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Abstract

A new method for studying the magnetic structures at the atomic level was developed
within the scope of this thesis. A combination of the site-selectivity of the diffraction-
based x-ray standing waves (XSW) technique and sensitivity to magnetic properties of
the x-ray magnetic circular dichroism (XMCD) spectroscopy leads to a completely new
perspective. The XSW method makes use of the standing wave appearing as a result
of an interference between the incoming and the Bragg reflected electromagnetic waves.
In the magnetic x-ray standing waves (MXSW) technique, a circular polarisation of the
incoming beam is used to additionally gain magnetic information via the dichroism in the
absorption of the standing wave. Due to the utilisation of the x-ray interference field, the
phase information is preserved, so the magnetic structure can be studied directly. The
shape of the modulation in the MXSW signal is characteristic of a given distribution of
the magnetic moments and yields directly structural information. The development of the
new method within the scope of this thesis consisted firstly of constructing the theoretical
foundations. The dynamical theory of x-ray diffraction is used to treat theoretically
the scattering phenomena. The absorption of the resulting wavefield is described within
the framework of the time-dependent perturbation theory. Secondly, the simulations
for several systems with different magnetic ordering were conducted. The simulation
results were later used to explain the observed experimental data. Finally, two MXSW
experiments were performed on a platinum-cobalt alloy and an yttrium-iron-garnet single
crystals. The resulting angle-dependent XMCD signals exhibit a clear variation caused by
the x-ray standing wave. The comparison between the simulation results and experimental
data confirmed the validity of the novel MXSW theory.





Kurzfassung

Untersuchung des Magnetismus mit stehenden Röntgenwellen

Im Rahmen dieser Arbeit wurde eine neue Methode zur Untersuchung der magneti-
schen Strukturen auf atomarer Ebene entwickelt. Eine Kombination aus der Ortsselek-
tivität der auf Beugung basierenden Methode der stehenden Röntgenwellen (Eng. x-ray
standing waves, XSW) und der Empfindlichkeit gegenüber magnetischen Eigenschaften
der zirkularer magnetischer Röntgendichroismus-Spektroskopie (Eng. x-ray magnetic cir-
cular dichroism, XMCD) führt zu einer völlig neuen Perspektive. Die XSW-Methode
macht sich die stehende Welle zunutze, die als Ergebnis einer Interferenz zwischen den ein-
fallenden und den Bragg-reflektierten elektromagnetischen Wellen entsteht. Bei der Meth-
ode zur Untersuchung des Magnetismus mit stehenden Röntgenwellen (Eng. magnetic
x-ray standing waves, MXSW) wird eine zirkulare Polarisation des einfallenden Strahls
genutzt, um zusätzlich magnetische Informationen durch den Dichroismus in der Absorp-
tion der stehenden Welle zu gewinnen. Durch die Nutzung des Röntgeninterferenzfeldes
bleibt die Phaseninformation erhalten, sodass die magnetische Struktur direkt untersucht
werden kann. Die Form der Modulation im MXSW-Signal ist charakteristisch für eine bes-
timmte Verteilung der magnetischen Momente und liefert direkt eine Strukturinformation.
Die Entwicklung der neuen Methode im Rahmen dieser Arbeit bestand zunächst in der
Erarbeitung der theoretischen Grundlagen. Die dynamische Theorie der Röntgenbeugung
wird verwendet, um die Streuphänomene zu berechnen. Die Absorption des resultierenden
Wellenfeldes wird im Rahmen der zeitabhängigen Störungstheorie beschrieben. Zweitens
wurden Simulationen für mehrere Systeme mit unterschiedlicher magnetischer Ordnung
durchgeführt. Die Simulationsergebnisse wurden später verwendet, um die beobachteten
experimentellen Daten zu erklären. Schließlich wurden zwei MXSW-Experimente an einer
Platin-Kobalt-Legierung und einem Yttrium-Eisen-Granat Einkristall durchgeführt. Die
resultierenden winkelabhängigen XMCD-Signale zeigen eine deutliche Variation, die durch
die stehende Röntgenwelle verursacht wird. Der Vergleich zwischen den Simulationsergeb-
nissen und den experimentellen Daten bestätigte die Gültigkeit der neuen MXSW-Theorie.





Streszczenie

Badania magnetyzmu przy użyciu rentgenowskich fal stojących

W ramach tej pracy doktorskiej, opracowana została nowa metoda badania struktu-
ry magnetycznej materiałów krystalicznych na poziomie atomowym. Nowa perspektywa
uzyskana została poprzez połączenie metody rentgenowskich fal stojących (ang. x-ray
standing waves, XSW), która dostarcza informacji strukturalnych, oraz czułej na właści-
wości magnetyczne spektroskopii rentgenowskiego magnetycznego dichroizmu kołowego
(ang. x-ray magnetic cirular dichroism, XMCD). W metodzie XSW wykorzystuje się fa-
lę stojącą powstającą w wyniku interferencji fal elektromagnetycznych — padającej i
rozproszonej. W przypadku metody magnetycznych rentgenowskich fal stojących (ang.
magnetic x-ray standing waves, MXSW) fala padająca jest kołowo spolaryzowana, co po-
zwala dodatkowo uzyskać informacje o strukturze magnetycznej, dzięki dichroizmowi w
absorpcji fali stojącej. Wykorzystanie zjawiska interferencji pozwala zachować informację
o fazie fali i badać strukturę magnetyczną w sposób bezpośredni. Informacja o strukturze
dostarczana jest przez kształt sygnału MXSW, który jest charakterystyczny dla danego
rozkładu momentów magnetycznych. W ramach tej pracy, stworzenie fundamentów no-
wej metody polegało w pierwszej kolejności na opracowaniu podstaw teoretycznych. Do
opisu zjawiska rozpraszania wykorzystano dynamiczną teorię dyfrakcji promieniowania
rentgenowskiego. Absorpcja uzyskanej w ten sposób fali opisana została z kolei w ramach
zależnej od czasu teorii zaburzeń. Po drugie, wykonano symulacje komputerowe dla sze-
regu kryształów z różnym uporządkowaniem magnetycznym. Wyniki symulacji zostały
wykorzystane później do analizy danych doświadczalnych. Na koniec, dwa doświadczenia
MXSW zostały wykonane z użyciem monokryształów stopu platyny i kobaltu oraz grana-
tu itrowo-żelazowego. Uzyskany kątowo-zależny sygnał XMCD wykazuje wyraźną zmianę
powodowaną przez falę stojącą. Porównanie wyników symulacji i danych doświadczalnych
pozwoliło potwierdzić słuszność opracowanej teorii MXSW.
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Introduction

The structure of matter on small scales since ancient times always fascinated philoso-
phers and scientists. It constituted a mystery, which was a driving force for the develop-
ment of more and more sophisticated methods enabling seeing that, what is not accessible
by human eye. The crystals, due to their marvellous macroscopic forms, gained attention
of humans very early in our history [1]. Even though significant progress in the field of
crystallography was achieved earlier [2], it was x-ray diffraction, what provided a direct
evidence for the translation periodic, three dimensional atomic structure of crystals [3].

Probably even more intriguing was ever since the phenomena of magnetism. The fact
that a strong force emerges between some objects was noticed already in ancient times [4].
The observation of Øersted, that a flow of current generates a magnetic field provided a
first insight into the origin of magnetism [5]. Much deeper understanding was provided
hundred years later by quantum mechanics and is related to the names of Ising [6] and
Heisenberg [7]. The fact that magnetic moments of atoms order spontaneously in the
crystal, often in very sophisticated manner [8], remains a fascinating and not yet fully
understood phenomenon.

The fascination for both of these scientific subjects was an inspiration for the work
on the topic of this thesis. A perspective of making a contribution to the better under-
standing of the magnetic structures of crystalline materials (not only bulk crystals, but
also nanostructures) constituted a major motivation for the development of a new, direct
method for structural investigations reported here.

As early as in 19131, it was recognised, that the structure of crystals cannot be directly
deducted from diffraction patterns, since the phase of the scattered wave cannot be mea-
sured. Later on, a number of ways to solve this phase problem was developed [9]. They
can be generally divided into the techniques where the phase is actually measured (for
example using anomalous dispersion), and the ones where the phases are extracted from
the amplitudes using mathematical relations between structure factors and constrains (for
example direct methods [10]). Conceptually most appealing are the methods, where the
use is made of the interference between the waves, as then the phase is measured directly,
without imposing any changes on the investigated system, like in the multiple isomor-
phous replacement method [9]. This can be realised practically by exciting two Bragg
reflections at once (three-beam-case diffraction) and measuring the so called triple phase,

1During the 85th annual meeting of the German scientists in Vienna, 21-28.08.1913, where among
others, Laue, Friedrich and Wagner gave talks about the x-ray crystallography. In his talk, Max von
Laue stated: Can the structure of a crystal be deduced from the interference diagrams? If this were the
case, one of the crystallography’s most important problems would be solved. But this is not the case
because the phases cannot be measured! [2]
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which contains the phases of the structure factors of the three involved reflections [11].
It was also shown, that the x-ray standing waves (XSW) technique, which is of the main
interest in this thesis, even though being most suited for investigation of the structure of
foreign atoms in a known crystal lattice [12], can also be used to determine the phase of
the structure factor directly2 [13].

An experimental technique, which is most often used for magnetic structure determi-
nation is neutron diffraction. Extraction of structural information from the diffraction
data is possible via the refinement process, where the experimental data is fitted by the
theoretical neutron scattering cross-section calculated for a given arrangement of mag-
netic moments. This remains a challenging task, as it is very difficult to prove that the
obtained solution is the global one [14]. In contrary to regular crystallography, no direct
methods similar to three-beam-case diffraction or XSW were so far developed for studying
the magnetic structures. This makes the work reported in this thesis a truly pioneering
one.

Given the lack of the methods of this kind, the main aim of this project is a de-
velopment of a new direct technique for studying the magnetic structures of crystalline
materials at the atomic level. The idea is to combine a well-established diffraction-based
standard XSW method, with the x-ray magnetic circular dichroism (XMCD). The result-
ing magnetic x-ray standing waves (MXSW) technique, by taking advantage of site and
element selectivity coming from XSW method, and sensitivity to magnetic properties of
the XMCD spectroscopy, allows to gather information about the arrangement of magnetic
moments in a direct way, without any refinement or modelling.

From the physical perspective, the MXSW technique is a problem of scattering and
absorption of the circularly or elliptically polarised electromagnetic wave by the pre-
defined crystal lattice. When the diffraction condition is fulfilled, a reflected wave is
generated by the crystal and the interference of this wave and the incoming (refracted)
one leads to the appearance of a standing wave. This entity has two interesting properties
— its periodicity is equal to the periodicity of the reflecting lattice planes, and it moves
by half of its period as the scan through the angular reflection domain is performed. The
existence and movement of the standing wave modulates the absorption rate of the atoms
in the lattice. Determination of these modulations via measurement of the secondary
emission yield provides information about spatial distribution of absorbing atoms. If
the atoms are magnetic, and used light possesses angular momentum (what means, is
circularly or elliptically polarised), the absorption additionally differs between opposite
helicities and the magnetic information arises from analysing this difference. The circular
dichroism in magnetised media arises due to the generation of spin-polarised electrons
by the angular momentum of light and their detection by the spin-polarised final band
(which is characteristic of atoms exhibiting magnetic moment). In the MXSW method
one uses the standing wave appearing in the reflection domain to add the spatial resolution
to the standard XMCD spectroscopy. The standing wave acts as a scanner, which turns
on and off the contribution of non-equivalent magnetic ions to the overall XMCD signal,
thus providing a signal which is site selective. In this way it is possible to study the
distribution of magnetic moments in a direct way, since the usage of the interference field

2Via the combination of the standard XSW angular scans and the energy scans around the absorption
edge. The latter changes the phase of the structure factor, what is reflected in the XSW patterns.



INTRODUCTION 3

ensures that the phase information is not lost.
The theoretical description of the novel MXSW method was constructed within the

scope of this thesis and is based on two pillars — dynamical theory of x-ray diffraction and
time-dependent perturbation theory. The former is used to describe the scattering of a
circularly polarised electromagnetic (EM) wave by the crystal lattice. It is an example of a
physical theory, which very precisely predicted effects confirmed experimentally decades
later. Among them are the famous top-hat-shaped crystal reflectivity curve3 and the
existence of the standing wave. The latter was confirmed indirectly via the fine structure
of the Kossel lines [19,20], later by Borrmann effect [21,22] and finally by showing directly
its impact on the absorption of atoms in the lattice [23, 24]. The recent development in
the area of dynamical diffraction theory [25–28], shows that it remains a lively research
field, with room for establishing further interesting results. Just to mention, two new
conclusions are drawn from the dynamical-theory-based novel MXSW theory presented
in this work — the possibility of observing an XMCD signal from the antiferromagnetic
system due to the influence of the standing wave, and a perspective of generating a circular
dichroism in absorption in magnetised crystal via usage of linearly π-polarised incoming
wave, by taking advantage of the phase shift between refracted and reflected waves in the
reflection domain.

Over the decades, the XSW technique has proven its usability for precise determination
of the positions of atoms in the lattice or adsorbates on the surface, even with picometer
precision [29]. Also very recently, the XSW method has been found useful for addressing
a number of scientific questions [30–35]. The canonical form of the method, where the
Bragg reflection for standing wave generation is used in conjunction with a detection of the
x-ray fluorescence [36], was extended by incorporating other experimental techniques to
broaden the applicability of the XSW. The combination with photoelectron spectroscopy
supplemented the XSW with sensitivity to the chemical state of the atoms [12, 37]. An
excitation of the standing wave using the specular reflection of x-rays (total external
reflection phenomenon) allows studying surfaces, interfaces and deposited nanostructures
[38]. Alternatively, a long-period standing wave can be also produced by the multilayer,
which acts as an artificial crystal, generating also a Bragg reflection [39]. It should be
mentioned, that the standing waves were also used in conjunction with Compton and
thermal diffuse scattering [29].

A perspective of using the standing wave for studying the magnetic properties of ma-
terials with spatial resolution was realised practically for the case of long-period standing
waves excited in multilayers. Kim and Kortright [40] have connected for the very first
time the XSW method with XMCD to gain additional depth sensitivity. Using a standing
wave generated by the stack of [W/B4C]40 layers, they showed that cobalt in Pd/Co/Pd
trilayer exhibits different spin-resolved electronic structure at the interfaces, compared to
the center of the film. A similar studies for the Fe/Cr bilayer, revealing that a normally
antiferromagnetic chromium becomes ferromagnetic in the interface region, were reported
by Yang et al. [41]. The group of Sato [42] studied in the same way antiferromagnetically
and ferromagnetically coupled Fe/Si/Fe trilayers, and found an increase of orbital mag-

3Predicted theoretically already by Ch. G. Darwin in 1914 [15, 16]. At that time the agreement
with experimental data was very poor, due to the large mosaic spread of the used crystals. The first
measurements revealing the top-hat shape of the reflectivity curve came much later and were provided
by Renninger in 1955 for calcite [17] and Bubáková in 1961 for germanium [18].
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netic moment of iron in the interdifused layer, utilising the depth selectivity granted by
the standing wave. Andreeva and Odintsova [43] calculated an expected fluorescence yield
from the periodic antiferromagnetically coupled multilayers, where the standing wave was
generatd by the investigated system itself. They clearly pointed out the advantage of
using a standing wave for XMCD studies of systems with antiferromagnetic ordering.
The simulations revealed a dichroism in the fluorescence yield, but the antinodes of the
standing wave were found to be anchored in the layers with low absorption, what makes
scanning of the sample depth impossible. Jonnard and his group [44] reported on the
first MXSW experiment on Mg/Co multilayer, where the x-ray fluorescence was used to
determine the XMCD signal. It was found, similarly like in the work of Andreeva and
Odintsova, that the movement of the standing wave in the multilayer is very limited. An
interesting idea for using the standing wave generated by the multilayer for supplement-
ing the x-ray photoelectron emission microscopy (PEEM) with the depth selectivity was
proposed by Gray et al. [45]. The authors pointed out, that the resulting technique can
be in the future combined with the XMCD spectroscopy, to additionally gather magnetic
information about the nanostructures with spatial resolution.

It should be emphasised, that the MXSW methods based on the Bragg reflection
from the multilayer, even though being also a combination of the XSW with XMCD, are
fundamentally different from the technique described in this thesis. They enable studies
of the micro- and nanostructures and not the magnetic structure at the atomic level,
understood as the orientations and magnitudes of the magnetic moments. Also from
the theoretical perspective, the description of the scattering of x-rays from multilayer is
different than the approach based on the dynamical theory of diffraction presented here.

An idea of using the standing wave for studying the arrangement of magnetic moments
at the atomic level was expressed in the conference paper of Jaouen et al. [46]. The
researchers performed an XSW angular scans on the magnetised, chemically disordered,
nickel-platinum Ni90Pt10 alloy, using circularly polarised x-rays. They observed a clear
variation in the XMCD signal in the reflection domain. The aim of the studies was a
determination of the magnetic properties of platinum atoms depending on their position
in the lattice. Given the lack of the MXSW theory, the full analysis of the experimental
data was not possible. The authors stressed a necessity for development of a rigorous
theory describing the effects involved.

Once the work on the project described in this thesis was highly advanced, the author
became aware of a conference contribution of Kawata, presented during the meeting in
Malente, Germany in 1992 [47]. Along with the idea of MXSW at the atomic level, he
presented there the experimental results for yttrium-iron-garnet (YIG) single crystal. The
group performed MXSW scans for the sample kept in the magnetic field, but assumed
that the antiferromagnetic coupling between the iron sublattices is not perturbed and the
magnetic moments align parallel (and antiparallel for the less populated sublattice) to the
external magnetic field vector. The quality of obtained experimental data is very high,
but no rigorous MXSW theory was developed by the authors.

In order to allow full understanding of the MXSW data, an exhaustive theoretical
treatment of this subject was developed within the scope of this thesis and is presented
hereafter. This is a first time, when such a rigorous MXSW theory is reported. Two new
interesting phenomena, related purely to the properties of the wavefields emerging from
the dynamical theory, are predicted. It is proven rigorously, that the MXSW method
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can be used for studying the magnetic structures of crystalline materials based on the
variations in the XMCD signal caused by the standing wave. The MXSW technique shows
a number of advantages over existing methods for determination of magnetic structures
of crystal. Other than neutron diffraction, it does provide structural information directly,
and due to the large photon flux from x-ray sources compared to neutron fluxes available,
can be easily applied to thin films. It has also advantages over the resonant elastic x-ray
scattering (REXS), which typically provides only the information about orientations of
the magnetic moments, and requires comparison with the model to extract the structural
information [48].

The structure of the thesis is as follows. The theoretical part consists of four chapters
and presents the development and results of the MXSW theory. The first chapter consists
of a summary of the two-beam-case dynamical theory of diffraction in the formulation of
Laue and the evaluation of the form of the wavefield in the crystal, excited by the incoming
wave with arbitrary polarisation. Similarly, the second chapter presents a formalism (time-
dependent perturbation theory) used later for calculating the absorption cross-section
for the wavefield predicted by the dynamical theory of diffraction. The third chapter
comprises a thorough discussion of the XMCD effect for a single arbitrarily polarised
EM wave. The most crucial chapter 4 presents the MXSW theory that is the evaluation
of the absorption cross-section for the standing wave excited by arbitrarily (thus also
circularly) polarised wave. It constitutes the most important achievement of this work.
The theoretical part is followed by the one devoted to computer simulations. Chapter 5
presents simulation results for four chosen magnetic systems. The results are used to
present the results of the MXSW theory and show the principle of the MXSW method.
Chapter 6 is devoted to the numerical evaluation of the absorption correction for the
dynamical theory of x-ray diffraction, which as a classical theory, does not account for
the dichroism in absorption caused by magnetism and angular momentum of light. The
experimental part consists of three chapters and is initiated by the general discussion
about the prerequisites for the MXSW experiment and applicability of the method, given
in chapter 7. Two following chapters present the experimental results from the MXSW
experiments on platinum-cobalt alloy (chapter 8) and YIG (chapter 9) single crystals.
The last section contains main conclusions and outlook.





Part I

Theoretical section





Chapter 1

Dynamical theory of diffraction

The theoretical considerations start here with the subject of scattering of an x-ray
wave by a crystal lattice. Essentially two approaches to this topic exist. In the so called
kinematical (or geometrical) theory of diffraction the waves generated by the oscillating
electrons are added up (geometrically) to predict the directions of propagation of scat-
tered beams and evaluate their intensities [20,49–51]. In this approach multiple scattering
of the waves is neglected [51]. This already leads to the conclusion, that the kinematical
diffraction theory is valid only for imperfect or thin crystals (with the thickness signifi-
cantly smaller than the so called extinction length), where the intensities of the multiple
scattered beams are negligible.

In order to quantitatively predict the properties of the wavefields generated by the
crystal lattice, another approach — dynamical theory of x-ray diffraction — is used.
This theoretical formalism was initially proposed by Ch. G. Darwin and P. P. Ewald.
The theory of Ewald was later reformulated by M. von Laue and is used today in that
form [20,52–54]. Therein, the evaluation of amplitudes and phases of the emerging waves
is based on the solution of Maxwell equations for a three-dimensional periodic continuous
charge density distribution. Among the plethora of other fascinating effects like anoma-
lous absorption, extinction, double refraction and Pendellösung, the dynamical theory of
diffraction predicts the existence of the standing wave and the movement of its nodes in
the reflection domain.

In the dynamical theory the problem of scattering of radiation by the crystal is divided
in two parts. At first the set of all possible solutions is obtained by solving the propagation
equation for spatially infinite three-dimensional periodic electron density. The electron
density distribution is defined merely by the crystal unit cell, as its Fourier coefficients
are proportional to the structure factors. Then, out of the set of all potentially existing
waves, the actual solutions are chosen via the boundary conditions for amplitudes and
wavevectors.

In this section the dynamical theory of diffraction in the formulation of Laue is sum-
marised. The considerations are limited to the case of only one reflection excited in the
crystal at the time (two-beam-case diffraction). After the general solution is obtained,
only the boundary conditions characteristic of the reflection geometry are considered, as
this case is of interest for the further discussion. Subsequently, the standard x-ray stand-
ing waves method is introduced. Finally, the formulae for the case of arbitrary polarisation
of the incoming x-ray wave are presented.

9
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1.1 Propagation equation

The beauty of the dynamical theory of diffraction arises from the fact, that it originates
directly from the Maxwell equations. In the absence of free charges and free currents, the
macroscopic Maxwell equations in differential form read [55]

divD = 0 (1.1)

rotE = −∂B
∂t

(1.2)

rotH =
∂D
∂t

(1.3)

divB = 0 (1.4)

Here the symbols E ,D,H,B denote electric field, electric induction, magnetic field and
magnetic induction vectors, t is time. The relations between these quantities have the
general form

D = ε0E + P (1.5)

H =
B
µ0

−M (1.6)

where P is an electric polarisation and M magnetisation, ε0 denotes the vacuum per-
mittivity, whereas µ0 — vacuum permeability. The effects of magnetic x-ray diffraction,
that is the scattering of an electromagnetic wave on electron spins, are small even in
crystals possessing magnetic ordering [56]. Additionally, such a scattering process cannot
be introduced in the classical theory of diffraction considered here. Therefore, magnetic
diffraction is neglected hereafter. This assumption is equivalent to setting M = 0 in the
material relations.

If the nonlinear effects are neglected, the electric polarisation is proportional to the
electric field P = ε0χE . The quantity χ, called electric susceptibility or polarisability, is
in general a tensor. The dynamical theory of diffraction, where such general form was
incorporated, was developed by G. Moilère [57–59]. The predictions of this formalism
are in general in a good agreement with Laue formulation, and the effects related to the
anisotropy of χ are predicted to be small, especially far from the absorption edges. It is
known, that the anisotropic susceptibility can lead to appearance of structurally forbid-
den reflections [60, 61]. It can also influence the structure factors of the non-forbidden
reflections in the vicinity of the absorption edge [62]. However, it is pointed out [60], that
the components of the anisotropic structure factor are not easily accessible theoretically.
Therefore, the power of the theory to predict the experimental results would be limited
in the formulation accounting for the tensorial character of χ. In the experimental work
on resonant scattering in GdB4 it is shown, that the intensity of the regular (002) Bragg
reflection is following the changes in the standard resonant scattering factor f ′′ (electronic
absorption), and in particular is not significantly affected by the anisotropy of the electric
susceptibility [63]. What is more, Thorkildsen et al. [64] studied the three-beam resonant
x-ray diffraction in germanium using theoretical approach with an assumption of scalar
susceptibility and achieved good agreement with experimental data. Based on these ex-
perimental reports, and taking into account methodological difficulties to estimate the
components of the χ tensor, in this work the scalar character of the latter is adopted.
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From the Maxwell equations and material relations, one obtains the propagation equa-
tion for a specific susceptibility χ, which defines the considered crystal

rot rotE + µ0ε0(1 + χ)
∂2E
∂t2

= 0 (1.7)

The crystal is assumed to be perfectly periodic, so the susceptibility is also a periodic
function. Thus, it can be expanded in the Fourier series

χ(r) =
∑
h

χhe−ih·r (1.8)

h denotes here a reciprocal lattice vector, r is a position vector. As it follows from
the elementary Lorentz-Drude dispersion theory, susceptibility and electron density ρ are
proportional to each other [52]. Therefore the Fourier coefficients of susceptibility χh are
related to structure factors Fh, Fourier coefficients of electron density. These relations
read

χh = −RTh.λ
2

πVcell

Fh (1.9)

where RTh. is a Thomson scattering length, λ is a wavelength of the incoming radiation
and Vcell — volume of the unit cell. This relation allows to calculate the susceptibility
Fourier coefficients for a given crystal, using the definition of the structure factor [51,53]

Fh =
N∑
j=1

(
f 0
j + f ′j + if ′′j

)
eih·Rj =

∫
Vcell

ρ eih·rd3r (1.10)

Here, the summation is over the N atoms in the unit cell, located at the positions Rj.
f 0
j denotes the atomic scattering factor of atom j, whereas f ′j and f ′′j are dispersion

corrections. The numerical values of atomic scattering factors are tabulated [65,66]. The
integral definition follows from the fact, that the electron density of the crystal can be
written as a Fourier series ρ(r) = 1

Vcell

∑
h Fhe−ih·r.

1.2 Wavefields, fundamental equations

The solution of equation (1.7) is a plane wave modulated by the term having the
same periodicity as the interaction term χ. It is assumed, that the electric field can be
expressed as the sum of plane waves of the form

E = eiωt−ik0·r
∑
h

Ehe−ih·r (1.11)

where ω denotes the angular frequency and k0 is a wavevector of the refracted wave
(also called forward-scattered wave). This form was obtained by Ewald in his version of
dynamical theory [67], it is called a wavefield or an Ewald wave. The relation between the
wavevectors of the waves constituting a wavefield reads kh = k0 +h, and can be regarded
as a manifestation of Bragg’s law.
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The relations (1.8) and (1.11) are inserted into the propagation equation (1.7) then
the following equation is obtained∑

h

[
kh × (kh × Eh) + k2Eh + k2

∑
h′

χh−h′Eh′

]
eiωt−ikh·r = 0 (1.12)

k is the length of the wavevector in vacuum (k = ω/c, c — speed of light). To ensure that
the latter equation is fulfilled for each position and time, the coefficients by the complex
exponents must be equal to zero. Therefore, equation (1.12) is equivalent to the infinite
set of equations ∧

h

kh × (kh × Eh) + k2Eh + k2
∑
h′

χh−h′Eh′ = 0 (1.13)

The double cross-product can be rewritten in equivalent form∧
h

kh (kh · Eh)︸ ︷︷ ︸
≈0

−Ehk
2
h + k2Eh + k2

∑
h′

χh−h′Eh′ = 0 (1.14)

here k2
h = kh · kh. It is assumed that the wave is transverse, since the interaction term is

small. For each reciprocal lattice vector h the amplitude of the wave reads

Eh =
k2

k2
h − k2(1 + χ0)

∑
h′ 6=h

χh−h′Eh′ (1.15)

This relations, called fundamental equations of dynamical theory, imply that the ampli-
tude of the given wave from the wavefield depends on the amplitudes of all the other
waves — the waves forming a wavefield are tightly bound together and they constitute a
physical entity. The prefactor in the fundamental equations is called a resonance factor
and shows, that only those waves whose wavevector length is close to k

√
1 + χ0 have

non-negligible amplitude. As it follows from the case, when only one wave has consid-
erable amplitude (one-beam-case), what corresponds to the refraction process only, the
refractive index n for x-rays is equal to

√
1 + χ0 ' 1 + χ0/2. Therefore, the constituents

of the wavefield have to have wavevectors of the length close to the one of the refracted
wave (nk). Thus, it is justified to consider further the case, when only two waves have
meaningful amplitudes (two-beam-case), where only one reciprocal lattice vector is in-
volved in the scattering process. The infinite set of equations reduces to two equations

⊗ ⊗
khk0

ε̂0π ε̂hπ

ε̂σ ε̂σ

h

Figure 1.1: Definition of the po-
larisation unit vectors.

{
[k2

0 − k2(1 + χ0)]E0 − k2χh̄Eh = 0

[k2
h − k2(1 + χ0)]Eh − k2χhE0 = 0

(1.16)

It is convenient to decompose the wave amplitudes
into the σ- (perpendicular to the scattering plane) and π-
(in the scattering plane) polarisation components. The
σ-polarisation unit vector is defined via the cross-product
ε̂σ = (h×k0)/|h×k0| = (h×kh)/|h×kh|, what ensures
that it is perpendicular to the scattering plane and the wavevectors, since the wave is
a transverse one. The π-polarisation unit vectors are given as the cross product of the
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corresponding wavevector and ε̂σ: ε̂iπ = (ki× ε̂σ)/|ki× ε̂σ| = [ki× (h×ki)]/(ki|h×ki|),
where i ≡ 0,h. Therefore, they are perpendicular both to the wavevectors, as well as to
ε̂σ. Polarisation unit vectors are shown also in figure 1.1. The angle between the vectors
k0 and kh is 2ΘB, where ΘB is a Bragg angle defined by the Bragg’s law λ = 2dh sin ΘB,
dh denoting the interplanar spacing associated with reciprocal lattice vector h. It follows
from figure, that also the angle between the unit vectors ε̂hπ and ε̂0π is equal to 2ΘB.
Equations (1.16) are then multiplied by the polarisation unit vectors, what gives the
following scalar equations in matrix form(

k2
0 − k2(1 + χ0) −k2χh̄P
−k2χhP k2

h − k2(1 + χ0)

)(
E0p

Ehp

)
= 0 (1.17)

Index p denotes the σ- or π-polarisation component. P is a polarisation factor equal 1
for σ- and cos 2ΘB for π-polarisation.

1.3 Dispersion surface

As it follows from the Kronecker-Capelli theorem, to ensure non-zero solutions of the
homogeneous systems of equations (1.17), one has to set the determinant of the matrix
to zero. This gives equation of the dispersion surface[

k2
0 − k2 (1 + χ0)

] [
k2
h − k2 (1 + χ0)

]
= k4χhχh̄P

2 (1.18)

By introducing the parameters

Xi :=
k2
i − k2 (1 + χ0)

2k
, i ≡ 0,h (1.19)

one may write equation of the dispersion surface in the form

X0Xh = 1
4
k2χhχh̄P

2 (1.20)

The dispersion surface for an exemplary Bragg reflection from silicon is shown in
figure 1.2. Since χ0, χh, χh̄ are very small, their values were increased by a factor of 5 ·103

for the left picture, to make the difference between the spheres of radius nk centred at
O and H and the dispersion surface visible in the vicinity of the tiepoint — the common
origin of the wavevectors. Due to the fact, that nk ≈ k0 ≈ kh, one can approximate the
parameter Xi ≈ ki − nk and interpret it as a distance from the tiepoint to the spheres of
the radius nk, which can be well approximated as lines, as seen in figure 1.2b.

A relation exists between the coordinates of the tiepoint on the dispersion surface (X0,
Xh) and amplitude ratio ξ := Eh/E0. It is obtained from one of equations (1.17) and
relation (1.19) and reads

ξ =
2X0

kχh̄P
(1.21)
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OH
h

k0kh

T

(a) Full view, χ0, χh, χh̄ × 5 · 103.

Xh X0

T

(b) Close-up in the vicinity of the tiepoint.

Figure 1.2: Dispersion surface — cut by the scattering plane, the case of non-absorbing crystal
(f ′′ = 0). Calculated for the silicon crystal, h = (400) reflection, energy of the incoming x-ray
wave E = 7 keV. The dispersion surface consists of four branches, two for σ-polarisation (black
line) and two for π (blue line). The spheres of radius nk centred at reciprocal lattice nodes O
and H are drawn in gray. Tiepoint T is the common origin of the wavevectors k0 and kh.

1.4 General solution

ψ0ψh

n

ka0

ka0

k0kh

kκn

Figure 1.3: Boundary conditions for
the wavevectors. The vectors ka0 and
k0 may differ only in the out-of-plane
component kκn. The sketch is made
for the transmission geometry, sym-
metric reflection (see 1.5 for details).

To proceed further, the relation between the
wavevectors inside the crystal k0, kh and the
wavevector of the incoming wave ka0 is needed. The
components of the wavevectors parallel to the crystal
surface have to be the same to ensure continuity, the
difference may appear only in the out-of-plane direc-
tion (Snell’s law): k0 = ka0 − kκn, where κ ∈ C, n is
a unit vector normal to the crystal surface. The con-
sidered setting is sketched in figure 1.3. The angles
are defined as ψ0 = ^(n,k0) ≈ ^(n,ka0) (the latter
holds, since the interaction is small), ψh = ^(n,kh).

Using the boundary condition for k0, and know-
ing that κ is very small, one can write the coordinate
of the tiepoint as

X0 = −k
(
κγ0 + 1

2
χ0

)
(1.22)

where γ0 = cosψ0. The variation of the angle of
incidence of the incoming wave is taken into account via the departure angle ∆Θ, which
is a difference between the incidence defined by the Bragg condition and actual one (see
figure A.1 in appendix A.1.1). Using the Ewald construction and simple geometrical
relations, one obtains for the second coordinate

Xh = −k
(

1
2
χ0 + sin 2ΘB∆Θ + κγh

)
(1.23)

where γh = cosψh. Equations (1.22) and (1.23) merged together give

Xh = γX0 − k
[

1
2
χ0(1− γ) + sin 2ΘB∆Θ

]
(1.24)
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The quantity γ := γh/γ0 is called asymmetry ratio. Detailed derivation of equa-
tions (1.22)-(1.24) is given in appendix A.1.1.

Equation (1.24) provides a relation between the tiepoint coordinates and geometrical
conditions in the experiment — γ, ΘB and ∆Θ. Further on, it is inserted into the
dispersion surface equation (1.20) and solved for X0 (for details see appendix A.1.2). One
obtains

X0 =
k
√
χhχh̄|P|

2
√
|γ|sgn(γ)

[
η ±

√
η2 + sgn(γ)

]
(1.25)

η :=
1
2
χ0(1− γ) + sin 2ΘB∆Θ√

|γ|√χhχh̄|P|
(1.26)

This is a general solution of the two-beam-case dynamical theory of diffraction. Equa-
tion (1.25) establishes a dependence of the tiepoint position on the departure angle ∆Θ
(via the parameter η). X0 depends on the polarisation, since separate dispersion surfaces
for each polarisation component exist (figure 1.2), as well as mutual orientation of re-
flecting lattice plane and physical surface of the crystal, parametrised via the asymmetry
ratio γ. The same holds true for the amplitude ratio ξ, which is obtained from (1.25)
using (1.21)

ξ =
sgn(P)sgn(γ)√

|γ|

√
χhχh̄

χh̄

[
η ±

√
η2 + sgn(γ)

]
(1.27)

The ± sign indicates, that for pure σ- or π-polarisation, in fact two solutions for each
∆Θ exist. They correspond to two tiepoints, each lying on the separate branch of the
dispersion surface. One concludes that two wavefields always exist in the crystal, what
might be regarded as a double refraction (and reflection) phenomenon in the crystal in
the x-ray regime.

1.5 Reflection geometry

The term
√
η2 + sgn(γ) in equations (1.25) and (1.27) indicates an existence of two

fundamentally different geometrical cases. If the wavevectors of both the refracted (k0)
and the reflected (kh) waves are directed towards the inside of the crystal, γ is positive
and one talks about Laue or transmission geometry. When the wavevector of reflected
wave is directed towards the entrance surface, γ < 0 then the case is called Bragg or
reflection geometry. The latter is of interest in this case.

Consider the boundary conditions for the amplitudes. The relations between the
electric fields on two sides of the boundary between media I and II emerge directly from
Maxwell equations and read

n ·DI − n ·DII = 0 (1.28)

n× EI − n× EII = 0 (1.29)

The first equation implies, that the difference in the dielectric vector component perpen-
dicular to the boundary vanishes. Assuming that χ is very small, the same holds true
for the electric field (the relation (1.5)). The second equation implies that the parallel
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components of the electric field cannot differ, thus in the case of weak interaction the
electric field is the same on two sides of the boundary. In mathematical form

EI = EII (1.30)

The incoming wave is assumed to be a plane wave given by equation Ea0 = Ea
0eiωt−ik

a
0 ·r.

At this point it is considered to be σ or π linearly polarised, so that Ea
0 = Ea

0 ε̂σ,0π. Since
in the reflection geometry the reflected wave Eah emerges on the entrance crystal surface,
one has

Ea0 + Eah = E (±)
0 + E (±)

h (1.31)

The symbols on the right-hand-side denote the waves inside the crystal, respectively the
refracted and the reflected one. In fact, as mentioned earlier, four waves exist, since
two wavefields are always excited at once. They all must be taken into account when
considering a thin crystal — a thin film for example. In the case of thick bulk crystal,
one of the wavefields is absorbed before reaching the exit surface, since it is directed
towards the inside of the crystal. Therefore, for each ∆Θ only one wavefield needs to be
considered at once. The proper sign in equations (1.25) and (1.27) is chosen via the term
−sgn(<η) [52].

Equation for the full electric fields (1.31) can be transformed to the one for the ampli-
tudes only. Let the origin of the coordinate system coincide with the boundary surface.
Then the dependence of the electric fields on the position on the surface in equation (1.31)
is only via the terms e−iki·rs , where rs denotes the position on the crystal surface and
i ≡ 0,h. Due to the continuity of the tangential components of the wavevectors on the
boundary

ka0 · rs = k
(+)
0 · rs = k

(−)
0 · rs, kah · rs = k

(+)
h · rs = k

(−)
h · rs (1.32)

To ensure, that the relation (1.31) is fulfilled at each point of the boundary surface, the
following must hold true1 [20]

Ea
0 = E

(±)
0 , Ea

h = E
(±)
h (1.33)

From above and equation for the amplitude ratio (1.27), one obtains directly the form
of the reflected wave outside of the crystal

Ea
h = −sgn(P)√

|γ|

√
χhχh̄

χh̄

[
η − sgn(<η)

√
η2 − 1

]
Ea

0 (1.34)

One should note, that what is actually measured in an experiment is reflectivity. It
is defined as a ratio of the energy received by the detector per unit time per unit area
divided by the intensity of the incoming beam [52]. To obtain the measure of the power

1This result can be also obtained mathematically by multiplying equation (1.31) by the term eik
a
0rs and

integrating over the whole surface, which is assumed to be infinite. One assumes that the wavevectors

are almost equal ka0 ≈ k
(+)
0 ≈ k

(−)
0 due to small interaction term. Integaration results in an always-

wanishing (due to the finite value of h) Dirac delta distribution appraring by h-component terms. It
cancells them and decouples equation (1.31) into (1.33). Similar procedure leads to the second equation
from the pair (1.33) (one multiplies (1.31) by eik

a
h·rs).
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Figure 1.4: Amplitude ratio ξ for Si crystal, (111) reflection at E = 20 keV. The characteristic
top-hat rocking curve is asymmetric due to the standing wave, which either enhances or reduces
the absorption (anomalous absorption effect), depending on the position of its nodes and antin-
odes, which changes due to the change of the phase arg(ξ) from π to 0 in the reflection domain.
For non-absorbing crystal, a total reflection domain exists, where |ξ| = 1.

of the beams, one needs to multiply the intensities |Ea
i |2, i ≡ 0,h, by the beam cross-

sections. In terms of the projection of the beams on the crystal surface S, those are given
by S0 = γ0S and Sh = |γh|S, for incoming and emerging waves respectively. With that,
the reflectivity reads Iah = |γ||ξ|2. For a symmetric reflection (γ = −1) it is then simply
a modulus squared of the amplitude ratio |ξ|2. In the case of the asymmetric reflection,
|γ| accounts for the change of the cross-section of the reflected beam with respect to the
incoming one (due to the non-zero angle between the crystal surface and reflecting lattice
planes). In the total reflection domain (the case of non-absorbing crystal), the amplitude
ratio |ξ|2 = 1, and the relation |Ea

h|2|γh| = |Ea
0 |2γ0 is a manifestation of the conservation

of energy [20].

1.6 X-ray standing wave

In the scattering process, the reflected wave interferes with the refracted one. The
intensity of the total electric field inside the crystal reads

I = EE∗ =
∣∣E0eiωt−ik0·r + Eheiωt−ikh·r

∣∣2 (1.35)

Assume at this point, that the wavevector k0 is real and use the diffraction condition
kh = k0 + h

I = (Ea
0 )2
[
1 + |ξ|2 + 2P<

(
ξe−ih·r

)]
=

= (Ea
0 )2
{

1 + |ξ|2 + 2P|ξ| cos [−h · r + arg(ξ)]
}

(1.36)

Since the components of the wavevectors of the refracted and reflected waves parallel
to the reciprocal lattice vector h are opposite, the interference of the waves results in
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a standing wave in this direction. This fact is also evident in the last equation, which
describes the spatial variations in the intensity of the inferference field (via the term h ·r).
Such time independent variations are characteristic of a standing wave [29].

Let us examine the properties of the standing wave, which are what makes it an
interesting entity. The argument of the cosine function may be written as h·r = 2πz/dh =
2π(Ndh +∆)/dh, where N ∈ Z and ∆ ∈ R. Due to the periodicity of the cosine function,
the first term in the sum can be discarded and one may define a variable zh = ∆/dh,
which is a fractional coordinate taking the values from the range [0; 1]. Of course a shift
of z by another interplanar spacing dh leads to the same value of the cosine, and therefore
also of the intensity. As a conclusion, the periodicity of the standing wave is exactly the
same as periodicity of the lattice in the direction of the reciprocal lattice vector h.

Secondly, as it again follows from the properties of the cosine function, a shift of its
argument results in a shift of the maxima and minima. As one can see in figure 1.4, the
phase of reflectivity changes in the reflection domain by π. Due to the presence of the
term arg(ξ) in the expression (1.36), this change of phase results in the movement of the
nodes and antinodes of the standing wave. It moves in a way that after the reflection
domain is crossed, the antinodes will be at the initial positions of the nodes and vice
versa. The maxima are located in between the lattice planes2 at the low angular side
(∆Θ → −∞, arg(ξ) = π) and coincide with them for the high angular side (∆Θ → ∞,
arg(ξ) = 0).

These two properties of the standing wave make it an ideal tool for studying the
positions of atoms in the lattice in the element selective manner. Within an electric
dipole approximation an absorption cross-section for a given atom is proportional to the
intensity of the electric field at the position of its core [12], what is discussed in more details
in the next chapter (2.3). The measure of the absorbtion cross-section can be obtained
via detecting the emitted photoelectrons or subsequent decay processes — fluorescence or
Auger electrons emission. The controlled movement of the standing wave causes variations
in the amount of emitted electrons or fluorescence photons, which are characteristic of
the position of the absorbing atom. The changes of the standing wave intensity with
the incidence angle ∆Θ are known for a given zh. Since the absorption cross-section is
proportional to the intensity, the comparison between the theoretical intensity patterns
and measured yields, gives direct information about the atom positions. Because of the
fact, that the energy of emitted electrons or fluorescence radiation is characteristic of the
given element and related to its electronic structure, the obtained structural information is
element selective. The principle of the x-ray standing waves (XSW) method is illustrated
schematically in figure 1.5. The next figure (1.6) shows the patterns of the standing wave
intensity for silicon crystal, (111) reflection.

Though the effects caused by the existence of the standing wave in the lattice under
the diffraction conditions were observed earlier (Borrmann effect and fine structure of
the Kossel lines), the first experimental demonstration of the standing waves method
came from the neutron science. Knowles already in 1955 observed a variation in the

2One should note, that the definition of the origin of the unit cell is arbitrary. The change of the
origin leads to the shift of the lattice planes. The considerations presented here are valid for the choice
of origin such that Fh ∈ R for f ′′ = 0 [52]. Of course the way the standing way moves does not depend
on the choice of origin. The nodes of the standing wave at the low angular side of the reflection coincide
with the planes of maximum electron density [52], called diffraction planes [12].
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Figure 1.5: The principle of the x-ray standing waves method. The atom of interest (green dot)
is located in between the lattice planes (black dashed lines). The intensity of the electromagnetic
radiation (standing wave) is represented by the colour map in the top pictures. The graphs show
the yield of fluorescence or electrons emitted by the green atom. On the low angular side of
the reflection domain, the antinodes of the standing wave lie between the lattice planes and
coincide with the atom, thus enhancing the absorption and secondary emission. In contrary,
the atom emits no fluorescence/electrons when the nodes of the standing wave coincide with it,
what happens on the high angular side of the reflection. The shape of the variation of the yield
indicates, that the atom is located at the position zh = 0.5 with respect to the lattice planes.

0
0.5

1
1.5

2
2.5

3
3.5

4

0

0.4

0.8

−40 −20 0 20 40 60

I
/(
E
a 0
)2

Si (111) at E = 20 keV, γ = −1

zh = 0.0
zh = 0.2
zh = 0.4
zh = 0.6
zh = 0.8

|ξ
|2

∆Θ[µrad]

Figure 1.6: The relative intensity of the standing wave (as defined by the formula (1.36)) for Si
crystal, (111) reflection, energy 20 keV, plotted against the incidence angle for a few positions
in the crystal with respect to the reflecting lattice planes (zh). Due to the proportionality
between the absorption cross-section and the intensity, at the same time the curves represent
the variations in secondary emission yield for the atoms located at positions zh (inset).
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γ-rays emission from the calcite single crystal in the reflection domain caused by the
neutrons standing wave, whose shape agreed well with the dynamical theory calculation
[23]. A similar direct evidence of the existence of the x-ray standing wave was given by
Batterman, who measured the variations of the K fluorescence emission from germanium
single crystal [24]. A few years later, he demonstrated that the standing wave can be used
to determine the positions of the foreign atoms in the known lattice (in that case arsenic
dopant atoms in the silicon crystal), thus establishing the XSW method [36]. Since then it
was used for numerous system and extended for various experimental conditions, keeping
the basic principle described herein. More variations of the XSW method were discused
in the introduction to this work, and a good review of applications is given in the book
of Zegenhagen and Kazimirov [68].

1.7 XSW structural analysis

Consider the case of a number of atoms of a given element located at various positions
in the unit cell. Then the total yield is a sum of the contributions from each atom. Due
to the proportionality between the absorption cross-section and standing wave intensity,
the normalised yield from n atoms of the same kind reads

y =
1

n

n∑
j=1

[
1 + |ξ|2 + 2P<

(
ξe−ih·Rj

)]
=

= 1 + |ξ|2 + 2P<
(
ξ

1

n

n∑
j=1

e−ih·Rj

︸ ︷︷ ︸
(Fh

sw)
∗

)
=

= 1 + |ξ|2 + 2P|ξ||Fh
sw| cos

[
arg(ξ)− arg(Fh

sw)
]

(1.37)

The quantity Fh
sw is the standing wave structure factor. By fitting equation (1.37) to

the experimental fluorescence or electron yield, one obtains the modulus and phase of
the standing wave structure factor. Traditionally two quantities are defined: coherent
fraction fc := |Fh

sw| and coherent position pc := arg(Fh
sw)/2π. It is the sensitivity to the

phase of Fh
sw, what gives direct structural information in the XSW method.

One may define an atomic distribution function for a given element as a normalised
sum of three dimensional Dirac delta distributions

G(r) =
1

n

n∑
j=1

δ(3)(r−Rj) (1.38)

If one assumes that the considered crystalline system is periodic, then also the atomic
distribution function is periodic, so it can be expanded in the Fourier series

G(r) =
1

Vcell

∑
h

Ghe−ih·r (1.39)

with Fourier coefficients given as

Gh =

∫
Vcell

G(r)eih·rd3r (1.40)
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Inserting the definition of G (1.38) into the previous equation yields

Gh =

∫
Vcell

1

n

n∑
j=1

δ(3)(r−Rj)e
ih·rd3r =

1

n

n∑
j=1

eih·Rj = Fh
sw (1.41)

The last equations shows, that what is actually measured in the XSW experiment is
a Fourier coefficient of the atomic distribution function. In certain cases a determination
of one coefficient already provides valuable information [36], but at least two reflections
are needed to determine the atom position unambiguously in two dimensions [69]. It is
also possible to obtain a picture of atomic distribution by measuring a number of Fourier
coefficients Gh and performing an inverse Fourier transform [70].

1.8 The absorption correction for the wavevector

When deriving the expression (1.36) for the standing wave intensity it was assumed
that the wavevector k0 is real. This assumption is justified under certain experimental
conditions, but is obviously not true in general (already because χ ∈ C).

At first one needs the expression for the wavevector in the crystal. From the boundary
condition k0 = ka0 − kκn and equation (1.22) one gets

k0 = ka0 +
1

γ0

(
X0 + 1

2
kχ0

)
n (1.42)

The imaginary part of the wavevector gives a damping factor when inserted into
the complex exponent. If the absorption coefficient µ is defined via Beer-Lambert law
I = I0e−µd, where d is a crystal thickness, one has

µ = − (2=X0 + k=χ0) (1.43)

or using the relation between the tiepoint position and amplitude ratio (1.21)

µ = −{kP [=(χh̄)<(ξ) + <(χh̄)=(ξ)] + k=χ0} (1.44)

The last transformation helps to understand the meaning of the terms constituting the full
absorption coefficient. The first term arising from the dynamical theory considerations
describes the anomalous absorption, which is related to the standing wave enhancing
or suppressing the absorption. The second term, which is non-zero even in the non-
absorbing crystal (χ ∈ R), is responsible for the extinction effect. The incident beam
does not penetrate deep into the crystal, since it is reflected on the first few lattice planes.
The last term is the standard linear absorption.

Due to the existence of the absorption term, the total electric field intensity inside the
crystal becomes depth dependent

I(z) = (Ea
0 )2
[
1 + |ξ|2 + 2P<

(
ξe−ih·r

)]
e−µz/γ0 (1.45)

z/γ0 is the distance along the path of the incoming wave, whereas z denotes the distance
from the crystal surface.
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When the experiment is performed on a thick single crystal, the secondary emission
yield coming from the whole sample is an integral of the intensity over z from zero to
infinity. One should additionally account for an absorption of the fluorescence or emitted
electrons on the way from the emitting atom to the detector. If the angle between the
sample surface and the fluorescence/electron detector is α (fig. 1.7), the attenuation factor
is exp(−µlinz/ sinα). In case of fluorescence detection, the absorption coefficient is equal
µlin = −k=χ0 and must be calculated for the energy of fluorescence radiation.

n
z

α

ψ0

Figure 1.7: Schematic picture of x-ray diffraction in Bragg geometry. The wave-like line depicts
fluorescence radiation emitted towards the detector. α is an angle between the crystal surface
and the detector, ψ0 the angle between the k0 and surface normal n.

If the crystal is perfectly periodic, the coherent position is not depth dependent and
the term containing standing wave structure factor can be taken out of the integral. What
remains is an integral over the real exponent, so the formula for the yield from thick crystal
reads

y =
{

1 + |ξ|2 + 2P<
[
ξ
(
Fh
sw

)∗]}( µ
γ0

+
µlin
sinα

)−1

︸ ︷︷ ︸
zeff

(1.46)

An inverse of the expression in the round brackets is an effective thickness.

The secondary emission yield depends in fact also on the footprint of the incoming
beam on the sample surface — the bigger is the footprint, the more fluorescence or
electrons will be emitted. This effect is taken into account by multiplying the previous
equation by the footprint S, which is equal to S0/γ0, where S0 is a cross-section of the
incoming beam. This cross-section is constant, so it disappears due to normalisation. The
final formula with all corrections reads

y =
{

1 + |ξ|2 + 2P<
[
ξ
(
Fh
sw

)∗]} zeff

γ0

(1.47)

The directional cosine γ0 matters only, when the incidence angle Θ is changed significantly
in the experiment. Normally ∆Θ is very small, in the order of tens of µrad, thus γ0 is
almost constant and also disappears due to normalisation.
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1.9 Scattering of the arbitrarily polarised wave

1.9.1 Parametrisation of the incoming wave

Up to now the linearly (only σ or π) polarised wave was considered. In order to
describe the experiment involving the circularly or elliptically polarised wave, one has to
consider a more general expression for the incoming electromagnetic plane wave:

Ea0(r, t) = Ea
0 (ε1ε̂1 + ε2ε̂2)︸ ︷︷ ︸

ε

eiωt−ik
a
0 ·r (1.48)

the vectors fulfill the condition ε̂i · ε̂j = δij
3, ε̂i · ka0 = 0 [55]. The choice of ε̂i is arbitrary

in the plane perpendicular to propagation direction, so one may choose the σ- and π-
polarisation vectors ε̂1 = ε̂σ, ε̂2 = ε̂0π, which are defined in section 1.4 and shown in
figure 1.1. With such a choice one denotes ε1 = εσ, ε2 = επ. The polarisation vector ε,
which is in general complex, can be parametrised in the following way

ε =

(
εσ
επ

)
=

(
cos β

sin β eiδ

)
(1.49)

β, δ ∈ [−π, π]. Changing the values of β and δ gives any linear and elliptical polarisation,
including the circular one.

With such a parametrisation, ε is a unit vector. This condition holds true, whenever a
single plane wave is considered. The restriction on |ε| is however not absolutely necessary
for further considerations. In particular, when considering the superposition of two waves,
one can define a polarisation vector whose length will not be unity. In such a case it is
defined as a remaining term left after factoring out two factors, the amplitude of the
incoming wave Ea

0 and oscillatory term common for both waves eiωt−ik0·r, with k0 ∈ R.
This should be regarded as the most general definition of ε.

The values β = π
4

and δ = ±π
2

correspond to the circularly polarised wave. It means
that both polarisation components are equal in magnitude, but are shifted in phase by
π/2. As the wave propagates, the electric field vector rotates around the propagation
direction. The helicity of the wave is determined by looking at the wave from the side
of the observer (antiparallel to the wavevector). In this case δ = +π

2
corresponds to the

right-handed polarisation (RHP), and δ = −π
2

to the left-handed polarisation (LHP) [55].
Since the case of circularly polarised incoming wave has a particular importance for the
studies of magnetism, the mathematical form is given here explicitly:

Ea0(r, t) =
Ea

0√
2

(ε̂σ ± iε̂0π) eiωt−ik
a
0 ·r (1.50)

The reversal of helicity is performed via transformation επ → ε∗π. With the parametri-
sation (1.49) the component εσ is always real, so the complex conjugate εσ → ε∗σ is not
necessary. It should be noted, that the components εσ and επ are defined once by the con-
sidered form of the incoming wave and do not change later. In other words, the symbols

3δij denotes a Kronecker delta, δij =

{
1, i = j

0, i 6= j
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have always the meaning εσ = 1/
√

2 and επ = i/
√

2, if the incoming circularly polarised
wave is considered, even if the polarisation of the wave changes during the scattering
or absorption processes. This approach ensures, that all the final results of the theory
contain an explicit dependence on the polarisation of the incoming wave. It is then easy
to compare the results for different polarisations.

1.9.2 Boundary conditions and reflectivity

Like in the previous chapter, also now only the reflection geometry and the case of a
thick crystal are considered. Outside of the crystal the incoming (Ea0) and reflected (Eah)
waves exist, whose general form is the following, respectively

Ea0 = Ea
0 (εσε̂σ + επε̂0π)eiωt−ik

a
0 ·r = Ea0 εσε̂σ + Ea0 επε̂0π (1.51)

Eah = (Ea
hσε̂σ + Ea

hπε̂hπ) eiωt−ik
a
h·r = Eahσε̂σ + Eahπε̂hπ (1.52)

The general convention for notations is that standard E denotes the amplitude of the
electric field in a direction of the corresponding polarisation vector, whereas italic E
indicates the component of the full electric field (that is the amplitude with phase factor
eiωt−ik·r), for example Ea0 = Ea

0 eiωt−ik
a
0 ·r. The wavevector of the outgoing wave is given by

the diffraction condition kah = ka0 + h. The coefficients εσ and επ define the polarisation
of the incoming wave Ea0.

Given that only one wavefield is excited in the crystal at once (thick crystal approxi-
mation), two waves inside the crystal exist:

E0 = E0σε̂σeiωt−ik0σ ·r + E0πε̂0πeiωt−ik0π ·r = E0σε̂σ + E0πε̂0π (1.53)

Eh = Ehσε̂σeiωt−ikhσ ·r + Ehπε̂hπeiωt−ikhπ ·r = Ehσε̂σ + Ehπε̂hπ (1.54)

In order to establish relations between the unknown electric field amplitudes in equa-
tions (1.52) - (1.54), one needs to consider the boundary conditions. Like before, one
starts from equations (1.30) and (1.31). The latter can be written for each polarisation
component separately, by multiplying the vector equations by polarisation unit vectors
ε̂σ and ε̂0π

Ea0 εσ + Eahσ = E0σ + Ehσ (1.55)

Ea0 επ + Eahπ cos 2ΘB = E0π + Ehπ cos 2ΘB (1.56)

Using the same arguments as in section 1.5, one can transform equations for the full
electric field components to the ones for amplitudes only. The relations between the
amplitudes of incoming and refracted waves read

Ea
0εp = E0p (1.57)

Ea
hp = Ehp (1.58)

Here p ≡ σ, π. The polarisation factor (cos 2ΘB) disappears, as it stands only by the
amplitudes of reflected waves, which are now decoupled from the ”0” ones. The relation
between the ”0” and ”h” amplitudes inside the crystal is given additionally via the am-
plitude ratios: Ehp = ξpE0p. They are known for each polarisation component from the
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general solution of the dynamical theory. From equation (1.58) one has that Ea
hp = ξpE0p.

The other one from the pair gives the relation between the amplitudes outside of the
crystal Ea

hp = ξpεpE
a
0 .

Established relations between amplitudes allow to write the form of the emerging wave,
based on equation (1.52)

Eah = Ea
0 (ξσεσε̂σ + ξπεπε̂hπ) eiωt−ik

a
h·r (1.59)

The reflectivity, as defined in chapter 1.5, reads

Iah = |γ|
(
ε2
σ|ξσ|2 + |επ|2|ξπ|2

)
(1.60)

For the circularly polarised wave

Iah = 1
2
|γ|
(
|ξσ|2 + |ξπ|2

)
(1.61)
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Figure 1.8: Comparison between reflectivities calculated for Si (111) reflection, energy E = 5 keV,
symmetric reflection, for linear (σ and π) and circular polarisation of the incoming wave. At this
energy a polarisation factor for π-polarisaiton cos 2ΘB

∼= 0.69, so the differences are particularly
evident. The kink visible on the low angular side of the reflection domain for circular polarisation
is related to the fact, that in this case the reflectivity is an average of the curves for σ- and π-
polarisations.

1.9.3 Total electric field

From the relations between amplitudes (1.57)-(1.58) and amplitude rations one obtains
immediately the expression for the total electric field inside the crystal E = E0 + Eh

E = Ea
0

[
εσε̂σ

(
1 + ξσe−ih·r

)
eiωt−ik0σ ·r + επ

(
ε̂0π + ξπε̂hπe−ih·r

)
eiωt−ik0π ·r

]
(1.62)

In a similar manner as when considering the linear polarisation, one assumes that the
wavevectors inside the crystal are real. This is equivalent to neglecting the phenom-
ena of extinction and anomalous absorption introduced by the imaginary parts of the
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wavevectors. One should note, that the regular absorption is still included, as it enters
the formalism via the imaginary part of susceptibility Fourier coefficients. Additionally,
the difference between the wavevectors for σ- and π-component is small (as already the
difference from the vacuum wavevector ka0 is small), so k0σ ' k0π. Assuming these ap-
proximations, the intensity of the electric field reads

I = (Ea
0 )2
{
ε2
σ

[
1 + |ξσ|2 + 2<

(
ξσe−ih·r

)]
+

+ |επ|2
[
1 + |ξπ|2 + 2<

(
ξπe−ih·r

)
cos 2ΘB

]}
(1.63)

For circularly polarised incoming wave one gets

I = (Ea
0 )2
[
1 +

(
1
2
|ξσ|2 + 1

2
|ξπ|2

)
+ <

(
ξσe−ih·r

)
+ <

(
ξπe−ih·r

)
cos 2ΘB

]
(1.64)
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Figure 1.9: Comparison between relative electric field intensity calculated for Si (111) reflection,
energy E = 5 keV, symmetric reflection, for linear (σ and π) and circular polarisation of the
incoming wave. The functions were calculated for the position at the reflecting lattice planes
(zh = 0).

1.9.4 Correction for the complex wavevector

The absorption correction for the wavevector is introduced analogously to the way
described in section 1.8 for linear polarisation. The imaginary part of the wavevector
remains when calculating the intensity, and gives the damping factors. The intensity of
the electric field inside the crystal for arbitrary polarisation, with this correction, reads

I = (Ea
0 )2
{
ε2
σ

[
1 + |ξσ|2 + 2<

(
ξσe−ih·r

)]
e−µσz/γ0 +

+ |επ|2
[
1 + |ξπ|2 + 2<

(
ξπe−ih·r

)
cos 2ΘB

]
e−µπz/γ0

}
(1.65)

The effective absorption coefficient, defined via the formula (1.43) is polarisation depen-
dent.
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The considerations leading to the formula for the secondary yield excited by the stand-
ing wave in a thick crystal are the same as in the case of linear polarisation (1.8). Anal-
ogously to the formula (1.46), in the case of arbitrary polarisation

y =ε2
σ

{
1 + |ξσ|2 + 2<

[
ξσ
(
Fh
sw

)∗]} zσeff

γ0

+

+ |ε2
π|
{

1 + |ξπ|2 + 2<
[
ξπ
(
Fh
sw

)∗]
cos 2ΘB

} zπeff

γ0

(1.66)

The effective thickness was already defined via the formula (1.46). In the same way as
before, γ0 in the denominator accounts for the changes of the footprint during the angular
scans.





Chapter 2

Absorption cross-section

In the x-ray standing waves method one makes use of both diffraction and absorption
phenomena. The first was described in the previous section, and yielded a form of the
wave inside the crystal — the dependence of the electric field on the departure angle
∆Θ (equation (1.62)). The electromagnetic wave is treated here in a classical way, what
suffices to describe the absorption of EM radiation by an atom [71].

In the x-ray regime the radiation is absorbed by matter almost exclusively via the
photoelectric absorption process. A photon is absorbed by the atom, what results in the
electron transition to the unoccupied states or its ejection form the atom, depending on
the photon energy. This process is followed by the decay of the core-hole, which is filled
by another bound electron. As a result a fluorescence photon or Auger electron is emitted.

The interaction of the classical EM wave with an atom is described here using the
time-dependent perturbation theory, where the interaction (time-dependent) term is a
vector potential of the EM radiation. This formalism was developed by P. A. M. Dirac in
1926 [72].

After a short summary of the time-dependent perturbation theory, following [71], the
case of harmonic perturbation (EM wave) is considered. The calculations are presented
for a wave with arbitrary polarisation. The formula for the absorption cross-section is
derived for such a general case. Subsequently, the absorption cross-section is evaluated for
the electric field existing in a crystalline medium in the reflection domain that is in short
for an x-ray standing wave. This result gives a firm basis for the already discussed XSW
method. In this chapter only the case of linearly polarised incoming wave is considered.
A general case constituting the basis of the MXSW is introduced in chapter 4.

2.1 Time-dependent perturbation theory

2.1.1 General formulation

One starts here by considering a physical system — atom in this case — which is
subjected to the external perturbation. The aim is to find the probability that the atom
will undergo a transition to another state.

The unperturbed physical system is described by the Hamilton operator H0. The

29
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system’s energy spectrum En is given by the Schrödinger equation

H0|φn〉 = En|φn〉 (2.1)

where Dirac vectors |φn〉 denote the stationary states of the Hamilton operator. Then
one considers the situation, where the perturbation is applied starting from t = 0. The
system will be described by the operator

H(t) = H0 + W(t) = H0 + υV(t) (2.2)

where W and V describe the perturbation, V is large, of the order of H0, and υ is a small
real parameter.

Assume, that the system is initially in the state |φi〉 (eigenstate of H0). The aim is to
calculate the probability Pfi(t) of finding the system in the eigenstate |φf〉 at the time t.
The evolution of the system’s state |ψ(t)〉 is described by the time-dependent Schrödinger
equation

i} d
dt
|ψ(t)〉 = H(t)|ψ(t)〉 (2.3)

with initial condition |ψ(0)〉 = |φi〉. } denotes the reduced Planck constant } = hP/2π.
The sought probability Pfi(t) is, from the postulates of quantum mechanics, given by the
mean value of projection operator. In non-degenerate case Pfi(t) = |〈φf |ψ(t)〉|2.

The set of eigenstates of Hamilton operator {|φn〉} forms a basis. |ψ(t)〉 can be ex-
pressed in this basis

|ψ(t)〉 =
∑
n

cn(t)|φn〉 (2.4)

with cn(t) := 〈φn|ψ(t)〉. Using the Schrödinger equation one can derive an expression
for the time dependence of the coefficients cn. At first one considers the case of no
perturbation (H = H0), and inserts equation (2.4) into the Schrödinger equation (2.3).
This yields

cn(t) = cn(0)︸ ︷︷ ︸
:=bn=const

e−iEnt/} (2.5)

Now, if the perturbation is no longer zero, but remains small, the solution of the
Schrödinger equation is expected to be very close to the latter solution. The coefficient
cn is assumed to have the form

cn(t) = bn(t)e−iEnt/} (2.6)

Having equation for the coefficients cn, the problem is now to determine the coeffi-
cients bn. This is done in similar manner as before, by inserting the relation (2.4) into
equation (2.3), now taking the form of the Hamilton operator containing the perturbation
term. One gets

i} .
cn(t) = Encn(t) + υ

∑
k

Vnk(t)︸ ︷︷ ︸
=:〈φn|V(t)|φk〉

ck(t) (2.7)

The dot over cn denotes time derivative. Insertion of the expression (2.6) gives the set of
equations for the bn coefficients

i}
.
bn(t) = υ

∑
k

Vnk(t)bk(t)e
iωnkt (2.8)
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which is equivalent to the original Schrödinger equation. The quantity ωnk := (En−Ek)/}
is called Bohr angular frequency [71].

Since equation (2.8) is not exactly solvable [71], the coefficient bn is expanded in the
power series in υ

bn(t) = b(0)
n (t) + υb(1)

n (t) + υ2b(2)
n (t) + ... (2.9)

If the parameter υ is small, the series converges quickly. Putting this relation into equa-
tion (2.8) and comparing the terms staying by the same order in υ, yields the recurrence
relation

r = 0 i}
.
b(0)
n (t) = 0 (2.10a)

r = 1 i}
.
b(1)
n (t) =

∑
k

Vnk(t)b
(0)
k (t)eiωnkt (2.10b)

...

r = p i}
.
b(p)
n (t) =

∑
k

Vnk(t)b
(p−1)
k (t)eiωnkt (2.10c)

2.1.2 Solution to the first order

In order to describe the absorption of light quantum by the atom, it suffices to consider
the solution in first order of υ only. One starts by considering the zeroth order. Since the
system is initially in the eigenstate of H0, one can write

|ψ(0)〉 =
∑
n

cn(0)|φn〉 =
∑
n

bn(0)e−iEn·0|φn〉 = |φi〉 (2.11)

This indicates that bn(0) = δni. Since one considers the zeroth order in υ and equa-

tion (2.10a) implies that b
(0)
n is constant, one has

b(0)
n = δni (2.12)

and b
(p)
n (0) = 0 for p > 1. Equation (2.12) constitutes a solution in the zeroth order.

To obtain the solution in the first order, the latter is inserted into the recurrence
relation (2.10b), and the resulting equation integrated. This gives

b(1)
n (t) =

1

i}

t∫
0

Vni(t̃)e
iωni t̃dt̃ (2.13)

Following (2.4), (2.6) and (2.9), the state vector of the system reads

|ψ(t)〉 =
∑
n

[
δni + υ

1

i}

t∫
0

Vni(t̃)e
iωni t̃dt̃

]
e−iEnt/}|φn〉 (2.14)

Having this result, it follows from the definition of Pfi

Pfi =

∣∣∣∣ υi}
t∫

0

Vfi(t̃)e
iωfi t̃dt̃

∣∣∣∣2 =
1

}2

∣∣∣∣
t∫

0

Wfi(t̃)e
iωfi t̃dt̃

∣∣∣∣2 (2.15)

where the fact that υVfi = Wfi = 〈φf |W|φi〉 was used and it was assumed that δfi = 0,
since one is interested here in transitions (i 6= f).
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2.1.3 The case of harmonic perturbation

Since an absorption of the EM wave is considered here, the time dependence of the
perturbation is assumed to be of the form

W(t) = W0eiωt + W†0e−iωt (2.16)

where ω = E/} and a symbol X† denotes an Hermitian conjugate of the operator X. The
standard form of the EM wave with time dependence given by eiωt is supplemented here
by the Hermitian conjugate to fulfill the postulates of the quantum mechanics, that is to
ensure, that the operator H is Hermitian.

For this form of perturbation the integral in equation (2.15) can be evaluated easily.
One gets

Pfi(t) =
1

}2

∣∣∣∣W fi
0

ei(ωfi+ω)t − 1

ωfi + ω
+ (W †

0 )fi
ei(ωfi−ω)t − 1

ωfi − ω

∣∣∣∣2 (2.17)

One can consider two cases depending on the sign of ωfi:

• ωfi > 0, that is the energy of the final level is higher than that of the initial one.
This case corresponds to the absorption process.

• ωfi < 0, the final energy is lower than the initial one, so this is a stimulated emission.

Since the absorption of the photon is of interest here, one considers only the first case.
Consequently, the first term in equation (2.17) is never big, as the denominator is never
small, so one can discard this term and write the remaining one is the following form

Pfi(t) =
|(W †

0 )fi|2

}2

[
sin 1

2
(ω − ωfi)t

1
2
(ω − ωfi)

]2

(2.18)

If one considers the probability rate wfi = Pfi/t, that is the probability per unit time,
the previous formula can be transformed to the form

wfi =
2π

}
|(W †

0 )fi|2δ(}ω − Efi) (2.19)

in the limit of t→∞, using the properties of the Dirac delta distribution1.

2.1.4 Golden rule

If the final states are not well separated, but instead form a continuum (for example if
one considers momentum of a scattered particle), the probability which can be measured
in the experiment will be given by the integral over the domain of final states. Assume
that the final states are labeled by continuous set of indices Λ, and one wants to determine

1The delta distribution is defined via the condition, that for any integrable function f∫∞
−∞ f(x)δ(x)dx = f(0) [73]. It can be represented by the limit of the series of functions. In the considered

case, the representation which helps to transform the formula for Pfi is δ(x) = lim
ε→0+

ε
π

sin2(x/ε)
x2 [71].



2.2. Absorption of electromagnetic wave 33

the probability of finding the system in domain of final states δΛf centered around Λf .
The probability rate reads

δwfi =
2π

}

∫
Λ∈δΛf

|(W †
0 )fi|2δ(}ω − Efi)dΛ (2.20)

Now in order to evaluate this integral, one may change the variables to energy and another
parameter — Ω. This transformation introduces the density of final states %. The integral
takes the form

δwfi =
2π

}

∫
Ω∈δΩf
E∈δEf

|(W †
0 )fi|2δ(}ω − E + Ei)%(Ω,E)dΩdE (2.21)

In comparison to the term δ(}ω−E+Ei), function %(Ω,E)|(W †
0 )fi|2 varies slowly with E.

If the range δΩf is very small, the variation of the function with Ω can be also neglected.
Additionally, one considers rather the probability per unit interval of the variable Ω.
Thus, after the integration over the energy

wfi =
2π

}
|(W †

0 )fi|2%f (2.22)

where the abbreviation %f denotes in fact %(Ωf ,E = Ei + }ω). This result was obtained
for the first time by Dirac [74], and due to its significance called a golden rule No2 by
E. Fermi [75].

2.2 Absorption of electromagnetic wave

Now, an interaction of an atom with an arbitrarily polarised EM wave will be consid-
ered. The EM wave is at this point assumed to have a general form

E(r, t) = E0 (εxx̂ + εyŷ + εzẑ) eiωt−ik·r (2.23)

where E0 denotes an amplitude of the wave, and the expression in the brackets is a
polarisation vector ε.

2.2.1 Interaction Hamilton operator

For the range of energies of photons (x-ray regime) considered in this work, the non-
relativistic Hamilton operator suffices to describe the interaction between the electron
and the EM wave. The Hamilton operator for a single electron with mass me, charge e
and spin described by the operator S = }

2
σ (σ — Pauli matrices), interacting with an

EM field described by the vector potential A was derived by W. Pauli [76] and reads

HPauli =
p2

2me

+ U(r)︸ ︷︷ ︸
H0

+
e2

2me

A2 − e

2me

p ·A− e

2me

A · p− e

me

S · rotA︸ ︷︷ ︸
W(t)

. (2.24)
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p denotes here the momentum operator of the electron, and U the potential energy coming
form the nucleus. A Coulomb gauge is used here, what implies that in the absence of
currents and charges, the scalar potential of the EM field is zero [55]. The first and last
term of the perturbation part W of the operator are neglected. The first one is quadratic
in vector potential, so describes two photon process (scattering). The last one acts only
on the spin part of the state vector and can be neglected when considering the inter-
band transitions [77]. Additionally, it remains small even for the energies from the x-ray
range [78]. Therefore, the interaction term used to describe absorption is assumed to have
the form

W(t) = − e

2me

{p,A} (2.25)

where the curly brackets denote an anticommutator, that is {p,A} := p ·A+A · p.
The vector potential A is related to the electric field in the chosen gauge via

E = −∂A
∂t

(2.26)

Taking a vector potential in the form

A(r, t) = A0εe
iωt−ik·r + A∗0ε

∗e−iωt+ik·r (2.27)

and setting A0 = iE0/ω, leads to the assumed form of the electric field (2.23), supple-
mented by the Hermitian conjugate in order to ensure that the operator W is Hermitian.

2.2.2 Electric dipole approximation

The spatial part of the exponential term in (2.27) can be expanded in a Taylor series
around the point r = 0, assuming that kr � 1 or equivalently λ � a0 (that is the
wavelength of the exciting radiation λ is greater than the spatial extent of the electron
wavefunction a0)

e±ikjrj = 1± ikjrj − 1
2
k2
j r

2
j + . . . (2.28)

with j ≡ x, y, z. Taking only the first term in this expansion corresponds to the electric
dipole approximation. The second term gives the magnetic dipole (via the here-neglected
spin-dependent part of the Hamilton operator) and electric quadrupole transitions (via
the term proportional to p ·A).

Even though the condition λ � a0 is not obviously fulfilled in the x-ray regime, the
electric dipole approximation suffices in most cases to correctly describe the absorption
process occurring during the XSW experiment [12]. It remains true, that the most often
considered core electron states are highly localised around the atomic nuclei, what justifies
the adopted simplification. The contribution of the higher order terms becomes important
for the angular-resolved detection of photoelectrons, as in such a case their angular distri-
bution becomes asymmetric [79]. However, for the secondary radiation yield obtained via
angularly integrated photoelectron signal, or also isotropic fluorescence emission, the in-
fluence of quadrupole and higher terms remains small. Therefore, in these considerations
the electric dipole approximation will be used.

When the higher orders of the expansion (2.28) are neglected, the vector potential has
a formA(r, t) = A0εe

iωt+A∗0ε
∗e−iωt and commutes with momentum operator. Therefore,
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the perturbation part of the Hamilton operator in the electric dipole approximation reads

W(t) = − e

me

(
A0p · εeiωt + A∗0p · ε∗e−iωt

)
(2.29)

The matrix element (W †
0 )fi = 〈f |W†0|i〉 is crucial for establishing the transition rate wfi

(equation (2.22)) and thus also the absorption cross-section. In this case the operator W†0
has the form − e

me
A∗0p ·ε∗ and the initial state is like earlier assumed to be an eigenstate of

the H0, |i〉 = |φi〉. At this point the matrix elements are in fact the ones of the momentum
operator, of the form 〈f |pj|φi〉, j ≡ x, y, z. One may consider the commutator relation

[rj,H0] =

[
rj,

p2

2me

+ U(r)

]
=

[
rj,

p2

2me

]
=

1

2me

[rj, p
2
x + p2

y + p2
z] =

=
1

2me

[rj, p
2
j ] =

1

2me

{[rj, pj]︸ ︷︷ ︸
i}

pj + pj[rj, pj]} =
1

2me

2i}pj =
i}
me

pj (2.30)

where the fact that the potential energy U(r) commutes with r, and the canonical com-
mutation relation [rj, pk] = i}δjk were used. Using the established relation, the matrix
element can be transformed to the form

− e

me

A∗0〈f |p · ε∗|φi〉 = ieA∗0ωif〈f |r · ε∗|φi〉 (2.31)

Now the matrix elements of the position operator 〈f |rj|φi〉, rj = x, y, z, are the ones
determining the absorption cross-section for a given form of the EM wave parametrised
here via A0 and the polarisation vector ε. The detailed derivation of equation (2.31) is
given in appendix A.2.1.

2.2.3 Electric dipole selection rules

One can now consider when the matrix elements of the position operator are non-zero.
The constrains for the quantum numbers of the initial and final states, which ensure
non-vanishing matrix elements are called selection rules. They are obtained from the
mathematical properties of the operator.

The position operators can be expressed in spherical coordinates (r, ϑ, ϕ). That means,
they can be written as linear combinations of the spherical harmonics Y m`

`

x =
√

2π
3
r
(
Y −1

1 − Y 1
1

)
y = i

√
2π
3
r
(
Y −1

1 + Y 1
1

)
z =

√
4π
3
rY 0

1

(2.32)

Therefore, one has to consider in fact the matrix elements of the form 〈f |rY 0,±1
1 |φi〉. In

the position representation, the atomic state vector can be expressed as a product of
radial and angular parts φn,`,m`(r) = Rn,`(r)Y

m`
` (ϑ, ϕ) [71]. The symbols n, `,m` denote

the quantum numbers: principal, azimuthal and magnetic, correspondingly. This set of
numbers allows to uniquely identify the electron state. The spin part of the state vector
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is neglected here, as the dipole operator cannot alter the spin state. Therefore, one has
an additional selection rule, ∆ms = 0, where ms is a spin magnetic quantum number,
equal ±1/2 for an electron. In fact any general state vector of an atom in a solid can be
expressed as the linear combination of the atomic orbitals [80]. That is why it suffices to
consider the states in the form of φn,`,m` .

In the position representation, the matrix element is given as an integral. In the
considered case one has

〈f |rY ±1,0
1 |φi〉 =

∫
R∗nf ,`fRni,`ir

3dr

∫
(Y

(m`)f
`f

)∗Y ±1,0
1 Y

(m`)i
`i

sinϑdϑdϕ (2.33)

where the indices i and f denote the quantum numbers of the initial and final states,
respectively. The second integral imposes the restrictions on possible transitions. It
follows from the properties of spherical harmonics and orbital angular momentum operator
[71], that this integral is non-zero only if

∆` = `f − `i = ±1

∆m` = (m`)f − (m`)i = ±1, 0
(2.34)

These are the electric dipole selection rules. Only the transitions fulfilling these condi-
tions are allowed. It is worth to mention, that when taking into account also the higher
orders in the expansion (2.28), other selection rules appear. These are for example elec-
tric quadrupole selection rules obtained for the first order term (kr), which allow the
transitions fulfilling ∆` = 0,±2 and ∆m` = 0,±1,±2. All those, and higher order tran-
sitions, in fact may always appear when the photon is absorbed by the atom. It is only
the probability of the higher order transitions, which is much lower than for the electric
dipole ones, what follows already from the magnitude of the subsequent terms in Taylor
expansion (2.28).

2.2.4 Cross-section

The absorption cross-section is obtained from the transition probability rate wfi (equa-
tion (2.22)) by the summation over all possible initial and final states, and normalisation
by the incident photon flux [80,81]

σ =
1

Φ0

∑
if

wfi (2.35)

Therefore, one needs to evaluate the incoming flux Φ0 for the considered EM wave. The
energy flow is given by the length of the complex Poynting vector, defined as [55]

S = 1
2
E ×H∗ = 1

2
ε0c

2E ×B∗ (2.36)

The flux is given as |S| divided by }ω (energy of one photon) [80]. For the plane EM
wave of the form (2.23)2 it reads

Φ0 =
ε0c

2

2}
|A0|2k (2.37)

2It should be noted, that for the considered definition of S, one uses the complex representation of
electric field, without supplementing it by complex conjugate.
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Detailed calculations leading to the previous formula are given in A.2.2. Now the formula
for the absorption cross-section of the plane EM wave with arbitrary polarisation can
be obtained from the relations for wfi (2.22), the matrix element (2.31) and the defini-
tion (2.35). Due to the presence of Dirac delta distribution under the integral (2.21), the
Bohr frequency is equal to the frequency of the incoming wave ωfi = ω. The absorption
cross-section reads

σ = (4π)2αf}ω
∑
if

%f |〈f |ε∗ · r|φi〉|2 (2.38)

αf denotes here the fine structure constant, given by the combination of the other con-
stants: αf = e2/4πε0}c, where e is the elementary charge.

2.3 Absorption of the standing wave

Having established the general formula for the absorption cross-section of the EM
wave, one can return to the fact discussed in 1.6, that in the Bragg reflection regime the
absorption cross-section is proportional to the standing wave intensity at the position of
the atom and prove it rigorously. This is presented in this section.

At first linear polarisation of the incoming wave will be considered. All the important
results are the same regardless of the specific linear polarisation, so the calculations are
presented for σ-polarisation. The case of a thick crystal is considered. Following equa-
tion (1.35) and the boundary condition E0 = Ea

0, the total electric field in the crystal
reads

E(r, t) = Ea
0 ε̂σ

(
1 + ξe−ih·r

)
eiωt−ik0·r (2.39)

The vector potential associated with this electric field has the form

A(r, t) = A0ε̂σ
(
1 + ξe−ih·r

)
eiωt−ik0·r (2.40)

with the condition, that Ea
0 = −iωA0. With this vector potential, the perturbation part of

the Hamilton operator has a proper harmonic form proportional to eiωt, so the formulae
from the previous section can be used. Since now a crystalline material consisting of
several atoms is considered, one has to define the position of the electrons in a new way.
Let R be a position of the atom in the crystal, and r̃ the position in this atom with
respect to its nucleus. Then r = R + r̃. Additionally, one introduces the electric-dipole
approximation by setting r̃ = 0. The coordinate system can be set arbitrarily, so let
the axis Oz coincide with the σ-polarisation unit vector ε̂σ. The only component of the
polarisation vector ε = ε̂σ

(
1 + ξe−ih·r

)
is then

εz = 1 + ξe−ih·R (2.41)

The position vector in this expression is the one of the atom’s nucleus only, so it can be
taken out of the matrix element. Thus, the absorption cross-section reads

σsw = (4π)2αf}ω
∣∣1 + ξe−ih·R

∣∣2∑
if

%f |〈f |z̃|φi〉|2 (2.42)

The expression contains the sum over the matrix elements of position operator z̃, so it
seems to be dependent on the choice of the reference system. However, it can be shown
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by considering an arbitrary direction of the polarisation vector, that it leads always to
the same final result for the absorption cross-section. In simple words, for the spheri-
cally symmetric system none of the physical properties may depend on the choice of the
coordinate system.

Compared to the plane wave, in this case the absorption cross-section is modulated
by the term |1 + ξe−ih·R|2, that is the intensity of the standing wave. In other words,
the probability that a photon is absorbed (and an electron or a secondary signal emitted)
is proportional to the intensity of the standing wave exactly at the position of the atom
nucleus R. This result validates the discussion given in chapter 1.6 and gives a rigorous
basis for the XSW method.



Chapter 3

X-ray magnetic circular dichroism

The formula for the absorption cross-section contains an explicit dependence on the
polarisation of the electromagnetic wave. In particular, the cross-section differs between
right- and left-handed polarisations, when the circularly polarised x-ray light with energy
close to the atomic resonance is absorbed by an atom with a magnetic moment. Circularly
polarised light carries an angular momentum, which is parallel to the propagation direction
and equal ±}, with the sign depending on the helicity [80]. The angular momentum
of radiation couples to the magnetic moment of the atom, what causes a difference in
absorption depending on the mutual orientation of those two. This effect is called x-ray
magnetic circular dichroism (XMCD). The very first experimental demonstration of the
dichroism in the hard x-ray regime was provided by the group of G. Schütz [82], who
observed a dichroism in the absorption of the elliptically polarised x-rays emitted above
and below the electron orbit plane of the DORIS storage ring. The experiment was
performed on an iron foil, at the energy corresponding to the K absorption edge.

According to the Stoner’s model of magnetism of metals [83], the spin magnetic mo-
ment of the atom is related to the imbalance between the number of the spin-up and
spin-down valence-band electrons (where the quantisation axis is defined by the direction
of the magnetic moment) [84]. Therefore, an experimental determination of the spin-
dependent density of final states in the absorption experiment gives an information about
the magnetic moment of the absorbing atom.

Two interactions are necessary for the XMCD effect to arise: the spin-orbit coupling
and the exchange split in the final band [85]. In the simplified model based on a one-
electron picture [84, 86–88], at first the quantum of the circularly polarised x-ray light is
absorbed by the electron, which is consequently excited from its initial state. Due to the
conservation of angular momentum, the angular momentum of the wave is transferred to
the electron. If the initial level is split by the spin-orbit interaction, both the spin and the
orbital part of the total angular momentum of the electron are affected in the absorption
process1. Since for one of the states from the spin-orbit split pair the spin S and orbital
angular momentum L are parallel and in the other one antiparallel, the excited electrons
are spin-polarised. The polarisation reverses with the reversal of the light helicity. In the
second step of the absorption process, the spin-polarised electron transfers to the valence
band, which acts as a spin detector due to the exchange split causing an imbalance in the

1Otherwise the angular momentum of the photon is transferred purely to the orbital angular momen-
tum of the electron, as the electric field does not act directly on the spin states.

39
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empty spin-up and spin-down states. Summarising, the generation of the spin-polarised
electrons together with their detection by the spin-split final band causes dichroism, which
is measured in XMCD experiment.

This simple picture of the absorption process is not valid for all the materials and
all the absorption edges (for example for the K-edge, where no spin-orbit splitting of the
initial level exists), but shows how the use of the circularly polarised light gives an access
to the information about the magnetism. More detailed discussion about the XMCD at
several absorption edges is given in the next sections of this chapter.

In the first section of this chapter, detailed calculations of the XMCD effect at the
L2,3 absorption edges of 3d metals are presented. The formalism is presented here for the
case of arbitrary mutual orientation between magnetic moment and propagation direction
of the EM wave, as well as arbitrary polarisation. This general approach is crucial for
further theoretical considerations about the magnetic x-ray standing waves. Secondly, a
discussion about the origin of the polarisation dependence of the XMCD signal is given.
This is followed by the discussion about the XMCD for the 5d metals and the case
of K absorption edge of the 3d metals. Subsequently a short discussion about other,
less relevant for the current work absorption edges (L2,3 and M3,4 in the rare-earths) is
presented. Finally, the sum rules allowing a quantitative determination of the atom’s spin
and orbital magnetic moments from the absorption experiment are presented.

3.1 XMCD at the L2,3 absorption edges in the 3d metals

The materials based on the 3d ferromagnetic metals (Fe, Co and Ni) are definitely
one of the most important groups of the magnetic materials from the application and
fundamental point of view. The magnetism of 3d metals is driven mostly by their d va-
lence electrons. The d-electrons are probed via x-ray absorption experiments at the L2,3

absorption edges, that is via investigating the transition from 2p core level to the 3d va-
lence band [84,86]. L2,3 are preferred over the M2,3 edges (the transition 3p → 3d), since
those resonances are weaker and overlap energetically [86]. The transition 1s → 3d (L1

absorption edge) is dipole forbidden.
The 2p electrons have a non-zero orbital angular momentum, so they exhibit a split-

ting into two substates, 2p1/2 and 2p3/2, due to the spin-orbit interaction. The spin-orbit
splitting is a relativistic effect describing the coupling of spin S and orbital angular mo-
mentum L, which form a total angular momentum J = L + S [80]. It can be understood
in terms of a simple picture, as an interaction between the spin of the electron and the
magnetic field created due to its orbital motion. The strength of the interaction scales
with the mutual orientation of spin and orbital angular momentum [89]. The impor-
tance of the spin-orbit interaction for the magnetic dichroism was already explained in
the introduction to this chapter. Now it will become clear from the rigorous calculations.

3.1.1 Initial and final states

In the case of the 2p level the orbital angular momentum is equal ` = 1 and the
electron spin takes the values s = 1

2
, ms = ±1

2
. Therefore, two possible values of the

total angular momentum are j = 1
2
, 3

2
. The projection of the total angular momentum on
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the quantisation axis mj takes the values −j, . . . , j. There are two possible initial states
|j,mj〉 for the 2p1/2 level:

∣∣1
2
,±1

2

〉
and four for the 2p3/2 one:

∣∣3
2
,±3

2

〉
,
∣∣3

2
,±1

2

〉
.

The initial states are given naturally in the basis {|j,mj〉}, but in order to easily calcu-
late the matrix elements of the dipole operator represented by spherical harmonics (2.33),
a decomposition of those states in the basis {|`,m`, s,ms〉} is needed. The transformation
of the bases is based on the closure relation for the states |`,m`, s,ms〉 and has the form

|j,mj〉 =
∑̀
m`=−`

s∑
ms=−s

〈`,m`, s,ms|j,mj〉|`,m`, s,ms〉 (3.1)

The coefficients in this expansion are called Clebsch-Gordan coefficients [71], their values
can be found in tables [90].

As an example presenting the principle, consider the decomposition of the state
∣∣1

2
,−1

2

〉
given in the total angular momentum representation. The terms with non-zero Clebsch-
Gordan coefficients (or equivalently the only ones giving the desired mj = m`+ms = −1

2
)

are ∣∣1
2
,−1

2

〉
=
〈
1, 0, 1

2
,−1

2

∣∣ 1
2
,−1

2

〉 ∣∣1, 0, 1
2
,−1

2

〉
+
〈
1,−1, 1

2
, 1

2

∣∣ 1
2
,−1

2

〉 ∣∣1,−1, 1
2
, 1

2

〉
=

= 1√
3

∣∣1, 0, 1
2
,−1

2

〉
−
√

2
3

∣∣1,−1, 1
2
, 1

2

〉
(3.2)

where in the second step the values of the coefficients were written explicitly. The re-
maining initial states with their decomposition are collected in the table 3.1.

Initial level State vectors |j,mj〉 State vectors |`,m`, s,ms〉

2p1/2

∣∣1
2
,−1

2

〉
1√
3

∣∣1, 0, 1
2
,−1

2

〉
−
√

2
3

∣∣1,−1, 1
2
, 1

2

〉∣∣1
2
, 1

2

〉
− 1√

3

∣∣1, 0, 1
2
, 1

2

〉
+
√

2
3

∣∣1, 1, 1
2
,−1

2

〉
2p3/2

∣∣3
2
,−3

2

〉 ∣∣1,−1, 1
2
,−1

2

〉∣∣3
2
,−1

2

〉
1√
3

∣∣1,−1, 1
2
, 1

2

〉
+
√

2
3

∣∣1, 0, 1
2
,−1

2

〉∣∣3
2
, 1

2

〉 √
2
3

∣∣1, 0, 1
2
, 1

2

〉
+ 1√

3

∣∣1, 1, 1
2
,−1

2

〉∣∣3
2
, 3

2

〉 ∣∣1, 1, 1
2
, 1

2

〉
Table 3.1: The states of the spin-orbit split 2p level in the basis of total angular momen-
tum {|j,mj〉} and their decomposition in the basis of orbital angular momentum and spin
{|`,m`, s,ms〉} using the Clebsch-Gordan coefficients. These are the initial states for the tran-
sition 2p → 3d investigated in the absorption experiment at the L2,3 absorption edge.

The spin-orbit interaction in the final 3d level is two orders of magnitude smaller than
in the 2p level [86], so is neglected hereafter. Possible final states are thus:

∣∣2,−2, 1
2
,±1

2

〉
,∣∣2,−1, 1

2
,±1

2

〉
,
∣∣2, 0, 1

2
,±1

2

〉
,
∣∣2, 1, 1

2
,±1

2

〉
,
∣∣2, 2, 1

2
,±1

2

〉
.
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3.1.2 Geometry of the experiment

Most often a case of parallel alignment of the wave propagation vector k (and thus
its angular momentum) and magnetic moment is considered, since such a situation leads
to a maximum of the XMCD signal [80]. Here the general situation of an arbitrary
(with respect to the magnetic moment) wave propagation direction is considered instead.
The results obtained from such a treatment are more useful for understanding the case of
XMCD under the Bragg reflection regime, where waves propagating in different directions
exist.

The coordinate system is defined by the magnetic moment, such that it coincides
with the Oz axis (figure 3.1). The k vector direction is parametrised via the spherical
coordinates angles ϑx and ϕx, so that its coordinates read

k = k

cosϕx sinϑx
sinϕx sinϑx

cosϑx

 (3.3)

x

y

z
O

O′
k

ϕx

ϑx

m

x′

y′

z′

ε̂1

ε̂2

Figure 3.1: The coordinate systems for describing the XMCD experiment, assuming an arbitrary
angle between m and k vectors. The actual system (O) is set by the direction of the magnetic
moment, since it defines the quantisation axis of the final band — detector of the photoelectron
spin. Wavevector k is defined via spherical coordinates (ϑx, ϕx) with respect to the coordinate
system O. It defines the Oz′ axis of the new, rotated coordinate system O′, whose axes Ox′ and
Oy′ contain the polarisation vectors. The concrete directions of the Ox and Oy, and thus also
Ox′ and Oy′, are not defined here rigorously. One should note, however, that within the used
model, the actual directions of the polarisation unit vectors ε̂1 and ε̂2 are unimportant, as long
as the conditions ε̂1 · ε̂2 = 0, ε̂i · k = 0, i ≡ 1, 2, are fulfilled.

Even though it is known, that the circularly polarised light carries angular momentum,
which couples to the angular momentum of the electron and leads to spin-polarised elec-
tron emission from the initial level, at this point no restriction on the polarisation vectors
is imposed. The EM wave is assumed to have a general form E = Ea

0 (ε1ε̂1 + ε2ε̂2) eiωt−ik·r.
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In the coordinate system O′ defined by the wave propagation direction k, the polarisation
unit vectors have the coordinates

ε̂′1 =

1
0
0

 ε̂′2 =

0
1
0

 (3.4)

It will become clear from the calculations, that it is the circularly polarised wave with
ε1 = 1√

2
and ε2 = i√

2
that leads to the maximum observable XMCD effect. Following the

convention adopted in section 1.9.1, ε1 ∈ R and the change of helicity is equivalent to
transformation ε2 → ε∗2.

In order to obtain the coordinates of polarisation vectors in O, one needs to consider
the rotation R. In particular the system O′ is obtained via two rotations: first by ϑx
around the axis Oy and then by ϕx around Oz. The total rotation matrix reads

R = Rz(ϕx)Ry(ϑx) =

cosϕx − sinϕx 0
sinϕx cosϕx 0

0 0 1

 cosϑx 0 sinϑx
0 1 0

− sinϑx 0 cosϑx

 =

=

cosϕx cosϑx − sinϕx cosϕx sinϑx
sinϕx cosϑx cosϕx sinϕx sinϑx
− sinϑx 0 cosϑx

 (3.5)

Therefore, the polarisation vectors in O read

ε̂1 = R

1
0
0

 =

cosϕx cosϑx
sinϕx cosϑx
− sinϑx

 (3.6a)

ε̂2 = R

0
1
0

 =

− sinϕx
cosϕx

0

 (3.6b)

3.1.3 Transition matrix elements

The electric dipole operator, whose matrix elements determine the absorption cross-
section (equation (2.38)) reads for the adopted coordinate system

ε∗ · r = (ε1 cosϕx cosϑx − ε∗2 sinϕx)x+ (ε1 sinϕx cosϑx + ε∗2 cosϕx)y − ε1 sinϑxz (3.7)

The expressions in brackets standing by the position operators are in fact the coordinates
ε∗i , i ≡ x, y, z of the complex conjugate of the polarisation vector. Now, one expresses
the position operators via spherical harmonics (equations (2.32)). This transforms the
electric dipole operator to the form

ε∗ · r =
√

4π
3
r
[

1√
2

(
ε∗x + iε∗y

)
Y −1

1 + 1√
2

(
−ε∗x + iε∗y

)
Y 1

1 + ε∗zY
0

1

]
(3.8)

Further abbreviations are introduced: A = ε∗x+iε∗y, B = −ε∗x+iε∗y, C = ε∗z. These symbols
denote the terms related to the combinations of the polarisation vector components, which
appear by the given operator Y 0,±1

1 .



44 CHAPTER 3. X-RAY MAGNETIC CIRCULAR DICHROISM

Having the form of the operator, the cross-section can be calculated for the consid-
ered initial (2p) and final (3d) states. Since the final states exhibit a spin-split due to
the exchange interaction, the excitation of the spin-up and spin-down electrons will be
considered separately. The transition rates for such separate cases are denoted by ζ↑↓.
Following the formula (2.38), they read

ζ↑↓ =
∑
if

|〈f, ↑↓ |ε∗ · r|φi, ↑↓〉|2 (3.9)

and the total cross-section is equal

σ = (4π)2αf}ω
(
ζ↑%↑f + ζ↓%↓f

)
(3.10)

The symbols %↑↓f denote the density of the empty states in the spin-split final 3d band.
As discussed in section 2.2.3, if the initial and final states are written in the position

representation, as atomic orbitals, the transition matrix element has the form of the
integral (2.33). Using that form, the spin-dependent transition rate reads

ζ↑↓ = 4π
3
R
∑
if

∣∣∣〈f, ↑↓|( 1√
2
AY −1

1 + 1√
2
BY 1

1 + CY 0
1

)
|φi, ↑↓〉

∣∣∣2 (3.11)

where in general R :=
∣∣ ∫ R∗nf ,`f (r)Rni,`i(r)r

3dr
∣∣2. The first radial part of the wavefunc-

tion (R) is the one of the final state, whereas the second — of the initial one. In this
case a transition 2p → 3d is considered, what justifies why the radial part of the tran-
sition matrix element was factored out from the sum. One can also write, that here

R =
∣∣∫ R∗3d(r)R2p(r)r

3dr
∣∣2.

The previous expression can be simplified further by noticing that all mixed terms of

the form 〈f |Y m`
1 |φi〉〈φi|Y

m′`
1 |f〉, m` 6= m′` are zero, due to the electric dipole selection rule

(m`)f − (m`)i = m`,m
′
`, which is never fulfilled simultaneously for both matrix elements.

One has

ζ↑↓ = 4π
3
R
∑
if

(
1
2
|A|2

∣∣〈f, ↑↓|Y −1
1 |φi, ↑↓〉

∣∣2 + 1
2
|B|2

∣∣〈f, ↑↓|Y 1
1 |φi, ↑↓〉

∣∣2
+|C|2

∣∣〈f, ↑↓|Y 0
1 |φi, ↑↓〉

∣∣2) = 4π
3
R
(

1
2
|A|2a↑↓ + 1

2
|B|2b↑↓ + |C|2c↑↓

)
(3.12)

where the new abbreviations read

a↑↓ =
∑
if

∣∣〈f, ↑↓|Y −1
1 |φi, ↑↓〉

∣∣2 , b↑↓ =
∑
if

∣∣〈f, ↑↓|Y 1
1 |φi, ↑↓〉

∣∣2 ,
c↑↓ =

∑
if

∣∣〈f, ↑↓|Y 0
1 |φi, ↑↓〉

∣∣2 (3.13)

Those quantities are related purely to the initial and final states. The ones marked
by capital A, B and C are on the other hand related purely to the polarisation of the
incoming wave and its propagation direction. The moduli squared of those, which appear
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in equation for partial cross-section, read

|A|2 = |ε1 cosϑx + iε∗2|2 (3.14a)

|B|2 = |ε1 cosϑx − iε∗2|2 (3.14b)

|C|2 = ε2
1 sin2 ϑx (3.14c)

One can easily see, that the dependence on the angle ϕx vanished. Therefore, the absorp-
tion rate depends only on the mutual orientation of m and k vectors (fig. 3.1).

To better understand what happens with A and B under the helicity reversal (trans-
formation ε2 → ε∗2, remember that ε1 ∈ R), one writes the polarisation vector component
ε2 explicitly as <ε2 + i=ε2. The indices ± will denote the values before and after the
helicity reversal, correspondingly. It follows, that

|A±|2 = |ε1 cosϑx + i (<ε2 ± i=ε2)∗|2 = |ε1 cosϑx + i<ε2 ±=ε2|2 =

= (ε1 cosϑx ±=ε2)2 + (<ε2)2 (3.15a)

|B±|2 = (ε1 cosϑx ∓=ε2)2 + (<ε2)2 (3.15b)

One notices immediately, that the relations |A+|2 = |B−|2 and |A−|2 = |B+|2 hold. This
fact can be understood by noticing, that the quantity A is related to the transition rates
involving the operator Y −1

1 , whereas B is related to Y 1
1 . The first ones fulfil the selection

rule ∆m` = −1, the latter ∆m` = 1. The reversal of helicity is equivalent to the reversal
of the wave’s angular momentum direction (in case of elliptical or circular polarisation),
what explains the symmetry in the quantities A and B.

In order to calculate the strength of the dichroic effect, the measures of the
spin-dependent transition rates a↑↓, b↑↓ and c↑↓ need to be evaluated. The integral
I =

∫
Y

(m`)1

`1
Y

(m`)2

`2
Y

(m`)3

`3
sinϑdϑdϕ (introduced by equation (2.33)), which dictated the

electric dipole selection rules, is in fact what determines the values of the matrix elements.
Its value can be calculated using the formula [71]

I = (−1)(m`)3

√
(2`1 + 1)(2`2 + 1)

4π(2`3 + 1)
〈`1, 0, `2, 0|`3, 0〉〈`1, (m`)1, `2, (m`)2|`3,−(m`)3〉 (3.16)

where two terms on the right are Clebsch-Gordan coefficients.
An exemplary matrix element is considered here in details, the remaining transition

probabilities are given in figure 3.2. Consider the final state
∣∣2,−2, 1

2
, 1

2

〉
and the operator

Y −1
1 . Keeping in mind the spin selection rule ∆ms = 0 and the one for orbital angular

momentum ∆m` = −1 dictated by this particular operator, the only non-zero matrix
element is

〈
2,−2, 1

2
, 1

2

∣∣Y −1
1

∣∣1,−1, 1
2
, 1

2

〉
. Its value is equal

〈
2,−2, 1

2
, 1

2

∣∣Y −1
1

∣∣1,−1, 1
2
, 1

2

〉
=

∫ (
Y −2

2

)∗
Y −1

1 Y −1
1 sinϑdϑdϕ =

∫
Y 2

2 Y
−1

1 Y −1
1 sinϑdϑdϕ =

= −
√

5
4π
〈2, 0, 1, 0|1, 0〉〈2, 2, 1,−1|1, 1〉 =

√
3

10π
(3.17)

where the property of the spherical harmonics (Y m`
` )∗ = (−1)m`Y −m`` was used.

Figure 3.2 presents all possible transitions involving the operator Y −1
1 , that is fulfill-

ing the condition ∆m` = −1. The transition strengths are calculated by multiplying
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|0, ↓〉 | − 1, ↑〉 |0, ↑〉 |1, ↓〉 | − 1, ↓〉 | − 1, ↑〉 |0, ↓〉 |0, ↑〉 |1, ↓〉 |1, ↑〉∣∣1
2
,−1

2

〉 ∣∣1
2
, 1

2

〉 ∣∣3
2
,−3

2

〉 ∣∣3
2
,−1

2

〉 ∣∣3
2
, 1

2

〉 ∣∣3
2
, 3

2

〉

| − 2, ↑〉 | − 2, ↓〉 | − 1, ↑〉 | − 1, ↓〉 |0, ↑〉 |0, ↓〉 |1, ↑〉 |1, ↓〉 |2, ↑〉 |2, ↓〉

2p1/2, L2 absorption edge 2p3/2, L3 absorption edge

1
20π

1
5π

1
20π

1
30π

3
10π

1
10π

1
10π

1
10π

1
60π

1
20π

|j,mj〉 :

Y −1
1

Figure 3.2: Transitions from the 2p to the 3d states fulfilling the selection rule ∆m` = −1.
For those transitions the matrix elements of Y −1

1 operator are non-zero. The transitions with
positive ms are marked in blue colour for clarity. The transition strengths (written next to
the arrows) are given as the modulus squared of the matrix element multiplied by the modulus
squared of the coefficient in the expansion of the states |j,mj〉 in the {|`,m`, s,ms〉} basis (see
table 3.1). The states in total angular momentum base are depicted at the bottom, for the
others the abbreviation |m`,ms =↑↓〉 ≡ |`,m`, s,ms =↑↓〉, where ↑≡ +1

2 , ↓≡ −
1
2 , was used. By

summing up the spin-up and spin-down contributions, one can notice that the photoelectron
excitation is spin-polarised, and this polarisation is opposite for L2 and L3 edges.

the modulus squared of the matrix element and the corresponding coefficient from the
expansion of the states |j,mj〉 in the basis {|`,m`, s,ms〉} (table 3.1). The summation
over the transitions with spin-up and spin-down gives the values of the a↑↓. Depending
on the absorption edge they are equal

a↑L2
=

1

4π

a↓L2
=

1

12π

a↑L3
=

1

4π

a↓L3
=

5

12π

(3.18)

These values indicate, that the photoelectron excitation form the spin-orbit split 2p states
is spin-polarised. For the 2p1/2 states, 3/4 of the transitions correspond to the excitation of
spin-up electron, in case of 2p3/2 it is 3/8 of all transitions. Thus, the spin-polarisation of
the emission is reversed for those two cases. Note, that if there was no spin-orbit splitting
of the 2p states, the probabilities of the excitation of spin-up and spin-down electron
would be the same (a↑L2

+ a↑L3
= a↓L2

+ a↓L3
= 1

2π
). It is the energy separation between the

L2 and L3 absorption edges, what allows to generate the spin-polarised electrons.
Now consider the transitions involving the operator Y 1

1 , that is those fulfilling
∆m` = 1. The diagram analogous to the one in figure 3.2, showing the possible tran-
sitions, is presented in appendix B.1. Following figure, values of the coefficients b↑↓ are

b↑L2
=

1

12π

b↓L2
=

1

4π

b↑L3
=

5

12π

b↓L3
=

1

4π

(3.19)
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Similarly, like in the case of ∆m` = −1 transitions, also now the spin-polarisation is
observed. It can be noticed, that with respect to a↑↓, the values of b↑↓ are reversed, or

a↑ = b↓, a↓ = b↑ (3.20)

As it is shown at the end of this paragraph, if the perfect circular polarisation and
the case of k ‖ m (standard XMCD geometry) are considered, the transitions fulfilling
∆m` = −1 (described by a) are the ones induced by the wave with one helicity, and the
ones for which ∆m` = 1 (b) — with the other. Thus, the result (3.20) indicates, that the
reversal of the wave helicity (what is equivalent to the reversal of the direction of angular
momentum) leads to the reversal of the spin-polarisation of the excited photoelectrons.
This fact opens up a possibility for observing a dichroism in absorption of circularly or
elliptically polarised light.

The remaining term in the expression (3.12) is the one related to Y 0
1 . The diagram

showing the transitions involving this operator (∆m` = 0) is also shown in appendix B.1
(figure B.2). Following the values depicted there, the coefficients c↑↓ read

c↑L2
=

1

6π

c↓L2
=

1

6π

c↑L3
=

1

3π

c↓L3
=

1

3π

(3.21)

Concluding, the transitions in which no angular momentum of the light is transfered to
the electrons, exhibit no spin-polarisation.

3.1.4 XMCD signal

Having noticed, that the spin-polarisation of the excited electrons changes upon the
change of the wave’s angular momentum, that is the change of helicity, the next step is to
consider the difference between the cross-sections upon the helicity reversal. In order to
discard the constants, one considers rather the normalised difference [89]. Even though
most often the dichroic signal is defined as Ξ = (σ+ − σ−)/(σ+ + σ−) [77, 86, 89], the
authors use different sign convention for the phase of the wave (−iωt) than used in this
work. In order to keep the quantitative results consistent with the literature, here the
XMCD signal is defined as

Ξ =
σ− − σ+

σ− + σ+

(3.22)

Following equations (3.10) and (3.12), as well as using the fact that c↑ = c↓ and |C|2
does not change upon the helicity reversal, one can write

Ξ =
{
%↑f
[

1
2
a↑
(
|A−|2 − |A+|2

)
+ 1

2
b↑
(
|B−|2 − |B+|2

)]
+

+ %↓f
[

1
2
a↓
(
|A−|2 − |A+|2

)
+ 1

2
b↓
(
|B−|2 − |B+|2

)]}
·

·
{
%↑f
[

1
2
a↑
(
|A−|2 + |A+|2

)
+ 1

2
b↑
(
|B−|2 + |B+|2

)
+ 2c|C|2

]
+

+ %↓f
[

1
2
a↓
(
|A−|2 + |A+|2

)
+ 1

2
b↓
(
|B−|2 + |B+|2

)
+ 2c|C|2

]}−1

(3.23)
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Now, one evaluates the expressions in the round brackets. Due to the symme-
try between the quantities |A±|2 and |B±|2 (see equations (3.15)), the relations
|A−|2 − |A+|2 = |B+|2 − |B−|2 and |A−|2 + |A+|2 = |B−|2 + |B+|2 hold. The combina-
tion of |A±|2 and |B±|2 from the numerator reads

|A−|2 − |A+|2 = −4ε1=ε2 cosϑx (3.24)

whereas the one from the denominator is equal to

|A−|2 + |A+|2 = 2
(
ε2

1 cos2 ϑx + |ε2|2
)

(3.25)

From the values of the coefficients a↑↓, b↑↓ and c (equations (3.18), (3.19), (3.21)) one can
see, that for each absorption edge

a↑ + a↓ = b↑ + b↓ = 2c (3.26)

This fact can be seen as a manifestation of the results’ independence from the choice of
the coordinate system. If no spin-dependent detection appears in the experiment, there
should be no difference in absorption strength for transitions associated with Y −1

1 , Y 1
1 or

Y 0
1 . The form of the combination of those present in the cross-section formula depends

on the choice of coordinate system.
Using the relation (3.20), the following expression appears in the denominator

1
2

(
|A−|2 + |A+|2

)
+ |C|2 = ε2

1 + |ε2|2 = 1 (3.27)

since it is assumed that the polarisation vector components of the incoming wave are
normalised. With that, the XMCD signal reads

Ξ = 2ε1=ε2︸ ︷︷ ︸
Πγ

(
%↑f − %

↓
f

)(
%↑f + %↓f

)︸ ︷︷ ︸
∆%sf/%f

(
a↓ − a↑

)
(a↓ + a↑)︸ ︷︷ ︸

Πse

cosϑx (3.28)

Four important terms influence the final value of the XMCD signal. Πγ is the circular

polarisation degree. ∆%sf := %↑f − %
↓
f is the absolute imbalance between the density of un-

occupied states in the final band with spin-up and spin-down. The normalised quantity
∆%sf/%f , %f = %↑f +%↓f is the spin-polarisation of the final band. Πs

e denotes the photoelec-
tron polarisation. Finally, the term cosϑx accounts for the geometrical conditions in the
experiment, ϑx = ^(m,k).

The term Πγ is discussed in more details in the next section. Particularly, it is shown
there, that indeed it denotes a degree of circular polarisation. At this point one can
already notice, that for any linear polarisation Ξ = 0, because for such a wave there is no
phase shift between polarisation unit vectors ε̂1 and ε̂2, so =ε2 = 0 and the XMCD signal
vanishes. This is obvious, since linearly polarised light carries no angular momentum, so
it cannot induce a spin-polarised electron excitation, which is the key mechanism leading
to the dichroism in absorption. Only circularly or elliptically polarised light gives rise to
an XMCD signal.

Spin-polarisation of the final band takes the values from 0 (no polarisation,
%↑f = %↓f = 1

2
%f ) to 1 (full polarisation, %↑f = %f ), assuming that ”↑” denotes the minority
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spin (thus majority of the holes have the spin-up and the magnetic moment is parallel
to Oz). As mentioned already at the beginning, the spin-polarised final band serves as
a detector for the spin-polarised electrons excited by the EM wave. If the final band is
unpolarised, no dichroism is observed. What is more, ∆%sf is directly related to the spin
magnetic moment of the atom. The energy integral of the spin-dependent density of states
gives a number of the holes with up- (N↑h) and down-spin (N↓h). According to the Stoner
model of metals magnetism [80,83], the magnitude of the magnetic moment is given as a
difference in the number of electrons or holes with a given spin state in the final band

m = µB
(
N↓e −N↑e

)
= µB

(
N↑h −N

↓
h

)
(3.29)

where µB is a Bohr magneton and the relation between the density of states and number
of holes reads

N↑↓h =

∫ ∞
EF

%↑↓f dE (3.30)

where EF denotes the Fermi energy, that is the energy of the highest occupied state. The
equivalence between the differences in number of electrons and holes in (3.29) exists, since
the maximum number of electrons in a given shell Ntotal is fixed, and Nh+Ne = Ntotal. For
example, for 3d band one has N↑h+N↑e = 5 and N↓h+N↓e = 5. The relation of the magnetic
moment to the number of holes is useful, since it is the density of final empty states, what
determines the absorption cross-section measured in spectroscopy experiments.

The photoelectron-polarisation is another prerequisite for the dichroism to appear.
The value of this quantity is characteristic of a given transition. In case of the considered
2p → 3d transition, for the L2 absorption edge Πs

e = −1
2

and for the L3 Πs
e = 1

4
. As it

was already discussed, it is the spin-orbit interaction what gives non-zero values of Πs
e.

Notice, that the sign of the photoelectron polarisation is opposite for 2p1/2 and 2p3/2,
and the number of 2p3/2 is twice that of 2p1/2 ones. Thus, without the energy separation
between the levels, the electron polarisation would vanish, and so would also the XMCD
signal.

The cosine term (cosϑx) is responsible for scaling the signal with the projection of the
photon angular momentum on the quantisation axis (direction of the magnetic moment).
The electrons emitted from the initial level are spin-polarised in the direction of the wave
propagation. The spin-polarisation of the final band (which serves as a detector for the
electrons) is on the other hand given by the direction of the magnetic moment. Therefore,
the strongest XMCD effect is observed if those two directions coincide. The signal vanishes
if m and k are perpendicular to each other (cosϑx = 0).

At the end one analyses the case of an ideally circularly polarised incoming wave and
ϑx = 0 (k ‖ m), as this case is often of the particular interest. Using the decompo-
sition (1.49) one can show easily, that the function Πγ(β, δ) = 2 cos β sin β sin δ has an
extremum if and only if sin δ = 0 ∧ sin 2β = 0 or cos δ = 0 ∧ cos 2β = 0. The first case
corresponds to linear polarisation, which leads to Ξ = 0, so is discarded. The second
set of equations yields the values of β and δ for the circular polarisation. The polari-
sation vector components are ε1 = 1√

2
and ε2 = i√

2
. The polarisation rate is maximal

and is equal to one. The polarisation-related quantities read |A+|2 = |B−|2 = 2 and
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|A−|2 = |B+|2 = |C|2 = 0. The cross-section has, therefore, a simple form

σ± = (4π)3

3
αf}ωR

∑
↑↓

∑
if

%↑↓f
∣∣〈f, ↑↓|Y ∓1

1 |φi, ↑↓〉
∣∣2 (3.31)

This result shows that the transitions described by a and related to the operator Y −1
1

are induced by the light with one helicity (RHP), and the ones whose strength is given
by b (related to Y 1

1 ) — with the other (LHP). This explains the symmetry in the a and
b quantities (3.20), since the reversal of the light helicity is equivalent to the reversal
of the angular momentum of the wave and thus the direction of the spin-polarisation of
the electrons. This discussion also justifies, that the reversal of the orientation of the
quantisation axis (that is the orientation of the magnetic moment), keeping the helicity
fixed, leads to the same effect as a reversal of helicity. In such a case the spin-polarisation
direction of the excited electrons stays the same, but the polarisation of the final band,
which detects the electrons, changes.

The fact that the reversal of the magnetic moment direction is equivalent to the
reversal of helicity can be shown also rigorously. Looking at figure 3.1, one can see that
if the direction of the Oz axis was reversed, the angle between the magnetic moment
and the propagation direction would be equal to π − ϑx. Since it was proven that the
angle ϕx does not influence the final results, the reversal of magnetic moment direction
can be introduced in the formalism by the transformation ϑx → π − ϑx. This imposes
a change on the wave-related quantities A, B and C, whose moduli enter the expression
for the cross-section. |C|2 does not change under the considered transformation, as it
contains only sin2 ϑx. Affected are the values of |A|2 and |B|2, in which the term cosϑx
changes the sign under the reversal of the magnetic moment. As expected, this leads to the
transformation A↔ B (see equations (3.15)). Instead of considering the XMCD signal as
a difference between the cross-sections for different helicities, the difference between two
opposite magnetic moment orientations can be considered. This can be written formally
as

Ξm =
σ−m+ − σ+m

+

σ−m+ + σ+m
+

=
{
%↑f
[

1
2
a↑
(
|A−m+ |2 − |A+m

+ |2
)

+ 1
2
b↑
(
|B−m+ |2 − |B+m

+ |2
)]

+

+ %↓f
[

1
2
a↓
(
|A−m+ |2 − |A+m

+ |2
)

+ 1
2
b↓
(
|B−m+ |2 − |B+m

+ |2
)]}
·

·
{
%↑f
[

1
2
a↑
(
|A−m+ |2 + |A+m

+ |2
)

+ 1
2
b↑
(
|B−m+ |2 + |B+m

+ |2
)

+ 2c|C|2
]

+

+ %↓f
[

1
2
a↓
(
|A−m+ |2 + |A+m

+ |2
)

+ 1
2
b↓
(
|B−m+ |2 + |B+m

+ |2
)

+ 2c|C|2
]}−1

(3.32)

Now one can transform the ”−m” quantities using |A−m+ |2 = |B+m
+ |2 = |A+m

− |2 and
|B−m+ |2 = |A+m

+ |2 = |B+m
− |2. This leads immediately to the same formula for the XMCD

signal, as the one obtained by considering the difference in cross-sections for opposite
helicities (equation (3.23)). This is a rigorous proof, that reversal of helicity is equivalent
to reversal of the magnetic moment direction, so that Ξ = Ξm.

Even though in the energy range of hard x-rays, typically spin-polarised electrons with
negligible orbital angular momentum are probed [89], at the end one should give a com-
ment on the contribution to the magnetic dichroism of the orbital-polarisation in the final
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states. By orbital-polarisation one understands an imbalance in the density of the empty
final states with magnetic quantum numbers m` and −m` [80]. Aside of spin-polarisation,
the contribution of orbital one is significant for the case of soft x-ray resonances, such as
L2,3 absorption edges of 3d metals. The two-step model of absorption considered earlier
can be extended to include the orbital-polarisation. The angular momentum transferred
from the photon is carried by the photoelectron partly as spin and orbital angular mo-
mentum degrees of freedom, due to the spin-orbit splitting of the initial state. For the
considered L2,3 absorption edges, one can calculate the orbital-polarisation of the excited
photoelectrons in a similar manner as it is done for the spin-polarisation. The orbital
polarisation can be defined analogously as a sum over the possible final state magnetic
quantum numbers

Π`
e = 1

2

( ∑̀
m`=−`

m`

∑
if

|〈fm`|Y
±1,0

1 |φi〉|2
)(∑

if

|〈fm`|Y
±1,0

1 |φi〉|2
)−1

(3.33)

The sum over the initial and final states is a quantity similar to the spin-dependent
quantities a, b and c, where the states with given spin (±1/2) were considered, but now
it comprises only the final states distinguished by the quantum number m`, denoted here
by |fm`〉. It gives the overall transition strength for the transitions leading to the given
value of m`. The orbital-polarisation is calculated separately for the operators Y ±1,0

1 .
One can check using figure 3.2 (and the ones in appendix — B.1 and B.2), that the

orbital polarisation for the transitions involving the operators Y ±1
1 is equal 3/4, regardless

of the absorption edge (and reverses the sign under the reversal of the helicity, just like
the electron spin-polarisation). For the transitions where no orbital angular momentum
is transferred from the photon, no orbital-polarisation of the electron appears.

Similarly like in the case of photoelectron spin, the orbital angular momentum of the
excited electron can be detected by the orbital-polarised final band. Skipping the detailed
derivation given elsewhere [89], one can write the total XMCD signal, as a sum of the
spin and orbital angular momentum contributions

Ξ =

(
∆%sf
%f

Πs
e +

6

`f (`f + 1)

∆%`f
%f

Π`
e

)
Πγ cosϑx (3.34)

where the first term in the sum in the brackets is the original, spin-polarisation related
part. The orbital-polarised density of states is defined via the sum

∆%`f =
∑̀
m`=−`

m`%m` (3.35)

with %m` being densities of m` projected substates. Again, to observe the XMCD sig-
nal coming from the electron orbital-polarsation, the final band has to exhibit non-zero
polarisation ∆%`f .

3.1.5 Degree of polarisation of the wave

In this section it is shown, that Πγ = 2ε1=ε2 is a degree of circular polarisation of
a single plane EM wave propagating along the Oz axis, with polarisation given by the
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polarisation vector components ε1 and ε2. On the other hand, the cosine term appears,
when one calculates the degree of circular polarisation projected on an ideal propagation
direction that is parallel to the magnetic moment. It is important for further considera-
tions to proof rigorously, that the XMCD signal is directly proportional to such a degree
of circular polarisation.

As defined by Jackson [55], the circular polarisation rate reads

Πcirc =
|ε̂∗rhp · E|2 − |ε̂∗lhp · E|2

|ε̂∗rhp · E|2 + |ε̂∗lhp · E|2 + |ε̂∗0 · E|2
(3.36)

The terms |ε̂∗rhp · E|2 and |ε̂∗lhp · E|2 denote the intensities of the right-handed circularly
and left-handed circularly polarised waves propagating in the direction perpendicular to
the unit vectors ε̂rhp and ε̂lhp. |ε̂∗0 ·E|2 is a remaining intensity, that is an intensity of the
wave with a polarisation vector ε̂0 being perpendicular to both ε̂rhp and ε̂lhp [55]. If one is
interested in the degree of circular polarisation in the direction of propagation (standard
situation), this last term vanishes, as the EM wave is a transverse one. In the considered
situation, however, one is interested in the degree of polarisation in the direction of the
magnetic moment. A wave propagates in a different direction and the component |ε̂∗0 ·E|2
is non-zero.

Using the discussed scalar products and choosing the unit vectors appropriately, one
can analyse the polarisation composition of the wave in any direction.

A general case of the wave propagating in arbitrary direction is considered. Using the
components of the polarisation vectors in the O coordinate system, the wave has the form

E = [ε1 (cosϕx cosϑxx̂ + sinϕx cosϑxŷ − sinϑxẑ) +

+ ε2 (− sinϕxx̂ + cosϕxŷ)] eiωt−ik·r (3.37)

The quantisation axis of the spin-polarised final band is fixed by the direction of the
magnetic moment. It is this direction in which the angular momentum of the light should
be aligned. Therefore, the degree of circular polarisation considered in this direction is
governing the strength of the XMCD. One can obtain the content of the desired polar-
isation in the arbitrary incoming wave, by assuming the following forms of the circular
polarisation unit vectors

ε̂rhp = 1√
2

(x̂ + iŷ) (3.38a)

ε̂lhp = 1√
2

(x̂− iŷ) (3.38b)

The component of the wave propagating in the xOy plane is unimportant for the XMCD
effect, but of course contributes to the total intensity of the wave, and thus enters the
denominator of (3.36). Its intensity can be obtained via the polarisation vector ε̂0 = ẑ.

The intensities appearing in the formula for the polarisation degree read

|ε̂∗rhp · E|2 = 1
2

[
(ε1 cosϑx + =ε2)2 + (<ε2)2] (3.39a)

|ε̂∗lhp · E|2 = 1
2

[
(ε1 cosϑx −=ε2)2 + (<ε2)2] (3.39b)

|ε̂∗0 · E|2 = ε2
1 sin2 ϑx (3.39c)
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and the polarisation degree itself

Πcirc = 2ε1=ε2 cosϑx (3.40)

The first term, that is 2ε1=ε2 can be regarded as a circular polarisation degree in the
propagation direction. The cosine term performs a projection on a chosen direction of
interest. Overall, Πcirc gives the information on the content of the circularly polarised
wave propagating in a chosen direction.

As expected, Πcirc = Πγ cosϑx.

One can note, that the quantities |A|2, |B|2 and |C|2 are in fact the intensities
of the components of the incoming wave. One notices, that |A±|2 = 2|ε̂∗rhp · E±|2,
|B±|2 = 2|ε̂∗lhp · E±|2 and |C|2 = |ε̂∗0 · E±|2.

3.2 XMCD at the L2,3 absorption edges in the 5d metals

The general formula for Ξ, which is important for the further considerations, was
aleady obtained in the previous paragraph. In particular, it was shown, that the XMCD
signal is driven by a few factors: Ξ = ΠγΠ

s
e cosϑx∆%

s
f/%f . Among them only the pho-

toelectron polarisation Πs
e depends on the considered transition, that is the investigated

system and the absorption edge. To describe the XMCD effect at other absorption edges
and for other systems, all one needs to evaluate is Πs

e and Π`
e, the latter in case of signif-

icant contribution from orbital polarisation. In this and the following paragraphs only a
short discussion about the origin of the photoelectron polarisation for other systems than
3d metals, and other absorption edges, is given.

The simple two-step model in one-electron picture considered for the transitions at
the L2,3 absorption edges of the 3d metals explains also well the absorption process at
the L2,3 edges of the 5d metals [89]. Also in this case a combination of the strong spin-
orbit coupling in the initial 2p state and the exchange-split of the 5d band responsible for
magnetism leads to the dichroism in absorption of circularly polarised x-rays. Since the
transition here is 2p → 5d, the calculations lead to the same values of the photoelectron
polarisation Πs

e = −1
2
, 1

4
, for the L2 and L3 edges respectively (the principal quantum

number enters the formalism only in the radial integral, which does not influence the final
result).

Magnetic moments of the 5d metals impurities in iron matrix were studied experimen-
tally by Schütz et al. [91]. The values of the magnetic moments calculated based on the
simple two-step model of XMCD were reported to be in a good agreement with theoretical
predictions based on relativistic multiple scattering Green function formalism [92]. This
formalism was also used to validate the assumptions of the two-step model, what showed
that it remains a good approximation in the case of 5d metals.

It should be noted, that the 5d ions are non-magnetic as pure metals, their magnetic
moment is induced by the proximity of the magnetic ions in compounds and alloys. It
was also reported, that 4d and 5d pure metals may exhibit magnetism in systems with
reduced dimensions like nanoparticles [93].
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3.3 XMCD at the K absorption edge in the 3d metals

The case of the XMCD at the K absorption edge of the 3d metals lies also in the
region of interest for the research with hard x-rays. It is, however, much more challenging
for interpretation, since the assumptions of the simple two-step model are not directly
fulfilled. Obital-polarisation, unlike the spin one at the L2,3 absorption edges, plays a
vital role in understanding the emergence of the dichroism at the K absorption edge. It
should be also noted, that at the K resonance one does not probe directly the 3d bands,
which are the ones responsible for magnetism in those systems.

Keeping in mind the electric-dipole selection rules, the transition taking place during
the absorption process at the K absorption edge is from the 1s states to the empty 4p
states. The 1s orbital has no orbital angular momentum (` = 0), so no spin-orbit splitting
of this state exists. Therefore, the first assumption of the two-step model is not fulfilled,
and the dichroism must arise due to different interactions. A small Zeeman splitting into
otherwise degenerate states with ms = ±1

2
due to the external or exchange magnetic field

exists in the initial 1s state. Additionally, in contrast to the L2,3 absorption edges, one
considers a spin-orbit splitting of the final state. The exchange interaction leads also to
the splitting of the spin-orbit coupled 4p1/2 and 4p3/2 states [80].

One considers the same one-electron picture as earlier. The following matrix elements
are non-zero in this case:

〈
1,−1, 1

2
,±1

2

∣∣Y −1
1

∣∣0, 0, 1
2
,±1

2

〉
,
〈
1, 0, 1

2
,±1

2

∣∣Y 0
1

∣∣0, 0, 1
2
,±1

2

〉
,〈

1, 1, 1
2
,±1

2

∣∣Y 1
1

∣∣0, 0, 1
2
,±1

2

〉
. They can be calculated using the integral representation,

and then the Clebsch-Gordan coefficients (equation (3.16)). Then, since the final state is
spin-orbit split, one has to consider the decomposition given in the table 3.1. Keeping in
mind, that the electric-dipole operator cannot flip the spin, one can calculate the overall
transition strengths a, b and c. Regardless of the spin direction, they are all equal 1/4π.
This indicates, that there is no spin-polarised electron emission in this case. In fact a
small spin-polarisation arises from the fact, that the radial integrals are not the same for

the final spin-orbit split states, R1/2 6= R3/2, with Rj =
∣∣∣∫ R∗4pj(r)R1s(r)r

3dr
∣∣∣2 [77].

Since the initial state is 1s and has no orbital angular momentum, excited photoelec-
trons exhibit full orbital-polarisation in case of the transition involving the operators Y ±1

1

(that is induced by the light with angular momentum). In other words, the entire angular
momentum of light is transferred to the photoelectron as an orbital angular momentum
degree of freedom, since there is no spin-orbit splitting of the initial state and the electric
dipole operator does not act on the spin part of the state vector. The orbital-polarisation
reverses the sign under the reversal of the light helicity. If the valence shell possesses an
orbital-polarisation ∆%` itself, the polarisation of the excited electron can be detected and
thus a dichroism in absorption observed [80].

The K absorption edge XMCD is sensitive directly to the orbital-polarisation of the
final states only [94]. The influence of the spin magnetic moment of the p-shell arises
only due to the spin-orbit coupling. Since the orbital-polarisation in 3d transition metals
is negligible, and the spin-orbit interaction in the 4p band weak [89], the XMCD signal is
in this case only of the order 10−3 [77].
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3.4 XMCD in other cases

Another resonances probed in order to gather information about the magnetism are
the L2,3 and M3,4 absorption edges of 4f metals. The first of those lie in the energy region
of hard x-rays, whereas the latter are like L2,3 absorption edges of the 3d metals in the
soft x-ray regime.

In the case of L-edges of 4f metals, one probes the transition from the spin-split 2p
states to the empty s and d states, whereas the majority constitutes the latter ones. In
the 4f metals the overlap between the wavefunction of the neighbouring atoms is small
and thus the exchange interaction is mediated by the conduction band electrons (RKKY
interaction). The empty states in this band are probed in the absorption experiment at
the L-edges, thus one has insight into the foundations of magnetism in the 4f systems.

To describe the emergence of XMCD at the L-edges in the 4f metals, one can consider
the same two-step model as for the L-edges in 3d and 5d metals. The calculation yields
the same values of electron spin- and orbital-polarisations. Though, in contrast to 3d and
5d metals, it was shown by comparison of band-structure calculations with experimental
results for Gd and Tb [95], that this simple model does not provide a good relation between
the spin-polarised density of states and the XMCD signal [96]. This discrepancy might
be assigned to the negligence of the spin-orbit interaction in the final states in the one-
electron model [89]. Even the simple relation saying that the magnitude of the magnetic
moment should scale with the XMCD signal, does not always hold true for the case of
L-edges and 4f metals. It is only certain, that qualitative conclusions about the changes
of the magnetic moment can be drawn from following the changes in the XMCD signal
coming from the given system exposed to the changes of some experimental conditions [89].
The best practical way to extract information from the XMCD signal is based on band
structure calculations and their comparison with experimental data [77].

In case of the soft x-ray M4,5 resonances the 3d→4f transitions are considered, so
one probes directly the localised 4f states responsible for magnetism in rare-earths. The
same approach as for the L2,3-edges of 3d metals can be used to successfully describe
the XMCD effect. By considering the transitions from the spin-orbit split initial states
3d5/2 (M4-edge) and 3d7/2 (M5-edge) to final 4f states one gets the values of spin- and
orbital-polarisation of excited electrons. Application of the sum rules allows to calculate
the spin and orbital magnetic moments separately. A number of comparisons with the
data obtained from the neutron experiments has proven the validity of this approach [89].

3.5 Sum rules

The dependence of the general expression for the absorption cross-section (equa-
tion (2.38)) on the density of the final unoccupied states %f allows to access the number of
the electron-holes in the final band via determining energy-dependent absorption spectra.
The integral of the density of final states (that is, due to proportionality — integral of the
absorption spectrum) gives the number of holes. On the other hand, the energy integral of
the spin-specific density of states %↑↓f yields the number of the electron-holes with a given
spin state. This quantity in turn is related to the magnetic moment (equation (3.29)).

As mentioned already in section 3.1.4, the XMCD signal is proportional to the imbal-
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ance in the spin- and orbital-polarised density of states ∆%sf (equation (3.34)). The general
expression for the XMCD signal (3.34) contains also the spin- and orbital-polarisations of
the excited electron. For the L2,3 absorption edges the orbital-polarisation is the same for
both resonances, whereas the spin-polarisation is opposite in sign and two times bigger
for the L2-edge. This indicates, that having the XMCD data for the transitions from the
pair of spin-orbit split states (that is measured at two absorption edges: L2,3 or M3,4), one
can by appropriate subtraction and addition of those two signals obtain the measure of
the spin- and orbital-polarised densities of final states [89]. This idea lays the foundations
for the sum rules, which allow to extract the spin and orbital magnetic moments from the
XMCD data.

Rigorously, sum rules were derived by Thole [97] and Carra [98], in a localised model,
considering a single ion in an arbitrary crystal-field symmetry and including hybridisation
effects. The sum rules give the relation between the expectation value of the spin and
orbital angular moment and the integrated absorption spectra. The spin-polarisation
of the photoelectron is opposite in sign, so addition of the XMCD spectra measured at
two absorption edges gives the measure of the orbital magnetic moment. The difference
discards the orbital contribution to the XMCD signal, so the spin magnetic moment is
obtained in this way. Following the notations adopted by Stöhr and Siegmann [80], the
sum rules allowing calculation of spin (mspin) and orbital (morb.) magnetic moments read

−A+ 2B =
C

NhµB
mspin (3.41a)

A+B = − 3C

2NhµB
morb. (3.41b)

where A =
∫
L2

(σ− − σ+)dE and B =
∫
L3

(σ− − σ+)dE denote the integrated absolute (that
is without normalisation) XMCD signal at the L2 and L3 (or M4 and M5) absorption edges,
respectively. Nh is the number of electron-holes in the final band and C =

∫
L2+L3

σlindE
denotes the integrated absorption spectrum measured at both absorption edges with linear
polarisation (or equivalently an average of the spectra for two helicities).

One should note that these sum rules are valid, if the effects of anisotropic spin and
charge distribution average out. Experimentally, this can be achieved by performing
measurements for three orthogonal directions and averaging. The anisotropic sum rules
are discussed elsewhere [80].

The sum rules presented here can be successfully applied to the XMCD data for
L2,3 absorption edges in 3d and 5d metals, as well as M4,5 edges of rare-earths. As
mentioned earlier, other cases require more sophisticated data analysis to extract the
magnetic information.



Chapter 4

Magnetic x-ray standing waves

The previous sections provided two important theoretical results. The dynamical
theory of x-ray diffraction gives an answer to the question, how arbitrarily, including
circularly polarised waves are scattered by the crystal lattice. The previous section about
the XMCD effect treats the absorption of a single, plane, arbitrarily polarised EM wave
in a magnetised material and describes the changes of absorption cross-section under the
helicity reversal.

These two subjects are brought together in the current chapter to open a completely
new perspective. As concluded in the first chapter, the scattering process leads to the
appearance of the standing wave, which by monitoring the secondary yield can be used
to determine the positions of the atoms in the lattice. Since the spectroscopic methods
utilised to determine the secondary yield (fluorescence, Auger or photoelectron spec-
troscopy) are element specific, so is the structural information from the XSW experiment.
The XMCD method on the other hand provides in general an information about magnetic
moments of the absorbing atoms. These two experimental approaches can be connected
in order to open an access to magnetic properties with spatial resolution, where the for-
mer emerge from the XMCD studies and the position sensitivity comes from the XSW
technique.

The information about the magnetic structure can be obtained by employing a stand-
ing wave formed during the Bragg reflection of the circularly or elliptically polarised EM
wave and monitoring the differential (XMCD) absorption signal while the standing wave
moves through the lattice. The standing wave causes modulations in the absorption
strength and, therefore, enhances or decreases the contribution to the XMCD of some
lattice sites. This supplements the element and magnetic sensitive XMCD spectroscopy
by the site selectivity.

The absorption cross-section is measured in the XSW technique indirectly, that is
via secondary yield of electrons or fluorescence radiation. Normally the cross-section is
determined by measuring the attenuation of the beam transmitted through the sample,
and this is the only direct measurement of this quantity. The question which arises is,
whether the XMCD signal can be also observed in the secondary yield, that is when
the absorption cross-section is monitored in an indirect way. The answer is positive, a
dichroism is also observed in fluorescence or electron secondary yield [99]. A more detailed
discussion of this issue is given at the end of the current chapter.

Theoretically, the idea is simple. One considers at first the scattering of the circularly
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or elliptically polarised EM wave by the given crystal lattice, what yields an exact form
of the electric field (or equivalently vector potential) in dependence on the incident angle.
This was already presented in section 1.9. Then the absorption cross-section for such
a vector potential is calculated within the framework of time-dependent perturbation
theory (chapter 2) and its changes under the helicity reversal studied. The resulting
difference in absorption cross-sections is dependent on the incidence angle and on the
spin-polarised density of states. Such an MXSW signal can be then interpreted in terms
of the arrangement of the magnetic moments of the given atomic spice.

Chapter is organised as follows. At first the absorption cross-section is evaluated
for the vector potential of the wavefield in the crystal under the diffraction conditions,
using the same approach as in the previous one about the standard XMCD method. At
first it is done for the simplest case of one atom with magnetic moment in the unit cell.
The direction of the magnetic moment is arbitrary with respect to the lattice planes.
In the second section a case of multiple magnetic atoms is considered, what leads to
the introduction of a new quantity — a magnetic standing wave structure factor, which
governs the MXSW signal and carries the magnetic structural information. Initially,
no imaginary part of the wavevectors is considered. The correction taking into account
extinction and anomalous absorption effects is introduced in section 4.7.

4.1 The form of perturbation

As stated already, in simple words the aim of this chapter is to evaluate a cross-
section for the standing wave formed by the incoming circularly or elliptically polarised
wave under the diffraction conditions. The form of the electric field existing inside the
crystal during the Bragg reflection in the reflection geometry was already obtained in
section 1.9, using the dynamical theory of x-ray diffraction. It is given by equation 1.62
and is repeated here for convenience

E = Ea
0

[
εσε̂σ

(
1 + ξσe−ih·r

)
eiωt−ik0σ ·r + επ

(
ε̂0π + ξπε̂hπe−ih·r

)
eiωt−ik0π ·r

]
The amplitude ratios for σ- and π-polarisation components ξσ and ξπ are predicted by
the dynamical theory of diffraction. The quantities εσ and επ are two parameters defining
the polarisation of the incoming wave. Without the loss of generality it is assumed that
εσ ∈ R, so that the phase shift between the polarisation components is carried in επ. The
full discussion about the form of the incoming wave is given in section 1.9.1.

Following the procedure adopted in section 2.3, the vector potential of the wavefield
can be written simply in the form

A = A0

[
εσε̂σ

(
1 + ξσe−ih·r

)
eiωt−ik0σ ·r + επ

(
ε̂0π + ξπε̂hπe−ih·r

)
eiωt−ik0π ·r

]
(4.1)

taking Ea
0 = −iωA0, what can be easily checked using the definition E = −∂tA in

Coulomb gauge.
As mentioned in the introduction, at first the simpler case of real wavevectors,

k0σ,k0π ∈ R is considered. This is equivalent to negligence of extinction and anoma-
lous absorption. Also the effect of attenuation of the secondary signal on the way from
the emitting atom to the detector is neglected in the first step. Such a simpler case is
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introduced, as it well presents the general idea without unnecessary complication. The
correction for the imaginary part of the wavevectors is provided in section 4.7. It is also
assumed, that the difference between the wavevectors for each of the polarisation compo-
nents is small, that is k0σ ≈ k0π, what remains true also for high scattering angles when
the polarisation factor P is significantly different from unity for π-polarisation.

Similarly like in section 2.3 comprising the absorption of the standing wave gener-
ated by the linearly polarised incoming wave, the position of the electron undergoing the
transition induced by the photons from the wavefield is defined as r = R + r̃, where R
is the position of the atom and r̃ position of the electron with respect to the nucleus.
As discussed in section 2.2.3, it is justified to consider the absorption process within the
electric dipole approximation. This is equivalent to setting r̃ = 0, what means that the
absorption of the photon happens approximately at the position of the nucleus, that is
the spatial extent of the electron wavefunction is small. With that, the vector potential
reads

A = A0

[
εσε̂σ

(
1 + ξσe−ih·R

)
+ επ

(
ε̂0π + ξπε̂hπe−ih·R

)]
eiωt−ik0·R (4.2)

In such a form it commutes with the momentum and position operators, so all consid-
erations from chapter 2 remains valid and what one needs to consider only from now on
are the components of the polarisation vector. The way they are generally defined is de-
scribed in section 1.9.1. Before giving their explicit form, one needs to set the coordinate
system for further calculations.

4.2 Geometry of the experiment

As discussed in chapter 3, the main coordinate system is set by the direction of the
magnetic moment, which defines the quantisation axis for the absorption process. In
the adopted two-step model, an excited electron is detected by the polarised final band,
and thus the direction of this polarisation is defined by the magnetic moment direction.
One considers here an arbitrary orientation of the magnetic moment with respect to the
wavevectors k0, kh and the reflecting lattice planes parametrised by their reciprocal lattice
vector h. The relation between the latter is given strictly by the diffraction condition
kh = k0 + h. These three vectors span also a plane, which is called a scattering plane.

The diffraction process is described naturally in the coordinate system O′. It is defined
by assuming that the reciprocal lattice vector is along the Oz′ axis, so that h′ = h(0, 0, 1)1,
σ-polarisation unit vector ε̂σ along the Oy′ direction and the scattering plane is the x′Oz′
one. The coordinate system O′ is shown in figure 4.1. Following their definitions given in
section 1.2, the polarisation unit vectors in O′ read

ε̂′σ = ŷ′ (4.3a)

ε̂′0π = x̂′ sin ΘB + ẑ′ cos ΘB (4.3b)

ε̂′hπ = −x̂′ sin ΘB + ẑ′ cos ΘB (4.3c)

The main coordinate system O is defined by the magnetic moment chosen to be along
Oz, such that m = m(0, 0, 1). The mutual relation between the coordinate systems is

1Before the vectors were written only as columns. Note, that there is no difference between the column
and row vectors, as the metric is Euclidean, so row ones will be sometimes used in the text for convenience.
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⊗
x′

y′

z′⊗ ⊗

ΘBΘB

ε̂0π ε̂hπ

ε̂σ ε̂σ

h

k0

kh O′

Figure 4.1: The coordinate system O′, in which the diffraction process is described naturally.
It is defined by the reciprocal lattice vector h chosen to coincide with the axis Oz′ and the
σ-polarisation unit vector ε̂σ set parallel to Oy′ direction. The scattering plane spanned by the
wavevectors of refracted and reflected waves k0 and kh is the x′Oz′ one. The polarisation unit
vectors are defined in section 1.2.

given by the angles (ϑm, ϕm). The coordinate system O is obtained from the O′ one by
two rotations, in the same way as in section 3.1.2, though now the roles of the coordinate
systems are exchanged. The transformation is given by the matrix R (equation (3.5)).
The coordinate systems, as well as h and m vectors are depicted in figure 4.2.

O′

O

x′

y′

z′

h

ϕm

ϑm

x

y

z

m

Figure 4.2: The coordinate systems for describing the MXSW experiment. The actual one (O)
is defined by the magnetic moment direction, since it defines the quantisation axis of the final
band. O′ is used to describe the diffraction process and was defined in figure 4.1. The plane
x′Oz′ is the scattering plane and it contains the vectors h, k0 and kh. The relation between the
coordinate systems O and O′ is parametrised by the angles (ϑm, ϕm).

Since now the coordinates in the rotated system (that is O) are needed, in order to
transform the coordinates of the vectors given in O′ one needs to consider the reverse
transformation R−1. Equivalently, it is a composition of rotations, first around Oz′ by
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−ϕm and then around Oy′ by −ϑm, or in short R−1 = Ry′(−ϑm)Rz′(−ϕm). The matrix
reads

R−1 =

cosϕm cosϑm sinϕm cosϑm − sinϑm
− sinϕm cosϕm 0

cosϕm sinϑm sinϕm sinϑm cosϑm

 (4.4)

The coordinates of the polarisation unit vectors can be obtained by the general relation
ε̂i = R−1ε̂′i. In the actual coordinate system O they read

ε̂σ = R−1

0
1
0

 =

sinϕm cosϑm
cosϕm

sinϕm sinϑm

 (4.5a)

ε̂0π = R−1

sin ΘB

0
cos ΘB

 =

cosϕm cosϑm sin ΘB − sinϑm cos ΘB

− sinϕm sin ΘB

cosϕm sinϑm sin ΘB + cosϑm cos ΘB

 (4.5b)

ε̂hπ = R−1

− sin ΘB

0
cos ΘB

 =

− cosϕm cosϑm sin ΘB − sinϑm cos ΘB

sinϕm sin ΘB

− cosϕm sinϑm sin ΘB + cosϑm cos ΘB

 (4.5c)

4.3 Polarisation vector

As written in section 1.9.1, the polarisation vector, which appears later in the formula
for the absorption cross-section, is defined in the way that the vector potential (4.2) may
be written in the form

A = A0εe
iωt−ik0·R (4.6)

and then the polarisation vector itself

ε = εσε̂σ
(
1 + ξσe−ih·R

)
+ επ

(
ε̂0π + ξπε̂hπe−ih·R

)
(4.7)

Now, using the coordinates (4.5) one can write the polarisation vector in terms of unit
vectors of the coordinate system O

ε = εσ [(εσ)xx̂ + (εσ)yŷ + (εσ)zẑ]
(
1 + ξσe−ih·R

)
+

+ επ
{

[(ε0π)xx̂ + (ε0π)yŷ + (ε0π)zẑ] + [(εhπ)xx̂ + (εhπ)yŷ + (εhπ)zẑ] ξπe−ih·R
}

(4.8)

where the symbols (εj)k, with j ≡ σ, 0π,hπ, k ≡ x, y, z, denote the components of the
polarisation unit vectors. Grouping the terms staying by the basis vectors x̂, ŷ, ẑ provides
the expressions for the coordinates of ε

εx = εσ
(
1 + ξσe−ih·R

)
sinϕm cosϑm + επ

[(
1− ξπe−ih·R

)
cosϕm cosϑm sin ΘB+

−
(
1 + ξπe−ih·R

)
sinϑm cos ΘB

]
(4.9a)

εy = εσ
(
1 + ξσe−ih·R

)
cosϕm − επ

(
1− ξπe−ih·R

)
sinϕm sin ΘB (4.9b)

εz = εσ
(
1 + ξσe−ih·R

)
sinϕm sinϑm + επ

[(
1− ξπe−ih·R

)
cosϕm sinϑm sin ΘB +

+
(
1 + ξπe−ih·R

)
cosϑm cos ΘB

]
(4.9c)
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The polarisation vector components are everything what is needed to evaluate the
absorption cross-section for the considered electric field, and thus also the XMCD signal
under the standing wave regime. One can note already, that the polarisation vector
contains a dependence on the position of the atom, what implies that so will do the final
absorption cross-section.

4.4 Absorption of the standing wave

Having set the form of the perturbation and the coordinate system, the cross-section
can be calculated in the same way as in chapter 3. Like there, also here a two-step model
of absorption by the magnetised atom is considered. This means, that the approach is
strictly valid for the case of L2,3 absorption edges in 3d and 5d metals, as well as M4,5

resonances in rare-earths, from which only the L2,3 in 5d systems lie in the energy region
of hard x-rays. Since this is the only simple analytical model of the XMCD effect, it
is used to treat the absorption of the standing wave in magnetised medium, that is to
describe theoretically the MXSW method. In section 4.9 an argument is given, which
justifies that the results presented hereafter can be used for any other absorption edges
and systems as well.

The absorption cross-section for a given helicity can be calculated using the for-
mula (3.10), which involves the transition strengths given by (3.12). Since the quantities
a, b and c are related to the considered quantum transitions, they remain the same. One
needs to calculate here only the wave-related quantities A, B and C.

The components of the polarisation vector ε∗i , i ≡ x, y, z are the only quantities, which
influence the values of A, B and C. As a reminder, they are defined as the combinations
A = ε∗x+iε∗y, B = −ε∗x+iε∗y, C = ε∗z (see (3.8)). What is needed to evaluate the absorption
cross-section are in fact the moduli |A|2, |B|2 and |C|2. In general case they read

|A|2 = |εx|2 + 2<
(
iεxε

∗
y

)
+ |εy|2 (4.10a)

|B|2 = |εx|2 − 2<
(
iεxε

∗
y

)
+ |εy|2 (4.10b)

|C|2 = |εz|2 (4.10c)

Thus, the task is to calculate the moduli squared of the polarisation vector components
and the mixed term <

(
iεxε

∗
y

)
. For the considered case, the moduli read

|εx|2 = ε2
σ

∣∣1 + ξσe−ih·R
∣∣2 sin2 ϕm cos2 ϑm + |επ|2

∣∣1− ξπe−ih·R
∣∣2 cos2 ϕm cos2 ϑm sin2 ΘB+

+ |επ|2
∣∣1 + ξπe−ih·R

∣∣2 sin2 ϑm cos2 ΘB+

+ 2εσ<
[
ε∗π
(
1 + ξσe−ih·R

) (
1− ξ∗πeih·R

)]
sinϕm cosϕm cos2 ϑm sin ΘB+

− 2εσ<
[
ε∗π
(
1 + ξσe−ih·R

) (
1 + ξ∗πeih·R

)]
sinϕm sinϑm cosϑm cos ΘB+

− 2|επ|2<
[(

1− ξπe−ih·R
) (

1 + ξ∗πeih·R
)]

cosϕm sinϑm cosϑm sin ΘB cos ΘB (4.11a)

|εy|2 = ε2
σ

∣∣1 + ξσe−ih·R
∣∣2 cos2 ϕm + |επ|2

∣∣1− ξπe−ih·R
∣∣2 sin2 ϕm sin2 ΘB+

− 2εσ<
[
ε∗π
(
1 + ξσe−ih·R

) (
1− ξ∗πeih·R

)]
sinϕm cosϕm sin ΘB (4.11b)
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|εz|2 = ε2
σ

∣∣1 + ξσe−ih·R
∣∣2 sin2 ϕm sin2 ϑm + |επ|2

∣∣1− ξπe−ih·R
∣∣2 cos2 ϕm sin2 ϑm sin2 ΘB+

+ |επ|2
∣∣1 + ξπe−ih·R

∣∣2 cos2 ϑm cos2 ΘB+

+ 2εσ<
[
ε∗π
(
1 + ξσe−ih·R

) (
1− ξ∗πeih·R

)]
sinϕm cosϕm sin2 ϑm sin ΘB+

+ 2εσ<
[
ε∗π
(
1 + ξσe−ih·R

) (
1 + ξ∗πeih·R

)]
sinϕm sinϑm cosϑm cos ΘB+

+ 2|επ|2<
[(

1− ξπe−ih·R
) (

1 + ξ∗πeih·R
)]

cosϕm sinϑm cosϑm sin ΘB cos ΘB (4.11c)

and the mixed term

<
(
iεxε

∗
y

)
= <

{
i
[
|επ|2

(
1 + ξπe−ih·R

) (
1− ξ∗πeih·R

)
sinϕm sinϑm sin ΘB cos ΘB+

+ εσε
∗
π

(
1 + ξσe−ih·R

) (
1 + ξ∗πeih·R

)
cosϕm sinϑm cos ΘB+

− εσε
∗
π

(
1 + ξσe−ih·R

) (
1− ξ∗πeih·R

)
cosϑm sin ΘB

]}
(4.12)

Having calculated these quantities, one can easily obtain the expressions for the sought
moduli |A|2, |B|2 and |C|2. The full expressions are given in appendix A.3.1, since they are
straightforwardly obtained from the expressions (4.11) and (4.12). A particular interest
lies here in changes under the helicity reversal, that is a transformation επ → ε∗π. In order
to notice these differences easier, the coefficient επ is written explicitly as επ = <επ + i=επ
in the terms which change under the helicity reversal, that is contain the επ alone. The
part, which does not change, is denoted by prime and the one proportional to =επ by
double prime, such that |A±|2 = A′ ± A′′, |B±|2 = B′ ±B′′, |C±|2 = C′ ± C′′, where ”+”
corresponds to the initial helicity, and ”−” after the reversal. The explicit formulae for
this quantities are presented in appendix A.3.1.

Some similarities can be noticed in the expressions for A′′, B′′ and C′′. By denoting

Ξ1 = 2εσ(=επ)<
{
i
[(

1 + ξσe−ih·R
) (

1− ξ∗πeih·R
)

sinϕm cosϕm sin2 ϑm sin ΘB +

+
(
1 + ξσe−ih·R

) (
1 + ξ∗πeih·R

)
sinϕm sinϑm cosϑm cos ΘB

]}
(4.13a)

Ξ2 = 2εσ(=επ)<
[(

1 + ξσe−ih·R
) (

1 + ξ∗πeih·R
)

cosϕm sinϑm cos ΘB+

−
(
1 + ξσe−ih·R

) (
1− ξ∗πeih·R

)
cosϑm sin ΘB

]
(4.13b)

it can be written, that

A′′ = Ξ1 + Ξ2, B′′ = Ξ1 − Ξ2, C′′ = −Ξ1 (4.14)

In a similar manner, one can analyse the structure of the quantities A′, B′ and C′,
which do not change under the helicity reversal. The difference between A′ and B′ is in
the last two terms. They can be denoted by Ξ3, which reads

Ξ3 = 2<
{
i
[
|επ|2

(
1 + ξπe−ih·R

) (
1− ξ∗πeih·R

)
sinϕm sinϑm sin ΘB cos ΘB+

+ εσ(<επ)
(
1 + ξσe−ih·R

) (
1 + ξ∗πeih·R

)
cosϕm sinϑm cos ΘB+

− εσ(<επ)
(
1 + ξσe−ih·R

) (
1− ξ∗πeih·R

)
cosϑm sin ΘB

]}
(4.15)

The remaining ones will be called Ξ4. Then the quantities A′ and B′ can be written
simply as

A′ = Ξ4 + Ξ3, B′ = Ξ4 − Ξ3 (4.16)
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As mentioned already, the cross-section for the atom exhibiting a spin-polarisation in
the final band is given by the formula (3.10), with the transition rates ζ↑↓± dependent on
spin direction of excited photoelectron and helicity of the radiation, given in this case by

ζ↑↓± = 4π
3
R
[

1
2

(Ξ4 + Ξ3 ± Ξ1 ± Ξ2) a↑↓ + 1
2

(Ξ4 − Ξ3 ± Ξ1 ∓ Ξ2) b↑↓ + (C′ ∓ Ξ1) c
]

(4.17)

Since the spin-dependent measures of the transition rates a, b and c were evaluated in
the previous paragraph for the case of the L2,3 absorption edge, the previous equation
fully defines the absorption cross-section of the standing wave generated by the arbitrarily
polarised incoming plane EM wave. Having this result, one can consider the XMCD signal
that is the difference between the absorption cross-sections under the helicity reversal.

4.5 MXSW formula — XMCD for the standing wave

This section is the crucial one for the entire work. A formula describing the depen-
dence of the XMCD signal on the incidence angle ∆Θ (via the amplitude ratios ξ) under
the regime of the standing wave is derived hereafter. The dependence of the signal on
the position of absorbing atom indicates, that thanks to the interference field a stan-
dard XMCD spectroscopy gains in addition spatial resolution. This effect appears in the
same way as the XSW method supplements standard spectroscopic techniques by position
sensitivity.

The dependence of the absorption cross-section on helicity (via the alternating signs)
is apparent in equation (4.17), what indicates a possibility of observing a dichroism. One
uses the formula for the cross-section (3.10) and the definition of the XMCD signal (3.22).
The initial formula reads

Ξ =
{
%↑f
[

1
2
a↑
(
|A−|2 − |A+|2

)
+ 1

2
b↑
(
|B−|2 − |B+|2

)
+ c
(
|C−|2 − |C+|2

)]
+

+ %↓f
[

1
2
a↓
(
|A−|2 − |A+|2

)
+ 1

2
b↓
(
|B−|2 − |B+|2

)
+ c
(
|C−|2 − |C+|2

)]}
·

·
{
%↑f
[

1
2
a↑
(
|A−|2 + |A+|2

)
+ 1

2
b↑
(
|B−|2 + |B+|2

)
+ c
(
|C−|2 + |C+|2

)]
+

+ %↓f
[

1
2
a↓
(
|A−|2 + |A+|2

)
+ 1

2
b↓
(
|B−|2 + |B+|2

)
+ c
(
|C−|2 + |C+|2

)]}−1

(4.18)

Keeping in mind the notations |A±|2 = A′ ± A′′, |B±|2 = B′ ±B′′, |C±|2 = C′ ± C′′, one
can write

Ξ =
{
−%↑f

[
a↑A′′ + b↑B′′ + 2cC′′

]
− %↓f

[
a↓A′′ + b↓B′′ + 2cC′′

]}
·

·
{
%↑f
[
a↑A′ + b↑B′ + 2cC′

]
+ %↓f

[
a↓A′ + b↓B′ + 2cC′

]}−1

(4.19)

Now, the relations between the transition rates can be used, namely equation (3.20) and
c↑ = c↓. Additionally, the relations (4.14) and (4.16) are introduced. With that, the
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XMCD signal reads

Ξ =
{
%↑f
[
−a↑ (Ξ1 + Ξ2) + a↓ (−Ξ1 + Ξ2) + 2cΞ1

]
+

+ %↓f
[
−a↓ (Ξ1 + Ξ2) + a↑ (−Ξ1 + Ξ2) + 2cΞ1

]}
·

·
{
%↑f
[
a↑ (Ξ4 + Ξ3) + a↓ (Ξ4 − Ξ3) + 2cC′

]
+

+ %↓f
[
a↓ (Ξ4 + Ξ3) + a↑ (Ξ4 − Ξ3) + 2cC′

]}−1

(4.20)

Now, the fact that a↑ + a↓ = 2c (equation (3.26)) can be used. It makes the terms in
the nominator proportional to Ξ1 vanish. Only the terms proportional to Ξ2 remain and
the nominator can written simply as (a↓ − a↑)Ξ2∆%sf , with ∆%sf := %↑f − %↓f . The term

Ξ2 is the one coming from the mixed term <
(
iεxε

∗
y

)
, that is the one which changes the

sign between the quantities A and B. It changes also the sign under the helicity reversal.
After the transformation the sign initially present in A appears in B and vice versa. This
is an expected behaviour, the same as observed in chapter 3. This symmetry is caused by
the fact, that A is related to the transitions fulfilling the condition ∆m` = +1, whereas
B to the ones with ∆m` = −1.

Remembering that a↑ + a↓ = 2c, the denominator of (4.20) can be transformed to the
form (

a↑ + a↓
)

(Ξ4 + C′) %f −
(
a↓ − a↑

)
Ξ3∆%sf (4.21)

with %f = %↑f + %↓f . One should now consider the term Ξ4 + C′, which simplifies greatly
and yields a relative intensity of the standing wave Isw := I/(Ea

0 )2, given already by
equation (1.63).

Finally, the XMCD signal under the standing wave regime, or in other words the
MXSW signal, reads

Ξ(∆Θ) =
Πs
eΞ2∆%sf

Isw%f − Πs
eΞ3∆%sf

(4.22)

where the polarisation of the photoelectron is given by Πs
e = (a↓ − a↑)/(a↓ + a↑) and the

formulae for the remaining symbols, collected here for the sake of convenience, read

Ξ2 = 2εσ(=επ)<
[(

1 + ξσe−ih·R
) (

1 + ξ∗πeih·R
)

cosϕm sinϑm cos ΘB+

−
(
1 + ξσe−ih·R

) (
1− ξ∗πeih·R

)
cosϑm sin ΘB

]
Ξ3 = 2<

{
i
[
|επ|2

(
1 + ξπe−ih·R

) (
1− ξ∗πeih·R

)
sinϕm sinϑm sin ΘB cos ΘB+

+ εσ(<επ)
(
1 + ξσe−ih·R

) (
1 + ξ∗πeih·R

)
cosϕm sinϑm cos ΘB+

− εσ(<επ)
(
1 + ξσe−ih·R

) (
1− ξ∗πeih·R

)
cosϑm sin ΘB

]}
Isw = ε2

σ

[
1 + |ξσ|2 + 2<

(
ξσe−ih·r

)]
+ |επ|2

[
1 + |ξπ|2 + 2<

(
ξπe−ih·r

)
cos 2ΘB

]
(4.23)

Since the position of the absorbing atom R appears explicitly in several places, the signal
carries direct structural information. The dependence on the incident angle ∆Θ is not
explicit, but is provided by the amplitude ratios ξi = ξi(∆Θ), i ≡ σ, π, given by the
formula (1.27) (where the dependence on ∆Θ is hidden in the deviation parameter η
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defined by (1.26)). The photoelectron polarisation is dependent only on the considered
transition, that is the absorption edge. The influence of the magnetic properties is via
the imbalance in the densities of the final states ∆%sf , whose energy integral gives exactly
the measure of the magnetic moment (see section about the sum rules, 3.5).

4.5.1 Specific cases

Consideration of the specific cases leads to some simplification of the rather compli-
cated general formula for the MXSW signal from one atom (4.22). At first consider the
case of circularly polarised beam. Even though the incident beam polarisation under the
experimental conditions is never perfect, the deviation from the circular polarisation can
be most often assumed to be small. The polarisation parameters of the incoming beam
are for the circular polarisation equal εσ = 1√

2
and επ = i√

2
. The main formula (4.22)

remains the same and the wavefield related quantities read

Ξ2 = <
[(

1 + ξσe−ih·R
) (

1 + ξ∗πeih·R
)

cosϕm sinϑm cos ΘB+

−
(
1 + ξσe−ih·R

) (
1− ξ∗πeih·R

)
cosϑm sin ΘB

]
(4.24a)

Ξ3 = <
[
i
(
1 + ξπe−ih·R

) (
1− ξ∗πeih·R

)]
sinϕm sinϑm sin ΘB cos ΘB (4.24b)

Isw = 1 + 1
2

(
|ξσ|2 + |ξπ|2

)
+ <

(
ξσe−ih·r

)
+ <

(
ξπe−ih·r

)
cos 2ΘB (4.24c)

Further simplification is a confinement of the magnetic moment direction to the scat-
tering plane, by setting ϕm = 0. Such a case is realised in the experiment with an external
magnetic field aligning the magnetic moment to this plane. Of course also if the magnetic
moments lie naturally in the considered scattering plane, the MXSW signal is defined by
the following formulae. The quantity Ξ2 from the numerator of Ξ, in this case and, like
before, for the circularly polarised incoming wave reads

Ξ2 = <
{(

1 + ξσe−ih·R
) [
− sin(ΘB − ϑm) + ξ∗πeih·R sin(ΘB + ϑm)

]}
(4.25)

The term Ξ3 vanishes, and the standing wave intensity remains the same, as it obviously
does not depend on the direction of the magnetic moment. The MXSW signal can be
written in the simple form

Ξ = Πs
e

<
{(

1 + ξσe−ih·R
) [
− sin(ΘB − ϑm) + ξ∗πeih·R sin(ΘB + ϑm)

]}
1 + 1

2
(|ξσ|2 + |ξπ|2) + < (ξσe−ih·r) + < (ξπe−ih·r) cos 2ΘB

∆%sf
%f

(4.26)

Then of course further specific cases can be obtained by considering specific values of
the angle ϑm, which defines the magnetic moment direction within the scattering plane.
The simplest one, possible to realise experimentally by applying the magnetic field aligning
the magnetic moments, is when they remain in the scattering plane and in the reflecting
lattice planes, that is are perpendicular to h. This case corresponds to ϑm = π

2
. The

MXSW signal reads in such a case

Ξ = Πs
e

<
[(

1 + ξσe−ih·R
) (

1 + ξ∗πeih·R
)]

cos ΘB

1 + 1
2

(|ξσ|2 + |ξπ|2) + < (ξσe−ih·R) + < (ξπe−ih·R) cos 2ΘB

∆%sf
%f

(4.27)
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4.5.2 XMCD as difference between magnetic moment orientations

Similarly, like in chapter devoted to the standard XMCD effect (3), one can consider
the case of the signal calculated not as a difference between the cross-sections for different
helicities of the incoming beam, but rather as a difference between the cross-sections for
opposite magnetic moment orientations. From figure 4.2 one can easily see, that the
reversal of the magnetic moment orientation is equivalent to the transformation ϑm →
ϑm +π. The changes in the quantities defining the final signal Ξ, related to the wavefield,
need to be considered.

Since under the considered transformation, both sinϑm and cosϑm change the sign, the
moduli of the polarisation vector components given by equations (4.11) remain unchanged.
The difference appears in the mixed term <

(
iεxε

∗
y

)
, in the same way as in chapter 3. The

mixed term changes the sign, when the magnetic moment is flipped, thus exchanging the
roles of A and B (A ↔ B). This is an expected behaviour, which is in this case not
observed when the helicity is changed.

Using the previously introduced Ξ2 and Ξ3 quantities (equations (4.13b) and (4.15)),
the mixed term can be written as a sum of them, <

(
iεxε

∗
y

)
= Ξ2 + Ξ3. The transfor-

mation ϑm → ϑm + π changes Ξ2 and Ξ3 by sign, the same as the entire mixed term.
The C quantity remains unchanged. The XMCD signal calculated between two opposite
orientations of the magnetic moment, following the same procedure as in section 3.1.4,
can be written as

Ξm =
{
%↑f
[

1
2
a↑
(
|A−m+ |2 − |A+m

+ |2
)

+ 1
2
b↑
(
|B−m+ |2 − |B+m

+ |2
)]

+

+ %↓f
[

1
2
a↓
(
|A−m+ |2 − |A+m

+ |2
)

+ 1
2
b↓
(
|B−m+ |2 − |B+m

+ |2
)]}
·

·
{
%↑f
[

1
2
a↑
(
|A−m+ |2 + |A+m

+ |2
)

+ 1
2
b↑
(
|B−m+ |2 + |B+m

+ |2
)

+ 2c|C|2
]

+

+ %↓f
[

1
2
a↓
(
|A−m+ |2 + |A+m

+ |2
)

+ 1
2
b↓
(
|B−m+ |2 + |B+m

+ |2
)

+ 2c|C|2
]}−1

(4.28)

Since in the |A|2 and |B|2 quantities only the mixed term changes, the combinations from
the numerator read |A−m+ |2 − |A+m

+ |2 = −2(Ξ2 + Ξ3) and |B−m+ |2 − |B+m
+ |2 = 2(Ξ2 + Ξ3).

Using the relations between the transition rates, the numerator can be transformed to the
simple form of (Ξ2 + Ξ3)(a↓ − a↑)∆%sf . In contrary, in the denominator the mixed terms
disappear, and only the moduli of the polarisation vector components remain. Their sum
|εx|2 + |εy|2 + |εz|2 gives the relative standing wave intensity Isw. Thus, the final XMCD
signal reads

Ξm = Πs
e

Ξ2 + Ξ3

Isw

∆%sf
%f

(4.29)

One notices immediately, that this result differs from the one obtained by considering
the difference between cross-section for opposite helicities by the term Ξ3 (equation (4.22)).
Further discussion about this term is given at the end of this chapter. This interesting
feature, related to the fact that the magnetic circular dichroism is in this case induced not
by a single wave, but by the interference field resulting from the existence of two waves,
is one of the properties, which distinguish the new MXSW technique from the regular
XMCD.
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4.6 MXSW for many atoms

So far the presented formulae concern the case of one magnetic atom located at the
position R. In realistic cases more non-equivalent atoms of a given element can be located
in the unit cell. The cases when these atoms exhibit different magnetic moments (in
magnitude or direction) are of particular interest for the studies using the MXSW method,
since its position sensitivity can be then fully exploited. In this section a case of n atoms
of the same element (as the XMCD signal is obtained at the given absorption edge only
form one atom kind) located at the positions Rj is considered. In a general case those
atoms are assumed to have different magnetic moments, that is exhibit different final
band polarisations (∆%sf )j.

The formula for the signal from multiple atoms is obtained in the same way as the
expression for the secondary radiation yield in section 1.7. The total absorption cross-
section for all atoms is a sum of individual cross-sections. Since the XMCD signal is
a normalised difference between the cross-sections for each of two helicities, the MXSW
signal for many atoms may be obtained by the summation over the atoms in the nominator
and denominator of (4.22). It will be denoted here by Υ and following the formula for Ξ,
reads with abbreviations

Υ = Πs
e

1
n

n∑
j=1

(Ξ2)j(∆%
s
f )j

1
n
%f

n∑
j=1

(Isw)j − 1
n
Πs
e

n∑
j=1

(Ξ3)j(∆%sf )j

(4.30)

The quantities (Ξ2)j, (Ξ3)j and (Isw)j are given by the formulae (4.23), where the substi-
tution R→ Rj should me made. It was assumed, that the total density of the final states
%f is the same for all the atoms, since they are of the same kind, even if their magnetic
moments are different.

The sums in the expression (4.30) can be transformed. The one involving the standing
wave intensity gives simply the secondary fluorescence yield

y = 1
n

n∑
j=1

(Isw)j =

= ε2
σ

{
1 + |ξσ|2 + 2<

[
ξσ
(
Fh
sw

)∗]}
+ |επ|2

{
1 + |ξπ|2 + 2<

[
ξπ
(
Fh
sw

)∗]
cos 2ΘB

}
(4.31)

where the standing wave structure factor Fh
sw := 1

n

∑n
j=1 eih·Rj was already defined in the

expression (1.37). This quantity carries the information about the spatial arrangement of
the atoms of a given element.

For convenience, the numerator and denominator of the expression (4.30) can be mul-
tiplied by 1/%f , so that the normalised difference in density of states (∆%sf )j/%f appears.
The two remaining sums involving the quantities denoted by Ξ2 and Ξ3 can be written in
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the form

Υ2 :=
1

n%f

n∑
j=1

(Ξ2)j(∆%
s
f )j =

= 2εσ(=επ)
{[
F 0

1 (1 + < (ξσξ
∗
π)) + <

(
(ξσ + ξπ)

(
Fh

1

)∗)]
cos ΘB +

−
[
F 0

3 (1−< (ξσξ
∗
π)) + <

(
(ξσ − ξπ)

(
Fh

3

)∗)]
sin ΘB

}
(4.32)

Υ3 :=
1

n%f

n∑
j=1

(Ξ3)j(∆%
s
f )j =

= 4|επ|2<
[
iξπ
(
Fh

2

)∗]
sin ΘB cos ΘB+

+ 2εσ(<επ)
{[
F 0

1< (iξσξ
∗
π) + <

(
i(ξσ − ξπ)

(
Fh

1

)∗)]
cos ΘB+

−
[
−F 0

3< (iξσξ
∗
π) + <

(
i(ξσ + ξπ)

(
Fh

3

)∗)]
sin ΘB

}
(4.33)

With those new abbreviations, the MXSW signal from multiple atoms is expressed via
the relation

Υ = Πs
e

Υ2

y − Πs
eΥ3

(4.34)

The symbols F have the following meaning

F 0
1 =

1

n%f

n∑
j=1

(∆%sf )j cos(ϕm)j sin(ϑm)j (4.35a)

Fh
1 =

1

n%f

n∑
j=1

(∆%sf )j cos(ϕm)j sin(ϑm)je
ih·Rj (4.35b)

F 0
2 =

1

n%f

n∑
j=1

(∆%sf )j sin(ϕm)j sin(ϑm)j (4.35c)

Fh
2 =

1

n%f

n∑
j=1

(∆%sf )j sin(ϕm)j sin(ϑm)je
ih·Rj (4.35d)

F 0
3 =

1

n%f

n∑
j=1

(∆%sf )j cos(ϑm)j (4.35e)

Fh
3 =

1

n%f

n∑
j=1

(∆%sf )j cos(ϑm)je
ih·Rj (4.35f)

where F 0
2 has been added by analogy to F 0

1 and F 0
3 for completeness, even though it does

not appear in the expression for the MXSW signal Υ.
Before a more detailed discussion regarding the quantities F , one should consider the

meaning of the term (∆%sf )j. As discussed in section 3.1.4, the magnetic moment is directly
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related to the energy integral over the spin-polarised density of states. This implies, that a
single value of (∆%sf )j at the energy where the MXSW scan (angular, by changing ∆Θ) was
performed, does not suffice to evaluate rigorously the magnetic moment. One would need
to perform a two dimensional scan where both the energy as well as incident angle ∆Θ
would need to be changed. The energy scan over a range covering the absorption edge(s)
allows calculation of the integrals needed to evaluate magnetic moment, whereas the
angular scan enables the standing wave movement through the lattice and thus provides
the spatial resolution. In such two dimensional scan, the fact that the Bragg angle and
thus the angular position of the reflection domain change with the energy would need
to be taken into account. What is challenging from the practical point of view, such a
two dimensional scan would require rather increased acquisition time, in particular for
the weakly magnetic systems or the case of absorption edges, where the XMCD signal is
small by definition (e.g. K-edge).

Instead, use can be made out of the standard angular standing wave scan at a fixed en-
ergy by assuming that the magnetic moment is proportional to the spin-polarised density
of states (∆%sf )j/%f . Such an approach, even though not allowing to compute the exact
value of the magnetic moment, allows to observe the changes in this quantity between
the various atoms of the same element in the system. In other words, the MXSW signal
can still provide valuable information about the differences in magnetic moments of the
atoms building different magnetic sublattices.

The assumption that the XMCD signal measured at the fixed energy remains pro-
portional to the magnetic moment is also used in other magnetism-related methods. In
Fourier transform holography the magnetic contrast is achieved via the XMCD effect
by using the circularly polarised x-rays and tuning the energy to the fixed value at the
absorption edge. The method is used to image the magnetic nanostructures under the
assumption, that the contrast observed via the dichroic signal at fixed energy reproduces
the changes of the magnetic moments across the sample [100,101].

In a similar manner a magnetic contrast is added to the small angle x-ray scattering
(SAXS). The absorption effects influence the diffraction via the dispersion corrections f ′

and f ′′ and thus an XMCD signal is also observed in the scattered intensity. The informa-
tion about the magnetic structures on the nanometer scale is consequently obtained from
the difference between the signals for each helicity. Similarly like in the case of magnetic
Fourier transform holography, also magnetic SAXS is performed experimentally at one
fixed energy [102]. The conclusions about the distributions of magnetic moments in the
sample are drawn then under the same assumption as earlier, that is that the differences
in the magnetic moments are reflected in the differences in the XMCD signal at the fixed
energy.

4.6.1 Magnetic standing wave structure factor

Having justified the use of the signal recorded at the fixed energy to track the dif-
ferences in magnetic moments in the lattice, one may from now on use the abbrevia-
tion (∆%sf )j/%f = mj, with mj denoting the magnitude of the magnetic moment of the
atom j. With that, one can interpret easier the meaning of the quantities F given by
equations (4.35). From figure 4.2 one can see that the components of the magnetic mo-
ment vector m in the coordinate system O′ related to the scattering process, are simply
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m′x = m cosϕm sinϑm (4.36a)

m′y = m sinϕm sinϑm (4.36b)

m′z = m cosϑm (4.36c)

One can easily identify those combinations of the trigonometrical functions of the angles
ϕm and ϑm in equations (4.35). They can be written thus in the following way

F 0
1 = 1

n

n∑
j=1

(m′x)j := m′x (4.37a)

Fh
1 = 1

n

n∑
j=1

(m′x)je
ih·Rj (4.37b)

F 0
2 = 1

n

n∑
j=1

(m′y)j := m′y (4.37c)

Fh
2 = 1

n

n∑
j=1

(m′y)je
ih·Rj (4.37d)

F 0
3 = 1

n

n∑
j=1

(m′z)j := m′z (4.37e)

Fh
3 = 1

n

n∑
j=1

(m′z)je
ih·Rj (4.37f)

where the symbol m denotes the ensemble average over the atoms in the unit cell of the
given kind. Now one can notice, that the quantities F are in fact the components of two
vectors, which will be denoted by Fh

msw and F0
msw or m. Those are given by the formulae

Fh
msw =

1

n

n∑
j=1

m′je
ih·Rj (4.38)

F0
msw =

1

n

n∑
j=1

m′j (4.39)

The relations between those vectors and the components given by equations (4.37) are

Fh
msw = Fh

1 x̂′ + Fh
2 ŷ′ + Fh

3 ẑ′ (4.40)

F0
msw = F 0

1 x̂′ + F 0
2 ŷ′ + F 0

3 ẑ′ (4.41)

The quantity Fh
msw will be called a magnetic standing wave structure factor. It is a

magnetic counterpart to the standard standing wave structure factor Fh
sw. The compo-

nents of the Fh
msw vector, together with the average value of the magnetic moment m,

are what determines the value of the MXSW signal. This is an important result. The
magnetic standing wave structure factor contains the information about the spatial and
angular distribution of the magnetic moments in the unit cell, so the experimental de-
termination of the MXSW signal allows to measure directly the components of the Fh

msw

vector and obtain information about the magnetic structure.
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4.6.2 Specific cases

An inspection of some simplified cases can provide better understanding of the emer-
gence of the MXSW signal. At first, consider the case of a circularly polarised incoming
wave, what already greatly simplifies the formula for Υ, which becomes

Υ = Πs
e

{[
F 0

1 (1 + < (ξσξ
∗
π)) + <

(
(ξσ + ξπ)

(
Fh

1

)∗)]
cos ΘB +

−
[
F 0

3 (1−< (ξσξ
∗
π)) + <

(
(ξσ − ξπ)

(
Fh

3

)∗)]
sin ΘB

}
·

·
{

1 + 1
2

(
|ξσ|2 + |ξπ|2

)
+ <

[
(ξσ + ξπ cos 2ΘB)

(
Fh
sw

)∗]
+

− 2Πs
e<
[
iξπ
(
Fh

2

)∗]
sin ΘB cos ΘB

}−1

(4.42)

In order to draw some qualitative conclusions about the strength of the MXSW signal,
one can consider a very simple case of the magnetic moments aligned in the diffraction
plane, perpendicular to the reciprocal lattice vector h. This corresponds to the values
of the angles ϕm = 0 and ϑm = π

2
and vanishing of the m′y and m′z components of the

magnetic moments. Consequently, also the components of the magnetic standing wave
structure factor Fh

2 and Fh
3 (as well as F 0

2 and F 0
3 ) vanish, and the formula for the MXSW

signal takes a very simple form

Υ = Πs
e

{
F 0

1 [1 + < (ξσξ
∗
π)] + <

[
(ξσ + ξπ)

(
Fh

1

)∗]}
cos ΘB

1 + 1
2

(|ξσ|2 + |ξπ|2) + < [(ξσ + ξπ cos 2ΘB) (Fh
sw)∗]

(4.43)

Consider a situation, when the Bragg angle ΘB is small, so that cos 2ΘB ' 1 and there
is nearly no difference in scattering between σ- and π-components, so that one can write
ξπ ≈ ξσ = ξ. Then

Υ = Πs
e

F 0
1 (1 + |ξ|2) + 2<

[
ξ
(
Fh

1

)∗]
1 + |ξ|2 + 2< [ξ (Fh

sw)∗]
= Πs

eF
0
1

1 + |ξ|2 + 2<
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ξ
(
Fh

1

)∗
/F 0

1

]
1 + |ξ|2 + 2< [ξ (Fh

sw)∗]
=

= Πs
eF

0
1

1 + |ξ|2 + 2<
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ξ
(
Fh
sw

)∗]
+ 2<

{
ξ
[(
Fh

1

)∗
/F 0

1 −
(
Fh
sw

)∗]}
1 + |ξ|2 + 2< [ξ (Fh

sw)∗]
=

= Πs
eF

0
1

{
1 +

2<
[
ξ
((
Fh

1

)∗
/F 0

1 −
(
Fh
sw

)∗)]
1 + |ξ|2 + 2< [ξ (Fh

sw)∗]

}
= Πs

eF
0
1

[
1 + 1

y
2< (ξ∆F ∗)

]
(4.44)

with ∆F :=
(
Fh

1

)∗
/F 0

1 −
(
Fh
sw

)∗
being a difference between normalised magnetic standing

wave structure factor and regular
(
Fh
sw

)∗
. This quantity can be then regarded as a measure

of the deviation of magnetic structure from the atomic one. The presented consideration
shows, that the MXSW signal is proportional to this difference. If ∆F is zero Υ is equal
to Πs

eF
0
1 = Πs

em, that is to the XMCD signal without the standing wave, or in other words
away from the reflection domain. Since the difference in scattering between the σ- and
π-polarisation components was neglected here, in fact this effect leads to small variation in
the XMCD signal in the reflection domain even if ∆F = 0. The condition of non-vanishing
of ∆F indicates, that the strongest MXSW contrast can be observed for the systems
exhibiting magnetic sublattices, as then the atomic and magnetic structures are different.
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Simpliest examples of such magnetic systems are ferrimagnets and antiferromagnets. One
should notice, however, that the periodicity of the magnetic structure has to be the same as
the periodicity of the nuclear structure, or more formally, that the propagation vector km
has to be equal (0, 0, 0) [8]. Consider the situation when the magnetic unit cell is bigger
than the nuclear one. Since no standing wave with longer period than the dimensions
of the nuclear unit cell can be excited, the MXSW signal obtained from the magnetic
structure with longer period (and km equals for example (1

2
, 0, 0)) will be a measure of

the projection of the average magnetic structure onto the nuclear unit cell and thus will
provide no useful information about the real magnetic structure. This limits the number
of the systems, where the method can be applied successfully.

4.7 Correction for the complex wavevector for MXSW

So far in this chapter it was assumed for simplicity that all the wavevectors are real.
Now, similarly like in section 1.8 for the standard standing wave experiment, a correction
accounting for the imaginary part of the wavevector is introduced. Since in the case of
MXSW one considers a differential signal, the absorption correction should be negligible,
as the correction terms in numerator and denominator remain similar.

The wavevector of the ”0” wave is in fact a complex vector and is related to the vacuum
wavevector via the relation (1.42). The complete expression for the vector potential within
the electric dipole approximation given by (4.1) can be written in a more convenient form

A = A0

{
εσε̂σ

[
1 + ξσe−ih·R

]
exp

[
−i
(

1
2
χ0 +Xσ

0

) n ·R
γ0

]
+

+ επ
[
ε̂0π + ξπε̂hπe−ih·R

]
exp

[
−i
(

1
2
χ0 +Xπ

0

) n ·R
γ0

]}
eiωt−ik

a
0 ·R (4.45)

One can use the abbreviation for the scalar product n ·R = z, as it denotes the distance
from the physical crystal surface to the absorbing atom. The expression in the curly
brackets is a polarisation vector ε, whose components determine all the quantities influ-
encing the absorption cross-section. By comparison with equation (4.7) one can notice,
that the considered correction can be introduced by substitution

εp → εp exp

[
−i
(

1
2
χ0 +Xp

0

) z
γ0

]
(4.46)

with p ≡ σ, π.

The quantities |A|2, |B|2 and |C2|, which determine directly the absorption cross-
section, involve the following combinations of polarisation parameters: ε2

σ, |επ|2 and εσε
∗
π.

Therefore, in the expressions for moduli of the polarisation vector components (4.11) and
for the mixed term <

(
εxε
∗
y

)
, (4.12), which define the moduli |A|2, |B|2 and |C2| (given

explicitly by (A.22)), the following substitutions should be made to take into account the
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correction for the complex wavevectors

ε2
σ → ε2

σ exp

[
(k=χ0 + 2=Xσ

0 )
z

γ0

]
= ε2

σe−µσz/γ0 (4.47a)

|επ|2 → |επ|2e−µπz/γ0 (4.47b)

εσε
∗
π → εσε

∗
π exp

{
[k=χ0 + i ((Xπ

0 )∗ −Xσ
0 )]

z

γ0

}
(4.47c)

where the absorption coefficient was introduced already by equation (1.43). One should
note that the third substitution contains a complex number, so it should be put under
the < symbol in the |A|2, |B|2 and |C2| expressions.

Apart from the imaginary parts of the wavevectors, which were neglected so far, one
needs to take into account also the attenuation of the emitted secondary signal on the
way from the emitting atom to the detector. This issue was already discussed in details
in section 1.8. Since each of the absorption cross-sections present in the expression for
the XMCD signal is affected, the correction for the absorption of the secondary radiation
can be introduced via the transformation of each transition rate

ζ↑↓± →
∞∫

0

ζ↑↓± (z) exp
(
−µlinz

sinα

)
(4.48)

Due to the additive property of the integral, one can still perform all the transfor-
mations from the formula (4.18) to (4.22). Also in this case the order of summation
and integration can be flipped, so the case of many atoms can be easily introduced. In
the same way as in chapter 1.8, it is assumed that the crystal and magnetic structures
are not depth dependent, so the standing wave structure factor and magnetic standing
wave structure factors are assumed to be independent of z and taken out of the integral.
The expressions form the numerator and denominator of the expression (4.30) with the
absorption correction read

Υ2 = 1
n

n∑
j=1

∞∫
0

(Ξ2)jmjdz = 2εσ(=επ)<
{{[

F 0
1 (1 + ξσξ

∗
π) + ξσ

(
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)∗
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]
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3 (1− ξσξ∗π) + ξσ
(
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3

)∗ − ξ∗πFh
3

]
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}
·

·
∞∫
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exp

{
[k=χ0 + i ((Xπ

0 )∗ −Xσ
0 )]

z

γ0

− µlinz

sinα

}
dz

︸ ︷︷ ︸
I2

}
(4.49)
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Υ3 = 1
n
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 (4.50)

The integration and summation over the (Isw)j provide the secondary radiation yield,
calculated already in section 1.9.4 and given by equation (1.66).

The integral I was already discussed in section 1.8. It gives the effective thickness zπeff,
defined in equation (1.46). Thus, one needs to calculate the second integral, I2. This is
done in details in appendix A.4. The integral reads

∞∫
0

exp

{
[k=χ0 + i ((Xπ

0 )∗ −Xσ
0 )]

z

γ0

− µlinz

sinα

}
dz = −µ1 + iµ2

µ2
1 + µ2

2

(4.51)

with the symbols µ1 and µ2 having the following meaning

µ1 =

[
k=χ0

γ0

+
1

γ0

(=Xσ
0 + =Xπ

0 )− µlin
sinα

]
(4.52a)

µ2 =
1

γ0

(<Xσ
0 −<Xπ

0 ) (4.52b)

µ1 can be regarded as an absorption coefficient being an average one between the σ-
and π-polarisations (plus the term accounting for the attenuation of emitted secondary
radiation). The quantity µ2 is related to the period of the Pendellösung oscillations. In
the exponential function this quantity is the imaginary part of the argument, and thus it
leads to an oscillatory modulation of the function being multiplied by the exponent.

The most general expression for the MXSW signal, with the absorption correction, has
the same form as before, given by (4.34). Now the symbols Υ2 and Υ3 have the following
meaning

Υ2 = 2εσ(=επ)<
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1 (1 + ξσξ
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)}
(4.53)
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Υ3 = 4|επ|2<
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(4.54)

and the total secondary radiation yield y is given by equation (1.66).

4.8 Detection of XMCD via x-ray fluorescence

In an x-ray standing wave experiment the determination of the absorption cross-section
via measuring the attenuation of the transmitted beam is not possible. This is both due
to the bulk crystals used as samples or substrates for the thin films and to the nature
of the effect itself — the influence of the standing wave on the absorption cannot be
seen directly in the transmitted beam2. Therefore, one should discuss the possibility of
detecting the XMCD signal when the absorption cross-section is determined indirectly by
detecting the secondary radiation — the product of the core hole decay.

The possibility of detecting an XMCD signal via measuring the fluorescence spectra
was predicted theoretically by Strange et al. [103] using first-principles calculation based
on a fully relativistic multiple-scattering theory. Soon after it was demonstrated experi-
mentally at the iron L2,3 absorption edges [99] and researchers concluded that the signal
is a measure of the spin-polarised density of the final states. For the case of the K-edge
of the 3d metals it was shown by the group of Juhin et al. [104] using an yttrium-iron-
garnet single crystalline sample that the fluorescence detected XMCD is proportional to
the signal measured by monitoring the beam transmission. Also for the case of the cobalt
K-edge in HoCo2 a similar measurement was reported [105].

The quantitative analysis of fluorescence detected XMCD signal based on the sum
rules is justified in case of dilute samples. This was shown for the L2,3 absorption edges
of the 3d metals [106,107]. On the other hand, already in 1994 it was shown by de Groot
and his group [108], that the absorption cross-section determined using the fluorescence
spectroscopy can deviate from the one obtained from direct transmission measurement
and that this can also affect the determination of the XMCD effect. Compared to the
transmission measurement, fluorescence detected XMCD signal can show deviations re-
lated to the the energy variations of fluorescence decay strengths [109, 110]. Therefore,
the sum rules analysis of the XMCD signal obtained from fluorescence yield should be
made with care.

Summarising, when performing a quantitative analysis of the fluorescence detected
XMCD, one should remember about the possible effect related to the variations of fluo-
rescence decay strengths. In contrary, when the absorption cross-section is detected via
the electron yield, no such effects appear and the analysis is more straightforward [109].
Since in the MXSW method one is more interested in tracking the relative differences

2There is though an anomalous absorption effect, which is similar in nature to the standing wave
signal seen in the secondary radiation yield. Such a signal is, however, not element sensitive, as one
measures the overall effect of the sample on the transmitted beam, whereas the phototelectron, Auger or
fluorescence spectroscopies offer directly an access to element-specific information.
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in the magnetic moments, whose absolute value is usually assumed to be known from
other studies (for example on thinner samples using the transmission mode detection),
the usage of fluorescence is justified as being by far simpler in practice, especially when
using the external magnetic field for sample magnetisation.

4.9 MXSW — classical approach

In the previous sections an MXSW theory was formulated using the partly classical
(dynamical theory of diffraction) and partially quantum (time-dependent perturbation
theory) formalism. Due to the fact that the only available simple theoretical model of
the XMCD effect is the two-step model presented in chapter 3, it was used to treat the
absorption of the standing wave generated by circularly or elliptically polarised light and
track the changes imposed by the helicity reversal. This simple model remains strictly
valid only for the cases of L2,3 and M4,5 absorption edges (as discussed in details in chapter
about the XMCD effect).

As shown in chapter 3, the XMCD signal can be expressed in general as the product of
three factors, Ξ = ΠcircΠ

s
e∆%

s
f/%s. The one related to the wave undergoing the absorption

is Πcirc that is the degree of circular polarisation of the wave. The one related strictly to the
considered absorption edge, that is the electron transition induced by the EM radiation,
is the photoelectron polarisation Πs

e. One can argue, that the presented derivation based
on the quantum theory is always valid, and for the other absorption edges only Πs

e has to
be evaluated.

In the MXSW technique, what changes with respect to XMCD is only the form of the
EM radiation (interference field versus single EM wave in regular XMCD). Therefore, one
can try to evaluate the degree of circular polarisation for the interference field and obtain
the MXSW signal based on the general formula Ξ = ΠcircΠ

s
e∆%

s
f/%s.

The procedure of calculation of such a degree of polarisation is shown in section 3.1.5.
In short, one chooses appropriate polarisation unit vectors perpendicular to the prop-
agation direction of interest (in this case always the magnetic moment direction) and
calculates the scalar products. Those scalar products are a measure of the content of a
given polarisation component in the arbitrary EM wave, among those also the standing
wave which is of interest here.

Actually, in the formula for Πcirc (equation (3.36)), the difference between the moduli
of scalar products with reversed helicity of the polarisation unit vectors ε̂rhp/lhp is con-
sidered, where the analysed wave E remains unchanged. Thus such a situation is in fact
equivalent to the reversal of the magnetic moment direction. The reversal of helicity of
polarisation unit vectors means the reversal of the angular momentum direction of light.
As the helicity of the wavefield E is kept constant, this is equivalent to the change of
the quantisation axis of the angular momentum detector, that is the magnetic moment
direction. Therefore, via the presented approach, one can derive only the formula for Ξm,
that is the XMCD signal calculated based on the absorption cross-sections for opposite
magnetic moment orientations. One should note, that for the standard XMCD method,
the signal calculated in such a way and the regular one, calculated based on reversal of
helicity, coincide.
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4.9.1 Degree of circular polarisation

As stated, a degree of circular polarisation in the direction of the magnetic moment is
of interest. One considers the same coordinate systems O and O′ (defined in figures 4.1
and 4.2). The circular polarisation unit vectors have to lie in the plane perpendicular to
the magnetic moment direction, that is in the xOy plane. They can be assumed to have
the same form as in section 3.1.5

ε̂rhp = 1√
2

(x̂ + iŷ) (4.55a)

ε̂lhp = 1√
2

(x̂− iŷ) (4.55b)

Additionally the component parallel to the magnetic moment direction contributes to the
total intensity, even though not contributing to the XMCD signal. It is taken to be equal
ε̂0 = ẑ.

The electric field is given naturally in the coordinate system O′ (equation (4.1)). One
assumes that k0σ = k0π and that they are real. Additionally, as before, the spatial extent
of the electron wavefunction is neglected (electric dipole approximation). The electric
field given in this form can be transformed to the coordinate system O, as described in
section 4.2. In short the electric field can be written as E = Ea

0εe
iωt−ik·R, with ε being

a polarisation vector. Its coordinates in the system O are given by equations 4.9. The
sought degree of polarisation is defined by the formula (3.36). Thus, one needs to consider
the moduli squared of the scalar products |ε̂∗rhp · E|2, |ε̂∗lhp · E|2 and |ε̂∗0 · E|2. They read

|ε̂∗rhp · E|2 = 1
2
(Ea
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]
(4.56a)

|ε̂∗lhp · E|2 = 1
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(4.56b)

|ε̂∗0 · E|2 = (Ea
0 )2 |ẑ · (εxx̂ + εyŷ + εzẑ)|2 = (Ea

0 )2|εz|2 (4.56c)

The moduli of the polarisation vector component and the term <
(
iεxε

∗
y

)
are given by

equations (4.11) and (4.12). By comparison with (4.10) one notices that actually

|ε̂∗rhp · E|2 = 1
2
(Ea

0 )2|A|2 (4.57a)

|ε̂∗lhp · E|2 = 1
2
(Ea

0 )2|B|2 (4.57b)

|ε̂∗lin · E|2 = (Ea
0 )2|C|2 (4.57c)

The polarisation degree then reads

Πcirc =
|ε̂∗rhp · E|2 − |ε̂∗lhp · E|2

|ε̂∗rhp · E|2 + |ε̂∗lhp · E|2 + |ε̂∗0 · E|2
=

=
|A|2 − |B|2

|A|2 + |B|2 + 2|C|2
=

<
(
iεxε

∗
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)
|εx|2 + |εy|2 + |εz|2

(4.58)

The expression in the denominator yields a relative standing wave intensity Isw, given ex-
actly by the last formula in (4.23). As noticed already in section 4.5.2 <

(
iεxε

∗
y

)
= Ξ2 + Ξ3.

With that

Πcirc =
Ξ2 + Ξ3

Isw
(4.59)
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Thus one would expect the XMCD signal to be equal

Ξm = Πs
e

Ξ2 + Ξ3

Isw

∆%sf
%f

(4.60)

This results coincides with the one obtained in section 4.5.2, that is when considering the
XMCD signal as a difference in absorption cross-section for opposite magnetic moment
orientations.

The fact that the XMCD signal is driven by the polarisation of the wavefield and a
photoelectron polarisation allows to conclude, that the result obtained in this chapter for
the MXSW signal is universal and in particular independent from the considered absorp-
tion edge. The polarisation of the photoelectron differs between the absorption edges,
but the term related to the standing wave remains the same. Even though this classical
approach works only for the case of the signal calculated based on the magnetisation
reversal, it justifies the usage of the simplified two-step model for the derivation of the
MXSW theory.

4.10 Discussion about the Ξ3 term

As it was noticed in this chapter, in the case of the XMCD effect induced by the
interference field, the equivalence does not exist between the signals calculated based
on the helicity flipping and magnetic moment orientation reversal, or Ξ 6= Ξm. This
interesting phenomenon was not yet reported.

By examination of equations for Ξ (relation (4.22)), and Ξm ((4.29)), one can notice
that they differ only by the term Ξ3, given by equation (4.15). The results for the XMCD
signal obtained by the consideration of magnetic moment flipping Ξm and helicity reversal
Ξ coincide, if one assumes that the incoming wave is circularly polarised and that the
magnetic moment is lying in the scattering plane (ϕm = 0), as then the Ξ3 term vanishes
(see section 4.5.1).

Also the consideration of a single wave — either reflected or refracted one — gives a
proper result. Indeed, if ξ = 0, the Ξ2 quantity takes the form

Ξ2 = 2εσ(=επ) (cosϕm sinϑm cos ΘB − cosϑm sin ΘB) (4.61)

and Ξ3 vanishes. The expression in the round brackets is nothing else than a projection
of the magnetic moment m on the propagation direction k0. The first term represents
the component m′x times cos ΘB, and the second m′z times sin ΘB with minus, as the z′

component of the wavevector is negative.
For the reflected wave one can set ξ = 1 and obtain

Ξ2 = 2εσ(=επ) (cosϕm sinϑm cos ΘB + cosϑm sin ΘB) (4.62)

with Ξ3 again equals zero, what represents obviously a correct result, in accordance with
chapter 3.

As observed, the reversal of helicity leads to a different formula for the MXSW signal
than when a flip of the magnetic moment orientation is considered. Also, no expected
symmetry between the A, B and C exists. The relations |A+|2 = |B−|2, |B+|2 = |A−|2
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and |C+|2 = |C−|2, were observed in the theory of the standard XMCD effect and are
related to the fact, that a reversal of helicity is equivalent to the reversal of the angular
momentum of the wave. In the case of XMCD, similar symmetries were observed, when
considering the reversal of the magnetic moment orientation, that is |A+m

+ |2 = |B−m+ |2,
|A+m
− |2 = |B−m− |2.
In the case of MXSW only the latter appeared from the formalism, since flipping of

the magnetic moment does not change the moduli of polarisation vector components |εi|2,
i ≡ x, y, z, but only the mixed term <

(
iεxε

∗
y

)
. This is what gives the symmetry between

A, B and C. For the helicity reversal, the symmetry does not persists. As mentioned,
<
(
iεxε

∗
y

)
= Ξ2 + Ξ3, but only the Ξ2 term changes the sign under the helicity reversal,

whereas this holds true also for Ξ3, when the magnetic moment is flipped.
The fact that in general the situation differs depending if the helicity is reversed, or

the magnetic moment flipped, has its source in the phase changes in the wavefield in the
reflection domain. The helicity change is equivalent to taking the complex conjugate of
the polarisation parameter επ. The diffraction process breaks the symmetry, since an
additional phase shift, the same for both helicities, comes from the amplitude ratios.

From a closer look at the definition of the term Ξ3 one can notice that it consists
of one term proportional to |επ|2 and two proportional to <επ. This indicates, that it
is possible to observe non-zero signal Ξm even for a linearly polarised incoming wave.
The only condition is, that it must possess a π-component, since otherwise the Ξ3 term
vanishes (and the main Ξ2 one is proportional to =επ, so vanishes for any linearly polarised
incoming wave). This peculiar feature is related to the fact, that the phase difference
appears between the ε̂0π and ε̂hπ polarisation components in the reflection domain. The
phase difference is coming from the complex amplitude ratio ξπ. Therefore, the MXSW
theory predicts, that the difference in absorption as the magnetic moment orientation
is flipped, can be observed also for the linearly polarised incoming wave, and since the
vectors ε̂0π and ε̂hπ lie in the scattering plane, also for the magnetic moment component
perpendicular to this plane (thus the component Fh

2 in the expression for Ξ3).
One should note, that this result was obtained within the electric dipole approxima-

tion, which is equivalent to negligence of the spatial extent of the wavefunction. Thus the
spatial part of the EM field is also neglected, so the wavevector direction does not enter
the quantum formalism in any place. Therefore, the appearance of the XMCD effect is
in theory related only to the appearance of the complex phase between two polarisation
components of the wavefield. In the quantum picture behind the effect, the propagation
direction of the wave (direction of the angular momentum for the circularly or elliptically
polarised wave) is what determines the spin polarisation of the excited photoelectron, and
thus implies whether the XMCD effect appears or not. Since obviously no wave prop-
agates in the direction perpendicular to the scattering plane, the observed phenomenon
of XMCD effect for the linearly polarised incoming wave (with π-component) might be
related to the used simplification in the form of electric dipole approximation, where
propagation direction plays no role. The prediction related to the Ξ3 coming from the
presented MXSW theory should be checked experimentally, for example by performing
an experiment with magnetic moments aligned perpendicular to the scattering plane and
using a π-polarised incoming wave.
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Simulations





Chapter 5

MXSW for exemplary systems

The first chapter of the part devoted to numerical simulations contains the results of
the calculations of the MXSW signal for a few chosen crystal systems. The calculations
are conducted based on the theory presented in chapter 4. The programs were written in
the Matlab 9.5.0.944444 (R2018b) language [111], however, the scripts can be also used
in the open-source GNU Octave.

At first, the results for the platinum-cobalt Pt3Co alloy are shown. This system is
the simplest of all presented ones, it exhibits no magnetic sublattices and contains small
amount of atoms in the unit cell. Therefore, it serves as a model system to explain the
meaning of the MXSW theoretical foundations.

As mentioned already, the power of the MXSW technique can be exploited fully if the
system exhibits magnetic sublattices. In other words, the atoms of some element have to
exhibit different magnetic moments, either in direction or in magnitude. Such a situation
leads to standing-wave-like contrast in the MXSW signal. Therefore, further three systems
with magnetic sublattices are considered — magnetite, yttrium-iron-garnet (YIG) and
hematite. The two first ones are ferrimagnetic, whereas hematite is an antiferromagnet.
By the presented simulations, it is clearly shown that using standing waves one can observe
an XMCD signal from the antiferromagnet, what is impossible in the standard XMCD
experiment.

5.1 Platinum-cobalt alloy

Platinum-cobalt Pt3Co alloy crystallises in the Pm3̄m space group with a lattice pa-
rameter equal to 3.831 Å for the chemically orderd crystal [112]. The cobalt atom oc-
cupies the 1a Wyckoff position, what means it is located at the position (0, 0, 0), where
the coordinates are written as (x, y, z) with x, y and z given as fractions of the unit cell
parameters. The platinum atoms occupy the 3c positions, (0, 1

2
, 1

2
), (1

2
, 0, 1

2
), (1

2
, 1

2
, 0) or

in short (0, 1
2
, 1

2
) 	. The unit cell of Pt3Co is shown in figure 5.1.

Chemical order of Pt3Co depends on the heat treatment of the sample. The order-
disorder transition temperature was reported to lie between 973 and 1073 K [112, 113].
This discrepancy was attributed to sharp dependence of this temperature on the alloy
composition close to the stoichiometric value. Berg and Cohen have studied the transition
kinetics in details and reported the transition temperature to be equal to 958 K, with the

83
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two phase region present from 938 to 958 K [114]. A complete phase diagram of the
platinum-cobalt alloys can be found in the article of Darling [115].

Figure 5.1: Unit cell of Pt3Co or-
dered alloy. Platinum atoms are
shown in white colour and cobalt in
blue [116].

The system is ferromagnetic with the Curie tem-
perature depending on the chemical order (gener-
ally being inverse proportional to the order param-
eter). For the ordered sample it was reported to
be equal TC = 320 K [113]. Both cobalt and plat-
inum were found to exhibit magnetic moments, what
was first detected using polarised neutron diffrac-
tion. The cobalt magnetic moment was reported
to be equal to mCo = 1.64± 0.04µB, whereas for Pt
mPt = 0.26± 0.02µB [113]. This means, that Pt3Co
is an interesting example of a crystal, where the oth-
erwise non-magnetic 5d metal exhibits a magnetic mo-
ment due to the proximity of magnetic 3d metal atoms
[117,118]. Based on the Fourier analysis of the diffraction data, it was found that the mag-
netic moments of both platinum and cobalt are aligned along the [111] crystallographic
direction [113]. The crystals of Pt3Co were also studied using XMCD spectroscopy using
the photoelectron signal. A clear difference in absorption spectra for opposite magnetisa-
tion directions confirmed the magnetic nature of the platinum atoms in the investigated
system [119]. The spin-polarised band structure calculations, with the exchange interac-
tion modeled using Heisenberg Hamilton operator, were also performed for the discussed
system and yielded the values of the magnetic moments in agreement with the data from
neutron diffraction [120].

5.1.1 Magnetic dopant in the Pt3Co structure

In order to give an example of the MXSW signal for one atom, at first a case of some
dopant atom (for example iridium) with magnetic moment is considered. The results are
presented for the energy corresponding to the Ir L3 absorption edge, E = 11.215 keV (all
energies of the absorption edges and fluorescence emission lines are taken from [121]). It
is assumed for simplicity, that the magnetic moments are confined in the scattering plane
(ϕm = 0), and in the reflecting lattice planes (ϑm = π/2). The angles were defined in
figure 4.2. The circular polarisation of the incoming wave is assumed and the absorption
correction for the wavevector neglected. In such a case equation (4.22) simplifies to (4.27).
Similarly like for the standard XSW method (section 1.6), one can identify the scalar
product h ·R with the fractional coordinate in the direction of the reciprocal lattice vector
and call it zh. The data is shown in figure 5.2 for a few values of zh. One can notice, that
the curves differ depending on zh, but the observed contrast is smaller compared to the
one observed in the standard XSW (see figure 1.6). This is related to the fact, that the
MXSW signal is defined as a normalised difference between cross-sections, so the contrast
related to the position of the dopant almost disappears. In other words, the experiment
with circularly polarised standing wave does not offer here much advantage compared to
the standard XSW one. The XMCD signal away from the reflection domain is actually
the same as the one induced by the standing wave, neglecting the effects related purely
to the wavefield — change of the polarisation due to reflection, difference in scattering



5.1. Platinum-cobalt alloy 85

between the σ- and π-polarisation components and changes of the propagation direction
in the reflection domain.
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Figure 5.2: The normalised MXSW (divided by the electron polarisation and magnetic moment)
signal in dependence on the Bragg departure angle ∆Θ for a dopant atom with a magnetic
moment (in this case the energy corresponds to the iridium L3 absorption edge) located in the
Pt3Co lattice. In the part below the reflectivity curve is shown to indicate where the reflection
domain is. The magnetic moment is assumed to be parallel to the reflecting lattice planes and
confined in the scattering plane. The curves correspond to different locations of the magnetic
dopant with respect to the reflecting lattice plane. One can notice, that the shape of the curves
depends on zh, but contrast is not very high. The inset represents schematically the positions
of the dopant atoms.

One can analyse the terms leading to the total MXSW signal in details. Equa-
tion (4.27) can be written in the equivalent form

Ξ =

[
1 +

(1− cos 2ΘB)<
(
ξπe−ih·R

)
− 1

2
|ξσ − ξπ|2

1 + 1
2

(|ξσ|2 + |ξπ|2) + < (ξσe−ih·R) + < (ξπe−ih·R) cos 2ΘB

]
Πs
em cos ΘB (5.1)

where the polarisation of the final band ∆%sf/%f was denoted by m, given the arguments
from section 4.6. The expression from the denominator comprises the standing wave in-
tensity. One can already notice, that the MXSW signal is driven by two factors appearing
in the numerator. The first one is proportional to the difference between the polarisation
factors for σ- and π-polarisations, that is (1−cos 2ΘB). This term is small for small Bragg
angles, what is usually the case for the hard x-ray regime. The term <

(
ξπe−ih·R

)
behaves

like the standing wave intensity, as it differs from it only by one and |ξ|2. Compared
to Isw, it is greatly reduced by the (1 − cos 2ΘB) term (see figure 5.3, graph (a)). The
second term in the sum is purely related to the difference in scattering between the σ- and
π-polarisation components, as it comprises the difference between the amplitude ratios
for those two cases. This term is small when far from the backscattering geometry, as
presented in the graph (b) of figure 5.3. Figure 5.4 presents how the total Ξ function for
the case of the atom located at the reflecting lattice planes (zh = 0) is constructed from
the individual terms. The terms (1− cos 2ΘB)<

(
ξπe−ih·R

)
and −1

2
|ξσ − ξπ|2 are related
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Pt3Co (111) at E = 11.215 keV, γ = −1
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Figure 5.3: The analysis of the terms from the numerator of equation (5.1). The term
<
(
ξπe−ih·R

)
(graph (a)) is similar in shape to the standing wave intensity Isw, and it is greatly

decreased by the term (1−cos 2ΘB), which is small for Bragg angles far from π/2. The functions
were calculated for the position on the lattice planes, zh = 0. The second term (graph (b)) is
purely related to the difference in scattering between the σ- and π-polarisation components.
This can be seen by the comparison with the moduli squared of amplitude ratios ξσ and ξπ. For
the considered energy the difference is small and so is the term −1

2 |ξσ − ξπ|
2.
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Figure 5.4: The graph showing how the MXSW signal for one atom is constructed from the
terms analysed in figure 5.3. The terms (1− cos 2ΘB)<

(
ξπe−ih·R

)
and −1

2 |ξσ − ξπ|
2 are related

to the difference in scattering between the σ- and π-polarisation components and are small. The
contrast in the final signal is increased by normalisation by the Isw, but remains small due to
the fact, that no difference between the magnetic and atomic structure of the dopant exists.
The functions were calculated for the position on the lattice planes, zh = 0.

to the change of the propagation direction caused by the reflection (<
(
ξπe−ih·R

)
term)

and to the difference in scattering between the σ- and π-polarisation components. They
remain small for the Bragg angles far from π/2. Therefore, also the overall variation
in the XMCD signal described by the function Ξ is small, as the value of the XMCD



5.1. Platinum-cobalt alloy 87

signal is generally determined by the cosine of the angle between the wavevector and
magnetic moment, as well as circular polarisation rate. The appearance of the reflected
wave propagating in the different direction than the incoming wave can cause modulation
in the XMCD signal, which is high if the difference in propagation direction (related to
the Bragg angle) is also high. The fact that in the discussed case the MXSW variation is
small is in agreement with the argument given in section 4.6.2 that in order to observe a
standing-wave-like variation in the XMCD signal, the magnetic and atomic structure of
the considered element must differ. This is not the case if one considers a single magnetic
dopant.

The situation is different, if the magnetic moment of the dopant is perpendicular to
the reflecting lattice planes (ϑm = 0). It follows from equation (4.26), that in such a case
the MXSW signal can be written as

Ξ = −

[
1−

(1 + cos 2ΘB)<
(
ξπe−ih·R

)
+ 1

2
|ξσ + ξπ|2

1 + 1
2

(|ξσ|2 + |ξπ|2) + < (ξσe−ih·R) + < (ξπe−ih·R) cos 2ΘB

]
Πs
em sin ΘB

(5.2)
One can see, that now the signal remains strong when the Bragg angle is small, since
now a plus sign is present in the terms (1 + cos 2ΘB) and |ξσ + ξπ|2. The numerator
comprises then a standing-wave like signal, which multiplied by minus one and divided by
original standing wave intensity remains significant. The variation in the XMCD signal is
for such a magnetic moment orientation significant and its shape depends highly on the
magnetic moment position. This is presented in figure 5.5. Figure 5.6 presents how the
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Figure 5.5: The normalised MXSW signal for a dopant atom with a magnetic moment (in this
case energy corresponds to the iridium L3 absorption edge) located in the Pt3Co lattice, in the
lower part a reflectivity curve. The magnetic moment is assumed to be perpendicular to the
reflecting lattice planes and confined in the scattering plane. The curves correspond to different
locations of the magnetic dopant with respect to the reflecting lattice plane. The shape of the
curves resembles the shape of the standing wave intensity.

total MXSW signal is influenced by the terms from the numerator of (5.2). The shape
of the curves clarifies, why the standing-wave like shape persists in Ξ in contrary to the
case of magnetic moment parallel to the reflecting lattice planes. Fundamentally, this
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Figure 5.6: The terms from the numerator of equation (5.2). The term
−(1 + cos 2ΘB)<

(
ξπe−ih·R

)
is similar in shape to the standing wave intensity Isw, but

due to the minus sign is reversed. The shape shows, why the MXSW signal resembles the shape
of the standing wave intensity. The functions were calculated for the position on the lattice
planes, zh = 0.

high contrast is caused by the fact, that the propagation direction of the overall wavefield
changes in the reflection domain. This effect leads to a variation in the XMCD signal, as
is it proportional to the angle between wavevector and magnetic moment.

5.1.2 MXSW signal from Pt3Co

In this section the functions for the real magnetic structure of Pt3Co are presented.

No reflections are forbidden, the standing wave structure factor for cobalt
(
Fh
sw

)Co
= 1

and for platinum

(
Fh
sw

)Pt
=

{
1, hkl all odd or all even

1
3
, hkl 2 odd, 1 even or 2 even, 1 odd

(5.3)

Since all the magnetic moments are the same on Pt sublattice, it holds true in this case,
that Fh

msw = mFh
sw. Thus the MXSW method does not provide any additional information

in this case, compared to regular XSW and XMCD used separately. Of course if the
structure was unknown, the fact that the atomic and magnetic structure coincide could
be deduced from the MXSW signal. Also the direction of the magnetic moment has a
great influence on the signal, what is demonstrated in the subsequent paragraph.

The calculations were performed for energies corresponding to the platinum L3 absorp-
tion edge and the cobalt K edge. An MXSW experiment at the L2,3 absorption edges of
cobalt is not possible, as at such low energies the diffraction condition cannot be fulfilled
for any reciprocal lattice vector. As mentioned in the introduction to this section, the
magnetic moments are aligned naturally in the [111] direction, therefore, they are perpen-
dicular to the (111) reflecting lattice planes. This corresponds to ϑm = 0 and an arbitrary
value of ϕm. At first a circular polarisation of the incoming beam is assumed, and the
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absorption corrections for the wavevector neglected. The MXSW signal calculated for the
spontaneous magnetic structure of Pt3Co is shown in figure 5.7.
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Figure 5.7: The normalised MXSW signal for a Pt3Co crystal, in the lower part the reflectivity
curves. The curves were calculated for the energies corresponding to the Pt L3 absorption edge
(E = 11.564 keV, red curves) and Co K absorption edge (E = 7.709 keV, blue curves). The
curves for cobalt and platinum have similar shape, since the standard and magnetic standing
wave structure factors are the same for the (111) reflection. The difference is related to the
width of the rocking curve.

Figure 5.8 shows an MXSW signal for the platinum atom, calculated for several reflec-
tions. One can notice, that the shape changes significantly, since the angle between the
magnetic moment and the reciprocal lattice vector changes. It is assumed for simplicity,
that the reflections are symmetric and the magnetic moment is confined in the scattering
plane. The change of the shape with the ϑm angle follows the general trend, that the
smaller angles ensure a more standing-wave-like shape of the MXSW signal. For the high
angles, the signal is dominated by the difference in scattering between the polarisation
components. All presented curves are characteristic of the Pt3Co magnetic structure and,
therefore, provide direct information about the distribution of the magnetic moments.

Dependence on the ϑm angle

Now, consider some hypothetical magnetic structures of Pt3Co. Namely, one can in-
vestigate the case of different orientation of magnetic moments of platinum. One assumes
further that the magnetic moment is confined in the scattering plane and the angle ϑm is
changed. Figure 5.9 shows calculated functions for the (111) symmetric reflection. The
orientation of the magnetic moment was changed for all three platinum atoms, so that m
remains the same for all of them.

From the inspection of the graph, one can notice a smooth transition from the standing-
wave-like signal for ϑm = 0 to the one dominated by the difference in scattering between
polarisation components for ϑm = π

2
. A change in background level is related to a change

of the angle between the wavevector k0 and m, whose cosine determines the XMCD
strength away from the reflection domain. From the significant changes of the shape of
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Figure 5.8: The normalised MXSW signal for a Pt3Co crystal. The curves for a few reflections
are shown. The angle between the magnetic moment and the reciprocal lattice vector of the
reflection (ϑm) is shown in the legend. The background level changes due to the change of the
Bragg angle.
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Figure 5.9: The normalised MXSW signal for a Pt3Co crystal, (111) reflection. The data was
calculated for several orientations of the Pt magnetic moment, parametrised by ϑm angle. The
magnetic moment is assumed to lie in the scattering plane. One can notice gradual changes in
signal shape.

the functions one can conclude, that the MXSW signal can provide information about the
orientation of the magnetic moment.

Dependence on the incoming beam polarisation

In a real situation, the incoming beam has never perfect circular polarisation. In
this paragraph the influence of the polarisation parameters εσ and επ on the MXSW
signal is investigated. The calculations were performed for a real magnetic structures of
the platinum-cobalt alloy. For convenience, a parametrisation proposed in section 1.9.1,
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equation (1.49), is used. The influence of deviation from the values β = π/4 and δ = π/2
is shown separately for both of those two angles, that is in figure 5.10 δ is varied and β
kept equal to π/4, and in figure 5.11 the influence of different values of β is shown by
keeping δ equal to π/2.
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Figure 5.10: The MXSW signal for a Pt3Co crystal, (111) reflection. It was assumed that m = 1
and Πe = 1/4 (value for the L3 edge). The functions correspond to different polarisations of the
incoming beam, here a phase angle δ is varied. An angle β is kept equal to π/4. One can see,
that significant changes appear only for a considerable deviation from the circular polarisation
(δ = π/2), but importantly the shape of the signal persists even in these cases. The difference
between the given signal and Υ for circular polarisation is given in the legend.

Figure 5.10 presents the influence of the change of phase angle δ on the MXSW signal
from platinum atoms in the Pt3Co structure. By changing δ one changes the phase
difference between the polarisation components ε̂σ and ε̂0π. It can be seen that small
deviations of the order of π/18 (that is 10◦) have almost no effect on the signal (the total
change is about 1.5% for the π/18 deviation). Significant changes are noticeable only
for big deviation, like 2π/9 shown in figure. As expected, deviation from the circular
polarisation causes a decrease in the XMCD signal. Noteworthy, the shape of the signal
remains very similar to the one for the circularly polarised incoming wave also for big
deviations of δ from the value of π/2.

The second figure, 5.11, shows the influence of the angle β on the MXSW signal. This
angle is related to the length of the polarisation components along the unit vectors ε̂σ
and ε̂0π. For β = π/4 those are equal. The qualitative conclusions from the data shown
in this figure are the same as in the case when the influence of δ was investigated. A
significant deviation from the value for circular polarisation is needed to observe changes,
and the shape of the signal persists. The deviation of 5◦ gives the overall change in the
signal of only 1.5%.

Summarising, the influence of small deviations of the incoming beam polarisation
from the ideal circular polarisation is negligible. Given that no significant deviations are
expected in experiments, further on, only the case of circularly polarised incoming beam
is considered.
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Figure 5.11: The MXSW signal for a Pt3Co crystal, (111) reflection. It was assumed that m = 1
and Πe = 1/4 (value for the L3 edge). The functions correspond to different polarisations of
the incoming beam, here an angle β, which is related to the length of polarisation vectors, is
varied. An angle δ is kept equal to π/2. One can see, that significant changes appear only for
a considerable deviation from the circular polarisation (β = π/4), but importantly the shape of
the signal persists even in these cases. The difference between the given signal and Υ for circular
polarisation is given in the legend.

Influence of absorption correction for wavevector
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Figure 5.12: The normalised MXSW signal for a Pt3Co crystal, (111) reflection. The signal was
calculated with an absorption correction for the wavevector. α is an angle between the physical
surface of the sample and the direction to the detector (see figure 1.7). The signal for grazing
detection angle (α→ 0) is the same as without the correction.

In the last subsection, the influence of the absorption correction for the wavevector
(that is the effects of anomalous absorption, extinction and absorption of the secondary
radiation on the way to the detector), introduced in section 4.7, is shown. The functions
were calculated for the real magnetic structure of Pt3Co. The µ0 coefficient accounting
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for the absorption of the fluorescence radiation on the way from the emitting atom to the
detector was calculated for the energy corresponding to the Lα emission. The dependence
on the detection angle α, defined in section 1.8, is shown in figure 5.12.

As expected from the fact, that the normalised XMCD signal is considered here, the
influence of the absorption correction is rather minor. For the grazing detection angles,
that is α → 0, the MXSW signal is the same as without the absorption correction.
Since for higher values of α the influence of the extinction effect is bigger, the absorption
correction introduces a noticeable change to the shape of the signal.

5.2 Magnetite

Magnetite, chemically Fe3O4, is probably the first magnetic material known to human-
ity [122,123]. Due to its interesting magnetic structure, it is used here to demonstrate the
power of the MXSW method to detect the differences in magnetic moment distributions
among magnetic sublattices.

Figure 5.13: Unit cell of magnetite. Oxygen atoms are marked in red colour, iron atoms are
yellow. One can notice the tetrahedrally (sites A) and octahedrally (sites B) coordinated iron
atoms [116].

Under ambient conditions, magnetite crystalises in the Fd3̄m space group, with a
lattice parameter a = 8.3941 Å. Iron atoms in magnetite exhibit two valence states —
there are 16 Fe3+ and 8 Fe2+ ions. 8 Fe3+ ions occupy the 8a Wyckoff positions (A sites),
where they are tetrahedrally coordinated by oxygen. The remaining 8 Fe3+ and 8 Fe2+

occupy randomly the octahedral 16d positions (B sites). The oxygen atoms are located
at the 32e Wyckoff positions, with the parameter x = 0.2548 [124]. The unit cell of
magnetite is presented in figure 5.13. Magnetite’s chemical formula can be also written as
[Fe3+]A[Fe2+Fe3+]BO4. An interesting feature of magnetite is, that it undergoes a so called
Verwey transition [125] at 122 K, which is a sharp first-order transition characterised by
a resistivity increase by two orders of magnitude and a structural distortion from cubic
symmetry, as well as anomalies in other physical quantities, like specific heat or magnetic
susceptibility [126, 127]. The mechanism of the phase transition is related to charge
ordering on the B sites [128,129].
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Regarding the magnetic structure, the discrepancy between the expected net mag-
netic moment assuming ferromagnetic ordering and the lower experimental value, led to
the model of ferrimagnetic ordering proposed by Louis Néel [130]. The assumption, that
the magnetic moments within both A and B sublattices are parallel to each other, and
antiferromagnetic order exists between those sublattices, explains the experimentally ob-
served value of the net magnetic moment of 4.07µB [131]. The spin magnetic moment of
the Fe3+ ions is equal to 5µB, and the one of Fe2+ ions 4µB, giving an average value of
4.5µB for the ions on the B sites. Due to the antiferromagnetic coupling, the magnetic
moments of the Fe3+ cancel out and the observed moment is determined only by the
Fe2+ ions [132, 133]. The Curie temperature of magnetite is equal to TC = 850 K. Apart
from spin magnetic moment, also the presence of orbital contribution was reported using
XMCD spectroscopy at the L2,3 absorption edges of Fe [134]. It should be noted, however,
that those compensate each other at perfect stoichiometry. The ferrimagnetic structure
of magnetite was confirmed using neutron diffraction [135], however, no exact reports on
the orientation of the magnetic moments in the absence of the external magnetic field
exists. Bulk magnetite is a soft magnet, which can be saturated in any direction in fields
lower than 0.1 T [136]. The easy axis was reported to be along the crystallographic [111]
direction and to change to [100] below the Verwey transition [136,137]. When grown as a
thin film, magnetite exhibits different spontaneous orientation of the magnetic moments.
In the case of (111) thin film of magnetite grown on (111) platinum substrate a complete
ferrimagnetic alignment of the magnetic moments in (111) plane was reported [138].

5.2.1 MXSW signal from magnetite

In this section, MXSW simulation results for magnetite are presented. The standing
wave structure factor for iron atoms can be written in the form

(
Fh
sw

)Fe
=

1

24

24∑
j=1

eiRj ·h =
1

24

4∑
k=1

nsublat.∑
l=1

ei(Rk+Rl)·h =
1

24

[
4∑

k=1

eiRk·h

][
nsublat.∑
l=1

eiRl·h

]
(5.4)

where the summation over all iron atoms was split into the summation over the posi-
tions related to Bravais lattice (centering, F in this case) and over the Wyckoff posi-
tions. In this case the Rk positions are (0, 0, 0), (0, 1

2
, 1

2
) 	, so the first sum is equal

to 4 for the allowed reflections (that is all hkl either odd or even). For tetrahedrally
coordinated atoms (8a position, A sublattice), nsublat. = 2 and Rl = (1

8
, 1

8
, 1

8
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The rest of Fe atoms are located at 16d position (B sublattice) so nsublat. = 4 and
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(
eπi(h+k+l) + ei(h+3k)π/2 + ei(3h+l)π/2 + ei(k+3l)π/2 +

+ ei(h+k+l)π/4 + ei(7h+3k+3l)π/4
)

(5.5)

Now consider the magnetic standing wave structure factor. The magnetic moments
are coupled antiferromagnetically between the sublattices, so mA = 5µB and mB = 4.5µB,
the direction is the same for both sublattices (with opposite orientation). Using the
normalised to one values of magnetic moment, such that mA = 1 and mB = 9/10, the
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Fh
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]

(5.6)

where mB = − 9
10

mA was used. Equation above shows, that in general Fh
msw 6= mFh

sw,
with m = − 4

15
mA in this case, so one can expect a significant MXSW signal carrying

information about the magnetic sublattices. There are reflections, for example (008), for
which the relation Fh

msw = mFh
sw holds and the MXSW variation is consequently weak.

The contrary is true for example for (004) reflection. This is apparent from the following
simulation results.
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Figure 5.14: The normalised (by photoelectron polarisation and maximal magnetic moment)
MXSW signal for a magnetite crystal, in the lower part the reflectivity curve. The curves were
calculated for an energy corresponding to the Fe K absorption edge. It was assumed, that the
magnetic moments are parallel (B sites) and antiparallel (A sites) to the [111] direction, what
corresponds to the ferrimagnetic natural structure of Fe3O4. One can see a distinct standing-
wave-like variation in the XMCD signal.

At first the (004) reflection is considered as a flagship example. The magnetic moments
are assumed to be oriented parallel (B sublattice) or antiparallel (A sublattice) to the
easy axis, [111]. For simplicity the case of ϕm = 0 is considered, thus the scattering plane
is the (11̄0) plane. The result of the simulations is shown in figure 5.14. One notices
immediately a pronounced standing-wave-like character of the MXSW signal.

The shape of the signal can be understood easily, if one has a closer look at the proper
projection of the magnetic structure. Since for the sake of simplicity it was assumed,
that ϕm = 0, one needs to consider a projection on the (11̄0) plane. Then the magnetic
moments aligned in [111] direction have no component perpendicular to the scattering
plane. Figure 5.15 explains the shape of the MXSW signal shown in figure 5.14. As a
consequence of the existence of the standing wave in the reflection domain the contribution
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Figure 5.15: The example of the MXSW signal for the (004) reflection from magnetite showing
the principle of the magnetic x-ray standing waves method. The upper images show the projec-
tion of the magnetite iron sublattice on the (11̄0) plane. The ions belonging to the A sublattice
are marked in green, for the B sublattice in blue. The magnetic moments are parallel or an-
tiparallel to the [111] direction. In this projection some of the magnetic atoms appear to be on
top of each other, so the number on the right informs about their actual number. White dashed
lines show the borders of the unit cell, the black dashed lines are the (004) planes, being also
reflecting planes in this case. The intensity of the standing wave is represented by the red colour
map in the top pictures. On the low angular side of the reflection domain, the antinodes of the
standing wave lie between the lattice planes and coincide with the green sublattice, yielding a
decreased XMCD signal, as the net magnetic moment is dictated by the Fe2+ ions from the blue
sublattice. In contrary the XMCD signal is enhanced when the standing wave maxima coincide
with the blue atoms, what happens on the high angular side of the reflection. The shape of the
variation is characteristic of this distribution of the magnetic moments.

of the sublattices A (green) and B (blue) to the overall XMCD signal is either decreased or
increased depending on the position of the nodes of the interference field. For the chosen
(004) reflection, the tetrahedrally coordinated ions belonging to A sublattice lie between
the reflection lattice planes, whereas octahedrally coordinated ones are located on those
planes. Therefore, on the low angular side of the reflection domain, when the nodes are on
the lattice planes, the XMCD signal is dominated by the A sublattice and thus decreased
with respect to the background level, as this is dictated by the Fe2+ ions form the B
sublattice, whose magnetic moments are oriented oppositely. Then the signal gradually
increases while the standing wave moves as the reflection domain is crossed, what is caused
by the change of the phase of the amplitude ratios. The standing wave maxima move onto
the lattice planes, so the contribution of the B sublattice to the XMCD signal increases
and the one of the A sublattice — decreases. At the point when the standing wave
antinodes coincide with B sublattice, the signal is maximal, as there is no destructive
contribution from the oppositely oriented ions belonging to sublattice A. After this point
is reached, the XMCD signal decreases, since the standing wave disappears together with
the reflected wave. The background level is dictated by the average magnetic moment
and the Bragg angle, as it defines the angle between k0 and m. This example shows
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very clearly the power of the new MXSW method to directly gain information about the
distribution of the magnetic moments in the lattice. One should note, that the shape of
the MXSW signal Υ is directly related to this distribution and, therefore, can be regarded
as an image of the magnetic structure. This is illustrated further with the use of some
hypothetical arrangements of the magnetic moments in magnetite.

Fe3O4 (004) at E = 7.112 keV, γ = −1
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Figure 5.16: The normalised MXSW signal for some hypothetical magnetic structures of the
magnetite crystal. The arrangement of the magnetic moments for each case is shown as an
inset, the A (green) and B (blue) sublattices are represented schematically by one ion to avoid
overcomplication of the picture. The graph (a) shows the result for the case of the same magnetic
moments on both sublattices. The situation shown in the graph (b) corresponds to the antifer-
romagnetic structure, what leads to vanishing of the XMCD away from the reflection domain.
The graphs (c) and (d) concerns the situation, when one of the sublattices in non-magnetic.
One can conclude, the shape of the curves is directly related to the arrangement of the magnetic
moments.

The MXSW signal for four different hypothetical magnetic structures of magnetite is
shown in figure 5.16. The insets in the graphs present the considered magnetic moments
arrangements. The first graph shows the result for the case of the same magnetic moments
on both sublattices. For this situation it is assumed that the magnetic moments are
oriented along the [110] direction, what means they lie in the reflecting lattice planes. This
is done to remove the influence of the components of the magnetic moments parallel to h,
which complicate the analysis (as the variation in XMCD effect is then highly influenced by
the changes of the wavefield propagation direction). As discussed in section 5.1, in such a
situation the variation in the XMCD signal in the reflection domain is weak and related to
the difference in scattering between σ- and π-polarisation components. This explains the
shape of the MXSW signal from the graph (a) — the standing wave does not lead to the
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significant variation in the XMCD signal, as the magnetic moments are the same and the
enhancement or reduction of the contribution from the given sublattice imposes no change
on the overall signal. The graph (b) corresponds to the antiferromagnetic structure,
as the net magnetic moment is zero in this case (keeping in mind that the iron atoms
form sublattice B are twice as abundant as those form sublattice A), giving no XMCD
signal away from the reflection domain (see the background level). This case presents a
very interesting prospective application of the MXSW method — it allows to observe an
XMCD effect in the antiferromagnetic systems. Even though when contributing at once,
the magnetic moments of A and B sublattices cancel out, in the reflection domain the
existence of the standing wave allows to switch off a contribution from one sublattice and
observe the signal coming from the other one. With the movement of the standing wave,
this leads to the variation seen in the graph (b). The last two graphs correspond to the
situation of one — either A (graph (c)) or B (graph (d)) — non-magnetic sublattice. The
fact that a given sublattice exhibits no magnetic moment is reflected in the MXSW curves.
In the graph (c) the signal first decreases to zero, as the standing wave maxima coincide
with non-magnetic A sublattice, and then increases as the magnetic B dominates the
observed XMCD effect. The contrary applies to the situation from the graph (d). For the
calculations concerning the situations shown in the graphs (b)-(d), the magnetic moments
were assumed to be aligned along the [111] axis. Summarising, four presented graphs show
clearly, that the shape of the MXSW curve is directly related to the arrangement of the
magnetic moments and provides easily-readable information about the magnetic structure.
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Figure 5.17: The normalised MXSW signal for a magnetite crystal, spontaneous magnetic struc-
ture. The curves for a few reflections are shown. By inspection of the projection of the magnetic
structure on the (11̄0) plane shown in figure 5.15 one can understand, why the (008) reflection
does not lead to the significant variation in the XMCD signal.

The last figure (5.17) presented in this section shows the MXSW signal for a few chosen
reflections from magnetite. A real ferrimagnetic arrangement with magnetic moments
oriented in the [111] direction is assumed. From the projection of the magnetic structure
on the (11̄0) plane shown in figure 5.15, one can see why the reflection from the (004)
planes gives a standing wave with a perfect periodicity to study the magnetic structure of
magnetite. In contrary, if one considers the (008) reflection (see the curve in figure 5.17),
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no distinction between A and B sublattices can be made, as the maxima and minima
of the standing wave coincide always at once with both sublattices. Small variation in
the XMCD signal comes from the variations of the wavefield polarisation in the reflection
domain, differences in scattering between the polarisation components and changes of the
propagation direction in the reflection domain. As one can see, apart from the (004) also
other reflections, for example (444), give an MXSW signal related to the ferrimagnetic
arrangement in magnetite.

5.3 Yttrium-iron-garnet

Due to its unique physical properties, high Curie temperature equal TC = 560 K and
availability of very high quality single crystals, YIG (Y3Fe5O12) has found applications in
microwave technology and as a fascinating magnetic system for studies in experimental
physics [139].

Figure 5.18: Unit cell of YIG. Oxygen atoms are marked in red colour, whereas yttrium in
green, iron atoms are yellow. One can notice the tetrahedrally and octahedrally coordinated
iron atoms [116].

In most of the cases [139–142] it is assumed, that YIG crystalises at ambient conditions
in space group Ia3̄d, with a lattice parameter of a = 12.376 Å. Yttrium occupies the 24c
Wyckoff positions, oxygen is located at the 96h ones, with the parameters x = −0.027,
y = 0.0567, z = 0.15. Iron atoms form two sublattices, 16 of them are located on the
16a Wyckoff positions and are octahedrally coordinated by oxygen atoms, whereas the re-
maining 24 tetrahedrally coordinated ones are on the 24d position [141]. Both sublattices
are populated with Fe3+ ions having magnetic moment of 5µB. The magnetic structure
of YIG was determined by neutron powder [140] and single crystal [143] diffraction. It
exhibits ferrimagnetic ordering, as the iron magnetic moments on both sublattices were
found to be alligned parallel within a sublattice and antiparallel between them [140]. In
absence of the magnetic field, they are alligned along the [111] direction [143]. It was
found by the group of Rodic, that better values of residual parameters are found, if the
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YIG structure is refined in trigonal R3̄ space group, especially for the data collected at
low temperaturs [143]. Such an assumption is also in accordance with the Landau theory
of phase transitions, which requires a lowering of the symmetry during the transition at
Curie temperature. On the other hand, at room temperature the trigonal distortion is
small, and often the case of a cubic structure is used for simplicity [144].

5.3.1 MXSW signal from YIG

The structure of YIG is conceptually very similar to that of magnetite. The similarities
appear also in the MXSW signal — one can find several reflections for which the periodicity
of the standing wave is appropriate to provide information about the arrangement of the
magnetic moments. For those reflections the standing wave enhances a contribution from
one of the iron sublattices, what leads to the increase or decrease of the XMCD signal
with respect to the background level dictated by the average magnetic moment.
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Figure 5.19: The normalised MXSW signal for a YIG crystal. The curves for a few reflections are
shown. A real ferrimagnetic structure of YIG was assumed. In the same way as for magnetite,
there are several reflections for which the periodicity of the standing wave is ideal for studying
the magnetic moments on the sublattices of YIG.

The results of the simulations for a few YIG reflections are shown in figure 5.19. The
shape of the curves is similar as for magnetite. In case of the (004), (444) and (420)
reflections, their shape is related directly to the existence of magnetic sublattices and
ferrimagnetic ordering in YIG. Similarly, like in the case of magnetite, the periodicity
of the standing wave generated during the (008) reflection does not allow to distinguish
between the sublattices, they always contribute at once to the overall XMCD signal.

5.4 Hematite

As the last example, the MXSW signal was calculated for a hematite (α-Fe2O3) crystal,
since this system is antiferromagnetic under the ambient conditions. As it was already
mentioned earlier, it is a unique property of the MXSW method, that it allows to observe
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an XMCD effect in the antiferromagnets. Hematite, just like magnetite and YIG, belongs
to the group of very prominent and continuously studied magnetic materials.

Figure 5.20: Atomic structure
of hematite. Iron atoms are
yellow, oxygens red [116].

Figure 5.21: Magnetic struc-
ture of hematite. One can no-
tice alternating orientations of
the magnetic moments, result-
ing in antiferromagnetic order-
ing [116].

Under the ambient conditions, hematite crystalises in
the rhombohedral space group R3̄c, with the lattice pa-
rameters a = 5.038 Å and c = 13.772 Å (hexagonal set-
ting). Iron atoms in the structure of hematite occupy the
12c Wyckoff positions (z = 0.3553). Oxygen atoms are
located at the 18e ones (x = 0.3059) [145].

Regarding the magnetic structure, iron atoms exhibit
two sublattices. The ions located at the positions: R↑ =
{(0, 0, z), (0, 0,−z), (2

3
, 1

3
, z+ 1

3
), (2

3
, 1

3
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, 2
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3
),

(1
3
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3
)} have one orientation of the magnetic mo-

ment. The ions located at the positions given by rela-
tion R↓ = R↑ + (0, 0, 1

2
) have the opposite magnetic mo-

ments. All Fe ions are trivalent and have in magnitude
the same magnetic moment. Since there are 6 ions with
one orientation and 6 with the opposite, in total the crys-
tal is antiferromagnetic below the Néel temperature equal
to TN = 955 K [146]. It was found by Morin from the
magnetisation studies, that hematite undergoes a phase
transition at TM = 260 K and below this temperature
exhibits a very weak ferromagnetism, owing to the slight
canting of the magnetic moments [147–149]. The underly-
ing mechanisms leading to this weak ferromagnetism were
explained on the basis of asymmetric exchange interaction
by Dzyaloshinsky [150] and Moriya [151]. Above the Morin
temperature, magnetic moments lie in the plane perpen-
dicular to the c hexagonal axis. Below the phase transi-
tion temperature, they are aligned along the [111] direc-
tion [149,152].

5.4.1 MXSW signal from hematite

Consider first, which reflections yield a non-vanishing
MXSW variation. The average magnetic moment F0

msw, or
m (defined by equation (4.39)) is equal to zero for hematite
at room temperature. Equation (4.34) shows clearly, that the MXSW signal vanishes if
the magnetic standing wave structure factor is equal to zero. One can thus analyse, for
which reflections the contrary holds. Using the relation R↓ = R↑ + (0, 0, 1

2
), Fh

msw can be
written in this case as

Fh
msw =

1

12

[
m↑ + m↓e

ih·(0,0,1
2

)

] 6∑
j=1

eih·(R↑)j =
1

12
m↑
[
1− eiπl

] 6∑
j=1

eih·(R↑)j (5.7)

since the relation m↓ = −m↑ holds. One can see, that l component of the h vector has
to be odd, so that the variation in the XMCD signal appears.
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Figure 5.22: The normalised MXSW signal for an hematite crystal. The curves for a few
reflections are shown. The small ferromagnetic component was neglected and the magnetic
moments assumed to be oriented along [100] direction. Even though the XMCD signal away
from the reflection domain vanishes, the standing wave allows to observe the effect as it can
probe a single sublattice.

Figure 5.22 shows simulation results for a few reflections from hematite. A very
significant signal can be observed for the (113) one. In other cases, the variation is rather
weak, but this owes to the fact, that most of the useful reflections (in the light of the shown
analysis of Fh

msw) are weak. The most important conclusion here is that the XMCD signal
can be observed from the real antiferromagnetic system using the standing wave. The
mechanism behind this effect is the same as before — the standing wave enhances the
contribution of a given sublattice to the overall XMCD signal, at the same time decreasing
a destructive effect of the other one. When the antinodes of the standing wave coincide
with one sublattice, the XMCD signal is the same as for a ferromagnetic arrangement.
Therefore, the standing wave allows to virtually change the type of the ordering in the
magnetic crystal during the rocking scan. As in all the cases discussed before, the shape
of the MXSW signal is characteristic of the arrangement of the magnetic moment and for
an unknown structure could be used to deduce it.



Chapter 6

XMCD-related absorption correction for
the dynamical theory of diffraction

In the dynamical theory of x-ray diffraction, absorption is taken into account via the
imaginary part f ′′ of the atomic scattering factor f (equation (1.10)) [52]. The atomic
scattering factors and atoms’ positions are used to calculate the structure factor, which
is related to the Fourier coefficients of susceptibility. The imaginary part of the forward
scattered component χ0 is directly related to the linear absorption (see section 1.2 for
details).

Within this framework, only the linear absorption is taken into account, and the
absorption effects related to the distinct polarisation state of the wavefield are ne-
glected. Even though the anomalous absorption coefficient does differ between σ- and
π-polarisation components, this is related to the differences in the nature of scattering of
those.

This formalism is good in the majority of cases. There are, however, situations, mostly
related to the diffraction in the vicinity of the absorption edge, when the absorption effects
associated with the polarisation of the wave can be significant. Among such cases lies
definitely also the diffraction of the circularly or elliptically polarised incoming wave by
a magnetised medium, which is considered in this work. As shown already theoretically,
in such a situation the XMCD effect appears, which is basically a helicity-dependent
difference in absorption. Up to now the influence of this absorption difference on χ0 and
therefore on the scattering effects in general, was neglected. This was done, since the
polarisation dependent absorption cannot be easily incorporated into the framework of
the dynamical theory of x-ray diffraction.

The diffraction of the circularly polarised incoming wave within the framework of
the dynamical theory of diffraction was studied both for the two- and multi-beam case
[153, 154]. The authors studied polarisation changes of the waves under the diffraction
regime. It should be noted, that no change in absorption related to the polarisation
was considered, since only non-magnetic materials were studied. Macke et al. have
studied theoretically the impact of the dynamical effects on the resonant elastic x-ray
diffraction results [48]. They have solved numerically the Maxwell equations, assuming
that each atom has an atomic scattering factor given by a general tensor. This allows
to account for polarisation changes related to the magnetic and charge ordering, as well
as x-ray magnetic circular and linear dichroism (XMCD and XMLD). The values of the

103



104 CHAPTER 6. XMCD-RELATED ABSORPTION CORRECTION

components of the energy dependent atomic scattering factor tensors needed for such
calculations are generally not known and have to be also evaluated numerically. For the
example considered in the discussed paper, they were calculated using multiplet ligand
field theory framework.

An indisputable advantage of the MXSW theory presented in this work, is that it
is fully analytical and allows to easily simulate the theoretical functions for any system,
having only generally available scalar atomic scattering factors. Therefore, instead of
using a fully numerical approach presented in the paper of the group of Macke, a numerical
correction is introduced to account for the absorption effects related to XMCD. Instead of
using an approach based on the general tensor atomic scattering factor, a correction to the
scalar one is made using the formulae for the absorption cross-section established in the
magnetic x-ray standing waves theory. It is shown, that even though having sometimes a
noticeable effect, the correction does not influence the predictions significantly.

6.1 Theory

The difference in absorption caused by the XMCD can be taken into account by
iterative corrections of f ′′. The initial value of this correction is obtained from the cal-
culation based on the original value of f ′′. The absorption cross-section for a circularly
polarised wave assuming an uncorrected value of f ′′ was calculated in chapter 4. It is
given basically by the formula (4.17), together with the general expression (3.10). Denot-
ing C = (4π)2αf}ω, the latter can be written also in the following way
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what allows to transform it to the somewhat more convenient form

σ± = 1
2
%fC

[
∆%sf
%f

(
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↓
±

)
+
(
ζ↑± + ζ↓±

)]
(6.2)

The terms in round brackets read

ζ↑± − ζ
↓
± = 4π

3
R(a↓ − a↑) (∓Ξ2 − Ξ3) (6.3)

ζ↑± + ζ↓± = 4π
3
R(a↑ + a↓)Isw (6.4)

One has for the cross-section

σ± = 2π
3
C%fR(a↑ + a↓)Isw

(
∓Πs

e

∆%sf
%f

Ξ2 ± Ξ3

Isw
+ 1

)
(6.5)

The first term in the brackets is proportional to the spin-polarisation of the final band
∆%sf and thus vanishes for non-magnetic material. The term Ξ2 is proportional to the
imaginary part of επ incident beam parameter and thus vanishes for linearly polarised
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light. The term Ξ3 is proportional to modulus and real part of επ, so persists even if
the beam is linearly polarised. These terms describe the XMCD contribution to the total
cross-section. If the material exhibits no spin polarisation of the final band, ∆%sf = 0, the
cross-section is given by the prefactor, which can be then denoted by σ0, such that

σ0 = 2π
3
C%fR(a↑ + a↓)Isw (6.6)

If several magnetic atoms contribute to the total measured signal, one sums the individ-
ual cross-sections in a similar way as described in section 4.6. The absorption cross-section
per atom is obtained by

σ± = 2π
3
C%fR(a↑ + a↓)

1

n

n∑
j=1

(
∓Πs

e

(∆%sf )j

%f
[(Ξ2)j ± (Ξ3)j] + (Isw)j

)
(6.7)

or using the symbols introduced by equations (4.31), (4.32) and (4.33)

σ± = σ0

(
∓Πs

e

Υ2 ±Υ3

y
+ 1

)
(6.8)

The term in the brackets is considered a correction to the linear absorption coefficient
given by σ0, related to the XMCD effect. Optical theorem states that the imaginary part
of the atomic scattering factor f ′′ is proportional to the total absorption cross-section.
Therefore, one can write

f ′′± = f ′′0

(
∓Πs

e

Υ2 ±Υ3

y
+ 1

)
(6.9)

The dispersion corrections f ′ and f ′′ are related to each other via Krames-Kronig relations,
so not only f ′′, but also f ′ is influenced by the change in absorption caused by the XMCD
effect. On the other hand, in order to obtain the correction for f ′, one would need to
have an energy dependence of f ′′±, which could have been then transformed to f ′± using
Kramers-Kronig relations. This would require similar numerical simulations as the ones
used to obtain the full tensor of atomic scattering factor, what is beyond the scope of the
simple correction discussed here. Therefore, the correction for f ′ is neglected hereafter.
The XMCD experiments are performed usually for the energy lying in the pre-edge region
of the absorption edge, where the change of f ′ with respect to the value away from the
edge is small.

6.2 Algorithm

The cross-section σ±, and thus also f ′′±, depend on the quantities Υ2, Υ3 and secondary
radiation yield y, so also on the amplitude ratios ξσ and ξπ. Those are in turn calculated
assuming the knowledge of the structure factors F0, Fh and Fh̄, which involve the resonant
correction f ′′. Therefore, the correction for the absorption needs to be introduced iter-
atively. In the first step, the cross-section is calculated assuming linear absorption only
(standard dynamical theory calculation). Then this cross-section is used to correct f ′′,
and the amplitude ratios are calculated with such a first step correction. Those amplitude
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Crystal and magnetic structure, initial
f = f 0 + f ′ + if ′′, energy E,

photoelectron polarisation Πs
e, precission δ
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σ,π, y0, Υ0
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Calculate σ0
±
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ξσ,π, y, Υ with abs. correction
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Figure 6.1: Iterative algorithm for introducing the absorption correction related to the XMCD
effect into dynamical theory of diffraction. In the initial step, cross-section σ0

± is calculated
using the tabulated value of f ′′. This cross-section is then used to obtain a new value of f ′′

and calculate the corrected amplitude ratios ξiσπ, which give again a new cross-section. This is
repeated until the amplitude ratios do not change more than by a predefined δ, with Rξ being
defined as Rξ :=

∑
∆Θ ||ξi| − |ξi−1||/

∑
∆Θ |ξi−1|.
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ratios yield a new cross-section, which is taken then for the correction in the second step.
This is repeated until the changes in amplitude ratios greater than a predefined value, for
example 0.1%, are observed. The algorithm is summarised on the flow diagram shown in
figure 6.1.

The absorption correction was implemented in the way depicted on the block diagram,
that is the functions ξσπ, y, Υ2, Υ3 and σ± were calculated at once for the entire angular
range. Alternatively, the correction can be calculated step by step, starting from the first
value of ∆Θ and then repeating the algorithm for successive angles. This means, that
the proper value of the correction is obtained for an angle (∆Θ)i and this value is then
taken as an initial value for the next angle (∆Θ)i+1. Resulting ξσπ(∆Θ) functions were
exactly the same as when applying the iterative algorithm at once for the entire range, so
the latter is used as being more computationally effective.

6.3 Results of the simulations

One can see, that the value of the part of the cross-section, and thus also the
absorption-related dispersion correction f ′′ is proportional to the photoelectron polari-
sation Πs

e (equation (6.9)). This means, the correction can be only significant for the
absorption edges, for which Πs

e is large. Therefore, a platinum-cobalt alloy was used here
as a model system for the simulations aiming at showing the influence of the discussed ab-
sorption correction. Even though there are many interesting magnetic crystals containing
iron (see chapter 5), the strength of the XMCD effect is very small for the K absorption
edge, so also the possible absorption correction is surely negligible.

For the simulations the real spontaneous magnetic and atomic structures of Pt3Co,
described in section 5.1, were assumed. The simulations were performed for the energy
corresponding to the platinum L3 absorption edge. As one can see in table 6.1, the
calculation converges very quickly. The simulated reflectivity curves with absorption
correction are compered to the original function in figure 6.2. The changes in phase of ξσ
imposed by the absorption correction are presented in appendix C.

i Rξ

1 1.201·10−2

2 4.002·10−6

3 8.390·10−9

4 1.365·10−10

5 2.953·10−12

Table 6.1: Changes of the Rξ parameter in the subsequent iterations of the algorithm. The
simulations were performed for the Pt3Co single crystal, the values of Rξ are shown for the
σ-polarisation component (ξσ) and for the right-handed polarisation.

By inspection of figure 6.2 one can see, that even for the case of naturally strong
XMCD effect at the L3 absorption edge (Πs

e = 1/4), the influence of the absorption
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Figure 6.2: Comparison of the reflectivity curves for Pt3Co single crystal with and without
the iterative absorption correction related to XMCD effect. The graph (a) shows the result of
simulations assuming the real magnetic structure of platinum-cobalt alloy, that is the orientation
of the magnetic moment along [111] direction. The second graph, (b), presents the data for the
simulations with magnetic moments in the reflecting lattice planes (ϑ = π/2). One can notice,
that the change after the correction is introduced, is rather small.

correction on the amplitude ratios, and thus also on all other results of the MXSW theory,
is minor. In graph (a) a real magnetic structure of Pt3Co single crystal was assumed,
with magnetic moments along [111] direction. In such a setting, magnetic moments are
perpendicular to the reflecting lattice planes, and given that the Bragg angle is rather
small, the XMCD remains relatively weak. This weakness is reflected in the very small
impact of the absorption correction. For the simulation, whose results are shown in
graph (b), an orientation of the Pt magnetic moments in the reflecting lattice planes
was assumed. This leads to stronger XMCD effect and increases the difference between
the uncorrected and corrected functions. Even though the impact of the correction is
noticeable, it remains small. As mentioned already, the absorption correction for the
case of XMCD at K absorption edges is negligible, given that the strength of the XMCD
effect is of the order of 10−3. Summarising, the absorption correction for calculation
of the scattering effects in the dynamical theory of diffraction has a small impact on
the amplitude ratios, which determine the MXSW signal. This validates the approach
used so far, where the scattering of the circularly polarised beam was calculated using
the standard treatment of absorption with the dynamical theory of diffraction based on
tabulated values of f ′′. The absorption effects become important in the second step,
where the XMCD signal generated by the wavefield is determined. In this step a proper
description of absorption is granted by quantum mechanics.
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Chapter 7

General description of the MXSW
experiment

Given that physics is an experimental science, establishment of the theory and pre-
sentation of some computer simulations results should be followed by the experimental
verification of the findings. Therefore, the last part of this work comprises a discussion
about the general experimental conditions required for a successful MXSW experiment,
followed by the results of two first MXSW experiments shown in the subsequent chapters.

7.1 Prerequisites for MXSW experiment

The MXSW method has indisputable advantages, among those an ability to provide
information about the magnetic structures directly without refinement. On the other
hand, like all experimental methods, it possesses also certain limitations. A few require-
ments have to be met by the sample, so that it can be studied by the MXSW technique.
Those are described in details in this section. This is followed by the discussion about
the experimental conditions needed for practical implementation of the MXSW method.

7.1.1 The sample

In general, the method is suitable for investigation of magnetic order in crystalline
samples. The crystal lattice is needed to generate a standing wave. The quality of the
crystal, understood as a small mosaic spread and small concentration of other defects
(for example vacancies, dislocations, stacking faults), has to be good enough, so that
the dynamical theory of diffraction can be used to describe the scattering process. Only
this theory provides an accurate description of the phenomena in the reflection domain.
Among those, it gives a strict phase relation between the refracted and reflected waves
leading to the movement of the nodes and antinodes of the standing wave. If the mosaic
spread of the crystal is big, the reflection domain is rotated between single mosaic blocks
and the standing wave signal measured at once for all the mosaic blocks is blurred. For
thin films, in certain cases it suffices, that the crystalline substrate is of the good quality.
It can be used to generate a standing wave, which is then used to investigate the structure
of the thin film. The thin film has to be in that case thinner than the coherence length of
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x-rays. In this approach, the periodicity of the standing wave has to match the periodicity
of the thin film lattice, or alternatively the thin film has to consists of only a few atomic
layers.

Regarding the magnetic properties of the sample, it has to exhibit a spontaneous
magnetic ordering, if the aim is to determine the magnetic structure. Using the MXSW
method one can study ferro-, ferri- and antiferromagnetic, as well as non-collinear sys-
tems. This is in contrary to the regular XMCD method, which does not allow to observe
any signal from antiferromagnetic systems, since they exhibit no net magnetisation. As
discussed already at the end of section 4.6.2, the unit cells of the magnetic and atomic
structures have to coincide, since in the MXSW method the standing wave generated
by the periodicity of the atomic structure is used to study the magnetic structure. The
periodicity of the standing wave is related to the atomic structure. The largest period of
the standing wave cannot be higher than the dimensions of the atomic unit cell. If the
magnetic structure has lower translational symmetry than the structural cell, the MXSW
signal will be given by the projection of the average magnetic structure onto the structural
unit cell, thus providing no useful information. In other words, the propagation vector of
the magnetic structure has to be equal to km = (0, 0, 0).

Using XMCD spectroscopy, one can also study paramagnetic [86] and diamagnetic
[155] materials, that is materials, which exhibit a net magnetisation when placed in the
external magnetic field. The induced magnetic moments are parallel to the external
magnetic field in case of paramagnetic atoms and antiparallel for diamagnetic ones. In
general, since all the moments are the same as they are induced by the magnetic field
and aligned in its direction, the spatial resolution provided by the MXSW method gives
no additional information. On the other hand, it was observed by the group of Fuhrman
[156] that in SmB6 at low temperatures some samarium ions behave differently than
others. The Sm3+ ones are diamagnetic and in the magnetic field their magnetic moments
align antiparalell to the magnetic moments of Sm2+, which are paramagnetic. Such an
antiferromagnetic coupling between those ions could be also detected using the position
sensitivity of the MXSW method. Summarising, even though the materials possessing
spontaneous magnetic ordering are of the main interest for the research using the MXSW
method, potentially also in the case of paramagnetic and diamagnetic substances the
spatial resolution added to standard XMCD spectroscopy can be of a use.

In order to observe an XMCD effect, the energy of the incoming x-ray wave has to
be tuned to the absorption edge of the atoms exhibiting a magnetic moment. Only then
an excited electron has an energy allowing a transition to the unoccupied spin-polarised
final states. When the energy is lower, the electron is not excited at all, and when higher,
the electron leaves the atom without probing the band responsible for magnetism. At the
same time, the energy has to be large enough, that some Bragg reflections can be excited.
The interplanar spacing of the reflecting lattice (hkl) planes has to fulfil the condition
dh > λ/2 to observe a Bragg reflection. In the case of energies corresponding to the L2,3

and M4,5 absorption edges of respectively 3d and 4f metals, which are most often used
to gather information about the magnetic moments of those elements, for many of the
crystalline systems no Bragg reflection can be reached. For 3d metals the energies of L2,3

absorption edges lie below 1 keV, so the interplanar spacing has to be larger than 6 Å. Even
though there are systems with such a relatively large unit cell, the number of achievable
reflections is still very limited. The same holds for the M4,5 absorption edges of the rare
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earths, whose energies are slightly higher than the ones of the L2,3 absorption edges of the
3d metals. The energies of M4,5 edges for the actinide series (thorium, protactinium and
uranium) are well above 3 keV, so the systems containing those elements in the magnetic
state are prospective candidates for MXSW experiments.

Keeping in mind the limitations related to the energy of the absorption edge, ideal
systems to be investigated with the MXSW method are 5d metals. Their magnetism can
be studied straightforwardly by XMCD spectroscopy performed at their L2,3 absorption
edges, whose energy lie well in the hard x-ray regime (is of the order of 10 keV). One
should note, however, that none of those elements exhibit spontaneous magnetisation
in their pure form. Their magnetic moment can be only induced by the proximity of
other magnetic ions, and remains small. This non-trivial origin of magnetism makes the
investigation of magnetic structure even more relevant.

Most of the magnetic materials exhibiting spontaneous ordering above the magnetic
transition temperature (Curie or Néel) contain 3d metals. The magnetism of those sys-
tems can be studied utilising the XMCD effect appearing at the K absorption edges. The
energies of those lie in the hard x-ray regime, so several Bragg reflections can be reached.
As discussed in chapter 3, section 3.3, the XMCD effect for the K absorption edge of 3d
metals is weak, due to the lack of spin-orbit splitting of the initial state. Therefore, to ob-
tain a valuable MXSW signal, one needs extended data collection times, what constitutes
a drawback for the measurements in this setting. With the high brilliance light sources
available nowadays, such measurements become possible.

Instead of using the M4,5 absorption edges, one can also tune the energy to the L2,3

ones in order to perform the MXSW experiment on the system containing 4f metals. As
mentioned already in section 3.4, the simple two step model does not provide a good
description of the effect in this case, what makes also the analysis of the XMCD data
challenging.

7.1.2 The experimental system

Since an energy of the x-ray beam has to be tuned to the absorption edge, as discussed
in the previous subsection, the MXSW experiment can be performed exclusively at the
sychrotron light sources or possibly also, in further perspective, at the free electron lasers
(FEL). Only the former is discussed here, as the experimental part of this work was
performed at a synchrotron facility. In short, x-ray photons are generated in storage rings,
when the trajectory of the beam of charged particles (usually electrons or positrons) is
changed either in bending magnets or insertion devices (undulators or wigglers), what is
predicted by classical electrodynamics. Further details about synchrotron light sources
can be found elsewhere [157, 158]. Both bending magnet, as well as insertion devices
based beamlines can be used for the MXSW experiments, as in both cases tuning of
the energy is possible. The flux of photons offered by the current synchrotron radiation
sources is sufficient to observe an XMCD effect even in very weakly magnetic substances,
like diamagnets [155].

The x-ray wave used for the XSW, and thus also the MXSW method, has to have
certain properties. The x-ray radiation used for standing wave experiments has to be
monochromatic, so that a single chosen Bragg reflection is excited at once. The divergence
of the beam should be smaller than the width of the rocking curve, otherwise the XSW
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(and MXSW) signal is smeared, since the beam covers at once a range of the incidence
angles ∆Θ. The observed signal is a convolution of the theoretically expected one with
the divergence profile of the incidence beam, what decreases the contrast in the standing
wave signal. The same effect is related to the finite energy bandwidth of the incoming
wave, which should be as small as possible.

There are no special requirements on the coherence properties of the beam, at least for
the atomic scale XSW methods. Successful XSW experiments were performed also using
the radiation generated by x-ray tubes [53,159]. On the other hand it should be mentioned,
that the coherence properties of the radiation are more critical when the total external
reflection is used to generate the standing wave, since in such a case the dimensions of the
studied structures are much larger then the crystal lattice cell dimensions [160]. Though,
if the structures remain smaller than typical coherence length of several micrometers,
what is the case for often studied nanostructures, the XSW experiments are still feasible.

Most of the so far discussed requirements regarding the properties of the x-ray beam
are common for the standard XSW method and the new MXSW one. What is certainly
different in those requirements, is the need for the incoming x-ray beam to be circularly
or elliptically polarised. Such a polaristaion is needed to observe an XMCD effect, as
the transfer of the angular momentum from the x-ray beam to the excited electron is
required to make the emission of photoelectron spin-polarised. In order to obtain a desired
polarisation of the beam, the unique properties of the radiation generated in the storage
rings are used. This radiation is polarised linearly in the orbit of a storage ring, and
elliptically above and below the orbit [157]. Already this second property was used to
perform XMCD experiments [82], but the degree of circular polarisation in such cases is
rather low. Alternatively, the natural linear polarisation can be changed to the desired
circular one by using either special optics elements, called phase plates, or appropriate
insertion devices, called helical undulators.

The phase plates generate the desired state of beam polarisation based on the differ-
ence in scattering between the σ- and π-polarisation components [161]. The waves with
these polarisations are characterised by different wavevectors, while travelling through
the crystal oriented in the vicinity of angular reflection domain. The difference in the
wavevectors provides a desired phase between the σ- and π-components needed for the
circular polarisation. More formally, the dispersion surface has two branches for each
polarisation component (see figure 1.2). The wavevector is directly dependent on the
position of the tiepoint on the dispersion surface (equation 1.42). This gives the following
phase factor between the perpendicular polarisation components: exp[i(X0π−X0σ)d]. One
can thus choose the thickness of the crystal d and the deviation angle ∆Θ (which changes
the values of X0π and X0σ) such that the phase difference is equal ±π/2. Switching of
the helicity is performed by changing the departure angles ∆Θ between the values giving
appropriate phases on two sides of the reflection domain. The phase plates are operated
usually in the transmission (Laue) geometry, since for the reflection geometry the phase
between the polarisation components is never as large as π/2 [52].

Having given the characteristics of the x-ray beam needed for an MXSW experiment,
some details should be given about the experimental equipment. XMCD experiments are
usually performed with the sample placed in an external magnetic field. This allows to
record the signals by switching not only the helicity, but also the magnetisation direc-
tion, what helps to remove the experimental artefacts related to imperfect polarisation
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and ensures that the measured difference in cross-sections is indeed of magnetic origin.
This approach was also used in the MXSW experiments reported in this work. On the
other hand, ideally an MXSW experiment should be performed without magnetic field, in
order to avoid perturbation of the spontaneous magnetic structure. In a sufficiently large
external magnetic field, all magnetic moments align in the direction of the field, so in such
conditions no observation of the ferri- or antiferromagnetic ordering is possible [143]. If
one decides to perform an experiment with an external magnetic field (because for exam-
ple a ferromagnetic ordering with different magnetic moments on sublattices is predicted),
a source of the field is needed, either in the form of permanent magnet or electromagnet.
The possibility of controlling the direction of the magnetic field (to align it for example
parallel to the reflecting lattice planes) and switching its orientation along this direction,
is required.

In order to orient the crystalline sample and perform the angular scans through the
reflection domain, what constitutes the essence of the standing wave experiment, a diffrac-
tometer with at least three rotation degrees of freedom (circles) and a movable detector
arm, is needed. The standard XSW experiments are performed also by keeping the ori-
entation of the sample fixed and by changing the energy around the one corresponding
to the diffraction condition at a given angle. This is equivalent to the performance of a
rocking scan by changing the incidence angle. This approach is not applicable in the case
of MXSW, since the energy has to be tuned to the absorption edge and the variation of
energy changes the value of ∆%sf , thus the observed variations in the XMCD signal would
be a superposition of those changes and the changes in the contribution from different
magnetic moments caused by the movement of the standing wave.

As mentioned already in section 4.8, when not detected directly in the transmission
mode measurement, the XMCD effect can be determined experimentally either using
emitted secondary electrons or fluorescence photons. Even though the former is more
advised from the data analysis point of view, the latter is used in this work as being
much more convenient from a practical point of view. The detection of emitted electrons
requires a sample to be put under high vacuum conditions, otherwise they are quickly
absorbed by the air. A combination of suitable vacuum system and the diffractometer is
rather an uncommon equipment among the existing synchrotron beamlines. Therefore,
the fluorescence detection mode is advised for MXSW experiments.

The simplest way to detect the x-ray fluorescence from a given element is to use selected
filters, which absorb the radiation with other energies, leaving only the window for the
fluorescence line of interest. The detection of fluorescence can be also performed using
the analyser crystal, which acts as a filter passing only photons having energies within
a certain narrow range. The photons, which passed through filters or analyser crystal
are then detected using non-energy-dispersive detectors like photodiodes or scintillation
detectors. Alternatively, and this is the preferred method for the MXSW technique, since
one does not require the too high energy resolution offered by analyser crystals, the x-ray
fluorescence can be detected by using energy dispersive semiconductor detectors. More
details on the principle of their operation is given later in this chapter. Similarly, like in
the standard XSW experiment, not only secondary radiation yield is detected, but also
the intensity of the reflected wave. This data sets the angular range of the reflection
domain and shows, where on the angular scale the effects of the standing wave can be
expected. The reflected beam is detected using so called point detectors, which are put on
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the 2Θ arm of the diffractometer. These can be scintillation detectors, avalanche photo
diodes (APD) or PIN diodes.

At this point, only the experiments under ambient conditions are considered. This
greatly simplifies the experimental system, but on the other hand limits the number of
crystalline systems, which can be studied, as many of magnetic materials exhibit transi-
tion to magnetic state at low temperatures. In the future, the MXSW experiments could
be also performed at other temperatures, so that the systems, which are non-magnetic
at room temperatures, as well as the changes of the magnetic structure during the tran-
sitions, could be investigated. To control the temperature, the cryostats would need to
be incorporated in the experimental system. Experiments at increased pressures could
potentially give an insight into the pressure-induced changes in the magnetic structure.
The use of diamond anvil cells complicates the detection of secondary radiation, but a
special cell allowing detection of fluorescence exists [162].

7.2 General schema of the MXSW experiment

Regardless of the sample and the absorption edge used, all MXSW experiments consist
of several common steps, which are summarised in this section. Following the discussion
given in section 4.6, it is assumed that the imbalance in the density of empty states
∆%sf measured at a single energy value at the absorption edge, even though not directly
proportional to the magnetic moment, in the case of the MXSW experiment gives a good
measure of its changes. Therefore, it is proposed to perform the experiment at fixed
energy and conduct only the angular rocking scans through the reflection domain.

The schema of a standard MXSW experiment is shown in figure 7.1. What is shown is
a procedure for a single reflection. It should be repeated for several chosen reflections in
order to obtain more confident structural information. The energy is tuned to the value
at the absorption edge, possibly where the XMCD signal is the highest, but the choice
should be made individually for each investigated system. Before choosing the energy
value for the MXSW scans, an energy scan for an orientation of the sample away from
any Bragg reflections should be performed for both helicities, and the fixed energy value
chosen accordingly to the obtained XMCD spectrum. The best is to perform the MXSW
scans for several energies in the vicinity of the absorption edge and compare the results.
Provided that the assumption about the proportionality of ∆%sf to the magnetic moment
is valid, the results should yield the same structural information, as long as the energy is
close enough to the absorption edge that the XMCD effect can be observed.

The sample is usually mounted on a goniometer head, which is then put on the diffrac-
tometer. Depending if a magnetic field source is used additionally, the sample might have
to be placed on the special holder compatible with the magnet system used.

The sample needs to be oriented, such that the diffraction (Bragg) condition is fulfilled.
Usually, in the case of crystals investigated using the standing wave methods, at least the
surface orientation is known. The reflection from the lattice planes parallel to the surface
is then already one of two reflections needed to determine the orientation of the crystal
uniquely (that is to find the orientation matrix, also called the UB matrix). The second
one can be found by calculating the angle between the lattice planes of the first reflection
and the ones corresponding to the other chosen ones. The lattice parameters and the
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Set the energy,
orient the sample at ΘB

to maximum of Iah

Choose the range
of the scan

Set (change)
the helicity and B

Perform the angular Θ-scan.
At each Θi record:
- reflected beam intensity Iah
- incoming beam parameters
- fluorescence spectrum

The cycle repeates to
obtain data for both
helicities (and ±B)
and improve statistics

Figure 7.1: A general schema of an MXSW experiment, where the secondary radiation yield
is measured by detecting the x-ray fluorescence. The red boxes refer to the preparation of the
scan. The helicity (and possibly the magnetic field orientation) can be changed either as shown
in the schema — after the full scan is finished — or more often using fast switching. The actual
scan consists of recording the parameters of incoming beam, reflected beam intensity and the
full fluorescence spectrum. The same scan is repeated for both helicities (and magnetic field
orientations) multiple times in order to improve the data statistics. The energy is kept constant
during the experiment. The whole procedure is repeated for several chosen reflections.

crystal system have to be known, but this is usually the case, if one is interested in
determination of the magnetic structure. Also for other XSW experiments the crystal
structure of the system generating the standing wave is usually known. Knowledge of the
angle between the lattice planes and the Bragg angle of the second reflection allows to
orient the crystal so that this second reflection is reached (more details are given in section
devoted to the experiment on Pt3Co). Based on those two reflections the orientation
matrix can be calculated and any desired reflection reached. If no information about
the orientation of the crystal is available beforehand, the sample can be oriented using
the monochromatic x-ray beam, recording the dataset by the two-dimensional detector
and finding the orientation matrix using x-ray crystallography software like XDS [163].
Alternatively, also the white beam Laue diffraction can be utilised for this purpose.

The polarisation of the beam has to be circular with a possibility to change the helicity
either at the end of each angular scan or more often during the scan. The latter can be
realised by fast flipping of the phase plate between the positions corresponding to the
RHP and LHP (what, as discussed in section 7.1.2, is equivalent to changing the value of
∆Θ). In such a case the data corresponding to the RHP and LHP is sorted out by the
electronic control system. If the MXSW experiment is performed with the sample kept
in an external magnetic field in order to magnetise the sample (for example otherwise
non-magnetic paramagnetic or diamagnetic systems), the field direction has to be aligned
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appropriately or at least well determined (since the MXSW theory predicts the results
for any arbitrary magnetic moment orientation), and the orientation has to be changed
after each scan (or each second scan if the helicity is changed only once the full scan is
finished). Without external magnetic field, two sets of data — for RHP and LHP —
should be obtained. If the external magnetic field is used, the experiment should yield
four sets, for the combinations (LHP, +B), (RHP, +B), (LHP, −B), (RHP, −B).

The actual MXSW scan is a Θ-scan (rocking scan) around the angular position, where
the maximum of the reflected beam intensity is observed. This point corresponds roughly
to the middle of the reflection domain (in fact the rocking curve is asymmetric and the
maximum lies on the low angular side of the reflection domain, but given the contribu-
tions from mosaicity of the crystal and beam divergence, this assumption is good). The
range of the scan should be big enough, to cover the whole reflection domain and such
that the secondary radiation yield reaches the background level. At each step of the scan
the parameters of the incoming beam, such as the intensity measured by the incident
intensity monitors (for example ion chambers) and parameters determining the polarisa-
tion state (for example intensities of the σ- and π-polarisation components) are measured.
The actual experimental data recorded at each angular step of the scan consists of the
reflected beam intensity and the full fluorescence spectrum. The fluorescence yields, that
is integrals of the chosen lines in the fluorescence spectra, recorded for both helicities,
after subtraction and normalisation are used as a measure of the XMCD effect.

7.3 Experimental system at the P09 beamline

The MXSW experiments presented in this work were conducted at the P09 beamiline
[164] located at the PETRA III radiation source at Deutsches Elektronen-Synchrotron
(DESY) in Hamburg. Therefore, a description of the experimental system at this beamline
is given hereafter. Since resonant scattering beamlines are ideal experimental stations for
MXSW experiments, the information given in this section remain quite general and can
be useful also when the experiment is performed at another synchrotron light source.

PETRA III is a third-generation high brilliance synchrotron radiation source. The
storage ring has a circumference of 2304 m, being thus the largest synchrotron light
source in the world. The machine allows to produce x-ray beams characterised by very
low horizontal emittance of 1.2 nm·rad. PETRA III is operated at an electron energy of
6.084 GeV. The electron beam is divided in 480 bunches in the multi bunch mode and 40
bunches in the timing mode. The ring current is 100 mA at normal operation [165].

The P09 experimental station is devoted to resonant scattering, XMCD and x-ray
resonant magnetic reflectivity (XRMR). The x-ray beam is produced in a 2 m long un-
dulator. The energy of radiation is tunable in the range of [2.7; 24] keV, the polarisation
can be linear in any direction or circular. The polarisation can be changed in the reduced
energy range of [2.7; 13.7] keV. In the MXSW experiments, the energies of 11.566 keV
(Pt L3 absorption edge) and 7.1135 keV (Fe K absorption edge) were used.
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7.3.1 Beamline optics

A monochromatic beam is obtained at the P09 beamline using a silicon double-crystal
monochromator, cooled by liquid nitrogen. Two sets of Si crystals are available, (111) or
(311) oriented ones. The latter allows to achieve a better energy resolution on the cost of a
smaller photon flux. The energy bandwidth using the (111) crystal is ∆E/E = 1.3×10−4,
what gives energy resolution of 1 eV at the energy of 8 keV. In the experiments reported
here, the Si (111) reflection was used to monochromatise the beam.

The control over the polarisation of initially in-plane linearly polarised x-ray radia-
tion is achieved by a double phase retarder system located in the optics hutch of the
P09 experimental station. Circularly polarised x-rays are generated after passing through
a properly oriented diamond crystal phase plate (quarter wave plate), as explained in
section 7.1.2. Details about the design of the phase retarder are given in the paper of
Francoual et al. [166]. In order to reduce the impact of instabilities, the polarisation of the
beam can oscillate rapidly between the RHP and LHP states, and the signals correspond-
ing to those polarisation states can be saved separately using the control electronics. This
is achieved by mounting the phase plate on the piezo-driven flipper, which oscillates with
a frequency of 23 Hz between the orientations corresponding to the RHP and LHP. Signal
from the arbitrary wave form generator controlling the movement of the phase plate is fed
also into a Raspberry Pi controlled field programmable gate array (FPGA) device, which
allows to sort the measured signals into different channels directly [167], from which the
histograms are made in the SIS3820 (Struck Innovative Systeme GmbH) counter board.

Rejection of higher harmonic energy components in the beam generated by the un-
dulator, as well as focusing of the beam, is made possible by two 1 m long vertically
reflecting mirrors made of SiO2 and covered with palladium. The critical angle depends
on the energy and is smaller for shorter wavelengths, what explains the principle of higher
harmonic rejection using the specular reflection of the beam. The second mirror is addi-
tionally equipped with a bender allowing vertical focusing of the beam [164].

The slit system located in the first experimental hutch (EH-1) allows to define the
size of the beam incident on the sample. Two passivated implanted planar silicon (PIPS)
diodes placed perpendicular to each other measure the intensities of the incoming beam
scattered from a glassy carbon foil and thus serve as the incident intensity and polarisation
monitor. The signal from this system is used to align the phase plate, such that it generates
circular polarisation (thus giving the same signal on both diodes). The next component
on the incident beam path is an absorber box, which allows to insert selectively 12 foils
thus attenuating the beam by known factors. The last component before the incident
beam reaches the sample is the second slit system, which allows to reject the effects of
the beam scattering on the first slits [164].

7.3.2 The diffractometer

The EH-1 of the P09 beamline is equipped with 6-circle Huber diffractometer (Huber
Diffraktionstechnik GmbH & Co. KG), where three rotation stages are for the orientation
of the sample (χ, ϕ, Θ) and three for the detectors (2Θ, δ, γ). This allows for both
horizontal and vertical scattering. A slit system located on the detector arm before
the point detector allows to define the reflected beam path between the sample and the
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detector. In the MXSW experiments a 4-coil electromagnet was placed additionally on the
diffractometer (see figure 7.2) in order to magnetise the sample. The sample was glued on
the special holder compatible with the electromagnet system. The MXSW experiments
were performed in vertical scattering mode. Figure 7.2 shows the diffractometer aligned
to allow rocking scans of the YIG (444) reflection.

Figure 7.2: The EH-1 of the beamline P09 at the PETRA III synchrotron. The station is
equipped with 6-circle Huber diffractometer. The path of the incoming beam is marked in the
photo by red arrow. The position of the detector arm is set such, that the reflected beam reaches
the point detector (APD in this case). The sample is placed in the middle of 4-coil electromagnet
system, in the center of rotation of the diffractometer (see the close-up in figure 7.3). The
fluorescence detector (SDD) is located above the surface of the sample, such that the angle
between the direction to the detector and surface of the sample is α = π/2.

7.3.3 Electromagnet system

An external magnetic field was applied during the MXSW experiments using the 4-coil
electromagnet constructed at the Bielefeld University [168] and modified later by the P09
beamline personnel. As can be seen in figure 7.3, the system is located on the 6-circle
diffractometer and the sample is placed in a middle on a special compatible holder. A
piezo-stage below the sample holder allows for adjustment of the sample’s vertical position.
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Constant current applied by a power supply generates a magnetic field in the coils, which
is guided towards the sample by steel rods. The distance between the sample and the rods
can be adjusted. By changing the value and direction of the current in each of the coils,
the desired strength and direction of the magnetic field is obtained. The direction of the
magnetic field is confined to the plane of the sample’s surface. The device can provide a
magnetic field as strong as 180 mT. The coils are water-cooled.

Figure 7.3: The experimental system used for the MXSW experiments, close-up. The sample
is mounted in the centre of the electromagnet system on a compatible holder. The paths of
the incoming (red arrow) and reflected (blue arrow) beams are shown schematically. The green
arrow symbolises the fluorescence radiation emitted from the sample towards the fluorescence
detector (SDD). The 4-coil electromagnet system is located on the 6-circle diffractometer.

In future experiments, the magnetic field can be also applied by the robust permanent
magnet system, designed by Heiko Schulz-Ritter. Two versions of the discussed device
were constructed. Both of them allow to change the magnetic field direction arbitrarily
in one plane perpendicular to the sample surface (which is a scattering plane for the
situation shown in figures 7.2 and 7.3). The device of the first design generates the
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magnetic field of a strength of approximately 150 mT, whereas the newer one generates
250 mT. The advantage of using a permanent magnet system is that there is no need for
cooling and power supply. Since this systems were not used in the reported experiments,
more details are given in appendix D. They were utilised during the test experiments at
the P24 beamline and were found to function properly.

7.3.4 Detectors

Reflected beam detector

The rocking curve is recorded during the MXSW scan in order to set the angular scale
for the secondary radiation yield and define the angular reflection domain. The reflected
beam intensity is recorded using a point detector, whose angular resolution is defined
by the detector slits. Different detectors can be used as point detector for this purpose,
among them there are PIN diodes, scintillation detectors and APDs. The latter was used
for the MXSW experiments.

The principle of detection of an x-ray photon in an APD is the same as in all semi-
conductor radiation detectors — the photon is absorbed by the detector material and
generates electron-hole pairs, which are collected on the electrodes. In contrary to all
other semiconductor detectors, APDs are the only ones, which have an internal amplifi-
cation of the signal. A high voltage applied to the depletion region of the n-p junction
accelerates the photoelectrons, which by collisions excite further electrons to the conduc-
tion band (avalanche effect). This leads to the amplification of the initial photocurrent,
depending on the applied reverse bias voltage [169, 170]. The internal gain improves
the signal to noise ratio and allows to reach high count rates as the generated charge is
collected rapidly [171].

Fluorescence detector

As mentioned earlier, the energy spectrum of x-ray fluorescence radiation can be
recorded either using analyser crystals or filter foils and energy non-dispersive detec-
tor or energy dispersive detectors, for example silicon drift diode (SDD). The latter was
used to record the spectra during the MXSW scans.

The detector used was a Fast SDD (Amptek, Inc.) with silicon thickness of 500 µm
and 25 mm2 window. The working principle of the SDD detector is based on the so called
sideward depletion. A basic device consists of a pure silicon wafer with strips of diode
junctions on both surfaces and an anode on the edge. Application of continuously rising
potential creates a horizontal field, which guides the photoelectron towards the anode
(thus the name drift diode). For the application in x-ray spectroscopy, this design is
slightly modified, so that the drift electrodes are located only on one side of the device,
leaving the other one free as the entrance window [172, 173]. An average of 3.6 eV is
needed to create an electron-hole pair in silicon. An absorbed x-ray photon looses its
energy by generating electron-hole pairs. The number of the charges collected on the
anode is proportional to the total energy deposited by the photon. If the photon looses its
entire energy inside the silicon wafer, the charge measured by the integrated preamplifier
is a direct measure of the photon energy.
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7.3.5 Control system

At the P09 beamline all devices are controlled via TANGO, a toolkit used for con-
necting hardware with software. The software used for the user control of the devices,
including the diffractometer is Spock — the IPython command line application being an
adopted version of spec.

The data acquisition system for the SDD detector is independent from the beamline
electronics. It consist of the VME crate with a SIS3302 analog-digital converter (ADC),
a counter and a controlling computer. The data is collected using the ADCgui software
written by Martin Tolkiehn, which provides ready histograms of the counts per energy
channel.

Scripts written in Matlab were used for the quick analysis of the experimental data.
They allow a simple integration (by summing the number of counts) over the region of
interest in the recorded fluorescence spectra, corresponding to the spectral lines of the
magnetic elements. When plotted against the Θ angle, such integrals serve as a measure of
the fluorescence yield for each helicity and magnetic field orientation. Further, an XMCD
signal can be calculated as a simple difference between such yields. This quick analysis
allows to control the quality of the data just after first scans are finished, and if necessary
correct the errors in the experimental procedure during the measurements.





Chapter 8

Experiment on the Pt3Co crystal

As mentioned in the previous chapter, the crystal systems containing magnetic ions of
5d metals are very good candidates for studies using the MXSW method. This is because
the L2,3 absorption edges of those elements lie in the hard x-ray regime, what makes
not only observation of the XMCD effect possible, but also enables excitation of several
Bragg reflections. Being inspired by the first experimental attempt to perform MXSW
experiment, where a nickel-platinum alloy was used [46], the first experiment within the
framework of this project was performed on a Pt3Co single crystal.

This chapter is organised as follows. At first some details about the sample and the
experimental conditions during the measurements at the P09 station are given. Then the
results are presented with the routine of data analysis being explained in parallel. The
chapter is concluded with the discussion about the obtained data.

8.1 Experimental details

The single crystal of Pt3Co alloy was bought from MaTecK Material Technologie &
Kristalle GmbH. The sample is in the form of a disk with diameter of 5 mm and thickness
of 1 mm. It is one side polished with roughness smaller than 0.01 µm and orientation
accuracy smaller than 1◦. The surface orientation is (111). The details about the structure
and properties of Pt3Co are given in section 5.1.

The MXSW experiment on Pt3Co was performed at the P09 experimental station from
7.09.2020 to 14.09.2020. The sample was glued on the aluminium holder compatible with
the electromagnet system. The crystal surface was aligned with respect to the incoming
beam using the combination of height and Θ scans. The experiment was performed in
the vicinity of the platinum L3 absorption edge (nominally E = 11.564 keV). Since the
MXSW experiments are performed as angular scans at fixed energy, an energy spectrum
around the nominal value was performed for both helicities of the incoming beam to
choose the appropriate energy value for the actual scans. The sample was magnetised in
the direction parallel to the sample surface and lying in the plane being a scattering plane
for the surface (111) reflection. The electromagnet described in section 7.3.3 was used. It
provided a magnetic field of 150 mT, the same for both orientations of the field (parallel
and antiparallel to the incoming beam direction) measured at the surface of the sample
(the measurements with a Hall probe revealed 148 mT for one orientation and 147 mT
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for the other). The hysteresis curve measured for the sample at 220 K using a physical
property measurement system (PPMS) revealed that this field suffices to magnetise the
sample and reach saturation (see appendix E.1). For the energy spectrum measurement,
the sample was aligned away from Bragg reflections. For the sake of energy alignment, a
simple measure of the energy spectrum was obtained by summing the number of counts
from the SDD detector for the channels corresponding to Pt Lα fluorescence line. The
spectra differed between the helicities in the wide range [11.55; 11,59] keV. The changes in
the region distant from the absorption edge were identified as an artefact from the phase
plate. Since it was aligned for the nominal energy for the absorption edge, away from this
energy it does generate waves, which differ in intensity when the helicity is changed. Due
to this fact, an energy of 11.566 keV was chosen for the MXSW scans. At this energy
a significant difference in spectra was observed, which was surely caused by the XMCD
effect due to the proximity of the absorption edge.

Since the surface orientation of the sample, as well as the atomic structure of Pt3Co
are known, the determination of the UB matrix is straightforward. Having the angular
coordinates of the (111) reflection, the ones for other ones, for example (311), can be found
easily. The procedure is the following. The angle between the (111) and (311) planes for
the cubic crystallographic system is equal τ = 29.5◦. In order to find the diffractometer
position for the (311) reflection, the Θ and 2Θ are aligned to the values Θ = Θ

(311)
B and

2Θ = 2Θ
(311)
B , and the position of χ is changed by τ from horizontal position. Then an

angular ϕ scan is performed, and the position of this angle corresponding to the sought
reflection found by monitoring the signal from the point detector. Those two reflections
allow to define the orientation matrix and calculate (what is done by control software)
the angles of the diffractometer corresponding to any other one.

For the actual MXSW scans the sample was oriented so that the (111) reflection was
excited. The positions of 2Θ, Θ and χ angles were optimised by performing the scans
around the nominal positions, such that the maximum of the reflected beam intensity was
observed. Even though the sample was a single crystal, it became apparent by inspection
with the x-ray beam, that it consists of several slightly misoriented grains. Therefore, the
horizontal position of the sample, as well as ϕ angle were adjusted so that only one grain
contributed significantly to the observed reflected intensity. Practically, this means that
only one peak was observed during Θ-scan. The beam-defining slits were kept wide open.

The number of counts in the SDD detector, which was mounted above the sample
surface (α = π/2), was optimised by insertion of attenuation foils into the incoming beam,
such that no significant number of pile-up events was seen in the fluorescence spectrum.
For the MXSW scans, the helicity of the incoming beam was changed with a frequency
of 23 Hz using the fast flipping schema. The sample was in the external magnetic field
being in the same setting as for the energy scan. The orientation of the magnetic field
was changed after each full Θ-scan. The scan having 200 steps was performed around the
Θ value of 13.8978◦ by changing it until ±0.2◦ in steps of 0.02◦. The data was collected
for 20 s at each step of the scan. Due to relatively weak XMCD signal observed, owing
to the small magnetic moment of platinum, only the scans for the (111) reflection were
performed in order to obtain data with small statistical uncertainties. In total 60 scans
were recorded for both orientations of the magnetic field.
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8.2 Data analysis procedure and results

In this section the results obtained for the Pt3Co crystal are presented along with
the explanation of the data analysis procedure. The analysis was performed using scripts
written in Matlab [111].

8.2.1 Reflectivity and beam stability

The reflectivity curve (figure 8.1) is obtained by simple summation of the data obtained
from the APD detector for individual scans. A broadening of the main maximum and
appearance of the side peak was observed after a certain data acquisition time, what is
caused presumably by the movement of the beam position caused by machine instability.
Therefore, only first 14 scans for each magnetic field orientation (28 in total) were taken
for the final analysis. This number was observed to be already sufficient to obtain a decent
data quality. No variation of the reflected intensity with the magnetic field orientation
was observed, what means that the sample was well fixed on the holder and did not move
when the magnetic field was reoriented.
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Figure 8.1: Experimental reflected beam intensity Iah for the Pt3Co single crystal, symmetric
(111) reflection. The data is compared with the theoretical function calculated based on dynam-
ical theory of diffraction and convolved with a reflectivity curve of a double crystal silicon (111)
monochromator (blue curve). The green curve is the blue one convolved additionally with a
Lorentzian function, which accounts for the mosaicity of the crystal. From comparison between
the blue theoretical curve and experimental data (red points) it can be seen, that the crystal is
not an ideal one. The scale for Iah is set by the theoretical function. The experimental data for
one orientation of the magnetic field is shown only, as it almost does not differ for the other one.

As it can be seen in figure 8.1, the position of the sample was optimised such, that
the reflection from only one grain was excited. The comparison between the experimental
data and the theoretical curve (the reflectivity calculated from dynamical theory for Pt3Co
convolved with the double convolution of Si (111) curves, that is the monochromator
reflectivity as defined in [52]), shows that the crystal’s mosaicity is significant. The
contribution of this imperfection was taken into account by convolving the theoretical
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curve with the Lorentzian (Cauchy) function with a scale parameter related to the width of
the function, Γ = 0.1817 mrad. This value was obtained from the fitting of the theoretical
function after convolution to the experimental data using the Matlab fminsearch function,
which uses the simplex search method [174].

The examination of the signal from PIPS diodes, used to monitor the beam intensity
and polarisation (via determination of the intensity of the σ- and π-polarisation compo-
nents), revealed that during the scans used for analysis, the intensity of the incoming
beam was very stable. The average degree of circular polarisation estimated based on the
signal from PIPS diodes (assuming that ideal circular polarisation is equivalent to equal
signal on both orthogonally positioned detectors) was equal 99.85%.

8.2.2 Fluorescence spectra

The raw fluorescence spectra obtained from the ADCgui software are first normalised
by the average beam monitor signal (average of the signal from both PIPS diodes),
summed up over the scans chosen for analysis and then fitted using the combination
of quadratic background and a sum of Gaussian functions (without offset), each repre-
senting a given spectral line and given by g(x) = CG exp (−(x− µG)2/2σ2

G), where σG is
the parameter related to the width (standard deviation), µG the position of the maximum
and CG the scaling parameter (height). The fitting was performed using the Matlab nlinfit
function, which utilises the Levenberg-Marquardt nonlinear least squares algorithm [175].
An exemplary fitted spectrum, corresponding to one angular position of the Θ-scan, one
helicity and one magnetic field orientation, is shown in figure 8.2.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

7 8 9 10 11 12

Pt Lα

Pt Lβ
Co Kα

Co Kβ
elastic

n
or

m
al

is
ed

n
r

co
u
n
ts

E [keV]

Pt3Co at E = 11.566 keV

exp.

ind. lines
fitted

Figure 8.2: Single fluorescence spectrum for Pt3Co crystal, recorded at 11.566 keV. It corre-
sponds to a single angular position in the Θ-scan, one helicity and one magnetic field orientation.
The experimental data was fitted using a combination of Gaussian functions for the spectral lines
and a quadratic background. The Gaussian functions are plotted in gray. The energy scale was
obtained by the comparison of lines’ positions with nominal values for corresponding fluorescence
decay channels.

The collection of spectra for the entire Θ-scan, corresponding to a single configuration
of helicity and magnetic field orientation is shown in figure 8.3. The presented data is a
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result of summation over all recorded scans used for analysis, corresponding to a given
helicity and magnetic field orientation.
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Figure 8.3: A collection of fluorescence spectra from Pt3Co for the entire Θ-scan, recorded for
one configuration of helicity and magnetic field orientation. The presented data is a sum of
the data from individual scans for this setting, normalised before summation by the signal from
the beam intensity monitor. The plot presents the idea of the XSW experiment, as one can
easily see the variation in the intensity of the Pt Lα line, whose determination is the aim of the
experiment. The shape of the variation is highly influenced by the extinction effect.

The determination of the change in the intensity of individual spectral lines is what
constitutes the core of the XSW methods. The change in the Pt Lα line can be clearly
seen in figure 8.3. The shape of the variation is an effect of the standing wave impact
on the absorption cross-section of the atoms and additionally the extinction effect, which
highly manifests itself in the case of the used SDD detector position (above the sample
surface).

8.2.3 Fluorescence yield

The parameters of the Gaussian functions obtained from the fitting procedure cor-
responding to a given spectral line are used to calculate the fluorescence yield. This is
defined as simple integral over the energy of the Gaussian function and can be calculated
analytically from the parameters. For an angular position i, it reads yi =

√
2πCGσG.

Since the used nlinfit Matlab function [176] returns the covariance matrix of the fitting
parameters, the square root of the diagonal elements can be taken as a measure of the
standard deviation of the parameters. The uncertainties of the values of the fluorescence
yield are then calculated using the propagation of uncertainty [177], here taken in the
form

∆yi =

∣∣∣∣ ∂yi∂CG

∣∣∣∣∆CG +

∣∣∣∣ ∂yi∂σG

∣∣∣∣∆σG =
√

2π (σG∆CG + CG∆σG) (8.1)
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where ∆x denotes the uncertainty of some quantity x.
Figure 8.4 shows the fluorescence yields for all four configurations of the helicity and

magnetic field orientations. It was calculated based on the Pt Lα fluorescence line. An
addition of the yield from the Lβ line was observed not to change the shape of the data.
This line is significantly weaker and additionally to some extent overlaps with the elastic
scattering peak, thus increasing the experimental uncertainties for the yield. Therefore,
this line was not used for the analysis.
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Figure 8.4: The experimental fluorescence yields for Pt3Co calculated based on the Gaussian
functions fitted to the experimental spectra for all configurations of helicity and magnetic field
orientation. The shape of the variation is dominated by the extinction effect. The Pt Lα line
was used for yield calculation. The differences in the yield are caused by the XMCD effect. The
curves obtained for the setting after reversal of both the field orientation and the helicity of
the beam should coincide (red and yellow curve, as well as blue and green). The discrepancy is
related to imperfection of polarisation reversal and/or magnetisation switching.

The differences observed between the yields owe to the XMCD effect. The reversal
of the magnetic moment orientation and light helicity is equivalent (at least for the con-
sidered setting that is the moments in the scattering plane and the circularly polarised
incoming wave). Therefore, the yields for (RHP, +B) and (LHP, −B), as well as (RHP,
−B) and (LHP, +B), should coincide. As seen in the graph, this is not exactly the case,
even though the general trend is preserved. This might be caused by the fact, that the
reversal of magnetisation is not complete. It can be seen from the data, that the XMCD
effect is weaker for the field setting denoted as +B, than for the −B one. This may
indicate, that the reversal of the magnetic moment orientation was not complete, what
causes the differences in the yields already in the background level (away from the re-
flection domain) for the +B and −B setting, as the angles between k0 and m are then
different.

The expected fluorescence yields for the magnetic moments aligned in the reflecting
lattice planes and scattering plane can be calculated using equation for the absorption
cross-section (6.8), where the quantities Υ2 and Υ3 are taken in the form with absorption
correction for the wavevector, given by equations (4.53) and (4.54). The result of the
simulations is presented in figure 8.5. It can be noticed, that the shape of the simulated
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Figure 8.5: Simulated fluorescence yield for Pt3Co for the experimental setting. The magnetic
moments were aligned in the reflecting lattice planes and confined to the scattering plane using
an external magnetic field. The yields were normalised by the background level (away from the
reflection domain) of the yield for the linear polarisation (that is without the XMCD effect).
One can notice that the experimental data shown in figure 8.4 resembles the simulation results.

fluorescence yields is similar to the experimental data. The width of the theoretical curves
is smaller, and the variation more pronounced, what is related to the impact of mosaicity
on the experimental result. In case of an ideal situation assumed for the simulations, no
difference between the settings (RHP, +B) and (LHP, −B), as well as (LHP, +B) and
(RHP, −B) is observed.

The impact of the mosaicity can be taken into account by convolution of the theoretical
fluorescence yields with a Lorentzian function describing the mosaic spread of the sample,
just like in the case of reflectivity. Additionally, a small impact of the monochromator
is also taken into account by convolving the function with monochromator reflectivity.
The parameters of the Lorentzian function are the same as obtained from the fitting of
the theoretical reflectivity to the experimental data, except for the scaling parameter
(height), which was adjusted by fitting to the experimental fluorescence yield. The final
result of the fitting can be seen in figure 8.6, which presents the results for one magnetic
field orientation. The agreement between the theoretical curves after convolution and
experimental data is satisfactory. The reduction of the contrast with respect to the curves
for ideal crystal is caused by mosaicity.

8.2.4 MXSW signal

The fluorescence yields obtained for four configurations of the helicity and magnetic
field orientation can be used to calculate the XMCD signal also in four ways, assuming that
a reversal of helicity is equivalent to the reversal of the direction of the magnetic moment.
The XMCD signal can be obtained by subtracting the yields for different helicities, or for
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Figure 8.6: Experimental fluorescence yields for Pt3Co compared with theoretical functions
obtained as convolution of the ones calculated from the MXSW theory with monochromator
reflectivity and Lorentzian function describing the mosaicity. The data was normalised by
the common value such, that the curves are localised symmetrically around unity and relative
difference (XMCD) remains unchanged. The data for one orientation of the magnetic field
(+B) is shown. The parameters of the Lorentzian function are the same as the ones used for
modelling the reflectivity curve, except for the scaling parameter, which was adjusted by fitting
to experimental data.

opposite magnetic field orientations. Formally,

Υ±B =
y±BL − y±BR

y±BL + y±BR

, ΥL/R =
y+B

L/R − y
−B
L/R

y+B
L/R + y−BL/R

(8.2)

where L and R are abbreviations for LHP and RHP. Resulting MXSW signals are pre-
sented in figure 8.7.

From the inspection of figure 8.7 it can be concluded, that the reversal of the helicity
of the incoming beam in the experiment is working as expected. This conclusion can be
drawn from the fact, that the MXSW signals ΥL/R calculated based on the fluorescence
yields for opposite field orientations show expected symmetry, that is ΥL = −ΥR. In
contrary, complete symmetry does not exist between the remaining pair of signals, that
is Υ+B 6= −Υ−B, though the sign of the signal is reversed. The fact, that the signal for
+B is stronger in absolute numbers, that the one for −B indicates, that for the former
orientation, the magnetic moments direction is closer to the propagation direction of the
incoming beam, than for −B. An important general conclusion from the experimental
MXSW signals is, that a clear and pronounced variation of the XMCD signal in the
reflection domain was observed. In all the cases the absolute signal increased in the
angular region (for Υ−B only slightly), where the impact of the standing wave on the
observed signal is expected.

The impact of experimental artefacts can be investigated further by calculating a
difference and a sum of the MXSW signals Υ presented in figure 8.7 [178]. The sum of
the signals should be in ideal case equal zero, and the difference should give a measure
of the XMCD signal. Using this method, one makes use of all four fluorescence yields
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Figure 8.7: MXSW signals for the Pt3Co crystal, calculated in all possible ways using fluo-
rescence yields for four combinations of helicity and magnetic field orientation. The expected
symmetry can be noticed for the signals calculated based on the field reversal (green and blue
dots). A clear variation in the reflection domain was observed.

for calculating the XMCD signal and from the sum obtains an information about the
experimental artefacts. The effect of the subtraction is shown in figure 8.8. It can be
regarded as the measure of the MXSW signal obtained from the experiment on Pt3Co,
thus constituting the main experimental result of this investigation. The measure of
the experimental artefacts, related to the switching of polarisation and reversal of the
magnetisation that is the sum of the XMCD signals presented in figure 8.7, is shown in
figure 8.9.

0.016

0.018

0.02

0.022

0.024

0
0.2
0.4
0.6

−3 −2 −1 0 1 2 3

Υ

Pt3Co (111) at E = 11.566 keV, γ = −1

Υ+B −Υ−B =
= ΥL −ΥR

I
a h

∆Θ [mrad]

Figure 8.8: The difference of the MXSW signals for Pt3Co presented in figure 8.7 that is
Υ+B −Υ−B and ΥL −ΥR. The signal calculated in this way can be regarded as a measure
of the artefact-free XMCD, since the use of all four fluorescence yields is made for its calculation
and via subtraction the influence of imperfections of the phase plate and electromagnet system
is discarded.
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Figure 8.9: The sum of the MXSW signals for Pt3Co presented in figure 8.7 that is Υ+B + Υ−B
and ΥL + ΥR. The signal calculated in this way can be regarded as a measure of the artefacts
related to the switching of polarisation and reorientation of the magnetic field.

As it can be seen in figure 8.9, the signal being a sum of the XMCD signals calculated
for fixed polarisation (that is ΥL and ΥR) is almost equal to zero, what indicates, that
the polarisation switching functions in the desired way. The artefact related to the mag-
netisation switching has a finite value and exhibits a variation in the reflection domain.
Actually, this fact also supports the finding of the MXSW theory. The most probable
reason for the existence of this artefact is incomplete reversal of the platinum magnetic
moment directions. This means, that for the +B and −B settings, the magnetic moments
are not lying on the same line having only opposite orientations, but there is an angle
between the directions corresponding to +B and −B. A dependence of the MXSW signal
on the angle between h and m was observed in the simulation results (see section 5.1.2,
figure 5.9). What remains here as an artefact is most likely related to the difference in
MXSW signals for the magnetic moment directions occurring for the situations depicted
as +B and −B.

8.3 Discussion

The comparison between the experimental MXSW signal (obtained as subtraction of
the initial MXSW signals shown in figure 8.7) and the prediction based on the theory
for the situation of magnetic moment aligned in the reflecting lattice planes is shown in
figure 8.10. A clear discrepancy between the data and theoretical prediction exists for the
reflection region. Even though the theoretical curve exhibits also a slight increase on the
high angular side of the reflection domain, it is smaller than the experimentally observed
one. The decrease on the low angular side is not observed.

There might be several sources of the observed discrepancy between the experimental
data and theoretical prediction. First of all the asymmetry observed already in the fluo-
rescence yields background levels (figure 8.4) may indicate a lack of full control over the
magnetisation of the sample. This hypothesis is also supported by the non-vanishing arte-
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Figure 8.10: Comparison between the experimental MXSW signal for the Pt3Co crystal and the
theoretical curve calculated assuming the magnetic moments being aligned in the (111) planes.
The theoretical data was normalised to the background level of the experimental MXSW signal.
A discrepancy might be caused by the lack of full control over the orientations of the magnetic
moments and the imperfection of the crystal.

fact shown in figure 8.9, observed only for the sum Υ+B + Υ−B. On the other hand, the
hysteresis curve of the investigated sample (figure E.1) seem to indicate, that the value of
the used magnetic field was sufficient to remagnetise the crystal. However, the magnetic
measurement was performed at lower temperature (220 K) than the MXSW experiment
(room temperature) and the magnetic properties of the crystal might differ between those
conditions. It was reported for thin films of a Pt72Co28 alloy, that a stronger magnetic
field is needed to reach saturation magnetisation at elevated temperatures [179].

Even though it was possible to perform the MXSW experiment using the reflection
from one grain of the sample, what corresponds to the situation of using a single crystal,
the crystal exhibits a mosaic spread, what can be seen by comparison of experimental
reflectivity and the theoretical curve (figure 8.1). The fact that the mosaicity leads to
smearing of the effects in the reflection domain predicted by the dynamical theory of
x-ray diffraction may limit the applicability of the established MXSW theory (based
solely on the dynamical theory) to such imperfect crystals. On the other hand, using the
convolution with Lorentzian function accounting for the mosaic spread, a good agreement
between experimental fluorescence yields and theoretical curves was achieved (figure 8.6).
This would indicate, that at least qualitatively, in the sense of correct functional behaviour
(reproduction of minima and maxima), the MXSW theory can give good predictions also
for imperfect crystals.

As it was mentioned in the introduction to section 5.1, the chemical order in the
platinum-cobalt alloy depends on the heat treatment of the sample. For the sample used
in the MXSW experiment, no information about the heat treatment is known. Given an
agreement between the theoretical curves calculated assuming a full chemical order and
experimental reflectivity, as well as fluorescence yields, it was assumed that the crystal is
in the ordered state. However, if deviations from the ideal order exist, that may influence
the MXSW signal, as the Pt atoms on the Co sites would give rise to its different angular
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dependence.
Summarising, the main result of the MXSW experiment on Pt3Co crystal is an ob-

served clear variation in the XMCD signal in the reflection domain. The signal is of a
magnetic origin, as it persists when fluorescence yields for all four configurations of the
helicity and magnetic field orientation are used. To investigate further the discrepancy
between the experimental MXSW signal and theoretical prediction for the chemically
ordered crystal with magnetic moments aligned in the reflecting lattice planes, a mea-
surement of the hysteresis curve at room temperature and a single crystal diffraction
experiment on the used sample could be made. The latter would allow to determine the
occupancy parameters for the nominal Pt and Co sites, which could be used then for
further theoretical simulations. The magnetic measurement would clarify, if the magnetic
field during the MXSW experiment was indeed sufficient to remagnetise the sample.

At the end it should be mentioned, that a similar experiment was performed by the
group of Jaouen [46]. The sample used was a nickel-platinum Ni90Pt10 alloy. It was
reported, that the sample was in chemically disordered state. The researchers performed
a standing wave experiment similar to the MXSW experiments discussed here, but no
theoretical analysis of the experimental data was reported due to the lack of a theory for
MXSW. The result obtained for the nickel-platinum alloy MXSW scan at the platinum
L3 absorption edge is very similar to the one reported here. Also an increase in the
absolute value of the XMCD signal in the reflection domain was observed. The experiment
was also performed by reversing both the magnetic field direction and the helicity of the
incoming beam, though the magnetic field was aligned along the incoming beam direction.
The interesting fact, that a similar result for the similar system as investigated here,
but in disordered state, was reported, requires some further investigation. For example,
simulations modelling the disorder using for example supercells or averaging the results
for several randomly generated fillings of the basic unit cell could give insight into the
dependence of the MXSW signal on the chemical order of the discussed alloys.



Chapter 9

Experiment on the YIG crystal

It was mentioned already several times in the text, and shown very clearly in chap-
ter 5, devoted to computer simulations, that the MXSW method gives particularly useful
information for systems, where the magnetic ions occupy some non-equivalent positions
and an antiferromagnetic coupling exists between such magnetic sublattices. Therefore,
the systems with ferrimagnetic or antiferromagnetic ordering are interesting candidates
for the studies using the MXSW method.

In the part devoted to simulations three magnetic crystals exhibiting magnetic sublat-
tices in their structure were reported: magnetite, yttrium-iron-garnet (YIG) and hematite.
The crystals of magnetite and hematite are usually not of the highest quality (what was
also checked for some samples using the standard XSW technique), but as mentioned al-
ready in section 5.3, very good YIG crystals are available. Therefore, the second MXSW
experiment, aiming at showing the unique site selectivity of the technique, was performed
using a YIG sample.

This chapter presents the experimental details and results of the MXSW experiment
on YIG. It is organised in the same way as the one describing the experiment on platinum-
cobalt alloy. Now the details about the experimental data analysis are omitted, since they
were already explained in section 8.2.

9.1 Experimental details

The single crystal of YIG used as a sample for the MXSW experiment was bought
from the MTI Corporation [180]. The sample is in the form of a disk with diameter of
5 mm and thickness of 0.5 mm. The crystal was grown using the floating zone growth
method. It is one side polished and the surface orientation is (111). The details about
the structure and properties of YIG are given in section 5.3.

The MXSW experiment on YIG was performed at the P09 experimental station from
1.10.2021 to 6.10.2021. Just like in the case of the experiment on Pt3Co, the sample
was glued on the holder compatible with the electromagnet system and aligned with
respect to the incoming beam. Also the same experimental system was used. The sample
was magnetised in the direction parallel to the sample surface and lying in the vertical
scattering plane. In this experiment, the electromagnet provided the magnetic field of
175 mT measured at the surface of the sample, the same for both orientations of the

137
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field, what was determined using a Hall probe. As reported in [181], this field should be
sufficient to reach saturation magnetisation of YIG.

The experiment was performed for an energy value in the vicinity of the iron K ab-
sorption edge (nominally E = 7.112 keV). An energy spectrum around the nominal value
was performed to choose an appropriate energy value for actual scans. For the energy
spectrum measurement, the sample was aligned away from Bragg reflections. A simple
measure of energy spectrum was obtained by summing the number of counts from the
SDD detector for the channels corresponding to Fe Kα fluorescence line. The spectrum
for linear polarisation was only recorded, since due to the weakness of the XMCD effect
at the K absorption edge, the data collection time needed to observe the difference in
absorption would be long. The obtained energy spectrum is presented in appendix E.2,
in figure E.2. Following the report showing the XMCD spectrum from YIG [182], the
maximum of the effect is expected to be observed in the vicinity of the pre-edge peak.
Therefore, an energy of 7.1135 keV was chosen for the actual MXSW experiment. Some
of the MXSW scans were performed also at an energy away from the absorption edge
(7.14 keV), in order to ensure that the observed difference in spectra is indeed caused
by the XMCD effect. The sample was oriented on the diffractometer in the same way as
described in chapter 8. For the actual MXSW scans the sample was oriented so that the
(444) reflection was excited. Even though the sample is of very good quality, it consists of
several slightly misoriented grains. Therefore, the beam slits and ϕ angle were adjusted
such, that only one grain contributed significantly to the observed reflected intensity. The
opening of the slits for the MXSW scans was 120×120 µm2.

The number of counts in the SDD detector, which was mounted above the sample
surface (α = π/2), was optimised by insertion of attenuation foils into the incoming
beam, such that no significant number of pile-up events was seen in the fluorescence spec-
trum. Accidentally, this procedure was performed when the sample was at the position
corresponding to the maximum of reflectivity, what also implies a significant decrease of
fluorescence emission due to the extinction effect. Therefore, away from the reflection
domain, the number of counts received by the detector was too high, what also led to an
increase of background events. For the MXSW scans, the helicity of the incoming beam
was changed with the frequency of 23 Hz using the fast flipping schema. The sample was
in the external magnetic field and the orientation of the magnetic field was changed after
each full Θ-scan. Some scans without the external magnetic field were performed as well,
since the MXSW experiment without perturbation of the spontaneous magnetic structure
is the ultimate aim.

The scans having 200 steps were performed around the Θ value of 26.0626◦ by changing
it until ±0.05◦ in steps of 1.8′′. The data was collected for 10 s at each step of the scan.
Due to the weakness of the XMCD signal at the K absorption edge, only the scans for
one reflection were performed in order to obtain data with small statistical uncertainties.
In total 82 with and 22 scans without the external magnetic field at the absorption edge
were performed. Additionally 22 scans in the magnetic field at the energy well above the
absorption edge were conducted.
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9.2 Results

9.2.1 Raw experimental data

From the inspection of the beam monitor signal (from PIPS diodes) it became appar-
ent, that the beam during the experiment was rather unstable. For some scans the beam
intensity variations exceeded 20%. Scans where the variations were higher than 10% were
rejected from further analysis. For the scans with magnetic field at the absorption edge 60
scans for both field orientations were used. For these scans an average degree of circular
polarisation was estimated to be 95.7%.

A single fluorescence spectrum corresponding to one step of the angular scan and one
configuration of helicity of the beam and magnetic field orientation is shown in figure 9.1.
The spectra obtained from the detector were first normalised by the average (between σ-
and π-polarisation components) beam monitor signal and summed for all the scans, where
the beam intensity variations were lower than 10%. The procedure does not fully remove
the variations in the yield caused by the fluctuations of the incoming beam intensity,
what was observed by comparing the fluorescence yield for one scan before and after
normalisation. This fact might be caused by the non-linear behaviour of the PIPS diodes.
This was not observed in the experiment on Pt3Co single crystal, since in that case the
beam was very stable, so the overall influence of the instabilities on the fluorescence yield
was minor. In the case of YIG, the normalisation procedure still allowed to reduce the
influence of instabilities on the final data, so it was used.
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Figure 9.1: Single fluorescence spectrum for YIG crystal, recorded at 7.1135 keV. It corresponds
to a single angular position in the Θ-scan, one helicity and one magnetic field orientation. The
experimental data was fitted using a combination of Gaussian functions for the spectral lines.
The background was not fitted due to its complicated shape. The energy scale was obtained
by the comparison of lines positions with nominal values for corresponding fluorescence decay
channels.

The fluorescence spectrum consists of two strong lines — the iron Kα fluorescence line
and the elastic scattering peak with underlying iron Kβ fluorescence line (E = 7.058 keV).
Additionally, a weak argon Kα fluorescence line being an effect of air scattering is observed
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for an energy approximately equal to 2.95 keV (not shown in the graph). In contrary to
the data from the experiment on Pt3Co, in this case the background was not fitted due
to its complicated shape caused by a too high number of counts in the SDD detector. It
was observed for Pt3Co, that the inclusion of the background in the fitting procedure,
changes the resulting fluorescence yields very slightly, only within the noise level. Since
only the spectral lines were fitted during the fitting procedure, the agreement between the
data and fitted function was worse than in the case of Pt3Co. This directly led to high
uncertainties of the Gaussian function parameters. This translated to high uncertainties
of the fluorescence yield and MXSW signals, which by comparison with the variations in
the experimental data were found not too reflect the actual experimental uncertainties.
Therefore, the latter were estimated based on the Poisson statistics (square root of number
of measured photons).

The collection of the experimental results obtained for the YIG crystal for the energy
of 7.1135 keV and in a magnetic field is shown in figure 9.2. The first graph shows an
experimental reflected beam intensity compared with theoretical function for the ideal
YIG crystal and the one obtained after convolution with the reflectivity of the double
crystal monochromator. The width of the rocking curve for the (111) Si reflection is
comparable to the width of the experimental curve. The comparison between the data
(red dots) and theoretical function (green) shows, that the crystal was of a very good
quality. No convolution with Lorentzian or Gaussian function was needed to achieve a
good agreement between the simulated reflectivity curve and the experimental data.

The second graph presents the fluorescence yields obtained for all four configurations
of helicity and magnetic field orientation. Due to the instabilities of the incoming beam
intensity, the noise in the signal is higher as in the case of the data for the Pt3Co crystal
(figure 8.4). In contrary to the experiment on Pt3Co, no expected symmetry between the
yields is observed. It would be expected, that the signals for configurations (LHP,+B),
(RHP,−B) and (LHP,−B), (RHP,+B) coincide. Instead, the signals for one helicity
(LHP) are stronger than the ones for the other one (RHP). An additional feature is a
decrease in the yield observed away from the reflection domain, on the low angular side.
It is particularly strong for one helicity (RHP). This feature might be an effect of another
reflection excited at once with (444) one (three-beam-case). This hypothesis is supported
by the fact, that an increase is observed in the argon fluorescence yield for the same angular
range (see figure E.3 in appendix E.3). The fact, that the artefact on the low angular side
is stronger for one helicity, might be related to the phase plate itself. Probably due to
the slight change of the position of the diamond crystal when the helicity is changed, the
direction of the beam is also slightly different. Then, for one helicity, the direction of the
beam is closer to exact Bragg condition for this other reflection manifesting itself on the
low angular side in the fluorescence yield. The source of the observed feature should be
investigated further experimentally, by performing an azimuthal scan around the h(444)

vector.
The MXSW signal calculated based on equation (8.2) is shown on the bottom of

figure 9.2. It is rather noisy and in the case of the points calculated as differences of the
yields for different helicities (Υ±B) does not reverse after the reversal of the magnetic field.
This is the case for the other pair of MXSW signals (ΥL/R), what again may indicate a
proper functioning of the phase plate. Those signals are very noisy, but a slight decrease
in the signal may be observed in the reflection domain. Since the increase in the signal
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Figure 9.2: A collection of experimental results for YIG crystal. From the top: reflectivity,
fluorescence yields and MXSW signal. The experimental reflected beam intensity (red dots) is
compared with the theoretical function for ideal YIG crystal (blue line) and the one convolved
with the reflectivity of double crystal monochromator (green line). The experimental data was
normalised to the maximum of the green curve. The fluorescence yields are shown for all four
configurations of the magnetic field and helicity. The last graph shows the MXSW signals
calculated based on equation (8.2). For discussion see the text.

observed for Υ±B (red and yellow points) is not symmetric with respect to the magnetic
field reversal, it is suspected, that it is not of the magnetic origin. The shape of the Υ±B
might be also explained by the slight change of the direction of incoming beam during
the flipping of the phase plate. A slightly different incidence angle may also for the (444)
reflection lead to a higher reflectivity and thus also stronger extinction effect or standing
wave intensity, what gives greater decrease in the fluorescence yield. This leads then to
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the maximum observed in the Υ±B signals in the reflection domain.

9.2.2 Comparison with simulations

The experiment was performed in an external magnetic field, since, as apparent from
figure 9.2, under the encountered experimental conditions, it is impossible to evaluate the
XMCD signal based only on the difference in cross-sections for opposite helicities (see the
signals Υ±B). It was reported by Rodic et al. [143], that in an external magnetic field,
the structure of YIG is not the same as the spontaneous one without external B. In
particular, the antiferromagnetic coupling between the magnetic sublattices is suppressed
by the external field and all the magnetic moments align along the field lines. Such
a situation was assumed for calculating the theoretical fluorescence yield and MXSW
signal.
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Figure 9.3: Simulated Fe fluorescence yield for YIG for the experimental setting. The magnetic
moments were aligned in the reflecting lattice planes and directed along the external magnetic
field. The yields were normalised by the background level (away from the reflection domain) of
the yield for the linear polarisation (that is without the XMCD effect). It was assumed for the
calculation, that photoelectron polarisation Πe = 0.01.

The simulated fluorescence yield for YIG is shown in figure 9.3. For the simulations
the photoelectron polarisation in the absorption process was assumed to be Πs

e = 0.01.
One can notice, that the experimental data shown in figure 9.2 (middle graph) exhibits
similar behaviour as the simulated curves. A clear discrepancy on the low angular side
might be caused by the second reflection, excited at the angular position very close to the
investigated (444) one. This artefact makes comparison between the simulations and the
experimental functions difficult.

9.2.3 Artefact-free MXSW signal

A further analysis of the MXSW signals is possible using the same approach as de-
scribed in section 8.2.4, that is by calculating the difference and the sum of the signals
plotted in figure 9.2 (bottom part). The difference of the signals can be regarded as an
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artefact-free XMCD signal and is shown in figure 9.4. The statistical variations of the sig-
nal in the background level are relatively high, what owes to the weakness of the XMCD
signal at the K absorption edge. A clear decrease of the XMCD in the reflection domain
can be observed.
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Figure 9.4: The difference of the MXSW signals for YIG presented in figure 9.2, that is
Υ+B −Υ−B and ΥL −ΥR. The signal calculated in this way can be regarded as a measure
of the artefact-free XMCD, since the use of all four fluorescence yields is made for its calculation
and via subtraction the influence of differences in the signal of non-magnetic origin is discarded.
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Figure 9.5: The sum of the MXSW signals for YIG presented in figure 9.2, that is Υ+B + Υ−B
and ΥL + ΥR. The signal calculated in this way can be regarded as a measure of the artefacts
related to the switching of polarisation and reorientation of the magnetic field.

The sum of the individual MXSW signals Υ, in the ideal case equal to zero, is plotted
in figure 9.5. The sum ΥL + ΥR is as expected close to zero over the whole angular
range. That is related to the symmetry between ΥL and ΥR observed already in figure 9.2
(bottom). A strong asymmetric (with respect to field reversal) artefact present in the
Υ±B signal persists, when the sum Υ+B + Υ−B is calculated, and can be seen clearly in



144 CHAPTER 9. EXPERIMENT ON THE YIG CRYSTAL

figure 9.5. As mentioned already, it is expected, that the artefact is related to a second
reflection excited on the lower angular side of the (444) reflection domain. The fact that
the artefact is stronger for one helicity might be related to the slight change of the direction
of the incoming beam by the phase plate. The underlying reasons for the appearance of
the artefact should be investigated further experimentally.

9.2.4 Scans without the external magnetic field

Even though the feature in the fluorescence yields being stronger for one helicity
indicates, that evaluation of the XMCD signal based only on helicity flipping is not
feasible, the scans recorded without an external magnetic field were also analysed. 22 scans
without magnetic field were recorded. They were recorded in between the scans with
magnetic field, such that 11 were recorded after the +B setting and 11 after the −B one.
No difference in the recorded data was observed between those two sets. An interesting
first observation with respect to the scans with external magnetic field is a slight shift
of the reflection domain angular position between the scans with and without magnetic
field, what might be caused by magnetostriction (see figure E.4 in appendix E.4).
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Figure 9.6: The MXSW signal for a YIG crystal, (444) reflection, calculated for the scans without
external magnetic field. Of course the signal was calculated as a difference of fluorescence yields
for opposite helicities. The shape is similar as the Υ±B shown in figure 9.2.

The MXSW signal calculated from the data for the scans without external magnetic
field is shown in figure 9.6. The signal was calculated as the difference in fluorescence
yields for different helicities, that is Υ0 = (yL − yR)/(yL + yR). The shape of the signal is
similar to the Υ±B one, shown in figure 9.2. Also the variation on the lower angular side
of the reflection domain was observed. Since the presented analysis, based on calculating
the difference and sum of the XMCD signals Υ (ΥL ± ΥR, Υ+B ± Υ−B) showed that
this variation and the prominent increase in the reflection domain are of non-magnetic
origin, further analysis of the out-of-field data is not possible in this case. In the future,
after further investigation of the source of artefacts, the MXSW experiments without the
external magnetic field could provide information about the spontaneous arrangement of
the magnetic moment in crystals.
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9.2.5 Control scans away from the absorption edge

In order to check that the observed difference in fluorescence yields is caused by the
XMCD effect, 22 scans were recorded for the energy well above the iron K absorption
edge, that is for E = 7.14 keV. An external magnetic field was used, as well as the helicity
was reversed using the fast flipping schema. 11 scans for one orientation of the magnetic
field and 11 for the other were performed. The data was analysed using the usual routine
and the result is presented in figure 9.7, where the sum and difference of individual MXSW
signals ΥL/R and Υ±B are presented.
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Figure 9.7: The sum and difference of the MXSW signals ΥL/R and Υ±B for a YIG crystal,
energy above the K absorption edge (E = 7.14 keV). As expected, the difference Υ+B − Υ−B
and ΥL −ΥR representing the XMCD signal is zero within the experimental uncertainty, since
the energy is too far from the energy of the 1s→4p transition. For the discussion regarding the
artefacts (sum signals) see the text.

These results are fully in agreement with expectations. The difference signals Υ+B −
Υ−B and ΥL − ΥR, being a measure of the XMCD signal, are oscillating around zero
within the experimental uncertainties. This means, that for this energy away from the
transition energy probed at the K absorption edge no XMCD effect appears, what was
expected. In order to observe the effect, the energy has to match the energy difference
between the atomic levels, what was not the case for the energy used for these scans.
The data ensures that the artefact-free MXSW signal presented in figure 9.4 is indeed the
XMCD signal, and the observed variation is the one caused by the impact of the standing
wavefield.

What is remarkable, also in this case a sum signal Υ+B +Υ−B is non-zero and exhibits
an increase in the reflection domain. The feature present earlier on the low angular side
(see figure 9.5) does not appear for this energy, what supports the hypothesis that it was
a manifestation of another reflection. Apparently, at an energy equal to 7.14 keV the
diffraction condition is not fulfilled for this reflection, so it is not excited. The increase in
the reflection domain can be explained as earlier — for one helicity the direction of the
incoming beam is slightly different, what leads to somewhat different standing wave and
extinction angular dependence for LHP and RHP. The other sum, ΥL + ΥR is related to
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the polarisation switching. It oscillates around zero, as expected, and exhibits significant
variations what is related to the beam instabilities. The impact of the latter on the shape
of the other artefact is minor, since the helicity reversal is performed multiple times during
one scan, and the magnetic field is reversed only after the full scan. That is why the beam
instabilities persists in the ΥL/R signals, what does not hold true for Υ±B.

9.3 Discussion

Given the arguments form section 9.2.5, the data obtained after subtraction of the sig-
nals ΥL/R or Υ±B can be regarded as a true MXSW signal, since the non-magnetic contri-
butions are discarded when the difference is calculated the second time. The comparison
of such defined experimental data with theoretical prediction is presented in figure 9.8.
The theoretical curve was calculated assuming that in an external magnetic field the an-
tiferromagnetic coupling between the sublattices in the YIG structure is destroyed and
thus all the magnetic moments are aligned along the magnetic field lines. The correction
for the imaginary part of the wavevector was introduced, as well as the absorption of the
emitted fluorescence on the way to the detector was taken into account.
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Figure 9.8: Comparison between the experimental MXSW signal for the YIG crystal and the
theoretical curve calculated assuming the magnetic moments being aligned along the magnetic
field in the (444) planes. The theoretical data was normalised to the background level of the
experimental MXSW signal.

From the comparison between the experimental data and theoretical curve, one can see
that the general trend predicted by the MXSW theory was reproduced practically. Also
theoretically mainly a decrease of the XMCD signal in the reflection domain is predicted,
which is related only to the variations of the wavefield polarisation and propagation direc-
tion (as the reflected wave is excited). In particular, because of utilisation of a magnetic
field, no variations related to the existence of magnetic sublattices are predicted to occur.
The magnetic order is changed by the external field, and in order to observe the signal
coming from the spontaneous magnetic structure (what would be the most interesting),
ideally only the helicity flipping should be employed to determine the XMCD signal.
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The theoretical curve is slightly asymmetric when approaching the background, it is
higher on the high angular side. This feature was reproduced experimentally. The increase
in the middle of the reflection domain, observed in the theoretical data, is not seen in the
experimental MXSW signal. This might be related to the sharpness of this feature, what
causes that it was not resolved due to the broadness of the monochromator reflectivity and
finite beam divergence. Another possible explanation is the fact, that for the absorption
correction for the wavevector, the difference in absorption caused by the XMCD effect was
neglected. The simulations aiming at estimating an impact of such an assumption on the
description of the scattering process (chapter 6) were performed without the absorption
correction for the wavevector. In the future, the simulations should be extended for this
case in order to check, if the negligence of the impact of the XMCD effect also on this
aspect of the scattering process is justified.

As made apparent over the presentation of the results, the analysis of the data revealed
that there is room for the improvement of the experimental procedure in order to obtain
more valuable data in the future. First of all, the impact of another reflection observed
on the low angular side of the (444) reflection domain can be removed by performing an
azimuthal scan and choosing another value of the ϕ diffractometer angle for the MXSW
scans. From the shape of the artefacts calculated as Υ+B +Υ−B it became apparent, that
the phase plate may slightly change the direction of the incoming beam, what changes
slightly the diffraction conditions. This feature should be investigated further in details.
In order to understand it better, a separate reflected beam intensity should be recorded
for LHP and RHP, the same as it is done for the fluorescence signal from SDD detector.
High beam instability during the entire experiment had a major impact on the quality of
the presented data.

During the redaction of the text of this dissertation, a report on the MXSW experi-
ment on YIG of the group of Kawata, included in a conference proceedings, was found [47].
This publication constitutes the first record (and the only so clear one before this work) of
the idea of using the standing wave to investigate the magnetic structure of a material at
the atomic level. The authors performed smiliar experiment as reported in this chapter.
The helicity of incoming radiation was not changed during the experiment and the XMCD
signal was evaluated based on the differences in the absorption cross-section between two
opposite magnetic field orientations. The researchers assumed, that the magnetic mo-
ments are aligned along the external magnetic field lines, and that the antiferromagnetic
coupling between the magnetic sublattices of YIG is preserved. This assumption seem
not to be in agreement with the report of Rodic et al. [143], where it is pointed out that
the ferrimagnetic ordering does not persists in an external magnetic field of 0.2 T. On the
other hand, the value of the magnetic field used by the group of Kawata is not mentioned
in their report. The data obtained by the authors is of very good quality. The data-set
obtained for the energy corresponding to the pre-edge feature (the same as used in this
work) seem to agree with the theoretical prediction based on the theory presented here,
assuming the ferrimagnetic arrangement of magnetic moments confined in the reflecting
lattice planes. The possibility of aligning the magnetic moments in the reflecting lattice
planes, and reversing their orientation keeping the antiferromagnetic coupling between
the sublattices should be checked by recording MXSW scans for different strengths of the
magnetic field and following the changes in the shape of the signal.

The theoretical considerations presented in the publication of Kawata et al. are dif-
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ferent than the ones presented here. Kawata assumed a proportionality between the
intensity of the standing wave calculated for the σ-polarised incoming wave and the ab-
sorption cross-section, allowing an unknown difference caused by the XMCD effect. This
impact of the XMCD effect was then estimated from the fitting of the model function to
the experimental data, using additionally the convolution with a Voigt function. Thus,
in this approach the proper calculation of the cross-section for the wavefield excited by
a circularly polarised incoming wave, based on the time-dependent perturbation theory
is not included. As shown in the current work, the effects related to the changes of the
wavefield polarisation in the reflection domain play a major role, especially if no magnetic
sublattices are present in the structure. Also, only a description based on quantum me-
chanics can give a rigorous basis for the MXSW technique, as the phenomena of magnetic
dichroism cannot be explained classically.

Summarising, the result of the MXSW experiment on YIG showed that the theoreti-
cal predictions based on the established MXSW theory are in relatively good agreement
with the experimental data. The experiment provided a number of hints for the further
investigation using the method. It showed, that in order to observe the signal coming
from the magnetic sublattices, measurements without an external magnetic field are nec-
essary. Alternatively, as the report of Kawata seems to indicate, a measurement in weaker
magnetic field may also give the desired result.



Summary and conclusions

Within the scope of this thesis, the foundations for the new direct method for in-
vestigation of the magnetic structures of the crystalline materials at the atomic level,
called magnetic x-ray standing waves, were established. In particular a firm and rigor-
ous theoretical treatment of the subject was developed based on the dynamical theory
of diffraction and time-dependent perturbation theory. The MXSW theory was used to
perform simulations of the expected experimental functions for a number of magnetic
systems, including ferrimagnets and antiferromagnets. Two experimental realisations of
the MXSW method were reported. They provided valuable results indicating the feasi-
bility of this technique and numerous hints laying foundations for further experimental
development. It was shown, that the method can be applied also to the antiferromagnetic
systems, what constitutes a complete novelty in the field of XMCD spectroscopy. The
results prove, that the new technique is a valuable tool for investigation of magnetic struc-
tures of crystalline materials, providing the information directly, other than the methods
used for this purpose so far.

Regarding the theoretical part, this is the first time when an exhaustive theoretical
framework treating the subject of the absorption of x-ray standing wave in the magne-
tised medium is reported. The dynamical theory of diffraction was used, as it provides an
accurate description of the scattering process in the crystal lattice, including the ampli-
tudes and phases of the waves in the reflection domain. The result of this part provides
a form of the EM wave inside the crystal in dependence on the scattering angle, for arbi-
trary polarisation of the incoming wave and including the effects of anomalous absorption
and extinction (related to the imaginary part of the wavevector). Since an absorption of
photon by the atom cannot be properly described within the classical theory, the form of
the electromagnetic field obtained from the dynamical theory was used in the framework
of time-dependent perturbation theory to calculate the absorption cross-section. The
two-step single-electron model was presented as the theoretical picture explaining x-ray
magnetic circular dichroism rigorously for the L2,3 absorption edges. A description of the
XMCD effect was obtained for an arbitrarily polarised single plane EM wave. The same
model was used to treat the absorption phenomena under the XSW regime, that is the
MXSW. The formalism yielded a dependence of the traditional XMCD signal on the scat-
tering angle, that is the MXSW signal. The signal for several magnetic atoms in the unit
cell with arbitrary orientations of the magnetic moments was evaluated. It was shown
that such signal depends directly on the magnitudes and orientations of the magnetic mo-
ments, as well as positions of the magnetic atoms. A new quantity — magnetic standing
wave structure factor — was defined in analogy to the standing wave structure factor
used in standard XSW technique. The formula for the MXSW signal is fully general, it
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accounts for polarisation of the incoming beam and the effects related to the complex
wavevector. Even though the used quantum model is strictly valid for the L2,3 absorption
edges only, an argument based on the analysis of the changes of wavefield polarisation
during the rocking scan was given to justify the applicability of the results to other cases
as well.

An interesting new result was obtained when comparing the XMCD signals under
the XSW regime, calculated as the difference between the absorption cross-sections for
opposite magnetic moment orientations and while flipping the helicity of the incoming
beam. It is a known fact, also shown here rigorously, that the signals calculated in this
two ways coincide in the standard XMCD spectroscopy, that is when a single plane wave
is absorbed. On the other hand, it was observed, that those two signals do not coincide
when the absorption of the standing wave is considered. Additionally, the theoretical
considerations yielded, that the MXSW signal calculated based on opposite magnetic
moment orientation can be observed also for linearly (π-, or mixed π- and σ-) polarised
wave, and a magnetic moment perpendicular to the scattering plane. The reason for
these peculiarities lies in the phase changes in the reflection domain, and in particular the
phase difference between the reflected and refracted π-components of the wavefield coming
from the complex amplitude ratio. It should be noted, that this result was obtained
within the electric dipole approximation, which neglects the propagation of the waves.
An experimental verification of this finding can be performed by determining the MXSW
signal for the π-polarised incoming wave and the magnetisation direction perpendicular
to the scattering plane.

For the development of the MXSW theory a semi-classical approach was used, that
is the scattering was considered within the classical diffraction theory based on Maxwell
equations, whereas only the absorption was considered within the quantum physics. This
means, that the XMCD (and thus also MXSW) signal was evaluated for the wavefield cal-
culated neglecting the effects of magnetic dichroism on the scattering process itself. The
impact of the difference in absorption depending on the helicity of the incoming beam and
magnetic state of the crystal on the diffraction process was estimated using a numerical
iterative algorithm and was found to be generally small. This justifies the adopted theo-
retical framework, where the scattering and absorption phenomena are treated separately.

The theory of the MXSW was first used to perform computer simulations, that is
calculate numerically the data for a number of chosen representative magnetic systems. A
simple ferromagnetic platinum-cobalt alloy Pt3Co was used to demonstrate the sensitivity
of the MXSW method to the position of magnetic ions and discuss the dependence of the
signal on the orientation of the magnetic moment. In this crystal all Pt and Co ions
are equivalent, so it was concluded, that even though the variation in the XMCD signal
exists also in this case, it is weak and does not provide additional information compared
to standard XMCD. The variation is related to the properties of the standing wave itself.
Pt3Co was also used to demonstrate the influence of the deviation of the incoming beam
polarisation from the circular one. It was shown based on simulation results, that for an
elliptically polarised beam the absolute value of the MXSW signal generally decreases, as
expected, but the shape of the function in the angular domain persists. Small deviations
from ideal circular polarisation expected in the experiment are anticipated not to have a
noticeable impact on the measured data. Finally, the influence of the absorption correction
accounting for the anomalous absorption, extinction and absorption of the secondary
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signal on the way to the detector was shown for the considered crystal.
After the discussion regarding the simplest case of magnetic ordering, the simulation

results for systems possessing magnetic sublattices were presented. Using magnetite as an
example, the power of the MXSW method to provide site selective magnetic information
was demonstrated. This crystal consists of two sublattices of iron ions, with antiferro-
magnetic coupling between them. Since half of the ions in one of the sublattices exhibits
different valence state and thus also different magnitude of the magnetic moment than
the rest of the iron atoms, the system is in total ferrimagnetic. This magnetic ordering
is reflected directly in the MXSW signal, which can thus be regarded as a footprint of
the magnetic structure of the crystal. For the reflections with appropriate periodicity, the
standing wave existing in the reflection domain increases the contribution of one sublattice
to the overall XMCD signal, at the same time lowering the impact of the other one. Due
to the movement of the nodes of the standing wave, for one angular side of the reflection
domain one sublattice dominates the XMCD signal, whereas on the other side, the other
one dominates. Obtained variations in the XMCD signal, that is the MXSW signal, are
characteristic of a given distribution of the magnetic ions in the lattice. This means, that
for an unknown structure, the MXSW signal can be used to obtain information about the
relative magnitudes and orientations of the magnetic moments directly. This is tightly
bound to the fact, that the MXSW signal is proportional to the magnetic standing wave
structure factor, both its modulus and phase. It was shown in the text for some hypothet-
ical arrangements of the magnetic moments in the magnetite structure, that any changes
of the natural magnetic ordering would be reflected in the MXSW signal. This proves,
that the new method can be used to track the changes in the magnetic ordering during
phase transitions or changes imposed by other external perturbations like magnetic fields.
Apart from magnetite, the simulation results were also presented for yttrium-iron-garnet
and hematite. The latter exhibits an antiferromagnetic ordering. Even though no XMCD
signal in the standard experimental geometry (one wave) can be observed for the antifer-
romagnetic system due to the zero net magnetisation, with the use of the standing wave
the destructive influence of one of the sublattices can be switched off at the same time
observing the magnetic effect coming from the other one. This makes observation of an
XMCD effect from antiferromagnets possible, what is a new perspective.

Like all experimental methods, also the MXSW technique can be used only for a
certain set of physical systems. A crystal lattice is needed to generate a standing wave,
so only crystalline systems, or thin films deposited on a crystalline substrates, can be
investigated. The mosaic spread of the crystal leads to smearing of the scattering effects
in the reflection domain, including the standing wave, so the crystals used should be of
good quality. Since the standing wave is generated by the atomic lattice, its periodicity is
linked to the periodicity of the atomic structure. Therefore, no useful information can be
obtained from the MXSW method for the magnetic structures exhibiting a higher period
than the dimensions of the atomic lattice cell. As mentioned in the paragraph before,
the MXSW method is ideal for studying ferri- and antiferromagnetic systems, as then the
position sensitivity granted by the standing wave can be fully exploited. The fact that
the energy of incoming x-rays for the MXSW has to be tuned to the absorption edge of
the magnetic atoms in the sample, imposes a further limitation on the set of potential
samples. The XMCD spectroscopy is usually performed at the L2,3 and M4,5 absorption
edges in 3d metals. At these energies it is impossible to excite any Bragg reflection, which
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could generate the needed standing wave. Therefore, the MXSW experiments can be
performed for systems containing 5d or 4f metals (L2,3 absorption edges). The 3d metals
can also be studied, but then the weak XMCD effect at the K absorption edge has to be
investigated.

Regarding the practical aspect of the method, it is similar to the standard XSW
technique. Instead of normally used linearly polarised radiation, one uses a circularly
polarised wave. The sample has to exhibit some magnetic properties. The absorption
cross-section, and thus also the XMCD signal, are evaluated based on measuring the
fluorescence radiation emitted by the sample. The actual experiment consists of angular
rocking scans around the position corresponding to the Bragg angle, during which at
each point the reflected beam intensity and full fluorescence spectrum are recorded. The
MXSW signal is evaluated based on the fluorescence yield for each helicity. Even though
full quantitative analysis yielding the absolute values of magnetic moments is not possible
based on the XMCD signal recorded at fixed energy (energy integrals are needed), it is
assumed that the MXSW signal reflects the relative changes in the magnetic moments
between the sublattices. In the standard XMCD method the sample is usually being
magnetised in an external magnetic field, whose orientation is changed in addition to
helicity flipping. This approach allows to discard the artefacts related to polarisation and
magnetisation switching from the XMCD signal and was also used in the experiments
reported here. On the other hand, the external magnetic field perturbs the spontaneous
magnetic ordering in the investigated sample, which is of the greatest interest. Therefore,
future MXSW experiments should be preferably performed without external magnetic
field.

The MXSW experiments reported were performed at the P09 beamline, PETRA III
synchrotron at DESY, Hamburg. The first experiment was performed on a Pt3Co single
crystal at the L3 absorption edge of platinum. Only scans for the (111) reflection were
performed and yielded a clear variation in the XMCD signal in the reflection domain,
what is the most important result of this particular investigation. The shape of the signal
is the same as the one obtained by Jaouen et al. [46] for a similar system. The second
experiment was performed on a YIG single crystal, as this is a ferrimagnetic system
exhibiting magnetic sublattices, thus being ideal for the investigations using the new
MXSW method. The superior quality of the crystal yielded a significant variation in the
XMCD signal in the scans around the (444) reflection, despite the weakness of the effect
at the K absorption edge of iron. Since the experiment was performed with the sample
kept in the external magnetic field, whose orientation was reversed after each full angular
scan, the spontaneous ferrimagnetic ordering in YIG did not persist. Instead, all the
magnetic moments were aligned along the magnetic field lines, what is confirmed by the
comparison between the experimental data and simulation result calculated based on this
assumption. Already this result allows to conclude, that the MXSW theory developed
within the scope of this work reproduces the experimental results.

Summarising, firm foundations of the new direct, atomically resolved method for mag-
netic structure investigations were developed. The theory allowed predictions of two new
interesting phenomena — the possibility of the observation of the XMCD signal from the
antiferromagnets and induction of circular dichroism by the π-polarised incoming wave
under the x-ray standing wave regime. Via the simulations and experimental work it was
shown, that the technique can be used for determination of magnetic moment arrange-
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ments in crystals and thin films.
Further work on the theory of MXSW is planned. The ultimate aim is the development

of a theory, in which scattering and absorption phenomena would be treated together.
This would ensure a rigorous description of the influence of the XMCD effect on the
scattering process. One can mention two existing approaches to the subject of dynamical
scattering described using non-relativistic quantum mechanics [57–59] and quantum field
theory [183]. They can be potentially used for further work on the MXSW theory.

Regarding further experimental development of the method, a second experiment on
the YIG crystal is planned to fully explain the observed experimental artefacts. Also
the MXSW scans at several energies in the vicinity of the absorption edge should be
performed to check the assumption about the proportionality of the magnetic moment
to the XMCD signal measured at fixed energy. Further on, an experiment without an
external magnetic field should allow to obtain data showing the ferrimagnetic ordering of
a crystal. As a next step, an experiment on an antiferromagnetic system (hematite) is
also foreseen. This will be the very first observation of the magnetic dichroism effect in
an antiferromagnet, made possible due to the utilisation of the standing wave.

Apart from the experiments on bulk crystals, an investigation of a thin film of double
perovskite (DP) Sr2CrWO6 grown on SrTiO3 is planned. Since the properties of the thin
films are often different compared to their bulk counterparts, the magnetic structure may
also vary. Sr2CrWO6 was reported to show the highest magnetoresistance from the whole
DP family, higher by two orders of magnitude at low temperatures than other DPs [184].
Another interesting property of the thin film is, that it shows a significantly increased
Curie temperature (above 500 K) compared to bulk [185]. Both the ferrimagnetic and
half-metalic properties exhibited well above room temperature open up a possibility for
application in spintronics. The magnetic structure of thin crystals is not easily accessible
using neutron diffraction, which is traditionally utilised to study spatial arrangement
of the magnetic moments. This is due to the weak interaction of the neutrons with
matter, and the small beam fluxes compared to x-ray sources. In the case of Sr2CrWO6

it was stressed that the knowledge of the magnetic moment induced on the non-magnetic
site (W in this case), is crucial for understanding the nature of magnetic exchange in
DP compounds [186]. Even though the moment was already determined for powder
samples [186], no investigation of thin films was reported so far.

In further perspective, the MXSW method can be applied to other thin films, includ-
ing the ones grown from materials exhibiting magnetic sublattices, like magnetite. The
orientation of the magnetic moments in magnetite thin film was reported to be different
as in the bulk crystal [138]. Such fact would be reflected in the MXSW signal. Since now
a rapid development of science at x-ray free electron lasers takes place (what includes also
the XSW technique [187]), it is foreseen, that in the future it will be possible to perform
also time-resolved MXSW experiments, where for example the magnetisation and demag-
netisation dynamics could be observed directly. Nowadays a rapid progress in the field
of magnetism can be observed, what includes materials for spintronics [188], topological
materials [189] and magnetic semiconductors [190], all with high potential for technical
applications. I believe, that the new MXSW technique can provide a new insight into
the properties of these materials, providing the information about the magnetic structure
directly and readily, also for thin films.





Appendix A

Detailed derivations

A.1 Dynamical theory of diffraction

A.1.1 Tiepoint coordinates

In this appendix a relation between the tiepoint coordinates X0, Xh and the geometri-
cal parameters γ0, γh, ΘB, ∆Θ is derived. This is done using the definition of the tiepoint
coordinates 1.19 and the wavevector boundary condition k0 = ka0 − kκn.

For the coordinate X0 it suffices to consider the length of the k0 in conjunction with
the boundary conditions

k2
0 = k0 · k0 = (ka0 − kκn) · (ka0 − kκn) = k2 − 2kκka0 · n + k2κ2 ∼= k2 (1− 2κγ0) (A.1)

In the last step one used the fact that ka0·n = k cosψ0 = kγ0 and κ2 ≈ 0, because κ is small.
Using the Taylor expansion for

√
1− x = 1− 1

2
x+ ..., one can write that k0 = k (1− κγ0).

h

ka0

∆Θ2ΘB

Figure A.1: Angular relation between
the vectors ka0, h and kh. ∆Θ is the
angular difference between the inci-
dence defined by the Bragg’s law (or
diffraction condition) and the actual
incidence direction given by the vec-
tor ka0.

From the definition of the tiepoint coordinate it fol-
lows that

X0 =
k2

0 − k2 (1 + χ0)

2k
= −k

(
κγ0 + 1

2
χ0

)
(A.2)

what is the sought relation 1.22.
Similarly, for establishing equation for Xh one

has to consider the length of the wavevector kh. One
starts with the diffraction condition kh = k0 +h and
gets

k2
h = (k0 + h)2 = k2

0 + 2k0 · h + h2 =

= k2
0 + 2 (ka0 − kκn) · h + h2 (A.3)

k2
0 is already known and the length of the re-

ciprocal lattice vector in diffraction experiment is
h2 = (4π sin ΘB/λ)2 = 4k2 sin2 ΘB. One has to find
the expression for ka0 · h. Following figure A.1 one
has

ka0 · h = kh cos
(
ΘB + ∆Θ + π

2

)
= 2k2 sin ΘB cos

(
ΘB + ∆Θ + π

2

)
= (A.4)

= −2k2 sin ΘB sin (ΘB + ∆Θ)
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Now one uses the identity sin (ΘB + ∆Θ) = sin ΘB cos ∆Θ + sin ∆Θ cos ΘB, keeping in
mind that the departure angle ∆Θ is very small, so sin (ΘB + ∆Θ) ∼= sin ΘB +cos ΘB∆Θ.
Continuing

ka0 · h = −2k2 sin ΘB sin (ΘB + ∆Θ) = −2k2 sin2 ΘB − 2k2 sin ΘB cos ΘB∆Θ =

= −2k2 sin2 ΘB − k2 sin 2ΘB∆Θ (A.5)

Having that, the squared length of the wavevector reads

k2
h = k2 (1− 2κγ0)− 4k2 sin2 ΘB − 2k2 sin 2ΘB∆Θ− 2kκn · h + 4k2 sin2 ΘB =

= k2 (1− 2 sin 2ΘB∆Θ)− 2kκ (k0 · n + h · n)

= k2 (1− 2 sin 2ΘB∆Θ)− 2kκkh · n = k2 (1− 2 sin 2ΘB∆Θ− 2κγh) (A.6)

The second sought coordinate reads, from the definition

Xh =
k2
h − k2 (1 + χ0)

2k
= −k

(
1
2
χ0 + sin 2ΘB∆Θ + κγh

)
(A.7)

The tiepoint coordinates are related to each other. One can transform equation for
Xh and get

Xh =
γh
γ0

X0 + 1
2
kχ0γ − k sin 2ΘB∆Θ− 1

2
kχ0

= γX0 − k
[

1
2
χ0 (1− γ) + sin 2ΘB∆Θ

]
(A.8)

A.1.2 General solution for X and ξ

The coordinates of the tiepoint X0 and Xh fully define the general solution of the
dynamical theory. To obtain the solution for X0, one inserts equation 1.24 (or equiva-
lently A.8) into the dispersion surface equation 1.20. This eliminates the other unknown
— Xh. For convenience, one can introduce an abbreviation

η̃ = 1
2
χ0 (1− γ) + sin 2ΘB∆Θ (A.9)

From the dispersion surface equation and A.8

X0 (γX0 − kη̃) = 1
4
k2χhχh̄P

2 (A.10)

This quadratic equation is solved for the unknown X0

|γ|sgn(γ)X2
0 − kη̃X0 − 1

4
k2χhχh̄P

2 = 0

|γ|X2
0 − kη̃ sgn(γ)X0 − 1

4
k2χhχh̄P

2sgn(γ) = 0(√
|γ|X0 −

kη̃ sgn(γ)

2
√
|γ|

)2

− k2η̃2

4|γ|
− 1

4
k2χhχh̄P

2sgn(γ) = 0[
sgn(γ)

(
sgn(γ)

√
|γ|X0 −

kη̃

2
√
|γ|

)]2

− 1
4
k2χhχh̄P

2

(
η̃2

|γ|χhχh̄P
2

+ sgn(γ)

)
= 0
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∣∣∣∣∣sgn(γ)
√
|γ|X0 −

kη̃

2
√
|γ|

∣∣∣∣∣ = 1
2
k
√
χhχh̄|P|

√
η̃2

|γ|χhχh̄P
2

+ sgn(γ)

sgn(γ)
√
|γ|X0 =

kη̃

2
√
|γ|
± 1

2
k
√
χhχh̄|P|

√
η̃2

|γ|χhχh̄P
2

+ sgn(γ)

sgn(γ)
√
|γ|X0 = 1

2
k
√
χhχh̄|P|

(
η̃√

|γ|√χhχh̄|P|
±

√
η̃2

|γ|χhχh̄P
2

+ sgn(γ)

)
(A.11)

Introducing the parameter η (equation 1.26) yields the sought solution for the coordinate
of the tiepoint (equation 1.25)

X0 =
k
√
χhχh̄|P|

2
√
|γ|sgn(γ)

[
η ±

√
η2 + sgn(γ)

]
(A.12)

The second coordinate can be obtained from equation A.8. It reads

Xh = 1
2
k
√
χhχh̄|P|

√
|γ|
[
−η ±

√
η2 + sgn(γ)

]
(A.13)

Now, having the solutions for X, the amplitude ratio can be obtained from its realtion
to tiepoint coordinate 1.21

ξ =
2X0

kχh̄P
=

sgn(P)sgn(γ)√
|γ|

√
χhχh̄

χh̄

[
η ±

√
η2 + sgn(γ)

]
(A.14)

A.2 Time-dependent perturbation theory

A.2.1 Matrix elements in electric dipole approximation

In this appendix a transformation of the matrix element
〈f |W†0|φi〉 = − e

me
A∗0〈f |p · ε̂∗|φi〉 is presented. One uses the commutator relation 2.30,

pj = − ime
} [rj,H0].

〈f |W†0|φi〉 =
e

me

ime

}
A∗0
{
〈f |[x,H0]ε∗x|φi〉+ 〈f |[y,H0]ε∗y|φi〉+ 〈f |[z,H0]ε∗z|φi〉

}
=

=
ie

}
A∗0
{
ε∗x〈f |xH0 − H0x|φi〉+ ε∗y〈f |yH0 − H0y|φi〉+ ε∗z〈f |zH0 − H0z|φi〉

}
=

=
ie

}
A∗0
{
ε∗x(Ei − Ef )〈f |x|φi〉+ ε∗y(Ei − Ef )〈f |y|φi〉+ ε∗z(Ei − Ef )〈f |z|φi〉

}
=

= ieA∗0ωif
{
ε∗x〈f |x|φi〉+ ε∗y〈f |y|φi〉+ ε∗z〈f |z|φi〉

}
=

= ieA∗0ωif〈f |ε̂∗ · r|φi〉 (A.15)

In the transition from the second to the third line the Schrödinger equation
H0|φk〉 = Ek|φk〉 was used.
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A.2.2 Incident flux

Electric field is taken here in the regular form, without the complex conjugate (used
definition of Poynting vector is valid for such a form)

E = −iωA0εe
iωt−ik·r (A.16)

Magnetic field is related to the vector potential via B = rotA. Its component reads

Bi = εijk∂jAk = εijk∂jA0εke
iωt−ik·r =

= A0εijkεk(−i)kjeiωt−ik·r = −iA0εijkkjεke
iωt−ik·r (A.17)

where εijk is Levi-Civita symbol and Einstein’s summation convention was used. The
cross product component is equal

(E ×B∗)i = εijkEjB∗k = εijk(−iωA0)εje
iωt−ik·riA∗0εkmnkmε

∗
ne−iωt+ik·r =

= εkijεkmn|A0|2ωεjεnkm =

= (δimδjn − δinδjm)|A0|2ωεjε∗nkm = |A0|2ω(εjε
∗
jki − εjε∗i kj) (A.18)

The Poynting vector is thus

S =
ε0c

2

2
|A0|2ω((ε · ε∗)︸ ︷︷ ︸

=1

k− (ε · k)︸ ︷︷ ︸
=0

ε∗) =
ε0c

2

2
|A0|2ωk, (A.19)

and its length
S = 1

2
ε0c

2|A0|2kω (A.20)

The incident flux, given as S/}ω, is then

Φ0 =
ε0c

2

2}
|A0|2k (A.21)

A.3 MXSW theory

A.3.1 Polarisation-related quantities A, B and C

The absorption cross-section is determined by the a, b and c transition rates and
the quantities A, B and C related to the wavefield inducing the transition, in particular
its polarisation state. The latter are given in general by the relations (4.10). The terms
appearing in these general equations are for the case of the situation considered for MXSW
experiment given by the relations 4.11 and 4.12. The explicit form of the quantities A, B
and C is given below for completeness.

|A|2 = ε2
σ

∣∣1 + ξσe−ih·R
∣∣2 (sin2 ϕ cos2 ϑm + cos2 ϕm

)
+

+ |επ|2
∣∣1− ξπe−ih·R

∣∣2 (cos2 ϕm cos2 ϑm + sin2 ϕm
)

sin2 ΘB+

+ |επ|2
∣∣1 + ξπe−ih·R

∣∣2 sin2 ϑm cos2 ΘB+



A.3. MXSW theory 159

− 2|επ|2<
[(

1− ξπe−ih·R
) (

1 + ξ∗πeih·R
)]

cosϕm sinϑm cosϑm sin ΘB cos ΘB+

− 2εσ<
[
ε∗π
(
1 + ξσe−ih·R

) (
1− ξ∗πeih·R

)]
sinϕm cosϕm sin2 ϑm sin ΘB+

− 2εσ<
[
ε∗π
(
1 + ξσe−ih·R

) (
1 + ξ∗πeih·R

)]
sinϕm sinϑm cosϑm cos ΘB+

+ 2<
{
i
[
|επ|2

(
1 + ξπe−ih·R

) (
1− ξ∗πeih·R

)
sinϕm sinϑm sin ΘB cos ΘB+

+ εσε
∗
π

(
1 + ξσe−ih·R

) (
1 + ξ∗πeih·R

)
cosϕm sinϑm cos ΘB+

− εσε
∗
π

(
1 + ξσe−ih·R

) (
1− ξ∗πeih·R

)
cosϑm sin ΘB

]}
(A.22a)

|B|2 = ε2
σ

∣∣1 + ξσe−ih·R
∣∣2 (sin2 ϕm cos2 ϑm + cos2 ϕm

)
+

+ |επ|2
∣∣1− ξπe−ih·R

∣∣2 (cos2 ϕm cos2 ϑm + sin2 ϕm
)

sin2 ΘB+

+ |επ|2
∣∣1 + ξπe−ih·R

∣∣2 sin2 ϑm cos2 ΘB+

− 2|επ|2<
[(

1− ξπe−ih·R
) (

1 + ξ∗πeih·R
)]

cosϕm sinϑm cosϑm sin ΘB cos ΘB+

− 2εσ<
[
ε∗π
(
1 + ξσe−ih·R

) (
1− ξ∗πeih·R

)]
sinϕm cosϕm sin2 ϑm sin ΘB+

− 2εσ<
[
ε∗π
(
1 + ξσe−ih·R

) (
1 + ξ∗πeih·R

)]
sinϕm sinϑm cosϑm cos ΘB+

− 2<
{
i
[
|επ|2

(
1 + ξπe−ih·R

) (
1− ξ∗πeih·R

)
sinϕm sinϑm sin ΘB cos ΘB+

+ εσε
∗
π

(
1 + ξσe−ih·R

) (
1 + ξ∗πeih·R

)
cosϕm sinϑm cos ΘB+

− εσε
∗
π

(
1 + ξσe−ih·R

) (
1− ξ∗πeih·R

)
cosϑm sin ΘB

]}
(A.22b)

|C|2 = |εz|2 (A.22c)

As stated in section 4.4, the quantities A, B and C can be split into the part which
changes under the helicity reversal (denoted by double prime) and the part which remains
unchanged (denoted by prime). Formally, |A±|2 = A′ ± A′′, |B±|2 = B′ ±B′′, |C±|2 =
C′ ± C′′, where ”+” corresponds to the initial helicity, and ”−” after the reversal. The
explicit formulae for the prime and double prime quantities read

A′ = ε2
σ

∣∣1 + ξσe−ih·R
∣∣2 (sin2 ϕm cos2 ϑm + cos2 ϕm

)
+

+ |επ|2
∣∣1− ξπe−ih·R

∣∣2 (cos2 ϕm cos2 ϑm + sin2 ϕm
)

sin2 ΘB+

+ |επ|2
∣∣1 + ξπe−ih·R

∣∣2 sin2 ϑm cos2 ΘB+

− 2|επ|2<
[(

1− ξπe−ih·R
) (

1 + ξ∗πeih·R
)]

cosϕm sinϑm cosϑm sin ΘB cos ΘB+

− 2εσ(<επ)<
[(

1 + ξσe−ih·R
) (

1− ξ∗πeih·R
)]

sinϕm cosϕm sin2 ϑm sin ΘB+

− 2εσ(<επ)<
[(

1 + ξσe−ih·R
) (

1 + ξ∗πeih·R
)]

sinϕm sinϑm cosϑm cos ΘB+

+ 2<
{
i
[
|επ|2

(
1 + ξπe−ih·R

) (
1− ξ∗πeih·R

)
sinϕm sinϑm sin ΘB cos ΘB+

+ εσ(<επ)
(
1 + ξσe−ih·R

) (
1 + ξ∗πeih·R

)
cosϕm sinϑm cos ΘB+

− εσ(<επ)
(
1 + ξσe−ih·R

) (
1− ξ∗πeih·R

)
cosϑm sin ΘB

]}
(A.23a)

A′′ = 2εσ(=επ)<
[
i
(
1 + ξσe−ih·R

) (
1− ξ∗πeih·R

)
sinϕm cosϕm sin2 ϑm sin ΘB +

+ i
(
1 + ξσe−ih·R

) (
1 + ξ∗πeih·R

)
sinϕm sinϑm cosϑm cos ΘB+

+
(
1 + ξσe−ih·R

) (
1 + ξ∗πeih·R

)
cosϕm sinϑm cos ΘB+

−
(
1 + ξσe−ih·R

) (
1− ξ∗πeih·R

)
cosϑm sin ΘB

]
(A.23b)
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B′ = ε2
σ

∣∣1 + ξσe−ih·R
∣∣2 (sin2 ϕm cos2 ϑm + cos2 ϕm

)
+

+ |επ|2
∣∣1− ξπe−ih·R

∣∣2 (cos2 ϕm cos2 ϑm + sin2 ϕm
)

sin2 ΘB+

+ |επ|2
∣∣1 + ξπe−ih·R

∣∣2 sin2 ϑm cos2 ΘB+

− 2|επ|2<
[(

1− ξπe−ih·R
) (

1 + ξ∗πeih·R
)]

cosϕm sinϑm cosϑm sin ΘB cos ΘB+

− 2εσ(<επ)<
[(

1 + ξσe−ih·R
) (

1− ξ∗πeih·R
)]

sinϕm cosϕm sin2 ϑm sin ΘB+

− 2εσ(<επ)<
[(

1 + ξσe−ih·R
) (

1 + ξ∗πeih·R
)]

sinϕm sinϑm cosϑm cos ΘB+

− 2<
{
i
[
|επ|2

(
1 + ξπe−ih·R

) (
1− ξ∗πeih·R

)
sinϕm sinϑm sin ΘB cos ΘB+

+ εσ(<επ)
(
1 + ξσe−ih·R

) (
1 + ξ∗πeih·R

)
cosϕm sinϑm cos ΘB+

− εσ(<επ)
(
1 + ξσe−ih·R

) (
1− ξ∗πeih·R

)
cosϑm sin ΘB

]}
(A.24a)

B′′ = 2εσ(=επ)<
[
i
(
1 + ξσe−ih·R

) (
1− ξ∗πeih·R

)
sinϕm cosϕm sin2 ϑm sin ΘB +

+ i
(
1 + ξσe−ih·R

) (
1 + ξ∗πeih·R

)
sinϕm sinϑm cosϑm cos ΘB+

−
(
1 + ξσe−ih·R

) (
1 + ξ∗πeih·R

)
cosϕm sinϑm cos ΘB+

+
(
1 + ξσe−ih·R

) (
1− ξ∗πeih·R

)
cosϑm sin ΘB

]
(A.24b)

C′ = ε2
σ

∣∣1 + ξσe−ih·R
∣∣2 sin2 ϕm sin2 ϑm + |επ|2

∣∣1− ξπe−ih·R
∣∣2 cos2 ϕm sin2 ϑm sin2 ΘB+

+ |επ|2
∣∣1 + ξπe−ih·R

∣∣2 cos2 ϑm cos2 ΘB+

+ 2|επ|2<
[(

1− ξπe−ih·R
) (

1 + ξ∗πeih·R
)]

cosϕm sinϑm cosϑm sin ΘB cos ΘB+

+ 2εσ(<επ)<
[(

1 + ξσe−ih·R
) (

1− ξ∗πeih·R
)

sinϕm cosϕm sin2 ϑm sin ΘB+

+
(
1 + ξσe−ih·R

) (
1 + ξ∗πeih·R

)
sinϕm sinϑm cosϑm cos ΘB

]
(A.25a)

C′′ = −2εσ(=επ)<
{
i
[(

1 + ξσe−ih·R
) (

1− ξ∗πeih·R
)

sinϕm cosϕm sin2 ϑm sin ΘB+

+
(
1 + ξσe−ih·R

) (
1 + ξ∗πeih·R

)
sinϕm sinϑm cosϑm cos ΘB

]}
(A.25b)

A.4 Integral in the absorption correction

The integral appearing in the complete expression for the MXSW signal, where also
the imaginary part of the wavevector is taken into account, reads

I2 =

∞∫
0

exp

{
[k=χ0 + i ((Xπ

0 )∗ −Xσ
0 )]

z

γ0

− µlinz

sinα

}
dz (A.26)
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It is evaluated in this appendix. At first the imaginary and real parts in the argument of
the exponent are separated.

∞∫
0

exp

[
k=χ0

z

γ0

+ (=Xσ
0 + =Xπ

0 )
z

γ0

− µlin
z

sinα

]
︸ ︷︷ ︸

µ1z

exp

[
−i (<Xσ

0 −<Xπ
0 )

z

γ0

]
︸ ︷︷ ︸

−iµ2z

dz =

=

∞∫
0

exp(µ1z) [cos(µ2z)− i sin(µ2z)] dz (A.27)

where the symbols µ1 and µ2 have the meaning

µ1 =

[
k=χ0

γ0

+
1

γ0

(=Xσ
0 + =Xπ

0 )− µlin
sinα

]
(A.28a)

µ2 =
1

γ0

(<Xσ
0 −<Xπ

0 ) (A.28b)

The two integrals from equation (A.27) can be evaluated by parts. Due to the
rule for differentiation of the product of two functions, one has the integral identity∫
f ′g = fg −

∫
fg′. Applying this twice yields∫

exp(µ1z) cos(µ2z)dz =
1

µ1

exp(µ1z) cos(µ2z) +
µ2

µ1

∫
exp(µ1z) sin(µ2z)dz =

=
1

µ1

exp(µ1z) cos(µ2z)+

+
µ2

µ1

[
1

µ1

exp(µ1z) sin(µ2z)− µ2

µ1

∫
exp(µ1z) cos(µ2z)dz

]
(A.29)

The desired integral appears again in the last line, so it can be added to both sides and
one gets

∞∫
0

exp(µ1z) cos(µ2z)dz =

=
1

1 +
µ2

2

µ2
1

(
1

µ1

exp(µ1z) cos(µ2z) +
µ2

µ2
1

exp(µ1z) sin(µ2z)

) ∣∣∣∣∣
∞

0

=

=
1

µ2
1 + µ2

2

(µ1 exp(µ1z) cos(µ2z) + µ2 exp(µ1z) sin(µ2z))

∣∣∣∣∣
∞

0

=

= lim
z→∞

[
1

µ2
1 + µ2

2

(µ1 exp(µ1z) cos(µ2z) + µ2 exp(µ1z) sin(µ2z))

]
− µ1

µ2
1 + µ2

2

=

= − µ1

µ2
1 + µ2

2

(A.30)

since exp(µ1z) is a decreasing function approaching zero in the limit. µ1 is negative as it
is generally proportional to some effective absorption coefficient times minus one. This
absorption coefficient cannot cause an amplification of the wave and thus it is positive.
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The second integral can be calculated based on the first line of equation (A.29). It
reads ∫

exp (µ1z) sin (µ2z) dz =
µ1

µ2

[∫
exp (µ1z) cos (µ2z) dz +

− 1

µ1

exp (µ1z) cos (µ2z)

]
(A.31)

With the limits

∞∫
0

exp (µ1z) sin (µ2z) dz =
µ1

µ2

{
− µ1

µ2
1 + µ2

2

− 1

µ1

lim
z→∞

[exp (µ1z) cos (µ2z)] +
1

µ1

}
=

=
µ1

µ2

[
− µ1

µ2
1 + µ2

2

+
1

µ1

]
=

µ2

µ2
1 + µ2

2

(A.32)

The total integral reads

∞∫
0

exp

{
[k=χ0 + i ((Xπ

0 )∗ −Xσ
0 )]

z

γ0

− µlinz

sinα

}
dz = −µ1 + iµ2

µ2
1 + µ2

2

(A.33)
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2p → 3d transitions

A diagram presenting the allowed transitions involving the operator Y −1
1 (i.e. fulfilling

the condition ∆m` = −1) and their probabilities is shown in the main text (3.2). The
remaining ones for the operators Y 1

1 (∆m` = 1) and Y 0
1 (∆m` = 0) are presented hereafter.

B.1 Transitions fulfilling ∆m` = 1

|0, ↓〉 | − 1, ↑〉 |0, ↑〉 |1, ↓〉 | − 1, ↓〉 | − 1, ↑〉 |0, ↓〉 |0, ↑〉 |1, ↓〉 |1, ↑〉∣∣1
2
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2

〉 ∣∣1
2
, 1
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, 1
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, 3

2

〉

| − 2, ↑〉 | − 2, ↓〉 | − 1, ↑〉 | − 1, ↓〉 |0, ↑〉 |0, ↓〉 |1, ↑〉 |1, ↓〉 |2, ↑〉 |2, ↓〉

2p1/2, L2 absorption edge 2p3/2, L3 absorption edge

1
20π

1
30π

1
20π

1
5π

1
20π

1
60π

1
10π

1
10π

1
10π

3
10π

|j,mj〉 :

Y 1
1

Figure B.1: Transitions from the 2p to the 3d states fulfilling the selection rule ∆m` = 1,
for which the matrix elements of Y 1

1 operator are non-zero. The transitions with positive ms

are marked in blue colour for clarity. The transition strengths are written next to the arrows.
The states in total angular momentum base are depicted at the bottom, for the others the
abbreviation |m`,ms =↑↓〉 ≡ |`,m`, s,ms =↑↓〉, where ↑≡ +1

2 , ↓≡ −
1
2 , was used.
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B.2 Transitions fulfilling ∆m` = 0

|0, ↓〉 | − 1, ↑〉 |0, ↑〉 |1, ↓〉 | − 1, ↓〉 | − 1, ↑〉 |0, ↓〉 |0, ↑〉 |1, ↓〉 |1, ↑〉∣∣1
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Figure B.2: Transitions from the 2p to the 3d states fulfilling the selection rule ∆m` = 0, for
which the matrix elements of Y 0

1 operator are non-zero. The conventions used are the same as
in fig. B.1.



Appendix C

Absorption correction related to XMCD

C.1 Influence on the phase of reflectivity

The absorption correction for the dynamical theory of diffraction and related to the
XMCD effect is introduced in chapter 6. The change in the reflectivity curves caused by
this correction is presented in figure 6.2 for two orientations of the magnetic moments
(perpendicular and parallel to the reflecting lattice planes). In figure C.1 the changes in
the phase of σ-component amplitude ratio ξσ after the correction are shown. One can see,
that in the reflection domain, the difference almost vanishes.

0

π
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π
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ar
g(
ξ σ

)

∆Θ [µrad]

Pt3Co (111) at E = 11.564 keV, γ = −1
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LHP

Figure C.1: The change of the phase of amplitude ratio ξσ for the σ-polarisation component
after the introduction of the absorption correction related to the XMCD effect. The data for
the alignment of the magnetic moments in the reflecting lattice planes is only shown, as for the
natural magnetic structure (moments along [111] direction), the effect of the correction is even
smaller. The data was simulated for the Pt3Co crystal, (111) reflection.
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Appendix D

Permanent magnet system

In section 7.1.2 it was mentioned that often in XMCD experiments, the investigated
samples are magnetised using an external magnetic field. Thus, also in the case of the
MXSW method being an extension of the standard XMCD spectroscopy, apart from flip-
ping the helicity of the incoming beam, also the sample’s magnetisation direction can be
reversed. Even though the P09 experimental station, where the MXSW experiments re-
ported in this work were performed, is equipped with an electromagnet system (see 7.3.3),
there are certain reasons to develop a dedicated permanent magnet system for MXSW
experiments.

First of all, the equipment based on the permanent magnets is very robust, as it does
not require a complicated power supply system, as well as active cooling. Also, compared
to an electromagnet, it is possible to achieve higher values of the magnetic field, keeping
the system relatively compact. The latter is important, as in order to perform the MXSW
scans, the sample has to be placed on the diffractometer, and so has to be also the magnet
system.

There are important prerequisites for the magnet system for the MXSW experiment.
The magnetic field has to be strong enough to magnetise the sample and there has to be
a possibility to reverse the direction of the magnetic field. Apart from this, the sample
has to be mounted somehow on the system, and the system on the diffractometer.

In this appendix two permanent magnet systems are presented. They were designed
by Heiko Schulz-Ritter especially for the use in the future MXSW experiments. They
can be easily mounted on the diffractometers using the standard IUCr mount. With
respect to the electromagnet system from P09 beamline, where the sample is placed on
a dedicated aluminium holder, which does not allow any pre-alignment of the sample,
in the permanent magnet systems described here a goniometer head is used as a sample
holder. This solution is a desired one for any experiments with magnetic field, where
diffraction is involved and thus a precise orientation of the sample required. The first
version of the permanent magnet system, where simply two magnets were used as the
source of the magnetic field, provides around 150 mT. The second one, with the help of
yokes provides 250 mT, what is almost double with respect to the 4-coil electromagnet at
the P09 beamline.
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D.1 First version

The 3D technical drawing of the first version of the permanent magnet system for
the MXSW experiments is presented in figure D.1. Figure D.2 is a photo of the working
realisation of the drawing.

Figure D.1: The technical drawing in 3D
of the first version of the permanent mag-
net system. The most important parts are
marked in the figure.

Figure D.2: The photo of the first version
of the the permanent magnet system.

The system consists of five crucial assemblies of parts: the engine and the transmission
system, the permanent magnets glued in the holders, the sample holder (goniometer
head), the connection for placing the system on the diffractometer and the holder for the
fluorescence (SDD) detector.

The engine makes the change of the direction of the magnetic field possible, via the
rotation of the permanent magnets. The movement of the engine is translated to the
magnet holders via two rubber belts (black in the drawing D.1) and worm drives. The
magnets (red) are glued in the holders (green) and connected to the transmission system,
which enables rotation. The magnets can rotate 2π rad round the axis perpendicular to
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the direction of the incoming beam (when the system is on the diffractometer in the zero
position) and to the biggest face of the magnets. Among other possibilities, this allows
to have the magnetic field parallel (and antiparallel) to the incoming beam, reflected
beam, and reflecting lattice planes (for lattice planes parallel to the physical surface).
The magnets used are small neodymium permanent ones, in the shape of cuboid.

The sample is placed on the goniometer head (Huber GmbH, model 1005), which is
in turn mounted on the IUCr mount integrated in the bottom of the system. Below the
base plane of the set-up, there is a connector enabling mounting of the system on the
diffractometer.

Additionally a holder for the SDD detector used in the MXSW experiments for mea-
suring the fluorescence spectra is integrated with the permanent magnet system. The
detector is mounted on the dedicated plastic holder, which protects it from the influence
of electronic noise possibly coming from the engine and additionally allows the adjust-
ment of the sample-detector distance. The position of the SDD is restricted in the current
design to the normal exit angle (α = π

2
). In case of experiments where the detection of

fluorescence is not needed, the holder for the detector can be easily dismounted.
As measured with the Hall probe, the system provides around 150 mT of magnetic field

at the position on the sample surface. The magnetic field can have an arbitrary orientation
in the plane parallel to the biggest face of the permanent magnets (perpendicular to the
magnets rotation axis).

D.2 Second version

Since the strength of the field of 150 mT might be too small for many of the interesting
magnetic systems, an upgrade of the permanent magnet system was designed. The 3D
technical drawing is presented in figure D.3, and the practical realisation in figure D.4.

With respect to the first version (section D.1), the main modification comprises here
the part with permanent magnets. In the second version bigger magnets (gray in fig-
ure D.3) are used, and the field is guided from them towards the sample by two yokes
(red and green). This idea allows to concentrate the magnetic field flux into the smaller
volume, what results in a higher value of B on the sample surface. Apart from this part
of the system, the remaining ones are, at least conceptually, unchanged.

As measured with the Hall probe, the second version of the magnet system provides
a superb value of around 250 mT of the magnetic field on the sample surface.
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Figure D.3: The technical drawing in 3D of
the second version of the permanent mag-
net system. Most of the parts are the same
as for the first version. The major differ-
ence is the usage of bigger magnets (gray)
and yokes (green and red part).

Figure D.4: The photo of the second
version of the the permanent magnet
system.



Appendix E

Experimental details

E.1 Pt3Co hysteresis curve

The hysteresis curve was measured at the DESY Nanolab laboratory using the PPMS.
The obtained data is shown in figure E.1. It shows, that the magnetic field of 150 mT
is enough to magnetise the sample and reach the level of saturation magnetisation. The
magnetic filed during the measurement was aligned parallel to the sample surface, like in
the MXSW experiment.

−8

−6

−4

−2

0

2

4

6

8

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

M
[e

m
u
]

B [T]

Pt3Co, T = 220 K

Figure E.1: Hysteresis curve for the single crystal sample of Pt3Co. The data was obtained
using the PPMS device at 220 K. Gray vertical lines mark the amplitudes of the magnetic field
provided by the electromagnet used in the MXSW experiment.

E.2 Energy spectrum for YIG

In order to determine the energy for the MXSW experiment, an energy spectrum
around the iron K absorption edge was measured. The σ-polarised radiation was used,
and the sample oriented away from any Bragg reflections. The obtained energy spectrum
is shown in figure E.2.
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Figure E.2: Energy spectrum for a YIG crystal measured in the vicinity of the Fe K absorption
edge. Linearly σ-polarised radiation was used. The measure of the absorption cross-section was
obtained by integrating the iron Kα fluorescence line. The maximum of the first derivative of
the energy spectrum corresponding to the energy of 71135 eV (marked by gray vertical line) was
used to determine the energy value for the MXSW experiment.

E.3 Argon fluorescence yield

The comparison between the iron and argon fluorescence yields supports the hypothesis
that during the (444) reflection scans another reflection was also excited. It is seen in the
argon fluorescence yield as another increase in intensity, on the low angular side of the
reflection domain. It coincides with the decrease (caused by the extinction effect) in the
Fe fluorescence yield, what can be seen in figure E.3.

E.4 In- and out-of-field reflectivity

Even though the scans recorded without magnetic field cannot be used to calculate the
XMCD signal, due to the observed artefact, an interesting feature was observed between
the reflectivity recorded for the sample in an external magnetic field and without the field.
The data is plotted in figure E.4. An observed shift might be related to the magnetostric-
tion effect. The shift in the position of the curve maximum is 22.68 µrad, what using
Bragg’s law translates to the difference of interplanar spacing ∆d(444) = −9.20± 1.95 fm,
or equivalently ∆d(444)/d(444) = (−4.64 ± 2.46) · 10−5. The shift in the peak position is
not caused by the mechanical movement of the sample, since then the shift between the
+B and −B settings would be observed.
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Figure E.3: Fluorescence yield of argon compared with the fluorescence yield of iron. An
increase of the argon fluorescence in the reflection domain is caused by the absorption of the
(444) reflected beam in the air. A small increase seen in the low angular side of the reflection
domain can be a manifestation of another reflected wave, which due to the different propagation
direction does not reach the APD detector. Note, that for one helicity (RHP) a greater increase
is observed (and a greater decrease caused by the extinction in the Fe fluorescence).
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the data measured with and without the external magnetic field. The data was normalised to
the maximum of the theoretical curve (calculated from dynamical theory for YIG, convolved
with monochromator reflectivity). The shift of the maximum of reflectivity might be related to
the magnetostriction.



List of Symbols

A — vector potential

A — amplitude of the vector potential

A — a quantity from the expression for the absorption cross-section (equa-
tion (3.8)) describing the component of the EM field inducing transitions
with ∆m` = −1

A′ — the part of A, which does not change under the helicity reversal

A′′ — the part of A, which changes under the helicity reversal

a0 — spatial extent of the electron wavefunction

a — a quantity from the expression for the absorption cross-section defined by
equation (3.1.3) and being a spin-dependent transition rate of transitions
with ∆m` = −1

B — magnetic induction

B — amplitude of the magnetic induction

B — a quantity from the expression for the absorption cross-section (equa-
tion (3.8)) describing the component of the EM field inducing transitions
with ∆m` = 1

B′ — the part of B, which does not change under the helicity reversal

B′′ — the part of B, which changes under the helicity reversal

bn — n-th coefficient from equation (2.6)

b — a quantity from the expression for the absorption cross-section defined by
equation (3.1.3) and being a spin-dependent transition rate of transitions
with ∆m` = 1

C — constants from the expression for the absorption cross-section,
C = (4π)2αf}ω

CG — multiplicative scaling factor in Gaussian function
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C — a quantity from the expression for the absorption cross-section (equa-
tion (3.8)) describing the component of the EM field inducing transitions
with ∆m` = 0

C′ — the part of C, which does not change under the helicity reversal

C′′ — the part of C, which changes under the helicity reversal

c — speed of light

cn — n-th coefficient in the expansion of the state vector in the basis of eigenvec-
tors

c — a quantity from the expression for the absorption cross-section defined by
equation (3.1.3) and being a spin-dependent transition rate of transitions
with ∆m` = 0

D — dielectric vector

d — crystal’s thickness

dh — interplanar spacing of the lattice planes associated with h

E — electric field

E — amplitude of the electric field

E — energy

e — elementary charge

Fh — structure factor

Fh
sw — standing wave structure factor

Fh
msw — magnetic standing wave structure factor

f — atomic scattering factor

f 0 — non-resonant part of the atomic scattering factor

f ′, f ′′ — dispersion corrections to the scattering factor

fc — coherent fraction

G — atomic distribution function

H — magnetic field

H — Hamilton operator

h — reciprocal lattice vector (with 2π prefactor)

hP — Planck constant

} — reduced Planck constant

I — integral
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I — intensity of the EM wave

Isw — normalised intensity of the standing wave

i — imaginary unit, i2 = −1

J — total angular momentum operator

j — total angular momentum quantum number

k — wavevector

k — length of the wavevector in vacuum

km — magnetic structure propagation vector

L — orbital angular momentum operator

` — azimuthal quantum number

M — magnetisation

m — magnetic moment

me — electron mass

m` — magnetic quantum number

ms — spin magnetic quantum number

N — an integer number (N ∈ Z)

N — number of atoms in the unit cell

Nh — number of electron-holes

n — unit vector normal to the physical surface of the crystal

n — number of atoms of a given kind in the unit cell

n — principal quantum number

n — refractive index

P — polarisation vector

Pfi — probability of transition from the state |i〉 to |f〉

P — polarisation factor

p — momentum

pc — coherent position

R — radial integral

R — rotation matrix

R — position of the atom (its nucleus)
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RTh. — Thomson scattering length

Rn` — radial part of the wavefunction

Rξ — residual parameter

r — position

r̃ — position of the electron with respect to nucleus

S — spin operator

S — Poynting vector

S — footprint of the beam on the crystal surface

S0, Sh — cross-sections of the beams

s — spin quantum number

T — temperature

t — time

U — potential energy

V — external perturbation operator such that W = υV

Vnk — matrix element of the operator V, Vnk = 〈φn|V|φk〉

Vcell — volume of the unit cell

W — external perturbation operator

Wnk — matrix element of the operator W, Wnk = 〈φn|W|φk〉

wfi — probability rate, wfi = Pfi/t

X — tiepoint coordinate

Y m`
` — spherical harmonic

y — secondary emission yield (electron or fluorescence)

zh — fractional coordinate in the direction of h, zh ∈ [0; 1]

zeff — effective thickness

α — angle between the crystal surface and the direction towards the secondary
emission detector (figure 1.7)

αf — fine structure constant, αf = e2/4πε0}c

β — parameter in the polarisation vector (equation (1.49)) related to the ampli-
tudes of polarisation components

γ — asymmetry ratio, γ = γh/γ0
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γ0 — cosine of the angle between the refracted wave wavevector and surface normal
γ0 = cosψ0

γh — cosine of the angle between the reflected wave wavevector and surface nor-
mal, γh = cosψh

∆ — real number, ∆ ∈ [0; dh]

δ — parameter of the polarisation vector (equation (1.49)) related to the phase
difference between the polarisation components

δjk — Kronecker delta

δ(x) — Dirac delta functional

ε — polarisation vector

ε̂ — polarisation unit vector

ε̂σ — σ-polarisation unit vector

ε̂0π, ε̂hπ — π-polarisation unit vectors

εσ — component of the polarisation vector in the direction of ε̂σ, εσ ∈ R

επ — component of the polarisation vector in the direction of ε̂0π, επ ∈ C

ε0 — vacuum permittivity

εijk — Levi-Civita symbol

ζ — spin-dependent transition rate

η — deviation parameter from the dynamical theory of diffraction, defined by
eq. (1.26)

Θ — incidence angle between the incoming beam and lattice planes

ΘB — Bragg angle

∆Θ — departure from the incidence corresponding to the Bragg angle,
∆Θ = Θ−ΘB

ϑ — azimuthal angle in spherical coordinate system

ϑx — an angle between the magnetic moment and propagation direction of the
wave in the XMCD experiment (see figure 3.1)

ϑm — an angle between the magnetic moment and the reciprocal lattice vector h
of the reflection (see figure 4.2)

κ — small complex number, such that k0 = ka0 − kκn

Λ — parameter labelling the states forming a continuum

λ — wavelength

µ — effective absorption coefficient
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µlin — linear absorption coefficient

µ1 — total absorption coefficient for the MXSW signal (equation (4.52a))

µ2 — a quantity related to Pendellösung period, from the absortpion correction
for the complex wavevector for the MXSW signal (equation (4.52b))

µB — Bohr magneton, µB = e}/2me

µ0 — vacuum permeability

Ξ — XMCD signal from one atom calculated as a difference between the cross-
sections for opposite helicities

Ξm — XMCD signal from one atom calculated as a difference between the cross-
sections for opposite magnetic moment orientations

Ξ1 — the part of the quantities A, B and C from the expression for the XMCD
signal under the XSW regime, proportional to =επ and defined by equa-
tion (4.13a)

Ξ2 — the part of the expression for the XMCD signal under the XSW regime
proportional to =επ and defined by equation (4.13b)

Ξ3 — the part of the expression for the XMCD signal under the XSW regime
proportional to <επ and |επ|, defined by equation (4.15)

Ξ4 — the part of the quantities A, B from the expression for the XMCD signal
under the XSW regime, defined by equation (4.16)

ξ — amplitude ratio, ξ = Eh/E0

Πcirc — circular polarisation rate in a given direction

Πγ — circular polarisation rate in the propagation direction

Πs
e — spin-polarisation of the photoelectron

Π`
e — orbital-polarisation of the photoelectron

σ — Pauli matrices

σ — absorption cross-section

σG — width of the Gaussian function

% — density of states

∆%sf — imbalance in the density of spin-polarised empty final states, ∆%sf = %↑f − %
↓
f

∆%`f — orbital-polarised density of empty final states

ρ — electron density

τ — angle between the lattice planes and crystal’s surface

Υ — MXSW signal from many atoms



LIST OF SYMBOLS 181

Υ2 — the part of the expression for the MXSW signal, defined by equation (4.32)
and being a normalised sum of the Ξ2 terms over the atoms in the unit cell

Υ3 — the part of the expression for the MXSW signal, defined by equation (4.33)
and being a normalised sum of the Ξ3 terms over the atoms in the unit cell

υ — parameter in the perturbation theory, W = υV

Φ — photon flux

ϕ — polar angle in spherical coordinate system

ϕx — a polar angle used to parametrise the propagation direction of the wave in
the XMCD experiment (see figure 3.1)

ϕm — an angle between the scattering plane and the magnetic moment (see fig-
ure 4.2)

φn,`,m` — atomic wavefunction

|φ〉 — stationary quantum state of the system

χ — susceptibility

ψ0 — angle between the surface normal and the refracted beam, ψ0 = ^(n,k0)

ψh — angle between the surface normal and the reflected beam, ψh = ^(n,kh)

|ψ〉 — quantum state of the system

Ω — parameter labelling the states forming a continuum, together with energy

ω — angular frequency

ωnk — Bohr angular frequency, }ωnk = En − Ek





List of Abbreviations

ADC — analog-to-digital converter

APD — avalanche photodiode

DESY — Deutsches Elektronen-Synchrotron

DP — double perovskite

EH — experimental hutch

EM — electromagnetic

FEL — free electron laser

FPGA — field programmable gate array

LHP — left-handed polarisation

MXSW — magnetic x-ray standing waves

PIPS — passivated implanted planar silicon

PPMS — physical properties measurement system

RHP — right-handed polarisation

SAXS — small angle x-ray scattering

SDD — silicon drift diode

YIG — yttrium-iron-garnet

XMCD — x-ray magnetic circular dichroism

XMLD — x-ray magnetic linear dichroism

XRMR — x-ray resonant magnetic reflectivity

XSW — x-ray standing waves
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[22] G. Borrmann, Die Absorption von Röntgenstrahlen im Fall der Interferenz, Z. Phys. 127, 297
(1950).

[23] J. W. Knowles, Anomalous Absorption of Slow Neutrons and X-rays in Nearly Perfect Single
Crystals, Acta Crystallogr. 9, 61 (1956).

[24] B. W. Batterman, Effect of Dynamical Diffraction in X-Ray Fluorescence Scattering, Phys. Rev.
133, 759 (1964).

[25] A. Rodriguez-Fernandez, A. Diaz, A. H. S. Iyer, M. Verezhak, K. Wakonig, M. H. Colliander, and
D. Carbone, Imaging Ultrafast Dynamical Diffraction Wave Fronts in Strained Si with Coherent
X Rays, Phys. Rev. Lett. 127, 157402 (2021).

[26] V. B. Novikov and T. V. Murzina, Borrmann effect in Laue diffraction in one-dimensional photonic
crystals under a topological phase transition, Phys. Rev. B 99, 245403 (2019).

[27] J.-P. Guigay and M. S. del Rio, X-ray focusing by bent crystals: focal positions as predicted by the
crystal lens equation and the dynamical diffraction theory, J. Synchrotron Rad. 29, 148 (2022).

[28] X. Huang, X. Shi, and L. Assoufid, X-ray beam monitoring and wavelength calibration using
four-beam diffraction, J. Synchrotron Rad. 29, 159 (2022).

[29] J. Zegenhagen and A. Kazimirov, X-Ray Standing Waves in a Nutshell, in The X-ray standing
wave technique. Principles and Applications, edited by J. Zegenhagen and A. Kazimirov, World
Scientific, Singapore, 2013.

[30] C. C. Silva, D. Dombrowski, N. Atodiresei, W. Jolie, F. F. zum Hagen, J. Cai, P. T. P. Ryan,
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III: A Low Emittance Synchrotron Radiation Source. Technical Design Report, DESY, Hamburg,
2004.

[166] S. Francoual, J. Strempfer, D. Reuther, D. K. Shukla, and A. Skaugen, Double phase-retarder
set-up at beamline P09 at PETRA III, J. Phys.: Conf. Ser. 425, 132010 (2013).

[167] J. Strempfer, J. R. L. Mardegan, S. Francoual, L. S. I. Veiga, L. Bouchenoire, T. Spitzbart, and
H. Zink, Fast helicity switching of X-ray circular polarization at beamline P09 at PETRA III, AIP
Conf. Proc. 1741, 030017 (2016).

[168] T. Kuschel, C. Klewe, J.-M. Schmalhorst, F. Bertram, O. Kuschel, T. Schemme, J. Wollschläger,
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