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Abstract

In this thesis we present the analytic calculation of all master integrals for 3-, 4-, and 5-particle cuts
of massless 4-loop propagators, as well as 3-, 4-, and 5-particle semi-inclusive cuts of massless 4-loop
propagators—all of which are novel results, obtained using multiple techniques: differential equations,
dimensional recurrence relations, and direct phase-space integration. These integrals are needed for
the direct calculation of next-to-next leading order (NNLO) time-like splitting functions (that is, scale
evolution kernels of the fragmentation functions; a required ingredient for the analysis of semi-inclusive
single hadron production at Large Hadron Collider and other colliders), and N3LO photonic coefficient
functions (a required ingredient for the analysis of e+e− annihilation at future colliders).

Additionally we present computer programs enabling this calculation: FUCHSIA, a tool for reducing
differential equations to an ε-form, and FEYNSON, a tool for resolving Feynman integral symmetries.
Both tools are of general usefulness outside of this work, with FUCHSIA in particular already having
found use in multiple independent calculations.
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Zusammenfassung

Diese Arbeit präsentiert die analytische Berechnung aller Masterintegrale mit 3-, 4-, und 5-Teilchen-
Schnitten der masselosen 4-Schleifen-Propagatoren, sowie der semi-inklusiven 3-, 4-, und 5-Teilchen-
Schnitte der masselosen 4-Schleifen-Propagatoren. Dies alles sind komplett neue Ergebnisse, welche mit
den folgenden Methoden erhalten wurden: Differentialgleichungen, dimensionale Rekursionsgleichung-
en und direkte Phasenraumintegration. Diese Integrale werden benötigt für die direkte Berechnung der
nächst-nächst führenden Ordnung (NNLO) der zeitartigen Splitting-Funktionen (diese sind Kerne der
Differentialgleichung für die Skalenevolution der Fragmentationsfunktionen und notwendige Bestandteile
der Analyse der semi-inklusiven Produktion einzelner Hadronen am Large Hadron Collider und an
anderen Streuexperimenten), sowie der N3LO Photonenkoeffizientenfunktionen (diese sind notwendige
Bestandteile der Analysen von e+e− Annihilationen an zukünftigen Streuexperimenten).

Zusätzlich präsentieren wir die folgenden Computerprogramme: FUCHSIA, ein Programm für die Re-
duktion von Differentialgleichungen auf eine ε-Form, und FEYNSON, ein Programm zur Auflösung von
Symmetrien zwischen Feynmanintegralen. Beide Programme sind von universeller Nützlichkeit auch
über den Rahmen dieser Arbeit hinaus. Insbesondere hat FUCHSIA bereits Anwendung in mehreren
unabhängigen Berechnungen gefunden.
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1. Introduction

In the years 1665-1666 an outbreak of the bubonic plague in London forced the rich to flee, the poor to
isolate, and Isaac Newton to study natural philosophy in near total solitude. 355 years later, the tradition
remains the same; we now call it physics.

1.1. The general motivation

The goal of physics, same as any natural science, is to further our shared understanding of nature. This
understanding has many frontiers; as far as fundamental laws of nature are concerned, the frontier lies
within two areas: the Standard Model of particle physics (“SM”), which describes strong, electroweak,
and Higgs’ interactions of matter, and the general theory of relativity (“GR”), which describes the
gravitational interaction.1 Both theories are wildly successful and precisely tested, and yet both are
incomplete. We know this because:

1. Standard Model and general relativity are incompatible with each other, in the sense that a naïve
construction of quantum gravity is unrenormalizable, and thus can only be viewed as a low-energy
effective theory of some more general theory. The work to construct such theories is ongoing, but
so far the experimental evidence to support any is lacking.

Just from the dimensional analysis it is expected that both quantum and gravitational effects would
be relevant simultaneously at energies of the order of the Planck scale,

p

ħhc5/G ≈ 1028eV, but such
energies are unobtainable in a lab, with the largest particle accelerator today, the Large Hadron
Collider, achieving only ≈ 1013eV. Thus, the definitive resolution of this problem is experimentally
out of reach.

2. The discovery of neutrino oscillations [1, 2] imply that neutrinos have masses. These need to be
incorporated into the SM, and there are multiple ways to do so. Experiments are underway to
measure the properties of neutrinos more precisely [3, 4].

3. The existence of the so-called dark matter in the universe: the masses of many galaxies determined
from the luminosities of their stars appears to be smaller than the same masses determined from
their gravitational properties (e.g. the motion of the stars, gravitational lensing, etc). For some
galaxies the difference can be quite drastic, for others practically zero. Thus, aside from the
luminous matter (stars and interstellar gas) there appears to be a varying amount of dark matter
present in each galaxy. The average dark matter mass proportion in the observed universe is
estimated to be 85%. The nature of this matter is presently unknown, and the working conjecture
is that it consists of a new class of stable particles, characterized by very weak interaction with
photons and ordinary matter in general. Candidate SM extensions include axions [5], weakly
interacting massive particles (“WIMPs”), and multiple others.

1Conventionally, Higgs’ interaction is not classified as one of the “fundamental forces of nature”. In our opinion this is only
because its experimental discovery in 2012 is still fairly recent, and the conventions have not yet caught up—otherwise it is
by all means a fundamental force of nature.
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1. Introduction

4. There is an asymmetry between the amount of matter and antimatter in the universe. The
observable universe (i.e. the stars and interstellar gas) consists of ordinary matter, with anti-matter
being absent. For these conditions to arise dynamically from a symmetric starting point during the
Big Bang, several conditions must be met [6]: baryon number non-conservation, charge-parity
(CP) symmetry violation, and departure from thermal equilibrium. The weak interactions in SM
do violate the CP symmetry, but calculations show that a much stronger effect is required to
explain the observed matter-antimatter asymmetry, and multiple SM extensions are put forward as
potential solutions [7, 8].

The takeaway here is that the SM is incomplete, multiple extensions are proposed, and trying to describe
and observe the class of particles that will solve problems #3 and #4 is a big part of what preoccupies
the field of particle physics at the moment.

There are three general avenues available for these efforts: observation of cosmic phenomena which can
imply limits on the properties of new unknown classes of particles, direct detection searches (see e.g.
[9]), and general searches at particle colliders. Out of the three the last one has been (and remains)
the most productive, with quarks [10, 11], gluons [12, 13], W± and Z0 bosons [14, 15], and Higgs
particles [16, 17] all discovered at different colliders.

The largest collider to date is the Large Hadron Collider (LHC), achieving 13 TeV collision energy. In 2012
two of its experimental groups, ATLAS and CMS, reported the first detection of events attributed to the
Higgs’ particle. Since then efforts are ongoing to measure the interaction of Higgs with quarks (mainly the
top quarks, being the heaviest) and vector bosons, with the LHC High-Luminosity (LHC-HL) upgrade [18,
19] promising much more events (at possibly slightly higher energies), greatly increasing the experimental
precision, possibly allowing the precise study of other interactions (e.g. Higgs’ self-interactions).

Those efforts aside, the general public is most interested in one question: “What’s next?” At present
there are no strong signals indicating direct production of new unknown particles, and with the LHC-HL
collision energy not being significantly higher than the LHC one, the hope for such signals appearing is
low—not until a higher-energy collider like FCC [20], ILC [21], CLIC [22], or CEPC [23] is constructed.
For the time being the most promising strategy is to search for evidence of new particles not through direct
production, but rather by deviations of the experimental measurements from theoretical prediction—
however small—where such particles participate as virtual corrections. This is what the high-luminosity
effort is aiming at: increasing the statistical accuracy so that even small deviations could become visible.

Such a goal however poses a problem on the theoretical side: already with the currently available LHC
data theoretical uncertainties on key measurements of differential cross-sections are comparable to the
experimental uncertainties, so to make use of the data from LHC-HL or the future colliders theoretical
predictions must to be upgraded too. One of the key limiting factors here is the depth of the perturbative
expansion of the analytic results, and so systematic next-to-next-to-leading order (NNLO) or even N3LO
results are needed for all observables to match the experimental precision.

These are the considerations that bring us to the calculation of higher loop integrals relevant to NNLO
terms of the perturbative expansion of scattering amplitudes in general.

1.2. The goal of this thesis

The specific topic of this thesis is the calculation of NNLO QCD corrections to time-like splitting functions
and the closely related photonic decay coefficient functions. These are relevant to the analysis of hadron
production at any collider, and to electron-positron annihilation at e+e− colliders, both past (i.e. Large
Electron-Positron Collider, LEP) and future: CLIC, ILC, and CEPC are all e+e− machines, and FCC contains

2



1.2. The goal of this thesis

provisions for both e+e− and protons. The splitting functions in question have already been calculated
previously almost fully in [24, 25, 26], but the method employed—analytic continuation from space-like
splitting functions—has left the answer incomplete. Specifically, one of the terms in quark-gluon and
gluon-quark NNLO terms was left undetermined, a gap that was closed only recently by results from
soft-collinear effective theory [27]. The corresponding coefficient functions are still not known (for the
same reason).

We aim at calculating NNLO photonic coefficient functions, and recalculating NNLO time-like splitting
functions from the ground up using the direct approach advocated for in [28]. To this end we shall
calculate the full set of four-loop Feynman master integrals with cuts: both inclusive and semi-inclusive,
all of which are needed for the calculation of semi-inclusive decay cross-section at NNLO, from which
the splitting and coefficient functions can be directly extracted. Along the way we shall also develop
techniques and software that will make these calculations possible. Specifically, among the code that
powers our calculations two parts were factored out as standalone tools useful outside of it: the program
FUCHSIA that helps to solve differential equations for master integrals by transforming them into an
ε-form [29, 30], and the program FEYNSON which finds symmetry relations between Feynman integrals
and is needed as the step preceding IBP reduction.2 FUCHSIA is of special note here, having been already
used in calculations such as [31, 32, 33, 34].

Our calculation of fully inclusive cut integrals was previously presented in [35, 36]; the previous version
of FUCHSIA was described in [37, 38]. The semi-inclusive cut integrals (Chapter 10), the new version of
FUCHSIA (Chapter 8), and FEYNSON (Chapter 4) are described here for the first time.

This thesis is organized as follows. In Chapter 2 we will back up a bit and continue from the general
motivation, zooming in on how splitting and coefficient functions enter in the greater picture of analyzing
the experimental results from particle colliders, and establish which Feynman integrals we will need
to calculate. In Chapter 3 we will review the basic techniques used to calculate Feynman integrals
analytically, focusing on the methods we will use later on. In Chapter 4 we will describe FEYNSON, a
computer implementation of a subset of these techniques covering the discovery of symmetries between
Feynman integrals. In Chapter 5 and Chapter 6 we will specifically focus on calculating Feynman integrals
using dimensional recurrence relations, and differential equations respectively. In Chapter 7 we will
cover the class of function arising from differential equations—multiple polylogarithms. In Chapter 8
we will describe FUCHSIA, a computer program for reducing the differential equations to an ε-form,
which is the central step of solving them. Finally, in Chapter 9 we will present the calculation of the full
set of master integrals for fully inclusive cuts of 4-loop propagators, following up with the full set of
semi-inclusive ones in Chapter 10. We shall summarize the results in Chapter 11.

2A third part of this code, “the amplitude library” ALIBRARY, is also public (github.com/magv/alibrary), but it is not described
here.
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2. Theoretical background

The principal method of study of elementary particle interactions available today is the analysis of
scattering processes happening at particle colliders. On such a machine a beam of accelerated particles—
often protons, electrons, or positrons—is directed to intersect with an opposing beam (or a fixed target),
and the stream of reaction products is then recorded, analyzed by extracting various observable quantities
(statistically aggregated variables), and compared with the theoretical predictions. The higher the energy
of the beams, the shorter the scale of the interactions that can be probed, and the finer the structure of
particles that can be resolved.

Out of observable quantities of interest the most straightforward is the total scattering cross section:
σ, the proportion of scattering events per unit of incoming particles times the beam cross-section area
(filtered by the types of particles detected in the final state), and differential cross sections: σ(x)≡ dσ/dx ,
the distributions of σ in variables x such as the scattering angles, energies, or transverse momenta of
the scattering products. Up to normalization both correspond to the probability of scattering (square of
the scattering amplitude), fully or partially integrated over the final state parameters.

Of particular interest is the measurement of the distribution of energies of kaons (K+ and K−) and pions
(π+ , π−) that result from the scattering. These are relatively long-lived hadronic particles (i.e. bound
states of quarks) that can be identified precisely in the detectors by their mass and electric charge. In
this thesis we will be mostly concerned with integrals needed for the calculation of such differential
cross sections.

2.1. Fragmentation, splitting, and coe�cient functions

A convenient theoretical picture of the formation of hadrons in the final state is the parton fragmentation
model:1 first the particles from the accelerated beams interact at high energies producing a multitude of
partons (quarks and gluons); then as partons drift apart they fragment and lose energy, and eventually
due to their effective interaction strength increasing at lower energies (a phenomenon known as “confine-
ment”) they merge into combinations of zero total color charge, forming hadrons (“hadronization”). See
Figure 2.1.1 for a schematic illustration. The first part—the high-energy interaction of incoming beam
particles—can be conveniently described by a perturbative expansion, while the second—hadronization
of the partons—cannot, so instead it is modeled and fitted to data. The reason is that hadronization
happens at lower energies where the perturbative expansion does not converge, and we have no good
tools of solving quantum field theory calculations non-perturbatively (aside from lattice calculations, the
applications of which are currently limited).

One model of parameterizing hadronization is to assume that each parton hadronizes independently, and
so the process can be described by a single fragmentation function Dp→H(x), which gives the probability
density of a parton p ∈ {q, q̄, g} of 4-momentum q hadronizing into a hadron H ∈

�

K±,π±, . . .
	

of energy
x
p

q2, where 0≤ x ≤ 1 is just the hadron’s fraction of the energy. The fragmentation function Dp→H is

1We recommend [39, 40] for a readable description of this topic.
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2. Theoretical background

Hard
scattering

Incoming e+ Incoming e−

Partons:
q, q̄, g Fragmen-

tation Hadrons:
π, K , . . .

Parton p

Inclusive

Figure 2.1.1.: Hadron production on a e+e− collider.

process-independent: it can be tabulated from one experiment and then reused for all the others. The
principal complication here is that in perturbative quantum chromodynamics (QCD) Dp→H acquires a
dependence on the renormalization scale µ2; this dependence however is governed by the well known
renormalization group equations of the DGLAP type [41, 42, 43], and so can be described perturbatively.

To see how Dp→H

�

x ,µ2
�

depends on µ2 let us take a look at an annihilation of an electron-positron pair
that results in a hadron H (along with other particles which we will integrate out). From Figure 2.1.1, if
parton p is produced with energy fraction z, and hadron H takes a fraction z′ of that, then the semi-
inclusive hadronic cross section (that is, cross section of the hadron differential only in its overall energy
fraction x = zz′) is connected to the semi-inclusive partonic cross section as

σhadron H(energy fraction x)
︸ ︷︷ ︸

Semi-inclusive handronic cross-section

=
∑

p∈{q,q̄,g}

∫

Semi-inclusive partonic cross-section
︷ ︸︸ ︷

σ̂parton p(z, α̂s) D̂p→H

�

z′
�

δ
�

x − zz′
�

dz dz′, (2.1.1)

where µ2 is the energy of the parton p, the fragmentation scale, and the renormalization scale: for
convenience these are taken to be the same here to prevent the proliferation of scale ratios.2

Note that here and throughout this chapter we mark all bare (unrenormalized) quantities like σ̂ with a
“hat” sign to distinguish them from their renormalized counterparts which we shall soon introduce.

At this point we can already simplify the notation by introducing the convolution operation as

( f ⊗ g)(x)≡
∫ 1

0

dz

∫ 1

0

dz′ f
�

z
�

g
�

z′
�

δ
�

x − zz′
�

, (2.1.2)

so that eq. (2.1.1) would shorten to just

σH =
∑

p

σ̂p ⊗ D̂p→H . (2.1.3)

Note that
f ⊗ g = g ⊗ f , and f ⊗δ(1− x) = f , (2.1.4)

so we can treat ⊗ as multiplication, and δ(1− x) as a multiplicative identity.

Because σH(x) can be measured experimentally (by counting observed hadrons in each energy fraction
range), it is necessarily finite; its partonic counterpart σ̂p(z, α̂s) on the other hand is not experimentally

2For a general overview of fragmentation functions and related topics see [44], or [40] upon which it is based. The method of
calculation we use in this section was previously used in [45, 46, 47, 48], with [46] giving a particularly detailed description
in modern notation.
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2.1. Fragmentation, splitting, and coefficient functions

observable (because neither free quarks nor free gluons exist), and calculations of it starting from the
QCD Lagrangian (as given in e.g. Appendix B) as a perturbative expansion in α̂s,

σ̂p(z, α̂s)≡
∞
∑

k=0

σ̂(k)p (z) â
k
s , where âs ≡

α̂s

4π
and α̂s ≡

ĝ2

4π
, (2.1.5)

results in divergent Feynman integrals for σ̂(1)p and onward. There are two types of divergences present
here: those stemming from integration in the regions of large loop momenta (ultraviolet, or UV, diver-
gences), and those stemming from from regions of loop momenta collinear to the external moment
(collinear, or “mass”, divergences).

The solution is three-fold.

2.1.1. Regularization

First we must regularize the divergences by introducing an artificial regularization parameter in a way
that will make them diverge only in its limit.

To this end we shall use dimensional regularization [49]: a convenient and widely used regularization
scheme for QCD, in which both the loop and the external momenta in all the integrals are taken to reside
not in 4 space-time dimensions, but in d = 4− 2ε instead, so that ε becomes the regularizing parameter,
the limit ε → 0 restores the original physical picture, and integral divergences manifest as 1/ε poles
(and higher).

Because dimensional regularization changes the dimensionality of the momenta, the strong coupling
parameter gs appearing in the QCD Lagrangian ceases to be dimensionless. For this reason we need to
introduce an additional arbitrary mass scale µ, and write the strong coupling parameter as µε ĝs, where
ĝs is kept dimensionless. Correspondingly, the d-dimensional strong coupling constant must be written
as µ2εα̂s, rather than just α̂s.

2.1.2. UV renormalization

Next we renormalize the bare σ̂p(z, α̂s) into the UV-renormalizedσp(z,αs) by absorbing its UV divergences
into the definition of the bare coupling constant α̂s.

3

For this we exploit the fact that α̂s is not an observable parameter, so it can be given poles in ε that
would counteract the UV poles of σ̂p:

α̂s = Zαs
︸︷︷︸

divergent

finite
︷︸︸︷

αs, and σp(x ,αs)
︸ ︷︷ ︸

renormalized

= σ̂p

�

x , Zαs
αs

�

︸ ︷︷ ︸

bare

, (2.1.6)

where Zαs
is the αs renormalization constant: a divergent quantity (i.e. with poles in ε), chosen such

that σ̂p

�

x , Zαs
αs

�

becomes finite.

There are multiple equally valid schemes to choose renormalization constants (after all, we require
σp only to be finite, without imposing constraints on its value); we shall adopt the modified minimal
subtraction scheme [51, 52], a.k.a. MS, in which the regularization scale µ̄ is used instead of µ, with

µ2ε ≡ µ̄2εSε, and Sε ≡
�

eγE

4π

�ε

, (2.1.7)

3See [50] for a general overview of renormalization.
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2. Theoretical background

effectively multiplying each loop integration by Sε, and the renormalization of bare quantities is performed
by subtracting all of their poles in ε, but leaving the finite O

�

ε0
�

parts intact.

Here γE stands for the Euler constant; the factor of Sε is introduced to remove ubiquitous terms of the
form γE − log(4π) from the integrals’ values when presented as series in ε. For example one of the
simplest loop integrals we shall consider in Chapter 3 is the bubble integral given by eq. (3.2.10), and its
value simplifies when multiplied by Sε from

=
�

−q2 − i0
�−ε i

16π2

�

1
ε
+ (2+ log(4π)− γE) +O (ε)

�

(2.1.8)

to

Sε =
�

−q2 − i0
�−ε i

16π2

�

1
ε
+ 2+O (ε)

�

. (2.1.9)

The value of Zαs
in MS is known from [53] up to O

�

a4
s

�

and from [54, 55, 56] up to O
�

a5
s

�

, and can be
expressed in terms of the coefficients of the β-function given in those works,

β(αs)≡
das

d lnµ2
≡ −εas − β0a2

s − β1a3
s − β2a4

s − β3a5
s +O

�

a6
s

�

, (2.1.10)

if one demands that the bare strong coupling µ2ε âs = µ2εZαs
as does not depend on the renormalization

scale:
d

d lnµ2

�

µ2εZαs
as

�

= 0 ⇒ β(αs) = −
εZas

as

as
∂
∂ as

Zas
+ Zas

. (2.1.11)

This works out into

Zαs
=1+

�

−
β0

ε

�

as +

�

β2
0

ε2
−
β1

2ε

�

a2
s +

�

−
β3

0

ε3
+

7β0β1

6ε2
−
β2

3ε

�

a3
s+

+

�

β4
0

ε4
−

23β2
0β1

12ε3
+

9β2
1 + 20β0β2

24ε2
−
β3

4ε

�

a4
s +O

�

a5
s

�

.

(2.1.12)

2.1.3. Collinear factorization

As the last step we require that the remaining collinear divergences of σp(z,αs) would factorize so we
could absorb them into D̂p→H

�

x ,µ2
�

, making both finite:4

σH =
∑

p

σp
︸︷︷︸

⊗ D̂p→H
︸ ︷︷ ︸

collinearly divergent

=
∑

p

Cp
︸︷︷︸

⊗Dp→H
︸ ︷︷ ︸

fully finite

, (2.1.13)

where Cp are the finite coefficient functions, and Dp→H are the finite fragmentation functions, no longer
“bare”. This transformation can be achieved by requiring that the collinear divergences of σp are
factorized via some transition functions Γpp′ as

σp = Γpp′ ⊗ Cp′ , and correspondingly Dp→H = D̂p′→H ⊗ Γp′p. (2.1.14)

To determine Γpp′ we only need to require that the bare fragmentation functions do not depend on µ2,

d
d lnµ2

D̂p→H = 0 ⇒
d

d lnµ2
Dp→H = Dp′′→H ⊗ Γ−1

p′′p′ ⊗
dΓp′p
das

β , (2.1.15)

4See [57] for a review of proofs of this factorization.
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2.1. Fragmentation, splitting, and coefficient functions

where Γ−1
pi ⊗ Γip′ = δ(1− x)δpp′ so that D̂p = Dp′ ⊗ Γ−1

p′p, and the combinations

Ppp′ ≡ Γ−1
pi ⊗

dΓip′

das
β (2.1.16)

are called the time-like splitting functions. These are often denoted as PT
pp′ to distinguish them from the

space-like splitting functions which play the same role for parton density functions (PDFs) as PT
pp′ play

for fragmentation functions. The “time-like” versus “space-like” refers to the fact that q2 > 0 in e+e−

annihilation, but q2 < 0 in deep inelastic scattering.

If one expands Ppp′ in as as

Ppp′ ≡ P(0)pp′as + P(1)pp′a
2
s + P(2)pp′a

3
s +O

�

a4
s

�

, (2.1.17)

then eq. (2.1.16) can be solved for Γpp′ in terms of Ppp′ as5

Γpp′ =δpp′δ(1− x) +

 

−P(0)pp′

ε

!

as +

 

−P(1)pp′

2ε
+

P(0)pi ⊗ P(0)ip′ + β0P(0)pp′

2ε2

!

a2
s+

+

 

−P(2)pp′

3ε
+

P(1)pi ⊗ P(0)ip′ + 2P(0)pi ⊗ P(1)ip′ + 2β0P(1)pp′ + 2β1P(0)pp′

6ε2
+

+
−P(0)pi ⊗ P(0)i j ⊗ P(0)jp′ − 3β0P(0)pi ⊗ P(0)ip′ − 2β2

0 P(0)pp′

6ε3

!

a3
s +O

�

a4
s

�

,

(2.1.18)

and its inverse as

Γ−1
pp′ =δpp′δ(1− x) +

 

P(0)pp′

ε

!

as +

 

P(1)pp′

2ε
+

P(0)pi ⊗ P(0)ip′ − β0P(0)pp′

2ε2

!

a2
s+

+

 

P(2)pp′

3ε
+

2P(1)pi ⊗ P(0)ip′ + P(0)pi ⊗ P(1)ip′ − 2β0P(1)pp′ − 2β1P(0)pp′

6ε2
+

+
P(0)pi ⊗ P(0)i j ⊗ P(0)jp′ − 3β0P(0)pi ⊗ P(0)ip′ + 2β2

0 P(0)pp′

6ε3

!

a3
s +O

�

a4
s

�

.

(2.1.19)

2.1.4. Summary

Combined together, we have went from eq. (2.1.1) with divergent bare cross-sections σ̂p and bare frag-
mentation functions D̂p→H to the finite coefficient functions Cp and finite fragmentation functions Dp→H ,
with the hadronic cross-section becoming

σH(x) =
∑

p

Cp

�

x ,αs

�

µ2
��

⊗ Dp→H

�

x ,µ2
�

. (2.1.20)

Further, we have established the dependence of Dp→H on µ2 as

d
d lnµ2

Dp→H = Dp′→H ⊗ Pp′p, (2.1.21)

5We have used the NCALGEBRA package (github.com/NCAlgebra/NC) to derive this solution.
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2. Theoretical background

where both the splitting functions Pp′p and the coefficient functions Cp can be extracted from σp through
the combination of eq. (2.1.14) and eq. (2.1.18). Specifically, if we represent Cp as

Cp ≡ C (0)p +
�

C (1)p + εA(1)p + ε
2B(1)p +O

�

ε3
�

�

as +
�

C (2)p + εA(2)p +O
�

ε2
�

�

a2
s +

�

C (3)p +O (ε)
�

a3
s +O

�

a4
s

�

,
(2.1.22)

then the UV-renormalized σp(x ,αs)≡ σ̂p

�

x , Zαs
α̂s

�

must have the form6

σp =C (0)p +

+
�

−
1
ε

P(0)pp′ ⊗ C (0)p′ + C (1)p + εA(1)p + ε
2B(1)p

�

as+

+
�

1
ε2

�

1
2

P(0)pi ⊗ P(0)ip′ +
β0

2
P(0)pp′

�

⊗ C (0)p′ +

+
1
ε

§

−
1
2

P(1)pp′ ⊗ C (0)p′ − P(0)pp′ ⊗ C (1)p′

ª

+
�

C (2)p − P(0)pp′A
(1)
p′

�

+ ε
�

A(2)p − P(0)pp′B
(1)
p′

�

�

a2
s+

+
�

1
ε3

�

−
β2

0

3
P(0)pp′ −

β0

2
P(0)pi ⊗ P(0)ip′ −

1
6

P(0)pi ⊗ P(0)i j ⊗ P(0)jp′

�

⊗ C (0)p′ +

+
1
ε2

§�

β0

2
P(0)pp′ +

1
2

P(0)pi ⊗ P(0)ip′

�

⊗ C (1)p′ +
�

β1

3
P(0)pp′ +

β0

3
P(1)pp′ +

1
3

P(0)pi ⊗ P(1)ip′ +
1
6

P(1)pi ⊗ P(0)ip′

�

⊗ C (0)p′

ª

+

+
1
ε

§

−
1
3

P(2)pp′ ⊗ C (0)p′ −
1
2

P(1)pp′ ⊗ C (1)p′ − P(0)pp′ ⊗ C (2)p′ +
�

β0

2
P(0)pp′ +

1
2

P(0)pi ⊗ P(0)ip′

�

⊗ A(1)p′

ª

+

+
§

C (3)p − P(0)pp′ ⊗ A(2)p′ −
1
2

P(1)pp′ ⊗ A(1)p′ +
�

β0

2
P(0)pp′ +

1
2

P(0)pi ⊗ P(0)ip′

�

⊗ B(1)p′

ª�

a3
s +O

�

a4
s

�

.

(2.1.23)
From this we see that P(0) first enters at O (1/ε, as), P(1) at O

�

1/ε, a2
s

�

, and P(2) at O
�

1/ε, a3
s

�

. Similarly,
C (1) enters at O

�

ε0, as

�

, C (2) at O
�

ε0, a2
s

�

, and C (3) at O
�

ε0, a3
s

�

.

Here we would like to stress that even though the explanation above was for e+e− annihilation, only the
coefficient functions are specific to this process; the fragmentation functions govern the hadronization of
partons and are process-independent.

2.2. State of the art

QCD splitting functions are fully known at the leading [58, 59] and next-to-leading orders (NLO) [60,
61]. At the next-to-next-to-leading order (NNLO) the space-like fragmentation functions were calculated
in [62, 63] by calculating the cross section of a deep-inelastic scattering (DIS) process via the optical
theorem, and the time-like were derived from them by an analytic continuation procedure in [24, 25,
26]. The procedure employed there has an inherent ambiguity, which has left some of the terms of P(2)Tq→g

and P(2)Tg→q undetermined. Recently, this gap in the time-like splitting functions was closed in [27] using
results for space-like transverse-momentum-dependent (TMD) splitting functions, for which a similar
analytic continuation procedure is unambiguous. Currently work is ongoing to calculate the 4-th order
(N3LO) corrections, with the leading-color limit for both space-like and time-like presented in [64, 65].

The coefficient functions for e+e− annihilation are known at α1
s [66, 48] and α2

s [67, 47, 68] orders.

6Note that our eq. (2.1.23) reproduces eq.(2.6), eq.(2.7), and eq.(2.8) from [28] up to a typo in eq.(2.8), where the
combination 1

6 P(0)pi P(1)iq +
1
3 P(1)pi P(0)iq next to 1/ε2 should read 1

6 P(1)pi P(0)iq +
1
3 P(0)pi P(1)iq instead. We have confirmed this typo with

the authors.
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2.3. Calculating the cross sections

This brings us to the goal of this thesis: as can be seen from eq. (2.1.23) (and previously advocated
by [28, 69]) if one knows σq(x) and σg(x) up to O

�

a3
s

�

, then the recently calculated P(2)Tq→g and P(2)Tg→q

can be extracted from O
�

1/ε, a3
s

�

of these results, and the currently unknown C (3)q with C (3)g can be

extracted from O
�

ε0, a3
s

�

. Calculating semi-inclusive cross-sections up to α3
s however is not a trivial

exercise because the integrals appearing at this order are not yet known, so in the rest of this thesis we
shall concentrate on completing the calculation of all integrals required for σp(x) at O

�

a3
s

�

.

2.3. Calculating the cross sections

The calculation of σp(x) in perturbation theory involves the calculation scattering amplitudes, and thus
Feynman diagrams. In general we have

σp(x)∝
∑

n

∫

dPSn(x)

�

�

�

�

�

�

�

∑

diagrams e+

e− 1
2

n

γ∗

q
· · ·

�

�

�

�

�

�

�

2

, (2.3.1)

where dPS(x) is the semi-inclusive phase-space volume element,

dPSn(x) =

� n
∏

i=1

dd pi

(2π)d−1
δ+
�

p2
i

�

�

(2π)d δ(d)
�

q−
n
∑

i=1

pi

�

δ

�

x − 2
q·p1

q2

�

, (2.3.2)

and we have assumed that the momentum p1 corresponds to the parton of type p that we are after.

To further simplify eq. (2.3.1) we can factorize the diagrams into leptonic (L) and hadronic (H) tensors
as

σp(x)∝ Lµν
1
q4

Hµνp (x) , (2.3.3)

where

Lµν ≡
e+

e−

q,µ





e+

e−

q,ν





∗

, (2.3.4)

and

Hµνp (x)≡
∑

n

∫

dPSn(x)





∑

diagrams

1
2

n
q,µ

· · ·









∑

diagrams

1
2

n
q,ν

· · ·





∗

. (2.3.5)

The reason for this split is that all the QCD corrections along with all αs dependence are in Hµν, while
Lµν is just an overall factor. Let us then expand Hµν in αs as

Hp,µν ≡ H(0)p,µν +H(1)p,µνas +H(2)p,µνa2
s +H(3)p,µνa3

s +O
�

a4
s

�

. (2.3.6)

At the leading order we have

H(0)q,µν =

∫

dPS2(x)
1

2

q,µ





1

2

q,ν





∗

. (2.3.7)
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2. Theoretical background

At this point it is useful to introduce a shortcut diagrammatic notation: we shall denote the final state
particles over which the phase-space integration is performed via dashed lines (“cut lines”), optionally
with a cutting line drawn through them, and put a cross mark on the line corresponding to p1, and thus,
to δ

�

x − 2 q·p1
q2

�

. In this notation

∫

dPS2(x)
1

2

q,µ





1

2

q,ν





∗

≡
q,µ q,ν

. (2.3.8)

At the next order we have

H(1)q,µν = + + . . . , (2.3.9)

and so on. Note that we always depict the complex-conjugated part of the amplitude to the right of the
cut line, so that

≡

 !∗

. (2.3.10)

Of course, calculating tensor integrals is less convenient than scalar ones, so we should project Hµν onto
some set of scalars. Because Hµν is a Lorentz tensor and the only other Lorentz-covariant objects it can
depend on are gµν, qµ, p1,µ, and the antisymmetric tensor εµνρσ, we should expect

Hµν = F1 gµν + F2qµqν + F3pµ1 pν1 + F4pµ1 qν + F5qµpν1 + F6εµνρσqρpσ1 , (2.3.11)

where Fi are some scalar quantities. Due to Ward identities,

qµHµν = qνHµν = 0, (2.3.12)

this ansatz can be simplified, and is conventionally written as

Hµν(x) =

�

pµ1 qν + qµpν1
p1 ·q

− gµν −
q2

(p1 ·q)
2 pµ1 pν1

�

q2

2 (p1 ·q)
FT (x)+

+
�

pµ −
p1 ·q
q2

qµ
��

pν1 −
p1 ·q
q2

qν
�

q4

p1 ·q
FL(x)+

+iεµνρσpρ1 qσ
q2

2 (p1 ·q)
FA(x) ,

(2.3.13)

where FT , FL , and FA are the transverse, longitudinal, and asymmetric structure functions, which can be
expressed through Hµν using the following projectors:

FT =
2

d − 2

�

−
p1 ·q
q2

gµν −
pµ1 pν1
p1 ·q

�

Hµν, (2.3.14)

FL =
pµ1 pν1
p1 ·q

Hµν, (2.3.15)

FA = −
1
q2

2
(d − 2) (d − 3)

iεµνρσpρ1 qσHµν. (2.3.16)
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2.4. Which integrals are needed?

So if one takes the hadronic tensor in terms of Feynman diagrams as given in eq. (2.3.5) or eq. (2.3.9),
inserts Feynman rules, and applies these projectors, then FT , FL , and FA would be reduced to a weighted
sum of scalar Feynman integrals, e.g.:7

F (1)T =C1 +C2 + . . . . (2.3.17)

Unfortunately among these Feynman integrals there are many which values are not known (or, rather,
have not been known until this work).

2.4. Which integrals are needed?

To calculate σp up to α3
s we need F (3)T . The corresponding integrals are semi-inclusive cuts of massless

4-loop 2-point functions. Several kinds of them are needed:

• integrals with 2 cut lines and 3 loop integrations such as ,

• 3 cut lines and 2 loop integrations like ,

• 4 cut lines and 1 loop integration like ,

• and 5 cut lines with no loop integration like .

The current state of the art is that semi-inclusive cuts of 3-loop propagators are known from [69], and
semi-inclusive integrals with 2 cut lines can be taken from the 3-loop form factor integrals calculated
in [70, 71, 72]; 3-, 4-, and 5-particle cut integrals we need to complete by ourselves (this will be done in
Chapter 10).

To calculate these integrals we follow the suggestion of [28]: it is possible to obtain them via the
differential equations method, if one knows the values of their fully inclusive versions, i.e. fully inclusive
cuts of 4-loop propagators, to fix the boundary conditions. In other words, integrals like

, , , and . (2.4.1)

Unfortunately, the full set of values of these integrals is also something we need to derive ourselves—and
we have, in [35, 36] (this calculation will be described in detail in Chapter 9).

Before we can proceed with the calculation of the inclusive and then semi-inclusive cut integrals, we
must start from the beginning and review the techniques of calculation of Feynman integrals in general,
concentrating on the methods applicable to our calculation.

7We do not describe these steps in detail here; a computer implementation is available in ALIBRARY.
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3. Feynman integrals

A Feynman integral in d space-time dimensions (without cuts) has the general form

Iν1...νN
=

∫

dd l1
(2π)d

· · ·
dd lL

(2π)d
1

Dν1
1 · · ·D

νN
N

, (3.0.1)

where li are the L loop momenta, Di are the N denominators, and νi are the corresponding denominator
powers (also called “the indices”). The denominators in general are quadratic polynomials of the loop
momenta, normally having the form

Dk ≡
�

a(k)i li + b(k)i pi

�2
−m2

k + i0, (3.0.2)

where pi are the E external momenta, m2
k are the mass terms, and a(k)i and b(k)i are some constants. The

infinitesimal positive imaginary term +i0 is here to unambiguously define integration over poles of the
integrand (zeros of Dk).

Graphically Feynman integrals can be represented as Feynman graphs: directed graphs with each edge
carrying some momenta k and corresponding to a denominator D = k2 − m2 + i0, and each vertex
implying conservation of momenta, with the total momenta flowing into any edge being zero. See
eq. (3.1.1), eq. (3.2.7), and eq. (3.5.4) for some examples.

3.1. Direct integration: massive vacuum bubble

The simplest non-trivial Feynman integral is the massive one-loop vacuum bubble (here given with
arbitrary denominator power ν):

m,ν

≡
∫

dd l

(2π)d
1

(l2 −m2 + i0)ν
. (3.1.1)

The integrand here is highly symmetric: it remains invariant under any Lorentz rotation of l. To exploit
this fact we can introduce the components of l as l ≡ (E, ~p) and rewrite dd l in spherical coordinates
using eq. (A.0.2) as

dd l = dE dp pd−2Ωd−2, (3.1.2)

where p ≡ |~p|, and Ωk is the surface area of a k-sphere as given by eq. (A.0.3). The resulting integral,
∫

Ωd−2

(2π)d
dE dp pd−2

(E2 − p2 −m2 + i0)ν
, (3.1.3)

can then be taken routinely.1 Its value is
m,ν

≡ (−1− i0)ν
iπ

d
2

(2π)d
Γ
�

ν− d
2

�

Γ (ν)

�

m2 − i0
�

d
2−ν , (3.1.4)

1That is, with MATHEMATICA.
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3. Feynman integrals

where the factor (−1− i0)ν can also be written as e−iπν. Note that this result remains correct and
unambiguous even if m2 is negative, or ν is not an integer—this is the whole point of the±i0 prescriptions.

Because the integrals we will be interested in are less symmetric than this one, calculating them will
require applying more involved techniques. Let us review some of them.

3.2. Feynman parameterization

A Feynman integral of the form eq. (3.0.1) can be rewritten into the Feynman parameterization as

I =

�

(−1− i0)
d
2

iπ
d
2

(2π)d

�L
Γ
�

ν− L d
2

�

Γ (ν1) · · · Γ (νN )

∫

� N
∏

i=1

dx i x
νi−1
i

�

δ

�

1−
N
∑

i=1

x i

�

U (x)ν−(L+1) d
2 F (p, x)L

d
2−ν ,

(3.2.1)
where ν ≡ ν1 + · · ·+ νN , x i are the Feynman parameters, and U (x) and F (p, x) are homogeneous
polynomials of degrees L and L + 1 in x i, with F additionally depending on the external kinematic
invariants pi ·p j .

The fact that the space-time dimension d enters this parameterization as just another variable is,
mathematically speaking, what allows us to extend the domain of d from integers to general real or even
complex values; in that sense this parameterization can be viewed as the definition of Feynman integrals
in d dimensions.

This parameterization will allow us to calculate some simpler integrals directly, as well as to recognize
integral symmetries, and detect scaleless integrals.

3.2.1. The Feynman trick

The first step to obtain the form eq. (3.2.1)i s to rewrite the denominators of eq. (3.0.1) using the Feynman
trick:

1
D1D2

=

∫ 1

0

dx
1

(D1 x + D2 (1− x))
=

∫ 1

0

dx

∫ 1

0

dy
δ(1− x − y)
(D1 x + D2 y)

. (3.2.2)

Differentiating both sides of this formula by D1 and D2 enough times, one obtains the same relation for
arbitrary powers,

1
Dn

1 Dm
2

=
(n+m− 1)!
(n− 1)! (m− 1)!

∫ 1

0

dx xn−1

∫ 1

0

dy ym−1 δ(1− x − y)
(D1 x + D2 y)n+m , (3.2.3)

and applying it to a sequence of denominators, we have the general Feynman trick:

1

Dν1
1 · · ·D

νN
N

=
Γ (ν)

Γ (ν1) · · · Γ (νN )

∫ 1

0

� N
∏

i=1

dx i xνi−1
i

�

δ(1− x1 − · · · − xN )
(D1 x1 + · · ·+ DN xN )

ν , (3.2.4)

where ν≡ ν1 + · · ·+ νN .
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3.2. Feynman parameterization

Integration region

Note that although the integration in eq. (3.2.4) ostensibly has the limits 0 and 1, the actual integration
region is defined by the δ-function: it is a simplex, with each x i bounded from below by x i ≥ 0, and
from above by x1 + · · ·+ xN = 1.

Also keep in mind that

∫ 1

0

dxN δ(1− x1 − · · · − xN ) = θ (1− x1 − · · · − xN−1)θ (x1 + · · ·+ xN−1) , (3.2.5)

and thus, even after one of the parameters, e.g. xN , is integrated out, the integration region does not
become a cube, because the condition 0≤ x1 + · · ·+ xN−1 ≤ 1 remains.

3.2.2. Resolving the loop integration

After the Feynman trick is applied to eq. (3.0.1), we can proceed to resolve all the li integration, one by
one. To this end, for every li one should:

1. Express the denominator as Al2
i + li ·B + C .

2. Complete the squares, rewriting that as A
�

li +
B
2A

�2
+C− B2

4A; and shift li by−2A so that denominator
would turn into just Al2

i + C − B
4A.

3. Observe that the integral has now taken the form of the massive vacuum bubble integral from
eq. (3.1.1) with − C

A +
B

4A2 playing the role of m2, and so eq. (3.1.4) can be used to evaluate it.

4. In summary, we have

∫

dd li
(2π)d

1
�

Al2
i + li ·B + C + i0

�ν = (−1− i0)
d
2

iπ
d
2

(2π)d
Γ
�

ν− d
2

�

Γ (ν)
(A+ i0)ν−d

�

CA− 1
4 B2 + i0 sgnA

�ν− d
2

, (3.2.6)

where we have supplied the i0 prescription for A for completeness only; A is always non-negative
in practice.

Interestingly, in the second and further iterations of this procedure the denominator of eq. (3.2.6) will
be divisible by the numerator of the previous iteration, canceling it. After the final iteration, the result
will take the form of eq. (3.2.1), with the numerator becoming U (x) and the denominator becoming
F (p, x).

3.2.3. Example: one loop self-energy

As an example, let us calculate the one loop self-energy integral (“the bubble”),

≡
∫

dd l

(2π)d
1

�

(q− l)2 + i0
�

(l2 + i0)
. (3.2.7)

First, using the Feynman trick we have

∫

dd l

(2π)d

∫ 1

0

dx1

∫ 1

0

dx2
δ(1− x1 − x2)

((q2 − 2q·l + l2) x1 + l2 x2 + i0)2
. (3.2.8)

17



3. Feynman integrals

Next, integrating out l we get

∫ 1

0

dx1

∫ 1

0

dx2 (−1− i0)
d
2

iπ
d
2

(2π)d
Γ
�

2− d
2

�

Γ (2)
(x1 + x2)

2−d

(x1 x2q2 + i0)2−
d
2

δ(1− x1 − x2) . (3.2.9)

The integration over x2 resolves the δ-function, and the remaining integral over x1 can be taken via the
hypergeometric function 2F1. Assuming d > 2 the result reads

=
iπ

d
2

(2π)d
Γ 2
� d

2 − 1
�

Γ
�

2− d
2

�

Γ (d − 2)

�

−q2 − i0
�

d
2−2

. (3.2.10)

3.2.4. The Lee-Pomeransky representation

A useful variation of the Feynman representation from eq. (3.2.1) is introduced in [73]: it transforms
the parameterization so that the U and F polynomials only enter it as a single expression,

G (p, x)≡U (x) +F (p, x) . (3.2.11)

This is the Lee-Pomeransky polynomial. To obtain the corresponding representation we first need to
transform eq. (3.2.1) by applying the hypergeometric integral,

U α+kF−α =
Γ (−k)

Γ (α) Γ (−k−α)

∫ ∞

0

ds sα−1 (U + sF )k , (3.2.12)

and then to remove the s variable from inside the parentheses by noting that because U and F are
homogeneous polynomials of orders L and L + 1 in x i , they must scale as

U
� x

s

�

= s−LU (x) and F
� x

s

�

= s−L−1F (x) , (3.2.13)

so making a change of variables x → x/s transforms (U + sF )k into s−Lk (U + F)k. Moreover, under
this change of variables the δ-function in eq. (3.2.1) becomes δ

�

1−
∑

i x i/s
�

, which allows one to
immediately integrate out s. The result then reads

I =

�

(−1− i0)
d
2

iπ
d
2

(2π)d

�L
Γ
� d

2

�

Γ
�

(L + 1) d
2 − ν

�

1
Γ (ν1) · · · Γ (νN )

� N
∏

i=1

∫ 1

0

dx i xνi−1
i ·

�

G (p, x)−
d
2 . (3.2.14)

3.3. Integral symmetries

Many Feynman integrals that have different integrands when written down in form eq. (3.0.1) are in fact
identical, and can be made expressly so by a change in loop momenta variables. For example consider
the following two integrals:2

p1

p2

l

p2 + l

p1 − l

≡
∫

dd l

(2π)d
1

(l)2 (p1 − l)2 (p2 + l)2
, (3.3.1)

p1

p2

l ′ − p1

p1 + p2 − l ′

l ′

≡
∫

dd l

(2π)d
1

(l ′)2 (p1 − l ′)2 (p1 + p2 − l ′)2
. (3.3.2)

2The +i0 prescription for the denominators is implied here; we have omitted it for brevity.
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3.3. Integral symmetries

Just from Feynman graphs it can be seen that these integrals should be identical: they only differ in
how the loop momenta is assigned to the edges. Indeed, the change of variables l ′→ p1 − l makes the
integrands expressly identical.

While in this example the symmetry can be recognized by looking at the graph equivalence of Feynman
graphs corresponding to the integral, this is not sufficient in general: there are cases when integrals with
different graphs are symmetric too. The simplest and most common such example corresponds to the
bubble insertion reordering:

= , (3.3.3)

a more complex example is given in [74]:
p1

p2

p1

p2

m =

p1

p2

p1

p2m . (3.3.4)

To systematically recognize these symmetries we can turn to analyzing the Feynman parameterization:
eq. (3.2.1) is invariant under the permutation of the Feynman parameters x i, so two integrals are
symmetric if their U and F polynomials can be made identical by any such permutation. Practically,
instead of analyzing U and F separately, the symmetry of just the Lee-Pomeransky polynomials G =
U +F can be considered.

To continue the example of the integrals above, assuming p2
1 = p2

2 = 0, their G polynomials are

x1 + x2 + x3 + 2p1 ·p2 x2 x3 and x ′1 + x ′2 + x ′3 + 2p1 ·p2 x ′1 x ′3. (3.3.5)

One can see that these polynomials become identical by substituting

{x1, x2, x3}↔
�

x ′2, x ′1, x ′3
	

. (3.3.6)

This proves that the integrals are identical. Moreover, the found substitution also helps to figure out
which momenta mapping is needed to make the integrands identical: it implies that the first denominator
of the first integral corresponds to the second denominator of the second integral, and so on. Overall the
substitution gives us the following equations:

(l)2 =
�

p1 − l ′
�2

,

(p1 − l)2 =
�

l ′
�2

, (3.3.7)

(p2 + l)2 =
�

p1 + p2 − l ′
�2

.

This is a quadratic equation system with only one solution: l ′ = p1 − l, which is exactly the momenta
mapping we expected. This solution can be found by noting that the system reduces to a linear system
with unknown signs (i.e. ±l = p1 − l ′, . . . ), so one can try to take the equations one by one recursively,
setting the sign of each to first + and then −, and backtrack if the currently assembled linear system has
no solutions. In practical problems this works sufficiently fast.

Note however that sometimes it may happen that a system like eq. (3.3.7) has no solutions. This means
that although a symmetry was identified in the Feynman parameter space, it has no equivalent in the
momenta space. Such a situation can happen when the kinematics of the problem provides avenues for
symmetries not present in the general kinematics. For example the following two integrals appear in the
subsectors of the triangle from eq. (3.3.1), and are generally speaking different:

p1

p2

6=
p2

p1

; (3.3.8)
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3. Feynman integrals

if, however, p2
1 = p2

2, they become identical, and there is no loop momenta shift that would make their
integrands identical (if there was, it would have been valid when p2

1 6= p2
2 too). In such cases one can

still use the relation in the Feynman parameter space eq. (3.3.6) to establish the equivalence.

The question then lies in how to find substitutions like eq. (3.3.6): there are N ! of them in total, where
N is the number of the denominators, so trying all permutations quickly becomes impractical. In fact,
finding a permutation of x i under which two polynomials become the same is equivalent to finding graph
isomorphisms, a problem for which no polynomial-time solution is known. Still, methods of finding
graph isomorphisms are well-studied and software exists that performs well on variety of graphs: NAUTY

AND TRACES [75], SAUCY [76], and BLISS [77] are some of the commonly used libraries that given a
graph will produce its canonical labeling. So a practical strategy can be just that:

1. Construct such a graph that relabelings that leave it unchanged are isomorphic to x i permutations
that leave G unchanged.

2. Find the canonical labeling of that graph.

3. Turn the labeling into the canonical x i permutation, and thus, canonical G polynomial.

The construction of a graph corresponding to the polynomial is simple:

1. For each x i add a vertex.

2. For each term C xk1
1 xk2

2 . . . in G add a vertex with a different color for each unique C .

3. For each xki
i in each term C xk1

1 xk2
2 · · · add an edge of color ki between the vertex corresponding to

x i and the vertex corresponding to the whole term.

To illustrate, the polynomials from eq. (3.3.5) correspond to the following graphs:

1x1 1x2 1x3 2p1 ·p2 x1 x2

x1 x2 x3

and

1x ′1 1x ′2 1x ′3 2p1 ·p2 x ′1 x ′2

x ′1 x ′2 x ′3

. (3.3.9)

A canonical labeling procedure might label these two graphs as3

4 5 6 7

1 2 3

and

5 4 6 7

2 1 3

. (3.3.10)

Under this labeling both graphs have the exact same set of edges: {1↔ 4, 2↔ 5, . . . }, and thus are
identical. After verifying the equality, we can use the labeling to immediately deduce the mapping
between x i and x ′i from eq. (3.3.6), and then solve the corresponding system of equations like eq. (3.3.7)
to find the momenta mapping.

We have implemented this strategy in the FEYNSON tool, see Chapter 4 for its description.

3Note that for example NAUTY AND TRACES do not support graphs with colored edges, only colored vertices; this however is
not a problem because a colored graph can be transformed into an equivalent uncolored one. The suggested construction
is to make multiple layers (copies) of all vertices with each layer having a distinct set of vertex colors; connect all copies
of a given vertices across the layers by a sequence of edges; and finally replicate an edge of color k = 1,2, . . . in layer
i = 1, 2, . . . if

�

k/2i−1
�

= 1mod2. For a graph with n distinct edge colors, the total of log
�

log2(n+ 1)
�

layers are needed
for this construction.
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3.4. Scaleless integrals

3.4. Scaleless integrals

A Feynman integral is scaleless if it depends on no external mass scale. Such integrals are zero in
dimensional regularization. Examples of these are massless tadpoles and snails,

= 0, = 0, (3.4.1)

also propagators (2-point functions) with zero momentum flowing through them,

p1

p2

, if p2
1 = 0. (3.4.2)

Naturally, any integral corresponding to a diagram that has one of these as a subdiagram is also zero.
A practical condition for detecting zero integrals is given in [78]: one can start from the Feynman
parameterization of eq. (3.2.1), rescale

x i → x i +αki x i , (3.4.3)

where α is an infinitesimal parameter and ki are some constants; then if such ki exist that G scales as

G (x i +αki x i) = (1+α)G (x i) , (3.4.4)

then the whole integral will scale as

I →

�

1+α

�

∑

i

ki −
d
2

��

I , (3.4.5)

and therefore will be scaleless. After rewriting eq. (3.4.4) as

∑

i

ki x i
∂

∂ x i
G (x) = G (x) , (3.4.6)

we have the scaleless integral criteria: if there exist such ki that eq. (3.4.6) becomes an identity, then
the corresponding integral is zero. To check this one only needs to collect the coefficients next to all x i
combinations in eq. (3.4.6), and demanding that each become zero; this results in a linear system of
equations in ki , which can be solved via standard methods.

The FEYNSON tool from Chapter 4 contains an implementation of this condition for zero integral detection.

3.5. Integration-by-parts relations

Let us take a look at a family of Feynman integrals with L loop momenta li , and E external momenta pi .
Let us define it by

Iν1,...,νN
≡
∫

dd l1
(2π)d

· · ·
dd lL

(2π)d
1

Dν1
1 · · ·D

νN
N

, (3.5.1)

where Di ≡ a(i)jk l j · lk + b(i)jk l j ·pk −m2
i + i0 are the denominators, and νi are their powers, also called

“indices”.
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3. Feynman integrals

The integrals in such a family are not all linearly independent: there are linear relations between these
integrals, and in fact the linear basis for them is known to be finite.

One class of such relations are the so-called integration-by-parts relations (IBP) [79]. We can derive
them succinctly by noting that the integration volume for li is unbounded, so changing it by a finite
amount should not change the integral (if the integral converges at all). Let us then shift one of the loop
momenta, lk, by αv, where v is some arbitrary vector, and require invariance. In the limit α→ 0 the
invariance condition then becomes just a derivative:4

lim
α→0

d
dα

I(lk→ lk +αv) =

∫

dd l1
(2π)d

· · ·
dd lL

(2π)d
∂

∂ lµk

vµ

Dν1
1 · · ·D

νN
N

= 0. (3.5.2)

The derivative acting on the denominators produces two kinds of structures: denominators Di raised to
powers different than the original νi, and additional scalar product terms in the numerator. The trick
is to express these scalar products in terms of the denominators Di: if this is possible, then the whole
eq. (3.5.2) will become a linear combination of integrals in the same family but with different indices,

∑

k

Ck I
ν1+n(k)1 ,...νN+n(k)N

= 0, (3.5.3)

where Ci are some coefficients that may depend on the external kinematic invariants pi ·p j and d, and

n(k)i ∈ {0,±1}.

The relation eq. (3.5.2) holds for all k, and the vector v can be chosen arbitrary: any of li and pi can be
chosen; in total this gives us L (L + E) relations. These relations can be solved. In fact even though there
is an infinite number of integrals Iν1,...,νN

, these relations allow linearly expressing all of them through a
number of basis integrals called the master integrals. This basis is known to always be finite [80].

3.5.1. Example: the triangle topology

As an example let us use the following family of integrals:

Ia,b,c =

p1

p2

b

c

a

≡
∫

dd l

(2π)d
1

l2a
︸︷︷︸

Da
1

(p1 − l)2b

︸ ︷︷ ︸

Db
2

(p1 + p2 − l)2c

︸ ︷︷ ︸

Dc
3

, (3.5.4)

where p1 and p2 are external momenta, both on-shell (p2
1 = p2

2 = 0), and l is the loop momentum.
Putting this definition into eq. (3.5.2), and using

vµ
∂

∂ lµ
1
(k2)n

= −n
1

(k2)n+1 2vµ
∂ kν

∂ lµ
kν, (3.5.5)

the IBP relation for the general v becomes

0=

∫

dd l

(2π)d
1

l2a (p1 − l)2b (p1 + p2 − l)2c

�

∂ kµ

∂ lµ
− 2a

v ·l
l2
− 2b

−ν·(p1 − l)

(p1 − l)2
− 2c

−v ·(p1 + p2 − l)

(p1 + p2 − l)2

�

.

(3.5.6)

4Note that lk itself can be chosen for v, which corresponds to rescaling of the loop momenta. This case is special in that dd lk

changes too, and eq. (3.5.2) is written in a way to handle this case correctly: vµ is inside the differentiation operation for
this reason.
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3.5. Integration-by-parts relations

Next, we would like to substitute p1, p2, and l for v into this equation, express the scalar products
appearing in the numerators via the denominators Di , and finally obtain the relations between Ia,b,c .

All the possible scalar products involving the loop momentum l can be expressed via the denominators
as follows:

p1 ·l = −
1
2
(p1 − l)2 +

1
2

l2 = −
1
2

D2 +
1
2

D1, (3.5.7)

p2 ·l = −
1
2
(p1 + p2 − l)2 +

1
2
(p1 − l)2 + p1 ·p2 = −

1
2

D3 +
1
2

D2 + p1 ·p2, (3.5.8)

l ·l = l2 = D1. (3.5.9)

Using these relations, and substituting p1 for v we get the first IBP relation:

0=− 2a
�

−
1
2

Ia+1,b−1,c +
1
2

Ia,b,c

�

−

− 2b
�

−
1
2

Ia,b,c +
1
2

Ia−1,b+1,c

�

− (3.5.10)

− 2c
�

−p1 ·p2 Ia,b,c+1 −
1
2

Ia,b−1,c+1 +
1
2

Ia−1,b,c+1

�

.

Substituting p2 for v we get the second one:

0=− 2a
�

−
1
2

Ia+1,b,c−1 +
1
2

Ia+1,b−1,c + p1 ·p2 Ia+1,b,c

�

−

− 2b
�

−
1
2

Ia,b+1,c−1 +
1
2

Ia,b,c

�

− (3.5.11)

− 2c
�

−
1
2

Ia,b,c +
1
2

Ia,b−1,c+1

�

.

And, substituting l for v we get the third one:

0=+ dIa,b,c − 2aIa,b,c−

− 2b
�

1
2

Ia,b,c +
1
2

Ia−1,b+1,c

�

− (3.5.12)

− 2c
�

1
2

Ia,b,c − p1 ·p2 Ia,b,c+1 +
1
2

Ia−1,b,c+1

�

.

3.5.2. Lorentz invariance relations

A related class of relation are the Lorentz invariance relations [81]; these follow the same idea as IBP,
except that instead of translations the integrals are required to be invariant under arbitrary Lorenz boosts
of the external momenta:

lim
α→0

d
dα

I
�

pµi → pµi +αω
µ
νpνi

�

=ωµν

�

∑

i

pµi
∂

∂ pνi

�

I = 0, (3.5.13)

where ωµν is an arbitrary antisymmetric tensor. Such tensors can be constructed from pairs of momenta
pi and p j as

ωµν = pµi p jν − pνi p jµ, (3.5.14)
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3. Feynman integrals

with i and j being arbitrary, giving a total of E (E − 1)/2 combinations ofωµν , and the total of E2 (E − 1)/2
of Lorentz invariance relations.

This class of relations is still used in practice, even though it is known to be linearly dependent on the
IBP relations [82].

3.5.3. IBP integral family construction

To derive concrete IBP relations like eq. (3.5.10) from the general eq. (3.5.2) we must be able to uniquely
express every scalar product involving the loop momenta li in terms of the denominators Di . This means
that:

1. Denominators of an IBP integral family must be linearly independent.

2. There must as many of them as there are li ·l j and l1 ·p j combinations: L (L + 1)/2+ LE in total.

Neither of these conditions is automatically satisfied by the integrals coming directly from Feynman
diagrams. For the second condition, note that a diagram with L loops and E + 1 legs will have up to
E − 2+ 3L denominators (and exactly that many if all vertices have three edges); if that is less than
L (L + 1)/2+ LE, auxiliary denominators must be added to complete the integral family. There is a
considerable freedom in choosing how these look like. Because the total time needed to solve IBP
relations depends on this choice, it may be profitable to try different options; a heuristic such as “select
the set that minimizes the number of terms in IBP relations” can be used too.

For the first condition, keep in mind that some Feynman diagrams naturally result in integrals with
linearly dependent denominators. Diagrams with masses are one such case; for example:

m1 m2

=

∫

1

l2 −m2
1

1

l2 −m2
2

· · · , (3.5.15)

where the denominators l2−m2
1 and l2−m2

2 are linearly dependent. This problem is solved by performing
partial fraction decomposition on the integrands. In the example above it is as simple as substituting

1

l2 −m2
1

1

l2 −m2
2

=
1

m2
1 −m2

2

1

l2 −m2
1

+
1

m2
2 −m2

1

1

l2 −m2
2

, (3.5.16)

which in diagram form means

m1 m2

=
1

m2
1 −m2

2 m1

+
1

m2
2 −m2

1 m2

. (3.5.17)

In other words, a single integral with linearly dependent denominators must be represented as an
equivalent combination of multiple integrals from different integral families for IBP relations to be
derived.

3.5.3.1. Partial fraction decomposition in the general case

In the most general case when multiple denominators of an integral are linearly dependent, partial
fraction decomposition can be done via Leinartas’ algorithm [83, 84]:
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3.5. Integration-by-parts relations

1. For each integrand term of the form C D−ν1
1 · · ·D−νN

N , check if there is a linear dependence among
the denominators, such that for some vector A and constant B, Ai Di + B = 0.

To do this, decompose Di into the scalar products Di = Ni js j +Mi, where s =
�

li ·l j , li ·p j

	

, then
every A ∈ nullspaceNT and B = −Ai Mi will satisfy the dependence condition.

2. If there is a dependence, and B 6= 0, multiply the term by a factor of

1= −
1
B

∑

i

Ai Di; (3.5.18)

this way the original term will split into several new terms, each with one of the dependent
denominators canceled (at least partially).

3. If there is a dependence, and B = 0, choose any denominator Dk such that Ak 6= 0, and multiply
the term by

1= −
1

AkDk

∑

i 6=k

Ai Di . (3.5.19)

Note that the index of Dk will necessarily increase in this case.

4. Repeat until no term has linearly dependent denominators.

Note that this algorithm may produce different final expressions depending on the choice of denominators
in step 3; sometimes this may be undesirable, and algorithms based on Gröbner bases have been developed
that guarantee uniqueness of the final answer [85].

3.5.4. Solving IBP relations: the Laporta algorithm

In some simpler cases the IBP relations can be solved by hand for general indices. For larger problems
the best choice is the Laporta algorithm [86]:

1. Substitute integer values for the indices νi into the IBP relations, obtaining a large linear system
with many different Iν1...νN

.

2. Define an ordering of Iν1...νN
from the most “simple” to the most “complex”.

The order is usually defined using the number of the denominators t ≡
∑

θ
�

νi −
1
2

�

, the sum of
the positive indices r ≡

∑

νiθ
�

νi −
1
2

�

, the sum of the negative indices s ≡
∑

−νiθ
�1

2 − νi

�

, etc.

3. Perform Gaussian elimination on the linear system, eliminating the most complex integrals first.

4. A small number of integrals will survive the elimination. These are the master integrals. All the
others will be expressed as their linear combination.

A lot of effort has been put into software implementations of variations of this algorithm. At the time
of writing the fastest publicly available implementations are FIRE6 [87] and KIRA [88]. The biggest
difference usage-wise is that FIRE6 constructs IBP relations on the fly until all requested integrals are
encountered, while KIRA constructs the whole set of equations up to the specified limit (given in terms
of the sum of indices of the integrals), and then solves the whole set.

In our experience FIRE6 turned out to be the faster choice for our problems; it also has kept the memory
usage minimal by storing most intermediate results on disk. The downside of FIRE6 it is that on a few
occasions it has identified more master integrals than it needed to (compared to KIRA). KIRA on the
other hand produces smaller master set sizes and automatically resolves symmetries between integral
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3. Feynman integrals

families (something FIRE6 cannot do). The biggest downside of KIRA is its high memory usage (e.g.
100-200GB or more for a 4-loop semi-inclusive problem); combined with the fact that to obtain the
minimal set of master integrals one must increase the set of relations it looks at (by increasing r and s
limits) high memory usage prevented us from using it on 4-loop problems.5

Other notable IBP software include LITERED [78], which uses heuristics to try finding a solution for
general indices without relying on Laporta-style reduction. While this approach does not scale to more
complex problems, LITERED contains functions for integral differentiation, Feynman parameterization,
and dimensional recurrence construction; the symmetry tables that it constructs are a requirement for
FIRE6 usage. Another notable IBP solver is FORCER [90], which contains special hand-crafted solutions
for massless 2-point functions up to 4 loops, and for that particular problem is unrivaled in performance.

At present there are three major avenues to improve the runtime performance of the Laporta reduction:

1. The first is to perform the reduction using finite field arithmetic (i.e. modulo a prime number)
with all variables replaced by numbers—something that can be done much faster than the normal
reduction—and then restore the dependence on the variables via the Chinese remainder theorem.
FIRE6 can operate in this mode, although it lacks facilities to reconstruct multivariate expression.
KIRA starting with version 2.0 [88] also supports this method via the library FIREFLY [91], including
full multivariate support. FINITEFLOW [92] provides another implementation of this technique.

This mode of operation allows for much greater parallelizability of the computation because it
requires solving the relations many times with different numbers substituted for the variables,
and each such run can be performed completely independently from one another. On the other
hand practice shows that the speedup this method achieves depends on the problem, and there
are reductions that finish faster using the classical approach.

2. The second is to select a master integral basis such that the coefficients of the final IBP relations
become smaller in size, and thus are faster to operate on. In particular, it is possible to select a
basis such that the dependence on the dimensional variable d in the denominators is factorized—a
d-factorizing basis [93, 94].

The selection of the master integral basis in general is very important: some tests show that a
reduction that takes 30 minutes with one basis can take just 11 seconds with a different one.

3. The third is to partially solve the IBP relations (by e.g. eliminating relations that raise indices)
using algebraic geometry methods before running the Laporta algorithm [95, 96, 97, 98, 99].

3.5.5. IBP for phase space integrals

So far we have been considering integrals of the form eq. (3.0.1). Following [100] it is possible to apply
IBP reduction to phase-space integrals with minimal changes to the procedure: the idea is that the
δ function defining the phase-space is equivalent to a denominator:

δ
�

p2
�

=
1

2πi

�

1
p2 − i0

−
1

p2 + i0

�

, (3.5.20)

so the IBP relations for cut integrals are the same as for the uncut ones. Note that this relation is just
one of the representations of the δ function, unrelated to Feynman integrals as such. A denominator
standing in place of a δ function is called a cut denominator.

5This was out experience with Kira 1.2 [89]; we did not test KIRA 2.0 with FIREFLY, which promises significant memory usage
reduction.
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3.5. Integration-by-parts relations

Solving IBP relations with cut denominators is the same as with normal ones, with two differences: first,
because p2δ

�

p2
�

= 0, any integral with cut denominator to a positive power can be immediately put to
zero. Second, when integral symmetries are calculated care must be taken not to treat cut and normal
denominators as interchangeable.6

6Practically, this difference can be tracked by adding a unique fictitious mass term to cut propagators; this way the symmetry
finding algorithm from Section 3.3 can be reused without modifications.
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4. Feynson: a tool for zeros & symmetries

A typical workflow for calculating loop corrections to a physical quantity involves generating Feynman
diagrams using tools like QGRAF [101], converting diagrams into integrals through Feynman rules (with
custom code), sorting the integrals into IBP families (custom code again), running Laporta-style IBP
reductions on them, and then finally inserting the values of master integrals (calculated separately).
When sorting the integrals into IBP topologies one wants to obtain the minimal amount of topologies
covering all the integrals. To do this it is essential to recognize when a loop momentum substitution
exists that makes one family of integrals identical to another family, or a subset of it. IBP programs like
KIRA and LITERED do provide tools for this: both can find symmetries between families of integrals, but
neither is optimized to handle a large number of them: figuring out symmetries between one thousand
of 4-loop integral families takes weeks with KIRA 1.2. So, we have developed a separate tool for this
task: FEYNSON.

FEYNSON is a command-line tool that finds symmetries between integral families, helping in the process
of mapping integrals into IBP topologies. It does so by figuring out the loop momentum substitutions
that make the integrands of different families identical if the families are symmetric, and subsets of each
other if there is a subset relation. The intended usage is this: for every integral in the problem calculate
the set of denominators; pass this set to FEYNSON, and it will output a loop momentum map for each set;
after this momentum map is applied symmetric integrals will have identical denominator sets, and the
remaining unique denominator sets will define the minimal set of IBP topologies covering the integrals.
The technique for this is described in Section 3.3.

As a related function, FEYNSON can also determine which integral families correspond to scaleless
integrals, so that these can be removed from further consideration early. The algorithm from Section 3.4
is used here.

FEYNSON is designed to handle a large amount of integral families, so that there would be no need to
preprocess data before passing into it. When possible it performs calculations in parallel, and is generally
able to handle thousands of families with no difficulty.

FEYNSON is written in C++ using GINAC [102] and NAUTY AND TRACES [75]; it should work on any
Unix-like system. One can find its source code at github.com/magv/feynson.

4.1. Command-line usage summary

The syntax for FEYNSON invocation on the command line is:

feynson [options] command args ...

Commands

The command argument gives the sub-command name. Available sub-commands are:
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4. Feynson: a tool for zeros & symmetries

feynson [-d] symmetrize spec-file

Print a list of momenta substitutions that make symmetries between a list of integral families
explicit.

These momenta substitutions will make the set of denominators of two integral families exactly
match (up to a reordering) if the families are isomorphic, and will make one a subset of the other
if one family is isomorphic to a subsector of another family.

The input specification file should be a list of three elements:

1. a list of all integral families, with each family being a list of propagators (e.g. “(l1+l2)^2)”;

2. a list of all loop momenta;

3. a list of external invariant substitution rules, each rule being a list of two elements: a scalar
product and its substitution (e.g. “{q^2, 1} or {p1*p2, s12}”).

For example: “{ {{(q-l)^2, l^2}, {(q+l)^2, l^2}}, {l}, {} }”.

Each family that can be mapped to (a subsector of) another is guaranteed to be mapped to the first
possible family, preferring families that are larger or listed earlier. If the -d flag is given, earlier
families are preferred irrespective of their size.

Note that if non-trivial invariant substitution rules are supplied, it becomes possible that two
families are identical, but no loop momentum substitution exists to map them onto each other.
For example, a 1-loop propagator with momentum p1 is equal to a 1-loop propagator with p2, but
only if p2

1 = p2
2, in which case no loop momentum substitution can make the integrands identical.

For this reason, it is best to use symmetrize with the invariant substitution rules set to “{}”, and to
fall back to mapping-rules otherwise.

feynson [-d] mapping-rules spec-file

Do the same as symmetrize, but instead of printing the loop momenta substitutions, produce
explicit rules of mapping between families: for each family that is symmetric to another, print
“{fam, {n1, n2, ...}}”, meaning that any integral in this family with indices “{i_1, i_2,
...}” is equal to an integral in the family number “fam” with indices “{i_n1, i_n2, ...}”.
For unique families, print “{}”. The families are numbered starting at 1. If a given family is
symmetric to a subfamily, some of the n indices will be 0: the convention is that i0 = 0.

feynson [-s] zero-sectors spec-file

Print a list of all zero sectors of a given integral family.

The input specification file should be a list of four elements:

1. a list of all propagator momenta (e.g. “(l1-q)^2”);

2. a list of cut flags, “0” for normal propagators, “1” for cut propagators;

3. a list of all loop momenta (e.g. “l1”);

4. and a list of external invariant substitutions (e.g. “{q^2, 1}”).

For example: “{ {(q-l)^2, l^2}, {0, 0}, {l}, {{q^2,1}} }”.

The output will be a list of zero sectors, each denoted by an integer s = 2i1−1 + ...+ 2in−1, where ik
are the indices of denominators that belong to this sector (counting from 1).

If the -s flag is given, the output will be shortened by only listing the topmost zero sectors: all the
remaining zero sectors are their subsectors.

Every sector that is missing a cut propagator of its supersectors will be reported as zero.
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feynson ufx spec-file

Print the Feynman parametrization (U , F , {x i}) of an integral defined by a set of propagators.

The input specification file should be a list of three elements:

1. a list of all propagators, e.g. “(l1-q)^2”;

2. a list of all loop momenta, e.g. “l1”;

3. and a list of external invariant substitutions, e.g. “{q^2, 1}”.

For example: “{ {(q-l)^2, l^2}, {l}, {{q^2,1}} }”.

The output will be a list of three items: the U polynomial, the F polynomial, and the list of
Feynman parameter variables.

Options

-j jobs Parallelize calculations using at most this many workers.

-d Prioritize families in the definition order, irrespective of size.

-s Shorten the output (depending on the command).

-q Print a more quiet log.

-h Show a help message.

-V Print version information.

Arguments

spec-file Filename of the input file, with “-” meaning the standard input.

Environment variables

TMPDIR Temporary files will be created here.

4.2. Usage example: integral symmetry

As an example, consider the following two equivalent Feynman integral families:

l1 l2

q− l1 q− l2

l2 − l1
q

and

l1 l1 + l2

q− l1 q− l1 − l2

l2
q

. (4.2.1)

The first one has propagators {l1, l2, q− l1, l2 − l1, q− l2}, while the second has {l1, q − l1 − l2, q −
l1, l2, l1 + l2}. To figure out that these two are equivalent, one can use FEYNSON as follows:1

1We assume that the reader is familiar with the basics of Unix shell usage.
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$ cat >families.in <<EOF
{
{{l1^2, l2^2, (q-l1)^2, (l2-l1)^2, (q-l2)^2},
{l1^2, (q-l1-l2)^2, (q-l1)^2, l2^2, (l1+l2)^2}},

{l1, l2},
{}

}
EOF
$ feynson symmetrize families.in 2>/dev/null
{
{},
{{l2,-l1+l2}}

}

So the suggestion is to replace l2 with l2 − l1 in the second integral family. This will map its set of
propagators to {l1, q− l2, q− l1, l2 − l1, l2}, which is exactly the set of propagators of the first family—up
to a reorder and a change of sign in l2 − l1. Thus, both families are equivalent.

Note that FEYNSON can be conveniently used directly from within MATHEMATICA via the RunThrough
function as follows:

In[1]:= RunThrough["feynson symmetrize -", {
{{l1^2, l2^2, (q-l1)^2, (l2-l1)^2, (q-l2)^2},
{l1^2, (q-l1-l2)^2, (q-l1)^2, l2^2, (l1+l2)^2}},

{l1, l2},
{}

}]
Out[1]= {{}, {{l2,-l1+l2}}}

As an alternative to finding the momentum mapping, we can also extract explicit mapping rules between
integral families:

$ feynson mapping-rules families.in 2>/dev/null
{
{},
{1, {1,5,3,4,2}}

}

If we will denote the integral family corresponding to the first diagram of eq. (4.2.1) as Aν1,...,ν5
and the

second as Bν1,...,ν5
, then this output indicates that the first family (A) is unique, and the second family (B)

is symmetric to the first one as
Bν1ν2ν3ν4ν5

= Aν1ν5ν3ν4ν2
. (4.2.2)

4.3. Usage example: zero sectors

To figure out zero sectors in the same family, we can do this:

$ cat >family.in <<EOF
{
{l1^2, l2^2, (q-l1)^2, (l2-l1)^2, (q-l2)^2},
{0, 0, 0, 0, 0},
{l1, l2},
{}

}
EOF
$ feynson zero-sectors -s family.in 2>/dev/null
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{
7,
11,
13,
19,
21,
22,
26,
28

}

In binary notation these sector numbers read 001112, 010112, 011012, 100112, 101012, 101102, 110102,
and 111002. As an example, sector 100112 (19) corresponds to the 3-rd and 4-th propagators removed,
leaving only the set {l1, l2, q− l2}; this sector can be depicted as

l1 l2

q− l2

q
. (4.3.1)

Note the massless self-loop in the diagram: this is the scaleless factor that makes the whole family zero.
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5. Dimensional recurrence relations

In [103] it was noted that the operation of shifting the space-time dimension d by ±2 in a parametric
representation of Feynman integral like eq. (3.2.1) is expressible in terms of derivatives by the mass terms;
this allows expressing an integral in d + 2 dimensions as a combination of integrals in d dimensions.
If one applies this idea to a set of IBP master integrals I = {Ii}„ it is further possible to express the
resulting integrals as a linear combination of the same set of mater integrals (via IBP relations), resulting
in dimensional recurrence relations (DRR) of the general form

I(d + 2) =M(d,p) I(d) , (5.0.1)

where M is the “lowering” DRR matrix; it depends on d as well as external invariants pi ·p j and/or
masses. A general method of constructing these relations is described in [104] and implemented in
LITERED [78] (see the LoweringDRR routine).

The inverse of the “lowering” DRR from eq. (5.0.1) are the “raising” DRR:

I(d − 2) =M(d,p) I(d) , (5.0.2)

which can also be constructed by LITERED (via the RaisingDRR routine), and are significantly more
compact, and thus faster to reduce via IBP.

Dimensional recurrence relations can be solved, and have proven to be a powerful tool in calculating
single-scale integrals (those that depend on a single external invariant). A particularly simple case of
them—and the one applicable to our integrals of interest—is whenM is triangular (that is,Mi j = 0 if
i < j). DRR matrices necessarily have this structure if there is at most one master integral in an IBP
sector;1 when there are more they can form coupled blocks, makingM block-triangular instead.2 In the
triangular case eq. (5.0.1) for each integral immediately splits into a homogeneous and inhomogeneous
part:

Ii(d + 2) =Mii(d) Ii(d) +
∑

j<i

Mi j(d) I j(d) ; (5.0.3)

the general solution will then have the form

Ii(d) = Hi(d)ωi(d) + Ri(d) , (5.0.4)

where,

• Hi(d) is a homogeneous solution, satisfying H(d + 2) =Mii(d)Hi(d);

• Ri(d) is a particular solution, determined by integrals from the lower sectors, I j<i;

• ωi(d) is an arbitrary periodic function, such that ωi(d + 2) = ωi(d); this function cannot be
determined from the DRR relations alone, and needs to be fixed separately.

1To be precise, depending on the ordering of I the DRR matrix might be only similar to a triangular matrix, requiring a
similarity transformation before it is properly triangular. In practice if one orders the integrals by their denominator
numbers, then the lower sector integrals will necessarily come first, and the triangular form ofM is guaranteed.

2For methods for dealing with non-triangular DRR matrices see [105, 106].
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If one factorizes the diagonal elements ofM as

Mii =C
∏

k

�

d
2
− ak

�nk

, (5.0.5)

then the homogeneous solution can be immediately constructed as

Hi(d) =C
d
2

∏

k

§

Γ nk

�

d
2
− ak

�

or (−1)
d
2 nk Γ−nk

�

ak −
d
2
+ 1

�ª

, (5.0.6)

where both forms of the factors are equally acceptable; they differ only in the positions of the poles and
zeros in d: the first one has poles (or zeros if nk < 0) at d = 2ak − 2n, while the second one has zeros
(or poles if nk < 0) at d = 2 (ak + 1) + 2n. If it is convenient to avoid all poles at higher d then the first
form should be chosen; otherwise—the second.

The particular solution Ri(d) can be constructed as an infinite sum,

Ri(d) = Hi(d)

¨

−
∞
∑

k=0

or
−1
∑

k=−∞

«

H−1
i (d + 2k+ 2)

∑

j<i

Mi j(d + 2k) I j(d + 2k) , (5.0.7)

where the direction of the summation is chosen depending on which one converges. The essential
step in solving DRR equations is the evaluation of this sum: a specialized package DREAM [105] exists
specifically to evaluate these sums numerically as series in ε with arbitrary precision—as long as the
integrals from lower sectors I j<i(d) are known numerically too.3 Normally this is a quickly converging
geometric sum, and a precision of thousands of digits can be easily achieved.

With the H(d) and R(d) constructions being understood, the most difficult part of solving DRR is finding
the periodic function ω(d), which plays the same role as integration constants play in the solution of
differential equations.

5.1. Fixing the periodic function

One way of finding ωi(d) is the dimensional recurrence and analyticity method [107]. Its insight is that
if one treats d as a complex variable, by studying the poles of ωi(d) and its asymptotic behavior at
Imd →±∞ the possible forms that it is allowed to take can be reduced to a small ansatz, which then
can be solved for with just a few bits of additional information.

To see how this is done, let us first rewrite eq. (5.0.3) as

ωi(d) = H−1
i (d) Ii(d)−H−1

i (d)Ri(d) . (5.1.1)

The poles and asymptotic behavior of ωi(d) can then be decided by looking at that of H−1
i (d), Ii(d), and

Ri(d). The overall method to calculate ωi(d) then has the following steps:

1. Solve all integrals in subsectors, I j<i , if any.

2. Choose a semi-open stripe of width 2 in the complex plane, such that Re d ∈ (d0, d0 + 2] or
Re d ∈ [d0, d0 + 2), and restrict the analysis to this stripe.

Because ωi(d) is periodic, its behavior must be the same in any such stripe. H−1
i , Ii and Ri on the

other hand are not periodic, so it is best to choose such a stripe to minimize the total number of
poles these functions have on it.

3This is one of the reasons why the method works best for single-scale integrals: in the multi-scale case R(d) becomes a
non-trivial function of external kinematic parameters, so that a numerical evaluation—as it is done in DREAM—becomes
impossible.
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5.1. Fixing the periodic function

3. Construct the homogeneous solution Hi(d) via eq. (5.0.6), utilizing the freedom of choosing the
summation direction in that equation to minimize the set of poles on the chosen stripe.

4. Construct the particular solution Ri(d) via eq. (5.0.7) using DREAM.

A particularly useful trick here is to note that although DREAM only produces numerical values, it is
normally possible to convert them into analytic expressions: if one conjectures that the coefficients
of the Ri(d) expansion in ε consist of linear combinations of multiple zeta values (MZVs, see
Section 7.2.5),

Ri(dk − 2ε) =
∑

k

εkR(k)i (dk) =
∑

k

εk
∑

i

c(k)i ζ(i), (5.1.2)

where ζ(i) are linearly independent MZV combinations (listed in e.g. [108]), and c(k)i are rational,

constants, then c(k)i can be restored from R(k)i using e.g. the PSLQ algorithm [109],4 as long as it is
known with enough digits of precision.

“Enough” here is a probabilistic measure: if one wants to restore some value in terms of MZVs of
weight 8 and less, and assumes that c(k)i are rational numbers of less than 100 digits (numerator
and denominator combined), then because there are 15 elements in the linear MZV basis of
weight 8 and less, at least 100 ∗ (15+ 1) = 1600 digits of precision are needed; if at 2000 digits
PSLQ does not change the result, then it can be argued that we get 10−400 probability of finding a
false relation.

5. Determine the full set of poles {dk}and their multiplicities {pk} for H−1
i (d), Ii(d), and Ri(d) on

the chosen stripe.

• For H−1
i (d) this follows directly from eq. (5.0.6).

• For Ri(d) this can be done semi-analytically: by evaluating the sum eq. (5.0.7) numerically
with DREAM for many d, plotting it, and noting any regions where it diverges. Experience
tells us that the poles will be located at d being small rational numbers, and the number of
them will vary from zero (for simpler integrals) up to a dozen.

• For Ii(d) an alternative method of (numerical) evaluation is needed. Direct Monte-Carlo
integration can be used for simpler integrals, sector decomposition with FIESTA [110] and/or
PYSECDEC [111] can be used too. Because these methods of evaluation take more time than
DREAM, it is best to choose the stripe to avoid Ii(d) poles in particular. A useful observation
for this is noting that infrared poles (those that correspond to soft and collinear singularities)
disappear completely at sufficiently high d values, so choosing d0 = 6 or d0 = 8 might remove
all of them. Conversely, at low enough d the UV poles disappear, so choosing negative d0
may be advantageous.

6. Determine the asymptotic behavior of |ωi(d)| at Im d →±∞ from the ingredients in eq. (5.1.1).

• The behavior of Ii(d) can be obtained via a parametric representation. Feynman parame-
terization of eq. (3.2.1) works for integrals without cuts. To use it note that d enters that
equation in only two kinds of structures: the Gamma functions Γ (α+ βd) and powers αβd .
The asymptotic behavior of Γ (x) follows from the Stirling formula; for Im x →∞ we have

|Γ (x)| ≈
p

2πe−
π
2 |Im x | |Im x |Re x− 1

2 . (5.1.3)

For powers ax , as long as the base of this power is positive—which it is in our case—its
modulus does not depend on Im x at all,

|ax |= aRe x , if a ≥ 0. (5.1.4)
4A convenient implementation of PSLQ is available in MATHEMATICA as FindIntegerNullVector.
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5. Dimensional recurrence relations

So, as long as F (p, x) ≥ 0, an upper bound on |Ii(d)| at Im d →∞ can be determined by
the Γ

�

ν− L d
2

�

prefactor only,

|Ii(d)| ≤ C |Im d| e−
πL
4 |Im d| |Im d|−

L
2 Re d |Im d|ν−

1
2 . (5.1.5)

For cut integrals we shall later introduce the phase-space parameterization of eq. (9.2.2);
under it an upper bound on Ii(d) at Im d →∞ can be determined by just the Ωd−k factors,
which only depend on the number of cuts.

Note that in both cases the bounds are the same for all integrals of equal loop and cut number,
up to possibly a factor of |Im d|α. It is useful to exploit this fact by rescaling all integrals to
get rid of the common parts. Indeed, when working with integrals with L loops and K cuts,
we can introduce

Ji ≡ Ii/

� L
PSK

�

, (5.1.6)

where PSK is the full K-particle phase-space given by eq. (9.2.2). Then for some C and α,
have the asymptotic behavior as

|Ji(d)|®C |Im d|α , when Im d →±∞. (5.1.7)

In practice we always do this, and only consider DRR for Ji , not for Ii . This normalizes one
of the master integrals (i.e. , , etc) along with the corresponding DRR
matrix entry, to just 1.

• The behavior of H−1
i (d) can be directly deduced from eq. (5.0.6) using eq. (5.1.3) and

eq. (5.1.4). When we are working with the rescaled integrals Ji, in all the cases we have
considered we find that there are such C and β that

|Hi(d)| ≈ C |Im d|β , when Im d →∞. (5.1.8)

• The behavior of Ri(d) directly follows from its construction, eq. (5.0.7). The bounds on Hi(d)
and Ji(d) tell us that the modulus of each term in that series is asymptotically bounded by
C |Im d|γ, for some values of C and γ. To claim that the modulus of the whole series is
bounded similarly too, it is enough to show that a series composed of these bounds converges.
This is in fact the case, because the dependence of the series terms on Re d approaches an
exponential, irrespective of the value of Im d, so the whole series converges geometrically.
Thus, there are such δ and C that

|Ri(d)|® |Im d|δ , when Im d →±∞. (5.1.9)

If we have established all three bounds: eq. (5.1.7), eq. (5.1.8), and eq. (5.1.9), then from
eq. (5.1.1) it follows that ωi(d) must be bounded similarly,

|ωi(d)| ≤ C |Im d|α , when Im d →±∞. (5.1.10)

7. Construct the ansatz for ωi(d). Remember that ωi(d) is periodic with period 2, so it can instead
be viewed as a function of

eiπd ≡ z. (5.1.11)

Now, assuming the bound of eq. (5.1.10) was established, in terms of z it looks like

|ωi(d)| ≤ C |ln z|α , when z→ 0 or∞. (5.1.12)
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5.1. Fixing the periodic function

Let us first look at the simple case when ωi(d) was previously found to have no poles in d. In this
case ωi(z), when viewed as a function on the Riemann sphere, can only have poles at 0 and∞
(corresponding to Im d →±∞), but because |ln z| grows slower than any non-zero power of z,
we can represent ωi(z) as its Taylor series and immediately conclude that only one power in it is
allowed: zero. In this simple case ωi(z) can only be a constant.

A more complex case is when ωi(d) was found to have non-empty set of poles at {dk} with
multiplicities {pk}. In this case observe that if we can subtract from ωi(d) some function that
would cancel its poles while not altering the form of its asymptotic behavior, then we can reuse
the same arguments and conclude that this new expression can only be a constant. One way to
construct such a function is to choose some kernel K(d) that has a single pole at d = 0 and an
appropriate asymptotic behavior, and then add these kernels for each pole dk, making the full
ansatz

ωi(d) = a0 +
∑

i

∑

n>pi

ai,nKn(d − di) , (5.1.13)

where a0 is the constant term, and ai,n are the constants needed to make sure this ansatz correctly
reproduces all the poles of ωi(d).

As for the K(d) kernel, a common choice is the cotangent function,

K(d) = cot
πd
2

, (5.1.14)

which in terms of z is just

K(z) = i
z + 1
z − 1

. (5.1.15)

8. Determine the ansatz constants a0 and ai,n.

For the poles of ωi(d) that originate as Hi(d) and Ri(d) poles, ai,n can be determined simply
by expanding eq. (5.1.1) around d = dk − 2ε: the coefficients around ε−1, ε−2, etc. will only
come from Hi(d) (as given by eq. (5.0.6)) or Ri(d) (as given by the series in eq. (5.0.7) and then
analytically restored in terms of MZVs via PSLQ), and thus are known. No knowledge of the
Ii(d) expansion is needed here. For the poles of ωi(d) that originate as Ii(d) poles no such nice
procedure exist, because the expansion of Ii(d) is not known (not with sufficient precision, at least).
The constants ai,n that correspond to these must be determined from some separate considerations.
Same for a0.

We will revisit the additional considerations for fixing a0 and ai,n in Chapter 9.
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6. Di�erential equations method

If a Feynman integral as given by eq. (3.0.1) depends only on a single mass scale (e.g. q), this dependence
is trivial: C qn, where C is a constant, and n follows directly from the integral’s dimensionality. This is
why solving dimensional recurrence relations semi-numerically (as in Chapter 5) works so well: only one
constant C needs to be determined. For multi-scale integrals C additionally depends on one or multiple
scaleless parameters (e.g. ratios of scales). For such integrals different methods are needed, and the
most powerful of them is the differential equations method [112, 113, 114]. The overall procedure is
simple:

1. Start with some Feynman integral family Iν1,...,νN
(defined as in eq. (3.0.1)).

2. Solve IBP relations for this family and identify the set of master integrals Ii .

3. Choose one of the scaleless parameters, x , and differentiate each Ii by it.

Differentiation by a mass term (i.e. x = m2/q2) is easy to perform using

∂

∂m2
Iν1,...,νN

=

∫

dd l1
(2π)d

· · ·
dd lL

(2π)d
∂

∂m2

�

1

Dν1
1 · · ·D

νN
N

�

. (6.0.1)

Differentiation by a scalar product of external momenta (i.e. x = p2/q2) can be done via

∂

∂ pa ·pb
Iν1,...,νN

=

∫

dd l1
(2π)d

· · ·
dd lL

(2π)d
∑

i

�

G−1
�

ia pµi
∂

∂ pµb

�

1

Dν1
1 · · ·D

νN
N

�

, (6.0.2)

and

∂

∂ pa ·pa
Iν1,...,νN

=

∫

dd l1
(2π)d

· · ·
dd lL

(2π)d
∑

i

�

G−1
�

ia

1
2

pµi
∂

∂ pµa

�

1

Dν1
1 · · ·D

νN
N

�

, (6.0.3)

where G is an E × E Gram matrix made out of the external momenta:1

Gi j ≡ pi ·p j . (6.0.4)

4. Express the derivatives as linear combinations of integrals in the same family,

∂

∂ x
Ii =

∑

k

Cik I
ν
(k)
1 ,...,ν(k)N

. (6.0.5)

5. Use the IBP relations to reduce I
ν
(k)
1 ,...,ν(k)N

back to the master integrals Ii ,

I
ν
(k)
1 ,...,ν(k)N

IBP
=
∑

j

Kk j I j ⇒
∂

∂ x
Ii =

∑

j

∑

k

CikKk j

︸ ︷︷ ︸

≡Mi j

I j , (6.0.6)

thus obtaining a linear differential equation system for Ii , which in short reads

∂x Ii =
∑

j

Mi j I j . (6.0.7)

1Practically, LITERED [78] conveniently implements this as the Dinv function.
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6. Differential equations method

The idea is then to search for Ii(x) as the solution of this system of differential equations, instead of
performing the loop integration directly.

6.1. Solving di�erential equations

Suppose we have a set of n master integrals Ii(d, x), and we have used the IBP relations to construct a
differential equation system,2

∂x I(d, x) =M(d, x) I(d, x) , (6.1.1)

where I(d, x) is a column vector consisting of all Ii , andM(d, x) is an n×n matrix defining the differential
equation. In general, because both the IBP relations and the differentiation operation have rational
coefficients,M(d, x) will be rational in d and x . Let us represent it using the following ansatz:

M(d, x) =
∑

i

Mi(d)

(x − x i)
ki

, (6.1.2)

where x i are the location of poles, and ki are integer powers, possibly negative (in which case x i is zero
by convention).

Solving eq. (6.1.1) directly can be hard. Instead, it is possible to transform it into a form that allows for
an easier solution. There are several transformations that can be applied to this end.

One possible transformation is a change of a variable from x to y such that

x = f (y) . (6.1.3)

Under a change of a variable the differential equation is transformed into

∂y I(d, x) = f ′(y)M(d, f (y))
︸ ︷︷ ︸

M′

I(d, f (y)) . (6.1.4)

Another possible transformation is a linear change of basis from I to J such that

I(d, x) = T(d, x)J(d, x) , (6.1.5)

where T is an n× n transformation matrix. Under a change of basis the differential equation becomes

∂xJ= T−1 (MT− ∂xT)
︸ ︷︷ ︸

M′

J. (6.1.6)

To make use of these transformations, we turn to an observation made in [29]: it is often possible to
find such a transformation that factorizes the dependence ofM on d, giving usM′(d, x) = ε S(x), where
ε = 2− d/2, and thus turning the system into an ε-form (also called the canonical form):

∂xJ(d, x) = ε S(x)J(d, x) . (6.1.7)

Then, constructing the solution J as a series in ε becomes trivial. Indeed, by expanding J in ε starting at
some arbitrary order k0,

J(d, x) = εk0

∞
∑

k=0

J(k)(x)εk, (6.1.8)

2Here and further we shall use matrix notation, with column vectors denoted as I≡ {Ii}, and matrices asM≡ Mi j .

42



6.1. Solving differential equations

and inserting this expansion into eq. (6.1.7), we immediately get

J(k)(d, x) =

∫ x

x0

S(y)J(k−1)(y)dy +C(k), (6.1.9)

where x0 is an arbitrary integration origin, and C(k) are vectors of integration constants, with the
combined integration constant,

C(d)≡ εk0

∞
∑

k=0

C(k)εk, (6.1.10)

having the meaning of J(d, x0), if such limit exists. Alternatively the integrals in eq. (6.1.9) can be
indefinite, in which case C(d) has no meaning.

The recursion in eq. (6.1.9) terminates by J(−1) = 0, and the leading order of the ε expansion is defined
by k0 in eq. (6.1.8).

We shall discuss how to find the transformation that achieves an ε-form in Section 6.3. There we will
also see that the S(x) matrices we will construct will come in Fuchsian form:

S(x) =
∑

i

Si
x − x i

, (6.1.11)

so the integral in eq. (6.1.9) will split into terms of the general form
∫ x

dy1

y1 −w1

∫ y1 dy1

y1 −w1
· · ·
∫ yn dyn

yn −wn
. (6.1.12)

The simplest of these (corresponding to the first integration) is just ln(x) =
∫ x

1 dy/y, the second
integration would already require dilogarithms Li2, the third—polylogarithms, and so on. The most
general class of functions covering these integrals are multiple polylogarithms. There is much to be said
about them; please refer to Chapter 7 for their precise definition and properties.

6.1.1. Finding the integration constants

After the solution as a series for Ii is constructed, what remains is to determine k0 and the integration
constants C (k)i . This cannot be done from the differential equations alone: additional constraints on the
integral values are required. These constraints can come in different forms, and depend on the integrals
being considered. Finding them is the essential difficulty of the method. Here are some of the ways.

• By evaluating the integrals in a limit where they simplify.

For example a massive integral may have a massless equivalent that is easier to calculate—
comparing the massless limit of the series for Ii with the known value will determine C (k)i (in
the next section we shall see an example of this). The large-mass limit can be similarly useful.
See [115] for an in-depth treatment of both of these limits. Kinematic limits (e.g. zero external
momenta, expansion near threshold) can be used in some cases.

• By using the knowledge of the analytic properties of the integrals.

Just demanding the solution to be regular in particular kinematic limits already constrains the
solution greatly, and the more scales there are, the more constraints one obtains. This works because
the solutions for multi-scale integrals often contain discontinuities in the limits where they should
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6. Differential equations method

be absent on physical grounds. For example, massless integrals should only have discontinuities
when external momenta invariants cross the mass threshold (that is, zero). In [116] the master
integrals for massless two-loop three-point functions were calculated from these constraints alone.3

• From partial knowledge of the integral’s values, such as its integral over x , or a Mellin moment.

This is relevant for the semi-inclusive integrals which we are after: an integral over x from a
semi-inclusive integral makes it a fully inclusive one. So, with the knowledge of the fully inclusive
integral values, the integration constants for semi-inclusive ones can be determined (as proposed
in [69]).

6.1.2. Fundamental solution

A different way of constructing the solution to eq. (6.1.7) is to determine first the fundamental solution
for J(d, x),W(d, x), which is an n× n matrix of independent solutions with the useful property that any
solution can be expressed as a linear combination of its columns:

J(d, x) =W(d, x)C(d) , (6.1.13)

with C(d) being a vector of some constants. The constants are arbitrary; it is often useful to represent
them as series in ε, the same way as done in eq. (6.1.10).

The fundamental solution for eq. (6.1.7) can be constructed as an expansion in ε analogously to
eq. (6.1.9):

W(d, x) = P exp

�

ε

∫ x

x0

S(y)dy

�

≡ 1+ ε
∫ x

x0

dy1S(y1) + ε
2

∫ x

x0

dy1S(y1)

∫ y1

x0

dy2S(y2) + . . . , (6.1.14)

where x0 is an arbitrary starting point of integration (usually taken to be 0), and P exp is a path-ordered
exponent. When W(d, x) is constructed this way, the constant vector C(d) acquires the meaning of
J(d, x0).

This is an alternative way to write down a solution for J, with the benefit of being immediately extendable
to the multivariate case.

6.1.3. Multivariate di�erential equations

So far we have considered differential equations in a single variable—this was for clarity only, and the
same arguments apply if the integrals in question depend on several dimensionless variables x1, ..., xn.
The solution in this case can, in principle, be computed via differential equations in a stepwise fashion:
by first solving the system in x1, then in x2, etc, matching the results with each other. A more convenient
way is to consider the differential equation system in all x i at once, and reduce it to a combined ε-form,

∂

∂ x i
J(d,x) = ε Si(x)J(d,x) . (6.1.15)

Once this is achieved, writing down the solution can be made easy by:

1. Choosing an integration contour along the axes x i in an some order, for example from (0, 0, . . . ) to
(x1, 0, . . . ), then to (x1, x2, 0, ...), and so on.

3In [35] we have recalculated those integrals to higher transcendental weight using the same idea (as an intermediate step of
the overall calculation).
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2. Writing down the fundamental solutions along each segment,Wi . Because segments are chosen
such that only x i changes along i-th segment, Wi can be calculated the same way as in the
single-variate case, via eq. (6.1.14) with x i instead of x . Note thatWi =Wi(d, x1, . . . , x i).

3. The general solution for J is then

J(d,x) =Wn(d, x1, . . . , xn) · · ·W1(d, x1)C(d) . (6.1.16)

Note that with this integration contour construction the solution forWi will consist of multiple
polylogarithm terms of the form

G({constants} ; x1)×
×G({parameters depending on x1} ; x2)× · · ·×
×G({parameters depending on x1, . . . , xn−1} ; xn) .

(6.1.17)

This form is important because as discussed in Chapter 7 all such combinations of multiple
polylogarithms are linearly independent, so when matching two expressions involving them it is
enough to demand that the coefficients at each unique product of this form are identical. This
would not be the case if e.g. x2 would enter the parameter list of G(. . . ; x1); such a product would
need to be additionally decomposed in terms of a linearly independent basis such as this one.

6.2. Example: self-energy with a mass

As an example let us consider the following family of integrals:

Ia,b ≡ m

a

b

≡
∫

dd l

(2π)d
1

(q− l)2a (l2 −m2)b
. (6.2.1)

Solving IBP relations for it gives us two master integrals; these can be chosen as

I1 = I0,1 ≡
m

and I2 = I1,1 ≡ m . (6.2.2)

This family has two mass scales: the incoming energy
p

q2 and the mass m. Let us define the scaleless
variable as

x = m2/q2. (6.2.3)

Differentiating Ia,b by x can be straightforwardly done by applying the derivative to the integrand of
eq. (6.2.1):

∂

∂ x
Ia,b = q2 ∂

∂m2
Ia,b = q2 bIa,b+1. (6.2.4)

Note that in practical calculations it is most convenient not to take the q2 factors along, and set q2 = 1,
restoring the proper factors at the end of the calculation from dimensionality. We shall retain these
factors here though, for greater clarity.

Next, via IBP relations we can reduce ∂x I1 and ∂x I2 back to I1 and I2, obtaining the differential equation
system:

∂

∂ x

�

I1
I2

�

=

�

q2 I0,2
q2 I1,2

�

IBP
=

� d−2
x 0

2−d
2x(x−1)

1
q2

d−3
x−1

�

︸ ︷︷ ︸

M

�

I1
I2

�

. (6.2.5)
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6. Differential equations method

6.2.1. Solving the di�erential equations

Once the differential equation system of eq. (6.2.5) is constructed the next step is to reduce it to an
ε-form. The transformation required for this can be obtained using the methods of the following section
(specifically, by running FUCHSIA from Chapter 8); the transformation is

I=

�

(2ε − 1) xq2 0
ε − 1 (1− ε) (1− x)

�

J. (6.2.6)

The differential equation system for J can then be found via eq. (6.1.6):

∂xJ= ε

�

− 1
x 0

− 1
x +

1
x−1 − 2

x−1

�

J. (6.2.7)

The solution for J can then be constructed via eq. (6.1.9):4

J1/ε
k0 = C (0)1 +

�

− ln(x)C (0)1 + C (1)1

�

ε + . . . ,

J2/ε
k0 = C (0)2 +

�

− ln(x)C (0)1 + ln(1− x)
�

C (0)1 − 2C (0)2

�

+ C (1)2

�

ε + . . . ,
(6.2.8)

and the same for I then follows from eq. (6.2.6):

I1/ε
k0 = −q2 xC (0)1 +

�

x ln(x)C (0)1 + x
�

2C (0)1 − C (1)1

��

ε + . . . ,

I2/ε
k0 =

�

(1− x)C (0)2 − C (0)1

�

+

+
�

x ln(x)C (0)1 + (1− x) ln(1− x)
�

C (0)1 − 2C (0)2

�

+ C (0)1 − C (1)1 + (1− x)
�

C (1)2 − C (0)2

��

ε + . . . .
(6.2.9)

What remains is to fix the integration constants C (k)i .

6.2.2. Integration constants

To obtain C (k)1 and C (k)2 we can use two observations:

1. We have already calculated I1, the first master integral, previously: its value is given by eq. (3.1.4).
By expanding that value into a series in ε and demanding it being equal to eq. (6.2.9) we can
obtain all C (k)1 values.

2. The second master integral I2 is just a massive version of the 1-loop self-energy bubble from
eq. (3.2.7), so in the limit of m→ 0 (i.e. x → 0) their values must match (unless I2 diverges):

lim
m→0 m = . (6.2.10)

So, expanding the value of the massless bubble given by eq. (3.2.10) and matching it with limx→0 I2,
we can obtain all C (k)2 . Fortunately for us, as one can see from eq. (6.2.9), limx→0 I2 exists and the
expression for it is easy to derive.

4Note that the first level of integrals here were taken in terms of logarithms—this is done for demonstration purposes only:
high enough ε expansion orders will require using multiple polylogarithms (Chapter 7), so in practice it is best to use them
directly from the start.
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6.2. Example: self-energy with a mass

Before we do that, note that the i0 prescriptions for the massive vacuum bubble in eq. (3.1.4) and the
massless one in eq. (3.2.10) have the opposite signs. This makes sense because massless integrals are
always above the mass threshold, and the vacuum bubbles are always below. So, for greater simplicity,
let us drop the i0 prescriptions by restricting ourselves to the kinematic region

q2 > m2 > 0. (6.2.11)

Also note that a direct expansion of eq. (3.1.4) will have terms like γE − ln(4π) and ln
�

q2
�

cluttering it;
it is more convenient to factor out these terms into a prefactor common among all integrals, and keep it
unexpanded. Let us introduce this prefactor as

J=
ie−γEε

(4π)2−ε
�

q2
�−ε

J′; (6.2.12)

the solution for J′ is then the same as in eq. (6.2.8), except the integration constants are different—let
us denote them C ′(k)i .

Finally, matching I1 with eq. (3.1.4) gives us

C ′(0)1 = −1, C ′(1)1 = −3, C ′(2)1 = −7−
π2

12
, (6.2.13)

and because the expansion of eq. (3.1.4) starts with a 1/ε pole, we must start the solution series from
1/ε too, setting

k0 = −1. (6.2.14)

Matching limx→0 I2 with eq. (3.2.10) gives us

C ′(0)2 = 0, C ′(1)2 = iπ, C ′(2)2 = 3iπ−
2
3
π2. (6.2.15)

Inserting these C ′ values into eq. (6.2.9), the result for I2 becomes

I2(x) =
ie−γEε

(4π)2−ε
�

q2
�−ε �

ε−1 + (2+ iπ (1− x)− x ln(x)− (1− x) ln(1− x))ε0 + . . .
�

. (6.2.16)

6.2.3. Cross-check

The second master integral I2 can in fact be taken directly using Feynman parameterization (see Sec-
tion 3.2), yielding the result5

m =
iπ

d
2

(2π)d
�

−q2 − i0
�

d
2−2
Γ

�

2−
d
2

�

�

�

1−
m2 − i0

q2

�d−3 Γ 2
� d

2 − 1
�

Γ (d − 2)
+

+

�

−m2−i0
q2

�
d
2−1

1− d
2

2F1

�

1, 2−
d
2

;
d
2

;
m2 − i0

q2

�

�

.

(6.2.17)

5Interestingly, if one inverts the argument of 2F1, the formula becomes simpler:

m = −
iπ

d
2

(2π)d
Γ

�

1−
d
2

�

�

m2 − i0
�2− d

2
2F1

�

1,2−
d
2

;
d
2

;
q2

m2 − i0

�

.

Both expressions are, of course, equivalent, and are analytic continuations of each other between the regions m2/q2 < 1
and m2/q2 > 1. The ±i0 prescriptions provided here make them valid in all regions, so using one or the other is a matter of
convenience.
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6.3. Reduction to epsilon form

6.3.1. Algorithm by Moser

In [117] it was shown that one can transform the system eq. (6.1.1), withM having the form

M=
A0

xk
+
A1

xk−1
+ . . . , where k > 1, (6.3.1)

using a sequence of simple basis transformations of the general form

T= (P0 + xP)diag(1, . . . , 1, x , . . . , x) , (6.3.2)

with each step simplifying the matrixM slightly by reducing the rank of A0, until the rank reaches 0,
and A0 itself becomes zero. This way all the poles 1/xk can be removed, until only 1/x remains. It was
also proven that one step of this reduction is possible if and only if

x rankA0 det
�

λ1+
A0

x
+ A1

�

�

�

�

�

x=0
= 0 for all λ, (6.3.3)

otherwise no rational transformation can improve A0. This is Moser’s reducibility criterium. It is addition-
ally important because it demonstrates that we can restrict ourselves to only considering one simple
transformation at a time, and not lose generality in doing so.

Note that not only 1/xk, but all the 1/ (x − x i)
ki poles are handled by the same method too, because

one can always transform x in eq. (6.1.1) using e.g. the Möbius transformation,

x =
ax ′ + b
cx ′ + d

, (6.3.4)

such that any three chosen points in x are mapped onto any other three points in x0, applying the
algorithm, and reversing the transformation.6 In other words, x − x i can be mapped to x ′, and the
method will still hold. Also note that the point at infinity can also be handled this way, with eq. (6.3.4)
for it becoming just x = 1/x ′.

The limitation of the method of [117] (and its later iterations like [118, 119])7 is that while the parts of
M of the form 1/ (x − x i)

ki are reduced to 1/ (x − x i), this is done at the expense of introducing possibly
large polynomial parts (proportional to xk, k ≥ 0), spoiling the behavior at x =∞.

Alternatively, through eq. (6.3.4) one can have the same method spoil the behavior at some point other
than∞. For example after x = 1/x ′ the polynomial part xk becomes 1/x ′k+2 (see eq. (6.1.4)), and the
same algorithm that reduces the pole 1/x ′k+2 at the expense of the polynomial part x ′k does the reverse
in terms of x: reduces the polynomial part at the expense of the 1/x pole.

Even more, one can choose a different point to spoil at each step, and have the algorithm introduce
multiple new 1/ (x − x i) poles while removing higher poles. This will reduce the wholeM to a Fuchsian
form,

M(d) =
∑

i

Mi(d)
x − x i

, (6.3.5)

but at the price of introducing multiple spurious 1/ (x − x i) poles.

6Similar transformations with higher powers of x may introduce roots when reversed; this is why the Möbius transformation
is special.

7An implementation of these algorithms is available in the standard MAPLE package DETOOLS as moser_reduce and
super_reduce routines.
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6.3. Reduction to epsilon form

6.3.2. Algorithm by Lee

In [30] Moser’s algorithm was extended to prevent the spoiling of the x =∞ point (and all other points,
if possible), so that the finalM has purely Fuchsian form with no (or at least few) new poles introduced.
This subsequently allows for further reduction that achieves an ε-form of eq. (6.1.7), factorizing the
Mi(d) dependence on d as

M(d) = ε
∑

i

Si
x − x i

. (6.3.6)

The elementary basis transformation matrix to simplify the system considered in [30] has the form

B(P, x1, x2; x) = P+ c
x − x2

x − x1
P, (6.3.7)

where P is some projection matrix (P2 = P) constant in x , P≡ 1− P, and c is there to define the special
cases of x1 =∞ and of x2 =∞:

c ≡











x1 if x1 =∞,

1/x2 if x2 =∞,

1 otherwise.

(6.3.8)

These are chosen so that
B(P, x1, x2; x)B(P, x2, x1; x) = 1. (6.3.9)

In fact eq. (6.3.2) is related to B(P,∞, 0; x).

So, how does eq. (6.1.1) change when the transformation B(P, x1, x2; x) is applied to

M=
A0

(x − x1)
k1
+

A1

(x − x1)
k1−1

+ · · ·+
B0

(x − x2)
k2
+ . . .? (6.3.10)

We have the general answer in eq. (6.1.6), and there are two cases to consider: the case of Fuchsian
poles (i.e. k1 being 1), and the case of higher poles. They differ because the ∂xT term generates an
additional 1/x pole that only affects A′0 if k1 = 1. They also differ because we can eliminate the higher
poles, but not the Fuchsian ones.

6.3.3. Eliminating higher poles

If k1 > 1 and k2 ≥ 1 in eq. (6.3.10), then applying the basis transformation I= B(P, x1, x2; x) I′ results
in a differential equation system for I′ defined by the matrix8

M′ =
(x2 − x1)PB0P

(x − x2)
k2+1

+
(x1 − x2)PA0P

(x − x1)
k1+1

+
PA0 + PA0P+ (x1 − x2)PA1P

(x − x1)
k1

︸ ︷︷ ︸

≡A′0/(x−x1)
k1

+ . . . . (6.3.11)

Now, we want this transformation to simplifyM. This means that the first and the second terms that
introduce higher poles at x2 and x1 must vanish, and the third term must be “simpler” than what the
original matrix had (which is A0). By “simpler” we shall mean “having lower rank”.

8Here we assume for simplicity that neither x1 nor x2 are∞. A practical implementation must however treat the point
x =∞ just as it would any other point. The relations for this special case can be derived via Möbius transformations.
These work out to replacing 1/ (x − x i)

k with x k and Ai with −Ai .
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To cancel the first two terms we must constrain the co-image (row span) of P with condition I:9

PB0P= 0, or equivalently, BT
0 image

�

PT
�

⊆ image
�

PT
�

, (6.3.12)

and its image (column span) with condition II:

PA0P= 0, or equivalently, A0 image(P) ⊆ image(P) . (6.3.13)

A sufficient (and as we shall see, required) set of conditions to make rankA′0 < rankA0 is given by
condition III:

A0P= 0, (6.3.14)

condition IV:
A1image(P) ⊆ image(A0)∪ image(P) , (6.3.15)

and condition V:
image(P)∩ image(A0) 6= {0} . (6.3.16)

Indeed, because of III from eq. (6.3.11) we have10

A′0 = PA0 + (x1 − x2)PA1P; (6.3.17)

because of IV and the fact that PP= 0, we have

image
�

A′0
�

⊆ P image(A0)∪ P image(A1P) ⊆ P image(A0) , (6.3.18)

and V requires that there is at least one vector in image(A0) that P annihilates, so that

dim image
︸ ︷︷ ︸

≡rank

�

A′0
�

< dim image(A0) . (6.3.19)

If we manage to construct P that satisfies these conditions, then applying the basis transformation
B(P, x2, x1; x) will reduce the rank of A0. The same procedure repeated multiple times (with possibly
different x2) will reduce A0 to 0, and thus reduce the highest pole power at x1 by 1. Repeated multiple
times to each x i we can eliminate all the higher poles, achieving the Fuchsian form, as in eq. (6.3.5).

6.3.3.1. Constructing the projector matrix

Note that condition I restricts the co-image of P, while II-V restrict its image. These two can be constructed
separately and then combined into the full P.

Constructing image
�

PT
�

that satisfies condition I is easy: any eigenspace of BT
0 (or their union) fits.

To construct image(P) that satisfies conditions II-V, let us return to Moser’s reducibility criterium of
eq. (6.3.3). An equivalent form of it was introduced in [120, ch E.8] (building upon [118]) as:

dim nullspace

�

A0 A1 +1λ
0 A0

�

︸ ︷︷ ︸

≡Aλ

> dimnullspace(A0) . (6.3.20)

9Here we define image(P) as the span of columns of P (i.e. the set of Pv for all vectors v), and nullspace(P) as the set of all v
such that Pv= 0. Note that because PP= PP= 0, nullspace

�

P
�

= image(P) and image
�

P
�

= nullspace(P).
10Note that this equation is also given in [30] as eq. (3.22), but it has a mistake there: the (x1 − x2) factor is missing. This

omission however does not affect any further results in that paper.
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6.3. Reduction to epsilon form

Note that for any vector v belonging to nullspace(A0) there is a corresponding vector

�

v
0

�

belonging

to Aλ, and vice versa. The criterium then requires nullspace(Aλ) to contain at least one vector

�

v
u

�

with u 6= 0.

Now, computing a null space of a matrix is a straightforward operation: performing Gaussian elimination
on Aλ immediately leads to a basis of solutions to AλN= 0; the null space is then the span of this basis.

Suppose we have constructed this basis and have found some N(λ) =

�

v(λ)
u(λ)

�

with u(λ) 6= 0. In

general u will be a rational function of λ, but we can rescale N to remove its overall denominator and
make u just a polynomial in λ,

u(λ) =
∑

k

u(k)λk and v(λ) =
∑

k

v(k)λk. (6.3.21)

The span of all u(k) then satisfies all the conditions for image(P):

• conditions II and III because of the second row of eq. (6.3.20): A0u= 0;

• condition IV because of the first row of eq. (6.3.20):

A0v(k) +A1u(k) + u(k−1) = 0 ⇒ A1u(k) ∈ image(A0)∪ span
�

u(k−1)
�

; (6.3.22)

• condition V because the coefficient next to the highest power of λ in the same row reads

A0v(k+1) + u(k) = 0. (6.3.23)

6.3.3.2. Combining image and co-image

Once we have constructed image(P) and image(Pᵀ), constructing the projector P is easy: let us select
some matrix U, such that its columns span image(P), and some matrix V, such that its columns span
image(Pᵀ); then,

P= U (VU)−1V. (6.3.24)

Note that it is possible that VU is not invertible for any choice of U and V, and no such P can be
constructed. In such a case we can just give up on trying to satisfy the restriction on image(Pᵀ), and
just set P = U: this restriction only exists to cancel the first term of eq. (6.3.11), so that the power of
the pole at x2 is not raised—but if all we are interested in is removing the higher poles, then instead
of choosing x2 as some existing pole and demanding that its power is not increased, we can choose x2
as any regular point, and allow the transformation to introduce a new (spurious) pole of power 1 at
it—this spurious pole will be eliminated during normalization anyway.

6.3.4. Normalizing Fuchsian poles

If k1 = 1 and k2 = 1 in eq. (6.3.10), then the corresponding poles cannot be entirely eliminated. Instead
we note that in the differential equations for Feynman master integrals it is often observed that that
eigenvalues of the residue matrices like A0 have the form n+ kε. Coincidentally it may be possible
to shift these eigenvalues by ±1 via the same transformation eq. (6.3.7); then, once all eigenvalues
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6. Differential equations method

are of the form kε, i.e. proportional to ε, it may be possible to transform the whole matrix to also be
proportional to ε.

To see how the shifting of eigenvalues can be done, let us start by applying the basis transformation
I= B(P, x1, x2; x) I′. The system of differential equations for I′ then will be given by the matrix

M′ =
(x2 − x1)PB0P
(x − x2)

2 +
(x1 − x2)PA0P
(x − x1)

2 +

+
P+A0P− PA0P+ PA0 + PB0P

x − x1
+
−P+B0P− PB0P+ PB0 + PA0P

x − x2
+ . . .

(6.3.25)

As in the previous section we want the first two terms to disappear, so we must constrain P by

PB0P= 0 and PA0P= 0, (6.3.26)

which leaves us with
A′0 = P+A0P+ PA0 + PB0P. (6.3.27)

Following [30] let us select a right eigenvector of A0 as u, and a left eigenvector of B0 as v,

A0u= λ1u and vᵀB0 = λ2vᵀ; (6.3.28)

then if we choose the projector P as

P=
uvᵀ

vᵀu
, (6.3.29)

then the conditions of eq. (6.3.26) will be satisfied, and the transformation B(P, x1, x2; x) will shift λ1
to λ1+1 and λ2 to λ2−1. To see the shift, consider eq. (6.3.27) if A was in its Jordan normal form, and
u was its first eigenvector:

A0 =









λ1 # 0 · · ·
0 # # · · ·
0 0 # · · ·
...

...
...

. . .









, P=









1 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .









, (6.3.30)

where # denotes some possibly non-zero values. In this case

A0P=









λ1 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .









, PA0 =









0 0 0 · · ·
0 # # · · ·
0 0 # · · ·
...

...
...

. . .









, PBP=









0 0 0 · · ·
# 0 0 · · ·
# 0 0 · · ·
...

...
...

. . .









,

(6.3.31)
and so the transformed value would look like

A′0 =









λ1 + 1 0 0 · · ·
# # # · · ·
# 0 # · · ·
...

...
...

. . .









. (6.3.32)

The same transformation in forms other than the Jordan normal form differ only by a similarity transfor-
mation; the shift of the eigenvalue remains the same.
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6.3. Reduction to epsilon form

Because the same transformation changes B into

B′0 = −P+B0P+ PB0 + PA0P, (6.3.33)

we can similarly conclude that it also shifts its eigenvalue λ2 into λ2 − 1.

So the strategy is then to inspect the eigenvalues of all the residue matrices (having the form n+ kε),
choose such x1 and x2 that there are eignevalues with negative n at x1 and with positive n at x2, and
apply B(P, x1, x2; x) that will simultaneously bring both closer to zero (“improve”), with the goal of
eventually making all of them proportional to ε.

This overall strategy has several potential issues.

1. Generally it may not possible to construct the projector in eq. (6.3.29) for any arbitrary pair of
eigenvectors, because vᵀu ≡ v·u may be zero. Typically only some subset of eigenvector pairs
works.

2. Even if there are many possible pairs of eigenvectors, it might happen that no pair can simulta-
neously improve eigenvalues at both x1 and x2: sometimes only balances between eigenvalues
of the same sign of n are available, in which case one of them will be improved, while the other
will be worsened. The only solution in this case is to try, and hope that in the next iteration better
balances will become possible. No foolproof stopping condition exists here.

3. Sometimes the eigenvalues of the residue matrices do not have the form n+ kε, instead they come
as n/2+ kε. In this case shifting them by ±1 can obviously never reduce them to just kε. The
solution in this case is presented in [121]:

a) If there are only two different x i with half-integer eigenvalues (say, x1 and x2), then a change
of variable is possible that will make the eigenvalues at both points integer:

x =möbius
�

x1, t, x2; y2
�

, for any t, (6.3.34)

where

möbius(a, b, c; y)≡
(c − b) a+ (b− a) c y
(c − b) + (b− a) y

(6.3.35)

is a Möbius transformation that maps the point a to y = 0, b to y = 1, and c to y =∞.

b) If there are only three different x i with half-integer eigenvalues (say, x1, x2, and x3), then a
change of variable that will make the eigenvalues at all points integer is

x =möbius

�

x1, x2, x3;
y2 + 1

2y

�

. (6.3.36)

c) If there are four or more different x i with half-integer eigenvalues, then no change of variables
can fix all the points.

6.3.5. Factorizing epsilon dependence

OnceM is normalized, such that it is Fuchsian and all of its eigenvalues are proportional to ε, factorizing
its dependence on ε by a transformation constant in x becomes possible. Let us perform a basis
transformation with a matrix T(d), and require thatM′(d, x) = εS(x). From eq. (6.1.6) we have

M′(d, x) = T−1(d)M(d, x)T(d) = T−1(d)
∑

i

Mi(d)
x − x i

T(d) = ε
∑

i

Si
x − x i

, (6.3.37)

53



6. Differential equations method

or

Si =
1
ε
T−1(d)Mi(d)T(d) . (6.3.38)

Because Si does not depend on d, no matter its value, we can demand that

Si =
1
ε
T−1(4− 2ε)Mi(4− 2ε)T(4− 2ε) =

1
µ
T−1(4− 2µ)Mi(4− 2µ)T(4− 2µ) . (6.3.39)

Defining
T(ε,µ)≡ T(4− 2ε)T−1(4− 2µ) , (6.3.40)

we get a system of linear equations for entries of T(ε,µ):

1
ε
Mi(4− 2ε)T(ε,µ) =

1
µ
T(ε,µ)Mi(4− 2µ) , for all i. (6.3.41)

This system can be solved by inserting the entries of T(ε,µ) as independent variables and solving for
them. The initial transformation T(4− 2ε) can then be obtained as T(4− 2ε) = T(ε,µ0), where the
value of µ0 can be chosen arbitrary, as long as T(4− 2ε) will come out invertible. In general, the solution
for T(ε,µ) can have multiple degrees of freedom, if eq. (6.3.41) is underdetermined; these can also be
chosen arbitrary, as long as T(4− 2ε) is invertible. In both cases it is best to select these values as to
simplify the obtained T.

6.3.6. Reducing o�-diagonal blocks

Differential equations for Feynman integrals naturally have block-triangular structure: because a dif-
ferential of a Feynman integral by a kinematic invariant does not introduce new propagators, it must
be a combination of only the integrals with the same set of propagators or a subset of them. Then,
simply grouping and ordering integrals by their propagator set (from smallest to largest) must make the
differential equation matrixM lower block-triangular, i.e.

M=









M(11) 0 0 0
M(21) M(22) 0 0

...
...

. . . 0
M(n1) M(n2) M(nn)









. (6.3.42)

Each diagonal block will then correspond to a set of master integrals with the same propagator set but
different indices—otherwise they could not have been coupled. Luckily, these blocks are normally very
constrained in size, and exploiting the block structure can simplify the reduction process significantly.

Indeed, suppose all the diagonal blocks have been reduced to an ε-form separately,

M(ii)(d, x) = εS(ii)(x) . (6.3.43)

Note that since the characteristic polynomial of a block-triangular matrix is a product of characteristic
polynomials of its diagonal blocks, this necessarily means that the whole matrixM is normalized (its
eigenvalues are proportional to ε), even if not fully Fuchsian yet. To transform it to a Fuchsian form, let
us consider some off-diagonal blockM(ab). The parts of the differential equation system relevant to it are

�

∂x I(b) =M(bb)I(b) + . . . ,
∂x I(a) =M(aa)I(a) +M(ab)I(b) + . . . .

(6.3.44)

54



6.4. Example: 2-loop 1-to-3 amplitudes

IfM(ab)(d, x) has a higher pole at x = x i , then we can try to reduce it by applying a basis transformation

I(a) = I′(a) +
1

(x − x i)
rD I(b), (6.3.45)

where D is some constant matrix. This transformation changesM(ab) into

M′(ab)
i =M(ab)

i + rD+M(aa)
i D−DM

(bb)
i . (6.3.46)

If M(aa) and M(bb) are both in ε-form, then there is always such D that will make M′(aa)
i zero. It can

be found by substituting D components and performing a Gaussian elimination. Applying the basis
transformation from eq. (6.3.45) then will remove the highest pole ofM(ab) at x i . We can proceed this
way with all the poles; in the endM(ab) will become purely Fuchsian.

Note that the transformation of eq. (6.3.45) only affectsM(ai) for i ≤ a, andM(i b) for i > b; this means
that we can use it to sequentially transform all off-diagonal blocks, and if the blocks are chosen in the
order from the first row to the last, and from the last column to the first, then the already transformed
blocks will remain so after subsequent transformations. This way all off-diagonal blocks can be made
Fuchsian (while keeping the matrix normalized).

Once the whole matrix is Fuchsian and normalized, the ε dependence of the off-diagonal blocks can be
factorized the same way the as for the diagonal blocks. The slight simplification is that T(ε,µ) can be
taken to have the same block structure asM, reducing the number of variables that need to be solved for.

6.3.7. The case of multiple variables

The algorithm that reduces single-variable differential equations x to an ε-form can be reused in full for
the case of multiple variables,

∂

∂ x i
I(d,x) =M(d,x) I(d,x) , (6.3.47)

to achieve the combined ε-form, as in eq. (6.1.15). To this end:

1. Consider only the differential equation system in x1, and construct a transformation I= T(1)J(1)

that reduces it to an ε-form. Treat all the other x i as free parameters during this reduction.

2. Write down the differential equation system in the second variable, x2, for the new basis J(1), and
reduce that into an ε-form as well via J(1) = T(2)J(2).

3. If T(2) is independent of x1 and d—and this is the case in practice—then it will not spoil the ε-form
in x1, so that the combined transformation I = T(1)T(2)J(2) will result in an ε-form in both x1
and x2.

Note that because T(2) is independent of x1, it is possible to set x1 to any value (e.g., 0) in step 2,
speeding it up significantly.

4. Iterate from step 2 for each of the remaining variables, if any.

6.4. Example: 2-loop 1-to-3 amplitudes

As a useful example, let us consider the 2-loop massless integrals with one incoming off-shell leg and
three outgoing on-shell legs (“1→ 3”):

I = 2 loops
q

p1

p2

p3

, p2
1 = p2

2 = p2
3 = 0. (6.4.1)
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6. Differential equations method

q

p1

p2

p3

q

p3

p1p2 q p3

p1

p2

PA NA NB

Table 6.4.1.: Topologies for the 1→ 3 master integrals at two loops.

These integrals depend on three independent external invariants: p1 ·p2, p1 ·p3, and p2 ·p3, with the
incoming energy q2 being twice the sum of them (because q = p1 + p2 + p3). This allows us to consider
the integrals as functions of one of the invariants and two dimensionless variables; for example

I(p1, p2, p3) =
�

q2
�k

f (y, z) , (6.4.2)

where k is determined from dimensionality (+d/2 for each loop, −1 for each denominator), and we
define the dimensionless variables as

x ≡ s12, y ≡ s13, and z ≡ s23, with si j ≡
�

pi + p j

�2
/q2. (6.4.3)

The master integrals for these integrals were first calculated in [122, 116].11 In those works the answers
are provided in terms of “2d HPLs” (a subclass of multiple polylogarithms of two variables, see Chapter 7),
up to transcendental weight 4. Later in Section 9.3.4 we will find it useful to know these integrals at
least up to weight 7; for this reason we have recomputed them up to weight 8 in [35]. Let us see how
this is done.

To obtain differential equations for the master integrals, we first we need to define the IBP topologies.
There are three of them: PA, NA, and NB, all listed in Table 6.4.1. Then, we can use e.g. LITERED to
find a list of master integrals and compute differential equations in both y and z for each topology. The
master integrals for PA obtained this way are listed in Table 6.4.2, for NA in Table 6.4.3, and for NB in
Table 6.4.4. Note that there is a lot of duplication between the integrals in different topologies; the ones
with the highest number of denominators are all different though.

Once the differential equations are ready, then for each set of master integrals I we can proceed as
described in the previous section to transform them into a combined ε-form (or, rather use FUCHSIA

from Chapter 8 to do this automatically),






∂yJ(d, y, z) = εS(y)(y, z)J(d, y, z) ,
∂zJ(d, y, z) = εS(z)(y, z)J(d, y, z) ,
I(d, y, z) = T(d, y, z)J(d, y, z) ,

(6.4.4)

where the S matrices have the general form of

S(y, z) =
∑

i

Si
Di

, with Di ∈ {y, z, 1− y − z
︸ ︷︷ ︸

x

, 1− y, 1− z, y + z
︸︷︷︸

1−x

}. (6.4.5)

Then, we can use eq. (6.1.16) to write down the solution for each integral Ii in the form

Ii =
�

q2
�k

N
∑

C G(. . . , ai , . . . ; z)G(. . . , bi , . . . ; y) , (6.4.6)

11Note that in [81] the same authors provide a subset of these integrals in arbitrary d in terms of hypergeometric functions.

We have found that at least eq. (5.24) from that work, listing the value of
1

23 , is wrong. In [116] the same integral

is given as a series in ε in eq. (4.17)—that value is correct, and matches our calculations in this section. We have confirmed
this error with one of the authors.
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Table 6.4.2.: All the 18 master integrals from the PA topology.
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Table 6.4.3.: All the 22 master integrals from the NA topology.
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Table 6.4.4.: All the 29 master integrals from the NB topology.
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where
ai ∈ {0, 1,1− y,−y} , and b j ∈ {0,1} , (6.4.7)

k follows from dimensionality, and N is a common normalization prefactor,

N ≡ (−1− i0)−2ε

�

(4π)ε−2 Γ (1+ ε) Γ
2(1− ε)

Γ (1− 2ε)

�2

, (6.4.8)

which we have factored out this way to match the prefactors in [122, 116]: in their notation N is just
(−1− i0)−2ε �Sε/

�

16π2
��2

.

Finally, to fix the integration constants C(d) (expanded in ε as in eq. (6.1.10)), we can use the following
observations:

1. A number of simpler master integrals only depend on one or two scales; all of these are known for
arbitrary d in terms of Gamma functions Γ , and hypergeometric functions 2F1and 3F2. For these
integrals the series obtained via eq. (6.1.16) can be compared with the known series, and all the
C (k)i that define these integrals can be obtained from this comparison.

2. All of our integrals are massless, and therefore must not have any discontinuities other than from
limits

�

pi + p j

�2→ 0. On the other hand, the differential equations we are solving also have poles

at
�

pi + p j

�2→ q2, as the list of denominators in eq. (6.4.5) demonstrates. Thus, requiring that
the apparent discontinuities of the general solution at y, z, 1− y − z → 1 vanish will generate
nontrivial identities between the integration constants. This requirement can be written down
by separating the terms proportional to ln(1− y), ln(1− z), or ln(y + z), and enforcing that the
coefficient in front of each vanishes in the limit.

3. The planar integrals only have discontinuities at limits where adjacent momenta go to zero. For
the PA topology this means that it should be regular at y + z→ 1 (i.e. (p1 + p2)

2→ 0), as long as
q2 6= 0. Similarly for the planar integrals from other topologies. Here again we are looking at the
logarithmic terms like ln(1− y − z), enforcing the cancellation of the coefficients in front of them
in the limit.

To apply these regularity conditions one needs to separate the terms proportional to lnk
�

1− si j

�

, and
require that the coefficient of each is exactly zero in the limit si j → 1. For the limit y → 1, to separate
the divergent logarithms, it is enough to employ the shuffle relations to rewrite every G

�

1, . . . , 1, w y ; y
�

in eq. (6.4.6) into a product of the divergent factor G(1, . . . , 1; y) and the part finite at y → 1. For the
limit z→ 1 the same cannot be done directly on eq. (6.4.6), because z appears in the parameter list of
G(. . . ; y). Instead, we can rewrite it into the reverse form,

Ii =
�

q2
�k

N
∑

C G
�

. . . , a′i , . . . ; z
�

G
�

. . . , b′i , . . . ; y
�

, (6.4.9)

where
ai ∈ {0,1} , and b j ∈ {0, 1,1− z,−z} , (6.4.10)

and factor our logarithmic terms from that. The general procedure for this transformation is described
in Section 7.10; up to transcendental weight 9 we have found the fibrationBasis routine from
HYPERINT [123] to be a convenient way to do this; at weight 10 the results contain too many terms for
HYPERINT to handle with ease, so we had to implement this transformation manually in C++ (with the
help of GINAC [102]) instead. The need to operate on weight 10 expressions comes from the fact that
applying the regularity conditions to the weight-10 expansion of Ii only fixes the constants C (k)i up to
weight 8.

The weight-8 results for these integrals weight megabytes of text, and we have provided them in auxiliary
files attached to [35].
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7. Multiple polylogarithms

If the matrix S defining the ε-form differential equation system in eq. (6.1.7) has the form

S(x) =
∑

i

Si
x − x i

, (7.0.1)

then the integrals that appear as the result of the ε-form solution given by eq. (6.1.9) will be iterated
integrals of the form

G(w1, w2, . . . , wn; x)≡
∫ x

0

dt1

t1 −w1

∫ t1

0

dt2

t2 −w2
· · ·
∫ tn

0

dtn

tn −wn
. (7.0.2)

Together with a special definition for the otherwise divergent case of all wi = 0,

G(0, . . . , 0; x)≡
lnn(x)

n!
, (7.0.3)

these are multiple polylogarithms [124], also called Goncharov polylogarithms or hyperlogarithms.

An alternative representation for G as an infinite sum is given by

Lim1,...,mn
(x1, . . . , xn)≡

∑

i1>···>in>0

x i1
1

im1
1

· · ·
x in

n

imn
n
= (−1)n G

�

0, . . . , 0
︸ ︷︷ ︸

m1−1

,
1
x1

, 0, . . . , 0
︸ ︷︷ ︸

m2−1

,
1

x1 x2
, . . . ,

1
x1 · · · xn

; 1
�

.

(7.0.4)
with the case of trailing 0 defined through shuffling relations (see Section 7.4).

Multiple polylogarithms is a well studied and convenient class of functions. There exist publicly available
libraries that can transform them: HYPERINT [123] and POLYLOGTOOLS [125], and evaluate them
numerically with arbitrary precision: GINAC [126, 102].

Let us review the main properties of multiple polylogarithms, as they are relevant to our calculations.

7.1. Transcendental weight and grading

Transcendental weight, or simply weight, of a multiple polylogarithm is the number of wi parameters it
has. A sum of terms of identical weight has the same weight as its terms. A product has weight equal to
the sum of weights of its factors, unless the whole product is zero.

Conjecturally, multiple polylogarithms form an algebra graded by weight, which means that no linear
combination of Gs of a uniform weight with coefficients and arguments being rational functions is ever
equal to a combination of a different weight, unless both are zero. This conjecture is related to the
multiple zeta value grading conjecture [127].

Irrational constants related to multiple polylogarithms are also weighted. The weight of rational numbers
is zero. Because G(0, 1;1) = π2/6, the weight of π is 1. The weight of ln(2) = G(0;2) is also 1.
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7. Multiple polylogarithms

7.2. Related classes of functions

Multiple polylogarithms subsume a number of well known (and useful in their own right) classes of
functions. These include the following.

7.2.1. Natural logarithms

Natural logarithms are equivalent to multiple polylogarithms of weight 1 and vice versa:

ln(x) = G(0; x) and G(a; x) = ln
�a− x

a

�

. (7.2.1)

7.2.2. Dilogarithms and (classical) polylogarithms

Polylogarithms [128] are defined in terms of an infinite sum,

Lin(x)≡
∞
∑

k=1

xk

kn
, (7.2.2)

and dilogarithms are just Li2. When n> 0 these allow for a recursive integral definition:

Lin(x) =

∫ x

0

Lin−1(t)
t

dt, (7.2.3)

with the base case of
Li1(x) = − ln(1− x) . (7.2.4)

Polylogarithms are a special case of weight-n multiple polylogarithms:

Lin(x) = −G(0, . . . , 0
︸ ︷︷ ︸

n−1

, 1; x). (7.2.5)

Polylogarithms with n≤ 0 are rational functions.

7.2.3. Harmonic polylogarithms

Harmonic polylogarithms [129] are defined as iterated integrals of the form

H(w1, w2, . . . , wn; x) =

∫ x

0

h(w1; t)H(w2, . . . , wn; t)dt, (7.2.6)

where the parameters wi ∈ {−1, 0,1}, and the integration kernels are

h(w; x)≡











1
1−x if w= 1,
1
x if w= 0,

1
1+x if w= −1.

(7.2.7)

These are a subset of multiple polylogarithms with the parameters wi restricted to {−1, 0,1}, and differ
only by an overall sign:

H(w1, . . . , wn; x) = (−1)δw1,1+···+δwn ,1 G(w1, . . . , wn; x) . (7.2.8)
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7.2. Related classes of functions

Note that there is a commonly adopted shorthand notation for the parameters of H where a sequence
of n− 1 zeros followed by a 1 is denoted as just n, and a sequence of n− 1 zeros followed by a −1 is
denoted −n:

H(. . . ,±n, . . . ; x)≡ H(. . . , 0, . . . , 0
︸ ︷︷ ︸

n−1

,±1, . . . ; x). (7.2.9)

The HPL library [130, 131] can be useful to transform and evaluate these functions.

7.2.4. Nielsen’s generalized polylogarithms

Nielsen’s generalized polylogarithms [132],

Sn,p(x)≡
(−1)n+p−1

(n− 1)!p!

∫ 1

0

lnn−1(t) lnp(1− x t)
t

dt, (7.2.10)

can be expressed as a particular case of harmonic polylogarithms, and thus multiple polylogarithms:

Sn,p(x) = H(0, . . . , 0
︸ ︷︷ ︸

n

, 1, . . . , 1
︸ ︷︷ ︸

p

; x) = (−1)p G(0, . . . , 0
︸ ︷︷ ︸

n

, 1, . . . , 1
︸ ︷︷ ︸

p

; x). (7.2.11)

7.2.5. Multiple zeta values and alternating sums

Multiple zeta values (MZV) and alternating sums [108] are a class of irrational constants (rather than
functions) closely related to harmonic polylogarithms:

ζa,b,... ≡
∑

n1>n2>···>0

sgnn1(a)

n|a|1

sgnn2(b)

n|b|2

· · · . (7.2.12)

With all non-negative parameters these are multiple zeta values proper, and they are equivalent to
harmonic polylogarithms (and thus, multiple polylogarithms) of argument 1:

ζa,b,... = H(a, b, . . . ; 1) if a, b, · · · ≥ 0, (7.2.13)

where the shorthand notation of eq. (7.2.9) is assumed.

With some parameters being negative these are called alternating sums rather than MZVs proper, and
their relation to harmonic polylogarithms is also straightforward:

ζw1,...,wn
=

� n
∏

i=1

si

�

H(s1 |w1| , . . . , sn |wn| ; 1) , where si =
i
∏

j=1

sign
�

w j

�

. (7.2.14)

Note that eq. (7.2.12) is a common “physicist” notation for multiple zeta values and alternating sums; it
makes their relation to harmonic polylogarithms straightforward. On the other hand, the same notation
but with the order of parameters reversed (the “mathematician” notation) is also occasionally used
in the literature and software. Notably, [124] and HYPERINT [123] use the latter, while GINAC [126],
HPL [131], SpecialFunctions‘MultipleZetaValue[{a,b,...}] from MATHEMATICA, and
the MZV Data Mine [108] use the former.
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7. Multiple polylogarithms

7.3. Linear independence

All multiple polylogarithms G(w; x) with different parameters w but identical arguments x are linearly
independent (assuming the parameters do not depend on the argument), meaning that no linear
combination of them with rational coefficients is zero.

Multiple polylogarithms of unequal weights in general are linearly independent (with coefficients being
rational functions) by the grading conjecture.

7.4. Shu�ing relations

Multiple polylogarithms obey the shuffling relations:

G(p; x)G(q; x) =
∑

w∈p//q

G(w; x) , (7.4.1)

where p//q denotes the set of shuffles of sequences p and q, i.e. such permutations of the combined set
of their elements that preserve the relative order among elements of p and of q separately. For example:

(1, 2)//(x , y) = {(1, 2, x , y), (1, x , 2, y), (1, x , y, 2), (x , 1, 2, y), (x , 1, y, 2), (x , y, 1, 2)} . (7.4.2)

The shuffle operation can be defined recursively as

(x ,p)//(y,q) = x ·(p//(y,q))∪ y ·((x ,p)//q) , (7.4.3)

where “·” denotes sequence concatenation.

7.5. Divergences

G(w1, . . . , wn; x) is finite if x 6= w1, otherwise it may diverge. Its precise behavior when x → w1 can be
extracted via the reverse application of the shuffling relations (see Section 7.4). As a general rule this
divergence is logarithmic:

G(a, . . . , a
︸ ︷︷ ︸

n

,w; x) = G(a, . . . , a
︸ ︷︷ ︸

n

; x)G(w; x) +O (G(a, . . . , a
︸ ︷︷ ︸

n−1

; x)), (7.5.1)

where

G(a, . . . , a
︸ ︷︷ ︸

n

; x) =

¨

1
n! ln

� a−x
x

�

if a 6= 0,
1
n! ln(x) if a = 0.

(7.5.2)

An important corollary is that even though G(w; x) may diverge, its integral over any finite interval is
always finite, because the divergence is at most logarithmic.

7.6. Scaling

If the last parameter wn 6= 0, from the integral representation of eq. (7.0.2) it can be seen that rescaling
the parameters and the argument of G does not change its value:

G(αw;αx) = G(w; x) . (7.6.1)

If there are trailing zeros in the parameter list (wn 6= 0), this scaling is not observed, but then the shuffling
relations can be first applied to split the multiple polylogarithms into G(0, . . . , 0; x) (the logarithms) and
G(. . . , wn; x) with wn 6= 0. Once this is done, the scaling relation can be used again.
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7.7. Series expansion around zero

7.7. Series expansion around zero

It is sometimes useful to know (and easy to calculate) the behavior of multiple polylogarithms around
x = 0. If wn 6= 0, the expansion can be done directly through the sum representation of eq. (7.0.4):

G(0, . . . , 0
︸ ︷︷ ︸

m1−1

, w1, 0, . . . , 0
︸ ︷︷ ︸

m2−1

, w2, . . . , wn; x) = (−1)n
∑

i1>···>in>0

(x/w1)
i1

im1
1

(w1/w2)
i2

im2
1

· · ·
(wn−1/wn)

im

imn
n

. (7.7.1)

In particular, if all parameters of G are non-zero, then the expansion starts with the following term:

G(w1, . . . , wn; x) =
(−1)n

n!
xn

w1 · · ·wn
+O

�

xn+1
�

, if wi 6= 0. (7.7.2)

In the case when wn is zero, multiple polylogarithms diverge logarithmically at x → 0, and the full series
expansion can be obtained by first using the shuffling relations to make the logarithms explicit and
thus eliminate the trailing zero parameters, and then safely using eq. (7.7.1) on the remaining multiple
polylogarithms.

7.8. Di�erentiation

In the simple case when the parameters wi do not depend on x , the derivative by x directly follows from
the definition eq. (7.0.2):

d
dx

G(w1, w2, . . . , wn; x) =
1

x −w1
G(w2, . . . , wn; x) , if

d
dx

wi = 0. (7.8.1)

The most general case can be compactly given as

d
dx

G(w1(x) , . . . , wn(x) ; y(x)) =
n
∑

i=1

G(w1, . . . ,��ZZwi , . . . , wn; y)
d

dx
ln
�

wi −wi−1

wi −wi+1

�

, (7.8.2)

where��ZZwi denotes the operation of removing the specified item from the sequence, and we have introduced
auxiliary values w0 ≡ y and wn+1 ≡ 0.

7.9. Integration

The simplest case of integration is already given by the definition in eq. (7.0.2),

∫

dx
1

x −w1
G(w2, . . . , dn; x) = G(w1, w2, . . . , wn; x) + C , if

d
dx

wi = 0. (7.9.1)

More generally, if wi do depend on x , then as a first step one should transform G to eliminate this
dependency. This is always possible, and the procedure for this is described in Section 7.10.

If a product of multiple G functions is to be integrated, one should first use the shuffling relations to
expand this product into a sum.
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7. Multiple polylogarithms

Finally, let us consider kernels of integration other than 1/ (x −w). To integrate a multiple polylogarithm
multiplied by an arbitrary rational function one must first perform a partial fraction decomposition on
this function. Then the most general remaining expression will be of the form

∫

1

(x − a)k
G(w1, . . . , wn; x)dx or

∫

x pG(w1, . . . , wn; x)dx , (7.9.2)

where k > 0 and p ≥ 0. Any integral of the first form can be taken by a recursive application of the
following rules:

∫

1

(x − a)p+1 G(u,w; x)dx = −
1
p

1
(x − a)p

G(u,w; x) +
1
p

∫

1
(x − a)p

1
x − u

G(w; x)dx , (7.9.3)

1
(x − a)p

1
x − b

=
1

a− b
1

(x − a)p
+

1
b− a

1

(x − a)p−1

1
x − b

, (7.9.4)

with the base case of the recursion given by eq. (7.9.1) and
∫

1

(x − a)p+1 G(; x)dx = −
1
p

1
(x − a)p

+ C if p > 0. (7.9.5)

The second form of eq. (7.9.2) can be taken by recursively applying the following rules:
∫

xk−1G(u,w; x)dx =
xk

k
G(u,w; x)−

1
k

∫

xk

x − u
G(w; x)dx , (7.9.6)

∫

xk

x − a
G(w; x)dx =

∫

xk−1G(w; x)dx + a

∫

xk−1

x − a
G(w; x)dx , (7.9.7)

∫

G(u,w; x)dx = (x − u)G(u,w; x)−
∫

G(w; x)dx , (7.9.8)

with the base case given by eq. (7.9.1) and
∫

xk−1G(; x)dx =
xk

k
+ C . (7.9.9)

Together these rules are enough to integrate any product of rational functions and multiple polyloga-
rithms.

7.10. Parameter transformations

If one has a multiple polylogarithm G(w(x) ; y(x)), with both its parameters w and the argument y
depending on a given variable x , it is often needed to rewrite it in terms of multiple polylogarithms of
argument x , G

�

w′; x
�

, such that x enters nowhere else, w′ 6=w′(x). This is needed for example if one
wants to integrate G(w(x) ; y(x)) over x , or if one is interested in mapping a complicated expression
onto a linearly independent basis.

As advocated in [133] a general way to achieve this is to recursively differentiate by x and then integrate
back:

G(w(x) ; y(x)) =

∫

dx
∂

∂ x
G(w(x) ; y(x)) + C . (7.10.1)
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7.10. Parameter transformations

This works because differentiation will reduce the weight of G(w; y) by 1, and applied recursively it will
reach zero at some point; then, integrating the expression back will always give the form G

�

w′; x
�

.

As a simple example, let us take a look at G(1− x; y). Applying eq. (7.10.1) to it we get

G(1− x; y) =

∫

�

1
x + y − 1

−
1

x − 1

�

dx + C = G(1− y; x)− G(1; x) + C , (7.10.2)

where C can be determined from the limit of x → 0. This limit is trivial, and we have

C = lim
x→0
(G(1− x; y)− G(1− y; x) + G(1; x)) = G(0; y) . (7.10.3)

In many cases such limits are not trivial, and finding the integration constants C is the main difficulty of
the method. For example, consider

G(x; y) =

∫

�

1
x − y

−
1
x

�

dx + C = G(y; x) + G(0; x) + C , (7.10.4)

where C can also be determined from the limit of x → 0,1

C = lim
x→0
(G(x; y)− G(y; x) + G(0; x)) , (7.10.5)

but the complication here is that

lim
x→0

G(0; x) =∞, and lim
x→0

G(x; y) 6= G(0; y) . (7.10.6)

The first of these means that the limits can only be taken separately after regularizing the divergences,
for example by expanding the terms into a series in ln(x), and keeping the logs. The second is because
G(0; y) is the exceptional case in the G definition of eq. (7.0.2),

G(0; y)≡ ln(y) =

∫ y

δ

dt
t
+ ln(δ) 6=

∫ y

0

dt
t

. (7.10.7)

Additionally, keep in mind that limx→0 G(x; y) assumes that x < y, which means that the integration
contour crosses a singularity at y = x . To properly define this function we can give a small imaginary
part to x , ±iδx , so that the integration contour is shifted to avoid the singularity. The next step is to
split the integration contour and take each piece separately

lim
x→0

G(x; y) = lim
x ,δ→0

�

∫ x−δ

0

dt
t − x

+

∫ x+δ

x−δ

dt
t − x

+

∫ y

x+δ

dt
t − x

�

=

= lnδ− ln x ± iπ+ ln y − lnδ =

= G(0; x)± iπ+ G(0; y) ,

(7.10.8)

where the sign of ± is the same as in ±iδx . The whole limit then becomes

C = G(0; y)± iπ. (7.10.9)

For higher weights the same procedure needs to be applied recursively.

1Of course the derivation here would have been easier if we were to immediately rewrite G in terms of ln, but this is only
possible at weight 1, and we want to illustrate the general case.
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7. Multiple polylogarithms

A general algorithm for finding these integration constants is described in [123] and available as a
MAPLE package HYPERINT. That method is based on taking limits of both sides of eq. (7.10.1) at x →∞,
regularized by throwing away all terms proportional to ln x .

A different approach is pursued by POLYLOGTOOLS [125]: the constants are found by evaluating both
the left- and the right-hand sides of eq. (7.10.1) numerically at some fixed value of x using GINAC [126,
102] up to hundreds of digits of precision, and then by reconstructing the analytical expression for C
from its numerical value using integer reconstruction algorithm PSLQ [109] in the basis of multiple zeta
values of appropriate weight. The biggest drawback of this method is performance at higher weights:
at each weight the size of the linear basis of multiple zeta values grows exponentially, the number of
digits of precision one needs to use is linear in the size of the basis, and GINAC takes time approximately
quadratic in the requested number of digits.
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8. Fuchsia: a tool for epsilon form construction

We have implemented the algorithms of reduction to an ε-form described so far in FUCHSIA. The first
version of it was announced in [38] and fully presented in [37]. That version was written in Python
using the free computer algebra system SAGEMATH [134]; it is available at github.com/gituliar/fuchsia.
Over time we have experienced several major problems with the way FUCHSIA was made:

1. Its performance was limited on larger problems (i.e. matrices with deep poles or with sizes larger
than 20 × 20).

2. Simply installing SAGEMATH turned out to be a constant source of problems. It is fairly big (more
than 2GB archived), and only comes in a prebuilt form for a limited set of Linux distributions;
building it from source takes a long time and often fails.

3. Algebraic extensions in the matrices (that is, complex numbers and roots)—although recognized—
would often result in expression blowup, so that the computation would never finish. The reason is
that SAGEMATH (or, more precisely, MAXIMA [135], which it uses under the hood) does not simplify
ratios of such numbers to a normal form, and factors that should have been canceled linger on.
This is one of the reasons FUCHSIA acquired the ability to use MAPLE to help its computations.

4. No support for matrices with spurious poles that depend on ε. These poles can be completely
eliminated as a preliminary step, but in practice they often come in the form of polynomials with
higher powers of x , so either introduction of roots is needed (see issue 3), or possibly an approach
that deals with higher-order polynomials explicitly like [136] can be used.

An alternative is to always start with a d-factorizing master integral basis, in which this problem
does not exist. See [94, 93] for ways to do this.

To address points 1 and 2, FUCHSIA was rewritten in C++ using GINAC [102]. The source code and
the prebuilt binaries of this version are available at github.com/magv/fuchsia.cpp. The 3-rd point is
still unaddressed; the 4-th is only partially addressed: the new FUCHSIA is able to reduce matrices
with ε-dependent poles under limited conditions (in fact we use this property in Chapter 10), but this
functionality is far from complete, and we are yet to guarantee correctness in all cases—instead we
advocate using d-factorizing bases for this problem, because they also improve the performance of the
IBP reduction, which is often a major bottleneck, so most calculations would benefit—and some even
require—such choice anyway.

8.1. How does it work?

We have discussed the general method of reducing a differential equation system to an ε-form in
Section 6.3, but it allows for considerable freedom: transformations that reduce higher poles and those
that normalize Fuchsian poles can be constructed in different orders, and each transformation has several
possible P matrices that can be used.

The strategy FUCHSIA uses for univariate differential equation systems is this:
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8. Fuchsia: a tool for epsilon form construction

1. The initial matrixM is normalized into partial fraction form in x , as in eq. (6.1.2). Following the
advice of [137], all the subsequent transformations are applied directly to this form, maintaining
it.

2. The matrix is shuffled into a block-triangular form (if not already so) using the algorithm of [138].

3. For each block on the diagonal:

a) All higher poles are eliminated, transforming M into a Fuchsian form. This step is called
fuchsification.

A major practical concern in this step—as well as others—is the intermediate expression swell.
If one chooses the points to reduce randomly, the size ofM will tend to grow, slowing down
all operations, potentially preventing practical application completely. To combat this, at each
step FUCHSIA constructs all B(P, x1, x2; x) for all possible x i, x j, and P; then the one that
produces the “simplest” overallM is applied.1 If the matrix is Moser-reducible but no B can
be constructed because none of the VU combinations from eq. (6.3.24) are invertible, then a
fresh x is chosen and a spurious pole is introduced there (such cases are rare in practice).

To guarantee progress, we only reduce from points with higher pole power to the ones with
lower or equal. In the latter case, we also make sure the sum of ranks of A0 and B0 is
decreasing after the transformation (this does not always happen because the rank of B0 is
often increased by the transformation).

This does mean that O
�

number of poles2
�

of B matrices need to be constructed and applied
at every step—but as long as the expression swell for the bigger matrices is prevented, this is
worth it. (For smaller matrices this effort is mostly wasted, but we are not concerned about
these too much).

b) All Fuchsian poles are normalized. This step is called normalization.

The approach is similar here: construct all possible B(P, x1, x2; x), sort them by how close
is the resulting M to being fully normalized and how big it is, and apply the best one.
The difference is that in the case of fuchsification Moser’s reducibility criterium guarantees
progress; there is no such guarantee here, and often there are no transformations available
that makeM more normalized. To handle such cases FUCHSIA considers the transformations
that denormalize M too, and keeps a priority queue of all M states constructed, so if one
sequence of reduction steps would lead to a dead end, the search could continue with a
different path.

c) The dependence ofM on ε is factorized (“factorization”).

When constructing the factorization matrix T(d), there are multiple degrees of freedom that
can be chosen arbitrary (as discussed in Section 6.3.5); FUCHSIA tries to set all of them to
random small integers, preferably zeros, and once a few versions of T(d) that are invertible
are identified, the “simplest” of them is applied.

4. After each diagonal block is in an ε-forms, each off-diagonal block is reduced to it too, one by one.

5. The resulting matrix is simplified to reduce the numerical coefficients. There are two simplifications
applied here:

1We measure how “complex” or “simple” a matrix is by a weighted sum of the number of arithmetic operations it contains
and the number of bits needed to represent all of its coefficients. This is roughly proportional to the length of the textual
representation of the matrix. A very crude metric, but it works because the difference between the most simple and the
most complex matrices that appear on any given step are rather large.
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8.2. Command-line usage summary

a) For each off-diagonal block a constant transformation is chosen such that it would cancel at
least one of the terms in the matrix, at the expense of potentially introducing other terms. If
more terms are canceled than introduced, the transformation is accepted.

b) Each integral is rescaled by a numeric factor that minimizes the numeric content of the
resulting matrix.

These transformations are heuristics and do not guarantee the smallest possible matrix in the end,
but they do lead to practical improvements.

For multivariate differential equation systems the same algorithm is applied in a stepwise fashion, as
described in Section 6.3.7.

8.2. Command-line usage summary

The syntax for FUCHSIA invocation on the command line is:

fuchsia [options] command args ...

Commands

The command argument gives the sub-command name. The main command is reduce. Available
sub-commands are:

fuchsia reduce [-x name] [-e name] [-m path] [-t path] [-i path] matrix

Find an epsilon form of the given matrix. Internally this is a combination of reduce-diagonal-
blocks, fuchsify-off-diagonal-blocks, factorize, and simplify.

fuchsia reduce [-x name] ... [-e name] [-m path] ... [-t path] [-i path] matrix ...

Find an epsilon form of a given multivariate differential equation system. A matching number of
matrix arguments, -x, and -m flags is required.

The matrices are reduced one by one, and a single transformation is computed that simultaneously
transforms all of them into an epsilon form. It may be best to list the simplest matrix first.

fuchsia show [-x name] [-e name] matrix

Show a human-readable description of a given matrix, listing residues and eigenvalues.

fuchsia reduce-diagonal-blocks [-x name] [-e name] [-m path] [-t path] [-i path] matrix

Transform the matrix into a block-triangular form and reduce the diagonal blocks into an epsilon
form.

fuchsia fuchsify-off-diagonal-blocks [-x name] [-m path] [-t path] [-i path] matrix

Transform the off-diagonal blocks of a block-triangular matrix into a Fuchsian form, assuming
the diagonal blocks are already in an epsilon form, thus making the whole matrix normalized
Fuchsian.

fuchsia factorize [-x name] [-e name] [-m path] [-t path] [-i path] matrix

Find a transformation that will make a given normalized Fuchsian matrix proportional to the
infinitesimal parameter.
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8. Fuchsia: a tool for epsilon form construction

fuchsia fuchsify [-x name] [-m path] [-t path] [-i path] matrix

Find a transformation that will transform a given matrix into a Fuchsian form. This is less efficient
than block-based commands, because it effectively treats the whole matrix as one big block.

fuchsia normalize [-x name] [-e name] [-m path] [-t path] [-i path] matrix

Find a transformation that will transform a given Fuchsian matrix into a normalized form. This is
less efficient than block-based commands, because it effectively treats the whole matrix as one big
block.

fuchsia sort [-m path] [-t path] [-i path] matrix

Find a block-triangular form of the given matrix by shuffling.

fuchsia transform [-x name] [-m path] matrix transform ...

Transform a given matrix using a given transformation.

fuchsia changevar [-x name] [-y name] [-m path] matrix expr

Perform a change of variable from x to y , such that x = expr(y).

fuchsia suggest-changevar [-x name] [-y name] matrix

Suggest a rational change of variable that will transform residue eigenvalues of the form n/2+ kε
into n+ kε, thus making it possible to find an epsilon form of the matrix.

Note that some bad eigenvalues disappear when the matrix is fuchsified, so this routine is best
used after fuchsify.

fuchsia simplify [-x name] ... [-m path] ... [-t path] [-i path] matrix ...

Try to find a transformation that makes a given matrix (or a set of matrices) simpler, for some
definition of “simple”. This command tries to reduce the size of numerical coefficients in the
matrix.

Options

-x name Use this name for the free variable (default: x).

-0 expr Set this value for x during multivariate reduction (default: 0).

-y name Use this name for the new free variable (default: y).

-e name Use this name for the infinitesimal parameter (default: eps).

-m path Save the resulting matrix into this file.

-t path Save the resulting transformation into this file.

-i path Save the inverse transformation into this file.

-C Force colored output even if the standard output is not a TTY.

-P Paranoid mode: spend more time checking internal invariants.

-q Print a more quiet log.

-h Show a help message.

-V Print version information.
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8.3. Usage example

Arguments

matrix Read the input matrix from this file.

transform Read the transformation matrix from this file.

expr Arbitrary expression.

8.3. Usage example

Let us obtain an ε-form for one of the previous examples: eq. (6.2.6). First we need to prepare the file
with the matrixM:

$ cat >example.m <<EOF
{{(2-2*ep)/(2*x), 0}, {(2*ep-2)/(2*q2*(x-1)*x), (1-2*ep)/(x-1)}}
EOF

Optionally we can review its content:

$ fuchsia show -q -e ep example.m
Matrix size: 2x2
Matrix shape:

#.
##

Matrix complexity: 364
Matrix expansion:

pole of power -1 at x=0
complexity: 181
e-value^1: 0
e-value^1: 1-ep
shape:
#.
#.

pole of power -1 at x=1
complexity: 173
e-value^1: 0
e-value^1: 1-2*ep
shape:
..
##

effective pole of power -1 at x=Infinity
complexity: 119
e-value^1: -1+ep
e-value^1: -1+2*ep
shape:
#.
.#

Next, let us reduce it to an ε-form:

$ fuchsia reduce -q -e ep example.m -t example.ep.t -m example.ep
[inf 0.0009s +0.0009s] Reducing a diff. eq. system in x
[inf 0.0022s +0.0013s **] Reducing 1x1 diagonal block at offset 0
[inf 0.0030s +0.0008s ****] Reduction between Infinity (eval=-1+ep) and 0

(eval=1-ep) can give complexity 54, distance 0
[inf 0.0032s +0.0002s ****] Reduction between Infinity (eval=-1+ep) and Infinity

(eval=-1+ep) can give complexity 118, distance 2
[inf 0.0035s +0.0002s ****] Reduction between 0 (eval=1-ep) and 0
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8. Fuchsia: a tool for epsilon form construction

(eval=1-ep) can give complexity 79, distance 2
[inf 0.0045s +0.0010s **] Reducing 1x1 diagonal block at offset 1
[inf 0.0055s +0.0010s ****] Reduction between Infinity (eval=-1+2*ep) and 1

(eval=1-2*ep) can give complexity 65, distance 0
[inf 0.0058s +0.0003s ****] Reduction between Infinity (eval=-1+2*ep) and Infinity

(eval=-1+2*ep) can give complexity 129, distance 2
[inf 0.0061s +0.0003s ****] Reduction between 1 (eval=1-2*ep) and 1

(eval=1-2*ep) can give complexity 90, distance 2
[inf 0.0082s +0.0022s **] Reducing 1x1 block at 1:0, at x=1, k=-2
[inf 0.0088s +0.0006s **] Use off-diagonal transformation, p=1, k=-1, D=

{{0,0}, {(2*ep*q2-q2)^(-1)*(-1+ep),0}}
[inf 0.0159s +0.0071s **] Use constant transformation of complexity 144:

{{1-2*ep,0}, {0,1-ep}}
[inf 0.0190s +0.0031s *] Shuffle into block-diagonal form with: {{1,0}, {0,1}}
[inf 0.0195s +0.0004s] Saving a diff. eq. matrix to example.ep
[inf 0.0198s +0.0003s] Saving the (unsimplified) transformation to example.ep.t
[inf 0.0199s +0.0002s] Saving the simplified transformation to example.ep.t

After 0.02 seconds FUCHSIA is done, and we can examine the transformation matrix (compare with
eq. (6.2.6)):

$ cat example.ep.t
{{x*(-1+2*ep),0},
{(-1+ep)*q2^(-1),(-1+x)*(-1+ep)}}

Also the resulting differential equation matrix (compare with eq. (6.2.7)):

$ cat example.ep
{{-ep*x^(-1),0},
{q2^(-1)*ep*(-1+x)^(-1)-q2^(-1)*ep*x^(-1),-2*ep*(-1+x)^(-1)}}
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9. Fully-inclusive phase-space integrals

A massless fully-inclusive phase-space Feynman integral in d dimensions with L loop momenta, P
denominators, and n cut momenta has the form

I =

∫

dd l1
(2π)d

· · ·
dd lL

(2π)d
1

Dν1
1 · · ·D

νP
P

dPSn(q) , (9.0.1)

where li are the loop momenta, dPSn(q) is the phase-space volume element given by eq. (9.1.2), Di are
the denominators having the form

Di = k2
i ± i0, (9.0.2)

where ki are some linear combinations of the loop and external momenta, and the sign of the i0
prescription is +1 for the denominators corresponding to lines in the Feynman diagram “to the left”
of the cut, and −1 for the ones “to the right” (this just means that the right part of the diagram is
complex-conjugated).

As explained in Section 2.4, to get at semi-inclusive phase-space integrals we need to know the fully-
inclusive ones. Previously, master integrals for 4-particle cuts of 3-loop propagators were calculated
in [139]; to get corrections of order α3

s we however need the cuts of 4-loop propagators. That calculation
was started in [36] with 5-particle cuts, and completed in [35] with the rest of them. Because these
are all single-scale integrals, the method of choice for them is the dimensional recurrence relations
(discussed in Chapter 5). Let us explain how this calculation is performed.

9.1. Total inclusive phase space

Before proceeding further, let us work out the total fully inclusive phase-space volume of n particles in d
dimensions,

PSn(q)≡ ... ≡
∫

dPSn(q) , (9.1.1)

where the phase-space volume element is given by

dPSn(q)≡

� n
∏

i=1

dd pi

(2π)d
2πδ+

�

p2
i

�

�

(2π)d δd

 

q−
n
∑

j=1

p j

!

, (9.1.2)

and δ+ stands for positive-energy Dirac delta function,

δ+
�

p2
�

≡ δ
�

p2
�

θ (p0) . (9.1.3)

Note that if one would introduce the components if pi explicitly as pi = (Ei , ~pi), then Ei can be immediately
integrated out from this definition using the observation that

δ+
�

p2
i

�

= θ (Ei)δ
�

E2
i − p2

i

�

=
1

2Ei
δ(Ei − |~pi|) , (9.1.4)

73



9. Fully-inclusive phase-space integrals

which leads to an equivalent definition of the phase-space volume:

dPSn(q)≡

� n
∏

i=1

dd−1~pi

(2π)d−1

1
2 |~pi|

�

(2π)d δd

 

q−
n
∑

j=1

p j

!

, (9.1.5)

where pi is assumed to have the components (|~pi| , ~pi).

9.1.1. Recurrence relation for the phase space

To calculate PSn(q), first note that just from dimensional analysis and the requirement of Lorentz
invariance, the full phase space must have the form of

PSn(q) = Φn ×
�

q2
�n( d

2−1)− d
2 , (9.1.6)

where Φn is a dimensionless constant,

Φn = PSn(q)|q2=1 . (9.1.7)

Next, observe that we can factor out the last momentum from eq. (9.1.5), and the remaining part will be
exactly dPSn−1(q− pn). This allows us to set up a recursion relation of the form

PSn(q) =

∫

dd−1~pn

(2π)d−1

1
2 |~pn|

PSn−1(q− pn) =

=

∫

dd−1~pn

(2π)d−1

1
2 |~pn|

Φn−1

�

q2 − 2q·pn

�(n−1)( d
2−1)− d

2 .

(9.1.8)

The integrand here only depends on q·pn. Let us again exploit Lorentz invariance, and change into a
frame of reference where q =

�

q, ~0
�

. Then, q·pn becomes just q |~pn|. Because the integrand is invariant
under rotations of ~pn, we can rewrite dd−1~pn in spherical coordinates, immediately integrating out the
angular degrees of freedom,

dd−1~pn = Ωd−2 |~pn|
d−2 d |~pn| , (9.1.9)

where Ωk is the surface area of a unit k-sphere in (k+1)-dimensional Euclidean space, or the solid angle,
as given by eq. (A.0.3). Then, the integral becomes

PSn(q) =
Φn−1Ωd−2

2 (2π)d−1

∫

d |~pn| |~pn|
d−3 �q2 − 2q |~pn|

�(n−1)( d
2−1)− d

2 . (9.1.10)

This is a hypergeometric integral, which can be taken routinely. With the integration range going from 0
to q/2, we have the resulting recurrence relation,

Φn =
2

(16π)
d−1

2

Γ (d − 2) Γ
�� d

2 − 1
�

(n− 2)
�

Γ
� d−1

2

�

Γ
�� d

2 − 1
�

n
� Φn−1. (9.1.11)

9.1.2. Two-particle phase space as the base case

For a solution to the recurrence of eq. (9.1.11) we will need a base case, Φ2. Fortunately it is easy to
calculate. In the reference frame where q =

�

q, ~0
�

we have

PS2(q) =

∫

dd−1 ~p1

(2π)d−1

1
2 |~p1|

dd−1 ~p2

(2π)d−1

1
2 |~p2|

(2π)d δd−1(~p1 + ~p2)δ(q− |~p1| − |~p2|) . (9.1.12)
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9.2. Phase-space parameterization

Using the first δ to integrate out ~p2 sets it to −~p1. Integration over the angular degrees of freedom of ~p1
just gives us |~p1|

d−2Ωd−2. Then the second δ can be used to integrate out |~p1|, setting it to q/2. In the
end, we are left with just

PS2(q) =
1
8
Ωd−2

(2π)d−2

�q
2

�d−4
=

1
4

1

(16π)
d−3

2 Γ
� d−1

2

�

�

q2
�

d
2−2

. (9.1.13)

9.1.3. Solving the recurrence

With the base case given by eq. (9.1.13), we can solve eq. (9.1.11) for any fixed n > 2. Moreover,
observing several such solutions, it is easy to recognize the general expression for arbitrary n. The final
result then reads

PSn(q) =
�

q2
�n( d

2−1)− d
2 2π

(4π)
d
2 (n−1)

Γ n
� d

2 − 1
�

Γ
�� d

2 − 1
�

(n− 1)
�

Γ
�� d

2 − 1
�

n
� . (9.1.14)

At d = 4 this reproduces the formulas from the classical works of e.g. [140, 141].

9.2. Phase-space parameterization

Direct integration in momentum components quickly becomes unfeasible for integrals more complex than
the full phase space. We can improve upon this by noting that an n-particle phase space has n (d − 1)− d
degrees of freedom (components of the phase-space momenta pi with one on-shell condition for each
and one energy conservation condition), but Lorentz invariance requires the integrand of a phase-space
integral to only depend on the scalar products of pi ,

si j ≡

�

pi + p j

�2

q2
, (9.2.1)

of which there are n (n− 1)/2 (remember that in the massless case sii = 4p2
i /q

2 = 0). So, with high
enough d there are extra degrees of freedom (of rotational nature) that the integrand does not depend
on, and can be integrated out.

To that end, we can rewrite the massless phase-space volume element of eq. (9.1.2) in terms of dsi j as

dPSn(q) =

�

q2
�n( d

2−1)− d
2

(2π)n(d−1)−d

� n
∏

k=2

Ωd−k

2

�

 

∏

i< j

dsi j

2

!

∆
d−n−1

2
n θ (∆n)δ

 

1−
∑

i< j

si j

!

, (9.2.2)

where Ωk is the surface area of a unit k-sphere given by eq. (A.0.3) (this corresponds to integrated out
angular degrees of freedom), and ∆n is the Gram determinant, which we define as

∆n ≡ (−1)n+1 det
n si j

2

o

. (9.2.3)
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9.2.1. Two-particle phase-space element

Explicitly, for the 2-particle phase-space element we have

dPS2(q) =
�

q2
�

d
2−2 24−2dπ

3−d
2

Γ
� d−1

2

� ds12δ(1− s12) . (9.2.4)

This of course is in agreement with the PS2 value given in eq. (9.1.13). Note that the 2-particle phase-
space is very restricted: s12 can only be 1, and

dPS2(q) = PS2(q)δ(1− s12)ds12. (9.2.5)

9.2.2. Three-particle phase-space element

For the 3-particle phase-space element we have

dPS3 =
�

q2
�d−3 21−2dπ1−d

Γ (d − 2)
(s12s13 (1− s12 − s13))

d
2−2 θ (1− s12 − s13)ds12ds13. (9.2.6)

By direct integration this value matches the full PS3 given by eq. (9.1.14), of course.

This parameterization allows us to take some 3-particle phase-space integrals in full generality (arbi-
trary d). For example, for an integral with one denominator with arbitrary power ν we have

ν
≡
∫

dPS3(q)

(p1 + p2)
2ν =

PS3(q)
(q2)ν

Γ
�3d

2 − 3
�

Γ 3
� d

2 − 1
�

∫ 1

0

ds12

∫ 1−s12

0

ds13
(s12s13 (1− s12 − s13))

d
2−2

sν12

.

(9.2.7)
This works out to

ν
=

Γ
�3d

2 − 3
�

Γ
�3d

2 − 3− ν
�

Γ
� d

2 − 1− ν
�

Γ
� d

2 − 1
�

PS3(q)
(q2)ν

. (9.2.8)

The same parameterization also helps in a more general case: if the loop part of the integral eq. (9.0.1)
is known in terms of multiple polylogarithms, then we can parameterize dPS3 as above, expand it in ε
using

(s12s13 (1− s12 − s13))
d
2−2 = 1+ (− ln s12 − ln s13 − ln(1− s12 − s13)) + . . . , (9.2.9)

multiply the loop part by this series, expand the products of multiple polylogarithms and logarithms using
the shuffling relations (see Section 7.4), and integrate the results order by order (using the relations of
Section 7.9). In this regard the 3-particle phase space is simple.

9.2.3. Four-particle phase-space element

The four-particle phase-space element is unfortunately more complex,

dPS4(q) =
�

q2
�

3
2 d−4 24−4dπ

1−3d
2

Γ (d − 3) Γ
� d−1

2

�δ

 

1−
∑

i< j

si j

!

∆
d−5

2 θ
�

∆4

�

∏

i< j

dsi j , (9.2.10)

where

∆4 =
1

16

�

2s12s13s24s34 + 2s12s14s34s23 + 2s13s14s24s23 − s2
12s2

34 − s2
13s2

24 − s2
14s2

23

�

. (9.2.11)
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9.3. Inclusive cuts of four-loop propagators

The complexity lies in the θ
�

∆4

�

factor: the integration volume is determined by an unfactorizable
quadratic polynomial. So unlike the 3-particle case we cannot easily integrate dPS4 after expanding it
into a series in ε, because the limits will be given as square roots.

Now, it is possible to perform a change of variables that will simplify the integration volume. For example
the tripole parameterization introduced in [139] is achieved with the following change of variables:



























s12→ (1− t) (1− y) (1− z) ,
s13→

�

1− t − v − t v + t vz − 2 (1− 2ξ)
p

(1− t) (1− v) t vz
�

y,
s14→ (1− z) v y,
s23→ (1− y) z,
s24→ (1− y) (1− z) t,
s34→

�

t − t v + vz − t vz + 2 (1− 2ξ)
p

(1− t) (1− v) t vz
�

y,

(9.2.12)

and with this substitution the integration region (in t, v, y, z,ξ) becomes a unit hypercube. The phase-
space volume element under it becomes

dPS4(q) =

�

q2
�

3d
4 −4

2−3dπ1− 3d
2

Γ
� d−1

2

�

Γ
� d−2

2

�

Γ
� d−3

2

� (t vz (1− t) (1− v))
d
2−2 (y (1− y) (1− z))d−3 (ξ (1− ξ))

d−5
2 dt dv dy dz dξ.

(9.2.13)
The simplicity of the integration volume here is gained at the expense of introducing roots into the
integrand, so explicit analytic integration is still not possible in the general case. Note though that if the
integrand does not depend on s13 and s34, then no roots will be introduced. This allows for integration
of a subset of 4-particle phase-space integrals. For example the total phase-space volume can be easily
taken, and the result matches eq. (9.1.14).1

Phase spaces of five and higher number of particles are similarly complex, and do not allow for direct
integration of arbitrary phase-space integrals.

9.3. Inclusive cuts of four-loop propagators

For the α3
s corrections we need all sets of cuts of 4-loop propagators: 2-particle cuts, 3-particle, 4-particle,

and 5-particle cuts. Among these, the 2-particle cuts correspond to 3-loop form-factors, and have been
completed in [70, 71, 72]. The 5-particle cuts are purely phase-space integrals (no loop part); we have
presented their calculation in [36]. A subset of 3- and 4-particle cuts have been calculated in [142], but
the majority where unknown until we have completed their calculation in [35].

9.3.1. Identifying the master integrals

To calculate the cut master integrals we first need to identify them. This turns out to be particularly easy
if one starts with the master integrals for the propagators themselves (without cuts): there are 28 such
master integrals, and their values are known from [143, 144]. See Table 9.3.1 for their list.

1Other examples of using using the tripole parameterization include a number of master integrals for 4-particle cuts of 3-loop
propagators calculated in [139], and a few 4-particle cuts of 4-loop propagators that were taken in [142].
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9. Fully-inclusive phase-space integrals

Table 9.3.1.: All 28 master integrals for 4-loop propagators.

To identify the cut master integrals, first, for each of the 28 propagator master integrals one needs to
construct all of its possible cuts. For example:2

→



























































































3-particle cuts

4-particle cuts

5-particle cuts

(9.3.1)
Second, all symmetric duplicate integrals should be removed from the resulting set of cuts. For example,
all of the following four integrals are identical up to a complex conjugation:

= =













∗

=













∗

. (9.3.2)

And this is all, the resulting set will be the final answer. There are neither additional IBP relations
between the remaining integrals, nor are there any additional master integrals (we have verified this
explicitly using FIRE6 with LITERED).

In total the identified set of cut master integrals include 31 5-particle cuts (see Table 9.3.2), 35 4-particle
cuts (Table 9.3.3), 27 3-particle cuts (Table 9.3.4), and 22 2-particle cuts (Table 9.3.5).

2The dotted cutting line is included in these diagrams for greater clarity. The best way to think of it is as a separator of the
vertices into the “left” and the “right” parts; all edges between the left and the right sets of vertices are cut.
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9.3. Inclusive cuts of four-loop propagators

Table 9.3.2.: All 31 master integrals for 5-particle cuts of 4-loop propagators.

Table 9.3.3.: All 35 master integrals for 4-particle cuts of 4-loop propagators.

79



9. Fully-inclusive phase-space integrals

Table 9.3.4.: All 27 master integrals for 3-particle cuts of 4-loop propagators.

Table 9.3.5.: All 22 master integrals for 2-particle cuts of 4-loop propagators.
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9.3. Inclusive cuts of four-loop propagators

9.3.2. Calculating 5-particle cuts

The 5-particle cut master integrals (listed in Table 9.3.2) can be calculated via dimensional recurrence
relations. We first derive them using LITERED and FIRE5; the DRR matrix is triangular with a factorizable
diagonal, so we proceed to compute homogeneous and particular solutions as described in Chapter 5,
but stopping short of using the dimensional recurrence and analyticity method. Instead, to determine
ωi(d) for 5-particle cut master integrals we consider the limit d →∞: we can determine the asymptotic
behavior of each master Ii(d) in this limit by using the phase-space parameterization of eq. (9.2.2)
(in fact, we can easily do this for an arbitrary phase-space integral with no loop momenta), and then
compare it to the asymptotic behavior of the homogeneous solution Hi(d) of eq. (5.0.6); it turns out that

Hi(d) grows exponentially faster than Ii(d) for all integrals except for the first master, , and

through eq. (5.1.1) this means that ωi(d) must be zero for those integrals.

Indeed consider an integral of form eq. (9.0.1) with L = 0 and dPSn(q) parameterized via eq. (9.2.2).
If ∆n has a unique global maximum inside the integration region, ∆max

n , then we can apply Laplace’s
method,

∫
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K→∞
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, where x0 = argmax f (x) , (9.3.3)

and obtain the asymptotic behavior of the integral as

I(d) =
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�

1
d

��

, (9.3.4)

where C is some constant that does not depend on d.

The global maximum of ∆n is reached when all si j (i 6= j) are identical and equal to n (n− 1). Geometri-
cally this corresponds to the vectors ~pi pointing to the vertices of a regular n-hedron embedded into
Euclidean space of (n− 1) dimensions. Its value is

∆max
n =

1

nn (n− 1)n−1 . (9.3.5)

With this value the explicit asymptotic behavior of I(d) becomes

I(d)∝
�

q2
�2d−5

� e
2πd

�2d � 1
4455

�
d
2

, (9.3.6)

while the asymptotic of Hi(d) depends on the integral, and can be obtained directly from eq. (5.0.6)
using the Stirling’s formula

Γ (K)
K→∞
≈

√

√2π
K

KK

eK
. (9.3.7)

Going through the integrals one by one3 we consistently find that H(d) grows exponentially faster than

I(d) for all master integrals other than , meaning that ωi(d) for them is zero, and I(d) is then

3A worked out example for is presented in [145].

81



9. Fully-inclusive phase-space integrals

given by just the inhomogeneous solution of eq. (5.0.7), which we evaluate numerically via DREAM and
restore the analytic expressions in terms of multiple zeta values via PSLQ.

As a cross-check we have computed all 5-particle cuts numerically at d = 6 and d = 8 (where they
are finite). To this end we have extended the RAMBO phase-space parameterization [141] to work in
arbitrary integer d (the original is for d = 4 only), obtaining a uniform mapping from a hypercube into pi
components, and then used the Vegas [146] implementation from CUBA [147] to integrate each integral
over that hypercube numerically with 0.1% precision.4 The obtained values match the analytic results
within the integration error.

As another cross-check the same logic can be applied to 4-particle cuts of 3-loop propagators. We have
done that, and the results match the values known from [139] (the details are given in [36]), with the
advantage that our results easily extend to higher orders in the ε expansion.

9.3.3. Calculating 4-particle cuts

The master integrals for 4-particle cuts (listed in Table 9.3.3) differ from 5-particle cuts in that they
contain one loop integration. For this reason we shall not pursue the limit d →∞, and shall turn to the
full method of Chapter 5. A particularly useful property of 1-loop integrals is that they only have surface
divergences, all contained in the prefactors of their Feynman parameterization (see eq. (3.2.1)). This
means that we can suppress the UV divergences of a 1-loop integral by dividing it by (or just by

Γ
�

2− d
2

�

, but that is less convenient). The normalization of eq. (5.1.6) does this for us, and

Ji(d)≡ Ii(d)/ (9.3.8)

are all free of both IR and UV poles at d ≥ 6. Once we have obtained DRR for them, we can construct
H−1

i (d) and Ri(d): both turn out to be finite in d ∈ [6; 8] too, which means thatωi(d) does not have any
poles in d. Then, as discussed in Chapter 5, we can proceed to derive bounds on ωi(d) at Im d →∞
and prove that ωi(d) can only be a constant.

To calculate the constant ωi , note that this is just one constant per integral, so it is sufficient for example
to calculate a single term of the ε-expansion of each integral. Fortunately this can be done via the
following observation: for a 4-particle cut integral with with n loop denominators, the superficial degree
of divergence of the loop part becomes zero when d = 2n (meaning that the integral begins to diverge
logarithmically in the UV region), and importantly no IR divergences are present in this d as well.
Changing d to 2n− 2ε regulates the UV divergence via a single ε pole, and being an UV pole, it does
not depend on any masses in the diagram. Therefore, one can just as well insert some mass m into
the loop without affecting the pole. Then, applying the large mass expansion [115] to the massive
diagram factorizes it into a massive one-loop vacuum bubble (equal to the massive loop with external legs
amputated) and a 4-particle phase-space integral (equal to the original integral with the loop shrinked
into a vertex), while still not changing the pole.

For example,

= m +O (ε) = m × +O
�

ε,
q2

m2

�

, in d = 10− 2ε.

(9.3.9)

4The code for this is available at https://github.com/magv/rambo.
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9.3. Inclusive cuts of four-loop propagators

The vacuum bubble m can be evaluated via eq. (3.1.4) (with ν= 5), and is just a 4-particle

cut of a 3-loop propagator—it can be reduced via IBP and DRR to the master integrals known from [139]
(also recalculated in the previous section). Substituting the values we have

=
−5500

3

� �∗
+O

�

ε,
q2

m2

�

, in d = 10− 2ε, (9.3.10)

which we can compare to eq. (5.0.3) and figure out the corresponding ωi .

The same procedure applies to all 4-particle cuts of 4-loop propagators. Interestingly, this way we have

found that for all integrals except , , and , ωi equals to 0.

Once all ωi are known, we can proceed to calculate the analytic expressions for the integrals using
DREAM and PSLQ.

As a cross-check we have calculated these integrals numerically using the Feynman parameterization
(eq. (3.2.1)) for the loop part of the integrals, and the tripole phase-space parameterization (eq. (9.2.12))
for the phase-space part. Because the integrals in question contain only one loop, their UV divergences
manifest only in the prefactor of the Feynman parameterization, which can be factored out. The IR
divergences also disappear at d ≥ 6. For this reason this parameterization can be integrated directly
via the standard Monte-Carlo numerical integration methods (we have used the Vegas algorithm from
CUBA) in d = 6− 2ε, and then lowered back to d = 4− 2ε via DRR—avoiding the need for methods like
sector decomposition. In the end, we have verified the first 3 orders of ε expansion with 1% accuracy.
Additionally, we have compared our results with the weight-6 series reported in [142] for 8 out of these
integrals, and found them to match fully.

9.3.4. Calculating 3-particle cuts via direct phase-space integration

The master integrals for 3-particle cuts of 4-loop propagators (listed in Table 9.3.4) can be calculated in
two ways: via direct phase-space integration (owning to the fact that 3-particle phase space is simple, see
eq. (9.2.6)), and via DRR. We have used both, because direct integration only allows us to get results up
to multiple zeta values of weight 7, while DRR allows to go to weight 12 easily, but is quite complicated
and requires additional knowledge of the integral values to fix all periodic functions—this additional
knowledge we obtain via direct integration

The master integrals for 1→ 3 amplitudes at 2 loops are known from [122, 116]; we have recalculated
them in Section 6.4 as series in ε up to terms of transcendental weight 8. In principle we can combine
them with the 3-particle phase-space parameterization of eq. (9.2.6) to calculate all the 3-particle cut
integrals. For example to calculate

≡
∫

3

1
2 dPS3 (9.3.11)

we can take

3

1
2 =
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q2
�−2−2ε

N
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ε4
+

2 ln s12
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�

, (9.3.12)
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9. Fully-inclusive phase-space integrals

with N being the normalization factor from eq. (6.4.8), expand dPS3 in ε using eq. (9.2.6), multiply the
two, and take the integral in multiple polylogarithms. There is however a complication: integration
order by order diverges,

?
=
�

q2
�−1−4ε

N
2−7+4επ−3+2ε

Γ (2− 2ε)

∫ 1

0

�

−
s−2
12

ε4
+ . . .

�

ds12 =
1
0

1
ε4
+ . . . . (9.3.13)

On the other hand we know that the integral is convergent: its can be calculated directly from eq. (9.3.11)
without expanding in ε, if one notices that

3

1
2 = sd−6

12 (9.3.14)

where is a single-scale integral known for arbitrary d from [148] (taken there using Feynman
parameterization). This value is

?
=
�

q2
�−1−4ε

N
�

−
3
ε5
+

1
ε4
+ . . .

�

. (9.3.15)

The divergence we see in eq. (9.3.13) is just a sign that the integral is not IR-finite (after all, the 1/0
term comes from s12 = 0 limit of integration). Indeed, note that the series in eq. (9.3.15) starts with
1/ε5, while in eq. (9.3.13) with only 1/ε4: there is no way to obtain the 1/ε5 pole when integrating
order by order.

The solution is not to abandon integration order by order, but rather to find a set of master integrals that

are IR-finite, integrate them order by order, and then express and the rest of integrals in this

new basis.

For the IR-finite basis we can use the same set of integrals as in Table 9.3.4, but evaluated in d = 6− 2ε.
This works because in higher d IR divergences disappear; this is easy to see from eq. (9.2.6): at high
enough d the factor (s12s13s23)

d/2−2 will cancel any singular behavior at si j → 0. We can easily move to
and from this basis via dimensional recurrence relations; so the overall idea is to

1. Use DRR for the 1→ 3 integrals from Section 6.4 to obtain them as series at d = 6− 2ε.

2. Multiply by dPS3 from eq. (9.2.6) with the same d.

3. Expand the product of series, integrate in multiple polylogarithms (as explained in Chapter 7).
Now we have the values of 3-particle cuts of 4-loop propagators in d = 6− 2ε.

4. Use DRR to obtain the same integrals in d = 4− 2ε; these are our original master integrals.

Because we have calculated the 2-loop 1 → 3 integrals up to weight 8, one could expect that this
procedure would yield the master integrals to the same weight. In practice there is a cancellation of the
higher weight terms happening during DRR for some of the integrals, and the actual maximal weight of
the results is 7.5 This is enough for practical purposes, but can be improved upon through solving the
DRR. Before we do that, a cross-check.

5Note that this is the reason we have recalculated the 2-loop 1→ 3 integrals in the first place: the answers in [122, 116] are
only given up to weight 4, which is not enough for our purpose.
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9.3.5. Cutkosky relations

As a test of consistency between the values of the 4-loop propagator masters and the cuts we have
calculated, we can take a look at the optical theorem (or rather Cutkosky rules [149, 150]) that relate
the cuts to the discontinuity of the propagators.

The general optical theorem comes from the requirement of unitarity of the scattering matrix S,

S†S= 1. (9.3.16)

Introducing the transition matrix T as
S= 1+ iT, (9.3.17)

it follows that
iT+ (iT)† = − (iT)† iT. (9.3.18)

For a decay of a single particle with momentum q, rewriting this relation in terms of the transition
amplitudes gives us

2Re 〈q| iT |q〉= −〈q| (iT)†
�

∑

x

|x〉 〈x |
�

iT |q〉= −
∑

n

∫

dPSn |〈p1, . . . , pn| iT |q〉|
2 . (9.3.19)

This is the optical theorem. Cutkosky rules provide a stronger form of this relation that holds not only
for the whole transition amplitude 〈q| iT |q〉, but for each individual Feynman diagram F that comprise
it too,

F + F∗ =
∑

i

Cuti F, (9.3.20)

where the sum goes over all possible cuts of the diagram, each cut being a partition into two sides, with
the right-hand side complex-conjugated, and the propagators between sides set on shell—exactly as we
have defined the cut integrals.

To write down these relations for our master integrals in this convenient form, we shall augment our
integrals with Feynman rules stemming from a simple scalar field theory with the Lagrangian of the form

L =
1
2
(∂ φ)2 +

λ3

3!
φ3 +

λ4

4!
φ4 + . . . . (9.3.21)

The momentum-space Feynman rules corresponding to this Lagrangian are:

= iλ3, = iλ4, = . . . ,

p
= i

p2+i0 ,
p

= 2πδ+
�

p2
�

.

(9.3.22)

An additional prescription for cut integrals is this: every vertex and propagator to the right side of the
cut needs to be complex-conjugated.

Note that the values of λi are not important for us here, because a cut of a diagram will have the same
overall λ factor as the initial diagram, which will thus factor out from eq. (9.3.20).

With this in mind, writing down eq. (9.3.20) for each Feynman diagram corresponding to a 4-loop
propagator master integral from Table 9.3.1, and mapping the cuts onto our master integrals via
symmetries, we obtain the following relations:
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9. Fully-inclusive phase-space integrals

2 Im =+ 2 Im − 2 Im (9.3.23)

2 Im =− i + i + (9.3.24)

2 Im =+ 2 Re (9.3.25)

2 Im =+ i + − (9.3.26)

2 Im =+ 2 Im (9.3.27)

2 Im =− 2 Im + 4 Im (9.3.28)

2 Im =− (9.3.29)

2 Im =− 2 Im − 2 (9.3.30)

2 Im =+ 2Re − 2 (9.3.31)

2 Im =+ 2Re − (9.3.32)

2 Im =+ + i (9.3.33)

2 Im =+ 2Re + 4 Im − 4 − (9.3.34)

2 Im =+ i + − i − (9.3.35)

2 Im =+ 2 Re + 4 Im − 2 (9.3.36)

2 Im =+ i + i (9.3.37)

2 Im =− i + i + i − 2i (9.3.38)

2 Im =− 2 Im − 2 Im + 2 Im (9.3.39)

2 Im =− 2 Im + 2 Re + 2 Im − (9.3.40)

− 2 Im − − −

2 Im =+ i + − 2i + (9.3.41)

+ i − 2

2 Im =− 2 Im + 2 Re + 4 Im − (9.3.42)

− 2 Im − 4 − 2

2 Im =+ i − i + 2 + (9.3.43)

+ 2i − i − 4

2 Im =+ 2 Re − − (9.3.44)
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2 Im =+ i + 2 − + − (9.3.45)

− 2i − i + i − 2

2 Im =− 2 Im − + 2Re + (9.3.46)

+ 2 Im − −

2 Im =− 2 Im + 4 Re − + (9.3.47)

+ 4 Im + 4 Im + 2 Im −

− 2 − 2 − 4

2 Im =− 2 Im + 4Re + 4 Im + (9.3.48)

+ 2 Im + 4 Im − 2 −

− 2 − 4 − 4

2 Im =− 2 Im + 2Re − + 2 Re + (9.3.49)

+ 2 Im + 2 Im + 2 Im + 2 Im −

− 2 Im − − 2 − −

− 2 − 2 −

2 Im =− i − i + i + 2 − (9.3.50)

− 2 + i + 4i

Inserting the values of our cut integrals into these relations, we find that they all hold precisely. This
concludes our cross-check.

9.3.6. Calculating 3-particle cuts via dimensional recurrence relations

There are two kinds of 3-particle cut integrals: the ones with two loops on the same side of the cut

(“VVRR”) and the ones with a single loop on each side (“VRRV”). The latter include , ,

, , and . Due to the difference in the cut structure, these integrals do not

mix with the other group in the differential equations or the DRR, and can be considered separately.
In fact, VRRV integrals behave more akin to 1-loop integrals than to the 2-loop ones: after we have
normalized the 3-particle cuts via

Ji ≡ Ii/ , (9.3.51)

VRRV integrals become finite in d ≥ 6, and DRR for them can be solved exactly the way DRR were solved
for 4-particle cuts.
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9. Fully-inclusive phase-space integrals

Solving DRR for VVRR integrals is more complicated because the normalization of eq. (9.3.51) no longer
suppresses all the UV divergences like eq. (9.3.8) did for 4-particle cuts—it only cancels the surface
divergences. This means that Ji(d) will have poles in d, and as discussed in Chapter 5 the ansatz for the
periodic function ωi(d) in eq. (5.1.13) will then contain multiple ai,n that cannot be determined from
just expanding eq. (5.1.1) around the poles (because no expansion of Ji(d) will be available). For this
reason additional constraints are needed—the more poles of Ji(d), the more constraints.

Luckily, we have two sources of such constraints: the values of the integrals calculated by direct integration
in Section 9.3.4, and the Cutkosky relations of eq. (9.3.23) through eq. (9.3.50). Cutkosky relations are
quite powerful in this regard: often they contain only a single VVRR master integral—only eq. (9.3.45)

and eq. (9.3.49) contain two ( and , and respectively). In these

cases the master integral entering the equation can be completely determined by it, if we know the values
of propagators and other cut structures. To this end we can use the Cutkosky relations to numerically
evaluate the integrals at multiple different d, and determine ai,k from that. We do this instead of just
evaluating the equations at d = 4− 2ε to get the final result for two reasons: first we want to check
that the DRR solutions we have are consistent with the equations, and second, in the results we want to
provide not just the values of the integrals in d = 4− 2ε, but also the full solutions to DRR (in terms of
SUMMERTIME files described in Appendix C), so that anyone could calculate these integrals in arbitrary d
with any precision.

In the case of , , , and we complete the determination of all ai,k

by comparing the DRR solutions with the first few terms of the ε-expansion of the integrals obtained in
Section 9.3.4.
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10. Semi-inclusive phase-space integrals

A massless semi-inclusive phase-space integral in d dimensions with L loop momenta, P denominators,
and n cut momenta has the form

I =

∫

dd l1
(2π)d

· · ·
dd lL

(2π)d
1

Dν1
1 · · ·D

νP
P

dPSn(q)δ
�

x − 2
q·pn

q2

�

︸ ︷︷ ︸

≡dPSn(q,x)

, (10.0.1)

where li are the loop momenta, dPSn(q) is the phase-space volume element given by eq. (9.1.2), and
Di are the denominators—everything exactly the same as for the fully inclusive integrals in eq. (9.0.1),
except for δ-function that makes this integral differential (i.e. not inclusive) in x , hence semi-inclusive.

Integrals of this form appear as products of Feynman diagrams integrated over the phase space. We
are interested in integrals appearing up to α3

s , which corresponds to L + n ≤ 5, or—if semi-inclusive
integrals are seen as cuts of propagators—to semi-inclusive cuts of propagators up to 4 loops.

Before we proceed to calculating master integrals for these cuts, let us start by computing several simpler
integrals by hand. This will help us to cross-check further calculations.

10.1. Semi-inclusive phase space

The simplest of the semi-inclusive integrals is the no-propagator integral, which is just the semi-inclusive
phase space,

PSn(q, x) = ... =

∫

dPSn(q)δ
�

x − 2
q·pn

q2

�

, (10.1.1)

where dPSn(q) is that of eq. (9.1.2).

This integral is highly symmetric, which will allow us to calculate it. Note that the delta function here
does not depend on pi<n, so we can factorize the equation as

PSn(q, x) =

∫

dPSn−1(q− pn)
dd−1~pn

(2π)d−1

1
2 |~pn|

δ

�

x − 2
q·pn

q2

�

. (10.1.2)

The (n− 1)-particle phase-space here can be integrated over right away, using the total phase space
volume given by eq. (9.1.14). Next, we can move into the frame of reference where q =

�

q, ~0
�

, so that
q·pn becomes q |~pn|, and the integrand is manifestly invariant to the rotations of ~pn,

PSn(q, x) = Φn−1

∫

dd−1~pn

(2π)d−1

1
2 |~pn|

�

q2 − 2q |~pn|
�(n−1)( d

2−1)− d
2 δ

�

x − 2
|~pn|
q

�

. (10.1.3)

This allows us to integrate out the angular degrees of freedom of dd−1~pn, which results in the surface
area of a (d − 2)-sphere, or |~pn|

d−2Ωd−2 via eq. (A.0.3). Then, we are only left with the radial part
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10. Semi-inclusive phase-space integrals

of dd−1~pn,

PSn(q, x) = Φn−1

∫

d |~pn|
(2π)d−1

|~pn|
d−3Ωd−2

2

�

q2 − 2q |~pn|
�(n−1)( d

2−1)− d
2 δ

�

x − 2
|~pn|
q

�

︸ ︷︷ ︸

=δ(|~pn|−
1
2 qx) q

2

. (10.1.4)

Finally, integrating over |~pn| resolves the δ function,

PSn(q, x) = Φn−1

�1
2qx

�d−3
Ωd−2

2 (2π)d−1

�

q2 (1− x)
�(n−1)( d

2−1)− d
2 q

2
. (10.1.5)

To make the relation between the semi-inclusive phase-space PSn(q, x) and the fully inclusive phase-space
PSn(q) obvious, we can factor out the latter, giving us the final answer,

PSn(q, x) = PSn(q)
Γ
�� d

2 − 1
�

n
�

Γ (d − 2) Γ
�� d

2 − 1
�

(n− 2)
� xd−3 (1− x)n(

d
2−1)−d+1 . (10.1.6)

A good consistency check for this result is that an explicit integration over all x ,
∫ 1

0 dx PSn(q, x), gives
precisely the expected PSn(q). Note that this integration is only possible if the powers of both x and
(1− x) factors are greater than −1,

�

d − 3> −1
� d

2 − 1
�

n− d + 1> −1
⇐⇒

�

d > 2
n> 2

, (10.1.7)

otherwise the integration would diverge at the boundaries.

10.1.1. Two-particle semi-inclusive phase space

The restriction on n in eq. (10.1.7) is important to us, because it excludes the physically relevant case of
n= 2. This is easy to understand though, because a massless two-particle phase-space is special in that
it is kinematically restricted. If a particle of momentum q decays into two massless particles of momenta
p1 and p2, then

q = p1 + p2 ⇒ q2 = p2
1

︸︷︷︸

=0

+2p1 ·p2 + p2
2

︸︷︷︸

=0

. (10.1.8)

Looking at the definition of the variable x in eq. (10.0.1), we can conclude that only one value of x is
possible in this case,

x = 1. (10.1.9)

Thus the two-particle semi-inclusive phase space has distributional nature,

PS2(q, x) = PS2(q)δ(x − 1) . (10.1.10)

10.2. One-propagator integral

Another highly symmetric integral that we can calculate is a one-propagator integral with arbitrary
propagator power k of the following form:

I1(n; q, x; k)≡ ...
k

≡
∫

dPSn(q)δ
�

x − 2
q·pn

q2

�

1

(pn + pn−1)
2k

. (10.2.1)
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10.2. One-propagator integral

The first thing to note is that I1 is invariant under transformations that leave q, pn and pn−1 unchanged.
Because of this, we can factor out the phase space of the first n− 2 particles, and integrate it out using
eq. (9.1.14):

I1 =
Φn−2

(2π)2d−2

∫

�

(q− pn − pn−1)
2�(n−2)( d

2−1)− d
2 dd−1~pn−1

2 |~pn−1|
dd−1~pn

2 |~pn|
δ

�

x − 2
q·pn

q2

�

1

(pn + pn−1)
2k

.

(10.2.2)
In this form the integrand depends on only three non-trivial kinematic invariants: q ·pn, q ·pn−1, and
pn ·pn−1. The first two are greatly simplified in the rest frame, where q =

�

q, ~0
�

, and thus q·pi = q |~pi|.
The third one only depends on the magnitudes of ~pn−1 and ~pn, and the angle between them, which we’ll
call θ . To make use of this observation, we can rewrite the volume elements dd−1~pn−1 and dd−1~pn using
spherical coordinates, constructed in such a way that ~pn−1 constitutes the north pole direction for the pn
coordinate system. This will directly expose the integration over the angle θ and the radial components,
|~pn−1| and |~pn|, while the rest will factor out:

dd−1~pn−1 = |~pn−1|
d−2 d |~pn−1| Ωd−2, (10.2.3)

dd−1~pn = |~pn|
d−2 d |~pn| sind−3(θ )dθ Ωd−3, (10.2.4)

where Ωk is the total solid angle defined by eq. (A.0.3), and sind−3(θ ) comes from the volume element
in the spherical coordinates given by eq. (A.0.2).

Next, introducing scaleless quantities y and z such that |~pn−1| = q y/2 and cosθ = 1− 2z, and then
integrating out |~pn| via δ

�

x − 2 |~pn|
q

�

= δ
�

|~pn| −
1
2qx

� q
2 , we can rewrite parts of I1 as

dd−1~pn−1

2 |~pn−1|
=

1
2

�q y
2

�d−3 q dy
2
Ωd−2, (10.2.5)

dd−1~pn

2 |~pn|
=

1
2

�qx
2

�d−3
�

1− (1− 2z)2
�

d
2−2

2 dzΩd−3, (10.2.6)

after which the whole expression becomes

I1 =
Φn−2Ωd−2Ωd−3

2d+1 (2π)2d−2

�

q2
�n( d

2−1)− d
2−k

xd−3−k×

×
∫ 1

0

dz

∫
1−x
1−xz

0

dy (1− x − y + x yz)(n−2)( d
2−1)− d

2 (1− z)
d
2−2 z

d
2−2−k yd−3−k,

(10.2.7)

where the integration limits for y were chosen as to satisfy the requirements of θ (Ei)—we have so far
omitted these θ -function factors from the phase-space elements for brevity, but they still are implied.

The resulting integral can be taken routinely, and assuming d > 2 and d > 2+ 2k, the result reads

I1(n; q, x; k) =
Φn−2Ωd−2Ωd−3

2d+1 (2π)2d−2

�

q2
�n( d

2−1)− d
2−k

xd−3−k×

× (1− x)(n−2)( d
2−1)−1 Γ

� d
2 − 1

�

Γ
� d

2 − 1− k
�

Γ
�� d

2 − 1
�

(n− 3)
�

Γ
�� d

2 − 1
�

(n− 1)− k
� .

(10.2.8)

As a consistency check, setting k to 0 in this result and comparing it to eq. (10.1.6), makes it possible to
check that I1(x; q, x; 0) is equal to PSn(q, x). A different way of writing I1 to help making this explicit is

I1(n; q, x; k) =
PSn(q, x)

(q2 x)k
Γ
� d

2 − 1− k
�

Γ
� d

2 − 1
�

Γ
�� d

2 − 1
�

(n− 1)
�

Γ
�� d

2 − 1
�

(n− 1)− k
� . (10.2.9)
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10. Semi-inclusive phase-space integrals

10.2.1. Propagator diagram insertions

Because we have kept the power of the propagator in eq. (10.2.1) arbitrary, we can now calculate any
integral of the same form, with the propagator line replaced by a (massless) propagator-type diagram.
This is because such diagrams are necessarily proportional to the momenta squared flowing through
them to a fractional power—determined just by dimensionality—and so they all fit the same general
form of eq. (10.2.1).

For example, a one-loop bubble integral has the simple form of eq. (3.2.10): it is proportional to
�

q2
�

d
2−2

,
so we can immediately calculate an integral with a one-loop bubble insertion in place of the propagator
as

... = ...
k

�

�

�

�

k=2− d
2

. (10.2.10)

Similarly,

... = ...
k

�

�

�

�

k=3−d
. (10.2.11)

The list goes on.

10.3. Semi-inclusive cuts of four-loop propagators

10.3.1. Identifying integral families

First let us start by identifying the integral families covering the integrals in question. This is slightly
more involved than with the fully inclusive cuts for two reasons:

• there are more integral families because the x variable can be assigned to any of the cut lines,
each assignment giving a different integral;

• because we want to treat the δ
�

x − 2q·pn/q
2
�

factor as a cut denominator (for IBP purposes), the
denominator sets of many diagrams turn out to be linearly dependent, so the integrands need to
be decomposed into partial fractions (as described in Section 3.5.3).

The procedure we have followed to identify the integral families is as follows:1

1. Use QGRAF [101] to generate all Feynman diagrams of decays of off-shell photons, Z-bosons, and
Higgs bosons into 2, 3, 4, and 5 particles up to 3 loops. Note that for Higgs we assume an effective
theory where the heavy-quark loops are shrinked into a point, giving an effective coupling of Higgs
to multiple gluons.

2. Insert Feynman rules into each diagram to get an amplitude. Note that there is no need to expand
the tensor sums just yet.

3. Construct all possible products of two amplitudes that are proportional to α3
s .

4. Perform partial fraction decomposition for each product, transforming each into one or several
terms.

5. For each term of the partial fraction determine the set of denominators.

6. Pass the list of denominator sets to FEYNSON (see Chapter 4), and replace the loop momenta in
each term as it suggests. This makes symmetries explicit.

1The code to perform each of these steps (and more) is available in ALIBRARY.
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10.3. Semi-inclusive cuts of four-loop propagators

7. For each term compute its new denominator set, dropping any set that is a subset of another. The
resulting list of denominator sets are the integral families we were after.

In total we have found 256 integral families; they are summarized in Appendix D: 18 with two cuts
(Table D.0.1), 34 with three cuts (Table D.0.2), 96 with four cuts (Table D.0.3), and 108 with five cuts
(Table D.0.4). Each 2-particle cut family has 11 denominators and an implied δ(x − 1); the rest have 12
denominators, including δ

�

x − 2q·pn/q
2
�

.

10.3.2. Identifying master integrals

The next step is to figure out the set of master integrals. We do this by first converting every term of
the partial fractions to an explicit Iν1,...,νn

notation, and then passing the list of these integrals to FIRE6
(used in combination with LITERED)—separately for each integral family, and for the master integral list
selection only. Alternatively we could have provided any sufficiently large list of integrals to FIRE6; the
only advantage of our way is that we guarantee that no master integral relevant to the decay cross-section
computations was missed.

FIRE6 can operate in two modes: the classical symbolic mode, and the modular arithmetic mode, where
all of the variables (d and x) are replaced with fixed numerical values (e.g. 101921 and 961748927),
and the reduction is performed modulo a large prime number (e.g. 18446744073709551557): the
latter is much faster (taking up to several hours per integral family, where the symbolic is taking up to
several weeks), and generally produces the same set of master integrals as the symbolic version. We
have used three different combinations of d, x , and the modulus values: all report the same set. In
the end up to 70 master integrals are identified per integral family. After using FEYNSON to identify
symmetric integrals, the total of 693 remain: 22 2-particle cuts (matching Table 9.3.5, as we should
expect), 96 3-particle cuts, 277 4-particle cuts, and 298 5-particle cuts. Note that this set is almost
certainly overdetermined: even though no two integrals are symmetric, some are linearly dependent,
because only removing symmetries is insufficient to undo differences in the master integral selection
per family. We do not see this as a problem, however; having results for more integrals than necessary
simplifies, not complicates their usage.

10.3.3. Constructing & solving di�erential equations

Next we shall use differential equations (Chapter 6) to calculate the master integrals. To write them
down, for each integral family we differentiate the master integrals by x using

∂

∂ x
δ

�

x − 2
q·pn

q2

�

= −
δ
�

x − 2q·pn/q
2
�

x − 2q·pn/q2
, (10.3.1)

express that in the Iν1,...,νn
form, perform IBP reduction for these derivatives, and construct the differential

equation matrixM(d, x) as in eq. (6.1.1).

Overall the reduction takes from several minutes up to 43 hours. In the end we obtain 256 matrices up
to 70 × 70 in size, all block-triangular (after sorting the master integrals by their propagator set) with
block sizes up to 4× 4. Unfortunately the differential equation matrices that come directly out of this
procedure sometimes have inconvenient spurious poles poles like 1/ (2x − 1), d-dependent poles like
1/ (xd − 2x − 4d + 19), poles given by unfactorizable polynomials like 1/

�

x2 − 3x − 2
�

, or the same but
also with d dependence like 1/

�

3x2d − 14x2 + 6xd − 28x + d − 6
�

. We see such artifacts only when
there are more than one master integrals per sector, and ideally we want none of them. For this reason we
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10. Semi-inclusive phase-space integrals

additionally solve IBP relations for a small subset of integrals equal to the masters but with raised indices;
then, in each sector we can modify the master integral selection (by choosing a subset of these) to try to
get rid of the inconvenient denominators. Fortunately, for block sizes up to 4 trying even all possible
combinations does not take too much time. In all cases we are able to find a set of master integrals that
eliminate, or at least significantly reduce, the number of inconvenient denominators in the diagonal
blocks: all quadratic polynomials are removed, and only rare spurious poles are left: in particular at
x = ±2, but also in one case a pole of the form 1/ (3+ 8ε + 2x − 2εx) which is later removed during
the ε-form construction. The same procedure also improves the off-diagonal blocks, even though those
are generally easier to handle, so we are less concerned about them.2

Next, we use FUCHSIA to construct basis transformations that reduce the differential equations to ε-forms.
This takes from minutes to days per integral family, with the most complex reduction taking 14 days
(the integral family in question is a 5-particle cut family with 48 integrals, blocks up to 4× 4, and the
total of 5 different poles, 2 of which are spurious, and the deepest being x−9). During the reduction
spurious poles are necessarily removed, and in the ε-form the only remaining poles are located at

x = {0,+1,−1,+2,−2} . (10.3.2)

The last two are a bit surprising: they are absent in the 3-loop case; we would also naively expect to
have the answers in terms of harmonic polylogarithms (which correspond to poles at {0,±1}), but these
poles prevent us from that. Interestingly these only remain in the off-diagonal blocks; even then, we
have not found a way to remove them completely, at least from the expressions for the master integrals,
as we still expect these poles to drop out from the expressions for the physical quantities.

Moving on, we construct the differential equation solution for each integral I(d, x) via eq. (6.1.14),
eq. (6.1.13), and eq. (6.1.5).

To fix the integration constants it is sufficient to require that an integral of I(d, x) over x is equal to the
corresponding fully inclusive integral (the basis for which we have calculated in Chapter 9):

∫ 1

0

dx

∫

�

∏

i

dd li
(2π)d

�

dPSn(q)

�

∏

i

1

Dνi
i

�

δ

�

x − 2
q·pn

q2

�

︸ ︷︷ ︸

I(d,x)

=

=

∫

�

∏

i

dd li
(2π)d

�

dPSn(q)

�

∏

i

1

Dνi
i

�

�

�

�

�

�

x=2q·pn/q2

. (10.3.3)

Unfortunately this is not completely straightforward in practice because if we shall insert the series
for I(d, x) into the left hand side of this equation and integrate order by order, the integral will likely
diverge. This problem is similar to what we have encountered in Section 9.3.4; let us illustrate it a bit.

10.3.3.1. Matching via integration: an illustration

For demonstration purposes let us take a look at the following 4-particle semi-inclusive cut of a 3-loop
propagator,

I(d, x) = . (10.3.4)

2For more disciplined methods of removing d-dependent poles (a.k.a. “finding a d-factorizing basis”) see [94, 93].
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The differential equation for it is

∂x I =
�

1+ 2ε
1− x

−
1+ 2ε

x

�

I , (10.3.5)

and an ε-form can be achieved by changing the basis to such J , that

I(d, x) =
1

x (1− x)
J(d, x) . (10.3.6)

After the change of basis, the ε-form equation reads

∂x J = ε
�

2
1− x

−
2
x

�

J , (10.3.7)

and the solution for it via eq. (6.1.9) is

J(d, x) = εk0
�

C1 + (C2 − 2C1G(0; x)− 2C1G(1; x))ε +O
�

ε2
��

. (10.3.8)

The integration constants Ci in principle can be determined from the condition that

∫

dx I(d, x)≡
∫

dx = . (10.3.9)

Because the transformation eq. (10.3.6) is singular at x → 0 and x → 1, an integral of I(d, x) defined
that way will diverge in each order of the series. Instead let us note that the same integral but of J(d, x)
will in fact converge, because as one can see from eq. (10.3.8) at the boundaries of x → {0,1} J(d, x)
diverges at most logarithmically (any multiple polylogarithm does), and thus can be integrated over
safely. This is a property shared by all solutions to differential equations in an ε-form—it is only the
basis change of eq. (10.3.6) that introduces the divergence. Thus, to determine Ci we can use

∫

dx J(d, x) =

∫

dx x (1− x)
IBP
= −

ε

1− 4ε
. (10.3.10)

Note that the right-hand side here is one order of ε lower than it was in eq. (10.3.9); this is because the
prefactor x (1− x) has canceled a divergence—exactly as we wanted.

Then, using the known value of

=
�

60ε−4 − 59ε−3 +O
�

ε−2
��

, (10.3.11)

we can fix all the Ci .
3 Inserting them into eq. (10.3.8), the solution becomes

J(d, x) =
�

−60ε−3 + (120G(0; x) + 120G(1; x) + 590)ε−2 +O
�

ε−1
��

, (10.3.12)

I(d, x) =
�

−60
x (1− x)

ε−3 +
120G(0; x) + 120G(1; x) + 590

x (1− x)
ε−2 +O

�

ε−1
�

�

. (10.3.13)

3Note that = / , so we can reuse the results for 4-particle cuts of 4-loop propagators to obtain

4-particle cuts of 3-loop propagators: all of the master integrals of the latter are embedded in the former with just a bubble
attached (see Table 9.3.4).
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10.3.3.2. The general case

To calculate C (k)i for the semi-inclusive master integrals the procedure could be the same as eq. (10.3.10),
∫

dx J(d, x) =

∫ 1

0

dx T−1(d, x) I(d, x) =
�

inclusive version of T−1I
� IBP
= . . . , (10.3.14)

the only complication is performance: T−1(d, x) might contain x to a high power, and because x turns
into a numerator of the inclusive integral (2q·pn/q

2), this means more work for the IBP reduction. To
avoid that and to minimize the numerator power we can instead use the condition

∫ 1

0

dx xa (1− x)b I(d, x) =
�

inclusive version of xa (1− x)b I
� IBP
= . . . , (10.3.15)

where a and b are the smallest powers that compensate the divergence of T(d, x) at x → 0 and x → 1,
so that

xaT(d, x) =C +O (x) and (1− x)b T(d, x) =C ′ +O (1− x) . (10.3.16)

These conditions guarantee that the integrand in eq. (10.3.15), being xa (1− x)b TJ, diverges at most
logarithmically at the limits (because of J), so the left-hand-side integral converges, while the IBP
reduction on the right-hand side needs to deal with the smallest numerator powers.

Note that the idea is still the same as we had in Section 9.3.4: use a basis that does not diverge; the only
thing different is the construction of this basis.

We have performed this matching for each family of semi-inclusive cuts of 4-loop propagators. Solving
the IBP for inclusive integrals on average took from an hour to several days, but several exceptional
cases required up to 6 weeks of time (this is with FIRE6 running on 16 cores for each family—because of
the memory constraints we could not afford to use more cores). The integration of the left-hand-side
of eq. (10.3.15) also takes time: when I(d, x) is expanded via eq. (6.1.14) up to 10 orders in ε the
integration takes from several minutes up to 4 days (using our custom code, consisting of a mixture of
MATHEMATICA and FORM), depending on the number of master integrals and the number of poles they
have. The number of terms in the ansatz for each I(d, x) is roughly (number of poles)(orders of expansion),
which means that there is a practical cutoff on how many orders of expansion can the matching conditions
be solved for.

A different problem is that because xa (1− x)b T(d, x) may have poles at values of x other than {0,±1},
for example at x = ±2, the left-hand-side of eq. (10.3.15) results in multiple polylogarithms with
corresponding poles in the parameters (that is, ±2). This is a complication because if the parameters
are restricted to only {0,±1}, then all the integrals are expressible in terms of multiple zeta values, the
relations between which are well known from e.g. [108], but with ±2 in the parameter list, the constants
that appear are less studied. On the other hand, because these poles are only an artifact of the way we
match in eq. (10.3.15), and e.g. eq. (10.3.9) would be free from them, it is expected that the values of
C (k)i should have no traces of these. This is indeed the case, and for all Ci that contain G(. . . ,±2, . . . ; 1)
we try to reduce them to MZVs; to this end, we first evaluate them numerically with GINAC [126, 102],
and then use PSLQ to restore them in the linear basis of MZVs. This way we remove the artifacts of the
matching procedure. On the other hand, because the ε-form differential equations themselves sometimes
contain ±2 (see the list of poles in eq. (10.3.2)), the G(. . . ,±2, . . . ; 1) constants coming from that are not
always expressible in terms of MZVs. In these cases, we leave them as they are without further reduction.

In the end we obtain ε-series for all master integrals of semi-inclusive 2-, 3-, 4-, and 5-particle cuts
of 4-loop propagators. The results are quite big, so we provide them in machine-readable form as
supplementary material: see Appendix C for the description of them.
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10.3. Semi-inclusive cuts of four-loop propagators

In principle this concludes our calculation. There are however technical consideration of using these
results in practice that we need to discuss.

10.3.4. Factorizing boundary behavior

Let us go back to the condition of eq. (10.3.9). Integrating over I(d, x) should give us , a well-

defined quantity, and yet integration of I(d, x) defined via eq. (10.3.6) and eq. (10.3.8) order-by-order
in ε diverges. How can this be?

The divergence is a symptom of the fact that the expansion in the ε-series here does not capture the
full behavior of I at x → 0 and x → 1, and one needs to sum up all of the infinite series for it to work.
This should not be surprising seeing that eq. (10.3.11) is one order higher in ε than eq. (10.3.13), and
this order can never be recovered if one integrates order by order. Fortunately the behavior of J(d, x) at
x → 0 and x → 1 is fully determined by the differential equation eq. (10.3.7). To allow for the correct
integration, we only need to make this behavior explicit. To this end, let us expand eq. (10.3.7) in x
around the boundaries:

J(d, x → 0)≈ K0 x−2ε, and J(d, x → 1)≈ K1 (1− x)−2ε . (10.3.17)

So to fix the integration problem, the form of J(d, x) should become exactly this in the corresponding
limits. In other words, we should represent eq. (10.3.12) as

J(d, x) = x−2ε (1− x)−2ε �−60ε−3 + 590ε−2 +O
�

ε−1
��

, (10.3.18)

and then I accordingly becomes

I(d, x) = x−1−2ε (1− x)−1−2ε �−60ε−3 + 590ε−2 +O
�

ε−1
��

. (10.3.19)

This form can now be conveniently integrated order by order, if one notes that

∫ 1

0

dx x−1−2ε (1− x)−1−2ε =
Γ 2(−2ε)
Γ (−4ε)

= −
1
ε
+ 0+O (ε) . (10.3.20)

Using this relation we can easily see that the integral of eq. (10.3.19) is indeed equal to eq. (10.3.11).

Some notes are due here. This was a simple example, but for more complicated integrals there are
additional things to consider:

1. There can be a mix of different powers in the boundary expansion in eq. (10.3.17), both at x → 0
and at x → 1. If this is so, then we shall present the integral as a sum of multiple terms, each with
a different prefactor being a combination of x and 1− x powers.

2. Once the boundary behavior is separated into an irrational prefactor, the remaining series in ε in
eq. (10.3.19) need not be just a constant: it can contain additional x dependence. In such cases
integrating the obtained expressions is not as easy as eq. (10.3.20). Let us see how this can be
done.
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10. Semi-inclusive phase-space integrals

10.3.4.1. Integration with irrational prefactors and the plus-distribution

Let us take a moment to solve an exercise: if there is an expression with an irrational prefactor of the
form

F(x) = (1− x)−n+kε K(x) , (10.3.21)

where K is some function finite at x ∈ {0,1}, how do we integrate it? How to find
∫ 1

0 F(x)dx?

As previously explained, in general we cannot expand (1− x)−n+kε into a series in ε, and integrate order
by order, because we might get divergences near x = 1. The solution is to subtract the divergent part of
the integrand.

Let us first look at the simple case when n= 1. Note that integrating the prefactor itself in this case is a
simple calculation:

∫ 1

0

(1− x)−1+kε dx =
1
kε

; (10.3.22)

the trick is then to separate the divergence at x = 1 and take it using this formula, leaving the rest of the
integral finite so that it could be taken via expansion into series. Here is the method:

∫ 1

0

(1− x)−1+kε F(x)dx =

∫ 1

0

(1− x)−1+kε (F(x)− F(1) + F(1))dx =

=

∫ 1

0

(1− x)−1+kε (F(x)− F(1))dx

︸ ︷︷ ︸

finite

+
F(1)
kε

.
(10.3.23)

The usual convention is to introduce a special notation for the finite integrand, the plus distribution. It is
defined as

[ f (x)]+ ≡ f (x)−δ(x − 1)

∫ 1

0

f (y)dy, (10.3.24)

which is another way of saying
∫ 1

0

[ f (x)]+ g(x)dx ≡
∫ 1

0

f (x) (g(x)− g(1))dx . (10.3.25)

With this definition we can rewrite the answer as
∫ 1

0

(1− x)−1+kε F(x)dx =

∫ 1

0

�

(1− x)−1+kε�

+ F(x)dx +
F(1)
kε

. (10.3.26)

The integral here is finite, so the integrand can be expanded into a series in a straightforward way:

�

(1− x)−1+kε�

+ =
∞
∑

i=0

ki

i!

�

lni(1− x)
1− x

�

+
εi . (10.3.27)

Note that the plus distribution is a notion particular to integration from 0 to 1 with the divergence
located at x = 1. One might imagine needing a similar construction for the divergence at x = 0, or some
other point; so far such extensions have not been required for the splitting function calculation.

In the more general case of
∫ 1

0

(1− x)−n+kε F(x)dx , (10.3.28)
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10.3. Semi-inclusive cuts of four-loop propagators

the idea is the same, and we can generalize eq. (10.3.23) as
∫ 1

0

(1− x)−n+kε F(x)dx =

∫ 1

0

(1− x)−n+kε

�

F(x)−
n−1
∑

i=0

(x − 1)i
F (i)(1)

i!

�

dx

︸ ︷︷ ︸

finite

+
n−1
∑

i=0

(−1)i

i + 1− n+ kε
F (i)(1)

i!
,

(10.3.29)
where F (i)(x) is the i-th derivative of F(x), which we assume exists. Accordingly, we can introduce the
n-th order plus distribution as

∫ 1

0

[ f (x)]+n g(x)dx ≡
∫ 1

0

f (x)

�

g(x)−
n−1
∑

i=0

(x − 1)i
g(i)(1)

i!

�

dx , (10.3.30)

and have
∫ 1

0

(1− x)−n+kε F(x)dx =

∫ 1

0

�

(1− x)−n+kε�

+n F(x)dx +
n−1
∑

i=0

(−1)i

i + 1− n+ kε
F (i)(1)

i!
. (10.3.31)

10.3.4.2. The case of multiple irrational prefactors

The general way to factor out the boundary behavior is to start with the ε-form eq. (6.1.7), and only
consider its behavior at x → 0 and x → 1:

∂xJ(d, x) = ε
S0
x
(1+O (x))J(d, x) and ∂xJ(d, x) = ε

S1
x − 1

(1+O (x − 1))J(d, x) ; (10.3.32)

these equations can then be solved as

J(d, x) = eεS0 ln x (1+O (x)) and J(d, x) = eεS1 ln(1−x) (1+O (1− x)) . (10.3.33)

In the special case of the example of eq. (10.3.7) this gives the results in eq. (10.3.17). In more general
cases the matrix exponent needs to be calculated.4 Knowing this boundary behavior we can then rewrite
the ε-form solution given by eq. (6.1.14) and eq. (6.1.13) as

J(d, x) = eεS1 ln(1−x)W̃(d, x) eεS0 ln x C(d) , (10.3.34)

where W̃(d, x) is the fundamental solution regularized at x → {0,1},

W̃(d, x)≡ e−εS1 ln(1−x)W̃(d, x) e−εS0 ln x . (10.3.35)

This construction of W̃(d, x) ensures that no multiple polylogarithm in its expansion has the form
G(1, . . . ; x) or G(. . . , 0; x), because all the leading ones and trailing zeros have been factorized. The
idea here is to only expand W̃(d, x) into a series in ε, and keep the rest of the factors in eq. (10.3.34)
unexpanded, just like in eq. (10.3.19).

10.3.4.3. An example with multiple prefactors

Let us illustrate the construction of eq. (10.3.34) with an example given by the integrals

I(d, x)≡
�

I1
I2

�

, where Ii ≡ , and I2 ≡ . (10.3.36)

4For example using the MatrixExp function in MATHEMATICA.
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The differential equation system for these two is

∂x I=

� 1−2ε
x + −1+2ε

1−x 0
−2+3ε

x
1
q2 +

−2+3ε
1−x

1
q2

1−3ε
x

�

I, (10.3.37)

and the ε-form can be achieved with the transformation found by FUCHSIA,

I=

�

εx (1− x)q2 0
0 (2− 3ε) x

�

J, (10.3.38)

giving us the ε-form of

∂xJ= ε

� 2
1−x −

2
x 0

− 1
x − 3

x

�

J. (10.3.39)

The asymptotic behavior of J(d, x) in the limit x → 0 can then be found as

J(d, x) = exp

�

ε

�

−2 0
−1 −3

�

ln x

�

(C0(d) +O (x)) =
�

x−2ε 0
x−3ε − x−2ε x−3ε

�

(C0(d) +O (x)) ,

(10.3.40)
where C0 is a vector of integration constants.

Here we can see the main difference from the previous example: instead of having a single irrational
prefactor, J2 (and thus, I2) behaves as a mixture of x−2ε and x−3ε at x → 0.

Similarly, for the x → 1 limit we have

J(d, x) = exp

�

ε

�

−2 0
0 0

�

ln(1− x)

�

(C0(d) +O (1− x)) =

�

(1− x)−2ε 0
0 0

�

(C0(d) +O (1− x)) .

(10.3.41)
Taking into account the transformation from eq. (10.3.38) we can conclude that

I1∝ x1−2x (1− x)1−2ε , (10.3.42)

which of course matches with what we expect from the full value of I1 given by eq. (10.1.6); I2 on the
other hand is a mixture,

I2∝ Ax1−3ε + Bx1−2ε. (10.3.43)

Walking through the same steps of constructing the ε-form solution using eq. (6.1.14), matching with
the fully inclusive integrals, and applying eq. (10.3.34), we can obtain the following values of I(d, x):

I1 = x1−2ε (1− x)1−2ε �6− 20ε + (24ζ2 − 8)ε2 + . . .
�

,

I2 = x1−3ε
�

12
ε
− 58+ (72ζ2 + 44)ε + . . .

�

+ (10.3.44)

+ x1−2ε
�

−
12
ε
+ 58+ (24G(0,1; x)− 48ζ2 − 44)ε + . . .

�

.

The same procedure of factorizing the behavior at boundaries can be applied to the results for semi-
inclusive cuts of 4-loop propagators. We have done so, and have obtained the results in factorized form
similar to eq. (10.3.44) for each master integral. These results are available in machine-readable form,
as described in Appendix C.
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10.4. Semi-inclusive cuts of three-loop propagators

The three-loop semi-inclusive cut master integrals have been previously computed in [69]. As a cross-
check we have re-computed these using the same method as the 4-loop ones, and we confirm those
results with the following caveats:

1. The overall normalization factors are not listed in [69], and are assumed to be the same as in [45].
The latter defines its integrals in eq. (A.1) and eq. (A.11) of Appendix A, with “V ” integrals defined
(in our notation) as

Vi1,...,ik(n)≡
e3γEε

π4
(2π)3d−3

∫

dd l

(2π)d
dPS3

(2q·p3)
n

Di1 · · ·Dik

, (10.4.1)

where dPSn is given by eq. (9.1.2), and “R” integrals as

Ri1,...,ik(n)≡
e3γEε

π3
(2π)3d−4

∫

dPS4

�

2q·p4

�n

Di1 · · ·Dik

. (10.4.2)

However, to make the value of R5(0) reported in eq. (A.21) consistent with eq. (9.1.14), or indeed
with that of [139] (which are the same), the prefactor in eq. (10.4.2) should read e3γEε

π3−3ε , not e3γEε

π3 .
We have not been able to determine a similarly concise change for the prefactors of V integrals,
and we can only report that the values agree with ours up to a global constant factor.

2. Typos: in eq. (A.21) “x−2ε” should read (1− x)−2ε, and “+2ζ2” should read −2ζ2H1. In eq. (A.26)
“(1− x)−1−2ε” should be “(1+ x)−1−2ε” instead.5

3. The irrational prefactors separated in [69] are not not equivalent to ours from Section 10.3.4,
because they don’t always fully factorize the logarithms of x and 1− x . Because of this we have
only compared the series-expanded forms of the results.

5We have confirmed these errors with the author.
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11. Summary and outlook

In this thesis we have presented the analytic calculation of all master integrals for semi-inclusive cuts of
4-loop massless propagators (Chapter 10) required for the extraction of photonic decay coefficient functions
up to O

�

α3
s

�

: these enter the analysis of semi-inclusive single-hadron production at e+e− colliders (such
as the upcoming FCC-ee, ILC, CLIC, and CEPC), and are currently only known up to O

�

α2
s

�

. The same
integrals can be used to extract time-like splitting functions up to NNLO precision in αs: together with
the corresponding fragmentation functions these enter the analysis of semi-inclusive hadron production
at both e+e− and pp colliders; the calculation of the full set of NNLO terms has been a long-standing
problem [24, 25, 26] resolved only recently by a calculation in [27] using an independent approach.

Additionally we have presented the calculation of the full set of fully-inclusive cuts of 4-loop propagators
(Chapter 9, also [35, 36]), and a recalculation of the 2-loop 1→ 3 integrals first appearing in [122,
116] to a higher transcendental weight (Section 6.4). These sets of integrals were needed to calculate
semi-inclusive cuts, but can be useful in their own right too.

Along with the integrals we have described the methods and presented the tools developed for this
calculation. The first such tool is FUCHSIA (Chapter 8), a program to construct ε-forms of differential
equations for Feynman master integrals, making the differential equation method possible. FUCHSIA

is a general tool useful for many systems of master integrals, and has already been used in multiple
independent calculations such as [31, 32, 33, 34]. The second tool is FEYNSON (Chapter 4), a program
that resolves symmetries between Feynman integrals.

As the direct follow-up to this work we forsee using the calculated integrals to recalculate the NNLO
time-like splitting functions, and to calculate for the first time O

�

α3
s

�

photonic decay coefficient functions.
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A. Spherical coordinate system in n dimensions

A spherical coordinate system in n Euclidean dimensions parameterizes a point ~p with a radius r, and
angles θ1, . . . ,θn−1, such that the Cartesian coordinates corresponding to {r,θ} are

(~p)i =



































r cosθ1, if i = 1,

r sinθ1 cosθ2, if i = 2,

r sinθ1 sinθ2 cosθ3, if i = 3,

. . .

r sinθ1 sinθ2 · · · cosθn−1, if i = n− 1,

r sinθ1 sinθ2 · · · sinθn−1, if i = n,

(A.0.1)

where r ≥ 0, and θi are all assumed to lie in the range of [0;π], except for the last of them, θn−1, which
lies in [0;2π).

The volume element in spherical coordinates is

dn~p =

�

�

�

�

det
∂ {~p}
∂ {r,θ}

�

�

�

�

d {r,θ}= rn−1dr
n−1
∏

i=1

sinn−1−i θi dθi

︸ ︷︷ ︸

=dΩn−1

. (A.0.2)

An integral over the angular component of this volume element is the total solid angle in n dimensions,
or the surface area of a unit (n− 1)-sphere. We shall denote this quantity as Ωn−1,

Ωk ≡
∫ k
∏

i=1

sink−i θi dθi =
2π

k+1
2

Γ
� k+1

2

� , (A.0.3)

where we have used
∫ π

0

sinn θ dθ = π
1
2
Γ
� n+1

2

�

Γ
� n+2

2

� . (A.0.4)
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B. Feynman rules

Although this thesis deals with scalar integrals, we also have in mind a physical model given by the
standard QCD Lagrangian with Nc colors and N f fermion flavors, augmented with the photon field A,
and a scalar field H coupled to gluons.

The Lagrangian

For greater clarity (important for both a casual reader and a computer implementation), let us write
down this Lagrangian with all indices made explicit:

L =L0 +Lψ +Lh +Lc +Lξ, (B.0.1)

L0 ≡ −
1
4

FµνFµν −
1
4

Ga
µνGa,µν, (B.0.2)

Lψ ≡
∑

f

ψ̄s
f ,i(x) iγ

ss′
µ Dµf ,i j(x)ψ

s′
f , j(x) , (B.0.3)

Lh ≡ −
1
4

ghHGa
µνGa,µν, (B.0.4)

Lc ≡ −c̄a∂ µDab
µ cb, (B.0.5)

Lξ ≡ −
1

2ξA

�

∂ µAµ
�2 −

1
2ξg

�

∂ µGa
µ

�2
, (B.0.6)

where

Fµν(x) = ∂µAν − ∂νAµ, (B.0.7)

Ga
µν(x) = ∂µGa

ν − ∂νGa
µ + gs f abcGb

µGc
ν, (B.0.8)

Dµf ,i j(x) = δi j∂
µ + iQ f geA

µδi j − i gsG
a
µ ta

i j , (B.0.9)

Dab
µ (x) = δ

ab∂µ − gs f abcGc
µ, (B.0.10)

and

• Aµ(x) is the photon field;

• Gµa is the gluon field of color a;

• ψs
f i(x) is the quark field (Dirac spinors) of flavor f and color i;

• H(x) is a complex scalar field coupled to gluons (effective Higgs);

• ca(x) is the Fadeev-Popov ghost field of color a;

• γµ are the Dirac gamma matrices;

• ta are the SU(N) generators;

• ge, gs, and gh are the coupling constants;
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B. Feynman rules

• Q f is the fractional electric charge of the quark flavor f ;

• ξA and ξg are the photon and the gluon gauge parameters;

and the indices are:

• Lorentz indices µ,ν= 1 . . . d, where d = 4;

• fundamental color indices i, j = 1 . . . Nc;

• adjoint color indices a, b, c = 1 . . . N2
c − 1;

• quark flavor indices f = 1 . . . N f ;

• spinor indices s, the precise dimension of which should not enter the results.

Feynman rules

The Feynman rules that correspond to the Lagrangian of eq. (B.0.1) are as follows. For propagators:

Photon: 1 2
~p

= −i
� gµ1µ2

p2
− (1− ξA)

pµ1
pµ2

p4

�

; (B.0.11)

Gluon: 1 2
~p

= −iδa1a2

� gµ1µ2

p2
− (1− ξG)

pµ1
pµ2

p4

�

; (B.0.12)

Quark: 1 2
~p

= iδ f1 f2δi1 i2

(pνγν)s2s1

p2
; (B.0.13)

Ghost: 1 2
~p

=
iδa1a2

p2
; (B.0.14)

Higgs: 1 2
~p

=
i

p2
. (B.0.15)

For vertices:

1

2

3

=i geδ f2 f3δi2 i3Q f2; (B.0.16)

1

2

3

=i gsδ f2 f3 T a1
i3 i2
(γµ1)s3s2

; (B.0.17)

1

2

3

=gs f a1a2a3 pµ1
3 ; (B.0.18)

1

2

3

=gs f a1a2a3 (gµ1µ2 (p1 − p2)
µ3 + {123→ 231}+ {123→ 312}) ; (B.0.19)

1

2 3

4

=− i g2
s

�

f ba1a2 f ba3a4 (gµ1µ3 gµ2µ4 − gµ1µ4 gµ2µ3) + {1234→ 1342}+ {1234→ 1423}
�

.

(B.0.20)
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The H g g g and H g g g g vertices are the same as g g g and g g g g, but with an additional gh factor.

These rules are consistent with [151]. We recommend consulting [152] for an overview of different
conventions used in the literature. In that paper’s notation, the definitions adopted here correspond to
the choices of ηG = +1, η= −1, and ηs = −1. The other popular convention of ηs = +1 differs only in
the sign of gs in eq. (B.0.8), and as far as the Feynman rules are concerned it is identical to ours, but
with the overall sign inverted in the quark-gluon and tri-gluon vertices (that is, all vertices proportional
to gs). The values of the diagrams calculated in both conventions are of course identical, because gs
always enters as g2

s , and its sign does not matter.

The rules presented above have been derived from the Lagrangian of eq. (B.0.1) using FEYNRULES [153],
which is a MATHEMATICA package for automatic Feynman rule derivation.1

As an essential cross-check we have used these rules to re-calculated the gluon, ghost, and quarks
propagators up to two loops: the results match the values reported in e.g. [154, 155], as well as the
ones extracted from the sources of MINCER [156].

1Aside from the propagators, which FEYNRULES is not able to derive.
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C. The resulting integral tables

Along with this thesis we provide the values of the calculated integrals in machine-readable MATHEMATICA

format. These files are available from the author (to be published separately). They consist of the
following:

inc4l.w12.m

The values of master integrals for fully-inclusive cuts of 4-loop propagators from Chapter 9. All
the 5-, 4-, 3-, and 2-particle cuts are provided here (the ones listed in Table 9.3.2, Table 9.3.3,
Table 9.3.4, and Table 9.3.5 correspondingly); for convenience the fully virtual integrals from
Table 9.3.1 are also given.

The integrals are defined by eq. (9.0.1). The values here are their normalized versions:

J = I/

�

L � ∗�R

PSn

�

, (C.0.1)

where L is the number of loops to the “left” of the cut, R is the number of cuts to the “right” of it,
and n is the number of cut lines. The value of is given by eq. (3.2.10); PSN is given by
eq. (9.1.14).

The file contains a list of items, each defining one integral. Each item is a list of two elements: the
product of the denominators defining the integral, and its value as a series in ep (which stands
for ε). The denominators come in three forms:

• den[p] , corresponding to a regular denominator, 1
p2+i0 ;

• cut[p] , corresponding to a cut denominator (part of the phase-space integration), 2πδ+
�

p2
�

;

• xcut[p] , corresponding to an x-tagged cut denominator, δ
�

p2 − (1− x)q2
�

.

The values of the integrals are in the standard MATHEMATICA format, with the expansion order
indicated via Ord[ep,n]≡ O (εn) .

Additionally, Mzv[n, . . .] stands for multiple zeta values, ζn,..., as defined by eq. (7.2.12).

si4l.w8.m

The values of master integrals for semi-inclusive cuts of 4-loop propagators from Chapter 10. The
format is the same as with inc4l.w12.m. The families these integrals belong to (but not the
integrals themselves) are listed in Appendix D.

si4l.factorized.w8.m

The values of master integrals for semi-inclusive cuts of 4-loop propagators from Chapter 10,
with endpoint singularities factorized as described in Section 10.3.4. The format is the same as
with inc4l.w12.m, except the values are sums of expressions multiplied by Prefactor[]
expressions that wrap the irrational prefactors.
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C. The resulting integral tables

The tables for 2-loop 1→ 3 integrals from Section 6.4 (the ones listed in Table 6.4.2, Table 6.4.3, and
Table 6.4.4) are available in the auxiliary files from [35].

The values for cuts of 2- and 3-loop propagators are not included separately, but can be extracted from

the provided values: because of the normalization we have used, the normalized value for e.g.

is exactly the same as that of , so all the values for cuts of 2- and 3-loop propagators are

contained in the provided tables too.
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D. Integral families for semi-inclusive cuts at four
loops

We have identified the total of 256 integral families needed to cover semi-inclusive decay at 4 loops.
We list these families here: there are 18 2-particle semi-inclusive cut families (Table D.0.1), 34 3-cut
families (Table D.0.2), 96 4-cut families (Table D.0.3), and 108 5-cut particles (Table D.0.4).

Table D.0.1.: 2-particle-cut semi-inclusive families at 4 loops.

Table D.0.2.: 3-particle-cut semi-inclusive families at 4 loops.
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D. Integral families for semi-inclusive cuts at four loops

Table D.0.3.: 4-particle-cut semi-inclusive families at 4 loops.
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Table D.0.4.: 5-particle-cut semi-inclusive families at 4 loops.
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