144103, Oct 2016. URL https://link.aps.org/doi/10.1103/
PhysRevB.94.144103.

72. P. V. Prudnikov, V. V. Prudnikov, and E. A. Pospelov. Calculation of the fluctuation-
dissipation ratio for the nonequilibrium critical behavior of disordered systems. JETP
Letters, 98(10):619–625, Jan 2014. URL https://doi.org/10.1134/S0021364013230100.

73. L. M. Sieberer, S. D. Huber, E. Altman, and S. Diehl. Dynamical critical phenomena
in driven-dissipative systems. Phys. Rev. Lett., 110:195301, May 2013. URL https://
link.aps.org/doi/10.1103/PhysRevLett.110.195301.

74. Emanuele G. Dalla Torre, Eugene Demler, Thierry Giamarchi, and Ehud Altman. Quan-
tum critical states and phase transitions in the presence of non-equilibrium noise. Nature
Physics, 6(10):806–810, Oct 2010. URL https://doi.org/10.1038/nphys1754.

75. Jamir Marino and Sebastian Diehl. Driven markovian quantum criticality. Phys.
Rev. Lett., 116:070407, Feb 2016. URL https://link.aps.org/doi/10.1103/
PhysRevLett.116.070407.

76. Adolfo del Campo and Wojciech H. Zurek. Universality of phase transition dynam-
ics: Topological defects from symmetry breaking. International Journal of Modern
Physics A, 29(08), 2014. URL https://www.worldscientific.com/doi/abs/10.1142/
S0217751X1430018X.

77. Charles Kittel. Introduction to solid state physics eighth edition. 2021.

78. Sergio M. Rezende, Antonio Azevedo, and Roberto L. Rodríguez-Suárez. Introduction
to antiferromagnetic magnons. Journal of Applied Physics, 126(15):151101, 2019. URL
https://doi.org/10.1063/1.5109132.

79. Philipp Pirro, Vitaliy I. Vasyuchka, Alexander A. Serga, and Burkard Hillebrands. Ad-
vances in coherent magnonics. Nature Reviews Materials, Jul 2021. URL https:
//doi.org/10.1038/s41578-021-00332-w.

88

https://link.aps.org/doi/10.1103/PhysRevLett.97.236808
https://link.aps.org/doi/10.1103/PhysRevB.77.220404
https://link.aps.org/doi/10.1103/PhysRevB.77.220404
https://link.aps.org/doi/10.1103/PhysRevB.100.121110
https://link.aps.org/doi/10.1103/PhysRevB.94.144103
https://link.aps.org/doi/10.1103/PhysRevB.94.144103
https://doi.org/10.1134/S0021364013230100
https://link.aps.org/doi/10.1103/PhysRevLett.110.195301
https://link.aps.org/doi/10.1103/PhysRevLett.110.195301
https://doi.org/10.1038/nphys1754
https://link.aps.org/doi/10.1103/PhysRevLett.116.070407
https://link.aps.org/doi/10.1103/PhysRevLett.116.070407
https://www.worldscientific.com/doi/abs/10.1142/S0217751X1430018X
https://www.worldscientific.com/doi/abs/10.1142/S0217751X1430018X
https://doi.org/10.1063/1.5109132
https://doi.org/10.1038/s41578-021-00332-w
https://doi.org/10.1038/s41578-021-00332-w


Bibliography

80. The 2021 magnonics roadmap. Journal of Physics: Condensed Matter, 33(41):413001, aug
2021. URL https://doi.org/10.1088/1361-648x/abec1a.

81. V. Zapf, M. Jaime, and C. D. Batista. Bose-einstein condensation in quantum mag-
nets. Rev. Mod. Phys., 86:563–614, May 2014. URL https://link.aps.org/doi/10.1103/
RevModPhys.86.563.

82. Yu. M. Bunkov, E. M. Alakshin, R. R. Gazizulin, A. V. Klochkov, V. V. Kuzmin, T. R.
Safin, and M. S. Tagirov. Discovery of the classical bose-einstein condensation of magnons
in solid antiferromagnets. JETP Letters, 94(1):68, Sep 2011. URL https://doi.org/
10.1134/S0021364011130066.

83. S. O. Demokritov, V. E. Demidov, O. Dzyapko, G. A. Melkov, A. A. Serga, B. Hille-
brands, and A. N. Slavin. Bose-einstein condensation of quasi-equilibrium magnons at
room temperature under pumping. Nature, 443(7110):430–433, Sep 2006. URL https:
//doi.org/10.1038/nature05117.

84. D. A. Bozhko, A. A. Serga, P. Clausen, V. I. Vasyuchka, F. Heussner, G. A. Melkov,
A. Pomyalov, V. S. L’vov, and B. Hillebrands. Supercurrent in a room-temperature bose–
einstein magnon condensate. Nature Physics, 12(11):1057–1062, Nov 2016. URL https:
//doi.org/10.1038/nphys3838.

85. P. Nowik-Boltyk, O. Dzyapko, V. E. Demidov, N. G. Berloff, and S. O. Demokritov.
Spatially non-uniform ground state and quantized vortices in a two-component bose-
einstein condensate of magnons. Scientific Reports, 2(1):482, Jun 2012. URL https:
//doi.org/10.1038/srep00482.

86. S. A. Bender, R. A. Duine, A. Brataas, and Y. Tserkovnyak. Dynamic phase diagram
of dc-pumped magnon condensates. Phys. Rev. B, 90:094409, Sep 2014. URL https:
//link.aps.org/doi/10.1103/PhysRevB.90.094409.

87. P. Clausen, D. A. Bozhko, V. I. Vasyuchka, B. Hillebrands, G. A. Melkov, and A. A.
Serga. Stimulated thermalization of a parametrically driven magnon gas as a prerequisite
for bose-einstein magnon condensation. Phys. Rev. B, 91:220402, Jun 2015. URL https:
//link.aps.org/doi/10.1103/PhysRevB.91.220402.

88. V. E. Demidov, O. Dzyapko, M. Buchmeier, T. Stockhoff, G. Schmitz, G. A. Melkov,
and S. O. Demokritov. Magnon kinetics and bose-einstein condensation studied in phase
space. Phys. Rev. Lett., 101:257201, Dec 2008. URL https://link.aps.org/doi/10.1103/
PhysRevLett.101.257201.

89. A A Serga, A V Chumak, and B Hillebrands. YIG magnonics. Journal of Physics D:
Applied Physics, 43(26):264002, jun 2010. URL https://doi.org/10.1088/0022-3727/
43/26/264002.

90. Chen Sun, Thomas Nattermann, and Valery L Pokrovsky. Bose–einstein condensation
and superfluidity of magnons in yttrium iron garnet films. Journal of Physics D: Applied
Physics, 50(14):143002, mar 2017. URL https://doi.org/10.1088/1361-6463/aa5cfc.

91. Michael Schneider, Thomas Brächer, David Breitbach, Viktor Lauer, Philipp Pirro,

89

https://doi.org/10.1088/1361-648x/abec1a
https://link.aps.org/doi/10.1103/RevModPhys.86.563
https://link.aps.org/doi/10.1103/RevModPhys.86.563
https://doi.org/10.1134/S0021364011130066
https://doi.org/10.1134/S0021364011130066
https://doi.org/10.1038/nature05117
https://doi.org/10.1038/nature05117
https://doi.org/10.1038/nphys3838
https://doi.org/10.1038/nphys3838
https://doi.org/10.1038/srep00482
https://doi.org/10.1038/srep00482
https://link.aps.org/doi/10.1103/PhysRevB.90.094409
https://link.aps.org/doi/10.1103/PhysRevB.90.094409
https://link.aps.org/doi/10.1103/PhysRevB.91.220402
https://link.aps.org/doi/10.1103/PhysRevB.91.220402
https://link.aps.org/doi/10.1103/PhysRevLett.101.257201
https://link.aps.org/doi/10.1103/PhysRevLett.101.257201
https://doi.org/10.1088/0022-3727/43/26/264002
https://doi.org/10.1088/0022-3727/43/26/264002
https://doi.org/10.1088/1361-6463/aa5cfc


Bibliography

Dmytro A. Bozhko, Halyna Yu. Musiienko-Shmarova, Björn Heinz, Qi Wang, Thomas
Meyer, Frank Heussner, Sascha Keller, Evangelos Th. Papaioannou, Bert Lägel, Thomas
Löber, Carsten Dubs, Andrei N. Slavin, Vasyl S. Tiberkevich, Alexander A. Serga,
Burkard Hillebrands, and Andrii V. Chumak. Bose–einstein condensation of quasipar-
ticles by rapid cooling. Nature Nanotechnology, 15(6):457–461, Jun 2020. URL https:
//doi.org/10.1038/s41565-020-0671-z.

92. L. J. Cornelissen, K. J. H. Peters, G. E. W. Bauer, R. A. Duine, and B. J. vanWees. Magnon
spin transport driven by the magnon chemical potential in a magnetic insulator. Phys. Rev.
B, 94:014412, Jul 2016. URL https://link.aps.org/doi/10.1103/PhysRevB.94.014412.

93. Steven S.-L. Zhang and Shufeng Zhang. Magnon mediated electric current drag across
a ferromagnetic insulator layer. Phys. Rev. Lett., 109:096603, Aug 2012. URL https:
//link.aps.org/doi/10.1103/PhysRevLett.109.096603.

94. Rico Schmidt, Francis Wilken, Tamara S. Nunner, and Piet W. Brouwer. Boltzmann
approach to the longitudinal spin seebeck effect. Phys. Rev. B, 98:134421, Oct 2018. URL
https://link.aps.org/doi/10.1103/PhysRevB.98.134421.

95. Andreas Rückriegel and Peter Kopietz. Rayleigh-jeans condensation of pumped magnons
in thin-film ferromagnets. Phys. Rev. Lett., 115:157203, Oct 2015. URL https://
link.aps.org/doi/10.1103/PhysRevLett.115.157203.

96. Morteza Mohseni, Alireza Qaiumzadeh, Alexander A Serga, Arne Brataas, Burkard
Hillebrands, and Philipp Pirro. Bose–einstein condensation of nonequilibrium magnons
in confined systems. New Journal of Physics, 22(8):083080, aug 2020. URL https:
//doi.org/10.1088/1367-2630/aba98c.

97. Yuriy M Bunkov and Grigory E Volovik. Magnon bose–einstein condensation and spin
superfluidity. Journal of Physics: Condensed Matter, 22(16):164210, mar 2010. URL
https://doi.org/10.1088/0953-8984/22/16/164210.

98. Hui Deng, Hartmut Haug, and Yoshihisa Yamamoto. Exciton-polariton bose-einstein con-
densation. Rev. Mod. Phys., 82:1489–1537, May 2010. URL https://link.aps.org/doi/
10.1103/RevModPhys.82.1489.

99. L. M. Sieberer, S. D. Huber, E. Altman, and S. Diehl. Nonequilibrium functional renor-
malization for driven-dissipative bose-einstein condensation. Phys. Rev. B, 89:134310, Apr
2014. URL https://link.aps.org/doi/10.1103/PhysRevB.89.134310.

100. E. Manousakis. The spin-½ heisenberg antiferromagnet on a square lattice and its ap-
plication to the cuprous oxides. Rev. Mod. Phys., 63:1–62, Jan 1991. URL https:
//link.aps.org/doi/10.1103/RevModPhys.63.1.

101. A. Auerbach. Interacting Electrons and Quantum Magnetism. Springer-Verlag, 1994. URL
https://doi.org/10.1007/978-1-4612-0869-3.

102. T. Oguchi. Theory of spin-wave interactions in ferro- and antiferromagnetism. Phys. Rev.,
117:117–123, Jan 1960. URL https://link.aps.org/doi/10.1103/PhysRev.117.117.

90

https://doi.org/10.1038/s41565-020-0671-z
https://doi.org/10.1038/s41565-020-0671-z
https://link.aps.org/doi/10.1103/PhysRevB.94.014412
https://link.aps.org/doi/10.1103/PhysRevLett.109.096603
https://link.aps.org/doi/10.1103/PhysRevLett.109.096603
https://link.aps.org/doi/10.1103/PhysRevB.98.134421
https://link.aps.org/doi/10.1103/PhysRevLett.115.157203
https://link.aps.org/doi/10.1103/PhysRevLett.115.157203
https://doi.org/10.1088/1367-2630/aba98c
https://doi.org/10.1088/1367-2630/aba98c
https://doi.org/10.1088/0953-8984/22/16/164210
https://link.aps.org/doi/10.1103/RevModPhys.82.1489
https://link.aps.org/doi/10.1103/RevModPhys.82.1489
https://link.aps.org/doi/10.1103/PhysRevB.89.134310
https://link.aps.org/doi/10.1103/RevModPhys.63.1
https://link.aps.org/doi/10.1103/RevModPhys.63.1
https://doi.org/10.1007/978-1-4612-0869-3
https://link.aps.org/doi/10.1103/PhysRev.117.117


Bibliography

103. C. J.Hamer, Z. Weihong, and P. Arndt. Third-order spin-wave theory for the heisenberg
antiferromagnet. Phys. Rev. B, 46:6276–6292, Sep 1992. URL https://link.aps.org/
doi/10.1103/PhysRevB.46.6276.

104. Nuh Gedik and Inna Vishik. Photoemission of quantum materials. Nature Physics, 13(11):
1029–1033, Nov 2017. URL https://doi.org/10.1038/nphys4273.

105. Baiqing Lv, Tian Qian, and Hong Ding. Angle-resolved photoemission spectroscopy and
its application to topological materials. Nature Reviews Physics, 1(10):609–626, Oct 2019.
URL https://doi.org/10.1038/s42254-019-0088-5.

106. Stephan Hüfner. Photoelectron spectroscopy: principles and applications. Springer Science
& Business Media, 2013.

107. Timm Rohwer, Stefan Hellmann, Martin Wiesenmayer, Christian Sohrt, Ankatrin Stange,
Bartosz Slomski, Adra Carr, Yanwei Liu, Luis Miaja Avila, Matthias Kalläne, Stefan Math-
ias, Lutz Kipp, Kai Rossnagel, and Michael Bauer. Collapse of long-range charge order
tracked by time-resolved photoemission at high momenta. Nature, 471(7339):490–493, Mar
2011. URL https://doi.org/10.1038/nature09829.

108. P. Beaud, A. Caviezel, S. O. Mariager, L. Rettig, G. Ingold, C. Dornes, S.-W. Huang,
J. A. Johnson, M. Radovic, T. Huber, T. Kubacka, A. Ferrer, H. T. Lemke, M. Chollet,
D. Zhu, J. M. Glownia, M. Sikorski, A. Robert, H. Wadati, M. Nakamura, M. Kawasaki,
Y. Tokura, S. L. Johnson, and U. Staub. A time-dependent order parameter for ultrafast
photoinduced phase transitions. Nature Materials, 13(10):923–927, Oct 2014. URL https:
//doi.org/10.1038/nmat4046.

109. L. Perfetti, P. A. Loukakos, M. Lisowski, U. Bovensiepen, H. Berger, S. Biermann, P. S.
Cornaglia, A. Georges, and M. Wolf. Time evolution of the electronic structure of 1t−tas2
through the insulator-metal transition. Phys. Rev. Lett., 97:067402, Aug 2006. URL https:
//link.aps.org/doi/10.1103/PhysRevLett.97.067402.

110. Maria C Abramo, Dino Costa, Gianpietro Malescio, Gianmarco Munaò, Giuseppe Pelli-
cane, Santi Prestipino, and Carlo Caccamo. Structure factors and x-ray diffraction inten-
sities in molten alkali halides. Journal of Physics Communications, 4(7):075017, jul 2020.
URL https://doi.org/10.1088/2399-6528/aba2b8.

111. D. Starodub, A. Aquila, S. Bajt, M. Barthelmess, A. Barty, C. Bostedt, J. D. Bozek,
N. Coppola, R. B. Doak, S. W. Epp, B. Erk, L. Foucar, L. Gumprecht, C. Y. Hampton,
A. Hartmann, R. Hartmann, P. Holl, S. Kassemeyer, N. Kimmel, H. Laksmono, M. Liang,
N. D. Loh, L. Lomb, A. V. Martin, K. Nass, C. Reich, D. Rolles, B. Rudek, A. Rudenko,
J. Schulz, R. L. Shoeman, R. G. Sierra, H. Soltau, J. Steinbrener, F. Stellato, S. Stern,
G. Weidenspointner, M. Frank, J. Ullrich, L. Strüder, I. Schlichting, H. N. Chapman,
J. C. H. Spence, and M. J. Bogan. Single-particle structure determination by correlations
of snapshot x-ray diffraction patterns. Nature Communications, 3(1):1276, Dec 2012. URL
https://doi.org/10.1038/ncomms2288.

112. T. Kubacka, J. A. Johnson, M. C. Hoffmann, C. Vicario, S. de Jong, P. Beaud, S. Grübel,
S.-W. Huang, L. Huber, L. Patthey, Y.-D. Chuang, J. J. Turner, G. L. Dakovski, W.-S.

91

https://link.aps.org/doi/10.1103/PhysRevB.46.6276
https://link.aps.org/doi/10.1103/PhysRevB.46.6276
https://doi.org/10.1038/nphys4273
https://doi.org/10.1038/s42254-019-0088-5
https://doi.org/10.1038/nature09829
https://doi.org/10.1038/nmat4046
https://doi.org/10.1038/nmat4046
https://link.aps.org/doi/10.1103/PhysRevLett.97.067402
https://link.aps.org/doi/10.1103/PhysRevLett.97.067402
https://doi.org/10.1088/2399-6528/aba2b8
https://doi.org/10.1038/ncomms2288


Bibliography

Lee, M. P. Minitti, W. Schlotter, R. G. Moore, C. P. Hauri, S. M. Koohpayeh, V. Scagnoli,
G. Ingold, S. L. Johnson, and U. Staub. Large-amplitude spin dynamics driven by a thz
pulse in resonance with an electromagnon. Science, 343(6177):1333–1336, 2014. URL
https://www.science.org/doi/abs/10.1126/science.1242862.

113. E. Paris, C. W. Nicholson, S. Johnston, Y. Tseng, M. Rumo, G. Coslovich, S. Zohar, M. F.
Lin, V. N. Strocov, R. Saint-Martin, A. Revcolevschi, A. Kemper, W. Schlotter, G. L.
Dakovski, C. Monney, and T. Schmitt. Probing the interplay between lattice dynamics
and short-range magnetic correlations in cugeo3 with femtosecond rixs. npj Quantum
Materials, 6(1):51, May 2021. URL https://doi.org/10.1038/s41535-021-00350-5.

114. Matteo Mitrano and Yao Wang. Probing light-driven quantum materials with ultrafast
resonant inelastic x-ray scattering. Communications Physics, 3(1):184, Oct 2020. URL
https://doi.org/10.1038/s42005-020-00447-6.

115. Claudio Giannetti, Massimo Capone, Daniele Fausti, Michele Fabrizio, Fulvio Parmigiani,
and Dragan Mihailovic. Ultrafast optical spectroscopy of strongly correlated materials and
high-temperature superconductors: a non-equilibrium approach. Advances in Physics, 65
(2):58–238, 2016. URL https://doi.org/10.1080/00018732.2016.1194044.

116. Daniele Nicoletti and Andrea Cavalleri. Nonlinear light–matter interaction at terahertz
frequencies. Adv. Opt. Photon., 8(3):401–464, Sep 2016. URL http://opg.optica.org/
aop/abstract.cfm?URI=aop-8-3-401.

117. Thierry Giamarchi. Quantum physics in one dimension. International series of monographs
on physics. Clarendon Press, Oxford, 2004. URL https://cds.cern.ch/record/743140.

118. R. Peierls. Zur theorie des diamagnetismus von leitungselektronen. Zeitschrift für Physik,
80(11):763–791, Nov 1933. URL https://doi.org/10.1007/BF01342591.

119. Thomas Vojta. Quantum Phase Transitions, pages 211–226. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2002. ISBN 978-3-662-04804-7. URL https://doi.org/10.1007/978-
3-662-04804-7_13.

120. Otfried Gühne and Géza Tóth. Entanglement detection. Physics Reports,
474(1):1–75, 2009. URL https://www.sciencedirect.com/science/article/pii/
S0370157309000623.

121. Martin Gärttner, Philipp Hauke, and Ana Maria Rey. Relating out-of-time-order correla-
tions to entanglement via multiple-quantum coherences. Phys. Rev. Lett., 120:040402, Jan
2018. URL https://link.aps.org/doi/10.1103/PhysRevLett.120.040402.

122. George Mathew, Saulo L. L. Silva, Anil Jain, Arya Mohan, D. T. Adroja, V. G. Sakai, C. V.
Tomy, Alok Banerjee, Rajendar Goreti, Aswathi V. N., Ranjit Singh, and D. Jaiswal-Nagar.
Experimental realization of multipartite entanglement via quantum fisher information in a
uniform antiferromagnetic quantum spin chain. Phys. Rev. Research, 2:043329, Dec 2020.
URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.043329.

123. Philipp Hauke, Markus Heyl, Luca Tagliacozzo, and Peter Zoller. Measuring multipartite
entanglement through dynamic susceptibilities. Nature Physics, 12(8):778–782, Aug 2016.

92

https://www.science.org/doi/abs/10.1126/science.1242862
https://doi.org/10.1038/s41535-021-00350-5
https://doi.org/10.1038/s42005-020-00447-6
https://doi.org/10.1080/00018732.2016.1194044
http://opg.optica.org/aop/abstract.cfm?URI=aop-8-3-401
http://opg.optica.org/aop/abstract.cfm?URI=aop-8-3-401
https://cds.cern.ch/record/743140
https://doi.org/10.1007/BF01342591
https://doi.org/10.1007/978-3-662-04804-7_13
https://doi.org/10.1007/978-3-662-04804-7_13
https://www.sciencedirect.com/science/article/pii/S0370157309000623
https://www.sciencedirect.com/science/article/pii/S0370157309000623
https://link.aps.org/doi/10.1103/PhysRevLett.120.040402
https://link.aps.org/doi/10.1103/PhysRevResearch.2.043329


Bibliography

URL https://doi.org/10.1038/nphys3700.

124. Denitsa R. Baykusheva, Hoyoung Jang, Ali A. Husain, Sangjun Lee, Sophia F. R. Ten-
Huisen, Preston Zhou, Sunwook Park, Hoon Kim, Jin-Kwang Kim, Hyeong-Do Kim, Min-
seok Kim, Sang-Youn Park, Peter Abbamonte, B. J. Kim, G. D. Gu, Yao Wang, and
Matteo Mitrano. Ultrafast renormalization of the on-site coulomb repulsion in a cuprate
superconductor. Phys. Rev. X, 12:011013, Jan 2022. URL https://link.aps.org/doi/
10.1103/PhysRevX.12.011013.

125. R. Singla, G. Cotugno, S. Kaiser, M. Först, M. Mitrano, H. Y. Liu, A. Cartella, C. Man-
zoni, H. Okamoto, T. Hasegawa, S. R. Clark, D. Jaksch, and A. Cavalleri. Thz-frequency
modulation of the hubbard u in an organic mott insulator. Phys. Rev. Lett., 115:187401,
Oct 2015. URL https://link.aps.org/doi/10.1103/PhysRevLett.115.187401.

126. Steven R. White. Density matrix formulation for quantum renormalization groups.
Phys. Rev. Lett., 69:2863–2866, Nov 1992. URL https://link.aps.org/doi/10.1103/
PhysRevLett.69.2863.

127. C. Karrasch and J. E. Moore. Luttinger liquid physics from the infinite-system den-
sity matrix renormalization group. Phys. Rev. B, 86:155156, Oct 2012. URL https:
//link.aps.org/doi/10.1103/PhysRevB.86.155156.

128. Phillip Weinberg and Marin Bukov. QuSpin: a Python Package for Dynamics and Exact
Diagonalisation of Quantum Many Body Systems part I: spin chains. SciPost Phys., 2:003,
2017. URL https://scipost.org/10.21468/SciPostPhys.2.1.003.

129. Piotr Chudzinski and Dirk Schuricht. Time evolution during and after finite-time quan-
tum quenches in luttinger liquids. Phys. Rev. B, 94:075129, Aug 2016. URL https:
//link.aps.org/doi/10.1103/PhysRevB.94.075129.

130. Mario Collura, Pasquale Calabrese, and Fabian H. L. Essler. Quantum quench within the
gapless phase of the spin− 1

2 heisenberg xxz spin chain. Phys. Rev. B, 92:125131, Sep 2015.
URL https://link.aps.org/doi/10.1103/PhysRevB.92.125131.

131. M. A. Cazalilla. Effect of suddenly turning on interactions in the luttinger model.
Phys. Rev. Lett., 97:156403, Oct 2006. URL https://link.aps.org/doi/10.1103/
PhysRevLett.97.156403.

132. S. Kaiser, S. R. Clark, D. Nicoletti, G. Cotugno, R. I. Tobey, N. Dean, S. Lupi, H. Okamoto,
T. Hasegawa, D. Jaksch, and A. Cavalleri. Optical properties of a vibrationally modulated
solid state mott insulator. Scientific Reports, 4(1):3823, Jan 2014. URL https://doi.org/
10.1038/srep03823.

133. Riccardo Rota, Fabrizio Minganti, Cristiano Ciuti, and Vincenzo Savona. Quantum critical
regime in a quadratically driven nonlinear photonic lattice. Phys. Rev. Lett., 122:110405,
Mar 2019. URL https://link.aps.org/doi/10.1103/PhysRevLett.122.110405.

134. C. Klöckner, C. Karrasch, and D. M. Kennes. Nonequilibrium properties of berezinskii-
kosterlitz-thouless phase transitions. Phys. Rev. Lett., 125:147601, Oct 2020. URL https:
//link.aps.org/doi/10.1103/PhysRevLett.125.147601.

93

https://doi.org/10.1038/nphys3700
https://link.aps.org/doi/10.1103/PhysRevX.12.011013
https://link.aps.org/doi/10.1103/PhysRevX.12.011013
https://link.aps.org/doi/10.1103/PhysRevLett.115.187401
https://link.aps.org/doi/10.1103/PhysRevLett.69.2863
https://link.aps.org/doi/10.1103/PhysRevLett.69.2863
https://link.aps.org/doi/10.1103/PhysRevB.86.155156
https://link.aps.org/doi/10.1103/PhysRevB.86.155156
https://scipost.org/10.21468/SciPostPhys.2.1.003
https://link.aps.org/doi/10.1103/PhysRevB.94.075129
https://link.aps.org/doi/10.1103/PhysRevB.94.075129
https://link.aps.org/doi/10.1103/PhysRevB.92.125131
https://link.aps.org/doi/10.1103/PhysRevLett.97.156403
https://link.aps.org/doi/10.1103/PhysRevLett.97.156403
https://doi.org/10.1038/srep03823
https://doi.org/10.1038/srep03823
https://link.aps.org/doi/10.1103/PhysRevLett.122.110405
https://link.aps.org/doi/10.1103/PhysRevLett.125.147601
https://link.aps.org/doi/10.1103/PhysRevLett.125.147601


Bibliography

135. Guo-Qiang Zhang, Zhen Chen, Wei Xiong, Chi-Hang Lam, and J. Q. You. Parity-
symmetry-breaking quantum phase transition via parametric drive in a cavity magnonic
system. Phys. Rev. B, 104:064423, Aug 2021. URL https://link.aps.org/doi/10.1103/
PhysRevB.104.064423.

136. A. Griffin, D. W. Snoke, and S. Stringari. Bose-Einstein Condensation. Cambridge Uni-
versity Press, 1995.

137. François Golse. From the boltzmann equation to the euler equations in the presence of
boundaries. Computers & Mathematics with Applications, 65(6):815–830, Mar 2013. URL
https://www.sciencedirect.com/science/article/pii/S089812211200123X.

138. Johannes D. Plumhof, Thilo Stöferle, Lijian Mai, Ullrich Scherf, and Rainer F. Mahrt.
Room-temperature bose–einstein condensation of cavity exciton–polaritons in a polymer.
Nature Materials, 13(3):247–252, Mar 2014. URL https://doi.org/10.1038/nmat3825.

139. Tim Byrnes, Na Young Kim, and Yoshihisa Yamamoto. Exciton–polariton condensates.
Nature Physics, 10(11):803–813, Nov 2014. URL https://doi.org/10.1038/nphys3143.

140. Hui Deng, Gregor Weihs, Charles Santori, Jacqueline Bloch, and Yoshihisa Yamamoto.
Condensation of semiconductor microcavity exciton polaritons. Science, 298(5591):199–
202, 2002. URL https://www.science.org/doi/abs/10.1126/science.1074464.

141. Fabio Scafirimuto, Darius Urbonas, Michael A. Becker, Ullrich Scherf, Rainer F. Mahrt, and
Thilo Stöferle. Tunable exciton–polariton condensation in a two-dimensional lieb lattice at
room temperature. Communications Physics, 4(1):39, Mar 2021. URL https://doi.org/
10.1038/s42005-021-00548-w.

142. Daniel P. Arovas and Assa Auerbach. Functional integral theories of low-dimensional quan-
tum heisenberg models. Phys. Rev. B, 38:316–332, Jul 1988. URL https://link.aps.org/
doi/10.1103/PhysRevB.38.316.

143. Assa Auerbach and Daniel P Arovas. New approaches to the quantum heisenberg models:
Schwinger boson representations. Journal of applied physics, 67(9):5734–5739, 1990. URL
https://doi.org/10.1063/1.345947.

144. Daniel G. Mazzone, Derek Meyers, Yue Cao, James G. Vale, Cameron D. Dashwood,
Youguo Shi, Andrew J. A. James, Neil J. Robinson, Jiaqi Lin, Vivek Thampy, Yoshikazu
Tanaka, Allan S. Johnson, Hu Miao, Ruitang Wang, Tadesse A. Assefa, Jungho Kim, Diego
Casa, Roman Mankowsky, Diling Zhu, Roberto Alonso-Mori, Sanghoon Song, Hasan Yavas,
Tetsuo Katayama, Makina Yabashi, Yuya Kubota, Shigeki Owada, Jian Liu, Junji Yang,
Robert M. Konik, Ian K. Robinson, John P. Hill, Desmond F. McMorrow, Michael Först, Si-
monWall, Xuerong Liu, and Mark P. M. Dean. Laser-induced transient magnons in sr3ir2o7
throughout the brillouin zone. Proceedings of the National Academy of Sciences, 118(22):
e2103696118, 2021. URL https://www.pnas.org/doi/abs/10.1073/pnas.2103696118.

145. M. P. M. Dean, Y. Cao, X. Liu, S. Wall, D. Zhu, R. Mankowsky, V. Thampy, X. M.
Chen, J. G. Vale, D. Casa, Jungho Kim, A. H. Said, P. Juhas, R. Alonso-Mori, J. M.
Glownia, A. Robert, J. Robinson, M. Sikorski, S. Song, M. Kozina, H. Lemke, L. Patthey,

94

https://link.aps.org/doi/10.1103/PhysRevB.104.064423
https://link.aps.org/doi/10.1103/PhysRevB.104.064423
https://www.sciencedirect.com/science/article/pii/S089812211200123X
https://doi.org/10.1038/nmat3825
https://doi.org/10.1038/nphys3143
https://www.science.org/doi/abs/10.1126/science.1074464
https://doi.org/10.1038/s42005-021-00548-w
https://doi.org/10.1038/s42005-021-00548-w
https://link.aps.org/doi/10.1103/PhysRevB.38.316
https://link.aps.org/doi/10.1103/PhysRevB.38.316
https://doi.org/10.1063/1.345947
https://www.pnas.org/doi/abs/10.1073/pnas.2103696118


Bibliography

S. Owada, T. Katayama, M. Yabashi, Yoshikazu Tanaka, T. Togashi, J. Liu, C. Rayan Ser-
rao, B. J. Kim, L. Huber, C.-L. Chang, D. F. McMorrow, M. Först, and J. P. Hill. Ul-
trafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-
doped mott insulator sr2iro4. Nature Materials, 15(6):601–605, Jun 2016. URL https:
//doi.org/10.1038/nmat4641.

146. J. Zhang and R.D. Averitt. Dynamics and control in complex transition metal oxides.
Annual Review of Materials Research, 44(1):19–43, 2014. URL https://doi.org/10.1146/
annurev-matsci-070813-113258.

95

https://doi.org/10.1038/nmat4641
https://doi.org/10.1038/nmat4641
https://doi.org/10.1146/annurev-matsci-070813-113258
https://doi.org/10.1146/annurev-matsci-070813-113258




| Appendix

A Mathematical details of the magnon interactions

The two-operator products in this Eq. (5.43) and Eq. (5.44) are given by

a†1a3 = v2
1δ (k1 − k3) + u1u3α

†
1α3 + v1v3β

†
3β1 + u1v3α

†
1β
†
3 + u3v1α3β1 (A.1a)

b†4b2 = v2
2δ (k2 − k4) + u2u4β

†
4β2 + v2v4α

†
2α4 + u4v2α

†
2β
†
4 + u2v4α4β2 (A.1b)

a4b2 = u2v2δ (k2 − k4) + u4v2α
†
2α4 + u2v4β

†
4β2 + v2v4α

†
2β
†
4 + u2u4α4β2 (A.1c)

a†1b
†
3 = u1v1δ (k1 − k3) + u1v3α

†
1α3 + u3v1β

†
3β1 + u1u3α

†
1β
†
3 + v1v3α3β1 . (A.1d)

With this, we can evaluate the four operator products that appear both in the Holstein-Primakoff
and the Dyson-Maleev formalism, namely

a†1a3b
†
4b2 = v2

1v
2
2 δ (k1 − k3) δ (k2 − k4) + u1u2v1v2 δ (k1 − k4) δ (k2 − k3) (A.2)

+ v2
1δ (k1 − k3)

(
u2u4β

†
4β2 + v2v4α

†
2α4 + u4v2α

†
2β
†
4 + u2v4α4β2

)
+ v2

2δ (k2 − k4)
(
u1u3α

†
1α3 + v1v3β

†
3β1 + u1v3α

†
1β
†
3 + u3v1α3β1

)
+ u2v2δ (k2 − k3)

(
u1v4α

†
1α4 + u1u4α

†
1β
†
4 + v1v4 α4β1 + u4v1β

†
4β1
)

+ u1v1δ (k1 − k4)
(
u2v3 β

†
3β2 + v2v3 α

†
2β
†
3 + u2u3 α3β2 + u3v2α

†
2α3

)
+ u1u2u3u4 α

†
1α3β

†
4β2 + v1v2v3v4 α

†
2α4β

†
3β1

+ u1u2v3v4 α
†
1α4β

†
3β2 + u3u4v1v2 α

†
2α3β

†
4β1

+ u1u3v2v4 α
†
1α
†
2α3α4 + u2u4v1v3 β

†
3β
†
4β1β2

+ u1u4v2v3 α
†
1α
†
2β
†
3β
†
4 + u3u2v1v4 α3α4β1β2

+ u1u3u4v2 α
†
1α
†
2α3β

†
4 + u1v2v3v4 α

†
1α
†
2α4β

†
3

+ u1u2u3v4 α
†
1α3α4β2 + u3v1v2v4 α

†
2α3α4β1

+ u4v1v2v3 α
†
2β
†
3β
†
4β1 + u1u2u4v3 α

†
1β
†
3β
†
4β2

+ u2u3u4v1 α3β
†
4β1β2 + u2v1v3v4 α4β

†
3β1β2 ,

which is the only term dependent on the anisotropy parameter ∆, as well as

a†1a3a4b2 = v2
1u2v2 [δ (k1 − k3) δ (k2 − k4) + δ (k2 − k3) δ (k1 − k4)] (A.3)

+ v2
1δ (k1 − k3)

(
u4v2α

†
2α4 + u2v4β

†
4β2 + v2v4α

†
2β
†
4 + u2u4α4β2

)
+ u2v2δ (k2 − k4)

(
u1u3α

†
1α3 + v1v3β

†
3β1 + u1v3α

†
1β
†
3 + u3v1α3β1

)
+ u2v2δ (k2 − k3)

(
u1u4 α

†
1α4 + v1v4 β

†
4β1 + u1v4 α

†
1β
†
4 + u4v1 α4β1

)
+ v2

1δ (k1 − k4)
(
u3v2 α

†
2α3 + u2v3 β

†
3β2 + v2v3 α

†
2β
†
3 + u3u2 α3β2

)
+ u1u2u3v4 α

†
1α3β

†
4β2 + u4v1v3v2 α

†
2α4β

†
3β1
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+ u1u2u4v3 α
†
1α4β

†
3β2 + u3v1v2v4 α

†
2α3β

†
4β1

+ u1u3u4v2 α
†
1α
†
2α3α4 + u2v1v3v4 β

†
3β
†
4β1β2

+ u1v3v2v4 α
†
1α
†
2β
†
3β
†
4 + u3u2u4v1 α3β1α4β2

+ u1u3v2v4 α
†
1α
†
2α3β

†
4 + u1u4v3v2 α

†
1α
†
2α4β

†
3

+ u1u2u3u4 α
†
1α3α4β2 + u3u4v1v2 α

†
2α3α4β1

+ v1v2v3v4 α
†
2β
†
3β
†
4β1 + u1u2v3v4α

†
1β
†
3β
†
4β2

+ u2u4v1v3 α4β
†
3β1β2 + u3u2v1v4 α3β

†
4β1β2

and

a†1b
†
3b
†
4b2 = v2

2u1v1 δ (k1 − k3) δ (k2 − k4) + v2
2u1v1 (k2 − k3) δ (k1 − k4) (A.4)

+ u1v1δ (k1 − k3)
(
v2v4α

†
2α4 + u2u4β

†
4β2 + u4v2α

†
2β
†
4 + u2v4α4β2

)
+ v2

2δ (k2 − k4)
(
u1v3α

†
1α3 + u3v1β

†
3β1 + u1u3α

†
1β
†
3 + v1v3α3β1

)
+ v2

2δ (k2 − k3)
(
u1v4 α

†
1α4 + u4v1 β

†
4β1 + u1u4 α

†
1β
†
4 + v1v4 α4β1

)
+ u1v1δ (k1 − k4)

(
v2v3 α

†
2α3 + u2u3 β

†
3β2 + u3v2 α

†
2β
†
3 + u2v3 α3β2

)
+ u1u2u4v3 α

†
1α3β

†
4β2 + u3v1v2v4 α

†
2α4β

†
3β1

+ u1u2u3v4 α
†
1α4β

†
3β2 + u4v1v2v3 α

†
2α3β

†
4β1

+ u1v2v3v4 α
†
1α
†
2α3α4 + u2u3u4v1 β

†
3β
†
4β1β2

+ u1u3u4v2 α
†
1α
†
2β
†
3β
†
4 + u2v1v3v4 α3α4β1β2

+ u1v2u4v3 α
†
1α
†
2α3β

†
4 + u1u3v2v4 α

†
1α
†
2α4β

†
3

+ u1u2v3v4 α
†
1α3α4β2 + v1v2v3v4 α

†
2α3α4β1

+ u3u4v1v2 α
†
2β
†
3β
†
4β1 + u1u2u3u4 α

†
1β
†
3β
†
4β2

+ u2u3v1v4 α4β
†
3β1β2 + u2u4v1v3 α3β

†
4β1β2 .

The products that only appear in the Hollstein Primakoff formalism are

a†1b
†
4a
†
2a3 = u1v1v

2
2δ (k1 − k4) δ (k2 − k3) + v2

1u2v2δ (k1 − k3) δ (k2 − k4) (A.5)

+ v2
1 δ (k1 − k3)

(
u2v4 α

†
2α4 + u4v2 β

†
4β2 + u2u4 α

†
2β
†
4 + v2v4 α4β2

)
+ u2v2 δ (k2 − k4)

(
u1u3α

†
1α3 + v1v3β

†
3β1 + u1v3α

†
1β
†
3 + u3v1α3β1

)
+ v2

2 δ (k2 − k3)
(
u1v4α

†
1α4 + u4v1β

†
4β1 + u1u4α

†
1β
†
4 + v1v4α4β1

)
+ u1v1 δ (k1 − k4)

(
u2u3α

†
2α3 + v2v3β

†
3β2 + u2v3α

†
2β
†
3 + u3v2α3β2

)
+ u1 v2v3v4 α

†
1α4β

†
3β2 + u4u2u3v1 α

†
2α3β

†
4β1

+ u1u3u4 v2 α
†
1α3β

†
4β2 + u2 v1v3v4 α

†
2α4β

†
3β1

+ u1u2u3 v4 α
†
1α
†
2α4α3 + u4v1v2v3 β

†
4β
†
3β1β2

+ u1u2u4 v3α
†
1α
†
2β
†
3β
†
4 + u3v1v2v4α3α4β1β2

+ u1u2 v3v4α
†
1α
†
2α4β

†
3 + u1u2u3u4α

†
1α
†
2α3β

†
4

+ u3u4 v1v2α3β
†
4β1β2 + v1v2v3v4α4β

†
3β1β2

+ u1u3 v2v4α
†
1α3α4β2 + u2u3 v1v4α

†
2α3α4β1
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+ u2u4v1v3α
†
2β
†
3β
†
4β1 + u1u4v2v3α

†
1β
†
3β
†
4β2

and

b†2b3a1b4 = u1v1v
2
2δ (k1 − k4) δ (k2 − k3) + u1v1v

2
2δ (k1 − k3) δ (k2 − k4) (A.6)

+ u1v1 δ (k1 − k3)
(
v2v4 α

†
4α2 + u2u4 β

†
2β4 + u2v4 α

†
4β
†
2 + u4v2 α2β4

)
+ v2

2 δ (k2 − k4)
(
u1v3 α

†
3α1 + u3v1 β

†
1β3 + v1v3 α

†
3β
†
1 + u1u3 α1β3

)
+ v2

2 δ (k2 − k3)
(
u1v4 α

†
4α1 + u4v1 β

†
1β4 + v1v4 α

†
4β
†
1 + u1u4 α1β4

)
+ u1v1 δ (k1 − k4)

(
v2v3 α

†
3α2 + u2u3 β

†
2β3 + u2v3 α

†
3β
†
2 + u3v2 α2β3

)
+ u1u2u3 v4 α

†
4α1β

†
2β3 + u4 v1v2v3 α

†
3α2β

†
1β4

+ u1u2u4 v3 α
†
3β
†
2α1β4 + u3 v1v2v4 α

†
4α2β

†
1β3

+ u3u2u4 v1 β
†
2β
†
1β3β4 + u1 v2v3v4 α

†
3α
†
4α2α1

+ u2 v1v3v4α
†
3α
†
4β
†
1β
†
2 + u1u3u4 v2α1α2β3β4

+ u1u2 v3v4α
†
3α
†
4α1β

†
2 + v1v2v3v4α

†
3α
†
4α2β

†
1

+ u1u2u3u4α1β
†
2β3β4 + u3u4 v1v2α2β

†
1β3β4

+ u1u4 v2v3α
†
3α1α2β4 + u1u3 v2v4α

†
4α1α2β3

+ u2u4 v1v3α
†
3β
†
1β
†
2β4 + u2u3 v1v4α

†
4β
†
1β
†
2β3 ,

where the scattering terms that conserve the number of magnons are marked in blue. In order
to simplify notation we will write the delta function as

δ(1+2−3−4) = δ(1+2−3−4) (A.7)

in this appendix. The component of the product of four operators that encode the magnon
interactions as defined in Eq. (5.45) is given by

P1 =
∑

k1k2k3k4

∆ δ(1+2−3−4)
[
γ(2−4) (u1u2u3u4 + v1v2v3v4)

]
α†1α3β

†
4β2 (A.8)

+
∑

k1k2k3k4

∆ δ(1+2−3−4)
[
γ(2−3) (u1u2 v3v4 + u3u4 v1v2)

]
α†1α3β

†
4β2

+
∑

k1k2k3k4

∆ δ(1+2−3−4)
[
γ(2−4)u1u3 v2v4

] (
α†1α

†
2α3α4 + β†3β

†
4β1β2

)
+

∑
k1k2k3k4

∆ δ(1+2−3−4)γ(2−3) [u1u3u4 v2 + u2 v1v3v4]
(
α†1α

†
2α4β

†
3 + α3β

†
4β1β2

)
+

∑
k1k2k3k4

∆ δ(1+2−3−4)γ(2−4) [u4 v1v2v3 + u1u2u3 v4]
(
α†1α3α4β2 + α†2β

†
3β
†
4β1
)

+
∑

k1k2k3k4

∆ δ(1+2−3−4)γ(2−4)u1u4 v2v3
(
α†1α

†
2β
†
3β
†
4 + α1α2β3β4

)
,

where we have used that due to the delta-function we can write γ(2−4) = γ(1−3). The remaining
components from Eq. (5.46) that are the same in both the Hollstein-Primakoff and the Dyson-
Maleev formalism are given by

P2 = 2
∑

k1k2k3k4

δ(1+2−3−4)
[
γ(2)u1u2u3 v4 + γ(1)u3 v1v2v4

]
α†1α3β

†
4β2 (A.9)
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+
∑

k1k2k3k4

δ(1+2−3−4)γ(2)
[
u1u3u4 v2 α

†
1α
†
2α3α4 + u2 v1v3v4 β

†
3β
†
4β1β2

]
+ 2

∑
k1k2k3k4

δ(1+2−3−4)
[
γ(2)u1u4 v2v3

]
α†1α

†
2α4β

†
3

+ 2
∑

k1k2k3k4

δ(1+2−3−4)
[
γ(2)u2u3 v1v4

]
α3β

†
4β1β2

+
∑

k1k2k3k4

δ(1+2−3−4)
[
γ(2)u1u2u3u4 + γ(1)u3u4 v1v2

]
α†1α3α4β2

+
∑

k1k2k3k4

δ(1+2−3−4)
[
γ(2)v1v2v3v4 + γ(1)u1u2 v3v4

]
α†2β

†
3β
†
4β1

+
∑

k1k2k3k4

δ(1+2−3−4)γ(2)
[
u1 v2v3v4 α

†
1α
†
2β
†
3β
†
4 + u2u3u4 v1 α3α4β1β2

]

P3 = 2
∑

k1k2k3k4

δ(1+2−3−4)
[
γ(1)u1u2u4 v3 + γ(2)u4 v1v2v3

]
α†1α3β

†
4β2 (A.10)

+
∑

k1k2k3k4

δ(1+2−3−4)γ(2)
[
u2 v1v3v4 α

†
1α
†
2α3α4 + u1u3u4 v2 β

†
3β
†
4β1β2

]
+ 2

∑
k1k2k3k4

δ(1+2−3−4)
[
γ(2)u2u3 v1v4

]
α†1α

†
2α4β

†
3

+ 2
∑

k1k2k3k4

δ(1+2−3−4)
[
γ(2)u1u4 v2v3

]
α3β

†
4β1β2

+
∑

k1k2k3k4

δ(1+2−3−4)
[
γ(2)v1v2v3v4 + γ(1)u1u2 v3v4

]
α†1α3α4β2

+
∑

k1k2k3k4

δ(1+2−3−4)
[
γ(2)u1u2u3u4 + γ(1)u3u4 v1v2

]
α†2β

†
3β
†
4β1

+
∑

k1k2k3k4

δ(1+2−3−4)γ(2)
[
u2u3u4 v1 α

†
1α
†
2β
†
3β
†
4 + u1 v2v3v4 α3α4β1β2

]
.

The products that are unique to the Holstein-Primakoff formalism yield

P4 = 2
∑

k1k2k3k4

δ(1+2−3−4)
[
γ(3)u1 v2v3v4 + γ(4)u1u3u4 v2

]
α†1α3β

†
4β2 (A.11)

+
∑

k1k2k3k4

δ(1+2−3−4)γ(4)
[
u1u2u3 v4 α

†
1α
†
2α4α3 + u4 v1v2v3 β

†
3β
†
4β1β2

]
+

∑
k1k2k3k4

δ(1+2−3−4)
[
γ(4)u1u2 v3v4 + γ(3)u1u2u3u4

]
α†1α

†
2α4β

†
3

+
∑

k1k2k3k4

δ(1+2−3−4)
[
γ(4)u3u4 v1v2 + γ(3)v1v2v3v4

]
α3β

†
4β1β2

+ 2
∑

k1k2k3k4

δ(1+2−3−4)
[
γ(4)u1u3 v2v4

]
α†1α3α4β2

+ 2
∑

k1k2k3k4

δ(1+2−3−4)
[
γ(4)u2u4 v1v3

]
α†2β

†
3β
†
4β1

+
∑

k1k2k3k4

δ(1+2−3−4)γ(4)
[
u1u2u4 v3 α

†
1α
†
2β
†
3β
†
4 + u3 v1v2v4 α3α4β1β2

]

P5 = 2
∑

k1k2k3k4

δ(1+2−3−4)
[
γ(3)u2u3u4 v1 + γ(4)u2 v1v3v4

]
α†1α3β

†
4β2 (A.12)
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+
∑

k1k2k3k4

δ(1+2−3−4)γ(4)
[
u1u2u3 v4 β

†
3β
†
4β1β2 + u4 v1v2v3 α

†
1α
†
2α3α4

]
+

∑
k1k2k3k4

δ(1+2−3−4)
[
γ(4)u3u4 v1v2 + γ(3)v1v2v3v4

]
α†1α

†
2α4β

†
3

+
∑

k1k2k3k4

δ(1+2−3−4)
[
γ(4)u1u2 v3v4 + γ(3)u1u2u3u4

]
α3β

†
4β1β2

+ 2
∑

k1k2k3k4

δ(1+2−3−4)
[
γ(4)u2u4 v1v3

]
α†1α3α4β2

+ 2
∑

k1k2k3k4

δ(1+2−3−4)
[
γ(4)u1u3 v2v4

]
α†2β

†
3β
†
4β1

+
∑

k1k2k3k4

δ(1+2−3−4)γ(4)
[
u3 v1v2v4 α

†
1α
†
2β
†
3β
†
4 + u1u2u4 v3 α3α4β1β2

]

B Numerical implementation of the density of states

Due to the mapping of the momentum grid onto an energy grid, as presented in the appendix
of publication II, the numerically extracted density of states shows major finite size effects (see
figure B.1). While this is less of a problem when analyzing quantities that are summed over the
entire Brillouin zone, it presents complications when determining frequency dependent quantities
like the energy density U(t) given by

U (ω, t) = ω n (ω, t) ρ (ω) . (B.13)

We therefore compute a smoothened density of states by averaging over intervals of the density
of states extracted from a system with ` = 2000, as presented in figure B.1, and read in the
averaged density of states for the various system sizes. The files containing this density of states
are available at the github repository mentioned in section 5.4.
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Figure B.1: Numerically extracted density of states for ` = 120 (orange) and ` = 2000
(blue) as well as smoothened density of states (red) that is implemented in the code.
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