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Predictions can be very difficult — especially about the future.
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IV. Zusammenfassung

Das digitale Zeitalter schreitet insbesondere im gesundheitsbezogenen Kontext rasant
voran. Unmengen an Gesundheitsdaten, computertechnologische Fortschritte und die
standig wachsenden Erkenntnisse uber Krankheiten machen es erforderlich, neue
Technologien zu entwickeln und zu evaluieren, um die gewonnenen Erkenntnisse in
individualisierte Therapien einzuweben. Wahrend das therapeutische Drug Monitoring
(TDM) bei lebensbedrohlichen und kostenintensiven Krankheiten wie der Himophilie A
oder (schweren) Methicillin-resistenten Staphylococcus aureus (MRSA)-Infektionen
inzwischen gangige Praxis ist, ist der Nutzen der Therapieindividualisierungen noch
nicht vollstandig ausgeschopft. [1], [2] Sogenannte pharmakometrische Ansdtze haben
das Potenzial, die Effektivitdt und Sicherheit des Arzneimittels zu erhohen. Dies setzt
jedoch voraus, dass (i) die Ansatze fiir den beabsichtigten Zweck geeignet sind, (ii) sie
sorgfaltig evaluiert und validiert werden und (iii) die korrekte Anwendung durch das
medizinische Fachpersonal gewahrleistet ist.

Ziel des vorliegenden Dissertationsprojekts ist es, neue Erkenntnisse in
individualisierten Therapien anhand zweier exemplarischer Krankheiten (Himophilie A
und mit Vancomycin behandelte Infektionen) zu gewinnen. Durch die Entwicklung und
Evaluierung neuer und bestehender pharmakometrischer Ansatze soll der Aufwand fir
die Implementierung pharmakometrischer Ansatze am Krankenbett verringert werden.
In der Publikation | wurden 12 verschiedene Populations-pharmakokinetische (PK)
Modelle hinsichtlich ihrer Vorhersagegenauigkeit der Zeit oberhalb des Faktor VI
(FVIN)-Zielwerts in 39 erwachsenen Hamophilie-A-Patienten bewertet. Den Patienten
wurden verschiedene FVIII-Produkte verabreicht und im Anschluss flinfpunkt PK Daten
flir die externe Validierung erhoben. Im Durchschnitt uberschatzten die
Populationsmodelle die wahren Werte (z.B. a priori Richtigkeit: -3.8 Stunden bis 49.6
Stunden). Das Modell von Abrantes et al.[3] schnitt in der gesamten Population am
besten ab (Richtigkeit: -3.8 Stunden a priori; -1.0 Stunden a posteriori; 0.6 Stunden
general model fit) und wies eine akzeptable Vorhersage in bis zu 90 % der Patienten auf.

Das Modell wurde in die frei verfligbare modellgestiitzte Prazisionsdosierungs (MIPD)-



Software 'TDMx'[4] implementiert, um es medizinischem Fachpersonal zu erméglichen,
eigenstandig patientenindividuelle FVIII-Dosierung zu erstellen und zu bewerten.
Abseits der Hamophilie A wurde in Publikation Il die Vorhersagegenauigkeit von 23
Populations-PK Modellen mittels umfangreicher TDM-Daten (923 Proben) von 169
erwachsenen Patienten, die kontinuierlich infundiertes Vancomycin erhielten,
bewertet. Die Studie identifizierte das Modell von Okada et al[5]
(Richtigkeit: < -0.1mg/L) und ein Modell aus gepoolten Daten von Colin et al.[6]
(Richtigkeit: < -1.1mg/L) als am besten geeignete Modelle. Im direkten Vergleich des
Datenalters und der Datenmenge hatten weniger alte Beobachtungen einen positiveren
Einfluss auf die modellgestiitzten Vorhersagen als eine hohere Anzahl an
Beobachtungen. Die deutlichen Unterschiede der modellgestiitzten Vorhersagen
unterstreichen die Notwendigkeit einer sorgfaltigen Modellauswahl und -validierung je
nach Einsatzzweck sowie populations- und datenspezifischen Eigenschaften.

In Publikation Ill galt es, die Herausforderung der Auswahl des richtigen Modells fiir das
individuelle MIPD zu bewaltigen. Dazu entwickelten und evaluierten wir zwei
automatisierte Multi-Modell-Ansatze. Diese wahlen entweder automatisch das Beste
(model selection algorithm, MSA) oder ein Set von Modellen (model averaging algorithm,
MAA) aus einer Reihe von Populationsmodellen fiir einen einzelnen Patienten aus. Die
Vorhersageleistung der beiden Algorithmen wurde in einer Simulationsstudie aus sechs
unterschiedlichen Populationen sowie einem klinischen Datensatz von 180 Patienten,
welche mit Vancomycin behandelt wurden und unter TDM standen, bewertet. In den
sechs virtuellen Populationen zeigten der MSA und MAA genauere Vorhersagen
(Prazision: 9.9-24.2%; Richtigkeit: weniger als +8.2%) als die einzelnen
Populationsmodelle (Prazision: 8.9-51.1 %; Richtigkeit: bis zu 28.9 %). In dem klinischen
Datensatz fiihrten der MSA oder MAA zu richtigen und prazisen Vorhersagen (Prazision:
29 % und 30 %; Richtigkeit: -5 % bzw. 0 %). Beide Ansatze wurden in die oben erwdhnte
MIPD-Software ,TDMx‘ implementiert, um dem klinischen Entscheidungstrager die
unparteiische und patientenspezifische Auswahl der idealen Modelle zu erleichtern.
Zusatzlich wurden der MAA und MSA zur Vorhersage der individuellen Zielparameter

der Patienten aus Publikation | und Il genutzt und ihre Anwendbarkeit in beiden
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Populationen nachgewiesen. Die Vorhersagegenauigkeit lag immer im Bereich des
besten identifizierten Populations-PK-Modells oder war sogar besser als dieses.

In Publikation IV wurde der Einfluss der Probenentnahmezeit auf die
Vorhersagegenauigkeit des entwickelten MAA und MSA in einer Simulations-
Schatzungs-Studie  untersucht. Dazu  wurden 92  Ein- oder Zwei-
Probenentnahmestrategien erstellt, um die individuelle Flache unter der
Konzentrations-Zeit-Kurve (AUC) nach intermittierenden Vancomycin-Infusionen zu
schatzen. Die optimalen Einzelprobenzeitpunkte lagen zwischen 2 und 6.5 Stunden
nach Infusionsbeginn, wobei die Richtigkeit zwischen -2.9 % und 1.0 % variierte und die
Prazision fiur beide Multi-Modell-Ansatze zwischen 233 % und 24.0% lag. Eine
zusatzliche  Messung  zwischen 4.5 und 6.0 Stunden verbesserte die
Vorhersagegenauigkeit (Richtigkeit: -1.7-0.0 %; Prazision: 17.6-18.6 %), obwohl die
Unterschiede zwischen den auf zwei Stichproben basierenden Strategien geringer
ausfielen. Im Gegensatz zur gegenwartigen klinischen Praxis, in der meist
Talspiegelmessungen zur Auswertung herangezogen werden, sollte die erste Probe
idealerweise fruhzeitig nach Behandlungsbeginn entnommen werden, wahrend das
Entnahmefenster einer zweiten Probe deutlich groRRer ist. Dies konnte bereits gentigend
Zeit bieten, um die zweite Dosis zu individualisieren, was bei der Entnahme und

Bewertung von Talspiegelmessungen nahezu unmaglich ist.
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V. Abstract

The digital era is progressing rapidly, especially in the health-associated context.
Excessive amounts of health data, computational advances and constantly increasing
insights into diseases require the development and evaluation of novel technologies for
integrating the gained knowledge into individualized therapies. While therapeutic drug
monitoring (TDM) has become common practise in life-threatening and cost-intensive
diseases like haemophilia A or methicillin-resistant Staphylococcus aureus (MRSA)-
infections, the utility and value of precision medicine has not been fully leveraged yet.[T],
[2] So-called pharmacometric approaches have the potential to improve individual
therapies through optimizing the efficacy of a drug and minimizing its toxicity.
However, this requires (i) the approaches to fit for the intended purpose, (ii) to be
carefully evaluated and validated and (iii) to assure the correct use by healthcare
professionals.

The aim of the present PhD project is to bring new insights to individualized therapies
in two exemplary diseases (haemophilia A and infections treated with vancomycin). By
developing and evaluating new and existing pharmacometric approaches it is aspired
to mitigate the burden to implement pharmacometric approaches at bedside.

In Publication |, 12 distinct population PK models were evaluated in their performance
to predict the time above the factor VIII (FVII) target by using data from 39 adult
haemophilia A patients. The patients received various FVIII products, and five-point PK
data measured in two assays were obtained for the external validation. On average, the
population models predicted with a positive bias (e.g. bias -3.8 hours to 49.6 hours a
priori). The model of Abrantes et al[3] was identified to perform best across the
population (bias: -3.8 hours a priori, -1.0 hours a posteriori, 0.6 hours general model fit)
and acceptably predicted up to 90 % of the patients. This model was implemented in
the open-access model-informed precision dosing (MIPD) software ‘TDMx’,[4] to allow
the community to evaluate patient-individual FVIIl dosing.

Apart from the indication haemophilia, the predictive performance of 23 population

vancomycin PK models was evaluated in Publication Il and based on rich TDM data
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(923 samples) from 169 adult patients after receiving continuously infused vancomycin.
The study identified the model of Okada et al.[5] (bias < -0.1 mg/L) and a pooled-data
model from Colin et al.[6] (bias < -1.1 mg/L) as most suitable models. Model-based
predictions were more accurate when using more recent observations compared to a
higher number of observations. The highly variable predictions of the models underline
the need of careful model selection and validation depending on the purpose,
population- and data-specific properties.

In Publication Ill, we aimed to overcome the challenge of selecting the correct model for
individual MIPD by deriving and evaluating two automated multi-model approaches.
The novel approaches either automatically select the best (model selection algorithm,
MSA) or a set of models (model averaging algorithm, MAA) for an individual patient
amongst a set of candidate models. A simulation study of six distinct populations and a
clinical dataset of 180 patients undergoing TDM during vancomycin treatment was used
to assess the predictive performance of the two algorithms. Throughout the six virtual
populations the MSA and MAA displayed more accurate predictions (imprecision: 9.9—
24.2 %; inaccuracy: less than £8.2 %) than the single population PK models (imprecision:
8.9-51.1%; inaccuracy: up to 28.9 %). In the clinical dataset, the MSA or MAA resulted in
unbiased and precise predictions (imprecision: 29 % and 30 %, inaccuracy: -5 % and 0 %,
respectively). Both approaches were implemented into the above mentioned MIPD
software ‘TDMXx’ to facilitate the impartial and patient-specific selection of ideal models
to the decision maker. Additionally, the MAA and MSA were applied to predict the
targets in the individuals introduced in Publication I and Il and proved their applicability
in these two populations. The predictive performance was always in range of or even
better than the best identified population PK model.

In Publication IV, the impact of the sampling time on the predictive performance of the
developed MAA and MSA was investigated in a simulation-estimation study. Therefore,
92 one or two sampling strategies were created to estimate the individual area under
the concentration-time curve (AUC) after intermittent vancomycin infusions. The
optimal single-sample timepoints were identified between 2—6.5 hours post dose, with

varying bias values between -2.9 % and 1.0 %, and an imprecision of 23.3—24.0 % for both



multi-model approaches. Adding a second sample between 4.5-6.0 hours improved the
predictive performance (-1.7 to 0.0 % bias, 17.6-18.6 % imprecision), although the
difference in the strategies based on two samples were minor. Hence, contrarily to
current clinical practice where mostly trough samples are obtained, the first sample
should optimally be obtained during early treatment phase, while the second sampling
window is less strict. This could give sufficient time to already individualize the second

dose, which is likely unfeasible using trough sampling.
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1 Introduction

1.1 Personalized medicine

In an ideal world personalized medicine would follow the following paradigm: every
patient receives exactly the treatment needed. Each drug is administered in its most
effective and safest way. The individual outcome is maximised while adverse events and
costs are minimized.

Reality proves us far away from that goal. The World Health Organization for example
estimated that costs of 42 billion US-dollar per year are purely caused by medication-
related errors.[7] Although quality, safety and efficacy need to be assured during every
drug approval, economic reasons, considerations about practicability and potentially
limited resources mostly led to bulk dosing recommendations for the largest possible
groups of patients, like a fixed standard dosing.[8] In this simplest dosing strategy the
same fixed dose and dosing interval is assigned to every individual, although this might
result in highly variable and potentially suboptimal responses in certain patients.[9] The
variability of the responses often bases on multiple factors, which can be classified into
differences between individuals (e.g. patient’s age, body weight and sex) or within the
same individual (e.g. disease progression, organ function and dietary changes) and are
termed patient covariates.

Adaptive dosing strategies further incorporate these patient-specific covariates to
calculate pre-adjusted dosing regimen. Therefore, it is crucial to know the correlation
between the drug effect and the patient-specific covariates (e.g. an increased body
weight reduces the desired drug effect, which can be compensated via an increased
dose).[10] These correlations are usually quantified in prior studies of certain patient
collectives and allow a customized treatment initiation for each collective.

When intending to adjust the dosing strategy during treatment, a feedback mechanism
needs to be implemented. By comparing individual measurements (e.g. blood pressure,
blood sugar as direct drug effect measurements or plasma concentrations as surrogate

markers for the drug effect) with a predefined target, imminent doses can be increased



or decreased to meet the desired drug effect. The combination of feedback and dosing
adjustment can be repeated throughout therapy. A detailed discussion of this topic is

included in Chapter 1.2 and compared to pharmacometric approaches in Chapter 1.4.

1.2 Therapeutic drug monitoring

Therapeutic drug monitoring (TDM) embodies a form of an ‘adaptive dosing strategy
with feedback-control’ and thus aims for individualized dosing. The overall goal is to
maintain individual drug concentrations in biological fluids within specified target
ranges to maximize therapeutic benefit, yet avoid toxicity.[11]

Since the first reports on applied TDM in the early 1970s,[12], [13] the therapeutic value
of treatment individualization must be thoroughly assessed: Rather than applying TDM
universally, certain criteria should be met to justify its application. First, it needs to be
assured that the correlation between measured drug concentration and effect is higher
than between dose and effect (i.e. blood concentrations are an adequate surrogate for
the effect) and there is no clinical marker to directly measure the drug effect.[13] Second,
feedback controlled dosing is needed if drugs (i) display a narrow therapeutic window
(i.e. a small range between the minimal effective and minimal toxic concentrations),
and (i) result in highly variable exposures or responses in individuals.[14] Third, TDM is
also indicated when the risk of intolerable toxic effects are increased and/or the
therapeutic success is critical (e.g. in face of death). Lastly, if the patient’s response
differs from usual expectations due to unforeseen or special exposure-response
relations (e.g. the patient belongs to special risk groups, like critically ill), actively applied
TDM can assist in refining the individual treatment.[15]

TDM is considered a straightforward process, as measurements can be easily compared
with the predefined limits of effective/toxic concentrations (i.e. whether the measured
concentration is within target range or not). Thereon adjusted doses or dosing intervals
are easy to calculate via the rule of three (i.e. the Dettli rules). Nonetheless, the
conventional TDM approach is associated with several disadvantages. Predetermining

target concentration ranges is mostly limited to blood/plasma concentrations and

1.2 Therapeutic drug monitoring
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usually established for one way of administration (e.g. intermittent or continuous) and
a distinct dosing interval. Evaluating more complex targets, like the area under the
concentration-time curve (AUC) or the time above a concentration threshold (TAT), is as
unfeasible as interpreting exposure and adjusting doses of drugs exhibiting non-linear
pharmacokinetics (PK).[16] Furthermore, the rate of drug input and drug elimination (i.e.
the exposure profile) has to be fairly constant over time, meaning steady-state
conditions are required after every change of drug amount or interval before TDM will
be reasonable.[9] This makes the convential TDM approach rather slow. Last but not
least, TDM has been criticized for being a passive monitoring process (i.e. whether the
measured concentration is within target range or not) with no clear guidance on
achieving individual targets.[15], [17]

Interventions like the target concentration intervention, which defines a distinct target
and gives pharmacological-based guidance on how to achieve the same,[18] highlight
the common interest on overcoming disadvantages of traditional TDM.

A more sophisticated approach includes pharmacokinetic/pharmacodynamic models to
guide dosing and is summarized under the term model-informed precision dosing
(MIPD). Before discussing MIPD, the basic elements of PK, PD and pharmacometric

modelling are reviewed.

1.3 Pharmacometrics

In the last decades pharmacometrics has evolved to an integral part of clinical
pharmacology during drug development, research and therapy.[19] It is the intersection
between quantitative pharmacology, mathematics and computational science or as
Ette et al. pointedly defined the term: “Pharmacometrics is the science of developing
and applying mathematical and statistical methods to characterize, understand, and
predict a drug’s pharmacokinetic, pharmacodynamic and biomarker-outcomes
behavior.”[20] In essence, pharmacometrics rationalizes data-driven decisions in drug
development and pharmacotherapy though analysing populations and gaining

knowledge in the pharmacokinetic and pharmacodynamics of the drug.



1.3.1 Pharmacokinetics

A fundamental element in pharmacometrics is to provide understanding of a drug’s
pharmacokinetics (PK). Thus, the term refers to the study of all processes that determine
the fate of the drug within a living organism.[21] In this context, a widely employed
acronym is ‘ADME’ and incorporates the absorption (A) of the drug, distribution (D)
within the body, the metabolism (M) and excretion (E) — the latter two also known as
clearance.[22]

Given the genetic and physiological differences between humans (e.g. age, physiological
condition or genetic disposition) and time-dependent alterations within individuals (e.g.
disease progression, comedication or organ function), the time-course of a drug and its
PK descriptors vary in a group of patients or population. In the field of population
pharmacokinetics, clinical samples are collected from multiple patients to describe
concentration-time profiles and quantify sources of variability in drug exposure. The
main aim of population PK is to associate gained information with patient

characteristics and translate this knowledge into mathematical functions.

1.3.2 Pharmacodynamics

If PK is defined as “how does the body affect the drug”, pharmacodynamics (PD) can be
summarized as “how does the drug affect the body”.[23] In essence, PD describes the
relationship between drug exposure and beneficial/adverse drug effects. These
relationships can be represented in mathematical models and is called PK/PD
modelling. Of central interest thereby are the underlying PK/PD mechanisms and the PK
impact on the effect variable, which together could provide the fundament of an
optimized dosing regimen. As effect variable one could imagine the in-vitro bacterial
count in infectious diseases, the time to cure or death, or the physician’s assessment
aggregated in a score. In coagulation disorders for example, the bleeding frequency or
bleeding intensity can be associated with the PK of a clotting factor to derive dosing

recommendations.

1.3 Pharmacometrics
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1.3.3 Pharmacometric modelling

As indicated above pharmacometric modelling is a common tool to derive the drug’s PK
or PK/PD characteristics and thereupon derive new treatment recommendations. The
conceptual framework of this approach, also termed non-linear mixed effects (NLME)
modelling, arose in the 1970s by Sheiner et al.[24]. Nowadays, it has mostly replaced two
more simplistic approaches, which have shown to produce biased results: naive pooling
and the ‘two-stage’ approach.[25] The naive pooling calculates the population
parameters by fitting all data from the total population at once without accounting for
individual differences, which leads to biased population parameters without any
estimated variabilities.[26] The ‘two-stage’ method calculates the individual
parameters first and subsequently determines the variability between the individuals.
Thus, this method has been shown to result in less biased population parameters but
still misspecifies the variabilities and requires the same (high) amount of data from
every individual.[27]

In contrast, NLME modelling can simultaneously determine the population, as well as
the individual model parameters and quantifies the variability between and within
individuals, as well as covariate relationships at once.[24] Furthermore, this process
requires less quantities of data compared to the aforementioned approaches and can
deal with missing or unbalanced data. Different sources of data can be simultaneously
integrated to contribute to different aspects of the model.[28]

Generally, the modelling process underlies four key elements [29], although on-going
methodological and computational developments further the set of more
complex/refined techniques/applications (Figure 1). First and foremost, the intended
use of the model must be defined, along with the pharmaceutical research question.
Thereby, pharmacometric models can either be descriptive or predictive. Descriptive
models are purely developed to gain knowledge on the drug’s PK/PD within the studied
population.[30] When the model is used to numerically summarise PK/PD information

(e.g. variabilities in the population or covariate relationships), there is no intention to
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extrapolate. On the contrary, predictive models, usually build upon descriptive models,
are intended to be applied to patients outside the development population.[31] The
predictive model behaviour is of greater interest than the exact descriptive parameter

values.

« Define intended use

Intention of the model

Data « Sampling scheme
INSo [V [T - Assure data quality

« Model building

DIV (o610 [I3I M - Model selection
* Model identification

Evaluation / [
Validation appropriateness

Figure 1: Key elements of the nonlinear mixed effects modelling process

In both cases, the second key element is to acquire the relevant data. Thereby, the
quality of data is as important as its appropriateness to potentially answer the research
question. Falsely documented or (accidentally) ignored facts (e.g. comedications or
organ status) will impair the development of reliable models —the third element of the
modelling process.

ANLME model, which ‘mixes’ or combines fixed effects (e.g. constant covariates or doses
of drug) with random effects (e.g. unexplained variability or time-varying covariates) in

a set of nonlinear functions,[32] is built upon three components: the structural, the
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statistical and the covariate model.[33] While the structural model contains the
mathematical structure and describes the central tendencies of the fixed effect
parameters, the statistical model accounts for the variation on parameter and
observation level by describing the magnitude of the variances (e.g. inter-individual,
intra-individual, inter-occasion and residual variability).

In general, the variability of population parameters is assumed to underly a formal
statistical distribution (e.g. lognormality) and therefore, NLME models are of parametric
nature. An opposing method, the nonparametric approaches, are not mathematically
summarising the observation via discrete distributions and typical, fixed parameters.
The population trends and their variabilities are rather computed as a set of supporting
points, which are associated to the respective individuals and based on their probability
to adequately predict the observed data.[34]

The last component of a NLME model, the covariate model, aims to explain parts of the
inter- and intra-individual variability through relating individual, measurable patient
covariates (e.g. age, body weight) to parameter variances.

During the development of descriptive NLME models a collection of related models with
increasing complexity is built to identify the most representative one to answer the
initial research question. Therefore, the goodness-of-fit, reliability and stability must be
evaluated using credible techniques. Given that the extrapolation within predictive
models involves more assumptions on the relationship between prior knowledge and
predicted results, these models require a more careful validation to fit the respective
purposes.[31] More details of the model evaluation and validation — the fourth key

element of the modelling process — will be covered in Chapter 1.3.4.

1.3.4 Model evaluation and validation

Before introducing evaluation techniques used in the present work, a brief distinction
between the connotations of evaluation and (external) validation should be made. As a
matter of fact, there is no clear consensus on the differences of the terminology of

validation and evaluation. Both terms are found interchangeably in the pharmacometric
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community.[35] Nonetheless, validation is — in context of this work — focussing on the
predictive performance of the models with regard of unseen, future data. In accordance
with the FDA guideline, model validation proves the predictability of the model and
quantifies the accurateness and reproducibility of the forecast in (new) validation
data.[36] In contrast, evaluation is to be used in a broader way and summarises all
processes demonstrating whether the proposed application is robustly implemented
and whether ‘good practise’ had been applied to describe the (known) data.[37]
Both terms thereby do not imply the model(s) to be appropriate under any condition but
only the evaluated and predefined purpose. In the following a selection of basic
evaluation techniques during model development (including selection, evaluation, and
validation) will be introduced.
During early stages of model development, the so-called objective function value (OFV)
is generally used to discriminate between candidate models. In the NLME framework
OFV is often expressed as modification of the extended least squares (ELS) (Eq. 1):

OFV = zn: Yoy () = st 6,1)" +10g,(6?) + zn:

i=0 =

77i2 Ea.1
0z + constant g.

g2
=0

\ J

ELS
with

e y;(t;) beingthe measurement at time ¢; for the ith individual, i.e. the dependent
value

e 0 beingthe model parameter vector (constant with respect to time but unknown)

e si(t;,0,m;) being the model-predicted value at time t;, given the model
parameter vector 8 and including the individual deviations n

e o2 beingthe variance of the residual error

e 02 being the variances of the parameter 0

e 1; being the inter-individual variation term of the ith individual drawn from the

variances Q2
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Thereby, the OFV simultaneously encloses all differences of individual and population
parameters as well as between observed and predicted dependent variables (e.g. plasma
concentrations). Via this single number differences between competing models can be
initially assessed.[38]

Furthermore, goodness-of-fit is usually assessed graphically. Here, prediction versus
observations from the total population and/or their (standardized/decorrelated)
differences are plotted and visually assessed as for example proposed by Nguyen et
al.[39] Presuming clean data, the so-called standard diagnostic plots give insight into
structural misfits and mismatching residual variability components.

Moreover, these plots can be accompanied by the assessment of (conditional) weighted
residuals, which are standardized prediction errors, and simulation-based diagnostics
like the visual predictive checks (VPC) or normalized prediction distribution errors. VPC
are a graphical comparison of the prediction intervals derived via simulations and the
corresponding observations.[40] Normalized prediction distribution errors on the other
hand are simulation based computations of the prediction discrepancies which are
uncorrelated and normalised.[41] These diagnostics give insight into structural misfits
and a visual imprecision of the encoded variability of the predictions.

Another set of techniques aims to evaluate the reliability and stability of a model.
Therefore, the uncertainty of all model parameters needs to be assessed, usually in
forms of confidence intervals or standard errors. Standard errors of the parameters are
approximated via methods like bootstrapping or log likelihood profiling. In a nutshell,
bootstrapping is defined as a method of repeatedly generating datasets via resampling
of the original data and re-estimating the parameters of the model of interest.[42] The
distribution of the re-estimated parameter is subsequently used to display the
confidence intervals of the respective parameters. In likelihood profiling, the OFV
associated with the surface around each parameter of the final model is graphically
displayed.[30]

In case the model is intended to be externally applied for forecasting individual profiles
or targets, the predictive performance needs to be assessed and ideally compared to

other approaches. For this purpose, several numerical performance indicators, which



should be accompanied by evaluation methods proving model stability and reliability,
have been proposed.[43] The mean or median error for example represents the general
tendency of the forecast to meet the true values, also known as bias. This metric should
be always accompanied by a measure of imprecision. The (root) mean squared error for
example enables interpretation of the average spread of the forecasts.

To validate the predictive performance of the models and novel approaches evaluated
in the current work (e.g. their ability to accurately forecast) the numerical performance
indicators mentioned above were calculated in external datasets that were not used to
develop the models. Except in the simulations, the metrics were accompanied by the

standard errors of the accuracy metrics to determine uncertainties.

1.4 Model-informed precision dosing

MIPD summarizes computationally guided approaches (including the use of
pharmacometric models, machine learning or adaptive model approaches), which aim
to draw inference from multiple sourced data on future treatment courses of the
patient.[16], [44] The process lies within the broader field of personalized medicine and
is increasingly recognised by healthcare professionals, patients and even (former)
American presidents, as the latest precision medicine initiative was launched by Barack
Obama.[45], [46]

Through implementing pharmacometric models in mobile or web-based software (e.g.
InsightRX[47] or TDMx[4]), MIPD supports clinical decision-making and aims to
maximize efficacy and minimize toxicity within the individual. It can be seen as an
extension to traditional TDM, because it shares the same aim and has similar fulfilling
criteria (i.e. narrow therapeutic ranges, imperative of therapeutic success, or high risk of
altered PK/PD). Nonetheless, this approach comes with several advantages compared
to traditional TDM.

As with classical dosing nomograms or single covariate-based dosing, pharmacometric
models can predict a likely dosing regimen to meet the intended target without

measuring any drug concentrations (i.e. a priori). However, this approach allows to

1.4 Model-informed precision dosing
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consider multiple covariates, its correlations and prior knowledge enclosed in the model
(e.g. PK structure and variability in similar patients/populations, also termed Bayesian
prior) simultaneously and immediately provides a comprehensive representation of the
PK parameters together with their probability distributions.[48] Furthermore, with the
individual basic parameters at hand, more complex parameters (like the AUC or TAT) can
be easily derived.

The power of pharmacometric models becomes apparent when individual drug
concentrations are available. The probability distributions of the patient’s PK
parameters are refined considering the Bayesian prior, dosing, and drug measurement
data at once and the most likely set of individual estimates will be generated (i.e. the
maximum a posteriori (MAP) estimate).[49], [50] Thereby, the drug concentration
measurements, of which a single one might already be sufficient, can theoretically be
obtained at any time of the dosing interval. Hence, MIPD is not restricted to a fixed
dosing regimen and steady-state conditions, although certain timepoints may
contribute more to the predictions.[16] Ultimately, MIPD results in maximally precise
dosing recommendations, which can be constantly updated as soon as new data
becomes available.

Despite its benefits, implementing MIPD in clinical practise still progresses at snail’s
pace.[51]-[53] One such reason is the necessity to carefully select the underlying model.
As Broeker et al. demonstrated, varied the predictive performance of 31 published
vancomycin PK models drastically, when being used for (Bayesian) forecasting of
individual PK profiles.[54]

Further detailed reasons on why MIPD has not yet become reality are discussed in

Chapter 4.

1.5 Investigated diseases for application of MIPD
Two different diseases and their corresponding therapies were investigated in this work:
haemophilia A as well as (systemic) infections caused by Gram-positive bacteria.

Thereby, their contrasting demands on the treatment highlight the potential of MIPD to



enhance treatment across substantially different diseases. While haemophilia A is
treated for the entire lifetime, infections caused by Gram-positive bacteria rather
require rapid and temporally treatment. More differences regarding their causes,

prevalence and treatment targets are described in the following two chapters.

1.5.1 Haemophilia A

Haemophilia A is one of the most common bleeding disorders and affects mostly males
due to its x-linked recessive inheritance (incidence 1in 5000 males).[55] Although the
disease is clinically indistinguishable from haemophilia B (incidence 1 in 30 000),
differentiation is necessary due to the divergent cause, that is a deficiency or
malfunction of either coagulation factor VIII (FVIII) in haemophilia A or of factor IX in
haemophilia B.

Untreated haemophiliacs are usually not expected to reach their adulthood, depending
on the severity of the disease. The condition thereby occurs in three forms and is
categorized via the intrinsic activity (i.e. endogenous amount of functional FVIII) relative
to normal levels. While in mild (6—30 % of normal activity) and moderate (2-5 %)
excessive bleeds mostly manifest after major trauma or surgery, patients with severe
haemophilia A (<1%) encounter 20-30 excessive or even spontaneous bleeds per
year.[56]

There is no cure for haemophilia A, but a lifelong and individually optimized
replacement of the malfunctioning or missing factor VIl can prolong life to normal
expectancies[57] and improve quality of life.[58] This prophylactic treatment involves
the periodic administration of exogenous FVIII products to always maintain the patient
above 1% of the normal FVIII level. This has been shown to reduce life-threatening
bleedings, recurrent musculoskeletal hemorrhages and its consequent joint disabilities
—the main symptoms of haemophilia A.[2], [59]

Since the first description of the disease in the 19t century,[60] its treatment has
evolved from blood transfusion to prophylactic replacement therapy using exogenous

FVIII derivatives. Nowadays, three classes of FVIII products are available: plasma-

1.5 Investigated diseases for application of MIPD
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derived, recombinant products and those with extended half-lives. The most common
class, the recombinant products, can further be distinguished into full-length, B-domain
deleted and other modified products, which differ in tolerability, costs and typical PK
(e.g. standard half-life is reported between 8-12 hours and around 20 hours for
extended half-lives).[61] But even using the same product the individual response has
been demonstrated to greatly vary.[62], [63] Patient characteristics (e.g. age, body
weight or von-Willebrand factor) or the underlying assay used to determine FVIIl activity
only partly explain the PK variability and therefore, make this disease an ideal candidate

for personalized medicine using MIPD approaches.

1.5.2 Infectious diseases caused by Gram-positive bacteria

Infections occur in many different forms, from harmless furuncles to life-threatening
infections of the lower respiratory tract, cardiovascular system or at intra-abdominal
sites, among others. These infections can be extraordinarily dangerous when patients
are in vulnerable conditions (e.g. old, immunodeficient or postsurgical patients) or when
typically used anti-infective drugs become ineffective due to antimicrobial resistance
(AMR) mechanism.

Globally, more than 1.25 million people died in 2019 due to AMR bacterial infections and
almost four-times as much died in association with AMR.[64] Thus, infections with drug-
resistant bacteria have become a leading cause of death worldwide — even exceeding
those caused by HIV/AIDS or malaria (860 000 and 640 000 death, respectively).[65]
The number of human pathogenic bacteria is enormous. Nonetheless, drug resistance
in six alone (E. coli, S. aureus, K. pneumoniae, S. pneumoniae, A. baumannii, and P.
aeruginosa) lead to the majority (i.e. 929 000) of the above mentioned deaths.[64] One
of the most common pathogen-drug combination is the methicillin-resistant
Staphylococcus aureus (MRSA). Current European surveillance reports estimate that
15.5 % of the invasive S. aureus strains are methicillin resistant. Thereby, the prevalence
highly varies from as low as 1.1% in the northern to almost 50 % in the southern

countries of the European Union.[66]



Of those infected with an MRSA strain, conventional antibiotics like beta-lactams,
fluoroquinolones or macrolides are not effective anymore.[67] In this case, the
glycopeptide antibiotic vancomycin can serve as key alternative.

After being discovered in 1952, vancomycin has been handled as a last resort antibiotic
due to its perceived toxicity and better alternatives (e.g. semisynthetic penicillins or
cephalothin).[68] Its use dramatically increased from the 1980s on because of the
widespread oral administration to treat pseudomembranous enterocolitis, which is
today known as one cause of vancomycin-resistant enterococci; and second the rising
appearance of MRSA.[69]

Nowadays, vancomycin is one of the most used antibiotics in the hospitals of the United
States.[70] It often requires TDM especially in vulnerable patients, given the critical need
to rapidly reach adequate antibiotic effects when facing life-threatening conditions (e.g.
sepsis or complicated endocarditis). Furthermore, high drug exposures were found to be
associated with nephrotoxicity or subsequent stages of acute kidney injuries. [71], [72]
Nonetheless, there has been an ongoing dispute on the most appropriate exposure-
response relationship of vancomycin.[73][71] While the vancomycin guideline from 2009
recommended to target vancomycin trough concentrations of 1520 mg/L and
therefore, obtain only TDM samples at the lower end of the PK profile, the most recent
guideline rather recommends maintaining the patient within an AUC range of 400—-650
mg*h/L.[1], [74] To calculate the optimal individual AUC, adequate population PK models
and the most informative samples are required.

The glycopeptide vancomycin is bactericidal against Gram-positive bacteria due to
inhibition of the cell wall crosslinking and has a low bioavailability.[75] Therefore, doses
are either intermittently or continuously infused with both displaying similar safety,
microbiological and clinical outcomes.[76] To reach individual targets even faster, MIPD

could be applied to forecast future PK profiles and subsequent doses.

1.5 Investigated diseases for application of MIPD
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Individualizing therapies is essential in treating life-threatening and cost-intensive
diseases to ascertain therapeutic effects and minimize risk of toxicity. Especially when
vulnerable or special patients are affected due to their PK alterations (e.g. critically ill,
children, multi-morbid), TDM has evolved as an important tool. This is due to the
straightforward process of comparing obtained drug measurements with
recommended targets and individualizing doses accordingly. Whether the target is to
maintain the FVIII concentration of a haemophilic patient above a certain threshold, or
whether one targets a distinct antibiotic exposure in MRSA-infected patients using
surrogate trough levels — TDM has been advocated for both contrasting diseases
discussed in this work.[2], [77]

However, the traditional way of personalized medicine has several disadvantages. Most
importantly, TDM is limited to steady-state conditions, and reference ranges of the
surrogate are usually obtained for a single dosing strategy (in terms of the way of
administration and dosing interval) in a standard patient collective.[78] Furthermore,
the variability of exposure-response is usually accounted for using one or two different
patient information (e.g. covariates like body weight or kidney function) — especially to
calculate the first doses. The complex interpretation of multiple influencing factors
simultaneously is likely impossible.

To overcome these drawbacks, TDM can be accompanied by pharmacometric models to
further guide dosing at bedside, i.e. MIPD approaches. Unfortunately, systematic
evaluation and implementation of MIPD is advancing slowly. Although it is not yet
commonly practiced in clinical reality, these models could — implemented in software
tools — change the way individual dosing decisions are derived.

Nonetheless, several challenges of MIPD need to be addressed before this process can
become common practise. These challenges can be classified into three key elements of

MIPD: the model (M), the data/patient (D) and the operator/MIPD-user (O) (Figure 2).
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Figure 2: Main challenges of model-informed precision dosing

The objective of this thesis was to evaluate challenges within these elements via the
publications included and advocate a wider integration in healthcare. In detail, the aims

of the publications were:

Publication I: Systematic evaluation of population pharmacokinetic models for
prophylaxis in haemophilia A
e Evaluation of the predictive performance of population PK models to identify
suitable models to guide personalized prophylaxis in haemophilia A patients (M)
e Extension of an existing MIPD software developed by Wicha et al. [4] to provide
a dosing module for haemophilia A treatment (O)
e Assessing assay discrepancies and other influential factors of the patient (D)
e Integration of multiple models in the MIPD approaches developed in Publication

Il and evaluation of its predictive performance (M, O)
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Publication II: Systematic evaluation of population pharmacokinetic models for model-
informed antibiosis in Gram-positive infected patients
e Evaluation of the predictive performance of population PK in Gram-positive
infected patients receiving continuous vancomycin (M)
e Assessing the impact of aging TDM information (M, D)
e Application and evaluation of the multi-model approaches developed in

Publication Il (M, O)

Publication lll: Development and validation of the model averaging and model selection
algorithm
e Development and validation of two novel MIPD approaches, which integrate
multiple population PK models at once and aim to automate and objectify the
model selection process (M, O)
e Implementation of the multi-model approaches into the MIPD software

developed by Wicha et al. [4] to be used for vancomycin MIPD (O)

Publication IV: Importance of sampling time and number to forecast the individual drug
exposure
e Assessing the impact of sampling time and number of vancomycin plasma
concentrations to forecast individual vancomycin exposure in the MAA/MSA (D)
e Comparison of the MIPD approach to a traditional TDM approach (M, D)
e Providing recommendations on sampling time and number to be used in future

clinical trials (D, O)
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3 Cumulative part

The following cumulative part consists of four peer-reviewed publications, which
represent the key results of this thesis. Thereby, the focus was set on various aspects of
applied model-informed precision dosing (MIPD) in haemophilia A and MRSA-infections
including the identification of optimal models and sampling timepoints, the
development of new MIPD approaches as well as the assessment of the impact of aging

TDM information.

The articles were published in Therapeutic Drug Monitoring, International Journal of
Antimicrobial Agents, Clinical Pharmacology & Therapeutics and Clinical Pharmacology

& Therapeutics: Pharmacometrics & Systems Pharmacology.[719]-[82]
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Synopsis

Providing severe haemophilia A patients with an adequate prophylaxis is essential to
prolong their lives and reduce costs due to excessive drug consumption or increased
long-term  consequences (e.g. joint-damages/disabilities). =~ Thereby, dose
individualization is nowadays usually assisted using trough sample-based TDM. A more
sophisticated approach is to individualize dosing using population PK models and their
predictions of the individual targets.

In Publication I, we aimed to identify the most suitable population PK model to predict
the individual time above target using one of multiple FVIIl products. Therefore, the
predictive performance of twelve published models were compared using sparse data
from an external dataset.

The systematic comparison revealed that it seemed beneficial to use models in MIPD
which were developed on preferably large and dense data. Nonetheless, simple model
selection based on the size of the development data is not enough. Especially, when
intending to use a single model for MIPD, sound external validation is necessary.
Furthermore, the use of chromogenic substrate assay (CSA) data for predicting the
individual TAT resulted in more accurate predictions than using one-stage assay (OSA)
data.

At last, the most promising model (published by Abrantes et al.[3]) was implemented in
the open-access model-informed precision dosing software ‘TDMx’ to allow the
community to evaluate model-guided individual FVIII dosing. Moreover, we applied the
two multi-model approaches developed in Publication Il and revealed a similar

predictive performance compared to the best population PK model.
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ORIGINAL ARTICLE

Dosing for Personalized Prophylaxis in Hemophilia A Highly
Varies on the Underlying Population Pharmacokinetic
Models

David W. Uster,* Pratima Chowdary, MD, 1 Anne Riddell, MSc, | Cecilia Garcia, MD, 1
Elsa Aradom, MD,} Molly Musarara, MD, 71 and Sebastian G. Wicha, PhD*

Background: Model-informed personalized prophylaxis with
factor VIII (FVII) replacement therapy aimed at higher trough
levels is becoming indispensable for patients with severe hemophilia
A. This study aimed to identify the most suitable population
pharmacokinetic (PK) models for personalized prophylaxis using
various FVIII products and 2 clinical assays and to implement the
most suitable one in open-access software.

Methods: Twelve published population PK models were system-
atically compared to predict the time above target (TaT) for a
reference dosing occasion. External validation was performed using
a 5-point PK data from 39 adult patients with hemophilia A with
FVIII measured by chromogenic substrate (CSA) and 1-stage assays
(OSAs) using NONMEM under 3 different conditions: a priori (with
all FVIII samples blinded), a posteriori (with 1 trough sample), and
general model fit (with all FVIII samples including the reference
dosing occasion provided).

Results: On average, the baseline covariate models overpredicted
TaT (a priori; bias —3.8 hours to 49.6 hours). When additionally
including 1 previous trough FVIII sample before the reference dos-
ing occasion (a posteriori), only 50% of the models improved in bias
(—1.0 hours to 36.5 hours) and imprecision (22.4 hours and 60.7
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hours). Using all the time points (general model fit), the models
accurately predicted (individual TaT less than 12 hours compared
with the reference) 62%-90% and 33%-74% of the patients using
CSA and OSA data, respectively. Across all scenarios, predictions
using CSA data were more accurate than those using the OSA data.

Conclusions: One model performed best across the population
(bias: —3.8 hours a priori, —1.0 hours a posteriori, and 0.6 hours
general model fit) and acceptably predicted 44% (a priori) to 90%
(general model fit) of the patients. To allow the community-based
evaluation of patient-individual FVIII dosing, this model was im-
plemented in the open-access model-informed precision dosing soft-
ware “TDMx.”

Key Words: Bayesian forecast, hemophilia A, individualized med-
icine, pharmacokinetics, therapeutic drug monitoring

(Ther Drug Monit 2022;00:1-9)
BACKGROUND

Hemophilia A is an inherited bleeding disorder caused
by deficient clotting factor VIII (FVIII).® Since the first accu-
rate description of this hereditary disease in the early 19th
century,? the treatment for hemophilia A has evolved from
blood transfusion to prophylactic replacement therapy using
recombinant FVIII derivatives. Nowadays, periodic adminis-
tration of exogenous FVIII aims to always maintain the FVIII
level in patients with severe hemophilia above 1% of the
normal level to potentially prevent life-threatening bleeding,
recurrent joint hemorrhages, and its consequent joint
disabilities, 5

Ensuring an adequate plasma level depends not only on
the dose but also on the FVIII pharmacokinetics (PK) in an
individual patient.8 PK parameters describing the distribution
and clearance of FVIII commonly exhibit substantial interin-
dividual variability leading to false dose recommendations if
inappropriately accounted for.® Some interindividual vari-
ability can be explained by the patient characteristics such
as age or body weight; however, dose individualization based
o-n these covariates only addresses a part of this variability. ™

Another approach, commonly referred to as Bayesian
forecasting or model-informed precision dosing (MIPD), aims
to further reduce the imprecision in dosing calculations by
combining individual patient’s information, including sam-
ples with measured FVIII levels (FVIII:C) using limited sam-
pling strategy, patient covariates, and prior PK information of

1
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a collective group in the form of a population PK model.
These models simultaneously characterize the drug-
concentration time courses in individuals as well as the whole
population and usually consist of 3 elements: mathematical
equations (including PK parameters) complemented by cova-
riate relationships between PK parameters and patient char-
acteristics as well as a statistical component accounting for
parameter deviations within an individual (unexplained resid-
ual variability) and across individuals (interindividual
variability).

Because personalized prophylaxis has been demon-
strated to be superior to standard prophylaxis for costs and
clinical outcomes ™2 the Scientific and Standardization
Committee of the International Society on Thrombosis and
Haemostasis has published their rationale and guideline to

TABLE 1. Demographics and Clinical Characteristics of
Patients Included in the Study

Characteristics Value [range] Missing
Patients Male, n = 39
Severity
Moderate 2 —
Severe 37 —
Age, yrs (median) 28 [18-69] —
Body weight, kg (median) 73 [46-121] 4
Body height, cm (median) 173 [148-193] 6
Von Willebrand factor, % (median) 111 [48-249] 3
Blood type 13
O+ (0-) 8(—)
At (A-) 12 (—)
B+ (B—) 4(1)
AB+ (AB—) 1(-)
FVIII product*
Full-length recombinant
(FLrFVIII)
2nd Generation, Octocog alfa 3
(Helixate and Kogenate)
3rd Generation, Octocog alfa 17
(Advate)
B-domain deleted (BDDrFVIII)
2nd Generation, Moroctocog 18
alfa (ReFacto)
3rd Generation, Turoctocog alfa 2
(NovoEight)
Extended half-life, 1
Efmoroctocog alfa (Elocta)
Dosage, 1U 10004000
Observations per assay
Chromogenic substrate assay 229
(CSA)
Total BLQ (trough) 23 (15
One-stage assay (OSA) 229
Total BLQ (trough) 14 (12)

*Patients may belong to more than 1 group.

BDDrFVIII, B-domain deleted recombinant factor VIIT product; BLQ, data below
the lower limit of quantification (<<1 TU/dL); CSA, chromogenic substrate assay;
FLrFVIIL, full-length recombinant factor VIII product; N.D., not defined; OSA, one-
stage assay.

adopt population PK @maches for the patient-tailored treat-
ment of hemophilia.

However, the major challenge remains the selection of a
population PK model that can be used in MIPD software
tools. Most population PK models are commonly developed
for a specific (sub) population but are not intended for use in
MIPD. Although there are approaches to compare available
population PK tools™ or (modified) population PK models in
a single tool,™ none of them have incorporated Bayesian
forecasting using real-life clinical assay data to evaluate the
predictive performance of various FVIII products.
Furthermore, the ongoing controversy regarding assay dis-
crepancies raises the issue of whether the chromogenic sub-
strate assay (CSA) or the 1-stage assay (OSA) should be
primarily used in clinical practice to guide dosing deci-
sions.

This study aimed to (1) systematically compare pub-
lished heterogenous population PK models, developed for
various FVIII products, as well as compare 2 previously
developed multimodel approaches, which either automatically
select the most suitable population PK model from a set of
candidate models per individual or average the predictions of
the gopulation PK models according to their individual model
fit:*# (2) identify models most suitable for MIPD by using a
clinical data set, including various FVIIl products and PK
profiles over 48 hours with 2 assays; and (3) implement the
most suitable model in the web-based, open-access MIPD
software “TDMx.”

MATERIALS AND METHODS

Clinical Data for the Model Evaluation

The clinical PK data sets acquired from the Katharine
Dormandy Haemophilia and Thrombosis Centre (London,
UK) were part of an ethically approved study (Rec Number:
15/LO/1868). PK samples were collected after obtaining
written informed consent and a 48-hour washout period
between October 2018 and December 2019. Patients received
doses ranging between 20 and 50 TU/kg of their body weight
(presented in Table 1), and samples were collected at 6 time
points: baseline preinfusion and postinfusion at 10 minutes, 3
hours, 8 hours, 24 hours, and 48 hours as described by
Stass.® Furthermore, the samples were analyzed by CSA
and OSA (sece Text, Supplemental Digital Content 1,
http://links.lww.com/TDM/A557, which contains details of
the 2 assays used). Data below the quantification limit of 1
TU/dL (10% in CSA and 6% in OSA) were encoded as half of
the lower quantification limit and were mostly predose levels.

Population Pharmacokinetic Models—
Description and Comparison

A literature search through PubMed identified 12
publications describing population PK models of various
FVIII products developed using diverse populations, S
“Hemophilia A,” “pharmacokinetics,” and “population” were
used as the search terms. The described models were encoded
and processed using NONMEM software (version 7.4.3;
ICON, Dublin, Ireland).
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To assess the population PK models structurally, the
PK profile of a standard patient was simulated model-wise
(see Text, Supplemental Digital Content 2, http:/links.lww.
com/TDM/AS558, which contains information of the simu-
lated standard patient), and subsequently, the time above
the target (TaT) of 2 TU/AL in steady-state conditions was
compared among the models estimations.

In addition, the models were compared with 2 recently
developed multimodel approaches, namely the model selec-
tion (MSA) and model averaging algorithm (MAA). The
MSA automatically selects the most suitable model for an
individual patient from a set of candidate models (a distinct
number of population PK models identified as performing
best in this study), and the MAA averages the predictions of
all these candidate models weighted proportionally to their
individual patient-specific model fit.® In detail, the model fit
was compared through the maximum likelihood (LL) ob-
tained through the NONMEM objective function value
(OFV) of the ith model relative to the set of » models
included in the algorithms.

LL; e( —0.5xOFV;)

n == [
TLL, S e(~05XO0FV,)

Wory, = (1)

Evaluation of the Predictive Performance

Three different scenarios were evaluated, which dif-
fered in the quantity of FVIII:C (either measured with CSA or
OSA), provided to each model to forecast the TaT in a
densely sampled “reference” dosing interval. The scenarios
were as follows.

A priori, the baseline covariate models were used to
forecast the reference TaT (using only patient covariates such
as body weight, age, and drug type).

A posteriori, the baseline covariate models were addi-
tionally supplied with a predose FVIII trough level to forecast
the TaT for the subsequent future dosing interval. Notably,
the “future” PK profiles were blinded to the model. This
scenario mimics the bedside process during therapeutic drug
monitoring, where the aim was to forecast future PK profile
using the available information.

General model fit, where all available FVIIL:C values
from either assay were supplied to the baseline models. The
Bayesian maximum a posteriori estimates were generated
with parameters and variabilities encoded as reported in the
respective publication (as in the scenarios above, NONMEM
MAXEVAL = 0 was used); however, in addition, FVIIL:C
from the reference dosing interval was also provided.
Hence, this scenario does not represent forecasting but rather
a retrospective evaluation to determine the maximum ability
of the models to fit all available data.

In all these scenarios, the individually predicted TaT
was compared with the TaT predictions of a reference model
that was developed based on the study data and was assumed
to reflect the true TaT in the reference dosing interval (details
of the development of the reference model: see Text,
Supplemental Digital Content 3, http://links.lww.com/
TDM/A559, which explains the development and structure

Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.

of the reference model, and see Figure, Supplemental
Digital Content 4, http://links.lww.com/TDM/AS560, which
demonstrates the reference model fit in the 39 individuals).

Further evaluation included goodness-of-fit plots, dis-
playing the population predicted versus observed FVIIL:C and
prediction-corrected visual predictive checks (pcVPCs) cre-
ated using R (version 4.0.2., R Foundation for Statistical
Computing, Vienna, Austria), and Perl-speaks-NONMEM
(version 4.9.0, Nordgren et al, Uppsala, Sweden). The
pcVPC, stratified by assay and FVIII product, was created
using-1000 simulation data sets, as described by Bergstrand
et al.

As performance indicators, bias, which represents the
accuracy (Equation 2), and root mean square error (RMSE;
Equation 3), representing imprecision, were calculated using
the mean difference between the predicted and true TaT, with
n being the number of individuals. 38

Bias = —x dicted; — refi i 2
ias = — Z(pre icted; — reference;) (2)

1

RMSE = X Z ((predicted,- = reference,-)z) (3)
1

1
n

The performance of the models was considered clinically
acceptable if the bias across the population was between —12
and +12 hours, with the 95% confidence intervals of the
calculated bias including 0.

Dosing Software “TDMx”

To translate the results obtained in this study into
clinical practice, we encoded the best-performing model in
the open-access online MIPD software TDMx (www.TDMx.
eu).® The software supports probabilistic a priori based dos-
ing simulations and Bayesian dosing using the a posteriori
predicted PK.

RESULTS

Clinical Data for the Model Evaluation

In total, 44 patients (460 samples) who received a
B-domain deleted (BDDrFVII) or a full-length product
(FLrFVIII) were enrolled in this study. Four patients with
no information on the date or amount of the previous dosing,
and one suspected with a genetic defect that might have
caused assay discrepancies, were excluded from this study.
The characteristics of these 39 patients are presented in
Table 1. Two samples from the same individual were sus-
pected to be low in quantity compared with the preceding and
subsequent samples of the same patient analyzed by both the
assays and were excluded.

Concentration dependency of the assay results was
observed for both the BDDrFVIII and FLrFVIIL products.
Compared with the OSA, CSA reported 13% higher levels at
higher concentrations (>20 IU/dL) and vice versa (mean =
—25%) at lower concentrations.
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Population Pharmacokinetic Models—
Description and Comparison

The 12 population PK models differed in their model
structure, the inclusion of covariates, and statistical model
component. The 10 two-compartment models and 2 one-
compartment models were developed based on human plasma
FVIII data measured using CSA (n = 4), OSA (n = 7), or both
assays (n = 1). All models accounted for body composition in
the form of body weight (n = 8) or fat-free mass (n = 4), while
7 accounted for the patient’s age, and 6 implemented a base-
line FVIIL:C. If more than one FVIII product was used to
develop the model (n = 3), the models corrected either the
bioavailability or the clearance and central volume of distri-
bution depending on the product. Other covariates (vWF and
disease severity) were model-specific (see Table,
Supplemental Digital Content 5, http:/links.Ilww.com/
TDM/A561, which illustrates details of the evaluated popu-
lation PK models). The statistical component comprised at
least 1 interindividual variability term on the clearance,
except for the model of Abrantes et al.®™ and on the central
volume of distribution. Three models included interoccasion
variability between 10 and 41% on the clearance or volume of
distribution, an additional intraindividual variability of the
respective PK parameter across observed dosing occasions, ™
Regarding the unexplained residual variability (the variability
of the measured FVIII:C around the individually predicted PK
profile), all but the model of Karafouldiou et al™ used a
combined (n = 6) or additive error submodel (n = 1) with

an additive error component above the general target FVIIL:C
of 1 TU/dL.

The models were compared with a simulated PK profile
of a standard patient (body weight, 75 kg; height, 1.7 m; age,
35 years; VWF level, 110%; and receiving 3000 IU of a
BDDrFVIII or FLrFVIII product every 3 days), where the
outputs varied substantially among the evaluated models. The
predicted peak of FVIII:C ranged from 62 IU/dL to 125 TU/
dL and was found to be the lowest with the l-compartment
model as reported by Karafoulidou et al® and the largest with

the model reported by Chelle et al®™ (Fig. 1A) after simula-

tion. As anticipated, the extended half-life (EHLrFVIII) mod-
els displayed a milder decline in the profile than the normal
half-life models.

Within the same model, the PK profiles and resulting
TaT for BDDrFVIII and FLrFVIII were identical in both
assays, except for the profiles simulated by the models of
Abrantes et al™ Hazendonk et al ™ and McEneny-King
et al.® After BDDrFVIII administration, simulation using
the model of Abrantes et al revealed a TaT that was 3.5 hours
shorter in the OSA than in CSA, owing to the inclusion of
product-dependent bioavailability in the model. With the
other 2 models, the TaT using the BDDrFVIII was 8.1 hours
(Hazendonk™) or 7.1 hours (McEneny-King®™) shorter than
using FLrFVIIL, independent of the assay. Given that
BDDrFVIIl to FLrFVII differences are mostly found in
OSA, which had been solely used to develop the 2 models,
both were modified to handle BDDrFVII, similar to
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FIGURE 1. A, Simulated FVIII pharmacokinetic profiles at steady state using a chromogenic assay and (B) simulated time above
target (TaT) of 2 IU/dL in a standard patient (body weight 75 kg, height 1.7 m, age 35 years, and VWF level of 110%) receiving
3000 IU of either a B-domain deleted (triangles) or full-length recombinant (circles) product every 3 days and measured with the
chromogenic (red) and 1-stage assay ﬁray), respectively, using 12 population pharmacokinetic models of FVIIl. When compared

with all the models, Abrantes 2017,
domain versus full-length recombinant products.

4

McEneneny-King 2019,% and Hazendonk 2016® accounted for the differences in B-

Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.

Copyright © 2022 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.



3.1 Publication |

Ther Drug Monit ¢ Volume 00, Number 00, Month 2022

Personalized Prophylaxis in Hemophilia A

FLrFVIIL, when evaluating the predictive performance of
CSA data.

The simulated TaT ranged from 21.2 hours to 60.5
hours and was largest in the EHLrFVIII models (67.5-68.0
hours, Fig. 1B). However, even without considering the
EHLrFVIII models, the simulated TaT varied by a factor of
3; the shortest TaT was simulated by the model of
Karafoulidou et al® and the longest by the model of
Bjorkman et al from 2009.2

Evaluation of the Predictive Performance

The individual TaT values were predicted between 27.0
and 168.0 hours, using the baseline covariate models (a
priori), and were highly dependent on the model. In
comparison with the true TaT obtained from the reference
model and all the CSA data (see Text, Supplemental Digital
Content 3, http:/links.lww.com/TDM/A559, which explains
the development and structure of the reference model), the a
priori predictions differed from —80.1 hours to +149.9 hours

(—85.1 hours to +149.9 hours in OSA), with 2 patterns being
identified (Fig. 2, a priori). The models either overpredicted [F2]
the TaT independent of the true TaT (eg, models of
Bjorkman, Bolon-Larger, Hazendonk, and Karafoulidou) or
overpredicted the TaT in patients with a true TaT smaller than
2 days, while underpredicting patients with a true TaT > 3
days (eg, models of Abrantes, Bjorkman developed in 2012,
Chelle, and McEneney-King). This was reflected in the
prediction-corrected visual predictive checks (see Figure,
Supplemental Digital Content 6, http://links.lww.com/
TDM/A562, which allows graphical comparison of the pre-
diction intervals of each population PK model), the goodness-
of-fit plots (see Figure, Supplemental Digital Content 7,
http://links.lww.com/TDM/A563, which demonstrates the
goodness-of-fit of the population PK models), and a mostly
positive bias of —3.8 to 49.6 hours (—6.7 to 49.6 hours OSA)
and an RMSE of 20.1-61.4 hours (20.1-61.4 hours OSA)
across the models. Only the models of Abrantes™ and
Bjorkman (developed in 2012)F fulfilled the acceptance

a priori — CSA
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Bolon-Larger 2007
Chelle 2019
Garmann 2017
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FIGURE 2. Difference of the individually predicted time above target (TaT) of 2 IU/dL to the true TaT (ie, time obtained from the
internal reference model and all CSA samples) per model. Each column represents 1 patient with the individual, true TaT displayed
on the x-axis. A deviation of less than 12 hours to the true TaT was stained in shades of gray, producing white toward an unbiased
prediction. Positive deviations are light red in between 12 and 48 hours and dark red >48 hours; negative deviations are blue in
the same scheme. To the right of each panel, the percentage of individual predictions differing less than 12 hours to the true TaT is
displayed. The scenarios are a priori prediction using the baseline covariate models, Bayesian forecasting using the FVIII:C trough
directly prior dosing (a posteriori), and (general model fit) Bayesian estimation using all available samples. No data for MSA in the
scenario a priori. CSA, chromogenic substrate assay; MAA, model averaging algorithm; MSA, model selection algorithm.
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criteria (bias < %12 hours and its 95% confidence interval
including 0) with a bias of —3.8 hours (OSA, —6.7 hours)

[F3 and 3.3 hours (OSA, 3.3 hours), respectively (Fig. 3).

Although the inclusion of the predose trough level in
the a posteriori forecast resulted in overall lower bias values
between —1.0 and 36.5 hours (—0.5 to 34.7 hours OSA) with
an RMSE between 22.4 and 60.7 hours (23.0-62.3 hours
OSA), the performance metrics compared with a priori
improved in only 50% of the models. The remaining models
did not improve significantly (n = 2) or displayed a higher
imprecision (n = 4). The models of Abrantes and Bjorkman
(developed in 2012) performed best of all the models, and the
percentage of the population with a predicted TaT close to the
true TaT (ie, the difference in the predicted to true individual
TaT < 12 hours) increased from 44% to 62% in the model of
Abrantes and remained at 46% in the model of Bjoérkman
developed in 2012 (Fig. 2).

If all CSA data were supplied (ie, general model fit), the
models, excluding that of Hazendonk, predicted TaT differing
less than *12 hours from the true TaT in 62%-90% of the
patients (Fig. 2), while the predictions using OSA data re-
mained worse (33%—74%). The bias ranged from 0.6 to 31.4
hours (RMSE: 7.1-58.3 hours) using CSA data and ranged
from 2.6 hours to 37.6 hours (RMSE: 13.9-59.7 hours) using
OSA data. The predictions were clinically acceptable with the
models of Abrantes,™ Garmann,™ and Nestorov® using CSA

data and Bjorkman (developed in 2012) using OSA data.
Overall, the predictions were usually closer to the true TaT
when CSA data were used and were best in the model of
Abrantes (bias 0.6 hours).

The candidate models of the multimodel approaches

were identified as the 5 models that displayed the best
performance metrics (the models of Abrantes, Bjérkman
developed in 2012, Chelle, Garmann, and Zhang).
These models were then used together, and the best perform-
ing model for each patient was selected automatically. In all
scenarios, the bias of the 2 algorithms was always below 7.3
hours with a 95% confidence interval including 0 (except in
the general model fit using OSA data) while the RMSE was
between 7.7 hours and 30.5 hours (Fig. 3 and for details see
Figure, Supplemental Digital Content 8, http://links.lww.
com/TDM/A564, which demonstrates the accuracy and the
imprecision of the predicted time above target of the model
averaging algorithm and model selection algorithm and the
single models used in both). The MSA selected the models of
Abrantes and Zhang in 12-17 and 12-19 patients, respec-
tively (see Figure, Supplemental Digital Content 9, http://
links.lww.com/TDM/AS565, which demonstrates the compo-
sition of the model selection algorithm within the population).
Both algorithms were always in the range of the best single
models and resulted in comparable individual TaT predic-
tions, whereas the MAA was slightly better.
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FIGURE 3. Accuracy (bias) and the imprecision (root mean square error, RMSE) of the predicted time above target (TaT) in
comparison with the true TaT (ie, time obtained from the internal reference model and all CSA samples) per model and separated
by the assay used (chromogenic substrate assay—red and 1-stage assay—gray). The 3 hues represent the forecasting scenarios.
Whiskers cover the 95% confidence interval of the bias calculated by using the standard error; N.D., not defined.
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Dosing Software “TDMX”

We encoded the best-identified model of Abrantes™ in
TDMx (www.TDMx.eu) and cross-validated it against
NONMEM, the gold-standard software for population PK
modeling. The model predictions were virtually identical for
the population predicted, individually predicted FVIIL:C, and
the predicted time above the target (see Figure,
Supplemental Digital Content 10, http://links.lww.com/
TDM/A566, which demonstrates the agreement of the indi-
vidual predictions using the model from Abrantes et al in
either NONMEM or the MIPD software “TDMx”). The PK
profile of a representative patient (24 years, 73 kg body
weight, and receiving 2000 IU and 3000 IU Advate) is shown
in Figure 4.

DISCUSSION

Our study revealed that the evaluated population PK
models highly varied in their structure, parameters, and
inclusion of covariates and their corresponding predictions.
Independent of true TaT and its length, the models tended to
be positively biased. We argue that this misfit has diverse and
often multilayered reasons. First, the evaluated models were
mostly developed to characterize the PK of FVIII in specific
populations, but not for MIPD during therapeutic drug
monitoring in more diverse patient groups and using different
assay types. For example, the model of Hazendonk was
developed to guide dosing during perioperative treatment
using 1 of 7 FVIII products. However, the higher target and
higher residual unexplained variability seemed to make this
model unsuitable for use in the setting of prophylactic
treatment, as noted by the authors themselves. ™

o
o
o

Concentration [IU/dL]
3

o
v

Second, certain model structures result in systematic
overpredictions. The evaluated 1-compartmental model,® as
well as the only model with proportionally implemented
interindividual variability,- led to substantial over-
predictions. Higher TaT was also predicted using the
EHLrFVIII models, which in this case seems reasonable,
given that the half-life of EHLrFVIII is at least 66% higher.™
The commonly implemented characteristics, such as age and
body mass, were especially useful during the a priori pre-
dictions as confirmed by other authors, while covariates,
such as race or study identifier, ¥ were not obtained or not
applicable in this study.

Third, the size of the data set available during the
original model development seemed to affect the predictions,
whereas the number of included FVIII drug types did not
correlate with the performance. The models with the smallest
number of individuals® 882 {isplayed worse predictive per-
formance and were based on 1 to 8 different FVIII products
(see Figure, Supplemental Digital Content 11, http:/links.
lww.com/TDM/A567, which demonstrates the predictive per-
formance of the models in relation to the number of patients
included during model development). By contrast, the models
with the largest data sets performed the best in bias and
RMSE.

In general, the TaT at the patient level was well
reflected by the performance metrics but revealed a few
nuances, especially in the a posteriori forecasting and general
model fit (Fig. 2). In the 2 models fulfilling the acceptance
criteria in 5 of the 6 scenarios, the TaT predictions (general
model fit) deviated by more than 12 hours from the true TaT
in 14 patients,I whereas the similar deviations were observed
only in 4 patients in the model of Abrantes™ (Fig. 2).
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FIGURE 4. Graphical output of the MIPD software TDMx (www.TDMx.eu) with the estimated PK profile (upper panel) and the
probability of target attainment (PTA) using a target FVIIl concentration of 2 IU/dL (lower panel). The patient (severe hemophilia
A, 24 years, 73 kg body weight, and 173-cm body height) was dosed twice with a full-length recombinant product (2000 IU and
3000 U Advate; Takeda Manufacturing Austria AG, Vienna, Austria). Six FVIIl samples (circles between 106 and 3.8 1U/dL) were
obtained using the chromogenic assay. The blue line represents the population (a priori) prediction obtained from the baseline
covariate models in the upper panel and the therewith calculated PTA in the lower panel, while the orange line represents the
individual predictions additionally using the obtained samples in the upper and the respective PTA in the lower panel. The shaded
area represents the prediction intervals calculated by using stochastic “Monte-Carlo” simulation (sampled from the matrix de-
tailing the interindividual variability of the PK parameters; n = 500).
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Nonetheless, the same 4 patients seemed difficult to be pre-
dicted in other well-performing models (eg, Garmann,3@
Nestorov,™ and Zhang®™). This might be caused by the influ-
ences not being accounted for (eg, genetic defects) or perhaps
even sample (time) irregularities that impair the individual
model fit.*¥ Although the performance metrics of the model
of Bjorkman (developed in 2012)8 were seemingly consistent
with the model of Abrantes, ™ the latter should be preferred in
individual forecasting. The few mispredicted TaTs in the lat-
ter model tended to be shorter than the true TaT, which might
result in a higher FVIII consumption, but not in an increased
risk of undertreatment. Furthermore, the performance metrics
were misleading in the case of the model of Bjérkman (devel-
oped in 2012) as overpredictions and underpredictions
occurred symmetrically across the patients, implying a false
high accuracy.

To evaluate the predictive performance, TaT was
chosen in favor of pure comparisons of predicted versus
observed concentrations, given its clinical relevance and easy
interpretation. Prophylactic treatment aims to prevent spon-
taneous bleeding by ensuring that FVIII trough levels in
patients are above 1 IU/dL (in the same range as a patient
with moderate hemophilia A).®¥ Nonetheless, the targeted
threshold was set to 2 IU/dL for 2 main reasons. (1) To ensure
a certain time buffer where the patient remains above the
intended threshold and (2) to reduce the influence of the
samples, which is at the lower limit of quantification. The
acceptance criteria of the model performance were set to
+12 hours because prophylactic treatment is dosed at day-
to-day intervals, and the risk of changing the decision to dose
on a subsequent day might be minimized with a bias of less
than half a day.

With the multimodel approaches (MAA and MSA),2
we aimed to combine the collective knowledge of multiple
FVIII population PK studies using a different approach than
that intended by the generic population PK model developed
by McEneny-King et al.® The authors used an approach to
pool data from heterogeneous sources, which has also been
successfully applied in other fields. ™™ However, our auto-
matic averaging/selection from the set of models performed
superior to the generic model throughout the scenarios
(Fig. 3). This might be due to the ability of the multimodel
approaches to describe atypical patients, which do not match
the rest of the studied population. Nonetheless, the algorithms
did not outperform the best single model™ but were ranked
second. Given that the single models tended to display a
positive bias, the algorithms mainly had 1 direction to
approach the individual PK curve. Future studies comparing
the performance of “pooled-data” versus “‘pooled-model”
approaches and different sets of heterogeneous models would
be of interest.

A few limitations of this study need to be mentioned.
The data set contained less than 40 individuals receiving 1 of
6 FVII drugs. Such heterogencous data might not be
sufficient to develop a new model yet might serve as an
external validation set according to FDA criteria because its
size was—with 2 exceptions—always more than 15%% of the
size of the original model development data. Nonetheless, we
recommend further external validation to extrapolate our

8

findings to pediatric populations, patients receiving
EHLrFVIII products, and moderate to mild hemophilia A
patients. Furthermore, it is questionable whether only 1
trough sample, directly preceding the next dose, is sufficient
during MIPD, especially because the clinically intended target
threshold is close to the lower limit of quantification.
Nonetheless, as previously reported, limited PK information
is better than none™; this minimized trough sampling scheme
used in this study can be easily used to transition from simple
trough-based dose adjustments to model-guided precision
dosing.

CONCLUSIONS

Throughout the model analysis, predictions using CSA
data were more accurate than those using OSA data. This fact
and the substantial assay errors of up to 35% for OS A0 3
phenotype-corresponding  discrepancies between the 2
assays®® indicate that the CSA should be preferred in
model-informed precision dose calculations. Our systematic
model comparison identified that Abrantes model® performs
best in the adult population included in this study under the
tested scenarios. The implementation of this model in an
open-access MIPD software (TDMx) might provide another
step forward to improve individualized treatment of patients
with hemophilia A using BDDrFVIII and FLrFVIII products.

ACKNOWLEDGMENTS
Farts of the study were presented at the annual meeting
of the Population Approach Group Europe 2019 and the
conference of the International Society on Thrombosis and
Haemostasis 2020 and can be found under PAGE 28 (2019)
Abstract 8970 and ISTH 2020 Abstract PB08435.

REFERENCES

. Hoyer LW. Hemophilia A. N Engl J Med. 1994;330:38-47.

2. Otto JC. An account of an hemorrhagic disposition existing in certain
families. Med Repos. 1803;VI:1-4.

3. Blanchette VS. Prophylaxis in the haemophilia population. Haemophilia.
2010;16(suppl 5):181-188.

4. Srivastava A, Brewer AK, Mauser-Bunschoten EP, et al. Guidelines for
the management of hemophilia. Haemophilia. 2013;19:e1—47.

5. Bjorkman S, Oh M, Spotts G, et al. Population pharmacokinetics of
recombinant factor VIII: the relationships of pharmacokinetics to age
and body weight. Blood. 2012;119:612-618.

6. Collins PW, Bjorkman S, Fischer K, et al. Factor VIII requirement to
maintain a target plasma level in the prophylactic treatment of severe
hemophilia A: influences of variance in pharmacokinetics and treatment
regimens. J Thromb Haemost. 2010;8:269-275.

7. Carlsson M, Bemntorp E, Bjérkman S, et al. Pharmacokinetic dosing in
prophylactic treatment of hemophilia A. Eur J Haematol. 1993;51:247-
252.

8. Matucci M, Messori A, Donati-Cori G, et al. Kinetic evaluation of four
factor VIII concentrates by model-independent methods. Scand J
Haematol. 1985;34:22-28,

9. Blanchette VS, Shapiro AD, Liesner RJ, et al. Plasma and albumin-free
recombinant factorVIII: pharmacokinetics, efficacy and safety in previ-
ously treated pediatric patients. ./ Thromb Haemost. 2008;6:1319-1326.

10. Bjorkman S, Berntorp E. Pharmacokinetics of coagulation factors: clin-
ical relevance for patients with haemophilia. Clin Pharmacokinet. 2001;
40:815-832.

Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.

Copyright © 2022 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.



3.1 Publication |

Ther Drug Monit * Volume 00, Number 00, Month 2022

Personalized Prophylaxis in Hemophilia A

20.

21.

22!

23

24,

25.

26.

27

28.

29

. Fischer K, Steen Carlsson K, Petrini P, et al. Intermediate-dose versus

high-dose prophylaxis for severe hemophilia: comparing outcome and
costs since the 1970s. Blood. 2013;122:1129-1136.

. Stemberger M, Kallenbach F, Schmit E, et al. Impact of adopting pop-

ulation pharmacokinetics for tailoring prophylaxis in haemophilia a
patients: a historically controlled observational study. Thromb
Haemost. 2019;119:368-376.

. lorio A, Edginton AN, Blanchette V, et al. Performing and interpreting indi-

vidual pharmacokinetic profiles in patients with Hemophilia A or B: rationale
and general considerations. Res Pract Thromb Haemost. 2018;2:535-548.

. Torio A, Blanchette V, Blatny J, et al. Estimating and interpreting the

pharmacokinetic profiles of individual patients with hemophilia A or B
using a population pharmacokinetic approach: communication from the
SSC of the ISTH. J Thromb Haemost. 2017:15:2461-2465.

. Preijers T, van Moort I, Fijnvandraat K, et al. Cross-evaluation of

pharmacokinetic-guided dosing tools for factor VIIL. Thromb Haemost.
2018;118:514-525.

. Hajducek DM, Chelle P, Hermans C, et al. Development and evaluation

of the population pharmacokinetic models for FVIII and FIX concen-
trates of the WAPPS-Hemo project. Haemophilia. 2020;26:384-400.

. Kitchen S, Gray E, Mertens K. Monitoring of modified factor VIl and IX

products. Haemophilia. 2014;20(suppl 4):36-42.

. Pouplard C, Caron C, Aillaud MF, et al. The use of the new ReFacto AF

Laboratory Standard allows reliable measurement of FVIIL:C levels in
ReFacto AF mock plasma samples by a one-stage clotting assay.
Haemophilia. 2011;17:958-e962.

. Hubbard AR, Weller LJ, Bevan SA. A survey of one-stage and chromo-

genic potencies in therapeutic factor VIII concentrates. Br J Haematol.
2002:117:247-248.

Peyvandi F, Oldenburg J, Friedman KD. A critical appraisal of one-stage
and chromogenic assays of factor VI activity. J Thromb Haemost.
2016;14:248-261.

Potgieter JJ, Damgaard M, Hillarp A. One-stage vs. chromogenic assays
in haemophilia A. Eur J Haemarol. 2015;94(suppl 77):38—44.

Uster DW, Stocker SL, Carland JE, et al. A model averaging/selection
approach improves the predictive performance of model-informed pre-
cision dosing: vancomycin as a case study. Clin Pharmacol Ther. 2021;
109:175-183.

Stass H. Determination of minimal sampling time points for reliable
pharmacokinetic evaluation of recombinant factor VIII—an exploratory
population pharmacokinetic analysis in paediatric patients suffering from
severe haemophilia. Haemophilia. 2006;12(suppl 4):50-55.

Abrantes JA, Nielsen EI, Korth-Bradley J, et al. Elucidation of factor
VIII activity pharmacokinetics: a pooled population analysis in patients
with hemophilia A treated with moroctocog alfa. Clin Pharmacol Ther.
2017:102:977-988.

Solms A, lorio A, Ahsman MJ, et al. Favorable pharmacokinetic char-
acteristics of extended-half-life recombinant factor VIII BAY 94-9027
enable robust individual profiling using a population pharmacokinetic
approach. Clin Pharmacokinet. 2020;59:605-616.

Zhang Y, Roberts J, Tortorici M, et al. Population pharmacokinetics of
recombinant coagulation factor VIII-SingleChain in patients with severe
hemophilia A. J Thromb Haemost. 2017;15:1106-1114.

Bjorkman S, Folkesson A, Jonsson S. Pharmacokinetics and dose
requirements of factor VIII over the age range 3-74 years: a population
analysis based on 50 patients with long-term prophylactic treatment for
haemophilia A. Eur J Clin Pharmacol. 2009;65:989-998,

Bolon-Larger M, Chamouard V, Bressolle F, et al. A limited sampling
strategy for estimating individual pharmacokinetic parameters of coagulation
factor VIII in patients with hemophilia A. Ther Drug Monit. 2007:29:20-26.
Chelle P, Yeung CHT, Bonanad S, et al. Routine clinical care data for
population pharmacokinetic modeling: the case for Fanhdi/Alphanate in
hemophilia A patients. J Pharmacokinet Pharmacodyn. 2019:45(suppl
1):3-134.

Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.

Copyright © 2022 Wolters Kluwer Hea

30.

3L

32

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44,

45.

46.

47.

48.

49.

50.

Garmann D, McLeay S, Shah A, et al. Population pharmacokinetic char-
acterization of BAY 81-8973, a full-length recombinant factor VIII: les-
sons learned—importance of including samples with factor VIII levels
below the quantitation limit. Haemophilia. 2017:23:528-537.
Hazendonk H, Fijnvandraat K, Lock I, et al. A population pharmacoki-
netic model for perioperative dosing of factor VIIl in hemophilia A
patients. Haematologica. 2016;101:1159-1169.

Karafoulidou A, Suarez E, Anastasopoulou I, et al. Population pharma-
cokinetics of recombinant factor VIII:C (ReFacto®) in adult HIV-
negative and HIV-positive haemophilia patients. Ewr J Clin
Pharmacol. 2009:65:1121-1130.

McEneny-King A, Chelle P, Foster G, et al. Development and evaluation
of a generic population pharmacokinetic model for standard half-life
factor VIII for use in dose individualization. J Pharmacokinet
Pharmacodyn. 2019;46:411-426.

Nestorov I, Neelakantan S, Ludden TM, et al. Population pharmacoki-
netics of recombinant factor VIII Fc fusion protein. Clin Pharmacol
Drug Dev. 2015:4:163-174.

Bergstrand M, Hooker AC, Wallin JE, et al. Prediction-corrected visual
predictive checks for diagnosing nonlinear mixed-effects models. 4A4PS
J.2011;13:143-151.

Sheiner LB, Beal SL. Some suggestions for measuring predictive perfor-
mance. J Pharmacokinet Biopharm. 1981;9:503-512.

Wicha SG, Kees MG, Solms A, et al. TDMx: a novel web-based open-
access support tool for optimising antimicrobial dosing regimens in clin-
ical routine. Int J Antimicrob Agents. 2015;45:442-444.

Karlsson MO, Sheiner LB. The importance of modeling interoccasion
variability in population pharmacokinetic analyses. J Pharmacokinet
Biopharm. 1993;21:735-750.

Lieuw K. Many factor VIII products available in the treatment of hemo-
philia A: an embarrassment of riches? J Blood Med. 2017:8:867-873.
Aronstam A, McLellan DS, Wassef M, et al. Effect of height and weight
on the in vivo recovery of transfused factor VIII C. J Clin Pathel. 1982;
35:289-291.

Carlsson M, Berntorp E, Bjérkman S, et al. Improved cost-effectiveness
by pharmacokinetic dosing of factor VIII in prophylactic treatment of
haemophilia A. Haemophilia. 1997:3:96-101.

Bjérkman S, Carlsson M, Bemtorp E, et al. Pharmacokinetics of factor
VIII in humans. Obtaining clinically relevant data from comparative
studies, Clin Pharmacokinet. 1992;22:385-395.

Alihodzic D, Broeker A, Baehr M, et al. Impact of inaccurate documen-
tation of sampling and infusion time in model-informed precision dosing.
Front Pharmacol. 2020;11:172.

Collins PW, Blanchette VS, Fischer K, et al. Break-through bleeding in
relation to predicted factor VIII levels in patients receiving prophylactic
treatment for severe hemophilia A. J Thromb Haemost. 2009;7:413-420.
Eleveld DJ, Struys MMRF. Meta-analysis of ketamine pharmacokinetics.
Anesthesiology. 2020;133:1167-1169.

Colin PJ, Allegaert K, Thomson AH, et al. Vancomycin pharmacoki-
netics throughout life: results from a pooled population analysis and
evaluation of current dosing recommendations. Clin Pharmacokinet.
2019;58:767-780.

US Food and Drug Administration. DRAFT Guidance for Industry
Population Pharmacokinetics. US FDA: 2019, Available at: https://
www.fda.gov/media/128793/download. Accessed January 16, 2022.
Bjorkman S. Limited blood sampling for pharmacokinetic dose tailoring
of FVIIIL in the prophylactic treatment of haemophilia A. Haemophilia.
2010;16:597-605.

Turecek PL, Romeder-Finger S, Apostol C, et al. A world-wide survey
and field study in clinical haemostasis laboratories to evaluate FVIIL:C
activity assay variability of ADYNOVATE and OBIZUR in comparison
with ADVATE. Haemophilia. 2016;22:957-965.
Barrowcliffe TW. Standardization of FVIII
Haemophilia. 2003;9:397-402.

and FIX assays.

th, Inc. Unauthorized reproduction of this article is prohibited.



3 Cumulative part — 31—

3.2 Publicationl

Model-Informed Precision Dosing of Vancomycin via Continuous
Infusion: A Clinical Fit-For-Purpose Evaluation of

Published PK Models

Astrid Heus$, David W. Uster$, Veerle Grootaert, Nele Vermeulen, Annemie

Somers, Diana Huis in’t Veld, Sebastian G. Wicha, Pieter A. De Cock

International Journal of Antimicrobial Agents (2022)

Impact Factor: 5.283 (2020)

$ equal contribution



Synopsis

When treating severe infections with last resort antibiotics like vancomycin, the patient
is usually balancing on a fine line between life and death. Subtherapeutic exposure
levels are as dangerous as supratherapeutic levels, given its risk to develop AMR and lack
of bacterial eradication or drug-induced adverse effects, respectively. Hence, tailoring
individual vancomycin dosing according to the individual target (i.e. the AUC over MIC)
is crucial to improve treatment outcome. The individual AUC can be determined using
population PK models implemented in MIPD software. Yet, this requires externally
validated models suitable for the intended purpose.

We hypothesize that the selection of the model is dependent on the population of
interest and the mode of drug administration. Therefore, we systematically compare 23
models in forecasting vancomycin drug exposure with different levels of individual data
(e.g. covariates only or covariates plus a single TDM measurement).

In Publication I, we identified the two-compartmental models of Okada et al.[5] and
Colin et al.[6] as most suitable for non-intensive care unit patients to forecast individual
exposures after continuous vancomycin infusion. In fact, different models were
identified as compared to previous systematic model comparisons for hospitalized
patients receiving intermittent vancomycin infusion.[54], [83]

Thus, caution is required when transferring these results to other populations and reveal

the need of more sophisticated approaches as for example introduced in Publication Ill.
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Background: Model-informed precision dosing is an innovative approach used to guide bedside van-
comycin dosing. The use of Bayesian software requires suitable and externally validated population phar-
macokinetic (popPK) models.
Objectives: This study aimed to identify suitable popPK models for a priori prediction and a posteriori
forecasting of vancomycin in continuous infusion. Additionally, model averaging (MAA) and model selec-
tion approach (MSA) were compared with the identified popPK models.
Methods: Clinical pharmacokinetic data were retrospectively collected from patients receiving continu-
ous vancomycin therapy and admitted to a general ward of three large Belgian hospitals. The predictive
performance of the popPK models, identified in a systematic literature search, as well as the MAA/MSA
were evaluated for the a priori and a posteriori scenarios using bias, root mean square errors, normalised
prediction distribution errors and visual predictive checks.
Results: The predictive performance of 23 popPK models was evaluated based on clinical data from
169 patients and 923 therapeutic drug monitoring samples. Overall, the best predictive performance
was found using the Okada et al. model (bias < -0.1 mg/L) followed by the Colin et al. model. The
MAA/MSA predicted with a constantly high precision and low inaccuracy and were clinically acceptable
in the Bayesian forecasting.
Conclusion: This study identified the two-compartmental models of Okada et al. and Colin et al. as most
suitable for non-ICU patients to forecast individual exposure profiles after continuous vancomycin in-
fusion. The MAA/MSA performed equally as well as the individual popPK models; therefore, both ap-
proaches could be used in clinical practice to guide dosing decisions.

© 2022 Elsevier Ltd and International Society of Antimicrobial Chemotherapy. All rights reserved.

1. Introduction

netics/pharmacodynamics (PK/PD) index of the area under the
concentration-time curve (AUC) divided by the MIC of the sus-

Vancomycin, a glycopeptide antibiotic, is one of the most com-
monly used broad-spectrum antibiotics for treatment of severe sys-
temic infections caused by Gram-positive bacteria such as Strep-
tococcus spp., Enterococcus spp. and Staphylococcus spp., includ-
ing methicillin-resistant Staphylococcus aureus (MRSA) [1]. The ef-
ficacy of vancomycin has been correlated with the pharmacoki-

* Corresponding author: Ghent University Hospital, Department of Pharmacy,
Corneel Heymanslaan, 10, 9000 Ghent, Belgium. Tel: +32 9 332 29 69.
E-mail address: Pieter.Decock@uzgent.be (P.A. De Cock).
* shared first authorship
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pected pathogen (AUC/MIC) [2].

Single-point concentrations are currently monitored as a surro-
gate parameter for the target AUC/MIC. Trough concentrations of
15-20 mg/L for serious infections due to MRSA have previously
been recommended for intermittent dosing, and concentrations of
20-25 mg/L during assumed steady-state conditions for continuous
dosing regimens [2]|. However, recent studies have demonstrated
that the use of a single-point concentration may not be an opti-
mal approach for predicting overall drug exposure [3]. The most
accurate way to guide vancomycin dosing should be through AUC-
guided dosing and monitoring. According to the revised consen-

0924-8579/© 2022 Elsevier Ltd and International Society of Antimicrobial Chemotherapy. All rights reserved.
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sus guideline on therapeutic drug monitoring (TDM) of vancomycin
in patients with MRSA infections, AUC values should be main-
tained between 400-600 mg.h/L to maximise efficacy (assuming
an MIC of 1 mg/L) and minimise the likelihood of nephrotoxicity
|2]. Bayesian forecasting software programs, based on a population
pharmacokinetic model (popPK model), might be useful for AUC-
based dosing. This approach, also known as model-informed pre-
cision dosing, can be used in clinical practice to improve the effi-
cacy of antibiotic treatment [4]. Bayesian forecasting software can
either be used a priori (i.e., without TDM) to determine the most
optimal starting dose of vancomycin, or a posteriori (i.e., in combi-
nation with one or more observed TDM measurements) to perform
dose optimisation based on the specific PK profile of an individual
patient [5].

The use of Bayesian software requires a suitable popPK model
that characterises vancomycin exposure in the intended patient
population and information on patient-specific covariates known
to impact PK parameters (e.g., age, gender, weight and kidney func-
tion) [G]. Ideally, a popPK model is externally validated to deter-
mine its predictive performance before it is used in the clinic to
guide vancomycin dosing [1]. This requirement was reinforced by a
recent systematic model evaluation study using clinical data from
intermittent infusion, where the investigated models displayed a
heterogenous predictive performance |[7]. As many institutions are
moving towards continuous vancomycin infusion [8], this study
aimed to identify suitable popPK models for a non-intensive care
unit (non-ICU) patient population treated with vancomycin in con-
tinuous infusion. Additionally, a model averaging approach (MAA)
and model selection approach (MSA) were evaluated to determine
its performance for a priori prediction and a posteriori forecasting
compared with the identified popPK models.

2. Material and Methods
2.1. Ethics

The research was conducted in accordance with the guidelines
of the Declaration of Helsinki and approved by the Ethics Commit-
tee of the Ghent University Hospital (EC/2019/1670), AZ Sint-Jan
Brugge (2505) and OLV Aalst (2019/109).

2.2. Clinical data

Clinical PK data were retrospectively collected from patients un-
der continuous vancomycin therapy and admitted to a general (in-
ternal or surgical) non-ICU ward of one academic and two non-
academic large Belgian hospitals (Ghent University Hospital, AZ
Sint-Jan Brugge and OLV Aalst) during the period of January 2017
to December 2019. Patients were excluded if they underwent dial-
ysis or extracorporeal membrane oxygenation. In detail, the fol-
lowing data were documented from patients undergoing TDM:
the time and amount of vancomycin TDM measurements; the re-
spective doses and rates; patient age, gender, weight and height;
and serum creatinine concentration. Data below the lower limit
of quantification (4 mg/L; n = 1) were excluded. Treatment with
vancomycin was started with a loading dose (median 20.7 mg/kg,
range 13.4-26.5 mg/kg), irrespective of the patient’s renal function,
immediately followed by a continuous infusion (dependent on re-
nal function). Maintenance doses were adjusted according to lo-
cal hospital TDM guidelines to achieve a target steady-state con-
centration range of 20-25 mg/L. In case of severe infection or risk
of compromised tissue penetration, target concentrations up to 30
mg/L were used.

international Journal of Antimicrobial Agents 59 (2022) 106579
2.3. Selection of the population PK models

A systematic literature search in PubMed was performed to
identify popPK models of vancomycin in adults using the follow-
ing MeSH terms: ‘pharmaco-kinetics’, ‘vancomycin' and ‘population
model'. Models were selected for evaluation if the following three
criteria were met: (i) the model was published between January
2010 and March 2019; (ii) the PK model was based on data from
at least 25 individuals; and (iii) a parametric approach for model
building was applied.

2.4. Evaluation of the models

All models were encoded and processed in NONMEM® (Ver-
sion 7.4.3; ICON plc, Dublin, Ireland). The models were systemat-
ically compared in their structure, population used to develop the
model, predictive performance using patient demographics and in-
dividual dosing information, and different quantities of pre-existing
vancomycin TDM measurements.

In the a priori scenario, predictions were based on the typical
population estimates of the model and all available patient covari-
ate and dosing information without consideration of the individual
TDM measurements.

To quantify how time since TDM measurement and number of
TDM measurements impact the performance of the models, three
patient-individual a posteriori forecasting scenarios were tested. In
these scenarios, an occasion was defined as the period between
two infusion rate changes with at least one vancomycin measure-
ment being available. The TDM measurement from the most re-
cent, an older occasion or both occasions were used to forecast
the observed TDM measurement of a third (i.e., future) occasion.
The third occasion was chosen because fewer than 50 patients had
more than three occasions recorded.

In the scenario ‘general model fit', all available TDM measure-
ments from each patient were used to reveal the maximum perfor-
mance of models. The residuals of the predicted to the observed
vancomycin concentrations were compared for all TDM results. If
a covariate was not present in the dataset, the typical population
value was imputed (i.e., standard level of albumin was assumed
in the Algahtani [9] and Revilla |[10] models; and of cystatin C in
the Chung et al. [11] and Tanaka et al. [12] models), while cate-
gorical covariates were assumed to be absent (i.e., no patient was
assumed to be neutropenic (Bury et al. [13], clearance would oth-
erwise decrease by 25%), diabetic (Mangin et al. [14], intercom-
partmental clearance would otherwise decrease by 70%), under co-
administration of furosemide (Medellin-Garibay et al. [15], clear-
ance would otherwise decrease by 31%)). This followed the clinical
assumption that a covariate of relevance would have been docu-
mented in case of presence.

The predictive performance was quantified by the bias (Eq. 1)
as a measure of accuracy and the root mean square error (RMSE,
Eq. 2) to quantify the precision of the model prediction under the
scenarios outlined above.

i

. 1 i
Bias = — x 3 _ (predicted; — observed;) (1)

1
RMSE = J

with n being the number of total concentrations in the evaluated
scenario. The 95% Cls were calculated to statistically compare the
models as proposed by Beal et al. [16].

Given the currently accepted vancomycin target concentrations
during continuous infusion (i.e., steady state concentration of 20-
25 mg/L, if MIC < 1 mg/L) [17], a bias of < 2.5 mg/L was defined

==

i
x Z ((predictedf = observed,-)z) (2)
1
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Table 1
Demographic and clinical characteristics and therapeutic drug monitoring (TDM)
data of the study population (n = 169 patients).

Characteristic Median (range)

Age, years 63 (17-93)
Weight, kg 70 (39.1-140)
Height, cm 168 (127-196)

Baseline serum creatinine concentration, mg/dL 0.75 (0.28-2.74)

N patients/samples (%)

Patients with 1 treatment episode 157
Patients with 2 treatment episodes 11
Patients with 3 treatment episodes 1
Gender

Male 86 (50.9)

Female 83 (49.1)
Patients with haematological malignancies 55 (32.5)
TDM samples 923
Treatment episodes with 1 sample 25 (13.8)
Treatment episodes with 2-5 samples 92 (50.8)
Treatment episodes with > 5 samples 64 (35.4)
Samples within 24 h after start treatment 90 (9.8)
Samples between 24-48 h after start of treatment 141 (15.3)
Samples between 48-72 h after start of treatment 113 (12.2)
Samples between 72-96 h after start of treatment 98 (10.6)
Samples between 96-120 h after start of treatment 81 (8.8)
Samples = 120 h of treatment 400 (43.3)

as clinically acceptable, if the confidence interval included 0. Addi-
tionally, the precision value should be as low as possible.

The models were further evaluated using normalised predic-
tion distribution errors (NPDE) and prediction corrected visual pre-
dictive checks to evaluate the typical population predictions and
identify structural misspecifications [18,19]. All data evaluation was
computed using R® (version 3.6.1, R Foundation for Statistical
Computing, Vienna, Austria).

2.5. Model averaging and model selection algorithms

The models were compared with two algorithms - MSA and
MAA - which have recently been developed and implemented in
a web-accessible Bayesian forecasting tool named TDMx [20]. The
algorithm either automatically selects the most suitable model for
an individual patient among a set of candidate models (MSA),
or averages the predictions of all candidate models proportion-
ally weighted to their retrospective model fit (MAA) [21]. The set
was based on six models being developed in distinct populations
[10,14,15,22-24].

3. Results
3.1. Clinical data

A total of 923 TDM measurements were retrospectively col-
lected from 169 hospitalised patients who received continuous
vancomycin: 50.8% of patients had 2-5 vancomycin observa-
tions, while 13.8% were documented with one single observation
(Table 1). Vancomycin concentrations were measured with intra-
run and between-run accuracy < 10.5 CV% for all concentration
ranges, using the immunoassays Architect 1 2000sr, Abott at Ghent
University Hospital, Cobas c702, Roche Diagnostics at General Hos-
pital Sint-Jan Brugge-Oostende AV and Cobas Proc503 at General
hospital OLV Aalst. Demographic and clinical characteristics and
TDM data of the study population can be found in Table 1.

3.2. Population PK models

The 23 identified population PK models differed in their under-
lying patient population, number of patients included for model

international Journal of Antimicrobial Agents 59 (2022) 106579

building, and in their structure (Supplementary Table) [9-15,23-
38]. All but the Udy model [35] had a renal function estimator
in their covariate model on clearance (19 models included esti-
mated creatinine clearance, three serum creatinine concentration),
17 models included body weight as covariate on central volume of
distribution and seven included patient age on either parameter.
Continuous infusion PK data were used to develop seven of the 23
models [10,14,24,28,31,35,38], while the others were purely based
on intermittent infused vancomycin data.

3.3. Evaluation of the models

The performance of the models predicting individual plasma
concentrations based on the covariates and dosing information
only (a priori) resulted in bias values between -10.4 and 16.8 mg/L,
while the RMSE ranged 7.0-22.3 mg/L (Figure 1). Three models
(Bae et al. [37], Colin et al. [38] and Okada et al. [32]) fulfilled
the acceptance criteria (bias < + 2.5 mg and 95% CI included 0)
in this scenario (bias < -0.2 mg/L and RMSE of 6.5 mg/L, 6.8 mg/L
and 6.8 mg/L, respectively; Supplementary Figure 1). The a priori
performance was also reflected by the prediction corrected visual
predictive checks (Supplementary Figure 2). The best visual pre-
dictive checks were displayed by the models from Bae et al., Colin
et al,, Dolton et al, Medellin-Garibay et al., Okada et al. and Pur-
wonugroho et al. (Figure 2) [15,26,32,33,37,38]. Despite the gen-
eral trend of the data being adequately simulated in the above-
mentioned models, the magnitude of variability was simulated too
high in the Bae et al. and Purwonugroho et al. models [33,37].

In the a posteriori forecasting scenarios, the inclusion of TDM
measurements generally led to improved accuracy and precision in
comparison with the predictions from the a priori scenario. Across
all models, the bias (and RMSE) varied from -6.1 to 11.3 mg/L
(RMSE: 4.5-18.1 mg/L) using data from one and between -4.5 and
7.9 mg/L (RMSE: 4.6-14.9 mg/L) using data from two pre-existing
occasions, respectively. In general, the inclusion of more recent
samples (median time between samples from the most recent oc-
casion to the first sample from the forecasted occasion: 44.1 hours,
interquartile range 24.0-72.6 hours) in relation to the forecasted
concentration was more beneficial than the inclusion of a higher
number of samples (median time between samples from the first
two occasions and first sample of forecasted occasion: 49.8hours,
interquartile range 44.4-96.2 hours). This finding was reflected in
a higher precision (RMSE one occasion versus two occasions versus
most recent occasion: 5.6 mg/L, 4.5 mg/L, 44 mg/L, respectively)
with bias being comparable (median bias [range]: -0.3 mg/L [-6.1
to 11.0 mg/L], -0.2 mg/L [-4.6 to 11.3 mg/L], -0.4 mg/L [-4.5 to 7.3
mg/L], respectively).

Estimating the individual PK parameters based on all recorded
data (i.e., general model-fit) the bias in comparison with the a pri-
ori predictions improved between 1.2-fold and 135-fold (to values
between -1.4 and 5.8 mg/L) with RMSE values < 5 mg/L in all but
the Usman [36] model. Bias exceeded + 1.5 mg/L in none of the
other models, but the corresponding 95% ClI included 0 in eight of
them. The lowest bias and imprecision in the a priori and general
model-fit scenarios were displayed by the Okada et al., Colin et al.
and Bae et al. models [32,37,38]. Small nuances in the normalised
prediction distribution errors (Figure 3 and Supplementary Figure
3) were found to not be statistically significant when comparing
the 95% Cls of the RMSE, as proposed by Beal et al. [16] (i.e., the Cls
of the models overlapped in the respective scenarios; Supplemen-
tary Figure 1). All three models were two-compartmental models
and accounted for at least renal function on clearance (via esti-
mated or measured creatinine clearance or serum creatinine con-
centration) and body weight on volume of distribution. While the
clearance and the total volume of distribution in a standard patient
was comparable for these three models (2.8-4.28 L/h, 90.7-107.2



3.2 Publication Il

A. Heus, D.W. Uster, V. Grootaert et al.

international Journal of Antimicrobial Agents 59 (2022) 106579

154
104
518
o jiz ﬁ iHI T1I= gf 11 ‘I]]I* :
0- - I s =q 5 'y . z 1 x ifll= = 3 gf]z o= x
- ﬂ mﬂlﬂ !Pllu 1 i F“ﬁ i
B -54
£
8 107
=
[45]
E 20.
1w
w
i ||| ||||I||||II|I|II||| ||h|| | l||||| ||||I|ﬂ||||||'|||||| g0 Iﬂlolh
‘7 ‘?/ :9 0 Q§ @ O % (/ (/ (2 1 O &) 47
0, 2 % o, %y e ’?ﬁ’GG‘Fo@LOé‘PoO?L“"‘?&S‘
o% T, %, % P e, B o Do %y % % Yo, O g %4;&@%@%% % % o, v % 77
7 A . gl o ) W AN
U % g Y o b U 0 O Y, ey B QY @,0 4 Q’G/ %, o D, "
%,9, {90,@00207\30) '%’;‘5‘30 @/9@9
N % © 9 @ O, @ 9 Y @, 0, ) 0, 0‘:’;>
7o 7 e T &
6,: o ‘@0;

B Apriori [l First occasion [l Most recent occasion [ Two occasions [ General modelfit

Figure 1. Bias and root mean square error (RMSE) of the predictions from the individual population PK models (left panels) and the two multi-model algorithms on
the right (i.e., model averaging (MAA) and model selection (MSA)) per scenario. Either all available observations were predicted using covariate dosing information with
(general model-fit, orange) or without (a priori, brown) supplying individual vancomycin observations. The blue bars represent the metrics in a posteriori forecasting using
observations from one occasion (i.e,, the first or most recent) or two occasions to forecast the hidden vancomycin concentration from the subsequent occasion, Error bars

represent the 95% Cl based on the standard error. N.D. = not defined

L, respectively), the intercompartmental clearance varied six-fold
(1.95-11.7 L/h) (Supplementary Table).

The best models identified via the prediction corrected visual
predictive checks also performed best in the a posteriori forecast-
ing (except for the Bae et al. model [37]). Overall, the best pre-
dictive performance was displayed by the model from Okada et al.
[32], which had no bias (i.e., < -0.1 mg/L) in any scenario paired
with an imprecision being constantly low (i.e., second best in a
posteriori forecasting) and was followed by the model from Colin
et al. [38]. The Colin et al. model [38] predicted the most precisely
and displayed a bias of below -1.1 mg/L in all scenarios. Due to
the high precision, the narrow 95% CI of the bias missed 0 in the
forecasting scenarios based on the most recent occasion and two
occasions.

The multi-model approaches MAA and MSA predicted with a
constantly high precision and low inaccuracy (Supplementary Fig-
ure 4). Comparing both algorithms amongst each other, neither
was statistically superior to the other, given the 95% Cl of the bias
and RMSE overlapped in all scenarios (Supplementary Figure 1).
Nonetheless, the precision of the MAA was better than 21 of the 23
models across all scenarios and < 15% higher than the RMSE of the
two best single models. The MAA and MSA were clinically accept-
able in the a posteriori forecasting and their performance metrics
were in the same range of the Okada et al. model [32].

4. Discussion

It is believed that this is the first study in which an external
evaluation of popPK models was performed based on vancomycin

PK data from continuous infusion. The models from Okada et al.
[32] and Colin et al. [38] showed the best predictive performance.
Both models predicted vancomycin plasma concentrations with a
clinically acceptable bias and imprecision in the a priori setting
and all a posteriori scenarios. Model performance metrics gener-
ally improved under a posteriori forecasting compared with a pri-
ori. This is consistent with several other recent studies in which
accuracy and precision of the model predictions improved by in-
cluding measured vancomycin concentrations in addition to dosing
and covariate information [7,39,40]. Within the a posteriori sce-
nario, model performance metrics based on the most recent van-
comycin concentration were superior to the metrics based on a
higher number of samples. This may be related to the long dura-
tion of vancomycin treatment, which means that older data were
used during model validation.

Accuracy of model predictions depends on a number of fac-
tors, of which the similarity in patient characteristics between
the model building dataset and external evaluation dataset is key,
amongst similarities in measured concentration range and timing
of samples, and similarities in type of bioassays for vancomycin
(and covariates). Interestingly, the models from Okada et al.
[32] and Colin et al. [38] considerably differ in both patient pop-
ulation and study design. The Colin et al. model [38] is a pooled
popPK model based on a large amount of patient data (n = 2554)
from 14 different studies. It includes data of vancomycin, admin-
istered by continuous and intermittent infusion, from a large va-
riety of patients from premature neonates to healthy volunteers
to critically ill patients. As also stated by Broeker et al. [7], these
results show the usefulness of a large database of heterogeneous
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Figure 2. Prediction corrected visual predictive checks of the best six models. The black solid and dashed line represents the median of the observed data (black dots) and
its 5"/95'™ quantiles, respectively. The blue, shaded areas represent the 90% CI of the 5%, 95" (light) and 50" (dark) quantiles of the simulations (n = 1000).

patients to develop a predictive model that adequately describes
the PKs of vancomycin in a general and stable patient population.
On the contrary, the Okada et al. model [32] was developed in
95 Asian patients undergoing allogeneic haematopoietic stem-cell
transplantation. It could only be speculated why this model per-
formed with high prediction accuracy. Augmented renal clearance
of vancomycin has previously been reported in haemo-oncology
patients [41]. However, in the Okada et al. study, the estimates for
vancomycin clearance did not differ from reported clearance values
in other populations [26]. This reasoning is also in accordance with
the current stratified analysis, in which no difference in model per-
formance could be detected for patients with or without haema-
tological malignancies (Supplementary Figure 5). It was hypothe-
sised that this similarity in patient PK behaviour is amongst the
reasons why this model performed well in the current (more het-
erogeneous) patient population. It is believed that race has never
been described as a clinically significant covariate on vancomycin
disposition.

Although data of continuous vancomycin infusion was used in
the current study, the Okada et al. model [32] was developed us-
ing data of vancomycin administered during intermittent infusion.
Furthermore, of the three models with lowest bias and impreci-
sion, only the Colin et al. model [38] was developed using a mix of
vancomycin data collected in patients on continuous infusion and
receiving intermittent dosing. Models purely based on data from
continuous infusion were not found to be better than the other
models. With the exception of Colin et al., these models performed
rather at the lower end - especially a priori. This can also be ob-
served for the two models from Medellin-Garibay et al. [15,31]: al-
though they developed a model based on data from continuous in-
fusion in 2017 [31], the 2016 model 15| based on data from inter-
mittent infusion performed better. These results are similar to the
study by Guo et al. [39], in which the model by Roberts et al. [42],
developed with vancomycin data collected during continuous infu-
sion, sufficiently performed with data collected during intermittent
dosing. This finding indicates that the mode of administration on
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Figure 3. Normalised prediction distribution errors of the best six PK models based on the forecasting metrics. If the model adequately described the data, NPDEs display
a normal distribution. Therefore, the NPDEs using all available observations were calculated (black dots). The blue and red lines represent 2.5™, 975" and 50" quantiles of
the NPDEs over the treatment time, respectively, and should ideally overlap with the dotted lines (i.e., the approximate values for the 2.5", 50" and 97.5"" quantiles of the

standard normal distributions).

which the model is based is not the main selection criterion for
model-informed precision dosing of vancomycin. However, as also
stated by Guo et al. [39], model predictive performance can still
be affected by mode of administration and should always be eval-
uated. Broeker et al. [7] performed a similar evaluation of various
popPK models using PK data following intermittent infused van-
comycin. In this study, the model from Goti et al. [27] was con-
sidered the most suitable model to support model-based dosing.
Similar to the model from Colin et al. [38], it is a model based on
a large patient database (n = 1812). Remarkably, the model from
Goti et al. [27] did not perform well in this study. The predictions
by Goti et al. [27] show an overall high imprecision and overpre-
diction of high plasma concentrations. Besides differences in mode
of administration, variation in assay methods for vancomycin and
serum creatinine could provide an explanation for this discrepancy
with the Broeker et al. study results |7]. Since detailed study in-
formation on bio-analysis of both components was lacking and the
current study included a pooled PK model, these study character-
istics could not be evaluated in the current study. Therefore, it is
essential to either externally validate popPK models or at least rely
on a set of models (i.e., MAA/MSA) before using them in Bayesian
forecasting.

Model performance was evaluated by using both numerical and
graphical performance diagnostics. The choice of the criteria used
for model validation is subjective and can vary among different

studies. This study defined the clinical acceptability threshold for
bias as 2.5 mg/L, which is derived from practical considerations
when vancomycin is administered in continuous infusion. Given
the recommended local targets of vancomycin concentrations dur-
ing continuous infusion in patients with MRSA infections (i.e., 20-
25 mg/(L), a difference between the model-predicted and observed
concentrations of ca. 10% would not result in a dose adjustment
when the actual concentration is 22.5 mg/L. Bias was therefore
considered most clinically relevant when it exceeded 2.5 mg/L.

The dataset used in this study was based on clinical data from
a non-ICU adult patient population. Results are therefore only ap-
plicable to this general patient population and not transferrable
to a specific patient population such as ICU patients or those on
haemodialysis. The imputation of the less common covariates (e.g.
neutropenia status for the Bury et al. model [13]) could improve
predictive performance in a special (e.g. neutropenic) subpopula-
tion and should be externally evaluated in further studies. Another
limitation of this study was the manner of data collection from
patient registers, A retrospective data collection can cause bias by
random error, even if the data were inspected before model vali-
dation. Finally, the literature review, performed in March 2019, im-
plied that several new models after this date were not included in
this study.

In conclusion, this study identified the Okada et al. model [32],
followed by the Colin et al. model [38] as most suitable for a non-



3 Cumulative part

A. Heus, D.W. Uster, V. Grootaert et al.

ICU patient population treated with vancomycin by continuous in-
fusion. The multi-model approaches performed as equally well as
the two popPK models. Given that a superior performance of ei-
ther one was not observed, the implementation of a single popPK
model might be slightly easier. Nonetheless, both approaches could
be used in clinical practice to determine initial vancomycin dos-
ing regimens and to guide dosing decisions according to measured
vancomycin concentrations - especially if already implemented in
accessible web-tools (e.g., TDMx). Model performance improved by
using the most recent plasma concentration measurements com-
pared with using more plasma concentration measurements. Fu-
ture prospective research is needed to determine whether these
identified PK models can generate accurate dosing recommenda-
tions to achieve target exposure.
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Synopsis

Variability in drug-response relationships between or even within individuals may lead
to insufficient clinical effects and/or significant adverse effects. Especially in severe
infections a rapidly induced, maximally precise antibiosis is vital to save lives.
Forecasting drug exposures using pharmacometric models can improve individual
target attainment when compared to TDM. However, yielding the maximal outcome of
this MIPD requires the ‘correct’ model to be used for the individual, respectively.

In Publication Ill, we derived and evaluated a model selection algorithm (MSA) and a
model averaging algorithm (MAA) using Gram-positive infected patients receiving
vancomycin treatment as a case example. These algorithms automate model selection
and find the best model or combination of models for each patient.

The concept of using multiple models at once was proven in a simulation study of six
distinct populations, as well as in a clinical dataset of 180 patients undergoing TDM.
Both algorithms outperformed the model of Goti et al.[84] (previously being identified
best for Bayesian forecasting of a heterogenous population[54]) in terms of bias and
precision.

While six distinct models included in the multi-model approaches resulted in the best
predictive performance, the exclusion of up to three models resulted in minor decreases
of the performance.

We concluded that the objective selection of a model/set of models is critical to cover
atypical patients otherwise being mis-specified. Both algorithms were implemented
into the MIPD-software ‘TDMx’ to lower the burden of adequate model selection and

validation for MIPD.
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A Model Averaging/Selection Approach
Improves the Predictive Performance of
Model-Informed Precision Dosing:
Vancomycin as a Case Study

David W. Uster', Sophie L. Stocker™, Jane E. Carland2’3,]onathan Brett™’, Deborah J.E. Marriott™,

Richard O. Day™ and Sebastian G. Wicha"**

Many important drugs exhibit substantial variability in pharmacokinetics and pharmacodynamics leading to a loss
of the desired clinical outcomes or significant adverse effects. Forecasting drug exposures using pharmacometric
models can improve individual target attainment when compared with conventional therapeutic drug monitoring
(TDM). However, selecting the “correct” model for this model-informed precision dosing (MIPD) is challenging. We
derived and evaluated a model selection algorithm (MSA) and a model averaging algorithm (MAA), which automates
model selection and finds the best model or combination of models for each patient using vancomycin as a case
study, and implemented both algorithms in the MIPD software “TDMx.” The predictive performance (based on
accuracy and precision) of the two algorithms was assessed in (i) a simulation study of six distinct populations

and (ii) a clinical dataset of 180 patients undergoing TDM during vancomycin treatment and compared with the
performance obtained using a single model. Throughout the six virtual populations the MSA and MAA (imprecision:
9.9-24.2%, inaccuracy: less than + 8.2%) displayed more accurate predictions than the single models (imprecision:
8.9-51.1%; inaccuracy: up to 28.9%). In the clinical dataset, the predictive performance of the single models
applying at least one plasma concentration varied substantially (imprecision: 28-62%, inaccuracy: —16 to 25%),
whereas the MSA or MAA utilizing these models simultaneously resulted in unbiased and precise predictions
(imprecision: 29% and 30%, inaccuracy: —5% and 0%, respectively). MSA and MAA approaches implemented in
TDMx might thereby lower the burden of fit-for-purpose validation of individual models and streamline MIPD.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE
TOPIC:

[ Bayesian forecasting using population pharmacokinetic models
is increasingly recognized as a useful tool to inform optimal dose
selection, particularly for drugs used to treat infectious diseases.
WHAT QUESTION DID THIS STUDY ADDRESS?

[ The selection of the most accurate model to inform opti-
mal dosing remains challenging, particularly for use in heter-
ogenous and complex patient populations and novel, pragmatic
approaches to guide model selection are required.

WHAT DOES THIS STUDY ADD TO OUR KNOW-
LEDGE?

M The use of an automated model averaging/selection ap-
proach allows for model structure uncertainty, while retaining

at least the performance level of the most appropriate model
in the algorithm for the individual patient. Implemented in
the open-access software TDMx makes the approach easily
accessible.

HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY ORTRANSLATIONAL SCIENCE?

M The developed algorithms may increase the accuracy of
precision dose calculations associated with a better response
as well as lowering the burden of fit-for-purpose validation
of pharmacometric models for model-informed precision

dosing.
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South Wales, Australia; “Department of Clinical Microbiology and Infectious Diseases, St. Vincent's Hospital, Sydney, New South Wales, Australia.

*Correspondence: Sebastian G. Wicha (sebastian.wicha@uni-hamburg.de)
Received July 17, 2020; accepted September 12, 2020. do0i:10.1002/cpt.2065

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 109 NUMBER 1 | January 2021

175



3.3 Publication Il

ARTICLE

Pharmacometric models, if implemented in model-informed
precision dosing (MIPD) software, can support dose individ-
ualization through forecasting future drug responses. The pro-
cess, also referred to as Bayesian forecasting, usually includes
the computational combination of patient information, in-
dividual plasma concentrations, and prior information in the
form of population pharmacokinetic (PopPK) models to gen-
erate individual estimates. The estimated responses, in turn,
can be used to assess whether (future) pharmacokinetic (PK)/
pharmacodynamic targets can be attained with or without dose
adaptations.

High-impact examples of applied MIPD'™* demonstrate
the usefulness of treating individuals instead of populations.’
Nonetheless, MIPD as a crucial pillar of precision medicine has
not yet become integrated into clinical practice on a large scale.®
A number of barriers toward the implementation of MIPD have
been identified, including the lack of clinically oriented training
in MIPD, the lack of acceprance of more complex dosing strate-
gies (by prescribers),7 unclear reimbursement, or the lack of phar-
maceutical industry sul:)p()rl:.8 Another challenge associated with
MIPD is the selection of an appropriate pharmacometric model
and the related fit-for-purpose validation required.”

The model selection process is challenging as PopPK models
are usually developed and validated to provide quantitative insight
into the PKs of a specific population, bur their forecasting perfor-
mance in diverse real-world populations undergoing therapeutic
drug monitoring (TDM) is rarely evaluated. Selecting the “incor-
rect” model can potentially result in inappropriate dose recom-
mendations and therefore lead to patient harm and/or suboptimal
treatment outcomes and repeatedly validating models in different
populations is arduous and costly.” "2

The objective of this study was to mitigate the challenge of
the clinical application of MIPD by developing and evaluating
a model sclection algorithm (MSA) and a model averaging algo-
rithm (MAA), which automates the model selection process for
use in Bayesian forecasting. Both algorithms were compared with
individual pharmacometric models in comprehensive simulation
studies as well as in a heterogenous real-world clinical TDM data-
set of patients administered vancomycin and subsecl’uent!y imple-
mented in the web-based MIPD software TDMx." Vancomycin
was exemplarily chosen because the latest international consensus
guideline for TDM of vancomycin recommends using area under
the curve (AUC) guided dosing through MIPD" and therefore
suitable PopPK models are urgently required.

METHODS

Single-model approach

Contemporary Bayesian forecasting software commonly utilizes the sin-
gle-model approach to inform dose selection." Six published vancomycin
PopPK models, developed in distinct patient populations, including ex-
tremely obese, critical]P/ ill, hospitalized, and those with sepsis, trauma,
and post-heart surgery © ' were encoded in NONMEM (version 7.4.3;
ICON ple, Dublin, Ireland). A detailed overview of the model properties
can be found in Table §1. As an external reference, the two-compart-
ment model of Goti ez al.,” which was recently determined as the most
accurate for vancomycin Bayesian forecasting was used."” Furthermore,
to compare the predictive performance of the MSA and MAA to a best
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case of a single model Bayesian forecast, we re-estimated the parameters
of the Goti model™ using our clinical dataset (Table S1).

Multimodel approach

Two automated multimodel approaches were developed with the same
six candidate PopPK models to be used simultancously for forecasting in-
dividual PK profiles of either simulated or real-world patients (see below).
Both algorithms comprised three essential steps (Figure 1): (1) the PK
parameter estimation, (2) the automated comparison of the model fits,
and (3) the adjustment of the forecasted concentration-time profiles.

Model selection algorithm. First, the individual PK parameters were
estimated with each of the six PopPK models on observed data. Second,
the forecasted (i.c., predicted) concentration-time data was automatically
weighted using the weighting schemes described below. Third, the MSA
selected the best fitting model via the obrained weightings and the com-
peting models were discarded.

Model averaging algorithm. In the MAA, the available concentra-
tion-time data was used to average the model predictions under consider-
ation balancing the predictions of each model using different weighting
schemes that reflect individual goodness of fit. Similar to the MSA, the
PK parameters of the individual patients were estimated with each PopPK
model and individual weightings assigned. Then, in contrast to the MSA,
the MAA averaged the model-predicted vancomycin concentrations at
each forecasted time point using the set of PopPK models jointly with the
data-derived weighting scheme. Furthermore, to investigate the vanco-
mycin-specific rarget, the MA A also averaged the forecasted AUC.

Weighting schemes. The second step of the MSA/MAA requires a cri-
terion to quantify the individual model fits with respect to the candidate
models. Therefore, three different weighting schemes that summarize
different model fit metrics were investigated: cthe abjective function value
(OFV), an adjusted Akaike information criterion (AIC) or the squared
prediction errors (SSEs). Subsequently, the most suitable weighting
scheme was implemented in the multimodel approaches.

The first weighting scheme compared the maximum likelihood (LL)
obtained through the OFV of the ith model relative to the set of # models
as follows:

W LL, o —05XQFV,) ;
7= = 1
OFV, E': I, Zr; H(—05%0FV,) (

The second weighting scheme (W, ) consisted of an adjusted AIC
with two main parts, adopting the approach proposed by Aoki er al.*:
the LL and a penalizing term. In contrast to conventional Al solely
the number of random-effect parameters that quantify the magnitude
of explained variability (i.c., interindividual variabilicy (II'V)), were in-

cluded in the penalizing term £ (Eq. 2).
(In(LL),—#)
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The third weighting scheme utilized the SSEs, which, in contrast to
Egs. 1 and 2, excludes the influence of the model structure on the pre-
dictions (Eq. 3). Here, #rue represents the measured and pred means the
predicted value of the jth observation, respectively.

e(—D.SXSSE,) e(-O.SXZ(tru:f—pr:c!,)) (3)
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Figure 1 Model averaging scheme applied to a patient from a heterogenous or unknown population (red circle) with information on dosing, plasma
concentrations (black cross), and the relevant covariates to forecast a future pharmacokinetic (PK) profile (dotted line). The algorithm comprises
three steps: (1) Estimation of the PK profiles with a certain number of selected models. (2) Automated comparison of the individual model fit via a
predefined criterion (e.g., the objective function value) and calculation of individual weights (e.g., W, ). The better the fit of the model, the higher
the weighting. (3) Adjustments of the predictions by the respective weighting and building a weighted average (black line) with the best fitting
model given the highest influence (model averaging algorithm) or being selected, while others are discarded (model selection algorithm). (0} is

not part of the algorithm, but explains the simulation study graphically. Colored icons — models developed in distinct populations; colored lines —
estimated PK profile of the chosen patient using the models, respectively. [Colour figure can be viewed at wileyonlinelibrary.com]

Robustness of the algorithm. In order to evaluate how many candidate
models per multimodel approach were required for accurate predictions,
we sequentially excluded the model(s) with the best performance metrics
and estimated the vancomycin PK profiles of patients in the clinical dataset
(see below) using the MSA and MAA with the weighting scheme W ..
The predictive performance of the algorithms with the smaller set of mod-
els was compared via the forecasting performance metrics (Eqs. 4 and 5).

Simulation study

A virtual population of 1,000 patients with randomly acquired covari-
ates receiving the same vancomycin dose every 12 hours was created. The
covariates were either sampled from a normal (age, body mass index, and
body height), log normal (serum creatinine), or a binomial distribution
(sex) to mimic a real adule population. Parameter details and correlations
can be found in Table $2. With cach of the six models, PK data were sim-
ulated, including a peak and a trough plasma concentration from three
dosing intervals and the AUC berween 24 and 36 hours (i.c., true AUC).
Subsequently, the PK data obtained from the 6,000 simulated patients
(1,000 per model) were evaluated using the single-model approach as well
as the two multimodel approaches.

Clinical data

The predictive performance of the algorithms was evaluated in pre-
viously published heterogencous clinical datasets.”*® Data from
hospitalized and critically ill patients (z = 374) with 1,967 routine
vancomycin TDM samples between January 2010 and August 2019
were retrospectively collected. This dataser includes 180 patients
for whom plasma vancomycin concentrations were available for 3
dosing occasions (samples = 741). Patient demographics and clini-
cal data are summarized in Table §3. The studies were approved by
the St. Vincent’s Hospital Human Research Ethics Committee in

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 109 NUMBER 1 | January 2021

Sydney (2019/ETH09850, 2019/ETH02942 and 2019/ETH03054).
Vancomycin concentrations were determined by standard immunoas-
say (EMIT 2000, Siemens Healthineers). Eleven datapoints (0.6% of
all plasma concentrations) were below the limic of quantification of
2 mg/dL and were excluded. The age, bodyweight, and height were
available in every patient. If specific continuous covariates were not
available, either the median of the dataset or the median of the model
population was imputed. If categorical covariates were missing, the
dara were assumed to be in the negative category (e.g., not recciving
concomitant furosemide).

Forecasting performance metrics

The predictive performance of the MSA and MAA were compared
with the single-model approach using the six PopPK models as well
as to the “reference” PopPK model.” Predictive performance was as-
sessed via the differences between the predicted and observed plasma
vancomycin concentrations (clinical data) or the simulated and pre-
dicted AUC. Three different scenarios (outlined below) were used to
predict plasma concentrations and the AUC in the third observed dos-
ing occasion (ODO), where observed plasma vancomycin concentra-
tions were “hidden” from the models or algorichms. The third ODO
was chosen, as in the clinical dataset information from at least two
previous dosing intervals were available in the majority (52%) of the
patients. The ODOs were defined as not necessarily consecutive dos-
ing intervals for which one or more observed vancomycin concentra-
tion(s) were available.

The first and second scenarios mimicked the bedside process of achiev-
ing a clinical target. First, predictions were made using solely the patient
covariates (a priori). Second, the vancomycin concentrations from one or
two previous ODOs were used in addition to the covariate information to
forecast the PK profiles in the third (hidden) ODO. The third scenario
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was used to retrospectively determine the general fic of the models/al-
gorithms to the data by including the third ODO. Relative root mean
square error (rRMSE, Eq. 4) and relative bias (rBias, Eq. 5) were used to
determine (im-)precision and (in-)accuracy of the forecasted parameters,
respectively.”® The metrics were calculared relative to the observed plasma
concentrations in the clinical dataset and the predicted AUC relative to
the true AUC obrained in the simulations.

! dicted. —true,)?
/RMSE = lxz ((Prc feted, — true,) )xmo )
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1oy
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The performance of the models was considered clinically acceprable if
the rBias was between —20% and 20%, with the 95% confidence intervals
(CI) including zero.” Additionally, the precision metric (rRMSE) should
be as small as possible.

The simulations and all dara fitring processes were done in NONMEM
in conjunction with PsN (version 4.9.0).%” The “tidyverse” package (ver-
sion 1.3.0)% in R (version 3.6.1)* was used to develop the algorithms as
well as to assess the results graphically and mathematically.

MIPD software for vancomycin

For translation of the herein presented results into clinical practice, we
developed a vancomycin dosing module in the open-access MIPD soft-
ware TDMx."? The software module contains the single models as well
as the MSA and MAA algorichms and allows for AUC-based dose calcu-
lations of vancomycin. The software can be accessed under heep:/www.
tdmx.cu/.

RESULTS

Evaluation of the weighting schemes

Three weighting schemes (i.e., Wpn W, e and W) were
evaluated. Whereas the weighting scheme W, consisted

solely of the likelihood, obtained through the NONMEM cal-
culated OFV, the W, | . further accounted for model complexity
through penalizing ITV. Due to the low number of observations
per patient in the Bayesian estimation of the PK parameters
(e.g., maximum four observartions in the simulation study), che

penalizing term dominated the resulting W, c» and therefore

shifted the influence of the more complex mg::lels toward the
less penalized ones (Figure 2 vs. Figure 81). In comparison to
Wy the model, including the highest number of IIV terms
(Thomson®'), was less often selected in the forecasting of hos-
pitalized patients (simulated by the Thomson model*') using
Wi (one occasion: 63.9% vs. 0.3% and two occasions 71.3% vs.
8.9%). Simultancously, the Adane’® and Revilla” models were
increasingly selected (< 13% to > 28%). Despite this shift in
the distribution of the weights, the performance metrics of the
MSA and MAA using the W ,.,, were just slightly superior over
the W, (e.g., MSA one occasion rBias/rRMSE 0.6%/18.6%
vs. 1.8%/19.4%:; Figure $2). The W ., was slightly preferable
to W, with an rRMSE being 0.9% and an rBias 0% smaller
on average. Therefore, the W, was used in the following
analyses.

Simulation study
Across all six simulated populations, the proportion of patients,
for which the selected model corresponded with the model used
to simulate the data, ranged from 21.1% in the Medellin-Garibay
model" to 63.9% in the Thomson model® when using data from
one ODO (Figure 2, one occasion). Although the PK parameters
of the other patients were estimated with the algorithm assigning
the highest weight to the other five models (i.e., a “wrong” model),
the MSA led to similar metrics as the best single-model approach
in the respective (sub-)population (Figures $3 and S4).

Overall, the metrics of the MAA and MSA were in good
alignment throughout the 6,000 simulated patients with slightly
higher imprecision and inaccuracy in the MAA approach (mean

Simulation
Adane etal., 2015 (@
Mangin etal., 2014 f

Medelin-G. et al., 2016 (@)
Revilla et al., 2010 (=
Roberts etal., 2011 (@

Thomson et al., 2009 .

]

One occasion

Two occasions General model fit

638 71.3 748

0 25 50 75 1000 25 50 75 1000 25 50 75 1000 25 50 75 100

Percentage of the population [%)]

Figure 2 Influence of the models in the multimodel approaches using the weighting scheme W, and stratified by the simulated populations
(y-axis). Each patient was stained in the color of the particular model which obtained the highest weight in the algorithm. (A priori) prediction
using the patient covariates only; Bayesian forecasting using plasma vancomycin concentrations from (One occasion) the second (i.e.,

most recent) observed dosing occasion and (Two occasions) the first and second observed dosing occasion; (General model fit) Bayesian
estimation using plasma vancomycin concentrations from all three dosing intervals. White numbers — numerical value of the biggest portion in
the subpopulation and scenario, respectively. In each simulation, the pharmacokinetic parameters of majority of the individuals were predicted
solely by (for model selection algorithm) or mostly influenced by (for model averaging algorithm) the same model used in the underlying
simulation. This pattern increased when more data was supplied and indicates that the algorithm detected the underlying true simulation
model (i.e., the optimal model for each individual patient). [Colour figure can be viewed at wileyonlinelibrary.com]
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(a) Simulation study (b) Clinical data
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Figure 3 The relative root mean square error (fRMSE) and relative bias (rBias) when predicting either the area under the curve (AUC) or
concentration-time data in the third dosing occasion, which is blinded to the models/algorithms from in various settings: A priori prediction
using the patient covariates only; Bayesian forecasting using plasma vancomycin concentrations from (One occasion) the second (i.e.,
most recent) observed dosing occasion, and (Two occasions) the first and second observed dosing occasions; (General model fit) Bayesian
estimation using plasma vancomycin concentrations from all three dosing occasions. (a) Simulation study; the predicted vs. the simulated
AUC between 24 hours and 36 hours calculated in the whole 6,000 simulated patients (horizontal line) and the (sub-)populations (shapes),
respectively, and (b) clinical data; the predicted vs. the vancomycin concentrations in the third observed dosing occasion obtained in the
clinical studies. The ordinate is displaying the six single model approaches (light grey), the model averaging algorithm (black), the model
selection algorithm (dark grey), and the external model (grey) per scenario. Whiskers cover the 95 % confidence interval of the relative bias
calculated via the standard error. N.D., not defined.

absolute difference rRMSE 0.1% and rBias: 1.7% in the forecast- Averaging (MAR) Selection (MSA)

ing; Figure 3a). In comparison with the single-model performance

throughout the 6,000 heterogenous virtual patients, the MSA 404 .

displayed the most precise predictions ranging from an rRMSE ?;
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fined (MSA). In comparison to the # priori forecast, the inclusion
of concentrations from one ODO led to an improvement of the
precision and accuracy of the MAA by a factor of two and four,
respectively. Additional concentrations from a second ODO im-

Number of models included in the algorithm

Figure 4 Robustness of the model averaging algorithm (MAA; left)
and the model selection algorithm (MSA; right) displayed via the
relative root mean square error (rRMSE) and relative bias (rBias) of

d predicti | inally.
FEOVUR SOIHLIS S S . the clinical data. The successively excluded models are: Thomson,

In each simulated population, the predictions of the MSA and
MAA outperformed most of the single-model approaches with an
rBias between —5.9% and 8.2% and an tRMSE always < 24.2% in the
forecasting and general model fit, whereas the single models varied
berween —10.3% and 28.9% (rBias) and an tRMSE of up to 51.1%
(Figure 3a—shapes). The single-model approach was only slightly

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 109 NUMBER 1 | January 2021

Roberts, Medellin-G., Adane (from left to right), remaining: Mangin,
Revilla. (black) a priori prediction using the patient covariates only;
Bayesian forecasting using plasma vancomycin concentrations from
the second (i.e., most recent) dosing occasion (dark grey), and the
first and second dosing occasions (light grey). Whiskers cover the
95% confidence interval of the rBias calculated via the standard
error. N.D., not defined.
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more precise, when it was used to forecast the PK within the respec-
tive population the model was developed for (Figures §3 and $4).

In comparison to the “reference” model of Goti,” the MSA and
MAA were more precise (rRMSE) while being similarly accurate
(rBias < + 10%). The rRMSE using the Goti model™ ranged from
20.3% to 19.0% (one and two occasions), whereas the precision of
the multimodel approaches ranged from 18.8% to 16.8%.

Clinical data

Forecasting performance. The MSA and MAA were applied to
the clinical dataset and confirmed the simulation study findings.
Although the forecasting performance of the single models varied
substantially (rBias: —16 to 25%, rRMSE: 28-62%), the MAA
using these models simultaneously resulted in unbiased and precise
predictions using data from one (rBias: 0%, rRMSE: 30%) and two
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previous ODOs (rBias 0%, rRMSE: 31%; Figure 3b), matching
the simulation study results that additional concentrations only
marginally improved the predictions. The rRMSE of the MAA
was always in the range of the best single model (absolute deviation
to Thomson model®': 2 priori: 7.2%, forecasting: 2.7%/0.5%, and
general model fit: —0.7%).

Although both MSA and MAA displayed an rfRMSE in the
forecasting between 29% and 32%, the MAA was slightly more
accurate (rBias one occasion/two occasions —0.4%/—0.1%
MAA vs. =5.0%/-2.5% MSA). Although the 95% CI of the
two algorithms were overlapping in large parts, only the 95% CI
of the rBias in the MAA included 0 in all settings. The MAA,
unlike all single-models, met the clinical acceptance criteria
in every scenario. The approaches performed better than the
recently evaluated best model of Goti'” (rBias one occasion/
two occasions: 8.6%/9.1%, rRMSE: 35% and 37%). Even if

Model averaging (MAA)

Population model
. Extremely obese patients
f Critically ill, post heart surgery
. Trauma patients
w= Intensive care patients
. Critically ill, septic
’ Hospitalized patients

Figure 5 Calculation of an optimal vancomycin dosing on day 3 in a critically ill example patient (male, 70 kg, 1.75 m, 56 years, serum
creatinine: 80 pmol/L) to attain the target area under the curve (AUC),,,/minimal inhibitory concentration (MIC) ratio of 500 with the model-
informed precision dosing software TDMx. The patient received 1,000 mg vancomycin twice daily, following a loading dose of 2,000 mg and

2 peak and 2 trough vancomycin plasma concentrations were measured between 23 and 14 mg/L. With the single-models (left), model fit
was heterogeneous and the determined AUC,,, /MIC ratio varied from 429 to 493. The single model-derived dose recommendations varied
between 852 mg and 1,316 mg (grey). The model selection algorithm (MSA) selected the Roberts model as indicated by the highest weight (*).
The model averaging algorithm (MAA; black line, right panel) predicted an AUC,,,/MIC ratio of 441 prior dose adjustment, and the subsequent
dose recommendations was 1,238 mg. The MAA was mainly influenced by the Roberts and Revilla model, both derived in the critically ill
population, as indicated by the model weights (barplot). Both the MSA and the MAA calculated a plausible dose adjustment being in line with
the most accurate single model. [Colour figure can be viewed at wileyonlinelibrary.com]
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the parameters of the best reference model™ were re-estimated
based on our clinical dataset and the predictive performance of
the adjusted model improved, the two algorithms were similar
to, or performed better than, the single model (Figure S5).

Robustness of the algorithm. In order to evaluate how many
models were needed in the MSA and MAA, we successively
excluded the model with the best weighting and assessed the
performance of the algorithms consisting of six to two models.
The predictive performance of the MAA was “stable” even when
only three instead of six models were used, where the IRMSE
increased from 30.4% to 34.2% in the forecasting (44.4-46.6%
a priori) and the rBias varied between —2.1% and 0.7% (2.9 to
1.9% a priori; Figure 4). The 95% CI of the rBias included 0 in all
scenarios and never exceeded + 7.4%. When using two models in
the MAA, the rRMSE increased by 5.7% in the forecasting (9.2%
a priori) with a rBias of 7.3% (4.3% a priori). The exclusion of up to
four models in the MSA resulted in greater imprecision (rRMSE
28.7% to 40.4%) and a rBias between —6.7% to 3.9% (Figure 4).
In comparison to the MAA, the forecasting of the MSA was less
accurate (mean rBias MSA —2.9%; MAA 1.0%) and less precise
with a larger IRMSE in 8 of 10 settings.

MIPD software for vancomycin

The vancomycin module in TDMx was cross-validated against
NONMEM (version 7.4.3) indicating virtually identical results of
the model predictions as well as objective function values (Figures
S6and S7).

A patient case example using the single-model approaches as
well as MSA and MAA is presented in Figure 5. Single models did
not only provide a very heterogenous fit to the example patient,
but also derived dose recommendarions to attain an AUC,,, over
minimal inhibitory concentration ratio of 500 were highly variable
ranging from 852-1,316 mg, whereas the MSA and MAA pre-
dicted an optimal dose of 1,316 and 1,238 mg, respectively.

DISCUSSION
For vancomycin—one of the most commonly used antibiot-
ics in clinical practicem—more than 30 PopPK models have
been developed in diverse patient populations.'” However, to
choose and validate a model for an individual patient might
not always be within the skill-set of the decision maker. We
therefore provide two new multimodel approaches using auto-
mated model sc]cction/avcraging in Bayesian forccasting, with
a better forecasting performance than a single PopPK model.
When implemented in MIPD software, the clinical decision
maker does not need to rely on one predetermined model but
can automatically allow the algorithms to find the most suit-
able predictions for an individual patient. Thereby the preci-
sion dosing process will be streamlined and the burden of local
model validation lowered. Moreover, by implementing the
MSA and MAA into the web-based MIPD software TDMx, "’
the developed algorithms are readily available to the scientific
and clinical communiry.

The MSA/MAA required predictions to be adequately
weighted. Therefore, three different weighting schemes were
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compared and the most suitable identified. The weightings derived
from the Wory which represent a balance between those from the
Wi and W, provided superior weightings, although there was
little difference in the predictive performance among the three
schemes.

Although single pharmacometric models are usually evaluated
in a specific population prior to their publication, extrapolating
from a single model might not guarantee suitable predictions of
concentration-time profiles in another, potentially very differ-
ent, patient population. Even if the underlying population were
known, the patient could still display atypical PK parameters.
This implies that more flexibility is required when predicting
PK parameters in clinical settings with patients from heterog-
enous populations. We demonstrated that the multimodel ap-
proaches provided this essential flexibility to forecast “future”
vancomycin PK profiles of a heterogeneous population more
accurately than using a single model.

Several factors could contribute to the superior performance
of MSA and MAA over the single-model approach. First, pre-
dicting PK parameters with a single model ignores uncertainty
in the structural model that could affect the predictive perfor-
mance.”?! Specifically, a single model might not reflect the
most suitable compartmental structure or parameterization.
Furthermore, individuals differ in their physiology and there-
fore in their drug disposition. Extremely obese patients, for ex-
ample, display a typical volume of distribution of vancomycin of
0.5 L/kg, one third of the value in patients with sepsis, whereas
the clearance is <:0m1:n;1rai_‘rlf_'.16‘20 In contrast, the clearance of
vancomycin determined in trauma patients is significantly lower
than in extremely obese and more similar to the clearance in
critically ill patients undergoing heart surgery.!”'® These alter-
ations in key PK parameters are especially relevant in critically
ill patients® and highlight the importance of dosing decisions
to be informed through careful selection of a pharmacometric
model in MIPD. To ensure generalizability of the study findings
the PopPK models selected to evaluate MSA and MAA were de-
veloped in diverse populations (i.e., extreme obese, critically ill,
and hospitalized patients, amongothers). Second, a single model
might include misinterpreted covariates (e.g., for burn status)™
or lack covariates, which are critical in particular patients
(e.g., correction for age, body weight, and kidney function).*
However, the concurrent use of various models will include a
larger range of covariates. Third, single models developed in
small, homogenous cohorts of patients while displaying good
internal predictivity, might not display external predictivity due
to selection bias in the covariate submodel®® and underestimated
parameter uncertainty in studies with small patient numbers.*®
Finally, single models may have been developed based upon
routine clinical data, which often exhibits uncertainty in docu-
mented dosing and sampling time. Uncertain sampling inflates
the residual error of the models and thus can lead to a worse in-
dividual fit using the model in a sparsely sampled TDM setting
due to a lower “trust” in the observed values and a higher impact
of the Bayesian prior during Bayesian forecasting,”’

When implementing MSA or MAA it might be challenging to
select the candidate models to be included in the algorithms. To
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this end, we evaluated the robustness of the MSA and MAA in chis
case study by successively excluding the best models (Figure 4).
This stepwise exclusion of the candidate models resulted only in
a minor decrease in the predictive performance of the MSA and
MAA until only four and three models remained, respectively. Even
with the two models that performed worst in the single model ap-
proach, a considerably improved forecasting performance could be
observed when used in MSA, and even better in MAA (Figure 4).
Whether this behavior is generalizable and whether a similar ap-
proach could be used to identify the best set of models would need
to be evaluated in further MIPD settings beyond vancomycin, but
this indicates that the algorithms in the evaluated case study are
not dependent on a distinct single, well-performing model. This
robustness makes the MAA and MSA an attractive approach also
in settings where only a few PopPK models are available. Hence,
MSA and MAA can use all relevant collective knowledge simul-
tancously to inform precision dosing calculations. Further, this
process is automatable and enables the re-allocation of resources
which would otherwise be required for the time-consuming task
of identifying and validating the most suitable model for MIPD.
Althou%h Bayesian averaging in patient care™ and drug develop-
ment”>? has been discussed before, we, for the first time, system-
atically developed and evaluated such an approach in the context
of MIPD.

Other popular approaches in MIPD are nonparametric in na-
ture. The developed MSA and MAA combine the flexibility of
nonparametric approaches*” with the rigor of a parametric frame-
work, without needing to know the nonparametric distribution
(i.e., support points) of the population, which are rarely pub-
lished. A comparison between MSA/MAA and nonparametric
approaches with regard to handling outliers might be worth pur-
suing in future studies. Moreover, all PopPK models were coded
from publications whereas nonparametric models require the de-
rived sets of support points/raw data, which are rarely publicly
available,

Some limitations of this study are acknowledged. The MSA and
MAA require TDM data to weigh the predictions and find the
best model during the course of therapy. For the first dose calcu-
lation (i.e., the a priori setting), a manual selection of the model
is still required. Furthermore, none of the investigated vancomy-
cin population models included interoccasion variability (IOV), a
term quantifying PK variability between dosing occasions within
the same individual. Although the inclusion of IOV during model
development has been shown to be beneficial,*! this variability
can be challenging to handle in MIPD using the single-model ap-
proach.* Hence, investigation of MSA/MAA approaches with
IOV should be evaluated in furure studies.

Although the time required to complete the MSA and MAA per
individual (mean 7.0 seconds with SD < 0.6 seconds using two sam-
ples and a set of six models) in the TDMx-based Bayesian forecasting
was acceptable, calculating the uncertainty in the PK-profile predic-
tions is only feasible with the MSA post-autoselection. Simulating
the uncertainty with each model of the MAA set (c.g., using the
Monte Carlo method) and averaging the obtained CI based on the
weighting is highly time-consuming, and more research is required to
provide assurance that the calculated CI will be statistically correct.
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Morteover, in order to fully benefit from MIPD tools in critical
therapies, the transferability of the present case study with vanco-
mycin to other drugs in or outside the field of infectious diseases
should be investigated.

In conclusion, the present study comprehensively evaluated
model averaging and selection algorithms in MIPD using vanco-
mycin as a case study. The algorithms overcome one of the major
difficulties associated with the implementation of MIPD into
clinical practice—selection of the most appropriate PopPK model
for an individual patient. The developed algorithms can provide a
more reliable Bayesian forecast when compared with using a single
model.

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical
Pharmacology & Therapeutics website (www.cpt-journal.com).
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Erratum: A Model Averaging/Selection Approach Improves the Predictive

Performance of Model-Informed Precision Dosing: Vancomycin as a Case Study
David W. Uster, Sophie L. Stocker, Jane E. Carland, Jonathan Brett, Deborah J.E. Marriott, Richard O. Day, and Sebastian G. Wicha,
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In the published version of the above article, there is an error in Eq. 3, the sum of (true — pred) should be squared, but it is displayed in-

correctly as follows.

7 6’( —0.5%SSE,) e_(—().SXZ(truc/-—prcdl))
SSE, = i
i Z 78(—0.5 X SSE,) ,IIe(—-().SXE(rme,—pred,))
The correct equation should be:
W e(—O.SxSSE,) e(—O.SXZ(rrug,—prcdi)l)
SSE; = - T
i Z r'lle(—().SXSSE,,) Ye(—OASXZ((TULI‘—pTLdJ) )

This error occurred during the typesetting process and we apologize for the error.
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Synopsis

The latest MRSA-treatment guideline recommends to individualize vancomycin dosing
based on the individual AUC determined with MIPD software.[1] Thereby, two
measurements (i.e. a peak and a trough sample) are considered gold standard to
determine the individual AUC, but single-sample strategies might be more economic.
In Publication IV, we systematically evaluated optimal sampling times for AUC-
determination of vancomycin using automated one or two sample strategies with the
MAA and MSA. Both algorithms were compared to a conventional equation-based
approach (EQA) in a simulation-estimation study of 6000 heterogenous virtual
patients.

In contrast to current clinical practice that focuses on trough samples, a single sample
obtained between 2—6.5 hours post dose resulted in unbiased and precise predictions
using the MAA and MSA. An additional sample between 4.5-6.0 hours improved the
predictive performance, but the differences between all two-sampling strategies were
minor. In contrast, the EQA always required two samples, steady-state conditions and
was positively biased.

The MAA/MSA preferred samples to be drawn early in the profile and accurately
predicted the AUC even after the first dose. This emphasizes the potential of the
MAA/MSA to already individualize the second dose precisely, which is likely unfeasible

using trough sampling.
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Abstract

Vancomycin dosing should be accompanied by area under the concentration-
time curve (AUC)-guided dosing using model-informed precision dosing soft-
ware according to the latest guidelines. Although a peak plus a trough sample
is considered the gold standard to determine the AUC, single-sample strategies
might be more economic. Yet, optimal sampling times for AUC determination of
vancomycin have not been systematically evaluated. In the present study, auto-
mated one- or two-sample strategies were systematically explored to estimate the
AUC with a model averaging and a model selection algorithm. Both were com-
pared with a conventional equation-based approach in a simulation-estimation
study mimicking a heterogenous patient population (n = 6000). The optimal
single-sample timepoints were identified between 2-6.5 h post dose, with varying
bias values between —2.9% and 1.0% and an imprecision of 23.3%-24.0% across
the population pharmacokinetic approaches. Adding a second sample between
4.5-6.0 h improved the predictive performance (—1.7% to 0.0% bias, 17.6%-18.6%
imprecision), although the difference in the two-sampling strategies were minor.
The equation-based approach was always positively biased and hence inferior
to the population pharmacokinetic approaches. In conclusion, the approaches
always preferred samples to be drawn early in the profile (<6.5 h), whereas sam-
pling of trough concentrations resulted in a higher imprecision. Furthermore,
optimal sampling during the early treatment phase could already give sufficient
time to individualize the second dose, which is likely unfeasible using trough
sampling.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?

Gram-positive anti-infective therapy using vancomycin should be supported by
population pharmacokinetic models, especially in patients who are critically
ill. Therefore, 1-2 plasma samples (ideally a sample from the early profile and

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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a sample from the late profile) should be supplied to model-informed precision
dosing software to ultimately predict precise individual doses.

WHAT QUESTION DID THIS STUDY ADDRESS?

Besides the influence of the models/approaches used for guidance, we hypoth-
esize that the sampling time might alter prediction depending on the time under
treatment or the number of samples and optimized sampling strategies might
outperform currently recommended strategies.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?

The most informative sampling timepoints were identified to be from the
early pharmacokinetic profile, whereas trough samples resulted in less-precise
predictions.

HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT,
AND/OR THERAPEUTICS?

The virtual study implies that model-informed precision dosing of vancomycin
should be done informing population pharmacokinetic approaches with earlier

INTRODUCTION

To treat serious invasive infections by multiresistant
Gram-positive bacteria, vancomycin is indisputably the
key antibiotic, and therapeutic drug monitoring (TDM) in
conjunction with individual dose adjustments is required
to improve treatment outcomes.' The consensual phar-
macokinetic (PK)/pharmacodynamic index to guide van-
comycin is the area under the concentration-time curve
(AUC) per 24 h divided by the minimum inhibitory con-
centration and values between 400 and 600 are considered
optimal.*¢

Historically, the clinically relevant drug exposure was
either approximated via a surrogate trough measurement
in steady state or calculated with log-linear regression or
trapezoidal formulas using multiple samples from the
same individual.”® Another appealing approach is to esti-
mate the individual PK parameters using sparse sampling
in combination with population PK models to guide in-
dividual dosing decisions.” This combination of present
patient information and prior knowledge on drug PK (i.e.,
embedded in the population PK models) is usually termed
model-informed precision dosing and has recently received
increasing interest in treatment individualization at bed-
side.'”"* The interest grounds on obvious benefits, such as
adequately adjusting the treatment at early stages, the re-
duced burden to the patient caused through a lower sam-
pling frequency, and a potentially higher rate of successful
therapies, while reducing the overall costs.'*'®

Nonetheless, it is crucial for precision dosing to se-
lect the correct model and assure that the data are ac-
curately collected and the sampling time is adequately
documented.'”"® However, the recommended number of

samples (less than 6.5 h) rather than trough samples.

required samples per dosing interval and their optimal
timing to achieve accurate and precise estimates of the
individual PK has not been conclusively evaluated yet."’

The aim of the study was to find optimal sampling strat-
egies in intermittent vancomycin therapy to determine the
individual drug exposure in heterogenous patients using
two previously developed multimodel approaches. These
two approaches either automatically select the most suit-
able model from a set of candidate models per individual
(model selection algorithm [MSA]) or average the predic-
tions of the models according to their individual model
fit (model averaging algorithm [MAA])."” Therefore, the
predictive performance of various one- and two-sampling
strategies after the simulated first dose (FD) and in steady
state (SS) were compared (i) within the two multimodel
approaches; (ii) against a “classical” peak-trough sam-
pling applied to the two multimodel approaches; and (iii)
against an equation-based approach (EQA) that uses two
predetermined vancomycin samples and simple analytic
equations to calculate the area under a monoexponential
curve,

METHODS

The simulation-estimation study consisted of six partly re-
petitive main steps (Figure 1) and can be divided into the
simulation part (i.e., creating the true parameters/drug
exposure) and the estimation part (i.e., the estimation of
the drug exposure using a reduced number of one or two
samples per patient). Details of the study methods are
described in the next section, and examples of the data,
model codes, and output are provided in Appendix S1.
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1)Random sampling of the covariates from 1000 patients
using parametric distributions and creation of a twice
daily dosing scheme

2)Simulation of the true PK parameters and profiles using
6 distinct population PK models encoded in NONMEM

Simulation

- one heterogenous dataset containing 6000 simulated
patients from 6 different populations

3)Dataset reformatting to create 23 sampling strategies
with one sample between 1 to 12 h post first dose and <+
23 sampling strategies with one sample between 1 to
12 h post steady state dose, respectively.

4)Estimation of the MAP Bayesian parameter values using
the MAA/MSA in the 46 sampling strategies
(MAXEVAL=0)

Estimation

5)ldentification of the optimal sampling timepoint per
estimation method using the performance metrics

6)Repeat 3) — 5) using the optimal first sample identified
in 5) + a second sample in between the same time
intervals

FIGURE 1 Workflow of the simulation-estimation study
consisting of six main steps. MAA, model averaging algorithm;
MAP, maximum a posteriori prediction; MAXEVAL=0, NONMEM-
specific MAP estimation with fixed population parameters; MSA,
model selection algorithm; PK, pharmacokinetics

The data preparation and all statistical and graphical
evaluations were done in R (Version 4.0.2),20 whereas the
simulations and data-fitting processes were conducted in
NONMEM?® (Version 7.5; ICON plc).*!

Simulation structure

A base set of 1000 virtual patients receiving a loading dose
of 2000 mg and maintenance doses of 1250 mg every 12 h
administered as 60-min infusions and with randomly
sampled covariates was constructed once. The randomly
acquired covariates were sampled from a normal (age and
body height), log normal (body mass index [BMI], serum
creatinine), or a binomial distribution (sex). To mimic
an adult population with adequate covariate relation-
ships and correlations, body height was sampled from a
normal distribution depending on the sex (female, mean
1.65 m; male, 1.75 m [standard deviation, 0.035 m]), the
corresponding body weight was calculated based on the
simulated BMI and height, and age was truncated to val-
ues between 20 and 75 years.

To obtain a preferably heterogenous data set, the PK
profiles and the “true” drug exposures were simulated in
NONMEM via sampling from the eta-distribution of six

| 3
,ch'r

distinct population PK models, respectively. The resulting
data set contained 1000 patients each (6000 in total, i.e.,
six times the base set) of the following populations: ex-
tremely obese using the Adane et al. model®; after heart
surgery, Mangin et al.”*; trauma, Medellin-Garibay et al.**;
critically ill, Revilla et al.”; sepsis, Roberts et al.*®; and
hospitalized using the Thomson et al. model”’ (model de-
tails can be found in Table S1).

The true drug exposures obtained via the individual
simulated PK parameters (i.e., simulated AUC) were de-
termined via numerical integration of the concentration-
time profiles from 0 to 12 h (AUC_;,) or from 48 to 60 h
(AUC 4_g) for steady-state conditions.

Estimation elements
Sampling strategies

The previously described 6000 patients were reformatted
to data sets containing a single plasma measurement (i.e.,
coded as missing dependent variable (MDV) = 0, while all
other samples were coded as MDV = 1) at the same time-
point between 1-12 h post start of first infusion (in 30 min
increments) or between 49-60 h post start of first infusion,
resulting in 23 data sets containing a single sample per pa-
tient in the FD and 23 single-sampling strategies in the
fifth dosing interval (i.e., at approximate SS), respectively.

Furthermore, to create 23 data sets with two samples in
the FD and SS, respectively, the optimal single-sampling
strategies were identified (details in the Approaches to
Determine Drug Exposures and Identification of the
Optimal Sampling Strategies sections). The data sets
therefore contained the identified best single timepoint of
the multimodel approaches (Identification of the Optimal
Sampling Strategies section) and an additional second
sample drawn between 1-12 h after the start of infusion
(Figure 1, Step 6). The strategies that would draw the sec-
ond sample at the timepoint of the optimal first sample
were excluded. To compare the two-sampling strategies
with the current gold standard in reduced sampling, a
classical “peak-trough” strategy was prepared with sam-
ples drawn at 1 and 11.5 h after the start of infusion.

Approaches to determine drug exposures

Two different approaches to estimate the vancomy-
cin AUC using the reduced sampling strategies (see the
Sampling Strategies section) were compared and con-
sisted of two multimodel approaches as well as an EQA.
The two multimodel approaches were applied to esti-
mate the individual PK parameters (including the AUC)
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with each of the sampling strategies through maximum a
posteriori Bayesian estimation (MAXEVAL = 0 procedure
in NONMEM?®). Therefore, the approaches either auto-
matically estimated a weighted average of the individual
drug exposure using a set of six population PK models
simultaneously (i.e., MAA) or selected the individually
best-fitting model from the same set of models (MSA), as
described by Uster et al.'” In detail, these automated al-
gorithms comprise three steps: (i) maximum a posteriori
Bayesian estimation (MAXEVAL = 0) of the individual PK
parameter and drug exposure with each model (i.e., AUC
obtained via numerical integration), (ii) automated com-
parison of the individual model fit via the likelihood (LL),
and (iii) adjustments of the predictions (i.e., the AUC) by
the respective weighting (Equation 1) with the best-fitting
model given the highest influence and either building
a weighted average (MAA) or selecting the best model
(MSA). The weighting scheme, therefore, compared the
maximum LL obtained through the NONMEM objective
function value (OFV) of the ith model relative to the set of
n models included in the algorithms:

LL. o(—0.5x0FV;)

YL, - ZT o(—0.5x0FV,)’ @

WOPVi =

The two approaches were compared to an EQA as proposed
by Pai et al.,® which consisted of the following: a post dis-
tributional peak (i.e., 2 h after the start of infusion) and a
trough measurement (0.5 h before the next dose) were
used to determine the individual elimination rate con-
stant (K,) using the Sawchuk-Zaske method (Equation 2).
Subsequently, the concentration at the theoretical start of in-
fusion (Cyy) and the true trough concentration immediately
before the next dose (Cry,,) were back-extrapolated from the
mono-exponential curve via transposing Equation (2) (de-
tails in Appendix S1):

(&
L (—P
&) @
Ty —Tp

with Cp and C being the concentrations close to the peak
and trough levels, respectively, and Tp and T being the
timepoints of the concentrations, respectively. The AUC,,_,
was then approximated via Equation (3):

Crg—-C
AUCU_12 = %. (3)

e

Given the statistical nature of the simulation to assign neg-
ative plasma measurements in some cases (2.7% of the pa-
tients), but the Sawchuk-Zaske method not allowing for

TABLE 1 Demographics of the simulated population
(n =5925)

Characteristics Value, mean (range)
Age, years 50 (20-75)

Body mass index, kg/m’ 25 (18-34)

Height, m 1.7(1.55-1.85)

Serum creatinine, pmol/L 82 (29-198)

Weight, kg 73 (50-102)

them, plasma concentrations smaller than 0.2 mg/L were
fixed to 0.2 mg/L representing 10% of the typical lower limit
of quantification for vancomycin.

Identification of the optimal sampling strategies

To assess the sampling strategies of the multimodel ap-
proaches in FD or SS and to compare them with the EQA,
trends of the median percentage error (MdPE; Equation 5)
and the interquartile range (IQR; Equation 6) of the rela-
tive prediction errors (rPE; Equation 4) across the total
population were evaluated:

_ predicted AUC — simulated AUC

100 (4
simulated AUC * (

rPE

MdPE = median ({rPE, ... rPE;}) (5)

IQR = quartiles ({rPE, ... rPE;}) — quartile, ({rPE, ... rPE;})
(6)

with quartile, and quartile, being the 25™ and 75" percen-
tiles of all rPE of the AUC over the 6000 (= i) patients, re-
spectively. Unbiased approaches should therefore result in
an MdPE close to 0 and the IQR should be as low as possible,
only being limited by the residual unexplained variability
components of the simulation models.

To identify the optimal sampling timepoints of the mul-
timodel approaches for the total population, the MdPE and
IQR were separately evaluated with the best metric given the
highest ranking (Table S2 contains an example). The best re-
sulting ranking of the median and IQR (i.e., the minimum
sum of both) together indicated the optimal single-sampling
timepoint of the approach, that is, the ideal combination of
a low bias and a small imprecision compared with the other
sampling strategies within the respective approach. In case
the combined ranking from the MdPE and IQR was equal
at two or more timepoints per approach, a better IQR was
prioritized. Subsequently, the identified single-sampling
timepoint was used as first sampling in the two-sampling
strategies (see the Sampling Strategies section).
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RESULTS
Simulated study population

The study population consisted of 6000 individuals from
six distinct populations with the representative covari-
ate distributions displayed in Table 1 and Figure S1. To
avoid unreasonable PK parameters, the eta values of the
simulation models were restricted to +2.8 times standard
deviation (i.e., covering 99.5% of the drawn values under
ideal normal assumption), which resulted in the exclusion
of 75 simulated patients in the subsequent analysis. The
PK parameter distributions of the remaining 5925 patients
are displayed in Figure S2. Implausible covariate relation-
ships were avoided by restricting the age to 20-75 years
and correlating body weight, height, and sex via BMI. The
true individual PK profiles can be inspected in Figure S3

.

and resulted in true median AUC,_,, of 253 mg/L*h (IQR,
192-324 mg/L*h) and AUC,g 4 of 299 mg/L*h (IQR,
226-399 mg/L*h).

Estimation of the AUC and identification
of the optimal sampling timepoints

In the following, we depict the identification of the opti-
mal sampling timepoints of the multimodel approaches
in the simulated population (n = 5925) and therefore
compare the predictive performance in the MAA and
MSA, respectively. In general, the predictive performance
of the two approaches resulted in MdPEs between —4.3%
and 2.2% across the single-sample strategies, whereas the
IQR followed an asymmetric positive parabolic pattern
(Figure 2).

First dose
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FIGURE 2 Performance metrics of the multimodel approaches using the single-sample strategies in the total population (n = 5925). The

median percentage error and the interquartile range (IQR) of the relative prediction errors of the area under the concentration-time curve

represent accuracy and imprecision, respectively. Time after dose indicates the timepoint of the single sample drawn in the 5925 patients

either in the first dosing interval (i.e., first dose) or the fifth (i.e., steady state). The filled shapes indicate the optimal first sampling timepoint

per approach identified via the metrics ranking. MAA, model averaging algorithm; MSA, model selection algorithm
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Both approaches consistently estimated the AUC_;, ~ -
and AUC,g 4 with a low bias, although the MSA re- & o - - -
sulted in slightly more negative MdPE (i.e., between & B2 S 8 | =aeE e .
—4.3% and — 1.2%) across the single-sampling strategies. g g e %
Sampling time intervals with favorable metrics in the FD g Bl = 8= & é
were identified between 1.5 and 5.5 h. The IQR differed 5 | g s o $ T |=
less across the single-sampling strategies, when being in = £ 8 o % S o g
SS, and resulted in a slightly later optimal time interval E“ % & L L J, Jb %
between 4.5 and 8.5 h. The best single-sampling strategies '3-; & g c::lc: $ | $ :; | ',f,
with the best metrics were identified at 2-2.5 h (FD) and £ : )
6-6.5 h (SS) and were statistically significant between the E e é
MAA and MSA (Table 2). ] g o oo o e o«

The sample at 2 h post start of infusion informed the % g@ = = & ® % A2

g 3 &

two multimodel approaches to an extent, that the second 5 g = 5
sample mainly resulted in an improved precision. The IQR 8 s = @ E
(ranging from 23.0% to 43.2% using the single-sampling 2” 5 ; 3 T = o Cf = i
strategies) was reduced to values between 17.3% and = E a S 9 2 :" = ﬁ @
21.9% in the FD and 18.0% and 20.7% in the SS (Figure 3). 'gn il ) :'; Fi: ; i ;}: E E
Therefore, the timing of the second sample seemed to be = E E ¢ 72 2 9 9=
much less influential given the amplitude of the perfor- g §
mance metrics in the two-sampling strategies was further % - Z’L
reduced. Nonetheless, the time interval resulting in the E b & . e = g
best performance metrics of the MAA and MSA was iden- E 2 e & I SIS %
tified between 4.5 and 6.0 h in both the FD and SS. The 8 & - =
AUC predictions using the MAA resulted in MdPE values L; 50 = @ s .':2
between —0.8% and 0.8% independently of the FD or SS, & = :; s 9 T é
whereas the MSA resulted in slightly lower MdPE values E g 8 = B - o =
(—3.0% to —0.7%). The optimal second sampling timepoint & & = T <& ¥ L E
of the MAA was identified at 5 h in FD as well as in SS, Eﬂ g E = 21 | =1 :; &
while the MSA benefited most from a sample drawn at 6 h ) - - I E
in FD and 4.5 h in SS. 3 g

When comparing the optimized sampling strategies E : %
with the “peak-trough” strategy using MAA or MSA, the g = g ’
optimal two-sample strategy (e.g., two samples drawn at gﬂ s % % §
2.0 h and 5.0 h for the MAA in the FD; Table 2) outper- 3 S = § E
formed the “peak-trough” strategy. Yet, the differences E E,. S— ; - 2 E E é LE 5
between the “peak-trough” and the optimal two-sample E % ; % é
strategy were minor, for example, MdPE and IQR 5 5 % ? =
were — 0.6% and 18.4% for the “peak-trough” compared £ ':. é 15 £ fjf
with 0.0% and 18.1% for the optimal two-sample strategy E e ;E g g § £
of the MAA. The optimized single-sample strategy on the % 8 g 12 é‘ E = %
other hand resulted in less precise but comparably accu- E ‘i E " - % i N ﬁ
rate predictions. g8 ool e 0 ENEE-

The AUC calculations over all 5925 patients using the & = 83337
EQA were positively biased using the samples (3.0 and “% ‘a g g% g g% g E & B2
11.5 h) in FD (MdPE, 7.4%) or the samples (3.0and 11.5h) == £2 8 T2 8 ££2 g
in SS (MdPE, 3.2%) with an imprecision of 26.0% (FD) and §D Z 5 e 28§ & - E2E @
21.8% (SS). Both multimodel approaches were outperform- E S i g -g & g % é g’j Z ; Té
ing the EQA even using the optimized single sampling. & & &3 2 2 8 8| 5 5 E § 3
Given that the population was simulated using three one- ~ § 5 % e E = % o E 5, S 3 ; E
compartment and three two-compartment models and & g % % % % % % g g g g é % g
that the EQA ignores the o-distribution phase, it might be 2 9 2 = 2@ 3= =2Alyeees
expected that the EQA performs worse in the simulations H S P % SEEEZ



3 Cumulative part

OPTIMIZED SAMPLING TO ESTIMATE VANCOMYCIN EXPOSURE

First dose

Steady-state

7.54

Median percentage error [%]

5.0
B e e S S S e S S e e e e e e SN e e s S S S e A e e s a e e i LA
SSNNOAERNNODNNDDOO S 3333 o SSNNOWRERNVNODNNO®OOO 2= o
o oy PN it n v g PP AN Lo
3 o o [ 3] >
mw [R5,
) @
Time after Dose [h]
404
—
X
S
o 304
" A
A2 X
20+ vy = 11 " o o e e S )
PR N g gt R SIS SRR ANy o= o
T T T T T T T T T T Tty T T T T T T T T T T T
SANNORBERONODNNOOOO S = == SANNOYEBRONODNN®POO === oam
o o PR it o o ot o PPN Lt o
o o Moo o o PSS
n o » »
S L
Time after Dose [h]
== MAA MSA =+ EQA

FIGURE 3 Performance metrics of the multimodel approaches using the optimized first sample and a second sample drawn in between
1-12 h after the start of infusion. Time after dose indicates the timepoint of the second sample drawn in the 5925 patients either in the first
dosing interval (i.e., first dose) or the fifth (i.e., steady state) additionally to the optimal first sampling timepoint, which is indicated with

the gap in the lines. The filled shapes indicate the optimal second sampling timepoint per approach identified via the metrics ranking.

1-S. displays the performance metrics of the optimal single-sample strategy of the two approaches (see Table 2); 1 + 11.5 represents the
performance metrics of the gold standard “peak-trough” sampling strategies in the two approaches. Black 'x' indicate the performance
metrics of the EQA as a reference. EQA, equation-based approach; FD, first dose; IQR, interquartile range of the relative prediction errors of
the area under the concentration-time curve; MAA, model averaging algorithm; MSA, model selection algorithm; SS, steady state

from two-compartment models. However, a subpopu-
lation analysis (Figure S4) revealed no such trends. In
fact, the calculations were more precise in the simulation
from the two-compartment Thomson et al. model®’ (i.e.,
TDM population; IQR, 20.2% [FD] and 20.9% [SS]) com-
pared with simulations from the one-compartment Adane
et al.”? and Roberts et al.”® models (IQR, 22.5%-29.1%).
For completeness, the six mono models used for sim-
ulating the patients were evaluated in estimating the
AUC,,_;, and AUCq_g, using the same sampling strategies
(see the Sampling Strategies section) in the 5925 patients
(Figures S5 and S6). Expectedly, these models developed
in special populations performed highly variable in the
heterogenous total population (Figure S5). Nonetheless,
the optimal timepoint to draw a single sample was

always identified to be before 6.5 h in FD and 8.0 h in SS
(Table S3). The two-sampling strategies indicated that the
second sample provides the most information, if drawn in
the time interval between 1-5 h, except estimating with
the Mangin et al.”® model (Figure S6). The optimized
two-sampling strategies outperformed the “classical peak-
trough” strategies in the models, respectively (Table S3).

DISCUSSION

For accurate dose adjustments, model-informed preci-
sion dosing needs reliable estimates of the individual
PK. Therefore, the optimal sampling time as well as the
number of samples is complementing the challenge of
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selecting the correct model and minimization of docu-
mentation errors.'”'® In this study, we evaluated the in-
fluence of sampling time and number in two multimodel
approaches and demonstrated that the optimal sample
was never identified at trough levels.

The multimodel approaches (MAA, MSA) preferred an
FD sample around 2 h after the start of infusion to opti-
mally estimate the AUC, and later sampling times nega-
tively affected the precision of the AUC estimate. In SS
conditions, the optimal single-sampling timepoint shifted
to later timings around 6 h after the start of infusion. Yet,
asmaller amplitude of performance metrics implied thata
larger interval of sampling times ranging from 4.5 to 8.5 h
can lead to optimal estimation of the AUC in SS.

A second sample in addition to the optimal single
sample improved the precision of the AUC prediction.
Interestingly, the timing of second sample was less im-
portant, in particular in SS. Furthermore, the classical
“peak-trough” strategy resulted in acceptable predictions
of the AUC when using a model-based approach.

The EQA provided positively biased estimates of the
AUC, and the imprecision of the AUC estimates even
exceeded the optimized single-sampling strategies using
the multimodel approaches in FD. Hence, the simplicity
of the EQA, as its major advantage, was opposed by the
persistent overprediction, which is also discussed but de-
emphasized by the authors themselves.® In addition, the
approach always requires two samples.

Although adjustments in the later stages of the anti-
biotic therapy might be important to reduce toxicity, it is
essential to achieve optimal drug exposure as early as pos-
sible to ensure a rapidly effective antibiosis.” The identi-
fied early FD optimal sampling time windows allow—if
rapid bioanalytics of the vancomycin plasma concen-
tration are available—dose adjustments within the first
dosing interval. This might give sufficient time to already
individualize the second dose, which is impossible with
trough sampling.

The study by Shingde et al. investigated the predic-
tive performance of seven population PK models when
supplied with a single sample at different timepoints
from 22 patients after the first dose of vancomycin.*
Another large prospective study by Neely et al. com-
pared a nonparametric dose optimization tool among
others and revealed that 79% of the optimal sampling
timepoints were not at the trough.*' Both studies were
in line with our findings and emphasize that pretrough
measurements should be preferred in drug exposure es-
timation even when using model-informed approaches.
Another study evaluated the accuracy and precision of
one- and two-sample based Bayesian AUC estimations
in 12 richly sampled patients under tobramycin therapy.
The samples drawn at less than 3 h were less biased.*

Further studies compared the performance of various
vancomycin PK models but focused on the model struc-
ture and the underlying population instead of the exact
sample timing.'***’

A strength of the study is the broad heterogeneity of
the virtual population simulated with six distinct and clin-
ically relevant models. This comes along with the draw-
back of every simulation being on a conceptual level.
Given that the vancomycin samples were purely measured
for the purpose of AUC calculation and to solely derive
optimized sampling timepoints, this study did not inves-
tigate different dosing regimens or variability of the sam-
pling times. Yet, small-scale investigations with clinical
data sets are in line with our findings.**** Nonetheless,
these results should be validated in prospective clinical
studies covering the influences of different dosing inter-
vals, dosing adjustments, and sampling/dose timing un-
certainties. Therefore, our results could directly indicate
the ideal and reduced sampling intervals to lessen the bur-
den on patients.

In conclusion, our study suggests that a single sample
drawn in the first 6.5 h of the dosing interval is preferred
over sampling once at trough to predict the vancomy-
cin drug exposure using the MAA and MSA. This seems
particularly useful after the FD and gives sufficient time
to already individualized the subsequent dose. For two-
sampling strategies, the impact of the second sampling
time was less marked. This implies a reduced need of
resource allocation when sampled twice as the algo-
rithms do not demand samples at extremely small time
windows. The nonmodel based EQA, although always
requiring two samples, displayed biased estimates of
the AUC and was inferior compared w the optimized
single- and two-sampling strategies of the multimodel
approaches.
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The following provides a comprehensive, overarching discussion of the four articles
included in this work. The structure is based on the three key challenges of MIPD (Figure
2), starting with the model-specific factors — including the identification, selection, and
comparison of suitable population PK models and novel approaches for MIPD. The
patient and data-related challenges as well as the advocation of MIPD to the
user/operator are elucidated afterwards given the necessity to introduce the results of

the model identification and the developed approaches first.

4.1 Basis of model-informed precision dosing: the pharmacometric model

The main fundament of every MIPD approach clearly is the underlying model. Thereby,
it is essential to choose the most appropriate one and assure adequate use within the

respective MIPD approach.

4.1.1 Model selection in long-term prophylactic replacement- versus temporary
anti-infective treatments

Both investigated diseases are substantially different with regard to their targets, drug’s
PK, treatment options and consequences in over-/underdosing. Prophylaxis in
haemophilia A usually requires life-long treatment with one of the multiple, non-
bioequivalent FVIIl products to maintain intrinsic FVIII levels above a minimal threshold.
On the contrary, the temporary antibiotic treatment with vancomycin needs to be
rapidly introduced and targets a distinct drug exposure (i.e. an AUC/MIC ratio of 400-
600). Additionally, antibiotic overdosing with its increased risk of severe adverse effects
(like acute kidney failure) is as life-threatening as underdosing, which risks treatment
failure.

Despite these differences, TDM is recommended in both pharmacotherapies.[1], [2], [85]
A prospective study including 46 children with severe haemophilia A found that plasma

concentration-guided prophylaxis improved quality of life in more than 50 % of the



children, while the remaining ones did not require treatment optimization.[86]
Similarly, a retrospective study on trough-guided vancomycin dosing of 150 patients
revealed that more than 50 % of the individuals were initially treated suboptimally.
While TDM enabled the prescribers to identify these issues, multiple dose adjustments
were necessary for target attainment and more than 10 % of the individuals never
reached the target.[87]

A more promising way to improve individual treatments is computer-guided AUC
monitoring and precision dosing using population PK models. In Chapter 1.4 the various
theoretical advantages compared to TDM were introduced (i.e. the inclusion of multiple
covariates simultaneously, ability to predict maximally precise dosing schemes with
sparse data, no need of steady-state conditions and handling of non-linear PK).
Furthermore, some preliminary studies already highlight the potential benefit of MIPD
through, for example, faster target attainment compared to trough-based dosing of
vancomycin and reduced risk of adverse events.[88]-[92] However, these studies are
mostly small-scaled, retrospectively conducted and do not exhaustively address
challenges of MIPD. Given the range of already published population PK models, a major
challenge remains with the selection of the most accurate model to inform optimal
dosing of FVIII products or vancomycin in heterogenous or complex patient populations.
Our model comparisons in Publication | and Il demonstrated the highly variable
predictive performance of the population PK models. The bias in the 12 investigated FVIII
population PK models, for example, ranged from -3.8 hours to 49.6 hours, indicating a
trend towards overpredicting individual targets. Across the two diseases, it seemed
beneficial to use a population PK model, which (i) was developed in as large as possible
cohorts (e.g. 754 haemophilia A patients in the study of Abrantes et al.[3] or 2554
vancomycin treated patients in the study of Colin et al.[6]) and (ii) was built on a rather
heterogenous patients collective (e.g. in the model of McEneny-King et al.[93] or Colin
et al.[6]).

Interestingly, we identified the model of Okada et al.[5] to be best, when predicting
individual AUC in Gram-positive infected patients under continuous vancomycin

therapy. The population PK model was neither the same as found in previous model
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comparisons (i.e. Goti et al.[84]),[54], [83] nor developed in a population fully matching
our study collective of hospitalized patients with and without haematological
malignancies.

Hence, simply matching the candidate model to the target population or selecting the
model with the largest database does not guarantee the best performance. Novel
approaches are necessary to establish MIPD as sound option for personalizing

treatment.

4.1.2 Novel approaches in model-informed precision dosing

In Publication Ill, the development and evaluation of two new MIPD approaches were
introduced with the aim to (i) overcome model selection bias and (ii) to accurately
forecast the vancomycin exposure in individuals from a heterogenous population. The
two multi-model approaches either automatically select the best (MSA) or a set of
models (MAA) for an individual patient amongst a set of candidate models. In a nutshell,
these algorithms are (i) estimating the individual PK parameters based on observed data
with a set of population PK models, (i) individually weighting the forecasted data of the
different candidate models separately, and (iii) either averaging the predictions at each
forecasted timepoint using the set of models jointly (MAA) or selecting the predictions
of the best fitting, i.e. highest weighted, model (MSA).

The MAA/MSA were applied to forecast the drug-specific target of individuals from
clinical datasets of haemophilia A patients (Publication 1), hospitalized patients
receiving continuous vancomycin (Publication Il) and hospitalized patients receiving
intermittent vancomycin infusions (Publication Ill). Publication I and Il revealed a similar
performance of the MAA/MSA as compared to the best population PK model identified
in the model comparisons, respectively. In Publication Ill, both approaches predicted
individual vancomycin plasma concentrations less biased and more precise than using
a previously identified model being recommended for MIPD in hospitalized patients.[54]
Interestingly, the included set of vancomycin PK models did not contain the best

performing model, but a selection of six models developed in preferable different
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populations (e.g. critically ill, extremely obese or trauma patients). In fact, the predictive
performance of the six models, separately, varied from substantial underprediction
using the model developed in critically ill (from Revilla et al[94]) to similar
overpredictions using a model for patients post heart surgery (Mangin et al.[95]).
Nonetheless, implemented in the MAA/MSA the performances of the population PK
models added up. We hypothesize this to be caused by the ability of the MAA/MSA to
rely on information from multiple population. The MAA/MSA were more flexible in
terms of the parameter distributions to draw from. Thus, both were able to describe
atypical patients not matching the rest of the studied population.

When applying the multi-model approaches to forecast the time-above target in real
haemophilia A patients, the set contained the top five performing models identified in
the model comparison of Publication I. Here, the MAA/MSA approximated the
performance of the population PK model identified best (from Abrantes et al.[3]) but did
not surpass the same. Given that the population PK models included in the MAA/MSA
mostly displayed a positive bias, the algorithms had mainly one way to approach the
individual PK profiles. It seems, therefore, important to include models developed in
preferably different populations rather than only including ‘very good’ performing
models into such multi-model algorithms.

The robustness testing in Publication Il revealed that the MAA/MSA could compensate
for bad performing models until the MAA/MSA consisted of only three population PK
models. The reason why also individually bad performing models do work when being
part of the MAA/MSA, may lie within the automatic weighting function. Bad performing
models received a low weight in the MAA or MSA due to a relatively higher penalizing
term. Thus, the respective models contributed only marginally to the model prediction.
In this thesis, four different weighting functions were assessed and revealed the OFV to
be best (i.e. the likelihood, which accounts for deviations of the individual MAP
parameters from the model-specific population parameters as well as the differences
between observed and individual predicted vancomycin concentrations).[81], [96] The
other three weightings resulted in only small differences. The Akaike criterion,[97] for

example, was overly penalizing more complex models when supplying only a few
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samples, while the summed squared residuals were neglecting the prior information
included in the model structure and hence, might overfit the data. The extended least
squares weighting, best described as the interim between OFV and summed squared

residuals, revealed the smallest differences to the OFV weighting.

4.1.3 Comparing existing approaches of personalized medicine to the model
averaging-/ model selection algorithm

The MAA/MSA developed in Publication lll is a new way to computationally guide dosing

individualization. With the emergence of pharmacometrics and steadily progressing

technological resources, further approaches have been invented. The following provides

a comprehensive assessment of the various approaches compared to the MAA and MSA.

Equation-based approach

At the latest after the revised MRSA treatment guideline has been published,
vancomycin dosing and monitoring has shifted from trough-based- to AUC-guided
dosing using Bayesian approaches.[1] However, the pharmacometric know-how and
resources required to integrate these state-of-the-art approaches into clinical practise
has urged researchers to develop alternatives. Pai et al. adapted an approach previously
proposed for aminoglycosides and daptomycin.[98], [99] Here, the individual
vancomycin AUC is analytically approximated based on simple first-order PK formulas
and two vancomycin plasma concentrations.[48] The major advantages of this EQA are
its simplicity, which does not demand thorough pharmacometric knowledge. In 2019, a
prospective randomized clinical trial involving 65 MRSA-infected patients implies that
the EQA improved vancomycin-associated cure in comparison to trough-based
TDM.[100] Complementary conclusions were drawn in a larger retrospective studies
from Olney et al. [101] and Turner et al.[102]. The estimated AUC values using the EQA or
a Bayesian two-concentration method resulted in congruent clinical decisions (i.e.

dosing adjustment required/not necessary) in more than 75 % of the study population.



Nevertheless, the EQA — in contrast to MAA/MSA — always requires steady-state
conditions and two concentrations. The peak and trough sample must be obtained after
the early distribution phase. Hence, the EQA (i) is neglecting the bi-exponential decline
of vancomycin, (ii) is limited to a fixed dosing interval and (iii) only enables adjustments
in the later stages of the therapy. Especially in antibiotic therapies, it is essential to
achieve optimal drug exposure as early as possible to ensure a rapidly effective
antibiosis.[103] Furthermore, the snapshot of the AUC provided by the EQA cannot
incorporate dynamic changes of the patient (e.g. decline of the renal function), while a

Bayesian approach is able to adapt via the incorporated covariates.

Pooled-data model

For vancomycin, more than 30 population PK models are available in the literature.
While these heterogenous studies provide valuable insights into specific patients or
treatment regimens, most of them are limited to describe the special subpopulation or
clinical intervention. As discussed in Publication Ill the difficulties lie within the ‘correct’
selection of the model, whose study conditions’ best match the clinical conditions of the
patient.

Even if a formally matching model is found, a modest number of individuals included
during model development could jeopardize the predictive performance of the model
due to population sampling errors and other random incidences.[54], [79], [80]

In the last decade, the idea of meta-analysis on data-level emerged.[104] Its aim is to
apply the gained but separated knowledge of the drug’s PK in distinct populations
without the need of pre-selecting a distinct model. Thereby, the observations from
contributing population PK studies are gathered and evaluated across the broad
populations. This leads to so-called pooled or next-generation models developed for a
general predictive purpose in a broad range of patient types and based on large data.
Colin et al. developed such a pooled vancomycin PK model based on data from 14
different studies (2 554 patients), including continuous and intermittent, neonates to

aged, healthy to critically ill patients.[6] Similarly, McEneney-King et al. pooled data
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from eight studies (310 patients) to develop a generic population PK model for Bayesian
forecasting of at least seven FVIIl products.[93] In our external validation of the
predictive model performance (Publication | and 1l) both models successfully
demonstrated their potential to forecast individual PK profiles and performed at least
in the same range of the MAA/MSA. Yet, the pooled-data approach always requires
access to the raw data and additional efforts to design a new model prior use in MIPD.
The MAA and MSA instead require the data-derived model files, which often can be
recoded from the original publication. Additionally, pooling the data bares the risk of
neglecting (minor) subgroups or not accounting for specific conditions, while the
MAA/MSA can easily be complemented by specific ‘niche’ models. Although these niche
models separately may not necessarily be better for MIPD in a whole population,[105]
MAA/MSA still might benefit on individual levels. Future studies comparing the
performance of ‘pooled-data’ vs. ‘pooled-model’ approaches and different sets of
heterogenous models would be of interest to further verify the extended use of

MAA/MSA.

Continuous learning approach

A model may be selected (i) after the performance has been deemed acceptable in
settings mimicking the intended clinical purpose as close as possible and (ii) based on
matches of the study group and targeted individuals (e.g. physical condition, body
composition or disease status). Nevertheless, naively implementing the selection into
MIPD-software and rigidly applying it in clinical routine from there on, bears the risk of
overrating the model’s potential. Assuming that the model is totally unbiased in every
patient, is as incautious as presuming the new parameter distributions always display
the same magnitude as observed in the model development population.[106] The main
reasons are time-varying changes related to the MIPD-applying institution (e.g. assay
changes, changes in staff or their operation methods) and time-dependent changes

within the patients physiology, PK and PD, which are not explainable with the model.



Consecutively, older data of the individual patient may be less informative to predict its
future PK profile or target.

One way to improve an impaired model performance is to flatten model priors relative
to individual observations.[107] The anchor points of the model (i.e. the Bayesian priors)
are objectively downweighed in favour of more recent individual plasma
measurements.

Additionally, the (TDM) data collected during MIPD of multiple patients could be used
to update the model structure and parameters periodically. Although these continuous
learning (COLE) approaches have been introduced in dosing of vancomycin,[105]
modelling of paclitaxel-induced neutropenia[108] and haemophilia prophylaxis,[109]
there is still a need for large data-based (and ideally prospective) evaluation of COLE
prior a systematic comparison to the MAA/MSA. Yet on conceptual level, three pitfalls
are conceivable with COLE.

First, TDM data is often prone to documentation errors. When using flawed data to
continuously update a model one risks to sustainably harm its performance,[110] while
in MAA/MSA the model parameters are not altered. Hence, only the very single patient
is affected, though time-dependent changes may still be covered by automated and
individual shifts in the weighting function of the MAA/MSA.

Second, COLE requires a substantial quantity of data (ideally >200 patients) in the very
hospital that aims to implement such an updating tool,[105] while the MAA/MSA may
work with the first patient.

Third, the updated parameters need to be communicated comprehensively and the
predictive performance of the COLE approach must be periodically reassessed to rapidly
detect over-/underadaption. Otherwise, opacity or lacking validation may mask

overfitting and consecutively threatens the therapeutic success.[109]

Adaptive maximum a posteriori estimation
A strategy to account for time-varying changes in the individual is to encode an

additional variability term on distinct parameters, named inter-occasion variability
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(IOV). This variability term aims to characterize seemingly random changes in PK or PD
of the individual. However, the morphology of IOV issues a major challenge when being
used in predictive- rather than descriptive models. The IOV is randomly drawn from
period to period and based on the data from that respective time. Given future data has
not yet been collected, the individual IOV may not simply be extrapolated to that future.
Wicha et al.[111] and a thereupon constructed simulation study[112] investigated
multiple ways to handle IOV in MIPD and recommended to downweigh historical drug
concentration measurements or ideally include IOV to generate the MAP estimates but
exclude the IOV for forecasting future doses, respectively.

An approach even more flexible was proposed by Guo et al.[113] The authors detected in
a retrospective TDM-based study that the estimated clearance of 408 vancomycin-
treated patients on an intensive care unit is decreasing over time. To account for time-
dependent shifts, they developed an iterative adaption of the individual model
parameters. In detail, the individual MAP estimates based on a distinct set of historical
TDM measurements become the new prior after new drug measurement data has been
obtained. Adapting the model prior for each MAP iteration improved the predictive
performance of the underlying model in comparison to the classical MAP estimation.
Nonetheless, shifting the model parameters over time bears the risk of overfitting
similar to the above introduced approach of flattening the prior.[107] Since the new MAP
estimate can be drawn from the same distribution (i.e. magnitude) as in the preceding
iteration, the prior can shift completely untied. Even a single erroneous measurement
may cause dramatically misguided parameters. In contrast, MAA and MSA rather add
another variability term on model-level, but do not risk changing into misguided models
during the MIPD process. Especially the handling of IOV in different multi-model

approaches should be investigated in further studies.



4.2 Data acquisition and patient-specific factors

Optimal sampling time

Acquiring data is time-consuming and error-prone, given it is carried out by humans.
Although there often is a consensus about what to collect for dosing individualization,
it may be questionable when exactly to collect the information — especially in sparse
sampling strategies. Nowadays, trough samples are commonly used for TDM, but
differently timed or even multiple samples are required depending on the method used
to individualize dosing and intended target. For example, the EQA (see 4.1.3) always
depends upon one peak and one trough level obtained in the same dosing interval and
at steady-state to approximate the individual AUC.[48] Thereby, this log-linear
regression needs a strictly followed sampling scheme and is only reliable in case of
stable PK. For pharmacometric approaches, the estimation is less sensitive to the
sampling time compared with conventional approaches.[114] However, optimized
sampling may still advance individual therapies as long as the exact sampling time is
accurately documented.[89], [114]-[116]

In Publication IV, we hypothesized that certain time windows may contain more
information than for example a trough sample (usually obtained during vancomycin
TDM) to forecast the individual AUC. In fact, the optimal single-sample timepoints were
identified around 2 hours after the first dose and around 6 hours, when being at steady-
state conditions. These early sampling time windows allow for dose adjustments within
the first dosing interval — presuming rapid bioanalytic of the vancomycin plasma
concentration is available. This, in turn, might give sufficient time to already
individualize the second dose, which is impossible with the currently used trough
sampling strategy. These rapid and precise dose adjustments are of double value, given
that every delay of antibiotic treatment in septic patients is associated with a 7.6 %
higher death rate.[117] Additionally, our simulation-estimation study showed that the
timing of the second sample was less impacting the predictive performance, provided

the first sample was optimally timed.
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4 Discussion

Albeit our results were purely based on simulations, these were in line with a
prospective study comparing AUC-guided versus trough-based vancomycin dosing and
emphasize that pre-trough measurements should be preferred in MIPD of
vancomycin.[89] To further validate these findings, our results could directly indicate
the ideal and reduced sampling intervals in prospective studies to lessen the burden on

the participants.

Drug quantification of clinical samples

The timing of the sampling is impacting the predictive performance of the
pharmacometric models, whether with a focus on optimal time windows within the
dosinginterval or in relation to the forecast (e.g. given that more historical data reduced
predictive performance [54], [113]). Nonetheless, additional data-related factors should
be considered during MIPD.

One such factor is the assay used to quantify the drug within the clinical sample. For
diagnosing and treating haemophilia A, two assays are widely used: the one-stage
clotting assay (OSA) and the chromogenic substrate assay (CSA). The assays indirectly
measure the FVIII activity either based on the turbidity induced through FVIII activated
clotting (in OSA) or the spectrometric analysis of a chromogenic substrate released from
a FVlll-dependent reagent.[118] Although both assays are accepted for FVIII
quantification, there is an ongoing controversy about which one to prefer for clinical
monitoring.[118]-[121] While the OSA is inexpensive, easy to automate and rapid, the
CSA is more sensitive at lower FVIII levels, more reproducible across laboratories/FVIlI
products and may be more precise. [122] In Publication I, we evaluated the predictive
performance of published population PK models as well as the MAA/MSA using the two
assays, respectively, and found that predictions using the CSA data were more accurate
than those using OSA.

Vancomycin samples are commonly quantified using chemiluminescence and enzyme

immunoassays, but turbidity- and fluorescence assays have also been proposed.[123]



Although all assays independently of the monitored disease can determine the drug
concentration below a certain threshold with an acceptable random variation, a major
challenge for MIPD lies within handling samples below this lower limit of quantification
(LLOQ).[124] Common assays for vancomycin and FVIII report a LLOQ between 1 and
5mg/Land 11U/dL, respectively.[125], [126] If the LLOQ is close to the targeted (surrogate)
concentration (e.g. in haemophilia A the target is defined as time above 11U/dL), the
information provided by these samples is limited. Similarly, the predictive model loses
power, if the residual error component exceeds the value of the LLOQ. When optimizing

sampling times for MIPD, these factors should be additionally considered.

Impact of different populations

Furthermore, patients are usually classifiable into specific populations (e.g. critically ill,
obese or patients with certain co-morbidities). Organ functions or physiological
conditions that deviate from ‘normal’ expectations, thereby, alter the PK of the
drug.[127] For example, haemophilic children display larger volumes of distribution
compared to normal weighted adults. Although an increased volume of distribution
prolongs the half-life of a drug, FVIII products are eliminated faster in children compared
to adults due to their also higher clearance.[128] Another example are critically ill
patients being treated with vancomycin. These intensively monitored patients usually
display substantial and even nonlinear PK changes, such as increased volume of
distributions and time-varying elimination rates.[78], [129]

If these PK alterations are not appropriately accounted for, predictions using a single
population PK model in MIPD may be hampered. In contrast, the MAA/MSA is able to
cover a wider range of populations, through the inclusion of particularly different
models. Even if a patient does not subjectively fit into a specific group or may display
atypical parameters, the MAA/MSA are able to select the objectively best fitting
model.[81]

4.2 Data acquisition and patient-specific factors
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4.3 The MIPD user/operator and implementation into clinical practise

In Publication | and Ill, we demonstrated the implementation of (i) a population PK
model suitable for haemophilia A prophylaxis and (ii) the multi-model approaches
MAA/MSA for vancomycin dose adjustments into the MIPD software TDMx.[4]
Although mainly an educational tool, we aimed to integrate the idea of novel MIPD
approaches into usable tools to bring them closer to clinical care. Yet, to deem a software
suitable for MIPD, certain requirements on the tool are made. Besides the discussed
topics of selection and validation of the underlying model(s) (4.1) and assuring quality of
the data (4.2), four main aspects are relevant.

e Firstly, as with any software, its usage strongly depends on the user’s experience.
The end-user specific interface needs to be intuitive and unambiguous but at the
same time must provide enough information and transparency to easily
comprehend the outcome.[130] Time-consuming activity during routine practise
must be avoided, for example through integration into existing electronic
prescribing systems.[131] The software should provide a set of convenient
features next to the precision dosing-functionality (e.g. structured data export
functions, interactive plots and parameter overviews or generation of suitable
reports). The more complex the software becomes, the more important becomes
user support (e.g. via clinical manuals, online support or discussion forums) as
well as adequate training to enhance the user’s experience.[132], [133]

e Secondly, data is the currency of the world wide web. Especially when it comes
to health-related information, abuse of this valuable asset must be prevented.
Thereby, it is easiest to comply with current standards in data security and
privacy legislation, if the user is in full control of his data and no confidential
information will be saved on (or externally accessible from) servers foreign to the
user/his institution (e.g. as with TDMx). Given that this hampers the possibility
of continuous learning approaches or the assembling of large databases, other
developers aim to comply with data security standards and privacy policies

through fulfilling the European Union General Data Protection Regulation (EU



| 4.3 The MIPD user/operator and implementation into clinical practise

GDPR[134]) or equivalents (e.g. InsightRX[135] or WAPPS-Hemo[136]). This
includes secured access via personal logins, encrypted databases, as well as
confidential and anonymized data collection.

The third aspect influencing suitability of the MIPD software is based on costs
introduced during development and application. Although it is desirable, from a
scientific perspective, to already provide MIPD software with drug approval, the
increase in costs and regulatory difficulties discourage pharmaceutic industries
of its development. For example, engineering a companion tool during drug
development (i.e. a dynamic label) could support dosing decisions already in
earlier study phases and allows for more heterogenous inclusion of study
participants. However, it requires more funds due to increased need of validation,
more frequent monitoring, potentially increased physician time and higher
numbers of trial participants.[52]

Additionally, regulatory obstacles occur due to the unsolved problem of
responsibilities when MIPD is a prerequisite for drug approval.[137] In case of
(dosing) failure, it may not be clear who is responsible: the prescriber, who based
his decision on MIPD software, or the provider of the MIPD-software. Hence,
regulatory guidance to validate software (as from the EU[138] and FDA[139]) is
just the first step.

Moreover, widespread utilization of MIPD during clinical routine must prove a
positive cost to benefit ratio. Given that evidence of cost savings through MIPD
over current best practice is relatively sparse, benefits have yet to be shown
unequivocally in large prospective studies.[89], [140] Otherwise, MIPD
approaches will unlikely be a serious competitor to classical dosing strategies in
hospitals.

Fourth, practising physicians often view results of population analysis with
scepticism due to potentially opaque methods or the use of perplexing equations

and statistical jargon.[141] Further liability issues arise through software-based
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recommendations of unapproved doses or off-label use given that MIPD tools are

developed post drug approval.[142]

Through implementing the findings of this thesis into the freely available web

application TDMx (www.tdmx.eu), we provide an educational tool, which can already

be used to train undergraduate students or healthcare personnel. This, in turn, might
bring MIPD closer to clinical practise.

While barriers to implement MIPD software into clinical practise will continue to exist,
these are rather logistic and educational but not technological. Through proper training
of healthcare professionals and undergraduates, clear legal regulation and
consolidation of the goal of favouring maximal therapeutic value rather than financial
profit, we may predict a future of gradually advancing treatments for the individual

patient.


http://www.tdmx.eu/




5 Perspective

5 Perspective

Despite the growing recognition of MIPD by healthcare professionals, patients and
politics,[45] its common application in clinical practise has yet to come. The introduction
of novel multi-model approaches, like the MAA and MSA, as well identifying suitable
models and sampling time points to forecast individual drug exposures and,
consecutively, precise doses, may serve as necessary steps towards this goal.
Nonetheless, a few limitations need to be acknowledged in this thesis.

While the robustness of the MAA/MSA regarding the influence of included models was
evaluated in Publication lll, more exhaustive investigations may be of benefit. It seems
especially interesting to evaluate the maximal number of included models, or
interweave different multi-model approaches among each other (e.g. purely including
pooled population models in the MAA/MSA, or fusing multiple approaches in hybrid
algorithms as introduced by Hughes et al.[107]).

As introduced in Chapter 4.1.2, there are ideas to account for instable patients with time-
varying PK in Bayesian forecasting.[113], [143] Thereby, the handling of inter-occasion
variability in the underlying model is crucial.[111] In further studies, different methods to
account for inter-occasion variability, when used in the MAA/MSA may be of interest.
The current work mainly focuses on PK based dosing decisions. Nonetheless, PD
measurements, like C-reactive protein or procalcitonin levels as biomarkers for the
inflammatory status of infected patients,[144] or the annual bleeding rate of
haemophilic patients,[145] should be evaluated in their predictive value.

Out of scope of this thesis were non-parametric approaches[34], [49] and machine
learning algorithms,[107], [146] which are fundamentally different from the discussed
parametric approaches, as these approaches do not rely on typical distributions but so-
called supporting points. Although especially machine learning is nowadays associated
with dramatically high expectations, these approaches always come with the drawback
of not being easily transferable. Prior implementation, the exact supporting points or
the original data plus training data, which matches the later purpose (i.e. directly

obtained in the tool-implementing hospital), are required. However, comparing



nonparametric and parametric approaches in future clinical studies could be of interest,
given simulation-based comparisons seem promising.[107], [147], [148]

Last but not least, despite the thriving promises in MIPD, we — as pharmacometrician,
clinician, or simply as a patient —must always keep aware of Box’ paradigm: “All models

are wrong but some are useful.”[149]
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Supplemental Digital Content 1.

All samples were measured on an ACL TOP (Werfen UK, Cheshire, United Kingdom) in a
chromogenic assay (CSA) using a BIOPHEN FVIII kit (Hyphen Biomed, Neuville-sur-Oise,
France) and a one-stage activated partial thromboplastin time (APTT) assay (OSA), with
the HemoSil SynthaSil APTT reagent (Werfen UK, Cheshire, United Kingdom). The OSA
calibrator was traceable to the WHO IS plasma FVIII standard, and the samples were
measured against an 8-point calibration curve. If continuous covariates were missing,

then the dataset median was imputed.

Supplemental Digital Content 2.

The simulated standard patient weighed 75 kg, was 1.7 m tall, and 35 years old, and a
von-Willebrand-factor (VWF) level of 110% was documented. The patient received
prophylactic doses (3000 IU) of either B-domain deleted (BDDrFVIIl) or full-length
recombinant product every 72 h. The pharmacokinetic profile and the time above the
target of 2 1U/dL in steady-state conditions were subsequently compared. If the models
were developed purely in a one-stage assay (OSA) without BDDrFVIIl products, no

discrepancies between the chromogenic assay (CSA) and OSA were implemented.
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Supplemental Digital Content 3.

The reference model was developed in NONMEM® software (version 7.4.3; ICON plc,
Dublin, Ireland) using all FVIII:C values measured using chromogenic assay. The
reference model was chosen based on the best objective function value and the best
possible visual fit of the individual pharmacokinetic profiles (see Figure, Supplemental
Digital Content 4, which demonstrates the reference model fit in the 39 individuals).
The structure and parameters can be inspected using the following equations (Egs. S1-
S5). The data were best described using a two-compartment model with first-order
elimination. The inter-individual variability was implemented exponentially on the
clearance (Cl; 51.3% CV) and on the central volume of distribution (Vcentr; 24.5% CV), and
the combined error model was implemented for the residual unexplained variability

(Proportional: 7.8% CV, Additive 1.85 IU/dL). A baseline FVIII level of 0.522 IU/L was used

in this study. The coefficient of variation (%CV) was calculated as Vw? x 100.

Cl [dTL] = 2.51 x "l (Eq.S2)
Vientr [dL] = 28.3 X eMVeentr (Eq. S3)
Vperipn[dL] = 4.02 (Eq. S4)

Q [%] = 0.808 (Eq. S5)
Baseline [%] = 0.522 (Eq. S6)

n, individual eta value drawn from the variance term (w?) describing the respective

inter-individual variability
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Supplemental Digital Content 4. Individual FVIII plasma concentrations either measured
with the chromogenic assay (black dots) or predicted with the internally built reference
model (see Text, Supplemental Digital Contant 1) per individual. Time represents the
time after the most recent dose.
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Supplemental Digital Content 5. Details of the evaluated population pharmacokinetic
models
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[IV —interindividual variability; IOV — interoccasion variability; RUV — residual unexplained variability

with A —additional error, [IU/dL]; P — proportional error, [%];

SHA —severe hemophilia A; MoHA — moderate hemophilia A; MHA — mild heemophilia A;
O —one stage assay, C — chromogenic;
FLrFVII = full-length recombinant product; BDDrFVIIl — B domain deleted product; EHLrFVIII — extended
half-life product, Plasmad. — pooled human plasma-derived product;
BW — body weight; BSA — body surface area; HCT —hematocrit; INH — inhibitor status; LBW —lean body
weight; vVWF —von Willebrand factor;

CV — coefficient of variation; Corr. - Correlation of the variability components;

ND — not defined
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A) CSA B) OSA
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Supplemental Digital Content 6. Prediction corrected visual predictive checks (pcVPC) of
the population pharmacokinetic models with observations measured using A) the one-
stage assay (OSA) and B) the chromogenic assay (CSA). The pcVPC are furthermore
stratified by the applied drug: B-domain deleted (BDD) or a full-length recombinant FVIII
product (rFVIII). The x-axis was limited to 80h to improve readability. Six datapoints
(trough level from the previous dosing occasion) are not displayed. The black solid and
dashed line represents the median of the observed data (black dots) and its 5th / 95th
quantiles, respectively. The shaded areas represent the 90% confidence interval of the
5th, 95th (light shaded) and 50th (dark) quantiles of the simulations (n=1000).
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Supplemental Digital Content 7. Goodness-of-fit plots with the population predicted
FVIIl concentrations vs the measured FVIIl concentrations per model. The concentrations
were either measured using A) the chromogenic assay (CSA) or B) the one-stage assay
(OSA). The dashed line represents the identity line; green crosses — B-domain deleted
product(s), purple circles — full-length recombinant product(s)



— 110 — 7.1 Supplementary material of Publication |

_ N w
o () =]
1 |

Bias

(=]
L

-
o
1

0 bl

= =
¥ @ C. Q. 94 4741? 4{5‘4

. 0, % %
%, s s 2 %
B

g
£ % 5 7o % 7
O/

Metrics [hours]
) w o~
[=] o o
RMSE

=
o
1

o
1

) 2 )
> 7>

B =priori-csA [l aposteriori- CSA [l general model fit - CSA

B =apriori-0sA [l a posteriori - OSA general model fit - OSA
Supplemental Digital Content 8. The accuracy (i.e. bias) and the imprecision (root mean
square error, RMSE) of the predicted time above target (TaT) of the model averaging
algorithm (MAA) and model selection algorithm (MSA) and the single models used in
both. The metrics are separated by the assay used (CSA: red and OSA: grey). The three
hues represent the prediction scenarios. Whiskers cover the 95 % confidence interval of
the bias calculated via the standard error; N.D. — not defined
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Supplemental Digital Content 9. Composition of the model selection algorithm (MSA)
within the population stratified by scenario and assay. Each colored bar reflects the
number of patients, for which the respective model had been selected automatically.
Black values represent the number of patients relative to the total population (%, n=39).
N.D. — not defined as historically plasma measurements are required to automatically
weight the population PK models
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A) Population predictions (PRED) B) Individual predictions (IPRED)
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Supplemental Digital Content 10.: A) The population predicted and B) the individually
predicted FVIIl concentrations of the clinical CSA data (n=229) using the Abrantes model
in either NONMEM or the MIPD-software ‘TDMx’. C) The predicted time above target of
2 1U/dL in the richly sampled occasion of the 39 individuals using the same model in
NONMEM or 'TDMX’. The diagonal line represents the identity line; green crosses — B-
domain deleted product(s); purple circles — full-length recombinant product(s).
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Supplemental Digital Content 11. The accuracy (i.e., bias) and the imprecision (i.e. root
mean square error, RMSE) of the predicted time above target (TaT) in comparison to the
true TaT (i.e., time obtained from the internal model and all CSA samples) in the a priori
scenario versus the number of patients included during model development.



— 114 — 7.2 Supplementary material of Publication Il

7.2 Supplementary material of Publication Il

Supplement Table S1. Properties and standardized PK parameters (standard patient, 50
years old, male, 75 kg, 1,7 m, serum creatinine of 85 pmol/L) of the evaluated
pharmacometric models. The table was adapted and modified from Broeker et al., CMI
(2019). Nr. of pat: Number of patients, Nr. of samp. Number of vancomycin samples used
for model development, CL: Clearance, Vc: central Volume of distribution, Vp: peripheral
Volume of distribution (-: one-compartment model), Q: Intercompartmental Clearance
(L/h, -: one-compartment model), CLCR: creatinine clearance, cRRT: continuous renal
replacement therapy, TBW: total body weight, SCR: serum creatinine, CSF: cerebrospinal
fluid
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Supplement Figure S1. Prediction corrected visual predictive checks of the population PK
models. The black solid and dashed line represents the median of the observed data
(black dots) and its 5th / 95th quantiles, respectively. The shaded areas represent the
90% confidence interval of the 5th, 95th (light shaded) and 50th (dark) quantiles of the
simulations (n=1000).
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Supplement Figure S2. Normalized prediction distribution errors of the population PK

models. If the model adequately described the data, NPDEs display a normal

distribution. Therefore, the NPDEs using all available observations were calculated
(black dots). The blue and red lines represent 2.5th, 97.5th and 50th quantiles of the
NPDEs over the treatment time, respectively, and should ideally overlap with the dotted

lines, i.e., the approximate values for the 2.5th, 50th and 97.5th quantiles of the standard

normal distributions.
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Supplement Figure S3. Performance metrics of the model selection algorithm (MAA) and
model selection algorithm (MSA) (right) and the single models being part of the set (left).
The bias and root mean square error (RMSE) of the predicted vancomycin plasma
concentrations were calculated in five forecasting scenarios. Error bars represent the
95% confidence interval based on the standard error. N.D. — not defined
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Supplement Figure S4. Bias and root mean square error (RMSE) of the population PK
models stratified by the medical discipline the patients were assigned to: 55 patients
had hematological malignancies, e.g., chronic myeloid leukemia (lower panels). Either
all available observations were predicted using covariate dosing information with
(general model-fit, orange) or without (a priori, brown) supplying individual vancomycin
samples. The blue bars represent the metrics in Bayesian forecasting using samples
from one occasion (i.e., the first or most recent) or two occasions to forecast the hidden
vancomycin concentration from the subsequent occasion. Error bars represent the 95%
confidence interval based on the standard error. N.D. — not defined
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7.3 Supplementary material of Publication IlI

Table S1: Model properties and standardized PK parameters of the pharmacometric

models included in the algorithms

? -g E w 2z Q — A
3¢ 8EF =z3; 83 Psse 3 &
) & S T =% o * 4
=] e o+ -~
Adaneet  extremely N o CL:CLCR; Vc: A W < NN P:18.9%
© w N ® T o~
al., 2015 obese TBW 5 W - Q' A:-
Mangin et cr!tlcallylll W w  CL:sex, TBW, g; o N g o < Q pP. -
al., 2014 with post ©  SCR, SAPSII- o v VvV 3 g Hn AT3
sternotomy score; Vc: TBW; N § :\oo mg/L
mediastiniti Vp: TBW; Q:
S TBW, diabetes
mellitus
Medellin- trauma = w CL: CLCR, N U BN O < n P:19.2%
. . o Nt . o b n o
Garibay et patients ™  furosemideco- < v > = A % A:35
al., 2016 medication; 8 Q' mg/L
Vc: TBW, age; x °
Vp: TBW
Revillaet intensive 3 v ClL:age,CLCR; » o < w A P:-
et o o0 n o
al., 2010 care ©  Vc:SCR, TBW N 3 A:4.2
patients mg/L
Roberts et septic, N v1 CL: CRCL; Vc: A = < w A P:19.9%
. . o 3 = n -
al., 2011 critically ill o ©  TBW V% " < A:2.4
° mg/L
Thomson hos.pltallzed w Q CL: CLCR; Vc: _44: .8 g B <P Q P: 15%
etal., patients 0o ~N TBW,Vp: TBW & oo © o G @ v~ A6
~l
2009 X RXR mg/L
Gotietal., hospitalized = N CL: CLCR, w oo w o< <n P:227%
. | = . . oo N X LT o
2018 patients N S hemodialysis ©~ o » oo w A:34
with high status; Vc: :o' \_Cg‘ ~ mg/L
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of renal hemodialysis

impairment
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Goti et CL: CLCR, i LA B § <0 P:18.4%
al., 2018 hemodialysis i o W o~ w Al4
(re- status; Vc: 2 4 > mg/L
estimated TBW, R XX
paramete hemodialysis

rs) status

*standard patient, 50 years old, male, 75 kg, 1.7 m, serum creatinine of 85 umol/L.

** CV: coefficient of variation was calculated as square root of omega or sigma multiplied by
100, if not otherwise stated in the publication

N: Number of patients, Nr. of samp.: Number of vancomycin samples used for model
development, CL: Clearance, Vc: central Volume of distribution, Vp: peripheral Volume of
distribution (-: one-compartment model), Q: Intercompartmental Clearance (L/h, -: one-
compartment model), 1IV: interindividual variability (coefficient of variation (CV)**), RUV:
residual unexplained variability, with P: proportional (CV**) and A: additive component, CLCR:
creatinine clearance, TBW: total body weight, SCR: serum creatinine

Table S2: Basic structure and patient characteristics of the 1000 individuals in each of
the six simulated populations (extremely obese, critically ill, hospitalized, critically ill
with sepsis, post heart surgery and trauma, respectively.

Basic structure Value Additional information

Patients, per simulation 1000

Dose, mg 1000 1h infusion every 12h for 36h

Plasma measurements three peak at 15 minutes post infusion
three trough and 15 min prior next infusion

Characteristics Value, median (range) Additional information

Age, years 57 (24 -91)

Body mass index (BMI), kg/m? 25 (18 —33)

Height, cm 170 (151 —184)

Serum creatinine, pumol/L 82 (38 —267)

Sex, female / male 515 / 485

Weight, kg 72 (52 -97) calculated as BMI * height?
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Table S3: Patient characteristics of the clinical data consisting of routine vancomycin
TDM samples of the evaluated 180 patients. The data was acquired in three studies from
January 2010 to July 2011, from June 2015 to July 2016 and from July 2018 to August 2019.
The data was used to assess the performance of the multi- and single-model approaches

in predicting individual vancomycin plasma concentrations (i.e. Bayesian forecasting)

Characteristics, continuous

Value, median (range) Missing data, %

Age, years 58 (20-90) 0
Height, cm 172 (150 —192) 0
Weight, kg 76.6 (39 —159) 0
Albumin 28.0 (15— 44) 59
Serum creatinine, umol/L 90.0 (18 —735) 0
SOFA-Score 10 (0 —22) 59
Characteristics, categorical +/- Missing data, %
Diabetes status +:17/-:163 0
Extracorporeal membrane +:11/-:72 59
oxygenation

Furosemide co-medication +:51/-:68 59
Sex, female / male 51/129 0
Renal replacement therapy +:45/-:135 0

‘+’ —Number of individuals with positive status/which received drug
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Simulation A priori One occasion Two occasions General model fit

Adane et al_, 2015 .
Mangin etal., 2014 §

Medelin-G. et al., 2016 .
Revilla et al, 2010 =
Roberts et al., 2011 .
Thomson et al., 2009 .

05 e

0 25 50 75 1000 25 50 75 1000 25 50 75 1000 25 50 75 100
Percentage of the population [%]

Figure S1: Influence of the models in the model averaging algorithm using the weighting
scheme Wy c and stratified by the simulated populations. Each patient was stained in
the color of the particular model, which obtained the highest weight in the algorithm.
(A priori) a priori prediction using the patient covariates only; Bayesian forecasting
employing measurements from (One occasion) the second (i.e. most recent) dosing
interval and (Two occasions) the first and second dosing interval; (General model fit)
Bayesian estimation employing measurements from all three dosing intervals. White
numbers — numerical value of the biggest portion in the subpopulation and scenario,
respectively
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Figure S2: The relative root mean square error (rRMSE) and relative bias (rBias) of the
predicted versus true simulated area under the curve (AUC) between 24 h and 36 h
calculated in 6000 simulated patients (horizontal line) and the (sub-)populations
(shapes). Comparison of the three weighting schemes (Wopy, Waic and Wsge) in the model
averaging algorithm (MAA) and the model selection algorithm (MSA). (A priori) a priori
prediction using the patient covariates only; Bayesian forecasting employing
measurements from (One occasion) the second (i.e. most recent) dosing interval and
(Two occasions) the first and second dosing interval; (General model fit) Bayesian
estimation employing measurements from all three dosing intervals. N.D. — not defined.
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Figure S3: The imprecision represented by the relative root mean square error (rRMSE)

of the predicted versus simulated area under the curve (AUC) between 24 h and 36 h

calculated in each of the simulated (sub-)populations (horizontal facets). (A priori) a

priori prediction using the patient covariates only; Bayesian forecasting employing

measurements from (One occasion) the second (i.e. most recent) dosing interval and

(Two occasions) the first and second dosing interval; (General model fit) Bayesian

estimation employing measurements from all three dosing intervals. The ordinate is

displaying the six single model approaches (light grey), the MAA (black), the MSA (dark

grey) and the external model (grey) per scenario. N.D. — not defined
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Figure S4: The inaccuracy represented by the relative bias (rBias) of the predicted versus
simulated area under the curve (AUC) between 24 h and 36 h calculated in each of the
simulated (sub-)populations (horizontal facets). (A priori) a priori prediction using the
patient covariates only; Bayesian forecasting employing measurements from (One
occasion) the second (i.e. most recent) dosing interval and (Two occasions) the first and
(General model fit)
measurements from all three dosing intervals. The ordinate is displaying the six single
model approaches (light grey), the MAA (black), the MSA (dark grey) and the external
model (grey) per scenario. Whiskers cover the 95 % confidence interval of the rBias

second dosing interval; Bayesian estimation employing

calculated via the standard error; N.D. — not defined
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Figure S5: The relative root mean square error (rRMSE) and relative bias (rBias) of the
clinical concentration-time data in the third observed dosing occasion, which is blinded
to the models/algorithms in various settings: (A priori) a priori prediction using the
patient covariates only; Bayesian forecasting employing plasma vancomycin
concentrations from (One occasion) the second (i.e. most recent) observed dosing
occasion and (Two occasions) the first and second observed dosing occasions; (General
model fit) Bayesian estimation employing plasma vancomycin concentrations from all
three dosing occasions. The ordinate is displaying the MAA (black), the MSA (dark grey)
and the external model (grey) with either the published parameters (Goti et al. 2018) or
adjusted parameters (Goti ... re-estimated) per scenario. The adjusted parameters can be
found in Supplement Table S1. Whiskers cover the 95 % confidence interval of the rBias
calculated via the standard error; N.D. — not defined
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Figure S6: a) The population predicted and b) the individually predicted vancomycin
plasma concentrations of the clinical data (n=741) using the six single models and the
reference model in either NONMEM or the MIPD-software ‘TDMx’. The diagonal line
represents the identity line.
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Objective function value (OFV)
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Figure S7: The individual objective function values (OFV) calculated for the clinical data
either using NONMEM or the MIPD software “TDMXx’. Each black circle represents the
OFV in one patient. The diagonal line represents the identity line.
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7.4 Supplementary material of Publication IV

7.4.1 Supplementary file S1: Workflow of the simulation

1)Random sampling of the covariates from 1000 patients
using parametric distributions and creation of a twice
daily dosing scheme

2)Simulation of the true PK parameters and profiles using
6 distinct population PK models encoded in NONMEM

Simulation

-> one heterogenous dataset containing 6000 simulated
patients from 6 different populations

3)Dataset reformatting to create 23 sampling strategies
with one sample between 1 to 12 h post first dose and =
23 sampling strategies with one sample between 1 to
12 h post steady state dose, respectively.

4)Estimation of the MAP Bayesian parameter values using
the MAA/MSA in the 46 sampling strategies
(MAXEVAL=0)

Estimation

5)ldentification of the optimal sampling timepoint per
estimation method using the performance metrics

6)Repeat 3) — 5) using the optimal first sample identified
in 5) + a second sample in between the same time
intervals

Figure 3 Workflow of the simulation-estimation study consisting of six main steps. MAP
— Maximum a posteriori prediction; MAA — Model averaging algorithm; MSA — Model
selection algorithm
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1) Random sampling of the covariates

In brief, a virtual set of 1000 patients were created in R (Version 4.0.2). The resulting
dataset consisted of the same dosing regimen (i.e. a 60-minutes loading dose of
2000 mg and 60-mintues maintenance doses of 1250 mg every 12 hours) for all patients.
Furthermore, observations were added between 0-24 hours and 48-72 hours in
increments of 0.5 hours. The covariates were randomly sampled according to the

following code example.
# R-€0d@ ~---mmmmm oo oo

for(i in seq_along(datas$ID)){

repeat {
age =rnorm(1l, mean =50,sd =10)  ## repeat if AGE is out of boundaries:
if(age>20 & age<75) break

}
dataSAGE[i] = age

# Height ----------mmmm oo
dataSHTM[i] = round(
ifelse(data$SEX[i]==1,
rnorm(1, mean =1.65, sd =.035), ## height for woman
rnorm(1, mean =175, sd =.035) ## men

data$BMI[i] = round(
rinorm(1, mean = log(25), sd = 0.1),
1)
}

# serum creatining -------=-=-m-mmmmm e
data$SCR = rlnorm(n_ID, mean = log(82), sdlog = 0.3)

# body weight -------mmmm e
dataSWTKG = dataSHTM”2 * dataSBMI
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Dataset structure after random sampling (1 example patient)

Column specification

TIME Time since first infusion

AMT Administer dose of vancomycin

DUR Infusion duration in hours

DV Dependent variable, vancomycin concentration mg/L
EVID NONMEM event identifier

RATE Infusion rate [mg/hours]

ID Patient identifier

CMT NONMEM compartment identifier

OocCC Dosing occasion

MDV Identifier for missing dependent variables
SEX Sex of the patients 1=female

AGE Age of the patient in years

HTM Body height of the patientin m

BMI Body mass index in kg/m"2

SCR Serum creatinine in pmol/L

WTKG | Total body weigh in kg

TIME AMT DUR DV EVID RATE ID CMT OCC MDV SEX AGE

0 2000 1 . 1 2000 1 1 1 1 0 50.43
0.5 0 0 0 1 1 1 0 0 50.43
1 0] 0 0 1 1 1 0 0 50.43
1.5 0] 0 0 1 1 1 0 0 50.43
2 0 0 0 1 1 1 0 0 50.43
25 0 0 0 1 1 1 0 0 50.43
3 0 0 0 1 1 1 0 0 50.43
3.5 0 0 0 1 1 1 0 0 50.43
4 0 0 0 1 1 1 0 0 50.43
4.5 0 0 0 1 1 1 0 0 50.43
5 0 0 0 1 1 1 0 0 50.43
5.5 0 0 0 1 1 1 0 0 50.43
6 0 0 0 1 1 1 0 0 50.43
6.5 0 0 0 1 1 1 0 0 50.43
7 0 0 0 1 1 1 0 0 50.43
7.5 0 0 0 1 1 1 0 0 50.43
8 0] 0 0 1 1 1 0 0 50.43
8.5 0 0 0 1 1 1 0 0 50.43
9 0] 0 0 1 1 1 0 0 50.43
9.5 0 0 0 1 1 1 0 0 50.43
10 0 0 0 1 1 1 0 0 50.43
10.5 0] 0 0 1 1 1 0 0 50.43

HTM
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77
1.77

BMI
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5
28.5

SCR

59.22
59.22
59.22
59.22
59.22
59.22
59.22
59.22
59.22
59.22
59.22
59.22
59.22
59.22
59.22
59.22
59.22
59.22
59.22
59.22
59.22
59.22

WTKG
89.29
89.29
89.29
89.29
89.29
89.29
89.29
89.29
89.29
89.29
89.29
89.29
89.29
89.29
89.29
89.29
89.29
89.29
89.29
89.29
89.29
89.29
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1 0 0 0 1 1 1 O 0 5043 177 285 5922 89.29
1.5 0 0 0 1 1 1 O 0 5043 177 285 5922 89.29
11.99 0 0 0 1 1 1 O O 5043 177 285 59.22 89.29

12 1250 1 1250 1 1 2 1 0 5043 177 285 5922 89.29
125 0 0 0 1 1 2 0O O 5043 177 285 59.22 89.29

13 0 0 0 1 1 2 O 0 5043 177 285 5922 89.29
13.5 0 0 0 1 1 2 0O O 5043 177 285 59.22 89.29
14 0 0 0 1 1 2 0O O 5043 177 285 59.22 89.29
14.5 0 0 0 1 1 2 0O 0 5043 177 285 5922 89.29

15 0 0 0 1 1 2 0O O 5043 177 285 59.22 89.29
15.5 0 0 0 1 1 2 0O 0 5043 177 285 5922 89.29
16 0 0 0 1 1 2 0O O 5043 177 285 59.22 89.29
16.5 0 0 0 1 1 2 O 0 5043 177 285 5922 89.29

17 0 0 0 1 1 2 0O 0 5043 177 285 5922 89.29
17.5 0 0 0 1 1 2 O O 5043 177 285 59.22 89.29
18 0 0 0 1 1 2 0O 0 5043 177 285 59.22 89.29
18.5 0 0 0 1 1 2 O O 5043 177 285 59.22 89.29
19 0 0 0 1 1 2 0O O 5043 177 285 59.22 89.29
19.5 0 0 0 1 1 2 O 0 5043 177 285 59.22 89.29
20 0 0 0 1 1 2 0O 0 5043 177 285 59.22 89.29
20.5 0 0 0 1 1 2 0O O 5043 177 285 59.22 89.29

21 0 0 0 1 1 2 0O 0 5043 177 285 59.22 89.29
215 0 0 0 1 1 2 0O O 5043 177 285 59.22 89.29
22 0 0 0 1 1 2 0O 0 5043 177 285 59.22 89.29
225 0 0 0 1 1 2 0O O 5043 177 285 59.22 89.29
23 0 0 0 1 1 2 0O O 5043 177 285 59.22 89.29
235 0 0 0 1 1 2 0O 0 5043 177 285 59.22 89.29
24 1250 1 1250 1 1 3 1 0 5043 177 285 5922 89.29
36 1250 1 1250 1 1 4 1 0 5043 177 285 5922 89.29
48 1250 1 1250 1 1 5 1 0 5043 177 285 5922 89.29
48.5 0 0 0 1 1 5 0O O 5043 177 285 59.22 89.29
49 0 0 0 1 1 5 0O 0 5043 177 285 59.22 89.29
495 0 0 0 1 1 5 0O O 5043 177 285 59.22 89.29
50 0 0 0 1 1 5 0O O 5043 177 285 59.22 89.29
50.5 0 0 0 1 1 5 0O O 5043 177 285 59.22 89.29

51 0 0 0 1 1 5 0O O 5043 177 285 59.22 89.29
51.5 0 0 0 1 1 5 0O O 5043 177 285 59.22 89.29
52 0 0 0 1 1 5 0O O 5043 177 285 59.22 89.29
52.5 0 0 0 1 1 5 0O 0 5043 177 285 59.22 89.29
53 0 0 0 1 1 5 O O 5043 177 285 59.22 89.29
53.5 0 0 0 1 1 5 0O O 5043 177 285 5922 89.29
54 0 0 0 1 1 5 O O 5043 177 285 59.22 89.29
54.5 0 0 0 1 1 5 0O 0 5043 177 285 5922 89.29
55 0 0 0 1 1 5 0O O 5043 177 285 5922 89.29
55.5 0 0 0 1 1 5 0O O 5043 177 285 59.22 89.29
56 0 0 0 1 1 5 0O 0 5043 177 285 5922 89.29
56.5 0 0 0 1 1 5 0O 0 5043 177 285 59.22 89.29
57 0 0 0 1 1 5 0O 0 5043 177 285 5922 89.29
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57.5 0 0] 0 1 1 5 0 0 5043 177 285 59.22 89.29
58 0 0] 0 1 1 5 0 0 5043 177 285 59.22 89.29
58.5 0] 0 0 1 1 5 0 0 5043 177 285 59.22 89.29
59 0 0] 0 1 1 5 0 0 5043 177 285 59.22 89.29
59.5 0] 0 0 1 1 5 0 0 5043 177 285 59.22 89.29
59.99 0 0] 0 1 1 5 0 0 5043 177 285 59.22 89.29
60 1250 1 1 1250 1 1 6 1 0 5043 177 285 59.22 89.29
60.5 0 0 0 1 1 6 0 0 5043 177 285 59.22 89.29
61 0 0] 0 1 1 6 0 0 5043 177 285 59.22 89.29
61.5 0 0 0 1 1 6 0 0 5043 177 285 59.22 89.29
62 0 0] 0 1 1 6 0 0 5043 177 285 59.22 89.29
62.5 0 0 0 1 1 6 0 0 5043 177 285 59.22 89.29
63 0 0] 0 1 1 6 0 0 5043 177 285 59.22 89.29
63.5 0 0] 0 1 1 6 0 0 5043 177 285 59.22 89.29
64 0 0 0 1 1 6 0 0 5043 177 285 59.22 89.29
64.5 0 0 0 1 1 6 0 0 5043 177 285 59.22 89.29
65 0 0 0 1 1 6 0 0 5043 177 285 59.22 89.29
65.5 0 0 0 1 1 6 0 0 5043 177 285 59.22 89.29
66 0 0 0 1 1 6 0 0 5043 177 285 59.22 89.29
66.5 0 0 0 1 1 6 0 0 5043 177 285 59.22 89.29
67 0 0 0 1 1 6 0 0 5043 177 285 59.22 89.29
67.5 0 0 0 1 1 6 0 0 5043 177 285 59.22 89.29
68 0 0 0 1 1 6 0 0 5043 177 285 59.22 89.29
69 0 0 0 1 1 6 0 0 5043 177 285 59.22 89.29
70 0 0 0 1 1 6 0 0 5043 177 285 59.22 89.29
Al 0 0 0 1 1 6 0 0 5043 177 285 59.22 89.29
7.5 0 0 0 1 1 6 0 0 5043 177 285 59.22 89.29
72 1250 1 1 1250 1 1 7 1 0 5043 177 285 59.22 89.29

2) Simulation of the true PK parameters, true vancomycin
true area under the curve

In brief, six population PK models were encoded in NONMEM (example from the Adane
model below). These models were each used to simulate the PK parameters, true

vancomycin plasma concentrations and true area under the curve of 1000 patients,

respectively.

plasma concentration and
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Example NONMEM file used for simulation

SPROBLEM Simulation of the PK — recoded from Adane et al. 2015

SINPUT
TIME AMT DUR DV EVID RATE ID CMT OCC MDV SEX AGE HEIGHT BMI SCR
WEIGHT ;DUIN;

SDATA sim_temp.csv IGNORE=@
SSUBROUTINES ADVAN13 TOL=9

SMODEL NCOMPARTMENTS=3
SPK

IF (SEX.EQ.0) THEN

F SEX=123

ELSE

F SEX=1.04

ENDIF

BSA = ((TBW**0.425)*((HT*100)**0.725))*0.007184 :m**2 DuBois DuBois
Formula

CLCR = ((((140-AGE)*TBW*F_SEX)/SCR)*1.73)/BSA ;mL/min/1.73m**2  Cockcroft
Gault standardised to BSA

TVCL = THETA(1)*(CLCR/125)
CL = TVCL*EXP(ETA(1)) ;L/h
TVV = THETA(2)*TBW

V = TVW*EXP(ETA(2)) ;L
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TVVI=TVV

S1=V

Vi=V

S1 =V

KE =CL/V1

$DES
DADT(1) = - KE*A(1)

)=1
)= A(1)/V1

$ERROR

IPRED = A(1)/V1
SIG_PROP = EPS(1)
Y = IPRED*(1+EPS(1))

EP1=SIG_PROP

EP2=0
STHETA
6.54 ;CL
051 ;V
SOMEGA

0.071289 IV CL
0.057121 HI\AY

$SIGMA
0.035721 ;proportional model
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AWIL

SSIMULATION (101017) ONLYSIM

3) Dataset reformatting to create the sampling strategies

In brief, the full dataset containing 5925 patients were reformatted to only contain a
single sample per patient in the single-sampling strategies. An example dataset can be
found below. 75 virtual patients were excluded to remove any potential influence of

unreasonable eta values (i.e. patients with eta values larger than 2.8 times standard

deviation were removed).

Dataset structure of the simulated and reformatted output (1 example patient in the

sampling strategy: 2 hours post start of infusion, simulated with the Adane model)

Column specification

TIME

Time since first infusion

AMT

Administer dose of vancomycin

DUR

Infusion duration in hours

DV

Dependent variable, vancomycin concentration mg/L

EVID

NONMEM event identifier

RATE

Infusion rate [mg/hours]

ID

Patient identifier

CMT

NONMEM compartment identifier

OcCC

Dosing occasion

MDV

Identifier for missing dependent variables

SEX

Sex of the patients 1=female

AGE

Age of the patient in years

HTM

Body height of the patientin m

BMI

Body mass index in kg/m"2

SCR

Serum creatinine in pmol/L

WTKG

Total body weigh in kg

DVHID

True vancomycin concentration in mg/L hidden to the approaches

SIMN

Identifier of the models used to simulate the respective patient

SATI

Identifier of the sampling strategy

1AWV
[ale

) m Ve =~ [alNe) w > T w wn

< § 5 ° =RgF4 2 £ 8 3
1 2000 10001 1 1 1 O 5043 177 285 59.22 89.29
2 0 10001 1 1 1 O 5043 177 285 59.22 89.29
2 0 10001 1 1 1 O 5043 177 285 59.22 89.29

. 2 0 10001 1 1 1 O 5043 177 285 59.22 89.29

29.133 0 0 10001 17 1 O O 5043 177 285 59.22 89.29

dIHAd

NWIS

_ ) =

11VS

w w w w w



— 142 — 7.4 Supplementary material of Publication IV
2.5 0 2 0O 10001 1 1 1 O 5043 177 285 59.22 89.29 21.085 1
3 0 2 0O 10001 1 1 1 O 5043 177 285 59.22 89.29 31477 1
3.5 0 2 0 10001 1 1 1 O 5043 177 285 59.22 89.29 17.677 1
4 0 2 0O 10001 1 1 1 O 5043 177 285 59.22 89.29 20.515 1
4.5 0 2 0 10001 1 1 1 O 5043 177 285 59.22 89.29 22.668 1
5 0 2 0O 10001 1 1 1 O 5043 177 285 59.22 89.29 17.188 1
5.5 0] 2 0 10001 1 1 1 O 5043 177 285 59.22 89.29 14.871 1
6 0 2 0 10001 1 1 1 O 5043 177 285 59.22 89.29 19.619 1
6.5 0 2 0O 10001 1 1 1 O 5043 177 285 59.22 89.29 11.656 1
7 0 2 0 10001 1 1 1 O 5043 177 285 59.22 89.29 1044 1
7.5 0 2 0O 10001 1 1 1 O 5043 177 285 59.22 89.29 94714 1
8 0 2 0 10001 1 1 1 O 5043 177 285 59.22 89.29 5.798 1
8.5 0 2 0O 10001 1 1 1 O 5043 177 285 59.22 89.29 11.008 1
9 0 2 0O 10001 1 1 1 O 5043 177 285 59.22 89.29 8.5556 1
9.5 0 2 0 10001 1 1 1 O 5043 177 285 59.22 89.29 9.1017 1
10 0 2 0 10001 1 1 1 O 5043 177 285 59.22 89.29 8.4579 1
10.5 0 2 0 10001 1 1 1 O 5043 177 285 59.22 89.29 6.5751 1
1 0 2 0 10001 1 1 1 O 5043 177 285 59.22 89.29 53729 1
1.5 0 2 0O 10001 1 1 1 O 5043 177 285 59.22 89.29 4.0975 1
11.99 0 2 0O 10001 1 1 1 O 5043 177 285 59.22 89.29 4336 1
12 1250 1 1250 10001 1 2 1 O 5043 177 285 59.22 89.29 . 1
12.5 0 2 0 10001 1 2 1 O 5043 177 285 59.22 89.29 22781 1
13 0 2 0 10001 1 2 1 O 5043 177 285 59.22 89.29 29429 1
13.5 0 2 0O 10001 1 2 1 O 5043 177 285 59.22 89.29 25356 1
14 0 2 0 10001 1 2 1 O 5043 177 285 59.22 89.29 19.596 1
14.5 0 2 0 10001 1 2 1 O 5043 177 285 59.22 89.29 26.667 1
15 0 2 0 10001 1 2 1 O 5043 177 285 59.22 89.29 18.137 1
15.5 0 2 0 10001 1 2 1 O 5043 177 285 59.22 89.29 15.223 1
16 0 2 0 10001 1 2 1 O 5043 177 285 59.22 89.29 15337 1
16.5 0 2 0 10001 1 2 1 O 5043 177 285 59.22 89.29 14.23 1
17 0 2 0 10001 1 2 1 O 5043 177 285 59.22 89.29 1241 1
17.5 0 2 0O 10001 1 2 1 O 5043 177 285 59.22 89.29 10.806 1
18 0 2 0 10001 1 2 1 O 5043 177 285 59.22 89.29 12.223 1
18.5 0 2 0 10001 1 2 1 O 5043 177 285 59.22 89.29 11.094 1
19 0 2 0 10001 1 2 1 O 5043 177 285 59.22 89.29 7.9235 1
19.5 0 2 0O 10001 1 2 1 O 5043 177 285 59.22 89.29 1.312 1
20 0 2 0 10001 1 2 1 O 5043 177 285 59.22 89.29 7.7734 1
20.5 0 2 0O 10001 1 2 1 O 5043 177 285 59.22 89.29 7.0833 1
21 0 2 0 10001 1 2 1 O 5043 177 285 59.22 89.29 6.6701 1
21.5 0 2 0 10001 1 2 1 O 5043 177 285 59.22 89.29 8.7447 1
22 0 2 0O 10001 1 2 1 O 5043 177 285 59.22 89.29 4.4152 1
22.5 0] 2 0 10001 1 2 1 O 5043 177 285 59.22 89.29 42194 1
23 0 2 0O 10001 1 2 1 O 5043 177 285 59.22 89.29 5.1198 1
235 0 2 0 10001 1 2 1 O 5043 177 285 59.22 89.29 4.5451 1
24 1250 1 1250 10001 1 3 1 O 5043 177 285 59.22 89.29 1

W W wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
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4) Estimation using MAA/MSA

In brief, the reformatted datasets were supplied to the multi-model approaches, which
in turn estimated the individual PK parameters, vancomycin concentration and AUC of
the 6000 individuals based on the supplied information (MAXEVAL=0). For detailed code
examples of the MAA/MSA, including hands-on material, we kindly refer to the
supplement file “cpt2065-sup-0002-Supinfo.zip” of the primordial publication of Uster
et al. https://doi.org/10.1002/cpt.2065

Model averaging and model selection R code

H
#- Packages ------=-=mmmmm e
Hit

library(tidyr)
library(dplyr)
library(readr)
library(xpose4)
#library(foreach)

##
#- Prerequisites -----=-====mmmmmmmmoo oo

Ht

modelest_info <- read _csv("modelest_info.csv", col_names = F, skip=1) ## v3
sum of: v4 Thetas, v5 omegas, v6 sigmas

#runnumber

model_run = modelest_info$X1 ## (eg run001, ..)
model_name = modelest_info$X2 ## (eg Adane 2015, ..)
model_position = modelest_info$X8  ## (eg123456)
#modelnumbers

n_model = length(model_run) #itegb

i
#- Dataset ----------mmmmmmm s
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H#

## dataset containing the patient
dataO <-read_csv("data0.csv",skip = 0, col_names =T)

#-1 Estimate with (n_model)models-------
n_model =n_model

j<-NA ##m_loop: loop over set of models
m_out <- vector("list", n_model)

for(j in model_position){

#execute NM model for estimation
system( paste("execute -model_dir_name -clean=2 -silent run00"j, ".mod",sep
=""), wait =T, intern = F)

##tread results
Istfile = read.Ist( paste("run00"," Ist",sep =""))
est_sdtab = read.table(paste("sdtab00",j, sep = ""),skip = 1, header = T)

## add OFV, Likelihood L, modelname, ...
m1<-est_sdtab %>%
mutate(

OFV = [stfileSofv,

LL = exp(-0.5 * OFV),

SCE = NA,

SCEN =1,

MOD = model_name[j],

MODN = model_position[j]

m_out[[j]] <- m1 ## produce one loop output

# remove unnecessary output
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k1

system(paste("rm -r run00*.dir
rm("Istfile", "est_sdtab")

}

, sep="))

m_out = dplyr::bind_rows(m_out)

#-2 calculate weights -----------=-mmmmm o
wl<-m_out %>%
dplyr::distinct(1D, MOD, MODN, OFV, LL, .keep_all=F) %>%
dplyr::mutate( W = LL/sum(LL) )

w2 <-dplyr::right_join(m_out, w1) ## add weighting term for
each observation

H-3.T MSA -
msa <- w2 %>%
group_by(ID, TIME ) %>%
dplyr:-filter(LL==max(LL)) %>% ## same as dplyr::filter(W==max(W)) %>%
mutate(MOD2=MOD, ##add identifier column
MOD = "Selection (MSA)",
MODN = 7)

$-3,2 MAA =n-mmmmsmmemmmmmmsm e e

maa <- w2 %>%
group_by(ID, TIME) %>% ##not urgently necessary, but more a
precaution
mutate(
AUC = sum(AUC*W), ##average AUC if supplied
PRED = sum(PRED*W),
IPRED = sum(IPRED*W)) %>% ##average results
ungroup() %>%
distinct(ID, TIME, .keep all =T) %>%
mutate(MOD = "Averaging (MAA)", ##add identifier
MODN= §,
W =NA)
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5) Identification of the optimal sampling strategies

In brief, to assess the sampling strategies of the multi-model approaches in FD or SS
across the total population, trends of the median percentage error (MdPE; Eq. 2) and the

interquartile range (IQR; Eq. 3) of the relative prediction errors (Eq. 1) were evaluated.

predicted AUC — simulated AUC
= *

PE 1 (Eq.1)

r simulated AUC 00 a
MdPE = median({rPE; ...; rPE;}) (Eq.2)

IQR = quartile;({rPEy; ...; rPE;}) — quartile; ({rPEy; ...; TPE;}) (Eq.3)

With quartile; and quartile; being the 25t and 75t percentile of the relative prediction
errors of the AUC (rPE) over the 5925 patients, respectively.

The resulting performance metrics of the sampling-strategies per approach were
ordered from best to worst and assigned with a ranking number representing the
respective position in the order (example below). The best combination of the MdPE and
IQR was identified as optimal sampling strategy per approach in the case of the MAA in

the first dose scenarios at 2.0 hours.
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Table: Exemplified ranking of the single-sampling strategies according to the median
percentage error (MdPE) and interquartile range (IQR): The performance metrics of the
top five single-sampling strategies (First dose) using the MAA are displayed below. Each
metric (MdPE and IQR) is given a rank between 1 and 23 with 1 being the best. These
numbers are subsequently summed and the lowest sum is impartially identifying the
optimal sampling timepoint (=) in the respective estimation method. MdPE — median
percentage error of the area under the concentration time curve; IQR — interquartile
range of the relative prediction errors

Single- . .
Estimation Dosin samplin IQR Ranking Ranking  Sum of
Model intervfl straf:e > Mape %] [%] ofthe  ofthe the
[h]gy ° MdPE IQR Rankings
X Y X+Y
First
MAA 2 -0.04 23.88 2 3 5 >
dose
First
MAA 3 0.44 23.96 4 4 8
dose
First
MAA 3.5 0.94 23.33 9 1 10
dose
First
MAA " 15 038 2538 3 7 10
dose
First
MAA 1 -0.07 26.41 1 10 1
dose

6) Repeating 3) —5) for the two-sampling strategies

After identifying the optimal single-sample timepoints per approach, step 3) to 5) was
repeated with the optimal single sample (in the case of the MAA in the first dose
scenarios at 2.0 hours) being always supplied next to a second sample in between 0 and

12 hours post start of infusion.
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7.4.2 Supplementary file S2

Supplement Text S1:

To calculate the AUC using the equation-based approach proposed by Pai et al.1, the
individual plasma concentration at the theoretical start of infusion (CTO) and the true
trough concentration immediately before the next dose (CT12) are needed. In detail, the
concentrations were back-extrapolated from the mono-exponential curve via

transposing Eq. 1as represented below.

Cr
Ke = (Eq. 4)
S T—
Cro = exp(Ke x (Tr — Tro)) * Cr (Eq.5)
Cp
(Eq. 6)

C =
e exp( Ke x (Tri, — Tp))

Table S1: Model properties and representative* PK parameters of the pharmacometric
models included in the algorithms™*.

P T v 2 2 n N < <P = =
s £ o 5 77 T3
g " S *
= © w
Adaneetal., extremelyobese N9 CL: CLCR; Vc: _4: W CL:26.7% P:
2015 ** TBW S~ w Vp: 18.9%
23.9% A:-
Mangin et critically ill with post wow CL: sex, TBW, g NSO CL:29%  P:-
al., 2014 ** sternotomy ©  SCR, SAPSII- S o 2 V:53% A:7.3
mediastinitis score; Vc: Q:101% mg/L
TBW; Vp:
TBW; Q:
TBW,
diabetes

mellitus
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Medellin- trauma patients O:O w CL: CLCR, g aop o CL:36.7% P:
Garibay et ~ furosemide < v ™ 2 Vo 19.2%
al., 2016 ** co- 40.0% A:3.5
medication; mg/L
Vc: TBW, age;
Vp: TBW
Revilla et al., intensive care patients 2 9 CL: age, > o+ CL:303% P:-
2010 ** =  © CLCR; Ve R Ve A: 4.2
SCR, TBW 22.8% mg/L
Roberts et septic, criticallyill Ny CL:CRCL;Ve: » = + + CL: P:
al,, 201 ** & © TBW a5 38.9%  19.9%
Vc:374% A:2.4
mg/L
Thomsonet TDM patients w R CL: CLCR; Vc:  » oo N CL: 27% P: 15%
(9a] S . B N
al., 2009 ** © 3 TBW, Vp: oo o o Vci:15% A:1.6
TBW Vp:130% mg/L

Q:49%

* parameters were calculated for comparability-reasons using a representative patient: 50 years old,
male, 75 kg, 1.7 m, serum creatinine of 85 pmol/L

** population pharmacokinetic models, which are also included in the model averaging and model
selection algorithms

*** CV was calculated as square root of omega or sigma multiplied by 100, if not otherwise stated in the
publication

N: Number of patients, Nr. of samp.: Number of vancomycin samples used for model development, CL:
Clearance, Vc: central Volume of distribution, Vp: peripheral Volume of distribution (-: one-
compartment model), Q: Intercompartmental Clearance (L/h, -: one-compartment model), IIV:
interindividual variability (coefficient of variation (CV)**), RUV: residual unexplained variability, with P:
proportional (CV**) and A: additive component, CLCR: creatinine clearance, TBW: total body weight,
SCR: serum creatinine
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Table S2: Exemplified ranking of the single-sampling strategies according to the median

percentage error (MdPE) and interquartile range (IQR): The performance metrics of the
top five single-sampling strategies (First dose) using the MAA are displayed below. Each
metric (MdPE and IQR) is given a rank between 1 and 23 with 1 being the best. These
numbers are subsequently summed and the lowest sum is impartially identifying the

optimal sampling timepoint (=) in the respective estimation method. MdPE — median

percentage error of the area under the concentration time curve; IQR — interquartile

range of the relative prediction errors

Single-
Estimation Dosin sa:':glfn IQR Ranking Ranking  Sum of
) 8 Pling MdPE [%] of the of the the
Model interval  strategy [%] )
[h] MdPE IQR Rankings
X Y X+Y
First
MAA 2 -0.04 23.88 1 3 4 >
dose
First
MAA 3 044  23.96 4 4 8
dose
First
MAA 3.5 0.94 2333 9 1 10
dose
First
MAA 1.5 0.38 2538 3 7 10
dose
First
MAA 1 -0.07 2641 2 9 n

dose
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Table S3: Timing and performance metrics of the optimized single- and two-sampling
and mainly recommended peak-trough strategies of the same population PK models
used to simulate the 6000 patients after the first dose of vancomycin as well as in
steady-state.

. Secon

First d Single-sample ~ Two-sample “peak-trough”

Population PK model sampl 8 ? E’z P f

sampl strategy strategy strategy
e
MdPE rRMSE MdPE rRMSE rRMSE

[h] [h] . . . . MdPE [%] .
]  [%]  [%]  [%] [%]
Adane 2015 4.5 4 10.7 35.3 5.2 24.5 12.9 34.9
Mangin 2014 2 1 0.4 30.8 -0.6 25.1 -14.9 24.5

§ Medellin 2016 6.5 4.5 1.6 30.5 0.2 21.7 8.2 25.2

)

.‘é‘ Revilla 2010 2 5 0.5 29.1 -1.0 20.9 1.6 25.1
Roberts 2011 3.5 4.5 -8.4 21.7 -5.5 17.3 -5.4 20.2
Thomson 2009 5.5 3.5 -3.2 28.6 -3.2 21.0 -0.5 30.1
Adane 2015 6.5 5 -2.3 23.4 -2.5 17.9 4.2 21.8
Mangin 2014 1 10 8.1 37.8 3.6 241 2.6 253

(]

§ Medellin 2016 7 5 4.8 27.3 1.6 19.8 5.3 213

>

E Revilla 2010 5.5 4.5 -3.5 233 -1.6 18.2 4.0 225

)

Roberts 2011 6.5 5 -6.9 22.1 -4.9 17.0 -1.4 19.0
Thomson 2009 8 3.5 -3.0 23.6 -1.9 18.0 -1.4 20.0

T performance metrics using the “First sample” timepoint
"2 performance metrics using the “First sample” and “Second Sample” timepoint
3 performance metrics using a sample at 1h and at 11.5 h post start of infusion
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Figure S1: Distribution of the demographics of the simulated population (n=6000). f —

female, m— male



7 Appendix

— 153 —

0.4

0.34

0.14

0.0

T
30

0.0094

0.0064

density

0.0034

0.0004

500 1000
V2

1500

2000

SiMm

D Adane 2015
D Mangin 2014

Medellin 2016
Revilla 2010

E] Roberts 2011

Thomson 2009

SIM

D Adane 2015
D Mangin 2014

Medellin 2016

Revilla 2010

L Roberts 2011

Thomson 2009

density

0.104
0.05
j \
] /-"‘\__‘:_-—-__-_
0.004 A
1{’30 2(‘30 3(‘}0
Vi1
2.04
1.54
1.0
0.54
’\_;
0.0+
25 50 75 100
Q

SIM

D Adane 2015
D Mangin 2014

Medellin 2016
Revilla 2010

U Raberts 2011

Thomson 2009

SIM

D Adane 2015
D Mangin 2014

Medellin 2016

Revilla 2010

[:] Raberts 2011

Thomson 2009

Figure S2: Distributions of the simulated parameters (in total 5925) stratified by the six
simulation models. Green colors indicate a one-compartmental structure; brown colors

indicate a two-compartmental structure
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Figure S3: Simulated PK profiles (in total 5925) stratified by the population PK models
used for simulation. The lower panels display the individual true AUC values either from
0-12 hours (12) or from 48-60 hours) obtained via numerical integration of the simulated
PK profiles. The AUC was determined by integration and hence included no residual
unexplained variability (RUV), while the individual vancomycin plasma concentrations
included the RUV of the simulation model. The three blue lines indicate the 2.5th, 50th
and 97.5th percentiles of the PK profiles, respectively.
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Figure S4: Relative prediction errors (rPE) and performance metrics (upper: median
percentage error, lower: interquartile range) of the equation-based approach stratified
by the population simulated using the indicated models; FD — first dose; SS — steady-
state
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Figure S5: Predictive performance of the six population PK models used to simulate the
virtual patients using the single-sample strategies in the total simulation (n=5925). The
median percentage error and the interquartile range of the relative prediction errors of
the AUC (IQR) are representing accuracy and imprecision, respectively. Time after dose
indicates the distinct timepoint of the single sample drawn in the 5925 patients either
in the first dosing interval or the fifth (i.e. Steady-state).
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Figure S6: Predictive performance of the six population PK models used to simulate the
virtual patients using the optimized first sample and a second sample drawn in between
1-12 hours post start of infusion. Time after dose indicates the timepoint of the second
sample drawn in the 5925 patients either in the first dosing interval (i.e. First dose) or
the fifth (i.e. Steady-state) additionally to the optimal first sampling timepoint, which is
indicated with the gap in the lines.1-S.—displays the performance metrics of the optimal
single-sample strategy of the six models (see Table S3); 1+11.5 — represents the
performance metrics of the gold-standard “peak-trough” sampling strategies in the six
approaches; EQA — the black crosses display the performance metrics of the equation-
based approach as a reference; IQR —interquartile range of the relative prediction errors
of the AUC
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