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Zusammenfassung

Freie-Elektronen-Röntgenlasern (XFELs) erzeugen Pulse von extrem kurzer Dauer, hoher räumlicher

Kohärenz und hoher Intensität die einzigartige Experimente in der Materialforschung, Fem-

tosekundenchemie und weiteren Forschungsfelder ermöglichen. Diffraktionsoptische Systeme

werden an XFELs zur Charakterizierung und Modifikation der Pulse für die jeweiligen Experi-

mente eingesetzt. Da jeder Puls aufgrund der stochastischen Natur der XFEL-Pulse individuelle

spektrale Eigenschaften hat, ist eine pulsaufgelöste Diagnostik erforderlich. Stark gekrümmte

Kristalle ermöglichen es, verschiedene Photonenenergien über einen breiten Winkelbereich zu

beugen und somit das Energiespektrum des XFEL Pulses zu messen. In dieser Dissertation wird

der Einfluss der Beugung eines gekrümmten Kristallspektrometers auf das Spektrum mittels dy-

namischer Diffraktion untersucht. Es wird gezeigt, dass die Kristalldicke das Auflösungsvermögen

des Spektrometers begrenzt. Aufgrund der hohen Intensität der Pulse führt die durch die Ab-

sorption in den Kristallen verursachte Erwärmung zu einer erheblichen Gitterverzerrung, die die

Leistung der jeweiligen optischen Instrumente beeinträchtigt. Ein Modell wurde entwickelt, um

den Einfluss dieser Erwärmung auf die Leistungsfahigkeit eines kryo-gekühlten Monochromators

abzuschätzen. Weiter wurde eine Software zur Wellenfrontsimulation wurde verwendet, um die

räumlichen und zeitlichen Effekten der asymmetrischen dynamischen Diffraktion zu simulieren.
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Abstract

Short duration, high spatial coherence and the high intensity of pulses generated by X-ray Free-

Electron Lasers (XFELs) enable unique experimental techniques in material studies, femtosecond

chemistry and others. Crystal optics are widely used at XFELs as diagnostics devices and to tailor

the pulses for the experiments. The diagnostics is required due to the random nature of XFEL

pulses, which leads to each pulse having individual spectral properties. Strongly bent crystals

allow to disperse various photon energies over angles thus allowing to measure the spectrum.

In this thesis, the effect of diffraction on the bent crystal spectrometer is studied within the

frame of dynamical diffraction. It is shown that the crystal thickness limits the resolving power

of the device. Due to the high intensity of the pulses, the heating caused by the absorption

in the crystals leads to a significant distortion of the lattice which affects the performance of

optical devices based on crystal optics. A model for the estimation of the heat load effect on the

performance of a cryo-cooled monochromator is presented. A wavefront simulation software is

used to simulate the spatio-temporal effects of asymmetric dynamical diffraction.
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Introduction

This thesis addresses various application of crystal optics at hard X-ray Free-Electron Lasers

(XFELs). The principles of X-ray generation at XFELs and an overview of XFEL facilities

is presented. The second chapter presents novel studies of crystal heating and its effect on

dynamical diffraction, as well as studies of the effect of asymmetric on diffraction of pulses.

In monochromators, the heating hinders monochromator optimal performance, and in order to

design a method to mitigate the heating effect on monochromator performance, a simulation tool

for the effect of heat load on monochromator performance is desirable. A novel theoretical model

of crystal heating under intense XFEL pulses and its effect on diffraction is presented and applied

to experimental studies in the third chapter. The model does not require additional tools such as

FEA software, it is implemented in Python and is publicly available. Such a model is transparent

to the user, can be easily modified, does not require high computational power and can be used

by a broad community. Also, asymmetric diffraction and its effect on spatiotemporal properties

of XFEL pulses are studied in second chapter. After asymmetric diffraction, the wavefront has

skewed spatial coherence, which has a potential to be beneficial for some coherent scattering

experiments.

In the third chapter, studies of XFEL monochromators for hard X-rays are presented. An

overview of crystal monochromators is followed by experimental studies of cryo-cooled monochro-

mator performance. CW mode considerations are presented.

Fourth chapter addresses the effect of diffraction on the resolution of spectrometers based

on strongly bent crystals. Previously, diffraction in the crystal volume was not addressed in

scope of the effect on crystal resolution, and no elaborate simulations of XFEL pulses diffraction

in strongly bent crystals were done. Here, a model to simulate the diffraction of XFEL pulses

in strongly bent crystals is presented, which allows to estimate whether for given conditions

resolution is limited due to diffraction. Moreover, it is shown that at short distances between
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crystal and detector, the resolution of the device does not reach optimal values, and at a given

experimental setup the distance between crystal and detector might be insufficient for optimal

resolution.
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Chapter 1

Properties of XFEL pulses and

their application in material

studies

This chapter provides an overview of the XFEL pulse generation concepts, various methods of

pulse generation, and their application in material science.

1.1 Synchrotron radiation and SASE process

One of Maxwell’s equations dictates that in the presence of an electric current magnetic field is

produced. Namely,

[
~∇ ~H

]
= ~j +

∂ ~D

∂t
, (1.1)

where ~H is the magnetic field,~j is the current density, t is time, ~D is the electric displacement, and

~∇ is the Hamilton operator. In particular, when an electron has acceleration, the electric charge

flow in the selected volume changes, which acts as a current density in Eq. 1.1 and therefore an

electromagnetic wave is generated.

When an electron bunch travels through a magnet with a constant magnetic field, the tra-

jectory of electron beam changes and due to acceleration of the electron electromagnetic waves

are emitted. Due to the changing direction of electron beam, such magnets are called ”bending

3



CHAPTER 1. PROPERTIES OF XFEL PULSES AND THEIR APPLICATION IN
MATERIAL STUDIES

Figure 1.1: Electron oscillation in an undulator. Red and blue rectangles denote the poles of
magnets, orange arrow denotes magnetic field, red arrow - electron acceleration, blue arrow
- electron speed, orange curve - trajectory of an electron. The vertical magnetic field causes
horizontal oscillation of electrons.

magnets”. At synchrotrons, electrons travel through a set of bending magnets arranged in a

circle, such that photons are generated constantly. Between bending magnets so-called ”inser-

tion devices” can be installed, which consist of a series of magnets with the changing direction

of magnetic field. Depending on the magnet period and magnetic field strength, one usually

differentiates inserted devices between wigglers and undulators. In undulators, where magnetic

field is weaker than in wigglers, the electrons oscillate with a smaller amplitude than in wigglers,

which leads to the coherent emission of electromagnetic waves by electrons.

The principle of electromagnetic emission in periodic magnets is shown in Fig. 1.1. In such

devices, the electron bunch propagates between a series of magnets whose polarization changes

between two opposite orientations at regular distances. This results in the electrons travelling

along a sinusoidal trajectory, which means that the electrons constantly have an acceleration

along the same direction. This persistent acceleration leads to the constantly emitted electro-

magnetic waves in the same direction.

In case of short electron bunches of high energies and strong magnetic fields of undulators,

electromagnetic waves emitted by electrons affect the electrons themselves. This self-action

leads to increased coherence, such that the devices are called Free-Electron Lasers (FELs), since

lasers provide pulses with high coherence. At X-ray Free-Electron Lasers (XFELs), the speed of

4



CHAPTER 1. PROPERTIES OF XFEL PULSES AND THEIR APPLICATION IN
MATERIAL STUDIES

Figure 1.2: Principle of SASE pulses generation [1]. During propagation through undulator the
electrons regroup into slices which produce transversely coherent X-rays.

electrons, the longitudinal size of the electron bunch and the length of undulators lead to the

redistribution of electrons in a bunch into thin layers, which is called ”microbunching”. Due to

a growing self-effect of the radiation produced by electrons, electrons group into layers during

propagation through undulator. Fig. 1.2 shows how the electrons interact with the waves created

by other electrons. The interaction makes the electrons group into bunches located at regular

distances defined by the electromagnetic field of undulators, undulator steps and electrons mean

speed.

Let us demonstrate the physical principle behind the self-amplification of FEL radiation in

5



CHAPTER 1. PROPERTIES OF XFEL PULSES AND THEIR APPLICATION IN
MATERIAL STUDIES

Figure 1.3: Principle of coherent self-amplification, top view at undulators. Red and blue rect-
angles denote north and south poles of undulator cells, green wave denotes a fraction of a wave
generated by electrons, blue dot is an electron, the orange line is the electric field, blue arrow is
the electron speed along undualtor, green arrow - the speed of light. Electromagnetic waves are
generated at wavelength for which over one undulator period the electromagnetic wave overtakes
the electrons by the wavelength.

undulator. If electrons travel in an undulator with a period λw and the generated X-rays have a

wavelength λ, the self-amplification will take place if electron reaches each undulator cell together,

or in phase, with the peak of the wave. This principle is demonstrated in Fig. 1.3. The electron

speed along undulator vz is close to speed of light c. In the coherent radiation mode, by the

time an electron travels between two undulator cells with the same orientation of magnetic field,

the electromagnetic wave generated by electrons needs to overtake the electron by the radiation

wavelength. In that case, the electric field of the electromagnetic waves created by electrons and

the Lorentz force on a moving electron in magnetic field are in phase. Therefore, the decreasing

kinetic energy of electron is transformed into electromagnetic radiation. These electromagnetic

waves, in turn, are in phase with the magnetic field of the undulator and contribute to the

6



CHAPTER 1. PROPERTIES OF XFEL PULSES AND THEIR APPLICATION IN
MATERIAL STUDIES

coherent radiation. Moreover, since the initial spatial distribution of electrons is random, the

coherent radiation principle leads to regrouping of electrons into slices, as shown in Fig. 1.2. Since

the radiation produced by an electron bunch with an intrinsically random distribution affects

the bunch itself, such process of light generation is called Self-Amplified Spontaneous Emission

(SASE).

The following equation defines the condition of XFEL resonant amplification [2]:

λw

vz
=

λ

c− vz
(1.2)

That is, the coherent radiation wavelength is defined by the undulator period and the electron

speed along undulator:

λ =
λw

2γ2
z

, (1.3)

where γz = 1/
√

1− v2
z/c

2. During propagation through undulator, the intensity of X-ray pulse

increases exponentially. Moreover, due to the interaction with electromagnetic waves, electrons

are arranged into slices which satisfy Eq. 1.2. During further propagation through undulator,

the X-ray pulse intensity growth slows down, reaching saturation at some stage. This happens

due to decrease of electron energy and diffraction effects.

Fig. 1.4 shows a gain curve of EuXFEL, which shows how the intensity of a pulse changes

during the propagation of electron bunch through undulator. Initially, the intensity of the pulse

grows exponentially, such that the intensity curve in logarithmic scale is linear. Further down

the undulator, the growth rate decreases and the intensity of pulses reaches a saturation value.

At European XFEL (EuXFEL), electron bunch is generated by an UV-Laser incident on

Cs2Te photocathode [4], which are next accelerated to energies of around 100 MeV, and various

diagnostics are done. The electrons are accelerated in superconducting Radio-Frequency (RF)

Niobium cavities. The electric field is oriented along the cavities’ axis and oscillates at a frequency

which allows the electrons to enter each cavity with the same phase thus constantly accelerating.

There are several accelerator modules so to allow for bunch compression during acceleration. Due

to Coulomb repulsion of electrons, the compression is required to keep the bunch compact so to

provide a short duration of the photon pulses generated in undulators. Undulators at EuXFEL

consist of 35 undulator modules each 5 m long [3], and the undulator configuration allows to

generate X-ray pulses with photon energies of up to 24 keV.

7



CHAPTER 1. PROPERTIES OF XFEL PULSES AND THEIR APPLICATION IN
MATERIAL STUDIES

Figure 1.4: Gain curve of EuXFEL [3]. The inset shows a single pulse image at 100 m magnetic
length.

Figure 1.5: The schematics of the injector module at EuXFEL [4].

1.2 Overview of XFEL facilities

The first XFEL to operate was Linac Coherent Light Source [5]. There, the electron energy

amounts up to 15 GeV and undulator length is 132 m. The repetition rate of 120 Hz is limited

by the copper accelerator which cannot withstand higher repetition rates. The energy of indi-

vidual pulses reached 2.5 mJ. Later, entry into operation was reported from SPring-8 Angstrom

Compact free-electron LAser (SACLA) facility [6], where pulse energy reached several hundreds

of µJ, while repetition rate is 60 Hz at maximum. Start of operation of another facility Pohang
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CHAPTER 1. PROPERTIES OF XFEL PULSES AND THEIR APPLICATION IN
MATERIAL STUDIES

Accelerator Laboratory XFEL (PAL-XFEL) with performance similar to SACLA was reported

later. Here, pulse energy amounted to 130 µJ, and repetition rate of 30 Hz was demonstrated.

Short time intervals between X-ray pulses benefit experiments in various ways. Firstly, the

more X-ray flux reaching a sample, the faster sufficient data can be measured, which reduces

the required beamtime. Secondly, the interval between pulses defines the timescale of the effects

that can be studied. LCLS-II and SHINE facilities foresee repetition rates up to 1 MHz [7, 8].

At both facilities, the pulses are designed to be generated in so-called continuous wave mode,

when pulses arrive constantly.

The main reason for the limited repetition rate is the heating of the RF cavities used to

accelerate electrons. At European XFEL, a 1.7 km long superconducting accelerator provides

electrons that have up to 17.5 GeV energy. Despite the cryogenic cooling that enables supercon-

ductivity, the heating of the accelerator limits the number of pulses by 2700 each 0.1 s. That is,

every 0.1 s a train of up to 2700 pulses is generated. Inside a train, the pulses arrive at repetition

rates up to 4.5 MHz. This enables time-resolved studies on the timescales down to sub-µs level

without additional optical devices.

Because of the CW mode foreseen at LCLS-II and SHINE project, the average brilliance at

these XFELs is expected to surpass the one of EuXFEL by about an order of magnitude, as

shown in Fig. 1.6 [9].

1.3 Self-seeding and XFEL oscillator

The distribution of electrons in a bunch into layers leads to the pulses generated by SASE

process having ∼ 0.2 fs coherence time, which is the duration of temporally coherent fractions

of a pulse [2]. One way to generate pulses with higher temporal coherence is to combine a

low-intensity pulse that has a high temporal coherence (seed pulse) and an electron bunch in

an XFEL undulator. The electromagnetic field of the seed pulse modifies the electron bunch in

such a way that the X-ray pulse generated during propagation through undulator has similar

temporal coherence properties as the seed pulse.

One of the techniques [11] suggests dividing the undulator into two sections and inserting thin

diamond crystals into the gap. The first section generates a low-intensity X-ray pulse. Due to

the small thickness of the crystal and a broad ∼10 eV bandwidth of the pulse, most of the X-ray

intensity is transmitted. However, X-rays within a narrow ∼0.1 eV photon energy range undergo
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CHAPTER 1. PROPERTIES OF XFEL PULSES AND THEIR APPLICATION IN
MATERIAL STUDIES

Figure 1.6: Average brightness at various photon sources [9].

Figure 1.7: The principle of the formation of delayed coherent pulse [10]. a) shows the spectrum
of diffracted pulse, b) - of the transmitted pulse. A part of the X-rays that undergo diffraction
within the narrow bandwidth in a) exit the crystal in the transmission direction. c) shows the
temporal structure of the transmitted (red line) and reflected (blue line) radiation. The electrons
bunch is overlapped with the first most intense delayed pulse. The inset shows the geometry of
the diffracted and transmitted directions. The photon energy is 8.33 keV, C(400) reflection.

dynamical diffraction, which provides a delayed pulse that travels in the same direction as the

intense transmitted pulse. At the same time, the electrons travel through a bypass around the

10



CHAPTER 1. PROPERTIES OF XFEL PULSES AND THEIR APPLICATION IN
MATERIAL STUDIES

crystal such that the electron bunch and the delayed pulse with a high temporal coherence are

recombined to overlap and travel through the second part of the undulator. Since this technique

applies to hard X-rays, it is called Hard X-rays Self-Seeding (HXRSS).

Figure 1.8: The schematics of HXRSS [11].

Such method has been realized at LCLS [10]. The bandwidth of 0.4 eV was demonstrated,

though the pulse energy had large fluctuations and had the average value of 0.053 mJ. At Eu-

ropean XFEL, HXRSS has been demonstrated at 9 and 12.9 keV photon energies using C(220)

reflection. The bandwidth of the HXRSS signal was around 1 eV, and the energy of pulses

reached values of around 1 mJ. At the Materials Imaging and Dynamics (MID) instrument of

European XFEL, the HXRSS mode is available to users.

Figure 1.9: The schematics of self-seeding at SACLA using two reflections from silicon crystals
[12].

At SACLA, due to relatively low pulse energies, it is feasible to use two consecutive reflections

from silicon crystals to generate a monochromatic seed pulse [12]. The schematics is shown in

Fig. 1.9.
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CHAPTER 1. PROPERTIES OF XFEL PULSES AND THEIR APPLICATION IN
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Figure 1.10: The schematics of the XFELO using 4 Bragg reflections [13].

Another way of generating XFEL pulses with even higher temporal coherence implements

high order reflections in backscattering geometry from multiple crystals [14]. In this case, the

reflectivity curve is narrower compared to lower order reflections. For instance, C(440) reflection

has a width as low as 30 meV for 1.03 Å wavelength [13]. That way, due to a low photon energy

bandwidth of the seed pulse, the generated pulse has a high temporal coherence. Moreover,

by using multiple reflections, one can redirect the generated temporally coherent pulse into the

undulator, recombine it with the fresh electron bunch and repeat the generation process thus

gradually increasing the generated intensity.

Fig. 1.10 shows the scheme of such method. Initially, a low-energy SASE pulse is generated

in the undulator, when there is no seed pulse. Then, the pulse is reflected by the crystals C1, C3,

C2 and C4 that are aligned such that they are in diffraction positions. By varying the position

of crystals C2 and C3 and orientation of all crystals, one can adjust the scheme within a wide

range of photon energies. The focusing elements L1,2 are used to direct the reflected pulse into

the undulator, where the seed pulse after four crystals is coupled with a fresh electron bunch,

and X-rays with a narrow bandwidth are generated. That way, each cycle increases the intensity

of the pulse and the temporal coherence is conserved because of reflection from crystals at each

cycle. Having reached a certain saturation energy, however, the signal does not increase since the

intense pulse causes overmodulation of the existing wavefield [15] and thus hinders the coherent

emission by the fresh electron bunch. The output of the scheme is defined by the transmission

of C1 crystal and the accumulated saturation power of the XFEL oscillator.
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1.4 Material studies with XFEL pulses

The unique properties of the pulses generated at X-ray Free-Electron Lasers (XFELs) enable

novel experimental methods. In particular, high intensity, femtosecond duration and full spatial

coherence enable scattering experiments for material studies such as X-ray Photon Correlation

Spectroscopy (XPCS) at the molecular level [16–18]. Moreover, the short duration of the pulses

enables studying chemical reactions at the temporal scale of femtoseconds [19, 20]. The high

intensity of the pulses enables sufficient signal at crystallographic studies of protein crystals

and single-particle imaging of biological molecules [21]. The sub-µs separation between pulses

achieved at European XFEL [3] allows time-resolved studies at MHz repetition rate.

Despite their high transverse coherence, XFEL pulses generated by Self-Amplified Sponta-

neous Emission (SASE) [2] have a low temporal coherence. Along with the methods to increase

temporal coherence of the pulses exiting undulator [11, 22] discussed above, crystal optics can

be used to increase temporal coherence of SASE pulses. In particular, two parallel crystals cut

out a narrow part of a spectrum [23] thus increasing the temporal coherence. The increased

temporal coherence leads to a larger coherence volume, which increases contrast at coherent

scattering experiments with XFELs. Therefore it is crucial at experiments to maintain the sta-

ble and effective monochromatisation of pulses. However, the highly intense pulses arriving at

MHz repetition rate heat up the crystal to an extent that the lattice is distorted so significantly

that the diffraction of the pulse in the crystal is affected. In this thesis, a theoretical model for

the heat flow in the crystal and the diffraction is presented, which provides a tool to estimate

the monochromator performance for various pulse energies, pulse sizes and temporal separations

between pulses. The simulated monochromator transmission is in a good agreement with the

experiment [24]. The simple simulation model can assist researchers in modelling the heat load

effects on crystal optics, which can improve the design of existing and potential optical devices.

The random nature of the SASE process results in pulses having random temporal structure.

This, in turn, leads to the random spectrum of each pulse. The spectrum can help estimate the

temporal properties of the pulse which is crucial for some scattering experiments. For instance,

information about the pulse duration provides the limit on the timescale of the observed physical

effect. Strongly bent crystals are capable of effectively dispersing the X-rays of different photon

energies over different angles due to the curved surface. This thesis addresses the problem of

XFEL pulse diffraction in bent crystals in the frame of the kinematical and dynamical theory

of X-ray diffraction. The approach described in this thesis can be used to evaluate the validity
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of the measured spectra and simulate the resolving properties of spectrometers based on bent

crystals. A novel method to estimate the pulse duration is proposed which allows to restore the

temporal properties from spectra of individual pulses.

14



Chapter 2

Diffraction of hard X-rays in

perfect crystals and wavefront

propagation through optical

elements

2.1 Kinematical diffraction of X-rays

In the framework of kinematical diffraction [25], the resulting amplitude in a point with radius-

vector ~ρ is defined by the integral

Es ∝
ˆ

ρ0

exp(ik|~ρ− ~ρ0|)
|~ρ− ~ρ0|

d3ρ0, (2.1)

which represents the sum of waves scattered by each point of a scattering object with radius-

vectors ~ρ0, k = 2π/λ, λ is the wavelength. That is, the interaction of X-rays with crystals is

considered as a singular scattering from the atoms, without secondary scattering. Eq. 2.1 is

written under assumption of an incident plane wave, which is the simplest approach to treating

diffraction. A particular temporal structure can be decomposed into a set of plane waves, and a

particular spatial distribution of radiation will lead to the dependence of incident wave amplitude

on ~ρ. In case of a crystal lattice where the atoms are positioned in a regular manner, only the
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CHAPTER 2. DIFFRACTION OF HARD X-RAYS IN PERFECT CRYSTALS AND
WAVEFRONT PROPAGATION THROUGH OPTICAL ELEMENTS

intensity of diffracted wave will be significant at certain directions defined by the constructive

interference of waves scattered from atoms. The Bragg law

2d sin θB = λ (2.2)

represents the condition for the coherent addition of waves scattered by a lattice and defines the

Bragg angle θB at which the strongest scattering is observed for the given lattice spacing d.

In a thick perfect crystal, the secondary scattering of X-rays will have a significant effect

on the resulting diffraction amplitude. This re-scattering in ideal crystals is described by the

theory of dynamical diffraction of X-rays [26, 27]. X-rays that are scattered by a given atom are

strongly scattered by other atoms before leaving the crystal.

Figure 2.1: The effect of the crystal thickness on the rocking curve at 9 keV photon energy.
Crystal is Si(111), at the given photon energy extinction length is 1.5 µm. When crystal thickness
is larger than extinction length, the re-scattering of X-rays affects becomes strong. The curves
are calculated using dynamical diffraction [26, 27].

Fig. 2.1 shows how an increasing thickness of a crystal affects the diffraction at different

photon energies, calculations are done using dynamical diffraction theory presented below. In

a thin crystal, the rocking curve (blue line) is wide since no secondary scattering takes place.

With an increasing thickness, the rocking curve gets narrower and the oscillations on the edges
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that are characteristic of diffraction appear. The multiple re-scattering of X-rays from atoms

happens predominantly around the angle at which Eq. 2.2 is satisfied. For a thicker crystal, the

rocking curve gets narrower and the oscillating features at the edges also get narrower.

2.2 Dynamical diffraction

Let us assume that the Bragg condition is fulfilled for a photon energy E0 = hc/λ in the case of

a non-deformed crystal lattice, where h is the Planck constant and c is the speed of light. The

diffraction of X-rays with a photon energy E at an instant t and at the position r is defined by

the deviation of the wave vector from the exact Bragg condition [28, 29]

Figure 2.2: The geometry of vectors in Eq. 2.3.

η(E, t, r) =
k2 − (~k + ~h)2

k2
, (2.3)

where ~k is the wavevector for the incident wave and ~h is the reciprocal lattice vector. Fig. 2.2

depicts the calculation of Eq. 2.3. The deviation η is defined by the difference of squares of

lengths of incident wavevector ~k and ~k + ~h. For wavevector ~k0, which corresponds to central

photon energy E0 and incidence at Bragg condition, η = 0, since the length of ~k0 +~h is the same

as the length of ~k0. When incident wavevector ~k is different from ~k0, either in length and/or

direction, ~k and ~k + ~h have different lengths.

We assume that all photon energies are incident at the same angle θB . Fig. 2.3 shows the

geometry of vectors in this case. Following the geometry, Eq. (2.3) can be calculated as
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Figure 2.3: The geometry of vectors for Eq. 2.5.

η (E, t, r) = 2 sin 2θB

(
∆E

E0

)
tan θB, (2.4)

where ∆E = E − E0. In a more general case of variable ~h, i.e. in case of deformed crystal, 2.3

can be written as

η (E, t, r) = 2 sin 2θB

(
∆E

E0
+ ε

)
tan θB, (2.5)

where ε = ∆d/d is the relative deformation of the lattice which is elaborated on in the next

section, d is the lattice spacing of the non-deformed crystal.

Let us derive dynamical diffraction equations. The following two Maxwell equations in the

absence of current and in a diamagnetic medium

∇×E = −1

c

∂H

∂t

∇×H = −1

c

∂D

∂t

(2.6)

would describe propagation of electromagnetic wave. Here, D,E and H are the vectors of the

electric displacement, electric field and magnetic field, c is the speed of light, t is time. Vector

multiplication of both equations by ∇, since ∇×∇×E = grad divE−∆E, would yield
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∆E +
1

c2
∂2D

∂t2
= 0. (2.7)

Let us find the solution

E = exp(iωt)[A0 exp(i ~k0~r) +Ah exp(i ~kh~r)] (2.8)

at any point of space ~r and two constant amplitudes A0,h, ~k0 is the wave vector of incident

wave and ~h is reciprocal lattice vector, ~kh = ~k0 +~h, t is time and ω is the frequency. In a crystal

with reciprocal lattice vector ~h electric susceptibility can be written as

χ(~r) = 1 + χ0 + χh exp(i~h~r) + χh exp(−i~h~r). (2.9)

At XFELs, bandwidth of photon energies is small enough to consider χh to be constant in the

current model. That way, since D(~r) = (1 + χ(~r))E(~r)Eq. 2.7 can be written as

k2
0A0 exp(i ~k0~r) + k2

hAh exp(i ~kh~r)−
ω2

c2
χ(~r)(A0 exp(i ~k0~r) +Ah exp(i ~kh~r)) = 0, (2.10)

which would give the following set of dynamical diffraction equations:

−ω
2

c2
χhAh + (k2

0 −
ω2

c2
(1 + χ0))A0 = 0

(k2
h −

ω2

c2
(1 + χ0))Ah −

ω2

c2
χhA0 = 0.

(2.11)

These linear equations can be solved only if the determinant of Eq. 2.11 is zero, i.e.

(k2
h −

ω2

c2
(1 + χ0)) = χ2

h/(k
2
0 −

ω2

c2
(1 + χ0)), (2.12)

which yields the following reflection amplitude:

R =
Ah
A0

=
k2

0 − ω2

c2 (1 + χ0)
ω2

c2 χh
. (2.13)

Using Eq. 2.3, we can rewrite Eq. 2.12 as
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((1 + η)k2
0 −

ω2

c2
(1 + χ0)) = χ2

h/(k
2
0 −

ω2

c2
(1 + χ0)), (2.14)

or, using R from Eq. 2.13, we can write the following dispersion equation:

χhR
2 − ηR+ χh = 0, (2.15)

which yields the solution

R(E, t, r) =
η(E, t, r)±

√
η(E, t, r)2 − 4χ2

h

2χh
, |R| < 1, (2.16)

which is dictated by the physical restriction of the reflection amplitude less than unity.

Figure 2.4: Reflection intensity |R|2 calculated by Eq. 2.16 for non-deformed Si(111) crystal at
9 keV photon energy for infinitely thick crystal, ∆E = E − E0.

Fig. 2.4 shows the reflection intensity for various photon energies, which is often referred to

as Darwin curve. The width of the curve, or Darwin curve, can be determined from Eq. 2.16,

when the term under the square root is 0. Therefore, for non-deformed crystal, from Eq. 2.5 we

can calculate the width of rocking curve:

∆Ewidth = 2|χh|/ sin θB . (2.17)

In practice, within the width in Eq. 2.17 the intensity of X-rays decays exponentially with depth

due to a growing fraction of diffracted intensity. The thickness at which the intensity decays by

a factor of e is called extinction length lex = sin θBλ/πχh[27]. For silicon lSi
ex = 1.5 µm at 9 keV,
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such that the limit of an infinite crystal in Eq. 2.16 is reached at a thickness of a few µm.

2.3 Evolution of crystal temperature under pulsed heat

load and its effect on the X-ray diffraction in monochro-

mators

At European XFEL, strong heat load on X-ray optics and crystals in particular was foreseen

during the conceptual design of the facility [30] and remains an important topic. Simulation of

pulses absorption in crystal, heat flow and diffraction is required for the design of crystal optics.

Monochromators are widely used at XFELs, and their thermal stability under intense pulses needs

to be studied. One of the straightforward ways to simulate the heating and deformation of crystals

under XFEL pulses is to use Finite-Element Analysis (FEA) software, such as COMSOL or

ANSYS. FEA has been used in combination with a simple diffraction model [28, 29] for simulation

of crystal optics performance under intense XFEL pulses. However, since FEA packages are

commercial products, their source code is unavailable. That way, one cannot verify all steps of

the calculations, which might lead to failures in the design of optical devices. Moreover, the

complexity of FEA software requires an expertise in order to do simulations, and simulations

are time-consuming. Here, a transparent one-dimensional heat flow model is introduced, whose

implementation in Python is available to the public [31]. A theoretical justification of the model

applicability under the given conditions is presented, and the simulation results are compared

to experimental data. The code also contains a diffraction module, which allows to simulate

the diffraction of X-rays in a deformed crystal. The code is designed specifically for silicon

monochromators under high-repetition XFEL radiation and can be used by a broad community.

For the simulation of heat absorption and transfer, the crystal is divided into n cylindrical

shells with inner radii of ri = (i − 1) · dr. i varies from 1 to n and the outer radii of the ith

shell is ri + dr where dr is the thickness of each cylindrical shell [32]. Along the surface normal

direction cylinders are divided into m layers of dz thickness and the position of the jth layer in

the depth coordinate is zj = j · dz, where j varies from 1 to m.

Let us consider a Gaussian pulse whose depth-radial intensity profile reads

I(ri, zj) = I0S(ri)
exp(−r2

i /2σ
2) exp(−zj/a)

2πσ2a
dz, (2.18)
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Figure 2.5: The schematics of the heat flow simulation model. Black and blue curve denote the
exponential profile of heat deposition along depth and Gaussian profile along surface, red wave
arrows denote the heat flow calculations using Eq.2.22. The temperature of the bottom layer is
constant as per boundary conditions in Eq.2.23.

where I0 is the total pulse energy, S(ri>1) = 2πridr, S(r1) = π · dr2, σ = wequiv/2
√

2 ln 2 where

wequiv is the full-width at half maximum (FWHM) of the beam size at the crystal surface and

a is the depth at which the intensity of the beam decreases by a factor of e. Since the X-rays

impinge the crystal at an angle θ0, the pulse size wequiv = w/
√

sin θ0 is used for the simulations,

where w is the FWHM size of the pulse incident at an angle θ0. By using wequiv, we account

for the elliptical footprint of the beam in the circularly-symmetric model, such that the average

heat density is the same, such that in the cylindrical model average heat load surface is the same

as for the pulse with size w incident at an angle θ0. a = labs sin θ0, where labs is the absorption

length of X-rays at a given photon energy. We consider that all of the pulse energy absorbs, such

that we neglect the fact that a part of X-rays diffract and they do not contribute to the heating.

This can be justified since the diffraction takes place in a narrow bandwidth and in a heated

crystal X-rays are absorbed stronger since the diffracting regions of the crystal are located deeper

in the crystal.

The temperature of each cylinder layer with inner radius ri at depth zj is defined by the

heat absorbed per unit of mass. The absorption of an incident pulse and resulting heating are

considered to be instantaneous in comparison with the characteristic time for the redistribution

of temperature (see below for the estimations of the timescales using Eq. 2.25). The temperature
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Figure 2.6: Theoretical specific heat of silicon calculated by Debye model.

T0(r, z) at each radius r and depth z (indices of ri and zj are omitted) after the absorption of a

pulse is determined by the absorbed heat per unit of mass in the corresponding cylindrical shell

given by

ˆ T0(r,z)

Tinit

cp(T )dT =
I(r, z)

dz · ρS(r)
, (2.19)

where cp(T ) is the temperature-dependent specific heat of silicon that has been calculated as per

Debye’s model[33], ρ is the density of silicon (whose temperature dependence is neglected due to

small linear expansion, see Fig. 2.10) and Tinit is the initial temperature of the crystal.

Debye’s model considers that a cubic volume with a side Ld contains N molecules which

comprise a solid body. The oscillations of atoms in a solid body are defined by the temperature

and can be decomposed into group oscillations of atoms, i.e. phonons. Since the minimal scale

of the atomic oscillation wavelength is defined by the separation between atoms, the maximum

phonon number is npmax = 3
√
N . Phonon energy Ep = hpcsn

p/2L is defined for each phonon

number np, where hp is the Planck constant and cs is the speed of sound. The Bose-Einstein

distribution dictates that the fraction of phonons with energy E in the three-dimensional volume

N̄(E) = 3/(exp(E/kT ) − 1). Calculating the sum of energies of all phonons and taking a

derivative over time, we get the molar specific heat
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cDv = 9R

(
TD
T

)3 ˆ TD/T

0

x4ex

(ex − 1)2
dx, (2.20)

where R = 8.31J/g ·K is the gas constant and TD is the Debye temperature of a given material.

Specific heat cp can be calculated from Eq. 2.20 using

cp = cDv /M, (2.21)

where M is the molar mass of an element of interest. For instance, for silicon MSi = 28 g/mol,

such that according to Eq. 2.20 cp(T →∞) = 3 ·R/28 g/mol = 0.89 J/g ·K. Fig. 2.6 shows the

specific heat of silicon calculated using Eq. 2.20 and 2.21. Since for silicon TD = 648 K, one can

see that the temperature reaches a limit.

The temperature evolution with time T (t, r, z) is defined by the heat transfer equation which

in the depth direction is written as

∂T (t, r, z)

∂t
= D(T ) · ∂

2T (t, r, z)

∂z2
, (2.22)

where D(T ) = K(T )/ρcp(T ) is the temperature-dependent thermal diffusivity and K(T ) is

the temperature-dependent thermal conductivity [34]. Let us analyze how the heat transport

properties of silicon change during the heating. Below, the heating of silicon from 100 K up to

300-500 K will be studied, therefore let us analyze the thermal conductivity properties of silicon

in that range of temperatures.

A linear rise of specific heat in Fig. 2.6 and a logarithmic decrease of heat conductivity in

Fig. 2.7 lead to a rapid decrease of heat diffusivity in Fig. 2.8 with increasing temperature.

Therefore cryogenic temperatures of 100 K and lower are preferred in terms of effective heat

dissipation.

The boundary conditions for (2.22) are

T (0, r, z) = T0(r, z),
∂T

∂z

∣∣∣∣
z=0

= 0, T (t, r, z = zm) = Tinit, (2.23)

which correspond to the absence of heat exchange at the crystal surface and a constant temper-

ature Tinit at depth zm. The geometry of the calculation mesh, heating and heat flow is shown

in Fig. 2.5. This is demonstrated in Sec. 3.3.

When a second pulse arrives at an instant t1, the temperature profile T ′(t1, r, z) is defined
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Figure 2.7: Heat conductivity K(T ) of silicon [34].

analogous to Eq. (2.19):

ˆ T ′(t1,r,z)

T (t1,r,z)

cp(T )dT =
I(r, z)

ρ · dz · S(r)
. (2.24)

Let us analyze Eq. (2.22) in order to estimate the characteristic timescale of heat transfer

in the radial and depth directions. The pulse and crystal parameters for the estimations would

be as follows: Tinit = 100 K, FWHM beam size around 500 µm, a = 21 µm corresponding to

labs = 97 µm and θ0 = 12.7°, which is the Bragg angle for Si(111) reflection at 9 keV photon

energy. For silicon, D(100 K) ≈ 28 cm2s−1. Considering the heat flow equation (2.22), the

characteristic time for the disappearance of temperature gradient over a distance L can be

estimated as

tchar(L) ∼ L2

D
. (2.25)

Let us consider the estimate of the distance in Eq. (2.25) in radial direction Lr = 1173 µm,
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Figure 2.8: Heat diffusivity D(T ) of silicon calculated using heat conductivity [34], Debye model
specific heat and silicon density.

which is equal to the beam footprint, and in depth direction Lz = a = 21 µm. For the heat

redistribution in the radial direction, tchar,r = tchar(Lr) = 498 µs, whereas in the depth direction

tchar,z = tchar(Lz) = 160 ns. Hence tchar,r >> tchar,z.

Figure 2.9: The distribution of pulses at European XFEL in time.

The structure of pulses in time is shown in Fig. 2.9. Individual pulses are delivered with a

separation of at least 220 ns which arrive in so-called ”trains” of several hundreds of pulses. Trains

arrive with an interval of 0.1 s. The duration of pulses at European XFEL is estimated to be

∼10-100 fs, which is many orders of magnitude shorter than the characteristic heat redistribution

time, see Eq. (2.25). Therefore the assumption of instantaneous heating of the crystal by a pulse
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is justified. Moreover, the delay time between individual pulses at European XFEL is typically

between 220 and 880 ns which is about two orders of magnitude smaller than tchar,r. Thus

neglecting heat flow in the radial direction is justified from one pulse to the next one inside

the pulse train. However, tchar,z is of the same the order as the time delay between pulses and

therefore heat flow in the depth direction during a train must be accounted for in the simulations.

On the other hand, the 0.1 s interval between pulse trains is much larger than both tchar,r and

tchar,z and therefore, by the time the next pulse train arrives, the crystal has fully recovered to

the initial temperature.

In the experiment, the crystal is 2.5 cm thick and is kept at a constant cryogenic temperature.

Therefore, the last of boundary conditions in Eq. (2.23) defining a constant temperature at depth

zm is applicable.

The beam induced heating of the crystal described in the previous section causes a defor-

mation of the lattice, which is different in each point of the crystal. Considering dynamical

diffraction, only the component of the deformation normal to the crystal surface is relevant in

the case of symmetrical Bragg diffraction, since this affects the lattice spacing used in Eq. (2.2).

In order to estimate the effect of crystal deformation on the diffraction, we consider the heating

of the crystal on the surface, i.e. at z = 0. The lattice deformation ε(t, r) in the direction normal

to the crystal surface caused by heating from Tinit to T (t, r, z) is defined by the accumulated

expansion and

ε(t, r) ≡ ∆d(t, r)

dinit
=

ˆ T (t,r,z=0)

Tinit

αT (T ) dT, (2.26)

where αT (T ) is the temperature-dependent linear expansion coefficient of silicon which is close

to zero near 100 K [35], dinit is the lattice spacing at temperature Tinit, d
Si
init = 3.1415 Å for

silicon, and ∆d(t, r) is the lattice spacing change after heating from Tinit.

Fig. 2.10 shows the temperature dependence of silicon linear expansion. When the tempera-

ture rises from 100 K, the linear expansion crosses the zero value, which means that even when

the crystal gets heated, its deformation is small and thus diffraction is not strongly affected.

We consider that Eq. (2.16) defines the reflection amplitude at each point of the crystal

surface. At a given photon energy E the total reflection intensity from the crystal is defined as

an integral of Eq. (2.16) over the crystal surface
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Figure 2.10: Linear expansion αT of silicon [35]. Since linear expansion is on the order of 10−6,
even when heated by several hunderds of K, the volume increases by a factor of around 10−4,
such that the constant density is justified in the heating simulations.

IE (E, t) ∼
rnˆ

0

|R (E, t, r) |2 · exp

(
− r2

2σ2

)
r

σ2
dr. (2.27)

In Chapter 3, the studies of hard X-ray double-bounce monochromators are presented. In

such devices X-ray pulses undergo two consecutive reflections from two crystals that are kept at

cryogenic temperatures. The spectral width of the Bragg reflection of Si(111) at 9 keV, as shown

in Fig. 2.4, is ∼1 eV, whereas the spectral width of the XFEL pulses is ∼20 eV according to the

simulations of SASE pulses [36]. Therefore, since only a narrow fraction of X-rays is reflected
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by the first crystal of the monochromator, we assume that the second crystal remains unheated

and thus non-deformed and oriented parallel to the first crystal. Therefore, for a given photon

energy the reflection intensity from two crystals can be calculated as

IE (E, t) ∼
rnˆ

0

|R0 (E, t, r) |2 · |R (E, t, r) |2 · exp

(
− r2

2σ2

)
r

σ2
dr, (2.28)

where |R0 (E, t, r) |2 is the reflection amplitude (2.16) for the non-deformed crystal, i.e. ε (E, t, r) ≡

0.

The reflectivity from two crystals IR (t) case can be calculated as an integral of the reflection

amplitude (2.28) over the photon energies as follows:

IR (t) ∼
ˆ

∆E0

IE(E, t)dE, (2.29)

where ∆E0 is the range of photon energies.

2.3.1 Python implementation of the heat deposition and propagation

model

The integrals in Eqs. 2.19, 2.24 and 2.26 are calculated using interpolation.

Figure 2.11: The code for definition of the temperature in Eq. 2.19 and deformation in Eq. 2.26.

Fig. 2.11 shows the pieces of code which implement the integrals in Eq. 2.19 and Eq. 2.26.

T arr is the array of temperatures with 0.1 K step, cp arr interpolates the loaded specific heat

array to T arr, heat int calculates the amount of energy per unit of mass required to heat
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up the sample from the minimal temperature to all temperatures T arr. That way, having an

amount of deposited heat calculated with Eq. 2.18, which is heat pulse ip in Fig. 2.11, we can

calculate the two-dimensional temperature distribution T pulse. The deformation deform x

is calculated the same way, where deform init is the relative deformation that would be

accumulated during heating from Tinit to temperatures T pulse.

Figure 2.12: The code for heat flow defined by Eq. 2.22.

Fig. 2.12 shows how heat flow is implemented in code. The number of steps iter num is

selected such that the time step of the heat flow calculation is sufficiently small for the calcula-

tion not to have numerical errors. The heat flow is calculated for the temperature distribution

T pulse z along depth for each radius. The thermal conductivity lambda pulse and spe-

cific heat cp pulse are calculated for each temperature. T pulse z[-1]=T init the third of

boundary conditions in Eq. 2.23. T pulse m1 is needed to calculate the gradient of temperature

which is then used to calculate the heat flow j ip defined by the temperature gradient. For a

given layer, the temperature change is defined by the difference of incoming and outcoming heat,

as defined in dT dt.

The step along depth dz needs to be sufficiently small for the calculation to have no errors.

The maximum depth is by the intensity of pulses and duration of train. Practically, for the

given parameters a user needs to gradually increase the maximum depth to an extent when

further increase of depth does not affect the temperature distribution, i.e. such that temperature
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distribution converges.

2.3.2 Takagi-Taupin approach to diffraction in deformed crystals

In Sec. 2.3, diffraction is considered as in a semi-infinite crystal with deformation Eq. 2.26, which

does not account for diffraction in the crystal volume. Takagi-Taupin equations allow to calculate

diffraction of X-rays in a two-dimensional mesh with a given deformation in each point, such

that diffraction can be simulated for the two-dimensional temperature profile.

Having two-dimensional deformation distribution, it is feasible to calculate the diffracted in-

tensity at crystal surface taking into account the diffraction in the crystal volume. The method

of numerical implementation of Takagi-Taupin equations is presented in [37]. Below, the the-

ory is briefly introduced and simulations of diffraction for sample two-dimensional temperature

distributions are presented.

We can analyse the effect the deformation gradient has on the formation of diffracted wave

using Fig. 2.13. The deformation field from COMSOL calculated in radial symmetry is mirrored

along R = 0 line to provide the mesh for Takagi-Taupin equations. The deformation has a strong

gradient near R = 0 and z = 0, which leads to weak diffraction near z = 0 and x = 0. Further

from the center, the deformation gradient is weaker, and diffraction is stronger.

In Sec. 2.2, the wave equation Eq. 2.7 is solved using Eq. 2.8, where the amplitudes of

incident and diffracted waves A0,h are constant and the resulting electric field is defined by the

periodic susceptibility. In non-uniform crystals, e.g. deformed, the absence of periodicity makes

it impossible to use Eq. 2.8 that considers a uniform crystal. Instead, incident and diffracted

electric fields E0,h need to be calculated for each point of the crystals in order to account for the

varying deformation. At each point of crystal volume, the increment of the diffracted wave along

the diffracted wave direction can be calculated according to Takagi-Taupin equations [37] by

∂Eh(r̄)

∂sh
∼ [χ0Eh(r̄) + χh exp{−ihuz(r̄)}E0(r̄)] , (2.30)

where Eh is the amplitude of diffracted field, sh is the step along diffracted wave direction,

χ0, χh are susceptibility Fourier components, h = 2π/d is the reciprocal lattice vector, d is

lattice spacing, uz(r̄) is the lattice deformation at each point, E0 is the amplitude of incident

field. The term exp{−ihuz(r̄)} oscillates along diffraction direction when uz(r̄) changes by d.

The increment of the electric field along the transmitted wave direction can be calculated using
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Figure 2.13: Two-dimensional deformation calculated with COMSOL (top) and the intensity of
diffracted wave calculated using Takagi-Taupin equations (bottom).

∂E0(r̄)

∂s0
∼ [χ0E0(r̄) + χh exp{−ihuz(r̄)}Eh(r̄)] , (2.31)

where s0 is the step along incidence direction.

We can observe an increasing temperature gradient when we approach the hottest point of

the crystal. This explains the characteristic oscillations in the intensity plot in Fig. 2.13 whose

period gets smaller the closer one look to the point x = z = 0.

An example of Takagi-Taupin equations solution for non-deformed crystal and slightly de-

formed crystal is shown in Fig. 2.14. With no deformation, for the first pulse, the reflection

amplitude is the same for all points of crystal surface, therefore the reflected pulse is Gaussian.

For the deformed crystal, diffraction is defined by the deformation gradient. When deformation
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gradient is non-zero, the diffracted intensity reduces along the direction of X-rays incidence due

to the rapidly changing lattice spacing. This, in turn, violates the constant lattice spacing con-

dition required by Bragg law and the diffracted intensity is reduced. When deformation gradient

reaches values close to zero, the diffracted intensity increases. Therefore, one can see the correla-

tion between the reflection amplitude and the gradient of deformation. Due to diffraction effects,

however, there’re oscillations which originate from the X-rays that undergo diffraction deeper in

the crystal. Using Takagi-Taupin equations one can account for diffraction of X-rays at various

depths, absorption during propagation in crystal volume of diffracted X-rays and their effect on

the electric field at crystal surface.

For stronger deformation in Fig. 2.15, the deformation gradient reaches such high values in

some areas that there’s no reflection.

In all, the solution of Takagi-Taupin equations enables to calculate the diffraction in a crystal

with an arbitrary deformation in each point of the crystal. This can be required to take into

account the temperature gradient in the crystal volume or the elastic deformations in the crystal.

For instance, the account of temperature gradient in the volume can introduce new diffraction

effects compared to Sec. 2.3.
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Figure 2.14: The intensity of the incident Gaussian pulse (blue) at crystal surface, diffracted
intensity at crystal surface (red) and the relative deformation gradient at crystal surface (green)
for the first and third pulse in a train. For the 1st pulse, there’s no deformation. Simulations
are done for Si(111) reflection 9.005 keV photon energy when the X-rays are incident at an angle
where the exact Bragg condition is satisfied for 9 keV. Two-dimensional deformation distribution
is calculated using COMSOL. The vertical axis on the left denotes the intensities, on the right -
deformation gradient along diffraction direction, the units of the gradient are in arbitrary units
and the scale of gradient is the same as in Fig. 2.15.
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Figure 2.15: The intensity of the incident Gaussian pulse (blue) at crystal surface, diffracted
intensity at crystal surface (red) and the deformation gradient at crystal surface (green) for fifth
and tenth pulse in a train. Simulations are done for Si(111) reflection 9.0005 keV (corresponding
to 0.5 eV shift from the central photon energy 9 keV, as shown in plots titles) photon energy
when the X-rays are incident at an angle where the exact Bragg condition is satisfied for 9 keV.
Two-dimensional deformation distribution is calculated using COMSOL.
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2.4 Effect of asymmetric diffraction on spatial properties

of x-ray pulses and its applications at experiment

Prior to the discussion of the wavefront propagation results, we analyse the effect of asymmetric

diffraction using geometrical considerations. In Fig. 2.16 a sketch of asymmetric Bragg reflection

is shown. The angle of incidence ϑ0 = ϑB + ψ and the reflection angle ϑh = ϑB − ψ, where ψ is

the asymmetry angle and ϑB is the Bragg angle for a given reflection and photon energy. The

reflected pulse slippage (shown in yellow) is defined by the difference between the projections of

the footprint on the incidence direction (dotted green line) and on the reflected pulse propagation

direction (magenta line). The ratio of the ”slippage” and the reflected wavefront size in the

propagation direction (shown in red) defines the skew angle ϕ for the asymmetric Bragg case:

tanϕ =
cosϑh − cosϑ0

sinϑh
. (2.32)

Figure 2.16: Geometry of the asymmetric Bragg case. Due to identical optical paths for the
incident and reflected pulses (shown in dashed green lines), the reflected wavefront (shown in blue)
is not perpendicular to the propagation direction after diffraction. The yellow line represents
the optical path difference of the edges of the wavefront relative to the propagation direction.
Dotted lines inside the crystal represent the diffraction planes for an asymmetry angle of ψ = 5◦.

For Laue diffraction, the skewness is present in case of any angle between the diffraction

planes and the surface. For the sake of simplicity, let us consider the symmetric Laue case.

Fig. 2.17 shows the geometry of the reflection. In comparison to the asymmetric Bragg case,

the slippage is represented by the sum of the projections of the footprint (dotted green line and

magenta line). Due to the symmetry of the reflection, the wavefront size in the propagation

direction does not change after diffraction. Therefore, the skew angle ϕ can be calculated from

the following condition for the symmetric Laue case:
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Figure 2.17: Geometry of the symmetric Laue case. The line colors denote the same as in
Fig. 2.16.

tanϕ = 2 tanϑB . (2.33)

Let us demonstrate the effect of asymmetric diffraction on wavefront. Simulations are done

using WavePropaGator (WPG) package [38] which is described in detail in Sec. 2.5. Diffraction

of a self-amplified spontaneous emission (SASE) pulse with mean photon energy of 12.4 keV

and duration of several tens of fs has been simulated. The electron bunch for the generation of

such a pulse has a nominal charge of 100 pC with an electron energy of 17.5 GeV. The electric

field of the pulse is generated using the code based on FAST algorithm [39] that is available

online in the form of a database of pre-calculated photon fields for various configurations of the

undulator and electron beam at European XFEL[36, 40]. In order to reduce the complexity,

the pulse characteristics at the exit of the undulator is used in the simulations. The diffraction

is considered in a Laue Si(111) 150 µm thick crystal oriented to have a maximum diffraction

amplitude at 12.4 keV. In this case the lattice spacing is d = 3.14 Å and ϑB = 9◦, which results

in a skew angle of ϕ = 18◦ according to (2.33). Fig. 2.18 shows the on-axis time structure

and photon energy spectrum of a pulse and a narrow ∼ 8 eV region of the spectrum where the

diffraction takes place.

The intrinsic asymmetry of Laue diffraction leads to a rapid change of the pulse structure after

diffraction. Moreover, the pulse consists of two intense parts which merge during propagation.

In Fig. 2.19 the intensity profile is shown at various distances from the crystal. At distances
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Figure 2.18: Left: simulated time structure (top) and spectrum (bottom) of a pulse at European
XFEL, nominal bunch charge 100 pC; right: the portion of the spectrum where diffraction takes
place before (top) and after (bottom) the crystal.

as short as several tens of centimeters the intensity profile in the scattering plane changes from

having two intense areas into one pulse. Such an effect has previously been demonstrated for the

diffraction of a sub-fs Gaussian pulse in two dimensions of the scattering plane [41]. In Fig. 2.20

it is explicitly demonstrated that at different y positions (across the beam) the pulse arrives

at different times due to the skewness. At 2 cm from the crystal, the intensity profile has two

intense areas with a tilt defined by the geometry of the reflection. For the given photon energy

and reflection, from (2.33) the estimated skew angle agrees with the simulated profile.

Figure 2.19: Simulated intensity profile of the diffracted pulse in the diffraction plane at vari-
ous distances from the crystal. The y-coordinate is across the beam and z is along the beam
propagation direction.

In a recent experiment asymmetric Bragg reflections have been used for a variable split-and-

delay line[42] at Linac Coherent Light Source (LCLS). In such a system one part of the pulse

undergoes a series of symmetric reflections, the other undergoes 2 symmetric and 2 asymmetric
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Figure 2.20: Simulated intensity profile of a diffracted SASE pulse in the scattering plane 2 cm
after the crystal with the theoretical estimation of the skew angle (left) and its cuts in time at
various y coordinates (right).

reflections. When the two pulses were temporally overlapped, an interference pattern was ob-

served. In Fig. 2.21, simulations for the same scheme are presented. A 0.2 fs Gaussian pulse with

amplitude waist 20 µm is considered at 100 meters from the waist. Such spatial parameters for

the definition of the pulse provide the beamsize similar to the one used at experiment. The mean

photon energy is 9.5 keV, the crystals are Si(220) and for the asymmetric crystals the miscut is

5◦. The lattice spacing for the given reflection is d = 1.92 Å and ϑB = 20◦. Hence, the angle

of incidence is ϑ0 = 25◦ and ϑh = 15◦ is the direction of the reflected pulse. At the experiment

with the variable split-delay line, 2 consequent asymmetric reflections were used. Applying the

same procedure twice that led to Eq. (2.32) the resulting skew angle ϕ2 after two asymmetric

Bragg reflections can be calculated from

tanϕ2 =
cosϑh − cosϑ0

sinϑh

(
1 +

sinϑ0

sinϑh

)
= tanϕ

(
1 +

sinϑ0

sinϑh

)
. (2.34)

For the given reflection and photon energy one finds ϕ2 = 31◦. This estimation is in agreement

with the simulated skew angle shown in Fig. 2.21. Possibly, the skew wavefront leads to the

almost twofold decrease of speckle contrast observed in the experiment. Similar deteriorating

effects in imaging experiments have previously been demonstrated with synchrotron radiation

[43]. However, in optical experiments tilting of the wavefront has been used to the benefit of
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Figure 2.21: Simulation of the pulse propagation through a variable-channel cut split-delay sys-
tem[42]: profile of the diffracted 0.2 fs Gaussian pulse in the scattering plane after 2 asymmetric
and 2 symmetric reflections, the pulse propagates in the direction of negative z.

certain experiments [44] and it is demonstrated below how this could be transferred to the X-ray

domain. In general, all optical elements from the undulator exit to the sample, such as mirrors

and compound refractive lenses (CRLs), inevitably will distort the wavefront and change the

angular divergence of the beam.

2.4.1 Laue diffraction case

In Fig. 2.19, propagation of a SASE pulse was studied at short distances which are feasible at

experiment. It is however of physical interest to investigate the effect long distance propagation

would have on the wavefront. For that, let us analyse how the wavefront of a Gaussian pulse

evolves after Laue reflection, with and without lens inserted before crystal. The focal length of

the lens in simulations was 0.475 m, such that the experimentally feasible distances of several

meters would have a strong effect on the wavefront shape.

Fig. 2.22 shows the spectrum of a pulse before and after Laue diffraction. After diffraction,

the spectrum has oscillations characteristic of Laue diffraction. This leads to the characteristic

temporal structure shown in previous section. For the evolution of wavefront in free space,

however, it is of greater interest how the pulse looks like in the reciprocal space. The angular

spectrum, which is the wavefront in reciprocal space, is shown in Fig. 2.23. Without lens, the
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Figure 2.22: Photon energy spectrum of a Gaussain pulse whose bandwidth is 0.4 eV FWHM
(top) and the spectrum after diffraction in a C(220) Laue crystal, central photon energy 9 keV.

angular spectrum has two distinct peaks which lead to the redistribution of intensity in the

scattering plane seen in Fig. 2.19. At longer distances, as shown in Fig. 2.24, this leads to the

spatial disintegration of the pulse and appearance of oscillations.

In case of lens inserted before crystal, only the pulse divergence in horizontal direction can

be observed, as shown in Fig. 2.25. Due to the strongly defocussing lens the angular spectrum

of the diffracted pulse does not have two peaks, and therefore no redistribution in the scattering

plane takes place. Since the angular spectrum in horizontal direction, where no diffraction takes

place, is much wider, as seen in Fig. 2.23, one can only observe strong divergence in horizontal

direction.
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Figure 2.23: The wavefront in reciprocal space (angular spectrum) of a pulse after diffraction in
Laue crystal without lens (left) and with lens (right) before crystal.
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Figure 2.24: Wavefront in scattering plane (left) and the plane normal to propagation direction
(right) of the pulse after Laue diffraction at various distances.
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Figure 2.25: Wavefront in scattering plane (left) and the plane normal to propagation direction
(right) of the pulse after Laue diffraction at various distances with lens inserted before crystal.
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2.5 Asymmetric diffraction implementation in SRW soft-

ware

WavePropaGator (WPG) framework [38], which is based on Synchrotron Radiation Workshop

(SRW) [45], provides a user-friendly environment for propagation of XFEL wavefront through

various optical elements.

In this section, upgrades to SRW towards Laue diffraction are reported. The theoretical

framework for describing Laue diffraction is reviewed, followed by the introduction of various

upgrades to the code. Due to the asymmetry of diffraction, the wavefront is not perpendicular to

the propagation direction after diffraction, i.e. the wavefront is skewed. This effect is discussed

within the framework of geometrical optics. The wavefront is simulated for a typical XFEL pulse

after Laue diffraction and in asymmetric Bragg reflection the wavefront of a Gaussian pulse is

simulated and compared with a recent experimental observations. Control of the wavefront

skewness has the potential of improving certain X-ray scattering measurements.

The current version of SRW only provides the option of Bragg diffraction in crystals. The

difference between the Laue and Bragg cases is illustrated in Fig. 2.26. In the symmetric Laue

case, the diffraction planes are normal to the surface, thus the reciprocal lattice vector H is

parallel to the surface, whereas in the symmetric Bragg case H is normal to the surface.

Figure 2.26: Geometry of the normal n and tangent t to the crystal surface, and the reciprocal
lattice vector H for the symmetric Bragg and Laue cases.

Given that alphrd in the piece of code (Fig. 2.27) is the angle between the diffraction planes

and the surface, the notation is valid for both Laue and Bragg case. That is, in the symmetric

Laue case, alphrd = π/2. The diffracted and transmitted amplitudes (Fig. 2.28) are calculated

using the formulae for the theory of dynamical diffraction of X-rays[27]. The suggested upgrades

to the fraction of the code have been done in a local copy of SRW repository.
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Figure 2.27: Definition of the components of the reciprocal lattice vector m HXAi in SRW.
Component [1] corresponds to the direction along the normal to the crystal surface, [2] - along
the tangent to the surface, [0] is perpendicular to [1] and [2]. m dA is the lattice spacing of a
given reflection.

Figure 2.28: Definition of transmission and reflection amplitudes for Laue and Bragg cases.

2.6 Conclusion

The presented theoretical models and simulations allow to simulate various effects of dynamical

diffraction of XFEL pulses in crystals. The model for effect of heating on diffraction can be used

to simulate the performance of crystal optics devices under high heat load. It was shown that

a significant widening of the crystal throughput bandwidth is caused by heating, which hinders

monochromator performance. The Python code is publicly available, transparent to the user

and can be easily modified. The results using Takagi-Taupin approach are a first step towards

wavefront propagation simulations of pulses after diffraction in deformed crystals. Asymmetric

diffraction was studied using wavefront propagation. It was demonstrated that there’s wavefront

inclination which might benefit coherent scattering experiments. An upgrade to WPG software

towards Laue diffraction was presented, which enables wavefront simulations of diffraction in

Laue case.
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Chapter 3

Performance of cryo-cooled

monochromator under MHz

repetition rate XFEL pulses

Firstly, this chapter provides an overview of the monochromators application at modern X-ray

sources and how coherence scattering experiments benefit from them. By selecting a narrow

fraction of the incident pulse spectrum, the monochromator improves temporal coherence of the

pulses. With a longer coherence time, a larger volume of the scattering sample contributes to

the coherent scattering and thus the signal gets improved. The pules at XFELs have such a

high energy that monochromator crystals can be significantly heated and thus deformed to such

an extent that the lattice deformations have a noticeable impact on the diffraction. The last

section of this chapter addresses the heating of the cryo-cooled monochromator under intense

X-ray pulses. The fundamental principles and framework of heating simulations are presented,

followed by an overview of measurements of monochromator performance and their comparison

with simulations.

3.1 Crystal monochromators at modern X-ray sources

To achieve the maximum transmission an avoid scattering from air X-rays are typically trans-

ported in vacuum at synchrotrons and XFELs. For instance, ID17 of European Synchrotron
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Radiation Facility (ESRF) a pressure of 10−7 torr is used[46], whereas at EuXFEL a lower

pressure of 10−10 mbar (= 0.75 · 10−10 torr) is the design goal [23, 30].

Figure 3.1: Sketch of monochromator at ID17 beamline of ESRF [46]. The high-heat load pre-
monochromator (PM) has Si(111) water-cooled crystals and X-rays are further monochromatized
by high-resolution monochromator (HRM).

One of the issues of X-ray monochromators at modern sources is the heat load. At ID17 at

ESRF, the first monochromator [46] operating with Si(111) reflections is designed to reflect at

a small angle and thus receive a lower density of X-rays at surface, which allows to monochro-

matize the beam without significant deformations to the lattice. The bandwidth of the white

beam radiation at ESRF is several percent of the central photon energy [47]. The monochro-

mator enables to reduce the bandwidth by two orders of magnitude down to around 10−4. This

high heat load monochromator is constantly cooled by water. That way, the second high-order

reflection monochromator that receives X-rays at almost 90 degrees incidence angle and reduces

the bandwidth even further, down to 10−5 and less, does not receive as high heat load as the

first monochromator.

At EuXFEL, an artificial channel-cut monochromator is used whose sketch is shown in

Fig. 3.2. Such design allows to maintain the parallel orientation of crystals during rotation.

A piezo device attached to the top crystal allows for a finer alignment of the second crystal

relative to the first crystal.

The exceptional heat load produced by pulses with mJ energy arriving at MHz repetition

rates at EuXFEL pose challenges on X-ray optics. The silicon crystal monochromators operate

at cryogenic temperatures at EuXFEL since the linear expansion coefficient of silicon is close to

zero at such conditions, which leads to minimal lattice deformations due to heating by incident

pulses. Moreover, the heat conductivity of silicon is higher at low temperatures, such that the
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Figure 3.2: Scheme of artificial channel cut monochromator (ACCM). Linear translation at the
bottom allows for simultaneous rotation of crystals.

heating induced by impinging pulses is effectively dissipated into the bulk. At EuXFEL, helium

gas is used to enable the effective cooling of the silicon crystals down to cryogenic temperatures

of around 100 K [23]. Compared to another widely used cooling agent nitrogen, helium has heat

capacity of 5 · 103 J · g/K in gaseous state, which is 5 times higher than heat capacity of nitrogen

[48].

Despite the cryogenic conditions, at MHz repetition rates and mJ pulse energy the impinging

power is so large that even at cryogenic conditions the heating affects monochromator perfor-

mance. Sec. 3.3 uses the theory developed in Sec. 2.3 to analyze the effect sub-mJ pulses arriving
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at MHz repetition rate have on the performance of a cryo-cooled silicon monochromator.

3.2 Benefits of using monochromatic XFEL pulses at co-

herent scattering experiments

Figure 3.3: Time structure and spectrum of SASE pulse before and after Si(111) reflection.
Time structure (a) and spectrum of a SASE pulse (b) produced from 100 pC electron bunch at
12.4 keV simulated with a package based on [49]. c) shows the the time structure of the pulse
after reflection and d) is the spectrum after the reflection, the blue curve shows the Darwin curve
of Si(111). The crystal cuts out a narrow portion of the incident spectrum corresponding to the
Darwin width, see b) and d).

As described in Sec. 1.1, SASE pulses have a chaotic temporal structure. Fig. 3.3a) shows a

typical temporal structure of a SASE pulse. It has short peaks with ∼0.2 fs duration, which is

the coherence time of SASE pulses at EuXFEL [50], see Fig. 3.3a). The duration of such spikes

is defined by the SASE process, while the duration of the whole pulse is affected by the charge

of the electron bunch and compression during acceleration and propagation through undulators.

Different spectral components of a pulse diffract differently, therefore, in order to simulate the

diffraction of the pulse, one needs to first perform Fourier transform of the temporal structure

of the electric field to calculate the spectrum. Fig. 3.3b) shows the frequency spectrum of the

sample SASE pulse. The width of the spectrum is, according to Fourier transform principles,

inversely proportional to the width of spikes in time structure, and the width of peaks in spectrum

50



CHAPTER 3. PERFORMANCE OF CRYO-COOLED MONOCHROMATOR UNDER MHZ
REPETITION RATE XFEL PULSES

is inversely proportional to the duration of the pulse. For SASE pulses at EuXFEL [40, 49] the

relation holds ∆E · τ ' 2eV · fs, where ∆E is the FWHM of spectra and τ is the pulse duration

at FWHM. This relation satisfies Heisenberg’s uncertainty principle ∆E · τ ≥ ~/2 ∼ 0.3 eV · fs

which defines the relation between the spectrum width and duration of a Gaussian pulse.

After diffraction in a crystal only a narrow portion of spectrum remains which is around

1 eV wide, compare Fig. 3.3b) and d). That way, the spectrum consists of a fewer number of

modes, which increases the temporal coherence. This leads to the temporal structure of the pulse

after diffraction having wider peaks with duration of several fs, see Fig. 3.3a) and c). Due to a

huge portion of the spectrum being cut out, the pulse loses around three orders of magnitude

in intensity, compare Fig. 3.3a) and c). However, at coherent scattering experiments such as

X-ray Photon Correlation Spectroscopy (XPCS) in Wide-Angle X-ray Scattering (WAXS) the

speckle contrast depends on the so-called coherence volume, which is defined by the coherence in

both time and space [17, 18]. Since the spatial coherence is not affected by the diffraction (the

angular divergence of pulses at EuXFEL is well below the rocking curve width of Si(111) at 12.4

keV), the increased temporal coherence after reflection from crystal results in a larger coherence

volume, which, in turn, increases the speckle contrast. At such experiments, one should estimate,

based on a signal-to-noise calculation, whether the increased contrast is justified compared to

the several orders of lost intensity. In case of significant heat-induced deformation, however, the

diffraction can disturb the wavefront thus affecting the spatial coherence of the pulse. The effect

of diffraction in deformed crystals is simulated in Secs. 2.3.2 and 3.3.

Studying of material properties at small length scales requires tight focussing of X-rays on

the sample. Monochromatization eliminates chromatic aberrations that lead to various photon

energies being focused at various distances thus increasing the beamsize at a single selected

distance. Nanofocusing by chromatic optical elements like CRLs was simulated to benefit from

monochromatization [51].

3.3 Effect of heating on the monochromator throughput

at cryogenic conditions and CW mode considerations

This section uses the formulas developed in Chapter 2. Let us analyze the effect of the heating

on the monochromator performance using the following parameters: pulse size w = 549 µm,

repetition rate 2.25 MHz, Tinit = 100 K, pulse energy 1 mJ. The temperature reaches values in
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Figure 3.4: Simulations of the effect of heating on the cryo-cooled Si monochromator performance
[24]: simulated temperature profile at the surface for various pulses in a train, the legend provides
the number of pulse. Pulse size w = 549 µm, repetition rate 2.25 MHz, Tinit = 100 K, pulse
energy 1 mJ.

Figure 3.5: a) - simulated temperature profile at surface for various pulses in a train, the legend
provides the number of pulses, the dashed line defines the temperature at which the lattice
spacing is so large that the Bragg’s condition is one Darwin width away from the initial one, b)
- deformation at different radii for the temperature distributions in a). Parameters are the same
as in Fig. 3.4.

excess of 300 K after 20 pulses, see Fig. 3.4). In order to study the effect of heating on diffraction

we define the temperature at which the deformation is so large that the Bragg condition is a

Darwin width away from the initial situation, i.e. the TB that satisfies

ˆ TB

Tinit

αT (T ) dT = 2|χh|/ sin θB . (3.1)

Fig. 3.5a) shows the temperature at each radius with TB , and Fig. 3.5b) shows
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Figure 3.6: Reflection intensity along radius for different pulses in a train at three photon energies
(in figures titles) within Darwin width which is 1.2 eV, the intensity is in arbitrary units.

Figure 3.7: Darwin width (2.28) for the temperature distributions in Fig. 3.4, ∆E = 0, 0.3 eV
and 0.6 eV correspond to the center of the dashed black line, which is the Darwin curve for the
cold crystal, at a half and a full Darwin width. At the left edge of Darwin width, reflection
intensity decreases slower, which agrees with Fig. 3.4.

ε(r) =

´ T (t,r,z=0)

Tinit
αT (T ) dT´ TB

Tinit
αT (T ) dT

(3.2)
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using the deformation at TB calculated in Eq. 3.1. One can see, for example, that heating from

100 K to around 250 K (after 10 pulses) leads to the deformation of a single Darwin width,

whereas further heating by around 100 K leads to additional more than two Darwin widths

deformation in the beam center due to the rapidly rising linear expansion coefficient shown in

Fig. 2.10. By applying Eq. 2.16 to the deformation in Fig. 3.5 at various photon energies, we can

calculate how reflection intensity at each radius reduces during heating, as shown in Fig. 3.6. At

the central photon energy, for instance, where the Bragg’s condition is satisfied for non-deformed

crystal, deformation that corresponds to one Darwin width leads to a rapid decrease in reflected

intensity at r = 0. At lower photon energies, the exact Bragg condition is not satisfied initially

for the non-deformed crystal, and a stronger deformation is required for the reflection to reduce.

The radial profile of the diffracted field at surface allows to simulate wavefront propagation using

a Fourier optics approach. Moreover, by applying the two-dimensional temperature profile to

Takagi-Taupin equations presented in Sec. 2.3.2, one can account for the in-depth and radial

profiles of heating. This would require complex calculations and increased computational load.

Integrating the reflected intensity over the crystal surface for each photon energy, we can

calculate reflection curves for each pulse in a train, as shown in Fig. 3.7. In double-crystal

monochromators, reflection from two parallel crystals is used to keep the pulses propagating

in the same direction, therefore the transmission through the monochromator at each photon

energy is calculated as product of reflection of a heated crystal and cold crystal in Fig. 3.7, as in

Eq. 2.28. Due to the varying lattice spacing caused by deformation, the Bragg condition will be

fulfilled in a wider range of photon energies, but at each photon energy X-rays are only reflected

from a fraction of the crystal surface, such that the transmitted intensity is smaller than for a

cold crystal. This leads to rocking curves getting wider and less intense due to the heating. After

reflection from the second cold crystal, photon energies in its narrow bandwidth are transmitted,

such that the transmitted intensity for each photon energy is defined as the product of Darwin

curves for the cold and heated crystal. That is, for the example shown in Fig. 3.7, after 30 pulses

the integral of the product of the red and black dashed curves amounts to around 30% of the

initial transmission, i.e. black dashed curve, which is the integral of the Darwin curve for the

cold crystal.

Let us analyze how various pulse energies would affect the monochromator performance during

a train. At the bottom of the crystal the temperature is constant, according to boundary

conditions in Eq. 2.23, an any heat reaching that point will disappear, so we will further refer

54



CHAPTER 3. PERFORMANCE OF CRYO-COOLED MONOCHROMATOR UNDER MHZ
REPETITION RATE XFEL PULSES

Figure 3.8: The temperature profile along depth direction after 180 pulses for heat sink located
at 600 and 2000 µm, where the curves reach T = 100 K. Pulse energy 0.3 mJ, beam size 550 µm,
repetition rate 2.25 MHz. At this pulse energy, the 600 µm depth of heat sink is sufficient to
simulate provide the same temperature at surface as for 2 mm thick crystal, and a smaller depth
reduces the computational load.

to the crystal bottom as heat sink. If we compare the heat profile along depth for different heat

sink locations in Fig. 3.8, we can notice that the temperature at the crystal surface is the same.

Moreover, when the heat sink is at 2 mm, there’s significant heating only within the depth of

1 mm. In order to simulate heating at lower pulse energies, we would use heat sink located at

2 mm depth, since at lower pulse energies the same surface temperature would be achieved after

a larger number of pulses, such that a larger volume of crystal will be heated. In other words,

lower power will lead to the slower heating and heating profile along depth will be less abrupt,

such that the whole crystal depth will be heated.

Fig. 3.9 shows the transmission during a train, such that the same horizontal coordinate

corresponds to the number of pulses at which the impinged energy is the same. If we compare

2 mJ and 1 mJ energy, we see that the 1 mJ pulses cause weaker heating and the same time

interval between pulses leads to stronger heat dissipation, such that when 60 mJ have impinged

the monochromator, the transmission difference for 1 mJ pulses and 2 mJ pulses is 5% of the

initial transmission. With the decreasing pulse energy the tendency continues, such that at

0.1 mJ, for instance, the transmission after 600 such pulses is around 80% of the transmission of
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Figure 3.9: Monochromator transmission during a train for various pulse energies. Photon energy
9 keV, Si(111) reflection, heat sink has temperature 100 K located at 2 mm depth, size of incident
beam 550 µm. The plot shows the transmission for the total energy that has impinged to crystal
shown in the horizontal axis. 2 mm heat sink location is used in simulations for to compare the
heating of the same crystal under different conditions.

cold monochromator.

If we consider the same power delivered at different repetition rates (e.g. 450 W for 0.1 mJ

pulses at 4.50 MHz and 0.2 mJ pulses at 2.25 MHz, as shown in Fig. 3.10), the transmission is

the same. This means that the difference between repetition rates is not sufficient for the heat

flow to be significantly different, such that the heating is the same. At lower repetition rates

the longer time separation between pulses will lead to the deeper penetration of the heat, and a

deeper heat sink will be required in simulations.

SASE pulses have a random structure with a Gaussian envelope, such that on average the

pulses have a certain width defined by the coherence time. For instance, in Fig. 3.3 the spectrum

has a width of around 10 eV. In practice, the spectrum can be drifting in photon energy during

a train, which leads to the changing incident intensity within the transmission bandwidth. For

instance, if in the non-deformed state the monochromator is aligned to the maximum of a SASE

spectrum with 10 eV bandwidth FWHM, a 2 eV photon energy shift will lead to 10% decrease

of intensity within the bandwidth for the same alignment of monochromator.
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Figure 3.10: Monochromator transmission during a train for various pulse energies and repetition
rates. The heating does not depend on the incident power for the orange and green curves, such
that the curves overlap.

Several new FEL facilities [7, 8] are planning to operate in the so-called continuous wave (CW)

mode at repetition rates reaching the MHz regime. In this mode, the pulses are not divided into

trains and arrive at constant rate. Under CW illumination of MHz repetition rate and sub-mJ

pulse energy, the heat would penetrate deeper with each pulse, such that an active heat sink will

play a role. Even if an equilibrium temperature can be achieved, the deformation will be so strong

that the monochromator transmission would be small. Since the cooling capabilities of a given

device depend on the application of cryogenic parts to the crystal, the one dimensional model

with a uniform and constant temperature at the bottom introduced above is not applicable. FEA

software would enable the simulation of crystal heating in a given cooling device.

We can however roughly estimate the heat transfer properties under CW conditions using the

one-dimensional model. Fig. 3.11a) shows how the temperature in the center of beam footprint

increases when pulse energy is 0.1 mJ and repetition rate is 1.12 MHz, which corresponds to

significantly weaker heat load compared to the burst mode presented above. We see that despite

the weak heat load the temperature keeps rising approximately linearly.

If we look at temperature profile along depth in the beam center in Fig. 3.11b), we see that the
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Figure 3.11: a) - temperature in the center of the beam footprint of crystal surface, b) - tem-
perature profile along depth after 4000 pulses, the inset shows the heat diffusivity from Fig. 2.8.
Each pulse has 0.1 mJ energy, repetition rate 1.12 MHz.

temperature steadily decreases when getting closer to the bottom of the crystal. If we also take

into account that the heat diffusivity drops rapidly with rising temperature (inset in Fig. 3.11b)),

we can note that at the crystal surface that is facing the impinging X-rays the heat diffusivity is

weaker than at the bottom where the temperature is low and the heat diffusivity is larger. The

next incoming pulse would increase the temperature at each depth, and the temperature change

increases exponentially with depth, according to absorption in the crystal (at temperatures over

300 K specific heat in Fig. 2.6 does not change much). However, according to heat transfer

equation Eq. 2.22, the temperature decrease depends on the second derivative of temperature

along depth and the heat diffusivity. Over the 300 K difference along depth, the heat diffusivity

changes by a factor of around 30, such that for the given parameters the temperature distribution

would not reach an equilibrium. Probably, at a lower power such an equilibrium is feasible, since

at lower temperatures the heat diffusivity in the beam footprint center would be higher and it

would be sufficient for the heat to dissipate into the bulk for the given temperature gradient

along depth. Moreover, the heat dissipation both along the crystal surface and along the depth

might result in an equilibrium temperature.

At lower power, e.g. at synchrotrons with lower pulse energy and MHz repetition rates, or at

XFELs with ∼ 100 Hz repetition rate and sub-mJ pulses, the heating will be significantly weaker

compared to mJ pulse energy and MHz repetition rates, and the model presented here cannot

be applied since a larger volume of the crystal will be heated and the cooling will be defined by

the design of a given device. That is, the temperature gradient will be similar in both radial and
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depth directions, and the cooling mechanism of a particular device will need to be accounted for.

Moreover, due to the weak heating, the equilibrium temperature profile will likely have a weak

gradient that will not affect the diffraction and will be sufficient to dissipate the incoming heat.

3.4 Experimental studies of monochromator heat load

In order to measure the intensity of the pulses after the monochromator, a porous silica (Vycor)

sample was used to scatter X-rays in the forward direction (small-angle X-ray scattering, SAXS).

Figure 3.12: Selected components of MID station at European XFEL and their positions relative
to the source.

An overview of the beamline layout used at the experiment is shown in Fig. 3.12. The two-

dimensional intensity distribution of the beam was measured using the yttrium aluminium garnet

(YAG) screen imager device at the end of MID photon tunnel. The size of the beam was found

by applying a two-dimensional Gaussian fit to the intensity distribution, see Fig. 3.13a). The

horizontal FWHM width of the Gaussian fit wx = 607 µm, the vertical - wy = 496 µm; in the

simulations, w =
√
wxwy = 549 µm, such that the average density of the circular pulse that is

used in Eq. (2.18) is equivalent to the elliptical beam shown in Fig. 3.13a). The scattered SAXS

intensity was measured by the Adaptive Gain Integrating Pixel Detector (AGIPD) megapixel

detector, which is designed to acquire full-frame data at frequencies up to 4.5 MHz [52]. The

pulse intensity incident on the monochromator is measured using the X-ray gas monitor (XGM)

device[53] installed after the undulator. Attenuators installed after the XGM are used to reduce

the photon flux on the monochromator and the attenuator transmission was 30% during the

experiment. Collimating compound refractive lenses (CRLs) were used to compensate for the

divergence of the beam[54].
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Figure 3.13: a) intensity distribution of a pulse after monochromator on the YAG imager, the
red ellipse is a contour at the FWHM of the two-dimensional Gaussian fit. b) Average over 60
images of the AGIPD area with the strongest SAXS signal. The red solid-line rectangles in b)
denote the four areas of the detector used for data analysis.

In order to measure the scattering from the Vycor sample on AGIPD, only the pixels located

closest to the center of the detector and having the strongest scattering signal were used for

analysis of the monochromator transmission (Fig. 3.13b). The ratio of the sum of the intensity

captured by the selected pixels to the XGM value provides a figure of merit for the transmission

of a given pulse in a given train. Averaging of this ratio over a large number of trains for each

pulse number provides an estimate of the monochromator transmission dependency on the energy

that has impinged on the first crystal.

The measurements show that the monochromator transmission reduces by a factor of two

after ∼50 mJ of X-ray energy or around 150 pulses under the aforementioned conditions, have

impinged on the first crystal at 2.25 MHz repetition rate (Fig. 3.14). That is, the power of

∼675 W (∼0.3 mJ at 2.25 MHz repetition rate) incident at the cryo-cooled monochromator

decreases its transmission by a factor of two after about 60 µs. The experimental curves are

not shown with error bars, since the transmission values are averaged over many trains. That

is, for a fixed pulse number in a train, the scattering is produced by statistically independent

and intrinsically random SASE pulses [55]. Even for an ideal monochromator the transmission
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Figure 3.14: Experimental (dots) and theoretical (line) monochromator transmission during a
train of XFEL pulses [24]. The separation between pulses is 0.44 µs, which corresponds to
2.25 MHz repetition rate. A photon energy 9 keV and a Si(111) reflection was used. The
horizontal axis at the top represents the pulse number, at the bottom - the total energy that
has impinged on monochromator before the respective pulse. The inset shows the energy of each
pulse in a train measured by the XGM and averaged over the trains with 30% of the energy
impinges the monochromator. The experimental monochromator transmission is calculated as
the ratio of the sum of AGIPD pixels to the XGM signal for each pulse in a train, averaged over
498 trains and normalized to the maximum value. The experimental and theoretical transmission
values are normalized to the maximum values during the train.

is determined by the spectral intensity of the pulse in a bandwidth given by the Darwin width

of the monochromator. Due to the random nature of the spectral fine structure of SASE[55],

averaging over a large number of pulses provides an accurate estimate of the effect of heating on

the monochromator transmission. We attribute the initial rise of the measured monochromator

transmission seen in Fig. 3.14 to possible systematic drifts of photon energies and/or beam

pointing during a pulse train.

The good agreement between theoretical and experimental values in Fig. 3.14 indicates

that the simulation model presented in Sec. 2.3 provides a quantitatively correct behaviour of

monochromator transmission during heating by intense X-ray pulses. Therefore the model can

be employed as a simulation framework to aid the design of crystal optical devices when a high
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heat load from intense XFEL pulses is anticipated. The implementation of the code in Python

is available to the public [31].

At previous measurements, which are presented in the next section, it was attempted to

track the monochromator performance during a train by using train-resolved measurements, i.e.

a single image for all pulses in a train. Since in Fig. 3.7 the rocking curve of the heated crystal is

simulated to get wider, it was intended to rock the second cold crystal, such that the widening

of the measured rocking curves would indicate the crystal heating.

3.4.1 Measurement with scintillator screens

Prior to using the MHz-capable detectors presented above, there were numerous attempts to

measure the monochromator performance under high heat load using imager devices that measure

the intensity distribution integrated over a train. The intention was to measure the total intensity

after the monochromator for different rocking angles of the second crystal of the monochromator

thus measuring the convolution of the heated and cold crystals rocking curves shown in Fig. 3.7.

Since the rocking curve widens during the heating of the first crystal, the measured rocking

curve would be wider for higher number of pulses. Simulations presented in this section use a

radial flow model instead of depth-flow model presented in Sec. 2.3 which allowed for simpler

simulations that did not contradict with the measurements in this subsection.

Figure 3.15: Left - rocking curves for various number of pulses in a train, right - the change of
width of the rocking curves at experiment (dots) and in the simulations (line) [56]. The error bars
denote the step of the second crystal rocking. Photon energy was 9 keV, pulse energy around
0.25 mJ, pulse size around 0.5 mm.

The first measurements shown in Fig. 3.15 did not indicate any widening of the rocking curve

[56]. This may have been due to low signal at imager, losses in beamline components between
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monochromator and imager, as well as the large steps of the second crystal rocking which was

larger than the expected rocking curve widening.

Figure 3.16: Measured (a) and simulated rocking curves (b) for various numbers of pulses in a
train, dashed lines in a) are Gaussian fits of the experimental result. Photon energy was 9 keV,
pulse energy around 0.9 mJ, pulse size around 0.5 mm.

At a later set of measurements, using a more precise piezo-based motor for rocking the second

crystal, one could analyse the measured rocking curve width with a sufficient precision. The

rocking curve measurements and simulations are shown in Fig. 3.16. A several percent rocking

curve widening between 5 and 15 pulses was observed using Gaussian fits, as well as the increase

of rocking curve height between 10 and 15 pulses in train is apparently smaller than the increase

of rocking curve height between 5 and 10 pulses in train. Despite the both tendencies indicative of

first crystal heating, the set of three measurements was not sufficient to make justified statements

on the monochromator performance under intense radiation of MHz-repetition-rate XFEL.

3.5 Future developments of XFEL monochromators

Perfect silicon crystals are widely produced and are therefore easily available. Moreover, the

technology for growing large monocrystallines of silicon with high purity is well developed, which

makes silicon a good material to use as optical elements at XFELs. However, as shown in previous

sections, silicon is prone to significant deformations due to heating under intense high-repetition

rate XFEL radiation. Various techniques to control the temperature of silicon can be used to

stabilize silicon monochromator performance. As presented in previous sections, at EuXFEL the

silicon crystals in monochromator are kept at stable temperatures using combination of liquid

helium active cooling and heating. That way, the crystal that receives the most radiation is
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kept at a constant temperature of around ∼ 100 K, and the heat induced by impinging pulses

is dissipated by cooling. Since the impinging pulses induce heating of the first monochromator

crystal, manipulating the second crystal might benefit the monochromator performance. That

is, cyclic heating or rotation of the second crystal might improve monochromator transmission

due to the shifting of the rocking curve of second crystal, as one can see in Fig. 3.7.

Another way to effectively monochromatize XFEL pulses is to use materials with high thermal

conductivity. One of the good candidates is diamond. However, despite well-developed techniques

to produce polycrystalline Carbon Vapor Deposition (CVD) diamonds, growing monocrystalline

diamonds poses a challenge. At Technological Institute for Superhard and Novel Carbon Mate-

rials (TISNCM), high-pressure hihg-temperature (HPHT) technology is used to produce high-

purity diamond [57] with the thermal conductivity an order of magnitude higher than silicon.

The size of the monocrystalline diamond can be as large as several mm, which is sufficient to op-

erate with pulses at EuXFEL, where the transverse size of unfocused beam is around 1 mm. The

exceptional thermal conductivity might enable monochromatization of focused beam. Moreover,

compared to silicon, diamond has a long absorption length at hard X-ray wavelengths, which

spreads the heat load over crystal volume, which further increases the diamond performance as

XFEL pulses monochromator.

It is feasible to create a so-called ”channel cut” from a large monocrystalline diamond, such

that there will be two crystal surfaces with perfectly parallel scattering planes required for X-ray

monochromatization. In all, diamond channel-cut monochromator (DCCM) has a potential to

become a good monochromator for intense XFEL pulses arriving at MHz repetition rates.

Diamond, which has longer absorption length and higher heat conductivity compared to

silicon, can be used at high intensity and CW XFEL as a hard X-ray monochromator [59]. Using

Eq. 2.25 and heat diffusivity in Fig. 3.17 we can estimate the characteristic heat redistribution

times. For C(220) at 9 keV photon energy, for instance, a = 625 µm, which is on the same order

with the typical beamsize of XFEL beams, such that in both depth and radius directions the heat

redistribution is similar. Therefore, the one dimensional model used for the heating of silicon

cannot be used for the heat flow simulations for the given case of absorption in diamond. If we

assume the characteristic lengthscale L = 500 µm, the characteristic timescale at 100 K would be

tchar,L = 2.5 µs, which is on the order of the interval between pulses at MHz repetition rates, such

that between pulses the heat dissipates into the volume. At 300 K, however, tchar,L = 0.26 ms,

which is several orders larger than the interval between pulses. Therefore, despite high heat
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Figure 3.17: Heat diffusivity of naturally occurring diamond and silicon calculated using heat
conductivities from [58] and [34], respectively, and specific heat as per Debye’s law.

conductivity at room temperature, it is preferred to additionally cool down diamond crystals

under intense XFEL radiation.

Diamond heat conductivity data [58] for diamond samples with various purities were collected

in 1970’s, shown in Fig. 3.18. One can see that the type IIa diamond transfers heat several times

more efficient than diamond with nitrogen or boron contamination.

Type IIa diamonds produced by HPHT technology have exceptional purity which leads to

high heat conductivity [57] shown in Fig. 3.19. At 200 K, for instance, HPHT diamonds provide

the thermal conductivity of 60 W/cm ·K, which is about 1.5 times larger than for IIa diamonds

in Fig. 3.18. The constant improvement of the purity of type IIa diamonds might enable stable

operation of diamond monochromators at high pulse energies and high repetition rates at room

temperatures. Under cryogenic cooling, as one can see in Fig. 3.19, type IIa diamond has an

order of magnitude larger thermal conductivity compared to IIb type.

In case of X-ray pulses diffraction in mm-thick crystals, heat redistribution happens in both

thickness and radius directions between pulses, and one cannot apply the one dimensional model.

However, in case of diffraction in thin crystals, where the temperature gradient along thickness

direction is small, heat flows only in the direction along surface and one can calculate the heat

flow analogous to the algorithm presented in Sec. 2.3. This can, for instance, be used to simulate

the heating of diamond crystals used in hard X-ray self seeding.
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Figure 3.18: Heat conductivity of diamond with various purity [58]. IIa relates to the absence
of significant impurities, IIb diamond contains boron impurities, Ib contains isolated nitrogen
impurities and Ia contains aggregated nitrogen impurities.
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Figure 3.19: Heat conductivity of HPHT type IIa diamond (red line) and type IIb boron-doped
diamond (BDD) (green line) with 20 boron atoms per million atoms of diamond [57]. At 300 K,
for instance, thermal conductivity of IIa diamond is about two times larger than IIb, whereas at
cryogenic temperatures around 100 K the difference is around ten times.
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Chapter 4

Strongly bent crystals used for

pulse-to-pulse spectral

characterization

As shown in Section 3.2, the stochastic nature of SASE leads to random spectra of individual

XFEL pulses. Even though the average width of the spectrum and the width of narrow features

is defined by the particular settings of a given XFEL, such as electron beam charge, energy

and undulator settings, the exact spectrum varies from pulse to pulse. Therefore, by measuring

spectra of individual pulses, one can analyze their statistical properties. Strongly bent crystals

(bending radii on the order of 10 cm and less) allow to disperse various photon energies of an

XFEL pulse into a range of angles that can be recorded with the available detectors at feasible

distances. For a C(220) reflection at 9 keV, for instance, photon energies within 10−3 bandwidth

are dispersed over 0.72 mm area at a distance of 1 m. This dispersion lengthscale is sufficient to

capture the SASE bandwidth with detectors that have a spatial resolution of around 10 µm.

Firstly, this section provides an overview of the bent crystal spectrometer implementations

and presents the spectrometer at the MID instrument of European XFEL. Previously, diffraction

in the finite volume of strongly bent crystals was not considered to affect the recorded spectrum,

and the resolution estimations considered the strongly bent crystals as a perfectly reflecting

surface. Below, the theory of diffraction in strongly bent crystals is developed, which allows to

estimate the intrinsic resolution of bent crystal spectrometer defined by the diffraction in the
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crystal volume. The theory is used to estimate the bent crystal spectrometer performance for

the typical spectra and crystal parameters used at EuXFEL. At the end, a method to compare

the duration of pulses using their spectra is presented.

4.1 Overview of XFEL spectrometer implementations

When inserted directly into the XFEL beam, strongly bent crystals can effectively resolve photon

energies of the SASE bandwidth. If a ∆E range of photon energies needs to be resolved, and

the average photon energy is E0, the incidence angles in a range of ∆θ = (∆E/E0) tan θ0 need

to be covered, θ0 is Bragg angle for E0. For instance, for E0 = 9 keV and C(220) reflection,

∆θ = 7.2 · 10−4 is needed to disperse 10 eV bandwidth. We will assume a cylindrically bent

crystal, such that over the beam profile X-rays are incident at different angles to the crystal

surface. For a crystal bent to the curvature radius R = 10 cm, 10 eV bandwidth will be reflected

by 7.2 µm of crystal surface, and at detector located at 1 m from the crystal X-rays will be

dispersed over 0.72 mm distance. An intensity profile with such length can be resolved by the

available imaging devices. The Gotthard detector, for instance, has a pixel size of 50 µm[60],

such that 14 pixels will be within the bandwidth. By using scintillator devices, which generate

visible light when X-rays are incident on them, it is feasible to record the spectrum with optical

devices, since the wavelength of visible light is orders of magnitude shorter than ∼ 1 mm-long

spot of dispersed photon energies. That way the resolution can be maximized by spreading the

spectrum over the field of view of an optical camera. On the other hand, the Gotthard detector

allows to measure with 0.5 MHz repetition rate [60], such that the spectra of individual pulses

within a train can be measured at EuXFEL.

At EuXFEL, strongly bent monocrystalline diamonds are used [61, 62]. Due to long ab-

sorption length and high heat conductivity of diamond, these spectrometers can operate at the

high pulse energies and high repetition rates of EuXFEL. Strongly bent silicon crystals that for

instance are used at LCLS [63, 64] can only operate at a low power since the heat load induced

by intense X-ray pulses would damage the crystals.

HPHT monocrystalline diamonds are mounted in a thick diamond polycrystalline frame with

a bender mechanism (see Fig. 4.3) which allows for the heat to dissipate into the frame volume.

The triangular shape of the bent crystal allows to minimize the sagittal bending of rectangular

plates. In order to achieve maximum transmission through the bent crystal spectrometer, the
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beam is precisely aligned within the narrow triangular window where the HPHT crystal is located.

A movable slider on the frame allows to vary the bending radius.

Instead of being inserted directly into XFEL beam, strongly bent crystals can also be inserted

into the first diffraction order of a grating. That way, only a small fraction of pulse energy

impinges the bent crystal. This approach was implemented at SwissFEL [65, 66]. At hard X-ray

photon energies, however, the first diffraction order is observed at λ/dG = 0.1 nm/200 nm =

0.5 mrad angle, where dG = 200 nm is a grating period that was used at SwissFEL [65], such

that a distance of 10 m is required to have the first diffraction order at 5 mm from the original

beam. This lengthscale restrict the applicability of such spectrometers at experiments, whereas

a bent diamond spectrometers used at EuXFEL can be used in laboratory conditions since they

can be inserted into the direct beam and require distances of around 1 m for a good resolution

of XFEL spectra. That way, strongly bent diamond crystals can be installed into the beam at a

preferred location, such that spectral changes during X-ray propagation can be studied, e.g. for

X-ray absorption spectroscopy studies.

Figure 4.1: The schematics of the spectrometer based on elliptical mirror and flat analyzer crystal
[67].

Given that the crystal is thin enough, the transmitted beam can be used after the spectrome-

ters based on strongly bent crystals. In another type of XFEL spectrometer, an elliptical mirror

is used to disperse photon energies over angles and a flat analyzer crystal is used to diffract

various photon energies at different angles. This method is implemented at SACLA [67]. Such

a spectrometer is invasive and does not transmit any X-rays, such that the beam after the spec-

trometer cannot be used. The schematics of elliptical mirror spectrometer is shown in Fig. 4.1.
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The resolution of the spectrometer based on elliptical mirror is defined by the Darwin width

of the selected reflection of a flat analyzer crystal which is determined by dynamical diffraction

2.2. The resolution of a strongly bent crystal, however, is defined by the lattice spacing of the

selected reflection and the crystal thickness, as shown in Sec. 4.3.3, such that a bent crystal

spectrometer potentially can provide better resolution than a flat analyzer crystal and elliptical

mirror. Moreover, due to the variable and small bending radius, one can achieve dispersion of

photon energies over a larger angular range.

4.2 Bent crystal spectrometer as a part of Diagnostics End

Station at MID instrument of EuXFEL

At the MID instrument, a bent crystal spectrometer is a part of the Diagnostics Endstation

(DES). The device is designed to be equipped with bent crystals, as shown in Fig. 4.2. The

chamber where the crystals are installed is a part of the high vacuum environment of the beamline.

The X-rays that are diffracted from bent crystal exit the chamber through a kapton window.

To reduce scattering and absorption in air between the crystal and the detector, an evacuated

flight tube of around 1 m length is installed on vertical rail system together with the Gotthard

detector allowing adjustment of the scattering angle.

An yttrium aluminium garnet (YAG) imager device behind the bent crystal is used for the

beam alignment

The resolution of the device is estimated for the typical experimental parameters below in

Sec. 4.4.

4.3 X-ray diffraction in strongly bent crystals and appli-

cability of kinematical theory

This section provides an overview of the method to simulate the diffraction of XFEL pulses in

strongly bent crystals [68, 69]. The model of dispersion of different photon energies over different

angles is developed within the framework of kinematical diffraction. The criterion for the appli-

cability of kinematical theory is introduced. The evolution of the intensity distribution in space

is simulated using Fresnel and Fraunhofer limits of diffraction at short and long distances from

the crystal, respectively. It is shown that the resolution of a strongly bent crystal spectrometer at
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Figure 4.2: Diagnostics Endstation at MID instrument: schematics (left) [16] and current instal-
lation (right).

Figure 4.3: HPHT diamond device used at DES of MID instrument [62].

a given reflection is intrinsically defined by the ratio of lattice spacing and the crystal thickness.

4.3.1 Time-integrated diffraction intensity

We assume full transverse coherence of the incident XFEL pulse and take into consideration only

its time structure. This assumption holds for the SASE pulses, in particular at EuXFEL where

the transverse coherence can be as high as 95%[70]. The electric field of the pulse can be written
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using its frequency spectrum:

Ein(r, t) =

∞̂

−∞

Ẽin(ω)eiks0·r−iωt dω. (4.1)

Here ω is the frequency of a plane-wave component, k = ω/c is its wavevector, c is the speed of

light, and s0 is the unit vector in the direction of the wave propagation.

The wave packet (4.1) is incident on a bent-crystal spectrometer. We consider its diffraction

on a bent crystal in the kinematical (first Born) approximation which is justified because of

strong deformation gradient that does not allow for dynamical effects, as explained in Sec. 4.3.2.

We follow the description of the first Born approximation by [71], Sec. 13.1.2, but restore the

time exponent exp(−iωt). This is usually omitted since a monochromatic wave is considered in

conventional scattering theory. In our case, a continuous spectrum is considered, hence we need

to consider all frequencies separately and integrate over frequencies ω. The amplitude of the

scattered wave is

Eout(r, t) =

∞̂

−∞

dω

ˆ
V

dr′ Ẽin(ω)eiks0·r
′−iωtχ(r′)

eik|r−r
′|

|r− r′|
, (4.2)

where χ(r) is the crystal susceptibility and the spatial integration is performed over the volume

V of the scattering volume.

In the Fraunhofer limit r � r′

|r− r′| ≈ r − s · r′, (4.3)

where s is the unit vector in the direction to the detector, r = rs. Using Eq. (4.3), the scattered

wave (4.2) can be represented as

Eout(rs, t) =
1

r

∞̂

−∞

Ẽin(ω)eikr−iωtf1(s, s0; k) dω, (4.4)

where the scattering amplitude in the first Born approximation is

f1(s, s0; k) =

ˆ
V

χ(r′)e−ik(s−s0)·r′ dr′. (4.5)

Here the dependence of the scattering amplitude f1 on the length of the wavevector k is explicitly

noted. The crystal susceptibility for X-rays χ(r) is not averaged over the physically infinitely

small volumes but possesses the crystal lattice periodicity [see, e.g., [72], §124].
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In order to calculate the intensity of the electric field Eq. 4.4 at an instant t, one needs to

integrate over the frequencies using complex conjugation of electric fields:

I(rs, t) = Eout(rs, t) · Eout∗(rs, t)

=
1

r2

¨ ∞

−∞
dω1dω2 e

i(ω2−ω1)tei(k1r−k2r) (4.6)

×Ẽin(ω1)Ẽin∗(ω2)f1(s, s0; k1)f∗1 (s, s0; k2),

where the asterisk denotes the complex conjugate and kn = ωn/c are the wavevectors of waves

with frequencies ωn.

In order to calculate the intensity measured by a detector. we need to integrate Eq. 4.7 over

a detector exposure period τdet:

Idet(rs) =

¨ ∞

−∞
dω1dω2...

τdetˆ

0

exp(i(ω2 − ω1)t) dt. (4.7)

After the integration Eq. 4.7 would be

Idet(rs) =

¨ ∞

−∞
dω1dω2...

2 sin(τdet(ω1 − ω2)/2)

τdet(ω1 − ω2)
. (4.8)

At XFELs, pulse duration is by design ∼ 10− 100 fs, whereas the detectors used for example

at EuXFEL have exposure periods on the order of 100 ns. Therefore, since the detector exposure

time is larger than pulse duration by many orders, we can assume infinite integration range in

Eq. 4.7 and use

I(rs) =

∞̂

−∞

I(rs, t) dt (4.9)

to calculate the intensity at detector. Integration over a mathematically infinite range will change

Eq. 4.7 to

Idet(rs) =

¨ ∞

−∞
dω1dω2...δ(ω1 − ω2), (4.10)

which means that only in case of ω1 = ω2 there will be contribution to the scattering intensity.

The delta function under the integral means that in practice we can neglect the interference

of waves with different frequencies, since for the detector integration periods much longer than

pulse duration we can consider the infinite τdet in Eq. 4.8.
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In view of the different timescales of detector exposure and pulse duration, such that we can

treat exposure time as infinite, and in view of Eq. 4.10 we can write Eq. 4.7 as

I(rs) =
2π

r2

∞̂

−∞

|f1(s, s0; k)|2
∣∣∣Ẽin(ω)

∣∣∣2 dω. (4.11)

That is, when X-rays of different wavelengths arrive at one point, the measured intensity will be

a sum of intensities of waves [73].

The squared scattering amplitude |f1(s, s0; k)|2 in Eq. (4.11) denotes the scattering amplitude

of the same wavelength incident at the same angle and reflecting in different directions. One can

consider these different scattering angles as if they correspond to various frequencies ω′ whose

Bragg condition is at that reflection angle. In this way one can treat the X-rays scattered in

different directions as a measured spectrum over frequencies ω′.

We can rewrite Eq. (4.11) as

J (ω′) =

∞̂

−∞

R(ω′, ω)
∣∣∣Ẽin(ω)

∣∣∣2 dω, (4.12)

where J (ω′) is the intensity (4.11) after the change of variables from θ to ω′. One can see that

if the resolution is ideal, i.e., R(ω′, ω) is δ(ω − ω′), the measured spectrum over frequencies ω′

coincides with the incident spectrum. Below we develop a theoretical framework to simulate the

resolution R(ω′, ω) of a bent-crystal spectrometer.

4.3.2 Applicability of kinematical theory

According to the equation of dynamical diffraction Eq.2.16, as long as the lattice deformation is

within the Darwin width in Eq. 2.17, i.e. as long as |η| < 1 in Eq. 2.5, the dynamical diffraction

is strong and intensity of diffracted wave is high. The Darwin width in Eq. 2.17 corresponds to

the range of angles

∆θB =
2|χh|

sin 2θB
(4.13)

in which dynamical diffraction takes place for the same photon energy.

If we have a cylindrically bent crystal with curvature radius R, the gradient of distortions

along surface is 1/R, as shown below in Eq. 4.20. That way, over the extinction length Λ the

lattice distortion changes by Λ · (1/R) = Λ/R . If this deformation is larger than the Darwin
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width, such that |η| > 1 in Eq. 2.5, the dynamical diffraction conditions are not satisfied. This

means that the deformation gradient is too steep for the re-scattering of X-rays to be significant,

and the diffraction can be treated as kinematical.

For bending radii larger than

Rc =
Λ sin 2θB

2|χh|
(4.14)

the deformation changes slow enough along the surface such that over extinction length Λ the

diffraction condition |η| < 1 holds.

4.3.3 Resolution of a bent-crystal spectrometer. Fraunhofer diffrac-

tion

As in any material, the susceptibility χ(r) is defined by the local properties. In particular, for

hard X-rays the distance between atoms is on the order of wavelengths, and the susceptibility

depends on the coordinate within the crystal volume. In a periodic lattice of a crystal, since

atoms are located in a regular manner, one can calculate Fourier-components of the susceptibility

as

χQ = V −1

ˆ

V

χ(r) exp(iQr)d3r (4.15)

which is non-zero for each reciprocal lattice vector Q.

The scattering amplitude (4.5) for an ideal crystal is governed by the Fourier component

χQ exp(iQ · r) of the susceptibility χ(r) for the actual reciprocal lattice vector Q. The displace-

ment field u(r) due to the bending causes a change of the susceptibility according to the change

of the positions of the atoms to χ (r− u(r)) and the respective change of its Fourier component

to χQ exp (iQ · r− iQ · u(r)). We consider atom displacements to be much smaller than the

lattice spacing of a chosen reflections.

The kinematical diffraction amplitude (4.5) can be written as an integral over the scattering

plane of the crystal

f1 =

∞̂

−∞

dx

D/2ˆ

−D/2

dz exp(iqxx+ iqzz − iQ · u), (4.16)

where D is the thickness of the crystal plate and q = ks − ks0 −Q. Here the scattering plane

is the xz plane with the x axis tangent to the surface of the bent crystal at x = 0 and the z
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Figure 4.4: The geometry of the bent crystal calculations.

axis along the inner surface normal. The origin is in the middle plane of the crystal plate. The

scheme of coordinates is shown in Fig. 4.4. X-rays of different frequencies incident at an angle θ̄

are scattered at different angles θ. Let us calculate the components of the scattering vector q in

this frame.

An X-ray pulse consists of plane waves of different frequencies incident onto the crystal at

the same angle θ̄ with respect to x axis. The angle θ̄ is the Bragg angle for some reference

frequency ω̄ with the wavevector k̄ = ω̄/c. The Bragg law for this frequency reads d sin θ̄ = π/k̄,

where d = 2π/Q is the lattice spacing of the chosen reflection. The x- and z-components of the

reciprocal lattice vector in the chosen coordinate system are Q =
(
0,−2k̄ sin θ̄

)
.

The wavevector of the incident wave with any other frequency ω in the pulse possesses the

same incidence angle θ̄ but another wavevector k, so that

ks0 = k
(
cos θ̄, sin θ̄

)
. (4.17)

The diffracted intensity is measured as a function of the angle θ between the x axis and the

vector s. Hence, the wavevector of the diffracted wave is

ks = k (cos θ,− sin θ) . (4.18)

As mentioned in the previous section, it is convenient to consider the scattering angle θ̄+θ as

twice the Bragg angle of a wave with the frequency ω′ defined by this condition. The Bragg law
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reads d sin
[(
θ̄ + θ

)
/2
]

= π/k′, where k′ = ω′/c is the respective wavevector. A straightforward

calculation of the components of the vector q = ks− ks0−Q gives [see also Appendix B by [68]]

qx =
2π

d

ω′ − ω̄
ω̄

tan θ̄, qz =
2π

d

ω′ − ω
ω̄

. (4.19)

For symmetric Bragg reflections considered in the present work, Q · u = −Quz, so that only

uz component of the displacement field is of interest. For a crystal cylindrically bent to a radius

R, it is [68]

uz = (x2 + αz2)/2R. (4.20)

To achieve the cylindrical bending of a rectangular plate, the bending momenta have to be

applied to the perpendicular edges of the plate. The same bending state can be approached by

applying a momentum to the apex of a triangle-shaped plate [74].

The parameter α in Eq. (4.20) depends on the anisotropic elastic constants of the crystal.

Particularly, for a 110 oriented diamond plate, α = 0.02, while for a silicon plate of the same

orientation α = 0.18 [68]. For 111 oriented plates, the respective values are α = 0.047 for diamond

and α = 0.22 for silicon [68]. In such a geometry, diamond happens to be susceptible to shear

stress caused by bending. In particular, for the direction (110) of diamond, the shear component

of the compliance tensor s44 = 0.173 · 10−5 MPa−1 is larger than the plane component s11 =

0.01 · 10−5 MPa−1 [75]. This combination of elastic parameters leads to the weak deformation

along thickness of diamond in the selected direction.

Let us compare the deformation in Eq. 4.20 for silicon with (111) surface orientation and

diamond with (110) surface orientation. Fig. 4.5 shows the displacement uz in x-z plane for

these two cases. One can see that in diamond the deformation changes in z-direction much

slower than in silicon. Therefore, in diamond the depth dependence of displacement will be

much smaller than in silicon.

The term exp(−iQx2/2R) in the integral in Eq. 4.16 that results from multiplying Q and

Eq. 4.20 due to the displacement field of a bent crystal gives rise to an x range relevant to

diffraction of the order of
√
Rd. For instance, for R = 10 cm and d = 1 Å, the diffraction will

happen over the lengthscale of ∼ 10 µm. At XFELs, crystals of ∼ 10 µm-thick crystals are used

since they can be bent to the radii required for effective dispersion of SASE spectra. That is, if

we have ∼ 1 mm-wide pulse, only a tiny µm-long volume of the bent crystal will contribute to

the scattering, whereas the rest of the pulse will not be affected by diffraction.
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Figure 4.5: The displacement uz = (x2 + αz2)/2R of a cylindrically bent 20 µm-thick silicon
crystal with (111) surface orientation and diamond crystal with (110) surface orientation, bending
radius 12.5 cm. x coordinate is shown within 4 µm range to illustrate the difference of deformation
along z direction.

The integration over x in Eq. (4.16) can be performed in infinite limits. This integration

results in a phase factor which drops out when calculating |f1|2. In the remaining integral over

z, we proceed to a dimensionless variable ξ = 2z/D. Then, after reassigning qx,z to ω and ω′ as

in Eq. 4.19, the integral (4.16) gives

R(ω′ − ω) =

∣∣∣∣∣∣
1ˆ

−1

exp(igξ − ibξ2) dξ

∣∣∣∣∣∣
2

, (4.21)

where

b =
π

4

αD2

Rd
, g = π

D

d

ω′ − ω
ω̄

. (4.22)

When the wave field is calculated at distances larger than the scattering volume at Bragg’s angle,

only the qz component of scattering vector in Eq. (4.19) is relevant. The resolution function in

Eq. (4.12) depends on the difference ω′ − ω, so that we write it as R(ω′ − ω).

Before calculating the integral (4.21), let us discuss its properties qualitatively. As long as
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the parameter b is smaller than g, the second term in the exponent in Eq. (4.21) can be neglected

since when ξ < 1 we have ξ2 < ξ. We write hereafter |b|, where this is relevant, since the radius

R can be positive for a convex crystal bending or negative for a concave bending.

The resolution can be quantified by using the Rayleigh criterion, formulated for spectral lines

with the shapes described by the function sinc2g (see [71], Sec. 7.6.3). Rayleigh proposed that

two components of the same intensity are just resolved, when the principal intensity maximum

of one coincides with the first intensity minimum of the other, i.e. sinc2g = 0. Since sin(g) = 0

for g = π, the resolution is

∆E/E = |ω′ − ω|/ω̄ = d/D. (4.23)

Hence, provided |b| is smaller than |g|, the relative resolution ∆E/E does not depend on the

X-ray energy and on the bending radius and is equal to the ratio of the lattice spacing of the

chosen reflection to the thickness of the bent crystal. We see that for a given lattice spacing d,

with the increasing thickness D, on the one hand, the resolution in Eq. 4.23 increases, and on

the other hand the quadratic term under the exponent in Eq. 4.21 depending on b in Eq. 4.22

increases, what leads to worse resolution. In Sec. 4.4 it is demonstrated how despite Eq. 4.23 an

increasing thickness can worsen the resolution.

The integral (4.21) can be calculated and expressed analytically through cosine and sine

Fresnel integrals C(x) and S(x) as

R(ω′ − ω) =

∣∣∣∣∣F
(
g + 2b√

2π|b|

)
− F

(
g − 2b√

2π|b|

)∣∣∣∣∣
2

, (4.24)

where F (x) = C(x) + iS(x).

4.3.4 Effect of finite distance propagation. Fresnel diffraction

This section is devoted to evaluating the effect of a finite distance between the bent-crystal

spectrometer and the detector. The finite distance to a detector is accounted by the following

term in the expansion (4.3):

|r− r′| ≈ r − s · r′ + [r′ − (r′ · s)s]2

2r
. (4.25)
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Substituting here r′ = (x, z) and s = (cos θ,− sin θ) in the coordinates of Fig. 4.4, we find

that Eq. (4.16) acquires an additional phase term exp[ik(x sin θ + z cos θ)2/2L] in the integral.

Hereafter the spectrometer-detector distance is denoted by L instead of r to decouple the distance

to detector from the general notation of the vector of a point in space. The wavevector k and the

angle θ between the x-axis in Fig. 4.4 and a scattered X-ray can be replaced in this term by the

reference values k̄ and θ̄, since the difference of optical path of various frequencies propagating

at different angles will be negligible compared to the propagation over the distance L. We will

not consider the signal at µm distances from the bent crystal since at experiment one locates the

detector at around a meter to achieve sufficient dispersion over angles.

The additional phase factor exp[ik(x sin θ + z cos θ)2/2L] that corresponds to finite distance

propagation will lead to the following modification of the integral (4.16) [68]:

R(ω′, ω) =

∣∣∣∣∣∣
1ˆ

−1

exp(ig̃ξ − ib̃ξ2) dξ

∣∣∣∣∣∣
2

, (4.26)

where

R̃ = R

(
1 +

R sin θ̄

2L

)−1

, (4.27)

α̃ = α+
R̃ cos2 θ̄

2L sin θ̄
, (4.28)

b̃ =
π

4

α̃D2

Rd
, (4.29)

g̃ = π
D

d

(
1 +

R sin θ̄

2L

)−1 [
ω′ − ω
ω̄

− R sin θ̄

2L

ω − ω̄
ω̄

]
. (4.30)

Calculation of the integral (4.26) is the same as in Eq. (4.24) above,

R(ω′, ω) =

∣∣∣∣∣∣F
 g̃ + 2b̃√

2π|b̃|

− F
 g̃ − 2b̃√

2π|b̃|

∣∣∣∣∣∣
2

. (4.31)

The resolution function in Eq. (4.31) depends on ω and ω′, rather than the difference ω − ω′ in

Eq. (4.24), since g̃ depends on both ω′ − ω and ω − ω̄. As a result, the detected spectrum is

stretched or squeezed, depending on the sign of the bending. This is discussed below.

Similarly to the Fraunhofer diffraction case described in the previous section, a maximum

resolution is reached as long as
∣∣∣b̃∣∣∣ is small. If this condition is satisfied, the resolution according
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to the Rayleigh criterion, that follows from Eq. (4.30), is

∆E

E
=

d

D

(
1 +

R sin θ̄

2L

)
. (4.32)

If R > 0, in the case of the convex bending shown in Fig. 4.4, the resolution becomes worse

compared to the Fraunhofer diffraction. Oppositely, for a concave bending R < 0, the resolution

is better than in the case of Fraunhofer diffraction. The correction can be notable when the

bending radius R and the distance to a detector L are comparable, as it is in some experiments

discussed in the next section. However, usually R � L, since typical bending radii of several

tens of cm is usually smaller than the distances required for sufficient resolution of detectors.

We take into account this correction in the numerical calculations below but do not discuss it

further.

The parameter b̃ in Eq. (4.29) can be rewritten as

b̃ = b+
D2 cos2 θ̄

λL

(
1 +

R sin θ̄

2L

)−1

, (4.33)

where λ is the wavelength and the Bragg law 2d sin θ̄ = λ is used. The Fraunhofer diffraction

condition is met when b̃ ≈ b. This is the case when, firstly, L � R sin θ̄, such that the term

in brackets in Eq. 4.33 is close to unity. Secondly,
√
λL needs to be larger than D cos θ̄, which

physically means that the radius of the first Fresnel zone at a distance L needs to exceed the

crystal thickness seen from the direction of the diffracted beam. Therefore, at distances larger

than

LFr =
D2 cos2 θ̄

λ
(4.34)

the resolution can be treated as in Fraunhofer limit and does not increase during further propa-

gation in free space.

4.4 Theoretical resolution estimation of bent crystal spec-

trometers

The stochastic SASE process leads to a fluctuating spectrum which hence needs to be measured

for each pulse. In particular, the bandwidth of SASE provides a figure of merit for the temporal
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coherence, whereas the width of individual peaks in the spectrum provides the estimate of the

pulse duration. Bent crystal allows to effectively disperse the X-rays of different energy over

angles. However, since the diffraction of hard X-rays in crystals takes place in the crystal volume,

the resolution is affected by the crystal properties and the deformations of the crystal lattice. In

the previous section it was shown that since the X-rays undergo diffraction in the volume of a

bent crystal, the resolution of the spectrometer is defined by various parameters of the crystal.

In this section, the theoretical model developed in the previous chapter is used to numerically

simulate the resolution of various crystals used at EuXFEL.

Figure 4.6: Reflection intensity |R(ω − ω′)|2 for Fraunhofer limit calculated with Eq. 4.24 nor-
malized to the maximum value, ∆E = ~(ω − ω′), ~ is Planck constant. C(220) has a lattice
spacing dC220 = 1.26 Åsmaller than the lattice spacing of Si(111) dSi111 = 3.14 Å, which leads to
a narrower peak for C(220) compared to the Si(111) reflection for the same thickness. Two-fold
increase of crystal thickness leads to a twice better resolution, as calculated in Sec. 4.3.3. The
width of the resolution peak follows the condition in Eq. 4.23 shown in the inset.

Fig. 4.6 shows the effect the thickness and lattice spacing have on the resolution. Here, the

resolution of a single wavelength is demonstrated. i.e. the distribution that would be recorded by

the detector if the pulse had δ-function spectrum, i.e. consisting of a single wavelength. One can

see that the recorded spectrum has a certain non-zero width, i.e. the delta-function properties

are not preserved. In case of a larger thickness, the resolution curve is narrower. On the other

hand, an increasing thickness leads to a larger |b|, which leads to an increasing quadratic term

in Eq. 4.21 and thus to the rising tails of Si(111) and 20 µm thickness. Below, it is shown how
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an increasing thickness can lead to a wider reflection curve and worse resolution.

Figure 4.7: Delta-peak resolution of C(220) and C(440) at 12.4 keV. Crystal thickness 20 µm.

Let us demonstrate how the above mentioned effects influence the measured spectra of XFEL

pulses. Fig. 4.7 demonstrates the resolution of a single wavelength of two reflections whose lattice

spacings differ by a factor of two. Using Eq. 4.12 we can simulate the signal at the detector for

a SASE spectrum.

Fig. 4.8 shows how the resolution in Fig. 4.7 affects the measured spectrum. The figure shows

a portion of a sample SASE pulse generated using a database based on [49]. The simulated pulse

spectrum is generated for 500 pC bunch charge, 14 GeV electron energy and linear gain regime

of SASE. This results in a peak width of around 0.05 eV, which is closer to the resolution of

C(440) than of C(220) in Fig. 4.7.

Therefore, due to its poorer resolution, C(220) reflection is unable to resolve the finest features

of the spectrum as well as the C(440) reflection. However, even for the narrower resolution, some

of fine features are not resolved properly.

In order to demonstrate the nature of the fine features in the spectrum let us look at spectra

of pulses whose temporal structure consists of various numbers of peak. Even in the idealized

case of Gaussian peaks shown in Fig. 4.9, when there are more than two peaks, secondary narrow

spectral peaks are present. This can be explained by an increasing pulse duration which leads

to the narrower spectral peaks. In reality, SASE is a stochastic process that leads to a more
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Figure 4.8: Resolution of a theoretical SASE spectrum: dashed red line - original spectrum
|Ẽin(ω)|2, solid lines - resolved spectra J (ω′) from Eq. 4.12 using two different reflections. Spec-
trum is calculated using FAST algorithm [49] and acquired with the FAST-XPD database [40],
|R(ω − ω′)| is calculated in the Fraunhofer limit using Eq. 4.24.

complicated time structure, e.g. as shown in Fig. 3.3. For any pulse, however, the width of the

spectral peaks is inversely proportional to the duration of a pulse. Therefore the narrowest peaks

in the spectrum carry information about the length of the pulse in time, and resolving such finest

features is crucial for restoring the duration of a pulse, as shown below in Sec. 4.5.

In Fig. 4.6 it is shown that an increasing thickness improves the resolution of a given crystal.

However, since |b| increases quadratically with increasing thickness, it might worsen the resolution

when thickness is large enough. For diamond with 〈110〉 surface, which provides the (440)

reflection, 10 cm bending radius and d = 1.2611, for instance, |b| = 2 when the thickness reaches

28 µm. In Fig. 4.10 it is shown how an increasing thickness leads to a wider FWHM of a

resolution peak. We see that the thickness increase by a few microns leads to a rapid growth of

FWHM of resolution peaks since the tails of the resolution curve surpass the half of the highest

value. However, since at each point of detector intensities from each photon energy within a

continuous spectrum are integrated, one does not expect an abrupt change of the resolution of a

SASE spectral peak in such a case.

A more physical approach to estimate the effect of one photon energy reflection peak on the

resolution of SASE spectra would be to average the photon energy shifts over the reflection peak,

or the ”spread” of the reflection curve. If we have a reflection curve |R(∆E)|2, the resolution by

spread method will be calculated as
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Figure 4.9: Temporal structure of pulses containing various numbers of Gaussian peaks (left)
and their spectra (right), mean photon energy 9 keV. An increasing number of peaks in the time
structure leads to small narrow peaks. All vertical axes are normalized to the maximum value.

wR = 2 ·
´
|R(∆E)|2|∆E| · d∆E´

|∆E| · d∆E
. (4.35)

.

In Fig. 4.11a) the comparison of the FWHM and spread method widths is shown. The FWHM

stops its decrease at around 30 µm. However, due to the rising tails in Fig. 4.10, the FWHM has

a sudden rise at around 33 µm despite no sudden rise of the intensity. Since the XFEL spectra

are continuous and intensities are summed, the spread width is more physical, and no sudden

rise of width is observed. This is confirmed by the resolution of a fraction of SASE spectrum

in Fig. 4.11b), where thickness increase from 18 to 30 µm leads to a slightly worse resolution,

as one can see from spread method, instead of improvement of resolution, as follows from the

decreasing FWHM width with the increasing thickness. In conclusion, there’s an optimal crystal
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Figure 4.10: Resolution of a single wavelength for different thickness of C(440) crystal with 10 cm
bending radius at 12 keV photon energy.

thickness for the best resolution of a crystal bent to given curvature radius. Diamond crystal

used at MID instrument of EuXFEL has a thickness of 20 µm and is bent to 10 cm radius, which

is within the range of optimal thickness 17-27 µm, as shown in Fig. 4.11.

In order to demonstrate the effect of finite distance propagation described in Sec. 4.3.4, let

us simulate the measured spectrum analogous to Fig. 4.8 for C(440) reflection at short distances

where the effect of finite distance propagation is expected to be strong. In Fig. 4.12, the spectrum

at detector is calculated at 0.3 m, 0.6 m, 1 m, 1.5 m and 2 m. At 0.3 m the diffraction-determined

resolution is far from the Fraunhofer limit and the spectral peaks are strongly smeared. Further
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Figure 4.11: a) width of resolution curve of C(440) crystal with 10 cm bending radius for different
thicknesses calculated by FWHM and second moment methods, b) resolution of a fraction of
SASE spectrum by crystals with two thicknesses. Change of thickness from 18 to 30 µm leads
to a slightly worse resolution in b), as one can expect from the spread method in a).

from the crystal, at 0.6 m, the peaks are more similar to the actual spectrum yet many of

the fine spectral features are not properly observed. Using Eq. 4.34, the Fraunhofer limit for

C(440) at 12.4 keV is reached at L
C(440)
Fr = 1.44 m. However, at 1 m most of the fine features

are resolved, and further propagation to LFr and further does not change the recorded spectrum

significantly. In summary, at distances of around 70% of LFr the diffraction-determined resolution

reaches the optimal condition. On the other hand, a large distance from the crystal to detector

favours the pixel size defined resolution. Figs. 4.8 and 4.12 illustrate the theoretically achievable

resolution, i.e. ignoring the finite pixel size of the detector. The horizontal axis corresponds
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Figure 4.12: The effect of finite distance propagation effect described in Sec. 4.3.4 for C(440)
20 µm thick crystal at 12.4 keV calculated with Eq. 4.31 and Eq. 4.12. SASE spectrum is the
same as in Fig. 4.8. The red dashed line is the original spectrum, the solid lines are spectra
at detector at various distances, as shown in legend. At short distances, i.e. 0.6 m and 0.3 m
, X-rays with different photon energies are overlapping in space more than in the Fraunhofer
case in Fig. 4.8, providing a worse resolution. Resolution is similar to the Fraunhofer limit at
distances larger than 1 m.

to the reflection angles whose scale is different for different reflections. That is, the resolution

at a given experiment is defined by the detector, the Bragg angle of the reflection and other

parameters.

Figure 4.13: Overview of theoretical resolution using Eq. 4.23 for various crystals and the reported
experimental resolution in various works.

In Fig. 4.13 a table comparing the experimentally achieved and theoretical resolution using

Eq. 4.23 is shown. Fig. 4.14 shows the figures from papers where resolution is defined. So far, at
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Figure 4.14: Figures from papers in Fig. 4.13 where the experimentally determined resolution is
presented.

experiments the demonstrated resolution has not reached values below the theoretical limit of the

diffraction-determined resolution provided by Eq. 4.23. In the works mentioned in Fig. 4.13, the

resolution was determined from measured spectra using distance between the local peaks that

are located the closest to each other. The fact that the separation between the peaks in recorded

spectra, whose overview is shown in Fig. 4.14 was observed to be smaller than the diffraction-

determined resolution indicates that either the actual peaks in the spectrum were wider than

the diffraction-determined resolution or the pixel resolution was not sufficient to measure fine

spectral features. Moreover, according to simulations shown in Fig. 3.3b), SASE spectra are

expected to have prominent features such that the valleys between spectral peaks reach close to

zero, whereas spectra in Fig. 4.14 have wide pedestals. The minimum separation between peaks

in measured spectra might be an improper estimation of the device performance, since it is based

on a single feature in a single measured spectrum. Statistical analysis of a set of measured spectra

analogous to the method presented in Sec. 4.5 would have provided an estimate of the resolution

characteristic of the overall device performance.
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In order for the diffraction-determined resolution to affect the measured spectrum, the spec-

tral peaks have to be narrower than the diffraction-determined resolution, as shown in Fig. 4.8.

Moreover, the detector resolution defined by pixel size needs to be several times better than the

diffraction-determined resolution. That way, however, one can neither claim that the spectrum

is incorrect nor that it is the actual spectrum. The resolution of elliptical mirror spectrometer

shown in Fig. 4.1 is not affected by diffraction, therefore such spectrometer can be used to verify

the spectral measurement using bent crystal.

4.5 Tracking of pulse duration using the recorded SASE

spectrum

As in any scattering experiment, the bent crystal spectrometer measurement lacks information

on the phase of the measured field, providing only the intensity of the electromagnetic wave

incident on the detector. Had the phase been feasible to measure, one could do inverse Fourier

transform of the measured spectrum and restore the temporal structure of the pulse.

The recorded spectrum intensity can however help estimate the duration of pulses. Under

conditions, estimation of peak widths can provide pulse duration, which is crucial for commis-

sioning and facility development, since it provides a quantitative feedback.

One of algorithms for pulse duration estimation involves statistical analysis of a large amount

of spectral measurements [76]. Here, the g2 correlation is used to estimate the average width of

peaks in the spectra for each photon energy, which is inversely proportional to the pule duration

in time. This relation is dictated by the Fourier-transform relation between the electric field

distribution in time and frequency spectrum, such that a longer duration of a pulse leads to

narrower peaks in spectrum. If we have a distribution of intensities I(E) for all photon energies

E, then calculating

g2(∆E,E0) =
〈I(E0)I(E0 + ∆E)〉
〈I(E0)〉〈I(E0 + ∆E)〉

(4.36)

would provide a correlation of intensities at ∆E photon energy difference from E0. Here, ∆E

is the photon energy difference from E0, angular brackets denote the average over an ensemble

of spectra. That way, if for ∆EFWHM g2(∆EFWHM, E0) = g2(0, E0)/2, it would mean that

statistically the peaks of the spectrum have a FWHM of ∆EFWHM. The pulse duration τ0
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is inversely proportional to the peak width: τ0 ∼ 1/∆EFWHM. As discussed in Sec. 3.2, for

SASE pulses at EuXFEL [40, 49] the relation ∆E · τ ' 2eV · fs holds, where ∆E is the FWHM

of spectra and τ is the pulse duration at FWHM, which follows the Heisenberg’s uncertainty

principle ∆E · τ ≥ ~/2 ∼ 0.3 eV · fs.

Figure 4.15: a) - sample spectra for short and long pulse modes measured at MID, b) - g2(∆E,E0)
for various E0 within the measured bandwidth (thin lines) and the Gaussian fit of their mean
value over all E0 (thick lines). Gaussian fit is centered at ∆E = 0. The resolution of the detector
was 0.4 eV. The measurements indicate that in short pulse mode the pulse duration is at least
2.65 times shorter compared to long pulse mode.
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At the MID instrument, SASE spectra were analysed for two modes of operation using

Eq. 4.36. The two modes of operation used different electron bunch compression which was

expected to lead to different pulse durations and hence should be visible in the spectrum accord-

ing to the discussion above. Fig. 4.15 shows the spectra and the g2 correlations. One can see

that the spectra for the short pulse mode have wider peaks and fewer smaller peaks, which leads

to a wider g2 correlation curve. Fig. 4.15b) shows g2(∆E,E0) curves for various E0, such that

at each photon energy one can calculate the width of g2 correlation curve. In order to estimate

pulse duration in both modes, the average of the g2 curves over all photon energies is calculated,

shown as thick lines in Fig. 4.15b). The width of their Gaussian fits provides a value which is

proportional to the pulse duration given sufficient resolution of the detector. The resolution of

the detector was 0.4 eV per pixel, therefore the 0.41 eV width of g2 curve for long pulse mode

can only provide the upper limit of pulse duration - the actual peaks in the spectrum could

be narrower than 0.41 eV which could not be measured with the spectrometer. Therefore, one

can claim that the pulse duration was at least 1.09/0.41=2.65 times bigger in the long pulse

mode compared to the short pulse mode. This estimation is valid under the assumption that

the pulse had no chirp, i.e. the photon energy was constant at every moment of time. If a pulse

has chirp, the photon energy changes along the longitudinal coordinate of the pulse, which in-

creases the width of peaks in the spectrum [76]. A precise estimation of the actual pulse duration

would require further information on the electron bunch, e.g. chirp, electron energy distribution

in bunch and others, which would probably lead to the deviations from the empirical relation

∆E · τ ' 2eV · fs deduced using the database of simulated SASE pulses at European XFEL [49].

At experiment, e.g. during commissioning of novel accelerator and undulator modes, the users

require a fast feedback on the change of pulse duration. Instead of applying g2 correlation to

every photon energy over a large set of spectra as in Eq. 4.36, one can apply a similar algorithm

to a single spectrum. That way, for each ∆E one would average over all photon energies of a

single spectrum. Calculating

g1
2(∆E) =

[
I1(E)I1(E + ∆E)

]
[I1(E)] [I1(E + ∆E)]

(4.37)

would provide spectral peak width estimate based on one single spectrum. Here, square brackets

denote the averaging over energies of a single spectrum, and I1(E) denotes that we calculate

g1
2(∆E) from a single spectrum.

Let us demonstrate the use of Eq. 4.37 to a set of simulated spectra for various durations of
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Figure 4.16: Demonstration of pulse duration estimation using a single spectrum. a) - parts
of simulated spectra for various pulse durations, b) - g1

2 calculation for spectra in a), the inset
shows the correlation between the pulse duration and the inverse of g2 peak width. The analysis
is based on one spectrum for each pulse duration, as required for single-spectrum pulse duration
estimation in Eq. 4.37.

a pulse, from 5 to 30 fs. The spectra in Fig. 4.16a) were simulated using ocelot package [77].

Fig. 4.16b) shows the g1
2 correlations using Eq. 4.37 of spectra of pulses with various durations.

The inset shows the correlation between the pulse duration and 1/|σg2|, where σg2 is the width

of the Gaussian fit of g1
2 curves. One can clearly see the linear correlation, therefore 1/|σg2| can

be used for on-line pulse duration tracking. As noted above, such method cannot provide an
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absolute pulse duration estimation, since the spectra are simulated under assumption of ideal

electron beam without chirp. The method using Eq. 4.37 can be used for rough tracking of the

change of spectral peaks width. For example, such method would instantly indicate the effect

manipulations with the electron bunch have on the pulse duration.

The ocelot package used to simulate spectra in Fig. 4.16 provides spectra of pulses at low

saturation and in the absence of energy chirp. The latter would, for instance, increase the

width of spectral features without shortening the pulse in time. Such factors, which affect the

measured spectrum, would make the above presented method invalid for the pulse duration

tracking. However, the spectral peak width acquired from single spectra would provide a live

feedback on how the changes in the beam and undulator parameters affect the spectrum.

4.6 Conclusions

The model presented in this chapter allows to estimate the effect of diffraction on the spectrometer

resolution. Firstly, for the given reflection, crystal thickness and pulse properties, the best

achievable resolution can be calculated. This is the resolution of the bent crystal in Fraunhofer

limit, i.e. at a sufficiently large distance. This resolution is defined by the crystal, such that even

if a given detector allows for higher resolution, the width of peaks in the measured spectrum will

be limited by the diffraction-determined resolution. Therefore, if one does not account for the

limitation of resolution due to diffraction, the peaks in measured spectra might be misleading in

a way that they would appear wider than in the actual spectrum, even if the detector allows for a

high resolution. Secondly, the model allows to simulate the effect a short distance from crystal to

detector has on the measured spectrum. At sufficiently short distances, in the Fresnel limit, the

peaks in the measured spectrum are much broader than in the case of Fraunhofer limit, when

the detector is located far from crystal. The model allows to estimate whether for the given

experimental setup the Fresnel limit affects the measured spectrum and to estimate whether it is

feasible to restore the actual width of peaks from the measured ones. A set of experimental data

was analyzed to compare the pulse duration in various machine settings, which indicated at least

a twofold difference in pulse duration. A method for an estimation of an average peak width in

a single spectrum was proposed, which can be used for a rough estimation of the changes of the

spectral peak width which might be useful for a quick online feedback about the changes of the

pulse duration.
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Conclusions and implications

Crystal optics are widely used at modern hard X-ray sources, such as synchrotrons and XFELs.

Several novel theoretical studies have been carried out, which provide pioneer insights into various

problems of diffraction in crystals at XFELs. The operation of a strongly bent crystal spectrome-

ter applied to XFEL pulses has been studied using the theory of diffraction for the first time, and

an intrinsic limit of resolving power of strongly bent crystals was derived among other significant

effects. These findings provide a profound physical understanding of the spectrometer device

which might become crucial for evaluating experimentally measured XFEL spectra. Also, asym-

metric diffraction has been shown to be potentially beneficial for coherent scattering experiments,

enabling to overcome the restrictions of conventional experimental techniques. Moreover, a sim-

ulation model for the crystal heating under intense XFEL radiation has been presented, applied

to the cryogenically cooled silicon monochromator at EuXFEL and tested at an experiment.

Strongly bent crystals are used as single shot spectrometers for hard X-ray FEL pulses be-

cause of their effective dispersion. Previously, resolution of strongly bent crystals was mostly

considered from a geometrical point of view, without taking diffraction effects into consideration.

In Chapter 4, a profound theory of diffraction in such optical devices has been presented, which

gives a profound understanding of the XFEL pulses diffraction in these devices. In the Section 4.4

it was shown that for the given photon energy of X-rays and for the given crystal parameters,

there exists an intrinsic resolution of a strongly bent crystal defined by diffraction effects. This

intrinsic resolution is given by the ratio of the interplanar spacing of a given reflection and the

crystal thickness. The intrinsic resolution means that even for a detector with a pixel size which

would enable a geometrical resolution finer than the intrinsic resolution, the spectrum would be

smeared due to diffraction and no improvement in resolution would be seen. This was simulated

to have an effect for instance in resolving EuXFEL SASE pulses generated by 500 pC bunches

at 12.4 keV whose spectra have narrow 0.05 eV features. A C(440) 20 µm thick crystal bent to
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a radius of 10 cm has an intrinsic resolution of around 0.04 eV at 12.4 keV, which was shown to

be insufficient to resolve fine spectral features.

In Sec. ??, prospects of the application of asymmetric diffraction to coherent scattering

experiments are explored. Since FEL pulses have a high degree of transverse coherence, sub-mm

size and fs duration, an effect of wavefront inclination relative to the propagation of direction can

be expected. That way, the surface of constant phase is at angle to the wavevector. When incident

at a scattering sample, the optical path difference is minimal in the direction perpendicular to

the phase front. This direction corresponds to a non-zero momentum transfer defined by the

wavefront inclination angle, such that the lengthscale of the structural studies is shorter than

in conventional scattering techniques. This has a potential of expanding the capabilities of

coherent scattering experiments, such as XPCS or Coherent Diffraction Imaging (CDI), down to

interatomic distances.

The high intensity and high repetition rates of pulses at EuXFEL poses challenges on crystal

optics due to the exceptional heat load. In particular, silicon monochromators can undergo

elastic deformations under the XFEL radiation which amounts to several hundreds of watts.

In order to mitigate the heating, cryogenic cooling is used to minimize the deformation and

dissipate the heat. In Section 2.3, a simple one-dimensional model of heating was developed

which allows to simulate the deformation of the crystal under cryogenic conditions illuminated

by intense XFEL pulses. The developed tool does not require finite-element studies, which usually

require commercial software and can be complex to operate. In Section 3.3, dynamical diffraction

equations that assume the temperature at crystal surface were applied to the heating model which

allowed to simulate the performance of a cryogenically cooled silicon monochromator under MHz

x-ray pulses with sub-mJ energy. It was shown that under 675 W heat load the monochromator

transmission decreases to approximately 50% of the initial value after 60 µs. Diamond, due

to its exceptional heat conductivity and low absorption, is a promising material for crystal

optics at XFELs with high intensity of pulses. Considerations concerning continuous wave (CW)

operation mode of XFEL were presented and challenges of crystal optics heating in such regime

are discussed. Due to the decreasing heat transfer capabilities with increasing temperature and

due to a Gaussian intensity profile of the pulses, a non-uniform heat distribution over the crystal

will lead to unsustainable CW operation when the heat load is on the order of hundreds of watts.
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“X-ray laminography and SAXS on beryllium grades and lenses and wavefront propagation

through imperfect compound refractive lenses”, in Advances in x-ray/euv optics and compo-

nents ix, Vol. 9207 (2014), pp. 1–12.

55E. Saldin, E. Schneidmiller, and M. Yurkov, “Statistical properties of radiation from VUV and

X-ray free electron laser”, Optics Communications 148, 383–403 (1998).

103



BIBLIOGRAPHY

56I. Petrov, J. Anton, U. Boesenberg, M. Dommach, X. Dong, J. Eidam, J. Hallmann, K. Kazar-

ian, S. Kearney, C. Kim, W. Lu, A. Madsen, J. Möller, M. Reiser, L. Samoylova, R. Shayduk,

D. Shu, H. Sinn, V. Sleziona, and A. Zozulya, “Effect of Heat Load on Cryo-Cooled Monochro-

mators at the European X-Ray Free-Electron Laser: Simulations and First Experimental Ob-

servations”, in Proc. FEL’19 (Nov. 2019), pp. 502–505.

57D. Prikhodko, S. Tarelkin, V. Bormashov, A. Golovanov, M. Kuznetsov, D. Teteruk, A. Volkov,

and S. Buga, “Thermal conductivity of synthetic boron-doped single-crystal HPHT diamond

from 20 to 400 K”, MRS Communications -1, 1–6 (2016).

58E. Burgemeister, “Thermal conductivity of natural diamond between 320 and 450 K”, Physica

B+C 93, 165–179 (1978).

59Y. Shvyd’ko, S. Terentyev, V. Blank, and T. Kolodziej, “Diamond channel-cut crystals for high-

heat-load beam-multiplexing narrow-band X-ray monochromators”, Journal of Synchrotron

Radiation 28, 1720–1728 (2021).

60A. Mozzanica, A. Bergamaschi, R. Dinapoli, H. Graafsma, D. Greiffenberg, B. Henrich, I.

Johnson, M. Lohmann, R. Valeria, B. Schmitt, and S. Xintian, “The GOTTHARD charge inte-

grating readout detector: design and characterization”, Journal of Instrumentation 7, C01019–

C01019 (2012).

61N. Kujala, W. Freund, J. Liu, A. Koch, T. Falk, M. Planas, F. Dietrich, J. Laksman, Malte-

zopoulos, Th., J. Risch, F. Dall’Antonia, and J. Grünert, “Hard x-ray single-shot spectrometer

at the European X-ray Free-Electron Laser”, 91, 103101 (2020).

62U. Boesenberg, L. Samoylova, T. Roth, D. Zhu, S. Terentyev, M. Vannoni, Y. Feng, T. B. van

Driel, S. Song, V. Blank, H. Sinn, A. Robert, and A. Madsen, “X-ray spectrometer based on a

bent diamond crystal for high repetition rate free-electron laser applications”, Optics Express

25, 2852–2861 (2017).

63D. Zhu, M. Cammarata, J. M. Feldkamp, D. M. Fritz, J. B. Hastings, S. Lee, H. T. Lemke,

A. Robert, J. L. Turner, and Y. Feng, “A single-shot transmissive spectrometer for hard x-ray

free electron lasers”, Appl. Phys. Lett. 101, 034103 (2012).

64D. Rich, D. Zhu, J. Turner, D. Zhang, B. Hill, and Y. Feng, “The LCLS variable-energy hard

X-ray single-shot spectrometer”, J. Synchrotron Rad. 23, 3–9 (2016).

104



BIBLIOGRAPHY

65M. Makita, P. Karvinen, D. Zhu, P. N. Juranic, J. Gruenert, S. Cartier, J. H. Jungmann-

Smith, H. T. Lemke, A. Mozzanica, S. Nelson, L. Patthey, M. Sikorski, S. Song, Y. Feng, and

C. David, “High-resolution single-shot spectral monitoring of hard x-ray free-electron laser

radiation”, Optica 2, 912–916 (2015).

66C. David, G. Seniutinas, M. Makita, B. Rösner, J. Rehanek, P. Karvinen, F. Löhl, R. Abela,
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