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A B S T R A C T

Interacting few-body systems are the fundamental building blocks of many-
body theories. Few-body physics is exciting by itself and, importantly,
it often benefits our understanding of many-body physics as well. The
latter is challenging to solve numerically owing to the exponential scaling
of the Hilbert space dimension with increasing number of particles. For
that reason, certain approximations need to be made and effective models
are obtained. However, the validity of these models is usually limited to
weak interactions. In contrast, few-body problems are tractable to head-on
numerical approaches at any strength of interactions, and in certain cases
even allow for analytical solutions.

In this regard, we explore the few-body physics of a binary mixture sub-
ject to a species-selective confinement with a special emphasis on impurity
physics. Impurities can significantly modify their environment and can be
used as a sensitive probe of intrinsic properties of the host medium. The
actual impact of inter-particle interactions is very sensitive to the shape of
external potentials. We pay particular attention to account for inter-particle
correlations by using the state-of-the-art numerical technique, the multi-
layer multi-configuration time-dependent Hartree method. We classify the
ground states in different parameter spaces, which serves as a starting point
for subsequent analysis of the system’s breathing dynamics. The correspond-
ing collective excitations are being used in modern cold-atom experiments
for diagnostics of single-species condensates and we want to check their
utility for binary mixtures. We propose that our results on stationary prop-
erties and dynamics can be verified experimentally using quantum gas
microscopy, which we adapt to non-lattice trapped sparse-density systems.

The final part of the thesis is dedicated to a fundamental topic, potentially
relevant for many areas of science which deal with the matrix eigenvalue
problem. Explicitly, we aim at characterizing structural properties of eigen-
states and -energies. To this end, we employ two recent concepts from
spectral graph theory: vertex pair cospectrality and isospectral reduction.
The former concept imposes local parity on eigenvectors, even in absence of
pair exchange symmetries. We reveal that the corresponding eigenvectors
have additional structure beyond parity, which can be inferred by analysing
the powers of a graph’s matrix. The latter concept is a spectrum-preserving
decimation procedure to reduce the graph size to a certain subsystem. The
reduced graph might feature additional symmetries, which are absent in
the unreduced version and for that reason are called latent. We show that a
certain class of spectral degeneracies can be explained by latent symmetries
of a graph.
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Z U S A M M E N FA S S U N G

Wechselwirkende Wenigteilchensysteme sind die grundlegenden Bausteine
von Vielteilchentheorien. Die Physik von wenigen Teilchen ist an sich schon
sehr spannend und, was noch bedeutender ist, sie trägt oft auch zu einem
besseren Verständnis von Vielteilchenphysik bei. Letztere ist numerisch
schwer zugänglich, da die Dimension des Hilbert-Raums mit zunehmender
Teilchenzahl exponentiell ansteigt. Aus diesem Grund müssen bestimmte
Näherungen vorgenommen werden, um effektiven Modelle abzuleiten. Die
Gültigkeit dieser Modelle ist jedoch in der Regel auf schwache Wechselwir-
kungen beschränkt. Im Gegensatz dazu sind Wenigteilchenprobleme bei
beliebiger Stärke der Wechselwirkungen mit numerischen Ansätzen lösbar.
In bestimmten Fällen sind sogar analytische Formulierungen möglich.

In diesem Zusammenhang untersuchen wir die Wenigteilchenphysik
einer binären Mixtur, die in einer komponenten-abhängigen Falle gefan-
gen ist, mit besonderem Schwerpunkt auf der Physik der Fremdatome.
Fremdatome können ihre Umgebung erheblich beeinflussen und dienen
als empfindliche Sonde für intrinsische Eigenschaften des umgebenden
Mediums. Die tatsächliche Auswirkung der Wechselwirkungen zwischen
den Teilchen ist sehr von der Form der externen Falle abhängig. Besonderes
Augenmerk legen wir auf die Charakterisierung der Auswirkungen von Kor-
relationen, indem wir eine state-of-the-art numerische Methode verwenden,
die Multi-Layer Multi-Configuration Time-Dependent Hartree Method for
Mixtures. Wir klassifizieren die Grundzustände in verschiedenen Parame-
terräumen, die anschließend als Ausgangspunkt für die Atmungsdynamik
dienen. Die entsprechenden kollektiven Anregungen werden in modernen
Kaltatomexperimenten zur Diagnose von aus einer Komponente beste-
henden Kondensaten verwendet, und wir wollen ihren Nutzen für binäre
Mischungen überprüfen. Wir schlagen vor, dass unsere Ergebnisse zu sta-
tionären Eigenschaften und zur Dynamik experimentell unter Verwendung
der Quantengasmikroskopie verifiziert werden können, die wir an nicht
gittergebundene Systeme mit geringer Dichte anpassen.

Im letzten Teil der Arbeit widmen wir uns einem grundlegenden Thema
von potentieller Relevanz für viele Bereiche der Naturwissenschaften, die
sich mit dem Matrixeigenwertproblem beschäftigen. Explizit geht es um
die Charakterisierung der strukturellen Eigenschaften von Eigenzuständen
und -energien. Zu diesem Zweck verwenden wir zwei neue Konzepte aus
der spektralen Graphentheorie: Vertexpaar-Kospektralität und isospektrale
Reduktion. Das erste Konzept erzwingt eine lokale Parität der Eigenvekto-
ren, auch wenn es keine Austauschsymmetrien gibt. Wir zeigen, dass die
entsprechenden Eigenvektoren eine zusätzliche Struktur über die Parität
hinaus aufweisen. Diese lässt sich aus der Analyse der Potenzen einer
Matrix ableiten. Das zweite Konzept ist ein spektrumerhaltendes Reduzie-
rungsverfahren um die Größe eines Graphen auf ein bestimmtes Teilsystem
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zu reduzieren. Der reduzierte Graph kann zusätzliche Symmetrien auf-
weisen, die in der originalen Version nicht vorhanden sind und deshalb
als latent bezeichnet werden. Wir zeigen, dass eine bestimmte Klasse von
spektralen Entartungen durch latente Symmetrien eines Graphen erklärt
werden kann.
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1
R O A D M A P O F T H I S T H E S I S

In this thesis, our goal is to investigate few-body phenomena and interaction-
induced correlation effects in a few-body binary mixture of bosons experi-
encing a species-selective inhomogeneous one-dimensional trap. Our works
can be categorized in four topics: i) characterization and classification of
ground states; ii) study of breathing dynamics; iii) quantum gas microscopy
of trapped few-body systems and iv) recent insights from spectral graph the-
ory contributing to a better understanding of matrix eigenvalue problems.
The thesis is structured as follows.

In Chapter 2, we introduce our physical system. To characterize its station-
ary and dynamical properties, we use the multi-layer multi-configuration
Hartree method. It is an ab-initio variational approach to simulate many-
body dynamics in the weak-to-intermediate correlation regimes. The ground
state can be obtained by imaginary time propagation, one can treat particles
of mixed statistics and it has a rich toolbox of state analysis. Details of the
method are discussed in Chapter 3.

In Chapter 4, we investigate stationary properties of our mixture. Identify-
ing distinct regimes of a physical system is an important first step towards
developing a deeper understanding of its intrinsic attributes and dynamical
behaviour. In [MP1], our objective is to obtain and analyse the low-energy
spectrum of a miniature problem with non-trivial particle statistics, the
2+2 mixture in a harmonic trap. We solve it by exact diagonalization in
a relative-coordinates frame to define a correlation-tailored basis which
greatly facilitates the method’s convergence. Furthermore, the alternative
frame reveals additional symmetries otherwise hidden in the laboratory
frame. In [MP3], we explore the miscible-immiscible phase boundary. In
particular, we quantify to which extent the conventional separation crite-
rion for homogenous systems is violated by trap inhomogeneity, particle
number imbalance and interaction-induced correlations. We evidence sev-
eral possibilities for the two components to separate and provide a simple
criterion to determine which configuration is energetically more favourable.
In [MP4], we study ground states for a different trap combination, namely
a lattice-trapped medium coupled to a free impurity. We identify parameter
regions where the interplay between trap geometry and interactions leads
to substantial perturbations with a sizeable amount of entanglement.

In Chapter 5, we use the above ground states as initial states for subse-
quent breathing dynamics. The system is set in motion by quenching the
harmonic trap frequency. The ensuing dynamics is monitored by recording
the time evolution of the reduced one-particle density. The breathing oscil-
lations of a single-species condensate are known to display a two-frequency
beating: one frequency is constant while the other interaction-sensitive and
serves as a valuable diagnostics tool in experiments. Our goal is to verify
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2 roadmap of this thesis

whether the utility of breathing excitations can be extended to binary mix-
tures. In [MP1], for a 2+2 mixture we identify three interaction-sensitive fre-
quencies. It matches the number of interaction parameters, and we analyse
the amplitudes of individual excitations across different interaction regions.
In a follow-up work [MP2], we extend our studies to a particle-imbalanced
case. We find that a species-asymmetric quench protocol allows to excite
an additional beyond-mean-field mode whose amplitude is particularly
sensitive to the amount of deposited entanglement.

In [MP1–MP4], the reduced one- and two-particle densities are crucial
quantities to classify ground-state regimes, record the dynamical response
and access the expectation value of many relevant observables. Naturally,
we were concerned whether our results could be verified experimentally,
which is the subject of Chapter 6. For this we would require single-atom
sensitivity to access inter-particle correlations and high spatial resolution
to resolve variations in position space. The recent invention of a pinning
lattice combined with fluorescence imaging, the so-called quantum gas mi-
croscope, fulfils these two requirements and is readily available in modern
laboratories. However, so far they have been utilized primarily in lattice-
trapped systems. In [MP5], we propose to extend this concept to non-lattice
trapped atoms. The idea is to bypass the limitations of lattice constant reso-
lution by shifting the relative position of the pinning lattice potential. The
imaging process is mapped to a convolution of the reduced density with
an imaging filter, which we call the quantum point spread function. The re-
sulting distortions can be partially removed by a machine-learning-assisted
deconvolution procedure.

In Chapter 7, we zoom out from the field of ultracold atoms and concern
ourselves with a fundamentally broad topic of practical significance for
many areas of science dealing with the matrix eigenvalue problem. Our
ideas are rooted in recent developments in spectral graph theory. Symme-
tries are known to simplify the numerical treatment of eigenvalue problems
by imposing restrictions on the structure of eigenvectors. Strikingly, eigen-
vectors might have an elegant structure even in the absence of conventional
symmetries, such as local parity on two eigenvector components, a phe-
nomenon called vertex pair cospectrality. In [MP6], we identify further
relations among components of an eigenvector by analysing the powers of
the corresponding matrix. This work provides a theoretical framework for
generating cospectral graphs, which is a hot topic in spectral graph theory,
and it laid the foundation for a systematic construction and manipulation
of flat bands in tight-binding systems. In [MP7], we analyse symmetries of
an effective matrix obtained by a decimation procedure, called isospectral
reduction. It reduces the size of a matrix to a dedicated subsystem while
preserving the eigenvalue spectrum. Surprisingly, effective matrices can
feature symmetries, which are not present in their unreduced version and
for that reason are called latent symmetries. Importantly, they can be of
great use in explaining spectral degeneracies in a visually interpretable way.

Our published works are listed in Chapter 8. Finally, we provide a sum-
mary and discuss promising directions for future research in Chapter 9.



Part I

F E W- B O D Y P H Y S I C S W I T H M I X T U R E S O F
U LT R A C O L D AT O M S





2
F E W- B O D Y T R A P P E D B O S O N I C M I X T U R E

Many-body systems [1] are challenging to solve. An analytical treatment is
only possible for a fraction of problems or in some limiting cases. There exist
effective models and perturbative expansions, but their validity is limited
to weak or strong interactions and extensions are thus highly desirable. In
particular, the regime of intermediate interactions is not yet fully understood.
While it is amenable to numerical techniques, the exponential growth of the
Hilbert space dimension with an increasing number of particles represents
a major bottleneck which restricts their use to few-body systems, comprised
of up to tens or hundreds of particles.

The microscopic physics of a few interacting particles [2] serves as a
major building block of many-body theories. Physical insights gained by
analysing few-body systems are indeed very useful to improve our current
understanding of many-body physics [3–7]. However, even though few-
body phenomena play an important role in large ensembles of particles,
many-body systems may display quite different physical properties. One
way to better understand these discrepancies and how they come to be is
by studying the few- to many-body transition.

The field of ultracold atoms [8] is an ideal platform to systematically
pursue this bottom-up approach. Since the first experimental realization
of Bose-Einstein condensate (BEC) in dilute alkali gases in 1995 [9, 10],
significant progress has been achieved in the manipulation of ultracold
samples. Nowadays, the state-of-art experiments are able to:

• dynamically tailor the trapping geometry, including the effective
dimensionality, by employing holographic optical tweezers with a
spatial light modulator or acousto-optic deflectors [11, 12];

• tune the interactions via Fano-Feshbach resonances [13] by varying
an external magnetic field;

• prepare multi-component systems of bosons and/or fermions by
utilizing different hyperfine states or isotopes of the same element,
even combining distinct elements;

• select a designated number of particles with a high fidelity [14–19];

• detect single atoms [20, 21] and perform high-resolution imaging
of the particles’ distribution with a quantum gas microscope (QGM)
[22–27].

Note that the degree of flexibility depends on the chosen elements. Owing
to this exquisite control over system parameters, ultracold atoms have been
used over the past two decades as quantum simulators of condensed matter
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6 few-body trapped bosonic mixture

and high energy physics [28]. Typical models, such as Heisenberg or Hub-
bard models, can be prepared and investigated in a well-controlled environ-
ment. In recent years, the research focus has increasingly expanded towards
real-world applications in quantum computing, information processing and
quantum metrology. From the above, it is undoubtedly a promising route to
explore the physics of mesoscopic systems, increasing the complexity one
particle at a time.

How does one actually prepare a few-body system in modern labora-
tories? One can distribute the particles uniformly over a shallow lattice
(superfluid regime) and then suppress the inter-well tunnelling by a non-
adiabatic increase of the lattice depth (Mott regime), thus freezing the
instantaneous particle distribution at each lattice site [29]. One ends up
with many independent realizations of a few-body system with an aver-
age statistics of a few particles per lattice site. The so-called super-lattice
allows to manipulate simultaneously the shape of every well by varying
the relative phase between the underlying sub-lattices [30]. Furthermore,
a targeted redistribution of particles among wells has been demonstrated
[31, 32]. Alternatively, an optical tweezer can be loaded with either an al-
ready pre-cooled few-body sample [33] or a thermal macroscopic ensemble,
subsequently reduced to a few particles by tilting the trapping potential
allowing the hot atoms to escape (evaporative cooling) [34]. For fermions,
the above spilling mechanism allows for a full control of system’s quantum
state owing to the Pauli’s exclusion principle [14–19].

A few-body system is characterized by a sparse particle density. Strikingly
and counter-intuitively, in quasi-one-dimensional (1D) trapping geometries,
realized by a strong transverse confinement, a lower density implies stronger
interactions in contrast to higher dimensions [35]. It comes as no surprise
that in recent years the physics of 1D ultracold atoms has triggered a lot
of fundamental research interest [36–38]. By now it is recognized that cor-
relations are largely enhanced in 1D, such that sophisticated numerical
techniques are necessary for an accurate characterization of system prop-
erties, such as the multi-layer multi-configuration time-dependent Hartree
method for mixtures of bosons and fermions (ML-MCTDH-X) [39–41] for con-
tinuous traps or the density matrix renormalization group (DMRG) [42–44]
for discrete lattices.

Correlations acquire an additional flavour in binary mixtures of bosons,
fermions and mixed particle statistics [38, 45, 46]. One differentiates among
intra- and inter-component correlations. The former are primarily affected
by species-internal parameters, such as intra-component interactions and
external traps. When distinguishable particles become coupled, they pro-
duce an induced potential for each other, and there is a build-up of inter-
component correlations caused by the entanglement [47]. It has a direct
consequence for the internal structure of each component and standard intu-
ition is often insufficient to predict how the two types of correlations affect
each other. As a result of this complex interrelation, binary mixtures exhibit
a rich set of spatial configurations such as bound clusters and segregated
interfaces [38, 46].



few-body trapped bosonic mixture 7

In this thesis, we explore the domain of sizeable inter-particle correlations
for a few-body two-component mixture of ultracold bosons confined to
a 1D geometry. A special emphasis is put on particle number imbalance,
especially impurity problems as well as the inhomogeneity and species-
selectivity of the external trap. Impurity physics is a hot topic linked to
the polaron problem in condensed matter physics [48]. A highly particle-
imbalanced mixture with a BEC background, termed the Bose polaron
[49], can be mapped to a well-known Fröhlich model [50]: the electron is
replaced by an impurity atom, while the role of phonons is played by the
Bogoliubov excitations of the condensate. As opposed to solid state physics,
the platform of ultracold atoms allows to examine the polaron phenomenon
with exquisite control over system parameters, e. g., the coupling can be set
to arbitrary values by Feshbach [13] or confinement induced resonances [51–
54]. In particular, one can explore physical phenomena emerging beyond
the validity of the weak-coupling Fröhlich paradigm [55–57]. The trap inho-
mogeneity strongly affects the intra-component correlations and quantizes
the energy spectrum making continuum-based approaches quantitatively
unreliable. The species-selective shaping of the external trap allows for a
flexible way to manipulate the overlap region among the two components,
which has a sizeable impact on the amount of entanglement the composite
system may hold.

Formally, we consider a mixture of two components (species), denoted A
and B. Each component σ ∈ {A, B}, also called species, consists of Nσ bosons
of equal mass m, which can be experimentally realized by two different
hyperfine states [58–67]. The particles are confined to a quasi-1D geometry
[14–19, 68–71] by a tight harmonic trap in two spatial (transverse) directions
and experience a species-selective trapping potential Vσ(x) [72, 73] along
the remaining (longitudinal) direction. We operate in the limit of zero tem-
perature, where particle interactions are completely determined by a single
parameter, the s-wave scattering length as [74]. When the range of interac-
tion is small compared to the inter-particle distance, as is the case for dilute
quantum gases, one can replace the true potential by a mathematically
convenient model potential [75]. A common choice is the zero-range contact
potential gδ(r) [76] with g the interaction strength and r the inter-particle
distance. We distinguish between intra-component and inter-component
interactions of strength gσ and gAB, respectively. Experimentally, they can
be tuned independently by a combination of Feshbach [13] and confine-
ment induced resonances (CIR) [51–54]. Thus, we arrive at the following
Hamiltonian:

H = ∑
σ

Hσ + HAB, (2.1)

Hσ =
Nσ

∑
i=1

[
− h̄2

2m
∂2

xσ
i
+ Vσ(xσ

i )

]
+ gσ

Nσ

∑
i<j

δ(xσ
i − xσ

j ), (2.2)

HAB = gAB

NA

∑
i=1

NB

∑
j=1

δ(xA
i − xB

j ), (2.3)



8 few-body trapped bosonic mixture

where h̄ is the Planck constant and xσ
i the position of the i-th particle from

component σ. We consider two distinct parabolic traps with a frequency
ratio η in [MP1–MP3] while in [MP4] we combine a five-well trap with
a box potential. Furthermore, we focus on particle-imbalanced mixtures,
where A is the majority and B the impurity species.



3
T H E O R E T I C A L D E S C R I P T I O N O F B I N A RY M I X T U R E S

This chapter introduces numerical methods for solving the initial value
problem ih̄∂t |Ψ(t)⟩ = Ĥ |Ψ(t)⟩ for a trapped few-body Bose-Bose mix-
ture described by Eq. (2.1). The reduced dimensionality greatly enhances
interaction-induced correlations [36, 37], further complicated by the shape
of an external confinement [77]. Moreover, a binary mixture harbours two
different types of correlations, the intra- and inter-component ones. Under-
standing their interplay is an exciting yet challenging task [47]. We aim at
an accurate description of stationary properties and dynamics by taking all
the relevant correlations into account. In particular, we want to extract the
impact of correlations by comparing converged simulations to mean-field
results. Unfortunately, sizeable correlations come with a great computa-
tional cost. The exponential scaling of the Hilbert space dimension with
increasing number of particles limits our analysis to few-body system sizes.
Nevertheless, such systems are experimentally accessible [14–19, 29–34],
exhibit many exciting phenomena [2, 46], such as the Efimov effect [6],
and provide valuable physical insights which might improve our current
understanding of the many-body systems [3–5, 7].

In the following, we first discuss two well-established techniques for
solving the time-dependent Schrödinger equation: exact diagonalization in
Section 3.1 and expansion w. r. t. time-independent basis in Section 3.2. We
emphasize the sensitivity of such approaches to a particular choice of basis
functions and their inflexibility to describe a time-evolving subspace of the
complete Hilbert space. This brings us to the family of Hartree methods
which are based on an adaptive time-dependent basis. In Section 3.3 we
describe why these methods have been so successful over the past years. We
open our overview with the ‘grandparent’, the mean-field Hartree-Fock (HF),
in Section 3.3.1. Of particular relevance for the field of ultracold atoms is
the Gross-Pitaevskii equation (GPE), a mean-field ansatz to describe weakly
correlated bosons. Then in Section 3.3.2 we discuss the descendants of HF:
the multi-configuration and the multi-layer extensions. The former takes
into account interaction-induced correlations while the latter represents an
efficient way to describe mixtures of indistinguishable particles. The wave
function expansion is given explicitly for the bosonic mixture studied in
this work. We conclude this chapter in Section 3.3.3 with a discussion on
the scaling properties of our method and elaborate on the significance of
reduced density operators for evaluating the accuracy of simulations as
well as for describing physical properties of our system [MP1–MP5].

Before we start, let us briefly comment that there are many other sophis-
ticated methods available, such as the quantum monte carlo (QMC) [78, 79]
and the density matrix renormalization group (DMRG) [42–44], particularly
successful for the description of 1D continuous and lattice systems with

9
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short range interactions [36]. However, we do not aim at comparing these
methods to ours in terms of efficiency or interpretability. In this thesis, we
concentrate exclusively on physical aspects of a bosonic mixture.

3.1 exact diagonalization

Solving |Ψ(t)⟩ = e−
i
h̄ Ĥt |Ψ(0)⟩ with a time-independent Hamiltonian Ĥ is

equivalent to solving the underlying eigenvalue problem Ĥ |Ek⟩ = Ek |Ek⟩.
Once the eigenstates and the eigenenergies of Ĥ are known, the initial
population of eigenstates ck = ⟨Ek|Ψ(0)⟩ can be evaluated and the state
evolution is given simply by |Ψ(t)⟩ = ∑k cke−

i
h̄ Ekt |Ek⟩. Such an approach

was employed for a weakly perturbed ground state in our work [MP1].
The eigenstates |Ek⟩ and corresponding eigenenergies Ek can be obtained
by representing Ĥ as a matrix in some truncated user-defined basis and
diagonalizing it. This is an approximate method. The exact diagonalization
refers to the situation when the basis size is sufficiently large to consider
the eigenenergies of interest to be converged.

How does one choose a suitable basis for a many-body wave function?
The one particle Hilbert space H is spanned by so-called single-particle
functions (SPFs) {|φj⟩}. The Hilbert space of N particles is spanned by a
tensor product of individual one particle Hilbert spaces, i. e., HN =

⊗N
i=1 Hi.

Consequently, the many-body state can be expanded as follows:

|Ψ⟩ =
s1 ...sN

∑
j1 ...jN

cj1 ...jN |φj1⟩ . . . |φjN ⟩ . (3.1)

In principle, any two particles may have distinct SPFs and the total num-
ber of SPFs may also differ. For simplicity, we assume a single set for all
particles and just control the set size s, which affects the accuracy of our
representation.

In case the particles are indistinguishable, such as bosons or fermions, only
a subspace of the above N-body Hilbert space matters. Moreover, the set of
SPFs needs to be the same for every particle. An additional symmetrization
Ŝϵ is necessary, such that the many-body wave function becomes symmetric
(for bosons ϵ = +1) or antisymmetric (for fermions ϵ = −1) w. r. t. an ex-
change of any two particles. The operator Ŝϵ

N = 1√
N! ∑π∈SN

ϵsign(π)Pπ, when
acting on a single product state, creates a superposition of all possible (N!)
particle permutations1. The factor ϵsign(π) is relevant only for fermions and
gives the parity of a permutation π. A properly symmetrized and subse-The bosonic

(fermionic) number
state is also called a

permanent
(determinant)

quently renormalized product state is termed a Fock state or a number state
|n1, . . . , ns⟩ ≡ |⃗n⟩ encoding the distribution of particles over an orthonormal
set of SPFs and fulfilling ∑i ni = N. Consequently, the many-body wave
function of bosons or fermions needs to be expanded as follows:

|Ψ⟩ = ∑
n⃗

cn⃗ |⃗n⟩ . (3.2)

1 SN is the symmetric group over a set X = {1, . . . , N}, π : X → X a re-indexing of particle
labels and Pπ the corresponding permutation matrix.
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In case of dealing with K different flavours of indistinguishable particles
the basis becomes a tensor product of Fock states:

|Ψ⟩ = ∑
n⃗(1) ...⃗n(K)

cn⃗(1) ...⃗n(K) |⃗n(1)⟩ . . . |⃗n(K)⟩ ≡ ∑
n⃗

cn⃗ |⃗n⟩ . (3.3)

Note that for K = N Eq. (3.3) reduces to Eq. (3.1) and for K = 1 it reduces to
Eq. (3.2). In the following, we employ the notation |⃗n⟩ to denote the basis of
the most general case from Eq. (3.3), i. e., a tensor product of distinguishable
Fock states.

The Hamilton matrix ⟨⃗n|H|m⃗⟩ can be now constructed and subsequently
diagonalized. This gives us expansion coefficients for each eigenstate. The
convergence is controlled by the total number s of SPFs. The Hilbert space
dimension grows exponentially as sN for distinguishable particles, (N+s−1)!

N!(s−1)!

for bosons and s!
N!(s−N)!

for fermions. Importantly, since the set of SPFs is
not complete, the particular choice of basis functions strongly affects the
convergence. Clearly, it is an impossible task to guess the best performing
set of SPFs in a general setting. In most cases it is physically motivated,
e. g., by solving the problem of non-interacting particles, which is a set of
independent one-body problems.

Typically, systems of around four particles are treated with this method
[80–83], though it highly depends on the degree of inter-particle correlations
induced by interactions. A coordinate transformation to a relative frame
x⃗ → r⃗ might turn out useful. In particular, it changes the meaning of
correlations: the relative coordinates ri play now the role of ‘particles’ [MP1].
The relative frame basis may easily account for major correlations of the
laboratory frame and vice versa [84].

3.2 time-independent basis for initial value problems

Another somewhat similar way to solve the initial value problem is to use
an a priori fixed number state basis with time-dependent coefficients, thus
skipping the calculation of eigenstates outlined in the previous section:

|Ψ(t)⟩ = ∑
n⃗

cn⃗(t) |⃗n⟩ . (3.4)

By applying any of the equivalent time-dependent variational principles (La-
grangian, McLachlan or Dirac-Frenkel) [85], one arrives at a set of coupled
time-differential equations for the coefficients cn⃗(t).

As opposed to the exact diagonalization, this method can deal with
time-dependent Hamilton operators, though it also suffers from the rep-
resentation problem. To explain why, let us introduce the notion of an
active Hilbert space (Fig. 3.1). It is a hyperplane of a finite and, generally,
time-dependent dimension d(t) encapsulated within the complete Hilbert
space. Clearly, at any point in time it can be represented by d(t) appropri-
ately chosen basis vectors. Now, as the time evolves, the active space may
rotate within the Hilbert space traversing from one subspace to another.
Meanwhile, the active space dimension may even grow or shrink, though
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t

e1

e2

e2

e1

e2

e1

Figure 3.1: Illustration of an active space. Assume a three-dimensional Hilbert
space spanned by a time-independent basis {⃗ex, e⃗y, e⃗z}. Suppose a quan-
tum system (represented by a bug) undergoes a dynamical evolution
on a two-dimensional hyperplane (active space indicated by a magenta
colour). The hyperplane may look different at different times, such that
all basis vectors are required to describe the full time evolution. An
adaptive time-dependent basis composed of two vectors {⃗e1, e⃗2} allows
for a sparser representation of the ongoing dynamics.

it is bounded by dmax = maxt d(t) for a finite time interval t ∈ [0, T]. A
time-independent basis can be optimized only once, e. g., for the initial state,
i. e., it is properly rotated and truncated at a dimension large enough to
incorporate the initial active space d(0). However, in general it will become
less appropriate over time. This means that a larger number of additional
SPFs will be required.

For illustrative purposes, let us provide an another example. Imagine
a wave-packet with a constant support (active space) moving along some
axis with a constant velocity. Initially, we provide a finite-size grid of points
which for a short time window perfectly resolves all the features of this wave-
packet (optimized fixed basis). At some point the wave packet will reach
the grid boundary and the theoretical description becomes inaccurate. To
simulate the long-time dynamics a large grid would be necessary, although
only a fraction of grid points are ’active’ at any point in time [86].
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Illustration of an active space: At t = 0 the active space has a finite
dimension d = 2. As the time goes by it grows and shrinks in dimension.
At a final time T it ends up in a subspace orthogonal to the initial one.

This poses the following question: why not use an adaptive time-dependent
basis which provides a sparse representation for the instantaneously rele-
vant subspace of the total Hilbert space?
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3.3 family of hartree methods

The idea of a time-dependent basis is actually quite old [87–90]. It all started
with only a single adaptive basis function, the Time-Dependent HF Method.
It aimed to approximate a system of interacting fermions. The extension
to bosons and distinguishable particles is straightforward. However, it
is a mean-field method. To account for particle-induced correlations, the
basis size has to be increased admitting multiple configurations: the multi-
configuration time-dependent Hartree method (MCTDH-X)2 [91–96]. Among
recent developments there is the ML-MCTDH-X [39, 40]. As the name suggests,
it can deal with multi-component mixtures of mixed particle statistics
and is thus particularly suited for several tasks addressed within this
thesis. In the following, we provide a historical viewpoint on the ideas
behind ML-MCTDH-X, introduce the terminology used in our publications
and discuss several technical aspects of the method.

3.3.1 Time-Dependent Hartree Fock

The time-dependent HF is a variational method for solving the initial value
problem ih̄∂t |Ψ(t)⟩ = Ĥ |Ψ(t)⟩. It has played an important role in molecular
[97] and nuclear [98] physics for a long time providing reasonable approx-
imations whenever interaction-induced inter-particle correlations could be
considered small during the time evolution. Importantly, for indistinguish-
able particles the correlations, induced by the particle-exchange symmetry,
are fully accounted for.

The many-body wave function of N (in)distinguishable particles is as-
sumed to be a number state |⃗n⟩t composed of s time-dependent SPFs |φj(t)⟩:

|Ψ(t)⟩ = |⃗n⟩t . (3.5)

By applying the time-dependent variational principle [85], one arrives at a
set of s coupled time-differential equations for the SPFs.

relaxation : If the real time evolution is replaced by an imaginary
time-evolution [99], one arrives at an upper bound for the ground state,
given that it has a finite overlap c0 ̸= 0 with the initial wave function:

e−Ĥt |Ψ(0)⟩ = ∑
k=0

cke−Ekt |Ek⟩ = e−E0t

[
c0 |E0⟩+ ∑

k=1
cke−γkt |Ek⟩

]
(3.6)

where γk = Ek − E0 is the decay rate of the k-th eigenstate. Note that
the state norm decays and thus a renormalization after each time step is
required.

2 Originally, MCTDH was developed only for distinguishable particles [91, 92]. Later it was
extended to bosons MCTDH-B [93] and fermions MCTDH-F [94]. The abbreviation MCTDH-X

unites all three cases.
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self-consistent field method : HF is called a mean-field theory
[97]. To help understand why, let us change the viewpoint to the time-
independent Schrödinger equation Ĥ |Ψ⟩ = E |Ψ⟩. One can get an upper
bound approximation for the ground state using the Rayleigh–Ritz method
[100]. To this end, the expected energy ⟨Ψ|Ĥ|Ψ⟩ of the HF ansatz is mini-
mized w. r. t. SPFs. One arrives at a system of coupled non-linear differential
equations for the SPFs: F̂[{φj}] |φj⟩ = ϵj |φj⟩. Note that the one-body Fock
operator F̂ = H1 + Hm f + Hex is non-linear. Apart from a linear term H1, it
has an averaged potential term Hm f induced by all the other orbitals (mean-
field) and an exchange term Hex for indistinguishable particles (correlations
from particle exchange symmetry).

The HF equations are solved in a self-consistent manner using an iterative
procedure. First, an initial basis of SPFs is chosen, usually motivated by the
corresponding one-body problem of independent particles. Then a loop
follows: i) the Fock operator is represented as a matrix in the current single-
particle basis; ii) its eigenstates, obtained by diagonalization, replace the
basis used in the previous step. The loop is terminated when the variation
of energy drops below a pre-defined threshold. The mean-field potential
experienced by the particles becomes consistent with the one they produce.
Coming back to the initial value problem, the time-evolution of SPFs is
dictated in a similar way by the instantaneous mean-field and exchange
terms [98].

gross-pitaevskii equation : For fermions, there is no ambiguity
regarding which number state configuration to choose: because of the Pauli
exclusion principle each particle needs a distinct SPF. For bosons, there are
many possibilities regarding the number of SPFs and the distribution of
particles among them. Which configuration will provide the best mean-field
approximation?

In the field of ultracold atoms there is a particularly famous HF ansatz for
bosons, the GPE [101–103]. At ultracold temperatures a weakly interacting
BEC is assumed to be nearly condensed [104], i. e., all particles occupy the
lowest-energy SPF of the non-interacting one-particle problem ⟨n̂0⟩ ∼ N.
This suggests a number state configuration with just a single orbital |⃗n⟩ =
|N⟩. The variation principle gives a non-linear time-differential equation for
the one SPF |φ⟩, which is an effective one-body problem:In the literature, it is

common to use a
different norm and a

large particle limit
⟨φ|φ⟩ = N ≫ 1

ih̄∂t φ(x, t) =

[
− h̄2

2m
∂x2 + V(x) + g(N − 1)|φ(x, t)|2

]
φ(x, t). (3.7)

The last term in the parenthesis is a non-linear mean-field term caused
by the s-wave contact interaction ∝ δ(xi − xj). Note the absence of the
exchange term, since no symmetrization is needed. For stationary solutions,
ih̄∂t φ(x, t) is replaced by µφ(x, t) with µ the Lagrange multiplier which
determines the normalization of φ(x, t). It is tempting to think of µ as the
energy per particle except it double-counts the interaction energy, i. e., the
total energy is given by E = Nµ − gN(N − 1)/2

∫
dx|φ(x, t)|4.
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To account for weak perturbations of a condensate fraction the renowned
Bogoliubov approach can be used [8, 105, 106]. A suitable transformation
leads to a description in terms of non-interacting quasi-particles, called
phonons, which represent elementary excitations inside the condensate.
GPE has been quiet successful at describing the dynamics of particular
BEC excitations, such as solitons and vortices [8]. When correlations are
significant, the GPE displays often an anomalous behaviour, such as a
dynamical instability manifested through symmetry breaking [107].

For a trapped bosonic system, especially at a sizeable strength of interac-
tions, e. g., the Tonks-Girardeau (TG) gas of fermionized bosons [108, 109]
or the Mott phase in lattice systems [110, 111], the GPE ansatz is not neces-
sarily the optimal mean-field approximation. Instead, one might consider
a different number state configuration (with multiple occupied orbitals)
[112–118].

3.3.2 Multi-Layer Multi-Configuration Time-Dependent Hartree Method

The major drawback of HF is the complete ignorance of inter-particle corre-
lations induced by interactions. The advanced MCTDH-X method combines
the rigorousness of Eq. (3.4) and the flexibility of Eq. (3.5) by making both
the expansion coefficients and the basis functions time-dependent [91–96]:

|Ψ(t)⟩ = ∑
n⃗

cn⃗(t) |⃗n⟩t . (3.8)

Now, the adaptive basis comprises many configurations which can capture
a moderate amount of interaction-induced correlations. Still, also MCTDH-X is
subject to the infamous exponential growth of the Hilbert space dimension
with the increasing number of particles sN . However, the base s of this scal-
ing can be considerably reduced [92] as compared to a time-independent
basis Eq. (3.4), i. e., much less SPFs are generally required making larger
systems numerically accessible. Thus, the quantum dynamics of mesoscopic
systems hosting N ∼ O(101 − 104) particles has been successfully demon-
strated [119–125]. An improved relaxation scheme allows to obtain the n-th
eigenstate directly, i. e., bypassing the calculation of energetically lower
eigenstates [95, 96]. This opens the possibility to analyse also the static
properties of a given system.

We finally arrive at the final relevant extension, the ML-MCTDH-X [39–41]
employed in [MP2–MP4]. The Multi-Layer (ML) concept [126] was first intro-
duced in the context of distinguishable particles. Even though a correlated
many-body wave function cannot be approximated by a single product state,
it can still be reasonably well represented as a product state of grouped
coordinates. The wave function may be thus expanded by partitioning the
physical degrees of freedom into weakly correlated groups of strongly
correlated particle coordinates. This scheme can be repeated several times
tailoring the ansatz to system-specific correlations [127]. In particular, it
allows to combine distinguishable and indistinguishable degrees of freedom.
Each group σ of indistinguishable particles xσ

i (a species) is merged into
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Figure 3.2: The Multi-Layer structure for a two-component Bose-Bose mixture.

a single logical coordinate qσ = x⃗σ. In the first step (top layer), the many-
body wave function is expanded in terms of product states for the logical
coordinates qσ. Explicitly, for a mixture of two distinguishable species A
and B, the top layer expansion takes the following form:

|Ψ(t)⟩ =
S

∑
i,i′

Aii′(t) |ΦA
i (t)⟩ |ΦB

i′ (t)⟩ . (3.9)

It is reminiscent of an MCTDH-X expansion for distinguishable particles,
except here instead of SPFs we have so-called species orbitals |Φσ

i (t)⟩, each
depending on many particle coordinates.

In the second step (species layer), each species orbital |Φσ
i (t)⟩ is expanded

according to Eq. (3.8), i. e., in terms of Nσ-body Fock states determined by
sσ time-dependent SPFs |φσ

j (t)⟩:

|Φσ
i (t)⟩ = ∑

n⃗σ |Nσ

Cσ
i;⃗nσ(t) |⃗nσ⟩t . (3.10)

Note that expanding the wave function directly into multi-species prod-
uct states |⃗nA⟩ |⃗nB⟩, as is done in MCTDH-XX [128–130], results in a huge
amount of coefficients. Assuming an equal number of particles Nσ = N
and an equal number of SPFs sσ = s, the amount of expansion coefficients is(
(N+s−1)!
N!(s−1)!

)2
. In contrast, we get only S2 + 2S (N+s−1)!

N!(s−1)!
coefficients by the top

layer segmentation, given in Eq. (3.9), which has a much more favourable
scaling.

Finally, in the last step (particle layer), each SPF |φσ
j (t)⟩ is expanded in

terms of a time-independent spatial grid. For efficiency reasons one uses a
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discrete variable representation (DVR) basis [131, 132]. It is a comparatively
large set of sg ≫ sσ time-independent SPFs |χα⟩:

|φσ
j (t)⟩ = ∑

α

dσ
j;α(t) |χα⟩ . (3.11)

The DVR has two useful properties. First, each grid function is represented
in terms of analytical functions and thus admits exact expressions for one-
body operators appearing in the time-differential equations. Second, each
grid function is an eigenstate of the position operator x̂ and thus is highly
localized around the corresponding eigenvalue χα(xβ) ∝ δα,β.

coupled gross-pitaevskii equations : Choosing sσ = 1 (implying
S = 1) amounts to a mean-field ansatz describing a weakly interacting two-
component bosonic mixture at zero temperature [8]. The variation principle
gives a system of coupled non-linear time-differential equations for the two
SPFs |φA⟩ and |φB⟩: In the literature, it is

common to use a
different norm and a
large particle limit
⟨φσ|φσ⟩ = Nσ ≫ 1

ih̄∂t |φA⟩t =
[

HA
1 + gA(NA − 1)ρA

1 (x, t) + gABNBρB
1 (x, t)

]
|φA⟩t ,

ih̄∂t |φB⟩t =
[

HB
1 + gB(NB − 1)ρB

1 (x, t) + gABNAρA
1 (x, t)

]
|φB⟩t ,

(3.12)

with the one-body term Hσ
1 = − h̄2

2m ∂2
x + Vσ(x) and the reduced one-body

density ρσ
1 (x, t) = |φσ(x, t)|2 for the component σ. The mean-field terms

come from the intra- and inter-component contact interactions. For sta-
tionary solutions ih̄∂t |φσ⟩t is replaced by µσ |φσ⟩t with µσ the Lagrange
multiplier of σ species which determines the normalization of φσ(x, t). The
total energy is:

E = ∑
σ

Nσµσ − gσ
Nσ(Nσ − 1)

2

∫
dx [ρσ

1 (x, t)]2 − gAB

∫
dx ∏

σ

Nσρσ
1 (x, t).

Similar to the single-component case, µσ is not a chemical potential due to
the miscounting of interaction energies.

species mean-field : Choosing S = 1 amounts to a species mean-field
(SMF) ansatz describing a non-entangled two-component bosonic mixture.
In particular, the inter-component correlations are completely neglected.
Consequently, the particles of one component experience a mean-field
potential produced by the density of the other component. Contrarily to
coupled GPEs, the intra-component correlations are still accounted for by a
multi-configurational expansion on the species layer:

ih̄∂t |ΦA(t)⟩ =
[

HA + gAB

NA

∑
i

ρB
1 (xA

i , t)

]
|ΦA(t)⟩ ,

ih̄∂t |ΦB(t)⟩ =
[

HB + gAB

NB

∑
i

ρA
1 (xB

i , t)

]
|ΦB(t)⟩ ,

(3.13)
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where Hσ is defined as in Eq. (2.1), |Φσ(t)⟩ is a species orbital from Eq. (3.10)
and ρσ

1 (x, t) the reduced one-body density (defined below). Importantly, the
SMF potential can sometimes greatly modify the fragmentation level of each
component as compared to a decoupled mixture at gAB = 0.

As a last remark, let us mention some recent improvements and develop-
ments for the Hartree methods.

restricted active space : Not all number state configurations |⃗n⟩t
are relevant at all times judged by the magnitude of the corresponding
expansion coefficients cn⃗(t). Monitoring their values during the time evo-
lution allows to reduce the number of active configurations, known as the
RAS-MCTDH [133, 134].

second quantization representation : ML-MCTDH-SQR [135] is
based on the second quantization formalism. The many-body wave-function
is represented by tensor products of single mode Fock spaces, i. e., F =⊗s

i |ni⟩. The s orbitals constitute distinguishable degrees of freedom, each
spanned by a single-mode Fock space {|n⟩}n=0,...,N . This change of view-
point is particularly suited for lattice problems.

3.3.3 Convergence and Density Operators

The accuracy of simulations is controlled by the numerical parameters{
S, sσ, sg

}
. The parameter sg determines the Hilbert space dimension, while

S and sσ truncate this space to a numerically feasible dimension. More-
over, the parameter sσ is primarily responsible for inter-particle correlations
within the component σ, while S controls the level of inter-species correla-
tions.

The time-independent grid with sg SPFs sets the stage for upcoming
truncations. For a two-component bosonic mixture it would amount to

∏σ
(Nσ+sg−1)!
Nσ !(sg−1)!

configurations. Considering that sg ∼ O(102) this is a huge
space.

Now we perform the first truncation by choosing sσ ≪ sg adaptive SPFs

arriving at ∏σ
(Nσ+sσ−1)!
Nσ !(sσ−1)!

configurations, which is a considerable reduction.
The time-independent grid should be dense enough to resolve spatial
variations of adaptive SPFs and large enough to account for the maximal
spatial extent of the system during the dynamical evolution. To fulfil the
above requirements, we use a harmonic DVR (high density of grid points at
the centre) with ng = 151 for parabolic external traps in [MP2, MP3] and a
sine DVR (equally spaced) with ng = 225 for finite systems with hard-wall
boundary conditions in [MP4]. The cost we pay for the truncation are the
ng ∑σ sσ ∼ O(103) additional expansion coefficients for the adaptive SPFs

from Eq. (3.11).
The top layer expansion allows to further reduce the number of configu-

rations to S2 ∼ O(101). Again, the cost one has to pay for the truncation are
the S ∑σ

(Nσ+sσ−1)!
Nσ !(sσ−1)!

expansion coefficients for species orbitals from Eq. (3.10).
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The latter represents a major bottleneck for accessing bosonic mixtures
of many particles. Increasing Nσ should be compensated by decreasing
sσ to keep the number of coefficients reasonably small, meaning that less
intra-species correlations can be accounted for.

Whether a simulation has converged or not depends on the observable
under consideration. To evaluate the expectation value of a n-body observ-
able Ôn, a converged reduced n-body density operator ρ̂n = TrN−n [ρ̂] is
sufficient: ⟨Ôn⟩ = Tr

[
Ônρ̂

]
= Tr

[
Ônρ̂n

]
. A crucial evidence, that ρ̂n has

converged, is obtained by monitoring the eigenvalues 0 ≤ mj ≤ 1 (sorted in
descending order and fulfilling ∑j mj = 1) of its spectral decomposition

ρ̂n = ∑
j

mj |mj⟩ ⟨mj| (3.14)

as {S, sσ} are incrementally increased. The eigenvalues mj (-vectors |mj⟩) of
a density operator are often called natural populations (orbitals). The smallest
eigenvalue serves as an important indicator for considering a simulation
as being converged on the n-body level. Usually, a value below 10−6 is
considered reasonably small. Additionally, natural populations have to
display an exponential decay as a function of the eigenvalue index [39]. Of
course, the above criteria is just a rule of thumb. In practice, the convergence
of any observable is carefully verified as a function of numerical parameters.

Most observables of interest are either one- or two-body operators. In
case of a two-component bosonic mixture, the crucial quantities are the
reduced one- and two-body density operators of species σ, denoted as ρ̂σ

1
and ρ̂σ

2 , respectively, as well as the inter-species two-body density operator
ρ̂AB

2 . They are defined as follows:

ρ̂σ
n(t) = TrNσ−nσ TrNσ∗ [ρ̂(t)] , (3.15)

ρ̂AB
2 (t) = TrNA−1TrNB−1 [ρ̂(t)] , (3.16)

where σ∗ ̸= σ is the opposite component. They are not only useful to
evaluate expectation values or to judge on the convergence of a simulation,
but provide also valuable physical insights. Thus, ρσ

1 (x, x′) = ⟨x|ρ̂σ
1 |x′⟩ (the

one-body density matrix) characterizes the coherence properties of compo-
nent σ, while its diagonal ρσ

1 (x) (the one-body density) is the probability
distribution to find a single σ particle at position x. The diagonal of ρ̂2 in
spatial representation ρ2(x, y) = ⟨x, y|ρ̂2|x, y⟩ (the two-body density matrix)
characterizes the probability distribution of measuring two particles at
different locations x and y.

entanglement and fragmentation : An important measure of
inter-component correlations is contained in the reduced Nσ-body density
operator ρ̂σ(t) = TrNσ∗ [ρ̂(t)] of species σ obtained by integrating out all
Nσ∗ particles of the other component σ∗ ̸= σ. Importantly, ρ̂A and ρ̂B share
the same set of natural populations mj. In particular, m0 ≈ 1, i. e., a pure
state, implies an absence of entanglement between the two components. For
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an entangled bipartite mixture, we employ the von Neumann entropy to
quantify the degree of entanglement:

SvN = −∑
j

mj log(mj). (3.17)

In a similar may, one can look at the species fragmentation entropy Sσ
vN by

using natural populations of the reduced one-body density ρ̂σ
1 .



4
G R O U N D S TAT E C L A S S I F I C AT I O N

In this chapter, we provide a brief overview of the variety of ground state
regimes which can be realized in a Bose-Bose mixture. Gaining an under-
standing of the lowest energy eigenstate as a function of tunable parameters
and classifying different regimes associated with distinct properties is an
important first step to investigate any physical system. In several of our
works [MP1, MP3, MP4], we focus on static properties of quasi-1D mixtures
with a species-dependent confinement, primarily the parabolic one. The
trap inhomogeneity is one of the major ingredients in our studies. Homo-
geneous ultracold gases can be often solved analytically via the famous
Bethe ansatz [136, 137]. However, most experimental studies rely on an
external confinement, such as a harmonic or a lattice potential. It adds an
additional complexity to the problem, such that analytical results can be
only obtained in some limiting cases. In-between these regimes a numerical
treatment becomes necessary and we employ handy methods from the
previous chapter, suitable to address such a problem.

We start our discussion with a single-component 1D Bose gas in Sec-
tion 4.1. In particular, we cover: i) the mean-field BEC regime with almost
every particle being condensed into the same lowest-energy orbital, ii) the
Thomas-Fermi (TF) many-particle limit where the condensate becomes a
mirror reflection of its external trap, iii) the strongly correlated TG gas of
impenetrable bosons which disguise themselves as fermions and iv) its en-
ergetic counterpart at attractive interactions, the highly excited metastable
super TG gas.

All of the above regimes can be also found in a 1D binary mixture of
bosons. As long as the two components are only weakly coupled they
are miscible. However, with increasing repulsion they undergo a phase
segregation, which is discussed in Section 4.2. We derive a rough estimate for
the critical coupling marking the transition in a homogeneous case. However,
its exact value and the immiscible configuration are extremely sensitive to
internal parameters of each species σ such as the external trap Vσ, mass
mσ, particle number Nσ and intra-component interaction strength gσ. We
review three segregated regimes in a harmonic trap for a species-symmetric
mixture except for different gσ: i) the core-shell phase separation (PS) with
one component surrounded on both sides by the second, ii) the entangled
composite fermionization (CF) with hard-core repulsion among particles
from different components and iii) the full fermionization (FF), an analogue
of TG which can be mapped to a discrete spin chain model. At attractive
inter-component couplings, one can observe heterogeneous molecules and
realize an interesting beyond mean-field phenomenon, called quantum
droplet. Finally, we outline our own contributions in Sections 4.3 to 4.5,
where we extend and complement the existing studies on static properties

21
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of a Bose-Bose mixture. We pay a particular attention to species-selective
external traps and particle number imbalance.

4.1 inhomogeneous 1d bose gas

When there is no coupling between the components in Eq. (2.1), i. e., gAB = 0,
each component can be solved separately. Let us briefly recapitulate some
relevant regimes which can be found in a single-component 1D Bose gas: BEC,
TF, TG and super Tonks. We assume that the gas is at zero temperature, has
a finite number of particles N, the transverse motion is frozen out and the
longitudinal motion is subject to a harmonic confinement V(x) = 1

2 mω2x2.
A detailed discussion on the physics of low dimensional trapped gases

can be found in [36, 138] for bosons and [37] for fermions. Before we start,
let us rescale Eq. (2.2) (without σ label) to harmonic oscillator units, i. e.,
lω =

√
h̄/mω for length and h̄ω for energy:

H =
N

∑
i=1

[
−1

2
∂2

xi
+

1
2

x2
i

]
+ α

N

∑
i<j

δ(xi − xj), (4.1)

with the dimensionless interaction parameter α = mglω
h̄2 . At repulsive inter-

actions α > 0 there are three regimes [138] depicted in Fig. 4.1:

1. BEC at α ≪ 1 and N ≪ 1/α,

2. TG at α ≫ 1 and N ≪ α2,

3. TF otherwise, in particular at a sufficiently large N.
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Figure 4.1: Ground state regimes in a finite-size 1D Bose gas under harmonic
confinement as a function of an effective interaction strength α and
particle number N.
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bose-einstein gas : BEC [139, 140] is a phase (transition) which occurs
when a gas of N non-interacting bosons is cooled down to an extremely
low temperature (O ∼ nK) [9, 10]. Below the critical temperature Tc, the
population N0 of the lowest energy one-particle orbital |φ0⟩ grows linearly
with N for a sufficiently large N. One says the state is macroscopically
occupied. Especially, in the limit T = 0 all particles become condensed, i. e.,
N0 = N.

For finite size interacting systems, as in Eq. (4.1), the condensate fraction
N0/N corresponds to the largest eigenvalue m0 of a spectrally decomposed
one-body density operator ρ̂1 from Eq. (3.14) [104]. When the condensate
fraction m0 = N0/N ≈ 1, we are in the BEC regime. The ground state
one-body density has a Gaussian profile and can be obtained from Eq. (3.7).
Otherwise the condensate is called fragmented [141]. The degree of frag-
mentation can be quantified by the depletion 1 − m0 or the von-Neumann
entropy SvN from Eq. (3.17).

thomas fermi gas : The gas becomes weakly interacting beyond a suf-
ficiently large number of particles [142–144]. In a TF gas, the GPE framework
Eq. (3.7) without the kinetic term can be applied. The ground state one-body
density is just a reflection of the external potential across a constant line
defined by the Lagrange multiplier µ > 0:

Nρ1(x) =





n0

(
1 − x2

R2
TF

)
for |x| ≤ RTF

0 otherwise
(4.2)

with the TF radius RTF =
√

2µ, peak density n0 = µ/α and chemi-

cal potential µ =
(

3Nα
4
√

2

)2/3
obtained from the normalization condition∫

dx|φ(x)|2 = 1.

tonks girardeau gas : At an infinite repulsion, α = +∞, one arrives at
a highly correlated TG phase [108, 109] which was experimentally confirmed
in [70, 71]. In this limit, the bosons display hard-core boundary conditions,
meaning that the many-body wave function vanishes whenever the positions
of any two particles coincide, i. e., Ψ(x⃗) = 0 if xi = xj for any particle pair
(i, j). This reminds of the Pauli exclusion principle. Moreover, the energy
spectra of impenetrable bosons and non-interacting fermions are the same.
In fact, an eigenstate of non-interacting fermions ΨF(x⃗) and of hard core
bosons ΨB(x⃗) are intimately related via the so-called Bose-Fermi mapping
ΨB(x⃗) = A(x⃗)ΨF(x⃗), where A(x⃗) = ∏i<j sign(xi − xj) ensures the bosonic
exchange symmetry.

The ground state fulfils ΨB = |ΨF|. In a harmonic trap the ground
state of N non-interacting fermions is an anti-symmetrized product state
|⃗n⟩ composed of N SPFs with ni = 1. The SPFs are harmonic oscillator
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eigenstates. Applying symmetrization leads to a Bijl-Jastrow pair product
form [145]

ΨB(x⃗) = CN

(
N

∏
i<j

|xi − xj|
)

e−∑i x2
i /2 (4.3)

with a normalization constant CN . The one-body density is identical to that
of non-interacting fermions ρ1(x) = ∑N−1

j=0 |φj(x)|2 with N-humps, though
the humps blur out with an increasing number of particles leading to a
‘polished’ bell-shape density profile. There are also some striking differences
to fermions. Thus, hard-core bosons have a larger condensed fraction [146,
147]. Moreover, the momentum distribution ρ1(k) is a narrow peak with
a 1/k4 tail [148] as opposed to fermions which displays a broad N-hump
profile.

attractive gas : At attractive values of interaction, α < 0, the ground
state is a N-body bound state, followed by excited cluster-type bound
states [149, 150]. Even higher in energy, there are gas-like eigenstates with
fermionic properties. One such state can be accessed by preparing a TG

gas at α = +∞ and then traverse the Feshbach resonance to α = −∞. One
ends up in a metastable gas-like state predicted theoretically [151, 152] and
confirmed experimentally [153]. This phase is called a super Tonks gas,
because correlations are stronger and more short ranged than in the TG gas.

4.2 bose-bose mixture

Figure 4.2: Ground state regimes in a two-component Bose mixture as a function
of repulsive interactions. Reprinted figure from [81]. DOI: https://doi.
org/10.1088/1367-2630/16/10/103004.

Now, we consider a 1D Bose mixture in a harmonic trap (Fig. 4.2). When
the two components are only weakly coupled, we are in the miscible regime.
Thus, the single-component phases can coexist. In particular, at repulsive
couplings three limiting cases can be identified:

• BEC-BEC at gAB = 0 and gσ = 0

https://doi.org/10.1088/1367-2630/16/10/103004
https://doi.org/10.1088/1367-2630/16/10/103004
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• BEC-TG at gAB = 0 and gA(B) = +∞ and gB(A) = 0

• TG-TG at gAB = 0 and gσ = +∞

When the two components are strongly repulsive, we end up in the
immiscible regime. Three distinct configurations can be identified:

• core-shell PS at gAB = +∞ and gA(B) = +∞ and gB(A) = 0

• CF at gAB = +∞ and gσ = 0

• FF at gAB = +∞ and gσ = +∞

Let us discuss these regimes in more detail.

phase separation : First, we derive a commonly used immiscibility
criterion valid for homogeneous mixtures having a large number of particles
Nσ ≫ 1 [154]. To this end, we consider a finite box potential of extension L,
i. e., Vσ(x) = 0 for x ∈ [0, L] and infinite outside. We assume a TF regime for
both components implying weak correlations and negligible kinetic energy.
The densities are obtained by solving the stationary coupled GPEs from
Eq. (3.12). The total energy is given by:

E ≈ ∑
σ

gσ
N2

σ

2

∫ L

0
dx [ρσ

1 (x)]2 + gAB

∫ L

0
dx ∏

σ

Nσρσ
1 (x). (4.4)

When the components are miscible, each density is spread over the whole
interval L, meaning ρσ

1 (x) = 1/L for all x ∈ [0, L]. The total energy in a
miscible configuration amounts to:

EM =
1

2L
(

gAN2
A + gBN2

B + 2gABNANB
)

. (4.5)

When the components are separated, each density occupies only a seg-
ment of length Lσ, such that LA + LB = L. Suppose A is left-separated, i. e.,
ρA

1 (x) = 1/LA for x ∈ [0, LA] and zero otherwise. Then B is right-separated,
i. e., ρB

1 (x) = 1/LB for x ∈ [L − LB, L] and zero otherwise. The total energy
in the immiscible configuration, i. e., ρA

1 (x)ρB
1 (x) = 0, amounts to:

EPS =
1
2

(
gA

N2
A

LA
+ gB

N2
B

LB

)
. (4.6)

Minimizing this energy w. r. t. Lσ and keeping in mind the constraint LA +

LB = L, we obtain optimal partitioning Lσ = L
[
1 +

√
gσ′
gσ

Nσ′
Nσ

]−1
with σ′ ̸= σ

and can rephrase the above expression for EPS as:

EPS =
1

2L
(

gAN2
A + gBN2

B + 2
√

gAgBNANB
)

, (4.7)

which can be now easily compared to EM. In particular, the two components
become segregated when EPS < EM or, equivalently,

√
gAgB < gAB. This is

the immiscibility criterion for a homogeneous two-component Bose mixture.
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The phase segregation has been extensively investigated over the past
years both experimentally and theoretically [60, 154–162]. In particular,
the trapping geometry strongly affects the immiscibility criterion outlined
above along with the shape of segregated density distributions.

Thus, in a harmonic trap the ground state may undergo a core-shell PS:
one species occupies the trap centre (the core) while the other component is
pushed to the edges of the first component (the shell). Depending on the
intra-component parameters we can get either ABA or BAB configurations.
The overlap region between the two density profiles decreases with increas-
ing repulsion gAB. The state is non-generate and the least entangled among
the segregated phases. In particular, it can be well matched by a species
mean-field ansatz.

When the two components compete for the energetically low trap centre,
usually one of the component gets the upper hand and forms the core.
However, there are situations, when both components have equal energy
arguments for occupying the trap centre and the winner cannot be decided.
This brings us to the next segregated phase, the CF.

composite fermionization : Let us assume for simplicity a mixture
with symmetric components, i. e., x⃗A ↔ x⃗B. When the intra-component
interactions are absent (gσ = 0) and the two components are strongly
repelling each other (gAB = +∞), one reaches a regime of CF [163, 164].
Note that a mixture of non-symmetric components also has a CF limit,
though at a particular ratio of asymmetry parameters [MP3]. Similar to
TG, the many-body eigenstates display hard-core boundary conditions, i. e.,
Ψ(x⃗A, x⃗B) = 0 if xA

i = xB
j for any pair of distinguishable particles. Owing

to this resemblance, a pair product ansatz from Eq. (4.3) can be adapted to
the CF ground state:

Ψ(x⃗A, x⃗B) ∝

(
NA

∏
i

NB

∏
j
|xA

i − xB
j |
)

e−∑i(xA
i )

2/2e−∑i(xB
i )

2/2. (4.8)

Numerical simulations indicate two major natural populations for the
reduced one-body density operator [80] and substantial entanglement be-
tween the components [MP3].

This regime displays multiple peculiar properties. The ground state is
actually two-fold degenerate [MP1] and emerges out of two eigenstates
with an opposite global reflection parity, meaning x⃗σ → −x⃗σ. In particular,
the degenerate manifold can be chosen to have a definite global parity, if
appropriately rotated by a unitary transformation. At 1/gAB ≪ 1 but finite,
with a numerically resolvable energy gap, we expect the quasi-degenerate
eigenstates to have a definite global parity. Thus, the one-body density
ρσ

1 (x) displays two reflection symmetric humps and looks the same for both
components (see Fig. 4.3 [top]). This overlapping conveys an impression
of a miscible phase, which is unusual given the strong repulsion. The
two components are indeed segregated, which can be evinced by the two-
body density matrices. Thus, the inter-component two-body density matrix
ρAB

2 (x, y) is depleted along the diagonal x = y (see Fig. 4.3 [bottom row
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Figure 4.3: CF of a 2+2 mixture at gσ = 0.4. One body density ρσ
1 (x) [top], intra-

component two-body density matrix ρσ
2 (x1, x2) [middle row] and inter-

component two-body density matrix ρAB
2 (xA, xB) [bottom row] at three

different couplings gAB ∈ {0.4, 4.7, 25} [columns]. Last column is the
characteristic pattern of CF. Reprinted figure with permission from
[163]. Copyright (2008) by the American Physical Society. DOI: https:
//doi.org/10.1103/PhysRevA.78.013629.

on the right]), meaning there is zero probability of finding two particles of
different species at the same location. In fact, judged by the anti-diagonal
pattern of the density plot, two distinguishable particles are most likely
to be found on opposite sides of the harmonic trap. Meanwhile, particles
of the same component bunch together on the same side of the harmonic
trap, as indicated by the diagonal pattern in the intra-component two-body
density matrix ρσ

2 (x, y) (see Fig. 4.3 [middle row on the right]).
Based on these observations, a two-mode approximation has been sug-

gested [163] |Ψ⟩ ≈ 1√
2

(
|ΨA

L ⟩ |ΨB
R⟩ ± |ΨA

R ⟩ |ΨB
L⟩
)

with |Ψσ
L⟩ = |Nσ, 0⟩ and

|Ψσ
R⟩ = |0, Nσ⟩ for a left and right localized Gaussian-type states, respec-

tively. The advantage of this viewpoint is that each species orbital is a
mean-field state. Naturally, a mean-field ansatz for the whole mixture is
unable to describe the two configurations at the same time. Thus, only one
configuration with ‘broken’ parity symmetry can be obtained by solving
the coupled GPEs. Importantly, the symmetry breaking takes place already
at intermediate values of gAB [MP3] providing evidence for the failure of
an uncorrelated ansatz.

full fermionization : In the limit when all interactions become in-
finitely repulsive gAB = +∞ and gσ = +∞, the mixture can be mapped to

https://doi.org/10.1103/PhysRevA.78.013629
https://doi.org/10.1103/PhysRevA.78.013629
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a system of N = NA + NB non-interacting fermions [165]. Similar to TG and
CF we can replace the effect of interactions by hard-core boundary condi-
tions Ψ(x⃗) = 0 if xi = xj for any pair of particles and x⃗ = (x⃗A, x⃗B). As in the
TG case, we can employ the Bose-Fermi mapping to construct the ground
state from a properly symmetrized determinant, i. e., Ψ(x⃗) = A(x⃗)ΨF(x⃗) =
|ΨF(x⃗)| with A(x⃗) = ∏i<j sign(xi − xj). However, as opposed to TG, here
the ground state is N!

NA !NB ! -fold degenerate. There is a particularly insightful
choice of basis for this manifold, the so-called snippets [166, 167].

To better understand what snippets are, let us consider N distinguishable
particles with an infinite δ repulsion in a longitudinal potential V(z). Since
the particles are impenetrable, they are ordered and can be written as a label
sequence |σ1, · · · , σN⟩ with σi the particle label. E. g., for N = 3 there are six
ways of ordering: |ABC⟩, |ACB⟩, |BAC⟩, |BCA⟩, |CAB⟩ and |CBA⟩. Thus,
we can partition the whole space RN into N! configuration sectors Cπ ={

x⃗ ∈ RN |xπ(1) < · · · < xπ(N)

}
with π a permutation of particles. Within

each sector, the many-body wave-function obeys the Schrödinger equation
of N non-interacting particles and it vanishes at the sector boundaries. A
snippet state |π⟩ is a symmetrized fermionic state restricted to a particular
sector Cπ:

⟨x⃗|π⟩ =
√

N!θ(xπ(1), . . . , xπ(N))| ⟨x⃗|ΨF⟩)|, (4.9)

where θ(xπ(1), . . . , xπ(N)) = 1 if xπ(1) < · · · < xπ(N) and zero otherwise.
The basis is orthonormal by construction ⟨π|π′⟩ = δπ,π′ and each state |π⟩
is a ground state of N distinguishable impenetrable particles.

Coming back to the Bose mixture, we now need to unite those sectors,
which correspond to an exchange of indistinguishable particles, i. e., we
symmetrize w. r. t. each species. E. g., for NA = 2 and NB = 1 there are only
three configurations: |AAB⟩, |ABA⟩ and |BAA⟩, the same as the degeneracy
level. Let |e⟩ refer to a many-body state of N distinguishable impenetrable
particles with a default ordering x1 < · · · < xN . Then, we can construct all
three eigenstates from the snippet basis as follows:

• |AAB⟩ = 1√
2
(|e⟩+ |π1,2⟩)

• |ABA⟩ = π̂2,3 |AAB⟩

• |BAA⟩ = π̂1,3 |AAB⟩

with πi,j exchanging the positions of particles i and j.
For large but finite interactions, 1/gσ ≪ 1 and 1/gAB ≪ 1, one can do

zeroth order degenerate perturbation theory for the ground state manifold
and derive an effective Hamiltonian He f f :

He f f = EF1 − 2 ∑
σ

N−1

∑
i

Ci

gσ
|σ⟩i |σ⟩i+1 ⟨σ|i ⟨σ|i+1 (4.10)

−
N−1

∑
i

Ci

gAB

(
|A⟩i |B⟩i+1 + |B⟩i |A⟩i+1

) (
⟨A|i ⟨B|i+1 + ⟨B|i ⟨A|i+1

)
,
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where EF is the ground state energy of N non-interacting fermions in a
potential V(z), Ci =

N!h̄4

m2

∫
dx1 · · · dxNδ(xi − xi+1)θ(x1, · · · , xN)| ∂ΨF

∂xi
|2 and

|σ⟩i refers to the label at index i.
By identifying |A⟩ ↔ |↑⟩ and |B⟩ ↔ |↓⟩, one finds:

σx = |A⟩ ⟨B|+ |B⟩ ⟨A| , σy = −i |A⟩ ⟨B|+ |B⟩ ⟨A| ,

σz = |A⟩ ⟨A| − |B⟩ ⟨B| , 1 = |A⟩ ⟨A|+ |B⟩ ⟨B| .

We can now formulate Eq. (4.10) as a spin chain Hamiltonian Hsp [168–172]:

Hsp =− 1
2gAB

N−1

∑
i

Ci

[
σ
(i)
x σ

(i+1)
x + σ

(i)
y σ

(i+1)
y

]

− 1
2

(
1

gA
+

1
gB

− 1
gAB

) N−1

∑
i

Ciσ
(i)
z σ

(i+1)
z

+

[
EF −

1
2

(
1

gA
+

1
gB

+
1

gAB

) N−1

∑
i

Ci

]
1

− 1
2

(
1

gA
− 1

gB

) N−1

∑
i

Ci

[
σ
(i)
z + σ

(i+1)
z

]
.

The third term ∝ 1 is just an energy offset and can be ignored. The fourth
term is an inhomogeneous magnetic field. Assuming V(z) = 0 gives Ci =

C and the field becomes homogenous. Since the total magnetization is
conserved, the field has no effect, so we discard it.
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Figure 4.4: Phase diagram [left] and one-body densities ρσ
1 (x) [right] of a Bose mix-

ture at strong repulsive interactions. Reprinted figures with permission
from [171]. Copyright (2017) by the American Physical Society. DOI:
https://doi.org/10.1103/PhysRevA.95.043630.

If we further transform σ
(i)
x → (−1)iσ

(i)
x and σ

(i)
y → (−1)iσ

(i)
y , we arrive

at the XXZ Heisenberg model in the absence of a magnetic field:

HXXZ = Jxy

[
N−1

∑
i

σ
(i)
x σ

(i+1)
x + σ

(i)
y σ

(i+1)
y + (1 − η)σ

(i)
z σ

(i+1)
z

]

https://doi.org/10.1103/PhysRevA.95.043630
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with Jxy = C
2gAB

and η = gAB
gA

+ gAB
gB

= 1 − Jz
Jxy

. The Hamiltonian has a very
rich phase diagram (see Fig. 4.4): Heisenberg (Anti-)Ferromagnet, Ising
(Anti-)Ferromagnet and XY phase. Different phases can be accessed by
changing the sign and ratio of the coupling strengths.

attractive coupling : Finally, we would like to mention a particularly
interesting phenomenon occurring in attractive mixtures (gAB < 0) of
weakly repulsive components (gσ > 0), namely quantum droplets [173]. They
display some peculiar properties and have been recently confirmed in
experiments [59, 67, 174]. In free space they neither disperse nor collapse
but remain self-bound. They are characterized by a saturation density ρ∗.
As the number of particles is increased, the droplet first becomes denser
while its spatial extension remains constant. After the threshold value N∗
has been reached, the excess particles migrate to the density edges, causing
a growth of the droplet’s size while keeping the density fixed (see Fig. 4.5).

Figure 4.5: Top: The wave function of quantum droplet versus radial coordinate
(both in rescaled units) for an increasing number of particles (indicated
by the growing area under the curve). Reprinted figure with permission
from [175]. Copyright (2015) by the American Physical Society. DOI:
https://doi.org/10.1103/PhysRevLett.115.155302.

Droplets are possible because of beyond-mean field effects. Assume a
homogeneous mixture in a miscible regime and introduce a residual mean-
field coupling δg = gAB +

√
gAgB. The GPE becomes unstable at δg < 0

https://doi.org/10.1103/PhysRevLett.115.155302
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predicting a collapse of the condensate wave-function [176]. However, in
the vicinity of δg ≈ 0 correlations become indispensable and a first order
beyond-mean field correction to the GPE needs to be introduced, the Lee-
Huang-Yang (LHY) term [175, 177, 178]. The residual mean-field and the
LHY terms display different dependencies on the coupling constants and
scaling with the condensate density ρ(x). The trap dimensionality plays
also a crucial role: in 3D the mean field term can be made attractive while
the LHY term is repulsive; in 1D it is the other way around. Hence, one
can tune the two contributions independently until they balance each other
out. Thus, attractive forces which localize the particles become stabilized
by repulsive forces. The collapse can be avoided and finite size quantum
droplets are formed.

Another notable study [179] addresses the behaviour of attractively cou-
pled TG mixture, i. e., gAB < 0 and gσ = +∞. At intermediate couplings
a molecular TG is formed, i. e., bound pairs composed of distinguishable
particles, followed by condensation of these pairs at strong couplings and,
beyond a critical value, the mixture undergoes a collapse.

4.3 preface : eigensystem of a 2+2 harmonic mixture

In [MP1] we consider a few-body binary mixture with two bosons per
species confined in a 1D harmonic trap. The work can be divided in two
subtopics: the properties of the low-energy spectrum and the breathing
dynamics. The latter shall be discussed in Section 5.5. Here, we proceed
with the analysis of stationary properties.

To solve the eigenvalue problem, we employ the exact diagonalization
method (Section 3.1) in a correlated product basis of relative-frame co-
ordinates. Inspired by the analytical solution of a single-component two-
body problem derived in [180], we perform a transformation to a coor-
dinate frame Y⃗ = {Rcm, RAB, rA, rB} composed of i) the centre-of-mass
Rcm = 1

NA+NB
∑i,σ xσ

i , ii) the relative intra-species distance rσ = xσ
1 − xσ

2 and
iii) the inter-component distance RAB = 1

NA
∑i xA

i − 1
NB

∑i xB
i . Using product

states of symmetrized parabolic functions, Eq. (2.2) becomes diagonal and
Eq. (2.3) is the only non-diagonal matrix. As opposed to a straightforward
expansion in terms of Fock states constructed from harmonic oscillator
orbitals [81], our basis incorporates exactly the correlations induced by
the intra-species interactions. As a result, we achieve a faster convergence
w. r. t. the basis size.

Apart from technical improvements to solve the given Hamiltonian, we
analysed the underlying symmetries in both frames. They have strong
implication for observed degeneracies, explain avoided crossings and allow
a convenient categorization of eigenstates into symmetry classes thereby
promoting a symmetry-induced block-diagonalization.

In the laboratory frame, there is i) a bosonic exchange symmetry Ŝσ for
two indistinguishable particles, ii) the global coordinate reflection P̂X, i. e.,
xσ

i → −xσ
i , iii) in a species-symmetric case gA = gB the exchange of particle
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labels ŜAB, i. e., xσ
i → xσ̄

i , and iv) in a totally symmetric case gA = gB = gAB
any exchange of particles Ŝij.

In the relative frame, we discover additional symmetries: i) the parity
of individual relative coordinates P̂Yi , i. e., Yi → −Yi and ii) in a species-
symmetric case gA = gB the exchange rA ↔ rB. Some of the above symme-
tries are by far not obvious from the laboratory frame perspective, as they
involve improper rotations of the four-dimensional coordinate space. The
spherical or cylindrical coordinates serve in fact the same purpose, namely
to make the symmetries of the laboratory frame more obvious/simple from
the mathematical point of view. The question arises whether further abstract
symmetry transformations of the particles coordinates exist with an intu-
itive interpretation in a suitably-chosen coordinate frame, beyond what is
currently known in physics. In a somewhat related spirit, in Section 7.4 we
discuss yet another kind of hidden symmetries, called latent, revealed not
by a coordinate transformation, but by a spectrum preserving subsystem
partitioning.

4.4 preface : bose polaron in a harmonic trap

In [MP3] we investigate the process of phase separation in a Bose polaron
setup, i. e., an impurity coupled to a medium composed of multiple atoms
(see Eq. (2.1)). The miscible-immiscible transition is one of the key features
in composite mixtures. For instance, it is of experimental relevance in the
context of sympathetic cooling [181, 182], lies at the heart of dynamical
domain formation [183–185] and allows for peculiar vortex patterns [186,
187].

We choose a harmonic species-selective external confinement with a trap
ratio η = ωB/ωA. In addition, we vary the particle number imbalance
NB/NA and the coupling strength gAB. For simplicity, we assume a non-
interacting medium (gA = 0). As we have already mentioned in Section 4.2,
the miscible-immiscible phase boundary is by far not trivial. Furthermore,
not much attention has been paid to characterize the boundaries among
distinct types of phase segregation.

We classify phases according to the one-body density shapes discussed
in Section 4.2. For weak-to-intermediate repulsive interactions we anticipate
the miscible phase, the CF and two types of the core-shell PS with either
the medium or the impurity occupying the trap centre, BAB and ABA,
respectively. To differentiate among the four possibilities, we use

∆σ =
ρσ

1 (x = 0)
maxx ρσ

1 (x)
, (4.11)

which tells us whether species σ is at the centre of its trap (∆σ = 1). We
remark that for a mean-field ansatz, instead of the CF which is an entangled
state, we expect a configuration with a broken parity symmetry.

Our major finding is that at the miscible-immiscible phase boundary the
type of phase segregation is determined by a critical trap ratio ηc:

√
1/ηc =

7
√

NB/NA, (4.12)
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which is derived from the energy competition of the two species to occupy
the trap centre. To this end, we employ an effective Hamiltonian for the
species σ featuring an induced potential determined by the density shape
of the fellow component σ̄:

Vσ
eff(x) = gABNσ̄ρσ̄

1 (x). (4.13)

At weak couplings (the miscible regime), the effective potential is a scaled
ground state of the quantum harmonic oscillator. Thus, the total potential
is a harmonic trap with a central barrier, which grows in height with
increasing gAB. When the ground state energy of the effective potential
turns below the barrier height, the species will depart from the trap centre
and form two parity symmetric humps, i. e., it separates.

For η ≫ ηc we predict the ABA core-shell PS, at η ≈ ηc the CF and for
η ≪ ηc the BAB core-shell PS. This conforms well with our intuition: η ≫ ηc

corresponds to a tightly localized and robust impurity, whereas at η ≪ ηc it
is delocalized and easy to perturb. At η = ηc neither species can prevail to
stay at the trap centre, so none of them does, which leads to the CF. With
an increasing number of majority atoms, ηc tends to extremely high values
implying a static impurity.

In addition, we provide estimate values for all phase boundaries and
identify hints for the existence of tri-critical points, i. e., isolated points
in the phase diagram, where three phases become adjacent. Furthermore,
we link the critical trap ratio ηc to high values of the entanglement SvN .
This helps us to reveal a latent CF disguised as a core-shell PS. Indeed, the
two-body density matrices confirm typical signatures of the CF: localization
of a single component on either side of the trap and the separation of the
two species to opposite sides.

4.5 preface : bose polaron in a species-selective trap

In [MP4] we study the interplay between a finite-lattice trapped majority
component (the medium) and an impurity confined in a box potential.
Our goals are to find parameter regions with a potentially interesting
behaviour, to segregate the mean-field effects and to characterize the impact
of correlations.

In a decoupled regime (gAB = 0), the medium can reside in a superfluid-
like phase or in an insulating-like phase depending on the lattice depth and
intra-component interactions [188], whereas the impurity is localized at the
trap centre and is spatially extended over a broad region.

First, we identify non-trivial parameter regions where the coupling
strength gAB leads to substantial structural differences when compared
to a decoupled mixture. To this end, we employ the fidelity F(ρ̂, σ̂) [189]
to measure the distance between two quantum states described by density
operators ρ̂ and σ̂:

F(ρ̂, σ̂) =

(
Tr
√√

ρ̂σ̂
√

ρ̂

)2

= F(σ̂, ρ̂). (4.14)
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We evaluate the fidelity for the ground state of a decoupled mixture and
of a mixture with a finite coupling strength gAB. We do so at different
levels: the (pure) many-body states ρ̂ and (mixed) single-particle states
ρ̂σ

1 . On the many-body level, apart from the anticipated phase segregation
at strong positive couplings, we find two further peculiar regimes, where
the inter-component coupling greatly perturbs the many-body state of a
decoupled mixture: a weakly interacting medium in a deep lattice with an
attractive coupling to the impurity (regime I) and an attractively interacting
medium coupled repulsively to the impurity with −gA ≈ gAB (regime
II). Although the overall impact looks diminished at the single-particle
level, the fidelity of the medium displays similar signatures as the fidelity
of the many-body state. However, in the immiscible regime the medium
is almost unaffected by the impurity presence, whereas the impurity is
strongly perturbed, namely it is pushed away from spatial regions occupied
by the majority component leading to the core-shell PS. Thus, the fidelity of
the impurity captures well the onset of phase segregation.

Second, we analyse the inter-component entanglement SvN and the frag-
mentation entropy Sσ

vN of each species (defined in Section 3.3.3). This step
allows us to differentiate between mean-field effects and correlation-induced
phenomena. In the regime I, there is practically no entanglement or frag-
mentation present, i. e., a mean-field ansatz would be appropriate, even
though the interactions are of a moderate strength. The fragmentation of
the medium is completely destroyed by the attractive coupling to the im-
purity and the state becomes highly localized implying the formation of a
many-body bound state. Interestingly, prior to this collapse we evidence
states with a moderate amount of correlations. In the regime II, both the en-
tanglement and fragmentation are extremely high. We suspect droplet-like
states.

Third, we look at the one-body density functions ρσ
1 (x) and two-body cor-

relation distributions: ρAA(r) characterizing the probability for two majority
particles to be at a distance r from each other and ρAB(r) characterizing the
probability for a majority particle to be at a distance r from the impurity. In
particular, we compare these quantities to their non-entangled counterparts,
obtained assuming a SMF product ansatz. This allowed us to spatially re-
solve the impact of correlations on measurable quantities. Overall, we find
that entanglement accelerates the process of phase segregation at repulsive
couplings and counteracts the process of localization at attractive couplings.



5
B R E AT H I N G D Y N A M I C S

After having developed a good understanding of ground state regimes
which can be encountered in a trapped Bose gas/mixture (Chapter 4), we
proceed with the investigation of collective low-energy excitations. In the
early years after the experimental realization of a BEC, collective excitations
of a trapped gas were among the first aspects to be tested experimentally
[190–192] in order to benchmark effective theoretical models available at that
time [193–196], such as the hydrodynamical and GPE approaches. Excellent
agreement between theory and experiments have been found in the regime
of a weakly-correlated macroscopic condensate [197].

The immense progress in experimental techniques allowed to extend
these studies to regimes with sizeable correlations such as the transition
from BEC to TG in a 1D geometry [69, 153, 198–200] or the BEC-BCS crossover
[201–203] in a trapped Fermi mixture. The strong sensitivity of collective
modes to the shape of interactions and trapping geometry along with the
ability to measure them with high-accuracy, employing modern imaging
tools such as the correlation-based principal component analysis (PCA) [204],
open the road to use collective modes as a sensitive diagnostics: to verify at
which regime the system has been prepared [69, 153, 203, 205]; to access
mean kinetic, potential and repulsive energies and other key observables
[206]; to perform high-precision measurements of the scattering length or
the trapping frequency [207] and to extract the screening parameter and the
particle charge in complex plasmas [208]. The utility of low-energy collective
modes for trapped particles has been compared to absorption/emission
spectroscopy used for molecular systems [209].

In this chapter, we want to discuss a particular type of collective modes,
namely the breathing mode [209], focussing on harmonically trapped par-
ticles in 1D at zero temperature. In Section 5.1 we introduce the notion of
collective modes through the lens of one-body density and a particular
quench protocol employed in this work. Then, in Section 5.2 we characterize
key features of a breathing mode. Section 5.3 contains major findings related
to a single-species Bose gas. Finally, we address how a partial distinguisha-
bility of particles enriches the breathing response in a two-component Bose
mixture in Section 5.4. In Sections 5.5 and 5.6 we outline our own contribu-
tions focussing on few-body mixtures and beyond mean-field effects.

5.1 collective modes

We consider an equilibrated ultracold ensemble of N interacting particles
(bosons or fermions) subject to an external confinement. At a time t = 0, the
dynamics is triggered by a sudden but weak quench of a system parameter,
which can be formulated as a perturbation ϵQ̂ with ϵ ≪ 1. The pre-quench

35
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and post-quench Hamiltonians, Ĥ0 and Ĥ respectively, are related as Ĥ0 =

Ĥ + ϵQ̂.
In the following, we are interested in the low-energy collective excitations

participating in the dynamics. Collective implies that every particle performs
the same motion. As the particles are indistinguishable, the problem can
be reduced to a spatial monitoring of the time-evolving one-body density
ρ1(x, t). As explained in Section 3.3.3, it is obtained by tracing out the
many-body density ρ̂(t). The latter will be represented in the basis of
post-quench eigenstates |Ej⟩ such that ρ̂(t) = ∑j,k cjcke−

i
h̄ (Ej−Ek)t |Ej⟩ ⟨Ek|

with real overlap coefficients cj = ⟨Ej|Ψ(0)⟩ for the initial state |Ψ(0)⟩,
which is the ground state of Ĥ0. Given the above representation, the one
body-density ρ1(x, t) can be now decomposed as follows:

ρ1(x, t) = ∑
j

c2
j ρ

(j,j)
1 (x) + 2 ∑

j>k
cjckρ

(j,k)
1 (x) cos(Ωj,kt), (5.1)

with transition densities ρ̂
(j,k)
1 = TrN−1

[
|Ej⟩ ⟨Ek|

]
and frequencies Ωj,k =

(Ej − Ek)/h̄ . The first term in Eq. (5.1) is a time-independent background
density while the second term contains multiple oscillatory contributions
for every eigenstate pair (j, k) which is populated (cjck ̸= 0), each with a

characteristic spatial modulation profile ρ
(j,k)
1 (x).

To evaluate the overlap coefficients cj, it is convenient to view the initial
state as a weakly perturbed ground state |E0⟩ϵ of the post-quench Hamilto-
nian Ĥ. Using the non-degenerate perturbation theory, we arrive at a first
order correction:

|E0⟩ϵ = c

(
|E0⟩+ ϵ ∑

j ̸=0

⟨Ej|Q̂|E0⟩
E0 − Ej

|Ej⟩
)

, (5.2)

with a constant c to normalize the state. Obviously, large energy gaps
E0 − Ej strongly suppress the population of higher energy eigenstates, while
transition matrix elements ⟨Ej|Q̂|E0⟩ may filter out states of a particular
symmetry. Given that ϵ is sufficiently small, we may simplify Eq. (5.1):

ρ1(x, t) ≈ c2
0ρ

(0,0)
1 (x) + 2 ∑

j
cjc0ρ

(j,0)
1 (x) cos(Ωj,0t), (5.3)

where we neglected terms cjck ∝ ϵ2, i. e., when both j ̸= 0 and k ̸= 0. In
particular, every frequency corresponds now to an energy gap w. r. t. the
ground state |E0⟩.

The density evolution may be further abstracted as ρ1(x, t) = f (x) +
∑n fn(x) cos(Ωnt) with distinct oscillation frequencies Ωn, i. e., summariz-
ing contributions stemming from eigenstate pairs having the same energy
gap. Each fn(x) cos(Ωnt) will be called a collective mode characterized by a
mode profile fn(x) and a mode frequency Ωn.

5.2 breathing modes

When the perturbation operator corresponds to a weak quench of the trap-
ping frequency ω0 = ω + η in a harmonic confinement, i. e., Q̂ = mω ∑i x2

i ,
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the resulting dynamics observed in the one-body density resembles a res-
piratory motion, i. e., a periodic contraction and expansion of the density
variance:

σ2(t) =
∫

dx (x − x̄t)
2ρ1(x, t) =

1
N

⟨∑
i

x2
i ⟩

t

− 1
N2 ⟨∑

i
xi⟩2

t

(5.4)

with mean x̄t =
∫

dx xρ1(x, t). Collective excitations as registered by oscil- breathing is
synonymous to
monopole and
compressional

lations of the density variance σ2(t) are known as breathing modes.
As the external confinement is reflection symmetric around the origin

(x = 0), only states of the same parity (even or odd) can be coupled by Q̂.
This implies ⟨∑i xi⟩2

t = 0. Thus, σ2(t) is proportional to the expected value
of the perturbation ⟨Q̂⟩t and we call X̂2 = ∑i x2

i the breathing operator.
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Figure 5.1: Single particle breathing. The background density ρ
(0,0)
1 (x) and the

modulation profile ρ
(2,0)
1 (x).

To provide some intuition as to why the density ‘breathes’, let us consider
a single particle. To simplify the notation, we employ harmonic oscillator
units of the post-quench operator, i. e., H = − 1

2
∂2

∂x2 +
1
2 x2. The spectrum is

equidistantly spaced Ek = k + 1/2 and the spatial projection of eigenstates
is Ek(x) = 1√

2kk!
1

4√π
exp(− x2

2 )Hn(x) with Hn(x) the physicists’ Hermite
polynomial. The selection rule for allowed transitions mediated by the
perturbation operator is ∆n = ±2. Thus, starting initially with the ground
state |E0⟩, we populate only the state |E2⟩. The breathing frequency is
Ω2,0 = (E2 − E0) = 2 in units of ω. The background and modulation
densities are sketched in Fig. 5.1. As one can see, the static background
ρ
(0,0)
1 (x) is a Gaussian. Depending on the sign of the cosine function, the

modulation profile ρ
(2,0)
1 (x) can either i) expand the Gaussian by depleting

the central region and simultaneously enhancing the outer regions or ii)
compress the Gaussian via the reverse process.
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5.3 single species

For N interacting particles the situation is slightly different with ⟨∑i x2
i ⟩t

having two breathing frequencies instead of one. To gain a better under-
standing, it will be useful to replace particle coordinates (laboratory frame)
with the center-of-mass (CoM) Rcm = 1

N ∑i xi and relative distances rj, e. g.,
the Jacobi coordinates (CoM frame). Then, the transformed Hamiltonian
separates in two independent parts H = Hcm + Hrel , each with its own
breathing frequency labelled Ωcm and Ωrel respectively.

The CoM Hamiltonian Hcm is a ‘single-particle’ harmonic oscillator with
a frequency ω. Thus, it features a single breathing mode with a universal
(interaction-independent) frequency Ωcm = 2 characterizing modulations
of the CoM variance as measured by the breathing operator ⟨R̂2

cm⟩. As a side
remark, the expression N2 ⟨R̂2

cm⟩ = ⟨∑i x2
i ⟩+ 2 ⟨∑i<j xixj⟩ indicates that the

expectation ⟨∑i<j xixj⟩, which depends on a two-body density ρ̂2, eliminates
the relative frequency Ωrel from ⟨∑i x2

i ⟩.
The Hamiltonian Hrel contains all the relative coordinates rj and, impor-

tantly, the interaction term of H. The breathing operator ⟨∑i<j d2
ij⟩ with

dij = xi − xj excludes R2
cm contribution. Thus, it probes exclusively the

breathing of relative distances. The corresponding mode frequency Ωrel is
very sensitive to the shape and strength of interactions.

Breathing mode frequencies are known in some limiting cases. In particu-
lar, we want to highlight the sensitivity of breathing modes to the shape
and strength of interaction potentials by mentioning some common long-
range and short-range repulsive interactions. We restrict our discussion
to 1D systems as all of our studies have been carried out completely in
1D. For repulsive dipolar interaction ∝ 1/r3, Ωrel decreases monotonically
from 2 to

√
3 as the interaction parameter is increased [210]. For repulsive

Coulomb interaction ∝ 1/r, Ωrel increases monotonically from 2 to
√

5 as
the interaction parameter is increased [211, 212].

For repulsive short-range contact-type interaction, the behaviour is not
monotonic anymore. For a BEC (g = 0) and TG (g = +∞) there is just
a single breathing frequency Ω = 2, since both limits have an equally
spaced spectrum of a quantum harmonic oscillator, i. e., Ωcm and Ωrel are
degenerate. In the TF regime, the relative motion breathing frequency attains
its global minimum Ωrel =

√
3. In-between those regimes an approximation

for Ωrel can be derived semi-analytically via weighted moments and sum
rules [213] or numerically by a modified GPE approach [200].

The Ωrel(g) curve does also depend on the number of particles and
correlations must be often included for an accurate description [214–216]. In
particular, the two-body problem can be solved analytically and has already
provided many fruitful insights [180, 217–219]. For mesoscopic systems N <

100, the global minimum lies above the TF value, i. e., min Ωrel(g) >
√

3.
As the number of particle is increased, the plateau around the minimum
broadens and the value approaches its TF limit. Additionally, the CoM

breathing mode becomes increasingly suppressed because its amplitude
scales as 1/N [214].
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5.4 two species

The breathing response becomes even more complex for two distinct com-
ponents. Although more challenging to solve and analyse, the partial distin-
guishability of particles makes the spectrum richer and opens many exciting
possibilities.

Elementary excitations of a binary bosonic mixture in a harmonic con-
finement have been studied primarily in 3D using a Bogoliubov approach
[220–224]. Recently, the breathing dynamics of a Bose polaron in 1D has
been realized experimentally [225, 226] with a particular emphasis on the
impurity motion. Let us summarize major findings of the above studies, as
they will be useful also in our setting. First, since there are two flavours
of particles, it is possible to excite in-phase or out-phase oscillations of
the two components by a suitable quench of external traps. Second, the
inter-component coupling has a strong impact on the eigenenergies and
thus also on the excitation frequencies. Generally, at a repulsive (attractive)
coupling the frequencies of low energy excitations experience a negative
(positive) shift. Some might even become imaginary, thereby indicating
the onset of phase segregation and symmetry breaking. Third, there are
species-type modes dominating the collective behaviour within a single
component and modes synchronizing particles of both species.

As we have already evidenced in Chapter 4, interaction-induced cor-
relations have a sizeable impact on static properties of a binary mixture,
especially near the miscible-immiscible phase boundary. Hence, we an-
ticipate sizeable differences between the mean-field and exact few-body
dynamics. From the single-component discussion, we expect the universal
CoM mode to be also present in the mixture setting, assuming the post-
quench trap frequencies ωσ are equal, i. e., when the CoM coordinate is
separable. In addition, at weak inter-component interactions one anticipates
that each species will feature a characteristic intra-component breathing
with a frequency Ωσ

rel , particularly sensitive to the intra-component inter-
action parameter gσ. Naturally, they are likely to be shifted due to the
inter-component coupling gAB. Thus, we might consider to take a separate
look at the breathing operator of each species ⟨X2

σ⟩t = ⟨∑Nσ
i (xσ

i )
2⟩t and

classify the excited modes accordingly.

5.5 preface : breathing response of a bose mixture

In [MP1] we study the dynamical response of a stationary few-body binary
mixture composed of two bosons per species upon slightly quenching the
trap frequency of the mutual 1D parabolic confinement. To simulate the
dynamics, we employ the eigenstates and eigenenergies obtained by exact
diagonalization in a relative-frame coordinate system already mentioned in
Section 4.3.

Our major finding is that a binary mixture exhibits a breathing motion
with up to four frequencies depending on the intra- and inter-component
interaction strengths. It is thus richer than a single-species case and demon-
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strates that a sophisticated many-body treatment yields more frequen-
cies than a mean-field theory. For a weakly coupled mixture (gAB ≪ 1),
there is a characteristic frequency for each coordinate of the relative frame
Y⃗ = {Rcm, RAB, rA, rB}, i. e., a breathing observable ⟨Ŷ2

i ⟩t oscillates with
a single frequency. We label them {Ωcm, ΩAB, ΩA, ΩB} respectively. For
a species-symmetric case (gA = gB), the relative coordinates degenerate,
meaning that ⟨r̂2

A⟩t = ⟨r̂2
B⟩t. Consequently, only three frequencies appear

{Ωcm, ΩAB, Ω+}.

Figure 5.2: Breathing frequencies Ω of a 2+2 bosonic mixture in a harmonic trap: a)
gA = 1 and gB = 2, b) gA = gB = 2. Adapted figures from [MP1]. DOI:
https://doi.org/10.1088/1367-2630/aa9cb2.

We analyse the dependence of these frequencies on interactions (Fig. 5.2).
The centre-of-mass Hamiltonian decouples and corresponds to a single-
particle harmonic oscillator. Thus, the corresponding breathing observable
⟨R̂2

cm⟩t oscillates with a universal frequency Ωcm = 2. The relative distance
modes Ωσ (Ω+) are very sensitive to the intra-component interaction gσ.
With increasing gAB they first quickly decay and then grow monotonically
with a slow rate, though they do not recover back to the value of a decoupled
mixture at gAB = 0. The inter-species mode ΩAB behaves in a similar way
as the relative motion mode of a single-species condensate [214]: in the
limiting cases gAB = 0 and gAB = ∞ it degenerates with the Ωcm. However,
in a two component mixture it might experience a bending in the vicinity
of an avoided crossing at intermediate gAB.

https://doi.org/10.1088/1367-2630/aa9cb2
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In addition, we monitor to which extent a given mode contributes
to the oscillation of each relative-frame breathing observable. Thus, the
monochrome breathing turns into multi-mode oscillations at intermediate
gAB. Importantly, ΩAB dominates over all other modes. In the CF and PS

regimes, the oscillations become again monochrome. As opposed to the
weakly-correlated miscible regime, the breathing observables ⟨R̂2

AB⟩t and
⟨r̂2

σ⟩t oscillate now with the same frequency ΩAB, whereas Ωσ (Ω+) no
longer contribute.

5.6 preface : breathing response of a bose polaron

In [MP2] we extend our previous studies on the breathing dynamics of
a binary mixture in several ways. First, the setup has slightly changed.
Now, we consider a few-body Bose polaron, i. e., an impurity B coupled to a
medium A consisting of five-to-ten bosons, in a species-selective parabolic
confinement with a trap ratio η = ωB/ωA. Second, we quench only the
impurity trap, whereas the medium is set in motion indirectly by being
coupled to the impurity. This is a notable difference to the species-symmetric
quench protocol we considered before, as it allows for the pre-quench
ground state to populate post-quench eigenstates of different CoM parity.

Since the total number of particles has been increased, the exact diagonal-
ization is not up to the task any more. We use an alternative approach to
extract the excitation frequencies, namely by simulating the time-evolution
of a many-body state with ML-MCTDH-X (Section 3.3.2) and sampling breath-
ing observables of interest at a given rate ∆t. We differentiate between the
impurity breathing ⟨x̂2

B⟩t and the medium breathing ⟨x̂2
A⟩t. A comporessed

sensing (CS) algorithm [227, 228] is applied to extract the frequencies of
oscillations and their amplitudes. It is an alternative to Fourier transforma-
tion, particularly suited for time signals which are sparse in the frequency
domain. This condition is well met for a weakly perturbed ground state.
The prior information allows us to enhance the resolution in the frequency
domain beyond limitations of the total evolution time. We have been very
impressed by its capabilities to reduce the numerical effort. In our case,
to obtain spectral information with a desired resolution ∆ω = 0.01 would
normally take around one year, which we acquired within just one month!

Equipped with sophisticated numerical tools, we study the breathing
response for equal traps (η = 1) at several values of the interaction strength
gA of the medium (attractive and repulsive). To our surprise, the outcome is
quite different from what we saw in the particle-balanced Bose mixture. First,
the universal CoM frequency Ωcm is barely populated. Second, the medium
mode ΩA is still characterized by a strong sensitivity to medium-internal
parameters, gA and NA, though in contrast to the particle-balanced case
it is extremely flattened as a function of the medium-impurity interaction
strength gAB. Third, the frequency ΩB is obviously absent, because an
internal-motion mode requires at least two particles. The inter-component
mode ΩAB preserves its qualitative behaviour, i. e., in the limiting cases
gAB = 0 and gAB = ∞ it degenerates with the Ωcm. In addition, we observe
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strong sensitivity to some parameter variations such as the particle-number
ratio NB/NA and the medium interaction strength gA.

What is fundamentally new is the presence of yet another breathing fre-
quency Ωhs. We call it the hybrid sloshing mode, because it can be traced back
to an oscillatory motion between the ground state |NA⟩ |1⟩ and a doubly
excited eigenstate |NA − 1, 1⟩ |0, 1⟩ of a Bose polaron at zero interactions.
We note that this is not a simultaneous sloshing within each component,
which would be a superposition of two states: |NA − 1, 1⟩ |1⟩ and |NA⟩ |0, 1⟩.
In fact, neither of components performs a sloshing if judged by the formal
definition, i. e., ⟨x̂A⟩t = ⟨x̂B⟩t = 0. At a finite coupling, the excited state can
be classified by odd CoM and even global parity. The breathing frequency
is a monotonically decaying function of the medium-impurity coupling
parameter gAB. We could not observe it in [MP1] for a species-symmetric
quench, because of symmetry-dictated selection rules forbidding such a
state from being populated. Thus, it is not a feature of the Bose polaron
system, but of the quench protocol. Importantly, we find that the entangle-
ment among the two components is indispensable for the mode existence.
In particular, if one approximates the many-body wave function by a SMF

ansatz, i. e., ignoring all entanglement effects, the mode disappears com-
pletely. Furthermore, we find that its contribution grows with increasing
gAB. So does the entanglement entropy.

In addition, we study the breathing response for a localized (η > 1) and
a delocalized (η < 1) impurity, while the medium is assumed to be non-
interacting (gA = 0). Even though the CoM coordinate is inseparable, we
still evidence a monotonically decaying entanglement-sensitive breathing
frequency.

Finally, we look at the breathing response of the first excited state at
η = 1. As opposed to the ground state, it is of odd global parity. As the two
subspaces of even and odd global parity are decoupled from each other, we
have been curious to find out how the global parity affects the breathing
dynamics. It turns out, the excitation spectra are almost identical. The major
difference is an additional low-frequency mode. The reason for its existence
can be understood as follows. At gAB = 0, the first excited state is two-fold
degenerate, whereas at finite gAB the degeneracy is split. The employed
quench protocol populates the former energy siblings across all gAB values.
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Q UA N T U M G A S M I C R O S C O P E

In the field of ultracold gases there are plenty of tools for extracting infor-
mation from a many-body system. The interaction between light and matter
is the key ingredient for probing ultracold samples and can be realized in
multiple elegant ways [229, 230].

Early experiments recorded the intensity of a (near)-resonant laser beam
after its passage through a sample of atoms, observing spatial variations
of the shadow image on a CCD sensor (absorption imaging). A more ad-
vanced approach is based on separation of the transmitted light field into
a phase-shifted scattered component and unaffected background light. By
independent manipulation of the two parts an interference pattern can
be generated, which allows to reconstruct the phase information (phase-
contrast dispersive imaging). Alternatively, one can gather the light emitted
by the sample (fluorescence imaging). Only a fraction of emitted photons
can be gathered by a detector which makes the signal several orders of
magnitude weaker. However, it has the notable advantage of being almost
free of background noise, implying a high signal-to-noise ratio (SNR) as
opposed to the transmitted light which is plagued by sizeable fluctuations
of the laser beam intensity. Either way, the instantaneous intensity image of
trapped atoms can be converted to the (‘in-situ’) one-body density ρ1(x),
while letting the gas expand freely in space prior to imaging (‘time-of-flight’)
translates to recording the momentum distribution ρ1(k) instead.

The ultimate feature sought to be improved in an imaging apparatus
is its spatial resolution, as it allows to differentiate subtle structural and
dynamical variations in a physical system [231, 232]. Of particular interest
is achieving a resolution which allows the detection of individual particles,
which is vital for improving our current theoretical understanding of highly
correlated phases of matter [1]. A great number of impressive accomplish-
ments have been reached in modern experiments so far in the pursuit of
these goals.

The imaging resolution of a probe of wavelength λ is bounded from
below by a classical diffraction limit R ≈ 0.61λ/NA known as the Rayleigh
criterion with NA (O ∼ 1) the numerical aperture of the imaging apparatus.
The Rayleigh criterion is the minimum distance at which two incoherent
point sources can be still distinguished. Each point source appears as a
spread object on the imaging plane (point spread function (PSF)). Under
aberration-free circumstances, it has the shape of an Airy function. Its full-
width half-maximum (FWHM) determines the spatial resolution and the
whole imaging process can be described mathematically as a convolution
of the point source distribution with the PSF of the imaging system. Whilst
the above-mentioned imaging methods already possess a resolution down
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to several µm, they do not reach the diffraction limit due to heating by the
probe pulse and imperfections in the imaging components.

The diffraction limit can be overcome by a non-linear optical response of
matter to a spatially varying light field [233]. Recently, a super-resolution of
tens of nanometres has been demonstrated [234, 235]. By using an optical
control lattice with an adjustable position one can i) pump the illuminated
fraction of particles into a state addressable by probe light [234] or ii) realize
a position-dependent dark-state in a three-level system [235]. In particular, it
allowed to observe density variations inside a single site of a physical lattice.
Even non-demolition measurements [236, 237] have been suggested based
on a dispersive coupling of the readout state to a cavity, enabling a real-time
scanning of density fluctuations with sub-wavelength resolution. However,
even though the above schemes have breached the classical diffraction
limit, they lack the ability to locally identify individual particles at high
density regimes. In sparse samples, high-fidelity single-atom detection
and manipulation have been already demonstrated [20, 238–243]. A high
resolution can be also achieved by a scanning electron microscope: an
electron beam with a diameter ∼ 150nm can be moved across a gas of
neutral atoms to create ions which are subsequently extracted by a static
electric field and detected by a channeltron [244, 245]. Unfortunately, the
single-atom detection efficiency is only around ∼ 20%.

The advent of QGMs for bosons [22, 23] and fermions [24–27] has revo-
lutionized detection in high density settings with sizeable correlations. It
allows to identify individual atoms locally with a near-unit fidelity and
at the same time offers a sub-micron resolution ∼ 0.5µm. The QGMs are
predominantly used for studying lattice systems, e. g., interaction-induced
phase transitions [246, 247] and the many-body localization [248, 249] in
Hubbard models. Importantly, projective measurements of site occupations
provide access to correlation measures: antiferromagnetic spin correlations
[250–252], hidden string order [253, 254] and entanglement entropy [255,
256].

6.1 technical aspects

QGM is a two step imaging process. The atoms are first pinned inside a deep
optical lattice followed by occupation readout with fluorescence imaging.

An optical lattice can be created by the interference of two counter-
propagating laser beams [257, 258] with frequency ω leading to a peri-
odic intensity pattern I(x) ∝ |E⃗(x)|2 ∝ sin2(kx) with a lattice constant
a = π/k = λ/2 corresponding to the distance of two neighbouring minima.
Neutral atoms exposed to this electric field become polarized. The inter-
action between the light field E⃗ and the induced dipole moment d⃗ results
in an effective potential [259] V(x) = − ⟨d⃗E⃗(x)⟩ ∝ αI(x) experienced by
atoms with polarizability α ∝ 1/∆ and laser detuning ∆ = ω − ω0 w. r. t. an
atomic transition ω0. This is a second-order perturbative correction to the
ground state energy (Stark shift). The atoms are attracted to the maxima
of the lattice potential for a red-detuned laser (∆ < 0) or to the minima for
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a blue-detuned laser (∆ > 0). By using additional lasers in perpendicular
directions, two- or three-dimensional regular lattices can be realized. The
lattice depth can be adjusted by changing the laser power and even the lat-
tice constant may be dynamically adapted to the experimental needs either
by tuning the laser wavelength or the angle between the two interfering
beams [260, 261].

Attaining single atom sensitivity with near-unit fidelity requires a high
SNR at the detector. Fluorescence imaging is perfectly suited for this purpose.
Nevertheless, a sizeable number of photon scattering events per atom
O(104) need to take place. To maintain sub-wavelength resolution, the
atoms should stay at their sites during the imaging process despite a massive
amount of heating. For that reason, the lattice needs to be extremely deep,

typically ∼ 103ER with ER = h̄2(2π)2

2mλ2 the recoil energy, corresponding to
several Watts of laser power. Additionally, during imaging the atoms are
cooled down using various techniques: bright molasses [22, 23], Raman
side-band [25, 27] or electromagnetically induced transparency [24, 26]
cooling. There is an unfortunate side effect to this procedure: whenever
more than two atoms occupy a single site of a pinning lattice, light-assisted
collisions lead to formation of molecules. For bosons, this amounts to losses
of particle pairs from the trap. Thus, QGMs detect the parity of the number
of atoms (even or odd) at each lattice site [22, 23, 262]. Recently, it has been
shown for Yb atoms that cooling can be avoided: the atomic sample was
exposed to light for shorter times [263, 264] while maintaining high SNR.

The numerical aperture of the imaging apparatus for QGMs is typically
NA ≤ 0.8 [22–27], meaning that the spatial resolution R > 3λ/4 exceeds
the distance between two lattice sites a ∼ λ/2. Given high SNR and a
prior knowledge about the discrete spacing among atoms, a deconvolution
algorithm can deblur the detector image and recover the lattice features.
Then, it is straightforward to distinguish between zero or one occupancy at
each lattice site.

It is not surprising that QGM is primarily used to study physics in a
lattice potential: the physical lattice can be easily switched into the imaging
modus by increasing the laser power. Each measurement translates into a
projection on some number state configuration in the lowest-band Wannier
basis. However, the physical and imaging lattices may be different [265],
allowing to oversample the physical lattice. This opens the possibility
to eventually overcome the above mentioned limitation of fluorescence
imaging to detect only the parity of the number of atoms on each site of
the pinning lattice. Moreover, freezing of a large scale extended system
after time-of-flight expansion has been demonstrated [266]. In that regard,
it would useful to generalize this scheme to arbitrary external traps. In
particular, freezing and measuring of one-particle density structures on the
scale of the pinning lattice constant might be challenging. We undertake
this investigation in [MP5] to reveal limitations and eventual difficulties
that might be encountered.
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6.2 preface : quantum point spread function

(a) (b) FreezingOriginal density Dynamics

(c) Fluorescence imaging

Pinning lattice

x x

x

Trapped few-
particle system

(d) Single image

x

x

(f) Deconvolved
density
(via qPSF)

(e) Measured signal

x

Figure 6.1: Imaging protocol. Reprinted figure from [MP5]. DOI: https://doi.org/
10.1088/1367-2630/ab1ae7.

The ultimate goal of our measurement protocol, sketched in Fig. 6.1, is to
obtain a highly-resolved n-particle distribution ρn(x1, . . . , xn) of a sparse-
density many-body system confined by an external potential of arbitrary
shape. In [MP5], we focus on the one-body density ρ1(x) in 1D traps. It
serves as the first step to verify the viability of our measurement protocol:
to identify advantages, possible limitations and technical drawbacks.

Once an ensemble of atoms has been prepared in its ground state or has
undergone some dynamical evolution, the instantaneous (pre-measurement)
one-body density ρ1(x) (Fig. 6.1a) is recorded in iterative manner by re-
peating a two-step sequence. In the first step (Fig. 6.1b), one switches off
the external trap and tunes the strength of inter-particle interactions to a
negligible value using a Feshbach resonance. At the same time, a pinning
lattice with an inter-well spacing al and a phase off-set φ is ramped up
to freeze the motion of particles. As a side effect, the pre-measurement
density distribution becomes distorted in the process. In the second step,
we read-out the distribution of particles over the lattice sites by fluorescence
imaging (Fig. 6.1c). At a low-density regime the probability for two atoms
to end up at the same lattice site is strongly suppressed. Thus, we neglect
losses attributed to light-assisted collisions [23, 246]. A possible measure-
ment outcome is illustrated in Fig. 6.1d. The procedure is repeated many
times until the ensemble average has converged to the post-measurement
distribution s(xn;φ) sampled at discrete values xn;φ = nal + φ with a reso-
lution al (Fig. 6.1d). Importantly, the resolution of the signal s(x) can be
further improved if we repeat the ensemble averaging procedure at several
different phase off-sets φi of the lattice (Fig. 6.1e).

We have been able to formulate the measurement procedure, which gives
the post-measurement distribution s(x), in a very compact and convenient

https://doi.org/10.1088/1367-2630/ab1ae7
https://doi.org/10.1088/1367-2630/ab1ae7
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way as a 2D convolution of the pre-measurement one-body density matrix
ρ1(x, x′) with a 2D filter Q(x, x′):

(Q ∗ ρ1)(x, x) =
∫

dydy′Q(x − y, x − y′)ρ1(y, y′) ≡ s(x). (6.1)

The filter Q(x, x′) depends only on parameters of the ramp protocol. We
call it the quantum PSF, in analogy to classical imaging devices [267, 268].

After acquiring the post-measurement density s(x), we want to recover
the pre-measurement one ρ1(x) (Fig. 6.1f). A straightforward deconvolution
procedure is not helpful here, because the signal s(x) represents just the
diagonal of a 2D convolution s(x, x′). Although measuring the off-diagonal
elements of the coherence matrix has been proposed [269], the feasibility
has yet to be demonstrated.

Does it mean that our quest for a sub-lattice resolution is doomed or
is it still possible to (partially) remove these distortions using our knowl-
edge of the imaging procedure? Upon a careful inspection of lattice ramp
parameters, we observed that quantum PSF can be shaped into an elon-
gated Gaussian. This motivated us to approximate the signal s(x) as a 1D

convolution of the pre-measurement density ρ1(x) with a 1D filter q(x):

s(x) ≈ (q ∗ ρ1)(x) =
∫

dyq(x − y)ρ1(y). (6.2)

Unfortunately, taking the diagonal q(x) = Q(x, x) as a filter for 1D decon-
volution does not perform well, in terms of recovering the original density.
Instead, we came up with an advanced two-step recovery algorithm.

In the first step, we obtain q(x) using a machine learning technique.
There is a vast body of literature on this exciting field of modern research
encompassing all areas of science. We recommend [270] to learn some
basics, [271] to get familiar with the state of the art programming library
TensorFlow, and [272] for learning some advanced topics. For our purposes,
we apply a simple convolutional neural network (NN). This type of networks
are particularly suited for solving image-based tasks. We generate a sample
of nt physically relevant examples with an analytically known one-body
density matrix ρ

(j)
1 (x, x′). Then, we apply 2D convolution with an exact filter

Q(x, x′) to obtain the corresponding post-measurement density s(j)(x). The
pre-measurement density ρ

(j)
1 (x) serves as the input for the NN. The post-

measurement density s(j)(x) is the desired output of the NN. By minimizing
the square distance between the desired output s(j)(x) and the network
generated output (ρ(j)

1 ∗ q)(x) we let the network learn our filter q(x):

min
q

1
nt

nt

∑
j=1

∫
dx|(Q ∗ ρ

(j)
1 )(x, x)− (q ∗ ρ

(j)
1 )(x)|2. (6.3)

After the NN has achieved a high performance on the training test, we verify
our model’s capability to generalize by applying it to a validation set, i. e.,
pairs of inputs and outputs not contained in the training data. Importantly,
the validation set contains samples of correlated particles, whereas the
training set is composed only of single-particle examples. The learned filter
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passed the test with great performance. In the second step of the density
reconstruction, we apply a 1D deconvolution [267, 268] with the learned
filter q(x) choosing one of the many available libraries.

Finally, we tested our measurement protocol on several few-body sys-
tems trapped either in a harmonic or in a box potential. Whenever local
density variations σ are on a larger scale than the lattice spacing al , the
reconstruction step is not needed, because of small distortions caused by
the lattice ramp. When the variations become comparable to the lattice
spacing, σ ∈ [0.5, 2]al , the reconstruction works great and removes most of
dynamical artefacts. For σ < 0.5al , the distortions become too large to be
reasonably recovered. Furthermore, we tested the experimental feasibility
by estimating the effort required to obtain the one-body density with a
reasonable accuracy.

To summarize, our work proposes a measurement protocol for high-
resolution imaging of the one-particle density in non-lattice trapped systems.
In order to achieve a sub-lattice resolution, the position of the lattice needs
to be shifted relative to the trapped system. The measurement protocol
can be modelled as 2D convolution with a quantum PSF. A sophisticated
deconvolution algorithm allows to recover the initial density, as long as
local structures are larger than half a lattice spacing.



Part II

S P E C T R A L G R A P H T H E O RY





7
S P E C T R A L G R A P H T H E O RY I N P H Y S I C S

A graph is a way to visualize a set of elements and a particular type of
relation or interaction between them. This level of abstraction makes graphs
a highly interdisciplinary tool finding applications in sociology, finances,
logistics, informatics, biology, chemistry and physics [273–275]. For example,
a graph may represent friendships among users of a social media platform
such as Facebook, roads between cities, a web of neurons interlinked by
synapses, chemical bonds among atoms forming a molecule or a system of
masses connected by springs.

In this chapter we would like to convey our own motivation to study
physical systems through the lens of graph theory. Can we learn something
new by depicting them as graphs? Each discipline has its own viewpoint
on a graph representation and developed corresponding tools to answer
particular questions. We think it is worthwhile to look beyond the scope
of one’s own field. The change of perspective might reveal some fruitful
insights and, eventually, open new unexpected research directions.

In Section 7.1 we introduce the formal definition of a graph and some
key ideas necessary to understand our contributions. In particular, the du-
ality between graphs and matrices forms a natural bridge which connects
previous chapters to the world of networks. Once equipped with a basic
understanding of graph theory, we dive deeper into the subfield of spectral
graph theory [276–278]. There, one attempts to relate the eigenvectors and
eigenvalues of a graph to its topology and global properties. E. g., eigenvec-
tor centrality [279, 280] quantifies the number and quality of connections for
each element in a network, while the abundance of small symmetry motifs
in a graph manifests itself as singularities in the spectral density. Among
recent developments, we are particularly excited about vertex cospectrality
and isospectral reduction.

Cospectrality of a vertex pair (Section 7.2) has a flavour of mystery. It
imposes a parity relation among two components of any eigenvector. A
permutation symmetry of a graph is known to induce such a relation. The
issue is that many graphs have eigenvectors with such parity without any
exchange symmetries behind it. We shed light on this peculiar property. In
our contribution (Section 7.3) we show that these eigenvectors have even
more structure than just parity. Furthermore, we develop a novel generator
of cospectral graphs, a hot topic in spectral graph theory.

Isospectral reduction (Section 7.4) is a way to compress the size of a graph
to a dedicated subset of vertices while preserving the energy spectrum.
Surprisingly, the reduced graph might feature symmetries not present in its
original version. In our contribution (Section 7.5) we demonstrate that these
hidden symmetries are able to explain spectral degeneracies in a graph
which does not have any conventional symmetries.
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7.1 graphs

Historically, graph theory has been the domain of pure mathematicians, a
mere notion of curiosity rather than means of deriving real-world applica-
tions, such as the ‘seven bridges of Königsberg’ puzzle1. Nowadays, in the
era of big data and high-performance computing, many fields of science
benefit from and contribute to the developments in graph theory. Graph
theory profited a lot from the arsenal of tools developed in the physical
community, especially in statistical physics [274, 275]. A variety of graph
optimization problems can be formulated as finding the ground state of
an Ising Hamiltonian [281] we have already encountered in the context
of a strongly interacting Bose mixture (Section 4.2). To get a taste of this
complex yet exciting field we recommend some excellent books on this
topic [282–285].

1 2

3 H

Figure 7.1: Duality between a graph and a square matrix.

Formally, in discrete mathematics a graph G, also called a network, is a
structure with two basic elements: a vertex set V and an edge set E ⊆
V ⊗ V. In short notation, G = (V , E). Typically, a graph is represented by
a diagram (Fig. 7.1 on the left). The vertices vi ∈ V , also called sites or
nodes, are depicted as points or circles. The edges (vi, vj) ∈ E , also referred
to as couplings or links, are drawn as arrow curves connecting vertex
pairs with the arrow pointing from vi towards vj. By default, all edges are
assumed to be of equal significance. However, depending on the problem a
scalar weight wij ∈ C might be attached to the corresponding edge (vi, vj)

(“weighted edge”). Whenever vi and vj are symmetrically connected, i. e.,
(vi, vj) ∈ E , (vj, vi) ∈ E and wij = wji, the two directed edges are replaced
by a single curve without any arrows (“undirected edge”). An edge (vi, vi)

connecting vertex vi to itself is depicted as a loop. For the graph in Fig. 7.1,
we have V = {1, 2, 3} and E = {(1, 1), (1, 2), (2, 1), (1, 3), (3, 1)} with the
corresponding edge weights W = {2, 1, 1, 1 + i, 1 − i}.

We remark that the geometrical arrangement of vertices in Euclidean
space is arbitrary and not a part of the graph definition. Naturally, one
desires a graph drawing that is easy to read and understand. There are mul-
tiple metrics regarding the aesthetics of graph drawings [286, 287], such as
minimizing the number of edge crossings or maximizing the orthogonality

1 Back in 1736 in the city of Königsberg, now Kaliningrad, there was a conundrum about
whether it is possible to cross the city using all of seven bridges only once. The mystery was
solved by Euler who laid the foundation of today’s graph theory.
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of edges. The final choice depends on the question asked and the personal
taste. Our preference is to maximize the perception of graph symmetries.

A fundamentally important property of graphs is their correspondence
to square matrices. Specifically, for a N × N matrix HG the basis vectors
|ϕi⟩ correspond to vertices vi, while the matrix elements hij are mapped to
edges (vi, vj) with weights wij = hij and hij = 0 implying no edge, e. g., see
Fig. 7.1.

At this point one might ask: why does one need to draw a matrix as
a graph? Our answer to this: because the topology of graph’s relations
determines its function such as the spread of information or the robustness
to perturbations. What a better tool to recognize some regularities or to
reveal some patterns than the human eye, a remarkable tool for visual anal-
ysis coupled with the creativity element of the brain to produce innovative
conjectures which can then be systematically tested using the sophisticated
tools of linear algebra. A picture is often worth a thousand words and can
convey information in an enlightening or evocative way. Surely, for large
networks containing billions of elements such a picture might be rather con-
fusing. For that reason, one attempts to approach large complex networks
with a bottom-up perspective, i. e., by first developing an understanding of
smaller graphs. This has the same spirit as the previous chapters on few-
body systems in the attempt to learn more about the many-body behaviour.
For that reason we believe that graphs and matrices complement each other
giving rise to a symbiotic relationship: linear algebra provides efficient tools
to approach many graph-related problems, which then provide information
about the structure and function of the underlying matrix.

In physics, we are often confronted with matrices, usually in the context
of solving the eigenvalue problem Ĥ |Ψj⟩ = Ej |Ψj⟩. So far, we dealt with
this problem on several occasions. To this end, the system operator Ĥ is
represented as a matrix by choosing a finite basis set2, i. e., ⟨ϕi|Ĥ|ϕj⟩ = hij,
which is subsequently diagonalized. Here, we use novel developments from
spectral graph theory, namely cospectrality and isospectral reduction, to
gain information about the eigenstates and eigenvalues of a matrix before
the diagonalization step is done.

7.2 cospectrality and local parity of eigenvectors

It is well-known that geometrical symmetries greatly simplify the treatment
of physical systems in terms of interpretability and computational complex-
ity. In the previous chapters, the global-reflection symmetry of the harmonic
trap allowed the notion of even and odd parity eigenstates. This helped us
a lot for clarifying the breathing response of a Bose mixture and to reduce
the numerical effort by block-diagonalizing the Hamiltonian.

2 Sometimes, the basis is motivated by the underlying physics, e. g., internal coordinates of
a mass-spring system when solving for the vibrational modes of a molecule or localized
atomic orbitals to obtain the electronic band structure of the tight-binding model. More
often though, the basis is selected for its numerical convenience, such as analyticity, or
is motivated by an intuition, such as splitting an operator into two parts Ĥ = Ĥ0 + Ĥ1,
containing a solvable term Ĥ0 and a perturbative term Ĥ1.
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In a randomly generated graph symmetries are rare, even more so when
the edges are heterogeneous (non-uniform). Many real-world networks are
by far not random, but rather ‘small-worlds’3 [288] with a lot of structure,
patterns and symmetries. Typically, they display an asymmetric core (the
skeleton) and a large number of relatively small symmetric motifs attached
to it [289–292]. It is a hot topic of current research to figure out how these
motifs emerge, what shapes they typically take and what effect they have
for the network function. In particular, we are interested in identifying
relations between symmetries and spectral properties of a graph [276–278].
For example, sharp peaks are very common in the spectral density of a
real-world network indicating highly degenerate eigenvalues, which can be
often traced to the symmetries of a graph.
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Figure 7.2: All the eigenvectors of depicted graphs have a definite parity among
red (blue) coloured vertices. Permutation symmetries impose parity re-
lations for graphs in the first row. There are no permutation symmetries
for graphs in the second row.

The geometrical symmetry of a graph G is a structure-preserving transfor-
mation of a graph onto itself, known as the graph automorphism. Formally, it
is a permutation of vertices π : V → V , such that whenever two nodes are
joined by an edge, so are their images, i. e., (vi, vj) ∈ E ⇔ (π(vi), π(vj)) ∈ E .
On the matrix level, the above mapping corresponds to a permutation ma-

3 A network having the small-world property is characterized by i) the neighbours of a given
vertex are very likely to be adjacent to each other and ii) the distance between any two
vertices is on average short compared to the size of the network.



7.2 cospectrality and local parity of eigenvectors 55

trix4 Pπ acting as a symmetry transformation on HG , i. e., P−1
π HGPπ = HG.

In the following, we employ the cycle notation for permutations, e. g., for
a graph with four vertices V = {1, 2, 3, 4} the permutation π = (1, 3, 2)(4)
implies a 3-cycle π(1) = 3, π(3) = 2, π(2) = 1 and a 1-cycle π(4) = 4. For
brevity, we drop fixed points of a permutation, i. e., 1-cycles. For example,
we abbreviate (1, 3, 2)(4) as (1, 3, 2).

Graph automorphisms have a huge impact on the eigenvectors of the
corresponding matrix. For the highly symmetric graph in Fig. 7.2 (first row
on the left) we have in total seven permutation symmetries. One part of
them can be interpreted ‘geometrically’ as reflections along dashed lines:
(1, 2), (3, 4), (1, 4)(2, 3) and (1, 3)(2, 4). The other part as rotations by π/2
((1, 3, 2, 4)), π ((1, 2)(3, 4)) and 3π/2 ((1, 4, 2, 3)). All the eigenvectors φ⃗(k)

have a very beautiful structure, namely any pair of eigenvector components
either fulfils or in case of degeneracies can be chosen to fulfil |φ(k)

i | = |φ(k)
j |.

In fact, just a single automorphism is enough to induce a relation among
eigenvector components, e. g., see Fig. 7.2 (first row on the right), where the
only automorphism (1, 2)(3, 4) imposes |φ(k)

1 | = |φ(k)
2 | and |φ(k)

3 | = |φ(k)
4 |.

In contrast, the second row graphs in Fig. 7.2 have no automorphisms,
yet their eigenvectors feature local parity on the red coloured vertices.
What is the reason behind this mysterious structure of eigenvectors? The
explanation has been provided by graph theoreticians: it turns out, the
red vertices, labelled as u and v, are what they call cospectral [293, 294].
Vertex cospectrality turns out to be an important ingredient to realize a
high-efficiency state transfer between two qubits of a quantum network
[MP8, 295].

Cospectrality has many facets. We want to discuss a few of them which
we think are particularly illuminating. First, what does it have to do with
the spectrum? It turns out the vertex-deleted sub-graphs5 G/u and G/v,
share the same spectrum, i. e., σ(G/u) = σ(G/v) (cospectral graphs). It is
not surprising for the left graph in the second row of Fig. 7.2, where the
vertex-deleted sub-graphs are the same. It is not obvious at all for the right
graph in the second row of Fig. 7.2. Cospectral graphs have drawn a lot
of attention in the attempt to answer the question of when the spectrum
of a graph uniquely determines its topology [296–301]. Learning from the
spectral information is also a relevant topic in physics and chemistry where
methods such as absorption and emission spectroscopy are used to draw
conclusion about the composition and physical structure of matter.

Another peculiarity of the cospectral pair u and v is the relation (Hk)uu =

(Hk)vv valid for all matrix powers k. In graph language, the powers of
a matrix have a very convenient interpretation in terms of walks. This
viewpoint was very helpful and enlightening for us. A walk of length k
is a sequence of k edges {e1, · · · , ek} where the out-vertex of an edge ei
coincides with the in-vertex of the follow-up edge ei+1. The weight of a

4 The matrix elements of (Pπ)i,j are obtained from the identity matrix by a permutation of
rows, i. e., (Pπ)i,j = δπ(i),j with δi,j the Kronecker delta.

5 A sub-graph G/S is a graph obtained from G = (V , E) by removing the vertex subset S ⊂ V
and the corresponding edges (vi, vj) ∈ E if vi ∈ S or vj ∈ S.
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walk amounts to the product of individual weights of participating edges,
i. e., ∏k

i w(ei). For an unweighted graph, (Hk)ij gives the total number of
distinct walks of length k starting at vertex i and terminating at vertex j.
For a weighted graph, (Hk)ij is the sum over corresponding walk weights.
Thus, vertex pair cospectrality can be interpreted as a symmetry of walks.

Lastly, there is an orthogonal symmetry Q, i. e., Q−1HGQ = HG, respon-
sible for the local parity of eigenvectors |φ(k)

u | = |φ(k)
v | on the two cospectral

sites. Q is a hybrid block-symmetry with a geometrically interpretable block
and a general transformation block unrelated to permutations. Specifically,
Q performs a 2-cycle permutation on the cospectral sites, i. e., q(u) = v and
q(v) = u, and a weighted linear mixing involving the remaining vertices.
The former imposes local parity on u and v. As a final remark, it can be
easily verified, based on the above mentioned properties, that in the first
row graphs in Fig. 7.2 any two vertices of the same colour are cospectral.
Thus, local parity relations among eigenvector components are generally
caused by orthogonal block symmetries Q having a permutation block,
while the conventional vertex-exchange symmetries Pπ is a subset of these.

7.3 preface : generator of cospectral graphs

When we first stumbled upon eigenvectors with local parity in the absence
of geometric symmetries, we were eager to investigate this phenomenon in
more detail. But where does one get such exotic examples? There is a rich
literature on generating pairs of graphs having the same spectrum, such as
the Godsil-McKay switching [293] and its several generalizations [302, 303],
the graph product [304], cousin vertices [305], the partial transpose [306],
cloning [307] and overgraph extensions [308]. However, the available tools
have been rather restricted with multiple subtle conditions to be fulfilled.

To be of practical relevance, we yearned for a LEGO kit to systematically
generate arbitrarily large cospectral networks, ideally with inhomogeneous,
tunable edge weights. To this end we created a database [MP8] of connected
graphs with uniform edges having up to eleven vertices and without any
automorphisms. This set was searched for graphs having at least one pair of
cospectral vertices6. The filtered database, composed of millions of examples,
turned out to be extremely useful on our graph journey.

Given that cospectrality is a symmetry of walks, we thought about
symmetry-preserving perturbations of a graph G with cospectral vertices
u and v [MP6]. One such perturbation can be realized by coupling an ‘im-
purity’ vertex c to a subset M ⊆ V with uniform edges, see Fig. 7.3 (top).
Whenever successful, we looked at the matrix powers Hk. After some large-

6 To check whether a pair of vertices is cospectral, one needs to verify (Hk)uu = (Hk)vv across
all powers of a matrix, which seems to be an unfeasible task. Luckily, the Cayley-Hamilton
theorem states that a square matrix fulfils its own characteristic polynomial. Thus, it is
sufficient to verify the equality only for the first n − 1 powers of a square matrix with n the
matrix order.
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scale analysis on the database we discovered a pattern, namely whenever

∑
z∈M

(Hk)uz = p ∑
z∈M

(Hk)vz ̸= 0 (7.1)

was fulfilled with p = ±1, a perturber vertex c could be connected uniformly
to M without breaking the vertex cospectrality, see Fig. 7.3 (middle). Using
the walk interpretation of matrix powers mentioned in Section 7.2, Eq. (7.1)
implies that the cumulative amount of walks leading from u to M is the
same as from v to M for any walk length. We termed M as a (uniform)
multiplet. Importantly, the newly coupled vertex c becomes also a multiplet,
namely a singlet, i. e., (Hk)uc = p(Hk)vc. This allows us in the next step
to connect an arbitrarily large subsystem G ′ to c without violating the
cospectrality relation of u and v, see Fig. 7.3 (bottom). Later, we generalized
multiplets to be non-uniform, i. e., the perturber might be connected with
weighted edges, and established interconnections among existing multiplets
as yet another form of perturbation allowing to alter the topology of the
initial graph.
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Figure 7.3: Top: Given a graph with a cospectral vertex pair {u, v}, is there a way to
connect a perturber vertex c without destroying the underlying cospec-
trality? Middle: There are vertex subsets, called multiplets M defined
in Eq. (7.1), which allow for such a symmetry-preserving perturbation,
e. g., M = {3, 7} is a multiplet w. r. t. {u, v} in the depicted graph. Bot-
tom: The added vertex c becomes a singlet, i. e., a multiplet composed
of a single vertex. A singlet allows in the next step to connect an arbi-
trarily large graph exclusively to it without breaking the cospectrality
of {u, v}.

Furthermore, we observed that eigenvectors obey a certain relation on
the multiplet set M depending on the local parity on u and v. For p = +1
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the negative-parity eigenvectors fulfil ∑m∈M φm = 0, i. e., the sum of vector
components vanishes on this set. The same is true for p = −1 and the
positive-parity eigenvectors. We note that Eq. (7.1) can not be simultaneously
fulfilled for p = +1 and p = −1 if M is fixed. This implies that each
multiplet M poses a restriction either on even or odd eigenstates. The
relation among eigenvector components becomes modified with scalar
vertex-dependent weights in the generalized version of multiplets. Overall,
we have been very impressed by the amount of structure in the eigenvectors.

As a direct application, we used these insights to construct flat bands in
tight-binding lattice systems [MP11]. A flat band relies on compact localized
states, i. e., eigenstates with a compact spatial support [309, 310]. In the
simplest case, they are localized inside a single unit cell, and with zero
amplitude outside. We start with a disconnected lattice where the unit cell
is a graph with a cospectral vertex pair. In the next step, following the rules
in [MP6] we interconnect adjacent unit cells periodically while preserving
the cospectrality inside each individual cell. At the same time, taken any
cell as a reference, all the vertices outside are made singlets. Owing to
the multiplet condition for eigenvectors mentioned above, a cell-internal
negative-parity eigenstate will vanish on all singlets, i. e., it is not perturbed
by the interconnection. Thus, it is also an eigenstate of the connected lattice
and is localized. The shifted duplicate of this state occurs in every other
unit cell, thus yielding a highly-degenerate flat band.

7.4 isospectral reduction and latent symmetries

Another useful graph-theoretical tool we want to discuss is isospectral
reduction of graphs [311]. Real-world networks are usually large and have
a complex topology making their analysis a challenging task. It would be
of advantage to have ways allowing us to shrink a graph G to a smaller
version GS with less vertices while preserving some of its fundamental
properties. In particular, we are interested in keeping the energy spectrum
σ(G) = {λ ∈ C|det(HG − λ1) = 0}. For matrices with scalar entries, this
is an impossible task. The matrix of a reduced graph will be of a lower
dimension. By the fundamental theorem of algebra it will have less eigen-
values than the original graph7. But what if, in the process of dimension-
ality reduction, the entries of the shrunk matrix would become functions
m(λ) of the spectral parameter λ? The spectrum of the reduced graph
σ(GS) = {λ ∈ C|det(HGS(λ)− λ1) = 0} would be capable of holding more
eigenvalues than its dimension. E. g., the following matrix

R{1,2,3,4} =




4
λ 0 6+λ

λ 1

0 9
λ

6+λ
λ 1

6+λ
λ

6+λ
λ

13
λ 0

1 1 0 0




7 A polynomial of degree n with complex coefficients has exactly n complex roots (counting
multiplicities). The degree of the characteristic polynomial of a square matrix equals the
order of that matrix.
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has six eigenvalues and is depicted as a graph in Fig. 7.4 on the right.
To arrive at such a representation, let us partition the vertex set V of a

graph into two disjoint parts S and S̄, i. e., V = S ∪ S̄ and S ∩ S̄ = ∅. The set
S is the target set we want to keep while the complement S̄ contains vertices
to be discarded in the reduction process. We can view the corresponding
matrix HG as two subsystems, HSS and HS̄S̄, coupled via HSS̄ and HS̄S:

HG =

(
HSS HSS̄

HS̄S HS̄S̄

)
. (7.2)

Isospectral reduction [312] RS(λ) of the above matrix over the set S is
defined as:

RS(λ) = HSS − HSS̄(HS̄S̄ − λ1)−1HS̄S. (7.3)

Importantly, the matrix elements of RS(λ) are rational functions p(λ)/q(λ)
with polynomials p(λ) and q(λ) having complex coefficients. E. g., the
graphs in Fig. 7.4 are obtained by reducing the first graph in the second row
of Fig. 7.2 over S = {u, v} and S = {1, 2, 3, 4}. They have the same energy
spectrum as the original graph and, moreover, the eigenvectors of reduced
matrices are related to their full-size counterparts8 [313]. Such a reduction
can be performed in multiple steps S1 ⊃ · · · ⊃ Sn. The order does not affect
the final outcome, which is equivalent to a right away reduction over the
terminal set Sn.

u

v

1

2

34

Figure 7.4: Isospectral reduction of the first graph in the second row of Fig. 7.2.
Left: Reduction over S = {u, v}. Right: Reduction over S = {1, 2, 3, 4}.
Both graphs have the same spectrum.

Isospectral reduction is a relatively young research branch of graph theory.
So far, it has been applied to several problems including the dynamics in
networks with time-delayed interactions [314, 315], improved estimates
for the eigenvalues of a matrix [316] and the stability of pseudo-spectra to

8 If φ is an eigenvector of H and its eigenvalue λ is not contained in the spectrum of the
sub-matrix HS̄S̄, then the projection φS is an eigenvector of RS to the same eigenvalue.
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perturbations in the context of linear mass-spring networks [317]. Isospectral
reduction is intimately related to the famous Schur complement [318].
Moreover, the technique has been known in the physics community in the
context of renormalization group theory used to describe the physics of atoms
and molecules interacting with quantized electromagnetic fields [319, 320].
A decimation procedure, known as the Feshbach-Schur projection method,
allows to derive an effective Hamiltonian, the same as Eq. (7.3), describing a
subsystem S ’dressed’ by an environment S̄. The impact of the environment
is carried by the so-called self-energy [321] ΣSS(λ) = HSS̄(HS̄S̄ − λ1)−1HS̄S.
The self-energy can be well understood by applying the interpretation of
walks mentioned in the previous section, i. e., it describes the process of a
single-link jump from S to S̄, a multi-step propagation9 in S̄ and, finally, a
single-link back jump from S̄ to S.

What fascinates us the most about isospectral reduction is the notion of
latent symmetries [324]. A latent symmetry is a geometrical symmetry of
the reduced graph, i. e., an automorphism of RS. For any automorphism
present in G, there is at least one set of latently symmetric vertices. However,
not every latent symmetry can be traced back to an automorphism in G.
Thus, it is an extension of conventional permutation symmetries. As an
example, compare the left graph in the second row of Fig. 7.2, having
no automorphisms, to its reduction over S = {u, v} in Fig. 7.4 (on the
left), which does have a 2-cycle permutation (u, v). Since the eigenvectors
of the reduced graph RS are projections of original eigenvectors φ(k) on
the corresponding set S, as was shown in [313], we get yet another way to
explain local parity of eigenvectors on cospectral vertices, i. e., |φ(k)

u | = |φ(k)
v |.

This is no coincidence: for a real symmetric matrix the cospectrality of a
vertex pair S = {u, v} is equivalent to isospectral reduction over S being a
2 × 2 bisymmetric matrix [325].

Latent symmetry can be analysed at different scales to infer how deep
it is hidden within a network. One can define a visibility measure M =

max
T

(|T| − |S|)/(|V| − |S|). Formally, one needs to identify the largest su-

perset T, satisfying S ⊆ T ⊆ V , for which the isospectral reduction RT

reveals a permutation symmetry on the set S. In the limiting cases, T = V
implies visible in the unreduced graph G (M = 1), while T = S signifies
not revealed when reducing over any larger subset (M = 0).

Latent symmetries have been shown to exist in real-world networks
[324]. Importantly, they determine a number of functional and structural
properties of a graph the same way the conventional symmetries do, i. e.,
they are of equal or maybe even of a greater importance for the network.
To demonstrate the power of this formalism, let us discuss one of our own
ideas, where spectral degeneracies, seemingly accidental, can be explained
by latent symmetries.

9 A matrix inverse can be expanded in terms of matrix powers using the Cayley-Hamilton
theorem [322, 323].
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7.5 preface : latent symmetries induced degeneracies

Symmetries play an important role in physics and chemistry. For the ma-
jority of problems, the theoretical treatment reduces at some point to a
matrix description. Matrix diagonalization is one of the most expensive
numerical operations having a complexity of O(n3) where n is the matrix
dimension. Any methods allowing to partition a matrix into decoupled
blocks are extremely valuable as they speed up calculations and make
larger system sizes accessible. Group theory is one of the oldest techniques
for this purpose. Explicitly, a group of symmetry operations commuting
with a given Hamiltonian allows to switch to an efficient representation
by a similarity transformation, where symmetry-adapted basis functions
belonging to different symmetries are not coupled by the Hamiltonian.
Furthermore, the degeneracy of eigenvalues is closely related to the repre-
sentation theory. In particular, non-abelian10 symmetry groups are known to
induce degeneracies in the energy spectrum.

Conventionally, the symmetries one is looking for have a geometrical
interpretation, such as the molecular point group in chemistry or the space
group in crystallography. However, there are plenty of systems, where such
symmetries alone do not suffice to explain all the multiplicities of energy
eigenvalues. Whenever this happens, the degeneracy is called accidental
because Schur’s lemma does not constrain eigenvalues belonging to distinct
irreducible representations to be different. It may well be that by accident,
they happen to coincide for no particular reason. The prime examples are
the molecular potential energy surfaces intersecting at some isolated points
of a multidimensional parameter space. Actually, we observed a similar
type of degeneracy in the spectrum of the 2+2 Bose mixture [MP1] as the
coupling parameter was varied.

On the other hand, it is tempting to think that we overlook some higher
order symmetry. In fact, the history of quantum mechanics knows a couple
of examples where such was a case [326–328]: the hydrogen atom where the
spherical symmetry group SO(3), associated with the conservation of the
total angular momentum, accounts only for the degeneracy in the quantum
number m of the z-projection of the angular momentum, but not for the
degeneracy in the quantum number l of the total angular momentum. The
mystery was resolved by a higher dimensional symmetry group SO(4) and
an additional conserved quantity, being the Runge-Lenz vector. Another
fruitful example is the well-known isotropic harmonic oscillator, where for
instance in 2D the cylindrical symmetry SO(2) would allow only for two-fold
degenerate eigenvalues, whereas the degeneracy of the n-th excited state
is in fact proportional to the number of ways n can be decomposed into a
sum of two positive integers, which is n + 1. It turned out that the special
unitary group SU(2), a supergroup of SO(2), is responsible for observed
degeneracies.

In our work [MP7], we provide our own viewpoint on degeneracies
being accidental. We argue that in some cases, the degeneracies might be

10 A group of symmetries is called non-abelian if some of its elements do not commute.
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explained in terms of latent symmetries, i. e., conventional symmetries of an
effective Hamiltonian obtained by isospectral reduction. The major benefit
of this approach as compared to other effective descriptions is that the
spectrum of the initial model remains largely11 preserved and is encoded
in the self-energy which depends on the spectral parameter λ.

Thus, whenever an isospectrally reduced matrix can be similarity trans-
formed into m non-equivalent irreducible blocks by group theory arguments,
the j-th block will be either a λ-function multiple of an identity matrix, i. e.,
bj(λ)1dj or a direct sum of dj copies of a λ-dependent matrix Bj(λ), i. e.,
⊕dj Bj(λ), where dj is the dimension of the irreducible representation. In
the next step, we solve either bj(λ)− λ = 0 or det

(
Bj(λ)− λ

)
= 0. Each

solution will be an eigenvalue of RS, but also of the initial matrix H, and it
will occur dj-times!
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Figure 7.5: Hidden symmetry group behind degeneracies. Left: A graph with two-
fold degeneracies but no permutation symmetries. Right: C3v symmetry
of a reduced graph RS(λ) with S = {1, 2, 3}.

For a sneak-peak, see Fig. 7.5. The graph on the left has no permutation
symmetries. Nevertheless, it has two doubly degenerate eigenvalues: −1
and 2. The reduced graph on the right features the symmetry group C3v.
As the group is non-abelian, it enforces blocks with degenerate entries.
Explicitly, we perform a similarity transformation T, which gives

T−1RS(λ)T =




b1(λ) 0 0

0 b1(λ) 0

0 0 b2(λ)


 . (7.4)

We evidence a structural degeneracy of b1(λ) = 1 + 2/λ. The equation
b1(λ)− λ = 0 has two solutions: λ = −1 and λ = 2, thus giving rise to the
two degeneracies of the original graph in Fig. 7.5. Latent symmetry is a step
beyond conventional tools of symmetry analysis and it offers alternative
ways to interpret spectral degeneracies of physical models.

11 The energy spectrum of the reduced matrix RS from Eq. (7.3) is composed of eigenvalues
of the original matrix H (including multiplicities). However, in case an eigenvalue of H
happens to be also an eigenvalue of the sub-matrix HS̄S̄, it will be not contained in the
spectrum of RS, i. e., σ(RS) = σ(H)− σ(HS̄S̄) with σ denoting a multi-set of eigenvalues.
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Abstract
We investigate a few-bodymixture of two bosonic components, each consisting of two particles
confined in a quasi one-dimensional harmonic trap. Bymeans of exact diagonalizationwith a
correlated basis approachwe obtain the low-energy spectrum and eigenstates for thewhole range of
repulsive intra- and inter-component interaction strengths.We analyse the eigenvalues as a function
of the inter-component coupling, covering hereby all the limiting regimes, and characterize the
behaviour in-between these regimes by exploiting the symmetries of theHamiltonian. Providedwith
this knowledgewe study the breathing dynamics in the linear-response regime by slightly quenching
the trap frequency symmetrically for both components. Depending on the choice of interactions
strengths, we identify 1 to 3monopolemodes besides the breathingmode of the centre ofmass
coordinate. For the uncoupledmixture eachmonopolemode corresponds to the breathing oscillation
of a specific relative coordinate. Increasing the inter-component coupling first leads tomulti-mode
oscillations in each relative coordinate, which turn into single-mode oscillations of the same frequency
in the composite-fermionization regime.

1. Introduction

The physics of ultra-cold atoms has gained a great boost of interest since the first experimental realization of an
atomic Bose–Einstein condensate [1, 2], where research topics such as collectivemodes [3–5], binarymixtures
[6, 7] and lower-dimensional geometries [8–10]were in the focus right from the start. Inmost of the
experiments on ultra-cold gases the atoms are butweakly correlated andwell described by amean-field (MF)
model, thewell-knownGross–Pitaevskii equation (GPE), or in case ofmixtures by coupledGPEs [11–13]. Bose–
Bosemixtures exhibit richer physics compared to their single component counterpart. For instance, different
ground state profiles can be identified depending on the ratios between the intra- and inter-species interaction
strengths, being experimentally tunable by e.g. Feshbach resonances (FRs) [14]: themiscible, immiscible
symmetry-broken (SB) or immiscible core–shell structure, also called phase separation (PS) [15–17].
Comparing the experimentally obtained densities to numericalMF calculations [18, 19] provides a sensitive
probe for precisionmeasurements of the scattering lengths or, if known, themagnetic fields used to tune them
[16]. Another possibility to access the interaction regime and thus the scattering lengths is by exciting the system
and extracting the frequencies of low-lying excitations [20]. In contrast to a single-species case the collective
modes ofmixtures exhibit new exciting phenomena: doublet splitting of the spectrum containing in-phase and
out-of-phase oscillations,mode-softening for increasing inter-component coupling, onset of instability of the
lowest dipolemode leading to the SB phase aswell asminima in the breathingmode frequencies w.r.t.
interaction strength [21–23].

The breathing ormonopolemode, characterized by expansion and contraction of the atomic density, has in
particular proven to be a useful tool for the diagnostics of static and dynamical properties of physical systems. It
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is sensitive to the system’s dimensionality, spin statistics as well as form and strength of interactions [24–27]. In
the early theoretical investigations on quasi-one-dimensional single-component systems [28] it was shown that
different interaction regimes can be distinguished by the breathingmode frequency, which has been used in
experiments [10, 29, 30]. Furthermore, themonopolemode provides indirect information on the ground state
[31], its compressibility [32] and the low-lying energy spectrum such that an analogy has been drawn to
absorption/emission spectroscopy inmolecular physics [27].

From a theoretical side, those of the above experiments which are concernedwith quasi-1D set-ups are in
particular interesting, since correlations are generically stronger, renderingMF theories often inapplicable.
Here, confinement induced resonances (CIR) [8] can be employed to realize the Tonks–Girardeau limit [33, 34],
where the bosons resemble a systemof non-interacting fermions inmany aspects.While this case can be solved
analytically [35, 36], strong butfinite interactions are tractable only to numerical approaches, which limits the
analysis to few-body systems. For instance, a profound investigation of the ground state phases of a few-body
Bose–Bosemixture [37, 38] showed striking differences to theMF calculations: for coinciding trap centres, a
newphase with bimodal symmetric density structure, called composite fermionization (CF), is observedwhile
SB is absent for anyfinite inter-component coupling. Only in the limit of infinite coupling the ground state
becomes two-fold degenerate enabling to choose betweenCF and SB representations [39], while theMF theory
predicts the existence of SB already forfinite couplings. This observation accentuates the necessity to include
correlation effects.

In this workwe solve the time-independent problemof the simplest Bose–Bosemixture confined in a quasi-
1DHO trapwith two particles in each component, covering thewhole parameter space of repulsive intra- and
inter-species interactions, thereby complementing the analysis of some previous studies [39–41]. To accomplish
this, an exact diagonalizationmethod based on a correlated basis is introduced.We unravel how the
distinguishability of the components renders the spectrum richer and complexer compared to a single
component case [42]. Furthermore, these results are used to investigate the breathing dynamics of the composite
system.While the breathing spectrumof a single component was recently investigated comprehensively in
[43–49], reporting a transition from a twomode beating of the centre ofmass WCM and relativemotion Wrel

frequencies for few atoms to a singlemode breathing formany particles, the breathingmode properties of few-
body Bose–Bosemixtures are not characterized so far. For this reason, we analyse the number of breathing
frequencies and the kind ofmotion towhich they correspond in dependence on the intra- and inter-component
interaction for the binarymixture at hand.

This work is structured as follows. In section 2we introduce theHamiltonian of the system. In section 3we
perform a coordinate transformation to construct a fast converging correlated basis. Using exact diagonalization
with respect to this basis we study in section 4 the low-lying energy spectrum for various interaction regimes.
Section 5 is dedicated to the breathing dynamics within the linear response regime. An experimental realization
is discussed in section 6 andwe conclude the paperwith a summary and an outlook in section 7.

2.Model

Weconsider a Bose–Bosemixture containing two components, which are labelled by s Î { }A B, , confined in a
highly anisotropic harmonic trap.We assume the low temperature regime, where the inter-particle interactions
may bemodelled via a contact potential, and strong transversal confinement allowing us to integrate out frozen
degrees of freedom leading to a quasi-1Dmodel. Our focus lies on amixture of =sN 2 particles, which have the
samemass ºsm m and trapping frequencies w wºs ^ ^, , w wºs , in the transversal, longitudinal direction,
respectively. This can be realized by choosing different hyperfine states of the same atomic species. By further
rescaling the energy and length in units of w and  w= ( )a mho one arrives at the dimensionless
Hamiltonian:

å= +
s

s ( )H H H , 1AB

with the single-componentHamiltonians sH

å d= -
¶
¶

+ + -s
s

s s s s
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( ) ( )H

x
x g x x

1

2

1

2
, 2

i i
i

1

2 2

,
2 ,

2
,1 ,2

and inter-component couplingHAB

å d= -
=

( ) ( )H g x x , 3AB AB
i j

A i B j
, 1

2

, ,

where w w»a a ^( ) ( )g a a2 3D
ho with aa3D the 3D s-wave scattering length and a Î { }A B AB, , are effective (off-

resonant) interaction strengths.
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3.Methodology: exact diagonalization in a correlated basis

To obtain information on the low-energy excitation spectrumwe employ thewell-establishedmethod of exact
diagonalization [50]. However, instead of taking bosonic number states w.r.t. HO eigenstates for the underlying
basis as done in e.g. [40], we pursue a different approach by using a correlated atom-pair basis. This allows us to
study arbitrary intra-component interactions sg (even infinity) exactly, whereasHOnumber states aremuch
more inefficient in handling strong intra-component interactions. At the same time ourmethod converges
quickly for inter-component couplings g 10AB requiring atmost 700 basis states. In comparison, a
straightforward treatment in the laboratory frame requires typically~105 HOnumber states for obtaining
converged ground-state results [38]. For even larger gAB couplings, the chosen basis becomes less appropriate
such that our basis size has then to be significantly increased in order to obtain accurate results. Going, however,
beyond =g 10AB would not give qualitatively newphysical phenomena. Essentially all effects of the strong-
coupling regime can be investigated by studying the crossover from =g 0AB to =g 10AB .

Actually, the idea of choosing optimized basis sets to speed up the convergence with respect to the size of
basis functions can be also seen in the context of the potential-optimized discrete variable representation [51].
Here, one employs eigenstates of conveniently constructed one-dimensional referenceHamiltonians in order to
incorporatemore information on the actualHamiltonian into the basis compared to the standardDVR
technique [52, 53]. Another approach, stemming fromnuclear physics, uses an effective two-body interaction
potential instead of an optimized basis for solving ultra-coldmany-body problems [54–56].

In order to construct a tailored basis, which already incorporates intra-component correlations, we apply a
coordinate transformation to the relative frame º


( )Y R R r r, , ,AB A B

T
CM defined by:

• total CMcoordinate

å å=
s s=

R x 4,CM i i1

2
,

• relative CMcoordinate

å å= -
= =

R x x2 2,AB i A i i B i1

2
, 1

2
,

• relative coordinate for eachσ component

= -s s sr x x .,1 ,2

In this frame, theHamiltonian (1) attains the following form:

å= + + +
s=

s ( )H H H H g H . 4R R
A B

r AB
,

1ABCM

Here, the total CM separates, = +H H HR relCM
, and is simply governed by a harmonic oscillator (HO)

HamiltonianwithmassM=4:

= -
¶

¶
+ ( )H

R
R

1

8
2 , 5R

2

CM
2 CM

2
CM

featuring the spectrum = +E n 1 2n
CM with În 0. The remainder of theHamiltonian can be decomposed

as = +H H g HABrel 0 1, where = + ås sH H HR r0 AB
can be solved analytically andH1 couples the eigenstates of

H0:
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¶

¶
+ ( )H
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So HRAB
is aHOHamiltonian ofmassM=1 and sHr leads to theWeber differential equations5 for its eigenstates

with delta-function constraint. The corresponding solutions are normalized aswell as symmetrized parabolic

5 m + + - =( ) ( ) ( )f r r f r 01

2

1

4
2 with Îr and m Î .
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cylinder functions6 (PCF)j µs
s m ss

( ) (∣ ∣)( )r D rn g n, of the relative coordinate with m s( )g n, being a real valued
quantumnumber depending on the intra-component interaction strength gσ and the excitation level În 0,
which is obtained by solving a transcendental equation stemming from the delta-function constraint [57]:

= -s

G

G -

m

m

-( )
( ) ( )g 2 . 9

3
2

1

2

2

Now to diagonalizeHrel we choose the eigenvectors ofH0 as basis states and label them as ñ∣k l m, , with
Îk l m, , 0. Their spatial representation and corresponding eigenenergies read:

j já ñ = F∣ ( ) ( ) ( ) ( )R r r k l m R r r, , , , , 10AB A B k
AB

AB l
A

A m
B

B

m m= + + +( ) ( ) ( )( )E k g l g m, ,
3

2
, 11k l m A B, ,

0

where Fk
AB areHO eigenstates of HRAB

.We note that alljs
s( )ri are of even parity because of the bosonic nature of

the particles of each component.
Themain challenge now is the calculation of thematrix elements ofH1, which are complicated 2D integrals

atfirst sight and need to be tackled numerically. In the appendix we provide a circumvention of this problem via
the Schmidt decomposition [58], allowing us to replace one 2D integral bymultiple 1D integrals, which results in
faster computation times. In quantum chemistry, the algorithm for achieving such a representation is known as
POTFIT [59]. In the appendix, wemoreover point out several symmetries which can be utilized for efficiently
evaluating these 1D integrals and discuss in detail, why our computational strategy ismuchmore efficient than
the direct evaluation of the 2D integrals for the problem at hand.

To summarize, the coordinate transformation to the chosen relative frame (i) decouples theCMmotion and
(ii)naturally guides us to employ the analytically known eigenstates ofH0 as the basis states in order to
incorporate intra-component correlations into our basis.

4. Stationary properties

Bymeans of the correlated basis introduced above and an efficient strategy for calculating theHamiltonian
matrix to be diagonalized, we can easily obtain the static properties of our system for arbitrary intra-component
interaction strengths sg and inter-component coupling g 10AB . Themost representative choices of
interaction strengths ( )g g g, ,A B AB are the subject of this section and in order to get a deeper understanding of the
spectral properties a thorough discussion of the symmetries ofH is necessary.

4.1. Symmetry analysis
In the laboratory frame, there are only a few obvious symmetries: (i) the total parityPtot (i.e. simultaneous
replacement of all coordinates sx i, by- sx i, ), (ii) an interchange of the twoA particles SA or of the twoB particles
SB, (iii) in the case of equal intra-component couplings gA= gB a simultaneous interchange of twoAparticles
with twoB particles SAB and (iv) given all couplings to be equal, the exchange Sij of any two particles being
labelled by i, j. In the relative frame though, additional symmetries become apparent. The totalHamiltonianH
commutes with each individual parity operator PYi

of the relative frame coordinates (PYi
replacesYi by-Yi while

leaving the other coordinates of the relative frame invariant). In these regards, we note that PRAB
does not

commutewith the individual terms in equation (8) but only with thewhole sumof these four terms. The
eigenvectors of sPr are restricted to even parity because of the bosonic character of our components,
corresponding to the Sσ operation. In contrast to the former operations, the symmetry transformations PRCM

and PRAB
are highly non-trivial in the laboratory frame involving improper rotations of the four-dimensional

coordinate system.Due to the decoupling of HRCM
it is sufficient to consider only the ground state of the total

CMmotion, which is of evenRCMparity, in the following. Then, the parity of theRAB degree of freedom
completely determines the total parity of the eigenstates. Finally, a further symmetry arises if one chooses equal
intra-component interaction strengths sg . In this case, theHamiltonianH is invariant under an exchange of the
relative coordinates «r rA B, whichwe define as the Sr transformation in the following. Contra-intuitively, Sr is
not the same as the SAB transformation. In total, the chosen relative frame indicates a set of additional
symmetries, which are hidden in the laboratory frame.

4.2. Energy spectra
Infigure 1we show the total energy spectrum as a function of gAB for various fixed values of gA and gB. The total
CM is assumed to be in its ground state. Figure 1(a) depicts the non-interacting intra-component scenario

6 m= -m
-

m ( )(∣ ∣)D r U r2 e , ,1

2

1

2

1

2
2r

2

2

4 with ( )U a b x, , denoting the Tricomi’s hypergeometric function.
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=sg 0. For =g 0AB theHamiltonian represents two uncoupled non-interacting bosonic species andwewill
label this regime as BEC–BEC following the nomenclature of [40]. The eigenenergies are integers with equal
spacings of w , which is 1 in our units. In this limit the PCFs are evenHOeigenstates ofmass =m 1 2. The
eigenenergies are thus = + º = + + +=

( ) ( )E E E E k l m2 2 2n k l m k l mtot 0
CM

, ,
0

0, , ,
0 .

For =g 0AB , the ith eigenenergy corresponding to only even (odd)RAB-parity eigenstates is +( )! ( ! !)i i2 2
fold degenerate with Îi 0. Already a small inter-component coupling lifts all these degeneracies such that
branches of eigenenergies arise. In the following, we label these resulting branches as the ith even or odd
RAB-parity branch, respectively. Note that this grouping of the energy levels into branches will be used in the
following for all values of gAB and in particular for the analysis of the breathing dynamics in section 5. As we
further increase the inter-component coupling strength, we observe that states corresponding to branches of

Figure 1.Energy spectrumofH as a function of gAB for different fixed gA and gB. The decoupled total CM is assumed to be in its ground
state. The total parity is thus determined solely by theRAB parity and ismarked by black lines (even states) and red lines (odd states). In
figures (a) (b) (d) solid curves correspond to symmetric (+1) and dashed to antisymmetric (−1) eigenstates under the Sr operation.
The indicated (avoided) crossings are exemplary and simply outline specific features. In (b) and (c), we label the excited states which
are relevant for the lowestmonopole excitations as discussed in section 5 by the corresponding excitation frequencies WAB etc. The
labels for the ground-state phases are as follows: Bose–Einstein condensate (BEC), Tonks–Girardeau (TG), composite fermionization
(CF), full fermionization (FF), phase separation (PS). All quantities are given inHOunits.
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oppositeRAB-parity incidentally cross, as they are of different symmetry and consequently not coupled by theH1

perturbation.
For very strong gAB values, i.e. in theCF limit [37, 38], we observe a restoration of degeneracies, but in a

differentmanner, namely the lowest statesmerge pairwise forming a two-fold degeneracy. In this regime the two
components spatially separate for the ground state, where one component locates on the left side of the trap,
while the other is pushed to the right side due to the strong inter-component repulsion. The two-fold degeneracy
of the ground state reflects actually the two possible configurations:A leftB right andA rightB left. This
behaviour can be observed in the relative frame densities, discussed later in this section. Another striking
peculiarity for  ¥gAB are non-integer eigenvalues and unequal energy spacings,meaning that for CF no ‘TG-
like’mapping to a non-interactingHO system exists.

A very similar analysis concerning this specific choice of interactions ( =sg 0 and arbitrary gAB)was
performed in [39], where an effective interaction approachwas employed to greatly improve the convergence
properties of exact diagonalization in order to access properties of a Bose–Bosemixture with up toN=10
particles. However, the analysis only covered a single line of the ( )g g g, ,A B AB parameter space. Another similar
work [40] deals with the system’s properties for an evenwider range of intra- and inter-component interactions,
however themain focus lies on the ground state properties. Here, we extend the analysis of [39, 40] by studying
both the ground state and the low-lying excitations forweak, strong as well as intermediate interactions ag .

Infigure 1(b)we show the impact ofmoderate but symmetric intra-component interactions of strength
º =sg g 2. Already in the uncoupled regime ( =g 0AB )we observe fewer degeneracies compared to the =sg 0

case. Nevertheless, we group the eigenstates into branches of even/oddRAB-parity also forfinite sg by
continuously following the eigenenergies to the  +sg 0 limit. The reason for the reduced degeneracies is that
the PCFs are notHO eigenstates anymore, while the PCFs of both components coincide pairwise. The
eigenenergies read m m= + + +( ) ( )( )E k g l g m, , 2k l m0, , ,

0 . To roughly estimate the energetic ordering it is
sufficient to know that the real-valued quantumnumber m ( )g n, fulfills for < < ¥g0 the following relations:

• m< < +( )n g n n2 , 2 1

• m m m+ < + < +( ) ( ) ( )g n g n g n, 1 , 1 , 2

meaning that a single excitation of the relativemotion sr is energetically below a double excitation of theRAB

degree of freedom. E.g. the first evenRAB-parity branch in the uncoupled non-interacting regime (BEC–BEC in
figure 1(a)) contains three degenerate states: ñ∣2, 0, 0 , ñ∣0, 1, 0 and ñ∣0, 0, 1 (equation (10)). By choosing finite

sg values ñ∣2, 0, 0 acquires a higher energy than ñ∣0, 1, 0 and ñ∣0, 0, 1 leading to reduced degeneracies in the
spectrum. Another striking feature is the appearance of additional crossings between states of the same
RAB-parity due to the Sr symmetry. States, which possess different quantumnumbers concerning the Sr
transformation (+1 or−1), are allowed to cross as they ‘randomly’ do throughout the gAB variation. Of course,
such crossings are also present in the previous non-interacting case, it being also component-symmetric. An
avoided crossing between a state of thefirst evenRAB-parity branch and a state of the second evenRAB-parity
branch is worthmentioning, which is present for all values of sg (see the exemplary arrow infigures 1(b) or (d)).
States of the same symmetry obviously do not cross according to theWigner-vonNeumann non-crossing
rule [60].

Infigure 1(c)we asymmetrically increase the intra-component interactions sg as compared to the non-
interacting case, namely to gA= 1 and gB= 2. For the uncoupled scenario ( =g 0AB ) all the degeneracies are
lifted, because nowPCFs of theA and theB components are different. The energy is

m m= + + +( ) ( )( )E k g l g m, , 2k l m A B0, , ,
0 . The energetic state ordering is far fromobvious, which becomes

apparent upon closer inspection of the m ( )g n, function. E.g. consider again the first evenRAB-parity branch. Its
lowest energy state is a single excitation of rB, followed by a single excitation of rA. The highest energy of this
branch corresponds to a doubleRAB excitation. The ordering pattern for higher order branches is evenmore
complicated. For intermediate values of gABwe observe that crossings from the previous scenario (with =sg 2)
between states of the sameRAB-parity are replaced by avoided crossings because of the broken Sr symmetry. The
strong coupling regime displays less degeneracies as compared to the component-symmetric cases offigures 1(a)
and (b)with the two-fold ground state degeneracy remaining untouched.

Infigure 1(d)we choose very strong intra-component interaction strengths =sg 100.When the
gAB-coupling is absent, we have two hard-core bosons in each component. The system can thus bemapped to a
two-componentmixture of non-interacting fermions [35, 61] andwill be referred to as TG–TG limit. The PCFs
become near degenerate with oddHOeigenstates, which again leads to integer-valued eigenenergies

» + + +( )E k l m2 2 4k l m0, , ,
0 with equal spacings and the same degree of (near-)degeneracies as in the non-

interacting case (figure 1(a)). The limit of strong inter-component coupling displays a completely different
structure of the spectrum. The so-called full fermionization (FF) [36] phase can bemapped to a non-interacting
ensemble of four fermionswith the ground state energy =N 2 82 . However, in contrast to the single-
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component case of four bosons, we need to take into account that the components are distinguishable. Thus, the
degeneracy of the ground state is expected to be =! ( ! !)N N N 6A B -fold and corresponds to the different
possibilities of ordering the laboratory frame coordinates while keeping inmind the indistinguishability of
particles of each component. This limit of all interactions strengths going to infinity can be treated analytically by
using the so-called ‘snippet’ basis [62, 63].

For strong butfinite couplings, i.e. a g1 1, recent research also unveiled the existence of amapping to an
effective spin-chainmodel by employing perturbation theorywith respect to the ‘snippet’ basis. Various
intriguing ground-state configurations have been revealed depending on the ratio and the sign of the interaction
parameters: Heisenberg antiferromagnet (AFM)/ferromagnet (FM), Ising AFM/FMandXYphase [64–68].
Such amapping is applicable not only for Bose–Bosemixtures, but also Bose–Fermi and Fermi–Fermimixtures
may be treatedwith this approach.

The last casewe discuss is the highly asymmetric case gA= 0 and gB= 100 infigure 1(e). For =g 0AB (BEC-
TG) one expects, based on the previous considerations, integer eigenvalues » + + +( )E k l m2 2 3k l m0, , ,

0 and
thus equal spacings as for the cases =sg 0 and =sg 100 depicted in figures 1(a) and (d), because the PCF of the
A component is an evenHOeigenstate and the PCF of theB component is degenerate with an oddHO
eigenstate. Very peculiar is the strong coupling case, wherewe observe a non-degenerate ground state, the so-
called PS phase [40], where theA component occupies the centre of the harmonic trap, while theB component,
in order to reduce its intra-component interaction energy, forms a shell around theA component.

4.3. Relative-frame densities
Let us now inspect the relative-frame probability densities r ( )Yi1 instead of the usually studied one-body
densities r s( )x1 of the laboratory frame as e.g. in [40].Wewill see that these quantities can be used to identify
regions ofmost probable relative distances and provide amore detailed picture of particle arrangements than
their laboratory frame counterparts.Moreover, in the quench dynamics study, the subject of the next section, an
occupation of a certain eigenstate ofHwill lead to the breathing oscillation of only one relative-frame density,
making it possible to connect different breathingmodes to specific relativemotions within the system, at least
for theweakly coupled case g 1AB .

We define these quantities as follows:

ò r = á ñ
¹


( ) ∣ ∣ ∣ ( )( ) Y Y Y Ed , 12j

i
p i

p j1
2

where ñ∣Ej is the jth eigenstate ofH andwe trace out all the degrees of freedomof the relative frame

Y except

for one.
Let us compare our results concerning the ground state densities for some limiting cases to the ones obtained

in [40]. Infigure 2we show the densities for all the degrees of freedom except forRCM,which trivially obeys a
Gaussian distribution. In the BEC–BEC case all the densities are characterized by aGaussian density profile,
since theHamiltonian consists of completely decoupledHOs for each degree of freedom.

When the gAB coupling is turned off, the ground state is known analytically: j jF m m( ) ( ) ( )( ) ( )R r rAB
AB g

A
A g

B
B0 ,0 ,0A B
.

Thus, by tracing out the sr coordinates we acquire the same r ( )( ) RAB1
0 for arbitrary intra-component

interactions, which explains the identical distributions for the BEC–BEC andTG–TGphase infigure 2(a).While
the PCFjm

s
s

s
( )( ) rg ,0 is identical to theHOground state for =sg 0, for any finite positive sg it splits into two

symmetric peakswith a cusp at the origin, which tends to zero as  ¥g [57]. In this limit it becomes equivalent
to themodulus of thefirst excitedHOeigenstate, which explains the shape of the TG-curves infigures 2(b), (c).
We remark that going beyond =sg 100 does not induce substantial changes on the densities, which justifies our
interpretation of this parameter regime as TG limit.

TheCF phase is in some sense a complete counter-part to the TG–TG case. Now r ( )( ) RAB1
0 features two

maxima and aminimum in between, a result of A andB strongly repelling each other. This feature is blurred in
the one-body density distributions r s( )( ) x1

0 of the laboratory frame and one needs to additionally consider the

two-body density function r ( )( ) x x,A B2
0 to verify this behaviour [37]. The density distribution of r s( )( ) r1

0 ismore
compressed compared to the BEC–BEC case due to the tighter confinement induced by the other component.

Finally, the PS phase corresponds to a core–shell structure, where r ( )( ) RAB1
0 and r ( )( ) rA1

0 show amore

pronounced peak, while r ( )( ) rB1
0 obeys a bimodal distributionwith two density peaks beingmuch further apart

than both in theCF and in the TG–TG case. This can be understood in the followingway:firstly, the fact thatA
locates in the trap centre and not the otherway around is becauseBneeds tominimize its repulsive intra-
component interaction energy by separating its particles. Secondly, the need tominimize the repulsive inter-
component energy pushes theB particles even further along the harmonic trap at the cost of increased potential
energy until these two energies balance themselves out. The twoA particles are compressed to closer distances as
compared to the BEC–BEC case because of a tighter trap induced byB, while at the same timeAmodifies theHO
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potential to a double well forB. This results in stronger localization of particles, which leads to amore
pronounced peak in theRAB distribution.

5. Breathing dynamics

The spectral properties discussed above can be probed by slightly quenching a systemparameter such that the
lowest lying collectivemodes are excited.Here, we focus on a slight quench of the trapping frequency in order to
excite the breathing ormonopolemodes being characterized by a periodic expansion and compression of the
atomic density.While in the single-component case two lowest lying breathingmodes of in general distinct
frequencies exist, being associatedwith amotion of theCMand the relative coordinates [24, 43], respectively,

Figure 2.Ground state relative frame probability densities: (a) r ( )( ) RAB1
0 (b) r ( )( ) rA1

0 and (c) r ( )( ) rB1
0 . The depicted limiting cases are

BEC–BEC ( = =sg g 0AB ), TG–TG ( =sg 100, =g 0AB ), CF ( =sg 0, =g 10AB ) and PS (gA= 0, gB= 100, =g 10AB ). The labels
for the ground-state phases are as follows: Bose–Einstein condensate (BEC), Tonks–Girardeau (TG), composite fermionization (CF),
phase separation (PS). Note that the r ( )( ) RAB1

0 distributions in the BEC–BEC andTG–TG regime are identical. All quantities are given
inHOunits.
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the number of breathingmodes, their frequencies and the associated ‘normal coordinates’7 are so far unknown
for themore complex case of a binary few-bodymixture and shall be the subject of this section.

Experimentally, breathing oscillations can be studied bymeasuring thewidth of theσ species density
distribution ò rs s s( )x x x td ,2

1 wherewe have omitted the subtraction of themean value ò rs s s( )x x x td ,1

squared, which vanishes due to the parity symmetry. From a theoretical point of view, it is fruitful to define a
breathing observable asås sxi i, ,

2 , whose expectation value is essentially the sumof thewidths of theA and theB
component.

To study the breathing dynamics wewill perform a slight and component-symmetric quench of theHO
trapping frequency, where ourHOunits will be givenwith respect to the post-quench system. The initial state
for this quench scenario is the ground state Y = ñ = ñw∣ ( ) ∣t E0 0 0

of the pre-quenchHamiltonian w( )H 0 with
harmonic trapping frequency w 10 , where w( )H 0 is obtained from equation (1) bymultiplying the harmonic
potential termswith the pre-factor w0

2. At time t=0 a sudden quench is performed to w = 1. The time
evolution is thus governed by the post-quenchHamiltonianH (see equation (1)) as follows:

åY ñ = ñ » ñw
-

=

-∣ ( ) ∣ ∣ ( )t E c Ee e , 13Ht

j

n

j
E t

j
i

0
0

i j
0

where ñ º ñw∣ ∣E Ej j and = á ñw∣c E Ej j 0 0
is the overlap between the initial state and the jth eigenstate ñ∣Ej of the

post-quenchHamiltonianH. Since both the pre- and post-quenchHamiltonian are time-reversal symmetric,
we assume their eigenstates and thereby also the overlap coefficients cj to be real-valuedwithout loss of
generality. A small quench ensures that »∣ ∣c 10 and only the n lowest excited states are of relevance. Symmetry
considerations further reduce the number of allowed contributions. E.g. states of oddRCM-parity or odd
RAB-parity have zero overlapwith ñw∣E0 0

, because the initial state is of evenRCM- andRAB-parity and the quench
does not affect any of the symmetries discussed in the previous section. Similarly, in the component-symmetric
case gA= gB, states, which are antisymmetric w.r.t.the Sr operation, have no overlapwith the pre-quench
ground state being symmetric under Sr.

For theweakly coupled regime, the relative-frame coordinates turn out to be extremely helpful for
characterizing the participating breathingmodes. Therefore, we study in particular the reduced densities of the
relative-frame coordinates. Employing the expansion in post-quench eigenstates from equation (13), their time-
evolutionmay be approximatedwithin the linear-response regime as

år r r» + D
=

( ) ( ) ( ) ( ) ( )( ) ( )Y t c Y c c Y t, 2 cos , 14i i
j

n

j
j

i j1 0
2

1
0

1
0 1

0,

neglecting terms of the order c ci j for >i j, 0. So r ( )Y t,i1 can be decomposed into the stationary background

r ( )( ) Yi1
0 and time-dependentmodulations of the form òr =  á ñá ñ¹

 
( ) ∣ ∣( ) Y Y Y E E Ydj

i p i p j1
0,

0 , further called
transition densities, with oscillation frequencyD = -E Ej j 0. Belowwe discuss how to calculate the overlaps cj
(see equations (18), (19)) to a good approximation only in terms of the post-quenchHamiltonian eigenstates for
sufficiently weak quenches. Thus, we can fully simulate the time-evolution of r ( )Y t,i1 by using only the post-
quenchHamiltonian properties obtained in section 4.

In the following, we regard the excitations of the first evenRAB-parity branch as the lowestmonopolemodes
and show that eachmonopolemode is directly connected to the breathingmodulation of a single relative-frame
density, if the two components are butweakly coupled. This behaviour changes for increasing gAB, where each
coordinate begins to exhibit an oscillationwithmore than one frequency. By inspecting themodulations of the
variances of each relative-coordinate and taking the excitation amplitudes into account, we show that four
(three) breathingmodes are excited for ¹g gA B (gA= gB) in theweakly coupled regime, while only two
breathingmodes are of relevance in the strongly coupled regime. First, we inspect the component-asymmetric
case offigure 1(c) in detail to illustrate some peculiarities of the involved breathingmodes, since it contains the
most relevant features. Thereafter, we unravel differences to the component-symmetric case offigure 1(b).

5.1. Component-asymmetric case
Because of the low amplitude quenching protocol, wewill excite four breathingmodes simultaneously in the
component-asymmetric case (gA= 1, gB= 2). Three of them stem from the first evenRAB-parity branch of
figure 1(c). Remember, however, that the total CMwas assumed to be in the ground state to keep the spectrum
discernible. One obtains the full energy spectrumby including all CMexcitations,meaning duplicating and up-
shifting depicted energy curves byD =E n with În . This reveals a forthmode, namely a double total CM
excitation. It features the same parity symmetries and is energetically of the same order as the states from thefirst
evenRAB-parity branch ensuring a considerable overlapwith the initial state. The total CM trivially oscillates

7
In this work, we call coordinates normal if they completely decouple theHamiltonian, implying the possibility to excite each degree of

freedom independently.
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with the constant frequency W = 2CM independent of any interactions ag it being a decoupled degree of
freedomwith the single-particleHOHamiltonian (equation (5)) [25, 43]. The other threemodes, which are
excited, are known analytically, when there is no coupling between the components, andwe label the
correspondingmode frequencies as (see also the labels infigure 1(c)):

(i) m mñ ñ « W = = -∣ ∣ ( ) ( ) ( )g g g0 0, 1, 0 0 , 1 , 0A AB A A ,

(ii) m mñ ñ « W = = -∣ ∣ ( ) ( ) ( )g g g0 0, 0, 1 0 , 1 , 0B AB B B ,

(iii) ñ ñ « W = =∣ ∣ ( )g0 2, 0, 0 0 2AB AB ,

(iv) ñ ñ « W =∣ ∣2 0, 0, 0 2CM ,

wherewe have prepended theCMeigenstate ñ∣n for a complete characterization of the involved states. States of
higher order evenRAB-parity branches as well as higher excitations of theCMcoordinate are negligible due to
small overlapswith the initial state.

In the uncoupled regime =g 0AB , one can show analytically that each relative-coordinate density oscillates
with a single frequency, each corresponding to exactly one eigenstate of the first evenRAB-parity branch (see
figures 3(a)–(c)). E.g. for r ( )R t,AB1 , the only transition density r ( )( ) Rj

AB1
0, which survives taking the partial trace

is the one corresponding to ñ ñ∣ ∣0 2, 0, 0 , while the contributions from the remaining excited states vanish. This
leads to the breathingmotion in theRAB coordinate with a single frequency WAB. Analogously one can show that
ñ ñ∣ ∣0 0, 1, 0 solely induces densitymodulation in r ( )rA1 with the frequency WA, while r ( )rB1 oscillates with WB

exclusively due to ñ ñ∣ ∣0 0, 0, 1 . Thereby, the relative-frame coordinates render ‘normal coordinates’ in the
uncoupled regime, which is also a valid picture for extremely weak couplings.

By introducing a larger coupling between the components one observes that each relative frame density,
except for r ( )R t,1 CM , begins to oscillate with up to three frequencies simultaneously. So all themodes begin to
contribute to the densitymodulation of each relative coordinate. However, there are some peculiarities we
observe, for the visualization of which the densities are notwell suited anymore. Instead, wewill transform the
breathing observable to the relative frame and consider the expectation values of individual terms it decomposes
into:

å = + + +
s

s ( )x R R r r4
1

2

1

2
. 15

i
i AB A B

,
,

2
CM
2 2 2 2

Figure 3.Relative frame densitymodulations for the component-asymmetric case offigure 1(c). Figures(a)–(c): the decoupled
regime =g 0AB . (a) r ( )R t,AB1 oscillates solely due to the ñ∣2, 0, 0 eigenstate with the frequency W = 2AB , (b) r ( )r t,A1 due to

ñ∣0, 1, 0 with the frequency WA, (c) r ( )r t,B1 due to ñ∣0, 0, 1 with the frequency WB. Figures(d)–(f): strongly coupled regime
=g 10AB . (d) r ( )R t,AB1 , (e) r ( )r t,A1 , (f) r ( )r t,B1 . All the profiles oscillate with the same frequency WAB. Not shown is the breathing

motion of r ( )R t,1 CM with the constant frequency of W = 2CM , it being a decoupledmotion of a single-particleHO.Quench strength
dw = -0.1. All quantities are given in post-quenchHOunits.
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The expectation value of each observable with respect to the time-evolved state Y ñ∣ ( )t is directly related to the
respective relative-frame density:

ò ráY Y ñ =( )∣ ∣ ( ) ( ) ( )t Y t Y Y Y td , . 16i i i i
2 2

1

Inserting the time-evolution of the relative frame density from equation (14) one finds that the observables
decompose into a stationary value and a time-dependentmodulation aswell. In particular, we are interested in
the amplitudes ofmodulations, when the inter-component coupling is varied, since they determine howmany
frequencies are of essential relevance for the consideredmotion. The amplitude of the jthmode is essentially
composed of the overlap cj and of the transition element:

ò rá ñ =∣ ∣ ( ) ( )( )E Y E Y Y Yd . 17j i i i
j

i
2

0
2

1
0,

In order to evaluate the overlaps = á ñw∣c E Ej j 0 0
with ¹j 0 in terms of only the post-quenchHamiltonian

eigenstates, we perform aTaylor approximationwith respect to theweak quench strength dw w w= - 0,
namely dwñ » ñ - ñw w w w∣ ∣ ∣E E E0 0

d

d 00 evaluated at w = 1, and arrive at

w
dw» - ( )c E E

d

d
. 18j j 0

Applying the (off-diagonal)Hellmann–Feynman theorem [69], one obtains:

å
w

w
á ñ =

- á ñ

-
s s

( )E E
E x E

E E

d

d
. 19j

j i i

j
0

, ,
2

0

0

The overlaps are hence connected to the transition elements of each relative-frame breathing observable
(equation (15)), weightedwith the inverse of themode frequency, which leads to a damping of contributions
fromhigher order branches. This relation enables us to calculate the amplitudeAj, withwhich the jthmode
contributes to the oscillation of the observableYi

2:

dw
= á ñ( ) ∣ ∣ ( )A Y

c
E Y E , 20j i

j
j i

2
0

whichmay be interpreted as the susceptibility of theYi
2 observable for the excitation of the state ñ∣Ej .

Infigure 4(a)we show the values of possible breathingmode frequencies, obtained from the spectrumof
figure 1(c). W = 2CM does not depend on any interaction strength ag . In contrast to this, WAB is degenerate with
WCM for =g 0AB , andwhen increasing gAB, decreases to aminimum first and then increases with the tendency to
asymptotically reach WCM again. This behaviour strongly resembles the dependence of the relative-coordinate
breathing-mode frequency in the single-component case [43]. WA and WB have qualitatively akin curve shapes,
varyingmuch strongerwith gAB. In particular, we note that these frequencies reach values below the frequency of
theCMdipolemode being equal to unity.

The breathingmode frequencies discussed above are labelled according to the peculiarity of the uncoupled
regime, where each eigenstate from the first evenRAB-parity branch leads to a breathingmotion of some specific
relative-frame coordinate. Indeed, if we look at the amplitudesAj infigures 4(b)–(d) in the decoupled regime
( =g 0AB ), we recognize that the amplitude for the coordinateYi is non-zero only for onemode, namely the one
withwhich r ( )Y t,i1 oscillates infigures 3(a)–(c).Whenwe increase the inter-component coupling, the
eigenstates cease to be simple product states in the relative coordinate frame resulting in contamination of each
densitymodulationwith the frequencies from the othermodes aswell, which leads to a three-mode oscillation.
Nevertheless, we label the frequencies corresponding to the uncoupled case and follow the states continuously
throughout the gAB variation.

Another peculiarity worth noting arises in the strongly coupled regime: The Ws oscillations become strongly
suppressed for all the observablesmaking WAB and WCM themain contributors to the densitymodulations,
which reminds us of the single-component behaviour [43]. Furthermore, the dependence of WAB on gAB has
striking resemblance to the dependence of Wrel on g for the single component gas. Infigures 3(d)–(f)we show
that all the relative-coordinate densities oscillate with the same frequency WAB.We highlight that in theCF
regime each density peak of the bimodal distribution r ( )R t,AB1 does not only breath periodically but also its
maximumheight position performs dipole-mode like oscillations, seefigure 3(d). Our intuitive picture for this
effect is as follows: in theCF phase the two species are located on opposite sides of theHO trap and feel a tighter
effective trap induced by the other component, which is in accordance to the tighter localization of the sr
coordinates, seefigures 2(b) and (c). Upon inducing the quench dynamics by instantly lowering the trap
frequency, the two species separate even further.When the turning point is reached, theymove back towards the
centre of the trap, fail, however, to penetrate each other due to a strongmutual repulsion, which results in
dipole-like oscillation of each of the two r ( )R t,AB1 density fragments. These dipole oscillations quite likely act as
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a driving force for the rσ coordinatesmaking them to oscillate with the same frequency thereby suppressing Ws

modes.

5.2. Component-symmetric case
Nowwe compare the above results with the component-symmetric case offigure 1(b), where = =g g 2A B .
Figure 5(a) depicts the possible breathing-mode frequencies. Here, twomain differences arise:first, the WAB

curve features twominima due to two avoided crossings with an eigenstate of the second evenRAB-parity
branch. Second, the other two breathingmode frequencies of the relative coordinates are degenerate for

=g 0AB , then separate with increasing gAB and approach one another asymptotically. Instead of using the labels
WA and WB as in the component-asymmetric case, we label these twomodeswith W+ and W-, since the
corresponding excited eigenstates are symmetric and antisymmetric w.r.t. Sr , respectively (see figure 1(b)). The
latter frequency, however, does not give any contribution to the breathing dynamics, it being symmetry
excluded.

Figure 4. (a)Breathingmode frequencies as a function of the inter-component coupling gAB for the component-asymmetric case gA
= 1.0 and gB= 2.0. Themodes are labelledwith respect to the uncoupled regime, where eachmode can be identifiedwith a particular
relative-framemotion (figures 3(a)–(c)). (b)–(d)AmplitudesAj (equation (20)) of themodes depicted in (a) (same colour coding),
which determine the relevance of the contribution to the oscillation of the observable Yi

2 as a function of the inter-component
coupling gAB: (b) ( )A Rj AB , (c) ( )A rj A , (d) ( )A rj B . The red dotted lines stem from the states of the second evenRAB-parity branch. All
quantities are given in post-quenchHOunits.
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Themotion of the rA and rB coordinates is identical due to the imposed component-symmetry and in the
uncoupled regime ( =g 0AB ) they both oscillate solely with the W+ frequency (see figures 5(c) and (d)). Similarly
to the component-asymmetric case, we see that when increasing gAB the WAB (W+)mode contributes also to the
observable sr

2 (RAB
2 ).

However, in the intermediate interaction regime  g3.7 8.3AB we observe a strong suppression of the
WAB mode contribution for all observables, which is in stark contrast to the component-asymmetric case.
Instead, a state of the second evenRAB-parity branch gains relevance. These two eigenstates actually participate
in the avoided crossing exemplary indicated by an arrow in the spectrum (see figure 1(b)) and thereby exchange
their character. According to equation (20) the breathing amplitude is determined by the transition elements
(16) aswell as the overlap coefficients (18), which in turn depend also on the transition elements due to
equations (19) and (15).While the energy denominator of equation (19) does not single out one of the two states
participating in the avoided crossing, the values of the individual transition elements strongly depend on the
character of the respective eigenstate. Thereby, the energetically slightly lowermode has a large amplitude before
the crossing and after the crossing the composition character of states changes such that the highermode
dominates. By further increasing gABwe observe another exchange of roles, which is attributed to the presence of

Figure 5. (a)Breathingmode frequencies as a function of the inter-component coupling gAB for the component-symmetric case
=sg 2.0. (b)–(d)AmplitudesAj (equation (20)) of themodes shown in (a) (same colour pattern), which determine the relevance of

the contribution to the oscillation of the observable Yi
2 as a function of the inter-component coupling gAB: (b) ( )A Rj AB , (c) ( )A rj A , (d)

( )A rj B . The red dotted lines stem from the states of the second evenRAB-parity branch. All quantities are given in post-quenchHO
units.
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a second avoided crossing (seefigure 5(a)) such that the strong inter-component coupling regime shows again
the absolute dominance of the WAB mode over the other lowest breathingmodes besides WCM.

6. Experimental realization

The few-body Bose–Bosemixture studied here should be observable with existing cold atom techniques.
Quantumgasmicroscopes allow the detection of single particles in awell controlledmany-body or few-body
system [70, 71] and recent progress also allows for spin-resolved imaging in 1D systems using an expansion in
the perpendicular direction [72, 73]. In these set-ups, the single-particle sensitivity relies on pinning the atoms in
a deep lattice during imaging and experiments have so far focused on lattice systems.However, bulk systems
might be imagedwith high spatial resolution by freezing the atomic positions in a lattice before imaging. For fast
freezing, this would allow a time-resolvedmeasurement of the breathing dynamics.Moreover, spin order was
recently observed in very small fermionic bulk systems via spin-selective spilling to one side of the system [74].

Deterministic preparation of very small samples was demonstrated for fermions via trap spilling [75] and for
bosons by cutting out a subsystemof aMott insulator [76]. The tight transverse confinement for a 1D system can
be obtained from a 2Doptical lattice, while the axial confinement would come from an additional optical
potential, which can be separately controlled to initialize the breathingmode dynamics.

Choosing two hyperfine states of the same atomic species ensures the samemass of the two bosonic species.
Possible choices include Li7 , K39 or Rb87 .While the former have usable FRs to tune the interaction strengths,
the latter allows selective tuning via CIR in a spin-dependent transversal confinement as can be realized for
heavier elements. Note that the longitudinal confinement needs to be spin-independent in order to ensure the
same longitudinal trap frequencies and trap centres assumed in the calculations. The inter-component
interaction strength can be tuned via a transverse spatial separation as obtained e.g. from amagnetic field
gradient [77]. In the case of 7Li and K39 , the inter-component background scattering lengths are negative [14]
leading to negative gAB, but although not reported, inter-component FRsmight exist. Alternatively, gABmight be
tuned via aCIR, which selectively changes gAB atmagnetic fields, where the intra-component scattering lengths
are very different.

In the followingwe give concrete numbers for a choice of Li7 . The density distribution has structures on the
scale of theHOunit aho (figure 2). Choosing the trap parameters as in [75] as w p =( )2 1.5 kHz and
w p =^ ( )2 15kHz, yields =a 1ho mm, i.e. larger than a typical optical resolution of 0.8 mm. At the same time,
temperaturesmuch lower than w =k 72B nK are state of the art. The breathing dynamics will occur on a time
scale of several 100 ms, which is easily experimentally accessible. Choosing a smallerωwouldmake the imaging
easier, butwould impose stricter requirements on the temperature.

For the observation of the breathingmode dynamics, onewould record the positions of all four particles in
each experimental image and obtain thewidths á ñR tCM

2 , á ñRAB t
2 , á ñsr t

2 by averaging the occurring relative
coordinates overmany single-shots after afixed hold time t.

7.Discussion and outlook

In this workwe have explored a few-body problemof a Bose-Bosemixturewith two atoms in each component
confined in a quasi-1DHO trapping potential by exact diagonalization. By applying a coordinate transformation
to a suitable framewe have constructed a rapidly converging basis consisting ofHO andPCF. The latter stem
from the analytical solution of the relative part of the two-atomproblem [57] and include the information about
the intra-species correlations, which renders our basis superior to the common approach of usingHO
eigenstates as basis states.

We have then explored the behaviour of the low-lying energy spectrum as a function of the inter-species
coupling for various fixed values of intra-species interaction strengths.Herebywe have covered the strongly
coupled limiting cases of CF, FF and PS, studied also intermediate symmetric and asymmetric values of gA and gB
and related the ground state relative-frame densities of some limiting cases to the known laboratory frame
results [40].We have discussed the evolution of degeneracies and explained appearing (avoided) crossings in
terms of the symmetries of theHamiltonian, which become directlymanifest in the chosen relative-coordinate
frame.

Finally, the obtained results were used to study the dynamics of the systemunder a slight component-
symmetric quench of the trapping potential.We have derived expressions for the time evolution of the relative-
frame densities within the linear response regime and observed that in the uncoupled regime ( =g 0AB ) the
density of each relative frame coordinate performs breathing oscillations with a single frequency corresponding
to a specific excited state of thefirst evenRAB-parity branch of the spectrum. The total CMcoordinate performs
breathing oscillations with the frequency W = 2CM (HOunits). For asymmetric choices of sg values, three

14

New J. Phys. 20 (2018) 015006 MPyzh et al

80 scientific contributions



additionalmonopolemodes participate in the dynamics, each of them corresponding to themotion of a
particular relative coordinate: WA for the relative coordinate of theA component, WB for the relative coordinate
of theB component and WAB for the relative distance of theCMs of both components. In contrast to this, the
symmetric case gA= gB leads to only two additionalmodes because of a symmetry-induced selection rule: W+ for
the relative coordinates of both components and WAB for the relative distance of theCMs of both components.

For not too strong inter-component coupling, each relative coordinate exhibitsmulti-mode oscillations and
we have explored their relevance for the densitymodulations by analysing the behaviour of suitably chosen
observables as one gradually increases the coupling between the components for symmetric and asymmetric
choices of intra-component interactions strengths. Thereby, we have found that for strong couplings, where CF
takes place, the Ws (W+)modes become highly suppressed, leaving only twomonopolemodes in this regime:
WAB and WCM.We have observed the same effect for the case of PS (results not shown). Interestingly, the
dependence of WAB on gAB strongly resembles the behaviour of the relative-coordinate breathing frequency in
the single-component case [43]. All in all, we have obtained 2 to 4monopolemodes for the quench dynamics
depending on the strength of the inter-component coupling and the symmetry of the intra-species interactions,
which is in strong contrast to the single-component case [43] aswell as to theMF results, where two low-lying
breathingmodes can be obtained, namely an in-phase (out-of-phase)mode for a component-symmetric
(component-asymmetric) quench [23]. Finally, we have argued that the experimental preparation of the
considered few-bodymixture andmeasurement of the predicted effects are in reach bymeans of state-of-the-art
techniques.

This work serves as a useful analysis tool for future few-body experiments.Measurements of themonopole
modes can bemapped to the effective interactions within the system such that precisemeasurements of the
scattering lengths or externalmagnetic fields can be performed. The numericalmethod used here can be applied
to Bose–Fermi and Fermi–Fermimixtures with two particles in each component simplifying the numerics,
because the PCFs have to be replaced by oddHOeigenstates, if a bosonic component is switched to a fermionic
one, which significantly accelerates the calculation of integrals. Further, it would be interesting to see how the
frequencies and the amplitudes of themonopolemodes vary for an increasing number of particles. Exploring
the spectrum for negative values of interaction parameters is also a promising direction of future research.
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Appendix

In the following, we discuss how to efficiently calculatematrix elements of the coupling operatorH1 from
equation (8)with respect to the basis (10). Because of the alreadymentioned even parity ofjs

i one canmake
simple substitutions of the form = -s sr̃ r to show that each delta in the sumofH1 gives the same contribution,
such that after performing an integral overRAB one obtains:
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j j j j
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At this point it is important to notice that the integral vanishes for odd +( )a k because of the parity symmetries
of FAB andjs, which can be seen by transforming to relative and centre-of-mass coordinates = -r r rA B,
= +( )R r r 2A B . In the following, we assume that the quantumnumbers for theRAB coordinate are restricted

to Î ¼{ }a k n, 1, , AB and for the rσ coordinates to Î ¼{ }b c l m n, , , 1, , rel . Nowour computation strategy
consists of three steps:

First, we circumvent evaluating the 2D integral from equation (A1) by viewing the product of the twoHO
eigenstates F Fa

AB
k
AB as a pure, in general not normalized state ca k, depending on the two coordinates rA and rB

and applying the Schmidt decomposition [58] or, equivalently, the so-called POTFIT algorithm [59].
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Here8, l∣ ∣( )
i
a k, 2 coincides with the ith eigenvalue of the reduced one-body densitymatrix corresponding to the

degree-of-freedom rσ and
s

s( )( )w ri
a k; , denotes the corresponding eigenvector, which can be shown to feature a

definite parity symmetry.We remark that (i)wemay choose = º( ) ( ) ( )( ) ( ) ( )w r w r w ri
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c c=( ) ( )r r r r, ,a k A B a k B A, , without loss of generality and that (ii) the decomposition of equation (A2) becomes

exact for  ¥d . Having ordered the coefficients l( )
i
a k, in decreasing sequence w.r.t. to theirmodulus, we

choose d such that only termswith l l > -∣ ∣( ) ( ) 10i
a k a k,

0
, 6 are taken into account, which results in an accurate

approximation to 2D integrals with a relative accuracy of 10−5, valid for all interactions and quantumnumbers
considered below.We perform this decomposition for all the relevantHOquantumnumbers (a, k), meaning
 a k nAB with +( )a k even. This procedure is independent of any interactions ag and needs to be executed

only once.
By inserting equation (A2) into (A1)we obtain the following expression:
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As one can see, the 2D integral is replaced by a sumof products of 1D integrals. In order to greatly overcome the
numerical effort for computing a 2D integral d should be preferably a small number (see below).

The second step consists in the calculation of 1D integrals and herewe provide an efficient strategy to
circumvent redundant computations. Consider the integral:

ò j js s( ) ( ) ( ) ( )( )r w r r rd , A4i
a k

s t
,

with  s t nrel. The PCFs are of even parity and thus only even
( )wi
a k, actually contribute allowing to reduce

the number of expansion terms in equation (A3) to⌊ ⌋d 2 . Both PCFsjs
s andj

s
t depend on the same interaction

strength gσmeaning that the above integral does not distinguish between the two subsystems such that the index
σ can be dropped for themoment. Nowwefix the PCFs by specifying the strength of intra-component
interaction g and furtherwefix theHOquantumnumbers (a, k), which determine the functions ( )wi

a k, , as well as
PCF quantumnumbers (s, t).We loop over all i and save the integral values, labelled as ( )g a k s t, , , , . This
procedure is performed for a set I ofmultiple values of gwe are interested in and for all the relevant quantum
number configurations  a k nAB with +( )a k even and  s t nrel.

In the last stepwe calculate thematrix elements from equation (A3). ForHOquantumnumbers (a, k)we
extract all the expansion coefficients l( )

i
a k, , obtained in thefirst step, and for the chosen interactions parameters

( )g g,A B and PCF quantumnumbers ( )b c l m, , , wepick the appropriate integral values corresponding to
= = =( )g g a k s b t l, , , ,A and = = =( )g g a k s c t m, , , ,B . The advantage of this procedure is that not only

symmetric choices of intra-component interaction strengths are accessible, but also an arbitrary asymmetric
combination Î ´( )g g I I,A B . Additionally, the proposed scheme can be easily parallelized. However, adding
new g values to the set I is in general very time-consuming as one needs to calculate a bunch of 1D integrals for all
the relevant quantumnumber configurations.

Now let us analyse quantitatively the speed-up obtained by our algorithm in contrast to the straightforward
evaluation of 2D integrals. Since the energy spacing of the PCFmodes is approximately twice the energy spacing
of theHOmodes corresponding to theRABmotion, we assume = -( )n n 1 2ABrel with an odd nAB to keep the
number of even and oddRAB-parity basis states the same. The number of 1D integrals one needs to compute for
each Îg I in order to construct theH1matrix is approximately + +( )[( )( )]d n n64 1 3AB AB

2, where d is an
average number of terms in (A3), as the criterion l l > -∣ ∣( ) ( ) 10i

a k a k,
0

, 6 requiresmore terms for larger values of
a k, . The number of 2D integrals amounts to + +( )[( )( )]n n1 256 1 3AB AB

3. For checking the convergence (see
below), we have chosen =n 21AB and =n 10rel , i.e. 2662 basis states. The number of expansion terms varies in
the interval Î ¼{ }d 50, , 100 resulting in =d 75. Thus, we need to either evaluate 326 700 1D integrals or
574 992 2D integrals. Not only is the number of 1D integrals smaller, the computation of one 2D integral takes
also significantly longer than of one 1D integral, especially for higher quantumnumbers.Moreover, in order to
build theHamiltonianmatrix for all Î ´( )g g I I,A B , the 2D integrals (A1)would have to be evaluated for the

+( )n n 1 2g g distinct combinations g gA B, where ng denotes the cardinality of I, while the 1D integrals (A4)
must be calculated only for all Îg I , i.e. ng distinct values, which renders this approachmuchmore efficient.

8
Note that in contrast to the usual conventionwe do not require the coefficients l( )

i
a k, to be semi-positive without loss of generality.
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For the spectra shown in section 4we have chosen =n 17AB and =n 8rel , i.e. 1458 basis states. Sincewe
know that basis states of differentRAB-symmetry do not couple, we can split theHmatrix into subspaces of even
and oddRAB-parity, leading to ´( )729 729 -sizematrices for each subspace such that the computational effort
for the diagonalization becomes negligible. Since the inter-component coupling gAB enters thematrix

= +H H g HAB0 1 to be diagonalized only as a pre-factor, a very fine gAB scan can be easily performed.Wenote
that for the covered Î [ ]g 0, 10AB space the convergence check provides uswith the relative energy change
below 1% for the low-lying energy spectrum.
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Breathing dynamics of the few-body Bose polaron in a species-selective harmonic trap
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We perform an extensive numerical study on the breathing dynamics of a few-body Bose polaron setup in a
one-dimensional species-selective harmonic trap. The dynamics is triggered by a quench of the impurity trap.
The excitation of the background majority atoms is mediated via the majority-impurity interaction. The breathing
spectrum is obtained for different numbers of majority particles, several values of the majority-component
interaction strengths, and trap ratios. It is further compared to the breathing spectrum of a particle-balanced
few-body Bose-Bose mixture. In particular, for equal postquench traps the employed protocol allows to couple
states of different center-of-mass parity in contrast to species-symmetric trap quenches. Among the participating
eigenstates we identify one having odd center-of-mass parity and even global parity. The breathing frequency
induced by this state is a monotonically decreasing function of the coupling parameter. Importantly, in order
to be numerically observable, it requires the entanglement between the species to be taken into account.
We demonstrate this by comparing the numerically exact results obtained by means of the multilayer mul-
ticonfiguration time-dependent Hartree method for mixtures to the ones of a species mean-field ansatz. The
entanglement-sensitive breathing frequency persists also for unequal postquench traps where the center of mass
cannot be decoupled. Finally, we analyze the impact of global parity symmetry on the breathing dynamics by
initializing a state of odd global parity. We evidence a striking resemblance to the breathing spectrum of the
ground state, but find also some additional modes.

DOI: 10.1103/PhysRevA.105.043304

I. INTRODUCTION

The polaron concept was introduced quite some time ago
by Landau and Pekar [1,2] to describe the motion of an
electron in a crystalline material. The notion of an emerg-
ing quasiparticle dressed by low-energy excitations of the
underlying medium has vastly expanded since its foundation
finding broad applications in different areas of physics such as
organic semiconductors, polymers, nanowires, quantum dots,
and high-temperature superconductors [3–5]. Since the advent
of ultracold gases [6,7], a promising experimental platform
has emerged allowing to investigate fundamental many-body
quantum processes [8] with an exquisite tunability of the
underlying interactions and trapping geometries. In particular,
the ability to combine different species [9] and the precise
control over the number of particles [10] made it possible to
experimentally prepare an impurity in a many-body environ-
ment of bosons [11–16] or fermions [17–21], leading to what
is nowadays termed Bose [22] and Fermi polaron [23,24], re-
spectively. A mapping to the Fröhlich Hamiltonian [25] for the
polaron problem can be established while all the Hamiltonian
parameters can be addressed individually. The tunability of
interactions via Feshbach resonances [26,27] provides access
to highly correlated and entangled regimes challenging the
theorists to go beyond the weak coupling Fröhlich paradigm
[28–34].

*mpyzh@physnet.uni-hamburg.de
†pschmelc@physnet.uni-hamburg.de

The correlations are in particular enhanced in quasi-
one-dimensional (1D) systems [35]. A comparatively tight
transverse confinement freezes the perpendicular motion of
particles and additionally affects the effective 1D interac-
tions known as confinement-induced resonances [36–38]. A
prominent example of a strongly correlated 1D system is
the Tonks-Girardeau gas [39–41]. In contrast to higher di-
mensions, where a lower particle density implies weaker
correlations, in 1D lower densities lead to stronger interac-
tions. It makes the study of low-density few-body systems of
particular interest triggering significant research efforts [42].
At the same time, this represents a great challenge requiring
sophisticated numerical techniques able to account for all the
relevant correlations [43] when characterizing the static prop-
erties or the many-body dynamics, such as the density matrix
renormalization group (DMRG) [44] or the multilayer multi-
configuration time-dependent Hartree method for bosons and
fermions (ML-MCTDHX) [45]. In species-selective trapping
geometries [12,46,47] the inhomogeneity of the medium and
the localization length of the impurity impact significantly the
degree of correlations [48–50] opening interesting perspec-
tives but requiring also new approaches since the translation
symmetry is broken making the well-established technique,
the Lee-Low-Pines transformation [51], inapplicable.

In this work, we investigate the low-energy excitations of
a few-body Bose polaron trapped harmonically in one spatial
dimension. Elementary excitations [52,53] are of fundamental
importance to understand the dynamical response of a physi-
cal system subject to a weak perturbation in terms of excited
eigenstates and respective eigenenergies. Here, we focus on

2469-9926/2022/105(4)/043304(18) 043304-1 ©2022 American Physical Society
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the so-called quantum breathing modes. They are charac-
terized by an oscillatory compression and expansion of the
one-body density reminiscent of a respiratory movement. On
account of their strong sensitivity to the system’s parameters
such as interactions, trap geometry, and spin statistics, they
have been established as a reliable diagnostic tool to access
the ground-state properties of a system [54], for precision
measurements of the scattering lengths [55] and even as a
sensitive test of the equation of state at unitarity [56].

A number of experiments have observed the breathing
motion of harmonically or lattice trapped Bose-Einstein con-
densates (BEC) [55,57–62] and mixtures of bosons and/or
fermions [12,17,63–65]. The single-component breathing is
theoretically well understood in the many-body case for
contact [66–69], power-law [70–72], and dipolar [73] in-
teractions. In a 1D harmonic trap of frequency ω at zero
temperature, one has identified two breathing modes: (i)
center-of-mass breathing of constant frequency �c.m. = 2ω

and (ii) interaction-sensitive relative motion mode starting at
�rel = 2ω for an ideal gas (BEC regime), dropping to �rel =√

3ω at weak repulsive interactions (mean-field Thomas-
Fermi regime) and finally saturating back to �rel = 2ω in
the limit of strong interactions (Tonks-Girardeau regime). The
frequency values at intermediate interactions are well approx-
imated via a sum-rule approach [66,67,74–76] and the overall
frequency curve features a single minimum between the BEC
and TG limits. The curvature in-between those limits and the
exact minimum location are quite sensitive to the number of
particles and beyond-mean-field effects are often indispens-
able for a correct quantitative description [77–82].

The breathing dynamics turns out to be even richer for a
multicomponent mixture of bosons [83–89], fermions [17,76],
and combination of the two [90–93]. Theoretically, up to
four breathing frequencies can be extracted from the density
width oscillations of both components depending on the in-
terplay between interactions and particle-number imbalance:
breathing of the center of mass, the relative motion for each
component, and the relative intercomponent motion owing to
the particles’ distinguishability. The frequencies of the three
relative modes behave in a similar fashion as the frequency of
the relative mode encountered in the single-component case.
To the best of our knowledge, both components have been
considered to be equally trapped, allowing for a separation
of the center-of-mass motion. In our work, we make use
of species-selective trapping potentials to find out (i) how
initially different traps would affect the breathing behavior
in combination with (ii) how compressing the trap of only
one component, the impurity, would impact the breathing
motion of the second component, the majority, depending
on the intercomponent coupling. For different system pa-
rameters, we classify the breathing modes according to their
relative amplitude in the Fourier power spectrum obtained
by applying a compressed sensing (CS) [94] algorithm to
breathing observables evaluated via ML-MCTDHX. Further-
more, we study the role of intercomponent entanglement
and parity symmetries on the breathing response. We iden-
tify an entanglement-sensitive mode whose frequency is a
monotonically decreasing function of the majority-impurity
interaction.

FIG. 1. The impurity (species B indicated by a red circle with
a vertically dashed filling) in a harmonic trap of frequency ωB (red
thin solid line) is immersed in a cloud of majority atoms (species A
indicated by a blue blurred ellipse) subject to a different parabolic
confinement of frequency ωA (blue broad solid line). The breathing
dynamics is initiated by quenching the trap of the impurity (red
dashed line) inducing thereby excitations (orange waves) in the com-
posite system via the majority-impurity interaction.

This work is structured as follows. In Sec. II we intro-
duce our setup and Hamiltonian. The numerical approach
is discussed in Sec. III A. We use ML-MCTDHX for state
initialization, subsequent dynamics, and evaluation of breath-
ing observables. The oscillation frequencies are extracted by
means of a CS algorithm outlined in Sec. III B. The results
presented in Sec. IV are categorized in four subtopics: an
overview of breathing modes in a particle-balanced few-body
Bose-Bose mixture [88] (Sec. IV A) for later reference, the
breathing spectra in the current Bose polaron setup for dif-
ferent majority-component interactions and particle-number
ratio (Sec. IV B), the impact of impurity localization length
(Sec. IV C), and, finally, the role of global parity symmetry
for the breathing response (Sec. IV D). In Sec. V we provide
a summary and draw conclusions in Sec. VI.

II. SETUP AND HAMILTONIAN

We consider a few-body mixture of two bosonic compo-
nents (see Fig. 1). A component σ ∈ {A, B} contains Nσ parti-
cles of mass mσ , which experience a quasi-one-dimensional
parabolic confinement with trap frequency ωσ and interact
internally via contact pseudointeraction of strength gσ . The
components are coupled via an interspecies contact interac-
tion of strength gAB. We assume equal masses and introduce
harmonic units of component A as our natural units, i.e.,
lA = √

h̄/mωA for length, h̄ωA for energy and 1/ωA for time.
The corresponding Hamiltonian reads as follows:

H = HA + HB + HAB

=
NA∑
i=1

(
−1

2

∂2

∂x2
i

+ 1

2
x2

i

)
+ gA

NA∑
i< j

δ(xi − x j )

+
NB∑
i=1

(
−1

2

∂2

∂y2
i

+ 1

2
η2y2

i

)
+ gB

NB∑
i< j

δ(yi − y j )

+ gAB

NA∑
i=1

NB∑
j=1

δ(xi − y j ), (1)
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where xi (yi) denotes the position of the ith particle in the A
(B) component.

The A component is referred to as the majority species.
It has NA ∈ {5, 10} particles. The B component consists of
a single particle, NB = 1, and we call it the impurity. The
majority component is either noninteracting (gA = 0) or fea-
tures a weakly attractive or repulsive interaction (gA = ±0.5).
The majority-impurity coupling covers values from weakly at-
tractive to intermediate repulsive gAB ∈ [−0.5, 2.0]. The trap
ratio covers cases of equal traps (η = 1), a “broad” impurity
(η = 0.51) and a “narrow” impurity (η = 4). The weak-
to-intermediate interaction regimes considered here cover
most of ground-state density configurations encountered in
bosonic mixtures including miscible phase, core-shell sepa-
ration [49,88,95,96], and composite fermionization [97,98].
The strongly correlated regimes such as full fermionization
or the spin-chain configurations [99,100] are computationally
challenging and require a fundamentally different treatment
than the one employed in this work.

The Hamiltonian (1) possesses a global reflection sym-
metry, corresponding to a map xi �→ −xi and y j �→ −y j for
all i, j. It implies that the energy eigenstates can be chosen
to have a definite global parity, i.e., to be eigenstates of the
above operation with eigenvalues +1 (even) or −1 (odd).
An eigenstate can be thus classified as being of even or odd
global parity. We prepare our system either in the ground state
(even global parity in Secs. IV B and IV C) or in the first
excited state (odd global parity in Sec. IV D) at η0 = 1.05η of
Eq. (1), the prequench Hamiltonian. To initiate the breathing
dynamics we slightly relax the trap of the impurity from η0 to
η and propagate the state with this postquench Hamiltonian.
The majority species is set in breathing motion indirectly via
the coupling to the impurity. Importantly, the two global parity
subspaces are not coupled by the trap quench. Thus, an initial
state of definite global parity will remain in the corresponding
subspace. We can thus investigate the role of global parity on
the breathing response.

The breathing motion can be monitored in the one-body
densities ρσ

1 (z, t ) as their widths expand and contract pe-
riodically in time. Alternatively, one can analyze the time
evolution of the corresponding breathing observables 〈Ô〉t
with Ô = ∑

i x̂2
i for the majority species and Ô = ŷ2 for the

impurity. The reason for equivalence is that the one-body
density width, denoted as 	z, can be evaluated via 〈	z〉2 =
〈z2〉 − 〈z〉2. For an initial state of a definite global parity we
have a reflection-symmetric one-body density which yields
〈z〉 = 0. The oscillatory motion is usually composed of multi-
ple contributions with amplitudes dn and distinct frequencies
�n, i.e., 〈Ô〉t = ∑

n dne−i�nt . Each of the oscillatory con-
tributions in 〈Ô〉t will be referred to as a breathing mode
characterized by a distinct frequency. The origin of the breath-
ing modes can be expressed in terms of system’s eigenstates
and related eigenenergies as follows. Upon a quench, several
eigenstates |ψn〉 of the postquench Hamiltonian H with en-
ergy En become populated depending on the overlap cn with
the initial state |�(t0)〉, i.e., cn = 〈ψn|�(t0)〉. The time sig-
nal 〈Ô〉t = ∑

n,m c∗
mcn 〈ψm| Ô |ψn〉 e−i�n,mt oscillates with fre-

quencies �n,m = En − Em for populated eigenstates cncm 	= 0
as long as the transition matrix elements 〈ψn|Ô|ψm〉 = Onm

are nonzero. Given a weak perturbation, we expect the lowest-

energy eigenstate of even (odd) global parity |ψref〉 to have
the largest overlap with the even (odd) global parity initial
state |�(t0)〉, i.e., |c0|2 ≈ 1. For that reason, the major part
of frequencies contained in the breathing observable 〈Ô〉t
are energy gaps between any of the populated eigenstates
and the reference eigenstate, i.e., �n = En − Eref . Oscillations
among any different combination of eigenstates are of minor
amplitude, so we do not focus on them by setting a suitable
amplitude threshold. For convenience, when we refer to an
eigenstate of a breathing mode we mean the eigenstate respon-
sible for this mode while the reference state |Eref〉 is usually
clear within the context, unless we state otherwise. In case of
“degenerate” energy gaps, i.e., equal energy gaps stemming
from different eigenstate pairs, we do not differentiate which
pairs actually contribute.

Finally, we would like to emphasize some fine sub-
tleties between the species-asymmetric trap quench protocol
employed in this work and the center-of-mass (c.m.) degree
of freedom. First, for η 	= 1 the c.m. coordinate cannot be
decoupled by any linear transformation. This is an impor-
tant difference to species-symmetric traps at η = 1 where
the c.m. coordinate provides an exact quantum number of
the “free” c.m. harmonic oscillator. This becomes evident
after employing a linear transformation to a set of Jacobi
coordinates adapted to the Bose polaron problem, namely, rel-
ative coordinates of the majority species r j = 1

j

∑ j
i xi − x j+1

for j ∈ {1, . . . , NA − 1}, the global center of mass Rc.m. =
1

(NA+1) (
∑NA

i xi + y), and the relative coordinate characterizing
the distance between the impurity and center of mass of the
majority RAB = ( 1

NA

∑NA
i xi ) − y. Using this representation,

the Rc.m. degree of freedom decouples from the relative coor-
dinates r j and RAB such that H = Hc.m. + Hrel , where Hc.m. is
a quantum harmonic oscillator of mass NA + 1 and frequency
ω = 1, while Hrel is symmetric under the map r j �→ −r j and
RAB �→ −RAB. In this alternative relative-frame representation
the Hamiltonian features a center-of-mass reflection symme-
try, corresponding to a reflection operation Rc.m. �→ −Rc.m.. It
implies that eigenstates can be chosen to have a definite c.m.
parity, i.e., to be eigenstates of this operation with eigenvalues
±1. We note that it is not equivalent to a global reflection
symmetry since the latter applies additionally r j �→ −r j and
RAB �→ −RAB. In particular, an eigenstate may feature an even
global parity, but be of odd c.m. parity and odd relative parity.

Second, we discuss several cases with the postquench
Hamiltonian at η = 1, i.e., the corresponding eigenstates |ψn〉
have a definite c.m. harmonic oscillator quantum number. The
initial state, on the other hand, is the ground state of the pre-
quench Hamiltonian at η0 = 1.05, i.e., it does not have such
symmetry. Within the linear response regime, it can be shown
that the occupation cn of the eigenstate |ψn〉 is proportional
to transition element 〈ψn|y2|ψ0〉 induced by the impurity trap
quench operator. In particular, as y2 is composed of a coupling
term ∝Rc.m.RAB, it is allowed for the initial state to be in a
superposition of postquench eigenstates with different c.m.
parity.

III. COMPUTATIONAL APPROACH AND ANALYSIS

In this work we use the multilayer multiconfiguration time-
dependent Hartree method for mixtures to initialize a system
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in its ground state by means of relaxation, i.e., propagation
in imaginary time, for the state evolution following a trap
quench of the impurity and to evaluate the expectation values
of breathing observables for each species as a function of
time. We outline the major idea of the method in Sec. III A
along with the wave-function ansatz for the system at hand.
We then apply a compressed sensing algorithm to retain the
frequencies from breathing observables. In view of the fact
that CS relies on the sparsity condition in the Fourier space, it
is not used as a standard tool for frequency extraction from a
time signal. In Sec. III B we discuss advantages of this method
in the current application as compared to a straightforward
Fourier transformation. In order to be self-contained, we also
provide the implementation details.

A. ML-MCTDHX

To prepare the initial state |�(t0)〉 and to perform the
subsequent time evolution |�(t )〉 = e−iHt |�(t0)〉 with the
time-independent Hamiltonian H from Eq. (1) we employ the
multilayer multiconfiguration time-dependent Hartree method
for mixtures of indistinguishable particles, for short, ML-X
[45,101,102]. The core idea behind ML-X is to expand the
many-body wave function in a properly symmetrized product
state basis, the so-called Fock states, such that the underlying
single-particle functions (SPFs) are time dependent. These
are variationally optimized during the time evolution to pro-
vide a more “compact” description compared to Fock states
composed of time-independent SPFs. Compact means that in
general much less SPFs are required reducing thus the Fock
space dimension while retaining a similar degree of accuracy.

As the system evolves, the many-body state travels through
different subspaces of the complete Hilbert space. If the Fock
basis is fixed, in general a large set of SPFs is required to
cover all the relevant subspaces. Many configurations become
“actively” populated during the time evolution, though not
necessarily all of them at the same time with a fraction stay-
ing or becoming inactive. Even when all of Fock states are
populated, we may rotate the basis by choosing a different
set of SPFs until, eventually, we end up with a more compact
representation. Given a truncated Fock space, ML-X rotates
the basis vectors such as to find the best possible representa-
tion of the exact many-body state at each instant of time. In
other words, it looks for the current “active” subspace. Once
the truncated variationally evolving Fock space becomes large
enough to contain the (major part of) “active” subspace, the
representation of |�(t )〉 given by ML-X is considered optimal.

The underlying wave-function ansatz for the Bose polaron
problem belonging to Eq. (1) is expanded in two layers (mul-
tilayer):

|�(t )〉 =
S∑

i=1

√
λi(t )

∣∣�A
i (t )

〉 ⊗ ∣∣�B
i (t )

〉
, (2)

∣∣�σ
i (t )

〉 =
∑
nσ |Nσ

Ci,nσ (t ) |nσ (t )〉 . (3)

In the first step [see Eq. (2)], the majority and impurity de-
grees of freedom xi and y, respectively, are separated and
assigned to S ∈ N time-dependent species wave functions

|�σ
i (t )〉. The sum of product form is very convenient as it

makes evident the entanglement between the two compo-
nents. In particular, we use the von Neumann entropy given
by SvN = −∑

i λi ln(λi ) to quantify the degree of entan-
glement. The time-dependent weights λi(t ) are normalized∑S

i λi(t ) = 1 and sorted in descending order. A composite
system with λ1(t ) ≈ 1 is considered disentangled. Assuming
S = 1 in the expansion is called a species mean-field (SMF)
approximation. In the second step [see Eq. (3)], every species
wave function belonging to component σ is expanded in
the Fock-state basis |nσ (t )〉 with time-dependent coefficients
Ci,nσ (t ). The time dependence of number states is meant im-
plicitly through the time dependence of sσ ∈ N underlying
SPFs ϕσ

j (t ) which are represented using a harmonic discrete
variable representation (DVR) [103,104]. The DVR is an
orthonormal set of eigenfunctions of the position operator,
represented by a finite analytical orthonormal basis, called
DVR basis. The DVR functions act like a delta function within
the finite space and provide analytical expressions for matrix
representation of kinetic and position operators making their
evaluation very efficient. The notation nσ |Nσ denotes particle-
number conservation, i.e.,

∑sσ

i nσ
i = Nσ . Finally, by applying

the Dirac-Frenkel variational principle [105] the equations of
motion for λi, Ci,nσ , and ϕσ

j are obtained. The convergence
of ML-X is controlled via S, sσ , and the number of DVR
grid points. We use S = sσ = 8 for NA = 5 and S = sσ = 6
for NA = 10. The DVR grid spans an interval [−6, 6] and we
choose 151 DVR grid points.

B. Compressed sensing analysis

In this work, we aim to extract frequencies �n,m = En −
Em of system’s excitations where En denotes the eigenenergy
of the nth eigenvector |ψn〉 of H . Any physical observ-
able Ô carries information about excited eigenstates 〈Ô〉t =∑

n,m c∗
mcn 〈ψm| Ô |ψn〉 e−i�n,mt , as long as the transition ma-

trix elements 〈ψm| Ô |ψn〉 are nonzero and the corresponding
eigenstates are initially populated cncm 	= 0 where cn =
〈ψn|�(t0)〉. We perform a sampling of breathing observables
with a uniform rate 	t over an interval [0, T ] containing
T/	t + 1 = Nt points. It gives us a finite time signal f ∈ RNt

with components f j of discrete variable t j ∈ R, i.e., f j =
f (t j ) = f (	t j) with integer index j ∈ [0, Nt − 1] ⊂ N0.

A straightforward way to retain the frequencies contained
in f is to perform a discrete Fourier transformation (DFT),
expressed as a linear map Af = g with a square matrix A ∈
CNt ×Nt and signal’s representation in the frequency domain
g ∈ CNt . The latter is characterized by frequency spacing
	ω and cutoff frequency ωcut, i.e., it has components g j =
g(ω j ) = g(	ω j) of discrete variable ω j ∈ R and for odd
(even) Nω = Nt number of points spans an open (closed) in-
terval with end points −ωcut/2 and ωcut/2.

The sampling parameters of time and frequency domain
are interrelated. Thus, the sampling time T determines the
frequency spacing 	ω = 2π/T , while the sampling rate 	t
determines the Nyquist frequency ωcut = π/	t . In princi-
ple, frequencies can be retained with arbitrary resolution, if
sampled long enough, while highly oscillatory components
require a finer sampling rate. In practice, there are technical
limitations such as generation, storage, and processing of
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data. Given a complex system such as ours, data generation
becomes a time-consuming factor, making a good resolution
in frequency domain out of reach.

In order to overcome this obstacle, some prior informa-
tion about signal’s properties might become useful. Since the
system is perturbed weakly, we expect only the low-energy
excitations to be of relevance for the underlying dynamics. In
particular, we expect g to be sparse with major components
located in the low-frequency region.

With this prior knowledge, compressed sensing (CS) al-
lows to retain the frequencies with a very high resolution
while keeping the simulation time with ML-X reasonably
small. To this end, we formulate our problem as finding the
vector g satisfying the inverse DFT condition, i.e., f = A†g.
However, A† ∈ CNt ×Nw is now a rectangular matrix with
Nw � Nt and g ∈ CNω resulting in an underdetermined sys-
tem of equations. Here, A† is a submatrix of the inverse square
DFT matrix A† ∈ CNω×Nω , with the last Nω − Nt rows being
removed. Importantly, the number of columns Nω and thus
the frequency spacing 	ω can be chosen independently of
the simulation time T . Intuitively, this implies that g has been
generated by a signal extended over a larger region T ′ > T
than the current one f , though the information contained be-
yond T is considered redundant given the priors underlying
the evolution.

In order to find a sparse solution to a linear ill-posed inverse
problem, we formulate it as �1-norm penalized least-squares
minimization task known as basis pursuit denoising (BPDN)
[106]:

min
g

1
2‖f − A†g‖2

2 + λ‖g‖1, (4)

where ‖x‖p = (
∑

i |xi|p)1/p while the penalty term λ � 0
controls the tradeoff between the sparsity of the solution
and the constraint violation in the presence of noisy signal
f . We use the least-angle regression (LARS) [107] mini-
mization algorithm to solve Eq. (4) and perform a mean
normalization of the signal f → f̃ = (f − f )/‖f‖1 before-
hand. The employed implementation requires real inputs in
Eq. (4). Real f implies Hermitian g and we use this sym-
metry to reformulate g as a real vector: g → g̃ ∈ R2Nω =
( Re(g), Im(g)). Correspondingly, the inverse Fourier ma-
trix A† → M ∈ RNt ×2Nω = (C, D) is now composed of two
real submatrices C ∈ RNt ×Nω with components ci, j = cos(εi j)
and D ∈ RNt ×Nω with components di, j = sin(εi j) where ε =
	t	ω. The ML-X time-domain parameters are chosen as
T = 40 and 	t = 0.05, whereas the CS frequency-domain
parameters are ωcut = 20 and 	ω = 0.01.1 The only noise our
signal has is due to floating point numbers and we decide upon
the penalty parameter λ = 10−6 which displays great perfor-
mance in terms of accuracy and computation time, which has
been tested on a set of randomly generated signals composed
of ≈10–20 frequency components.

As input time signals f we use the expectation values of
breathing observables

∑
i x̂2

i for the majority species and ŷ2

for the impurity evaluated with respect to the dynamical state

1We remark that similar resolution with DFT can be obtained with
T ≈ 600.

|�(t )〉 obtained by ML-X. We apply the CS algorithm to ob-
tain the corresponding vector g̃. Then, we map g̃ back to g and
convert complex values into amplitudes, i.e., g j → |Re(g j ) +
Im(g j )|. The final vector we call a Fourier power spectrum and
label it as X 2(ω) for the majority component and Y 2(ω) for the
impurity. Finally, for a fixed set of physical parameter values
we construct an averaged power spectrum � = (X 2 + Y 2)/2.
An example is shown in Fig. 2. Each frequency is classified
as being of a majority type (red), an impurity type (blue), or
of a mixed type depending on the relative weights of X 2 and
Y 2 in �. These are encoded in subsequent figures (Figs. 7–
10 and 13) as a pie chart of two colors for each breathing
frequency. Additionally, we use the transparency to indicate
the magnitude of participating breathing modes relative to
the most relevant mode of amplitude max(�) = �max such
that faded colors imply less relevant modes. Frequencies with
a contribution below �max/10 are discarded. This amounts
to neglecting (i) low-amplitude oscillations among any two
eigenstates not involving the reference eigenstate with the
largest population, and (ii) numerically introduced “phantom”
peaks which are also of minor amplitude. While the amplitude
filtering allows us to focus only on major modes participating
in the breathing dynamics, it introduces discontinuities in the
subsequent figures (Figs. 7–10 and 13). Namely, it causes
some modes, usually of a faint color, to “randomly” appear
and disappear with increasing gAB. The reason is a fluctuation
in the population of eigenstates responsible for these modes
resulting in mode amplitude fluctuation around the chosen
threshold value.

A last remark is in order. Occasionally, the matrix M be-
comes ill conditioned. As a result, the algorithm produces a
nonunique solution. Whenever this happens, we obtain either
wrong frequencies or correct frequencies but with altered
amplitudes. Fortunately, as we monitor the frequency modes
continuously as a function of gAB we are able to differentiate
between the two cases. In the first case, we manually remove
all frequencies at given gAB, while in the second case we may
encounter isolated absent data points.

IV. RESULTS

First, in Sec. IV A we summarize results concerning the
breathing dynamics of a single particle, a single-component
condensate, two distinguishable particles, and a particle-
balanced few-body Bose-Bose mixture. This will provide us
with useful insights for the interpretation of breathing modes
unraveled in the Bose polaron setup being the subject of
Sec. IV B. In Sec. IV C we investigate the impact of the trap
ratio η on the breathing spectrum accounting for two cases: a
“broad” (η < 1) and a “narrow” (η > 1) impurity. Finally, in
Sec. IV D we study the breathing response of the first excited
state having odd global parity and contrast it to the response
of the ground state which is of even global parity.

In the following, when all interactions are zero we employ
a notation |n〉 = |n1, n2, . . .〉 to denote ni particles occupying
the ith orbital of a single-particle quantum harmonic oscil-
lator. It is not to be confused with permanents introduced
in Sec. III A where the orbitals are variationally optimal at
each time instant. We also drop the redundant zeros in the
vector tail once all the particles have been accounted for, i.e.,
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FIG. 2. Fourier power spectrum X 2(ω) (a) and Y 2(ω) (b) obtained by applying a compressed sensing algorithm to the expectation
values of the breathing observables 〈∑i x̂2

i 〉t and 〈ŷ2〉t (insets) evaluated with respect to a dynamical state |�(t )〉 obtained by the multilayer
multiconfiguration time-dependent Hartree method for mixtures. In the averaged power spectrum �(ω) (c) the dashed line indicates a threshold
magnitude and only frequencies above it are accounted for in Sec. IV (see text). The physical parameters are η = 1, NA = 5, NB = 1, gAB = 2.0,
gA = 0 (see Sec. II) and the compressing sensing parameters are T = 40, 	t = 0.1, ωcut = 20, and 	ω = 0.01 (see Sec. III B). All quantities
are given in harmonic units.

∑
i ni = N . The notation |nA〉 ⊗ |nB〉 denotes a product state

for the two components. Note that for unequal traps (η 	= 1)
the orbitals for each species are different.

For Figs. 7–10 and 13 we did a comparison to results ob-
tained from the ML-X method of lower dimension S = sσ = 6
(S = sσ = 4), for NA = 5 (NA = 10) particles. Instead of dis-
playing the corresponding plots of less converged simulations
we put together the most relevant findings for the reader to
keep in mind while reading Sec. IV. First, for the values of
corresponding frequencies, we evidenced small quantitative
discrepancies below ±0.02 (in harmonic units), being larger
for stronger couplings. Second, we observed that the trans-
parency of the modes (mode amplitude) as well as the ratio
of pie slices (species correspondence) for each point maintain
their overall qualitative behavior.

A. Few-body Bose-Bose mixture

The breathing mode frequency of a single particle confined
in a parabolic trap of frequency ω is known to be � = 2ω,
corresponding to an excitation by two energy quanta |0, 0, 1〉
with respect to the harmonic oscillator basis. An ensem-
ble of N noninteracting (g = 0) bosonic particles introduces
an additional eigenstate of the same excitation energy 2ω,
namely, a two-particle excitation |N − 2, 2〉 being degenerate
with |N − 1, 0, 1〉. For interacting particles, the degeneracy is
lifted. The frequency of one mode remains constant for any g
and relates to the c.m. breathing motion. The frequency of the
other mode is highly sensitive to a variation of g and charac-
terizes the relative motion of particles [77,108]. A mean-field
ansatz for the breathing dynamics, being a single-particle pic-
ture, is able to recover only the interaction-sensitive breathing
frequency, though with quantitative deviations as compared to
an exact solution, especially at sizable interactions.

1. 1 + 1 mixture

The Hamiltonian (1) can be solved analytically for NA = 1
and NB = 1 at η = 1. To this end, we perform a coordinate
transformation to the relative frame composed of the center
of mass R = (x + y)/2 and relative r = x − y coordinates. In

this frame, the two degrees of freedom decouple H = HR +
Hr .

The first term HR is a quantum harmonic oscillator of mass
mR = 2:

HR = − ∂2

4∂R2
+ R2. (5)

The solutions �k (R; mR) are the well-known Hermite func-
tions

�k (z; m) = 1√
2nn!

(m

π

)1/4
exp

(
−mz2

2

)
Hn(

√
mz) (6)

with m the particle mass and Hn the physicists’ Hermite poly-
nomials. The corresponding eigenenergies are εk = k + 1

2 .
The second term Hr is a quantum harmonic oscillator of

mass mr = 1
2 with a delta constraint:

Hr = − ∂2

∂r2
+ 1

4
r2 + gδ(r), (7)

where we substituted gAB → g to simplify the notation. The
solutions can be classified by parity:

φl (r) =
{

Dμ(g,l/2)(r), l even
�l (r; mr ), l odd.

(8)

The even parity states are the symmetrized parabolic cylinder
functions

Dμ(z) =
√

2μ exp

(
− z2

4

)
U

(
−1

2
μ,

1

2
,

1

2
z2

)
(9)

with U (a, b, z) denoting the Tricomi’s hypergeometric func-
tion and μ(g, l/2),2 being a real-valued quantum number
obtained by solving a transcendental equation

g = −2
3
2

�
( 1−μ

2

)
�

( − μ

2

) , (10)

which for a fixed g gives a ladder of solutions and l/2 refers to
the index number. The corresponding eigenenergies are εl =
μ(g, l/2) + 1

2 . The odd parity states vanish at r = 0 and thus

2l < μ(g, l/2) < l + 1 for 0 < g < ∞.
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MF instability

FIG. 3. Breathing mode frequencies (opaque lines) �k,l = Ek,l −
E0,0 [see Eq. (11)] of two distinguishable particles NA = 1 and
NB = 1 as a function of the coupling gAB ≡ g at equal trapping
frequency ratio η = 1. Population amplitudes (transparent lines) ck,l

[see Eq. (13)] of eigenstates |ψk,l〉 upon quenching the ground
state |E0〉η0

from η0 = 1.05 to η = 1. Crosses stand for frequencies
extracted from a laboratory frame mean-field ansatz. Inset: repre-
sentative example of dynamical symmetry breaking in the one-body
densities ρ1(x, t ) (left) and ρ1(y, t ) (right) at 2.5 < g < 6.5 occurring
for a mean-field ansatz. All quantities are given in harmonic units.

do not experience the delta barrier. They are the odd parity
Hermite functions �l (r; mr ) of mass mr and eigenenergy εl =
l + 1

2 .
The two-body eigenstate becomes a product state

ψk,l (R, r) = �k (R; mR)φl (r) with total energy:

Ek,l =
{

k + μ(g, l/2) + 1, l even
k + l + 1, l odd.

(11)

Having analytical expressions for the eigenstates, we proceed
with the breathing dynamics induced by releasing the trap
of the second particle slightly from η0 = 1.05 to η = 1. The
time evolution of the prequench ground state |E0〉η0

can be
expressed in terms of postquench eigenstates |ψk,l〉:

|E0〉η0
=

∑
k,l

ck,l e
−iEk,l t |ψk,l〉 . (12)

To find the occupancy of eigenstates ck,l = 〈ψk,l |E0〉η0
we

perform first-order perturbation theory for the ground state:

ck,l = 	η
〈ψk,l |y2|ψ0,0〉

�k,l
, (13)

with 	η = η0 − η and �k,l = Ek,l − E0,0. The coupling op-
erator y2 = R2 − Rr + r2/4 can populate states |ψ2,0〉 via R2,
|ψ0,2〉 via r2, and |ψ1,1〉 via Rr. All these states are of even
global parity, |ψ2,0〉 and |ψ0,2〉 are of even c.m. parity, and
|ψ1,1〉 is of odd c.m. parity. They have the same energy gap
�k,l = 2 with respect to the ground state at g = 0. We call
them the first-order breathing manifold.3

3The nth-order breathing manifold has an energy gap 2n with
respect to the ground state at g = 0.

In Fig. 3 we display the energy gaps (opaque curves) as
a function of g (cf. also Fig. 8 in [76]). We concentrate on
the three eigenstates from the first breathing manifold. At
g = 0 they are degenerate with excitation energy � = 2. In
the laboratory frame, these are a single-particle excitation by
two energy quanta in either of the components, i.e., |0, 0, 1〉 ⊗
|1〉 and |1〉 ⊗ |0, 0, 1〉, as well as a two-particle excitation
|0, 1〉 ⊗ |0, 1〉. The latter can be thought of as a “correlated”
sloshing excitation: 〈X 〉 = 〈Y 〉 = 0 and 〈XY 〉 	= 0. Below we
will reveal what kind of motion the particles actually undergo.

When the interaction strength g becomes nonzero, we
employ the relative frame. The degenerate manifold splits
at finite g. The frequency of the c.m. mode |ψ2,0〉 is inde-
pendent of interactions �2,0 = 2 (black solid opaque line).
The relative motion mode |ψ0,2〉 features an interaction-
sensitive frequency �0,2 = [μ(g, 1) − μ(g, 0)] (red dashed
opaque line), which displays a single minimum at positive g, is
monotonically decreasing function of g left of this minimum,
and saturates as g → ∞. Curves with such behavior will be
abbreviated as single turning point (STP) curves. Actually,
all mode frequencies will saturate at large positive g because
of contact interaction: the eigenenergies are monotonically
increasing functions of g,4 and are bounded from above due to
hard-core repulsion.5 The hybrid “sloshing” mode |ψ1,1〉 has
a frequency �1,1 = [2 − μ(g, 0)] (blue dashed-dotted opaque
line) which is a monotonically decreasing function of g. It
saturates to a frequency � = 1 at very large positive couplings
matching the interaction-independent sloshing (dipole) mode
frequency of a single-component condensate in a harmonic
trap [52].

Thus, distinguishability allows for an additional breathing
mode. A laboratory-frame mean-field ansatz (crosses) pre-
dicts two interaction-sensitive breathing frequencies though
neither of the exact modes is matched quantitatively for all
g. Importantly, the monotonically decreasing frequency can
be matched only at very weak interactions, implying the rele-
vance of entanglement in multicomponent mixtures. There is
even a region of interactions 2.5 < g < 6.5, where dynamical
symmetry breaking takes place, i.e., the parity symmetry be-
comes violated after some propagation time (see the inset).
It starts right after the low-frequency mean-field mode has
reached the value � = 1 around g ≈ 2.5, being the limiting
value of the exact mode |ψ1,1〉 at g = ∞.

What kind of motion does each mode induce? In the
relative frame, the one-body densities ρ1(R, t ) and ρ1(r, t )
undergo the following evolution:

ρ1(R, t ) ≈ c2
0,0ρ

(0,0)
1 (R) + 2

∑
k,l c0,0ck,lρ

(k,l )
1 (R) cos(�k,l t ),

ρ1(r, t ) ≈ c2
0,0ρ

(0,0)
1 (r) + 2

∑
k,l c0,0ck,lρ

(k,l )
1 (r) cos(�k,l t )

with the time-independent background densities ρ
(0,0)
1 (R) and

ρ
(0,0)
1 (r), modulation densities ρ

(k,l )
1 (R) = ∫

dr ρ
(k,l )
2 (R, r)

and ρ
(k,l )
1 (r) = ∫

dR ρ
(k,l )
2 (R, r), where ρ

(k,l )
2 (R, r) =

4∂Ej/∂gAB = ∫
ρAB

2 (z, z) dz � 0 with ρAB
2 (z) being the diagonal of

the reduced intercomponent two-particle density obtained from the
many-body eigenstate |Ej (gAB)〉.

5ρAB
2 (z, z) → 0 as gAB → ∞.
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ψ0,0(R, r)ψk,l (R, r). We neglected terms ci, jck,l related to
oscillations among the excited states. Inserting the occupied
eigenstates we mentioned previously, we get

ρ1(R, t ) = c2
0,0�

2
0(R) + 2c0,0c2,0�0(R)�2(R) cos(2t ),

ρ1(r, t ) = c2
0,0φ

2
0 (r) + 2c0,0c0,2φ0(r)φ2(r) cos([μ(g, 1)

− μ(g, 0)]t ).

Thus, ρ1(R, t ) performs a constant frequency (�2,0 =
2) breathing oscillation, while ρ1(r, t ) undergoes an
interaction-dependent single-frequency (�0,2 = [μ(g, 1) −
μ(g, 0)]) modulation.

The state |ψ1,1〉 and the related frequency (�1,1 = [2 −
μ(g, 0)]) are not represented in the reduced “one-body” quan-
tities of the relative frame and can be only revealed on the
“two-body” level. In particular, R and r do not perform
a sloshing motion, i.e., 〈R〉 = 〈r〉 = 0 which implies 〈x〉 =
〈y〉 = 0. Instead, 〈Rr〉 = A cos ([2 − μ(g, 0)]t ) with ampli-
tude A = 2c0,0c1,1

∫∫
dR dr Rrρ (1,1)

2 (R, r).
What is the imprint of the individual oscillatory term

ρ
(k,l )
2 (R, r) cos (�k,l t ) of the relative frame density matrix

ρ2(R, r, t ) describing the two-particle evolution on the re-
duced one-particle density ρ1(x, t ) of the laboratory frame?
To this end, we transform ρ

(k,l )
2 (R, r) to the laboratory

frame and integrate over the coordinate y to get ρ
(k,l )
1 (x).

The corresponding modulations are shown in Fig. 4. Fig-
ure 4(a) demonstrates the time-independent background
density ρ

(0,0)
1 (x). At negative g (dotted) it is a narrow Gaus-

sian, which broadens with increasing g (solid) until it finally
splits into a two-hump configuration (dashed) indicating that
phase separation has taken place. Figure 4(b) is a density
modulation (at t = 0) stemming from the c.m. breathing
ρ

(2,0)
2 (R, r) cos (�2,0t ). The exact shape is very sensitive to

g variation and in particular to the two-hump structure of
the background density at g = 8 where it develops additional
nodes. The dotted and solid curves are typical shapes respon-
sible for the breathing motion of a Gaussian background.
The dashed curve (g = 8) induces breathing for each indi-
vidual hump of the background density. Figures 4(c) and
4(d) are density modulations (at t = 0) stemming from rel-
ative motion breathing ρ

(0,2)
2 (R, r) cos ([μ(g, 1) − μ(g, 0)]t )

and hybrid sloshing ρ
(1,1)
2 (R, r) cos ([2 − μ(g, 0)]t ). For a

Gaussian background they produce breathing, while for a two-
hump profile we expect a simultaneous outwards and inwards
sloshing of the two humps. Both the magnitude and functional
behavior of the modulations are robust to g variation. The sec-
ond particle ρ1(y, t ) does exactly the same, except ρ

(1,1)
1 (y, t )

is inverted, i.e., it has a phase shift of π .
To summarize, two distinguishable particles feature an ad-

ditional breathing mode in contrast to two indistinguishable
particles. The responsible eigenstate has even global parity,
though it is of odd center-of-mass parity and odd relative
parity. It relates to a hybrid sloshing: 〈Rr〉 	= 0 while 〈R〉 =
〈r〉 = 0. It induces a breathing oscillation of the one-body
densities though they have a relative phase shift of π . The re-
lated mode frequency is a monotonically decreasing function
of the interparticle interaction g and a mean-field ansatz fails
to capture its functional behavior except for a linear trend at
very weak interactions.
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FIG. 4. Decomposition of the one-body density ρ1(x): (a) time-
independent background and time-dependent single-frequency mod-
ulations ρ

(k,l )
1 (x) induced by (b) center-of-mass breathing ρ

(2,0)
2 ,

(c) interparticle distance breathing ρ
(0,2)
2 , and (d) hybrid sloshing

ρ
(1,1)
2 at different interaction strength g. All quantities are given in

harmonic units.

2. 2 + 2 mixture

A noninteracting two-component mixture features in total
five eigenstates which are two energy quanta above the ground
state: two single-particle excitation states |NA − 1, 0, 1〉 ⊗
|NB〉 and |NA〉 ⊗ |NB − 1, 0, 1〉, two states having two indis-
tinguishable particles excited |NA − 2, 2〉 ⊗ |NB〉 and |NA〉 ⊗
|NB − 2, 2〉, and, finally, a state where one particle in each
component is excited |NA − 1, 1〉 ⊗ |NB − 1, 1〉. The inter-
actions will (partially) break this manifold of degenerate
eigenstates. Each of these states, once populated in the
initialization step, will induce a breathing oscillation of a
characteristic frequency. Together they represent a first-order
breathing manifold.6 To get an insight how the respective
frequencies behave depending on the system’s interactions,
we briefly summarize and complement the results obtained in
[88]. For a few-body fermionic mixture see also [76].

6A breathing mode is said to be of nth order if its frequency can be
traced to a value 2ωσ n when adiabatically tuning all the interactions
to zero.
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FIG. 5. Energy gaps � j = Ej − E0 (with respect to the ground
state |E0〉) of a few-body bosonic mixture NA = 2 and NB = 2 as a
function of the intercomponent coupling gAB at equal trapping fre-
quency ratio η = 1, intracomponent interaction strength gB = 0 for
the second component and (a) gA = −0.5, (b) gA = 0, (c) gA = 0.5
for the first component. Whether the corresponding eigenstates are
actually excited depends on the quench protocol. Different colors
(line styles) refer to the center-of-mass (c.m.) quantum number in
the eigenstate |Ej〉. The c.m. is a decoupled degree of freedom in this
harmonic confinement. The insets represent a zoom-in on regions
with avoided crossings which are indicated by circles and caused by
gA 	= gB asymmetry. Curves of different colors (line styles) may only
cross. All quantities are given in harmonic units.

In [88], each component consists of two particles trapped
within the same parabolic confinement η = 1. Both compo-
nents experience a sudden but weak trap quench of the same
magnitude and the system’s response is studied for differ-
ent intracomponent and intercomponent interaction strengths.
Importantly, the c.m. motion decouples while the quench
operator prevents transitions among eigenstates possessing
different c.m. parity. By performing an exact diagonalization
method based on a correlated basis (see [88] for more details)7

up to four breathing mode frequencies have been identified

7It can be applied to bosonic mixtures of NA � 2 and NB � 2
particles subject to contact interactions in a 1D harmonic trap.

and analyzed. These are reproduced in Fig. 5 as a function
of the intercomponent coupling gAB for three different intra-
component interaction values gA [Figs. 5(a)–5(c)], assuming
gB = 0. The curve colors (line styles) encode the c.m. quan-
tum number of the responsible eigenstates |Ej〉, while the
reference state |Eref〉 is the ground state |E0〉 of even c.m.
parity.

The blue dotted curve is a double excitation of the c.m.
harmonic oscillator, the �c.m. mode. Thus, it is independent
of interactions gA, gB, and gAB. The three black solid curves
are interaction-sensitive relative motion modes. They have
been labeled �+, �− (�A, �B) for species-(anti)symmetric
parameter choice, i.e., gA = gB (gA 	= gB), and �AB. All of
them are STP curves. The �AB mode is quite shallow, weakly
affected by intracomponent interactions and degenerates with
�c.m. at strong coupling gAB. The two lower ones are very
sensitive to intracomponent interactions and, depending on
the presence of the species-exchange symmetry,8 they either
intersect or experience a bending in the vicinity of avoided
crossings [Figs. 5(a) and 5(c) at gAB ≈ 0].

Thus, for a weak species-symmetric trap quench, the
system features 2–4 of the above-mentioned breathing fre-
quencies depending on the strength of interaction parameters.
For a weak species-asymmetric trap quench, all the above-
mentioned modes are still energetically accessible plus one
extra mode of a comparable frequency. Indeed, based on our
discussion on the 1+1 mixture, we anticipate an eigenstate
with odd c.m. parity and even global parity to eventually con-
tribute to the dynamics. The corresponding breathing mode
frequency is represented by the red dashed curve in Fig. 5. We
observe again a monotonous decrease of the mode frequency
with increasing coupling gAB until it energetically separates
from one of the relative modes at gAB ≈ 1 and, finally, sat-
urates to a value of 1.0 at gAB � 4. Its frequency is barely
affected by gσ . Interestingly, the mode is again invisible to
numerical approaches which ignore the entanglement as we
evidence by comparing a numerically exact solution to a SMF
ansatz.

B. Few-body Bose polaron

Now we turn our attention to a single impurity NB =
1 in a few-body majority environment having NA = 5 or
10 particles. In contrast to [88], here, we initiate the breath-
ing dynamics by relaxing only the B component, while the
A component is affected indirectly via the intercomponent
coupling gAB. Representative breathing motions in each com-
ponent can be seen in Fig. 6. At η = 1 the c.m. motion still
decouples from the relative motions. In particular, the quench
operator may mediate between eigenstates of different c.m.
parity inducing eventually a special breathing mode caused by
population of an eigenstate with odd c.m. parity. Furthermore,
there is only one particle in the B component. Thus, a double
excitation state |NA〉 ⊗ |NB − 2, 2〉 (see Sec. IV A) does not
exist and we expect that one of the relative modes (black
solid curves in Fig. 5), whose frequency is notably affected
by interactions, will not be present.

8Corresponding to a map xi �→ yi at gA = gB.
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FIG. 6. Breathing oscillations of the one-body densities of the majority component ρA
1 (x) (first row) and the impurity ρB

1 (y) (second row)
at a fixed majority-component interaction gA = 0.5 for NA = 5 and NB = 1 particles initiated by preparation of the ground state of even global
parity followed by an abrupt change of the trap ratio from η = 1.05 to 1. Columns 1–3 correspond to different intercomponent couplings:
(a) gAB = 0.5, (b) gAB = 1.0, and (c) gAB = 1.5. Note that the initial state displays the onset of phase separation in (b) and a pronounced
core-shell phase in (c). All quantities are given in harmonic units.

In Figs. 7 and 8 we show the excitation spectrum of the
breathing dynamics initialized by quenching the equilibrated
system at trap ratio η = 1.05 to 1, i.e., partially releasing
the trap of the impurity. The majority component consists of
NA = 5 (Fig. 7) or NA = 10 (Fig. 8) particles subject to several
different majority component interactions gA [Figs. 7(a)–7(c)
and 8(a)–8(c)]. Only frequencies of modes whose contribu-
tion is above 10% of the maximum amplitude �max in the
averaged power spectrum are shown. Additionally, each fre-
quency data point (full circle) is represented as a pie chart
of two different colors and encodes the contribution of the
breathing observables to the averaged power spectrum (see
Sec. III B): blue color for the impurity ŷ2 and red color for the
majority component

∑
i x̂i

2. The decomposition into colors
tells us whether the respective mode is a single-species mode
or whether it is of a mixed character and to what extent.
Furthermore, the color intensity indicates the participation of
the respective mode in the breathing dynamics as compared
to the most relevant mode at fixed gAB (a more intense color
indicates a stronger contribution). Finally, the crosses repre-
sent frequencies of modes excited by the same procedure but
numerically ignoring the entanglement in the initial state and
the subsequent dynamics (SMF approximation).

Let us first focus on Fig. 7(b), the case of a noninteract-
ing majority species (gA = 0). At gAB = 0 only the impurity
is excited (blue circle) performing a breathing motion with
frequency � = 2 as expected. As one increases the coupling
strength (gAB > 0), a second mode of decreasing frequency
emerges resulting in a beating. This mode has the largest
contribution to the ongoing dynamics and is of a mixed type,
i.e., it appears both in the majority and impurity breathing
observables. For the latter reason it can correspond to the �AB

mode of even c.m. parity or to the hybrid sloshing mode of
odd c.m. parity we introduced in the previous section. The
quench operator can mediate among eigenstates of different
c.m. parity so both are allowed to be populated. Considering
limited frequency resolution and the possibility of a quaside-

generacy of the red (dashed) mode with a black (solid) mode
observed in Fig. 5, it is likely that the observed mode gets a
contribution from both eigenstates. For that reason, no partic-
ular eigenstate label can be assigned to it. The frequency of
the other mode experiences only a slight variation � ≈ 2. It is
represented to a larger extent in the majority component, has
a minor amplitude, and is reproduced by a SMF ansatz. Thus,
we assign it to the �A mode encountered in Sec. IV A (cf.
black curves in Fig. 5), though here it is less sensitive to gAB

variation, supposedly due to the particle-number imbalance.
Around gAB ≈ 0.75 the lower frequency splits into two

branches of comparable significance, resulting altogether in
three modes. One of the emerging branches possesses a
continuously decreasing frequency with increasing gAB ap-
proaching the value � = 1. It matches the description of the
hybrid sloshing mode which was emphasized in Sec. IV A
(cf. red dashed curve in Fig. 5). Interestingly, it is equally
represented in both subsystems despite the particle-number
imbalance and quench asymmetry. The other frequency
branch bends and starts recovering towards � = 2 with in-
creasing gAB while gradually becoming a pure signature of the
impurity motion only (the blue slice dominates at gAB = 2). It
matches the functional behavior of the �AB mode (STP curve)
mentioned in Sec. IV A (cf. the black solid curves in Fig. 5).

At weak negative coupling (gAB < 0) one observes also a
beating behavior, although here both frequencies are increas-
ing with decreasing gAB. The dominant frequency in the power
spectrum is more sensitive to the coupling variation, is of a
mixed type and reproducible by a SMF ansatz (�AB mode),
while the second is barely affected and primarily represented
in the majority component (�A mode). Below a certain thresh-
old (gAB < −0.4) one observes low-amplitude traces of a third
frequency.

We discover several major alternations in the excitation
spectrum when the majority component becomes interact-
ing. For weakly attractive (gA = −0.5) majority particles in
Fig. 7(a) the coupling-insensitive mode frequency is seem-
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IMPURITY

MAJORITY

FIG. 7. Frequencies � of breathing modes excited by quenching
the ground state |E0〉 of the Bose polaron for NA = 5 and NB = 1,
meaning a change in the trap ratio from η = 1.05 to 1.0, shown as
a function of the intercomponent coupling gAB for a fixed majority
component interaction (a) gA = −0.5, (b) gA = 0, and (c) gA = 0.5.
Each frequency data point (full circle) is divided into two sectors
(of different colors) representing the contribution of the breathing
observables 〈∑i x̂2

i 〉t or 〈ŷ2〉t to the averaged power spectrum � at
that frequency (see Sec. III B). The corresponding color intensity in-
dicates the relative strength with respect to the maximum amplitude
�max in the averaged power spectrum for fixed gAB and only modes
with contribution above 10% of �max are presented. Crosses stand for
frequencies of modes excited within the SMF approximation. Black
dashed line indicates the entanglement entropy SvN of the initial state.
All quantities are given in harmonic units.

ingly absent. At positive increasing gAB the bifurcation of
the continuously decaying frequency takes place already for
a very weak coupling strength (gAB ≈ 0.1). It can be related
to the fact that the phase separation also takes place at weaker
couplings. The character of the excited modes is mostly the
same as for gA = 0. At negative decreasing gAB we observe an
emerging multifrequency breathing composed of three modes.
The lower-frequency mode loses amplitude in favor of higher-
frequency modes (−0.4 < gAB < −0.1). Then it turns into a
single-frequency breathing (gAB < −0.4) affecting both com-
ponents in a similar way.

For weakly repulsive (gA = 0.5) majority particles in
Fig. 7(c) the coupling-insensitive mode frequency is still

IMPURITY

MAJORITY

FIG. 8. Same as in Fig. 7 but for NA = 10. All quantities are
given in harmonic units.

present though energetically shifted downwards to � = 1.9.
The respective mode is weakly represented in the overall
dynamics and affects mainly the majority component. The
sensitivity to gA is yet another indicator that this is the
�A mode. The point of bifurcation in the lower-frequency
branch is located at a stronger coupling gAB ≈ 1.8. Phase
separation takes place also at stronger couplings which sup-
ports our previous conjecture. At negative gAB below a
certain threshold (gAB < −0.3) a third mode is excited. In
contrast to gA = 0, this additional mode is rather mani-
fested in the impurity breathing and has a larger frequency.
In summary, the majority component interaction gA deter-
mines the coupling value at which the bifurcation takes
place as well as the offset of the coupling-insensitive fre-
quency and whether it can be addressed by the current
quench protocol.

Next, we double the number of majority component atoms
to get an idea of how it affects the excitation spectrum. In
the following, we compare the corresponding subfigures of
Figs. 7 and 8. We note that at NA = 10 the interval of the
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considered couplings is gAB ∈ [−0.5, 1.0] as the convergence
is more challenging to achieve beyond gAB > 1. At gA = 0
[Fig. 8(b)] the bifurcation point is located at a smaller value
of gAB compared to the NA = 5 case [see Fig. 7(b)]. Increasing
the particle-number imbalance accelerates the phase sepa-
ration [49]. The coupling-insensitive �A mode frequency is
barely affected by the particle-number imbalance.

At gA = −0.5 [Fig. 8(a)] and positive gAB the minimum
of the �AB frequency mode is shifted to larger frequen-
cies and smaller values of the coupling gAB. The frequency
value recovers back to � = 2 more quickly already at gAB ≈
0.75. The coupling-insensitive �A mode becomes visible at
negative gAB and even dominates the breathing dynamics,
although the amplitude decays considerably towards gAB =
0 and there are only minor traces left at positive coupling
(0.25 < gAB < 0.4). It is certainly present in the breathing
dynamics at positive gAB, but the contribution is not signif-
icant enough to overcome the set threshold. The respective
frequency is shifted to � ≈ 2.4. At gA = 0.5 [Fig. 8(c)]
the frequency of the coupling-insensitive �A mode expe-
riences a slight shift downwards. At negative gAB it gains
amplitude with decreasing gAB until it becomes a dominant
mode below gAB � −0.25. The bifurcation point at posi-
tive gAB is unfortunately not visible within the covered gAB

interval.
Lastly, we want to emphasize the importance of entangle-

ment in our Bose polaron setup. To this end, we neglect it both
in the initial state and in the subsequent dynamics (crosses
in Figs. 7 and 8). The first striking observation is that in the
SMF case, at most two frequencies can be extracted. The
mode we are missing from the exact simulations is the one
whose frequency is a monotonically decreasing function of
gAB, making appearance at finite positive gAB. We call a mode,
which is not reproducible by a SMF ansatz, an entanglement-
sensitive mode. It can be assigned to the eigenstate of odd
c.m. parity, also called hybrid “sloshing” mode. Regarding
the persistent modes, the �A mode with coupling-insensitive
frequency is overall well captured by the species mean-field
ansatz, although it tends to overestimate the frequency for
large positive values of gAB. The �AB mode, whose frequency
is STP function of gAB, in general is not well matched by SMF
ansatz either mispredicting the location [Fig. 7(c)] or the exact
value [Fig. 7(a)] of the minimum. Even if both the location
and the value of the minimum are well matched [Fig. 7(b)]
there is an increasing discrepancy for strong positive gAB. For
a larger particle number (Fig. 8), the consistency between
approximated and exact frequencies is much better, though
here also we have a mode not reproducible by a SMF ansatz
featuring the same functional behavior.

To summarize, we are able to excite up to three breathing
modes in the Bose polaron setup by quenching only the impu-
rity. First, there is a coupling-insensitive �A majority mode.
Its frequency can be manipulated by the particle-number im-
balance or the majority component interaction. Second, there
is a monotonically decreasing frequency making appearance
at finite positive gAB and converging towards � = 1.0 with
increasing gAB. It cannot be described by the species mean-
field ansatz and matches the functional behavior of the hybrid
sloshing mode encountered in the 1 + 1 and 2 + 2 mixtures.
Third, we have a large-amplitude �AB mode which is of a

IMPURITY

MAJORITY

FIG. 9. Frequencies � of breathing modes for NA = 5 and NB =
1 as a function of the intercomponent coupling gAB at fixed majority
component interaction gA = 0. The trap ratio is quenched in (a) from
η = 0.536 to 0.51 and in (b) from η = 4.2 to 4. Color coding accord-
ing to Fig. 7. Black dashed line indicates the entanglement entropy
SvN of the initial state. All quantities are given in harmonic units of
the majority component.

mixed type. The mode frequency is STP function of gAB with
a minimum being sensitive to gA and NA.

C. Impact of the trap

Let us now focus on the impact of the external trap, more
specifically we consider a situation where the length scale of
the impurity lB = √

1/η, set by the parabolic trap, is either
broader (lB = 1.4) or narrower (lB = 0.5) in the postquench
system. The quench strength is still 5% of the original trap
parameter.

We start with the case of a “broad” impurity η = 0.51.
In Figs. 9(a) and 10(a) we show the breathing spectrum for
NA = 5 and 10 majority atoms, respectively. To gain an intu-
itive picture we set gA = 0. For the decoupled case gAB = 0,
the lowest-frequency mode is caused by the eigenstate
|NA〉 ⊗ |0, 0, 1〉, corresponding to a standard breathing of the
impurity at frequency � = 1.02. It is the only mode excited.
Once coupled (gAB 	= 0), several other eigenstates may
become populated leading to additional breathing modes. The
states in question can be continuously traced back to the low-
energy eigenstates of a decoupled impurity. First, we have the
state |NA − 1, 1〉 ⊗ |0, 1〉 corresponding to a hybrid sloshing
mode at frequency � = 1.51. Then follows a quasidegenerate
manifold of three modes: two majority component modes at
the same frequency � = 2 caused by |NA − 1, 0, 1〉 ⊗ |1〉 and
|NA − 2, 2〉 ⊗ |1〉, and a second order breathing of the
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IMPURITY

MAJORITY

FIG. 10. Same as in Fig. 9 but for NA = 10. All quantities are
given in harmonic units of the majority component.

impurity at frequency � = 2.04 mediated by |NA〉 ⊗
|0, 0, 0, 0, 1〉. Any higher-frequency modes are unlikely
to be involved.

At weak coupling gAB there is only one relevant mode
excited. It originates from the state |NA〉 ⊗ |0, 0, 1〉 and is
barely detectable in the majority component breathing. The
corresponding frequency is STP function of gAB with a mini-
mum at gAB ≈ 0.5 for NA = 5 [Fig. 9(a)] and at gAB ≈ 0.25
for NA = 10 [Fig. 10(a)]. At strong positive gAB, a beating
behavior emerges. The amplitude of the additional mode in-
creases gradually with increasing gAB while the corresponding
frequency � ≈ 1.2 is only weakly affected by the intercom-
ponent coupling or the particle number. At negative moderate
gAB there is also a beating. The major amplitude mode, orig-
inally being an impurity mode (blue), evolves gradually into
the majority component mode (red). The other mode appears
just below gAB < −0.25 and affects primarily the majority
species.

The SMF fits well the lowest frequency at negative gAB

and at weak positive gAB until the minimum is reached. After-
wards, it overestimates the frequency having larger deviations
at stronger positive gAB. We witness that SMF is incapable to
identify an emerging mode at positive gAB, though at negative
gAB it does register the beating behavior. It implies that the ad-
ditional modes entering the dynamics at positive and negative
gAB are of a different character. Based on the insights gained
in the previous section, namely, the presence of a breathing
mode which is inaccessible to the SMF treatment, we conjec-
ture that the additional mode emerging at positive gAB stems
from the hybrid sloshing mode |NA − 1, 1〉 ⊗ |0, 1〉 at gAB = 0

and � = 1.51. Its contribution grows as the entanglement
becomes stronger.

Next, let us focus on the case of a “narrow” impurity η = 4.
The corresponding breathing spectrum is depicted in Fig. 9(b)
for NA = 5 and in Fig. 10(b) for NA = 10 majority atoms.
At gAB = 0 we excite only the standard breathing mode of
the impurity at frequency � = 8 caused by the eigenstate
|NA〉 ⊗ |0, 0, 1〉. Considering the amount of available even
parity eigenstates with energies up to eight quanta (40 for
NA = 5 and 45 for NA = 10), one might naively think that
many modes would be excited at finite gAB. This is not the
case as we count only up to six frequencies. They are well
separated from each other and admit a convenient classifica-
tion: impurity modes (blue) with � > 6 and majority modes
(red) with � < 4.

The impurity features a beating composed of two modes at
weak coupling. The gap between the corresponding frequen-
cies grows with increasing gAB. The one of smaller amplitude
vanishes around gAB ≈ 1.0. The contribution of the other
mode fades away quickly afterwards until it also disappears.
At strong gAB the impurity motion assimilates the majority
component breathing. Both modes are reproducible by SMF
ansatz, though SMF overestimates their contribution to the
overall dynamics at strong gAB.

Regarding the majority modes there is one with a nearly
constant frequency (� ≈ 2) entering the dynamics already at
weak coupling and making a large contribution to the ma-
jority motion across all coupling values. At weak gAB it is
accompanied by an oscillation of a smaller frequency. As the
ground state is nondegenerate at gAB = 0, this frequency cor-
responds to the gap between the two blue-colored frequencies.
It also consistently disappears beyond gAB > 1 along with the
impurity modes. The latter are actually replaced by modes
of lower frequency. One of them is of particular interest. It
appears at gAB ≈ 1 for NA = 5 and at gAB ≈ 0.5 for NA = 10
gaining weight with increasing gAB. The corresponding fre-
quency is a linearly decreasing function of gAB. It can be
extrapolated to frequency � = 5 at gAB = 0, matching the
energy gap between the ground state |NA〉 ⊗ |1〉 and the hybrid
sloshing mode eigenstate |NA − 1, 1〉 ⊗ |0, 1〉. The entangle-
ment is once again indispensable to account for the respective
breathing mode.

To summarize, quenching a broad impurity excites less
breathing modes barely affecting the majority motion.
Quenching a narrow impurity excites more modes which are
energetically well separated: high-frequency impurity-type
and low-frequency majority-type modes. In both cases we
evidence the presence of an entanglement-sensitive mode.
It becomes relevant after some coupling threshold and can
be traced back to a hybrid sloshing excitation |NA − 1, 1〉 ⊗
|0, 1〉 at zero coupling.

D. Breathing of the first excited state

The Hamiltonian (1) has global reflection symmetry. The
eigenstates are therefore separable into two classes of even
and odd global parity. The quench operator does not vio-
late that symmetry. Accordingly, an even global parity initial
state can be expanded within the subspace of even eigen-
states. The odd global parity space of the Hamiltonian has
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its own “ground state,” meaning the lowest-energy eigenstate
of that subspace. If initialized in such a state, how will each
species respond following our quench procedure? Will it be a
few-mode breathing within each component, as for the even
global parity ground state, or a more complex motion in-
volving many modes? If only a few modes participate, how
different are the respective frequencies as compared to the
even global parity ground state?

To address the above questions, we start again with the
example of a particle-balanced few-body Bose-Bose mixture
(see Sec. IV A) at η = 1. There are several major differences
regarding the odd global parity subspace. First, in the non-
interacting regime the odd global parity “ground state” is
twofold degenerate, composed of states where a single par-
ticle of either component is excited by one energy quantum:
|NA − 1, 1〉 ⊗ |NB〉 and |NA〉 ⊗ |NB − 1, 1〉 with respect to har-
monic oscillator basis. Once the degeneracy is lifted at finite
coupling, the perturbed eigenstates can be distinguished by
the c.m. quantum number. Since both states are likely to be
populated after the quench, we need to consider each of them
as a reference state when evaluating the energy gaps to the
neighboring eigenstates. The frequencies of excited modes
following a quench of the impurity trap will be contained
within the set of these energy gaps. Second, the first-order
breathing manifold for odd global parity subspace is com-
posed of three quanta excitations at zero interaction. There
are eight of them in total. Half of them are excitations within
a single component: |NA − 1, 0, 0, 1〉, |NA − 2, 1, 1〉, and the
same for B species. The other four distribute the three avail-
able quanta over both components: |NA − 1, 1〉 ⊗ |NB − 2, 2〉,
|NA − 1, 0, 1〉 ⊗ |NB − 1, 1〉, and the other way around (B ↔
A).

In Fig. 11 we show the energy gaps between a ref-
erence state of even or odd c.m. parity (first or second
column, respectively) and energetically closest eigenstates
(c.m. quantum number indicated by color) as a function of
the intercomponent coupling gAB for three different intracom-
ponent interaction regimes (rows).

Let us begin with the reference state of even c.m. parity
(first column). First, there is a single constant frequency mode
� = 2 (blue dotted) for any interaction values. Second, there
is a single frequency being a monotonically increasing func-
tion of gAB (green dashed-dotted) and saturating to � = 3 at
strong positive gAB. Third, among the three black solid curves
there is one very weakly dependent on the interactions and it
recovers to � = 2 at strong positive gAB, whereas the other
two are highly susceptible to interactions and reach values
beyond � = 3. Finally, the lower red dashed curve represents
the other reference state of odd c.m. parity. Regarding the
frequencies of the remaining three red dashed modes, one
of them behaves similar to the green dashed-dotted solid
mode, while the other two are highly sensitive to interactions.
Some of the crossings seen at gA = 0 [Fig. 11(b)] among
the black solid and red dashed curves become avoided at
finite gA [Figs. 11(a) and 11(c)] caused by broken-species
exchange symmetry. Overall, most frequencies reach values
above � = 2 and there is nothing common to the breathing
spectrum of the even c.m.-parity ground state (see Fig. 5)
except the constant frequency mode.

FIG. 11. Energy gaps � j = |Ej − Eref | with respect to lowest-
energy reference eigenstates |Eref〉 of odd global parity and even (first
column) or odd (second column) c.m. parity in a few-body bosonic
mixture NA = NB = 2. The gaps are functions of the intercomponent
coupling gAB at equal trapping frequency ratio η = 1, intracom-
ponent interaction strength gB = 0 for the second component, and
(a) gA = −0.5, (b) gA = 0, (c) gA = 0.5 for the first component.
Whether the corresponding eigenstates are actually excited depends
on the quench protocol. Different colors (line styles) refer to the
center-of-mass (c.m.) quantum number in the eigenstate |Ej〉. The
c.m. is a decoupled degree of freedom in this harmonic confinement.
The insets represent a zoom-in on regions with avoided crossings
which are indicated by circles and caused by gA 	= gB asymmetry.
Curves of different colors (line styles) may only cross. All quantities
are given in harmonic units.

Focusing now on the reference state of odd c.m. parity
(second column), we notice that all five frequencies en-
countered in Fig. 5 have here a corresponding match. The
reason is that the reference state is a simple c.m. excitation,
being a constant energy shift independent of the interaction
strength. Correspondingly, the even global parity ground state
and eigenstates responsible for the first-order breathing dis-
cussed in Sec. IV A are just spectrally shifted by a common
constant. Thus, the corresponding energy gaps remain intact.
The four black solid curves are the additional new modes.
The lowest one corresponds to the even c.m.-parity reference
state of odd global parity. There is one with a monotonically
decreasing frequency and two of them are STP functions
of gAB very sensitive to interactions akin to the red dashed
mode frequencies. In the Bose polaron setup there are two
less “three-quanta” states since the two-particle excitations of
the impurity are obviously excluded. However, there is also
one more state, namely, a three-particle excitation |NB − 3, 3〉
in the majority component. Thus, the first-order breathing
manifold is composed of seven eigenstates in total. Now, we
initialize an odd global parity ground state for the subsequent
breathing dynamics (see representative examples in Fig. 12 to
be compared with Fig. 6) and extract the frequencies of par-
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FIG. 12. Breathing oscillations of the one-body densities of the majority component ρA
1 (x) (first row) and the impurity ρB

1 (y) (second
row) at a fixed majority-component interaction gA = 0.5 for NA = 5 and NB = 1 particles initiated by preparation of the first excited state of
odd global parity followed by an abrupt change of the trap ratio from η = 1.05 to 1. Columns 1–3 correspond to different intercomponent
couplings: (a) gAB = 0.5, (b) gAB = 1.0, and (c) gAB = 1.5. All quantities are given in harmonic units.

ticipating modes shown in Fig. 13. We immediately recognize
the frequency pattern from Fig. 7. In particular, we evidence a
coupling-insensitive �A frequency at � ≈ 2, a monotonically
decaying hybrid sloshing mode converging to � = 1 and �AB

mode being an STP function of gAB. There are, however, sev-
eral differences. Importantly, both odd global parity reference
eigenstates are participating in the dynamics, as indicated by
the lowest-frequency curve. They are of opposite c.m. parity.
Based on the excitation pattern (cf. Fig. 11) the odd c.m.
reference state has a larger contribution than the one of even
c.m.. Second, at weak positive gAB the two odd global parity
reference states are dominating the dynamics. The energy gap
between them grows with increasing gAB and approaches its
limiting value � = 1. Meanwhile, there is a gradual transfer
of population to the hybrid sloshing eigenstate with a mono-
tonically decaying frequency. Finally, at gA = 0.5 and positive
intermediate gAB ≈ 1 as well as at negative gAB we identify
some minor traces of additional modes absent for the even
global parity ground state.

To summarize, the breathing response of an odd global
parity ground state as compared to the actual ground state of
even global parity displays notable differences in the density
oscillations but bears strong similarity in the Fourier spec-
trum. We found an additional low-frequency mode of a mixed
type arising from the degeneracy splitting of the odd global
parity ground state.

V. SUMMARY

The breathing dynamics of a few-body Bose polaron in a
one-dimensional species-selective parabolic confinement has
been investigated in this work by means of the multilayer mul-
ticonfiguration time-dependent Hartree method for bosons.
The dynamics has been triggered by a weak trap quench of the
impurity for different intercomponent couplings gAB ranging
from weak attractive to intermediate repulsive values. The ma-
jority motion was affected indirectly via the majority-impurity
interaction gAB. We extracted the frequencies of excited modes

from the breathing observables by using a compressed sens-
ing algorithm. From this we constructed an averaged power
spectrum and classified the modes according to their overall
contribution to the dynamics. We also determined whether
a mode is of majority or impurity type judged by the rela-
tive strength of respective observables in the averaged power
spectrum. To highlight the importance of entanglement in our
setup, we performed the same quench procedure for a species
mean-field ansatz, which assumes that a wave function can
be written as a single product state of combined majority
coordinates and the impurity coordinate.

Different regimes of system parameters have been ad-
dressed. The majority component was noninteracting (gA =
0), weakly attractive (gA = −0.5), or weakly repulsive (gA =
0.5) consisting either of NA = 5 or 10 particles and different
ratios of species trapping frequencies including equal local-
ization length (η = 1), a “broad” impurity (η = 0.51), and a
“narrow” impurity (η = 4.0) have been taken into account.
Finally, we studied the impact of global parity symmetry on
the breathing spectrum. To this end, we initialized the system
in the first excited state having odd global parity as opposed
to the ground state which is even.

For equal traps (η = 1) we detected up to three modes.
First, at a weak majority-impurity interaction there is a two-
mode beating. One mode is of a majority type. It does a
comparatively small contribution to the overall breathing dy-
namics while its frequency is insensitive to gAB variations,
albeit depending on gA and NA. It reminds us of the �A mode
found in a few-body two-component mixture [88], though
utterly flattened supposedly due to the particle-number im-
balance and the absence of the complementary �B mode.
Interestingly, it becomes suppressed for a weakly attractive
majority species at positive gAB. The frequency of the sec-
ond mode decreases monotonically as a function of gAB

until it bifurcates into two distinct frequencies. One of them
keeps decreasing and becomes equally represented in both
components. Other parameters such as majority-component
interaction strength gA or the number of majority atoms NA
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IMPURITY

MAJORITY

FIG. 13. Frequencies � of breathing modes excited by quench-
ing the odd global parity ground state |E1〉 of a Bose polaron NA = 5
and NB = 1 from a trap ratio η = 1.05 to 1.0 as a function of the
intercomponent coupling gAB for a fixed majority component inter-
action (a) gA = −0.5, (b) gA = 0, and (c) gA = 0.5. Color coding as
in Fig. 7. Black dashed line indicates the entanglement entropy SvN

of the initial state. All quantities are given in harmonic units.

barely affect this frequency. Why does the frequency behave
this way? The corresponding mode is caused by an eigenstate
of odd c.m. parity and even global parity. Its eigenenergy
is independent of interactions. As the ground-state energy is
a monotonically increasing function of gAB and saturates at
hard-core interaction, we obtain a monotonically decreasing
energy gap between the two states. Importantly, it cannot be
observed for species-symmetric trap quenches and is not a
particular feature of the Bose polaron setup but of a two-
component mixture in general. Furthermore, the entanglement
needs to be taken into account to make the mode numeri-
cally visible as we demonstrate by a comparison to a species
mean-field ansatz. The other frequency emerging out of the
bifurcation bends and saturates back to the noninteracting
frequency value with increasing gAB while dominating the
impurity motion. It reminds us of the coupling-sensitive �AB

mode found in a few-body two-component mixture [88],
though here it appears to be much more sensitive to system
parameters such as gA and NA.

By broadening the impurity trap (η = 0.51), only one
mode can be excited at weak gAB. It is of impurity type.
The corresponding coupling-sensitive frequency features a
minimum at positive gAB and saturates at large gAB. With
increasing impurity-majority interaction, a beating emerges.
At positive gAB the additional mode is sensitive to the en-
tanglement, while at negative gAB both frequencies are well
matched by the SMF ansatz. For a tightly trapped impu-
rity (η = 4) up to six frequencies can be observed, though
many more modes are in principle available. At weak gAB

we have two impurity-type modes and a single majority-type
mode. The two impurity-type modes are of high frequency but
are quickly fading away with increasing gAB. At strong gAB

the impurity oscillations start imitating the majority motion.
The lower-frequency majority-type mode has a large contri-
bution to the ongoing dynamics except at very weak gAB,
while the corresponding frequency is rather insensitive to the
intercomponent interaction. At finite positive gAB we evidence
the emergence of an entanglement-sensitive mode whose fre-
quency is a monotonically decaying function of gAB. Thus,
the entanglement-sensitive mode is sustained even when the
center-of-mass motion cannot be decoupled and, surprisingly,
the corresponding frequency maintains its overall qualitative
behavior.

Regarding the first excited state of odd global parity as an
initial state for the breathing dynamics, we found the corre-
sponding excitation spectrum to bear strong similarity to the
one of even global parity ground state. It can be understood
as follows. Some of the eigenstates lying in the odd global
parity subspace have energies corresponding to the ones of
even global parity subspace except for a constant energy shift,
which is an integer number (in harmonic units) corresponding
to a c.m. excitation. Nevertheless, there are also differences.
For a weakly repulsive majority species and at intermediate
gAB we observe several additional modes absent in the ground-
state spectrum. This is not surprising since the lowest-energy
breathing manifold accessible to the first excited state is larger
as compared to the ground state. Importantly, there is a slow-
frequency mode equally represented in both components. It is
caused by the degeneracy of the first excited state. For that rea-
son, the frequency starts at � = 0 when gAB = 0. It saturates
towards � = 1 with increasing gAB because the eigenenergy
of the first involved state is a monotonically increasing and
saturating function of gAB while the second is independent of
gAB.

VI. CONCLUSIONS

Overall, the few-body Bose-polaron breathing spectrum
has been studied and compared to the one of a particle-
balanced Bose-Bose mixture. The species-asymmetric trap
quench protocol employed in this work allowed to couple
eigenstates of different c.m. parity (at η = 1) as opposed
to a species-symmetric trap quench. We excited a different
kind of a breathing mode. The eigenstate responsible for
this mode can be traced back to a hybrid sloshing excitation
|NA − 1, 1〉 ⊗ |NB − 1, 1〉 at zero interactions. We gave an
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interpretation of the motion induced by this mode for a simple
1 + 1 mixture: for a Gaussian background one-body density
it induces a breathing motion while for a parity-symmetric
two-hump profile we observe a simultaneous outward and
inward sloshing motion of the two humps. The mode relies
on the presence of entanglement, while its frequency is a
monotonically decreasing function of gAB. This opens the
perspective to study the relation between the mode amplitude

and the degree of entanglement, stored in the many-body com-
posite state, adding yet another item into the analysis toolbox
of breathing mode diagnostics.
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We explore a few-body mixture of two bosonic species confined in quasi-one-dimensional parabolic traps of
different length scales. The ground-state phase diagrams in the three-dimensional parameter space spanned by
the harmonic length scale ratio, interspecies coupling strength, and particle-number ratio are investigated. As a
first case study we use the mean-field ansatz (MF) to perform a detailed analysis of the separation mechanism.
It allows us to derive a simple and intuitive rule predicting which of the immiscible phases is energetically
more favorable at the miscible-immiscible phase boundary. We estimate the critical coupling strength for the
miscible-immiscible transition and perform a comparison to correlated many-body results obtained by means
of the multilayer multiconfiguration time-dependent Hartree method for bosonic mixtures (ML-X). At a critical
ratio of the trap frequencies, determined solely by the particle-number ratio, the deviations between MF and
ML-X are very pronounced and can be attributed to a high degree of entanglement between the components. As a
result, we evidence the breakdown of the effective one-body picture. Additionally, when many-body correlations
play a substantial role, the one-body density is in general not sufficient for deciding upon the phase at hand
which we demonstrate exemplarily.

DOI: 10.1103/PhysRevA.102.023305

I. INTRODUCTION

Binary mixtures of ultracold gases have been extensively
studied over the past years. They represent a unique plat-
form for the investigation of complex interacting many-body
quantum systems in a well-controlled environment. In par-
ticular, it is experimentally possible to shape the geometry
of the trap [1], to reduce the dimensionality of the relevant
motion [2,3], to tune the interparticle interactions [4–8], and
prepare samples of only a few atoms [9,10]. Numerous ex-
periments have been conducted with different hyperfine states
[11–24], different elements [25–38], or different isotopes
[39,40] to reveal how the interplay between two conden-
sates impacts their stationary properties and nonequilibrium
dynamics. Highlights of these explorations include among
others the phase separation between the components and
symmetry-breaking phenomena [12,17,36,37,39], the obser-
vation of Efimov physics [38], and creation of deeply bound
dipolar molecules [28,32,33], as well as dark-bright solitary
waves [18,19] and quantum droplets [23,24].

One of the key properties, which makes the multicom-
ponent systems attractive and their physics very rich, is the
miscibility, which has significant implications for sympathetic
cooling [15,26], coarse-graining dynamics [41–44], and vor-
tex formation [45,46], to name a few. In the very early theo-
retical investigations a very rich phase space for the ground
state of the Bose-Bose mixture has been identified. These
investigations [47–52] are based on the one-body densities

*mpyzh@physnet.uni-hamburg.de
†pschmelc@physnet.uni-hamburg.de

obtained from solving the underlying mean-field equations,
commonly known as Gross-Pitaevskii equations. In case of
a weak intercomponent coupling one finds a miscible phase
with a high spatial overlap between the components. For a
sufficiently large repulsive coupling there are three types of
segregated phases with a rather small overlap. Two of them are
core-shell phases with one component being symmetrically
surrounded by the other component, whereas the third is an
asymmetrical phase, where the rotational or parity symmetry
of the underlying trapping potential is broken. Neglecting
the kinetic energy (Thomas-Fermi approximation), a simple
separation criterion for the miscible-immiscible transition has
been derived [53–55]. It depends solely on the intraspecies
and interspecies interaction strengths, which are easily ad-
justable by Feshbach or confinement-induced resonances
[4–8].

However, it has been shown that this separation criterion,
while valid in homogeneous systems, should be applied with
care in inhomogeneous geometries. Thus, in a harmonic
confinement, system parameters such as trap frequency, par-
ticle numbers, and mass ratio have also an impact on the
miscible-immiscible phase boundary [56–60]. The miscibility
of a binary mixture of both bosons and fermions has been
recently addressed also in other trapping geometries, i.e., in
a box [61], double well [62–64], ring lattice [65–67], and
combinations thereof [68], as well as the dynamical aspect of
phase separation leading to pattern formations [69–72]. From
the intuitive point of view, the trap pressure favors miscibility
since it costs energy to extend in space. Thus, it requires
stronger intercomponent repulsion for the species to separate.
However, there are still open questions regarding the impact
of different length scales, the characterization of boundaries
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between the immiscible phases, and what type of separation
will occur once the critical coupling is reached.

Another relevant topic affecting the critical coupling
strength for a transition as well as the resulting type of phase
are the interspecies correlations, which generate entanglement
between the components and lead to bunching of particles of
the same species. Although a mean-field treatment is often
justified in experimental setups, a very thorough numerical
analysis of one-dimensional (1D) few-body systems has re-
vealed that an asymmetric immiscible phase is one of the two
possible configurations of an entangled many-body state, the
other one being the mirror image. The one-body densities
of this so-called composite fermionization phase [73–77]
preserve parity symmetry of the underlying trapping potential
and have a high spatial overlap, which is uncharacteristic
for an immiscible phase. Nevertheless, the components are
indeed separated, which is encoded in the interspecies two-
body density matrix. In experiments, the single shots do
not represent one-body densities but are projections on one
of the two mutually exclusive configurations. An averaging
procedure would reveal a parity-preserving density, unless
the Hamiltonian itself violates that symmetry, such as not
coinciding trap centers of the one-body potentials. Apart from
composite fermionization, there are a whole class of so-called
spin-chain phases with an even higher degree of entanglement
[78–80]. When all interactions in the system become nearly
resonant, many states become quasidegenerate and particles,
being bosons, gain fermionic features like the Pauli exclusion
principle.

Considering the above, our work addresses three differ-
ent points. First, we characterize the phase diagram in a
three-dimensional parameter space spanned by the ratio of
the harmonic trap lengths, the interspecies coupling strength,
and the particle-number ratio. We switch off intracompo-
nent interactions to reduce the complexity and gain a better
understanding of the separation process. A very rich phase
diagram is revealed admitting two tricritical points, where
three phases may coexist. Second, within the framework of
a mean-field approximation, we perform a detailed analysis
of the separation mechanism. Equipped with this knowledge
we derive a selection rule for phase separation processes and
a simple algorithm to estimate the miscible-immiscible phase
boundary. Finally, we investigate the deviations of the mean-
field picture to a many-body approach. For this we use the
multilayer multiconfiguration time-dependent Hartree method
for bosonic mixtures [81–83]. We find that in the vicinity of
the high-entanglement regime the phase diagram is indeed
greatly affected. The symmetry-broken phase is replaced by
the composite fermionization, while the onset of symmetry
breaking is linked to the degree of entanglement reaching a
certain threshold. Furthermore, the location of this beyond-
mean-field regime strongly depends on the harmonic length
scale ratio and the particle-number ratio. We also find that
the one-body density is in general not sufficient to distinguish
between a core-shell phase and the composite fermionization.

This work is organized as follows. In Sec. II we intro-
duce our physical setup and in Sec. III our computational
approach. Section IV is dedicated to a detailed study of a few-
body mixture. Section IV A provides intuitive insights in the
framework of the mean-field approximation, while Sec. IV B

focuses on correlation and entanglement effects using multi-
layer multiconfiguration time-dependent Hartree method for
bosonic mixtures. The few-to-many-body transition is subject
of Sec. V. Finally, we summarize our findings in Sec. VI.

II. GENERAL FRAMEWORK

Our system consists of a particle-imbalanced mixture of
two distinguishable bosonic components, denoted by σ ∈
{M, I}, with NM particles in the majority component and NI

impurities. All particles are assumed to be of equal mass m
and the intracomponent interactions are assumed to be zero
or negligibly small. The majority species interacts with the
impurities via s-wave contact interaction of coupling strength
gMI . The species are confined in separate quasi-1D harmonic
traps of different length scales aσ = √

h̄/mωσ with trap fre-
quency ωσ and coinciding trap centers. By choosing aM and
h̄ωM as length and energy scales we arrive at the rescaled
Hamiltonian:

H = HM + HI + HMI

=
NM∑
i=1

(
−1

2

∂2

∂x2
i

+ 1

2
x2

i

)
+

NI∑
i=1

(
−1

2

∂2

∂y2
i

+ 1

2
η2y2

i

)

+ gMI

NM∑
i=1

NI∑
j=1

δ(xi − y j ), (1)

where xi labels the spatial coordinate of the ith majority parti-
cle, yi of the ith impurity particle, and η = ωI/ωM denotes the
trap frequency ratio.

In this work we focus on the ground-state characterization
and consider both attractive and repulsive interactions ranging
from weak to intermediate couplings gMI ∈ [−2, 2] with the
impurity being localized or delocalized with respect to the
majority species, i.e., aI/aM = √

1/η ∈ [0.5, 1.5]. We also
study the impact of the particle-number ratio NI/NM on the
system’s properties concentrating on a few-body system.

All the ingredients necessary for the realization of such a
Hamiltonian system have been demonstrated experimentally.
Mixtures of two-component BECs with the same mass can
be prepared with different atomic spin states [11–24]. The
1D geometry can be achieved by strong transversal confine-
ment or by a two-dimensional optical lattice. The interaction
strengths are tunable by Feshbach and confinement-induced
resonances allowing to vary the coupling strength between
the components and to make the intracomponent interactions
negligible [4–8]. Species-dependent trapping techniques have
been demonstrated [84,85]. Few-body systems are obtainable
for fermions via trap spilling [86] and for bosons by cutting
out a subsystem of a Mott insulator [87]. High-resolution mea-
surements with single-atom sensitivity have been proposed for
nonlattice traps by using a quantum gas microscope [88]. The
experimental realization, however, has yet to be demonstrated.

III. COMPUTATIONAL APPROACH

To find the ground state of our binary mixture, we employ
imaginary-time propagation by means of the multilayer mul-
ticonfigurational time-dependent Hartree method for atomic
mixtures (ML-MCTDHX). For reasons of brevity we call it
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ML-X from now on. This multiconfigurational wave-function-
based method for efficiently solving the time-dependent
Schrödinger equation was first developed for distinguishable
degrees of freedom [89] and ML-X is an extension to indis-
tinguishable particles such as bosons or fermions and mixtures
thereof [81–83]. ML-X is an ab initio method, whose power
lies in expanding the wave function in time-dependent basis
functions. Let us demonstrate the underlying ansatz for the
system at hand:

|�(t )〉 =
S∑

i=1

√
λi(t )

∣∣�M
i (t )

〉 ⊗ ∣∣�I
i (t )

〉
, (2)

∣∣�σ
i (t )

〉 =
∑
�nσ |Nσ

Ci,�nσ (t ) |�nσ (t )〉 . (3)

The time-dependent many-body wave function |�(t )〉 has
two layers: the so-called species layer (2) and the particle
layer (3). In the first step (2) we separate majority and
impurity species and assign them to S ∈ N corresponding
species wave functions |�σ

i (t )〉. The time-dependent coeffi-
cients λi(t ) are normalized

∑S
i=1 λi(t ) = 1 and describe the

degree of entanglement between the components. In case
∃ i ∈ {1, . . . , S} : λi(t ) ≈ 1 the components are said to be
disentangled. In the second step (3) each species wave func-
tion |�σ

i (t )〉, which depends on Nσ indistinguishable coordi-
nates, is expanded in terms of species-dependent symmetrized
product states, also known as permanents or number states
|�nσ 〉 = |nσ

1 , . . . , nσ
sσ

〉 admitting sσ ∈ N normalized single-
particle functions (SPF) |ϕσ

j (t )〉. The sum is over all possible
configurations �nσ |Nσ fulfilling the constraint

∑sσ

i=1 nσ
i = Nσ .

The time dependence of number states is meant implicitly
through the time dependence of the underlying SPFs. Finally,
each SPF is represented on a primitive one-dimensional time-
independent grid [90].

When one applies the Dirac-Frenkel variational principle
[91] to the above ansatz, one obtains coupled equations of mo-
tion for the expansion coefficients λi(t ), Ci,�nσ (t ) and the SPFs
|ϕσ

j (t )〉. This procedure allows to considerably reduce the size
of the basis set as compared to choosing time-independent
SPFs constituiting the number states on the particle layer (3).
We note that S = 1 ∧ sσ = 1 is equivalent to solving coupled
Gross-Pitaevskii equations. We will show parameter regions,
where the mean-field description is valid and regions where it
fails as a result of increasing interspecies correlations. These
generate entanglement between the components and decrease
the degree of condensation of the noninteracting majority
atoms.

The results of the ML-X calculations are considered to be
converged if two criteria are simultaneously satisfied. First,
the expansion coefficients λi on the species layer as well as
populations of the natural orbitals mσ

i
1 of species σ on the

particle layer feature an exponential decay2 as a function of
the number of orbitals. This ensures that every newly added

1In the spectral decomposition of the one-body density operator
ρ̂σ

1 = ∑sσ
i=1 mσ

i |mσ
i 〉 〈mσ

i | the mσ
i are called natural populations and

|mσ
i 〉 natural orbitals.

2λi and mσ
i are sorted by magnitude in descending order.

orbital or SPF adds a significantly smaller correction to the
many-body wave function. Second, the smallest coefficients
λS < ε and mσ

sσ
< ε are below some threshold value ε. The

value of ε depends in general on the observable of interest
and ensures that the least contributing orbital or SPF does only
a minor correction to the observable. The ML-X simulations
obtained in this work are converged in the above sense with
ε = 10−3 unless stated otherwise.

In the following, we will often refer to the one-body density
ρσ

1 (z) of species σ , two-body density matrix ρσ
2 (z, z′) of

species σ , and interspecies two-body density matrix ρMI
2 (x, y)

of the many-body density operator ρ̂ = |�〉 〈�| defined as

ρσ
1 (z) = 〈z| trNσ \1

{
trNσ̄

{ρ̂}} |z〉 , (4)

ρσ
2 (z, z′) = 〈z, z′| trNσ \2

{
trNσ̄

{ρ̂}} |z, z′〉 , (5)

ρMI
2 (x, y) = 〈x, y| trNM \1

{
trNI \1{ρ̂}} |x, y〉 , (6)

where Nσ \ n stands for integrating out Nσ − n coordinates of
component σ and σ̄ �= σ .

IV. PHASE SEPARATION: FEW-BODY MIXTURE

We start our analysis with a few-body system consisting
of NM = 5 majority particles with NI ∈ {1, 2} impurities. In
Sec. V we will discuss cases with larger particle imbalance.
Since we aim at the comparison between the mean-field
approximation and a many-body approach, we can ensure
reasonably converged results only for relatively small system
sizes. As we have emphasized previously in Sec. II, such
few-body systems are experimentally accessible.

The outline is as follows. First, in Sec. IV A, we obtain
the phase diagram within the mean-field approximation. We
uncover the mechanism responsible for the phase separation
by using an effective description and apply the obtained intu-
ition to derive an estimate for the miscible-immiscible phase
boundary. Second, in Sec. IV B, we perform a comparison
to the correlated many-body treatment by means of ML-X.
Apart from visible changes in the phase diagram we identify
the parameter space with a quick buildup of the entanglement
reaching large values already for moderate couplings. We then
develop an understanding how our intuitive one-body picture
is altered due to the presence of entanglement and what
implications it has for the ground-state phases, in particular
in the parameter space with considerable entanglement.

A. Mean-field approach: Basic mechanism of phase separation

For the mean-field description we choose a single
species orbital S = 1, yielding a nonentangled state |�(t )〉 =
|�M (t )〉 ⊗ |�I (t )〉 on the species layer. On the particle layer
a single SPF sσ = 1 is used for each component, meaning
that particles of the same species are forced to condense into
the same single-particle state ϕσ (z, t ) and |Nσ 〉 is the only
possible number state on the particle level. Thus, our ansatz
is |�(t )〉 = |NM (t )〉 ⊗ |NI (t )〉 and only ϕσ (z, t ) are time de-
pendent. As a result of imaginary-time propagation, we end
up with the ground-state orbitals ϕσ

MF
(z). The interpretation of

the mean-field treatment is that each species feels in addition
to its own external potential an averaged one-body potential
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induced by the other component. To obtain the effective mean-
field Hamiltonian HMF

σ of species σ we need to integrate out
the other component σ̄ . For convenience, we also subtract
the energy offset cσ̄ = 〈Nσ̄ |Hσ̄ |Nσ̄ 〉 caused by the one-body
energy of component σ̄ :

HMF
σ = 〈Nσ̄ |H |Nσ̄ 〉 − cσ̄

= Hσ + Nσ̄ gMI

Nσ∑
i=1

ρσ̄

MF
(zi )

=
Nσ∑
i=1

(
−1

2

∂2

∂z2
i

+ Vσ (zi ) + V ind
σ (zi )

)

=
Nσ∑
i=1

(
−1

2

∂2

∂z2
i

+ V eff
σ (zi )

)
, (7)

where ρσ
MF

(z) = |ϕσ
MF

(z)|2 is the one-body density of species
σ normalized as

∫
dz ρσ

MF
(z) = 1, V ind

σ (z) = Nσ̄ gMI ρ
σ̄
MF

(z) the
induced one-body potential, V eff

σ (z) = Vσ (z) + V ind
σ (z) the ef-

fective one-body potential and σ̄ �= σ .
To systematically distinguish between different phases, we

define the following two functions, applicable also in the more
general case of a many-body treatment in Sec. IV B:

�σ = ρσ
1 (z = 0)

maxz ρσ
1 (z)

, (8)

d =
∣∣∣∣
∫ ∞

−∞
dz zρM

1 (z) −
∫ ∞

−∞
dz zρI

1(z)

∣∣∣∣, (9)

with the one-body density ρσ
1 (z) of component σ (4). Equa-

tion (8) compares the one-body density ρσ
1 (z) at the trap

center with its maximum value, while Eq. (9) checks for parity
asymmetry, as we will argue below. The above equations
are motivated from the literature on binary mixtures and
we provide a brief summary on the discovered ground-state
phases and some of their properties, which will be relevant in
the following discussions.

For weak couplings there is a miscible phase M with a high
spatial overlap of the one-body densities ρσ

1 (z). As a result,
both components exhibit a Gaussian profile (�σ = 1) and
occupy the center of their trap (d = 0). The state is disentan-
gled and both species are condensed. For negative couplings,
i.e., attractive interactions, the phase remains miscible and
the widths of the Gaussian densities shrink with decreasing
coupling strength. For stronger positive couplings, three dif-
ferent phase separation scenarios are possible. In case the
majority species occupies the trap center (�M = 1), pushing
the impurities outside in a way that the impurity density forms
a shell around the majority density with two parity-symmetric
humps (�I < 1 and d = 0), we have a core-shell IMI phase.
When the impurities remain at the trap center instead (�I =
1) with the majority species forming a shell (�M < 1 and
d = 0), we have a core-shell MIM phase. Finally, when both
species develop two parity-symmetric humps with a local
minimum at the trap center (�σ < 1 and d = 0), we have a
composite fermionization phase CF . On the level of one-body
densities CF appears to be miscible owing to the high spatial
overlap between the components. However, the deviations to
the miscible phase become evident upon investigating the

two-body density matrices (5) and (6). Namely, two particles
of the same component can be found either on the left or the
right side with respect to trap center, while two particles of
different components are always on opposite sides.

While the core-shell phases IMI and MIM do not rely
on entanglement between the components, CF is always an
entangled many-body state made out of two major species
orbitals S = 2 and two major SPFs sσ = 2 on the particle
layer. Thus, CF cannot be obtained within the mean-field ap-
proximation. In fact, we observe that once the entanglement of
the true many-body state, characterized by the von Neumann
entropy (see Sec. IV B), reaches a certain threshold, a collapse
to a phase with broken parity symmetry (d > 0) will take
place in the mean-field picture. We abbreviate this phase with
SB from now on.

The origin of SB is the onset of a quasidegeneracy between
the ground state and the first excited state of the many-body
spectrum, which becomes an exact degeneracy in the limit
of gMI → ∞. Once this limit is reached, any superposition
of those two states is also an eigenstate of (1). Since they
are of different parity symmetry P and [H, P] = 0, it is
possible to choose the superposition to be parity symmetric
or to break the parity symmetry of (1). It was suggested
[73] that the corresponding many-body wave function may be
written in terms of number states as |�〉 = c1 |NM〉L |0M〉R ⊗
|0I〉L |NI〉R + c2 |0M〉L |NM〉R ⊗ |NI〉L |0I〉R with two parity-
broken SPFs ϕσ

j (z) featuring an asymmetric Gaussian shape
with a maximum on the j = L (left) or j = R (right) side
with respect to the trap center. Within the mean-field approx-
imation, the eigenenergy of the first excited state coincides
with the ground-state energy already for a finite coupling
gMI . Since mean field does not incorporate entanglement, the
state collapses either to |NM〉L ⊗ |NI〉R or to |NM〉R ⊗ |NI〉L,
resulting in a phase with broken parity symmetry.

With this we end our overview over different phases and
showcase a compact summary of the phases:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M : d = 0 ∧ �M = 1 ∧ �I = 1,

IMI : d = 0 ∧ �M = 1 ∧ �I < 1,

MIM : d = 0 ∧ �M < 1 ∧ �I = 1,

CF : d = 0 ∧ �M < 1 ∧ �I < 1,

SB : d > 0 ∧ �M < 1 ∧ �I < 1.

(10)

In Fig. 1 we depict the ground-state phases within the
mean-field approximation for NB = 5 with (a) NI = 1 and
(b) NI = 2 impurities as a function of the intercomponent
coupling strength gMI and the impurity localization aI/aM . As
expected, CF is not among the phases in Fig. 1. The transition
region on the aI/aM axis, where core shell MIM is replaced
by core shell IMI , can be tuned by variation of the particle-
number ratio such that for NI = NM it lies at aI/aM = 1 (not
shown), while for increasing particle imbalance NI/NM < 1 it
is shifted toward a lower aI/aM ratio. This is also the point
where the coupling strength gMI , required for the realization
of the SB phase, is the smallest. We will see later in Sec. IV B
that the species entropy has here its global maximum. Note
that each phase diagram features critical points, where three
different phases can coexist (green circles).

Now that we have identified the phases, we are going to
shed some light on the mechanism behind the phase separation
taking place for different specific coupling strength gMI for
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units of units of

(a) (b)

FIG. 1. Mean-field ground-state phase diagram for NB = 5 majority particles and (a) NI = 1 or (b) NI = 2 impurities as a function of
the intercomponent coupling strength gMI and impurity localization aI/aM = √

1/η with η = ωI/ωM being the trap frequency ratio and aσ =√
h̄/mωσ the harmonic oscillator length of species σ . The nomenclature of phases is as follows: M for miscible, MIM for core shell with

impurity at the core, IMI for core shell with majority at the core, CF for composite fermionization, and SB for a phase with broken parity
symmetry. The blue solid curve represents the miscible-immiscible phase boundary according to (19). The blue dotted line is an estimate for
the SB phase boundary according to (21). Green circles indicate tricritical points. The coarse structure is due to the finite step size of our data
with respect to aI/aM .

a fixed trap ratio η. In particular, we will provide a simple
formula, which determines which of the core-shell structures
is energetically more favorable. Additionally, we provide an
estimate on the miscible-immiscible transition region and on
the SB phase boundary.

Let us make two horizontal cuts across the phase diagram
of Fig. 1(b) at aI/aM = 0.5 and at aI/aM = 1.1. In Fig. 2 we
take a closer look at the variation of the one-body densities
ρσ

MF
being part the effective one-body potential V eff

σ (7) when
increasing the coupling strength gMI . First, let us focus on

(a1)

(a2)

(a3)

(a4)

(b1)

(b2) (c2)

(b3)

(b4)

(c1)

(c3)

(c4)

(d2)

(d1)

(d3)

(d4)

FIG. 2. Ground-state densities ρσ

MF
(z) inside the induced one-body potential V eff

σ (z) from (7) for NM = 5, NI = 2 and either aI/aM =
0.5 (columns 1 and 2 for majority and impurity species, respectively) or aI/aM = 1.1 (columns 3 and 4 for majority and impurity species,
respectively). Rows from top to bottom correspond to a variation of the intercomponent coupling gMI ∈ {0.05, 0.2, 0.4, 0.6}. Horizontal lines
depict eigenenergies of (7).
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columns 1 and 2, corresponding to aI/aM = 0.5. For very
weak coupling (first row), every atom to a good approximation
populates the energetically lowest harmonic oscillator orbital
of the respective potential Vσ . The induced potential V ind

σ

gains an amplitude linearly with gMI and with the density
profiles being Gaussians of different widths we observe the
appearance of a small barrier in V eff

M at gMI = 0.2 [Fig. 2(a2)].
This barrier grows with gMI and at gMI = 0.4 [Fig. 2(a3)]
it becomes comparable to the ground-state energy of the
effective potential, while the one-body density ρM

MF
turns flat at

the trap origin. Once the ground-state energy drops below the
barrier height, two density humps appear and core shell MIM
is established [Fig. 2(a4)]. Meanwhile, the effective potential
of the impurity V eff

I does not show significant deviations from
the harmonic case (second column). Especially, the induced
part V ind

I , being initially also a Gaussian, is not capable to
produce a barrier at the trap center. Similar statements can be
made for columns 3 and 4, corresponding to aI/aM = 1.1. The
only difference is that V eff

I develops a barrier instead, whereas
V eff

M shows only a slight variation, which finally leads to the
core-shell IMI phase.

Motivated by the above observation, we define an alterna-
tive phase classification from an energetical point of view:⎧⎪⎪⎨

⎪⎪⎩

M : EMF
0,σ

− V eff
σ (0) > 0,

IMI : EMF
0,M

− V eff
M (0) > 0 ∧ EMF

0,I
− V eff

I (0) < 0,

MIM : EMF
0,M

− V eff
M (0) < 0 ∧ EMF

0,I
− V eff

I (0) > 0,

SB : d > 0,

(11)

where EMF
0,σ

is the ground-state energy of (7). As long as
the ground-state energy of the effective species Hamiltonian
exceeds the effective potential height at the trap center, the
species remains at the trap center. Phase diagrams produced
this way match exactly the ones shown in Fig. 1.

The interpretation is now as follows. For a very weak cou-
pling, both the majority and the impurity reside in the ground
state of the harmonic oscillator. Once the induced potential
V ind

σ of species σ becomes large enough to produce a barrier
in V eff

σ , the corresponding density ρσ
MF

will start to expand.
By growing in width it will prevent the other component σ̄

from developing a barrier of its own. When the height of the
potential barrier becomes of the same magnitude as the lowest
energy of the corresponding effective potential, the species σ

splits into two fragments. Then, it starts squeezing the other
component σ̄ by increasing the effective trap frequency of the
renormalized harmonic oscillator V eff

σ̄ .
The barrier in V eff

σ appears once the following condition is
fulfilled:

∃ x0 �= 0 :
d

dx
V eff

σ

∣∣∣
x0

= 0. (12)

Assuming one-body densities to be unperturbed harmonic
oscillator ground states, we obtain the following effective
potentials:

V eff
M (z) ≈ 1

2
z2 + gMI NI

√
η

π
e−ηz2

, (13)

V eff
I (z) ≈ 1

2
η2z2 + gMI NM

√
1

π
e−z2

, (14)

and the corresponding barrier conditions
√

π

2NI

√
η3

=̂ gM
MI

< gMI , (15)

√
πη2

2NM
=̂ gI

MI
< gMI . (16)

For given particle numbers NM , NI and trap ratio η either
condition (15) or condition (16) will be fulfilled first upon
increasing the coupling gMI and thus either the majority or the
impurity will form a shell. We remark that the above criterion
for barrier formation is inversely proportional to the particle
number of the other component, while the dependence on
the trap ratio η for the majority differs substantially from the
one for the impurity. Furthermore, for a fixed particle-number
ratio there is a critical trap ratio ηc, for which (15) and (16)
can be fulfilled simultaneously:√

1/ηc = 7
√

NI/NM . (17)

Around this critical region we expect that none of the compo-
nents will occupy the trap center. We summarize our findings
in a simple formula, which determines the type of phase
separation at the miscible-immiscible phase boundary:⎧⎪⎨

⎪⎩
core shell MIM : η � ηc,

core shell IMI : η � ηc,

CF or SB : η ≈ ηc.

(18)

For particle-number ratios discussed in this section, the criti-
cal region lies at aI/aM ≈ 0.8 [Fig. 1(a)] and at aI/aM ≈ 0.9
[Fig. 1(b)].

Next, we want to find an estimate for the miscible-
immiscible phase boundary gc

MI
. To this end, we combine the

energetical separation criterion in Eq. (11) with approximate
effective potentials from (13) and (14). Specifically, for a
given particle number ratio NI/NM we determine the critical
trap ratio ηc. Then depending on the choice of η we solve
numerically for the ground-state energy of a single particle
inside the effective potential (13) or (14). Finally, we compare
this energy to the potential height at the trap center:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

aI/aM < 7
√

NI/NM : H eff
M = −1

2

∂2

∂x2
+ V eff

M (x)

⎧⎨
⎩

E eff
0,M

> gMI NI

√
η

π
⇒ M,

E eff
0,M

< gMI NI

√
η

π
⇒ MIM,

aI/aM > 7
√

NI/NM : H eff
I = −1

2

∂2

∂y2
+ V eff

I (y)

⎧⎨
⎩

E eff
0,I

> gMI NB

√
1
π

⇒ M,

E eff
0,I

< gMI NB

√
1
π

⇒ IMI.

(19)
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units of units of

(a) (b)

FIG. 3. ML-X ground-state phase diagram for NB = 5 majority particles and (a) NI = 1 or (b) NI = 2 impurities as a function of the
intercomponent coupling strength gMI and impurity localization aI/aM = √

1/η with η = ωI/ωM being the trap frequency ratio and aσ =√
h̄/mωσ the harmonic oscillator length of species σ . The nomenclature of phases is as follows: M for miscible, MIM for core shell with

impurity at the core, IMI for core shell with majority at the core, CF for composite fermionization, and SB for a phase with broken parity
symmetry. The green solid curve represents the miscible-immiscible phase boundary based on the mean-field treatment. The coarse structure
is due to the finite step size of our data with respect to aI/aM .

The results are plotted as blue solid curves in Fig. 1. We
recognize that it performs quite well except for η ≈ ηc, where
it underestimates gc

MI
.

We can also get a rough estimate on the SB phase boundary
gSB

MI by using the following Gaussian ansatz:

ϕσ (z) = 4

√
βσ

π
e− βσ (z−zσ )2

2 , (20)

with the width βσ and the displacement zσ of component
σ being variational parameters. We evaluate the expectation
value of (1) and minimize the energy with respect to the above
variation parameters. By looking further at the special case
when the relative position |zM − zI | becomes zero, one arrives
after some algebraic transformations at

gSB
MI NI =

√
π

2η
4

√
γ

1 + γ η2
(1 + η2√γ )

3
2 , (21)

with particle-number ratio γ = NI/NM . We remark that this
equation reduces to Eq. (8) from [60] for η = 1. Although
this equation describes well the qualitative behavior of the
SB phase boundary, quantitatively it scales badly when the
trap ratio η deviates from ηc (blue dotted line in Fig. 1).
There are two possible reasons for this. First, our ansatz
incorporates only M and SB phases, while ignoring the core-
shell phases. Thus, as one draws away from ηc the core-shell
parameter region, which lies in-between M and SB, grows
in size, making the estimate inefficient. The other reason is
that the mean-field solution ϕσ

MF
of the SB phase is rather an

asymmetric Gaussian.
Finally, we discuss the limiting cases. When η → ∞

(aI/aM → 0) the impurity becomes highly localized at z = 0.
It will not be affected by the majority atoms. Meanwhile, the
majority species will be subject to an additional delta poten-
tial at z = 0 with potential strength gMI NI . This analytically
solvable one-body problem results in a Weber differential

equation. Upon increasing the delta-potential prefactor gMI NI ,
the initially unperturbed Gaussian solution develops a cusp
at the trap center, whose depth tends to zero as the prefactor
goes to infinity. When η → 0 (aI/aM → ∞), we can change
our perspective by rescaling the Hamiltonian in impurity
harmonic units and argue in a similar way as above.

In the following section, we compare to the results obtained
for the corresponding correlated many-body approach of
ML-X.

B. ML-X: Modifications of the phase diagram due
to correlations and entanglement

For the total wave function in Eq. (2) we use S = 8 species
orbitals and sσ = 8 SPFs for each component. We perform
again an imaginary-time propagation of an initially chosen
wave function and obtain the ground state of (1). In Fig. 3 we
show the resulting ground-state phases based on the selection
rules (10) for NB = 5 and (a) NI = 1 or (b) NI = 2. We remark
that the alternative selection scheme defined in Eq. (11) does
not apply here, and below we provide an explanation why it
fails. The first eye-catching feature is that the SB phase has
completely disappeared, as expected, since it is an artifact
of the mean-field treatment. Additionally, we observe the
presence of composite fermionization CF for the case of two
impurities in Fig. 3(b). Overall, the transition between the
miscible phase and separated phases takes places at a different
coupling strength gc

MI
for a fixed trap ratio η.

In order to better understand why the phase diagram is
altered this way, we investigate in Figs. 4 and 5 the von
Neumann entropy SvN on the species layer as well as the von
Neumann entropy of the majority species SM

vN and the impurity
species SI

vN . SvN characterizes the degree of entanglement
between the components (entanglement entropy) while Sσ

vN
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units of

(a)

(b)

FIG. 4. Ground-state (species) entanglement entropy SvN

(a) from Eq. (22) and the fragmentation entropy SM
vN from Eq. (23)

for the majority (b) for NB = 5 majority particles and NI = 1
as a function of the intercomponent coupling strength gMI and
impurity localization aI/aM = √

1/η with η = ωI/ωM being the trap
frequency ratio and aσ = √

h̄/mωσ the harmonic oscillator length of
species σ .

reflects the degree of species fragmentation (fragmentation
entropy). The definitions are as follows:

SvN = −
S∑

i=1

λi ln λi, (22)

Sσ
vN = −

sσ∑
i=1

mσ
i ln mσ

i with ρ̂σ
1 =

sσ∑
i=1

mσ
i

∣∣mσ
i

〉 〈
mσ

i

∣∣ , (23)

where λi are expansion coefficients from (2) and mσ
i natural

populations satisfying
∑sσ

i=1 mσ
i = 1 and |mσ

i 〉 natural orbitals
of the spectrally decomposed one-body density operator ρ̂σ

1
of species σ . The entanglement entropy is bounded by the
equal distribution of orbitals SvN � ln(S), whereas for two
dominantly occupied orbitals we expect SvN � ln(2) ≈ 0.7.
If SvN = 0, then there is no entanglement between the species

units of

(a)

(b)

(c)

FIG. 5. Ground-state (species) entanglement entropy SvN from
Eq. (22) (a) and the fragmentation entropy Sσ

vN from Eq. (23) for the
majority (b) and impurity (c) for NB = 5 majority particles and NI =
2 impurities as a function of the intercomponent coupling strength
gMI and impurity localization aI/aM = √

1/η with η = ωI/ωM being
the trap frequency ratio and aσ = √

h̄/mωσ the harmonic oscillator
length of species σ .
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(b)

(c)

(d)

units of units of

(a)

FIG. 6. Projection amplitudes of the many-body ground state on number states | 〈�nM | ⊗ 〈�nI | |�〉 |2 for NB = 5 majority particles and NI = 1
(first column) or NI = 2 (second column) impurities as a function of the intercomponent coupling strength gMI and impurity localization
aI/aM = √

1/η with η = ωI/ωM being trap frequency ratio and aσ = √
h̄/mωσ the harmonic oscillator length of species σ . The SPFs

constituting the permanents are eigenfunctions of the effective Hamiltonian (24). The first row corresponds to the projection on the condensed
number state |NB〉 |NI〉, while in the second row one sums over contributions from two-particle excitations |NB − 2, 2〉 |NI〉, |NB〉 |NI − 2, 2〉,
and |NB − 1, 1〉 |NI − 1, 1〉.

and the wave function is a simple product state on the species
layer. Similarly, fragmentation entropy Sσ

vN = 0 means that
all particles occupy the same SPF and the species is thus
condensed. For parameter values where this is fulfilled, a
mean-field treatment is well justified. However, in Figs. 4 and
5 we recognize that for stronger couplings gMI this is not the
case. Particularly, in the vicinity of the critical region aI/aM ≈

7
√

NI/NM at positive gMI , identified in the previous section as
highly competitive, the entanglement entropy SvN is very pro-
nounced [Figs. 4(a) and 5(a)] . The fragmentation entropy of
the majority species SM

vN is comparatively weaker and slightly
shifted toward a smaller length scale ratio aI/aM at positive
gMI [Figs. 4(b) and 5(b)]. The fragmentation entropy of the
impurity species SI

vN for NI = 1 (not shown) coincides with
the entanglement entropy SvN [Fig. 4(a)], while for NI = 2
there are substantial differences [see Fig. 5(c)]. Namely, the
impurity shows a higher degree of fragmentation when it is

less confined compared to the majority species and vice versa.
In contrast to positive couplings gMI , for negative couplings
the entanglement and species fragmentation build up with a
much slower rate. Finally, we emphasize that phase separa-
tions like core shell MIM or IMI are not necessarily related to
a high degree of entanglement or species depletion, whereas
CF is located in the parameter region, where SvN takes the
highest values. Another striking observation is that the onset
of the SB phase from Fig. 1 is related to the entanglement
entropy reaching some threshold value around SvN ≈ 0.5 at
positive couplings gMI [compare to Figs. 4(a) and 5(a)].

Now that we have identified the parameter space where
deviations from mean field are to be expected, we want to gain
a deeper insight into how the effective picture is affected as a
result of increasing correlations. For this purpose we define
an effective single-body Hamiltonian of species σ similar to
the one in Eq. (7), except that we use the exact many-body
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(a) (b)

(c) (d)

FIG. 7. ML-X ground-state densities ρσ
1 (z) inside effective one-body potentials V eff

σ (z) from (24) for NM = 5, NI = 2, gMI = 2, and
aI/aM = 0.8 (first row) or aI/aM = 0.9 (second row). Horizontal lines are eigenenergies of (24).

densities ρσ
1 instead of the mean-field densities ρσ

MF
:

H eff
σ = Hσ + Nσ̄ gMI

Nσ∑
i=1

ρσ̄
1 (zi ) with

σ̄ �= σ =
Nσ∑
i=1

(
−1

2

∂2

∂z2
i

+ V eff
σ (zi )

)
. (24)

Next, we diagonalize (24) and use the obtained eigenfunctions
ϕ̃σ

i as SPFs for number states |�nM〉 ⊗ |�nI〉 on which we
project our many-body ground state |�〉. The reader should
distinguish the latter SPFs ϕ̃σ

i from the numerical SPFs ϕσ
i

obtained by improved relaxation which define the permanents
contained in our ML-X total wave function. Thus, we decom-
pose our ground state in terms of disentangled product states
made out of single permanents. We anticipate that |NM〉 |NI〉
represents dominant contribution to |�〉, which should be the
case whenever a mean-field approach is valid. From the previ-
ous analysis we observed that the entanglement entropy values
were mostly Sσ

vN � 0.7, which suggests two relevant SPFs.
Indeed, our many-body state consists of two major orbitals
and two major SPFs. Furthermore, taking parity symmetry
into account and considering at most two-particle excita-
tions, we conclude that number states |NM − 1, 1〉 |NI − 1, 1〉,
|NM − 2, 2〉 |NI〉, and |NM〉 |NI − 2, 2〉 may become of rel-
evance too at stronger couplings. We remark that the
one-body density operator of number state |Nσ − nσ

2 , nσ
2 〉 with

nσ
2 particles in the odd orbital ϕ̃σ

2 will be a mixed state of
one even and one odd orbital, eventually featuring two humps
in the corresponding one-body density. Thus, depending on
the occupation amplitude of such states, they may either
accelerate or slow down the development of humps in ρσ

1 (z),
thereby quantitatively shifting the critical coupling gc

MI
, at

which the mixed phase transforms into one of the species-
separated phases.

In Fig. 6 we show the projection on number state |NM〉 |NI〉
(first row) and a sum over projections on the above-mentioned

permanents (second row) for NB = 5 and NI = 1 (first col-
umn) or NI = 2 (second column). For negative couplings the
state |NM〉 |NI〉 provides a major contribution and the effec-
tive picture holds. Let us focus in the following on positive
couplings. In Fig. 6(a) (NI = 1), we observe that the state
|NM〉 |NI〉 has indeed a major contribution at coupling strength
below 1.0. Once interspecies correlations build up with in-
creasing coupling strength, the state |NM − 1, 1〉 |NI − 1, 1〉
grows in importance, which corresponds to a simultaneous
single-particle excitation within each component. This is
mostly pronounced around ηc. Double excitations within the
majority species |NM − 2, 2〉 |NI〉 are of minor amplitude and
rather of relevance for a localized impurity aI/aM � 1. All in
all, the low-lying excitations of the effective potentials (24)
provide a good description [Fig. 6(b)]. In Fig. 6(c) (NI = 2),
we observe that the state |NM〉 |NI〉 loses its contribution very
quickly as one goes deeper into the regime of strong entan-
glement. Although we are able to get a better understanding
for weak entanglement by including two-particle excitations
mentioned above, our effective picture clearly does not hold
in the parameter region characterized by strong entanglement.
There, we may account only for as much as ≈50% of the
ground state, even though the one-body density in Eq. (24)
incorporates beyond-mean-field corrections. We remark that
while it is indeed intuitive that the one-body picture will break
at some point as the entanglement becomes stronger, it is not
at all obvious to predict the corresponding threshold (trap ratio
and coupling strength) where it will happen.

Let us take a closer look at this regime, where the single-
particle picture (24) tends to break down. We show in Fig. 7
the one-body densities for NB = 5 majority particles and NI =
2 impurities in the strong entanglement region at gMI = 2.
The first row corresponds to the CF phase at aI/aM = 0.8.
Here, we recognize immediately why the effective picture
fails. The origin of the two humps in the one-body density
is counterintuitive considering that they are at the position
of local maxima of the effective potential. One would rather
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(a) (b) (c)

FIG. 8. (a) Majority two-body density matrix ρM
2 (x1, x2) from Eq. (5). (b) Impurity two-body density matrix ρI

2(y1, y2) from Eq. (5).
(c) Interspecies two-body density matrix ρMI

2 (x, y) from Eq. (6) of the ground state for NM = 5, NI = 2, gMI = 2, and aI/aM = 0.9.

expect a density profile with three peaks at the positions of the
potential minima.

The second row (aI/aM = 0.9) seems at first glance to be
an IMI phase. The majority is at the core, while the impurity
forms a shell. Upon a more detailed investigation we notice
that the majority species is broader than it should be inside
the squeezed “harmonic” trap. The humps of the impurity
also do not coincide with the positions of the minima of
the respective effective potential. As a matter of fact, this
phase is a latent CF phase, which becomes clear when we an-
alyze the corresponding two-body density matrices in Fig. 8.
The intraspecies two-body density matrices (5) [Figs. 8(a) and
8(b)] indicate that particles of the same component avoid the
trap center and form a cluster either on the right or the left side
with respect to trap center. Moreover, the interspecies density
matrix (6) [Fig. 8(c)] tells us that the two different clusters
of majority and impurity will always be found on opposite
sides of the trap with a rather small spatial overlap between
them. It allows to diminish the impact of the repulsive energy
on the total energy at the cost of paying potential energy.
These are clear signatures of the CF , which are blurred in the
reduced one-body density. We note that the parameter space
where ML-X predicts an IMI phase, whereas MF produces SB
phase, we have in fact a latent CF , hidden behind a one-body
quantity. Thus, in general, the classification of immiscible
phases by the one-body density is not sufficient to distinguish
CF from IMI or MIM. Nevertherless, sometimes it is still
possible to identify CF by the one-body density, namely,
when it features two reflection-symmetric humps.

Above, we have mentioned that in the literature the
CF phase was suggested to be a superposition of

two parity-broken mean-field states |�〉 = c1 |NM〉L |0M〉R ⊗
|0I〉L |NI〉R + c2 |0M〉L |NM〉R ⊗ |NI〉L |0I〉R as a result of the
degeneracy onset. Indeed, ML-X has two prominent orbitals
on the species layer and two major SPFs on the particle
layer. Nevertheless, the other occupied species orbitals and
SPFs provide a minor contribution, as we have evidenced
in Fig. 5, where the entropies take values beyond ln(2). To
provide an illustrative example, we displace the trap centers
in Eq. (1) by a small amount to energetically separate the
two symmetry-broken configurations. For parameter values
for which the CF phase is observed, we perform again the
improved relaxation to the find ground state of the system
in order to check whether it is indeed a MF state. It turns
out that the majority species and the impurity species are still
fragmented states though the degree of depletion is much less
compared to the parity-symmetric ground state. The species
entropy SvN is greatly reduced, but still appreciable. The
impact of correlations is also visible in Fig. 9. The ground
state of the effective potential (24) is different from the one-
body density of the many-body ML-X wave function. This
is caused by induced attractive interactions mediated by the
intercomponent coupling, a beyond-mean-field effect [92].

To conclude our discussion about the high-entanglement
regime, we state that the mean-field approach, being an ef-
fective one-body model, fails to explain a one-body quantity
such as reduced one-body density. Nevertheless, it manages to
characterize quite well one of the two possible configurations
of the entangled many-body state. The latter is not just a
simple superposition of two mean-field states describing two
different parity-broken configurations. A thorough analysis
showed that on the many-body level the SB phase is in fact
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FIG. 9. ML-X parity-broken ground-state densities ρσ
1 (z) obtained from (1) by slightly displacing centers of harmonic traps in opposite

directions for NM = 5, NI = 2, gMI = 2, and aI/aM = 0.9. Induced one-body potentials V eff
σ (z) are calculated from (24) and ϕ̃σ

0 (z) are the
corresponding ground states. Horizontal lines are eigenenergies of (24).
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units of units of

(a)

(c)

(e)

(b)

(d)

(f)

FIG. 10. Mean-field (first column) and ML-X (second column) ground-state phase diagrams for NI = 1 impurity and NM = 10 (first row),
NM = 20 (second row), or NM = 1000 (third row) as a function of the intercomponent coupling strength gMI and impurity localization aI/aM =√

1/η with η = ωI/ωM being the trap frequency ratio and aσ = √
h̄/mωσ the harmonic oscillator length of species σ . The nomenclature of the

phases is as follows: M for miscible, MIM for core shell with impurity at the core, IMI for core shell with majority at the core, CF for composite
fermionization, and SB for a phase with broken parity symmetry. The blue solid curve (first column) represents the miscible-immiscible phase
boundary according to (19). The green solid curve (second column) is the miscible-immiscible phase boundary based on mean field. The coarse
structure is due to the finite step size of our data with respect to aI/aM .
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slightly entangled, while each species is partially fragmented.
We also evidenced that CF completely dominates the highly
correlated regime and made a link of its appearance to the
onset of SB on the mean-field level. Sometimes, CF is even
camouflaged behind core-shell IMI or MIM densities, indi-
cating that the one-body density is not enough to distinguish
between them.

V. PHASE SEPARATION: IMPACT
OF PARTICLE NUMBERS

When increasing the number of majority atoms NM , while
keeping NI fixed, one might expect two properties based on
an intuition for few-body systems. First, the location of the
strong entanglement regime will be shifted toward lower val-
ues of aI/aM ≈ √

1/ηc = 7
√

NI/NM . Thus, the IMI phase will
cover the most part of our parameter space for positive gMI .
Second, at a fixed η the critical coupling gc

MI
for the miscible-

immiscible transition will decrease, because according to (16)
the majority species will be able to induce a barrier for the
impurity species already for a much weaker coupling. The
induced barrier of the majority on the other hand will not be
affected according to (15).

Indeed, this is what we observe in the phase diagrams
depicted in Fig. 10. In the mean field (first column) the
location of the SB phase relocates from

√
1/ηc ≈ 0.79 [NM =

5, Fig. 1(a)] to
√

1/ηc ≈ 0.72 [NM = 10, Fig. 10(a)], then
to

√
1/ηc ≈ 0.65 [NM = 20, Fig. 10(b)] and finally moves

outside our parameter space
√

1/ηc ≈ 0.37 [NM = 1000,
Fig. 10(c)]. The blue curve, which estimates the miscible-
immiscible transition according to (19) is in good agree-
ment (except for the critical region ηc) with the mean-field
phase boundary. We also recognize that for a fixed trap
ratio η, the critical coupling strength gc

MI
decreases with

increasing NM and at NM = 1000 a very small gc
MI

< 0.05
is sufficient to cause phase separation, which is below our
resolution.

We have also performed the corresponding ML-X cal-
culations (second column) with S = sσ = 6 (first row), S =
sσ = 4 (second row), and S = sσ = 2 (third row) orbitals. We
remark that the latter case might not be converged to the exact
solution, which is beyond numerical capabilities to verify.
Still, it provides valuable beyond-mean-field corrections. The
deviations to the mean field, still clearly visible at NM = 10,
are most pronounced near ηc. They become less as the particle
imbalance is increased until finally at NM = 1000 the phase
diagrams almost coincide except for a small SB region. This
is mainly attributed to the fact that the strong entanglement
regime, where deviations are to be expected, moves outside
our parameter space (aI/aM < 0.5). Furthermore, the devia-
tions may still be there, but on a finer coupling scale gMI <

0.05 according to (15) and (16).

VI. CONCLUSIONS

In this work we have investigated the phase separation of
a quasi-1D inhomogeneous Bose-Bose mixture in a three-
dimensional parameter space spanned by the intercomponent

coupling gMI , harmonic length scale ratio aI/aM = √
1/η, and

the particle-number ratio NI/NM , when the intracomponent
couplings gσ are switched off. Although we have concentrated
on the case of equal masses, our results may be easily ex-
tended to the more general case of unequal masses. We expect
some quantitative changes, but the qualitative picture and the
line of argumentation will remain unchanged.

The commonly used separation criterion gMI >
√

gM gI ,
which is valid for homogeneous mixtures, would predict a
miscible-immiscible transition for any finite coupling gMI >

0. However, this separation rule does not apply here since
we have harmonic traps of different length scales. We have
analyzed the mechanism, which leads to phase separation, by
using an effective mean-field picture. Within this description
each species is subject to an additional induced potential
caused by the other component. This potential has initially a
Gaussian shape and grows linearly with the coupling strength
gMI . However, it does not immediately trigger a barrier at
the center of the harmonic trap. In fact, the species, which
first manages to induce a barrier for the other component
upon increasing the coupling gMI , will stay at the center of
its parabolic trap. Meanwhile, the other species will split
up, once the ground-state energy of the effective potential
drops below the barrier height. Thus, we end up with either a
core-shell IMI or a core-shell MIM phase, except for a highly
competitive region, where the barrier conditions can be met
simultaneously for both components. We have derived a sim-
ple rule to predict the type of phase separation, developed a
straightforward algorithm to identify the miscible-immiscible
phase boundary gc

MI
, and gave a rough estimate on the phase

boundary between the segregated phases gSB
MI .

As a next step, we compared mean-field (MF) results to
the numerically exact many-body calculations based on mul-
tilayer multiconfigurational time-dependent Hartree method
for atomic mixtures (ML-X). It turns out that MF agrees
well with ML-X far away from the critical region

√
1/ηc =

7
√

NI/NM . At ηc there are considerable quantitative deviations
and sometimes the two methods do not even agree on the type
of phase separation. This is caused by the growing interpar-
ticle correlations, which generate entanglement between the
components and increase the degree of species fragmentation.
We have seen that symmetry-broken phase (SB) is replaced
by composite fermionization (CF ), which is an entangled
parity-symmetric ground state. Furthermore, we have linked
the onset of SB to the fact that the entanglement entropy
reaches a certain threshold and saw a clear breakdown of
the effective single-particle picture in the strong entanglement
region in terms of a corresponding number state analysis. This
led to the discovery of a latent CF phase in the IMI region.
The latent CF phase has the characteristic one-body density
of the IMI phase, but a thorough analysis of the two-body
densities reveals typical CF features. We have argued that at
a finite coupling gMI the CF is not a simple superposition of
two SB states given by mean field.

We have studied the impact of particle-number variations,
which confirmed our intuition that ηc and thus the location
of the strong entanglement regime can be manipulated as
a function of the particle-number ratio. Furthermore, for a
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fixed particle-number ratio the critical coupling gc
MI

of the
miscible-immiscible transition can be tuned to lower values by
increasing the number of particles while keeping the particle-
number ratio fixed.

Finally, we remark that an intriguing next step would
be to perform a similar study of phase separation at finite
intracomponent coupling gσ . The broadening or shrinking of
the density profiles, depending on the sign and strength of gσ ,
will definitely modify the barrier conditions (15) and (16).

Another interesting but challenging direction would be the
nonequilibrium dynamics by quenching the trap ratio across
the phase boundaries.
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Abstract: We address the interplay of few lattice trapped bosons interacting with an impurity
atom in a box potential. For the ground state, a classification is performed based on the fidelity
allowing to quantify the susceptibility of the composite system to structural changes due to the
intercomponent coupling. We analyze the overall response at the many-body level and contrast
it to the single-particle level. By inspecting different entropy measures we capture the degree of
entanglement and intraspecies correlations for a wide range of intra- and intercomponent interactions
and lattice depths. We also spatially resolve the imprint of the entanglement on the one- and
two-body density distributions showcasing that it accelerates the phase separation process or acts
against spatial localization for repulsive and attractive intercomponent interactions, respectively.
The many-body effects on the tunneling dynamics of the individual components, resulting from
their counterflow, are also discussed. The tunneling period of the impurity is very sensitive to the
value of the impurity-medium coupling due to its effective dressing by the few-body medium. Our
work provides implications for engineering localized structures in correlated impurity settings using
species selective optical potentials.

Keywords: multi-layer multi-configuration time-dependent Hartree method (ML-MCTDHB); mix-
tures; impurity; fidelity; entanglement; von Neumann entropy; reduced densities; few-body dynamics

1. Introduction

Multicomponent quantum gases can be experimentally studied with a high degree
of controllability in the ultracold regime [1,2]. Specifically, two-component mixtures of
bosons or fermions can be trapped in various species selective external geometries [3,4].
Few-body ensembles can be realized in particular in one-dimension (1D) [5,6] while the
scattering lengths are tunable through Feshbach and confinement induced resonances [7,8].
In 1D bosonic mixtures the adjustability of the intercomponent interactions gives rise to
intriguing phenomena such as phase-separation processes [9,10] in the repulsive regime,
formation of bound states, e.g., droplet configurations [11,12] for attractive interactions as
well as quasiparticle-like states in highly particle imbalanced systems [13,14].

In this latter context, an impurity species is embedded in an environment of the
majority species called the medium. The presence of a finite impurity-medium coupling
leads to an effective picture where the impurity properties deviate from the bare particle
case exhibiting, for instance, an effective mass [15–18] and induced interactions [19–22]
mediated by the medium. The resultant states are often called polarons [23,24] and have
been experimentally realized mainly in higher-dimensions [25–29] and to a lesser extent
in 1D [13,30] using spectroscopic schemes. Since these settings consist of a few-body
subsystem they naturally show enhanced correlation properties, especially in 1D, rendering
their many-body treatment inevitable. In particular, the emergent impurity-medium
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entanglement can lead to spatial undulations of the medium. This mechanism is manifested,
for instance, as sound-wave emission [17,31] and collective excitations [32,33] of the host
or the formation of a bound state [34–36] between the impurity and atoms of the medium
for attractive interspecies interactions.

Another relevant ingredient is the external trapping geometry that the two compo-
nents experience. Indeed, for harmonically trapped and homogeneous systems remarkable
dynamical features of impurity physics include the spontaneous generation of localized
patterns [17,37–39], inelastic collisional aspects of driven impurities [40–42] with the sur-
rounding and their relaxation at long timescales [43–45]. On the other hand, when a lattice
potential is introduced the situation becomes more complicated giving rise, among others,
to doped insulator physics [46,47] and impurity transport [48–50]. Apparently, configuring
one component by manipulating its external trap while leaving the other intact, e.g., by
using a species selective external potential, it is possible to control the response of the
unperturbed component via the impurity-medium interaction [51,52]. For instance, oper-
ating in the lowest-band approximation it has been demonstrated that a lattice trapped
impurity interacting with a homogeneous host exhibits besides tunneling dynamics [53]
also self-trapping events [54,55] and can even undergo Bloch-oscillations [56]. The oppo-
site case, where the medium resides in the lattice, provides an experimental probe of the
impurity-medium collision parameters [57] and interaction strength [58].

In this work by considering an impurity in a box potential and a lattice trapped
few-body medium we examine how the latter affects the impurity’s spatial distribution
by means of (de-)localization for different lattice depths and intercomponent interactions.
Indeed, a lattice trapped medium can reside either in a superfluid or an insulating-like
phase [46], a fact that is expected to crucially impact the impurity’s configuration and
vice versa [59]. To address the ground state properties and quantum quench dynamics of
the above-discussed impurity setting we utilize the multi-layer multi-configuration time-
dependent Hartree method for atomic mixtures (ML-MCTDHX) [60–62]. This variational
method enables us to account for the relevant correlations of the mixture and operate
beyond the lowest-band approximation for the medium.

Focusing on the ground state of the system and in order to testify its overall response
for varying intercomponent interactions we determine the fidelity between the coupled
and decoupled composite system both at the many-body and the single-particle level. Note
that in impurity settings this observable is commonly termed residue [23,24] enabling
us to identify, e.g., the polaron formation, while the influence of the impurity-medium
entanglement in this observable is still an open issue. It is demonstrated that despite the
fact that the total entangled state may strongly deviate from its decoupled configuration,
this effect is arguably less pronounced or even diminished at the single-particle level.
Furthermore, we showcase that the build-up of impurity-medium entanglement is sensi-
tive to the interplay between the intercomponent interactions and the lattice depth [46].
Interestingly, stronger interactions do not necessarily lead to a larger amount of entangle-
ment, whereas the state of the majority species may undergo substantial structural changes,
which remain invisible at the single-particle level. Moreover, we identify the imprint of
the background on the impurities and vice versa by relying on one- and two-body density
distributions evincing a rich spatial structure of the components with respect to the lattice
depth as well as the inter- and intracomponent interactions. In particular, it is argued that
for repulsive (attractive) interactions the impurity delocalizes (localizes) around the central
lattice site. The delocalization of the impurity is accompanied by its phase-separation
with the majority component [63], where the impurity tends to the edges of the box for a
superfluid background or exhibits a multi-hump structure for an insulating medium. We
further analyze how much the intercomponent correlations are actually involved in the
structural changes observed in the spatial probability distributions. To this end we compare
density distributions of the numerically exact ground state to the corresponding ones of
an approximate non-entangled ground state. We identify that the entanglement-induced
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corrections accelerate phase-separation at repulsive couplings and generally slow down
spatial localization at attractive interactions.

Finally, we monitor the non-equilibrium dynamics of the mixture. We prepare the
system in a phase-separated, i.e., disentangled configuration, and quench the intercom-
ponent interactions to smaller values resulting in the counterflow of the components and
thus triggering their tunneling dynamics and the consequent build-up of entanglement.
The majority component plays the role of a material barrier for the impurity [50,64] which
performs tunneling oscillations whose period depends strongly on the impurity-medium
interaction. The many-body nature of the tunneling process of the components is testified
by invoking the individual natural orbitals constituting the time-evolved many-body state.

Our presentation is structured as follows. In Section 2, we introduce the impurity
setting and in Section 3 we discuss our many-body treatment to tackle its ground state
and dynamics. The ground state properties of the delocalized impurity and the lattice
trapped medium are addressed in Section 4. We analyze the fidelity between perturbed
and unperturbed (reduced) density operators, quantify the degree of entanglement and
visualize its impact on single- and two-body density distributions of each species for
different intra- and intercomponent interactions and lattice depths. The non-equilibrium
dynamics of the mixture following a quench of the impurity-medium coupling to smaller
values is discussed in Section 5. We provide a summary of our results and elaborate on
future perspectives in Section 6.

2. Setup and Hamiltonian

We consider a single impurity particle immersed in a few-body system of ultracold
bosons. Both components reside in a quasi-1D geometry ensured by a strong transversal
confinement [13]. Along the longitudinal direction the NA majority species atoms of mass
mA are trapped inside a lattice of depth V with l sites and length L with hard-wall boundary
conditions. The impurity atom of mass mB is subject to a box potential of the same length.
The species-dependent trapping has been successfully demonstrated experimentally [3,4].
The inter-particle interactions are of s-wave contact type with gAA denoting the majority-
majority interaction strength and gAB the majority-impurity coupling. Both may be tuned
independently by a combination of Feshbach and confinement induced resonances [7,8].
Furthermore, we assume equal masses mA = mB, which corresponds to a mixture of
the same isotope with the particles being distinguishable due to two different hyperfine
states [65–70]. By introducing R∗ = L and E∗ = h̄2/(mL2) as length and energy scales we
arrive at the following rescaled many-body Hamiltonian:

H = −1
2

∂2

∂y2 −
NA

∑
i

(
1
2

∂2

∂x2
i
+ V sin2(πlxi)

)
+ gAA

NA

∑
i<j

δ(xi − xj) + gAB

NA

∑
i

δ(xi − y), (1)

where y and xi denote the spatial coordinates of the impurity and ith majority
atom, respectively.

In this work we primarily focus on the ground state properties of the above many-body
Hamiltonian Equation (1) with l = 5 lattice sites and NA = 5 majority particles. In particu-
lar, we are interested in the susceptibility of the composite system to structural changes
and the amount of inter-particle correlations it may hold. We cover a parameter space
from moderately attractive to repulsive interaction strengths, i.e., gAA ∈ [−3.0, 3.0]E∗R∗

and gAB ∈ [−5.0, 5.0]E∗R∗, for a range of lattice depths from shallow to deep, namely
V ∈ [100, 1000]E∗. In the following, we will refer to a lattice as being shallow (V < 200),
moderately deep (V ≈ 500) and very deep (V > 800). We remark that in recoil units
the above parameters translate to gAA ∈ [−0.38, 0.38]Erecxrec, gAB ∈ [−0.64, 0.64]Erecxrec
and V ∈ [0.81, 8.1]Erec. Additionally, we demonstrate how an initially disentangled state
prepared in the immiscible regime acquires dynamically a finite amount of entanglement
after quenching the intercomponent coupling gAB, thus triggering a counter-flow tunneling
process of the two components.
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3. Variational Approach

In order to account for effects stemming from inter-particle correlations we rely on
the Multi-Layer Multi-Configurational Time-Dependent Hartree Method for atomic mix-
tures (ML-MCTDHX), for short ML-X [60–62]. This ab-initio method has been successfully
applied to solve the time-dependent Schrödinger equation of various experimentally ac-
cessible and extensively studied systems. The core idea of this method lies in expanding
the many-body wave-function in terms of product states of time-dependent single-particle
functions [71,72]. This becomes beneficial, when the number of basis configurations with
considerable contribution to the state fluctuates weakly during the time propagation,
whereas the configurations themselves do change. Taking a variationally optimal ba-
sis at each time-step allows us to cover the high-dimensional Hilbert space at a lower
computational cost compared to a time-independent basis.

The wave function ansatz for a given system is decomposed in multiple layers. On
the first layer, called top layer, we separate the degrees of freedom of the binary mixture
into product states of majority and impurity species functions |Ψσ

i (t)〉 with σ ∈ {A, B} and
i ∈ {1, . . . , S}:

|Ψ(t)〉 =
S

∑
i=1

√
λi(t) |ΨA

i (t)〉 ⊗ |ΨB
i (t)〉 . (2)

Here, the time-dependent coefficients λi(t), normalized as ∑S
i=1 λi(t) = 1, determine

the degree of entanglement between the components [73]. The choice of S = 1 results in
the so-called species mean-field (SMF) approximation, meaning that no entanglement is
assumed between the components [15]. In that case the intercomponent correlations, if
present, are neglected and every component is effectively subject to an additional one-body
potential induced by the fellow species [50,63]. In this work, we put a special emphasis on
the impact of the entanglement on several one- and two-body quantities by comparing the
numerically exact ground state to the corresponding SMF approximation.

On the second layer, called species layer, each species function |Ψσ
i (t)〉 is expanded

in terms of species-dependent symmetrized product states of single-particle functions
(SPFs) |ϕσ

j (t)〉 with j ∈ {1, . . . , sσ}, accounting for the bosonic nature of our particles and
abbreviated as |~nσ〉 = |nσ

1 , . . . , nσ
sσ
〉:

|Ψσ
i (t)〉 = ∑

~nσ |Nσ

Ci,~nσ (t) |~nσ(t)〉 . (3)

In this expression, the sum is performed over all configurations ~nσ|Nσ obeying the
particle-number constraint ∑sσ

i=1 nσ
i = Nσ. On the third and final layer, called primitive

layer, each SPF is represented on a one-dimensional time-independent grid [74].
The Dirac-Frenkel variational principle [75] is subsequently applied to the above

ansatz in order to derive the coupled equations of motion for the expansion coefficients
λi(t), Ci,~nσ (t) and the SPFs |ϕσ

j (t)〉. Finally, performing imaginary time-evolution one
arrives at the ground state wave-function (4), whereas the real time-propagation allows
to study the non-equilibrium dynamics of an arbitrary initial state (5). The results to be
presented below have been obtained by using (S, sA, sB) = (4, 5, 4) functions/SPFs on the
top/species layers as well as 225 grid points on the primitive layer. We have carefully
checked the convergence behavior of our results by comparing to simulations with a larger
number of orbitals (S, sA, sB) = (6, 8, 6) and found no significant changes for the quantities
of interest.

In the following we will often refer to the reduced j-body density operators ρ̂σ
j of

species σ and the intercomponent reduced (j + k)-body density operator ρ̂σσ̄
j+k obtained

from the many-body density operator ρ̂ = |Ψ〉 〈Ψ|:

ρ̂σ
j = trNσ\j{trNσ̄

{ρ̂}}, (4)

ρ̂σσ̄
j+k = trNσ\j{trNσ̄\k

{ρ̂}}, (5)
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where Nσ \ j stands for integrating out Nσ − j coordinates of component σ and σ̄ 6= σ. Of
particular interest are the reduced one-body density operators ρ̂A

1 and ρ̂B
1 as well as the

reduced two-body intra- and intercomponent density operators ρ̂A
2 and ρ̂AB

2 , respectively,
since they determine the expectation values of various experimentally accessible local one-
and two-body observables, such as the average particle position, the inter-atomic distance
or the wave-packet width.

4. Impact of Intercomponent Coupling on Ground State Properties

In Section 4.1, we analyze to which extent the many-body wave-function as well as
the reduced one-body density operators are modified by the intercomponent interaction.
To this end we analyze the fidelity between the interacting and non-interacting (reduced)
density operators, which is a measure of their closeness. We find that with increasing
absolute value of the interaction strength the system is more robust w.r.t. changes on the
one-body as compared to the many-body level. Moreover, each component is affected
differently depending on the lattice depth and majority interaction strength.

Subsequently, in Section 4.2 we quantify the degree of entanglement by means of
the von Neumann entropy and identify parameter regions with substantial inter-particle
correlations. Interestingly, increasing the absolute value of the intercomponent coupling
does not always result in stronger entanglement. In fact, there are parameter regions where
a strongly interacting ground state becomes almost orthogonal to the non-interacting one
and the components remain to a good approximation disentangled.

Finally, we combine insights from Sections 4.1 and 4.2 to identify interesting param-
eter regimes and perform an in-depth analysis of the underlying physical phenomena
in Section 4.3. In particular, we inspect how the spatial representation of density operators
is altered and compare those to the corresponding SMF results. The latter allows us to
spatially resolve the corrections to the SMF densities induced by the entanglement and
interpret its impact as acceleration or deceleration of the undergoing processes, e.g., the
phase separation or localization.

4.1. Fidelity for Quantifying the Impact of the Intercomponent Interaction

First, we aim to analyze how the intercomponent coupling gAB impacts the ground
state of non-interacting species (NIS) at gAB = 0. For this purpose, we evaluate the
fidelity [76] of two density operators ρ̂ and σ̂ defined as:

F(ρ̂, σ̂) =

(
tr
√√

ρ̂σ̂
√

ρ̂

)2
= F(σ̂, ρ̂). (6)

We start with the fidelity between a NIS many-body density ρ̂0 = |Ψ0〉 〈Ψ0| and a
many-body density ρ̂g = |Ψg〉 〈Ψg| for some finite coupling gAB (Figure 1). Since both
density operators describe pure states, Equation (6) reduces to Fmb = | 〈Ψ0|Ψg〉 |2. This
measure, Fmb, is also known as the polaron residue studied in the context of phonon
dressing of an impurity particle immersed in a bath of majority atoms [23,24].

For a weakly interacting (gAA = 0.5) majority component Figure 1a we observe
that the many-body fidelity at a fixed lattice depth decreases monotonously with the
modulus of the coupling strength gAB. At deep lattices the rate of its reduction is larger, a
behavior which is even more pronounced at strong negative gAB, where the interacting
state becomes almost orthogonal to the non-interacting one (gAB = −5 and V = 1000).
The black dashed line encircles a parameter region of instability where the SMF ansatz
collapses to a configuration with broken parity symmetry. For a moderately interacting
(gAA = 3.0) majority component Figure 1b the many-body fidelity becomes much more
stable. Contrarily to Figure 1a the rate of reduction with gAB is larger at shallow lattices
instead. Finally, for a moderately deep (V = 500) lattice Figure 1c we observe a peculiar
fast decay around gAA ≈ −1 starting at gAB < −2. Additionally, at gAA ≈ −1 and positive
gAB there is a small pronounced decay region (black dashed circle), which is absent in the
SMF approximation.
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Figure 1. Fidelity | 〈Ψ0|Ψg〉 |2 between a many-body state |Ψ0〉 at gAB = 0 and a many-body one |Ψg〉
at finite gAB, for (a) gAA = 0.5, (b) gAA = 3.0 and (c) V = 500 as a function of the majority-impurity
coupling gAB and the lattice depth V (a,b) or the interaction strength of the majority atoms gAA (c).
All quantities are given in box units with characteristic length R∗ = L and energy E∗ = h̄2/(mL2)

with L denoting the extension of the box trap. Regions encircled by black dashed lines indicate
parameter regions with substantial qualitative differences to the SMF ansatz.

Next, we analyze the fidelity between a free impurity described by a pure state
|Φ0〉 〈Φ0| and an entangled one ρ̂B

1 , in general being a mixed state Figure 2. Equation (6)
then simplifies to FB

1 = | 〈Φ0| ρ̂B
1 |Φ0〉 |2. This measure allows to judge to which extent the

impurity atom is still a "free" particle of mass mB. We emphasize that it should not be con-
fused with a polaron quasi-particle having a renormalized effective mass. We observe that
FB

1 follows overall a similar pattern as the many-body fidelity Fmb, but with a significantly
slower decay rate. Though there are some strong qualitative differences, see in particular
Figure 2c. Namely, the abrupt decay of Fmb around gAA ≈ −1 at negative gAB Figure 1c is
absent in FB

1 along with the small decay region at positive gAB (black dashed circle). From
this we anticipate that the majority component is responsible for these features in Fmb.

For the above reason, we now investigate the complementary fidelity FA
1 = F(ρ̂A

1 (gAB =
0), ρ̂A

1 ), i.e., between mixed states characterizing a majority particle in the NIS state
ρ̂A

1 (gAB = 0) and in the interacting state ρ̂A
1 Figure 3. This quantity captures to which extent

a majority particle is still in a mixed state induced solely by the intraspecies interaction
strength gAA. In case of a weak gAA Figure 3a FA

1 is notably affected only at deep lattices
V > 600 and strong negative coupling gAB < −4. For large gAA Figure 3b we observe that
the intercomponent correlations are not strong enough to overcome the intraspecies ones,
thus barely affecting the mixedness of the NIS majority state, since FA

1 ≈ 1 in the whole
range −2 < gAB < 5 and 100 < V < 700. In Figure 3c we find evidence that the majority
component is indeed responsible for the particular decay patterns observed in the many-
body fidelity Fmb, which were absent in FB

1 . Overall, the majority component demonstrates
a higher level of robustness at the single-particle level as compared to the impurity.

Figure 2. Fidelity FB
1 = | 〈Φ0| ρ̂B

1 |Φ0〉 |2 between a free impurity particle |Φ0〉 at gAB = 0 and an
entangled one ρ̂B

1 at finite gAB, for (a) gAA = 0.5, (b) gAA = 3.0 and (c) V = 500 and varying
majority-impurity coupling gAB and the lattice depth V or the interaction strength of the majority
atoms gAA. All quantities are expressed in box units with characteristic length R∗ = L and energy
E∗ = h̄2/(mL2) while L is the extension of the box trap.
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Figure 3. Fidelity FA
1 = F(ρ̂A

1 , ρ̂A
1 (gAB = 0)) between mixed states characterizing a majority particle

when the medium is disentangled ρ̂A
1 (gAB = 0) and entangled ρ̂A

1 with the impurity atom, for (a)
gAA = 0.5, (b) gAA = 3.0 and (c) V = 500 as a function of the majority-impurity coupling gAB and
the lattice depth V (a,b) or the interaction strength of the majority atoms gAA (c). All quantities are
provided in box units of characteristic length R∗ = L and energy E∗ = h̄2/(mL2) with L being the
extension of the box trap.

4.2. Entropy Measures for Quantifying the Degree of Correlations

As we have seen in the previous section, an initially disentangled composite system
may be drastically influenced by the intercomponent coupling. However, it is far from
obvious to which extent the correlations are actually involved when the ground state
undergoes structural changes [77]. For instance, a strongly interacting ground state may
in fact just represent a different disentangled state or a state seemingly unaffected by the
coupling may feature substantial correlations which guarantee its robustness. To investigate
these intriguing possibilities we perform a further classification based on the degree of
inter-particle correlations.

To quantify the degree of correlations in our impurity system we use the von Neu-
mann entropy of the reduced density operators [78]. Here, we distinguish between the
entanglement entropy SvN of the reduced density operator ρ̂σ of species σ [9,46] and
the fragmentation entropy Sσ

vN of the reduced one-body density operator ρ̂σ
1 of species

σ [52,79,80]. The former, ρ̂σ, is obtained by tracing the density operator ρ̂ of the composite
many-body system over one of the species, while the latter, ρ̂σ

1 , by additionally tracing
ρ̂σ over all of the particles of the remaining component except one. In the presence of
correlations the resulting reduced density operator will describe a mixed state. The en-
tanglement entropy is caused by intercomponent correlations whereas the fragmentation
entropy is primarily a signature of intracomponent ones, though it can be greatly impacted
once the intercomponent correlations become dominant. Explicitly, the entanglement and
fragmentation entropies are given as:

SvN = − tr(ρ̂σ ln ρ̂σ) = −
S

∑
i=1

λi ln λi with ρ̂σ = trσ̄(ρ̂) =
S

∑
i=1

λi |Ψσ
i 〉 〈Ψσ

i | , (7)

Sσ
vN = − tr(ρ̂σ

1 ln ρ̂σ
1 ) = −

sσ

∑
i=1

nσ
i ln nσ

i with ρ̂σ
1 = trNσ−1(ρ̂

σ) =
sσ

∑
i=1

nσ
i |Φσ

i 〉 〈Φσ
i | . (8)

In these expressions, λi and |Ψσ
i 〉 denote the natural populations and natural orbitals

of the spectrally decomposed ρ̂σ, while nσ
i and |Φσ

i 〉 are the natural populations and natural
orbitals of the spectrally decomposed ρ̂σ

1 [60,72]. Furthermore, S and sσ are the number of
species orbitals and single-particle functions, respectively, Nσ is the number of σ component
particles and σ 6= σ̄.

In the following, we display the species entanglement SvN from Equation (7)
Figure 4 and the majority fragmentation SA

vN from Equation (8) Figure 5 as a function
of the majority-impurity coupling gAB and the lattice depth V or the interaction strength
of the majority atoms gAA. In case the entanglement entropy SvN is close to zero, the
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corresponding subsystems are to a very good approximation disentangled. Thus, making a
SMF ansatz in Equation (2) would greatly facilitate numerical calculations while providing
quantitatively good results for physical observables. On the other hand, already moderate
values of entanglement may have an impact on some physical quantities with measurable
differences to the SMF approximation, whereas local peaks may indicate phase transi-
tions [10,81,82]. Regarding the fragmentation entropy of interacting majority atoms SA

vN it
is highly non-trivial to predict how their intrinsic mixedness, caused by the intra-particle
interactions gAA, can be changed by the intercomponent coupling gAB.

4.2.1. Weakly Repulsive Interacting Majority Component

For a weakly interacting majority component with gAA = 0.5, the entanglement
entropy SvN Figure 4a displays two different behaviors depending on the sign of the
coupling strength. For positive gAB it increases gradually with increasing coupling strength
gAB, with the build-up being faster for a deeper lattice [52]. This is related to the onset
of phase separation taking place sooner for a deeper lattice with increasing gAB (see also
the discussion in Section 4.3). Turning to negative gAB the entanglement entropy first
grows gradually with decreasing coupling strength gAB, but then, for larger V below some
threshold value, the entanglement reduces to almost zero (gAB < −4 and V > 600). Apart
from the above mentioned pattern the overall behavior of SvN in Figure 4a is very similar
to the one observed in the corresponding many-body fidelity Figure 1a.

Figure 4. Entanglement entropy SvN , see Equation (7), for (a) gAA = 0.5, (b) gAA = 3.0 and
(c) V = 500 with varying majority-impurity coupling gAB and the lattice depth V (a,b) or the interac-
tion strength of the majority atoms gAA (c). All quantities are given in box units with characteristic
length R∗ = L and energy E∗ = h̄2/(mL2) with L denoting the extension of the box trap.

The fragmentation entropy of the majority component SA
vN Figure 5a at gAB = 0 is

larger for a deeper lattice. The reason is that the ratio of the intraspecies interaction energy
and the single-particle energy of the majority component increases with a larger V or gAA.
In the limit of an infinitely deep lattice or an infinitely strong intraspecies repulsion we
expect full fermionization, meaning that the one-body density operator becomes a mixed
state with a uniform distribution of natural orbitals and the fragmentation entropy of the
majority component reaches the value ln(NA) ≈ 1.6. However, we observe that we are
operating far away from that limit, since max SA

vN < 0.4.
At positive gAB, as the entanglement entropy SvN builds up Figure 4a, the fragmenta-

tion entropy SA
vN of the majority component at gAB = 0 is more robust to variations of gAB

at deeper lattice depths compared to shallow lattices Figure 5a. Once the entanglement
becomes strong enough to overcome intracomponent correlations, the fragmentation en-
tropy of the majority atoms starts to increase with a fast rate (e.g., V = 1000, gAB > 4). At
negative gAB, if the medium features a small fragmentation entropy at gAB = 0 (V < 900),
then SA

vN rises first with decreasing gAB, reaches a local maximum and finally drops to very
small values at a sufficiently strong coupling strength. In contrast, if the fragmentation
entropy of the decoupled majority component has already reached a moderate magnitude
(V > 900), then the initial fragmentation is gradually reduced with decreasing gAB, until fi-
nally both entropies become negligibly small (gAB < −4). Once that happens, the resulting
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many-body state becomes to a good approximation a disentangled composite state with a
condensed majority component.

Figure 5. Fragmentation entropy SA
vN , see Equation (8), for (a) gAA = 0.5, (b) gAA = 3.0 and

(c) V = 500 with respect to the majority-impurity coupling gAB and the lattice depth V (a,b) or the
interaction strength of the majority atoms gAA (c). All quantities are provided in terms of box units
with characteristic length R∗ = L and energy E∗ = h̄2/(mL2) while L denotes the extension of the
box trap.

4.2.2. Moderately Repulsive Interacting Majority Component

The entanglement entropy SvN of a moderately interacting majority medium at
gAA = 3.0 in Figure 4b displays the same qualitative behavior as the many-body fidelity
Fmb shown in Figure 1b. Contrary to gAA = 0.5 the entanglement is overall less pronounced
and builds up faster at shallow lattice depths instead. Such a comparatively weak entan-
glement leaves only a minor imprint on the fragmentation of the majority component SA

vN ,
see Figure 5b, manifested as a weak dependence on the coupling gAB. The fragmentation
of the majority species is substantial compared to gAA = 0.5 Figure 5a at the same lattice
depth. Nevertheless, the fermionization limit is not yet reached, since max SA

vN ≈ 0.8. The
intercomponent correlations are not strong enough to overcome the intraspecies ones in
accordance with the robustness of the majority component observed on the one-body level
in Figure 3b. From this we expect a rather small impact of entanglement on observables,
which depend solely on the majority particle distribution.

4.2.3. Attractively Interacting Majority Component

Finally, we analyze the dependence of the above-described entropy measures on
the intraspecies interaction strength gAA for a moderately deep lattice depth V = 500
Figures 4c and 5c. Since repulsive interactions have been already amply covered, we here
concentrate on negative gAA and gAB.

As it can be readily seen, there is a parameter sector at gAB < 0 and gAA > −1 contain-
ing high values for the entanglement entropy SvN Figure 4c. This sector displays a similar
behavior to SvN in Figure 4a at negative couplings, namely starting from the decoupled
regime, the entanglement grows with decreasing gAB, only to drastically decrease below
some negative threshold value of gAB. This threshold for gAB lies at lower values the
higher the intracomponent interaction strength gAA is. We find that this abrupt decay of
SvN coincides with the one observed in the many-body fidelity Fmb Figure 1c. This suggests
that the disappearance of intercomponent correlations leads to an increased susceptibility
of the system to gAB variation. The other decay region, present in Fmb at gAA ≈ −1 and
negative gAB, is missing in the entanglement entropy SvN . Form this we infer that it can be
understood within the SMF picture. Additionally, there is also another much smaller sector
characterized by a high entanglement entropy at gAB > 0 and gAA ≈ −1. It is directly
related to structural changes observed in Fmb and FA

1 at the same values Figures 1c and 3c,
which would have been absent in the SMF picture. Apart from that, below gAA < −1 the
entanglement entropy among the components is either absent or of minor relevance.

Previously, we have mentioned that an isolated majority species, which interacts
repulsively (gAA > 0), features a higher degree of fragmentation the larger gAA is. In
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the case of attractive interactions (gAA < 0), however, the situation is different. Namely,
starting from gAA = 0 the fragmentation entropy tends first to increase with decreasing
gAA, but then decreases up to the point of describing approximately a condensed state
again see Figure 5c at gAB = 0. Regarding the impact of the intercomponent coupling
gAB on SA

vN we observe overall very similar patterns as for the entanglement entropy SvN
Figure 4c. Regions where both entropic measures SvN and SA

vN are of small magnitude
remind of the corresponding sectors in Figures 4a and 5a at V > 800 and gAB < −4.

4.3. Single- and Two-Particle Density Distributions

The measures of fidelity and entropy discussed in the previous sections are very useful
in identifying parameter regions being substantially impacted and/or highly correlated
indicating regimes of high interest for further investigation. However, they do not provide
insights into the actually undergoing processes. To get a better understanding we ask
for the impact on measurable quantities such as the one-body and two-body density
distribution functions, which can be accessed by fluorescence imaging with a quantum gas
microscope [83–87].

In the following, ρσ
1 (z) describes the probability density to find a single particle of

species σ at position z, while ρσσ̄
2 (z1, z2) denotes the probability density to simultaneously

measure one particle of species σ at position z1 and another one of the same or different
species σ̄ at position z2. The expectation value of any local observable depending on up
to two degrees of freedom can be evaluated as an overlap integral with the appropriate
probability density. Since many local observables often depend only on the distance
between the particles, i.e., O(z1, z2) = O(z1 − z2), we replace ρσσ̄

2 (z1, z2) by the probability
density ρσσ̄

r (r) to measure two particles belonging to the same or different species at a
relative distance r independent of their individual positions. To this end we perform a
coordinate transformation R = (z1 + z2)/2 and r = z1 − z2 giving the following identity:

∫
ρσσ̄

2 (z1, z2) dz1 dz2 =
∫

ρσσ̄
2 (r, R) dr dR. (9)

Then we define:

ρσσ̄
r (r) =

∫
ρσσ̄

2 (r, R) dR. (10)

Our first goal here is to investigate how the above mentioned quantities are affected
in parameter sectors displaying strong susceptibility to structural changes identified in
Section 4.1 and, in particular, whether the density distributions are capable to capture the
undergoing changes in the many-body state.

Our second goal is to extract the impact of the entanglement. To this end we compare
the above density distributions obtained from the variational ML-X calculations to the
ones where the SMF ansatz is assumed. The latter will be distinguished by a tilde sign
placed on top of the corresponding quantities. In the following, we shall evince that a large
entanglement entropy identified in Section 4.2 has indeed a notable impact, but not always
on all of the above mentioned density distributions. Thus, it may enhance or impede the
effects coming from the induced SMF potential, such as phase separation and localization,
or affect the bunching properties of the majority component.

4.3.1. Weakly Repulsive Interacting Majority Component

For a shallow lattice (V = 100) we observe in Figure 6 that the majority component
(panel a1) at gAB = 0 occupies mainly the central site (at z = 0) and the two intermediate
ones (at z = ±0.2), while ρAA

r (panel c1) features an almost Gaussian shape due to weak
intraspecies correlations. At moderate positive couplings (gAB > 3) both quantities are only
slightly affected in accordance with the robustness of FA

1 in this interaction regime Figure 3a.
At moderate negative couplings (gAB < −3) both ρA

1 and ρAA
r shrink with decreasing gAB

indicating an increased bunching tendency of the majority atoms towards the central lattice
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site. The impact of entanglement here is moderate. It leads to an increased probability for
the majority component to occupy the two intermediate sites, while disfavoring the central
site (panel a2). Thus, it acts as an inhibitor of localization at negative gAB and counteracts
changes induced by the SMF potential at positive gAB. Furthermore, entanglement favors
bunching of the majority particles independent of the sign of the coupling (panel c2).

a1

a2

b1

b2

c1 d1

d2c2

Figure 6. Upper panels: one-body probability densities ρA
1 (x), ρB

1 (y) (see Equation (4)) and distance probability distributions
ρAA

r (x1 − x2), ρAB
r (x − y) (see Equation (10)) at gAA = 0.5, V = 100 and for various values of gAB (see legend). Lower

panels: difference between probability densities obtained from the variational ML-X simulations and the SMF ansatz, the
latter distinguished by a tilde sign. All quantities are given in box units with characteristic length R∗ = L and energy
E∗ = h̄2/(mL2) with L being the extension of the box trap.

The decoupled impurity particle (panel b1) occupies the ground state of the box
potential. At moderate positive couplings it develops two humps and forms a shell around
the majority component density, a signature of phase separation [46,63] further confirmed
by the appearance of two humps in ρAB

r (panel d1). At negative couplings ρB
1 and ρAB

r shrink
with decreasing gAB accumulating around the trap center. The entanglement favors the
process of phase separation at positive couplings and bunching between the two species at
negative couplings (panel d2), while slowing down the shrinking of ρB

1 at negative coupling
(panel b2). We also remark that upon reaching a certain threshold value of gAB > 4, the
SMF solution experiences breaking of parity symmetry, causing substantial differences to
the many-body symmetry-preserving solution (not shown).

For a deep lattice (V = 1000) in Figure 7 the majority component (panel a1) at gAB = 0
displays an almost uniform distribution over all the lattice sites, while ρAA

r (panel c1)
features a multi-hump structure due to stronger intraspecies correlations cf. Figure 5a). At
moderate positive couplings (gAB > 3) the width of ρA

1 and ρAA
r is only slightly increased,

again in accordance with the robustness of FA
1 Figure 3a. Thus, the majority component,

experiencing the presence of a repelling impurity atom, shows a slight enhancement
of the already present delocalization over the lattice. At moderate negative couplings
(gAB < −3) both ρA

1 and ρAA
r shrink with decreasing gAB to the extent where all atoms

occupy predominantly only the central site (gAB < −4). Such a large difference to the
non-interacting ground state is in accordance with the observations made in FA

1 Figure 3a.
The impact of entanglement is structurally different compared to a shallow lattice

(panels a2 and c2). At positive couplings, the entanglement greatly increases the probability
for the majority atoms to be found at the central site, while decreasing the probability at
outer sites (z = ±0.4) and being indifferent to the intermediate sites (panel a2). Additionally,
it favors the bunching of the majority particles at the same or neighboring sites and
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disfavors them being more than two sites apart (panel c2). At negative couplings, it acts
in a similar way as in the case of shallow lattices, except that for a sufficiently strong
coupling strength (gAB < −4), where both entropy measures are of small magnitude see
Figures 4a and 5a, the SMF ansatz is in good accordance with the many-body solution.

a1

a2

b1

b2

c1 d1

d2c2

Figure 7. Upper panels: one-body probability densities ρA
1 (x), ρB

1 (y) (see Equation (4)) and distance probability distri-
butions ρAA

r (x1 − x2), ρAB
r (x− y) (see Equation (10)) at gAA = 0.5, V = 1000 and for various values of gAB (see legend).

Lower panels: difference between probability densities obtained from many-body ML-X calculations and SMF ansatz, the
latter distinguished by a tilde sign. All quantities are given in box units with characteristic length R∗ = L and energy
E∗ = h̄2/(mL2) with L denoting the extension of the box trap.

The impurity particle (panel b1) at positive couplings (gAB > 3) first develops two
humps, but then as the coupling increases, the relative distance between those peaks
grows, while the humps themselves become flatter. There is a strong signature of an
onset of a four-peak structure at gAB = 5. This is in accordance with the increasing
relative distance between the species (panel d1) and the fact that the majority atoms are
distributed uniformly over all the lattice sites in contrast to gAA = 0.5, where the majority
component was occupying mainly the central and the intermediate sites. At negative
couplings (gAB < −3) ρB

1 and ρAB
r shrink with decreasing gAB.

The entanglement favors the process where the impurity atom moves from the box
center to its boundaries independently of the sign of the coupling (panel b2). At gAB < −4.0
it plays only a minor role, the same as for the majority component. Regarding ρAB

r , at
positive couplings the entanglement favors the process of phase separation by pushing the
impurity particle more than two sites apart from a majority atom (panel d2). At negative
couplings it enhances the bunching between the two species, even when the entanglement
entropy is very small (e.g., at gAB = −5.0).

4.3.2. Moderately Repulsive Interacting Majority Component

Considering our findings regarding fidelity and entropy measures we investigate
here only shallow lattices at positive couplings Figure 8, where the structural changes
caused by the coupling and the entanglement entropy SvN may have a sizable impact on
density distributions. The decoupled density of the majority component (panel a1) has
three pronounced humps at the central (z = 0) and intermediate sites (z = ±0.2). The
profile is overall more spread compared to a weakly interacting majority (cf. Figure 6 panel
a1). Indeed, it is most beneficial for two particles to occupy neighboring sites (see the
two humps in panel c1). The majority component gets only a weak feedback from the
presence of a repulsive impurity atom, even at coupling strengths comparable to gAA in
accordance with the robustness of FA

1 in Figure 3b. The role of the entanglement is also
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rather weak, though qualitatively different to gAA = 0.5 in Figure 6. Thus, it increases the
probability for the majority particle to be found at the region enclosed between the two
intermediate sites, while decreasing the probability to be detected outside of that region
(panel a2). Furthermore, it favors particle distances of a half lattice constant (al = 0.2R∗)
(panel c2).

a1

a2

b1

b2

c1 d1

d2c2

Figure 8. Upper panels: one-body probability densities ρA
1 (x), ρB

1 (y) (see Equation (4)) and distance probability distributions
ρAA

r (x1 − x2), ρAB
r (x− y) (see Equation (10)) at gAA = 3.0, V = 100 and for different values of gAB (see legend). Lower

panels: difference between probability densities obtained from the many-body ML-X calculations and SMF ansatz, the latter
distinguished by a tilde sign. All quantities are provide in terms of box units with characteristic length R∗ = L and energy
E∗ = h̄2/(mL2) while L is the extension of the box trap.

The impurity particle (panel b1) experiences phase separation similar to Figure 6
(panel b1), i.e., upon increasing gAB it develops two humps with a minimum at the trap
center. Then, those humps separate and flatten, until finally they would form a four-
hump structure with three local minima located at the position of the three peaks in the
majority component density (compare to panel a1). The separation between the species is
again clearly manifested as two humps in ρAB

r with favored distance of a lattice constant
(al = 0.2R∗) (panel d1). The entanglement affects the impurity atom in quite an opposite
way when compared to the majority component (panel b2), i.e., it decreases the probability
for the impurity atom to be found at the region enclosed between the two intermediate
sites, while increasing the probability to lie outside of that region. Additionally, similar to
the behavior at weaker gAA (cf. Figure 6 panel d2), the entanglement accelerates the phase
separation process (panel d2).

4.3.3. Attractively Interacting Majority Component

Finally, we concentrate on negative intraspecies interactions gAA, namely a weak
negative gAA = −0.4 at negative gAB Figure 9, contained in the parameter sector with
substantial entanglement entropy Figure 4c.

In Figure 9, a decoupled majority atom where gAB = 0 is localized at the central
(z = 0) and intermediate (z = ±0.2) wells (panel a1). Even though the majority atoms are
attracted to each other, the probability to be one or even two wells apart is still sizable
(panel c1). With decreasing gAB both ρA

1 and ρAA
r shrink to a Gaussian. The impact of

entanglement is quite different compared to the previously considered cases. Thus, at
gAB > −4.8 the entanglement slows down the process of ρA

1 localization at the central well
(panel a2). The strongest impact is reached around gAB ≈ −2.4, where the entanglement
entropy is largest for the given value of intracomponent interaction gAA = −0.4 Figure 4c.
Below gAB < −4.8, as the entanglement entropy suddenly drops, so does the difference to
the SMF ansatz. The intercomponent correlations favor clustering of the majority atoms at
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−2.4 < gAB < 0 and gAB < −4.2, whereas at −4.2 < gAB < −2.4, where the entanglement
entropy is largest, they inhibit the clustering (panel c2).

a1

a2

b1

b2

c1 d1

d2c2

Figure 9. Upper panels: one-body probability densities ρA
1 (x), ρB

1 (y) (see Equation (4)) and distance probability distributions
ρAA

r (x1 − x2), ρAB
r (x− y) (see Equation (10)) at gAA = −0.4, V = 500 and for various values of gAB (see legend). Lower

panels: difference between probability densities obtained from the variational ML-X simulations and SMF ansatz, the
latter distinguished by a tilde sign. All quantities are expressed in box units of characteristic length R∗ = L and energy
E∗ = h̄2/(mL2) while L being the extension of the box trap.

The impurity density ρB
1 shows a similar behavior as the majority component density

(panel b1), also in terms of the role of the entanglement (panel b2). The width of ρAB
r

shrinks with decreasing gAB (panel d1), while the entanglement enhances the bunching
between the two species (panel d2).

5. Quench Induced Tunneling Dynamics

Having analyzed in detail the ground state properties of our system, we subsequently
study the dynamical response of a single impurity coupled to a lattice trapped species upon
quenching the interspecies interaction strength gAB. To this end we prepare the system in its
ground state for V = 500, gAB = 6.0 and gAA = 0.5, leading to the formation of a two-fold
degeneracy in the ground state and the two species phase separate [46]. In this sense, the
ground state one-body density is given by a superposition state of two parity-symmetry
broken configurations, where the density of the first one is depicted in Figure 10a and the
second one corresponds to its parity-symmetric (with respect to x = 0) counterpart. It is
possible to remove this degeneracy in order to select any of the states in the respective
degenerate manifold. Technically, this is done by applying a small asymmetry, e.g., a tilt, to
the lattice potential, thereby breaking the parity symmetry and energetically favoring one
of the above-mentioned states [50].

To trigger the dynamics starting from the initial state configuration illustrated in
Figure 10a we quench the interspecies interaction strength to a smaller value. As a rep-
resentative example of the emergent tunneling dynamics of each species we present the
temporal evolution of the corresponding one-body densities in Figure 10c,d following a
quench to gAB = 4.5, while keeping fixed V = 500 and gAA = 0.5. In this case the impurity
performs an oscillatory motion which is reminiscent of the tunneling of a particle in a
double-well. This can be attributed to the lifting of the degeneracy for smaller interspecies
interaction strengths. For a post-quench value of gAB = 4.5 the initially prepared state has
a substantial overlap with the post-quench ground state and the first excited state such
that in the course of the dynamics the system will oscillate between those two. This is
similar to a single particle in a double-well which is prepared as a superposition of the
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first doublet and undergoes a tunneling between the sites. Correspondingly, the majority
species will undergo a collective tunneling in the lattice geometry [50,53]. Thus, the prob-
ability distribution of a single majority species particle will oscillate between the initial
distribution Figure 10a and its parity-symmetric counterpart. Due to the repulsive nature
of the interspecies coupling the two species move in opposite directions such that they end
up in phase-separated configurations after half a period. Note that the oscillation period,
being the energy gap between the two energetically lowest eigenstates of the post-quench
Hamiltonian (not shown here), depends on the post-quench gAB. This can be easily verified
by monitoring the temporal evolution of the averaged position of the impurity [13] which
is defined as

〈X̂B〉 =
∫ L/2

−L/2
dxρB

1 (x)x. (11)

Figure 10. (a) One-body density ρσ
1 (x) of the initial state configuration for V = 500, gAA = 0.5 and gAB = 6.0 at t = 0.

Temporal evolution of (b) the averaged position of the impurity 〈X̂B〉 (see Equation (11)), (c) the one-body density of the
majority species and (d) the one-body density of the impurity upon quenching the interspecies interaction strength to
gAB = 4.5.

For various post-quench gAB we find that the impurity will occupy its parity-symmetric
counterpart, reflected in the decrease of 〈X̂B〉 towards negative values, while the oscillation
decreases with smaller gAB Figure 10b.

In order to gain insight into beyond mean-field effects we investigate the natural
populations nσ

j (see Equation (8)) which indicate the degree of fragmentation of the sub-
system [9,71]. For simplicity here we present the populations of the first two dominantly
populated natural orbitals while using six orbitals in the actual calculations. The initial
depletion of both subsystems is rather small, i.e., nA

1 ≈ 0.996 and nB
1 ≈ 0.99, such that any

decrease of these populations upon quenching gAB is due to dynamical many-body effects.
We find that for both subsystems dominantly two natural orbitals contribute during the
dynamics Figure 11c,d, while the ones of the medium are less impacted by the quench. For
the natural populations of the impurity signatures of an oscillation can be observed, where
nB

1 initially decreases and revives back towards nB
1 ≈ 0.99, while nB

2 initially increases and
afterwards drops back to nearly zero. In order to attribute the occupation of the additional
natural orbital to physical processes, we analyze the spatial distribution of the natural
orbitals ΦB

j (x, t) (see Equation (8)) themselves focusing on the impurity Figure 11a,b. In
Figure 11a we observe that the first natural orbital corresponds to the oscillatory behav-
ior of the one-body density of the impurity, but lacking the smooth transition between
the phase-separated configurations (see Figure 10d). The first natural orbital dominates
during the dynamics and we can interpret its behavior as corresponding to the presence
of the phase-separated density configurations. Consequently, the second natural orbital
Figure 11b, resembling the mirror image of the first one, contributes to deviations from
this solution. Due to its structure we can deduce that it is responsible for initiating the
transport of the impurity, thereby allowing for the counterflow of the two species. Note
that the presence of more than one natural orbital during the dynamics is a clear signature
that mean-field theory would not provide an accurate description of the system dynamics.

8.0 entangling lattice-trapped bosons with a free impurity 133



Entropy 2021, 23, 290 16 of 20

Hence, the fact that |ΦB
2 〉 is occupied is a manifestation of many-body effects, influencing

the motion of both species.

Figure 11. Temporal evolution of the density of (a) the first and (b) the second natural orbital ΦB
j (x, t) (see Equation (8))

of the impurity and (c), (d) the natural populations nσ
j of both subsystems upon quenching the interspecies interaction

strength gAB of the ground state in Figure 10a to gAB = 4.5.

6. Summary and Outlook

In this work we analyze the static and dynamical properties of a few-body particle-
imbalanced bosonic mixture at zero temperature. Importantly, the components are exposed
to different one-dimensional external traps where the majority species is subject to a finite
lattice potential while the single impurity is trapped in a box of the same extension as the
lattice. We study the response of the composite system upon the variation of majority-
impurity coupling gAB and majority component internal parameters being either the lattice
depth V or the majority-majority interaction strength gAA.

To quantify the response of static properties we employ the fidelity between two
density operators describing ground states at zero and a finite intercomponent interaction
gAB. We contrast the response at the many-body to the single-particle level. We observe
that the composite system is quite robust to the variation of the intercomponent interaction
at strongly repulsive gAA, while being fragile at strongly attractive gAB and deep lattices V
as well as when gAA is weakly attractive and gAB is strongly attractive. Upon comparison
to the fidelities between the corresponding reduced one-body density operators of each
component, we not only observe that each species is affected to a much smaller degree,
but they also respond differently. Thus, for the impurity atom the deviation from the box
ground state increases smoothly with increasing absolute value of gAB, while the reduced
density of the majority component remains very robust to gAB variations except for the
above mentioned parameter regions where the many-body fidelity exhibits significant
structural changes in the ground state.

Next, we have been performing a further classification of our system based on entropy
measures. Namely, we quantify the amount of entanglement and intraspecies correlations
deposited in the binary mixture by evaluating the von Neumann entropy of the respective
subsystems. Interestingly, we find that our composite system is only weakly entangled
for parameter regions which undergo substantial structural changes. Additionally, we
observe that while the entanglement entropy continuously grows with increasing repulsive
gAB, it does not behave the same for attractive gAB, where it reaches a local maximum at a
finite value of gAB < 0. Another peculiar observation is that the fragmentation entropy
of the majority component undergoes a strong variation for parameter regions, where
the fidelity measure does not show any evidence of majority particles being affected by
the intercomponent interaction. Even though the mixed character of the reduced density
of the medium suffers from substantial changes, it remains un-observable on the single-
particle level.

To visualize our observations stemming from the fidelity measure we show the one-
body density distributions of each component along with the probability distributions
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for two particles of the same or different species to be measured at a relative distance
from each other. These quantities are usually accessible in state-of-the-art ultracold atom
experiments and determine the expectation values of local one- and two-body observables.
Indeed, strong deviations appearing in the fidelity at the single-particle level are also
clearly visible in the corresponding one-body density. At positive couplings we observe an
interspecies phase separation where the impurity is pushed to the box edges, while leaving
the majority component intact. At negative couplings both components tend to increase
their localization at the central well.

To further quantify our conclusions stemming from the entanglement measure we rely
on the difference between the above probability distributions and the corresponding ones
when assuming a disentangled state in our calculations. Again, we find strong deviations
for parameters displaying high entanglement entropy values. Thus, at positive couplings
the entanglement favors the process of phase separation, while at negative couplings it
generally, but not always, counteracts the localization of both species.

Quenching the interspecies interaction strength we are able to induce a dynamical
process which for the impurity is reminiscent of the tunneling of a single particle in a
double well potential. This can be attributed to the lifting of the degeneracy for the
corresponding post-quench Hamiltonian as well as the substantial overlap of the initial
state configuration with the post-quench ground state and the first excited state. Due to
the repulsive interspecies interaction also the majority species will undergo a tunneling
in the lattice geometry such that the two species move in opposite directions, ending up
in phase-separated configurations after half a period. We identify the presence of two
dominant natural orbitals for the impurity species during the dynamics, where the first one
corresponds to phase-separated configurations in the respective one-body density, while
the second one resembles the mirror image of the first one. The presence of an additional
natural orbital emphasizes the many-body character of the dynamics, thereby influencing
the motion of the impurity.

There are various promising research directions that are worth pursuing in the fu-
ture. Indeed, the generalization of our findings for an increasing particle number in the
medium or larger lattice potentials as well as the role of the lattice filling factor is desir-
able. Furthermore, a more elaborated analysis on the possibly emerging impurity-medium
bound states or the engineering of droplet-like configurations in such settings at strong
intercomponent attractions would be important. Furthermore, it would be intriguing to
study the persistence and possible alterations of the identified spatial configurations in the
presence of finite temperature which will impact the coherence of the lattice bosons [88–90].
Another perspective is to investigate the relevant radiofrequency spectrum [31,43] in order
to capture the emergent polaron properties including their lifetime, residue and effective
mass especially in the attractive interaction regimes of bound state formation.
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Abstract
Quantumgasmicroscopes, which image the atomic occupations in an optical lattice, have opened a
new avenue to the exploration ofmany-body lattice systems. Imaging trapped systems after freezing
the density distribution by ramping up a pinning lattice leads, however, to a distortion of the original
density distribution, especially when its structures are on the scale of the pinning lattice spacing.We
show that this dynamics can be described by afilter, whichwe call in analogy to classical optics a
quantumpoint spread function. Using amachine learning approach, we demonstrate via several
experimentally relevant setups that a suitable deconvolution allows for the reconstruction of the
original density distribution. Thesefindings are both of fundamental interest for the theory of imaging
and of immediate importance for current quantum gas experiments.

1. Introduction

Imagingwithhigh resolution is a cornerstone for understanding the structure, dynamics and functionality of
matter [1–3]. In thefield of ultracold atoms, quantumgasmicroscopes have openednew avenues for studying
lattice systems [4–7] and led to remarkableprogress and insights, such as density correlations and string order [8],
long-range anti-ferromagnetic correlations [9]or entanglement growth [10] inMott insulators.Naturally, it is of
equal interest to study trapped, i.e.non-lattice systems, where imagingwith single-atomsensitivity is also vital for
exploring beyondmean-field physics, i.e. for probing correlation effects [11]. Single-atom resolved imaging in free
spacehas beendemonstrated formetastableheliumatoms,which can bedetectedusing amulti-channel platewith
a typical resolutionof 60 μm [12], and recently for lithiumatomsusing a shortfluorescencepulse,where the
position spread due to scattering recoils can be reduced to 4 μm [13]. In order to reach sub-micron resolution, the
positions of the atomshave to be frozenby ramping upa pinning lattice before thefluorescence imaging and
detectionof the atoms takes place. Such a capture of atoms in a pinning latticewas demonstrated starting froma
larger scale lattice [14] or a larger scale continuous system [15], but freezing andmeasuring of density structures on
the scale of thepinning lattice spacingwas so far not considered and achieved.

Alternative schemes to reach sub-lattice resolution of quantumgases, inspired by related imaging techniques
in otherfields, have been proposed or realized. Stimulated emission depletionmicroscopy [16], which breaks the
diffraction limit set by the imagingwavelength, can be adapted to quantum gases using the position-dependent
dark state of a Lambda-system [17–19]. A scanning tunnelingmicroscope could be realized by coupling to a
single ion [20] or by using dispersive couplings to a cavity [21].Momentummapping in combinationwith phase
retrieval should allow imagingwith 1–2 orders ofmagnitude better than the lattice spacing [22]. Finally,
scanning electronmicroscopywas successfully applied to quantum gases reaching a resolution below 150 nm
[23]. However, the combination of sub-micron resolution and single-atom sensitivity has so far only been
achieved by fluorescence imaging in a pinning lattice.
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Here, we propose to perform repeatedmeasurements with shifted positions of the pinning lattice relative to
the trapped physical system, such that a resolution below the lattice spacing becomes possible andwe provide an
in-depth analysis of this protocol.We show that the density structures on the scale of the lattice spacingwill be
distorted due to the dynamics taking place during the ramp-up of the pinning lattice. The lattice ramphas to be
sufficiently fast to avoid an adiabatic loading of the ground state of the lattice, but sufficiently slow to avoid
projections onto very high bands, where the atompositions are not frozen due to large tunneling rates. The
proposed scenario is illustrated infigure 1.We show that the distortions during the ramp-up can be captured by
a quantumpoint spread function (qPSF). Using deconvolution techniques, these distortions can be removed,
which enhances the resolution of the overallmeasurement sequence.Wefind that the deconvolution is both
relevant and effective for density structures on the scale of the lattice spacing and provides a sub-wavelength
resolution.Our approach and technique suggests itself for immediate applications, because a tight confinement
and resulting small structures of the original trapped system allow for strongly interacting quantum systems,
while the spacing of the pinning lattice is fixed to typically 0.5 μmby the optical wavelength of the interfering
laser beams.

Ourwork is structured as follows. In section 2we show that the densitymeasurement outcome of a single
particle can be formulated in terms of a convolution of the underlying one-body densitymatrix with a qPSF.We
extend our framework tomany-body systems in section 3. In order to remove distortions of the original density
caused by our protocol a two-step reconstruction scheme is proposed in section 4, involving amachine learning
and a deconvolution step. In section 5, we demonstrate the performance of our approach for several distinct
examples and concludewith an outlook in section 5.

2.Quantumpoint spread function

Wefirst derive the qPSF for themeasurement of a single particle in the pre-measurement state fñ∣ 5 and then
extend the concept tomany-body systems. For simplicity, we consider only one-dimensional systems, but our
framework equally applies to higher spatial dimensions.

Themeasurement ismodeled as a two-step process: the ramp-up of the pinning lattice and the read-out of
the state occupations. In the following, we keep the phase offset of the pinning latticej fixed and thereafter vary
it for resolvingfine density structures. During the ramp-up, we assume that all external potentials but the
pinning lattice are either switched off or negligible such that the quantumdynamics is governed by the

Figure 1.Protocol for imaging trapped few-body systemswith a quantumgasmicroscope. (a)A few-particle systemwith one-body
density ρ(x) (blue line) is prepared in a trap (black line). (b)The positions of the atoms are frozen by switching off the trap and ramping
up a pinning lattice (red line). Due to the dynamics during the ramp, the density is distorted. (c)The positions of the atoms are
detected viafluorescence imaging. (d) Individual possiblemeasurement outcomes in a single image. (e)Themeasurement signal is
obtained as the average overmany realizations, but it contains the deformation due to the rampdynamics. By repeatedly preparing a
realization of the system and freezingwith different phases of the pinning latticej, the density after the ramp can be sampledwith a
resolution below the lattice spacing al. (f)By deconvolutionwith the quantumpoint spread function (qPSF), the original density can
be recovered. All sub-figures show sketches.

5
Our results can be straightforwardly adapted tomixed pre-measurement states.

2
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Hamiltonian

j= + -j
ˆ ( )
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Here, the lattice depthV(t) is ramped up from zero to itsmaximal valueVf within the time-scaleTf by using a
tanh-like ramping protocol and kl denotes the pinning latticewavenumber corresponding to the lattice spacing
al. The lattice sets the recoil energy = ( )E k m2r

2
l
2 as typical energy scale. Directly after ramping up the lattice,

the system is in the state fñjˆ ∣U with  ò t t= -j jˆ ˆ ( ˆ ( ))U T hexp i d
T

0

f
and T̂ denoting the chronological time-

ordering operator.
The occupation of the site i is then read out viafluorescence imaging, whichwe describewithin the

established framework ofmeasurement operators jR̂i; and positive operator-valuedmeasures j jˆ ˆ†
R Ri i; ; [24].

Being only interested in the probability forfinding the particle at site i given the phase offsetj

f f= á ñj j j j j∣ ˆ ˆ ˆ ˆ ∣ ( )† †
p U R R U , 2i i i; ; ;

wehave to specify the operator j jˆ ˆ†
R Ri i; ; . For this purpose, we assume that a particle that ends up in theWannier

state ñj
a∣wi; of the pinning latticeHamiltonian j

ˆ ( )h Tf after the ramp-up, whereαdenotes the band index, is
measuredwith the detection efficiency ηαä[0, 1], which can bemodeled by

å h= ñáj j
a

a j
a

j
aˆ ˆ ∣ ∣ ( )†

R R w w . 3i i i i; ; ; ;

Here, a high detection efficiency ηα is ensured, if the tunneling rate of the band Jα is small compared to the
imaging time scales. As Jα increases very rapidly for higher bandsα, we can approximate the efficiencies by a step
function, i.e. ηα=1 for afinite number of ‘non-tunneling bands’ and ηα=0 for all higher bands. Then the
operator j jˆ ˆ†

R Ri i; ; becomes a projector. Atoms in higher bands or continuum states6 lead to loss and the lattice
ramphas to be chosen such that this loss remains small. Deep lattices and not-too-fast ramps keep this loss
negligible. Finally, themeasurement signal s(x) is obtained by averaging over the pinning lattice shiftsj.

In order to define the qPSFwe consider the analogy to classical optics, where the exact ‘object’ density ρ(x)
becomes blurred in the image plane via the point spread function f (x) according to the convolution

òr r= * = -( ) ( )( ) ( ) ( )s x f x y y f x yd , where s(x) denotes the signal in the imaging plane. Given this
relationship and the precise formof f, there are various deblurring techniques for (approximately) restoring ρ(x).
Our aimhere is to reformulate the probability pi;j as a convolution to define qPSF for our imaging protocol. By

means of the translation symmetry =j j j j j j+ +
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † † † †

U R R U T U R R U Ti i ia ia; ; 0 0;0 0;0 0l l
with the translation operator

= -ˆ ( ˆ )T zpexp iz , we arrive at our central result:

*ò ò f f= - -j j= +( ) ( ) ( )∣ ( )p x y x Q z x z y yd d , , 4i z ia; l

where the kernel = á- - ñ( ) ∣ ˆ ˆ ˆ ˆ ∣† †
Q x y x U R R U y, 0 0;0 0;0 0 describes both the quantumdynamics during the ramp-

up of the pinning lattice and the subsequent fluorescence imaging. Thus, wefind that the probability of detecting
the particle at site i given the pinning lattice offsetj is provided by the diagonal of the two-dimensional (2D)
convolution off*(x)f(y)withQ(x, y), whichwe therefore name quantumpoint spread function (seefigure 2).
Equation (4)moreover shows that the probability pi;j can be expressed by a continuous function s(z) evaluated at
discrete positions, pi;j=s(i al+j). By repeating the experiment for various offsetsj one effectively samples

Figure 2. Filter for image deconvolution. (a)Real part and (b) imaginary part of the quantumpoint spread functionQ(x, x′).
(c)Comparison of thefilter fromdiagonal approximation (black) andmulti-frame filter (red) learned fromphysical examples (see
text). Ramping parameters areVf=200Er andTf=ÿ/Er.

6
Wenote that å ¹j jˆ ˆ†

R Ri i i; ; due to continuum states and detection efficiencies ηα<1. Yet ourmeasurementmodel can be easily
extended to a proper positive operator-valuedmeasure by associating the operator  - å j jˆ ˆ†

R Ri i i; ; with the lossmeasurement outcomes.

3
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this pseudo-probability s(z), which shall be called signal in the following. For practical calculations, one can
spectrally decompose the qPSF and finds that the signal s(z) equals an incoherent superposition of 1D
convolutions of the pre-measurement state with the back-propagatedWannier states c pñ = ña

a∣ ˆ ˆ ∣†
U w0 0;0 :

*òå h c f= -
a

a a( ) ( ) ( ) ( )s z x z x xd , 5
2

where p̂ denotes the parity operator. As a side remark, the quantumdynamics during the ramp is non-adiabatic
such that p c ñaˆ ∣ does not coincide with the correspondingWannier state of the shallower lattices of the ramp.

3. Extension of the qPSF theory tomany-body systems

In the following, we extend the qPSF theory tomany-body systems by first inspecting the case of distinguishable
particles, then discussing single-shotmeasurements of indistinguishable particles, andfinally deriving the
relationship between the ensemble average of such single-shotmeasurements and few-body correlations.

3.1. Single-shotmeasurements of distinguishable particles
In order to extend the qPSF theory tomany-body systems, wemake the following assumptions: (i) as in the
single-particle case, we assume that all external traps but the pinning lattice are either switched off or negligible
during the fullmeasurement protocol. (ii)Moreover, we assume that the inter-atomic interactions are either
switched off bymeans of a Feshbach resonance or negligible during the fullmeasurement protocol. (iii) Finally,
we regard thefluorescence imaging of the pinning lattice sites to be a pure one-body process, i.e.neglect
few-body effects such as loss via light-induced collisions [4, 5]. The latter approximation is valid, if the
pre-measurement atomic density is so low that the likelihood offindingmore than one atom in a pinning-lattice
site after ramp-up is strongly suppressed.

Under the above assumptions, anN-body system in the pure7 pre-measurement state Yñ∣ evolves into the

state Ä Ä Yñj j
ˆ ˆ ∣( ) ( )

U U...
N1

during the ramp-up of the pinning lattice with given phase offsetj. Here

 ò t t= -j
k

j
kˆ ˆ [ ˆ ( )]( ) ( )

U T hexp i d
T

0

f
denotes the single-particle time-evolution operator acting on theκth

particle.
Since the fluorescence imaging ismodeled as a single-particle process, we can directly transfer the positive

operator-valuedmeasure for the single-particle case [see equation (3)] to themany-body realm and obtain for
the probability to detect the 1st, 2nd, ...,Nth particle in the pinning-lattice site i1, i2,..., iN, respectively:

¼ = áY Ä Ä Yñj j j( ) ∣ ˆ ˆ ∣ ( )( ) ( )
P i i M M, , ... , 6N i i

N
1 ;

1
;N1

where ºj
k

j j j j
k

k k k
ˆ [ ˆ ˆ ˆ ˆ ]( ) † † ( )M U R R Ui i i; ; ; (the bracket [...](κ) shall indicate that thewhole operator acts on theκth

particle). Note that for a fixed phase the probability å j ( )P i 1i due to the possibility of detection efficiencies

being smaller than one.Making use of the translation symmetry of j
k
k

ˆ ( )
Mi ; as in the single-particle case, wemay

express equation (6) as

*ò¼ = Y - - Yj j= +( ) ( ) ( ) ( )∣ ( )P i i x y Qx z x z y y, , d d , , 7N
N N

N az i1 l

where the spatial positions of theN particles are abbreviated as x≡(x1,K, xN) and the integrals are takenw.r.t.
all particle coordinates, i.e. dNx≡ dx1 dx2...dxN.Moreover, the pinning-lattice sites, inwhich the particles are
detected, are abbreviated as i≡(i1,K, iN) and Y º á ¼ Yñ( ) ∣x xx , , N1 refers to the position representation of the
N-body pre-measurement state Yñ∣ . Finally, theN-body qPSF turns out to be theN-fold product of the one-
body qPSF derived for the single-particle case in the previous section:

=
k

k k
=

( ) ( ) ( )Q Q x yx y, , , 8N

N

1

where = á- - ñk k k
k

k( ) ∣ ˆ ∣( )
Q x y x M y, 0;0 . Thereby, we obtain theN-particle post-measurement distribution Pj(i1,

K, iN) for a given pinning lattice phase offsetj by evaluating the signal function

*ò= Y - - Y( ) ( ) ( ) ( ) ( )S x y Qz x z x z y yd d , 9N N
N

at the discrete positions j= +az i l , i.e., Pj(i)=S(i al+j). Repeating theN-bodymeasurement for various
phase offsetsj effectivelymeans sampling from the pseudo-probability S(z).

7
The extension tomixed pre-measurement states is straightforward.
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3.2. Single-shotmeasurements of indistinguishable particles
Next,we concentrate on the special case ofN indistinguishable particles. In this case, the outcomeof a single-shot
measurement is a pinning lattice occupation-numberhistogram (n1,K,nL)≡n, wherenidenotes thenumber of
particles found in the ith lattice site, i=1,K,L andL refers to thenumberof lattice sites.Here,wehave inparticular
few-body situations inmind,where one can easily probe the full distributionof theNparticles in thepinning lattice.

Obviously, theN-body qPSFQN(x, y) remains invariant under simultaneous permutation of the particle
labels in both x and y. Given a systemof indistinguishable particles, the probability equation (7) does not depend
on the concrete particle labeling but only on howmany particles are found in a certain site. Taking this
combinatorically into account, onefinds for the probability of the histogramn for a given phase offsetj


¼ =j j

=

¯ ( ) !
!

( ) ( )P n n
N

n
P i, , , 10L

i

L
i

n1

1

where in denotes someN-dimensional lattice-site index vector, which features nr-times the entry rwith r=1,
K, L.We remark that while equation (10) describes the (within the consideredmeasurementmodel) correct
probability of detecting the histogramn given the number of particlesN and the phase offsetj, these
probabilities do not sumup to unity in general when considering all conceivable histogramsnwithN particles.
In fact, the probability for not detecting allN particles in the pinning lattice due to the occupation of higher
bandswith detection efficiencies smaller than unity or continuum states after ramp-up (see equation (3)) reads
- å j̄ ( )∣ P n1 Nn , where the sum å ∣Nn runs over all histogramsnwith å == n Ni

L
i1 .

3.3. Ensemble averages over single-shotmeasurements and few-particle correlations
Having takenmany single-shotmeasurements of identical copies of themany-body system, onemay evaluate
the corresponding ensemble average of certain n-particle observables. In classical absorption imaging of atomic
samples for instance, one obtains the reduced one-body density by averaging the spatial particle number
distributions ofmany single-shotmeasurements. Density–density correlations can be inferred from absorption
images by averaging the product of occupation-number fluctuations at two spatial positions overmany single-
shotmeasurements. Here, we stress that in classical absorption imaging the average of an n-particle quantity
overmany single-shotmeasurements is directly connected to the pre-measurement reduced n-body density
matrix, whereas in the case of the quantumgasmicroscopemeasurement protocol pursued in this work, this
relationship ismore complicated in general and shall be derived here.

First, let us derive the probability p(1)j (r) tofind an atom in the pinning-lattice site rwhen averaging over
many single-shotmeasurements with the same phase offsetj, i.e.many different histogramsn distributed
according to j̄ ( )P n . Using equation (10), wefind
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Apparently, only histogramsnwith nr>0 contribute to j ( )( )p r1 . Substitutingn=m+er, wherem denotes an

arbitrary (N−1)-particle histogram and er an occupation number vector with all components zero except for
the rth one being set to unity, one obtains

å 
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-
j j
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!
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Next, we rewrite the summation over (N−1)-particle histograms as a summation overN−1 lattice site
indices

å= ¼j j
¼ =

( ) ( ) ( )( )p r P r i i, , , . 13
i i

L

N
1

, , 1
2
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Abbreviating, º åj
k

j
k

=
ˆ ˆ( ) ( )

K Mi
L

i1 ; , wefinally obtain

= áY Ä Ä Ä Yñj j j j( ) ∣ ˆ ˆ ˆ ∣ ( )( ) ( ) ( ) ( )
p r M K K... . 14r

N1
;
1 2

Since particles in higher bands or continuum states after the pinning lattice ramp-up are not detected, ¹j
kˆ ( )

K
and thus p(1)j (r) is not given as the expectation value of a one-body observable. So the one-particle quantity

j ( )( )p r1 may depend on up toN-particle corrections and cannot be represented as the trace of a one-particle

observable times the pre-measurement reduced one-body density operator in general, which is in contrast to the
case of absorption imaging.
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Our simulations, however, show that the probability to populate higher bands or continuum states by the
pinning lattice ramp-up is negligibly small for suitably chosen experimental settings (see the discussion on the
impact of higher bands on the qPSF inAppendix, especially table 1). Under these circumstances, j

kˆ ( )
K effectively

acts as the identity operator on theκth particle in Yñ∣ andwe obtain the relation

òr r= = - -j j j= +( ) ( ˆ ˆ ) ( ) ( )∣ ( )( ) ( )
p r M x y Q z x z y x ytr d d , , , 15r z ra

1
;
1

1 1 l

where r r= á ñ( ) ∣ ˆ ∣x y x y,1 1 denotes the position representation of the pre-measurement reduced one-body
density operator r̂1, which one obtains from the pre-measurementmany-body state by a partial trace over all but
one particle, r = YñáYˆ (∣ ∣)tr1 1 .

Similarly, one can derive the corresponding expressions for the ensemble average of an n-particle quantity
with n>1 overmany single-shotmeasurements. Here, we only explicate this relationship for the case n=2,
i.e., the probability p(2)j (r1, r2) to detect a particle at site r1 and another particle at site r2 in the ensemble average:
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Similarmanipulations as above can be applied and one arrives at
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If the population of higher bands and continuum states after the pinning-lattice ramp-upmay be neglected, we
end upwith

ò

r
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where = ( )r rr ,1 2 and ρ2(x, y) denotes the position representation of the pre-measurement reduced two-body
density operator r̂2, which one obtains by a partial trace over all but two particles, r = YñáYˆ (∣ ∣)tr2 2 .We remark
that sampling of high-order correlations is statisticallymore intensive. If, however, the systempossesses some
symmetries, a proper pre-processing of single-shot images [25, 26]will decrease the total experimental effort for
accessing higher-order correlations.

4. Reconstruction algorithm

Inverting the relationship equation (4) or equation (15) is quite a difficult task: deconvolution in general is an ill-
posed problem and,moreover, we have to copewith the intriguing situation that themeasurement signal s(z)
constitutes only the diagonal of the 2D convolution (Q ∗ ρ1)(z, z′). A scheme formeasuring the off-diagonal
elements of the reduced one-body densitymatrix has recently been proposed [27], but the feasibility has yet to be
demonstrated. By scanning over different lattice rampswe find for suitably chosenVf andTf that the real part of
the qPSFQ(x, x′) acquires a dominant diagonal patternwith a fast decay of the off-diagonal elements, while the
imaginary part is significantly smaller [see figures 2(a), (b)]. Thismotivates us to express the signal s(z) as a 1D
convolution of the one-body density ρ(x)=ρ1(x, x)with some yet unknown 1D filter q(x):

ò r r» - = *( ) ( ) ( ) ( )( ) ( )s z x q z x x q zd . 19

However, it is a priorinot clear, whether such afilter, which is independent of the underlying density, exists and
if it does, how to obtain it. Yet, if one has found such afilter, equation (19) allows for applying established
deconvolution algorithms for obtaining the pre-measurement density ρ(x).Making themost obvious choice by
taking the diagonal of the qPSF, q(x)=Q(x, x), turns out to be numerically unstable and inaccurate. To
compensate for the complexity of the 2D convolution, this diagonal needs to be readjusted. To this endwe call
upon amachine learning approach.

4.1. Step 1:Multi-framefilter
Inspired by themulti-framedeconvolution technique, which is applied, e.g. in astronomy [28], wepursue the
followingmachine learning approach to learn the unknownfilter q(x). Our training set consists of a small number
nt of one- andmany-body stateswith known (reduced)one-bodydensitymatrix r = ¼( )( ) x y k n, , 1, ,k

1 t. For each
training sample,we calculate the correspondingmeasurement signal s( k)(z)by the full 2D convolutionwith the
exact qPSFQ(x, y) (see appendixC). Recall thatQ(x, y)depends only on the rampparameters andnot on the
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physical sample. Thenwe estimate each signal s( k)(z) as a 1Dconvolution of the corresponding densities
r r=( ) ( )( ) ( )z z z,k k

1 with the samedensity-independentfilter q(z):

r r= * » *( ) ( )( ) ( )( ) ( )( ) ( ) ( )s z Q z z q z, . 20k k k
1

Except for being space invariant8, no further priors are imposed on q, because it has no physical interpretation
and is rather amathematical tool. Thus, while the densities of the training set vary from signal to signal, the same
filter q is common to all signals. Each of themprovides additional information on q, thereby restricting the space
of possible solutions.

As to the choice of training samples we create a random selection offive dark soliton samples with different
healing lengths ξä [10,K,40]×10−8m in a box of length Lbä [3/4,K,10/12] Ll with Ll being the pinning
lattice extension as well as a random selection offive harmonic oscillator (HO) samples with trapping frequency
ωä [200,K,800]×2πHz and excitation level nä {1,K,10} (see appendix).We explicitly include only
uncorrelated states as samples in order to also test the performance of the learnedfilter q on signals stemming
fromunseen densities of correlatedmany-body states later on.

Then, we define a total loss function , which describes a deviation between the true signals s( k) and their
approximations ρ( k) ∗ q, a least squares problem:

 òå år= - * » -
= =

( ) ∣ ( ) ( )( )∣ ∣ ∣ ( )( ) ( ) ( ) ( )q
n

z s z q z
n

s A qmin min
1
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, 21
q q t k

n
k k

t k

n
k k

q1

2

1

2
t t

where in the last stepwe switch to a numerical gridwith ( )s k and q being (Lπ/Δf)-dimensional vectors andA(k)

denoting a (Lπ/Δf×Lπ/Δf)Toeplitzmatrix, which represents a 1Ddiscrete convolutionwith zero padding
and limited support. L corresponds to the the number of lattice sites and p fD Î to the number of grid
points per lattice site (sampling rate).

Tofind thefilter q, that ismost likely to have created the observed distortions in the signals, we perform the
gradient descent algorithm in batchmode,meaning that we take into account all the frames simultaneously.We
find that a small amount of samples is sufficient to obtain awell-performing filter. Thus, we do not need to resort
tomorememory-efficient optimization algorithms such as stochastic ormini-batch gradient descent.

In each iteration step Îm 0 the filter is updated such thatwe follow a path towards theminimumof  by
taking a direction of negative gradient  . As initial guess we take the diagonal of the qPSF q0=Q(x, x) and
then iterate

b= - + ( ) ( )q q q , 22m m m1

where the gradient of the loss function reads:
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The step size or learning rateβ can be optimally calculated (accurate line search) for each iteration step as
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Finally, we iterate until the relative change in the total loss function reaches some threshold. Figure 2(c) depicts
one suchfilter forVf=200Er,Tf=ÿ/Er, L=33 andπ/Δf=33.

4.2. Step 2:Deconvolution
Nowthatweknow thefilterqwecan invert equation (19) for several unseen cases s(z) to obtain thepre-measurement
densityρ(x). To this end a large toolboxof deconvolution algorithms exists, but these shouldbe appliedwith care,
since theproblem is ill-posed and thebest algorithm is usually determinedby a comparative study.

During the image acquisition bymicroscopes inmolecular biology [29] or telescopes in astronomy [30]
multiple degradation sources can distort the true formof the object: noise, scatter, glare and blur. The blur,
caused by the passage of light through the imaging system, leads to a non-random light redistribution and poses
a fundamental limitation to the imaging system. The recorded image is usuallymodeled as a convolution of the
object with afilter, also known as point spread function (PSF). There exists a variety ofmethods to reverse this
process and retain the original object, called deblurring or deconvolution algorithms [31]. They can be classified
as inverse (Wiener-Deconvolution [32]) or iterative (Van-Cittert [33], Lucy–Richardson [34, 35], Steepest

8
Space invariance offilter q implies that the same filter is used for calculating every point of the convolution. Space-variant filter would be

altered for different regions of the convolution.
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Descent [36]); with prior knowledge of the filter (non-blind deconvolution) or completely unknown (blind
deconvolution [37]); imposing priors such as non-negativity and smoothness orwithout them;modeling
potential noise sources or neglecting them; using a single frame or a batch of sampled frames (multi-frame
deconvolution [38]).

For our case we require an iterative approach, as these algorithms aremore stable and provide a better
restoration of degraded resolution, although at the cost of longer computation times. Sincewe obtained thefilter
in the previous subsection it should be non-blind. The density we are trying to reconstruct is positive and
normalized, so corresponding constraintsmust be enforced, but otherwise no further priors are necessary to
impose.We also neglect all sources of noise9 and themeasurement signal is considered as a single frame.

To deconvolve the signal with the trained filter we apply a slightlymodified version of the previously
described gradient descent algorithmwith line search.Namely, we additionally impose the non-negativity and
the normalization constraints by replacing the density by its absolute value normalized to unity in each iteration
step (see [39]).

The downside of our reconstruction algorithm lies in the fact that it is not clear towhich extent the
reconstructed density resembles the original density, when the original one is not known,which is the case in an
actual experiment. This is a long standing problemofmachine learning and deconvolution algorithms in
general. Nevertheless, even in the current state a self-consistency check provides a goodmeasure on the quality
of the reconstruction procedure: if the reconstructed density is close to the genuine one, it will reproduce the
measured signal with a highfidelity when convolvedwith the previously learnedfilter. Although it is only a
necessary condition, it lies at the core of themajority of deconvolution algorithms, which are frequently used in
many scientific applications, where imaging is involved, ranging fromastronomy [28] to biology [29].

5. Applications

We showcase the performance of our qPSF approach and reconstruction strategy using four physical example
setups (see figure 3): excited harmonic oscillator eigenstates featuring a rapidly oscillating density, two identical
bosonswith infinite repulsion in a harmonic trap [40], BECwith a soliton excitation and a Fermi polaron inside
a box potential. For details on the implementation of these systems see appendix B. The examples are chosen to
cover a broad range of different situations: single particle, weakly- and highly-correlated few-body physics
confined either in a parabolic or a box trap.

The deconvolution uses amulti-frame filter q [see figure 2(c)] trainedwith a random selection of sample
densities of the harmonic oscillator example and a dark soliton in a small BEC.Wefind that applying it to the
unknown signals from the two-Boson and Fermi polaron problem yields very good results, emphasizing the
power of themethod.We stress that we learn themulti-frame filter from single-particle andmean-field cases
and then apply it to the unseen situations, which involve correlatedmany-body states.

The insets infigure 3 show the genuine single-particle density ρ(x), themeasurement signal s(x) and the
deconvolved signal r̃( )x for different physical examples. In all cases the structure of the genuine density is
washed out in themeasurement signals, but almost completely recovered by the reconstruction. In particular,
we recover all of themany oscillations for the harmonic oscillator with their full original contrast [figure 3(a)].
Similarly, in the two-Boson example, the deconvolution successfully reproduces the original density although
the twohumps have almostmerged into a single one in themeasurement signal [figure 3(c)]. The soliton depth is
restored, while the background constant density remains intact [figure 3(b)]. In the Fermi polaron example,
both the sharp dip in the center of the trap and the Friedel oscillations around it are fully recovered in the
deconvolved signal, although they seemed to be lost in themeasurement signal [figure 3(d)]. These examples
showcase the power of the reconstructionmethod using the previously learnedfilter q.

To judge on the quality, we introduce a dissimilaritymeasure between two normalized functions g and h as

ò= - = -( ) ∣∣ ∣∣ ∣ ( ) ( )∣ ( )D g h g h x g x h x,
1

2

1

2
d . 251

It takes a value of zero for coinciding functions and increases up to one as the absolute deviation becomesmore
pronounced. Further, we define the dissimilarity between themeasurement signal10 s and the genuine density ρ
asDs=D(s, ρ) and the dissimilarity between the reconstructed density r̃ and the genuine one as r r= ( ˜ )D D ,d .
Infigure 3, we showhow this dissimilarity depends on the typical structure sizeσ of the genuine density. For
structures that are large compared to the lattice spacing (σ>2al), the dissimilarityD is negligible both for the

9
For practical applications a low-pass filter is applied to smooth out spatial fluctuations in themeasurement signal due to the atom shot

noise.
10

s(z) is in general not exactly normalized due to the small particle losses induced by the chosenmodeling of quantum efficiencies.We
normalize it to unity for the dissimilarity analysis and the deconvolution procedure.
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measurement and the deconvolved signal.When the structures are on the scale of the lattice spacing, the
measurement signal starts to deviate due to the dynamics during the ramp-up of the pinning lattice. The
dissimilarity of the deconvolved signal, however, remains negligible due to the successful deconvolution. Only
for structures smaller than about half the lattice spacing (σ<0.5al), we observe an increase ofDd, indicating the
limitations of themethod. Using the deconvolution via the qPSF, we can therefore shift the accessible structure
sizes from about 2al to about 0.5al for bosonic examples and from about 2al to about 1.0al for the fermionic
system,which is a significant improvement that is crucial formany physical examples in quantumgas physics.
The reason of fermions being less susceptible to our reconstruction (the humps inDd infigure 3(d)) is probably
related to the Pauli principle and the incommensurability of the underlying density structure to the lattice
constant reminding of the pinning phase transition [41]. The bosons are apparently not affected by this effect
[figure 3(c)] due to interactions being switched off right before the pinning procedure starts.

In the above examples we ensured that the results are convergedwith respect to the grid spacing and assumed
the signals to be free from atom shot noise. However, for the experiment it is paramount to know the actual
amount of effort involved for a reliable densitymeasurement: for uncorrelatedmany-body states, we empirically
found (see appendix) that theminimumnumber of the phase shifts amounts to 11, while theminimally required
number of single shots per phase offset is approximately 5× 103/NwithN being the number of particles11. Such
large numbers of images are feasible with current quantumgas technology, e.g. 20 000 realizations were
obtained in [42] and 38 000 realizations in [43]. The effort can be further reduced by realizing an ensemble of 1D
systems in a 2D lattice array. Furthermore, due to singe-atom sensitivity of the quantum gasmicroscope one
obtains a large signal from each atomduring the fluorescence imaging. Thus, the commonwhite noise of
classical imaging systems, whichmakes the deconvolutionmuchmore challenging, is absent in our case. After
identifying the occupations on the lattice, the images have no further noise.

Figure 3. Four different physical example situations demonstrating the performance of themulti-frame filter. (a) n=10 excited
eigenstate of the harmonic oscillator for a varying trapping frequency (inset showsω=2π×35 Hz). (b)Dark soliton for a varying
healing length (inset shows ξ=55×10−8 m) (c)Ground state of two indistinguishable bosonswith infinite repulsion in a harmonic
trapwith varying trapping frequencies (inset showsω=2π×410 Hz). (d) Fermi polaron, i.e. few fermions in a boxwith a
δ-potential at the origin forN=12 particles and varying box lengths Lb (inset shows Lb=12al). All examples are for the case of 87Rb
atoms in a lattice with al=532 nm. The insets show the genuine density (black dashed line) alongwith themeasurement signal after
freezing the distributionwith a lattice ramp toVf=200Er inTf=ÿ/Er (blue solid line) and the deconvolved signal using themulti-
frame filter (red dotted line). The structure size to lattice-spacing ratio equalsσ/al=1.0 for all insets. For the chosen examples, the
measurement signal has clear distortions from the dynamics during the ramp-up, which are, however, removed by the reconstruction.
Themain panels show the deviations [equation (25)] of themeasurement signalDs (blue solid line) and the reconstructed densityDd

(red solid line) from the genuine singe-particle density as a function of the structure size (see appendix B for definitions). The
resolution isΔ x=(1/33)al.

11
The signal needs to be preprocessed before the reconstruction algorithmby applying a low-pass filter to smooth out the data.
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We remark that our reconstruction schemewith the currentfilter q is expected to reliablywork only in trap
geometries involving a combination of a harmonic trapwith a box potential, since the learned filter q is biased by
our training set. The use of prior knowledge is necessary in order to constrain the space of solutions for solving
the otherwise ill-posed inverse problem. Althoughwe demonstrated that it generalizes well to correlated
situations under the same trapping, another trap geometry requires to learn a different kernel qwith the
corresponding training examples. For cold atom systems thatwe consider here, the trapping potentials can be
arbitrarily shaped and are thus completely knownwithin an excellent approximation.

6.Outlook

Ourwork opens the research direction of high-resolution imagingwith single-atom sensitivity also for trapped,
i.e. non-lattice systems.We propose to apply a pinning lattice for imaging and to sample the reduced one-body
density with a resolution below the lattice spacing by performing repeatedmeasurements with shifted positions
of the pinning lattice relative to the physically trapped system.Wehave shown that density distortions resulting
from the dynamics during the ramping up of the lattice can be compensated by deconvolutionwith a trained
filter for a wide range of parameters. Our findings are of immediate relevance for ongoing quantum gas
microscope experiments. A reliablemeasurement of small density structures will allow accessing new regimes
and imaging of the corresponding physical processes such as the shape of a vortex core taking into account
beyondmean-field effects [44] or discrete few-body structures in arbitrary traps. For simplicity, we have focused
here on one-dimensional systems, but our framework equally applies to higher spatial dimensions. Further
extensions of ourworkwould be the fate of correlationmeasurements [26], in a single-component ultracold gas
aswell asmixtures, and blurring effects in themeasurement of the dynamics. Another important aspect is the
imaging after release from a driven system, e.g. for producing artificial gaugefields [45], where switching off the
drive can induce further effects. Releasing from lowest Landau levels yields a self-similar expansion of thewave
function [46], which could be used before freezing the distribution.
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AppendixA.Numerical procedure to obtain the quantumpoint spread function

According to equation (4) of themain text the qPSF is an operator h c c= å ñáa a a a
ˆ ∣ ∣Q with c pñ = ña

a∣ ˆ ˆ ∣†
U w0 0;0 .

Therefore, we have to calculate theWannier state ña∣w0;0 of the bandα at site i=0 for the pinning lattice with the
final potential depthVf and phase offsetj=0 and propagate it with the time-evolution operator

 ò t t= -ˆ ˆ ( ˆ ( ))†
U T i hexp d

T0
0

0
f

, which describes the lowering of the pinning lattice fromVf to zero depth.

Finally, the parity operator p̂ is applied to reformulate themeasurement signal in terms of a convolution.
TheWannier states are obtained by representing the position operator x̂ in the basis of ˆ ( )h T0 f and then

diagonalizing it. Afterwards, we set a band limitαmax.Modeling the detection efficiencies ηα for energetically
high lying bands, however, ismore involved as these depend on both the tunneling and fluorescence imaging
time scale. The tunneling rates grow exponentially with the band index, such that they can be divided into
tunneling and non-tunneling bandswithin the fluorescence imaging time to a good approximation. For the sake
of simplicity, we therefore assume that all (bound) bands lying energetically belowVf are detectedwith unit
detection efficiency,meaning  h a a= "a 1 max, and ηα=0 for the continuum states, since atoms in these
states are not pinned during thefluorescence imaging. As a consequence, thismodel does only give a lower
bound on the loss in themeasurement signal [equation (C.4)] due to unobserved channels.We use a lattice
containing L=99 sites with 33 grid points to resolve each site, unless stated otherwise, while the potential depth
is varied in the range Î [ ]V E50 ,..., 300f r.

The back-time propagation of relevantWannier states is performedwith theMulti-LayerMulti-
Configuration Time-DependentHartree for bosons (ML-MCTDHB) approach [47, 48] to obtain c ña∣ . The
ramping times cover Î [ ]T E1 ,..., 9 rf and the ramping protocolV(t) is a logistic function of sigmoid form:

10

New J. Phys. 21 (2019) 053013 MPyzh et al

148 scientific contributions



h
h=

- +
-

h
h-

-

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟( )
( ) ( )V t

V

1 2

1

1

, A.1f

1

1t
T
2

f

with amplitudeVmax=Vf/(1−2η), shift t0=Tf/2, steepness =
t

h
h
-( )ln

T

1 2 1

f
and offsetVoff=Vmax η. The

η parameter ensures thatV(Tf)=Vf does not deviatemuch from the saturated valueVmax.With η=10−3
fixed,

Tf alone determines the adiabaticity of the ramping protocol (seefigure A1).
In the case of an adiabatic preparation ofmany-body ground states in optical lattices, such as the bosonic

Mott insulator, the optimal shape of the ramp function has been extensively discussed [49]. In contrast, for
pinning the distribution on the lattice in quantumgasmicroscopes, simple s-shaped ramps have proven
sufficient [4, 5].We note that in our setting, the dynamics during the rampwill be strongly non-adiabatic in

Figure A2. Spatial representation of the qPSF for ramping parametersVf=200Er andTf=ÿ/Er (a, b) andVf=50Er andTf=9
ÿ/Er (c, d). The figure shows the real part (a, c) and the imaginary part (b, d).

Figure A1.Ramping protocol forVf=50Er, η=10−3 and varyingTf.
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order to avoid a loading of the ground state of the lattice, but freeze the atoms in their original position.
Therefore, we expect that the precise shape of the ramp should not be important.

We show the real and imaginary part of the spatial representation of the qPSF ¢ = á ¢ñ( ) ∣ ˆ∣Q x x x Q x, for a
quick rampTf=ÿ/Er with a deep latticeVf=200Er and for a slow rampTf=9 ÿ/Er with a comparatively
shallow latticeVf=50Er (figure A2). In thefirst case we observe a diagonal pattern in the real part with a fast
decay of the off-diagonal, while in the second case the real part displays aGaussian profile with the imaginary
part being suppressed by an order ofmagnitude. Both cases are rather localized around a small region of
approximately 5al. The diagonal pattern can be induced and enhanced by choosing deeper lattices,meaning that
higher bands are responsible for this effect, although by successively adding bands for the qPSF calculationwe
found that approximately only the first half of the bandsαmax is responsible for the pattern formation. Going to
ramp times beyondTf=9 ÿ/Er requires large lattices withmore than L=100 lattice sites, because theWannier
states, propagated back in time, almost reach the boundaries of the grid.

The qPSF has no direct relation to the classical PSF of the imaging systemwithfinite numerical apertureNA,
which is used for thefluorescence imaging after the pinning of the atoms. As long as theNA is large enough to
allow for a reconstruction of the lattice occupation (typicallyNA=0.6–0.8), it drops out of the problem. If one
repeats themeasurement with varying positions of the pinning lattice with respect to the initial system via the
displacement byj, even the lattice constant al does not pose a fundamental limit to the resolution. In the
numerical examples a samplingwith resolution ¯a0.03 l was used and similar relative positioning of 0.1al between
the pinning lattice and further trapswere reported experimentally [50]. The distortion from the dynamics
during ramp-up, which is captured by the qPSF and is relevant for structures on the order of al, is therefore the
fundamental limitation on the resolution. The reconstruction algorithmdescribed in themain text can then lead
to densitymeasurements with a resolution even better than al.We additionally verified that a sampling rate 0.1al
is enough for a successful reconstruction (see appendixD).

Appendix B. Examples of application

For the numerical implementationwemake use of recoil units xr=1/kl,  = =( )E k m T E2 ,r
2

l
2

r r with
thewavenumber kl=2π /λl of the laser beamofwavelengthλl=1064 nm to create the lattice potential andm
being themass of the trapped particles, here 87Rb. The lattice constant is al=λl/2.

B1.Harmonic oscillator (HO) eigenstates
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24

where =
w

a
mho the harmonic oscillator length,ω the frequencyof the trap and În 0 the excitation level. To

characterize the structure size of theHOmodeswith respect to the latticewe consider the variance of theposition
operator divided by the number of peaks in the density profileσn/al with s y y y y= á ñ - á ñ

+
( ∣ ∣ ∣ ∣ )x xn n n n n n

1

1
2 2 1 2.

TheHOexample is used for training of thefilter.

B2.Dark soliton
Weprepare a dark solitonwithin themean-field approximation placed in a reflection-symmetric boxwith an
extension Lb smaller than that of the pinning lattice Ll=L al.We position the soliton in the center of the box and
ensure that it is sufficiently separated from thewalls:
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where the prefactors ci are chosen such as to ensure the continuity and the normalization of thewave function,
x pr= ¯a1 8 sc is the healing length of the condensate, asc the scattering length and r̄ the constant background
density. The structure size is chosen as s x=x a a2l l, which is approximately the full-width-at-half-maximum
of the soliton profile. The soliton example is used for training of the filter.
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B3. Impurity in a Fermi sea
WeputN spin-polarized fermions in a reflection-symmetric box of length Lb<Ll. A stationary impurity
positioned in themiddle of the potential acts as a repulsive delta-potential of infinite strength, inducing a density
profile of fermions similar to that of a soliton, butwith an oscillatory background. The eigenstates have a defined
parity:

y
p

=
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⎠⎟( ) ∣ ∣ ( )x

L

j

L
x

2
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2
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2
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2
. B.4j
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b b

The density operator for an even number of fermions is then given by amixed state

å år y y y y= ñá + ñá
= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ˆ ∣ ∣ ∣ ∣ ( )

N

1
. B.5

j

N

j j
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2
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Here, the structure size is assigned by an average extension of a peak in the one-body density
s = ( )a L N aN l b l.We observe an oscillatory behaviour ofDd below s <a 1.0N l with a higher oscillation
period for an increasing number of fermions (not shown).We believe that the Pauli exclusion principle and the
commensurability of the density with respect to the lattice are responsible for this effect.

B4. Twobosonswith infinite repulsion inHO
The highly correlated problemof two bosons trapped in a harmonic trap and interactingwith each other via a
delta-potential of infinite strength can be solved analytically in the relative frame [40]. By transforming the
solution back into the laboratory frame and tracing out one of the coordinates one obtains the following
one-body densitymatrix:
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and b=1/aho. The correlated two-body system requires the full 2D convolution to create the signal, which is
cumbersome to achieve on a large gridwithfine resolution. Sowe consider very large trapping frequencies and
reduce the grid to L=33 lattice sites. The structure size is defined similar to theHO case:σ/al
with ò òs r r= - ( )( ) ( )x x x x x xd d2 2 2

.

AppendixC. Simulation of themeasurement signal

In themost general formulation the distorted signal s(z) can be obtained directly via a 2D convolution of the one-
body densitymatrix ρ1(x, x′) of the initially prepared system (appendix B)with the kernelQ(x, x′) (appendix A):

ò òp p r r r= = * = - -( ) { ˆ ˆ ˆ ˆ ˆ ˆ } ( )( ) ( ) ( ) ( )†
s z Tr T Q T Q z z x y x y Q z x z y, d d , , . C.1z z 1 1 1

However, the (L·π/Δf)×(L·π/Δf)matrices lead to approximately p fD( · )L 4 numerical
operations, which renders the direct calculation inefficient for large lattices with fine resolution. Oneway to
circumvent this issuewould be tomake a smaller support for the density by confining itmore tightly and for the
filter by defining a cutoff, when the amplitudes drop below a certain value.Here, we just verified that a spacingΔ
x=(1/33) al provides converged signals by doubling the site resolution.

Independently of the above statements we can reduce the numerical effort to p fµ D( · )L 2, namely for
weakly correlated systems the spectrally-decomposed one-body density operator has afinite number of natural
populationsλγwith considerable weight:

år l f f= ñá
g

g

g g g
=

ˆ ∣ ∣ ( ), C.21
1

max

with f ñg∣ natural orbitals. Inserting this relation and additionally the expansion of the qPSF into equation (C.1)
we obtain the signal as a sumof 1D convolutions of the natural orbitalsfγwith the ‘band’filters ca

* :
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*( ) ∣( )( )∣ ( )s z x . C.3
1 1

2
max max

There is another important point worthmentioning, namely the padding. Sincewe are workingwith finite
systems, a convolved function spans a larger region than the input functions. Thus, we need to provide values for
chosen densities outside the grid and paddingwith zeroes is themost natural choice for trapped systems, while
periodic paddingwould be suitable for ring geometries. Also, we ensure that the distortion of the signal does not
reach the boundaries of the grid.

For a given lattice realization,meaning fixedVf,Tf and phasej, the signal s(z=i·al+j)with spatial
sampling period al sums up to unity only when ηα=1∀α, because j jˆ ˆ†

R Ri i; ; then forms a positive operator-
valuedmeasure. In our case, neglecting continuum states lying energetically aboveVf results in a particle lossΩ.
In otherwords, jW = - å += ( · )s i a1 i

L
1 l is the probability of finding a particle in none of the sites, but in the

unobserved channels. Averaging overmultiple lattice realizationsjä {0,K,π}we can estimate themean
particle loss W̄ expected for the given pre-measurement reduced one-body density ρ1:

ò år
p

j jW = - +
p

=

¯ ( ) ( · ) ( )V T s i a, , 1
1

d . C.4
i

L

f f 1
0 1

l

In table 1we show the average loss W̄ for densities and ramp-up parameters discussed in themain text, which
is indeed very small and has a tendency to decrease for larger structures.

FigureC1. Impact of the sampling rateΔf. Notation is the same as infigure 3 except for the resolutionΔ x=(1/11) al.

Table 1.Average particle loss rW̄( )V T, ,f f 1 for the
densities, discussed in themain text and different structure
sizesσ (see appendix B) relative to the lattice spacing. The
ramp-up parameters areVf=200Er andTf=ÿ/Er.

Structure sizeσ/al

0.5 1.0 2.0

HO n=10 0.030 0.014 0.013

ρ1 Two-Bosons 0.021 0.015 0.014

Fermi polaron 0.033 0.031 0.017
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AppendixD. Experimental effort

The experimental effort scales linearly with the number of lattice shifts andwe study the impact of the sampling
rateΔf on the quality of the reconstruction. Naively, onewould under-sample the signal s and thefilter q,
whichwe trained on afine gridwithΔx=(1/33) al, and apply a deconvolution step fromour reconstruction
algorithm.However, the procedure does not apply. Instead one needs to learn a different kernel q for each
Δfprovided a set of correspondingly under-sampled converged signals. By comparing figure 3 tofigureC1we
conclude that the quality of the reconstruction does not degradewhen the sampling rate is decreased by a factor
of three. Reducing the sampling rate by another factor of three (figureD1)provides still a reliable reconstruction
for typical structures sizes aroundσ/al≈1.0 and above.

Next we consider the robustness of our protocol against atom shot noise. For demonstrationwe choose the
harmonic oscillator examplewith the sampling rateΔf=π/11.We simulate themeasurement of a single
harmonically trapped particle nshot times for each phase-offsetfj. The total number ofmeasurements is thus
11·nshot. The probability to loose a particle during themeasurement is included. Then, we take the ensemble
average of the individualmeasurement signals and spatially smooth out the data with a low-pass filter. Finally,
we apply the reconstruction algorithmon the resulting signal with the filter q trained on signals without shot
noise. FromfigureD2we estimate the necessary number of single shots to be approximately 5000.More
particles would reduce the effort by 1/N if they are uncorrelated, whereas for a correlated few-body system the
decrease of the effort with the number of particles is not obvious.

FigureD1. Impact of the sampling rateΔf. Notation is the same as infigure 3 except for the resolutionΔ x=(1/3) al.
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Originating from spectral graph theory, cospectrality is a 
powerful generalization of exchange symmetry and can be 
applied to all real-valued symmetric matrices. Two vertices of 
an undirected graph with real edge weights are cospectral 
if and only if the underlying weighted adjacency matrix 
M fulfills [Mk]u,u = [Mk]v,v for all non-negative integer 
k, and as a result any eigenvector φ of M has (or, in the 
presence of degeneracies, can be chosen to have) definite 
parity on u and v. We here show that the powers of a matrix 
with cospectral vertices induce further local relations on its 
eigenvectors, and also can be used to design cospectrality 
preserving modifications. To this end, we introduce the 
concept of walk equivalence of cospectral vertices with respect 
to walk multiplets which are special vertex subsets of a 
graph. Walk multiplets allow for systematic and flexible 
modifications of a graph with a given cospectral pair while 
preserving this cospectrality. The set of modifications includes 
the addition and removal of both vertices and edges, such 
that the underlying topology of the graph can be altered. 
In particular, we prove that any new vertex connected to a 
walk multiplet by suitable connection weights becomes a so-
called unrestricted substitution point (USP), meaning that 
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any arbitrary graph may be connected to it without breaking 
cospectrality. Also, suitable interconnections between walk 
multiplets within a graph are shown to preserve the associated 
cospectrality. Importantly, we demonstrate that the walk 
equivalence of cospectral vertices u, v imposes a local structure 
on every eigenvector φ obeying φu = ±φv �= 0 (in the case 
of degeneracies, a specific choice of the eigenvector basis 
is needed). Our work paves the way for flexibly exploiting 
hidden structural symmetries in the design of generic complex 
network-like systems.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Eigenvalue problems of real symmetric matrices are ubiquitous in many fields of sci-
ence. Special examples are graph theory in mathematics as well as properties of quantum 
systems in physics. A first step in dealing with such problems is often based on a symme-
try analysis in terms of permutation matrices that commute with the matrix H at hand. 
Given a set of such permutation matrices, a symmetry-induced block-diagonalization of 
H is possible and powerful statements about the eigenvectors of H can be made [1,2]. 
The permutation symmetries of a matrix can be conveniently visualized in the frame-
work of graphs. A graph representing a matrix H ∈ RN×N is a collection of N vertices 
connected by edges with weights Hi,j, like the one shown in Fig. 1. Due to this map-
ping between a matrix and the graph representing it we denote both the graph and the 
corresponding matrix with the same symbol H. In this graphical picture, the action of 
a permutation matrix P corresponds to permuting the vertices of the graph, along with 
the ends of the edges connected to them. H is then transformed to H ′ = PHP −1, and if 
P and H commute, PH = HP , then the graph remains the same after the permutation, 
i.e. H ′ = H. In particular, if P exchanges two vertices u and v, while permuting the 
remaining vertices arbitrarily, its commutation with H means that the u-th and v-th 
row of H coincide, Hu,j = Hv,j for all j ∈ �1, N� ≡ {1, 2, . . . , N} (and the same for the 

Fig. 1. An undirected, unweighted graph with four vertices represented by a 4 × 4 symmetric matrix H, and 
the interpretation of its powers Hk in terms of “walks”: The matrix element [Hk]i,j counts the number of 
distinct walks of length k from vertex i to j, as illustrated for k = 1, 2, 3.
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u-th and v-th column, since H is symmetric). It can then be shown that the u-th and 
v-th diagonal elements of any non-negative integer power of H coincide,

[Hk]u,u = [Hk]v,v ∀ k ∈ N, (1)

and that any eigenvector φ of H has—or, if degenerate to another eigenvector, can be 
chosen to have—positive or negative parity on u and v [3], that is,

φu = ±φv. (2)

The eigenvector components on the remaining vertices, which are generally not pairwise 
exchanged by P , may have arbitrary components. Thus Eq. (2) constitutes a local parity 
of the eigenvectors. This property is intricately related to the interpretation of powers 
of H in terms of walks [4,3], which are sequences of vertices connected by edges, on the 
corresponding graph. For an unweighted graph (having Hi,j ∈ {0, 1}), the element [Hk]i,j
counts all possible walks of length k from vertex i to j on the graph. This is illustrated in 
Fig. 1 for selected walks of length 1, 2, 3. With this interpretation, Eq. (1)—and thereby 
also Eq. (2)—hold if the graph has an equal number of “closed” walks starting and ending 
on u or v, for any walk length k. This is the case, e.g., for vertices 1 and 2 in the graph 
of Fig. 1. For weighted graphs (having Hi,j ∈ R), the interpretation of matrix powers 
in terms of walks is modified by weighing the walks accordingly (see below), with all 
corresponding results staying valid.

Interestingly, and in many cases counterintuitively, the local parity of eigenvectors of 
a graph, Eq. (2), can be achieved even if H does not commute with any permutation 
matrix P , as long as Eq. (1) is fulfilled. Given this condition, the eigenvalue spectra of 
the two submatrices H \u and H \v, obtained from H by deleting vertex u or v from the 
graph, respectively, coincide, and u and v are said to be cospectral [3]. Originating from 
spectral graph theory [5], the results of the study of cospectral vertices have so far been 
applied to the field of quantum information and quantum computing, but also—under 
the term isospectral vertices—to chemical graph theory [6–8]. In a very recent work [9], 
cospectral vertices have also been linked to so-called “isospectral reductions”, a concept 
which allows to transform a given matrix into a smaller version thereof which shares all 
(or, in special cases, a subset of) the eigenvalues with the original matrix.

Given a graph with cospectral vertices u and v, one may ask what kind of changes 
can be made to it without breaking the cospectrality. One particularly interesting feature 
that occurs for some graphs is the presence of so-called unrestricted substitution points
(USPs), which were introduced in Ref. [8]. Given a graph H with two cospectral vertices 
u and v, a third vertex c is an USP if and only if one can attach an arbitrary subgraph 
to c without breaking the cospectrality of u and v. While it is a straightforward task to 
identify all USPs of a given graph, the origin of these special points has been elusive so 
far.

In this work we shed new light on this phenomenon by introducing the concept of walk 
equivalence of cospectral vertices u, v with respect to a vertex subset of a graph. In the 
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simplest case of an unweighted graph, two vertices u and v are walk equivalent relative to 
a vertex subset if the cumulative number of walks from u to this subset equals that from 
v to this subset, for any walk length. The vertex subset then corresponds to what we 
call a walk multiplet relative to the pair u, v. The smallest walk multiplets, which we call 
singlets, consist of a single vertex and are identified with the above mentioned USPs, 
and we here demonstrate how to create such points in a systematic way. Specifically, 
we show that a graph can be extended via any of its walk multiplets by connecting it 
to a new vertex while preserving the cospectrality of the associated vertex pair. This 
procedure can be repeated any number of times with different walk multiplets. All the 
newly added vertices turn out to be USPs, thus allowing us to connect arbitrary new 
graphs exclusively to them without breaking the cospectrality. Additionally, we show 
that one can also alter the topology of a graph without extending it by modifying the 
interconnections between two or more walk multiplets. This provides a systematic way 
to construct graphs with cospectral vertices but no permutation symmetry, based on 
breaking existing symmetries by walk multiplet-induced modifications. The concept of 
walk equivalence of vertices is further generalized to the case where walks to different 
subsets of a walk multiplet can be equipped with different weight parameters.

Apart from providing means to modify a graph without breaking the cospectrality, 
we show that walk multiplets can be used to obtain a substantial understanding of 
the structure of eigenvectors of general real symmetric matrices with cospectral pairs. In 
particular, for a suitably chosen eigenbasis, walk multiplets induce linear scaling relations 
between eigenvector components on the multiplet vertices, in dependence of the local 
parity—Eq. (2)—of the eigenvector on the cospectral vertex pair associated with the 
multiplet. As a special case, the eigenvector components vanish on any walk singlet 
and, by iteration, on any arbitrary new graph connected exclusively to walk singlets. 
We believe our work will provide valuable insights into the structure of eigenvectors of 
generic network-like systems and thereby aid in the design of desired properties.

The paper is structured as follows. In Section 2, we first motivate the concept of 
walk multiplets as a generalization of USPs, before we define them generally in terms 
of walks on graphs, and proceed discussing their properties. In Section 3, we show how 
walk multiplets allow for the modification of graphs without breaking vertex cospec-
trality. In Section 4, we apply the concept to derive relations between the components 
of eigenvectors on walk multiplet vertices, with vanishing components on walk singlets 
as a special case. In Section 5, we use walk multiplets to generate graphs that feature 
cospectral vertices without having any permutation symmetry. We conclude the work in 
Section 6. In the Appendix we provide the proofs of all theorems.

2. Walk multiplets

As the name suggests, the concept of “walk multiplets,” to be developed below, is 
based on walks along the vertices of a graph. In particular, as illustrated in Fig. 1, the 
entries of powers Hk can be interpreted in terms of walks [4] on the corresponding graph 
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with N vertices. Indexing the vertices of the graph by vi ∈ �1, N�, a walk of length k
from vertex v1 to vertex vk+1 is a sequence

αk(v1, vk+1) = (v1, v2), (v2, v3), . . . , (vk, vk+1) (3)

of k (possibly repeated) edges (vi, vi+1) corresponding to nonzero matrix elements 
Hvi,vi+1 . Note that a diagonal element Hn,n corresponds to a “loop” on vertex n, that is, 
an edge connecting n with itself. If the entries of H are either 0 or 1, that is, the graph 
is unweighted, then the element [Hk]m,n equals the number of walks from m to n on the 
graph. We leave it like this for now, but will consider walks on general weighted graphs 
further below. Throughout this work H = H� ∈ RN×N will denote a real symmet-
ric matrix but also the corresponding graph itself, since there is a one-to-one mapping 
between them for our purposes.

2.1. Unrestricted substitution points: the simplest case of walk multiplets

Let us introduce the idea of walk multiplets, starting with some preliminary consider-
ations by inspecting the example graph in Fig. 2(a), adapted from Ref. [8]. As is common 
in the field of chemical (or molecular) graph theory, this graph is used as a very simple 
representation of a molecule, with the vertices being atoms of some kind and the edges 
between them being atom-atom, i.e. molecular, bonds. For simplicity, we consider all 
bonds to be of the same unit strength, meaning that all edges have the same weight 1, 
and all atoms to have zero “onsite potential”, so there are no loops on vertices (like the 
one on vertex 4 in Fig. 1).

While seeming quite common, this graph has some interesting “hidden” properties. 
First of all, it has cospectral vertices labeled u and v. This cospectrality does not stem, 
though, from a corresponding exchange symmetry (permuting vertices u and v with each 
other). Indeed, without being symmetric under exchange, the cospectral vertices fulfill 
Eq. (1), that is, the number of closed walks from u back to u and from v back to v is the 
same, for any walk length k. Notably, cospectral vertices go under the name “isospectral 
points” in molecular graph theory.

A second interesting property of the graph in Fig. 2 is that it has some special vertices, 
labeled c and r, called “unrestricted substitution points” (USPs) [6,8], which were already 
mentioned in Section 1. Those are vertices to which new vertices or subgraphs may be 
attached, or which may even be removed completely, without breaking the cospectrality 
of u and v. This is done in Fig. 2(b). Now, let us approach this in terms of walks, and 
focus on the vertex c of the example for concreteness. Cospectrality of u, v is preserved 
when connecting c to the arbitrary new graph C, meaning that the number of closed 
walks from u and v is the same for any walk length also after this modification. All 
additionally created closed walks from u or v which visit the arbitrary subgraph C, 
however, necessarily traverse the USP c on the way. This suggests that the number of 
walks from u to c is the same as from v to c, for any walk length—because the possible 
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Fig. 2. (a) A molecular graph, taken from Ref. [8], which has two cospectral vertices u, v and two “unrestricted 
substitution points” (USPs) c, r. (b) The USPs are vertices which can be connected to any arbitrary graph 
C (as done with c) or also removed from the graph (as done with r), without breaking the cospectrality 
of u, v. (c) In the present work we generalize USPs to vertex subsets called “walk multiplets”, an example 
here being the subset M = {m1, m2, m3}. We can connect this subset to a new vertex c′, which we can in 
turn connect to an arbitrary graph C′, without breaking the cospectrality of u, v. The added vertex c′ is a 
walk “singlet”, which is identified as an USP.

walk segments within C are evidently the same for walks from u and from v. Indeed, 
this turns out to be exactly the case: A vertex c of a graph H with cospectral vertices 
u, v is an USP if and only if it fulfills [H�]u,c = [H�]v,c for any non-negative integer �.

While already offering a great flexibility, USPs do not necessarily occur in all graphs 
with cospectral pairs. This leads to the question: Are there other possibilities of graph 
extensions, involving a set of points instead of just a single point to which one can 
connect an arbitrary graph? Imagine, for example, a subset M of some graph’s vertex 
set to which some arbitrary new graph C ′ can be connected, by connecting an arbitrary 
single vertex c′ of C ′ to all vertices in M, without breaking the cospectrality between 
two vertices u, v of the original graph. Such a subset M, associated in this way with a 
cospectral vertex pair, corresponds to what we will call a “walk multiplet” relative to 
u, v. An example is illustrated in Fig. 2(c). The key property, in analogy to USPs, is that 
the cumulative number of walks from u to all vertices in M is the same as from v to M. 
An USP is then just the simplest case of a walk multiplet consisting of a single vertex, 
a walk “singlet”.

Below, we will formalize the concept of walk multiplets and describe the various flavors 
they can assume in general undirected and real-weighted graphs, which correspond to 
real symmetric matrices. Their value in extending graphs with cospectral vertices will 
be shown subsequently in Section 3, and their significance for graph eigenvectors will be 
demonstrated in Section 4. First, we introduce some helpful key notions in the description 
of walks.

2.2. Weighted walks and walk matrices

Let us first extend the correspondence between walks on a graph, defined in Eq. (3), 
and powers of its matrix H to a weighted graph, where the entries of H are arbitrary 
real numbers. Any walk αk from v1 to vk+1 is then given a weight w(αk) equal to 
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the product of the edge weights w(vi, vi+1) = Hvi,vi+1 of all edges traversed [10], that 
is,

w(αk(v1, vk+1)) = w(v1, v2)w(v2, v3) · · · w(vk, vk+1) =
k∏

i=1
[H]vi,vi+1 . (4)

The entries [Hk]m,n are then given by the sum over weighted walks as [10]

[Hk]m,n =
∑

αk

w (αk(m, n)) (5)

where the sum runs over all distinct walks of length k from m to n.
Consider, now, a subset M ⊆ V of the set V of the vertices of a graph H. The walk 

matrix of H relative to M is the matrix [11] WM = [eM, HeM, . . . , HN−1eM], whose k-th 
column equals the action of Hk−1 on the so called indicator (or characteristic) vector 
eM of M with [eM]m = 1 for m ∈ M and 0 otherwise. Thus, the element

[WM]s,� =
∑

m∈M

[H�−1]s,m (6)

equals the sum over weighted walks [in the sense of Eq. (5)] of length � − 1 ∈ �0, N − 1�

from vertex s to all vertices of M.
Below we will use this notion of collective walks to vertex subsets to identify struc-

tural properties of graphs and their eigenvectors. It will then be convenient, however, 
to account also for the case where the walks to different vertices m ∈ M, represented 
by [Hk]s,m, are multiplied by some (generally different) factors γm. Treating WM as the 
Krylov matrix [12] of H generated by eM, we thus simply replace this generating vector 
with a weighted indicator vector eγ

M having a tuple γ = (γm)m∈M of general real values 
γm instead of 1’s in its nonzero entries m ∈ M. This extends the common walk matrix 
to a corresponding “weighted” version which we denote as W γ

M, that is

W γ
M = [eγ

M, Heγ
M, . . . , HN−1eγ

M], γ = (γm)m∈M, [eγ
M]m =

{
γm, m ∈ M,

0, m /∈ M.
(7)

For this weighted walk matrix, Eq. (6) is accordingly modified to the more general form

[W γ
M]s,� =

∑

m∈M

γm[H�−1]s,m, � ∈ �1, N�, (8)

so that the interpretation of matrix powers in terms of walks is further equipped with 
weights γm for the individual walk destinations m.
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2.3. Walk equivalence of cospectral vertices

Combining the intuition of equal number of walks to vertex subsets in Section 2.1
with the notion of weighted walk matrices in Section 2.2, it now comes natural to define 
the general case of a walk multiplet. We will then discuss examples of walk multiplets 
before analyzing their consequences in the next sections.

Definition 1 (Walk multiplet). Let H ∈ RN×N be a matrix with vertex set V and walk 
matrix W γ

M relative to a subset M ⊆ V with weighted indicator vector eγ
M corresponding 

to the tuple γ = (γm)m∈M. If the u-th and v-th rows of W γ
M fulfill

[W γ
M]u,∗ = p[W γ

M]v,∗ (9)

(with ∗ denoting the range �1, N�, i.e. all matrix columns), then M corresponds to an
even (odd) walk multiplet with parity p = +1 (−1) relative to the two vertices u, v, 
denoted as Mp

γ;u,v, and u, v are walk equivalent (antiequivalent) with respect to Mp
γ;u,v.

A walk multiplet Mp
γ;u,v is thus not merely a subset M, but this subset equipped 

with a |M|-tuple of weight parameters γ and a parity p, associated with a given vertex 
pair u, v. If all weights γm are equal, then Mp

γ;u,v is a uniform walk multiplet, and we 
will first discuss such multiplets. In this case the common weight is obviously a global 
scaling factor in Eq. (9) and can be set to unity without loss of generality, γm = 1 for all 
m ∈ M. We will show cases of nonuniform walk multiplets (with unequal γm in general) 
afterwards. Although walk multiplets are generally defined above relative to any pair of 
vertices u, v, we will concentrate on multiplets relative to cospectral vertices u, v from 
now on. Also, for brevity, we will drop the indication of vertices u, v in the subscript of 
Mp

γ;u,v when they are clear from the context. According to their cardinality (the number 
|M| of vertices in M) we call multiplets “singlets”, “doublets”, etc. Note that the same 
subset M can in general correspond simultaneously to different walk multiplets relative 
to different cospectral vertex pairs or with different tuples γ. We should also point out 
that the notion of “walk equivalence” of two graphs as a whole has been used [13,14], 
and stress that we here introduce the notion of walk equivalence of two vertices with 
respect to a vertex subset.

Before showing examples of walk multiplets, we note that the condition (9) only 
incorporates walks of length k ∈ �0, N − 1� from u and from v to M; see Eq. (8). At 
first sight one might then wonder whether the sum over longer walks (k � N) to M is 
also equal for u and v. This is indeed the case. Due to the Cayley-Hamilton theorem, we 
have that HN =

∑N−1
k=0 ckHk with constant coefficients ck, meaning that higher powers 

k > N −1 of H can be written as polynomials in H of order up to N −1. Thus, if Eq. (9)
holds, we have that

∑

m∈M

γm[Hk]u,m = p
∑

m∈M

γm[Hk]v,m ∀ k ∈ N. (10)
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Fig. 3. (a) A graph with edge weights +1 (solid lines) and −1 (dashed lines) in which the two vertices 1
and 2 are cospectral (among other cospectral pairs) and (b) the same graph with edges weighted by 12
real parameters wn as shown, preserving the cospectrality of {1, 2}. The tables below list all uniform walk 
singlets, doublets, and triplets (top to bottom) relative to {1, 2}, with superscripts indicating the parity p
of each multiplet; see Example 1.

For an unweighted graph, the notion of walk equivalence of u and v with respect to M
then acquires a simple interpretation: An even uniform walk multiplet (γm = 1 for all 
m ∈ M) corresponds to a vertex subset M such that the number of walks from u to M
equals the number of walks from v to M (that is, summed over all m ∈ M) for any walk 
length k. Let us now have a look at some uniform walk multiplets in an example graph.

Example 1. In the graph depicted in Fig. 3(a), the two vertices u = 1, v = 2 are cospec-
tral. All uniform walk singlets, doublets, and triplets of H with respect to 1, 2 are given 
in the table below. We put a superscript +(−) on each individual multiplet subset to 
indicate its even (odd) parity p. Importantly, the vertex cospectrality and multiplet 
structure of a graph are in general not strictly bound to a specific set of edge weight 
values. Indeed, one may generally “parametrize” the edge weights, by setting groups of 
them to the same but arbitrary real value, and still retain the graph’s vertex cospectral-
ity as well as a subset of its walk multiplets. To demonstrate such a parametrization, 
in Fig. 3(b) the graph of Fig. 3(a) has been weighted by arbitrary real parameters wn

(n = 1, 2, . . . , 12) as shown. The uniform multiplets shown in the table below the graph 
are present for any choice of the weight parameters wn, as does the cospectrality of 1, 2. 
Note, however, that certain uniform multiplets of the original graph are removed in the 
parametrized one for arbitrary values wn (that is, if there are no further constraints 
on these values); for example, {3, 7}+ and {4, 7}+. Other cospectrality-preserving edge 
weight parameterizations (not shown) may keep different sets of multiplets intact. We 
note here that the graphs in Fig. 3 were chosen to have a simple geometry to highlight the 
occurrence of even and odd walk multiplets. Indeed, in this particular case the graph’s 
matrix H (for both subfigures of Fig. 3) commutes with the signed permutation

Π =
[

0 1
1 0

]
⊕

[
0 −1

−1 0

]
⊕ 1 ⊕

[
0 1
1 0

]
⊕ −1 (11)
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with Π2 = I. This symmetry induces some of the present walk multiplets, e.g. the anti-
doublet {3.4}− relative to {1, 2}, since [Hk]1,3 + [Hk]1,4 = [Π2Hk]1,3 + [Π2Hk]1,4 =
[ΠHkΠ]1,3 + [ΠHkΠ]1,4 = −[Hk]2,4 − [Hk]2,3. In fact, all walk multiplets which are 
retained after the parametrization in Fig. 3(b) can be seen as a consequence of this 
symmetry. The remaining ones, that is, {3, 7}+, {4, 7}+, {3, 5, 7}+, {4, 5, 7}+ in Fig. 3(a), 
cannot be explained by this simple symmetry but rather by a symmetry of the graph’s 
walk structure—specifically, under row permutation on the graph’s walk matrix, see 
Eq. (9).

Surely, the graph in Example 1 also features a whole lot of nonuniform multiplets, but 
we do not show them for simplicity. We have another example dedicated to nonuniform 
multiplets right below. Apart from that, though, the reader might have noticed that the 
cospectral pair {1, 2} in Fig. 3 itself is included in the list of uniform walk multiplets. 
This is not a coincidence for this particular graph.

Remark 1. A cospectral vertex pair {u, v} is a uniform even walk doublet relative to 
itself, since [Hk]u,u + [Hk]u,v = [Hk]v,v + [Hk]v,u, with [Hk]u,u = [Hk]v,v by Eq. (1)
and [Hk]u,v = [Hk]v,u by the symmetry of H = H�. Thus Eq. (10) is fulfilled with 
M = {u, v} and p = +1.

In the next example, we will illustrate the occurrence of nonuniform walk multiplets, 
where the walks to different destinations m in the associated subset M are generally 
weighted differently by weights γm. Usually, however, those weights γm are not all dif-
ferent from each other, but can be partitioned into groups of equal values. We call the 
vertex subset of a multiplet with such equal values in the tuple γ = (γm)m∈M a sublet
of the multiplet. In other words, given a nonuniform walk multiplet Mp

γ, the subset M
is the union of Ns = Ns(γ) � |M| disjoint sublets mμ, that is,

M =
Ns⋃

μ=1
mμ, mμ ∩mν = ∅ ∀ μ 
= ν, γm∈mμ

= Γμ (12)

such that all weights γm with m ∈ mμ have equal value Γμ which we call the “coefficient” 
of the sublet mμ. The expanded form of the multiplet condition, Eq. (10), then becomes

∑

μ

Γμ

∑

m∈mμ

[Hk]u,m = p
∑

μ

Γμ

∑

m∈mμ

[Hk]v,m ∀k ∈ N. (13)

We indicate the coefficients Γμ as subscripts of vertex sublets within a walk multiplet, 
as shown in the following example.

Example 2. The graph in Fig. 4 has two cospectral vertices u = 2 and v = 6, with walk 
multiplets shown in the table for a maximum number of 4 vertices (there are no singlets). 
As an example of notation, the even nonuniform walk triplet Mp

γ = {(1, 5)a, (4)2a}+
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Fig. 4. An unweighted graph with two cospectral vertices 2, 6, with all existing walk multiplets up to maximal 
size of four vertices listed in the table below the graph (there are no walk singlets). Each walk multiplet 
{· · · }± is composed of sublets (· · · )Γμ

with coefficients Γμ ∈ R which are independent among multiplets 
(although the same symbols a, b are used for brevity); see Example 2.

(with γ = (γ1, γ4, γ5) = (a, 2a, a)) is composed of the sublets m1 = {1, 5} and m2 = {4}
with coefficients Γ1 = a and Γ2 = 2a, respectively, where the parameter a can take any 
nonzero value. Note that the values of sublet coefficients (like a, b in Fig. 4) in different
multiplets are unrelated. For instance, {(4)a, (8)−a}+ is an even doublet composed of 
sublets {4} and {8} with coefficients a and −a, independently of the values of a in the 
other multiplets in Fig. 4. Similarly, {(1)a, (3)b, (4)2a+b, (5)a+b}+ is an even quadruplet 
composed of the four sublets {1}, {3}, {4}, {5} with corresponding nonzero coefficients 
a, b, 2a + b, a + b. If, however, any n > 0 of these coefficients vanish, then the remaining 
4 − n sublets with nonzero coefficients constitute a multiplet with 4 − n vertices. For 
example, if b = −a, the coefficient of {5} vanishes, and the remaining three sublets form 
the triplet {(1, 4)a, (3)−a}+. Finally, note that any uniform multiplet consists of a single 
sublet, like, e.g., {(1, 4, 7)a}+. As one can see, the number of nonuniform multiplets is 
much larger than the number of uniform ones in the present example.

Now, going back to Fig. 3, a closer look at the table there suggests that the union of 
multiplets of same parity p form a multiplet; for instance, {8}− ∪ {3, 4}− = {3, 4, 8}−. 
Indeed, the union of disjoint uniform multiplets of equal parity always forms a new 
uniform multiplet. In fact, different uniform multiplets may also overlap (that is, have 
common vertices), and their union is again a multiplet, though a nonuniform one. Take, 
e.g., the three uniform even multiplets {(3, 7)a}+, {(4, 7)b}+, {(5)a′}+, now written with 
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arbitrary uniform weights a, b, a′, respectively. Their union forms the nonuniform even 
multiplet {(3)a, (4)b, (5)a′ , (7)a+b}+ consisting of four sublets with coefficients Γ1,2,3,4 =
a, b, a′, a + b. Quite generally, any two walk multiplets of equal parity can be merged into 
a larger multiplet, as expressed by the following remark.

Remark 2. It is clear from Eq. (9) that, if Ap
γ and Bp

δ are two even (odd) walk multiplets 
with weighted indicator vectors eγ

A and eδ
B, respectively, then Cp

ε with C = A ∪ B is also 
an even (odd) multiplet with weighted indicator vector eε

C = eγ
A + eδ

B.

Note, however, that not all nonuniform multiplets can be decomposed as a union of 
uniform multiplets. This is easily verified from the table of Fig. 4. For example, the 
even nonuniform walk quadruplet {(2, 6)a, (3, 7)b}+ is the union of the two even uniform 
doublets {(2, 6)a}+ and {(3, 7)b}+, but none of the walk triplets can be decomposed into 
smaller multiplets (that is, a doublet and a singlet or two overlapping doublets). On the 
other hand, the nonuniform quadruplet {(1)a, (3)−a, (4)b, (8)a−b}+ is composed of the 
nonuniform triplet {(1, 4)a, (3)−a} and doublet {(4)a′ , (8)−a′} with a′ ≡ b − a.

3. Preserving vertex cospectrality via walk multiplets

Walk multiplets are very valuable for the analysis and understanding of matrices with 
cospectral vertices u and v. As we will show, once (one or more of) the walk multiplets 
of H relative to u and v are known, one can use this knowledge to extend a graph 
H by connecting a new vertex (or even arbitrary graphs) to it whilst preserving the 
cospectrality of u and v. This naturally generalizes the notion of USPs to subsets of 
more than one vertex of a graph. We will also show how to interconnect walk multiplets, 
thereby changing the topology of a given graph, while preserving the associated vertex 
cospectrality.

In the literature [11], connecting a single vertex to a graph H via multiple edges of 
weight 1 results in a graph H ′ which is coined a “cone” of H. To treat general weighted 
graphs, we will here require cones with weighted edges:

Definition 2 (Weighted cone). Let G ∈ RN×N represent a graph with vertex set V =
{1, 2, . . . , N}. A weighted cone of G over a subset M ⊆ V with weight tuple γ = (γm)m∈M

is the graph

H =
[

G eγ
M

eγ�
M 0

]
, (14)

constructed by connecting a new vertex c = N + 1 (the tip of the cone) to M with edges 
of weights γm = Hm,c = Hc,m to the corresponding vertices m ∈ M, where eγ

M is the 
weighted indicator vector of Eq. (7) with nonzero entries γm.
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For instance, the graph in Fig. 3(a) is the weighted cone H over the vertex subset {1, 2}
of the graph H \ 8 (H after removing vertex 8) with weight tuple γ = (γ1, γ2) = (−1, 1). 
We can now state one of the main results of this work, which will allow for the systematic 
extension of graphs with cospectral pairs while keeping the cospectrality:

Theorem 1 (Walk singlet extension). Let G = G� ∈ RN×N represent an undirected graph 
with two cospectral vertices u, v, let Mp

γ be an even (odd) walk multiplet of G relative 
to u, v, and let H be a weighted cone of G over the subset M with real weight tuple 
γ = (γm)m∈M. Then

(i) Vertices u, v are cospectral in H.
(ii) The tip c of the cone H is an even (odd) walk singlet relative to u, v.

(iii) Any even (odd) walk multiplet in G is an even (odd) walk multiplet in H.

Point (i) of the theorem extends the notion of USPs to vertex subsets for the case of a 
single new connected vertex c: the vertex c is now connected to a subset M instead of a 
single USP of a graph without breaking the associated vertex cospectrality. Further, by 
point (ii) of the theorem, another new vertex c′ can be connected to c while preserving 
cospectrality, just as would be the case if c were a USP. Point (iii) finally allows multiple
single new vertices to be connected to different walk multiplets, or to the same walk 
multiplet. In the case of a USP, however, cospectrality is preserved when connecting a 
new arbitrary graph to the USP, and not only a single new vertex. This is indeed also 
the case for a walk singlet.

Corollary 1. Let the vertex c of a graph H be an even (odd) walk singlet relative to a 
cospectral pair u, v in H, and let C be a graph connected exclusively to c via any number 
of edges with arbitrary weights. Then all vertices of C are even (odd) walk singlets relative 
to u, v.

We thus see that any walk singlet is a USP, and below (Corollary 3) we will also 
show that the reverse is true. Now, suppose we have connected some walk singlets to 
corresponding new subgraphs C, C ′, . . . , which then also consist purely of singlets. Those 
subgraphs may also be interconnected among each other in an arbitrary manner, by 
iteratively interconnecting pairs of singlets, leaving the associated cospectrality intact. 
In fact, vertex interconnections preserving cospectrality can be generalized to the suitable 
interconnection of arbitrary walk multiplets of equal parity, as ensured by the following 
theorem.

Theorem 2 (Walk multiplet interconnection). Let G ∈ RN×N be a graph with a cospectral 
pair {u, v} and Xp

γ , Y p
δ be (in general non-uniform) walk multiplets relative to {u, v}

having same parity p and weight tuples γ, δ, respectively, with possible subset overlap 
Z = X ∩ Y 
= ∅. Then the cospectrality of {u, v} and any walk multiplet relative to {u, v}
with parity p are preserved in the graph H ∈ RN×N with elements
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Hx,y = Hy,x =
{

Gx,y + γxδy if x /∈ Z or y /∈ Z

Gx,y + γxδy + γyδx if x, y ∈ Z
∀ x ∈ X, y ∈ Y

and Hi,j = Gi,j otherwise.

The above theorem, in contrast to the extension of a graph by external vertices in 
Theorem 1, allows for the internal modification of the graph itself while keeping the 
cospectrality of a given vertex pair. In particular, the topology of the graph may be 
changed by adding new edges or deleting existing ones. Before showing examples using 
Theorems 1 and 2, let us also note the following.

Remark 3. By Theorem 2, one can interconnect a cospectral pair {u, v} (which corre-
sponds to a walk doublet relative to itself) to itself by setting X = Y = {u, v} and adding 
an edge between u, v as well as loops on u, v, all of equal arbitrary weight (added to pos-
sible existing edges), while keeping their cospectrality. Then, by Lemma 3.1 of Ref. [15], 
those loops can be removed, with u, v still remaining cospectral. In other words, two 
cospectral vertices u, v of a graph can be interconnected or disconnected without affect-
ing their cospectrality.

To show Theorems 1 and 2 in action, we will now apply them to the example graphs 
in Fig. 3(a) and Fig. 4 of the previous section, whose walk multiplet structure has 
already been analyzed. With the first example, we showcase the cospectrality-preserving 
extension of a graph; via a uniform walk multiplet, via a combination of overlapping 
uniform multiplets, and finally by connecting another arbitrary graph to it.

Example 3. In Fig. 5(a) we have modified the graph of Fig. 3(a) by connecting a new 
vertex c = 9 to the even uniform walk doublet {3, 7}+ relative to the cospectral pair {1, 2}
with weight a. In the terminology of Theorem 1, this new graph is the cone H of the graph 
in Fig. 3(a), G, over the subset M = {3, 7} with a weight tuple γ = (γ3, γ7) = (a, a). 
By Theorem 1, vertex c then forms an even singlet and all even multiplets of the graph 
G in Fig. 3(a) are still present in the new graph of Fig. 5(a), as confirmed in the table 
at the bottom of the figure. Now, in Fig. 5(b) we further connect c to other vertices 
in H, without breaking the cospectrality of {1, 2} or its walk equivalence to any even 
multiplet. Indeed, by Theorem 2, vertex c can be connected to the even singlet {5}+

with some weight a′. We can—again by Theorem 2—additionally connect c, with weight 
b, to the even uniform doublet {4, 7}+ which overlaps with the already connected one 
{3, 7}+. As a result, the edge (c, 7) now has weight a + b. Of course, these successive 
connections amount to the final graph simply being the weighted cone of the initial 
one with tip c over {3, 4, 5, 7} with weight tuple γ = (γ3, γ4, γ5, γ7) = (a, b, a′, a + b). 
Thus, {(3)a, (4)b, (5)a′ , (7)a+b}+ is an even nonuniform walk quadruplet; see Remark 2. 
In Fig. 5(c) we make use of Corollary 1 and connect a whole graph C, represented 
by a cloud since it can be just any graph, to the even singlet c via any number of 
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Fig. 5. Extension of a graph via walk multiplets, using Corollary 1 and Theorem 2; see Example 3 for 
details. The graph of Fig. 3(a) is successively extended by (a) connecting a new vertex c = 9 symmetrically 
to the even uniform walk doublet {3, 7}+ relative to the cospectral pair {1, 2} with weight a, (b) further 
connecting c to the even singlet {5}+ with weight a′ and to the even uniform doublet {4, 7}+ with weight 
b, (c) connecting an arbitrary graph C (cloud) to the even walk singlet c via any number of edges with 
arbitrary weights, and (d) connecting another graph C′ to the even walk singlet {5}+ and then C′ to C
in an arbitrary manner, forming a larger arbitrary graph connected to vertices 5 and c. In all steps, the 
cospectrality of {1, 2} as well as the uniform walk multiplets listed in the table below (for up to cardinality 3) 
are preserved. The graph in (b) is the “weighted cone” of the graph in Fig. 3(a) over subset {3, 4, 5, 7} with 
weight tuple γ = (γ3, γ4, γ5, γ7) = (a, b, a′, a + b). Also, {(3)a, (4)b, (5)a′ , (7)a+b}+ is an even nonuniform 
walk quadruplet relative to {1, 2} with the same weight tuple γ.

edges with arbitrary weights—again preserving cospectrality and walk equivalence of 
{1, 2}. In Fig. 5(d), we have connected another cloud graph C ′ to the walk singlet {5}+. 
This latter cloud C ′ can finally be connected—by Theorem 2—in any arbitrary way 
to C into a larger cloud graph, since both {5}+ and {c}+ are even singlets (as are 
all cloud vertices connected to them). Note that point (iii) of Theorem 1 means that 
walk multiplets of the original graph G with parity opposite to that of Mp

γ are not
necessarily present in the new graph (cone) H. Indeed, in the present example with 
p = +1 all but one odd walk multiplet of Fig. 3(a) (the walk singlet {8}−) disappeared 
in Fig. 5(a)–(d).
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As we see, using Theorem 1 together with Corollary 1 and Theorem 2, given a graph 
H with cospectral vertices u, v one can: (1) generate walk singlets by connecting new 
vertices to existing walk multiplets, (2) connect an arbitrary new subgraph to such a 
singlet, and subsequently (3) even interconnect such subgraphs. In other words, we now 
see that, starting from a small graph with cospectral vertices u and v, one can construct 
arbitrarily complex graphs maintaining this cospectrality, using the concept and rules 
for the introduced walk multiplets.

Let us here also corroborate the necessity of equal parity of two walk multiplets for 
their combination to be a multiplet (see Remark 2), by a counterexample. In Fig. 5, 
{5}+, {8}− are walk singlets of opposite parity relative to the cospectral pair {1, 2}. 
Assume, now, that these two singlets can be combined into a walk doublet Cp

ε relative 
to {1, 2} with subset C = {5, 8}, weight tuple ε = (a, b) and parity p = ±1. Then, 
by Theorem 1, connecting a new vertex c′ to C via edges with weights a, b would not 
break the cospectrality. However, this is not the case. Indeed, in the extended graph 
we would get [H5]1,1 = [H5]2,2 − 4ab, violating Eq. (1) for k = 5 if ab 
= 0. This 
means that only one of the vertices {5}+ and {8}− may be connected to c′ (a = 0 or 
b = 0) to keep {1, 2} cospectral. In other words, either even or odd walk multiplets can 
generally be simultaneously connected to a new vertex while keeping the cospectrality 
of the associated cospectral pair.

In the following example, we demonstrate how the topology of a graph itself can 
be modified, i.e. without extending it by new vertices, while preserving a cospectral 
pair.

Example 4. In Fig. 6, we apply Theorem 2 to the graph of Fig. 4, resulting in graphs with 
the same vertices as in the original graph but with some of them connected differently. 
Specifically, in Fig. 6(a), we interconnect the even uniform walk doublet {(3, 7)a}+ with 
the even nonuniform walk triplet {(1, 5)b, (4)2b}+ (see list of walk multiplets in Fig. 4). 
According to Theorem 2, {u, v} = {2, 6} remains cospectral if we add the product ab to 
the edge weights between each of the vertices 3, 7 of the doublet and vertices 1, 5 of the 
triplet, and 2ab to the edge weights between 3, 7 and 4, as shown in the figure. Thus, 
the new edges (1, 3), (3, 4), (3, 5), and (4, 7) are created in the resulting graph, so that 
the graph topology has been modified. Note, though, that the multiplet interconnection 
procedure comes with a partial restriction on the weights of the new graph. For instance, 
starting in Fig. 6(a) with an unweighted graph and setting also a = b = 1, the edges 
(1, 7), (3, 4), (4, 7), (5, 7) in the new graph have weight 2 (and the rest 1); that is, 
the new graph cannot be unweighted. In Fig. 6(b), we interconnect {(3, 7)a}+ with 
{(4)b, (8)−b}+. Starting with the original graph unweighted and setting a = b = 1, the 
addition of edge weights according to Theorem 2 removes the edges (3, 8) and (7, 8), while 
adding (3, 4) and (4, 7), with {2, 6} remaining cospectral. This demonstrates how walk 
multiplet interconnections can be used to disconnect vertices of a graph while preserving 
the associated cospectrality.
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Fig. 6. Two modifications of the graph depicted in Fig. 4 which keep the cospectrality of the vertices 2 and 
6 while changing the graph topology, using 2; see Example 4. In (a) we interconnect the walk multiplets 
{(3, 7)a}+ and {(1, 5)b, (4)2b}+, with added edge weights as indicated, and in (b) we interconnect walk 
multiplets {(3, 7)a}+ with {(4)a, (8)−a}+, starting from the original graph unweighted and setting a = 1.

By Theorem 1, the cospectrality of a vertex pair is preserved in the weighted cone 
over a walk multiplet of a graph with the same weight tuple γ, with the tip of the cone 
then being a walk singlet. We now ask for the reverse: When the cospectrality of u, v is 
preserved under a single-vertex addition, is that vertex necessarily a walk singlet relative 
to u, v? The affirmative answer is given by the following theorem, which also makes a 
similar statement for the case of single vertex deletions.

Theorem 3 (Preserved cospectrality under single vertex additions or deletions). Let G be 
a graph with vertex set V and with two cospectral vertices u, v ∈ V . Then

(i) The cospectrality of u and v is preserved in the cone H of G over a subset M ⊆ V

with weight tuple γ = (γm)m∈M if and only if Mp
γ is a walk multiplet relative to u, v.

(ii) The cospectrality of u and v is preserved in the graph R = G \ c (obtained from G
by removing the vertex c ∈ V ) if and only if c is a walk singlet in G relative to u, v.

Recall that the tip of the cone in part (i) is a walk singlet relative to u, v (by The-
orem 1). In part (ii), a walk singlet is removed, without breaking the cospectrality of 
{u, v}. Thus, the theorem implies that the only way to add a single vertex to a graph, 
or to remove a single vertex from it, without breaking the cospectrality of two vertices 
u, v, is if that vertex is a walk singlet relative to u, v.

A word of caution, though: Whereas walk singlets can safely be removed from a graph 
without destroying the associated cospectral pair, the same is not true for larger walk 
multiplets in general. An interesting special case where a multiplet can be removed is 
when (i) its vertices are pairwise cospectral and (ii) relative to each such cospectral 
pair its remaining vertices are singlets, as explained in the proof of Theorem 3 in the 
Appendix. An example of this is the walk anti-doublet {3, 4}− in Fig. 3(a), whose removal 
does preserve the cospectrality of the pair {1, 2}.
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Combining Theorem 1 with Theorem 3 results in the following conclusion regarding 
walk singlets.

Corollary 2. A vertex c of a graph is a walk singlet relative to cospectral vertices u, v if 
and only if it is exclusively connected via edges with weight tuple γ = (γm)m∈M to a walk 
multiplet Mp

γ relative to u, v.

Let us now make the link to where we started (in Section 2.1), with the notion of 
USPs. Recall that an USP is a single vertex to which an arbitrary new graph can be 
connected, or which can also be removed, without breaking the cospectrality of a vertex 
pair. While it is clear from Theorem 1 that any walk singlet is an USP, one might ask 
if also the reverse is true, that is, whether any USP is a walk singlet. The removal of a 
walk singlet is covered by Theorem 3(ii). Regarding the connection of arbitrary graphs, 
we have the following.

Corollary 3 (USPs are singlets). If the cospectrality of a vertex pair {u, v} of a graph H
is preserved when connecting an arbitrary graph C to a single vertex c of H, via edges 
of arbitrary weights, then c is a walk singlet relative to {u, v}.

This statement can be easily understood from the above. Indeed, since C is an ar-
bitrary graph, we can choose it to be a single vertex c′. If the cospectrality of u, v is 
preserved under this addition, then by Theorem 3(i), c′ must then be a walk singlet. But 
by Corollary 2, c must be a walk singlet as well. Thus, we have that every USP is a walk 
singlet.

Before we proceed, let us review the above, starting with a recapitulation of the 
concept of cospectral vertices. Known in molecular graph theory as “isospectral points”, 
this concept can be seen as a generalization of exchange symmetry [6]. Indeed, any 
two vertices u and v that are exchange symmetric are also cospectral, but the reverse 
is not necessarily the case. Similar to the case of exchange symmetries, one can then 
draw powerful conclusions from the presence of cospectral vertices. For example, one can 
use the presence of cospectral vertices to express the characteristic polynomial of the 
underlying matrix H in terms of smaller polynomials [16]. In quantum physics it has been 
shown [3] that cospectrality of u and v is a necessary condition for so-called perfect state 
transfer between these two vertices, which is important in the realization of quantum 
computers. In general, if two vertices u and v are cospectral, then all eigenvectors have (in 
the case of degeneracies, can be chosen to have) definite parity on these two vertices [15]. 
The implications of such local parity depend, of course, on what the underlying matrix H
represents, but can be quite impactful. In network theory [9,17], for example, the local 
parity of eigenvectors implies that two cospectral vertices have the same “eigenvector 
centrality”, which is a measure for their importance in the underlying network.

Irrespective of these powerful implications of cospectrality, however, one might object 
that fulfilling its defining Eq. (1) is rather difficult, especially in larger graphs comprising 
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thousands of vertices. What we have shown above is that fulfilling Eq. (1) is, on the 
contrary, rather easy: Given a small graph G with cospectral vertices u and v, one can 
easily embed G into a (much) larger graph G′ by suitably connecting some vertices of G′

to the walk multiplets of u and v. In other words, we have shown that cospectrality does 
not necessarily rely on global fine-tuning. This viewpoint-changing finding, however, is 
just the implication of a much more important insight. Namely, that the matrix powers 
of H—which are used to identify walk multiplets—are a source of detailed information 
about the underlying graph, as we will demonstrate in the following.

4. Eigenvector components on walk multiplets

Having seen how multiplets can be used to extend a graph whilst keeping the cospec-
trality of vertices, we now analyze their relation to the eigenvectors of H. To this end, 
we first choose the orthonormal eigenvector basis according to the following Lemma.

Lemma 1 (Lemma 2.5 of [15]). Let H be a symmetric matrix, with u and v cospectral. 
Then the eigenvectors {φ} of H are (or, in the case of degenerate eigenvalues, can be 
chosen) as follows. For each eigenvalue λ there is at most one eigenvector φ with even 
local parity on u and v, i.e., φu = φv 
= 0, and at most one eigenvector φ with odd 
local parity on u and v, i.e., φu = −φv 
= 0. All remaining eigenvectors for λ fulfill 
φu = φv = 0. The even (odd) parity eigenvector can be found by projecting the vector 
eu ± ev onto the eigenspace associated with λ.

Remark 4. If the projection of eu ± ev onto the eigenspace associated with λ yields the 
zero-vector, then the corresponding even (odd) parity eigenvector does not exist.

With this choice, the components of odd and even parity eigenvectors on a walk 
multiplet obey the following constraint.

Theorem 4 (Eigenvector components on walk multiplets). Let H = H� ∈ RN×N rep-
resent a graph with a pair of cospectral vertices u, v, and let its eigenvectors be chosen 
according to Lemma 1. Then any eigenvector φ of H with eigenvalue λ and nonzero 
components of odd (even) parity p on u, v,

φu = p φv 
= 0, p ∈ {+1, −1}, (15)

fulfills
∑

m∈M

γmφm = 0 (16)

if and only if M−p
γ is a walk multiplet relative to u, v with even (odd) parity −p and 

weight tuple γ = (γm)m∈M.
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Remark 5. It is an interesting—and to the best of our present knowledge unanswered—
question whether analogous general statements can be made regarding the eigenvector 
components on walk multiplets relative to a cospectral pair {u, v} for eigenvectors with 
zero components on u, v.

Let us take a look at the impact of Theorem 4 in an example. We use a graph we are 
already familiar with and which has an interesting multiplet structure.

Example 5. The graph of Fig. 4 has three eigenvectors φν (labeled by ν = 1, 2, 3) with 
odd parity on the cospectral pair {2, 6}, given by the columns

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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(
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(√
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(
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√
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(
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√
5
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As an example, we apply Theorem 4 for the even walk quadruplet {(1)a, (3)b, (4)2a+b,

(5)a+b}+ (shown in the table of Fig. 4) relative to {2, 6}. By Eq. (16), each of the above 
eigenvectors fulfills

aφν
1 + bφν

3 + (2a + b)φν
4 + (a + b)φν

5 = 0; φν
2 = −φν

6 
= 0, ν = 1, 2, 3, (17)

for any values of the parameters a, b, as the reader may easily verify. Note that the 
above eigenvectors also have local odd parity on {3, 7}. This is again a result of Eq. (16), 
since {(3, 7)a}+ is an even walk doublet relative to the cospectral pair {2, 6}, so that 
φν

3 + φν
7 = 0 for ν = 1, 2, 3.

For uniform walk multiplets, and especially singlets, Theorem 4 simplifies: If an even 
(odd) walk multiplet Mp

γ relative to u, v is uniform (γm = const.), then 
∑

m∈M φm = 0
for any eigenvector φ with odd (even) parity on u, v; in particular, φ has zero component 
on any even (odd) walk singlet. The zero component of an eigenvector φ on a vertex c can 
be understood as a cancellation of weighted eigenvector components in the eigenvalue 
equation Hφ = λφ, written as 

∑
m�=c Hcmφm = (λ − Hcc)φc. If φc = 0, the sum over 

components φm on vertices m adjacent (i.e. connected by edges) to c, weighted by the 
corresponding edge weights, vanishes, i.e. 

∑
m�=c Hcmφm = 0. This coincides, though, 

with Eq. (16) of Theorem 4 for Hcm = γm. Further, recall that the components of eigen-
vectors with parity p on cospectral vertices vanish on walk singlets with opposite parity 
−p. In the light of Theorem 1(ii) and Corollary 1, this suggests that walk multiplets may 
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Fig. 7. (a) A graph with no walk singlets relative to the only cospectral pair {1, 8} which remains cospectral 
for any nonzero edge weights w1 (solid lines) and w2 (dashed lines). The graph has seven eigenvectors 
with odd local parity (and nonzero components) on {1, 8}. (b) When connecting an arbitrary graph C
symmetrically via a single vertex c to the cospectral pair {1, 8}, which is also a uniform even walk doublet 
{1, 8}+, then by Corollary 1 all vertices within C are walk singlets relative to {1, 8}. The original odd party 
eigenvectors vanish on all vertices of C.

be used to construct graphs having eigenvectors with multiple vanishing components, 
namely on graph extensions consisting only of walk singlets. We demonstrate this in the 
following example.

Example 6. We start with the graph in Fig. 7(a), which has no walk singlets (or any 
other walk multiplets up to size 5, for that matter) relative to its cospectral pair {1, 8}. 
The cospectrality of {1, 8} is independent of the values of the weights w1 and w2 (indi-
cated by solid and dashed lines), as long as they are nonzero. We can now easily create 
singlets by symmetrically connecting a new graph C, depicted by a cloud in Fig. 7(b), to 
the two cospectral vertices 1, 8 via a single vertex c of C. This is ensured by Corollary 1
and Theorem 2, with the cospectral pair here simultaneously representing a walk doublet 
(see Remark 1). The original graph in Fig. 7(a) has seven eigenvectors with odd parity 
on {1, 8} for any choice of the edge weights w1, w2 
= 0. We note that this number can 
be deduced by applying the methodology of Ref. [18], wherein the so-called “isospectral 
reduction” is used to split the graph’s characteristic polynomial into smaller pieces, the 
orders of which are linked to the number of positive and negative parity eigenvectors. 
Coming back to the example, we note that each of those seven odd parity eigenvectors 
has vanishing components on all vertices of C by Corollary 1 and Theorem 4. Of course, 
depending on the internal structure of the subgraph C, the total graph may now fea-
ture further eigenvectors (not those seven from above) which have zero components on 
different subgraphs (not C).

When the subgraph C is much larger than the original graph of Fig. 7(a), most of 
the eigenvector components of the seven odd parity eigenvectors vanish. Eigenvectors 
with such a property are known as “sparse eigenvectors” [19,20] in engineering or com-
puter science. Such eigenvectors can also be characterized as “compact”, since they have 
nonzero components only on a strict subset of the vertex set of a graph H. Indeed, if H
represents a Hamiltonian of a physical system composed of discrete sites (like the atoms 
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in molecular model of Fig. 2), then eigenstates of H which are strictly confined to a 
subset of sites are often referred to as “compact localized states” [21,22] or even “dark 
states” [23,24] depending on the context. We have here demonstrated how such compact 
eigenvectors can be generated for a graph featuring cospectral vertices, by extending 
the graph via walk multiplets. As a perspective for future work, this may be used to 
design discrete physical setups with compact localized states or, more generally, network 
systems with some eigenvectors vanishing on desired nodes.

5. Generating cospectral vertices without permutation symmetry from highly 
symmetric graphs

Until now, the existence of cospectral vertices has been assumed to be given, and we 
now come to the question of how to generate such graphs. One possible method is to 
start from two graphs G1, G2 with the same characteristic polynomial (such graphs can 
be constructed by means of the so-called “Godsil-McKay-switching” from Ref. [25]), and 
then search for a graph H such that H \ u = G1 and H \ v = G2. The two vertices u
and v are then guaranteed to be cospectral in H.

The concept of walk multiplets, as introduced in this work, naturally suggests another 
scheme for generating graphs with cospectral vertices. Starting from a matrix H which 
commutes with a permutation matrix P which exchanges u and v (with arbitrary per-
mutations of the remaining vertices, so that other vertices could be symmetry-related as 
well), one first identifies the walk multiplets of H relative to {u, v}. In a second step, H
is changed by either (i) connecting one or more new vertices to (some of) the multiplets 
having common parity, following Theorem 1, or (ii) interconnecting multiplets by adding 
edge weights between them, following Theorem 2. Vertices u and v remain cospectral 
under these operations, but the resulting matrix H ′ may feature less permutation sym-
metries than H. Interestingly, H ′ could feature no permutation symmetry at all, as we 
demonstrate in the following examples.

Example 7. Fig. 8(a) shows a “ladder” graph with two legs and three rungs. As drawn 
here, it is symmetric both under a reflection about the horizontal and the vertical axis. 
As a result of the symmetry about the vertical axis, and among other cospectral pairs, 
the two central vertices u, v are cospectral. Moreover, as a result of the combined hori-
zontal and vertical reflection symmetry, the two pairs {d1, d2} and {d1, d3} correspond to 
even uniform walk doublets relative to {u, v}. In Fig. 8(b), a new vertex c is connected 
to {d1, d2} and another new vertex c′ is connected to {d1, d3}, with some arbitrary 
but uniform weights a and b, respectively. The extension by c and c′ breaks the previ-
ous reflection symmetries in the resulting graph, which in fact features no permutation 
symmetries at all. By Theorem 1, however, the vertices u, v remain cospectral. Note, in 
particular, that the occurrence of the walk doublet {d1, d3} in Fig. 8(a) can be intuitively 
explained by the graph’s combined reflection symmetry about its vertical and horizontal 
axes. The symmetry about the horizontal axis is then broken when first adding ver-
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Fig. 8. Generation of a weighted graph with cospectral vertices and without any permutation symmetry; see 
Example 7. (a) A “ladder” graph, reflection symmetric about its vertical and horizontal axes, with cospectral 
vertices u and v, is modified by (b) connecting two new vertices c and c′ to the uniform walk doublets 
{d1, d2}+ and {d1, d3}+ relative to {u, v} with weights a and b, respectively, or (c) interconnecting those 
walk doublets by adding edge weights as shown. In both (a) and (b), the resulting graph has no permutation 
symmetries, while u, v remain cospectral, as ensured by Theorems 1 and 2, respectively.

tex c, so one might intuitively expect also the walk multiplet condition for {d1, d3} to 
be violated. Nevertheless, Theorem 1 guarantees that {d1, d3} remains a walk multiplet 
relative to {u, v}, and so c′ can be further added without breaking cospectrality. An alter-
native way to generate a graph with cospectral vertices and no permutation symmetries 
is shown in Fig. 8(c). Here the same original graph is modified by applying Theorem 2: 
Instead of connecting the two walk doublets {d1, d2}+ and {d1, d3}+ to added vertices, 
they are now interconnected to each other. Specifically, the weights ab are added pair-
wise to the edges between d1, d2, d3, and a loop of weight 2ab is added to the overlap 
d1 = {d1, d2} ∩ {d1, d3}, with a and b being arbitrary parameters. Note that, while the 
vertex set of the graph remains the same, its topology has now changed by the added 
edges (d1, d3) and (d2, d3). Again, the pair {u, v} remains cospectral, while the resulting 
graph has no permutation symmetry.

Example 8. Fig. 9(a) shows again a graph which, as visualized, is vertically and hori-
zontally reflection symmetric and has (among others) two cospectral vertices u, v and 
two uniform even walk doublets {d1, d2}+ and {d1, d3}+ relative to {u, v}. We now use 
Theorem 2 to change the topology of the original graph and subsequently Theorem 1
to further extend it by new vertices, with u, v remaining cospectral in the final graph 
where all permutation symmetries are broken. Specifically, in Fig. 9(b) we interconnect 
the walk doublet {d1, d3}+ to the doublet {u, v}+ by uniformly adding edge weights be-
tween their vertices (creating new edges if absent) according to Theorem 2. In Fig. 9(c) 
we proceed by connecting a new vertex c to the doublet {d1, d2}+ and another new ver-
tex c′ first to {d1, d3}+ and then to {u, v}+ (equivalent to connecting c′ directly to the 
walk quadruplet {(d1, d3)a, (u, v)b}+), following Theorem 1. We finally also disconnect 
u from v, which leaves them cospectral according to Remark 3.
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Fig. 9. The highly symmetric graph in (a) with (among other pairs) the cospectral vertex pair {u, v} is mod-
ified by (b) interconnecting the walk doublets {u, v}+ and {d1, d3}+ (according to Theorem 2), and then (c)
disconnecting the two cospectral vertices u, v from each other (Remark 3), connecting a new vertex c to the 
walk doublet {d1, d2}+, and another new vertex c′ to the walk quadruplet {(d1, d3)a, (u, v)b}+ (Theorem 1), 
resulting in a graph with cospectral vertices u, v but no permutation symmetries; see Example 8.

The highly symmetric base graphs in Examples 7 and 8 were chosen unweighted and 
without loops for simplicity. Notably, they could easily be enriched by adding loops on 
their vertices and weighting the edges such that the indicated cospectral pairs {u, v} are 
still present (that is, by respecting the reflection symmetries about the vertical and/or 
horizontal axes). Then, the extensions and interconnections described above could still 
be performed, creating weighted graphs featuring cospectral pairs without permutation 
symmetries.

6. Conclusions

Cospectral vertices offer the exciting possibility of eigenvectors of a matrix H having 
local parity on components corresponding to cospectral vertex pairs, even without the 
existence of corresponding permutation matrices commuting with H. Here, we introduced 
the notion of “walk equivalence” of two cospectral vertices with respect to a vertex subset 
of a graph represented by a matrix H. Such subsets, corresponding to what we call “walk 
multiplets”, provide a simple and generally applicable method of modifying a given graph 
with cospectral vertices such that the cospectrality is preserved. The definition of walk 
multiplets is based on the entries of the powers of H and can be expressed in terms of 
so-called walk matrices used in graph theory. As we demonstrate here, the concept of 
walk multiplets generalizes that of “unrestricted substitution points” (USPs), introduced 
for molecular graphs, to vertex subsets of arbitrary size: Any arbitrary new graph can be 
connected, via one of its vertices, to all vertices of a walk multiplet relative to a cospectral 
pair in an existing graph, without breaking the cospectrality. In fact, USPs turn out to 
coincide with walk “singlets”, that is, multiplets comprised of a single vertex. We further 
showed how walk multiplets can be used to derive sets of local relations between the 
components of an eigenvector with certain parity on a given associated cospectral pair. 
As a special case, the eigenvector components then vanish on any walk singlet as well 
as on any graph connected exclusively to walk singlets. This relates to the generation of 
so-called “compact localized states” in artificial physical setups, also known as “sparse 
eigenvectors” in other areas of science. We also presented a scheme in which we use 
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walk multiplets to construct a class of graphs having cospectral vertices without any 
permutation symmetries.

It is important to notice that the analysis performed here applies also to more than 
two cospectral vertices: For any subset S of cospectral vertices, cospectrality is indeed 
defined pairwise for any two vertices u, v ∈ S, and thus the walk multiplet framework 
applies to any such pair. Our results may thus offer a valuable resource in understanding 
and manipulating the structure of eigenvectors in an engineered network system via 
its walk multiplets—that is, by only utilizing the powers of the underlying matrix. In 
particular, the local eigenvector component relations derived here may be systematically 
exploited to deduce parametric forms of eigenvectors for generic graphs with cospectral 
pairs; an investigation left for future work.

Let us finally also hint at a possible connection to recent studies of local symmetries 
in discrete quantum models, which provide relations between the components of general 
states in the form of non-local continuity equations [26,27] and may offer advantages 
for state transfer on quantum networks [18]. In this context, it would be intriguing to 
explore the possible implications of walk multiplets for the dynamical evolution of wave 
excitations on general network-like systems.
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Appendix A. Proofs of theorems

We here restate Theorems 1 to 4 together with their proofs.

Theorem 1 (Walk singlet extension). Let G = G� ∈ RN×N represent an undirected graph 
with two cospectral vertices u, v, let Mp

γ be an even (odd) walk multiplet of G relative 
to u, v, and let H be a weighted cone of G over the subset M with real weight tuple 
γ = (γm)m∈M. Then

(i) Vertices u, v are cospectral in H.
(ii) The tip c of the cone H is an even (odd) walk singlet relative to u, v.

(iii) Any even (odd) walk multiplet in G is an even (odd) walk multiplet in H.
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Proof. We partition any walk of length k in H into the walks restricted exclusively to 
G and the additionally generated walks in H visiting the new vertex c. Then we apply 
the multiplet condition, Eq. (10), which is valid in the old graph G. For convenience, we 
define

A
(�)
s;M ≡

∑

m∈M

γm[G�]sm, B
(�)
s;M ≡

∑

m∈M

γm[H�]sm. (A.1)

Then, since Mp
γ is a walk multiplet relative to u, v in G, we have from Eq. (10) that

A
(k)
u;M = p A

(k)
v;M ∀k ∈ N, p ∈ {+1, −1}. (A.2)

To prove (i), we compute, with walk lengths fulfilling � + n + r = k − 2,

[Hk]u,u =[Gk]u,u +
∑

�,n,r

∑

m,m′∈M

[G�]u,mHm,c[Hn]c,cHc,m′ [Gr]m′,u (A.3)

=[Gk]u,u +
∑

�,n,r

∑

m,m′∈M

[G�]u,mγm[Hn]c,cγm′ [Gr]m′,u (A.4)

=[Gk]u,u +
∑

�,n,r

A
(�)
u;M[Hn]c,cA

(r)
u;M (A.5)

=[Gk]v,v + p2
∑

�,n,r

A
(�)
v;M[Hn]c,cA

(r)
v;M (A.6)

=[Hk]v,v, (A.7)

where we used p2 = 1, Eq. (A.2), and the cospectrality of u, v in G. To prove (ii), we 
compute, now with � + n = k − 1,

[Hk]u,c =
∑

�,n

∑

m∈M

[G�]u,mHm,c[Hn]c,c =
∑

�,n

∑

m∈M

γm[G�]u,m[Hn]c,c (A.8)

=
∑

�,n

A
(�)
u;M[Hn]c,c (A.9)

=
∑

�,n

pA
(�)
v;M[Hn]c,c = p [Hk]v,c (A.10)

To prove (iii), we compute, again with � + n = k − 1,

[Hk]u,m =[Gk]u,m +
∑

�,n

∑

m′∈M

[G�]u,m′Hm′,c[Hn]c,m (A.11)

=[Gk]u,m +
∑

�,n

A
(�)
u;M[Hn]c,m (A.12)

so that, multiplying by γm and summing over m ∈ M, we have
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B
(k)
u;M = A

(k)
u;M +

∑

m∈M

γm

∑

�,n

A
(�)
u;M[Hn]c,m (A.13)

= p A
(k)
v;M +

∑

m∈M

γm

∑

�,n

pA
(�)
v;M[Hn]c,m (A.14)

= p
∑

m∈M

γm

(
[Gk]v,m +

∑

�,n

A
(�)
v;M[Hn]c,m

)
= p

∑

m∈M

γm[Hk]v,m = p B
(k)
v;M

(A.15)

Note that, if any arbitrary graph C is connected exclusively to the added vertex c, 
then any vertex c′ of C is also a walk singlet relative to {u, v}. Indeed, simply replacing 
[Hn]cc with [Hn]cc′ in Eqs. (A.8) to (A.10) above leads to [Hk]u,c′ = p [Hk]v,c′ , which 
proves Corollary 1. �
Theorem 2 (Walk multiplet interconnection). Let G ∈ RN×N be a graph with a cospectral 
pair {u, v} and Xp

γ , Y p
δ be (in general non-uniform) walk multiplets relative to {u, v}

having same parity p and weight tuples γ, δ, respectively, with possible subset overlap 
Z = X ∩ Y 
= ∅. Then the cospectrality of {u, v} and any walk multiplet relative to {u, v}
with parity p are preserved in the graph H ∈ RN×N with elements

Hx,y = Hy,x =
{

Gx,y + γxδy if x /∈ Z or y /∈ Z

Gx,y + γxδy + γyδx if x, y ∈ Z
∀ x ∈ X, y ∈ Y

and Hi,j = Gi,j otherwise.

Proof. To prove that the vertices u, v remain cospectral in the modified graph H with 
added edge weights Hx,y − Gx,y as described in the theorem, we will partition the walks 
in the new graph into walk segments such that the multiplet relations, Eq. (9), can be 
applied for the segments within the old graph G.

We first express the newly generated closed walks from u using (i) walks segments in 
the old graph G to reach a vertex of one of the multiplets X (or Y ), (ii) the new edge 
(that is, the weight added if the edge already existed) to cross to the other multiplet Y
(or X), and (iii) finally coming back to u using walks in the new graph H.

Defining M = X\Z, W = Y\Z, and with added edge weights Hij − Gij = γiδj (resp. 
γiδj + γjδi) if i, j ∈ X ∪ Y ∧ (i /∈ Z ∨ j /∈ Z) (resp. i, j ∈ Z), we have

[Hk]u,u = [Gk]u,u+
∑

l+n+1=k

{ ∑

m∈M,w∈W

[Gl]u,mγmδw[Hn]w,u +
∑

z∈Z,w∈W

[Gl]u,zγzδw[Hn]w,u+

(A.16)
∑

w∈W ,m∈M

[Gl]u,wδwγm[Hn]m,u +
∑

z∈Z,m∈M

[Gl]u,zδzγm[Hn]m,u+

(A.17)
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∑

m∈M,z∈Z

[Gl]u,mγmδz[Hn]z,u+ (A.18)

∑

w∈W ,z∈Z

[Gl]u,wδwγz[Hn]z,u+ (A.19)

∑

z′∈Z,z∈Z

[Gl]u,z′(γz′δz + γzδz′)[Hn]z,u

}
. (A.20)

We can now combine sums over subsets as follows: 
∑

m∈M + 
∑

z∈Z =
∑

x∈X in (A.16), 
and the same in (A.18) with the first term (γz′δz) in (A.20). Similarly, 

∑
w∈W + 

∑
z∈Z =∑

y∈Y in (A.17), and the same in (A.19) with the second term (γzδz′) in (A.20). This 
yields

[Hk]u,u = [Gk]u,u +
∑

l+n+1=k

{ ∑

x∈X,w∈W

[Gl]u,xγxδw[Hn]w,u

+
∑

y∈Y ,m∈M

[Gl]u,yδyγm[Hn]m,u

+
∑

x∈X,z∈Z

[Gl]u,xγxδz[Hn]z,u +
∑

y∈Y ,z∈Z

[Gl]u,yδyγz[Hn]z,u

}

= [Gk]u,u +
∑

l+n+1=k

{ ∑

x∈X,y∈Y

[Gl]u,xγxδy[Hn]y,u +
∑

y∈Y ,x∈X

[Gl]u,yδyγx[Hn]x,u

}
.

(A.21)

Next, we account for the walk segments from vertex i = x, y back to u, which have a 
similar form:

[Hn]i,u = [Gn]i,u +
∑

r+s+1=n

{ ∑

x′∈X,y′∈Y

[Hr]i,x′γx′δy′ [Gs]y′,u

+
∑

y′∈Y ,x′∈X

[Hr]i,y′δy′γx′ [Gs]x′,u
}

. (A.22)

Plugging this into (A.21), after some sorting and combining of terms we arrive at (with 
x, x′ ∈ X and y, y′ ∈ Y )

[Hk]u,u = [Gk]u,u + 2
∑

l+n+1=k

∑

x,y

[Gl]u,xγxδy[Gn]y,u+

∑

l+r+s+2=k

∑

x,x′,y,y′

{
[Gl]u,xγxδy[Hr]y,y′δy′γx′ [Gs]x′,u+

[Gl]u,yδyγx[Hr]x,x′γx′δy′ [Gs]y′,u+

2[Gl]u,xγxδy[Hr]y,x′γx′δy′ [Gs]y′,u
}

(A.23)
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It is now evident that [Hk]u,u is equal to [Hk]v,v by applying cospectrality of u, v in G
and multiplet conditions for Xp

γ , Y p
δ .

To prove that any general non-uniform walk multiplet Qp
ε (with weight tuple ε and of 

the same parity p as Xp
γ , Y p

δ ) in G is preserved in H, we evaluate the following expression 
by using Eq. (A.22):

∑

q∈Q

εq[Hk]u,q =
∑

q∈Q

εq

{
[Gk]u,q +

∑

r+s+1=k

∑

x∈X,y∈Y

[Gs]u,xγxδy[Hr]y,q

+
∑

r+s+1=k

∑

y∈Y ,x∈X

[Gs]u,yδyγx[Hr]x,q

}
(A.24)

= p
∑

q∈Q

εq[Hk]v,q, (A.25)

where in the last step we applied the multiplet conditions for Qp
ε , Xp

γ , Y p
δ . �

Theorem 3 (Preserved cospectrality under single vertex additions or deletions). Let G be 
a graph with vertex set V and with two cospectral vertices u, v ∈ V . Then

(i) The cospectrality of u and v is preserved in the cone H of G over a subset M ⊆ V

with weight tuple γ = (γm)m∈M if and only if Mp
γ is a walk multiplet relative to u, v.

(ii) The cospectrality of u and v is preserved in the graph R = G \ c (obtained from G
by removing the vertex c ∈ V ) if and only if c is a walk singlet in G relative to u, v.

Proof. We start with part (i) of the theorem. If Mp
γ is a walk multiplet, then cospectrality 

of {u, v} is preserved by Theorem 1. For the converse, we assume that {u, v} remain 
cospectral, that is

[Hk]u,u = [Hk]v,v ∀ k ∈ N, (A.26)

where, with A(�)
s;M defined as in Eq. (A.1),

[Hk]s,s = [Gk]s,s +
∑

n

∑

�,�′

∑

m,m′∈M

[G�]s,mγm[Hn]c,cγm′ [G�′
]m′,s (A.27)

= [Gk]s,s +
∑

n

∑

�,�′

A
(�)
s;M[Hn]c,cA

(�′)
s;M (A.28)

with s ∈ {u, v}, �, �′ � 0, n � 0, and � + �′ = k − n − 2. We further define

D�,�′ ≡ A
(�)
u;MA

(�′)
u;M − A

(�)
v;MA

(�′)
v;M = D�′,�, a(k)

n ≡
∑

�+�′=k−n−2
�,�′�0

D�,�′ . (A.29)
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Using [Gk]u,u = [Gk]v,v and substituting the decomposition from Eq. (A.28) into 
Eq. (A.26) for s = u, v we arrive at

[Hk]u,u − [Hk]v,v =
k−2∑

n=0
a(k)

n [Hn]cc = 0 ∀ k ∈ N. (A.30)

To prove that Mp
γ is a multiplet, we must show that (dropping the subscript M)

A(�)
u = p A(�)

v ∀ � ∈ N, p ∈ {+1, −1}. (A.31)

We prove this by induction. For k = 2 (that is, n = 0, � = �′ = 0), Eq. (A.30) yields 
[A(0)

u ]2 = [A(0)
v ]2 or

A(0)
u = p A(0)

v , (A.32)

so that Eq. (A.31) is fulfilled in zeroth order � = 0. For the induction step, we assume 
that Eq. (A.31) is fulfilled up to some arbitrary order r, that is,

A(�)
u = p A(�)

v ∀ � � r, (A.33)

and show that this equation also holds for � = r + 1. To this end, we evaluate Eq. (A.30)
for k = r + 3. For this choice of k, all but two summands vanish, since the assumption 
Eq. (A.33) implies that D�,�′ = 0 if �, �′ � r. We thus obtain D0,r+1 + Dr+1,0 = 0, and 
since D0,r+1 = Dr+1,0, it follows that A(0)

u A
(r+1)
u = A

(0)
v A

(r+1)
v . Thus, if A(0)

u 
= 0, due 
to Eq. (A.32) we get A(r+1)

u = pA
(r+1)
v , as desired.

If A
(0)
u = 0, it follows from Eq. (A.32) that also A

(0)
v = 0, and from Eq. (A.29)

we obtain D0,� = D�,0 = 0 for all �. We exploit this fact by evaluating Eq. (A.30) for 
k = r+4, yielding D1,r+1 = Dr+1,1 = 0. Now, if A(1)

u 
= 0 we again get A(r+1)
u = pA

(r+1)
v , 

as desired. If A(1)
u = 0, we proceed to the next higher order k = r + 5, and so on. In 

the limiting case where A(�)
u = 0 for all � � r, we evaluate Eq. (A.30) for k = 2(r + 2), 

which yields Dr+1,r+1 = 0 and therefore A(r+1)
u = pA

(r+1)
v . This completes the proof of 

the first part.
For part (ii), we first prove that, if c is a singlet in G, then its removal does not break 

the cospectrality of u and v. To this end, we use the fact that

[Gk]u,u =[Rk]u,u +
∑

�+n=k

[G�]u,c[Gn]c,u (A.34)

=[Rk]u,u +
∑

�+n=k

[G�]v,c[Gn]c,v (A.35)

and

[Gk]v,v =[Rk]v,v +
∑

�+n=k

[G�]v,c[Gn]c,v. (A.36)
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Since u and v are cospectral in G, it follows that [Rk]u,u = [Rk]v,v for all k, so that 
u, v are also cospectral in R if c is a singlet in G. For the reverse direction we need to 
prove that, if the cospectrality of u and v is preserved by the removal of a single vertex 
c, then this vertex must be a walk singlet. With G being a cone of R with tip c, and 
demanding u, v to be cospectral in both R and G, combining part (i) of this theorem 
with Theorem 1 immediately gives that c must be a singlet in G. �
A.1. Comment: removal of a general multiplet

Consider removing a walk multiplet Mp
γ instead of the singlet c. Then

[Gk]u,u =[Rk]u,u +
∑

�+r+n=k

∑

m,m′∈M

[G�]u,m[Gr]m,m′ [Gn]m′,u (A.37)

and cospectrality is preserved in the resulting graph R only if

∑

�+r+n=k

∑

m,m′∈M

[G�]u,m[Gr]m,m′ [Gn]m′,u =
∑

�+r+n=k

∑

m,m′∈M

[G�]v,m[Gr]m,m′ [Gn]m′,v

(A.38)

for all k. Thus, cospectrality of a vertex pair in a graph is generally not preserved when 
removing a multiplet, except if Eq. (A.38) if fulfilled. Assuming a uniform multiplet 
(γm = 1 for all m ∈ M), a special case where this occurs is when all pairs {m, m′}
in M are cospectral and, for each such pair, all remaining vertices m′′ /∈ {m, m′} in 
M are singlets relative to {m, m′}. Then [Gr]m,m′ can be factored out of the sums in 
Eq. (A.38) (taken separately for m = m′ and m 
= m′) and equality follows from the 
multiplet condition Eq. (A.31), for both p = ±1. For a walk quadruplet, e.g., the elements 
[Gr]m,m′ would have the form

[Gr]M,M =

⎡
⎢⎣

ar br br br

br ar br br

br br ar br

br br br ar

⎤
⎥⎦ , (A.39)

with the values ar and br generally depending on the power r. For a uniform p-doublet, 
this reduces to [Gr]m,m = [Gr]m′,m′ and [Gr]m,m′ = [Gr]m′,m. This is the case, e.g., for 
the walk anti-doublet {3, 4}− in Fig. 3(a) which can be removed without affecting the 
cospectrality of the pair {1, 2}.

Theorem 4 (Eigenvector components on walk multiplets). Let H = H� ∈ RN×N rep-
resent a graph with a pair of cospectral vertices u, v, and let its eigenvectors be chosen 
according to Lemma 1. Then any eigenvector φ of H with eigenvalue λ and nonzero 
components of odd (even) parity p on u, v,
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φu = p φv 
= 0, p ∈ {+1, −1}, (15)

fulfills
∑

m∈M

γmφm = 0 (16)

if and only if M−p
γ is a walk multiplet relative to u, v with even (odd) parity −p and 

weight tuple γ = (γm)m∈M.

Proof. Using the spectral decomposition

H =
N∑

ν=1
λνφνφν� (A.40)

of H in the orthonormal eigenbasis {φν}, chosen according to Lemma 1, we have, for 
s ∈ {u, v},

[Hk]s,m =
N∑

ν=1
λk

νφν
s φν

m =
∑

ν∈N +

λk
νφν

s φν
m +

∑

ν∈N −

λk
νφν

s φν
m ∀k ∈ N, (A.41)

where we have collected the labels ν of eigenvectors with parity ±1 on {u, v} into the 
set N ± (the remaining eigenvectors with φν

u = φν
v = 0 do not appear in the sum). 

Note that Eq. (A.41) incorporates the spectral decomposition of the identity matrix, 
Is,m =

∑N
ν=1 φν

s φν
m for k = 0, meaning that λ0

ν = 1 even in the case of zero eigenvalues. 
Next we calculate:

[Hk]u,m − p[Hk]v,m = (1 − p)
∑

ν∈N +

λk
νφν

uφν
m + (1 + p)

∑

ν∈N −

λk
νφν

uφν
m (A.42)

= 2
∑

ν∈N −p

λk
νφν

uφν
m, (A.43)

where we used the parity of eigenstates on {u, v}, i.e. φν
u = ±φν

v for ν ∈ N ±, so that the 
prefactor (1 ∓ p) of the sum over ν ∈ N ± vanishes for p = ±1. Multiplying by γm and 
summing over m ∈ M we obtain

B
(k)
u;M − p B

(k)
v;M = 2

∑

ν∈N −p

λk
νφν

u

∑

m∈M

γmφν
m, (A.44)

with B(k)
s;M defined as in Eq. (A.1). It follows that, if Eq. (16) is fulfilled with φ = φν , 

for all ν ∈ N −p, then B(k)
u;M = p B(k)

v;M for all k and thus Mp
γ is a walk multiplet relative 

to {u, v} with parity p. Conversely, if Mp
γ is a multiplet, then the left side of Eq. (A.44)
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vanishes for all k ∈ N. For k ∈ �0, np − 1�, where np ≡ |N −p|, we can write Eq. (A.44)
in the matrix form

V �c ≡

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1
λ1 λ2 · · · λnp

λ2
1 λ2

2 · · · λ2
np

...
... . . . ...

λ
np−1
1 λ

np−1
2 · · · λ

np−1
np

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

c1
c2
...

cnp

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎦ , (A.45)

with coefficients cν = 2φν
u

∑
m∈M γmφν

m, where V � is the (square) Vandermonde matrix 
with [V �]i,j = λj−1

i , yielding

det(V ) = det(V �) =
∏

1�μ<ν�np

(λν − λμ). (A.46)

Now, our choice of eigenvectors ensures that λν 
= λμ for all ν 
= μ with ν, μ ∈ N −p, so 
that det(V ) 
= 0. Thus V is invertible, so that Eq. (A.46) yields cν = 0 for all ν ∈ N −p, 
and since φν

u 
= 0 we have that 
∑

m∈M γmφν
m = 0 for all ν ∈ N −p, completing the 

proof. �
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Degeneracies in the energy spectra of physical systems are commonly considered to be either of
accidental character or induced by symmetries of the Hamiltonian. We develop an approach to explain
degeneracies by tracing them back to symmetries of an isospectral effective Hamiltonian derived by
subsystem partitioning. We provide an intuitive interpretation of such latent symmetries by relating them to
corresponding local symmetries in the powers of the underlying Hamiltonian matrix. As an application, we
relate the degeneracies induced by the rotation symmetry of a real Hamiltonian to a non-Abelian latent
symmetry group. It is demonstrated that the rotational symmetries can be broken in a controlled manner
while maintaining the underlying more fundamental latent symmetry. This opens up the perspective of
investigating accidental degeneracies in terms of latent symmetries.

DOI: 10.1103/PhysRevLett.126.180601

Introduction.—Identifying the origin of spectral degen-
eracies in quantum systems is of fundamental importance
for the understanding and control of their structural and
dynamical properties. Degenerate states are at the heart of
spectacular phenomena like the Jahn-Teller effect [1] and
the quantum Hall effect [2,3] as well as the electromagnetic
response of, e.g., atoms or molecules [4,5] in general. In
lattice systems designed macroscopic degeneracies can
realize flat bands within a variety of setups including
optical lattices, photonic waveguide arrays, and super-
conducting networks [6]. Further, degeneracies in the form
of conical intersections of molecular potential energy
surfaces play a central role for ultrafast dynamical decay
processes [7,8] and are responsible, e.g., for molecular self-
repair mechanisms in photobiology [9].
When degeneracies occur in the energy spectrum, the

first place to seek their origin is commonly the group of
geometrical symmetry operations commuting with the
underlying Hamiltonian. Prominent examples for such
symmetries are the molecular point group in chemistry
or the space group in crystallography. If this group is non-
Abelian—that is, if at least two symmetry operations do not
commute with each other—it induces degeneracies of
multiplicities determined by the dimensions of the group’s
irreducible representations. More challenging is the reverse
question of assigning degeneracies to a symmetry group
with a physical significance [10,11]. A famous example of
a physically significant, yet not obvious, symmetry from
the early days of quantum theory is the SO(4) symmetry
leading to the conservation of the Runge-Lenz vector in the
hydrogen atom [12]. If no such physically meaningful
symmetry group can be found, the degeneracy is tradi-
tionally called accidental [13]. This often occurs for

systems with several or many degrees of freedom where
eigenenergies happen to coincide at some location in the
corresponding parameter space, intersections of molecular
potential energy surfaces being a typical example [14].
In this work, we promote a different viewpoint on assign-

ing degeneracies to symmetries of the system. Instead of
performing a symmetry analysis of theHamiltonian itself, we
do this for the effective Hamiltonian obtained from the
original one by reducing it onto a subsystem while retaining
the energy spectrum. We note that its core property—the
preservation of the energy spectrum—clearly distinguishes
this approach from thosewhich analyze the symmetries of an
effective model obtained by truncation or a mean-field
ansatz. Focusing on generic discrete models, we here show
how geometrical symmetries of the isospectrally reduced
Hamiltonian induce spectral degeneracies for the original
system. Such latent symmetries, as introduced recently in
graph theory [15], are generally not apparent in the original
system at hand. In fact, as we show here, they are directly
linked to corresponding local symmetries, though in all
powers of the original Hamiltonian. Navigating through the
proposed concepts, visualized by minimalistic examples, we
(i) show how non-Abelian latent symmetries are necessarily
induced by rotation symmetries of a real Hamiltonian, and
(ii) demonstrate that these latent symmetries, alongwith their
induced degeneracies, can be preserved even when breaking
the original rotational symmetry. Lastly, we link a special
case of latent symmetry to what we call here a generalized
exchange symmetry of the Hamiltonian.
Degeneracies from latent symmetries.—The concepts

and results developed in this work are valid for generic
setups described by a finite-dimensional matrix. This
matrix can be drawn from a wide range of physical
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platforms: It could represent a Bloch Hamiltonian of a
tight-binding lattice [16], a molecular Hückel Hamiltonian
[17,18], a multiport scattering matrix [19], or very gene-
rally the matrix H occurring in (linearized) dynamical
problems [20], such as coupled oscillators [21]. To convey
the main ideas in a transparent way, we will illustrate it by
means of minimalistic prototypical setups.
In order to reveal the latent symmetries of a general

complex matrix H, we will rely on a dimensional reduction
of H which preserves the eigenvalue spectrum. This
isospectral reduction is defined as [15,22]

RSðH; λÞ ¼ HSS −HSS̄ðHS̄ S̄ − λIÞ−1HS̄S; ð1Þ

whereby S is a set sites and S̄ denotes the complement set of
all other sites of the given setup. HSS and HS̄ S̄ denote the
respective Hamiltonians of the sub-systems consisting only
of the sites in S or S̄. HS̄S and HSS̄ represent the coupling
between the two sub-systems, and I is the identity matrix.
The isospectral reduction RSðH; λÞ is equivalent to an
effective Hamiltonian gained from a subsystem partitioning
of H [23], and its entries are rational functions of the
parameter λ.
A Hamiltonian H is latently symmetric if there exists an

isospectral reduction RSðH; λÞ with a symmetry, that is,
which commutes with a group of matrices fMg indepen-
dent of λ. We now demonstrate this concept by means of the
simple 6-site Hamiltonian H depicted in fig. 1(a). This
Hamiltonian illustrates the minimal prototype of a system
with non-trivial latent symmetry. H is parametrized by
three real coupling parameters hi ≠ 0, i ∈ f1; 2; 3g and two
on-site potentials v1, v2. The eigenvalue spectrum of H
contains two doubly degenerate eigenvalues for any choice
of these parameters. To explain these degeneracies in terms
of latent symmetries ofH, we reduce it by means of Eq. (1)
over S ¼ f1; 2; 3g. This yields the symmetric matrix

RS¼f1;2;3gðH; λÞ ¼

0
B@

a b b

b a b

b b a

1
CA; ð2Þ

with a ¼ v1 þ ðh21 þ h22=λ − v2Þ, b ¼ ðh1h2=λ − v2Þ þ h3.
A graphical representation of Eq. (2) is depicted in
Fig. 1(b). The graph is highly symmetric and is invariant
under six symmetry operations: three rotations and three
reflections. These six operations form the so-called dihedral
group D3, which is non-Abelian.
We now draw a general connection between non-Abelian

latent symmetries of a given Hamiltonian H and its
eigenvalue spectrum. To this end, we use the fact that
each of the so-called “nonlinear” eigenvalues belonging to
RSðH; λÞ in Eq. (2), defined as the solutions λj to the
nonlinear eigenvalue problem

Det½RSðH; λjÞ − λjI� ¼ 0 ð3Þ

is also an eigenvalue of H [22]. Moreover, whenever the
eigenvalue spectra of H and of the subsystem HS̄ S̄ do not
intersect, the eigenvalue spectra of RSðH; λÞ and H
coincide [22]. This motivates calling RSðH; λÞ an
“isospectral reduction.” From the above considerations, it
is clear that degeneracies in the eigenvalue spectrum of
RSðH; λÞ necessarily correspond to degeneracies in the
eigenvalue spectrum of H. Moreover, and as we show in
Sec. I. of the Supplemental Material [24], non-Abelian
symmetries of the isospectral reduction RSðH; λÞ lead to
degeneracies in the spectrum of its nonlinear eigenvalues.
Thus, non-Abelian latent symmetries of H necessarily
induce degeneracies onto the eigenvalue spectrum of H.
Specifically, lower bounds on the multiplicity of H’s
eigenvalues are given by dimensions of the irreducible

(a)

(c) (d)

(b)

FIG. 1. (a) A six-site Hamiltonian H which features a non-
Abelian D3 permutation symmetry if h1 ¼ h2, but only an
Abelian C3 permutation symmetry if h1 ≠ h2. A line between
two different sites i, j corresponds to a nonvanishing matrix
element Hi;j, taking parametric values h1, h2, or h3 (indicated by
different line styles). Loops connecting a site to itself correspond
to diagonal matrix elements Hi;i with parametric values v1 or v2.
(b) The result of the isospectral reduction of H over the three red
sites S ¼ f1; 2; 3g. The reduced Hamiltonian [Eq. (2)] features a
D3 permutation symmetry for any choice of λ; hi, or vi. (c) A
modified kagome lattice with H as a unit cell. The band structure
of this lattice for kx ¼ 0 is plotted in (d) for h1 ¼ 4=3, h2 ¼ 5=3,
h3 ¼ 0.7, h4 ¼ 3=2, vi ¼ 0.
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representations of the underlying non-Abelian symmetry
group of RSðH; λÞ.
We emphasize that the above statements are completely

general in the sense that they are valid for all kinds of latent
symmetries (not just permutations), and for arbitrary (even
non-Hermitian) diagonalizable matrices H. Irrespective of
this applicability to general symmetries, we concentrate on
the special case of permutation symmetries throughout this
Letter. After all, permutation symmetries are among the
easiest to detect—often by bare eye—and thus provide a
convenient workhorse for depicting the main features of
latent symmetries.
In the above, we have explained the spectral degener-

acies of the prototype example Fig. 1(a) in terms of its
latent symmetries. This system has been deliberately
designed to be as simple as possible in order to convey
the main ideas of latent symmetries. The underlying
concept is, however, not limited to such basic examples,
but can be applied to larger systems, as we demonstrate
now. Figure 1(c) shows a lattice built by taking the
prototype Hamiltonian H of Fig. 1(a) as a unit cell. The
band structure of this lattice is depicted in Fig. 1(d). At the
Γ point, that is, at k ¼ 0, the corresponding Bloch-
Hamiltonian features the same latent symmetries as H in
Fig. 1(a). This explains the two double degeneracies in the
band structure [24]. Interestingly, the lattice further hosts
two flat bands, which in general can also be designed
through latent symmetries [30].
Latent Dn permutation symmetries.—Let us now exam-

ine the symmetries of the prototype example of Fig. 1 in
more detail. This setup is invariant under permutations
which cyclically permute sets of three sites, graphically
represented by rotations of multiples of 2π=3. These
rotations form the abelian cyclic group of order 3, denoted
by C3. As we have seen above, the setup also featured a
latent D3 permutation symmetry, and this is no coinci-
dence. Indeed, as we show in the Supplemental Material,
every Cn-permutation symmetric real Hamiltonian H fea-
tures a latent Dn permutation symmetry [24]. As is well
known, the dihedral group Dn is non-Abelian for n ≥ 3, so
that the underlying Hamiltonian automatically features
degeneracies. This gives an alternative explanation to those
degeneracies, which are classically understood in terms of
the combination of the Abelian group Cn≥3 and the real
valuedness of H which corresponds to a time-reversal
symmetry of H [31].
Latent Dn symmetries without any permutation

symmetries.—Above we have stated that a Cn permutation
symmetry of a real Hamiltonian is a sufficient condition for
a latent Dn permutation symmetry. However, it is not a
necessary condition. Indeed, we demonstrate in the follow-
ing the versatility of latent symmetries by showing that they
can even exist when the underlying Hamiltonian H has no
permutation symmetry at all. Figure 2(a) shows an example
of such a Hamiltonian H, which can also be interpreted as

the Bloch HamiltonianHBðk ¼ 0Þ of the lattice in Fig. 2(b)
at crystal momentum k ¼ 0. A detailed derivation of this
lattice is shown in Sec. V of the Supplemental Material
[24]. For hh0h00 ≠ 0 and h0 ≠ h00, H does not feature any
permutation symmetry. However, for any choice of those
three hopping parameters, it features a latent D3 symmetry
which becomes visible when reducing H over the three red
sites S ¼ f7; 8; 9g. As a result of this non-Abelian latent
symmetry,H has at least one doubly degenerate eigenvalue
pair for any choice of h0 and h00. We can now understand the
two double degeneracies in the band structure [depicted
in Fig. 2(c)] of the lattice of Fig. 2(b) at kx ¼ ky ¼ 0:
At this point, the Bloch-Hamiltonian is given by H, so
that it features a latent D3 symmetry and therefore also
degeneracies.
Interestingly, when setting h0 ¼ h00, H features a C2

permutation symmetry, graphically corresponding to a
reflection about the line connecting the sites 4 and 7.
One can thus say that h0 and h00 are control parameters for a
symmetry breaking, and since H features a latent D3

permutation symmetry for any choice of h; h0; h00, this
opens the perspective of investigating and understanding
symmetry breaking in terms of latent symmetries. In
Sec. III. of the Supplemental Material, we show how latent
symmetry preserving modifications (which may break
permutation symmetries) can be derived [24].

(a) (c)

(b)

FIG. 2. (a)AHamiltonian that features nopermutation symmetry
for hh0h00 ≠ 0 and h0 ≠ h00. It does, however, feature a latent D3

permutation symmetry that becomes visible when reducing over
S ¼ f7; 8; 9g. (b) A latticewhose Bloch-HamiltonianHB atk ¼ 0
equals H. The dotted box shows the lattice unit cell. (c) The band
structure of this lattice for kx ¼ 0; h ¼ 1; h0 ¼ 1=2; h00 ¼ 3=4.
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Linking latent to local symmetries.—One might wonder
if a latent symmetry leaves some recognizable traces in the
original Hamiltonian. This is indeed the case: By express-
ing RSðH; λÞ as a power series in λ and subsequently
analyzing it order by order, one can show [24] that

½RSðH; λÞ;M� ¼ 0 ⇔ ½ðHkÞSS;M� ¼ 0 ∀ k; ð4Þ

where M denotes a symmetry operation. In other words,
symmetries of RSðH; λÞ correspond to local symmetries
[32,33] ofH in all matrix powers. In particular,H itself has
to be locally symmetric. Indeed, for our introductory
example of Fig. 1(a) and S ¼ f1; 2; 3g, we see that HSS
denotes the inner triangle, which obviously features the
same symmetries as the corresponding isospectral reduc-
tion RSðH; λÞ depicted in Fig. 1(b).
Equation (4) can be used to facilitate the search for latent

permutation symmetries. To this end, let us assume that we
are given a (possibly large) Hamiltonian H and want to
check if it features a latent permutation symmetry as the
one depicted in Fig. 1(b). In other words, we look for a set
of three sites S ¼ fu; v; wg such thatRSðH; λÞ has the form
of Eq. (2). Now, instead of computing and checking all
possible isospectral reductions ofH over three sites, we can
use Eq. (4) to see that any candidate sites u, v, w necessarily
have to fulfill ðHkÞu;u ¼ ðHkÞv;v ¼ ðHkÞw;w for all k. This
condition can be augmented by employing the Cayley-
Hamilton theorem, which states that any matrix power
Hk≥N (N being the dimension of H) is a polynomial in
smaller powers. Thus, by computing the matrix powers
H;H2;…; HN−1—the cost of which grows polynomially
with N—and grouping the sites accordingly, the number of
possible candidate sites fu; v; wg can be drastically
reduced. In particular, if there is any k such that Hk

features no three sites with equal on-site potential
ðHkÞi;i, a latent symmetry of the kind Eq. (2) is impossible.
Generalized exchange symmetries.—Having demon-

strated the relation of latent symmetries to symmetries of
the subsystem HSS and to degeneracies of H, we finally
relate a subclass of latent symmetries to symmetries of the
original Hamiltonian H. This subclass consists of latent
permutation symmetries of real Hamiltonians. Using graph-
theoretical tools [34,35], such Hamiltonians can be shown
to necessarily feature what we call here a generalized
exchange symmetry (GES). A GES is an orthogonal
symmetric matrix Qði;jÞ fulfilling ½Qði;jÞ; H� ¼ 0 and
ðQði;jÞÞ2 ¼ I and which exchanges the two sites i, j while
acting on the remaining sites as an orthogonal trans-
formation. In the special case when this transformation
is a pure permutation, Qði;jÞ becomes a normal exchange
symmetry, i.e., it acts on each site either as the identity or as
an exchange operator. To provide an impression of the
GESs, we explicitly computed—by solving the equations
derived from its defining properties—Qð1;2Þ for the
Hamiltonian of Fig. 1(a):

Qð1;2Þ ¼

0
BBBBBBBBB@

0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 h1h2
d 1 − h2

1

d
h1ðh1−h2Þ

d

0 0 0 1 − h2
1

d
h1ðh1−h2Þ

d
h1h2
d

0 0 0
h1ðh1−h2Þ

d
h1h2
d 1 − h2

1

d

1
CCCCCCCCCA

ð5Þ

with d ¼ h21 − h2h1 þ h22. Note that for the case of h1 ¼ h2
the GES Qð1;2Þ becomes the ordinary exchange symmetry
which permutes (1,2), (5,6), and leaves 3 and 4 invariant,
and therefore describes the reflection about the line that
connects sites 3 and 4 in Fig. 1. However, in the case where
h1 ≠ h2, this pure permutation symmetry is broken,
whereas the more abstract GES persists. We note that,
while the GESs as an abstract symmetry class persists, the
matrix entries of Qð1;2Þ depend on h1 and h2. This is an
important difference to the latentD3 permutation symmetry
of H, whose matrix representation is independent of the
values of hi.
Finally, let us note that one can use the above insights to

prove the existence of degeneracies for real latently Dn≥3
permutation symmetric Hamiltonians in yet another way
[24]. Such Hamiltonians feature more than one GES, and
by explicitly constructing them it can be shown that at least
two of them do not commute with each other. Since the
Hamiltonian H commutes with both of these GESs, it
directly follows that H has to have at least one degenerate
eigenvalue. It remains an open task to classify GESs using
group-theoretical tools.
Conclusions.—We have provided a theoretical frame-

work which connects non-Abelian latent symmetries of
generic discrete models to their spectral degeneracies. For
the important class of latent permutation symmetries, our
results may allow for a geometrical explanation of appa-
rently accidental degeneracies. Moreover, by identifying
latent symmetries as local symmetries of all powers of the
Hamiltonian, our results additionally suggest a convenient
method for finding these latent symmetries. We further
demonstrate that it is possible to break symmetries of an
original Hamiltonian while preserving its latent symmetry.
This may inspire techniques to modify—or probe—a given
system asymmetrically without affecting its degeneracy.
Our considerations apply quite generally to physical

systems possessing a discrete representation in terms of a
finite-dimensional matrix. This includes, among others,
tight-binding models, molecular Hamiltonians in truncated
orbital bases, and multiport scattering setups. We therefore
envision the applicability of our results in a broad variety of
setups, contributing to the better understanding, design, and
control of spectral degeneracies beyond conventional
symmetries.
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Supplemental Material

In this supplemental material, mathematical details of the proofs for the results presented in the main text as well
as the Bloch-Hamiltonians for the lattices depicted in Figs. 1 and 2 of the main text are included. It is structured
as follows. In section I we derive a connection between latent symmetries of H and degeneracies in its eigenvalue
spectrum. Section II relates latent symmetries of H to local symmetries of H in all matrix powers. In section III
we develop the concept of complement multiplets, which allow one to perturb a Hamiltonian featuring a latent
permutation symmetry without breaking this symmetry. In section IV we provide details on the generalized exchange
symmetries. Section V shows the derivation of the Bloch Hamiltonians for the lattices of Figs. 1 and 2 of the main
text. Section VI contains auxiliary Lemmata used in proofs of Theorems in this Supplemental Material.

Throughout the following, L denotes the set of values of λ for which the isospectral reduction RS(H,λ) is defined.

I. THE RELATION BETWEEN THE SYMMETRIES OF THE ISOSPECTRAL REDUCTION AND
DEGENERATE EIGENVALUES OF THE HAMILTONIAN

In the main part of this work, it was stated that non-abelian latent symmetries of a Hamiltonian necessarily induce
degeneracies onto its eigenvalue spectrum. A key in proving this statement lies in the application of representation
theoretical tools to the isospectral reduction, which we shall do in the following

Theorem 1: Symmetries of the isospectral reduction and degeneracies of H

Let RS(H,λ) be the isospectral reduction of the Hamiltonian H over a set of sites S, and let G be a finite
group with elements {g} represented by matrices {Γ(g)}, and let RS(H,λ) commute with all of them, i.e.,
[RS(H,λ),Γ(g)] = 0 ∀ λ ∈ L, r ∈ G.

Let Γ be decomposed into n pairwise non-equivalent irreducible representations Γ̃i of G with multiplicities
ai 6= 0 and with dimensions di, that is, there exists an invertible matrix A such that

Γ′(g) = AΓ(g)A−1 =
n⊕

i=1

Γ̃⊕aii (g) ∀ g ∈ G (1)

where ⊕ denotes the direct sum, and M⊕k = M ⊕ . . . ⊕M︸ ︷︷ ︸
k−times

. Then for each ai the eigenvalue spectrum of H

contains at least ai eigenvalues that are (individually) di-fold degenerate.

Proof. RS(H,λ) represents a whole family of matrices parametric in λ. Each matrix in RS(H,λ) commutes with the
representation Γ(g) of each group element g of the finite symmetry group G. Thus, employing Schur’s lemma, it is
easy to prove that for each λ ∈ L, RS(H,λ) is block-diagonalized by the same similarity transformation

R′S(H,λ) = ARS(H,λ)A−1 =
n⊕

i=1

Bi(λ) (2)

with Bi(λ) being a (ai di)-dimensional matrix. Moreover, due to Schur’s lemma, each Bi(λ) can be further block-
diagonalized by permuting its rows and columns, thereby yielding

R′′S(H,λ) = P R′S(H,λ)P−1 =
n⊕

i=1

b⊕dii (λ) (3)

with P denoting the corresponding permutation matrix, and bi(λ) a matrix of dimension ai.
If we denote by Wπ the set of rational functions p(λ)/q(λ) with the numerator degree being less than or equal

to the denominator degree, then every matrix element (RS)i,j ∈ Wπ [1]. Moreover, since Wπ is closed under linear
transformations, (R′′S)i,j ∈ Wπ. This means that every ai-dimensional block bi(λ) of R′′S , when being solved for
its non-linear eigenvalues via det (R′′S(H,λ)− λI) = 0, features at least ai solutions [1]. Since R′′S features di
such blocks and since every eigenvalue of RS(H,λ) is also an eigenvalue of H [1], it follows that for each irreducible

representation Γ̃i of dimension di and multiplicity ai the Hamiltonian H contains at least ai eigenvalues that are
(individually) di-fold degenerate.
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II. THE CONNECTION BETWEEN SYMMETRIES OF THE ISOSPECTRAL REDUCTION AND
LOCAL SYMMETRIES OF Hk

One of the main results of this work is the relation between latent symmetries of a matrix H and its local symmetries
in every matrix power. This result was given without proof in the main part of this work, and is proven below.

Theorem 2

Let RS(H,λ) denote the isospectral reduction of H over some set of sites S, and let A ∈ C|S|×|S|, where |S|
denotes the number of sites in S. Then

[A,RS(H,λ)] = 0 ∀ λ ∈ L ⇔
[
A,
(
Hk
)
S,S

]
= 0 ∀ k ≥ 0, (4)

where (Hk)S,S denotes the submatrix derived from Hk by taking the rows and columns corresponding to the
set S.

Proof. “⇒” can be shown by induction. The initial case k = 0 is trivially fulfilled. The next step is to assume[
A,
(
Hk
)
S,S

]
= 0 holds for all 0 ≤ k ≤ k′ and then to show it holds also for 0 ≤ k ≤ k′ + 1. By partitioning the

matrix H into blocks over S and its complement S̄ the following identity can be shown to hold:

(
Hk
)
S,S

=
(
Hk−1)

S,S
HS,S +

k−2∑

m=0

(Hm)S,S HS,S

(
HS,S

)k−2−m
HS,S . (5)

Evaluating the commutator of A with eq. (5) for k = k′+1 and applying the induction assumption along with eq. (26)

of lemma 3 we get
[
A,
(
Hk+1

)
S,S

]
= 0, which completes the induction.

“⇐”: First, we evaluate the commutator of A with eq. (5) and apply the assumption
[
A,
(
Hk
)
S,S

]
= 0 ∀ k ≥ 0.

Next, again by induction we can show that

[
A,HS,S

(
HS,S

)l
HS,S

]
= 0 ∀ l ≥ 0. To prove that [A,RS(H,λ)] = 0

for all λ ∈ L we use the identity eq. (28) for RS(H,λ) from lemma 4. Since [A,HS,S ] = 0 by assumption and[
A,HS,S

(
HS,S

)n
HS,S

]
= 0 ∀ n ≥ 0 by induction, we have that [A,RS(H,λ)] = 0 for all λ ∈ L.

III. MODIFICATIONS PRESERVING LATENT PERMUTATION SYMMETRIES

Given a Hamiltonian H ∈ CN×N with a latent permutation symmetry, it is often possible to modify H while
keeping this symmetry. In particular, by analyzing the matrix powers of H, a large class of such latent-symmetry-
preserving modifications can be found, as we derive in the following. We will start by defining what we call complement
multiplets.

Definition 1: Complement multiplet

Let S be a set of sites of a hermitean Hamiltonian H ∈ CN×N , that is, S ⊆ {1, . . . , N}, and S denote its
complement (i.e., all other sites of H). A set M of sites of H with M ⊆ S forms a complement multiplet with
respect to S if

∑

m∈M

(
HH

k
)
s,m

= ck ∈ C ∀ s ∈ S, k ≥ 0. (6)

where H is obtained from H by setting the couplings between S and S to zero.

Once a (subset of) complement multiplets have been identified, they can be used to modify the Hamiltonian without
breaking the underlying latent symmetry, with the procedure and its proof detailed in the following
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Theorem 3

Let S be a set of sites of the hermitian Hamiltonian
◦
H ∈ CN×N . If one modifies

◦
H → H ∈ C(N+1)×(N+1) by

adding a single site c (with arbitrary on-site potential) and subsequently coupling each complement multiplet

Mj of
◦
H to the site c with the coupling hj , i.e.,

Hx,c = H∗c,x =
∑

x∈Mj

hj , (7)

with the star denoting complex conjugate, then the isospectral reduction changes as

RS(H,λ) = RS(
◦
H,λ) + a(λ)J, (8)

with a(λ) being a rational function in λ, J ∈ R|S|×|S| is a matrix of ones, and where |S| denotes the number of

sites in the set S. In particular, if S is latently permutation symmetric in
◦
H, it remains latently permutation

symmetric in H.

Proof. In order to show eq. (8) holds, we evaluate the difference betweenRS(H,λ) andRS(
◦
H,λ). To this end, we define

H̃ as the matrix obtained from
◦
H by adding the site c without connecting it, and by lemma 2, RS(

◦
H,λ) = RS(H̃, λ).

Further, we denote Sc = S ∪ c. Next, for a sufficiently large λ0 and |λ| > λ0 > 0, the matrix inverses occurring

in RS(H,λ) and RS(H̃, λ) can be simultaneously formulated as convergent Neumann series. Finally, we note that

HS,Sc
= H̃S,Sc

and HS,c = H̃S,c = 0. We arrive at:

RS(H,λ)−RS(
◦
H,λ) =

∞∑

k=1

HS,Sc

[(
HSc,Sc

)k−1
−
(
H̃Sc,Sc

)k−1]
HSc,S

tk (9)

=

∞∑

k=1

◦
HS,S

[(
HS,S

)k−1
−
(
H̃S,S

)k−1] ◦
HS,St

k (10)

where t = 1/λ. In the following, we abbreviate the terms in square brackets of eq. (10) by the matrix ∆
(k−1)
S,S

. We

further denote by H and
◦

H the matrices obtained from H and
◦
H, respectively, by decoupling the set of sites S from

the remaining sites.

Using a graph-theoretical interpretation (see Ref. [2]) the (i, j)-th matrix element of ∆
(k)

S,S
can be expressed in terms

of walks in a graph G(H) of length k starting at site si, that is, the i-th element of S, and ending at site sj while
necessarily visiting the new site c at least once. This yields

∆
(k)

S,S
=

∑

2+l+m+n=k

[( ∑

x∈∪iMi

( ◦
H
l
)
S,x

Hx,c

)(
H
m
)
c,c

( ∑

x∈∪iMi

Hc,x

( ◦
H
n
)
x,S

)]
(11)

Next, we replace Hx,c by eq. (7) and multiply eq. (11) with
◦
HS,S on the left and its transpose on the right (compare

with eq. (10)):

∑

2+l+m+n=k

[(∑

i

∑

x∈Mi

◦
HS,S

( ◦
H
l
)
S,x

hi

)(
H
m
)
c,c

(∑

i

∑

x∈Mi

h∗i
( ◦
H
n
)
x,S

◦
HS,S

)]
(12)

Using eq. (6), we recognize that
∑
x∈Mi

◦
HS,S

( ◦
H
l
)
S,x

= c
(i)
l
~1S with an-all constant |S|-dimensional vector ~1S .

This means that the matrix in eq. (12) is proportional to all-one matrix J with a constant pre-factor a(k) =
∑

2+l+m+n=k

[(∑
i hic

(i)
l

)(
H
m
)
c,c

(∑
i hic

(i)
n

)∗]
. Inserting this result in eq. (10), we obtain that a(λ) from eq. (8)

equals
∑∞
k=1 a

(k−1) ( 1
λ

)k
for |λ| > λ0.

Finally, we note that the left-hand side of eq. (10) is a rational function of λ. Since it equals a(λ) J ∀ |λ| > λ0, by
the identity theorem for polynomials it must be equal to a(λ) J also for |λ| ≤ λ0, λ ∈ L. Now, since J commutes

with any permutation matrix, each latent symmetry of
◦
H is preserved in H.
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IV. THE CONNECTION BETWEEN (LATENT) Cn>2 SYMMETRIES AND DEGENERACIES FOR
REAL-SYMMETRIC HAMILTONIANS

In the following, we will present more details on the concept of generalized exchange symmetry (GES). We will then
use these to finally prove theorem 5, which states that, for real-valued Hamiltonians, a more than twofold rotational
symmetry (that is, a symmetry Cn>2) necessarily leads to a non-abelian latent Dn symmetry.

As explained in the main part of this work, each generalized exchange symmetry (GES) is given by a symmetric
orthogonal matrix Q(u,v) which permutes two sites u, v while acting as an orthogonal transformation on the others.
The Q(u,v) were introduced in Ref. [3], where it has been shown that, for real Hamiltonians, Q(u,v) exists if and only
if (Hk)u,u = (Hk)v,v for all k. In this case, the eigenvalue spectra of H \ u and H \ v coincide, and the two sites u
and v are said to be cospectral [3].

Similar to Ref. [4], we will now explicitly construct Q(u,v) by means of projectors. To this end, we first choose the
eigenstates according to the following

Lemma 1: Lemma 2.5 of Ref. [5]

Let H be a real symmetric matrix, with u and v cospectral. Then the eigenstates {|φ〉} of H are (or, in the
case of degenerate eigenvalues, can be chosen) as follows. For each eigenvalue λ there is at most one eigenstate

|φ〉 with even local parity on u and v, i. e., 〈u|φ(+)
i 〉 = 〈v|φ(+)

i 〉 6= 0, and at most one eigenstate φ with odd

local parity on u and v, i. e., 〈u|φ(−)i 〉 = −〈v|φ(−)i 〉 6= 0. Here, |x〉 denotes a vector which possesses the value

one at site x and zeros on all other sites. All remaining eigenstates for λ fulfill 〈u|φ(0)i 〉 = 〈v|φ(0)i 〉 = 0. The
even (odd) parity eigenstate can be found by projecting the vector |u〉 ± |v〉 onto the eigenspace associated
with λ.

With this choice of the eigenstate basis, we state the following

Theorem 4

Let the orthonormal eigenstates {|φ〉} of H be chosen according to lemma 1, and define the projectors

P
(u,v)
+ =

∑

i

|φ(+)
i 〉 〈φ

(+)
i | , P

(u,v)
− =

∑

i

|φ(−)i 〉 〈φ
(−)
i | , P

(u,v)
0 =

∑

i

|φ(0)i 〉 〈φ
(0)
i | (13)

Then Q(u,v) = P
(u,v)
+ + P

(u,v)
0 − P (u,v)

− fulfills

(Q(u,v))−1 = (Q(u,v))T = Q(u,v), Q(u,v) |u〉 = |v〉 . (14)

Proof. The property (Q(u,v))−1 = Q(u,v) follows simply from the fact that the projection matrices eq. (13) are
idempotent. (Q(u,v))T = Q(u,v) follows from the fact that one can choose the eigenvectors of H to be real-valued,
so that the projector onto the eigenspace associated to any eigenvalue is real, thereby rendering also the projection
matrices eq. (13) real and therefore also symmetric.

In order to prove that Q(u,v) |u〉 = |v〉, we use lemma 1 and the orthonormality of eigenstates |φi〉 to get

〈v|Q(u,v)|u〉 = (Q(u,v))u,v =
∑
i 〈u|φi〉 〈φi|u〉 = 1. Additionally, since

∑
i(Q

(u,v)
u,i )2 =

∑
i(Q

(u,v)
v,i )2 = 1 due to the

orthogonality of Q(u,v), it follows that (Q(u,v))u,i = δi,v and (Q(u,v))v,i = δi,u.

With these prerequisites and a good understanding of the concept of GES, we are now finally able to prove
the connection between Cn rotational symmetries of a real Hamiltonian and the necessary emergence of Dn latent
permutation symmetries, explicated in the following

Theorem 5

Let H ∈ RN×N be a real symmetric Hamiltonian that features a latent or non-latent Cn>2 permutation
symmetry. Then

• H necessarily also features a latent Dn permutation symmetry and features at least bn−12 c pairs of doubly
degenerate eigenvalues, where bxc rounds x down to the nearest integer.

• There exist two GESs of H which do not commute with each other.
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Proof. • If H features a (latent or non-latent) Cn>2 permutation symmetry, then there is at least one set S of n
sites and a n× n permutation matrix P fulfilling

P k 6= I ∀ 1 ≤ k < n, Pn = I, [RS(H,λ), P ] = 0 ∀ λ ∈ L (15)

where I is the identity matrix. Together with the symmetry and real-valuedness of H, this property implies
that the rows and column of RS(H,λ) can be permuted such that it is a real symmetric circulant matrix. It is
known that such matrices commute with the permutation matrix corresponding to the operation that performs
a flip about the anti-diagonal. Together with the cyclic permutations of order n, this operation generates the
dihedral group Dn, and H thus features a latent Dn permutation symmetry.

Next, we note that it is known that the eigenstates of real symmetric circulant matrices are independent of their
entries [6], here in particular independent of λ. Using them to diagonalize RS(H,λ) one obtains a diagonal
n× n matrix with entries fj(λ) ∈Wπ , j = 1, . . . , n, that is, rational functions pj(λ)/qj(λ) with the numerator
degree being less than or equal to the degree of the denominator. The eigenvalues of RS(H,λ) are thus given
by the sum of the multisets denoting the solutions to fj(λ)−λ = 0. Similar to the proof of theorem 1, it can be
shown that each of these equations has at least one solution. Furthermore, fj(λ) = fn−j(λ), because RS(H,λ)
is not only circulant but also real-symmetric. Finally, since every eigenvalue of RS(H,λ) is contained in the
spectrum of H [1], we conclude that H has at least bn−12 c pairs of doubly degenerate eigenvalues.

• From the above and from theorem 2 we have
[(
Hk
)
S,S

, P
]

= 0 for all k ≥ 0, i.e.
(
Hk
)
S,S

is a real symmetric

circulant matrix. In each power k, the diagonal elements
(
Hk
)
ii

=
(
Hk
)
jj
∀ i, j are pairwise equal, meaning

that each pair of sites in S is cospectral. By Ref. [3], for each such pair there is a GES Q(i,j) which commutes
with H and theorem 4 applies.

For the sake of simple notation let us now assume that the sites of H are labeled (if this is not the case, one can
easily renumber the sites accordingly) such that si → i, with P permuting the sites in S = {s1, . . . , s|S|} such

that the site i < n is mapped onto the site i + 1, and n onto 1. The fact that (Hk)S,S is circulant symmetric
then implies (Hk)1,2 = (Hk)2,3 ∀ k. In the terminology of Ref. [2], site 2 is a walk-singlet w.r.t. the cospectral
sites 1 and 3. Thus, by Theorem 4 from Ref. [2], the eigenstates of H [chosen according to lemma 1 for the
cospectral pair 1 and 3] with negative parity on cospectral sites vanish on site 2. By combining the projector
definition of Q(1,3) with the completeness relation of eigenstates one can show (Q(1,3))2,2 = 1. Furthermore,

since Q(1,3) is orthogonal, the matrix elements (Q(1,3))2,j = δ2,j . On the other hand, site 3 is not necessarily a
singlet for the cospectral pair 1 and 2. Specifically, we have

Q(1,3) =




0 0 1
0 1 0
1 0 0

0

0 A


 , Q(1,2) =




0 1

1 0
0 0

0 a b

0 bT B


 (16)

where A,B ∈ R(N−3)×(N−3) and b ∈ R1×(N−3). Since the upper left 3× 3 block of the commutator of the above
two matrices does not vanish, these two matrices do not commute.

V. BAND-STRUCTURE CALCULATIONS

To derive the Bloch-Hamiltonian HB(k) = HB(kx, ky), we follow the convention of Eq. (2.75) of Ref. [7]. To this
end, let |mR〉 denote the state which is completely localized on site m of the unit cell located at position R. For our
two-dimensional lattices, the vectors R = A~a1 +B~a2, where A,B are integers and ~a1,2 are the two primitive vectors
describing the lattice. The Bloch-Hamiltonian can then be written as

(HB(k))nm =
∑

R

eik·R 〈m0|HL|mR〉 (17)

where HL denotes the Hamiltonian of the infinite lattice.
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A. Bloch-Hamiltonian for the modified Kagome lattice

With ~a1 = (1, 0)T , ~a2 = ( 1
2 ,
√
3
2 )T , we obtain the Bloch-Hamiltonian of Fig. 1 (c) of the main text as




0 h3 h3 h2 0 h1
h3 0 h3 h1 h2 0

h3 h3 0 0 h1 h2

h2 h1 0 0 h4e
i

(√
3ky
2 − kx

2

)

h4e
−ikx

0 h2 h1 h4e
−i

(√
3ky
2 − kx

2

)

0 h4e
−i

(
kx
2 +

√
3ky
2

)

h1 0 h2 h4e
ikx h4e

i

(
kx
2 +

√
3ky
2

)

0




. (18)

At kx = ky = 0, the isospectral reduction of the Bloch-Hamiltonian over the sites S = {1, 2, 3} then has the
structure



a(λ) b(λ) b(λ)

b(λ) a(λ) b(λ)

b(λ) b(λ) a(λ)


 . (19)

Thus, the Bloch-Hamiltonian features a latent D3 permutation symmetry at k = 0.

B. Construction of the Bloch-Hamiltonian belonging to Fig. 2 (b)

Let us here briefly discuss how one could build a lattice from the Hamiltonian depicted in Fig. 2 (a) of the main
text. The basic idea is to interpret H as the Bloch-Hamiltonian HB of an extended lattice, evaluated at the Γ-point,
that is, H = HB(k = 0). Out of the many possible ways to achieve this, we here first remove the three curved
couplings—the ones between sites (6, 11), (5, 10), and (4, 7)—from H, and use the resulting system HUC as the unit
cell of a lattice, as depicted in Fig. 2 (b). The corresponding Bloch-Hamiltonian HB(k) = HUC +HIC(k) is the sum
of the unit cell Hamiltonian HUC and a k-dependent inter-cell coupling HIC(k). The matrix elements of HIC(k) are
obtained by taking an arbitrary reference unit cell, A. For each site i in A that is connected with coupling hij to a
site j in an adjacent unit cell B, (HIC(k))ij = hij e

ik·RAB with RAB denoting the vector pointing from A to B, as

one can show by means of eq. (17). At k = 0, all complex exponentials in HIC(k) become unity, and one can design
HB(k = 0) = H by suitably connecting the initial unit cell to its neighbors. For the above choice and by chosing
~a1 = (0, 1)T , ~a2 = ( 5

3 cos(π/6), 12 )T , we then obtain the Bloch-Hamiltonian of Fig. 2 (b) of the main text as

(
06×6 C

C† 05×5

)
(20)

with 0n×n denoting the n× n matrix of zeros, and

C =




h h 0 0 h′′

h 0 h h′ 0

2h h h 0 0

heiky 2h 2h 0 0

h 0 h′e
i
(

ky
2 −

5kx
2
√

3

)
0 0

0 0 h 0 h′′ei(
5kx
2
√

3
+

ky
2 )




. (21)

For kx = ky = 0, this Hamiltonian equals the one depicted in Fig. 2 (a) of the main text, as intended.

VI. AUXILIARY LEMMATA
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Lemma 2

Let S be a set of sites of
◦
H. If one extends

◦
H → H =

( ◦
H 0

0 H ′

)
(22)

then the isospectral reduction over S remains unchanged, i.e., RS(H,λ) = RS(
◦
H,λ) .

Proof. Follows straightforwardly from the fact that
(
HS,S − λI

)−1
=




(
HS1,S1

− λI
)−1

0

0
(
HS2,S2

− λI
)−1


 is

block diagonal and HS,S2
= 0 with sites S1 from

◦
H, S2 from H ′ and S1 ∪ S2 = S.

Lemma 3

Let the isospectral reduction

RS(H,λ) = HS,S −HS,S

(
HS,S − λI

)−1
HS,S (23)

over some set S of sites. If RS(H,λ) commutes with a |S| × |S| matrix A, that is, [A,RS(H,λ)] = 0 ∀ λ ∈ L,
then

[A,HS,S ] = 0 (24)
[
A,HS,S

(
HS,S − λI

)−1
HS,S

]
= 0 ∀ λ ∈ L. (25)

[
A,HS,S

(
HS,S

)k
HS,S

]
= 0 ∀ k ≥ 0. (26)

Proof. First, eq. (24) follows from [A,RS(H,λ)] = 0 by evaluating the limit λ → ∞. Second, eq. (25) follows from
eq. (24) and [A,RS(H,λ)] = 0. Last, for a sufficiently large λ0 and |λ| > λ0 > 0, the left-hand side of eq. (25) can be
formulated as a convergent power series in x = 1

λ :

1

λ0

∞∑

k=1

ckx
k = 0 ∀ x : 0 < |x| < 1

λ0
(27)

where ck =

[
A,HS,S

(
HS,S

λ0

)k−1
HS,S

]
. By the identity theorem for power series it follows that all ck = 0, thus

proving eq. (26).

Lemma 4

Let RS(H,λ) = HS,S −HS,S

(
HS,S − λI

)−1
HS,S be the isospectral reduction of H over a site set S. Then

RS(H,λ) = HS,S +

|S|∑

k=1

ck
c0

k−1∑

n=0

(
k − 1

n

)
(−λ)

k−1−n
HS,S

(
HS,S

)n
HS,S ∀ λ ∈ L (28)

where ci = ci(λ) are the coefficients of the characteristic polynomial of HS,S − λI.
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Proof. For λ ∈ L the matrix HS,S − λI := M is invertible, with characteristic polynomial pM (λ, x) =
∑|S|
k=0 ck(λ)xk

and c0 6= 0. From the Cayley-Hamilton theorem one obtains the identity relation M−1 = −∑|S|k=1
ck
c0
Mk−1. Inserting

this relation into the definition of isospectral reduction and applying the binomial theorem for
(
HS,S − λI

)k−1
we

arrive at eq. (28).
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9
S U M M A RY A N D O U T L O O K

In this chapter we want to give a brief summary of four major topics covered
by this thesis: ground state properties and breathing dynamics of binary
mixtures (Section 9.1 and Section 9.2, respectively), QGM for non-lattice
trapped few-body systems (Section 9.3), and recent concepts from spectral
graph theory (Section 9.4). We recount the key findings of our investigations,
indicate their implications and potential applications, and suggest directions
for future research.

9.1 stationary properties of a bose mixture

Binary mixtures of ultracold gases are routinely created in modern labora-
tories all around the world to enrich and challenge our current theoretical
understanding of interacting many-body systems. The interaction between
two distinct species can greatly impact their stationary properties. Weakly
correlated interaction regimes have been thoroughly studied with mean-
field techniques and perturbative expansions. Sizeable correlations pose a
great challenge for theoretical methods and thus are not yet fully under-
stood. In this regard, we studied beyond-mean-field effects in a few-body
binary mixture of bosons subject to a species-selective inhomogeneous trap
in 1D. To accomplish this task, we used exact diagonalization and imaginary
time propagation with ML-MCTDH-X, an advanced variational method for
solving the time-dependent Schrödinger equation.

In [MP1], we obtained the low-energy spectrum of a binary mixture
composed of two bosons per species subject to a mutual 1D harmonic con-
finement. Thereby, our work extends and complements the analysis of some
previous studies. The distinguishability makes the energy spectrum richer
and more complex compared to the single-component case. We represented
the Hamiltonian as a matrix using a finite set of basis functions in a relative-
coordinates frame and subsequently diagonalized it. This way, we managed
to convert sizeable correlations among laboratory-frame coordinates to
weak correlations among relative-frame coordinates. The alternative picture
greatly accelerates the rate of convergence for exact diagonalization and
is particularly suited for parameter regions where the intra-component
correlations outweigh the inter-component ones. These insights suggest
that an efficient solution of a many-body system might require a coordinate
frame transformation, which raises a couple of challenging yet alluring
questions. For a given choice of parameter values, does there exist a set
of uncorrelated coordinates where the wave function could be described
by a mean-field product ansatz? And if so, is there a systematic way for
obtaining it? Are there any drawbacks such as an increased complexity of
the transformed Hamiltonian?
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Another useful insight, which we gained in the course of this study, is the
discovery of additional parity-type symmetries in the relative frame, which
are otherwise hidden or non-obvious from the laboratory frame perspective.
These symmetries were used to classify the eigenstates and proved to be
extremely valuable in understanding the breathing response we discuss
in Section 9.2. This suggests that an abstract symmetry transformation
without any obvious interpretation might become easily interpretable in
a different coordinate frame. Are there more useful symmetries than we
can see? Moreover, in the context of spectral properties, could it be that
some accidental degeneracies are in fact caused by hidden symmetries
of such a type? This is a long standing question and by now there have
been several precedents where spectral degeneracies, initially believed to be
truly accidental, turned out to have a meaningful physical interpretation. In
Section 9.4, we discuss yet another class of hidden symmetry, revealed not
by a coordinate transformation, but by an effective Hamiltonian obtained
via a spectrum-preserving subsystem partitioning.

In [MP3], we studied the miscible-immiscible phase boundary in a
Bose polaron problem, i. e., an impurity coupled to a medium of several
bosons, subject to a species-selective parabolic confinement. In homoge-
neous systems, there is a simple criterion which determines this boundary:
g2

AB > gAgB. However, the trap inhomogeneity greatly distorts this rule,
e. g., a harmonic trap favours miscibility as it costs energy to expand in
space. Together with other species-internal parameters, they determine the
spatial overlap region between the two components. Furthermore, there are
multiple possibilities to separate, but it is not always a priori clear which
configuration would be energetically more favourable.

We derived estimates for the miscible-immiscible phase boundary and a
criterion for the type of phase segregation based on arguments derived from
the energy competition among the two components to occupy the centre of
their trap. When there is a draw, then CF occurs. Otherwise, core-shell PS

takes place. In addition, we estimated phase boundaries among separated
regimes. We found that a weakly-entangled core-shell PS builds up entan-
glement upon increasing the strength of the medium-impurity interaction
and, eventually, undergoes a transition to CF. However, this process is not
visible by inspecting the reduced one-body densities. Instead, one requires
inter- and intra-component distance correlators to differentiate among CF

and core-shell PS. Thus, our work contributes to a better understanding
of the phase-separation mechanism and indicates that reduced one-body
densities might be misleading for state classification.

In [MP4], we investigated a different Bose polaron setup, namely a free
impurity coupled to a lattice-trapped medium. We quantified the ground-
state response to the medium-impurity coupling by evaluating the fidelity
between coupled and decoupled many-body states at different lattice depths
and intra-medium interaction strengths. The fidelity tells us about the simi-
larity of two states in the Hilbert space. We also looked at the susceptibility
of reduced one-body densities to be perturbed by the medium-impurity
interaction. We identified parameter regions with sizeable changes on the
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many-body level, which are much less pronounced on the level of reduced
one-body quantities. Furthermore, while searching for beyond mean-field
effects, we found, in addition to the expected phase separation, two further
peculiar regimes with a sizeable amount fo correlations at the interface
of attractive and repulsive interactions. We suspect that they might be
analogues of quantum droplets. Finally, we resolved the role of entangle-
ment for spatial density distributions and two-body distance correlators
by comparing numerically exact quantities (including entanglement) to the
approximate ones obtained using a SMF product ansatz (ignoring entangle-
ment). We found that entanglement-induced corrections favour the process
of phase separation at repulsive inter-component couplings and inhibit
spatial localization at attractive medium-impurity couplings.

9.2 breathing dynamics of a bose mixture

Elementary collective excitations dictate the dynamical response of a weakly
perturbed physical system and are a valuable source of information compa-
rable to that of spectroscopy. As a part of this thesis, we investigated the
quantum breathing of ultracold mixtures in harmonic traps. For a single-
species condensate, the breathing mode serves as a reliable diagnostics tool
in modern experiments to verify the regime of interactions and to probe
several useful stationary properties. Our goal was to study the diversity
and utility of breathing modes for binary mixtures.

In [MP1], we analysed the breathing response of a few-body Bose mixture
composed of two bosons per species confined in a mutual 1D parabolic
trap. We triggered the dynamics by a slight quench of the trap frequency.
The dynamics was described in the linear-response regime in terms of
eigenstates and -energies obtained by exact diagonalization. We employed
a relative-frame coordinate system to define a correlation-adapted product
state basis. Specifically, we used the centre-of-mass coordinate Rcm, the
relative distances rσ between two identical particles, and the relative distance
RAB between the two centre-of-masses of the two components. We derived
expressions for time evolution of the relative-frame coordinate densities
and analysed the amplitudes and frequencies of observed oscillations upon
variation of the intra- and inter-component interaction strength parameters.

We identified up to four breathing frequencies depending on the inter-
play of interactions. At a weak inter-component coupling, we found that
each relative-frame coordinate is ‘normal’, in a sense that it performs a
single-mode oscillation. We labelled the corresponding frequencies Ωcm, Ωσ

and ΩAB. For equal strength of intra-component interactions, the motion of
the two species assimilates. Because of a symmetry-imposed selection rule,
instead of two frequencies, Ωσ, there is just one, Ω+. At an intermediate
inter-component coupling, each relative coordinate (except Rcm) exhibits
multi-mode oscillations. At a strong inter-component coupling, where the
mixture becomes immiscible, the frequencies Ωσ (Ω+) are found to be
strongly suppressed, such that only two modes, Ωcm and ΩAB, contribute
to the dynamics. Finally, we argued that our results can be verified experi-
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mentally by means of state-of-the-art techniques. In addition, we proposed
an explicit measurement protocol in [MP5] suitable for this purpose.

In [MP2], we studied the breathing response of a few-body Bose polaron,
i. e., an impurity coupled to a medium of several atoms, in a species-selective
1D parabolic trap. As opposed to [MP1], the total number of particles was
increased and we made use of the species-selective confinement to quench
only the trap of the impurity. The medium was set in motion indirectly via
the medium-impurity coupling. Instead of exact diagonalization we used
ML-MCTDH-X to simulate the time propagation of the pre-quench many-body
ground state with a post-quench Hamiltonian. Then, we evaluated the time
evolution of the reduced one-body density for each species, ρσ

1 (x, t), and
extracted the breathing frequencies and amplitudes from the density width
oscillations by a CS algorithm. CS is an alternative to the Fourier transform,
particularly suited for time signals which are sparse in the frequency space.
It allows for a decent resolution in the frequency domain with a relatively
short propagation time (as compared to the Fourier transform), which con-
siderably reduces the amount of computation time with ML-MCTDH-X. We
promote this tool for analysing the spectral response of weakly perturbed
systems.

We characterized the breathing spectrum as a function of the medium-
impurity coupling strength for different numbers of majority atoms and
several values of the medium-interaction strength. The modes were classi-
fied as being of impurity or majority type. To this end, for each frequency
in the common CS spectrum (averaged over the two components), we
calculated the corresponding species quota. We could identify all the fre-
quencies from [MP1], except for the internal mode of the second species
because it is composed of a single particle. The functional dependence
of assigned frequencies on the inter-species coupling strength is substan-
tially altered as compared to the particle-balanced mixture. In addition, we
found a qualitatively different mode caused by species-asymmetry of the
quench protocol. Its frequency is a monotonically decreasing function of the
medium-impurity coupling strength and it emerges after a certain coupling
threshold has been reached. Importantly, we linked its appearance to the
growth of entanglement between the impurity and the medium. In case of a
SMF ansatz, i. e., neglecting all entanglement effects, the frequency does not
appear at all in the CS spectrum. Importantly, this mode persists at different
values of the trap ratio.

To conclude, our studies serve as a useful analysis tool for future ex-
periments on few-body composite systems. A binary mixture features as
many breathing frequencies as there are interaction parameters. Thus, it
is in principle possible to map a set of breathing frequencies to a set of
interaction parameters. However, there are a couple of issues which make
a reliable assignment a challenging task: in some regimes of interactions
only a fraction of modes can be excited and there is a further issue of
near-degenerate frequencies in several parameter regions. To surpass these
limitations, one might think of an alternative quench protocol to excite the
damped and symmetry-excluded modes. There is still an open issue regard-
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ing the dependence of the breathing response on the number of particles.
Considering rapid build-up of correlations with an increasing strength of
interactions, it was prohibitive for our method to go beyond ten particles.
An interplay between negative and positive interactions is also a promising
direction of future research. Relating to the entanglement-sensitive mode,
we find it appealing to use it as a probe of bi-partite entanglement in ultra-
cold mixtures. It would add yet another item into the toolbox of breathing
mode diagnostics.

9.3 quantum gas microscopy of trapped gases

Imaging is a wide-spread experimental technique to extract information
from a physical system. The ability to differentiate individual atoms is
of top priority as it allows to probe inter-particle correlations. Recently,
QGM has revolutionalized the imaging process for lattice-trapped ultracold
atoms, offering a sub-micron resolution and single-atom sensitivity. As
we are interested to explore beyond mean-field effects in external traps of
arbitrary geometry, we studied the applicability of QGM beyond discrete
lattice models.

In [MP5], we proposed an imaging protocol to measure the reduced
n-particle density distribution of sparse ultracold samples confined by an
external trap of any shape and dimension. As a first step, and because it
is of direct relevance for the few-body trapped mixtures we discussed in
[MP1–MP4], we considered 1D systems and attempted to access the reduced
one-particle density distribution.

Similar to the conventional procedure in QGM, one needs to freeze the
position of particles by ramping up a lattice, followed by fluorescence imag-
ing and ensemble averaging over pictures taken. The crucial modification is
now as follows: in order to reach a sub-lattice resolution, our idea was to
perform ensemble averaging multiple times at several different positions
of the pinning lattice relative to the trapped physical system. This way,
the recorded one-particle density can, in principle, be oversampled to an
arbitrary resolution. However, when the length scale of the system is com-
parable to the lattice constant, the pre- and post-measurement densities
display substantial differences. These imaging artefacts are caused by the
non-adiabaticity of the lattice-ramp protocol.

The measurement sequence can be formulated as a 2D convolution of
the pre-measurement one-body density matrix with an imaging filter we
call the quantum PSF. Since our protocol provides only the diagonal of this
convolution, a straightforward deconvolution method is doomed to fail.
Instead, we developed a machine-learning-assisted reconstruction proce-
dure to remove the majority of distortions. It is particularly effective when
spatial density variations are on the scale of the lattice constant and allows
to reach sub-lattice resolution. As for now, the utility of our approach is
limited to situations when the shortest period of spatial oscillations in the
one-particle density drops below a half of the lattice constant.
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Our findings are of fundamental interest for the theory of imaging and
of immediate relevance for ongoing QGM experiments. It opens the research
direction of high-resolution imaging with single-atom sensitivity also for
non-lattice trapped systems. In particular, it is ideally suited for verifying
many of the results we obtained in the context of trapped few-body binary
mixtures. Further extensions of our work would be to test the feasibility
for traps of higher dimension, to attempt the recovery of spatial two-body
correlations and to investigate blurring artefacts in a time-evolving system.

9.4 spectral graph theory in physics

Matrix eigenvalue problems are ubiquitous in physics and applied sciences.
The eigenvalues and -vectors of a matrix are a source of invaluable informa-
tion. Unfortunately, matrix diagonalization is infamous for unfavourable
scaling of the numerical effort with the matrix dimension. Any means al-
lowing to reduce this effort are highly desirable. This is usually done by
a symmetry analysis, which can suggest a new set of symmetry-adapted
basis functions tailored to obey particular geometrical constraints. However,
the more complex a system becomes, the less likely it will feature any of
the commonly known symmetries. Are there further tools to learn more
about spectral properties of a matrix? We found some useful concepts in
spectral graph theory.

In [MP6], we investigated a graph-theoretical concept of cospectral vertex
pair. It imposes a parity relation among two particular components of any
eigenvector of a graph’s matrix, even in the absence of conventional1 graph
symmetries. It has an intuitive interpretation as a symmetry of walks and
can be linked to hybrid block-symmetries, with one block being a conven-
tional pair-exchange symmetry and the remainder a general orthogonal
matrix. The presence of this peculiar property can be easily inferred by
analysing the powers of a graph’s matrix and, once confirmed, can be sub-
sequently used for block-diagonalization. We contributed to the study of
cospectrality in two ways.

First, we developed a generator of graphs with a cospectral vertex pair.
It is a hot topic in spectral graph theory concerned with the following
question: when does the spectrum of a graph determines its topology? It is
reminiscent of spectroscopy in physics, aimed to infer information about
the composition and structure of matter from the spectral data. Biased
by our studies on impurities and having in mind symmetry-preserving
perturbations, we attempted to couple an additional perturber vertex to
a graph having a cospectral vertex pair, u and v, without breaking the
underlying cospectrality. As an outcome of this study, we identified several
subsets of multiple vertices, to which the perturber vertex can be docked.
We called them multiplets M. In addition, we linked this circumstance
to an equality relation ∑z∈M(Hk)uz = ±∑z∈M(Hk)vz valid for all matrix
powers. In the graph language it means that a multiplet is equally reachable
from both u and v. The final set of possible modifications include: removal

1 In discrete mathematics, the term ‘conventional symmetry’ implies permutations.
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and addition of vertices, interconnections among existing multiplets. Thus,
multiplets provide building blocks to extend and modify cospectral graphs.

Second, we found that multiplets pose further restrictions on eigenvector
components, in addition to parity caused by cospectrality of a vertex pair.
As an example, odd parity eigenstates vanish on so-called singlets, i. e.,
multiplets composed of a single vertex. This work laid the foundation
for a flat-band generator we proposed in [MP11]. Using a graph with a
cospectral vertex pair as a unit cell, the idea is to interconnect adjacent
cells via singlets. As a result, each odd parity eigenstate of a cell becomes a
localized eigenstate of the lattice, which leads to macroscopically degenerate
flat bands.

In [MP7], we studied another graph-theoretical concept of isospectral
reduction. It is a way to shrink the size of a graph to a dedicated subset
of vertices S while preserving (the major part of) the underlying energy
spectrum. Physical community is already acquainted with this tool, rather
known as the Feshbach-Schur projection method. There, the Hamiltonian H
is bi-partitioned into a subsystem of interest S coupled to a bath S̄. One can
derive an effective Hamiltonian RS governing only the subsystem S and the
impact of the bath S̄ becomes encoded as an additional (energy-dependent)
term, called the self-energy. What makes isospectral reduction particularly
interesting is that the reduced graph GS might feature symmetries which
are not present in the original version G. Such symmetries are called latent.

We demonstrated that latent symmetries are able to explain the degen-
eracies of a graph’s matrix. To this end, we designed a tight-binding Hamil-
tonian without permutation symmetries, whose suitably reduced version
featured multiple permutation symmetries forming a non-abelian symmetry
group. By group-theory arguments, RS can be brought into a block-diagonal
form and will have duplicate blocks causing structural degeneracies in RS.
Since the spectrum of RS is a sub-multiset of the spectrum of H, the latter
inherits degeneracies from its reduced version. This provides a useful tool
to investigate accidental degeneracies in terms of latent symmetries.

As for the future perspective, we aim to apply the above concepts to
further physical problems such as vibrational modes in mass-spring systems,
principal component analysis of covariance matrices, light- and acoustic-
wave transport through a medium and many-body interacting systems such
as Heisenberg spin chains or the Bose-Hubbard model. Recently, we have
been working on several generalizations of cospectrality such as imposing
a scaled-parity or a complex-phase relation among eigenvector components.
In [MP9], we established a link between latent and block symmetries of H:

[H,

(
A 0

0 B

)
] = 0 ⇒ [RS, A] = 0 and [RS̄, B] = 0,

[RS, A] = 0 ⇒ ∃B : [H,

(
A 0

0 B

)
] = 0 and [RS̄, B] = 0.

These relations are very appealing and deserve further investigations.
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