
Optimal fitting of protein structures to electron

microscopy maps

Dissertation with the aim of achieving a doctoral degree at the

Faculty of Mathematics, Informatics and Natural Sciences

submitted by

Kai Karius

born in Torgau

European Molecular Biology Laboratory Hamburg

2021

Disputation Date: 26.09.2022
Reviewers: Prof. Dr. Tim Gilberger

Dr. Jan Kosinski

Contents

1 Preface 1

2 Introduction 3

2.1 Systematic fitting . 3

2.2 Protein complexes . 4

2.3 The notion of a protein structure . 4

2.4 Experimental methods of structure determination 5

2.4.1 Crystallography . 5

2.4.2 Single particle cryo-EM . 9

2.4.3 Electron cryotomography . 13

2.4.4 Concepts of resolution . 17

2.4.5 Crosslinks . 18

2.5 Structural integrative modeling . 20

2.5.1 Structural Integrative Modeling as implemented in Assembline . . . 21

2.5.2 System definition, data collection and data curation 22

2.5.3 Model sampling . 30

2.5.4 Analysis of models . 35

2.5.5 Systematic Fitting . 37

2.5.6 Other systematic fitting software options 49

2.6 The TFIIIC protein complex . 50

2.7 Objectives . 51

i

3 Computational methods 53

3.1 Algorithmic methods . 53

3.1.1 Fourier accelerated fitting . 53

3.1.2 Filters . 54

3.2 Data Structures and Algorithms . 56

3.2.1 Particle sets . 56

3.2.2 Densities . 64

3.2.3 Molecular density simulation . 67

3.2.4 The connected components labling algorithm 68

3.3 Parallel programming . 73

3.3.1 The memory hierarchy and the processing model 74

3.3.2 Communication between host and device 80

3.3.3 Texture memory . 81

3.3.4 Atomic operations . 84

3.3.5 Dynamic Parallelism . 86

3.3.6 Special operations . 87

4 Mathematical methods 90

4.1 Convergence . 90

4.1.1 The notion of convergence . 90

4.1.2 The Cauchy convergence test . 91

4.1.3 The Geweke convergence test . 92

4.2 Vector spaces . 93

4.2.1 The three-dimensional real vector space 95

4.2.2 Linear maps between general vector spaces 100

4.2.3 Representations of rotations . 102

4.2.4 Function vector spaces . 106

ii

4.2.5 Wigner D-functions as a basis . 114

4.3 Information Theory . 120

5 Results 125

5.1 TFIIIC modeling . 125

5.2 Contributions to the Assembline structural modeling pipeline 129

5.2.1 Geweke convergence test implementation 129

5.2.2 Bash analysis tools . 129

5.3 Description of the GPU implementation of the modeling classes 132

5.4 Density Sampling . 136

5.4.1 The procedural basis . 136

5.4.2 The procedure . 138

5.5 The transformational sampling scheme . 143

5.5.1 The translational grid . 144

5.5.2 The rotational grid . 145

5.5.3 The combined grid . 146

5.5.4 Sampling node memory layout . 147

5.6 Detection of local optimal scores . 149

5.6.1 General principle and implementation 149

5.6.2 GPU implementation . 151

5.6.3 User interface and benchmark . 152

5.7 Parallel Implementation of scoring functions 153

5.7.1 The masked correlation-about-mean score 153

5.7.2 The chamfer distance score . 162

5.7.3 The envelope score . 165

5.8 Connected Components Labeling . 167

5.8.1 Structure of the GPU kernels . 168

iii

5.8.2 User interface and convenience functions and tests 170

5.9 The partial surface score . 172

5.9.1 Score definition . 173

5.9.2 Score implementation . 174

5.10 Particle Alignment and RMSD Calculation implementation 177

5.10.1 RMSD calculation . 177

5.11 Reinterpretation of systematic fitting results 186

5.11.1 Conceptual exposition . 186

5.11.2 Ambiguity in systematic fitting and scoring methods 187

5.12 Entropy measurements of systematic fitting score populations using model
densities . 189

5.12.1 Comparing different scoring methods 190

5.12.2 Comparing different translational positions 192

5.13 Entropy measurements of systematic fitting score populations using exper-
imental data . 194

5.13.1 Definition of the masked correlation-about-mean score 195

5.13.2 GPU implementation, user interface and benchmark 196

5.13.3 Comparison of entropies of different scoring types 199

5.13.4 Comparison of entropies to optimize parameters 201

6 Discussion 202

6.1 The TFIIIC complex modeling project . 202

6.2 Systematic Fitting and Scoring functions 202

6.3 Demonstrated applications and further possibilities 204

6.3.1 The optimal score . 204

6.4 Regular sampling and numerical quadrature 205

6.4.1 Finding local minima and maxima 206

6.4.2 Reconstructing scoring spaces . 207

iv

6.5 Information theoretic perspective on systematic fitting and integrative mod-
eling in general . 210

6.5.1 Scoring method assessment . 210

6.5.2 Higher order considerations . 211

6.6 Parallel computing and integrative structural modeling 213

6.6.1 Inherent suitability of structural data and algorithms in structural
biology for parallel computing . 213

6.6.2 Implementation and Applications 214

6.7 Partial surface score . 215

7 Appendix 224

7.1 Zusammenfassung . 224

7.2 Synopsis . 226

7.3 List of publications involving the author 227

v

Chapter 1

Preface

This section serves as a guide to the thesis and gives a short summary of the content of each

of the following sections and its intended purpose. This thesis was written in the wider

field of computational molecular biology and the narrower area of structural integrative

modeling. The latter is a loose set of computational methods that tries to combine

information from different experimental sources to predict a set of possible models of

protein complexes or proteins (see 2). The authors original training is mathematics and

physics and this has its bearing on how questions were addressed and which questions

were addressed. This thesis was written to enable someone with a modern education

in computational biology to gain access as easily as possible to the problems that are

discussed. It seeks to augment the existing literature and present a coherent and detailed

perspective on a limited set of problems. Hopefully, the reader will be able to follow,

criticize and advance the authors work if he or she is so inclined.

The introduction contains a short survey of the biological notions and the experimental

methods that are used to obtain data that is used in integrative structural modeling to

predict models. The methods are described in coarse detail with an emphasis on the

aspects that might have an effect on the modeling procedure. On the other hand it

describes the Assembline pipeline, which is the computational and conceptual context of

the modeling procedure. Although it is a specific pipeline, many of the concepts discussed

are typical for the field, such as the method of systematic fitting, which is described more

in-depth.

Systematic fitting provides the list of positions and orientations for the “building blocks”

that will be used during the actual modeling procedure. Together with this list, a score is

calculated and associated with each specific placement. Subsequently in the Monte-Carlo

modeling procedure the positions and orientations are “drawn” from the systematic fitting

results according to their score. Therefore, the success of the modeling itself depends to

some extend on the systematic fitting. Because of this close connection, the modeling

1

procedure is described, too.

The present a broad perspective on the essential issues in structural integrative modeling,

there is a section on system definition and data curation. (2.5.2).

The discussion of methods has been split into computational methods and mathematical

methods for the sake of readability, although both aspects are heavily intertwined. The

former contains an introduction into data structures and algorithms that are important in

the field and tries to elucidate the practical aspects. The latter is a high-level introduction

into some of the utilized mathematical concepts. An attempt was made to strike a balance

between completeness and intuitive accessibility. In both sections, where ever possible,

graphical aides have been used to illustrate.

The results section tries to account for and contextualize the authors efforts. A lot of

the results are software implementations, the results are therefore partially written like

a developer documentation, with stretches of user documentation. The actual code basis

can be accessed via git at https://git.embl.de/karius/fitter.git.

The discussion sections expands on the results section and tries to critically assess the

results, contextualize them and speculate about possible further developments.

2

Chapter 2

Introduction

2.1 Systematic fitting

The term “systematic fitting” describes a systematic exploration of possible “fits” of

molecular structures in an experimentally obtained electron density map. The term first

introduced in [1] and describes a processing step within the Assembline software, which en-

ables the modeling of macromolecular complexes using varying experimental data sources.

In Assembline, systematic fitting was used to precalculate a set of likely positions and

orientations, which are later used as a basis to generate an ensemble of models. This high-

lights the two main aspects of systematic fitting: The systematic coverage of all possible

positions and orientations of a structure within a density map and the fitting score that

calculates the “quality” of each fit. For both aspects there are multiple options of realiza-

tion. Depending on the nature of the experimental data, some of these options perform

better than the other. It is in the interest of the modeler to choose a set of methods for

systematic fitting that reveals as much information as possible. This is because in inte-

grative structural modeling projects information is typically scarce, a circumstance that

creates the need to integrate experimental data from different sources in the first place.

This thesis explores the role of systematic fitting in this context and tries to provide meth-

ods to optimize the information gain of a systematic fitting protocol in the context of an

integrative structural modeling project. Since both the fitting and the modeling aspect

are deeply intertwined, both of them and their relation to each other will be described in

the following sections.

3

2.2 Protein complexes

The primary target for integrative structural modeling within the Assembline pipeline are

macromolecular complexes, often protein complexes. Protein complexes can be described

in the broadest sense as associations of multiple polypeptide chains. The ambiguity in this

description is mirrored in the ambiguity of experimental detection of protein complexes.

Depending on the stability and strength of association of the constituent proteins (sub-

sequently referred to as “subunits”) a protein complex may appear to the experimenter

as a well-resolved atomic structure with a clear quaternary shape or as a transiently

associated group of proteins that are shown to be functionally linked in a cellular environ-

ment. In the context of integrative structural modeling mainly those protein complexes

that are amenable to structure-resolving experimental methods are of current interest.

These complexes need to be stable enough to maintain a discrete number of states of

“shape” (subsequently referred to as “conformational states”) as a necessary precondition

to determine their structure (see [2]).

2.3 The notion of a protein structure

Since the advent of molecular biology a clear link between structure and function of

biomolecules has emerged. Basic phenomena such as binding, enzymatic specificity or

allostery are routinely shown to be influenced by the position of single residues or the

quaternary structure of the holocomplex in question. The general lack of a predictive

theoretical description of molecular interactions and the limitations of experimental data

acquisition however demand some concessions to our idea of “structure”. The first clear

definition of a notion of protein structure originates in crystallography and describes it

as the average position of atoms in the protein crystal. The assumption that a protein

structure within the crystal resembles the protein in vivo to some degree then bridges the

results of crystallography to biological reasoning. If, for instance, two protein subunits

exhibit specific binding sites or an active site can be predicted from the crystal structure,

one can test these hypotheses by further experiments such as genetic mutation of single

residues within that sites. Beyond topological classification it is possible to focus on the

physical and chemical properties of domains. Well-studied examples are distributions of

electrical and of hydrophobic patches on protein surfaces. In conjecture with the laws of

physical chemistry it is possible to draw conclusions on the binding affinity and specificity

of two molecules.

4

2.4 Experimental methods of structure determina-

tion

The very term “structural integrative modeling” presupposes at least two sources of in-

formation to integrate. There is a variety of “input data” coming from very different

experimental sources and yielding different amounts of information. Each data resource

comes with its own idiosyncrasies that may or may not play a role in the modeling pro-

cedure. Thus a short introduction is in order.

2.4.1 Crystallography

A glance at figure 2.1, which depicts a recent statistic of the number of structures stored

within the ProteinDataBase database (see [3]) that were acquired via crystallographic

methods, reveals the one reason for the importance of crystallographic data in integra-

tive structural modeling. Not only does it provide a library of structures of often atomic

resolution, but indirectly inform prediction methods that rely on training data. Crystal-

lographic structures will form the bulk of the basic “building blocks” of the structural

models obtained. Protein crystallography started out in 1960 (see [4], [5]) and its results

have been made available in a central database from 1976 onwards (see [3]). The massive

growth shown in figure 2.1 was made possible by advances in theory, acquisition, com-

putational power and user interfaces. The structure determination via crystallography

is a multifaceted and prolonged process, a simplified and abbreviated discussion is thus

inevitable. Introductions to protein crystallography can be found in [6] and [7].

The experimental setup and principle of acquisition

Crystallography, as the name suggests, requires crystals of biomolecules. These include

proteins, amino acids and larger molecular assemblies. While the existence of protein

crystals was already a known fact in the 19th century, only with the emergence of the

study of inorganic crystals in the 1930s (see [8] for a short historical introduction) via

diffraction techniques, crystals of biomolecules became a source of structural knowledge

about biomolecular structure. Much like in the case of cryo-electron microscopy (cryo-

EM), modern (bio-) crystallography is the result of incremental improvements of different

aspects of the crystallographic pipeline. One of the primary challenges is the growing

of an actual crystal. Organic crystals differ from their inorganic counterparts in some

important aspects: They can hold between 25 % and 90 % solvent, they grow rather slow

5

Figure 2.1: A chart representation of the number of structures with the PDB database as
of June, ’21.

and are comparatively small, they are susceptible to dehydration and mechanical stress

and are temperature and pH-sensitive. This fact also increases the empirical value of a

crystallographic structure: One may assume that the molecule has a similar structure in

crystal form and in its native solution, such as the cytosol. Since smaller compounds may

be able to diffuse within the crystal, it is even possible to observe biochemical processes

within a crystal, such as enzymatic activity. There is no accepted predictive theory

of crystallization of biomolecules as of the date of writing this and the conditions of

crystallization have to be found by onerous empirical research, most often specific to each

case. One major limitation until the 1980s was the abundance of the specimen needed

to grow a crystal. Without genetic engineering only biomolecules with a great natural

abundance could be crystallized. Genetics and biochemistry have created a extensive set

of tools that can help to obtain a crystal.

If a crystal of sufficient size and quality can be obtained, the researcher can try to record

a diffraction image at an x-ray source (see figure (2.2)). The wavelength of the probing

radiation must chosen to match the level of detail to be resolved and therefore is in

the wavelength range of x-ray radiation. The theory of diffraction holds true in the

case of biomolecules, too ([9]): The order of the crystal results in a regular grid of so

called unit cells wherein the average position of the atoms constituting the specimen is

constant. Hence the atom form a global grid which results in a selective reflection of

the incoming radiation. These show up as “reflections” - spots of varying intensity that

encode information about the structure of the unit cell. Due to the fact that one measures

only the intensity of the reflections on the screen and not the phase (a radiation wave

in approximation being completely determined by the amplitude and the phase), there is

the so called phase problem. A number of ways to solve the phase problems have been

devised, nowadays almost automatizing the process. The acquired images record so called

6

Figure 2.2: An example of a diffraction image, the associated density and the resulting
structure. Taken from [10].

refractions, the “dots” that can be seen in figure 2.2. These refractions encode information

about the electron density. Once a sufficient set of refractions have been recorded, and

iterative process of prediction and refinement can yield a high resolution structure of the

specimen.

The Crystallography workflow

Even a preliminary understanding of the crystallographic workflow can be valuable to the

modeler, to assess the validity and character of the data resources provided by a structure

obtained via crystallography. A brief discussion is therefore in order. The following sub-

division of the procedure lends itself: Obtaining a crystal, acquiring diffraction images,

and constructing and refining a structure.

The growing of a high-quality crystal can be the most challenging step in the procedure.

First of all, a sufficient number of specimen have to be obtained. This is done with the

tools of genetic engineering available nowadays and also limited by them. Not every spec-

imen will by easy to express in a large quantity or to purify, often the biological function

of the biomolecule in question itself might complicate this process, such as disordered

regions or highly charged domains. Optionally, genetic engineering is employed to modify

the specimen to make it more amenable to crystallization. The goal of the next step is

to find the conditions of crystallization, which may not exist at all. Several parameters,

such as the temperature, the pH-value, concentrations or precipitation agents might be

varied to find a set of conditions that enables crystallization. Once this is done, there is

the need for optimization since a high quality crystal is more likely to yield a low resolu-

tion structure. If these conditions are optimized, a supersaturated solution is created to

first nucleate and then grow crystals. A supersaturated solution is in a non-equilibrium

7

Table 2.1: A list of possible factors in the process of crystallization of a biomolecule, taken
from [8].

state, where the solvent is present beyond its own solubility limits. This then leads to

precipitation, ideally in form of a crystal. There are several methods to introduce a su-

persaturated state, all of them change the physico-chemical properties of the solution

in some way. Figure (2.1) offers an overview of the multitude of factors bearing on the

crystallization process.

Once a crystal is grown, a data acquisition at an x-ray source can be attempted. One

seeks to record as many reflections as possible, the information contained in the reflections

contributes directly to structural information. A skilled practitioner may read a wealth

of information just from the pattern, though there are accessible software solutions for

many given tasks in this step. Should the unit cell exhibit a symmetry, this will also show

up in the diffraction patterns. Although this information is strictly speaking redundant,

it can be used to attenuate the systematic error in the intensity measurements. Before

the advent of molecular replacement methods to solve the phase problem, isomorphous

replacement methods, where the crystal is soaked with a heavy atom solution and the

difference between the refraction patterns is used to obtain the phase information, can

be attempted in this step. The final images are then normalized and processed to yield a

dataset which consists of the reflections (identified by their Miller indexes ([9])) and their

associated intensities. Given this information, a reconstruction of the structure can be

attempted.

The last step is an iterative process that refines the structural model. The wealth of

already existing structures can be leveraged to solve the phasing problem by predicting

an initial structure, calculating the corresponding the so called patterson map and subse-

quently minimizing the difference between the predicted and the measured map (molecular

replacement). If the resulting density map allows, a structure can gradually be built into

it, starting with the backbone and continuing with the sidechains. This, then, can be used

as the basis for another iteration. An important measure of quality is the so called R-

factor, which is calculated by assessing the difference between the diffraction image of the

8

experimental and the predicted structure. Given the nature of biomolecular crystals not

every region of the resulting density might be ordered, stable or occupied by the molecule

itself. The so called B-factor can be associated with every predicted atom, indicating the

degree of its “rigidity” (the B-factor is also referred to as “Temperature factor”).

Crystallographic density maps as modeling resource

Crystallographic structures are near indispensable in integrative structural modeling.

They constitute in a way the “base-line” of structural information, without their infor-

mation about the the positions of atoms the search space of possible conformations would

be too big entirely to effectively search through. The idiosyncrasies of crystallographic

maps therefore have a direct bearing on the modeling procedure.

While nowadays a quality assurance at the end of the refinement procedure is a given, it

might still pay to check the basic metrics of quality, such as steric clashes and Ramachan-

dran outliers. The crystallographic map also does not show the protein per se, but the

protein within the unit cell. Especially in the case of protein complexes there might be

a difference in conformation between the protein in crystal and in the complex. Also,

naturally disordered regions, such as loops, that are stabilized within the crystal might

not necessarily be ordered within the proteins native state. To assess such questions the

B-Factors can be used as a valuable resource. Regions with high-temperature B-Factors

can be interpreted as being flexible and hence provide an idea of possible conformational

flexibility of the protein structure. Lastly, any crystallographic structure should be as-

sessed for possibly present water molecules, ligands and other remnants of the acquisition

method and if they should be part of the modeling effort.

2.4.2 Single particle cryo-EM

Density maps obtained by single particle cryo-EM can overall be said to be an important,

information-rich data source for integrative modeling. This discussion will highlight the

basic principle, provide a rough sketch of the work flow and offer a perspective from the

view of integrative structural modeling.

The experimental setup and principle of acquisition

Figure (2.3a) shows a schematic of a cryo-EM microscope. As opposed to x-ray crys-

tallography the probing particles are not photons of the x-ray wavelength but a beam

of electrons. This difference has far reaching consequences in questions of methodology

9

(a) A sketch of a cryo-EM microscope, taken
from [2]

(b) Single particle raw image, taken from [11],
the red line signifies 300 Å.

Figure 2.3: Experimental setup and raw data of an cryo-EM single particle experiment.

and experimental opportunity. This description will exclusively focus on single particle

cryo-EM. Arguably the most interesting aspect of this kind of cryo-EM microscopy is the

possibility of structure determination without the need of the sample to crystallize. Every

imaging method must somehow account for averaging out noise to reveal the immutable

structure underlying the image. In crystallographic acquisitions this averaging process is

largely achieved by the crystal itself, resulting in a diffraction image which in favorable

circumstances contains all the information needed to reconstruct an atomic structure.

In single particle cryo-EM this averaging is achieved by recording projections of a large

number of particles of the specimen and applying a computational pipeline to reconstruct

a three dimensional density map. Figure (2.3b) shows an example of raw cryo-EM data

for the case of eukaryotic ribosomes, the images of the particles oriented in varying ori-

entations will be the basis for the reconstruction process.

Due to the fact that electrons are scattered by air the inside of the microscope has to

be kept in a vacuum state. This poses a problem for biomolecular samples, since they

occur intrinsically hydrated and evaporation would distort their natural state. Two of

the most prominent techniques to deal with this are the embedding in vitreous ice (hence

cryo-EM) and the staining of the specimen in a heavy metal salt, known as negative stain.

The average free path length of electrons in vitreous ice of 2800 Å for elastic scattering

and 750 Å ([2]), which requires the sample to be delivered in a thin film. The resolution is

limited by the setup of the microscope itself and is far beyond the de-Broglie wavelength

of the electron, the highest amount of details that can be resolved is around 1− 2 Å for

the case of bio-molecular complexes (ibid.) The electron beam itself has its source at

the top in the electron gun and is modulated in angle of convergence and magnitude by

10

the condensers. The sample itself is right on top of the objective lens, which forms the

image that is then projected onto a fluorescent screen or, for data acquisition onto a CCD

camera, by the projector lenses. The lenses are magnetic since they need to bend the

path of electrons.

The interactions within an EM-microscope are reported to be complex and beyond this

discussion; a brief descriptive attempt for illustration will be made. One is mainly inter-

ested in elastic scattering events for high resolution reconstructions. Elastically scattered

electrons, in the weak-phase-object approximation (which includes thin films), have their

phase shifted in an amount proportional to the integral of the electrostatic potential (cor-

responding to the density which one is interested in). Therefore one is interested in this

phase shift. The phase shift itself has an effect on the intensity finally recorded by the

camera. The so-called Contrast Transfer Function (CFT) theory details the contribution

to this phase shift resulting from the experimental setup. If one is able to account for

this contribution one can reconstruct what essentially can be understood as a projection

of the three-dimensional density to the two dimensional image plane.

Given a collection of these projections and the standard computational pipeline ([12])

one is ideally able to construct a three-dimensional reconstruction of the electrostatic

potential.

The single particle cryo-EM workflow

The single particle cryo-EM workflow has been object to several optimizations of both

the experimental setup and computational procedures. Virtually all of the steps have an

impact on the final result and sometimes the interpretation of the resulting density map.

A brief discussion is therefore in order (for a more complete perspective, see [12]).

• Sample preparation is paramount for cryo-EM structure determinations. The more

structurally homogeneous the sample is, the better. A biophysical characterization

of the sample can be beneficial to assess composition and conformation. In the case

of protein complexes it might not be a given that the tentative complex actually

forms a stable holocomplex. There might be different conformational states, which

is no problem in itself, if their number is not too big and every state is represented

by a good number of particles. Negative stain EM is also a possible way to assess

this, more so since it requires less particles. Several methods exist to stabilize

complexes: crosslinking, a change in buffer conditions or adding a stabilizing ligand

to the sample. A large number of particles is beneficial for the reconstruction, too.

• The specimen sample is commonly prepared on a carbon film which is supported

by the grid. As mentioned, to prevent dehydration the specimen has to be either

11

Figure 2.4: An illustration of the image processing workflow of the single particle cryo-EM
procedure, taken from [13]

vitrified or stained in a heavy salt. In the case of vitrified ice the ice layer needs to be

as thin as possible but not too thin to exclude the particles from the middle or induce

a preferred orientation. The latter phenomenon is more prevalent in some species

than others and might lead to a bias in the projections. Automatized plungers can

reliably reproduce vitrified specimen without impurities within the ice.

• The image acquisition is a step which, although many intermediate steps have been

automatized, holds a large number of parameters and details that need optimization.

For high resolution results the microscope needs to be aligned well and a number of

parameters, such as spot size or the appropriate defocus settings, can be adjusted

to improve contrast. A lower defocus will result in more high-resolution information

due to the mathematical properties of the contrast transfer function theory, which

also holds the cause for the need to acquire at a number of different defocus settings.

When adjusting the electron dose there is a trade of involved between higher contrast

with a higher dose and more radiation damage, which one seeks to minimize. A lot of

optimization is taken care of for the user by modern solutions, such as the correction

for movements of the specimen within the ice or weighting later acquisitions with

a higher “B-factor” to correct for radiation damage which will accumulate in later

acquisitions.

12

• Given the final set of images, the image processing part of the pipeline can be under-

taken. Figure (2.4) illustrates some of the most important steps. The picking of par-

ticles out of the raw images can be initiated by hand and helped along my software

to automatically find them. The next step is the optional two-dimensional image

classification, based on the standard technique of k-means clustering. Once a suit-

able set of classes is found, aligned and averaged, the process of three-dimensional

reconstruction can begin. One may choose an initial structure in this iterative pro-

cess, such a previously obtained negative stain density map. It must be said that it is

dangerous to introduce bias either at the 2D classification or 3D reconstruction, see

[14], since overfitting might occur quite easily. There is the option of reconstructing

more than one conformation from the same data set, resulting in multiple distinct

density maps. An important measure of quality is the Fourier Shell Correlation

(FSC), which is calculated by splitting the same data set into two and subsequently

reconstructing and comparing two versions of the resulting density using this metric.

Single particle cryo-EM maps as modeling resource

Finally it is important for the modeler to know the pitfalls in this procedure. If a den-

sity map is provided to the modeler, for instance, it is worth checking the experimental

procedure that have led to this result. For it is easy to assume that a density map, by

giving the impression of finality that the results of long and arduous procedures often

have, is a signal of an actual existing structure. This does not need to be the case. A

good biochemical and biophysical characterization can prevent such fallacies: Was the

original sample structurally homogeneous? Is there proof of the protein complex actually

stabilizing in a small number of conformations? Also, if two different conformations are

the end result of the Single particle cryo-EM procedure, the modeler might want to ask:

Are these conformations real or an artifact of the reconstruction process?

An additional point is to be made about the difference between maps obtained via negative

stain and vitrified ice. Negative stain does not, by experimental design, reveal information

about the internal density of the specimen. Therefore, in later stages of the modeling, it

might be worth addressing this difference, for example by using different scoring functions

during the systematic fitting (see 2.5.5) step.

2.4.3 Electron cryotomography

Electron cryotomography (cryo-ET) is an experimental technique that is closely related to

single particle cryo-EM (see 2.4.2) yet exhibits some key differences that result in different

13

Figure 2.5: Schematic illustration of a tilt-series, taken from [15].

challenges and opportunities compared to cryo-EM. Like cryo-EM, cryo-ET underwent a

long historical development of continuous, successive improvements in both its experi-

mental and computational aspects. In conjunction with integrative structural modeling

it has been used to solve some key challenges (e.g. [1]) in modern structural biology. This

warrants a short introduction to the technique.

The experimental setup and principle of acquisition

As it is for single particle cryo-EM acquisition, an electron microscope (see 2.3a) is nec-

essary for cryo-ET acquisitions. There are however fundamental differences in sample

preparation, image acquisition and processing and density reconstruction. Sample is not

purified into single particles and exposed by use of a grid. In recent years, it has become

possible to expose entire sections of tissue in the form of thin slices. Using the technique

known as focused ion beam (FIB) milling, frozen tissue samples or cells are carefully

thinned by said ion beam, until they are less than ca 500 nm thick, so that the electron

beam can penetrate them. A pre-screened and suitable sample is mounted in the vacuum

of the electron microscope and subsequently a so called tilt-series is recorded.

This series of acquisitions is central to the technique and illustrated in figure (2.5). The

sample is tilted in a series of angles typically ranging from −70◦ to 70◦ and an image is

recorded for every orientation. A lot of the idiosyncrasies of cryo-ET stem from this very

14

procedure. In contrast to cryo-EM the same area is exposed to multiple radiation dosages

so that the intensity needs to be lower to not degenerate the sample. The tilting causes a

stage drift for which one must account with tracking and autofocusing procedures. Differ-

ent tilt angles have different thicknesses and a different geometric relation to the electron

beam. Together with the low dosage this makes defocus determination more challenging

and worsens the signal to noise ratio. The tilt images are recorded in sequence, so the

radiation damage accumulates in later images so that a tilt scheme must be selected with

care to preserve as much high resolution information as possible. E.g. multiscale mapping

is used to focus on promising regions while at the same time keeping the radiation dosage

low when finding these regions. This is a small impression of the considerations involved

in the acquisition process. A more exhaustive list can be found in [16].

The image processing, similar to single particle cryo-EM and possibly more so, relies on

additional information, such as the tilt scheme and the acquisition settings, to recon-

struct the resulting densities. While there are again similar features, such as the sample

preparation and gauging of the microscope, there is an outstanding difference. There

is an intermediate 3D-density that is a first reconstruction of the tilted images. This

density has the important property that it is constructed from an incomplete coverage of

angles (see above) and is to be considered as an anisotropic representation of 3 dimen-

sional space. With this proviso, more familiar computational techniques such as particle

picking, alignment and density classification are employed. This section is a terse descrip-

tion to contrast cryo-ET with single particle cryo-EM, a more faithful descriptions of the

workflow will be given in the next section.

The cryo-ET workflow

The workflow will be sketched closely based on the excellent discussion in [16]. The focus

will be on the differences to the already discussed methods in single particle cryo-EM (see

2.4.2). Figure (2.6) shows a possible representation of the workflow.

• The sample preparation, microscopic image acquisition and the image processing

have many common aspects with their counter parts in single particle cryo-EM.

The differences result from the use of a tilt series instead of the (often) naturally

different orientations in single particle cryo-EM. An advantage is that the samples

do not need to be single particles, therefore, a broader range of objects of study

is accessible to cryo-ET, such as protein complexes in situ ([17]). A disadvantage

stem from the fact that within a tilt-series the same area is hit by an electron

beam and therefore the radiation damage will accumulate in the later tilts of a

series. In general, image processing, the design of the tilt series and the acquisition

15

Figure 2.6: A schematic of a cryo-ET workflow, taken from [16].

parameters have to take into account the geometrically different situation of each

tilt ([18]). After the acquisition of a tilt series, the tomogram reconstruction can be

achieved by methods such as the Fourier synthesis.

• The actual, 3D space reconstruction is obtained during subtomogram averaging.

This process is very similar to its single particle cryo-EM pendant, a notable dif-

ference is the three-dimensional nature of the tomogram. The missing orientational

information caused by the angular wedge must be taken into special consideration.

This is easier to meet if the sample is isotropically oriented (when statistical av-

eraging might help) than in the anisotropic case. The rotational alignment bears

close resemblance to the systematic fitting counterpart and has similar properties,

such as being computationally expansive and being best approached in an iterative,

refinable manner.

Cryo-ET maps as modeling resource

Cryo-ET maps are not easy to obtain due to the complex pipeline and the relative novelty

of the method. Yet they bear great promise for integrative structural modeling for they

have two properties that play into its strengths: One is that they have a intrinsically

lower signal to noise ratio and will more likely produce low resolution results, a demand

that integrative structural modeling was practically created to meet. The second is the

16

opportunity to gain information about complexes in situ environments and bio-molecules.

It might happen that the resolution of a density representing a more extended cellular

environment is less than what is necessary to determine atomic details ab initio. This will

lead to a great number of alternative hypothesis about the precise biochemical interac-

tions and arrangements, for example represented by an ensemble of models. Integrative

structural modeling is since conception prepared to deal with many alternative hypothesis

and is accustomed to dealing with the degree uncertainty arising from a broad ensemble

of models.

2.4.4 Concepts of resolution

Due to the varied nature of data sources in integrative structural modeling, the modeler

is confronted with a variety of measures of data quality. Most prominently among these

measures is the concept of resolution, because it is connected to crystal structures (2.4.1),

single particle cryo-EM density maps (2.4.2), cryo-ET maps (2.4.3) and the simulation

of molecular densities (3.2.3). The concepts of “resolution” connected to these densities

are closely tied to their respective idiosyncrasies. A comprehensive elucidation of their

interrelation is an ongoing task over the last decades and will in all likelihood not be

possible too soon. Due to the frequent encounters the modeler has with these concepts,

it seems however a good idea to have the briefest mention and some literature references.

Crystallographic resolution has more than one instance as a concept ([19]). The most

simple definition is dhigh as the smallest distance (in Å) that is resolved in the diffraction

pattern. This diffraction pattern is already a result of a statistical clean up in the standard

pipeline, it gives however a rough idea about the global quality of the data. The range

of 0 Å − 1.5 Å is called “atomic” and is of great interest to the structural integrative

modeler, since his or her models will often derive structures from maps of this range.

The cryo-EM/ET resolution concept is seemingly universally mentioned as being topic of

an “ongoing discussion”. There are multiple measures and perspectives ([20],[21]). The

most used concept is that of the FSC (Fourier Shell Correlation) at an agreed upon cutoff

value. This procedure roughly measures the consistency of the reconstruction process by

calculating the correlation of different spatial frequencies k (defining Fourier shells) of two

independent reconstructions from the same dataset (the data set is halved). Where this

consistency, measured via the correlation, falls below the agreed upon cutoff value, the

spatial frequency parameter k is read and its inverse is defined as the resolution. The

dominant issues are the exact cutoff value, the role of noise and the influence of different

processing steps. The modeler needs to be aware that the “resolution” might vary locally

and that the number given to him has to be assessed critically.

The local resolution after ResMap ([22]) has been developed for this very reason. It

17

Figure 2.7: Example of a map processed with ResMap. Taken from [22]. The blue regions
correspond to ca. 30 Å and the red regions to ca. ca. 58 Å.

assess the resolution of each voxel using a statistical procedure to test for the presence of

features of different wavelengths. This helps the modeler to assess different regions of the

map displaying different levels of details and consider the modeling decisions accordingly.

Figure (2.7) shows an example.

Lastly, the resolution factor of the density map simulation mimics the effect of high

and low resolutions. Often it relates to the width σ of a Gaussian, there are different

conventions how the nominal resolution of the cryo-EM/ET density map should relate to

this σ. To the authors knowledge, none of them have been proven intrinsically superior

to the other, either analytically or empirically. Some of these conventions can be found

at [23].

2.4.5 Crosslinks

Crosslinks are widely used in integrative structural modeling, for they are acquired in

a wholly different manner than crystallographic or cryo-EM data. This makes them an

orthogonal data source and a valuable tool for cross validation. A cross-linker is a class

chemicals whose members consist of two parts: Reactive end groups and a spacer. During

the crosslinking chemical reaction the reactive end group may react with residues to form

covalent bond with them, so that these residues are now connected by a spacer of known

length (e.g. thebis(sulfosuccinimidyl)suberate (BS3) or disuccinimidyl suberate (DSS)

cross-linker of length 11.4 Å). This information can be used in integrative structural

modeling procedures.

Although there is a growing number of variations of the crosslinking technique, the gen-

eral procedure can be outlined in a few steps (Figure 2.8). Crosslinking can be attempted

18

Figure 2.8: An illustration of the crosslinking technique from a general perspective, taken
from [24].

in a purified protein sample or in vivo, depending on the intentions of the experimenter.

If solely the isolated structure of the protein complex is of concern, one would gravitate

towards the first option. The crosslinking reaction itself needs to be optimized depending

on the crosslinker and the protein and the intended results, parameters to be optimized

are, amongst others, buffer and reaction time. Cross-linkers typically attach to a spe-

cific subset of peptide residues, depending on the type of cross-linker. After digestion of

the crosslinked protein sample the resulting mixture of crosslinked and linear peptides

is enriched for the former. After mass spectrometry data acquisition using the enriched

peptide sample, database search and statistical evaluation based on the concept of FDR

(False Discovery Rate, see [25]) is performed and the list of crosslinked residues associated

with a measure of certainty is made available to the modeler.

A number of concerns are of interest to the modeler. First, crosslinks in the context of

protein complexes can be classified into three distinct categories: monolinks - crosslinks

that are attached to just one residue, intralinks - crosslinks between two residues of the

same subunit of the protein complex and interlinks - crosslinks between two residues of

different subunits of the complex. While the information content of the different types of

crosslink varies, all of them are potentially useful within a modeling project and shouldn’t

be disregarded carelessly. Besides the already mentioned fact that crosslinks constitute

orthogonal information with regard to the other data resource types, there is the fact

that crosslinks are sensitive to conformational changes. In one sample of crosslinks there

might be encoded two or more different conformational states. Trivially, crosslinks that

are satisfied in one state might be violated in another. Lastly, the geometry of the cross-

linker determines the “resolution”. A short crosslinker will offer more precise structural

information than a longer crosslinker but is also less likely to actually crosslink any residue.

19

2.5 Structural integrative modeling

Structural integrative modeling comprises a multitude of computational methods that are

employed to combine multiple differing data sources to produce a single final model or an

ensemble thereof that agree with the data. A model can be represented as either a set

of atomic positions that constitute a biomolecular structure, a sequence of conformations

(“snapshots”) if the goal is to model a kinetic process, or an ensemble of equally likely

conformations that can alternatively be represented as a probability density. The data

resources used as an input are rather diverse (see 2.4). In principle any data resource that

has some bearing on the spatial conformation or conformational changes of a biomolecular

complex can be used as an input. Both the intended form of representation of the resulting

model/models and the specific nature of the experimental information provided by the

data resources have a massive influence on the methods and tools used in structural

integrative modeling. In this thesis, I will limit myself to the techniques used within the

Assembline protocol ([26]) and expand on specific aspects such as the task of fitting, which

is a collection of methods that attempt to correlate crystallographic data with electron

microscopy data. To situate this thesis within a broader scientific context, a brief survey

of existing work is appropriate.

Assembline itself relies chiefly on the IMP (Integrative Modeling Platform, [27]) and UCSF

Chimera ([28]). IMP itself does not define a single protocol but offers a framework for

integrative modeling and a wide range of tools to this end. It comes with an exhaustive

online documentation and rich set of examples for widely varying situations a modeler

might encounter. Its programming interface is available in C++ and Python languages

([29]), which is actively maintained as of writing this. There are other software tools for

integrative modeling. For example, the HADDOCK software protocol (see [30]) focuses

on identifying interfaces within protein complexes (“docking”). They offer the possibility

to integrate chemical shift data from NMR experiments and mutagenesis data to predict

possible binding sites. The relative position of subunits, subcomplexes or domains within

the protein complex is rich in information and valuable for modeling. HADDOCK offers

a server, where docking jobs may be submitted also by inexperienced users. PyRy3D

(see [31]) bears conceptual resemblance the Assembline, its main objective being to use

Monte-Carlo based methods to predict the structure of macromolecular assemblies. It

is accessible as a user friendly (their claim) web server. The Rosetta software suite (see

[32]) offers a wider array of protocols, including docking, ab initio structure prediction,

structure prediction of macromolecular complexes and local optimization of structures.

Its interfaces include a command line interface, Python interfaces and publicly accessible

servers.

20

2.5.1 Structural Integrative Modeling as implemented in As-

sembline

The Structural integrative modeling pipeline Assembline as outlined in [33], [26] and [34]

consists of the following steps:

1. Data collection and curation. In this step the data is obtained from an experimenter

or online databases and is critically evaluated, cleaned of unnecessary content and

artifacts. After this, the data must be registered in a central file or data structure,

so that it becomes clear how each of the different data files containing density maps,

atomic structures or crosslinks relates to the actual protein complex in question.

2. The first computational step is called “Systematic Fitting”. For every structure that

has been obtained in the last step an exploration of its possible places within the

EM map of the complex in performed. This can happen in a number of ways: To

determine a set of possible positions one can either choose the Monte Carlo method

or a regular grid. The “quality” of each positioning can be assessed with a number

of computational functions (see 2.5.5).

3. The second computational step involves setting up the model sampling procedure.

This procedure can be a kind of Monte Carlo procedure, the Metropolis-Hastings

algorithm, a gradient descent algorithm or a mixture of similar tools. At the begin-

ning of this step, the model objects are encoded as computational representations,

as are their relations between each other. A total score expresses the quality of each

sampled model. The list of positions and orientations of the rigid bodies that will be

drawn from to sample different models are obtained in the systematic fitting step.

Additionally the scores associated with the positions and orientations are used as

input for the Monte-Carlo scoring function.

4. In the last step, the top models are searched out and examined. Additionally one

wants to make sure that within the model sampling step, an exhaustive number

of models have been sampled, to not miss out on significant portions of possible

models.

I will outline the details of each one of these steps and remark on their significance to

each other and the procedure as a whole.

21

2.5.2 System definition, data collection and data curation

This step is an essential and laborious procedure whose successful execution determines

the possibility success of the integrative modeling process. The central challenges are:

• The definition of the system in terms that are both intuitive to the biologist per-

forming the modeling procedure and the computational system that executes the

necessary steps is non trivial problem. While the biologist employs visual intuition

that is very amenable to human imagination, this does not translate into computer

logic, which is distinctly sequential. Further complication arises from the fact that

different data sources that are to be integrated during the modeling procedure might

follow different conventions that must carefully be translated into each other.

• Data collection includes interfacing with online databases, which might hold infor-

mation that might contribute to the overall picture of the model. This includes

e.g. crystal structures, cross-links, homology models and even information about

protein-protein interfaces. This aspect of preparation is heuristic, meaning one

might want to come back to it and reiterate it after initial modeling attempts.

• Data curation includes creating a clean register of the data sources and evaluating

it critically. The former aspect of it is necessary due to the heuristic nature of

integrative modeling processes and the likely need to return to this step and for

reevaluation. The critical evaluation is needed to counteract possible faulty data

sources, contradicting data sources and data sources that come with the need of

initial interpretation.

In the following I will discuss and illustrate these tasks.

System definition

The definition of the system and its relation to the resources and the results of the model-

ing procedure can be quite demanding and may undergo change during multiple iterations

of the same modeling project and can be very diverse depending on the nature of the spe-

cific modeling project. The aspects of this step are, while related, of a varying nature, I

will refer to their sum as the “model system definition”. One possible perspective on this

model system definition is to look at it as a tripartite structure, as outlined in (Figure

2.9), which illustrates the guiding principle of this discussion.

The three parts outlined can be called the resource description layer (bottom), the model

consistency layer (middle) and the geometry specification layer (top). I shall discuss them

22

{
 path:“/data/struc1”,
 chains: [’A’,’B’],
 name: “unit 1”,
 ...
}

{
 path:“/data/struc2”,
 chains: [’C’,’D’],
 name: “unit 2”,
 ...
}

{
 path:“/data/struc3”,
 chains: [’E’,’F’],
 name: “unit 3”,
 ...
}

{
 path:“/data/struc4”,
 chains: [’G,’H’],
 name: “unit 4”,
 ...
}

{
 path:“/data/map1”,
 res: 8.5,
 name: map 1”,
 ...
}

{
 path:“/data/map2”,
 res: 2.5,
 name: “map 2”,
 ...
}

{
 path:“/data/xl 1”,
 res: 2.5,
 name: set 1”,
 ...
}

{
 path:“/data/xl 2”,
 res: 2.5,
 name: “set 2”,
 ...
}

Structures Density maps Crosslinks

x?

Multiplicity

{
 “xl_id1”:“struc_id1”,
 “xl_id2”:“struc_id2”,
 ...

}

{
 “struc_id1”:[“unit_1”,[20,88]],
 “struc_id1”:[“unit_3”,[0,127]]
 ...

}

{
 path:“/data/seq1”,
 name: “seq 1”,
 ...
}

Sequences

{
 path:“/data/seq2”,
 name: “seq 2”,
 ...
}

{
 “xl_set1”: true,
 “xl_set2”: false,
 ...

}

identifier mapping

resource mapping

resource configuration

{
 “domain1”:[“unit_1”,[20,88]],
 “domain2”:[“unit_1”,[90,148]]
 ...

}

resource annotation

resource descriptors

{
 “symm”:“C3”,
 “axis”:[2.4,0,1],
 ...

}

constraint/restraint

excluded
volume

representation
coarseness

symmetry
constraint/
restraint

connectivity
restraint

domain proximity
restraint

density map
restraint

rigid body
constraints

Figure 2.9: A tripartite perspective on the system definition in integrative structural
modeling (Assembline)

23

in this order.

The resource description layer gathers and describes the raw data instances which hold

the information that is to be combined into a number of possible final models. Although

it is in principle not restricted to the data types that will be outlined, they constitute

the most common data sources. The FASTA files (.fasta or .fsa) contain pairs of se-

quence identifiers and amino acid sequences, which typically constitute the subunits of

the protein complex. They are provided by the experimenter. Different kinds of exper-

imental data sources might demand different sequence instances of the same underlying

protein complex, e.g. there might be differing sequences for the complex that was used in

a cryo-EM data acquisition and reconstruction and the crosslinking dataset (a HIS-tag for

the pulldown). This difference cannot be neglected, since the crosslinking dataset might

refer to a different sequence register and can only be correctly mapped in this register.

Therefore it is possible to have multiple data sources for the sequences, which might oth-

erwise be thought of as immutable. Still the sequences are the most stable (unlikely to

be changed by the modeler) entity, which is why they can be used to relate all other data

sources to each other. This data source does usually not require a further specification of

the modeler.

The files (or database identifiers) containing the structural information might the most

variable source of information. There are two common formats, the PDB ([3]) and the CIF

(Crystallographic Information File). Both contain information about the average posi-

tion of residues and atoms. They may hold several non-covalently linked chains, water

molecules, ligands and particles of a more exotic type. Their count register and the chain

identifier specifies the covalently linked subunits. They may also contain a wealth of

further information, such as crystallographic B-Factors and information about chemical

bonds. Though this is already a data source rich in information, the sum of all structure

files adds a layer of complexity. The modeler might for example wish to only address a

subset of data in a structure file, use multiple different versions of a structure represent

by several files, concatenate different structure files into one structure or break up an ex-

isting structure represented by one file into parts to simulate flexibility. To enable these

operations, the structure files can be described and annotated in resource descriptors,

which are either JSON (JavaScript Object Notation) or data objects instantiated using

the Python programming language (the gray boxes in Figure 2.9) that can hold identi-

fiers, ranges, chain identifiers etc. These descriptors form the binding element that ties

the raw structural data into the model system definition.

Of similar importance yet different structure are the density map files, typically found (in

the Assembline project) in the MRC and CCP4. They are of a binary format and describe

the geometry of the density that is supposed to represent the holocomplex or subcom-

plexes in question. These files may contain crystallographic information, in our context

we usually focus on the geometry of the densities, i.e. the size and shape. For example,

24

the modeler might want to address only a part of a given density or crop areas of den-

sities characterized as noise. These steps are undertaken either later within the pipeline

or as a preprocessing step by the modeler. Additional information about the density is

again specified in a resource descriptor. This information includes a parameter called

“resolution”, which roughly correlates with our basic understanding of “resolution” but

does not need to be identical to experimental resolution-like parameters (e.g. the optical

resolution in crystallography or the Fourier shell correlation in cryo-EM and cryo-ET)

or computational estimates, such as that of the ResMap software ([22]). This parameter

plays a pivotal role in the systematic fitting procedure. Another information that needs

to be specified is the density threshold, which specifies the minimum float value that still

constitutes the signal of the protein complex. This is a non trivial aspect since including

or excluding different subdensities might misrepresent the signal as noise or vice versa.

Yet another aspect is the assignment of subunits or subcomplexes of the holocomplex to

different density maps, as not every structure may appear in every map. On top of that

there might be different versions of a density representing the holocomplex or a subcom-

plex. The method of experimental acquisition of the density map can play a role, too,

since it can change how the map is computationally and geometrically interpreted, as is

the case with negative stain EM maps, where the density map is to be interpreted as the

signal of the surface of the protein complex, as opposed to the three-dimensional density

interpretation. All this information is needed upstream of the Assembline pipeline at one

point or another and needs to be gathered and specified by the modeler.

The last commonly used data source are files that contain information about crosslinks.

These are usually csv (Comma Separated Values) files that list different types of crosslinks

and associated information. The most essential information is the type of crosslink, the

indexes one or two residues that it is linked to, and the degree of confidence that this

particular crosslink constitutes a real signal. Similarly to density maps crosslinks might

represent the structure of subunits, subcomplexes and the holocomplex and must be an-

notated as such in the resource descriptor. The specific type of the chemical used as a

crosslinker is also important, as it encodes information about the minimum and maximum

distance between two residues that the crosslinker can signify. Since crosslinking assay

might work with different protein sequences than those utilized for the cryo-EM density

map, a reference to the appropriate sequence resource is needed, too.

If this deceptively simple step is conducted carefully it can build a productive foundation

for the modeling project, if not, it can cripple the modelers efforts. It ties in directly to

the next layer, the data consistency layer. Here the data is related to each other and

the bridge between different data sources and their respective idiosyncratic conventions

is established. While this is the main purpose of this layer, there are a number of aspects

to consider.

The entities used as central organizational unit (as indicated in figure 2.9) are the se-

25

quences. Therefore possibly different sequence identifiers (such as those of the sequences

used in crosslinking and those used in the cryo-EM density map) need to be mapped to

each other. Concurrently the sequence registers need to be aligned. Since the sequence

identities used in FASTA files might contain information non essential to the modeling

and might be quite verbose, a user defined identifier and the appropriate mappings are

common. Once this mapping is accomplished, the structural resources can be mapped to

the sequences. This usually happens by mapping the resource specification (file names

and chains) to the corresponding sequence. This step is fairly straightforward since the

sequences of the structure files (if they are contained within the structure files) have

to match the sequence ranges that the structure is supposed to represent and can be

used to do an additional consistency check. The mapping of the density map resources

to sequences that represent the holocomplexes and subcomplexes can be achieved in a

similar way, with the additional complication that different density map resources might

correspond to different conformational states of the complex in question. The same con-

siderations and mappings need to be undertaken for the different crosslinking data sources

that might be given. Often, the modeler might be willing to test the modeling results of

different sets of assumptions, test different structures, crosslinking data sets or density

maps. In these cases it is convenient to have the option to “activate” or “deactivate”

different resources for a given modeling iteration. This is also done in this layer. Addi-

tionally resources can be annotated, e.g. to highlight different domains or subcomplexes,

which might be of use in the subsequent interpretation of the resulting models. A last

aspect to review that influences the next layer significantly is the multiplicity of the given

subunits. The multiplicity of every subunit, i.e. the number of instances of every subunit

or subcomplex in the final model, encodes the stoichiometric information that is obtained

in experiments. This plays a constitutive role for complexes that exhibit symmetries.

The final organizational layer of the model system definition is the geometry specification

layer, which is the jumping-off point towards the actual simulation of different models.

It exclusively contains assumptions about the relation of the different constituents of the

modeling procedure in three-dimensional space. It has a massive impact on the final

models and draws on the information already prepared within the other two layers.

The geometric information results both from general knowledge about the structure of

biomolecules and experimental results specific to the modeling project and is encoded in

terms of restraints and constraints. This is due to the fact that within the Assembline

pipeline the final models are generated on basis of a Monte-Carlo ([35],[36]) procedure,

which operates using a central score which “good” models minimize and “bad” models

don’t. Different aspects of geometrical nature might be encoded as restraints, which are

allowed to express a degree of uncertainty, and as constraints (as in the case of symme-

tries), which have a bearing on how the subunits are moved during the simulation, but

not the score that measures the “quality” of the model. This distinction is ultimately

26

of importance in the context of the IMP modeling platform. The fact that the same

molecules cannot occupy the same space is encoded within the excluded volume restraint,

which can be more lenient or strict depending on the modelers choice. The symmetry

condition is an example for the constraints. It is specified by noting the symmetry axis,

the kind of symmetry or the transformation matrix and the structures that adhere to the

specified symmetry group.

While symmetries can be described as constraints and strong restraints (to model ap-

proximate symmetries), another similar concept, that of rigid bodies, is modeled as a

constraint. Members of a rigid body, subunits, domains or whole subcomplexes, do not

change their position relative to each other. Both crosslinks and covalently linked re-

gions of structures can be encoded as connectivity restraints. Depending on the degree of

confidence and the length of the link these restraints can be given different weights. The

modeler might for example wish to model the links representing covalent bonds with fairly

high weights and the low-confidence crosslinks with lower weights. This is an example of

how the modeler can encode degrees of certainty regarding different information sources.

Of similar nature are proximity restraints which might arise from binding studies or point

mutations at specific interfaces between structures. The density map restraint encodes

the likely position of a given structure within one or multiple density maps. It is one of

the most significant sources of information and the only one that has an inherent fixed

coordinate system, since mere distances and relations among constituent structures are

not sufficient to describe a fixed system of reference. It is significantly influenced by the

method of experimental acquisition, the degree of detail and the relation to structures

of the density map in question. Together with crosslinks it is a signal that can, as men-

tioned earlier, encode possible different conformational states of the holocomplex. It is

commonly weighted fairly high.

A last issue is the coarseness of representation. It is not always advantageous to represent

structures in the most fine grained fashion possible, since smaller details might have a neg-

ligible influence on the final set of models but be computationally demanding, therefore

impeding effective generation of a set of models. The IMP platform offers the possibility

to encode different degrees of coarseness for different restraints, the modeler can use a

residue-grained representation for the crossliking restraints and a larger bead representa-

tion for the density map restraint of a low resolution compared to a single residue.

It is to be stressed that the outlined perspective of the task of model system definition is

only a heuristic to illustrate the process. The Assembline pipeline enables a configuration

of these aspects in as little as two files, which constitute one possible implementation of

the model system definition.

27

Data curation

A small yet decisive aspect of modeling is the curation of the data that is available to

the modeler. This entails preparing the data, evaluating its quality and consistency and

extracting configuration parameters for the subsequent modeling procedure. Often, the

modeler might want to return to this step to reevaluate the role and importance of a

particular data resource.

Arguably the most significant contribution of structural information originates in the elec-

tron density maps. In the case of cryo-EM and cryo-ET, the maps that the modeler faces

are three-dimensional reconstructions of two dimensional images, which are already result

of an extensive processing pipeline (see 2.4.2). This allows for a great deal of variability,

in some cases the modeler is given multiple different reconstructions of supposedly the

same protein complexes. Therefore, a critical assessment of this data source is essential.

A property of great interest to the modeler is the local resolution parameter. Opposed

to the FCR (2.4.4), which is a measure of the global consistency of the dataset, the local

resolution defined in [22] reflects the spatially variable feature resolution, i.e. different

areas of the map might have different degrees of “detail resolution”. These two resolu-

tion parameters give valuable hints for the resolution parameter that is used later on to

generate densities from the atomic structures (see 3.2.3) that will be the input for the

systematic fitting procedure. It is advisable to try a range of parameter instances and

evaluate the results. There might be cases where “details” are obviously noise, such in the

case of density maps obtained from a negative stain experiment, when the density map

is the signal of a surface and it becomes possible to clearly distinguish noise (not forming

a surface) from signal (forming a surface). In such cases a low-pass-filter or a Gaussian

blur filter can be of help to remove the noise.

A second parameter is the density threshold that separates the “noise” of a density map

from what is considered a signal of the structure of the protein complex. This might be

difficult, since it might be difficult to distinguish noise from real features at the surface

of the map. A guiding heuristic can be the experimentally estimated average volume of

globular proteins according to [37], which states that they occupy d = 1.21 Å
3

kDa
. This

would suggest to choose the threshold so that the resulting density occupies the volume

V = d · [protein mass in kDa].

If the model project involves density maps of subcomplexes and the holocomplex at the

same time, they may need to be aligned, so that the subcomplex is oriented and positioned

with reference to the coordinate system implicit in the density map of the holocomplex.

This might either be done by hand or by automated fitting procedures. Similarly the given

density map of the holocomplex might contain unwanted densities that would obscure the

systematic fitting procedure (such as membranes that are not to be modeled). Here it

might be advisable to crop the insignificant parts of the density map, either by hand or

28

computationally. This will also have a positive side effect on computational performance,

which universally scales with the pixel volume of the input densities.

Another way to improve the computational performance is to downsample the input,

which is convenient when a density map low on details has an unnecessarily high pixel

dimension. If this is true or not is within the subjective judgement of the modeler,

a hint however can be obtained by comparing the local resolution with the pixel size

(= coordinate volume
pixel volume

). If the latter is much smaller than the former, a downsampling might

be advisable.

The sequence resources, if there are multiple different FASTA files, might need to be

aligned. If they are not, crosslink start and stop residues might refer to the wrong regis-

ter, therefore giving an erroneous representation of the data.

Consequently the sequence registers of the structure resources needs to be checked. Addi-

tionally the modeler might want to “break up” a given structure to account for flexibility.

Vice versa several independent structures might need to be concatenated into one larger

structure. Furthermore it is helpful to check the structure resources for molecules not

needed for modeling, such as water molecules or unexpected ligands. If a region of a pro-

tein structure is annotated as disordered, the modeler might want to consider to remove

this region, since it literally holds no information about its structure and might unneces-

sarily bias the modeling procedure.

Lastly, the crosslinks warrant an inspection. Yet again, it is essential to ascertain the

sequence register. Crosslinks come in three flavors, monolinks, interlinks and intralinks

(see 2.4.5). While every one of those types can carry valuable information, there is an ob-

vious advantage of, for example, having a lot of crosslinks between structures representing

ordered regions as opposed to having only monolinks in an disordered regions. It can help

to interpret the behavior of the Monte-Carlo model sampling procedure later on to have

a good idea of the crosslink dataset. Additionally the modeler might want to consider the

coarseness of the system representation at this point, since two crosslinks 5 residues apart

might be obscured but a 10 residue bead size representation. Additionally crosslink data

sets are associated with a measure of significance for each crosslink, this again might help

in interpreting final models. A violated significant crosslink can be viewed as more severe

than a violated insignificant crosslink. If the structure resources define a subunit which

contains various intralinks, this can be used to assess to coherence of both data resources

before doing any modeling at all. If the crosslinks are mapped to a rigid body and are

violated, this is a hint that either the structure is not representing the conformation that

it takes in the complex that is modeled, or that the crosslink dataset is faulty. A useful

tool to visualize the overall population of crosslinks, xiNet, is found in [38].

29

Data collection

Typically, the main source of data resources in an integrative modeling project will be

either the modeler or one or multiple collaborators. Nevertheless there are more ways to

obtain data resources, in case the existing ones are not sufficient.

Commonly the primary concern are the structure resources. These can be obtained from

online databases, most notably the PDB ([3]). Whole subunits or domains might be ob-

tained this way. Another option is to try a structure prediction approach using dedicated

servers, such as SWISS-MODEL ([39]), Rosetta ([32]), PSIPRED server ([40], for predic-

tion of secondary structure) or the recently established AlphaFold database ([41]).

The same can be attempted for the density map resources. The EMDB (Electron Microscopy

Data Bank, [EMDB]) is a prominent dedicated database.

Crosslinking is a relatively recent innovation, dedicated databases are only now being es-

tablished. Two examples are the database provided on the website of [42] and the PRIDE

database [43]. Datasets might also be attached to single publications.

2.5.3 Model sampling

To understand the process of model sampling, i.e. the generation of a set of models

conforming to the restraints and constraints defined in the manner outlined above (2.5.2),

it is convenient to first consider the objective function, within Assembline commonly

called scoring function. The scoring function is meant to encode the “goodness” of a

model, its output value is therefore a scalar. The lower this number is, the better the

model is said to be. The task is therefore to find an ensemble of low scoring models.

The input of the scoring function are the numerical representations of the position and

orientation of all structures, be it atomic models of domains or coarse-grained bead-like

representations thereof, in the form of transformations. These transformations tell the

algorithm where to place and how to orient each single structure. The scoring function S
therefore has the general form

S : {T0,T1,T2, . . . ,TN−1} −→ s ∈ R (2.1)

With the Ti, i ∈ {0 . . . N−1} denoting the transformations, which can be encoded numeri-

cally in different manners, and N denoting the number of structures within the simulation.

What follows immediately from this first specification is the massive size of the search

space. Since every Ti needs at least 6 independent parameters (3 for the position, 3 for

the orientation), it is a 6-dimensional object. For every further independent Tj holds

the same, resulting in a 6N dimensional space in total. This size of the search space of

30

possible configurations warrants the use of the Monte-Carlo-Simulation method. Also,

the difference between restraints and constraints (as used within the Assembline frame-

work) emerges here. Restraints can be understood as limiting the relative position and

orientation of the structures with some degree of uncertainty. For example, while every

crosslink restraint has its best possible state (corresponding to its lowest score) in the

average length of the linker, deviations are allowed and can be modeled using different

distributions. The more severe the deviation, the higher the score associated to the re-

straint and the larger and more unfavorable its impact on the total score will be. This

contrasts with constraints. They define relative positions and orientations of structures

with absolute certainty and therefore do not need to turn up as a factor within the scor-

ing function, since they only would add a term which would be constant for all possible

configurations. In fact, constraints effectively reduce the dimension of the search space

- given a rigid body constraint, which fixes the relative position and orientation of two

or more structures towards each other, one only needs 6 degrees of freedom to describe

the entire rigid body. As suggested above the restraints are added as terms in a sum to

construct the scoring function. It takes the form:

S =
R∑

1

wiri (T1,T2,T3, . . . ,TN) (2.2)

with wi ∈ R, the ri being functions that map the Ti to R+ and R the total number

of restraints. Every ri would encode one given restraint and might potentially depend

on all Ti. The wi are weights that can be used by the modeler to change the relative

contribution that each restraint makes to the total score, a lower weight corresponds to a

lower influence over the total score. So although both constraints and restraints encode

geometrical information, their role in the model sampling procedure in fundamentally

different.

Although the restraints might depend on the position and orientation of all possible

structures (as an energy term might), in practice it often depends on less. The restraints

implemented in Assembline that are used most commonly in modeling projects are the

following. In this description I will take the transformations Ti as a stand in for “position

and orientation of a structure within the simulation” for brevities sake.

• The excluded volume restraint is an example of a restraint which requires all Ti to

be included in the calculation. It encodes the fact that no two bodies can occupy

the same position in space, or, equivalently, that the mass density of biomolecules

is roughly constant[CITATION]. It is implemented as a number of checks of the

distance between the representations (e.g. a structure as a rigid body consisting

of spheres of some radius) of the structures. This restraint can be hard or soft,

the latter option allowing for a specified amount of overlap of the volumes. It will

31

score high if an overlap occurs, otherwise it will not contribute to the total score,

therefore sanctioning model configurations with extensive overlaps. Due to the

computationally intense cost of calculation of the restraint it can pay off to define

it for a more coarse-grained representation of the system, to diminish the number

of necessary checks.

• The discrete restraints demands only one Ti, since it encodes the likelihood of a

specific structure to be positioned at a given point in a given orientation. The pos-

sible values of this restraint are precalculated (see 2.5.5). In fact, this precalculation

has a double role within the Assembline pipeline, as the possible positions Ti for

a given structure often results from systematic fitting procedure. Therefore, these

restraints are only applicable to structures that have undergone the said procedure.

The precise value of this restraint depends on a number of parameters such as the

resolution parameters, chosen density thresholds or the type of score used during

the systematic fitting. This restraint encodes a significant amount of information,

so that it might pay off to vary the listed parameters.

• Connectivity restraints can model crosslinks, covalent bonds or proximate surface

restraints, since they all build on the notion of the distance between two points.

Depending on the bond it describes it can be modeled as a distribution whose

minimum is at the average bond length and whose steepness can reflect the strength

of the bond. For example the modeler might want to enforce a strict restraint on

the covalent bonds of the peptide backbone of a subunit and a comparatively looser

bond on a low confidence crosslink. It can be extended to model more complex

notions of closeness, e.g. to keep close interfaces between subunits or domains that

have been shown to interact in biochemical experiments. Another use case might

be a symmetry restraint. Not modeled as a constrained this restraint would allow

for deviations from perfect symmetry. For further refinement, the cross-correlation

value can be used as a restraint.

Having outlined the construction of and influences on the scoring function the task that

remains is to find the global minimum and the local minima over the domain of all pos-

sible positions and orientations of the structures of the modeled complex. As mentioned,

this domain is quite voluminous and the “compass” to navigate it, the scoring function,

also contains a lot of parameters and might be expensive to calculate. The method of

choice in this kind of situation is often a Monte-Carlo method.

The number of variations of the Monte-Carlo method is vast and will not be elaborated

here, a possible introduction is [35]. A common feature however is the use of random

samples from the search domain. In our case the search domain is the maximally 6N di-

mensional real vector space, a representation of the possible positions and orientations of

32

N structures. Another common feature of Monte-Carlo methods is that this exploration

of the search domain is informed by random variables but not entirely guided by them. In

terms of the scoring function this means that for a given random position and orientation

we need a notion of other random positions and orientations that are close, meaning their

respective scores do not differ too much from another. This gives us the possibility of

a gradual descent to configurations with lower score values and therefore better models.

Hence we are faced with two requirements: A method to randomly sample the search

domain and a way to transport our system from one point in the search domain to the

other. Assembline offers two options for the first task.

The most commonly used option is the use of systematic fitting libraries, which are calcu-

lated beforehand. A random sampling of Ti is created together with a score, which might

be any possible score that the modeler sees fit to be used in a given modeling scenario.

This set of pairs of transformations Ti and associated scores si forms a representation of

the search domain. Assembline then samples from this basic set using the scores of si or a

function thereof as weights to sample better scoring transformations more often than the

others. The actual movements are facilitated facilitated by Mover objects, which are able

to propose a new configuration, which is then either accepted or rejected by a criterion

that is based on the scoring function. If the criterion is met, the accepted configuration

will be the jumping-off point for the next iteration. This process is illustrated in (figure

2.10). Underlying these manipulations of positions and orientations are also the previ-

ously defined constraints, which have the effect that e.g. a symmetric configuration of

some kind moves in a manner that preserves the symmetry. The other option, which can

be used in the case of absence of density maps, are random transformation drawn from a

uniform distribution.

The criterion mentioned above is the so called Metropolis criterion [36]. It is calculated

using the score difference between two successive steps ∆s = si+1− si in the Monte-Carlo

sampling procedure. First, the number

m = e
−∆s
T (2.3)

is calculated, with T being a parameter called temperature. This is compared to a random

number u drawn from a uniform distribution in [0, 1]:

m > u⇒ move is accepted

m ≤ u⇒ move is rejected

If there is a decrease of the scoring function, ∆s will be negative and consequentlym >= 1.

This will always lead to an accepted move. If however there is an increase in s, the move

will be rejected with some likelihood, which is larger for a big increase. There is always a

33

Figure 2.10: An illustration of the sampling of configurations using a library of systematic
fits.

non-zero probability that an unfavorable move will be accepted. This enables the Monte-

Carlo run to escape local minima. The temperature factor T relaxes the strictness of

the rejections with a growing positive value. This results in a movement with greater

leaps, comparable to the Brownian motion of particles of higher temperature. Assembline

employs the technique of simulated annealing, which changes the temperature parameter

T after a number of steps according to a predefined schedule. The hoped for effect of this

procedure is a “cooling down” of the simulation towards the end so that the configuration

can settle in a local minimum of the scoring function. In the beginning the temperature

term is higher to enable greater jumps and a more exploratory movement in the global

landscape of the scoring functions domain.

In some cases the restriction of the Ti to the results of the systematic fitting procedure

might obscure and prevent further descent towards good-scoring models due to the coarse

grained representation of the configuration space. For this eventually Assembline offers

a refinement mode, which relaxes this restriction and enables a local, free exploration of

configuration space that might further improve the models. It is to be noted that this

refinement protocol cannot be seen as a replacement of the protocol outlined above, since

it would converge much slower and prevent to effective exploration of the global configu-

ration space.

The inherent probabilistic nature of the Monte-Carlo sampling makes a number of runs

necessary. For every run the last configuration in the sampling procedure can be consid-

ered the result of this run. Alternatively, every configuration in a run can be considered

a resulting model since it is not impossible for the sampling procedure to produce a good

(low scoring) model early in the run.

34

2.5.4 Analysis of models

Structural integrative modeling aims to produce a small number of feasible models, ac-

cording to the terms set out in the model system definition (see 2.5.2). Given enough

non-contradictory information about the protein complex in question, this is an achiev-

able goal. There is always a remainder of uncertainty due to the inherent error in data

and the systematic error, which is why the result of the procedure outline above is always

a number of differing model configurations (possibly corresponding to different biological

conformations of the protein complex). This uncertainty can be assessed by measuring

the variation in particle positions between different model configurations. The standard

measure to achieve this is the RMSD (Root Mean Square Deviation)-measure (see 3.8).

The ideal scenario would therefore be a number of models which are very similar to each

other, their RMSD-variation being small compared to the size of the model. One might

however end up with a number of equally feasible models that differ to a larger extent.

This might be for a number of reasons: conformational changes, insufficient information

from the data resources or an incorrectly constructed scoring function. In any case one

needs to consider a number of questions once the model sample population is created.

1. Restraint satisfaction is equivalent to model quality, since violated restraints will be

equivalent to contradiction to the data the restraints encode. Different restraints

might require different degrees of strictness. While it might be permissible that only

90% of the crosslink restraints are satisfied (especially if the pertaining crosslinks

come with a low degree of significance), a violation of the excluded volume restraints

is inadmissible because it contradicts basic biochemical knowledge. In Assembline

the scores of single restraints are accessible to the modeler. This information can

be used to propose a change of weight within the scoring function and to rerun the

Monte-Carlo simulation to reevaluate the model with stronger or weaker emphasis on

one or more restraints. Especially in multistate modeling it is advisable to look for

contradictory sets of restraints since these might signal to different conformational

states of the protein complex in question. If all restraints are sufficiently satisfied

and the model sample population does not consist of a few well defined clusters

(see below) this might be a hint that more information is needed to generate more

definite models. It might also be enlightening to rerun the Monte-Carlo sampling

with less restraints to evaluate the influence of a specific restraint/restraint weight

combination on the models. The restraint satisfaction is the most important aspect

to evaluate, it constitutes both the primary quality measure and the primary set of

parameters that the modeler can influence on a rather intuitive level.

2. Convergence of the scoring function over (simulation-) time and ideally the single

35

restraint functions is strictly not required for a good model but a sign that the

scoring function has settled on a global or local minimum. Since these minima

are interpreted as feasible models the modeler has an active interest in finding the

minima and therefore in the question of convergence. Convergence can be checked

directly by visual inspection of the score graph (see 2.11 for a visualization). The

modeler has to decide for a trade-off between two alternatives. If the Monte-Carlo

run would be allowed to have infinite length, convergence would be apparent (since

convergence is defined with respect to infinite series). Due to the necessarily limited

amount of steps there is the danger of stopping the Monte-Carlo run too early and

miss out on minima. One cannot rule out this possibility categorically, therefore

convergence estimates are of great convenience. Assembline offers the mentioned

score graphs as an output for visual inspection. This method will be sufficient in

many cases. Its downside is that it requires the subjective judgement of the modeler.

While the question of convergence itself is reliably answered by a human being (as

long as the modeler is able to recognize a straight line), it might be inconvenient if

the number of parallel Monte-Carlo runs is large. Additionally it can pay off to check

the convergence during the simulation to prevent unnecessarily long runs. For this

reason Assembline offers an implementation of the Geweke-Convergence criterion

for finite time series [44]. In brief, this criterion evaluates the statistical properties

of mean and variance in different ranges of steps and assumes that they should be

similar if convergence is achieved. This is because the “thermal fluctuation” of the

score function then only depends on the noise created by the stochastic movement

of the structures and not a change in the scoring function due to contributions by

restraints.

Exhaustiveness addresses the question how well the volume of the space of all possi-

ble model configurations is sampled. This aspect arises due to the stochastic nature

of the modeling procedure. It might be that even in a large number of modeling

runs some “corners” of the the configuration landscape are not covered, creating a

bias within the modeling procedure. For this reason Assembline offers an exhaus-

tiveness test based on [45]. This tiered approach uses the score population and the

RMSD (cf 3.8) as numerical representation of the results of the modeling procedure.

It works by selecting a population of well-scoring models, splitting them into two

populations and subjecting to a series of increasingly stringent tests of similarity.

The underlying assumption is that a sufficiently well sampled population should

minimize these differences. The last and most thorough tier of the test, overlaying

the densities of the single instances of model samples and comparing the resulting

density between the split populations of models, can have further significance to the

modeler. If a modeling procedure does not yield sharply defined differing instances

of models, this overlay of densities can be interpreted as a probability density that

36

Figure 2.11: An example of a convergence plot. Differently colored areas highlight
stretches where the oscillations between scores ∆s according to the Cauchy-convergence
criterion (see 4.2) are bounded by the amount indicated in the legend.

reflects the probable positions of the structures. In some cases, this might still be

a sufficient result to reflect a gain in knowledge about the structure of the protein

complex.

3. Lastly, the crossvalidation with unused data and existing hypothesis serves both

as an embedding within the broader biological context and a consistency check for

the modeler. There might be cases that data cannot be encoded as computational

restraints. This data can be a valuable resource for cross-validation or give hints

to what is missing within the system setup in case of failure to reach conclusive

models according the criteria laid out above. A good model might also allow for

interpretations regarding the evolutionary, functional or structural properties of a

protein complex. This step serves as a tie-in of the modeling procedure into the

broader landscape of experimental and hypothetical exploration of the system in

question.

2.5.5 Systematic Fitting

Systematic fitting is arguably the most significant source of structural information used in

integrative structural modeling with Assembline. As outlined above, the fitting of a struc-

37

ture or a map into the density map of the holocomplex provides both a list of positions

and orientations and a score that is associated with each entry of that list. Every subunit

or subcomplex is to be assigned a position and an orientation in the final model or models

that relates to its position and ortientation within the density map of the holocomplex.

Additionally, during the Monte-Carlo procedure the possible placements of the structures

are drawn from this list. This constitutes the importance of this step within the modeling

procedure as a whole.

Since the density map often has a resolution too low for an unambiguous assignment

of aminoacid residues, one necessarily has to cover a representative part of all possible

possible orientations and positions of each subunit within the density map of the holo-

complex. I will refer to this as spatial sampling. The second aspect of systematic fitting

is the question: What constitutes a good fit? How can I know that a specific position

and orientation is a good place for a particular subunit? This is answered by calculating

scores that relate different possibilities to place a subunit within the density map of the

holocomplex. I will refer to this as scoring. I will now introduce both aspects of system-

atic fitting. In course of this discussion I will refer to the density map of the holocomplex

as target and to the atomic structure or density map to be fitted as the query, for brevity.

In many cases the the query needs to be converted to a simulated density map. This needs

to happen if the query is given as a structure and the chosen scoring method exclusively

accepts density maps as input, such as the overlap score (2.4), the cc-score (2.5) and the

cam-score (2.7). There are multiple methods to do this, one frequently used method is

Gaussian blurring of point masses.

Spatial sampling

There is an infinite number of possible positions and orientations (for brevity: transfor-

mation) of the query within the target. The scoring method selected by the modeler

will assign a value to each possible transformation. In this way the underlying “score

landscape”, or score space can be “explored”. Much the same way that a density map

defines a geometrical object (representing a biomolecule) by assigning a density value to

each three-dimensional pixel, the score space can also be understood as a 6 dimensional

geometric object. By systematic fitting I refer to any representation of the score space

that represents it as a whole. In Assembline, this representation is one of the basic re-

sources for model sampling, see 2.5.3. There are two main approaches, random sampling

and sampling by regular grid.

Random sampling is the method employed in the FitMap tool, implemented in UCSF

Chimera ([28]), which is used in the systematic fitting step within Assembline. The tool

offers a range of options, Assembline exposes a subset of these options. A common proce-

38

dure would be the following (parameters and aspects not essential to the issue of spatial

sampling are omitted):

1. Specify a set of parameters: The total search volume, the number of random trans-

formations n to be scored, the coarseness of angle tolerance and shift tolerance. The

latter options dictate which transformations are to be seen as “the same”. If two

transformations are close with regard to the set tolerances, they will be registered

as identical.

2. Generate a random transformation by generating a random translation and a ran-

dom rotation. A method random_direction() is used in both tasks to supply a

normalized vector of a random direction. This method is called once for the ran-

dom translation, the result is then scaled to the dimensions of the bounding box

of the search volume. The method is called twice to generate two normal vectors

of a random rotation. This specifies a orientation uniquely up to a sign, which is

determined by the canonical use of the vector product.

3. Apply the transformation to all pixels of the simulated map of the structure, score

according to the selected scoring method. If the option is enabled, a gradient descent

can attempt a subsequent optimization of the score.

4. Bin the result according the the defined angle and shift tolerance.

This can be called a systematic representation in so far as that by the law of large numbers

with a sufficient size of n the sampling should approximate the uniform distribution,

therefore covering the search space. The limiting factors are the angular and translational

bin size, effectively discretizing the 6-dimensional search space, and the optimization step,

favoring the better scoring solutions (which might be welcome). As hinted at in 2.5.3,

Assembline offers a number of statistical post processing options, replacing the actual

score for a given translation with a measure of its statistical significance. Most notable

is the option of calculating p-values by assuming the zero-hypothesis that the scores are

normally distributed. The scores are treated as a statistical population that way. This

differs from the perspective promoted in this thesis, where the “scoring space” is treated

as a 6-dimensional geometric object.

Regular grids are the alternative to achieve systematic fitting as defined above. They also

allow for a specification of the degree of coarseness, yet are not generated by a random

sampling. Since they are integral to the conceptual results of this thesis, they will be

discussed in detail in the results section (see 5.5.1) and their application to measure

global metrics (numerical quadrature) is described in 4.2.4.

39

Scoring in general

Once a placement is sampled, a score can be calculated. Typically the query needs to be

“brought” to that placement, this is accomplished by transforming the data structures

underlying the query. On account of being more volumous, the target can rest, its trans-

formation would be more costly than the alternatives. Let the particular placement be

specified by a translation and rotation transformation T and R, then any function s that

takes the transformed query and target data as input and outputs a number r is called a

score:

s : (target, query,T,R) −→ r

r itself can be a real number or a whole number, the only condition that must be met is

that different score values can be put into an order, so that the scores can be compared

to rank “worst” to “best” fit. This definition is intentionally broad. There is more than

one way to calculate a score in the described situation and a number of scores have been

proposed and studied [46]. In the context of structural integrative modeling the question

arises naturally: What is the “best” score? What could tell a good score from a bad

score? This work will outline an attempt to advance on these questions. It is instructive

to study the underlying ideas of the most used scores.

Most scores are functions that are constructed with help of a basic geometric intuition.

Understanding these intuitions can help to decide which type of score is most appropriate

to use in a particular case and how costly a score might be computationally. For ease

of view I will illustrate the prinicple of a score in two dimensions, although in real cases

the scores operate on a three-dimensional space. For details regarding the mathematics

employed see 4.

The overlap score

Figure (2.12) shows a two dimensional grid with a query and a target density (for an

introduction of densities see 3.2.2). They overlap to some extent. The geometric idea is

that if this overlap is high the fit, specified by a position and orientation of the query

density relative to the target density, is a better fit. Figure (2.12) is simplified since

it shows the densities as binary, where query and target are either “present” in a pixel

(value 1.0) or “absent” (value 0.0). In a real case, the values would be more diverse

and the densities might not be necessarily topologically connected (“in one lump”). For

this illustration the simplification is however suitable. Here the overlap consists of pixels

where both target and query density have value 1.0. This is exploited in the calculation

by assigning target and query a list of values t and q, one for each pixel. Subsequently

40

Figure 2.12: A simplified rendition of a two dimensional density, the target is rendered in
blue, the query in red and their overlap in purple.

the product of the values of t and q per pixel is calculated and summed up,

ov (t,q) =
P−1∑

i=0

ti · qi = 〈t|q〉 (2.4)

with P denoting the number of pixels. This sum will be zero if there is no overlap and it

will be maximal if the overlap equals the pixel volume of the query. Mathematically, the

densities have been modeled as vectors of dimension P and the sum (2.4) is their scalar

product (see 4.2.1). The values 0.0 and 1.0 have been chosen for illustrative purposes. If

the values of the vectors where not simply 0.0 or 1.0, as it is the case in a real density

maps, the argument still would still hold. If for a given pixel both target and query

density have high values, the product will be a more significant part of the sum as if one

or both of them had two values.

The cross correlation score

The cross correlation score is similar to the overlap score. Its functional principle is

similar, which is reflected in the rule for its calculation:

cc (t,q) =
〈t|q|〉
‖t‖ · ‖q‖ (2.5)

=
ov (t,q)

‖t‖ · ‖q‖ (2.6)

Meaning it is a normalization of the overlap score. The geometrical intuition behind this

comes into play if one compares the overlap score of queries of different sizes. Figure

(2.13) illustrates this. The right example is clearly the better fit, yet the ov (t,q) score

41

(a) A larger query density partially over-
lapping.

(b) A smaller query density completely
overlapping.

Figure 2.13: The cross correlation score in different contexts.

would be smaller due to the overall smaller volume of the query density. If one would

compare these two scores one might be mislead to think that the left case constitutes the

better fit. The cross correlation score then enables the comparison of queries of different

sizes. If one considers a perfect fit, meaning the two densities have the exact same shape

and the placement is such that their shapes are absolutely congruent,

cc (t, t) =
〈t|t|〉
‖t‖ · ‖q‖

=
‖t‖2

‖t‖ · ‖t‖ = 1

If one allows only positive densities (and densities signify in general the average location

of particles (electrons), so they will be positive) the cross correlation score will be in the

interval [0, 1] . A further development in this line of reasoning is the correlation-about-

mean score.

The correlation-about-mean score

So far the scores presented are based on the assumption that on a global scale the ge-

ometric overlap of query and target density should be maximal, meaning areas of high

density should coincide with other areas of high density. This is useful for very coarse

maps without much detail. In maps with high detail resolution this criterion might be

useless, because the overall overlap might be close to constant and therefore unhelpful

to distinguish good fits from bad fits. The details are often lost in this process, because

42

Target
Query

Overlap

(a) A complete overlap. (b) A partial overlap.

Figure 2.14: Overlap of a query density at two different placements.

only the geometric overlap is important and not the “shape” of the densities. This is a

direct consequence of the sums in (2.4) and (2.5). The correlation-about-mean score tries

to rectify this shortcoming. To illustrate how it works I will discuss an example of a one

dimensional density. This is required by the fact that the underlying argument refers to

the functional form of the density values in a more pronounced sense than the hitherto

described scores. This however is difficult to illustrate in a two dimensional grid on paper.

Figure (2.14) shows a one dimensional density at two different placements. (a) illustrates

a complete and (b) a partial overlap. It is intuitively clear that (a) is a better fit, due to

the match in “shape” of the two densities. A way to codify this intuition mathematically

is provided by the correlation-about-mean score:

cam (t,q) =
〈t− t · 1|q− q · 1|〉
‖t− t · 1‖ · ‖q− q · 1‖ (2.7)

where t and q are the respective averages of the vector components and 1 denotes a vector

with only “1”s as entries:
(

1 1 . . . 1
)T

, its length equals the length of t and q. If we

define q to be a linear function of t, so q = st + c1 with s and c arbitrary scalars, we find

q− q · 1 = st + c1− st + c1 · 1
= st + c1− st · 1− c1 · 1 (2.8)

= s
(
t− t · 1

)

where the fact that the mean is a linear function was used in (2.8). Therefore we have

cam (t,q) =
s〈t− t · 1|t− t · 1|〉
|s|‖t− t · 1‖ · ‖t− t · 1‖ = ±1

depending on s being positive or negative. This means if the query is a scaled or uni-

formly shifted version of the target or vice versa the cam (t,q) score will be at its maxi-

43

mum, 1 (assuming s positive). Indeed, if we calculate the cross correlation score and the

correlation-about-mean score for both cases, we find

cc (t,qcomplete) = 0.7414

cc (t,qpartial) = 0.6524

cam (t,qcomplete) = 0.4492

cam (t,qpartial) = 0.1646

and a pronounced difference in the different score functions: ∆cc = 0.089 and ∆cam =

0.285. Thus the correlation-about-mean score in better at distinguishing shape, it registers

the “dent” in 2.14 (b) to a higher degree than the cross correlation score. This example

is only a very simple instance, in an intricate three-dimensional density this effect will be

more pronounced. It also shows the importance of the functional form, i.e. the “shape”

of densities for certain scores. This is close to human intuition and a desirable quantity.

In the same manner another intuitively clear idea is to be discussed, the idea of masking.

Masked scores

Masking is nothing that is connected to any specific score but to the preprocessing of the

input densities for each score. It is of particular interest in structural integrative modeling,

because per definition the query density, which represents a part of the holocomplex that is

to be modeled, will be smaller than the target density, which represents the holocomplex.

Masking offers the possibility of ignoring the parts of the target density, which are not

coinciding with the current placement of the query density. Consider the placement of

a query density in figure (2.15,a). It could be described as one of the best possible fits.

The cam-score of this fit however is only 0.4367. If we mask out the all the pixels that

are not “within the contour” of the query, the cam-score becomes 1.0 in this simplified

example. This is not surprising, since the cam-score has terms in its definition (see 2.7)

that refer to densities as global entities, meaning information will be taken into account

that is not important locally. In that sense, masking will change any given fitting score.

It remains to discuss what exactly constitutes a good mask, it depends on the mask what

is considered “global” or “local”. Here the situation is similar to the question of what

constitutes a good score. Masks can be defined by choosing a parameter, pdensity, and

selecting a subset of pixels where the corresponding density value t is greater than this

parameter:

qpdensity
= {qi ∈ q | qi ≤ pdensity}

44

(a) A query density fitting well into the tar-
get density.

(b) The same scenario with a mask indi-
cated.

Figure 2.15: Illustration of the application of a mask.

There are other ways to pick masks. This is a common way in structural integrative

modeling, since it allows to ignore “weaker” densities. These parts of a density of lower

value might or might not be part of systematic or random noise and it might pay off

to ignore certain parts of a given target density. The example indicated in figure (2.15)

works in a similar way, only that the mask is defined with respect to the query density

and applied with respect to the target density.

tpdensity
= {ti ∈ t | qi ≤ pdensity}

Masks defined like this can have a significant impact on the result of the fitting procedure,

and as with scores itself, there is no definitive a priori method to tell if and which masks

should be applied in a given systematic fitting procedure.

The envelope score

As we can see these scores are derived from simple geometric intuitions. In the case of

the experimental method of negative stain EM the density that is measured is a signal of

the surface of the protein complex, since the staining reagent only coheres at the surface

and it is the source of the signal. We can adapt our geometric intuition and come up with

scores that take this specific experimental situation into account. The envelope score and

the chamfer distance (see 2.5.5) are such scores and will be discussed in the following. On

a more general level it has to be said that while geometric intuition is a valuable tool it

cannot account for all peculiarities of a given experimental method. For every method

and case it is not always obvious which score might be the best choice.

45

(a) A full map denser at the edges. (b) A possible envelope of the same map.

Figure 2.16: Illustration of the generation of an envelope.

The envelope score needs, as the name suggests, an envelope to work. An envelope with

respect to a density is a subset of pixels that is defined by two thresholds, tlow and thigh.

An envelope e is then

etlow,thigh = {ti ∈ t | tlow ≤ ti ≤ thigh}

Figure 2.16 shows the process for a two dimensional instance of a density. While there is

freedom in the choice of the threshold tlow, it is unfeasible to choose it in a way that the

resulting envelope envelops too small a volume. This would happen if there are only a

few pixels left that fulfill the above condition and no envelope forms at all or the resulting

envelope is patchy and has holes. As a rough approximation we can assume that the

average density of matter in protein complexes is constant and furthermore assume that

the volume that is demarcated by the chosen envelope should roughly correspond to the

volume we would expect from the mass of the protein complex. This can be approximated

by use of the empirical result that the average density of globular proteins is about 1.21 Å
3

kDa

[47]. A possible convention has been established [46] and states that the pixel volume of

etlow,thigh should be chosen so that it corresponds to of the total volume.

The calculation of the envelope score is straightforward, once the thresholds are defined.

A feature that distinguishes it from the scores mentioned so far is that the query structure

is not represented as a density but as a list of particles (see 3.2.1). For the scoring itself

it is convenient to define a auxiliary density s.

1. Use the pixel grid e of the original map for s, set the values for each pixel such that

the “inner” pixel values are −1 and the “outer” pixel values are 0:

46

(a) The density s and its redefined entries. (b) Particles placed within the map.

si =




−1 if ti ≥ tlow

0 if ti < tlow
(2.9)

2. Place the query particles within the density s and, if the coordinates of a particle

coincide with the volume of a pixel, change its value according to the rule

si =





2 if si = −1

−2 if si = 0
(2.10)

This step rewards placements where particles fall within the envelope and punishes

placements where particles are outside of the envelope.

3. Form the sum

s =
P−1∑

i=0

si (2.11)

with P being the number of pixels. The result will be an integer. The bigger the

integer, the better the placement.

Figure (2.17b) illustrates this scoring scheme.

The chamfer distance score

The chamfer distance constitutes a similar method. Unlike the envelope score however

the query must be transformed into a density and subsequently into an envelope in the

manner of 2.5.5. For this scoring method we have therefore two envelopes: et and eq. To

calculate the chamfer distance we follow this procedure:

47

Figure 2.18: Illustration of the chamfer distance.

1. Place et and eq in the same density pixel grid.

2. For every pixel of the query envelope, qi, determine the closest pixel in the target

envelope and calculate the distance di.

di = min{|qi − ti| | i ∈ {0 . . . Pt − 1}}

Pt being the number of target pixels. The pixel position can be calculated according

to 3.2.2

3. Lastly, form the sum

s =

Pq−1∑

0

di

with Pq being the number of pixels of the query envelope.

The smaller the score, the better the placement of the query density is considered to

be. Figure (2.18) illustrates the described process. The envelope score and the chamfer

distance share the property that they work best in cases where the query structure is

identical to the target density. Queries that are partial structures relative to the holo-

complex, as in subcomplexes, subunits or domains, will suffer from the fact that there is a

great deal of freedom in placement. Many possible placements will produce similar scores.

The smaller the query, the greater this freedom and the harder varying placements are

distinguishable from each other.

48

2.5.6 Other systematic fitting software options

The arrival of the “resolution revolution” (see [48]) in cryo-EM associated methodol-

ogy means that there had been an inherent need to associate crystallographic structures

with cryo-EM maps, whose resolutions are not sufficient for unambiguous assignment of

structures. This resulted in several software packages that facilitate systematic fitting

as defined above (see 2.5.5). In this section, some prominent solutions will be briefly

introduced.

The situs software library

The well established SITUS library (see [49]) offers two command line programs that

enable systematic fitting: colores (see [50]) and collage (see [51]).

colores is reported to offer Fourier-accelerated fitting (see 3.1.1) via the cross-correlation

score (see 2.5). The information implicit in shape-contours is highlighted by application

of a Laplace filter (see 3.1.2). The colores program can be regarded as using regular

grids for spatial sampling. For the translational dimension this is implicit through the

use of Fourier acceleration and the rotational dimension is covered by a regular grid of

homogeneously spaced Euler angles (see 4.2.3). The range of applicability with regard to

the resolution is claimed to extend to 30 Å.

The collage program is a conjugate-gradient optimization tool which enables exchange

of information between multiple simultaneously fitted query structures. This extends

the definition of systematic modeling as above and overlaps with modeling steps that

would appear later in the Assembline protocol. However, it can be seen as an conceptual

extension since the steric clashes between the fitted rigid bodies can also be associated

with a 6D score distribution.

The PowerFit software

The newer PowerFit software (see [52], [53]) similarly offers a cross-correlation score based,

Fourier accelerated and Laplace filtered fitting approach. A possible utilization of GPU

devices and multicore CPU is claimed. An additional feature, the core-weighted score,

is introduced which aims at weighting score contributions from the protein complex core

higher than contributions from the surface. This library can also be classified as imple-

menting a regular grid spatial sampling approach. It introduces some useful features such

as resampling and cropping.

49

The gEMfitter software

The gEMfitter software (see [54]) expands computationally on PowerFit by utilizing the

GPU-specific hardware resource of texture memory (see 3.3.3). Also, multi-GPU support

is claimed.

Areas of advancement

In the further thesis, several aspects of existing software are attempted to be improved

upon. Other features are entirely novel. They will be briefly discussed here:

• Currently, there are tentative uses of GPU features to harness the possibilities of

modern parallel computation in published fitting software. There are however still

areas left unexplored, such as different scoring methods, the exhaustive use of GPU

hardware features and the use of multiple GPUs to solve problems more effectively.

• Some aspects of numerical mathematics are present in modern software, such as

the FFT-acceleration (3.1.1, [52]) or the use of Wigner-polynomials ([55]) for certain

types of scoring methods. However, there are modern numerical methods that are

already applied in other fields such planetary science ([56],[57]), geophysics ([58]) or

biomedical imaging ([59]), which might benefit the methods of structural integra-

tive modeling, e.g. by enabling the calculation of useful statistics or the practical

representation of systematic fitting results.

• One presently discussed problem in integrative structural modeling is the question

of exhaustiveness (see 2.5.4, [45]). This question attempts to determine, if a given

modeling project has indeed found a representative set of models confirming to the

data. This thesis attempts to introduce the methods of information theory into the

field in the hope to limit and quantify this representative set.

• Finally, current fitting software is often bound to specific search schemes and output

formats. These sometimes limiting features are relaxed to enhance the interface with

other software.

2.6 The TFIIIC protein complex

The transcription factor IIIC (TFIIIC) is a protein complex that is involved in recruitment

of the RNA polymerase III, which in turn plays a pivotal role in the transcription of genes

50

Figure 2.19: Illustration of the tentative structure of the TFIIIC complex.

transcribing tRNA. Figure (2.19) shows a rendering of the structure of the complex. It

consists of 2 subcomplexes, τA and τB with 3 subunits each, τ131, τ95, τ55 and τ138, τ91, τ60,

respectively. It has been shown to bind to intragenic promoters that encode genes of

lengths from 31 to 93 nucleotides, which is why the linking region τIR is thought to be

very flexible.

2.7 Objectives

This section outlines the objectives that have formed themselves during the project time

associated with the EMBL-PhD program. Partially they were determined from the be-

ginning, partially they have crystallized themselves out of initial projects as it is so often

in scientific work. These are condensed perspectives to give the reader some help to frame

what follows in the methods sections and the result section. There will be an elaboration

of these points in the discussion section.

(A) Initial projects were two integrative structural modeling projects: the PFC protein

complex and the TFIIIC protein complex. Both had different initial data resources,

which changed over time, and both had different results.

(B) These differences in conditions and results led me to considerations concerning the

question if they can be quantified somehow. After getting an impulse from modern

crystallographical research I tried to develop an information theoretical perspective

on the most essential data sources and processing step: crystal structures systemat-

ically fitted to cryo-EM/ET density maps. To enable to calculation of a information

theoretical quantity (entropy) I needed to address the 6-dimensional space of orien-

tations and translations that is typical for systematic fitting.

(C) This led me to the numerical methods of quadrature via function approximation

and the attempt, to establish these methods in the 6-dimensional translational and

51

rotational sampling space.

(D) In parallel, the massive computational demands became clear and I tried to harness

modern computational resources (GPUs). I tried to assess if the data structures

and algorithms typical for integrative structural modeling are amenable to parallel

computation and attempted an implementation in a language specific to parallel

computation (CUDA).

(E) The great variety of the scoring functions used in systematic fitting, together with

the already established goal of an information theoretical perspective, led me to an

attempt to unify these different scoring methods in one conceptual framework. In

this line of questioning I also tried to implement my own type of score, the partial

surface score.

52

Chapter 3

Computational methods

3.1 Algorithmic methods

Integrative structural modeling addresses a variety of data structures and data processing

methods by nature. This section tries to elucidate some of the algorithmic techniques in

a self-contained and brief manner.

3.1.1 Fourier accelerated fitting

The definition of the cross-correlation, which is, in some form or another, used in a lot of

fitting or template matching procedures, is

cc (u,v) = 〈u|v〉 (3.1)

=
n∑

i=0

ui · vi (3.2)

For the sake of the argument u and v can be seen as functions u(x) and v(x) (in computer

memory functions can represented as value-vectors in any case). Then, the cc score would

read

cc (u(x), v(x)) (0) =

∫

R
u(x) · v(x) dx (3.3)

“·” denoting the standard point wise multiplication among functions. One immediately

sees the analogy to the sum employed in 3.1. In fitting or template matching procedures

one often seeks to test different positions τ , shifting one signal against the other. In this

53

case, the score cc becomes a function of that shift cc (τ).

cc (u(x), v(x)) (τ) = cc (τ) =

∫

R
u(x) · v(x− τ) dx (3.4)

The last term in 3.4 is known as a convolution operation and the following theorem is

know about it:

∫

R
u(x) · v(τ − x) dx = F−1{F{u(x)} · F{v(x)}} (3.5)

where F{u(x)} and F{v(x)} denote the Fourier transformations of u(x) and v(x) and

F−1{. . .} the inverse Fourier transformation. This can be used to calculate the convolution

3.4 if v(x) is inverted to v(−x). Then, the signs in 3.5 and 3.4 match. As 3.5 shows,

the integral operation has been replaced by Fourier transformations, an inverse Fourier

transformation and one point wise multiplication. This in itself would not cause a gain

of computational efficiency, but the FFT (Fast Fourier Transform) algorithm ([60]) runs

with complexity O(n log n) instead of O(n2), which is the case when one uses the naive

implementation. This enables a speedup, which is why almost every modern fitting library

uses this feature. This process is easily generalizable to higher euclidean spaces such as

R3, and some more work can be generalized to more complex spaces, such as SO(3) (see

[55]).

3.1.2 Filters

Filters are ubiquitous in image processing. And since density map (see 3.2.2) can be

seen as three dimensional images, filters find their application in integrative structural

modeling, too. Discrete filters of the type discussed here are usually applied by the

operation of convolution. Figure (3.1) illustrates the application of one specific filter.

The process is fairly intuitive and so is the generalization to densities. The result p̃[i,j,k]

of a filter kernel f[l,m,n] of size (2L+ 1, 2M + 1, 2N + 1) applied to the neighborhood of

a given pixel p[i,j,k] can be written as

p̃[i,j,k] =
L∑

l=−L

M∑

m=−M

N∑

n=−N
f[l,m,n] · p[i+l,j+m,k+n] (3.6)

Note that filters always take into account a given environment of a pixel and that any

programmatic implementation must take care of the boundaries of the respective pixels.

Two widely used filters are the gaussian and the laplace filter. The gaussian filter, as a

matrix f[l,m,n] in the above sense, can be realized as a standard Gaussian with a given

parameter σ. It has a smoothing effect, the greater σ, the “smoother” the effect is. The

54

Figure 3.1: An illustration of the convolution operation used to apply image filters. The
array labeled “mask” is what I refer to as “filter”. Taken from [61].

(a) Original image of a black
circle.

(b) An application of a gaus-
sian filter with σ = 5.

(c) An application of a Laplace
filter.

Figure 3.2: Illustration of the effects of the Gauss filter and the Laplace filter.

greater the dimensions of the filter, the more values get taken into account and the more

blurred the image becomes. Figure 3.2b gives a visual impression of this effect. An

application is density simulation of atomic structures (see 3.2.3), which is accomplished

by applying a gaussian filter to point densities whose location and total volume is defined

by the atoms. Figure 3.3a shows the two dimensional kernel of size (3, 3) of a Gauss filter

with σ = 5.

Laplace filters are used for edge detection. Figure (3.2c) shows the application of a

Laplace filter to figure (3.2) (it is actually the negative image, the adaption was made for

visualization purposes). The kernel of the Laplace filter is a discretization of the Laplace

operator

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(3.7)

and is used to detect “edges”. This is accomplished by measuring the absolute value

of the local curvature. An application is the enhancement of contours in single particle

55

0.1467

0.1467

0.1467

0.1467

0.2419

0.2419

0.2419

0.24190.3989

(a) A two dimensional Gauss filter kernel.

0.25 0.5 0.25

0.5 −3 0.5

0.25 0.5 0.25

(b) A two dimensional Laplace filter kernel.

Figure 3.3: Examples of numerical kernels of different filters.

cryo-EM or cryo-ET density maps, e.g. in [49]. Figure (3.3b) shows an example of a two

dimensional kernel of a Laplace filter of size (3, 3).

3.2 Data Structures and Algorithms

Computer programs are largely defined by the data that are written in their memory and

the operations that are executed on these data. The hardware of a computer constrains

what kind of data can be represented and what processes can be realistically run on a

given setup. How the user interacts with a program puts additional constraints on the

specifics of data structures that are employed. A third set of constraints can originate

from the requirements of an algorithm that processes the given data structure. The con-

crete layout of data structures is therefore a vital matter.

Furthermore it simplifies the exposition of this chapter to start with a clear illustration

of the employed data structures and algorithms independently from a concrete hardware

setup or file type conventions. This approach highlights the necessity of certain choices

as consequences of a computational environment. I will therefore first describe the data

structures and algorithm from a purely computational perspective and subsequently dis-

cuss the concrete implementations and conventions.

The two most prevalent data structures in integrative structural modeling are Particle

sets and Densities.

3.2.1 Particle sets

Particle sets occur in several instances within structural integrative modeling, most promi-

nently as sets of atoms, as beads in modeling or as the center positions of a set of gaussian

densities. Typically particles come in a set of more than one member and every one of

these members is at least characterized by a position in a three-dimensional space. This

56

position p is characterized as a set of coordinates:

p =



x0

x1

x3


with x0, x1, x2 ∈ R

The particle is cast into a standard vector form to later apply well known methods

the manipulate it. As the name suggests the data structure Particles rarely appears

as set of a single particle, different particles are then differentiated by an integer index:

{p0,p1, . . . ,pP−1} with P ∈ N being the total number of particles.

Representation in computer memory

While the xi ∈ R for all i are mathematically represented as elements of the real num-

bers R, it is neither necessary nor possible to represent any real number within computer

memory. It is not possible since this would require infinite precision and therefore infinite

memory space and it is not necessary since the experimental source of the data instances

has its own limit of precision. This limit is usually for lower than what standard data

types offer.

The representation of a real number of limited precision in classical memory is so im-

portant that a convention has been put in place. I am going to employ mostly the

so called single precision floating point format (float32) which has been standard-

ized in IEEE 754[62]. It has the memory size 32 bit or 4 bytes, so that one parti-

cle as characterized above would correspond to 12 bytes. 1 megabyte could then hold⌊
10242 B

12 B

⌋
=̂ 87381 particles, which is lower than the average number of atoms of protein

structures in the PDB. The memory layout is quite natural:

· · · p00 p
0
1 p

0
2 p

1
0 p

1
1 p

1
2 p

2
0 p

2
1 p

2
2 p

3
0 p

3
1

p0 p1 p2

· · ·

Figure 3.4: Memory layout of a particle set. Each cell corresponds to 4 B of memory.

One set of coordinates would then correspond to an array of size 3. Given this layout the

ith coordinate of the nth particle is retrieved by addressing the index j as

j = 3n+ i

57

Given an index j of a memory cell one gets the particle and coordinate indices:

n = j/3

i = j mod 3

The / of the upper equation signifies integer division.

Often there is a need for a further classification of particles beyond their coordinates,

e.g. if the particles signify atoms it can be necessary to remember what type of atom.

This can be achieved by use of 4 float32 instances instead of 3 and adaption of the

formulae above. Another practical necessity is the ability to address subsets of parti-

cles, which can be achieved as thinking of subsets of particles as subsets of indices, e.g.

{p4,p8,p12} =̂ {4, 8, 12}.

The bounding box of a particle set

x

y

z

Figure 3.5: Illustration of the
bounding box of 4 particles. The
blue dots denote the defining coor-
dinates of the bounding box.

Given a particle set one is often interested in the

“box-shaped”-volume it occupies. This can help to

determine the relation of two particle sets, if one is

contained in the other, if they overlap, or the simply

get a rough estimate of the space they occupy. The

bounding box can be defined of the smallest possible

cuboid whose axis are parallel to the axis of the

coordinate system that contains the coordinates of

all particles within the set. Figure 3.5 illustrates

this for a small number of particles. A bounding

box can be defined as a pair of coordinates p and

q and a coordinate r is said to be contained within

the bounding box if

p0 ≤ r0 ≤ q0

p1 ≤ r1 ≤ q1

p2 ≤ r2 ≤ q2

hold true. This definition immediately provides a method to calculate the bounding box

of a particle set. Firstly the inequalities are independent and secondly the minimum and

58

maximum of the set of each single coordinate of all particles fulfill the required definition.

min{ri0 | i = 0 . . . P − 1} ≤ rj0 ≤ max{ri0 | i = 0 . . . P − 1} j = 1 . . . P − 1

min{ri1 | i = 0 . . . P − 1} ≤ rj1 ≤ max{ri1 | i = 0 . . . P − 1} j = 1 . . . P − 1

min{ri2 | i = 0 . . . P − 1} ≤ rj2 ≤ max{ri2 | i = 0 . . . P − 1} j = 1 . . . P − 1

Furthermore the facts that

min(min(a, b),min(c, d)) = min(a, b, c, d)

max(max(a, b),max(c, d)) = max(a, b, c, d)

for any numbers a, b, c, d identify the calculation of a bounding box as a reduction type

operation (see section 3.3.6) and therefore suitable for parallel computation methods.

Given two bounding boxes A and B there are a number of useful operations that can help

to understand the spatial relations between A and B. Relevant are the intersection, the

union and the contains operation, which I will outline briefly. The intersection of A and

B is defined as the bounding box of all points whose coordinates are both within A and

B (see Figure 3.6) and can be calculated like so:

pAB = max(pA,pB)

qAB = min(qA,qB)

The min and max operation are to be executed component-wise, e.g.

min(p,q) =
(

min(p0, q0) min(p1, q1) min(p2, q2)
)T

If any of the components of pAB is greater or equal to any of the components of qAB, the

intersection can be considered to be empty.

59

x

y

z

Figure 3.6: Intersection of two bounding
boxes.

x

y

z

Figure 3.7: Union of two bounding boxes.

The union of A and B is defined in an analog manner (see figure 3.7):

pAB = min(pA,pB)

qAB = max(qA,qB)

Lastly, if A is contained within B can be decided by checking the following two conditions:

pA ≥ pB

qA ≤ qB

The operations ≤ and ≥ again have to be carried out component-wise.

Configurations of particle sets and the RMSD measure

In integrative structural modeling one makes use of particle sets to model rigid bodies.

Often the question of the optimal model is reduced to the optimal position of some set of

rigid bodies. Since the number of possible configurations is usually exceedingly numerous

one ends up with an ensemble of configurations, realized by different orientations and

positions of the constituting rigid bodies of a model. The memory layout of a set of

configurations can be cast into the form of a set of particle sets (see figure 3.8).

60

p0
0 p0

1 p0
2 • • • p0

P−3 p
0
P−2 p

0
P−1 p1

0 p1
1 p1

2 • • • p1
P−3 p

1
P−2 p

1
P−1

Configuration C0 Configuration C1

• • •

Figure 3.8: Memory layout of a particle set. Each cell corresponds to one set of coordi-
nates, e.g. 12 B of memory for 3 float32 instances per particle.

For C configurations, P particles, N coordinates the j th float32 in this memory layout,

the cth configuration, the pth particle and the ith coordinate are connected by

j = c · P + p ·N + i

c = j/(P ·N)

p = (j − c · P)/N

i = j − c · P − p ·N

For the following reasons one might want to compare different configurations:

• Clustering. Often the result of a modeling procedure is a big number of configura-

tions. It is not practical to review every configuration by visual inspection. Given

a measure of similarity (see 3.8) a clustering of configurations becomes possible.

Depending on the specifics of the clustering procedure this can provide the modeler

with an overview over the ensemble of configurations.

• Alignment. If the given set of configuration is not oriented with reference to some

coordinate system, it is not possible to compare different configurations. One way

to solve this situation is to reorient the configurations so that they are in some way

(see 3.8) optimally aligned.

A common measure of closeness is the so called RMSD, the root mean square deviation.

Its definition spells

RMSD(v,w) =

√√√√ 1

P

P−1∑

i=0

‖vi −wi‖2 (3.8)

where the vectors in the sum are corresponding to the coordinates of single particles. So v

and w correspond to two configurations and the index i refers to the individual particles.

The RMSD is a generalization of the euclidean distance between two particles. Figure

(3.9) illustrates the principle. The distance between corresponding pairs is summed up

and then, analogously to the euclidean distance, the square root is calculated. If the

61

Figure 3.9: Illustration of RSMD of two configurations. Every second pair of correspond-
ing particles is connected by a line denoting the distance between that pair.

configurations coincide perfectly, the RMSD is 0. There are two causes why the RMSD

might not be 0. Either the two configurations describe different confirmations of the same

particle set. In that case the RMSD can be read as a measure of difference between two

configurations. The other cause might be that the two configurations occupy different

orientations and positions in space. Figure (3.9) for instance shows an example of this

case. Judging from the RMSD alone it is not possible to distinguish these two causes.

To do this one uses a RMSD minimization alignment algorithm as described in the next

section.

Particle set alignment by RMSD minimization

The value of the RMSD function is bounded by 0. Equation (3.8) is continuous and

smooth, it has a minimum value for all given relative configurations between two particle

sets. The alignment procedure seeks to orient two configurations in such a way that

the RMSD becomes minimal. The alignment algorithm described below achieves this by

providing a rotation that, if applied, transforms one of the particle set configurations so

that the RMSD between the two will be minimal. Before applying this algorithm however

one has to take care that the centers of mass of the two configurations coincide. The

center of mass is defined as

Rcom =
1

P

P−1∑

i=1

mivi,

The numbers mi can be interpreted as weights, so that “heavier” particles contribute more

to the calculation. Once calculation of the center of mass is a reduction type operation

and therefore amenable to parallelization. Once the center of mass is calculated, the

particle set can be translated

vi → vi −Rcom

so that the center of mass coincides with the origin.

Now the structural alignment can be executed. I will follow the approach of [63], but

62

only describe the actual steps needed to actually perform the calculation. Given two con-

figurations {v0,0,v0,1, . . . ,v0,P−1} (the reference configuration) and {vj,0,vj,1, . . . ,vj,P−1}
(any other configuration j of the same particle set). We define an error term

ε(q) := D(q)v0 − vj

which expresses the deviation between a transformed reference configuration and the other

configuration. The transformation D(q) is parametrized by the quaternion q and that be

translated into a rotation matrix (see 4.2.3). The algorithm consists of four steps. First,

calculate for all particle pairs

(v0,i,vj,i) =

((
x0,i y0,i z0,i

)T
,
(
xj,i yj,i zj,i

)T)

the symmetric real matrices Mj
i

Mj
i,00 = x2

j,i + y2
j,i + z2

j,i + x2
0,i + y2

0,i + z2
0,i − 2xj,ix0,i − 2yj,iy0,i − 2zj,iz0,i

Mj
i,01 = 2(yj,iz0,i − zj,iy0,i)

Mj
i,02 = 2(−xj,iz0,i + zj,ix0,i)

Mj
i,03 = 2(xj,iy0,i − yj,ix0,i)

Mj
i,11 = x2

j,i + y2
j,i + z2

j,i + x2
0,i + y2

0,i + z2
0,i − 2xj,ix0,i + 2yj,iy0,i + 2zj,iz0,i

Mj
i,12 = −2(xj,iy0,i + yj,ix0,i)

Mj
i,13 = −2(xj,iz0,i − zj,ix0,i)

Mj
i,22 = x2

j,i + y2
j,i + z2

j,i + x2
0,i + y2

0,i + z2
0,i + 2xj,ix0,i − 2yj,iy0,i + 2zj,iz0,i

Mj
i,23 = −2(yj,iz0,i − zj,iy0,i)

Mj
i,33 = x2

j,i + y2
j,i + z2

j,i + x2
0,i + y2

0,i + z2
0,i + 2xj,ix0,i + 2yj,iy0,i − 2zj,iz0,i

The remaining indices of these 4 × 4 matrices have been omitted due to its symmetry.

Second, the matrices Mj
i are summed up in the manner of (4.12)

Mj =
P−1∑

i=0

Mj
i

Third, determine the eigenvalues and eigenvectors λji and vj
λi

of Mj, where the index i

now refers to the ith eigenvalue. Lastly, select the eigenvector vj
min corresponding to the

lowest eigenvalue λjmin (which are all real and therefore well-ordered due to the symmetry

of the matrix) and interpret it as a quaternion:

vj
min=̂

[
q0

j, q1
j, q2

j, q3
j
]

63

x
y

z

0.7 1.6

Figure 3.10: The three-dimensional intuition of a density. Shown are two example pixels
of different values and the three-dimensional grid underlying a density data structure.

The corresponding matrix D(qj) will be the transformation aligning the two configurations

so that their RMSD is minimal. The whole process can be extended for the alignment of

any number C of configurations by varying the index j and can be used in conjunction

with the memory layout and address scheme (3.8). Especially the first, the second and

the third step are amenable for parallelization.

The PDB file format

The PDB file format has been the standard file format to convey the results of crystallo-

graphic, cryo-EM, NMR or modeling based structure determinations for a long time and

to a great extend still is. It is a line-and-column based file format that holds information

about positions of particles, chemical bonds, secondary protein structures or experimental

information. [64] holds the current specifications. For modeling purposes the “Coordinate

section” is the most interesting.

3.2.2 Densities

Densities are the second prominent data type in structural integrative modeling. They

can represent the final result of a x-ray diffraction experiment (see 2.4.1), a cryo-electron

microscopy (see 2.4.2) or cryo-tomography (see 2.4.3) reconstruction or a simulated elec-

tron density map. Densities are always saved in discrete chunks, commonly called voxels

or pixels that add up to a cuboid. These pixels (remark: I will call them pixels, regard-

less their spatial dimension, 2- or 3D) are associated with two data fields: their value,

which can be a real number, an integer or a complex number and their position in three-

dimensional space,arranged in a grid-like fashion. For our purposes the value will be

assumed to be a real number. The pixels are also assumed to have the shape of a cube of

64

0
1

2
3

4
5

6
7

8
9
10

11

12
13

14
15

xy

z

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

Figure 3.11: The numbering scheme as related to the three dimension grid.

constant extensions. Figure 3.10 illustrates this.

Given the size of one pixel a density could then be modeled as a list of pixels, specified

by their positions and values. This is wasteful and can be done in a more parsimonious

manner, if one is willing to adapt a convention. The key is the underlying grid of the

cuboid. Figure (3.11) illustrates an example of such a convention. The basic idea is to

agree on where the “jumps” are going to occur. In this illustration the count run along

the x-axis and then jumps one unit along the y-axis (beginning with 0, 4, 8, . . .) to con-

tinue. Once one xy layer is filled, the count jumps to the lowest x, y position (16) on the

next layer, moving along the z axis. If one now specifies the total number of pixels along

each axis (e.g. [40,40,40]) and the size in real space that the whole density corresponds

to (e.g. [103 �A,103 �A,103 �A]), the density is described completely. It is equivalent to

specifying the pixel size (e.g. [2.575 �A,2.575 �A,2.575 �A]) and the number of pixels in

each dimension.

Representation in computer memory

Given the convention outlined above, a density can be represented in computer memory

the following way. I will denote the spatial dimensions of the density as d (referred to

as coordinate dimension) and the number of pixels along each axis as p (referred to as

pixel dimension). Both can be represented by 12 B of memory, the components of d

modeled as a float32 and the components of p modeled as a int32. The values assigned

to the single pixels can take, as mentioned above, different forms, I will model them as

float32. There are conventions for laying out the pixel values in memory differing from

the above mentioned instance, I will however always choose this one. This representation

is shown in figure (3.12). There is an important distinction between how pixels are

related geometrically and how they are related in linearized computer memory. Often it

is necessary to translate between the two representations: the value in the ith memory

65

· · · d0 d1 d2

d

p0 p1 p2

p

v0 v1 v2 v3 · · · vP−1 · · ·

values

Figure 3.12: Memory layout of a density. Each cell corresponds to 4 B of memory. The
value section is of p0p1p2 cells length.

+1−1

+p0

−p0p1
−p0

+p0p1

Figure 3.13: Offsets in linear memory and the movement in three-dimensional space they
correspond to.

unit corresponds to the pixel [k, l,m], in the layer m, the row l and the position k (z, y, x),

as indicated in figure (3.11). The formulae of conversion are:

i = m · p0p1 + l · p0 + k (3.9)

m = i/(p0p1) (3.10)

l = (i−m · p0p1)/p0 (3.11)

k = i−m · p0p1 − l · p0 (3.12)

Here the division used is integer division. Given p, d and an index, one can calculate the

pixel size and the position v of a given pixel [k, l,m] as follows.

v0 =

(
d0

p0

+ 0.5

)
· k

v1 =

(
d1

p1

+ 0.5

)
· l

v2 =

(
d2

p2

+ 0.5

)
·m

It will be necessary to relate pixels to their three-dimensional neighborhood, e.g. finding

pixels that surround a given pixel. While in three-dimensional space “above” and “be-

low” are clear notions, it is different in the linear representation mentioned above. It is,

however, always the same offset that separates two adjacent pixels in a given direction.

In figure (3.11) for instance, the pixel one level above another always has an index incre-

ment of 16. So one can move in the linearized representation of a density as one does in

three-dimensional space using this fact. Figure (3.13) summarizes the offsets.

66

3.2.3 Molecular density simulation

To enable the use of fitting scores that fit density maps to other density maps for the case

of fitting molecular structures represented by particle sets to density maps a method to

simulate a density map on the basis of a particle set is needed. A prominent instance to

achieve this is the following method.

In its core the method calculates densities per particle and per pixel. Figure (3.14)

illustrates this process in a two dimensional density. The three-dimensional case works

completely analogical. For every particle the distance to every pixel is calculated, where

the spatial position of pixels is determined according to 3.2.2. The distance is calculated

the classical way

d =

√√√√
2∑

i=0

(Pi − pi)

where P denotes the particle coordinates and p the pixel coordinates. As a next step the

intensity for each pixel for each particle is calculated according to a chosen function which

converges to 0 towards infinity and is greater than 0 everywhere on the positive x-axis. A

common choice is a version of the Gaussian function. Since this simulation of densities is

used in the context of fitting crystal structures to density maps obtained by single particle

cryo-EM microscopy the Gaussian is chosen in a way to mimic the limitation put up by

the resolution achieved in experiment. It is assumed that the resolution R is related to

the Gaussian ρ in such a way that

R = 2d⇔ ρ is at half the value of its maximum

A short calculation shows that this is the case when

σR =
1

2
√

2 ln 2
·R

with σR signifying the standard deviation of the Gaussian fulfilling the condition above.

The Gaussian is then

ρR (d) =
Z√

2πσR
exp

[
−1

2

(
d

σR

)2
]

where Z denotes the atomic number of the the atom that is represented by the particle in

question. Since the integral of the standard Gaussian is 1, this particular version of the

Gaussian function has the integral
∫
R ρR (d) dd = Z encoding the intuition that atoms of

higher atomic number Z should contribute more to the density.

In practice it is computationally expensive to calculate this for every pixel in a given

density, so a cutoff is put in place that prevents the calculation of function values once

the pixels are too far away from the particle in question. Once this is achieved for every

67

(a) Pixel distance calculation. (b) Subdensities and overlap.

Figure 3.14: Illustration of density generation

particle, the densities are summed up for each pixel, every particle potentially contributing

to a given pixel.

ρtotal (pixel) =
P−1∑

i=0

ρR (Pi, pixel)

with Pi being the ith particle. This is illustrated in figure (3.14b).

The MRC/CCP4 file format

The density data type is often saved in the MRC/CCP4 file format. This file format has a

header of 1024 bytes which holds the basic geometric parameters necessary to describe

a volume and additional information, which are insubstantial to this discussion. After the

header the density is saved as binary information according to the specifications within

the header. Typically any reader will evaluate the header first and then construct a

data representation of the density from the binary data. The format of the header is a

convention and can be assessed at [65].

3.2.4 The connected components labling algorithm

Basic description of the algorithm

The Connected Components Labeling algorithm (henceforth “CCL”) is a well-known and

important algorithm in image processing (see [66]). The data structure it operates on

68

n0

n1

n2

n3

n4

n6

n5

0

0

0

0

1

1

1

Figure 3.15: Illustration of the CCL algorithm: Left shows an input graph, right shows
the labeling.

P P

1

3 4

6 7

0 2

5

Figure 3.16: Depiction of a 8-neighborhood in a 2-dimensional grid of pixels.

is an (undirected) graph data structure, yet in image processing it is simply a two or

three-dimensional array of pixels or voxels, respectively. Pixels are then understood as

the nodes of the graph and the edges are assigned to neighboring pixels. Its purpose,

as the name suggests, is to label connected components. A connected component of

a graph can be defined a set of set of nodes that are mutually impossible to reach by

moving along the edges. Figure (3.15) shows a simple graph which has two connected

components, {{n0, n1, n2, n3}, {n4, n5, n6}} labeled by “0” and “1”. The labels do not

have to be natural numbers, but are often chosen to be represented as such.

In an image processing environment, two pixels are seen as “connected” if they are part

of a predefined neighborhood, a common choice for two dimensional images is the so called

“8-neighborhood, illustrated in figure (3.16). This effectively gives the pixels constituting

the image a graph data structure and makes the image data structure accessible to the

operation of the CCL algorithm. In practice, a binary mask is applied to an image

effectively segmenting it into different areas by some chosen criteria. This segmented

image is then the input to the CCL-algorithm. The masking criterion might be a great

number of things, such as a threshold-criterion for a pixel value or a binary function of

the neighboring pixels, such as a threshold on a gradient norm or the norm of a Hessian

or Laplacian.

Figure (3.17) illustrates this by use of an example.

A possible implementation of the CCL-algorithm is the so called UnionFind -algorithm.

Figure (3.18) elucidates the following description: The UnionFind algorithm can be un-

69

(a) The raw image. (b) An applied density thresh-
old.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(c) A labeling of the thresh-
olded image.

Figure 3.17: An illustration of the application of the CCL algorithm in image processing.

132 133 134 135 136 137 138 139 140 141 142 143

120 121 122 123 124 125 126 127 128 129 130 131

108 109 110 111 112 113 114 115 116 117 118 119

96 97 98 99 100 101 102 103 104 105 106 107

84 85 86 87 88 89 90 91 92 93 94 95

72 73 74 75 76 77 78 79 80 81 82 83

60 61 62 63 64 65 66 67 68 69 70 71

48 49 50 51 52 53 54 55 56 57 58 59

36 37 38 39 40 41 42 43 44 45 46 47

24 25 26 27 28 29 30 31 32 33 34 35

12 13 14 15 16 17 18 19 20 21 22 23

0 1 2 3 4 5 6 7 8 9 10 11

(a) A labels array.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

16

16

16

0

0

0

0

0

0

0

0

16

16

0

16

0

0

0

0

0

0

0

0

16

16

0

16

16

0

0

0

89

89

89

0

16

16

0

0

0

0

0

89

89

89

89

0

16

16

0

16

0

0

0

89

89

89

89

0

16

30

0

30

0

0

0

89

89

89

89

0

16

16

30

30

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(b) labels after the first pass.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

16

16

16

0

0

0

0

0

0

0

0

16

16

0

16

0

0

0

0

0

0

0

0

16

16

0

16

16

0

0

0

89

89

89

0

16

16

0

0

0

0

0

89

89

89

89

0

16

16

0

16

0

0

0

89

89

89

89

0

16

16

0

16

0

0

0

89

89

89

89

0

16

16

16

16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(c) labels after the second pass.

(d) A segmentation array. (e) segmentation after the
first pass.

(f) segmentation after the
second pass.

Figure 3.18: An illustration to aid the explanation of the UnionFind algorithm. The
colors in the segmentation array symbolize individual labels.

70

derstood in two steps and by looking at how these effect the underlying data structures:

• The input of the algorithm are two arrays, the segmentation (see figure 3.18d)

and the labels array (see figure 3.18a). The segmentation array must hold bi-

nary or multi class segments, which can be saved in the form of integers. If the

segmentation is a binary mask, it can be created by applying a threshold to an

existing density, e.g. setting all segmentation values below the threshold to 0

and otherwise to 1. There is no limit on the number of segments except the pixel

number. The labels array holds initially one distinct label for each pixel.

• In the first pass every label l is accessed and in turn all neighbors {n0,n1,...} of

the 8-neighborhood (see 3.16) that have been iterated already are considered. For

each pair l,n one checks if the pixels belong to the same segment:

if segmentation[l] == segmentation[n]:

Union(labels,l,n)

If that is the case, the Union operation is performed. This operation seeks the root

of both pixels, selects the minimum and writes it to both the addresses of the pixels

in the labels array.

def Union(labels,l,n):

r0 = find(labels,l)

r1 = find(labels,n)

if r0 < r1:

labels[r1] = r0

if r1 < r0:

labels[r0] = r1

where Find seeks out the root of each label.

def Find(labels,l):

while (labels[l] != l)

l = labels[l]

return l

The labels play a double role as labels on the one hand and addresses on the other

hand. If a label l is identical with its address, it is called a root. Otherwise it

will refer to the address of yet another label, which might again be either a root

or refer to yet another label. The nature of the Union operation ensures that this

chain terminates at a root. Effectively the operations Union and Find create a tree-

structure, one of which will in the end cover every connected component. Figure

71

Figure 3.19: The kernel structure of a parallel CCL-implementation. Taken from [66].

(3.18b and 3.18d) show the results of these steps in our example. The arrows indicate

the above mentioned chains.

• The second pass “unifies” the label chains, one also speaks of “flattening” the trees.

To every node (pixel) of a tree will be assigned the label of the root node, again

using the Find operation.

for l in range(#LABELS):

labels[l] = find(labels,l)

Figure (3.18c and 3.18f) show the result of the second pass.

The parallel version of the algorithm

The solution present above is sequential in nature and therefore not amenable to imple-

mentation in a parallel processing environment. However, [66] have offered a solution for

this problem for the case of 2-dimensional images. In their publication they offer the pseu-

docode of an implementation structured as indicated in figure (3.19). Their innovation

lies in the use of the shared memory and an a solution to the issue of non-sequentiality of

parallel processing. Kernel1 in figure (3.19) assigns one thread to check the neighbors of

each pixel and conduct the Union and the Find operation. Because there is no guarantee

which thread will finish first and the labels will most likely not be propagated in sequence

and therefore might not have an unbroken chain to their root label, they implemented an

internal loop, which runs until no label is changing its value anymore. They accomplish

this by checking a flag which is accessed using atomic operations (see 3.3.4) and serves as

a thread-safe communication device for each block.

Due to the size limitation of shared memory, they are left with a number of equally-sized

subvolumes, which are consistently labeled in themselves but need to be merged into the

complete volume. This is accomplished by Kernel2 and Kernel3. Kernel2 merges the

labels on the surfaces between the already labeled subvolumes on growing interfaces (see

figure 3.20). Each iteration the merging interfaces grow to accommodate larger and larger

72

Figure 3.20: The merging scheme used in Kernel2, taken from [66].

subvolumes. Kernel3 flattens the tree data structures in the sense elaborated above for

a gain in performance. The final, global flattening of the tree structure is facilitated by

Kernel4. All kernels are called from one kernel, utilizing dynamic parallelism (see 3.3.5),

to minimize host interaction during execution.

3.3 Parallel programming

Parallel programming addresses the task of conceptualizing and implementing compu-

tational procedures on parallel computation devices. The existence of such devices is

owed to the existence of a class problems that historically arose in the field of computer

graphics (hence the common name GPU). In recent years however, scientific computing

has massively expanded due to innovations in both parallel computation hardware and

programming interfaces for this hardware. A comprehensive introduction to the most

advanced programming interface, CUDA, can be found at [67]. The data types and con-

nected algorithms that are tractable in a parallel setting have to exhibit certain quality,

which is commonly abbreviated SIMD (Single Instruction, Multiple Data). This property

signifies data that can be described as similar chunks of the same type and algorithms

that operate on these data chunks independently at the same time without interfering

with each other. The data types and algorithms used in many problem settings within

structural biology exhibit this property. This part of the method section describes the

central concepts used within the source code attached to this thesis and serves to make

it accessible to change and improvement.

73

Figure 3.21: Contrasting the difference between sequential (left) and parallel (right) pro-
cessing.

3.3.1 The memory hierarchy and the processing model

The central ideas of parallel programming are closely tied to the architecture of the parallel

processing device, in short device, and to introduce them it is convenient to describe this

architecture.

Figure (3.21) contrasts the basic difference between sequential and parallel programming.

The thread can be viewed as the “string” that runs through all instructions and which

defines the call order of these instructions. Sequential programming is characterized by

employing only one thread, if this thread needs to perform the same instructions on

a massive amount of data, the programming idiom of a “loop” is used, which simply

repeats the same set of statements within the same thread. In parallel programming on

the other hand one needs to coordinate a number T of threads. Each of these threads

follows the same set of instructions, with the slight difference that each instruction targets

and processes a different chunk of data. To do this, every thread is associated with a

thread id, which can be use to index the data chunk that is to be processed by the

associated thread. These instructions are specified within a so called kernel, which is

the source code that will be submitted to the parallel processing device. This might look

like this:

__global__

void square_kernel(int * d_input, int * d_ouput){

d_ouput[threadIdx.x] = d_input[threadIdx.x]*d_input[threadIdx.x];

}

74

Figure 3.22: blocks divide the workload, every block is associated with its own group of
threads.

Several remarks are in order: threadIdx.x is a canonical variable unique to each thread.

The .x part mirrors that the threads are modeled as a one dimensional grid. It is also pos-

sible to model a kernel with two or three-dimensional grids using threadIdx.y,threadIdx.z.

The __global__ macro identifies the function as a kernel. A kernel does not have a

return type, so the output memory location has to given as a parameter of the function.

While this example kernel will run in this form, it is a simplification. Another layer of

structure is needed to complete the picture: blocks. A block represents a chunk of the

computational work to be done and is assigned a number of threads T. Figure (3.22) illus-

trates this. Every block has its associated id, blockIdx.x. blocks can also be organized

in different layouts using the canonical variables blockIdx.x,blockIdx.y,blockIdx.z.

A more realistic version of the above kernel would then be:

__global__

void square_kernel(int * d_input, int * d_ouput, int N){

int t = blockDim.x*blockIdx.x + threadIdx.x;

if (t < N)

d_ouput[t] = d_input[t]*d_input[t];

}

As indicated in figure (3.22), the variable t can now be used to uniquely identify a input

data chunk. This snippet also highlights the use of the blockDim.x canonical variable,

whose value is the number of threads per block. In the above example this is 8. Since all

blocks have the same number of threads, an if statement is used to prevent overreach by

75

checking if the index t is greater than the size N of the d_input and d_output arrays. This

means that the redundant threads will not perform any operation.Each of the blocks

is run independently. The user can submit a work load, given the resources have been

copied to device memory, by calling the kernel function and specifying the number of

threads per block and the number of blocks like so:

square_kernel<<<gridDim,blockDim>>>(d_input,d_output,N);

with gridDim and blockDim denoting the number of blocks and threads, respectively.

Both the gridDim and blockDim are limited by the hardware specifications. The totality

of blocks is called a grid. As already indicated by the canonical variables threadIdx.x,

blockIdx.x and blockDim.x, there is a special set of language conventions: The canonical

variables are device code, the above call pattern (kernel<<<gridDim,blockDim>>>(...arugments))

is host code. After this host call, the underlying device resource management system will

distribute the blocks of workload to different streaming multiprocessors (SM) of the de-

vice. Every GPU has a number of this SMs, each SM can run the workload of one or

multiple blocks simultaneously.

The threads of different blocks cannot directly communicate with each other. Within

one block however, threads can communicate in a number of ways. One of these is the

use of so called shared memory. shared memory is one of the memory types available on

a device. In fact, it is the third type discussed, since d_input and d_output are written

to global memory and the variable t the register memory. The memory hierarchy

on a parallel computation device is an important feature and requires discussion. Figure

(3.23) visualizes the different memory types. The types of memory differ by volume, life

time and accessibility. To harness them in a optimal way, one needs to incorporate these

properties into the implementation of the parallel computation procedure:

• register memory. This memory type is the fastest one and the “closest” to the

SMs. The variable t in the kernel above is an example. Each thread has its own

instance of variables saved in the register. One often aims to run as many blocks

as possible simultaneously on a SM. The register memory effectively limits this

number, since its memory volume is limited per SM, meaning all blocks that run

simultaneously have to share this limited resource. For instance, the byte volume

register memory on an GeForce GTX 1060 is 65536, corresponding to 214 float

instances. If a kernel is defined in such a way that its requirement for register

memory exceeds this capacity, it cannot be run on the device. The lifetime of this

memory type is the lifetime of the block, meaning, once the computations associated

with the block are finished, the information saved in the registers is lost.

76

Figure 3.23: An illustration of a GPU memory hierarchy as exposed in the CUDA pro-
gramming interface.

77

• shared memory is the second fastest memory type. It also is limited by the hardware

specifications, for the GeForce GTX 1060 its volume is 48 kB. Its usefulness lies in

the fact that it is accessible to all threads within a block. This can be used to

achieve fast cooperation between the threads. Every thread can write to and read

from the shared at any time point during the block execution. It has to be declared

with the __shared__ macro and its total volume can be specified both within the

kernel source code (device code) and in the kernel call (host code). Its lifetime is

that of the block.

• global memory is roughly equivalent to the working memory of a CPU and has by

far the most volume (6 GB for the GeForce GTX 1060). Every thread and every

block can access it at any time. It is the slowest of the discussed memory types.

Its lifetime is that of the program. It has to be allocated, freed and initiated within

host code using the special functions cudaMalloc, cudaFree and cudaMemcpy. The

latter can copy memory ranges from and to host and device.

• local memory is used when the register or shared memory “spills over”, e.g.

when too big of an array is declared within kernel code. It is as slow as the global

memory. Its use should be avoided.

• The texture memory is a special type of memory that excels, as the name suggests,

in handling textures. Since one needs to deal with densities in structural integrative

modeling, which can be interpreted as a 3 dimensional texture, it is highly useful.

It comes with a number of conventions and will be discussed later on (see 3.3.3).

One use of the shared memory, as mentioned, is to facilitate the communication between

threads. One might for example let each thread process its own data chunk and then

use the result among all threads. A simple example is to calculate the sum of all squares

in an array:

__global__

void square_kernel(int * d_input, int * d_ouput, int N){

//declare shared memory array to sum up values

__shared__ float sum[1024];

//the index used to address the global memory

int t = blockDim.x*blockIdx.x + threadIdx.x;

//the thread id

int tid = threadIdx.x;

//initiate the shared memory to 0

sum[tid] = 0.0f;

78

//loop over the complete array, square and add to sum. Each thread

//in each block calculates a number of squares and adds it to its

//dedicated portion of the shared memory. the t variable increases

//in the total size of the grid

while (t < N){

sum[tid] += d_input[t]*d_input[t];

t += gridDim.x*blockDim.x;

}

//all threads need to be finished to sum up the values stored in

//shared memory

__synchtreads();

//the number of threads adding up is halfed in each step,

//effectively folding the shared memory onto itself

if (tid < 1024) sum[tid] += sum[tid + 1024]; __synchtreads();

if (tid < 512) sum[tid] += sum[tid + 512]; __synchtreads();

if (tid < 256) sum[tid] += sum[tid + 256]; __synchtreads();

if (tid < 128) sum[tid] += sum[tid + 128]; __synchtreads();

if (tid < 64) sum[tid] += sum[tid + 64]; __synchtreads();

if (tid < 32) sum[tid] += sum[tid + 32]; __synchtreads();

if (tid < 16) sum[tid] += sum[tid + 16]; __synchtreads();

if (tid < 8) sum[tid] += sum[tid + 8]; __synchtreads();

if (tid < 4) sum[tid] += sum[tid + 4]; __synchtreads();

if (tid < 2) sum[tid] += sum[tid + 2]; __synchtreads();

//only one thread needs to save the result to global memory

if (tid == 0)

d_out[0] = sum[0] + sum[1];

}

This code snippet highlights the use of shared memory. Also, it shows the important

concept of synchronization. In this example, it is important that all threads have finished

their iteration of the input data array before adding up the results. This can be done by

calling the __syncthreads() function, which ensures that all threads “meet up” at this

point before the execution code continuous. A lack of proper synchronization can result in

a common error type, the so called race condition. This error class is quite dangerous since

it does not break the program and might be invisible to the user. It occurs when the result

of an operation defined within a kernel is dependent on the order of thread execution.

Since, when threads are executed in parallel, there is no guarantee of execution order,

this is the case quite frequent. The __synchthreads() canonical function then enables

control of synchronization. A race condition type error will cause different results for the

79

d_data

h_data

cudaMemcpy(d_data,h_data,10*sizeof(*d_data),cudaMemcpyHostToDevice)

cudaMalloc((void**) d_data,10*sizeof(*d_data))

HOST

DEVICE

Figure 3.24: Illustration of relevant function for memory management between device and
host.

same computation between multiple runs of the program.

3.3.2 Communication between host and device

Communication between host and device serves two main purposes: The copying of data

between host and device and the instructions that the device is to follow, which are issued

from the host, except in the case of dynamic parallelism.

As indicated above, two functions are important for the allocation and copying of data:

cudaMalloc to reserve a specified amount of memory at store the memory address d_data

of the first element. cudaMemcpy can copy a specified amount of bytes from a host memory

address h_data to a device memory address d_data or vice versa, depending whether the

parameter cudaMemcpyHostToDevice or the parameter cudaMemcpyDeviceToHost was

specified in the call. Figure (3.24) illustrates this process. It is to be noted that there

is an asynchronous version of the memory copy operation, which does not block further

instructions within the source code until is done. This can be used to simultaneously

process and copy data, effectively hiding the time usage of the copy operation (latency

hiding). The operation cudaFree can be used to free memory on the device.

The above operations are called from source code running on the host. They, by them-

selves, cannot issue instructions beyond memory management. This is, as mentioned

above, achieved by calling so called kernels. The kernels have always return type void,

their definition are annotated by the macro __global__ and their call patterns consist

of two distinct units: The grid specification enclosed in <<<...>>> and the function

parameters.

kernel<<<gridDim,blockDim,sharedMemVolume,stream>>>

(d_data1,d_data2,host_value);

The last two grid specifications are optional. The sharedMemVolume parameter can be

80

used to dynamically allocate a volume of __shared__ memory during runtime, within the

kernel this memory must then be declared as e.g.

extern __shared__ float smem[];

This can for example be used to configure kernels to work on different GPUs, which have

different __shared__ memory volumes. The stream parameter can be used to specify a

cudaStream, which is a technology that can help to synchronize processes on the host

side. The parameters in the function argument will be implicitly copied to the device.

They can be memory addresses pointing to device memory, or host variables. Passing

a host memory address for example will be an error. Anything that can be considered

input will fall into these two categories, anything that can be considered output has to

be a device memory address. Both accessing device memory in host source code and

vice versa will cause an error. kernel calls are non-block with regard to the host code.

That means that the host code will continue executing and not wait for the kernel to

finish its process. If the result of the calculation is needed directly after the kernel call,

cudaDeviceSynchronize() should be called. This function will halt the host thread until

all preceding device calls are finished.

Lastly, functions specified by the __device__ macro can be called from kernels. They have

access to the intrinsic variables of the kernel, threadIdx,blockIdx,blockDim,gridDim.

A function can be specified both as __device__ and __host__, in this case it can be called

in both host and device code but does not have access to the intrinsic kernel variables.

3.3.3 Texture memory

texture memory encodes a ubiquitously used operation in the device hardware, which

makes it computationally superior than a direct implementation. Figure (3.25) illustrates

a reoccurring task in structural integrative modeling: Two densities are rotated and

translated against each other. The dots (•) represent the centers of the three-dimensional

pixels. Densities are supposed to model continuous objects, yet in a computational setting

one has to render them as discrete pixels. The actual values of a density at a pixel are

canonically interpreted being concentrated in the center of the pixel (see to 3.2.2 for

further discussion). Translations and rotations are continuous operations and do not

need to respect the grid underlying the density. The red dots are clearly not aligned to

the blue dots. This raises the question: what value has a density between two pixels?

texture memory provides an efficient tool to handle these situations. They intrinsically

perform a linear, bilinear or trilinear interpolation of the pixel values, depending on the

dimension of the texture. If one were to consider the value of a point directly between

81

Figure 3.25: A density grid and its pixel centers(blue) and a rotated set of pixel cen-
ters(red).

D[i,j,k]

D[i,j+1,k]

D[i+1,j,k]

D[i+1,j+1,k]

H1

H2

V

a 1− a

b

1− b

Figure 3.26: Sketch for two dimensional texture fetching.

two pixel centers, e.g. (i,j,k) and (i+1,j,k), one would calculate the average:

D[i+ 0.5, j, k] =
1

2
(D[i, j, k] +D[i+ 1, j, k])

If it were not halfway in between, but 20% of the way from (i,j,k) to (i+1,j,k), one

would simply change the weights in such a way that the closer pixel value contributes

proportionally to 1 − evaluation point distance to closest pixel
distance between neighbouring pixels

. This way, a the calculated value

right on top of a pixel center would be identical to the data pixel value.

D[i+ 0.2, j, k] =
4

5
D[i, j, k] +

1

5
D[i+ 1, j, k]

=

(
1− 1

5

)
D[i, j, k] +

1

5
D[i+ 1, j, k]

or, more generally

= (1− a)D[i, j, k] + aD[i+ 1, j, k]

with a ∈ [0, 1]. The same kind of logic can be applied to two dimensional textures, with

one intermediate step. Figure (3.26) provides a sketch for the construction. By first

calculating the texture values at auxiliary points H1 and H2 using the above formula

82

H1 = (1− a) ·D[i, j, k] + a ·D[i+ 1, j, k]

H2 = (1− a) ·D[i, j + 1, k] + a ·D[i+ 1, j + 1, k]

and then applying it again to H1 and H2

V = (1− b) ·H1 + b ·H2

= (1− b) · ((1− a) ·D[i, j, k] + a ·D[i+ 1, j, k])

+ b ((1− a) ·D[i, j + 1, k] + a ·D[i+ 1, j + 1, k])

= (1− a)(1− b) ·D[i, j, k] + a(1− b) ·D[i+ 1, j, k]

+ (1− a)b ·D[i, j + 1, k] + ab ·D[i+ 1, j + 1, k]

with a, b ∈ [0, 1]. This is easily generalized to the third dimension, following analogous

conventions:

V = (1− a)(1− b)(1− c) ·D[i, j, k] + a(1− b)(1− c) ·D[i+ 1, j, k]

+ (1− a)b(1− c) ·D[i, j + 1, k] + (1− a)(1− b)c ·D[i, j, k + 1]

+ ab(1− c) ·D[i+ 1, j + 1, k] + a(1− b)c ·D[i+ 1, j, k + 1]

+ (1− a)bc ·D[i, j + 1, k + 1] + abc ·D[i+ 1, j + 1, k + 1]

The number of arithmetic operations in this expression, along with the fact that this has

to be calculated for every single sample point (e.g. every single pixel center of a translated

or rotated density), makes the use of a hardware accelerated solution such as the texture

memory advantageous.

There are a number of features and caveats that are essential to the use of texture

memory. To request a value from texture memory is referred to as texture fetching.

texture memory enables the user to fetch up to 4 dimensional float data values, we

will be interested in one dimensional data. Given the variable density_texture, one can

request the concrete value like so

float v = tex3D<float>(density_texture, x, y, z);

where x,y,z are float instances that are bounded by the pixel dimensions of the density

in question. If one wants to access the value at a specific pixel center of the pixel i,j,k,

one calls

float v_pixel = tex3D<float>(density_texture,

(float) i + 0.5, (float) j + 0.5, (float) k + 0.5);

83

following the convention that a pixels value is thought of residing in its geometric center.

It can be useful to access the texture independent from the numerical value of the pixel

dimensions of the density by first normalizing the values x,y,z:

xn =
x

pixeldim.x

yn =
y

pixeldim.y

zn =
z

pixeldim.z

with xn, yn, zn ∈ [0, 1]. This has to be enabled be setting the normalizedCoords option

and is useful in the case of scale free quadrature nodes, see ??. The mentioned convention

of pixel centers still holds. Beyond the calculation of density values within the density

proper there are several options (called addressMode) of how to deal if one requests values

that are outside of the density proper, such as (1.4, 0.2, 0.2) in normalized coordinates.

The most useful option for our purposes is the option cudaAddressModeBorder, which

returns a predefined value. Since we intend to model densities this value will be set to

0.0. The discussed options represent a small sample of the possibilities, a mostly complete

reference can be found at [67].

There are some idiosyncrasies of the texture memory that need to be taken into account

and are not necessarily obvious. One of them is a swap of the y and z axes compared to

the MRC file convention. The linear representation (see 3.2.2) of the three-dimensional

volume in the MRC format width, depth, height needs to be converted the a representa-

tion of the convention width, height, depth. This can be achieved by mapping the linear

address in one representation to the three-dimensional pixel representation following one

convention, swap the indexes to change the convention, and then linearize this new pixel

representation: linear_index1 → i,j,k → i,k,j → linear_index2. A second impor-

tant point is the inherent use of pitched memory in texture memory. pitched memory

refers to a specific memory layout which aligns the memory to a specific pitch, which

can be imagined as a register. Figure (3.27) illustrates the necessary memory layout.

pitched memory requires more space, yet the pitch enables fast read access. This layout

has to be taken into account when the density is copied to device memory. Failure to do

so will result in a texture with does not represent the density anymore.

3.3.4 Atomic operations

The need for atomic operations arises in the context of parallel processing due to its

non-sequential nature. The following example operation occurs often in practice:

84

· · ·
· · ·

· · ·

pixeldim.x

pitch

i

j

k

Figure 3.27: Visualization of the texture memory layout highlighting the role of the pitch.

thread1 reads

thread1 adds

thread1 writes

thread2 reads

thread2 adds

thread2 writes

(a) Possible process flow variant one.

thread1 reads

thread2 reads

thread1 adds

thread2 adds

thread1 writes

thread2 writes

(b) Possible process flow variant two.

Figure 3.28: Two different variants of a process execution flow.

• thread1 reads the contents of global memory unit array[220], which, for the sake

of the argument, are assumed to be the integer 5, adds some value 3 and writes the

result back to array[220], which should now contain 8.

• thread2 attempts something similar, reads from and writes to array[220] and in

between adds the value 2. After this operation the contents of array[220] should

be 7.

These operations might effect in different sequences of their constituent steps. Figure

(3.28) shows two of these sequences. The result of the operation sequence described by

figure (3.28a) will be 10. The result of the sequence described by figure (3.28b) however,

will be 7, since thread2 does not read after thread1 has written its result. This is a

typical case of a race condition.

Atomic operations provide a programming interface that internally sequentialize these

operations so that the result is independent from the order of thread execution. They are

rather simple in application and provided by the CUDA parallel programming interface.

85

The above example would be handled by

float * d_array; //pointer to device memory array

atomicAdd(d_array + 220, value0); //read out value at address 220, add value0,

//write to address 220

Atomic operations are in principle possible for all binary operations on primitives, such as

float or int, yet often only provided for int. They can however be extended to different

data types.

3.3.5 Dynamic Parallelism

Dynamic parallelism describes the possibility of execution grids (see 3.3.1) specified by

kernels to launch grids on their own, independent of the host. This can be useful if the

parameters of kernel 2 execution and therefore the size and input of the grid can change

depending on the results of kernel1. This gives implementations of parallel processes to

possibility to adapt their execution models to the properties of the data. An example is

the use of adaptive spatial grid of higher degrees of refinement in regions of interest.

Time

Grid A threads

Grid B threads

Grid A launch

Grid B launch

Grid A complete

Grid B complete

Grid A - Parent

Grid B - Child

Figure 3.29: A schematic that illustrates dynamic parallelism within CUDA. Adapted
from [68].

Figure (3.29) depicts a parent grid calling a child grid. The child grid always finishes

before the parent grid finishes. Not every memory type can be passed to the child grid,

however the view on global memory is consistent for parent and child grid. Kernels

86

are launched the way described above, yet it is important to note that every thread

will launch a grid if the kernel call is unguarded, which will almost certainly break the

program flow. Hence dynamic kernel calls are guarded by an if-statement:

if (threadIdx.x == 0)

kernel_call<<<gridDim,blockDim>>>(parameters ...);

Additionally special care must be taken in the case that the parent grid relies on the results

of the child grid and a proper synchronization has to take place. The recommended idiom

(see [68]) for this case is

__syncthreads();

if(threadIdx.x == 0)

cudaDeviceSynchronize();

__syncthreads();

There are inherent limits to recursion depth depending on the device architecture.

3.3.6 Special operations

A number of operations occur repeatedly in varying problem contexts, such as sort,find

and so on. Most of those have been implemented efficiently in standard sequential com-

putational libraries. In parallel processing these operations often have a different, more

efficient implementation. While there are cases where it is advisable to implement these

operations using only the CUDA basic interface, this is often a less advantageous path due

to economical and compatibility considerations. A solution is offered by NVIDIA in form

of the thrust library (see [69]), which not only offers implementation of a number of com-

mon algorithms but also adapts to the specific GPU that is used. A brief introduction of

the operations used later on will follow.

Every of the enumerated operations works on so called device_vectors, the thrust ver-

sion of the standard vector data type. Contiguous ranges of memory can be cast using

thrust::device_point_cast; that way a standard memory range can be used as an in-

put. Often the algorithms require a unary or binary operation which has to be declared

and defined before the call to the thrust library function is made.

struct sum_threshold : public thrust::binary_function<TDensity,TDensity,TDensity>

{

TDensity threshold;

87

__device__

TDensity operator()(const TDensity& u, const TDensity& v) const {

if (u < threshold && v < threshold)

return (TDensity) 0.0;

if (u < threshold)

return v;

if (v < threshold)

return u;

return u+v;

}

};

Density_Register * instance = &_instance_registry[gpu_index];

thrust::device_ptr<TDensity> d_pixel_begin =

thrust::device_pointer_cast(&instance->d_data[0]);

thrust::device_ptr<TDensity> d_pixel_end =

thrust::device_pointer_cast(&instance->d_data[vol(*instance->h_pixel_dim)]);

sum_threshold binary_op;

binary_op.threshold = threshold;

h_result[0] = thrust::reduce(d_pixel_begin,d_pixel_end,0.0f,binary_op)

This code snippet exemplifies the important conventions and techniques. A binary_function

is defined which takes two TDensity (mostly float32) data fields as input, checks if they

exceed a certain threshold and returns the sum if both do, only the one that does or 0. Fur-

ther down the data range between instance->d_data and instance->d_data+pixel_vol

is cast into the appropriate form to be handed as input to a reduce call together with

the aforementioned binary_function.

88

name description

reduce Reductions can be applied to a list of similar objects un-

der a binary operations. Said binary operation accepts

a pair of the objects and returns an object of the same

type, which in turn will be one of the inputs for the next

application of the binary operation. The sum of integers

or the minimum of an array are examples. The results of

reductions are independent from the order of the input

sequence.

transform Transforms a sequence of input elements and writes

them to an output sequence, both may coincide.

transform requires an unary function, which defines

the specifics of the transformation as an additional in-

put.

transform_reduce Applies to a sequence first a transform operation spec-

ified by a unary function and then performs a reduce

operation specified by a binary function.

count_if Counts elements of a sequence that fulfill a predicate,

which is a unary function that takes an element of said

sequence as input and returns a boolean.

fill Fills a memory range with a constant value.

replace_if Replaces an element in a sequence with a constant value,

if a given predicate is fulfilled.

sort Sorts the elements given memory range. A binary oper-

ation which facilitates the comparison may be provided.

unique_copy Copies the elements of a sequence to a specified destina-

tion, only copies the first element of consecutive identical

elements.

upper_bound For each element of a given sequence it returns the posi-

tion where this element would be within a second se-

quence, specifically the last index where the element

could be inserted without violating the order of the sec-

ond sequence.

[70] contains exhaustive documentation.

89

Chapter 4

Mathematical methods

This section contains an introduction to most of the mathematical methods used in this

thesis. When it it was possible, the topics have been arranged to lead into each other. At

places where a graphical illustration would be a useful intuition for the reader, one was

added. This section can be omitted by an informed reader and used as a mere reference.

4.1 Convergence

4.1.1 The notion of convergence

Convergence is an intuitively clear concept and commonly refers to two entities approach-

ing each other increasingly. In the context of Monte Carlo procedures in integrative

no no

n

an

a∞εε

Figure 4.1: Illustration of ε-corridors of a converging series.

90

structural modeling it refers to a score sequence approaching a minimum. While con-

vergence is easy to show it is harder to quantify computationally. The logically strict

definition for a convergence of a series an (∈ R indexed by n) to the value a∞ is

∀ ε > 0 ∃ n0 ∈ N ∀ n > n0 ∈ N : |an − a∞| < ε (4.1)

This precise yet opaque definition is exemplified in figure (4.1). In plain words the defini-

tion says that for any ε-corridor (two examples in green and red) that is situated around

the limiting value a∞, there must be one n0 at least, so that all following elements of

the convergent sequence (n > n0) are within the chosen ε-corridor. Since ε can be cho-

sen as small as one likes, this test guarantees that the sequence gets “infinitely close”

by first getting close (at n0) and then never diverging anymore. This basic definition is

impractical in a Monte-Carlo setting for two reasons:

• The limting value a∞ is known in this definition, which in practical situations it

never is.

• The criterium requires knowledge of infinitely many sequence values, which would

correspond to an infinite runtime, which is impractical for obvious reasons.

4.1.2 The Cauchy convergence test

A test that addresses the first issue raised in the last section is the Cauchy convergence

test. It is a modification of the standard test (4.1):

∀ ε > 0 ∃ n0 ∈ N ∀ m,n > n0 ∈ N : |an − am| < ε (4.2)

As it can be seen from the definition the test does not rely on knowledge of the limit a∞.

It can be understood most easily by considering the fact that the test requires that every

possible partial sum after n0 is bounded by ε:

|an+1 + an+2 + . . .+ an+p| < ε ∀ n, p > n0 (4.3)

This ensures that the series will not escape an ε corridor, while is also does not state

where exactly that corridor is. It is possible the construct a convergence test from the

Cauchy test amenable to Monte-Carlo procedures by selecting a sequence of ε0, ε1, ε2, . . .

and finding the corresponding indexes n0
0, n

1
0, n

2
0, . . ., where from onwards the sample se-

quence an does not exceed the ε-corridors defined by the first sequence. If the ni0 are all

close and on average close to 0, one can speak of a fast convergence. If they are spread

within the sample sequence an, one can assume a slow convergence that is still ongoing.

91

A B

Figure 4.2: Example of a Monte-Carlo score sequence and illustration of burn-in. Taken
from [71]. The typical ranges that are tested are shown as A and B.

This approach is computationally expensive since it requires exact calculations of all the

differences |am − an| and their respective sorting. It somewhat ignores the inherently sta-

tistical nature of a Monte-Carlo simulation. Another convergence test has to be adopted

to accommodate for the practical needs of Monte-Carlo runs.

4.1.3 The Geweke convergence test

The Geweke test (see [44]) is designed to address issues that arise in a Monte-Carlo sim-

ulation. One of these issues is the so called “burn in” phase of a Monte-Carlo simulation,

which describes a steep decline of the score function in a very short window in the initial

phase of a run. Figure (4.2) shows an example a typical sequence. Another issue is the

fact that even if a simulation runs for a very long time, the score will always exhibit

some “thermal” fluctuations, and therefore is by definition 4.1 not converging, yet for

all practical purposes is converging sufficiently to sample the posterior distribution. One

would like to pass through the burn in phase and as little as possible of the thermally

fluctuating tail. The Geweke convergence criterium measures the intuitive assumption

that the means of different segments of Monte-Carlo walks should be close if the two

segments are part of the longer tail. More to the point if two segments are part of the

tail the distribution they sample is stationary and the difference of their means should be

92

normally distributed for greater sample sizes of compared ranges. The statistic

z =
µA − µB√

V ar(sA)− V ar(sB)
(4.4)

The variance needed to compare this statistic of two possible ranges, usually taken to be

the first 10% of the run and the last 50% of the run (see figure 4.2) needs to be calculated

on basis of the supposed spectral distribution estimation of the respective ranges. The

rests on the assumption the ranges mirror a continuous time series with a non-singular

value at 0. Then the variance can be estimated as

V ar(sA) =
Sa(0)

n
(4.5)

For this however the spectral distributions value at 0 must be estimated estimated. The

pymc package offers a solution (see [72]) for this problem. It measures in its standard

configuration the difference in means according to 4.4 between 20 possible subintervals in

the first 10% of a given sequence and the last 50% and checks if all values lie within the

four standard deviations around 0 of N (0, 1). If this is so, the given sequence is judged

to be convergent.

4.2 Vector spaces

Integrative structural modeling concerns itself with molecular structures that are modeled

as a set of rigid bodies in a common, three-dimensional coordinate system. This invites

the use of well-tested tools from the field of linear algebra. The features that are used

depend on the context and utility they provide. I will give an overview of what will

be used later on, omitting mathematical rigor when possible to favor completeness and

intuitive appeal. The use of computers and the inherent uncertainty in model building

also require methods from numerics and statistics.

V = {v0,v1,v2, ...}
S = {s0, s1, s2, ...}

In the cases that concern us both sets have an infinite number of elements. If two vectors

are added or a scalar is multiplied with a vector, the resulting vector is guaranteed to be

an element of the vector space again.

v0,v1 ∈ V ⇒ v0 + v1 ∈ V
v ∈ V, s ∈ S ⇒ sv ∈ V

93

The operations are denoted in the same way as the operations called multiplication and

addition in the real numbers. Similar algebraical properties of both operations apply

(distributivity, associativity, commutativity), making their use fairly intuitive. Addition

is defined for elements V and the existence of a neutral additive element 0 (“zero-vector”)

which does not change a vector if added to it and an inverse additive element for each

vector −v (“negative vector”) the addition of which results in the zero-vector is guaran-

teed.

v + 0 = v

v +−v = 0

This gives the set V the algebraical structure of a commutative group. The algebraical

structure of the set of scalars S is that of a field, intuitively one can imagine them sim-

ply behaving like elements of the real numbers R. This is but a short review, a more

complete treatment can be found at [73]. While these definitions may seem cumbersome,

their generality enables statements about a diverse set of objects. Consider, as a non-

standard example of a vector space, the set of real-valued polynomials in the interval

between [−1, 1] as elements of V and the real numbers R as S:

v1

v2

v1 + v2

−1 −0.5 0.5 1

−2

−1

1

2

Figure 4.3: Vector addition.

v1

0.5v1

−1 −0.5 0.5 1

−2

−1

1

2

Figure 4.4: Scalar multiplication.

Figure 4.3 illustrates vector addition for this specific vector space. The red polynomial is

the additive inverse of the blue polynomial, their addition resulting in the black additive

neutral polynomial. Figure 4.4 shows an example of scalar multiplication. This vector

space will be important for the purpose of approximating functions.

94

x
y

z

Figure 4.5: Visualization of a vector in the 3D real vector space. The black dot and the
red arrow express the same point in space.

4.2.1 The three-dimensional real vector space

The most familiar example of vector spaces is the three-dimensional real vector space. It

is also extensively used in structural integrative modeling, which warrants a more detailed

treatment. It is also helpful to introduce some of the basic concepts in this vector space

since it corresponds closely to the common geometric intuition. Figure 4.5 portrays the

standard visualization method.

The basis and dimension of a vector space

A basis of a vector space is a subset of vectors which has the property that every other

element of the vector space can be expressed a sum of scaled elements of this subset (a so

called linear combination). There might be multiple different bases for the same vector

space. From the above definition follows that every basis can be expressed in every other

basis. Vector spaces can be quite complex and cumbersome. The concept of basis is

powerful because it enables us to imagine a complex vector as a linear combination of

simpler basis vectors. In the three-dimensional real vector space one would write:

v = s0v0 + s1v1 + s2v2 =
2∑

i=0

sivi

It is apparent now what the word “dimension” means in relation to vector spaces: The

dimension is the number of the elements of a basis. An additional property of the basis

it is has to have the least possible number of elements within it, so that the notion of

dimension is well defined. Figure 4.6 shows an example of a vector expressed in different

bases.

The coefficients s0, s1 and s2 of a linear combination with respect to a chosen basis are

95

x
y

z

x′

y′

z′

Figure 4.6: The same vector expressed in different bases.

often written in the form



s0

s1

s2


 or

(
s0 s1 s2

)T
(tranposed). The vector in figure 4.6

would be written as
(

4 4 4
)T

and
(

4 2 4
)T

in their respective bases. Notice that the

same vector object can have different coefficients in different bases. It is therefore essential

to always specify a basis when using this notation. It is referred to as representation of a

vector with respect to a basis.

The scalar product

So far vectors could only be added. The scalar product introduces a kind of product of

vectors whose result is a scalar. It enables us to make statements about “how much of

a given vector is contained within another vector”. In the three-dimensional real vector

space, for v0 =
(
s0

0 s1
0 s2

0

)T
and v0 =

(
s0

1 s1
1 s2

1

)T
it is defined as

〈v0|v1| =〉s0
0 · s0

1 + s1
0 · s1

1 + s2
0 · s2

1

Important applications in three-dimensional space are the geometric notions of the “length”

of a vector

‖v‖ =
√
〈v|w〉

and the angle between two vectors

] (v,w) = arccos
〈v|v|〉
‖v‖‖w‖ .

This “length” is called norm due to the fact that vectors can be quite abstract objects

and it might not be clear what the “length” of a vector means. One important use case

96

is the normalization of a vector, which scales the vector so that its norm is one:

v̂ =
v

‖v‖

It is often referred to as unit vector. These concepts have a clear intuition and will be

used accordingly in integrative structural modeling.

The scalar product has the important property that it is linear in both of its arguments,

which means that

〈u + v|w〉 = 〈u|w〉+ 〈v|w〉
〈u|v + w〉 = 〈u|v〉+ 〈u|w〉
〈sv|w〉 = s〈v|w〉
〈v|sw〉 = s〈v|w〉

A very useful application arises in conjunction with so called orthonormal bases. A basis

B = {b0,b1,b2, . . .} is called orthonormal if

〈bi|bj〉 = 0 when i 6= j

〈bi|bj〉 = 1 when i = j

The significance of this definition becomes clear if one considers the scalar product of a

vector v written as a linear combination and a basis vector bi of an orthonormal basis:

〈v|bi〉 = 〈c0b0 + c1b1 + c2b2 + . . .+ cibi + . . . |bi〉
= c0 〈b0|bi〉︸ ︷︷ ︸

=0

+c1 〈b1|bi〉︸ ︷︷ ︸
=0

+c2 〈b2|bi〉︸ ︷︷ ︸
=0

+ . . .+ ci 〈bi|bi〉︸ ︷︷ ︸
=1

+ . . . (linearity, orthonormality)

= ci

Which means that using the scalar product one may calculate the coefficient of a repre-

sentation with respect to an orthonormal basis, i.e. “disassemble” the vector into basis

vectors.

v =
d∑

i=1

〈v|bi〉︸ ︷︷ ︸
ci

bi (4.6)

d is the dimension of the corresponding vector space.

97

Linear maps in the context of the three-dimensional real vector space

Vector spaces come to life once linear maps between them are illustrated. The most

important maps for our purposes in integrative structural modeling are rotations and

translations. A map is simply a way to assign one object to another object. I will

talk exclusively of these two objects as vectors within the same vector space. For a

counterclockwise rotation by 90◦ around the z-axis in the standard basis of a vector

v =
(

1 1 0
)T

for instance would simply be a map




1

1

0


 R→




1

−1

0




Mostly the notation takes the form of the following syntax, which can be thought of as

“applied to”.

R




1

1

0


 =



−1

1

0




An important property of the above mentioned maps is that they are linear. This means

that one can interchange the application of the map with the operations of sums of vectors

and multiplication by scalar factors, e.g.

R




1

1

0


 = R







1

0

0


+




0

1

0





 = R




1

0

0


+R




0

1

0




=




0

1

0


+



−1

0

0


 =



−1

1

0




This becomes significant if a vector is expanded in a basis B to which we apply the rotation

R:

Rv = R
d∑

i=1

cibi =
d∑

i=1

ciRbi

So the application of a linear map can be reduced to its application to the vectors of a given

basis. Since the result is again a vector in the respective vector space it can be written

as a linear combination of basis vectors. Returning to our above example and looking at

its application to each vector of the so called standard basis of the three-dimensional real

98

vector space we get the following result:

R




1

0

0


 =




0

1

0


 = 0·




1

0

0


+ 1 ·




0

1

0


+ 0 ·




0

0

1




R




0

1

0


 =



−1

0

0


= −1·




1

0

0


+ 0 ·




0

1

0


+ 0 ·




0

0

1


 (4.7)

R




0

0

1


 =




0

0

1


 = 0·




1

0

0


+ 0 ·




0

1

0


+ 1 ·




0

0

1




The first = applies the rotation, the second rewrites the result in the standard basis. The

coefficients therefore characterize the rotation completely with respect to the standard

basis. They are usually written

MR =




0 1 0

−1 0 0

0 0 1


 (4.8)

The entries of this matrix have two indices and their are applied to the representation of

a vector in the following manner

MRv =



m00 m01 m02

m10 m11 m12

m20 m21 m22






v0

v1

v2


 =



m00v0 +m01v1 +m02v2

m10v0 +m11v1 +m12v2

m20v0 +m21v1 +m22v2


 (4.9)

This is the effective computational form that I will use to compute rotations, translations

are trivially achievable by simple vector addition. There are however different ways to

represent rotations in three-dimensional space. They have different advantages and dis-

advantages, are used in varying practical computational contexts and will be discussed in

4.2.3. Linear maps and their representation in the form of matrices are a powerful tool

with many applications. They will be discussed separately in the next section.

99

x

y

z

Figure 4.7: Illustration of a linear map, a counter clockwise rotation around the z-axis by
90 degree.

4.2.2 Linear maps between general vector spaces

Successive application of linear maps

It will be important to string different linear maps together, for instance to apply two

rotations in succession. The successive application of two linear maps with matrix rep-

resentations A,B can be thought of as another linear map with matrix representation C

(see (4.10)). We only consider maps from vectors of a d-dimensional vector space into

itself, so that our matrices will have d rows and d columns. The convention for denoting

the position of the coefficients is cnrowncolumn




c11 c12 · · · c1d

c21 c22 · · · c2d

...
...

. . .
...

cd1 cd2 · · · cdd




=




a11 a12 · · · a1d

a21 a22 · · · a2d

...
...

. . .
...

ad1 ad2 · · · add







b11 b12 · · · b1d

b21 b22 · · · b2d

...
...

. . .
...

bd1 bd2 · · · bdd




(4.10)

The components of C can be calculated by applying A and B to a dummy vector in

the manner of (4.9) and rewriting the result in the form of (4.7). One ends up with the

coefficients cij for C

cij =
d∑

k=0

aikbkj,

where aik and bkj refer to the coefficients of A and B, respectively. This is the classic

formula for matrix multiplication.

100

Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors of linear maps are a way to characterize linear maps. Con-

sider the matrix (4.8) and its action on several points illustrated in figure 4.7. The vectors

(plotted as points) in the xy-plane are rotated around the z-axis by 90◦. The vector on

the z-axis itself is naturally unaffected, as are all vectors on the z-axis. In the same sense,

the vectors in the xy-plane cannot “escape” the xy-plane. The z-axis and the xy-plane

are eigenspaces in this example and they characterize the linear map up to a scalar factor

(since I can multiply vectors on the z-axis with a number and they would still lie on the

z-axis, similarly for the xy-plane) that is called the eigenvalue of the eigenspace. The

vectors forming the basis of an eigenspace are called eigenvectors.

Eigenvectors and eigenvalues can be calculated by formulating their defining property as

an equation:

Mve = λve (4.11)

In our example one eigenvector ve would be
(

0 0 1
)T

and its corresponding λ = 1.

One eigenvalue can have one or more associated eigenvectors. The eigenvectors can,

under specific conditions to the linear map, form a basis and be considered a “natural”

basis in which the action of the linear map looks particularly simple.

Linear maps as vectors

In some situations it can be beneficial to view linear maps themselves as elements of

a vector space. Their corresponding matrix representations can then be multiplied by

scalars and added to each other in the following way:

s




a11 a12 · · · a1d

a21 a22 · · · a2d

...
...

. . .
...

ad1 ad2 · · · add




=




sa11 sa12 · · · sa1d

sa21 a22 · · · sa2d

...
...

. . .
...

sad1 sad2 · · · sadd




(4.12)




a11 a12 · · · a1d

a21 a22 · · · a2d

...
...

. . .
...

ad1 ad2 · · · add




+




b11 b12 · · · b1d

b21 b22 · · · b2d

...
...

. . .
...

bd1 bd2 · · · bdd




=




a11 + b11 a12 + b12 · · · a1d + b1d

a22 + b22 a22 + b22 · · · a2d + b2d

...
...

. . .
...

ad1 + bd1 ad2 + bd2 · · · add + bdd




(4.13)

101

4.2.3 Representations of rotations

The axis-angle representation

x
y

z

û

v Rvϕ

Figure 4.8: Illustration of the axis-angle convention.

The first representation that was chosen above is the intuitive axis-angle representation. It

consists of the axis around which the rotation is carried out and the angle, which denotes

the magnitude of the rotation (see figure 4.8). It has the advantage of a close correspon-

dence to human visual intuition and is specified by a unit vector û =
(
u0 u1 u2

)T
and

the angle ϕ. Its expression in matrix form is [74]

Mû,ϕ =




cosϕ+ u2
0 (1− cosϕ) u0u1 (1− cosϕ)− u2 sinϕ u0u2 (1− cosϕ) + u1 sinϕ

u1u0 (1− cosϕ) + u2 sinϕ cosϕ+ u2
1 (1− cosϕ) u1u2 (1− cosϕ)− u0 sinϕ

u2u0 (1− cosϕ)− u1 sinϕ u2u1 (1− cosϕ) + u0 sinϕ cosϕ+ u2
2 (1− cosϕ)




The Euler angle representation

The Euler angles are a less intuitive but mathematically more practical method of spec-

ifying a rotation. Therefore they are often used to represent rotations in proofs and

algorithms. Underlying the Euler angles is a procedure of successive rotations around

certain axes. There are several conventions of choice of the sequence of axes. I employ

the ZY Z convention, which is illustrated in figure 4.9. The important feature is that

the complete coordinate system, illustrated by the axis, is rotated in each single rotation.

The three successive rotations are: First, α around the original z-axis, second, β around

the new y′ axis and third, gamma around the “even newer” z′′-axis. According to 4.2.3

we can write the resulting rotation as

R(α, β, γ)v = Rẑ′′,βRŷ′,βRẑ,αv

102

Xx′′

x

y

z = z′

x′

Y

z′′ = Z

y′ = y′′
α

β

γ

α

β

γ

Figure 4.9: Illustration of the Euler angle procedure.

To achieve complete coverage, the angles are within the intervals α ∈ [0, 2π], β ∈ [0, π]

and γ ∈ [0, 2π]. By use of (4.7) one can determine the corresponding rotation matrix (in

ZY Z convention). The result is

MR(α,β,γ) =




cosα cos β cos γ − sinα sin γ − cos γ sinα− cosα cos β sin γ cosα sin β

cosα sin γ + cos β cos γ sinα cosα cos γ − cos β sinα sin γ sinα sin β

− cos γ sin β sin β sin γ cos β




The advantages of Euler angles are apparent mostly in mathematical arguments and

their property of successive application of local rotations, which promotes their use in

computer graphics. Their chief disadvantage is the presence of singularities. The presence

of singularities is of great practical importance in computation. The are a general feature

of this description of rotations and must be carefully avoided, lest the computation bears

nonsensical results. An example of a singularity can be visualized by considering the

way we describe positions on the earth using longitude and latitude. While longitude

(∈ [0, 360] - east/west) and latitude (∈ [−90, 90] - north/south) vary only slightly if one

takes a small step in any direction near the equator, they vary considerable if one crosses

the poles. The north pole itself has infinitely many coordinates, as long as the latitude

is 0, any longitude can be added to it and it still describes the north pole. The same

happens in three dimensions and becomes a problem since there is an inherent error in

all computation the effect of which in conjunction with singularities can lead to massive

numerical difficulties. The following representation of three-dimensional rotations does

not have this problem.

103

The quaternion representation

The last form of representation discussed is that of quaternions. Quaternions are al-

gebraical entities which are similar to complex numbers. Their properties make them

uniquely convenient to describe rotations in three-dimensional space. They are widely

used in computer graphics and molecular modeling. An excellent discussion of their prop-

erties and several applications can be found in [75]. Quaternions can be characterized by

their numerical representation and the rules of addition and multiplication.

q = q0 + q1i + q2j + q3k

with q0, q1, q2, q3 ∈ R. The symbols i, j,k have the property

i2 = j2 = k2 = −1

When these symbols are treated like variables (x, x2, y, . . .) in an algebraical expression

the rules of addition and multiplication are obtained.

p + q = (p0 + p1i + p2j + p3k) + (q0 + q1i + q2j + q3k)

= (p0 + q0) + (p1 + q1) i + (p2 + q2) j + (p3 + q3)k

pq = (p0 + p1i + p2j + p3k) (q0 + q1i + q2j + q3k)

= (p0q0 − p1q1 − p2q2 − p3q3)

+ (p0q1 + p1q0 + p2q3 − p3q2) i

+ (p0q2 − p1q3 + p2q0 + p3q1) j (4.14)

+ (p0q3 + p1q2 − p2q1 + p3q0)k (4.15)

Again in analogy to complex numbers we define the conjugate q, the norm |q|2 and the

multiplicative inverse q−1 of a quaternion.

q = q0 − q1i− q2j − q3k

|q|2 = qq = q2
0 + q2

1 + q2
2 + q2

3

q−1 =
1

|q|q

Understood as vector a quaternion q can be written [q0, q1, q2, q3]. Consider the special

quaternion q = [q0, q1, q2, q3] = [sin θ/2, v0 cos θ/2, v1 cos θ/2, v2 cos θ/2] with θ an angle

and v̂ a unit vector representation with respect to a basis. Then the operation

q [0, x0, x1, x2] q

104

is a linear map that maps x =
(
x0 x1 x2

)T
onto another vector. In accordance with

4.2.1 this operation can be written as a matrix.

Mv̂,θ =




1− 2(q2
2 + q2

3) 2(q1q2 − q3q0) 2(q1q3 + q2q0)

2(q1q2 + q3q0) 1− 2(q2
1 + q2

3) 2(q2q3 − q1q0)

2(q1q3 − q2q0) 2(q2q3 + q1q0) 1− 2(q2
1 + q2

2)


 (4.16)

This matrix is identical with a matrix that represents the rotation around a vector v̂

by θ yet its only “ingredients” are the coefficients of q. Therefore q corresponds to a

rotation operation. Successively executed rotations corresponding to the quaternions p, q

are represented by their quaternion product (see (4.14)) pq. The special quaternion q

defined above is also a unit-quaternion, since

|q|2 = sin2 θ + v2
0 cos2 θ + v2

1 cos2 θ + v2
2 cos2 θ

= sin2 θ + cos2 θ
(
v2

0 + v2
1 + v2

2

)
︸ ︷︷ ︸

=1, v̂ is a unit vector

= sin2 θ + cos2 θ = 1

All unit quaternions correspond to rotations in this manner. There is one caveat: q and

−q correspond to the same rotation.

The advantages of quaternions are their compact representation (only 4 real numbers),

their independence of a specific basis (one does not need to represent them as matrices

to chain rotations, only multiply them) and their freedom of singularities.

Construction of rotation grids using quaternions

The quaternion representation lends itself to an easy construction of rotational search

grids, which will be illustrated following [75]. The principle of the construction is illus-

trated in figure (4.10). The construction can be divided into three steps. First, points

on the faces of the cube enclosing the sphere are selected to define a grid (4.10a). This

can be any given set of points. Then the points are projected onto the unit sphere by the

operation:

~p =



p0

p1

p2


 −→




p0√
p2

0+p2
1+p2

2

p1√
p2

0+p2
1+p2

2

p2√
p2

0+p2
1+p2

2


 . (4.17)

Now all grid points lie on the unit sphere and can be identified with a set of spherical

coordinates (ϕ, θ).

105

(a) A grid on the faces of a
cube around the unit sphere.

(b) The grid projected on the
inscribed unit sphere

ϕ
θ

(c) Spherical coordinates cor-
respond to the projected grid
points.

Figure 4.10: Illustration of principle behind the rotation grid construction.

This operation can be carried out in 4-dimensional space in an analogous manner. The

cube is replaced by a 4-dimensional cube, a tesseract. The faces of the tesseract are cubes,

which correspond to the square faces of the cube in three dimensions. In total, eight cubes

are needed to “cover” the three-sphere S3, which is the analogue of the two-sphere S2

used in the illustration. The points on S3 can be projected onto unit-quaternions, which,

in turn, can be identified with rotations of rigid bodies in three dimensional space. Of

the eight cubes, only four cubes are necessary because the unit-quaternions q and −q

represent the same rotation. The four cubes can be defined by:

{(1, p1, p2, p3) | |p1|, |p2|, |p3| ≤ 1} (4.18)

{(p1, 1, p2, p3) | |p0|, |p2|, |p3| ≤ 1} (4.19)

{(p1, p2, 1, p3) | |p0|, |p1|, |p3| ≤ 1} (4.20)

{(p1, p2, p3, 1) | |p0|, |p1|, |p2| ≤ 1} (4.21)

Defining grids within these cubes and converting them to unit quaternions offers a com-

putationally simple and efficient way to “move” within the space of rotations.

4.2.4 Function vector spaces

In integrative structural modeling one relates the position and orientation of experimen-

tally obtained density maps to each other and computes metrics that are supposed to

express aspects of this relation. The complexity of experimental data makes it impracti-

cal to cover every possible orientation and position, the concrete gains for model building

of such an approach are questionable. In effect one makes a select number of “measure-

106

ments” and deems this representation sufficient.

It is often beneficial to have a smooth and differentiable representation of an object of

study. The procedure is to take the above discrete measurements and try to “construct”

a function out of a set of basis functions. In perfect analogy with the concepts outlined

above these constructions are elements of function vector spaces. A well known example

of these vector spaces is the application within the context of a Fourier transform. A

given signal s is disassembled into a set of basic functions f1, f2, . . ., where the meaning

of the word “disassembled” is to be understood in the sense of a linear combination of

the basis functions:

s ≈
∑

i

ci · fi (4.22)

with ci typically ∈ R or ∈ C. Also, for the sake of readability the variable is omitted,

meaning for instance s(x) = s. The set of basis functions is not arbitrary. In the case of

a discrete Fourier analysis for example, it can a set of different cos-functions:

{cos(ω1 · x+ c1), cos(ω2 · x+ c2), cos(ω3 · x+ c3), . . .} (4.23)

which amounts to cos-functions with different wavelengths a phases (geometrically, shifts

along the x-axis). The actual Fourier transform is merely the set of coefficients ci with

regard to that basis, mirroring the well known fact that “pure” signals have a “spiky”

Fourier transform, because they are well approximated by just one or a few of the cos-

basis functions.

These basis function sets can potentially be infinite, and often they are. In praxis however,

our data is finite and its representation is finite too. This means that we must content

ourselves with just a number n of the basis functions. Almost invariably a higher number

of basis functions means a higher degree of faithfulness in representation. Due to the

finite nature of our data it is also the case that a certain size of the basis function set is

actually sufficient to represent the data faithfully. In this case a signal s might be seen as

having several different but equivalent representations. If there are several ways to express

one and the same thing, some of these ways might be more economical or convenient

than others. From this fact comes the use of function vector spaces in computational

procedures. The next section contains both an example and a discussion of the so called

Chebyshev polynomials, which constitute one possible set of basis functions.

107

Chebyshev polynomials as an example of polynomial approximation

The Chebyshev polynomials can be defined iteratively:

T0(x) = 1

T1(x) = x

. . .

Tn+1(x) = 2xTn(x)− Tn−1(x)

So the first 5 basis polynomials are:

{1, x, 2x2 − 1, 4x3 − 3x, 8x4 − 8x2 + 1}

−1 −0.5 0.5 1

−1

0.5

Figure 4.11: The graphs of the first 5 Chebyshev polynomials

As the plots in figure (4.11) show, the Chebyshev polynomials have a somewhat regular

appearance on the interval [−1, 1]. This is due to their construction, they are understood

to be considered only on this finite interval. The fact that they indeed constitute a basis

can be proven easily, but first their scalar product must be defined:

〈p(x)|q(x)〉 =

∫ 1

−1

p(x)q(x)
1√

1− x2
dx (4.24)

which, as already indicated, is a measure of “how much of one vector is contained in

another”. Since basis vectors have the property that with regards to a scalar product

108

none of them is contained in any of the others, the scalar product between two Chebyshev

polynomials must be 0. Just as

〈


1

0

0




∣∣∣∣∣∣∣




0

1

0



〉

= 1 · 0 + 0 · 1 + 0 · 0 = 0;

is 0 because the two vectors are part of a basis with regard to the standard scalar product

of the three-dimensional real vector space, the scalar product

〈T1(x)|T2(x)〉 =

∫ 1

−1

x
(
2x2 − 1

) 1√
1− x2

dx = 0

is 0 (on account of the symmetry of the integrand, which is uneven) because T1(x) and

T2(x) are orthogonal with respect to the scalar product defined in 4.24. This property

is proven for the Chebyshev polynomials, one does not need to concern oneself with the

details of the calculation and can just use the formalism to engage in standard operation

within a vector space. As an illustrative application, consider the function sin(πx) on the

interval [−π, π]. In the same way as one would calculate the contribution of each basis

vector to an arbitrary vector in the more familiar three-dimensional real vector space, one

can do so in a function vector space:

c0 =
〈sin(πx)|T0(x)〉
〈T0(x))|T0(x)〉 =

∫ 1

−1
sin(πx) · 1 1√

1−x2 dx
∫ 1

−1
1 · 1 1√

1−x2 dx
= 0

c1 =
〈sin(πx)|T1(x)〉
〈T1(x))|T1(x)〉 =

∫ 1

−1
sin(πx) · x 1√

1−x2 dx
∫ 1

−1
x · x 1√

1−x2 dx
= 0.5692306863596991

c2 =
〈sin(πx)|T2(x)〉
〈T2(x))|T2(x)〉 =

∫ 1

−1
sin(πx) · (2x2 − 1) 1√

1−x2 dx
∫ 1

−1
(2x2 − 1) · (2x2 − 1) 1√

1−x2 dx
= 0

c3 =
〈sin(πx)|T3(x)〉
〈T3(x))|T3(x)〉 =

∫ 1

−1
sin(πx) · (4x3 − 3x) 1√

1−x2 dx
∫ 1

−1
(4x3 − 3x) · (4x3 − 3x) 1√

1−x2 dx
= −0.6669166724068839

with ci = 〈v|bi〉
〈bi|bi〉 being the formula to calculate basis coefficients for non-normalized basis

vectors bi. Therefore, given that basis functions above, the approximation is

a(x) = 0 · 1
+ 0.5692306863596991 · x
+ 0 ·

(
2x2 − 1

)

+ (−0.6669166724068839) · (4x3 − 3x)

109

−1 −0.5 0.5 1

−1

0.5

a(x)
sin(πx)

Figure 4.12: The function sin(πx) approximated by the first 5 Chebyshev polynomials.

Figure (4.12) shows this approximation. If a function should be approximated finite inter-

val other than [−1, 1], it can simply be linearly translated and scaled to fit this interval,

be approximated and apply the inverse transformation to the approximation.

This pattern in general will be the same for all coming function approximations, the

spaces wherein the approximation is performed will be more complex than the real line

R, but the concepts and the formalism will remain the same. A set of basis functions and

a scalar product will still be the central tools.

The integral in the scalar product (4.24) is expensive to calculate. The Chebyshev poly-

nomials exhibit another orthogonality condition with regard to their roots, which comes

in handy for approximation purposes. This condition allows to interpolate a function f(x)

by evaluating them at a very limited number of points (the single prime indicates that

the first term of the sum is halved):

f(x) ≈
n∑

i=1

′
ciTi(x) (4.25)

ci =
2

n+ 1

n+1∑

k=1

f(xk)Ti(xk) (4.26)

where the xk are the zeros of Tn+1(x), namely

xk = cos

(
2k − 1

2n
π

)
, k = 1, . . . , n+ 1

This shows the most attractive feature of polynomial approximation of this kind: The

110

number function evaluations is fairly limited and the result is still a decent approximation,

which also has the desirable properties of polynomials. Especially if the evaluation of f(x)

is very expensive this can be very advantageous. A exhaustive discussion of Chebyshev

polynomials themselves can be found in [76].

Often, one needs to model higher dimensional spaces, such as functions defined on an

euclidean plane, R2 or in euclidean space R3. In this case one can easily construct

three-dimensional representations using the concepts and entities outlined above. For

completeness’ sake the procedure will be detailed verbosely, it can be generalized to any

dimension:

1. The domain of the function to be approximated is [ax, bx] × [ay, by] × [az, bz]. The

order of polynomial approximation is nx, ny, nz, respectively.

2. mx ≤ nx + 1,my ≤ ny + 1 and mz ≤ nz + 1 are the numbers of the interpolation

nodes. The concrete nodes of evaluation are

rxk = cos

(
2k − 1

2mx

π

)
, k = 1 . . .mx

ryl = cos

(
2l − 1

2my

π

)
, l = 1 . . .my

rzm = cos

(
2k − 1

2mz

π

)
,m = 1 . . .mz

3. The evaluation nodes adjusted to the domain defined above are

xk = ax + (1 + rxk)

(
bx − ax

2

)
, k = 1 . . .mx

yl = ay + (1 + ryl)

(
by − ay

2

)
, l = 1 . . .my

zm = az + (1 + rzm)

(
bz − az

2

)
,m = 1 . . .mz

4. The function f(x, y, z) to be approximated has to be evaluated at these nodes

Ω = {ωklm = f(xk, yl, zm)|k = 1 . . .mx, l = 1 . . .my,m = 1 . . .mz}

5. Now, calculate the coefficients αijk with i = 0 . . . nx, j = 0 . . . ny, k = 0 . . . nz:

αijk =

∑mx

k=1

∑my

l=1

∑mz

m=1 ωklmT
x
i (rxk)T yj (ryl)T

z
k (rzm)

(∑mx

k=1 T
x
i (rxk)2) (∑my

l=1 T
y
j (ryl)

2
) (∑mz

k=1 T
z
k (rzm)2)

111

6. Finally, the approximated function a(x, y, z) is

a(x, y, z) =
nx∑

i=0

′
ny∑

i=0

′
nz∑

i=0

′
αijkT

x
i

(
2
x− ax
bx − ax

− 1

)
T yj

(
2
y − ay
by − ay

− 1

)
T zk

(
2
z − az
bz − az

− 1

)

Quadrature via Chebyshev polynomials

Another important application of Chebyshev polynomials and a central concept in its own

right is that of quadrature. Quadrature, historically, is a way to calculate the area of a

square that has the same area as a given geometric shape. In modern parlance it is a way

to approximate the value of an integral

I =

∫

D

f(x) dx

over some domain D. Its importance in science is paramount. Many quantifiable processes

in nature are imagined to be continuous, yet one usually has only a discrete sample of the

quantity characterizing the process. And often one wishes to calculate characteristics such

as a mean or the integral value itself. Since the functional form of f(x) is often unknown,

the rules of numerical quadrature are required to accomplish these goals. Quadrature

rules are expressed by formulae of the type

I ≈
∑

i

wif(xi) (4.27)

where the xi and the wi are the quadrature nodes and the quadrature weights respectively.

Nodes and weights are intimately connected and need to be specified together. There is a

wealth of different quadrature methods, some more efficient than others and many more

suitable to some cases of f(x) than others. The geometry of the underlying domain of

integration plays a pivotal role, for the standard euclidean spaces the theory of Chebyshev

polynomials provides a practical set of nodes and weights. The underlying principle is

to approximate the function f(x) on the integration domain using a basis of Chebyshev

polynomials as detailed above and then carry out the integration of that approximation,

which is a simple operation on polynomials. Consequently the quality of quadrature

improves with the quality of approximation, which in turn is enhanced by a greater

number of nodes. In praxis, the approximation is done “under the hood” and the nodes

and weights can be precalculated. A popular method is that of Clenshaw and Curtis (see

112

[77]), the nodes and weights for sample size N + 1 are

xi = cos

(
i

N
π

)
, i = 0 . . . N (4.28)

wi =





2
N

∑N
2
j=0

′′ 1
1−4j2

cos 2jiπ
N

0 < i < N

4
N

∑N
2
j=0

′′ 1
1−4j2

cos 2jiπ
N

otherwise

where the double primed sum
∑ ′′

indicates that the first and the last term are to be

halved.

An advantageous fact about this specific set of nodes and weights is that, if N is doubled

2N − 1, a the nodes xi associated with N will be contained within the new set of nodes

associated with 2N . This is computationally opportune, since it allows one to double

the precision without recalculating all evaluations but reuse the old ones. Figure (4.13)

illustrates this feature. The result of the illustrative application using two different sets

of nodes (N1 = 8 and N2 = 15) is

I1 = π
7∑

i=0

wi sinxi = 1.9999997146306663

I2 = π
15∑

i=0

wi sinxi = 1.9999999217203575

with the exact result
∫ π

0
sin(x) dx = 2.

1 2 3

0.25

0.5

0.75

sin(x)

Figure 4.13: The function sin(x) with two sets of quadrature nodes, N1 = 8 and N2 = 15.
All green nodes with green lines are also part of the set with orange lines.

113

It is very important to note that this definition of the Chebyshev nodes is often used with

scaled nodes. The Chebyshev nodes however are defined on the integral
∫ 1

−1
f(x) dx. A

scaling of the nodes requires a transformation of the integral, too. For a more general

integral to be approximated one therefore has to employ

∫ b

a

f(x) dx ≈ (b− a)
n∑

i=0

wif(xi)

and something analogous in higher dimensions:

∫

V

f(r) dV ≈ |V |
∑

V

wif(ri) (4.29)

4.2.5 Wigner D-functions as a basis

Introduction and definitions

The Chebyshev polynomials are one possible base set to model functions in euclidean

space. Specifically in this context, they are used to model functions of the type:

f :



x

y

z


 −→ r,



x

y

z


 ∈ R3, r ∈ R

This will be used to model three-dimensional densities (see 3.2.2), but can also be used to

model a scoring-landscape (see 2.5.5) if one only considers the translations of the query

density against the target density in x, yandz-directions (in this case r will correspond

to the score). The advantage of doing this is the option of reconstructing a density in a

computationally cheap manner and the existence of a quadrature rule. Systematic fitting

(see 2.5.5). However, the translational shifts have to be amended with rotational displace-

ment. The question then is, does something similar to the Chebyshev polynomials for the

translational case exist for the rotations?

Rotations of rigid bodies in three-dimensional space (see 4.2.3) can be parametrized in

many ways, a common choice are the Euler angles (α, β, γ) in the ZY Z convention, given

the limits α ∈ [0, 2π) , β ∈ [0, π] , γ ∈ [0, 2π) (see4.2.3). These angles parametrize a mem-

ber of SO(3), the group of rotations in three dimensions. In close analogy to the three-

dimensional Chebyshev polynomials Tijk (x, y, z) the Wigner D-functions Dl
mn (α, β, γ)

form a basis set of the function vector space L2(SO(3)). This space consists of functions

114

Figure 4.14: Illustration of the decomposition of a member of L2(SO(3)), a selection of
the spherical harmonics as basis vectors is depicted. The “height profile” on the deformed
sphere signifies the actual real function values.

which take members of SO(3) as an input and produce values in C

f (α, β, γ) −→ c ∈ C

and have a finite norm 〈f |f〉 under the scalar product

〈f |g〉 =

∫

SO(3)

f (ρ) g∗ (ρ) d%(ρ), d%(ρ) = sin(β) dα dβ dγ (4.30)

This includes possibly all scoring functions used in systematic fitting. The practical value

of this can be seen by considering the measured distribution of a systematic fitting scoring

function at a fixed translation as a member of L2(SO(3)). Then, the mathematical tools

pertaining to function vector spaces can be applied to the data. It is worth mentioning

that the intuitive notions of more familiar vector spaces such as SO(3) carry over to

L2(SO(3)), for example to idea that a vector can be “disassembled” into simpler basis

vectors. As an illustration consider figure (4.14) which shows a decomposition of a member

of L2(SO(2)), one of the possible basis sets of which are the spherical harmonics Ylm (θ, ϕ).

The members of L2(SO(2)) have the advantage of being easier to depict than the member

of L2(SO(3)). The basic principles of the treatment of members of L2(SO(2)) and the

basis Ylm (θ, ϕ) are completely analogous to the treatment of members of L2(SO(3)) and

the respective basis, Dl
mn (α, β, γ).

115

The full definition of the Wigner D-functions is

Dl
mn (α, β, γ) = e−imα (−1)l−n 2−l

√
(2l)!

(l +m)! (l − n)!
(1− cos (β))−

m−n
2 (1 + cos (β))−

m+n
2

· dl−m

d (cos (β))l−m

(
(1− cos (β))l−n (1 + cos (β))l+n

)
e−inγ (4.31)

The orthogonality relation of the Wigner D-function is

〈Dl
mn|Dl′

m′n′〉 =
8π2δll′δmm′δnn′

(2l + 1)
(4.32)

which states that under the scalar product 4.30 the functions Dl
mn (α, β, γ) are indeed

orthogonal. The δmn is the Kronecker delta, which is 1 for m = n and 0 otherwise. The

completeness relations reads

∞∑

l=0

l∑

m=−l

l∑

n=−l
Dl
mn (α, β, γ)Dl∗

mn (α′, β′, γ′) = δ (α− α′) δ (cos (β)− cos (β′)) δ (γ − γ′)

(4.33)

where δ (x− x′) is the Dirac delta, which has the property
∫
R f(x)δ(x − x′) dx = f(x′).

Dl∗
mn (α, β, γ) denotes the complex conjugate of Dl

mn (α, β, γ). The completeness relation

tells us that every member of L2(SO(3)) can be “disassembled” in terms of Dl
mn (α, β, γ)

and how to do it. The result of both statements are the methods to perform a Fourier

expansion on L2(SO(3)). Every function f (%) can be written:

f (%) =
∞∑

l=0

2l + 1

8π2

l∑

m=−l

l∑

n=−l
f lmnD

l∗
mn (%) with (4.34)

f lmn = 〈f |Dl∗
mn〉 =

∫

SO(3)

f(ρ)Dl
mn(ρ) d%(ρ), ρ ∈ SO(3) (4.35)

The coefficients f lmn ∈ C are the equivalent of Fourier-coefficients and are called the

Wigner-coefficients. They encode the “building plan” for f(ρ), while 4.34 provides the

“assembly instructions” given f lmn.

As the formulae above suggest, l ≥ 0 and −l ≤ m ≤ l,−l ≤ n ≤ l. In practical

applications, l is often limited to a maximum value L. This constitutes the equivalent

of a “bandwidth” know from classical Fourier-analysis. The higher L, the more detailed

the approximations produced by 4.34 (the ∞ replaced by L). Since an experimental

signal will, by definition, exhibit a finite amount of detail, it will be well approximated by

coefficients {f lmn|0 ≤ l ≤ L,−l ≤ m ≤ l,−l ≤ n ≤ l}, which then can serve as a compact

representation of the signal.

116

Rotational Sampling

As in the case of translational sampling it is possible to use the functional basis set of the

Wigner D-functions to sample data economically, given one uses specific sets of sampling

nodes. Depending on ones needs, there is a number of choices for a rotational sampling

set ([75],[78],[79]). In this work three criteria have been chosen to select an approach:

1. Grid refinement. The sampling set should expose an adaptable degree of refinement,

which allows for adaptive searches.

2. Quadrature. Since the goal of this work is to calculate statistical properties of

scoring functions there is a clear need for quadrature rules to calculate integrals

over the rotation group SO(3).

3. Exact sampling. The possibility to reconstruct a distribution to some degree of

approximation is of potential use in integrative structural modeling. Therefor, the

sampling set should offer this possibility in the sense of 4.34.

The approach chosen is that of McEwen and Wiaux ([79]). In their publication their offer

a novel sampling theorem for bandlimited functions in L2(SO(3)). As indicated above,

a bandlimited function with regard to a basis is defined by a constraint to its Wigner-

coefficients f lmn: For a given L,M,N with M,N < L, f lmn = 0 | ∀l ≥ L,m ≥ M,≥ N ,

which effectively means that bandlimited functions are “built up” from a limited amount

of “building blocks”. The higher L,M,N , the more detailed functions can be modeled.

The sampling theorem now states that there are specific nodes (αa, βb, γg) in SO(3), the

knowledge of the function value f (αa, βb, γg) is sufficient to faithfully reconstruct any

function within the possible spectrum of functions created by a bandlimited basis set.

While there is no guarantee that the experimental data falls within this specific class of

functions, it is highly unlikely that it cannot be approximated to a degree that is exact

for all practical purposes. In fact, given high enough L,M,N , every function can be

approximated to some arbitrary degree of precision.

These sampling nodes they provide in their paper are:

αa =
2πa

2M − 1
, with a ∈ 0, 1, . . . , 2M − 2 (4.36)

βb =
π (2b+ 1)

2L− 1
, with b ∈ 0, 1, . . . , L− 1 (4.37)

γg =
2πg

2N − 1
, with g ∈ 0, 1, . . . , 2N − 2 (4.38)

These can be used as a sampling set to reconstruct a representation in terms of Wigner-D

functions and on basis of this representation apply more familiar operations, such as a

117

gradient or an integral. The details of this reconstruction are discussed in their paper,

they also provide a software to perform the necessary calculations. The latter brings us

back to a quadrature formula, which is also provided in [79].

Quadrature on SO(3)

A brief glance at the definition of the Wigner-D functions Dl
mn (α, β, γ) (see 4.31) shows

that the integral over SO(3) will be 0, except for m = n = l = 0:

I =

∫

SO(3)

f(ρ) d%(ρ) =

∫ 2π

0

∫ π

0

∫ 2π

0

∞∑

l=0

2l + 1

8π2

l∑

m=−l

l∑

n=−l
f lmnD

l∗
mn (α, β, γ) sin(β) dα dβ dγ

=
2l + 1

8π2
f 0

00

due to the factors e−imα and e−inγ in the definition of Dl
mn (α, β, γ). Since only f 0

00 is

necessary to be calculated for this, one can limit the number of necessary sampling nodes

and calculate weights to arrive at a quadrature rule. This rule is provided in the conscious

paper (here in a slightly notationally corrected version):

I =
M−1∑

a=0

L−1∑

b=0

N−1∑

g=0

f(α′a, βb, γ
′
g)q(βb) (4.39)

with a reduced sampling domain α′a = 2πa/M and γ′g = 2πg/N . q(βb) are the weights

and they are defined as:

q(βb) =
(2π)2

MN
[v(βb) + (1− δb,L−1) v(β2L−2−b)] (4.40)

where δb,L−1 is again the Kronecker-δ and v(β) is defined as

v(β) =
1

2L− 1

L−1∑

m′=−(L−1)

w(−m′)eim′β (4.41)

with w(−m′) being defined as:

w(m′) =





±iπ/2 m′ = ±1

0 m′ odd and m′ 6= ±1

2/(1−m′2) m′ even

(4.42)

as defined in [80].

118

α

β γ

(a) The rotational node (α,β,γ). (b) An example of a sampling set.

Figure 4.15: Visualization of rotational sampling nodes.

Visualizing rotational sampling nodes

SO(3) is difficult to visualize. While SO(2), the space of rotations characterized by two

parameters, can be represented as the surface of the unit sphere, S0(3) is defined by three

parameters and lacks this options. However, there are ways to get around that and these

ways are useful for the purpose of visualizing a rotational sampling set. One will be used

here and is adapted from the publication [78]. Figure (4.15) depicts both the construction

principle of the visualization method (4.15a) and an example of a rotational sampling set

visualized this way 4.15b. The former consists of a sphere and and arrow whose direction

and position on the sphere encode the sampling node (α, β, γ). The construction process

of said direction and positions is as follows:

1. Start at the north pole of the sphere with the arrow. Turn it counterclockwise on

the spot around the axis emanating at the north pole in z-direction by an angle of

α.

2. Along the meridian that is aligned to the arrow and in the direction of the arrow,

slide the arrow until the angle between its new position, the center of the circle and

its old position is β.

3. At that point, rotate the arrow again around an axis perpendicular to the surface

of the sphere counterclockwise by an amount of γ.

Every node will be associated to a unique arrow this way.

119

4.3 Information Theory

Information theory was originally conceived by Shannon [81] to describe the conceptual

limits of telecommunication. He drew on older concepts known from thermodynamics and

statistical mechanics and put them into a more general framework. Nowadays the central

notions of information theory can be found in any field that has to deal with uncertainty

and ambiguity in a quantitative manner. This is the reason that it could be of use in

structural integrative modeling, too. This is a minimal exposition (and mathematically

not rigorous) to enable the reader to comprehend arguments at a later point. A more

complete treatment can be found in [82].

Probability distributions and their interpretation

Probability distributions are the basic elements of scientific probabilistic calculus. They

encode both the range of possible outcomes of a given process and the probability of a

given subset of outcomes. I define “probability” in the common sense: Given a process of

consistently varying outcomes the probability of an outcome is the fraction of this outcome

occurring and the total number of process trials if one were to conduct infinitely many

trials. There is a fundamental distinction in probability theory between the following

concepts: The outcomes can be thought as a “configuration space” A, that contains

all possible events of the process in question. A random variable X is a “measurable

outcome”, for instance an element of R (a length, a quantity, etc.). X assigns a measurable

value to the underlying outcome (e.g. the earnings at a game of chance, the relative

expression of a gene in the cell). A probability distribution can then be described as

function which assigns probabilities to possible values of X. If X denotes for example a

length, meaning it can take values ≥ 0, the term

P (1 ≤ X ≤ 5)

would describe the probability of obtaining a measurement of length between 1 and 5.

Note that the length is not the same as the underlying configuration space A, which can

be quite complex and X is merely a measurable perspective on it. A good example is

again games of chance, where X could signify the winnings. The underlying game can be

arbitrarily complex. We will adopt a more simplistic view in the following and consider

probability mass functions and probability density functions. Figure (4.16) illustrates a

probability density function and figure (4.17) a probability mass function.

120

0 5 10 15
0

0.05

0.1

0.15

0.2

Figure 4.16: Probability density function.

0 5 10 15
0

0.05

0.1

0.15

0.2

Figure 4.17: Probability mass function.

They both visualize the probability distribution of a random variable X, whose range of

values are the real numbers R. The basic intuition is the same: The more area the function

covers in a certain range [x0, x1] on the x-axis, the more probable the random variable

X will fall into that range. Consequently the total area must add up to 1 (100%). The

calculation of probabilities differs slightly. The probability P (1 ≤ X ≤ 5) (illustrated is

the orange portion of the area) for instance would be calculated like so

P (1 ≤ X ≤ 5) =
∑

1≤xi≤5

p(xi) mass function

P (1 ≤ X ≤ 5) =

5∫

1

p(x) dx density function

A probability mass function is then characterized by a discrete set of values, a probability

density function has to be characterized by an integrable function. In both cases they de-

scribe the probabilistic process completely and we can consider the functions themselves

as a stand-in for the process. The characteristic of the “landscape” of outcomes resides in

the shape of these functions. Since the shape encompasses all values any attempt to char-

acterize the stochastic process as a whole will have to take into account all values. Thus

almost all measures regarding probability distributions are sum or integral operations.

The next section introduces one of these measures.

Entropy and information content

Entropy is a way to assign a number to a probability distribution as described above.

In this sense it is a measure that is used to characterize such distributions and can be

121

compared to the average value or the expected value. It is defined as

H (X) = −
N−1∑

i=0

p(xi) log(p(xi)) (4.43)

for the discrete case. The base of the logarithm is assumed to be arbitrary for now.

Entropy ranges between 0 ≤ H (X) ≤ log (N). One of its intuitive interpretation is as a

measure of uncertainty. For a given distribution the entropy will be lower if it contains

“more information” and higher if it contains “less information”. To justify this intuition

one can look at two extreme cases. The uniform distribution (see figure 4.19) and the

delta distribution (see figure 4.18).

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

Figure 4.18: Delta distribution.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

Figure 4.19: Uniform distribution.

The entropy of the delta distribution is

H (X) = −1 · log (1) = 0 (4.44)

using 0 · log (0) = 0 (by use of de L’Hospital). The entropy of the uniform distribution is

H (X) = −N · 1

N
log

(
1

N

)
= log (N) , (4.45)

its maximal value. Given a probabilistic process which would be characterized by one

of both distributions, we would be entirely certain of the result in the case of the delta

distribution and entirely uncertain in the case of the uniform distribution. This corre-

sponds to their respective entropy values and provides the foundation for the entropy as

a measure of uncertainty. This is provided only for the case of a discrete distribution.

122

There is however an analogue for probability density functions, the differential entropy :

H (X) = −
∫

R

p(x) log(p(x)) dx (4.46)

where possible outcomes are elements of R. If it were not so, the integration would be

over a more complex space. The immediate connection to the underlying space is one of

the main differences to the entropy formula for the discrete case. It also can be negative,

e.g. for the uniform distribution p(x) = 1
L

we get

H (X) = −
L∫

0

1

L
log

1

L
dx = log(L) (4.47)

which will be negative for L smaller than the basis of the respective logarithm. It is

however possible to retain some of the intuitive meaning of entropy in the discrete case.

For that we have to define the typical set after [82, p. 245]. For later purposes we

will extend it to the general case of a random variable whose values are several real

numbers, X ∈ Rn. This could correspond to positions in three-dimensional space (the

random variables would be three Cartesian coordinates x, y, z) or in orientation space (for

instance the Euler angles α, β, γ). This set of possible samples is denoted as Sn in the

following. The typical set is defined as

A(n)
ε =

{
(x0, x1, . . . , xn−1) ∈ Sn :

∥∥∥∥−
1

n
log p (x0, x1, . . . , xn−1)−H (X)

∥∥∥∥ ≤ ε

}
(4.48)

with p (x0, x1, . . . , xn−1) =
∏n−1

i=0 p(xi). So it is a set of sample points the probability

density function of which follows a certain abstract condition involving the entropy H (X)

and a small parameter ε. If we further define the volume of a sample set A:

Vol (A) =

∫

A

dx0 dx1 . . . dxn−1 (4.49)

we can state the theorem that for n sufficiently large

(1− ε)2n(H(X)−ε) ≤ Vol
(
A(n)
ε

)
≤ 2n(H(X)+ε) (4.50)

holds. This puts limits on the volume of the typical set. For very small ε we can say that

this volume is approximately equal to 2nH(X). In conjunction with the theorem that A
(n)
ε is

the smallest set with probability P
(
A

(n)
ε

)
≥ 1−ε and the fact that an n-dimensional cube

of volume a has side length a
1
n , so that our approximate volume is

(
2nH(X)

) 1
n = 2H(X),

we can state:

Entropy is the logarithm of the sides of a cube with a volume that is equivalent to the

123

volume of the typical set, which holds most of the probability density. For a given random

variable we therefore have the relation: The smaller the entropy, the more confined the

space in which most of the probability density concentrates. In this way we recover the

intuition of entropy in the discrete case.

Other information theoretic metrics

There are other concepts in information theory that can be useful in certain circumstances.

The normalized entropy is defined as

η (X) =
H

Hmax

= −
n−1∑

i=0

p (xi) log (p (xi))

log (n)
(4.51)

As the name suggests it is useful for normalizing different entropy measurements, which

can make comparisons easier. The Kullback-Leibler-Divergence is often called relative

entropy and is defined as

D(P ‖ Q) =
n−1∑

i=0

p (xi) log

(
q (xi)

p (xi)

)
. (4.52)

It takes two distributions as an input and measures a certain difference. This difference

can be interpreted as the a gain of information if one would use the distribution P rather

than Q. In a practical situation then, one can compare two different distributions against

each other or a third base distribution, such as the uniform distribution. If D(P ‖ Q) is

close to 0, there is no gain in information in choosing P over Q.

124

Chapter 5

Results

The results that will be described are of varying nature and might be hard to place.

A short overview of how they fit into the general context will be provided here. There

are three different kinds of results: Sections 5.1 and 5.2 describe the results obtained in

the modeling project of the TFIIIC-complex (see 2.6) and additions to the Assembline

software. The sections 5.4, 5.5, 5.7, 5.8, 5.7, 5.6 and 5.10 contain results that are partially

computational and partially conceptual. They are arranged according to the sequence

in which one would encounter them in a typical Assembline-style modeling project. The

sections 5.12, 5.11 and 5.13 contain conceptual results, the results of model experiments

and the results of applications of entropy measurements. The description tries to balance

between detail and accessibility of exposition. More detailed descriptions are given if

there is some degree of novelty involved.

5.1 TFIIIC modeling

Several systematic fitting attempts have been made using varying density maps of the

PIC (Pre Initiation Complex), the TFIIIC+tDNA complex (negative stain), the TFI-

IIC+TFIIIB+tDNA complex as target and crystal structures and homology models of

parts of TFIIIC-subunits (τ95, τ131, τ55) as query. The target maps had local resolutions

(see 2.4.4) between 12 Å and 40 Å. No significant fits have been found.

Upon receiving a 5 Å-map that is now known as the τA subcomplex, τ95, τ131, τ55 have been

fitted again using the Chimera FitInMap (see [28]) tool with the cam-score option, this

time with significant fits. These fits are shown in figure (5.1). Statistical significance was

achieved according to the criterion used within the Assembline pipeline. Figure 5.2 shows

the score distributions highlighting the significant fits. Further attempts to corroborate

125

Figure 5.1: The best τ95, τ131, τ55-domain fits rendered within the τA density map.

(a) The score distribution for the τ131-domain
fit.

(b) The score distribution for the τ55-domain
fit.

Figure 5.2: Score distribution for the significant systematic fitting protocols

126

Figure 5.3: The τA subcomplex of the TFIIIC complex as determined in [83], image taken
from there.

the fits using crosslinks provided by the collaborator were made, but yielded no conclusive

results. The complete structure of the TFIIIC-τA subcomplex was later obtained using

single particle cryo-EM methods (see [83], also see figure 5.3) In an additional effort the

existing τA and Brf1-TBP structures were fitted to a 33.5 Å negative stain map of τA in

complex with Brf1-TBP that was obtained earlier, to determine the handedness of the

density map and tentative positions for the two structures. The scores that were used

for this are the cc-score (see 2.5), the overlap-score (see 2.4), the Chamfer distance (see

2.5.5) and the envelope score (see 2.5.5). These specific scores were chosen due to their

suitability to match surfaces against each other and the negative stain technique providing

a signal of the protein surface. The workflow that was chosen differed slightly from the

standard workflow in Assembline. First, the normal FitInMap tool from Chimera ([28])

127

Figure 5.4: The results of a systematic fitting exploration of the τA-Brf1-TBP-negative
stain map with the τA and Brf1-TBP structures using different scoring methods.

was used to sample 100.000 random initial positions using the cc-score, which were also

optimized by gradient descent, which ran for 100 steps. These samples were clustered and

resulted in 20.000 − 24.000 unique transformations. These transformations were used to

score the same setup for the other mentioned scores using the TEMPy library (see [84]).

The resulting score populations were then correlated against each other to try and detect

solutions that scored high with every scoring method. Figure (5.4) shows the results of

this process. Subfigure a indicates that Mirror1 consistently scores better and can be in-

terpreted as the correct orientation. Both fitting populations were used to combine them

into a set of models using Assembline. This yielded a consistent fit for τA and ambiguous

fits fore Brf1-TBP (see 5.4, b). The orientation of Brf1-TBP could not be identified due

to lack of data.

128

5.2 Contributions to the Assembline structural mod-

eling pipeline

Several contributions to the Assembline pipeline were made and are either published with

it ([26]) or were used in other publications ([83], [85]). They take the take the form of

simple helper programs or parts of the Assembline software. In sum, they have led to

considerations that led in turn to later results.

5.2.1 Geweke convergence test implementation

As outlined in 2.5.3, Assembline employs a Monte Carlo procedure to generate a number

of alternative models. As discussed in 4.1.3, the burn in period can be very short, leading

to inefficiently long Monte Carlo runs. A Geweke convergence test (see 4.1.3 has been

implemented in Python with the interface

convergent(x, first_frac = 0.1, last_frac = 0.5, intervals = 10)

x is an array of float values, first_frac denotes the fraction of the array x that is

considered to represent the early part of a run, vice versa for last_frac. intervals is

the size of the subintervals used within the test. The implementation relies heavily on

[72].

5.2.2 Bash analysis tools

As described in 2.5.5, systematic fitting produces a set of folders, subfolders and files that

contain the results of a fitting instance. The number of files and subfolders can become

high for more elaborate projects and it may be difficult to assess the relevant information.

A number of bash scripts have been create to enable an easier access to systematic fitting

data sets. They are based on simple bash,Python and R scripts and are meant to be run

on a console environment, such as a cluster. They will be described briefly. All scripts

are used on a systematic fitting base folder.

129

name description

fitsummary Used on a systematic fitting base folder. Prints a summary of the

queries and targets, checks if solutions.csv files exist (indicat-

ing that the fitting ran correctly) and if the p-values have been

calculated.

genpval Searches through the folder structure and invokes the p-value cal-

culation script on every solutions.csv-file it encounters.

evalpval Searches through the folder structure to find all

solutions_pvalues.csv, evaluate them and print a sum-

mary that shows representatives of ranges of p-values and their

respective target and query. This allows for a quick assessment of

the significance of the fitting data set.

evalstruc Searches through the folder structure and compiles a list of a queries

that were fit in the fitting data set. Then offers the options to

survey p-values for that query or to create, in the case of a pdb-file,

a transformed version of the structure that can be placed within

the target density. Also, scripts to plot the p-value distributions

can be run.

An example of a fitsummary output:

EM map| Structure sol pval

__

TauA_IIIB_190207_job49.mrc| 4BJI.pdb yes yes

| 4BJJ.pdb yes yes

|6F44_cut_without_helices_without_DNA.pdb yes yes

| T131_TPR_5AEM.pdb yes yes

| Tau55_PGAM_2YN0.clean.pdb yes yes

__

TauA_IIIB_190207_job49.zmirror.mrc| 4BJI.pdb yes yes

| 4BJJ.pdb yes yes

|6F44_cut_without_helices_without_DNA.pdb yes yes

| T131_TPR_5AEM.pdb yes yes

| Tau55_PGAM_2YN0.clean.pdb yes yes

__

An example of the evalpval output:

Structure EM map BH_adju... cam_score solu...

===0.0e+00 to 1.0e-05===

T131_TPR_5AEM.pdb TauA_IIIB_190207_job49.mrc 1.5796e-12 0.769083 0

Tau55_PGAM_2YN0.clean.pdb TauA_IIIB_190207_job49.mrc 6.6138e-09 0.764220 0

130

===1.0e-05 to 1.0e-04===

===1.0e-04 to 1.0e-03===

===1.0e-03 to 1.0e-02===

===1.0e-02 to 1.0e-01===

Tau55_PGAM_2YN0.clean.pdb TauA_IIIB_19020....zmirror.mrc 2.0458e-02 0.609205 0

Tau55_PGAM_2YN0.clean.pdb TauA_IIIB_19020....zmirror.mrc 3.3554e-02 0.598789 1

Tau55_PGAM_2YN0.clean.pdb TauA_IIIB_190207_job49.mrc 6.8173e-02 0.595159 1

Tau55_PGAM_2YN0.clean.pdb TauA_IIIB_190207_job49.mrc 7.1007e-02 0.593878 2

Tau55_PGAM_2YN0.clean.pdb TauA_IIIB_190207_job49.mrc 7.1727e-02 0.593004 3

And lastly, an instance of an evalstruc instance:

[1] 4BJI.pdb

[2] 4BJJ.pdb

[3] 6F44_cut_without_helices_without_DNA.pdb

[4] T131_TPR_5AEM.pdb

[5] Tau55_PGAM_2YN0.clean.pdb

[x] Exit.

?>4

T131_TPR_5AEM.pdb

+++ Overview for T131_TPR_5AEM.pdb +++

[A] TauA_IIIB_190207_job49.mrc T131_TPR_5AEM.pdb BH_adju... cam_score solu...

1.6e-12 0.769083 0

2.7e-02 -0.031849 7113

1.5e-01 0.452468 1

1.5e-01 0.446771 2

1.5e-01 0.044092 7068

[B] TauA_IIIB_19020....zmirror.mrc T131_TPR_5AEM.pdb BH_adju... cam_score solu...

5.5e-02 0.443519 0

5.5e-02 0.443354 1

5.5e-02 0.028982 7548

5.5e-02 0.028665 7549

5.5e-02 0.028598 7550

Choose action regarding to inspected structure:

[p] create pdb ...

[d] print pvalue distribution ...

[c] choose different structure ...

[x] exit ...

131

5.3 Description of the GPU implementation of the

modeling classes

This section describes the structural integrative modeling parallel programming interface.

This interface aims at providing tools to process the most prominent data types in inte-

grative structural modeling and offers a number of solution for common tasks in the field.

The section is subdivided into two parts: The first part will describe the general features,

workflows and design principles. The second part will contain a terse description of the

interface.

The features and principles described in the following result from the intention to use

GPU resources as much and as convenient as possible. Both goals can only be fulfilled by

adding a layer of abstraction between the raw data layer and the high level programming

API. For maintenance purposes this intermediate layer was kept conceptually as simple

as possible.

Memory management and data representation

The first issue that is addressed is the need for synchronization between host and de-

vice. Any data represented on the host must be mirrored on the device and vice versa

(see to 3.3.2 for a brief discussion). Additionally multiple devices need to be understood

as unable to communicate directly with each other, so that data cannot be spread out

between devices without some considerations. Figure (5.5) shows an illustration of the

implemented solution. Every data object implemented has the ability to instantiate ver-

sions of itself on any given device. These instances hold the bare minimum of memory

fields needed to represent the data. Every instance is mirrored in the host memory in a

one-to-one fashion, because the result of the processes deployed on different devices might

change the data instances in different ways. The memory synchronization procedures

are completely hidden from the high level API user. Moreover the number of devices is

hidden from the user and managed in the background. The scripting interface, the layer

where the actual modeling procedure is defined, is kept as free as possible from low level

hardware and memory management. The following code snippet shows an example which

details the generation of a density map from a particle data resource.

Particles pdb;

Density pdb_density;

DensityGenerator generator;

int reader_index = pdb.fromPdb(pdb_file);

132

Figure 5.5: Illustration of the synchronization scheme.

pdb.createInstanceFromReader(gpu_index,reader_index);

generator.createInstanceFromParticles(&pdb,gpu_index);

pdb.find_bounds(gpu_index);

pdb_density.createInstanceFromBounds(pdb.volume(gpu_index),pixel_size,0,gpu_index);

Stamp stamp;

stamp.createInstance(sigma,pixel_size,gpu_index);

generator.generateMolecularDensity(&pdb_density,&pdb,&stamp,24,256,gpu_index);

pdb_density.toMrc(mrc_file,20,gpu_index);

As is apparent, the only reference to the presence of GPU devices is a the gpu_index

variable, which itself is handled by the Engine class. While figure (5.5) only illustrates

the representation of data models, entities more properly understood as processes, such

as scoring methods, sampling procedures or alignment tasks, which need working mem-

ory on the device, are also designed in this way. For each of these classes a central

map<int,Register> maps to each gpu_index a Register structure, which is simply a

collection of memory addresses on the given device pertaining to the representation of the

class data on that device and the host. Not always it is necessary to mirror all memory

resources, for example in the case of working memory on the device for intermediate re-

sults. The following example details the DensityGenerator_Register structure of the

DensityGenerator class.

struct DensityGenerator_Register {

float * h_offset_shift;

float * d_offset_shift;

uint * d_offsets;

};

The d_offsets memory address is only present in device memory, which can be seen by

133

acknowledging the convention that any memory address variable pointing to host memory

has the prefix “h_” and address variables with the prefix “d_” point to device addresses.

Given this framework any function that performs work on the data resources will look

similar to this example:

void DensityGenerator::generateMolecularDensity(Density *const& density,

Particles *const& particles, Stamp * const& stamp, int gridDim, int blockDim, int gpu_index){

cudaSetDevice(gpu_index);

Density_Register * density_instance = &density->_instance_registry[gpu_index];

Particles_Register * particles_instance = &particles->_instance_registry[gpu_index];

DensityGenerator_Register * generator_instance = &_instance_registry[gpu_index];

Stamp_Register * stamp_instance = &stamp->_instance_registry[gpu_index];

...

}

Here the cudaSetDevice function is used to make sure that the host code addresses the

device of index gpu_index and subsequently the Registers are obtained to access to

memory addresses that point to the memory ranges containing the respective data. After

that, they can be used to perform memory management operations or parallel computation

kernel calls.

Execution model and process management

The data representation model outlined above (see 5.3) enables the parallel use of multi-

ple devices. While these can be run in parallel, communication between devices among

each other and the host is either slow or cumbersome. The partition of the workload and

the final synchronization of the results of the given processing tasks can be addressed in

a number of ways, depending on the nature of the tasks itself. Two general procedures

have been implemented to address this issue.

Figure (5.6) illustrates the execution model of a dispatch queue. This model was im-

plemented in the Engine class and describes one of the classes two execution modes. Its

process is the following:

• The user has to define a number of tasks using the provided parallel processing

framework. These tasks must be implemented as functions with and need to have

either the signature void(int) or void(std::ofstream *,int). The last int sig-

nature is the gpu_index, which will be dynamically assigned to the task by the

engine. The std::ofstream * variable can be used to enable access to an output

file stream, e.g. to write out results or log error messages. The user need not to be

134

Task 7

Task 8

Task 9

Task 3

Task 4

Task 5

Task 6

q

Task 0

q

Task 1

q

Task 2

DEVICE 1 DEVICE 2 DEVICE 3
HOST

NEW TASKS

output files

Figure 5.6: Schematics of the single-task-per-device execution mode, in this example the
host distributes tasks among three devices.

concerned with the number of type of devices. These will be assessed by the engine

using the CUDA API.

• Once the user has defined a number of tasks (any number), these can be submit-

ted using the Engine::dispatch(task) function. On initiation of the program

the engine will have spawned a host thread for each device it detects. These

host threads will then continuously run until the program is terminated. If a task

is dispatched, the engine will do one of two things: If there is an unoccupied device,

the engine will assign the task to this device which will be occupied until the specific

task is finished and then be ready to accept a new task. If there is no unoccupied

device, the engine will hold onto the task until one device is free and the task is the

first in line. There is no guaranteed order of execution for the tasks. However, tasks

can be simply compounded by defining them in sequence within a new function as

described above.

• While the task is running on a given device, there are two options to obtain the

results. One is to write them to a std::ofstream (a file) to be accessed later or to

define new tasks based on the results of the preceding task that will be submitted

to the engine for processing.

If a given task requires the memory resources one device can supply, one can easily define

a whole population of tasks, e.g. varying a given set of parameters to assess the effect on

the results. This is often the case since the memory capacity of a modern GPU runs in

the gigabytes, which is sufficient for many tasks in structural integrative modeling.

The second execution model can be used to distribute the workload of one massive task to

multiple devices. This execution model uses the devices in a parallel manner and can be

135

used to effectively speed up one single task or multiple consecutive tasks using multiple

devices. Yet again the number of devices and the synchronization are handled by the

engine. Figure (5.7) shows a schematic of this execution model. There are several key

differences to the first model:

• Since the different devices need to be synchronized after performing each of the

consecutive tasks, there is the possibility that there is a general loss of performance

if one device is slower or faster than the others. Therefore the tasks should be

distributed as evenly as possible.

• The tasks need to be amenable to distribution in an indexable manner. Since

the workload needs to be distributed over the devices, it needs to be dividable

in a discrete and linear manner, so that DEVICE 1 handles workload indexed by

i = [0,511], text the workload indexed by i = [512,1023] and so forth. Because

the implementation of the algorithms resulting in the workload already is parallelized

(since it is running on parallel computation devices), this is usually easily achieved.

• Unlike the dispatch queue, there are canonical intervals of host synchronization,

which can be used to run intermediate processing steps.

For most tasks the dispatch queue model will be sufficient, the distributive execution

model should just used for singular tasks. Technically, both modes could be combined if

there is a task structure which is suitable for this option.

5.4 Density Sampling

The simulation of an electron density from a set of atom coordinates representing a molec-

ular structure is a necessary part of many widely used integrative modeling protocols. It is

possible to leverage parallel programming techniques to implement this procedure. Here

I will describe one way to accomplish this.

5.4.1 The procedural basis

The standard procedure with regard to density simulation off crystal structures for cryo-

EM density maps is outlined in 3.2.3. The key features exploited in the parallel imple-

mentation are as follows:

136

Task 0/0 Task 0/1 Task 0/2

synchronization HOST

Task 1/0 Task 1/1 Task 1/2

synchronization HOST

q output

DEVICE 1 DEVICE 2 DEVICE 3

Figure 5.7: Illustration of the distributive task management with three and two consecu-
tive tasks.

• The values of the kernel function used to simulate the density around a single particle

vary very little with the particle position within a single pixel. The variation trivially

approaches zero when the pixel size approaches zero.

• The simulated density for particles representing atoms of different atomic number

Z are scaled versions of a base density for a given resolution factor R.

• The effective area that one particle affects is typically small since the kernel functions

fall of quickly.

This means that the simulated density per atom added to the overall density does not

have to be recalculated and costly operations can be saved. Through use of the memory

hierarchy of a GPU device it is possible to “imprint” these scaled basic densities on the

density volume in an efficient and scalable way. The imprinting is done exploiting the fact

that the density values do not change and their relative positions do neither. By use of the

property of the density data structure illustrated in 3.13 it is possible to circumvent the

calculation of the spatial coordinates of the pixels. The arising problem of concurrency

can be tackled by the use of atomic operations (see 3.3.4).

137

5.4.2 The procedure

The following procedure has been implemented and tested. Operations that do not con-

tribute to the specific nature of the algorithm, such as memory management, memory

initialization and certain aspects of flow control will be omitted. All described operations

are conducted on the same device. The basic design idiom of the computational kernels

used is the worker pattern. It is illustrated by figure (5.8).

1. The structure is loaded into a particle set data structure (see 3.2.1) with the

additional information of the atom type for each particle. The float4 data type

is employed for that purpose. Their bounding box (see 3.2.1) is determined by

use of the thrust standard library and its reduction operation and custom unary

functions for the upper and lower “end” of the bounding box.

2. This information is used to create an instance of the density data structure.

The pixel_size is defined by the user and since it is not guaranteed that the

coord_dimension is a integer multiple of the pixel size, the closest value that ful-

fills this condition and is greater than the particle set bounding box will be

used together with the according pixel_dimension.

3. Given the information about the density data structure, a “stamp” density is

created with the same pixel size. This density represents the basic simulated

density around each atom. Its size depends on the resolution parameter, which

is set by the user. The stamp is encoded by two sets of values. One set contains

the actual values of the density, the other set contains offsets that encode the

position of the values in global, linear memory.

4. Depending on the available __shared__ memory of the specific device the volume

of the stamp density is divided into a number of chunks, both the offsets and

the values.

5. Due to the fact that the stamp density will overstep the boundaries set by the

particle set bounding box, the initial density is enlarged by a padding.

6. The coordinates of each of the atoms of every particle set are translated to the

offset of the pixel within the target density that contains the coordinates in the

manner of 3.2.2 and position in __global__ memory.

7. Finally a kernel iterates over each pixel of each chunk of the stamp density for

each particle, multiplies the corresponding value with the atomic number Z of

the particle, calculates the address of the affected pixel within the global density by

use of the above calculated particle offsets and the stamp density offsets

138

and writes it to the appropriate position in the __global__ memory segment rep-

resenting the overall simulated density. This is done via an atomic operation (see

3.3.4), since different threads might be writing to the same memory segment at the

same time.

o0 o1 o2 o3 o4 o5 o6 · · · v0 v1 v2 v3 v4 v5 v6 · · ·

o0 o1 o2 o3 o4 o5 o6 v0 v1 v2 v3 v4 v5 v6

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10s11s12s13 · · ·

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10p11p12p13 · · ·

o0 o1 o2 o3 o4 o5 o6 o7 o8 o9 o10o11o12o13 · · ·

o0 o1 o2 o3 o4 o5 o6 v0 v1 v2 v3 v4 v5 v6

chunk c < chunk_num, c += 1

chunk_pixel v < chunk_vol, v += blockDim

particle p, p += gridDim

chunk_pixel v < chunk_vol, v += blockDim

block threads synchronized

block threads synchronized

load stamp chunk to __shared__

scale and imprint to __global__

Figure 5.8: Illustration of the density sample kernel

The basic idea behind the utilization of the GPU memory hierarchy to achieve density

sampling in a spatial grid is illustrated in figure (5.9). Both I and II symbolize shared

memory volumes, which are faster to write and read from than the global memory

volume III . I holds both the actual density values and the offsets that relate the

values to each other in a linear representation of the underlying grid. These offsets

refer to the global grid. II shows that not necessarily the whole stamp density has to be

held in the shared memory, which is usually rather small and therefore not suitable for

larger stamp densities. This is dealt with by partitioning the stamp if necessary. Once all

stamp partition and particles are iterated over the global memory III holds the complete

representation of the sampled density.

139

-205 -204 -203 -202 -201 -155 -154 -153 -152 -151 -105 -104 -103 -102 -101 -55 -54 -53 -52 -51 -5 -4 -3 -2 -1

I

II

III

Figure 5.9: Illustration of the relation of geometric space and memory space in the density
sampling kernel

140

Environment, Tests and Benchmarks

In this section I will describe how the implementation described above are embedded in a

given computational environment. I will first describe the user perspective and following

that the hardware embedding.

The user has again two input options, depending on the user’s level of expertise and

intentions:

• The command line interface. This option provides one functionality:

sample pdb_file.pdb density_file.mrc resolution_parameter voxel_size

The in inputs are specified as follows.

– pdb_file.pdb

A file of the pdb format (see 3.2.1). The algorithm will read out the atoms of

the ATOM and HETATM field type into a particles data structure.

– density_file.mrc

The output file in the mrc file format (see 3.2.3). The resulting file will be as big

as the pixel_size parameter, the resolution parameter and the structure

specified by the pdb_file.pdb dictate, but not bigger.

– resolution

This parameter defines the “resolution”, it is proportional to the standard

deviation of the utilized gaussian kernels (see 3.2.3). The bigger, the more

“spread’ ’ the particles appear.

– voxel_size

Defines the length of a cube side of one voxel that holds a specific density value

(see 3.2.2). The smaller the value, the more “fine grained” the density will

be and also the bigger the resulting file.

• The developers interface. This offers an interface for use in C++ source code. It

offers an extended functionality compared to the first interface.

– Other kernels than the gaussian can be chosen. Since the stamp data structure

is simply another density, density density can be chosen.

– Multiple final densities maybe be sampled in rapid succession, given the

memory of the GPU device suffices.

– Any subset of the initial particle set can be sampled in rapid succession to

differing final densities. This might be useful to sample differing domains or

subunits of an input structure.

141

All of the described features have been tested in different circumstances. Visual inspection

using the Chimera program was used that they indeed produce densities as expected.

A more rigorous testing was conducted during the benchmarking. The benchmarking was

set up in the following manner. To enable a wider coverage of cases a population of pdb

structures has been selected and requested from the PDB database. The largest structures

in the PDB database contain around 20000 atoms. For each of the atom number ranges

{[0, 1000], [1000, 2000], . . . , [19000, 20000]} the first 100 entries have been downloaded and

saved to local disk space. Every one of these 2100 structures has been sampled with three

different resolution parameter settings: {5.0, 10.0, 15.0}. This is supposed to represent

resolutions close to practical cases within the systematic fitting procedure. Again the

optimal GPU device configuration regarding the parameters blockDim and gridDim has

been sought. The measure of effectiveness is the time that the implementation takes to

sample all of the 10500 different possible combinations of structures and resolutions. To

choose an appropriate pixel_size the EMDB database’s meta data has been consulted

and the median of all pixel size has been found to be 1.35Å. This has been done to find

the optimal configuration for a wide number of cases. The results are shown in figure

(5.10a). The GPU device that performed the benchmark was a NVIDIA Tesla V100.

After the optimal configure of (gridDim,blockDim) = (128,256) was determined, fur-

ther benchmarks have been conducted. A benchmark assessing the dependence of the

number of particles has been conducted, the resolution parameter has been held at

a constant 5.0. The results are shown in figures (5.10b) and (5.10c).

To assess the possible effects of particle clustering on the sampling speed the coefficient
number of particles

bounding box volume
has been calculated for every structure in the test database. The two

extremes have been found to be 5.615 · 10−5 and 1.335 belonging to the PDB database

entries 1Q55 and 2KU2, respectively. The former is a rather extended structure, the latter

an NMR ensemble. Both have been sampled for resolution parameter choices between

5.0 and 20.0.

142

3
2

6
4

1
2
8

2
5
6

0

1

2

3

4

·104

threads

lo
g
1
0
(r
u
n
ti
m
e
[s
])

8 workers
16 workers
32 workers
64 workers
128 workers

(a) Worker/threads density sampling

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

0

0.1

0.2

0.3

0.4

0.5

particle number

ru
n
ti
m
e
[s
]

(b) Particle variation

0 0.5 1 1.5 2

·104

−3

−2.5

−2

−1.5

−1

−0.5

particle number

lo
g
1
0
(r
u
n
ti
m
e
[s
])

(c) Particle variation, range up to 20000

6 8 10 12 14 16 18 20

0

1

2

3

resolution

ru
n
ti
m
e
[1
0
−
5
s]

1Q55
2KU2

(d) Different particle distributions

Figure 5.10: Benchmarks of the density sampling implementation

5.5 The transformational sampling scheme

This section concerns itself with the transformational sampling scheme that was developed

for this thesis. As outlined in 2.5.5 one of the two options for transformational sampling is

a regular grid. Together with the requirement that the scored transformations must enable

quadrature (see 4.2.4 and 4.2.5) a sampling scheme has been developed and implemented.

This sampling scheme is independent from any scoring function and therefore treated

separately. This sampling scheme enables the calculation of 6-dimensional integrals, such

as entropy, to an arbitrary level of precision.

143

(a) three-dimensional Chebyshev nodes for
N = 8.

(b) three-dimensional Chebyshev nodes for
N = 16.

Figure 5.11: Visualization of the translational nodes for two degrees of refinement. The
colors encode the weights wijk.

5.5.1 The translational grid

The translational grid is constructed by applying the standard rule of construction for

such cases. Given the Chebyshev nodes and weights for a degree of exactness N :

xNn = {x0, x1, . . . , xN−1}
wn = {w0, w1, . . . , wN−1}

The three-dimensional grid and weights generated by these nodes and weights is then

xNijk = {(xi, xj, xk)|0 ≤ i, j, k ≤ N − 1}
wNijk = {wi · wj · wk|0 ≤ i, j, k ≤ N − 1}

The condition of the possibility of refining the grid can be fulfilled by choosing a sequence

of Ns that are powers of 2:

{N0, N1, . . .} = {21, 22, . . .}

Since

xNijk ⊂ x2N
ijk ⊂ x22N

ijk ⊂ . . .

so that in case of a refinement the values corresponding to a less refined grid can be

harnessed in a more refined grid. Figure (5.11) illustrates two example sets of translational

144

target volume

query volume

Figure 5.12: Convention for the translational sampling of shifts of query versus target
volume, rendered in two dimensions. The blue dots represent different sampling nodes.

nodes. Given these rules, every further level of refinement has 23 = 8 times the number of

nodes of the preceding level. The nodes by themselves need to be scaled to cover a specific

volume, the correct normalization factor for this case can be found in (4.29). Since these

translational nodes are to be used for quadrature to measure metrics pertaining to the

whole 6 dimensional sampling and these metrics in turn are to be used to compare different

sampling scenarios (e.g. parameter choices, scores, structures), the scaled version of the

nodes should be the same for a given target density, lest the different results cannot be

compared anymore. This requires a convention regarding the translational space of target

and query density that is independent from the geometric shape of the query density.

Figure (5.12) illustrates this convention.

5.5.2 The rotational grid

As outlined above the rotational nodes of choice are the McEwen-Wiaux nodes, defined

as

αa =
2πa

2M − 1
, with a ∈ 0, 1, . . . ,M − 1 (5.1)

βb =
π (2b+ 1)

2L− 1
, with b ∈ 0, 1, . . . , L− 1 (5.2)

γg =
2πg

2N − 1
, with g ∈ 0, 1, . . . , N − 1 (5.3)

Different choices of M,L,N will result in different sets of nodes. The higher their values,

the more fine-grained the rotational grid is. To enable refinement it is sufficient to double

M and N , yet this is not possible for L. To guarantee that the nodes of a more refined

grid contain the nodes of all less refined grid, the following refinement procedure has been

145

Figure 5.13: Three different degrees of refinement, all nodes in a grid left of the shown
grids are contained in that grid. The subdivision tuples are, from left to right, [8, 5, 8],
[16, 14, 16] and [32, 41, 32].

defined:

M −→ 2 ·M

L −→ (3 · L− 1)

2
+ 1

N −→ 2 ·N

By such a procedure one can obtain the refinement sequence [M,L,N] of

[2, 2, 2] −→ [4, 5, 4] −→ [8, 14, 8] −→ [16, 41, 16] −→ . . .

Figure (4.15b) shows

5.5.3 The combined grid

A combined grid for 6-dimensional coverage has been defined. Given two grids, one

translational and one rotational, and the nodes of the respective grids,

{t0, t1, t2, . . . , tT}
{r0, r1, r2, . . . , rR}

146

with T and R being the node volume of the translation and rotational grid, respectively.

Using the Cartesian product of both sets, define:

{(t0, r0), (t0, r1), (t0, r2), . . . , (t0, rR),

(t1, r0), (t1, r1), (t1, r2), . . . , (t1, rR),

...

(tT , r0), (tT , r1), (tT , r2), . . . , (tT , rR)}

as the nodes and,given the quadrature weights

{wt0, wt1, wt2, . . . , wtT}
{wr0, wr1, wr2, . . . , wrR}

define the weights.

{wt0 · wr0, wt0 · wr1, wt0 · wr2, . . . , wt0 · wrR,
wt1 · wr0, wt1 · wr1, wt1 · wr2, . . . , wt1 · wrR,
...

wtT · wr0, wtT · wr1, wtT · wr2, . . . , wtT · wrR}

This results in a 6-dimensional grid of total volume R · T .

5.5.4 Sampling node memory layout

The mapping of a specific score si to a memory address mi is a ubiquitous task and

is complicated by the existence of iterative refinement. A reallocating and copying of

values slows performance unnecessarily and clutters the source code. Additionally a lack

of convention makes a structured reference to scores next to impossible. Such a mapping

scheme has been devised and implemented. It is independent from the score type and

can be extended to intermediate results, such as in the case of the cam-score (see 5.7.1).

Generally, one would like two mappings

µ : i −→ mi

τ : i −→ (ti, ri)

with i ranging from 0 to transformation_volume - 1, so that one can consistently refer

to both the scores or intermediates and the transformations that are connected to them.

The implemented scheme has the following properties:

147

t = 7
t = 6
t = 5
t = 4
t = 3
t = 2
t = 1
t = 0

r
=

0
r
=

1
r
=

2
r
=

3
r
=

4
r
=

5
r
=

6
r
=

7
r
=

8
r
=

9
r
=

1
0

r
=

1
1

r
=

1
2

r
=

1
3

r
=

1
4

r
=

1
5

r
=

1
6

r
=

1
7

r
=

1
8

r
=

1
9

r
=

2
0

r
=

2
1

r
=

2
2

r
=

2
3

r
=

2
4

r
=

2
5

r
=

2
6

r
=

2
7

r
=

2
8

r
=

2
9

r
=

3
0

r
=

3
1

r
=

3
2

r
=

3
3

r
=

3
4

r
=

3
5

r
=

3
6

r
=

3
7

r
=

3
8

r
=

3
9

r
=

4
0

r
=

4
1

r
=

4
2

r
=

4
3

r
=

4
4

r
=

4
5

r
=

4
6

r
=

4
7

r
=

4
8

r
=

4
9

r
=

5
0

r
=

5
1

r
=

5
2

r
=

5
3

r
=

5
4

r
=

5
5

r
=

5
6

r
=

5
7

r
=

5
8

r
=

5
9

r
=

6
0

r
=

6
1

r
=

6
2

r
=

6
3

r
=

6
4

r
=

6
5

r
=

6
6

r
=

6
7

r
=

6
8

r
=

6
9

r
=

7
0

r
=

7
1

r
=

7
2

r
=

7
3

r
=

7
4

r
=

7
5

r
=

7
6

r
=

7
7

r
=

7
8

r
=

7
9

Figure 5.14: Illustration of the memory layout of a grid with a translational refinement
level of 2 and the two rotational refinement levels of [2,2,2] and [4,5,4].

1. It enables arbitrary degrees of translational refinement.

2. It enables degrees of rotational refinement up to a maximum degree.

3. It is contiguous in memory and easily adopted to varying tasks.

Figure (5.14) shows an example of a small memory layout. The memory layout is to

be understood as a contiguous linear memory section. The linear address of a given ith

transformation can be calculated like so:

mi = ri ·R + ti

with R number of rotations

ti = txi + tyi · Tx + tzi · Tx · Ty
with (txi , t

y
i , t

z
i) the 3D-index of a translation

and Tx, Ty the number in x and y direction

n = Rref − s− 1

with Rref the total rotational refinements and s the current level

ri = rxi · 2n · Lm ·Nm + rzi · 2n · Lm + ryi · 3n −
1− 3n

2

with Lm and Nm the respective indexes of the maximal

rotational refinement level and (rxi , r
y
i , r

z
i) the discrete index of the rotation.

The translation index (txi , t
y
i , t

z
i) can be translated into a translation by accessing the

respective nodes (such as Chebyshev nodes), similarly the rotational index (rxi , r
y
i , r

z
i)

corresponds to a rotation specified by three parameters, such as the Euler angles (see 4.2.3)

and a set of nodes such as the McEwen nodes (see 4.36)). The rotation and translation

indexes are be derived by the standard reverse linearization procedure as outlined in 3.9.

For purposes of quadrature the indexes can be mapped to the weights as given in 4.28

and 4.36.

148

5.6 Detection of local optimal scores

In many cases the modeler will evaluate the scoring distribution by assessing the local

score maxima or minima. It is likely that the structures will placed near these optimal

points during the model sampling step in the Assembline pipeline (see 2.5.3). For entropy

measurements the optimal points are also important, since their surrounding region is

likely to be information-rich. In the current implementation of Assembline the Chimera

FitInMap tool is used, which itself uses a gradient descend method. The gradient is

essential because without it one would rely on pure chance to find local optimal points and

would have to ascertain their optimality in a different manner. Not all scores, such as the

envelope score or the Chamfer distance (see 2.5.5) allow for the formulation of a gradient.

This section introduces a so called pattern search algorithm and its implementation, which

provide a possibility to find local optimal points independent of the nature of the scoring

method.

5.6.1 General principle and implementation

The descend (or ascend) algorithm is based on a simple local optimization by adaptive

exhaustion of the 6-dimensional search space and a quaternion based representation of

the search space, which allows for an ease of movement within the search space.

The construction of the 6-dimensional search grid is based on an extension of the ap-

proach found in [75] and explained in 4.2.3. Figure (5.15) illustrates the following descrip-

tion. Four cubes are used to represent the rotational space and a further cube is used for

the translational space. These five cubes can be easily used to construct global grids or

local neighborhoods. Every pair of points consisting of one point within the translational

cube and one point within either of the rotational cubes uniquely represents a transla-

tion coupled with a rotation. The value of this representation lies firstly within the fact

that closeness within the cubes implies closeness within the 6-dimensional search space,

secondly the easy computational representation of points in cubes and lastly the ease of

conversion from the left hand side to the right hand side of figure (5.15). This conversion

is detailed in 4.2.3.

The actual optimization is carried out by constructing small, adaptive, local search grids

around initial positions. This is illustrated for a two dimensional example in figure (5.16).

The brighter areas of the density in this figure represent more optimal values. At the

start of the optimization an initial grid is constructed using the method outlined above.

One of the initial grid positions is symbolized by the center blue circle in figure (5.16

(A)). Starting from this position, a local grid is constructed. In the 6-dimensional case

the method outlined above is used again. In the illustration (5.16 (A)) this local grid

149

Translation grid × Rotation grid

= 6-d search grid

Translation grid × Rotation grid

= 6-d search grid

projection onto S3

Figure 5.15: An illustration of the 6-dimensional search grid construction.

(A) (B) (C)

Figure 5.16: Illustration of the adaptive local grid search. Bright patches correspond to
a better score.

150

corresponds to the 4 off-center blue points. The score is evaluated at all 5 points . The

grid point with the optimal score (green) is selected to be the next initial position. In

(5.16 (B)) another, smaller grid is constructed and the procedure is repeated. In (5.16

(C)), the green grid point is already quite close to one of the optimal points. The algo-

rithm will terminate if the difference between two successive optimal approximations ist

smaller than some preset value ε.

A number of observations are in order:

1. The initial position and the local adaptive grid effectively define a search volume. Its

size is defined by the initial search grid. A more fine grained initial search grid will

lead to smaller individual search volumes. The search grid adaption per iterative

step is constructed in such a way that in principle every point within an individual

search volume can be reached.

2. The algorithm will yield per initial position either a point at the edge of the indi-

vidual search volume or an ε-approximation of one of the local optimal points. To

ensure the approximation of all optimal points, one would need to choose a more

fine grained initial grid.

3. The algorithm is independent from the scoring method, which can be plugged in at

the appropriate place in the workflow.

4. The algorithm is independent from a predefined search grid in so far as that any

given transformation (tranlsation and rotation) can in principle be reached.

5. Every dimension is halved per iteration, resulting in a rapid approximation rate.

This is advantageous in a 6-dimensional space.

5.6.2 GPU implementation

Figure (5.17) depicts the workflow of the adaptive optimization algorithm. The core

loop is run entirely on the GPU using dynamic parallelism (see 3.3.5). Within the loop

the most important steps are the construction of local search grids as discussed above,

the scoring and the evaluation of the scoring afterwards. Each of these steps is run for

multiple instances simultaneously. At the end of each run, the convergence is assessed. If

one particular search instance is seen to be convergent, it will not be updated anymore

while the non convergent search instances are still being updated. This way a considerable

speedup is achieved. If multiple GPUs are present in the system, the workload is split by

dividing the set of initial search grid points.

151

load data and initialize resources

construct initial search grid

initialize scoring resources

construct local search grids

calculate score

find optimal grid points

check for convergence

end if converging

Figure 5.17: Workflow of adaptive optimization algorithm.

5.6.3 User interface and benchmark

The implementation offers a command line interface:

cam_descend target.mrc query.mrc target_thresold

Further parameters that are currently hard coded and not exposed are:

• query threshold - density threshold for the query density.

• M - The degree of the initial rotational search grid.

• d - The maximal distance of grid points in the initial translational search grid.

The output of the program is a list of triples (translation,rotation,score), the ro-

tations encoded as quaternions (see 4.2.3). One of these triples will be output per initial

search grid point. Each triple represents one possible local optimal point. The pro-

gram automatically assess how many GPUs are present on the system and distributes the

workload. Should there be multiple GPUs, multiple output files in the csv format will be

created.

The program was tested on the TFIIIC data set (5.1). The target density map was a lower

resolution version (annoted with 10 Å of the τA complex. A representative density map

was created for the T131 TPR 5AEM using the density generator outlined above (5.4),

the resolution parameter was set to 5.0. The selected scoring method and implementa-

tion was the masked cam score, as outlined in (5.7.1). The initial parameters were set to

152

Figure 5.18: The top scoring transformation is applied to the query density and placed
within the target density reference frame. The query density is shown in pink.

M = 2, d = 30.0, eps = 0.001, resulting in a number of 256 initial search grid points.

The hardware the code was run on are 4 GPUs of the type NVIDIA GeForce RTX 3090.

Figure (5.18) shows the top scoring solution, which is confirmed to be close to the actual

position (see 5.1). The average time of the execution is taverage = 1.86484 s.

5.7 Parallel Implementation of scoring functions

The scoring functions (see 2.5.5) can be seen as the fundamental “measurement” of sys-

tematic fitting (see 2.5.5). They are calculated at least once per spatial (rotation and

translation) sampling node (see 2.5.5). Some of them are computationally expensive and

all of them are amenable to parallelization by dint of the underlying data types (see 3.2.2

and 3.2.1). This is the rationale for an implementation of scoring functions on parallel

computation devices, which will be described in this section.

5.7.1 The masked correlation-about-mean score

The masked cam-score is one of the most utilized scoring methods (see 2.7) and is inte-

grative to the Assembline pipeline. Also, the cam-score is a more sophisticated version

153

of the cross-correlation score (see 2.5) and the overlap score (see 2.4), meaning an imple-

mentation of the cam-score can be turned into an implementation of the other scores by

simplification of the source code. The implemented version of the cam-score is calculated

by

cam (q, t) =
〈q− qave|t− tave〉
‖q− qave‖ · ‖t− tave‖

(5.4)

where the average refers to only to areas where the query density q is defined. Figure

(5.19) shows an example situation of a query density situated at some position of a target

density, for illustrative purposes these densities are one-dimensional. Equation (5.4) shows

that two averages have to be calculated, subtractions, a scalar product and two norms.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2 query
target

Figure 5.19: Two one dimensional illustrative densities, a target and a query.

Figure (5.21) elucidates some of the intermediate steps of the cam-score calculation as

implemented. A few notes are warranted.

• The scalar product 〈q− qave|t− tave〉 and norms ‖q − qave‖, ‖t − tave‖ operations

are normally modeled as sums. However, on a large enough, continuous volume,

they can be seen as integrals and in turn approximated by numerical quadrature, as

outlined in figures (5.21a, 5.21c and 5.21f). This has the advantage of being com-

putationally cheaper. The values at the quadrature nodes (see 4.28) are calculated

through use of texture memory (see 3.3.3), again for computational efficiency. The

number of nodes will determine the “resolution” of the representation of the under-

154

transform

blockIdx = (0,1) blockIdx = (1,1)

blockIdx = (0,0) blockIdx = (1,0)

query target

Figure 5.20: Depicted is the parallelization principle employed in the cam-score ker-
nels. The red dots symbolize the Chebyshev scanning nodes, the dashed blue squares the
blockIdx-sets that handle the single nodes. Every kernel in the cam-score implementa-
tion uses this scheme.

lying density. This method has the side effect of avoiding unnecessary information

of oversampled densities.

• The calculation of qave (cf 5.21a) has to be performed only once. After that, it is

only needed to determine q− qave for the scalar product. It is therefore performed

outside of the main loop.

• The average tave has to be calculated in the domain where the query density q is

defined. Therefore, the “scanning” nodes, which evaluate the query density are the

sole input, together with the specific transformation that is being scored and the

texture object representing the target density t, which is needed for the calculation

of the value tave. This means that the scanning nodes and their respective trans-

formations have to be accessed regularly. This suggests to save them in register

memory, the fastest memory type, instead of global memory (see 3.3.1). Figure

(5.20) shows the basic principle of this parallelization scheme.

• Partition the Chebyshev scanning nodes into sets, and index these sets using the

three-dimensional intrinsic variables blockIdx.x,blockIdx.y,blockIdx.z and

threadIdx.x,threadIdx.y,threadIdx.z (see 3.3). Then, loop over all possible

transformations within the kernel, for each transform create a copy of the scanning

nodes to the appropriate target coordinates and calculate the contribution of these

nodes to the quantities mentioned (scalar product, the norms) above and save them

to the global memory using atomicAdd operations (see 3.3.4). When the kernel is

run successfully, the contribution of each node will be accumulated at an appropriate

place in global memory, the address of the place signifying the transformation it

expresses.

155

2 4 6 8

0.5

1

1.5

2
query

∑n
i=0wi · f(xi) = 0.5338

(a) Quadrature of the query to find the
average value qave.

2 4 6 8

−1

−0.5

0.5

1

−0.5338

query-ave

(b) Shifting of the query to obtain q− qave.

∑n
i=0 wi · f(xi) = 0.5231

2 4 6 8

0.5

1

1.5

2
target

(c) Quadrature of the target in the domain
where the query is defined to obtain tave.

−0.5231

2 4 6 8

−1

−0.5

0.5

1
target-ave

(d) Shift of the target to obtain t− tave.

2 4 6 8

−0.4

−0.2

0.2

0.4
(target-ave)·(query-ave)

(e) Forming (t− tave) · (q− qave).

∑n
i=0 wi · f(xi) = 0.01576

2 4 6 8

−0.4

−0.2

0.2

0.4
(target-ave)·(query-ave)

(f) Calculating 〈t− tave|q− qave〉.

Figure 5.21: Illustration of the calculation of the masked cam-score.

156

u_ave_scan<<<grid_dim,block_dim>>> calculating uave

calculating u− uaveu_norm_scan<<<grid_dim,block_dim>>>

calculating vavev_ave_sweep<<<grid_dim,block_dim>>>

calculating |v − vave| and 〈v − vave|u− uave〉u_t_v_sweep<<<grid_dim,block_dim>>>

calculating 〈v−vave|u−uave〉
|v−vave||u−uave|cam_score<<<grid_dim,block_dim>>>

transformations

Figure 5.22: Call pattern of the implementation of the cam-score.

• As figure (5.19) indicates, the quantities needed to calculate the cam-score partially

build on each other, so they have to be calculated in sequence. One either calcu-

lates these quantities in sequence per transformation or in a parallel manner for all

transformations at the same time. As hinted at in the last bullet point, this is the

approach taken here.

• The Chebyshev scanning nodes might be scaled to any volume necessary (see 4.29.

The choices for texture fetching (cf 3.3.3) are is between [0, 1]× [0, 1]× [0, 1], which

would amount to the use of normalized coordinates, or pixel dimension coordinates.

The former choice does not work well with rotations and is disregarded. Initially,

the nodes are shifted to be in the range [−0.5 · pixeldim, 0.5 · pixeldim], so that

the rotational part of the transformation can be carried out around the origin (see

4.2.3).

Figure (5.22) show the complete call structure of the cam-scoring implementation. The

kernels operate in a very similar manner, figure (5.23) shows an representation of such a

typical kernel layout. The other kernels differ only in certain details, so their schematics

are omitted. The use of register memory for the much-used nodes and of shared

memory for the transformations stand out. The latter are saved to shared memory since

they need to be accessed by multiple threads. The transformation grid is iterated by two

indexes, r for rotations and t for translations. The latter are situated in the innermost

loop, since a translation is computationally less intense than a rotation. The indexes

r and t can be uniquely mapped to specific rotations and translations respectively, the

double-loop structure effectively creates the Cartesian product of both indexes, resulting

in a transformation grid. Each thread handles a specific Chebyshev scanning node, there

are two more float3 data structures per thread allocated in the register memory, to

be able to keep the original node coordinates and avoid retrieving it again from global

memory.

157

n1d
0 n1d

1 n1d
2 n1d

3 · · · w1d
0 w1d

1 w1d
2 w1d

3 · · ·

n3d
0 n3d

1 n3d
2 n3d

3 · · · w3d
0 w3d

1 w3d
2 w3d

3 · · ·

scan nodes: {threadIdx.x,threadIdx.y,threadIdx.z} += 8

rotations r < rot_vol, r += 1

r0 r1 r2 r3 r4 r5 r6 r7 r8

rotate

n3d
0 n3d

1 n3d
2 n3d

3 · · ·
translations t < trans_vol, t += 1

t0 t1 t2

translate

n3d
0 n3d

1 n3d
2 n3d

3 · · ·

target texture request

w_i*target(n_i)

i = stride*t + r

s0 s1 s2 s3

s0 s1

s0

v0 v1 ri

construction of 3D nodes and weights
from 1D nodes and weights to register

rotation as matrix to shared

translatiom as vector to shared

reduction

Figure 5.23: Schematic of the cam-score vave-kernel. Blue denotes global, green shared

and red register memory.

158

User interface

Two command line interfaces and one visual evaluation tool have been implemented. The

command line interfaces mirror the basic usage needs of the modeler engaged in systematic

fitting. The respective interfaces are

./cam_fit target_file query_file.pdb output_file.csv target_threshold

resolution solution_num transl_refine rot_refine scan_refine

./cam_fit target_file query_file.mrc output_file.csv target_threshold

solution_num transl_refine rot_refine scan_refine

Both interfaces are visibly similar, the first serves the fitting of pdb and the second of mrc

files. The parameters are to be interpreted in the following manner:

1. target_file: This must be any existing mrc file. The file specified by the query

will be fitted systematically against this file.

2. query_file.pdb and query_file.mrc: This must be any existing mrc or pdb file.

This file will be fitted systematically against the target file.

3. output_file.csv This file will contain the top scoring results. It will also con-

tain the paths to both target and query file. The results are lines of the form

t0,t1,t2,v0,v1,v2,a,s, all floats. The first three numbers specify the transla-

tion in accordance with the convention outlined in (5.5.1). The next four numbers

specify the rotation in the axis-angle representation (see 4.2.3), the angle being

specified in terms of radians. The last number specifies the score.

4. target_threshold: The density threshold used for cropping of the target volume.

Since systematic fitting is more efficient in a smaller search space it is advisable

to crop the target density. This parameter specifies the density value below which

other density values can be ignored and the target density will be cropped so that

none of these minor values is part of it anymore. Since the data represents an

electron density, 0.0 is always a valid choice.

5. resolution: This float parameter is only applicable in the case of a pdb query

file. It determines the spread of the Gaussians used in modeling a density from a

set of atoms (see 3.2.3).

6. solution_num: The maximum number of solutions that will be written to the

output_file.csv.

159

(a) Refinement level (4,3). (b) Refinement level (5,4). (c) Refinement level (6,3).

Figure 5.24: The output of increasing refinement levels exemplified.

7. transl_refine: The degree of refinement of the translational shifts, a higher num-

ber will produce a finer grid in the sense of (5.5.1).

8. rot_refine: The degree of refinement of the rotational “shifts”, a higher number

will produce a finer grid in the sense of (5.5.2).

9. scan_refine: The degree of refinement of the Chebyshev nodes used to “scan” the

target and query density. A higher number will result in a more faithful represen-

tation yet might also lead to oversampling.

For direct visual inspection there is an option which will output the PDB files which

correspond to the transformations of the top fits in output_file.csv. Figure (5.24)

depicts some of the results of the consistency test (see 5.26).

Benchmarks

A number of benchmarks have been completed to gain a general idea of the performance

and the functionality of the implementation. Figure (5.25) depicts a speed test, the

measure of speed being #transformations
second

. The varied value on the x axis is the level of

refinement of the scan nodes, which determines the degree of detail that is being assessed.

This benchmark has been run on 8 GeForce RTX 3090 devices and the framework to

submit the workloads to the devices was as described in (5.3). The constance of the first

three degrees of refinement stands out, suggesting no loss of performance up to the fifth

degree and therefore setting a reasonable default.

Figure (5.26) shows the consistency of the cam-score. A random, real, non-symmetric

density map of a structure has been chosen and has been fitted to itself with growing

degrees of search refinement. A consistent score should always assign the best score

for the identity transformations. Due to the nature of the McEwen rotational nodes

(see 5.5.2) and the Chebyshev translational nodes (see 5.5.1) the identity solution (t =

160

3 4 5 6
0

50,000

100,000

150,000

refinement degree of scan nodes

tr
a
n

sf
or

m
a
ti

o
n

s
sc

o
re

d
p

er
se

co
n

d

Figure 5.25: Speed benchmark with different degrees of scan node refinement.

(2
,2
)

(3
,2
)

(3
,3
)

(4
,2
)

(4
,3
)

(4
,4
)

(5
,2
)

(5
,3
)

(5
,4
)

(6
,2
)

(6
,3
)

0.7

0.8

0.9

1

refinement degree of transformation nodes

ca
m

sc
or

e

Figure 5.26: Consistency measurement for different degrees of rotational and translational
search node refinement.

161

(a) A density. (b) A derived envelope.

(c) Least distances. (d) Least distances as density.

Figure 5.27: Illustration of the difference map procedure.

(0.5, 0.5, 0.5), r = (0, 0, 0)) is not part of any sampling set. With growing search grid

refinement degrees the cam-score approaches the best possible score, which is 1.0.

5.7.2 The chamfer distance score

A implementation of the Chamfer distance (see 2.5.5) as a score for systematic fitting

has been accomplished. The transformational sampling and the process management are

discussed in (5.5.1) and (5.3), respectively. Instead of calculating the minimum distance of

each pixel belonging to one surface to any pixel belonging to another surface, as required

by the definition of the Chamfer distance, an intermediate step has been taken to reduce

computation time. This intermediate step uses the fact that the minimum distance of any

pixel on the target map to the target surface does not change. Therefore it is possible to

define a difference map, which is defined by the requirement that every pixel holds the

distance to the nearest pixel on the surface of the original map. Pixels that are already

162

c += 1, c < total from chunks

i += threadDim.x, i < |from chunk|*|to chunk|

from pixels

chunk

to pixels

convert to pixel coordinates

calculate distance

atomicMin

difference map

Figure 5.28: Schematic of the difference map kernel.

on the surface hold the value 0.0. If another surface is now placed, under an arbitrary

transformation, on the distance map, every pixel of that surface will map to a pixel on

the difference map and the Chamfer distance can be calculated by adding up the values

of the mapped-to pixels. In this way, the smallest distances are calculated once and once

only independent of the number of query placements in the target map, resulting in an

overall gain of computational speed.

Figure (5.27) shows the procedure of creating a difference map. A initial density map

(5.27a) is turned into a surface (5.27b) by specifying two density thresholds t0 < t1

and selecting all pixels whose values fall in this range. Subsequently one calculates for

every pixel the minimum distance to the next pixel belonging to that surface (5.27c) and

assigns the magnitude of that distance to the original pixel (5.27d). A GPU kernel has

been constructed and implemented to deal with this expensive operation. Figure (5.28)

shows the schematic of this kernel, which operates the following way:

• After a surface has been defined, the pixels fall into two classes: The pixels belonging

to the surface and the remaining pixels. The minimum distance to the next pixel

163

(a) No distance to surface. (b) Low distance to surface. (c) Higher distance to surface.

Figure 5.29: Slices of the same distance map and surface at different density threshold
settings as rendered in Chimera.

on the surface of the former class is trivially 0. Additionally, all pixels of the latter

class are not valid “target” pixels and do not need to be regarded as such. The

kernel therefore starts with the linear indexes of these two classes of pixels. The

linear index, together with the geometry of the density map (see 3.2.2) determine

the geometric position of each pixel and therefore the distance between two pixels.

• Without further information about the intrinsic geometry of the surface all pixel

not on the surface (from_pixels) have to be tested against all pixels on the surface

(to_pixels). This is done by dividing both of these sets into chunks. The geometric

position of a chunk of the to_pixels is written as float3 data instances to the

shared memory to reduce computational time. So every block of threads defined

by this kernel holds a subset of the to_pixels and will iterate over a chunk of the

to_pixels.

• This is what happens in the inner loop. For every from_pixel and every to_pixel

(still in the shared memory) of their respective chunks the distance is calcu-

lated. An atomicMin operation is used to compare the distance values in the

difference map memory range in global memory. This memory range has been

initialized with FLT_MAX values, the maximum possible float number, so that it is

guaranteed to be minimized by at least one value.

Figure (5.29) shows a negative stain density maps of the TFIII protein complex and a

surface defined by the two thresholds 0.0395 and 0.07. Figure (5.29a), (5.29b) and (5.29c)

show how the visible density values retract the higher the volume density cutoff is chosen.

This corresponds to the fact that the difference map holds the minimum distances, which

also can be seen by the fact that the isosurfaces of the difference map are parallel to the

out layer of the surface.

Trivially the computation time varies with the surface size. A command line interface

which produces surfaces and the distance map has been created for testing purposes:

164

diffmap input.mrc outfile_name.mrc t0 t1

The thresholds t0 and t1 correspond to the threshold mentioned above. input.mrc is

the input density file and outfile_name.mrc is the location and name of the resulting

difference map. Additionally, the file out_file_name_surface.mrc will be generated. It

holds the surface defined by input.mrc, t0, t1 and the procedure defined above.

User interface

The user interface of the Chamfer score fitting engine is a command line interface:

./chamfer_fit target_file query_file.pdb output_file.csv target_threshold_0

target_threshold_1 query_threshold_0 query_threshold_1 resolution

solution_num transl_refine rot_refine

The interface is similar to the interface of 5.7.1, with the added parameters of the respec-

tive thresholds for query and target.

Benchmarks

Extensive benchmarks have been undertaken. The following results record timing bench-

marks which were conducted on 8 GeForce RTX 3090. The fitting task involved fitting

a density map of pixel dimension [90,54,90] to itself. The defined surface consisted

of 5.39% of the total pixels. Figure (5.30) shows the results of those benchmarks. While

the alternative - recalculating the distances for every transformation that is scored - is

not tested, it can be said that with higher transformational sampling refinement the com-

putational efficiency gain increases since the likelihood that pixels will be covered more

than once increases also. On the same setup and the same test runs an accuracy test has

been performed. The best possible result for a Chamfer score is 0. Figure (5.31) shows

the Chamfer score for varying transformational refinement degrees. With greater degrees

of refinement an convergence towards 0 is noticeable.

5.7.3 The envelope score

The envelope score has been implemented for a GPU environment. Due to the simplicity

of the score and its implementation, only a short description of the latter will be given.

165

(2
,2
)

(3
,2
)

(4
,2
)

(5
,2
)

(6
,2
)

(3
,3
)

(4
,3
)

(5
,3
)

(6
,3
)

(4
,4
)

(5
,4
)

200,000

250,000

300,000

350,000

400,000

450,000

refinement degree of transformation nodes

sc
o
re

s/
se

co
n

d

Figure 5.30: Scoring speed measurement for different degrees of rotational and transla-
tional search node refinement.

(2
,2
)

(3
,2
)

(3
,3
)

(4
,2
)

(4
,3
)

(4
,4
)

(5
,2
)

(5
,3
)

(5
,4
)

(6
,2
)

(6
,3
)

20

40

60

80

refinement degree of transformation nodes

ch
am

fe
r

sc
or

e

Figure 5.31: Scoring accuracy measurement for different degrees of rotational and trans-
lational search node refinement.

166

• Per definition this scoring method only works on queries that are represented as

particles. This can be circumvented by interpretation of a the pixel coordinates of

a density map as particles.

• After a threshold is defined for the target density, an “envelope” density can be

defined. It has the same dimensions as the target density, its values however are

integers defined according to the rules laid down in 2.5.5.

• Due to the data type of the envelope density being integer and its values being

within a very small range, this data structure can be allocated on the GPU mul-

tiple times without any problems. These multiple allocations can be regarded as

different “workspaces”, where the envelope scores of different transformations can

be calculated in parallel.

• For every transformation t the coordinates of the particles of the query will be

transformed according to t and subsequently be “imprinted” on the envelope density

by first mapping their transformed coordinates to the geometric volume of a given

pixel within the envelope density and then changing the value associated with the

pixel according to the rules laid down in 2.5.5.

• Due to the facts that one the one hand, typically the number of pixels will exceed

the number of particles by far and on the other hand, the envelope density will have

to be restored to its original state to score the next transformation, the indexes

of the “imprinted upon” pixels are saved. This way, only these pixels have to be

restored in the end.

• Once all particles have been imprinted this, the values of the envelope density are

summed up and the result is written to global memory.

• Using the earlier saved indexes, the envelope density is restored to its original state.

5.8 Connected Components Labeling

A three-dimensional version of the two dimensional CCL-algorithm which was described

in [66] in the form of pseudocode was adapted and implemented. The general kernel

structure as described in 3.2.4 was kept and adapted to the problem of three-dimensional

densities (see 3.2.2). No existing version of the two dimensional implementation is avail-

able to the knowledge of the author, so this implementation can be seen as novel. First,

the description of the four kernels will be given and subsequently some notes on the

usage of the implementation will follow.

167

0
3

6

0
3

6

0
3

3

0
3

6

1
4

7

2
5

8

0
3

6

1
4

7

2
5

8

while labels change

initialize local labels in shared memory

load segmentation to shared memory

initialize segmentation in shared memory with −1

each thread explores its neighorhood

Figure 5.32: CCL-kernel1 mechanisms illustrated.

5.8.1 Structure of the GPU kernels

As stated, the basic functionality of the kernels was maintained. Therefore, ccl_kernel1

solves the task locally in subvolumes. Figure (5.32) illustrates the basic principle. The

illustration itself depicts the problem in two dimensions, while the implementation proper

is set in three-dimensional space. From top to bottom, the essential steps are as follows:

• Two ranges of shared memory are allocated: One for the local copy of a segmenta-

tion subvolume of the size 10×10×10 and one for the local labels corresponding to

that subvolume, the size being 8× 8× 8. The different sizes are due to the fact that

later every thread needs will “run through” the labels and segmentations and check

168

their respective neighbors. By choosing the segmentation array slightly bigger, one

can ensure that every pixel has a well defined neighbor.

• In the beginning, the shared segmentation array is filled with −1-values, to later

distinguish the edge region from the actual segmentation subvolume.

• Then, a specific subvolume is loaded into the shared segmentation array. The

position of this subvolume in the total segmentation volume depends on the internal

variable blockIdx. The total number of blocks is therefore determined by the size

of total segmentation volume. Additionally, the shared label array is initialized

with local labels ranging from 0 .. 511. The last initial step is the allocation and

initialization of a shared memory field that will be used as a flag to indicate a

change in the local labels.

• At this point, the main loop starts. Each one of the 512 threads performs the same

actions per iteration of the loop. It checks every of its 26 neighbors, whose position

in linear memory is stipulated by the standard convention (see 3.2.2). If a pixel

and one of its neighbors belongs to the same segments, the UnionFind operation

will be run with these two pixels as input (see 3.2.4), therefore changing their label

and updating the label array. If this pixel pair does not already share the same

label, the above mentioned flag will be set to 1, indicating that labels have changed.

In this case, the loop will be run again. This means effectively more work, since

in the worst case (depending on the geometry of the segmentation), one root label

will migrate through the complete subvolume, one pixel of the 26-neighborhood at

a time. This is the trade-off for parallelization.

• Once the loop has been terminated, the local labels will be translated into a global

range, ranging from 0 .. pixel_vol-1, and written to global memory, concluding

the process of local subvolume labeling.

The successful call of kernel1 results in locally labeled subvolumes. The next two kernels,

kernel2 and kernel3, carry out this task. kernel3 only serves to flatten the equivalence

tree once per merging iteration, which, according to [66], leads to a performance gain.

kernel2 carries out the actual merging. At its heart there is the geometric merging

scheme, which is depicted in figure (5.33). Since all subvolumes have the dimension

8 × 8 × 8 in the beginning, they can be merged by a scheme similar to figure (5.33a

[the actual degree of refinement was lowered for illustrative purposes]). At the respective

interfaces of 8 8×8×8 subvolumes the UnionFind operation is conducted, if two pixels at

one of the interfaces are of the same segment. This results in one 16×16×16 subvolume,

which subsequently is flattened by kernel3. This process will be run in parallel for all

8× 8× 8 subvolumes, resulting in 16× 16× 16 subvolumes, 8 times fewer in number. The

169

(a) Lower degree of merging refinement. (b) Higher degree of merging refinement.

Figure 5.33: Illustration of the merging scheme of kernel2.

merging scheme is written so that it is scalable by factors of 2. Figure (5.33b) indicates

this. Thus, in an iterative fashion, the 16 × 16 × 16 subvolumes can be merged again,

until the volume is merged in total.

Because of this merging scheme the original segmentation volume is embedded in a larger,

cube-shaped volume, whose pixel dimensions are powers of 2 and at least {8, 8, 8}. The

last kernel, kernel4, flattens the equivalence trees on a global level and finally provides

the complete labeling. All 4 kernels are called from a central kernel, making therefore

use of dynamic parallelism (see 3.3.5). No host interaction is required during the labeling

procedure.

5.8.2 User interface and convenience functions and tests

The programming API of the Labeler class, which contains the kernels, device functions

and data type definitions, offers two functions of convenience:

• The function to count and list the occurrence of every distinct label.

• The option to write out the segments corresponding to the labels in mrc files and

to inspect them visually.

Beyond these convenience function, a static function

170

Labeler::ccl(int * d_seg_data, uint * d_labels,uint log_2_dim,const int & gpu_index)

is exposed, where the inputs have the following meaning:

• int * d_seg_data is the segmentation. It can be binary or any number of segment

types. It is allocated on the global memory of the GPU device. It needs to be

embedded in a volume as described above. Note that the geometry of the density

needs to be maintained during this embedding.

• uint * d_labels is also located in global memory. It only needs to be allocated

and once the CCL operation is completed it will hold the labeling. It needs to be

the same size as int * d_seg_data, it will have the same geometry (each element

with a label will belong to the same pixel as the corresponding segment).

• uint log_2_dim is the pixel dimension of the embedding volume.

• const int & gpu_index is the index of the device to be used.

Due to the novelty of the implementation, several tests have been conducted in conjecture

with a possible use case. The compilation target ccl builds a binary which functions as

follows:

./ccl mrc_file threshold

The parameters are to be understood as follows:

• mrc_file: A density file in the mrc format.

• threshold: A floating point number which serves as a threshold for the density.

Using this threshold, a mask is applied to the density which serves as a segmentation

map. For every pixel which surpasses the threshold, the mask will hold a 1 and 0

otherwise.

Figure (5.34) shows a possible use case. The initial density (5.34a) is one connected volume

made up out of 8 smaller cubes, all of which have the density 3.0. 4 of the connecting

cuboids have either the density 1.0 or 2.0, as indicated. Figure (5.34b) highlights which

ones have the density 1.0, since it is the output of the ccl program with the threshold

parameter set to 1.5, it results in two connected components. Figure (5.34c) shows the

result of the program run with the threshold 2.5, so that none of the connecting cuboids

contributes to the mask anymore. The results are 8 different connected components.

171

3.0

1.0

2.0

(a) Initial density. (b) Output for t = 1.5. (c) Output for t = 2.5.

Figure 5.34: Example use of the ccl program.

Figure 5.35: An illustration of the basic principle behind the partial surface score. To the
left, the is just one,big continuous overlap. It would be scored very high as opposed to the
right placement, which has four, disconnected, smaller labels. It would score considerably
worse.

5.9 The partial surface score

The partial surface score was conceived as a reaction towards the perceived lack of scoring

methods in the context of systematic fitting of partial surfaces, which are derived from

query structures, in greater surface target, e.g. the result of a negative stain EM acqui-

sition of a protein complex. Scores that are typically suitable to match surfaces, such

as the envelope score (see 2.5.5) or the chamfer distance (see 2.5.5) do not perform well

when there is only a partial surface fit available. The concept and implementation of the

partial surface score will be outlined in this section.

172

5.9.1 Score definition

Figure (5.35) illustrates two contrasting situations in a two dimensional setting and can

be used to understand the procedure that is laid out in the following:

• Initialize a mask density M that has the same pixel dimensions as the target density

T . Initialize its values to 0.

• Define for surface for both the target by specifying two thresholds,
(
tT0 , t

T
1

)
, and the

query,
(
tQ0 , t

Q
1

)
. These two surface sT and sQ are subsets of pixels of both densities

and constitute the basic geometric objects that will be scored against each other.

Apply padding to both the target density and the mask density M .

• Apply a transformation consisting of a translation and a rotation (t, r) to the pixels

that constitute the query surface sQ. The transformation should be applied to the

coordinates (x, y, z) of each pixel as defined in 3.2.2.

• Map the transformed coordinates (x′, y′, z′) to their respective pixels within the

target surface density. There they will either coincide with pixel in sT or not. If

they are, write a 1 to M .

• Run a Connected Components Labeling routine on M (see 5.8). This will result in

a label volume L that has the same dimensions as M .

• For every label in M , count its occurrences. For the labels (l0, l1, . . . , lL−1) this will

result in a list of counts c0, c1, . . . , cL−1.

• In this step, disregard the label that marks the background. Calculate

s (t, r) =
L−1∑

i=0

bci (5.5)

with b being a suitable basis. This will be the final partial surface score associated

with the transformation (t, r).

The basis b should be chosen in such a way that the largest possible label volume VL,

being the pixel volume of the target surface sT , does not exceed the maximum floating

point value of the system. This scoring method will score the largest continuous overlap

of target and query surfaces the highest.

173

(a) The target density. (b) A placed query density plus padding.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

(c) An initial labeling.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0

1

1 0 0

0

0 1 0

1 1 0

1 0 0

0 1 0 0

(d) A segmentation of the overlap in 5.36b.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0

27

27 28 28

0

28 27 0

27 27 0

27 0 0

0 27 0 0

(e) After a complete labeling.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0

27

27 0 0

0

0 27 0

27 27 0

27 0 0

0 27 0 0

(f) Labeling cleaned of enclosed spaces.

Figure 5.36: Illustrations of the computational steps of the partial surface score.

5.9.2 Score implementation

The score was implemented in a single kernel, which calls different, complex kernels and

algorithms, thus using dynamic parallelism (see 3.3.5). Counting the label occurrences

requires a sorting step, which is a non-trivial task, especially in a parallel environment.

For this step the external cub-library, which underlies the more high level thrust-library

(see 3.3.6), has been used. The figures (5.36) and (5.37) accompany the implementation

description:

• The target surface is present as a density data structure (3.2.2), for ease of algorith-

mic design. The query surface however is only present as a set of pixel coordinates

(see 5.36a).

• The query is placed within the target density, which is padded with a number of

pixels (see 5.36b). The volume of the padding depends on the geometrical size of

174

0 0 0 27 0 0 27 0 15 0 8 15 15 27 27 0 0 0 27 15 27 0 0 15 0 0 27 0 0 8 0 0 27 27 0 0 8 0 15 8 0 0 27 15 0 27 15 0 27 0

0 27 15 0 27 0 27 27 8 27 27 0 0 0 27 0 0 27 0 0 27 15 15 27 8 15 27 0 15 15 0 15 0 0 8 27 0 0 15 8

label workspace

label workspace sort

(a) Extracting the labels not corresponding to the padding.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 8 8 15 15 15 15 15 15 15 15 27 27 27 27 27 27 27 27 27 27 27 27

0 27 15 0 27 0 27 27 8 27 27 0 0 0 27 0 0 27 0 0 27 15 15 27 8 15 27 0 15 15 0 15 0 0 8 27 0 0 15 8

label workspace

label workspace sortsort

(b) Sorting the labels.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 7 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0

0 27 15 0 27 0 27 27 8 27 27 0 0 0 27 0 0 27 0 0 27 15 15 27 8 15 27 0 15 15 0 15 0 0 8 27 0 0 15 8

label workspace

label workspace sort

(c) Calculating the adjacent differences.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 20 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0

0 27 15 0 27 0 27 27 8 27 27 0 0 0 27 0 0 27 0 0 27 15 15 27 8 15 27 0 15 15 0 15 0 0 8 27 0 0 15 8

label workspace

label workspace sort

(d) Replacing non-zero labels with their position.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 20 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0

0 16 20 28 40

label workspace

label workspace sortsort

(e) Sorting again and writing pixel volume to the last index.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 20 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0

0 4 8 12

label workspace

label workspace sort

(f) Calculating the adjacent differences, modified.

Figure 5.37: Computational steps of the partial surface score illustrated in linear memory.

the query surface and the transformational space that is supposed to be searched.

This padding is not strictly necessary, yet it circumvents a lot of if statements that

check if a transformed pixel still maps into the density. This is an example of

trading memory for computational time.

• The overlap between target and transformed query surfaces in pixels is assessed and

the mask is filled according to the rule specified in 5.9.1 (see 5.36d). This, together

with a label array that will be initiated with one individual label per pixel (within

the ccl-kernel) (see 5.36c), will be handed to a ccl-kernel that is called from within

the partial surface score kernel. Note that both the segmentation mask array and

the label array have the dimensions of the padded volume.

• The ccl-kernel performs the labeling (5.36e). There is the possibility of enclosed

spaces existing in the overlapping surface. This labels cannot be allowed to con-

tribute to the overall score. Therefore they are set to 0 by simple multiplication

with the segmentation mask (see 5.36f).

175

The next part concerns sorting and the calculation of the label occurrences. Geometrical

intuition is less important, so the illustrations will be portraying linear memory (see 5.37).

Since the function used for sorting, cub::DeviceRadixSort::SortKeys, does not allow

for in-place sorting, there are two memory ranges reserved for label processing.

• First, the labels relevant to the problem, meaning those who belong to pixels that are

not part of the padding, are copied into a smaller memory range (label_workspace_sort)

for the next steps (see 5.37a). The original, larger range (label_workspace) will

still be used, but in a reduced capacity. Since the volume of the padding can be

quite substantial, this step improves computational efficiency.

• The labels are sorted and written to the other memory range,label_workspace_sort,

(see 5.37b).

• The adjacent differences are calculated in-place (see 5.37c). This serves for “edge

detection”, to find the indexes where the labels change.

• Where the entries of the label_workspace_sort memory range are not zero, they

will be replaced by their index. This will be used to assess their occurrence (see

5.37d).

• Yet another sorting step takes place to list the index values contiguously (see 5.37e).

Yet again, the memory ranges are switched for input and output. Additionally the

total pixel volume is written to the last element of the memory range.

• Another, modified version of the adjacent difference operation is applied. Now the

final version of the label_workspace_sort contains the occurrences of the labels.

(see 5.37f).

• Now, in the last step, the summed exponent operation defined in 5.9.1 is applied by

first exponentiating the label occurrences and then summing them via a reduction

operation.

This concludes the partial surface score calculation for a single transformation. It should

be pointed out that this scoring method is extremely expensive compared to the Chamfer

distance and the envelope score (see 2.5.5).

176

5.10 Particle Alignment and RMSD Calculation im-

plementation

This section contains a description of the implementation of the parallel RMSD (root

mean square deviation) calculation and parallel particle alignment algorithms. The spe-

cific data layouts and the general description of the algorithms that were employed can

be found in 3.2.1. A general primer on GPU programming can be found in 3.3. Here I

will limit my discussion to the software itself and the applicability of parallel program-

ming in certain aspects of structural integrative modeling. Generally speaking parallel

programming shines when there are a lot of similar procedures to be executed with mul-

tiple, uniform data fields as input. This paradigm is sometimes called Single Instruction,

Multiple Data (SIMD). Structural integrative modeling employs data types that almost

exclusively refer to sets of particles or densities, which both are comprised of similar data

fields (particles and pixels,respectively), and are therefore suitable for a SIMD approach.

A straightforward example is the RMSD calculation implementation.

5.10.1 RMSD calculation

An RMSD calculation is useful to measure the similarity between 2 or more structural

confirmations of particle sets. These can be sets pseudo atoms as the result of a Monte

Carlo simulation as described above are a set of atomic structures that were deformed

in a molecular dynamics simulation. The important feature is, that there is a shared

identity between each of the particles in each of their different confirmations. I will call

this confirmation frames from hereon out (it is useful to think of them as “snapshots”).

The situation is therefore a set of P particle coordinates in F different frames is written to

memory as described in 3.2.1. If one looks at a number of different frames one is interested

on how similar they are to each other, therefore the calculation of the RMSD of every

frame i with every other frame j with i, j ∈ {0, 1, . . . ,F− 1} has been implemented. The

result I will call the RMSD matrix rmsdij. The general procedure of the core algorithm

is the following:

1. Allocate the necessary memory volumes both on CPU and GPU working memory.

The central data structures are the particle set h_particle_set (d_particle_set

on device) containing the frames and coordinates and the result of the calculations

h_rmsds (d_rmsds on device).

2. Generate or load the data to h_particle_set and copy it to d_particle_set.

177

3. Determine the blockDim, gridDim and shared_mem_volume parameters to launch

the RMSD calculation kernel rmsd. Launch the kernel providing it with the neces-

sary information.

4. After the device is synchronized, copy the contents of d_rmsds to h_rmsds and

conduct eventual further steps of evaluation.

All of these steps are straight forward except 3., which warrants further explanation.

Figure (5.38) illustrates the process within the kernel. It follows a three loop structure.

The outer loop refers to frame i, the intermediate loop to the frame j, the innermost

loop to particles p. The outer two loops correspond to the requirement to calculate the

rmsd between any two frames. While the increment of the outer loop is gridDim, which

corresponds to the number of blocks and therefore to active workers of the kernel, the

increment of the inner loop is 1. This means that every worker takes care of one frame i

and all of its potential pairings, frame j with j = 0...F-1. These two outermost loops

just serve to address the different frame pairs. The innermost loop iterates over all pairs

of particles. Its increment is blockDim, which corresponds to the number of threads

that is assigned to every worker. In figure (5.38) this number is set to 8 for purpose of

illustration. The group of threads iterate collectively through all particles in chunks of 8.

The red guide lines illustrate the actions of the first few threads in the second iteration of

the inner loop. The actual calculation of the term within the sum of the RMSD definition

is carried out as indicated in the inner, with pairs of particles of their respective frames

as input. The sum is carried out partially within the inner loop and directly written to

shared memory over the iterations of the inner loop. Green denotes shared memory and

blue global memory. When the inner loop addressed all particle pairs, the threads are

synchronized to make sure all have finished their task properly before proceeding. The

following step just adds up the values written to shared memory, reducing it to a single

value. This value corresponds now to the complete sum. Lastly, the square root is taken

and the result is written to global memory.

Some steps, which are not essential to the concept of the kernel, but to the computation

in general (such as initialization of the shared memory), have been omitted for brevity.

The kernel execution parameters are determined the following way. gridDim corresponds

to the number of workers employed and was chosen to not be smaller than the number of

streaming multiprocessors times 2 of the respective GPU. The goal is that every processor

is used to its maximum capacity. The blockDim, so the number of threads, was chosen

to be twice the warp size, for the reason that it hardly makes sense to go lower and

to provide some room for the hardware to optimize its calculations. The volume of the

shared memory is simply the volume needed for the innermost loop. It is capped by the

specific capacities of the GPU in question, generally this number will however be generous

enough to not be of concern. The optimal choice of gridDim and blockDim is subject to

178

experimentation and will vary with the specifications of the GPU. Additionally a larger

choice of blockDim would mean that every thread has less particle pairs to process. This

will affect the trade off between serial and parallel calculations. The usage of the memory

hierarchy is designed to minimize writing and reading to and from global memory (blue)

and maximize the same for the shared memory (green). use patterns. output.

s0 s1 s2 s3 s4 s5 s6 s7

pi0 p
i
1 p

i
2 p

i
3 p

i
4 p

i
5 p

i
6 p

i
7 p

i
8 p

i
9 p

i
10 · · ·

pj0 p
j
1 p

j
2 p

j
3 p

j
4 p

j
5 p

j
6 p

j
7 p

j
8 p

j
9 p

j
10

· · ·

s0 s1 s2 s3

s0 s1

s0

r0,0r1,0 ri,j

particle p, p += blockDim

frame j>i, j += 1

frame i, i += gridDim

si+ = (pix − pjx)2 + (piy − pjy)
2 + (piz − pjz)

2

block threads synchronized

reduction by summation

ri,j =
√
s0

second iteration of particle loop

Figure 5.38: Schematic of the RMSD matrix calculation kernel

Alignment by RMSD minimization

In a given situation we might not be interested in the RMSD as a measure to discern

differences but as a guide to minimize differences. Two confirmations might be the same

or quite similar and oriented differently in space or placed in different positions. This will

make comparing them difficult or impossible. The following algorithm is described in 3.8.

The data structure used to address and represent the single frames and particles will yet

again be the particle set. This time however the goal is to place and orient all frames

with reference to a single frame, so that a comparison is possible. This single frame is

arbitrarily chosen and will be referred to as the frame0. The general procedure is set as

179

follows:

1. Allocate the necessary memory volumes both on CPU and GPU working memory.

The central data structures are the particle set h_particle_set (d_particle_set

on device) containing the frames and coordinates, the intermediate matrices (Mj
i)

d_m_alphas(only on device since they are an intermediate result), the results of the

center-of-mass calculations h_coms (d_coms on device) and the result of eigenvector

calculations h_U (d_U on device).

2. Generate or load the data to h_particle_set and copy it to d_particle_set.

3. Calculate the center of mass for all frames and translate them so that the center

of mass of all frames coincides in the origin. Calculate the intermediate matrices

d_m_alphas and symmetrize them.

4. Calculate eigenvalues and eigenvectors of all matrices using the cusolver library.

5. Select the eigenvector corresponding to the smallest eigenvalue and either apply the

rotations in place on device or copy the data to the host for further processing.

As above I will not explain trivial steps such as initialization or copying. This procedure

has been implemented as three distinct host function calls roughly corresponding to 3, 4

and 5. I will describe them in order.

Step 3 can be understood as a sequence of reductions and transformations that operate

on the frames in memory. Figure (5.39) illustrates the kernel that accomplishes this.

The kernel is designed after the worker idiom. The outer loop iterates over the frames

and processes each single frame. There are gridDim instances of this loop and therefore

gridDim workers. Thus the increment of this loop is gridDim. The outer loop con-

tains three inner loops and two reduction operations. The inner loops all iterate over

the particle coordinates and are instantiated once per thread. Thus their increment is

blockDim. The first and the last loop perform a reduction operation, the intermediate

loop a transformation. As above, red guide lines indicate the actions of the subsequent

iteration of the inner loops. The first inner loop simply adds up the particle coordinates

per frame using a shared memory as a buffer. These sum are then further reduced to the

sum total. This final sum is devided by the number of particles to get the center of mass.

The second inner loop operates on the global memory of the frames and shifts the origin

to the calculated center of mass. The last inner loop calculates the alignment matrices

as indicated at 3.2.1 and sums them up. The frame0 is an input in all of these calcula-

tions, serving as a constant reference for the alignments. Before they are written to global

memory, the symmetric components are initialized to enable eigenvector calculation with

the cusolver library. The consideration regarding the optimal gridDim and blockDim

180

are the same as in the preceding section. The shared memory has to be large enough to

hold the centers of mass and the alignment matrix for every frame. The entries of the

latter are saved as double to accommodate the cusolver library. The shared memory

volume is therefore num_frames*(16*sizeof(double) + 3*sizeof(float)).

c0 c1 c2 c3 c4 c5 c6 c7

pi0 p
i
1 p

i
2 p

i
3 p

i
4 p

i
5 p

i
6 p

i
7 p

i
8 p

i
9 p

i
10 · · ·

pi0 p
i
1 p

i
2 p

i
3 p

i
4 p

i
5 p

i
6 p

i
7 p

i
8 p

i
9 p

i
10 · · ·

pi0 p
i
1 p

i
2 p

i
3 p

i
4 p

i
5 p

i
6 p

i
7 p

i
8 p

i
9 p

i
10 · · ·

p00 p
0
1 p

0
2 p

0
3 p

0
4 p

0
5 p

0
6 p

0
7 p

0
8 p

0
9 p

0
10 · · ·

c0 c1 c2 c3

c0 c1

c0

m0m1m2m3m4m5m6m7

m0m1m2m3

m0m1

m0

particle j, j += blockDim

particle j, j += blockDim

particle j, j += blockDim

frame i, i += gridDim

m0m1m2 mj

block threads synchronized

coordinates shifted by − c0
P

block threads synchronized

reduction of m_alphas by summation

reduction of centers of mass by summation

summation of coordinates

calculation and summation of m_alphas

symmetrization of m_alphas

Figure 5.39: Schematic of the center of mass and alignment matrix calculation kernel.

181

The next step is initiated by a host call after a setup of the resources necessary for

the cusolver library. The 4 × 4 matrices whose eigenvalues and eigenvectors are to be

determined are already on device and are supplied via memory address. The results are

also left on device, there is an option to copy them to the host if need be. The cusolver

library performs best when it can solve batches of similar problems, thus the whole stack

of frames is processed in parallel. The options provided by the library also enable ordered

output of the eigenvalues and eigenvectors, which is used to pick the right eigenvector to

interpret as a quaternion and subsequently as a rotation.

Once the rotations for each frame are calculated, the frames as a whole are finally rotated.

This, too, is done on the device in a double-loop structured procedure. Figure (5.40)

illustrates the implementation of this process. The outer loop iterates over the frames,

its increment is gridDim, which is equal to the number of workers. So each worker

processes a frame at a time. The first thread of each iteration is tasked to retrieve the

quaternion, which encodes the rotation, and write it to shared memory. This has the

reason that all threads must be able to access this information, since each particle of any

frame will be rotated in the same manner. Therefore it pays to have it in fast shared

memory. The inner loop iterates over the particles of each frame. Every thread rotates

a given particle, the increment is thus blockDim. The rotation itself is modeled after the

mathematical operation specified in 4.2.3. The memory volume of the shared memory

must be large enough to hold one quaternion, so 4*sizeof(float).

q00 q01 q02 p03 qj0 qj1 qj2 qj3 · · ·

qj0 qj1 qj2 pj3

pi0 p
i
1 p

i
2 p

i
3 p

i
4 p

i
5 p

i
6 p

i
7 p

i
8 p

i
9 p

i
10 · · ·

pi0 p
i
1 p

i
2 p

i
3 p

i
4 p

i
5 p

i
6 p

i
7 p

i
8 p

i
9 p

i
10 · · ·

particle i, i += blockDim

frame j, j += gridDim

write quaternion to shared

block threads synchronized

rotation transformation

Figure 5.40: Schematic of in-place rotation transformation kernel.

Environment, Tests and Benchmarks

In this section I will describe how the implementation described above are embedded in a

given computational environment. I will first describe the user perspective and following

182

that the hardware embedding.

The user has two input options:

• The command line interface. This option provides three functionalities:

– align input.rmf output.rmf

This takes an input file of the rmf format (see [27]) and aligns every frame

following the first frame to the first frame. All frames in the file input.rmf

are expected to represent the same assortment of particles.

– align input.rmf

This call pattern takes a valid rmf file as input and outputs the rmsd matrix

as a comma separated list to the standard output.

– align This runs a benchmark on the machine and outputs the results to the

file benchmark.csv in a comma separated table.

• The developers interface. This offers an interface for use in C++ source code. It

offers a similar functionality as the first interface.

– align(float4 * h_particles_4,float4 * d_particles_4, int frames,int

particle_num, int gridDim,int blockDim). This function aligns frames in

the same manner as outlined above. Additionally it is possible to align frames

with a specific focus, e.g. around one particular subunit. The last two param-

eters allow for different workflow designs for the GPU call.

– rmsd(float4 *& d_particle_set,float *& h_rmsds, int & num_particles,

int & num_frames, unsigned int gridDim, unsigned int blockDim). Cal-

culates the above mentioned rmsd matrix and saves it to h_rmsds. The last

two parameters are again for GPU configuration.

Additionally a compilation flag enables the code compilation without the IMP library,

making it independent of this particular library.

To ensure correct results of the implemented algorithms, different tests are implemented:

• cubeTest. A set of 8 particles, arranged in a cube around the origin and rotated

in 24 different orientations, covering all possible ways to rotate a cube to coincide

with itself. These are then aligned, the rmsd matrix calculated. It should be close

to 0 everywhere.

• pureTest. A set of F frames and P particles is generated by first generating one

frame using randomly positioned particles and then rotating it into F-1 additional

frames using randomly generated unit quaternions. Alignment and rmsd calculation

follow. The result should be close to 0 everywhere.

183

• rmfTest. For this test a valid rmf file is necessary. A frame is loaded from the

file, randomly oriented in the above sense, written to another rmf file (in random

orientation), loaded yet again, aligned, written to a third rmf file, loaded again and

the rmsd is calculated. The result should be close to 0 everywhere.

• rmfAlignTest. Requires a valid rmf file with F frames signifying different confir-

mations. Aligns the file and generates another rmf file as output. Loads this file, and

for every single frame: Reorients it globally according to a set of orientations which

are supposed to produce a representative sampling. Then calculates the rmsds be-

tween the supposedly aligned orientation and the first frame of the original file and

does the same for the rotated frames. The original frame orientation should yield

the minimal rmsd. In the same manner every single frame is perturbed locally by

use of a unit quaternion close to [1,0,0,0] which signifies identity (= no rotation).

Again, the unperturbed frame should yield the minimal rmsd.

All tests check out correctly in the submitted version.

To enable comparison with similar software an extensive benchmarking has been con-

ducted on a GPU of the model NVIDIA Tesla V100-GPU. The following benchmarks were

executed:

• Two processes were characterized by benchmarks. First, the align procedure which

aligns a given number of frames with a given number of particles to minimize

rmsd. Second, the rmsd procedure, which calculates the rmsdi,j matrix between

any two frames of a given number of frames with a given number of particles.

Both procedures have been characterized in three different ways, as indicated in the

following.

• The first benchmark tested the optimal combination of threads and workers by

measuring the execution time. The results are shown in figure (5.41a) for the rmsd

procedure and in figure (5.41d) for the align procedure. In both cases a constant

number of 10000 frames and 10000 particles has been selected as a representa-

tive test case.

• The second benchmark tests the behavior of both procedures under variation of the

number of frames by measuring the execution times. he results are shown in figure

(5.41b) for the rmsd procedure and in figure (5.41e) for the align procedure.

• The second benchmark tests the behavior of both procedures under variation of the

number of particles by measuring the execution times. he results are shown in

figure (5.41c) for the rmsd procedure and in figure (5.41f) for the align procedure.

184

3
2

6
4

1
2
8

2
5
6

5
1
2

1
,0
2
4

1.5

2

2.5

3

3.5

threads

lo
g
1
0

(r
u

n
ti

m
e

[s
])

8 workers
16 workers
32 workers
64 workers
128 workers

(a) Worker/threads rmsd

0 0.5 1 1.5

·104

0

20

40

60

80

frames

ru
n
ti

m
e

[s
]

10000 particles

(b) Frames rmsd

0 0.2 0.4 0.6 0.8 1

·104

0

20

40

60

80

100

particles

ru
n
ti

m
e

[s
]

20000 frames

(c) Particles rmsd

3
2

6
4

1
2
8

2
5
6

−0.5

0

0.5

1

threads

lo
g
1
0

(r
u

n
ti

m
e

[s
])

8 workers
16 workers
32 workers
64 workers
128 workers

(d) Worker/threads align

0 0.5 1 1.5 2

·104

0

0.5

1

1.5

frames

ru
n
ti

m
e

[s
]

10000 particles

(e) Frames align

0 0.2 0.4 0.6 0.8 1

·104

0

0.5

1

1.5

particles

ru
n
ti

m
e

[s
]

20000 frames

(f) Particles align

Figure 5.41: Benchmark data

185

5.11 Reinterpretation of systematic fitting results

In this section I will discuss arguments regarding a reinterpretation of the results of a

systematic fitting protocol as described in 2.5.5. These arguments result in the imple-

mentation of a general framework for systematic fitting. The latter makes only sense in

their context. I will therefore lay them out in the results section as simply and clearly as

possible, so that they might either be taken up or refuted.

5.11.1 Conceptual exposition

The scope of applicability of structural integrative modeling is limited. If the resolution

(see 2.4.4) is high enough (meaning: small details, such as the are recognizable), structural

integrative modeling is not needed. Only when it seizes to be possible to assign positions of

single atoms in residues using only information that is given by the density map alone, the

method becomes useful. As outlined above, systematic fitting plays the role of searching

the space of orientations and positions for every subunit or subcomplex for “good” fits.

This search must be ambiguous. If it were not, one could determine the position and

orientation of the query structure or map in question. The impossibility to do that is the

very reason we turn to structural integrative modeling. This ambiguity shows itself in

several aspects of structural integrative modeling:

• Ambiguity in choice of the scoring method. As outlined in 2.5.5, there are a number

of different methods to calculate the quality of a given fit. While there are heuristic

considerations of what scoring method might be best for a given case, there is no

provable or demonstrable way of making the right decision. One might even invent

a completely new score by scaling and shifting an existing one or combining two

existing scoring methods in some manner and would have no way of knowing if this

new score is “good”.

• Ambiguity in the input data. The input data might be processed in a number of

varying ways, e.g. a cryo-EM target density map might be filtered using a density

threshold, effectively omitting parts of the signal, or a query structure might be a

result of homology modeling or be broken to account for flexibility to name a few.

The consequences of this manipulations for the final models can be significant, yet

one always introduces bias at this point.

• Ambiguity in the modeling procedure. Several aspects of protein complexes are

codified in the restraints of the Monte Carlo model sampling procedure, such as

the two subunits should not occupy the same place or a certain symmetry needs to

186

be upheld. This codification in itself is ambiguous since there are more than one

ways to accomplish it. Even greater is the ambiguity in the scoring function and its

weight, were the modeler has to introduce a bias about the weight that is given to

each source of information.

These sources of ambiguity are systemic to structural integrative modeling. One may

reduce them, but never eliminate them completely. The idea at the heart of structural

integrative modeling is that different ambiguous statements about the placement of the

parts of a protein complex might complement each other and reduce the overall ambiguity.

The reduction of ambiguity as a measure of quality of modeling procedures is one of the

central arguments of this thesis.

5.11.2 Ambiguity in systematic fitting and scoring methods

Experience and intuition tell us that the result of a systematic fitting protocol holds

the most significant amount of information in a structural integrative modeling project.

The ambiguity stems from data preprocessing, the choice of scoring method and the

choice of query or target data, if multiple options are possible. To get a measure of

this ambiguity I propose to treat the results of a systematic fitting as a 6 dimensional

probability distribution. This interpretation warrants a justification.

• Two different scores, meaning the result of two scoring methods of the same query,

the same target and the same placement, are incomparable. The reason for this is

that two different scores might follow different conventions of what is the “best”

score (lowest or highest) and might extend over completely different ranges (e.g.

correlation-about-mean-score vs. envelope score). The consequence of this is that

the function values of every scoring method can only be evaluated with regard to its

own distribution. This argument does not make a statement about the comparability

of scoring methods as a whole.

• For any systematic fitting score distribution it is possible to find minimum and a

maximum. Either be theoretical consideration or by searching it computationally,

which is always possible, since scores must be well ordered. It is therefore always

possible to normalize a score distribution.

• If within a score distribution for the same query and target two scores are given,

meaning the scoring function is evaluated for two different placements, one resulting

in 0.8 and the other in 1.6, we will consider the latter score to be twice as “good”

as the former. This assumes that the scoring method favors higher scores over

187

lower scores and has its minimum at zero, but both can be achieved by shifting and

inverting the score. This means that we only care about the ratio between different

scoring function values, not the absolute value. This is a consequence of the first

point. Moreover in later stages of the structural integrative modeling procedure the

score distribution will effectively be used in this way: In the Monte-Carlo procedure

a placement whose score is twice as big as some other placements should be sampled

twice as much.

We can see that no information is lost if we interpret a scoring distribution as a probability

distribution. Thus I propose the following procedure. Let S (r, t) be a scoring function

and r and t be taken from a set of possible query placements {(r, t)0, (r, t)1, . . . , (r, t)N−1}
with N being the size of the set.

1. Find the minimum Smin and maximum Smax of S (r, t). Depending on the inter-

pretation of the score, i.e. if a high score is “good” or “bad”, transform the entire

distribution according to the following linear transformation:

S ′ (r, t) =





1
Smax−Smin

· s− Smin

Smax−Smin
if the highest score is the best

1
Smin−Smax

· s− Smax

Smin−Smax
if the lowest score is the best

(5.6)

This achieves a scaling of the values of S (r, t) to the interval [0, 1] and if necessary

an inversion of the scoring distribution.

2. S (r, t) is a sample of a 6-dimensional distribution. The underlying search space of

systematic fitting is a Cartesian product of the spaces SO(3) (representing the rota-

tions) and R3 (representing the translations), SO(3)× R3. Find an approximation

of the integral

S0 =

∫

SO(3)×R3

S (r, t) dr dt

and scale the result above S ′ (r, t)

S ′′ (r, t) =
1

S0

S ′ (r, t)

to get a probability distribution S ′′ (r, t).

Step 2 requires a numerical quadrature to calculate the integral. This is a procedure

intimately linked to the set of “measurement” positions {(r, t)0, (r, t)1, . . . , (r, t)N−1} and

will be elaborated later. The scoring distribution is now accessible for methods of proba-

bility theory. This has several advantages. Scoring distributions S1 (r, t) and S2 (r, t) that

188

arise from different situations are now comparable. This holds for a range of variations

in the basic setup. One could employ different scoring methods or two different query

structures, or different values of parameters of data preprocessing.

This provides the basis for the central argument of what a “good” scoring distribution

is. Given two different scoring distributions I define that scoring distribution to be the

better one which exhibits smaller ambiguity. This definition is very much in the sense

of the modeler. Structural integrative modelings sole purpose could be described as the

maximal possible reduction of ambiguity of possible models (the ideal case would be to

have just one possible model). Therefore we have an interest in reducing ambiguity in

this very first step of the process. The next part of the argument pertains to a concrete

definition of the intuitive term “ambiguity”.

Let S (r, t) be a probability distribution obtained from a scoring distribution in the man-

ner outlined above. Then it is possible to calculate the entropy of this distribution:

H (S) = −
∫

SO(3)×R3

S (r, t) logS (r, t) dr dt

The integral itself has again to be approximated by numerical quadrature. Entropy is

a measure of uncertainty. It has two properties that make it suitable as the measure of

ambiguity needed. It is bounded above for a uniform distribution and is 0 for a distribution

which signifies a certain outcome (see 4.3 for details). Entropy can therefore serve the

purpose of a metric of comparison between two different scoring setups. The normalized

entropy (see 4.3) can serve as comparison between sampling spaces of different sizes. The

smallest entropy will correspond to the least ambiguous scoring.

5.12 Entropy measurements of systematic fitting score

populations using model densities

A central part of this thesis is the attempt to measure the ambiguity inherent in systematic

fitting. This section describes these attempts. Several tentative entropy measurements

have been conducted to evaluate if the hypothesis laid out in 5.11 translates to actual

applications. Several visualization methods have been used to provide an accessible in-

tuition of the results. The test cases are constructed, simplified and in a sense artificial

to allow for a test of the basic hypothesis, independent from the complications that are

expected when actual data (e.g. real density maps resulting from single particle cryo-EM

or cryo-ET acquisitions and crystal structures) are used.

189

Figure 5.42: A schematic illustration the densities used for the scoring test.

5.12.1 Comparing different scoring methods

For the three of the scoring methods that are estimated to be suitable for the fitting

of surfaces, namely the Chamfer distance, the envelope score (see for both (2.5.5)) and

the partial surface score described in this thesis (5.9) a rotational measurement has been

conducted. The test case used are two densities that are congruent cubes as illustrated in

figure 5.42. The goal of this test was to evaluate of the measurement produces the expected

“peaks” and to assess wether an entropy measurement would behave as expected. The

expectation was that the partial surface score would at least outperform the other two

scoring methods that were used.

Figure (5.43) shows visualizations of the rotational samplings. The translation of the

query relative to the target is always such that both are placed in each others geometric

centers. The position and the orientation of the arrows on the sphere denote the orien-

tation of the query relative to the target and the size and color symbolize the magnitude

of the score. A large, red arrow symbolizes a high score and a small, black arrow a low

score. The two rotational sampling sets, one of the size 1776 and the other of the size

5880, where taken from [78]. Looking at the population of the arrows as a whole, a uni-

form population of equally size red arrows can be seen as the worst case with regards to

ambiguity and a heterogeneous population with regard to color and size can be seen as

an unambiguous sampling.

The specific order of rotational sampling nodes in this specific set of nodes offers another

perspective on the same data. Figure (5.44) shows the result displayed as a distribution.

The specific order of the samples is a fortunate coincidence. The differences in “peak

width” are clearly visible. Also, all 24 peaks coincide, which hints at the consistency of

all three scoring methods (see 6.3.1). The number 24 confirms a complete and consistent

sampling, since the number of possibilities to rotate a cube so that it is congruent to itself

is 24.

190

(a) The chamfer distance for 1776 nodes. (b) The envelope score for 1776 nodes.

(c) The partial surface score for 1776 nodes. (d) The chamfer distance for 1776 nodes.

(e) The envelope score for 1776 nodes. (f) The partial surface score for 1776 nodes.

Figure 5.43: Visualization of different rotational scoring as outlined in 4.2.5
191

(a) Scoring distribution for different scoring types with 1776 rotational nodes.

(b) Scoring distribution for different scoring types with 5880 rotational nodes.

Figure 5.44: Scoring distributions for two rotational sample set sizes.

Scoring method H 1776 nodes H 1776 nodes |∆H|
chamfer 0.9813 0.9295 0.0518
envelope 0.9450 0.9591 0.0141
partial 0.5917 0.6295 0.0378

Table 5.1: Normalized entropy measurements of three scoring methods and two rotational
sampling sets.

The normalized entropy was measured with the results shown in table (5.1). The nor-

malized entropy has the value range [0, 1]. 1 would represent a completely ambiguous

distribution with the lowest information content. A distinct difference between the par-

tial surface score and the other methods is visible. Also, the entropy measurement is

approximately stable, as can be seen in the third column |∆H|. A surprising result is

the negligible difference between the Chamfer distance and the envelope score. This is

potentially useful because the envelope score is computationally much cheaper than the

Chamfer distance.

5.12.2 Comparing different translational positions

To assess if entropy could be used to assess the “local complexity” of a given translational

placement of the query relative to the target a slightly more complex test case has been

192

(a) Teal target map with a cut out part of it
as a query.

(b) Teal target map with a cut out part of it
as a query, shifted to the center.

Figure 5.45: Two different translational samples of a constructed target and query.

constructed (see figure 5.45) and assessed. The chosen scoring method was the masked

cam-score (see 5.7.1). To ensure a good signal for comparisons sake the query density

has been cut out (see 5.45a) for one translation (well-fitting) and the same cut out query

shifted to the middle of the target for the second translation (ill-fitting). For direct visual

assessment the resulting sample set of SO(3) has been projected onto a rotating sphere.

The angles (α, β) of the Euler angles (see 4.2.3) are mapped onto a static sphere and

the remaining angle γ is mapped onto the time dimension, resulting in a movie that

gives an immediate apprehension of the rotational sampling. Figure (5.46) shows two

frames of the complete SO(3)-sampling, corresponding to the different two translational

placements (see 5.45) and the same angle γ0. The entropy measurement of the rotational

sampling represented by figure 5.46a resulted in a lower value than the measurement

of the rotational sampling represented by figure 5.46b. This is also visible as a more

concentrated distribution of the scoring values. It is therefore conceivable to use entropy

measurements as a metric for an adaptive search.

193

(a) “Well-fitting”, low entropy placement. (b) “Ill-fitting”, high entropy placement.

Figure 5.46: Graphical representation of the (α, β) set of a specific γ0 in a cam-score
rotational sampling. Yellow corresponds to a high score, blue to a low score.

5.13 Entropy measurements of systematic fitting score

populations using experimental data

This section contains the workflow definition and the results of entropy measurements

using the data of the TFIIIC - complex (see 5.1). After initial tests of the behavior of

entropy measurement (see 5.12) this serves to assess the use of it in practical situations.

To do this, two application cases have been tested: first, the comparison of the entropies

of different scoring methods and second the comparison of the entropies of different pa-

rameter (“resolution” parameter) choices for the query density simulation (see 3.2.3). To

accomplish both goals, the following protocol has been employed:

1. For the case of the entropy measurement regarding different parameter choices for

density simulation, the different densities have been generated using the method

described in 5.4. For the case of the entropy measurement of different scoring

methods one density has been generated using the same method and the resolution

parameter that data was annotated with.

2. The results of the search algorithm outlined above (see 5.6), that was already tested

on the TFIIIC case, were used to ensure that the entropy measurement was con-

ducted in the vicinity of a local optimum (maximum in the case of both scoring

methods).

3. An FFT-accelerated multi-GPU program has been implemented for two scoring

methods: The overlap score (see 2.4) and the masked version of the correlation-

194

about-mean score (see 2.5.5 and 2.7). For the latter, a clean definition had to be

derived first.

4. Using these programs, a large population of scores have been calculated and their

entropies have been measured using McEwen quadrature (see 4.36) for the rotational

dimension of the search space.

These points, in so far as they are novel, will be discussed briefly in the following sections.

5.13.1 Definition of the masked correlation-about-mean score

To enable efficient computation and the best possible use of the FFT-acceleration feature,

the mathematical form of the score should be simplified as much as possible. The standard

definition of the correlation-about-mean (“cam”-score) is

cam (t, q) =
〈t− t1|q− q1〉√

〈t− t1|t− t1〉〈q− q1|q− q1〉
(5.7)

Where t and q denote the target and query densities, respectively. They are understood

as vectors. t and q denote their averages over their total volume and 1 denotes the density

of respective indicator function (every entry is 1). This formulation does not allow for

masks yet. To reduce the influence of target regions, where the query is not placed for

a given transformation, on the score a query mask mq if defined for a certain threshold.

It can be applied by element-wise vector multiplication. The masked version of the cam

score now reads:

cam (t ·mq, q) =
〈t ·mq − t ·mqmq|q− qmq〉√

〈t ·mq − t ·mqmq|t ·mq − t ·mqmq〉〈q− qmq|q− qmq〉
(5.8)

Note that mq · q = q, if the query density is masked at the beginning of the processing.

The factor 〈q− q|q− q〉 only refers to the query density and does not change if the query

density is translated and rotated. Because it will be constant for all transformations, it

can be calculated before the scoring itself.

The other two factors can be simplified in a similar manner. The numerator can be

expanded like so:

〈t ·mq − t ·mqmq|q− qmq〉 = 〈t ·mq|q〉 − 〈t ·mq|qmq〉 − 〈t ·mqmq|q〉+ 〈t ·mqmq|qmq〉

195

The first two terms can be simplified via 〈t ·mq|q〉 = 〈t|mq · q〉 = 〈t|q〉. Additionally, the

scalar factors can be pulled out of the scalar products:

〈t ·mq|q〉 − 〈t ·mq|qmq〉 − 〈t ·mqmq|q〉+ 〈t ·mqmq|qmq〉
= 〈t|q〉 − q〈t|mq〉 − t ·mq〈mq|q〉+ t ·mqq〈mq|mq〉 (5.9)

Using the definition of the average , the last term can be rewritten:

t ·mqq〈mq|mq〉 = t ·mq
〈q|mq〉
〈mq|mq〉

〈mq|mq〉 = t ·mq〈q|mq〉

This term cancels out the second to last in 5.9. The numerator reads then:

〈t ·mq − t ·mqmq|q− qmq〉 = 〈t|q〉 − q〈t|mq〉

The average q is also constant and can be calculated before the actual scoring. An similar

argument can be made for the second factor of the denominator in 5.7:

〈t ·mq − t ·mqmq|t ·mq − t ·mqmq〉 = 〈t2|mq〉 −
1

〈mq|mq〉
〈t|mq〉

where t2 is the element-wise squared target density and 1
〈mq|mq〉 is again a constant.

In conclusion the only quantities that need to be recalculated per transformation are:

〈t|q〉, 〈t|mq〉, 〈t2|mq〉. As outlined in 3.1.1, these terms and similar terms for translations

of q with regard to t can be very efficiently calculated by interpreting them as samples of

two convoluted signals. This is used in the GPU implementation.

5.13.2 GPU implementation, user interface and benchmark

The preceding discussion of the mathematical procedure in conjunction with the convolu-

tion theorem discussed in 3.1.1 have been used to construct the computational workflow of

the GPU-accelerated masked correlation-about-mean score implementation, which will be

discussed here in brief. For a lot of aspects of the implementation the multi-GPU model-

ing classes and the GPU processing models outlined above have been utilized. Therefore,

the implementation can use any number of GPUs of any kind to distribute the work op-

timally. The CUDA CUFFT library has been used to calculate the three-dimensional FFT

transformation and its inverse. The implementation divides into the following steps:

• In the first step, the relevant data are loaded, initialized and masked given the

specific user input. The rotational McEwen nodes are initialized and an offset

is calculated to make sure that the user-input maximal rotation is caught in at

196

least one node. The user-input maximal scoring translation is used to cut out a

predefined window in the target density around that translation. The user-input

optimal translation and rotation need only be approximations. After initialization

of the data resources, CUDA CUFFT library function and CUDA memory management

functions are used to assess how many rotations can be calculated simultaneously

scored on the respective GPU. This information is referred to the main thread so it

can be shared with other GPUs.

• Before the actual score calculation is conducted, the quantities that have been men-

tioned to be constant in 5.13.1 are calculated and stored in memory. This includes

the averages and norms mentioned as well as the Fourier transformation of the tar-

get density and its square. To get the correct score later on, the target density must

be embedded in an pixel space of pixel dimension targetdim + querydim − 1. The

rotational offsets and local volumes, which determine which rotation is scored by

which GPU, are calculated. Finally the memory space for the simultaneously scored

rotations is allocated to enter the main processing loop.

• Figure (5.47) outlines the basic workflow of the score calculation. The figure repre-

sents what happens for one specific rotation, index by the rotation index ri. On a

given GPU g, a number Rg of rotation indexes is calculated simultaneously. This is

because the Fourier transforms are more efficiently calculated in big batches. The

calculation mirrors the mathematical definition above very closely. Once a batch

of rotational indexes Rg is scored, the result is saved to mrc and the averages are

saved to txt. Every GPU g participating in the calculation will output its own set

of mrcs files and its own averages txt file.

• In the final processing step the files produced in the preceding step are loaded and

processed as outlined in 5.11. The entropy score is then written to the standard

output.

The user interface to generate the 6-dimensional scoring distribution is self-explanatory:

cam_fft target.mrc query.mrc /working_dir/

Where /working_dir/ will hold the final result. To calculate the entropy of a given

distribution one would evoke

cam_ent target.mrc query.mrc /working_dir/

Not yet exposed but easily adaptable are the parameters that define the rotation grid and

query and target density thresholds. A program analog to cam_fft, the program ov_fft

197

q transform, mask, invert

FFT FFT FFT FFT

t t2 q′
ri

m′
ri

multiply into

T T2 Q′
ri

M′
ri

iFFT iFFT iFFT

T ·Q′
ri

T ·M′
ri T2 ·M′

ri

calculate cam

〈t|qri〉 〈t|mri〉 〈t2|mri〉

mrc cam

average

txt cam

per ri

Figure 5.47: Representation of the masked correlation-about-mean calculation workflow.
Green rectangles correspond to densities in real space, blue rectangles to densities in
complex space.

198

has been implemented to calculate distributions for the overlap score.

A preliminary benchmark has been conducted, using 4 NVIDIA GeForce GTX 3090 GPUs.

The effective number of transformations per second is 550.000.000 transformations
second

.

5.13.3 Comparison of entropies of different scoring types

The implementation of 5.13.2 was used on the TFIIIC case discussed above. A query

density was generated from the structure of the TPR-domain of τ131 (PDB: 5AEM) using

the resolution parameter 5.0. The query density was placed cropped/extended to a density

of pixel dimension (100, 100, 100) and the target density, the map of τA annotated with

10Å, was cropped around the position tmax = (29.9078, 64.0547, 61.1141) (in pixels), which

was the local optimal point found by the above mentioned adaptive search algorithm (see

5.6). A rotational grid using McEwen grid nodes of dimension (32, 16, 32) was created

resulting in 16384 rotational nodes. Due to the FFT-accelerated features of the fitting

engine described above, every possible translation of the query density against the target

density was score, by the pixel, resulting in a (199, 199, 199) scoring volume for every

rotation. In total 129.115.734.016 transformations have been scored. The rotational grid

nodes were oriented so that one of them (the one of index (0, 0, 0)) would coincide with

qmax = (0.24625, 0.36173, 0.83875,−0.32405), at the rotation containing the predicted

maximum.

This setup was used to score the overlap score and the masked version of the correlation-

about-mean score defined above. To exclude numerical noise the result of latter scoring

was also capped at a value of 0.2, which is slightly below the general noise level. While

the actual scores were calculated, the average per rotation was calculated and saved to

file. The average is needed to calculate the entropies during the next step. The scores

themselves were saved as mrc files. Together, these files were used in a separate step

to calculate the respective entropies of the scoring distributions. Figure (5.48) shows a

rendering of two different scoring densities at the rotation that was predicted to hold the

maximal score. Every pixel in these densities corresponds to a unique translation. The

difference in volume and spread is observable, which one might expect considering the

definitions of the respective scores (see 2.5.5 for an exposition).

The entropy measurement itself also reflects this.

199

Figure 5.48: A graphical rendering of two different scoring densities at a fixed rotation.
The meshed surface corresponds to the overlap score, the blue density to the masked
correlation-about-mean score. Both isosurfaces are rendered at approximately 55% of
their value ranges.

Distribution Entropy

Uniform distribution 20.248816

Overlap-score distribution 17.844624

Masked cam-score distribution 15.728468

Rotational peak distribution 8.600217

Table 5.2: Entropies for different distributions in the discussed search space.

Table (5.2) displays different entropy values for different distributions, the top and bot-

tom value are calculated from theoretical distributions. The top value is the entropy of

the uniform distribution. One can observe a lowering of entropy of the two empirical dis-

tributions in comparison to a uniform distribution, which is the distribution which holds

the least amount of information. The overlap score distribution has a distinctly higher

entropy than the masked correlation-about-mean score distribution. The bottom entropy

is calculated for a distribution which is concentrated exclusively in one rotational grid

node. Even in this unrealistic case the value is quite high. This highlights the significance

of the difference between the entropy measurements of the two empirical distributions.

This result shows that entropy measurements can be used to select on scoring method

over others, i.e. to select the optimal scoring method.

200

Figure 5.49: Entropy measurements for different resolution parameter values and some
representative renderings of the densities that were used to create the score distribution.

5.13.4 Comparison of entropies to optimize parameters

This setup was extended to measure entropies of different fitting parameters. The parame-

ter in question is the resolution parameter of the molecular density simulation. Using again

the TFIIIC-case as an example, the parameter for density generation of the query density

was set to every value of the range r = {3.5, 4, 4.5, . . . , 11}. Using these values, densities

were generated and scoring populations were calculated as discussed above. Then, the

entropies were calculated. Figure (5.49) shows the results of the entropy measurement.

A clear minimum is visible. This confirms the hypothesis that there are choices which

are better or worse in the sense defined in 5.11. Additionally, the minimum is around the

resolution parameter value 7. This differs from the annotated value of 10. If the data

is to be used in the optimal sense (as defined above), the minimum of this curve should

be chosen as a parameter value. This, together with the preceding result, shows that the

method explored in this thesis can be used to assess the information content of a scoring

distribution and therefore its usefulness in an integrative structural modeling project.

201

Chapter 6

Discussion

6.1 The TFIIIC complex modeling project

The TFIIIC modeling project exemplifies two aspects of integrative structural modeling.

One aspect is the strong dependency on suitable data. For a integrative structural mod-

eling project to succeed, all the data which limit the amount of possible models to a small

number must be present in the beginning. The procedure itself can only find models the

make the data coherent. In the case of the TFIIIC modeling project however, the data

quality reached both limits: it was, in the case of the τA-complex, “too good” data and

other techniques could be employed to solve for the structure. In the case of the TFIIIC

negative stain map however, the data was not sufficient for more definitive models.

The second aspect is the use that integrative structural modeling has as an intermedi-

ate step guiding the experimenter. If the attention of the modeler is directed at the

question: Given the current, perhaps incomplete, information, what models are the most

likely? This model ensemble then can serve as a guide for the experimenter to evaluate

the predictiveness and coherence of the accumulated data.

6.2 Systematic Fitting and Scoring functions

This discussion expands on issues raised in section 5.11. A systematic fitting protocol can

be defined by its constitutive three elements, the target, which will be a density map, the

query, which will either be a density map or a particle set, and a scoring function, whose

only limitation (for now) is to be able to process its given input. Any of these elements

comes with a set of degrees of freedom:

202

• The target density will invariably be modified by a density threshold, which is set

to be at least to t = 0, because there are some densities with negative values.

Additionally there might be image post processing operations, such as denoising

via Gaussian filter, edge enhancement via Laplace filter (see 3.1.2), cropping or

resampling. There might also be different versions of “the same” map resulting from

varying post-processing steps in the single-particle cryo-EM or cryo-ET processing

pipeline (see 2.4.2, 2.4.3).

• Similar influences underlie the query, if it is rendered as a density map. Addition-

ally the query can undergo variations that address its nature as crystal structure,

such as conformational variations via molecular dynamics or different experimental

sources, breaking it up or selecting a different structure prediction tool. In the case

that a structure must be converted to a density for the scoring function, a density

generation method and its parameters must be selected.

• The scoring function can be selected from a variety of existing scores (see [46]),

some of them require their own parameters to be set (such as the surface based

scores, to define the surface, see e.g. 2.5.5, 2.5.5).

Not only are these three aspects connected to a great number of degrees of freedom, but

their combination, which is necessary in a systematic fitting protocol, inherits all degrees

of freedom. This means that any result of a systematic fitting protocol contributes to a

great number of possible results, every one of this has some claim of being “the right one”.

In practice, the number of degrees of freedom is around 3-4 (e.g. the density thresholds of

target and query, choosing a scoring method, the “resolution” parameter for the density

map generation).

These observations inspire what can be called the central idea of this thesis: That the

best choice of parameters or scoring methods is that choice which provides the most infor-

mation. This criterion ultimately selects a distribution that is created by a triple (target,

query, scoring method). For a set target and query it therefore selects a scoring method.

It is agnostic towards the specifics of a scoring method, since it is based on the generated

distribution itself.

203

6.3 Demonstrated applications and further possibil-

ities

First applications and tentative proof of the validity of the proposed method can be seen

in results 5.13.3 and 6.5.1. In the first result the lower entropy of the masked correlation-

about-mean score compared to the entropy of the overlap score reflected the fact that

the latter is much less “strict” than the former, which is apparent from the mathematical

definition. This sort of comparison can then be conducted in any modeling project where

the choice of score might not be clear, given the scores adhere to the definitions laid down

in 6.3.1. This principle could be extended to the case where there are multiple target

density or query structures or densities given: A ranking after entropy would give an

objective measure which pairings “fit” the best.

The entropy measurement of different density generation (“molmap”) resolution param-

eters has shown a way to select the optimal parameter where a parameter choice cannot

be avoided. The advantage provided is that guess can be replaced with a conscious choice

that minimizes entropy and maximizes information content. It remains to be seen if there

is a dependency between annotated target resolution and entropy minimizing resolution

and if the practical effect of choosing the information richest scoring distribution is no-

ticeable. An interesting line of investigation might be the method of density generation

itself, which, similarly to the choice of the resolution parameter, can take various different

forms.

6.3.1 The optimal score

The abundance of possible scoring methods in systematic fitting warrants a short discus-

sion on what a property a scoring method must exhibit at the very least. As outlined

above, wether a score is a “good” score for a given systematic fitting protocol can ulti-

mately only decided empirically. There are, however, some necessary preconditions for a

function to be suitable for scoring:

• Scoring functions must be comparable. This is why all scores are either ∈ N or ∈ R.

While one might theoretically entertain the possibility that a score is ∈ R2, it would

not be clear how to assess which score instance is “better” in many cases.

• Every target must fit itself. If query and target are the same object and the trans-

formation that is scored is the identity transformation (translation and rotation do

“nothing”), the score that is assigned by the scoring method must necessarily be at

204

least as greater or greater than all other transformations. If this is not so, the score

can be called inconsistent.

• This leaves open the possibility for a constant score, which would simply assign the

same value sC to every possible transformation. This scoring method would have

the highest possible entropy and can be considered the “worst” consistent score.

• Scoring functions do not need to be continuous, e.g. the envelope score (see 2.5.5).

Continuity is here defined with regard to the transformations, meaning the behavior

of the scoring function under small local rotations or translations. It has to be

however continuous almost everywhere (in the stochastic sense), meaning it cannot

“jump around” erratically over small local transformations.

It needs to be emphasized that the computational protocol to actually calculate a score

is of no importance whatsoever. Therefore one should always choose an information-

rich score with low computational cost in practice. This opens up interesting avenues

of investigation, for example, nothing speaks against constructing a new score of already

given scores s0 (t, r) and s1 (t, r) by some means of combining them:

sn (t, r) = f (s0 (t, r) , s1 (t, r)) (6.1)

Which will produce a new valid score as long as f preserves the properties outlaid above.

6.4 Regular sampling and numerical quadrature

The transformational grid that is used to scan query against target is, together with the

scoring method employed, the most decisive factor in systematic fitting protocols and

therefore fundamental to the integrative structural modeling project as a whole. The

grid will most generally sample from 6-dimensional space, except in cases where the

orientation of position is restricted from the very beginning (as in the case of modeling of

proteins/protein complexes in a membrane). One might distinguish between the following

categories of grids:

• A Monte-Carlo sampling. Both the translational and rotational dimensions are

drawn from a (supposedly) uniform distribution. This approach has the advantage

of being on a superficial level conceptually simple, on the downside, it requires a

statistical analysis in the end to ensure that a sampling was exhaustive. An example

is the FitInMap tools in Chimera (see [28]).

205

• A coverage-optimized sampling. A sampling of predefined nodes that seeks to cover

the search space as efficiently as possible. This approach requires some notion of

exhaustiveness and, if this notion is defined, can simply state that for a given level

of exhaustiveness the smallest number of nodes is optimal. The challenge of this

task mainly lies in solving this question for the rotational aspect of the grid, due to

the more unfamiliar structure of the underlying group, SO(3). One example of a

notion of exhaustiveness can be found in [75]. Here the “coverage” is defined as

c =
N (α− sinα)

π
(6.2)

where α is the maximum angle of the rotation needed for any given arbitrary rotation

to be aligned with a rotation on the grid (so to speak the “distance” to the “nearest

point” on the grid). N denotes the number of rotational nodes. This approach is

suited most to expensive scoring methods for an unbiased search. Another approach

was taken by [78] and [86], who seek to optimize quadrature rules rather than grid

coverage. This approach is best suited if one seeks to calculate metrics such as the

average, entropy or statistical moments over the rotational dimensions. Something

similar holds true for the translational dimensions, where one can utilize Gaussian

or Chebyshev nodes.

• Refinable grids form the last category. For the rotational dimension [79] and [75]

offer solutions. To the authors knowledge most of the refinable grids offer also a

quadrature formula. This makes them suited for adaptive searches, which is an

interesting option for local minimum/maximum detection. An additional property

of McEwen nodes for the rotational dimensions and Chebyshev nodes for the trans-

lational dimensions is that of a Fourier analysis and synthesis using orthogonal

polynomials and an inner product (see 4.2.5 and 4.2.4).

An additional remark is called for when considering the case of FFT-accelerated fitting

routines (see 3.1.1). These methods implicitly take the translational grid that is defined

by the coordinates of the pixels. In the case of fast rotational fitting (as in [55]) the grid is

defined by the maximal degree of the Wigner-D-functions that are employed to facilitate

the calculation (see 4.31). These options will now be discussed under the aspect of several

practical problems.

6.4.1 Finding local minima and maxima

Both regular and random search grids will have the issue of likely missing local minima or

maxima of a scoring distribution. This poses an issue since, by definition, these locations

206

are the best possible fits. There are at least two ways to address the issue: A gradient

and a refined search grid. The former is not always possible and the latter can very easily

lead to prohibitive computational costs given the high dimension of the search space. The

result detailed in 5.6 has provided a possible solution, which borrows from both gradient

descend and search grid refinement. This method has advantages and disadvantages. It is

adaptive, exhaustive and independent from the scoring method. The first two properties

mean that any point in 6-dimensional space can be reached. The consecutive halving

of every single search dimension leads to a very fast convergence. The convergent point

however might not be local minima or maxima, but just borders of the initial cells. An

easy workaround for this would be to run a last, independent check on every solution

provided. Additionally, due to the construction of the descend algorithm, tricks like

FFT-accelerated search will not work. The scoring method will have to be implemented

in such a manner that it takes a pair (t, q) of a translational shift and a quaternion and

returns a score. However, multiple of these calculations can be conducted in parallel.

A possible application is the exploration of local optima in the case of the systematic

fitting of Brf1-TBP (see 5.1. In this case, the local minima of the cross-correlation score

had to be used to calculate the Chamfer distance score and the envelope score. It is not

guaranteed that the local optimal points of all three scores are the same, resulting in a

possible loss of information.

6.4.2 Reconstructing scoring spaces

One major problem in integrative structural modeling in the Assembline pipeline is the

need to represent the results of the systematic fitting step during the Monte-Carlo pro-

cedure. The common method of calculating the scores ad-hoc has been found the be

too slow for large systems and a generous number of runs. The current method suffers

from the fact that it is essentially a list of discrete positions and orientations and in one

Monte-Carlo move one rigid body can only jump between these discrete nodes, which

might potentially impair the convergence of the Monte-Carlo run, because rigid bodies

are prevented from “sliding” past each other in smooth movements. Most scoring methods

are inherently smooth, meaning a small rotation or translation will not cause a big jump

in the score. However, to access the complete information contained in one systematic

fitting protocol a lot of memory space is needed. Consider for example the result of a FFT-

accelerated cam-score fitting protocol using 5880 rotational nodes, concerning a target of

(100,100,100) pixels and a query of the same size. According to 3.1.1 the resulting score

population per rotational node will also be of dimension (100,100,100) pixels, meaning

in total 1003 · 5880 float values. This amounts to roughly 21.9 GB memory space.

One possible way to address this issue is to change the way the scoring spaces are repre-

207

scoring function, 6-d nodes 6-d score population Chebyshev coefficients

smooth scoring distribution smooth Chebyshev

coefficient distribution

Wigner coefficients

s (x, y, z, α, β, γ)

(xi, yj, zk) × (αl, βm, γn)
measure

s (x0, y0, z0, α0, β0, γ0) ,

s (x1, y0, z0, α0, β0, γ0) ,

s (x2, y0, z0, α0, β0, γ0) ,
...

Chebyshev

analysis

cijk (α0, β0, γ0) ,

cijk (α1, β0, γ0) ,

cijk (α2, β0, γ0) ,

..

.

Wigner analysis

wijklmn
Wigner

synthesis
cijk (α, β, γ)

Chebyshev

synthesis
s̃ (x, y, z, α, β, γ)

Figure 6.1: Conceptual workflow of the creation of a 6-dimensional scoring representation
and its recovery.

sented and to use orthogonal polynomials. To represent a function using this technique,

one can do something similar to a band-limited Fourier analysis (for further details see

4.2.5 and 4.2.4). One would first choose a band-limit for the polynomials, effectively lim-

iting their degree and the amount of detail this representation is able to portray. Once

this is done, an base set of polynomials is chosen and the score needs to be evaluated at

specific nodes and, given these values, the Fourier coefficients with respect to this base set

of polynomials can be calculated. As pointed out earlier, these coefficients serve as a form

of building instruction. Now, using these coefficients, one can synthesize a reconstructed

polynomial which can be evaluated at any point (not only the “input evaluation nodes”)

and a gradient can be taken of these polynomials. This enables gradient descent methods.

For illustration, two methods to approach this issue in a practical manner will be out-

lined. A 6-dimensional space needs to be represented, part translational (isomorphous

to R3) and part rotational (isomorphous to representations of SO(3)). The base polyno-

mials chosen are the 3-dimensional Chebyshev polynomials (each one dimensional base

polynomials degree-limited by T, meaning the total maximal degree is T3) and the

Wigner D-matrices (in turn limited by (M,L,N)). This will result in a set of transla-

tion nodes (see 4.28) {(x0, y0, z0) , (x1, y0, z0) , . . .} and a set of McEwen nodes (see 4.36)

{(α0, β0, γ0) , (α1, β0, γ0) , . . .}, which can be combined using the Cartesian product (see

5.5). Then, giving the measured scores, the Chebyshev expansion coefficients cijk can be

calculated for each rotation (αl, βm, γn). The cijk can therefore be seen as a function of

the Euler angles cijk (α, β, γ). In yet another step the Wigner coefficients wlmn for every

cijk can be calculated. This enables one to see the cijk as a smooth function of the Euler

angles and therefore, in turn, to get the Chebyshev coefficients for any orientation and

therefore the complete distribution, since from the Chebyshev coefficients one can syn-

thesize a distribution in R3. Figure (6.1) shows an illustration of that process. The other

208

method would be to inverse the order of Chebyshev and Wigner analysis. This process

is to the authors knowledge up to the point of writing this purely speculative, so some

cautious remarks and caveats seem in order:

• This tentative method offers two big advantages: Compact representation and math-

ematical tractability. The first advantage means that, in extreme cases, a 20GB

scoring space might be represented in a few kilobytes. This, of course, depends

on the complexity of the scoring space. For less complex spaces, the Wigner and

Chebyshev coefficients of higher order will be 0. Also, the amount of non-zero higher

order coefficients will give an immediate measure of information content of the scor-

ing space. This has interestingly been corroborated by experiments which involved

systematic fitting scoring spacing being compressed. More information rich spaces

were harder to compress, which aligns well with basic perspectives from information

theory.

• The second advantage, mathematical tractability, stems from the fact that the recon-

struction is an analytic function. This offers the possibility to derivate or integrate

it. This might result in massive advantages during the Monte-Carlo step of struc-

tural integrative modeling. The base polynomials themselves are all factorized, so

that derivation is at least analytically simple.

• However, the compact representation poses numerical challenges. The pipeline laid

out in 6.1 requires to construct new Chebyshev polynomials every time new Cheby-

shev coefficients are calculated. This is the trade-off between compactness of rep-

resentation and computational time required for evaluation. It might be best to

broker a compromise between both aspects in practical situations, such as synthe-

sizing Chebyshev polynomials for a given set of rotational nodes at the beginning

of the Monte-Carlo step.

• Even if this challenge is mastered, one would still need a measure to evaluate how

well the representation encoded in the coefficients wijklmn is faithful to the actual

scoring distribution. A direct way is to assess the size of the higher order coefficients,

since they will approach 0 if the representation is faithful. Another way would be

to assess the difference between the empirical score s and its reconstruction s̃ at

random six-dimensional nodes (x, y, z, α, β, γ).

Another point of view can be taken in light of 6.4.2. Since the local optimal points are

the most likely locations (in 6-dimensional space) for the structures to be placed, on

could attempt to expand the scoring space at these locations locally. This would have

several advantages. There is, in any well-behaved scoring distribution, a significantly

209

smaller number of optimal points than points overall. Local expansions are much simpler

in the sense that they typically need a smaller degree of polynomial to approximate. In

combination, this could lead to a very compact, faithful, tractable and fast representation

of a given scoring distribution.

6.5 Information theoretic perspective on systematic

fitting and integrative modeling in general

6.5.1 Scoring method assessment

As shown in , entropy measurements can be used to optimize parameter selection in struc-

tural integrative modeling projects. In this light, one might begin a structural integrative

modeling project with a massive optimization procedure. It remains to be shown, whether

this affects the model sampling step (the Monte Carlo runs) in the Assembline pipeline

or similar pipelines. In theory, the individual sampling spaces of scoring distributions,

which has been obtained with information theoretically optimized parameters, should be

“narrower”, while still retaining local optima. This could lead to a speed up in finding

lower scoring models and “sharper” clusters of model ensembles.

As shown in the test systematic fitting in 5.12.1 and 5.13.3, entropy is a good metric

to distinguish different scoring methods with regard to the ambiguity of their score dis-

tribution. The differences can be quite significant, as was shown. On a practical level,

in an integrative structural modeling project, this difference can result in finding valid

models or finding no significant models at all. It seems prudent to point out the varying

heuristics that underlie the construction of the three scoring methods that have been

compared. The Chamfer distance score is based on closest distances between pixels, the

envelope score is based on pixel counts and the partial surface score is based on connected

components. While these heuristics are valuable for the construction of new scores they

are ultimately moot with regard to the actual performance of the scoring method. The

same holds for the overlap score and the correlation-about-mean score. The entropy min-

imization method in this sense provides a method of assessing scoring methods, which is

independent of assumptions about concrete assumptions about what constitutes a “good

fit”.

Another, yet unexplored alley is the use of further information theoretic measures. One

interesting candidate among them is the Kullback-Leibler distance (see 4.3) (s0 ‖ s1). It

can be interpreted as relative entropy, which denotes how much information one would

gain (or lose) if one would use one scoring method compared to the other. This could

be used to assess if two scoring methods “tell us something different”. For example, two

210

scoring methods with a comparable entropy and a non-zero Kullback-Leibler-Divergence

would contain mutually exclusive information and it would pay off to consider both dis-

tributions as an informations source for integrative structural modeling.

6.5.2 Higher order considerations

In this section, the original considerations fueling the employment of information theo-

retic methods will be laid out. Structural integrative modeling will per definition be only

applied if one source of experimental information is not enough to make a clear prediction

for a structural model. This brings with it the possibility that even the combined infor-

mation might not be enough to narrow down the space of possible configurations enough

to speak of “several, well distinguished models”. The converse question, if all possible

models have been sampled according to the restraints put on them by experimental in-

formation, is called the exhaustiveness problem (see [45]). Given that a protein complex

comprises N rigid bodies, being either subcomplexes, subunits, domains or single residues,

the total “model space” would be a distribution of the form

Ψ (t0, r0, t1, r1, . . . , tN−1, rN−1) , (6.3)

which describes all possible models and their respective likelihood. For example, the

δ-distribution

δ
(
t0 − ts0, r0 − rs0, t

s
1 − r0, r1 − rs1, . . . , tN−1 − tsN−1, rN−1 − rsN−1

)
, (6.4)

for some set of specific positions ts0, t
s
1, . . . , t

s
N−1 and orientations rs0, r

s
1, . . . , r

s
N−1 would

describe one concrete model with infinite precision. It would therefore contain infinite

information. The uniform distribution on the other hand

1 (t0, r0, t1, r1, . . . , tN−1, rN−1) , (6.5)

encodes no information at all. It represents a complete lack of knowledge about the model.

The question arises, how would one encode experimental knowledge this way? Firstly, one

would need to model systematic fitting protocols, crosslinks, biochemical domain proxim-

ity and steric clashes as probability distributions, the possibility of which is reasonable to

assume. For example, in a modeling project consisting only of two rigid bodies (N = 2),

one can write Ψ as

Ψ0 (t0, r0, t1, r1) = S0 (t0, r0) · S1 (t1, r1) , (6.6)

211

where S0,S1 denote the distributions derived from systematic fitting. Were the scoring

methods perfect in the above sense, they would be δ-distributions. In practice however,

they are more uncertain. This is why further restraints are needed. The information that

two rigid bodies cannot occupy the same space, i.e. the avoidance of steric clashes, can

be added to the model as such:

Ψ1 (t0, r0, t1, r1) = S0 (t0, r0) · S1 (t1, r1) ·R0 (t0, r0, t1, r1) , (6.7)

therefore introducing interaction between the two rigid bodies. The result of this mul-

tiplication might not be a distribution and likely needs to be normalized again. At this

point one could now measure the Kullback-Leibler-Divergence

D(Ψ0 ‖ Ψ1) (6.8)

to assess the information gain which was obtained by adding the restraint. Not every

restraint will actually add information, e.g. a faulty crosslink might “scatter” the distri-

bution Ψ. This sketch of a framework would enable several conceptual advances:

• The question of exhaustion could be addressed in a quantifiable sense. By choosing

a limit for the entropy of Ψ, one would effectively set model precision. The higher

the entropy, the more “wiggle space” would there be for each rigid body and the

ensemble of models would be more uncertain.

• This formulation makes explicit that the result of every integrative structural mod-

eling project is an ensemble of models.

• It becomes clearer why modeling projects with too small and too many rigid bodies

are unfeasible: Ψ would have a lot of factors and each factor would contribute its

own uncertainty to the overall entropy, if not balanced out by a myriad of restraints.

• By calculating D(Ψ0 ‖ Ψ1), one could add restraints one after the other and assess

how much more information they add. If they add a lot of information but are

experimentally uncertain, one would have a problem. If they add no information

at all, they either contain no information by experimental design or they are at

odds with the already used restraints. This of course becomes computationally

challenging if there are a lot of restraints.

• The framework laid out above is effectively one attempt to answer the question

of exhaustiveness. Given a set of experimental restraints, what is the ensemble of

likely and less likely models? This question amounts to searching the space wherein

Ψ lives, even if one would model Ψ as a scoring function (the formulations are

equivalent). These spaces are of very high dimension and it is highly questionable if

212

they can be sampled sufficiently to derive reliable statistics about these spaces. Until

this question is answered, effectively every structural integrative modeling project

presents in the best case samples of models without the assurance that these are

the most likely ones.

6.6 Parallel computing and integrative structural mod-

eling

Parallel computing has found its way into structural biology in general and into struc-

tural modeling specifically (e.g. PowerFit [53], gEMfitter [54], cryoSPARC [87]). The

availability of modern day GPUs has improved, their integration with CPUs has become

more prevalent and the programming interface ([67]) available to scientists has become

more powerful. This thesis has dealt in large parts with the questions if problems in struc-

tural integrative modeling are treatable with these new computational resources (objective

(D)).

6.6.1 Inherent suitability of structural data and algorithms in

structural biology for parallel computing

The question if parallel computing is an avenue worth exploring in integrative structural

modeling can be affirmed most emphatically. The reasons for this are manifold and in-

terconnected.

One of the main factors is the prevalence of the density map data type in the field. GPU

computing has evolved out of increased demands in computer graphics. The logic of

transformations in 2- and 3-dimensional space, a subset of the theory of linear transfor-

mations in real vector spaces, was the very logic that GPU processing units were meant to

address. A number of other computational procedures, such as filter operation (see 3.1.2)

or the ubiquitous Fourier transform (see 3.1.1), have images and density maps as direct

applications and are, by mathematical nature, linear and therefore amenable to parallel

processing. The hardware features of modern GPUs have been modeled to accommodate

the particular density data types and can be harnessed to great effect. The memory hier-

archy (see 3.3.1) lends itself to enhancement of operations localized in a small subvolume.

The texture memory feature (3.3.3) provides an often needed operation (texture fetching

or density value extrapolation) to the modeler, with the added bonus of hardware accel-

eration.

From a higher-level perspective that is closer to systematic fitting and integrative struc-

213

tural modeling more possible gains of computational efficiency become apparent. This is

the case for two main reasons. On the one hand, a lot of computational operations con-

sist on their lowest level of instructions that operate independently per-pixel, per-particle,

per-pixel-per-pixel or per-particle-per-pixel, so that they can be easily cast into a parallel

form. On the other hand, systematic fitting needs to cover 6 dimensions when defined

on a regular grid and the scoring function has to be executed per-transformation or per-

translation-per-rotation. This, too, is easy to parallelize. This thesis contains a number

of examples that deal with parallelization tasks in varied situations in systematic fitting,

volume processing or particle alignment.

6.6.2 Implementation and Applications

As outlined in section 5.3, a programmer friendly framework yes been set up. There are

two key aspects that define this specific implementation of a structural integrative model-

ing GPU framework. One is the necessity for a double representation of the data on both

host and device memory. A particularly challenging aspect of this is the synchronization.

Some tasks are handled better by traditional sequential CPU-implementations, some are

suited better for a GPU approach. Many workflows consist of both kinds of operations

in various orders of succession. Before and after each step there has to be a careful con-

sideration of what data resource is needed on either CPU or GPU memory and what

data resource needs to be synchronized to the other environment. A workable solution

is the Register approach described in 5.3, where each data type is boiled down to its

essentials and mirrored in GPU and CPU by various memory segments. The functions of

a given data class (e.g. Density, Particles, Scores) then operate implicitly on the memory

segments, hiding the details on the API level.

The second key aspect is the need for any forward-looking parallel processing framework

to be able to address multiple GPUs. This challenge has been addressed by extending

the Register approach to handle multiple representations of the same data structure

for multiple GPUs. There is the issue of synchronization of multiple representations of

the same object in CPU memory, this has been basically disregarded by having a CPU-

version for each GPU-version of a given data object. This solution has been chosen with

the idea in mind that objects that are processed on different GPUs might differ between

each other after the process was completed. This means, in effect, that for a system with

G GPUs and an object with the memory volume of M, G*M total CPU working memory

will be needed. Although this restriction is of no further consequence in modern high

performance computing environments, it is worth keeping in mind for the purposes of

memory management in these environments.

214

From a process management perspective two possible modi operandi have emerged, as de-

scribed in 5.3. One of them treats the multiple GPUs that may be present in the system

as different workers and distributes “packages” of work, that they can solve independently

from each other. The second modus is designed to process massive tasks. This modus

utilizes all GPUs in parallel for the same task and synchronizes the results afterwards.

In this modus synchronization between GPUs is an obvious bottle neck. Both modi have

been implemented in a DispatchQueue-like engine, which makes both modi suitable to

be run as a server which can receive tasks from outside, process them and provide the

results. Both modes automatically detect the number of present GPUs and distribute the

work accordingly.

On an application level different standard density volume processing routines have been

implemented (see 5), as well as scoring methods with varying levels of refinement, with

the option of adaptive refinement search procedures. Parallel RMSD-measurement routines

and RMSD-alignment routines have been implemented as well, with the addition of an

RMF-interface. With the exception of the latter two, every implementation is capable of

harnessing multiple GPUs at the same time. Some applications adapt to the hardware

specifications of different GPU models. This feature could easily be extended.

6.7 Partial surface score

The partial surface score was conceived as an alternative to the Chamfer distance and the

envelope score that would not suffer their defects, specifically their inability to assign a

high score to a matching partial surface. In the idealized case that guided the construction

it outperforms the other scores, as also shown in a simplified case (see 5.12.1). It remains

to be shown if it can be of value in practical applications. A simple way to measure its

effectiveness would be to compare the average predicted position and orientation to the

“true” position within an existing and experimentally validated model to the same metric

using the Chamfer distance and the envelope score.

A potential problem might arise due to the very “sharpness” of the partial surface score.

In a realistic setting, the query surface must be either simulated by heuristic means or

an experimental density map signifying a subcomplex, both are subject to uncertainty.

This might be remedied by choosing a thick surface, which in turn might obscure the

very advantage of the partial surface score. Therefore one might want to define a “soft

surface mask”, which modifies the step-function density of the surface using a Gaussian

distribution.

215

Bibliography

[1] Alexander von Appen, Jan Kosinski, Lenore Sparks, Alessandro Ori, Amanda L.
DiGuilio, Benjamin Vollmer, Marie-Therese Mackmull, Niccolo Banterle, Luca Parca,
Panagiotis Kastritis, Katarzyna Buczak, Shyamal Mosalaganti, Wim Hagen, Am-
paro Andres-Pons, Edward A. Lemke, Peer Bork, Wolfram Antonin, Joseph S.
Glavy, Khanh Huy Bui, and Martin Beck. “In situ structural analysis of the hu-
man nuclear pore complex”. In: Nature 526 (2015), pp. 140–143. doi: 10.1038/
nature15381.

[2] J. (Joachim) Frank. Three-dimensional electron microscopy of macromolecular as-
semblies : visualization of biological molecules in their native state / Joachim Frank.
[2nd ed.] Oxford ; New York: Oxford University Press, 2006.

[3] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N.
Shindyalov, and P.E. Bourne. “The Protein Data Bank.” In: Nucleic Acids Research
28 (2000), pp. 235–242.

[4] M. Perutz, M. Rossmann, and A. et al. Cullis. “Structure of Hæmoglobin: A Three-
Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis.”
In: Nature 185 (1960), pp. 416–422.

[5] J. Kendrew, R. Dickerson, and B. et al. Strandberg. “Structure of Myoglobin: A
Three-Dimensional Fourier Synthesis at 2 Å. Resolution.” In: Nature 185 (1960),
pp. 422–427.

[6] C. Giacovazzo, H.L. Monaco, International Union of Crystallography, G. Artioli,
D. Viterbo, G. Ferraris, G. Gilli, G. Zanotti, and M. Catti. Fundamentals of Crys-
tallography. IUCr texts on crystallography. Oxford University Press, 2002. isbn:
9780198509585.

[7] G. Rhodes. Crystallography Made Crystal Clear: A Guide for Users of Macromolec-
ular Models. Complementary Science. Elsevier Science, 2012. isbn: 9780323137782.
url: https://books.google.de/books?id=RVcnvWEbaM4C.

[8] Alexander McPherson and Jose A Gavira. “Introduction to protein crystalliza-
tion”. In: Acta Crystallographica Section F: Structural Biology Communications 70.1
(2014), pp. 2–20.

[9] E. S. Ameh. “A review of basic crystallography and x-ray diffraction applications”.
In: The International Journal of Advanced Manufacturing Technology 105.7 (2019).

[10] G. Hunter, M. Vella, R. Bonetta, D. Farrugia, and T. Hunter. “The Structure of
Protein Molecules: In Celebration of the International Year of Crystallography”. In:
Xjenza Online 2 (Mar. 2014).

216

[11] Christopher Russo. Eukaryotic Ribosomes in Single Particle. 2021. url: https:

//www.academia-net.org/artikel/1256219.

[12] Yifan Cheng, Nikolaus Grigorieff, Pawel A Penczek, and Thomas Walz. “A primer
to single-particle cryo-electron microscopy”. In: Cell (Cambridge) 161.3 (2015),
pp. 438–449. issn: 0092-8674.

[13] Georgios Skiniotis and Daniel R. Southworth. “Single-particle cryo-electron mi-
croscopy of macromolecular complexes”. In: Microscopy 65.1 (Nov. 2015), pp. 9–22.
issn: 2050-5698. doi: 10.1093/jmicro/dfv366.

[14] Richard Henderson. “Avoiding the pitfalls of single particle cryo-electron microscopy:
Einstein from noise”. In: Proceedings of the National Academy of Sciences 110.45
(2013), pp. 18037–18041. issn: 0027-8424. doi: 10.1073/pnas.1314449110.

[15] Alistair Siebert. Data Collection Strategies: Tomography. 2021. url: https : / /

www.ccpem.ac.uk/training/biochemsoc_sep2016/Siebert_cryoET%20data%

20collection%20lecture.pdf.

[16] W. Wan and J.A.G. Briggs. “Chapter Thirteen - Cryo-Electron Tomography and
Subtomogram Averaging”. In: The Resolution Revolution: Recent Advances In cry-
oEM. Ed. by R.A. Crowther. Vol. 579. Methods in Enzymology. Academic Press,
2016, pp. 329–367. doi: https://doi.org/10.1016/bs.mie.2016.04.014. url:
https://www.sciencedirect.com/science/article/pii/S0076687916300325.

[17] Daniel Castaño-Dı́ez and Giulia Zanetti. “In situ structure determination by subto-
mogram averaging”. In: Current Opinion in Structural Biology 58 (2019). Cryo
electron microscopy • Biophysical and computational methods • Biophysical and
computational methods - Part B, pp. 68–75. issn: 0959-440X. doi: https://doi.
org/10.1016/j.sbi.2019.05.011. url: https://www.sciencedirect.com/
science/article/pii/S0959440X19300454.

[18] Kendra E. Leigh, Paula P. Navarro, Stefano Scaramuzza, Wenbo Chen, Yingyi
Zhang, Daniel Castaño-Dı́ez, and Misha Kudryashev. “Chapter 11 - Subtomogram
averaging from cryo-electron tomograms”. In: Three-Dimensional Electron Microscopy.
Ed. by Thomas Müller-Reichert and Gaia Pigino. Vol. 152. Methods in Cell Biology.
Academic Press, 2019, pp. 217–259. doi: https://doi.org/10.1016/bs.mcb.
2019.04.003. url: https://www.sciencedirect.com/science/article/pii/
S0091679X19300548.

[19] Victor R.A. Dubach and Albert Guskov. “The Resolution in X-ray Crystallography
and Single-Particle Cryogenic Electron Microscopy”. In: Crystals 10.7 (2020). doi:
10.3390/cryst10070580.

[20] Shaoxia Chen, Greg McMullan, Abdul R. Faruqi, Garib N. Murshudov, Judith M.
Short, Sjors H. W. Scheres, and Richard Henderson. “High-resolution noise substi-
tution to measure overfitting and validate resolution in 3D structure determination
by single particle electron cryomicroscopy”. In: Ultramicroscopy 135 (Dec. 2013),
pp. 24–35. doi: 10.1016/j.ultramic.2013.06.004.

[21] Pawel A. Penczek. “Resolution measures in molecular electron microscopy”. In:
Methods in enzymology 482 (2010), pp. 73–100. doi: 10.1016/S0076-6879(10)
82003-8.

[22] A. Kucukelbir, F.J. Sigworth, and H.D. Tagare. “Quantifying the Local Resolution
of Cryo-EM Density Maps”. In: Nature Methods 11 (Nov. 2014), pp. 63–65.

217

[23] UCSF Chimera. Chimera Molmap. 2021. url: https://www.cgl.ucsf.edu/

chimera/docs/UsersGuide/midas/molmap.html.

[24] Francis J O’Reilly and Juri Rappsilber. “Cross-linking mass spectrometry: methods
and applications in structural, molecular and systems biology”. English. In: Nature
Structural & Molecular Biology (Oct. 2018). doi: 10.1038/s41594-018-0147-0.

[25] Yoav Benjamini and Yosef Hochberg. “Controlling the false discovery rate: a prac-
tical and powerful approach to multiple testing”. In: Journal of the Royal statistical
society: series B (Methodological) 57.1 (1995), pp. 289–300.

[26] Vasileios Rantos, Kai Karius, and Jan Kosinski. “Integrative structural modeling
of macromolecular complexes using Assembline”. In: Nature Protocols 17.1 (2022),
pp. 152–176. doi: 10.1038/s41596-021-00640-z.

[27] Dina Schneidman-Duhovny, Andrea Rossi, Agustin Avila-Sakar, Seung Joong Kim,
Javier VelÃ¡zquez-Muriel, Pavel Strop, Hong Liang, Kristin A. Krukenberg, Maofu
Liao, Ho Min Kim, Solmaz Sobhanifar, Volker Dötsch, Arvind Rajpal, Jaume Pons,
David A. Agard, Yifan Cheng, and Andrej Sali. “A method for integrative structure
determination of protein-protein complexes”. In: Bioinformatics 28.24 (Oct. 2012),
pp. 3282–3289. issn: 1367-4803. doi: 10.1093/bioinformatics/bts628.

[28] E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C.
Meng, and T.E. Ferrin. “UCSF Chimera–a visualization system for exploratory
research and analysis.” In: J Comput Chem. (2004).

[29] Daniel Saltzberg, Charles H. Greenberg, Shruthi Viswanath, Ilan Chemmama, Ben
Webb, Riccardo Pellarin, Ignacia Echeverria, and Andrej Sali. Modeling Biological
Complexes Using Integrative Modeling Platform. New York, NY: Springer New York,
2019, pp. 353–377.

[30] Cyril Dominguez, Rolf Boelens, and Alexandre M. J. J. Bonvin. “HADDOCK: A
Protein - Protein Docking Approach Based on Biochemical or Biophysical Informa-
tion”. In: Journal of the American Chemical Society 125.7 (2003), pp. 1731–1737.

[31] A server for modeling of large macromolecular complexes. url: http://genesilico.
pl/pyry3d.

[32] Frank DiMaio, Michael D. Tyka, Matthew L. Baker, Wah Chiu, and David Baker.
“Refinement of Protein Structures into Low-Resolution Density Maps Using Rosetta”.
In: Journal of Molecular Biology 392.1 (2009), pp. 181–190. issn: 0022-2836. doi:
https://doi.org/10.1016/j.jmb.2009.07.008.

[33] Jan Kosinski, Shyamal Mosalaganti, Alexander von Appen, Roman Teimer, Amanda
L. DiGuilio, William Wan, Khanh Huy Bui, Wim J.H. Hagen, John A. G. Briggs,
Joseph S. Glavy, Ed Hurt, and Martin Beck. “Molecular architecture of the inner
ring scaffold of the human nuclear pore complex”. In: Science 352.6283 (2016),
pp. 363–365.

[34] Maria I. Dauden, Marcin Jaciuk, Felix Weis, Ting-Yu Lin, Carolin Kleindienst, Nour
El Hana Abbassi, Heena Khatter, Rościs law Krutyho lowa, Karin D. Breunig, Jan
Kosinski, Christoph W. Müller, and Sebastian Glatt. “Molecular basis of tRNA
recognition by the Elongator complex”. In: Science Advances 5.7 (2019), eaaw2326.
doi: 10.1126/sciadv.aaw2326.

[35] Christian P. Robert and George Casella. Monte Carlo Statistical Methods. USA:
Springer, 2004. isbn: 0387212396.

218

[36] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta
H. Teller, and Edward Teller. “Equation of State Calculations by Fast Computing
Machines”. In: The Journal of Chemical Physics 21.6 (1953), pp. 1087–1092. doi:
10.1063/1.1699114. url: http://link.aip.org/link/?JCP/21/1087/1.

[37] Yehouda Harpaz, Mark Gerstein, and Cyrus Chothia. “Volume changes on protein
folding”. In: Structure 2.7 (1994), pp. 641–649. issn: 0969-2126. doi: https://doi.
org/10.1016/S0969-2126(00)00065-4. url: https://www.sciencedirect.com/
science/article/pii/S0969212600000654.

[38] Rappsilber J. Combe CW Fischer L. “xiNET: cross-link network maps with residue
resolution.” In: Mol Cell Proteomics. (2015), pp. 1137–47.

[39] Andrew Waterhouse, Martino Bertoni, Stefan Bienert, Gabriel Studer, Gerardo Tau-
riello, Rafal Gumienny, Florian T Heer, Tjaart A P de Beer, Christine Rempfer,
Lorenza Bordoli, Rosalba Lepore, and Torsten Schwede. “SWISS-MODEL: homol-
ogy modelling of protein structures and complexes”. In: Nucleic Acids Research
46.W1 (May 2018), W296–W303. issn: 0305-1048. doi: 10.1093/nar/gky427.

[40] Jones DT Buchan DWA. “The PSIPRED Protein Analysis Workbench: 20 years
on.” In: Nucleic Acids Research (2019).

[41] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Ž́ıdek, Anna
Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Bal-
lard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain,
Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielin-
ski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Boden-
stein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
meet Kohli, and Demis Hassabis. “Highly accurate protein structure prediction with
AlphaFold”. In: Nature 596.7873 (Aug. 2021), pp. 583–589. issn: 1476-4687. doi:
10.1038/s41586-021-03819-2.

[42] Jan Kosinski, Alexander von Appen, Alessandro Ori, Kai Karius, Christoph W.
Müller, and Martin Beck. “Xlink Analyzer: Software for analysis and visualization
of cross-linking data in the context of three-dimensional structures”. In: Journal of
Structural Biology 189.3 (2015), pp. 177–183. issn: 1047-8477. doi: https://doi.
org/10.1016/j.jsb.2015.01.014.

[43] Y. Perez-Riverol, A. Csordas, J. Bai, M. Bernal-Llinares, S. Hewapathirana, D.J.
Kundu, A. Inuganti, J. Griss, G. Mayer, M. Eisenacher, E. Pérez, J. Uszkoreit, J.
Pfeuffer, T. Sachsenberg, S. Yilmaz, S. Tiwary, J. Cox, E. Audain, M. Walzer, A.F.
Jarnuczak, T. Ternent, A. Brazma, and J.A. Vizcáıno. “The PRIDE database and
related tools and resources in 2019: improving support for quantification data.” In:
Nucleic Acids Research 47 (2019), pp. 442–450.

[44] John. Geweke. “Evaluating the Accuracy of Sampling-Based Approaches to the Cal-
culation of Posterior Moments”. In: Proceedings of the Fourth Valencia International
Meeting on Bayesian Statistics 4 (Nov. 1992), pp. 169–193.

[45] S. Viswanath, I.E. Chemmama, P. Cimermancic, and Sali A. “Assessing Exhaustive-
ness of Stochastic Sampling for Integrative Modeling of Macromolecular Structures.”
In: Biophys J. 113 (2017), pp. 2344–2353.

219

[46] Daven Vasishtan and Maya Topf. “Scoring functions for cryoEM density fitting”.
In: Journal of Structural Biology 174.2 (May 2011), pp. 333–343.

[47] Yehouda Harpaz, Mark Gerstein, and Cyrus Chothia. “Volume changes on protein
folding”. In: Structure 2.7 (1994), pp. 641–649. issn: 0969-2126. doi: https://doi.
org/10.1016/S0969-2126(00)00065-4. url: http://www.sciencedirect.com/
science/article/pii/S0969212600000654.

[48] Werner Kühlbrandt. “The Resolution Revolution”. In: Science 343.6178 (2014),
pp. 1443–1444. doi: 10.1126/science.1251652.

[49] Willy Wriggers. “Conventions and workflows for using Situs.” In: Acta Cryst. 68
(2012).

[50] Pablo Chacón and Willy Wriggers. “Multi-resolution contour-based fitting of macro-
molecular structures”. In: Journal of molecular biology 317.3 (2002), pp. 375–384.

[51] Stefan Birmanns and Willy Wriggers. “Multi-resolution anchor-point registration
of biomolecular assemblies and their components”. In: Journal of structural biology
157.1 (2007), pp. 271–280.

[52] Bonvin van Zundert and AMJJ Bonvin. “Fast and sensitive rigid-body fitting into
cryo-EM density maps with PowerFit”. In: AIMS Biophysics 2 (2015).

[53] Gydo van Zundert and Alexandre Bonvin. PowerFit software. Sept. 2016. doi: 10.
5281/zenodo.1037228. url: https://doi.org/10.5281/zenodo.1037228.

[54] Thai V. Hoang, Xavier Cavin, and David W. Ritchie. “gEMfitter: A highly par-
allel FFT-based 3D density fitting tool with GPU texture memory acceleration”.
In: Journal of Structural Biology 184.2 (2013), pp. 348–354. issn: 1047-8477. doi:
https://doi.org/10.1016/j.jsb.2013.09.010.

[55] Julio A. Kovacs and Willy Wriggers. “Fast rotational matching”. In: Acta Crystallo-
graphica Section D 58.8 (Aug. 2002), pp. 1282–1286. doi: 10.1107/S0907444902009794.

[56] Pascal Audet. “Directional wavelet analysis on the sphere: Application to gravity
and topography of the terrestrial planets”. In: Journal of Geophysical Research:
Planets 116.E1 (2011). doi: https://doi.org/10.1029/2010JE003710.

[57] Pascal Audet. “Toward mapping the effective elastic thickness of planetary litho-
spheres from a spherical wavelet analysis of gravity and topography”. In: Physics
of the Earth and Planetary Interiors 226 (Jan. 2014), pp. 48–82. doi: 10.1016/j.
pepi.2013.09.011.

[58] Sean Swenson and John Wahr. “Methods for inferring regional surface-mass anoma-
lies from Gravity Recovery and Climate Experiment (GRACE) measurements of
time-variable gravity”. In: Journal of Geophysical Research: Solid Earth 107.B9
(2002), ETG 3-1-ETG 3–13. doi: https://doi.org/10.1029/2001JB000576.

[59] David S. Tuch. “Q-ball imaging”. In: Magnetic Resonance in Medicine 52.6 (2004),
pp. 1358–1372. doi: https://doi.org/10.1002/mrm.20279.

[60] James Cooley and John Tukey. “An Algorithm for the Machine Calculation of
Complex Fourier Series”. In: Mathematics of Computation 19.90 (1965), pp. 297–
301.

[61] Wen Mei W. Hwu. GPU Computing Gems Emerald Edition. Elsevier Inc., 2011.
doi: 10.1016/C2010-0-65709-9.

220

[62] Institute of Electrical and Electronics Engineers. IEEE Standard for Binary Floating-
Point Arithmetic. IEEE Std 754-1985. 1985.

[63] Gerald R. Kneller. “Superposition of Molecular Structures using Quaternions”. In:
Molecular Simulation 7.1-2 (1991), pp. 113–119.

[64] Protein Data Base Foundations. PDB file format specifications. 2021. url: https:
//www.wwpdb.org/documentation/file-format.

[65] MRC. MRC file format specifications. 2021. url: https://bio3d.colorado.edu/
imod/doc/mrc_format.txt.

[66] Azriel Rosenfeld and John L. Pfaltz. “Sequential Operations in Digital Picture Pro-
cessing”. In: J. ACM 13.4 (Oct. 1966), pp. 471–494. doi: 10.1145/321356.321357.

[67] NVIDIA. Cuda Toolkit documentation. 2021. url: https://docs.nvidia.com/
cuda/index.html.

[68] NVIDIA. Cuda Developer Blog. 2021. url: https://developer.nvidia.com/

blog/cuda-dynamic-parallelism-api-principles/.

[69] NVIDIA. Thrust Developer Documentation. 2021. url: https://docs.nvidia.
com/cuda/thrust/index.html.

[70] NVIDIA. Thrust API description. 2021. url: https://thrust.github.io/doc/
index.html.

[71] Nasa. Monte Carlo Burn In. 2021. url: https://heasarc.gsfc.nasa.gov/

xanadu/xspec/manual/node43.html.

[72] pymc. PyMc package. 2021. url: https://pymc-devs.github.io/pymc/modelchecking.
html.

[73] Gilbert Strang. Introduction to Linear Algebra. Fourth. Wellesley-Cambridge Press,
2009.

[74] Ian R. Cole. “Modelling CPV”. PhD thesis. Loughborough University, June 2015.

[75] Charles F.F. Karney. “Quaternions in molecular modeling”. In: Journal of Molecular
Graphics and Modelling 25.5 (2007), pp. 595–604.

[76] J.C. Mason and D.C. Handscomb. Chebyshev Polynomials. CRC Press, 2002.

[77] Ian H. Sloan and William E. Smith. “Product integration with the Clenshaw-Curtis
points: Implementation and error estimates”. In: Numerische Mathematik 34.4 (Dec.
1980), pp. 387–401. doi: 10.1007/BF01403676.

[78] Manuel Gräf and Daniel Potts. “Sampling Sets and Quadrature Formulae on the Ro-
tation Group”. In: Numerical Functional Analysis and Optimization 30.7-8 (2009),
pp. 665–688. doi: 10.1080/01630560903163508.

[79] Jason McEwen, Martin Büttner, Boris Leistedt, Hiranya Peiris, and Yves Wiaux.
“A Novel Sampling Theorem on the Rotation Group”. In: IEEE Signal Processing
Letters 22 (Aug. 2015). doi: 10.1109/LSP.2015.2490676.

[80] Jason D. McEwen and Yves Wiaux. “A Novel Sampling Theorem on the Sphere”.
In: IEEE Transactions on Signal Processing 59.12 (2011), pp. 5876–5887. doi: 10.
1109/TSP.2011.2166394.

[81] Claude E. Shannon. “A mathematical theory of communication.” In: Bell Syst.
Tech. J. 27.3 (1948), pp. 379–423.

221

[82] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Se-
ries in Telecommunications and Signal Processing). USA: Wiley-Interscience, 2006.
isbn: 0471241954.

[83] Matthias K. Vorländer, Anna Jungblut, Kai Karius, Florence Baudin, Helga Grötsch,
Jan Kosinski, and Christoph W. Müller. “Structure of the TFIIIC subcomplex τA
provides insights into RNA polymerase III pre-initiation complex formation”. In:
Nature Communications 11.1 (2020), p. 4905. doi: 10.1038/s41467-020-18707-
y.

[84] Irene Farabella, Daven Vasishtan, Agnel Praveen Joseph, Arun Prasad Panduran-
gan, Harpal Sahota, and Maya Topf. “TEMPy: a Python library for assessment of
three-dimensional electron microscopy density fits”. In: Journal of Applied Crystal-
lography 48.4 (Aug. 2015), pp. 1314–1323. doi: 10.1107/S1600576715010092.

[85] Matteo Allegretti, Christian E. Zimmerli, Vasileios Rantos, Florian Wilfling, Paolo
Ronchi, Herman K. H. Fung, Chia-Wei Lee, Wim Hagen, Beata Turoňová, Kai
Karius, Mandy Börmel, Xiaojie Zhang, Christoph W. Müller, Yannick Schwab, Julia
Mahamid, Boris Pfander, Jan Kosinski, and Martin Beck. “In-cell architecture of the
nuclear pore and snapshots of its turnover”. In: Nature 586.7831 (2020), pp. 796–
800. doi: 10.1038/s41586-020-2670-5.

[86] Manuel Gräf. “Efficient Algorithms for the Computation of Optimal Quadrature
Points on Riemannian Manifolds”. PhD thesis. Universitätsverlag der Technischen
Universität Chemnitz, Chemnitz: Technischen Universität Chemnitz, Feb. 2013.

[87] Ali Punjani, John L. Rubinstein, David J. Fleet, and Marcus A. Brubaker. “cryoSPARC:
algorithms for rapid unsupervised cryo-EM structure determination”. In: Nature
Methods 14.3 (Mar. 2017), pp. 290–296. doi: 10.1038/nmeth.4169.

[88] D. M. Henderson. “Shuttle Program. Euler angles, quaternions, and transformation
matrices working relationships”. In: NASA Technical Reports Server (July 1977).

[89] Gerald R. Kneller. “Superposition of Molecular Structures using Quaternions”. In:
Molecular Simulation 7.1-2 (1991), pp. 113–119.

[90] Ondřej Štáva and Bedřich Beneš. “Chapter 35 - Connected Component Labeling
in CUDA”. In: GPU Computing Gems Emerald Edition. Ed. by Wen-mei W. Hwu.
Applications of GPU Computing Series. Boston: Morgan Kaufmann, 2011, pp. 569–
581. isbn: 978-0-12-384988-5. doi: https://doi.org/10.1016/B978- 0- 12-

384988-5.00035-8.

[91] C.L. Lawson, A. Patwardhan, H.M. Berman, G.J. Kleywegt, and W. Chiu. “EM-
DataBank unified data resource for 3DEM.” In: Nucleic Acids Research 44 (2016).

[92] Wlodawer, Alexander, Minor, Wladek, Dauter, Zbigniew, Jaskolski, and Mariusz.
“Protein crystallography for non-crystallographers, or how to get the best (but
not more) from published macromolecular structures”. In: FEBS Journal 275.1
(Jan. 2008), pp. 1–21. doi: 10.1111/j.1742-4658.2007.06178.x. url: http:
//dx.doi.org/10.1111/j.1742-4658.2007.06178.x.

[93] Daniel Russel, Keren Lasker, Ben Webb, Javier Velázquez-Muriel, Elina Tjioe, Dina
Schneidman, Bret Peterson, and Andrej Sali. “Putting the Pieces Together: Inte-
grative Modeling Platform Software for Structure Determination of Macromolecular
Assemblies”. In: PLoS biology 10 (Jan. 2012), e1001244. doi: 10.1371/journal.
pbio.1001244.

222

[94] Maria I. Dauden, Marcin Jaciuk, Felix Weis, Ting-Yu Lin, Carolin Kleindienst, Nour
El Hana Abbassi, Heena Khatter, Rościs law Krutyho lowa, Karin D. Breunig, Jan
Kosinski, Christoph W. Müller, and Sebastian Glatt. “Molecular basis of tRNA
recognition by the Elongator complex”. In: Science Advances 5.7 (2019).

223

Chapter 7

Appendix

7.1 Zusammenfassung

In dieser Dissertation wird die Rolle des systematischen Fittings im Kontext des in-

tegrativen strukturellen Modelings betrachtet. Diese Art des Modelings dient dazu,

Modelle von makromolekularen Komplexen aus verschiedenen Datenquellen zu gener-

ieren und ist zum Beispiel in Form der Softwarepipeline Assembline implementiert. Die

Datentypen, welche integriert werden, umfassen neben Eektronendichtekarten, welche

aus der Kryoelektronenmikroskopie und der Kryoelektronentomographie gewonnen wur-

den, auch Kristallstrukturen von Komplexen, Proteinen, RNA-Strukturen und Protein-

Untereinheiten sowie Crosslinks und biochemische Informationen. Das systematische Fit-

ting ist der erste Schritt in der Assembline Softwarepipeline und stellt ein Ensemble

möglicher Positionen und Orientierungen der Strukturen, aus welche sich der makro-

molekulare Komplex zusammensetz, zur Verfügung. Aus diesen möglichen Positionen

und Orientierungen wird in der weiteren Pipeline eine Anzahl von wahrscheinlichen Mod-

ellen generiert. Das systematische Fitting kann, im Rahmen der Assembline pipeline,

als einer der informationsreichsten Quellen angesehen werden. Es gibt eine Anzahl von

Möglichkeiten, wie man das systematische Fitting durchführen kann. Von Fall zu Fall

können die Ergebnisse sehr unterschiedlich ausfallen. Diese Arbeit untersucht die Frage,

wie ein Maximum an Information aus den gegebenen Daten gewonnen werden kann und

welche computerwissenschaftlichen, numerischen und mathematischen Konzepte genutzt

werden können, um das Modellieren von biomolekularen Komplexen zu optimieren.

Verschiedene Modellingprojekte wurden in verschienden Kapazitäten begleitet. Die Struk-

turbestimmung des TFIIIC-Komplexes (Transkriptionsfaktoruntereinheit C des Präiniti-

ationskomplexes der Polymerase III in Eukaryoten) wurde sowohl durch systematisches

Fitting als auch strukturelles integratives Modelling unterstützt. Obwohl die Gesamt-

224

struktur des TFIIIC nicht bestimmt werden konnte, konnte die Struktur des Subkom-

plexes τA ermittelt werden. Für die zum Subcomplex τB gehörigen Domäne Brf1-TBP

und τA konnten schliesslich wahrscheinliche Positionen und Orientierungen in einer nega-

tive stain Elektronendichtekarte von TFIIIC bestimmt werden ([83]).

In einem weiterem Modellingprojekt ist es gelungen einen Subkomplex, den sogenan-

nte P-Komplex, in einem in-situ Tomogram einer Speiche der Kernpore in s. cerevisia

wahrscheinliche Positionen und Orientierungen durch systematisches Fitting zuzuordnen.

Hier wurde programmatische Werkzeuge zur einfacheren Auswertung der statistischen

Analyse des systematischen Fittings implementiert und eine Analyse und Rechtfertigung

der verschiedenen Scoring-Optionen im systematischen Fitting zur Verfügung gestellt

([85]).

Die Assembline Software pipeline wurde erstmals der Öffentlichkeit zugänglich gemacht,

zusammen mit ausführlichen Beispielen und Anleitungen, um die Benutzung zu vere-

infachen. Hier wurden ein neues Konvergenzkriterium implementiert, welches unnötige

lange Monte-Carlo-Läufe verhindert([26]).

Desweiteren wurden die grundlegenden Datentypen und einige der Algorithmen, welche

im systematischen Fitting essentiell sind, auf modernen GPU(Graphical Processing Unit)-

Systemen implementiert und getestet. Hierbei wurde darauf geachtet, die spezifischen

Eigenheiten der GPU-Architektur zu gut wie möglich auszunutzen und die Nutzung

mehrer GPUs in großen Clustern zu ermöglichen.

Methoden der numerischen Mathematik wurden genutzt, um dem systematischen Fitting

verfeinerbare, 6-dimensionale Suchgitter zur Verfügung zu stellen. Diese ermöglichen zu-

dem das berechnen 6-dimensionaler Statistiken, welche das gewählte Fittingprotokoll als

Gesamtes charakterisiert. Desweiteren wurde die partial-surface-score als Scoring Meth-

ode eingeführt, welche insbesondere unvollständige Oberflächensegmente fitten kann.

Ein erschöpfender adaptiver paralleler Suchalgorithmus für 6-dimensionale Räume wurde

beschrieben, implementiert und getestet im Fall von TFIIIC. Das erwartete lokale Mini-

mum wurde erfolgreich gefunden in einer Zeit von ca 1.8 s. Methoden der Informationsthe-

orie wurden benutzt, um das Ergebnis eines systematischen Fittingprotokolls (im obigen

Sinne) auf seinen Informationsgehalt zu überprüfen. Somit wurde ein Kriterium erschaf-

fen, mit dem sich informationsreichere von informationsärmeren Fittingprotokollen un-

terscheiden lassen. Dies wurde an zwei konkreten Probleme getestet: Der Unterscheidung

des Informationsgehaltes zweier verschiedener Scoringmethoden und der Optimierung des

Informationsgehaltes einer Scoringmethode mit Hinsicht auf einen Parameter.

225

7.2 Synopsis

In this dissertation the role of systematic fitting is analyzed in the context of integra-

tive structural modeling. This kind of modeling aims to generate structural models of

macromolecular assemblies with the help of varying data sources. The Assembline soft-

ware pipeline is one possible implementation of this procedure. The data types that

are integrated are electron density maps obtained through electron microscopy, cryogenic

electron microscopy and cryogenic electron tomography and atomic structures that are

obtained via crystallography and homology modeling. Additionally chemical crosslinks

and biochemical information can be used. Systematical fitting is one of the first steps

in the Assembline software pipeline and provides an ensemble of possible positions and

orientations of the structures that make up the macromolecular complex that is being

modeled. From these possible positions and orientations an ensemble of possible models

is generated further down the pipeline. Systematic fitting can be seen, in the context

of the Assembline pipeline, as one of the most information-rich data sources. There is a

number of possibilities to conduct the systematic fitting step, often associated with multi-

ple parameters. From case to case the results can vary significantly. This thesis addresses

the question, how a maximum of information can be obtained from the data and which

computational, numerical and theoretical resources can be used to optimize the modeling

of bio-molecular complexes.

Different modeling projects have been supported in different roles. The determination of

the structure of the TFIIIC-complex (transcription factor subcomplex C of the preinitia-

tion complex associated with the polymerase III complex in eukaryotes) was accompanied

both through systematic fitting and structural integrative modeling. Although the holo-

complex of TFIIIC could not be determined, the structure of the subcomplex τA was

determined using a 3.47 Å cryo-EM density map. The domain Brf1-TBP, which belongs

to the τB-subcomplex of TFIIIC, and the τA subcomplex could be tentatively positioned

and oriented within a negative stain map of the holocomplex TFIIIC ([83]).

A further modeling project was concerned with a novel in situ cryo-ET map of the nuclear

pore complex of s. cerevisiae. It was possible to assign a position and orientation to a

negative stain map of the so called P-complex, which has been linked to the terminal

steps of mRNA export. Here I provided computational tools to simplify the statistical

evaluation of the systematic steps and the preferential use of certain scoring options over

others was justified based on the definition of the scores and the nature of the data (see

[85]).

The Assembline software pipeline was published together with exhaustive tutorials and

case studies to grant easier access to new users. Here I implemented a new convergence

criterion to prevent ineffectivley long Monte Carlo simulation runs (see [26]).

Furthermore I implemented and tested the fundamental data types and some of the algo-

226

rithms that are essential to systematic fitting. Care was taken to use the specific hardware

features typical to GPUs as efficiently as possible and to enable the use of multiple GPUs

for the same task.

I used methods from numerical mathematics to create refinable 6-dimensional search grids

for systematic fitting. These grids enable the calculation of statistics of functions in a

6-dimensional space, such as the result of systematic fitting protocols. Furthermore I

introduced a new type of score, the partial surface score. This score is constructed to

enable the fitting of partial surface segment, e.g. for fitting in negative stain maps.

I introduced an exhaustive adaptive parallel search algorithm for 6-dimensional spaces,

and implemented it and tested it on the concrete case of TFIIIC. The expected local

maximum was successfully found in a time of ca. 1.8 s.

I used methods from information theory have to assess the information content of a sys-

tematic fitting protocol in the above sense. Thus I created a criterion that enables the

distinction between information rich and information poor 6-dimensional systematic fit-

ting score distributions. I tested this on two concrete problems: The comparison of the

information content of two different scoring methods and the optimization of parameter

range for a specific systematic fitting protocol with respect to the information content of

the fitting distribution.

7.3 List of publications involving the author

Vasileios Rantos, Kai Karius, and Jan Kosinski. “Integrative structural modeling of

macromolecular complexes using Assembline”. In: Nature Protocols 17.1 (2022), pp. 152–

176. doi: 10.1038/s41596-021-00640-z

Matteo Allegretti, Christian E. Zimmerli, Vasileios Rantos, Florian Wilfling, Paolo Ronchi,

Herman K. H. Fung, Chia-Wei Lee, Wim Hagen, Beata Turoňová, Kai Karius, Mandy

Börmel, Xiaojie Zhang, Christoph W. Müller, Yannick Schwab, Julia Mahamid, Boris

Pfander, Jan Kosinski, and Martin Beck. “In-cell architecture of the nuclear pore and

snapshots of its turnover”. In: Nature 586.7831 (2020), pp. 796–800. doi: 10.1038/

s41586-020-2670-5

Matthias K. Vorländer, Anna Jungblut, Kai Karius, Florence Baudin, Helga Grötsch,

Jan Kosinski, and Christoph W. Müller. “Structure of the TFIIIC subcomplex τA pro-

vides insights into RNA polymerase III pre-initiation complex formation”. In: Nature

Communications 11.1 (2020), p. 4905. doi: 10.1038/s41467-020-18707-y

227

Jan Kosinski, Alexander von Appen, Alessandro Ori, Kai Karius, Christoph W. Müller,

and Martin Beck. “Xlink Analyzer: Software for analysis and visualization of cross-linking

data in the context of three-dimensional structures”. In: Journal of Structural Biology

189.3 (2015), pp. 177–183. issn: 1047-8477. doi: https://doi.org/10.1016/j.jsb.

2015.01.014

228

Erklärung der Urheberschaft

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne Hilfe Dritter

und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus

fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich

gemacht. Die Arbeit wurde bisher in gleicher oder ähnlicher Form in keiner anderen

Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Ort, Datum Unterschrift

229

Göttingen, 24.03.22

