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The following pages 3 to 10 present the peer-reviewed publication “Decreased mismatch negativity 

and elevated frontal-lateral connectivity in first-episode psychosis” in the Journal of Psychiatric 

Research from Yüksel et al. (Yüksel et al., 2021):  
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1 Objectives 

This thesis embraces the contents of the scientific study “Decreased mismatch negativity and 

elevated frontal-lateral connectivity in first-episode psychosis” from Yüksel et al. (Yuksel et al., 

2021), which investigated the following four hypotheses: 

Firstly, we were interested if mismatch negativity amplitude and latency is decreased in first-episode 

psychosis patients compared to the healthy control group. Secondly, we tested whether connectivity, 

more specifically directional connectivity, is decreased following deviant stimuli compared to 

standard stimuli and in FEP compared to HC. Thirdly, we were interested in finding correlations 

between symptomatic factors and abnormal connectivity because we assumed that the grade of 

abnormal connectivity is associated with severity of psychosis symptoms. Lastly, we hypothesized 

that causal density, a measure of the complexity of the connectivity pattern in a network, would be 

abnormal in patients with first-episode psychosis consistent with the disconnection hypothesis. 

 

Summary: 

I. Hypothesis: 

Mismatch negativity amplitude and latency is decreased in FEP compared to HC. 

II. Hypothesis:  

Directional connectivity is decreased following deviant stimuli compared to standard stimuli and 

in FEP compared to HC. 

III. Hypothesis: 

Abnormal connectivity is associated with psychosis symptoms. 

IV. Hypothesis: 

Causal density is abnormal in patients with first-episode psychosis consistent with the 

disconnection hypothesis. 
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2 Introduction 

Schizophrenia and other psychotic disorders are extremely severe psychiatric illnesses which 

are among the top 15 leading factors for disability worldwide (Vos et al., 2017). The intensive burden 

of psychotic disorders such as schizophrenia leads to an estimated lifetime risk of 5,6 % for suicide 

(Hor & Taylor, 2010). Schizophrenia typically presents in young adulthood and can lead to major 

disruptions in academic, occupational and social achievement (Whiteford et al., 2015). The early 

course of schizophrenia may be a critical time for interventions to improve patient outcomes 

(McGorry, 1998). However, delivering effective treatments to this population is complicated by 

multiple factors. Current treatments for schizophrenia have limited efficacy and it is difficult to target 

these treatments to the population that will benefit. Both issues could be helped by a better 

understanding of the biological underpinnings of this disease. However, the pathology of 

schizophrenia is likely multifactorial and remains somewhat unclear. Several neurotransmitter 

systems have been implicated, including GABA, glutamate, dopamine, and acetylcholine (Lisman et 

al., 2008). A neuroimaging biomarker for psychotic disorders could be a non-invasive, easy to obtain 

way to identify patients and could also shed light on the pathophysiology of the disease.  

 

One potential biomarker is mismatch negativity (MMN). MMN marks the minimal peak of an event-

related potential that occurs when a sequence of repeated identical-baseline, so called “standard”, 

stimuli is interrupted by odd, so called “deviant”, stimuli (Risto Näätänen, 1995; Yüksel et al., 2021). 

MMN occurs in response to a variety of stimuli and deviations. MMN is an automatic, unconscious 

process that depends on bottom-up perceptual processing to detect deviant stimuli (Kenemans and 

Kähkönen, 2011). Auditory MMN paradigms are commonly employed in which either pitch or 

duration may be varied and are generally measured over frontocentral electroencephalographic 

(EEG) channels (Umbricht and Krljesb, 2005). Decreased auditory MMN has been widely reported 

in patients with schizophrenia and has been proposed to be a biomarker for psychotic disorders (Light 

and Näätänen, 2013; Umbricht and Krljesb, 2005). However, the magnitude of the decrease may be 

related to illness duration with first-episode patients showing no reduction in MMN to pitch deviants 

and small, but statistically significant reduction in MMN to duration deviants (Haigh et al., 2017). 

MMN impairment may reflect premorbid intellectual functioning in first-episode psychosis as well 

as a level of vulnerability to disease progression in high-risk psychosis population (Erickson et al., 

2016; Salisbury et al., 2017). Furthermore, it is known that MMN deficits are not highly specific to 

the model of schizophrenia, but they have also been found in patients with autism, with bipolar 

disorder and with mixed evidence for major depressive disorder (Bissonnette et al., 2020; Hermens 

et al., 2018; Schwartz et al., 2018). This suggests that the neural circuits that produce MMN may be 

disrupted by a variety of psychiatric disorders. 
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There is a robust literature describing abnormalities in both task-related and resting state connectivity 

across multiple frequency bands in both high-risk, first episode and chronic populations (Perrottelli 

et al., 2021). Recently, altered directional functional connectivity during mismatch negativity has 

been reported in patients with chronic schizophrenia (Koshiyama et al., 2020). This suggests that 

MMN may function as a probe of dysconnectivity in this context though which features of the 

pathophysiology of schizophrenia contribute to decreased MMN has yet to be determined. Decreased 

MMN might be caused by impaired function of local cortical circuits within the auditory cortex 

and/or dysconnectivity across specific long-range cortico-thalamo-cortical connections 

implementing bottom-up processing. Furthermore, different patterns of dysconnectivity may 

underlie MMN impairments at different stages of illness. 

 

 

2.1 An introduction into psychotic disorders 

Psychotic disorders as schizophrenia, schizoaffective disorder or bipolar disorders are diseases 

which are characterized by positive and negative symptoms like delusion, hallucinations, 

disorganization, excitement, depression, mania, emotional withdrawal or further negative/positive 

symptoms (Schrimpf et al., 2018). The overall lifetime prevalence is nearly 1% (Jablensky et al., 

1992). The intensive burden of psychosis patients leads to an estimated lifetime risk of 5,6 % for 

suicide (Hor & Taylor, 2010). Data of several studies indicate that the risk of a suicide attempt is 

approximately 10% in early treatment phases, especially within the first twelve months (Nordentoft 

et al., 2015). Furthermore, early stages of psychosis have been shown to be crucial for setting 

trajectories for recovery (Hall et al., 2019). This illustrates the importance of early diagnosis and, 

therefore, early therapy of patients.  

The term “psychosis” is derived from the ancient Greek word “psyche” which holds the meaning 

of “soul” in the English language (Dafermos, 2014) and meant to describe an abnormal condition of 

the mind (Lieberman & First, 2018). The onset of psychotic disorders is characterized by different 

stages/phases (Figure 1). From a premorbid phase with possible early-stages dysfunctions it can 

develop into a prodromal phase which is divided into three subphases: Firstly, early and then late at-

risk of psychosis state and consecutively early psychosis (Fusar-Poli et al., 2013). Approximately 30 

- 40% of patients in high-risk state are developing psychosis within 2 years (Fusar-Poli et al., 2013). 

Figure 1 illustrates the different stages until the manifestation of early psychosis and the correlation 

of symptom severity and the phases. 
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A 

 

 

 

 

 

 

 

 

B 

Figure 1 – Stages of psychosis: Both illustrations show the stages of psychosis onset with different emphasis. Figure 1A 

offers a rationale for preventing chronic stages. Figure 1B offers a more detailed insight into the prodromal phase.1A: 

Schematic illustration of natural history of schizophrenia and the rationale for preventing chronic stage (Lieberman & First, 

2018). 1B: Model of psychosis onset from clinical high-risk state to early psychosis (Fusar-Poli et al., 2013). Abbreviations: 

BS=basic symptoms, APS = attenuated psychotic symptoms, BLIP = Brief limited intermittent psychotic episode subgroup 

 

 

In this study, we concentrated on first-episode psychosis (FEP) or early psychosis patients. As 

psychotic disorders are highly variable in their severity, so are the several underlying variables 

causable for the symptomatic outbreak and manifestation of the disease. The following chapter 

describes most important factors for the pathogenesis of psychotic disorders. 
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2.2  Pathogenesis of psychotic disorders  

The pathogenesis of psychotic disorders is not completely understood. However, several 

different influential factors could be identified, and they can explain the pathogenesis of psychotic 

disorders at least partially. These factors have been shown strong influence on the outbreak and on 

the progression of psychotic disorders. 

 

2.2.1 Psychosocial stress  

An often-underestimated factor remains the psychosocial stress of the individual patient. Many 

studies could show the relation between psychosocial stress and the increase of risk for psychosis 

(Van Os et al., 2003; Van Winkel et al., 2008). Different difficult life-situations are showing relevant 

influence on the outbreak of psychosis. For instance, migration seems to be one stress relevant factor 

(Cantor-Graae & Selten, 2005). This seems especially to be the case of second-generation individuals 

with emigrational background and ethnicities which are faced with high-frequency social 

discrimination (Veling et al., 2007). Also, a very relevant factors is the state of post-traumatic stress 

from child abuse (Read et al., 2005). Also, sexual, physical, emotional or neglected child abuse can 

be understand as relevant stressors in the psychosocial stress model for the outbreak of 

psychopathologies in children and adolescents (McMahon et al., 2003). Repetitive occurrence of 

these mentioned stressful events can lead to a “behavioral sensitization” and can aggravate the 

behavioral, neurochemical or psychotic-related symptom burden (Figure, 2, Van Winkel et al., 2008). 

This means equivalent stimuli can lead to more severe reaction of a subject over time and of a subject. 

 

Figure 2: Schematic illustration of “Behavioral Sensitization” regarding psychosocial stressors from Van Winkel et al. 

(Van Winkel et al., 2008). Each vertical arrow shows an objective stressor with severity proportional to the arrow size. 

Each arrow induces a certain stress-adapted reaction. The repeated exposure of severe psychosocial stressors increases the 

behavioral, neurochemical or psychotic-related symptom burden even when the stressor is inferior or less severe as the 

previous one. The intervals can range from weeks to years and must not follow an even flow like in the schematic 

illustration.  

 



 17 

 

2.2.2 Genetics 

Several studies could prove the correlation between genetics and psychiatric diseases as 

schizophrenia and bipolar disorder (Geschwind & Flint, 2015). Especially family and twin studies 

could show that genetics contribute to the risk of psychiatric disorders (Lichtenstein et al., 2009),  

particularly in schizophrenia (Sullivan et al., 2003). For identical twins the risk for an outbreak of 

schizophrenia is approximately 50% when one twin has the disease (Tsuang, 2000). However, this 

concordance also shows that genetics are not fully responsible for the pathogenesis of schizophrenia 

otherwise the concordance would be nearly 100%. In the case of polygenic dispositions, several risk 

genes could be identified for the outbreak of psychosis, e.g. Neuregulin-1 (J. Hall et al., 2006), 

Dysbindin, G72 and other (Rees et al., 2015).  

Also interesting, causal relationship between inactivation and activation of genetically defined 

cell types and in specific neuron groups and within neural circuits can have an influence on the 

behavior (Luo et al., 2008).  Despite the fact that many compartments of the DNA architecture are 

not understood, we could understand the direct correlation between the structure-giving DNA and 

the resulting specific architecture of the neural system which is the fundament of mind and 

personality (Sousa et al., 2017). It can be assumed that certain structures and neural circuits are 

leading to the creation of a functioning human mind and, thereto, are influential if not crucial in the 

pathophysiology of psychiatric disorders (Giersch & Mishara, 2017; Parnas & Henriksen, 2016; Sass 

& Parnas, 2003). 

However, according to the vulnerability-stress-model several factors are responsible for the 

outbreak and relapse of a psychotic disorder (Nuechterlein et al., 1994). Genetics is not the only 

major factor to consider for the outbreak of schizophrenia or other psychotic disorders. 

 

2.2.3 Neurotransmission 

The important role of neurotransmitters and neurotransmitter-systems for the pathophysiology in 

schizophrenia is not new (Nihart, 1996). Genetically-underlying aberrations and changes in 

neurotransmitter-systems are overlapping influences with strong importance for the development of 

schizophrenia (Howes et al., 2017). Especially, the Glutamate and Dopamine theories are popular 

pathoetiological models of schizophrenia (O. Howes et al., 2015) but it seems to be a complex mosaic 

of influences from a variety of neurotransmitters (Sarter et al., 2007). Indirect signs of correlation 

such as studies which have applied amphetamines and further substances to increase the extracellular 

dopamine level could induce psychotic symptoms like in schizophrenia (Lieberman et al., 1987).  

A recent comparison between psychiatric disorders could show that schizophrenia patients show 

a significantly increased amount of tyrosine hydroxylase, a rare-limited enzyme for the synthesis of 
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dopamine in the substantia nigra when compared to patients with depression (O. D. Howes et al., 

2013). Also, studies regarding the genetics of schizophrenia could show that there is an association 

between the DRD2 gene, which is responsible for the dopamine receptor D2, and schizophrenia 

(Ripke et al., 2014). Generally spoken, the findings in the last decades also indicate that locally 

different foci of changes are present in schizophrenia as the increased synaptic dopamine in 

associative networks compared to in limbic regions of the striatum (Kegeles et al., 2006). Patel et al. 

could depicture an informative illustration regarding the dopaminergic systems involved in the 

pathophysiology of schizophrenia (Figure 3). In other models, N-Methyl-D-Aspartate (NMDA) or 

its receptors play key roles for the pathogenesis  of psychosis (Farber, 2003). Even theories about 

autoimmune influences regarding NMDA receptors are becoming more prominent for the model of 

psychosis (Jézéquel et al., 2017; Kayser & Dalmau, 2016). It is yet to be determined which 

neurotransmitters are the essential ones in the model of psychosis. 

 

Figure 3: Pathophysiological model of schizophrenia in which the hypodopaminergic function in the frontal of the brain is 

causing negative symptoms and cognitive impairment in schizophrenia patients (Patel et al., 2014). The mesocortical 

pathway connects from the ventral tegmental area (VTA) to the cortex, the mesolimbic pathway connects from the ventral 

tegmental area (VTA) to the limbic areas, the nigrostriatal pathway links from the substancia nigra (SN) to the caudate 

nucleus (CN), and the tuberoinfundibular pathway extends from the hypothalamus to the pituitary gland (Patel et al., 2014). 

 

2.2.4 Alterations in structural and functional connectivity 

The connectivity alterations in psychotic disorders, as complex as they are, can be summarized 

as both, structural and functional (Ioakeimidis et al., 2020; Karlsgodt et al., 2010; Zhao et al., 2018). 

Structural alterations can be found in different stages of schizophrenia as decline of  gray matter in 

different regions in schizophrenia, schizoaffective disorder and bipolar disorder (Dietsche et al., 

2017) or hippocampus and amygdala changes in first-episode psychosis (Watson et al., 2012). These 
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and more findings indicate that these pathologies are correlating with altered structures of the 

complex neural  architecture (Reinen et al., 2018). Also, several studies could show the reduction of 

white matter in schizophrenia (Dietsche et al., 2017; Douaud et al., 2007; Gur et al., 1999) and even 

in first-episode psychosis patients gray and white matter abnormalities were present (Bagary et al., 

2003). Furthermore, it could be shown that schizophrenia patients seem to have less strongly 

integrated functional neural networks and significantly decreased functional connectivity than in 

healthy individuals (Lynall et al., 2010). For instance, in schizophrenia patients the default mode 

network showed altered temporal frequency and spatial location when comparing to healthy surjects 

(Garrity et al., 2007; Öngür et al., 2010). These results challenge our understanding of how psychotic 

disorders are influenced by structural and functional alterations within the human brain. All major 

factors in the model of psychosis considered, our study was inspired by the potential to understand 

the dysfunctional neural circuits and dysconnectivity within psychosis. The next chapter give a more 

detailed background. 

  

Figure 4: Default Mode Activation Map for patients with schizophrenia patients and healthy subjects via individual 

independent component analysis (Garrity et al., 2007) 

 

2.3 Psychotic disorders as dysconnectivity syndromes 

Schizophrenia, bipolar disorder and further psychosis associated disorders are severe psychiatric 

diseases characterized by disruptive positive and negative symptoms which are a growing and 

significant source of disability worldwide (Świtaj et al., 2012). Neuroimaging data suggests that 

schizophrenia and other psychotic disorders are disconnection syndromes (Friston & Frith, 1995). In 

this model, psychosis symptoms arise from the failure or change of appropriate functional integration 

across interacting brain regions (Patel et al., 2014). Recent studies have shown that these changes in 

connectivity can already be measured in early psychosis patients (Comparelli A, et al., 2019). 
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Applying dynamical analysis  to measure functional connectivity could reveal those transient states 

of dysconnectivity and, thereto, could show that transient states of dysconnectivity are present in 

schizophrenia patients (Damaraju et al., 2014). At this point it is important to understand bottom-up 

and top-down processes and the implications for them. Bottom-up processing describes the 

hierarchical processing of primary sensory input to a higher, more integrated level of cognition 

(Javitt, 2009). On the other hand, top-down processing is driven by memory-based expectations and 

attention to put an incoming input in context with processed inputs for the past (Cook et al., 2012). 

The impairment of both processes is acknowledged in the model of psychosis (Berkovitch et al., 

2018; Gold et al., 2007; Rominger et al., 2016). Impairment of top-down processes, especially of 

perceptual nature as the hollow mask illusion, could be shown in schizophrenia using causal dynamic 

modelling (CDM) (Dima et al., 2010). 

In fact, the underlying states of dysconnectivity and losing of synaptic plasticity are discussed as 

key-mechanism for negative and positive symptoms in schizophrenia (Stephan et al., 2009). In this 

context, bottom-up and top-down processing are logically interconnected, bidirectional processes to 

be considered when analyzing functional connectivity in psychosis, especially, for the predictive 

coding model which is one possible causal explanation for MMN impairment in psychosis (Rauss & 

Pourtois, 2013; Wacongne et al., 2012). For instance, top-down connectivity has been observed as a 

underlying mechanism for psychotic experiences in healthy subjects (Dzafic et al., 2018). Thereto, 

dysconnectivity between key brain systems and the imbalance of top-down and bottom-up processing 

have been hypothesized to underlie the pathophysiology of schizophrenia (Li et al., 2015).  

Nevertheless, connectivity and the neural failure or change of appropriate functional integration 

needs further scientific investigation for a better understanding of the complex interactions between 

brain regions and, therefore, of consequences resulting from altered interactions and structures. 

Therefore, our study builds on the existing literature and aims to contribute more evidence for the 

dysconnectivity-based imbalance of top-down and bottom-up processing in first-episode psychosis. 

We think that modern neuroimaging techniques and cutting-edge computational methods will be an 

irreplaceable part in understanding the underlying neural circuits in pathological brains. Historically, 

it was a long road to achieve this goal and to expand the possibilities in the modern psychiatry by 

cutting-edge neuroimaging methods. The next two chapters dive deeper into the history modern 

psychiatry and into the technical possibilities to understand further underlying neural circuits trough 

cutting-edge technologies and methods. 

 

2.4 Historical development in psychiatry 

The mind-body dualism was one example in the past of how societies have seen the human mind 

in correlation with the human body. In this context, the history of psychiatry has shown different 

turning points. Certainly, these turning points were influenced by the society and culture of the time 
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of being (Mehta, 2011). Medicine and society have experienced different changes in perspective 

before innovations and rationalized approaches could be valued in psychiatry. The philosopher and 

scientist Descartes described the mind-body dualism in which he described the human body and the 

human mind as separable compartments (Mehta, 2011).  

Clinical psychiatry showed in the last 250 years several revolutions which changed the treatment 

of mental patients. Underlying these changes, we may look at four revolutions in psychiatry. The 

first revolution consisted of integrating moral support but also unchaining psychiatric treatment for 

patients with mental disorders. This was established by Pinel in the year 1793 (Micheal, 2007). As 

the electroconvulsive therapy for mental patients was introduced in the year 1935 in italy by Cereletti 

and Bini, the second markable revolution in psychiatry was historically marked (Faedda et al., 2010; 

Gautam, 2010; Sadock & Sadock, 2009). The ECT as one of the very first physically induced 

therapies in psychiatry changed the perspectives of physicians and society on psychiatric disorders 

and, therefore, lead eventually to the third revolution. The third revolution was born with introduction 

of psychotropic medications, as chlorpromazine in 1952 and further one, for the treatment of the 

psychiatric patient (Cambridge Textb. Eff. Treat. Psychiatry,2008). This changed the face of 

psychiatry considerably. It is becoming clearer that causal mechanisms are underlying the state of 

psychiatry patients. The fourth revolution will be consisting of different treatment approaches of 

mental and neurological disorders e.g. through neuromodulator technologies (Gautam, 2010). As we 

can observe today, several clinical treatments are using technologies to treat psychiatric and 

neurological patients. For instance TMS for depression or DBS for Parkinson patients became valued 

therapies (Malek, 2019; Pridmore & Belmaker, 1999). These developments are concentrated on the 

western society and do not highlight overall worldwide developments in other major countries or 

continents as in China or India.  

Today, the fourth revolution in psychiatry has already proceeded as we see an astonishing rise in 

scientific observations which speak out for a bidirectional relationship between physical status and 

mental illness. The scientific fundamentals have been described and several observations via 

computer-aided technologies as EEG, fMRI or combined, could show significant differences 

between psychiatric patients and healthy subjects (Leicht & Mulert, 2014). This detection of patterns 

in mental patients are the fundament of the future treatment for these disorders (Wolfers et al., 2015). 

With the future technological developments, the detection of patterns will increase and, therefore, 

the treatment options will also increase. Modern software tools using artificial intelligence, data 

mining or time-series analysis will certainly lead to further physical pattern discoveries which can 

then be translated into further treatments for mental patients (Graham et al., 2019). The next chapter 

emphases these changes in modern medicine with a more technical perspective. 
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2.5  Technologies and computational neuroscience 

 Through neuroanatomical fundaments in the last hundred years, we learned that the human brain, 

especially the neocortex, adapted evolutionally a multi-layer-structure for the processing of high 

numbers of impulses through complex convolutions of convergences and divergences (Mumford, 

1991). The complexity of these daily calculations becomes understandable when considering that the 

human brain roughly consists of 100 billion neurons and of 100 trillion connections (Herculano-

Houzel, 2009). To put this in a relation: The human brain contains more connections than the Milky 

Way has stars (Castelvecchi, 2018; Hofman, 2014). 

Fortunately, the human mind was able to develop mechanical computers which are highly 

valuable assistants on our mission to understand the computation within the human brain (Collkn, 

1994). These computers have become faster, smaller and able to process more complex problems. 

Therefore, in Computational Neuroscience and Clinical Neuroimaging well-designed tools, as 

electroencephalograms (EEGs) and more complex machines as functional Magnet resonance 

imaging (fMRI) or brain positron emission tomography (PET) enabled researchers to measure, 

calculate and analyze the activity of neuronal populations via physical changes on atomic levels and 

computer-based analysis software. The several possible techniques and the combinations of 

techniques cause a complexity and diversity of computational tools so that certain applications of 

novel techniques are yet to be discovered.  

More recently, novel methods e.g., predictive time-series analysis, high-performance data 

mining, artificial-intelligence-based pattern recognition, causality-connectivity analysis and further 

methods are developed and are showing strong potential for further understanding physiology and 

pathophysiology of the human brain (Savage, 2019). Clinical fields regarding the human brain like 

psychiatry, neurology, neurosurgery or neuroradiology do strongly benefit from these technical 

advances (Haller et al., 2014). Especially, psychiatry and computational neuroscience show a strong 

potential for these innovative techniques (Gautam, 2010). Prominent examples include the 

implementation of machine learning, artificial intelligence or virtual reality-based software for the 

purpose of automated clinical diagnosis, decision support or augmented therapy in the field of mental 

health (Hirschtritt & Insel, 2018). These developments are important for modern psychiatry and for 

the neuroscience community. Especially, computational neuroscience have shown a vast potential 

for further understanding of mental disorders (Mäki-Marttunen et al., 2019). 

Conclusively, the aim of this study was also to address computational and mathematical 

approaches via duration mismatch negativity, clustering, and Granger causality time-series analysis 

to describe dysconnectivity within frontal-temporal-central networks and to outline the correlations 

between impaired mismatch negativity, dysconnectivity and clinical psychiatric symptoms in first-

episode psychosis. 
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 2.6 Evoked potentials and mismatch negativity 

It has been discussed if mismatch negativity (MMN) could be used as a potential biomarker for 

psychotic disorders (Näätänen, 1995). As previously described, MMN is the minimal peak of an 

event-related potential that can be measured as a result of neural processing of a frequent sequence 

of repeated identical (also called “standard”) stimuli  that is interrupted by odd (also called “deviant”) 

stimuli (Bishop & Hardiman, 2010). Due to a diversity of stimuli and deviations the MMN can occur. 

MMN is an automatic, unconscious process that depends on bottom-up perceptual processing to 

detect deviant stimuli (Kenemans and Kähkönen, 2011). Auditory MMN paradigms are commonly 

employed in which either pitch or duration may be varied and are generally measured over 

frontocentral electroencephalographic (EEG) channels (Umbricht and Krljesb, 2005). Decreased 

auditory MMN has been widely reported in patients with schizophrenia and has been proposed to be 

a biomarker for psychotic disorders (Light and Näätänen, 2013; Umbricht and Krljesb, 2005). 

However, the magnitude of the decrease may be related to illness duration with first-episode patients 

showing no reduction in MMN to pitch deviants and small, but statistically significant reduction in 

MMN to duration deviants (Haigh et al., 2017). 

In MMN, the deviant stimuli induce strong currents, primarily in temporal auditory cortex, that 

manifests as a negative deflection in frontal-central electrodes. The MMN is generated 

unconsciously, automatically and, thereto, has been widely used in psychiatric research since it was 

discovered by Risto Näätänen in 1978 (R. Näätänen et al., 1978). MMN is calculated by subtracting 

the averaged standard stimuli response wave from the averaged deviant stimuli response wave and 

then the minimum amplitude of the resulting wave is determined in a specific time window, as it was 

in our case between 120ms and 320ms (Bishop & Hardiman, 2010). 

Several theories are attempting to explain the phenomenon of MMN. The most common theory 

of the underlying mechanism is the memory-based hypothesis which claims that auditory MMN is 

produced by irregularities within a structured auditory sequence received by a subject which is then 

analyzed by temporo-prefrontal networks that compares current sensory inputs with a memory trace 

of previously registered stimuli (Garrido, Kilner, Stephan, et al., 2009).  As a result, the mismatch is 

generated by interaction of temporal and frontal regional networks.  

One further theory is the adaption hypothesis, which claims that SSA (specific somatic afferent 

fibers) of the auditory cortex (A1) neurons “adapt” or respond with much smaller activity to the 

repeated standard sound than to the “fresh afferents” of the less probable deviant stimuli (Fishman 

& Steinschneider, 2012). This adaption would lead to a delayed and an attenuated N1 wave for 

standard stimuli which will regularly occur for deviant stimuli (Garrido, Kilner, Stephan, et al., 

2009). The N1 component of an auditory evoked potential is described to be a robust and frequently 

recorded metric of sensory-perceptional processing measured via EEG with typical latency at 100ms 

which is known to present with diminution in amplitude in schizophrenia patients (Foxe et al., 2011). 
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However, several other observations could not confirm the adaption hypothesis. For instance, the 

MMN duration and latency do not always match for duration and latency of the N1 (Winkler, 2007).  

One of the most recent theories is the predictive coding framework hypothesis (Huang & Rao, 

2011). This hypothesis is on account of the memory based MMN generation theory. From this 

perspective, MMN is considered as a kind of “prediction-error” of the neural predictive calculation 

hence to the less probable deviant stimulus. This predicative coding model is in agreement with 

several studies which could show that sensory cortex is optimized for prediction of future inputs in 

healthy individuals (Singer et al., 2018). Also, in theoretical neuroscience a “fresh afferent”-theory 

explains MMN as a result of neural populations vigorously reacting to the deviant stimulus and, 

thereto, are affecting linked difference neural populations which were processing standard stimuli 

which might produce the mismatch negativity (Mäkinen et al., 2004; May & Tiitinen, 2010). 

Also, several studies indicate that both, duration and frequency MMN, are decreased in patients 

with chronic schizophrenia (P. T. Michie et al., 2000; Xiong et al., 2019). Nevertheless, it remains 

controversial if MMN is strictly impaired in first-episode psychosis and, thereto, if MMN is capable 

of being an appropriate clinical biomarker candidate for early schizophrenia and for early psychotic 

disorder predication (Haigh et al., 2017). It may also be asked at which stage of impairment an 

irreversible status of progression begins where remission is not probable (Kim et al., 2018). 

One further important component in the understanding of the mechanism of MMN is the fact that 

MMN requires an intact NMDA receptor signaling. Studies have shown that pharmacological 

blockage of NMDA receptors led to reduced MMN in monkeys  (Lee & Zhou, 2019). This is 

important considering NMDA receptors are responsible for the neural plasticity of glutamatergic 

synapses as they, most likely, play a central role in the pathogenesis of schizophrenia (Friston & 

Frith, 1995). Also, acetylcholine seems to have modulatory effects on MMN in humans (Baldeweg 

et al., 2006).  

More controversial is the discussion if there are further neurotransmitters systems implicated in 

the mechanism behind MMN. As mentioned previously, dopamine systems seems to have a central 

role since MMN amplitude is decreased in patients with Parkinson’s disease (Pekkonen et al., 1995). 

We think that EEG-based MMN data is suitable for combining with time-series analysis methods as 

Granger causality. In the next chapter, we will elaborate further on the role of Granger causal time-

series analysis for calculation of functional connectivity. 

 

2.7 Granger causality time-series analysis 

The origin of the Granger causality was born in 1969 by the investigation of causal relations of 

econometric models (Granger, 1969). Therefore, most of the initial applications were in the field of 

economics. Today, Granger causality is also considered as a powerful method for neuroscience as 
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well (Anil K. Seth et al., 2015). Granger causality is a statistical model of causality to predict certain 

time-points within time-series. In short, this model describes that if an initial signal X is causing 

(“Granger-causing”) a second or following signal Y, then we could find information about future 

values of signal Y in the past values of signal X. Furthermore, this information might contain more 

information than past values of signal Y (Kamiński et al., 2001; Liu & Bahadori, 2012) ([190.], 

Figure 4). The mathematical formulation is based on linear regression modeling of stochastic 

variables (Granger, 1969; Anil K. Seth & Edelman, 2007). 

 

 

Figure 5: A. Two timeseries X and Y which can predict events of each other by application of Grangers causality (Liu & 

Bahadori, 2012). B. Causal interactions among EEG sensors (Kamiński et al., 2001). 

 

As the number of neuroscientific methods has grown in the last decades due to computational 

developments, the research of brain activity has led to the understanding that we have high-density 

information flows within networks and circuits within brain regions (Lyoo et al., 2018). These flows 

of information by time can be understand as time-series, especially when measured via EEG. These 

time-series flows can be compared to each other when considering two separate time-series as 

functions X1(t) and X2(t) in a bivariate linear autoregressive model (Figure 5). Vector autoregression 

(VAR) in this context means a statistical model which explains the relationship of different variables 

as they change over time (G. Chen et al., 2011). 

 

Figure 6: Bivariate linear autoregressive model of two variables X1 and X2 in dependence to the timepoint t. The A 

matrices contain the coefficients of the prediction model. E matrices contain prediction errors for each time series. [188] 
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Electroencephalography (EEG) neuroimaging is a commonly used and appreciated technique to 

receive dynamically changing time-series data of neuronal populations with a millisecond temporal 

resolution (Abreu et al., 2018). These received EEG time-series data contain information which can 

be decoded by different statistical and pattern recognition analysis approaches (Grootswagers et al., 

2017; Hubbard et al., 2019). 

 

2.8 Hypotheses 

In this study, we investigated if impaired MMN is present in early psychosis and if in these cases 

we could use the topography of significant clusters to predict networks of abnormal connectivity via 

Granger causality time-series analysis in first-episode psychosis patients (FEP) compared to healthy 

subjects (HC). For connectivity calculations we will use multivariate Granger causality analysis. 

Granger causality as a statistical hypothesis test is designed to determine whether one time-series A 

in the past is predicting another time series B in the future. This analysis of time-series data is a 

suitable tool for analyzing EEG time-series data. Many studies could show the impairment of MMN 

amplitude and latency in schizophrenia compared to HC (Erickson et al., 2016; Garrido, Kilner, 

Stephan, et al., 2009). Furthermore, several studies could show that connectivity changes in 

schizophrenia are present and even asymmetrical (Ribolsi et al., 2009). As we know today, such 

reduced brain asymmetry is structural (Ribolsi et al., 2009) but also functional (Baker et al., 2014). 

In schizophrenia is was shown that abnormal asymmetry of functional connections are more present 

compared to healthy subjects (Jalili et al., 2010). Additionally, it could be shown that resting-state 

functional networks correlate with psychotic symptoms in schizophrenia (Rotarska-Jagiela et al., 

2010). 

Therefore, we hypothesize not only that (I.) mismatch negativity (MMN) amplitude and latency 

is decreased in first-episode psychosis patients (FEP) compared to healthy controls (HC) but also 

that (II.) directional connectivity is decreased following deviant stimuli compared to standard stimuli 

and in FEP compared to HC based on the understanding of the predictive coding model of the MMN 

and on the nature of the less probable deviant stimuli. Thirdly, we state that (III.) abnormal 

connectivity is associated with certain psychosis symptoms, disorganization and excitement. Lastly, 

we hypothesized that (IV.) causal density, a measure of the complexity of the connectivity pattern in 

a network, would be abnormal in patients with first-episode psychosis consistent with the 

disconnection hypothesis. 
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3 Methods 

3.1 Participants and Procedure 

We recruited 30 patients with first-episode psychosis (FEP, within 3 years of initial diagnosis of 

schizophrenia, schizoaffective disorder, bipolar disorder with psychotic features, or psychosis not 

otherwise specified) from inpatient units and outpatient clinics at the HMS-affiliated McLean 

Hospital and 30 age-matched healthy controls (HC) with no history of mental illness who were 

recruited through advertisements in the community. Exclusion criteria were history of major medical 

or neurological illness, history of severe head injury, hearing loss, and history of electroconvulsive 

therapy. Control participants could not have any history of use of psychiatric medication or of 

psychiatric diagnoses (Yüksel et al., 2021).  

All participants from an inpatient unit had an independent evaluation of their ability to consent 

to the study procedures performed by a psychiatrist not involved in the study. All participants gave 

informed consent for all study procedures.  All study procedures were approved by the Institutional 

Review Board of Partners Healthcare. All patient participants were receiving treatment at McLean 

Hospital and had clinical diagnoses were obtained from the medical record and confirmed with the 

Structured Clinical Interview for DSM-5 (First et al., 2015). All patients had a brief hearing screen. 

FEP patient participants underwent a video-recorded Structured Clinical Interview for the Positive 

and Negative Symptom Scale (SCI-PANSS) (Kay et al., 1987; Yüksel et al., 2021).  

 

After the interview, participants’ EEG data was collected. Two control subjects and three patients 

did not tolerate the experiment and ended it early and their data was not included in this analysis. 

Following data collection, one control subject was found to not meet inclusion criteria (use of 

psychiatric medications) and three patients were subsequently found to not meet the first-episode 

criteria. Data from four control subjects and two patients was contaminated by persistent broadband 

EEG artifacts. Therefore, the final data set consisted of 22 patients and 23 controls.  Demographic 

information about the sample is presented in Table 1 (Yüksel et al., 2021). 

 

 Table 1. Demographic and clinical information (Yüksel et al., 2021). 
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3.2 Electroencephalography 

 EEG data collection was performed using a Geodesic Sensor Net (Electrical Geodesics 

Incorporated; Philips Amsterdam, The Netherlands) with 129 Ag-AgCl electrodes (Figure 6). The 

EEG data were collected at a sampling rate of 1kHz with a standard reference to the vertex 

accordingly to NetStation software package (EGI). The collection took place in an electrically and 

acoustically shielded room. Impedances were kept below 65 kΩ. Bad channels and artifactual 

segments of data were identified by visual inspection and a thresholding procedure. Bad channels 

were interpolated by spherical splines and artifactual segments of data were excluded from the 

analysis.  The data were then bandpass filtered from 0.5-40 Hz, down sampled to 250 Hz, re-

referenced to linked mastoids, and then transferred into MATLAB (MathWorks, Natick MA), 

(Yüksel et al., 2021).  

 

 

Figure 6: Electrode positions for Geodesic 

Sensor Net with 129 Ag-AgCl electrodes, 

self generated via implemented eeglab 

MATLAB toolbox. 

 

 

 

 

 

 

 

 

3.3 MATLAB (MathWorks, Natick MA) 

MATLAB, which stands as an abbreviation for “matrix laboratory”, is a multi-paradigm 

programming language and a computing environment. It was built by the American software 

corporation MathWorks. Especially for scientifical purposes MATLAB could enjoy a high 

popularity with its prebuilt toolboxes and function for scientific computing (Sobie, 2011).  

For beginners to functional programming or programming at all, the MATLAB programming 

environment offers an excellent overview with several important compartments which are introduced 

very simplified in Figure 7. However, a certain training is enquired to understand and to implement 

code for analyzing neuroimaging data sets. 
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Figure 7: MATLAB R2020b (MathWorks, Natick MA) programming environment with simplified overview of important 

compartments (self-generated). [A] shows the folder overview via manually adjusted pathway. [B] shows a generated script 

of code which can be edited and saved. [C] shows the command window in which users can give commands e.g., running 

of code or giving command to save the current workspace in the current folder. [D] gives an overview of the workspace 

with containing variables, matrices and further structures which contain information. [E] shows the toolstrip of MATLAB 

and offers several implemented and automated modalities and functionalities to manipulate instances within MATLAB 

which could also be manipulated manually via the command window (C). For instance, you can also run coding scripts via 

the “Run” button or save scripts via the save button in the editor section.  

 

3.4 Auditory Mismatch Negativity 

We elicited auditory MMN using a duration deviant. Participants were seated in a comfortable 

chair and watched a short, silent video of nature scenes. Auditory stimuli were delivered via in-ear 

headphones (Etymotics, ER3C). Standard stimuli were 1000Hz, 50ms and deviant stimuli were 

1000Hz, 100ms. We presented 1000 stimuli with an average interstimulus interval of 500ms. We 

presented 900 standard stimuli and 100 deviant stimuli. We first presented a run of 100 standard 

stimuli after which point deviant stimuli were randomly interspersed. For each participant, we 

calculated MMN then by subtracting the mean baseline-corrected response to the standard stimulus 

from the mean baseline-corrected response to the deviant stimulus (Figure 8). Latency was calculated 

as the time point of maximal difference in amplitude between the standard and deviant stimuli over 

120ms to 320ms interval (Figure 8). We calculated the MMN amplitude by taking the mean 
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difference over a 50 ms window centered on the latency time point. We used statistical nonparametric 

permutation tests (SnPM) at the single channel and cluster level to identify differences in MMN 

between the HC and FEP groups. In channel-level SNPM, t-statistics are calculated for each channel 

and the largest magnitude t-value is recorded. Then group labels are permuted, and this process is 

repeated for 10,000 permutations. The 95% percentile t-value is used as a threshold for the t-values 

from the non-permuted comparison and any t-values in excess of this percentile are considered 

statistically significant. For SnPM cluster tests, a similar permutation analysis is performed using the 

size of spatially contiguous cluster of channels that all exceed a chosen t value threshold. Given that 

little is known about the relationship between symptom severity and connectivity during MMN 

paradigms in people with early course psychosis, we performed a hypothesis-generating, exploratory 

analysis by calculating the Pearson correlation coefficient between MMN connectivity parameters 

and medication dose and symptom scores. Because these comparisons are hypothesis-generating they 

are not corrected for multiple comparisons (Yüksel et al., 2021). 

Figure 8: Example plot of mismatch negativity (MMN) calculation from one subject of the patient group. MMN can be 

calculated by subtraction of the averaged response wave resulting from a frequent occurrence standard stimulus (blue line) 

from the averaged response wave resulting from infrequent occurrence of rarer deviant stimuli (red line). The negative 

peak of this difference wave in the defined time window marks the MMN. In our study chose a time window between 30th 

(120ms) and 80th (320ms) timepoints which is translated a timeframe between 120ms and 320ms (purple dashed lines) 

which is in agreement with published literature (Garrido, Kilner, Stephan, et al., 2009). This figure is self-generated. 

 

3.5 Connectivity Analysis  

We quantified directional functional connectivity with Granger causality as implemented in the 

Multivariate Granger Causality Toolbox (mvgc) for MATLAB (Barnett & Seth, 2014). In brief, 

given two signals A and B, the Granger causality from A to B is a measure of how much information 

about past values of A helps predict future values of B beyond any information obtained from past 
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values of B (A. K. Seth et al., 2015). The mathematical corner stone of the Granger’s causality 

analysis is built on linear regression models of stochastic variables (Figure 9; Granger, 1969). 

 
Figure 9: Bivariate linear autoregressive model of two variables X1 and X2 [190]. 

p represents the maximal number of lagged observations which are included in the model, 

A contains the coefficient matrix fitting to the model, 

E1 and E2 are representing calculated prediction errors for each time series (A. Seth, 2007) 

 

 

We used Granger causality (GC) to measure the long-range connectivity between four channels in a 

350 ms window following stimulus presentation. These channels were chosen because they were 

located at opposite ends of a cluster that showed decreased MMN amplitude in FEP compared to HC 

(see below). We chose to analyze a subset of the cluster because neighboring electrodes can be highly 

correlated. The Granger causality from signal A to signal B is a measure of how much information 

about past values of A improves the prediction of future values of B beyond what can be learned 

from past values of B. In multivariate Granger causality analysis, the connectivity value for each 

channel is conditioned on the contributions from other channels (Barnett and Seth, 2014), Therefore, 

having multiple correlated channels would obscure the connectivity results. By choosing four 

spatially distinct channels, we minimize correlations due to volume conduction and bridging while 

covering the spatial extent of the cluster.  We calculated the causal density of the network formed by 

these four channels. Causal density of a network is the average pairwise GC conditioned by the other 

connections (Seth et al., 2011). Causal density is a measure of the complexity of a network because 

a network composed of tightly correlated channels will have a low value for causal density as will a 

network composed of independent channels. High values of causal density indicate a complex pattern 

of GC between elements of a network. Following linear detrending in a 350ms window, model order 

was selected using the Akaike Information Criterion, AIC (Akaike, 1974), as seen in Figure 10. 

Maximum autocovariance lags were set at 20 and sample rate (“fs”) was set at 200 (Figure 10). The 

core code of the calculation scripts which were used as guiding code for the self-written scripts of 

this study can be found online at [2] (Yüksel et al., 2021). 
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Figure 10: Modified Granger Causality (GC) script for time-series analysis of EEG data from FEP and HC.  

 

3.6 Statistics 

For the statistical comparison of groups as for comparison of the MMN amplitude or latency 

between FEP and HC we applied an unpaired (independent) t-test. Unpaired t-test is eligible for 

comparison of averages/means of two independent groups. It is a statistical test which can be used 

to determine if between two groups a significant difference is present (Figure 11). For deviations we 

used the standard error of the mean (SEM, Figure 12). 

 

𝑡 =
(𝑥1  − 𝑥2)

√(𝑠1)
𝑛1

2

−
(𝑠2)2

𝑛2

 
𝑥1 = 𝑀𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑔𝑟𝑜𝑢𝑝 

𝑥2 = 𝑀𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑔𝑟𝑜𝑢𝑝 

𝑛1 = 𝑆𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑔𝑟𝑜𝑢𝑝 

𝑛2 = 𝑆𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑔𝑟𝑜𝑢𝑝 

𝑠1 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑔𝑟𝑜𝑢𝑝 

𝑠2 = Standard deviation of the second group 

Figure 11: Unpaired t-test formula. 
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𝑆𝐸 =  
𝜎

√𝑛
 𝑆𝐸 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 

𝜎 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

Figure 12: Standard error of the mean (SEM) or standard error (SE) 

 

Furthermore, we used statistical nonparametric permutation tests (SnPM) at the single channel and 

cluster level to identify differences in MMN between the HC and FEP groups. Regarding correlations 

we used the Pearson correlation method as comparisons were taken on interval scale.  

In channel-level SnPM, t-statistics are calculated for each channel and the largest magnitude t-

value is recorded. Then group labels are permuted, and this process is repeated for 10,000 

permutations. For comprehension, Figure 13 gives an illustration of an example permutation. The 

95% percentile t-value is used as a threshold for the t-values from the non-permuted comparison and 

any t-values in excess of this percentile are considered statistically significant.  

 

Figure 13: Example of permutations with 20 possible formations (Nichols & Holmes, 2002). Mathematically speaking, 

permutations enable calculations to be more representative due to considering several possible arrangements with regard 

to the order of the arrangements. 

 

For statistical non-parametric mapping (SnPM) at cluster level, a similar permutation analysis is 

performed using the size of spatially contiguous cluster of channels that all exceed a chosen t-value-

threshold, also called suprathreshold cluster testing (Nichols & Holmes, 2002). The modified 

MATLAB script was inspired by the work of Nichols & Holmes’s work (Figure 14). 
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Figure 14: Self-generated suprathreshold cluster testing script inspired by (Thomas E.Nichols & Andrew P.Holmes, 2001). 

Production permutation list with no duplicates considering the threshold. The (X+Y)x129-matrix “data” containing 

information from both groups (FEP and HC) with X subjects (FEP) and Y subject across all 129 channels (Figure 6). 

Threshold must be chosen carefully with regard of previously calculated t-value from SnPM at channel-level (Nichols & 

Holmes, 2002). 

 

For comparison of multivariate means of the F-values and causal densities from the Granger 

causality analysis, we used multivariate analysis of variance (MANOVA, Figure 19). It is well-

known that analysis of variance (ANOVA) is suitable for the comparison of means of one dependent 

variable among several groups (Han & Park, 2015). Therefore, MANOVA is the generalization of 

the ANOVA (Han & Park, 2015). MANOVA as a statistical procedure for comparison and testing 

of mean differences among groups has proven to show valid and sufficient results (Allefeld & 

Haynes, 2014; Bathke et al., 2018).  
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4 Results 

The publication “Decreased mismatch negativity and elevated frontal-lateral connectivity in first-

episode psychosis” from Yüksel et. al. in the year 2021 (Yüksel et al., 2021) shows a full disclosure 

of the results from this work. 

 

5 Discussion 

We used auditory duration mismatch negativity to probe long-range, directional cortical 

connectivity in HC and FEP. Consistent with past work, we found that MMN amplitudes were largest 

over the fronto-central region of the scalp in both HC and FEP. We found that MMN amplitude was 

broadly decreased over this same region in FEP compared to HC (Yüksel et al., 2021).   

We also found that MMN latency was decreased in the occipital scalp. In addition, we found that 

higher doses of medication were associated with lower MMN.  Within a four-channel network 

consisting of a frontal, central, left, and right channels we found increased causal density in HC 

compared to FEP and increased causal density following standard stimuli compared to deviant 

stimuli.  Relatively high causal density following deviant stimuli was associated with higher 

symptom scores for disorganization and excitement. Also, there was topographic variability in 

connection strength across stimulus conditions and groups. Connectivity involving the right side of 

the scalp was associated with higher symptom burden (Yüksel et al., 2021). 

These results leave space for further discussion on specific aspects which are structured as 

constructive discussion in the following subchapters. 

 

5.1 Mismatch negativity  

At least three distinct neural processes, including sensory memory, stimulus-specific adaptation 

(SSA), and predictive coding, have been hypothesized to contribute to MMN generation (Patricia T. 

Michie et al., 2016). Many investigators have proposed that MMN is the result of a comparison 

between a memory trace of previously-presented stimuli and the current stimulus (Ritter et al., 1995). 

However, MMN cannot be entirely explained by this notion because MMN can also be elicited when 

patterns of stimuli are violated, including when an expected stimuli is omitted (Fitzgerald & Todd, 

2020; Yabe et al., 1997).  

In SSA, repeated stimuli are specifically attenuated while novel or deviant stimuli can elicit a 

more robust response (Farley et al., 2010).  Molecular studies indicate that cholinergic tone shapes 

neural responses to repeated auditory stimuli (Ayala et al., 2016). Many previous studies of SSA 

discounted its potential contributions to MMN because of its fast time scale (< 20 ms) and 

insensitivity to the activity of NMDA receptors (Patricia T. Michie et al., 2016). However, in cortical 
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excitatory neurons, there is a SSA-like phenomenon that is sensitive to NMDA activity and occurs 

on a time frame that is consistent with MMN which raises the possibility that this form of SSA may 

contribute to MMN (I. W. Chen et al., 2015).   

In predictive coding models, the brain uses information from previous sensory inputs to generate 

models to predict future sensory inputs.  Prediction errors occur when there is a discrepancy between 

the predicted and actual input. These errors are used to update and refine the predictive model while 

also allocating neural resources to the unexpected stimuli. In the predictive coding framework, 

bottom-up inputs from sensory cortices are inhibited by top-down inputs from frontal cortex 

(Kenemans & Kähkönen, 2011).  Dynamic causal modelling studies of MMN indicate that such 

hierarchical models are best able to recapitulate the MMN response (Garrido, Kilner, Kiebel, et al., 

2009; Kirihara et al., 2020).  Furthermore, NDMA receptors, which are known to modulate MMN, 

provide a biologically plausible mechanism for generation and maintenance of predictive coding 

models (Patricia T. Michie et al., 2016). 

 

5.2 Dysconnectivity and top-down vs bottom-up processing  

Auditory MMN is largely driven by neural activity in the auditory cortex but is modulated by the 

frontal cortex and the thalamus (Lakatos et al., 2020).  This suggests that MMN relies on bottom-up 

processing but can be impacted by top-down inputs. Given this reliance on both local cortical 

microcircuits and longer-range cortico-thalamo-cortical networks, it is unsurprising that psychotic 

disorders, which are characterized by myriad forms of cortical dysconnectivity, are accompanied by 

decreased MMN. Dysconnectivity in multivariable is multivariable with research findings depending 

upon brain regions, behavioral state,  illness duration, medication status, and connectivity measures 

(Anticevic, Cole, et al., 2014; Anticevic, Yang, et al., 2014; Di Lorenzo et al., 2015). Causal density 

analysis provides a way to quantify dysconnectivity in the brain. Our causal density results suggest 

that abnormally complex patterns of connectivity during deviant stimuli and failure to attenuate the 

complexity of the pattern of connectivity, were associated with psychotic symptoms. 

In this study, we report a general decrease in connectivity within the front half of the head in FEP 

compared to HC.  This is consistent with tractography data showing broadly decreased anisotropy in 

schizophrenia (Kelly et al., 2018).  We found that, following deviant stimuli, long-range Granger 

causality across the scalp is decreased compared to following standard stimuli. Therefore, in the 

deviant condition, EEG signals are more driven by local activity than by long range inputs. The 

relative freeing of local micro-circuits from global modulation is consistent with a greater role of 

bottom-up vs top-down processing following the deviant stimuli. Connectivity differences between 

HC and FEP were driven by smaller front-to-midline connectivity following standard stimuli and 

smaller horizontal connectivity following deviant stimuli.  
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The aberrant persistent connectivity from frontal regions to midline and right temporal regions in 

FEP compared to HC is consistent with a model in which MMN deficits in FEP are the result of 

failure of inappropriately preserved top-down processing and/or diminished bottom-up processing 

following a novel stimulus in patients. Increased top-down processing in schizophrenia has been 

widely reported and may be related to hallucinations (Aleman et al., 2003). Impaired bottom-up 

processing has also been reported in some auditory paradigms as well (Adcock et al., 2009). Our 

work builds on these reports by providing evidence for specific failures to modulate the balance 

between these processes in FEP and relates this failure to thought disorder. Future work should 

incorporate visual paradigms to test whether these processing abnormalities exist in other sensory 

modalities and other regions of the brain such as the occipital cortex. 

Also, future work should identify whether there is evidence for dysconnectivity, and therefore top-

down vs bottom-up imbalance, in pitch variant MMN paradigms where amplitude deficits are not 

present in first episode psychosis but are present in patients with chronic psychosis 

 

 

5.3 Future potentials: Machine intelligence and neurotechnology 

Our study is showing the complexity of multimodal networks and their interactions. These 

calculations over 129 channels, over different timeframes and over several subjects give room for 

countless permutations.  Different computational techniques based on machine intelligence can be 

beneficial to work further upon our results:  

High-density EEG data contain more information and pattern than it is visible for the human eye 

and which can be accessed with computational techniques from the field of computational data 

mining (Anguera et al., 2016). Due to the variety of interacting components within the human brain, 

artificial intelligence-based (AI-based) analysis can be a very beneficial expansion of this analysis 

when it comes to complex bidirectional connectivity pattern analysis with multi-time-series of 

several channels  (Cirstea et al., 2018; Wan et al., 2019). Furthermore, more predictive connectivity 

analysis via neural activity in early psychosis can help to gain further understanding of the 

pathogenesis of psychosis or even predict future progress (Collin et al., 2020).  Also, this prediction 

process can be enhanced by machine learning approaches (Rezaii et al., 2019). Further computational 

approaches, such as deep learning algorithms, can be applied for prediction of pathological progress 

in schizophrenia (Oh et al., 2020). Especially, long short memory networks could prove to predict 

certain patterns for psychiatric pathologies (Kumar & Subha, 2019; Nikhil Chandran et al., 2021). 

Also, non-invasive and invasive neurotechnological developments as closed-loop-stimulation are 

showing tremendous potential for next-generation treatment strategies in psychiatry (Lo & Widge, 

2017). The authors of this study see the possibility of expansion of this study via machine-

intelligence-based methods. 
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6 Summary 

English version: 

Considering the initial hypotheses, we can use these as the guiding line, and we could confirm our 

four hypotheses. These were initially presented in the publication “Decreased mismatch negativity 

and elevated frontal-lateral connectivity in first-episode psychosis” from Yuksel et. al. in the year 

2021 (Yüksel et al., 2021). The four initial hypotheses were: 

I. Mismatch negativity amplitude and latency is decreased in FEP compared to HC 

II. Directional connectivity is decreased following deviant stimuli compared to standard stimuli 

and in FEP compared to HC 

III. Causal density is abnormal in patients with first-episode psychosis consistent with the 

disconnection hypothesis. 

IV. Abnormal connectivity is associated with psychosis symptoms 

Firstly, we tested if MMN amplitude and latency is significantly different in FEP when compared 

to HC. Our analysis via unpaired t-test showed that difference in MMN amplitudes were not 

significantly different with p=.078. Also, MMN latency showed not significant difference. However, 

we could upon these results expand our analysis via cluster analysis. We found that a cluster of 63 

channels had significantly decreased MMN amplitudes in FEP compared to HC. Also, we found a 

cluster of 6 occipital channels which showed significantly longer MMN latencies in FEP compared 

to HC. 

Secondly, we could show that directional connectivity is decreased for deviant stimuli compared 

to standard stimuli and in FEP compared to HC. These results were won upon the Granger causality 

analysis within the four-node-network which was built by extracting the four channels which are 

located at opposite ends of the large significant amplitude cluster. 

Thirdly, we calculated causal densities in each network for deviant and standard stimuli and 

found that long-range causal density is higher for standard stimuli compared to deviant stimuli and 

significantly decreased in FEP compared to HC.  

Lastly, we compared connectivity in the created networks via causal density calculation and via 

comparison of the Granger causality flow-values. Afterwards, we correlated these results with 

several symptom factors. It could be shown that abnormal connectivity to the right scalp during 

deviant stimuli is associated with psychosis symptoms as excited and disorganized factors. 
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German version: 

Wir können die initialen Hypothesen als einen Leitfaden für diese Studie betrachten. Diese wurden 

initial in der Publikation „Decreased mismatch negativity and elevated frontal-lateral connectivity in 

first-episode psychosis” von Yuksel et. al. im Jahr 2021 veröffentlicht. Die Hypothesen waren wie 

beschrieben: 

I. Mismatch Negativität Amplitude und Latenz sind erniedrigt in Erst-Episoden-Psychose 

Patienten verglichen zur gesunden Kontrollgruppe. 

II. Gerichtete Konnektivität ist erniedrigt für abweichende Stimuli verglichen zu Standard-

Stimuli, sowie in der Gruppe der Erst-Episoden-Patienten verglichen zur gesunden 

Kontrollgruppe. 

III. Kausale Dichte ist abnormal in Erst-Episoden Psychose Patienten, vereinbar mit der 

Diskonnektivitäts-Hypothese. 

IV. Abnormale Konnektivität ist assoziiert mit psychotischen Symptomen.  

Zu Beginn haben wir die kalkulierten Wertematrizen für Mismatch Negativität (MMN) 

Amplituden und Latenzen zwischen Erst-Episoden Psychose-Patientengruppe und gesunder 

Kontrollgruppe verglichen. Wir konnten mittels ungepaarten T-Test keinen signifikanten 

Unterschied für die Amplituden zeigen mit einem p-Wert von 0.078. Ebenfalls konnten wir keinen 

signifikanten Unterschied für die Latenzen zwischen den beiden Gruppen zeigen. Allerdings konnten 

wir mittels Cluster-Analyse mehrere zusammenhängende Kanäle finden, welche Signifikanzen für 

Amplituden und Latenzen zwischen Erst-Episoden Psychose-Patientengruppe und gesunder 

Kontrollgruppe aufwiesen. Das Cluster für Amplituden beinhaltet 63 Kanäle und das für Latenzen 

beinhaltet 6 okzipitale Kanäle. Darauffolgend haben wir innerhalb des großen Clusters für 

Amplituden ein 4-Knoten-Netzwerk gebildet, welches aus den vier gegenüberliegenden Kanälen 

innerhalb des Clusters besteht. Innerhalb des Netzwerkes konnten wir die gerichtete Konnektivität 

mittels Grangers Kausalität bestimmen und vergleichen. Gerichtete Konnektivität war signifikant 

erniedrigt für devianten Stimuli sowie in der Erst-Episoden Psychose-Patientengruppe im Vergleich 

zur gesunden Kontrollgruppe. Drittens haben wir die kausalen Dichten innerhalb der Netzwerke für 

beide Stimuli in beiden Subjektgruppe kalkuliert. Wir fanden signifikante höhere kausale Dichten 

für Standardstimuli verglichen mit devianten Stimuli und signifikant erniedrige kausale Dichte in der 

Patientengruppe verglichen mit der Kontrollgruppe. Schlussendlich haben wir 

Konnektivitätsflusswerte mit Psychose-spezifischen Symptomen korreliert. Wir konnten zeigen, 

dass abnormale Konnektivität zur rechten Hemisphäre, während devianten Stimuli, ist signifikant 

mit den PANSS-verzeichneten Aufgeregtheitsfaktoren und Desorganizationsfaktoren assoziiert.  

 

 



 40 

 

7 Declaration of personal contribution to the thesis and the publication 

7.1 Declaration of personal contribution to the main project of the thesis 

Title: Decreased mismatch negativity and elevated frontal-lateral connectivity in first- 

episode psychosis  

Description of personal contribution: Patient examination, scoring and interviewing, marketing 

for study, EEG-data acquisition, data pre-processing, EEG-cap hardware setting adjustments, data 

post-processing, patient service, figures preparation, statistical analysis, writing the first manuscript 

and subsequently the thesis.  

 

7.2 Declaration of personal contribution in the publication  

Title: Decreased mismatch negativity and elevated frontal-lateral connectivity in first-episode 

psychosis  

Authors: Mahmut Yüksel, Michael Murphy, Jaeline Rippe, Gregor Leicht, Dost Ongur 

Journal: Journal of Psychiatric Research 

Publication status: published (2021) 

Description of personal contribution: 

Writing of original draft, Conceptualization, Methodology Visualization, Formal Analysis, Funding 

Acquisition, Resources, Investigation, Review and Editing 

 

 

 

8 Declaration of conflicting interests 

The authors declared no potential conflicts of interest with respect to the research, authorship, 

and/or publication of this article. 

 

 

 

 

 

 



 41 

9 Abbreviations 

This table gives an overview of all abbreviations used in this thesis. 

 

Abbreviation used Meaning 

  

A1 Auditory cortex 

ACh Acetylcholine  

AI Artificial intelligence  

AIC Akaike Information Criterion 

Ag-AgCl  Silver-silver chloride 

ANOVA Analysis of variance 

AP Antipsychotic 

APS Attenuated psychotic symptoms 

BLIP Brief limited intermittent psychotic episode subgroup 

BS Basic symptoms 

CDM Causal dynamic modelling 

CN Caudate nucleus 

CPZ Chlorpromazine 

DBS Deep-brain stimulation 

DNA Desoxyribonucleic acid 

DRD2 Dopamine receptor D2 

ECT Electroconvulsive therapy 

EEG Electroencephalogram 

ERP Event-related potential 

FEP First-episode psychosis patients 

fMRI Functional magnetic resonance imaging 

GC Granger causality 

HC Healthy controls 

HMS Harvard Medical School 

Hz Hertz 

MANOVA Multivariate analysis of variance  

ms Milliseconds  

mvgc Multivariate Granger causality toolbox 

NMDA N-methyl-D-aspartate 
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PANSS Positive and Negative Syndrome Scale 

PET Positron emission tomography 

PD Privat Dozent (German for „ private lecturer “)  

SEM Standard error of the mean 

SN Substancia nigra 

SnPM Stochastical non-parametric mapping 

SSA specific somatic afferent fibers 

TMS Transcranial magnetic stimulation 

Tukey’s HSD Tukey’s Honest significance difference 

UKE University Medical Center Hamburg-Eppendorf, Germany 

VAR Vector autoregression 

VTA Ventral tegmental area 
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