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Abstract
Ultracold gases in optical lattice are promising quantum simulation platforms: neutral
atoms can be cooled down to quantum degeneracy and loaded into the lattice, thus
mimicking the behaviour of electrons in "real" solid state materials. The advantage
of optical lattice systems is the high degree of control over the system properties and
the possibility to access a wider range of observables.

In this thesis, different experiments with ultracold atoms in optical lattices are per-
formed, addressing both the issue of extending the measurement possibilities and the
degree of control over the lattice system.

The first results reported here concern the detection of topological order in a cloud
of ultracold fermionic 40K atoms. Topological order can not be captured by a local
order parameter as in the description of phase transitions made by Landau. Thus
topological properties are often related to elusive quantities, even in a realization with
cold atoms.

Following a recent theoretical proposal, we were able to demonstrate that a topological
system exhibits circular dichroism, i.e. a dependence on the chirality of a rotating
force perturbing the system. We showed also that the dichroic signal can be directly
used to detect topological order, which will be of relevance e.g. in cases where novel
topological phases are created and no suitable probes exist yet. The experimental
techniques developed here also allowed to measure other quantities related to the
transport properties and to the geometry of the lattice states.

With the same setup, data were taken in order to train a machine learning algorithm
to recognize the topological phase transition; these results are also briefly presented.

In a set of experiments performed with 87Rb, a novel technique for directly imag-
ing the atomic density distribution in the lattice was developed and experimentally
demonstrated. This technique is based on a matter-wave dynamics in which the
density distribution is magnified up to almost two orders of magnitude and then di-
rectly imaged with standard methods, with a single destructive measurement and
with sub-lattice resolution. Different experimental cases were studied and are pre-
sented, among them the discovery of a density wave which appears when displacing
the atomic cloud with respect to the center of the confining potential. Preliminary
results and considerations about the possibility of using quantum gas magnification
for detecting coherence properties of the matter field with high resolution are also
presented.
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In the last chapter, we present a novel scheme for the realization of an optical lat-
tice with tunable geometry. This scheme is based on the use of different frequency
components controlled by radio-frequencies and we report on how this allowed the
geometry of the optical lattice to be tuned fast and with high precision. This allows
not only to tune our lattice to simulate different solid state systems, but also to study
novel quantum phases which might emerge when changing dynamically the geometry,
a scenario without a solid-state counterpart.
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Zusammenfassung
Ultrakalte Quantengase bieten einzigartige Möglichkeiten für Quantensimulation: neu-
trale Atome können bis zur Quantenentartung gekühlt und in Gitter geladen werden;
solche Systeme reproduzieren das Verhalten von Elektronen in "echten" Festkörpern.
Der Vorteil von optischen Gittersystemen ist die große Kontrolle über die Eigen-
schaften des Systems und Zugang zu einer größeren Anzahl von Observablen.

Für diese Arbeit wurden unterschiedliche Experimente mit ultrakalten Quantengasen
durchgeführt. Diese adressieren sowohl die Messungsmöglichkeiten als auch die Kon-
trolle über das Gittersystem.

Die ersten berichteten Ergebnisse betreffen die Detektion von topologischer Ordnung
in einer Wolke von ultrakalten fermionischen 40K Atomen. Die topologische Ord-
nung kann nicht durch einen lokalen Ordnungsparameter beschrieben werden, wie in
der Theorie der Phasenübergänge von Landau. Deshalb hängen topologische Eigen-
schaften oft mit schwierig zu messenden Observablen zusammen, so auch in einer
Implementierung mit kalten Atomen.

Einem neuen theoretischen Vorschlag folgend, konnten wir demonstrieren, dass ein
topologisches System einen zirkularen Dichroismus zeigt, d.h. eine Abhängigkeit von
der Chiralität einer rotierenden Kraft als Störung. Wir zeigten auch, dass das
dichroische Signal direkt verwendet werden konnte, um topologische Ordnung zu de-
tektieren. Das könnte z.B. bei der Erschaffung neuer topologischer Phasen relevant
sein, wenn es noch keine geeigneten Probemethoden gibt. Die experimentellen Tech-
niken, die hier entwickelt wurden, erlauben auch das Messen von anderen Observablen
mit Bezug auf Leitungseigenschaften und zur Geometrie von Gitterzuständen.

Daten, die mit dem selben Aufbau erfasst wurden, wurden genutzt, um einen Algo-
rithmus für maschinelles Lernen zur Erkennung von topologischen Phasenübergängen
zu trainieren. Diese Ergebnisse sind auch zusammengefasst.

In mit 87Rb realisierten Experimenten wurde eine neue Technik zur direkten Ab-
bildung der Dichteverteilung im Gitter eingeführt und demonstriert. Diese Technik
basiert auf einer Materienwellendynamik, welche eine Vergrößerung der ursprünglichen
Dichteverteilung um bis zu fast zwei Größenordnungen realisiert. Die vergrößerte
Dichteverteilung kann anschließend mit konventionellen Methoden abgebildet wer-
den, in einer einzigen destruktiven Messung und mit sub-Gitter Auflösung.

Unterschiedliche experimentelle Situationen wurden untersucht und präsentiert, u.a.
die Entdeckung einer Dichtewelle, die sich nach Verschiebung der atomaren Wolken
gegenüber dem Fallenzentrum bildet. Erste Ergebnisse und Überlegungen über die
Möglichkeit, den Quantumgasvergrößerer zur Detektion mit hoher Auflösung von Ko-
härenzeigenschaften des Materienfelds zu nutzen, werden auch präsentiert.

vii



Zum Schluss präsentieren wir eine neue Methode zur Realisierung eines optischen
Gitters mit einstellbarer Geometrie. Dieses Schema basiert auf der Anwendung von
mehreren durch Radiofrequenzen kontrollierten Frequenzkomponenten. Wir berichten
über die jetzt erlaubte schnelle und präzise Kontrolle der Geometrie. Das könnte nicht
nur zur Simulation von unterschiedlichen Festkörper-Systemen nützlich sein, sondern
auch zur Untersuchung neuer Quantenphasen in Systemen mit zeitabhängiger
Geometrie, welche sich nicht in Festkörpern realisieren lassen.
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1. Introduction

Quantum simulation ([1]) refers to the study of a quantum system through the use
of another quantum system which replicates the properties of the first one.

The replicating system should have two important requirements: this concerns the
possibility to set with greater precision and control the initial parameters, but also
the possibility to extract a higher amount of information with a measurement. The
two systems should be described by the same laws, but for the rest, they might be
completely unrelated to each other.

This opens a lot of possibilities: as an example, one could try to replicate a complex
system using only a small number of elements in the quantum simulation, in order to
see which of them have fundamental importance in the understanding of the replicated
system. Another possibility is to use a quantum simulator to study the properties of
a variety of novel systems, and the parameters of the ones that are found to be of
interest could be then passed to a stage for the actual realization and application of
new materials and tools.

Both research direction can be investigated with ultracold atoms in optical lattices
([2]). Neutral atoms can be cooled and trapped with laser light and magnetic fields,
up to temperatures a few nK above the absolute zero of the temperature and in a
volume with a radius of some µm. The interference pattern of two or more laser light
beams can be shined on them, and as a result of the interaction between light and
matter, the atoms experience a potential which depends on the local intensity of the
interference pattern. Thus neutral atoms in optical lattices can be used to reproduce
the behaviour of electrons in solid state materials, in particular in crystals with a
periodic spatial structure. The conduction properties of such systems can be then
studied in a more controlled environment, as ultracold atoms allow for the tuning
of the interparticle interactions via Feshbach resonances ([3]), and optical lattices
allow for an almost defect-free control of the geometry of the system. Furthermore,
detection of the momentum distribution of the atoms is possible after letting the
atomic cloud freely expand for a certain time. The greater lattice spacing makes even
possible in some cases to access the real space distribution of the atoms while sitting
in the lattice ([4, 5]).

These systems allowed to simulate fundamental models of condensed matter, e.g.
Hubbard models with both bosons and fermions, for example providing a clear real-
ization of the Mott insulator state ([6]).
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Also novel systems can be simulated: this can be useful for predicting which solid
state material could exhibit particular properties, or for realization of interesting
systems without solid-state counterpart. For example, some topological models could
be realized for the first time in optical lattices ([7–9]).

In this thesis, several experiments are reported which deal with the access to the
optical lattice system as a quantum simulator. They are related to the possibility
to measure new observables, as well as to the possibility to realize systems with new
properties. A novel topological effect ([10]), which relates topological order with
excitation rates due to a perturbation of the system, is demonstrated in the first
experiments that are presented here ([11]). Topological order is described by a non-
local order parameter and as a consequence is often difficult to measure, also in a
cold atoms setup.

We extended the technique of lattice shaking for the realization of topological systems
to include also an additional perturbation. This allowed the measurement of topolog-
ical order in the system, but also of several other quantities related to the geometry
of the quantum states present in the system. This represented the first demonstra-
tion of the manifestation of topology through excitation rates, but also established
this method as a way to gain insight into the topological and geometrical observables
in case where these observables can not be directly measured. Data taken for the
same system where also used to train a machine learning algorithm which was able
to obtain the order parameter from single experimental images ([12]).

In a second series of experiments, we focused on the direct access to observables. The
real space distribution of the atoms can be accessed in quantum gas microscopes,
by considering a 2D optical lattice and if the number of particles in a lattice site
is not bigger than one, in most cases. We developed a new technique ([13]) for the
direct imaging of the density distribution, which is based on a controlled evolution
of the atomic matter-wave which realizes then a magnification of the original density
distribution. This allowed imaging in a single-shot with sub-lattice resolution, in
particular of 3D systems with a big number of particles per lattice site.

This technique could be applied not only for the real space distribution, but also for
measuring coherence properties of the lattice gas with high resolution.

Finally, we also presented in this work a new technique for the generation of a lattice
of tunable geometry. The geometry could be changed continuously from a triangu-
lar lattice to a graphene-like geometry, passing through a phase where the lattice
resembles a boron-nitride lattice. The geometry is tuned with radio-frequency mod-
ulation and can be precisely set. This could be useful for quantum simulation of
systems of different geometry with the same experimental setup. Not only, we also
demonstrated dynamical control of the lattice geometry, allowing for the realization
of driven systems which are quite challenging in a solid state setup.
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1.1. Thesis Outline

In chapter 2 of this thesis, the experimental setup used to perform such experiments
in this thesis is presented. Also the necessary theoretical framework for describing
lattice systems is introduced.

In the same chapter, topological states in lattices are also described, with focus on
the technique used in our experiment to produce topological states, namely lattice
shaking. Results on the individuation of the topological order parameter in such a
system with the use of machine learning techniques are also summarized.

In the experiments reported in chapter 3, the topology of a system is for the first
time revealed through circular dichroism i.e. a difference in the excitation rates in
response to a rotating force. Also the measurements of other observables performed
with the same technique are presented (optical conductivity and the Wannier spread
functional).

In chapter 4, we introduced the quantum gas magnifier. A first part of the chap-
ter is concerned with theoretical considerations about quantum gas magnification of
matter waves. Successively, experimental results are presented on the direct access
to the density distribution in a honeycomb and a triangular lattice geometry. In par-
ticular, it is shown how the temperature of the cloud in the lattice could be directly
measured, and how the imaging resolution obtained with this technique allowed even
the resolution of the dynamics of the atoms within single lattice sites. In the same
chapter are also presented results on the manipulation of the density distribution
with radio-frequency techniques, and on the tuning of pair tunneling as the dominant
dynamical process in the lattice by introducing a constant force in the system. This
effect could be identified by the observation of a density-wave pattern with about
twice the lattice periodicity.

In chapter 5, the possibility of the quantum gas magnifier to image with high spatial
resolution coherence properties is analyzed. In particular, preliminary results on the
Talbot effect are presented, and a protocol for accessing the off-diagonal parts of the
single-particle density matrix is presented.

In chapter 6, a new experimental setup for generating a tunable lattice geometry is
demonstrated, including characterization and calibration of the system. Results on a
new type of spectroscopy performed with periodic modulation of the offset between
the two sublattices of the honeycomb lattice are presented.

Chapter 7 summarizes all the results and provides a general outlook for future research
directions based on the results presented in this work.
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2. Quantum Simulation with optical
lattices

This chapter has the aim of providing an overview of the concepts and experimental
techniques used in the rest of this work. In the first part, the experimental setup used
for loading quantum degenerate atomic clouds in optical lattice is introduced. The
second part of this chapter deals with the description of these clouds in the periodic
potential provided by the lattice, and with the experimental observables accessible in
such a setup.

In the third part, basic quantum topology theory elements ([15]) are presented, to-
gether with the technique of lattice shaking used in this work for engineering topo-
logical states. This part is most relevant for the results of chapter 3 ([11]), where
topological phases where detected for the first time using circular dichroism. With
the same setup, my PhD colleague Matthias Tarnowski and I, with Benno Rem,
took the data which were used for training a machine leaning algorithm to recognize
such topological phases from single-shot experimental images ([12]). The algorithms
were programmed by Benno Rem and Niklas Käming. These results are also briefly
presented at the end of this chapter.

In the same publication time-of-flight data across the Mott-Superfluid phase transi-
tion taken by Christoph Becker were analyzed with a network which identified the
phase transition with greater precision than previously existing methods. We refer to
the article for a discussion on these data. The analysis and numerical simulation part
was performed by all mentioned authors and Nick Fläschner, and the whole work was
supervised by Christof Weitenberg and Klaus Sengstock.

5



2.1. Cold Atoms Setup

Figure 2.1.: Typical Experimental Sequences for 40K and 87Rb. The typical
duration for the respective slots are not up to scale. After reaching quantum degeneracy
with evaporative cooling, the atomic cloud is transferred to the optical lattice. In the case
of 40K, this happens through an intermediate passage where the cloud is solely held by
an optical trap, which remains on after the lattice is ramped up. Different measurement
techniques can be then applied, which will be presented later in this chapter/thesis.

In our experiment we can work with two different atomic species, namely 40K and
87Rb. The experiment construction is described in [16, 17] and successive develop-
ments of the machine in a number of subsequent PhD theses ([18–22]). The atomic
sources are contained in a glass cell with pressure about 1−3 ·10−10mbar. There a 2D
magneto-optical trap (in short MOT) operating simultaneously for the wavelengths of
87Rb and 40K slows the fast thermal atoms which can be pushed down with the help
of a resonant beam through a differential pumping stage to another glass cell with
lower pressure (∼ 10−11mbar), where they are trapped in a 3D MOT, also running
at two wavelengths.

The experiments presented in chapter 3 were performed using 40K, while the experi-
ment presented in the rest of this work use 87Rb.

In fig. 2.1 a typical experimental sequence is sketched for both situation: notice that
for 40K we also need 87Rb for sympathetic cooling. With the MOT we reach the
Doppler temperature, we go a little bit lower with the Molasses. A grey molasses for
40K operates on the D1 transition with an additional laser source ([21, 23]). The
relevant part of the level structure of the two atomic species, used for cooling and
detection is illustrated in figures 2.2 and 2.3.
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Figure 2.2.: Relevant 40K Levels. The transitions used for the MOT, for the bright
Molasses, for the optical pumping and imaging and for the grey Molasses are highlighted
(the atomic levels are not to scale). The light operating on the cooling/imaging transition is
red detuned during the MOT phase, and it also used for pushing atoms from the 2D to the
3D MOT. It is turned on resonance for optical pumping (before loading into the magnetic
trap) and for absorption imaging. Different optical fibers for the different purposes bring
the laser light to the atoms position. Also the repumping light is slightly detuned with
respect to the shown transition in order to gain an additional cooling effect during the
MOT phase. The grey molasses operates with a positive detuning on the D1 line and
the two frequencies necessary are produced by a ∼ 1.29 GHz frequency modulation with a
electro-optical modulator (EOM).

Figure 2.3.: Relevant 87Rb Levels. The transitions for the MOT, for the bright Mo-
lasses, for the optical pumping and imaging are highlighted (atomic levels are not to scale).
The light operating on the cooling/imaging transition is red detuned during the MOT phase,
and it also used for pushing atoms from the 2D to the 3D MOT. It is turned on resonance
for optical pumping (before loading into the magnetic trap) and for absorption imaging.
Different optical fibers for the different purposes bring the laser light to the atoms position.
Also the repumping light is kept on resonance with respect to the shown transition because
the for 87Rb only a smaller relative population is found in the ground state with F = 1.

7



2.1.1. Getting ultracold: The magnetic Trap

After the molasses phase, atoms are optically pumped (to the |F = 2,mF = 2〉 state
for 87Rb and to the |F = 9/2,mF = 9/2〉 state for 40K) and captured without trans-
port in a rotationally symmetric magnetic trap. A magnetic trap exploits the coupling
between the magnetic moment of atoms and a magnetic field for creating a local po-
tential minimum. A particle in the internal state |F,mF 〉, moving adiabatically in a
magnetic field experiences an energy shift Em given by:

Em(r) = −gFmFµB|B(r)| (2.1)

where B(r) is the magnetic field vector, gF the Landé factor, µB the Bohr magneton.
It follows that if gFmF > 0 ("weak-field seeking states") the potential has a local
minimum in correspondence of the local minima of |B(r)|, where the atoms can be
trapped (recall that local maxima can not be produced in a static field configuration,
as enunciated in the Earnshaw theorem, and therefore atoms in "high-field seeking"
states can not be trapped).

Then we change the magnetic potential to a cigar-shaped form, with tighter confine-
ment in the xy plane, in order to get bigger collision rates during evaporative cooling.
This allows, in 10 to 30 seconds, to reach quantum degeneracy ([16]).

Evaporation is performed by ramping down the frequency of a RF shield from ∼
15MHz to about 1MHz (40K) or ∼ 90kHz (87Rb).

The magnetic trap is a hybrid between the cloverleaf and the 4D design, and can be
described by the parameters B0, B1 and B2 ([24, 25]):

B(r) = B0

0
0
1

+B1

 x
−y
0

+B2

 −xz
−yz

z2 + 1
2(x2 + y2)

 (2.2)

Taylor expansion up to second order in the spatial coordinates yields:

|B(r)|' B0 + 1
2ρ

2(B2
1/B0 −B2/2) + 1

2z
2B2 (2.3)

where ρ =
√
x2 + y2, and B0 > 0 was assumed. It results that a small B0 is desirable

for high trap frequencies, useful for fast evaporation and for the experiments intro-
duced in chapter 4. Notice that a too small B0 might result in Majorana spin-flips
and losses during evaporation, and that the range in which the Taylor expansion is a
good approximation decreases for smaller values of B0.

The terms B1 and B2 are mostly due to the current flowing in the inner coils
(cloverleaf/4D), with currents of up to 110A, whereas the term B0 is referred to
as trap "bottom" (as it sets the energy separation between different states in the
center of the trap) or as "quantization field".
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The quantization field is mainly produced by a current sent through the outer Helmholtz
coils for the experiments with 40K, or by additional compensation coils for the ex-
periments with 87Rb, performed at a lower value of B0 (we notice in this case a
dependence of the resonance frequency between different mF states also as a function
of the current in the inner coils, and conclude that their produced magnetic field must
also have a component in z direction).

-5 -4 -3 -2 -1 0 1 2 3 4 5
-200

-150

-100

-50

0

50

100

150

200

A
B

Figure 2.4.: Schematics of the Magnetic Trap and energy Levels.. In A, the trap
coils, of the hybrid form cloverleaf-4D, are sketched (adapted from [16, 25]). The outer
coils provide the gradient for the MOT (in an "anti-Helmholtz" configuration) and the
quantization field B0 (in the Helmholtz configuration). Additional coils (not shown) can
be used to move the center of the trap potential and to adjust the quantization field. In B,
potential energy obtained for a current of 110A and a quantization field B0 = 0.11G for the
different mF states of 87Rb in the F = 2 ground-state manifold. Only the states mF = 1
and mF = 2 can be trapped: a radio frequency, resonant only at a given distance from the
trap center, can be used to remove the hotter atoms from the cloud.

The magnetic trap setup is sketched in figure 2.4, along with the resulting potential
as seen by 87Rb atoms in the different mF states of the F = 2 manifold (we will
always refer in the following to the ground state 52S1/2). .

The in-plane trap frequency ω and along the z direction can be calculated as:

ω =
√
gFmFµB(B2

1/B0 −B2/2)/m

ωz =
√
gFmFµBB2/m

(2.4)

A 110A current in the inner coils produces B1 = 168.65G/cm, B2 = 71.2 104 G/cm2.
With an offset field of B0 = 0.11G, and notating the useful relation for converting
magnetic fields into energy for F,mF = 2, 2 (for 87Rb) gFmFµB = 1.4 hMHz/G, one
gets a relatively high in-plane confinement: ω/(2π) = 640Hz while ωz/2π is much
smaller (∼ 11Hz).

Similar trap frequencies can be reached by for 40K in the F = 9/2,mF = 9/2 ground
state.
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The measurements of chapter 4 are particularly sensitive on the magnetic trap form
and we noticed the presence of a small ellipticity (< 1%) which we attribute to the
presence of gravity in y direction breaking (partially) the rotational symmetry.

We evaporate a mixture of 87Rb and 40K atoms in the experiments presented in
chapter 3, where 87Rb atoms are used for sympathetical cooling of 40K atoms, with
an offset field of ' 1.5G. In the experiments with 87Rb (in the remaining chapters)
we evaporate in a deep magnetic trap of typically ∼ 600Hz, with an offset field of
B0 ' 0.1G, obtaining a BEC of up to ∼ 105 atoms.

The experiments with 40K were then performed after removing the 87Rb atoms with
a resonant light pulse, and loading the 40K atoms in a crossed optical dipole trap. The
optical lattice was ramped up while leaving on the dipole trap. The experiments with
87Rb were performed after ramping down the magnetic trap to the desired depth and
by ramping up directly the lattice while leaving on the magnetic trap.

10



2.2. Bloch Bands in optical Lattices

Quantum simulation is the idea proposed by Feynman ([1]) that a controllable quan-
tum system can be used to replicate a more complex one, to get insight into its
properties. To this end, in order to study real-solid state materials in a more control-
lable and accessible fashion optical lattices come in and provide an almost defect-free
periodic potential for neutral cold atoms, mimicking the one that electrons see in a
real crystal ([26, 27]). Importantly, with cold atoms one can also get a much richer
variety of quantum statistics as one is not bound by the constraint of two internal
states (electrons are fermionic particle that can appear as either spin-up or spin-
down), but one could use spin-polarized fermions, or tune the relative population in
the two states, as long as fermionic particles are concerned [28]. One could also use
Bose-Einstein condensates ([29]) for studying bosonic excitation of electronic systems
of for realizing new phases of matter impossible or very difficult in solid-state matter.
Also mixtures of bosons and fermions can be studied ([17, 30, 31]).

Optical lattices can be realized by interference of two (or more) different laser beams,
with intensities I1 and I2 and wavevectors k1 and k2. The resulting intensity pattern
can therefore be written as:

I = I1 + I2 + 2|σ1 · σ2|
√
I1I2 cos ((k1 − k2) · r− θ12) (2.5)

where σ1,2 are the complex polarization vectors, and θ12 = arg(σ∗1σ2) is their relative
phase.

A

B C

Figure 2.5.: Schematics of the optical Lattice Setup. In A the wavevectors of the
three laser beams, lying in the xy plane and denoted as k1,2,3, are represented. Laser light is
brought to the atoms position with polarization maintaining fibers. Intensity stabilization
and fast turn-off are obtained via Acousto-Optical Modulators (AOMs, not shown). In the
inset B the orientation of the Brillouin Zone and the symmetry points Γ, K, K ′, M are to
be seen. In the inset C the reciprocal lattice wavevectors b1,2,3 are represented.

In our setup we have three beams propagating in a plane aligned vertically in the
lab (x-y in our coordinate system) and interfering with each other at a 120° angle.
They are produced from a single laser source (Mephisto MOPA 25 NE) at wavelength
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λ = 1064nm and brought to the experiment table via three independent polarization
maintaining fibers. The laser beams are focused at the position of atoms in the
magnetic trap with a waist of about 160µm ([21]).

For each of the possible beam pairs an interference term of the form expressed in
equation 2.5 appears, for a total of three relevant wavevectors b1,2,3 characterizing the
lattice. The convention used in this work for defining the beam wavevectors and the
reciprocal lattice wavevectors is presented in figure 2.5. Note that the vector triple
b1,2,3 appears to be rotated 60° with respect to k1,2,3 and that |b1,2,3|=

√
3|k1,2,3|,

where |k1,2,3|= 2π/λ.

Figure 2.6.: Triangular lattice Potential. Potential obtained with the expression
V (r) = E0 − 2∑i Vi cos(bir), with V1 = V2 = V3. The black hexagon marks (a possi-
ble choice of ) the unit cell. Minima of the lattice potential are separated by a distance
alat = 2/3λ = 709nm, with λ the laser light wavelength, and the area of the unit cell is
Acell = 2

3
√

3λ
2.

When the beams are out of plane (the xy plane, the plane of the lattice) linearly
polarized (σ∗i · σj) = 1 the resulting potential seen by the atoms can be obtained
by considering that the potential energy shift is proportional to the light intensity
V (r) ∝ −I(r) (with a negative constant, because the light is red-detuned).

The potential can then be written as:

Epot = E0 − 2
∑
i

Vi cos(bi · r) (2.6)

The index i takes the values {1, 2, 3} unless otherwise specified. V1,2,3 are referred
to as the depths of the corresponding 1D lattices. In the symmetric case, where
V1 = V2 = V3 = V , a triangular lattice, with one potential minimum per unit cell,
is formed ([32]). If V1 = V2 = V3 = V , we refer to V as the lattice depth of the 2D
lattice. This potential is shown in figure 2.6.
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V1,2,3 and V are expressed in units of the recoil energy Er which sets the typical
energy scale in a lattice, and is defined as:

Er ≡
(~|ki|)2

2m (2.7)

where m is the mass of the particles. For 87Rb, Er/h = 2.03 kHz and for 40K,
Er/h = 4.41 kHz.

When all the beams are instead in-plane linearly polarized (σ∗i · σj) = −1
2 (for all

i 6= j) the resulting potential seen by the atoms can be written as:

Epot(r) = E0 + 2
∑

Vi cos(bir) (2.8)

The potential in this case is characterized by two equivalent local minima. In the
symmetric case V1 = V2 = V3, also here a 120° rotation symmetry is present. Notice
that qualitatively the difference with the triangular lattice is just in the minus sign
in front of the potential. This potential is plotted in figure 2.7.

A B

A B

A B

A
BB

B

A B

Figure 2.7.: Honeycomb optical lattice potential. Potential obtained with the ex-
pression Epot(r) = E0 + 2∑i Vi cos(bir), with V1 = V2 = V3. The black hexagon marks
(a possible choice of ) the unit cell. In it, two degenerate local minima can be found
(indicated by A and B in the schematics). Nearest neighbours are spaced by a distance

2
3
√

3λ = 410nm. Next-nearest-neighbours are spaced by alat = 709nm, and the area of the
unit cell is Acell

2
3
√

3λ
2 as for the triangular lattice, being that the lattice periodicity is given

only by the reciprocal lattice wavevectors which are fixed.
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The equivalence of the two minima, and the inversion symmetry of the potential can
be lifted by using elliptically polarized beams ([33]). A symmetric (under a 120°
rotation) potential can be obtained by choosing elliptical polarization of at least two
beams. By e.g. rotating all polarization vectors out of plane by the same angle θ and
by choosing the relative phases between the in-plane and out-of-plane polarization
components α1,2,3 = 0, 2π/3, 4π/3 one obtains σ∗i · σj = −1

2 cos(θ)2 + sin(θ)2ei2π/3

for (i, j) = (1, 2), (2, 3), (3, 1) and the resulting potential seen by the atoms can be
written as

Epot = E0 + 2
∑

Vi cos(bi · r + ϕg/3) (2.9)
where

ϕg/3 ≡ arg(−σ∗i · σj)

= arctan[ sin(2π/3) sin(θ)2/(1
2 cos(θ)2 − sin(θ)2 cos(2π/3)) ]

(2.10)

This potential resembles the electronic potential of boron-nitride, and an example for
a particular sublattice offset is presented in figure 2.8.

A B

A B

A B

A
BB

B

A B

Figure 2.8.: Boron-nitride Potential. Optical lattice as described by ∑i cos(ki · r +
ϕg/3), with ϕg = 1

20π. This lifts the degeneracy between the two minima in the unit cell
(A and B, shown in the schematics). The black hexagon marks (a possible choice of ) the
unit cell. As in figure 2.7, nearest neighbours are spaced by a distance 2

3
√

3λ = 410nm,
and next-nearest-neighbours are spaced by alat = 709nm, and the area of the unit cell is
Acell

2
3
√

3λ
2.
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2.2.1. Band Structure Calculation

In a periodic potential, one can exploit the translational symmetry of the lattice and
search for a solution of the Schrödinger equation that satisfies ([34]):

Ψ(r + ai) = eiqaiΨ(r) (2.11)

where q is the quasimomentum of the wavefunction and it is a good quantum number.
We notice that ei(q+b)aj = ei(q)aj+2π = eiqaj therefore the quasimomentum can be taken
just in the unit cell of the reciprocal space, the Brillouin Zone. Therefore the spectrum
of such systems is said to exhibit bands, the parts of the dispersion characterized by
the same band index n. The energy difference between consecutive bands is called
band gap and it determines, in real solid, important conduction properties, like being
conducting or insulating materials (when electrons fill up energy bands up to a band
gap, it is insulating). Bands might touch at some point in the Brillouin zone.

We get the band structure calculation for our lattice by diagonalization of the Hamil-
tonian in the plane-wave basis |Q〉 =

∫
e−iQ·rdr|r〉 for every q in the Brillouin zone.

Only waves with wavevector Q = q + nb1 + mb2, with n, m integers, are coupled
with each other. In this subspace the lattice potential can be rewritten as:

Epot(r) = E0 + 2
∑
i

Vi cos(bi · r + ϕg/3)

→ E0 +
∑
n,m

∑
i

|Q + bi〉 Vie−iϕg/3 〈Q|+ h.c.
(2.12)

The diagonal part of the lattice Hamiltonian in the plane-wave basis can be written
as

Ekin = (~Q)2

2m . (2.13)

Plotting the eigenvalues as a function of quasimomentum we get the band structure
(an example is shown in figure 2.9).

In many cases the band structure can be captured by a tight-binding approximation,
which can provide a more direct insight into the system. The lowest band of the
triangular lattice can be well described (for V > 0.5Er) by a tight-binding model of
s−orbitals localized at the position of the lattice minima:

Htb/~ = −
∑
<i,j>

Jψ̂†i ψ̂j (2.14)

where J is the tunneling coupling between nearest-neighbours (<>) lattice sites with
indexes i, j, and ψ̂†i , ψ̂j are creation/annihilation operators acting on sites i and j
respectively.
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Figure 2.9.: Energy levels in a Boron Nitride Optical lattice. Energy as a function
of quasimomentum along the pathsMΓ, ΓK, KM . Different colors corresponds to different
bands. Lattice potential obtained for V = 8.63Er, and for polarization angles θ = 9° and
α1,2,3 = 0, 2π/3, 4π/3. Notice that the first two bands are almost flat and that the energy
separation corresponds roughly to the sublattice offset ∆.

For the honeycomb lattice with two local minima in the unit cell, the tight-binding
approximation comprises additional terms:

Htb/~ = −
∑
<i,j>

Jψ̂†i ψ̂j−
∑

<<i,i>>

JAAψ̂
†
i ψ̂j−

∑
<<j,j>>

JBBψ̂
†
i ψ̂j+

∑
i

~∆
2 ψ̂†i ψ̂i−

∑
j

~
~∆
2 ψ̂†j ψ̂j

(2.15)
where < i, j > are index pairs associated to nearest-neighbours lattice sites, corre-
sponding to the two different sublattices A and B. << i, i >> (<< j, j >>) are
index pairs associated to next-nearest-neighbours lattice sites, corresponding to the
same sublattice A (B), and JAA (JBB) the corresponding tunneling coupling strength.
∆ is the sublattice offset. The Honeycomb lattice with ∆ = 0 mimics the potential
experienced by electrons in a graphene sheet ([35]).

Another important information that we get from the diagonalization are the eigen-
vectors, in form of a sum of plane-waves |q + nb1 + mb2〉 weighted by the Bloch
coefficients cBm,n(q). (B is the band index)

We usually want to look at the eigenvectors in real space; these can be gotten by
performing the transformation

ΨB(r) =
∑
m,n

cBm,n(q)e−i(q+nb1+mb2)·r (2.16)
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The ground state density distribution for the symmetric potentials we just presented
is shown in figure 2.10.

Figure 2.10.: Eigenstates in real space. Density profile of the ground-state (located at
the Γ point) for the three symmetric lattice geometries: graphene-like, boron-nitride-like,
and triangular lattice.

2.2.2. Time-of-Flight

Figure 2.11.: Sketch of the time evolution of dynamical quantities during time
of flight. The arrows indicate the transfer of the information about the momentum dis-
tribution: while the momentum distribution remains constant, it also gets mapped to the
real space distribution.

The momentum distribution of the atoms can be measured via the so-called time-
of-flight. It consists in the abrupt switch off of all optical and magnetic potentials,
after which the atoms are exposed only to gravity for a time typically of the order
of ∼ 20ms. We can look at the real-space distribution after time-of-flight by consid-
ering the time evolution of the position operator X, as dictated by the free-particle
Hamiltonian. It is:

∂tX(t) = i

~
[H,X] = i

~
[ P

2

2m,X] = P

m
(2.17)

Where P is the momentum operator of the particles of mass m. Because [H,P ] = 0
then P = P (0) at all times; one gets in the end:

X(ttof) = X(0) + ttofP (0)
m

(2.18)
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For large enough ttof , in the so-called far-field limit, X(ttof) ∼ ttofP (0)
m

; this basically
says that the original momentum distribution at t = 0 in the lattice has been mapped
to the real-space distribution, which can then be recovered via optical imaging (as
sketched in figure 2.11). The presence of the X(0) operator in the final expression sets
a limit on the momentum space resolution δp which can be estimated by substituting
X(0) with the initial cloud size σsys:

δp ∼ m
σsys
ttof

(2.19)

In the presence of gravity along the x-direction ∂tP = i
~ [mgX,P ] = −mg. This

produces:
X(ttof) = X(0) + ttofP (0)

m
− 1

2gt
2
tof (2.20)

where the 1
2gt

2
tof term, being a real number, just shifts down the whole distribution

(as compared with the case in absence gravity), without introducing any "distortion".
In practice, this is often a limiting factor because it limits the maximal ttof achievable
(before the atoms get out of the field of view of the optical system), and hence the
smallest achievable δp.
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2.2.3. T/4 Evolution in a Harmonic Trap

Figure 2.12.: Sketch of the time evolution of dynamical quantities during a T/4
hold time in a harmonic trap with period T . The arrows indicate the transfer of
the information about the momentum distribution, which gets mapped to the real space
distribution, and vice versa.

In presence of a high resolution imaging system, another technique is often used to
image the momentum distribution ([36, 37]): that of letting the system evolve in a
harmonic potential for a quarter of the trap period, denoted as T/4 (sketched in figure
2.12).

There the equations of motion look like:

∂tX = P/m

∂tP = −mω2X
(2.21)

With solutions:
X(t) = cos(ωt)X(0) + 1

mω
sin(ωt)P (0)

P (t) = cos(ωt)P (0)−mω sin(ωt)X(0)
(2.22)

At t = T/4, X(t) = 1
mω
P (0), realizing perfectly the momentum distribution i.e.

without the X(0) term which limits the resolution in time-of-flight experiments. The
finite optical resolution determines then δp and hence a good resolution imaging
becomes necessary. In our experiment we don’t have such a high optical resolution,
but we mention this technique at this point because we are going to use it as an
intermediate step for the experiments presented in chapter 4.
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This technique is also at the basis of phase space manipulation techniques on an
ensemble of particles [38–40] for applications like e.g. cooling to low temperatures in
the kinetic degrees of freedom.

2.2.4. Band Mapping

When ramping down adiabatically the lattice depth, lattice states characterized by
quasimomentum q and band index n are mapped to the momentum distribution,
which can be accessed using a subsequent time-of-flight, as just explained. In prac-
tice, because often it is very difficult to remove all harmonic confinements during this
procedure (especially since the lattice itself provides one), the information over the
quasimomentum gets washed out and only the information about the relative popu-
lation of the bands can be obtained.

2.2.5. Optical Imaging

At the end of each experimental sequence, we measure the final density distribution of
the atoms in the x−y plane via absorption imaging ([41]). A light beam propagating
along the z−direction resonant with the F = 2 → F = 3 transition is shined for
50µs on the atoms, which absorb photons from the beam and scatter them in all
directions.

The light intensity at the position of the atoms is then imaged with a 4f imaging on a
CCD camera, with an effective pixel size (taking into account an optical magnification
of about 2) of 6.04µm.

A second image is taken in absence of the atoms, to get the reference signal. The
density of the atoms can then be recovered by usage of the Beer-Lambert law, by
taking the logarithm pixelwise of the ratio between the two signals.

This measurement is destructive i.e. a new measurement can be taken anew by going
through all the steps of the sequence from the beginning.

In a post-processing step, a defringing algorithm is applied to the experimental images
in order to remove artifacts due to interference effects ([22, 24, 42, 43]).
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2.3. Floquet Engineering of topological States

2.3.1. Quantum topology

In differential geometry, the Gauss-Bonnet theorem possesses fundamental impor-
tance as it connects a geometrical property, the gaussian curvature of a compact 2D
Riemannian manifold M , to a topological property, the Euler characteristics.

In particular, if the manifold has no border, then the (topological) χ Euler char-
acteristics is obtained simply by integration of the (geometrical) gaussian curvature
K: ∫

M
KdA = 2πχ (2.23)

Note that χ is an object which can take up only integer values.

In quantum mechanics, a geometry can also be defined, in the Hilbert space in which
quantum states live.

Taking a manifold of states |ψ(λ)〉 dependent on the parameters λ = [λ1, λ2, ...λn]
one can define a distance between quantum states ([44]):

ds2 ≡ 1− |〈ψ(λ)||ψ(λ+ dλ)〉|2 (2.24)

where dλ is a small variation of the parameter λ. States with bigger overlap are
"closer" to each other. One can then derive the expression for the quantum geometric
tensor χαβ(λ) as:

ds2 = dλαχαβ(λ)dλβ
χαβ(λ) = 〈∂αψ(λ)| (1− |ψ(λ)〉〈ψ(λ)|) |∂βψ(λ)〉

(2.25)

with the simplified notation ∂α ≡ ∂λα .

χαβ(λ) is a Hermitian matrix and can be decomposed into a real, symmetric part and
a complex, antisymmetric part related to the quantum metric gαβ and to the Berry
curvature Ωαβ(λ):

gαβ(λ) = Re[χαβ(λ)]
Ωαβ(λ) =− 2 Im[χαβ(λ)]

(2.26)

The quantum metric gαβ(λ) is the relevant part of the geometric tensor when cal-
culating distances between states (note that it is positive definite, and the distance
between two states is always greater than zero unless they are identical) and the
Berry curvature Ωαβ(λ) is related to the phase picked up while following adiabati-
cally a close loop in parameter space ([45]). More precisely, there is a component
to this phase which is only determined by the geometry of the eigenstates, and it is
called Berry phase and can be calculated by integrating the Berry curvature in the
area enclosed by the loop in parameter space.
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Although seemingly abstract quantities, these objects determine important system
properties (e.g. the quantum metric provides a connection between geometric and
conduction properties, as discovered in [46]), and could be also measured directly in
experiments. The quantum geometric tensor was measured in photonic system and
in coupled qubits in diamond ([47, 48]), and the Berry curvature in coupled qubits
([49]) too and in an optical lattice experiment performed in our group ([33]).

We are interested in the case where λ = q, i.e. the parameter space is represented
by the quasimomentum in a Bloch band. The states |ψ(q)〉 we are considering are
the eigenstates of the lattice Hamiltonian Hl in the lowest band (but the same con-
siderations will hold also for another band, or for a set of bands). There the Berry
curvature of the lowest band takes the form:

Ωxy(q) = ∂qx〈ψ(q)| ∂qy |ψ(q)〉 − ∂qy〈ψ(q)| ∂qx|ψ(q)〉 (2.27)

which can be recast in:

Ωxy(q) = Im
∑
n>1

〈ψ(q)|∂qxHl|ψn(q)〉〈ψn(q)|∂qyHl|ψ(q)〉
(E − En)2 (2.28)

The Berry curvature of a Bloch band in the Brillouin zone satisfies the Chern-Gauss-
Bonnet theorem ([50]), and its integral on the Brillouin zone (which has no boundary,
because of the periodicity in momentum space) is also proportional to an integer
quantity, the Chern number C.

This object dictates important transport properties like the quantum Hall effect ([51–
53]) and the presence of edge states ([54]).

An important point to notice is that, for time-reversal symmetric systems,
Ωxy(q) = −Ωxy(−q). Therefore in this case the integral of Ωxy(q) over the Brillouin
zone vanishes.

Time-reversal symmetry is broken e.g. by a magnetic field in the system:

Hkin =
(P − e

c
AB)2

2m (2.29)

where c is the speed of light, AB is the vector potential which generates the magnetic
field B, and for particles with charge e. This explains why one can get a Chern number
in the quantum Hall effect and why the transverse conductance must be integer
quantized. It was the insight of Haldane ([55]), who noticed that the main ingredient
for getting the quantum Hall effect is the breaking of time-reversal symmetry, and
not the magnetic field.

Neutral atoms do not experience the Lorentz force in presence of a magnetic field. In
the next section, we explain how breaking of time-reversal symmetry can be achieved
with Floquet Engineering.
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2.3.2. Description of time-periodic Systems

Let’s assume we drive periodically a system with angular frequency ωF :

H(t+ TF ) = H(t) (2.30)

where TF = 2π
ωF

is called Floquet period ([56]).

Then one could try to describe the time-evolution according to a static Hamiltonian,
the Floquet Hamiltonian HF which satisfies:

eiHFTF = U(0, T ) (2.31)

HF might now possess new properties like breaking of time-reversal symmetry, which
static Hamiltonians can’t have. This is a powerful tool for engineering of new non
trivial, and interesting Hamiltonians, also with ultracold atoms and optical lattices,
as we are going to present ([57, 58]).

2.3.3. Topology via Lattice Shaking

When introducing a frequency difference δν between the two beams that create an op-
tical lattice, they produce a running wave propagating with velocity 2πδν/k, where k
is the lattice wavevector. When modulating this frequency difference (making δν time-
dependent), in the reference frame of the wave an inertial acceleration 2π∂tδν(t)/k is
felt.

In the 1D case, writing the inertial force as 2E(t):

Ht(t) = H − 2E(t)X (2.32)

The constant force breaks the translational symmetry of the lattice Hamiltonian H.
We consider the transformation given by the translation operator in momentum space
R:

R =exp[ iX
∫

2E(t)/~ dt ]

H ′t(t) =RHR† − i~R∂tR† = RHR†
(2.33)

The last step is obtained by noticing that −i~R∂tR† − 2E(t)X = 0. Notice that this
Hamiltonian is now again periodic in space, and can be solved using the quasimo-
mentum, labeled by q, as a good quantum number.

Under adiabatic approximation, i.e. assuming that the shaking doesn’t couple higher
bands ([59]), the shift in momentum produced by R becomes a shift in the quasimo-
mentum:

H ′(q, t) = RHR† = H(q +
∫

2E(t)/~ dt) = H( q(t) ) (2.34)
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we can then interpret the quasimomentum as being time-dependent, with
q(t) = q(0)+

∫
2E(t)/~ dt, and eliminate the (explicit) time-dependence of the Hamil-

tonian. Such results can be straightforwardly extended to 2D (or 3D).

We consider now the case of periodic shaking of a 2D lattice. In our setup, we can
shake the lattice in a variety of different orbits by modulating the frequency difference
of two of lattice beams (with respect to the other one) e.g. in the following way:

δν1 =0
δν2 =2δν(sin(ωF t+ φ) +

√
3 sin(ωF t))

δν3 =2δν(− sin(ωF t+ φ) +
√

3 sin(ωF t))
(2.35)

This allows to realize circular shaking with frequency ωF (for values of the shaking
phase φ = ±π/2), or linear shaking along the x± y direction (for values of the phase
φ = 0, π). Intermediate values of the shaking phase realize shaking of the lattice
along elliptical orbits. Taking the time derivative of the real space orbit allows to
reconstruct the orbit of the (2D) time-dependent quasimomentum:

qt(t) = qt(0) +m
∫ t

0
L̈(t)dt/~ (2.36)

where L indicates the translation vector between the lattice and the laboratory
frame.

The system is periodic in time, therefore it realizes a Floquet system. The time evo-
lution operator over a Floquet period UF can be defined for a given quasimomentum
q with the following:

UF (q) = lim
N→∞

N∏
n=1

[ 1− iTF/N

~
H(qt(t = nTF/N)) ] (2.37)

We truncate the Hilbert space to the linear combination of the two lowest bands of
the honeycomb lattice, and calculate UF using N ∼ 200. We obtain then the Floquet
Hamiltonian by taking the logarithm of the time evolution operator:

HF (q) = i~
TF

ln[ UF (q) ] (2.38)

HF (q) has the form of a time-independent Hamiltonian of a 2D lattice, being a func-
tion of q only. But, in contrast to Hamiltonians describing time-independent lattices,
it could break time-reversal symmetry, and possess a non-zero Chern number.

Shaking produces an effective Hamiltonian with complex tunneling matrix elements
([60, 61]); in the case of the honeycomb lattice this effective Hamiltonian can be
mapped to the Haldane model ([55]). This can be obtained by shaking with a Floquet
frequency much bigger than the energy scales of the lowest two bands of the static
lattice ([9]), simulating graphene irradiated by circularly polarized light ([62]); or by
shaking in resonance with the sublattice offset ∆ ([33, 63–65]).
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An interesting feature of this second protocol is that an abrupt stop of the shaking
allows for a full state tomography, where the complete time evolution of the quantum
state can be reconstructed ([33, 65–67]).

In general, lattice shaking can be used to control and engineer systems parameters,
e.g. for renormalization of the tunneling coupling, as demonstrated in the realization
of a Mott-insulator via shaking ([68, 69]), or for adding Peierls phases on the tunneling
elements, which allowed simulation of classical magnetism ([70, 71]). Floquet states
in optical lattice can also be engineered by periodic modulation of the lattice depth
([72]), and topological phases can also be produced in optical lattices by laser-assisted
tunneling ([7, 8]) or, exploiting internal degrees of freedom, with artificial dimensions
([73–75]).

As a last note, there is a fundamental interest in Floquet engineered models because
they possess also topological phases which can not be present in non-driven systems
([76, 77]).
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2.3.4. Reconstructing the Topological Phase Diagram via
Machine Learning

Topological order can not be captured by a local order parameter, as in the Landau
paradigm for phase transitions ([78]). Experimentally the Chern number in the bulk
of a system can be extracted in a number of ways: e.g. through center of mass
transverse displacements ([79, 80]) or full state tomography ([33]), or by counting the
topological charges exchanged in a band closing point ([81]).

All these examples requires several experimental shots, to e.g. either extrapolate to
the linear regime or to perform the full state tomography.

Machine learning techniques can be of help also in quantum physics ([82–84]). In ([12])
it was demonstrated how an algorithm can be trained with a (limited) knowledge of
the different topological phases as a function of some experimental parameters. As
an input, some time-of-flight pictures from a shaken lattice are fed, together with the
value of the Chern number corresponding to the parameters with which each picture
was taken. These pictures exhibit complex interference patterns, making the task
very difficult or nearly impossible for a human eye to identify the correct topological
phase (as can be seen from the examples in figure 2.13).

The algorithm can instead "learn" to classify the topological phases also for parameters
for which it has not been trained (more details on the training procedure can be found
in [12, 85]).

The resulting topological phase transition can be seen in the probability of measuring
C = 1 as a function of the Floquet frequency (figure 2.14).

It was later shown with the same data ([86]) that machine leaning algorithms can
even recognize that there is a transition, even without "telling" them first which are
the phases that are supposed to be found (unsupervised machine learning).

These experiments ([12])1, and [87], represent the first applications of machine learn-
ing techniques to experimental data in cold atoms systems; in [87] an algorithm was
used to compare two models describing the doped Fermi-Hubbard model, a many-
body system where complex patterns arise too.

The possibility of detecting the Chern number in a yet unexplored regime could be of
tremendous help for the discovery of new topological phases, in particular considering
that the answer of the (trained) algorithm would take considerably less time than the
experimental cycle duration.

1Including the time-of-flight data across the Mott-Superfluid phase transition which are not pre-
sented in this work.
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Figure 2.13.: Time of flight Pictures from systems with different Topology. Im-
ages obtained after loading a 40K band insulator into a Floquet system created by circular
lattice shaking. Data measured for different Floquet frequencies corresponding to different
values of the Chern number C. This selection evidences, for the human reader, how identi-
fication of topological order through pattern recognition is not easy. Adapted from [12].
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Figure 2.14.: Detecting topological Phases with Machine Learning. In A, the
probability of the trained algorithm to produce C = 1 as outcome is plotted as a function
of the Floquet frequency ωF (red points). The single images analyzed by the algorithm
were obtained for circular shaking (shaking phase φ = 90°). The expected transition points
are marked by the dashed lines. Also plotted are the probability of predicting C = 0 (grey
points) and C = −1 (blue points). In B, the Haldane phase diagram was mapped with
the same method by varying both the Floquet frequency ωF and the shaking phase φ.
Notice that ωF is related to to the sublattice offset M (as in the Haldane model introduced
in [55]), and the shaking phase φ to the complex phase of the next-nearest neighbours
tunneling coupling φ of the same reference. The exact mapping between the model and this
Floquet realization is described in [65]. The regions with C = 1 and C = 0 (as predicted
from the numerics) are contained within the blue and red curves respectively. Grey lines
represent points used to train the algorithm; notice that they represent only a small fraction
of the total parameter space. Adapted from [12].
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3. Circular Dichroism, or "Hearing
Topology"

In 1966 the mathematician Mark Kac popularized the question of isospectrality with
the paper "Can we hear the shape of a drum?" ([88]). Two shapes are said to be
isospectral if they produce the same set of eigenvalue λn of the Laplace operator (λn
is an eigenvalue if u(x, y) can be found such that ∆u(x, y) = λnu(x, y) and u = 0 at
the border of the shape).

The question was then if isospectral surfaces are always equivalent (up to trivial
transformations like rotations or reflections) and whether the form of a shape could
be deduced from its spectrum (the set of the eigenvalues, related to the frequencies
which we hear of an oscillating drum).

A B

Figure 3.1.: Two isospectral surfaces. The two colored surfaces, in A and B are non-
congruent but have the same spectrum λn(n) (where n is an integer labeling the eigenvalues).
This, and other counter examples, were presented in [89]. Notice instead, that the two
surfaces have the same area, perimeter and number of holes (zero). While the exact shape
cannot be deduced from the spectrum, these properties can be "heard", i.e. deduced from
the spectrum.
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Gordon et al. ([89, 90]) demonstrated that this is not possible by providing a method
to generate counter examples (figure 3.1)1.

But still, there are other properties of the surfaces, like the area ([92]) and the perime-
ter ([93]) which one can "hear", or deduce from the knowledge of the spectrum (these
results were already known to Kac). Other properties can also be heard (and are
therefore "spectral invariant"), like the number of corners ([94, 95]) or even the Euler
characteristic i.e. the number of holes in the surface ([88, 96]), which directly gives
the topology of the 2D shape.

In physics, measuring the spectrum of a system (performing a spectroscopy experi-
ment) is a powerful tool for extracting information from the system. We have seen in
the previous chapter that extracting the topological order is in general not an easy
task ([12]) and, inspired from this short mathematical story, we ask ourselves whether
the topology of a Chern insulator is one of the properties of a system which can be
accessed via spectroscopy. Two important differences arise when comparing physical
topological systems (introduced in the previous chapter) and the mathematical 2D
shapes. The first one is that in Chern insulators the Berry curvature (on which a
topological property, the Chern number C, depends) is a function of the eigenstates
only, and not of the eigenvalues. Therefore it is strange to think of a spectroscopy
experiment to reveal topological and geometrical properties. But there is also another
important difference: performing spectroscopy in a physical system, we can not just
ask: "is there a state at this particular energy difference?". When performing spec-
troscopy ("playing the drum"), we can choose among different perturbation operators
(or "between e.g. playing with drumsticks or brushes, and among different stroke
styles"), and the strength of the signal at each particular frequency ("the timbre")
will depend on this choice.

The insight of Tran et al. ([10]), and of following publications ([97–99]) is exactly to
have a look at the excitation rates (i.e. how fast we get a measurable signal), not just
at the spectrum, to recover information about the geometry of the states themselves.
In particular they found a spectroscopic quantity that is able to reveal the geometrical
properties of a 2D Chern insulator: this quantity is the circular dichroism, which can
be described as the difference in the response of the system between two situations,
the first one where the perturbation forces the system to oscillate clockwise, and the
second one where the system is forced to move counterclockwise.

Circular dichroism can be defined in a way (which will later be presented), such that it
can be directly related to the Berry curvature, and as a consequence to the prediction
that it should be quantized in term of the Chern number, making it a measurable
quantity for obtaining the topology of a system.

1Apparently, the answer is much easier for generic n-dimensional drums, and a counter example in
16 dimensions was much sooner found ([91])
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In solids, geometrical properties (Berry curvature) were accessed using high-harmonics
([100, 101]), but so far the Chern number could not be extracted from a spectroscopy
measurement. In our lab, we measured for the first time the quantization of circular
dichroism; these findings are published in [11]. The data were taken and analyzed by
me, together with my PhD colleague Matthias Tarnowski; and with Benno Rem and
Nick Fläschner, under the supervision of Christof Weitenberg and Klaus Sengstock.

I calculated the numerical spectra for our system, while theoretical considerations
about the separation of time-scales (of the spectroscopy probe frequencies with respect
to the frequency of the probed Floquet system) were made by Duc Than Tran and
Tomoki Ozawa, under the supervision of Nathan Goldman.

3.1. Heating Rates as topological Probes

A material is said to exhibit Circular Dichroism when it responds differently to the
two possible orientations of the circular polarization of light. The prediction of [10] is
that Circular Dichroism of a system should be quantized, and the quantization given
by its Chern number.

In the following, we are going to define formally the circular dichroism and evidence
the relation with the Chern number (following [10]).

Let’s consider a lattice system, described by the HamiltonianH, which might be topo-
logical (C 6= 0) as a function of some parameter(s). Adding the circular perturbation
one can write:

Ht(t) = H + 2Es{ cos(ωst)X ± sin(ωst)Y } (3.1)
where the sign ± depends on the chirality of the perturbation.

The perturbation is non-periodic (in space) and breaks the symmetry of the lattice,
but this can be recovered by going to the lattice frame, where the perturbation takes
the form (see Chapter 2):

H ′t(q, t) = H(q + 2Es
~ωs
{ sin(ωst)q̂x ∓ cos(ωst)q̂y } )

'H(q) + 2Es
~ωs
{sin(ωst)

∂H

∂qx
∓ cos(ωst)

∂H

∂qy
}

(3.2)

where first expression is obtained by assuming adiabaticity (no band change due to
the perturbation), and the second one by expanding H to first order in qx, qy.
q̂x, q̂y are the unit vectors in quasimomentum space. Because the symmetry of the
lattice is kept, the perturbation can only couple states with the same quasimomentum
q.
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Let’s consider a state in the lowest band |0〉 with quasimomentum q and energy ε0.
It can be excited to each state |n〉 with energy εn in the nth band, with a total rate
given by the Fermi Golden Rule, in the rotating wave approximation:

Γ±(ωs) =
∑
n>0

2π
~

(2Es
~ωs

)2 |〈n|∂H
∂qx
∓ i∂H

∂qy
|0〉|2 δt(εn − ε0 − ~ωs) (3.3)

where δt(ε) ≡ sin(εt/2~)2/ε2. We define then the integrated rates Γint
+ and Γint

− ob-
tained by averaging respectively Γ+(ω) and Γ−(ω) over the Brillouin Zone and by
integrating over all relevant frequencies ωs.
We consider the infinite time limit: there δt(εn− ε0− ~ωs)→ δ(εn− ε0− ~ωs) (where
δ is the Dirac delta) and integration over the frequencies can be done simply by re-
moving the δ, substituting ~ωs with εn− ε0 and summing over all possible transitions
n > 0.

We finally introduce the observable associated with circular dichroism, defined as:

∆Γint
± = (Γint

+ − Γint
− )/2 = 4π(Es/~)2

N
Im

∑
q

∑
n>0

〈0| ∂H
∂qx
|n〉〈n| ∂H

∂qy
|n〉

(ε− ε0)2 (3.4)

∆Γint
± is called "differential integrated rates" (DIR). This can be directly related to

the sum of the Berry curvature of the lowest band over the Brillouin zone ([102]):

C = 4π
Asys

Im
∑
q

∑
n>0

〈0| ∂H
∂qx
|n〉〈n| ∂H

∂qy
|n〉

(ε− ε0)2 (3.5)

The relation between ∆Γint
± and C is then given by:

C = ∆Γint
± /(Acell(Es/~)2) (3.6)

where Acell = Asys/N is the area of the unit cell of the lattice. Notice that we
choose a different convention than [10], by taking the average instead of sum over
the Brillouin zone. In our definition, the depletion rates are an intensive quantity,
making them easier to define in an experiment, because one does not need to know
the exact area of the system. This is important not only because we didn’t have in
these experiments good real space resolution but also because this quantity is not
well defined in a systems with a harmonic confinement. Furthermore, in our setup
the system is not purely 2D (but rather a 2D lattice of "tubes") and Asys, however
defined, might depend from the z coordinate perpendicular to the lattice plane.

This derivation of the quantization of the DIR makes clear how geometric properties
are related to the heating rates, and suggests also the possibility e.g. to measure the
Berry curvature in a momentum resolved experiment. There is another route, which
we present in the following, for obtaining the same relationship between the Chern
number and circular dichroism.
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We can start by noticing that the power P absorbed by the system upon circular
perturbation is directly related to the conductivity as ([103, 104]):

P±(ω) = 4AsysE
2
s (σxxR (ω)± σxyI (ω)) (3.7)

where σxxR is the real part of the parallel conductivity, and σxyI the imaginary part
of the transverse conductivity. This result can be obtained from the relations P =
Re { 2J · E } and J = 2σE, with J the current density vector, 2E the rotating force
with modulus 2Es and σ the conductivity tensor. The depletion rates too are directly
related to the absorbed power P via:

NΓ±(ω) = P±(ω)/(~ω). (3.8)

The quantization of the differential integrated rates can be then eventually demon-
strated by recalling the Kramers-Kronig relationships ([103]):

σxyR (ω) = 2
π

∫ ∞
0

ω′σxyI
ω2 − ω′2

dω′ (3.9)

from which follows, for the Hall conductivity σH = σxy
R (ω = 0)

σxyR (0) = 2
π

∫ ∞
0

σxyI
ω′
dω′ = 2

π

∫ ∞
0

~N(Γ+ − Γ−)
8AsysE2

s

dω′

= 2~
π

∆Γint
±

4AcellE2
s

= 1
h

∆Γint
±

Acell(Es/~)2

(3.10)

Substituting in equation 3.10 the known quantization of the transverse Hall conduc-
tivity as an integer multiple of 1/h, the quantization of the DIR as in equation 3.6 is
recovered.

sp

sp

A B

Figure 3.2.: Manifestations of Topology in Chern Insulators: quantized Hall
Conductance and quantized Circular Dichroism. In A, representation of the Quan-
tum Hall effect, where the transverse conductance is quantized in term of the Chern num-
ber. In B, representation of circular dichroism, also quantized in term of the Chern number.
Although they seem different phenomena (e.g. the two effects scales differently with the
strength of the perturbation, linearly in the first case and quadratically in the second) these
two effects can be thought of as the "reactive" and "dissipative" manifestations of topology.
Adapted from [11].
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This demonstration of the quantization of the DIR, obtained by using the Kramers-
Kronig relationships, allows then a new perspective on the whole field of 2D topo-
logical insulators, as schematized in figure 3.2: one could see topological response to
circular drives as the "dissipative" side of topology, and the quantum Hall effect as the
"reactive" side; the two of them strongly connected by the Kramers-Kronig relation-
ships ([103]), i.e. causality. This consideration renders the first proposal ([10]) and
successive measurement ([11]) of quantized circular dichroism particularly fascinating
and relevant in this field.

The derivation obtained via the Kramers-Kronig relationships is also more general and
for example does not assume that the system is not interacting, therefore suggesting
this relation might also hold in strongly correlated systems ([105]). Notice also that it
indicates how σxyR (ω), for ω 6= 0, could be gotten by calculating a similar integral.

As a side note, there are other sum-rules related to the circular dichroism ([106]). It
was also shown that circular dichroism, also in the highly non-perturbative regime,
provides an indication about topological phase transitions ([107]). Using dissipative
phenomena for detecting topology is also suggested in [108] where losses from the
system are proposed as a topological probe.

34



3.2. Experimental Implementation

3.2.1. Separation of Timescales

In order to realize the rotating field as proposed, we want to shake the lattice. This
poses two conceptual problems. The first one comes from the fact that the system
we intend to probe is the Floquet system which we realize via lattice shaking too.
The question is then if the two drives (the Floquet, and the spectroscopy one) would
interfere with each other.

The solution to this problem lies in the separation of timescales: we realize our
Floquet system by shaking with a Floquet frequency ωF close to resonance with a
sublattice energy offset ∆AB/h = 6.1kHz of a symmetric boron-nitride-like lattice.
∆AB is large compared to the tunneling element J = h · 564Hz (the band structure of
the static system is exactly the one of figure 2.9). This tunneling coupling dictates
the width of the Floquet bands, therefore the relevant spectroscopy frequencies will
be smaller than Floquet frequencies.

As long as these two frequencies are well separated, the two drives will not interfere,
and the Floquet system can be well approximated by the time-independent Floquet
Hamiltonian during the time-scale of the slower spectroscopy frequency. The analysis
performed by our theory collaborators ([109]) shows that the separation of timescales
present in our experiment is enough to suppress these "interference" effects, but this
separation is not perfect; this could lead to systematic errors on the depletion rates
of about 10%.

The second problem concerns the form of the spectroscopy in the Floquet system.
The theoretical prediction assumes a particular form of the operators associated with
the spectroscopy; is this form preserved also in relation to the Floquet system?

We derive then explicitly the form of the spectroscopy by starting from a time-
dependent Hamiltonian Ht, which corresponds to a 2D lattice driven by circular
shaking at two frequencies, ωF and ωs (associated with the Floquet and the spec-
troscopy drive, respectively):

Ht(t) = H + 2EF{cos(ωF t)X + sin(ωF t)Y }+ 2Es{cos(ωst)X ± sin(ωst)Y } (3.11)

with ωF � ωs, and H being the static lattice Hamiltonian. EF indicates the strength
of the Floquet drive.
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Going into the accelerated frame via H ′ = RHt(t)R† − iR∂tR†, with

R = exp[ i2EF
ωF
{sin(ωF t)X − cos(ωF t)Y }+ i

2Es
ωs
{sin(ωst)X ∓ cos(ωst)Y } ], (3.12)

we get:

H ′t(q, t) = H(q + 2EF
ωF
{sin(ωF )q̂x − cos(ωF t)q̂y}+ 22Es

ωs
{sin(ωF t)q̂x ∓ cos(ωst)q̂y})

(3.13)
We use the fact the terms cos(ωst) and sin(ωst) evolve very slowly (compared with
ωF ) and treat them as constants, by using q′ = q + 2Es

~ωs {sin(ωF t)q̂x ∓ cos(ωst)q̂y}.
We consider a time interval corresponding to a Floquet period TF , and obtain the
Floquet Hamiltonian as:

HF (q, t) = lim
N→∞

i~
TF

ln[
N∏
n=1

(1− iTF
~N

H(q′ + 2EF
ωs
{sin(ωFnTF/N)q̂x − cos(ωFnTF/N)q̂y})) ]

= HF (q′)
(3.14)

This is the exact expression for the Floquet Hamiltonian HF define it, in absence of
spectroscopy, calculated at quasimomentum q′ instead of q. The Floquet Hamiltonian
HF (q, t) describing the system has a slow time-dependence hidden in the definition
of q′. Expanding for small amplitudes of the spectroscopy drive Es one gets in the
end:

HF (q′) = HF (q) + 2Es
~ωs
{ sin(ωst)

∂HF (q)
∂qx

∓ cos(ωst)
∂HF (q)
∂qy

} (3.15)

The perturbation operator maintains then the same form as in equation 3.2 also in
relation to HF , which is the Hamiltonian we want to probe.

We notice that at a crucial point we used the frame transformation operator R, which
contains the frame transformation operator RF = e

i( 2EF
ωF

(sin(ωF t)X−cos(ωF t)Y ) used for
describing the orbits of the Floquet drive. Because all operators contained in R and
RF commute with each other [R,RF ] = 0 and the expression for the perturbation
remains the same also in the Floquet picture.

While the spectroscopy drive commutes with the Floquet drive in our experiment,
numerical analysis performed by our theory collaborators indicates that special care
is required whenever this commutation relation is not satisfied, which could be the
case in other experimental settings ([109]).
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3.2.2. Characterization of Floquet Heating
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Figure 3.3.: Floquet Heating in the shaken System. In A is shown the topological
phase diagram as a function of the shaking frequency and shaking amplitude δν. The latter
is related to the amplitude of the frequency modulation used for circular shaking, and the
resulting force is given by EF = 3malatωF δν ([11]). Areas of different colors indicate
different values of the Chern number C. The arrows indicate how the shaking drive is
turned on and its frequency brought to a value in the vicinity of (or in) the C = 1 region.
At this frequency, which we label Floquet Frequency ωF , the system is held for 10ms. Then
the shaking frequency is ramped up, the shaking amplitude is ramped to zero, and we apply
band-mapping. Because this procedure can be mapped to a Landau-Zener sweep, most of
the atoms appear in the second Brillouin Zone (B). As a function of the Floquet frequency
at which we hold the system, we see a different initial relative population in the first two
bands (C). Adapted from [11].

We start our experiments by loading in 15ms an ultracold cloud of spin-polarized
fermions filling up the lowest band of the (static) boron-nitride lattice. We ramp up
the amplitude of the shaking δν (as defined in the previous chapter) from 0 to 1kHz in
5ms, at a constant shaking frequency of 4.5kHz. We ramp then the shaking frequency
to a particular target Floquet frequency ωF , where we hold the system for a duration
of 5ms. We then ramp the shaking frequency to 8.4kHz, and afterwards we ramp
down the amplitude (to zero) of the shaking in 2ms. This protocol is schematized in
figure 3.3.
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Notice, in order to avoid confusion, that we define the Floquet frequency ωF as the
shaking frequency at which the system is hold. While the shaking frequency is ramped
up during the experimental sequence, there is only one Floquet frequency for every
experimental run.

The velocity of the shaking frequency ramps is kept fixed for every target Floquet
frequency, and the total duration of the ramps (summing the one before and the one
after the hold time in the Floquet system) is 5ms. After this sequence, dynamical
Floquet bands should have been mapped to static Bloch bands: we then perform Band
Mapping to measure how many atoms we transferred to the second band. The ramp
protocol (with constant ramp velocity and duration) is chosen to leave systematic
effects as constant as possible as a function of the Floquet frequency. This is partially
related to an issue which is intrinsic in all topological systems, independent of their
particular realization (cold atoms, condensed matter or photonics, e.g.), which is the
fact that at the topological phase transition point ([110–114]) the band gap has to
close and this sends to infinity the time needed for adiabatic evolution.

In addition to that, we also have technical Floquet heating (coupling to even higher
bands) which, together with the closing of the band gap, heat the system relatively
fast. This limits the total shaking time, which can not be arbitrarily high ([115]),
which results in a finite Fourier broadening of the spectra. How to limit Floquet
heating in such systems is still subject of current research ([116, 117]).

In figure 3.3 the lowest band population as a function of the Floquet frequency is
also plotted, and shows that the ramps are indeed not perfectly adiabatic. It is a
typical level in cold atom Floquet systems (compare [79]), and Floquet heating rates
represent the main limitation to the duration of such experiments at the current state
of the art ([79, 118]).
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3.3. Results

3.3.1. Chiral Spectra

A B

Figure 3.4.: Calculated coupling strengths and experimental depletion rates for
the two spectroscopy chiralities. A: Numerical calculations of the coupling strength
between the two lowest bands associated with the operators ( ∂H∂qx ∓ i ∂H∂qy ), as a function
of the quasimomentum, and for the two chiralities of the drive and three different Floquet
frequencies ωF . The hexagons represents the Brillouin zone. The coupling strengths depend
on all these elements: ωF , on the quasimomentum and, importantly, on the chirality of the
spectroscopy. This is reflected in the experimentally measured depletion rates from the
lowest band as a function of the spectroscopy amplitude Es (B). On the y-axis, we have
the population difference between the two bands ∆η, normalized by its value in absence
of spectroscopy. The x-axis is scaled with a reference spectroscopy amplitude Eref

s and
reference spectroscopy time t in order to have units of time (ms). The reference spectroscopy
amplitude and time for all the experiments reported here are Eref

s = 0.006Er/alat and
t = 5ms. Adapted from [11].

Using the numerically calculated eigenstates of the Floquet Hamiltonian, we can also
calculate the matrix element of the operators ( ∂H

∂qx
∓ i ∂H

∂qy
) associated with the two

chiralities of the perturbation. They depend indeed on the chirality, as a consequence
of the fact the system itself is produced by a chiral drive. Experimentally, choosing
one spectroscopy frequency and looking at the depletion rates from the lowest band
as a function of the spectroscopy amplitude Es (figure 3.4), we directly see this
dependence on the chirality.
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We were not able to extract any quasimomentum dependence of the signal, the dis-
tribution within the two Brillouin zones looking quite homogeneous. We attribute
this partially to the Fourier broadening (determined by the 5ms duration of the spec-
troscopy ), relevant when compared to the bandwidth of the bands and partially to
the bandmapping procedure itself, which doesn’t preserve the information on quasi-
momentum because of the harmonic confinement due to the finite waist of the light
beams.

We repeat the measurements for different values of Es, and extrapolate to the linear
regime (assumed in the theory proposal). We chose to keep the spectroscopy time
fixed since its variation could have induced systematic effects due to Floquet heating.
We derive now how the rates could be extracted by taking measurements for different
values of Es instead. At the same time, by keeping the time fixed we also keep fixed
the Fourier broadening, avoiding another source of potential systematic effects. We
derive the model used to get the depletion rates, which assumes that this process can
be treated as incoherent. This is motivated by the absence of oscillatory behaviour
in the signal. We write the rate equations for the populations η1,2 of the lowest two
bands as

η̇1 = −Γ(η1 − η2)
η̇2 = −Γ(η2 − η1).

(3.16)

The population difference ∆η = η1−η2 then obeys the rate equation ∆η̇ = −2Γ ·∆η,
which is solved by

∆η(t)
∆η(0) = e−2Γt. (3.17)

This simple model fits well the experimental data (figure 3.4B) and allows us to
extract the depletion rates as Γ± = −1

2s, where s is the slope of the fit at Es = 0.
This is obtained by comparing equation 3.17 with the experimental data. We report
the measured depletion rates Γ± for different Floquet frequencies and for spectroscopy
frequencies in the range 0.1− 2kHz in figure 3.5.

The measured spectra typically exhibits two peaks, one at a frequency corresponding
about to the average distance between the Floquet bands, and one at very small
spectroscopy frequencies.

We attribute the part of the signal at small frequencies to the experimental protocol.
In presence of the rotating force, due to the spectroscopy, of magnitude 2Es, the
change in quasimomentum can be written as q′ = q + 22Es

ωs
(sin(ωF t)X − cos(ωst)Y ).

Because the spectroscopy is abruptly turned on, this implies that the quasimomentum
has a discontinuity when the spectroscopy is turned on (or off), with an amplitude
proportional to 1/ω.

40



0 500 1000 1500 2000

0

5

10

15
7.47 kHz

0 500 1000 1500 2000

0

5

10

15
7.37 kHz

0 500 1000 1500 2000

0

5

10

15
7.22 kHz

0 500 1000 1500 2000

0

5

10

15
7.17 kHz

0 500 1000 1500 2000

0

5

10

15
7.14 kHz

0 500 1000 1500 2000
0

10

20

30

7.06 kHz

0 500 1000 1500 2000
0

10

20

30

6.97 kHz

0 500 1000 1500 2000
0

10

20

30

6.87 kHz

0 500 1000 1500 2000
0

10

20

30

6.77 kHz

0 500 1000 1500 2000
0

20

40

60
6.67 kHz

0 500 1000 1500 2000
0

20

40

60
6.57 kHz

0 500 1000 1500 2000
0

20

40

60
6.51 kHz

0 500 1000 1500 2000
0

20

40

60
6.42 kHz

0 500 1000 1500 2000
0

20

40
6.37 kHz

0 500 1000 1500 2000
0

20

40
6.27 kHz

0 500 1000 1500 2000
0

20

40
6.17 kHz

0 500 1000 1500 2000
0

20

40
6.14 kHz

0 500 1000 1500 2000

0

10

20

6.07 kHz

0 500 1000 1500 2000

0

10

20

5.87 kHz

0 500 1000 1500 2000

0

10

20

5.82 kHz

0 500 1000 1500 2000

0

5

10
5.6 kHz

Figure 3.5.: Experimental Chiral Spectra. For different Floquet frequencies (ωF /(2π),
bold text above each figure) and chiralities of the spectroscopy (represented by the different
colors) we plot the depletion rates, and their relative errors (one standard deviation) as
obtained from the exponential fits. Depletion rates are evaluated for Eref

s = 0.006Er/alat.
Solid lines are fits consisting of the sum of a Lorentz function, an offset, and a 1/ωs term
(see main text). Notice the different y-axis. Adapted from [11].

This effect, we believe, produces this feature at small spectroscopy frequencies which
is not present in the numerically calculated spectra (Figure 3.6). Indeed, only at
the phase transition, where the band gap closes, see e.g. the numerical spectrum for
ωF = 6.13kHz, the theory predicts very small frequencies to play an important role.

The second peak instead has a more physical origin, and corresponds to an excitation
to the other Floquet band: consistently with the fact that the bands separation
increases, one can see e.g. how it moves to higher spectroscopy frequencies for Floquet
frequencies away from the resonance with ∆AB.
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Figure 3.6.: Numerical Chiral Spectra. For different Floquet frequencies (ωF /(2π),
bold text above each figure) and chiralities of the spectroscopy (represented by the same
color convention as for the experimental data) we plot the depletion rates, evaluated for
Eref

s = 0.006Er/alat. Rates are calculated by averaging over the whole Brillouin zone the
depletion rates calculated in the linear response regime as a function of ωs with a finite
time of 5ms. Notice the different y-axis. Adapted from [11].

As shown in figure 3.4, the coupling strength of the perturbation operators depends on
the chirality and on quasimomentum. Because different quasimomenta have different
energies, the exact position of this resonance will also depend on the chirality. This
difference between the chiralities is not resolved in the experimental spectra as well
as in the numerical ones. Notice that while the theory spectra do not consider non-
linear effects in the strength of the perturbation, they take into account the finite
spectroscopy time, including the Fourier broadening and the contribution from the
so-called counter-rotating wave term which are neglected in the infinite time limit
and in the rotating wave approximation used when deriving the Fermi Golden rule.
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We recall that the differential rates are strongly related to the imaginary part of
the optical conductance: this can be extracted from these data just by multiplying
the differential rate ∆Γint

± = (Γint
+ − Γint

− )/2 by ω. The resulting curves are shown in
figure 3.7, and represent then a measurement of the transverse optical conductance
as obtained via a measurement of depletion rates. The optical conductivity tensor of
a neutral gas ([119]) was measured in a non-topological system ([120]), but in a setup
without a gauge field and hence only with only diagonal non-zero elements.
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Figure 3.7.: Experimental Measurement of the imaginary part of the transverse
optical conductance. For different Floquet frequencies (ωF /(2π), bold text above each
figure) ~ω(Γ+−Γ−

2 )/(4Acell(Eref
s )2) is plotted as a function of ωs. The factors is chosen such

that the measured quantity corresponds to σxyI (ω), in conductivity units 1/h, with the
substitution of ωs with ω. The error bars are obtained by propagation of the errors on
Γ+, Γ− and the fits as the difference between the fits on Γ+ and Γ−. Notice the different
y-axis. Adapted from [11].
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Figure 3.8.: Numerical Calculation of the imaginary part of the transverse opti-
cal conductance. For different Floquet frequencies (ωF /(2π), bold text above each figure)
~ω(Γ+−Γ−

2 )/(4Acell(Eref
s )2) is plotted as a function of ωs. Rates are calculated by averaging

over the whole Brillouin zone the depletion rates calculated in the linear response regime
as a function of ωs with a finite time of 5ms. The factors is chosen such that the measured
quantity corresponds to σxyI (ω), in conductivity units 1/h, with the substitution of ωs with
ω. Notice the different y-axis. These plots were made during the writing of this thesis.

Numerical calculations for the expected signal of the optical conductivity are pre-
sented in figure 3.8.

44



3.3.2. Measurement of Quantized Circular Dichroism

Following [10], we want now to measure the differential integrated rates.

We integrate the rates for each chirality taking the 1/ω feature into account by fitting
the curves with a function of the form:

Γ± = a

πγ

1
1 + [(ωs − ωr)/γ]2 + b

ωs
+ c (3.18)

We calculate then the underlying area of each curve as

A =
∫ ω1

ω0

a

πγ

1
1 + [(ωs − ωr)/γ]2 + c (3.19)

where ω0/2π = 100Hz, ω1/2π = 2kHz and a, c are determined from the fit. The 1/ω
term does not contribute to the integral.

From that, we get ∆Γint
± = A+−A−

2 and we recall the expected quantization law:
∆Γint

± /(Acell) = C(Es/~)2.

In both topological cases the spectra look different but the integrated signal is in the
first case compatible with 1 in the topological region within statistical errors and with
a much lower value in the second case. It is not though compatible with zero within
the statistical errors, which leads to the suspicion of systematic effects.

In figure 3.9, ∆Γint
± /(Acell) is plotted as a function of the Floquet frequency. We notice

a deviation between the signal and the perfectly sharp ideal theory prediction, and
discuss how this deviation could actually be a faithful indicator of the "topology" in the
system. A general remark first: we notice that measuring values compatible with C =
1 in the middle of the topological region demonstrates not only the quantization of
circular dichroism, but first the preparation of the Chern insulator with a good enough
degree of adiabaticity: this a not trivial result, as in principle (i.e. for an perfectly
translationally invariant system) the Chern number is expected to be constant under
adiabatic unitary evolution. The possibility of actually changing the value of the
Chern number is probably related to the additional confinement of the system, which
breaks partially the translational symmetry ([121]).

The ideal signal gets much smoothed out in the experimental realization, probably
because of a variety of reasons. A problem could be a too small band gap in the
vicinity of the topological phase transition. Such frequencies are not well probed
because of the finite Fourier width and because the rotating wave approximation,
used for deriving the relation between circular dichroism and the Chern number,
might not be valid in these points. Moreover, topology is well defined as long as the
band gap is finite, but very near the phase transitions the band gap might be smaller
than the energy resolution allowed by the spectroscopy time ∼ ~/t.
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Figure 3.9.: Measurement of the Quantization of Circular Dichroism. In A two of
the experimental spectra are selected and, added to them, the grey area obtained by taking
the signed difference between the fits for positive and negative spectroscopy chirality. This
quantity is predicted to be quantized in terms of the Chern number, and indeed it is finite
for ωF /2π = 6.57kHz, in the middle of the expected C = 1 region, and much smaller outside,
for ωF /2π = 7.47kHz (notice the sign change of the area and the smaller y-axis scale there).
From this area, ∆Γint

± =
∫

dω(Γ+ − Γ−)/2 is extracted, considering only the contribution
from the Lorentz part of the fit. In B ∆Γint

± is plotted as a function of ωF , with a prefactor
chosen such that a value of 1 is expected to be realized in the C = 1 region (red points).
The expected value of C is indicated by the black line. The error bars are purely statistical
and come from linear propagation of the errors of the rates measured in the respective chiral
spectra. The red curves are obtained by integration of the theoretical spectra with cutoff
frequencies of 100Hz and 200Hz (dashed and continuous line respectively). Adapted from
[11].

Consider that the band gap is greater than the Fourier broadening only in the middle
of the topological region. This effect could make also the topology "undefined", and
this might be reflected in the smoothness of the measured signal. A similar smoothing
effect is indeed also reproduced numerically by integrating the numerical spectra
starting from a finite frequency.

Deep into the non-topological regions, there might be some systematical deviation,
since the signal drops only very slowly to zero. In particular on the left side, as the
Floquet frequency decreases the band gap increases, moving the signal toward higher
frequencies, leading to a possible break-down of the separation of time scales.

As we mentioned in section 3.2.2, at the topological phase transition the band gap
closes, and perfect adiabaticity can not be obtained. This could be realized in the
future by more advanced loading protocols which obtain adiabaticity with a non-
unitary time evolution ([122]).
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Another speculation is related to the dynamical aspects of the ramping protocol:
as shown in [112], one would not expect an instantaneous jump in the topological
response directly after crossing the phase transition; this is in fact rather characterized
by a finite time constant. It would be then of interest to see if interpretation of the
data as a "buildup" of the topological response after crossing the C = 0 → C = 1
phase transition (at 6.1kHz) and a "decay" after crossing the C = 1 → C = 0 phase
transition (at 6.8kHz). This might be supported by noticing that the symmetry axis
of the measured signal appears to be shifted toward higher shaking frequencies, when
compared with the numerics, an observation which can be made also for the machine
learning data presented in figure 2.14A ([12]). Notice that the two experiments were
conducted with basically the exact same setup.

In order to separate these effects from systematical errors one could improve the
precision of the calibration (see chapter 6 for a precise measurement of the lattice
"geometry") and of the numerics by taking e.g. higher bands into consideration for
determining with higher precision the transition points and/or changing the ramping
protocol e.g. simply by ramping from bigger to smaller shaking frequencies, and
comparing the results obtained with the two ramp directions. Of course, limiting
Floquet heating would be beneficial also for this aspect as it would allow slower and
more adiabatic ramps.
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3.3.3. Measurement of the Wannier Spread Functional

Reference [97] notices how the depletion rates from an eigenstate ψ0 of the Hamilto-
nian H, obtained with a generic perturbation operator O, are related to the variance
Var(O) of the operator O calculated on the state ψ0:

Ht =H + 2E{ cos(ωt) }O
Γint
O =2πE2/~2 ∑

n6=0
|〈ψn|O |ψ0〉|2

∝
∑
n6=0
〈ψ0|O |ψn〉〈ψn|O |ψ0〉 = 〈ψ|O2|ψ〉 − 〈ψ|O|ψ〉2 = Var(O)

(3.20)

where Γint
O are the integrated depletion rates associated with the operator O, calcu-

lated using the same approximations and methods used for Γ±.

Considering then the operatorsX and Y , one could measure the variances var(X), var(Y ),
related to the real space width of the wavefunction.

These operators are the ones associated with linear shaking in the two in-plane direc-
tions, as we have seen, therefore it is natural to think of measuring these quantities
in a lattice.

In a lattice the sum of the integrated rates Γint
x,y obtained via linear shaking of the

spectroscopy along the x and y directions is predicted ([97, 99]) to give the gauge
invariant part (the trace) of the quantum metric tensor ([123]), introduced in chapter
2.

ΩI = 1
2πΓint

xy/(Es/~)2 (3.21)

The demonstration, omitted in this work for brevity, follows the same approximations
and assumptions used for the extraction of the Berry curvature from the integrated
differential rates of [10]. The quantity ΩI is called Wannier spread functional and
sets a lower bound for the quadratic spread of Wannier functions.

var(r) ≥ ΩI (3.22)

where r denotes the radial coordinate. We modified then the protocol used for circular
dichroism, implementing a linear shaking of the spectroscopy in the following form:

Ht =HF +
√

2Es{ cos(ωt) }X
Ht =HF +

√
2Es{ cos(ωt) } Y

(3.23)

Notice that the Floquet Hamiltonian HF that we probe is exactly the same as before,
obtained with circular lattice shaking. In figure 3.10 we show the depletion rates
obtained for shaking along the x and y direction. Notice that the Floquet system
does not seem to exhibit (strong) linear dichroism, as also predicted by the numerics
(figure 3.11).
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Figure 3.10.: Experimental Spectra for Linear Dichroism. For different Floquet
frequencies (ωF /(2π), bold text above each figure) and direction (x, y) of the spectroscopy
(represented by the different colors) we plot the depletion rates, and their relative errors
(one standard deviation) as obtained from exponential fits in analogy to the measurement
of the depletion rates for the circular dichroism case. Depletion rates are evaluated for
Eref

s = 0.006Er/alat. Solid lines are fits consisting of the sum of a Lorentz function, an
offset, and a 1/ωs term. Notice the different y-axis. Adapted from [11].
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Figure 3.11.: Numerical Calculation of the Spectra for linear dichroism. For
different Floquet frequencies (ωF /(2π), bold text above each figure) and directions (x, y)
of the spectroscopy (represented by the same color convention as for the experimental data)
we plot the depletion rates, evaluated for Eref

s = 0.006Er/alat. Rates are calculated by
averaging over the whole Brillouin zone the depletion rates calculated in the linear response
regime as a function of ωs with a finite time of 5ms. Notice the different y-axis. Adapted
from [11].

50



We plot in figure 3.12 the summed integrated rates, defined as Γint
xy ≡ (Γint

x +Γint
y )/2Acell.

Γint
x,y are the depletion rates associated with the X, Y operators, obtained in the in-

finite time-limit, averaged over the Brillouin zone and integrated over all relevant
frequencies.

Figure 3.12.: Measurement of the Wannier Spread functional. ΣΓint
x,y is plotted as

a function of ωF (green points). The units are the same as in the circular dichroism case
and they are such that the experimental signal (green points, adapted from [11]) should
correspond to 2π

Acell
ΩI , with ΩI the Wannier spread functional. The error bars are purely

statistical and come from linear propagation of the errors of the rates measured in the
respective spectra. Blue points, added in this work, are the expected signal as calculated
numerically. Notice that in the topological region the Wannier functions are not expected
to be exponentially localized, therefore ΩI should diverge at the phase transition points,
denoted by the dashed lines. Theory points (calculated during the writing of this thesis)
very close to the phase transition are likely to be not very accurate because of the finite
resolution in momentum space of the numerics.

We note a change of behavior of this quantity in the vicinity of the topological region
([99]). Notice that in the topological region exponentially localized Wannier functions
are not expected, therefore the lower bound on the Wannier functions is somehow less
meaningful in this region. The linear extension of the Wannier functions, which can
be estimated as

√
ΩI , is about 300nm in the vicinity of the topological phase transi-

tion.

51



This result is particularly important, because Wannier functions are experimentally
difficult to measure, and calculation requires a careful analysis ([124–129]): the fas-
cinating aspect of this measurement is that one gets information about the orbitals
in real-space without needing the resolution needed to image them.

We include here the consideration that the Wannier spread can also be obtained
by summing the integrated rates Γint

+,− obtained with circular shaking. This can be
demonstrated by noticing that:

Γint
+ + Γint

− ∝ |〈n|∂H
∂qx

+ i
∂H

∂qy
|0〉|2 + |〈n|∂H

∂qx
− i∂H

∂qy
|0〉|2

= 2|〈n|∂H
∂qx
|0〉|2 + 2|〈n|∂H

∂qy
|0〉|2 ∝ Γint

x + Γint
y

(3.24)

3.4. Conclusions

In this chapter we presented the first measurement of quantized circular dichro-
ism in a topological system. We realized both the topological system and the
chiral perturbation with Floquet engineering. This was realized through lat-
tice shaking with two different frequencies with distinct timescales, which also
allowed spectroscopy of Floquet bands. Developing techniques for driving the
system at two (or more) frequencies simultaneously is of general interest in the
context of Floquet engineering ([117, 130, 131]).

Through circular dichroism, the value of the Chern number of the Floquet sys-
tem could be inferred. This is of interest as current measurement in trapped
system (in contrary to solid state systems) might be ill-defined, but also sug-
gests that circular dichroism could be used as a tool for probing novel phases
and detecting their topology. The quantization of circular dichroism is in fact a
rather general topological phenomenon and it could be extended to states out
of-equilibrium ([132]), fractional quantum Hall states ([133, 134]), as studied in
[105], or higher-order topological insulators ([135]), as studied in ([136]).

Further studies could be made on the relationship between circular dichroism
and the Hall effect in the non-linear response regime ([137, 138]). The methods
applied in this work for measuring circular dichroism also allowed to measure
the imaginary part of the transverse conductivity, and the Wannier spread func-
tional. Both observables are related to local transport and geometric properties
of the system: in this work we demonstrated how they could be accessed, even
without having direct access to the length scales which characterize them. In the
next chapter, instead, we will present results which go exactly in the direction
of gaining direct access to observables, like the mentioned Wannier functions,
which hide in length scales difficult to access experimentally.
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4. Quantum Gas Magnifier, or a
lens for "Seeing Quantum
Particles"

Neutron stars and other weird objects in our universe are really big quantum
mechanical systems. But here on earth, quantum mechanics becomes necessary
for describing matter only at very small scales: the size of an atom is about
10−10m, which is also a typical inter-atomic spacing between atoms in a crystal.
The mass of the proton is 1.672 · 10−27kg and the Planck constant, which is
the fundamental constant for quantum mechanics, is h = 6.62607015 · 10−34Js.
The exponents indicate the orders of magnitude which separate us from the
quantum mechanics scale, and made at first appear direct application of quan-
tum mechanics quite impossible: "It is fair to state that we are not going to
experiment with single particles any more than we will raise dinosaurs in a zoo".
This quote is attributed to one of the founders of quantum mechanics, Erwin
Schrödinger.

Nevertheless, this scale could be reached. Scanning tunneling microscopes al-
lows detection of single atoms ([139]), and single atomic ions can be trapped
([140]). In the quantum gas community, so-called Quantum Gas Microscopes
([4, 5]) allow single-site and single-atom detection of lattice systems, accessing
not only the densities but also the quantum correlations among the particles
([141, 142]). This, in combination with the possibility of single-atom manipula-
tion ([143]) allowed measuring particle entanglement ([144]), observing many-
body localization ([145]), and performing microscopy of interacting topological
models ([146]).

Bilayer systems allow also spin resolved detection ([147, 148], with a more ad-
vanced scheme based on topological pumping realized in [149]). This allows to
access also particle-hole correlations ([150, 151]).

This (not exhaustive) list evidences how quantum gas microscopes are really
powerful tools for investigating a wide range of quantum mechanics phenomena.
Still, they have some downsides, the first one being the technical complexity of
the machine, from the high-resolution optics to the cooling of the atoms in the
pinning lattice to the reconstruction algorithms of the atomic distribution.
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A physical limitation is that they are (with some exceptions [152, 153]) limited
to 2D systems, because the high numerical aperture needed implies a very small
depth of focus. Another point is that because of interactions during the imaging
time, only a small atom number per lattice site n can be imaged (usually n ≤
1, 2; n = 3 in ref. [147]).

There are other high-resolution imaging techniques for cold atoms: e.g. scan-
ning electron beams ([154]) and the ion microscope ([155]), which work for 3D
systems, but have a limited detection efficiency. Super-resolution microscopes
([156, 157]) allow to get information at the sub-lattice spacing, but in a global
way and with scanning techniques. We mention also the possibility of using
cold atoms not as an observation object but as a tool for doing microscopy of
light beams ([158]).

In [13], we introduced a new method based on a different conceptual approach
than other high-resolution imaging techniques.

Using matter-wave optics, this new method consists in the magnification of the
atomic wavefunction in good analogy to the magnification of optical light beams
realized with an optical lens: the underlying idea is then not to try to get closer
to the quantum system, but rather we bring the quantum system closer to us,
extending it to more experimentally accessible length scales.

The matter-wave lens uses the wave properties of matter, and allowed us to
realize a protocol where the final state has the same density distribution of
the initial state, magnified by almost two orders of magnitude. This magnified
cloud can be imaged with standard optical imaging, getting in a single-shot the
full density profile, with very high resolution.

For particular wavepackets, the idea to use matter-wave optics to magnify quan-
tum states was presented already in [159, 160] and recently some new interact-
ing states which experience self-imaging in a harmonic potential were discovered
([161, 162]). The quantum gas magnifier instead, does not rely on particular
assumptions about the studied wavefunction.

I conceived the quantum gas magnifier and, together with my PhD colleagues
Henrik Zahn and Marcel Kosch, under the supervision of Christof Weitenberg
and Klaus Sengstock, implemented and characterized it; and took and analyzed
the data that are presented in this chapter. This chapter mainly focuses on the
results presented in [13]. The theory part of [14] (also briefly presented in this
chapter) was carried out by Vijay Pal Singh and Lukas Freystatzky, under the
supervision of Ludwig Mathey.
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4.1. Theory

We describe in this section how the quantum gas magnifier uses matterwave
optics to produce a wavefunction ϕ′(r), starting from a given wavefunction
ϕ(r), such that the final density distribution is the the same as the initial one,
but magnified by a factor M :

|ϕ′(Mr)|2∝ |ϕ(r)|2 (4.1)

There are just two basic components to this dynamics, a quarter period (T/4)
evolution in a harmonic trap and a free expansion time ttof (or "time-of-flight").
Let’s start by a consideration about the nature of the particles under consider-
ation during such dynamics. The classical equation of motion for a particle at
position x and momentum p in presence of a 1D harmonic potential are given
by the Poisson brackets with the classical Hamiltonian Hc = p2

2m + 1
2mω

2x2.

ẋ = {x,Hc} = p

m
ṗ = {p,Hc} = −mω2x

(4.2)

The time evolution of the corresponding quantum operators X, P (in the
Heisenberg representation) is obtained from their commutator with the Hamil-
tonian of the quantum harmonic oscillator, Hq = P 2

2m + 1
2mω

2X2:

Ẋ = [Hq, x] = P

m
Ṗ = [Hq, x] = −mω2X

(4.3)

The resulting equations have the exact same form of the classical Hamilton
equations of motion. The same consideration holds also for time of flight, cor-
responding to the particular case where ω = 0.

Because the equations of motion have the same form both in the classical and
in the quantum representation the description that follows next, in which we
are considering the evolution of the quantum operators, can also be interpreted
classically by substituting the quantum operators X, P with the corresponding
classical variables.

While the classical interpretation might provide a more intuitive picture, the
quantum one guarantees that what we describe is valid also at the level of
quantum particles. Notice that we did not make any assumption on the nature
of the particle, or on the ensemble of particles (whether they have bosonic of
fermionic statistics), therefore everything will be valid for both fermions and
bosons (and classical particles).
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The results obtained with the quantum operators show that important quantum
features like density correlations are also correctly "magnified". Moreover, the
formalism introduced here will also be used in chapter 5, where interference
effects during the matter-wave optics are studied; these instead can not be
instead mapped to a classical particles counterpart.

4.1.1. Focusing the Matter Wave Field

Figure 4.1.: Sketch of the Quantum Gas Magnification Principle. At t = 0,
the lattice system has a very small density distribution, difficult to resolve. Arrows show
how the information about the real space distribution is first mapped to the momentum
distribution with a T/4 pulse and then back to real space with a free expansion time ttof .
Because the first mapping is characterized by the factor −ωm and the second one by ttof/m
the total magnification is M = |(−mω)(ttof/m)| = ωttof . At the end of the protocol, the
density distribution can be resolved with high resolution.

The matter wave optics protocol used for quantum gas magnification is com-
posed of two steps (as sketched in figure 4.1): at first we quench the potential of
the system we want to observe, to that of a harmonic trap, and wait for about
T/4. This, as mentioned in section 2.2.3, has the effect of mapping the position
of the particles to the momentum as:

P̃ (T/4) = X̃(0) (4.4)

where X̃ = X
√

mω
~ and P̃ = P√

~mω are the position and momentum operators
in the natural units of the harmonic oscillator with trapping frequency ω and
mass m.
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One can then measure this "momentum" distribution, which actually contains
the information about the real space distribution at t = 0, using time-of-flight.
We obtain in the far-field limit:

X̃(T/4 + ttof) ∼ ωttofX̃(0) (4.5)

Notice that working with the operators in the natural units during time-of-flight
we used ∂t X̃ = ωttof P̃ . Equation 4.5 tells us that, comparing the initial and the
final density distribution a scale transformation has taken place, since after the
protocol the position operator X̃ has became ωttof times bigger than originally
it was. Note that to get a magnification in 2D (3D) one gets still the same
magnification if the harmonic trap is rotationally symmetric ωx = ωy(= ωz).
We are going to work in 1D but under the rotational symmetry assumption
generalization is straightforward.

It can be shown that, for any finite time-of-flight, perfect focusing can be
achieved (pure magnification of the original density distribution without dis-
tortion), without having to reach the far-field limit.

The equations of motion give after a time tho in the harmonic oscillator:

X̃(tho) = cos(ωtho)X̃(0) + sin(ωtho)P̃ (0)
P̃ (tho) = cos(ωtho)P̃ (0)− sin(ωtho)X̃(0).

(4.6)

After a time of flight expansion time ttof we obtain:

X̃(tho + ttof) = X̃(tho) + P̃ (tho)ωttof

= X̃(0) [cos(ωtho)− ωttof sin(ωtho)] + P̃ (0) [sin(ωtho) + ωttof cos(ωtho)]
= M [cos(θtof) cos(ωtho)− sin(θtof) sin(ωtho)] X̃(0)
+M [cos(θtof) sin(ωtho) + sin(θtof) cos(ωtho)] P̃ (0)

(4.7)
where we introduced:

θtof = arctan(ωttof); M = 1
| cos(θtof)|

=
√

1 + (ωttof)2 (4.8)

Notice that X̃(tho + ttof) denotes, in compact form, the X̃(t) operator obtained
from a tho time in the harmonic oscillator followed by a free expansion time of
duration tho.

Finally, one can write:

X̃(tho + ttof) = M
[
X̃(0) cos(ωtho + θtof) + P̃ (0) sin(ωtho + θtof)

]
(4.9)

The focusing condition, obtained by ensuring that the coefficient of P̃ (0) in 4.9
is 0, is given by

tan(ωtho) = −ωttof (4.10)
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or equivalently by

θtof = arctan(ωttof) = −ωtho + nπ, (4.11)

with n integer. This implies

X̃(tho + ttof) = (−1)nMX̃(0) (4.12)

The final position operator (or variable, if interpreted classically) is then the ini-
tial position operator (variable) multiplied by the magnification factor (−1)nM .
For n uneven, this implies also a parity reflection. The magnification strength
is given by

M =
√

1 + (ωttof)2 ≈ ωttof (4.13)
The approximation holds in the limit ωttof � 1, which is often satisfied in our
experiments where the trap frequency can take values up to ω/(2π) ∼ 650Hz
and we can perform time-of-flight expansion for up to ∼ 20ms.

A graphical representation of the time-evolution of the X̃ operator is presented
in figure 4.2.
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Figure 4.2.: Graphical representation of the focusing condition. Time evolution of
the operator X̃ = cx(t)X̃(0) + cp(t)P̃ (0) (with cx(t),cp(t) time-dependent coefficients), as a
combination of the time-independent operators X̃(0), P̃ (0).
The T/4 pulse can be described by the arc AB, that subtends a ωtho angle. The free
expansion can be described by the segment BC. Because ∂tX̃(t) = ωP̃ (t), and |P̃ (t)|= 1
(in a similar representation), the velocity in this plane is always ω. During time-of-flight
P̃ (t) remains constant, therefore BC is a straight line, with a slope determined by the
moment in which the trap is turned off (tho). To get |cx| = M , cp = 0 one sees that
ωtho + θtof = π must hold, with θtof = arctan(ωttof), and that M =

√
1 + (ωttof)2 as the

hypotenuse of the right-angled triangle 0BC. In the far field limit ωttof → ∞, ωtho → π/2
i.e. an exact T/4 pulse. This shows that for any finite ttof , tho can be chosen such that the
focusing condition is realized. Adapted from [13].
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4.1.2. Deviations from the focusing Condition

We investigate now the question of how big the deviations from the ideal fo-
cusing condition can be before the imaging becomes unsharp. Let’s consider
equation 4.9 when th.o. = arctan(ωttof) + δt i.e. a (small) δt deviation from the
focusing condition. One gets then:

X̃(tho + ttof) ∼ −M
[
X̃(0) + ωδtP̃ (0)

]
(4.14)

We compare this expression with the one gotten for a small time-of-flight di-
rectly after release from the lattice:

X̃(ttof = δt) ∼
[
X̃(0) + ωδtP̃ (0)

]
(4.15)

and notice that, up to a −M magnification factor, they are identical. Our
problem can therefore be mapped to another one described by the question: if
we take the original wavefunction and let it expand freely, what is the maximal
time δtmax after which the density distribution becomes unsharp?

An important point to notice here, then, is that the tolerance allowed from this
condition depends on the object that we want to image, and not on M or the
trap frequency (as long as the approximation of equation 4.14 is valid).

We consider the case of an optical lattice with lattice constant alat. We can then
say that δtmax is the time it takes for the wavefunctions residing in two neigh-
bouring sites to overlap with each other. It then depends on the momentum dis-
tribution of the Wannier functions: using a triangular lattice with alat = 709nm
and depth 6Erec one finds that for times above δtmax =∼ 50µs the Rayleigh cri-
terion for distinguishing two neighbouring lattice sites (σsite < 0.35alat, where
σsite is the width of the expanding density distribution from a lattice site), is
not satisfied.

We notice that if interference between different lattice sites is present, this
condition might be tightened(relaxed) in case of positive(negative) interference
([163]).

δtmax sets also the maximal ellipticity of a 2D harmonic trap, which is then
given by the condition |(Tx/4)− (Ty/4)| < 2δtmax. Notice that for a fixed ratio
Tx/Ty the condition is more easily satisfied by increasing the trap frequency
(reducing thus |(Tx/4)− (Ty/4)|).
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Finally we address how the focusing condition changes when keeping fixed tho
and varying ttof .

This question has practical relevance because the optical imaging takes place
in a finite time, and hence actually a range of values for ttof are sampled. For
typical parameters (M > 30, tim = 50µs) this doesn’t alter significantly the
focusing: this can be quantified by considering the excess rotation angle during
the imaging time ∆θtof ∼ tim∂ttofθtof = tim

ω
1+(ωttof)2 .

We map once again this situation to the case of direct time-of-flight from the
lattice: in that case, such a small rotation angle is obtained with a time-of-flight

δt = 1
ω

∆θtof ∼
tim

(ωttof)2 � δtmax (4.16)

and hence this effect can be safely neglected.

Instead, ttof mainly influences the value ofM ; taking the derivative with respect
to ttof , for ttof � 1/ω:

∂ttofX̃(tho + ttof) ∼ ∂ttofωttofX̃(0) = ωX̃(0) (4.17)

we can see that we can consider the atoms, at the end of the expansion time,
as ballistically propagating during tim at velocity ωx0, where x0 is the distance
of an atom from the trap center at t = 0 (obtained by substituting the classical
variable x0 to the operator X̃(0)). This leads to a displacement during the
imaging ∆x = timωx0. Imposing ∆x < alat/2 one gets the maximal distance
from the trap center allowed before the signals from lattice sites at distance
Malat (after magnification) will start to overlap: xmax = Malat

2timω ∼ alat
ttof
tim

. For
parameters ttof = 20ms, tim = 50µs, one obtains a size of about 400 lattice sites.
It can be increased by reducing tim, if there is enough signal to noise.

The atoms might also have a velocity component (in the imaging plane) because
of gravity if they are (as in our case) in free fall during the time-of-flight. At the
end of the time-of-flight expansion of duration ttof = 25ms, they have acquired
a velocity v = gttof = 0.25m/s, where g = 9, 81m/s2 is the gravitational
acceleration. To keep the displacement during the imagine pulse of length tim
below a magnified lattice constantMalat = 50 µm (withM = 71), it is restricted
to tim � Malat/v = ωhoalat/g = 200 µs. This is no limitation to standard
absorption imaging, but might play a role in experiments where single-atom
sensitivity is desired, because it would need a longer imaging time for collecting
enough fluorescence photons.
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4.1.3. Time Dependent Parameters

We derived analytically the focusing condition assuming a perfectly constant
trap frequency for t < th.o. and that it can be turned off instantly at t = th.o..

Experimentally, that might not be the case: magnetic fields can only be switched
off in a finite time due to the inductance of the coils, and optical potential have
also a finite turning on time. In this case, we demonstrated ([164]) that varying
the set value of tho, denoted t′ho, one can find the one which realizes perfect
focusing. The existence of such a value is guaranteed by continuity, because the
coefficient cp(t′ho + ttof) changes sign as a function of t′ho (compare with figure
4.2; the same expression X̃(t′ho + ttof) = cx(t′ho + ttof)X̃(0) + cp(t′ho + ttof)P̃ (0) is
implied here) therefore it must exist a t′ho such that cp = 0.

We notice that in presence of a time-dependent trap frequency, the center of
the trap might oscillate because of forces like gravity in the imaging plane. As
long as the atoms don’t probe regions with strong anharmonicity, this is not a
problem since in the equations of motion for the operators X̃ and P̃ now the
shift enters just as a real number, after the total evolution this gets mapped to
a shift in the position of the cloud and a "kick" in velocity.
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4.1.4. Imaging the Velocity Field
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Figure 4.3.: Putting the momentum distribution into fo-
cus. Time evolution of the operator X̃ = cx(t)X̃(0) + cp(t)P̃ (0)
(with cx(t),cp(t) time-dependent coefficients), as a combina-
tion of the time-independent operators X̃(0), P̃ (0). The evo-
lution starts at A = (1, 0) and performs a rotation in the HO
for a duration tho. Upon reaching point B, time-of-flight be-
gins, as described by the straight line BC (since during tof
P̃ = ∂tX̃ = const.) of length ωttof (since at all times the ve-
locity in this plane is ω). To get |cx| = 0, cp = M one sees that
ωtho + θtof = π/2 must hold, adding up to the quarter circle
with θtof = arctan(ωttof), and that M =

√
1 + (ωttof)2 as the

hypotenuse of the right-angled triangle 0BC.

When choosing cot(ωtho) = ωttof (to be substituted in equation 4.9) one gets
X̃ = MP̃ (0), i.e. one can measure the momentum distribution without distor-
tion even for finite ToF expansion time ttof . The focusing of the momentum
distribution is schematized in figure 4.3.

This allows to tune the magnification arbitrarily in the range 1− ∼ ωttof .
The meaning of M in the mapping of the momentum distribution to real space
is somewhat arbitrary because the dimensional conversion factor depends on ω:
in this convention M = 1 is obtained with a pure T/4 evolution in the trap
([36, 37, 165]) and ∼ ωttof by a pure time of flight evolution. Time of flight
experiments where the far-field condition is not perfectly met could use this to
improve the momentum resolution, and at the same time experiments using the
T/4 technique could add some time of-flight to increase the magnification to
increase further the resolution.

In general, all consideration made so far for imaging the real space distribution
are valid also in this case and could be applied in this case by substituting
tho → tho − T/4.
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4.1.5. Other Magnification Schemes

In our experiment we obtain magnifications of up to M = 93 via relatively
large trap frequencies. Other possibilities for obtaining a high magnification or
increasing it further could e.g. be a longer time-of-flight via magnetic levita-
tion (provided the levitating potential can be well approximated by a perfectly
linear gradient), or the scheme can be generalized to include other matter-wave
elements: in analogy to the suggestion in [37] for magnifying the momentum
distribution, one could think of a alternating scheme between two trap frequen-
cies, as illustrated in the following. At first a quarter period evolution could
be performed in a trap with frequency ω1, then a second one in a a trap with
frequency ω2 < ω1. This magnifies the density distribution a factor ω1

ω2
. This

could be iterated n times and at the end, adding one last quarter period evolu-
tion evolution followed by time of flight, this brings the total magnification to
M ∼ ω1ttof(ω1

ω2
)n.

The magnification could also be increased by adding an additional time evolu-
tion in a harmonic anti-confinement as proposed for the magnification of the
momentum distribution in [36].

We notice here that in order to obtainM > 1 the anti-confinement pulse should
follow the evolution in the harmonic potential, and not the other way round. An
anti-confinement pulse of duration ta has the effect of correlating the operators
X̃ and P̃ as follows:(

X̃(t1 + ta)
P̃ (t1 + ta)

)
=
(
C ω

ωa
S

ωa
ω
S C

)(
X̃(t1)
P̃ (t1)

)
; C ≡ cosh(ωata), S ≡ sinh(ωata)

(4.18)
where ωa is the frequency that enters the anti-confinement potential −1

2mω
2
ax

2

which is applied for a time ta. The factors ω
ωa
, ωa

ω
appear because we are still

using ω as the reference frequency for defining the natural units. The dynamics
in the harmonic oscillator with frequency ω is described by:(

X̃(t1 + tho)
P̃ (t1 + tho)

)
=
(
c s
−s c

)(
X̃(t1)
P̃ (t1)

)
; c ≡ cos(ωtho), s ≡ sin(ωtho) (4.19)

Executing the confinement pulse after the anti-confinement results in the fol-
lowing expression for X̃, obtained by multiplication in the corresponding order
of the matrices above:

X̃(ta + tho) = (cC + ωa
ω
sS)X̃(0) + ( ω

ωa
cS + sC)P̃ (0) (4.20)

The momentum distribution can be imaged if c = −ωasS
ωC

; substituting this
expression yields:

X̃(ta + tho) = ωa
ω

(−sS
C
C + sS)X̃(0) + (−sS

2 + sC2

C
)P̃ (0) = ( s

C
)P̃ (0) (4.21)
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For the last step we used C2 − S2 = 1. This produces a magnification s/C < 1
(because s ≤ 1; C > 1), i.e. smaller as the one obtained with one single T/4
pulse.

Instead, by performing the anti-confinement pulse after the confinement pulse,
one obtains:

X̃(tho + ta) = (Cc− ω

ωa
Ss)X̃(0) + ( ω

ωa
Sc+ Cs)P̃ (0) (4.22)

The momentum distribution can now be imaged if c = ωSs
ωaC

:

X̃(tho + ta) = ω

ωa
(−sS

C
C + sS)X̃(0) + ((ω/ωa)2sS2

C
+ sC)P̃ (0) =

s((ω/ωa)2S2 + C2)
C

P̃ (0) = C

√
1 + ( ωS

ωaC
)2P̃ (0)

(4.23)

or the real space distribution can be imaged if c = −ωaCs
ωS

:

X̃(tho + ta) = (−ωasC
2

ωS
− ω

ωa
sS)X̃(0) + (−sC + sC)P̃ (0) =

− (ωasC
2

ωS
+ ωsS

ωa
)X̃(0) = −C

√
1 + ( ωS

ωaC
)2X̃(0)

(4.24)

In both cases1, the magnification is (much) bigger than 1, for large enough ωata.

For example for ωa = ω, keeping in mind that for ωata > 1, S ≈ C ≈ 1
2e
ωata ,

one can focus the momentum distribution by choosing tan(ωtho) = c
s

= S
C
≈ 1,

(about a T/8 pulse), or the real space distribution by choosing tan(ωtho) = c
s

=
− S
C
≈ −1, (about a 3T/8 pulse); the magnification M simplifies to ∼ eωata/

√
2.

These protocols could be combined with a subsequent time-of-flight ttof , getting
an additional ∼ ωttof factor in the total magnificationM .The focusing condition
can be exactly found, as before, by fine adjustment of tho, for fixed ta and ttof .

An initial anti-confinement pulse might be beneficial, though, for a fast initial
reduction of the density along the third direction in cases where interactions
during the matter wave optics are detrimental. Notice that although the scaling
of M with the two schemes presented here are exponential, letting the wave-
function expand too much before time-of-flight might cause it to sample more
of the non-harmonic part of the potential.

1the last step in equations 4.23 and 4.24 can be obtained by substituting s = t/
√
t2 + 1, with

t = s
c = ωaC/(ωS) in equation 4.23 and t = s

c = −ωS/(ωaC) in equation 4.24; this passage is
omitted here for brevity.
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4.2. Experimental Characterization

We test these ideas in our setup, consisting of 87Rb atoms in the combined
potential of a triangular/honeycomb optical lattice and a magnetic trap. We
use atoms in the F,mf = 2, 2 state, which is the one which sees the deepest
trap with corresponding frequencies up to almost ∼ 700Hz.

We initialize the magnification protocol by switching off the optical lattice,
therefore quenching directly into the harmonic confinement provided by the
magnetic trap (which was already on in presence of the lattice). Experimen-
tally we notice that there is a distinction to make between system with or
without coherence between different lattice sites at the moment in which the
magnification protocol is started.

Directly imaging the density distribution of coherent systems present some ad-
ditional difficulties, which we believe are related to the higher densities realized
during the matter-wave dynamics, because of matter-wave interference. In par-
ticular a periodic wavefunction expanding experiences periodic revivals of the
lattice structure (known as Talbot revivals, see chapter 5) and at tho = T/4 the
reals space distribution becomes the initial momentum distribution, character-
ized by sharp Bragg peaks. In order to give an idea why it is beneficial to work
with systems without coherence, we note that the density of such peaks scales
∝ N ·σ2

sys, while the density in the momentum distribution of an incoherent sam-
ple scales ∝ N ·σ2

lat, where σlat is the width of the density distribution in a single
lattice site. Since for our parameters σlat ∼ 50−100nm and σsys ∼ 1−10µm the
density effects at t = T/4 for an incoherent sample, compared to an incoherent
one, can be reduced up to 3 or 4 orders of magnitude. We are going to address
more in detail aspects of the dynamics of coherent wave packets in chapter 5.

We present here the results obtained with incoherent systems and also the
scheme that we used us to image density distribution of coherent systems in a
triangular lattice: the imaging is preceded by a step in which the lattice depth
is suddenly set to the maximum value, "freezing" a snapshot of the density
distribution in the deep lattice for about 10ms. During this time there is no
relevant tunneling coupling and dephasing takes place, removing the coherence
between different lattice sites.

We initialize the protocol by abruptly removing all optical potentials (realized
via a radio-frequency switch on the modulation of the AOMs of the lattice
beams. Therefore the time scale is given by the time it takes for the radio
frequency to travel the AOM which is about 100ns, fast enough to be considered
instantaneous). The magnetic trap is characterized to be rotationally symmetric
(we estimate a deviation of less than 1% between the trapping frequency in x
and y direction), therefore leading to the same magnification in both in-plane
dimensions.
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4.2.1. Results for different Lattice Geometries and
Magnifications

Figure 4.4.: Quantum Gas Magnification of different lattice geometries. In the
first row, experimental images are shown which result from different lattice geometries
(honeycomb, boron-nitride with a sublattice offset of ∆/(2π) = 4.6kHz and triangular
lattice). Black lines correspond to 1µm (before magnification). M = 89(1), 89(1), 80(1)
for the three images. We map linearly the measured optical density to an atomic density
distribution in the lattice. In the second row, a zoom is performed into the center of the
cloud in order to compare the density distribution with that of the corresponding ground
state, as obtained by our band structure calculations (lowest row). The same colorbar,
normalized to the maximum density in each image, is used for all images. Apart from a finite
background level and a broadening of the expected distribution widths, the experimental
data and theory are in good qualitative agreement. This is remarkable in particular in
the case of honeycomb/boron nitride lattices where there is a richer sub-lattice structure.
Adapted from [13].

In figure 4.4 some examples of single-shot images for different lattice geometries
are presented. We technically measure an optical density but we interpret this
quantity as the real space atomic density, with the conversion factor between
the two given by the knowledge of the conversion factor between optical density
and atom number (per pixel), and of the lattice spacing alat = 709nm.
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We notice that while quantum gas microscopy of triangular lattices was re-
cently realized in [166, 167], the pictures of the honeycomb and boron-nitride
lattice represent the first single-site-resolved images of ultracold atoms in a
non-separable optical lattice.

A

B

Figure 4.5.: Tuning the magnifications. A Raw experimental images for different
values of the trapping frequency in the system and during the matterwave optics. The
black lines correspond to 1µm. B: The protocol which allows changing the trap frequency
is schematized. In a deep lattice (typically V2 = 6Erec) the density distribution is frozen
and the trap frequency in the system ωsys can be ramped up in ∼ 2ms to the desired value
ω for magnification. A wait time for the removal of coherence is also necessary. Afterwards,
the lattice is switched off and after T/4 also the magnetic trap. In the examples presented
here V1 = V2 = 6Erec. The first three images in A correspond to the same initial system
size, given by the confinement ωsys/(2π) = 225Hz but with different magnifications (M =
43(1), 65(1), 80(1) respectively) tuned by different values of ω. A much bigger initial system
can be obtained with ωsys/(2π) = 89Hz and imaged with using M = 43(1) (first picture,
lower row). In the last image, we demonstrate the possibility to create a very focused
wavepacket of Gaussian width 1.5µm with ωsys = 610Hz (imaged then with M = 83(1)).
Adapted from [13].

In figure 4.5 the tunability of the magnification by changing the trap frequency
is illustrated. A schematic is also presented for the protocol which makes it
possible to tune independently the trap frequency ωsys of the triangular optical
lattice system from the trap frequency used during the magnification ω. We
can then obtain single site resolution of a system with more than hundred
populated sites (with size ∼ 4µm) obtained with a trap frequency ωsys/(2π) =
89Hz and imaged by freezing the density distribution and then ramping up the
trap frequency in order to image with single-site resolution.

At the same time using a bigger system trap frequency ωsys we can prepare a
very localized wavepacket as small as ∼ 1.5µm, populating just a few lattice
sites.
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Larger systems possess a higher translational symmetry and can be better de-
scribed by band theory. At the same time, the possibility to create and detect
very localized wavepackets could be used to probe topological interfaces ([168])
or for placing impurities of atoms tightly held in the trap, in a cloud of atoms
which do not feel the trapping potential (e.g. atoms in state mF = 0 for
the magnetic trap), thus engineering interesting interacting states like polarons
([169, 170]).

We used a localized wavepacket also to characterize the lattice phase drifts (no-
tice that we do not use a phase lock in our setup for keeping the lattice position
fixed). We found that over a hold time of 6s in a deep lattice the position drifts
by less than a lattice site with respect to the center of the magnetic trap, thus
demonstrating that the lattice setup has an excellent intrinsic phase stability.
We also notice that the lattice relative position between consecutive experimen-
tal runs seems to be completely uncorrelated: we thus assume to have a random
lattice position in each run, but constant over the whole duration of the hold
time in the lattice.

The highest magnification that we can obtain is about 93(1). We measure
the magnification by fitting a lattice structure on the experimental images and
comparing the measured lattice constant with the in situ value. The error onM
is the fit error. The lowest magnification is about 35. Below that, we can still
apply the protocol but we are not able to check whether the focusing condition
is realized because the magnified lattice spacing is not big enough to be resolved
from our camera with an effective pixel size of 6.04µm.
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4.2.2. Focusing Condition

Because of the effects previously mentioned, the optimal focusing time might
be not so easy to determine beforehand, therefore in practice for a given trap
frequency the focusing condition is found experimentally.

We load the atoms in a deep triangular lattice and image the system after a
variable hold time around 1

4
2π
ω

in the magnetic trap (where ω is determined
independently) and after a fixed time of flight (4.6). The atomic distribution
is then imaged with a 50µs pulse of the optical imaging beam, whose profile
arrives on the camera a factor of ∼ 2 magnified. We determine the focusing
condition by introducing the contrast of the quantum gas magnifier, which we
define as the relative amplitude of the peaks in the Fourier transformation at
the reciprocal lattice wavevectors. We then determine via a Gaussian fit the
focusing condition. At the same time, from the knowledge of the effective pixel
size and of the lattice constant, we determine experimentally the magnification.

We observe that the focusing condition depends on the atom number (figure
4.6C). We attribute this dependence as a shift towards lower values of the
trapping frequency, due to the repulsive interactions between Rubidium atoms.
We model this effect in a mean-field picture as follows.

Along the z-direction the trapping frequency is much smaller, and we expect
there a much slower dynamics, with the result that the cloud expands in this
direction less than a factor of two, without incurring into depth-of focus prob-
lems with the imaging beam. At the same time, we took also measurements
with a lattice in the z-direction, without noticing a decrease of the quality of the
imaging because of the greater energy stored in z-direction. We can not mea-
sure with precision the size of the tubes in z-direction, but we estimate this as
a Thomas-Fermi profile for a tube of 1000 atoms, a 6Er deep triangular lattice
and a transverse confinement of ωz/2π = 30Hz; from that we get a Thomas-
Fermi radius of 30µm. We neglect the dynamics in this direction during the
time in the magnetic trap, since it happens on time scales given by the much
smaller ωz, and model the in-plane density distribution ρ, after release from the
lattice, as described by a Gaussian function with time-dependent width σsys(t).
The resulting mean field potential Eint for a cloud of atoms without a defined
phase relation can then be written as ([171]):

Eint(r) = 2Ng0ρzρ(r) = 2Ng0ρz
1

2πσsys(t)2 e
−r2/2σsys(t)2 (4.25)

where r is the radial coordinate in the lattice plane. ρz is the normalized
density in z−direction. With the Taylor expansion Eint(r) = Eint(0)− 1

2mω
2
intr

2

one obtains an effective trap frequency (in the center of the system) given by

ωeff =
√
ω2 − ω2

int; ω2
int = 4Ng0ρz

m

1
4πσ4

sys
(4.26)
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Figure 4.6.: Placing the matter wave lens. A: Measured density distributions for
different hold times in the harmonic potential (ω ∼ 2π · 650Hz), for a fixed time-of-flight.
This shows how, for our parameters, often a few shots are sufficient for determining experi-
mentally the focusing condition. B: In the inset, an exemplary Fourier transformation of an
experimental image. The contrast of the image is defined as the integrated sum of the signal
in the mask denoted by the two rings, chosen to include the reciprocal lattice wavevectors.
For a given atom number, the optimal focusing time is obtained from a Gaussian fit to
the image contrast as a function of tho. In this example, with atom number N ∼ 105 and
ω/(2π) = 318Hz, we find a 1/

√
e width of the fit of 10µs, in agreement with the limit of

tmax ∼ 50µs for being able to distinguish at all neighbouring lattice sites. C: Higher atom
numbers lead to a reduction of the effective trap frequencies because of a mean field poten-
tial shift. Points are the experimental determination of the optimal focusing time from such
fits as a function of the atom number. Error bars denote 68% confidence interval. Adapted
from [13].

At t = T/4, we estimate σsys(T/4) = ~√
2ωaosc

, assuming that the momentum
distribution is given by the local oscillator length aosc in a lattice site, calculated
as
√

~
mωosc

, with ωosc the local oscillator frequency at the lattice sites. The factor√
2 takes into account the ratio of the width of a wavefunction to that of the

associated density distribution.

For our parameters, if ω is high enough, the density is highest at t = T/4, and
ωint can be on the same order of magnitude as ω, demonstrating that this effect
indeed is not negligible. Notice that the measured relative shift is then only
2 − 3%, and this can be explained because the calculation holds only in the
middle of the cloud, and for a limited time range around t = T/4, and these
same interaction effects might prevent the cloud for reaching so high densities.
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A quantitative explanation of the measured optimal time shift is hence yet to be
done. With a similar procedure, we also estimated the instantaneous scattering
rates ([36]) as

Γ(t) = 8πa2
22v(t)ρ(t) (4.27)

where v(t) is the mean velocity of the atoms, ρ(t) is the average density and
a22 = 95aBohr is the scattering length between two Rubidium atoms. ρ(t) is
estimated as Nρz/(4πσsys(t)2) with the form for σsys which assumes that the
real space and momentum space distribution are not correlated:

σsys(t) =
√

(cos(ωt)σsys(0))2 + (sin(ωt)σsys(T/4))2 (4.28)

v is calculated as (v2
2Dvz)

1
3 , with v2D estimated as σP (t)/m with:

σP (t) =
√

(cos(ωt) ~√
2ωσosc

)2 + (sin(ωt)mωσsys(0))2 (4.29)

The width for the momentum distribution at t = 0 is obtained assuming it is
given by the momentum distribution of the Wannier functions (approximated
as a Gaussian function of width σosc), and at t = T/4 it is obtained from the
initial real-space distribution of width σsys(0).

vz is estimated using ρz ~
m
. v(t) is then on the order of ∼ 10−3m/s.

Integration of Γ(t) over T/4 produces no more than 1% scattering probability
which we can then safely neglect. This is consistent with the observation of
basically no background also in the density distributions showing sharp features
of section 4.16. Notice also that this evidences how mean-field calculation and
scattering rates calculations are not equivalent description of the dynamics.
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4.2.3. Anharmonicity

A B

Figure 4.7.: Effects of the Anharmonicity of the Trap on the Density Distri-
bution. In A, the sum signal of two clouds moved away from the trap center (indicated
by the grey dot) is shown. The straight line serves as a reference for noticing that the
lattice appears distorted. Still, the lattice sites remain well separated allowing their relative
populations to be measured. In B is shown the velocity distribution after T/4 for classical
particles located initially at the lattice sites, as obtained in a numerical simulation which
considers the anharmonicity of the trap. The straight line serves as a reference, and evi-
dence qualitative agreement between predicted and measured positions of the local maxima
of the density. Adapted from [13].

We investigate now experimentally what happens when the assumption about
the harmonicity of the trap does not hold anymore. For our magnetic trap,
such aberrations become visible only for very large magnifications and for large
systems or when displacing the cloud relative to the trap center. In order to
control and characterize this anharmonicity we image a cloud shifted off-center
in a very strong magnetic trap with a trap frequency in the x − y plane of
ωho = 2π · 641Hz, which results from a gradient B1 = 1.69 · 104 G/m, a trap
bottom B0 = 0.112G and an anti-curvature B2 = 7.1 · 105 G/m2 (figure 4.7).
The trap potential Utrap can then be written as

Utrap/h = 78.4 kHz + 1756 Hz(r/µm)2 − 7.2 Hz(r/µm)4 (4.30)

where r is the distance from the trap center and 78.4kHz is the resonance to
the mF = 1 state in the center of the trap. Magnetic traps have the advantage,
when compared to optical dipole traps, of being smooth and defect-free, and
more tunable. Optical traps instead can be faster and if sufficiently detuned
also spin-independent. Therefore we give a comparison of the anharmonicity of
an optical trap, as it might be helpful for experiments which want to implement
the quantum gas magnifier with optical techniques.
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For an optical dipole trap formed by a Gaussian beam with waist w, the poten-
tial can be described by Epot(r) = ae−2 r

2
w2 . Expanding in r2/w2 gives:

Epot ∼ a(1− 2 r
2

w2 + 2 r
4

w4 ) (4.31)

and hence the quartic to quadratic term ratio can be evaluated as 1/w2. Equat-
ing 1/w2 = 7.2Hz µm−4/(1756Hz µm−2) gives w = 16µm, which is then the
minimal beam waist required in order not to exceed the anharmonicity degree
used in this experiment.

The magnetic trap used here has a relatively high anharmonicity degree; for
example we could get a trap frequency as high as 2π · 200Hz with an anhar-
monicity corresponding to a 135 µm waist optical trap. For suitable parameters
of an optical trap with small anharmonicity, intensity requirements for reaching
the high trapping frequencies might be an important factor. The small dis-
tortion of the image is no limitation when one is interested in the lattice site
occupations.

However, the density distribution during the T/4 evolution is not harmonic
and the anharmonicity can lead to distortions of the image similar to the an-
harmonicity of the trap itself. We estimate that the quartic part of the mean
field potential for our typical parameters can be of the same order of magnitude,
but with opposite sign, as the quartic part of the trap. A more quantitative the-
oretical analysis of the influence of interactions on the resolution of the quantum
gas magnifier is left for future work.

4.2.4. Resolution of the Quantum Gas Magnifier

We characterize experimentally the resolution of the quantum gas magnifier for
the case of a triangular lattice.

The results of figure 4.8 evidence how the localization of the atomic distribution
around the lattice sites depends on the atom number, therefore we are inter-
ested in understanding how much this effect is related to a "real" broadening
of the Wannier functions due to interactions, and how important are interac-
tions during the magnification protocol, which could decrease the resolution and
influence the measured width of Wannier functions.
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Figure 4.8.: Resolution of the Quantum Gas Magnifier. A: Density distributions
for magnifications M = 38(1) and M = 80(1) in a cut along the central lattice site and
parallel to the lattice vector connecting neighbouring sites. They can be fitted by an array
of Gaussian functions of width σlat spaced by alat. In B, we plot σlat as a function of the
atom number, for magnifications M = 38(1) and M = 80(1) and for different relay steps n
(obtained by choosing tho ∼ 2n+1

T/4 ). n = 0, 1, 2 corresponds to the red, blue, green points
and curves. Error bars indicates 68% confidence interval. Continuous lines are fits to the
data with the form given in the main text. The dashed line indicates 0.35alat, under which
the Rayleigh criterion is satisfied. Adapted from [13].

We use an Ansatz for the Wannier function as a Gaussian distribution of width
σosc in the lattice plane with a Thomas-Fermi profile in z-direction. We cal-
culate the expectation value for the energy, summing the contributions from
the interaction, kinetic and potential energy for the 2D harmonic oscillator of
frequency ωosc:

E(σosc) = Eint(σosc) + Ekin(σosc) + Epot(σosc)

= 32/321/3

5 (mω2
z)1/3(Ng0ρ2D)2/3 + ~ωosc(

1
2
σ2

0
σ2

osc
+ 1

2
σ2

osc
σ2

0
)

(4.32)

with the averaged normalized 2D density ρ2D being given by 1/(2πσ2
osc).

σ0 is oscillator length associated to ωosc; for V = 6Er, ωosc/(2π) = 21kHz.
Minimization of E with respect to σosc for N = 1000 yields σosc = 1.09σ0.

The width of the density distribution in a lattice site is then given by ∼ 1√
2σ0 =

52nm, which is much smaller than the resolution we measure, in the range
100 − 200nm depending on magnification and atom number. The dependence
on the atom number of figure 4.8 can then be interpreted mainly as a broadening
effect introduced during the matter-wave optics, where the actual broadening
of the distribution in the lattice due to interactions can be neglected.
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Still, this calculations could be instructive because it shows, putting the num-
bers in, that Eint/h ∼ 5kHz. This energy is converted very quickly into kinetic
energy in the first expansion moments after the switch-off of the lattice; under-
standing how exactly this effect can broaden the measured single site distribu-
tions needs further theoretical investigation.

Also the contributions from the interactions and from the anharmonicity can be
decoupled from each other: we take data also for tho = 3T/4 and tho = 5T/4:
while in absence of interactions and anharmonicity these times should be all
equivalent (up to a parity reflection), in practice they amplify deviations from
the ideal picture, allowing a more precise estimation of the dependence of the
measured lattice site width on the atom number. The data can be well fitted
with the phenomenological form:

σ2
meas = (Mσlat)2 + (σopt)2 + ([2n+ 1]p1Np2Mσint)2 + ([2n+ 1]p3σan)2 (4.33)

where the outcome is the quadratic sum of a contribution from the real density
distribution width σlat (M times magnified), a term coming from the finite
optical resolution of the system σopt, a term taking into account the interactions
σint and one taking into account the anharmonicity σan. n = 0, 1, 2 indicates
the number relay steps as tho = 2n+1

4 T .

We obtain σopt = 5.3(3)µm, in line with the pixel size of 6µm, and σlat =
68(24)nm, also in line with the calculated value of 52nm. Interestingly, σan =
0.42(46) is compatible with zero (p3 = 1.6(7)). We found σint = 4.2(4)nm (p1 =
0.29(5) and p2 = 0.33(5)) suggesting that the interactions are the main source
of broadening2. It would be then very interesting to repeat these measurements
with e.g. spin polarized fermions (which experience no contact interactions
because of the Pauli exclusion principle).

Concluding, we can read out the lattice site populations with great precision for
most of the parameters atom number and magnification. For the experiments
presented in this chapter, we always use deep lattices and no coherence before
imaging, either by starting with a deep lattice or by addition of the "freezing"
step before imaging.

Considerations about the resolution of the quantum gas magnifier in a honey-
comb lattice/boron-nitride lattice are made in section 4.4, where the density
distribution is studied within the Wigner Seitz cell. In the next chapter, we are
going to discuss the situation with coherent systems.

2Notice that the prefactor [2n+1]p1Np2M when comparing σint and σan. The effect of the latter is
in a first approximation assumed to be independent of M because with higher trap frequencies
the harmonic region gets smaller, as does the density distribution.
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4.3. Precision Thermometry
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Figure 4.9.: Lattice Thermometry. A: raw picture obtained by loading a cloud of
a certain temperature adiabatically in a shallow lattice, freezing and imaging the density
distribution. The image can be subdivided into Wigner-Seitz cells around every lattice
site, and summing the signal in each them produces the corresponding populations, as
shown in B. Repeating for a lower temperature, as shown in C, produces a much narrower
distribution. D and E show the corresponding populations of B and C, respectively, plotted
as a function from the distance to the center of mass, with a bimodal fit with a condensed
and a thermal component. Adapted from [13].

We study as a first application of the quantum gas magnifier more in detail the
density distributions in the lattice for different temperatures of the cloud.

We load the atoms adiabatically in a triangular lattice of depth V = 1Er, and
a magnetic trap of ω/2π = 305Hz. We chose a shallow lattice in order to
guarantee the adiabaticity of the ramping process. We then ramp the lattice
depth to 6Er, corresponding to a tunneling coupling of J/h = 0.001Hz and wait
there for coherence removal. We then image the density distribution.

We study the profile, i.e. the populations as a function of the in-plane radius.
We first extract them, using the fact that the lattice sites are well separated,
by integrating the atomic signal in the corresponding Wigner-Seitz cell. We
then fit the profile with a bimodal model, containing two components, the BEC
fraction n0 and the thermal fraction (the procedure is sketched in figure 4.9,
and more details on it can be found in [13, 172]).

We are now interested in seeing how the BEC fraction n0 and temperature
relate to each other. Because the critical temperature for BEC condensation
is atom-number dependent, we developed a theory for extracting the critical
temperature as a function of the atom number in our system (Appendix A).
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Figure 4.10.: BEC fraction as a function of temperature. We varied the frequency
and duration of the evaporation in the magnetic trap (corresponding to different temper-
atures and atom numbers in the lattice). From each measurement we extract the BEC
fraction and the temperature (A). For every atom number we calculate the critical tem-
perature and plot the data as a function of the normalized temperature T/T 0

c , where T 0
c is

the predicted critical temperature from the interaction-free theory (B). The data collapse
into one single curve. The critical temperature Tc can be obtained with high precision by
a fit (dark blue line) of the form n0 = (1− (T/Tc)α) with α = 2.69 (obtained numerically,
see Appendix A). The light blue curve is the theory prediction for non-interacting particles.
C: Comparison with the Bragg peaks visibility measurement from time-of-flight from the
optical lattice. It follows the form given by the fit to the data taken "in situ" (dark blue
line). Adapted from [13].

With this theoretical setup, we are able to extract the theoretical critical tem-
perature T 0

c for every atom number that we measure.

We can then obtain the curve n0(T/T 0
c ) (figure 4.10) from measurements with

different atom numbers and temperatures. n0 and T are obtained from the fits
to the density profiles, and T 0

c is the critical temperature corresponding to the
measured atom number extracted from our theoretical setup.

We also notice a very similar behaviour of n0(T/T 0
c ) and of the visibility from

time-of-flight pictures (as a function of the temperature measured in situ for
the corresponding parameters) thus validating the measurement of the phase
transition point. We notice that this appears to be shifted with respect to the
prediction of the theory, which does not include interaction effects. Further
details on how interactions (could) shift the critical temperature, and how this
relates to finite size effects are included in [13, 164, 172].

Notice that thermometry in a lattice is difficult from time-of-flight images, re-
quiring advanced theoretical tools ([173–175]). Instead, in situ measurements
showed that this can be more easily obtained ([5, 176]) and even that the den-
sity distribution reveals the presence of different quantum phases in the trap
([177]).
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4.4. Sub-lattice Dynamics Measurement

In the experiments we just presented, the relevant information which was ex-
tracted from the experimental picture was the occupation, or the population,
of the single lattice sites, obtained by summing the signal in the corresponding
Wigner-Seitz unit cells.

This neglects the information regarding the atomic distribution within the
Wigner-Seitz cell. We want to study this aspect in detail now, by observing
how the atomic distribution reacts to changes in the lattice geometry induced
by an imbalance between the lattice depths. We study at first the changes in
the ground states due to beam imbalance, and then we look at what happens
when this beam balance is rapidly changed as a function of time.

4.4.1. Lattice Dimerization via Beam Imbalance

A B

Figure 4.11.: Effects of the beam balance on the ground state density. A: Den-
sity distribution for two different values of the imbalance V2/V1, with a comparison with
the single-particle theory prediction (right). B: Density distribution comparison between
experiment and theory, integrated in the vertical direction in the cut drawn in A. Notice
that because the lattice position with respect to the magnetic trap center is not fixed, the
experimental cuts have a global uncertainty on the x position of about one experimental
pixel (after magnification) ∼ 65nm.
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We use a honeycomb lattice with sublattice offset ∆ = 0 (see chapter 6 for its
realization) and study how the position of the minima of the potential come
closer together as a function of the imbalance of the lattice beams.

Changing the beam balance is equivalent to applying some strain in real graphene.
At a certain point, real graphene breaks apart ([178]). An optical lattice in-
stead cannot break and one can observe the merging transition of massless
Dirac Points ([179]) or even of the Bloch defects associated with massive Dirac
Points ([180]). Here we could observe "in situ" how, going a little bit further,
another "merging transition" takes place, when the s-orbitals merge with each
other (figure 4.11).

4.4.2. Theoretical Description of the Dynamics after a
Lattice Quench
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Figure 4.12.: Quench of the lattice potential to a dimers configuration. A: Lattice
potential before and after the quench. Afterwards, the lattice minima corresponding to the
two sublattices come closer to each other in the x direction, becoming also separated from
the other "dimers". B: Density profile of the ground state wavefunction with quasimomen-
tum q = Γ before the quench. C: Density profile of the states with q = Γ for the six lowest
bands after the potential quench. The Wigner-Seitz cell which correspond to the central
dimer in the quenched potential is shown. D: Corresponding energy of these states in the
quenched potential.
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We want now to investigate a situation where the form of the potential, and
hence of the respective lowest lying states is dynamically changed. We start in
a boron-nitride configuration, where all the atoms are sitting in the A sites. By
suddenly quenching the potential depth, the original wavefunction is projected
to different eigenstates of the new potential (figure 4.12). The relative phase
due to their energy differences produces then a dynamics which can be detected
by monitoring the density distribution. Because the lattice potential after the
quench has the effect of decoupling the dimers from each other, the dependence
on quasimomentum of the eigenvalues and of the eigenstates becomes negligible
and we consider for simplicity only the states at the Γ point in the Brillouin
zone.

Figure 4.13.: Theory images for the different times after the quench. At t = 0
the density is localized at the A-sites of the lattice, forming a triangular lattice pattern.
After the quench, the atoms oscillate towards the B-sites, eventually also tunneling to the
other sublattice site (at t ∼ 80− 90µs) and continue to oscillate back and forth afterwards.
Notice that the dimers are aligned horizontally and between dimers the density is always
(almost) zero.

Upon changing the lattice intensity the lattice sites come closer to each other
along one particular direction, and the atomic distribution is now off-center
with respect to the potential minimum, and start to oscillate in within the site,
but also to tunnel to the other one (figure 4.13).

The lattice potential is calculated taking into account the vector light shift,
which is relevant for Rubidium in determining the AB Offset (Appendix C).

At time t = 0, I2 and I3 are set to 0.5 · I1; the intensities change on the time
scale of the intensity lock system (about 20 µs). For every time step (5 µs) we
diagonalize the Hamiltonian in plane-wave basis of the instantaneous periodic
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potential and let the state evolve according to the instantaneous eigenstates
and eigenvalues. The global lattice depth is the only free parameter and it is
calibrated by comparison with the experimental results.

For a quench of this magnitude, the first six orbitals are found to contain most
of the atomic population (99.5%). For this particular symmetry, also the sixth
state has a negligible population.

4.4.3. Experimental Results

Figure 4.14.: Experimental images for the different times after the quench. Im-
ages obtained for the same parameters as calculated. The cloud is also confined in a tight
trap, which is used for producing a magnification M = 93(1). Images are zoomed in the
center of the cloud; notice that a larger area than in the theory is taken under consideration.
The signal in each pixel is dived by the total atom number of that particular shot. A very
similar dynamics as calculated can be recognized.

We start with a deep lattice and a deep magnetic trap. The reason for this
two is that we want now to image with big magnification without needing the
freezing step.

We are able to see directly in situ the tunneling but also the oscillations within
the lattice site (figure 4.14). There seems to be very good agreement between
experiment and theory, in particular concerning the periods of the oscillations
and of the tunneling time. It seems the atoms spread more into the second
sublattice than predicted.
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For a more direct comparison we select a cut of 65nm width (corresponding,
after magnification, to one camera pixel) along the dimers and plot the density
distribution along it as a function of time. We find a better qualitative agree-
ment between the two by adding a 76nm wide Gaussian filter to the theory
(figure 4.15). Note that because the position of the lattice is not kept fixed
but only reconstructed x-axis might appear shifted in the comparison with the
calculation. It seems that in the experiment the tunneling dynamic is much
pronounced, and more population is transferred. The importance of the width
of the Gaussian filter is that we can get an idea of the optical resolution, which
is most probably limited by the optical resolution (1 pixel corresponds, after
magnification, to about 64nm).

After the quench, most of the probability distribution of the time-evolved state is
found to lie in the lowest six bands, according to the numerical simulation. Thus
the dynamics can be described as resulting from the interference among the two
s orbitals and four p orbitals, the latter being the smallest in-plane excitations
within a lattice site. Since the dynamics is almost completely described by these
states, the fact that we were able to detect it means that we were able to detect
interference at the smallest possible (in plane) excitation level.

Higher orbitals are important for artificial dimensions ([181]), for topology
([182]) and for condensation in non trivial-regimes([183–187]), and quantum
gas magnification looks very promising for accessing the orbital information in
real space.

A

B C D

Figure 4.15.: Nanoscale dynamics in a honeycomb optical lattice. The cut along
the dimers in which the dynamics is analyzed is shown in A (green area). In B, the theory
prediction, in D the experimental results. A lattice vector corresponds to 10.9 pixel with a
magnification of M = 93(1). In C the simulation data are convoluted with a Gauss filter
of 76nm width and an offset is added. Adapted from [13].
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4.5. Shaping of the Density Distribution with
Radio-Frequencies

Quantum gas microscopes have the possibility to shape the density distribution
at the single-site and single-atom level ([143, 188]), using high-resolution objec-
tives to focus light beams with a waist on the order of the lattice spacing. Also
a focused electronic beam can be used to the same end ([154]). Here we demon-
strate that also by more standard RF-techniques ([189, 190]) we can imprint
density pattern at the single site level, and what is crucial is the possibility to
look at the atomic distribution and control the result.

We can empty selectively certain lattice sites employing resonances from the
mF = 2 state to the mF = 1 state. The latter is a state subject to losses
because two atoms colliding can relax into the F = 1 manifold, and can not
be trapped anymore in the lattice because of the high gained kinetic energy
(∼ 6.8GHz).

In this way, we could realize several density patterns in a deep triangular lat-
tice, by selectively removing atoms as a function of the radial coordinate in
the magnetic trap (figure 4.16). The lattice depth is chosen high enough such
that the atoms don’t undergo any dynamics during the procedure. This allows
also to move the cloud around the magnetic trap without changing the density
distribution in order to increase the range of possibilities, otherwise limited by
the circular symmetry of the trap.
In particular we demonstrate single-site resolution by leaving just one row pop-
ulated, or by emptying just the central lattice site.

As an example we studied how by removing atoms from half of the system (as
in the image on the upper right corner of figure 4.16) we create a highly excited
state and study its following thermalization dynamics ([13, 191]). This is of
interest in the context of many interesting physical phenomena, like probing
localization due to disorder or many-body interactions ([145]).

The duration of the RF-sweeps/pulses was about 100 − 200ms, faster than
the tunneling time in a deep triangular lattice. In principle by optimizing the
protocol and increasing the lattice depth further, one could think of obtaining
any desired density distribution by "sculpting", i.e. starting from a distribution
with more atoms than desired in every site and, iteratively, by putting every
site at the center of the trap and removing the excess atom number (similarly
to [154]). On the other hand, it is also of interest to study the regime where
the removal is not much faster than the dynamical scales, a scenario which
resembles the quantum Zeno effect ([192]).
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Figure 4.16.: Shaping the Density Profile. The images on the left are obtained via
a RF-sweep or pulse transferring atoms to the |F = 2,mF = 1〉 state. Atoms in this
state can collide and leave the trap, resulting in an almost total reduction of the density in
the area brought in resonance with the transition (indicated by the light red areas in the
schemes). The images on the right are obtained by freezing the density distribution, shifting
it along x such that RF-sweeps can remove atoms as a function of their x-coordinate, and
then by shifting the cloud back to the center of the magnetic trap for imaging without
anharmonicity effects. The position on the x axis of the experimental images indicates the
shift used before applying the radio-frequency pulse/sweep. Images on the left are produced
without the shift, and resulting density distribution has rotational symmetry. Adapted from
[13].

These measurements also offer a double-check of the stability of the lattice
setup, because the density patterns depend only on the relative position of the
lattice with respect to the magnetic trap during the radio-frequency pulse, thus
offering a way of characterizing lattice position drifts due to phase fluctuations
independently of possible fluctuations in the imaging process (including both the
quantum gas magnification and optical imaging parts). These results confirm
the intrinsic stability of the lattice setup (an idea of the reproducibility of the
outcomes is given in figure 4.17).
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Figure 4.17.: Density profile away from the trap center after two RF sweeps.
11 consecutive images obtained with the same protocol: shift left (along x) the cloud and
perform two RF sweeps removing atoms left and right of the selected row. We can observe
that the selected density pattern (the single row) is quite stable, even though its apparent
position can fluctuate up to the projection along x of the lattice vector (compare e.g. the
first and the last picture). Sometimes the outcome is not as good as expected (3rd and 7th

picture from the left), and this might be because of the outcome of the lattice position in
these particular runs, if it takes up a value for which not all the lattice sites in the same
row are brought to resonance, or not all of them avoid being brought to resonance.

4.6. Spontaneous Density Wave Formation

The possibility to image the whole density distribution in a single shot not
only speeds up the data taking process, but it is also crucial for accessing the
particles correlations, and for studying phenomena where the outcome might
be different from shot to shot. Specifically with the latter we refer to systems
where a symmetry is spontaneously broken, having as a consequence that the
system will arrange in one of two (or more) possible phases in each realization.

We discovered experimentally that a BEC in an optical lattice subject to a
constant force (a "tilt") spontaneously breaks the translational invariance of
the lattice, by developing a density wave (i.e. a modulation of the density
distribution) with typically alternating local maxima and minima of the density
(integrated perpendicular to the tilt, as shown in figure 4.18). These findings
are reported in a separate publication ([14], in collaboration with the theory
group of Ludwig Mathey).
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Figure 4.18.: Density Wave in a tilted Lattice. We looked at the situation sketched
in a, where a constant force along x suppresses single-particle tunneling, leaving correlated
pair tunneling as the dominant dynamical process. b: Experimental density distributions
obtained after loading a BEC in the lattice and subjecting the cloud to a tilt ∆ = h ·
(1.4, 1.4, 1.4, 1.4, 1.5)kHz, and waiting for a variable time tDW = (60, 80, 80, 120400)ms. The
lattice depth was also varied, resulting in a tunneling coupling J = h · (7.2, 7.2, 13, 7.2, 4.2).
Atomic clouds are shifted back to the center of the trap for matter wave imaging. c: A
c-field simulation (in this example with tDW = 60ms, ∆ = h · 1.4kHz, J = h · 13Hz),
reproduces the spontaneous symmetry breaking due to thermal fluctuations in the initial
wavefunction. Adapted from [14].

The dynamics that results from such a system can not be described in a single-
particle picture; we give here a schematic description of the dynamics in the
tilted lattice, and why it becomes correlated.

Consider the process |n1, n2〉 → |n1 + 1, n2 − 1〉, describing the hopping of a
particle from one site with initially n1 particles to one with initially n2 particles.
In presence of a tilt it becomes off-resonant, and the amplitude of the oscillations
gets reduced.

The second order process |1〉 = |n1, n2, n3〉 → |4〉 = |n1 +1, n2−2, n3 +1〉 which
involves now three lattice sites, instead, is resonant, because there is no center
of mass movement with respect to the tilt. It can happen via two intermediate
states, |2〉 = |n1 + 1, n2 − 1, n3〉 and |3〉 = |n1, n2 − 1, n3 + 1〉. The coupling
between |1〉 and |4〉 obtained by summing the contributions from both paths is
zero, because |2〉 and |3〉 have opposite energy differences with respect to the
energy of |1〉 and |4〉.

Interactions can shift the energy levels such that this is no more the case,
giving rise to a correlated dynamics described by simultaneous hopping of two
particles. The resulting system can be better described by a formalism which
we only describe in the following. We refer to [14, 172] for a more detailed
discussion.
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The tilted system can be mapped to a periodically driven system, with the
substitution bj → b̂je

ixj∆t/~, with bj creation operators on lattice site j. xj is
the index of the row of site j.

In complete analogy to the high-frequency derivation of Floquet Hamiltonians
of driven systems ([193]), one can derive an effective Hamiltonian using a sec-
ond order Magnus expansion ([14, 194]); this Hamiltonian contains, as main
dynamical term, a pair tunneling term of the form:

HP = −P
∑
<kjl>

b̂†j b̂
†
j b̂kb̂l + h.c. (4.34)

This describes the simultaneous hopping of two particles from sites k and l to
site j (and the hermitian conjugate process) with amplitude P = UJ2/∆2. U is
the Hubbard parameter quantifying the on-site interactions strength and can be
estimated for typical atom numbers and V = 1Er to be given by U = h · 2.3Hz.
Sites k and l must have opposite potential energy differences with respect to
site j (notice that in the triangular lattice, there are four possible processes of
this kind for a given j).

There are some interesting points to notice from this expression: first, quite
counterintuitively, the dynamics is driven by on-site interactions as can be seen
by noticing that Hp ∝ U ([195, 196]).

Also, because of the second order nature of the process, it happens at a time
scale proportional to the atom number. While the timescale associated to
UJ2/∆2 is very long, about ∼ 102s, when considering a factor 103 as a typ-
ical atom number in a tube we get a timescale on the order of ∼ 102ms, which
is under experimental reach. Notice that the use of quantum gas magnification
is crucial for being able to observe at all this phenomenon, because it allows
measuring high in situ densities at the single site level.

While we still lack a complete quantitative understanding of the dynamics, we
could point to initial thermal fluctuations in the condensate as fundamental
ingredient for the density wave formation. These fluctuations might act as a
seed ([116, 197]) and decide the direction of the current between different lattice
rows, as in a Josephson junction, dictating which row will have a high or low
population.

Lastly, this experiment represents also a step towards quantum simulation of
extended Hubbard models ([198–200]) with a DC driven field ([201]), in a com-
plementary fashion to periodically driven systems.
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4.7. Conclusions

We developed a new technique for imaging quantum particles with high reso-
lution. This is based on a magnification of the matterwave prior to standard
imaging, and we demonstrated it with ultracold Rubidium atoms in a variety
of optical lattice geometries (triangular, honeycomb lattice: boron-nitride- and
graphene-like). In particular, it was the first time that ultracold atoms in the
honeycomb lattice were imaged. The interesting feature is that the technique
is not limited to 2D systems or systems with a low atom number, making it
suitable for studies complementary to the possibilities of conventional quantum
gas microscopes. The technique seems also to be quite versatile and relatively
easy to implement, and its applications have (potential) overlap with several
other high-resolution imaging techniques, as schematized in table 4.1.

Table 4.1.: Properties of real-space Imaging Techniques. This table provides an
overview of the features and limitations of different imaging techniques for ultracold atoms.
Note that the Boolean ’Yes’ or ’No’ carry some degree of arbitrarity, and depend much on
the definition e.g. we wrote ’No’ also for techniques other than the quantum gas magnifier
where the possibility in question might be conceivable, but we are not aware of a proposal.
The purpose of this table is just to demonstrate the versatility of the quantum gas magni-
fier approach since it provides/could provide many of the features of the other mentioned
techniques.
Technique Quantum Gas

Magnifier ([13])
Quantum Gas
Microscopes
([4, 5],...)

Ion/Electron
Microscopes
([154, 155])

Superres.
microscopes
([156, 157])

3D systems Yes No Yes Yes
High n Yes No Yes Yes
3D imaging not complete,

but conceivable
Sparse
systems[152, 153]

Yes ([155]) No

Single-shot Yes Yes No No
sub-lattice
resolution

Yes No Yes Yes

single atom Conceivable Yes No No
spin resolved Conceivable Yes No No

In this chapter, we introduced the formalism used to describe quantum gas
magnification of the density distribution in an optical lattice. We will use
this formalism also in chapter 5, where quantum gas magnification of coherent
phenomena is studied.

We described the results of quantum gas magnification with an application to
thermometry of a lattice cloud in an additional harmonic confinement.
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We demonstrated also the possibility to manipulate the gas at the single-lattice
site level by selectively emptying selected sites. We discovered a new phe-
nomenon thanks to the possibility of taking single-shot images of 3D systems,
which was not possible in other schemes like ([154, 155]). We were able to ob-
serve dynamics at the nanoscale level after the excitation of higher bands in the
honeycomb lattice, which opens the door for orbital physics in real space.

The protocol is quite generalizable to other setups and dimensions. Using an
optical trap, it could be applied to spin-mixtures, with spin-resolved resolution
provided by Stern-Gerlach separation during time-of-flight.

We mention the possibility to image in a position-momentum (x − py) hybrid
space ([202]), with asymmetric trap potentials such that magnification in one
spatial direction and mapping of momentum to real space in the other are
achieved; or the possibility to image the spatial and the momentum distribution
in a single shot by coupling half of the atoms to mF = 0 before the initializing
the magnification protocol. The two components, which could be detected
independently after Stern-Gerlach separation, would then image respectively
the real space and the momentum distribution (also useful in the context of
spontaneous symmetry breaking).

Among the many possible future directions, we mention that quantum gas mag-
nification could be applied to atomic species or even molecules which can be
imaged in a quantum gas microscope only indirectly after dissociation ([203]).

In the future, one could extend it to single-atom imaging ([204–207]) to reach the
strongly correlated regime. It would be also useful for more complex geometries
with a typically lower lattice spacing like e.g. the Kagome Lattice ([208]) or
sub-wavelength lattices ([209–212]).
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5. Microscopy of coherent
phenomena

Quantum Simulation and research depends on the possibility to extract infor-
mation from the system. So far, we have dealt with the measurement of the
density of an atomic distribution, even at the sub-lattice level. But still, this
is just a fraction of the information contained in a quantum system: a generic
single-particle state can be described by the density matrix, whose entries are
defined like

ρab =<< ψ†aψb >> (5.1)
where the expectation value has to be taken over the state in the case of a pure
state or over the statistical mixture of states when dealing with a mixed state.
Diagonal element of the density matrix correspond to occupations Na of state
a: ρa =< ψ†aψa >= Na and off-diagonal elements, which make up most of the
elements of the density matrix, are related to the coherence between different
states.

Coherence of matter waves is a typical quantum phenomenon and it is of much
relevance because it e.g. is related to transport properties, with conducting
states characterized by a high degree of coherence over the sample. Coherence
is very well accessible already in cold atoms experiments in time-of-flight or
band mapping protocols, but only as a global measurements of the coherence
in the system ([213]).

In the previous chapter, we introduced the Quantum Gas Magnifier as technique
for measuring the density distribution in an optical lattice, with single site
resolution: here we extend its application to coherent phenomena, studied at
the microscopic level.

The first case under consideration is the Talbot effect, where revivals of the
lattice structure are generated after diffraction from a lattice. We are going
to present a simple theoretical model for detection with high spatial resolution
of Talbot revivals after release from the optical lattice with the quantum gas
magnifier, expanding on the idea presented in [164].
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We also present some preliminary data, taken in the simple case of a 1D lattice,
and some data taken across the Mott-superfluid phase transition in the trian-
gular lattice, where the change in coherence range as a function of the lattice
depth is reflected in the number of detectable Talbot revivals.

In the second part of this chapter we present a theoretical proposal on the
measurement of the off-diagonal elements of the density matrix in an optical
lattice with single site-resolution using the quantum gas magnifier.

5.1. Talbot Effect

The Talbot effect in optics describes the revival of a lattice structure with spatial
periodicity LTalbot = 2(Malat)2/λL after transmission of light with wavelength
L through a periodic potential with lattice constant alat.

The Talbot effect presents itself also with matter waves ([214–216]) and can be
understood as follows: a periodic 1D wavefunction with periodicity alat can be
decomposed in the plane wave basis using wavevectors which are multiples of
k = 2π/alat. After adiabatic loading into the ground state of the lattice and a
subsequent time of flight expansion, the dynamics is given by the corresponding
kinetic energies which are then En = n2(~k)2/(2m); in particular we notice that
they are integer multiples of the same fundamental frequency. The inverse of
this frequency is then called the Talbot period TTalbot and in a perfectly periodic
infinite system one would expect at multiples of TTalbot the wavefunction to be
exactly the same as for t = 0 (phenomenon described as "Talbot revival").

In a real system with finite correlation length, it was demonstrated that the
strength of the nth revival, defined as the overlap between the state at time
nTTalbot and the initial state, is directly proportional to the g1 correlation func-
tion between lattice sites of distance 2n, while the correlation function between
sites of distance 2n− 1 is directly proportional to the strength of the nth anti-
revival (a revival of the lattice structure occurring at t = 2n−1

2 TTalbot with a λ/2
displacement with respect to the original wavefunction) ([217]). In these works
([217, 218]), the strength of the revivals was measured globally over the whole
sample by turning on again the lattice and measuring the number of atoms
which remained in the first band of the lattice.

By directly imaging the Talbot revivals with the quantum gas magnifier instead,
as we now propose, one could obtain a spatially resolved measurement of the
coherence properties.
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5.1.1. Talbot Effect in Presence of a harmonic Trap

The simplest, and most direct protocol for imaging Talbot revivals with the
quantum gas magnifier would look something like this: switch off instanta-
neously the lattice (and the trap if present), let the atom expand for a given
time t, and then turn instantaneously on the trap for initiating the matterwave
magnification. This is quite challenging since TTalbot ' 160µs (calculated for the
wavevector modulus |bi| in our system) is much smaller than the switch-on time
of the magnetic trap. We show here that also if the release of the atoms from
the lattice happens in a harmonic trap instead of free-space, one still can expect
Talbot revivals, regardless of the relationship between the trap frequency and
the other relevant energy scales. We demonstrate how the mapping between
the two situations can be done, and how the presence of the trap just shifts
the times at which Talbot revivals are to be expected and the lattice constant
which characterizes them, but without introducing any distortion, as long as
the trap is harmonic.
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Figure 5.1.: Sketch of the Mapping between evolution in free-space to evo-
lution in a harmonic trap. The vertical line at cx = 1 indicates the realizations
of the time-dependent operator X̃(t) = cx(t)X̃(0) + cpP̃ (0) during time-of-flight. Red
points indicates the (integer) Talbot revivals and are separated by ωTTalbot. For a given
ttof , one can image different Talbot revivals by tuning tho (red, green and blue circular
arc). The end points of the evolution after time-of-flight (straight lines) correspond to
Talbot revivals as indicated by the dashed lines. The magnification factor is given by
−
√

((ωttof)2 + 1)/((ωnTTalbot)2 + 1). n = −1, 2, 3 in the examples (red, green and blue
trajectories). Notice that for tho < arctan(ωttof) also negative order (n < 0) Talbot revivals
can be imaged.
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The free-space evolution of the atomic density in the traditional Talbot effect
can be mapped to the evolution in a harmonic oscillator by considering the
dynamics of the X̃ operator (X̃, P̃ are the position and momentum operator in
the natural harmonic oscillator units, as introduced in chapter 4). In free space
we have after a time of flight nTTalbot corresponding to the nth Talbot revival:

X̃(nTTalbot) = X̃(0) + ωnTTalbotP̃ (0) (5.2)

Recalling that the evolution for a time tho in the harmonic trap is given by:

X̃(tho) = cos(ωtho)X̃(0) + sin(ωtho)P̃ (0) (5.3)

One can see that for tho = 1
ω

arctan(ωnTTalbot)

X̃(tho) = 1
M ′ X̃(nTTalbot) (5.4)

with M ′ =
√

1 + (ωnTTalbot)2 = 1/ cos(ωtho). A graphical representation of this
mapping is illustrated in figure 5.1.

A B

Figure 5.2.: Numerical Simulation of the Talbot effect in a 1D lattice in presence
of a harmonic trap. The revivals of the lattice structure in the atomic density(left
plot) appear at times predicted by the equation. 5.5 (black lines). Note that in the 1D
case between revivals a so-called anti-revival is to be seen (dashed lines). In the Fourier
transformation of the density (right plot) a change in the wavevector of the lattice is to be
seen, as described by the M ′ factor (red lines). Notice that because the wavefunction is
real at t = 0, time-reversal symmetry is kept around t = 0. Negative times acquire physical
significance in the harmonic oscillator, unlike in time-of-flight since they can be mapped to
positive times by an integer multiple of the trap period Ttrap.
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This shows that the dynamics in the trap can be mapped to the dynamics
in free-space upon rescaling positions with a factor 1/M ′ and rescaling of the
evolution times via the relation

tho = 1
ω

arctan(ωnTTalbot). (5.5)

The distribution in the trap at time tho corresponding to the nth Talbot revival
can be then magnified by a factorM just by letting the system remain in the trap
for an additional ∼ T/4 and subsequent ttof expansion (withM =

√
(ωttof)2 + 1,

as previously defined). One gets in the end:

X̃ = −M
M ′ X̃(nTTalbot) ∼ −MX̃(nTTalbot) (5.6)

(where the approximation for the magnification factor can be done when con-
sidering Talbot revivals of not too high order n such that nωTTalbot � 1. This
results were verified numerically for a 1D lattice (figure 5.2).

As derived in reference [217] for the 1D case, the strength of the Talbot revivals
is a measure of the phase correlation function. We argue that the decay of the
contrast with the order of the revival is related to the phase correlation func-
tion also in the case of a 2D lattice. We note that the quantum gas magnifier
would allow access the contrast and therefore the phase correlation function in
a spatially resolved manner. This is particularly relevant for inhomogeneous
systems, as typically is the case for harmonically trapped quantum gases. Fur-
thermore, imaging of continuous systems away from the focusing condition of
the quantum gas magnifier can be used to gain information on phase profiles
of the wavefunction, where phase fluctuations of low-dimensional systems are
transformed into density fluctuations ([219, 220]).

5.1.2. Talbot effect in a Honeycomb/triangular Lattice

We note that in 2D Talbot revivals also appear in the case of triangular and
honeycomb lattice because here the allowed wavevectors are bn,m = nb1 +
mb2 with b1 = 2π

√
3(0, 1)/λ, b2 = 2π

√
3(
√

3
2 ,−

1
2)/λ and n,m integers, with

associated kinetic energies En,m ∝ |bn,m|2∝ n2 + m2 + m · n. All energies are
then integer multiples of the fundamental energy Erec.

Notice that while distorted triangular/honeycomb lattices can be realized also
without a 120° incidence angle between the laser beams, here a commensu-
rate angle between them is a necessary condition for the appearance of Talbot
revivals.
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Figures 5.4 and 5.3 show numerical calculations for the density distribution of
Talbot revivals in a small 2D system in a triangular and honeycomb lattice
respectively.

Figure 5.3.: Numerical Simulations for Talbot Revivals after time of flight from
a triangular lattice. The original density distribution (upper left figure) has a gaussian
width of 2.8µm. The numbers indicate the evolution time in units of the Talbot Time
Ttalbot. For integer multiples the original lattice structure can be recognized, and also for
some of the fractional multiples a smaller periodicity can be seen. Notice the different peak
densities for the different times.

Figure 5.4.: Numerical Simulations for Talbot Revivals after time of flight from
a honeycomb lattice. The original density distribution (upper left figure) has a gaussian
width of 2.8µm. The numbers indicate the evolution time in units of the Talbot Time
Ttalbot. For integer multiples the original lattice structure can be recognized, and also for
some of the fractional multiples a smaller periodicity can be seen. Notice the different peak
densities for the different times.
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5.1.3. 1D Measurement

Similarly as when focusing the matterwave field for quantum gas magnification,
we are now going to vary the time in the magnetic trap before a time-of-flight
of fixed duration, but in a broader range and without removing the coherence
in the system first. We start with a single 1D lattice where a simpler analysis is
possible. Some examples of the density distributions are reported in figure 5.5.
The modulation of the density distributions due to the lattice can be clearly
seen, but it is much weaker than what the interactions-free theory predicts. As
mentioned in the previous chapter, we attribute this to the presence of inter-
atomic interactions during the magnification protocol, because of the realization
of the peaked momentum distribution at t = T/4 and because of the Talbot
revivals themselves.

Nevertheless, we are able to see a signature of Talbot revivals as the modulation
of the lattice oscillates as a function of time in the magnetic trap (figure 5.5).

A B

Figure 5.5.: Talbot effect in a 1D lattice. In A, three examples of the density dis-
tribution after loading in a 1D optical lattice. It can be seen that the contrast has a non
monotonic behaviour as a function of the hold time in the magnetic trap before a time-
of-flight of 19ms. In B the absolute value (squared) of the Fourier transformation F̃1D of
a vertical cut in the density distributions is plotted as a function of time and wavevector.
In correspondence of the reciprocal lattice wavevector 2π

√
3/λ the signal exhibits a peak

which oscillates as a function of time. The position of the 0th revival is found to be at
t = 840µs, and ω is determined as 2π/(4 · 840µs). For comparison the straight black lines
and dashed black lines indicates the predicted position of the revivals and anti-revivals,
respectively, according to the prediction of equation 5.4, calculated for a non-interacting
system. The red line indicates the expected position of the revivals wavevectors. There is
qualitative agreement with the predictions: the measured revivals possess a similar spacing
and appear at always greater wavevectors.
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5.1.4. Mott Insulator-Superfluid Transition

In a 3D lattice we can explore the transition from a superfluid to a Mott insu-
lator ([6]), where we expect the correlation length to zero as a function of the
lattice depth. As we expect the number of revivals to be related to the correla-
tion length in the system, we expect to see a decreasing number of revivals as
a function of the 3D lattice depth. We add a 1D lattice in z−direction perpen-
dicular to the 2D lattice plane. The data we are going to present were obtained
with the following protocol: we load into the 3D lattice system, we switch off of
the 2D lattice and wait for a variable time thold in the potential formed by the
magnetic trap and the z−lattice. We then switch off of the z-lattice and hold
the system for a fixed time (about T/4−40µs) in the magnetic trap. The idea is
then to let the revivals happen in the different planes created by the z−lattice
(as a function of thold), and then image them by quantum gas magnification,
summing the signal over all these planes.

A B

Figure 5.6.: Density distribution for a triangular lattice in the superfluid regime.
In A an exemplary density distribution (as measured via quantum gas magnification) of a
system with coherence is shown. In B the corresponding 2D Fourier transformation. Notice
that while the density distribution shows barely some modulation, its Fourier transform
show a clear signal in correspondence of the reciprocal lattice wavevectors. The three-fold
symmetry is broken probably due to the magnified lattice constant being too close to the
limit of two pixels and to the optical resolution.

In the superfluid regime the density modulation from the lattice is very weak
but measurable (figure 5.6).

We repeat the measurement of the density distribution for different hold times and
lattice depths of the 3D lattice. We analyze than the Fourier transformation of the
density averaging over momenta with the same magnitude, as a function of the hold
time and of the absolute value of the momentum. We repeat the analysis for different
lattice depths and plot the results in figure 5.7. The data show a clear decrease in
the number of detectable revivals for increasing lattice depth. At the same time,
as coherence is less and less present in the system for increasing lattice depth, the
contrast of the quantum gas magnifier increases.
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Figure 5.7.: Talbot revivals in a (3D) triangular lattice for different lattice
depths. The Fourier transformed signal of experimental density distributions obtained
for different lattice depths (indicated on every image, in arbitrary units) as a function of
the modulus of the wavevector |Q| and of the hold time in the z−lattice thold. Notice that
imaging of the real space distribution is expected for thold ∼ 40µs and Talbot revivals are
expected to appear at later times, as it is seen experimentally in correspondence of the
reciprocal lattice wavector 2π

√
3/λ. The number of observable revivals decreases with the

lattice depth. In a very deep lattice, only one peak can be seen, corresponding to the Fourier
transformation of the in situ density distribution of the atoms.

These data can be presented in a more compact form, by integrating the Fourier
transformation signal in an interval of wavevectors around 2π

√
3/λ. This reveals,

surprisingly, that the position of the Talbot revivals is not constant but it shifts
towards smaller times as a function of the lattice depth, and also the spacing between
different revivals seems to change (figure 5.8).

We attribute this effect to interactions during the magnification protocol quite much
in analogy to the mean-field shift of the effective trap frequency reported in figure
4.6. The density is higher for smaller lattice depths because of the higher degree of
coherence there present; hence there is a lower effective trap frequency and revivals
appear at later times going to lower depths.
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C D

Figure 5.8.: Shift of the Talbot revivals as a function of the lattice depth. In
A, the Fourier transformation of the density distribution (figure 5.7), integrated over all
wavevectors Q with 0.8 < |Q|

2π
√

3/λ < 1.1 and plotted as a function of the hold time in the
z−lattice thold and the lattice depth. A "shift" of the revival position towards smaller times
can be seen. In B, the same quantity convoluted with a band pass suppressing slow and
fast frequencies. From this, we can apply a peak finding routine and fit the heights of the
peaks (normalized to the highest one) with an negative exponential function. In C, it is
shown how the fit always converges (in this example, for V = 10a.u.) but does not seem to
capture the complete behaviour of the system. If only one peak is found, the decay constant
is put equal to zero. In D, the decay constant is plotted as a function of the lattice depth.
It can be seen how it builds up for shallower lattice and how it decays to zero for deeper
ones.

This effect makes a complete analysis particularly challenging, adding to the pres-
ence of a variety of revivals (including the fractional ones, with a different density
distribution) whose exact strength might depend strongly on details of the interacting
system.

At this point, we can foresee two strategies to get a more complete understanding of
these phenomena. One could be a more thorough theoretical analysis, which should
include interaction effect for the description of the initial state and in particular for
the matterwave dynamics itself. Even in the relative simple case of two interfering
condensates it was shown that a mean-field approach is often not sufficient for de-
scribing accurately the matterwave dynamics ([221]), therefore such an analysis goes
beyond the scope of this thesis.

This is particularly challenging because of the 3D nature of the problem, which is
quite complex as seen in the description of interaction effects in the previous chapter,
with the addition of coherence and of the crossover between two regimes.
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The other strategy would be to reduce the interactions: while we could with 87Rb only
reduce the atom number, other atomic species could be magnified with an optical
potential while a Feshbach resonance could be used to tune the interactions to zero
during the protocol.

Although not all experimental and theoretical questions are completely understood,
we can measure the extension of the revivals in time. From that we can get an idea
of the behaviour of the coherence length in the 2D plane as a function of the lattice
depth (figure 5.8D).

5.1.5. Detection of magnetic Domains and Vortices

We worked so far with systems where the coherence properties were homogeneous, as
far as the relative phase of the atoms in different lattice sites was concerned. The real
advantage of quantum gas magnification would be then in situations where this is
not the case, making local observations of the coherence possible. We notice that the
resolution would then be given by the order of the Talbot revival under consideration,
as phase correlations at distance d can not be well defined with resolution smaller
than d.

As an example, we suggest Talbot revivals could be used to detect domains of mag-
netic order encoded in the condensate phases ([70, 71]). This non trivial situation
can be induced by shaking a triangular lattice up to the point where the tunneling
coupling between sites becomes positive ([69]), leading to a frustration of the phase.
This degeneracy could lead to magnetic domains (also [222]), when different areas
of the system condense at different quasimomenta, in correspondence of equally de-
generate minima. Another interesting phase pattern are vortices ([223, 224]) which
marks one phase of the BKT phase diagram ([225, 226]).

In figure 5.9 it is shown how the presence of such phase patterns drastically change
the Talbot revivals density distribution.
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Figure 5.9.: Talbot Revivals in systems with different phase patterns. In each
row, the initial phase profile is plotted in the first subfigure. The initial density profile
(second subfigure) is identical for all phase patterns. One sees that the initial phase pattern,
containing a domain in the second row and a vortex in the third row, influences the resulting
interference pattern at t = TTalbot and t = 2TTalbot. In the case of a domain between two
regions of different quasimomentum (second row) the domain can be identified as the region
where the revival at t = TTalbot of the lattice structure is less strong. At t = 2TTalbot a
superlattice with periodicity given by the difference of the two quasimomenta is to be seen.
Similarly, in the case where the initial phase profile presents a vortex (third row) the revival
of the lattice structure at t = TTalbot is less strong at the position of the vortex.
At t = 2TTalbot, interestingly, the distribution presents many local maxima spaced with
the initial lattice constant but the form of the distribution around this maxima is not
rotationally symmetric, and the orientation of this form seems to be related to the position
with respect to the initial vortex. Indeed, reconstructing the structure of the initial phase
pattern from a Talbot revival distribution seems like a good application for machine learning
techniques ([227]).
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5.2. Accessing the single Particle Density-Matrix

The measurement of the density as we mentioned is just a fraction of the informa-
tion about the state of a single particle (without mentioning many body systems),
representing only the diagonal part of the density matrix. One could get information
about the g1 correlation function by selecting atoms (via local coupling to another
state) from two points in the cloud and studying the resulting interference pattern
([228, 229]). In [230], it is suggested how to obtain the real space correlation function
by Fourier transformation of high resolution measurements of the correlation function
in momentum space.

In a lattice basis off-diagonal terms can only be inferred indirectly; [231] proposes
to engineer a coupling channel between two sites with an additional high-resolution
light potential. This proposal requires the apparatus of a quantum gas microscope,
and is limited to fermions or hard-core bosons.

In this chapter we propose a protocol where matter wave optics is used to access these
off-diagonal elements with single site resolution, for bosons and fermions alike, using
the quantum gas magnifier.

5.2.1. Realizing non-local Coupling

The potential of a 1D lattice, which is turned on during a small pulse of duration
tp, can be written as Epot = 2Vp cos(b · r + ϕl), where Vp is the lattice depth of the
pulsed potential, b its wavevector (we assume that b is parallel to the x−direction
in the following), and ϕl is the lattice phase and determines its position with respect
to the center of system. This potential couples all momentum states |Q1〉 and |Q2〉
with wave-vectors satisfying Q2 = Q1 ± b.

If the pulse if fast enough, and neglecting the kinetic energy (Raman-Nath approxima-
tion), the time evolution during the pulse can be described by the following ([232]):

Up = e−i2Vptp cos(bX+ϕl)/~ =
∑
n

ine−inϕlJn(α)e−in|b|X (5.7)

where α ≡ 2Vptp/~ and Jn is the Bessel function of the first kind of order n, with
n integer. This expression determines the resulting momentum distribution, with
different momenta spaced by |b| that are coupled. Notice that the operator ein|b|X
translates by a quantity n|b| in momentum space. This expression is used when
calibrating the depth of optical lattices after so-called Kapitza-Dirac scattering.
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We consider now the case when the fast 1D lattice pulse is performed during a
quantum gas magnification protocol, in particular exactly after the T/4 hold time
in the harmonic oscillator. Recalling that at this point X(T/4) = P (0)/mω, and
P (T/4) = m(0), it follows that the 1D lattice pulse effectively couples distant points
in real space. This idea is sketched in figure 5.10.

Real space distribution 

Momentum space distribution 

T/4 TOF

Figure 5.10.: Sketch of the coupling between distant points in real space. After
the T/4 evolution, the real space distribution gets mapped to the momentum distribution.
Then, a quick pulse of a 1D lattice of wavevector b has the effect of coupling points at
relative distance b. The momentum distribution so obtained is measured after time-of-flight:
different "copies" of the original cloud are reproduced and at their overlap the magnified
density distribution carries information about the phase relations between point in the
original cloud at distance d = b/(mω).

Amore formal derivation can be obtained by writing the total time evolution operator,
consisting of the T/4 evolution, the 1D lattice pulse, and final time-of-flight for a
time ttof . We consider only the system degrees of freedom along x (with P as the
momentum component along this direction), and assume they are decoupled from the
others:

U =e−i/~ P 2/2m ttofe−i/~ 2Vp cos(bX+ϕl)tpe−i/~ ( 1
2 mω

2X2+P 2/2m)T/4 =
U =e−i/~ P 2/2m ttofe−i/~ ( 1

2 mω
2x2+P 2/2m)T/4e−i/~ 2Vp cos(b P

mω
+ϕl)tp

U =UM e−i/~ 2Vp cos(b P
mω

+ϕl)tp

(5.8)

where the first step is obtained by commutation with the T/4 evolution operator;
this has the effect of replacing the X operator with P

mω
.1 In the second step we rec-

ognized that e−iP 2/2m ttofe−i/~ (mω2X2/2+P 2/2m)T/4 describes the time evolution operator
(denoted UM) during quantum gas magnification.

1For a given analytical function f(X) of the position operator X, with the Taylor expansion
f(X) =

∑
n cnX

n, the action of the operator U1 = e−i/~ (mω2X2/2+P 2/2m)T/4 can be written as:
f(X)U1 =

∑
n cn(U1U

†
1X)nU1 =

∑
n cnU1(U†1XU1)n = U1

∑
n cn( P

mω )n = U1f( P
mω ).
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Therefore we neglect the magnification term for simplicity, and just assume in the
following that single-site resolution is available.

We label the remaining operator U ′p, and notice that it also can be recast as a sum
of translation operators:

U ′p = e−i2Vp cos(b P
mω

+ϕl)tp =
∑
n

ine−inϕlJn(α)e−ink P
~mω (5.9)

with the difference that the operators eidP~ are associated with a translation in real
space, with the translation distance given by a multiple of d = b

mω
. The definition of

α remains the same: α = 2Vptp~ .

Using the field operators ψ(r), we can multiply by the identity
∫
r ψ † (r)ψ(r) and

get:

U ′p =
∑
n

ine−inϕlJn(α)e−inb P
mω

∫
r
ψ † (r)ψ(r) =

∑
n

ine−inϕlJn(α)
∫
r
ψ † (r+ n

b
mω

)ψ(r)

(5.10)
This can be interpreted as an operator which acting on a wavefunction creates a
superposition of different "copies" of the same wavefunction, each displaced by a
distance given by nd. Notice that the relative phase between them depends also
on the lattice phase ϕl. Because we didn’t specify which commutation relation the
operators have to obey, these results will hold for both bosons and fermions.

We note the related proposal of using matterwave optics and specifically tailored
potentials after a T/4 evolution to realize cold atomic version of optical techniques
to access coherence properties of a 2D superfluid system in [233].

5.2.2. Coherence between Lattice Sites

We consider the case of an optical lattice, with atoms residing in the first band,
described by s−orbitals. In this basis one is interested in the coherence defined as
ψ †a ψb where ψa and ψb are the annihilation operators corresponding to the orbitals
residing at lattice sites a and b. We derive how this coherence can be gotten using
the above presented protocol. We write a generic lattice wavefunction, isolating the
part residing on the two lattice sites of choice:

φ(r) = √ρaeiθaW (r− ra) +√ρbeiθbW (r− rb) + φ′(r) (5.11)

where ρa,b are the populations (the diagonal terms of the density matrix) of the sites
a and b, θa,b their respective phases, and W (r) is the normalized Wannier function
describing the s-orbital. φ′(r) contains the information about the part of the wave-
function located away from these two sites.
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Let’s choose d = rb − ra to be exactly the lattice vector connecting the two sites
(figure 5.11A). This can be done by tuning ω and the pulsed lattice wavevector b.
Notice that the pulsed lattice can be also another laser source than that of the lattice
in which the atoms sit at the beginning of the sequence. In our experimental setup
the the wavevectors b1,2,3 of the 2D lattice are aligned along the nearest neighbour
distance vector in the honeycomb lattice, and along the next-nearest neighbours dis-
tance vector (and multiples of this quantity) in the triangular lattice, so they could
be used to probe the 2D lattice as we are suggesting, without needing an additional
1D lattice.

We assume that |d|= |b|
mω

> σsys (where σsys is the system size), such that interference
happens at the overlap of two "copies", but not more than two (as in figure 5.10),
simplifying the interference pattern as dependent only on the relative phase between
the two copies with non-vanishing signals in the regions under consideration.

The final wavefunction φf (r) can be written as:

φf (r) = U ′pφ(r) =
∑
n

ineinϕlJn(α)φ(r− nd) (5.12)

We expand U ′pφ and writing explicitly only the non-vanishing term around ra:

φf (r) = J0(α)√ρaeiθaW (r−ra)+ieiϕlJ1(α)√ρbeiθbW (r−rb+d)+other terms (5.13)

Rewriting after substituting rb − d = ra yields:

φf (r) =
[
J0(α)√ρaeiθa + ieiϕlJ1(α)√ρbeiθb

]
W (r− ra) + other terms (5.14)

Integrating the density in the Wigner-Seitz cell, assuming
∫
WS|W |2dr = 1, gives:∫

WS
|φf (r)|2= J0(α)2ρa + J1(α)2ρb + 2Re{ ieiϕleθb−θa J0(α)J1(α)√ρaρb } (5.15)

where the incoherent sum of the signals can be recognized (J0(α)2ρa+J1(α)2ρb), plus
an interference term I(ϕl) which can be recast in the form:

I(ϕl) = −2 sin(ϕl + θb − θa)J0(α)J1(α)√ρaρb (5.16)
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Notice that ρa,b can be measured independently (with a normal magnification proto-
col) and α can be obtained by calibration of the pulsed lattice; this guarantees the
complete reconstruction of the off-diagonal density matrix ρab. The interference term
I(ϕl) has a sinusoidal dependence on ϕl, therefore one could repeat the measurement
for different values of ϕl and extract θb − θa from the phase of the oscillating signal
as a function of ϕl, and

√
ρaρb from the amplitude of the oscillation.

A

B

C

Figure 5.11.: Numerical Simulation of the Interference Signal as a function of
the Lattice Phase. A: ’In situ’ density distribution. The circles denotes the lattice sites
between corresponding to the parts of the wavefunction of which we want to measure the
relative coherence. B: Density distribution predicted from equation 5.12 using a fast 1D
lattice pulse with phase ϕl = −π/2 with respect to the center of the trap and modulation
index α = 1.1. C: Signal in the circular mask of radius alat/2 (drawn in B) as a function of
the lattice phase ϕl. The grey areas indicate fluctuations due to the error sources described
in the text.

In a numerical simulation we consider 105 bosonic atoms in the same lattice state and
apply the suggested protocol with α = 1.1 and |d|= 4 alat.

We study the resulting density distribution, and analyze the part of this signal deter-
mined by the interference of two lattice sites, with ρaJ0(α)2 ∼ ρbJ1(α)2 ∼ 800 atoms
(figure 5.11).
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We include in the numerical simulation some possible source of errors, expected to be
present in a realistic experiment. We assume a 0.2π precision in the determination
of the lattice phase ϕl (which is distributed randomly) reproducing the case where
phase of the pulsed lattice is not controlled but only inferred from the final density
distribution (as in the experiments presented in chapter 4), assuming the pulsed
lattice was also used for creating the 2D lattice. After determining the atom number
for every lattice phase, we extract a measurement assuming a poissonian distribution
with this atom number as mean.

From the signal so obtained, which shows the predicted behaviour of equation 5.16,
amplitude and phase can be easily extracted, thus making thinkable to access off-
diagonal elements of the density matrix in an experiment.

Notice that in the case of a mixed state, the amplitude of the oscillations would be
given by |J0(α)J1(α)ρab| instead of J0(α)J1(α)√ρaρb.

Notice that all the entries of the density matrix relative to pairs of lattice sites at
distance d are obtained at the same time, by performing the analysis at each lattice
site (instead, the proposal of [231] would need repeating the whole procedure for every
pair of lattice sites).

Using another laser, one might not be able to read the pulsed lattice phase directly
from the density distribution. Without the knowledge of ϕl, one can not access the
phase of ρab anymore. The absolute value |ρab| could still be inferred by repeating
the experiment for various (unknown random) values of ϕl and by looking at the
distribution of the signal in the mask, which should be contained within the values
J0(α)2ρa + J1(α)2ρb ± |J0(α)J1(α)ρab| (A similar procedure was used in [234], where
the phase correlation length was extracted from the intensity correlation length after
interference of two copies of a expanding BEC with thermal fluctuations. Note that
in that case we speak of "copies" in the sense that the interfering clouds had the same
density profile. In the experiments [234, 235] neither the density nor the phase profile
of the copies were the same as that of the original cloud, as we are proposing in this
chapter).
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5.2.3. Tuning the coupling Distance d

The coupling vector d can be tuned by varying the wavevector of the pulsed lattice.
This could be tuned arbitrarily using an auxiliary laser setup with movable mirrors
([236, 237]). The distance |d| can be tuned also by varying the trap frequency ω.
The matter-wave protocol could be adapted in order to set independently from each
other the trap frequency in the system under study, the trap frequency used in the
determination of |d|, and the magnification factor M .

Assuming that the s-orbitals have constant phase, we can calculate how the overlap
will be reduced in case the condition for coupling two distant sites is not be precisely
met: d = rb − ra + ε, with ε representing a small deviation, which we assume to be
also along x. Then the amplitude of the oscillations A = max[I(ϕl)]−min[I(ϕl)] as
a function of ϕl is proportional to:

A ∝
∫
WS

W ∗(r + ε)W (r) =
∫
WS

W ∗(r)eiP ε/~W (r) '∫
WS

W ∗(r)(1 + iP ε/~− P 2ε2/~2)W (r)
(5.17)

Approximating W with the ground state of the harmonic oscillator with oscillator
length aho, we can rewrite P = i~

2aho
(a†−a), with a†, a creation/annihilation operators

of the harmonic oscillator.
Noticing that only the terms proportional to 1 and to aa† have a finite expectation
value, this yields:

A ∝ (1− ε2

4aho2
) (5.18)

which implies that, intuitively, the coupling distance d must be set with a precision
at least at the level of the linear extension of the Wannier functions.

Notice that in a lattice with multiple s-orbitals, like the honeycomb or the Kagome
lattice, the overlap betweenWannier functions belonging to different sublattices would
be always smaller than 1. This should be taken into account when interpreting the
result of a measurement by e.g. rescaling the signal taking the finite overlap into
account.

Finally, we conclude with the remark that in order to couple two lattice sites, the
initial real space distribution must be precisely mapped to the momentum distribu-
tion during the 1D lattice pulse. This condition holds for a time interval not longer
than δtmax around T/4 (δtmax is the time during which two lattice sites remain well
spatially separated after release from the lattice, as introduced in the previous chap-
ter). Therefore the duration of the pulse tp must be smaller than δtmax. For realistic
parameters of Vp/h = 50kHz, tp = 1µs < tmax one obtains α = 2Vptp/~ ' 0.63, which
should produce a very good signal, as J1(α) is on the same order of magnitude as
J0(α).
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5.3. Conclusions

In this chapter we presented some preliminary experimental results and considera-
tions about the possibility of using the Quantum Gas Magnifier to access coherence
properties of a quantum system at the microscopic level.

We derived how the Talbot effect would look like in presence of a harmonic trap
and verified numerically the framework introduced here for the prediction of times
at which the system experiences Talbot revivals. We presented results of the Talbot
effect observed at the microscopic level in different geometries; Talbot revivals were
observed as an oscillation of the lattice modulation of the density distribution of the
atoms as a function of the time in the trap.

Although we were not able to make a quantitative comparison with some theory
because of interactions during the protocol we believe this is a promising research
direction, maybe with another atomic species. This effect could be used to access
coherence properties of a system in a real-space, which would be very useful for
inhomogeneous systems, as coherence was typically investigated in a global way. As an
example, we performed a numerical simulation of two systems with a inhomogeneous
distribution of the phase (a magnetic domain wall, and a magnetic vortex), and
have shown how the Talbot revivals could be a very sensitive measurement for phase
patterns. We notice that the mapping between Talbot revivals in a harmonic oscillator
and in free-space and the direct imaging with the quantum gas magnifier also allows
to measure Talbot revivals corresponding to negative orders (or for an equivalent
negative time-of-flight). This could be used to detect chiral states which break time-
reversal symmetry.

We also presented a proposal for the direct measurement of off-diagonal elements of
the single-particle density matrix, in a single site-resolved fashion. The proposal is
based on the engineering of non-local coupling terms between distant lattice sites,
using matter wave optics. We demonstrated numerically that in a setup much like
ours it could be easily implemented and should produce a measurable signal.

In the example presented here, a fast optical lattice pulse after a T/4 evolution
creates many displaced "copies" of the original wavefunction which interfere where
they overlap, and can be magnified with time-of-flight. In order to perform a simpler
analysis, we limited ourselves to the case where the displacement |d| is bigger than
the system size. It could be of interest not to have this limitation, e.g. by creating
a superposition of just two displaced "copies" of the original wavefunction φ(r) in a
form similar to: φf (r) ∝ φ(r + d) + φ(r).
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This protocol requires being able to image coherent systems in the first place, there-
fore, as before, we don’t expect an implementation with 87Rb in our setup, because
we can not tune the interactions to zero during the measurement protocol. It could be
done with an atomic species where the scattering length can be tuned (dynamically)
to 0 near a Feshbach resonance, or with spin-polarized fermions.

The case of fermionic atoms could be particularly interesting, as they tend to fill
homogeneously lattice bands, allowing for a quantized topological response. Coher-
ence between lattice sites is a fundamental requirement for topological bands: the
local Chern marker, which in the bulk of a topological system approaches the Chern
number, can be expressed as a function of the off-diagonal density matrix elements
in different pairs of lattice sites ([238]). Note that in momentum space, the density
matrix gives the global Chern number of a system ([239]). Relevantly for an exper-
imental application, a finite number of such elements need to be measured to get a
good approximation of the local Chern marker ([240]). In a system with fermions
occupying different levels in z-direction (e.g. in a lattice of "tubes") the measured
density matrix will be then averaged over the degrees of freedom corresponding to
the z direction, but if this direction can be considered decoupled from the other,
averaging just increases the signal to noise ratio.

If performing a T/4 (3T/4) evolution after the application of the 1D lattice pulse, one
could recapture the atoms in the original lattice, but at a lattice site at distance d
from the previous occupied one. This could be used to move qubits over long distances
as a resource for quantum computation ([241]) or, when repeating the protocol, in a
Floquet realization, for engineering long range tunneling.

A general remark on both type of measurements proposed in this chapter (the Talbot
revivals and the measurement of the density matrix): they are strongly related to each
other, because both depend on the phase correlation function. The advantage of the
Talbot method could be that it needs a simpler protocol, and in principle one could
obtain with a single destructive measurement much of the relevant information about
the phase distribution of the system as we have shown in the numerical simulations,
making it more suitable for phase patterns like magnetic vortices of domains which
might be different from realization to realization.

Instead if the phase pattern is stable (constant for every experimental realization)
having access to the correlation function between any two lattice sites is enough to
obtain the complete information of the system at the single particle level, which would
be then a fundamental aid in studying complex many-body problems.
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6. Multi-Frequency Lattice

Control of the potential is crucial in optical lattice experiments ([242]), and in par-
ticular e.g. with experiments that deal with topology, where the topological features
depend on the system parameters. The control to which we are referring can be static
as well as dynamic.

The optical honeycomb lattice ([33, 243]), can be realized in a variety of geometries
tuned via the polarization of the laser beams, but this does not allow a full dynamic
control of the geometry. This can be achieved using a more near-detuned laser to
exploit the dependence from the direction of the quantization magnetic field ([244]),
or using a setup with piezo mirrors ([126, 179]). The geometry in a bipartite square
lattice can also be controlled in a similar fashion ([185]).

During my PhD I conceived and developed what we called the "multi-frequency lat-
tice", an extension to the optical honeycomb/triangular lattice which allows a precise
full dynamical control over the geometry of the lattice. Implementation and charac-
terization of the multi-frequency lattice in our setup was done together with Henrik
Zahn and Marcel Kosch, under the supervision of Christof Weitenberg and Klaus
Sengstock. The multi-frequency lattice is based on driving each of the three laser
beams with two frequencies, such that they interfere pairwise with each other but
with a different frequency for each 1D lattice forming the total potential. We show
how this allows lattice geometry control.

Other schemes for generating optical lattices which rely on multiple frequencies are
Fourier synthesized lattices ([210]), beat-note lattice ([245]), two wavelengths lattices
like e.g. the Kagome lattice.

The multi-frequency lattice does not require phase lock like most of the multi-frequency
techniques used for generating optical lattices (e.g. [187]). Also polarization synthe-
sized lattices ([246]) need a precise phase lock.

We demonstrate the stability of the multi-frequency lattice and present some mea-
surements where dynamical control of the geometry is demonstrated.

113



6.1. Tunable Lattice Geometry via Frequency Control

Three interfering laser beams propagating in two dimensions always lead to a sta-
ble geometrical configuration with respect to phase fluctuations ([247]). We give a
demonstration using a convention which will be used in the rest of the chapter.

Without loss of generality, one can write the lattice potential as Epot(r) = 2∑i Vi cos(ϕi)
where ϕi = bi · r + ϕ0

i , and bi = εijl
kj−kl

2 (with b1,2,3 the reciprocal lattice vectors
obtained by cyclic combination of the wavectors of the lattice beams k1,2,3); r is the
vector of the coordinates in the 2D plane.
Let’s consider a phase fluctuation δϕ on beam 1, for example. This modifies two of
the phases entering the definition of the potential:

ϕ1 = b1 · r + ϕ0
1

ϕ2 = b2 · r + ϕ0
2 + δϕ

ϕ3 = b3 · r + ϕ0
3 − δϕ

(6.1)

One can recover the exact same potential just by an appropriate position shift of the
lattice r = r′ − δϕ b2−b3

(b2−b3)·b2
:

ϕ1 = b1 · r′ − b1 · δϕ
b2 − b3

(b2 − b3) · b2
+ ϕ0

1 = b1 · r′ + ϕ0
1

ϕ2 = b2 · r′ − b2 · δϕ
b2 − b3

(b2 − b3) · b2
+ ϕ0

2 + δϕ = b2 · r′ + ϕ0
2

ϕ3 = b3 · r′ − b3 · δϕ
b2 − b3

(b2 − b3) · b2
+ ϕ0

3 − δϕ = b3 · r′ + ϕ0
3

(6.2)

Where we used b1 · (b2 − b3) = (−b2 − b3) · (b2 − b3) = 0 for the first phase and
(b2−b3)·b2 = −(b2−b3)·b3 in the last one. Therefore, the lattice geometry remained
constant and only the position of the lattice changed. This effect is explicitly used
by lattice shaking, which moves in space the lattice structure with controlled phase
shifts of the lattice beams.

Having a second look at equation 6.1 we notice that there is a quantity which is
unchanged under phase shifts:

ϕg =
∑
i

ϕn (6.3)

Equivalently, also position shifts r = r′ − δr don’t change ϕg, because the apparent
dependence of ϕg on r is trivial, since ∑i bi = ∑

i εijz
kj−kz

2 = 0.

We call ϕg then "geometry phase", arguing that it plays a major role in determining
the geometry of the optical 2D lattice.
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The potentials obtained for the different values of ϕg for the symmetric case where
V1,2,3 = V and when the beams interfere under a 120° degree angle, are plotted in
figure 6.1. When ϕg = 0 one gets a honeycomb lattice, and if ϕg = π, a triangular
lattice. The energy levels as a function of ϕg are plotted in figure 6.2, where one
notices the honeycomb lattice with sublattice offset ∆ = 0 as the point where the
first two bands touch, closing the gap at the K ans K ′ points of the Brillouin Zone.
The 2D lattice potential Epot is described by six parameters (three Vi and three ϕi)
but two degrees of freedom are associated with the in-plane position; therefore just 4
parameters are needed for a complete description of the geometry of the lattice: the
1D lattice depths Vi and ϕg.

Figure 6.1.: Potential landscapes for different geometry phases ϕg.
Potentials calculated as Epot(r) = ∑

i cos(bi · r +ϕg/3) for different values of ϕg. An offset
is added such that all minima for all potentials are at Epot = 0. Notice that the range of
ϕg scanned is not linear, and therefore a honeycomb or boron-nitride lattice can be found
in a relatively much smaller range than a triangular lattice. After 2π the geometry is the
same as in the beginning but the lattice position is shifted, as can be seen by comparing the
position of the minima with the reference unit cell drawn in the first and in the last plot.
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Figure 6.2.: Band structure as a function of the geometry phase ϕg. The band
structure is calculated for a fixed lattice depth of V = 5Er and integrated over the Brillouin
zone. Different colors corresponds to different bands. Notice that in the triangular lattice
regime bands are completely flat, while there is some dispersion in the lowest bands of the
honeycomb lattice. The band gap increases approximately linearly in |ϕg| around ϕg = 0,
until the s-orbital state with bigger energy gets hybridized with the p-orbital state residing
in the lattice site with lower energy.

It is then evident that, in order to change ϕg, one needs complete independent control
over all phases ϕi. This can be done statically by polarization control (as described
in chapter 2), but every geometry change requires careful setting of the polarization
angles and calibrations, and dynamical change might be possible only using motorized
rotation plates ([248]). These can not be driven arbitrarily fast and require accurate
calibration and care in disentangling the waveplates angles (one needs two waveplates
in order to set an arbitrary polarization in one beam) from the 1D lattices depths Vi
and phases ϕi.

The sketch of the multi-frequency lattice, with which we chose to realize dynamic
control of the geometry, is presented in 6.3. The main idea is that each laser beams
is driven at two different frequencies. For each pair of beams, a frequency is shared,
creating the corresponding 1D lattice. Now the phase of each 1D lattice can be tuned
independently of the phases of the other 1D lattices, acting selectively on the relative
phase of the right frequency component.
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Figure 6.3.: Sketch of the multi-frequency lattice.
Each laser beam is driven by two frequencies. For every couple of beam there is a frequency
in common (νa,b,c), such that a 1D lattice at that particular frequency is created, with
wavevector given by the difference of the corresponding photon wavevectors k1,2,3. Atoms
sitting in the minima of the total lattice potential are represented by purple circles. The
phase of each 1D lattice can be individually controlled independently of the other two by
changing the relative phase in the corresponding frequency component. For example by
changing ϕb2−ϕb3 the "green" lattice can be shifted along its wavevector leaving the others
in place. The actual differences between frequencies can be as small as some MHz, and the
spatial separation between different frequency components in the same beam is introduced
for clarity.

In this way, one has that ϕg is given by:

ϕg =
∑
i

ϕ0
i = (ϕa1 − ϕa2) + (ϕb2 − ϕb3) + (ϕc3 − ϕc1) (6.4)

where ϕxn is the phase of the frequency component x on beam n. Grouped in the same
parenthesis are phases relevant for the same 1D lattice. Since all of the phases are
now independently controllable, one could vary any of them to set ϕg to the desired
values. In this way, one could realize all the symmetric static potentials possible with
the given wavevectors with polarization control ([32]).
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In particular we note the possibility to set with great precision the offset ∆ in a
honeycomb lattice situation, where it determines the topological region ([9, 11, 65]).
We note also that for (red-detuned) linearly in-plane polarized light ϕg is not auto-
matically 0 because of the vector light shift (see Appendix C), which is more relevant
for laser light detunings which are not much bigger than the fine structure of the
atoms ([249]); note that this holds unless working with the mF = 0 hyperfine state
and/or having also in-plane orientation of the quantization axis ([244]). The multi-
frequency lattice allows to compensate naturally for this phase offset and to set the
offset between sublattices in the honeycomb lattice ∆ = 0. On the other side, since
in this scheme the geometry can be set for a given mF state independently of the
polarization, one could use the polarization angle to tune the dependence of the po-
tential on the internal atomic state, with the possibility to cancel it completely with
out-of-plane polarization.

We also notice that some asymmetric potentials that are difficult to achieve with
polarization control become easily realizable with the multi-frequency lattice; as an
example the distorted quadratic lattice (see figure 6.4) of the form ∑3

i=2 cos(bi · r),
can be obtained with the multi-frequency lattice simply by turning off the frequency
component for the 1D lattice at wavevector b1.

Figure 6.4.: Distorted Quadratic lattice. Optical lattice as described by ∑3
i=2 cos(bi ·

r). The tight binding-description of the lowest band of this potential can be mapped directly
to the one of a symmetric square lattice. The black hexagon marks (a possible choice of )
the unit cell.

This potential could be realized in a polarization lattice only with a careful tuning of
the polarization angles ([21]). Being able to measure both in a quadratic and e.g. in a
triangular lattice in the same experimental setup could allow to investigate the role of
geometrical elements like frustration or connectivity (number of nearest neighbours)
in various physical settings ([250]).

This possibility of easily realizing particular geometries is mentioned only as an ex-
ample to demonstrate the tunability of the multi-frequency lattice, and of course the
interest in this new scheme lies in the possibility of changing the geometry of the lat-
tice in a dynamical fashion, for studying dynamics in new regimes and/or engineering
novel Floquet protocols.
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6.2. Implementation

A B

Figure 6.5.: Schematic of the Experimental setup. In A the implementation of the
multi-frequency lattice is sketched. The laser light is splitted into the three beams. Each
of them is first modulated by an EOM and then diffracted by an AOM. The modulation
frequency να is obtained after mixing the frequencies νγ and νβ and using a 2MHz low
pass filter in order to guarantee perfect relative phase stability from the side of the radio-
frequency sources. All beams are sent to the experiment table through separate optical
fibers. In B, the spectrum for each beam is represented and shows that every beam pair
has one (and only one) frequency in common (νa,b,c).

Our implementation of the multi-frequency lattice is sketched in fig. 6.5. We de-
tuned the three beams with respect to each other by driving the AOMs at frequencies
ν0 + νγ = 114.995MHz, ν0 + νβ = 112.775MHz, ν0 = 105.005MHz. This frequency
separations are much bigger than typical on-site trap frequencies of the lattice, cre-
ating a running wave which would not influence the atoms. We establish interference
by using EOMs by Qubig with tunable resonance frequency driven at να = 2.22MHz,
νβ = 7.77MHz, and νγ = 9.99MHz. Thus each modulation creates a sideband exactly
at resonance with another beam.

The lattice depth of a 1D lattice is proportional to the product of the relative electric
field components at the same frequency of the two corresponding laser beams. Because
every 1D lattice is formed via interference of a sideband and of a carrier, the lattice
depth is proportional to J0(n)J1(n) (with Jo(n) being the Bessel functions of the
first kind of order o, assuming n to be the modulation index for all EOMs). We
set then n ' 1.08 which maximizes the product giving J0(n)J1(n) ∼ 0.34. We do
this by first calibrating the modulation index as a function of the incoming radio
frequency amplitude via a Fabry-Perot cavity, where the spectrum of the laser beam
can be seen and the modulation index inferred from the relative height of the peaks
in the spectrum. Since the polarization of the laser beams is no more decisive for the
geometry, we used linear polarization of the laser beams and turn it perpendicular to
the lattice plane for maximal interference.
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In this way, in order e.g. to realize with the multi-frequency lattice the boron-nitride-
like lattice used in the circular Dichroismus chapter, we calculate a factor of ∼ 0.77
between the lattice depths obtained with the two methods, for the same total laser
power (the lattice obtained via polarization control being deeper). For the triangular
lattice, where the lattice depth is not really a limitation (because of the greater lattice
spacing between nearest neighbours it can reach much smaller tunneling elements
being, effectively, much deeper) this factor becomes ∼ 0.34. We notice then that for
obtaining the exact same lattice potential, the realization with the multi-frequency
lattice requires more laser power: this has to be taken into account when calculating
the additional confinement due to the spatial variation of the intensity of the lattice
beams, particularly relevant in the z−direction in our setup.

The modulation frequencies were chosen with the (to some degree, arbitrary) con-
straints of staying below 10MHz with the biggest energy difference between the AOM
driving frequencies, and having the smallest running wave frequency above 1MHz.
The first constraint was motivated by the efficiency range of the AOMs being finite;
and we did not want to change AOMs in order to make the switch between multi-
frequency and polarization lattice easier in both directions. Putting the EOMs in
place was a relatively non-invasive operation (up to a small power loss due to the
transmission efficiency of the EOMs); when switching to the multi-frequency lattice
we had only to change the AOMs frequencies and recouple the beams in the AOMs
and subsequently in the fibers. After we verified that the setup was working, we
turned the polarization of the lattice beams out of plane.

The second constraint for choosing the modulation frequencies is given by the typical
energy scales of the atoms in the lattice: by taking the difference between any two
frequency components on two beams one gets a frequency associated with a running
wave in the system. Notice that while the strongest running waves have frequencies
equal to the differences between AOM driving frequencies, the smallest running wave
frequency is given by 1.11MHz (obtained by taking into considerations also higher
order sidebands, with much reduced relative weight).

By imposing that all the possible frequency differences must be above 1MHz (much
greater than the lattice depth) we make sure that these frequencies don’t couple to
dynamical degrees of freedom.

We note that Raman transitions to other spin states should be avoided, by choosing
the polarization of the laser beams to be parallel to the quantization axis and/or
choosing a separation of the mF states (given by the amplitude of the quantization
field) which is not a multiple of the lowest running wave frequency (in our case,
1.11MHz). On the other hand, it would be interesting in the future to study how
using explicitly Raman transitions could modify the picture ([251, 252], or [253] in
momentum space).
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There are also components to the static lattice which come from the interference of
higher order sidebands, e.g. we notice that because νa − 6να = νb − 2νβ the −6th

sideband on EOM 1 will be resonant with the −2nd sideband on EOM 2; the corre-
sponding lattice depth is proportional to J−6(n)J−2(n) and, for our low modulation
index, can be safely neglected (all such interference terms are at least a factor 105 sup-
pressed with respect to the desired ones). The choice of the frequencies as a multiple
of an integer sequence (2,7,9) is simply mainly due to simplicity for the individuation
of such higher order resonances, and for being able to identify a periodic evolution
of the time-dependent potential, since all the frequencies present in the system are
multiples of 1.11MHz, which then becomes the smallest frequency a running wave
can have (incommensurate choice of the frequencies, instead, leads to a quasiperiodic
evolution of the potential). Among the possible triples we found 2,7,9 to be the best
in term of relative impact of the higher order resonances we just discussed.
We obtain an important information over the stability of the geometry by taking
the time derivative of ϕ from equation 6.4 and grouping the phases in the following
order:

∂tϕg = ∂t((ϕa1 − ϕc1) + (ϕb2 − ϕa2) + (ϕc3 − ϕb3)) = να + νβ − νγ (6.5)

Notice that the different sign for νγ comes from the fact that we are using the opposite
sideband there as compared with the other two. This tells us that the geometry is
stable as long as:

νγ = να + νβ. (6.6)
making only the EOMs responsible for the stability of the geometry. This requirement
is actually not so easy to realize as it looks, because the necessary precision is very
high: on the time scale of several experimental runs (∼ 30 minutes), or of complete
measurements (∼ 1−10hours) a deviation of just ∼ 10−4Hz would change completely
the geometry.

We found a solution to this issue in obtaining the frequency να from mixing of νβ
and νγ. We chose this configuration for the mixing since it produces the most distant
frequencies: νγ − νβ = 2.22MHz and νγ + νβ = 17.6MHz; we suppress the second
(unwanted) one using a 2MHz low-pass filter. As a remark, the EOM resonance is
very sharp and hence other frequencies are not expected to play a role. Since the
phase of the mixed signal is the difference of the phases, we can use the phase of one
of the two mixer inputs to control the phase of the corresponding 1D lattice (ϕa).

We use then two output channels at νβ and two output channels at νγ coming from
the same digital device. This guarantees perfect phase stability in the pairs of output
channels with the same frequency, needed for the condition of equation 6.6.

The radiofrequency source is a custom-made source developed in our group ([22, 254]).
It is referenced to a 500MHz clock and has the possibility to set frequencies in the
0 − 200MHz range and a 14 bit precision of the phase of 2π/214 = 3.8 · 10−4 rad on
four independent output channels.
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The EOMs are temperature stabilized with a Peltier element, because the resonance
frequency is temperature dependent. The stabilization is thus necessary for both
keeping the modulation amplitude constant (and hence also the lattice depth) and
for not picking up additional phases due to the mismatch in the resonance condition
of the EOM (and hence keeping the lattice geometry constant). We indeed observe
that the modulation phase depends slightly on the modulation amplitude.

Similarly, the position of the lattice drifts with a velocity which depends on the
relative error of the frequency sources; we note that here the requirement on the
precision is much less strict since even errors on the order of 1Hz would just displace
the lattice less than about a lattice site over 1s, which is typically much longer than
the experimental time-scale. In practice we observed no drift for a hold time in
the lattice of up to 6s (measured by magnifying the density distribution of a deep
triangular lattice and considering fluctuations of the center of mass of the atoms with
respect to the center of the magnetic trap).

6.2.1. Calibration of the Geometry Phase ϕg

We want now to know which geometry phase ϕg we get as a function of the phases
ϕa,b,c that we set on the EOM modulation frequencies. While we expect a simple
dependence in a linear form:

ϕg = ϕa + ϕb − ϕc + C. (6.7)

the exact value of the phase shift constant C might be difficult to predict because of
radiofrequency delays in the setup, or (relative) phases that the light might pick up
while travelling in the optical fibers.

In order to measure this factor (or, to "calibrate the phase"), we found an effective
method to get quickly an idea on the whereabouts of the shift; we present this pro-
tocol because it also suggests the possibility of geometric effects in momentum space
and is nicely explained using gauge field theories. Notice that effects of the geome-
try on the momentum distribution after time-of-flight have been studied in [255, 256].

The experimental protocol is quite simple: we load a BEC into a asymmetric lattice
with V2 ∼ V3 ∼ 0.5V1, and measure the atomic density after time-of-flight. As a result
of the symmetry breaking, the intensity of the Bragg peaks is not three-fold symmetric
anymore, and the Bragg peaks corresponding to the b1 reciprocal wavevector are more
pronounced than the others.

Interestingly, the relative population of the atoms in the Bragg peaks corresponding
to the b1 reciprocal wavevector depends on ϕg, and it is has a maximum around
ϕg = 0 (figure 6.6).
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A B C

Figure 6.6.: Bragg peaks intensities dependence on the phase. In A, time-of-flight
images for two different values of ϕg, which evidence a different momentum distribution.
In B, the dependence of the relative populations of the Bragg peaks correspondent to
the 3 reciprocal lattice wavevectors is shown. The relative population corresponding to
wavevector b1 exhibits a clear maximum. InC, theory prediction for V2 ' V3 = 0.5·V1, V1 =
2.13 Er is shown.

An intuitive picture for explaining this phenomenon can be found by looking in mo-
mentum space, and by noticing that the geometry phase has a direct link to the
staggered magnetic flux Φ in the reciprocal lattice as:

Φ = π + ϕg (6.8)

The derivation of equation 6.8 is presented in Appendix C.2.

The asymmetry in the lattice depths (interpreted as the coupling terms between
different momenta in reciprocal space, as introduced in chapter 2) would tend to
populate more in the ground state of the lattice the momenta with wavevectors Q =
±b1, but when ϕg ∼ π → Φ ∼ 0, the energy is sunk by delocalization over the
different momenta, and as a result states with wavevectors ±q1,2,3 possess similar
populations. Instead, if ϕg ∼→ Φ ∼ π, the system is frustrated and delocalization
over momenta Q = ±b2,3 is no more convenient energetically. As a result, momenta
Q = ±b1 are much more populated.

This measurement also provides the insight that a honeycomb lattice is best for
calibration of the lattice balance between different lattice beams, made by maximizing
60° rotational symmetry of time-of-flight pictures as a function of the lattice beam
intensities.
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Figure 6.7.: ’In Situ’ density distributions for different values of ϕg. In A the
density distributions for a given values of (ϕa − ϕhc

a )/(2π) are shown. ϕhc
a is defined as

the phase that has to be set by the modulation frequency νa assuming ϕb,c = 0, π to get a
honeycomb lattice with sublattice offset ∆ = 0. ϕhc

a is obtained from the fit in B. When ϕg
changes sign, so does the offset; as a result the atoms populate then mostly the sublattice
with lower energy. For values of ϕg ∼ 0 an almost equal populations of the two sublattices
is to be observed. The relative populations nA,B can be directly extracted by summing the
signal around the corresponding lattice sites, and normalizing to the total atom number. In
B, nA and nB are plotted as a function of ϕa. They can be well fitted by a linear function.
From the intersection between the two linear fits one gets a really precise calibration of the
geometry phase with an uncertainty below 0.001 · 2π.

Once we locate the region where ϕg ∼ 0, we proceed with a finer calibration, which is
then performed with spectroscopy techniques, as illustrated in section 6.3, or directly
in real space, by looking at the density distribution of the atoms in the lattice and
measuring the relative occupation of the two sublattices (as described in fig. 6.7).

The complete calibration of the lattice is achieved by typically balancing the 1D
lattice depths from time-of-flight images from perfect honeycomb lattices or using
diffraction from the lattices (Kapitza Dirac scattering) and/or using spectroscopy
techniques to calibrate the global lattice depth.

124



6.2.2. Phase Drifts in Time and Space
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Figure 6.8.: ϕhc
a Drifts. Plotted are the ϕhc

a calibration results (errors included) with the
method described in the previous section, over a period of about four months. We have the
impression these drifts could be described by "plateau" periods separated by "jumps", but
we could not pinpoint a particular change in the lab conditions which directly correlates
with this time dependence.

We found that ϕhc
a is not constant in time, but it has fluctuations on a timescale of

several days, as illustrated in figure 6.8, which might be at times a little bit annoying,
but is not problematic for measurements. We tried to identify factors which could
cause a shift in time of this calibration, but could not correlate these fluctuations with
variations of other parameters in the setup or in the laboratory. At the same time, we
observed that when replacing the radio-frequency source device the phase jumped to
another value, so actually it might be somehow related to the radio-frequency part of
the setup. We could also speculate that a slow change in the temperature stabilization
system would result in phase drifts, but were so far not successful in pinpointing the
exact cause of such a change.

For the sake of this work, we were content to see that the phase is stable enough on
the timescale of several days. This is of relevance when doing experiments with the
honeycomb lattice where the possibility to set exactly ∆ = 0 is important, and pretty
much negligible for the triangular lattice.
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We now turn to the spatial variations of the geometry: we take into considerations
the small differences in wavevector that the 1D lattices have (because of the slightly
different light frequencies), which cause the condition ∑i bi = 0 not be valid anymore
making thus ϕ effectively space-dependent (compare with the definition of ϕg in
6.3):

|bi|=
1
c

(νa + δνi) (6.9)

where δν1 = 0, δν2 = νβ, δν3 = νγ; this implies that ϕg has a spatial dependence
described by:

ϕg(r) = ϕg(0) +
∑
i

bi · r = ϕg(0) + B · r (6.10)

with the wavevector B having amplitude |B|∼ 0.33rad/m. This corresponds in our
case, to a (very small) phase drift of about 3 · 10−4rad in a region of 1mm size, which
is much bigger than the lattice size itself. This effect can therefore be neglected.
We notice that choosing frequency differences between different 1D lattices in the
∼ 10−100GHz regime one could realize a bigger spatial change of the geometry, which
could allow e.g. to realize an interface between areas of different topology ([168]).

6.3. Spectroscopy via Offset Modulation

As we have seen in chapter 3, the choice of the perturbation operator is of great im-
portance for spectroscopy measurements. As a first application of the multi-frequency
lattice in a dynamical context, we want to modulate ∆, the offset between sublattices
of the honeycomb lattice, periodically in time with frequency ω and amplitude ∆m,
around a given value ∆0:

∆(t) = ∆0 + ∆m sin(ωt) (6.11)

At first we need to know how ∆ depends on ϕ: we obtain from band structure
calculations that ∆ has a linear dependence from ϕg, as shown in fig. 6.9. This is
in contrast with the dependence of ∆ from the polarization angles in a polarization
lattice, which is quadratic. Even in a setup with motorized waveplates, changing
dynamically the sign of ∆ would then be quite challenging.

Thus the knowledge of V and ϕ gives the possibility to set the desired offset ∆. When
varying ∆ dynamically, care has to taken not to couple this modulation to position
shifts, if not desired. This is achieved by symmetric modulation of all 1D lattices:

ϕa,b(t) = ϕa,b(0) + ∆m

3c sinωt; ϕc(t) = ϕc(0)− ∆m

3c sin(ωt) (6.12)

Where c is the coefficient which describe the relation between ϕg and ∆ in the linear
regime as ∆ = cϕg. Notice that the third EOM is modulated with a π phase shift
because it produces interference using the opposite sideband (figure 6.3).
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Figure 6.9.: Sublattice offset ∆ as a function of ϕg. The three curves ofA corresponds
to lattice depths of A = 6, 12, 24Erec (blue, red, yellow). ∆ is antisymmetric in ϕg, and
here only the ϕg > 0 part is shown. The offset increases linearly until the band gap to the
third band closes (see fig. 6.2); at this point the tight binding description with just two
sublattices breaks down. Notice that, for deeper lattices, this happens for smaller values of
ϕg. This can be understood by noticing that the separation from the first to the third band
scales with

√
V , while ∆ (which dictates the separation between the first and the second

band) scales in good approximation linearly in A, as can be seen in B. There ϕg/(2π) = 0.01
is used. The dashed line is plotted for clarity and evidences the deviation from a (not to
be expected) perfectly linear model.

In figure 6.10 we show that this type of modulation couples the first two bands in
a honeycomb lattice; this spectroscopy experiment allows obtaining ϕ0

a and V with
great precision.

We notice that the EOMs have a finite bandwidth of a few kHz. This means that
modulating with too big amplitude ∆m might result in a change of the modulations
index and, as a consequence, of the lattice depth. Therefore, also the tunneling
couplings could be modulated as a side-effect.

Spectroscopy in an optical lattice can be done by different methods, which are char-
acterized by a different perturbation operator, like amplitude modulation ([257, 258])
or shaking ([259]). Because the honeycomb/triangular lattice potential can be de-
scribed by 6 parameters (3 Vi, ϕg and the position in the 2D plane r), the modulation
of ϕg completes the list of possible perturbations which preserve the symmetry of
the lattice, the others being spectroscopy via amplitude modulation ([258]) of the
3 independent lattice depths Vi, and lattice shaking ([259]), of which two indepen-
dent perturbations are e.g. the ones associated with negative and positive shaking
chirality.

We mention that there are also plenty of methods which instead break the trans-
lational symmetry of the lattice like Bragg spectroscopy ([236, 237]), Raman spec-
troscopy, phasonic spectroscopy (obtained by modulation of an additional incommen-
surate lattice in [260]), or methods based on internal degrees of freedom like Raman
spectroscopy, microwave/radio-frequency spectroscopy.
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Figure 6.10.: Band Spectroscopy with sublattice offset ∆ modulation. Plotted is
the signal in the 2nd Brillouin zone after modulation of the offset ∆ and subsequent band-
mapping, as a function of the spectroscopy frequency and the initial geometry phase ϕg.
Experiment performed with 87Rb atoms initially "filling" (not homogeneously) the lowest
band. From a fit to the resonance points of the form E/h =

√
c2(ϕa − ϕhc

a )2 + E2
0 we can

determine ϕhc
a with a precision under 0.01rad. From the value of c (15kHz/rad from the fit)

also the lattice depth can be extracted. We plot E/h as obtained from the fit (solid line)
and its half value E/2h (dashed line), in correspondence of one- and two-photon transitions,
respectively.

The possibility to modulate out out-of-phase the two sublattices opens also possi-
bilities for engineering the dynamical properties of the system (much in analogy to
amplitude modulation in resonance with a potential offset, as e.g. in [261, 262])
and thus for more possibilities of quantum simulations with driven quantum gases in
optical lattices.
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6.4. Generalization to 3D

In 3D, one could have up to 4 laser beams interfering at the same frequency producing
a stable lattice geometry (also in this case, phase fluctuations would just imply a shift
in space of the lattice structure, without changing the geometry).

The total 3D lattice potential E3D
pot can be written as ([247]):

E3D
pot(r) =

∑
i<j

Vij cos(bij + ϕij) (6.13)

with 4(4−1)
2 = 6 independent wavevectors bij = ki − kj. The corresponding 1D

lattices are characterized by intensities Vij and phases ϕij. Beam polarization should
be chosen such that orthogonal pairs are avoided, and all beams can interfere with
each other.

To create a 3D multi-frequency lattice, then, one would need to create each 1D lattice
with interference from radio-frequency modulation. Because there are now 6 phases
(each for every 1D lattice) and 3 parameters associated with spatial shifts (because of
the three dimensions), the geometry is then described by 6−3 = 3 phase parameters,
in addition to the Vij, becoming much more richer than in 2D.

Phase calibration of this setup could be done as follows: by removing one of the 4
beams, one is left with a 2D lattice, whose phase can be calibrated as demonstrated
in this chapter. Calibration of three (of the possible four) 2D lattices yields then
complete knowledge over the system geometry.

A simple sketch of a possible 3D realization of the multi-frequency lattice is presented
in fig. 6.11. Although this proposal is not fully developed yet, it serves as a proof-of-
principle that there is no fundamental limitation as to why this scheme couldn’t be
extended to 3 dimensions.

The combination of being able to set and dynamically manipulate complex 3D po-
tentials, united with the possibility to image the (integrated) density distribution of
3D systems would open really interesting new avenues for quantum simulations of 3D
solid state systems, in particular of complex non-separable potentials, which might be
challenging to realize with polarization control. A fundamental interest in increasing
the dimensionality is provided e.g. by the greater variety of topological phenomena,
e.g. conducting hinge states in higher-order topological insulators ([135, 263]), or
those present in Weyl semimetals ([264, 265]).
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Figure 6.11.: Possible modulation Spectra for a 3D multi-frequency lattice.
Beam 1 (going from bottom to top) is modulated with frequency 2νm, beam 2 with frequency
7νm, where νm is the fundamental running wave frequency; the grid spacing is also in
units of νm. Beam 3 is modulated with two EOMs, one at frequency 9νm, the other at
frequency 4νm. The spectrum now possesses much more frequency components, of which
only the ones with relative intensity at least equal to J1(n)4 ∼ 0.05 (with modulation index
n = 1.08) are shown. Beam 4 is also modulated with two EOMs, one at frequency 15νm,
the other at frequency 18νm. Every beam pair shares only one frequency component. This
corresponds to a 1D lattice whose phase can be set by controlling the modulation phase
of the corresponding EOM. Notice that the frequency at which the lattice with indices
ij = 1, 4 (2, 4) runs is produced in both beams as a modulation sideband; since the phase
of the EOM in beam 1(2) determines also the phase of the lattice with indices 1, 2 (2, 3) the
modulation phase of the EOM in beam 4 has to be used to set the corresponding lattice
phase, taking into account the modulation phase in beam 1(2). The upper two spectra are
scaled up a factor of 2 for clarity.

Interestingly, the non-linear photogalvanic effect ([266]) is predicted to be quantized
in some materials including Weyl semimetals ([267]), and [268] evidenced the relation
between this quantization and the one of quantized circular dichroism, and proposed
the latter as a possible probe mechanism. This possible implementation of a highly
tunable 3D lattice presented here suggests then a possible convergence of the re-
sults presented in chapters 3, 4 and 6, and is therefore a nice way to approach the
conclusions of the last chapter of this work.
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6.5. Conclusions

We implemented a new optical lattice setup with full dynamical control of the ge-
ometry, from triangular lattice to boron-nitride with controllable offset between the
two sublattices. We demonstrated how to calibrate the geometry of such a lattice
and characterized the stability of this setup. In particular, we tested the stability by
reproducing some of the data presented in the previous chapters, without noticing
a decrease in the lifetime. The geometry change could be directly seen in the real-
space density distributions of the atoms in the lattice, with the use of the imaging
technique introduced in chapter 4. We also demonstrated the realization of a new
type of spectroscopy, where the local potential energies of the two sublattices in a
honeycomb geometry are modulated out-of-phase with respect to each other.

This setup will be useful for studying physical effects in different geometries within
the same setup. The higher tunability could be used e.g. for a measurement of heating
in driven systems as a function of the geometry for determination of the parameters
maximizing the lifetime in Floquet system.

The possibility of inverting the offset in the honeycomb lattice would allow selective
population of higher bands ([186, 187]). This would be particularly interesting also in
combination with the possibility of imaging the corresponding orbitals using quantum
gas magnification.

The state tomography scheme ([66]) demonstrated in [33] requires quenching the
offset ∆. This could be done naturally with the multi-frequency lattice decoupling
the offset characterizing the physical system under study from the offset used during
the tomography.

Complete dynamical control over the geometry would also allow for richer Floquet
drive protocols e.g. for the creation of new topological phases, in combination with
already established techniques like lattice shaking ([9, 11, 33]) and amplitude modu-
lation ([77]).
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7. Conclusions

This thesis focused on the issues of measuring and controlling optical lattice systems
for quantum simulation. Different systems were taken into consideration: in chap-
ter 3 we considered spin-polarized fermions in a Floquet band. We demonstrated
experimentally that the topology of the system (given by the Chern number) could
be extracted via a spectroscopy measurement. The topological system breaks time-
reversal symmetry and hence reacted differently to circularly polarized spectroscopy
probes with different chiralities; the excitations were measured after a band-mapping
procedure. This difference in the response between positive and negative chirality
(circular dichroism) is quantized in terms of the Chern number and hence allows its
detection. With this type of spectroscopy, also the imaginary part of the transverse
conductivity and the Wannier spread functional could be measured, without direct
access to the real space distribution of the atoms. This measurements could be in the
future performed also with interacting systems (e.g. fractional quantum Hall states),
and be used as a way of probing topology in novel systems.

In chapter 4, a new method for accessing the real space distribution of the atoms in
the lattice system was presented. This technique, named "quantum gas magnifica-
tion", consists in a matter-wave protocol which, as the name suggests, magnifies the
density distribution, which can be then imaged with higher resolution. We presented
theoretical considerations and experimental results. The magnification allowed to get
single-shot images of the distribution in the lattice with sub-lattice resolution, even
to the point that the dynamics within a single lattice site following a quench of the
lattice geometry could be resolved. We also demonstrated the measurement of the
temperature obtained from the spatial distribution of non-condensed atoms in the
lattice, and the possibility to use radio-frequency techniques to shape the density dis-
tribution at the single-site level which could be used for creating out-of-equilibrium
systems. Also, we discovered a surprising dynamics in the lattice upon application of
a constant force, which sets a correlated pair tunneling to be the relevant dynamical
process.

Quantum gas magnification promises to be quite a versatile technique, which could
be applied in a variety of different contexts. It could be e.g. combined with single-
atom fluorescence imaging for studying strongly correlated systems. Magnification
via optical potentials could be applied to spin systems, in particular to system with
atoms in more than two internal states for which no microscopy technique exists yet,
and the spin-resolved detection could be done in combination with a Stern-Gerlach
separation.
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Increasing further the magnification could allow to obtain information not only on
the relative population of single lattice sites but also on the relative population of
different orbitals within the site.

In chapter 5 it was investigated how quantum gas magnification could be used to ac-
cess the coherence properties of lattice systems with high resolution. We introduced a
theoretical model for the mapping of the Talbot effect in a trapped system to a system
without confinement, and presented some preliminary results showing direct imaging
of the Talbot effect with matter-waves. We also proposed a protocol for measuring
the single-particle density matrix with the use of quantum gas magnification.

In chapter 6 a new setup for the realization of optical lattices with tunable geometry
was presented and results were shown. It was demonstrated how the geometry can
be tuned among a variety of lattice geometries also in a dynamical fashion, which
allowed e.g. the modulation of the sublattice offset in a honeycomb lattice. We also
presented a scheme for the generalization to completely tunable 3D lattice. Further
research could be done in the direction of investigating the much bigger parameter
space to find particularly interesting geometries.

7.1. Outlook

New future research directions could be given by the combination of results presented
in different chapters of this thesis: e.g. circular dichroism could be studied in real
space, after mapping the Floquet bands to static bands corresponding to different
sublattices, which can be distinguished with quantum gas magnification. This would
allow a space-resolved measurement of topology which could be of interest in a system
featuring an interface between parts of the systems with different topology.

Quantum gas magnification could also be used for detecting coherence properties of
topological systems, as suggested in chapter 5.

New Floquet systems could be produced using the dynamical change of the geometry
allowed by the multi-frequency lattice. Not only the lattice potential could be varied
in time but also e.g. the correlated pair tunneling (by e.g. rotating the force used
to make it the dominant process). A way for probing novel topological states could
then be provided by circular dichroism.

The effect of correlated tunneling could be studied in other geometries, including
the honeycomb lattice where the interplay between the pair tunneling and the inter-
nal lattice structure might result in a different dynamics, or in a non-separable 3D
lattice.
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Other scenarios include adding new ingredients to the ones presented in this work:
they might be e.g. steeper potentials for engineering topological interfaces, on which
edge current are localized or the use of more complex lattice structures (like the
double-wavelength Kagome lattice). Both systems could be imaged with quantum
gas magnification. Another possibility is to change the statistics of the particles
(repeating with 40K the experiments performed with 87Rb , and vice versa, or with
a mixture of both).

These ideas are probably just a fraction of what is possible with such systems, and
making predictions can be quite difficult. Another route for discovering new physics
is, in conclusion, provided often just by asking oneself: "What happens if...?", in
particular with the possibility to find the answer with a direct look into the system
with a matter-wave lens, as already happened to us many times.
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Appendix A.

Density of states for precision
thermometry

We want to derive a description for the density of states for the system used during
the precision thermometry experiment reported in section 4.3.

Because the degrees of freedom in the z-direction can be decoupled from the others,
we consider first the case of a perfect 2D system characterized by an optical lattice
of depth 1Erec and a harmonic trap potential of strength ωsys/(2π) = 305Hz.

We derive an analytical expression for the density of states with the aid of an ex-
act diagonalization of a 2D system of size 9.6µm×9.6µm, with a triangular lattice
potential of depth V = 1Erec.

Figure A.1.: Energy as a function of the state number in absence of the harmonic
confinement. Blue is the energy of the nth state as a function of n, as obtained by exact
diagonalization of a 2D system for a V = 1Er deep optical lattice, and without external
harmonic confinement ωsys = 0. In red, the same quantity but also in absence of the lattice
V = 0, shifted in both axis in order to start from the first blue point after the first band
gap. The curvature of both curves comes from the finite size of system.

137



We sort the states according to their energies and label them with the index n. In
figure A.1 we compare how their energies grow as a function of n with and without
the optical lattice potential, in absence of the trap (ωsys = 0). We can clearly identify
the opening of only two band-gaps due to the lattice, and find that after the first
band gap the energy behaviour is well captured also without taking the lattice into
account.

Also in presence of the trap we distinguish then states that are bound in the lattice
from states that do not feel its presence. We model then n3D(E) of the 3D system
as such:

n3D(E) = ns(E) + ntrap(E − δg) (A.1)
where ns(E) refers to the states corresponding to the s−orbitals of the lattice and
scales like ns(e) = (E/E0)2, with E0 =

√
~AWSmω3

sys/π = h ·57Hz, where AWS is the
area of the Wigner-Seitz cell, m is the particles mass and ωsys the geometrical average
of the trap frequency in the three directions (this result can be gotten by counting
how many in-plane localized states have total energy less than E). The z−direction
is taken into account both in the analytical model and in the numerics by assuming
the spectrum in this degree of freedom is described by nzωz, with nz ≥ 0 integer.

ntrap(E − δg) is the number of states up to energy E − δg, for E − δg > 0, in a 3D
harmonic trap: ntrap(E − δg) = 1

6( E
~ωsys

)3. The shift factor −δg is added such that
these state start to appear at energies above the band gap δg.

The analytical model for n3D agrees with the numerics (figure A.2), and allows to
extrapolate the behaviour of the density of states also to higher energies.

A B

Figure A.2.: Determination of the critical temperature. In A, E3D(n3D) is plotted,
in red as obtained by exact diagonalization, in black the analytical approximation (adapted
from [13]). This allows to obtain the critical temperature as a function of the atom number,
as plotted in B. Notice that while the biggest measured atom number was about 3 · 105

it is important to describe correctly also states with index n3D ∼ 106 or more which also
become populated by higher temperatures.
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This description for the density of states might look a little bit complex, because we
are not in a well defined regime; but this brings with it also fascinating aspects: for
example, from this we can suppose that the coherence in the ground state is interac-
tion induced ([184, 269]): the single-particle eigenstates are completely localized, but
because of interactions, atoms in the BEC tend to delocalize over several lattice sites
mantaining phase coherence, as detected in time of flight (4.10). More often, instead,
coherence is destroyed by interactions ([6]).
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Appendix B.

Quantum Gas Magnification in the
Schrödinger Representation

In this appendix we provide the derivation for the quantum gas magnification and
the focusing condition in the Schrödinger picture, adapting a calculation presented
already in [164]. We add then also some general remarks.

The Schrödinger picture is completely equivalent to that of Heisenberg, but it is useful
because it describes the evolution of the quantum field operators illustrating that the
matter wave optics also reproduces quantum correlations. This possibility will allow
for future fundamental studies in single-atom resolved regimes with the quantum gas
magnifier.

We make use of the generating function G of the Hermite polynomials hn(x) given
by

G(x, g) = e−
1
2x

2+2xg−g2 =
∑
n

e−
1
2x

2
hn(x)g

n

n! . (B.1)

Using the operator Ôn = (∂g)n|g=0, one gets

ÔnG(x, g) = e−
1
2x

2
hn(x) = ψn(x) (B.2)

with ψn(x) being the nth eigenstate of the 1D harmonic oscillator and with x being
the spatial coordinate in natural units. Up to a global phase (i.e. which does not
depend on n), the time evolution in the harmonic oscillator U(tho) can be described
by

U(tho)G(x, g) = G(x, ge−iωtho) (B.3)
which is proven by checking that ψn picks up a phase
φho,n = −nωtho:

U(tho)ψn(x) = ÔnG(x, ge−iωtho) = ψn(x)e−inωtho . (B.4)

The time of flight evolution U(ttof) of G can be described by

U(ttof)G(x, g) = F−1(
√

2π
∫
dx′e−

1
2x
′2+2x′g−g2

eikx
′−ik2 T

2 ) (B.5)
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with T = ωttof and F−1 being the inverse Fourier Transform operator. It follows:

F−1(
√

2π
∫
dx′e−

1
2 (x′−2g−ik)2− 1

2k
2−ik2 T

2 +2ikg+g2)

=F−1(e− 1
2k

2+g2−ik2 T
2 +2ikg)

=
√

2π
∫
dke

− 1
2 (k2D− 2ig√

D
+ ix√

D
)2+g2+ 1

2D (−4g2−x2+4xg)

(B.6)

with D = 1 + iT . One gets, recalling M =
√

1 + T 2:

= 1√
D
e−

x2
2D+ 2xg

D
+g2(1− 2

D
)

= 1√
D
e
x2
2

iT
1+T2 e

−x
2

2
1

1+T2 + 2xg
1+iT −

1−iT
1+iT g

2

= 1√
M
e−i

arctan(T )
2 + iT

2 ( x
M

)2
G( x
M
, g · e−i·arctan(T ))

(B.7)

It follows:
U(ttof)ψn(x) = ÔnU(ttof)G(x, g)

= 1√
M
e−i

arctan(T )
2 + iT

2 ( x
M

)2
ψn( x

M
)e−in·arctan(T ) (B.8)

One gets a normalization factor 1√
M

and a n-independent phase eiφ(x,T ) = e−i
arctan(T )

2 + iT
2 ( x

M
)2 .

During time of flight, ψn gets magnified by a factor M and picks up a phase φtof,n =
−n·arctan(T ). The total time evolution of a generic wavefunction ψ(x) = ∑

n cnψn(x)
during the magnification protocol is then:

U(ttof)U(tho)ψ(x) = 1√
M
eiφ(x,T )∑

n

cnψn( x
M

)eiφn (B.9)

and the focusing condition equation (4.10) for the magnified imaging can then be
obtained by requiring that

φn = φho,n + φtof,n = −n · [ωtho + arctan(ωttof)] = −n · π (B.10)

As a consequence, the terms in the superposition with n even (odd), corresponding
to states ψn(x) symmetric (antisymmetric) with respect to x = 0, pick up a phase 0
(π), as if under the action of the parity operator Pψ(x) = ψ(−x); for this reason the
distribution is inverted. The phase factor e

iTx2
2M2 means that although density correla-

tions g2(r) are reproduced via the scaling g2(r′) = g2(M · r), phase correlations g1(r)
have to be treated with care. This comes from the fact that the protocol presented
here simply rescales the real space positions, but not the momentum operator.
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B.1. General Remarks

In general, this comparison between the two representations evidences how the work-
ing of the magnifier in the Heisenberg’s one is much simpler to derive, probably
because this representation is more connected with the measurement process itself
(the operators are the dynamical variables) than the object of the measurement (the
wavefunction, on which no assumption are made). On the other hand, in cases where
the wavefunction is important (e.g. when calculating the evolution in presence of
interactions) the Schrödinger representation could be better suited.

In the Heisenberg representation, quantum gas magnification can be condensed in the
formula:

X(tf ) = ±MX(ti) (B.11)

Where ti and tf are the initial and final time of the evolution. As a last remark, we
note that X might be generalized to any continuos operator, provided one finds an
evolution such that equation B.11 is realized.

Also the "Fourier space" stage might be not necessary (unavoidable in conventional
"light" optics and in the matter-wave schemes presented or mentioned in this work),
if one could e.g. engineer an Hamiltonian of the form:

H = XP + PX; [X,P ] = i (B.12)

Where X, P are now generic Hermitian operators which satisfy the above commuta-
tion relation. Then one gets:

∂tX = i[H,X] = 2X → X(ti + t) = e2t ·X(ti) (B.13)

which represents a pure magnification, with X(t) exactly proportional to X(ti) (or,
equivalently, without P (ti) component), for every time t.
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Appendix C.

Band Structure Calculation with
Vector Light Shift and for the
Multi-Frequency Lattice

C.1. Vector light Shift

The vector light shift causes a different response in different mF states dependently
on the light polarization. This effect has to be taken into account when calculating
the geometry of a polarization lattice, because it influences strongly the sublattice
offset ∆AB in the honeycomb lattice. This effect is used can be exploited for tuning
∆AB by rotating the quantization field ([244]).

The potential energy Epot associated to different polarization components of a dipole
trap or of an optical lattice can be written as ([249]):

Epot(σ) ∝ (1 + 1√
3
γσ)Iσ (C.1)

where σ can take the values 0 for light polarized along the quantization axis or 1(−1)
for right(left) circularly polarized light with respect to the quantization axis. Iσ is
the light intensity with polarization σ.

γ is calculated as such:
γ = − 1√

3
gFmF

∆fs

∆ (C.2)

where gF is the Landé factor, mF indicates the Zeeman substate, ∆ is the detuning of
the lattice frequency with respect to the atomic transition to the excited p state and
h∆fs is the hyperfine structure splitting in the p state. For the F = 2, mF = 2 ground
state of 87Rb, and considering light of wavelength λ = 1064nm, γ ∼ 0.042. For the
F = 9/2, mF = 9/2 ground state of 40K, and for the same wavelength, γ ∼ 0.016
(because of the smaller hyperfine splitting).
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We consider the 1D lattice with wavevector b1 (using the convention presented in
chapter 2). The potential form can be obtained by summing the spatial dependent
part of the intensities of the different polarization vectors, weighted with the 1+ 1√

3σγ
factor:

Epot(r) ∝ −
∑
σ

(1 + 1√
3
σγ)

∣∣∣∣∣ (e2 · pσ)∗ (e3 · pσ)
∣∣∣∣∣ cos(b1 · r− θσ) (C.3)

where pσ is the unit polarization vector for σ polarized light, e2,3 are the polarization
vectors of beams with indexed 2 and 3 generating the 1D lattice under consideration.
and θσ = arg{∑σ(e2 · pσ)∗( e3 · pσ) }.

We calculate then the coupling elements between plane waves with wavevectors Q
and Q + b1 as:

〈Q + b1|Epot(r)|Q〉 = V 0

e∗2 · e3

∑
σ

(1 + 1√
3
σγ)(e2 · pσ)∗(e3 · pσ) (C.4)

where V 0 is the coupling matrix element for the mF = 0 state
(to prove this, ∑σ(e2 ·pσ)∗(e3 ·pσ) = e∗2 ·e3 must be noticed). The same results hold
for the other 2D lattices. Notice that we don’t need to use the exact factor which
relates the lattice depth with the light intensity, which can not be measured at the
position of the atoms. Instead, the lattice depth is directly obtained by calibration
of the 1D lattices.

We show how the vector light shift can influence the geometric phase in the case
where the quantization field points in the z−direction and the three lattice beams
with equal intensity of the 2D hexagonal lattice are in-plane polarized. In that case
the polarization vectors can be decomposed as a sum of left and right circularly
polarized light (with respect to the quantization axis). We provide the expression for
the spatial dependent part of the σ = ±1 polarized light which is given by:

Iσ =− |I0|
∑
i

[ cos(bi · r) +
√

3 sin(bi · r) ] (C.5)

where I0 is a reference intensity.

The resulting potential calculated using equation C.3 is given by:

Epot(r) = V 0[ cos(bi · r) + γ sin(bi · r) ]

= V 0
√

1 + γ2
∑
i

cos(bi · r + arctan(γ)) (C.6)

From this expression it can be seen that the lattice depth is only minimally influenced
when considering the vector light shift but that the geometry phase ϕg (introduced
in chapter 2 and more studied in chapter 6) becomes:

ϕg = 3 arctan(γ) = 0.126rad. (C.7)

This value is calculated for the mF = 2 state of 87Rb. It is not negligible in many
experimental situations (compare with the results of chapter 6).
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C.2. Multi-Frequency Lattice

When calculating the band structure for the multi-frequency lattice, exact knowledge
of the polarization vectors is not required anymore. We obtain the depths V1,2,3 of
the 1D lattices (usually after Kapitza-Dirac scattering from the 1D lattices). From
these measurements, and from the measurement of ϕg as presented in chapter 6, one
gets all the parameters needed to describe the geometry for a single mF state.

Another method is balancing the lattice depths trying to obtain rotational symmetry
from time-of-flight measurement from a honeycomb lattice (as presented in chapter
6, at ϕg = 0 the measurement is most sensitive to beam imbalances), and then get
the (global) lattice depth by spectroscopy.

After having determined the experimental parameters Vi, ϕg we can get the off-
diagonal couplings in the plane wave basis due to the potential Epot(r) as:

Epot(r) =2
∑
i

Vi cos(bi · r + ϕg/3)

〈Q + bi|Epot(r)|Q〉 =Vie−iϕg/3.
(C.8)

All other off-diagonal terms can be gotten by Hermitian conjugation, while the diag-
onal terms of the Hamiltonian are calculated as:

Ekin = (~Q)2

2m . (C.9)

and diagonalization of the Hamiltonian for every quasimomentum one gets the com-
plete band structure and the eigenstates (eigenstates in real space can be simply
gotten by Fourier transformation).

Interestingly, this description makes clear that in momentum space a staggered flux Φ
is generated. This can be seen by mapping the Hamiltonian for a given quasimomen-
tum q to a tight-binding triangular lattice with "sites" represented by the plane-waves
with wavevectors Q = q +mb1 + nb2, with m,n integers. The diagonal terms of the
Hamiltonian in this representation (~Q)2

2m can be interpreted as a harmonic "confine-
ment". As conventionally the tunneling coupling terms between lattice sites α and β
in a tight-binding Hamiltonian are written as −J(a†αaβ)+h.c. (notice the minus sign;
a†α, aβ are the creation/annihilation operators for the lattice sites with corresponding
indexes), the "tunneling" coupling Ji along the reciprocal lattice vectors bi in this
mapping to real space is given by Ji = −Vie−iϕg/3 = |Vi|ei(π−ϕg/3).

It can be seen that a particle picks up a phase ei(π−ϕg/3) while "tunneling" and as a
result a staggered flux per plaquette Φ = 3π − ϕg ≡ π − ϕg is created (as illustrated
in figure C.1). The flux has to be staggered because the lattice potential does not
break time-reversal symmetry.
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This interpretation of the geometry phase as related to a magnetic flux in momentum
space suggests then an application of the multi-frequency lattice for generating gauge-
fields in momentum space ([270, 271]).

Figure C.1.: Graphical representation of the couplings between plane-waves
induced by the lattice.
The band structure is calculated by considering separately each quasimomentum in
the Brillouin Zone (solid lines hexagon). For a given quasimomentum q the Hamil-
tonian can be mapped to a triangular lattice in momentum space described by the
plane-waves with wavevectors Q = q + mb1 + nb2, with m,n integers (notice that
b3 = −b1 − b2). A particle picks up a phase ei(π−ϕg/3) while "tunneling", as repre-
sented by the arrows, and as a result there is a flux per plaquette Φ = 3π−ϕg ≡ π−ϕg
which is staggered, with an alternating sign between "up" plaquettes and "down" pla-
quettes. Notice that Φ does not depend on the quasimomentum q.
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