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Abstract

Suspended mirror pendulums have proven to be an important building block in
ground-based interferometric gravitational-wave detectors leading to the first obser-
vation of a gravitational wave in 2015 [1]. Providing a good isolation from seismic
ground motion at frequencies above their resonance frequency, they allow the mir-
rors to act as quasi-free test masses to probe the fabric of spacetime. Suspended
mirrors with macroscopic mass can also be used for experiments on gravitational
interactions in the quantum regime [2, 3], which require precise readout and control
of the test mass motion.

In this work, I demonstrate an optomechanical tabletop experiment with a sus-
pended cuboid mirror test mass, serving as a common end mirror in a Michelson-
Sagnac-type laser interferometer located in a high vacuum. I discuss the properties
of damped harmonic oscillators as well as parametric actuation to influence the oscil-
lator’s motion and I examine laser interferometers with classical and quantum noise
sources. Furthermore, I designed a Michelson-Sagnac interferometer with power-
and signal-recycling capabilities and implemented a passive seismic isolation system
to reduce the interferometer’s seismic excitation. In addition, I planned an active
seismic isolation technique to improve the setup. I demonstrate an interferometric
position readout for the test mass pendulum as well as detection of the deflection
angle for high pendulum amplitudes. I designed and implemented an optical setup
with two distinct wavelengths to explore the possibilities for radiation pressure feed-
back cooling of the test mass motion. A high quality factor between 4 × 104 to7.6 × 104 for the main pendulum mode at 1.435 Hz was achieved with the suspen-
sion system presented here. I characterized the mechanical modes of the pendulum
by spectral and ringdown measurements using parametric actuation of the pendulum
suspension point to excite and cool the pendulum motion. This might be applicable
in gravitational-wave detectors to reduce the on-resonance thermal noise without
introducing additional noise at frequencies above.
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Kurzfassung

Aufgehängte Spiegelpendel haben sich als wichtiger Baustein in bodengestützten in-
terferometrischen Gravitationswellendetektoren erwiesen, die im Jahr 2015 zur ers-
ten Beobachtung von Gravitationswellen führten [1]. Sie bieten eine gute Isolation
von seismischen Bodenbewegungen bei Frequenzen oberhalb der Resonanzfrequen-
zen und fungieren als quasi-freie Testmassen, um das Raum-Zeit-Gefüge zu untersu-
chen. Aufgehängte Spiegel mit makroskopischer Masse können auch für Experimente
zu gravitativen Wechselwirkungen im Quantenregime verwendet werden [2, 3], die
ein präzises Auslesen und Steuern der Bewegung der Testmasse erfordern.

In dieser Arbeit demonstriere ich ein optomechanisches Tischexperiment mit ei-
ner aufgehängten quaderförmigen Spiegeltestmasse, die als gemeinsamer Endspiegel
in einem im Hochvakuum befindlichen Michelson-Sagnac Laserinterferometer dient.
Ich diskutiere die Eigenschaften gedämpfter harmonischer Oszillatoren sowie pa-
rametrischer Ansteuerung zur Beeinflussung der Oszillatorbewegung und betrach-
te Laserinterferometer mit klassischen und Quantenrauschquellen. Darüber hinaus
habe ich ein Michelson-Sagnac-Interferometer mit Leistungs- und Signalrecycling
entworfen und ein passives seismisches Isolationssystem implementiert, um die seis-
mische Erregung des Interferometers zu reduzieren. Außerdem habe ich eine aktive
seismische Isolationstechnik geplant, um den Aufbau zu verbessern. Ich demonstrie-
re eine interferometrische Positionsauslesung für das Testmassenpendel sowie eine
Erfassung des Auslenkwinkels für hohe Pendelamplituden. Des weiteren habe ich
einen optischen Aufbau mit zwei unterschiedlichen Wellenlängen entworfen und im-
plementiert, um die Möglichkeiten der Strahlungsdruck-Rückkopplungskühlung der
Testmassenbewegung zu untersuchen. Mit dem hier vorgestellten Aufhängungssys-
tem wurde eine hohe Güte zwischen 4×104 und 7,6×104 für die Hauptpendelmode
bei 1,435 Hz erreicht. Ich habe die mechanischen Moden des Pendels durch Spektral-
und Ringdown-Messungen charakterisiert. Dabei habe ich parametrische Aktuation
des Pendelaufhängungspunkts verwendet, um die Pendelbewegung anzuregen und
zu kühlen. Dies könnte in Gravitationswellendetektoren anwendbar sein, um das
resonante thermische Rauschen zu reduzieren, ohne zusätzliches Rauschen bei Fre-
quenzen darüber einzukoppeln.
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1. Introduction

Interferometers are a sensitive tool for precise length-change measurements and have
been used for over a century now. Starting from Michelson in 1881 with his famous
experiment [4] that he improved later together with Morley [5], interferometers
have been used in various topologies such as the Sagnac [6] or the Mach-Zehnder
interferometer [7, 8]. In the last decade, sophisticated versions of a Michelson inter-
ferometer led to the direct detection of gravitational waves and paved the way for
gravitational-wave astronomy [1]. For these laser interferometer detectors, mirrors
suspended as pendulums with high Q factors are an important building block as
they provide isolation from seismic excitation and serve as ”free falling” test masses
above their resonance frequency to probe the effects of gravitational waves on the
fabric of spacetime.

In this work, I studied a single pendulum suspended test mass used as the com-
mon end mirror in a Michelson-Sagnac type interferometer as part of the MassQ
experiment. This topology has been studied before theoretically in [9, 10, 11] and
experimentally in [12, 13, 14] with a SiN-Membrane oscillator as common mirror
with resonance frequencies in the 100 kHz range and effective masses below 100 ng.
One advantage of this topology with a balanced interferometer is that laser ampli-
tude noise does not excite the oscillator’s motion via radiation pressure, since the
radiation pressure force is equal and opposite on both mirror sides. Using mirrors
with macroscopic mass and lower eigenfrequency, this topology could be utilized in
pendulum-based interferometric seismometers as in [15] for better sensitivity. Such
a system with two massive oscillators might also be used to detect Newtonian noise
coupling via the gravitational force between the oscillators. Newtonian noise from
seismic fields is expected to limit future ground based gravitational-wave observato-
ries at frequencies below 10 Hz [16]. Since Newtonian noise cannot be shielded with
seismic isolation, sophisticated systems to estimate the Newtonian noise from the
measured seismic disturbances will be needed to cancel it [17]. Cryogenic cooling of
the pendulum and thus decreasing the thermal noise can make it possible for the
pendulum motion to be limited by quantum noise fluctuations from back-action and
shot noise. This can be used to realize Einstein-Podolsky-Rosen-entangled motion
of two massive objects as discussed in [18, 2].

In this thesis, I present the design of a power- and signal-recycled Michelson-Sagnac
interferometer with a suspended 50 g cuboid mirror serving as the common end mir-
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Chapter 1. Introduction

ror. The test mass was designed to serve as an optical cavity. The cavity axis could
then be used as a reference for the alignment of the two interferometer arms. On
anti-resonance, the cavity would suppress the optical power inside to reduce heat-
ing due to absorption. Since the test mass surface was not manufactured precise
enough for the planned design, this alignment scheme could not be tested during
this work. However, we successfully set up the suspended mirror pendulum with a Q
factor of the main pendulum mode at 1.435 Hz between 4 × 104 to 7.6 × 104 serving
as the common end mirror for a Michelson interferometer. With the interferomet-
ric measurement and the detection of the deflection angle, a measurement of the
pendulum motion for amplitudes over multiple orders of magnitude is established.
An optical setup with two distinct laser wavelengths allows for radiation pressure
feedback cooling of the pendulum motion inside the interferometer. Additionally,
the pendulum motion can be influenced by parametric actuation of the suspension
point, which might be applicable in gravitational-wave detectors to reduce the on-
resonance thermal noise without introducing additional noise at frequencies above
[19]. I designed and implemented a passive seismic isolation system for the inter-
ferometer. I observed multiple different mechanical modes of the pendulum and
measured the eigenfrequency as well as the Q factor by means of spectral analysis
and ringdown measurements. Furthermore, I observed the main pendulum mode in
quadrature phase space in the rotation frame of a local oscillator by demodulation
of the measurement signal with a lock-in amplifier.
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2. Damped Harmonic Oscillator

In this chapter the transfer function for a damped harmonic oscillator is derived
based on [12, 20] and the Q factor for viscous and structural damping is introduced.
The concept of a power spectral density (PSD) is explained and the thermal and
non-thermal noise PSD for the oscillator is discussed. The gravity pendulum and
corresponding damping mechanisms are analyzed and the concept of parametrically
driven oscillators is shown.

The following uses Newton’s notation (dot notation) for the derivative with respect
to time ̇𝑥(𝑡) = d𝑥(𝑡)

d𝑡 .

2.1. Equation of Motion

The equation of motion (EOM) for a damped harmonic oscillator with a general
damping force 𝐹damp driven by an external force 𝐹ext is given by𝑚 ̈𝑥(𝑡) + 𝐹damp(𝑥(𝑡), ̇𝑥(𝑡)) + 𝑘𝑥(𝑡) = 𝐹ext(𝑡), (2.1)
where 𝑚 denotes the oscillator’s mass and 𝑘 the spring constant of the harmonic
potential. This equation can be transformed into frequency space using the Fourier
transform (FT) (ℱ𝑥)(𝜔) = ̂𝑥(𝜔) = ∞∫−∞ 𝑥(𝑡)e−i𝜔𝑡 d𝑡. (2.2)

Applying Leibniz integral rule to the time derivative of the inverse FT

d𝑛
d𝑡𝑛 𝑥(𝑡) = d𝑛

d𝑡𝑛 ⎛⎜⎝ 12𝜋 ∞∫−∞ ̂𝑥(𝜔)ei𝜔𝑡 d𝜔⎞⎟⎠ (2.3)

= 12𝜋 ∞∫−∞ ̂𝑥(𝜔) d𝑛
d𝑡𝑛 ei𝜔𝑡 d𝜔 (2.4)

= 12𝜋 ∞∫−∞ (i𝜔)𝑛 ̂𝑥(𝜔)ei𝜔𝑡 d𝜔 (2.5)

3



Chapter 2. Damped Harmonic Oscillator

leads to the FT of derivativesℱ d𝑛
d𝑡𝑛 𝑥(𝑡) = (i𝜔)𝑛 ̂𝑥(𝜔). (2.6)

Assuming the damping force is linear, one can now rewrite eq. (2.1) in the frequency
domain using eq. (2.6) [−𝑚𝜔2 + i𝜙(𝜔)𝑘 + 𝑘] ̂𝑥(𝜔) = ̂𝐹ext(𝜔) (2.7)

with a loss angle 𝜙(𝜔) that depends on the particular damping force. Thus, linear
damping can be described by a complex spring constant 𝑘̃(𝜔) = 𝑘(1 + i𝜙(𝜔)). In
terms of the oscillator’s natural frequency 𝜔0 = √𝑘/𝑚 eq. (2.7) reads[−𝑚𝜔2 + 𝑚𝜔20(1 + i𝜙(𝜔))] ̂𝑥(𝜔) = ̂𝐹ext(𝜔). (2.8)

Hence, the transfer function 𝐻 from external force to oscillator displacement is𝐻(𝜔) = ̂𝑥(𝜔)̂𝐹ext(𝜔) = 1−𝑚𝜔2 + 𝑚𝜔20(1 + i𝜙(𝜔)). (2.9)

2.2. Damping Forces

There are multiple models that can describe the damping forces in a physical system
which originate from different processes, for example linear and nonlinear thermo-
elastic, viscous and structural damping [20]. For linear damping forces the corre-
sponding loss angles add up to a total loss angle𝜙total = ∑𝑖 𝜙𝑖. (2.10)

2.2.1. Quality Factor

The quality factor or Q factor characterizes the dissipation of a system that is driven
at its eigenfrequency 𝑓0[21, ch. 7.5]. It can be defined by the ratio of the total energy
stored in the system and the energy that is dissipated per radian [22, p. 42]𝑄 = 2𝜋 total energy

energy dissipated per cycle . (2.11)

Thus a large Q means less dissipation. Another common definition uses the reso-
nance frequency 𝑓𝑟 and the full width at half maximum (FWHM) Δ𝑓 of the power
spectrum [21, ch. 7.5] 𝑄 = 𝑓𝑟Δ𝑓 = 𝜔𝑟Δ𝜔. (2.12)
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𝑥(𝑡) = 𝑥0 exp (−𝜔0𝑡2𝑄 ) sin (𝜔0𝑡 + 𝜋2 )

𝑄2𝜋

1√
e

Figure 2.1.: Ringdown of a damped harmonic oscillator with 𝑄 = 5 ⋅ 2𝜋. It takes 5
oscillations for the amplitude to drop down to a fraction of 1√

e ≈ 0.6. The envelope is an
exponential decay.

For large Q, these two definitions become approximately identical. It can be ex-
pressed as the inverse of the loss angle at the eigenfrequency𝑄 = 1𝜙(𝜔0). (2.13)

Hence, as can be seen from eq. (2.10), Q factors add up inversely1𝑄total
= ∑𝑖 1𝑄𝑖 . (2.14)

The amplitude 𝑥(𝑡) of an excited damped harmonic oscillator decays exponentially
with a time constant that is related to the Q factor𝑥(𝑡) = 𝑥0 exp (−𝜔0𝑡2𝑄 ) sin (𝜔0𝑡 + 𝜙) . (2.15)

𝑄2𝜋 is the number of oscillations it takes for the amplitude to drop down to a fraction
of 1√

e ≈ 0.6. An example of such a ring-down is shown in fig. 2.1 for a Q factor𝑄 = 5 ⋅ 2𝜋.

2.2.2. Viscous Damping

The viscous damping force 𝐹damp,vis = 𝑚Γ ̇𝑥(𝑡) (2.16)
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Chapter 2. Damped Harmonic Oscillator

is proportional to the oscillators velocity ̇𝑥(𝑡) with the damping coefficient Γ. This
leads to a loss angle 𝜙vis(𝜔) = 𝜔Γ𝜔20 (2.17)

that is frequency dependent. The Q factor is𝑄vis = 𝜔0Γ . (2.18)

Viscous damping is often used to model motion through a fluid.

2.2.3. Structural Damping

Structural or hysteresis damping can be described by a frequency independent loss
angle 𝜙(𝜔) = 𝜙struc. (2.19)
In this case, the damping force is simply proportional to the oscillator’s displacement,
but lags behind with a phase of 90°. Structural damping is used to model internal
losses in the oscillator’s material. The Q factor is simply𝑄struc = 1𝜙struc

. (2.20)

2.3. Spectral Density

The PSD 𝑆𝑥𝑥 for a wide-sense stationarity (WSS) process 𝑥(𝑡) is given by the FT
of its auto-correlation function𝑅𝑥𝑥(𝜏) = ∞∫−∞ 𝑥(𝑡 + 𝜏)𝑥∗(𝑡) d𝑡, (2.21)

with 𝑥∗ being the complex conjugate, yielding [23]𝑆𝑥𝑥(𝜔) = ∞∫−∞ 𝑅𝑥𝑥(𝜏)e−i𝜔𝑡 d𝑡. (2.22)

It describes the power distribution of the signal in frequency domain. The average
power in a frequency band [𝜔1, 𝜔2] can be calculated by integrating the PSD̄𝑃[𝜔1,𝜔2] = 12𝜋 𝜔2∫𝜔1 𝑆𝑥𝑥(𝜔) d𝜔. (2.23)
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2.4. Thermal Noise

The mean square value of the signal is given by integrating over all frequencies⟨𝑥2⟩ = ̄𝑃[−∞,∞] = 12𝜋 ∞∫−∞ 𝑆𝑥𝑥(𝜔) d𝜔. (2.24)

If two WSS processes 𝑥 and 𝑦 are related via a transfer function 𝐻(𝜔) = 𝑥̂(𝜔)̂𝑦(𝜔) , one
can calculate the PSD 𝑆𝑥𝑥 from 𝑆𝑦𝑦 via𝑆𝑥𝑥(𝜔) = |𝐻(𝜔)|2 ⋅ 𝑆𝑦𝑦(𝜔). (2.25)

The unit of the PSD is given in squared units of the signal 𝑥: [𝑆𝑥𝑥] = [𝑥]2
s−1 . Some-

times it is more convenient to display linear units of the signal, hence one defines
the amplitude spectral density (ASD) as ASD = √

PSD with unit [ASD] = [𝑥]√
s−1 .

However, for calculation the PSD should be used.

Since the PSD is symmetric 𝑆𝑥𝑥(−𝜔) = 𝑆𝑥𝑥(𝜔), one can define the single-sided PSD𝑆ss𝑥𝑥(𝜔) = 2𝑆𝑥𝑥 that is valid for frequencies 𝜔 > 0. It is useful e.g. for spectrum
analyzers that do not distinguish positive and negative frequencies.

2.4. Thermal Noise

In 1928, J. B. Johnson discovered the temperature dependent voltage noise in a
resistor without supplied current [24] that was explained by H. Nyquist with the
fluctuation–dissipation theorem (FDT) [25]. It was formally proven in 1951 by
Callen and Welton [26] and later expanded by Kubo [27]. The FDT states that a
process in thermal equilibrium which dissipates energy to a thermal bath experi-
ences fluctuations driven by this bath. It associates the thermal noise PSD to the
imaginary part of the transfer function 𝐻 from a random thermal force 𝐹th to the
observable 𝑥. For frequencies 𝜔, with ℏ𝜔 << 𝑘B𝑇, the equipartition theorem holds,
where 𝐹th has a white noise spectrum, and the FDT is given by [26]𝑆𝑥𝑥(𝜔) = −2𝑘B𝑇𝜔 Im(𝐻(𝜔)) (2.26)

with temperature 𝑇 and Boltzmann constant 𝑘B.

For the harmonic oscillator transfer function (eq. (2.9)) the single-sided thermal
noise spectrum reads 𝑆ss𝑥𝑥(𝜔) = 4𝑘B𝑇 𝜙𝜔20𝑚𝜔 [(𝜔2 − 𝜔20)2 + 𝜙2𝜔40]. (2.27)
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Figure 2.2.: Thermal noise PSD for an oscillator with 𝑚 = 50 g at room temperature𝑇 = 300 K and an eigenfrequency 𝑓0 = 1.5 Hz for two different Q factors. The resonance
peak broadens for a smaller Q factor and the maximum height decreases but the integral
under the curves stays the same since the temperature is proportional to it.

Using eqs. (2.18) and (2.20) one can write eq. (2.27) for viscous and structural
damping in terms of the Q factor as𝑆ss𝑥𝑥,vis(𝜔) = 4𝑄vis𝑘B𝑇 𝜔0𝑚 (𝑄2

vis (𝜔2 − 𝜔20)2 + 𝜔2𝜔20) (2.28)

and 𝑆ss𝑥𝑥,struc(𝜔) = 4𝑄struc𝑘B𝑇 𝜔20𝑚𝜔 (𝑄2
struc (𝜔2 − 𝜔20)2 + 𝜔40). (2.29)

These two are identical at the eigenfrequency 𝜔0 but the latter has a 1/𝜔 slope
instead of a constant for lower frequencies and drops down faster with a slope of1/𝜔5 compared 1/𝜔4 in the viscous case [21, p. 120]. This is illustrated in fig. 2.2 for
an oscillator with 𝑚 = 50 g at room temperature 𝑇 = 300 K and an eigenfrequency𝑓0 = 1.5 Hz with two different Q factors. The resonance peak broadens for a smaller
Q factor and the maximum height decreases but the integral under the curves stays
the same since the temperature is proportional to it.

2.5. Non-thermal Noise

When the oscillator is not in thermal equilibrium but is driven by a force with much
larger PSD then the thermal force, the fluctuations due to the thermal bath can
be neglected. The bath only contributes via the dissipation and the fluctuations
solely result due to the driving force. Hence, the PSD of the oscillators motion is
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2.6. Gravity Pendulum
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Figure 2.3.: PSD transfer function |𝐻|2 for an oscillator with 𝑚 = 50 g at room temper-
ature 𝑇 = 300 K and an eigenfrequency 𝑓0 = 1.5 Hz for two different Q factors. For large
Q factors there is no difference between viscous and structural damping.

not governed by the imaginary part of the transfer function anymore but by the
absolute value squared via eq. (2.25). For viscous and structural damping these
read |𝐻vis|2 = 𝑄2

vis𝑚2 (𝑄2
vis (𝜔2 − 𝜔20)2 + 𝜔2𝜔20) (2.30)

and |𝐻struc|2 = 𝑄2
struc𝑚2 (𝑄2

struc (𝜔2 − 𝜔20)2 + 𝜔40), (2.31)

respectively. The only difference between these two is the second term in the de-
nominator which is neglectable for higher Q factors. This is shown in fig. 2.3 for
the same parameters as in the thermal case above. For 𝑄 = 400 there is basically
no difference between viscous and structural damping. For 𝑄 = 2 the maximum is
shifted very slightly but the overall frequency dependence for both damping types
is the same contrary to the thermal case. For large Q factors, the maximum value is
scaled by a factor of 𝑄2 compared to the value at 𝜔 = 0. The FWHM of the curve
is given by

√2𝜔02𝑄 .

2.6. Gravity Pendulum

An oscillator where the restoring force is due to gravity is called a gravity pendulum.
In its most simple form, one can describe such a pendulum by a point mass that
is suspended by a massless wire and moves in a plane. Although this is oftentimes
a good approximation, it can lead to deviations for systems with extended masses.

9



Chapter 2. Damped Harmonic Oscillator

Figure 2.4: Gravity pendu-
lum with an extended mass
suspended by a massless wire
from the suspension point 𝑆
with deflection angle 𝜃 and
pendulum length 𝐿. The ac-
celeration due to gravity is 𝑔.

𝜃
𝑆

CM

𝐿 𝑔

Such a system is shown in fig. 2.4. The distance from the suspension point 𝑆 to the
center of mass (CM) is denoted by 𝐿 and the deflection angle of the CM from the
resting position is given by 𝜃.

In order to describe such a system with an EOM, it is beneficial to look at the
torques that are involved. Equating the torque due to the moment of inertia 𝐼
and the restoring torque due to gravity leads to the EOM for a pendulum without
damping 𝐼 ̈𝜃(𝑡) = −𝑚𝑔𝐿 sin 𝜃(𝑡), (2.32)
where 𝑔 is the standard acceleration due to gravity. Using the small angle approxi-
mation sin 𝜃 ≈ 𝜃 leads to 𝐼 ̈𝜃(𝑡) = −𝑚𝑔𝐿𝜃(𝑡). (2.33)
Adding a linear damping torque 𝜏damp and an external torque 𝜏ext we get𝐼 ̈𝜃(𝑡) + 𝜏damp(𝜃(𝑡), ̇𝜃(𝑡)) + 𝐼𝜔20𝜃(𝑡) = 𝜏ext(𝑡) (2.34)

with the eigenfrequency 𝜔0 = √𝑚𝑔𝐿𝐼 . (2.35)

It is similar to eq. (2.1) and can be equivalently solved. In the simple case of a point
mass, the moment of inertia is given by 𝐼 = 𝑚𝐿2 yielding𝜔0 = √ 𝑔𝐿 (2.36)

which is independent of the suspended mass. [28, ch. 2.1.1.5]

2.6.1. Q Factor, Dilution Factor

A gravity pendulum stores energy in the gravitational field which is lossless. This
would result in an infinite Q factor. However, in physical pendulums there is always
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2.7. Parametric Damping

loss present. The suspension wire for example has to bend slightly to allow the
mass to swing. This loss can be modeled as structural loss in the wire material.
The energy 𝐸bend that is stored in this bending is typically small compared to the
energy 𝐸𝑔 that is stored in the gravitational field. The loss for the gravity pendulum
according to eqs. (2.11) and (2.13) is thus given by𝜙pen = 𝐸loss2𝜋(𝐸𝑔 + 𝐸bend) ≈ 𝐸loss2𝜋𝐸𝑔 . (2.37)

The lost energy can be expressed via the loss factor of the wire as 𝐸loss = 2𝜋𝐸bend𝜙bend
resulting in 𝜙pen = 𝜙bend

𝐸bend𝐸𝑔 = 𝐷𝜙bend. (2.38)

The factor 𝐷 = 𝐸bend𝐸𝑔 is called the dilution factor of the pendulum. For small angles
this can be expressed as 𝐷 = 𝑁√𝑇 𝐸𝐼wire2𝑚𝑔𝐿 (2.39)

where 𝑁 is the number of suspension wires, 𝑇 the tension fo the wires, 𝐸 the Young’s
modulus of the wire material and 𝐼wire the moment of inertia of the wire. For wires
with circular cross section of radius 𝑟 this is given by 𝐼wire = 𝜋2 𝑟4.[29]

2.6.2. Residual Gas Damping

The limiting factor for the Q factor of a pendulum in atmospheric pressure is the
viscous damping of the surrounding gas. In order to reduce this loss mechanism,
one can install the pendulum inside of a vacuum chamber and reduce the residual
gas pressure. The Q factor of the gas damped pendulum is given by [30]𝑄gas = 4𝑚𝐴 𝜔0𝑃 √𝜋𝑘B𝑇8𝜇 (2.40)

where 𝐴 is the surface area of the pendulum in the direction of motion, 𝑃 is the
residual gas pressure and 𝜇 the molecular mass of the gas molecule (often 𝐻2 or𝑁2).

2.7. Parametric Damping

Periodically changing a parameter of an oscillator can extract energy from or transfer
energy into the system. A familiar example for this is a person on a swing period-
ically stretching and tightening the legs, which effectively changes the moment of

11
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Figure 2.5: Parametrically
driven pendulum. The sus-
pension point is moved peri-
odically up and down with the
modulation 𝑧(𝑡).

𝑧(𝑡) 𝑔

inertia and thus the eigenfrequency. This leads to an energy gain without an external
force acting on the system. Such systems are called parametrically driven oscillators.
Depending on the phase of the parameter change relative to the oscillator’s motion,
it can also reduce the energy. This is called parametric damping.

Another way to introduce a parametric drive for a suspended pendulum is moving
the suspension point periodically up and down with an acceleration̈𝑧(𝑡) = 𝑧0Ω2 sin(Ω𝑡 + 𝜙) (2.41)

as shown in fig. 2.5. This effectively changes the gravitational acceleration (𝑔 →𝑔 + ̈𝑧(𝑡)) in eq. (2.35) and thus gives a time dependent eigenfrequency𝜔0(𝑡) = √𝑚 (𝑔 + ̈𝑧(𝑡)) 𝐿𝐼 . (2.42)

The optimal parametric gain is achieved for Ω = 2𝜔0, but it also works at the eigen-
frequency of the oscillator Ω = 𝜔0. Over time, the oscillator adjusts its relative
phase Δ𝜙 such, that Δ𝜙 = 0, which corresponds to the case of maximum energy
transfer to the oscillator (parametric heating). In order to remove energy consis-
tently from the oscillator, the relative phase has to be actively stabilized to Δ𝜙 = 𝜋.
The corresponding parametric Q factor is [31, p. 27]𝑄parametric = − 12 cos(Δ𝜙) 𝐿𝑧0 , (2.43)

where a negative Q factor resembles parametric heating. Note that it is proportional
to the fraction of the parametric modulation amplitude 𝑧0 to the length of the
pendulum 𝐿.

A detailed overview of the theory for parametrically driven oscillators can be found
in the master’s thesis of Daniel Hartwig [31] that I supervised during the course
of this work. The integration of parametric damping into the MassQ experiment
will be described in detail in his upcoming PhD thesis. A possible application of
parametric damping in gravitational-wave detectors can be found in [19].
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3. Laser Interferometers

Laser interferometers in multiple variations are a well established tool for precision
experiment. In 1887, Michelson and Morley carried out the well known experiment
on the luminiferous ether with the later called Michelson interferometer [5], which
ultimately paved the way for Einstein’s theory of relativity [32]. In 1925, Michel-
son and Gale used another interferometer topology, the Sagnac-Interferometer, to
measure the rotation of the earth. Today, Michelson interferometers are used as pre-
cision instruments in gravitational-wave observatories [1, 34] to detect the stretching
of spacetime due to gravitational waves. A Michelson interferometer can also be used
to measure the refractive index of optical materials [35]. Sagnac interferometers in
form of fiber-optic gyroscopes are used for precision navigation [36]. In this chapter,
I describe the theory of a combined Michelson-Sagnac interferometer topology and
discuss the special cases of a pure Michelson or Sagnac interferometer, respectively.
Furthermore, I give an overview of Fabry-Perot resonators and optical cavities as
well as noise sources of a Michelson-Sagnac interferometer for both quantum and
classical noise. At last, I introduce power- and signal-recycling techniques, which
can enhance the interferometer sensitivity.

3.1. Michelson-Sagnac Topology

A Sagnac interferometer is created by splitting a laser beam with a beamsplitter and
using steering mirrors to reflect the beams such that they are counter propagating
in a loop and finally recombined on the beamsplitter. Placing a partly reflective
mirror with amplitude reflection and transmission coefficients 𝑟m and 𝑡m inside the
loop creates an additional Michelson mode from the two reflected parts of the beam
forming a Michelson-Sagnac interferometer. A schematic view of this configuration
is shown in fig. 3.1.

This interferometer topology has been studied in [9, 10, 11] and used in experiments
such as [37, 12, 14]. The following derivation of the input-output relations is based
on [12, 37].

I assume a single input field 𝑎in that is incident on port 1 of the beamsplitter with
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Chapter 3. Laser Interferometers

Figure 3.1: Michelson-Sagnac interferome-
ter topology. Light from the input port 1
is split on a beamsplitter with amplitude re-
flectivity 𝑟bs into two arms exiting port 2 and
3. Two steering mirrors form a loop for the
counter propagating beams. A partly reflec-
tive common mirror with reflectivity 𝑟m re-
flects part of the beams which then form the
Michelson mode. The beams are overlapped
again on the beamsplitter and are measured
with a detector in the output port 4. The
arm lengths 𝑙2 and 𝑙3 are given by the opti-
cal path length from the beamsplitter to the
reflective surface of the common end mirror.

mirror

beamsplitter1
2

3
4

(𝑟m,𝑡m)
(𝑟bs,𝑡bs)

𝑙2

𝑙3

ports 1 to 4 as indicated in fig. 3.1. The amplitude reflection and transmission
coefficients at the beamsplitter 𝑟𝑖𝑗 and 𝑡𝑖𝑗, respectively, are complex numbers and
can be written in polar form as 𝑟𝑖𝑗 = 𝑟bsei𝜃𝑖𝑗 (3.1)𝑡𝑖𝑗 = 𝑡bsei𝜃𝑖𝑗 . (3.2)

Here, 𝑖 denotes the input port and 𝑗 the output port with 𝑖, 𝑗 ∈ {1, 2, 3, 4}. In order
to fulfill energy conservation for a lossless beamsplitter,𝑟2

bs + 𝑡2
bs = 1 (3.3)

must hold and an overall phase of 𝜋 has to be accumulated with(𝜃12 + 𝜃34) − (𝜃13 + 𝜃24) = ±𝜋. (3.4)

For simplicity, the phase flip can be set to a single reflection with 𝜃12 = 𝜋 and𝜃34 = 𝜃13 = 𝜃24 = 0.

The transmitted field amplitude 𝑎trans in port 4 is the sum of two Sagnac and two
Michelson fields with different phases and is given by𝑎trans = 𝑎in

⎡⎢⎣𝑡m𝑟2
bsei𝜃t

S1 + 𝑡m𝑡2
bsei𝜃t

S2⏟⏟⏟⏟⏟⏟⏟⏟⏟
Sagnac

+ 𝑟m𝑟bs𝑡bsei𝜃t
M1 + 𝑟m𝑟bs𝑡bsei𝜃t

M2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Michelson

⎤⎥⎦ (3.5)

with the acquired phases 𝜃t
S1 = 𝜃12 + 𝜃34 + 𝜃t

m + 𝑘(𝑙2 + 𝑙3) (3.6)𝜃t
S2 = 𝜃13 + 𝜃24 + 𝜃t

m + 𝑘(𝑙2 + 𝑙3) (3.7)𝜃t
M1 = 𝜃12 + 𝜃24 + 𝜃r

m + 2𝑘𝑙2 (3.8)𝜃t
M2 = 𝜃13 + 𝜃34 + 𝜃r

m + 2𝑘𝑙3 , (3.9)
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3.1. Michelson-Sagnac Topology

where 𝑘 = 2𝜋𝜆 is the wave number with the laser wavelength 𝜆 and 𝜃t
m and 𝜃r

m are
phases that are acquired on transmission or reflection on the mirror, respectively.
The length of the interferometer arms, that is the distance from the beamsplitter to
the mirror, are 𝑙2 and 𝑙3 for the two beamsplitter ports 2 and 3, respectively. For the
transmitted field, the two Sagnac fields experience two transmissions through or re-
flections off the beamsplitter while the Michelson fields each get a single transmission
and reflection. Using the phase relation eq. (3.4) and the identity

ei𝑥 + ei𝑦 = ei 𝑥+𝑦2 ⋅ 2 cos (𝑥 − 𝑦2 ) , (3.10)

we can simplify the transmission coefficient for the interferometer to𝑡ifo = 𝑎trans𝑎in
= 𝑡mei𝜃t

S1 (𝑟2
bs − 𝑡2

bs)⏟⏟⏟⏟⏟⏟⏟
Sagnac

+ 2𝑟m𝑟bs𝑡bsei 𝜃t
M1+𝜃t

M22 cos (𝜃t
M1 − 𝜃t

M22 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Michelson

. (3.11)

The Michelson mode is sensitive to the arm length difference Δ𝑙 = 𝑙2 − 𝑙3.

Similarly, the reflected field amplitude is again the sum of 4 fields yielding𝑎ref = 𝑎in
⎡⎢⎣𝑡m𝑟bs𝑡bsei𝜃r

S1 + 𝑡m𝑟bs𝑡bsei𝜃r
S2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Sagnac

+ 𝑟m𝑟2
bsei𝜃r

M1 + 𝑟m𝑡2
bsei𝜃r

M2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Michelson

⎤⎥⎦ , (3.12)

but this time the two Michelson fields experience two transmissions or reflections.
The acquired phases are 𝜃r

S1 = 𝜃12 + 𝜃13 + 𝜃t
m + 𝑘(𝑙2 + 𝑙3) (3.13)𝜃r

S2 = 𝜃13 + 𝜃12 + 𝜃t
m + 𝑘(𝑙2 + 𝑙3) (3.14)𝜃r

M1 = 𝜃12 + 𝜃12 + 𝜃r
m + 2𝑘𝑙2 (3.15)𝜃r

M2 = 𝜃13 + 𝜃13 + 𝜃r
m + 2𝑘𝑙3 . (3.16)

Using the fact that 𝜃r
S1 = 𝜃r

S2 , the reflection coefficient for the interferometer can
be simplified to𝑟ifo = 𝑎ref𝑎in

= 2𝑡m𝑟bs𝑡bsei𝜃t
S1⏟⏟⏟⏟⏟

Sagnac

+ 𝑟m𝑟2
bsei𝜃r

M1 + 𝑟m𝑡2
bsei𝜃r

M2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Michelson

. (3.17)

In the following, the two edge cases of a pure Michelson or Sagnac interferometer
are discussed further, since these cases are relevant for the MassQ experiment.

3.1.1. Michelson Interferometer

Using a perfectly reflecting mirror with 𝑡m = 0, the Sagnac mode vanishes and the
interferometer is reduced to a pure Michelson interferometer with a common end
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Chapter 3. Laser Interferometers

mirror for both arms. The same is true for a balanced beamsplitter with Δbs =𝑟2
bs − 𝑡2

bs = 0, since in this case the two Sagnac fields interfere destructively. The
behavior is that of a Michelson interferometer where the input field is just scaled by
the mirror reflectivity 𝑟m. The normalized transmitted power is then given by𝑇ifo = 𝑃trans𝑃in

= ∣𝑎trans𝑎in
∣2= 4𝑟2

m𝑟2
bs𝑡2

bs cos2 (2𝜋𝜆 Δ𝑙 + 𝜃t)⏟⏟⏟⏟⏟⏟⏟𝛿 (3.18)= 2𝑟2
m𝑟2

bs𝑡2
bs (1 + cos (2𝛿))

with the input power 𝑃in = |𝑎in|2 and total phase 𝜃t = (𝜃12+𝜃24)−(𝜃13+𝜃34)2 . The
normalized reflected power is then𝑅ifo = 1 − 𝑇ifo (3.19)

which reflects the energy conservation. A detuning 𝛿 = 𝑛𝜋 with 𝑛 ∈ ℤ maximizes𝑇ifo while 𝛿 = 𝑛𝜋 + 𝜋2 leads to a dark output. These conditions are called bright
fringe and dark fringe, respectively. 𝛿 = (2𝑛 − 1)𝜋4 is the point with the maximal
sensitivity to an arm length change which is called mid fringe.

Equation (3.18) can be rewritten in terms of oscillator displacement 𝑥 from an
equilibrium position Δ𝑙0. The arm length difference changes with twice the oscillator
displacement (Δ𝑙 = Δ𝑙0 + 2𝑥) and thus𝑇ifo(𝑥) = 4𝑟2

m𝑟2
bs𝑡2

bs cos2 (4𝜋𝜆 𝑥 + Φ0) (3.20)

with a detuning Φ0 = 𝜋𝜆Δ𝑙0 + 𝜃t that can be tuned by changing the equilibrium
position Δ𝑙0. For small displacements, eq. (3.20) can be approximated with a Taylor
expansion 𝑇ifo(𝑥) = 4𝑟2

m𝑟2
bs𝑡2

bs cos2 Φ0 − 32𝜋𝑟2
m𝑟2

bs𝑡2
bs sin Φ0 cos Φ0𝜆 𝑥 . (3.21)

3.1.2. Sagnac Interferometer

Removing the mirror, thus setting 𝑡m = 1, leads to a pure Sagnac interferometer
which is not sensitive to differential arm length changes but only to rotations of
the interferometer. For a non-rotating interferometer, the normalized output power
only depends on the beamsplitter imbalance and reads𝑃trans𝑃in

= 𝑇ifo = Δ2
bs. (3.22)
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3.2. Interferometer Contrast

For a balanced beamsplitter and perfect beam overlap, the output port is com-
pletely dark. For a real Sagnac interferometer there is always minimal misalignment
present. This would increase the output power from which an upper bound for
the beamsplitter imbalance can be estimated from the best possible alignment asΔbs ≤ √𝑇ifo

Influence of Rotations

In a rotating Sagnac interferometer, the two counter propagating beams experience
a relative phase shift Δ𝛿 = 4𝜆𝑐𝜔⃗ ⃗𝐴 (3.23)

that depends on the area of the Sagnac loop ⃗𝐴 and the angular velocity of the
rotation 𝜔⃗. Michelson and Gale used this in 1925 to measure the rotation of the
earth [38, 33] with an interferometer area of around 0.2 km2.

In order to estimate this effect for the MassQ experiment, we can calculate the phase
shift for Hamburg Δ𝛿MassQ = 4𝜆𝑐𝜔𝐴 cos (90° − LAT) ≈ 10−7 rad (3.24)

with a latitude LAT = 53°33′ for an area 𝐴 = 0.25 m2, 𝜆 = 1550 nm and angular
velocity 𝜔 = 2𝜋 rad d−1. This would be equivalent to a beam splitter imbalanceΔbs ≈ 10−7, which is neglectable to the realistically expected imbalance of around10−3.

3.2. Interferometer Contrast

The calculations above use a plane wave approximation for the laser. However, in
reality a laser is described by a Gaussian beam. If the two modes of the beams
at the output do not overlap perfectly, they cannot interfere complete destructively
resulting in nonzero output power even for tuning to the dark fringe. We can define
the interferometer contrast [12, p. 39]𝐶 = 𝑃max − 𝑃min𝑃max + 𝑃min

(3.25)

where 𝑃max and 𝑃min are the maximally and minimally achievable output powers,
respectively, and rewrite eq. (3.18) to𝑇ifo = 2𝑟2

m𝑟2
bs𝑡2

bs (1 + 𝐶 ⋅ cos (2𝛿)) (3.26)
such that the contrast is included.
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M1 M2𝑙

𝑡1e−i𝑘𝑙𝑡2
𝑡1𝑟2𝑟1e−3i𝑘𝑙𝑡2
𝑡1𝑟22𝑟21e−5i𝑘𝑙𝑡2

−𝑟1 + 𝑡21𝑟2e−2i𝑘𝑙

𝑡21𝑟22𝑟1e−4i𝑘𝑙

⋅(−𝑟1) ⋅e−i𝑘𝑙 ⋅𝑟2⋅𝑟1

Figure 3.2.: Fabry-Perot resonator with mirrors M1 and M2 with a cavity length 𝑙. The
first terms of the infinite sum for the amplitude transmissivity and reflectivity are shown.
The factor e−i𝑘𝑙 is the phase accumulated by a single trip through the cavity. On the first
reflection of M1 an additional phase of 𝜋 is acquired, hence the minus sign.

3.3. Fabry-Perot Resonator

Another type of interferometer are optical resonators or cavities such as the Fabry-
Perot resonator, which consists of two plane parallel mirrors M1 and M2 spaced a
distance 𝑙 apart. An incident light field gets partly transmitted and reflected on the
first mirror M1. The transmitted field then travels through the resonator and gets
again transmitted and reflected on mirror M2. The reflected part now travels back
through the cavity and repeats the process infinitely. The resulting reflected and
transmitted fields from the resonator are the infinite sum of all the fields traveling
in the same direction.

In order to understand the basic operating principle, we treat this as a one-dimensional
problem with plane waves as in [21, ch. 6.3] and assign a field reflectivity 𝑟1,2 and
transmissivity 𝑟1,2 to mirrors M1 and M2, respectively. This is shown in fig. 3.2 with
the first terms of the infinite series indicated. Assuming no loss with 𝑟21,2 + 𝑡21,2 = 1,
the series is a geometric sum which can be expressed in a simple algebraic form,
which yield the field transmissivity of the cavity𝑡𝑐 = 𝑡1𝑡2e−i𝑘𝑙 ∞∑𝑛=0 (𝑟1𝑟2e−2i𝑘𝑙)𝑛 = 𝑡1𝑡2e−i𝑘𝑙1 − 𝑟1𝑟2e−2i𝑘𝑙 (3.27)

and analogously the cavity field reflectivity𝑟𝑐 = −𝑟1 + 𝑡21𝑟2e−2i𝑘𝑙 ∞∑𝑛=0 (𝑟1𝑟2e−2i𝑘𝑙)𝑛 = −𝑟1 + 𝑡21𝑟2e−2i𝑘𝑙1 − 𝑟1𝑟2e−2i𝑘𝑙 . (3.28)
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3.3. Fabry-Perot Resonator

The first reflected field of M1 acquires an additional phase of 𝜋 since the reflection
occurs on an interface with switched refractive indices compared to all the other
reflections, hence the −𝑟1 in the sum. The factor e−i𝑘𝑙 is the phase accumulated by
a single trip through the cavity length 𝑙 with the wave number 𝑘 as defined above. In
the case 𝑘𝑙 = 𝑛𝜋, the circulating fields interfere constructively and the cavity is on
resonance. In the case of an impedance matched cavity with 𝑟1 = 𝑟2 the transmission
losses are exactly compensated by the transmission of the incoming field and all
optical power is transmitted through the cavity. The power transmissivity 𝑇𝑐 = |𝑡𝑐|2
and the phase of the transmitted light arg(𝑡𝑐) for such an impedance matched cavity
is shown in fig. 3.3 for different mirror reflectivities. The phase change around the
resonance gets steeper for higher reflectivity and the width of the resonances becomes
smaller. In frequency space, the distance between two resonances is called the free
spectral range

FSR = 𝑐2𝑙 (3.29)

where 𝑐 is the speed of light. The free spectral range (FSR) is related to the FWHM
of the resonances or cavity linewidthΔ𝜈 = 𝑐𝜋𝑙 arcsin [1 − 𝑟1𝑟22√𝑟1𝑟2 ] (3.30)

by the cavity finesse [39, p. 210]ℱ = FSRΔ𝜈 ≈ 𝜋√𝑟1𝑟21 − 𝑟1𝑟2 . (3.31)

where the last approximation is valid for high finesse values with arcsin(𝑥) ≈ 𝑥 for
small 𝑥.

Around resonance, a cavity can be approximated as a one-pole low-pass filter with
a corner frequency [39] 𝑓𝑐 = Δ𝜈2 (3.32)

which attenuates signals outside the cavity bandwidth.

Mode Matching

The above discussion assumed plane waves and neglects the spatial beam profile.
The incoming beam can be expressed in the basis of transverse electromagnetic
modes (TEMs). These modes are described by a complex beam parameter 𝑞 that is
related to the beam curvature 𝑅 and beam radius 𝑤 as [40]1𝑞 = 1𝑅 − i 𝜆𝜋𝑤2 , (3.33)
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Figure 3.3.: Resonances of an impedance matched cavity for different mirror reflectivities𝑅 and thus different finesse values. Changing the cavity detuning 𝑘𝑙 either by cavity length
or laser frequency leads to resonances for integer multiples of 𝜋.
Left: Logarithmic power transmissivity. On resonance, the transmissivity is 1. For higher
finesse, the transmissivity on anti-resonance gets smaller.
Right: On resonance, the slope of the phase is maximal and gets steeper for higher finesse.

which is only determined by the resonator geometry. Compared to plane waves,
these modes acquire an additional Gouy phase [40] which leads to different resonance
lengths for the cavity modes. This allows the cavity to act as a spatial filter for the
beam by tuning the resonance condition such that only the desired Gaussian mode
is resonant. The incoming beam has to be matched to the desired mode by aligning
the position and angle of the incoming beam to allow for maximum transmission.
The unmatched part is reflected off the cavity.

Beam Size

The beam size of the cavity modes depends on the resonator geometry parameters
as the mirror curvatures 𝑅1 and 𝑅2 and the resonator length 𝑙 shown in fig. 3.4
as well as the wavelength 𝜆 and the refractive index 𝑛 of the material between the
mirrors. For an optical cavity to form, the wavefront curvature of the mode at the
mirror needs to be equal to the curvature of the mirror surface. Following [40], the
beam radii at the mirrors 1 and 2 are then given by

𝑤1 = 4√(𝜆𝑅1𝑛𝜋 )2 ⋅ 𝑅2 − 𝑙𝑅1 − 𝑙 ⋅ 𝑙𝑅1 + 𝑅2 − 𝑙 (3.34)

𝑤2 = 4√(𝜆𝑅2𝑛𝜋 )2 ⋅ 𝑅1 − 𝑙𝑅2 − 𝑙 ⋅ 𝑙𝑅1 + 𝑅2 − 𝑙 (3.35)
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3.4. Quantum Noise of Position Measurements

𝑤0𝑅1

𝑅2𝑙
𝑛

Figure 3.4: Resonator with surface curva-
tures 𝑅1 and 𝑅2 and cavity length 𝑙. The re-
fractive index of the material in between the
mirror surfaces is 𝑛. The gray dotted lines
indicate the optical axis and the longitudinal
mode shape with the beam waist 𝑤0.

and the waist size is𝑤0 = 4√( 𝜆𝑛𝜋)2 𝑙(𝑅1 − 𝑙)(𝑅2 − 𝑙)(𝑅1 + 𝑅2 − 𝑙)(𝑅1 + 𝑅2 − 2𝑙)2 . (3.36)

The sign for the curvature is positive for convex surfaces with respect to the inside
of the cavity as in fig. 3.4.

3.4. Quantum Noise of Position Measurements

Due to the quantum nature of light, a measurement of optical power is inherently
a photon counting process. For a coherent field this is a Poisson process where the
individual photons are uncorrelated [41]. This results in a single sided white noise
spectral density for the photon flux 𝑛𝑆shot𝑛𝑛 = 2𝑛 (3.37)

with the average flux 𝑛 = 𝑃ℏ𝜔 , which is the optical power 𝑃 divided by the photon
energy ℏ𝜔 = ℏ2𝜋𝑐𝜆 . Using eq. (2.25), we can calculate the shot noise spectral density
for the optical power [12, p. 9]𝑆shot𝑃𝑃 = 2ℏ2𝜋𝑐𝜆 𝑃 = 4ℏ𝜋𝑐𝜆 𝑃 . (3.38)

The quantum noise in the interferometer manifests in two different ways, namely the
detection shot noise and the back-action noise [42]. Since they scale opposite with
light power, they cannot be reduced at the same time by changing the incoming
laser power. This leads to the standard quantum limit (SQL) of interferometry
which poses a limit on the sensitivity of a position measurement which can only be
surpassed using non-classical states of light such as squeezed light [43].
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3.4.1. Photon Shot Noise

For a laser interferometer, the detection shot noise can not be distinguished from
power fluctuations due to a signal inside the interferometer which is why it is useful
to express the shot noise PSD in terms of length units m2/Hz by normalizing it to
the change in output power due to a signal 𝑥. For the balanced interferometer from
eq. (3.18) this yields𝑆shot𝑥𝑥 (𝛿) = 𝑆shot

PP(d𝑃trans
d𝑥 )2 = ℏ𝑐𝜆16𝜋𝑟2

m𝑃in

1
sin2(Φ0). (3.39)

This function approaches a minimum value [9]𝑆shot𝑥𝑥 = ℏ𝑐𝜆16𝜋𝑟2
m𝑃in

(3.40)

for Φ0 → 𝑛𝜋2 , which is the dark-fringe condition. However, at this point there is no
signal at the output port, and thus the interferometer has to be operated slightly
detuned from dark port when the signal is measured with a single photodiode.

3.4.2. Backaction Noise

Another manifestation of the Poissonian photon statistics inside the interferometer
is the quantum radiation pressure noise or back-action noise [42]. The radiation
pressure force exerted on a mirror by a laser with optical power 𝑃 on reflection is𝐹RP = 2𝑃𝑐 , (3.41)

where 𝑐 is the speed of light. The noise spectral density for the optical power is
again given by eq. (3.38). Using eq. (2.25) with the transfer function eq. (3.41), we
can calculate the force noise spectral density from that:𝑆RPN𝐹𝐹 = (2𝑐)2 4ℏ𝜋𝑐𝜆 𝑃 = 16ℏ𝜋𝑃𝑐𝜆 . (3.42)

In a balanced Michelson-Sagnac interferometer, the reflected optical power on one
side of the mirror is 𝑃 = 𝑟2

m𝑃in2 , yielding𝑆RPN𝐹𝐹 = 8ℏ𝜋𝑟2
m𝑃in𝑐𝜆 (3.43)

for the force noise on one mirror side. Due to energy conservation on the beamsplit-
ter, these forces are anti-correlated [9] and the spectral densities add up, resulting
in 𝑆RPN𝐹𝐹 = 16𝜋ℏ𝑟2

m𝑃in𝑐𝜆 (3.44)
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3.4. Quantum Noise of Position Measurements

for the total radiation pressure force noise on the mirror. Again using eq. (2.25) with
the harmonic oscillator displacement transfer function, we can express the radiation
pressure noise in terms of oscillator displacement𝑆RPN𝑥𝑥 (𝜔) = |𝐻(𝜔)|2 ⋅ 𝑆RPN𝐹𝐹 = |𝐻(𝜔)|2 ⋅ 16𝜋ℏ𝑟2

m𝑃in𝑐𝜆 . (3.45)

3.4.3. Standard Quantum Limit

The shot noise in the position measurement and the back-action noise scale opposite
with the incoming laser power 𝑃in. While the shot noise decreases with higher power,
the back-action noise on the oscillator is increased. The total quantum noise of the
position measurement𝑆q𝑥𝑥 = ℏ𝑐𝜆16𝜋𝑟2

m𝑃in
+ |𝐻(𝜔)|2 ⋅ 16𝜋ℏ𝑟2

m𝑃in𝑐𝜆 (3.46)

is given by the sum of the individual PSDs since the noise is not correlated. We can
now determine the minimum with respect to 𝑃in with

d𝑆q𝑥𝑥
d𝑃in

= − ℏ𝑐𝜆16𝜋𝑟2
m𝑃 2

in
+ |𝐻(𝜔)|2 ⋅ 16𝜋ℏ𝑟2

m𝑐𝜆 = 0 (3.47)

yielding the frequency dependent input power𝑃SQL(𝜔) = 𝑐𝜆16𝜋𝑟2
m|𝐻(𝜔)| (3.48)

required to reach the SQL for the Michelson-Sagnac interferometer [12, p. 36]𝑆SQL𝑥𝑥 (𝜔) = 2ℏ|𝐻(𝜔)|. (3.49)

Well above the resonance frequency of a pendulum, the SQL approaches that of a
free mass with transfer function |𝐻(𝜔)| = 1𝑚𝜔2 (3.50)

yielding the free mass SQL[2] 𝑆fmSQL𝑥𝑥 (𝜔) = 2ℏ𝑚𝜔2 . (3.51)
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3.5. Classical Laser Noise

Additionally to quantum noise, the interferometer sensitivity can also be limited
by classical laser noise in amplitude and frequency. This technical laser noise can
have multiple origins such as a length change of the resonator or a fluctuating pump
power [12, p. 41]. This section briefly describes the influence of these classical noise
sources on the displacement measurement with the interferometer. A more detailed
analysis can be found in [12, 44].

3.5.1. Amplitude Noise

Technical fluctuations of the laser power are characterized by the relative intensity
noise (RIN)

RIN(𝜔) = √𝑆laser
PP (𝜔)𝑃 (3.52)

which relates the ASD of the power fluctuations to the average laser power 𝑃 and is
typically frequency dependent. The fluctuating power leads to a varying radiation
pressure force in the mirror causing a corresponding displacement PSD [12, p. 43]𝑆RIN𝑥𝑥 (𝜔) = |𝐻(𝜔)|2 (2𝑟2

mΔbs𝑐 )2 𝑆laser
PP (𝜔) (3.53)

which is dependent on the beamsplitter imbalance. For a perfectly balanced beam-
splitter, the radiation pressure force from both sides of the mirror would cancel out
and the mirror would not be influenced by the classical laser noise at all. Even
for a non-balanced beamsplitter the radiation pressure effect is reduced with the
Michelson-Sagnac topology compared to the classical Michelson design where the
laser noise would always effect both end mirrors individually.

3.5.2. Phase Noise

Incoming laser phase noise results in a phase difference of the two interferometer
arms Δ𝜃(𝑡) = 𝜃(𝑡) − 𝜃(𝑡 + Δ𝑡) (3.54)

depending on the time delay Δ𝑡 = Δ𝑙𝑐 until the beams are recombined on the
beamsplitter [45]. The time delay is determined by the path length difference Δ𝑙
and the speed of light 𝑐. Using the linearity and time shifting properties of the
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3.6. Recycling Techniques

𝑟PR 𝑟SR

𝑟PR 𝑟ifo

𝑟ifo 𝑟SR

𝑙PR 𝑙SR

𝑙PR𝑙SR

Figure 3.5.: Legend for the optics in fig. A.1.
Left: Recycled Michelson-Sagnac interferometer with recycling mirrors in the input and
output port. The amplitude reflectivities are 𝑟PR and 𝑟SR for the PRM and for the SRM,
respectively. The cavity length is the optical path length from the recycling mirror to the
reflective surface of the common end mirror. Middle: Simplified model for the power-
recycling cavity with length 𝑙PR with the PRM as input mirror and the interferometer as
effective output mirror with amplitude reflectivity 𝑟ifo. Right: Simplified model for the
signal-recycling cavity with length 𝑙SR with the interferometer as effective input mirror
and the SRM as output mirror.

Fourier transform, one can calculate the relation between the PSD of the phase
difference to the PSD of the laser phase fluctuations [46]𝑆Δ𝜃Δ𝜃(𝜔) = 4 sin2 (𝜔Δ𝑙2𝑐 ) 𝑆𝜃𝜃(𝜔). (3.55)

Thus, laser phase fluctuation couple maximally for frequencies 𝜔2𝜋 = 𝑐2Δ𝑙 , that is half
of the interferometer’s FSR. For a path length difference Δ𝑙 = 1 cm, the maximum is
at around 15 GHz. Thus, for frequencies up to 1 kHz, phase noise coupling should not
be problematic. However, when signal recycling if used, this path length difference
will be increased by the cavity round trips and phase noise coupling might demand
for a laser phase noise stabilization [12].

3.6. Recycling Techniques

Only considering the input and output fields of an interferometer, we can view it
as a simple mirror with variable amplitude transmissivity and reflectivity given by
eqs. (3.11) and (3.17), respectively, that depend on the interferometer tuning. Using
another mirror, one can now form a cavity. This mirror can either be placed in the
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Chapter 3. Laser Interferometers

input or output port of the interferometer allowing for so called power- or signal-
recycling, respectively, which can increase the interferometer sensitivity for certain
frequencies. A schematic view of this setup is shown in fig. 3.5. The left side shows
the power- and signal recycling mirror inside the interferometric setup while the
right side shows the simplified view with the interferometer as a single mirror with
amplitude reflectivity 𝑟ifo. The cavity lengths for the power- and signal-recycling
cavity are given by the optical path length from the recycling mirror to the reflective
surface of the common end mirror as indicated in fig. 3.5. For the path inside the
beamsplitter, one has to take into account the refractive index of the material 𝑛BS.

3.6.1. Power Recycling

When the interferometer is tuned to dark fringe, it acts like a mirror with a power
reflectivity 𝑅ifo = |𝑟ifo|2 = 1. The back-reflected light can now be sent back coher-
ently into the interferometer by tuning the position of the power-recycling mirror
(PRM) such that the resulting cavity is on resonance. This effectively increases the
input power for the interferometer by the power buildup factor of the cavity. This
is the power-recycling gain [9] 𝐺PR = 1 + 𝑟PR1 − 𝑟PR

(3.56)

where 𝑟PR is the amplitude reflectivity of the PRM. In the formulas for the quantum
noise eqs. (3.40) and (3.45) one has to replace the input power 𝑃in → 𝐺PR𝑃in. Taking
into account losses inside the interferometer, the reachable gain is bounded by the
power losses 𝐴ifo inside the interferometer as [47]𝐺PR ≈ 1𝐴ifo

(3.57)

where we assume that most of the loss occurs in the interferometer and not at the
PRM.

3.6.2. Signal Recycling

Placing a signal-recycling mirror (SRM) in the output port and tuning the resulting
cavity to resonance with the carrier light creates a signal recycling cavity. As shown
in fig. 3.5 on the right, the interferometer is again modeled as a single mirror.
This cavity acts as an optical low-pass filter for a signal generated inside the cavity
(interferometer signals) and resonantly enhances signal sidebands that lie inside the
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3.6. Recycling Techniques

cavity bandwidth [12, 39]. We can define a frequency dependent signal-recycling
gain 𝐺SR(𝑓) = 𝐺SR1 + ( 𝑓𝑓c

)2 (3.58)

with the corner-frequency 𝑓c = 𝜔c2𝜋 (see eq. (3.32)) and the DC gain𝐺SR = 1 + 𝑟SR1 − 𝑟SR
(3.59)

where 𝑟SR is the amplitude reflectivity of the SRM.

We can substitute 𝑃in → 𝐺SR(𝑓)𝐺PR𝑃in in the expression for the quantum noise
from eqs. (3.40) and (3.45) to get the combined effect for power- and signal-recycling
for the shot noise [9]𝑆shot𝑥𝑥 (𝜔) = ℏ𝑐𝜆16𝜋𝑟2

m𝐺SR𝐺PR𝑃in
[1 + ( 𝜔𝜔c

)2] (3.60)

and the back-action noise𝑆RPN𝑥𝑥 (𝜔) = |𝐻(𝜔)|2 ⋅ 16𝜋ℏ𝑟2
m𝐺SR𝐺PR𝑃in𝑐𝜆 11 + ( 𝜔𝜔c

)2 . (3.61)
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4. Experimental Setup

In this chapter, I describe the experimental setup that I have designed and built
during this work. Central point is the suspended mirror pendulum serving as the
common end mirror in an interferometer with Michelson-Sagnac topology. The
interferometer is located in a high vacuum to avoid residual gas damping. In order
to reduce seismic excitation, we use a passive isolation system for the optical table
and a second passive isolation stage for the interferometer itself. For frequencies
around the pendulum mode, we designed an active seismic isolation that is going
to be implemented. For the pendulum, we use a cuboid test mass suspended by
two wire loops. Here, I calculate the moment of inertia for this shape and estimate
the eigenfrequencies for different pendulum modes. I further explain the design
considerations for the interferometer which are based on [2]. We use an optical
setup with the two laser wavelengths of 1550 nm and 1064 nm for interferometric
position readout and detection of the deflection angle as well as for applying a
radiation pressure force to the test mass.

4.1. Vacuum System

The vacuum system consists of a cylindrical steel chamber with an inner diameter of35 cm and a height of 32 cm with two optical window flanges attached on opposite
sides. The optical axis through the center of the windows is located 17.8 cm above
the table surface. Additionally one high voltage BNC feedthrough for the parametric
actuation piezo and a 25-port D-Sub feedthrough for the cryo-compatible mirror
positioners are connected. The vacuum side electrical connections are made with
Kapton®coated wires. A wide range gauge (Edwards WRG-S-DN40CF) that is able
to measure the pressure inside the chamber from atmospheric pressure down to10−9 mbar is attached.

A turbopump (Edwards nEXT400D 160W, CF160) connected via a gate valve pro-
vides a high vacuum on the order of 10−8 mbar that is backed up by a scroll pump
providing the necessary pre-vacuum of 10−1 mbar. The scroll pump is located in
a separate room and shared via a tube system to multiple laboratories to remove
disturbances from the experiments. The turbopump is connected to this system
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Figure 4.1.: CAD views of the vacuum assembly. Left: Top view with the interferometer
on top of the seismic isolation stage. The connections to the flanges are indicated: Window
(W), Turbopump (TP), ion getter pump (IGP), 25-port D-Sub connector (D-SUB), wide
range gauge (G) and the high voltage BNC feedthrough (BNC). Right top: Half-cut
through the assembly up to the optical axis. The two flanges on the sides are the window
flanges. Right bottom: Exploded view of the seismic isolation stage with the top plate
lifted up and the bottom plate extended down. One can see the 12 FPM dampers for the
bottom plate and the three below the top plate due to less weight above.

with a ball valve which is bypassed with a needle valve to prevent a high gas flow
during the initial pump down to the pre-vacuum. An additional ion getter pump is
connected to the chamber to be able to perform the experiment without a running
turbopump. It has not been used so far since no disturbances due to the turbopump
have been observed yet. A computer-aided design (CAD) drawing of the vacuum
tank with the connection to the flanges is shown in fig. 4.1 on the left. On the right
top one can see a half cut through the assembly up to the optical axis.

4.2. Seismic Isolation

Since the experiment works with low mechanical frequencies around 1 Hz, it can
be disturbed by seismic excitations. Especially in urban environments where the
experiment is located, seismic noise above 1 Hz is present [48]. In this section,
I discuss multiple passive seismic isolation systems for different frequency ranges.
Since the passive methods do not provide sufficient isolation, I introduce a planned
active seismic isolation scheme.
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4.2.1. Optical Table

The optical table is located on top of a concrete block with a mass of ≈ 31 t sup-
ported by four spring dampers. This provides a passive seismic isolation, since the
table is not directly connected to the ground. Additionally, the table has a build-
in pneumatic vibration isolation, which is not used at the moment, since it has a
resonance in the frequency range of the pendulum. Figure 4.2 shows a measure-
ment of the displacement spectrum with a seismometer (Trillium 120Q/QA from
Nanometrics) on top of the concrete block in the three Cartesian coordinate axes as
defined in fig. 4.6. The seismometer measures the velocity from which I estimated
the PSD using Welch’s method [50] as implemented in SciPy [51, 52]. The velocity
spectrum is converted into a displacement spectrum by dividing by the square of
the angular frequency. One can see a resonance peak around 2 Hz for the x- and
y-direction and at around 3 Hz for the z-direction. Since this lies in the frequency
range of the pendulum, it is still seismically excited. In order to reduce the seismic
excitation further, we are going to implement an active isolation scheme on the con-
crete block with voice coil actuators that provide a feedback force onto the concrete
block. Since voice coil actuators do not have a mechanical connection to the ground,
no additional seismic coupling without the active feedback is introduced.

4.2.2. Seismic Isolation Stage

In order to decouple the interferometer from seismic disturbances, it is located on
top of a seismic isolation stage inside the vacuum tank that is the only mechanical
connection to the outside except from the electrical wiring. The damping stage
consists of 8 steel plates that are connected via fluoroelastomer (FPM) dampers
that act as springs between the plates. The plates have a diameter of 300 mm and
a height of 14.375 mm each. The dampers are cylindrical and have a diameter as
well as a compressed height of 10 mm. They are inset into the plates both on top
and on the bottom to provide a gap between the plates of 1 mm. Since the total
height of the stage is restricted by the optical axis, this allows higher plates and
thus more mass which provide a better isolation. The total height of isolation stage
is 127.5 mm.

The seismic isolation stage was mainly designed to provide a good isolation in a
frequency range around 300 Hz, since the experiment is designed to be quantum noise
limited around this frequency range. A finite element method (FEM) simulation
in COMSOL Multiphysics®of the transfer function from ground displacement to
displacement of the upper plates is shown in fig. 4.3. For the simulation, a frequency
dependent loss factor for FPM is used as measured in [53]. For more details on
how this is implemented consider [54]. Table 4.1 contains an overview of the used
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Figure 4.2.: Seismic noise for three directions measured on top of the concrete block of
the passive optical table isolation. The measurement axes coincide with the coordinate
system defined in fig. 4.6.
Top: Displacement PSD against logarithmic frequency. The spectrum decreases until it
reaches a plateau around 1 Hz of ≈ 1 × 10−12 m2 Hz−1 and leads to a resonance peak at
around 2 Hz after which it further decreases. The self noise of the seismometer increases
above 10 Hz [49], which might be the cause for the additional peak at higher frequencies.
Bottom: Zoom around the resonance peak with linear frequency axis to the region where
the seismometer has a flat response.
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Figure 4.3.: FEM simulation of the displacement transfer functions 𝜒 for the seismic iso-
lation stage in COMSOL Multiphysics®. In the simulation, a displacement to the ground
of 1 µm is applied and the resulting displacement is averaged over the top plate. The
transfer function 𝜒𝑖𝑗 denotes a ground displacement Δ𝑖 causing a top displacement Δ𝑗 for𝑖, 𝑗 ∈ {𝑥, 𝑦, 𝑧}. The coordinate system is the same as given in fig. 4.6. A frequency depen-
dent loss factor for FPM is assumed as measured in [53]. The simulation was performed
by Alexander Franke.
Top: Transfer function from displacement in 𝑥-direction to all three directions 𝑥, 𝑦, 𝑧.
Bottom: Transfer function from displacement in 𝑧-direction (up-down) to all three di-
rections 𝑥, 𝑦, 𝑧.
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Table 4.1.: Material parameters used in the FEM simulation for the isolation stage.

Material parameter Symbol Steel FPM
Young’s modulus 𝐸 200 GPa 6.6 MPa
Density 𝜌 7.9 × 103 kg m−3 2 × 103 kg m−3
Poisson’s ratio 𝜈 0.29 0.48

material parameters in the simulation. The top of fig. 4.3 shows the simulated
transfer function for displacement in 𝑥-direction to all three spatial directions. The
coordinate system is the same as defined in fig. 4.6, where the 𝑥-axis is along the
movement of the main pendulum mode. The inset shows a zoom onto the lower
frequency part. One can see a small resonance at around 3 Hz for 𝜒𝑥𝑥 and 𝜒𝑥𝑧 of the
otherwise relatively constant transfer function. For higher frequencies, it decreases
significantly to around 1 × 10−16 around 300 Hz. Above 700 Hz it rises again due to
resonances of the steel plates. The general trend is the same for initial displacement
in 𝑧-direction, which is shown below. Thus, this passive isolation should provide
a good reduction of seismic excitation at higher frequencies. However, around the
center frequency of the main pendulum mode at 1.5 Hz, no significant isolation is
provided. For that reason, we will implement the active isolation discussed above.
A more detailed overview of the design consideration for the isolation stage can be
found in the master’s thesis of Alexander Franke [54] that I supervised during the
course of this work.

Damper Compression

Since the dampers are compressed under a weight load, the uncompressed height ℎ
for the different plates has to be determined in order to get the compressed heightℎ0 = 10 mm. The strain ℎ−ℎ0ℎ is connected via the Young’s modulus 𝐸 to the stress𝜎 = 𝐸ℎ−ℎ0ℎ [55, p. 372] from which the uncompressed height can be calculatedℎ = ℎ01 − 𝜎𝐸 . (4.1)

The stress per damper is 𝜎 = 𝑚𝑔𝑁𝜋𝑟2 (4.2)

where 𝑁 is the number of dampers, 𝑟 = 5 mm the radius of the damper and 𝑚 is
the mass of the weight load above. The uncompressed heights with three dampers
per plate for the lower plates were much larger than the diameter resulting in a
thin long cylinder. This made the isolation stage very unstable and a new approach
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Table 4.2.: Number of FPM dampers for the seismic isolation stage. The plates are
numbered from top to bottom. The Young’s modulus of FPM is 𝐸FPM = 6.6 MPa. The
second table shows the masses of the different loads.

# of dampers mass (kg) stress
damper (MPa) height (mm)

plate
1 3 14.92 0.62 11.0
2 3 22.79 0.95 11.7
3 6 30.67 0.64 11.1
4 6 38.55 0.80 11.4
5 6 46.42 0.97 11.7
6 12 54.30 0.56 10.9
7 12 62.17 0.65 11.1
8 12 70.05 0.73 11.2

mass (kg)
description
top plate 8.00
normal plate 7.88
interferometer spacer 4.07
mirror positioner 0.71

with more dampers such that the stress per damper stays roughly the same is used.
Table 4.2 shows the resulting heights for each plate, where the plates are counted
top to bottom. The Young’s modulus of the FPM was measured by Henry Frädrich
for his master’s thesis as 𝐸FPM = 6.6 MPa.

An exploded CAD view of the final isolation stage is shown in fig. 4.1 on the bottom
right. One can see the different number of dampers for the top and bottom plate.
The three bigger holes go through each plate and are used for alignment and for
measurements of the total height. A column of these holes is visible in the half cut
through he vacuum assembly in fig. 4.1 in the top right.

The above calculations used a stationary model were the strain results instanta-
neously from the applied stress. However, real physical system often experience
creep and the stationary state is only reached asymptotically. Such behavior can be
modeled with the standard linear solid (SLS) in Kelvin-Voigt form where a single
spring is put in series with a so called Maxwell element, a spring parallel to a vis-
cous dashpot that introduces an exponential time dependence [56, 57]. Figure 4.4
shows this model (right) and the measured height of the isolation over time after
the interferometer was put on top (left). The height decreased instantaneously and

34



4.3. Pendulum

0 20 40 60
time (h)

125.5

126.0

126.5

127.0

127.5

he
ig

ht
(m

m
) 𝜏 = 24(5) h

ℎ∞ = 125.68(9) mm

with interferometer
without interferometer

dashpot

spring
Maxwell element

Figure 4.4.: Left: Measured height of the seismic isolation stage before and after the
interferometer was put on top. The time dependent creep was fitted using eq. (4.3).
Right: Schematic drawing of the Kelvin-Voigt SLS with a single spring in series with a
Maxwell element that consists of a spring in parallel with a viscous dashpot.

then experienced a time dependent creep that was fit using the functionℎ(𝑡) = ℎ∞ + (ℎ0 − ℎ∞) exp (−𝑡𝜏) (4.3)

with the stationary value ℎ∞ = 125.68(9) mm and the relaxation time 𝜏 = 24(5) h.
It takes multiple days for the isolation stage to settle to the final position which is2 mm lower then the designed value of 127.5 mm, which can be compensated by the
alignment of the incoming beam.

4.3. Pendulum

The following section explains the ideas and concepts to set up a high Q pendulum
with a novel cuboid test mass design and a suspension system that allows for a
parametric drive of the pendulum. The moments of inertia for the test mass and
the expected eigenfrequencies for multiple modes of the system are calculated and
the installation process of the pendulum is described.

4.3.1. Suspension

The pendulum is suspended by two loops of tungsten wire with radius 𝑟wire = 20 µm
and density 𝜌wire = 19.3 g cm−3[58]. The wires are clamped between two metal rods
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Figure 4.5.: Suspension system. Left:CAD drawing with a cut through the suspension
clamping. The suspension wire is clamped between the two metal rods in the center.
Right: Photo of the installed suspension system on top of the interferometer spacer with
the two support beams (SB). The amplified piezo actuator (APF) is attached to the base
plate (BP) at the bottom and to the suspension plate (SB) at the top. The two angled
clamps (AC) are screwed to the suspension plate pressing the metal rods against the
suspension wire.

that are pushed together with an angled clamp that is screwed to the suspension
plate. This creates ideally a single point of contact and thus reduces losses due to
friction in the suspension system. A schematic view and a photo of the suspension
can be seen in fig. 4.5. The suspension plate is screwed to an amplified piezoelectric
actuator (Thorlabs APF503) that shrinks in height under positive voltage (up to150 V) with a displacement range of 310 µm. The piezo actuator is attached to a
base plate at the bottom that connects to the two support beams.

4.3.2. Test Mass

The test mass for the pendulum is a cuboid made from Suprasil®3001(Heraeus) with
width 𝑏 = 25 mm and a square surface with side length 𝑎 = 29 mm. The square is
rotated by 45° when suspended such that the tips are facing sideways. This creates
a sharp corner as a bending point for the suspension wire which is thought to reduce
friction losses due to the wire sliding on the test mass. A schematic overview of the
suspended test mass from multiple directions is shown in fig. 4.6. The sensing laser
is traveling in x-direction and is reflected off this square surface which is coated
with a highly reflective dielectric coating with a power transmissivity 𝑇 = 150 ppm
for the main laser wavelength 𝜆 = 1550 nm. For the secondary laser wavelength𝜆 = 1064 nm the transmissivity is 𝑇 = 1 %. The two square surfaces have a radius
of curvature (RoC) of 690 m to form a stable resonator cavity with length 𝐿cav = 𝑏.
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Figure 4.6.: Schematic view of the MassQ pendulum from three directions. The test
mass is suspended by two wire loops converging to a single point (see side view). The
movement for the pitch and yaw modes are indicated in the side and top view, respectively.
The sensing laser is traveling in 𝑥-direction and is reflected of the surface in the front
view. The striped area indicates a quarter of the volume that is used for the integra-
tion to calculate the moments of inertia. The dotted lines indicate the movement of the
perpendicular mode.

The resulting cavity waist radius is 𝑤0 = 1.002 mm which leads to a low diverging
beam inside the interferometer. An overview of the test mass parameters is given
in table 4.3. The actual mass of the test mass was weighed with a precision scale to𝑚 = 47.657 g.

The two suspension wire loops are spaced a small distance apart on the bottom of
the test mass and converge to a single clamping point as can be seen in fig. 4.6 in
the side view.

Moments of Inertia

In order to calculate the pendulum’s moments of inertia 𝐼𝑆 relative to axes through
the suspension point, it is sufficient to compute the moments of inertia 𝐼CM relative
to axes through the CM and use Steiner’s parallel axis theorem to shift the axes
by the pendulum length 𝐿 yielding 𝐼𝑆 = 𝐼CM + 𝑚𝐿2. The moment of inertia is
generally given by integrating over all mass elements d𝑚 [55, pp. 300-301]𝐼 = ∫𝑉 𝑟2⟂ d𝑚 = ∫𝑉 𝑟2⟂𝜌( ⃗𝑟) d𝑉 (4.4)
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Table 4.3.: MassQ test mass parameters.𝑚 47.657 g𝑎 29 mm𝑏 25 mm
RoC 690 m𝑤0 1.002 mm
T(1550 nm) 150 ppm
T(1064 nm) 1 %
material Suprasil®3001

where 𝑟⟂ is the perpendicular distance to the axis of rotation and 𝜌( ⃗𝑟) the density
inside the volume 𝑉.

For a body with constant density, this can be written as𝐼 = 𝜌 ∫𝑉 𝑟2⟂ d𝑉 = 𝑚𝑉 ∫𝑉 𝑟2⟂ d𝑉 . (4.5)

In the case of the MassQ pendulum in fig. 4.6, the moments of inertia for the three
main axes through the CM are given by

𝐼𝑖 = 4 𝑚𝑎2𝑏 𝑏∫0 d𝑥 𝑎̃∫0 d𝑦 𝑎̃−𝑦∫0 𝑟2⟂,𝑖 d𝑧 , 𝑖 ∈ {𝑥, 𝑦, 𝑧} (4.6)

where 𝑟2⟂,𝑥 = 𝑦2 + 𝑧2 and correspondingly for 𝑦 and 𝑧. The integration is executed
over a quarter of the volume due to symmetry (striped area in fig. 4.6) and com-
pensated by the factor 4. The integration bounds for the striped region are given
by ̃𝑎 = 𝑎√2 and the volume of the test mass is 𝑉 = 𝑎2𝑏. Evaluating these integrals
(using SymPy [59]) yields 𝐼𝑥 = 𝑚𝑎26 (4.7)𝐼𝑦 = 𝐼𝑧 = 𝑚 (𝑎2 + 4𝑏2)12 . (4.8)

Test Mass Holder

In order to make characterization measurements on the test mass and to help with
the installation of the pendulum into the interferometer, a holder for the mass was
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Figure 4.7.: Test mass holder. Left: CAD drawing of the holder with the test mass
sitting on top of the PTFE spheres that are inset into the holder. Right: Photo of the
coated test mass inside the holder viewed in the direction of the laser.

designed. The test mass rests on the two lower angled side faces on four polytetraflu-
oroethylene (PTFE)(also known as Teflon®) spheres and is restricted in motion in
the x-direction by two fixed PTFE spheres and two adjustable screws with PTFE
tips. This allows adjustment of the movement range for the pendulum. A CAD
drawing of the holder as well as a photo of the resting test mass in the holder is
shown in fig. 4.7.

4.3.3. Pendulum Eigenfrequencies

In this section I present the eigenfrequencies for multiple mechanical modes of the
pendulum. Each mode is modeled independently as a single degree of freedom
harmonic oscillator. An overview of the different modes is given in fig. 4.8.

Main Mode

With eqs. (2.35) and (4.8) one can calculate the eigenfrequency for the main pen-
dulum mode rotating around the 𝑦-axis (test mass movement in 𝑥-direction)𝜔0,main = 𝜔0,𝑦 = √ 12𝐿𝑔12𝐿2 + 𝑎2 + 4𝑏2 . (4.9)

It depends on the moment of inertia of the suspended mass.
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Figure 4.8.: Mechanical modes of the suspended pendulum. The dashed lines indicate
the movement of the test mass and the suspension wires.
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Perpendicular Mode

The perpendicular pendulum mode arises due to the two separated suspension at-
tachment points along the 𝑦-direction. This keeps every point of the suspended mass
moving on an arc with radius 𝐿 as shown with the dotted lines in fig. 4.6. Thus the
frequency for this mode is independent of the moment of inertia and is the same as
for the mathematical pendulum eq. (2.36).

Pitch and Roll Mode

The pitch and roll mode store energy in the elasticity of the suspension wires. These
exert a restoring torque on the suspended mass due to the off-center attachment
points. The following derivation of the eigenfrequency is based on work by my
colleague Daniel Hartwig.

The spring constant 𝑘wire is determined by the Young’s modulus of the wire material𝐸 and the area of the wire’s cross section 𝐴 by Hooke’s law [55]𝑘wire = Δ𝐹Δ𝐿 = 𝐸𝐴Δ𝐿 Δ𝐿𝐿 = 𝐸𝐴𝐿 (4.10)

where Δ𝐹 is the force and Δ𝐿 the distance the wire is displaced from the equilibrium
length 𝐿. The torque from 𝑁 wires that are placed a distance 𝑑2 from the center of
mass is then 𝜏 = 𝑁𝑑2Δ𝐹 = 𝑁𝑑2𝑘Δ𝐿 = 𝑁4 𝑘𝑑2𝜑. (4.11)

Here I used the small angle approximation to express the length change in terms of
the rotation angle 𝜑 as Δ𝐿 = 𝑑2𝜑.

From the EOM 𝐼𝜑̈ + 𝑁4 𝑘𝑑2𝜑 = 0 (4.12)

we can extract the eigenfrequency for the elastic pendulum modes as𝜔0,elastic = √𝑁4 𝑘𝑑2𝐼 = 𝑑√𝑁4 𝐸𝐴𝐼𝐿 . (4.13)

Yaw Mode

As an approximation for the yaw mode frequency, we assume rigid suspension wires
that remain at a constant length 𝐿. When the test mass rotates around the 𝑧-axis
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by an angle 𝜙, the suspension attachment points move on a circle with radius 𝑟 as
indicated by the dotted line in the top view of fig. 4.6. In our case, that is

𝑟 = √ ̃𝑎2 + (𝑑pitch2 )2. (4.14)

The pendulum mass is lifted and energy is stored in the gravitational field. Using
small angle approximations, we can estimate the resulting mode frequency. Then
the suspension point is displaced from its equilibrium position by Δ𝑥 ≈ 𝑟𝜙. This
is essentially a gravity pendulum as in fig. 2.4. The wire compensates the radial
component of the gravitational force, giving a restoring force𝐹𝜏 ≈ 𝑚𝑁𝑔𝜃 ≈ 𝑚𝑁𝑔Δ𝑥𝐿 (4.15)

along Δ𝑥. This force acts as a torque 𝜏 to the yaw rotation from each of the 𝑁
suspension wires 𝜏 = 𝑁𝑚𝑔𝑟2𝑁𝐿 𝜙 = 𝑚𝑔𝑟2𝐿 𝜙. (4.16)

Using this torque in the EOM 𝐼𝑧 ̈𝜙 + 𝑚𝑔𝑟2𝐿 𝜙 = 0, (4.17)

one can determine the eigenfrequency

𝜔0,yaw = √𝑚𝑔𝑟2𝐼𝑧𝐿 . (4.18)

Similar approximations have been employed for a two wire suspension in [60]. How-
ever, since this assumes rigid suspension wires, the real mode frequency is expected
to be higher due two an additional force from the elasticity of the wire.

Bounce Mode

The bounce mode frequency is that of an elastic pendulum where each suspension
wire takes a load of 𝑚𝑁 . Using the spring constant from eq. (4.10), the eigenfrequency
for the bounce mode is then 𝜔0,bounce = √𝐸𝐴𝑁𝑚𝐿 . (4.19)
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Violin Modes

The violin modes of the suspension wire can be approximated by the natural fre-
quencies of an ideal string and are given by [61]𝜔𝑛 = 𝑛𝜋𝐿 √ 𝑚𝑔𝑁𝜇 (4.20)

where 𝜇 = 𝜋𝑟2
wire𝜌wire is the wire’s linear mass density. Higher order violin frequen-

cies are integer multiples of the fundamental mode frequency.

An overview of the different pendulum eigenfrequencies is shown in table 4.4. The
designed pendulum length was 𝐿 = 12.01 cm, however, this is most probably not the
real pendulum length since it is not possible to determine the length precisely when
suspending the pendulum in the experiment. Another length for the calculation was
chosen such that the main pendulum mode resembles the measured eigenfrequency
better for comparison. The Young’s modulus for these calculations was fitted such
that the frequencies for the roll and bounce mode were close to observed frequencies
in the experiment (compare section 5.2). This resulted in 𝐸tungsten = 355 GPa which
is in good agreement with values in the literature [62, 58]. Since the wire distance for
the pitch mode 𝑑pitch is not exactly known, I fitted a value to the observed frequency
of the pitch mode. This resulted in 𝑑pitch = 7.5 mm, which is a reasonable value for
the installed pendulum. For the wire’s density, the value 19.3×103 kg m−3 provided
by the manufacturer was used [58].

4.3.4. Pendulum Installation Procedure

The installation process of the pendulum into the interferometer is a challenging
task due to the small wire diameter and the tendency of the wires to curl. At the
beginning, only the two support beams should be installed on the interferometer
spacer. The installation procedure is as follows:

1. First, the holder for the test mass is placed inside the cutout in the interfe-
rometer spacer and secured in the correct position by screwing the attached
screws against the spacer wall.

2. The next step is to place the two wire loops into the cutout. For this, the
tungsten wire should be cut to a length of approximately 0.5 m and hung
down from one end between two fingers to check for entanglement and remove
any curls.

3. Place both wires such that they run in parallel straight over the cutout.

43



Chapter 4. Experimental Setup

Table 4.4.: Calculated eigenfrequencies for the different pendulum modes. 𝐿 = 12.010 cm
is the designed pendulum length and 𝐿 = 11.824 cm was fitted such that the main pendu-
lum mode (pendulum y) corresponds to the measured value. I assumed a Young’s modulus
for tungsten of 𝐸tungsten = 355 GPa.

𝜔0 𝑓0(𝐿 = 12.010 cm)(Hz) 𝑓0(𝐿 = 11.824 cm)(Hz)
mode

math./perpendicular √ 𝑔𝐿 1.4382 1.4494

pendulum y / main 2√3√ 𝐿𝑔12𝐿2+𝑎2+4𝑏2 1.4245 1.4352

roll
√3𝑎√ 𝐴𝐸𝑁𝐿𝑎2𝑚2 38.4800 38.7815

pitch (𝑑 = 7.5 mm) √3𝑑√ 𝐴𝐸𝑁𝐿𝑚(𝑎2+4𝑏2) 9.9859 10.0642

yaw (𝑑 = 7.5 mm) √3√ 𝑔(2𝑎2+𝑑2)𝐿(𝑎2+4𝑏2) 1.7967 1.8108

bounce √𝐴𝐸𝑁𝐿𝑚 44.4329 44.7810
1st violin 𝜋√ 𝑔𝑚𝐿2𝑁𝜇𝑤𝑖𝑟𝑒 578.6692 587.7721

4. Place the test mass centrally onto the wires and lower it down onto the holder
pulling the wires down into the cutout. This holds the wires under tension
and prevents curling.

5. Screw the first plate to the support beams and attach the piezo actuator and
the suspension plate.

6. Fiddle the two wires through the holes in the two plates and through the
angled clamp.

7. Place the metal rods from both sides against the wire into the grove and screw
down the clamp but do not fasten the screws yet. The wire is hold in place
by the weight of the clamp.

8. Repeat the steps for the other ends of the wire loops.
9. Apply 150 V to the piezo actuator to lower the suspension.

10. Pull on the wires to tension them slightly without lifting the test mass and
tighten the clamp screws carefully.

11. Reduce the piezo voltage to 75 V to pull out the pendulum to the final resting
position.

An improvement that would help drastically with step 6 is to add small slits to
the holes in the plates. With that one can place the wires into the holes from the
side.
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4.4. Interferometer

In this section, I describe the design considerations for the interferometer. A cen-
tral monolithic interferometer spacer serves as attachment point for the optics and
the test mass suspension. I calculate the curvature for the test mass as well as
the recycling mirrors and simulate the cavity parameters for three different test
mass materials. I further describe the control of the cryo-compatible electric mirror
positioners used for the steering mirrors and the recycling mirrors.

4.4.1. Interferometer Design

The interferometer design uses a Michelson-Sagnac topology with a beamsplitter
and two steering mirrors that fold the interferometer arms by 45° into a loop where
the two counter-propagating beams take the same optical path. Placing a highly
reflective mirror into the path creates a Michelson interferometer where the mirror
is the common end mirror for both arms. This reduces the displacement noise
of the mirror due to laser intensity noise depending in the splitting ratio of the
beamsplitter. For our interferometer, the input and output paths are also deflected
each by 45° from two fixed mirrors such that they lie on the same optical axis as
the opposing input and output windows of the vacuum tank. Power- and signal-
recycling are possible using an additional steerable mirror in the input and output
of the interferometer, respectively. These four mirrors are controlled electronically.
One idea to help with the alignment to the test mass was to design it itself as a cavity.
With this, the cavity axis can be used as a reference to match both interferometer
arms to. This makes sure that the opposing laser beams hit the test mass on the
same axis, reducing an additional torque to the pendulum from off-center radiation
pressure forces. Furthermore, when the laser frequency is tuned off-resonant to the
test mass cavity, the optical power inside is suppressed below the transmissivity
of the mirror around the anti-resonance which reduces the absorption and thus
heating.

Monolithic Spacer

With later cryogenic use in mind, a central monolithic interferometer spacer serves
as the attachment point for all optics, to provide mechanical stability and good heat
transport. The spacer was milled from a single block of aluminum. A CAD drawing
of the spacer with the spatial path lengths is shown in fig. 4.9. It provides cutouts
for free movement of the electric mirror positioners that are screwed on. The fixed
mirrors are pressed directly onto the spacer for a good thermal contact. The position
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Figure 4.9.: CAD drawing of the interferometer spacer with attached mirror positioners
and test mass placed inside the cutout. The spatial path lengths for the laser beams in
the interferometer are indicated.
Right: Spacer without attachments. Here one can see the cutouts for the electric mirror
positioners as well as the flat wall to place the fixed mirrors against.

of the pendulum is placed slightly off center to compensate the optical path length
difference by transmission through the beamsplitter. Holes for the laser beams are
drilled into the spacer. It has a total mass of around 4 kg.

4.4.2. Optics

I designed the interferometer optics for a nearly collimated beam with low divergence
inside the interferometer with a large beam radius of 1 mm on the test mass surface to
reduce coating thermal noise. We considered three materials for the test mass cavity,
Suprasil®3001, silicon and sapphire, requiring various curvatures for the optics due
to different indices of refraction. Silicon and sapphire are expected to have a lower
thermal noise contribution at cryogenic temperatures [63]. However, for the room
temperature experiment, we use Suprasil®3001 for the test mass material since it has
better optical properties at room temperature compared to silicon and sapphire.

Mirror Curvature

First, I determined the surface curvature for the test mass cavity for the main laser
wavelength of 1550 nm. The cavity length was set to 25 mm by the thickness of
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Figure 4.10.: Beam radius 𝑤1 on the test mass surface depending on the RoC for different
materials and a wavelength of 1550 nm. The gray dotted line indicates the target size of1 mm.

an available piece of sapphire. For a symmetric test mass, one can calculate the
beam radius on the surface 𝑤TM using eq. (3.34) with 𝑅1 = 𝑅2 = RoCTM. This is
shown in fig. 4.10 for the three considered materials. The gray dashed line indicates
the desired beam radius of 1 mm. The refractive index 𝑛 as well as the calculated
RoCTM for the materials are summarized in table 4.5. For silicon, the refractive
index at 100 K is used while for Suprasil®3001 and sapphire, the refractive index
at room temperature is considered. Since the test mass is also one mirror for the
recycling cavities, for good mode matching the beam size on this mirror has to be
the same𝑤1 (𝑅1=−RoCTM,𝑅2=RoCPRM,𝑙=𝑙PR) = 𝑤1 (𝑅1=RoCTM,𝑅2=RoCTM,𝑙=𝑙TM) . (4.21)

Solving for RoCPRM yields the appropriate curvature for the recycling mirror. The
power recycling cavity length is fixed due to space constraints of the mirror posi-
tioner and the vacuum tank and was set to 𝑙PR = 23 cm. The resulting curvature
for the recycling mirrors is also shown in table 4.5 together with the beam radius𝑤PRM on the mirror. Since the signal recycling cavity length is with 𝑙SR = 23.5 cm
slightly longer, the corresponding radii of curvature RoCSRM are decreased slightly.
However, this difference lies within the manufacturing error and should not be prob-
lematic due to the small beam divergence. Thus, we ordered mirrors with a RoC =17.75 m to be used for power and signal recycling.

Cavity Parameters

I simulated the interferometer cavities with the software Finesse 2 [67] and ex-
tracted the cavity parameters for the two laser wavelengths. Table 4.6 shows the
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Table 4.5.: RoC and beam radius 𝑤 for the curved surfaces of the test mass and re-
cycling mirrors. Three materials with different refractive indices 𝑛 are considered. For
Suprasil®3001, the index for 1550 nm is calculated using the Sellmeier parameters provided
by the manufacturer [64].

Parameter Suprasil®3001 Silicon Sapphire𝑛(𝜆 = 1550 nm) 1.44342 [64] 3.4467 @ 100 K [65, 66] 1.7462 [63, 66]
RoCTM 690 m 3400 m 1000 m𝑤TM 1 mm 1 mm 1 mm
RoCPRM 17.78 m 17.99 m 17.75 m
RoCSRM 17.43 m 17.63 m 17.40 m𝑤PRM ≈ 𝑤SRM 1.008 mm 1.006 mm 1.006 mm

Table 4.6.: Parameters for the three interferometer cavities for both laser wavelengths.
Since the recycling mirrors are almost transparent for 1064 nm, here only the test mass
cavity parameters are shown.

1550 nm 1064 nm
Cavity Parameter𝑅TM > 99.985 % 99 %𝑅RM < 99.7 % < 0.3 %𝑛TM 1.444 1.450
Power recycling Finesse 1992 -

FSR (MHz) 652 -
Linewidth (kHz) 327 -
Optical Roundtrip Length (cm) 46 -

Test mass Finesse 20942 313
FSR (MHz) 4152 4136
Linewidth (kHz) 198 13232
Optical Roundtrip Length (cm) 7 7

Signal recycling Finesse 1992 -
FSR (MHz) 638 -
Linewidth (kHz) 320 -
Optical Roundtrip Length (cm) 47 -
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power reflectivities 𝑅TM and 𝑅RM for the test mass and the recycling mirrors, re-
spectively, for both wavelengths. The refractive index for the Suprasil®3001 test
mass is calculated using the Sellmeier equation [68] with the parameters provided
by the manufacturer [64].

For 1550 nm, the test mass has a high reflectivity 𝑅TM = 99.985 % and thus a finesse
of ≈ 2.1×104, providing a good intracavity power suppression for off-resonant light.
The reflectivity for the recycling mirror 𝑅RM = 99.7 % yields a recycling gain of≈ 1330 (eq. (3.56)). For an input laser power of ≈ 2 W, this yields a power above1 kW on each test mass surface. The planned measurement range of up to 800 Hz lies
well within the signal recycling cavity linewidth of 320 kHz. With this configuration
the free-mass SQL (eq. (3.51)) for a mass 𝑚 = 100 g would be reached at around300 Hz. For 𝑚 = 50 g, the frequency increases to around 440 Hz.

The recycling mirrors are nearly transparent for the 1064 nm light, which enables
radiation pressure interactions with the test mass without the need for a cavity
resonance.

Beamsplitter

The beamsplitter inside the interferometer is optimized for 1550 nm light in s-
polarization with an angle of incidence (AOI) of 45°. The backside is coated with
a high performance anti-reflection (AR) coating with a power reflection < 25 ppm
(coating 17021R-19045R). The coating was measured by Pascal Geweke as part of
his master’s thesis [69].

The beamsplitter is mostly transparent for s-polarized 1064 nm light with a power
transmission around 93 %. Thus, most of this light hits the test mass on one side.
This asymmetry is needed to apply an effective force due to radiation pressure. Also
most of the light is reflected back into the interferometer input port, where it can
be used for the detection of the deflection angle (see section 4.7.2).

Since light is transmitted through the beamsplitter substrate, a good thermal contact
to the spacer is needed to reduce heating from absorption, especially when using
power recycling. For this, the beamsplitter’s backside is pressed with leaf springs
against a holder, that provides a hole for the transmitted beam to pass through.
The holder is then screwed to the spacer. For a better thermal contact, one can use
additional gold foil at the contact areas.
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Figure 4.11.: Mirror positioner and control.
Left: Photo of the cryo compatible mirror positioner showing the monolithic spring struc-
ture. On the backside, one can see parts of two of the three piezoknobs.
Right: Base cabinet for the mirror positioners. The blue boxes indicate the three control
units, of which each one can drive a single piezoknob at a time. This is why the piezoknobs
for each positioner are split across the control units as indicated by the red boxes, to be
able to drive all three knobs at the same time.
Bottom: Control diagram for the piezoknobs. The self written Python API is a wrapper
for the manufacturer provided command-line interface (CLI) that send commands to the
base cabinet via LAN.

4.4.3. Mirror Positioners

In order to be able to align the two steering mirrors as well as signal and power recy-
cling mirrors inside the vacuum, we use electric mirror positioners with three degrees
of freedom, which are attached to the monolithic interferometer spacer. These posi-
tioners were custom made by JPE [70] and are vacuum and cryo compatible. They
consist of a triangular monolithic center piece, which is machined such that it acts
as a spring. At the corners, three so called piezoknobs push against the monolithic
spring to adjust the mirror angle in three directions. By moving the piezoknobs
equally, it is possible to move the mirror linearly along the central axis. A photo
of these positioners is shown in fig. 4.11. The piezoknobs use a spindle and nut
inertia drive, which enables a step motion on nanometer scale which is driven by
an AC voltage [71]. The AC amplitude and frequency determine the step size and
frequency with a maximum of 150 Vpp and 600 Hz [72].
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Positioner Control

The piezoknobs are controlled via a base cabinet which can hold up to three indi-
vidual control units. Each of those units can connect to three piezoknobs. Since a
control unit can only drive one piezoknob at a time, we connect the three knobs for
single mirror positioner to three individual control units. This enables us to move
a single mirror with three knobs at the same time. A photo of the base cabinet
is shown in fig. 4.11 on the right side. The cable connections for a single mirror
positioner are marked. Below, the control scheme is shown. The base cabinet is
connected via LAN to the local laboratory network. A manufacturer provided CLI
enables the control of individual piezoknobs. For consistent control and to be able
to control a whole positioner, I programmed a Python [73] based object-oriented
application programming interface (API) that wraps around the CLI. An additional
graphical user interface (GUI) based on a Jupyter Notebook [74] enables the use
of a persistent configuration with named positioners for easier and more consistent
control. More details can be found in appendix D.

4.5. Optical Setup

In the optical setup, we use two wavelengths that are overlapped in front of the
vacuum tank to co-propagate inside the interferometer. A simplified schematic view
of the optical table is shown in fig. 4.12. Since the windows of the vacuum tank are
higher than the beam height on the table, an additional breadboard with a height of18.9 cm is used to raise part of the table. This makes it possible to place alignment
optics with a beam height of 7.5 cm on the input side of the interferometer. We use
s-polarized light to enter the vacuum tank since the optics inside the interferometer
are optimized for this polarization. By using a flip mirror directly in front of the
input view port, the test mass can be characterized outside of the vacuum tank
with both wavelengths at the correct waist position. The two laser wavelengths are
overlapped directly in front of the vacuum tank only followed by a pair of alignment
mirrors, that are highly reflective for both wavelengths.

4.5.1. 1550 nm Setup

The 1550 nm light is shown in red color in fig. 4.12. In order to prevent back reflection
into the laser, a Faraday isolator is used behind the fiber laser’s collimator after which
a polarizing beamsplitter (PBS) with a half-waveplate in front is used to adjust the
optical power. Since the spatial mode from the fiber collimator is distorted, it is send
through with a mode-cleaner ring cavity. In order to keep the cavity on resonance,
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Figure 4.12.: Schematic overview of the optical setup. The two wavelengths of 1550 nm and1064 nm are displayed with red and blue color, respectively. The gray dashed line indicates the
optical table and the solid black line shows the area, where the surface is raised with an additional
breadboard to adjust the beam height to the window height of the vacuum chamber. The green
box highlights the characterization setup for the test mass cavity for which the light can be picked
up with a flip mirror in front of the vacuum chamber, which is indicated with the gray box. The
detection setup in the interferometer output port as well as for the deflection angle of the 1064 nm
light are highlighted by the orange boxes. The grayed out parts are not setup on the table at the
moment. A detailed explanation of the optical setup is given in the text. The legend for the optics
can be found in fig. A.1
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we use the Pound–Drever–Hall technique [75]. An electro-optic modulator in front
of the cavity imprints sidebands on the light. A photodiode placed in reflection of
the ring cavity demodulates the measured signal at the sideband frequency to create
the Pound–Drever–Hall error signal.

Part of the transmitted light through the mode cleaner can then be used as the
local oscillator field for the optical homodyne detection which is currently not im-
plemented (grayed out in fig. 4.12). The other part is transferred to the upper
breadboard with a periscope. Since the piezo that changes the mode cleaner cavity
length is not able to follow when the laser frequency is scanned over a large range,
we also use an optical fiber to clean the mode and transfer it to the upper table. The
beam paths from the fiber and the transmitted light are combined with a PBS on
the upper breadboard. They both can be matched to a reference cavity, which is not
set up at the moment (grayed out in fig. 4.12). This setup allows to scan the laser
frequency for mode matching to the test mass while also matching the transmitted
light from the mode cleaner.

Behind the PBS, a Faraday rotator is used to separate the back reflected light coming
from the interferometer. In order to clean the polarization, a second PBS is used
that is turned such that it reflects the light upwards into a beam dump. This way,
the transmitted light has a clean s-polarization. After that, two lenses match the
beam to the test mass cavity mode. After overlapping with the 1064 nm on the
dichroic mirror, the beams are send into the interferometer in the vacuum tank. For1550 nm and s-polarization, the dichroic mirror has a power reflectivity of 99.4 %.
Behind the output port, a second periscope is used to shift the beam back down to
the original beam height. A second dichroic mirror then filters out residual 1064 nm
light that makes it through to the interferometer output. The 1550 nm beam is then
split up for the quadrant photodiode (QPD) to measure the deflection and a single
photodiode for the interferometric measurement signal.

4.5.2. 1064 nm Setup

The 1064 nm light is shown in blue color in fig. 4.12. Behind the laser head, again a
Faraday isolator is used to prevent back reflection into the laser. The spatial mode
of this laser is fine and no additional mode cleaner is needed. A PBS in combination
with a half-waveplate is used to adjust the optical power to the interferometer.
Behind that, the polarization is again cleaned to get s-polarized light. A mirror
with low transmission is then used to pick up part of the back reflected light coming
from the interferometer for the detection of the deflection angle. With another
PBS, the optical power for the QPD can be adjusted. The reflected light of the
pick-up mirror is mode matched to the test mass cavity with two lenses. A pair of
mirrors afterwards is used to overlap the two wavelengths on the dichroic mirror.
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For 1064 nm and s-polarization, the dichroic mirror has a power transmission of99.2 %. Inside the interferometer, most of the 1064 nm light is transmitted through
the beamsplitter, gets reflected from one side of the test mass and is mostly reflected
back into the input port of the interferometer, where it is used for the detection of
the deflection angle.

4.6. Laser

In order to provide the two wavelengths of 1550 nm and 1064 nm, we use two com-
mercially available laser systems that will be discussed in this section.

4.6.1. 1550 nm

The 1550 nm laser is a fiber based seed and amplifier combination (Koheras BOOSTIK
HP from NKT Photonics) providing a maximum CW output light power of 5 W.
The laser frequency can be changed by applying an external voltage to a build in
piezo that changes the fiber laser cavity length. The allowed voltage range is 0 V
to 200 V. A self-build high voltage amplifier with a gain of 100 limits the output
voltage to not exceed the maximum of 200 V to prevent damage to the laser. A
second method for shifting the laser frequency is via the temperature which can be
changed by hand in steps of 10 mK on the laser controller.

The following describes the calibration for the frequency scanning of the 1550 nm
laser. With this calibration factor, the frequency shift can be calculated from the
applied voltage, either to the laser piezo or temperature actuator. As a frequency
reference, I used the triangular mode cleaner cavity with a FSR of 705 MHz with a
build in piezo to scan the cavity length.

Piezo Scanning

To calibrate the piezo scanning, I applied a voltage ramp to the laser piezo through
a high voltage amplifier with a gain of 100 and recorded the mode spectrum over
one ramp slope as shown in fig. 4.13 on the left side. I extracted the positions of the
peak values in the spectrum that are repeating after one FSR and the corresponding
ramp voltage. The piezo calibration factor is then the slope of a linear fit through
these three points as shown on the right of fig. 4.13 resulting in a frequency shift of12.30(1) MHz V−1.
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Figure 4.13.: Piezo frequency scanning calibration for the 1550 nm laser.
Left: Cavity transmission signal and voltage ramp to the piezo over time for one ramp
slope. The ramp voltage is scaled by a factor 100 to show the actual voltage at the piezo
through a high voltage amplifier. The crosses indicate the positions of one full cavity FSR.
Right: Frequency shift relative to the left most cavity mode calibrated via the known
cavity FSR of 705 MHz against ramp voltage. The slope of the linear fit (dashed line) is
the calibration factor for the piezo scanning of 12.30(1) MHz V−1.

Temperature Scanning

For calibration of the frequency shifting via temperature, I scanned the length of the
reference cavity with the piezo that is attached to the cavities back mirror with a
fast ramp to get a mode spectrum on the oscilloscope. I marked the position of the
first main peak and shifted the laser frequency by adjusting the laser temperature
by hand until the peak one FSR further reached the mark. From these points and
the corresponding temperature, the calibration factor is the slope of a linear fit,
resulting in a frequency shift of −4.75 GHz K−1.

4.6.2. 1064 nm

The 1064 nm laser is a solid-state Nd:YAG CW laser (Mephisto from Coherent) with
a maximum output light power of 2 W. The output power can be modified with an
external voltage in the range from −10 V to 10 V providing a modulation range of
around 0 W to 2 W for the output power. The laser frequency can be changed with
a bandwidth of around 1 Hz by temperature. This can be modified by an external
voltage in the range −10 V to 10 V with a calibration factor of −3 GHz V−1 [76]. It
also provides a fast scanning method with a piezo with an input voltage range of0 V to 65 V with calibration factor of 1 MHz V−1 [76]. For this, we use a self-built
high voltage amplifier that provides only up to the maximum allowed voltage.
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Figure 4.14: Temperature frequency
scanning calibration for the 1550 nm laser.
The frequency shift was determined by
scanning the cavity length with a piezo
periodically to observe a mode spectrum.
A marker on the oscilloscope was placed
a the position of the highest visible mode
and the laser frequency then changed
slowly by temperature. After one cavity
FSR of 705 MHz, the same mode was
shifted onto the marker. The slope of the
dashed line is the temperature calibration
factor of −4.75 GHz K−1.
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4.7. Detection

We use two methods to detect the pendulum motion: Interferometric detection
and detection of the deflection angle. The signals from the detector can either be
recorded directly with a fast data acquisition card or with a digital lock-in amplifier
providing the possibility to demodulate the signal with a local oscillator frequency
and detect the quadrature components.

4.7.1. Interferometric Detection

For the interferometric detection, we currently use a single photodiode in the output
port of the interferometer for the 1550 nm light. Since at the moment, the pendulum
amplitude is still too high for a linear readout on a single fringe, this detection scheme
is only used to estimate the pendulum amplitude for now (see section 5.4). At a
later stage, we plan to use an optical homodyne detection scheme to operate at the
dark port of the interferometer.

4.7.2. Deflection Angle

In order to be able to measure the pendulum motion at amplitudes exceeding a
single interferometer fringe, we detect the deflection angle with a sensor that can
measure the beam position. In the first stage of the experiment, we used a QPD
(OSI Optoelectronics FCI-InGaAs-Q3000) in combination with a lens in the interfe-
rometer output port with the 1550 nm light. A QPD is a four segmented photodiode
that is split horizontally and vertically as shown in fig. 4.15. Using the difference in
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A B

C D

𝑥
𝑦

Figure 4.15: Schematic view of a
QPD. The photodiode is split hor-
izontally and vertically into 4 seg-
ments. Through the difference in
photo current of the respective seg-
ments, one can determine the beam
position in 𝑥- and 𝑦 direction (see
eq. (4.22)) linearly in a certain
range. Once the beam fully crosses
a split, the respective position signal
becomes constant.

photo current 𝐼 of the 4 segments, one can measure the vertical 𝑦 and horizontal 𝑥
position of a beam with a larger size compared to the width of the split as𝑥 = (𝐼A + 𝐼C) − (𝐼B + 𝐼D)𝐼A + 𝐼C + 𝐼B + 𝐼D

(4.22)𝑦 = (𝐼A + 𝐼B) − (𝐼C + 𝐼D)𝐼A + 𝐼C + 𝐼B + 𝐼D
(4.23)

This position measurement is only linear in a certain range. For large amplitudes,
when the beam only hits one side of the split, the signal becomes constant. The range
can be adjusted by changing the QPD distance to the focus of the lens. However, this
also changes the spot size and can lead to problems when the beam gets too small.
Since the two reflected beams from the test mass move with a phase of 180 deg
in opposite directions, the QPD would show no signal, when the interferometer
is aligned. Thus, we purposely misalign the steering mirror in one interferometer
arm to block the light on that side. In order to overcome these limitations, we
are planning to use a 2D lateral effect position sensor (Thorlabs PDP90A) in the
near future, which is only sensitive to the beam center position. Since it is not
sensitive to 1550 nm, we changed the optical setup to allow for a small pick-off of
the back reflected 1064 nm light in the input port. With this change, it is also
possible to measure the deflection angle when the interferometer is aligned, since
the beamsplitter is mostly translucent for 1064 nm light and the main part of the
reflected light comes from a single pendulum side.

4.7.3. Data Acquisition Card

For direct sampling of the measurement signal, we use a data acquisition card (Na-
tional Instruments PCIe-6374) with 16 bit resolution and a maximum sampling rate
of 3.571 MS/s. For spectral analysis, we use Welch’s method [50] on the time traces
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Figure 4.16: Working principle of a lock-in
amplifier. The input signal is split and mixed
with a local oscillator (LO) signal and a LO-
signal with a 90° phase shift, resulting in sum
and difference frequencies. Subsequent low
pass filtering removes the sum frequency and
only keeps the slowly varying in-phase com-
ponent 𝑋(𝑡) and quadrature component 𝑌 (𝑡)
of the complex signal 𝑍(𝑡) = 𝑋(𝑡)+i𝑌, which
can also be displayed in polar coordinates
with amplitude 𝑅(𝑡) and phase Θ(𝑡) in the
complex plane. The figure is based on [79].

𝑌 (𝑡)

𝑋(𝑡)
𝑅(𝑡)

input signal

LO

+90∘ Θ(𝑡)
to estimate the PSD. In order to fulfill the Nyquist–Shannon sampling theorem [77,
78], the sampling rate has to be at least twice as high as the frequency of interest.
Especially for measurements of larger frequencies with high resolution, this can lead
to big datasets, since the resolution bandwidth (RBW) depends on the measurement
time.

4.7.4. Lock-In amplifier

We use a digital lock-in amplifier (Zurich Instruments HF2) to measure in-phase
and quadrature component from demodulation with a local oscillator. The working
principle of a lock-in amplifier is shown in fig. 4.16. The input signal is multiplied
with the local oscillator (LO) and a 90° phase shifted version of the LO resulting in
a complex signal 𝑍 with components at the sum and difference frequency. Subse-
quent low pass filtering removes the sum frequency component, leaving only a slowly
varying signal 𝑍(𝑡) = 𝑋(𝑡) + i𝑌 (𝑡) = 𝑅(𝑡)eiΘ with amplitude 𝑅(𝑡) and phase Θ(𝑡)
or in-phase component 𝑋(𝑡) and quadrature component 𝑌 (𝑡). The lock-in amplifier
can also use a fast Fourier transform (FFT) on the demodulated signal to convert
to the frequency domain.

A so-called zoom FFT allows for long measurements with a high resolution around a
specific frequency, without the need to have a high sampling rate, since the effective
sampling rate only needs to be able to detect frequencies inside the low pass filter
bandwidth around the LO. [79]
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5. Experimental Results

In the following chapter, I present my experimental results. I start with the charac-
terization of the test mass cavity by scanning the laser frequency. Using the QPD
detection scheme, I analyze the pendulum spectrum and determine the oscillator
parameters for multiple pendulum modes by fitting the resonance spectra. Addi-
tionally, I show ringdown measurements where the main pendulum mode was excited
parametrically before observing the decaying power of the pendulum motion. Fur-
thermore, I estimate the seismically excited amplitude of the pendulum movement
with the interferometric detection scheme and show the pendulum motion in the
phase space of quadrature components.

5.1. Test Mass Internal Cavity

In order to characterize the test mass internal cavity, I used a test setup outside of
the vacuum chamber where the test mass is placed at the same optical path length
as inside the interferometer to maintain the mode matching to the beam (green box
in fig. 4.12). I overlapped the 1064 nm and 1550 nm beams over a long distance
to align both beams simultaneously to the test mass. I measured the transmitted1064 nm light with a photodiode while scanning the laser frequency via the crystal
temperature. I could observe a frequency dependence of the transmission as shown
in fig. 5.1. The two dashed vertical lines indicate one FSR = 4.2 GHz of the test
mass. However, this transmission was insensitive to misalignment in position and
angle. The width of the transmission peaks is much broader then expected from the
theoretical cavity parameters in table 4.6.

Figure 5.2 shows the spatial profile of the transmitted light on a beam profiler. It is
distorted and does not show a clean spatial mode. It also moves when moving the
incoming beam. Moving the incoming beam also has no effect on the distortion of
the transmitted beam shape. This lets suspect that there is no well defined optical
cavity axis present inside the test mass and only partial interference occurs due the
reflection on the slightly curved surfaces. The optical axis of a two mirror cavity is
the line intersecting the two centers of curvature [80]. Since the radii of curvature
are large compared to the dimensions of the test mass, a slight misalignment of the
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Figure 5.1.: Transmission signal of the test mass cavity while scanning the frequency of
the 1064 nm laser by changing the crystal temperature.
Left: Transmission signal and voltage ramp that controls the laser frequency vs. time.
Right: Transmission signal vs. laser frequency offset (laser crystal temperature). The
frequency offset is calculated from the ramp voltage via the conversion factor −3 GHz V−1
that is given by the manufacturer. The two dashed lines indicate a distance of one FSR =4.2 GHz that is calculated from the cavity length via eq. (3.29). There are two transmission
peaks that have the same frequency distance. The smaller peaks are most likely mode
jumps of the laser.

center points would result in an optical axis that lies outside of the test mass. This
is illustrated on the right side in fig. 5.2. Here, the angle of the curved surfaces is
drastically exaggerated for visibility. Also the RoC is shown much smaller compared
to the expected cavity length 𝑙cav.

Figure 5.3 shows a frequency scan with the 1550 nm laser where the test mass
coatings have a higher reflectivity. I scanned the frequency via the internal laser
piezo by applying a ramped voltage to a high voltage amplifier. During the fast piezo
scan, I adjusted the laser temperature by hand, until a signal in the transmitted light
could be observed. The right side in fig. 5.3 shows the signal against the frequency
offset, which is calculated with the calibration factor 12.3 MHz V−1 from fig. 4.13.
Only a small peak is visible, which is barely higher then the noise floor. The width
of the peak is approximately 1 GHz.

5.2. Pendulum Modes

In order to get an overview of the pendulum modes, I took a zoom FFT (see sec-
tion 4.7.4) measurement of the vertical and horizontal channel on the QPD with a
measurement time of 5.2 h which corresponds to RBW of 54 µHz. Figure 5.4 shows
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Figure 5.2.:
Left: Transverse spatial profile of the transmitted light from the test mass. It shows a
distortion with two ”tails” coming from the central Gaussian shaped part.
Right: Illustration of the suspected problem with the test mass cavity. The optical axis
that connects the two centers of curvature lies outside of the monolithic test mass. The
angle of the curved surfaces is drastically exaggerated for visibility. Also the RoC is shown
much smaller compared to the expected cavity length 𝑙cav.
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Figure 5.3.: Transmission signal of the test mass cavity while scanning the frequency
of the 1550 nm via the piezo actuator. During this procedure, the laser temperature was
changed until some signal was visible that is shown here.
Left: Transmission signal and voltage ramp that controls the laser frequency vs. time.
Right: Transmission signal vs. laser frequency offset. The frequency offset is calculated
from the ramp voltage via the calibration factor 12.3 MHz V−1 from fig. 4.13.
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Figure 5.4.: Broadband mode spectrum for the vertical and horizontal channel of the
QPD from a zoom FFT. The lower red traces show the dark noise. The average PSD of
three individual measurement runs is shown. The measurement time for each run was 5.2 h
corresponding to a RBW of 54 µHz. The first peak corresponds to the main pendulum
mode at 1.435 Hz. Higher harmonics of this mode due to the nonlinearity of the QPD are
marked with grey dashed lines. Two additional peaks due to aliasing from the FFT are
present at the right side of the spectrum coming from the main peak at negative frequency
and the DC peak that lie outside of the measurement window. In the vertical channel, the
main and pitch (10 Hz) mode are dominant. In the horizontal channel, the highest peak
corresponds to the yaw mode at 2.88 Hz.
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the average of three such individual measurement together with the detector noise
floor. One can see multiple peaks of different origin. The left peak corresponds to
the main pendulum at 𝑓 ≈ 1.435 Hz. Due to the QPD’s nonlinearity, additional
peaks at higher harmonics of this frequency are visible in the spectrum. The gray
dashed lines indicate those frequencies. The height of these peaks decrease with
higher frequency.

At 𝑓 ≈ 10 Hz, a broader peak is visible, which corresponds to the pitch mode of the
pendulum. Another peak is present at 𝑓 ≈ 5.3 Hz which is of unknown origin. Due
to the periodicity of the FFT, two alias peaks coming from a DC peak and the main
peak at negative frequency that lie outside of the measurement span are present in
the spectrum. They are shifted by the measurement span of 14 Hz, since they are
not far enough outside of the window to be fully attenuated by the low pass filter.

In the horizontal spectrum, the main contribution comes from the yaw mode at 𝑓 ≈2.88 Hz which is very close to the second harmonic of the main mode. This imposes
a challenge for the parametric actuation at this frequency (see section 5.3).

One can also see the main and pitch pendulum modes. They are attenuated com-
pared to the vertical channel, but this shows that the pendulum axes are not per-
fectly mapped to the QPD axes. This could be improved by rotating the QPD
around the beam axis.

For fitting the individual pendulum mode spectra, I assume a constant white seismic
noise 𝐶 over the mode spectrum that drives the pendulum according to eqs. (2.25)
and (2.30) with an additional detector noise level 𝑛𝑑 resulting in the fit function𝑆(𝑓, (𝑓0, 𝐶, 𝑛𝑑)) = 𝐶 ⋅ |𝐻(𝑓)|2 + 𝑛𝑑= 𝐶 ⋅ 𝑄216𝜋4𝑚2 (𝑄2 (𝑓2 − 𝑓20 )2 + 𝑓2𝑓20 ) + 𝑛𝑑 (5.1)

with the mass pendulum mirror 𝑚 = 47.657 × 10−3 kg. I determined the initial fit
values by hand and fitted with the non-linear least squares algorithm provided by
the curve_fit function of SciPy [51, 52].

5.2.1. Main Pendulum Mode

Figure 5.5 (left) shows a zoomed in spectrum around the main pendulum mode
at 1.4352 Hz which is averaged over three individual measurement traces with a
measurement time of 10.4 h corresponding to a RBW of 27 µHz. The dark noise
is also shown in red which is more then 50 dB below the detector noise floor. The
main peak is approximately 60 dB above the detector noise floor. To the right of
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Figure 5.5.: PSD for the main pendulum mode. The measurement time was 10.4 h
corresponding to a RBW of 27 µHz.
Left: The average PSD of three individual measurement runs is shown. The lower red
trace shows the dark noise. The upper trace shows the vertical QPD signal. To the right
of the main peak at 1.4352 Hz one can see a second peak at 1.4582 Hz, which is probably
the perpendicular pendulum mode 𝑓0,perp.
Right: Fit of eq. (5.1) to the main pendulum peak. The black dash-dotted line represents
the detector noise 𝑛𝑑 that is averaged over the gray shaded region. The red dashed line
shows the fitted function including detector noise while the green dotted line represents
only the oscillator spectral density from the fit parameters that are shown below.
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the main pendulum peak in the center one can see a second peak with a slightly
higher frequency of 1.4582 Hz, which is likely the perpendicular pendulum mode (see
table 4.4). It is less prominent and approximately 20 dB above the noise floor.

In order to determine the Q factor and the center frequency of the main pendulum
mode, I fitted eq. (5.1) to multiple single traces. These traces were taken on the
weekends and over night, since the measurement was sensitive to seismic distur-
bances due to human activities which were present in the laboratory during normal
working hours. An example of such a fit is shown in fig. 5.5 on the right. The
red dashed line shows the fit function from eq. (5.1) with the added detection noise
floor 𝑛𝑑 (black dash dotted line), while the green dotted line shows the underlying
resonance peak without the noise. The detection noise floor is determined as the
average over the gray shaded area at the edges.

Table 5.1 shows the fitted parameters for six of such traces. The fits are shown in
fig. B.1 in appendix B. The averaged center frequency is 𝑓0,main ≈ 1.4352 Hz with
an average Q factor 𝑄main ≈ 4.1 × 104 which results in an amplitude decay time
of ≈ 2.5 h (see eq. (2.15)). Most fitted Q factors for the individual measurements
are within 25 % around the average value except for measurement 3. Here the fitted
Q factor is 65 % higher then the average. Since I could observe small drifts of the
center frequency between measurements, the actual Q factor could be higher then
the average value, and the lower Q factors might come from an averaging effect of a
shifting peak during a single measurement. So the average value might be a lower
bound for the actual Q factor. An upper bound can determined by a ringdown
measurement (see section 5.3)

5.2.2. Yaw and Pitch Mode

In this section, I analyze the parameters of the yaw and pitch mode with the same
method as above.

Figure 5.6 shows a zoomed in spectrum onto the yaw mode at 2.88 Hz in the hori-
zontal QPD signal. The left side shows the averaged spectrum over three individual
traces (RBW = 27 µHz). The dashed vertical lines indicate the second harmonics
of the main (2.87 Hz) and perpendicular (2.916 Hz) pendulum mode. As the second
harmonic of the main mode is rather close, it is possible to excite the yaw mode
by actuating at this frequency. This imposes a problem for parametric actuation,
which is most efficient at twice the oscillators eigenfrequency. This is why we use
the fundamental frequency of the main pendulum mode for parametric excitation
at the moment. It could be beneficial to separate these two modes in the future for
example by shortening the pendulum length.
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Figure 5.6.: PSD for the yaw mode. The measurement time was 10.4 h corresponding to
a RBW of 27 µHz.
Left: The average PSD of three individual measurement runs is shown. The lower red
trace shows the dark noise. The upper trace shows the horizontal QPD signal. The vertical
black dashed lines indicate harmonics of the main and perpendicular pendulum modes.
Right: Fit of eq. (5.1) to the yaw pendulum peak. The black dash-dotted line represents
the detector noise 𝑛𝑑 that is averaged over the gray shaded region. The red dashed line
shows the fitted function including detector noise while the green dotted line represents
only the oscillator spectral density from the fit parameters that are shown below.
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Table 5.1.: Fitted parameters of eq. (5.1) fit uncertainty for the main pendulum mode of
multiple spectral measurements. The corresponding plots to the fits can be seen in fig. B.1
in the appendix. The center frequencies 𝑓0 of all measurements agree to the precision of
the lowest RBW of the measurement series of 54 µHz. The fitted Q factors lie in the order
of magnitude of 4×104. The third measurement results in a larger Q factor which could be
the result of an averaging effect in the other traces over the long measurement time when
the pendulum frequency shifts slightly due to thermal effects during the measurement.
The averaged Q factor over all measurement thus might be a lower bound for the actual
Q factor of the pendulum.

𝑓0 (Hz) 𝑄 𝐶 (V2N2/(m2Hz)) 𝑛𝑑 (V2)
1 1.435204543(71) 29264(111) 6.363(37) × 10−7 1.6(1.5) × 10−5
2 1.435200378(33) 44953(60) 5.496(13) × 10−7 1.3(1.3) × 10−5
3 1.4352024677(54) 67325(254) 1.1237(32) × 10−5 1.5(2.0) × 10−5
4 1.435227672(14) 35283(71) 1.5418(41) × 10−6 1.1(1.2) × 10−5
5 1.435198255(19) 29425(43) 5.847(13) × 10−6 1.1(1.1) × 10−5
6 1.43524569(11) 38204(213) 2.855(26) × 10−6 1.2(1.3) × 10−5
average 1.435213(19) 40743(14286) 3.8(4.1) × 10−6 1.29(23) × 10−5

The right side of fig. 5.6 shows a fit of eq. (5.1) to the yaw mode peak of a single
measurement trace. Table 5.2 displays the fitted value for three such measurements
with average center frequency of 𝑓0,yaw ≈ 2.8826 Hz with an average Q factor 𝑄yaw ≈1.3×104 which results in an amplitude decay time of ≈ 24 min (see eq. (2.15)). The
parameters for the individual measurements are within 5 % around the average value.
The individual fits can be seen in fig. B.2 of appendix B.

Figure 5.7 shows a zoomed in spectrum onto the pitch mode at 10.0 Hz in the
vertical QPD signal. The left side shows the averaged spectrum over three individual
traces (RBW = 27 µHz). The dashed vertical lines indicate peaks at the sum and
difference frequency with the main pendulum mode. This could be due to nonlinear
coupling of the two modes [81]. If this is the case, it might be possible to observe
an autoparametric resonance [82], since the two modes have eigenfrequencies with
a nearly integer ratio. This has to be investigated further.

On the right side of fig. 5.7 a fit of eq. (5.1) to the pitch mode is shown. The fit
parameters for eight of such measurements is displayed in table 5.3. The average
center frequency is 𝑓0,pitch ≈ 10.003 Hz with an average Q factor 𝑄pitch ≈ 4.1 × 103.
This results in an amplitude decay time of ≈ 130 s (see eq. (2.15)). The individual
fits can be seen in fig. B.3 of appendix B.
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Table 5.2.: Fitted parameters of eq. (5.1) fit uncertainty for the yaw mode of multiple
spectral measurements. The corresponding plots to the fits can be seen in fig. B.2 in the
appendix. The center frequencies 𝑓0 of all measurements agree to the precision 100 µHz
which is less precise then the minimal RBW of 54 µHz. The fit errors are below the RBW.
Thus, the observed frequency shift could be a frequency shift due to thermal effects. The
fitted Q factors are around 1.3 × 104.𝑓0 (Hz) 𝑄 𝐶 (V2N2/(m2Hz)) 𝑛𝑑 (V2)

1 2.88251128(79) 12571(123) 3.416(53) × 10−6 7.4(7.7) × 10−7
2 2.88253703(33) 13910(63) 1.550(11) × 10−6 6.9(7.2) × 10−7
3 2.8826079(14) 12809(225) 1.566(43) × 10−6 6.6(7.2) × 10−7
average 2.882552(50) 13096(714) 2.2(1.1) × 10−6 6.95(38) × 10−7
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Figure 5.7.: PSD for the pitch mode. The measurement time was 10.4 h corresponding
to a RBW of 27 µHz.
Left: The average PSD of three individual measurement runs is shown. The lower red
trace shows the dark noise. The upper trace shows the vertical QPD signal. The dashed
vertical lines indicate the sum and difference frequency peaks of the pitch and the main
mode.
Right: Fit of eq. (5.1) to the pitch pendulum peak. The black dash-dotted line represents
the detector noise 𝑛𝑑 that is averaged over the gray shaded region. The red dashed line
shows the fitted function including detector noise while the green dotted line represents
only the oscillator spectral density from the fit parameters that are shown below.
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Table 5.3.: Fitted parameters of eq. (5.1) fit uncertainty for the pitch mode of multiple
spectral measurements. The corresponding plots to the fits can be seen in fig. B.3 in the
appendix. The center frequencies 𝑓0 of all measurements agree to the precision 1 mHz
which is less precise then the minimal RBW of 54 µHz. The fit errors are below the RBW.
Thus, the observed frequency shift could be a frequency shift due to thermal effects. The
fitted Q factors are around 4 × 103.𝑓0 (Hz) 𝑄 𝐶 (V2N2/(m2Hz)) 𝑛𝑑 (V2)

1 10.002554(10) 3728(40) 1.522(26) × 10−5 2.4(2.5) × 10−7
2 10.002321(11) 3974(49) 1.170(23) × 10−5 2.4(2.5) × 10−7
3 10.002908(10) 3981(47) 1.027(19) × 10−5 2.4(2.5) × 10−7
4 10.0022887(87) 4395(48) 2.008(34) × 10−4 1.8(1.9) × 10−7
5 10.002482(13) 3598(48) 2.229(47) × 10−4 1.8(1.9) × 10−7
6 10.0026741(85) 5082(62) 1.177(23) × 10−4 1.8(1.9) × 10−7
7 10.002750(12) 4500(66) 2.277(53) × 10−4 1.8(1.9) × 10−7
8 10.002697(13) 3356(43) 1.518(31) × 10−4 1.8(1.9) × 10−7
average 10.00258(21) 4077(558) 1.20(96) × 10−4 2.07(31) × 10−7

In conclusion, the fitted Q factor for the main pendulum mode is much higher then
for the yaw and pendulum mode. This is expected due to the dilution factor, since
the energy for the main mode is stored in the lossless gravitational field. The Q
factor for the pitch mode is the lowest, since the energy is stored in lossy elastic
deformation of the wires. The Q factor for the yaw mode is between those of the
other modes, which hints to part of the energy being stored in elastic deformation
and not in the gravitational field. This is also consistent with the expectation since
the model in section 4.3.3 only considers gravity and predicts a lower eigenfrequency
then what I measured.

5.2.3. Violin Modes

In order search for the violin modes, I took a broadband spectrum of the vertical
QPD signal up to 1.4 kHz and averaged over multiple traces to remove noise peaks.
I searched through the spectrum over small frequency ranges to identify possible
candidates for the violin modes. The left plot of fig. 5.8 shows a prominent dou-
ble peak which I suspect to be the first violin mode. The split peak comes likely
from small length difference between the suspension wires. The dashed vertical line
indicates the maximum of the highest peak at 357.8 Hz. In the center and right
plot of fig. 5.8, the dashed lines indicate the second and third harmonic of this peak
frequency. In the spectrum one can also see two split peaks, where the highest one
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Figure 5.8.: Spectrum of the suspected violin modes. The left plot shows the suspected
first violin mode in the spectrum of the vertical QPD signal. The dashed vertical line
indicates the frequency of the maximum. In the center and right plot the dashed lines
indicate the second and third harmonic of this frequency, respectively, which also show a
similar shaped feature in the recorded QPD signal. One can see two overlapping peaks
that might correspond to violin modes originating from suspension wires with slightly
different lengths.

coincides with the dashed line. The overall shape of the split peaks is also simi-
lar to the suspected first violin mode. This is another strong indicator that these
are in fact the first three violin modes. However, the frequencies do not fit to the
theoretical values in table 4.4. This might be due to partly plastic deformation of
the suspension wire since the stress on the tungsten wires is already near the yield
strength of the material.

5.2.4. Additional Modes

Additionally to the three pendulum modes discussed above, I looked for additional
peaks in the pendulum spectrum. Since the expected modes, like the roll and bounce
mode, do not couple very much to the deflection angle, these peaks are expected to
be very small. I used a broadband spectrum of the vertical QPD signal recorded with
the lock-in amplifier at a demodulation frequency of 0 Hz giving a symmetric two
sided spectrum centered around DC. This avoids alias peaks at higher frequencies.
Figure 5.9 shows the positive frequency part in the top. In order to identify harmonic
peaks of the main and pitch mode as well as the grid frequency of 50 Hz, I marked
multiples of these frequencies inside the spectrum and only considered unmarked
peaks to be possible pendulum modes. Zooms on these peaks are shown in fig. 5.9
on the bottom with the center frequency indicated above. The peaks at 38.505 Hz
and 44.85 Hz fit well to the calculated values in table 4.4 for the roll and bounce
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Table 5.4.: Center frequencies of detected peaks in the power spectrum of the vertical
and horizontal QPD signal. Pendulum modes that are likely to correspond to these peaks
are indicated. Some peaks could not be matched with particular pendulum modes and
are marked as unknown.

frequency (Hz) mode
1.4352 main
1.4582 perpendicular
2.883 yaw
10.003 pitch
26.83 unknown
31.24 unknown
38.505 roll
44.85 bounce
197.925 unknown
357.8 1st violin
715.6 2nd violin
1073.4 3rd violin

mode, respectively, with the assumed pendulum parameters. The other peaks might
be oscillation modes of the suspension system.

An overview of all observed peaks in the pendulum spectrum is given in table 5.4.
Identified pendulum modes that likely correspond to these peaks are indicated.

5.3. Pendulum Ringdown

Another way to determine the Q factor besides fitting the resonance peak is a ring-
down measurement. For this, I excited the main pendulum mode parametrically
for 20 min with a frequency generator connected to the driving piezo via a low pass
filter in order to avoid a sudden movement when starting the excitation. I used the
fundamental mode frequency 1.4352 Hz and not the second harmonic, since the yaw
mode is very close to that frequency and gets easily excited instead. After the ex-
citation time, the frequency generator was turned off and the pendulum amplitude
could decay. I repeated this procedure multiple times with 6 h in between measure-
ments for the pendulum amplitude to decrease to a point where another excitation
could be safely performed. I measured the amplitude with the lock-in amplifier by
demodulating at the mode frequency with a low pass filter bandwidth of 100 mHz
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Figure 5.9.: Search for additional pendulum modes.
Top: Broadband power spectrum of the vertical QPD signal from 0 Hz to 225 Hz recorded
with the lock-in amplifier with a demodulation frequency of 0 Hz to avoid alias peaks at
higher frequencies. The negative frequency part of the spectrum is not shown here.
Bottom: Zoom on additional peaks in the broadband spectrum which are not caused
by higher harmonics of the main and pitch mode frequencies or the grid frequency of50 Hz. For each peak, the center frequency 𝑓0 is indicated above. The peaks at 38.505 Hz
and 44.85 Hz are close to the calculated values in table 4.4 for the roll and bounce mode,
respectively.
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Figure 5.10.: Ringdown measurement of the main mode amplitude 𝑅 measured with
a lock-in amplifier demodulating at the mode center frequency with a low pass filter of100 mHz. The pendulum is excited parametrically for 20 min (gray shaded area) at the
mode frequency via a frequency generator connected to the suspension piezo actuator. The
right inset shows the ringdown section with a linear amplitude scale. The dotted lines show
the corresponding fit of the exponential decay from eq. (5.2). The left inset shows a zoom
onto the excitation phase, where the parametric phase lead first to a reduction of the
pendulum motion before the pendulum phase adjusted to parametric heating.

which is essentially a zero span measurement on a classical spectrum analyzer. Fig-
ure 5.10 shows two of such measurement traces in logarithmic amplitude scale and in
linear scale in the right inset. The black dotted lines indicate a fit of an exponential
decay 𝑅(𝑡) = 𝐴 exp (−𝑡𝜏) (5.2)

with the ringdown time 𝜏 and initial amplitude 𝐴. The fits start, where the para-
metric excitation was switched off. An interesting feature can be seen in the inset
on the left. Due to an arbitrary phase at the start of the parametric excitation
compared to the pendulum, it happened to first cool down the pendulum motion,
before the pendulum phase adjusted to parametric heating. Here, the amplitude
was reduced by 1.5 orders of magnitude. For continuous cooling, the phase would
have to be adjusted by active feedback.

Table 5.5 shows the fit results for ringdown traces recorded over multiple days. The
corresponding Q factor can be calculated from the ringdown time with𝑄 = 2𝜋𝑓0𝜏2 , (5.3)

where I used a center frequency of 𝑓0 = 1.4352(2) Hz. The error accounts for
small drifts of the mode frequency between measurements. The average Q factor is76(17) × 103 and thus higher then the one determined by the fits to the spectral
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Table 5.5.: Fit results for the ringdown measurements of the main pendulum mode with
eq. (5.2). The Q factor is calculated from the decay time 𝜏 with eq. (5.3) and the main
mode frequency 𝑓0,main = 1.4352(2) Hz, where the error in the frequency should account
for shifts of the center frequency between measurements. The corresponding ringdown
measurements and fits are shown in fig. C.1 in appendix C.𝜏 (s) 𝐴 (V) 𝑄

1 1.1245(57) × 104 0.15166(30) 5.070(26) × 104
2 1.8354(47) × 104 0.25812(16) 8.276(21) × 104
3 1.9416(32) × 104 0.26515(10) 8.754(14) × 104
4 2.1897(53) × 104 0.24258(12) 9.873(24) × 104
5 1.4618(13) × 104 0.71104(40) 6.5911(61) × 104
6 1.5235(11) × 104 0.84634(36) 6.8692(50) × 104
average 1.68(38) × 104 0.41(29) 7.6(1.7) × 104

signal. Since it was not possible to excite the pendulum to a higher initial amplitude
above the seismic noise due to the limitations of the QPD non-linearity and to not
risk damaging the pendulum, the measured ringdown time is likely extended by
additional seismic excitation. Thus, the measured average value can be considered
as an upper bound for the actual Q factor.

5.4. Amplitude Estimation

In order to get an estimate of the pendulum oscillation amplitude due to the seis-
mic excitation, I used the interferometric output signal as shown in fig. 5.11. The
two beams in the interferometer arms were aligned with the steering mirrors for
a maximum contrast and a symmetric signal. I reached a maximum contrast of91 %. With this alignment, the two reflected beams have the most overlap when the
pendulum crosses its equilibrium position. The top of fig. 5.11 shows the output
signal over multiple pendulum oscillations. The maximum contrast is reached after
a full pendulum oscillation period as indicated by the dashed vertical lines. The
local maximum in between these two points is lower, which is likely caused by an
excitation of the yaw pendulum mode which is nearly double the main pendulum
frequency (see section 5.2). The decreasing contrast is caused by the deflection
of the two interfering beams by the pendulum angle. At the turning point of the
pendulum, one beam is deflected maximally upwards while the other is deflected
maximally downwards. The bottom of fig. 5.11 is a zoom onto half a pendulum os-
cillation going from turning point to turning point. From these points, the frequency
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Figure 5.11.: Pendulum amplitude estimation from the interferometric signal. The in-
terferometer output power was measured with a photodiode and recorded with a sampling
rate of 28.78 kHz and a low pass filter bandwidth of 5 kHz. It is normalized to the maxi-
mum value.
Top: Interference signal over multiple pendulum oscillations. One can see an oscillating
interferometer contrast that repeats with the frequency of the main pendulum mode as in-
dicated by the black dashed vertical lines. The pendulum swings over multiple wavelengths
and the frequency of the interferometer fringes increases when the pendulum swings from
a turning point back through the equilibrium position, since the velocity increases.
Bottom: Zoom into half a pendulum oscillation. The average value is indicated by the
red dashed line. The pendulum amplitude 𝑥0 is estimated by fringe counting from the
number of crossings through the dashed line and eq. (5.4). The inset shows a zoom onto
the crossing of the pendulum equilibrium position with the maximum interference contrast
of 91 %.
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of the interference fringes increases up to the equilibrium point of the pendulum,
since the pendulum velocity increases. The distance the pendulum is traveling can
be inferred from the number of interference fringes 𝑛F. The pendulum amplitude𝑥0 is half this distance, resulting in 𝑥0 = 𝑛F𝜆2 (5.4)

where 𝜆 is the laser wavelength, in this case 1550 nm. I got the number of fringes
by counting the crossings of the average value line (red dashed line). I assume an
error of 5 fringes for 𝑛F = 352(5). This results in an amplitude 𝑥0 = 273(4) µm.

5.5. Pendulum in Quadrature Phase Space

Another way to display the pendulum motion is via the 𝑋 and 𝑌 components in the
rotating frame of the lock-in amplifier LO. This way, one can isolate the signal of a
specific pendulum mode via the low pass filter bandwidth. Figure 5.12 shows such a
measurement of the main pendulum mode in the vertical QPD signal. It was taken
with a demodulation frequency of 1.435 001 24 Hz, which is slightly lower than the
mode frequency, and a filter bandwidth of 200 mHz for an 8-pole low pass filter.
It was sampled with a rate of 14.05 s−1 over 583 s. The left side of fig. 5.12 shows
the signal in the rotating frame with the start and end points indicated. The red
dashed line shows the average value of the complex amplitude 𝑅. The trace moves
anti-clockwise, since the pendulum oscillates faster then the LO. Since the pendulum
was disturbed at the beginning of the measurement, the amplitude decreases over
time in a noisy random-walk like motion. On the right side, the time traces of the
components 𝑋 and 𝑌 as well as the polar coordinates 𝑅 and Θ are shown. Here one
can again see the decreasing amplitude, while the phase 𝜃 increases over time, due
to the faster rotation.
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Figure 5.12.: Quadrature representation of the main pendulum mode at 1.4352 Hz. The
vertical QPD signal is demodulated with a LO at 1.435 001 24 Hz and an 8-pole low pass
filter bandwidth of 200 mHz. The sampling rate was 14.05 s−1 with a total measurement
time of 583 s.
Left: Phase space representation of the two quadrature components in the rotating
frame of the LO. The dashed red line indicates the average value of the amplitude𝑅 = √𝑋2 + 𝑌 2. The overall trace rotates anti-clockwise since the actual pendulum fre-
quency is slightly above the demodulation frequency. The amplitude also decreases over
time in a random walk like motion, since the pendulum was slightly excited at the start
of the measurement.
Right: Time traces of the quadrature components 𝑋 and 𝑌 and the polar coordinates.
Here, one can also see the decrease over time of the amplitude 𝑅 as well as the increasing
phase, since the pendulum is oscillating slightly faster then the LO.
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6. Summary and Outlook

During this work I designed and set up an optomechanical tabletop experiment with
a 50 g cuboid test mass, suspended by tungsten wires, that serves as the common
end mirror in a Michelson interferometer with a Michelson-Sagnac like topology. I
designed the test mass as an optical cavity to be used for alignment purposes. Since
the manufactured test mass did not turn out to provide a stable cavity axis, this
alignment procedure could not be tested. Nevertheless, I successfully suspended the
test mass pendulum with a high Q factor between 4 × 104 to 7.6 × 104 for the main
pendulum mode. The measured Q factors for the yaw and pitch pendulum modes
are lower than that of the main mode. For the yaw mode, the energy is stored in
lossy elastic deformation of the suspension wires, resulting in a higher loss factor.
Since the main pendulum mode stores most of the energy in the lossless gravitational
field, the mechanical loss is lowered by the dilution factor.

With the precise interferometric position readout and the detection of the deflection
angle presented here, the pendulum oscillation can be measured over multiple orders
of magnitude. Additionally, the optical setup allows for a radiation pressure force to
be applied to the pendulum by using a second wavelength inside the interferometer.
Due to too much seismic excitation, an effect on the pendulum motion could not
be observed yet. I estimated the pendulum amplitude due to the remaining seis-
mic excitation to 273(4) µm by fringe counting in the interferometric signal. The
implemented parametric actuation of the suspension point is used for excitation of
the pendulum mode. Currently, a feedback loop to control the parametric phase is
being implemented, which will enable controlled cooling of the pendulum motion in
the future.

In the next steps of the experiment, an active seismic isolation system to control
the supporting concrete block of the optical table will be implemented to reduce
the on-resonance excitation of the pendulum to allow for single fringe operation of
the interferometric readout. With lower seismic excitation, it might also be possible
to observe cooling of the test mass motion by means of active radiation pressure
feedback cooling.

Once a shot noise limited operation of the interferometer is established, the planned
power recycling mirror can be implemented to increase the optical power in the
interferometer and thus increase the displacement sensitivity. Additionally, a signal
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recycling mirror in the output port can be used for further enhancement of the
interferometer’s sensitivity.

If nonlinear mode coupling of the different pendulum modes is present, the mode
frequency of one mode could be influenced by the amplitude of another mode as
described in [81, 82]. This would make it possible to detect the displacement of one
mode by measuring the frequency shift of another. Since the observed pitch mode
frequency in our experiment is nearly an integer multiple of the main mode eigen-
frequency, nonlinear mode coupling could be enhanced and observation of internal
or autoparametric resonance as discussed in [82] might be possible.
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Figure A.1.: Legend for optics and electronics.
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B. Pendulum Fits
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Figure B.1.: Fitted spectral measurements from table 5.1. The measurement time for
each trace was 10.4 h corresponding to a RBW of 27 µHz. The black dash-dotted line
represents the detector noise 𝑛𝑑 that is averaged over the gray shaded region. The red
dashed line shows the fitted function including detector noise while the green dotted line
represents only the oscillator spectral density from the fit parameters.
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Figure B.2.: Fitted spectral measurements from table 5.2. The measurement times were10.4 h (trace 1 and 2) and 5.2 h (trace 3) corresponding to a RBW of 27 µHz and 54 µHz.
The black dash-dotted line represents the detector noise 𝑛𝑑 that is averaged over the gray
shaded region. The red dashed line shows the fitted function including detector noise while
the green dotted line represents only the oscillator spectral density from the fit parameters.
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Figure B.3.: Fitted spectral measurements from table 5.1. The measurement time for
each trace was 10.4 h corresponding to a RBW of 27 µHz. The black dash-dotted line
represents the detector noise 𝑛𝑑 that is averaged outside of the plots frequency axis in
a flat region due to disturbing peaks near the pitch mode. The red dashed line shows
the fitted function including detector noise while the green dotted line represents only the
oscillator spectral density from the fit parameters.
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C. Ringdown Fits
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Figure C.1.: Ringdown traces to the fit results in table 5.5. The plots only show the
actual ringdown trace, after the pendulum has been excited by parametric actuation, with
the corresponding fit of the exponential decay in eq. (5.2).
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D. Mirror Positioner Configuration
and GUI

Listing D.1: Example configuration for one mirror positioner called PR. It has three
piezoknobs called left, top and right. The configuration is written in the simple YAML
file format.
PR:

controller_address : "192.168.166.201"
piezoknobs:

l e f t :
address: 1
channel: 2

top:
address: 2
channel: 2

right :
address: 3
channel: 2

Figure D.1.: Screenshot of the GUI for the mirror positioner control software. It is build
with widgets inside of an Jupyter Notebook [74] which enables cross-platform compati-
bility. The mirror positioners are split into multiple tabs, each displaying the piezoknobs
for a single positioner. The selected tab here displays a positioner which is configured as
shown in listing D.1 with an exemplary configuration. Each piezoknob is shown in its own
section with a selection for the number of steps and a button for the direction. Addition-
ally, one can move all three piezoknobs at the same time. By default, the step size is set
to 100 %. By enabling the precision mode, one can tune the step size and overwrite the
default value. This is useful for tuning the mirror position in a sub wavelength range.
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