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Abstract
This thesis reports the implementation of a matter wave optics protocol for the mag-
nification of quantum gases. The protocol consists of a quarter period evolution in a
harmonic trap followed by a free expansion. Subsequently, we image the magnified
density distribution via standard absorption imaging. We reach a magnification of
more than 90, allowing for sub-lattice site resolved imaging of the atomic density in
an optical lattice with a lattice constant of 709 nm. The technique overcomes several
limitations of established methods as it has very large depth of focus, does not induce
light assisted collisions, and records the density in a single shot. We benchmark the
method by high precision thermometry of the normal to superfluid transition and
demonstrate its capabilities by achieving pattern preparation using magnetic reso-
nance techniques, by presenting measurements of sub-lattice site dynamics, and by
an analysis of thermal and quantum fluctuations of on-site populations.
In a next step we leverage the advantages of the quantum gas magnifier to observe

spontaneous pattern formation in a Bose-Einstein condensate in a tilted triangular
lattice with weak transverse confinement, i.e., in a three-dimensional system. To the
best of our knowledge, this phenomenon was not observed or predicted beforehand
and explicitly requires the capabilities of matter wave magnification to be visible. We
explain the observation by a theoretical modelling in terms of an effective Hamiltonian
for large tilts and in terms of a c-field numerical simulation.





Zusammenfassung
Diese Dissertation berichtet die Implementierung eines Materiewellenoptikprotokolls
zur Vergrößerung von Quantengasen. Das Protokoll besteht aus einer Zeitentwicklung
in einer harmonischen Falle für die Dauer einer Viertelperiode gefolgt von einer freien
Expansion. Anschließend bilden wir die vergrößerte Dichteverteilung durch Standard
Absorptionsabbildung ab. Wir erreichen eine Vergrößerung von mehr als 90, was sub-
gitteraufgelöste Abbildung der atomaren Dichte in einem optischen Gitter mit einer
Gitterkonstante von 709 nm erlaubt. Die Technik überwindet mehrere Limitierungen
etablierter Methoden, da sie sehr große Tiefenschärfe hat, keine lichtinduzierten Stö-
ße verursacht und die Dichte in einem einzigen Schuss aufnimmt. Wir benchmarken
die Methode durch Hochpräzisionsthermometrie des normal zu superfluid Übergangs
und zeigen ihre Fähigkeiten durch Präparation von Mustern unter Benutzung von Ma-
gnetresonanztechniken, durch die Darstellung von sub-Gitterplatzdynamik und durch
eine Analyse von thermischen und Quantenfluktuationen von Gitterplatzbesetzungen.
In einem nächsten Schritt nutzen wir die Vorteile des Quantengasvergrößerers um

spontane Musterbildung in einem Bose-Einstein Kondensat in einem verkippten Drei-
ecksgitter mit schwachem Einschluss, d.h. in einem dreidimensionalen System, zu be-
obachten. Nach bestem Wissen wurde dieses Phänomen zuvor weder beobachtet noch
vorhergesagt und benötigt explizit die Fähigkeiten des Quantengasvergrößerers um
sichtbar zu sein. Wir erklären die Beobachtung durch theoretische Modellierung mit
einem effektiven Hamiltonian für große Verkippung und durch eine numerische c-Feld
Simulation.
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1. Introduction
Spontaneous symmetry breaking is a central concept in physics. It describes a state
that does not respect the symmetry of the Hamiltonian of the system. Most of the
time this concept is encountered in ground states ranging from examples in condensed
matter—like the spin orientation in a ferromagnet—all the way to particle physics
where the spontaneous symmetry breaking of the Higgs field determines the mass of
fundamental particles [1, 2]. But also out of equilibrium the phenomenon of spon-
taneous symmetry breaking arises, e.g., in the form of pattern formation [3]. There
are numerous examples comprising condensed matter [4], non-linear optics [5], fluid
dynamics [6], convection [7], or morphogenesis [8, 9].
Ultracold atoms are very controlled experimental systems which are therefore well-

suited for quantum simulation [10]. A large variety of paradigmatic models such
as the Hubbard model, various types of spin models or topological models can be
implemented with the right choice of element, isotope, laser setup, and magnetic
fields. As such ultracold atom experiments also shed light on the intriguing topic of
pattern formation. Recent results include, e.g., Z2 symmetry breaking in the tilted
Mott insulator [11–13], pattern formation in a Rydberg tweezer array [14] as well
as in a Bose-Einstein condensate [15], and the observation of a supersolid [16]. In
this thesis we report the observation of spontaneous pattern formation in a tilted
triangular lattice. In contrast to the aforementioned tilted Mott insulators we work
in a superfluid regime with around 103 atoms per lattice site. The confinement
perpendicular to the lattice plane is weak, hence the system is forming a lattice
of tubes. In this regime, experiments with accelerated [17–19] or shaken [20] lattices
were performed previously, as well as experiments where the external trap was quickly
reduced [21], resulting in patterns either large enough to be resolved without single-
site resolution or periodic ones with coherence which hence can be detected after
a free expansion of the gas via its interference pattern. Here we use quantum gas
magnification, a new technique developed in the course of this thesis [22], which
enables us to resolve spontaneous patterns in lattice of tubes systems with single site
resolution as outlined in the following.
The quantum gas magnifier is based on matter wave optics. First, a quarter pe-

riod evolution in a harmonic trap maps the particles’ positions onto their momenta.
Subsequently all trapping potentials are abruptly switched off resulting in a free ex-
pansion which maps momentum back to position in the limit of infinite expansion
time. Actually, we can show that a slight adjustment of the hold time in the harmonic
trap allows to reach an exact mapping back to position even for finite expansion time.
The idea of using a harmonic trap as a matter wave lens goes back to the technique of
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matter wave focusing [23] and is used in setups with very good real space resolution
to map momentum to position which can then be imaged without the need of a long
free expansion [24–28]. More involved protocols combining different trap frequencies
or manipulation in the Fourier plane were proposed [29]. The technique introduced
in this thesis significantly enriches the real space imaging tool box in the discipline
of ultracold atoms. Here the most prominent method in the field is quantum gas
microscopy [30–32] where an objective with high numerical aperture is used to obtain
single-site resolution. However, this implies that the depth of focus is small, restrict-
ing this technique to two-dimensional systems. Quantum gas magnification imposes
only little constraints on the resolution of the optical imaging thus allowing for single
site resolution and large depth of focus at the same time, enabling the imaging of
three-dimensional systems integrated along the line of sight. Electron scanning mi-
croscopy [33] or ion microscopy [34] are also able to image three dimensional systems,
at the cost of being a scanning technique or the need of ionizing the sample, respec-
tively. Furthermore, quantum gas magnification can enlarge the sample to such a
degree that even features below the scale of a lattice constant, such as the motion
on a singular lattice site, can be resolved. Superresolution microscopy [35, 36] also
offers this possibility but as a global probe it assumes the density of all lattice sites
being equal and is furthermore a scanning technique. In fact, for the observation of
spontaneous density patterns in a lattice of tubes, as described in this thesis, none of
the mentioned established methods would be suitable since the pattern would wash
out, either due to the implicit averaging connected to scanning or due to blurring
connected to small depth of focus.

Thesis Outline
This thesis is organized as follows. In chapter 2 the experimental sequence from room
temperature vapour to a Bose-Einstein condensate (BEC) is explained, as well as the
optical lattice, and the detection via absorption imaging. In chapter 3 we introduce
the quantum gas magnifier technique. The working principle is illustrated and exper-
imental characterization of the resolution is shown. We present experiments on the
normal to superfluid phase transition, pattern preparation via magnetic resonance,
sub-lattice site dynamics, and on-site atom number fluctuations. We proceed with
chapter 4 where we present the observation of spontaneous pattern formation in a
tilted triangular lattice. We explain two possible theoretical perspectives: an effec-
tive Hamiltonian description for strong tilt and a numerical approach in the form of a
c-field simulation. We investigate the domain statistics of the pattern, its formation
dynamics and decay, and its dependence on various system parameters.
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2. The quantum gas machine
Quantum many-body physics is extremely relevant for the understanding of numerous
phenomena [37]. However, due to the typically very large Hilbert spaces required
for such problems it is only possible to simulate systems of small particle number
on classical computers. One approach to circumvent this limitation is the mapping
of a physical question onto another system which can be studied in a controlled
way, which is known as analogue quantum simulation [38]. In this chapter we will
introduce our quantum gas machine which is a quantum simulation platform using
ultracold atoms in optical lattices and, for the most part, has been set up by earlier
generations of students. My colleagues Luca Asteria, Marcel Kosch and I mainly
implemented the multi-frequency lattice, which will be explained. Concerning the
setup, we will summarize the most important facts here. Details can be found, e.g.,
in references [39–41]—to name only the first theses—and in appendix A.

2.1. Quantum simulation with ultracold atoms in
optical lattices

Ultracold atoms in optical lattices are an established platform for the quantum sim-
ulation of solid state physics [42]. The atoms take the role of the electrons and the
optical lattice takes the role of the periodic potential formed by the Coulomb interac-
tion with the crystal. Many milestones were achieved in this field: from the realization
of a BEC [43, 44] and a degenerate Fermi gas [45] to phenomena like the superfluid
to Mott-insulator transition [46], the BEC-BCS crossover [47, 48], the observation
of topological matter [49, 50], and the observation of anti-ferromagnetic correlations
in the doped Fermi-Hubbard model [51], to name only a few. Still there are many
outstanding questions like the observation of the fractional quantum Hall effect, or
superfluidity in the doped Fermi-Hubbard model.

2.2. The route to BEC
The starting point for most of our experiments is a BEC in a magnetic trap. The
preparation of a BEC has evolved from a Nobel price winning achievement to a
demanding, but standard experimental sequence. The steps we use for condensation
are explained in this section.
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Figure 2.1.: Setup of the 2D and 3D MOT. The atoms are first precooled in a
2D MOT which is shown at the top. Subsequently they get transferred into the
3D MOT at the bottom by a push beam (not shown). The two glass cells are
separated by a differential pumping stage. The 3D MOT consists of three pairs
of beams labeled D1, D2 and LA and a pair of anti-Helmholtz coils. Adapted
from [52].

2.2.1. 2D and 3D MOT, optical molasses
A magneto-optical trap (MOT) [53] is a trap capable of capturing and cooling of room
temperature atoms via photon absorption. Its working principle is based on counter-
propagating circularly polarized laser beams, red detuned with respect to a suitable
atomic transition, which slow the atoms as a consequence of velocity dependent ab-
sorption due to the Doppler-effect and which confine the atoms as a consequence
of position dependent absorption due to the Zeeman effect in the magnetic field of
anti-Helmholtz coils. Our setup consists of the combination of a two-dimensional
(2D) and a three-dimensional (3D) MOT, see Fig. 2.1 for a 3D rendering and ap-
pendix A for the optical setup. This design allows for fast loading of the 3D MOT
and at the same time for optimal vacuum conditions in the 3D MOT. The atoms—
in our case 87Rb—are supplied from a dispenser that is electrically heated. In the
2D MOT the atoms get confined and cooled in two directions creating an elongated
cloud of atoms. A push laser beam propagates along the long axis of this cloud and
accelerates atoms towards the lower glass cell. The best loading rate is achieved for
blue detuning, i.e., when accelerating the atoms that have the correct propagation
direction already. In this way a beam of pre-cooled atoms is formed. This beam
propagates through a differential pumping stage between the 2D and 3D MOT glass
cells. In the 3D MOT laser beams from all six directions form a cloud of atoms. In
our setup we have one horizontal pair of beams and two pairs under 45° with respect
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to gravity and perpendicular to the horizontal pair. The temperature in the MOT
is limited by the recoil temperature TR = h2/(mλ2) = 360nK and the Doppler tem-
perature TD = ~Γ/(2kB) = 150 µK. Here we used the mass m = 87 u of 87Rb, the
wavelength λ = 780 nm of the D2 (52S1/2 → 52P3/2) transition and the decay rate
Γ = 2π × 6.07MHz [54]. h is the Planck constant, ~ = h/(2π) is the reduced Planck
constant, and kB is the Boltzmann constant.
The Doppler limit can be overcome in the next step, the bright molasses. It is ini-

tialized by switching off the magnetic fields using insulated-gate bipolar transistors
(IGBTs) which are protected against voltage spikes by varistors connected in parallel.
As a result of switching off the magnetic fields the Zeeman splitting vanishes. Still
the mF sublevels are not degenerate because they experience different AC Stark shifts
depending on the local polarization of the light. Given that the counter-propagating,
circularly polarized beams create a standing polarization wave, the atoms see a peri-
odic potential landscape. The atoms move in this potential and due to the detuning
for excitation being minimal at maximal potential energy the atoms get excited most
likely in this situation. The spontaneous decay from the excited state however is not
energy selective and the atoms therefore experience a net loss of energy corresponding
to a cooling.

2.2.2. Magnetic trap and evaporative cooling

In order to cross the phase transition to a BEC the phase space density still must
be increased substantially. This is achieved by evaporation, i.e. the removal of the
hottest atoms from the cloud. It turns out that the cooling effect can overcompensate
the loss of particles resulting in an increase of phase space density by this technique.
First, the atoms need to be transferred into a magnetic trap (MT) because photon
scattering as in MOTs will represent a source of heating. Therefore the molasses
beams are quickly switched off by the combination of a Pockels cell and a polarizing
beam splitter.
A magnetic trap exploits the fact that states with a magnetic moment which is

parallel to a magnetic field will energetically favour regions of low magnetic field. In
contrast to a local maximum, a local minimum of a static magnetic field is realizable
and constitutes a trap for these low-field seeking states. In order to obtain good
transfer efficiency between the optical molasses and the MT an optical pumping
puls is needed to transfer the atoms to the low-field seeking state |F = 2,mF = 2〉.
Our magnetic trap is a hybrid between cloverleaf and 4D trap (Fig. 2.2), inducing a
harmonic potential for the low-field seekers and avoiding a zero of the magnetic field
which would induce spin-flips to untrapped states [39–41]. The design allows for an
isotropic trap during loading from the molasses which can then be compressed into
a cigar shaped trap for higher densities for the evaporation by ramping down the
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Figure 2.2.: Coil setup of the magnetic trap. It consists of a pair of Helmholtz coils
and a pair of coils winding similar to a cloverleaf but with half of the leaves having
significantly less windings. Taken from [39].

Helmholtz field. The resulting magnetic field can be written as [39]

B = B0

 0
0
1

+B′

 x
−y
0

+ B′′

2

 −xz
−yz

z2 − 1/2(x2 + y2)

 , (2.1)

with bias field B0, radial gradient B′ and axial curvature B′′. The magnitude of the
magnetic field, which is proportional to the trapping potential, can be expanded to
be

B(ρ, z) = B0 + 1
2ρ

2
(
B′2

B0
− B′′

2

)
+ 1

2z
2B′′, (2.2)

revealing the harmonic nature of the trap. The trap was characterized in detail [39, 40]
before mounting. Yet, in practice, the trapping frequency in plane is determined by
analysis of dipole oscillations in the trap and the calibration is only used for the
computation of the trapping frequency in z-direction (appendix B).
The evaporation is realized by a RF-knife: A radio frequency (RF) field is applied

with a frequency chosen such that at the outer regions of the cloud spin flips are
driven. As soon as an atom gets transferred to a state that is not trapped it is lost
from the cloud. Due to collisions the cloud rethermalizes to a lower temperature in
response to the loss of particles of high energy. The frequency of the RF-knife is
slowly lowered, moving the resonance surface closer to the trap center. This must be
done fast enough compared to the vacuum limited lifetime of the cold atoms and slow
enough for the system to be in thermal equilibrium at every point in time. The onset
of condensation is detected via the appearance of a bimodal momentum distribution
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corresponding to the coexistence of condensate and thermal cloud. In our setup we
start the evaporation ramp at a RF frequency of ∼ 20MHz and lower it to a final
frequency of ∼ 90 kHz within ∼ 20 s.

2.3. The optical lattice
For the quantum simulation of periodic potentials an optical lattice can be used.
Optical lattices leverage the AC Stark effect [55]: Atoms in a light field experience a
negative(positive) energy shift if the frequency of the light is red(blue) detuned from
the atomic resonance. Therefore the antinodes(nodes) of the light field constitute
potential minima for the atoms. In order to suppress heating via lattice light scat-
tering, the detuning must be chosen large. Due to the fact that the potential depth
decreases slower with increasing detuning as the scattering rate, a significant optical
lattice potential with low light scattering can be achieved, yet usually requiring pow-
ers of the order of Watt. In our experiment a triangular lattice and a boron-nitride
lattice—i.e., a honeycomb lattice with unequal on-site energies in the unit cell—are
possible as will be explained below.
The loading into the lattice is achieved by an exponential ramp up of the lattice

beam intensities in a time of several hundreds of milliseconds.

2.3.1. Polarization approach
One possible way of implementing a lattice that can be tuned between triangular and
boron-nitride is the intersection of three beams under 120° with tunable polarization.
This approach is discussed in detail in [56]. If the polarization of the beams is in
the lattice plane (p-polarization), the maxima of the resulting intensity patterns are
arranged as a honeycomb lattice, whereas in the case of the polarization being per-
pendicular to the lattice plane (s-polarization), a triangular lattice is formed. The
idea is now to choose a polarization that has both s- and p-component to create more
complex lattices. In particular if one chooses the same ratio of s- and p-polarization
in all beams this results in a potential which consists of the sum of a triangular and
a honeycomb lattice. The relative position of the two addends can be chosen by the
phase between s- and p-polarization, i.e., by the ellipticity.
In the following we want to formalize this approach. Using the conventions intro-

duced in [56] we describe the electric fields Ei(r, t) (i = 1, 2, 3) of the three lattice
beams as

Ei(r, t) = E0,iêi exp [i (kir − ωt− φi)] , (2.3)

where E0,i is proportional to the square root of the laser intensity, ω is the laser
frequency, and the φi denote the phases of the laser beams. The wave vectors ki are
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Figure 2.3.: Polarization approach. A boron-nitride lattice (right) can be obtained
by adding the triangular lattice formed by the s-polarization (left) and the hon-
eycomb lattice formed by the p-polarization (middle) when choosing the relative
position such that the potential minima of the triangular lattice are at the same
position as the minima of one sublattice of the honeycomb lattice. Here we used
θ1 = θ2 = θ3 = 9° and α1 = 0°, α2 = 120°, α3 = 360°. Note that the colorscale for
every image is rescaled to the respective maximal values.

given by

k1 = kL

0
1
0

 , k2 = kL

−
√

3/2
−1/2

0

 , k3 = kL


√

3/2
−1/2

0

 , (2.4)

with kL = 2π/λ being the magnitude of the wave vector of the laser given by its
wavelength λ. The polarization êi = cos θiêp,i + exp(iαi) sin θiês,i is decomposed into
s- and p-polarization with mixing angle θ and relative phase α. The polarization
vectors are given by

ês,1 = ês,2 = ês,3 =

0
0
1

 , êp,1 =

−1
0
0

 , êp,2 =

 1/2
−
√

3/2
0

 , êp,3 =

 1/2√
3/2
0

 .
(2.5)

The potential energy landscape V (r) is proportional to the intensity averaged over
one period of the laser frequency [55] which in turn is proportional to the absolute
value squared of the total electric field. Hence we can write

V (r) ∝ |E1 +E2 +E3|2 = const + 2Re
(
Ē1E2

)
+ 2Re

(
Ē1E3

)
+ 2Re

(
Ē2E3

)
.

(2.6)

We can see that the lattice can be thought of as a sum of three 1D lattices. Omitting
the constant, we therefore define V (r) = ∑

i<j Vij(r) with [56]

Vij(r) =
√
ViVj cos θi cos θj cos [(ki − kj) r + φj − φi]

− 2
√
ViVj sin θi sin θj cos [(ki − kj) r + φj − φi − αj + αi] , (2.7)



2.3. The optical lattice 11

where Vi is proportional to the intensity of beam i (see appendix B for their cal-
ibration via Kapitza-Dirac scattering). Hence the lattice is indeed the sum of a
potential coming from the p-polarization (cos θ-terms) and a potential coming from
the s-polarization (sin θ-terms). Due to the different sign the p-polarization forms a
honeycomb lattice and the s-polarization a triangular lattice. The phases of the laser
beams determine the origin of the lattice whereas the phases of the polarizations shift
the two lattices with respect to each other. For the choice α1(2,3) = 0°(120°, 240°) the
relative position is such that the resulting lattice is a boron-nitride lattice (Fig. 2.3).
More possible lattice geometries are presented in [56].

2.3.2. Multi-frequency approach
The polarization approach allows for a flexible lattice geometry, yet the polarization
of the lattice beams cannot be controlled on arbitrary time scales and thus, e.g., a
quench of the lattice geometry cannot be realized. Furthermore, with this approach
the local polarization on the sublattices of the honeycomb lattice are different and
therefore the potential depth can be dependent on the mF -state due to the vector
light shift. These problems do not occur when using what we want to call the multi-
frequency approach. The idea is to be able to independently control the origin of
three linearly polarized 1D lattices, which will be possible if they do not interfere do
to a detuning, as discussed below.

Figure 2.4.: Frequency setup for the multi-frequency lattice. The three schematic
spectra correspond to the three lattice beams. The coloured bands denote the
carriers with frequencies νa, νb and νc which originate from the same laser but
which are shifted by the use of AOMs. Each beam passes through an EOM as
well, resulting in sidebands at frequency difference να, νβ and νγ. The frequencies
are chosen such that each carrier is resonant with exactly one side band, i.e., να =
νc − νb, νβ = νb − νa and νγ = νc − νa. The exact choice of frequencies is νa =
ν0 + 105.005MHz, νb = ν0 + 112.775MHz, νc = ν0 + 114.995MHz, να = 2.22MHz,
νβ = 7.77MHz and νγ = 9.99MHz, where ν0 is the frequency of the lattice laser.
Adapted from [57].
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The technical implementation is realized by the use of three electro-optical modu-
lators (EOMs) and three acousto-optical modulators (AOMs), one of each for every
lattice beam. The lattice beams are detuned via the AOMs in such a way that they
have the same frequency as exactly one sideband from one other lattice beam leading
to only pairwise interference. Fig. 2.4 shows our choices of frequencies which satisfy
this condition. Shifting the phase of the RF applied to an EOM results in the desired
displacement of the 1D lattice which is created by the corresponding sideband.
In the following we want to illustrate how this technique leads to the desired lattice

geometries (Fig. 2.5). The most intuitive configuration is the case where the origins of
the three 1D lattices are chosen such that there are points where the potential valleys
of all of them coincide (Fig. 2.5a). Consequently, these are the points of minimal
potential energy and—as can be seen from the figure—they form a triangular lattice.
The second important lattice geometry, the boron-nitride, is not so straightforward.
If, starting from the triangular configuration, one 1D lattice is shifted by half a 1D
lattice constant, then the 1D lattice valleys form small triangles which have minimal
potential energy in their center (Fig. 2.5b). These triangles are arranged in a honey-
comb pattern. When going away from the honeycomb configuration by moving again
one 1D lattice, then one sublattice gets deeper and the other becomes more shallow
resulting in a boron-nitride lattice (2.5c). Moving the 1D lattice even further, no
bound state exist any more on the shallow sublattice and we again have a triangular
lattice.
The lattice potential can be written as

V (r) =
∑
i<j

Vij(r) = 2
∑
i<j

Vij,0 cos [(ki − kj) r + sijϕg/3] , (2.8)

where we defined the 1D lattice depths Vij,0 and the geometry phase ϕg and s12 =
s23 = 1 = −s13. Global phases are absorbed into the choice of origin. The definitions

Figure 2.5.: Triangular, honeycomb and boron-nitride lattice using the multi-
frequency approach. Shown is the potential landscape of a (a) triangular lattice,
(b) honeycomb lattice and (c) boron-nitride lattice. To illustrate how this lattices
arise from the summation of three 1D lattices the potential minima of these 1D
lattices are shown as black dotted lines.
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of the geometry phase ϕg and the signs sij are such that the sublattices are stationary
when changing the geometry phase. This convention is different from the one used
for the explanations above, where just one lattice was moving.
For more details on the method we refer the reader to the thesis of Luca Asteria [57].

2.4. Absorption imaging
Our observables in the experiment are atomic column densities that we deduce using
absorption imaging. The basic idea of absorption imaging is to compute the column
density of the atoms along the line of sight by measuring the attenuation of an imaging
laser. To this end an absorption image with the attenuated beam is compared to a
reference image with no attenuation, i.e. with no atoms present.
For imaging we use circularly polarized resonant light that drives the |F = 2,mF = 2〉
↔ |F ′ = 3,m′F = 3〉 transition of the D2 line. For small imaging light intensities the
transmission through the atomic cloud can be described by the Beer-Lambert law [58]

T (x, y) = e−σ0n(x,y), (2.9)

with the column density n(x, y) =
∫

dz n(r) and the resonant scattering cross section
σ0 = 3λ2/(2π). Hence, if we assume the CCD camera counts to be linear in intensity,
we can obtain the column density as

n(x, y) = 1
σ0

ln 1
T (x, y) = 1

σ0
ln Nref(x, y)
Nabs(x, y) (2.10)

from the number of counts Nabs(x, y)(Nref(x, y)) on the absorption(reference) image.
To obtain a better precision we add correction terms taking into account saturation
effects due to finite intensity. The expression used in data analysis is [59]

n(x, y) = 1
σ0

[
ln Nref(x, y)
Nabs(x, y) + (Nref −Nabs)C

Isat

]
, (2.11)

where we introduced the saturation intensity Isat = 16.69W/m2 for our imaging
transition [54] and the conversion factor C = 5.68 × 10−4 W/m2 from counts on the
camera to intensity (see appendix C for its computation). We save the atom number
on each pixel, making it necessary to add a factor of Apixel/M

2 with magnification
M = 2.02 (appendix C) and pixel size of the camera Apixel = (13 µm)2.
Theoretically, in absorption imaging the beam profile is not relevant since it is the

same on the absorption and reference image. In practice there are small fluctuations
of the pointing between absorption and reference image even though there is only a
small wait time of 34ms between the two. As a consequence artefacts in the form
of fringes arise in the deduced atomic density. For all the images in this thesis we
applied a defringing algorithm which constructs an optimized reference image from a
set of reference images such that it minimizes the fringes. See appendix D for details
on the algorithm.
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3. The quantum gas magnifier
Experimentally driven understanding of nature is always limited by the capability to
measure certain observables. Historically, in cold atoms, a meaningful and easily ac-
cessible observable is the momentum distribution of the particles under investigation.
In particular coherent samples in periodic potentials feature interesting momentum
distributions. Yet, there are interesting phenomena that are not visible in the mo-
mentum distribution, e.g., Mott-insulator shells of a trapped gas [30, 31]. Single site
resolved imaging in real space is nowadays accessible by the use of quantum gas micro-
scopes leading to the observation of a vast number of phenomena [32]. However, these
machines also have limitations, such as depth of focus, parity projection, and diffrac-
tion limited resolution. There are other techniques which overcome some of these
limitations but at the cost of other. For example using an electron microscope [33]
solves the mentioned problems but at the cost of reduced detection efficiency which
prohibits the measurement of correlations.
So far, progress in real space measurement has been made by maximizing the

spatial resolution of the measurement apparatus. Here we present a complementary
approach which is the magnification of the sample itself, enlarging length scales to a
degree where they can be easily measured using standard imaging. This allows for
single shot measurement of the column density of 3D systems with sub-lattice site
resolution.
We call this approach quantum gas magnification and introduce it in this chapter.

First the working principle will be explained. Then, benchmark experiments will
be presented: a characterization of the thermal phase transition from normal gas
to superfluid, a measurement of thermalization using RF addressing and a quench
dynamics experiment with sub-lattice site resolution. Eventually we present results
on the investigation of on-site fluctuations showing that these are preserved in the
magnification protocol.
The experiments presented here have been carried out together with my fellow

PhD students Luca Asteria and Marcel Kosch and under the supervision of Klaus
Sengstock and Christof Weitenberg.

3.1. Working principle
Let us start with a description of the working principle. The quantum gas magnifier
protocol consists of a quarter period evolution in a harmonic trap followed by a
free expansion time. There are many ways to illustrate how this protocol leads to a
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Figure 3.1.: Classical picture of the quantum gas magnifier. A harmonic potential
is suddenly switched on while a particle is at rest at a distance x0 from the trap
center (left). After a quarter period evolution the particle reaches the trap center
with a velocity v = −ωpulsex0 (middle). At this point the harmonic trap is switched
off again resulting in a free propagation to position x′ = −ωpulsettofx0 after a time
ttof corresponding to a magnification of x′/x0 = −ωpulsettof .

magnification of the original density distribution. Probably the most intuitive picture
is obtained by considering non-interacting classical mass points in 1D (Fig. 3.1). Let
us suppose that a particle is at rest at a certain position x0. Abruptly a harmonic
potential centered at the origin is turned on. Consequently the particle is starting to
move and after a quarter period it reaches the trap center, having gained a velocity
v = −ωpulsex0 with ωpulse being the trap frequency of the harmonic trap. At this
point in time the harmonic potential is switched off resulting in a free propagation
of the particle. After a time ttof of free propagation the particle’s position is given
by x′ = vttof = −ωpulsettofx0. Hence the position of the particle is magnified by a
factor −ωpulsettof . Consequently, a density distribution ρ(x) would be magnified to
ρ′(x) = ρ(−x/(ωttof)) with x being measured with respect to the trap center. The
minus sign leads to an inversion of the distribution with respect to the origin.
In a general setting, the particles will not be at rest at the start of the protocol. An

initial velocity v0 maps to a displacement after the quarter period evolution as can
be seen, e.g., from the representation of the harmonic oscillator in phase space where
a quarter period evolution corresponds to a quarter rotation on the corresponding el-
lipse [60]. This displacement δx = v0/ωpulse can be either made negligible by choosing
the expansion time such that ωpulsettofx0 � v0/ωpulse or can be eliminated by slightly
elongating the hold time in the harmonic potential. Explaining the latter possibility
is more involved, but it will turn out to be also possible in the quantum case. Hence
we want to derive this correction to the evolution time in the harmonic potential here.
For the description we choose Hamlitonian mechanics since in that way the gener-

alization to quantum mechanics will be particularly easy as will be seen later. The
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Hamiltonian function of the harmonic oscillator is given by

Hho = 1
2mp2 + 1

2mω
2
pulsex

2, (3.1)

resulting in the equations of motion

d
dtx = 1

m
p (3.2)

d
dtp = −mω2

pulsex. (3.3)

These equations are solved by

x(t) = x(0) cos(ωpulset) + p(0)
mωpulse

sin(ωpulset), (3.4)

p(t) = p(0) cos(ωpulset)−mωpulsex(0) sin(ωpulset). (3.5)

After the evolution time tho in the harmonic potential, the free expansion follows for
a time ttof resulting in a final state of

x(tho, ttof) = x(0) cos(ωpulsetho) + p(0)
mωpulse

sin(ωpulsetho) + p(tho, ttof = 0)
m

ttof , (3.6)

p(tho, ttof) = p(0) cos(ωpulsetho)−mωpulsex(0) sin(ωpulsetho). (3.7)

Plugging (3.7) into (3.6) leads to

x(tho, ttof) =x(0)
[

cos(ωpulsetho)− ωpulsettof sin(ωpulsetho)
]

+p(0)
[ 1
mωpulse

sin(ωpulsetho) + ttof

m
cos(ωpulsetho)

]
. (3.8)

The ideal condition for density magnification is reached when the final position
x(tho, ttof) does not depend on the initial momentum p(0). This is the case when
the coefficient of the initial momentum vanishes which is achieved when the condi-
tion

tanωpulsetho = −ωpulsettof (3.9)

is met. In this case (3.8) simplifies to

x(tho, ttof) = x(0)
√

1 + (ωpulsettof)2. (3.10)

The magnification derived for this optimized evolution time in the harmonic trap
approaches the value found earlier for ωpulsettof � 1 which is the case for significant
magnification. In Fig. 3.2 this focusing condition is visualized by showing a set of
trajectories in phase space all having the same initial position but different initial
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Figure 3.2.: Focusing classical particles. Trajectories of classical particles in phase
space for an evolution in a harmonic trap followed by a free expansion with the
evolution time in the harmonic trap being chosen as a function of the free expansion
time such that the focusing condition (3.9) is met. The circles highlight the initial
state at t = 0, the state when the harmonic trap is switched off at t = tho and
the final state at t = tho + ttof . It can be seen that indeed all three trajectories
terminate at the same x-position despite largely different initial momenta.

momenta. Due to the optimal choice of the evolution time in the harmonic trap all
trajectories reach the same position after the expansion time.
Now where we demonstrated the density magnification for classical particles we

want to proceed with the consideration of quantum particles. Here we want to adopt
the Heisenberg picture because it is basically identical to the Hamiltonian mechanics
approach as we will see below. The Hamiltonian of the harmonic oscillator is given
by

Ĥho = 1
2mp̂2 + 1

2mω
2
pulsex̂

2. (3.11)

resulting in the equations of motion

d
dt x̂ = i

~
[
Ĥ, x̂

]
= 1
m
p̂ (3.12)

d
dt p̂ = i

~
[
Ĥ, p̂

]
= −mω2

pulsex̂, (3.13)

It can be seen that these are actually the same equations as those for the classi-
cal variables (3.2-3.3) and therefore the solution has the same form except for the
variables being promoted to operators. Since at no point in the derivation for the
classical focusing condition we made use of the fact that we are dealing with classical
variables all results are still valid in the quantum case. Only for the visualization of
the focusing condition we need to take a slightly different perspective. Since position
and momentum are not a number any more we cannot make a plot showing the tra-
jectory (x̂(t), p̂(t)). Instead what we can do is to decompose the position operator
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Figure 3.3.: Focusing quantum particles. The plot shows the evolution of the de-
composition of the position operator into initial position and momentum operators
x̂ = cx(t)x̂(0) + cp(t)p̂(0) as a function of time. The circles highlight the initial
operator at t = 0, the operator when the harmonic trap is switched off at t = tho
and the final operator at t = tho + ttof . It can be seen that the position operator
returns to a multiple of itself, in particular, with no contribution from the mo-
mentum operator demonstrating independence of the final density from the initial
momentum distribution.

as x̂(t) = cx(t)x̂(0) + cp(t)p̂(0) and plot the trajectory (cx(t), cp(t)). We can read off
these coefficients for the evolution in the harmonic trap, i.e. for t ≤ tho, from (3.4)
to be

cx(t) = cos(ωpulset), (3.14)

cp(t) = 1
mωpulse

sin(ωpulset), (3.15)

and for the free expansion including focusing condition we replace ttof by t in (3.6)
and plug in the focusing condition (3.9) to obtain

cx(t) = −
1 + ω2

pulsetttof√
1 + (ωpulsettof)2

, (3.16)

cp(t) = − 1
m

t− ttof√
1 + (ωpulsettof)2

, (3.17)

for t > tho and choosing π/2 < ωpulsetho < π for the inversion of the focusing con-
dition. The corresponding trajectory is plotted in Fig. 3.3. When looking for the
comparison to the classical case, several trajectories would be possible if visualizing
the expectation values 〈x̂(t)〉, 〈p̂(t)〉 for different states, which would then look like
the classical trajectories with initial state x = 〈x̂(0)〉 and p = 〈p̂(0)〉. However since
the position and momentum are in general not sharp the consideration of the posi-
tion operator is the only way to conveniently visualize the complete information. In
Fig. 3.3 the focusing for the quantum case is expressed by the fact that the admix-
ture of the momentum operator to the position operator cp vanishes at the end of the
magnification protocol.
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All these considerations apply for a non-interacting system. The quantum gas
magnifier can also be used for interacting systems by switching off the interactions
for the duration of the matter wave dynamics. This can be achieved in several ways.
For our experiments we remove the effects of interactions during magnification by
two measures. First, we start the evolution in the harmonic trap by switching off the
lattice which leads to a quick reduction of the density. Coherent systems however will
form sharp interference patterns increasing the density again. Therefore we remove
the coherence while preserving the on-site populations by a hold time in a deep lattice.
However, even though the on-site populations are unaffected by this, the density is
disturbed and therefore, if we want to obtain the full density information, we can only
image incoherent systems. Alternatively a stronger transverse confinement could be
used resulting in a fast transverse expansion when it is switched off. If working with
a dipole trap and atoms with a Feshbach resonance, the best solution would be to
switch off the interactions during the matter wave magnification using a magnetic
field corresponding to vanishing interactions.
More details can be found in the thesis of my colleague Luca Asteria [57] or refer-

ence [22].

3.2. Resolution of the quantum gas magnifier

In a first set of experiments we characterize the resolution of the quantum gas mag-
nifier for different magnifications. To this end we load a BEC into a deep triangular
lattice (chapter 2), eliminating the need to suppress coherence later and we can thus
record the full density information. Using different trapping frequencies allows the
investigation of different magnifications. From the images that we obtain we extract
cuts that can be fitted by a grid of Gaussians to obtain a 1/

√
e width σsite of the sites

(Fig. 3.4). The resulting widths are plotted as a function of magnification for different
particle numbers in Fig. 3.4g. The observed width can be fitted by a model assuming
a magnified size of the wave function σwf convoluted with an optical resolution of the
absorption imaging σopt, i.e.,

σsite(M) =
√
σ2

opt + (Mσwf)2. (3.18)

A fit to all datapoints irrespective of atom number (brown solid line in Fig. 3.4b)
yields σopt = 5.2(2) µm and σwf = 118(3)nm. According to the Rayleigh criterion
single lattice sites can be resolved if alat > 0.35σsite, where 0.35 is the width of a
Gaussian fitted to an airy disk of unit resolution. The criterion is depicted as the
blue solid line in Fig. 3.4g. Hence, according to the fit already a magnification of
∼ 23 is enough to obtain single site resolution which is easily achieved.
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Figure 3.4.: Resolution of the quantum gas magnifier. (a-c), example images ob-
tained using the quantum gas magnifier with magnifications of (a) 83(1), (b) 56(1),
and (c) 38(1). (d-f), cuts through the images in (a-c) parallel to primitive vectors
of the lattice (circles) fitted with a grid of Gaussians (lines). The color of the sym-
bols and lines indicate the direction of the cut as shown in (a-c). (g), Gaussian
width of the on-site density distribution as a function of magnification (circles)
color coded according to total particle number in the cloud. The particle numbers
are 45(2) × 103, 54(3) × 103, 64(3) × 103, 72(2) × 103, from black to ochre. The
data is fitted using a convolution of the actual size of the wave function and the
resolution of the imaging system (3.18). The brown solid line corresponds to a fit
of all data points whereas the dashed lines correspond to a fit only taking points
with the same atom number into account. The blue line shows the maximal width
allowed to be able to resolve single sites. Adapted from [22].
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3.3. High precision thermometry

With the single site resolution verified we can move on with the first benchmark
experiment: a study of the thermal phase transition from a normal gas to a BEC in
a triangular lattice with harmonic external confinement. Measuring the temperature
of such a system can be very involved if only the momentum space distribution is
accessible [61–63]. Using the real-space density it is much easier as shown below.
We prepare the atoms in the magnetic trap as explained in chapter 2. We vary the

final evaporation frequency and add a hold time at the final evaporation frequency
in order to obtain atomic clouds of different particle numbers and temperatures.
Afterwards we ramp down the currents of the magnetic trap to have a trapping
frequency of ωsys = 2π×305Hz. We then ramp up the triangular lattice exponentially
within 400ms to a lattice depth of Vlat = 1Er with the recoil energy Er = h2/(2mλ2)
where m = 87u is the mass of 87Rb and λ = 1064nm is the wavelength of the lattice
laser. This depth corresponds to a width of the lowest band of kB× 5.4nK and a gap
between first and second band of kB×290nK. Details on the lattice depth convention
and band structure simulation can be found in appendix B. After the loading we
image the resulting on-site populations. As explained earlier, to avoid interference
induced high densities during the matter-wave dynamics, we quench to a deep lattice
of Vlat = 6Er corresponding to a tunneling energy of J/h ∼ 1mHz. The on-site
populations are hence frozen and the coherence is removed by a hold time of 15ms
in the deep lattice. Eventually we switch off the lattice to initiate the quantum gas
magnifier protocol.
We extract the on-site populations by integration over the Wigner-Seitz cells (ap-

pendix D). Depending on the two experimental control parameters of final evaporation
frequency and hold time in the magnetic trap we observe different density distribu-
tions that correspond to a thermal, broad profile, or a bimodal profile of a broad
distribution with a narrow one on top (Fig. 3.5).
In a next step we need to extract the fraction of atoms in the BEC f0 and the

temperature of the cloud T0 in order to make quantitative statements about the
phase transition. To this end a model, and due to the high densities in the BEC a
model including interactions, is required. Let us start with the condensed part. It
can be shown that a coarse-grained density of a BEC in a lattice can be described
by a model without lattice with a renormalized interaction strength [64]. Here we
are interested in the on-site populations which is a special case of a coarse-grained
density and therefore the same reasoning applies. A BEC wave function ψ(r) can be
described by the Gross-Pitaevskii equation [65]

− ~2

2m∆ψ(r) + V (r)ψ(r) + geff |ψ(r)|2 ψ(r) = µψ(r). (3.19)

m is the mass of the particles, µ is the chemical potential and geff is the effective
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Figure 3.5.: Normal gas to superfluid transition in real space. (a-c), example on-site
populations of samples with (a) a high condensed fraction, (b) an intermediate one
and (c) a normal gas. (d-f), on-site populations of (a-c) as a function of radial
position (circles). The plots always correspond to the image above them. The
lines show a fit with the bimodal model explained in the main text. The orange
line shows the full model, the yellow curve shows only the condensed part and
the purple line represents the normal gas. (a,d) correspond to a temperature of
T = 171(1)nK and an atom number of N = 37.0(4)× 103, (b,e) to T = 310(1) nK
and N = 106.0(6)×103, (c,f) to T = 484(2)nK and N = 167.6(6)×103. The errors
correspond to the 68% confidence interval of the fit.

interaction strength. It is given by
geff

g
= AWS

∫
|w(x, y)|4 dxdy, (3.20)

where g = 4π~2asc/m is the interaction strength derived from the s-wave scattering
length asc, AWS is the area of the Wigner-Seitz cell, and w(x, y) is the Wannier
function on a lattice site. We make an ansatz of a Gaussian Wannier function

w(x, y) = 1
2πa2

ho,site
e
− x2+y2

2a2
ho,site (3.21)

with the on-site oscillator length aho,site (appendix B) and obtain

geff

g
= AWS

2πa2
ho,site

=
√

3
4π

a2
latt

a2
ho,site

. (3.22)
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Here, alat = 2λ/3 = 709 nm is the lattice constant of the triangular optical lattice.
Let us now proceed with the solution of the Gross-Pitaevskii equation (3.19). For

our parameters we are in the typical situation that the interaction term is very
strong as can be seen from Nasc � āho where we introduced the geometric mean
āho = (aho,xaho,yaho,z)1/3 of the harmonic oscillator lengths aho,xi =

√
~/(mωsys,xi) of

the external potential. The interactions induce a strong delocalization compared to
the non-interacting ground state. Thus the kinetic energy term can be neglected
which is known as Thomas-Fermi approximation [65]. As a result the equation is not
differential any more and can be readily solved. The density is given by

|ψ(r)|2 = max
[
µ− V (r)

geff
, 0
]
, (3.23)

i.e., it consists of an inverted parabola for our case of a harmonic potential V (r) =
m[ω2

sys(x2+y2)+ω2
zz

2]/2. ωz = 2π×29Hz is the trapping frequency in z-direction, see
appendix B for its computation. To be able to directly fit the experimental data we
have to integrate over the z-direction and we have to do some change of parameters.
With standard identities for the Thomas-Fermi approximation [65] we obtain the
expression

nBEC(x, y) =
∫

dz nBEC(x, y, z) =
∫

dz 15
8π

NBEC

R2
ρRz

max
[
1− x2 + y2

R2
ρ

− z2

R2
z

, 0
]
, (3.24)

where we introduced the total atom number in the BEC NBEC and the Thomas-Fermi
radii Rρ and Rz.
For the thermal part of the cloud we take a so-called semi-ideal approach, i.e. we

take into account the interaction that the BEC exerts onto the thermal atoms but
neglect the one exerted by the thermal atoms onto the BEC or other thermal atoms.
This is justified by the low density of the thermal atoms. Consequently the thermal
atoms experience a potential that is given by

Vth(r) = V (r) + 2geffnBEC(r). (3.25)

To obtain their resulting density distribution we treat the thermal gas in semi-classical
approximation which assumes that the potential varies slowly on the length scale of
the DeBroglie wavelength. This is fullfilled for the excited states and hence instead
of using the exact eigenstates, the system can be thought of a collection of homo-
geneous boxes having eigenstates of sharp momentum and localized position. Thus
the spectrum is Ep(r) ≈ p2/(2m) + Vth(r) with the momentum p and the center of
the box r. Plugging this into the Bose-Einstein distribution and integrating over the
momentum leads to a density distribution of

nth(r) = 1
λ3
T

g3/2
(
e−β(Vth(r)−µ)

)
, (3.26)
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Figure 3.6.: BEC fraction as a function of temperature and atom number. (a),
fraction of condensed atoms as a function of temperature as obtained from the
model described in the main text. The color encodes the total atom number of the
sample. (b), fraction of condensed atoms as a function of temperature normalized
to the critical temperature of a non-interacting system T 0

c (circles) also color-coded
according to total atom number. The blue line shows a theoretic model without
interactions based on a power-law density of states as explained in the main text.
The red line is a fit to the data with the same model but allowing for a critical
temperature that is scaled by a factor. Adapted from [22].

with gn(r) = ∑
m>0 x

m/mn and λT = ~
√

2π/(mkBT ). Of course this expression also
needs to be integrated along z to be comparable to our experimental images.
Eventually, to form the fit function we add the two parts nBEC and nth. As fit

parameters we allow for a shift of the origin and we fit the temperature, the chemical
potential, the number of particles in the BEC and the in-plane Thomas-Fermi radius
Rρ. The transverse Thomas-Fermi radius Rz is computed from Rρ using the aspect
ratio of the trap as Rz = Rρωsys/ωz. Additionally we allow for a small offset. In
fact only for the lowest evaporation frequency the Thomas-Fermi radius and the
number of particles in the BEC are treated as independent parameters. From theory
a dependence of the type Rρ = γN

1/5
BEC is expected. The proportionality constant

γ is determined from the fits at lowest evaporation frequency to be γ = 0.354 µm.
Actually this value is extremely close to the one expected theoretically which is

γtheo = Rρ

N
1/5
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= 151/5

√√√√ ~ω̄
mω2

sys

(
geff

g

asc

ā

)1/5

= 0.352µm. (3.27)

Here we introduced the geometric mean of the trapping frequencies ω̄ = (ω2
sysωz)1/3.

The fit results provide a datapoint f0(T,N) for every image where N is the total
atom number. These datapoints are plotted in Fig. 3.6a. In this representation, as
expected, a clear dependence on both N and T can be seen.
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For a non-interacting condensate, a critical temperature which depends on the
particle number can be computed. If the temperature is measured in units of the
critical temperature the explicit particle number dependence of the condensate frac-
tion vanishes. Since the critical temperature depends to a large degree on the excited
level structure—which is much less sensitive to interactions than the ground state—it
makes sense to renormalize the temperature of our interacting system by the critical
temperature of a non-interacting system. The computation of the critical tempera-
ture is based on determining the maximal number of atoms the excited states can
accommodate for a given temperature.
Thus we compute the critical temperature T 0

c for our system neglecting interac-
tions (see Appendix B) and renormalize the temperature axis in the plot accordingly
(Fig. 3.6b). We observe that in this representation all data points collapse onto a sin-
gle curve. We can model this curve by the behaviour of a non-interacting system with
a scaled critical temperature. Approximating the non-interacting density of states as
a powerlaw g(E) = CαE

α−1 (appendix B) results in a fit function f0 = 1− (T/Tc)α.
The fit to all points with f0 > 0.1 is shown in Fig. 3.6b as a red line and results in
Tc/T

0
c = 0.901(4), where the error is the 68% confidence interval of the fit. Addition-

ally we estimate a systematic error of 3% in the atom number determination which
propagates to a 1% systematic error on the critical temperature.
Such a shift was already observed in the early BEC experiments [66]. There are

several factors that can shift the critical temperature of a system. First of all the
ground state energy is increased with interactions leading to a shift of [65, 67]

∆Tc

Tc
≈ −1.33geff

g

asc

ā
N1/6 ≈ −0.24. (3.28)

Here we used a typical value of N = 5×104. This shift is larger than the one observed.
However, for large shifts, this mean-field expression is expected to overestimate the
correction [68]. Another effect is the finite particle number. The less particles are
in the system the lower the critical temperature and the more relevant become the
details of the level structure close to the ground state making the continuous density
of state approximation less accurate. Sticking with the discrete density of states or
using a more precise modelling of the continuous density of states results in a shift
of [69]

∆Tc

Tc
≈ −0.73ωm

ω̄
N−1/3 ≈ −0.03, (3.29)

where ωm(ω̄) is the arithmetic(geometric) mean of the trapping frequencies and where
we used againN = 5×104. The smoothing of the transition might also be connected to
this effect. However, apart from the approximation as a coarse grained density, there
is no established theory for the condensation in a 2D lattice with weak confinement
in the third direction, making a precise theoretical prediction of the shift difficult.
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3.4. Selective addressing and thermalization dynamics
Besides the ability to observe fine details it is also very desirable to have the ability
to locally address the atomic sample in order to prepare interesting states. This
has been achieved, e.g., by depletion via an electron beam [70], via a focused beam
combined with a spin flip and optical push out [71], or by using a digital mirror
device and deconfinement [72]. In our system we are able to locally address the
lattice site populations using magnetic resonance techniques [73] which were also
proposed for continuous wave function engineering [74]. Due to the magnetic trap, the
energy separation between different mF -levels has a spatial dependence (Fig. 3.7b).
Therefore this transition can be locally addressed. Atoms that change their state to
the |F = 2,mF = 1〉 state are still trapped but they can decay collisionally to the
F = 1 manifold [75] (Fig. 3.7c). When atoms reach the mF ≤ 0 levels via several
transitions these are also lost since these states are not trapped or even anti-trapped.
Hence we can locally deplete the lattice sites.

3.4.1. Pattern preparation
As described above, if we shine in RF-radiation atoms that fulfill the resonance con-
dition will be lost from the trap. In practice, it requires a few 100 milliseconds to
completely empty a lattice site and therefore the populations need to be frozen in
a deep lattice for the duration of the RF preparation. The basic patterns available
for this preparation are given by the shape of the iso-magnetic field surfaces. For
our magnetic trap setup these are ellipsoids which are extremely elongated along line
of sight, with aspect ratio that can reach 60 depending on the currents in the mag-
netic trap coils. Conveniently the optical lattice dominates the trapping frequency
perpendicular to the plane making the aspect ratio of the atomic cloud in the lattice
about three times smaller than the one given by the magnetic fields. Consequently
the depletion happens for atoms at a fixed distance from the long trap axis without
much dependence on the position along the same axis (Fig. 3.7a). Hence the result-
ing pattern in the image is a depleted circle (Fig. 3.7d). The radius of this circle can
be shrunk to a single lattice site by applying a frequency very close to the central
resonance condition (Fig. 3.7e). Using frequency sweeps, not only a single circle can
be depleted but a whole annulus (Fig.3.7f). Due to the atoms being frozen in a deep
lattice during the process, the magnetic trap and consequently the patterns can be
shifted with respect to the atoms. This is realized by switching offset fields. This
allows to move the iso-magnetic field surfaces so far off center such that only a single
line of atoms is depleted (Fig. 3.7g). Here as well, sweeps can be implemented in
order to remove half the system or to prepare a single line (Fig. 3.7h,i).
In principle the combination of the ability to have a single lattice site as a pattern

and of the possibility to displace the pattern allows for arbitrary pattern preparation.
Yet, in practice, the time required to empty a lattice site is too high to be able to
write large patterns with such an approach. One possible solution to this could be
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Figure 3.7.: State preparation via magnetic resonance. (a), cut through the lattice
of tubes perpendicular to the lattice plane. One iso-magnetic field surface (solid
black ellipse) and one iso-potential surface (dashed gray ellipse) are shown. The
aspect ratio of the iso-magnetic field surface exceeds the one of the iso-potential
surface by three. Consequently, only two tubes intersect the iso-magnetic field
surface in this cut. (b), potential of the magnetic trap for the different mF -levels.
For a given RF frequency the transition between the mF -levels is only resonant for
atoms at a certain distance from the trap center. (c), level scheme of the states
|F = 1,mF = 0,±1〉 and |F = 2,mF = 0,±1,±2〉 at finite magnetic field. Atoms
in the |F = 2,mF = 1〉 state can decay collisionally to the |F = 1,mF = 1〉 state
resulting in loosing them from the trap because they gain the energy corresponding
to the hyperfine splitting. Due to angular momentum conservation such a channel
does not exist for the stretched state |F = 2,mF = 2〉. (d-i), example images of
prepared patterns. The resonance frequency at the trap center is ωc/(2π) = 67 kHz
for (e) and 108 kHz for the other images. The trap frequency during the addressing
is ωadd/(2π) = 658Hz for (e) and 543Hz for the other images. (d-f) are obtained
without shifting the trap. For (d) the RF frequency was 108.5 kHz, for (e) 67.2 kHz
and for (f) a sweep from 150 to 110 kHz was used. (g-i) are obtained via a shift of
∼ 15 µm. The RF frequency was 360 kHz for (g), a sweep from 360 to 290 kHz was
used in (h) and two sweeps, one from 494 to 540 kHz and one from 420 to 486 kHz,
were used in (i). Adapted from [22].



3.4. Selective addressing and thermalization dynamics 29

the use of a Raman transition to the other hyperfine ground state in combination
with an optical push out of this state instead of the RF transition.

3.4.2. Relaxation dynamics of a triangular lattice of tubes
As an application of the state preparation via magnetic resonance we want to consider
relaxation dynamics of a BEC in a triangular lattice with weak transverse confine-
ment. Even though cold atom samples are isolated from the environment and there-
fore evolve according to unitary dynamics, this unitary dynamics typically evolves
into a state that is indiscernible from a thermal state when only taking local observ-
ables into account [76]. This kind of behaviour is expected for generic interacting
systems. But besides integrable systems, there is another class of systems that do
not thermalize despite the presence of interactions. This phenomenon is called many-
body localization and was observed experimentally in the regime of few atoms per
site [77, 78]. Here we experimentally address the question of thermalization for an
interacting system with large bosonic fillings which is initiated in a non-equilibrium
state.
The initial state that we consider is a state with half of the system being depleted

as shown in Fig. 3.7h. As can be seen in Fig. 3.8a the asymmetric density distribution
decays smoothly to a symmetric one over a time which is of the order of seconds. We
quantify the degree of asymmetry by the imbalance

I = NR −NL

NR +NL
, (3.30)

where NR(NL) is the number of atoms in the right(left) half of the cloud. This
quantity is plotted as a function of the hold time after the preparation for different
initial temperatures in Fig. 3.8b. The temperature is extracted by fitting a sum of
a Gaussian and an inverse parabola to half of the system (blue curve in Fig. 3.8c).
The interaction between condensate and thermal part does not need to be taken into
account here since it mainly affects the fitted BEC fraction which is not of importance
for this experiment. The wings which define the temperature are barely affected for
our experimental temperatures. We compute T = mω2

sysσ
2/kB, where σ is the width

of the Gaussian fit. We observe that for low temperatures of up to ∼ 500 nK the
imbalance does decay but does not reach zero within the observation time of more
than 3 s. The decay is faster the higher the initial temperature and for the curves
with T ≥ 600 nK we observe the imbalance going to zero. We verify that the states
with no imbalance are indeed thermal by fitting not only one half but the full system
(red curve in Fig. 3.8c). We obtain very good agreement with negligible contribution
from the inverted parabola showing that the density relaxed indeed to the one of a
thermal state.
For every initial temperature we can fit an exponential curve I(t) = I0 exp(−Γt)

with the initial imbalance I0 and the thermalization rate Γ as fit parameters. The
thermalization rate as a function of temperature is shown in Fig. 3.8d. We model the
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Figure 3.8.: Relaxation dynamics. (a), cut through the cloud for different hold
times as denoted in the figure. Different hold times are vertically displaced for
clarity. (b), imbalance I as defined in the main text, as a function of hold time
after the preparation for different initial temperatures, which are color-coded. The
precise values are given by the ticks of the colorbar. (c), average on-site populations
as a function of radial distance after 50ms of hold time and after 3.2ms of hold
time. The lines are bimodal fits to the data where for the early time only the
right half of the sample is taken into account resulting in an initial temperature of
680(50) nK and a final temperature of 1.25(4)µK. (d), Decay rate of the imbalance
Γ as a function of the initial temperature, color-coded also according to initial
temperature. The line corresponds to a fit with an Arrhenius law as described in
the main text. Adapted from [22].

temperature dependence of the rate by Arrhenius law [79] which can be used to model
processes that occur due to thermal activation. Here these processes correspond to
the excitation to states which are not trapped in the lattice but only by the magnetic
trap resulting in long-range hopping. The law assumes an attempt rate Γa of trying
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to escape the lattice well and a barrier height VB. The hopping rate is then given by
Γh ≈ ΓaP (E > VB) (3.31)

= Γa ×
1
kBT

∫ ∞
VB

e
− E
kBT dE (3.32)

= Γae
− VB
kBT , (3.33)

where P (E > VB) is the probability to have an energy larger than the barrier. Since
this thermal hopping is long ranged it is not necessary to treat the atoms with different
distance to the other half in a particular way. We assume the hopping rate Γh to be
equal to the decay rate of the imbalance Γ because on the one hand a redistributed
particle only has a probability of only 1/2 to change halfs but on the other hand if
it does change it is removed from one half and added to the other, which doubles
the impact on the imbalance of this process. We add an offset rate Γ0 to the model
which might be due to quantum tunneling in higher bands. The fit of the data in
Fig. 3.8d results in VB = kB × 2.4(6) µK, Γ0 = 0.23(8)Hz and Γa = 52(44)Hz. From
the lattice depth calibration we obtain a value of Vlat = 3Er which corresponds to
a barrier height of VB = kB × 2.6 µK in the triangular lattice consistent with the fit
result.
In conclusion we can confirm that indeed a non-equilibrium state in a lattice with

large fillings of interacting bosons does decay to a thermal state. However for low
temperatures the relaxation is so slow that equilibrium is not reached within experi-
mental time scales. Equilibrium can only be observed for higher temperatures where
thermal hopping is significant.

3.5. Sub-lattice site dynamics
So far we only considered on-site populations, i.e., the continuous density was inte-
grated over the area of the Wigner-Seitz cell to obtain a discrete density. However,
with the quantum gas magnifier we can also resolve the density distribution on the lat-
tice sites themselves. As explained earlier, to have access to this kind of information,
we need to refrain from freezing the density during the experimental protocol since
even though the on-site populations are unaffected by this step, the continuous den-
sity gets modified. There are also other techniques capable of resolving features below
the lattice constant such as scanning electron microscopy [33] and super-resolution
microscopy [35, 36]. An advantage of the quantum gas magnifier over these scanning
techniques is that it obtains the density of a sample in a single shot. Furthermore, like
the scanning electron microscopy [33], the quantum gas magnifier can image the den-
sity on every lattice site independently whereas super-resolution microscopy [35, 36]
averages the profiles on all lattice sites.
As a demonstration of the sub-lattice site resolution we perform a quench experi-

ment: we load a deep boron-nitride lattice, thus populating only one sublattice ini-
tially (Fig. 3.9b). Then we quench two lattice beams to half of their intensity which
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Figure 3.9.: Nanoscale dynamics. (a), schematic of the dimerized boron-nitride
lattice. In the box the potential before (light blue line) and after the quench (blue
line) is shown. (b,c), example images for (b) 10µs and (c) 90 µs after the quench.
(d), average density along a cut through the dimers that have at least 50% of
the population of the most populated dimer as a function of x and time after the
quench. The arrows indicate the hold times of (b,c). (e), the same density as
resulting from the numerical band structure calculation including an offset and
a convolution with a Gauss filter as explained in the main text. (f), the same
numerical results but without offset and filter.
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results in the potential landscape suddenly changing to a dimerized boron-nitride
lattice with much larger tunnel coupling within the dimers compared to before the
quench. Additionally the potential minima move closer to each other (Fig. 3.9a).
Thus, dynamics between the dimer sites but also within the dimer sites is induced.
We track the dynamics by reducing each dimer to a 1D representation by reading out
a centered horizontal cut through the dimers. Subsequently we average over all cuts
corresponding to dimers that have at least half the population of the most populated
dimer. These averaged cuts are plotted in Fig. 3.9d for different hold times after the
quench. Indeed we observe both dynamics on the individual wells as well as pop-
ulation transfer between the wells. In this experiment we used strong confinement
resulting in a measured magnification of 93(1).
For the theoretical modelling we use a numerical non-interacting band structure

simulation. The neglection of interactions is justified given the short evolution time
in the experiment. We assume the initial state to be the Bloch wave of zero quasi-
momentum of the lowest band. After the quench we compute the instantaneous
eigenstates using the voltages from our intensity control photodiodes of the lattice
beams, decompose the initial state accordingly and evolve it using the instantaneous
eigenvalues. We find good agreement with the experiment for an initial lattice depth
of Vlat = 32Er. Due to the finite resolution of our imaging system we need to apply
a Gauss filter of 76nm≈ 0.2aAB width when comparing to the experimental data, as
well as including an offset (Fig. 3.9e,f). Here aAB is the distance between the sites
in the dimers. For details concerning the simulation see appendix B or the thesis
of Luca Asteria [57]. With the good agreement between theory and experiment we
demonstrated the capability to observe sub-lattive site dynamics using quantum gas
magnification.

3.6. Fluctuation analysis
The quantum gas magnification protocol rescales the atomic density preserving its
fluctuations. In this section we want to show analyses of the on-site fluctuations
of bosons in an optical lattice for different regimes: thermal, superfluid, and Mott-
insulator. We find good agreement of the thermal fluctuations of a normal gas with
a model of a grand-canonical ensemble on each lattice site for small to intermediate
tube populations. For a superfluid sample we observe fluctuations that are close to
Poissonian statistics whereas for Mott-insulating sample we observe number squeez-
ing, eventually leading to subpoissonian statistics.

3.6.1. Thermal fluctuations
As a first analysis we want to consider thermal fluctuations, i.e., the on-site fluctua-
tions of a thermal gas. One possibility to model the fluctuations of such a system is
by assuming that each lattice site is described by a grand-canonical ensemble with the
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other lattice sites constituting the thermal bath and particle reservoir. In the grand-
canonical ensemble the particle number fluctuations are given by the variance [80]

∆N2 = kBT
∂〈N〉(µ, T, V )

∂µ
, (3.34)

where T is the temperature of the bath, µ is the chemical potential of the reservoir
and V is the volume of the system. The particle number can be computed according
to

〈N〉 = kBT
∂ ln Ξ(µ, T, V )

∂µ
, (3.35)

where

Ξ =
∑
N≥0

1
h3N

cl N !

∫
d3Nq

∫
d3Nqe

− 1
kBT

(HN (q,p)−µN) (3.36)

is the grand-canonical partition function with h3
cl being the classical elementary vol-

ume of phase space and HN(q,p) being the classical Hamiltonian function for N
particles with positions q = (q(1)

x , q(1)
y , q(1)

z , q(2)
x , ..., q(N)

z ) and momenta
p = (p(1)

x , p(1)
y , p(1)

z , p(2)
x , ..., p(N)

z ). The number fluctuations as a function of the mean
particle number can be computed with very little assumptions. Actually it suffices to
assume that the Hamiltonian can be written as

HN(q,p) =
N∑
i=1

Hkin
(
p(i)

)
+

N∑
i=1

Hpot
(
q(i)

)
, (3.37)

which is possible when neglecting interactions, and if no magnetic fields are present
or the particles are neutral. Under this assumption the integrals factorize and the
partition function takes the form

Ξ =
∑
N≥0

1
h3N

cl N ! (IqIp)
Ne

µN
kBT , (3.38)

where we defined the abbreviations Iq =
∫

d3q exp(−Hpot(q)/(kBT )) and
Ip =

∫
d3p exp(−Hkin(p)/(kBT )). The sum in (3.38) is actually an exponential func-

tion resulting in

Ξ = exp
(
IqIp
h3

cl
e

µ
kBT

)
. (3.39)

Thus, ln Ξ is just an exponential function of µ resulting in

∆N2 = kBT
∂〈N〉(µ, T, V )

∂µ
= kBT

1
kBT
〈N〉 = 〈N〉. (3.40)
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Hence, counter-intuitively, as long as the temperature is finite, the thermal fluctua-
tions do not explicitly depend on temperature but are just given by the mean atom
number.
As a matter of fact, without any further assumptions, the probability distribution

can be shown to not only have Poissonian fluctuations but to actually be Poissonian.
In the grand-canonical ensemble, the probability to have N particles in the system
is given by integrating the microstate probabilities for this particle number over the
positions and momenta of the particles

wN(µ, T, V ) = 1
Ξ

1
h3N

cl N !

∫
d3Nq

∫
d3Nqe

− 1
kBT

(HN (q,p)−µN)
. (3.41)

Using (3.35) and (3.39) the expression simplifies to

wN(µ, T, V ) = 〈N〉
N

N ! e−〈N〉, (3.42)

which is the Poissonian distribution with mean 〈N〉.
To investigate thermal fluctuations experimentally we can consider the same data

as in section 3.3. As outlined in the theory part above we can consider every site as
a grand canonical ensemble and the rest of the system as thermal bath and particle
reservoir. Every measurement thus provides us with a multitude of realizations of
this ensemble. To obtain the desired statistics we need to group similar sites. Similar
in this case means that the relevant grand-canonical parameters, i.e., the chemical
potential, or equivalently the mean atom number, and the temperature are similar.
Since we can model the density profile very precisely as shown in section 3.3, we use
this fit to extract these parameters, where only the images with a condensate fraction
of less than 10% are kept in order to isolate the thermal fluctuations. The temperature
is directly given as a fit parameter and the mean atom number associated to a site is
assumed to be the value the fit function takes on this particular site. Subsequently
the site populations are binned with bin sizes of LN = 20 atoms and LT = 67 nK
and within these bins the variance is computed. The resulting curves of variance as
a function of mean atom number for different temperatures are plotted in Fig. 3.10a.
It can be seen that for site populations of up to ∼ 500 atoms the fluctuations are in
good agreement with (3.40) which corresponds to the straight line. This is consistent
with the observation that for these occupations the example histograms for the bins
shown in Fig. 3.10b-g can be described by a Poissonian distribution with the same
mean value. There is no significant temperature dependence for all site populations
measured. Note that a bin of length LN atoms that has a homogeneous distribution
of atom numbers within these boundaries has a variance of L2

N/12 which is small
compared to the computed fluctuations.
For larger site populations the fluctuations rise above the theoretical expectation.

There can be several explanations for this. The first we want to consider is the shot
noise of the imaging laser. We can compute the fluctuations that we expect to occur
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Figure 3.10.: Thermal fluctuations. (a), variance of the site populations as a func-
tion of the mean site population. The black line is of unity slope and thus is the
expectation for Poissonian statistics, the approximately horizontal lines show the
computed variance from shot noise according to the combination of (3.43 - 3.45).
Note that these curves are almost independent of mean site population and temper-
ature and therefore appear as essentially one line. The remaining curves correspond
to the variance of the measured site populations. The color encodes the temper-
ature of the data. (b-g), several example histograms of certain bins for different
temperatures. The bars show the probability density of the site populations within
the bins, the lines show Poissonian distributions with the same mean values as the
example bins. The subplots correspond to different temperature bins with central
temperatures of (267, 333, 400, 467, 533, 600) nK starting from (b) and ending
with (g).
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due to this reason via error propagation of (2.11) to obtain

∆n(x, y)2 = 1
σ2

0

(1 + CNabs

Isat

)2 (∆Nabs

Nabs

)2

+
(

1 + CNref

Isat

)2 (∆Nref

Nref

)2
 . (3.43)

Assuming the error on the camera counts being given by the shot noise of the photon
counts leads to (

∆Nabs

Nabs

)2

= 1
CγNabs

,

(
∆Nref

Nref

)2

= 1
CγNref

, (3.44)

where Cγ = 4.6 (see Appendix C) is the conversion factor from digital counts to the
number of photons incident on the pixel. For a single pixel we obtain a typical value
of

∆N2 = ∆n2
(
Apixel

M2

)2
≈ 3.6 (3.45)

assuming Nref = 4000 and Nabs = 2000 which already corresponds to a dense part of
the cloud, i.e. a part that suffers more from shot noise. The variance for a lattice
site population is computed by adding up the variance from each pixel within the
corresponding Wigner-Seitz mask. A lattice site consists of about 12 pixels, hence
the shot noise induced variance of the on-site populations is about one order of mag-
nitude higher than the one of a single pixel. This variance is computed for every
site and the mean is taken within every bin which is also plotted in Fig. 3.10a. The
resulting expected fluctuations are of the same order as the observed y intercept of
the fluctuation curves. However the shot noise is almost constant as a function of
on-site population since only very few pixels increase in noise due to the reduction
of absorption counts as a consequence of high atomic density. Consequently we can
exclude shot noise as the reason for the superpoissonian variance of high site popula-
tions. A cause for the superpoissonian variance might be the fit being less accurate
for the more populated tubes which tend to be in the center of the cloud. Indeed
the center of the cloud effectively is weighted less in the fit because the fit has radial
symmetry and more data points are located on the iso-density lines in the wings than
in the centre.
Still, the observation that the extracted fluctuations hit the Poissonian limit shows

that at least for that regime density fluctuations are preserved and can be analyzed
using the quantum gas magnifier. This conclusion can be made due to the fact that
without quantum mechanical squeezing, which is not expected here, the fluctuations
are not expected to be subpoissonian and thus any imperfection in preparation or
analysis should produce superpoissonian statistics whereas Poissonian statistics imply
that no other sources of fluctuations than the physical ones can be present.

3.6.2. Quantum fluctuations
Thermal fluctuations can only be made visible via a measurement, however the devia-
tion from the mean value is present also before and independently of the measurement.
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This is not the case for quantum fluctuations. Here, all possible deviations from the
mean are incorporated in the wave function of the system and only the measurement
projects the wave-function onto a particular realization of the fluctuation.
We want to investigate quantum fluctuations of superfluid and Mott-insulating

states in analogy to experiments performed in 2D systems [30, 31, 81]. The ground
state of a weakly interacting lattice Hamiltonian can be rewritten as a product of
coherent states on the lattice sites. Therefore the on-site fluctuations are expected to
follow a Poissonian distribution in a superfluid lattice phase [82]. When interactions
are increased above some critical value, a quantum phase transition to the Mott-
insulating state takes place [46]. In this phase it is favourable to have the particles
localized on the lattice sites because the interaction energy imposes an energy penalty
on delocalization. The localization of the particles reduces the on-site fluctuations, in
the limit of infinite interaction strength and zero temperature they even go to zero.
In order to prepare a Mott-insulating state we need to drastically increase the inter-

action strength among the particles and reduce the number of atoms per lattice site
as compared to the previous experiments which we can both realize by the addition
of a lattice perpendicular to the in-plane lattice, thus obtaining a 3D-lattice. This
additional lattice is realized by retro-reflecting a dipole trap beam. It is derived from
a titanium-sapphire laser at 826nm which is pumped by a diode pumped solid state
laser at 532nm.
In this experiment we use the polarization approach (section 2.3.1) to obtain a

boron-nitride lattice and we read out the lattice site populations correspondingly
(appendix D). According to band structure simulations (appendix B) we have a ratio
of bandgap over bandwidth of at least 70 and we will thus consider the two sublattices
of the boron-nitride as independent triangular lattices and we will only analyse the
energetically lower sublattice. As for the thermal fluctuation analysis the crucial step
is to identify for every on-site population the probability distribution it is drawn from.
Here we assume the temperature to be sufficiently low or at least sufficiently stable
such that the only varying parameter determining the statistics is the mean atom
number integrated along line of sight. A few comments concerning the connection
of integrated signal and full 3D system are to be made: the mean atom number per
site, which determines the fluctuations, follows from its integral along line of sight
in combination with the z-confinement which is spatially homogeneous. Therefore
tubes of identical atom number are comparable. Also note that the sum over random
variables following a Poissonian distribution will also be described by a Poissonian
distribution. The same argument obviously holds for a distribution with no fluctua-
tions, other distributions however will likely be modified, but in a monotonous way,
i.e., if all local fluctuations decrease also the absolute fluctuations of the integrated
signal will decrease.
In this dataset we have about 200 repetitions for every parameter and we therefore

do not need to model the density envelope function by a fit but we can derive it
from the data. To associate a mean value to every tube population, where by tube
population we mean on-site populations integrated along a line of sight, we compare
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every shot to all shots that were taken at the same experimental parameters. This
is carried out for every tube population in the following way: First, all other images
are rescaled such that the atom number matches the one of the current shot, which
is a small correction. Subsequently from all these tube populations those are selected
which have coordinates on the camera, i.e., relative to the magnetic trap, which are
closest to the tube for which we want to derive the expectation value. In practice the
10 closest ones are selected and averaged. The result is considered the best estimate
of the mean tube population. Eventually the tube populations are grouped according
to their mean tube population with a bin size of 10 atoms. The variance within
these bins is plotted for different lattice depths in Fig 3.11a. One data set originating
from a superfluid sample, i.e. with no lattice perpendicular to the 2D lattice, is also
included as a dashed line. Furthermore some example distributions within the bins
are plotted in Fig. 3.11b-g.
All curves start above the value for poissonian statistics but bend to the right

and cross the reference line for Poissonian statistics at some point indicating number
squeezing. The reduction of fluctuations with increasing tube population is stronger
for deeper lattices as expected for an interaction induced effect. The reason for the
dashed line corresponding to the superfluid also going subpossonian might be that
very high densities induce number squeezing even without lattice perpendicular to the
plane, as for example computed for a 1D lattice of pancakes [83]. As for the thermal
fluctuations we also computed the fluctuations expected from shot noise (Fig. 3.11a)
which describe well the offset of the curves. The shot noise is stronger in this dataset
because the imaging beam intensity was significantly lower.
In order to compare these results to theoretical models, the Hubbard parameters

need to be estimated. We perform a band structure calculation (appendix B) and
as described above, we approximate the lower band by the dispersion of a triangular
lattice [84]

E(k) = 8J2D − 4J2D cos
(
kxalat

2

)[
cos

(
kxalat

2

)
+ cos

(√
3kyalat

2

)]
, (3.46)

where J2D is the only fit parameter. The tunneling energy in z-direction is obtained
via the formula for the tight-binding limit [85]

Jz = 4√
π
Er,z

(
V pp

lat,z

Er,z

)3/4

exp
−2

√√√√V pp
lat,z

Er,z

 , (3.47)

where V pp
lat,z is the peak to peak potential depth of the lattice in z-direction and Er,z =

h2/(2mλ2
z) is the recoil energy in z-direction with λz = 826 nm being the titanium-

sapphire laser wavelength. Since V pp
lat,z/Er,z > 12 the use of this approximation is

justified. Eventually, the on-site interaction strength is determined by [85]

U = g
∫

dr |w(r)|4 , (3.48)
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Figure 3.11.: Quantum fluctuations. (a), variance of the site populations as a
function of the mean site population. The approximately horizontal lines show
the computed variance from shot noise according to the combination of (3.43 -
3.45), the black line is of unity slope and thus is the expectation for Poissonian
statistics. The remaining solid lines correspond to the variance of the measured
site populations. The color encodes the parameter U/(6J2D+2Jz) of the data. The
dashed line corresponds to a system without lattice perpendicular to the 2D lattice
with J2D/h = 43Hz. For the other curves J2D is in the range from 0.25Hz – 7Hz.
(b-g), example histograms for certain bins. The bars show the probability density
of the site populations within the bins, the lines show Poissonian distributions with
the same mean values as the example bins. (b) corresponds to the measurement
without lattice in the third dimension, the subplots (c-g) correspond to different
U/(6J2D + 2Jz) of (6.5, 35, 81, 259, 531) starting from (c) and ending with (g).
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with the Wannier function w(r). For the Wannier function we make the approxima-
tion of a deep lattice, i.e. assuming that it is given by the ground state of a harmonic
oscillator with trapping frequencies equal to the on-site trapping frequencies of the
lattice sites. This results in

U = g

(2π)3/2a2
ho,2Daho,z

, (3.49)

where aho,2D denotes the on-site oscillator length in the plane and aho,z the on-site
oscillator length in z-direction. To determine the on-site trapping frequency in the
plane we perform a parabolic fit close to a minimum of the in-plane potential and
compute the oscillator length from it. The z oscillator length is analytically computed
as aho,z = λz/(2π)× (V pp

lat,z/Er,z)−1/4.
The phase boundary between Mott-insulator and superfluid is expected to be at [86](

U

zJ

)
c

= 2n+ 1 +
√

(2n+ 1)2 − 1 (3.50)

for a Mott-insulator with n particles per lattice site and a lattice with coordination
number z. The right hand side equals 5.83 for n = 1. We generalize the expression to
our anisotropic lattice by replacing zJ by 6J2D +2Jz. We obtain values for U/(6J2D+
2Jz) that start from slightly above the n = 1 transition value and go up to almost
100 times this value. Therefore we can expect that also higher n Mott-insulators can
form resulting in a 3D version of the prominent wedding cake profile of a trapped 2D
system. Since we integrate along the z direction this profile could hardly be observed
because the sharp features wash out upon integration [87]. Furthermore superfluid
or thermal shells would explain why the fluctuations do not drop to the background
level for the strongest interactions.
Thus we have demonstrated that the quantum gas magnifier allows for the mea-

surement of density fluctuations – thermal and quantum. In our particular setup we
encounter the technical difficulty of not having a phase lock for the lattice beams.
Consequently, measurements for the same experimental parameters cannot be di-
rectly compared but a density envelope has to be constructed or fitted to identify the
measurements which are drawn from the same probability distribution. Thus a phase
lock for the lattice beams would be beneficial when fluctuations are to be analysed
because in this case different shots can be directly compared without the need of
envelope reconstruction. Another possibility would be a change to a box trap which
would make the density envelope trivial. The capability to measure fluctuations and
correlations is a major motivation for extending the quantum gas magnifier to the
single atom sensitive regime via fluorescence imaging [22].

3.7. Conclusion
In conclusion we have explained the working principle of the quantum gas magnifier
and have presented several experiments to benchmark and to demonstrate the capa-



42 3. The quantum gas magnifier

bilities of the technique. We showed that 3D systems can be imaged, that flexible
state preparation is possible, that features below a lattice constant can be resolved
and that fluctuations can be analysed using the method. As such quantum gas mag-
nification is a valuable new tool in the tool box of quantum simulation.
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4. Formation of spontaneous
density-wave patterns in DC
driven lattices

As explained previously, the quantum gas magnifier is able to image 3D systems with
2D single site resolution, while not being a scanning technique. This advantage will
be crucial in the following chapter: here we report on the observation of spontaneous
pattern formation in a tilted triangular lattice with large bosonic filling and weak
confinement perpendicular to the lattice making the system 3D. Since spontaneous-
ness implies probabilism the pattern can only be observed in single shots, because it
washes out when averaging over several experimental runs, as it would be the case for
a scanning technique. In this chapter the experimental observation will be described
and a theoretical modelling will be presented. The project is a collaboration with
the theory group of Ludwig Mathey with Ludwig Mathey, Vijay Singh and Lukas
Freystatzky being involved. The experiments have been carried out together with my
fellow PhD students Marcel Kosch and Luca Asteria under the supervision of Klaus
Sengstock and Christof Weitenberg.
Spontaneous symmetry breaking is a very fundamental and important concept in

physics. It describes the phenomenon of a system probabilistically realizing one pos-
sible symmetry broken state among several equivalent ones. Symmetry broken means
that the state is not invariant under a symmetry transformation commuting with the
underlying Hamiltonian. Equivalent means that the possible states are connected
via such a symmetry transformation and thus are degenerate. One example would
be the ground state of a ferromagnet: All spins are aligned but they spontaneously
choose in which direction all of them are pointing, breaking the global SU(2) symme-
try of the Hamiltonian. At the same time all possible ground states are connected via
such a global spin rotation. The most prominent example of spontaneous symmetry
breaking probably is the one connected to the Higgs field [1, 2].
The examples described above are concerning spontaneous breaking of continuous

symmetries. Yet, the phenomenon appears in the context of discrete symmetries as
well. An example is the antiferromagnetic Ising spin chain. One can consider the Néel
state which consists of all neighbouring spins being anti-aligned. This state breaks
the discrete translational symmetry of the chain and has two possible realizations: A
state with spin up on even sites and a state with spin up on odd sites.
Ultracold atom experiments have observed spontaneous symmetry breaking both
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in continuous systems [15, 16] and lattice systems [11, 13, 14]. Using the quantum
gas magnifier we can extend the observation of spontaneous symmetry breaking to
real space pattern formation on the length scale of a lattice constant for systems with
high bosonic filling.

4.1. Experimental protocol and observation
Let us first describe the experimental protocol that led to the observation of pattern
formation. We start out by loading a BEC into the triangular lattice as described in
chapter 2. The final lattice depth is Vlat = 1Er corresponding to a tunneling energy
of J = h × 13Hz. The magnetic trap is ramped to a trapping frequency of ωsys =
2π×135Hz characterized by dipole oscillations. The trapping frequency in z-direction
is dominated by the lattice and is computed to be ωz = 2π×30Hz (appendix B). After
the loading, the magnetic trap is suddenly shifted in x-direction, i.e., perpendicular
to a primitive vector, by typically d = 15 µm= 21alat by switching off a magnetic
offset field. The shift happens on a time scale of few tens of microseconds and the
atoms therefore do not show any dynamics during the shift. Around their final
position the potential can be approximated as a tilted lattice with a tilt of typically
F = h× 2.3 kHz/µm. After the quench we wait for different hold times. As expected
for a strongly tilted system the atoms are localized on the slope [88, 89]. In addition

Figure 4.1.: Observation of spontaneous density-wave formation. Atomic density for
a hold time after the quench of (a,b) 30ms, (c,d) 60ms and (e,f) 600ms. All plots
are obtained with a tilt corresponding to an energy offset of ∆ = h×1.4 kHz between
neighbouring columns. The colorscale is renormalized for each image individually.
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a pattern slowly builds up as a function of hold time (Fig. 4.1). Initially, it consists
predominantly of a density-wave with wavelength of two columns and wave-vector
parallel to the tilt. Sometimes a wavelength of three columns occurs as well (Fig. 4.1a-
d). For longer hold times the period of the pattern gets longer and approaches a value
of ∼ 3 (Fig. 4.1e,f). Additionally a slight movement of the center of mass towards the
trap center can be detected. In the following we will discuss the pattern formations
in more detail.

4.2. Theoretical description
As mentioned beforehand this project led to a collaboration with the theory group
of Ludwig Mathey which implemented the models in this section. There are two ap-
proaches: One is starting from the Bose-Hubbard model with tilt and approximating
it with an effective Hamiltonian for large tilt, the other is to do a numerical simulation
of the full system using a c-field approximation which will be explained later in this
section.

4.2.1. Effective model
First we want to present the analytical approach of a description via an effective
model. We depart from the tilted Bose-Hubbard model (Fig. 4.2a)

Ĥ0 = −J
∑
〈jk〉

(
b̂†j b̂k + b̂†kb̂j

)
+ U

2
∑
j

n̂j(n̂j − 1) + F
∑
j

xjn̂j, (4.1)

with the tunneling energy J , the interaction strength U and the tilt F . b̂†j(b̂j) is the
bosonic creation(annihilation) operator on site j, n̂j = b̂†j b̂j is the particle number
operator at site j, and xj is the x-position of site j. ∑〈jk〉 indicates summation over
nearest neighbours only. For the experimental parameters the energy offset between
neighbouring columns ∆ = F∆x = F

√
3/2alat, where ∆x is the distance between

two neighbouring columns, is the largest energy in the bare model. Here, a column
is a chain of sites in y-direction. Thus the effective description should model the case
of large tilt. To this end it will turn out beneficial to transform the Hamiltonian Ĥ0
to the interaction picture with respect to ĤF = F

∑
j xjn̂j resulting in

ĤI = ei
ĤF t

~ Ĥ0e
−i ĤF t~

= −J
∑
〈jk〉y

(
b̂†j b̂k + b̂†kb̂j

)
− J

∑
〈jk〉x+

b̂†j b̂ke
−i∆t

~ − J
∑
〈jk〉x−

b̂†j b̂ke
i∆t

~ + U

2
∑
j

n̂j(n̂j − 1).

(4.2)

Here, ∑〈jk〉y denotes summation over the nearest neighbours in y-direction, ∑〈jk〉x+

summation over the nearest neighbours in x-direction with site k having higher po-
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Figure 4.2.: Bose-Hubbard model and effective model. (a), sketch of the Bose-
Hubbard model on the triangular lattice with tilt in x-direction. It is characterized
by single particle tunneling J , on-site interaction U and an energy offset ∆ between
neighbouring columns resulting from the tilt. (b), sketch of the emergent effective
Hamiltonian for ∆/J � 1. The model contains correlated pair tunneling P where
one particle hops up the tilt and another hops down, and a nearest neighbour
interaction V as new terms. Single particle tunneling in x-direction does not exist
in the effective description, the single particle tunneling along the y-direction J⊥
and the on-site interaction Ueff are only slightly modified. Adapted from [90].

tential energy, ∑〈jk〉x− in x-direction with site k having lower potential energy. Con-
veniently, this Hamiltonian is time periodic with a fast frequency equal to ∆/h and
therefore a special form of the Magnus expansion can be applied [91–93] resulting
in the desired effective description. We separate the effective Hamiltonian into three
parts that will be explained below:

Ĥeff = ĤP + ĤJ⊥ + ĤU,eff , (4.3)

with

ĤP =− sU
∑
〈jkl〉×

(
b̂†j b̂
†
j b̂kb̂l + b̂†l b̂

†
kb̂j b̂j

)
, (4.4)

ĤJ⊥ =−
∑
〈jk〉y

(
Jb̂†j b̂k + sUb̂†jn̂j b̂k + sUb̂†jn̂kb̂k + h.c.

)
+ 2sU

∑
〈jkl〉4

(
b̂†jn̂lb̂k + b̂†kn̂lb̂j

)
, (4.5)

ĤU,eff =
(
U

2 − 4sU
)∑

j

n̂j(n̂j − 1) + 4sU
∑
〈jk〉x

n̂jn̂k, (4.6)

where s = J2/∆2. ∑〈jkl〉× denotes summation over all pairs of bonds sharing a site
and with one bond up and one down the tilt, and ∑〈jkl〉4 denotes summation over
triangular plaquettes such that j and k are nearest neighbors in y-direction.
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Figure 4.3.: States coupled by pair tunneling. (a), sketch of the model. The initial
state consists of a chain of 9 sites with equal and large filling N . All states that
are accessible via a certain number of pair hopping processes are considered. The
two elementary pair tunneling processes are illustrated at exemplary sites. (b),
mean covariance of the accessible states as a function of distance between the sites
color-coded for different numbers of pair tunneling steps. Adapted from [90].

This effective Hamiltonian has a very interesting form (Fig. 4.2b): First of all, there
is no single particle tunneling in the tilt direction any more. The only tunneling term
in this direction is the correlated pair tunneling term ĤP which simultaneously moves
two particles from or to a single site: one particle moves one lattice site up the tilt
and one other particle one lattice site down the tilt such that the potential energy
and center of mass are conserved by this process. Note that this process is only
possible due to interactions since these shift the intermediate states of the process.
Without this shift the two processes of moving one or the other particle first would
cancel which is reflected in the proportionality to U . Another new term, a nearest
neighbour interaction, given by the second term in ĤU,eff emerges as well as a result
of the expansion. Finally there are also two terms that are only slightly changed
from the tilted Bose-Hubbard Hamiltonian. For the tunneling perpendicular to the
tilt ĤJ⊥ only small corrections proportional to s � 1 arise. The same argument
holds for the on-site interaction represented by the first term of ĤU,eff which changes
only slightly as well compared to the bare on-site interaction. Due to the long-range
interaction and the correlated hopping the effective Hamiltonian belongs to the family
of extended Hubbard models [94]. These models exhibit exotic ground states such as
charge density waves or supersolids. Note however that we do not prepare the ground
state in the experiment but consider quench dynamics.
For the density wave formation it is particularly interesting to consider the dynam-
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ical term, the pair tunneling ĤP . It couples an initially homogeneously populated
state to states with patterns. To illustrate this we analyse the states that are coupled
to a homogeneous initial state via repeated application of the pair tunneling operator
ĤP as described in the following. As a toy model, we consider an initial Fock state
on a 1D chain of Nsites = 9 lattice sites each populated with N atoms using periodic
boundary conditions (Fig. 4.3a). We apply the pair tunneling operator to this state
once considering all possible outcomes, i.e., we obtain the state where two particles
leave the first site, the state where two particles hop to the first site, the state where
two particles leave the second site and so on, resulting in a number of accessible states
which is double the number of sites. For each of these states the procedure can be
repeated leading to a huge tree of coupled states. For every state we can compute
the covariance of the deviations from the initial homogeneous filling δNi as

cov(d) = 1
Nsites − 1

Nsites∑
i=1

δNiδNi+d, (4.7)

with periodic boundary conditions, i.e., δNi+Nsites = δNi. As long as N is large
compared to δNi the couplings have almost the same value. We can approximate
them to be equal allowing for averaging the covariances of all states corresponding to
the same number of pair tunneling events. This average is plotted in Fig. 4.3b and
shows finite-range staggered correlations that grow with the number of pair tunneling
events. This is in qualitative agreement with the period two pattern with domain
walls observed in the experiment and therefore motivates why pair tunneling can
create such a pattern. More elaborate theoretical treatment will be given in the
sections below.

4.2.2. Perturbative expansion
Another analytical approach that is similar to the effective model is a perturbative
expansion of the density-density correlations. Here as well we consider a 1D system
simplifying the Hamiltonian in the interaction picture (4.2) to

ĤI = −J
∑
j

(
b̂†j b̂j+1e

−i∆
~ t + b̂†j+1b̂je

i∆
~ t
)

+ U

2
∑
j

n̂j(n̂j − 1). (4.8)

The density-density correlation operator n̂in̂j expanded to second order is given by

(n̂in̂j)(t) = n̂in̂j + i

~

∫ t

0
dt1[ĤI(t1), n̂in̂j]−

1
~2

∫ t

0
dt1

∫ t1

0
dt2[ĤI(t2), [ĤI(t1), n̂in̂j]].

(4.9)

The density-density correlations are obtained as the expectation value of the above
expression. We are particularly interested in the spectrum of these correlations which
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can be computed to be

〈ρ̂kρ̂k〉 = 1
Nsites

∑
i,R

exp(ikR)〈n̂in̂i+R〉 (4.10)

= 4sn2
0 (1− cos(kalat))

(
2− e−

2a
r0 − e−

4a
r0

)
. (4.11)

The averaging denoted by overline is a temporal average which vanishes for expres-
sions oscillating with ∆/h or multiples of it. In the computation the approximation

〈b̂†i b̂i′ b̂
†
j b̂j′〉 ≈

g(|i− i′|)g(|j − j′|)g(|i− j′|)g(|i′ − j|)
g(|i− j|)g(|i′ − j′|) , (4.12)

was used, where g(i) = 〈b̂†0b̂i〉 ≈ n0 exp(−|i|/r0). n0 is the equilibrium particle number
and r0 is the phase correlation length.
The correlations predicted by the perturbative expansion are of period two since

the spectrum is peaked at kalat/(2π) = 1/2 and of finite range since the cosine shaped
peak has a finite width. This is in agreement with the experimental observation.

4.2.3. c-field simulations
A complementary approach to the analytic modelling of the system is a so-called
classical field (c-field) simulation [95]. Here we also start from the Bose-Hubbard
model, but we explicitly consider the third dimension and instead of a homogeneous
tilt we include the full harmonic trap:

Ĥ = −
∑
〈jk〉

Jjk
(
b̂†j b̂k + b̂†kb̂j

)
+ Ũ

2
∑
j

n̂j(n̂j − 1) +
∑
j

Vjn̂j. (4.13)

Here, Vj = m[ω2
sys(x2

j+y2
j )+ωzz2

j ]/2 is the external potential at site j. Note that for the
purpose of the simulation we discretized the z-direction as well using a discretization
length of lz = 0.4 µm resulting in a coupling in z-direction of Jz = h2/(8π2ml2z) =
27.9J . Hence the tunneling energy Jjk equals J for tunneling in plane and the much
larger value Jz for tunneling in z-direction, supporting the continuum limit in z-
direction. The discretized z-direction also changes the way interactions are taken
into account. Instead of considering the total number of atoms per tube to compute
the interaction energy in the same tube, we now take the 3D approach and compute
the interaction energy for each discretization volume by the number of particles in the
same small volume. The interaction strength is given by Ũ = g/(2πa2

holz) = 17.6J
where aho is the on-site oscillator length deduced from the experimental lattice depth
(appendix B).
The approximation of the c-field method consists of replacing the operators b̂j(b̂†j)

by complex numbers ψj(ψ̄j) which is justified by assuming large occupations implying
small relative fluctuations. A finite but low temperature can be incorporated as long
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Figure 4.4.: Example results of c-field simulations and comparison to experimental
results. (a,b), on-site populations resulting from c-field simulations with the same
parameters as in Fig. 4.1c,d. The temperature is T = 30J/kB. (c,d), images
Fig. 4.1c,d in on-site population representation. Due to the probabilistic nature of
the pattern formation only qualitative agreement between experiment and theory
is expected on the level of single shots.

as the mode population stays high. To do so, an initial state is drawn from a thermal
ensemble having the desired temperature. This initial state is then propagated in
time according to the discrete non-linear Schrödinger equation

i~
∂

∂t
ψj = −

∑
〈jk〉

Jjkψk + Ũ

2 |ψj|
2 ψj + Vjψj. (4.14)

The c-field approach is very close to the actual experimental conditions and repro-
duces the pattern formation in the experiment as can be seen, e.g., in Fig. 4.4. In
particular it also allows for dynamics in the direction perpendicular to the lattice such
as loss of phase coherence. This is not possible to model in the effective Hamiltonian
approach which does not take excitations in this direction into account. The disad-
vantage of the c-field however is that, as for all numerical methods, it is harder to
extract the underlying mechanisms that drive the dynamics. It is therefore comple-
mentary to the analytical approach which is able to identify an effective description
including pair tunneling terms.

4.3. Spontaneous symmetry breaking and domain
formation

After having introduced the theoretical framework we want to take a step back and
investigate the experimentally observed pattern in more detail. In particular we want
to demonstrate the spontaneous nature of the symmetry breaking. For a discrete
pattern of period two there are two possible positions. If the symmetry breaking
is spontaneous, both should occur with equal probability. In this framework the
local occurrence of period three can be interpreted as domain walls between the two
possible realizations of the period two pattern. The different positions can be made
visible by element-wise multiplication with a reference pattern as will be explained
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in this section. We perform the analysis for a hold time after the quench of 60ms
and a shift of d = 15 µm leading to an energy offset of ∆ = h × 1.4 kHz between
neighbouring columns.

4.3.1. Domain identification and statistics

The question which position of the pattern is realized is essentially equivalent to the
analysis of domains since the domains are defined by attributing the lattice sites
to one of the two possible realizations of density-wave position. The domains of
the pattern can be made visible in the following way (Fig. 4.5a): first the residues,
i.e., the deviation from the density envelope, need to be computed for the image
under consideration. To obtain the envelope all images corresponding to the same
parameters are averaged washing out the density-wave. From this mean image on-site
populations are computed assuming lattice sites at the same position as in the image
for which the residues should be calculated. The on-site populations corresponding to
the mean image are then subtracted from the ones corresponding to the single image.
In the residues the pattern is visible as an oscillation around zero. This oscillation
can be rectified by element-wise multiplication with a reference pattern of perfectly
alternating sign. We call the result staggered residues. The staggered residues have
the same sign for domains of the same density-wave position and opposite sign for
domains of different position.
In Fig. 4.5b-i a few example shots in domain representation are shown. It can be

seen that most of the time the pattern consists of one or two domains. In particular
we observe that the pattern formation is probabilistic because we obtain a different
result for every shot even though the experimental parameters are identical. Since
the position of the lattice relative to the magnetic trap changes for different runs
(appendix C) we post-selected the images in order to have an identical origin along
the tilt direction, ensuring that the change in pattern is not caused by this.
In a further analysis we can quantify to which extent both density-wave posi-

tions are equivalent. To this end we define a region of interest of radius three sites
around the center (Fig. 4.5b) and draw a histogram of all staggered residues within
this region (Fig. 4.5j). We obtain a symmetric, double peaked distribution which
again confirms the spontaneous nature of the symmetry breaking and also shows that
both realizations of density wave have the same probability of occurrence. Here as
well a post-selection with respect to the x-coordinate of the lattice origin is possible
(Fig.4.5k). The individual histograms are more noisy, having only about 1/5 of the
data but still all of them show a double peak structure.
The same analysis can be performed on results from a c-field simulation with the

experimental parameters, and a temperature of T = 250J/kB which is not known
for the experiment. The histogram based on the theoretical images—depicted by the
dashed line in Fig. 4.5j—is in good agreement with the one based on the experimental
images.



52 4. Formation of spontaneous density-wave patterns in DC driven lattices

Figure 4.5.: Domain analysis. (a), Illustration of the procedure to quantify the
domains. First the mean population is subtracted. The residues are then multiplied
by a reference pattern of fixed position resulting in staggered residues which are
positive when in phase with the reference and negative when out of phase. (b-i),
example shots obtained for an energy offset of ∆ = h× 1.4 kHz and a hold time of
60ms. The images result from a post selection of the x-component of the origin.
(j), histogram of the staggered residues of the sites within the region of interest
shown in (b) for about 130 experimental runs. The dashed line corresponds to the
analysis of c-field simulation results with the same analysis as for the experimental
data. The temperature used in the numerics is T = 250J/kB. (k), statistics of the
same data as in (j) but now with post-selection on the x-position of the lattice.
The color corresponds to the different positions. Adapted from [90].
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4.3.2. Location of domain walls
With the identification of the domains we can also locate the domain walls between
them. This distribution is also very interesting in the context of spontaneous symme-
try breaking since in this case there should be no preferred position for the domain
walls. We identify a domain wall by a sign change in the staggered residues. As
can be seen in Fig. 4.5b-i, these sign changes almost exclusively occur in x-direction.
We can therefore sum the staggered residues in y-direction without losing informa-
tion. In this 1D object it is straightforward to locate sign changes for every shot,
see Fig. 4.6a-c for an example. After identifying the domain walls in the single shots
we average the occurrences for the same parameters including post selection on the
lattice origin in x-direction to obtain the probability of encountering a domain wall
as a function of position (Fig. 4.6d).
It can be seen that in the central region the probability to have a domain wall is
∼ 10% – 20%. In the direction towards the trap center there is a slight increase which
might be connected to the pinning of the density-wave which will be presented later.
Outside of the region featuring a pattern (see gray profile in Fig. 4.6b for reference)

Figure 4.6.: Domain wall locations. (a-c), illustration of the computation of the
domain wall location. (a), example column populations, i.e., on-site populations
integrated along y (black line) and the corresponding average populations (blue
line). (b), column staggered residues for the same experimental run. (c), identified
domain wall locations. Crosses mark a domain wall at the respective position. For
every cross there is a dashed gray line indicating where the domain wall is located
in the other plots. The locations are identified by the sign changes in (b). (d),
probability of domain wall occurence as a function of x (circles). The error bars
denote the standard deviation of the mean, the color encodes the x-position of the
lattice relative to the magnetic trap. The dashed line is the mean over all lattice
positions. (a) is repeated in the background for reference.
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the probability of finding a sign change is extremely high since the staggered residues
are close to zero here. Actually, due to imperfections in the envelope calculation it
even rises above the value of 1/2 expected for uncorrelated noise. This can be seen
in Fig. 4.6b as well: at the edge of the cloud the staggered residues change sign
every site instead of randomly. This happens when the envelope is slightly above
or below the single shot profile because the staggering maps this to an alternating
pattern. Eventually the domain wall probability drops to zero corresponding to sites
that are outside the image and therefore zero by definition making sign changes
impossible. The approximately homogeneous spatial distribution of the domain walls
in the region where the pattern is observed confirms the spontaneous nature of the
symmetry breaking.

4.4. Dynamical evolution
So far we have discussed the patterns that can be observed after 60ms of hold time,
but, of course, the pattern formation is a dynamical process. In this section we want
to investigate the dynamical evolution of the density-wave.
First we look at the spatial spectral properties of the patterns, or, more precise,

of their sum perpendicular to the density-wave vector nx(x) = ∑
y n(x, y) since the

patterns are almost always invariant perpendicular to the tilt. As a measure, we
consider the power spectral density (PSD) normalized to the total atom number

|nk|2 = |F (nx(x)) (k)|2

Ntot
(4.15)

which captures the spectrum of the density-density correlations. It is plotted for
different hold times in Fig. 4.7a. It can be seen that for the early times considered
in the previous section the PSD is peaked at kã/(2π) = ±1/2 with ã =

√
3/2alat

being the separation between two columns. This corresponds to a pattern of period
two. For longer hold times the peak moves to smaller wave vectors and saturates at
kã/(2π) ∼ ±1/3 corresponding to a pattern of period three. The peak always has a
finite width indicating that the periodicity of the pattern is not perfect in every shot,
corresponding to the presence of domain walls.
In order to compare to the results of the c-field simulation, we define a measure

that is independent of the precise spectral properties of the pattern. We name this
measure density-wave contrast c and define it as

c =
∫ 1/2

1/5 |nk|
2 dk̃∫ 1/2

0 |nk|2 dk̃
, (4.16)

with k̃ = kã/(2π). The density-wave contrast is plotted in Fig. 4.7h,i for different
tilt strengths. It grows within the first ∼ 200ms and then decays only very slowly.
Actually, at the longest observation time of 1.6 s it is still on a comparable value to
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Figure 4.7.: Formation and decay of the density-wave. (a), power spectral density
as a function of hold time and wave vector, normalized to the total atom number
as defined in the main text. The circles indicate the parameters where data was
taken. The dashed line corresponds to kyã/(2π) = 1/5 which is the minimal wave
vector taken into account for the computation of the density-wave contrast defined
in the main text. (b-d), experimental example images of on-site populations for
an energy offset ∆ = h × 1.4 kHz and hold times of (b) 1ms, (c) 60ms and (d)
1600ms. (e-g), example on-site populations resulting from a c-field simulation
with the same parameters and a temperature of T = 100J/kB. (h,i), density-wave
contrast as a function of hold time for different tilts. The energy offset is color-
coded as ∆ = 1.1 kHz (blue), 1.4 kHz (red), 1.7 kHz (black). The circles correspond
to experimental data with errorbars showing the standard deviation of the mean.
The dotted-dashed lines correspond to a c-field simulation without atom loss, the
dashed lines to a simulation with atom loss. (h) is a zoom into (i). Adapted
from [90].
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Figure 4.8.: Scaling of the c-field dynamics. Scaled density-wave contrast c(∆/h)2

as a function of the rescaled time t/tP for different tilt strengths as indicated by
the color. Adapted from [90].

the maximum value and it is not clear if it would actually decay to zero for longer
hold times. Note that this observation of long lifetime is different from those of recent
experiments in tilted lattices [96, 97] where the lifetime of a prepared pattern was
investigated instead of the lifetime of an emerging pattern as done here.
The rise time of the density wave contrast can be motivated by the effective Hamil-

tonian (4.3-4.6): in a Rabi-oscillation paradigm, the dynamical term, the pair tunnel-
ing term (4.4), defines a time scale tP = h/(4ΩP ) for reaching the maximum with pair
tunnel coupling ΩP = 4NsU where the factor 4 was added for the 4 possible pairs of
bonds sharing a site and the factor of peak on-site population N takes into account
bosonic enhancement of the process. Using N = 1500 and U = 2.3Hz (appendix B)
we obtain ∼ 200ms. The time scale tP is also confirmed by a rescaling of c-field
simulations for different tilts with tP in combination with the amplitude rescaling
expected from (4.11) (Fig. 4.8). Note that we believe for the experiment and know
for the simulation that excitations in the z-direction happen after the quench. This
reduces the bosonic enhancement and hence tP should be interpreted as a lower bound
on the time scale.
The long lifetime can be understood with the help of the c-field simulations as

well. The dotted-dashed lines in Fig. 4.7h,i show the results of a simulation with
conserved atom number for different tilts. The initial build up of the density-wave
is captured but after reaching the maximum contrast the density-wave decays again.
However, as can be seen from the example experimental shots in Fig. 4.7b-d, the
atom number in the experiment decays. This is mainly due to the metastability of
the atoms at the slope of the magnetic trap. For long hold times atoms decay back
to the trap center, possibly due to Landau-Zener transitions into higher bands. If we
model this by single particle loss in the simulations the density-wave turns out to be
long lived as well as can be seen from the dashed lines in Fig. 4.7h,i. This is due to
the density dependence of the pair tunneling term in the effective Hamiltonian. If
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Figure 4.9.: Transition from spontaneous to pinned patterns. (a-f), normalized
mean density (blue lines) and normalized column populations (red lines) for hold
times after the quench of (a) 5ms, (b) 20ms, (c) 60ms, (d) 100ms, (e) 150ms, (f)
400ms. Adapted from [90].

the density decreases the pair tunneling gets weaker and the dynamics therefore gets
frozen. Besides the interaction dependence of the pair tunneling term, this is another
way of seeing that the observed dynamics is interaction driven.

When investigating the dynamics of the column populations in detail there is an
interesting observation to be made. Up to a hold time of ∼ 60ms the average density
is a featureless profile (blue lines in Fig. 4.9) whereas single realizations (red lines in
Fig. 4.9) show a pattern, reflecting the spontaneous nature of the pattern formation.
Surprisingly for hold times of ∼ 100ms and longer the average density shows a pattern
as well, implying an evolution from a spontaneous pattern to a pinned pattern. This
might be due to an interplay between the slow single particle tunneling and the
terms of the effective Hamiltonian. The single particle tunneling is able to move the
center of mass of the system. However, for particles at the energetically lower end
of the cloud hopping is strongly off-resonant due to the interaction energy loss when
tunneling against the slope of the density leading to an accumulation of particles at
this end. This phenomenon is known as self-trapping and was observed for atoms in
a 1D lattice after release of the confinement [21]. The fact that the atoms do not only
accumulate at the lower end but form a number of maxima increasing with time could
be due to the exotic terms of the effective Hamiltonian. The precise explanation of
the pinning dynamics is left for future work.
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4.5. Influence of transverse tunneling
In another set of experiments we investigate the role of transverse tunneling, i.e.
tunneling perpendicular to the tilt. To do so we change the direction of the shift by
90° hence shifting parallel to a primitive vector of the lattice. For easier discussion
we rotate the images afterwards in order to have the tilt pointing to the right as for
the shift direction discussed so far. At first glance the tight binding model for the two
situations is very different but a closer look reveals that essentially only the transverse
tunneling is suppressed. This can be seen from Fig. 4.10a,b and will be explained in
the following. There are two directions marked in the figure: the direction along the
dashed line and the direction along the dotted line. The tunneling exactly parallel
to the tilt in Fig. 4.10b can be neglected because its energy offset is twice the one
along the dashed line making it four times weaker. For the direction along the dashed
line the energy offset ∆ per bond decreases when just rotating the shift direction but
leaving its magnitude unchanged. We therefore increase the shift distance in order to
compensate this which ensures the same energy offset among neighbouring columns
in both situations. The direction along the dotted line is along resonant bonds in the
original orientation and hence there is strong coupling within the columns. For the
rotated situation there are no bonds along the dotted line and therefore all coupling
in this direction must come from second order or long range tunneling. Thus, indeed,
the tight binding model of the original and the rotated experiment mainly differ in
the strength of transverse tunneling when adjusting the tilt F in such a way to obtain
the same energy offset ∆ between neighbouring columns.
Note that a density-wave with wave vector parallel to the tilt—as illustrated by the

blue and grey stripes in Fig. 4.10a,b—gives the visual impression of a density-wave
with wave vector perpendicular to the tilt due to the distance between next nearest
neighboured columns being smaller than the distance between two neighbouring sites
within a column. This impression is reinforced when using the standard represen-
tation for the on-site populations by colored hexagons because these touch the next
nearest column but not the nearest neighbour within the column.
Fig. 4.10d shows two example images without transverse tunneling. Clearly, the

patterns are much more irregular than in the case with transverse tunneling. We quan-
tify this by computing the density-density correlations of the patterns (Fig. 4.10e,f).
To this end we compute the residues as in section 4.3 and subsequently evaluate their
covariance

covjk = 1
N − 1

N∑
i=1

δN
(i)
j δN

(i)
k . (4.17)

δN
(i)
j is the residue at site j for shot i and N is the number of shots with the same

parameters. In a next step the covariances of pairs having the same or exactly op-
posite distance vector are averaged. Only pairs with both sites within 3 sites of the
center of the cloud are taken into account. In this way a covariance as a function of
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Figure 4.10.: Influence of transverse tunneling. (a,b), sketches for the two experi-
mental situations. In both a direction perpendicular to the tilt (dotted lines) and
parallel to the tilt (dashed lines) are defined. The triangle and the red arrow stand
for the tilt strength which is adapted such that the energy offset between neigh-
bouring columns is equal in both cases. The gray and blue rectangles as well as the
color of the sites illustrate how a period two density-wave with wave vector parallel
to the tilt would appear. (c,d), example images for experiments (c) with strong
transverse tunneling, (d) with weak transverse tunneling. (e,f), density-density
correlations (e) for the situation with strong transverse tunneling, (f) with weak
tunneling. (g), cut through (e) along the dashed direction in (a) and through the
origin. (h), cut through (f) along the dashed direction in (b) and through the
origin. (i), cut through (e) along the dotted direction in (a) and through the ori-
gin. (j), cut through (f) along the dotted direction in (b) and through the origin.
Symbols show the cuts, red lines the fits described in the main text, blue lines the
result from c-field simulation. Adapted from [90].
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distance vector is obtained. Finally the covariance is normalized to the mean instan-
taneous maximal on-site population squared to obtain the quantity which is plotted in
Fig. 4.10e-j. For the computation of the uncertainty of the covariance see appendix D.
Clearly, the correlations are more pronounced in the case with transverse tunneling
but also clearly there are correlations in the patterns emerging without transverse
tunneling. In fact, when plotting the correlations along the direction of the dashed
line the result is very similar (blue circles in Fig. 4.10g,h) whereas in the direction
of the dotted line the difference is striking (blue circles in Fig. 4.10i,j). The same
analysis can be performed on the results from the c-field simulation, yielding good
agreement (light blue lines in Fig. 4.10g-j).
In order to associate a length scale to the correlation functions we introduce heuris-

tic fit functions. The alternating correlations in direction of the tilt are fitted using
a staggered exponential decay

ci = c0(−1)ie−
i
L‖ . (4.18)

For the case of weak transverse tunneling we added a small background Gaussian
in order to account for artefacts originating from small displacements of the trap
between shots. The correlations perpendicular to the tilt in the case with strong
transverse tunneling are fitted using a Gaussian

ci = c0e
− i2
L2
⊥ , (4.19)

and the correlations perpendicular to the tilt in the case of weak transverse tunneling
are fitted using an exponential decay

ci = c0e
− i
L⊥ . (4.20)

i denotes the distance measured in sites and c0, L‖ and L⊥ are the fit parameters.
The fits result in L‖ = 2.1(7)(L‖ = 2.3(5)) sites parallel to the tilt and long range
order (L⊥ = 1.2(3) sites) perpendicular to the tilt for the case with strong(weak)
transverse tunneling.
This demonstrates that transverse tunneling is essential for the correlations per-

pendicular to the tilt, i.e., it is required to obtain patterns consisting of long stripes.
The antiferromagnetic correlations in direction of the tilt on the other hand seem to
be independent of the tunneling in the perpendicular direction. Thus the transverse
tunneling seems to lock the choice of realization of the different zig-zag lines in the
sample resulting in long stripes perpendicular to the tilt. Reducing the transverse
tunneling leads to the zig-zag lines being more independent, destroying the stripes,
but leaving the physics within individual zig-zag lines unaltered.

4.6. Connection to coherence
So far we considered the atomic real space density as our observable. In our setup
we can also measure in momentum space via standard free expansion, i.e., without a
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hold time in a harmonic trap. In particular, this gives access to the phase coherence
between the lattice sites. There are two questions to be answered concerning the role
of coherence in the pattern formation: is coherence necessary for the emergence of
the pattern on the one hand, and on the other hand, how does the coherence evolve
during the pattern formation?

4.6.1. Role of initial coherence
We investigate the importance of the coherence of the initial state by deliberately
reducing it by a variable hold time in the lattice before the quench of the magnetic
trap. For every set of experimental parameters we take an image after standard time-
of-flight free expansion in order to obtain the visibility of the momentum distribution
Bragg peaks. For these calibration images we do not quench the position of the
magnetic trap because we are interested in the initial state. Additionally, for the
same preparation parameters, we take a quantum gas magnifier image after a hold
time of 100ms after the quench and measure the density-wave contrast. In Fig. 4.11a-
h, such images are shown for 4 different heating times in the lattice. It can be clearly
seen that with decreasing visibility—i.e., coherence—in the initial state the pattern
gets less pronounced as well. The visibility is defined as

V = Npeak −Nnopeak

Npeak +Nnopeak
, (4.21)

where Npeak(Nnopeak) is the atom number within a circular region around the Bragg
peaks(around positions rotated by 30° with respect to the Bragg peaks) as shown
in the inset of Fig. 4.11i. The radius of the circles is determined from an inverted
parabola fit to the Bragg peaks. The density-wave contrast as a function of the
visibility of the initial state is plotted in Fig. 4.11i. We obtain a rather smooth increase
of the density-wave contrast with increasing visibility. Still the data shows that there
seems to be the need for a minimal coherence in the initial state corresponding to a
visibility of ∼ 0.2 – 0.3 for the density-wave to be detectable.
We can also address the question of the role of the coherence of the initial state in

the framework of the c-field simulation. It is difficult to obtain a visibility from the
simulations for direct comparison. The temperature, however, is an input parameter
of the simulation and therefore known. Thus we plot the theoretical density-wave
contrast as a function of 1 − T/T 0

c where T 0
c is the critical temperature of a non-

interacting system (Fig. 4.11j). The resulting density-wave contrast is higher for
lower temperatures. Even though experiment and theory use different x-axis here,
the two x-axis are a monotone function of each other and we can therefore deduce
qualitative agreement between experiment and theory.
It is not obvious why the coherence of the initial state should play a role for the

pattern formation. In fact, when approximating the propagator as an exponential
decay as in section 4.2.2 the correlations are predicted to decrease with increasing
phase coherence length as can be seen from (4.11). However for very long coherence
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Figure 4.11.: Dependence on initial coherence. (a-d), experimental real space im-
ages for 100ms hold time after the quench and different initial temperatures. (e-h),
momentum space images taken without any quench, thus characterizing the coher-
ence of the initial state. The temperature is controlled via a hold time in the
lattice of (a,e) 0.1ms, (b,f) 750ms, (c,g) 1200ms, (d,h) 1800ms. The resulting
visibilities are (e) 0.79, (f) 0.42, (g) 0.17, (h) 0.006. (i), density-wave contrast after
100ms after the quench as obtained from the experimental images as a function
of visibility before the quench. The errorbars denote the standard deviation of the
mean. The inset shows the masks used for the determination of the visibility. (j),
density-wave contrast as obtained from the c-field simulation results as a function
1 − T/T 0

c where T 0
c is the critical temperature of a non-interacting gas. Adapted

from [90].
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range this result might not be valid because the used approximation for the propagator
becomes inaccurate. One explanation for the decrease in density-wave contrast might
be that thermal excitations reduce the bosonic enhancement of the pair tunneling,
thus making the pattern formation too slow to be observed. Another explanation
could be that thermal fluctuations might seed the density-wave formation and that
there are too many possible seeds for higher temperatures which eventually cancel
each other.

4.6.2. Fate of coherence after the quench

After having described the influence of the coherence of the initial state, we now
want to proceed with investigations of the coherence during the pattern formation.
Fig. 4.12a-d shows momentum space images for different hold times after the quench in
a stroboscopic timing with respect to the Bloch oscillation period of about 1ms. The
visibility is swiftly reduced, only a slight asymmetry remains with a slight elongation
along the tilt direction. This shows that the quantum gas magnifier is essential for
the observation of the pattern formation since with the loss of coherence there is no
possibility to observe the density-wave in momentum space.
The c-field simulation comes to a similar conclusion. Here the coherence is esti-

Figure 4.12.: Coherence after the quench. (a-d), experimental momentum distri-
bution of the atoms after (a) 0.1ms, (b) 1.1ms, (c) 2.1ms, and (d) 1200ms after
the quench. (e), coherence measure n0 of the c-field simulation as explained in
the main text as a function of hold time after the quench for different initial tem-
peratures of T/Tc = 0.28, 0.32, 0.39, 0.45 and 0.53 from top to bottom. Adapted
from [90].
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mated by the parameter

n0 =
〈 ∣∣∣∣∣ 1
Nroi

∑
i

ψi

∣∣∣∣∣
2 〉

ensemble

, (4.22)

i.e., the ensemble expectation value of the absolute value of the average complex field
ψi in a region of interest. The region of interest is circular with a radius of 6 sites. n0
is plotted as a function of hold time for different initial temperatures in Fig. 4.12e.
Here as well, the coherence drops steeply (note the logarithmic scale).

4.7. Dependence on atom number
The freezing of the dynamics due to atom loss is already a strong indicator that the
pattern formation is an interaction induced effect. As such it is almost mandatory to
analyse the dependence of the phenomenon on density, i.e., atom number per tube.

Figure 4.13.: Density dependence of the pattern formation. (a), density-wave con-
trast as a function of hold time after the quench measured experimentally for dif-
ferent atomic densities. The color encodes the initial peak atom number per tube.
The errorbars show the standard deviation of the mean. (b), density-wave contrast
in c-field simulations as a function of hold time for different densities, color-coded
by peak on-site population as well. Adapted from [90].
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The lack of a Feshbach resonance for 87Rb as well as the use of magnetic trapping
prohibits a scan as a function of scattering length. We vary the atom number by a
hold time in the magnetic trap while applying RF radiation on the final evaporation
frequency during preparation in order to lose atoms without heating. Experimentally
we observe that for the most part higher peak atom numbers lead to faster dynamics
and larger maximal value of the density-wave contrast (Fig. 4.13a). For the highest
densities a saturation in the time scale and a slight decrease in the maximal value is
measured.
We can simulate the same situation using a c-field simulation without atom loss.

The phenomenology is the same, however, the maximum density wave contrast is a
monotone function of the peak atom number while still saturating.
These findings reassure the interaction driven nature of the pattern formation. The

slight decrease in maximal contrast for the highest densities in the experiment remains
to be explained.

Figure 4.14.: Dynamics for incommensurate tilt direction. (a-e), atomic real-space
density after a hold time of (a) 1ms, (b) 100ms, (c) 300ms, (d) 600ms, (e) 1200ms
after the quench. The circle illustrates the initial position of the cloud. In (e) the
local tilt is shown by red arrows. For the initial position of the cloud the tilt
projection perpendicular and parallel to the columns of the lattice is drawn in
orange. Adapted from [90].
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4.8. Incommensurate tilt direction
So far we only considered the tilt direction to be perpendicular or parallel to a prim-
itive vector. In another set of experiments we choose the tilt direction to be a bit
off from being perpendicular to a primitive vector (Fig. 4.14e). Consequently, when
decomposing the force into a component perpendicular to the columns of the lattice
and a component parallel to it, neither vanishes. This is in contrast to the situation
when tilting perpendicularly or parallel to a primitive vector where the projection
along the columns is zero. Interestingly we observe that only a fraction of the atoms
follow the force along the columns, reminiscent of a sample with both normal and
superfluid part at the slope of a trap [98]. The moving fraction stops as soon as its
center is at a position where the component of the force along the columns vanishes.
At the same time this displaced part of the cloud shows density-wave formation. Since
we know that coherence is necessary for the pattern formation (section 4.6) the fact
that only the moving part exhibits a pattern is another hint that the moving part is
the initial BEC part of the cloud. As such, future work could try to exploit this in
order to prepare a perfectly condensed sample.

4.9. Conclusion
To conclude, we reported spontaneous symmetry breaking in the quench dynamics
of a BEC in a triangular lattice after a sudden tilt. The spontaneous nature could
be identified by a domain analysis of the resulting pattern. The phenomenon can
be understood via an effective Hamiltonian and a c-field simulation, both confirming
interactions as necessary ingredient for the dynamics. In particular, as such, particle
loss is slowing down and almost freezing the dynamics leading to the pattern being
very long-lived. Tunneling transverse to the tilt could be identified as necessary for
strong correlations in the density along this direction whereas the anti-ferromagnetic
correlations in tilt direction were found to be independent of this tunneling. The
pattern formation is a first example of a phenomenon that could be observed only
due to the development of the quantum gas magnifier to the best of our knowledge.
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5. Conclusion and outlook
In conclusion, we introduced matter wave magnification as a tool for single shot
imaging of 3D systems with 2D sub-lattice site resolution, making regimes accessible
that were not accessible in real space beforehand, in particular systems of lattices of
tubes. We benchmarked the technique by high precision thermometry of the normal
gas to superfluid phase transition, demonstrated the capability to prepare various
patterns as initial state, performed experiments with sub-lattice site resolution and
analyzed thermal and quantum on-site fluctuations. In a next step we made use of the
combined advantages of the quantum gas magnifier to observe spontaneous symmetry
breaking in a BEC in a tilted triangular lattice with weak transverse confinement.
This phenomenon was not experimentally accessible and not theoretically predicted to
the best of our knowledge. In collaboration with the theory group of Ludwig Mathey,
the dynamics could be understood in terms of an effective Hamiltonian originating
from a Magnus expansion for strong tilt and the pattern formation was observed in
c-field simulations as well.
The quantum gas magnifier puts much less constraints on experimental design than

other high resolution techniques such as, e.g., quantum gas microscopes which rely on
a high numerical aperture objective and fluorescence imaging in a pinning lattice. As
such, quantum gas magnification can bring excellent real space resolution to atomic or
molecular species where deep lattices are not available. Additionally, the absence of
parity projection due to light assisted collisions allows for the measurement of higher
fillings. When combining the magnification protocol with free space fluorescence
imaging [22, 99, 100] also single-atom sensitivity can be reached, giving access to
highly correlated states. The sub-lattice site resolution could be used to observe exotic
on-site density distributions such as vortices in the case of a chiral superfluid [101].
Furthermore, the technique is suitable for the investigation of coherence phenom-

ena [22, 57]. For example, the Talbot effect can be used to extract the coherence
length of the system [57, 102]. In fact, the spatial resolution of the quantum gas mag-
nifier would allow to analyze these properties also locally. It would be particularly
interesting to observe the Talbot interference of a sample with a non-trivial phase
pattern such as a twisted superfluid [103], or a sample with finite quasimomentum or
a vortex [57]. For a BEC subject to an artificial gauge field, domain formation could
be imaged [104–106]. Another proposal to access phase information is to imprint
phase masks in the Fourier plane, i.e., after the evolution in the harmonic trap [29].
The effective Hamiltonian description of the density-wave formation shows that

Floquet systems based on DC driving are promising for the engineering of extended
Hubbard models [94, 107]. In the future it would be interesting to engineer stronger
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non-standard Hubbard terms such that pattern formation and spontaneous symmetry
breaking could be observed also in the ground state. Another route would be the
combination of DC drive and AC drive, where the DC drive provides non-linear terms
and the AC drive can make the system topologically non-trivial, potentially enabling
the observation of phenomena like topological bandgap solitons [108]. The same
combination, this time used for time translation symmetry and protection against run-
away heating could lead to the observation of stark time crystals [109]. Eventually,
AC drive combined with the engineering of a topological interface in the system
points a way to the observation of chiral edge states, also in interacting topological
matter [110].
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Appendix A.

Details on the experimental setup
The experiment requires a lot of different laser beams of well-controlled frequency
and sufficient power being directed onto the atoms. Therefore, the setup is divided
into three optical tables: One table to provide the MOT, molasses, pushing, pumping
and imaging light, one table to provide the high power beams for the optical lattice
and a dipole trap and finally the experiment optical table which is connected to the
other two via optical fibres. On the experiment table the vacuum chamber and the
glass cells for the atoms are located. The experiment was mainly set up by earlier
generations of PhD students. The main improvement in the course of this thesis
consists of the implementation of the multi-frequency lattice (section 2.3.2). Yet,
there is no detailed documentation of the current status of the setup in other theses
which I will therefore provide here.

A.1. The MOT laser table
The MOT laser table provides all the frequencies needed for the MOT, molasses,
pumping and imaging. Most of these beams are derived from the laser in the lower
right of Fig. A.1 which is a TOPTICA DL PRO operated at 780 nm. The beam of
this laser is divided for three major purposes. One part of the beam is sent through
a saturated absorption spectroscopy setup for locking, one part is amplified to serve
as cooling light for the MOT and molasses, and one part is used for pushing, optical
pumping, and detection.
Let us start with the explanation of the spectroscopy beam path. This beam is

transmitted through the first polarizing beam splitter (PBS). Subsequently the beam
propagates through an EOM, adding the sidebands required for the spectroscopy, a
double pass AOM for frequency tuning, a glass cell containing both 85Rb and 87Rb
and finally it hits a photodiode for the detection of the locking signal. Using a
TOPTICA DigiLock, the laser is locked onto the crossover resonance between the
F = 2 → F ′ = 2 and the F = 2 → F ′ = 3 transitions which is detuned by
∆cross = −133MHz from the F = 2 → F ′ = 3 cooling transition. The double pass
AOM using the minus first order detunes the light by ∆cool,spec = −2×133MHz. The
other beam paths involve AOMs as well in order to arrive at the desired frequencies
as will be explained below.
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Figure A.1.: MOT laser table. Optical setup used to generate the laser light required
for the MOT, molasses, pushing, optical pumping and imaging. A description of
the individual beam paths can be found in the text.

Next, let us explain the beam path of the cooling light. The part of the beam used
for this purpose is reflected by the first PBS and transmitted through the second.
The power is amplified to around 100mW by a first tapered amplifier (TA). After
that the beam is divided into two, one for the 2D MOT and one for the 3D MOT.
Each beam propagates through an individual double pass AOM, gets amplified to a
few hundreds of mW by a second TA and is then coupled into a fibre connecting to
the main experimental table. The double pass for the 3D branch uses the minus first
order resulting in a shift of ∆cool,3D,MOT,2p = −2× 74MHz in the MOT phase and of
∆cool,3D,mol,2p = −2× 88MHz in the molasses phase. Hence, in total the detuning of
the 3D cooling light is ∆cool,3D,MOT = ∆cross −∆cool,spec + ∆cool,3D,MOT,2p = −15MHz
during the MOT and ∆cool,3D,mol = ∆cross − ∆cool,spec + ∆cool,3D,mol,2p = −43MHz
during the molasses. ∆cool,spec has an extra minus sign because the frequency shift
happens before the propagation through the gas cell used for locking. The natural
linewidth of the corresponding transition is Γ = 2π × 6.065(9)MHz [54]. The path
for the 3D MOT also involves an EOM which can quickly change the polarization of
the light. During the MOT and molasses the light gets transmitted through the PBS
just behind the EOM but for switch off the polarization is changed such that it gets
reflected and dumped.
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Eventually, we consider the fraction of the beam that is reflected at the second
PBS, which is used for pushing, pumping and detection. The light is also shifted in
frequency by a double pass using the minus first order. Subsequently the beam is split
up again and coupled into three fibers: One for the push beam of the 2D MOT, one
for the imaging perpendicular to the lattice plane and for the optical pumping and
one for the imaging in the lattice plane. The AOM frequency is adjusted according
to the experimental sequence. During the MOT phase the detuning is ∆PPI,push,2p =
−2 × 60.5MHz, resulting in ∆PPI,push = ∆cross −∆cool,spec + ∆PPI,push,2p = +12MHz
total detuning, during the optical pumping ∆PPI,pump,2p = −2 × 73.5MHz, result-
ing in ∆PPI,pump = ∆cross − ∆cool,spec + ∆PPI,pump,2p = −14MHz and during imaging
∆PPI,imag,2p = −2×66.5MHz, resulting in ∆PPI,imag = ∆cross−∆cool,spec+∆PPI,imag,2p =
0MHz. Note that we rounded to full MHz here and that the value for the imaging
AOM frequency used in the experiment is not computed but experimentally deter-
mined by maximizing the atomic absorption.
The last bit on the MOT laser table is the repumping laser system. Here as well

we use a TOPTICA DL PRO running at 780nm stabilized by a saturated absorption
spectroscopy lock. For this laser we choose the crossover between the F = 1→ F ′ = 1
and the F = 1 → F ′ = 2 transitions as the lock point resulting in a detuning of
∆cross,rep = −78.5MHz from the repumping transition F = 1 → F ′ = 2. The beam
passes through a single pass AOM at ∆rep,1p = 78MHz which brings the repumping
on resonance.
There is an analogue setup for 40K in the experiment. However it was not used for

the results reported in this thesis and is therefore not described.

A.2. The high power laser table
The second table which supplies the experiment with the desired laser light hosts
the high power lasers (Fig. A.2). For the 2D lattice we have a COHERENT 25W
Mephisto MOPA (master oscillator power amplifier) emitting at a wavelength of
1064 nm. After passing through an optical isolator the power is distributed into
four beams by the means of λ/2 waveplates and PBS. The beam which is reflected at
the first PBS is not used for this thesis. The remaining three have qualitatively the
same optical setup. Each beam first passes through an EOM which is required for the
ability to use the multi-frequency lattice approach (section 2.3.2). Subsequently each
beam propagates through an AOM which is used for fast switching of the light. In
the case of the polarization approach the AOM frequencies need to be chosen equal
whereas in the case of the multi-frequency approach they need to be chosen such
that every carrier is resonant with exactly one sideband of another beam. As long
as these conditions are met the exact frequencies do not matter since the lattice is
far-detuned already. Note that the AOMs can also be used to effectively phase mod-
ulate the beams allowing for shaking protocols which was used excessively in former
works [56]. The zeroth order of the AOMs is picked up by a small mirror and then
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Figure A.2.: High power laser table. This table hosts the laser for the 2D lattice
and the laser system for the dipole trap or transverse lattice. See the text for a
detailed description.
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redirected onto a high power beam dump. Eventually all beams are fiber coupled.
Independently from this setup but on the same table there is a Ti-sapphire laser

system COHERENT MBR-110 with its pump laser COHERENT Verdi V18 which
provides the power for a dipole trap or lattice perpendicular to the 2D lattice plane.
The pump laser operates at 532 nm and is coupled into the Ti-sapph via two mirrors
which converts the light to a wavelength of 826 nm. The light passes then through
a filter to ensure that all green pump light is eliminated. The beam is subsequently
divided into three parts. One is of low power and is fiber coupled to a wavemeter
to monitor the frequency of the system. The other two have an identical setup of
an AOM followed by a fiber. Here the AOM frequencies are chosen to be 75.5MHz
for one beam and 85MHz for the other which prevents them from interfering when
being used as a crossed dipole trap. At the same time the AOMs can again be used
for fast switching. One of the beams can be retroreflected to form a lattice as will be
described in the next section.

A.3. The experiment table
Finally we have arrived at the main table. The main table’s mechanical design is very
different from the other two. Whereas all the optics is mounted in a single plane for
the other two tables, on the main table, optics are mounted on different breadboards
at different height, from above and from below, and there is even a breadboard which
is mounted vertically (Fig. A.3).
We want to explain the setup along the experimental sequence. The first stage of

every experiment is the 2D MOT. The breadboard relevant here is breadboard A in

Figure A.3.: Experiment table, spatial arrangement of the breadboards. The setup
on the experiment table can be subdivided into four breadboards. Three of them,
labelled A,B,C, are mounted horizontally, where C is the optical table itself. One is
mounted vertically, labelled D. The optics mounted on the breadboards are detailed
in Fig. A.4&A.5.
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Figure A.4.: Experiment table, 2D MOT. The Optical setup and coils to realize the
2D MOT are displayed. The figure shows the upper side (A, upper) and lower side
(A, lower) of breadboard A mounted as defined in Fig. A.3, the beam paths are
explained in the text.

Fig. A.3 with its optics setup shown in Fig. A.4. It has components from above and
below, we will start with the ones mounted from below. There are two fiber out-
couplers, one for the potassium frequencies—which was not used in this thesis—and
one for the rubidium frequencies, i.e., the cooling and repumping light which were
coupled into this fibre on the MOT laser table. The light is divided onto two axes
which have almost the same setup. First, the beams are expanded symmetrically by
a telescope, then pass a quarter waveplate for circular polarization and are finally
expanded again, but only in the direction of gravity, using a cylinder telescope. The
circularly polarized, elliptical beams pass through the 2D glass cell where the dis-
penser creates a rubidium background pressure. Behind the glass cell the beams are
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Figure A.5.: Experiment table, setup around glass cell in which experiments take
place. The breadboards B and D as defined in Fig. A.3 are shown. The drawings
should be put together such that the arrows on the left connected by a dashed
line overlap. The circle with dot corresponds to the arrow pointing out of the
plane. The dotted line between two mirrors means that these two are identical but
drawn from different perspectives. Dashed beams propagate on the other side of the
respective breadboard. Black rectangles indicate mounting of optics, in particular
many elements on (D, facing cell) are mounted on breadboard C which is the optical
table. The beam paths are described in the text.
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retroreflected including a quarter waveplate for the appropriate polarization for the
2D MOT. Around each facing of the glass cell there is a coil in order to produce the
quadrupole fields needed for the atom trapping.
On the upper side of this breadboard the optics for the push beam are mounted.

Here we also have one outcoupler for potassium and one for rubidium where again
only the one for rubidium was used in this thesis. The beam is directed along the
axis of the 2D MOT pointing to the 3D MOT below.
Next in the experimental sequence we have the 3D MOT. The relevant optics can

be found on breadboards B and on breadboard D (Fig. A.3&A.5). The cooling and
repumping light are coupled out on breadboard D on the side opposite to the glass
cell from a single fiber (dark red beam in Fig. A.5). This light gets divided into three
branches which have the same design. In every branch the beam is expanded by a
telescope and subsequently again divided into two beams which pass through a quar-
ter waveplate for circular polarization and then impact the atoms from antiparallel
directions. There is one pair of beams in the plane of breadboard B and two pairs
in the plane of breadboard D, forming an angle of 45°with respect to gravity. These
beams are also the ones used for the optical molasses. There is also an outcoupler for
the potassium frequencies which is not shown because it was not used in this work.
The potassium light gets distributed into three beams before superposition with the
rubidium light using dichroic mirrors which is also not shown.
Subsequently the atoms are loaded into the magnetic trap, the coils of which are also

shown in Fig. A.5. Before loading into the magnetic trap the atoms need to be pumped
into a trappable state. The respective laser comes from a fibre below breadboard B
and is overlaid with a MOT beam at a PBS (orange beam in Fig. A.5). It would
also be possible to load into a dipole trap after evaporative cooling. Both beams
of the crossed dipole trap arrive on breadboard B and first impact a beam sampler
which reflects a small portion towards a photo-diode for the purpose of intensity
stabilization (brown beams in Fig. A.5 on the upper side of breadboard B). The main
part is transmitted and focused onto the atoms. Dichroic mirrors are used to overlay
the dipole trap beams with the beams of other wavelengths. In this thesis however
the dipole trap was not used.
We postpone the presentation of the lattice beams in order not to change bread-

boards. Two beams on breadboard B are left unexplained up to now. These are the
imaging beams. The one for the imaging perpendicular to the lattice plane actually is
the very same beam as the one used for the pumping (orange beam in Fig. A.5). Just
the frequency is changed for imaging by means of the double pass AOM on the MOT
laser table. Finally there is the imaging beam propagating in the lattice plane (red
beam in Fig. A.5). This perspective is needed, e.g., for the lattice depth calibration
of the lattice perpendicular to the 2D lattice plane.
The 2D lattice optics is presented on breadboard D (brown beams in Fig. A.5 on

the site of breadboard D facing the cell). All beams have a telescope integrated into
the fibre outcoupler such that no further lenses are required. Two of the beams have
a quarter and a half waveplate, one only has a half waveplate. After propagating
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through the glass cell the beams hit a photodiode which is used for intensity sta-
bilization. The beams with two waveplates actually have two photodiodes at the
different ports of a PBS which allows to use the setup as a polarimeter which is
needed when a particular lattice geometry is to be prepared with the polarization
approach (section 2.3). The quarter waveplates are removed when working with the
multi-frequency approach, or more precisely the pair of quarter and half waveplate is
replaced by a single half waveplate in order to be able to change back to the previous
state. In fact only the outcouplers and waveplates above the cell are mounted on
breadboard D. As indicated by the black bars in Fig. A.5 the remaining optics is
mounted on breadboard C which is the actual optical table. Eventually, the lattice
perpendicular to the 2D lattice is obtained by retroreflecting the respective dipole
trap beam. The optics needed is mounted on breadboard B.
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Appendix B.

Details on theoretical considerations

B.1. Band theory and band structure simulation
Band theory is the main framework for the modelling of systems with periodic poten-
tials such as optical lattices. It is based on Bloch’s theorem [111] which states that if
a system has a discrete translational symmetry, i.e., the Hamiltonian commutes with
the corresponding translation operator, then the eigenstates of the Hamiltonian take
the form of Bloch waves

ψnk(x) = unk(x)eikx, (B.1)

where n is called band index and k is the quasimomentum which is defined up to a
reciprocal lattice vector. unk(x) is a function which has the same periodicity as the
lattice potential. We choose 1D for simplicity but higher dimensions are analogue.
As a consequence of the periodicity of unk(x) it can be written as a Fourier series

unk(x) =
∑
j

cnk,je
i 2π
a
jx, (B.2)

where a is the periodicity of the potential. In the same way the potential V (x)
can also be decomposed into Fourier coefficients Vj. Hence using the basis of Bloch
functions (B.1) the time independent Schrödinger equation Hψnk = Enkψnk can be
mapped onto a system of equations in the Fourier coefficients of unk(x)

(k + jG)2

2m cnk,j +
∑
l

Vlcnk,j−l = Enkcnk,j, (B.3)

withG = 2π/a. This kind of eigenvalue problem can be solved with the approximation
of a cutoff as a function of j. Here however we want to take a different approach which
is the computation and diagonalization of the Hamiltonian matrix in plane wave
basis. The code is already presented in detail in the thesis of Nick Fläschner [56] and
therefore we will just give the most important steps here.
A very general approach of mapping the Schrödinger equation from a single equa-

tion in Hilbert space Hψ = Eψ onto a (potentially infinite) number of equations of
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complex numbers is to choose a basis of Hilbert space and to project the vectorial
equation on every basis vector. Here we use the plane wave basis

|k〉 (r) = 1√
A
eikr, (B.4)

assuming an arbitrarily large but finite square area A = L2 for the system in order to
be able to normalize the basis. L is the edge length of the square. For periodic bound-
ary conditions this implies k = 2π/L× ν with integer vector ν ∈ Z2. Conveniently,
these states are orthonormal. For every plane wave we can project the Schrödinger
equation resulting in

〈k|H |ψ〉 = 〈k|E |ψ〉 . (B.5)

The right hand side is just the energy times the coefficient of the wave function in
plane wave basis which we want to define as ck = 〈k|ψ〉. On the left hand side we
insert unity to obtain

〈k|H |ψ〉 =
∑
k′
〈k|H |k′〉 〈k′|ψ〉 =

∑
k′
〈k|H |k′〉 ck′ (B.6)

Thus in general an infinite dimensional eigenvalue problem needs to be solved:
∑
k′
Hkk′ck′ = Eck, (B.7)

where we defined Hkk′ = 〈k|H |k′〉. In the following it will turn out, reflecting
Bloch’s theorem, that every plane wave is only coupled to a discrete set of other
plane waves given by the reciprocal lattice and not the system size. This is due to
the fact that the kinetic energy is diagonal in the plane wave basis and therefore does
not couple different momenta at all, and, due to its periodicity, the potential only
couples momenta that differ by exactly one reciprocal lattice vector. Therefore it is
useful to decompose

k = m1b1 +m2b2 + s (B.8)
k′ = n1b1 + n2b2 + q, (B.9)

where b1 = k1−k2 and b2 = k2−k3 are reciprocal lattice vectors and q = β1b1+β2b2
and s = γ1b1 + γ2b2 are continuous momenta in the sense that their discretization is
only given by system size. The continuous part is restricted to 0 ≤ β1, β2, γ1, γ2 < 1
and with n1, n2,m1,m2 ∈ Z the decomposition is thus unique. Note that only β1 and
β2 will appear in the equations since only momenta with q = s are coupled and hence
it is always (β1, β2) = (γ1, γ2). The matrix elements for the polarization approach
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(section 2.3.1) are given by

〈k| p̂
2

2m |k
′〉 =3Er

(
(n1 + β1)2 + (n2 + β2)2 − (n1 + β1)(n2 + β2)

)
δm1,n1δm2,n2δq,s

(B.10)

〈k| V̂23 |k′〉 =1
2

(√
V2pV3p −

√
V2sV3se

−i(α2−α3)
)
e−i(φ3−φ2)δm1,n1δm2,n2+1δq,s

+1
2

(√
V2pV3p −

√
V2sV3se

i(α2−α3)
)
ei(φ3−φ2)δm1,n1δm2,n2−1δq,s (B.11)

〈k| V̂12 |k′〉 =1
2

(√
V1pV2p −

√
V1sV2se

iα2

)
e−iφ2δm1,n1+1δm2,n2δq,s

+1
2

(√
V1pV2p −

√
V1sV2se

−iα2

)
eiφ2δm1,n1−1δm2,n2δq,s (B.12)

〈k| V̂13 |k′〉 =1
2

(√
V1pV3p −

√
V1sV3se

iα3

)
e−iφ3δm1,n1+1δm2,n2+1δq,s

+1
2

(√
V1pV3p −

√
V1sV3se

−iα3

)
eiφ3δm1,n1−1δm2,n2−1δq,s, (B.13)

with

Vip = Vi cos2(θi) (B.14)
Vis = 2Vi sin2(θi). (B.15)

For the multi-frequency approach (section 2.3.2), the matrix elements of the kinetic
energy are the same as for the polarization approach. The matrix elements of the
potential are given by

〈k| V̂23 |k′〉 =V23,0e
i
ϕg
3 δm1,n1δm2,n2+1δq,s

+V23,0e
−iϕg

3 δm1,n1δm2,n2−1δq,s (B.16)
〈k| V̂12 |k′〉 =V12,0e

i
ϕg
3 δm1,n1+1δm2,n2δq,s

+V12,0e
−iϕg

3 δm1,n1−1δm2,n2δq,s (B.17)
〈k| V̂13 |k′〉 =V13,0e

−iϕg
3 δm1,n1+1δm2,n2+1δq,s

+V13,0e
i
ϕg
3 δm1,n1−1δm2,n2−1δq,s. (B.18)

As already mentioned, conveniently, only plane waves that differ by exactly one re-
ciprocal lattice vector b1, b2 or b1 − b2 are coupled. Thus the problem can be de-
composed into several smaller ones, each only considering one central momentum and
all momenta that can be reached via reciprocal lattice vectors. Still, these subsets
are infinite, so a cutoff needs to be made. It is a good approximation to leave out
high momenta since the low energy states in a shallow lattice resemble those of free
particles, which are plane waves with no admixture from higher wave vectors of the
respective reciprocal lattice. Going to deeper lattices higher momenta become more
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relevant and the cutoff needs to be shifted. In the simulations used in this thesis,
typically a reciprocal lattice of 17 × 17 momenta is employed corresponding to the
same number of bands.

B.2. Modelling of sub-lattice site quench dynamics
Here we describe the simulation of the beam imbalance quench dynamics of sec-
tion 3.5. Since the lattice is very deep we assume that the quasimomentum does not
play a role as it is only defining the phase between lattice sites which do not interfere
in this limit anyways. Thus, without loss of generality, we can choose our initial state
to be the eigenstate with zero quasimomentum and use the band structure code from
appendix B.1. The dynamics are simulated as follows. The initial state ψ0 is obtained
as the corresponding eigenvector and is therefore in plane wave basis:

|ψ0〉 =
∑
k

〈k|ψ0〉 |k〉 =:
∑
k

c
(0)
k |k〉 . (B.19)

Now for every time step n of δt = 5 µs a band structure calculation is run to obtain
the instantaneous eigenstates

|φ(n)
i 〉 =:

∑
k

d
(n)
k,i |k〉 . (B.20)

The need for many time steps stems from the fact that we use the measurements from
the intensity control photodiodes instead of assuming a step function for the potential
depth. The time evolution is done iteratively by computing the wave function after
n time steps based on the wave function at time step n− 1, assuming that the lattice
depth was constant over the interval. Hence the wave function after n steps as a
function of the wave function after n− 1 steps is given by

|ψn〉 =
∑
i

〈φ(n)
i |ψn−1〉e−i

E
(n)
i
~ δt |φ(n)

i 〉 =
∑
ik

d̄
(n)
k,i c

(n−1)
k e−i

E
(n)
i
~ δt |φ(n)

i 〉 . (B.21)

The density from which the cuts in the main text are drawn is then given by

n(r) = |〈r|ψn〉|2 =
∣∣∣∣∣∑
k

〈r|k〉〈k|ψn〉
∣∣∣∣∣
2

= 1
A

∣∣∣∣∣∑
k

eikrc
(n)
k

∣∣∣∣∣
2

. (B.22)

Since this simulation considers a single particle, the density has to be scaled to match
the experiment. Note the short time scale of the simulation justifying the neglection
of interactions.
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B.3. Computation of the trapping frequency
perpendicular to the 2D lattice

For the correct comparison with theoretical expectations we need to know the trap-
ping frequency in the z-direction since it influences the importance of interactions
and defines the quantum of energy for transverse excitation. For this computation we
need to take into account the full light intensity, not only the part that is spatially
modulated. The full potential is given by

−V
κ

= 1
T

∫ T

0
|E1 +E2 +E3|2 dt (B.23)

= 1
T

∫ T

0

[
|E1|2 + |E2|2 + |E3|2 + 2<

(
Ē1E2 + Ē2E3 + Ē3E1

)]
dt (B.24)

= |E1|2 + |E2|2 + |E3|2 + 1
T

∫ T

0
2<

(
Ē1E2 + Ē2E3 + Ē3E1

)
dt (B.25)

where Ei(r, t) is the complex valued E-field, T is an averaging time which should be
long compared to the frequencies of the light, κ is a proportionality constant. We
restrict ourselves here to the multi-frequency approach because the experiments where
we used the z trapping frequency were performed using this approach. Hence every
beam has sidebands and every carrier only interferes with one sideband, resulting in,
e.g.,

1
T

∫ T

0
2<

(
Ē1E2

)
dt = 2e1e2J0(α)J1(α) |E1| |E2| cos [(k1 − k2) r] , (B.26)

with J0(α), J1(α) being Bessel functions corresponding to the strength of carrier and
sidebands as a function of modulation index α. We extract the z trapping frequency
by looking at the potential on the z-axis. Assuming |E1| = |E2| = |E3| it is given by

V (0, 0, z)
κ

= − [3 + 6e1e2J0(α)J1(α)] |Emax|2 e−
2z2
w2 (B.27)

with the peak electric field |Emax| and the lattice beam waist w. A Taylor expansion
to second order leads to the trapping frequency

ωz,lat =
√

4 [3 + 6e1e2J0(α)J1(α)]κ |Emax|2

mw2 . (B.28)

Using the expression (B.26) we deduce that the 1D peak to peak lattice depth in this
representation is given by V pp

1D /2 = κ × 2e1e2J0(α)J1(α) |Emax|2. In appendix C.1
we derive the conversion from peak to peak 1D lattice depth to our lattice depth
convention which we can use here to get the final result

ωz,lat =

√√√√ Vij,0
mw2

[
12 + 6

e1e2J0(α)J1(α)

]
(B.29)

= 2π × 19 Hz×
√
Vij,0
Er

(B.30)
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where we plugged in J0(α)J1(α) = 1/3, e1e2 = 1, w = 140 µm, m = 87u. Vij,0 is
independent of i, j for a balanced lattice.
This trapping frequency usually is the dominating z-confinement. Yet, there is also

a confinement induced by the magnetic trap. This confinement was characterized to
be [39]

ωz,MT = 2π × 11 Hz×
√
Igrad

110 A . (B.31)

Igrad is the current in the coils producing the quadrupole part of the magnetic trap.
For the thermometry experiment in section 3.3 we used Igrad = 105A resulting in
ωz,MT = 2π × 11Hz (no change when keeping only 2 digits), for the experiments in
chapter 4 we used Igrad = 85A resulting in ωz,MT = 2π × 9.7Hz. The trapping fre-
quencies must be quadratically added to obtain the total trapping frequency making
the magnetic trap only a small correction.

B.4. Computation of the on-site trapping frequency of
a triangular lattice

When considering interacting particles in a lattice, the on-site trapping frequency is
an important quantity since the stronger the confinement the more significant the
interactions. Here we want to compute the on-site trapping frequency and oscillator
length for the case of a balanced triangular lattice. In this case the lattice potential
(2.7) is reduced to

V (r) = −2Vlat
∑
i<j

cos [(ki − kj) r] , (B.32)

when choosing the origin appropriately. The on-site trapping frequency is propor-
tional to the curvature of the potential

∂2V

∂x2 (0) = ∂2V

∂y2 (0) = 2Vlat
9
2

(2π
λ

)2
. (B.33)

The trapping frequency is consequently isotropic and given by

ω2 = 1
m

∂2V

∂x2 (0) = 2Vlat

Er

9~2(2π)4

4m2λ4 . (B.34)

The harmonic oscillator length is defined as

a2
ho,site = ~

mω
=
√

2
9
Er
Vlat

λ2

(2π)2 . (B.35)

For our experimental lattice laser wavelength we obtain

aho,site = 116 nm
(
Er

Vlat

) 1
4
. (B.36)
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B.5. Computation of the Hubbard on-site interaction
strength

For the computation of the Hubbard on-site interaction strength U for the case of
the triangular lattice of tubes we start from the expression of the interaction energy
in a single tube with N particles in state ϕ(x, y, z)

Eint = gN2
∫
|ϕ(x, y, z)|4 dxdydz. (B.37)

Since the tubes are highly anisotropic we assume that the interactions do not play a
role for the in-plane form of the wave function and that the wave-function factorizes as
ϕ(x, y, z) = ϕ2D(x, y)ϕz(z). With the same argument we can compute ϕ2D(x, y) via
non-interacting band structure numerics. In the z-direction we are in the opposite
limit. Interactions dominate and therefore a Thomas-Fermi profile is suitable for
ϕz(z). For the Thomas-Fermi profile we choose an atom number of N = 1000 allowing
us to obtain

U = 2
N2Eint ∼ 2.3 Hz (B.38)

for a lattice depth of Vlat = 1Er. Note that the description of the system with such
a Hubbard approach neglects the change of the Thomas-Fermi profile with particle
number and therefore it is only accurate as long as the relative change in N remains
small. Also note that the value of U is exclusively used for the computation of the pair
tunneling time scale tP . In particular, the c-field simulation discretizes the z-direction
making Ũ = g/(2πa2

holz) the relevant interaction strength.

B.6. Non-interacting bosons in a lattice with harmonic
confinement

In this section we present a theoretical model for the normal to BEC transition in a
triangular lattice of tubes with harmonic confinement. The critical temperature of
a non-interacting Bose gas is implicitely given by the condition that the number of
atoms in the excited states Nexc is equal to the total atom number Ntot at the critical
temperature and vanishing chemical potential, since lowering the temperature further
would imply that not all atoms can be accomodated in the excited states and therefore
a macroscopic fraction needs to occupy the ground state [65]. This condition can be
written as

Ntot = Nexc(µ = 0, T 0
c ) =

∫
dE g(E)

e
E

kBT0
c − 1

, (B.39)

with the density of states g(E). Hence if we know the density of states for our system
we can compute Nexc(T 0

c ) which then can be numerically inverted to yield T 0
c (Ntot).
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Figure B.1.: Theoretical model of the normal to BEC transition in a harmonically
confined lattice of tubes without interactions. (a), number of states N(E) below
a certain energy E. the red line is an exact diagonalization of a finite system with
hard walls, the black line shows the analytical approximation described in the text.
(b), BEC fraction f0 as a function of scaled temperature T/T 0

c . The symbols show
the theoretical results for the parameters measured in the experiment. The color
encodes the atom number. The solid line is a fit to these points using the relation
f0 = 1− (T/T 0

c )α as expected for a density of states with the form of a power law.
The fit results in α = 2.69(1). Adapted from [22].

As a first step towards a density of states we perform a diagonalization of the
Hamiltonian matrix corresponding to the position basis choosing a cutoff radius in
order to keep the problem finite and tractable. We compute the number of states
N(E) (red line in Fig. B.1a) having an energy below a certain energy E because this
quantity defines the density of states via g(E) = dN/dE. However it turns out that
we cannot simulate energies high enough for an accurate critical temperature for the
parameter range of the experiment.
Therefore we develop an analytical description. In fact, in the first band, the tunnel

coupling J = h × 12Hz is very small compared to the gradients due to the external
trap. For example a site in the center of the trap is offset by ∆ = 1/2mω2

sysa
2
lat =

h × 200Hz from its nearest neighbour. Therefore, it is a good approximation to
assume independent sites for the first band, each site only having the z degree of
freedom, since a in-plane excitation would correspond to higher bands. Consequently
the spectrum in the lowest band is given by

Ejk = 1
2mω

2
sysr

2
j +

(
k + 1

2

)
~ωz, (B.40)

with the distance rj of the tube j from the trap center. For this spectrum N(E) can
be computed in the following way. First, the problem is decomposed into a sum over
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the sites

N(E) =
∑
j

N(E, rj), (B.41)

where the sum runs over all sites. The number of accessible states for a given site is
obtained by subtracting the potential energy of the site from the available energy E
and, if this is larger than zero, divide it by the quantum of z excitation ~ωz resulting
in

N(E, rj) = max
[
b
E − 1

2mω
2
sysr

2
j

~ωz
c, 0

]
(B.42)

We approximate the sum in N(E) by an integral and ignore the rounding down due
to ~ωz being small, yielding

N(E) =
∫ rmax

0

2πrdr
AWS

E − 1
2mω

2
sysr

2

~ωz
, (B.43)

where the max function was incorporated by including an upper bound in the integral
given by rmax =

√
2E/(mω2

sys). Changing variables in the integral to r̃ = r/rmax
results in

N(E) = 2π
AWS

2E2

~ωzmω2
sys

∫ 1

0
r̃dr̃

(
1− r̃2

)
. (B.44)

The integral is now just a number and equals 1/4. Thus we arrive at the final
expression

N(E) =
(
E

E0

)2
, (B.45)

with

E0 =
√
~AWSmω2

sysωz

π
. (B.46)

For the parameters of the thermometry experiment we obtain E0 = h× 57Hz.
Already the second band has a bandwidth which is an order of magnitude larger

than the one of the first band. It turns out that the number of states in the higher
bands is well described by the relation for particles experiencing the external confine-
ment, but not the lattice. This relation is

N(E) = 1
6

(
E

~ω̄

)3
, (B.47)

with ω̄ = (ω2
sysωz)1/3 being the geometric mean of the trapping frequencies. This

expression needs to be shifted by the band gap ~∆g because this energy must be paid
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in addition in order to enter all these states. Other than that we just need to add
the two expressions to get the analytic approximate number of states as

N(E) =
(
E

E0

)2
+ max

1
6

(
E − ~∆g

~ω̄

)3

, 0
 , (B.48)

which is plotted as black line in Fig. B.1a. As described, inserting g(E) = dN/dE
into (B.39) allows the numerical computation of the critical temperature as a function
of atom number, which in turn allows to renormalize the temperatures in Fig. 3.6b.
Furthermore we need a model to quantify the shift of the critical temperature

that we see in the experiment. Given the density of states we can also compute the
theoretically expected BEC fraction as

f0(T ) = 1− Nexc(µ = 0, T )
Ntot

= 1− 1
N

∫
dE g(E)

e
E

KBT − 1
. (B.49)

These values are plotted as a function of the renormalized temperature T/T 0
c (Ntot)

in Fig. B.1b. It can be seen that the points are almost perfectly on a single line for
the experimentally accessed temperatures and atom numbers. Note that due to the
fact that the density of states is not a power law this was not clear a priori. It turns
out that the points in Fig. B.1 can be fitted by the expression that is obtained for a
power law g(E) = CαE

α−1 which is

f0 = 1−
(
T

T 0
c

)α
. (B.50)

The fit yields α = 2.69(1) where the error corresponds to the 68% confidence interval
of the fit. This value is used for the fitting in the main text, thus the only free fit
parameter is a factor between the non-interacting prediction T 0

c and the actual critical
temperature Tc.
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Appendix C.

Calibrations and conventions

C.1. Lattice calibration
The lattice depth is calibrated using Kapitza Dirac scattering. The intensity of every
individual lattice beam can be deduced from the lattice depths of all three possible
1D lattices resulting from pairwise combination of the beams.
Let us consider such a Kapitza-Dirac experiment with a single 1D lattice [112].

We load a BEC into the magnetic trap and subsequently pulse the two lattice beams
under consideration for a varying time of the order of microseconds and measure the
density after time of flight. Since the intensity stabilization is not possible on such
short time scales the pulse is performed with no stabilization. The maximal intensity
is just given by the radio frequency provided to the AOMs of the lattice beams. We
measure the voltage on the photodiodes of the intensity stabilization and in this way
we know that if we later lock on exactly this voltage we get the lattice depth that we
had during calibration. For other lattice depths we assume the lattice depth to be
linear in the photodiode voltage.
For a short pulse the kinetic energy of the atoms can be neglected in the sense that

the light potential

V1D = −V pp
1D sin2

(
k1Dx

2

)
(C.1)

only imprints a phase pattern onto the cloud but does not redistribute density. Thus
the wave function evolves according to

ψ(t) = ψ0 exp
[
i

~
tV pp

1D sin2
(
k1Dx

2

)]
(C.2)

Using a trigonometric and a Bessel-function identity we can rewrite this as

ψ(t) = ψ0 exp
[
iV pp

1D t

2~ − iV pp
1D t

2~ cos (k1Dx)
]

(C.3)

= ψ0 exp
[
iV pp

1D t

2~

] ∞∑
n=−∞

inJn

(
V pp

1D t

2~

)
exp [ink1Dx] . (C.4)
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Figure C.1.: Lattice depth calibration using Kapitza-Dirac scattering. (a-f), ex-
ample images of a time series of Kapitza-Dirac scattering. The duration of the
pulse is (a) 1 µs, (b) 4µs, (c) 7µs, (d) 10µs, (e) 13µs, (f) 16 µs. (g-i), normalized
populations of the diffraction orders as a function of time for (g) beams 1&3, (h)
beams 2&3, (i) beams 1&2. The colors stand for 0th (black), 1st (blue) and 2nd
order (red). A lattice depth of V1 = 12.2(2)Er, V2 = 14.2(3)Er and V3 = 16.4(3)Er
during calibration is deduced. The error is the 68% confidence interval of the fit.

So if we assume ψ0 = |k = 0〉 we get

|〈nk1D|ψ(t)〉|2 =
[
Jn

(
V pp

1D t

2~

)]2

. (C.5)

Hence the populations in the different diffraction orders evolve in time according to
the respective Bessel function. A few example shots of this dynamics are shown in
Fig. C.1a-f. We extract the populations of the diffraction peaks by summing over
masks and fit these data points using the fit function

Nin(t) = AinJ
2
n

(
(t− t0)V fit

i

)
+ Cin, (C.6)

where Nin denotes the relative atom number in diffraction order ±n for 1D-lattice i.
The important fit parameter is V fit

i = V pp,i
1D /(2~) which is half the angular frequency

corresponding to the peak to peak 1D lattice depth. All orders of a single lattice are
fitted with one lattice depth and the origin of time is the same for all measurements.
The amplitude Ain and the offset Cin is fitted for each time trace individually. The
fitted 1D lattice depth is proportional to the geometric mean of the intensities of
the corresponding lattice beams. However, to obtain the correct band structure from
a simulation we need to know the proportionality constant which in particular also
depends on polarization. We determine the constant for the polarization approach by
comparing the Hamiltonian matrix element for the coupling of momenta separated
by one reciprocal lattice vector resulting from the lattice potential as written in (C.1)
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and from the representation (B.11-B.13). For the latter we obtain∣∣∣〈k = 0
∣∣∣V̂12

∣∣∣k = k1D
〉∣∣∣ = 1

2

∣∣∣∣√V1pV2p −
√
V1sV2se

iα2

∣∣∣∣ = 1
2
√
V1V2f12 (C.7)∣∣∣〈k = 0

∣∣∣V̂23

∣∣∣k = k1D
〉∣∣∣ = 1

2

∣∣∣∣√V2pV3p −
√
V2sV3se

i(α2−α3)
∣∣∣∣ = 1

2
√
V2V3f23 (C.8)∣∣∣〈k = 0

∣∣∣V̂13

∣∣∣k = k1D
〉∣∣∣ = 1

2

∣∣∣∣√V1pV3p −
√
V1sV3se

iα3

∣∣∣∣ = 1
2
√
V1V3f13 (C.9)

with the abbreviations f12 = f(θ, α2), f23 = f(θ, α2 − α3), f13 = f(θ, α3), f(θ, α) =
| cos2 θ − 2 sin2 θ exp(iα)|. This has to be compared to the result when using (C.1):

〈
k1|V̂1D

∣∣∣k2
〉

= 1
L

∫ L

0
eik1x

[
−V pp

1D sin2
(
k1Dx

2

)]
e−ik2xdx (C.10)

= V pp
1D
4

1
L

∫ L

0
eik1x(eik1Dx + e−ik1Dx − 2)e−ik2xdx (C.11)

= V pp
1D
4 (〈k1 + k1D|k2〉+ 〈k1 − k1D|k2〉 − 2 〈k1|k2〉) (C.12)

= V pp
1D
4 (δk1+k1D,k2 + δk1−k1D,k2 − 2δk1,k2) (C.13)

= V pp
1D
4 for |k1 − k2| = k1D (C.14)

By equating the matrix elements that we obtain from the experiment with the theory
expressions we get three equations

1
2
√
V1V2f12 = ~

2V
fit

12 (C.15)
1
2
√
V2V3f23 = ~

2V
fit

23 (C.16)
1
2
√
V3V1f31 = ~

2V
fit

31 (C.17)

(C.18)

which are solved by

V1 = ~V fit
12 ~V fit

31

~V fit
23

f23

f12f31
= ~

V fit
12 V

fit
31

V fit
23

f23

f12f31
(C.19)

V2 = ~V fit
23 ~V fit

12

~V fit
31

f31

f23f12
= ~

V fit
23 V

fit
12

V fit
31

f31

f23f12
(C.20)

V3 = ~V fit
31 ~V fit

23

~V fit
12

f12

f31f23
= ~

V fit
31 V

fit
23

V fit
12

f12

f31f23
, (C.21)

allowing the reconstruction of the individual depths of the single beams which serve
as an input parameter for the band structure calculation.



92 Appendix C. Calibrations and conventions

Conveniently, for the multi-frequency approach, no precise knowledge of the polar-
ization is required. The couplings can be computed from (B.16 - B.18) as∣∣∣〈k = 0

∣∣∣V̂ij∣∣∣k = k1D
〉∣∣∣ = Vij,0. (C.22)

Thus the 1D lattice depths are connected to the fit results via

Vij,0 =
~V fit

ij

2 . (C.23)

For the calibration of the geometry phase ϕg we analyse the sublattice populations
and identify the RF phase which corresponds to equal population, i.e., the honeycomb
lattice. This phase corresponds to ϕg = 0. See [57] for details.

C.2. Cross-check of magnification
We cross-checked the magnification of M = 2.02 with a free fall experiment. We
released the atoms and waited for a variable time of flight before taking an image.
For every image the center of the cloud is determined by a 2D Gaussian fit. In this
way we get datapoints for position in pixels ypix as a function of time of flight ttof
(Fig. C.2). We model the dynamics by a classical free fall

ypix = 1
Lpix,atoms

[
y0 −

1
2g(ttof − t0)2

]
, (C.24)

with the length of a pixel in the atoms’ plane Lpix,atoms, the initial position y0 and the
origin of time t0 as fit parameters. g = 9.81m/s2 is the gravitational acceleration. The

Figure C.2.: Free fall experiment for magnification cross-check. The y-position of
the center of a Gaussian fit to the cloud is shown as a function of time of flight
(circles). Errorbars are much smaller than the symbol size. The red line shows a
free fall fit as described in the text.
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magnification is then deduced via M = Lpix,cam/Lpix,atoms = 2.04(2), where the error
is propagated from the 68% confidence interval of the fit. Thus the used magnification
of 2.02 can be confirmed.

C.3. Conversion from camera counts to intensity
When neglecting saturation effects it is sufficient to assume proportionality between
camera counts and intensity for the analysis of the atom number. The proportionality
constant cancels out in the computation. However, if saturation effects should be
taken into account the absolute value of the intensity plays a role making it necessary
to calculate the conversion factor from counts to intensity. It is given by

C = M2

Apixel

Eγ
CADQE× TE× texpo

, (C.25)

with the magnification M = 2.02, the pixel area Apixel = (13 µm)2, the photon energy
Eγ = h × 384THz, the conversion from analogue photo-electron signal to digital
counts CAD = 0.26, the quantum efficiency of the sensor QE = 0.93, the transmission
of the imaging system TE = 0.9, and the exposure time texpo = 50 µs. A part of this
factor is the conversion from digital counts to incident photons Cγ = 1

CADQE×TE = 4.6.

C.4. Lattice phase drifts
Our 2D lattice is made up of three lattice beams which can have independent phase
drifts. These only shift the origin of the lattice but do not modify the lattice geom-
etry [113]. We can extract the lattice origin for every measurement and we observe
it to be not distinguishable from random, meaning that the phases are not stable
between two consecutive experimental runs.
In order to investigate whether the lattice origin is stable for the time the lattice

is actually on, we hold the atoms in a very deep lattice for a variable hold time thold.
Since the lattice is deep it drags the atoms along when it moves which we verified by
deliberately displacing the lattice in another experiment. From the random drifts of
the lattice we expect a random walk which results in a linear increase of the variance
of the position of the atoms for different runs. We extract the variance of the fitted
center of the cloud for several hold times based on ∼ 30 shots per time. We model
the results by a random walk with an offset due to, e.g., mechanical instability of the
setup, resulting in a fit function

σ2
x,y

a2
latt

= thold/τx,y +
σ2

0,x,y

a2
latt

. (C.26)

The fitted datapoints are shown in Fig. C.3 resulting in τx = 52(19) s and τy = 27(16) s
where the error is the 68% confidence interval of the fit. Clearly this is just an
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Figure C.3.: Measurement of lattice drifts. Variance of the position of the center of
the atomic cloud (blue circles for x-position, ochre circles for y-position) obtained
via a Gauss fit as a function of hold time after release. The data is fitted by a
linear model as described in the main text (blue line for x-position, ochre line for
y-position).

estimation of the drift time scale but we see that it is much larger than experimental
time scales of typically few milliseconds to hundreds of milliseconds of hold time
in the lattice. We therefore conclude that lattice drifts do not play a role for our
observations.
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Appendix D.

Data analysis routines

D.1. Extraction of on-site populations
Even though the quantum gas magnifier gives access to sub-lattice site information,
for many experiments this information is not relevant or destroyed by the freezing
and trap ramping protocol if applied. In these cases we reduce the information of the
images to the on-site populations by summing over the density within the Wigner-
Seitz cells of the lattice. To this end, we need to determine two parameters: The
lattice constant and the lattice origin. Let us start with the algorithm for a triangular
lattice. The lattice constant is obtained by fitting a phenomenological function

n1D(x) = Ae−
(x−x0)2

2σ2

[
cos2

(
πx

a1D
+ φ

)
+B

]
(D.1)

to the density integrated along y and independently to the density integrated along
the direction −

√
3/2ex + 1/2ey. The fit parameters are A, x0, σ, a1D, φ, and B and

are averaged among all shots and integration directions. The lattice constant of the
triangular lattice is then given by alat = 2a1D/

√
3. The lattice origin is obtained by

adjusting the origin of a triangular lattice of circular masks such that the density
which is not covered by the circles is minimal. The origin is displaced in a number of
steps equal to the rounded lattice constant in pixels from zero to one step less than
one lattice vector which would be equivalent to zero displacement. We do not have
a phase lock for our lattice beams and even though the lattice origin is stable during
the hold times in the lattice it is quasi random for consecutive shots (appendix C.4)
making the origin determination necessary for every individual image.
Once the lattice is known, the density is summed over the Wigner-Seitz cells.

To reduce aberrations from the finite pixel size, the pixels are refined by replacing
every pixel by (2Nrefine)2 subpixels with an atom number equal to the parent atom
number divided by the number of subpixels to keep the total atom number fixed.
Nrefine is adjusted depending on the lattice constant as Nrefine = dlog2(10/rWS)e with
rWS = 2/

√
3 × alat

2 being the outer radius of the Wigner Seitz cell in pixels. In this
way the Wigner-Seitz cell always contains ∼ 102 subpixel. The Wigner-Seitz cells are
then implemented as polygons in a continuum and the sum is carried out over all
subpixels with their center within the relevant polygon.
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Figure D.1.: Computation of the on-site populations. (a), example density image of
a triangular lattice. The Wigner-Seitz cells are determined as described in the text
and shown as hexagons in the figure. (b), on-site populations resulting from (a) via
summation in the Wigner-Seitz cells. (c), example density image of a boron-nitride
lattice. The hexagons show the read-out masks, obtained as described in the text.
Six sites are examplarily labelled according to the sublattice they belong to (A or
B) to show one honeycomb of the lattice. (d), on-site populations resulting from
(d) via summation in the Wigner-Seitz cells. The same lattice sites are labelled as
in (c). (a,b) Adapted from [22].

An example image with an overlay of the used polygons can be seen in Fig. D.1a.
The resulting on-site populations are plotted in Fig. D.1b.
For the case of a boron-nitride lattice the analysis is similar because for the ex-

periments presented in this thesis the on-site populations were only extracted for
situations where one of the two sublattices had most of the population. Therefore
this sublattice can be located using the algorithm for a triangular lattice described
above. After this location the read-out masks need to be placed differently. In fact
a triangular lattice with primitive vectors consisting of a vector between the sublat-
tices and one rotated by 60° is used. This results in the read-out of three triangular
sublattices: Two of them corresponding to the actual sublattices and one correspond-
ing to the locations of the potential maxima in the centres of the honeycombs. An
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example is given in Fig. D.1c,d. Of course it would be straightforward to generalize
the lattice location algorithm to the case of equally populated sublattices by adapt-
ing the fit function for the projections and by identifying the phase by maximizing
the unmasked population. This would be necessary for uniqueness since the mini-
mizing procedure could identify either of the two sublattices whereas maximizing the
unmasked population would uniquely identify the positions of the potential maxima.

D.2. Computation of uncertainty of correlations
Recall that the computation of the correlations are based on the covariance

covjk = 1
N − 1

N∑
i=1

δN
(i)
j δN

(i)
k . (D.2)

of the residues. The error of the covariance is computed by considering the spread of
the fluctuations relative to the best estimate of the covariance, i.e.,

∆covjk =

√√√√ 1
N

N∑
i=1

(cov(i)
jk − covjk)2, (D.3)

where cov(i)
jk = δN

(i)
j δN

(i)
k . This error is then propagated when computing the mean

for identical or exactly opposite distance vectors.

D.3. Defringing algorithm
As described in the main text, pointing instabilities between absorption and reference
image can cause artefacts in the form of fringes on the results of the absorption imag-
ing analysis. These artefacts can be greatly reduced by using a linear combination of
reference images from a set of reference images instead of the single reference image
that was taken in the same run. The concept is that the imaging beam has a certain
instantaneous profile on a absorption image that is likely to change until the reference
image is taken but that there is a high probability that the same profile as on the
absorption image will be recorded later on another reference image. The defringing
algorithm described here is based on the one introduced in [114–116] and its current
implementation is described in [117].
Let us consider a single example absorption image aT = (a1, a2, ..., aN) which has

been rearranged from a rectangular matrix to a column vector. A region of interest
around the atomic cloud but excluding it is defined and only this region is considered
in the following. Thus, conceptually, the absorption and reference images should be
identical in this region. To obtain a reference image that comes as close as possible
to this condition we construct such an optimal reference image ropt starting from a
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linear combination

ropt = Rc (D.4)

of all reference images under consideration r1, r2, ... , rM which are combined into
the matrix R = (r1, r2, ..., rM). The coefficients of the linear combination are the
elements of the vector c. The optimal reference image should be as close as possible
to the absorption image under consideration, where we choose least squares as the
metric to measure closeness, i.e.

|Rc− a|2 != min. (D.5)

This minimization is achieved by choosing [118]

c =
(
RTR

)−1
RTa. (D.6)

Eventually the defringed atomic density is computed in the standard way, just us-
ing the optimal reference image instead of the reference image from the same run.
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