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IV. Zusammenfassung 

Das digitale Zeitalter schreitet insbesondere im gesundheitsbezogenen Kontext rasant 

voran. Unmengen an Gesundheitsdaten, computertechnologische Fortschritte und die 

ständig wachsenden Erkenntnisse über Krankheiten machen es erforderlich, neue 

Technologien zu entwickeln und zu evaluieren, um die gewonnenen Erkenntnisse in 

individualisierte Therapien einzuweben. Während das therapeutische Drug Monitoring 

(TDM) bei lebensbedrohlichen und kostenintensiven Krankheiten wie der Hämophilie A 

oder (schweren) Methicillin-resistenten Staphylococcus aureus (MRSA)-Infektionen 

inzwischen gängige Praxis ist, ist der Nutzen der Therapieindividualisierungen noch 

nicht vollständig ausgeschöpft. [1], [2] Sogenannte pharmakometrische Ansätze haben 

das Potenzial, die Effektivität und Sicherheit des Arzneimittels zu erhöhen. Dies setzt 

jedoch voraus, dass (i) die Ansätze für den beabsichtigten Zweck geeignet sind, (ii) sie 

sorgfältig evaluiert und validiert werden und (iii) die korrekte Anwendung durch das 

medizinische Fachpersonal gewährleistet ist. 

Ziel des vorliegenden Dissertationsprojekts ist es, neue Erkenntnisse in 

individualisierten Therapien anhand zweier exemplarischer Krankheiten (Hämophilie A 

und mit Vancomycin behandelte Infektionen) zu gewinnen. Durch die Entwicklung und 

Evaluierung neuer und bestehender pharmakometrischer Ansätze soll der Aufwand für 

die Implementierung pharmakometrischer Ansätze am Krankenbett verringert werden. 

In der Publikation I wurden 12 verschiedene Populations-pharmakokinetische (PK) 

Modelle hinsichtlich ihrer Vorhersagegenauigkeit der Zeit oberhalb des Faktor VIII 

(FVIII)-Zielwerts in 39 erwachsenen Hämophilie-A-Patienten bewertet. Den Patienten 

wurden verschiedene FVIII-Produkte verabreicht und im Anschluss fünfpunkt PK Daten 

für die externe Validierung erhoben. Im Durchschnitt überschätzten die 

Populationsmodelle die wahren Werte (z.B. a priori Richtigkeit: -3.8 Stunden bis 49.6 

Stunden). Das Modell von Abrantes et al.[3] schnitt in der gesamten Population am 

besten ab (Richtigkeit: -3.8 Stunden a priori; -1.0 Stunden a posteriori; 0.6 Stunden 

general model fit) und wies eine akzeptable Vorhersage in bis zu 90 % der Patienten auf. 

Das Modell wurde in die frei verfügbare modellgestützte Präzisionsdosierungs (MIPD)-
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Software 'TDMx'[4] implementiert, um es medizinischem Fachpersonal zu ermöglichen, 

eigenständig patientenindividuelle FVIII-Dosierung zu erstellen und zu bewerten. 

Abseits der Hämophilie A wurde in Publikation II die Vorhersagegenauigkeit von 23 

Populations-PK Modellen mittels umfangreicher TDM-Daten (923 Proben) von 169 

erwachsenen Patienten, die kontinuierlich infundiertes Vancomycin erhielten, 

bewertet. Die Studie identifizierte das Modell von Okada et al.[5] 

(Richtigkeit: < -0.1 mg/L) und ein Modell aus gepoolten Daten von Colin et al.[6] 

(Richtigkeit: < -1.1 mg/L) als am besten geeignete Modelle. Im direkten Vergleich des 

Datenalters und der Datenmenge hatten weniger alte Beobachtungen einen positiveren 

Einfluss auf die modellgestützten Vorhersagen als eine höhere Anzahl an 

Beobachtungen. Die deutlichen Unterschiede der modellgestützten Vorhersagen 

unterstreichen die Notwendigkeit einer sorgfältigen Modellauswahl und -validierung je 

nach Einsatzzweck sowie populations- und datenspezifischen Eigenschaften. 

In Publikation III galt es, die Herausforderung der Auswahl des richtigen Modells für das 

individuelle MIPD zu bewältigen. Dazu entwickelten und evaluierten wir zwei 

automatisierte Multi-Modell-Ansätze. Diese wählen entweder automatisch das Beste 

(model selection algorithm, MSA) oder ein Set von Modellen (model averaging algorithm, 

MAA) aus einer Reihe von Populationsmodellen für einen einzelnen Patienten aus. Die 

Vorhersageleistung der beiden Algorithmen wurde in einer Simulationsstudie aus sechs 

unterschiedlichen Populationen sowie einem klinischen Datensatz von 180 Patienten, 

welche mit Vancomycin behandelt wurden und unter TDM standen, bewertet. In den 

sechs virtuellen Populationen zeigten der MSA und MAA genauere Vorhersagen 

(Präzision: 9.9–24.2 %; Richtigkeit: weniger als ±8.2 %) als die einzelnen 

Populationsmodelle (Präzision: 8.9–51.1 %; Richtigkeit: bis zu 28.9 %). In dem klinischen 

Datensatz führten der MSA oder MAA zu richtigen und präzisen Vorhersagen (Präzision: 

29 % und 30 %; Richtigkeit: -5 % bzw. 0 %). Beide Ansätze wurden in die oben erwähnte 

MIPD-Software ‚TDMx‘ implementiert, um dem klinischen Entscheidungsträger die 

unparteiische und patientenspezifische Auswahl der idealen Modelle zu erleichtern. 

Zusätzlich wurden der MAA und MSA zur Vorhersage der individuellen Zielparameter 

der Patienten aus Publikation I und II genutzt und ihre Anwendbarkeit in beiden 
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Populationen nachgewiesen. Die Vorhersagegenauigkeit lag immer im Bereich des 

besten identifizierten Populations-PK-Modells oder war sogar besser als dieses. 

In Publikation IV wurde der Einfluss der Probenentnahmezeit auf die 

Vorhersagegenauigkeit des entwickelten MAA und MSA in einer Simulations-

Schätzungs-Studie untersucht. Dazu wurden 92 Ein- oder Zwei-

Probenentnahmestrategien erstellt, um die individuelle Fläche unter der 

Konzentrations-Zeit-Kurve (AUC) nach intermittierenden Vancomycin-Infusionen zu 

schätzen. Die optimalen Einzelprobenzeitpunkte lagen zwischen 2 und 6.5 Stunden 

nach Infusionsbeginn, wobei die Richtigkeit zwischen -2.9 % und 1.0 % variierte und die 

Präzision für beide Multi-Modell-Ansätze zwischen 23.3 % und 24.0 % lag. Eine 

zusätzliche Messung zwischen 4.5 und 6.0 Stunden verbesserte die 

Vorhersagegenauigkeit (Richtigkeit: -1.7–0.0 %; Präzision: 17.6–18.6 %), obwohl die 

Unterschiede zwischen den auf zwei Stichproben basierenden Strategien geringer 

ausfielen. Im Gegensatz zur gegenwärtigen klinischen Praxis, in der meist 

Talspiegelmessungen zur Auswertung herangezogen werden, sollte die erste Probe 

idealerweise frühzeitig nach Behandlungsbeginn entnommen werden, während das 

Entnahmefenster einer zweiten Probe deutlich größer ist. Dies könnte bereits genügend 

Zeit bieten, um die zweite Dosis zu individualisieren, was bei der Entnahme und 

Bewertung von Talspiegelmessungen nahezu unmöglich ist.
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V. Abstract 

The digital era is progressing rapidly, especially in the health-associated context. 

Excessive amounts of health data, computational advances and constantly increasing 

insights into diseases require the development and evaluation of novel technologies for 

integrating the gained knowledge into individualized therapies. While therapeutic drug 

monitoring (TDM) has become common practise in life-threatening and cost-intensive 

diseases like haemophilia A or methicillin-resistant Staphylococcus aureus (MRSA)-

infections, the utility and value of precision medicine has not been fully leveraged yet.[1], 

[2] So-called pharmacometric approaches have the potential to improve individual 

therapies through optimizing the efficacy of a drug and minimizing its toxicity. 

However, this requires (i) the approaches to fit for the intended purpose, (ii) to be 

carefully evaluated and validated and (iii) to assure the correct use by healthcare 

professionals. 

The aim of the present PhD project is to bring new insights to individualized therapies 

in two exemplary diseases (haemophilia A and infections treated with vancomycin). By 

developing and evaluating new and existing pharmacometric approaches it is aspired 

to mitigate the burden to implement pharmacometric approaches at bedside. 

In Publication I, 12 distinct population PK models were evaluated in their performance 

to predict the time above the factor VIII (FVIII) target by using data from 39 adult 

haemophilia A patients. The patients received various FVIII products, and five-point PK 

data measured in two assays were obtained for the external validation. On average, the 

population models predicted with a positive bias (e.g. bias -3.8 hours to 49.6 hours a 

priori). The model of Abrantes et al.[3] was identified to perform best across the 

population (bias: -3.8 hours a priori, -1.0 hours a posteriori, 0.6 hours general model fit) 

and acceptably predicted up to 90 % of the patients. This model was implemented in 

the open-access model-informed precision dosing (MIPD) software ‘TDMx’,[4] to allow 

the community to evaluate patient-individual FVIII dosing. 

Apart from the indication haemophilia, the predictive performance of 23 population 

vancomycin PK models was evaluated in Publication II and based on rich TDM data 
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(923 samples) from 169 adult patients after receiving continuously infused vancomycin. 

The study identified the model of Okada et al.[5] (bias < -0.1 mg/L) and a pooled-data 

model from Colin et al.[6] (bias < -1.1 mg/L) as most suitable models. Model-based 

predictions were more accurate when using more recent observations compared to a 

higher number of observations. The highly variable predictions of the models underline 

the need of careful model selection and validation depending on the purpose, 

population- and data-specific properties. 

In Publication III, we aimed to overcome the challenge of selecting the correct model for 

individual MIPD by deriving and evaluating two automated multi-model approaches. 

The novel approaches either automatically select the best (model selection algorithm, 

MSA) or a set of models (model averaging algorithm, MAA) for an individual patient 

amongst a set of candidate models. A simulation study of six distinct populations and a 

clinical dataset of 180 patients undergoing TDM during vancomycin treatment was used 

to assess the predictive performance of the two algorithms. Throughout the six virtual 

populations the MSA and MAA displayed more accurate predictions (imprecision: 9.9–

24.2 %; inaccuracy: less than ±8.2 %) than the single population PK models (imprecision: 

8.9–51.1 %; inaccuracy: up to 28.9 %). In the clinical dataset, the MSA or MAA resulted in 

unbiased and precise predictions (imprecision: 29 % and 30 %, inaccuracy: -5 % and 0 %, 

respectively). Both approaches were implemented into the above mentioned MIPD 

software ‘TDMx’ to facilitate the impartial and patient-specific selection of ideal models 

to the decision maker. Additionally, the MAA and MSA were applied to predict the 

targets in the individuals introduced in Publication I and II and proved their applicability 

in these two populations. The predictive performance was always in range of or even 

better than the best identified population PK model. 

In Publication IV, the impact of the sampling time on the predictive performance of the 

developed MAA and MSA was investigated in a simulation-estimation study. Therefore, 

92 one or two sampling strategies were created to estimate the individual area under 

the concentration-time curve (AUC) after intermittent vancomycin infusions. The 

optimal single-sample timepoints were identified between 2–6.5 hours post dose, with 

varying bias values between -2.9 % and 1.0 %, and an imprecision of 23.3–24.0 % for both 
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multi-model approaches. Adding a second sample between 4.5–6.0 hours improved the 

predictive performance (-1.7 to 0.0 % bias, 17.6–18.6 % imprecision), although the 

difference in the strategies based on two samples were minor. Hence, contrarily to 

current clinical practice where mostly trough samples are obtained, the first sample 

should optimally be obtained during early treatment phase, while the second sampling 

window is less strict. This could give sufficient time to already individualize the second 

dose, which is likely unfeasible using trough sampling. 
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1 Introduction 

1.1 Personalized medicine 

In an ideal world personalized medicine would follow the following paradigm: every 

patient receives exactly the treatment needed. Each drug is administered in its most 

effective and safest way. The individual outcome is maximised while adverse events and 

costs are minimized.  

Reality proves us far away from that goal. The World Health Organization for example 

estimated that costs of 42 billion US-dollar per year are purely caused by medication-

related errors.[7] Although quality, safety and efficacy need to be assured during every 

drug approval, economic reasons, considerations about practicability and potentially 

limited resources mostly led to bulk dosing recommendations for the largest possible 

groups of patients, like a fixed standard dosing.[8] In this simplest dosing strategy the 

same fixed dose and dosing interval is assigned to every individual, although this might 

result in highly variable and potentially suboptimal responses in certain patients.[9] The 

variability of the responses often bases on multiple factors, which can be classified into 

differences between individuals (e.g. patient’s age, body weight and sex) or within the 

same individual (e.g. disease progression, organ function and dietary changes) and are 

termed patient covariates. 

Adaptive dosing strategies further incorporate these patient-specific covariates to 

calculate pre-adjusted dosing regimen. Therefore, it is crucial to know the correlation 

between the drug effect and the patient-specific covariates (e.g. an increased body 

weight reduces the desired drug effect, which can be compensated via an increased 

dose).[10] These correlations are usually quantified in prior studies of certain patient 

collectives and allow a customized treatment initiation for each collective. 

When intending to adjust the dosing strategy during treatment, a feedback mechanism 

needs to be implemented. By comparing individual measurements (e.g. blood pressure, 

blood sugar as direct drug effect measurements or plasma concentrations as surrogate 

markers for the drug effect) with a predefined target, imminent doses can be increased 
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or decreased to meet the desired drug effect. The combination of feedback and dosing 

adjustment can be repeated throughout therapy. A detailed discussion of this topic is 

included in Chapter 1.2 and compared to pharmacometric approaches in Chapter 1.4. 

 

1.2 Therapeutic drug monitoring 

Therapeutic drug monitoring (TDM) embodies a form of an ‘adaptive dosing strategy 

with feedback-control’ and thus aims for individualized dosing. The overall goal is to 

maintain individual drug concentrations in biological fluids within specified target 

ranges to maximize therapeutic benefit, yet avoid toxicity.[11] 

Since the first reports on applied TDM in the early 1970s,[12], [13] the therapeutic value 

of treatment individualization must be thoroughly assessed: Rather than applying TDM 

universally, certain criteria should be met to justify its application. First, it needs to be 

assured that the correlation between measured drug concentration and effect is higher 

than between dose and effect (i.e. blood concentrations are an adequate surrogate for 

the effect) and there is no clinical marker to directly measure the drug effect.[13] Second, 

feedback controlled dosing is needed if drugs (i) display a narrow therapeutic window 

(i.e. a small range between the minimal effective and minimal toxic concentrations), 

and (ii) result in highly variable exposures or responses in individuals.[14] Third, TDM is 

also indicated when the risk of intolerable toxic effects are increased and/or the 

therapeutic success is critical (e.g. in face of death). Lastly, if the patient’s response 

differs from usual expectations due to unforeseen or special exposure-response 

relations (e.g. the patient belongs to special risk groups, like critically ill), actively applied 

TDM can assist in refining the individual treatment.[15] 

TDM is considered a straightforward process, as measurements can be easily compared 

with the predefined limits of effective/toxic concentrations (i.e. whether the measured 

concentration is within target range or not). Thereon adjusted doses or dosing intervals 

are easy to calculate via the rule of three (i.e. the Dettli rules). Nonetheless, the 

conventional TDM approach is associated with several disadvantages. Predetermining 

target concentration ranges is mostly limited to blood/plasma concentrations and 
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usually established for one way of administration (e.g. intermittent or continuous) and 

a distinct dosing interval. Evaluating more complex targets, like the area under the 

concentration-time curve (AUC) or the time above a concentration threshold (TAT), is as 

unfeasible as interpreting exposure and adjusting doses of drugs exhibiting non-linear 

pharmacokinetics (PK).[16] Furthermore, the rate of drug input and drug elimination (i.e. 

the exposure profile) has to be fairly constant over time, meaning steady-state 

conditions are required after every change of drug amount or interval before TDM will 

be reasonable.[9] This makes the convential TDM approach rather slow. Last but not 

least, TDM has been criticized for being a passive monitoring process (i.e. whether the 

measured concentration is within target range or not) with no clear guidance on 

achieving individual targets.[15], [17] 

Interventions like the target concentration intervention, which defines a distinct target 

and gives pharmacological-based guidance on how to achieve the same,[18] highlight 

the common interest on overcoming disadvantages of traditional TDM.  

A more sophisticated approach includes pharmacokinetic/pharmacodynamic models to 

guide dosing and is summarized under the term model-informed precision dosing 

(MIPD). Before discussing MIPD, the basic elements of PK, PD and pharmacometric 

modelling are reviewed. 

 

1.3 Pharmacometrics 

In the last decades pharmacometrics has evolved to an integral part of clinical 

pharmacology during drug development, research and therapy.[19] It is the intersection 

between quantitative pharmacology, mathematics and computational science or as 

Ette et al. pointedly defined the term: “Pharmacometrics is the science of developing 

and applying mathematical and statistical methods to characterize, understand, and 

predict a drug’s pharmacokinetic, pharmacodynamic and biomarker-outcomes 

behavior.”[20] In essence, pharmacometrics rationalizes data-driven decisions in drug 

development and pharmacotherapy though analysing populations and gaining 

knowledge in the pharmacokinetic and pharmacodynamics of the drug. 
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1.3.1 Pharmacokinetics 

A fundamental element in pharmacometrics is to provide understanding of a drug’s 

pharmacokinetics (PK). Thus, the term refers to the study of all processes that determine 

the fate of the drug within a living organism.[21] In this context, a widely employed 

acronym is ‘ADME’ and incorporates the absorption (A) of the drug, distribution (D) 

within the body, the metabolism (M) and excretion (E) – the latter two also known as 

clearance.[22] 

Given the genetic and physiological differences between humans (e.g. age, physiological 

condition or genetic disposition) and time-dependent alterations within individuals (e.g. 

disease progression, comedication or organ function), the time-course of a drug and its 

PK descriptors vary in a group of patients or population. In the field of population 

pharmacokinetics, clinical samples are collected from multiple patients to describe 

concentration-time profiles and quantify sources of variability in drug exposure. The 

main aim of population PK is to associate gained information with patient 

characteristics and translate this knowledge into mathematical functions. 

 

1.3.2 Pharmacodynamics 

If PK is defined as “how does the body affect the drug”, pharmacodynamics (PD) can be 

summarized as “how does the drug affect the body”.[23] In essence, PD describes the 

relationship between drug exposure and beneficial/adverse drug effects. These 

relationships can be represented in mathematical models and is called PK/PD 

modelling. Of central interest thereby are the underlying PK/PD mechanisms and the PK 

impact on the effect variable, which together could provide the fundament of an 

optimized dosing regimen. As effect variable one could imagine the in-vitro bacterial 

count in infectious diseases, the time to cure or death, or the physician’s assessment 

aggregated in a score. In coagulation disorders for example, the bleeding frequency or 

bleeding intensity can be associated with the PK of a clotting factor to derive dosing 

recommendations. 
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1.3.3 Pharmacometric modelling 

As indicated above pharmacometric modelling is a common tool to derive the drug’s PK 

or PK/PD characteristics and thereupon derive new treatment recommendations. The 

conceptual framework of this approach, also termed non-linear mixed effects (NLME) 

modelling, arose in the 1970s by Sheiner et al.[24]. Nowadays, it has mostly replaced two 

more simplistic approaches, which have shown to produce biased results: naïve pooling 

and the ‘two-stage’ approach.[25] The naïve pooling calculates the population 

parameters by fitting all data from the total population at once without accounting for 

individual differences, which leads to biased population parameters without any 

estimated variabilities.[26] The ‘two-stage’ method calculates the individual 

parameters first and subsequently determines the variability between the individuals. 

Thus, this method has been shown to result in less biased population parameters but 

still misspecifies the variabilities and requires the same (high) amount of data from 

every individual.[27] 

In contrast, NLME modelling can simultaneously determine the population, as well as 

the individual model parameters and quantifies the variability between and within 

individuals, as well as covariate relationships at once.[24] Furthermore, this process 

requires less quantities of data compared to the aforementioned approaches and can 

deal with missing or unbalanced data. Different sources of data can be simultaneously 

integrated to contribute to different aspects of the model.[28] 

Generally, the modelling process underlies four key elements [29], although on-going 

methodological and computational developments further the set of more 

complex/refined techniques/applications (Figure 1). First and foremost, the intended 

use of the model must be defined, along with the pharmaceutical research question. 

Thereby, pharmacometric models can either be descriptive or predictive. Descriptive 

models are purely developed to gain knowledge on the drug’s PK/PD within the studied 

population.[30] When the model is used to numerically summarise PK/PD information 

(e.g. variabilities in the population or covariate relationships), there is no intention to 
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extrapolate. On the contrary, predictive models, usually build upon descriptive models, 

are intended to be applied to patients outside the development population.[31] The 

predictive model behaviour is of greater interest than the exact descriptive parameter 

values. 

 

 

In both cases, the second key element is to acquire the relevant data. Thereby, the 

quality of data is as important as its appropriateness to potentially answer the research 

question. Falsely documented or (accidentally) ignored facts (e.g. comedications or 

organ status) will impair the development of reliable models – the third element of the 

modelling process. 

A NLME model, which ‘mixes’ or combines fixed effects (e.g. constant covariates or doses 

of drug) with random effects (e.g. unexplained variability or time-varying covariates) in 

a set of nonlinear functions,[32] is built upon three components: the structural, the 

Figure 1: Key elements of the nonlinear mixed effects modelling process 
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statistical and the covariate model.[33] While the structural model contains the 

mathematical structure and describes the central tendencies of the fixed effect 

parameters, the statistical model accounts for the variation on parameter and 

observation level by describing the magnitude of the variances (e.g. inter-individual, 

intra-individual, inter-occasion and residual variability). 

In general, the variability of population parameters is assumed to underly a formal 

statistical distribution (e.g. lognormality) and therefore, NLME models are of parametric 

nature. An opposing method, the nonparametric approaches, are not mathematically 

summarising the observation via discrete distributions and typical, fixed parameters. 

The population trends and their variabilities are rather computed as a set of supporting 

points, which are associated to the respective individuals and based on their probability 

to adequately predict the observed data.[34] 

The last component of a NLME model, the covariate model, aims to explain parts of the 

inter- and intra-individual variability through relating individual, measurable patient 

covariates (e.g. age, body weight) to parameter variances.  

During the development of descriptive NLME models a collection of related models with 

increasing complexity is built to identify the most representative one to answer the 

initial research question. Therefore, the goodness-of-fit, reliability and stability must be 

evaluated using credible techniques. Given that the extrapolation within predictive 

models involves more assumptions on the relationship between prior knowledge and 

predicted results, these models require a more careful validation to fit the respective 

purposes.[31] More details of the model evaluation and validation – the fourth key 

element of the modelling process – will be covered in Chapter 1.3.4. 

 

1.3.4 Model evaluation and validation 

Before introducing evaluation techniques used in the present work, a brief distinction 

between the connotations of evaluation and (external) validation should be made. As a 

matter of fact, there is no clear consensus on the differences of the terminology of 

validation and evaluation. Both terms are found interchangeably in the pharmacometric 



 

  

  

— 8 — 1.3 Pharmacometrics 
 

 

community.[35] Nonetheless, validation is – in context of this work – focussing on the 

predictive performance of the models with regard of unseen, future data. In accordance 

with the FDA guideline, model validation proves the predictability of the model and 

quantifies the accurateness and reproducibility of the forecast in (new) validation 

data.[36] In contrast, evaluation is to be used in a broader way and summarises all 

processes demonstrating whether the proposed application is robustly implemented 

and whether ‘good practise’ had been applied to describe the (known) data.[37] 

Both terms thereby do not imply the model(s) to be appropriate under any condition but 

only the evaluated and predefined purpose. In the following a selection of basic 

evaluation techniques during model development (including selection, evaluation, and 

validation) will be introduced. 

During early stages of model development, the so-called objective function value (OFV) 

is generally used to discriminate between candidate models. In the NLME framework 

OFV is often expressed as modification of the extended least squares (ELS) (Eq. 1): 

𝑂𝐹𝑉 = ∑ ∑ (𝑦𝑗(𝑡𝑗) − 𝑠𝑗(𝑡𝑗, 𝜃, 𝜂𝑖))𝑚𝑗=0 2𝜎2𝑛
𝑖=0 + 𝑙𝑜𝑔𝑒(𝜎2) + ∑ 𝜂𝑖2Ω2 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑛

𝑖=0  

 

 

Eq. 1 

 

 

with 

• 𝑦𝑗(𝑡𝑗) being the measurement at time 𝑡𝑗  for the 𝑖th individual, i.e. the dependent 

value 

• 𝜃 being the model parameter vector (constant with respect to time but unknown) 

• 𝑠𝑗(𝑡𝑗 , 𝜃, 𝜂𝑖) being the model-predicted value at time 𝑡𝑗, given the model 

parameter vector 𝜃 and including the individual deviations 𝜂 

• 𝜎2 being the variance of the residual error  

• Ω2 being the variances of the parameter 𝜃 

• 𝜂𝑖  being the inter-individual variation term of the 𝑖th individual drawn from the 

variances Ω2 

ELS 
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Thereby, the OFV simultaneously encloses all differences of individual and population 

parameters as well as between observed and predicted dependent variables (e.g. plasma 

concentrations). Via this single number differences between competing models can be 

initially assessed.[38] 

Furthermore, goodness-of-fit is usually assessed graphically. Here, prediction versus 

observations from the total population and/or their (standardized/decorrelated) 

differences are plotted and visually assessed as for example proposed by Nguyen et 

al.[39] Presuming clean data, the so-called standard diagnostic plots give insight into 

structural misfits and mismatching residual variability components. 

Moreover, these plots can be accompanied by the assessment of (conditional) weighted 

residuals, which are standardized prediction errors, and simulation-based diagnostics 

like the visual predictive checks (VPC) or normalized prediction distribution errors. VPC 

are a graphical comparison of the prediction intervals derived via simulations and the 

corresponding observations.[40] Normalized prediction distribution errors on the other 

hand are simulation based computations of the prediction discrepancies which are 

uncorrelated and normalised.[41] These diagnostics give insight into structural misfits 

and a visual imprecision of the encoded variability of the predictions.  

Another set of techniques aims to evaluate the reliability and stability of a model. 

Therefore, the uncertainty of all model parameters needs to be assessed, usually in 

forms of confidence intervals or standard errors. Standard errors of the parameters are 

approximated via methods like bootstrapping or log likelihood profiling. In a nutshell, 

bootstrapping is defined as a method of repeatedly generating datasets via resampling 

of the original data and re-estimating the parameters of the model of interest.[42] The 

distribution of the re-estimated parameter is subsequently used to display the 

confidence intervals of the respective parameters. In likelihood profiling, the OFV 

associated with the surface around each parameter of the final model is graphically 

displayed.[30] 

In case the model is intended to be externally applied for forecasting individual profiles 

or targets, the predictive performance needs to be assessed and ideally compared to 

other approaches. For this purpose, several numerical performance indicators, which 
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should be accompanied by evaluation methods proving model stability and reliability, 

have been proposed.[43] The mean or median error for example represents the general 

tendency of the forecast to meet the true values, also known as bias. This metric should 

be always accompanied by a measure of imprecision. The (root) mean squared error for 

example enables interpretation of the average spread of the forecasts. 

To validate the predictive performance of the models and novel approaches evaluated 

in the current work (e.g. their ability to accurately forecast) the numerical performance 

indicators mentioned above were calculated in external datasets that were not used to 

develop the models. Except in the simulations, the metrics were accompanied by the 

standard errors of the accuracy metrics to determine uncertainties.  

 

1.4 Model-informed precision dosing 

MIPD summarizes computationally guided approaches (including the use of 

pharmacometric models, machine learning or adaptive model approaches), which aim 

to draw inference from multiple sourced data on future treatment courses of the 

patient.[16], [44] The process lies within the broader field of personalized medicine and 

is increasingly recognised by healthcare professionals, patients and even (former) 

American presidents, as the latest precision medicine initiative was launched by Barack 

Obama.[45], [46]  

Through implementing pharmacometric models in mobile or web-based software (e.g. 

InsightRX[47] or TDMx[4]), MIPD supports clinical decision-making and aims to 

maximize efficacy and minimize toxicity within the individual. It can be seen as an 

extension to traditional TDM, because it shares the same aim and has similar fulfilling 

criteria (i.e. narrow therapeutic ranges, imperative of therapeutic success, or high risk of 

altered PK/PD). Nonetheless, this approach comes with several advantages compared 

to traditional TDM. 

As with classical dosing nomograms or single covariate-based dosing, pharmacometric 

models can predict a likely dosing regimen to meet the intended target without 

measuring any drug concentrations (i.e. a priori). However, this approach allows to 
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consider multiple covariates, its correlations and prior knowledge enclosed in the model 

(e.g. PK structure and variability in similar patients/populations, also termed Bayesian 

prior) simultaneously and immediately provides a comprehensive representation of the 

PK parameters together with their probability distributions.[48] Furthermore, with the 

individual basic parameters at hand, more complex parameters (like the AUC or TAT) can 

be easily derived. 

The power of pharmacometric models becomes apparent when individual drug 

concentrations are available. The probability distributions of the patient’s PK 

parameters are refined considering the Bayesian prior, dosing, and drug measurement 

data at once and the most likely set of individual estimates will be generated (i.e. the 

maximum a posteriori (MAP) estimate).[49], [50] Thereby, the drug concentration 

measurements, of which a single one might already be sufficient, can theoretically be 

obtained at any time of the dosing interval. Hence, MIPD is not restricted to a fixed 

dosing regimen and steady-state conditions, although certain timepoints may 

contribute more to the predictions.[16] Ultimately, MIPD results in maximally precise 

dosing recommendations, which can be constantly updated as soon as new data 

becomes available. 

Despite its benefits, implementing MIPD in clinical practise still progresses at snail’s 

pace.[51]–[53] One such reason is the necessity to carefully select the underlying model. 

As Broeker et al. demonstrated, varied the predictive performance of 31 published 

vancomycin PK models drastically, when being used for (Bayesian) forecasting of 

individual PK profiles.[54] 

Further detailed reasons on why MIPD has not yet become reality are discussed in 

Chapter 4. 

 

1.5 Investigated diseases for application of MIPD 

Two different diseases and their corresponding therapies were investigated in this work: 

haemophilia A as well as (systemic) infections caused by Gram-positive bacteria. 

Thereby, their contrasting demands on the treatment highlight the potential of MIPD to 
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enhance treatment across substantially different diseases. While haemophilia A is 

treated for the entire lifetime, infections caused by Gram-positive bacteria rather 

require rapid and temporally treatment. More differences regarding their causes, 

prevalence and treatment targets are described in the following two chapters. 

 

1.5.1 Haemophilia A 

Haemophilia A is one of the most common bleeding disorders and affects mostly males 

due to its x-linked recessive inheritance (incidence 1 in 5 000 males).[55] Although the 

disease is clinically indistinguishable from haemophilia B (incidence 1 in 30 000), 

differentiation is necessary due to the divergent cause, that is a deficiency or 

malfunction of either coagulation factor VIII (FVIII) in haemophilia A or of factor IX in 

haemophilia B.  

Untreated haemophiliacs are usually not expected to reach their adulthood, depending 

on the severity of the disease. The condition thereby occurs in three forms and is 

categorized via the intrinsic activity (i.e. endogenous amount of functional FVIII) relative 

to normal levels. While in mild (6–30 % of normal activity) and moderate (2–5 %) 

excessive bleeds mostly manifest after major trauma or surgery, patients with severe 

haemophilia A (≤1 %) encounter 20–30 excessive or even spontaneous bleeds per 

year.[56] 

There is no cure for haemophilia A, but a lifelong and individually optimized 

replacement of the malfunctioning or missing factor VIII can prolong life to normal 

expectancies[57] and improve quality of life.[58] This prophylactic treatment involves 

the periodic administration of exogenous FVIII products to always maintain the patient 

above 1 % of the normal FVIII level. This has been shown to reduce life-threatening 

bleedings, recurrent musculoskeletal hemorrhages and its consequent joint disabilities 

– the main symptoms of haemophilia A.[2], [59] 

Since the first description of the disease in the 19th century,[60] its treatment has 

evolved from blood transfusion to prophylactic replacement therapy using exogenous 

FVIII derivatives. Nowadays, three classes of FVIII products are available: plasma-
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derived, recombinant products and those with extended half-lives. The most common 

class, the recombinant products, can further be distinguished into full-length, B-domain 

deleted and other modified products, which differ in tolerability, costs and typical PK 

(e.g. standard half-life is reported between 8–12 hours and around 20 hours for 

extended half-lives).[61] But even using the same product the individual response has 

been demonstrated to greatly vary.[62], [63] Patient characteristics (e.g. age, body 

weight or von-Willebrand factor) or the underlying assay used to determine FVIII activity 

only partly explain the PK variability and therefore, make this disease an ideal candidate 

for personalized medicine using MIPD approaches. 

 

1.5.2 Infectious diseases caused by Gram-positive bacteria 

Infections occur in many different forms, from harmless furuncles to life-threatening 

infections of the lower respiratory tract, cardiovascular system or at intra-abdominal 

sites, among others. These infections can be extraordinarily dangerous when patients 

are in vulnerable conditions (e.g. old, immunodeficient or postsurgical patients) or when 

typically used anti-infective drugs become ineffective due to antimicrobial resistance 

(AMR) mechanism. 

Globally, more than 1.25 million people died in 2019 due to AMR bacterial infections and 

almost four-times as much died in association with AMR.[64] Thus, infections with drug-

resistant bacteria have become a leading cause of death worldwide – even exceeding 

those caused by HIV/AIDS or malaria (860 000 and 640 000 death, respectively).[65] 

The number of human pathogenic bacteria is enormous. Nonetheless, drug resistance 

in six alone (E. coli, S. aureus, K. pneumoniae, S. pneumoniae, A. baumannii, and P. 

aeruginosa) lead to the majority (i.e. 929 000) of the above mentioned deaths.[64] One 

of the most common pathogen-drug combination is the methicillin-resistant 

Staphylococcus aureus (MRSA). Current European surveillance reports estimate that 

15.5 % of the invasive S. aureus strains are methicillin resistant. Thereby, the prevalence 

highly varies from as low as 1.1 % in the northern to almost 50 % in the southern 

countries of the European Union.[66]  
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Of those infected with an MRSA strain, conventional antibiotics like beta-lactams, 

fluoroquinolones or macrolides are not effective anymore.[67] In this case, the 

glycopeptide antibiotic vancomycin can serve as key alternative. 

After being discovered in 1952, vancomycin has been handled as a last resort antibiotic 

due to its perceived toxicity and better alternatives (e.g. semisynthetic penicillins or 

cephalothin).[68] Its use dramatically increased from the 1980s on because of the 

widespread oral administration to treat pseudomembranous enterocolitis, which is 

today known as one cause of vancomycin-resistant enterococci; and second the rising 

appearance of MRSA.[69] 

Nowadays, vancomycin is one of the most used antibiotics in the hospitals of the United 

States.[70] It often requires TDM especially in vulnerable patients, given the critical need 

to rapidly reach adequate antibiotic effects when facing life-threatening conditions (e.g. 

sepsis or complicated endocarditis). Furthermore, high drug exposures were found to be 

associated with nephrotoxicity or subsequent stages of acute kidney injuries. [71], [72] 

Nonetheless, there has been an ongoing dispute on the most appropriate exposure-

response relationship of vancomycin.[73][71] While the vancomycin guideline from 2009 

recommended to target vancomycin trough concentrations of 15–20 mg/L and 

therefore, obtain only TDM samples at the lower end of the PK profile, the most recent 

guideline rather recommends maintaining the patient within an AUC range of 400–650 

mg*h/L.[1], [74] To calculate the optimal individual AUC, adequate population PK models 

and the most informative samples are required. 

The glycopeptide vancomycin is bactericidal against Gram-positive bacteria due to 

inhibition of the cell wall crosslinking and has a low bioavailability.[75] Therefore, doses 

are either intermittently or continuously infused with both displaying similar safety, 

microbiological and clinical outcomes.[76] To reach individual targets even faster, MIPD 

could be applied to forecast future PK profiles and subsequent doses. 
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2 Objectives 

Individualizing therapies is essential in treating life-threatening and cost-intensive 

diseases to ascertain therapeutic effects and minimize risk of toxicity. Especially when 

vulnerable or special patients are affected due to their PK alterations (e.g. critically ill, 

children, multi-morbid), TDM has evolved as an important tool. This is due to the 

straightforward process of comparing obtained drug measurements with 

recommended targets and individualizing doses accordingly. Whether the target is to 

maintain the FVIII concentration of a haemophilic patient above a certain threshold, or 

whether one targets a distinct antibiotic exposure in MRSA-infected patients using 

surrogate trough levels – TDM has been advocated for both contrasting diseases 

discussed in this work.[2], [77] 

However, the traditional way of personalized medicine has several disadvantages. Most 

importantly, TDM is limited to steady-state conditions, and reference ranges of the 

surrogate are usually obtained for a single dosing strategy (in terms of the way of 

administration and dosing interval) in a standard patient collective.[78] Furthermore, 

the variability of exposure-response is usually accounted for using one or two different 

patient information (e.g. covariates like body weight or kidney function) – especially to 

calculate the first doses. The complex interpretation of multiple influencing factors 

simultaneously is likely impossible.  

To overcome these drawbacks, TDM can be accompanied by pharmacometric models to 

further guide dosing at bedside, i.e. MIPD approaches. Unfortunately, systematic 

evaluation and implementation of MIPD is advancing slowly. Although it is not yet 

commonly practiced in clinical reality, these models could – implemented in software 

tools – change the way individual dosing decisions are derived.  

Nonetheless, several challenges of MIPD need to be addressed before this process can 

become common practise. These challenges can be classified into three key elements of 

MIPD: the model (M), the data/patient (D) and the operator/MIPD-user (O) (Figure 2). 
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Figure 2: Main challenges of model-informed precision dosing 

 

The objective of this thesis was to evaluate challenges within these elements via the 

publications included and advocate a wider integration in healthcare. In detail, the aims 

of the publications were: 

 

Publication I: Systematic evaluation of population pharmacokinetic models for 

prophylaxis in haemophilia A 

• Evaluation of the predictive performance of population PK models to identify 

suitable models to guide personalized prophylaxis in haemophilia A patients (M) 

• Extension of an existing MIPD software developed by Wicha et al. [4] to provide 

a dosing module for haemophilia A treatment (O) 

• Assessing assay discrepancies and other influential factors of the patient (D) 

• Integration of multiple models in the MIPD approaches developed in Publication 

III and evaluation of its predictive performance (M, O) 
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Publication II: Systematic evaluation of population pharmacokinetic models for model-

informed antibiosis in Gram-positive infected patients 

• Evaluation of the predictive performance of population PK in Gram-positive 

infected patients receiving continuous vancomycin (M) 

• Assessing the impact of aging TDM information (M, D) 

• Application and evaluation of the multi-model approaches developed in 

Publication III (M, O) 

 

Publication III: Development and validation of the model averaging and model selection 

algorithm 

• Development and validation of two novel MIPD approaches, which integrate 

multiple population PK models at once and aim to automate and objectify the 

model selection process (M, O) 

• Implementation of the multi-model approaches into the MIPD software 

developed by Wicha et al. [4] to be used for vancomycin MIPD (O) 

 

Publication IV: Importance of sampling time and number to forecast the individual drug 

exposure 

• Assessing the impact of sampling time and number of vancomycin plasma 

concentrations to forecast individual vancomycin exposure in the MAA/MSA (D) 

• Comparison of the MIPD approach to a traditional TDM approach (M, D) 

• Providing recommendations on sampling time and number to be used in future 

clinical trials (D, O) 
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3 Cumulative part 

The following cumulative part consists of four peer-reviewed publications, which 

represent the key results of this thesis. Thereby, the focus was set on various aspects of 

applied model-informed precision dosing (MIPD) in haemophilia A and MRSA-infections 

including the identification of optimal models and sampling timepoints, the 

development of new MIPD approaches as well as the assessment of the impact of aging 

TDM information. 

 

The articles were published in Therapeutic Drug Monitoring, International Journal of 

Antimicrobial Agents, Clinical Pharmacology & Therapeutics and Clinical Pharmacology 

& Therapeutics: Pharmacometrics & Systems Pharmacology.[79]–[82]  
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3.1 Publication I 

 

Dosing for Personalized Prophylaxis in Hemophilia A highly 

varies on the underlying Population Pharmacokinetic Models 

 

David W. Uster, Pratima Chowdary, Anne Riddell, Cecilia Garcia,  

Elsa Aradom, Molly Musarara, Sebastian G. Wicha 

 

 

Therapeutic Drug Monitoring (2022) 

 

Impact Factor: 3.681 (2020) 
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Synopsis 

Providing severe haemophilia A patients with an adequate prophylaxis is essential to 

prolong their lives and reduce costs due to excessive drug consumption or increased 

long-term consequences (e.g. joint-damages/disabilities). Thereby, dose 

individualization is nowadays usually assisted using trough sample-based TDM. A more 

sophisticated approach is to individualize dosing using population PK models and their 

predictions of the individual targets.  

In Publication I, we aimed to identify the most suitable population PK model to predict 

the individual time above target using one of multiple FVIII products. Therefore, the 

predictive performance of twelve published models were compared using sparse data 

from an external dataset.  

The systematic comparison revealed that it seemed beneficial to use models in MIPD 

which were developed on preferably large and dense data. Nonetheless, simple model 

selection based on the size of the development data is not enough. Especially, when 

intending to use a single model for MIPD, sound external validation is necessary.  

Furthermore, the use of chromogenic substrate assay (CSA) data for predicting the 

individual TAT resulted in more accurate predictions than using one-stage assay (OSA) 

data. 

At last, the most promising model (published by Abrantes et al.[3]) was implemented in 

the open-access model-informed precision dosing software ‘TDMx’ to allow the 

community to evaluate model-guided individual FVIII dosing. Moreover, we applied the 

two multi-model approaches developed in Publication III and revealed a similar 

predictive performance compared to the best population PK model. 
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3.2 Publication II 

 

Model-Informed Precision Dosing of Vancomycin via Continuous 

Infusion: A Clinical Fit-For-Purpose Evaluation of  

Published PK Models  

 

Astrid Heus§, David W. Uster§, Veerle Grootaert, Nele Vermeulen, Annemie 

Somers, Diana Huis in’t Veld, Sebastian G. Wicha, Pieter A. De Cock 

 

 

International Journal of Antimicrobial Agents (2022) 

 

Impact Factor: 5.283 (2020) 

 

§ equal contribution 
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Synopsis 

When treating severe infections with last resort antibiotics like vancomycin, the patient 

is usually balancing on a fine line between life and death. Subtherapeutic exposure 

levels are as dangerous as supratherapeutic levels, given its risk to develop AMR and lack 

of bacterial eradication or drug-induced adverse effects, respectively. Hence, tailoring 

individual vancomycin dosing according to the individual target (i.e. the AUC over MIC) 

is crucial to improve treatment outcome. The individual AUC can be determined using 

population PK models implemented in MIPD software. Yet, this requires externally 

validated models suitable for the intended purpose. 

We hypothesize that the selection of the model is dependent on the population of 

interest and the mode of drug administration. Therefore, we systematically compare 23 

models in forecasting vancomycin drug exposure with different levels of individual data 

(e.g. covariates only or covariates plus a single TDM measurement). 

In Publication II, we identified the two-compartmental models of Okada et al.[5] and 

Colin et al.[6] as most suitable for non-intensive care unit patients to forecast individual 

exposures after continuous vancomycin infusion. In fact, different models were 

identified as compared to previous systematic model comparisons for hospitalized 

patients receiving intermittent vancomycin infusion.[54], [83] 

Thus, caution is required when transferring these results to other populations and reveal 

the need of more sophisticated approaches as for example introduced in Publication III.  
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3.3 Publication III 

 

A Model Averaging/Selection Approach Improves the Predictive 

Performance of Model‐Informed Precision Dosing:  

Vancomycin as a Case Study 

 

David W. Uster, Sophie L. Stocker, Jane E. Carland, Jonathan Brett, 

Deborah J.E. Marriott, Richard O. Day, Sebastian G. Wicha 

 

 

Clinical Pharmacology & Therapeutics (2021) 

 

Impact Factor: 6.889 (2020) 
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Synopsis 

Variability in drug-response relationships between or even within individuals may lead 

to insufficient clinical effects and/or significant adverse effects. Especially in severe 

infections a rapidly induced, maximally precise antibiosis is vital to save lives. 

Forecasting drug exposures using pharmacometric models can improve individual 

target attainment when compared to TDM. However, yielding the maximal outcome of 

this MIPD requires the ‘correct’ model to be used for the individual, respectively. 

In Publication III, we derived and evaluated a model selection algorithm (MSA) and a 

model averaging algorithm (MAA) using Gram-positive infected patients receiving 

vancomycin treatment as a case example. These algorithms automate model selection 

and find the best model or combination of models for each patient.  

The concept of using multiple models at once was proven in a simulation study of six 

distinct populations, as well as in a clinical dataset of 180 patients undergoing TDM. 

Both algorithms outperformed the model of Goti et al.[84] (previously being identified 

best for Bayesian forecasting of a heterogenous population[54]) in terms of bias and 

precision. 

While six distinct models included in the multi-model approaches resulted in the best 

predictive performance, the exclusion of up to three models resulted in minor decreases 

of the performance. 

We concluded that the objective selection of a model/set of models is critical to cover 

atypical patients otherwise being mis-specified. Both algorithms were implemented 

into the MIPD-software ‘TDMx’ to lower the burden of adequate model selection and 

validation for MIPD. 
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Synopsis 

The latest MRSA-treatment guideline recommends to individualize vancomycin dosing 

based on the individual AUC determined with MIPD software.[1] Thereby, two 

measurements (i.e. a peak and a trough sample) are considered gold standard to 

determine the individual AUC, but single-sample strategies might be more economic. 

In Publication IV, we systematically evaluated optimal sampling times for AUC-

determination of vancomycin using automated one or two sample strategies with the 

MAA and MSA. Both algorithms were compared to a conventional equation-based 

approach (EQA) in a simulation-estimation study of 6 000 heterogenous virtual 

patients. 

In contrast to current clinical practice that focuses on trough samples, a single sample 

obtained between 2–6.5 hours post dose resulted in unbiased and precise predictions 

using the MAA and MSA. An additional sample between 4.5–6.0 hours improved the 

predictive performance, but the differences between all two-sampling strategies were 

minor. In contrast, the EQA always required two samples, steady-state conditions and 

was positively biased.  

The MAA/MSA preferred samples to be drawn early in the profile and accurately 

predicted the AUC even after the first dose. This emphasizes the potential of the 

MAA/MSA to already individualize the second dose precisely, which is likely unfeasible 

using trough sampling. 
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4 Discussion 

The following provides a comprehensive, overarching discussion of the four articles 

included in this work. The structure is based on the three key challenges of MIPD (Figure 

2), starting with the model-specific factors – including the identification, selection, and 

comparison of suitable population PK models and novel approaches for MIPD. The 

patient and data-related challenges as well as the advocation of MIPD to the 

user/operator are elucidated afterwards given the necessity to introduce the results of 

the model identification and the developed approaches first. 

 

4.1 Basis of model-informed precision dosing: the pharmacometric model 

The main fundament of every MIPD approach clearly is the underlying model. Thereby, 

it is essential to choose the most appropriate one and assure adequate use within the 

respective MIPD approach. 

 

4.1.1 Model selection in long-term prophylactic replacement- versus temporary 

anti-infective treatments 

Both investigated diseases are substantially different with regard to their targets, drug’s 

PK, treatment options and consequences in over-/underdosing. Prophylaxis in 

haemophilia A usually requires life-long treatment with one of the multiple, non-

bioequivalent FVIII products to maintain intrinsic FVIII levels above a minimal threshold. 

On the contrary, the temporary antibiotic treatment with vancomycin needs to be 

rapidly introduced and targets a distinct drug exposure (i.e. an AUC/MIC ratio of 400-

600). Additionally, antibiotic overdosing with its increased risk of severe adverse effects 

(like acute kidney failure) is as life-threatening as underdosing, which risks treatment 

failure. 

Despite these differences, TDM is recommended in both pharmacotherapies.[1], [2], [85] 

A prospective study including 46 children with severe haemophilia A found that plasma 

concentration-guided prophylaxis improved quality of life in more than 50 % of the 
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children, while the remaining ones did not require treatment optimization.[86] 

Similarly, a retrospective study on trough-guided vancomycin dosing of 150 patients 

revealed that more than 50 % of the individuals were initially treated suboptimally. 

While TDM enabled the prescribers to identify these issues, multiple dose adjustments 

were necessary for target attainment and more than 10 % of the individuals never 

reached the target.[87] 

A more promising way to improve individual treatments is computer-guided AUC 

monitoring and precision dosing using population PK models. In Chapter 1.4 the various 

theoretical advantages compared to TDM were introduced (i.e. the inclusion of multiple 

covariates simultaneously, ability to predict maximally precise dosing schemes with 

sparse data, no need of steady-state conditions and handling of non-linear PK). 

Furthermore, some preliminary studies already highlight the potential benefit of MIPD 

through, for example, faster target attainment compared to trough-based dosing of 

vancomycin and reduced risk of adverse events.[88]–[92] However, these studies are 

mostly small-scaled, retrospectively conducted and do not exhaustively address 

challenges of MIPD. Given the range of already published population PK models, a major 

challenge remains with the selection of the most accurate model to inform optimal 

dosing of FVIII products or vancomycin in heterogenous or complex patient populations. 

Our model comparisons in Publication I and II demonstrated the highly variable 

predictive performance of the population PK models. The bias in the 12 investigated FVIII 

population PK models, for example, ranged from -3.8 hours to 49.6 hours, indicating a 

trend towards overpredicting individual targets. Across the two diseases, it seemed 

beneficial to use a population PK model, which (i) was developed in as large as possible 

cohorts (e.g. 754 haemophilia A patients in the study of Abrantes et al.[3] or 2 554 

vancomycin treated patients in the study of Colin et al.[6]) and (ii) was built on a rather 

heterogenous patients collective (e.g. in the model of McEneny-King et al.[93] or Colin 

et al.[6]). 

Interestingly, we identified the model of Okada et al.[5] to be best, when predicting 

individual AUC in Gram-positive infected patients under continuous vancomycin 

therapy. The population PK model was neither the same as found in previous model 
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comparisons (i.e. Goti et al.[84]),[54], [83] nor developed in a population fully matching 

our study collective of hospitalized patients with and without haematological 

malignancies. 

Hence, simply matching the candidate model to the target population or selecting the 

model with the largest database does not guarantee the best performance. Novel 

approaches are necessary to establish MIPD as sound option for personalizing 

treatment. 

 

4.1.2 Novel approaches in model-informed precision dosing 

In Publication III, the development and evaluation of two new MIPD approaches were 

introduced with the aim to (i) overcome model selection bias and (ii) to accurately 

forecast the vancomycin exposure in individuals from a heterogenous population. The 

two multi-model approaches either automatically select the best (MSA) or a set of 

models (MAA) for an individual patient amongst a set of candidate models. In a nutshell, 

these algorithms are (i) estimating the individual PK parameters based on observed data 

with a set of population PK models, (ii) individually weighting the forecasted data of the 

different candidate models separately, and (iii) either averaging the predictions at each 

forecasted timepoint using the set of models jointly (MAA) or selecting the predictions 

of the best fitting, i.e. highest weighted, model (MSA). 

The MAA/MSA were applied to forecast the drug-specific target of individuals from 

clinical datasets of haemophilia A patients (Publication I), hospitalized patients 

receiving continuous vancomycin (Publication II) and hospitalized patients receiving 

intermittent vancomycin infusions (Publication III). Publication I and II revealed a similar 

performance of the MAA/MSA as compared to the best population PK model identified 

in the model comparisons, respectively. In Publication III, both approaches predicted 

individual vancomycin plasma concentrations less biased and more precise than using 

a previously identified model being recommended for MIPD in hospitalized patients.[54] 

Interestingly, the included set of vancomycin PK models did not contain the best 

performing model, but a selection of six models developed in preferable different 
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populations (e.g. critically ill, extremely obese or trauma patients). In fact, the predictive 

performance of the six models, separately, varied from substantial underprediction 

using the model developed in critically ill (from Revilla et al.[94]) to similar 

overpredictions using a model for patients post heart surgery (Mangin et al.[95]). 

Nonetheless, implemented in the MAA/MSA the performances of the population PK 

models added up. We hypothesize this to be caused by the ability of the MAA/MSA to 

rely on information from multiple population. The MAA/MSA were more flexible in 

terms of the parameter distributions to draw from. Thus, both were able to describe 

atypical patients not matching the rest of the studied population. 

When applying the multi-model approaches to forecast the time-above target in real 

haemophilia A patients, the set contained the top five performing models identified in 

the model comparison of Publication I. Here, the MAA/MSA approximated the 

performance of the population PK model identified best (from Abrantes et al.[3]) but did 

not surpass the same. Given that the population PK models included in the MAA/MSA 

mostly displayed a positive bias, the algorithms had mainly one way to approach the 

individual PK profiles. It seems, therefore, important to include models developed in 

preferably different populations rather than only including ‘very good’ performing 

models into such multi-model algorithms. 

The robustness testing in Publication III revealed that the MAA/MSA could compensate 

for bad performing models until the MAA/MSA consisted of only three population PK 

models. The reason why also individually bad performing models do work when being 

part of the MAA/MSA, may lie within the automatic weighting function. Bad performing 

models received a low weight in the MAA or MSA due to a relatively higher penalizing 

term. Thus, the respective models contributed only marginally to the model prediction. 

In this thesis, four different weighting functions were assessed and revealed the OFV to 

be best (i.e. the likelihood, which accounts for deviations of the individual MAP 

parameters from the model-specific population parameters as well as the differences 

between observed and individual predicted vancomycin concentrations).[81], [96] The 

other three weightings resulted in only small differences. The Akaike criterion,[97] for 

example, was overly penalizing more complex models when supplying only a few 
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samples, while the summed squared residuals were neglecting the prior information 

included in the model structure and hence, might overfit the data. The extended least 

squares weighting, best described as the interim between OFV and summed squared 

residuals, revealed the smallest differences to the OFV weighting. 

 

4.1.3 Comparing existing approaches of personalized medicine to the model 

averaging-/ model selection algorithm 

The MAA/MSA developed in Publication III is a new way to computationally guide dosing 

individualization. With the emergence of pharmacometrics and steadily progressing 

technological resources, further approaches have been invented. The following provides 

a comprehensive assessment of the various approaches compared to the MAA and MSA. 

 

Equation-based approach 

At the latest after the revised MRSA treatment guideline has been published, 

vancomycin dosing and monitoring has shifted from trough-based- to AUC-guided 

dosing using Bayesian approaches.[1] However, the pharmacometric know-how and 

resources required to integrate these state-of-the-art approaches into clinical practise 

has urged researchers to develop alternatives. Pai et al. adapted an approach previously 

proposed for aminoglycosides and daptomycin.[98], [99] Here, the individual 

vancomycin AUC is analytically approximated based on simple first-order PK formulas 

and two vancomycin plasma concentrations.[48] The major advantages of this EQA are 

its simplicity, which does not demand thorough pharmacometric knowledge. In 2019, a 

prospective randomized clinical trial involving 65 MRSA-infected patients implies that 

the EQA improved vancomycin-associated cure in comparison to trough-based 

TDM.[100] Complementary conclusions were drawn in a larger retrospective studies 

from Olney et al. [101] and Turner et al.[102]. The estimated AUC values using the EQA or 

a Bayesian two-concentration method resulted in congruent clinical decisions (i.e. 

dosing adjustment required/not necessary) in more than 75 % of the study population. 
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Nevertheless, the EQA – in contrast to MAA/MSA – always requires steady-state 

conditions and two concentrations. The peak and trough sample must be obtained after 

the early distribution phase. Hence, the EQA (i) is neglecting the bi-exponential decline 

of vancomycin, (ii) is limited to a fixed dosing interval and (iii) only enables adjustments 

in the later stages of the therapy. Especially in antibiotic therapies, it is essential to 

achieve optimal drug exposure as early as possible to ensure a rapidly effective 

antibiosis.[103] Furthermore, the snapshot of the AUC provided by the EQA cannot 

incorporate dynamic changes of the patient (e.g. decline of the renal function), while a 

Bayesian approach is able to adapt via the incorporated covariates.  

 

Pooled-data model 

For vancomycin, more than 30 population PK models are available in the literature. 

While these heterogenous studies provide valuable insights into specific patients or 

treatment regimens, most of them are limited to describe the special subpopulation or 

clinical intervention. As discussed in Publication III the difficulties lie within the ‘correct’ 

selection of the model, whose study conditions’ best match the clinical conditions of the 

patient. 

Even if a formally matching model is found, a modest number of individuals included 

during model development could jeopardize the predictive performance of the model 

due to population sampling errors and other random incidences.[54], [79], [80] 

In the last decade, the idea of meta-analysis on data-level emerged.[104] Its aim is to 

apply the gained but separated knowledge of the drug’s PK in distinct populations 

without the need of pre-selecting a distinct model. Thereby, the observations from 

contributing population PK studies are gathered and evaluated across the broad 

populations. This leads to so-called pooled or next-generation models developed for a 

general predictive purpose in a broad range of patient types and based on large data. 

Colin et al. developed such a pooled vancomycin PK model based on data from 14 

different studies (2 554 patients), including continuous and intermittent, neonates to 

aged, healthy to critically ill patients.[6] Similarly, McEneney-King et al. pooled data 
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from eight studies (310 patients) to develop a generic population PK model for Bayesian 

forecasting of at least seven FVIII products.[93] In our external validation of the 

predictive model performance (Publication I and II) both models successfully 

demonstrated their potential to forecast individual PK profiles and performed at least 

in the same range of the MAA/MSA. Yet, the pooled-data approach always requires 

access to the raw data and additional efforts to design a new model prior use in MIPD. 

The MAA and MSA instead require the data-derived model files, which often can be 

recoded from the original publication. Additionally, pooling the data bares the risk of 

neglecting (minor) subgroups or not accounting for specific conditions, while the 

MAA/MSA can easily be complemented by specific ‘niche’ models. Although these niche 

models separately may not necessarily be better for MIPD in a whole population,[105] 

MAA/MSA still might benefit on individual levels. Future studies comparing the 

performance of ‘pooled-data’ vs. ‘pooled-model’ approaches and different sets of 

heterogenous models would be of interest to further verify the extended use of 

MAA/MSA. 

 

Continuous learning approach 

A model may be selected (i) after the performance has been deemed acceptable in 

settings mimicking the intended clinical purpose as close as possible and (ii) based on 

matches of the study group and targeted individuals (e.g. physical condition, body 

composition or disease status). Nevertheless, naively implementing the selection into 

MIPD-software and rigidly applying it in clinical routine from there on, bears the risk of 

overrating the model’s potential. Assuming that the model is totally unbiased in every 

patient, is as incautious as presuming the new parameter distributions always display 

the same magnitude as observed in the model development population.[106] The main 

reasons are time-varying changes related to the MIPD-applying institution (e.g. assay 

changes, changes in staff or their operation methods) and time-dependent changes 

within the patients physiology, PK and PD, which are not explainable with the model. 
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Consecutively, older data of the individual patient may be less informative to predict its 

future PK profile or target. 

One way to improve an impaired model performance is to flatten model priors relative 

to individual observations.[107] The anchor points of the model (i.e. the Bayesian priors) 

are objectively downweighed in favour of more recent individual plasma 

measurements. 

Additionally, the (TDM) data collected during MIPD of multiple patients could be used 

to update the model structure and parameters periodically. Although these continuous 

learning (COLE) approaches have been introduced in dosing of vancomycin,[105] 

modelling of paclitaxel-induced neutropenia[108] and haemophilia prophylaxis,[109] 

there is still a need for large data-based (and ideally prospective) evaluation of COLE 

prior a systematic comparison to the MAA/MSA. Yet on conceptual level, three pitfalls 

are conceivable with COLE. 

First, TDM data is often prone to documentation errors. When using flawed data to 

continuously update a model one risks to sustainably harm its performance,[110] while 

in MAA/MSA the model parameters are not altered. Hence, only the very single patient 

is affected, though time-dependent changes may still be covered by automated and 

individual shifts in the weighting function of the MAA/MSA. 

Second, COLE requires a substantial quantity of data (ideally >200 patients) in the very 

hospital that aims to implement such an updating tool,[105] while the MAA/MSA may 

work with the first patient. 

Third, the updated parameters need to be communicated comprehensively and the 

predictive performance of the COLE approach must be periodically reassessed to rapidly 

detect over-/underadaption. Otherwise, opacity or lacking validation may mask 

overfitting and consecutively threatens the therapeutic success.[109] 

 

Adaptive maximum a posteriori estimation 

A strategy to account for time-varying changes in the individual is to encode an 

additional variability term on distinct parameters, named inter-occasion variability 
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(IOV). This variability term aims to characterize seemingly random changes in PK or PD 

of the individual. However, the morphology of IOV issues a major challenge when being 

used in predictive- rather than descriptive models. The IOV is randomly drawn from 

period to period and based on the data from that respective time. Given future data has 

not yet been collected, the individual IOV may not simply be extrapolated to that future. 

Wicha et al.[111] and a thereupon constructed simulation study[112] investigated 

multiple ways to handle IOV in MIPD and recommended to downweigh historical drug 

concentration measurements or ideally include IOV to generate the MAP estimates but 

exclude the IOV for forecasting future doses, respectively.  

An approach even more flexible was proposed by Guo et al.[113] The authors detected in 

a retrospective TDM-based study that the estimated clearance of 408 vancomycin-

treated patients on an intensive care unit is decreasing over time. To account for time-

dependent shifts, they developed an iterative adaption of the individual model 

parameters. In detail, the individual MAP estimates based on a distinct set of historical 

TDM measurements become the new prior after new drug measurement data has been 

obtained. Adapting the model prior for each MAP iteration improved the predictive 

performance of the underlying model in comparison to the classical MAP estimation. 

Nonetheless, shifting the model parameters over time bears the risk of overfitting 

similar to the above introduced approach of flattening the prior.[107] Since the new MAP 

estimate can be drawn from the same distribution (i.e. magnitude) as in the preceding 

iteration, the prior can shift completely untied. Even a single erroneous measurement 

may cause dramatically misguided parameters. In contrast, MAA and MSA rather add 

another variability term on model-level, but do not risk changing into misguided models 

during the MIPD process. Especially the handling of IOV in different multi-model 

approaches should be investigated in further studies. 
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4.2 Data acquisition and patient-specific factors 

Optimal sampling time 

Acquiring data is time-consuming and error-prone, given it is carried out by humans. 

Although there often is a consensus about what to collect for dosing individualization, 

it may be questionable when exactly to collect the information – especially in sparse 

sampling strategies. Nowadays, trough samples are commonly used for TDM, but 

differently timed or even multiple samples are required depending on the method used 

to individualize dosing and intended target. For example, the EQA (see 4.1.3) always 

depends upon one peak and one trough level obtained in the same dosing interval and 

at steady-state to approximate the individual AUC.[48] Thereby, this log-linear 

regression needs a strictly followed sampling scheme and is only reliable in case of 

stable PK. For pharmacometric approaches, the estimation is less sensitive to the 

sampling time compared with conventional approaches.[114] However, optimized 

sampling may still advance individual therapies as long as the exact sampling time is 

accurately documented.[89], [114]–[116] 

In Publication IV, we hypothesized that certain time windows may contain more 

information than for example a trough sample (usually obtained during vancomycin 

TDM) to forecast the individual AUC. In fact, the optimal single-sample timepoints were 

identified around 2 hours after the first dose and around 6 hours, when being at steady-

state conditions. These early sampling time windows allow for dose adjustments within 

the first dosing interval – presuming rapid bioanalytic of the vancomycin plasma 

concentration is available. This, in turn, might give sufficient time to already 

individualize the second dose, which is impossible with the currently used trough 

sampling strategy. These rapid and precise dose adjustments are of double value, given 

that every delay of antibiotic treatment in septic patients is associated with a 7.6 % 

higher death rate.[117] Additionally, our simulation-estimation study showed that the 

timing of the second sample was less impacting the predictive performance, provided 

the first sample was optimally timed. 
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Albeit our results were purely based on simulations, these were in line with a 

prospective study comparing AUC-guided versus trough-based vancomycin dosing and 

emphasize that pre-trough measurements should be preferred in MIPD of 

vancomycin.[89] To further validate these findings, our results could directly indicate 

the ideal and reduced sampling intervals in prospective studies to lessen the burden on 

the participants. 

 

Drug quantification of clinical samples 

The timing of the sampling is impacting the predictive performance of the 

pharmacometric models, whether with a focus on optimal time windows within the 

dosing interval or in relation to the forecast (e.g. given that more historical data reduced 

predictive performance [54], [113]). Nonetheless, additional data-related factors should 

be considered during MIPD. 

One such factor is the assay used to quantify the drug within the clinical sample. For 

diagnosing and treating haemophilia A, two assays are widely used: the one-stage 

clotting assay (OSA) and the chromogenic substrate assay (CSA). The assays indirectly 

measure the FVIII activity either based on the turbidity induced through FVIII activated 

clotting (in OSA) or the spectrometric analysis of a chromogenic substrate released from 

a FVIII-dependent reagent.[118] Although both assays are accepted for FVIII 

quantification, there is an ongoing controversy about which one to prefer for clinical 

monitoring.[118]–[121] While the OSA is inexpensive, easy to automate and rapid, the 

CSA is more sensitive at lower FVIII levels, more reproducible across laboratories/FVIII 

products and may be more precise. [122] In Publication I, we evaluated the predictive 

performance of published population PK models as well as the MAA/MSA using the two 

assays, respectively, and found that predictions using the CSA data were more accurate 

than those using OSA. 

Vancomycin samples are commonly quantified using chemiluminescence and enzyme 

immunoassays, but turbidity- and fluorescence assays have also been proposed.[123] 
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Although all assays independently of the monitored disease can determine the drug 

concentration below a certain threshold with an acceptable random variation, a major 

challenge for MIPD lies within handling samples below this lower limit of quantification 

(LLOQ).[124] Common assays for vancomycin and FVIII report a LLOQ between 1 and 

5 mg/L and 1 IU/dL, respectively.[125], [126] If the LLOQ is close to the targeted (surrogate) 

concentration (e.g. in haemophilia A the target is defined as time above 1 IU/dL), the 

information provided by these samples is limited. Similarly, the predictive model loses 

power, if the residual error component exceeds the value of the LLOQ. When optimizing 

sampling times for MIPD, these factors should be additionally considered. 

 

Impact of different populations 

Furthermore, patients are usually classifiable into specific populations (e.g. critically ill, 

obese or patients with certain co-morbidities). Organ functions or physiological 

conditions that deviate from ‘normal’ expectations, thereby, alter the PK of the 

drug.[127] For example, haemophilic children display larger volumes of distribution 

compared to normal weighted adults. Although an increased volume of distribution 

prolongs the half-life of a drug, FVIII products are eliminated faster in children compared 

to adults due to their also higher clearance.[128] Another example are critically ill 

patients being treated with vancomycin. These intensively monitored patients usually 

display substantial and even nonlinear PK changes, such as increased volume of 

distributions and time-varying elimination rates.[78], [129] 

If these PK alterations are not appropriately accounted for, predictions using a single 

population PK model in MIPD may be hampered. In contrast, the MAA/MSA is able to 

cover a wider range of populations, through the inclusion of particularly different 

models. Even if a patient does not subjectively fit into a specific group or may display 

atypical parameters, the MAA/MSA are able to select the objectively best fitting 

model.[81] 
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4.3 The MIPD user/operator and implementation into clinical practise 

In Publication I and III, we demonstrated the implementation of (i) a population PK 

model suitable for haemophilia A prophylaxis and (ii) the multi-model approaches 

MAA/MSA for vancomycin dose adjustments into the MIPD software TDMx.[4] 

Although mainly an educational tool, we aimed to integrate the idea of novel MIPD 

approaches into usable tools to bring them closer to clinical care. Yet, to deem a software 

suitable for MIPD, certain requirements on the tool are made. Besides the discussed 

topics of selection and validation of the underlying model(s) (4.1) and assuring quality of 

the data (4.2), four main aspects are relevant. 

• Firstly, as with any software, its usage strongly depends on the user’s experience. 

The end-user specific interface needs to be intuitive and unambiguous but at the 

same time must provide enough information and transparency to easily 

comprehend the outcome.[130] Time-consuming activity during routine practise 

must be avoided, for example through integration into existing electronic 

prescribing systems.[131] The software should provide a set of convenient 

features next to the precision dosing-functionality (e.g. structured data export 

functions, interactive plots and parameter overviews or generation of suitable 

reports). The more complex the software becomes, the more important becomes 

user support (e.g. via clinical manuals, online support or discussion forums) as 

well as adequate training to enhance the user’s experience.[132], [133] 

• Secondly, data is the currency of the world wide web. Especially when it comes 

to health-related information, abuse of this valuable asset must be prevented. 

Thereby, it is easiest to comply with current standards in data security and 

privacy legislation, if the user is in full control of his data and no confidential 

information will be saved on (or externally accessible from) servers foreign to the 

user/his institution (e.g. as with TDMx). Given that this hampers the possibility 

of continuous learning approaches or the assembling of large databases, other 

developers aim to comply with data security standards and privacy policies 

through fulfilling the European Union General Data Protection Regulation (EU 
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GDPR[134]) or equivalents (e.g. InsightRX[135] or WAPPS-Hemo[136]). This 

includes secured access via personal logins, encrypted databases, as well as 

confidential and anonymized data collection.  

• The third aspect influencing suitability of the MIPD software is based on costs 

introduced during development and application. Although it is desirable, from a 

scientific perspective, to already provide MIPD software with drug approval, the 

increase in costs and regulatory difficulties discourage pharmaceutic industries 

of its development. For example, engineering a companion tool during drug 

development (i.e. a dynamic label) could support dosing decisions already in 

earlier study phases and allows for more heterogenous inclusion of study 

participants. However, it requires more funds due to increased need of validation, 

more frequent monitoring, potentially increased physician time and higher 

numbers of trial participants.[52] 

Additionally, regulatory obstacles occur due to the unsolved problem of 

responsibilities when MIPD is a prerequisite for drug approval.[137] In case of 

(dosing) failure, it may not be clear who is responsible: the prescriber, who based 

his decision on MIPD software, or the provider of the MIPD-software. Hence, 

regulatory guidance to validate software (as from the EU[138] and FDA[139]) is 

just the first step. 

Moreover, widespread utilization of MIPD during clinical routine must prove a 

positive cost to benefit ratio. Given that evidence of cost savings through MIPD 

over current best practice is relatively sparse, benefits have yet to be shown 

unequivocally in large prospective studies.[89], [140] Otherwise, MIPD 

approaches will unlikely be a serious competitor to classical dosing strategies in 

hospitals. 

• Fourth, practising physicians often view results of population analysis with 

scepticism due to potentially opaque methods or the use of perplexing equations 

and statistical jargon.[141] Further liability issues arise through software-based 
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recommendations of unapproved doses or off-label use given that MIPD tools are 

developed post drug approval.[142]  

 

Through implementing the findings of this thesis into the freely available web 

application TDMx (www.tdmx.eu), we provide an educational tool, which can already 

be used to train undergraduate students or healthcare personnel. This, in turn, might 

bring MIPD closer to clinical practise. 

While barriers to implement MIPD software into clinical practise will continue to exist, 

these are rather logistic and educational but not technological. Through proper training 

of healthcare professionals and undergraduates, clear legal regulation and 

consolidation of the goal of favouring maximal therapeutic value rather than financial 

profit, we may predict a future of gradually advancing treatments for the individual 

patient.  

 

http://www.tdmx.eu/
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5 Perspective 

Despite the growing recognition of MIPD by healthcare professionals, patients and 

politics,[45] its common application in clinical practise has yet to come. The introduction 

of novel multi-model approaches, like the MAA and MSA, as well identifying suitable 

models and sampling time points to forecast individual drug exposures and, 

consecutively, precise doses, may serve as necessary steps towards this goal. 

Nonetheless, a few limitations need to be acknowledged in this thesis. 

While the robustness of the MAA/MSA regarding the influence of included models was 

evaluated in Publication III, more exhaustive investigations may be of benefit. It seems 

especially interesting to evaluate the maximal number of included models, or 

interweave different multi-model approaches among each other (e.g. purely including 

pooled population models in the MAA/MSA, or fusing multiple approaches in hybrid 

algorithms as introduced by Hughes et al.[107]). 

As introduced in Chapter 4.1.2, there are ideas to account for instable patients with time-

varying PK in Bayesian forecasting.[113], [143] Thereby, the handling of inter-occasion 

variability in the underlying model is crucial.[111] In further studies, different methods to 

account for inter-occasion variability, when used in the MAA/MSA may be of interest. 

The current work mainly focuses on PK based dosing decisions. Nonetheless, PD 

measurements, like C-reactive protein or procalcitonin levels as biomarkers for the 

inflammatory status of infected patients,[144] or the annual bleeding rate of 

haemophilic patients,[145] should be evaluated in their predictive value. 

Out of scope of this thesis were non-parametric approaches[34], [49] and machine 

learning algorithms,[107], [146] which are fundamentally different from the discussed 

parametric approaches, as these approaches do not rely on typical distributions but so-

called supporting points. Although especially machine learning is nowadays associated 

with dramatically high expectations, these approaches always come with the drawback 

of not being easily transferable. Prior implementation, the exact supporting points or 

the original data plus training data, which matches the later purpose (i.e. directly 

obtained in the tool-implementing hospital), are required. However, comparing 
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nonparametric and parametric approaches in future clinical studies could be of interest, 

given simulation-based comparisons seem promising.[107], [147], [148] 

Last but not least, despite the thriving promises in MIPD, we – as pharmacometrician, 

clinician, or simply as a patient – must always keep aware of Box’ paradigm: “All models 

are wrong but some are useful.”[149] 
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7 Appendix 

7.1 Supplementary material of Publication I 

Supplemental Digital Content 1. 

All samples were measured on an ACL TOP (Werfen UK, Cheshire, United Kingdom) in a 

chromogenic assay (CSA) using a BIOPHEN FVIII kit (Hyphen Biomed, Neuville-sur-Oise, 

France) and a one-stage activated partial thromboplastin time (APTT) assay (OSA), with 

the HemoSil SynthaSil APTT reagent (Werfen UK, Cheshire, United Kingdom). The OSA 

calibrator was traceable to the WHO IS plasma FVIII standard, and the samples were 

measured against an 8-point calibration curve. If continuous covariates were missing, 

then the dataset median was imputed. 

 

Supplemental Digital Content 2. 

The simulated standard patient weighed 75 kg, was 1.7 m tall, and 35 years old, and a 

von-Willebrand-factor (vWF) level of 110% was documented. The patient received 

prophylactic doses (3000 IU) of either B-domain deleted (BDDrFVIII) or full-length 

recombinant product every 72 h. The pharmacokinetic profile and the time above the 

target of 2 IU/dL in steady-state conditions were subsequently compared. If the models 

were developed purely in a one-stage assay (OSA) without BDDrFVIII products, no 

discrepancies between the chromogenic assay (CSA) and OSA were implemented. 
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Supplemental Digital Content 3. 

The reference model was developed in NONMEM® software (version 7.4.3; ICON plc, 

Dublin, Ireland) using all FVIII:C values measured using chromogenic assay. The 

reference model was chosen based on the best objective function value and the best 

possible visual fit of the individual pharmacokinetic profiles (see Figure, Supplemental 

Digital Content 4, which demonstrates the reference model fit in the 39 individuals).  

The structure and parameters can be inspected using the following equations (Eqs. S1–

S5). The data were best described using a two-compartment model with first-order 

elimination. The inter-individual variability was implemented exponentially on the 

clearance (Cl; 51.3% CV) and on the central volume of distribution (Vcentr; 24.5% CV), and 

the combined error model was implemented for the residual unexplained variability 

(Proportional: 7.8% CV, Additive 1.85 IU/dL). A baseline FVIII level of 0.522 IU/L was used 

in this study. The coefficient of variation (%CV) was calculated as √𝜔2 × 100. 

 𝐶𝑙 [𝑑𝐿ℎ ] = 2.51 × 𝑒𝜂𝐶𝑙  
 (Eq. S2) 𝑉𝑐𝑒𝑛𝑡𝑟  [𝑑𝐿] = 28.3 × 𝑒𝜂𝑉𝑐𝑒𝑛𝑡𝑟   (Eq. S3) 𝑉𝑝𝑒𝑟𝑖𝑝ℎ[𝑑𝐿] = 4.02  (Eq. S4) 𝑄 [𝑑𝐿𝐿 ] = 0.808 
 (Eq. S5) 

Baseline [IUdL] = 0.522 
 (Eq. S6) 

η, individual eta value drawn from the variance term (𝜔2) describing the respective 

inter-individual variability 
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Supplemental Digital Content 4. Individual FVIII plasma concentrations either measured 

with the chromogenic assay (black dots) or predicted with the internally built reference 

model (see Text, Supplemental Digital Contant 1) per individual. Time represents the 

time after the most recent dose. 
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Supplemental Digital Content 5. Details of the evaluated population pharmacokinetic 

models 
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adole
scent
s) 

SHA OSA 
FLrFVIII 
(Advate®) 

4–
10

 

0–
48 

Age, BW 

CL: 
30 
V1: 21 
Corr: 
0.45 

- A
: 8

.9
 / 7.1 

P
: - 

B
o

lo
n

-La
rg

er 20
0

7 

2 51 

SHA / 
MoH
A / 
MHA 

ND 
Plasmad. / 
FLrFVIII 

5–9
 

0–
48 

BW, BSA 

CL: 
42 
V1: 21 
k12: 
17 
k21: 
154 

- A
: - 

P
: 9

.3 

C
h

elle 20
19

 

2 92 SHA OSA 
Plasmad. 
(Fanhdi/Alp
hanate®) 

1–
8 

0–
72 

Age, fat-free 
mass 

CL: 
46 
V1: 
54 
Corr: 
0.797 

- A
: - 

P
: 20

.5 

G
a

rm
an

n
 

20
17 

2 183 SHA CSA 
FLrFVIII 
(Kovaltry®) 

4–
10

 

0–
110

 LBW 
CL: 
37 
V1: 11 

- A
: 1.1 

P
: 11.2 
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H
a

zen
d

o
n

k
 20

16
 

2 119 
SHA / 
MoH
A 

OSA 
Plasmad. / 
FLrFVIII / 
BDDrFVIII 

variou
s 

N
D

 

Age, BW, 
severity of 
operation, 
FVIII 
product 
(FLrFVIII vs. 
BDDrFVIII) 

CL: 
37 
V1: 
27 

- A
: 15 / 5 

P
: 18

 / 23 

K
a

ra
fo

u
li

d
o

u
 20

0
9

 

1 28 

SHA / 
MoH
A / 
MHA 

OSA 
BDDrFVIII 
(Refacto®) 

2–
6

 

0–
48 BW, HIV 

status 

CL: 
39 
V: 13 

- A
: - 

P
: 15.2 

M
cEn

en
y-K

in
g

 

20
19

 

2 704 
SHA / 
MoH
A 

OSA 
Plasmad. / 
FLrFVIII / 
BDDrFVIII 

4–
12 

0–
72 

Age, fat-free 
mass, FVIII 
product 
(plasmad. 
vs. FLrFVIII 
vs. 
BDDrFVIII) 

CL: 
41 
V1: 
32 
Corr: 
0.703 

- A
: - 

P
: 17.4 

N
esto

ro
v 

20
15 EH

L 

2 180 SHA OSA EHLrFVIII 

5–
12 

0–
240

 BW, HCT, 
vWF, study 

CL: 
24 
V1: 13 
Corr: 
0.55 

C
L: 21 V

1: 12 
C

orr: 0
.6

4 

A
: 0

.421 / 
0

.20
8 

P
: 13.6

 

So
lm

s 20
20

 

EH
L 1 198 SHA 

CSA 
(/O
SA) 

EHLrFVIII 
(Jivi®) 

2–
11 

0–
16

8 

LBW, vWF 

CL: 
24 
V1: 13 
Corr: 
0.44
9 

- A
: 1.78 

P
: 41.8 

Z
h

a
n

g
 20

17 

2 130 SHA CSA 
EHLrFVIII 
(Afstyla®) 

5–
10

 

0–9
6

 

BW, vWF 

CL: 
24 
V1: 
20 
Basel
ine: 
59  

- A
: 1.15 

P
: 10

.9
 

IIV – interindividual variability; IOV – interoccasion variability; RUV – residual unexplained variability 
with A – additional error, [IU/dL]; P – proportional error, [%];  
SHA – severe hemophilia A; MoHA – moderate hemophilia A; MHA – mild heemophilia A; 
O – one stage assay, C – chromogenic; 
FLrFVIII – full-length recombinant product; BDDrFVIII – B domain deleted product; EHLrFVIII – extended 
half-life product, Plasmad. – pooled human plasma-derived product; 
BW – body weight; BSA – body surface area; HCT – hematocrit; INH – inhibitor status; LBW – lean body 
weight; vWF – von Willebrand factor; 
CV – coefficient of variation; Corr. - Correlation of the variability components; 
ND – not defined 
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Supplemental Digital Content 6. Prediction corrected visual predictive checks (pcVPC) of 

the population pharmacokinetic models with observations measured using A) the one-

stage assay (OSA) and B) the chromogenic assay (CSA). The pcVPC are furthermore 

stratified by the applied drug: B-domain deleted (BDD) or a full-length recombinant FVIII 

product (rFVIII). The x-axis was limited to 80h to improve readability. Six datapoints 

(trough level from the previous dosing occasion) are not displayed. The black solid and 

dashed line represents the median of the observed data (black dots) and its 5th / 95th 

quantiles, respectively. The shaded areas represent the 90% confidence interval of the 

5th, 95th (light shaded) and 50th (dark) quantiles of the simulations (n=1000). 
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Supplemental Digital Content 7. Goodness-of-fit plots with the population predicted 

FVIII concentrations vs the measured FVIII concentrations per model. The concentrations 

were either measured using A) the chromogenic assay (CSA) or B) the one-stage assay 

(OSA). The dashed line represents the identity line; green crosses – B-domain deleted 

product(s), purple circles – full-length recombinant product(s) 
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Supplemental Digital Content 8. The accuracy (i.e. bias) and the imprecision (root mean 

square error, RMSE) of the predicted time above target (TaT) of the model averaging 

algorithm (MAA) and model selection algorithm (MSA) and the single models used in 

both. The metrics are separated by the assay used (CSA: red and OSA: grey). The three 

hues represent the prediction scenarios. Whiskers cover the 95 % confidence interval of 

the bias calculated via the standard error; N.D. – not defined 
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Supplemental Digital Content 9. Composition of the model selection algorithm (MSA) 

within the population stratified by scenario and assay. Each colored bar reflects the 

number of patients, for which the respective model had been selected automatically. 

Black values represent the number of patients relative to the total population (%, n=39). 

N.D. – not defined as historically plasma measurements are required to automatically 

weight the population PK models 
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Supplemental Digital Content 10.: A) The population predicted and B) the individually 

predicted FVIII concentrations of the clinical CSA data (n=229) using the Abrantes model 

in either NONMEM or the MIPD-software ‘TDMx’. C) The predicted time above target of 

2 IU/dL in the richly sampled occasion of the 39 individuals using the same model in 

NONMEM or ’TDMx’. The diagonal line represents the identity line; green crosses – B-

domain deleted product(s); purple circles – full-length recombinant product(s). 
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Supplemental Digital Content 11. The accuracy (i.e., bias) and the imprecision (i.e. root 

mean square error, RMSE) of the predicted time above target (TaT) in comparison to the 

true TaT (i.e., time obtained from the internal model and all CSA samples) in the a priori 

scenario versus the number of patients included during model development. 
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7.2 Supplementary material of Publication II 

Supplement Table S1. Properties and standardized PK parameters (standard patient, 50 

years old, male, 75 kg, 1,7 m, serum creatinine of 85 μmol/L) of the evaluated 
pharmacometric models. The table was adapted and modified from Broeker et al., CMI 

(2019). Nr. of pat: Number of patients, Nr. of samp. Number of vancomycin samples used 

for model development, CL: Clearance, Vc: central Volume of distribution, Vp: peripheral 

Volume of distribution (-: one-compartment model), Q: Intercompartmental Clearance 

(L/h, -: one-compartment model), CLCR: creatinine clearance, cRRT: continuous renal 

replacement therapy, TBW: total body weight, SCR: serum creatinine, CSF: cerebrospinal 

fluid 
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t 

p
o

p
u
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N
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N
r. o

f sa
m
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C
o
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C
L 

V
c 

V
p

 

Q
 

R
eferen

ce
 

Adane et al., 
2015 

extremely 
obese  

29
 

9
3 

CL: 
CLCR; 
Vc: 
TBW 

4.74 

38.3 

- - Adane ED, Herald M, Koura F. 
Pharmacokinetics of vancomycin in extremely 
obese patients with suspected or confirmed 
Staphylococcus aureus infections. 
Pharmacotherapy 2015; 35:127–39. 
doi:10.1002/phar.1531. 

Alqahtani et 

al., 2018 
open heart 
surgery 
patients 

28 

16
8

 

CL: 
CLCR, 
Albumi
n; Vc: 
TBW 

6
.6

4 

38.9
 

3.9
 

0
.22 

Alqahtani SA, Alsultan AS, Alqattan HM, 
Eldemerdash A, Albacker TB. Population 
Pharmacokinetic Model for Vancomycin Used 
in Open Heart Surgery: Model-Based 
Evaluation of Standard Dosing Regimens. 
Antimicrob Agents Chemother 2018; 19:1. 
doi:10.1128/AAC.00088-18. 

Bae et al., 
2019 

Korean 
patients 
under 
TDM 

220
 

10
20

 

CL: 
CLCR, 
hemodi
alysis, 
cRRT, 
Vc: 
TBW 

2.82 

31.8
 

75.4 

11.7 

Bae SH, Yim D-S, Lee H, et al. Application of 
Pharmacometrics in Pharmacotherapy: Open-
Source Software for Vancomycin Therapeutic 
Drug Management. Pharmaceutics. 
2019;11(5):224. 
doi:10.3390/pharmaceutics11050224 

Bury et al., 
2019 

Hematolo
gic 
patients 
with and 
without 
cancer 

116
 

742 

CL. 
CLCR, 
Neutro
penia; 
Vc/p: 
Fat free 
mass 

3.22 

45.8 

51.7 

4.0
3 

Bury D, ter Heine R, van de Garde EMW, Nijziel 
MR, Grouls RJ, Deenen MJ. The effect of 
neutropenia on the clinical pharmacokinetics 
of vancomycin in adults. Eur J Clin Pharmacol. 
2019;75(7):921-928. doi:10.1007/s00228-019-
02657-6 
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Chung et al., 
2013 

Korean 
patients 
with 
normal 
SCR 

6
78

 

1373 

CL: 
cystatin 
C, age, 
TBW, 
SCR, 
sex; Vc: 
age, 
TBW, 
sex 

5.0
3 

48.5 

- - Chung J-Y, Jin S-J, Yoon J-H, Song Y-G. Serum 
cystatin C is a major predictor of vancomycin 
clearance in a population pharmacokinetic 
analysis of patients with normal serum 
creatinine concentrations. J Korean Med Sci 
2013; 28:48–54. doi:10.3346/jkms.2013.28.1.48. 

Colin et al., 
2019 

Newborns 
to elderly 
patients, 
underweig
ht to obese 
adults 

2554 

830
0

 

CL: age, 
SCR, 
studyty
pe; 
Vc/p: 
TBW 

4.28 

46
.0

 

44.7 

3.39
 

Colin PJ, Allegaert K, Thomson AH, et al. 
Vancomycin Pharmacokinetics Throughout 
Life: Results from a Pooled Population Analysis 
and Evaluation of Current Dosing 
Recommendations. Clin Pharmacokinet. 
2019;58(6):767-780. doi:10.1007/s40262-018-
0727-5 
 

Deng et al., 
2013 

adult 
Chinese 
patients 

72 

16
7 

CL: 
CLCR 

4.9
0

 

47.8 

- - Deng C, Liu T, Zhou T, Lu H, Cheng D, Zhong X, 
et al. Initial dosage regimens of vancomycin 
for Chinese adult patients based on 
population pharmacokinetic analysis. Int J Clin 
Pharmacol Ther 2013; 51:407–15. 
doi:10.5414/CP201842. 

Dolton et al., 
2010 

patients 
with 
severe 
burns 

70
 

9
7 CL: 

CLCR; 
Vc: 
TBW, 
severe 
burns; 
Vp: 
TBW 

2.9
7 

73.3 

78.2 

4.54 

Dolton M, Xu H, Cheong E, Maitz P, Kennedy P, 
Gottlieb T, et al. Vancomycin 
pharmacokinetics in patients with severe burn 
injuries. Burns 2010; 36:469–76. doi: 
10.1016/j.burns.2009.08.010. 

Goti et al., 
2018 

hospitalize
d patients 
with high 
prevalence 
of renal 
impairme
nt 

1812 

276
5 

CL: 
CLCR, 
hemodi
alysis 
status; 
Vc: 
TBW, 
hemodi
alysis 
status 

3.82 

6
2.6

 

38.4 

6
.5 

Goti V, Chaturvedula A, Fossler MJ, Mok S, 
Jacob JT. Hospitalized Patients With and 
Without Hemodialysis Have Markedly 
Different Vancomycin Pharmacokinetics: A 
Population Pharmacokinetic Model-Based 
Analysis. Ther Drug Monit 2018; 40:212–21. 

Ji et al., 2018 Adult 
Chinese 
patients 

16
0

 

251 

CL: 
CLCR, 
age 

2.83 

52.1 

- - Ji X, Ji S, He X, Zhu X, Chen R, Lu W. Influences 
of renal function descriptors on population 
pharmacokinetic modeling of vancomycin in 
Chinese adult patients. Acta Pharmacol Sin. 
2018;39(2):286-293. doi:10.1038/aps.2017.57 
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Li et al., 2017 postoperat
ive 
neurosurgi
cal 
patients 

25 

26
2 

CL: 
CLCR; 
CLCSF: 
drainag
e 
amount
, 
elapsed 
time 

5.84 

11.9
 

Q
1: 21.5 

V
p

1: 15.4V
p

2: 0
.0

4 

Li X, Sun S, Ling X, Chen K, Wang Q, Zhao Z. 
Plasma and cerebrospinal fluid population 
pharmacokinetics of vancomycin in 
postoperative neurosurgical patients after 
combined intravenous and intraventricular 
administration. Eur J Clin Pharmacol 2017; 
73:1599–607. doi:10.1007/s00228-017-2313-4. 

Lin et al., 2016 Chinese 
post 
cranial 
meningitis 
patients 

10
0

 

179
 

CL: 
CLCR 

7.11 

10
1.0

 

- - Lin WW, Wu W, Jiao Z, Lin RF, Jiang CZ, Huang 
PF, et al. Population pharmacokinetics of 
vancomycin in adult Chinese patients with 
post-craniotomy meningitis and its 
application in individualised dosage regimens. 
Eur J Clin Pharmacol 2016; 72:29–37. 
doi:10.1007/s00228-015-1952-6. 

Mangin et al., 
2014  

critically ill 
with post 
sternotom
y 
mediastini
tis 

3
0 

35
9 

CL: sex, 
TBW, 
SCR, 
SAPSII-
score; 
Vc: 
TBW, Q: 
TBW, 
diabete
s 
mellitus
; Vp: 
TBW 

2.6
0

 

23.5 

72.9
 

6
.0

1 

Mangin O, Urien S, Mainardi J-L, Fagon J-Y, 
Faisy C. Vancomycin pharmacokinetic and 
pharmacodynamic models for critically ill 
patients with post-sternotomy mediastinitis. 
Clin Pharmacokinet 2014; 53:849–61. 
doi:10.1007/s40262-014-0164-z. 

Medellín-
Garibay et al., 
2016 

trauma 
patients 

11
8 

3
9
2 

CL: 
CLCR, 
furose
mide 
co-
medicat
ion; Vc: 
TBW, 
age; Vp: 
TBW 

2.87 

55.5 

442.5 

0
.81 

Medellín-Garibay SE, Ortiz-Martín B, Rueda-
Naharro A, García B, Romano-Moreno S, Barcia 
E. Pharmacokinetics of vancomycin and dosing 
recommendations for trauma patients. J 
Antimicrob Chemother 2016; 71:471–9. 
doi:10.1093/jac/dkv372. 

Medellín-
Garibay et al., 
2017 

Critically ill 5
4 

6
41 

CL: 
CLCR, 
mechan
ical 
ventilat
ion; Vc: 
TBW 

2.6
4 

77.3 

- - Medellín-Garibay SE, Romano-Moreno S, 
Tejedor-Prado P, Rubio-Álvaro N, Rueda-
Naharro A, Blasco-Navalpotro MA, et al. 
Influence of mechanical ventilation on the 
pharmacokinetics of vancomycin 
administered by continuous infusion in 
critically ill patients. Antimicrob Agents 
Chemother 2017;61. doi:10.1128/AAC.01249-17. 
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Okada et al., 
2018 

patients 
undergoin
g stem-cell 
transplant
ation 

9
5 

2
8
5 

CL: 
CLCR; 
Vc: 
TBW 

3.6
4 

47.0
 

56
.1 

1.9
5 

Okada A, Kariya M, Irie K, Okada Y, Hiramoto N, 
Hashimoto H, et al. Population 
Pharmacokinetics of Vancomycin in Patients 
Undergoing Allogeneic Hematopoietic Stem-
Cell Transplantation Ther Drug Monit 2018:1–
10. doi:10.1002/jcph.1106. 

Purwonugro
ho et al., 2012 

Thai 
patients 

21
2 

3
91 

CL: 
CLCR; 
Vc: age 

4.30
 

27.1 

44.2 

6
.9

5 

Purwonugroho TA, Chulavatnatol S, 
Preechagoon Y, Chindavijak B, Malathum K, 
Bunuparadah P. Population Pharmacokinetics 
of Vancomycin in Thai Patients. Sci World J 
2012; 2012:1–8. doi:10.1100/2012/762649. 

Revilla et al., 
2010 

intensive 
care 
patients 

19
1 

5
6
9 

CL: age, 
CLCR; 
Vc: SCR, 
TBW 

4.84 

6
1.5 

- - Revilla N, Martín-Suárez A, Pérez MP, González 
FM, Fernández De Gatta MDM. Vancomycin 
dosing assessment in intensive care unit 
patients based on a population 
pharmacokinetic/pharmacodynamic 
simulation. Br J Clin Pharmacol 2010; 70:201–
12. doi:10.1111/j.1365-2125.2010.03679.x. 

Roberts et al., 
2011 

septic, 
critically ill 

2
0
6 

57
9 

CL: 
CLCR; 
Vc: 
TBW 

4.15 

114.8 

- - Roberts JA, Taccone FS, Udy AA, Vincent JL, 
Jacobs F, Lipman J. Vancomycin dosing in 
critically ill patients: Robust methods for 
improved continuous-infusion regimens. 
Antimicrob Agents Chemother 2011; 55:2704–
9. doi:10.1128/AAC.01708-10. 

Sánchez et 

al., 2010 
adult 
patients 

14
1 

25
4 

CL: 
CLCR; 
Vc: 
TBW; 
Vp: age; 
Q: TBW 

3.46
 

21.2 

34-29
 

8.25 

Sanchez JL, Dominguez AR, Lane JR, Anderson 
PO, Capparelli E V, Cornejo-Bravo JM. 
Population pharmacokinetics of vancomycin 
in adult and geriatric patients: comparison of 
eleven approaches. Int J Clin Pharmacol Ther 
2010; 48:525–33. 

Tanaka et al., 
2010 

patients 
with MRSA 
infections 

8
6 

18
1 

CL: GFR 
(Hoek 
formula
), Vc: 
TBW 

3.6
4 

6
4.8 

- - Tanaka A, Aiba T, Otsuka T, Suemaru K, 
Nishimiya T, Inoue T, et al. Population 
pharmacokinetic analysis of vancomycin using 
serum cystatin C as a marker of renal function. 
Antimicrob Agents Chemother 2010; 54:778–
82. doi:10.1128/AAC.00661-09. 

Udy et al., 
2013 

Septic 
CRRT 
patients 

81 19
9 

Vc: 
TBW 

2.9
0

 

6
0

.0
 

- - Udy AA, Covajes C, Taccone FS, Jacobs F, 
Vincent JL, Lipman J, et al. Can population 
pharmacokinetic modelling guide vancomycin 
dosing during continuous renal replacement 
therapy in critically ill patients? Int J 
Antimicrob Agents 2013; 41:564–8. 
doi:10.1016/j.ijantimicag.2013.01.018. 

Usman et al., 
2018 

TDM 
patients 

14
4 

25
6 

CL: 
CLCR 

2.35 

19
.2 

- - Usman M, Fobker M, Hempel G. Investigation 
of the age dependency of vancomycin 
clearance by population pharmacokinetic 
modeling. Int J Clin Pharmacol Ther 2018; 
56:56–63. doi:10.5414/CP203033. 
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Supplement Figure S1. Prediction corrected visual predictive checks of the population PK 

models. The black solid and dashed line represents the median of the observed data 

(black dots) and its 5th / 95th quantiles, respectively. The shaded areas represent the 

90% confidence interval of the 5th, 95th (light shaded) and 50th (dark) quantiles of the 

simulations (n=1000). 
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Supplement Figure S2. Normalized prediction distribution errors of the population PK 

models. If the model adequately described the data, NPDEs display a normal 

distribution. Therefore, the NPDEs using all available observations were calculated 

(black dots). The blue and red lines represent 2.5th, 97.5th and 50th quantiles of the 

NPDEs over the treatment time, respectively, and should ideally overlap with the dotted 

lines, i.e., the approximate values for the 2.5th, 50th and 97.5th quantiles of the standard 

normal distributions.  
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Supplement Figure S3. Performance metrics of the model selection algorithm (MAA) and 

model selection algorithm (MSA) (right) and the single models being part of the set (left). 

The bias and root mean square error (RMSE) of the predicted vancomycin plasma 

concentrations were calculated in five forecasting scenarios. Error bars represent the 

95% confidence interval based on the standard error. N.D. – not defined 
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Supplement Figure S4. Bias and root mean square error (RMSE) of the population PK 

models stratified by the medical discipline the patients were assigned to: 55 patients 

had hematological malignancies, e.g., chronic myeloid leukemia (lower panels). Either 

all available observations were predicted using covariate dosing information with 

(general model-fit, orange) or without (a priori, brown) supplying individual vancomycin 

samples. The blue bars represent the metrics in Bayesian forecasting using samples 

from one occasion (i.e., the first or most recent) or two occasions to forecast the hidden 

vancomycin concentration from the subsequent occasion. Error bars represent the 95% 

confidence interval based on the standard error. N.D. – not defined 
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7.3 Supplementary material of Publication III 

Table S1: Model properties and standardized PK parameters of the pharmacometric 

models included in the algorithms 
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R
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Adane et 

al., 2015 
extremely 
obese  

29
 

9
3 

CL: CLCR; Vc: 
TBW 

4.74 

38.3 

- - C
L: 

26
.7%

 
V

p
: 

P: 18.9% 
A: -  

Mangin et 

al., 2014  
critically ill 
with post 
sternotomy 
mediastiniti
s 

30
 

359
 

CL: sex, TBW, 
SCR, SAPSII-
score; Vc: TBW; 
Vp: TBW; Q: 
TBW, diabetes 
mellitus 

2.6
0

 

23.5 

72.9
 

6
.0

1 

C
L: 29

%
 

V
c: 53%

 
Q

: 10
1%

 

P: - 
A: 7.3 
mg/L  

Medellín-
Garibay et 

al., 2016 

trauma 
patients 

118 

39
2 

CL: CLCR, 
furosemide co-
medication; 
Vc: TBW, age; 
Vp: TBW 

2.87 

55.5 

442.5 

0
.81 

C
L:36

.7%
 

V
c: 40

.0
%

 

P: 19.2% 
A: 3.5 
mg/L 

Revilla et 
al., 2010 

intensive 
care 
patients 

19
1 

56
9

 

CL: age, CLCR; 
Vc: SCR, TBW 

4.84 

6
1.5 

- - C
L: 

30
.1%

 
V

c: 

P: - 
A: 4.2 
mg/L 

Roberts et 

al., 2011 
septic, 
critically ill 

20
6

 

579
 

CL: CRCL; Vc: 
TBW 

4.15 

114.8 

- - C
L: 

38.9
%

 
V

c: 

P: 19.9% 
A: 2.4 
mg/L  

Thomson 
et al., 
2009 

hospitalized 
patients 

39
8 

1557 

CL: CLCR; Vc: 
TBW, Vp: TBW 

4.45 

50
.6

 

54.9
 

2.28 

C
L: 27%

, 
Q

: 49
%

 
V

c: 15%
, 

P: 15% 
A: 1.6 
mg/L 

           

Goti et al., 
2018 

hospitalized 
patients 
with high 
prevalence 
of renal 
impairment 

1812 

276
5 

CL: CLCR, 
hemodialysis 
status; Vc: 
TBW, 
hemodialysis 
status 

3.82 

6
2.6

 

38.4 

6
.5 

C
L: 38.4%

 
V

c: 81.9
%

, 
V

p
: 57.1%

 

P: 22.7% 
A: 3.4 
mg/L  
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 Goti et 

al., 2018 
(re-
estimated 
paramete
rs) 

   CL: CLCR, 
hemodialysis 
status; Vc: 
TBW, 
hemodialysis 
status 

4.44 

56
 

6
5.8

 

1.33 

C
L: 37.0

%
 

V
c: 45.4%

, 
V

p
: 9

9
.7%

 

P: 18.4% 
A: 1.4 
mg/L 

*standard patient, 50 years old, male, 75 kg, 1.7 m, serum creatinine of 85 μmol/L. 
** CV: coefficient of variation was calculated as square root of omega or sigma multiplied by 
100, if not otherwise stated in the publication 
N: Number of patients, Nr. of samp.: Number of vancomycin samples used for model 
development, CL: Clearance, Vc: central Volume of distribution, Vp: peripheral Volume of 
distribution (-: one-compartment model), Q: Intercompartmental Clearance (L/h, -: one-
compartment model), IIV: interindividual variability (coefficient of variation (CV)**), RUV: 
residual unexplained variability, with P: proportional (CV**) and A: additive component, CLCR: 
creatinine clearance, TBW: total body weight, SCR: serum creatinine 
 

 

Table S2: Basic structure and patient characteristics of the 1000 individuals in each of 

the six simulated populations (extremely obese, critically ill, hospitalized, critically ill 

with sepsis, post heart surgery and trauma, respectively. 

Basic structure  Value Additional information 

Patients, per simulation  1000  

Dose, mg  1000 1h infusion every 12h for 36h 

Plasma measurements  three peak 

three trough 

at 15 minutes post infusion 

and 15 min prior next infusion 

    

Characteristics  Value, median (range) Additional information 

Age, years  57 (24 – 91)  

Body mass index (BMI), kg/m2  25 (18 – 33)  

Height, cm  170 (151 – 184)  

Serum creatinine, µmol/L  82 (38 – 267)  

Sex, female / male  515 / 485  

Weight, kg  72 (52 – 97) calculated as BMI * height2 
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Table S3: Patient characteristics of the clinical data consisting of routine vancomycin 

TDM samples of the evaluated 180 patients. The data was acquired in three studies from 

January 2010 to July 2011, from June 2015 to July 2016 and from July 2018 to August 2019. 

The data was used to assess the performance of the multi- and single-model approaches 

in predicting individual vancomycin plasma concentrations (i.e. Bayesian forecasting) 

Characteristics, continuous  Value, median (range) Missing data, % 

Age, years  58 (20 – 90) 0 

Height, cm  172 (150 – 192) 0 

Weight, kg  76.6 (39 – 159) 0 

Albumin  28.0 (15 – 44) 59 

Serum creatinine, µmol/L  90.0 (18 – 735) 0 

SOFA-Score  10 (0 – 22) 59 

    

Characteristics, categorical  + / - Missing data, % 

Diabetes status  +: 17 / -: 163 0 

Extracorporeal membrane 

oxygenation  

 +: 11 / -: 72 59 

Furosemide co-medication  +: 51 / -: 68 59 

Sex, female / male  51 / 129 0 

Renal replacement therapy  +: 45 / -: 135 0 

    

‘+’ – Number of individuals with positive status/which received drug 
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Figure S1: Influence of the models in the model averaging algorithm using the weighting 

scheme WAIC and stratified by the simulated populations. Each patient was stained in 

the color of the particular model, which obtained the highest weight in the algorithm. 

(A priori) a priori prediction using the patient covariates only; Bayesian forecasting 

employing measurements from (One occasion) the second (i.e. most recent) dosing 

interval and (Two occasions) the first and second dosing interval; (General model fit) 

Bayesian estimation employing measurements from all three dosing intervals. White 

numbers – numerical value of the biggest portion in the subpopulation and scenario, 

respectively 
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Figure S2: The relative root mean square error (rRMSE) and relative bias (rBias) of the 

predicted versus true simulated area under the curve (AUC) between 24 h and 36 h 

calculated in 6000 simulated patients (horizontal line) and the (sub-)populations 

(shapes). Comparison of the three weighting schemes (WOFV, WAIC and WSSE) in the model 

averaging algorithm (MAA) and the model selection algorithm (MSA). (A priori) a priori 

prediction using the patient covariates only; Bayesian forecasting employing 

measurements from (One occasion) the second (i.e. most recent) dosing interval and 

(Two occasions) the first and second dosing interval; (General model fit) Bayesian 

estimation employing measurements from all three dosing intervals. N.D. – not defined. 
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Figure S3: The imprecision represented by the relative root mean square error (rRMSE) 

of the predicted versus simulated area under the curve (AUC) between 24 h and 36 h 

calculated in each of the simulated (sub-)populations (horizontal facets). (A priori) a 

priori prediction using the patient covariates only; Bayesian forecasting employing 

measurements from (One occasion) the second (i.e. most recent) dosing interval and 

(Two occasions) the first and second dosing interval; (General model fit) Bayesian 

estimation employing measurements from all three dosing intervals. The ordinate is 

displaying the six single model approaches (light grey), the MAA (black), the MSA (dark 

grey) and the external model (grey) per scenario. N.D. – not defined  
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Figure S4: The inaccuracy represented by the relative bias (rBias) of the predicted versus 

simulated area under the curve (AUC) between 24 h and 36 h calculated in each of the 

simulated (sub-)populations (horizontal facets). (A priori) a priori prediction using the 

patient covariates only; Bayesian forecasting employing measurements from (One 

occasion) the second (i.e. most recent) dosing interval and (Two occasions) the first and 

second dosing interval; (General model fit) Bayesian estimation employing 

measurements from all three dosing intervals. The ordinate is displaying the six single 

model approaches (light grey), the MAA (black), the MSA (dark grey) and the external 

model (grey) per scenario. Whiskers cover the 95 % confidence interval of the rBias 

calculated via the standard error; N.D. – not defined  
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Figure S5: The relative root mean square error (rRMSE) and relative bias (rBias) of the 

clinical concentration-time data in the third observed dosing occasion, which is blinded 

to the models/algorithms in various settings: (A priori) a priori prediction using the 

patient covariates only; Bayesian forecasting employing plasma vancomycin 

concentrations from (One occasion) the second (i.e. most recent) observed dosing 

occasion and (Two occasions) the first and second observed dosing occasions; (General 

model fit) Bayesian estimation employing plasma vancomycin concentrations from all 

three dosing occasions. The ordinate is displaying the MAA (black), the MSA (dark grey) 

and the external model (grey) with either the published parameters (Goti et al. 2018) or 

adjusted parameters (Goti … re-estimated) per scenario. The adjusted parameters can be 

found in Supplement Table S1. Whiskers cover the 95 % confidence interval of the rBias 

calculated via the standard error; N.D. – not defined 

  



 

  

  

— 132 — 7.3 Supplementary material of Publication III 
 

 

Figure S6: a) The population predicted and b) the individually predicted vancomycin 

plasma concentrations of the clinical data (n=741) using the six single models and the 

reference model in either NONMEM or the MIPD-software ‘TDMx’. The diagonal line 
represents the identity line.  
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Figure S7: The individual objective function values (OFV) calculated for the clinical data 

either using NONMEM or the MIPD software ‘TDMx’. Each black circle represents the 
OFV in one patient. The diagonal line represents the identity line. 
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7.4 Supplementary material of Publication IV 

7.4.1 Supplementary file S1: Workflow of the simulation 

 

Figure 3 Workflow of the simulation-estimation study consisting of six main steps. MAP 

– Maximum a posteriori prediction; MAA – Model averaging algorithm; MSA – Model 

selection algorithm  
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1) Random sampling of the covariates 

In brief, a virtual set of 1000 patients were created in R (Version 4.0.2). The resulting 

dataset consisted of the same dosing regimen (i.e. a 60-minutes loading dose of 

2000 mg and 60-mintues maintenance doses of 1250 mg every 12 hours) for all patients. 

Furthermore, observations were added between 0-24 hours and 48-72 hours in 

increments of 0.5 hours. The covariates were randomly sampled according to the 

following code example. 

# R-code ------------------------------------------------------------------------------------ 

for(i in seq_along(data$ID)){ 

# AGE -------------------------------------------------------------------- 

  repeat { 

    age = rnorm(1, mean = 50, sd = 10)        ## repeat if AGE is out of boundaries: 

    if(age>20 & age<75) break 

  } 

  data$AGE[i] = age 

   

# Height -------------------------------------------------------------------- 

  data$HTM[i] = round( 

    ifelse(data$SEX[i]==1, 

           rnorm(1, mean = 1.65 , sd = .035),  ## height for woman 

           rnorm(1, mean = 1.75 , sd = .035)   ## men 

    ), 

    2) 

# BMI -------------------------------------------------------------------- 

  data$BMI[i] = round( 

    rlnorm(1, mean = log(25), sd = 0.1), 

    1) 

} 

 

# serum creatinine -------------------------------------------------------------------- 

data$SCR = rlnorm(n_ID, mean = log(82), sdlog = 0.3) 

 

# body weight -------------------------------------------------------------------- 

data$WTKG = data$HTM^2 * data$BMI 
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# END -------------------------------------------------------------------- 

 

Dataset structure after random sampling (1 example patient) 

Column specification  

TIME Time since first infusion 
AMT Administer dose of vancomycin 
DUR Infusion duration in hours 
DV Dependent variable, vancomycin concentration mg/L 
EVID NONMEM event identifier 
RATE Infusion rate [mg/hours] 
ID Patient identifier 
CMT NONMEM compartment identifier 
OCC Dosing occasion 
MDV Identifier for missing dependent variables 
SEX Sex of the patients 1=female 
AGE Age of the patient in years 
HTM Body height of the patient in m 
BMI Body mass index in kg/m^2 
SCR Serum creatinine in µmol/L 
WTKG Total body weigh in kg 

 

TIME AMT DUR DV EVID RATE ID CMT OCC MDV SEX AGE HTM BMI SCR WTKG 
0 2000 1 . 1 2000 1 1 1 1 0 50.43 1.77 28.5 59.22 89.29 

0.5 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 
1 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 

1.5 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 
2 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 

2.5 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 
3 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 

3.5 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 
4 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 

4.5 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 
5 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 

5.5 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 
6 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 

6.5 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 
7 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 

7.5 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 
8 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 

8.5 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 
9 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 

9.5 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 
10 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 

10.5 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 
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11 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 
11.5 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 

11.99 0 . . 0 0 1 1 1 0 0 50.43 1.77 28.5 59.22 89.29 
12 1250 1 . 1 1250 1 1 2 1 0 50.43 1.77 28.5 59.22 89.29 

12.5 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 
13 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 

13.5 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 
14 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 

14.5 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 
15 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 

15.5 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 
16 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 

16.5 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 
17 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 

17.5 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 
18 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 

18.5 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 
19 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 

19.5 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 
20 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 

20.5 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 
21 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 

21.5 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 
22 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 

22.5 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 
23 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 

23.5 0 . . 0 0 1 1 2 0 0 50.43 1.77 28.5 59.22 89.29 
24 1250 1 . 1 1250 1 1 3 1 0 50.43 1.77 28.5 59.22 89.29 
36 1250 1 . 1 1250 1 1 4 1 0 50.43 1.77 28.5 59.22 89.29 
48 1250 1 . 1 1250 1 1 5 1 0 50.43 1.77 28.5 59.22 89.29 

48.5 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 
49 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 

49.5 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 
50 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 

50.5 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 
51 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 

51.5 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 
52 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 

52.5 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 
53 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 

53.5 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 
54 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 

54.5 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 
55 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 

55.5 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 
56 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 

56.5 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 
57 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 
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57.5 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 
58 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 

58.5 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 
59 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 

59.5 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 
59.99 0 . . 0 0 1 1 5 0 0 50.43 1.77 28.5 59.22 89.29 

60 1250 1 . 1 1250 1 1 6 1 0 50.43 1.77 28.5 59.22 89.29 
60.5 0 . . 0 0 1 1 6 0 0 50.43 1.77 28.5 59.22 89.29 

61 0 . . 0 0 1 1 6 0 0 50.43 1.77 28.5 59.22 89.29 
61.5 0 . . 0 0 1 1 6 0 0 50.43 1.77 28.5 59.22 89.29 

62 0 . . 0 0 1 1 6 0 0 50.43 1.77 28.5 59.22 89.29 
62.5 0 . . 0 0 1 1 6 0 0 50.43 1.77 28.5 59.22 89.29 

63 0 . . 0 0 1 1 6 0 0 50.43 1.77 28.5 59.22 89.29 
63.5 0 . . 0 0 1 1 6 0 0 50.43 1.77 28.5 59.22 89.29 

64 0 . . 0 0 1 1 6 0 0 50.43 1.77 28.5 59.22 89.29 
64.5 0 . . 0 0 1 1 6 0 0 50.43 1.77 28.5 59.22 89.29 

65 0 . . 0 0 1 1 6 0 0 50.43 1.77 28.5 59.22 89.29 
65.5 0 . . 0 0 1 1 6 0 0 50.43 1.77 28.5 59.22 89.29 

66 0 . . 0 0 1 1 6 0 0 50.43 1.77 28.5 59.22 89.29 
66.5 0 . . 0 0 1 1 6 0 0 50.43 1.77 28.5 59.22 89.29 

67 0 . . 0 0 1 1 6 0 0 50.43 1.77 28.5 59.22 89.29 
67.5 0 . . 0 0 1 1 6 0 0 50.43 1.77 28.5 59.22 89.29 

68 0 . . 0 0 1 1 6 0 0 50.43 1.77 28.5 59.22 89.29 
69 0 . . 0 0 1 1 6 0 0 50.43 1.77 28.5 59.22 89.29 
70 0 . . 0 0 1 1 6 0 0 50.43 1.77 28.5 59.22 89.29 
71 0 . . 0 0 1 1 6 0 0 50.43 1.77 28.5 59.22 89.29 

71.5 0 . . 0 0 1 1 6 0 0 50.43 1.77 28.5 59.22 89.29 
72 1250 1 . 1 1250 1 1 7 1 0 50.43 1.77 28.5 59.22 89.29 

 

2) Simulation of the true PK parameters, true vancomycin plasma concentration and 

true area under the curve 

In brief, six population PK models were encoded in NONMEM (example from the Adane 

model below). These models were each used to simulate the PK parameters, true 

vancomycin plasma concentrations and true area under the curve of 1000 patients, 

respectively. 
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Example NONMEM file used for simulation 

$PROBLEM Simulation of the PK – recoded from Adane et al. 2015 

 

;------------------------------------------------------------------------------------ 

 

$INPUT 

TIME AMT DUR DV EVID RATE ID CMT OCC MDV SEX AGE HEIGHT BMI SCR 

WEIGHT ;DUIN; 

;---------------------------------------------------------------------------------------- 

 

$DATA sim_temp.csv IGNORE=@ 

$SUBROUTINES ADVAN13 TOL=9 

 

$MODEL NCOMPARTMENTS=3 

 

;---------------------------------------------------------------------------------------- 

 

$PK 

 

IF (SEX.EQ.0) THEN  

F_SEX = 1.23 

ELSE 

F_SEX = 1.04 

ENDIF 

 

BSA = ((TBW**0.425)*((HT*100)**0.725))*0.007184  ;m**2 DuBois DuBois 

Formula 

 

CLCR = ((((140-AGE)*TBW*F_SEX)/SCR)*1.73)/BSA ;mL/min/1.73m**2 Cockcroft 

Gault standardised to BSA  

 

TVCL = THETA(1)*(CLCR/125) 

 

CL = TVCL*EXP(ETA(1)) ;L/h 

 

TVV = THETA(2)*TBW  

 

V = TVV*EXP(ETA(2))  ;L 
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TVV1=TVV 

S1 = V 

V1=V 

S1   = V1 

KE   = CL/V1 

 

$DES 

 

DADT(1) =  - KE*A(1)  

DADT(2) =  1 

DADT(3) =   A(1)/V1  

AUC=A(3)      

;----------------------------------------------------------------------------------------- 

$ERROR 

IPRED = A(1)/V1 

SIG_PROP = EPS(1) 

 

Y = IPRED*(1+EPS(1)) 

 

EP1 = SIG_PROP 

EP2 = 0 

;----------------------------------------------------------------------------------------- 

 

$THETA 

6.54 ;CL 

0.51 ;V 

 

;------------------------------------------------------------------------------------------- 

 

$OMEGA 

0.071289 ;IIV CL 

0.057121 ;IIV V 

 

$SIGMA 

0.035721 ;proportional model 

 

;-------------------------------------------------------------------------------------------- 
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$SIMULATION (101017) ONLYSIM 

 

3) Dataset reformatting to create the sampling strategies 

In brief, the full dataset containing 5925 patients were reformatted to only contain a 

single sample per patient in the single-sampling strategies. An example dataset can be 

found below. 75 virtual patients were excluded to remove any potential influence of 

unreasonable eta values (i.e. patients with eta values larger than 2.8 times standard 

deviation were removed). 

Dataset structure of the simulated and reformatted output (1 example patient in the 

sampling strategy: 2 hours post start of infusion, simulated with the Adane model) 

Column specification  

TIME Time since first infusion 
AMT Administer dose of vancomycin 
DUR Infusion duration in hours 
DV Dependent variable, vancomycin concentration mg/L 
EVID NONMEM event identifier 
RATE Infusion rate [mg/hours] 
ID Patient identifier 
CMT NONMEM compartment identifier 
OCC Dosing occasion 
MDV Identifier for missing dependent variables 
SEX Sex of the patients 1=female 
AGE Age of the patient in years 
HTM Body height of the patient in m 
BMI Body mass index in kg/m^2 
SCR Serum creatinine in µmol/L 
WTKG Total body weigh in kg 
DVHID True vancomycin concentration in mg/L hidden to the approaches 
SIMN Identifier of the models used to simulate the respective patient 
SATI Identifier of the sampling strategy 

 

TIM
E 

A
M

T 

D
U

R
 

D
V

 

EV
ID

 

R
A

TE 

ID
 

C
M

T 
O

C
C

 
M

D
V

 
SEX

 

A
G

E 

H
TM

 

B
M

I 

SC
R

 

W
TK

G
 

D
V

H
ID

 

SIM
N

 

SA
TI 

0 2000 1 . 1 2000 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 . 1 3 
0.5 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 23.054 1 3 

1 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 36.569 1 3 
1.5 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 24.672 1 3 

2 0 . 29.133 0 0 10001 1 1 0 0 50.43 1.77 28.5 59.22 89.29 29.133 1 3 
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2.5 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 21.085 1 3 
3 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 31.477 1 3 

3.5 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 17.677 1 3 
4 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 20.515 1 3 

4.5 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 22.668 1 3 
5 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 17.188 1 3 

5.5 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 14.871 1 3 
6 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 19.619 1 3 

6.5 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 11.656 1 3 
7 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 10.44 1 3 

7.5 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 9.4714 1 3 
8 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 5.798 1 3 

8.5 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 11.008 1 3 
9 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 8.5556 1 3 

9.5 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 9.1017 1 3 
10 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 8.4579 1 3 

10.5 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 6.5751 1 3 
11 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 5.3729 1 3 

11.5 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 4.0975 1 3 
11.99 0 . . 2 0 10001 1 1 1 0 50.43 1.77 28.5 59.22 89.29 4.336 1 3 

12 1250 1 . 1 1250 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 . 1 3 
12.5 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 22.781 1 3 

13 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 29.429 1 3 
13.5 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 25.356 1 3 

14 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 19.596 1 3 
14.5 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 26.667 1 3 

15 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 18.137 1 3 
15.5 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 15.223 1 3 

16 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 15.337 1 3 
16.5 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 14.23 1 3 

17 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 12.411 1 3 
17.5 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 10.806 1 3 

18 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 12.223 1 3 
18.5 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 11.094 1 3 

19 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 7.9235 1 3 
19.5 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 11.312 1 3 

20 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 7.7734 1 3 
20.5 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 7.0833 1 3 

21 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 6.6701 1 3 
21.5 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 8.7447 1 3 

22 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 4.4152 1 3 
22.5 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 4.2194 1 3 

23 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 5.1198 1 3 
23.5 0 . . 2 0 10001 1 2 1 0 50.43 1.77 28.5 59.22 89.29 4.5451 1 3 

24 1250 1 . 1 1250 10001 1 3 1 0 50.43 1.77 28.5 59.22 89.29 . 1 3 
…. … … … … … … … … … … … … … … … … … … 
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4) Estimation using MAA/MSA 

In brief, the reformatted datasets were supplied to the multi-model approaches, which 

in turn estimated the individual PK parameters, vancomycin concentration and AUC of 

the 6000 individuals based on the supplied information (MAXEVAL=0). For detailed code 

examples of the MAA/MSA, including hands-on material, we kindly refer to the 

supplement file “cpt2065-sup-0002-Supinfo.zip” of the primordial publication of Uster 

et al. https://doi.org/10.1002/cpt.2065  

Model averaging and model selection R code 

## 

#- Packages -------------------------------------------------------------------- 

## 

 

library(tidyr) 

library(dplyr) 

library(readr) 

library(xpose4) 

#library(foreach) 

 

## 

#- Prerequisites ------------------------------------------------------------------------------------

- 

## 

 

modelest_info <- read_csv("modelest_info.csv", col_names = F, skip= 1)  ## v3 

sum of: v4 Thetas, v5 omegas, v6 sigmas 

 

#runnumber 

model_run = modelest_info$X1            ## (eg run001, ..) 

model_name = modelest_info$X2           ## (eg Adane 2015, ..) 

model_position = modelest_info$X8       ## (eg 1 2 3 4 5 6) 

#modelnumbers 

n_model = length(model_run)             ## eg 6 

 

## 

#- Dataset ------------------------------------------------------------------------------------- 

https://doi.org/10.1002/cpt.2065
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## 

 

## dataset containing the patient 

data0 <- read_csv("data0.csv",skip = 0, col_names = T) 

 

## 

#---------------------ESTIMATION------------------------------------------------------- 

## 

 

#-1 Estimate with (n_model)models------- 

n_model = n_model 

j <- NA   ##m_loop: loop over set of models 

m_out <- vector("list", n_model) 

 

for(j in model_position){ 

 

    #execute NM model for estimation 

    system( paste("execute -model_dir_name -clean=2 -silent run00",j, ".mod",sep 

= ""), wait = T, intern = F) 

 

    ##read results 

    lstfile = read.lst( paste("run00",j,".lst",sep = "")) 

    est_sdtab = read.table(paste("sdtab00",j, sep = ""),skip = 1, header = T) 

 

    ## add OFV, Likelihood L, modelname, ... 

    m1 <- est_sdtab %>% 

      mutate( 

        OFV = lstfile$ofv, 

        LL = exp(-0.5 * OFV), 

        SCE = NA, 

        SCEN = 1, 

        MOD = model_name[j], 

        MODN = model_position[j] 

      ) 

 

  m_out[[j]] <- m1                          ## produce one loop output 

   

  # remove unnecessary output 
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  system(paste("rm -r run00*.dir*", sep='')) 

  rm("lstfile", "est_sdtab") 

} 

 

m_out = dplyr::bind_rows(m_out) 

 

#-2 calculate weights -------------------------------------------------------------------- 

w1 <- m_out %>% 

  dplyr::distinct( ID, MOD, MODN, OFV, LL, .keep_all= F) %>%  

  dplyr::mutate( W = LL/sum(LL) )  

 

w2 <- dplyr::right_join(m_out, w1)                                    ## add weighting term for 

each observation 

 

#-3.1 MSA -------------------------------------------------------------------- 

msa <- w2 %>% 

  group_by(ID, TIME ) %>% 

  dplyr::filter(LL==max(LL)) %>%  ## same as   dplyr::filter(W==max(W)) %>%  

  mutate(MOD2=MOD,                ##add identifier column 

         MOD = "Selection (MSA)", 

         MODN = 7) 

 

#-3.2 MAA -------------------------------------------------------------------- 

 

maa <- w2 %>%  

  group_by(ID, TIME) %>%                    ##not urgently necessary, but more a 

precaution 

  mutate(  

    AUC = sum(AUC*W),              ##average AUC if supplied 

    PRED = sum(PRED*W),                                                

    IPRED = sum(IPRED*W)) %>%               ##average results 

  ungroup() %>%  

  distinct(ID, TIME, .keep_all = T) %>%  

  mutate(MOD = "Averaging (MAA)",           ##add identifier 

         MODN= 8, 

         W   = NA) 
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5) Identification of the optimal sampling strategies 

In brief, to assess the sampling strategies of the multi-model approaches in FD or SS 

across the total population, trends of the median percentage error (MdPE; Eq. 2) and the 

interquartile range (IQR; Eq. 3) of the relative prediction errors (Eq. 1) were evaluated. rPE = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐴𝑈𝐶 − 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐴𝑈𝐶𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐴𝑈𝐶 ∗ 100 ( Eq. 1) MdPE = 𝑚𝑒𝑑𝑖𝑎𝑛({𝑟𝑃𝐸0; … ; 𝑟𝑃𝐸𝑖}) ( Eq. 2) IQR = 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒3({𝑟𝑃𝐸0; … ; 𝑟𝑃𝐸𝑖}) − 𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒1({𝑟𝑃𝐸0; … ; 𝑟𝑃𝐸𝑖}) ( Eq. 3) 

With quartile1 and quartile3 being the 25th and 75th percentile of the relative prediction 

errors of the AUC (rPE) over the 5925 patients, respectively. 

The resulting performance metrics of the sampling-strategies per approach were 

ordered from best to worst and assigned with a ranking number representing the 

respective position in the order (example below). The best combination of the MdPE and 

IQR was identified as optimal sampling strategy per approach in the case of the MAA in 

the first dose scenarios at 2.0 hours. 
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Table: Exemplified ranking of the single-sampling strategies according to the median 

percentage error (MdPE) and interquartile range (IQR): The performance metrics of the 

top five single-sampling strategies (First dose) using the MAA are displayed below. Each 

metric (MdPE and IQR) is given a rank between 1 and 23 with 1 being the best. These 

numbers are subsequently summed and the lowest sum is impartially identifying the 

optimal sampling timepoint (→) in the respective estimation method. MdPE – median 

percentage error of the area under the concentration time curve; IQR – interquartile 

range of the relative prediction errors 

Estimation 

Model 

Dosing 

interval 

Single-

sampling 

strategy 

[h] 

MdPE [%] 
IQR 

[%] 

Ranking 

of the 

MdPE 

Ranking 

of the 

IQR 

Sum of 

the 

Rankings 

 

     X Y X+Y  

MAA 
First 

dose 
2 -0.04 23.88 2 3 5 → 

MAA 
First 

dose 
3 0.44 23.96 4 4 8  

MAA 
First 
dose 

3.5 0.94 23.33 9 1 10  

MAA 
First 

dose 
1.5 0.38 25.38 3 7 10  

MAA 
First 

dose 
1 -0.07 26.41 1 10 11  

… … … … … … … …  

 

6) Repeating 3) – 5) for the two-sampling strategies  

After identifying the optimal single-sample timepoints per approach, step 3) to 5) was 

repeated with the optimal single sample (in the case of the MAA in the first dose 

scenarios at 2.0 hours) being always supplied next to a second sample in between 0 and 

12 hours post start of infusion.  
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7.4.2 Supplementary file S2 

Supplement Text S1:  

To calculate the AUC using the equation-based approach proposed by Pai et al.1, the 

individual plasma concentration at the theoretical start of infusion (CT0) and the true 

trough concentration immediately before the next dose (CT12) are needed. In detail, the 

concentrations were back-extrapolated from the mono-exponential curve via 

transposing Eq. 1 as represented below. 

𝐾𝑒 = 𝐿𝑛 (𝐶𝑃𝐶𝑇)𝑇𝑇 − 𝑇𝑃  ( Eq. 4) 𝐶𝑇0 = exp( 𝐾𝑒 ∗ (𝑇𝑇 − 𝑇𝑇0)) ∗  𝐶𝑇 ( Eq. 5) 𝐶𝑇12 = 𝐶𝑃exp( 𝐾𝑒 ∗ (𝑇𝑇12 − 𝑇𝑃)) ( Eq. 6) 

 

Table S1: Model properties and representative* PK parameters of the pharmacometric 

models included in the algorithms**. 

R
eferen

ce
 

P
atien

t 

p
o

p
u

la
tio

n
 

N
 

N
r. o

 sa
m

p
. 

C
o

va
ria

tes 

C
L 

V
c 

V
p

 

Q
 

IIV
*** 

R
U

V
*** 

Adane et al., 
2015 ** 

extremely obese  29
 

9
3 

CL: CLCR; Vc: 
TBW 

4.74 

38.3 

- - CL: 26.7% 
Vp: 
23.9% 

P: 
18.9% 
A: -  

Mangin et 

al., 2014 ** 
critically ill with post 
sternotomy 
mediastinitis 

30
 

359
 

CL: sex, TBW, 
SCR, SAPSII-
score; Vc: 
TBW; Vp: 
TBW; Q: 
TBW, 
diabetes 
mellitus 

2.6
0

 

23.5 

72.9
 

6
.0

1 

CL: 29% 
Vc: 53% 
Q: 101% 
 

P: - 
A: 7.3 
mg/L  
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Medellín-
Garibay et 

al., 2016 ** 

trauma patients 118 

39
2 

CL: CLCR, 
furosemide 
co-
medication; 
Vc: TBW, age; 
Vp: TBW 

2.87 

55.5 

442.5 

0
.81 

CL:36.7% 
Vc: 
40.0% 

P: 
19.2% 
A: 3.5 
mg/L 

Revilla et al., 
2010 ** 

intensive care patients 19
1 

56
9

 

CL: age, 
CLCR; Vc: 
SCR, TBW 

4.84 

6
1.5 

- - CL: 30.1% 
Vc: 
22.8% 

P: - 
A: 4.2 
mg/L 

Roberts et 

al., 2011 ** 
septic, critically ill 20

6
 

579
 

CL: CRCL; Vc: 
TBW 

4.15 

114.8 

- - CL: 
38.9% 
Vc: 37.4% 

P: 
19.9% 
A: 2.4 
mg/L  

Thomson et 

al., 2009 ** 
TDM patients  39

8 

1557 
CL: CLCR; Vc: 
TBW, Vp: 
TBW 

4.45 

50
.6

 

54.9
 

2.28 

CL: 27% 
Vc: 15% 
Vp: 130% 
Q: 49% 

P: 15% 
A: 1.6 
mg/L 

* parameters were calculated for comparability-reasons using a representative patient: 50 years old, 
male, 75 kg, 1.7 m, serum creatinine of 85 μmol/L 
** population pharmacokinetic models, which are also included in the model averaging and model 
selection algorithms 
*** CV was calculated as square root of omega or sigma multiplied by 100, if not otherwise stated in the 
publication 
N: Number of patients, Nr. of samp.: Number of vancomycin samples used for model development, CL: 
Clearance, Vc: central Volume of distribution, Vp: peripheral Volume of distribution (-: one-
compartment model), Q: Intercompartmental Clearance (L/h, -: one-compartment model), IIV: 
interindividual variability (coefficient of variation (CV)**), RUV: residual unexplained variability, with P: 
proportional (CV**) and A: additive component, CLCR: creatinine clearance, TBW: total body weight, 
SCR: serum creatinine 
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Table S2: Exemplified ranking of the single-sampling strategies according to the median 

percentage error (MdPE) and interquartile range (IQR): The performance metrics of the 

top five single-sampling strategies (First dose) using the MAA are displayed below. Each 

metric (MdPE and IQR) is given a rank between 1 and 23 with 1 being the best. These 

numbers are subsequently summed and the lowest sum is impartially identifying the 

optimal sampling timepoint (→) in the respective estimation method. MdPE – median 

percentage error of the area under the concentration time curve; IQR – interquartile 

range of the relative prediction errors 

Estimation 

Model 

Dosing 

interval 

Single-

sampling 

strategy 

[h] 

MdPE [%] 
IQR 

[%] 

Ranking 

of the 

MdPE 

Ranking 

of the 

IQR 

Sum of 

the 

Rankings 

 

     X Y X+Y  

MAA 
First 

dose 
2 -0.04 23.88 1 3 4 → 

MAA 
First 
dose 

3 0.44 23.96 4 4 8  

MAA 
First 

dose 
3.5 0.94 23.33 9 1 10  

MAA 
First 

dose 
1.5 0.38 25.38 3 7 10  

MAA 
First 

dose 
1 -0.07 26.41 2 9 11  

… … … … … … … …  
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Table S3: Timing and performance metrics of the optimized single- and two-sampling 

and mainly recommended peak-trough strategies of the same population PK models 

used to simulate the 6000 patients after the first dose of vancomycin as well as in 

steady-state. 

 

Population PK model 

First 

sampl

e 

Secon

d 

sampl

e 

Single-sample 

strategy*1 

Two-sample 

strategy*2 

“peak-trough” 
strategy*3 

 
 [h] [h] 

MdPE 

[%] 

rRMSE 

[%] 

MdPE 

[%] 

rRMSE 

[%] 
MdPE [%] 

rRMSE 

[%] 

Fi
rs

t 
D

o
se

 

Adane 2015  4.5 4 10.7 35.3 5.2 24.5 12.9 34.9 

Mangin 2014  2 1 0.4 30.8 -0.6 25.1 -14.9 24.5 

Medellin 2016  6.5 4.5 1.6 30.5 0.2 21.7 8.2 25.2 

Revilla 2010  2 5 0.5 29.1 -1.0 20.9 1.6 25.1 

Roberts 2011 3.5 4.5 -8.4 21.7 -5.5 17.3 -5.4 20.2 

Thomson 2009 5.5 3.5 -3.2 28.6 -3.2 21.0 -0.5 30.1 

St
ea

d
y-

st
a

te
 

Adane 2015  6.5 5 -2.3 23.4 -2.5 17.9 4.2 21.8 

Mangin 2014  1 10 8.1 37.8 3.6 24.1 2.6 25.3 

Medellin 2016  7 5 4.8 27.3 1.6 19.8 5.3 21.3 

Revilla 2010  5.5 4.5 -3.5 23.3 -1.6 18.2 4.0 22.5 

Roberts 2011 6.5 5 -6.9 22.1 -4.9 17.0 -1.4 19.0 

Thomson 2009 8 3.5 -3.0 23.6 -1.9 18.0 -1.4 20.0 

*1 performance metrics using the “First sample” timepoint 
*2 performance metrics using the “First sample” and “Second Sample” timepoint 
*3 performance metrics using a sample at 1 h and at 11.5 h post start of infusion 
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Figure S1: Distribution of the demographics of the simulated population (n=6000). f – 

female, m – male 
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Figure S2: Distributions of the simulated parameters (in total 5925) stratified by the six 

simulation models. Green colors indicate a one-compartmental structure; brown colors 

indicate a two-compartmental structure 
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Figure S3: Simulated PK profiles (in total 5925) stratified by the population PK models 

used for simulation. The lower panels display the individual true AUC values either from 

0-12 hours (12) or from 48-60 hours) obtained via numerical integration of the simulated 

PK profiles. The AUC was determined by integration and hence included no residual 

unexplained variability (RUV), while the individual vancomycin plasma concentrations 

included the RUV of the simulation model. The three blue lines indicate the 2.5th, 50th 

and 97.5th percentiles of the PK profiles, respectively.  
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Figure S4: Relative prediction errors (rPE) and performance metrics (upper: median 

percentage error, lower: interquartile range) of the equation-based approach stratified 

by the population simulated using the indicated models; FD – first dose; SS – steady-

state 
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Figure S5: Predictive performance of the six population PK models used to simulate the 

virtual patients using the single-sample strategies in the total simulation (n=5925). The 

median percentage error and the interquartile range of the relative prediction errors of 

the AUC (IQR) are representing accuracy and imprecision, respectively. Time after dose 

indicates the distinct timepoint of the single sample drawn in the 5925 patients either 

in the first dosing interval or the fifth (i.e. Steady-state). 
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Figure S6: Predictive performance of the six population PK models used to simulate the 

virtual patients using the optimized first sample and a second sample drawn in between 

1-12 hours post start of infusion. Time after dose indicates the timepoint of the second 

sample drawn in the 5925 patients either in the first dosing interval (i.e. First dose) or 

the fifth (i.e. Steady-state) additionally to the optimal first sampling timepoint, which is 

indicated with the gap in the lines. 1-S. – displays the performance metrics of the optimal 

single-sample strategy of the six models (see Table S3); 1+11.5 – represents the 

performance metrics of the gold-standard “peak-trough” sampling strategies in the six 
approaches; EQA – the black crosses display the performance metrics of the equation-

based approach as a reference; IQR – interquartile range of the relative prediction errors 

of the AUC  
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