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Abstract

In this thesis I study implications of finite temperature T on the supersymmetric N = 4
Yang-Mills theory in the presence of Wilson loop defects. External particles moving through
the gauge background of the field theory lose energy upon acceleration. The thus induced
bremsstrahlung function B can be related to the coefficient h of the one-point function
of the stress energy tensor, B = 3h at zero temperature. I will first describe thermal
corrections to a Ward identity at zero coupling. These can be studied with the help of finite
temperature and defect bootstrap techniques, especially the operator product expansion. I
will thus be able to show analytically that the relation between bremsstrahlung and stress
tensor continues to hold in the finite temperature, non-interacting setting algebraically.
This result is verified in a weak coupling perturbative calculation. At leading order and in
an expansion around small and high temperature I discover the existence of a regularization
scheme in which the exact formula holds.
I additionally discuss effects of the interaction terms on the thermal theory. Different
approaches are presented and I discuss how this might affect the thermal Broken Ward
Identity and the relation between bremsstrahlung and stress tensor.
These considerations are supplemented with the second order calculation of the circular
and straight line Wilson loop in a weak coupling expansion.
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Zusammenfassung

In dieser Dissertation untersuche ich die Implikation von endlicher Temperatur T auf die su-
persymmetrische N = 4 Yang-Mills-Theorie in der Gegenwart von Wilsonschlaufendefekten.
Externe Teilchen, welche sich in einem feldtheoretischen Eichhintergund bewegen, verlieren
aufgrund von Beschleunigung Energie. Die hierdurch induzierte Bremsstrahlungsfunktion,
B, kann in Verbindung zum Einpunktkoeffizienten, h, des Energie-Impuls-Tensors gebracht
werden, sodass B = 3h bei Temperatur null gilt. Ich werde zunächst die interaktionsfreien,
thermalen Korrekturen einer Wardidentität darstellen. Diese können dann mithilfe von
Techniken des thermalen sowie des konformen Bootstraps, insbesonder der Operatorpro-
duktentwicklung, untersucht werden. Somit werde ich in der Lage sein analytisch zu zeigen,
dass die Relation zwischen Bremsstrahlung und Energie-Impuls-Tensor in einem thermalen
Hintergund bestehen bleibt, wenn die Kopplungskonstante auf null gesetzt wird.
Dieses Ergebnis wird in einer Näherungsrechnung bestätigt. In führender Ordnung und
einer Entwicklung um niedrige sowie hohe Temperaturen entdecke ich die Existenz eines
Regularisationsschemas, in dem die exakte Formel weiterhin ihre Gültigkeit behält.
Darüber hinaus betrachte ich Effekte von Interaktionen auf die Theorie bei endlicher
Temperatur. Ich stelle verschiedene ansätze vor und diskutiere deren mögliche Implika-
tionen bezüglich der thermalen, gebrochenen Wardidentität sowie der Relation zwischen
Bremsstrahlung und Energie-Impuls-Tensor.
Diese Betrachtungen werden um die Berechnung der nächstfolgenden Ordnung der zirkula-
ren sowie geradlinigen Wilsonschlaufen in einer Entwicklung um die schwache Kopplungs-
konstante ergänzt.
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Chapter 1

Introduction

Quantum field theories are a powerful and widely used tool in theoretical physics for the
last decades. They are used to describe a plethora of different phenomenon in modern
physics. One of the most notable examples is the Standard Model of Particle Physics which
describes high energy interaction between the known elementary particles. Predictions from
the Standard Model agree with the experimental measurement to very high accuracy. One
example is the measurement of magnetic moments and fine structure constant [2]. Despite
its success which should in no way be underestimated the Standard Model still leaves
some questions unanswered, including - but not limited to - the connection between high
energy quantum field theories and gravity [3, 4]. The missing link between the Standard
Model (SM) and gravity can be considered as a hierarchy problem [5]. Comparing the
electroweak SM interaction and gravitational couplings it turns out that the latter ones
are smaller by several orders of magnitude. Therefore the Standard Model is in fact an
effective field theory for energies under a cut-off at around 1 TeV [6]. The Standard
Model includes a process of spontaneous symmetry breaking which is induced by the
introduction of the Higgs boson [7–10]. While gauge and chiral symmetry protect fermions
and vector bosons from getting large mass corrections through self-energies the scalar
Higgs is a priori not protected in such a way. The quadratically divergent self-energy of the
Higgs boson can technically be renormalized but this requires a very precise fine-tuning
to obtain the experimentally derived mass of mφ = 125.10 ± 0.14 GeV [11, 12]. This fine
tuning seems unnatural and a successful extension of the Standard Model should explain
these inconsistencies.
One such approach is the Minimally Supersymmetric Standard Model (MSSM) [13–
15] which is enriched with an additional fermionic supersymmetry. The corresponding
field transformations relate particles of different statistics with each other. Under the
supersymmetry transformations bosonic particles get mapped to fermionic ones and vice
versa. In such a model the divergences occurring in the self-energy calculations of the
Higgs mass can be canceled by the supersymmetric partners of the SM particles. While
supersymmetry thus might be a suitable solution to the hierarchy problem, experimental
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CHAPTER 1. INTRODUCTION

evidence of supersymmetric particles could not be obtained. In fact, if supersymmetry exists
in nature, it has to be spontaneously broken [13]. As the addition of the supersymmetry
facilitates calculations to a great extend, many supersymmetric toy models are being
studied. They provide a more approachable framework to study and understand quantum
field theories in general.
One of the most important ingredients of the Standard Model are gauge theories which
were first introduced to describe electromagnetism. Especially the non-abelian Yang-Mills
(YM) theories [16] are studied in various different settings and in all numbers of dimensions.
While the mathematically rigorous definition of Yang-Mills theories remains mysterious
and is one of the Millennium Problems [17,18] the weak coupling expansion has yielded
much insight on the structure of all gauge theories. The amazingly accurate predictions of
the Standard Model being but one example of this. Despite the many interesting results
the complexity of most gauge theories does not allow for predictions beyond the weak
coupling regime which is why our focus will be on supersymmetric YM theories.
While supersymmetric Yang-Mills theories are studied in a great variety of different settings
the most successful one is the N = 4 supersymmetric Yang-Mills theory (N = 4 SYM) in
four space-time dimensions and planar limit [19–23]. It preserves the maximal amount
of supersymmetry in a four dimensional YM theory that does not include gravitational
effects. The beta function of this massless toy model vanishes and it is possible to compute
large number of quantities exactly.
One of the most important discoveries in recent decades for high energy theoretical physics
was the relation between N = 4 SYM theory in four dimensions at weak coupling and
supergravity in the Anti-de-Sitter space AdS5 × S5 [24, 25] discovered by Juan Maldacena.
The conjecture usually referred to as ’AdS/CFT-correspondence’ or ’holography’ allows
for computations to be done in a weak as well as in a strong coupling expansion and to
compare these results with each other [26,27].
Another asset of N = 4 SYM is that on top of being maximally supersymmetric the theory
is conformally invariant. Conformal invariance is a feature closely linked to scale invariance
meaning that the theory behaves identical at arbitrary distances. The combination of
Lorentz-symmetry, supersymmetry and conformal symmetry leads to large superconformal
algebra (SCA) psu(2,2∣4) under which the theory is conserved. This leads to a plethora
of tools available to study N = 4 SYM including weak coupling perturbative expansions,
gravitational calculations in AdS-space, as well as superconformal bootstrap techniques,
localization and integrability [28–34].
In recent years an additional focus has been put onto defects in N = 4 SYM. The
introduction of p-dimensional extended objects such as lines and branes, as well as
boundary defects partially breaks the superconformal symmetry. While the SCA along the
defect is preserved it is broken in the bulk, the directions orthogonal to the defect. Wilson
lines are one example for such a defect which preserves one-dimensional superconformal
symmetry along the line and a three dimensional rotational symmetry perpendicular to it
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(see Section 1.1). Considering a variety of operators along the defect and in the bulk a
bremsstrahlung function B can be defined which was shown by localization techniques to
be related to the coefficient h of the stress-energy tensor of N = 4 SYM in the presence of
said Wilson line [35,36],

B = 3h . (1.1)

The above relation could in fact even be extended to theories with N = 2 supersymme-
try [37, 38]. Also general multipoint functions in the presence of the multipoint defect
have been of large interest in modern research. It has been shown that a protected sector
of defect excitations can be found in which multipoint correlators can still be expressed
by a generalized bremsstrahlung function [39,40]. Similar results include line defects in
ABJM [41] and N = 2 theories [42].
Exact results have, however, not been obtained in any theory that does not include
supersymmetry.

The intuitive definition of any quantum field theory is that of free particles in an empty
space. Therefore, the Standard Model as well as the N = 4 SYM theory are defined at
a vanishing temperature. Thermal field theories, however have been studies thoroughly
in past decades as thermal effects are of great interest for experimental measurements
and theory such as dark matter freeze-out and phase transitions in the early universe.
These effects include the introduction of a thermal mass for all particles in a theory. By a
folk-theorem thermal masses are proportional to the temperature T and positive. Hence-
forth any broken symmetry introduced by a Higgs-mechanism eventually gets restored at
high enough temperatures. At a certain critical temperature a phase transition between
spontaneously broken and restored symmetry can be observed [43]. Finite temperature
further provides insights on the phases of hot QCD and the Quark-Gluon plasma [44–48].
A thermodynamic system is classically described by an ensemble. As the mechanics of
quantum field theories allow for particles to be created and annihilated at any arbitrary
point in space and time it is intuitive to define a thermal QFT in a Grand Canonical
Ensemble with fixed temperature β = 1/T , volume and chemical potential µ while corre-
spondingly the energy, particle number N and pressure are variables. The ensemble then
defines a partition function Z given in terms of a density matrix

Z = tr(ρ) = tr (e−β(H−µN)) , (1.2)

where H is the time-independent Hamiltonian of the theory. This yields that the theory is
in fact defined in a thermodynamic equilibrium. While more general theories are studied
in the literature we shall restrict ourselves to this equilibrium case and further assume the
chemical potential to vanish.
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CHAPTER 1. INTRODUCTION

The thermal QFT is based on a theory defined on some Rd and conversely the partition
function further has an expression using the path integral formalism. To make this accessible
the time dimension is compactified on a circle with radius of the inverse temperature β.
This straight forwardly defines a thermal manifold Mβ = S1

β ×Rd−1 on which the thermal
theory thus lives. The time-like components of fields can therefore be expressed in discrete
Matsubara modes. While it is generally possible to include real time effect (Keldysh
formalism) we will mostly focus on the imaginary time formalism here.
From the compactification of the time dimension follows that the respective coordinate τ
is periodic and τ ∼ τ + β can be identified. This yields boundary conditions for all fields in
the theory. These boundary conditions are completely fixed by the commutation relations
of the QFT and the definition of the thermodynamic ensemble. All bosonic fields commute
with each other and they are periodic under translations around the thermal circle

φ(τ, x⃗) = φ(τ + β, x⃗) . (1.3)

Meanwhile all fields which obey fermionic statistics anti-commute and therefore they are
anti-periodic

ψ(τ, x⃗) = −ψ(τ + β, x⃗) . (1.4)

These are the Kudo-Martin-Schwinger (KMS) conditions for any thermal theory [49,50].
Following these different periodicity conditions it follows readily that any supersymmetry
that was introduced at zero temperature must be broken in the thermal theory [51–53].
Similarly the temperature is an explicit scale introduced to the theory thus breaking
conformal invariance. However, locally the thermal manifold Mβ looks like flat space
and henceforth techniques of conformal field theories remain to be valid to some extend
(see Section 1.2). Two operators in a proximity of each other can be expanded in an
operator product expansion (OPE) as commonly used in zero temperature CFTs. The
distance between the two operator insertions must be smaller than the inverse temperature
for the OPE to hold. Furthermore, bootsrap techniques can be applied to the thermal
CFT [54–56].

1.1 Wilson Loops

One consistency check for the AdS/CFT-correspondence is the computation of supersym-
metric Wilson loops (WL). Wilson loops were first introduced by Kenneth Wilson [57]
in 1974 as a gauge invariant observable to measure confinement in lattice theories. Their
generalization to supersymmetric theories, especially with respect to the AdS5/CFT4-
correspondence was introduced 24 years later by Juan Maldacena [58]. For a generic
Yang-Mills theory they describe the holonomy of the gauge connection upon parallel
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1.1. WILSON LOOPS

transport along a closed path C as a path-ordered exponential:

W (C) = trR ⃗P exp [i∮
C

dxµAµ] . (1.5)

The trace is evaluated with respect to the gauge group. Aµ(x) is the gauge field and ⃗P is
the path-ordering operator. The Wilson loop corresponds to a heavy quark being moved
along a closed loop in a gauge background Aµ. In the quantum gauge theory we assume
the quark to have an infinite mass and it can thus be integrated out of the interacting
theory.
One important observation made early is that the Wilson loop of a rectangular loop
measures the quark-antiquark-potential. Therefore consider a rectangle T ×R. The side T
is in the time direction and R is in the spatial direction. In the limit T →∞ while keeping
R = const. the two lines along the time direction look like a quark and an anti-quark. The
Wilson loop thus yields the potential V (R) between the quark and the anti-quark [59, 60]

⟨W (◻)⟩ ≃ e−T V (R) . (1.6)

Therefore the rectangular Wilson loop is an order parameter for confinement phase
transitions. For example confinement can be seen from the ’area law’ ⟨W (◻)⟩ ≃ e−TR
(linear potential) [59].
Witten related the Wilson loop in 2+1 dimensional Chern-Simons theory to mathematical
knot theory and found new implications for 1+1 dimensional Wess-Zumino-Witten models
[61]. In supersymmetric gauge theories the Wilson loop is generally interesting as a non-
local gauge-invariant operator. Furthermore, for some specific contours the Wilson loop
can preserve a certain amount of supersymmetry and one is sometimes able to calculate
the Wilson loop exactly. These exact results can be obtained using supersymmetric
localization which leads to solvable matrix models. Examples are the straight line which is
identically one due to SUSY and the circle computed in [62–64]. Moreover, Wilson loops
and their relation to ’t Hooft loops (the magnetic dual of Wilson loops) provide tests for
S-duality [65–67].

1.1.1 N = 4 Maldacena-Wilson loops

As introduced above the Wilson loop is originally defined for a generic U(N) gauge theory

W (C) = 1
N

tr ⃗P exp [i∮
C

dxµAµ] . (1.7)

with a closed contour C parameterized by x(τ) and Aµ(x) the gauge field of the theory.
⃗P is the τ -path-ordering and the trace is over the fundamental representation. It describes

the propagation of a heavy particle (M →∞) on a closed loop C. We are mainly interested
in the expectation value of the Wilson loop ⟨W (C)⟩.
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CHAPTER 1. INTRODUCTION

Consider this Wilson loop in 4d N = 4 SYM theory and in string theory on AdS5×S5.
In AdS space a theory with gauge group U(N) can be build by stacking N D3-branes
at the same point [65]. Consider instead (N + 1) D3-branes where one of the branes is
separated from the others. This yields that the original gauge group U(N + 1) is broken
to a U(N)×U(1) in a Higgs-like mechanism [65–67]. The Wilson loop is interpreted as a
string connecting the single brane with the set of N D3-branes. However, the string must
also have an extension on the 5-sphere S5 parametrized by coordinates nr which correspond
to the six scalars Φr of N = 4 SYM which is why we introduce the Maldacena-Wilson
loop [58]

⟨W (C)⟩ = ⟨ 1
N

tr ⃗P exp [∮
C

dt (iAµẋµ + nrΦr∣ẋ∣)]⟩ . (1.8)

For simplicity we consider nr = constant here. The Wilson loop expectation value can
be obtained by considering the amplitude of the massive particle that is the loop. The
amplitude can be computed in two ways. It can be considered as the WL expectation value
with a prefactor of the exponentiated mass. Furthermore, it is also given by the string
partition function with boundary along the contour C. Comparing both formulations one
finds

⟨W (C)⟩ = e−(Sstring[C]−M L(C)) . (1.9)

L(C) is the length of the Wilson loop. The string action is proportional to the area of the
worldsheet in AdS5×S5 which thus diverges. This divergence, however, cancels against the
divergence coming from M →∞ with the latter limit chosen appropriately.
The string we are considering has a tension and following the action principle it wants
to have minimal area. In the very simple case of flat space the tension together with the
boundary conditions would imply that the worldsheets spans the surface enclosed by C.
AdS space, however, introduces a gravitational field dragging the string away from the
boundary. Eventually this gravitational pull is stopped by the tension at some finite value.
The free heavy boson which we subtract above, on the other hand, stretches along the full
AdS5 in a straight line parallel to C. We want to calculate thus the string action which is
nothing else but the tension times the area of the string world sheet fixed to the boundary.
The mass term cancels the divergence thus giving the renormalized area from which the
Wilson loop is readily computed

Arearen.(C) = lim
ε→0
(Area(C)∣Z≥ε −

1
ε
L(C)) , ⟨W (C)⟩ = e−

√
λ

2π
Arearen.(C) . (1.10)

At weak coupling the calculation of the Maldacena-Wilson loop is done via Feynman
diagrams. The general expression (1.8) can be expanded around small values of the ’t
Hooft coupling. This leads to a power series expansion of the exponential with the fields
contracted among themselves or with fields coming from the action.
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1.1. WILSON LOOPS

We will consider this weak coupling expansion more closely for the circular WL in the
next subsection.

1.1.2 Circular Maldacena-Wilson loop in N = 4

We consider a circular loop with boundary parameterization

Cloop ∶ xµ(t) = (0 , R cos(t) , R sin(t) , 0) , t ∈ [0,2π] . (1.11)

The area of the circular loop is calculated from the Nambu-Goto action (for details see [67])

Arearen. (◯) = lim
ε→0
[Area (◯) ∣Z≥ε −

1
ε
L (◯)] = lim

ε→0
[2π (R

ε
− 1) − 2πR

ε
] = −2π . (1.12)

And therefore we find for the circular Wilson loop at strong coupling

⟨W (◯)⟩ = e
√
λ . (1.13)

As is expected for a scale invariant theory the final result does not depend on the radius
of the circle. In [62] Erickson, Semenoff and Zarembo managed to calculate the line on
the gauge theory side exactly. They find

⟨W (◯)⟩ = 2√
λ
I1(
√
λ) λ>>1ÐÐ→

√
2
π
λ−

3/4 e
√
λ . (1.14)

The leading behavior for λ >> 1 matches in both calculations thus providing a first
consistency check of the AdS/CFT correspondence using the Wilson loop. Let us review
the main steps of the calculation in [62].
Therefore expand the exponential of the Wilson loop (1.8) in a power series

⟨W (C)⟩ ≈ 1 + tr(T aT b)
N ∫

2π

0
dt1 ∫

t1

0
dt2 [∣ẋ1∣∣ẋ2∣nInJ ⟨ΦI 1ΦJ 2⟩

−ẋµ1 ẋν2 ⟨Aaµ1A
b
ν 2⟩] +O(λ2) . (1.15)

The linear term involves only one-point functions which are zero. The quadratic term, which
is displayed above, yield Wick contractions between scalar and vector fields. Considering
the bare propagators these contributions yield the leading corrections. Subleading terms
involve corrections to the propagators which come from the expansion of the action as
well as cubic and quartic terms from the Wilson loop exponential.
We can evaluate the integrals by inserting the bare propagators in coordinate space,

⟨Φa
I(x1)Φb

J(x2)⟩ =
g2

4π2
δabδIJ
(x1 − x2)2

, (1.16a)

7



CHAPTER 1. INTRODUCTION

⟨Aaµ(x1)Abν(x2)⟩ =
g2

4π2
δabηµν
(x1 − x2)2

. (1.16b)

For the trace of the generators we use the convention Tr(T aT a) = N2/2 and thus find

⟨W (C)⟩ ≈ 1 + λ

8π2 ∫
2π

0
dt1 ∫

t1

0
dt2
∣ẋ1∣∣ẋ2∣ − ẋµ1 ẋ2µ

(x1 − x2)2
+O(λ2) . (1.17)

This first term is depicted in Figure (1.1a). Inserting the parameterization (1.11) we see
that the contributions of the nummerator and denominator cancel up to a factor 1/2

∣ẋ1∣∣ẋ2∣ − ẋµ1 ẋ2 µ

(x1 − x2)2
= R2 −R2 sin(t1) sin(t2) −R2 cos(t1) cos(t2)
(R cos(t1) −R cos(t2))2 + (R sin(t1) −R sin(t2))2

= 1
2 . (1.18)

The remaining integral is readily evaluated to give a factor of 2π2 and we can write down
the Wilson loop up to order λ

⟨W (C)⟩ = 1 + λ8 +O(λ
2) . (1.19)

There are three types diagrams contributing to the next order, shown in the Figure (1.1).
The diagram in Figure 1.1a is the insertion of a single bare propagator contributing at
order λ. This is precisely the term considered in the above calculations. Further expanding
the WL exponential yields the insertion of two bare propagators (Figure 1.1b) coming
from the quartic terms. As mentioned previously the expansion of the action allows for
the insertion of self-energies to the leading order diagram. This is shown in Figure 1.1c.
The three-point vertices from the action can be Wick contracted with the cubic terms of
the expansion to form the vertex diagram 1.1d. These three diagrams all contribute at the
same order λ2 in a small coupling expansion. Note that non-planar diagrams like one with
two crossing bare propagators are subleading in the large-N limit we consider.
By calculating the relevant self-energies in N = 4 SYM and inserting into the circular loop
one can eventually show that the self-energy (1.1c) and vertex diagrams (1.1d) give the
same contribution up to a sign and thus mutually cancel [62].

The ladder diagram (1.1b) is thus the only one contributing. Such diagrams will appear
at all orders in perturbation theory and they can be resummed to an exact result.
From the expansion in Equation (1.15) it can be seen that the term of order 2n will be

1
N ∫

2π

0
dt1 ∫

t1

0
dt2 . . .∫

t2n−1

0
dt2n ×

× tr ⟨(iAµ1ẋ
µ
1 +ΦI 1∣ẋ1∣nI) . . . (iAµ2nẋ

µ
2n +ΦI 2n∣ẋ2n∣nI)⟩ (1.20)

8



1.1. WILSON LOOPS

Figure 1.1: The diagrams show insertions into the Wilson loop at low order. The thicker
line is the circular loop of the heavy particle. The curly and straight line respectively
represent a gauge and a scalar Boson inserted. We must sum over all possible combinations
allowed by the present vertices.

(a) Single propagator insertion. This is the only diagram of order λ computed above.

(b) Ladder diagram: Insertion
of two single propagators. This
diagram contributes at order
λ2.

(c) Self-energy insertion. The
hatched circle in the middle
with the 1 stands for any pos-
sible one-loop insertion. This
diagram contributes at order
λ2.

(d) Vertex insertion. This dia-
gram contributes at order λ2.
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CHAPTER 1. INTRODUCTION

We want to sum only those planar diagrams that have bare internal propagators without
any vertex. Therefore any two neighboring fields1 might be Wick contracted to form a
propagator. Each of those n propagators will have a contribution as (1.16a) or (1.16b).
Noting that, as before, we may sum gluon and scalar bare propagators we find a contribution
of λ/16π2 due to the cancellation of numerator and denominator because of the chosen
parameterization of the circular loop, see also the calculation that led to Equation (1.18).
The factor of N arises because the propagators yield a Kronecker delta for the generators
and we have tr(T aT a) = N2/2. The 2n integrals yield (2π)2n/(2n)!. Multiplying all these
factors yields that the contribution of 2n ladder diagrams is

(g2N/4)n

(2n)! × # of different diagrams at order 2n . (1.21)

We want to find how many different diagrams we have with n internal propagators. Note
that we do not need to distinguish between scalar and gluon propagators as this was
already included in the above calculation.
For n = 2 there are two diagrams due to different naming of the insertion points. The
higher order diagrams are then given by having the new propagator inserted between any
sub-diagrams of the lower order. Figure (1.2) shows how this is done. Summing over k

Figure 1.2: Schematic description of how higher order diagrams are obtained from the
lower order ones [62].

then gives the number of diagrams with n + 1 propagators recursively

An+1 =
n

∑
k=0
An−kAk , A0 = 1 . (1.22)

All the different An might be stored in a generating function

f(z) ∶=
∞
∑
n=0

Anz
n . (1.23)

We can then compare the following two quantities:

f(z) − 1
z

= 1
z
(
∞
∑
n=0

Anz
n − 1) = 1

z

∞
∑
n=1

Anz
n =

∞
∑
n=1

Anz
n−1 =

∞
∑
n=0

An+1z
n =

∞
∑
n=0

n

∑
k=0

An−kAkz
n

(1.24)
1Also the first and the last field are neighboring because of the cyclicity of the trace.
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1.1. WILSON LOOPS

f 2(z) = (
∞
∑
m=0

Amz
m)(

∞
∑
l=0
Alz

l) =
∞
∑
n=0

n

∑
k=0
An−kAkz

n . (1.25)

For the first quantity we plugged in the recursion formula and for the second one we used
the Cauchy product formula

(
∞
∑
m=0

amz
m)(

∞
∑
l=0
blz

l) =
∞
∑
n=0

cnz
n where cn =

n

∑
k=0

an−kbk . (1.26)

Therefore we find

zf 2(z) = f(z) − 1 , (1.27)

which is a quadratic equation of f(z) with general solution

f±(z) =
1 ±
√

1 − 4z
2z . (1.28)

However the function should also match the power series above, espicially A0 = 1 yields
f(0) = 1. Computing the limits f±(z → 0) readily yields that only the solution f−(z)
satisfies this assumption. We can then use the known Taylor expansion for

√
1 + x to find

the general expression for all An:

f(z) = f−(z) =
1 −
√

1 − 4z
2z =

∞
∑
n=0

(2n)!
(n + 1)!n!z

n . (1.29)

Therefore we finally find An = (2n)!/(n+1)!n!. We can now multiply this with the previously

motivated prefactor
(g2N/4)

n

(2n)! and sum over all n to get the final result

⟨W (C)⟩ladder =
∞
∑
n=0

(λ/4)n

n!(n + 1)! = −
2√
λ
I1 (
√
λ) , (1.30)

where I1 is the modified hyperbolic Bessel function.

Erickson, Semenoff and Zarembo conjectured [62] that the result presented above is exact
to all loops. Conversely this means that the cancellation between self-energy and vertex
diagrams similar to Figures 1.1c and 1.1d, respectively. This statement was further
supported later by Drukker and Gross [63] who also computed the circle by an inversion
of the straight line and thus determined the above result as a conformal anomaly. They
gave arguments on how to possibly use supersymmetric localization and discovered that
the circular loop can be computed using a matrix model. The final proof for the formula
above was done by Pestun [64].
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CHAPTER 1. INTRODUCTION

1.2 Finite Temperature Bootstrap

The conformal bootstrap is a method used in recent years to study theories with scaling
symmetry [68, 69]. One of the most popular example is the bootstrap of the three-
dimenional Ising model [70]. Introducing a finite temperature by a compactification of the
euclidean time breaks the conformal invariance. However, some bootstrap techniques can
still be used to study such theories on S1

β ×R3. The breaking effectively introduces a scale,
namely the inverse temperature β = 1/T . One consequence is that one-point functions in
the thermal background may aquire a non-zero expectation value. In fact the preserved
symmetries demand the operators to be symmetric-traceless tensors of even spin J [54].
Such operators are then fixed by the remaining preserved symmetries to depend only on a
one-point coefficient bO

⟨Oµ1...µJ (x)⟩β =
bO
β∆O

(eµ1 . . . eµJ − traces) . (1.31)

In the above equation the eµ are unit vectors in the direction of the thermal circle. Note
that this yields for the stress tensor

⟨T µν⟩β =
bT
β4 (e

µeν − 1
d
ηµν) . (1.32)

To determine the one-point coefficient of the stress tensor consider the energy density
given by [54]

E = −⟨T00⟩ = −(1 −
1
d
) bT = −

d − 1
d

bT . (1.33)

The energy E must be positive and thus bT < 0. This derivation can be compared to the
free energy density

F = E − TS = E + T dF
dT
= fT 4 . (1.34)

The last equality follows from dimensional analysis and f is an a priori unknown coefficient.
Combining the last two equations yields that the stress stensor coefficient can be obtained
from the free energy [54]

f = bT
d
< 0 ⇒ bT =

dF

T 4 . (1.35)

For four-dimensional N = 4 SYM the free energy was calculated in [71] and we thus find

FN=4 = −π
2g2N2T 4

6 ⇒ bN=4T = −2π2

3 g2N2 . (1.36)
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1.2. FINITE TEMPERATURE BOOTSTRAP

1.2.1 Operator Product Expansion

While two-point functions can be fixed using the conformal symmetries at T = 0 this is no
longer true at finite temperature. Only the one-point functions can be entirely determined.
Thermal two-point functions can however be obtained by using an Operator Product
Expansion (OPE). These OPEs are known from conformal theories [68, 69, 72]. They
describe the product of two operators by a sum of single operators. The convergence of
this series was shown to hold if the two operators are in a sphere with flat interior within
which no further operators lie. For the thermal theory we additionally need to account for
the compactified time dimension. The compactification will spoil the flatness of the OPE
interior for large enough distances between the two operators. In the contrary case we
can, however, still use the original OPE [54]

φ(x)φ(0) = ∑
O∈φ×φ

fφφO∣x∣∆O−2δφ−Jxµ1 . . . xµJ
Oµ1...µJ (0) . (1.37)

The above equation is the operator product expansion for two scalar fields. In general all
operator products statisfy a similar OPE where we would have to account the different
indices appropriately. The structure constant fφφO is precisely the one from the zero
temperature theory. Following the above argumentation this OPE converges for

∣x∣ =
√
τ 2 + ∣x⃗∣2 < β . (1.38)

This means that the largest sphere in which the two operators must lie for the OPE to
still be convergent is a sphere that wraps once around the sphere S1

β, see Figure (1.3).
The Operator Product Expansion introduced above can for example be used to find an

Figure 1.3: The blue sphere shows the maximal region for convergence of the OPE on
S1
β ×R3. The horizontal direction is the R3 [54].

expression for a scalar two-point function. Therefore consider that the contraction between
the xµ from the OPE and the structure of the one-point function is given by Gegenbauer
polynomials

∣x∣Jxµ1 . . . xµJ
(eµ1 . . . eµJ − traces) = J !

2J(ν)J
C
(ν)
J (

τ

∣x∣) , (1.39)
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where ν = d−2/2 and (a)n = Γ(a+n)/Γ(a) is the Pochhammer symbol. Thus a scalar two-point
function at finite temperature can be written as

g(x) ∶= ⟨φ(x)φ(0)⟩β = ∑
O∈φ×φ

aO
βO
∣x∣∆O−2∆φC

(ν)
J (

τ

∣x∣) , with aO =
J !fφφObO
2J(νJ)

. (1.40)

The resulting expressions ∣x∣∆O−2∆φC
(ν)
J ( τ∣x∣) can be considered as the thermal conformal

blocks [54]. They obey crossing equations similar to the zero temperature conformal
blocks [73].

1.2.2 KMS condition and clustering

Compactifying the time dimension on an S1
β yields a periodicity in the τ component. This

extends to the operators in the theory. This was first discovered by Kudo, Martin and
Schwinger [49,50] who showed that bosonic fields experience periodic boundary conditions
while the boundary conditions for fermions are anti-periodic,

φ(τ, x⃗) = φ(τ + β, x⃗) , ψ(τ, x⃗) = −ψ(τ + β, x⃗) . (1.41)

These KMS conditions need to be satisfied by all correlators in the thermal theory which
puts further restrictions on the thermal conformal blocks introduced above. Namely

g(τ, x⃗) ∶= ⟨φ(τ, x⃗)φ(0)⟩β = ⟨φ(β − τ, x⃗)φ(0)⟩β . (1.42)

This can then be interpreted as a constraint on the thermal coefficients aO similar to the
crossing equations at zero temperature [54,73].
Using the SO(d − 1) symmetry of S1

β ×Rd−1 the spatial x⃗ can be restricted to a coordinate
on a line xE. Introducing complex coordinates

z = τ + ixE , z̄ = τ − ixE , z = rω , z = rω−1 , (1.43)

and Wick rotating xE → ixL we can define a set of two independent variables (z, z̄). The
KMS condition above can be rewritten as

g(z, z̄) = g(1 − z,1 − z̄) , (1.44)

in the new coordinates where for convenience we set β = 1.

The thermal bootstrap including the above thermal blocks (1.40) and the Thermal Crossing
Equations (1.44) relies on the convergence of the Operator Product Expansion as shown
in Figure 1.3. Outside of the sphere with ∣x⃗∣ < β the above OPE does not hold. However,
we can consider the two operators at a large spatial separation ∣x⃗∣→∞. In this limit the

14



1.2. FINITE TEMPERATURE BOOTSTRAP

correlator between two scalars will be determined by the thermal mass. There is a folk
theorem at finite temperature saying that all thermal masses are positive mth > 0 yielding
that [54]

⟨φ(τ, x⃗)φ(0)⟩β ∼ ⟨φ⟩2β +O(e−mth∣x⃗∣) for ∣x⃗∣→∞ . (1.45)

This in turn means that at large spatial separation we find a clustering. The different
operators in the correlator do not interact and we can consider a product of their one-point
functions instead.

1.2.3 Lorentzian inversion formula

The methods of the thermal bootstrap as presented in the previous subsections have been
used to study different conformal field theories at finite temperature, see for example
[56, 68, 74]. In this subsection and the subsequent one we will give an overview of the
methods used in these references. They are alternative approaches to CFTs at finite
temperature which will not be used in this thesis. They are, however, state of the art
results of the thermal bootstrap and hence generally interesting
The operator content of theories in flat space can be studied by considering four-point
functions and their conformal blocks. One way of doing this are inversion formulas [74–76].
The inversion formulas are an efficient way of studying crossing equations. As we derived
above, in a thermal theory we instead consider two-point functions and their thermal
blocks ∣x∣∆O−2∆φC

(ν)
J (τ/∣x∣). The crossing equations they obey are the KMS conditions

(1.44) introduced above. Rewrite the thermal OPE for the scalar two-point function as an
integral

g(τ, x⃗) =
∞
∑
J=0
∮
−ε+i∞

−ε−i∞

dδ
2πi

a(∆, J)
β∆ ∣x⃗∣∆−2∆φC

(ν)
J (

τ

∣x⃗∣) . (1.46)

We have to assume that the function a(∆, J) does not grow exponentially fast in the
right half-plane. Then we can deform the contour and use the Cauchy theorem to pick up
residues. For the above formula to agree with Equation (1.40) these poles have to sit at
the physical operator dimensions

a(∆, J) ∼ − aO
∆ −∆O

. (1.47)

The above formula can be inverted by integrating against the Gegenbauer polynomials
followed by a Laplace transform. Using the coordinates as defined in (1.43) we can invert
(1.46) in Lorentzian signature and obtain [54]

a(∆, J) = (1 + (−1)J)KJ ∫
1

0

dz̄
z̄ ∫

1/z̄

0

dz
z
(zz̄)∆φ−∆

2 −νFJ
⎛
⎝

√
z̄

z

⎞
⎠

Disc[g(z, z̄)]
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+ θ(J0 − J)aarcs(∆, J) , (1.48)

with

KJ =
Γ(J + 1)Γ(ν)
4πΓ(J + ν) , FJ(ω) = ωJ+d−2

2F1 (J + d − 2, d2 − 1, J + d2 ∣ω) . (1.49)

The first inversion included an integral around a unit circle in the ω−plane. The con-
tour then needed to be deformed. To do this in [54] it was claimed for the correlator
g(z = rω, z̄ = rω−1) to satisfy two important properties. It is analytic in said ω−plane away
from the cuts (−∞,−1/r), (−r, r), (1/r,∞) for r < 1. This analyticity can be conjectured
from the convergence of the s-channel and t-channel OPEs [54]. Moreover the function
is assumed to be polynomially bounded at large ω. For some constant J0 the growth is
bounded by ωJ0 . Due to the symmetry ω → ω−1 similarly g is bounded by ω−J0 for small
ω.
The integral which was originally around ∣ω∣ = 1 can then be deformed separately for terms
with ωJ and with ω−J to enclose the cuts mentioned above. These contours are shown
in Figure (1.4). For J ≤ J0 we pick up non-trivial contributions aarcs(∆, J) from the arc.

Figure 1.4: The picture shows the different contours. (a) is the original contour while (b)
and (c) are the respective deformations mentioned above [54].
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The contour along the cuts yields the discontinuities of the two-point function

Disc[g(z, z̄)] ∶= 1
i (g(z + iε, z̄) − g(z − iε, z̄)) . (1.50)

As the discontinuities of thermal two-point functions are often known while their full
structure is not, by using the inversion formula (1.48) we can determine the thermal
coefficients aO with relative ease. In [54] this was shown for mean field theory. While the
coefficents in this case can also be computed analytically this provides a cross-check for
the inversion formula.
In [55] the thermal coefficients where calculated for the strongly coupled three dimensional
Ising model.

1.2.4 Holographic thermal correlators

Corrections to the mean field theory correlator [54]

G∆(x) ∶= ⟨φ(x)φ(0)⟩MFT
β =

∞
∑

m=−∞

1
((τ +m)2 + ∣x⃗∣2)∆ . (1.51)

coming from λφ4 interactions can be studied in AdSd+1 space. Using holography the free
theory in AdS is dual to the mean field theory (MFT) on the thermal manifold S1

β ×Rd−1.
Considering quartic interactions in the bulk the leading correction to the MFT correlator
can be obtained by an analysis in Mellin space similar to the zero temperature case [77]

⟨φ(x)φ(0)⟩β ∣λ1 = ∮
s0+i∞

s0−i∞

ds
2πiΓ

2(s)Γ2(∆ − s)Mβ(s)Gs(x) , (1.52)

where 0 < Res0 < ∆ − (d−1)/2 [56]. This expression depends only on the free MFT result
Gs(x) and on the Mellin amplitude Mβ(s). The latter one can be entirely fixed by the
zero temperature results for the anomalous dimensions γn,l=0 of spin 0 operators obtained
in [77] which are analytic in n. The analyticity is an important property for the above
formula to work [56]. Additionally the formula for the thermal Mellin amplitudes (1.52)
are fixed by some consistency requirements.
First and foremost the KMS condition introduced above (see Equation (1.44))

⟨φ(z, z̄)φ(0)⟩β = ⟨φ(1 − z,1 − z̄)φ(0)⟩β , (1.53)

must hold. When using the thermal operator product expansion (1.37) no new operators
are exchanged compared to the zero temperature case. Therefore the anomalous dimensions
at zero and nonzero temperature must be equal. Furthermore the function ⟨φ(z = rω, z̄ =
rω−1)φ(0)⟩β must be analytic in the ω−plane as shown in Figure 1.4. This was shown in [54].
Similarly for large spatial distances the clustering effect introduced above must be obeyed
by the two-point function. Lastly the correlator must satisfy Regge boundedness [56].
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Considering the quartic interactions and Witten diagrams in the AdS bulk theory the
above formula (1.52) can be proven while an extension including more general interactions
was proposed [56]. These interactions are covariant derivatives acting on the quartic
term λk ▽2k φ4 where k is summed from 2 to some finite L > 0 corresponding to the zero
temperature solutions of [77] with maximum spin L. The scalar two-point function can in
this case be written at leading order using the new Mellin amplitudes ML(s, ∂z, ∂z̄) which
now also depend on derivatives,

⟨φ(x)φ(0)⟩β ∣(1) = ∮
s0+i∞

s0−i∞

ds
2πiΓ

2(s)Γ2(∆ − s)ML(s, ∂z, ∂z̄)Gs(x) , (1.54)

ML(s, ∂z, ∂z̄) =ML(s, ∂z̄, ∂z) , ML(s, ∂z, ∂z̄) =ML(s,−∂z,−∂z̄) . (1.55)

The constraints on ML follow from the z ↔ z̄ symmetry and the KMS condition (1.44).
Again, only the anomalous dimensions of double-trace operators obtained from crossing
equations at zero temperature are needed to determine the thermal Mellin amplitudes [56].

1.3 Outline of the thesis

The main focus of this thesis is on the Relation (1.1)

B = 3h ,

between the bremsstrahlung of a heavy particle (the Wilson loop) and the coefficient of
the stress energy tensor. We will show that it continues to hold in a thermal setting of
N = 4 SYM at zero coupling both analytically and perturbatively. For the analytic proof
we study a supersymmetric Broken Ward Identity (BWI) and show that in a regime where
the thermal operator product expansion can be applied, no relevant thermal corrections
arise. The algebraic argument is presented at zero gauge coupling g = 0. We will reinforce
this exact statement by a perturbative calculation of the bremsstrahlung B and the stress
tensor coefficient h at leading order in an expansion around weak ’t Hooft coupling λ.
Subsequently the coupling is turned on and we study the effects of the interactions to
the previous algebraic argument. Additionally, the next-to-leading order of the circular
Wilson loop and the straight Wilson line are computed in the thermal setting.

Chapter 2 is a review of known results at zero temperature.
We start by deriving the Relation (1.1) analytically by considering a Ward identity related
to the stress tensor multiplet of N = 4 and the displacement multiplet induced by the WL
defect (Section 2.1). The resulting two-point functions which are related to the coefficients
B and h are studied in a way that simplifies their extension to the thermal calculation in
later chapters.
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We furthermore derive the bremsstrahlung as a function of the circular Wilson loop which is
in a 1/2 Bogomol’nyi-Prasad-Sommerfield (BPS) state and calculate the one-point function
of the stress energy tensor Tµν perturbatively from Feynman diagrams (Section 2.2).
Although our calculation will be carried out in a weak-coupling perturbative expansion
the resulting identity can - in the zero temperature scenario - be proven exactly as well
with a similar calculation.

In Section 3 the above considerations are extended to finite temperature. We restrict
ourselves to the non-interacting case by setting the Yang-Mills coupling g to zero.
Once again, we start by considering an algebraic argument related to a Ward identity
in Chapter 3.1. First we consider the compactification of the time dimension and show
that supersymmetry can be preserved when assuming periodic boundary conditions for all
fields in the theory. In a continuative argument we introduce the anti-periodic boundary
conditions of the thermal fermions through phase transformations. These yields new terms
breaking the supersymmetry of the action and hence the Ward identity. The new Broken
Ward Identity then yields corrections compared to the previous chapter. Subsequently
these corrections are studied in an operator product expansion. By assuming that inserted
operators are sufficiently close to each other, the known OPEs can still be applied such that
we are able to simplify the thermal corrections of the BWI. In a final step, the dependence
on spacetime and R-symmetry indices of these new relations can be restricted allowing us
to show that they ultimately do not affect the relation B = 3h in the given setting.
After obtaining (1.1) exactly we provide a perturbative check in Section 3.2. Zero coupling
means in this case that only bare propagator insertions are allowed in the perturbative
expansion of the Wilson loop. The leading order, being the only consistent one in this
context, will thus be studied in detail. We start with a calculation of the circular Wilson
loop at leading order. It will prove convenient to consider this calculation in a small
temperature expansion as well as in a high temperature limit. Equipped with the result of
the circular Wilson loop we can then derive an expression for the bremsstrahlung similar to
the one at zero temperature. We will find that for the straight line WL a scale coefficient
has to introduced for dimensional reasons. The resulting bremsstrahlung can then be
compared with the stress tensor one-point function in the presence of the circular Wilson
loop. We find a scheme for the new coefficient of the straight line which indeed reproduces
the Relation (1.1), B = 3h. The scheme is dependent on temperature and the radius of
the circular loop. This suggests that at every temperature a scheme matching (1.1) can
be found

The extension of the algebraic consideration to the full interacting theory is considered in
Chapter4. We will follow two different approaches. The goal is to find a supersymmetric
piece of the action and a piece breaking the supersymmetry such that the a thermal Broken
Ward Identity can be applied similarly to the g = 0 case. We consider field redefinitions
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depending on a priori arbitrary integers and a dimensional KK-like reduction by using
Fourier modes.
We first consider the field redefinitions in Section 4.1. The Yukawa interactions will restrict
the fermionic phases mentioned above and furthermore yield the necessity to introduce
similar phases for the scalar fields. What is more, these phases are related in a way
which breaks the R-symmetry. We study how this breaking arises and possible ways to
preserve the largest possible subgroup. Clearly this result alters what we found in the
zero coupling discussion of the BWI. While we did not find a relation for the BWI with
the broken R-symmetry we give arguments regarding the possibility to again obtain the
relation B = 3h. Meanwhile, there is a free choice regarding the phases which influences
the preserved symmetry group. While we considered only classical arguments before, these
choices might be restricted when considering a dynamical calculation. We discuss the
steps necessary to determine these restrictions.
The Fourier series representation of fields is considered in Section 4.2. Contrarily to the
previous ansatz we can show that R-symmetry is preserved. However, supersymmetry
is not preserved in this ansatz and we derive the breaking term. The reason being that
Yukawa terms yield interactions between different modes because a shift is introduced.
In Section 4.3 we review the result of the two approaches and discuss the steps necessary
to complete these considerations. We expect that eventually we will be able to find a
consistent manner in which they can be combined into one convincing ansatz.

Considering the interactive thermal theory an alternative ansatz is to consider the relation
B = 3h perturbatively at the next to leading order. We adress this in Chapter 5. As a
starting point we calculate the circular Wilson loop and the straight Wilson line in the
thermal setting at order λ2. This order includes the significantly more complex diagrams
of vertex and self-energy insertions to the Wilson loop. It is therefore necessary to
preliminary consider the effects of finite temperature and the WL on the gauge propagator
and calculated propagators at one loop order. Equipped with these results the circular
Wilson loop at order λ2 is then computed. Due to arising difficulties for the vertex diagram
and the stress tensor calculation, some of the results obtained are only numerical. Similarly
the straight line Wilson loop is obtained from the one-loop propagators. Interestingly, for
the straight line only the self-energy insertion is relevant as the contour prefactor cancels
all other diagrams readily. The calculations are again obtained in a small temperature
expansion and in a high temperature limit.

We conclude the thesis in Chapter 6 where we recall the main results and give a short
recap on the necessary calculation.
Some appendices clarifying certain steps of our considerations are provided. In Appendix
A we define Pauli matrices and Clebsch-Gordan coefficients. Furthermore we recall the
superconformal algebra relations of N = 4. Following this we discuss the breaking of
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the superalgebra by the defect in Appendix B. An overview over the N = 4 stress tensor
defect and how it can be obtained from N = 2 multiplets is provided in Appendix C. In
Appendix D we derive the supersymmetry transformations of the displacement primary
O and the first descendant ψ of the stress tensor multiplet. Appendix E is a consistency
check showing that the displacement-stress-tensor two-point functions we use are consistent
with the similar ones in N = 2 presented in [38]. For the finite temperature theory it is
necessary to introduce redefinition of some of the fields with phase prefactors. In Appendix
F we show that these redefinitions are non-anomalous at zero coupling. Similarly, we show
that also the anomalies in the interacting theory are zero in Appendix G. In Appendix
H we present the status of the dynamical self-energy calculation necessary to determine
the correct choice for the phases introduced in Section 4.1 and further considerations in
similar directions. We uncover an inconsistency in the respective approach. Therefore, in
Appendix I we suppose a different ansatz. After showing that the R-symmetry is preserved
at finite temperature we write down a general Lagrangian which allows us to use Broken
Ward Identities. We show that its self-energy can be made consistent when introducing
proper masses for scalars and spinors. Lastly the Feynman rules of N = 4 SYM are given
in J.

1.4 Conventions

Let us clarify some conventions that are used throughout the thesis.
Define the action of N = 4 as

S = 1
2g2 tr∫ d4x [12FµνF

µν + (∂µAµ)2 +DµΦIJDµΦ̄IJ + iλ̄IσµDµλI + iλI σ̄µD̄µλ̄
I+

+iΦ̄IJ {λI , λJ} − iΦIJ {λ̄I , λ̄J} +
1
2
[ΦIJ ,ΦKL] [Φ̄IJΦ̄KL] + ∂µc̄Dµc]

= 1
2g2 ∫ d4x [12F

a
µνF

aµν + (∂µAaµ)
2 +DµΦa

rD
µΦa

r + iλ̄aI /DλIa − iλaI /̄Dλ̄Ia (1.56)

+ifabcλIaΣ̄rIJΦrbλJc − ifabcλ̄aIΣIJ
r Φrbλ̄cJ

+1
2f

abcfadeΦb
rΦc

sΦrdΦse + ∂µc̄aDµc
a] .

The trace is taken over the color group SU(N) and we consider only Feynman gauge. We
use Minkowski indices µ, ν = 0, . . . , 3 and su(4)R fundamental indices I, J = 1, . . . , 4. Aµ is
the gauge field with Fµν = ∂µAν−∂νAµ+[Aµ,Aν], λI , λ̄I are the four Weyl spinors, ΦIJ , Φ̄IJ

are the matrices for the six real scalars and c̄ and c are the ghosts. Covariant derivatives of
any field are given by Dµ● = ∂µ●+[Aµ, ●] and (σµ, σ̄µ) are the Pauli matrices. The structure
constants of the gauge group SU(N) are fabc with fundamental color indices a, b = 1, . . . ,N .
The generators T a employ the known commutation relation [T a, T b] = ifabcT c. Furthermore
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fabcfabc = N(N − 1) ≃ N2 in the large N limit, trT a = 0 and T aT a = N
2 . We follow the

notation of [62, 78] and adapt the Feynman gauge ξ = 1 as it is convenient for Wilson
loop calculations. The first line of(1.56) is the Lagrangian with a color-trace and su(4)R
indices only while in the second line color indices are written explicitly and we use so(6)R
fundamental indices r, s = 1, . . . ,6 for the six real scalars. The scalar field matrices are
related by

ΦIJ = 1
2ε

IJKLΦ̄KL , ΦIJ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 φ1 φ2 φ3

−φ1 0 φ̄3 −φ̄2

−φ2 −φ̄3 0 φ̄1

−φ3 φ̄2 −φ̄1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠
IJ

(1.57)

and their relation to the six real scalars Φr (r = 1, . . . , 6) is (considering the matrices Σ̄rIJ

defined below) given by

Φr = Σ̄rIJΦIJ . (1.58)

For the R-symmetry we use the Clebsch-Gordan coefficients between so(6)R and su(4)R
given in [79,80] which are given through the six matrices

Γr = γ5 ⊗
⎛
⎝

0 Σ̄r

Σr 0
⎞
⎠
, r = 1, . . . ,6 , (1.59)

where γ5 = σ3 ⊗ σ0 and the Σ and Σ̄ satisfy

ΣIJ
r = −ΣJI

r , Σ̄rIJ = −Σ̄rJI , ΣIJ
r = (Σ̄rIJ)

†
, tr (ΣrΣ̄s) = −4δr,s . (1.60)

We use the usual form of Pauli matrices σµ. The anti-symmetric sigma matrices are
given by

σµν = i
4 (σ

µσ̄ν − σν σ̄µ) . (1.61)

The N = 4 stress energy tensor is given by [36,81,82]

Tµν =
1
g2 (T

V
µν(A) + T Fµν(λ) + T Sµν(Φ) + T interactions

µν (A,λ,Φ)) , (1.62)

T Vµν(A) = tr(−FµρFνσηρσ +
1
4ηµν(Fρσ)

2) ,

T Fµν(λ) = −
1
4tr (λ̄Iγµ∂νλI − λ̄Iγν∂µλI) ,
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T Sµν(Φ) = tr(−∂µΦIJ∂νΦ̄IJ +
1
2ηµν∂ρΦ

IJ∂ρΦ̄IJ +
1
6
(∂µ∂ν − ηµν∂2)ΦIJΦ̄IJ) .

The stress tensor is traced with respect to the colors. The conventions of the stress tensor
are the same as in [36]2. The prefactor 1/g2 was included because we defined it also for the
action, see the conventions of [62,78] and our previous definition (1.56).

The Maldacena-Wilson loop is defined as in [62]

W (C) = 1
N

tr ⃗P exp [∮
C

dt (iAµẋµ +Φr∣ẋ∣nr)] , (1.63)

where Aµ = AaµT a is the gauge field and Φr = Φa
rT

a are the six scalars, they are related to
ΦIJ and Φ̄IJ by the Relation (1.58). We denote the generators of the SU(N) gauge group
by T a as mentioned above. The trace is taken over the adjoint representation of the gauge
group. nr is a six-dimensional unit vector (n2 = 1) on the S5. ⃗P is the t-path-ordering.
The contour of the loop we consider is C.
Two contours are of special interest to us, the circular loop and the straight line. For a
circular loop with radius R ∈ R+ we can parameterize the contour by [62]

Cloop ∶ xµ(t) = (0 , R cos(t) , R sin(t) , 0) , t ∈ [0,2π] . (1.64)

Similarly we introduce a length parameter R̃ in the parameterization of the straight line.
Similar to [35,63] we use a hyperbolic tangent function. As we want to eventually consider
finite temperature we cannot put the line in the x0 component3 and instead place it in the
x3 component.

Cline ∶ xµ(t) = (0, 0, 0, R̃ tanh( t2)) , t ∈ (−∞,∞) . (1.65)

The above nr ∈ S5 from the Wilson loop breaks the SO(6)R symmetry group to SO(5)R ≃
Sp(4)R. For the latter one it is convenient to define a symplectic metric

ΩIJ = nrΣIJ
r , ΩIJ = nr ¯ΣrIJ . (1.66)

This symplectic metric is an Sp(4)R singlet [83,84]. It is used to raise and lower indices
and satisfies the following properties

ΩIJ = −ΩJI , ΩIJΩJK = −δKI , εIJKL = −ΩIJΩKL +ΩIKΩJL −ΩILΩJK . (1.67)

2The convention in [81,82] differs in a sign for the scalars.
3This would yield a Polyakov loop at finite temperature.
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Furthermore, note the relation

nrnsΣ̄rIJΣ̄sKLδ
J
L = n2δKI = δKI . (1.68)
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Chapter 2

Zero temperature

In this Chapter some known results at zero temperature are reviewed. The relation B = 3h
is derived in two different manners which eventually will prove helpful for the thermal
computation in the subsequent chapter.
While the Relation (1.1) has first been derived using localization in [35,36] we will start
with a different approach. We want to consider a supersymmetric Ward identity allowing
us to relate several two-point functions of operators in the displacement and stress tensor
multiplet. Each of these correlators has either B or h as a coefficient and the Ward identity
will eventually yield B = 3h. This approach has first been used to prove an identical
relation for N = 2 supersymmetric theories by [38]. As the relations in N = 4 are similar
we can closely to the presented derivation.
In a second section the Relation (1.1) is shown to hold in a weak coupling perturbative
expansion. Using the results of [35] the bremsstrahlung of a moving quark can be calculated
from the circular Maldacena-Wilson loop. The expectation value of said WL is known
from [62]. The one-point function of the stress tensor in the presence of the Wilson loop
can be computed from leading order Feynman diagrams reproducing the result found
by [81]. Comparing these two calculation indeed reproduces B = 3h.
We present all calculations in a way which will make the application of finite temperature
effects as easy as possible.

2.1 Supersymmetric Ward Identity

The bremsstrahlung B of a moving heavy quark in N = 4 SYM theory can be related to
the coefficient of the stress tensor h, sometimes also called energy at infinity. The relation
B = 3h was derived originally by [35,36]. We will recall a proof of this relation which is
similar to the one for an identical identity in N = 2 SYM theories as proposed by [38]. This
proof mainly relies on algebraic analysis of the stress tensor and displacement multiplets
as well as a Ward identity.
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Consider a straight line Wilson loop1 in 4 dimensional N = 4 SYM defined by

W = 1
N

tr ⃗P exp [i∫ dt (A3 − inrΦr)] . (2.1)

Here nr ∈ S5 (r = 1, . . . , 6) is a vector in the SO(6)R ≃ SU(4)R symmetry group. Note that
we use x3 → y(t) to identify the component along the Wilson loop. This Wilson line is a
defect which breaks the original superalgebra psu(2,2∣4) to the subalgebra osp(4∗∣4) [85].
The preserved fermionic supercharges are

QIα =
1√
2
QI
α +

1√
2

ΩIJσ3
αα̇Q̄

α̇
J , and SIα = −

1√
2

ΩIJSJα +
1√
2
σ3
αα̇S̄

Jα̇ , (2.2)

analogous to [38]. This choice ensures that the Wilson loop operator is preserved under
supersymmetry transformations δW = 0. For details see Appendix B.
Let us consider the conformal symmetry. Naively scale invariance is broken by the
introduction of the defect as the distance between any point in the bulk and the Wilson
line becomes a relevant distance scale. However, scale invariance and also conformal
invariance remain unbroken on the one-dimensional Wilson loop insertion. This leads
to the preservation of the translations P3, special conformal transformations K3 and
dilatations ∆ along the defect. Furthermore, the aforementioned distance between a bulk
coordinate and the defect is purely radial one and therefore rotations in the bulk directions
orthogonal to the defect are also preserved. The respective Lorentz rotations and boosts
are Mmn (m,n = 0,1,2).
The introduction of the ’preferred direction’ nr ∈ S5 breaks the R-symmetry group to
SO(5)R ≃ USp(4)R. It is convenient to introduce the USp(4)R singlet [83,86]

ΩIJ = nrΣ̄rIJ , ΩIJ = nrΣIJ
r , (2.3)

using the Klebsch-Gordan coefficients between SO(6) and SU(4) 2. The symplectic metric
ΩIJ for USp(4)R thus follows directly from the Wilson loop and will be an integral part of
our calculations. It can be used to raise and lower R-symmetry indices.
The original 15 R-symmetry generators RI

J split into preserved and broken generators.
The 10 symmetric R-symmetry generators

RIK = 1
2R

I
JΩJK + 1

2R
K
JΩJI , (2.4)

are preserved by the USp(4)R symmetry group while the five anti-symmetric generators

RIK = 1
2R

I
JΩJK − 1

2R
K
JΩJI , (2.5)

1Note that compared to [38] the Wilson line is placed in a different spacetime coordinate.
2See also Appendix A

26



2.1. SUPERSYMMETRIC WARD IDENTITY

are broken [83]. Note that by construction ΩIKRIK = 0. This breaking into symmetric
and anti-symmetric components is straight forward and matches with the dimension of
the preserved R-symmetry group.

Let us gather all operators of the psu(2, 2∣4) algebra. We generally use calligraphic letters
for most of the preserved generators while broken ones are written in a fraktur font. The
preserved generators thus are

QIα , SIα , ∆ , P3 , K3 , Mmn , RIJ . (2.6)

They define the preserved osp(4∗∣4) algebra. The broken generators are

QI
α , SI

α , Pm , Km , M3m , RIJ . (2.7)

We want to use a Ward identity similar to Equation (33) in [38]. Therefore we need to
take a closer look at the displacement multiplet and the stress tensor multiplet in N = 4.
This is done in chapter 2.1.1. We will then discuss the zero temperature Ward identity in
chapter 2.1.2.

2.1.1 Stress tensor and displacement multiplet

The idea of our calclation is to use a Ward identity similar to the one used in [37, 38]
to find a relation for the Wilson loop. Therefore we will need the bulk-to-defect two-
point functions between operators from the stress-tensor and the displacement muliplet,
respectively.

The displacement multiplet is closely linked to the broken supercharges. As mentioned
above, when placing the straight line a relevant distance scale is introduced. Therefore
translational symmetry is broken in the components orthogonal to the Wilson line. With
translations no longer a symmetry of the theory it is convenient to introduce a new operator
called displacement operator D that can be derived from the components of the stress
tensor which are no longer conserved. The displacement operator is only well defined
inside a correlator. For any operator χ of the theory the displacement operator is

∂µ ⟨T µm(x0, x1, x2, x3)χ(z)⟩ = δ(x0)δ(x1)δ(x2) ⟨Dm(x3)χ(z)⟩ . (2.8a)

As we saw above, due to the introduction of the Wilson line defect also half of the
supercharges are broken. This leads to the supercurrent Ψµα

I splitting into a preserved
part Ψ̂µα

I and a broken part Ψ̃µα
I . Similar to above we thus define a fermionic displacement
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operator � following from the broken part of the supercurrent

∂µ ⟨Ψ̃µα
I (x0, x1, x2, x3)χ(z)⟩ = δ(x0)δ(x1)δ(x2) ⟨�αI (x3)χ(z)⟩ . (2.8b)

Similar to the supercurrent also the R-symmetry current JµIJKL is split in an unbroken part
and an anti-symmetric broken part J̃µIJKL = ΩKLjµIJ with

∂µ ⟨jµIJχ(z)⟩ = δ(x0)δ(x1)δ(x2) ⟨OIJ(x3)χ(z)⟩ . (2.8c)

Equations (2.8) are the analog of Equations (5), (6), (7) in [38]. They define the full
displacement multiplet [85].

Acting with the broken generators on the Wilson loop operator yields precisely the broken
currents above and thus

⟨QI
αW ⟩ = −2i∫ dx3 ⟨�IαW ⟩ , (2.9a)

⟨PmW ⟩ = −i∫ dx3 ⟨DmW ⟩ , (2.9b)

⟨RIJW ⟩ = −i∫ dx3 ⟨OIJW ⟩ , (2.9c)

where m = 0,1,2. This yields the tracelessness condition ΩIJOIJ = 0 for the primary of
the displacement multiplet. The action of the preserved supercharges on the displacement
multiplet is

δOJK = 2ΩIJ�Kα ζ
α
I − 2ΩIK�Jαζ

α
I +ΩJK�Iαζ

α
I , (2.10a)

δ�Jβ = −4iΩIJ (σ3m) γ
α
εγβDmζ

α
I − 2iεαβD3OIJζαI , (2.10b)

δDm = 2 (σ3m) β
α
D3�Iβζ

α
I . (2.10c)

The stress tensor multiplet of N = 4 SYM is well known [87,88]. Its field content is given
in table 2.1 below where we include also the displacement multiplet for convenience.
More details on the stress tensor multiplet and its relation to N = 2 multiplet are
summarized in Appendix (C). For later convenience consider the transformation of the
field ψ under the preserved supersymmetry transformations [87]

δψJKIα = QNβ ψJKIα ζβN = −
i
4∂αα̇ϕ

JK
IN σ̄

α̇α
3 ζNα + ϕJKIN ηNα −ΩJKΩIPf

PN
αβ ζ

β
N

− 1
3δ

J
I f

KN
αβ ζβN +

1
3δ

K
I f

JN
αβ ζ

β
N − ρILεαβεJKNOζ

β
O

−ΩJKΩIPΩQRJPNαα̇QRσ̄
α̇β
3 ζβN −

1
3
(δJI JKMαα̇ML − δKI JJMαα̇ML) σ̄α̇β3 ζLβ . (2.11)
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field field constraints ∆ (j1, j2) su(4)R rep usp(4)R rep
ϕIJKL ϕIJIJ = 0 2 (0,0) [0,2,0] [0,0]⊕[0,1]⊕[0,2]
ψ JK
Iα ψ JK

Iα = ψ [JK]
Iα , ψ IK

Iα = 0 5
2 (1

2 ,0) [0,1,1] [1,0]⊕[1,1]
ψ̄IJKα̇ ψ̄IJKα̇ = ψ̄I[JK]α̇ , ψ̄IIKα̇ = 0 3 (0, 1

2) [1,1,0] [1,0]⊕[1,1]
f IJαβ f IJαβ = f IJ(αβ) = f

[IJ]
αβ 3 (1,0) [0,1,0] [0,0]⊕[0,1]

f̄ IJ
α̇β̇

f IJ
α̇β̇
= f IJ(α̇β̇) = f

[IJ]
α̇β̇

3 (0,1) [0,1,0] [0,0]⊕[0,1]
ρIJ ρIJ = ρ(IJ) 3 (0,0) [0,0,2] [2,0]
ρ̄IJ ρ̄IJ = ρ̄(IJ) 3 (0,0) [2,0,0] [2,0]
J IJµ KL J IJµ KL = J

[IJ]
µ KL = J IJµ [KL] 3 (1

2 ,
1
2) [1,0,1] [0,1]⊕[2,0]

λIα
7
2 (1

2 ,0) [0,0,1] [1,0]
λ̄Iα̇

7
2 (0, 1

2) [1,0,0] [1,0]
ΨI
αβα̇ ΨI

αβα̇ = ΨI
(αβ)α̇ , ∂

αα̇ΨI
αβα̇ = 0 7

2 (1, 1
2) [1,0,0] [1,0]

Ψ̄Iαα̇β̇ Ψ̄Iαα̇β̇ = Ψ̄Iα(α̇β̇) , ∂
α̇αΨ̄Iαα̇β̇ = 0 7

2 (1
2 ,1) [0,0,1] [1,0]

Φ 4 (0,0) [0,0,0] [0,0]
Φ̄ 4 (0,0) [0,0,0] [0,0]
T µν T µν = T (µν) 4 (1,1) [0,0,0] [0,0]
OIJ OIJ = O[IJ] , ΩIJOIJ = 0 1 (0,0) [0,1]
�Iα

3
2 (1

2 ,0) [1,0]
Dm 2 (1

2 ,
1
2) [0,0]

Table 2.1: The fields of the stress-tensor and displacement multiplet with their respective
quantum numbers, constraints and representations. This table can originally be found
in [87] with the stress-tensor multiplet only.

The relevant correlation functions for our main calculation are bulk-to-defect two-point
functions between operators of the two above multiplets. For the case of N = 2 the relevant
correlators are known from [38,89]. Here we suggest the respective ones for N = 4. This
can be done as the structure of these two-point functions is equivalent to the N = 2 ones.
In Appendix E we check that all fields and correlation function can be consistently reduced
to theories with lower supersymmetry. We will explain the structure of the R-symmetry
index which must agree with the field properties and constraints following table 2.1. The
kinematic structure and the spinor indices are equivalent to the N = 2 case [83].

⟨f IJαβ(X,0)OKL(0, y)⟩(T=0)
W

= −3h
2π
(Xmσmσ̄3ε)αβ
X3(y2 +X2) ×

× (ΩIKΩJL −ΩILΩJK − 1
2ΩIJΩKL) . (2.12a)
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The indices IJ and KL are anti-symmetric while at the same time we should get zero
upon contraction with ΩKL which is the reason for the structure that is slightly more
complicated than simply picking ΩIJΩKL. The reason we cannot have a structure like
y (σ3σ̄3ε)αβ = −yεαβ in the numerator is that the indices α and β are symmetric which is
not true for the anti-symmetric epsilon tensor.

⟨J IJ3 KL(X,0)OMN(0, y)⟩(T=0)
W

= B
π

X2y

∣X ∣3(y2 +X2)2 ΩKL×

× (ΩIMΩJN −ΩINΩJM − 1
2ΩIJΩMN) , (2.12b)

⟨J IJm KL(X,0)OMN(0, y)⟩(T=0)
W

= B2π
Xm(y2 −X2)
∣X ∣3(y2 +X2)2 ΩKL×

× (ΩIMΩJN −ΩINΩJM − 1
2ΩIJΩMN) . (2.12c)

Again the above property of contracting with ΩMN leads to an identical structure which
is antisymmetric in the three pairs IJ , KL and MN as can be seen readily. Note that
we split the current Jµ into the component J3 along the Wilson line and the orthogonal
components Jm because they have different kinematics.

⟨ψ KL
Iα (X,0)�Jβ(0, y)⟩

(T=0)
W

= 3h
2π
[iyεαβ − (Xmσmσ̄3)αβ]

X(y2 +X2)2 ×

× (3δJI ΩKL − δKI ΩJL + δLI ΩJK) . (2.12d)

This structure makes sure that we find anti-symmetry in the indecs K and L. Furthermore
the tracelessness condition [87] is satisfied, ⟨ψ IL

Iα (X,0)�Jβ(0, y)⟩
(T=0)
W

= 0.

⟨ρIJ(x⃗,0)OKL(0⃗, y)⟩(T=0)
W

= 0 . (2.12e)

Here, lastly, we find the correlator be identically zero. This can be seen by the index
structure as there is no invariant tensor that can combine with the symmetric I, J indices
in a non-vanishing manner.

We want to define the following three functions gi(Xm, y) (i = 1,2,3) which capture the
kinematics of the above correlators

g1(X,y) ∶=
iy

6π∣X ∣(X2 + y2)2 ,

g2(X,y) ∶=
−1

6π(X2 + y2)2 , (2.13)
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g3(X,y) ∶=
1

12πX2(X2 + y2) .

Furthermore, define

X̂αβ ∶=
Xm

∣X ∣ (σ
mσ̄3)

αβ
, (2.14)

which captures the dependence on spinor indices. The correlators needed for the Ward
identity we consider below thus are

⟨f IJαβ(X,0)OKL(0, y)⟩(T=0)
W

= −18hg3(X,y)X̂αβ×

× (ΩIKΩJL −ΩILΩJK − 1
2ΩIJΩKL) (2.15a)

⟨J IJ3 KL(X,0)OMN(0, y)⟩(T=0)
W

= 6Bg1(X,y)ΩKL×

× (ΩIMΩJN −ΩINΩJM − 1
2ΩIJΩMN) , (2.15b)

⟨J IJm KL(X,0)OMN(0, y)⟩(T=0)
W

= 6B(g2(X,y) + g3(X,y))
Xm

∣X ∣ΩKL×

× (ΩIMΩJN −ΩINΩJM − 1
2ΩIJΩMN) , (2.15c)

⟨ψ KL
Iα (X,0)�Jβ(0, y)⟩

(T=0)
W

= 9h (g1(X,y)εαβ + g2(X,y)X̂αβ)×

× (3δJI ΩKL − δKI ΩJL + δLI ΩJK) . (2.15d)

2.1.2 Zero temperature Ward Identity

We want to consider the zero temperature Ward identity

⟨QNβ (ψ JK
Iα (τ, x⃗,0)OLM(0,0, y))⟩W = 0 , (2.16)

which is the N = 4 version of the Ward identity discussed in [37,38]. Before we go into the
calculation let us review why this identity needs to hold. We follow the derivation of a
similar Ward identity done in [90].
Therefore recall that the supercharges are linked to the time component of the supercurrent
via an integral,

QIα = ∫ d3xΨ̂I 0
α . (2.17)

The supercharge we consider is the one preserved by the Wilson line
√

2Q = Q + σ3Q̄ and
similarly the supercurrent we consider comes from the combination

√
2Ψ̂ = Ψ + σ3Ψ̄. This
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is the part of the supercurrent which remains preserved by the Wilson loop and thus

∂µΨ̂I µ
α = 0 . (2.18)

We can define a related current by contracting the spinor index

jI µ ∶= Ψ̂I µ
α ψα , (2.19)

where ψα is an a priori arbitrary spinor. For our purpose we assume that it is constant in
spacetime, ∂µψα = 0.
Consider any local operator ϕ(x). Its operator product expansion with the supercurrent
is given by

Ψ̂I 0
α (x)ϕ(0) = . . . +

xµ

2π2∣x∣4 [Q
I
α, ϕ] (0) +

xµxαα̇
2π2∣x∣6 [S

I α̇, ϕ] (0) + . . . , (2.20)

with no other operators that have the same powers of x. If we now integrate the current
jI µ around the insertion point of the operator ϕ(x) we find that just these two parts of
the OPE can yield non-vanishing contributions to the contour integral.

∮
x

dΣµ j
I µ(z)ϕ(x) = ∮

x
dΣµ Ψ̂I µ

α (z)ϕ(x)ψα

= [QIα, ϕ] (x)ψα + σµαα̇ [SI α̇, ϕ] (x)∂µψα = [QIα, ϕ] (x)ψα . (2.21)

In the last line we used our assumption that ψα is in fact constant.

Let us now define a general correlator3 with n ∈ N operator insertions of generic operators
ϕi at different points xµi ≠ x

µ
j ∈ R1,3.

V I µ ∶= ⟨jI µ(zµ)ϕ1(xµ1) . . . ϕn(xµn)⟩W . (2.24)

We want to consider this correlator away from the insertion points of the ϕk. Therefore
define a subset of the spacetime which does not contain these insertions,
D = R1,3/{x1, . . . , xn}. The correlator defined above then is a divergentless field and hence
∂µV I µ = 0 on D [90]. For completeness we will proof this relation. Let us act with the

3Recall the definition of the expectation value

⟨Ô⟩W ∶= ∫ [dφall]Ôe
−SW . (2.22)

For later use note that the supersymmetry transformation δ was chosen in such a way that

δSUSY W = 0 ⇔ Q
I
αW = 0 , (2.23)

namely we act with the supercharge QI
α as given by Equation (2.2).
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derivative where we are careful to use the definition of the correlation function.

∂µV
I µ = ∂µ ⟨jI µ(z)ϕ1(x1) . . . ϕn(xn)⟩W

= ∂µ∫ [dφall]jI µ(z)ϕ1(x1) . . . ϕn(xn)e−SW (2.25a)

=∫ [dφall][(∂µjI µ(z))ϕ1(x1) . . . ϕn(xn)e−SW

+ jI µ(z)
n

∑
k=1
ϕ1(x1) . . . (∂µϕk(xk)) . . . ϕn(xn)e−SW (2.25b)

+ jI µ(z)ϕ1(x1) . . . ϕn(xn)e−S(∂µW )

− (∂µS)jI µ(z)ϕ1(x1) . . . ϕn(xn)e−SW] .

The last line consists of four terms. Let us consider them individually. The first has
the derivative acting on the supercurrent. We established above that this is a preserved
current ∂µjI µ = 0. Furthermore we look at a domain D away from the insertion points
of the ϕk and therefore ∂µϕk(xk) = 0 for all k thus killing the second term. The third
and fourth term can be treated in a very similar manner. The action S and the Wilson
loop operator W both are functionals of the N = 4 fields. They do, however, include a
spacetime integral over the coordinates. Therefore they do not depend on any coordinate
and thus a derivative acting on them must readily give zero. Therefore indeed

∂µV
I µ = ∂

∂zµ
V I µ(z) = 0 , for z ∈ D = R1,3/{x1, . . . , xn} . (2.26)

This relation can be integrated over a volume V ⊂ D. As the integrand is identically zero
inside the volume V the remaining integral continues to vanish. When expanding the
volume we only find problems in crossing the insertion points of the operators, however
these singular points can be excluded from the integration domain. Therefore we can
extend the volume to cover all of D. By applying Stoke’s theorem instead of integrating
over the divergence of the field V I µ we can consider the surface integral over the boundary
of D,

0 = ∫
D
∂µV

I µ(z) = ∫
∂D

dSµV I µ(z) = ∮
S3
∞

dSµV I µ(z) −
n

∑
k=1
∮
xk

dSµV I µ(z) . (2.27)

Note that there is no integral which goes around the Wilson line because this is not a
boundary of D. We mentioned above that the relation ∂µV Iµ = 0 also holds on the Wilson
line operator. We only get boundaries from the sphere at infinity and from the insertion
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points of the operators ϕk. The conformal dimension of the current Ψ̂I µ
α is ∆ = 7/2 and

thus V I µ falls off at least as ∣x∣−7 at infinity thus canceling the first term.
For the remaining terms we can use Equation (2.21) to finally find the result

0 = ∫
D
∂µV

I µ(z) = −
n

∑
k=1
⟨ϕ1(x1) . . . [QIα, ϕk(xk)] . . . ϕn(xn)⟩W ψα

= − ⟨[QIα, ϕ1(x1) . . . ϕn(xn)]⟩W ψα . (2.28)

This result is indeed analogous to result (A.8) in [90]. This result can be rewritten in a
manner that is slightly more approachable for our further considerations

0 = ∫
R1,3

d4u ⟨∂µΨ̂I µ
α (u)ϕ1(x1) . . . ϕn(xn)⟩

W
ζαI = − ⟨δϕ1(x1) . . . ϕn(xn)⟩W . (2.29)

Let us now write out the identity. The supersymmetry transformation acting on the two
fields above is given in the previous chapter by Equations (2.10a) and (2.11). They are
furthermore derived in Appendix D. Recall

δψJKIα = −
i
4∂αα̇ϕ

JK
IN σ̄

α̇α
3 ζNα + ϕJKIN ηNα −ΩJKΩIPf

PN
αβ ζ

β
N −

1
3δ

J
I f

KN
αβ ζβN

+ 1
3δ

K
I f

JN
αβ ζ

β
N − ρILεαβεJKNOζ

β
O −ΩJKΩIPΩQRJPNαα̇QRσ̄

α̇β
3 ζβN (2.30)

− 1
3
(δJI JKMαα̇ML − δKI JJMαα̇ML) σ̄α̇β3 ζLβ ,

δOJK = (Ω̄IJ�Kα − Ω̄IK�Jα +
1
2Ω̄JK�Iα) ζαI , (2.31)

The Ward identity then is given by a combination of the two-point functions we introduced
above:

0 = ⟨QNβ ψJKIα OLM⟩
W

= 2ΩNL ⟨�Mβ ψ JK
Iα ⟩W − 2ΩNM ⟨�Lβψ JK

Iα ⟩W +ΩLM ⟨�Nβ ψ JK
Iα ⟩W −ΩJKΩIP ⟨f IPαβ OLM⟩

W

− 1
3δ

J
I ⟨fKNαβ OLM⟩

W
+ 1

3δ
K
I ⟨fJNαβ OLM⟩

W
−ΩJKΩIPΩQR ⟨JPNµQROLM⟩

W
(2.32)

− 1
3
(δJI ⟨JKPµPQOLM⟩

W
− δKI ⟨JJPµPQOLM⟩

W
)ΩQN (σµσ̄)αβ .

The correlators above are bulk-to-defect two-point functions between operators of the
displacement and stress tensor multiplet. These were derived in the previous Subsection
2.1.1. Some operators which are zero were omitted.

Let us rewrite this in terms of the kinematic functions gi (2.13). Therefore use the
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expressions (2.15) for the correlators, yielding

(3h −B) [g1(X,y)εαβ + g2(X,y)X̂αβ + g3(X,y)X̂αβ]C JKLMN
I ζβN = 0 . (2.33)

were C JKLMN
I is some Sp(4)R index structure:

C JKLMN
I = [δKI (2ΩJLΩMN − 2ΩJMΩLN +ΩJNΩLM) − (J ↔K)]

+ 3δNI ΩJKΩLM − 6δMI ΩJKΩLN + 6δLI ΩJKΩMN . (2.34)

It is anti-symmetric in J,K and in L,M , respectively. Furthermore it obeys two traceless-
ness conditions C IKLMN

I = 0 and ΩLMC JKLMN
I = 0. We readily see that this yields

B = 3h , (2.35)

as expected.

2.2 Perturbative check

The above identity (1.1) B = 3h can be checked by a perturbative calculation. Therefore
we need to calculate the expectation value of the circular Wilson loop from which the
bremsstrahlung can be obtained [35] and the one-point function of the stress-energy tensor.
For a better understanding of the used methodology it is convenient to calculate the
circular Wilson loop first. This 1/2-BPS Wilson loop was first perturbatively calculated
in [62] with a conjecture for an exact result due to a cancellation of interacting diagrams.
This was later proven by [63, 64]. For our purposes we will only consider the leading order
in perturbation theory.

2.2.1 Circular Wilson loop

The goal of this derivation is to reproduce the first order of the result from [62]. This will
be the groundwork to obtain similar results at finite temperature.
Recall the definition of the Lagrangian (1.56) from which we can read off the bare
propagators to be [62]

⟨Aaµ(x1)Abν(x2)⟩ =
g2δabηµν

4π2(x1 − x2)2
, ⟨Φa

r(x1)Φb
s(x2)⟩ =

g2δabδrs
4π2(x1 − x2)2

. (2.36)

A note considering our normalization is in order at this point. Because the action depends
only on an overall coupling constant 1/g2 and the terms themselves are all independent of
g the counting is simplified. Every propagator in a Feynman diagram contributes with g2

and every vertex with 1/g2. For the vertices it is not important whether they are three- or

35



CHAPTER 2. ZERO TEMPERATURE

four-point.

The Maldacena-Wilson loop [58] for a general contour C is defined by (1.63)

W (C) = 1
N

tr ⃗P exp [∮
C

dt (iAµẋµ +Φr∣ẋ∣nr)] . (2.37)

We want to expand the exponential in the Wilson loop with a power series. This will
eventually yield a perturbative expansion.

⟨W (C)⟩ ≈1 + 1
N
⃗Ptr ⟨∮

C
dt1 (iAµ1ẋ

µ
1 +Φr 1∣ẋ1∣nr)⟩ (2.38)

+ 1
2N

⃗Ptr ⟨∯
C

dt1dt2 (iAµ1ẋ
µ
1 +Φr 1∣ẋ1∣nr) (iAν 2ẋ

ν
2 +Φs2∣ẋ2∣ns)⟩ + . . . ,

where we used the notation Aµ i = Aµ(x(ti)), Φr i = Φr(x(ti)) and xi = x(ti). When taking
the expectation value ⟨. . .⟩ we Wick contract the bosonic fields among themselves (or with
fields from the expansion of the Euclidean action at higher order). For the leading order
correction there is simply a sum of single fields which cannot be contracted. This term
thus is zero4. For the second term we can multiply out and find

⟨W (C)⟩ ≈ 1 + 1
2N tr(T aT b) ⃗P ⟨∯

C
dt1dt2 (∣ẋ1∣∣ẋ2∣Φa

r 1Φb
s2n

rns

−ẋµ1 ẋν2Aaµ1A
b
ν 2)⟩ + . . . . (2.39)

The minus sign comes from the imaginary unit in front of the gauge field. The color
charges were made explicit. We thus see that we will have a gauge propagator and a
scalar propagator connecting two points on the Wilson loop. This can be pictured by the
diagram in Figure 2.1. For a circular loop with radius R ∈ R+ we can parameterize the

Figure 2.1: Leading order Feynman diagram of the circular Wilson loop. The bold circle
is said Wilson loop. Inside it we see a propagator with the mix of curly and straight line
representing the vector and scalar propagator, respectively.

4In fact also the color trace will be TrT a = 0.
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contour by (1.64)

C ∶ xµ(t) = (0 , R cos(t) , R sin(t) , 0) , t ∈ [0,2π] .

We want to plug these boundaries into the integration over the contour. The two choices
of t-ordering will give identical contributions. We can therefore include a factor of 2 and
assume t1 > t2 yielding

⟨W◯⟩ = 1 + 1
N

tr ⟨T aT b∫
2π

0
dt1 ∫

t1

0
dt2 (∣ẋ1∣∣ẋ2∣Φa

t1Φb
s2n

rns − ẋµ1 ẋν2Aaµ1A
b
ν 2+)⟩ + . . .

= 1 + g
2

N
tr(T aT bδab)∫

2π

0
dt1 ∫

t1

0
dt2 (2.40)

(∣ẋ1∣∣ẋ2∣δrsnrns − ηµν ẋµ1 ẋν2)∆(x1 − x2) + . . . .

In the second step we plugged in the propagators (2.36)

⟨Aaµ(x1)Abν(x2)⟩ = g2δabηµν∆(x1 − x2) , ⟨Φa
r(x1)Φb

s(x2)⟩ = g2δabδrs∆(x1 − x2) , (2.41)

∆(x1 − x2) =
1

4π2(x1 − x2)2
.

Before we consider the kinematics let us focus on the other contractions. The color trace
will have two identical generators yielding a quadratic contribution from the number of
charges N . The S5 unit vectors nr will simply give one while the loop parameterizations
ẋ will be contracted

tr(T aT a) = N2 tr(1) = N
2

2 , δrsn
rns = n2 = 1 , ηµν ẋ

µ
1 ẋ

ν
2 = ẋ1 ⋅ ẋ2 . (2.42)

Note that the N2 will combine with the prefactor g2/N to the ’t Hooft coupling λ = g2N .
Therefore, we indeed find that this diagram is the leading order in perturbation theory.
Diagrams involvoing more propagators or vertices or loop corrections are of higher order
in λ [62]. We thus find

⟨W◯⟩ = 1 + λ2 ∫
2π

0
dt1 ∫

t1

0
dt2 (∣ẋ1∣∣ẋ2∣ − ẋ1 ⋅ ẋ2)∆(x1 − x2) +O(λ2) (2.43)

= 1 + λ2 ∫
2π

0
dt1 ∫

t1

0
dt2
∣ẋ1∣∣ẋ2∣ − ẋ1 ⋅ ẋ2

4π2(x1 − x2)2
+O(λ2) . (2.44)

Let us now focus on the kinematics. Recall the parameterization (1.64) of the contour.
This implies some simplifications in the above double integral. We have

(x(t1) − x(t2))2 = 2R2(1 − cos(t1 − t2)) = 4R2 sin2 ( t1 − t22 )
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ẋµ(t) = (0 , −R sin(t) , R cos(t) , 0) (2.45)

⇒ ∣ẋ1∣∣ẋ2∣ − ẋ1 ⋅ ẋ2 = R2(1 − cos(t1 − t2)) = 2R2 sin2 ( t1 − t22 )

⇒ ∣ẋ1∣∣ẋ2∣ − ẋ1 ⋅ ẋ2

(x1 − x2)2
= 1

2 . (2.46)

Plugging this in the integral over the contour becomes indeed trivial and we find

⟨W◯⟩ = 1 + λ

16π2 ∫
2π

0
dt1 ∫

t1

0
dt2 +O(λ2) = 1 + λ8 +O(λ

2) . (2.47)

In [62] also the diagrams at the next order where calculated. For insertions of several bare
propagators the integral at all loops remains trivial and can be summed consistently, see
the discussion around Figure 1.2. Generally further diagrams can contribute at higher
order. These are self-energy diagrams and contributions with internal vertices. It was
shown in [62] that these diagrams cancel each other at leading order. The conjecture that
this cancellation is found at all orders allowed a summation of only rainbow diagrams and
the all-loop result

⟨W◯⟩ =
2√
λ
I1(
√
λ) . (2.48)

This non-perturbative result agrees with the large coupling computation [25, 91]. The
conjecture was later proven by [63,64]. Following [35] the bremsstrahlung can be computed
from this expectation value of the circular Wilson loop.

Note that the calculation for the straight line Wilson loop at leading order is almost
identical. Independently from the parameterization all Feynman diagrams have a canceling
prefactor5 and thus

⟨W—⟩ = 1 . (2.49)

This result can also be proven non-perturbatively [63].

2.2.2 Bremsstrahlung

The bremsstrahlung of a heavy particle moving in N = 4 SYM can be obtained from the
expactation value of the circular Wilson loop [35]. In this section we review the general
derivation. In a later section we will discuss corrections yielded by thermal effects. The
derivation relies on two different calculations of scalar two-point functions and a relation
between circular Wilson loops that conserve different amounts of supersymmetry. Consider
a circular loop where the vector n⃗ ∈ S5 that chooses the contributing scalars depends on

5This cancelation is discussed in more detail in Section 5.5.
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an angle θ and the parameterization of the loop. Let

n⃗ = (n1, n2, n3, 0⃗) with n1 = sin(θ) cos(t) , n2 = sin(θ) sin(t) , n3 = cos(θ) , (2.50)

where θ is some angle and t parameterises the Wilson loop (1.64)

C ∶ xµ(t) = (0 , R cos(t) , R sin(t) , 0) , t ∈ [0,2π] . (2.51)

The Wilson loop as defined above is 1/4−BPS [35,92]. For θ = 0 the vector n⃗ is independent
of the parameterization and therefore this is the known 1/2-BPS circular loop computed
in [62–64]. Let us compute the 1/4−BPS circular loop to leading order. Recall its definition

Wθ =
1
N

tr ⃗P exp [∮
C

dt (iAµ(t)ẋµ(t) + ∣ẋ(t)∣Φr(t)nr(t, θ))] , (2.52)

As for the other calculation we find

⟨Wθ⟩ = 1 + tr(T aT b)
2N

⃗P∯
C

dt1dt2(∣ẋ1∣∣ẋ2∣∆ab
rs(x1 − x2)nr(θ, t1)ns(θ, t2)

− ẋµ1 ẋν2∆ab
µν(x1 − x2) + ) +O(λ2) . (2.53)

We can insert the bare propagators

∆ab
µν(x1 − x2) =

g2δabηµν
4π2(x1 − x2)2

, ∆ab
rs(x1 − x2) =

g2δabδrs
4π2(x1 − x2)2

, (2.54)

and thus find [92]

⟨Wθ⟩ =1 +
λ

2 ∫
2π

0
dt1∫

t1

0
dt2

R2 sin2(θ) cos(t1 − t2) +R2 cos2(θ) −R2 cos(t1 − t2)
4π2(2R2 − 2R2 cos(t1 − t2))

+O(λ2)

=1 + λ2 ∫
2π

0
dt1∫

t1

0
dt2

cos2(θ) [1 − cos(t1 − t2)]
8π2(1 − cos(t1 − t2))

+O(λ2) (2.55)

=1 + λ8 cos2(θ) +O(λ2) .

The loop-to-loop propagator combines to the same prefactor in the numerator for all
rainbow diagrams and yields only t−independent integrals. This is analogous to the case
studied in [62]. It can further be argued [92] that the interacting graphs cancel each
other at all orders6 and for all values of θ. In order to do this one needs to consider the
contributions from Φ1 and Φ2 separately from the one coming from Φ3. The former ones
will have a sine as prefactors while the latter yield a cosine. Then the two can be regarded

6This is where the finite temperatrure calculation will differ. The self-energy contributions are not the
same and the cancellation does not take place.
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as the θ = π/2 and θ = 0 case, respectively. For θ = π/2 the corresponding Wilson loop is
trivial for reasons similar to the straight line while the case θ = 0 is known from [62].
Therefore one finds that the θ-dependent loop can be obtained from the 1/2-BPS circular
loop by a simple redefinition of the coupling [92]

⟨Wθ⟩ = ⟨Wθ=0⟩ ∣λ→λ cos2(θ) . (2.56)

The expansion of this result in terms of small angles yields [35]

⟨Wθ⟩ − ⟨Wθ=0⟩
⟨Wθ=0⟩

= −θ2λ∂λ log⟨Wθ=0⟩ . (2.57)

Let us now look at the left hand side by using the original definition of the WL operator.
The dependence on the angle θ sits in the unit vector n⃗ of the first Wilson loop. Expanding
around small angles will therefore yield factors of scalar fields coming from the exponential.
At leading order in the ’t Hooft coupling they sit in one- and two-point functions contracted
with the nr.

⟨Wθ⟩ − ⟨Wθ=0⟩
⟨Wθ=0⟩

= θ∮
C

dt∣ẋ∣(∂θnr(t, θ))tr ⟨Φr(t)⟩W +
θ2

2 ∮C dt∣ẋ∣(∂2
θn

r(t, θ))tr ⟨Φr(t)⟩W (2.58)

+ θ
2

2 ∮C dt1∮
C

dt2∣ẋ1∣∣ẋ2∣(∂θnr(t1, θ))(∂θns(t2, θ))tr ⟨Φr(t1)Φs(t2)⟩W +O(θ3) .

In the first line we have one-point functions along the defect. The conformal invariance is
preserved and thus they are zero. For the term in the second line the two-point function
will contract the nr. As the dependence on the angle in the prefactor is already quadratic
not all components of the unit vector remain relevant.

∂θn⃗ = (cos(θ) cos(t), cos(θ) sin(t),− sin(θ),0,0,0)

= (cos(t), sin(t),0,0,0,0) +O(θ) . (2.59)

Hence only the fields Φ1 and Φ2 contribute above. The contour yields ∣ẋ1∣∣ẋ2∣ = R2. The
remaining correlator is different from the bare propagator introduced above because it is
defined in the presence of the Wilson loop while the propagator is defined in the N = 4
vacuum. For the scalar two-point function along the defect we have

tr ⟨Φr(t1)Φs(t2)⟩W = tr⟨Φr(t1)Φs(t2)Wθ=0⟩
⟨Wθ=0⟩

(2.60)
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=
tr ⟨Φr(t1)e∫

t1
t2

dt(∣ẋ∣n⃗Φ⃗+iẋ⋅A)Φs(t2)e∫
t2
t1

dt(∣ẋ∣n⃗Φ⃗+iẋ⋅A)⟩
tr ⟨e∮ dt(∣ẋ∣n⃗Φ⃗+iẋ⋅A)⟩

. (2.61)

The closed integral of the Wilson loop operator in the numerator was split into two parts
connecting the insertion points of the fields. This is a correlation function on the defect
where conformal symmetry is preserved. Therefore, for some constant γ it has the general
form

tr ⟨Φr(t1)Φs(t2)⟩W =
γδrs

(x1 − x2)2
= γδrs

2R2(1 − cos(t1 − t2))
. (2.62)

The path ordering ⃗P in the above integral yields a factor of 2 which cancels the 1/2 prefactor
from the expansion. The contour and the unit vectors yield further prefactors such that
finally

⟨Wθ⟩ − ⟨Wθ=0⟩
⟨Wθ=0⟩

= θ
2

2 γ ∫
2π

0
dt1∫

2π

0
dt2

R2 cos(t1 − t2)
2R2(1 − cos(t1 − t2))

+O(θ3)

= θ2γ
1
4 ∫

2π

0
dt1 [∫

t1−ε

0
dt2 + ∫

2π

t1+ε
dt2]

cos(t1 − t2)
1 − cos(t1 − t2)

+O(θ3) (2.63)

= θ2 (2γπ
ε
− π2γ) +O(θ3) = −π2θ2γ +O(θ3) ,

in agreement with [35]. The 1/ε divergence can be cured by a proper renormalization and
was thus removed. Above we showed that the left hand side of the last calculation is equal
to the derivative of the logarithm of the circular Wilson loop. Simplifying with the result
we find an expression for the scalar two-point coefficient [35]

γ = λ

π2∂λ log⟨W◯⟩ . (2.64)

To relate this to the bremststrahlung we switch the setting and take a look at the
anomalous dimension of a cusped WL. Therefore, consider a straight Wilson line with a
cusp introduced by giving the heavy particle a push such that it’s contour is altered by an
angle ϕ. Due to the cusp the line is not equal to one but gets a logarithmic divergence

⟨W ⟩ ∼ e−Γcusp(φ) log(ΛIR/ΛUV ) . (2.65)

This divergence depends on an infrared and an ultraviolet cut-off and the prefactor
Γcusp(ϕ) is called the anomalous dimension of the cusp. Note that in N = 4 we consider
the supersymmetric Maldacena-Wilson loop (1.63) which also includes the six adjoint
scalar fields. They contribute by a factor n⃗Φ⃗ where n⃗ is a unit vector on the S5. A sudden
change in this vector (happening precisely at the cusp) leads to another angle ϑ with
cosϑ = n⃗n⃗′. We thus consider Γcusp(ϕ,ϑ). Both angles contribute to the same anomalous
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dimension because they are introduced at the same point of the contour.
If both these angles vanish we know that the cusp anomaly is zero thus we can expand
around small angles

Γcusp(ϕ,ϑ) = (ϑ2 − ϕ2)B for ϕ,ϑ << 1 , (2.66)

where B is defined as the bremsstrahlung function [35].
Consider a map from R4 to R×S3 where the real line is precisely where the straight Wilson
line sits. A cusped Wilson line thus is represented on the cylinder by two Wilson lines
inserted at two different points of the cylinder with an angle π − ϕ as figure (2.2) shows.
Setting the angle ϕ = 0 for the moment we want to calculate the second derivative of the

Figure 2.2: Map from R4 to the cylinder R × S3. The map goes from polar coordinates to
the cylinder yielding that the side of the cylinder is the radius of the polar coordinates.
The line can be cut at the cusp which yields an angle π − ϕ on the sphere as shown in the
picture [93]. For ϕ = 0 the Wilson lines sit at opposite points of the cylinder, for instance
the north and south pole and we rediscover the 1/2-BPS configuration without the cusp.
On the cylinder the setup is essentially that of a quark anti-quark configuration and the
Wilson loop can be calculated for these quarks sitting at a relative angle π − ϕ on two
points of the S3 [35, 94,95].

cusp anomalous dimension. This can be viewed as the energy exchange between to static
quarks sitting at opposite points on the S3 [35, 94, 95]. At leading order the cusp anomaly
is thus given by the exchange of two scalars

Γcusp =
ϑ2

2 ∫
∞

−∞
dt1∫

∞

−∞
dt2∣ẋ(t1)∣∣ẋ(t2)∣tr⟨Φ(t1)Φ(t2)⟩W . (2.67)

Again we find the same correlator as above

tr ⟨Φ(x1)Φ(x2)⟩W =
γ

(x(t1) − x(t2))2
. (2.68)
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The straight line can be parameterized by a hyperbolic tangent function (1.65) which is
identical to [35].

C ∶ xµ(t) = (0, 0, 0, R̃ tanh( t2)) , t ∈ [−∞,∞] . (2.69)

While other, seemingly simpler, parameterizations would be possible they might change
the renormalization prescription used and for later convenience we will stick to the scheme
used in [35]. The prefactor in the above integral and the two point function can simplified
to

∣ẋ(t)∣ = R̃2 sech2 ( t2) ,
R̃
2 sech2 ( t12 ) R̃2 sech2 ( t22 )

[R̃ tanh ( t12 ) − R̃ tanh ( t22 )]
2 =

1
2 cosh (t1 − t2) − 2 . (2.70)

Plugging this into the above integral we find

Γcusp =
ϑ2

4 γ ∫
∞

−∞
dt1 [∫

t1−ε

−∞
dt2 + ∫

∞

t1+ε
dt2]

1
cosh (t1 − t2) − 1

= ϑ2γ ∫
∞

−∞
dt1 (

1
ε
− 1

2) + −ϑ
2 (γ
ε
− γ2) = ϑ

2γ

2 . (2.71)

Again the cut-off could be dropped due to renormalization. Regarding the second integral
an overall factor "length of time" was extracted. Due to the relation between partition
function and energy, Z = e−Γcusp(Length of Time) an additional minus sign arose [35]. Recalling
that for ϕ = 0 we had Γcusp(ϑ) = ϑ2B lets us conclude

γ = 2B , (2.72)

and therefore we finally find a relation between the bremsstrahung and the expectation
value of the circular loop [35]

B = λ

2π2∂λ log⟨W◯⟩ . (2.73)

Recall that at zero temperature the straight line is exactly one

⟨Wline⟩ = 1 . (2.74)

The transformation of the straight line to a circle turns out to be anomalous and thus
the computation of the circular Wilson loop is non-trivial. We are only interested in the
leading orders at small coupling. Following [62–64] it is given by the modified Laguerre
Polynomial L

⟨Wcircle⟩ =
1
N
L1
N−1 (−

λ

4N ) e
λ/8N = 1 + λ8 +O(λ

2) . (2.75)
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This yields an expression for the bremsstrahlung which mainly depends on two Bessel
functions [35]. We expand the results in weak coupling to leading order as this is the
regime in which we shall later consider to test at finite temperature

B = 1
4π

λI2 (
√
λ)

I1 (
√
λ)
= λ

16π2 +O(λ
2) . (2.76)

We want to compare this with the ’energy at infinity’ h, namely the coefficient of the stress
tensor one-point function. We will do this for the straight line as here the calculations
can be carried out much more easily. For later convenience we also calculate the stress
tensor coefficient for the circular loop. Following [96] both coefficients are the same in
N = 4. Generally the stress tensor one-point function in the directions of the defect is
given by [37,96]

⟨T33⟩Wline =
h

r4 , (2.77)

where r is the radial distance to the defect and R is the radius of the circular loop.
The relation we want to proof is (1.1) as derived in [35,36]

B = 3h .

2.2.3 Stress tensor one-point function

In the previous subsection we computed the bremsstrahlung function B to leading order in
λ. We now want to confirm that it is indeed three times the coefficient of the stress tensor
one-point function. We will show this for the straight line as well as for the circular loop.
The N = 4 stress energy tensor is given by [36,81,82,97,98], recall Equation (1.62)

Tµν =
1
g2 (T

V
µν(A) + T Fµν(λ) + T Sµν(Φ) + T interactions

µν (A,λ,Φ)) , (2.78)

T Vµν(A) = tr(−FµρFνσηρσ +
1
4ηµν(Fρσ)

2) ,

T Fµν(λ) = −
1
4tr (λ̄Iγµ∂νλI − λ̄Iγν∂µλI) ,

T Sµν(Φ) = tr(−∂µΦIJ∂νΦ̄IJ +
1
2ηµν∂ρΦ

IJ∂ρΦ̄IJ +
1
6
(∂µ∂ν − ηµν∂2)ΦIJΦ̄IJ) .

The trace is taken with respect to color indices. We only wrote the kinetic terms explicitly
as the interaction terms are not relevant at the leading order which we consider. The
conventions of the stress tensor are the same as in [36].
Let us explicitly derive the contribution of free scalar and gauge fields. We ignore color
and R-symmetry indices and also ignore the contribution which ensures tracelessness.
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Therefore consider

LS =
1

2g2ηµν∂
µφ∂νφ , LV =

1
4g2ηµνηρσF

µρF νσ . (2.79)

We define the stress-energy tensor as a differential of the Lagrangian with respect to the
metric

T µν ∶= −2 ∂L
∂ηµν

+ ηµνL . (2.80)

Then we find for the scalar by a straight forward calculation

T µνS = −
1
g2

∂

∂ηµν
(ηρσ∂ρφ∂σφ) +

1
2g2η

µν(∂φ)2 = 1
g2 [−∂

µφ∂νφ + 1
2g2η

µν(∂φ)2] , (2.81)

and similarly for the vector

T µνV = −
1

2g2
∂

∂ηµν
(ηρσηρ′σ′F ρρ′F σσ′) + 1

4g2η
µνF 2 = 1

g2 [−ηρσF
µρF νσ + 1

4η
µν(∂φ)2] . (2.82)

This indeed reproduces the above definition. Note that the stress tensor given by [81] has
a minus sign in front of the scalar stress tensor, but not for the gauge stress tensor.

Following [37] we want to compute the two-point function between the stress tensor and
the straight Wilson line. This is defined by an expectation value which gets normalized by
the WL operator.

⟨Tµν⟩W— =
⟨TµνW—⟩
⟨W—⟩

where ⟨W—⟩ = 1 . (2.83)

As the expectation value of the straight line is equal to one we do not need to worry about
the denominator at all. If we were to consider the circular loop instead we would have to
account for loop corrections in the denominator. However at leading order in the ’t Hooft
coupling the result would still not change. The corrections from the denominator only
contribute at the next to leading order corrections.

2.2.3.1 Leading order contribution

The exponential in the definition of the WL is expanded as before and at leading order
we just get a simple insertion of the free part of the stress tensor. The free part is then
contracted with scalar or gauge fields, respectively. Other diagrams and their order are
discussed below.
We can therefore simply insert the free stress tensor into the expansion Equation (2.39) as
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given above:

⟨Tµν⟩W— =
1

2N
⃗Ptr ⟨T aT b∯

C—
dt1dt2 (∣ẋ1∣∣ẋ2∣Φa

r 1Φb
s2n

rnsTµν

− ẋµ1 ẋν2Aaµ1A
b
ν 2Tµν)⟩ +O(λ2) . (2.84)

Let us plug in the parameterization of the straight line above. Analogously to before the
choice of y-ordering ⃗P cancels the factor 1/2 in front. Thus

⟨Tµν⟩W— =
1
N

tr ⟨T aT b∫
∞

−∞
dt1 ∫

t1

−∞
dt2 (Φa

I(x1)Φb
J(x2)nInJTµν

−Aa3(x1)Ab3(x2)Tµν)⟩ +O(λ2) . (2.85)

We now want to Wick contract the fields. Let us start with the vector fields. We could
in principle contract Aa3(x1)Ab3(x2) and the fields in the stress tensor with themselves.
However, this would yield a splitting of the correlators

⟨TµνW—⟩→ ⟨Tµν⟩⟨W—⟩ . (2.86)

At zero temperature, however, the one-point function ⟨Tµν⟩ ≡ 0 by conformal invariance.
Therefore, such contractions can be ignored. Each gauge field from the loop needs to
be contracted with one of the gauge field from the free stress tensor. Analogous for the
scalars. This yields the diagram shown in Figure (2.3)

Figure 2.3: The diagram shows the one-loop Feynman diagram for the expectation value
of the stress tensor in presence of the Wilson loop. The former is represented by the blue
circle while the former is given through the thick line. The interacting particles are scalars
or gluons which, as before, we depict by a single propagator.
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2.2.3.1.1 Contractions For the contractions first focus on the vector fields. The free
part of the stress tensor is given by

T Vµν = −F c
µρF

c
νση

ρσ + 1
4ηµν(F

c
ρσ)2

= −∂µAcρ∂νAρ c − ∂ρAcµ∂ρAcν + ∂µAcρ∂ρAcν + ∂ρAcµ∂νAρ c (2.87)

+ ηµν2 ∂ρ1A
c
ρ2∂

ρ1Aρ2 c − ηµν2 ∂ρ1A
c
ρ2∂

ρ2Aρ1 c .

Each of the terms in the above equation contains two gauge fields. Each of these can
be contracted with each of the fields from the Wilson loop expansion. This yields two
different possibilities for contractions and therefore twelve terms in total.

∶ T VµνAa3(x1)Ab3(x2) ∶

= −(∂µAcρ)(∂νAρ c)Aa3(x1)Ab3(x2) − (∂µAcρ)(∂νAρ c)Aa3(x1)Ab3(x2) (2.88)

− (∂ρAcµ)(∂ρAcν)Aa3(x1)Ab3(x2) − (∂ρAcµ)(∂ρAcν)Aa3(x1)Ab3(x2)

+ (∂µAcρ)(∂ρAcν)Aa3(x1)Ab3(x2) + (∂µAcρ)(∂ρAcν)Aa3(x1)Ab3(x2)

+ (∂ρAcµ)(∂νAρ c)Aa3(x1)Ab3(x2) + (∂ρAcµ)(∂νAρ c)Aa3(x1)Ab3(x2)

+ ηµν2 (∂ρ1A
c
ρ2)(∂ρ1Aρ2 c)Aa3(x1)Ab3(x2) +

ηµν
2 (∂ρ1A

c
ρ2)(∂ρ1Aρ2 c)Aa3(x1)Ab3(x2)

− ηµν2 (∂ρ1A
c
ρ2)(∂ρ2Aρ1 c)Aa3(x1)Ab3(x2) −

ηµν
2 (∂ρ1A

c
ρ2)(∂ρ2Aρ1 c)Aa3(x1)Ab3(x2) .

Note that for each term in T Vµν there are two possible contractions written next to each
other. The structure of all terms above is very similar, the difference is in the space-time
indices. Define the coordinate where the stress tensor is inserted as z ∈ R4. Then the
contractions will yield the following Wick contractions between WL and stress tensor fields

AcρA
a
3(xi) = g2δacη3ρ∆i where ∆i ∶=∆(z − xi) =

1
4π2(z − xi)2

. (2.89)

From the color contractions will will always find δacδbc = δab. The index of the metric
may be free or contracted. If it is a free index we will keep the metric. For contracted
indices we directly apply the metric and set the corresponding index to ρ = 3 as the metric
demands. We are especially interested in the component T33 of the stress tensor. In this
case the above simplifies

∶ T V33A
a
3(x1)Ab3(x2) ∶ = g4δab[ − (∂ρ∆1)(∂ρ∆2) + (∂3∆1)(∂3∆2)] . (2.90)
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Here we simply plugged in µ = 3 and ν = 3 in the first term. Using a mostly plus metric
we set η33 = 1 and then collected the terms leaving us with a simplified result.

Before we plug in the propagators and take derivatives we will repeat the same exercise
for the scalar fields. Let us first expand the stress tensor

T Sµν(Φ) = −∂µΦc
t∂νΦt c + 1

2ηµν(∂ρΦ
c
t)2 +

1
6
(∂µ∂ν − ηµν∂2) (Φc

t)2

= −2
3(∂µΦc

t)(∂νΦt c) + 1
3Φc

t(∂µ∂νΦt c) + 1
6ηµν(∂ρΦ

c
t)(∂ρΦt c) (2.91)

− 1
3ηµνΦ

c
t (∂ρ∂ρΦt c) .

We Wick contract this with the two scalars coming from the Wilson loop Φa
r(x1) and

Φb
s(x2). The contraction yields a propagator analogous to the vector case

Φc
tΦa

r(xi) = g2δacδrt∆i where ∆i ∶=∆(z − xi) =
1

4π2(z − xi)2
. (2.92)

We will always find δacδbc = δab as in the case of the gauge field. Similarly for the R-
symmetry index we find δrtδts = δrs. As the propagator is on-shell it is easy to see that
∂ρ∂ρ∆i = 0. Furthermore, we focus once again on the component T33 of the stress tensor.
Compared to the case of the gauge fields the spacetime indices are relatively simple and
the resulting structure can be obtained readily.

∶ T S33Φa
r(x1)Φb

s(x2) ∶ = g4δabδrs [−
4
3(∂3∆1)(∂3∆2) +

1
3∆1(∂3∂3∆2) +

1
3∆2(∂3∂3∆1)

+1
3(∂ρ∆1)(∂ρ∆2)] . (2.93)

2.2.3.1.2 Coefficient of the Stress Tensor With this results we can finally go back
to the full calculation. Recall the expression we need to integrate. It includes a scalar and
a gauge part with WL fields in a correlator with the stress tensor.

⟨T33⟩W— =
1
N ∫

∞

−∞
dt1 ∫

t1

−∞
dt2tr(T aT b ⟨T S33(Φ)Φa

I(x1)Φb
J(x2)⟩nInJ

− T aT b ⟨T V33(A)Aa3(x1)Ab3(x2)⟩ ) +O(λ2) . (2.94)

We can use the above results to contract the color generators with δab. We find tr(T aT a) =
N2/2 together with the 1/N from the Wilson loop, the 1/g2 from the definition of the stress
tensor and the g4 from the two propagators this yields a prefactor λ/2. For the gauge fields
note that they have an imaginary prefactor coming from the Wilson loop definition and
thus the sign of this contribution is negative. For the scalars we additionally find δrs and
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thus can plug in the contraction of the unit vectors n2 = 1.
Let us separate the scalar and the vector contributions. Using the above Equations (2.90)
and (2.93) we find the integrals

⟨T33⟩W— = ⟨T33⟩SW— + ⟨T33⟩VW— , (2.95)

⟨T33⟩VW— = −
λ

2 ∫
∞

−∞
dt1∫

t1

−∞
dt2 [−(∂ρ∆1)(∂ρ∆2) + (∂3∆1)(∂3∆2)] , (2.96)

⟨T33⟩SW— =
λ

2 ∫
∞

−∞
dt1∫

t1

−∞
dt2 [−

4
3(∂3∆1)(∂3∆2) +

1
3∆1(∂3∂3∆2)

+1
3∆2(∂3∂3∆1) +

1
3(∂ρ∆1)(∂ρ∆2)] . (2.97)

We want to integrate the different propagators. Recall

∆i =∆(xi − z) =
1

4π2(−z2
0 + z2

1 + z2
2 + (yi − z3)2)

. (2.98)

Define r =
√
−z2

0 + z2
1 + z2

2 as the distance between the stress tensor and the Wilson loop.
We expect the final result to not depend on the coordinate z3. This coordinate is along
the defect where translational invariance is preserved. We shall keep the coordinate for
the calculations and it will eventually cancel out.
Let us look more closely on the different components of these contributions. The different
terms we need to integrate are

(∂3∆1)(∂3∆2) =
(y1 − z3) (y2 − z3)

4π4 (r2 + (y1 − z3) 2) 2 (r2 + (y2 − z3) 2) 2 , (2.99)

(∂ρ∆1)(∂ρ∆2) =
r2 + (y1 − z3) (y2 − z3)

4π4 (r2 + (y1 − z3)2)
2 (r2 + (y2 − z3) 2) 2

, (2.100)

∂3∂3∆i = −
−3 (yi − z3)2 + r2

2π2 (r2 + (yi − z3)2)
3 . (2.101)

The above functions now need to be integrated along the Wilson line. We find only one of
the integrals to give a nonzero result. The two other integrals vanish due to symmetry
properties of the numerator. Recall that we use the parameterization (1.65)

∫
∞

−∞
dt1∫

t1

−∞
dt2 (∂3∆1)(∂3∆2) = 0 , (2.102)

∫
∞

−∞
dt1∫

t1

−∞
dt2 ∆i(∂3∂3∆j) = 0 , (2.103)

∫
∞

−∞
dt1∫

t1

−∞
dt2 (∂ρ∆1)(∂ρ∆2) =

1
32π2r4 . (2.104)
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Due to the symmetry of the integrals only the term with r2 in the nominator did not
vanish under the integral sign. Note furthermore that as expected the result does not
depend on z3.
We can plug these results into the full calculation.

⟨T33⟩VW =
λ

2 ∫
∞

−∞
dt1∫

t1

−∞
dt2(∂ρ∆1)(∂ρ∆2) =

λ

64π2r4 , (2.105)

⟨T33⟩SW =
λ

6 ∫
∞

−∞
dt1∫

t1

−∞
dt2(∂ρ∆1)(∂ρ∆2) =

λ

192π2r4 . (2.106)

This agrees with the results (Equations (3.13)) from [36] and with (Equations (3.3) and
(3.5)) from [81] found for free fields up to a factor of 1/2. As mentioned before the difference
in the sign of the scalar between our result and the one in [81] is due to a difference in the
scalar part of the stress tensor, see also the discussion in [36]. The factor 1/2 comes from
the color group (tr(T aT a) = N2/2) and can be seen in Equation (4.1) of [81] for the gauge
boson.
We therefore find for the full stress tensor

⟨T33⟩W = ⟨T33⟩SW + ⟨T33⟩VW =
λ

48π2r4 ⇒ h = λ

48π2 . (2.107)

2.2.3.2 Stress tensor in the presence of a circular loop

For completeness we want to also calculate the stress tensor for the circular loop. Following
[96] we expect to find the same expression for h. However, this does not necessarily mean
that the expressions coming from the gauge field and the scalar field need to be equal.
The reason for the similarity of the two calculations are the symmetries of N = 4 SYM
which cannot be expected to hold for free field theories. We parameterize the WL defect
by a circle in the [12]−plane (1.64)

C ∶ xµ(t) = (0 , R cos(t) , R sin(t) , 0) , t ∈ [0,2π] . (2.108)

The bare propagator then is similar to before

∆(z − x(ti)) =
1

4π2 (ρ2 + z2
r +R2 − 2Rzr cos(φ − ti))

. (2.109)

Here z2
r = z2

1 +z2
2 is the radial coordinate in the [12]−plane and φ is the corresponding angle.

Similarly ρ2 = z2
0 + z2

3 is the distance between the stress tensor and the plane in which the
circular loop lies. Also in this [03]−plane an angular dependence could be included. Due
to the rotational symmetry in this problem, however, the correlator does not depend on
said angle and we can exclude it from our further calculations. The distance between the
loop and the stress tensor is given by r =

√
ρ2 + (zr −R)2. The calculation is analogous

to the straight line calculation. We are interested in the component ⟨Tφφ⟩W of the stress

50



2.2. PERTURBATIVE CHECK

tensor which can be achieved naively by replacing 3→ φ in the derivation above.
However, the calculation of the vector contribution requires some additional care. Recall
for example the contribution in the stress tensor. We suppress color charges and use
euclidean signature

∶ −(∂µAρ)(∂νAρ)Aσ1Aσ2ẋ
σ1ẋσ2 ∶= −∂µAρ∂νAρAσ1Aσ2ẋ

σ1ẋσ2 − ∂µAρ∂νAρAσ1Aσ2ẋ
σ1ẋσ2

= −(∂µ∆1∂µ∆2 + ∂µ∆2∂µ∆1)δρσ1δρσ2ẋ
σ1(t1) ⋅ ẋσ2(t2)

= −(∂µ∆1∂µ∆2 + ∂µ∆2∂µ∆1)ẋ(t1)ẋ(t2) (2.110)

= −(∂µ∆1∂µ∆2 + ∂µ∆2∂µ∆1)R2 cos(t1 − t2) .

This is very similar to the contribution we also found from the Wilson loop at leading
order [62]. For some of the other components we do not find only the cosine function.
Instead

∶ −(∂ρAµ)(∂ρAν)Aσ1Aσ2ẋ
σ1ẋσ2 ∶

= −∂ρAµ∂ρAνAσ1Aσ2ẋ
σ1ẋσ2 − ∂ρAµ∂ρAνAσ1Aσ2ẋ

σ1ẋσ2 (2.111)

= −∂ρ∆1∂ρ∆2(δµσ1δνσ2 + δνσ1δµσ2)ẋσ1(t1)ẋσ2(t2) .

Taking the component Tµν → Tφφ of this expression means to use the sum of all components
of ẋσ(ti). More precisely we have in the [12]−plane

ẋ(ti) = Ṙe⃗R +Rṫe⃗t = R
⎛
⎝
− sin(t)
cos(t)

⎞
⎠
,

δφσ1δφσ2ẋ
σ1(t1)ẋσ2(t2) = R2 (− sin(t1) cos(t1))

⎛
⎝

1 1
1 1
⎞
⎠
⎛
⎝
− sin(t2)
cos(t2)

⎞
⎠

(2.112)

= R2(cos(t1 − t2) − sin(t1 + t2)) .

This finally yields

∶ −(∂ρAφ)(∂ρAφ)Aσ1Aσ2ẋ
σ1ẋσ2 ∶ = −2R2∂ρ∆1∂ρ∆2(cos(t1 − t2) − sin(t1 + t2)) . (2.113)

All remaining terms in T Vµν can be treated similarly. The scalar contribution is calculatedin
the same manner as before. Therefore, we find for the stress tensor

⟨Tφφ⟩W— = ⟨Tφφ⟩SW— + ⟨Tφφ⟩VW— , (2.114)
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⟨Tφφ⟩VW— = −
λ

2R
2∫

∞

−∞
dt1∫

y1

−∞
dt2 [(−(∂ρ∆1)(∂ρ∆2) + (∂3∆1)(∂3∆2)) cos(t1 − t2)

+ (−2(∂ρ∆1)(∂ρ∆2) + 3(∂3∆1)(∂3∆2)) sin(t1 + t2)] , (2.115)

⟨T33⟩SW— =
λ

2R
2∫

∞

−∞
dy1∫

y1

−∞
dy2 [−

4
3(∂3∆1)(∂3∆2) +

1
3∆1(∂3∂3∆2) +

1
3∆2(∂3∂3∆1)

+1
3(∂ρ∆1)(∂ρ∆2)] . (2.116)

For simplicity and without loss of generality of the result we assume that the projection of
the stress tensor to the polar plane is in the origin of the circular loop, zr = 0. Including
this in the calculations we find the following integrands from the correlator

(∂φ∆1)(∂φ∆2) =
R2 sin (t1) sin (t2)

4π4r8 , (2.117)

(∂ρ∆1)(∂ρ∆2) =
r2 +R2 cos (t1 − t2) −R2

4π4r8 , (2.118)

∂2
φ∆i = −

r2 − 2R2 + 2R2 sin(2ti) + 2R2 cos(2ti)
2π2r6 . (2.119)

The stress tensor one-point function is thus given by

⟨Tφφ⟩W◯ =
λR4

12π2r8 −
λR4

16π2r8 +O(λ
2) = λR4

48π2r8 +O(λ
2) . (2.120)

This matches the form in [96]. We therefore see that also for the circular loop we are able
to reproduce the result of [36, 81]

h = λ

48π2 +O(λ
2) , ⇒ 3h = λ

16π2 +O(λ
2) . (2.121)

Above we found

B = λ

16π2 +O(λ
2) . (2.122)

Hence, we indeed reproduced the Relation (1.1), B = 3h in a perturbative calculation.

2.2.3.3 Diagrams of subleading orders

So far we simply assumed that the above diagram (Figure 2.3) is the only one relevant at
leading order. Although this makes sense from a calculational point of view, we want to
show it more explicitly. Therefore will will look at the relevant Feynman diagrams.
There are several diagrams that we have to consider in a perturbative expansion. Recall
from the Feynman rules of N = 4 (J.2) that any propagator comes with a factor of g2

while all three- and four-point vertices yield 1/g2. Due to the prefactor of the stress tensor
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we also get the 1/g2 factor for all insertions. These are given in [99] for QCD. In our case
the possible vertices include all the vertices that come from the Lagrangian but with a
stress tensor insertion instead of the actual vertex. The precise Feynman rules for the
different diagrams are of minor importance here and we will not write them out.
The simplest diagram has an insertion of the stress tensor which is connected to the
straight line through two propagators, either scalars or vectors, see figure 2.3 above. This
diagram comes with a prefactor g2 which will combine with the N yielded by the color
trace to the prefactor λ thus agreeing with the similar leading order diagram of the Wilson
loop. We saw this in the above calculation for the leading order.

At subleading order there are serveral diagrams relevant. They are shown in Figure 2.4. A
one-loop self-energy might be inserted to either propagators of the above diagram. Also a
three-point connection between the stress tensor and the Wilson line is possible as well as
a tad-pole. In principle there might also be diagrams with one connection between the

(a) (b) (c)

Figure 2.4: The diagrams show the two-loop (O(λ2)) Feynman diagrams for the expectation
value of the stress tensor (blue circle) in presence of the Wilson loop (thick line). At
second order we can have a one-loop correction to the diagram of lower order (a). Other
possible diagrams are a three-point (b) or four-point vertex (c). The propagators in the
four-point vertex can also be all connected to the Wilson loop operator. However, this
represents a higher order diagram, namely O(λ3).

Wilson loop and the stress tensor and a propagator between two insertion points on the
Wilson line. From the Wilson line calculation, however, we know that such insertions are
always zero (this holds for the straight line, not the circle).
Other diagram at low orders are the so-called lollipop diagrams. The lollipop diagrams
are of the kind shown in Figure 2.5 with the displayed diagram just being one of many
examples. This diagram and all others of the same kind, however, will not contribute. The
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texttext
(a) (b)

Figure 2.5: In the Lollipop diagrams only one propagator is connected to the Wilson line.
This can a priori be a scalar or a gluon. This one propagator is either directly connected
to a vertex-like insertion of the stress tensor (a) or to a vertex coming from the action
which itself connects to the stress tensor.

reason lies in the color index structure of the diagrams. Without writing their contribution
explicitly this can be seen.
Every propagator carries a color charge. This charge cannot change. From the color
charges in the definition of the stress tensor (1.62) it is straight forward that also the
stress tensor insertion must preserve the incoming and outgoing charges. The Wilson loop
operator contracts the open charge of the incoming propagator with the SU(N) generator
T a. Later a trace is taken over this group (but this is not important here).
Furthermore, the diagrams of the type depicted above have one vertex where one line
comes from the Wilson line, carrying color charge a. The two outgoing lines carry charges
b and c, respectively. These two lines eventually connect yielding some δb,c. The vertex
itself comes with a structure constant fabc.

tr (T afabcδb,c) = tr (T afabb) = 0 . (2.123)

All in all, we therefore find the color structure to vanish because the structure constants
are anti-symmetric and all diagrams of the type shown in Figure 2.5 vanish. In other
words, this follows because propagators are diagonal in color space and the vertices are
skew-symmetric [20].
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Chapter 3

Finite temperature and zero coupling

In this chapter we consider the relation between the bremsstrahlung and the stress tensor
at finite temperature while setting the coupling to zero (g = 0). The calculations from
the previous Chapter 2 are applied to the new setting. For the Ward identity (2.16) we
find thermal correction terms. Setting the coupling to zero will ensure that the new terms
preserve R-symmetry and we will be able to indeed reproduce the Relation (1.1), B = 3h.
The implications of nonzero coupling are addressed in Chapter 4.
The analytic result at g = 0 will be supported by a perturbative calculation. The first term
in a weak coupling perturbative expansion of the Wilson loop represents the contribution
coming from free fields. We will find a scheme for the parameter R̃ introduced in the
straight line parameterization for which the relation B = 3h indeed is reproduced. This
scheme is dependent on the temperature T and the radius R of the circular loop. We
consider a Taylor expansion around small temperatures up to order T 4 and in the high
temperature limit.
The action as defined in Equation (1.56) has a prefactor 1/2g2. Before sending the coupling
to zero we therefore renormalize the coupling dependence of the field by setting

Aµ → gAµ , λI → gλI , ΦIJ → gΦIJ , c̄→ gc̄ . (3.1)

Consequentially the kinetic terms and propagators will be independent of the coupling.
The interactions are coupling dependent. The Yukawa and other three-particle interactions
contribute at order g while for quartic interactions like Φ4 we find a prefactor g2. Now
setting g = 0 is possible and the Lagrangian consists only of the kinetic terms

S = 1
2 ∫

β

0
dτ ∫ d3x tr [12FµνF

µν + (∂µAµ)2 + ∂µΦIJ∂µΦ̄IJ + iλ̄Iσµ∂µλI+

+iλI σ̄µ∂µλ̄I] +O(g) , (3.2)

with Fµν = ∂µAν − ∂νAµ.
The Wilson loop operator will likewise obtain a coupling dependence in the exponent. In
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a strict zero coupling regime the Wilson loop will thus always be one. We will, however,
allow for a coupling between the bosonic operators and the Wilson loop at leading order
(yielding diagrams of order λ = g2N). This order is independent from interactions between
the particles of N = 4 while still allowing for a computation of the bremsstrahlung and
the stress tensor one-point function. In other words, we allow for the appearance of the
diagram 1.1a only.

3.1 Thermal Broken Ward Identity

In this section we want to study how the Ward identity is corrected at finite temperature.
The breaking of (2.16) arises mainly from the fermionic boundary conditions on the
compactified time dimension. Recall that the anti-commutation properties of fermionic
fields together with the definition of the thermodynamic ensemble partition function yield
anti-periodic boundary conditions for fermions on the thermal circle [49,50].
For completeness let us show this explicitly. Therefore, consider a fermionic field ψ(τ)
where we only explicitly write the dependence on the temporal component. For two such
fields we have the anti-commutation property ψ(τ1)ψ(τ2) = −ψ(τ2)ψ(τ1). The partition
function is defined as the trace of the density matrix Z = trρ = tr e−βH and hence
(assuming τ1 > τ2) [47,100,101]

⟨ψ(τ1)ψ(τ2)⟩ = tr [ψ(τ1)ψ(τ2)e−βH] = tr [e−βHψ(τ1)eβHe−βHψ(τ2)]

= tr [ψ(τ1 + β)e−βHψ(τ2)] = −tr [ψ(τ1 + β)ψ(τ2)e−βH] (3.3)

= − ⟨ψ(τ1 + β)ψ(τ2)⟩ .

These anti-periodic boundary conditions for the fermions will break the supersymmetry of
the theory [53] and in consequence also the Ward identity (2.16). To see this we make
the periodic and anti-periodic boundary conditions explicit in a redefinition of the fields.
Then the BWI can be obtained consistently.
The thermal theory is obtained by Wick rotating before the compactificaion of the time
dimension. The coordinate along the time dimension therefore is

τ = ix0 . (3.4)

Likewise, also the the o-th spinor matrix is Wick-rotated such that we find the Euclidean
σµE = (i1, σi) and σ̄µE = (i1,−σi). All relevant relations are given in Appendix A.

To consider how the superalgebra breaks let us introduce an intermediate step. When the
time dimension is compactified on a circle S1

β the boundary conditions are not a priori fixed.
As the calculation (3.3) clarified they get determined by the thermodynamic ensemble. For
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this calculation we do not introduce such a thermodynamic ensemble. Instead we simply
compactify the time dimension similar to a Kaluza-Klein (KK) reduction and assume
all boundary conditions of both, bosonic and fermionic fields, to be periodic. This is a
reduction purely with respect to the spacetime which a priori will not yield a thermal
theory. In such a setting supersymmetry can remain unbroken.
Note that the introduction of the WL operator already reduced the preserved superalgebra
to osp(4∣4) [83]. For details on the full algebra see Appendix A, the breaking of the
algebra is shown in detail in Appendix B while the commutation relations of the osp(4∣4)
subalgebra are given in Equation (3.34) below.
We want to see how the superalgebra osp(4∣4) is effected upon compactification of the
time dimension on a circle. The symmetries of the theory yield conserved Noether currents.
If these currents remain conserved in the new setting we can infer that the respective
symmetry is unbroken. Consider the supercurrent Ψ̂Iµ

α as the main important example.
It is related to the Poincaré supercharges QIα and the conformal supercharges SIα̇, see
Equations (B.7) and (B.8) for the definitions. They are preserved after the insertion of the
straight Wilson line defect. Meanwhile it is rather intuitive for the R-symmetry generator
to not be affected by compactified time at all1. Similarly the rotations in the [12]-plane,
M12, must be preserved as said plane is neither affected by the WL nor by the compactified
time. Conversely the rotations M01 and M02 involving the time dimension are broken.
The WL already lead to a breaking of any rotation M3m including the x3 direction where
the line is placed.
Let us consider the supercurrent Ψ̂Iµ

α which is the Noether current of the supercharges.
It is the preserved part of the field ΨI

αβα̇ in the stress tensor multiplet 2.1. For our
considerations it is not important how it looks like precisely. If supersymmetry is unbroken
the current is preserved,

∂µΨ̂Iµ
α = 0 and Ψ̂Iµ

α σ
ββ̇
µ = 0 . (3.5)

Consider the related current

jµ ∶= ζIα(xµ)ΩIJε
αβΨ̂Jµ

β . (3.6)

This current is obtained by contracting the supercurrent with a superconformal Killing
spinor ζIα which can depend a priori on the spacetime coordinates. The newly introduced
current is assumed to be preserved, ∂µjµ = 0. This restricts the Killing spinor. The most
general solution to make the current conserved is [90]

ζIα(xµ) = ηIα + xµσµαα̇ν̄Iα̇ . (3.7)

1We will eventually show that finite temperature also induces a breaking of the R-symmetry. This is
considered in details below.
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We introduced the constant left and right spinors ηIα and ν̄Iα̇, respectively. The Poincaré
and conformal supercharge can be constructed from the supercurrent by an integration

QIα ∼ ∫ d3x Ψ̂I0
α , S̄Iα̇ ∼ ∫ d3x xµσ̄α̇αµ Ψ̂I0

α . (3.8)

For the Killing spinor this implies that the choice ηI ≠ 0 and ν̄I = 0 is associated to the
Poincaré supercharge Q while the converse choice ηI = 0 and ν̄I ≠ 0 yields the conformal
supercharge S [90].
When the time dimension is compactified on a circle S1

β we assume periodic boundary
conditions for all bosonic and fermionic fields as stated earlier. Therefore the above
superconformal Killing spinors must satisfy the periodic KMS condition [49,50]

ζIα(xµ) = ζIα(x0, xi) = ζIα(x0 + β,xi) . (3.9)

The spinors ηI and ν̄I are constant an hence the spacetime dependence is only in the
prefactor of ν̄I . Shifting x0 → x0 + β yields an additional factor which needs to vanish for
the KMS condition to hold,

βσ0
αα̇ν̄

Iα̇ = 0 . (3.10)

Therefore the conformal supercharges S must be broken. The above equation can only
be satisfied if ν̄I ≡ 0 which, as stated above, corresponds to considering the Poincaré
supercharges Q only. Therefore conformal invariance is broken by the introduction of the
compactified time with finite radius β. For identical reasons finite temperature will neither
be conformally invariant [54].
In principle this clearly shows the breaking of the conformal part of the algebra as expected.
Due to the broken Lorentz invariance it is, however, possible to define a different Killing
spinor which preserves the KMS condition. Such a Killing spinor is given by a construction
with Heaviside theta functions,

ζIα(τ, x⃗) = ηIα + xiσiαα̇ν̄Iα̇ + fβ(τ)σ0
αα̇ν̄

Iα̇ , (3.11)

fβ(τ) =
∞
∑

m=−∞
(τ −mβ)Θ(τ −mβ)Θ((m + 1)β − τ) .

This superconformal Killing spinor clearly obeys the KMS periodicity condition ζIα(τ, xi) =
ζIα(τ + β,xi) due to the introduced step-function fβ(τ) which is piece-wise linear and
periodic. Note also that at τ = βm ∈ β × Z the functions is not smooth. The function
jumps back to zero as an effect of the Heaviside theta functions.
The Killing spinor equation ∂µjµ = 0 is not necessarily preserved with the newly defined
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Killing spinor. In fact we will find a breaking of the conformal supercharges.

∂µj
µ = ∂µζIα(xµ)Ψ̂αµ

I = ∂τζIα(τ, x⃗)Ψ̂α0
I + ∂iζIα(τ, x⃗)Ψ̂αi

I

= (σi)αα̇Ψ̂i α
I ν̄

Iα̇ + (∂τfβ(τ))σ0
αα̇Ψ̂α0

I ν̄
Iα̇ . (3.12)

The derivative acting on the supercurrent Ψ̂µ
I and on the spinors ηI and ν̄I vanishes as

before. Therefore we only find a non-trivial contribution from the action of the derivatives
on the chainsaw function fβ(τ) and a term with the Pauli matrices. We write the sums
out explicitly. If the derivative acts on the linear term, we get a sum over theta functions
only. This will ultimately yield 1 and cancel in combination with the first term in the
above equation. For the derivatives acting on the Heaviside theta functions we will find
Dirac delta functions,

∞
∑

m=−∞
[Θ(τ −mβ)Θ((m + 1)β − τ)] = 1 and (3.13)

∞
∑

m=−∞
(τ −mβ)∂τ [Θ(τ −mβ)Θ((m + 1)β − τ)]

=
∞
∑

m=−∞
(τ −mβ) [δ(τ −mβ) − δ((m + 1)β − τ)]

= −
∞
∑

m=−∞
βδ(τ −mβ) . (3.14)

This gives all in all

∂µζ
I
α(xµ)JαµI = σiαα̇ν̄Iα̇Ψ̂αi

I + σ0
αα̇ν̄

Iα̇Ψ̂α0
I −

∞
∑

m=−∞
βδ(τ −mβ)σ0

αα̇ν̄
Iα̇Jα0

I . (3.15)

The first two terms combine and we can use Ψ̂Iµ
α σ

ββ̇
µ = 0 to eliminate it. Thus we are left

with the final expression

∂µj
µ = ∂µζIα(xµ)JαµI =

∞
∑

m=−∞
βδ(τ −mβ)σ0

αα̇ν̄
Iα̇Ψ̂α0

I . (3.16)

This yields that the generators SIα are broken whenever τ/β ∈ Z. Therefore the full
superconformal group cannot be preserved.
This calculation has a further important implication. While the conformal supercharge is
broken, the Poincare supercharges remain unbroken. Therefore the Ward identity (2.16)
still holds for compactified time. This has major importance when we consider the thermal
corrections of the Ward identity.
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3.1.1 Thermal action

In the previous considerations we compactified the time dimension and showed that
supersymmetry can be preserved in such a setting. This is no longer the case for finite
temperature. Our calculation in Equation (3.3) shows that fermions get anti-periodic
boundary condition from the KMS conditions [47,100]. Let us consider the thermal action
at zero coupling. Following our definition (1.56) we have in the thermal setting

S̃ = 1
2 ∫

β

0
dτ ∫ d3x tr [12 F̃µνF̃

µν + (∂µÃµ)
2 + ∂µΦ̃IJ∂µ ˜̄ΦIJ + i˜̄λIσµ∂µλ̃I+

+iλ̃I σ̄µ∂µ ˜̄λI] +O(g) . (3.17)

As we are considering the free case g = 0 here only the kinetic terms are present. All
fields were renamed with a tilde for later convenience. We want to make the boundary
conditions explicit by giving the fields a phase factor. Thus we will rewrite the action with
identical terms consisting solely of periodic fields and hence preserving supersymmetry.
The phase factor will yield further terms explicitly breaking the symmetries. As the gauge
field is real it cannot acquire any phase factor. The ghost fields, although being Grassmann
variables, can be assumed to be periodic in order to ensure BRST invariance. This is an
allowed transformations as the ghost fields are unphysical. We can thus define the phase
of the ghosts to be zero [53]. The fermionic fields, however, will get a phase to ensure that
they do get anti-periodic boundary conditions. As there are no interactions in the case
at hand the scalar fields do not necessarily need a phase as they are already periodic by
construction. Therefore we replace

Ãµ(τ, x⃗)→ Aµ(τ, x⃗) , Φ̃IJ(τ, x⃗)→ ΦIJ(τ, x⃗) , ˜̄c(τ, x⃗)→ c̄(τ, x⃗) ,

λ̃I(τ, x⃗)→ eiατλI(τ, x⃗) with α = π
β
(2n + 1) , n ∈ Z . (3.18)

All fields without the tilde are periodic. The α are fermionic phases yielding anti-
periodic boundary conditions for τ . They are real coefficients and the conjugated fields λ̄I

consequently have a phase with a negative sign in the exponent. The action thus will get
corrections from the kinetic terms while the phases cancel each other. We find

S̃ = 1
2tr∫

β

0
dτ ∫ d3x [12FµνF

µν + (∂µAµ)2 +DµΦIJD̃µΦ̄IJ + iλ̄IσµDµλI+

+iλI σ̄µD̄µλ̄
I − αλ̄Iσ0λI + αλI σ̄0λ̄I] +O(g)

= S + α∫
β

0
dτ ∫ d3x tr [λI σ̄0λ̄I] = S + α∫

β

0
dτ ∫ d3x trMλ . (3.19)
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The kinetic terms thus get reproduced depending only on the periodic fields. Additionally
a new term is introduced for the spinor fields. An interpretation of the new term is that
we introduced a covariant derivative

∇µ = ∂µ + iαδµ,0 with α = π
β
(2n + 1) , n ∈ Z . (3.20)

This covariant derivative is the gravitational coupling of the spinor to the background S1
β.

It is suggestive of an U(1)-type coupling where the spinors have a charge α while all other
fields are not charged.
The original action S depends only on periodic fields and preserves supersymmetry unlike
the new term. This new mass-like term suggest the preservation of su(4)R symmetry.
This is only true for the free theory (g = 0) we consider here. For non-zero coupling the
conditions yielded by the Yukawa interactions contradict a choice where every spinor in the
tuple λI get the same phase and consequentially R-symmetry is broken. This is studied in
detail in Chapter 4.
The transformations (3.18) act not only on the fields in the action but also transform the
measure of the path integral yielding a Jacobian. This can potentially yield a non-vanishing
quantum anomaly for the thermal theory [6]. In Appendix F we show that the above
transformation is in fact anomaly-free.

3.1.2 Broken Ward Identity

Let us now go back to the Ward identity. Even though supersymmetry is manifestly
broken through the introduction of a fermionic mass term, we are allowed to introduce
an operator Ψ̂Iµ

α defined identically as the field content of the supercurrent. The main
difference to note here is that this ’supercurrent’ is no longer a Noether current of the full
action. In a similar manner, supercharges Q can still be defined in the thermal setting.
They transform bosonic operators to fermionic ones, but are not a symmetry of the theory.
Let us consider the action of a supersymmetry on the action with δ = QIαζαI

δS = δSN=4 + δSm = ∫
β

0
dτ ∫ d3x

1
2 [∂µΨ̂Iµ

α ζ
α
I + αQIαMλζ

α
I ]

= ∫
β

0
dτ ∫ d3x

1
2 [∂µΨ̂Iµ

α + αAIα] ζαI . (3.21)

We defined a new operator AIα = QIαMλ which represents the thermal corrections at zero
coupling. Recall the Ward identity derived in Section 2.1.2 from the supercurrent Ψ̂Iµ

α . At
zero temperature we found (2.29)

∫ d4u ⟨∂µΨ̂I µ
α (u)ϕ1(x1) . . . ϕn(xn)⟩

W
= − ⟨QIαϕ1(x1) . . . ϕn(xn)⟩W . (3.22)

61



CHAPTER 3. FINITE TEMPERATURE AND ZERO COUPLING

The left hand side of this equation was shown to be zero hence yielding the Ward identity
we used in Equation (2.16). In the thermal case not only the spacetime changes. We saw
above that we need to consider a mass correction for the fermions as well. The respective
terms must hence be included to the Ward identity.

− ⟨QIα (ϕ1(x1) . . . ϕn(xn))⟩W = ∫δ(S1
β
×R3)

dΣµ ⟨Ψ̂I µ
α (u0, u⃗)ϕ1(x1) . . . ϕn(xn)⟩

W

+α∫
β

0
du0∫ d3u ⟨AIα(u0, u⃗)ϕ1(x1) . . . ϕn(xn)⟩W . (3.23)

The right hand side of this identity has two terms. The first one was also present in the
zero temperature case. It is derived using Stoke’s theorem and is a boundary integral of
the thermal manifold. Due to all fields being periodic we can show that this term also
will not contribute in the thermal setting at zero coupling. The additional term is the one
breaking the Ward identity and it is generally non-zero.
Consider the term with the original supercurrent. We need to be careful with the boundaries
of this integral. The full space is S1

β ×R3. Then

∫
δ(S1

β
×R3)

dΣµ ⟨Ψ̂I µ
α (u0, u⃗)ϕ1(x1) . . . ϕn(xn)⟩

W

= ∫
β

0
du0∫

S2
∞

dΣ⃗ ⟨ ⃗̂ΨI
α(u0, u⃗)ϕ1 . . . ϕn⟩

W

(3.24)

+ α∫ d3u ⟨[Ψ̂I 0
α (u0, u⃗)]

β

u0=0
ϕ1 . . . ϕn⟩

W

.

Let us first consider the last term. The main reason behind the introduction of the mass
term correction above was to keep all fields periodic. The field Ψ̂ hence is a combination
of these periodic elementary fields and therefore periodic on the thermal circle. The
respective term thus vanishes

[Ψ̂I 0
α (u0, u⃗)]

β

u0=0
= Ψ̂I 0

α (β, u⃗) − Ψ̂I 0
α (0, u⃗) = 0 . (3.25)

The remaining term involves an integral over a sphere at infinity. In the zero temperature
case one can argue using the conformal dimension of the field that it needs to fall off
with a certain power law at infinity thus not giving any contribution [90]. While a similar
approach might naively work in the thermal case as well, the conformal symmetry and
hence the notion of conformal dimensions is, strictly speaking, no longer valid. We therefore
provide another argument.
As we are in a limit where the radial component ∣u⃗∣ → ∞ we can use the thermal
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clustering [54]. The field Ψ̂ in the correlator is split into a product of one-point functions

lim
∣u⃗∣→∞

⟨ ⃗̂ΨI
α(u0, u⃗)ϕ1 . . . ϕn⟩

W

= ⟨ ⃗̂ΨI
α(u0, u⃗)⟩

W

⟨ϕ1⟩W . . . ⟨ϕn⟩W +O (e−m∣u⃗∣) . (3.26)

As the thermal mass is positive by a folk theorem the corrections fall of exponentially
fast and we can henceforth ignore them. The leading term involves a one-point function
of the ⃗̂Ψi

α which is in the [1,0] = 4 representation of the usp(4)R symmetry, see table
2.1. This representation is charged and thus yields that the one-point function must be
zero. Furthermore, ⃗̂Ψi

α is not a symmetric traceless tensor with even spin which would be
required for a non-vanishing one-point function at finite temperature [54]. Therefore the
terms from the spacetime boundary indeed cancel and we finally find the general thermal
broken Ward identity

− ⟨QIα (ϕ1 . . . ϕn)⟩W = α∫
β

0
du0∫ d3u ⟨AIα(u0, u⃗)ϕ1 . . . ϕn⟩W . (3.27)

Above we considered a Ward identity between the first descendant ψ from the stress tensor
multiplet and the diplacement primary O. The respective BWI thus is

− ⟨QNβ (ψ JK
Iα OLM)⟩

W,T
= α∫

β

0
du0∫ d3u ⟨ψ KL

Iα OMNAJβ(u0, u⃗)⟩W,T . (3.28)

The integration over the insertion points of the correction A is non-trivial. It is thus
useful to simplify the correlator by taking an operator product expansion between the two
operators ψ KL

Iα and OMN . Following [54] such an OPE can be used in a finite temperature
setting provided that the operators are within a certain radius of convergence. This will
be the focus of the following chapter.

3.1.3 Operator Product Expansion

Operator product expansions are a useful tool in any conformal field theory, especially in
the computation of multipoint correlation functions. They allow to express an n−point
function by a sum over (n − 1)−point functions which are generally easier to compute.
Generally OPEs can be applied for two operators which share a sphere in spacetime in
which no other operator is inserted.
In a conformal field theory with a defect two kinds of OPEs are relevant. One might be
interested in a product of either two bulk or two defect operators, respectively. For these
cases the operator product expansions of two scalar fields read

O1(X)O2(0) =∑
O3

c123

∣X ∣∆1+∆2−∆3
O3(X) + . . . . (3.29a)

Ô1(y)Ô2(0) =∑
Ô3

ĉ123

∣y∣∆̂1+∆̂2−∆̂3
Ô3(y) + . . . . (3.29b)
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Here X are the bulk coordinates while y is on the defect. The cijk are the CFT structure
constants. Here and in many subsequent equations the dots (. . .) represent regular terms
which we will ignore in our calculations. This is a valid limit if X,y << 1.
Note, however, that bulk operators can also be expanded in terms of defect operators
provided they are close enough to the defect [89]

O(X,y) =∑
Ô

bOÔ

∣X ∣∆−∆̂
Ô(y) + . . . . (3.30)

This expansions underlines that a bulk operator which is very close to the defect can be
interpreted as an excitation of the defect [89].
In the equations given thus far we suppressed any indices. In the more general case the
OPE is restricted by these indices. While in principle any operator can appear in the
OPE, the overall indices need to match between the two sides. If this cannot be achieved
by including dependencies on spacetime coordinates or invariant tensor structures the
respective operator cannot appear in the OPE.
Although finite temperature breaks conformal invariance it is still possible to apply the
OPEs in a thermal setting. The OPE is valid in case the operators lie in a sphere with
flat interior. Demanding that xµxµ = X2 + y2 < β2 this is in fact the case in the thermal
setting [54]. See also Figure 1.3 with more details on the OPE in finite temperature given
in the introduction, Subsection 1.2.1.

3.1.3.1 Representation theory

Before we consider the details of the operator product expansions it is useful to review
some relevant aspect of 1d Representation theory [85] .
We originally study N = 4 supersymmetric Yang-Mills theory with superconformal algebra
psu(2,2∣4). It has 16 Poincaré supercharges QI

α , Q̄
α̇
I and the conformal supercharges

SIα , S̄Iα̇ where I = 1, . . . ,4 is an index of the su(4)R R-symmetry and α, α̇ = 1,2 are
spinor indices of su(2)α and su(2)α̇, respectively. The bosonic subalgebra consists of the
conformal su(2, 2) and the aforementioned R-symmetry su(4)R. The conformal generators
are the translations Pµ, the rotations Mµν , the dilatation ∆ and the special conformal
transformations Kµ. The R-symmetry is generated by RI

J . For details on commutation
relations of the unbroken algebra see Appendix A.
The Wilson loop operator is introduced according to the definition (1.63). For the purpose
of this subsection we restrict ourselves to the straight line Wilson loop

Wline =
1
N

tr ⃗P exp [i∫ dt (A3 − inrΦr)] . (3.31)

Due to the introduction of the 1
2−BPS Wilson loop defect the superconformal algebra

psu(2, 2∣4) breaks to the subalgebra osp(4∗∣4). This preserved subalgebra has an su(2)rot⊕
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usp(4)R R-symmetry. Generic representations are labeled by [j](R1,R2)
∆ where j ∈ N is

the spin quantum number of su(2)rot while R1,R2 are the Dynkin labels of the usp(4)R
representations. There is a special isomorphism for this algebra, usp(4) ≃ so(5). Therefore,
we clarify our definition (1,0) = 4 as the usp(4)R fundamental while (0,1) = 5. Off the
original 16 Poincaré supercharges 8 are preserved and likewise 8 conformal supercharges
are preserved. Those are

QIα =
1√
2
(QI

α +ΩIJσ3
αα̇Q̄

α̇
J) , SIα = −

1√
2
(ΩIJSJα − σ3

αα̇S̄
Iα̇) . (3.32)

The symplectic metric ΩIJ is the usp(4) singlet we introduced in (1.66). Furthermore, the
conformal symmetry along the Wilson line (∆, P3, K3) and rotations Mmn orthogonal to
the defect (with m,n = 0,1,2) are preserved. The preserved R-symmetry generator is the
symmetric [83]

RIJ = 1
2
(RI

KΩKJ +RJ
KΩKI) . (3.33)

The osp(4∗∣4) algebra is thus given by

[∆, P3] = −P3 , [∆,K3] = +K3 , [P3,K3] = 2∆ ,

[Mmn,∆] = 0 , [Mmn, P3] = 0 , [Mmn,K3] = 0 ,

[P3,QIα] = 0 , [K3,SIα] = 0 ,

[∆,QIα] = −
1
2Q

I
α , [∆,SIα] = −

1
2S

I
α , (3.34)

[Mmn,QIα] = i(σmn) βα QIβ , [Mmn,SIα] = i(σmn) βα SIβ ,

[RIJ ,QKα ] = ΩKIQJα +ΩKJQIα , [RIJ ,SKα ] = −ΩKISJα −ΩKJQIα ,

{QIα,QJβ} = 2ΩIJP3εαβ , {SIα,SJβ } = 2ΩIJK3εαβ ,

{QIα,SJβ } = ΩIJ (σmσ̄n)αβMmn +ΩIJεαβ∆ + 3
2εαβR

IJ .

Note that the supercharges transform in the fundamental representation of su(2)rot ⊕
usp(4)R. The original algebra of N = 4 SYM without the defect is given in Appendix A
while the broken algebra given above is derived in detail in Appendix B.
Let us consider a generic long multiplet L ∶ [j](R1,R2)

∆ labeled by its primary state. It
is generated by the action of the 8 supercharges QIα. By definition all 8 supercharges
SIα annihilate the primary state. Short multiplets are obtained if the primary is also
annihilated by a certain combination of supercharges. These shortening conditions are
summarized in table 3.1. Most of the short multiplets can be recombined into long ones at
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Multiplet Unitarity bound Shortening condition BPS

L ∶ [j](R1,R2)
∆ ∆ > R1 +R2 + j

2 + 1 - -

A1 ∶ [j](R1,R2)
∆ ∆ = R1 +R2 + j

2 + 1 Q1
2

1
8

A1 ∶ [j](0,R2)
∆ ∆ = R2 + j

2 + 1 Q1
2 , Q2

2
1
4

A1 ∶ [j](0,0)∆ ∆ = j
2 + 1 QI2 1

2

A2 ∶ [0](R1,R2)
∆ ∆ = R1 +R2 + 1 Q1

2Q1
1

1
8

A2 ∶ [0](0,R2)
∆ ∆ = R2 + 1 Q1

2Q1
1 , Q2

2Q1
1 +Q1

2Q2
1

1
4

A2 ∶ [0](0,0)∆ ∆ = 1 QI2Q1
1 +Q1

2QI1 1
2

B1 ∶ [0](R1,R2)
∆ ∆ = R1 +R2 Q1

α
1
4

B1 ∶ [0](0,R2)
∆ ∆ = R2 Q1

α , Q2
α

1
2

Table 3.1: Long and short multiplets of osp(4∗∣4).

threshold ∆∗ = R1 +R2 + j
2 + 1 following the recombination rules

L ∶ [j](R1,R2)
∆→∆∗ = A1 ∶ [j](R1,R2)

∆∗ ⊕A1 ∶ [j − 1](R1+1,R2)
∆∗+ 1

2
, (3.35)

L ∶ [0](R1,R2)
∆→∆∗ = A2 ∶ [0](R1,R2)

∆∗ ⊕ B1 ∶ [0](R1+2,R2)
∆∗+1 . (3.36)

From this it follows readily that the multiplets B1 ∶ [0](R1,R2)
∆ with R1 ≤ 1 are absolutely

protected.

3.1.3.2 Bulk OPE

We want to simplify the correlator we obtained from the broken Ward identity,

⟨ψ JK
Iα (Xm,0)OLM(0, y)ANβ (um, u3)⟩W .

Let us look at the bulk operator ψ JK
Iα (Xm,0) and write it as defect excitations in the

limit close to the defect, Xm → 0

ψ JK
Iα (Xm,0) =∑

Ô

bψÔ

X
5
2−∆̂
[C ⋅ Ô(0)] JK

Iα
+ . . . , for X → 0 . (3.37)

Here C is a placeholder for any invariant tensor necessary to match all indices. Just like
the two-point functions in the above ward identity this OPE is valid for the operators close
to each other. We therefore only focus on the divergent terms in the limit ∣X ∣ << 1,
the terms that blow up. Due to the convergence of the OPE the regular terms can be
omitted. This can only be guaranteed if we allow solely defect operators with ∆̂ < 5/2.
Following the above discussion this OPE is valid for finite temperature. The reason is that
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for y < β the thermal OPE condition τ 2 + x2 + y2 < β is obeyed [54].

Let us discuss which defect operators satisfy the constraints. There are several multiplets
on the defect which have primaries and descendants with conformal dimension ∆̂ < 5/2, see
the general multiplets in table 3.1 in Subsection 3.1.3.1 [85].
For a better understanding let us consider only the displacement multiplet for the moment.
It consists of the three fields Dm,�Iα and OIJ defined through Equations (2.8). The terms
coming from the displacement multiplet thus are

ψ JK
Iα (∣X ∣m,0) ⊃

bψD

∣X ∣ 12
DmΩJKCImα +

bψ�

∣X ∣ (δ
K
I �Jα − δJI �Kα + 3ΩIOΩJK�Oα )

+ bψO

∣X ∣ 32
(OJKCIα + (further structures with I, J,K)) . (3.38)

In the above equation, we are missing fitting structures for the identity and the operators D

and O. Especially the open index α cannot be reconstructed by any known structures. We
furthermore cannot have any usp(4)R structure with one or three open indices2. Therefore
the operators D and O cannot appear in the OPE. There neither is an invariant tensor
with one spinor index, nor one one with a single Sp(4)R symmetry index. This observation
is crucial to identify further operators which cannot contribute. Concretely we need to
have ∆̂ < 5/2, ĵ = 1,3, . . . and matching usp(4)R indices.
Let us now look at the general case and consider all multiplets that possibly can contribute.
We need to check which multiplets are in the preserved osp(4∗∣4) algebra. Following [85]
(compare also table 3.1) the relevant short multiplets (including the primary field) are

A1 ∶ [j](R1,R2)
∆ , ∆ = 1

2j +R1 +R2 + 1 , (3.39)

A2 ∶ [0](R1,R2)
∆ , ∆ = R1 +R2 + 1 , (3.40)

B1 ∶ [0](R1,R2)
∆ , ∆ = R1 +R2 . (3.41)

Here j is the spin of the preserved su(2) while the Ri are the Dynkin labels of the R-
symmetry representation, see paragraph 3.1.3.1 for details.
Let us consider spinor indices. The operator ψKLIα has one spinor index and thus j = 1. There
are no invariant tensors with odd spinor indices and therefore any operator contributing
to the OPE must have an odd number of spinor indices. Odd spins of a representation
yield half-integer scaling dimensions and we therefore have the constraint

∆ < 5
2 , ∆ ∈ Z2 /Z ⇒ ∆primary ≤

3
2 ⇒ ∆ = 1

2 or ∆ = 3
2 . (3.42)

2To be precise only even numbers of open indices can work because we construct from the symplectic
metric ΩIJ .
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This means with the above arguments we can exclude multiplets whose primary has
dimension 2. These operators cannot have the correct spinor index structure and their
descendants will have too high conformal dimensions. The only conformal dimension
allowed for operators contributing to the OPE thus are 1/2 and 3/2. These can be the
dimensions of primary or descendant operators. Consequentially, all multiplets which
might give a contribution to the OPE are

A1 ∶ [1](0,0)∆=3/2 , A2 ∶ [0](0,0)∆=1 , B1 ∶ [0](0,0)∆=0 , B1 ∶ [0](0,1)∆=1 , B1 ∶ [0](1,0)∆=1 . (3.43)

Let us go through these multiplets one at a time.
The primary of A1 ∶ [1](0,0)∆=3/2 is in a singlet of usp(4)R and thus cannot appear in the OPE.
For all descendants the other quantum numbers clearly will not match. First descendants
are [2](R1,R2)

∆=2 . Independently of the R-symmetry charges these descendants have even spin
and thus two spinor indices. This cannot reproduce the single spinor index we need for
the OPE. Higher descendants already will have a too large conformal dimension. The
identity B1 ∶ [0](0,0)∆=0 will not contribute. The multiplet B1 ∶ [0](1,0)∆=1 has as first descendant
[1](0,1)∆=3/2 which is in the 5 representation of usp(4)R and thus does not contribute. The first
mentioned displacement multiplet B1 ∶ [0](0,1)∆=1 yields a contribution from the operator
�Iα. The multiplet A1 ∶ [0](0,0)∆=1 is the Konishi multiplet K on the defect has a descendant
[1](1,0)∆=3/2 which is an operator KIα with matching indices and thus appears in the OPE.
The descendant of the Konishi operator is called K to ensure a clean notation. Higher
descendants with ∆ ≥ 2 will either have an even number of spinor indices or a conformal
dimension that is too high to match our condition.

Both of the fields λ and K are in a representation [1](1,0)∆=3/2. Let us consider the primaries of
the respective multiplets B1 ∶ [0](0,1)∆=1 and A1 ∶ [0](0,0)∆=1 . The displacement scalar contains
the scalar fields which are not coupled to the Wilson loop

OIJ = iΦr (ΣIJ
r − nsΣIJ

s nr) . (3.44)

In the literature [39, 102–105] a preferred direction is often chosen for the Wilson loop
coupling to the scalars by setting nrΦr = Φ6 in (1.63). In this case we can write the
displacement scalar

O′ ∼ Φa , (3.45)

with a = 1, . . . , 5 the R-symmetry indices of the bulk scalars. The prime was introduced to
distinguish the operator from the one we defined in our calculations. The primary of the
Konishi multiplet in this setting is

K′ ∼ Φ6 . (3.46)
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In our general notation the Konishi primary is

KIJK = insΣIJ
s nrΦr . (3.47)

The Konishi operator is in an unprotected multiplet A2 ∶ [0](0,0)∆=1 which can combine with a
multiplet B1 ∶ [0](2,0)∆=2 to the long multiplet L ∶ [0](0,0)∆→1. The relation for the recombination
rules are given in Equation (3.35). Therefore the Konishi multiplet can get an anomalous
dimension. It has been computed in strong and weak coupling [106,107]

∆K = 1 + γK = 1 + λ

4π2 −
λ2

16π4 + (−
56
45π

4 + 128) λ3

4096π6 +O(λ
4) , (3.48a)

∆K = 1 + γK = 2 − 5√
λ
+ 295

24
1
λ
− 305

16
1
λ

3
2
+O ( 1

λ2) . (3.48b)

The displacement multiplet is, in contrast, absolutely protected [85]. Note that we found
the constraint ∆ < 5/2 for operators appearing in the OPE. As γK < 1 for all values of the
coupling the Konishi fermion does indeed appear in the OPE. We can furthermore write
the displacement and Konishi operator in terms of the original spinor fields λIα and λ̄α̇I
projected onto the defect3 by the limit X → 0

�Iα = λIα∣X→0 −ΩIJσ3
αα̇λ̄

α̇
J ∣X→0 , KIα = λIα∣X→0 +ΩIJσ3

αα̇λ̄
α̇
J ∣X→0 . (3.50)

This clearly shows the separation into fields orthogonal and longitudinal to the defect.

Then we find for the OPE

ψ JK
Iα (∣X ∣m,0) =

bψ�

∣X ∣ (δ
K
I �Jα − δJI �Kα + 3ΩIOΩJK�Oα )

+ bψK

∣X ∣1−γK (δ
K
I KJiα − δJI KKiα + 3ΩIOΩJKKOiα) + . . . . (3.51)

The operator in the Broken Ward Identity (3.28) therefore simplifies to

⟨ψα(Xm,0)O(0, y)Aβ(um, u3)⟩W =
bψ�

∣X ∣ ⟨�α(0)O(0, y)Aβ(um, u3)⟩W

+ bψK

∣X ∣1−γK ⟨Kα(0)O(0, y)Aβ(um, u3)⟩W + . . . , (3.52)

3The action of the preserved supercharges on the two operators is as follows

Q
I
α�J

β = −4iΩIJ (σ3m)
γ

α
εγβDm − 2iεαβD3OIJ (3.49a)

Q
I
αKJ

β = −2 (σmn
)αβ Fmn − 8 [ΦLM ΩLM ,ΦIJ] εαβ + 8i (σmσ̄3)

αβ
DmΦIJ

− 2i (σ3σ̄µ)
αβ
DµΦIJ (3.49b)

where it is important to note that m,n = 0,1,2 denote directions orthogonal to the defect.
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where for simplicity we omitted the usp(4)R-symmetry structures.
Let us check that the above OPE satisfies the constraints on ψ KL

Iα as given in table
2.1. The above expression is manifestly antisymmetric in the indices K and L. Also the
tracelessness condition is obeyed as can be checked readily:

0 = ψ IK
Iα (∣X ∣m,0) =

bψ�

∣X ∣ (δ
K
I �Iα − δII�Kα + 3ΩIOΩIK�Oα ) + [�→ Kγ] + . . .

= bψ�

∣X ∣ (�
K
α − 4�Kα + 3�Kα ) + [�→ Kγ] + . . . = 0 + . . . . (3.53)

3.1.3.3 Defect OPE

In the previous section we expressed the bulk operator ψ in terms of the defect operator �

and the operator K. Thus we can now use the defect OPE between each of these operators
and O. The constraints we will get from the limit of the operators close to each other will
be very similar to before as also the quantum numbers are largely identical. The main
difference to the previous OPE we will find is coming from the anomalous dimension of
the Konishi multiplet. This will allow for operators with higher dimension which did not
appear before.
With this calculation we are in fact projecting the operators ψ and O directly on top of
each other. This means we are in fact calculating an OPE between a bulk and a defect
operator by expanding it in two subsequent OPEs. Therefore we in fact do not have to
expect any inconsistencies from the convergence and the finiteness of the tails. For details
on OPE convergence see [108].
First consider the OPE between � and O. From the above formula we find

�Kα (0)OLM(y) =∑
Ô

ĉ�OÔ

y
5
2−∆̂
[C ⋅ Ô(y)]KLM

α
+ . . . , for y → 0 . (3.54)

As before the limit y → 0 ensures that the product is within the radius of convergence
τ 2 + x2 + y2 < β of the thermal OPE [54]. The power on the spacetime coordinate is 5/2− ∆̂
as in the first OPE yielding the same constraint on dimensions of fields in the OPE. The
usp(4)R representation of the operator product, following table 2.1,

[0,1]⊗ [1,0] = [1,0]⊕ [1,1] , (3.55)

which is precisely the representation of ψ on the defect. Therefore both operator product
expansions are identical, only � and K are in the OPE

�Kα (0)OLM(y) = ĉ�O�

y
(ΩKL�Mα (y) −ΩKM�Lα(y) +

1
2ΩLM�Kα (y)) (3.56)

+∑
i

ĉ�OK

y1−γi
(ΩKLKMiα(y) −ΩKMKLiα(y) +

1
2ΩLMKKiα(y)) + . . . .
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With this expression we indeed find the constraints from table 2.1

0 = ΩLM�Kα (0)OLM(y)

= ĉ�O�

y
(ΩLMΩKL�Mα (y) −ΩLMΩKM�Lα(y) +

1
2ΩLMΩLM�Kα (y)) + [� ↔ Kγ] + . . .

= ĉ�O�

y
(−�Kα (y) − �Kα (y) +

4
2�Kα (y)) + [� ↔ Kγ] + . . . = 0 + . . . . (3.57)

In a similar way we can find the OPE between O and Ki. The anomalous dimension γK of
K is positive and smaller than 1, see Equation (3.48). Thus we find

KKα (0)OLM(y) =∑
Ô

ĉ�OÔ

y
5
2+γK−∆̂

[C ⋅ Ô(y)]KLM
α

+ . . . , for y → 0 . (3.58)

We therefore see that the constraint for this OPE is ∆̂ < 5
2 + γK. The operators with � and

K will thus contribute to the OPE analogous to the above case. With the same argument
as made around Equation (3.42) only operators with odd dimensions may contribute.
Differently to the above OPE, here also operators from short multiplets with ∆ = 5/2 can
contribute. Higher conformal dimensions are not allowed because γK < 1. Let us gather all
multiplets which might have contributions from table 3.1 [85].

A1 ∶ [1](0,0)∆=3/2 , A2 ∶ [0](0,0)∆=1 , B1 ∶ [0](0,0)∆=0 , B1 ∶ [0](0,1)∆=1 , B1 ∶ [0](1,0)∆=1 ,

A1 ∶ [2](0,0)∆=2 , A1 ∶ [1](1,0)∆=5/2 , A1 ∶ [1](0,1)∆=5/2 , A2 ∶ [0](1,0)∆=2 , A2 ∶ [0](0,1)∆=2 , (3.59)

B1 ∶ [0](0,2)∆=2 , B1 ∶ [0](1,1)∆=2 , B1 ∶ [0](2,0)∆=2 .

From these multiplets we find several representations of operators which might have the
correct index structures. We list all primaries and descendants which might appear at
∆ = 5/2 and have matching spin j = 1,3.

[j](1,0)∆=5/2 , [j]
(2,0)
∆=5/2 , [j]

(3,0)
∆=5/2 , [j]

(0,1)
∆=5/2 , [j]

(0,2)
∆=5/2 ,

[j](1,1)∆=5/2 , [1]
(2,1)
∆=5/2 , [1]

(1,2)
∆=5/2 . (3.60)

Most of these representations correspond to operators that are part of several of the above
multiplets. All of them are in a multiplet which can eventually recombine with another
short multiplet to a long one. As mentioned before, to correctly connect spinor indices
with invariant tensors we need to have half integer spin operators (yielding an odd number
of spinor indices) which boils down to operators with j = 1,3.
Not all of these representations can contribute to the final result. Before we go into details
of matching the indices on both sides of the OPE, we take a step forward. The resulting
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operator will be in a two-point function with an operator in the (1,0) representation of
usp(4)R. Furthermore the R-symmetry group has a subalgebra usp(4)R ⊃ su(2) ⊗ u(1)
[109]. Only if the combined representation have a charge 0 associated to the U(1) the
corresponding two-point function can be non-zero. Therefore we only have potential
contributions from

[j](1,0)∆=5/2 , [j]
(3,0)
∆=5/2 , [j]

(1,1)
∆=5/2 , [1]

(1,2)
∆=5/2 . (3.61)

where j = 1,3.
The operators in the fundamental representation (1,0) have one R-symmetry index and
are similar to all representations above.
The representation (3,0) has dimension 20. This comes from one free index and two
anti-symmetric ones yielding an operator DIJK = DI[JK]. Such an operator has 4 × 6 = 24
independent components. Together with the four trace-like conditions ΩJKDIJK = 0 we
indeed find 20 independent components.
The representation (1,1) has two independent indices and hence dimension 16. Operators
from this represenntation cannot match the number of indices on the left-hand side of the
OPE.
Finally, operators in the (1,2) representation have three indices where two of them are
symmetric. The dimension thus is 10×4=40. Although the number of free indices matches,
such operators cannot contribute. We need to have anti-symmetry in two indices from the
operator OIJ in the OPE and symmetry in two of the three indices from the representation.
Such a combination is impossible with non-zero coefficients and hence this representation
also does not contribute.
Let us now discuss spinor indices. Consider an operator in the [3](1,0)∆=5/2 representation.
We can call this operator CI

αβ̇β
. In the OPE we just have a single open spinor index and

therefore need to contract. This is usually done with xµσ̄ββ̇µ . The OPE we consider, however,
is localised on the defect and thus the only xµ that may contribute is the coordinate y.
Therefore the relevant contraction is y (σ3σ̄3)αβ = yεαβ which is anti-symmetric. Contracted
with the symmetric operator this yields zero.

The operators which can additionally contribute in the OPE thus are

[1](1,0)∆= 5
2
→ 	Nj α , [1]

(3,0)
∆= 5

2
→ 	̂LMN

j α . (3.62)

Each of these operators can come from several multiplets and hence we gave them an
additional index j which we sum over in the OPE. Similarly these operators might have
anomalous dimensions γj. The full OPE between K and O in the limit y → 0 is then given
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by

KLα(0)OMN(y) = ĉ�OK

y1+γK
(ΩLM�Nα (y) −ΩLN�Mα (y) +

1
2ΩMN�Lα(y))

+ ĉKOK

y
(ΩLMKNα (y) −ΩLNKMα (y) +

1
2ΩMNKLα(y)) (3.63)

+∑
j

ĉKO	

yγK−γj
(ΩLM	Nj α(y) −ΩLN	Mj α(y) +

1
2ΩMN	Lj α(y))

+∑
j

ĉKO	̂

yγK−γj
	̂LMN
j α + . . . .

As mentioned multiple times before we focus on the divergent terms only, sending all other
terms to the tails as they are not relevant in the limit y → 0. This yields that we can
further constrain the anomalous dimension of the newly introduced contributions to

0 ≤ γj < γK < 1 . (3.64)

3.1.4 Thermal correction

The zero temperature Ward identity (2.16) is broken at finite temperature and zero cou-
pling to (3.28). We are able to simplify the three-point thermal correlator to a sum over
two-point functions. Therefore we can use the Operator Product Expansions (3.51), (3.56),
(3.63). Still there is a spacetime integral over the insertions of the thermal mass operator
A which needs to be computed. At first glance it seems difficult to constrain these integrals
as complex thermal effects have to be taken care of and although the two-point function in
the zero temperature limit could be optained from [89] the extension to finite temperature
is non-trivial. As we would want an expression for all values of T a Taylor expansion is
not feasible and the introduction of the temperature as a scale parameter allows for a
dependence on the massless combination T ∣uµ∣ as the argument of any arbitrary function.
It is, however, possible to further constrain the two-point functions of the thermal correc-
tions after using the OPE. They are correlators of two fermionic operators each carrying
one spinor and one or three R-symmetry indices. We want to make the index structure
of these correlators explicit. Here we profitfromthe preservation of R-symmetry in the
g = 0 case. Turning on a coupling the R-symmetry group will eventually break. Here, the
usp(4)R symmetry group preserved by the defect comes equipped with a symplectic metric
ΩIJ . This singlet can be used to raise and lower R-symmetry indices [83]. Therefore the
correlators will naturally depend on it. Let us now look at the spinor indices. We have a
correlator of two fermionic operators ⟨�αAβ⟩W which has two left spinor indices. There is
only one possible general combination for the numerator then. Namely

⟨�Iα(0)AJβ(uµ)⟩W ∝ [uµσµσ̄3]
αβ

. (3.65)
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This makes sense as for example the operator ⟨ψα�β⟩W has an identical spinor structure
[38,89] and it is the only structure allowed here. One might argue that the epsilon tensor
εαβ should also be in the above, however it is in fact already there because (σ3σ̄3)αβ = εαβ.
Further note that σmσ̄3 = −σ3σ̄m for m = 0,1,2 and therefore the above is the only
combination we need to care about. Any more complex structure would eventually reduce
to the contraction (3.65). Following [38,89] and in comparison to the correlator ⟨ψIα�Jβ⟩W
we can fix

⟨�Iα(0)AJβ(uµ)⟩W = uµ(σ
µσ̄3)αβΩIJf�(u2

µ) , (3.66)

⟨KIα(0)AJβ(uµ)⟩W = ΩIJuµ(σµσ̄3)αβfK(u2
µ) ,

⟨	Ij α(0)AJβ(uµ)⟩W = ΩIJuµ(σµσ̄3)αβf	(u2
µ) , (3.67)

⟨	̂LMN
j α (0)AJβ(uµ)⟩W = uµ(σ

µσ̄3)αβ (ΩLMΩNJ −ΩLNΩMJ + 1
2ΩMNΩLJ) f	̂A(u2

µ) .

The last correlator is anti-symmetric in M,N and satisfies the trace condition ΩMN 	̂LMN
j α .

These two conditions are met by the above combination of the symplectic metric ΩIJ .
The R-symmetry indices can then be simplified by using the OPEs (3.51), (3.56) and

(3.63). The resulting structure C JKLMN
I is the same as the one from the original zero

temperature Ward identity, Equation (2.34). The thermal Ward identity (recall the zero
temperature Ward identity 2.33) including corrections can be simplified to

(3h −B) lim
X,y→0

[g(1)T≠0(X,y)εαβ + g
(2)
T≠0(X,y)X̂αβ + g(3)T≠0(X,y)X̂αβ]C JKLMN

I

= (σµσ̄3)αβ
⎡⎢⎢⎢⎢⎣
m(bψ�ĉ�O�

∣X ∣ y +
bψKĉKO�

∣X ∣1−γK y1+γK
)∫

β

0
du0∫ d3uuµ f�(u2

µ) (3.68)

+ α( bψ�ĉ�OK

∣X ∣ y1−γK
‘ + bψKĉKOK

∣X ∣1−γK y)∫
β

0
du0∫ d3uuµ fK(u2

µ)

+ α∑
j

bψKĉKO	

∣X ∣1−γK yγK−γj
∫

β

0
du0∫ d3uuµ f	(u2

µ)

+ α∑
j

bψKĉKO	̂

∣X ∣1−γK yγK−γj
∫

β

0
du0∫ d3uuµ f	̂(u2

µ)
⎤⎥⎥⎥⎥⎦
C JKLMN
I + . . . .

This furthermore clearly shows that the result of the integrals is a function of β only.
The functions f are quadratic in the uµ. This can be seen straight forwardly at zero
temperature as the functions f will be mainly denominators which depend on the squared
coordinates. In the thermal case the temperature introduced allows for more general terms
in principle. On the other hand, the temperature does not allow for new combinations
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of a single coordinate. Especially for the coordinates u1 and u2 rotational symmetry is
preserved hence allowing only for a dependence on u2

1 + u2
2. Therefore we are interested

in the following integral. After the integration is carried out it will only depend on the
temperature

∫
β

0
du0∫ d3u [u0σ

0σ̄3 + u1σ
1σ̄3 + u2σ

2σ̄3 + u3σ
3σ̄3]

αβ
f�(u2

m, u
2
3) . (3.69)

The spatial integrations over the full R3 are symmetric and therefore cancel the anti-
symmetric integrands. Only the term with u0 can have a non-vanishing contribution. Thus
define

I�(β) = ∫
β

0
du0∫ d3uu0 f�(u2

0, u
2, u2

3) . (3.70)

The above integral then reads

∫
β

0
du0∫ d3uuµ(σµσ̄3)αβf�A(u2

µ) = ∫
β

0
du0∫ d3u⃗ u0(σ0σ̄3)αβf�A(u2

0, u
2
i )

=∶ (σ0σ̄3)αβI�A(β) . (3.71)

The arguments presented here for I� hold analogously for all other integrals and we can
always take out a factor u0(σ0σ̄3)αβ. Therefore we finally have the correction to the zero
temperature Ward identity (2.33). We can then write the new thermal Ward identity
(3.68) as

(3h −B) lim
X,y→0

[g1(X,y)εαβ + g2(X,y)X̂αβ + g3(X,y)X̂αβ]
(T≠0)

= α(σ0σ̄3)αβG(X,y, β) (3.72)

G(X,y, β) =
⎡⎢⎢⎢⎢⎣
(bψ�ĉ�O�

∣X ∣ y +
bψKĉKO�

∣X ∣1−γK y1+γK
)I�(β) +∑

j

bψKĉKO	̂

∣X ∣1−γK yγK−γj
I	j(β)

+ ( bψ�ĉ�OK

∣X ∣ y1−γK
+ bψKĉKOK

∣X ∣1−γK y)I
Kj(β) +∑

j

bψKĉKO	̂

∣X ∣1−γK yγK−γj
I	̂j(β)

⎤⎥⎥⎥⎥⎦
,

Recall the original definition of the kinematic functions (2.13)

g
(T=0)
1 (X,y) ∶= iy

6π∣X ∣(X2+y2)2 ,

g
(T=0)
2 (X,y) ∶= −1

6π(X2+y2)2 ,

g
(T=0)
2 (X,y) ∶= 1

12πX2(X2+y2) .

(3.73)
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and the spinor structure

X̂αβ ∶=
Xm

∣X ∣ (σ
mσ̄3)

αβ
. (3.74)

Furthermore note that if we would have introduced the method of images it might have
changed the integral. This is by applying method of images to the u0 in particular.
However, this change could only yield a different prefactor for the integrals and is not able
to change the result (3.72) as a whole.

Consider that the index structure of the whole Ward identity can be captured by the
following matrix.

Cµ (σµσ̄3)
αβ
= Cµσµαα̇σ̄3 α̇γεγβ = −

⎛
⎝
C1 − iC2 C0 −C3

C0 +C3 C1 + iC2

⎞
⎠
αβ

. (3.75)

where the Cµ are any prefactors. However, due to the integration the only allowed structure
for the thermal correction was C0 (σ0σ̄3)αβ. Therefore the components in the diagonal
of the above matrix must vanish independently from the thermal correction.
This is one reason for our result B = 3h.
To make this more precise let us contract the Ward identity with the matrix combination

εβγσ1
γγ̇σ̄

3 γ̇α . (3.76)

Note that this yields

(σµσ̄3)
αβ
(σ1σ̄3)βα = −2δµ1 . (3.77)

and thus for the Ward identity (3.72)

(3h −B) lim
X,y→0

X1

∣X ∣ [g
(2)
T≠0(X,y) + g

(3)
T≠0(X,y)] = 0 (3.78)

⇒ B = 3h . (3.79)

In conclusion we showed that the exact relation between the bremsstrahlung of a moving
particle in N = 4 SYM and the coefficient of the stress tensor holds at finite temperature
in the OPE limit.

76



3.2. PERTURBATIVE CHECK

3.2 Perturbative check

In the previous part we provided an algebraic proof for the relation

B = 3h , (3.80)

between the bremsstrahlung and the stress tensor coefficient at finite temperature and
at zero coupling. In this chapter we will provide a ”perturbative” check for the above
relation. We explicitly see that in perturbation theory there exists scheme which allows
for B = 3h. We find such a scheme in an expansion around small temperatures and in a
high temperature limit. This suggests that there also exists a respective scheme for any
arbitrary temperature.
Strictly speaking in a theory with zero coupling the Wilson loop expectation value must
always be one and the bremsstrahlung consequentially zero. For the purpose of this chapter
we keep the coupling in the Wilson loop operator. We are thus allowing for scalars and
vector fields to couple to the Wilson loop. This will yield a contribution as presented in
Figure 1.1a at leading order in a perturbative expansion. At the first subleading order
we would find a contribution as in Figure 1.1b. The diagrams of Figures 1.1c and 1.1d
contain vertices from the action which are not allowed at zero coupling. However, these two
diagrams are also contributing at the first subleading order in a weak coupling expansion.
Henceforth our ansatz is only consistent at leading order in λ which is thus what we will
consider in this chapter. We gather all higher order corrections coming from Figures 1.1b,
1.1c and 1.1d as well as even higher orders writing

⟨W ⟩ = 1 + λ⟨W ⟩(1) + ⟨W ⟩interactions . (3.81)

The ”zero coupling” we consider is thus defined as setting all terms of the last piece to
zero, ⟨W ⟩interactions = 0.
In Chapter 2.2 we provided a perturbative proof for the relation B = 3h at zero temperature.
In this chapter we will repeat all the steps while discussing corrections due to thermal
effects. The thermal effects then come from the insertion of one bare thermal propagator.
While all steps then are a priori straight foreward, some of the integral we need to calculate
cannot be obtained from the general expression of the finite temperature. Instead we will
expand in both, high and low temperature where appropriate.

Before we consider the circular Wilson loop and the bremsstrahlung, consider thermal
effects on the stress tensor. Due to conformal invariance, one-point functions in conformal
field theories are always identically zero4. This can be seen because there is no relative scale
on which the correlator could possibly depend on. The introduction of finite temperature
breaks the conformal invariance and introduces such a scale. It can be shown [54] that

4Only the identity is an exception to this.
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only symmetric traceless tensors with even spin J can aquire non-zero one-point functions
which are of the form

⟨Oµ1...µJ ⟩ = bOT∆O (δµ1
0 . . . δµJ

0 − traces) . (3.82)

The stress tensor Tµν is such a symmetric traceless operator. Splitting up the correlator
between stress tensor and Wilson line into parts which are connected and disconnected we
find

⟨T33⟩W =
⟨T33W ⟩connected

⟨W ⟩ + ⟨T33⟩ . (3.83)

Let us look more deeply into the structure of the stress energy tensor expectation value.
In the case without a Wilson loop insertion and zero temperature we have a one-point
function in full N = 4 which is zero

⟨Tµν⟩(r) = 0 , (3.84)

while in the thermal case without defect the result was derived by [54], see Equation (3.82)

⟨Tµν⟩T (r) = bT T 4 (δ0
µδ

0
ν −

1
4ηµν) . (3.85)

Let us derive the coefficient bT from the theory. The energy density E is given by the time
component of the stress tensor [54]

E = −⟨T00⟩ = −(1 −
1
4)bT = −

3
4bT . (3.86)

The energy E must be positive and thus bT < 0. This derivation can be compared to the
free energy density which we consider as a thermodynamic ensemble equation

F = E − TS = E + T dF
dT
= fT 4 . (3.87)

The last equality follows from dimensional analysis and f is an a priori unknown coefficient.
We introduce it for convenience of the calculation. Combining the last two equations yields
that the stress stensor coefficient can be obtained from the free energy [54]

f = bT4 < 0 ⇒ bT =
4F
T 4 . (3.88)

Therefore we should focus on the computation of the free energy of N = 4 SYM. It can be
derived from usual statistical physics. Recall the definitions of the partition function and
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free energy [47,101]

Z = ∫ [dφ] exp(−∫
1/T

0
dτ ∫ d3xL) , F = −T log(Z) . (3.89)

In small coupling perturbation theory the partition function Z is computed by vacuum
bubbles. The leading order one is simply a single propagator connected with itself [47, 53].
The free energy for free scalars, free dirac fermions and QCD are derived in [101].

F free scalar = T ∫
d3k

(2π)3 log [1 − exp(− ∣k∣
T
)] = − π2

90T
4 , (3.90)

F free fermion = −2T ∫
d3k

(2π)3 log [1 + exp(− ∣k∣
T
)] = −7

4
π2

90T
4 , (3.91)

FQCD = −π
2

90T
4 [2(N2

c − 1) + 7
4NcNf] . (3.92)

For the fermions we include a minus sign due to the fermionic loop and use Fermi-Dirac
statistics instead of the Bose-Einstein statistic used in the scalar case. The additional
factor of 2 for the fermions is yielded by the two components of the Weyl spinor. Note
that this factor 2 is different in [101] where Dirac fermions are considered which have four
components. The QCD results includes the number of fermions (flavor charges) Nf and
the number of color charges Nc.
We consider N = 4 SYM which consists of 6 real scalars, 4 fermions and a gauge field each
in the adjoint representation and Nc = N color charges. We use the large N limit with
N2 − 1 ∼ N2. Therefore we find in agreement with [71]

FN=4 = −π
2

90T
4 [2N2 + 7

44N2 + 6N2] = −15π2

90 N2T 4 = −π
2

6 N
2T 4 . (3.93)

Thus using bT = 4F/T 4

bN=4T = −2π2

3 N2 . (3.94)

We should compare this to the zero temperature result of the stress tensor one-point
function in the presence of the Wilson loop,

⟨T33⟩W =
g2N

48π2r4 . (3.95)

In the large N limit which we are considering, the thermal coefficient is thus of higher
order than the zero temperature expactation value. We can assume that the thermal
one-point function is not relevant for the interaction energy h. The coefficient bT is a
constant parameterizing the interaction between the stress tensor and the thermal vacuum
while for h instead the interaction with the Wilson line defect is considered. Therefore, we
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will exclude bT from further calculations and consider

h = r4 ⟨T33W ⟩connected

⟨W ⟩ =∶ r4 ⟨T33⟩′W,β . (3.96)

In an abuse of notation let us drop the prime in all following steps and assume that due
to the argument given here we do not consider disconnected diagrams for the calculation
of the stress-tensor.

Bare Thermal Propagator

As mentioned above the main difference in the thermal theory compared to zero tempera-
ture will arise from the propagator. This is especially true for the zero coupling case we
consider here. Thermal propagators are usually [47,53,100] defined in momentum space
for either the real time or the imaginary time formalism. We first focus on the Fourier
transformation of the real time propagator and show that it is equivalent to the Fourier
transform of the imaginary time one.
Introducing finite temperature to a quantum field theory means to compactify the time
component on a circle with the radius being the inverse temperature β = 1/T . Calculations
can be done in the imaginary time (Matsubara) formalism where the periodicity of the
time component is satisfied by introducing discrete frequencies p0 → iωn, n ∈ Z. To obtain
kinetic behaviors the propagators need to be analytically continued. Alternatively one can
also introduce the real time (Kheldysh) formalism keeping the kinetic behavior throughout
the process. However the real time formalism leads to a doubling of degrees of freedom. If
the system under consideration is in a thermal equilibrium both formalism are equivalent.
For a review of these formalisms see the textbooks [47,53,100] or the lecture notes [101].
As the calculations are more hands-on and we have defined the Wilson loop to be orthogo-
nal to the time cicle, we will mostly work in the Matsubara formalism. Let us however
start by considering the Keldysh formalism and show for the bare thermal propagator that
they are equal in both formalisms.
As mentioned above the real time formalism leads to a doubling of the degrees of free-

dom. For all the fields the real time formalism yields a splitting ϕ →
⎧⎪⎪⎨⎪⎪⎩

ϕ+

ϕ−

⎫⎪⎪⎬⎪⎪⎭
where ϕ±

are independent fields. Similarly the new Lagrangian becomes L(ϕ±) = L(ϕ+) − L(ϕ−).
The propagator of a simple massless scalar field thus has a matrix structure with four
components

∆++ = 1
p2 + iε + 2πinB(∣p0∣)δ(p2) , (3.97a)

∆+− = 2πi [Θ(−p0) + nB(∣p0∣)] δ(p2) , (3.97b)

∆−+ = 2πi [Θ(p0) + nB(∣p0∣)] δ(p2) , (3.97c)
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∆−− = −1
p2 − iε + 2πinB(∣p0∣)δ(p2) . (3.97d)

nB(p) = (eβp − 1)−1 is the Bose-Einstein distribution which for Fermions gets replaced by
the Fermi-Dirac distribution nF (p) = − (eβp + 1)−1. We denote the respective fermionic
propagators by ∆̃±±. The propagators for the fields of N = 4 SYM become in Feynman
gauge

⟨AaµAbν⟩±±(p) = δab (δµν +
pµpν
p2 )∆±± , ⟨c̄acb⟩±±(p) = δab∆±± ,

⟨Φa
IΦb

J⟩±±(p) = δabδIJ∆±± , ⟨λaI λ̄bJ⟩±±(p) = −2iδabδIJσµpµ∆̃±± . (3.98)

It is worth noting at this point that the finite temperature part of all four components of
the propagator is the same and that they satisfy the constraint ∆++ +∆−− =∆+− +∆−+.
As the Lagrangian factorizes into parts with plus and parts with minus presign it is easy
to obtain the vertex rules from the ones given in Equations (J.2). Any of these vertices
will be present twice where once all legs carry a plus sign and the other time all carry a
minus sign. The former ones stay equal while the latter ones obtain an addition minus
sign due to the one in front of the Lagrangian.

The Wilson loop will similarly also get two different contributions. It now reads

W (C) = 1
N

tr ⃗P exp [g2 ∮C dt (iA+µẋµ +Φ+I ∣ẋ∣ΘI) + g2 ∮C dt (iA−µẋµ +Φ−I ∣ẋ∣ΘI)] . (3.99)

From the above discussion it is clear that the diagrammatic expansion will be the same as
in Figure 2.1 at leading order, however, now every vertex (internal and the ones directly on
the loop) can be labeled by either ′′+′′ or ′′−′′ and we need to sum all possibilities. When
multiplying out the expansion we find all four propagators ∆±± contributing. In fact the
zero temperature propagator 1/4π2(x1−x2)2 gets replaced by the real time propagators while
the rest of the calculations stays the same.

⟨W ⟩β = 1 + λ8 ∫
2π

0
dt1 ∫

t1

0
dt2 (∣ẋ1∣∣ẋ2∣ − ẋ1 ⋅ ẋ2) [∆++(x1 − x2)+

+∆−−(x1 − x2) +∆+−(x1 − x2) +∆−+(x1 − x2)] +O(λ2) (3.100)

= 1 + λ4 ∫
2π

0
dt1 ∫

t1

0
dt2 (∣ẋ1∣∣ẋ2∣ − ẋ1 ⋅ ẋ2)×

[∆++(x1 − x2) +∆−−(x1 − x2)] +O(λ2) . (3.101)

In the last step we used the above relation ∆++ +∆−− = ∆+− +∆−+. In Equations (3.97)
these propagators are given in momentum space. Therefore we will calculate the Fourier
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transform to coordinate space. Therefore consider that using lim
ε→0
( 1
p2+iε − 1

p2−iε) = δ(p2):

∆++ +∆−− = −2πi δ(p2) (1 + 2nB(∣p0∣)) = −2πi δ(p2) coth(∣p0∣
2T ) . (3.102)

Noting that Θ(−p0) + Θ(p0) = 1 it is easy to see that ∆+− + ∆−+ will yield the same
expression.
We can now start with the Fourier transformation. The delta function makes the integral
over the time component trivial

(∆++ +∆−−)(x) = −2πi∫
d4pM eip⋅x

(2π)4 δ(p2) coth(∣p0∣
2T ) (3.103)

= 2π∫
d4pE ep0x0−ip⃗x⃗

(2π)4 δ(p2) coth(∣p0∣
2T ) (3.104)

= ∫
d3p e−ip⃗x⃗

(2π)3
1
2p coth( p2T ) [e

px0 + e−px0] . (3.105)

In the first step we Wick rotated from Minkowski to Euclidean space as indicated by the
subscripts M and E, respectively. In this expression ±1/2p is the residue of 1/p2

0−p2 at p0 = ±p
which comes from the delta function. As the hyperbolic cotangent function is even we can
write the above as

(∆++ +∆−−)(x) = ∫
d3p e−ip⃗x⃗

(2π)3 Resp0=±p [
1

p2
0 − p2 ] coth( p0

2T ) e
p0x0 ∣

p0=±p
. (3.106)

This expression is precisely twice the result of a frequency sum according to the imaginary
time formalism. Thus we see that the calculation in real and imaginary time is indeed
equal. The additional factor of 2 is canceled by the 1/2 in the exponential of the Wilson
loop for real time.
We can then go backwards and rewrite the full original sum which in this case would be

(∆++ +∆−−)(x) = 2T
∞
∑
n=−∞

eiωnx0 ∫
d3p e−ip⃗x⃗

(2π)3
−1

(iωn)2 − p2 , (3.107)

where ωn = 2πinT for bosons. As the Wilson loop only couples to bosonic fields, we exclude
the fermionic case here. Generally this would lead to different statistics and hyperbolic
cotangent functions being replaced by hyperbolic tangent functions. First consider now
a more general sum over a function depending on ωn which will allow us to simplify the
above calculation [54]:

∑
n∈Z
f(ωn)eiωnx0 =∑

n∈Z
∫ dω δ(ω − ωn)f(ω)eiωx0 (3.108)
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= ∑
m∈Z
∫ dω [ ̃δ(ω − ωn)] (2πm) f(ω)eiωx0 = 1

T
∑
m∈Z
∫

dω
2π f(ω)e

iω(x0+m/T) (3.109)

= 1
T
∑
m∈Z
[f̃(ω)] (x0 + m/T) . (3.110)

From the first to the second line the Poisson resummation formula was used. The factor of
2π in the argument arose because of the different prescription of Fourier transformation. In
our case f(ω) = 1/ω2+p2 and thus in total we need to compute the four dimensional Fourier
transform of 1/P 2 which is given by 1/4π2x2. Therefore we obtain an expression which can
be summed5:

∆T≠0 = ∆++ +∆−−
2 = 1

4π2

∞
∑

m=−∞

1
(x0 + m/T)2 + ∣x⃗∣2

= T

8π∣x⃗∣ [coth (πT (∣x⃗∣ + ix0)) + coth (πT (∣x⃗∣ − ix0))] . (3.111)

This propagator matches the result from [110,111] and satisfies two important properties.
In the zero temperature limit it yields the correct propagator and it is periodic in the
inverse temperature β, obeying the Kudo-Martin-Schwinger (KMS) Relation [49,50]

lim
T→0

∆T≠0 = 1
4π2 x2 , ∆T≠0(x0) =∆T≠0 (x0 +

1
T
) . (3.112)

The above result (3.111) is the bare thermal propagator which we shall use throughout
the rest of our calculations.

3.2.1 Circular Wilson loop

Let us consider first the expectation value of the circular Wilson loop. We expect it to be
related to the bremsstrahlung in an equation very similar to (2.73). Finite temperature
effect at leading order will enter through the propagators. The expansion of the WL is
equivalent to the zero temperature case,

⟨W◯⟩ = 1 + λ2 ∫
2π

0
dt1 ∫

t1

0
dt2 (∣ẋ1∣∣ẋ2∣ − ẋ1 ⋅ ẋ2)∆(T≠0)(x1 − x2) +O(λ2) , (3.113)

with ∣ẋ1∣∣ẋ2∣ − ẋ1 ⋅ ẋ2 = 2R2 sin2 ( t1−t22 ). Where from now on we stick to the imaginary time
formalism as in this case we do not need to worry about the different fields and as shown
above there is no relevant effect on the calculations. The bare propagator now is the finite
temperature one derived in Equation (3.111) [110,111]

∆(T )(x⃗, x0) =
T

8π∣x⃗∣ [coth (πT (∣x⃗∣ + ix0)) + coth (πT (∣x⃗∣ − ix0))] . (3.114)

5We include a factor 1/2 because of the similar factor in the Wilson loop.
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As the integral cannot be carried out with this more complex hypergeometric function we
have to expand with respect to the temperature. Plugging in the parameterization (1.64)
we find

⟨W◯⟩ = 1 + λ(RT )8π ∫
2π

0
dt1 ∫

t1

0
dt2 sin( t1 − t22 ) coth(2πRT sin( t1 − t22 )) +O(λ2) .

(3.115)

We can calculate this integral by a power series expansion in the parameter RT . This
will generally yield a power series of terms with sin ( t1−t22 )

n where n ∈ N. For every n

these terms can be integrated. In general every such integral will yield a hypergeometric
function.
Note also that it makes no sense to expand separately around a certain temperature or
radius as the Wilson loop depends only on their product and thus only their respective
behavior is of importance. We will start by assuming RT → 0 and later go to RT →∞.
Moreover, we will find the dependence on the combination RT also for the higher orders.
This is because N = 4 is a conformal theory at zero temperature and the circular Wilson
loop is thus independent of the radius. When switching to finite temperature also the radius
of the circular loop becomes a relevant scale. However, the Wilson loop is a dimensionless
object and can thus only depend on the dimensionless combination RT .

For small values of RT with some c ∈ R we find

coth(cRT ) = 1
cRT

+ cRT3 − c
3(RT )3

45 +O((RT )5) . (3.116)

Plugging this expansion into the above integral, we are able to evaluate it for each order
of RT and find

⟨W◯⟩ = 1 + λ8 + λ
(RT )2π2

12 − λ(RT )
4π4

60 +O((RT )6) +O(λ2) . (3.117)

Note that we reproduced the T = 0 term ⟨W(a)⟩∣T=0 = 1/8 first calculated by Erickson,
Semenoff and Zarembo [62] which is a sanity check of our calculation. Increasing the
computation time we are able to evaluate ⟨W2⟩ up to any order around RT = 0. To see the
precision of this approximation we can compare it with sample points that are numerically
integrated. Figure 3.1 shows this for RT ≤ 0.7 with the plots of the expansion up to order
O((RT )10) and O((RT )20). We can see that both curves nicely fit the sample points for
RT < 0.3, the higher order one even until RT < 0.4 and diverge from it beyond that point.

For large RT , however, the hyperbolic cotangent function grows exponentially fast. Thus
the Taylor expansion of the hyperbolic cotangent at 1/x0 = 0 (correspondig to x→∞) up
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Figure 3.1: Plot of ⟨W◯⟩(1)/λ for RT between 0 and 0.7. The blue line is the expansion up
to order O((RT )10), while the orange one includes all terms of order O((RT )20) while
the green line is the next higher order for comparison. In the region where two or three
expansions almost overlap only the green line is visible. The black dots represent the
numerically integrated values.

to any order n is constant,

Taylor [coth( 1
x0
) , x0 = 0, n] = 1 +O(xn+1) ∀n ∈ N . (3.118)

This is due to the fact that all derivatives of the function vanish close to infinity. To
understand how this comes about more clearly, look at the function exp(−1/x) which is
very close to the hyperbolic cotangent with argument 1/x. In the limit x→ 0 this function
vanishes. It’s first derivative is readily computed to be (1/x2) exp(−1/x) which also vanishes
in the limit given. From here it is not hard to see that also all other derivatives will vanish
in the limit x→ 0 as the exponential function approaches zero faster than any power-like
divergence blows up.
For the derivatives of the hyperbolic cotangent the same behavior is obtained although it
is not as trivial as for the exponential function. Therefore the only consistent way to work
with the hyperbolic cotangent for large RT is to take coth(x→∞) ≈ 1. We will see in the
following steps that this result is a very good prediction for what we find numerically.
Inserting this into the full expression (3.115) we find

⟨W(a)⟩β ∣RT→∞ =
g2NRT

8π ∫
2π

0
dt1 ∫

t1

0
dt2 sin( t1 − t22 ) +O ((RT )n)

= g
2N

2 RT +O ((RT )n) , ∀n ∈ N . (3.119)
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Thus we predict to find a linear behavior as RT →∞. The plot in Figure 3.2 shows how

Figure 3.2: Plot of ⟨W(a)⟩β/g2N for RT between 0 and 100. The blue line is the linear
function 4πRT while the dots indicate several numerical values.

the linear function fits together with the numerical points already for RT ≳ 20.

All in all we find at leading orders in the two limits for the temperature

⟨W◯⟩(RT→∞) = 1 + λ2 RT +O (λ
2,

λ

(RT )n) , ∀n ∈ N

⟨W◯⟩(RT→0) = 1 + λ8 + λ
(RT )2π2

12 − λ(RT )
4π4

60 +O(λ2, λ(RT )6) . (3.120)

Note that here we consider the limit always for the dimensionless quantity RT on which
the Wilson loop naturally depends.
Meanwhile up to this order the straight line remains

⟨W—⟩(T ) = 1 +O(λ2) . (3.121)

because of the same cancellation as above. This will only change for the self-energy
insertions. For more details on the thermal calculation of the straight line consider chapter
5.5. Higher order corrections to the circular WL at finite temperature are calculated in 5.4
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3.2.2 Small temperature expansion

3.2.2.1 Bremsstrahlung

Let us go through the derivation of the bremsstrahlung function again and point out where
finite temperature effects need to be included.
Therefore start with the 1/4-BPS circular Wilson loop given in the same way as in the zero
temperature case:

n⃗ = (n1, n2, n3,0,0,0) with n1 = sin(θ) cos(t) , n2 = sin(θ) sin(t) , n3 = cos(θ)

C ∶ xµ(t) = (0 , R cos(t) , R sin(t) , 0) , t ∈ [0,2π] .

The leading order expansion has only a single propagator insertion. While the propagator
gets thermal corrections in the manner discussed above, the prefactors at this order are
not affected

⟨Wθ⟩ = 1 + λ2 cos2(θ)∫
2π

0
dt1∫

t1

0
dt2R2 [1 − cos(t1 − t2)]∆(x1 − x2) +O(λ2) . (3.122)

This again is the same contribution as for the 1/2-BPS Wilson loop up to a redefinition
λ→ λ cos2(θ) of the coupling. Note, however, that this only holds at leading order. For
the subleading order the gauge and scalar will combine with different prefactors, especially
considering the self-energy diagram, and therefore no common cos2(θ) can be pulled out.
Hence we find

⟨Wθ⟩ = ⟨Wθ=0⟩ ∣λ→λ cos2(θ) +O(λ2) . (3.123)

and therefore

⟨Wθ⟩ − ⟨Wθ=0⟩
⟨Wθ=0⟩

= −θ2λ∂λ log⟨Wθ=0⟩ +O(λ2) . (3.124)

Once again we then expand the left hand side around small angles θ. This will yield
one-point and two-point functions of the scalar on the Wilson line. Recall

⟨Wθ⟩ − ⟨Wθ=0⟩
⟨Wθ=0⟩

= θ∮
C

dt∣ẋ∣(∂θnr(t, θ))tr ⟨Φr(t)⟩W +
θ2

2 ∮C dt∣ẋ∣(∂2
θn

r(t, θ))tr ⟨Φr(t)⟩W

+ θ
2

2 ∯C
dt1dt2∣ẋ1∣∣ẋ2∣(∂θnr(t1))(∂θns(t2))tr ⟨Φr(t1)Φs(t2)⟩W (3.125)

+O(θ3) .

A priori the one-point functions do not have to be zero as we are in a finite temperature
setting [54]. However, the fields we are interested in carry a nonzero charge with respect
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to the R-symmetry and thus still have a vanishing one-point function,

tr ⟨Φ(t)r⟩W = 0 . (3.126)

Similar to our calculation in Section 3.2 the thermal two-point function of scalars is
obtained by the method of images applied to the time component.

tr ⟨Φr(x)Φs(0)⟩W =
∞
∑

m=−∞

γδrs

(x0 + m
T
)2 + ∣x⃗∣2

= πγT2∣x⃗∣ δrs [coth (πT (∣x⃗∣ + ix0)) + coth (πT (∣x⃗∣ − ix0))] . (3.127)

Hence for our parameterization (1.64) we find the correlator

tr ⟨Φr(x(t1))Φs(x(t2))⟩W = πγδrsT
coth [πT

√
2R2 − 2R2 cos(t1 − t2)]

√
2R2 − 2R2 cos(t1 − t2)

. (3.128)

The hyperbolic cotangent function with a sine function as an argument could not be
integrated analytically. Note also that a full convergent series expansion of the hyperbolic
cotangent is only known for coth(x) with 0 < ∣x∣ < π. This would yield that an expansion
in RT is only valid for RT < 1/2. We instead consider a Taylor expansion at leading order
for small and high temperature:

tr ⟨Φr(x)Φs(0)⟩W ∣T→0 =
γ

x2 +
π2

3 γT
2 − π

4

45γT
4x4 +O(T 6) , (3.129)

tr ⟨Φr(x)Φs(0)⟩W ∣T→∞ =
Tπγ

∣x⃗∣ . (3.130)

The high temperature limit thus yields a correlator with an x-dependence one would
expect to see in three dimensions. This is intuitively explained because the limit T →∞
sets the radius of the circle on which we compactified the time dimension to zero. This is
essentially a Kaluza-Klein reduction. We will therefore address this limit in a later section.

For the small temperature limit the leading term was computed in the zero temperature
case. We thus find

⟨Wθ⟩ − ⟨Wθ=0⟩
⟨Wθ=0⟩

= θ2 [−π2γ + 1
2 ∫

2π

0
dt1∫

2π

0
dt2R2 cos(t1 − t2) [

π2

3 γT
2

−π
4

45γ(RT )
4(2 − 2 cos(t1 − t2))2]] +O(θ3, θ2T 6)

(3.131)

= −π2θ2γ + 4π6

45 θ
2γ(RT )4 +O(θ3, θ2T 6) . (3.132)
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Plugging this into the original expressions yields

γ = λ

π2 − 4π6

45 (RT )4 +O(T 6)
∂λ log⟨W◯⟩ . (3.133)

Let us now go to the calculation of the cusp anomalous dimension at finite temperature.
We find again that the leading correction in the cusp angles is the bremsstrahlung function

Γcusp(ϕ,ϑ) = (ϑ2 − ϕ2)B for ϕ,ϑ << 1 . (3.134)

The anomalous dimension is then computed again as the scalar correlator in the presence
of a straight line.

Γcusp =
ϑ2

2 ∫
∞

−∞
dy1∫

∞

−∞
dy2∣ẋ(y1)∣∣ẋ(y2)∣tr⟨Φ(y1)Φ(y2)⟩W . (3.135)

However, we again use the two-point function obtained by method of images

tr ⟨Φr(x)Φs(0)⟩W =
γδrsπT

2∣x⃗∣ [coth (πT (∣x⃗∣ + ix0)) + coth (πT (∣x⃗∣ − ix0))] (3.136)

= γ

x2 +
π2

3 γT
2 − π

4

45γT
4x2 +O(T 6) . (3.137)

given the parameterization of the straight line (1.65)

C ∶ xµ(t) = (0, 0, 0, R̃ tanh( t2)) , t ∈ [−∞,∞] . (3.138)

this yields

Γcusp = ϑ2γ

2 +
ϑ2

2 γ ∫
∞

−∞
dt1 [∫

t1−ε

−∞
dt2 + ∫

∞

t1+ε
dt2]

R̃2

4 sech2 ( t12 ) sech2 ( t22 )×

× [π
2

3 γT
2 − π

4

45γR̃
2T 4 (tanh( t12 ) − tanh( t22 ))

2
] +O(T 6) (3.139)

= ϑ2γ [12 +
2π2

3 (R̃T )
2 − 4π4

135(R̃T )
4] +O(T 6) . (3.140)

Here we see why the introduction of the scale parameter R̃ was necessary. While the
dependence vanishes directly in the conformal case, a dependence on the parameter is
obtained for the thermal theory. Similar to the circular WL the dependence is in fact in
terms of the dimensionless combination R̃T . Thus the bremsstrahlung function is given by

B = γ [12 +
π4

6 (R̃T )
2 − π

6

45(R̃T )
4] +O(T 6) . (3.141)
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Plugging in the result for γ from the circular loop yields a formula similar to (2.73)

B =
1
2 + 2π2

3 (R̃T )2 − 4π4

135 (R̃T )4 +O(T 6)
π2 − 4π6

45 (RT )4 +O(T 6)
λ∂λ log⟨W◯⟩ (3.142)

= ( 1
2π2 +

2
3(R̃T )

2 + 2π2

45 (RT )
4 − 4π2

135(R̃T )
4)λ∂λ log⟨W◯⟩ +O(T 6) . (3.143)

Recall the expectation value of the circular loop (3.120)

⟨W◯⟩(RT→0) = 1 + λ8 + λ
(RT )2π2

12 − λ(RT )
4π4

60 +O(λ2, λ(RT )6) . (3.144)

From this we can derive the thermal corrections to the bremsstrahlung

B(RT→0) = λ

16π2 +
λ

24
(2(R̃T )2 + (RT )2)

+
λπ2 (60(R̃T )2(RT )2 − 4(R̃T )4 − 3(RT )4)

1080 +O(λ2, λ(RT )6) . (3.145)

3.2.2.2 Stress tensor

The bremsstrahlung above shall be compared to the coefficient of the one-point function
of the stress tensor. The relation between the circle and the line for T = 0 N = 4 SYM
namely that one goes into the other might not hold any longer at finite temperature. We
therefore repeat the above calculation for the circular loop interacting with the stress
tensor. We consider the small temperature expansion including the first two corrections.
The calculations are identical for the zero temperature case. For convenience we will not
include the lengthy expressions we have to consider after taking derivatives but we focus
on the final result. We find

⟨TφφW◯⟩VT→0 = −
λR4

16π2r8 −
π2λ(RT )4

360r4 +O(T 6) , (3.146)

⟨TφφW◯⟩ST→0 =
λR4

12π2r8 +
λ(RT )2 (r2 − 2R2)

36r6

− π
2λR2T 4 (r4 − 2r2 (R2 + 3z2

0) + 4R2z2
0)

270r6 +O(T 6) . (3.147)

The full stress tensor is then given by

⟨Tφφ⟩′W,β =
⟨TφφW◯⟩ST→0 + ⟨TφφW◯⟩VT→0

⟨W◯⟩(T→0) (3.148)

= + λR4

48π2r8 −
λ(RT )2 (r2 − 2R2)

36r6 + λπ
2T 4R2(4r2 − 11R2)

1080r4
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+ λπ
2R2T 4z2

0 (2R2 − 3r2)
135r6 +O((RT )6) (3.149)

To make this result more comparable let us set the stress tensor in the center of the circular
loop by setting r → R. Also note that ⟨Tφφ⟩W = h/r4 and we therefore find

3h = 3R4 ⟨Tφφ⟩W =
λ

16π2 +
λ(RT )2

12 − 7λπ2(RT )4
360 +O(λ2, λ(RT )6) . (3.150)

This should be compared to the result for the circular Wilson loop

B(RT→0) = λ

16π2 +
λ

24
(2(R̃T )2 + (RT )2)

+
λπ2 (60(R̃T )2(RT )2 − 4(R̃T )4 − 3(RT )4)

1080 +O(λ2, λ(RT )6) . (3.151)

The coefficient R̃ of the straight line is a priori an arbitrary constant. It can depend on
the radius of the circular loop as well as on the temperature. By setting

R̃ → R [ 1√
2
− 47π2(RT )2

90
√

2
+ 611π4(RT )4

3240
√

2
+O((RT )6)] , (3.152)

we can indeed reproduce the above relation

B = 3h , (3.153)

and therefore provide a cross-check for the fact that it still holds at finite temperature.
More precisely we found a scheme for the coefficient R̃ reproducing the relation between
bremsstrahlung and stress tensor in a small temperature expansion.
We will now turn to the high temperature limit. We will find a new scheme for R̃ at large
temperatures.

3.2.3 High temperature limit

In the limit T →∞ we again find a scheme for R̃ that reproduces B = 3h. We start by
discussing how the high temperature limit is best implemented in our calculations.
In finite temperature we compactify the time dimension on an S1 with radius β = 1/T .
Taking the high temperature limit T →∞ correponds to making the radius infinitesimal
β → 0. This corresponds to a Kaluza-Klein reduction of the four dimensional theory
to three dimensions. Following the standard procedure for KK-reduction for the scalar
fields we find a tower of massive scalar fields with Mn = nT where n ∈ N. In the high
temperature limit we can integrate out all massive fields and simply keep the massless field
Φ(x) = Φ(n=0)(x) (x ∈ R3). Similar the gauge fields Aµ split into the three-dimensional
vector fields Ai and an additional scalar A0. As the field A0 will not couple to any field in
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the Wilson loop, we can ignore it for all further considerations. Similarly we also ignore
the fermionic fields.
When considering the action let us for a moment ignore that we are at zero coupling. We
consider the original action (1.56) with the coupling as an overall prefactor. The action
then schematically has the form

S = ∫ d3xL = 1
2g2 ∫ d3xtr [ 1

2T F
2 + (∂Φ)2 + . . .] . (3.154)

It is useful to analyze the mass dimensions of the action. For a dimensionless action
the Lagrangian needs to have mass dimension [L] = 3. The three-dimensional scalars
have dimension [Φ] = d−2/2∣d=3 = 1/2 and therefore [(∂Φ)2] = 3. Contrary to the scalars,
the mass dimension of the gauge fields is independ of the space-time dimension. For all
values of d we have [Ai] = 1 and therefore [F 2] = 4. We thus see that the kinetic term
of the scalars reproduces the correct dimension while the vector fields do not. Usually
this is fixed by making the Yang-Mills coupling g dimensionfull. Here the coupling g is a
prefactor to all fields in the Lagrangian alike and assuming its dimension to fit one term
of the Lagrangian will sabotage another term. Therefore we need to add an additional
dimensionfull parameter. This can only be the scale T as there is no other possible scale
in the theory. This is why we introduced the respective prefactor in the above equation.
Going back to zero coupling we henceforth find the high temperature action

ST→∞ =
1
2 ∫ d3x tr [ 1

2T FµνF
µν + 1

T
(∂µAµ)2 + ∂µΦIJ∂µΦ̄IJ + iλ̄Iσµ∂µλI+

+iλI σ̄µ∂µλ̄I] +O(g) , (3.155)

The stress tensor has the same dimensions as the Lagrangian. We find

Tij = −
1
T
F a
ikF

a
jk − ∂iΦr a∂jΦa

r +O(g) . (3.156)

It is important to note that the stress tensor now has mass dimension [Tij] = 3 yielding
that also the dependence on the distance to the defect is expected to contribute at cubic
order

⟨Tij⟩W ∼
h

r3 . (3.157)

For the Wilson loop it is important to recall that we have a parameterization x(t) where t

is a dimensionless parameter by construction. Keeping this in mind we need to ensure
that the argument of the exponential function is dimensionless. We find

W (C) = 1
N

tr ⃗P exp [g∮
C

dt (iAµẋµ +
√
TΦr∣ẋ∣Θr)] , (3.158)
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We need to include the temperature as a factor for the scalar to match the mass dimensions.
Note that it would be possible to make the unit vector nr ∈ S5 dimensionfull. However, it
would have to scale with

√
T in this case thus finally yielding an identical result.

We then find the propagators to be

⟨Aaµ(x1)Abν(x2)⟩ =
Tδabηµν

4π
√
(x1 − x2)2

, ⟨Φa
r(x1)Φb

s(x2)⟩ =
δabδrs

4π
√
(x1 − x2)2

. (3.159)

This means that for Wilson loop calculations we in fact have the same propagators T/x
as one would predict in a more naive approach to high temperature. The combination
[T/x] = 2 has the correct dimension for a gauge propagator. For the scalar propagator note
that the temperature factor will at later calculations be included from the expansion of
the Wilson loop (which is what we use in all calculations) and therefore also fits in the
dimensional analysis.
The two-point function in the presence of the Wilson loop is then analogously given by

tr⟨Φr(x)Φs(0)⟩W =
γπ

x
. (3.160)

We thus find including a factor T from the Wilson loop

⟨Wθ⟩ − ⟨Wθ=0⟩
⟨Wθ=0⟩

∣
T→∞

= θ
2

2 ∫
2π

0
dt1∫

2π

0
dt2

πγRT cos(t1 − t2)√
2 − 2 cos(t1 − t2)

(3.161)

= −4π2θ2γRT log ( ε4) − 8π2θ2γRT = −8π2θ2γRT . (3.162)

As in the zero temperature case the divergence can be taken care of by a renormalization.
This yields for the coefficient

γT→∞ =
λ

8π2RT
∂λ log⟨W◯⟩ . (3.163)

Let us now go to the calculation of the cusp anomalous dimension at finite temperature.
We find again that

Γcusp(ϕ,ϑ) = ϑ2B for ϕ = 0, ϑ << 1 , (3.164)

and the anomalous dimension is computed via

Γcusp =
ϑ2

2 T ∫
∞

−∞
dt1∫

∞

−∞
dt2∣ẋ(t1)∣∣ẋ(t2)∣tr⟨Φ(t1)Φ(t2)⟩W,β→0 , (3.165)
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However, we again use the two-point function obtained by method of images and expand
around high temperature. Given the parameterization of the straight line (1.65) this yields

Γcusp = −
ϑ2

2
π

4γR̃T [∫
−ε

−∞
dt + ∫

∞

ε
dt2]∫

∞

−∞
dt1

sech2 ( t12 ) sech2 ( t22 )√
(tanh ( t12 ) − tanh ( t22 ))

2
(3.166)

= 2ϑ2πγR̃T log(2) . (3.167)

This would mean that the bremsstrahlung in the T →∞ limit is

B = λ log(2)
4π

R̃

R
∂λ log⟨W◯⟩ . (3.168)

Recall that

⟨W◯⟩(RT→∞) = 1 + λ2 RT +O (λ
2,

λ

(RT )n) , ∀n ∈ N . (3.169)

From this we can derive the thermal corrections to the bremsstrahlung

B = λ log(2)
8π

R̃

R
(RT ) +O (λ2,

λ

(RT )n) , ∀n ∈ N . (3.170)

For the calculation of the stress tensor we can count powers of T . Let us start with the
easier scalar case. Here we find a power of T from the Wilson loop and no further powers
from propagators. For the gauge fields the propagators each yield a temperature factor,
hence T 2. However, one of the temperature factors cancels with the 1/T from the definition
of the stress tensor.
Plugging in the integrals with the 1/x propagator we find

⟨TφφW◯⟩V = −
λR4T

256r6 , ⟨TφφW◯⟩S =
λR2T (2R2 − r2)

192r6 . (3.171)

The full stress tensor is then given by

⟨Tφφ⟩W =
⟨TφφW◯⟩Sβ→0 + ⟨TφφW◯⟩Vβ→0

⟨W◯⟩β→0
= λR

2T (5R2 − 4r2)
768r6 +O(λ2) . (3.172)

Here we ignored the one-point coefficient from [54], because we are considering effectively
a zero temperature 3d theory with a distance parameter β which is an artifact of the
KK-reduction. Setting r → R as above and recalling that in the KK-reduced theory we
have ⟨Tφφ⟩W = h/R3 we find

3h = λ(RT )256 +O (λ2) , B = λ log(2)
8π (R̃T ) . (3.173)
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As in the small temperature limit we can find a convenient replacement for the line
parameter R̃:

R̃ → π

32 log(2)R for T →∞ . (3.174)

In this scheme we indeed find the relation

B = 3h (3.175)

to hold.
To conclude, we showed similar to the previous subsection that there exists a scheme for
R̃ in which the Relation (1.1) holds. We explicitly found a scheme for small temperature
(3.152) and high temperature (3.174). Therefore we assume that such a scheme exists for
any temperature T .
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Chapter 4

Finite temperature and non-zero
coupling

The calculation in the previous Chapter 3 has been considered without interactions by
setting the coupling g = 0. In this chapter we consider how interactions affect the thermal
Broken Ward Identity (3.27) and the resulting relation B = 3h. I will present our current
understanding of the interactive theory as well as give an outline for the follow up steps
which are necessary for a deeper understanding. This describes our ongoing work.
Effects on the perturbative calculation from interactions at finite temperature similarly to
Section 3.2 are considered in the next Chapter 5 where we consider the circular Wilson
loop at order λ2. These include the leading corrections yielded by interactions in the
action such as self-energies and vertex diagrams.

We will follow two different ansätze here. One allows a splitting of the action into a term
preserving supersymmetry and another consisting of mass terms similar to (3.19)

S4d th. N=4 = SSUSY + Smass-terms . (4.1)

While such a splitting is very helpful in the derivation of a thermal BWI like (3.27) the
respective ansatz breaks R-symmetry. More precisely we consider field redefinitions with
phase transformations as used in the previous chapter. They will be restricted by the
Yukawa interactions and yield a non-trivial breaking of the R-symmetry. The upshot of
this approach is that it is straight forward to isolate one part of the Lagrangian which
preserves supersymmetry and we can thus consider the BWI in a very similar manner
to before. However, the way R-symmetry is broken is ambiguous. There seems to be a
freedom of choice preserving different amounts of R-symmetry. We suggest that with
a dynamical calculation including the phases this issue might be solved. We suspect
that by considering the self-energy and the comparison of thermal masses we are able to
find restrictions on the phases determining the preserved R-symmetry. As Appendix H
shows we in fact find an inconsistency. The thermal mass of the theory with the phase
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redefinitions cannot be matched with the known thermal mass of thermal N = 4 SYM.
For completeness we still present this ansatz here. An alternative ansatz which in turn
preserves R-symmetry is thus presented in Appendix I. While being relatively novel this
ansatz provides a consistent way of defining thermal masses and we are able to obtain a
BWI similar to (3.27) which preserves B = 3h.
What is more, we introduce the different periodicity conditions by employing a Fourier
series representation of the fields. From the KK-like reduction of the thermal circle we
will find a tower of massive modes. This then becomes a three-dimensional theory of
infinitely many fields. On the one hand, contrarily to the previous ansatz, this approach
will manifestly preserve R-symmetry,

S4d th.N=4 = Smassive 3dR−sym. . (4.2)

On the other hand, it is not clear whether a part of the Lagrangian can be identified
that preserves supersymmetry. Most importantly, we again consider Yukawa interactions.
We find the interaction between different modes. This might spoil the preservation of
supersymmetry. Upon the application of supersymmetry transformations we expect to
find some constraints which are consistent with the constraints of the first ansatz.

Let us stress here that these two approaches have as of now not been carried out to the
fullest. We present how the respective ansatz is applied to N = 4 SYM at finite temperature
and discuss all steps necessary to validate them. Furthermore we will indicate possible
implications on the thermal BWI. Ideally we hope to find that it can be applied as in the
last sections, see Equation (3.27).

4.1 Field redefinitions in 4d

Let us discuss here how the field redefinitions with phase transformations (3.18) and the
thermal Broken Ward Identity are affected by interactions. The field redefinitions provide
a setting where a part of the Lagrangian can be identified that preserves supersymmetry
as in (4.1). We will find, however, that the Yukawa terms yield conditions on the phases
of the fermionic fields introduced in the previous chapter. Additionally we find that each
scalar field ΦIJ will required a unique phase α̂IJ determined by a combination of the
fermionic phases αI . These phases are different for each spinor in the tuple λI which
yields a breaking of the R-symmetry. We will consider in detail how this affects the Ward
identity and possible ways to preserve the Relation (1.1).
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4.1.1 Yukawa interaction

Compared to the previous chapter we now allow for all values of g and can thus use the
action as originally given in Equation (1.56)

S̃ = 1
2g2 tr∫

β

0
dτ ∫ d3x [12 F̃µνF̃

µν + (∂µÃµ)
2 + D̃µΦ̃IJ ˜̄Dµ ˜̄ΦIJ + i˜̄λIσµD̃µλ̃I+

+iλ̃I σ̄µ ˜̄Dµ
˜̄λI + i ˜̄ΦIJ {λ̃I , λ̃J} − iΦ̃IJ {˜̄λI , ˜̄λJ}+ (4.3)

+1
2
[Φ̃IJ , Φ̃KL] [ ˜̄ΦIJ

˜̄ΦKL] + ∂µ˜̄cD̃µc̃] .

As before we write all fields with a tilde and we assign phases to them such that we
can write down a new action depending only on periodic fields in the finite temperature
setting. We will derive step-by-step which fields need to obtain a phase dependence. In
each consecutive step we try to introduce as few phases as possible, however, keeping in
mind new restrictions we found.
As argued in Subsection 3.1.1 the gauge and ghost field do not require a phase. The
spinor fields meanwhile must get a phase factor which ensures the anti-periodic boundary
conditions on the thermal circle. For the scalars let us first assume that as in the zero
coupling case they do not get a phase factor. In this case we would again have the
transformations of Equation (3.18)

Ãµ(τ, x⃗)→ Aµ(τ, x⃗) , Φ̃IJ(τ, x⃗)→ ΦIJ(τ, x⃗) , ˜̄c(τ, x⃗)→ c̄(τ, x⃗) ,

λ̃I(τ, x⃗)→ eiατλI(τ, x⃗) with α = π
β
(2n + 1) , n ∈ Z .

All fields without tilde are periodic in τ → τ + β. This yields identical mass terms for the
fermions as we found above. All kinetic terms are then preserved. Consider, however, the
Yukawa interaction

i ˜̄ΦIJ {λ̃I , λ̃J}→ iΦ̄IJ {eiατλI , eiατλJ} = ie2iατ Φ̄IJ {λI , λJ} . (4.4)

By keeping the scalar fields without a phase we thus find that an overall phase factor
would appear in the action. To avoid that we introduce a phase for the scalar fields as well

Φ̃IJ(τ, x⃗)→ eiα̂τΦIJ(x⃗) with α̂ = 2nπ
β

, n ∈ Z . (4.5)

This new phase is even to ensure periodicity of the scalar field as demanded by the KMS
conditions. From the above Yukawa interaction we would find a relation between the
bosonic and the fermionic phases, α̂ = 2α.
Let us, however, consider the scalar fields more closely. The matrix ΦIJ is a convenient
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way of manifestly writing the action in a manner reflecting the self-dual R-symmetry
representation the scalars are in. In fact we have that [112]

ΦIJ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 φ1 φ2 φ3

−φ1 0 φ̄3 −φ̄2

−φ3 −φ̄3 0 φ̄1

−φ3 φ̄2 −φ̄1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠
IJ

(4.6)

Hence, assigning an overall phase to ΦIJ would mean to assign the same phase to each of
the three complex scalars φi as well as their conjugates φ̄i. Therefore, we cannot simply
assign an overall phase. Instead the following transformations can be suggested,

Ãµ(τ, x⃗)→ Aµ(τ, x⃗) , ˜̄c(τ, x⃗)→ c̄(τ, x⃗) ,

φ̃i(τ, x⃗)→ eiα̂τφi(τ, x⃗) with α̂ = π
β
(2m) , m ∈ Z , (4.7)

λ̃I(τ, x⃗)→ eiατλI(τ, x⃗) with α = π
β
(2n + 1) , n ∈ Z .

The index i = 1,2,3 labels the three complex scalars.
We turn once more to the Yukawa interaction. Let us expand the sum over R-symmetry
indices by using explicitly the matrix representation of ΦIJ ,

Φ̃IJ {˜̄λI , ˜̄λJ} = Φ̃12 {˜̄λ1,
˜̄λ2} + Φ̃43 {˜̄λ4,

˜̄λ3} + . . .

= φ̃1 {˜̄λ1,
˜̄λ2} + ˜̄φ1 {˜̄λ4,

˜̄λ3} + . . . (4.8)

→ e−i(2α−α̂)τφ1 {λ̄1, λ̄2} + e−i(2α+α̂)τ φ̄1 {λ̄4, λ̄3} + . . .

The dots represent additional terms in the sum over R-symmetry indices. In the last step
we used the above phase transformations. The kind of interactions we find here, however
does not allow for a consistent choice of α and α̂ that makes the Yukawa interaction
independent of the phases.
Conclusively, we need to break the R-symmetry and introduce different phases to each
scalar and each fermion. This can be done by by considering the phase transformations

Ãµ(τ, x⃗)→ Aµ(τ, x⃗) , ˜̄c(τ, x⃗)→ c̄(τ, x⃗) ,

φ̃i(τ, x⃗)→ eiα̂iτφi(τ, x⃗) with α̂i =
π

β
(2mi) , mi ∈ Z , (4.9)

λ̃I(τ, x⃗)→ eiαIτλI(τ, x⃗) with αI =
π

β
(2nI + 1) , nI ∈ Z .
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The indices i and I above are not summed. The considerations above suggest that the
Yukawa interaction will restrict the choice for these phases. In order to understand these
restrictions it is convenient to work in a notation using the old R-symmetry. Therefore
introduce phases to the self-dual scalars by writing

Φ̃IJ(τ, x⃗)→ eiα̃IJτΦIJ(τ, x⃗) with α̃IJ =
π

β
(2mIJ) , mIJ ∈ Z (4.10)

Explicitly this yields

Φ̃IJ →

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 eiα̃12τφ1 eiα̃13τφ2 eiα̃14τφ3

−eiα̃21τφ1 0 eiα̃23τ φ̄3 −eiα̃24τ φ̄2

−eiα̃31τφ3 −eiα̃32τ φ̄3 0 eiα̃34τ φ̄1

−eiα̃41τφ3 eiα̃42τ φ̄2 −eiα̃43τ φ̄1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠
IJ

. (4.11)

Consider the constraints on the scalar coefficients α̃IJ . By looking at the above matrix
we see that they are symmetric α̃IJ = α̃JI and the diagonal components are α̃II = 0.
Furthermore for each of the three scalar fields the phase of the conjugate ones must come
with an opposite sign yielding the constraints

α̂1 = α̃12 = −α̃34 , α̂2 = α̃13 = −α̃24 , α̂3 = α̃14 = −α̃23 . (4.12)

The final constraints furthermore follow from the transformations (4.9). The Yukawa
interaction then relates the fermionic and bosonic phases to each other

i ˜̄ΦIJ {λ̃I , λ̃J}→ iei(α̃IJ−αI−αJ)τ Φ̄IJ {λI , λJ}

⇒ α̃IJ = αI + αJ . (4.13)

Combining these conditions we find a final relation for the fermionic coefficients

α1 + α2 + α3 + α4 = 0 . (4.14)

This condition shows that the su(4)R symmetry cannot be preserved because it is not
possible to have equal phases for the four spinors. The constraint (4.14) can also be applied
to the bosonic phases. We then find the following transformations

Ãµ(τ, x⃗)→ Aµ(τ, x⃗) , ˜̄c(τ, x⃗)→ c̄(τ, x⃗) ,

φ̃1(τ, x⃗)→ ei(α1+α2)τφ1(τ, x⃗) , φ̃2(τ, x⃗)→ ei(α1+α3)τφ2(τ, x⃗) ,

φ̃3(τ, x⃗)→ e−i(α2+α3)τφ3(τ, x⃗) ,

λ̃1(τ, x⃗)→ eiα1τλ1(τ, x⃗) , λ̃2(τ, x⃗)→ eiα2τλ2(τ, x⃗) , (4.15)
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λ̃3(τ, x⃗)→ eiα3τλ3(τ, x⃗) , λ̃4(τ, x⃗)→ e−i(α1+α2+α3)τλ4(τ, x⃗) ,

with α1 =
π

β
(2n1 + 1) , α2 =

π

β
(2n2 + 1) , α3 =

π

β
(2n3 + 1) , n1, n2, n3 ∈ Z .

Note that all fields in satisfy their respective KMS conditions. The bosonic phases are
even yielding periodic boundary conditions. The fermionic phases are odd and thus
manifest their anti-periodicity on the compactified time dimension. Note that we can find
special choices for the αI which partly preserve some part of the original R-symmetry.
These will be considered in Section 4.1.3 below. In Appendix G we show that the above
transformations are anomaly-free.
We will now turn to the effects on the action. As in the zero coupling case studied above
we will find mass terms for the scalars and spinors depending on the phases.

4.1.2 Mass terms

The derivatives in the kinetic terms of the action will act on the phases as well as on the
fields. Therefore, we will find new mass-like terms similar to Equation (3.19). We only
need to consider the kinetic terms of scalars and spinors as the gauge and ghost fields do
not obtain a phase factor. Therefore consider

S̃ = 1
2g2 tr∫

β

0
dτ ∫ d3x [4D̃µφ̃

i ˜̄Dµ ˜̄φi + i˜̄λIσµD̃µλ̃I + iλ̃I σ̄µ ˜̄Dµ
˜̄λI] + . . . .

Compared to the original definition of the Lagrangian we used the kinetic term for the
three complex scalars explicitly. The dots denote terms that will not be affected by the
phase transformations.
Let us start by considering the spinors

i˜̄λIσµD̃µλ̃I + iλ̃I σ̄µ ˜̄Dµ
˜̄λI → iλ̄IσµDµλI + iλI σ̄µD̄µλ̄

I − λ̄Iσ0αIλI + λI σ̄0αI λ̄
I

= iλ̄IσµDµλI + iλI σ̄µD̄µλ̄
I − 2αI λ̄Iσ0λI . (4.16)

These mass terms for the fermions are in fact identical to the ones we obtained at zero
couplig. For the scalars let us focus on one of the complex scalars for convenience

D̃µφ̃
1 ˜̄Dµ ˜̄φ1 →Dµφ

1D̄µφ̄1 + i(α1 + α2)φ1D̄0φ̄1 − (α1 + α2)D0φ
1φ̄1 + (α1 + α2)2φ1φ̄1

=Dµφ
1D̄µφ̄1 + i(α1 + α2) (φ1∂0φ̄1 − ∂0φ

1φ̄1)

+ (α1 + α2) (φ1[A0, φ̄1] + [A0, φ
1]φ̄1) + (α1 + α2)2φ1φ̄1 (4.17)

Consider the terms linear in the phases. We can make the SU(N) indices explicit and
include the trace over the gauge group by using φ = φaT a with T a being the generators of
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the gauge group SU(N). This is only interesting for the term with the gauge interaction.
It becomes

tr (φ1[A0, φ̄1] + [A0, φ1]φ̄1) = Aaφb1φ̄c1tr (T b[T a, T c] + [T a, T b]T c)

= Aaφb1φ̄c1tr (T bT aT c − T bT cT a + T aT bT c − T bT aT c) = 0 . (4.18)

The first and last term canceled readily and the remaining two chancel by cyclicity of
the trace. The correction terms for the scalars φ2 and φ3 are obtained similarly with
dependence on the respective phases.
For both, scalars and spinors, we see that we reproduce the original kinetic term and
additional terms with phases as prefactors. Then we can rewrite the action as the original
one, Equation (1.56), and additional terms

S̃ = S + 1
2g2 tr∫

β

0
dτ ∫ d3x[ − 2α1λ̄

1σ̄0λ1 − 2α2λ̄
2σ̄0λ2 − 2α3λ̄

3σ̄0λ3

+ 2(α1 + α2 + α3)λ̄4σ̄0λ4 + 4i(α1 + α2) (φ1∂0φ̄1 − ∂0φ
1φ̄1) (4.19)

+ 4i(α1 + α3) (φ2∂0φ̄2 − ∂0φ
2φ̄2) − 4i(α2 + α3) (φ3∂0φ̄3 − ∂0φ

3φ̄3)

+ 4(α1 + α2)2φ1φ̄1 + 4(α1 + α3)2φ2φ̄2 + 4(α2 + α3)2φ3φ̄3] ,

with α1 =
π

β
(2n1 + 1) , α2 =

π

β
(2n2 + 1) , α3 =

π

β
(2n3 + 1) , n1, n2, n3 ∈ Z .

The original action S depends only on periodic fields and preserves supersymmetry unlike
the new terms. This is because S is the original action of N = 4 SYM in terms of only
periodic fields on the thermal manifold S1

β ×R3. As the periodicity is identical for all fields
the supersymmetry transformations are unchanged and supersymmetry is preserved. For
the entire action S̃ it is broken by the additional mass terms1.

When looking at the new action (4.19) after the introduction of the phases note that we
can write it as the old action with a set of new covariant derivatives. Focus first on the
spinor fields. Here the covariant derivative becomes

Dµ = ∂µ + iAµ → ∇µ = ∂µ + iAµ + iαIδµ,0 (4.20)

Due to the broken R-symmetry this would yield, however, a different covariant derivative
for each of the fields. Similarly also each of the three complex scalar fields would obtain

1See also our discussion at the beginning of Chapter 3
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Field Phase No R-sym. SU(2)⊗SU(2) SU(3)⊗U(1)
λ1 α1 = πT (2n1 + 1) 3πT (n1 = 1) πT (n1 = 0) −3πT (n1 = −2)
λ2 α2 = πT (2n2 + 1) 5πT (n2 = 2) πT (n2 = 0) πT (n2 = 0)
λ3 α3 = πT (2n3 + 1) 7πT (n3 = 3) −πT (n3 = −1) πT (n3 = 0)
λ4 −α1 − α2 − α3 −15πT −πT πT
φ1 α1 + α2 8πT 2πT −2πT
φ2 α1 + α3 10πT 0 −2πT
φ3 −α2 − α3 −12πT 0 −2πT

Table 4.1: In this table we present possible choices for the phases which preserve a
different amount of R-symmetry. The first choice is one where no R-symmetry is preserved.
The other two choices preserve a particularly large amount of R-symmetry that will be
suggestive of different N = 1 and N = 2 multiplets, respectively. Those are considered in
more detail below. Note that these are not actual supersymmetric multiplets as bosons
and fermions have different masses.

its own new covariant derivative depending on the phase, for example

∇µ = ∂µ + iAµ + i(α1 + α2)δµ,0 , (4.21)

for the field φ1.
These covariant derivatives can be interpreted as the coupling of the fields to the background
gravity. Namely they couple to the compactified S1

β where the phases determine the
respective couplings.

4.1.3 R-symmetry breaking patterns

The above consideration suggest that the R-symmetry is broken in N = 4 at nonzero
coupling while in Section 3.1 of the previous chapter we saw that the R-symmetry is
preserved at zero coupling. In this section we look more closely at this breaking. Table 4.1
shows that by conveniently choosing the integers that are associated to the phases it is
possible to preserve some amount of R-symmetry. Considering only the classical action
as we did above the choice of these phases seems arbitrary. Following [113,114] it might
be possible to find constraints on how and which amount of R-symmetry is preserved.
Therefore we will consider a dynamical calculation in Appendix H.
This consideration will also have an impact on the Ward identity calculation. We showed
that B = 3h at zero coupling using a Ward identity and its thermal corrections. In fact,
when constraining the two-point functions after taking the OPE (see Subsection 3.1.4,
Equation (3.66)) we explicitly used the usp(4)R symmetry preserved by the Wilson line.
Therefore we hope to find a choice which preserves as much R-symmetry as possible.
Ideally this allows us to constrain the two-point functions of the thermal BWI similarly
to before and still obtain information on the relation between bremsstrahlung and stress
tensor.
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What is next, we focus on possible subgroups of the original SU(4)R as presented in Table
4.1 preserving a large amount of R-symmetry.

4.1.3.1 Preserved subalgebra su(2)⊕ su(2)

It is convenient to consider a different choice where two pairs of two fermionic phases are
equal

α1 = α2 = −α3 = −α4 . (4.22)

For example we can choose n1 = n2 = 0 and n3 = −1 yielding α̂1 = α̂2 = πT and α̂3 = α̂4 =
−πT such that the three scalar phases become

α̂1 = 2πT , α̂2 = α̂3 = 0 . (4.23)

In this case we see that also the scalar fields are separated with one having a different
phase than the two others. This suggests that the two spinors λ1 and λ2 form a N = 2
vector multiplet together with the complex scalar φ1 and the gauge field. Of course
supersymmetry is in fact broken by the introduction of the phases. This can also be seen
by the masses which are not equal for bosons and fermions2. However, the identical masses
for the spinors are suggestive of the respective supermultiplet. Similarly the remaining
two fermions λ3 and λ4 and scalars φ2 and φ3 suggest an N = 2 hypermultiplet. The
R-symmetry is reduced to a maximal subalgebra [115]

su(4)→ su(2)⊕ su(2) . (4.24)

This preserved symmetry can be made explicit in the action. We focus on the new mass
terms. Recall that with the above definitions we can write

S̃ → S + 1
2g2 tr∫

β

0
dτ ∫ d3x [2π

β
(λ̄1σ0λ1 + λ̄2σ0λ2 − λ̄3σ0λ3 − λ̄4σ0λ4)+

+16π2

β2 φ1φ̄1 +
8πi
β
(∂0φ1φ̄1 − φ1∂0φ̄1)] . (4.25)

We do not see terms for the scalars φ2 and φ3 because we made a convenient choice that
set their masses to zero. The above equation otherwise would become more confusing
while still preserving the same amount of symmetry.
It is now convenient to define two projectors

P1 ∶=
1 + γ5

2 , P2 ∶=
1 − γ5

2 , γ5 = diag(−1,−1,1,1) . (4.26)

2For the vector multiplet masses moreover would have to be zero to ensure supersymmetry.
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The above projectors clearly satisfy

P 2
1 = P1 , P 2

2 = P2 , P1 + P2 = 1 , P1 ⋅ P2 = 0 . (4.27)

This separation is almost identical to the separation of 4-component Dirac spinors to
2-component Weyl spinors. The same matrices are used but instead of the spinor indices
they now affect R-symmetry indices spliting the index I = 1, . . . ,4 to i = 1,2 and ı̄ = 1,2.
The scalars and spinors thus separate into two independent su(2)’s as follows

P1λI =

⎛
⎜⎜⎜⎜⎜⎜
⎝

λ1

λ2

0
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, P1ΦIJP1 + P2ΦIJP2 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 φ1 0 0
−φ1 0 0 0
0 0 0 φ̄1

0 0 −φ̄1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (4.28)

P2λI =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
λ3

λ4

⎞
⎟⎟⎟⎟⎟⎟
⎠

, P1ΦIJP2 + P2ΦIJP1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 φ2 φ3

0 0 φ̄3 −φ̄2

−φ2 −φ̄3 0 0
−φ3 φ̄2 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (4.29)

We can thus separate the matrices into independent su(2)i and su(2)ı̄ ones. The algebra
su(2)i ⊕ su(2)ı̄ is a maximal subalgebra of the original su(4)R [115]. We can define two
new scalar matrices

Φij =
⎛
⎝

0 φ1

−φ1 0
⎞
⎠
ij

, Φı̄̄ =
⎛
⎝
φ2 φ3

φ̄3 φ̄2

⎞
⎠
ı̄̄

⇒ ΦIJ =
⎛
⎝

Φij Φı̄̄

−Φ̄ı̄̄ −Φ̄ij

⎞
⎠
. (4.30)

Note that the original matrix satisfies the self-duality condition [112] and is anti-symmetric

Φ̄IJ = 1
2ε

IJKLΦKL , ΦIJ = −ΦJI . (4.31)

Compare this to the new matrices we found above. The scalars Φij inherit the anti-
symmetry while the self-duality is lost in the reduction

Φij = −Φji . (4.32)

Note, however, that the matrix Φij depends only on one complex scalar field φ1. Therefore
it is in fact convenient to write the splitting of the scalars as

σ ∶= φ1 , φı̄ ∶=
⎛
⎝
φ2

φ3

⎞
⎠

(4.33)

106



4.1. FIELD REDEFINITIONS IN 4D

Similarly the fermions can be split into

λi = (λ1, λ2)i , λı̄ = (λ3, λ4)ı̄ (4.34)

Using this notation the action can be rewritten in form manifestly showing the su(2)i ⊕
su(2)ı̄ symmetry. We focus on the mass-like terms

S̃ → S + 1
2g2 tr∫

β

0
dτ ∫ d3x [2π

β
(λ̄iσ0λi − λ̄ı̄σ0λı̄) +

8π2

β2 σσ̄

+4πi
β
(∂0σσ̄ − σ∂0σ̄)] . (4.35)

As two of the scalar masses are zero in our choice the fields φı̄ only appear in the original
action S.

Wilson loop defect
What is more, when introducing the Wilson loop operator, the R-symmetry is broken due
to the interaction of scalar fields and WL. We saw above that this breaks su(4)R → usp(4)R.
For the case at hand the su(4)R symmetry is broken in a way that is suggestive of an
N = 2 hyper and an N = 2 vector multiplet. Only the scalar field of the vector multiplet,
φ1 = σ in our case, can couple to the Wilson loop3. The action reduced to N = 2 multiplets
is invariant under SU(2)i⊗SU(2)ı̄⊗U(1) [79]. The scalar φ1 = σ is in a singlet with respect
to both SU(2)’s but charged under the U(1). When coupled to the Wilson loop the U(1)
is thus broken [38]. Further note the isomorphism su(2) ≃ usp(2) [115] which thus induces
a breaking of the R-symmetry as

usp(4)R → usp(2)i ⊕ usp(2)ı̄ , (4.36)

where Usp(2)⊗USp(2) is a maximal subgroup of Usp(4) [115]. This can be made explicit
by choosing nr = δr,6. We can then write down the matrix ΩIJ and see a splitting intos the
two usp(2)’s. In our convention this yields

ΩIJ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

⇒ Ωij = εij , Ωı̄̄ = −εı̄̄ , Ωī = 0 . (4.37)

We can then straight forwardly restrict to be only in usp(2)i by choosing the appropriate
indices. By similarity all arguments presented in the following also hold for a restriction to

3It is the current state of the art that a coupling of a scalar field coming from a hypermultipet to the
Wilson loop is not allowed.
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usp(2)ı̄. The OPE is not affected by the reduction of the R-symmetry and it is sufficient
to apply the reduction to the new operators. Consider for instance that after applying the
OPEs the thermal correction will depend on the correlators (3.66). For example

⟨�Iα(0)AJβ(uµ)⟩W = uµ(σ
µσ̄3)αβΩIJf�A(u2

µ) . (4.38)

We restrict the fields to be in the usp(2)i. Then

⟨�iα(0)Aiβ(uµ)⟩W = uµ(σ
µσ̄3)αβεijf�A(u2

µ) , (4.39)

and similarly for all other operators appearing in the OPE. Furthermore the coefficient
C JKLMN
I is likewise reduced to C jklmn

i . This index structure was defined in Equation(2.34).

What is more, the phases of the scalar fields introduce additional mass terms. These
must then consequentially appear in the OPE as do the fermionic mass terms through
the operator A. This yields further corrections which could potentially break the relation
B = 3h in this setting.

Let us thus review the process that lead to the final form of the Ward identity at zero
coupling. We first considered the original terms of the Ward identity at T = 0, (2.33).
They where given through kinematic functions gi defined in Equation (2.13), some spinor
coefficients and the index structure C JKLMN

I . The latter one was discussed above, it
can conveniently be reduced to the usp(2)i subalgebra. The kinematic function can be
thermalized and the spinor structure is neither affected by finite temperature nor by the
broken R-symmetry.
In a subsequent step we considered a thermal contribution to the BWI (3.28), namely

⟨ψ KL
Iα OMNQJβMλ(u0, u⃗)⟩W,T . (4.40)

The operatorMλ is the newly introduced mass term for the fermions. We then considered
an OPE. We assumed the two operators ψ KL

Iα and OMN such that we could use the
expansion despite being in a finite temperature setting [54]. This lead to several two-point
functions. These can be reduced in the case of broken R-symmetry as given above.
Lastly we considered that the Ward identity has an integral over the insertion points of
the operator Mλ. By restricting the spacetime dependence of the correlators the integral
yielded a unique dependence on spinor indices. This was sufficient to ensure the relation
B = 3h.
When we consider also scalar masses, two new mass terms

Mφ =
8π2

β2 ΦijΦ̄ij and M̃φ =
4πi
β
(∂0ΦijΦ̄ij −Φij∂0Φ̄ij) , (4.41)
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are introduced to the Ward identity. Similar to the fermions this will yield the contribution
of a correlator such that the BWI (3.28) will become

− ⟨Qnβ (ψ jk
iα Olm)⟩

W,T
= ∫

β

0
du0∫ d3u [⟨ψ kl

iα OmnQjβMλ(u0, u⃗)⟩W,T

+ ⟨ψ kl
iα OmnQjβMφ(u0, u⃗)⟩W,T (4.42)

+ ⟨ψ kl
iα OmnQjβM̃φ(u0, u⃗)⟩W,T ] .

As the OPE was not taken with respect to the mass operator, we can use the same OPE
for this new contribution. Therefore, we also can use the same restrictions on the yielded
two-point functions as before. This is possible as the mass operators Mφ and M̃φ are
singlets with respect to the spacetime-, spinor- and R-symmetry. Combined with the
acting supercharge Qiα it is then in the same representation as Aiα, just possibly with a
different conformal dimension. The dimension, however, was not relevant for the argument.
To see this consider Equation (3.66). Restricting ourselves to Λi

α we now find

⟨�iα(0)QjβMλ(uµ)⟩W = uµ(σ
µσ̄3)αβεijf�Mλ

(u2
µ) , (4.43)

⟨�iα(0)QjβMφ(uµ)⟩W = uµ(σ
µσ̄3)αβεijg�Mφ

(u2
µ) (4.44)

⟨�iα(0)QjβM̃φ(uµ)⟩W , = uµ(σµσ̄3)αβεij g̃�M̃φ
(u2

µ) . (4.45)

The new functions g and g̃ have different conformal dimensions as the original f and thus
yield different powers of β when we integrate over them. This yields an equation similar
to (3.72) with different integral functions J�Mλ

(β), J�Mφ
(β) and J�M̃φ

(β). Their result
differs in the prefactor and the power of β. For the argument we make, however, these
functions are clearly not relevant. Henceforth, the relation B = 3h is again obtained.
Conclusively, it is very important to note that this relies on the projection to the preserved
usp(2)i which allows for all correlators to depend on the singlet matrix Ωij. We cannot
assume that this argumentation also works for a different breaking of the R-symmetry.
One example of a different breaking is considered in the next subsection. We will focus on
the case where all bosons and three of the four fermions have the same mass. This will be
suggestive of a triplet of N = 1 chiral multiplets, similarly to the considerations made in
the beginning of this subsection.

4.1.3.2 Preserved subalgebra su(3)⊕ u(1)

The combination of phases discussed above is one convenient choice that preserves a
large amount of R-symmetry. Another possibility is to preserve an su(3) symmetry that
interchanges three of the spinors and the three complex scalars. It is obtained by the

109



CHAPTER 4. FINITE TEMPERATURE AND NON-ZERO COUPLING

choice

α2 = α3 = α4 = −3α1 . (4.46)

For convenience let us specify α̂2 = α̂3 = α̂4 = πT and α̂1 = −3πT . The bosonic phases then
are

α̂1 = α̂2 = α̂3 = −2πT , (4.47)

and thus all scalar fields obtain the same phase. This splitting is very suggestive of N = 1
supermultipets. The fermion λ1 with α̂1 = −3πT is associated to a vector multiplet while
the remaining spinors together with the three scalars form a triplet of chiral multiplets.
Again these phases suggest mass terms for the respective fields and as they are different for
bosons and fermions supersymmetry is clearly broken as expected at finite temperature [53].
The breaking of the R-symmetry algebra consequentially is

su(4)→ su(3)⊕ u(1) . (4.48)

Note that the combination SU(3)⊗U(1) is a maximal subgroup of the original SU(4)
group [115]. In the previous subsection we introduced projectors that restricted the su(4)R
invariant structures to the respective preserved subgroups. By similarity we suggest

P̂1 = diag(1,0,0,0) , P̂2 = diag(0,1,1,1) . (4.49)

It is easy to check that these matrices are indeed projectors as they satisfy the relations
(4.27). Let us consider how these matrices act on the scalar and spinor fields of the
Lagrangian. We find

P̂1λI =

⎛
⎜⎜⎜⎜⎜⎜
⎝

λ1

0
0
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, P̂1ΦIJ P̂1 = 0 , P̂2ΦIJ P̂2 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
0 0 φ̄3 −φ̄2

0 −φ̄3 0 φ̄1

0 φ̄2 −φ̄1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (4.50)

P̂2λI =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
λ2

λ3

λ4

⎞
⎟⎟⎟⎟⎟⎟
⎠

, P̂1ΦIJ P̂2 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 φ1 φ2 φ3

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, P̂2ΦIJ P̂1 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
−φ1 0 0 0
−φ2 0 0 0
−φ3 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (4.51)

We see that this does not create a clear structure of scalar matrices as we had in the above
case. Let us thus first look at the Yukawa interactions

LY = −iΦIJ{λ̄I , λ̄J} + h.c. = −i{λ̄I(P̂1 + P̂2)2ΦIJ , (P̂1 + P̂2)2λ̄J} + h.c.
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= −i{(λ̄IP̂1)(P̂1ΦIJ P̂1), (P̂1λ̄J)} − i{(λ̄IP̂2)(P̂2ΦIJ P̂2), (P̂2λ̄J)}

− i{(λ̄IP̂1)(P̂1ΦIJ P̂2), (P̂2λ̄J)} − i{(λ̄IP̂2)(P̂2ΦIJ P̂1), (P̂1λ̄J)} + h.c.

= −i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜
⎝

λ̄1

0
0
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜
⎝

λ̄1

0
0
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

− i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
λ̄2

λ̄3

λ̄4

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
0 0 φ̄3 −φ̄2

0 −φ̄3 0 φ̄1

0 φ̄2 −φ̄1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
λ̄2

λ̄3

λ̄4

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

− i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜
⎝

λ̄1

0
0
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 φ1 φ2 φ3

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
λ̄2

λ̄3

λ̄4

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

− i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
λ̄2

λ̄3

λ̄4

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
−φ1 0 0 0
−φ2 0 0 0
−φ3 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜
⎝

λ̄1

0
0
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ h.c.

= iεijk {ψ̄iφ̄j, ψ̄k} − i{λ̄φi, ψ̄i} + i{ψ̄iφi, λ̄} + h.c. . (4.52)

Following this consideration it is convenient to introduce a new notation respecting the
su(3)⊕ u(1) symmetry

λ1 → λ ,

⎛
⎜⎜⎜
⎝

λ2

λ3

λ4

⎞
⎟⎟⎟
⎠
→
⎛
⎜⎜⎜
⎝

ψ1

ψ2

ψ3

⎞
⎟⎟⎟
⎠
=∶ ψi , φi ∶=

⎛
⎜⎜⎜
⎝

φ1

φ2

φ3

⎞
⎟⎟⎟
⎠
, i = 1,2,3 . (4.53)

The new index i = 1,2,3 reflects the su(3) invariance of the respective vectors.
Writing the new mass terms of the action in a manner reflecting this invariance yields

S̃ = S + 1
2g2 ∫

β

0
dτ ∫ d3xtr[ − 2π

β
ψ̄iσ̄0ψi +

6π
β
λ̄σ̄0λ + 16π2

β2 φiφ̄i

− 8πi
β
(φi∂0φ̄i − ∂0φ

iφ̄i) ] . (4.54)

The newly arising terms can in fact be identified as specific operators. The mass term of
the scalars by itself preserves the su(4)R invariance, the breaking can only be seen for the
spinor fields. Therefore the pure mass term of the scalars can be identified as the primary
Konishi operator [116]

K1 =
1
2trφiφ̄i . (4.55)

The R-symmetry group has 15 generators, three of which can be diagonalized simulta-
neously. Most importantly one of them is t15 = diag(1,1,1,−3). The spinors and scalars
have charges associated to this generators. These are precisely proportional to the mass
terms in the above equation [117,118]. This yields that the remaining terms are in fact a
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component of the R-symmetry current

J15
0 =

1√
6

trψ̄iσ̄0ψi −
3√
6

trλ̄σ̄0λ + 2√
6

tr (φi∂0φ̄i − ∂0φ
iφ̄i) . (4.56)

Therefore we can write the mass terms of the action conveniently as

S̃ = S + 1
2g2 ∫

β

0
dτ ∫ d3x [32π2

β2 K1 −
2
√

6πi
β

J15
0 ] . (4.57)
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Wilson loop defect
As in the previous case the coupling of the scalar fields to the Wilson loop should be
discussed. They are in a fundamental of su(3), however, this is not associated to a
supersymmetry. Therefore we can split the triplet into a doublet and a single scalar4

φi =
⎛
⎜⎜⎜
⎝

φ1

φ2

φ3

⎞
⎟⎟⎟
⎠
→
⎛
⎝
σ

φı̄

⎞
⎠
, ı̄ = 1,2 . (4.58)

The scalar doublet φı̄ can then again be interpreted as coming from anN = 2 hypermultiplet.
Due to the scalar and fermionic phases being equal, respectively, this is as in the breaking
discussed previously. We therefore know that this will yield a su(2)ı̄ ≃ usp(2)ı̄ preserved
by the Wilson line. The complex scalar φ1 = σ again preserves a u(1)σ symmetry. It can
be considered as coming from an N = 2 vector multiplet and hence couple to the Wilson
loop. The difference to the previous consideration, however, is that the spinors of the
vector multiplet obtained different masses and we therefore interpreted them as N = 1
vector and chiral multiplets, respectively. Hence the su(2)i symmetry obtained previously
is not present in the case at hand.
The u(1)σ symmetry associated to the complex scalar σ is broken when the Wilson loop is
introduced. We can thus again write the Matrix (4.40)

ΩIJ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (4.59)

The full algebra preserved after the Wilson loop insertion is

su(3)⊕ u(1)→ su(2)ı̄ ⊕ u(1)σ ⊕ u(1)→ usp(2)ı̄ ⊕ u(1) . (4.60)

Restricting to operators that are in the leftover u(1) corresponds to taking the original
usp(4)R index I ≡ 1. Comparing this to the symplectic ΩIJ we see that the respective
component is zero because it is skew-symmetric. We then would find for example

⟨�Iα(0)AJβ(uµ)⟩W → ⟨�
1
α(0)A1

β(uµ)⟩W ∝ Ω11 = 0 . (4.61)

This would be the case for all operators in the Ward identity. This implies that we are not
able to use the Ward identity calculation introduced in 3.1 to relate the bremsstrahlung
and the stress tensor.
If we restrict all operators to be in the usp(2)ı̄ representation we can follow the argument

4There is choice that we make here corresponding to a rotational symmetry between all three complex
scalars.
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starting at equation (4.40) analogously and obtain that B = 3h is still preserved.

What is next, we consider a different ansatz. By using a Fourier series representation of
the time dimension the theory is reduced to three dimensions. In this case we are able
to show that R-symmetry can be preserved. For the beta function this yields that the
expected result is to find that the phases go to zero hence preserving R-symmetry.

4.2 Fourier series to 3d

In the previous section we chose an ansatz of field redefinitions allowing us to write the
action in terms of periodic fields only. This yielded a convenient splitting of the action like

Sth. N=4 = SSUSY + Snew . (4.62)

The part SSUSY is supersymmetric and in the above case in fact has an identical Lagrangian
to the N = 4 theory at zero temperature. As this part depended only on periodic fields it
preserves supersymmetry. The new term of the action is the one breaking supersymmetry.
We discussed above at length that this ansatz, however, yields an ambiguity concerning
the R-symmetry. Therefore we suggest an alternative approach here.
The compactification of the time dimension is analogous to a Kaluza-Klein reduction as
we already saw in Section 3.2.3. Following [119] we write the four-dimensional theory as a
tower of KK modes with masses depending on the temperature. The modes are introduced
by a Fourier series. In this section, we will introduce these modes and discuss their effects
on the manner in which we can write the Lagrangian as well as the possibility to preserve
R-symmetry. We focus on the scalar and spinor fields only as gauge and ghost fields are
not relevant for the considerations at interest.
The compactification of the scalars is straight forward. We use a simple Fourier series.
For simplicity start by considering a single scalar

φ(τ, x⃗) =∑
n

eiω̂nτφn(x⃗) with ω̂n =
π

β
(2n) . (4.63)

The extension to a set of scalars φi is straight forward. N = 4 SYM theory is manifestly
SU(4)R invariant and the scalars are conveniently written in a self-dual matrix ΦIJ . The
Fourier series for this matrix is written as

ΦIJ(τ, x⃗) =∑
n

eiω̂nτΦIJ
n (x⃗) ∶=∑

n

eiω̂nτ

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 φ1
n φ2

n φ3
n

−φ1
n 0 φ̄3

−n −φ̄2
−n

−φ2
n −φ̄3

−n 0 φ̄1
−n

−φ3
n φ̄2

−n −φ̄1
−n 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

IJ

. (4.64)
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From this matrix we see that complex conjugation is consistent. The conjugate scalars
indeed get an Fourier phases ω̂n with an opposite sign. Furthermore, the self-duality is
preserved and continues to hold for each of the modes

ΦIJ
n =

1
2ε

IJKLΦ̄−nKL . (4.65)

This is a first indication that R-symmetry is preserved by the KK-modes. To fully
understand this we will below consider the Yukawa terms.
Before this, we turn to the spinors. Similarly to above we find [119]

λIα(τ, x⃗) =∑
n

eiωnτλIαn (x⃗) with ωn =
π

β
(2n + 1) . (4.66)

What is next, we consider the kinetic terms for bosons and spinors. We will show that
these can be combined in a set of periodic fields with a correction term similar to what
we found in the zero coupling calculation 3.1. This will thus link this approach to the
previous one.

4.2.1 Kinetic terms

The Fourier representation of the compactification can be plugged in the kinetic terms of
the action. This is in fact where we expect all correction terms to come from. The reason
being the derivatives acting. We find

Skin. =
1

2g2 ∫
β

0
dτ ∫ d3xtr [∂µΦIJ∂µΦ̄IJ + iλ̄Iσµ∂µλI + iλI σ̄µ∂µλ̄I]

= 1
2g2 ∑

n,m
∫

β

0
dτ ∫ d3xei(ω̂n−ω̂m)τ tr [ω̂nω̂mΦIJ

n Φ̄mIJ + ∂iΦIJ
n ∂

iΦ̄mIJ

−ωmλ̄Inσ0λmI + iλ̄Inσi∂iλmI + ωmλnI σ̄0λ̄Im + iλnI σ̄i∂iλ̄Im]

= T

2g2∑
n
∫ d3x tr [+∂iΦIJ

n ∂
iΦ̄nIJ + iλ̄Inσi∂iλnI + iλnI σ̄i∂iλ̄In

+ω̂n2ΦIJ
n Φ̄nIJ − 2ωnλ̄Inσ0λnI] (4.67)

The final action thus contains indeed what appears as a three-dimensional theory. This
theory has a tower of infinitely many massive scalar5 and massive spinor fields. To find
the final equation we solved the integration over τ which yielded Kronecker deltas for the
frequencies. Note that these fields can be recombined to periodic fields. For instance note

5The scalars ΦIJ
0 are massless.
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that we can write

ωn = ω̂n +
π

β
. (4.68)

The fermionic frequencies can be separated in such a way. Then doing all the steps
backwards we can recreate a four-dimensional theory depending only on periodic fields

Skin. = S(periodic)
kin. + 1

2g2 ∫
β

0
dτ ∫ d3x tr [2π

β
λI σ̄

0λ̄I] (4.69)

This is (up to a field redefinition in terms of the coupling) exactly the action in (3.19)
with α = π/β. Therefore we find that the difference between this approach and the one
considered in the previous one must be yielded by interactive terms. For this it is further
notable that we did implicitly fix a choice for α in our calculation. As the sums are infinite
we would find a similar result by taking out α = 3π/β as the mass. This freedom is reflected
in the freedom for α in (3.18). Similarly one can argue that also mass terms similar to
(4.17) can be obtained. If we restrict to the g = 0 case, however, we would be free to chose
the scalar phases. Implicitly we chose the zero mode in our above calculation which does
not yield a mass term.
This freedom of choosing is different here than above. We have no interactions which break
the R-symmetry and hence all choices preserve symmetry in exactly the same manner and
our choice truly does not matter.

4.2.2 Interaction

We can infer from the previous considerations that the interactions are what should mostly
interest us. Therefore consider the Yukawa terms

SYukawa =
i

2g2 ∫
β

0
dτ ∫ d3xtr ΦIJ{λ̄I , λ̄J} + h.c.

= i
2g2 ∫

β

0
dτ ∫ d3x ∑

n,m,k

ei(ω̂k−ωn−ωm)τ tr ΦIJ
k {λ̄nI , λ̄mJ} + h.c.

= i
2g2T ∫ d3x∑

n,m

tr ΦIJ
m+n+1{λ̄nI , λ̄mJ} + h.c. . (4.70)

The Yukawa interaction thus preserves R-symmetry and so will the quartic scalar in-
teractions. This is especially interesting when comparing with the previous approach
where we saw that the Yukawa terms break R-symmetry. Such symmetry breakings are
analyzed in [113]. While N = 4 SYM theory was not studied in the cited paper, the general
structure suggests that one should not expect R-symmetry to break in N = 4 SYM at finite
temperature. This is all the more a reason to suspect that the beta function will show a
running of the coefficients towards a fixed point that does actually preserve R-symmetry.
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What is more, an interesting observation can be made in the above result. Consider the
phases in the exponent

ω̂k − ωn − ωm =
π

β
(2k − (2n + 1) − (2m + 1)) = 2π

β
(k − n −m − 1) (4.71)

Setting this to zero in the Kronecker deltas which emerge from the dτ integral we find that
k = m + n + 1. The shift by one integer is a consequence from the fermionic frequencies.
Let us trace back how this affects the possibility of recreating the original theory with
only periodic fields. We will find the additional shift in the interaction. This can also not
simply be absorbed in the infinite sum. To see this consider the scalar only by assuming
we made the fermions periodic. This yields

∑
k

e
(2k−2)iπ

β
τΦIJ

k =∑
k

eiω̂k−1τΦIJ
k =∑

k

eiω̂kτΦIJ
k+1 ≠ ΦIJ . (4.72)

Hence it is not feasible to recombine the Yukawa terms into a four-dimensional theory
depending only on periodic fields using this approach. This reflects, in a yet to be
untwisted way, the observation that we found a breaking of the R-symmetry in the above
considerations.
Let us try to phrase this a bit differently. The reason we did not find a consistent way to
preserve the R-symmetry of N = 4 when introducing the phases (4.9) is a consequence of
the way the Yukawa interactions of the theory are built. This can be seen from the Fourier
series as we see an interaction between different modes. Naively one would expect to find
an interaction between the same modes only. These two observations are closely linked to
each other. Unfortunately the true nature of this connection remains mysterious to us.

For completeness regarding our arguments, let us consider the quartic scalar interactions
as well. We have

Sφ4 = 1
4g2 ∫

β

0
dτ ∫ d3xtr [ΦIJ ,ΦKL] [Φ̄IJΦ̄KL]

= 1
4g2 ∫

β

0
dτ ∫ d3x ∑

m,n,k,l

ei(ω̂m+ω̂n−ω̂k−ω̂l)τ tr [ΦIJ
m ,ΦKL

n ] [Φ̄k IJΦ̄lKL]

= 1
4g2 ∫ d3x ∑

m,n,k

tr [ΦIJ
m ,ΦKL

n ] [Φ̄k IJΦ̄m+n−kKL] (4.73)

We hence find an expected mixing of phases. The striking difference to the Yukawa
interactions is that there is no shift involved.
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4.2.3 Supersymmetry

What is more, we have not discussed how and if the above three-dimensional theory
preserves supersymmetry. If we can find a part of the action that preserves some three-
dimensional supersymmetry, we can construct a thermal BWI with the additional terms
similar to (3.27) and thus hopefully recreate the relation B = 3h in an analogous way as
we did in the zero coupling case.
If we ignore finite temperature for a moment we would find identical modes for Bosonic
and Fermionic fields in the Kaluza-Klein reduction. With the radius (corresponding to β
in the thermal case) of the S1 taken to zero we would only find the massless zero modes.
This reduction preserves supersymmetries of the four-dimensional theories. In fact, an
N = 8 theory is obtained from N = 4 SYM [120]. This scales down to theories with a lower
amount of supersymmetry. 4d N = 2 theories are reduced to 3d N = 4 theories [121] and
4d N = 1 theories are reduced to 3d N = 2 theories [122]. We therefore have to consider
how the temperature affects the reduction.
Finite temperature yields the KMS periodicity conditions. Therefore we find only even
modes for the bosons and odd modes for the fermions. Furthermore, we do not consider
any high temperature limit and thus the radius β of the compactified circle is not send to
zero. Hence all massive modes and their respective mass terms are kept. We have shown
above that the KMS conditions ultimately yield an interaction between different modes.
We considered this for the Yukawa interaction in (4.70).
Let us thus consider a chiral multiplet consisting of only one spinor and one scalar field.
We try to suggest supersymmetry transformations which are indeed consistent with the
interaction of different modes. Albeit providing a consistent cancellation between the
purely kinetic term and a cancelation between the Yukawa and the φ4 interaction, we see
that supersymmetry in fact cannot be preserved with the interacting modes.
Consider the Lagrangian

Lchiral = Lkin. +LYukawa +Lφ4

= −∂µφn∂µφn + iλn /∂λn + φmλnλm−n−1 −
1
4φmφnφkφm−n+k . (4.74)

Repeated indices m,n are summed over all modes.
Supersymmetry is introduced by the action of the supercharge Q on the fields. We propose
the following transformations

Qφn = λn , Qλn = −i /∂φn +
1
2φkφn+k+1 . (4.75)

Again, the index k above is summed over all integers. Let us now look separately at the
supersymmetry transformation of the different parts of the Lagrangian. Note that modes
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can be shifted in a convenient manner. We have for example

∑
m,n

φmλm+n = ∑
m,n

φm−nλm , (4.76)

which will help us in some of the considerations. For instance the supercharge acting on a
product of identical fields with different charges is written readily as the action on one of
the fields with a respective prefactor. Therefore we find for the kinetic term

QLkin. = −2∂i(Qφn)∂iφn + 2iλn /∂(Qλn) + ∂µ(. . .)

= −2∂iλn∂iφn + 2λn /∂ /∂φn + iλn /∂(φkφn+k+1) + ∂µ(. . .)

= 2λn∂2φn − 2λn∂2φn + iλnφk /∂φn+k+1 + iλnφn+k+1 /∂φk + ∂µ(. . .) . (4.77)

We see that the purely kinetic part cancels readily and we only obtain an interaction-like
term. We took out a total derivative which is not relevant to supersymmetry preservation.
We now turn to the Yukawa interaction

QLYukawa = (Qφm)λnλm−n−1 + 2φm(Qλn)λm−n−1

= λmλnλm−n−1 − 2iφmλm−n−1 /∂φn + φmλm−n−1φkφn+k+1

= λmλnλm−n−1 − 2iλnφk /∂φ−n+k−1 + φmλnφkφm−n+k . (4.78)

Note that the term with the four spinors will cancel independently by a Fierz identity [13].
For the quartic interaction we find

QLφ4 = −φm(Qφn)φkφm−n+k = −φmλnφkφm−n+k . (4.79)

Let us therefore collect all nonzero terms

QLkin. = iλnφk /∂φ−n+k−1 + iλnφk /∂φn+k+1 + ∂µ(. . .) , (4.80)

QLYukawa = −2iλnφk /∂φ−n+k−1 + φmλnφkφm−n+k , (4.81)

QLφ4 = −φmλnφkφm−n+k . (4.82)

The term from φ4 cancels the second term from the Yukawa as they have the same phases.
Consider the remaining terms. The second term of the kinetic ones has the same modes as
the remaining Yukawa term. The leftover term of the kinetic, however, cannot be canceled.
Here is where the problematic of the mixing modes comes into play. The two scalar fields
are distinct and we cannot combine them readily. Where there no modes involved, the
two terms of the kinetic Lagrangian would combine into a single term with prefactor. We
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would have

QLkin. = iλφ /∂φ + iλφ /∂φ + ∂µ(. . .) = 2iλφ /∂φ + ∂µ(. . .) , (4.83)

QLYukawa = −2iλφ /∂φ + φλφφ = −2iλφ /∂φ + λφ3 , (4.84)

QLφ4 = −φλφφ = −λφ3 . (4.85)

In this case we would obtain supersymmetry. The modes, however, make this impossible.
This clearly shows that due to the mixing of the modes, supersymmetry cannot be preserved.
Further note that the cancellation of all other terms clearly showed that we need to have
the supersymmetry transformations as suggested above to cancel the φ4 term and the
kinetic terms.

Supersymmetry is broken by a specific term. Considering again the supersymmetry
transformation of the kinetic term note that we can shift indices to find

QLkin. = iλnφk /∂φ−n+k−1 + iλnφ−n+k−1 /∂φk + ∂µ(. . .)

= iλnφk /∂φ−n+k−1 − iλnφk /∂φ−n+k−1 − iφkφ−n+k−1 /∂λn + ∂µ(. . .)

= −iφkφ−n+k−1 /∂λn + ∂µ(. . .) (4.86)

In the second line we used partial integration. We can thus combine all terms and find

QLchiral = −iφkφ−n+k−1 /∂λn − 2iλnφk /∂φ−n+k−1 + ∂µ(. . .)

= − i
3Q
(φkφ−n+k−1 /∂φn) −

2i
3 Q
(φnφk /∂φ−n+k−1) + ∂µ(. . .)

= −iQ (φnφk /∂φ−n+k−1) + ∂µ(. . .) (4.87)

The full action can then by hand be written with a term that preserves supersymmetry

Lchiral = −∂µφn∂µφn + iλn /∂λn + φmλnλm−n−1 −
1
4φmφnφkφm−n+k

+ iφnφk /∂φ−n+k−1 − iφnφk /∂φ−n+k−1

= LSUSY − iφnφk /∂φ−n+k−1 . (4.88)

Note that throughout these calculations we did not consider the mass terms of the phases.
As the fermionic and bosonic mass terms differ they also break supersymmetry.
Naively we thus wrote the action satisfying (4.1). Therefore a BWI similar to (3.27) can
be derived allowing us to relate the bremsstrahlung to the stress tensor. The difference
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here, however, are the different modes. We would have to derive the BWI of the above
action taking into account the interactions between the different modes. Furthermore, we
note that the supersymmetric Lagrangian is very different from the zero temperature one.
We had to include an additional term to the Lagrangian which would change the present
supercurrent. Also, the above considerations should be explicitly calculate for the full
N = 4 SYM theory.

4.3 Outlook

Let us summarize the outcome of this chapter. We found that the Yukawa terms are what
does not allow for a clean redefinition of the action as a supersymmetric term depending
on periodic fields only plus mass corrections, see (4.1)

S4dth.N=4 = SSUSY + Smass-terms . (4.89)

This is what was a key to deriving and using the BWI in Chapter 3. We compared two
approaches.
Firstly we employed a field redefinition making the fermions periodic by taking out a
phase. This approach is analogous to the one used at zero coupling in Section 3.1. The
Yukawa interaction then yielded similar phases for the bosons and finally a breaking of
R-symmetry. While at g = 0 the choice of phases had no impact on our final result, here
we would find that the symmetry breaks into different preserved subgroups. Therefore an
explicit choice for the phases turned out to be very relevant to the interacting theory. The
idea to fix such a choice consistently is to consider a dynamic calculation. This is inspired
by [113]. By computing the self-energy we expect to find some restriction. Our advances
in the self-energy calculation are presented in Appendix H. There we start by considering
the scalar self-energy and eventually find that this ansatz is seemingly inconsistent. As of
now we are uncertain regarding the source of said inconsistency as the derivation given
in this chapter is straight forward. We suspect that it is possible to employ the phase
redefinition ansatz if appropriate changes are made. Those changes have to, for instance,
preserve R-symmetry and reproduce a consistent thermal mass.
While the first approach had the upshot of manifestly preserving supersymmetry (modulo
the mass terms) the R-symmetry is seemingly broken. We therefore employ an additional
different ansatz. We considered the fields of N = 4 SYM by a dimensional reduction
inspired by [119]. From the KK-modes we found a tower of massive fields. The kinetic
terms allowed for us to reproduce our findings at zero coupling. This can be interpreted
as a consistency check for Section 3.1. The Yukawa interaction, however, created an
ambiguity. By plugging in the phase expansion we found that, unlike the quartic scalar
interaction, there is an interaction between different Fourier modes. We showed that this
interaction breaks supersymmetry with a new breaking term. Furthermore, to further
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employ calculations with this theory another issue needs to be adressed. The KK reduction
also introduced an infinite tower of massive gauge fields. To allow for these we would have
to introduce a Higgs-mechanism for each of the fields making loop calculations considerably
more difficult.
In conclusion the two approaches both have an ambiguity created by the Yukawa interaction.
One seemingly breaks R-symmetry, the other breaks supersymmetry. Whatsoever, each
ansatz for itself follows a self-consistent logic. With the considerations outlined we hope
to be able to find that both sides eventually merge into a common result. If this result, as
desired, has a SUSY-preserving part and another part with (mass-like) breaking terms (4.1)
we would be able to reproduce the thermal BWI (3.27). This might lead to a calculation
similar to the one at zero coupling showing that B = 3h also in the interacting finite
temperature theory.
In Appendix I we thus suppose a different approach which does not rely on an explicit
field redefinition. Ideally we will find that this ansatz for the action is the consistent
combination of the two approaches presented in this chapter. We write down the most
general Lagrangian with periodic fields. This includes also all operators of small mass
dimension which then get prefactors of the temperature. In this way the mass term for the
scalars and fermions are readily recreated. In a dynamical calculation of self-energies we
find (at leading order) that we get constraints on newly introduced mass-terms. Therefore
this approach is very promising and would allow us to use the BWI in the same manner
as in Section 3.1. Although the arguments presented in I strongly suggest that B = 3h
holds as an exact relation at finite temperature it is relevant to mention that the presented
consideration are to some point work in progress and we therefore do not claim to definitely
know that the relation holds.

What is more, this relation between bremsstrahlung and stress tensor can also be studied
in a weak coupling perturbative approach. In the following chapter we provide a starting
point for such calculations by considering the circular and straight line Wilson loop at
order λ2, that is including self-energy corrections and vertex diagrams.
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Chapter 5

Higher order corrections to thermal
Wilson loops

The result obtained thus far have been at zero coupling. In the preceding chapter we dis-
cussed the effects of interaction terms on the Broken Ward Identity. Most importantly we
found a breaking of R-symmetry. The relation between the bremsstrahlung and the stress
tensor can, however, also be considered following the perturbative argument of Section 3.2.
For any steps in the presented argumentation it was vital to know an expression for the
circular Wilson loop.
Therefore, in this chapter, we turn to the perturbative calculation of the the Maldacena-
Wilson loop in SU(N) N = 4 SYM theory [57,58] at finite temperature. More precisely we
study the corrections of order λ2 by going to a non-zero coupling. This will yield vertices
from the action in the weak coupling perturbative expansion. We will not consider the
bremsstrahlung explicitly here. Instead, we simply compute the Wilson loop expectation
value. We will find that the thermal corrections at this order yield non-trivial terms which
do not allow for a straight foreward derivation as presented in 2.2.2. Consider for instance
the result (2.55). The calculation in this chapter, especially concering the self-energy
diagram will make clear that such an explicit relation cannot be expected at order λ2.
As the interactive diagrams are not trivially obtained we require some preliminary consid-
erations. Recall the definition of the Wilson loop

W (C) = 1
N

tr ⃗P exp [∮
C

dt (iAµ(x(t))ẋµ(t) +Φr(x(t))∣ẋ(t)∣nr)] (5.1)

= 1
N

tr ⃗P exp [∮
C

dt (iAµẋµ +Φr∣ẋ∣nr)] , (5.2)

where as before Aµ = AaµT a is the gauge field and Φr = Φa
rT

a (r = 1, . . . ,6) are the six
scalars. We denote the generators of the SU(N) gauge group by T a as mentioned above.
nr is a six-dimensional unit vector (n2 = 1) on the S5 on which the 10 dimensional N = 1
theory was compactified to get N = 4 in 4d. ⃗P is the t-path-ordering.
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CHAPTER 5. HIGHER ORDER CORRECTIONS TO THERMAL WILSON LOOPS

The integral in the exponential function runs along a (closed) contour C. We are interested
in two different paths. We considered the circular loop with radius R

C◯ ∶ t↦ x(t) = (0,R sin(t),R cos(t),0) , t ∈ [0,2π] , (5.3)

and the straight line of length L→∞

C— ∶ t↦ x(t) = (0,0,0, t) , t ∈ [−L2 ,
L

2 ] . (5.4)

Generally we have xµ = (x0, x⃗) ∈ R1,3. Zero temperature results for these are known
from [62–64]. The leading order thermal correction was considered in the previous chapter.
For the circular loop we found an expansion in small and high temperatures (3.120) while
the straight line remains to be equally one due to vanishing prefactors.
When including higher orders, further effects need to be accounted for. The Wilson loop
gets three different corrections at order λ2. The respective diagrams are gathered in Figure
1.1. The single propagator insertion 1.1a is the only diagram contributing at order λ. This
diagram will be called ⟨W(a)⟩β in the following. From the Feynman rules we saw that the
propagator yields a factor g2δab and the color trace trT aT a = N2/2 combines with the 1/N
to give a total prefactor of g2N/2 = λ/2.
Such a combination will in fact occur for all the diagrams and we will note everything
in terms of the ’t Hooft coupling λ in the following whenever possible. When we turn to
calculating the diagrams explicitly we shall see that this prescription can indeed be found.
The insertion of two parallel propagators 1.1b conversely is then proportional to λ2 and
called ⟨W(b)⟩β. The self-energy insertion 1.1c has only one-loop insertions at leading order
which contribute at order λ0 such that with the two external legs we find again λ2. We
will call this diagram ⟨W(c)⟩β.The insertion of the three-vertex interaction shall be called
1.1d. From the Feynman rules it follows that the vertex contributes as λ−1. Hence, the
coupling dependence of one of the three propagators is canceled and we are at order λ2 as
expected.
One could suspect that there should be a diagram with two crossed propagators. However,
such a diagram is non-planar and thus subleading in the large N limit. Also the insertion
of a four-point vertex does not contribute at this order because the four propagators and
one vertex yield λ4−1 = λ3 ≪ λ2. The full Wilson loop is then given by

⟨W ⟩ = 1 + ⟨W(a)⟩β
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
O(λ)

+ [⟨W(b)⟩β + ⟨W(c)⟩β + ⟨W(d)⟩β]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

O(λ2)

+O(λ5/2) . (5.5)

Note that the next subleading order is not λ3 as naively expected. This is due to the
infrared divergences which appear at finite temperature [47, 100].
The calculation of the diagrams at order λ2 is significantly more complicated compared
to the leading order. While the rainbow diagram 1.1b is relatively straight forward, the
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self-energy insertion 1.1c and the vertex 1.1d are challenging. The vertex calculation will
mostly be calculationally heavy with integrals that require a numeric integration. For the
self-energy at T ≠ 0 one finds [47,53,100] that even the leading orders have integrals which
cannot be solved analytically. We therefore will need to consider a limit before considering
their Fourier transform from momentum to coordinate space.

In this chapter we will consider a couple of preliminary calculations for this self-energy
diagram. Firstly we will explain corrections of higher order and show that in fact we will
expect the next order to be λ5/2. The gauge propagators in general might have a non-trivial
dependence on spacetime indices, especially when self-energy corrections are included.
How this affects the WL calculation will be regarded in the second section. Finally we will
consider the scalar and gauge self-energy. We calculate in a Feynman diagram approach
and by using a thermal averaging process will be able to Fourier transform the resulting
propagators to momentum space. Equipped with these preliminary results we are then
able to calculate the next-to-leading order contributions to the circular and straight line
Wilson loop at weak coupling.

5.1 Corrections beyond λ2

Let us consider higher order contributions to the perturbative Wilson loop calculation.
Naively one would expect the next subleading order to come with λ3, however some of the
diagrams in the finite temperature approximation will have infrared divergences [47,100].
These divergences can be resummed to a finite contribution which turns out to be of
order λ5/2. We will not calculate these corrections explicitly but rather explain how the
dependence on λ3 is yielded.

Therefore consider a simple self-energy in φ4 theory. There are two self-energy diagrams we
naively expect to contribute at order λ2, the one with two bubbles and the sunset diagram.
We name the former Σ(1)2 where the subscript indicates the naive order in perturbation
theory and the superscript distinguishes it from the sunset diagram.

Σ(1)2 =

= 96λ2∫
d3q

(2π)3 ∫
d3k

(2π)3 T
2

∞
∑

m,l=−∞

1
[(iωm)2 − q2]2

1
(iωl)2 − k2 . (5.6)

We clearly see that the two sums and integrals may be separated. The integral over the
one propagator (k⃗ and ωl) is the one-loop self-energy integral which is proportional to the
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thermal mass m2 = λT 2. We will call this one-loop self-energy Σ1 = 12m2. Hence

Σ(1)2 = 8λΣ1T ∫
d3q

(2π)3
∞
∑

m=−∞

1
(iωl)2 − k2 . (5.7)

Let us look at the zero mode which is proportional to

λ∫ dq q
2

q4 = λ∫ dq 1
q2 . (5.8)

This integral is IR divergent. However, this is not the only IR divergent diagram propor-
tional to λ. In fact only diagrams of the form in Figure 5.1 will contribute. The diagram

Figure 5.1: Self energy corrections with N bubbles. On the tadpole correcting the
propagator N more tadpoles are attached.

consists of a single loop correction attatched to the propagator. This loop itself carries
several one-loop corrections. For an N loop diagram there are N − 1 of the small loop
corresponding to Σ1, where N ≥ 2.
Following Kapusta’s book [47] and defining the bare propagator ∆−1

0 (ωn, p⃗) = ω2
n + ∣p⃗∣2, we

may sum up all such diagrams to be

Σ3/2 = λ
∞
∑
n=−∞

∫
d3p

(2π)3
∞
∑
N=1
(−Σ1)N−1 ∆N

0 (ωn, p⃗)

= −λ
∞
∑
n=−∞

∫
d3p

(2π)3
1

ω2
n + ∣p⃗∣2 +Σ1

. (5.9)

To find the correct order in the coupling we can replace Σ1 = 12λT 2 and calculate the zero
mode

Σ(n=0)3/2 = −λ ∫
d3p

(2π)3
1

∣p⃗∣2 + 12λT 2 = Σ(T=0)1 − 6
√

3
π

T 2λ
3/2 . (5.10)

The first term above is the temperature independent term which is of no importance as its
ultraviolet divergence can be renormalized. The second term, however, clearly shows the
next order in perturbation theory is λ3/2. Note also that in agreement with [47] the sign of
the new subleading term is negative. In the case of a three-particle vertex we also find
diagrams depending on log(λ), which, however, are of even higher order. For the scalar
self-energies they would start to contribute at order λ2 log(λ) yielding an appearence at
order λ3 log(λ) for the Wilson loop calculation.
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Conclusively, the next higher order we expect in the thermal perturbative expansion of
Wilson loops in weak coupling is λ5/2.

5.2 Theorem on gauge propagators and closed Wilson
loops

In the perturbative expansion of the Wilson loop we will consider the insertion of scalar and
gauge propagators including low order Feynman diagram corrections. While the structure
of the scalar propagator is straight forward, the gauge propagator has two spacetime
indices yielding a nontrivial structure especially at finite temperature. We thus want to
write down the gauge propagator in the most general and most covariant form possible,
considering that at finite temperature Lorentz invariance is broken and we therefore get a
separation between transverse and longitudinal components [47,100]. We then want to see
which part of it can contribute to the Wilson loop.
The momentum space gauge propagator in any Rξ gauge is generally given by [47, 100,
123,124]

∆µν =
P̂µν

P 2 −ΠT

+ Q̂µν

P 2 −ΠL

+ ξPµPν
P 4 . (5.11)

with the transverse and longitudinal projectors P̂µν and Q̂µν , respectively. They are given
by

P̂µν = −δµν + uµuν +
(Pµ − p0uµ)(Pν − p0uν)

∣p⃗∣2 =
⎛
⎝

0 0
0 δij − pipj

∣p⃗∣2

⎞
⎠

and (5.12a)

Q̂µν = −
(∣p⃗∣2uµ + p0Pµ − p2

0uµ) (∣p⃗∣2uν + p0Pν − p2
0uν)

P 2∣p⃗∣2 = −δµν −
PµPν
P 2 − P̂µν . (5.12b)

uµ = δµ,0 is the unit vector along the time direction, sometimes called "mean velocity of the
heat bath". See [47,53,100] for further explanation. Also, as mentioned above, P µ = (p0, p⃗).
The transverse and longitudinal self-energies ΠT and ΠL are a priori arbitrary functions.
They can be obtained from the vacuum polarization tensor Πµν as defined in Section
5.3 below (Equations 5.41). Generally the transverse polarization ΠT is related to the
transverse projector P̂µν and likewise the longitudinal polarization ΠL is related to the
longitudinal projector Q̂µν as can be seen from the above definition of ∆µν .
We can show that the terms with projectors PµPν and pipj will not contribute to a closed
Wilson loop. Thus we also do not need take care of the gauge part. We state this as a
theorem:

Theorem 1.
Any smooth closed Wilson loop parametrized by x(t), t ∈ I ⊂ R does not receive contributions
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CHAPTER 5. HIGHER ORDER CORRECTIONS TO THERMAL WILSON LOOPS

from any propagator term with index structure PµPν or pipj at leading order in the ’t Hooft
coupling.

To plug these terms of the propagator into the Wilson loop they need to be Fourier
transformed. The idea of the proof is that Pµ can be pulled out of the Fourier transform
as a derivative. Using the prefactor ẋµ1 ẋν2 these can be combined to form derivatives with
respect to the contour parameters ti. Partial integration can then be used to show that only
boundary terms contribute. These are the beginning and end-points of the parametrized
contour and for a closed contour these terms thus vanish. We will proof the theorem in
full detail below.
Note that the straight line Wilson loop as parameterized above is not closed. However, it
would also not be gauge invariant. We therefore assume that we can identify the points
at +∞ and −∞ with each other to thus close the loop1 [63]. Then we can indeed use the
above theorem also for the straight line.
The contribution of the propagator in the Wilson loop comes from

ẋµ1 ẋ
ν
2∆µν(x1 − x2) . (5.13)

Due to the broken Lorentz invariance it is most useful to consider

ẋµ(t) =
⎛
⎝
a(t)
b⃗(t)
⎞
⎠

µ

. (5.14)

where the unorthodox convention ẋµ = (a, b⃗) is introduced for later convenience. Theorem
(1) shows that terms with PµPν structure can contribute only with boundary terms in case
the loop is not closed. The same holds for pipj analogously.
Let us look at how ẋµ(t1)ẋν(t2) contracts with the two projectors. We ignore the fact that
the projectors are in momentum space as the momentum space dependence will eventually
be Fourier transformed. For the transverse case we obtain only the spatial components

ẋµ(t1)ẋν(t2)P̂µν = b⃗(t1)b⃗(t2) −
[b⃗(t1)p⃗] [b⃗(t1)p⃗]

∣p⃗∣2 = b⃗(t1)b⃗(t2) . (5.15)

As argued above the second term does not contribute. For the longitudinal contribution
we find the opposite, only the time component contributes:

ẋµ(t1)ẋν(t2)Q̂µν = ẋµ(t1)ẋµ(t2) −
[ẋµ(t1)Pµ] [ẋν(t1)Pν]

P 2 − b⃗(t1)b⃗(t2) +
[b⃗(t1)p⃗] [b⃗(t1)p⃗]

∣p⃗∣2

= a(t1)a(t2) + b⃗(t1)b⃗(t2) − b⃗(t1)b⃗(t2) = a(t1)a(t2) . (5.16)

1An alternative way to get gauge invariance would be to calculate the Wilson line sandwiched between
two fields.
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Again we canceled structures with PµPν . As mentioned above this result is independent of
the momentum. We can clearly make one crucial observation from this.

Corollary 1.
Non-constant Wilson loop contours in the 0-direction (time) allow only for longitudinal
contributions.
Non-constant Wilson loop contours in the i-directions (space) allow only for transverse
contributions.

Wilson loops that include both, transverse and longitudinal terms thus must come from
contours that are in the 0− and also in the i-directions. Further note that constants in the
parameterization of the contour are of no importance as the contributions depend only on
ẋµ(t) = ∂xµ(t)/∂t.
The theorem 1 implies that for closed Wilson loops in the spatial directions the gauge-
propagator to consider is

∆µν =
δµν

P 2 −ΠT

+ . . . = δiµδjν
δij

P 2 −ΠT

+ . . . . (5.17)

where the dots represent all terms which do not contribute. Similarly this is also what
contributes for the straight line.

Let us now proof theorem 1 in detail.

Proof. to move poles away from the real axis which is usually omitted, one clearly ones
Recall the transverse and longitudinal projectors (5.12),

Pµν = ηµν − uµuν +
(Pµ − ωuµ)(Pν − ωuν)

ω2 − P 2 and (5.18a)

Qµν = −
([ω2 − P 2]uµ + ωPµ − ω2uµ) ([ω2 − P 2]uν + ωPν − ω2uν)

P 2[ω2 − P 2] , (5.18b)

respectively. Thus we can write the gauge propagator as

∆µν(P ) = ηµν∆1(P ) + PµPν∆2(P ) + uµuν∆3(P ) + (Pµuν + uµPν)∆4(P ) . (5.19)

The contribution of the gauge propagator to the Wilson loop at leading order is

⟨W ⟩1 =
λ

2 ∮I dt⃗ ẋµ1 ẋν2 F [∆µν(P )] (x1 − x2) , (5.20)

where F denotes the Fourier transform. The first two terms of ∆µν(P ) above may
contribute to the Wilson loop following corollary 1. The last term is odd in Pµ and hence
necessarily cancels in the Fourier transform which is naturally even.
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We thus only need to show that PµPν∆2(P ) does not contribute to a closed Wilson loop,
this term is denoted by ⟨̂W ⟩. The idea is to extract the P µP ν dependence from the Fourier
transformation and include it as an external derivative acting on the propagator. This
step is valid if the function ∆2(P ) is continuous differentiable and if ∆2(P ) as well as its
derivative are integrable. Remembering that the propagators get an additional +iε in the
denominator to move poles away from the real axis which is usually omitted, one clearly
sees that for real P the stated assumptions are met.
The only possible pole one would expect is at P = 0 which the +iε shifts to a non-divergent
result. One needs to take the limit ε→ 0 in the end and to be most precise we define the
propagator which has this cut-off as ∆ε

2. Then the P µP ν can be taken out of the Fourier
transform as derivatives.

F [PµPν∆ε(P )] (x) =
∂

∂xµ
∂

∂xν
F [∆ε(P )] (x) =

∂

∂xν
∂

∂xµ
F [∆ε(P )] (x)

=∶ ∂

∂xν
∂

∂xµ
∆̃ε(x) . (5.21)

We want to turn this expression into a total derivative by combining with ẋν2 = ∂xν
2/∂t2,

however, we need to be careful with x1 and x2 appearing in the calculation. The propagator
depends on x1 − x2 and therefore we also want every other factor to have the same
dependence. Therefore we write

∂xν2
∂t2
= −∂(x

ν
1 − xν2)
∂t2

+ ∂x
ν
1

∂t2
= −∂(x

ν
1 − xν2)
∂t2

+ ẋν1δ(t1 − t2) . (5.22)

The Dirac delta function in the last term will set the insertion points of the propagators
into the Wilson loop to the same point. This will cause a divergence which is well known
in the literature and can be regularized by a mass renormalization of the particle forming
the Wilson loop [125–127]3. We implicitly do this renormalization and can thus assume
the two insertion points never to meet, writing

∂xν2
∂t2
= −∂(x

ν
1 − xν2)
∂t2

. (5.23)

Define the interval on which the Wilson loop is parametrized as I = [a, b] with x(a) = x(b)
as the loop is closed. Then the gauge contribution becomes

⟨̂W ⟩ =λ2 ∫
b

a
dt1 ∫

t1

a
dt2 ẋµ1 ẋν2∆̃µν(x1 − x2)

=λ2 ∫
b

a
dt1 ∫

b

a
dt2 Θ(t1 − t2)ẋµ1 ẋν2∆̃µν(x1 − x2) . (5.24)

2Another way to circumvent the divergence at P = 0 is to define the radial integration in the Fourier
transform as lim

ΛIR→0 ∫
∞

ΛIR
dP . As our result does not depend on the type of regularization we use, we will

stick to the above notation for both.
3For a review see [67].
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∆̃µν is the Fourier transform of the momentum space propagator as defined above. This
implies that in the Wilson loop the part with PµPν is given by

⟨̂W ⟩ =λ2 ∫
b

a
dt1 ∫

b

a
dt2 Θ(t1 − t2)ẋµ1 ẋν2 (

∂

∂xν
∂

∂xµ
∆̃2,ε) (x1 − x2)

= − λ2 ∫
b

a
dt1 ∫

b

a
dt2 Θ(t1 − t2 − ε)

∂

∂t1

∂

∂t2
∆̃2,ε(x1 − x2) (5.25)

= − λ2 ∫
b

a
dt1 ([Θ(t1 − t2)

∂

∂t1
∆̃2,ε(x1 − x2)]

b

t2=a
−

−λ2 ∫
b

a
dt2 δ(t1 − t2)

∂

∂t1
∆̃2,ε(x1 − x2)) .

In the last step we partially integrated by moving the derivative with respect to t2. The t2

integral in the second term sets x1 = x2 and thus the t1 derivative acts on a constant, thus
vanishing

∫
b

a
dt2 δ(t1 − t2)

∂

∂t1
∆̃2,ε(x(t1) − x(t2)) =

∂

∂t1
∆̃2,ε(0) = 0 . (5.26)

For the remaining piece we can plug in the boundaries. Θ(t1 − a) does not change
the integration boundaries while Θ(t1 − b) sets the lower boundary to b. Again partial
integration can be used to solve these integrals such that we only get boundary terms.

⟨̂W ⟩ = λ2 ∫
b

a
dt1

∂

∂t1
∆̃2,ε(x(t1) − x(a)) −

λ

2 ∫
b

b
dt1

∂

∂t1
∆̃2,ε(x(t1) − x(b))

= λ2 [∆̃2,ε(x(b) − x(a)) − ∆̃2,ε(0)] . (5.27)

Using x(a) = x(b) yields

⟨̂W ⟩ = λ2 [∆̃2,ε(0) − ∆̃2,ε(0)] = 0 . (5.28)

This completes the proof. ∎

5.3 Thermal self-energy of N = 4 supersymmetric
Yang-Mills theory

One key ingredient we need for the order λ2 calculation of the WLs are the self-energy and
vacuum polarization of the scalar and vector field, respectively. They will enter through
diagrams in the second order correction as explained in the introduction, see Figure 1.1c.
Unlike in the zero temperature case [62] the insertion of the self-energy will not cancel
against the insertion of a vertex (Figure 1.1d).
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Thermal self-energies are known quantities in textbooks on thermal QFTs [47, 53, 100],
however, their computation usually involves a nontrivial integration over hyperbolic
functions that cannot be solved analytically. One known approach to thermal theories
is the Hot Thermal Loop expansion [119]. Internal and external momenta are separated
in soft p ∼

√
λT and hard p ∼ T momenta. While In this section we apply the two above

theories to a concrete example. Let us consider N = 4 SYM theory at a finite temperature
T . We calculate the scalar self-energy and the vacuum polarization without focusing on
the presence of the Wilson loops into which they will be inserted in later.

5.3.1 Vacuum polarization and scalar self-energy

We want to obtain the vacuum polarization and scalar self-energy starting from the
Lagrangian, focusing only on the T ≠ 0 terms as the Wilson loop at zero temperature is
well known [62,63,67].
Loop integrals at zero temperature can be calculated using the known methods presented
for example in [128]. For loop integrals at finite temperature we will use the imaginary
time formalism [47, 53, 100]. This yields that frequency sums must be evaluated. The
relevant frequencies are ω̂n = 2nπβ for Bosonic and ωn = (2n + 1)πβ for Fermionic loops,
respectively. Recall that we introduced the inverse temperature β = 1/T . The frequency
sums are then given by the hyperbolic cotangent (Bosons) or hyperbolic tangent (Fermions)
functions times the residues of the propagators [47,53,100]. It is then easy to separate the
zero temperature contribution by introducing the Bose-Einstein and Fermi-Dirac statistics

coth(∣p0∣
2T ) = 1 + 2nB(∣p0∣) = 1 + 2

e∣p0 ∣/T − 1 , (5.29)

tanh(∣p0∣
2T ) = 1 − 2nF (∣p0∣) = 1 − 2

e∣p0 ∣/T + 1 . (5.30)

The more precise formula for Bosons reads

T ∑
n∈Z

f(p0 = iω̂n) = −
1
2 ∑
p̃=poles of f

Resp0=p̃ [f(p0)] coth( p̃2T ) . (5.31)

For Fermions the hyperbolic cotangent is replaced by a hyperbolic tangent because of the
different statistics of Matsubara frequencies.
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5.3.1.1 Scalar Self-Energy

Following the Lagrangian (1.56) and the Feynman rules (J.2) we find four diagrams for
the scalar self-energy:

(Σ1,f)abIJ ∶ = g2
P

Q

Q+ P

P

a I b J

= 4λδabδIJ ⨋
Q
[ 2
Q2 −

P 2

Q2(Q + P )2 ] , (5.32a)

(Σ1,sv)abIJ ∶ = g2

P Q

P +Q

P

a I b J

= 2λδabδIJ ⨋
Q
[ 1

2Q2 +
P 2

Q2(Q + P )2 ] , (5.32b)

(Σ1,s)abIJ ∶ = g2

P

Q

P

a I b J

= −5λδabδIJ ⨋
Q

1
Q2 , (5.32c)

(Σ1,v)abIJ ∶ = g2

P

Q

P

a I b J

= −4λδabδIJ ⨋
Q

1
Q2 . (5.32d)

The additional g2 was added due to the discussion in 3.2.1. Moreover, here we used the
notation P = (p0, p⃗), Q = (q0, q⃗) and

⨋
Q
∶= T

∞
∑
n=−∞

∫
dd−1q

(2π)d−1
T=0ÐÐ→ ∫

ddQ
(2π)d . (5.33)

The full scalar self-energy is then given by the sum of all four diagrams

(Σ1)abIJ = (Σ1,f)abIJ + (Σ1,sv)abIJ + (Σ1,s)abIJ + (Σ1,v)abIJ , (5.34)
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however, we need to pay attention to the different statistics for Bosons and Fermions
when adding the different contributions. Because of this some terms which cancel at zero
temperature due to a relative minus sign will give non-vanishing contributions in the
thermal case yielding for example the thermal mass [47,53,100].
Note also that we did not yet include the external propagators of the diagram proportional
to (g2/P 2)2 which will, together with the N from the Wilson loop exponential yield a
prefactor of g4N2 = λ2 as is expected for this order of perturbation.

5.3.1.2 Vacuum Polarization

For the vacuum polarization of the vector field we find

(Π1,f)abµν ∶ = g2
P

Q

Q+ P

P

µa ν b

= −4λδab (P 2ηµν − PµPν)⨋
Q

1
Q2(Q + P )2 − 16λδab⨋

Q

QµQν

Q2(Q + P )2 (5.35a)

+ 4λδabPµPν ⨋
Q

1
Q2(Q + P )2 + 8λδab⨋

Q

ηµν
Q2 ,

(Π1,s)abµν ∶ = g2
P

Q

Q+ P

P

µa ν b

= 12λδab⨋
Q

QµQν

Q2(Q + P )2 − 3λδabPµPν ⨋
Q

1
Q2(Q + P )2 , (5.35b)

(Π1,vg)abµν ∶ = g2
P

Q

Q+ P

P

µa ν b
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+ g2
P

Q

Q+ P

P

µa ν b

= 2λδab (P 2ηµν − PµPν)⨋
Q

1
Q2(Q + P )2 + 4λδab⨋

Q

QµQν

Q2(Q + P )2 (5.35c)

− λδabPµPν ⨋
Q

1
Q2(Q + P )2 ,

(Π1,ts)abµν ∶ = g2

P

Q

P

µa ν b

= −6λδab⨋
Q

ηµν
Q2 (5.35d)

(Π1,tv)abµν ∶ = g2

P

Q

P

µa ν b

= −2λδab⨋
Q

ηµν
Q2 . (5.35e)

The full vacuum polarization at one loop is given by

Πab
1µν = (Π1,f)abµν + (Π1,s)abµν + (Π1,vg)abµν + (Π1,ts)abµν + (Π1,tv)abµν . (5.36)

Mind again fermionic and bosonic statistics. Although the ghosts are anti-commuting
Grassmann fields we set their statistic to be bosonic following [53,129]. Therefore, only
(Π1,f)abµν is a fermionic integral.

5.3.1.3 Contribution From The Divergence

The full results for the scalar self-energy and the vacuum polarization are

Σ = −8λ⨋
Q
(δB − δF )

1
Q2 + 2λP 2⨋

Q
(δB − 2δF )

1
Q2(Q + P )2 , (5.37a)

Πµν = −8ληµν ⨋
Q
(δB − δF )

1
Q2 + 2λ (P 2ηµν − PµPν)⨋

Q
(δB − 2δF )

1
Q2(Q + P )2 (5.37b)

− 4λPµPν ⨋
Q
(δB − δF )

1
Q2(Q + P )2 + 16λ⨋

Q
(δB − δF )

QµQν

Q2(Q + P )2 .
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Again, δB indicates Bosonic Matsubara frequencies ω̂m = 2πmT while δF indicates Fermionic
Matsubara frequencies ωm = π(2m + 1)T with m ∈ Z. These frequencies are the ones
associated to the loop momentum Q2 = (iωm)2 − ∣q⃗∣2 where we defined furthermore

⨋
Q
= T

∞
∑

m=−∞
∫

d3q

(2π)3 . (5.38)

These integrals are evaluated using expansions in high and low temperatures. At exactly
zero temperature we can simply add the above results and find, including also the external
propagators explicitly [62]

Σab
1 IJ = −12g4NδIJδ

ab Γ(ε)
3!(4π)2

1
P 2 , (5.39a)

Πab
1µν = −12g4NδIJδ

ab Γ(ε)
3!(4π)2

ηµν − PµPν/P 2

P 2 . (5.39b)

We used dimensional regularization in d = 4 − 2ε dimensions to compute

∫
d4−2εQ

(2π)4−2ε
1

Q2(Q + P )2 =
Γ(ε)
(4π)2 . (5.40)

For the calculation of the Wilson loop it is important that we have the same prefactor for
the scalar and vector fields, such that we can combine their respective contributions as
we did for the ladder diagrams. The above result reproduced the well known one from
Erickson, Semenoff and Zarembo [62]. We will not go into details of how the divergence
for ε→ 0 is renormalized and the Wilson loop computed as this is done in the cited paper.

5.3.1.4 Longitudinal And Transverse Parts

From the general vacuum polarization the longitudinal and transverse part can be obtained
via

ΠL = −
P 2

∣p⃗∣2u
µuνΠµν , (5.41a)

ΠT = −
1
2ΠL +

1
2η

µνΠµν , (5.41b)

respectively [100,123,124]. This yields the two expressions

ΠL = −
P 2

∣p⃗∣2 [λT
2 + 2λ(P 2 − 6p2

0)⨋
Q

δB
Q2(Q + P )2 + 4λ(P 2 − 2p2

0)⨋
Q

δF
Q2(Q + P )2

+16λ⨋
Q
(δB − δF )

q2
0

Q2(Q + P )2 ] (5.42a)
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ΠT = −
1
2ΠL + λT 2 + λP 2⨋

Q

δB − 4δF
Q2(Q + P )2 . (5.42b)

5.3.2 Frequency sum and angular integral

To obtain a final expression for the self energies we need to evaluate the frequency sum
and an integral over the three-momentum. Without expansion it is possible to sum all
Matsubara frequencies and to evaluate the angular part of the integral. The result of this
calculation for the polarizations is known [123] and therefore we will here go through the
calculation for the scalar self-energy.
Recall

Σ = −8λ⨋
Q
(δB − δF )

1
Q2 + 2λP 2⨋

Q
(δB − 2δF )

1
Q2(Q + P )2 . (5.43)

with P 2 = p2
0 − ∣p⃗∣2 and Q2 = −ω2

n − ∣q⃗∣2. The Matsubara frequency sums are obtained by
using residues as follows

T ∑
n∈Z

f(q0 = iω̂n)δB = −
1
2 ∑
q̃=poles of f

Resq0=q̃ [f(q0)] × coth( ∣q̃∣2T ) , (5.44a)

T ∑
n∈Z

f(q0 = iωn)δF = −
1
2 ∑
q̃=poles of f

Resq0=q̃ [f(q0)] × tanh( ∣q̃∣2T ) . (5.44b)

Using this we find

Σ = 4λ∫
d3q

(2π)3
1
q

⎡⎢⎢⎢⎢⎣
4csch( q

T
) −

P 2 (p2
0 + q2 − ∣p⃗ − q⃗∣2) tanh ( q2T ) (coth2 ( q2T ) − 2)
−2p2

0 (q2 + ∣p⃗ − q⃗∣2) + p4
0 + (q2 − ∣p⃗ − q⃗∣2)2

⎤⎥⎥⎥⎥⎦
. (5.45)

In the next step we turn to the angular integral by using spherical coordinates d3q =
r2 sin(θ)drdθdφ and (p⃗− q⃗)2 = p2+q2−2pq cos(θ). As the integral over φ is trivial it simply
yields a factor 2π while after integrating over θ we find

Σ = λ

4π2 ∫
∞

0
dq [32qcsch( q

T
) + P

2

p
(coth( q

T
) − 3csch( q

T
) − 1)×

log((p − p0 − 2q)(p + p0 − 2q)
(p − p0 + 2q)(p + p0 + 2q))] . (5.46a)

Similarly the longitudinal and transverse polarization can be obtained. The calculation is
known [123] and we find

ΠT =
λ

8π2p3 ∫
∞

0
dq (coth( q

T
) − 1) [16qpeq/T (p2p2

0) + (p2 − p2
0)

((eq/T (2(p0 − 2q)2 + p2) − p2) log (1 − 2p
2q + p − p0

)
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+ (p2 − eq/T (2(2q + p0)2 + p2)) log ( 2p
2q − p + p0

+ 1)

+16qp0e
q/T log (p + p0

p0 − p
))] (5.46b)

ΠL =
λ

8π2p3 (p
2 − p2

0)∫
∞

0
dq (coth( q

T
) − 1)×

× [(eq/T (3p2 − 4(p0 − 2q)2) − p2) log (1 − 2p
2q + p − p0

)

+ (eq/T (4(2q + p0)2 − 3p2) + p2) log ( 2p
2q − p + p0

+ 1)

−32qp0e
q/T log (p + p0

p0 − p
) + 32qpeq/T ] . (5.46c)

These integrals over q cannot be solved without expanding. Therefore we need to consider
different limits.

5.3.3 High and small temperature limits

Let us assume that T →∞ and that further P << T . This is in fact the same assumption
also made for the Hard Thermal Loop approximation [119] where one sets P ∝

√
λT . For

the high temperature limit first rescale q → Tq and in the next step expand around high
temperature. This yields

Σ(T→∞)(p0, p) =
8λT 2

π2 ∫
∞

0
dq q csch(q)

− λ

2πq ∫
∞

0

dq
q
(p2 − p2

0) tanh(q2)(coth(q2) − 1)(coth(q2) + 2) , (5.47a)

Π(T→∞)T (p0, p) = −
2T 2

π2p3 ∫
∞

0
dq (eqqλp0(coth(q) − 1) ((p2

0 − p2) log (p + p0

p0 − p
) − 2pp0))

− λ(p
2 − p2

0)
12π2 ∫

∞

0

dq
q
(5eq − 3) (coth(q) − 1) +O ( 1

T 2) , (5.47b)

Π(T→∞)L (p0, p) =
4λT 2

π2p3 ∫
∞

0
dq eqq(coth(q) − 1)(p2 − p2

0) (2p − p0 log (p + p0

p0 − p
))

− λ

12π2 (p
2 − p2

0)∫
∞

0

dq
q
(5eq − 3) (coth(q) − 1) +O ( 1

T 2) . (5.47c)

For all three cases the first integral is readily evaluated. The second integral, however,
suffers from an IR divergence which we will regularize by a cut-off εq. Furthermore the
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constant part can only be computed analytically. All in all we thus find

Σ(T→∞)(p0, p) = 2λT 2 + 2λ (p2
0 − p2)( 1

2π2εq
− log(εq)

4π2 + c1) +O (
1
T 2) ,

Π(T→∞)T (p0, p) =
λT 2p0

2p3 ((p
2
0 − p2) log (p + p0

p0 − p
) − 2pp0)

+ λ (p2
0 − p2)(− 1

6π2εq
+ log(εq)

4π2 + c2) +O (
1
T 2) , (5.48)

Π(T→∞)L (p0, p) =
λT 2 (p2

0 − p2)
p3 (2p − p0 log (p + p0

p0 − p
))

+ λ(p2 − p2
0)(−

1
6π2εq

+ log(εq)
4π2 + c2) +O (

1
T 2) .

The leading order does indeed agree with the HTL limit in [123]. The constants came
from numeric integration with

c1 ≃ 0.07659513875211767 , c2 ≃ 0.014887402805171021 (5.49)

Assuming that the temperature is smaller than any other scale is very similar and in this
case the remaining integral is readily evaluated in all cases such that we find

Σ(T→0)(p0, p) = Σ(T=0)(p0, p) +
2λT 2

3 − 44π2λT 4(p2 + 3p2
0)

45(p2 − p2
0)2

+O (T 6) ,

Π(T→0)
T (p0, p) = Π(T=0)T (p0, p) +

λT 2

3 − 4π2λT 4 (13p2 + 9p2
0)

45(p2 − p2
0)2

+O (T 6) , (5.50)

Π(T→0)
L (p0, p) = Π(T=0)L (p0, p) +

λT 2

3 + 4π2λT 4 (17p2 − 9p2
0)

45 (p2 − p2
0)

2 +O (T 6) .

Once again, we do not write out the T = 0 result (5.39) explicitly as it is known from [62].

5.3.4 Fourier transform of the corrected propagator

The most straight forward but naive calculation is to take the self-energy corrections (5.48)
and (5.50) as they are and plug them into the Wilson loops. This involves a 4-dimensional
Fourier transform and the nested integral along the loop contour. Due to the involved
structure of the self-energy which needed to be expanded we use one further simplification
before considering the Fourier transform.
Let us move to the calculation of the straight Wilson line which we define to be entirely in
the spatial x3 = z direction as an example. The point at which the straight line attaches
to the thermal circle should in principle be kept arbitrary. Therefore we will average over
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all points x0 ∈ [0, 1/T] thus taking the thermal average. Let f(ω̂n, p⃗) be the insertion
to the Wilson loop in momentum space and f̃(x0, x⃗) its Fourier transform according to
Equation (5.51). From this the thermal average is defined as

f̃th. av.(x⃗) = ∫
1/T

0 dx0 f̃(x0, x⃗)

∫
1/T

0 dx0 1
= T ∫

1/T

0
dx0

∞
∑
n=−∞

∫
d3p

(2π)3f(ω̂n, p⃗)e
iω̂nx0−ip⃗x⃗

= T ∫
d3p

(2π)3f(ω̂n = 0, p⃗)e−ip⃗x⃗ . (5.51)

We used that

T ∫
1/T

0
dx0 e

iω̂nx0 = −i−1 + e
2iπn

2πn = 0 ∀n ∈ Z / {0} and lim
n→0
(−i−1 + e

2iπn

2πn ) = 1 .

(5.52)

Therefore, by taking the thermal average we pick up only the zero mode in the self-energies
and do a three dimensional Fourier transform with prefactor4 T . Note, however, that this
smearing cannot be used for the Polyakov loop which lies on the thermal circle.

When considering Wilson loops we can use the smearing introduced in the above Equation
(5.51). By taking the thermal average we effectively set p0 = 0 which thus simplifies the
self-energies and vacuum polarization we consider. They are given for the high and low
temperature limit by Equations (5.48) and (5.50), respectively. They read

Σ(T→∞)(0, p) = 2λT 2 − 2λp2 ( 1
2π2εq

− log(εq)
4π2 + c1) +O (

1
T 2) ,

Π(T→∞)T (0, p) = λp2 (− 1
6π2εq

+ log(εq)
4π2 + c2) +O (

1
T 2) , (5.53)

Π(T→∞)L (0, p) = 2λT 2 + λp2 (− 1
6π2εq

+ log(εq)
4π2 + c2) +O (

1
T 2) .

and

Σ(T→0)(0, p) = Σ(T=0)(0, p) + 2λT 2

3 − 44π2λT 4

45p2 +O (T 6) ,

Π(T→0)
T (p0, p) = Π(T=0)T (0, p) + λT

2

3 − 52π2λT 4

45p2 +O (T 6) , (5.54)

Π(T→0)
L (0, p) = Π(T=0)L (0, p) + λT

2

3 + 68π2λT 4

45p2 +O (T 6) .

4The fact that this prefactor is present can for example be seen by dimensional analysis.
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The remaining Fourier transform is then rather straight forward. Using Equations (5.51)
we are interested for each of these self-energies in the propagators

∆Π(x) = ∫
d3p

(2π)3
Π(p0 = 0, p)

p4 eip⋅x . (5.55)

The Fourier transformations for a massless propagator in three dimensions5 is [62,128]

∫
d3p

(2π)3
eip⋅x

(p2)a =
Γ (3

2 − a)
4aπ3/2Γ(a)

1
(x2)3/2−a . (5.56)

We have three different powers of interest given through the above self-energies, namely
we need

∫
d3p

(2π)3
eip⋅x

(p2)1 =
1

4π∣x∣ , ∫
d3p

(2π)3
eip⋅x

(p2)2 = −
∣x∣
8π , ∫

d3p

(2π)3
eip⋅x

(p2)3 =
∣x∣3
96π . (5.57)

Note the negative sign which arises in the second integral. This will be the leading behavior
in the high and the low temperature limit alike. Due to this integral the overall sign of
the result will be negative. Comparing with the general formula above this sign comes
from Γ(−1/2) = −2√π.
From this we can write down a propagator for all the self-energies above. Note that we
have to add an additional factor of T coming from the thermal average (5.51).

∆(T→∞)Σ (x) = −λT
3

4π ∣x∣ −
λT

2π∣x∣ (
1

2π2εq
− log(εq)

4π2 + c1) +O (
1
T
) ,

∆(T→∞)ΠT
(x) = λT

4π∣x∣ (−
1

6π2εq
+ log(εq)

4π2 + c2) +O (
1
T
) , (5.58)

∆(T→∞)ΠL
(x) = −λT

3

4π ∣x∣ +
λT

4π∣x∣ (−
1

6π2εq
+ log(εq)

4π2 + c2) +O (
1
T
) ,

∆(T→0)
Σ (0, p) =∆(T=0)Σ (0, p) − λT

3

12π ∣x∣ −
11πλT 5

1080 ∣x∣
3 +O (T 7) ,

∆(T→0)
ΠT

(p0, p) =∆(T=0)ΠT
(0, p) − λT

3

24π ∣x∣ −
13πλT 5

1080 ∣x∣
3 +O (T 7) , (5.59)

∆(T→0)
ΠL

(0, p) =∆(T=0)ΠL
(0, p) − λT

3

24π ∣x∣ +
17πλT 4

1080 ∣x∣
3 +O (T 7) .

As mentioned above, all these correlators (except for ∆ΠT
) have a leading order contribution

proportional to −T 3∣x∣ with the negative sign coming from the above Fourier transform.

5The temporal dimension is not relevant anymore due to the thermal average.
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These propagators can thus be used in the calculation of the self-energy insertions of the
Wilson loops we consider below.

5.4 The circular Wilson loop

Given the results of the previous sections it is now straight foreward to calculate the
circular Maldacena-Wilson loop at order λ2 in the weak coupling expansion. The contour
of the circular loop with radius R ∈ R+ is parameterized (??) by

C ∶ xµ(t) = (0 , R cos(t) , R sin(t) , 0) , t ∈ [0,2π] .

As derived in the previous chapter, we can calculate the Wilson loop perturbatively by
expanding the exponential. The first terms of this expansion are given in Equations(2.38)

⟨W (C)⟩ ≈1 + 1
2N

⃗Ptr ⟨∫
2π

0
dt1 ∫

t1

0
dt2 (iAµ1ẋ

µ
1 +Φr 1∣ẋ1∣nr) (iAν 2ẋ

ν
2 +Φs2∣ẋ2∣ns)⟩

+ 1
3!N

⃗Ptr ⟨∫
2π

0
dt1 ∫

t1

0
dt2 ∫

t2

0
dt3 (iAµ1ẋ

µ
1 +Φr 1∣ẋ1∣nr)×

(iAν 2ẋ
ν
2 +Φs2∣ẋ2∣ns) (iAρ3ẋ

ρ
3 +Φt3∣ẋ3∣nt) ⟩ + . . . . (5.60)

where we used the notation Aµ i = Aµ(x(ti)), ΦI i = Φr(x(ti)) and xi = x(ti). When taking
the expectation value ⟨. . .⟩ we Wick contract the bosonic fields among themselves or with
fields from the expansion of the Euclidean action. We work in perturbation theory around
small ’t Hooft coupling λ = g2N as well as in the large N limit6. This means that we only
need to consider planar diagrams of low loop order. As derived in chapter 3.2.1 the above
expansion of the exponential is indeed also an expansion in weak coupling λ. The leading
order diagrams following from this expansion were shown in Figure 1.1 for the circular
loop.

The first order diagram has been calculated in the above Section 3.2.1. We saw that at
this order corrections to the zero temperature result [62] arose from the corrected bare
thermal propagator [111] and we obtained the result in an expansion around small and high
temperature. The result was found to entirely depend on the dimensionless combination
RT between the temperature and the radius of the circular Wilson loop. Finally we
obtained (3.120):

⟨W◯⟩(RT→∞) = 1 + λ2 RT +O (λ
2,

λ

(RT )n) , ∀n ∈ N

6More precisely we take N →∞ and g → 0 while keeping λ = g2N ≪ 1 fixed.
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⟨W◯⟩(RT→0) = 1 + λ8 + λ
(RT )2π2

12 − λ(RT )
4π4

60 +O(λ2, λ(RT )6) .

In this chapter we focus on the corrections of the next order in the weak coupling expansion,
λ2. The diagrams in Figure 1.1b, 1.1c and 1.1d show the three contributions we need to
consider.
The rainbow diagram, the insertion of two bare propagators, is relatively easy and follows
straight forwardly from the calculation of a single insertion at lower order. For the self
energy we need to insert the corrected propagator at one-loop order. This propagator was
derived in a thermal average in Section 5.3 from the self-energies in momentum space.
Again we thus only need to insert the parameterization of the WL and integrate its contour.
The vertex insertion features an additional spacetime integral over the insertion point of
the vertex which can be chosen arbitrarily. Due to the more complex structure of this
insertion and the additional integral even in the thermal limits we were only able to obtain
numeric results.

5.4.1 Rainbow diagram

The rainbow diagram in Figure 1.1b,

⟨W(b)⟩β = , (5.61)

follows straight from the one at lower order, Figure 1.1a. For the single propagator insertion
we considered a loop to loop propagator

(∣ẋ1∣∣ẋ2∣ − ẋ1 ⋅ ẋ2)∆(T≠0)(x1 − x2) = sin( t1 − t22 ) coth(2πRT sin( t1 − t22 )) , (5.62)

which was then integrated along the parameterization (??) with t1 > t2. The hyperbolic
cotangent function had to be expanded around small and high values of the dimensionless
parameter RT on which the circular WL naturally depends. Finally the result (3.120) was
obtained after integrating along the contour.
The rainbow diagram of order λ2 similarly has two insertions of the above loop-to-loop
propagator. We need to take into account all possibilities for contractions. Therefore
assume for the insertion points t1 > t2 > t3 > t4. Then the points 12 and 34 can be connected
but similarly also the connection 41 and 23 are possible. As we consider a closed loop the
insertion points on opposite ends are still next to each other. Contrarily a connection 13

143



CHAPTER 5. HIGHER ORDER CORRECTIONS TO THERMAL WILSON LOOPS

and 24 is not relevant as it would lead to a subleading diagram in the large N expansion.
Inserting these two possibilities we find

⟨W(b)⟩β =
λ2

4 ∫
2π

0
dt1∫

t1

0
dt2∫

t2

0
dt3∫

t3

0
dt4×

× [ [(∣ẋ1∣∣ẋ2∣ − ẋ1 ⋅ ẋ2) (∣ẋ3∣∣ẋ4∣ − ẋ3 ⋅ ẋ4)]∆(T≠0)(x1 − x2)∆(T≠0)(x3 − x4)+

+ [(∣ẋ1∣∣ẋ4∣ − ẋ1 ⋅ ẋ4) (∣ẋ2∣∣ẋ3∣ − ẋ2 ⋅ ẋ3)]∆(T≠0)(x1 − x4)∆(T≠0)(x2 − x3)]

= (RT )
2λ2

64π2 ∫
2π

0
dt1∫

t1

0
dt2∫

t2

0
dt3∫

t3

0
dt4× (5.63)

[sin( t12

2 ) coth(2πRT sin( t12

2 )) sin( t34

2 ) coth(2πRT sin( t34

2 ))+

+ sin( t14

2 ) coth(2πRT sin( t14

2 )) sin( t23

2 ) coth(2πRT sin( t23

2 ))] ,

where tij = ploopi−tj . As in the one loop case we will expand the dimensionless combination
of temperature and radius of the circular loopRT before evaluating the contour integrations.
At small RT we expand around 0 and integrate term by term. For RT →∞ we set the
hyperbolic cotangent to 1 and then evaluate the integral. We will compare both of these
results with the numerically integrated values.

The hyperbolic cotangent function is expanded according to Equation (3.116) around
RT = 0. The terms can be multiplied out between the two hyperbolic functions yielding
different powers of π at the same order in RT . Integrating over the contour then yields
the final result

⟨W(b)⟩RT→0 = λ2 [ 1
192 + (RT )

2 ( π
2

144 −
1
96) + (RT )

4 ( π4

1080 −
7π2

1152) +O ((RT )
6)] . (5.64)

Figure 5.2 shows the result of the expansion compared with the numerical value. We see
a very nice fitting for RT < 0.4 which could in principle be improved by including also
higher orders in the expansion. Again one could attempt to look for a general expression
for arbitrary powers of RT . As mentioned in Section 3.2.1 the known series expansion of
the hyperbolic cotangent has a certain radius of convergence yielding that only for RT < 1/2
the expansion would be valid. Figure 5.2, however, shows that in this regime good results
can be obtained already by a simple perturbative expansion.

For large RT we again take the hyperbolic cosine to be one as explained above, see
Equation (3.118). Then the t integrals can be carried out readily and we find a quadratic
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5.4. THE CIRCULAR WILSON LOOP

Figure 5.2: Plot of ⟨W(b)⟩β/g4N2 for RT between 0 and 0.7. The blue line is the expansion
up to order O((RT )6). The black dots represent the numerically integrated values. We
again added the vertical line at RT = 0.4 to indicate where the perturbation seemingly
breaks down.

dependence on the dimensionless combination RT ,

⟨W(b)⟩RT→∞ =
λ2

24 (RT )
2 +O ((RT )n) , ∀n ∈ N . (5.65)

We thus expect to see a quadratic behavior which can in fact be seen to fit the numerical
values. This is shown in Figure 3.2. This is an interesting observation. In the RT →∞
limit each propagator comes with RT to the power one. Therefore the rainbow diagrams
in the high temperature limit are expected to precisely yield a dependence of (λRT )n at
order n in the small coupling expansion. While this observation certainly is interesting
we will see below that the self-energy and vertex diagram at quadratic order in the weak
coupling yield a cubic dependence on the dimensionless combination RT . Therefore the
rainbow diagram is actually subleading in said limit.
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Figure 5.3: Plot of ⟨W(b)⟩β/g2N for RT between 0 and 100. The blue line is the quadratic
function 4π2 (RT )2 while the dots indicate several numerical values.

5.4.2 Self-Energy Insertion

Let us consider the self-energy diagram Figure 1.1c,

⟨W(c)⟩β = 1 , (5.66)

containing the insertion of a single propagators at one loop order. The calculation of the
self-energy and vacuum polarization was considered in chapter 5.3 where also the Fourier
transform of the corrected propagator was obtained. Recall that from the definition of the
WL we find

⟨W(c)⟩β =
N

2 ∫
2π

0
dt1 ∫

t1

0
dt2 (∣ẋ1∣∣ẋ2∣nrns⟨Φa

r 1Φb
s2⟩1 − ẋµ1 ẋν2⟨Aaµ1A

b
ν 2⟩1) , (5.67)

where the correlators as written denote the one-loop corrections to the bare propagators.
Due to theorem 1 we only need to consider the scalar propagator and the transverse parts
of the vector bosons. The propagators we thus consider are given in Equations (5.58)

∆(T→∞)Σ (x) = −λT
3

4π ∣x∣ −
λT

2π∣x∣ (
1

2π2εq
− log(εq)

4π2 + c1) +O (
1
T
) ,
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∆(T→∞)ΠT
(x) = λT

4π∣x∣ (−
1

6π2εq
+ log(εq)

4π2 + c2) +O (
1
T
) ,

∆(T→0)
Σ (x) =∆(T=0)Σ (x) − λT

3

12π ∣x∣ −
11πλT 5

1080 ∣x∣
3 +O (T 7) ,

∆(T→0)
ΠT

(x) =∆(T=0)ΠT
(x) − λT

3

24π ∣x∣ −
13πλT 5

1080 ∣x∣
3 +O (T 7) .

The zero temperature part is known from [62,64, 130] and cancels against the vertex. We
will hence ignore it in the following calculation. Further recall that we used a thermal
average (5.51) for these propagators.

In the limit RT → 0 the parameterzation (1.64) can be inserted with x→ x(t1)−x(t2) and
as usual we satisfy the path ordering by setting t1 > t2. Then the contour integral at each
order is straight forward

⟨W(c)⟩β =λ2T 3∫
2π

0
dt1 ∫

t1

0
dt2
⎡⎢⎢⎢⎢⎣
R2 ⎛
⎝
−
R sin ( t1−t22 )

2π −
11πT 2R3 sin ( t1−t22 )

1080
⎞
⎠

−R2 cos(t1 − t2)
⎛
⎝
−
R sin ( t1−t22 )

12π −
13πT 2R3 sin ( t1−t22 )

1080
⎞
⎠
+O (T 7)

⎤⎥⎥⎥⎥⎦

= − 19λ2(RT )3
9 − 752π2(RT )5

2025 +O (λ2(RT )7) . (5.68)

Compared to the above result (5.64) this diagram is subleading in the limit considered.

The calculation for the limit RT → ∞ is mostly very similar. However, the contour
integration yields a divergence when the insertion points of the correlators coincide. This
is handled by the introduction of a small cut-off parameter εt

⟨W(c)⟩β =λ2T ∫
2π

0
dt1 ∫

t1

0
dt2
⎡⎢⎢⎢⎢⎣
−R2 ⎛
⎝
T 2R sin ( t1−t22 )

2π

− 1
4πR sin ( t1−t22 )

( 1
2π2εq

− log(εq)
4π2 + c1)

⎞
⎠

−R
2 cos(t1 − t2)

8πR sin ( t1−t22 )
(− 1

6π2εq
+ log(εq)

4π2 + c2) +O (
1
T 2)
⎤⎥⎥⎥⎥⎦

= − 2λ2(RT )3 + 1
2λ

2RT

⎡⎢⎢⎢⎢⎣

log (εq) (log ( 4
εt
) − 2)

4π2 +
10 log ( 4

εt
) + 4

12π2εq
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+2c1 log ( 4
εt
) − c2 (log (εt4 ) + 2)] +O ( 1

T 2) . (5.69)

This result depends on the two cut-off parameters εq and εt coming from the loop integration
and the contour insertion points, respectively. The leading term does, however not depend
on these parameters and as mentioned above we see that the self-energy insertion is indeed
of higher order in RT than the rainbow diagram (5.65).

5.4.3 Vertex Diagram

The contribution from the vertex diagram, Figure (1.1d) has three bare propagator
insertions which are connected in a vertex in the bulk

⟨W(d)⟩β = . (5.70)

The insertion point w of the vertex in the bulk is arbitrary and thus we need to integrate it
over the spacetime. As only bare thermal propagators are considered the general structure
does not change from the conformal result which is given in [62]. Let us briefly discuss
how to obtain the vertex expression. There are two possible three point vertices whose
operators can be contracted with the Wilson loop expansion

i3
3! ∮ dt⃗ẋµ1 ẋν2ẋ

ρ
3 ⟨trP [A

µ
1A

ν
2A

ρ
3] (−∫ d4wfabc∂σAaλ(w)Abσ(w)Acλ(w))⟩ ,

i
2!1! ∮ dt⃗∣ẋ1∣ẋµ2 ∣ẋ3∣ ⟨trP [φ1A

µ
2φ3] (−∫ d4wfabc∂νφa(w)Abν(w)φc(w))⟩ . (5.71)

There is always one contraction with a field depending on ti and one depending on w. The
open ẋi whos Ai is contracted with the A(w) that contracts the partial derivative will
lead to terms of the form ẋi∂xj

. The remaining prefactors then form (∣ẋi∣∣ẋj ∣− ẋi ⋅ ẋj). The
path ordering P and the different possibilities of contracting then cancel the prefactors
and yield the introduction of ε(t1t2t3) = 1 for t1 > t2 > t3. The function ε we defined is an
anti-symmetric path ordering symbol.

⟨W(d)⟩β = −
λ2

4 ∮ dt1dt2dt3ε(t1t2t3) (∣ẋ1∣∣ẋ3∣ − ẋ1 ⋅ ẋ3)×

× ẋ2 ⋅
∂

∂x1
∫ d4w ∆(x1 −w)∆(x2 −w)∆(x3 −w) . (5.72)
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∆(x) is the finite temperature propagator which we derived in Equation (3.111). For the
vertex it is important to recall the full expression

∆T≠0
⎡⎢⎢⎢⎢⎣
x =
⎛
⎝
x0

x⃗

⎞
⎠

⎤⎥⎥⎥⎥⎦
= T

8π∣x⃗∣ [coth (πT (∣x⃗∣ + ix0)) + coth (πT (∣x⃗∣ − ix0))] . (5.73)

The vertex depends on operators ∆(x − w) where w = (w0,w1,w2,w3) is the vertex
coordinate over which we integrate and x = (0, x1, x2,0) it the insertion point along the
WL contour. Therefore the full propagator reads

∆(x −w) = T

(4π)3(
coth [πT (

√
(x1 −w1)2 + (x2 −w2)2 +w2

3 + iw0)]
√
(x1 −w1)2 + (x2 −w2)2 +w2

3

+
coth [πT (

√
(x1 −w1)2 + (x2 −w2)2 +w2

3 − iw0)]
√
(x1 −w1)2 + (x2 −w2)2 +w2

3
) . (5.74)

Analogous to all above calculations we are not aware of a possibility to integrate the hyper-
bolic cotangent without expanding. Usually the expansion was around the dimensionless
combination RT between temperature and radius of the circular loop. Let us make this
dependence explicit. Therefore replace xi → Rxi for i ∈ {1,2,3} and the new xi will then
parameterize a unit circle. Furthermore it is useful to substitute w → Rw. The above
propagator thus becomes

∆(x −w) = T

(4π)3R(
coth [πRT (

√
(x1 −w1)2 + (x2 −w2)2 +w2

3 + iw0)]
√
(x1 −w1)2 + (x2 −w2)2 +w2

3

+
coth [πRT (

√
(x1 −w1)2 + (x2 −w2)2 +w2

3 − iw0)]
√
(x1 −w1)2 + (x2 −w2)2 +w2

3
) . (5.75)

The prefactor proportional to T/R will come three times from the three propagators.
Additionally the contour prefactors and the integral measure yield a total R6 such that
finally we will have, before integrating, ⟨W(d)⟩β ∝ (RT )3 coth3(RT (. . .)) meaning that an
expansion around some value of the radius will always match the expansion around that
temperature as we expected.

5.4.3.1 Small radius & temperature

Changing t2 ↔ t3 with respect to Equation (5.72) for the vertex and setting t1 > t2 > t3 we
can write the vertex diagram in the following form

⟨W(d)⟩β =
λ2

4 ∫
2π

0
dt1∫

t1

0
dt2∫

t2

0
dt3 (∣ẋ1∣∣ẋ2∣ − ẋ1 ⋅ ẋ2)×
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× ẋ3 ⋅
∂

∂x1
∫ d4w R2∆(x1 −w)R2∆(x2 −w)R2∆(x3 −w) . (5.76)

The propagators R2∆(xi −w) depend on the combination RT as derived above. We thus
can consider the expansion

R2∆T≠0(x) = RT

8π∣x⃗∣ [coth (πRT (∣x⃗∣ + ix0)) + coth (πT (∣x⃗∣ − ix0))]

= 1
4πx2 +

R2T 2

12 +O ((RT )4) . (5.77)

We use this expansion for all three propagators and combine the expansion keeping only
the leading order in RT . Keeping also expression of the order (RT )4 would yield more
complex expressions. We did not keep them as wee see that even the result for order
(RT )2 can only be obtained by a numerical integration. The vertex diagram (5.72) thus
becomes

⟨W(d)⟩β = −
λ2

4 ∫
2π

0
dt1∫

t1

0
dt2∫

t2

0
dt3 (∣ẋ1∣∣ẋ2∣ − ẋ1 ⋅ ẋ2) ẋ3 ⋅

∂

∂x1
×

×∫ d4w [ 1
(4π2)3(x1 −w)2(x2 −w)2(x3 −w)2

+ (5.78)

+T
2R2 [(x1 −w)2 + (x2 −w)2 + (x3 −w)2]
12(4π2)2(x1 −w)2(x2 −w)2(x3 −w)2

+O(RT )4] .

The first fraction gives precisely the zero temperature term which is treated in [62]. It
eventually can be cancelled against the self-energy insertion Figure 1.1c. The focus will
therefore be on the next order term. Here we see three very similar terms, however, the
first one will vanish because after canceling numerator and denominator it is independent
of x1. Let us therefore focus on the last term as the second term follows by simply taking
x2↔ x3.
For this term we will first calculate the integral over w by introducing Feynman parameters
in the known way. Note that, since we parameterize unit circles with the xi we can set
x2
i = 1. Then the integral we need to compute is

∫ ddw 1
(x1 −w)2(x2 −w)2

= ∫
1

0
dα∫ ddw 1

(w2 +∆)2 = ∫
1

0
dα(2π)

2−εΓ(ε)
2∆ε

, (5.79)

with ∆ = 2(1 − α + α2) + 2α(1 − α)x1 ⋅ x2. We used dimensional regularization in d = 4 − 2ε
dimensions to compute the logarithmically divergent integral. This yielded the gamma
function Γ(ε) which has a simple pole at zero. For the moment we keep the gamma
function as it will eventually vanish when taking the derivative with respect to x1. Before
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calculating further let us include also the operator ẋ3 ⋅ ∂/∂x1 yielding

ẋ3 ⋅
∂

∂x1
∫

1

0
dα(2π)

2−εΓ(ε)
2∆ε

= ∫
1

0
dα(2π)

2−εΓ(ε)(−2ε)ẋ3 ⋅ x2α(1 − α)
2∆1+ε

= −∫
1

0
dα (2π)2ẋ3 ⋅ x2α(1 − α)

2(1 − α + α2) + 2α(1 − α)x1 ⋅ x2
+O(ε) (5.80)

= (2π)
2

2 ẋ3 ⋅ x2
⎛
⎜
⎝

1
1 − x1 ⋅ x2

+
4 arctan (

√
1−x1⋅x2
3−x1⋅x2

)
√
(3 + x1 ⋅ x2)(1 − x1 ⋅ x2)3

⎞
⎟
⎠
.

After acting with the operator ẋ3 ⋅∂/∂x1 we found a factor ε in the numerator which canceled
the divergence εΓ(ε) = 1 +O(ε). Recall that there is also a similar term like this which
needs to be added with the replacement x2 ↔ x3, however ẋ3 must remain unchanged as
we included it only later as an overall operator.
Plugging in our parameterization xi = (0, cos(ti), sin(ti), 0) we see that xi ⋅ xj = cos(ti − tj)
and ẋi ⋅ xj = sin(ti − tj) yielding that ẋ3 ⋅ x3 = sin(0) = 0 and thus the contribution from
replacing x2 ↔ x3 in the above equation vanishes. The first integral over t3 is readily
evaluated

⟨W(d)⟩β =
λ2

4 (RT )
2∫

2π

0
dt1∫

t1

0
dt2∫

t2

0
dt3 (∣ẋ1∣∣ẋ2∣ − ẋ1 ⋅ ẋ2)×

× (2π)
2

2 ẋ3 ⋅ x2
⎛
⎜
⎝

1
1 − x1 ⋅ x2

+
4 arctan (

√
1−x1⋅x2
3−x1⋅x2

)
√
(3 + x1 ⋅ x2)(1 − x1 ⋅ x3)2

⎞
⎟
⎠

= −λ
2π2

2 (RT )2∫
2π

0
dt1∫

t1

0
dt2 (1 − cos(t2))×

×
⎛
⎜⎜⎜
⎝

1 +
4 arctan(

√
1−cos(t12)
3−cos(t12))

√
(3 + cos(t12))(1 − cos(t12))

⎞
⎟⎟⎟
⎠
. (5.81)

The second part of this integration cannot be done analytically. However we see that it
does not depend on any variable and thus we can get a numeric result.

⟨W(d)⟩β ≈ −
λ2π2

2 (RT )2 (2π + 24.94) ≈ −220.51λ2R2T 2 . (5.82)

Comparing this result with the ones from the rainbow diagrams (5.64) and the self-energy
insertion (5.68) we see that as the rainbow diagram it is at leading order in the small RT
expansion while the self-energy insertion is subleading.
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5.4.3.2 High temperature

Instead of small radius we can also consider the limit RT → ∞. As coth(RT → ∞) = 1
to all orders in Taylor expansion, see Equation (3.118), we have to consider a seemingly
simple expression in the high temperature limit

⟨W(d)⟩R→∞ =
λ2

4 (RT )
3∫

2π

0
dt1∫

t1

0
dt2∫

t2

0
dt3 (∣ẋ1∣∣ẋ2∣ − ẋ1 ⋅ ẋ2) ẋ3 ⋅

∂

∂x1
×

× ∫ d4w
1

(8π)3(x1 −w)(x2 −w)(x3 −w)
+O ((RT )n) , ∀n ∈ N . (5.83)

Note that we already substituted x → Rx and w → Rx as discussed above to determine
the dependence on RT . To evaluate the integral over w (the second line in the above
expression) we again introduce Feynman parameters and shift the w integration to find

∫ d4w
3
∏
i=1

1
(xi −w)

= ∫
1

0
dαdβdγ ∫ d4w

δ(α + β + γ − 1)
[α(x1 −w) + β(x2 −w) + γ(x3 −w)]

3/2

= ∫
1

0
dαdβdγ ∫ d4w

δ(α + β + γ − 1)
[w2 +∆]3/2

(5.84)

= −4π∫
1

0
dαdβdγδ(α + β + γ − 1)

√
∆ .

where ∆ depends on the Feynman parameters and insertion points. Plugging this into the
above equation for the vertex insertion we find

⟨W(d)⟩RT→∞ = −π
λ2

2 (RT )∫
2π

0
dt1∫

t1

0
dt2∫

t2

0
dt3 (∣ẋ1∣∣ẋ2∣ − ẋ1 ⋅ ẋ2)×

× ∫
1

0
dαdβdγδ(α + β + γ − 1) ẋ3 ⋅∆′√

∆
+O ((RT )n) , ∀n ∈ N , (5.85)

∆ = α(1 − α)x2
1 + β(1 − β)x2

2 + γ(1 − γ)x2
3 − αβx1x2 − αγx1x3 − βγx2x3 ,

∆′ = ∂∆
∂x1
= 2α(1 − α)x1 − αβx2 − αγx3 .

We can plug in the parametrization of the circle as given in (??), most importantly
xi ⋅ xj = cos(ti − tj) and ẋi ⋅ xj = sin(ti − tj), to find

⟨W(d)⟩R→∞ = π
λ2

2 R
3T 3∫

2π

0
dt1∫

t1

0
dt2∫

t2

0
dt3 (1 − cos(t1 − t2))∫

1

0
dαdβdγ× (5.86)

× δ(α + β + γ − 1) [2α(1 − α) sin(t1 − t3) − αβ sin(t2 − t3)]√
α(1 − α) + β(1 − β) + γ(1 − γ) − αβ cos(t1 − t2) − αγ cos(t1 − t3) − βγ cos(t2 − t3)

+O ((RT )n) , ∀n ∈ N .
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After the integral over the first Feynman parameters we again find an expression which we
need to integrate numerically. Finally we then find

⟨W(d)⟩R→∞ ≈ −3.13187πλ
2

2 R
3T 3 +O ((RT )n) ≈ −4.91952λ2R3T 3 . (5.87)

This result can again be compared with the calculations of the rainbow diagram (5.65)
and the self-energy insertion (5.69). The vertex can be seen to contribute at the same
order in RT while the rainbow diagram is in fact subleading.

5.4.4 Full Thermal Circular Wilson Loop

We are now ready to put all the above results together. Actual results can only be obtained
when taking the limit RT → 0 or RT → ∞, in some cases also a numerical calculation
was necessary. The results for the single propagator insertion were obtained in Equation
(3.120). The second order results for small thermal corrections are derived in Equation
(5.64) for the rainbows, Equation (5.68) for the self-energy and Equation (5.82) for the
vertex. The respective results in the high temperature limit can be found in Equations
5.65, 5.69 and 5.87. All of these results can be combined to the final expression for the
thermal circular Wilson loop

⟨W ⟩β = 1 + ⟨W(a)⟩β
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
O(λ)

+ [⟨W(b)⟩β + ⟨W(c)⟩β + ⟨W(d)⟩β]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

O(λ2)

+O(λ5/2) ,

⟨W(a)⟩RT→0 =
λ

8 + λ
(RT )2π2

12 − λ(RT )
4π4

60 +O(λ(RT )6) ,

⟨W(b)⟩RT→0 =
λ2

192 + λ
2(RT )2 ( π

2

144 −
1
96) +O (λ

2(RT )4) ,

⟨W(c)⟩RT→0 = −
19λ2(RT )3

9 +O (λ2(RT )5) ,

⟨W(d)⟩RT→0 ≈ −220.51λ2R2T 2 +O (λ2(RT )4) ,

(5.88)

⟨W(a)⟩RT→∞ =
λ

2 RT +O (
λ

(RT )n) , ∀n ∈ N ,

⟨W(b)⟩RT→∞ =
λ2

24 (RT )
2 +O ( λ2

(RT )n) , ∀n ∈ N ,

⟨W(c)⟩RT→∞ = −2λ2(RT )3 + 1
2λ

2RT

⎡⎢⎢⎢⎢⎣

log (εq) (log ( 4
εt
) − 2)

4π2
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+
10 log ( 4

εt
) + 4

12π2εq
+ 2c1 log ( 4

εt
) − c2 (log (εt4 ) + 2)

⎤⎥⎥⎥⎥⎦
+O ( λ

2

RT
) ,

⟨W(d)⟩RT→∞ ≈ −4.91952λ2R3T 3 +O ( λ2

(RT )n) , ∀n ∈ N .

5.4.5 Effective coupling

Recall from Equation (2.59) that the 1/4-BPS circular Wilson loop can obtained from the
one preserving half of the symmetries by a redefinition of the coupling [92]. We want to
look at similar relations for the thermal Wilson loop. The coupling λeff is expected to
depend on the parameters RT in an expansion.

⟨W (T=0)
◯ ⟩ (λ→ λeff) = ⟨W (T )

◯ ⟩∣RT→0
. (5.89)

Naturally this replacement can only be obtained for small thermal corrections. In the
high temperature limit we are disconnected from the original zero temperature result for
the circular loop [62]. A zero temperature limit from which the conformal result can be
obtained does not make sense in a high temperature limit.
Therefore recall the results up to order λ2 for the circular Wilson loop at temperature zero
and in the small thermal expansion (5.88)

⟨W (T=0)
◯ ⟩ =1 + λ8 +

λ2

192 +O (λ
3) ,

⟨W (T )
◯ ⟩∣RT→0

=1 + λ8 + λ
(RT )2π2

12 − λ(RT )
4π4

60 + λ
2

96 +
λ2(RT )2

192 − 19λ2(RT )3
9

+ π
2λ2(RT )2

144 − λ
2(RT )2

96 − λ2(RT )2v +O (λ(RT )6, λ2(RT )4, λ5/2) .

Ignoring higher powers in RT we obtain

λ
(RT→0)
eff = λ(1 + 2π2(RT )2

3 − 2π4(RT )4
15 )

− λ2(RT )2 ( 1
12 + 8v) +O (λ(RT )6, λ2(RT )4, λ5/2) , (5.90)

v ≈ −220.51 .
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5.5 The straight line Wilson loop

Let us again recall the definition of the Maldacena Wilson Loop of N = 4 SYM theory as
given in [24,54]

W (C) = 1
N

tr ⃗P exp [∮
C

dt (iAµẋµ +Φr∣ẋ∣nr)] , (5.91)

In this chapter we consider a straight line insertion. By assuming that the points at ±∞
along the straight line can be identified this setup is a closed WL and hence a gauge
invariant observable. The contour of the straight line in the x3 spatial direction can be
generally written as

C ∶ xµ(t) = (0,0,0, f(t)) , t ∈ I , (5.92)

with some interval I ⊂ R as proposed in [63]. To form a proper straight line f(t) needs to
be differentiable and monotonically increasing f ′(t) ≥ 0∀t ∈ I. Furthermore, if we set the
interval to be I = (a, b) for some a < b, then f(t↘ a) = −∞ and f(t↗ b) =∞7. Figure 5.4
shows the leading order corrections to the straight line. At leading order (O(λ)) there is
only the insertion of a bare propagator (Figure 5.4a) while at order λ2 there are a priori
three diagrams contributing. These are essentially the same diagrams we found for the
straight line, see Figure 1.1. We will go through all these diagrams one by one and will see
that most of them will actually have a vanishing contribution. The thermal corrections to
the straight line WL are only obtained from self-energy insertions as the supersymmetry
is manifestly broken in the expansions we consider. Note, however, that the thermal mass
m2
∞ = λT 2 is in fact equal for all fields [123,131].

The straight line is parameterized by xµ(t) = (0,0,0, f(t)) which for all monotonically
increasing8 differentiable functions f yields that the combination between scalar and vector
propagator in fact gives zero readily,

∣ẋ(ti)∣∣ẋ(tj)∣ − ẋ(ti) ⋅ ẋ(tj) = ∣f ′(ti)∣∣f ′(tj)∣ − f ′(ti)f ′(tj) = 0 . (5.93)

The expression (∣ẋ1∣∣ẋ2∣ − ẋ1 ⋅ ẋ2) appears in most of the Wilson loop diagrams. While the
bare propagator gets thermal correction it does not change this structure.
Consider for instance the leading order insertion of a single propagator

⟨Wa⟩ =
λ

2 ∫
b

a
dt1 ∫

t1

a
dt2(∣ẋ1∣∣ẋ2∣ − ẋ1 ⋅ ẋ2)∆T≠0(x12) = 0 , (5.94a)

7The function f can also be monotonically decreasing with f ′(t) ≤ 0∀t ∈ I, f(t ↘ a) = ∞ and
f(t↗ b) = −∞. In this case we would, however, prefer to work with the function f̃(t) = f(a+ b− t) defined
on the same interval which now is monotonically increasing.

8Or monotonically decreasing, see footnote 7.
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Figure 5.4: The diagrams show insertions into the straight Wilson loop at low order.
The thicker line is the circular loop of the heavy particle. The curly and straight line
respectively represent a gauge and a scalar Boson inserted. We most sum over all possible
combinations allowed by the present vertices.

(a) Single propagator insertion, ⟨W(a)⟩. This is the only diagram of order λ.

(b) Ladder diagrams: Insertion of two single propagators,⟨W(b)⟩. These diagrams
contribute at order λ2.

(c) Self-energy insertion, ⟨W(c)⟩. The hatched circle with the 1 stands for any possible
one-loop insertion. This diagram contributes at order λ2.

(d) Vertex insertion, ⟨W ⟩. This diagram contributes at order λ2.
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where the part responsible for the vanishing was marked in red. Similarly for the ladder
diagram at order λ2 and the vertex diagram we find the above prefactor

⟨Wb⟩ =
λ2

4 ∫
bi

a
dt1∫

t1

a
dt2∫

t2

a
dt3∫

t3

a
dt4× (5.94b)

× [ [(∣ẋ1∣∣ẋ2∣ − ẋ1 ⋅ ẋ2) (∣ẋ3∣∣ẋ4∣ − ẋ3 ⋅ ẋ4)]∆(T≠0)(x12)∆(T≠0)(x34)+

+ [(∣ẋ1∣∣ẋ4∣ − ẋ1 ⋅ ẋ4) (∣ẋ2∣∣ẋ3∣ − ẋ2 ⋅ ẋ3)]∆(T≠0)(x14)∆(T≠0)(x23)]

= 0 , (5.94c)

⟨Wd⟩ =
λ2

4 ∫
b

a
dt1∫

t1

−a
dt2∫

t2

−a
dt3(∣ẋ1∣∣ẋ2∣ − ẋ1 ⋅ ẋ2)×

× ẋ3 ⋅
∂

∂x1
∫ d4w ∆(x1 −w)∆(x2 −w)∆(x3 −w) = 0 , (5.94d)

respectively. Only the self-energy diagram will have a non-vanishing contribution coming
from the difference between the scalar self-energy and the vacuum polarization of the
gauge fields,

⟨Wc⟩ =
λ

2 ∫
b

a
dt1 ∫

t1

a
dt2 [∣ẋ1∣∣ẋ2∣F [

Σ(P )
P 4 ] (x12) − ẋµ1 ẋν2F [

Πµν(P )
P 4 ] (x12)]

= λ2 ∫
b

a
dt1 ∫

t1

a
dt2F [

Σ(P ) −ΠT (P )
P 4 ] (x12) . (5.94e)

The calligraphic F denotes the Fourier transform, Σ(P ) is the scalar self-energy and
Πµν(P ) the vacuum polarization of the gauge field. They were calculated and Fourier
transformed in the above chapter 5.3. The contribution above only came from self energy
diagrams. Therefore this is the only diagram we need to consider in our calculations. Note
that we already substituted in the transverse polarization via theorem 1.

We parameterize the Wilson loop by a linear function. This is the easiest choice for the
function f(t) satisfying all of the above requirements,

xµ(t) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
0
t

⎞
⎟⎟⎟⎟⎟⎟
⎠

, t ∈ [−L2 ,
L

2 ] for L→∞ . (5.95)
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We know the Fourier transform of the self-energy diagrams from Equation (5.58) in a limit
of large and small temperature where the thermal average (5.51) was used,

∆(T→∞)Σ (x) −∆(T→∞)ΠT
(x) = −λT

3

4π ∣x∣ −
λT

4π∣x∣ (
25

6π2εq
− 3 log(εq)

4π2 + 2c1 − c2) +O (
1
T
) ,

∆(T→0)
Σ (x) −∆(T→0)

ΠT
(x) = −λT

3

24π ∣x∣ −
πλT 5

540 ∣x∣
3 +O (T 7) .

The zero temperature terms are known to cancel each other [63]. The integral we then
need to evaluate has the following form

⟨Wc⟩ =
λ

2L
2∫

1/2

−1/2
dt1 ∫

t1

−1/2
dt2 (∆Σ(Lt1 −Lt2) −∆ΠT

(Lt1 −Lt2)) . (5.96)

where we substituted ti → Lti which changes the above propagators to

L2 ((∆Σ −∆ΠT
)(T→∞)(Lx)) = −λ(TL)

3

4π ∣x∣

− λ(TL)4π∣x∣ (
25

6π2εq
− 3 log(εq)

4π2 + 2c1 − c2) +O (
1
T
) , (5.97)

L2 ((∆Σ −∆ΠT
)(T→0)(Lx)) = −λ(TL)

3

24π ∣x∣ − πλ(TL)
5

540 ∣x∣3 +O (T 7) . (5.98)

Therefore we clearly see that the Wilson loop will only depend on the dimensionless
combination TL. Henceforth the limit T → 0 is of no relevance for this calculation. As
clearly L → ∞ we would have a limit lim

T→0
(f(TL)∣L→∞) which cannot be subject to a

rigorous expansion. Therefore we only consider the limit LT →∞. Here

⟨W—⟩LT→∞ = 1 + λ2L
2∫

1/2

−1/2
dt1 ∫

t1

−1/2
dt2 ((∆Σ −∆ΠT

)(T→∞)ΠT
(Lt1 −Lt2))

= 1 − λ
2(LT )3
24π − λ

2(LT )
2π (log (εL) + 1)× (5.99)

× ( 25
6π2εq

− 3 log(εq)
4π2 + 2c1 − c2) +O (

λ2

LT
,λ

5/2, λ2 log(λ)) .

Again we introduced a dimensionless cut-off εL to regularize the divergence that occurs
when the insertion points are equal. In analogy to the calculation of the straight line (5.88)
the leading order is cubic in the temperature and indipendent of any cut-off parameters
we had to introduce throughout the calculations.
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Conclusion

Supersymmetric and superconformal Yang-Mills theories have been studied with great
interest throughout the last decades. The high amount of symmetries allowed for the
introduction of various tools such as integrability, localization, holography and bootstrap
which aimed at tackling problems from different sides. Using these it was possible to
derive a number of exact results. Defects in superconformal theories partly break the
symmetry group, however, in recent considerations some further exact relation could be
obtained in these theories. In particular line defects in the maximally supersymmetric
N = 4 Yang-Mills theory have been studied with great interest. The introduction of a
finite temperature is similar to a boundary defect and it was discovered that techniques of
the conformal bootstrap are applicable to thermal theories under certain conditions.

In this thesis the implications of a line defect placed in thermal N = 4 supersymmetric
Yang-Mills theory have been studied by considering the bremsstrahlung function, the energy
loss of a heavy particle (WL). This bremsstrahlung B can be related to the coefficient of
the stress tensor’s one-point correlation function, h. While the Relation (1.1),

B = 3h , (6.1)

is well known at zero temperature we have shown in this thesis that said exact relation
continues to hold in the thermal setting at zero coupling.
The proof of this relation was done in two different manners. Algebraically the relation
B = 3h can be proven by a supersymmetric Ward identity, (2.16). However, thermal
effects introduce new additional terms to the identity which potentially yield corrections
to the exact relation. We introduced a phase α ∝ 2n + 1 which allowed us to express the
action in terms of fields that have periodic boundary conditions on the thermal circle only.
This anomaly-free field redefinition yields new mass-terms in the Lagrangian which break
supersymmetry. Henceforth the above Ward identity needs to be corrected and becomes
a thermal Broken Ward Identity (3.28). We expressed the resulting correlator using an
operator product expansion borrowing tools of the thermal and defect bootstrap. In this
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OPE limit the correlation function can be constraint and compared to the original Ward
identity. Due to an integral of the correlator some spinor components could be shown
to cancel and therefore we were able to show the conservation of the relation between
bremsstrahlung and stress tensor at zero coupling.
In a second step we provided a perturbative check of the result. The bremsstrahlung
function can be obtained from the expectation value of a circular Wilson loop. The leading
order in a weak coupling expansion has controllable thermal corrections to the known
formulas in the zero temperature theory. In this perturbative calculation we allowed only
for the fields of N = 4 to couple to the Wilson loop but not for interactions coming from
the action. Therefore this calculation is comparable with the algebraic approach at zero
coupling. Likewise the one-point function of the stress tensor can be computed using
Feynman diagrams at leading order in the thermal theory. For both calculations an expan-
sion around high and low values of the temperature proved convenient. Consequentially
we were able to compare the two leading order thermal results in two different thermal
expansions. We found that a regularization scheme can be found in both limits which
reproduces B = 3h. The scheme determined an a priori arbitrary parameter that needed to
be introduced for the straight line WL in a dimensional analysis. This length parameter
has an expression in terms of the radius of the circular WL and the temperature. As we
found a matching scheme in a small temperature expansion, Equation (3.152), as well as
for the high temperature limit, Equation (3.174), it is reasonable to assume that a similar
scheme can be obtained for any value of the temperature.

What is more, we studied the implications of interactions to the algebraic argument. Es-
pecially the Yukawa-type coupling between spinors and scalars introduced new constraints
on the way the thermal theory is introduced. We studied two different approaches.
Firstly, we introduced phases as in the zero coupling case. However, the Yukawa inter-
actions yielded constraints. The scalar fields need to obtain phase factors as well. Also
each of the complex scalars and each of the spinors get an individual phase prefactor,
Equation (4.15). The four fermionic phases are related by Equation (4.14) showing that
their sum is zero. They cannot all be equal. Therefore we found that R-symmetry is
broken. We discussed the implications of this breaking. While it seems possible that
R-symmetry is not entirely broken this depends on the choice of some coefficients. While
not being able to further restrict this ambiguity we discussed that with a dynamical
calculation of the self-energy more constraints might be found. Our current understanding
of this calculation was presented in Appendix H where we showed that this ansatz suffers
from an inconsistency with known results. From this we inferred that this approach is
somewhat flawed and we discuss the most likely sources of the appearing inconsistencies.
In consequence, a new ansatz is developed in Appendix I suggesting a more consistent
approach. We argue that in this case the result from the BWI can again be obtained.
Secondly, we used a KK dimensional reduction to three dimensions. We considered the
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whole tower of emerging massive modes and showed that R-symmetry can in fact be
preserved.

Overall our considerations indicate that it is indeed possible to rewrite the action in a
convenient way, see (4.1). We would have a sum of a part of the action which preserves
supersymmetry and a part with corrections. Everything depends only on periodic fields.
The first part preserves supersymmetry and obeys a zero temperature Ward identity
similar to (2.16). When the ”new” term, the parts breaking supersymmetry, are included
we thus find a thermal BWI. The thermal corrections are introduced through a term
which introduces an interaction with newly defined operators. Those are yielded by the
supersymmetry transformation of the SUSY-breaking part of the action. Once these
operator is known we can use an OPE and hopefully constrain the correlator as in the
zero coupling case. Should this be possible, we might be able to show that the Relation
(6.1) continues to hold in the interacting theory.
Looking forward, the aim must be to better understand the different approaches we
employed to understand the interacting thermal theory. Our hope is that they can be
condensed straight forwardly into a single consistent ansatz which yields a thermal BWI
in the form expected and we are then able to generally proof the relation B = 3h holds at
finite temperature.

Last, but not least, we considered a brute force perturbative calculation in the non-zero
coupling case. We considered the circular and straight line Wilson loop at subleading
order in a weak coupling expansion. We had to restrict ourselves partly to numeric calcu-
lations. Moreover, it proved convenient to consider a thermal average. This underlines our
observation of the arising difficulties in the non-zero coupling case.

All in all, we can conclude that we were able to proof the relation B = 3h between the
bremsstrahlung and the stress-energy tensor to hold for N = 4 SYM theory at finite
temperature and zero coupling. This is an interesting result as it shows how exact results
from the theory at zero coupling might be applicable to thermal theories as well. We hope
that further research will proof that this relation can be extended to the interacting theory
as well. Considering the interacting case we further reviewed our current understanding
which indicates a high probability for the relation to continue to hold. The most promising
approach is to write down a general consistent Lagrangian including all periodic fields from
which the thermal BWI are again obtained. Further investigations in this direction are
very captivating due to the possibility of finding a first exact result for a finite temperature
theory.
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Appendix A

Group theory & algebras definitions

In this appendix we review the superalgebra of the full N = 4 SYM theory without any
defect insertion as well as definitions for generators and matrices used in group theory
considerations. For Minkowski space we use a metric in the mostly plus convention
ηµν = diag(−1,1,1,1) unless stated otherwise.

Pauli matrices

Let us start with the Pauli matrices. In Minkowski space they are defined in the usual
manner

σ0
M = σ̄0

M =
⎛
⎝

1 0
0 1
⎞
⎠

, σ1
M = −σ̄1

M =
⎛
⎝

0 1
1 0
⎞
⎠
, (A.1a)

σ2
M = −σ̄2

M =
⎛
⎝

0 −i
i 0

⎞
⎠

, σ3
M = −σ̄3

M =
⎛
⎝

1 0
0 −1

⎞
⎠
. (A.1b)

This means essentially σµM = (1, σi), σ̄
µ
M = (1,−σi). For the calculations at nonzero

temperature we first Wick rotate and then compactify the time dimension on a circle.
Consequentially we need to use Euclidean Pauli matrices. This affects only the 0-th
component such that we find

σµE = (i1, σi) and σ̄µE = (i1,−σi) . (A.2)

The relations we discuss in this chapter hold for both, the Minkowski and the Euclidean
Pauli matrices alike such that we leave out the subscript in the considerations to follow.
Only when the importance is actually significant we will specify which matrices we mean.
Then the sigma matrices with two indices are a combination of these, namely

σµν = i
4 (σ

µσ̄ν − σν σ̄µ) . (A.3)
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From this equation it is clear that these double-index sigmas are anti-symmetric, σµν = −σνµ.
The relations with bars then follow analogously.
Following [6, 13, 132] with ε12 = +1 we have the relations

εαβ = εα̇β̇ =
⎛
⎝

0 −1
1 0

⎞
⎠
, εαβ = εα̇β̇ =

⎛
⎝

0 1
−1 0

⎞
⎠
, (A.4a)

σµαα̇ = εαβεα̇β̇σ̄µ β̇β , σ̄µ α̇α = εαβεα̇β̇σµ
ββ̇
. (A.4b)

between the barred and unbarred sigma matrices. We introduced su(2)α and su(2)α̇ spinor
notation with α,β = 1,2 and α̇, β̇ = 1,2, respectively.
For arbitrary spinors χα and ζα this yields [13, 132]

χζ = ζχ , χσµζ̄ = −ζ̄ σ̄µχ . (A.4c)

Furthermore for products of the Pauli matrices we find

(σµM σ̄νM + σνM σ̄
µ
M)

β

α
= 2ηµνδ β

α , (A.4d)

(σµEσ̄νE + σνEσ̄
µ
E)

β

α
= 2δµνδ β

α , (A.4e)

(σ̄µMσνM + σ̄νMσ
µ
M)

α̇

β̇
= 2ηµνδα̇

β̇
, (A.4f)

(σ̄µEσνE + σ̄νEσ
µ
E)

α̇

β̇
= 2δµνδα̇

β̇
, (A.4g)

σ̄µMσ
ν
M σ̄

ρ
M = −ηµν σ̄

ρ
M − ηνρσ̄

µ
M + ηµρσ̄νM + iεµνρκσ̄Mκ , (A.4h)

σ̄µEσ
ν
Eσ̄

ρ
E = −δµν σ̄

ρ
E − δνρσ̄

µ
E + δµρσ̄νE + iεµνρκσ̄Eκ , (A.4i)

σµM σ̄
ν
Mσ

ρ
M = −ηµνσ

ρ
M − ηνρσ

µ
M + ηµρσνM − iεµνρκσMκ , (A.4j)

σµEσ̄
ν
Eσ

ρ
E = −δµνσ

ρ
E − δνρσ

µ
E + δµρσνE − iεµνρκσEκ . (A.4k)

For traces of the Pauli matrices we find

trσµν = 0 , (A.5a)

trσµνM σ
ρσ
M =

1
2 (η

µρηνσ − ηµσηνρ + εµνρσ) , (A.5b)

trσµνE σ
ρσ
E =

1
2 (δ

µρδνσ − δµσδνρ + εµνρσ) , (A.5c)

trσ̄µνM σ̄
ρσ
M =

1
2 (η

µρηνσ − ηµσηνρ − εµνρσ) , (A.5d)

166



trσ̄µνE σ̄
ρσ
E =

1
2 (δ

µρδνσ − δµσδνρ − εµνρσ) . (A.5e)

Superconformal algebra

The superalgebra of the full N = 4 theory is usp(2,2∣4). It consists of the conformal
algebra su(2,2), an extension of the Lorentz algebra. The generators are the rotations
Mµν , the translations Pαα̇, the dilatation ∆ and special conformal transformations K α̇α.
The fermionic sector consists of the known 16+16 supercharges. These are the 16 Poincaré
superchagres QI

α and Q̄Iα̇ together with another 16 conformal supercharges SIα and S̄Iα̇.
The spinor indices α,β = 1,2 and α̇, β̇ = 1,2 denote left and right spinors, respectively.
The index I = 1, . . . ,4 labels the different supercharges and can be rotated with the
anti-hermitian generators RI

J of the su(4)R R-symmetry algebra. By construction these
generators are traceless, RI

I = 0. The supersymmetry algebra is given by

[Pµ,QI
α] = 0 = [Pµ, Q̄Iα̇] , (A.6a)

[Lµν ,QI
α] = i (σµν) βα QI

β , (A.6b)

[Lµν , Q̄α̇
I ] = i (σ̄µν)α̇β̇ Q̄

β̇
I , (A.6c)

{QI
α, Q̄

α̇
J} = 2δIJσ

µ

αβ̇
εβ̇α̇Pµ , (A.6d)

{QI
α,Q

J
β} = 0 = {Q̄α̇

I , Q̄
β̇
J} , (A.6e)

[RI
J ,Q

K
α ] = δ K

J QI
α −

1
4δ

I
J Q

K
α , [RI

J , Q̄
α̇
K] = −δIKQ̄α̇

J +
1
4δ

I
JQ̄

α̇
K , (A.6f)

[RI
J , SKα] = −δIKSJα +

1
4δ

I
JSKα , [RI

J , S̄
Kα̇] = δ K

J S̄Iα̇ − 1
4δ

I
J S̄

Kα̇ , . (A.6g)

{QI
α, SJβ} = δIJ (σµσ̄ν)

γ
α εγβLµν + εαβ (

3
2R

I
J + δIJ∆) , (A.6h)

{Q̄α̇
I , S̄

Jβ̇} = δ J
I (σ̄µσν)

α̇
γ̇ ε

γ̇β̇Lµν + εα̇β̇ (
3
2R

J
I − δJI∆) , (A.6i)

{QI
α, S̄

Jα̇} = 0 = {SIα, Q̄Jα̇} . (A.6j)

Clebsch-Gordan coefficients between SO(6) and SU(4)
We use the Clebsch-Gordan coefficients given in [80] (see also [133, 134] for alternative
derivations) to convert indices between the su(4) and so(6) R-symmetry algebras. The
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generators of so(6) are given through the six matrices

Γr = γ5 ⊗
⎛
⎝

0 Σr

Σ̄r 0
⎞
⎠
, r = 1, . . . ,6 , (A.7)

where γ5 = iγ0γ1γ2γ3 = σ3⊗σ0 and the Σ and Σ̄ are the Clebsch-Gordon coefficients. They
are given by

Σ1 = −Σ̄1 = −σ2 ⊗ σ3 , Σ2 = −Σ̄2 = σ2 ⊗ σ1 , Σ3 = −Σ̄3 = −σ0 ⊗ σ2 , (A.8a)

Σ4 = Σ̄4 = −iσ1 ⊗ σ2 , Σ5 = Σ̄5 = −iσ2 ⊗ σ0 , Σ6 = Σ̄6 = iσ3 ⊗ σ2 . (A.8b)

These coefficients satisfy

Σr
IJ = −Σr

JI , Σ̄rIJ = −Σ̄rJI , (A.9a)

Σr
IJ = − (Σ̄rJI)† , (A.9b)

tr (ΣrΣ̄s) = −4δrs . (A.9c)

Let nr ∈ S5 be a unit vector then

nrnsΣr
IJΣ̄sKLδJL = n2δKI = δKI . (A.9d)

The scalar fields Φr in the SO(6) representation are then related to the ones ΦAB in the
SU(4) one by

Φr = Σr
IJΦIJ . (A.10)
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Appendix B

Superconformal algebra preserved by
the straight Wilson line

In this appendix we explicitly derive that the superalgebra conserved by the Wilson line
defect is indeed osp(4∣4). We first focus on the supercharges preserved by the Wilson line.
We then consider their commutation relations. By assuming the algebra to be closed the
other preserved and broken generators can be identified exactly. The unbroken psu(2, 2∣4)
algebra of the full theory is discussed in Appendix A.

Conserved supercharges

Recall that the straight line is placed in the x3 direction. It is given in Equation (1.63)

W = tr ⃗P exp [i∫ dτA] , A = A3 − inrΦr ,

where nr ∈ S5 and Φr are the six scalars. Consider the supersymmetry transformations of
the Bosonic fields [135]1

δζAµ = i (ζ̄α̇I σ̄α̇αµ λIα − λ̄Iα̇σ̄α̇αµ ζIα) , (B.1a)

δζΦr = Σr
IJζ

I
αε
αβλJβ + Σ̄rIJ ζ̄Iα̇ε

α̇β̇λ̄Jβ̇ . (B.1b)

In the following we derive conditions on the spinor variables ζ and ζ̄ by demanding the WL
operator to preserve supersymmetry. Therefore consider the action of the supercharges on
A containing the gauge and scalar field:

0 = δζA = δζA3 − inRδζΦR (B.2)

= iζ̄α̇I σ̄α̇α3 λIα − iλ̄Iα̇σ̄α̇αµ ζIα − inrΣr
IJζ

I
αε
αβλJβ − inrΣ̄rIJ ζ̄Iα̇ε

α̇β̇λ̄Jβ̇

1Mind the slightly different conventions.
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= −i (ζ̄Iα̇σ̄α̇α3 − nrΣr
IJζ

J
β ε

βα)λIα − iλ̄Iα̇ (σ̄α̇α3 ζIα − nrΣ̄rIJεα̇β̇ ζ̄Jβ̇) .

Here we used that ζ̄ σ̄µλ = −λσµζ̄ [13, 132]. The conditions for δζA = 0 thus are

ζ̄Iα̇σ̄
α̇α
3 = −ΩIJε

αβζJβ and σ̄α̇α3 ζIα = ΩIJεα̇β̇ ζ̄Jβ̇ . (B.3)

We included the symplectic matrices ΩIJ introduced in (1.66). The above calculation
yields the following condition for the killing spinors ζ

ζ̄ α̇I = ΩIJ σ̄
3α̇αζJα and ζIα = ΩIJσ3

αα̇ζ̄
α̇
J . (B.4)

Both conditions are in fact identical and we can therefore restrict ourselves to the second
one. The superconformal killing spinor ζ can be seperated into a sum of the supersym-
metric killing spinor η (corresponding to the Poincaré supercharges Q) and its conformal
counterpart ν (corresponding to the conformal supercharges S). More precisely

ζIα = ηIα + xµσµαα̇ν̄Iα̇ and ζ̄ α̇I = η̄α̇I + xµσ̄µα̇ανIα . (B.5)

Plugging this into the above condition yields

ηIα + xµσµαα̇ν̄Iα̇ = ΩIJσ3
αα̇ (η̄α̇J + xµσ̄µα̇βνJβ)

⇔
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ηIα = ΩIJσ3
αα̇η̄

α̇
J

ΩIJνJα = −σ3
αα̇ν̄

Iα̇ .
(B.6)

Therefore the preserved supercharges are a combination of the supercharges Q and their
conjugates Q̄. The factor between them can be read off from the above equation. The
resulting preserved supercharges are similar to the ones in N = 2 [38]. Note that for
convenience we include a normalization factor. The conserved superchagres for this line
thus are

QIα =
1√
2
QI
α +

1√
2

ΩIJσ3
αα̇Q̄

α̇
J , (B.7)

SIα = −
1√
2

ΩIJSJα +
1√
2
σ3
αα̇S̄

Jα̇ . (B.8)

The broken supercharges are given in a similar way. They are the orthogonal charges to
the above ones and obtained by a sign change for the second term,

QI
α =

1√
2
QI
α −

1√
2

ΩIJσ3
αα̇Q̄

α̇
J , (B.9)

SI
α =

1√
2

ΩIJSJα +
1√
2
σ3
αα̇S̄

Jα̇ . (B.10)
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Commutation relations

Putting the straight Wilson line as a defect in the theory breaks the Lorentz generators
Lµ3 and all translations Pµ≠3 as well as the special conformal transformations Kµ≠3. We
claim that with the charges defined above form an algebra which is still closed. This is
indeed the case for N = 2 where the remaining conformal group is osp(4∗∣2) [38]. In the
N = 4 case we shall find an osp(4∗∣4). The original supersymmetry algebra is given in
Appendix A with the commutator of two supercharges given in Equation (A.6d). When
commuting the preserved Q found above the result should only depend on the leftover
translation P3.

{QIα,QKβ } =
1
2 {Q

I
α +ΩIJσ3

αα̇Q̄
α̇
J ,Q

K
β +ΩKLσ3

ββ̇
Q̄β̇
L}

= 1
2ΩKLσ3

ββ̇
{QI

α, Q̄
β̇
L} +

1
2ΩIJσ3

αα̇ {QK
β , Q̄

α̇
J}

= ΩKLδILσ
3
ββ̇
σµαγ̇ε

γ̇β̇Pµ +ΩIJδCJσ
3
αα̇σ

µ
βγ̇ε

γ̇α̇Pµ (B.11)

= ΩIK (σ3σ̄µ + σ̄3σµ) γ
α
εγβPµ

= 2ΩIKP3εαβ .

We used the fact that the ΩIK anti-commute, see (1.60). Considering the commutator
between a broken and an unbroken supercharge we expect the result to depend on the
broken translation generators Pm (m = 0,1,2).

{QIα,QK
β } =

1
2 {Q

I
α +ΩIJσ3

αα̇Q̄
α̇
J ,Q

K
β −ΩKLσ3

ββ̇
Q̄β̇
L}

= 1
2ΩIJσ3

αα̇ {QK
β , Q̄

α̇
J} −

1
2ΩKLσ3

ββ̇
{QI

α, Q̄
β̇
L}

= ΩIJδCJσ
3
αα̇σ

µ
βγ̇ε

γ̇α̇Pµ −ΩKLδILσ
3
ββ̇
σµαγ̇ε

γ̇β̇Pµ (B.12)

= ΩIK (σ3σ̄µ − σ̄3σµ) γ
α
εγβPµ = −4iΩIK (σ3µ) γ

α
εγβPµ

= 2ΩIK
⎛
⎝

P0 −P1 + iP2

P1 + iP2 −P0

⎞
⎠
αβ

.

With an identical computation we can see that the commutator of the preserved conformal
supercharges yields the special conformal transformation along the defect K3 which we
expect to be preserved,

{SIα,SKβ } = 2ΩIKK3εαβ . (B.13)
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Similarly the special conformal transformations Km are broken.
We thus have to consider the R-symmetry charges, the Lorentz

{QIα,SKβ } =
1
2 {Q

I
α +ΩIJσ3

αα̇Q̄
α̇
J ,−ΩKLSLβ + σ3

ββ̇
S̄Kβ̇}

= −1
2ΩKL {QI

α, SLβ} +
1
2ΩIJσ3

αα̇σ
3
ββ̇
{Q̄α̇

J , S̄
Kβ̇}

= −1
2ΩKLδIL (σµσ̄ν)

γ
α εγβMµν −

1
2ΩKLεαβ (

3
2R

I
L + δIL∆) (B.14)

+ 1
2ΩIJσ3

αα̇σ
3
ββ̇
[δKJ (σ̄µσν)

α̇
γ̇ ε

γ̇β̇Mµν + εα̇β̇ (
3
2R

K
J − δKJ∆)]

= 1
2ΩIK [σµσ̄ν − σ3σ̄µσν σ̄3] γ

α
εγβLµν +ΩIKεαβ∆ + 3

4εαβ
(RK

JΩIJ +RI
JΩJK)

= ΩIJ (σmσ̄n)αβMmn +ΩIJεαβ∆ + 3
2εαβR

IJ .

This is indeed independent of the broken L3µ. Note furthermore that we defined

RIK = 1
2R

I
JΩJK + 1

2R
K
JΩJI . (B.15)

This symmetric combination of the SU(4)R generators are the ten generators of Sp(4) [83].
Likewise the five broken generators are

RIK = 1
2R

I
JΩJK − 1

2R
K
JΩJI . (B.16)

This can be seen by commuting the unbroken supercharge with the broken SK
β

{QIα,SK
β } = ΩIJ (σ3σ̄m)

αβ
M3m +

3
2εαβR

IJ . (B.17)

This depends indeed on the three broken rotations M3m and thus SIα must indeed be
excluded from the algebra.
Therefore, in conclusion, we see that the algebra osp(4∣4) is indeed closed and preserved
in the presence of the Wilson line defect.
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Appendix C

Mulitplets

In this appendix we gather some multiplets of N = 4 and N = 2 SYM theories. The aim
is to explicitly understand how the N = 4 stress tensor multiplet can be obtained from
several N = 2 multiplest [112].
The N = 4 stress tensor multiplet B

1
2 ,

1
2

[0,1,0]0,0
as given in [87] with our index notation is

∆

2 ϕrs

5
2 ψIrα ψ

I
rα̇

3 frαβ Jrsαα̇ f rα̇β̇

ρIJ ρIJ

7
2 λIα ΨI

αβα̇ ΨIαα̇β̇ λ
I

α̇

4 Φ Tαβα̇β̇ Φ

Y 2 3
2 1 1

2 0 −1
2 −1 −3

2 −2

It has dimension 256 The samemultiplet can be written using su(4)R ⊗ su(2)α ⊗ su(2)dotα
representations [88].
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∆ 2
[0
,2
,0
] (0

,0
)

5 /2
[0
,1
,1
] (1
/2
,0
)

[1
,1
,0
] (0

,1
/2
)

3
[0
,1
,0
] (1

,0
)

[1
,0
,1
] (1
/2
,1
/2
)

[0
,1
,0
] (0

,1
)

[0
,0
,2
] (0

,0
)

[2
,0
,0
] (0

,0
)

7 /2
[0
,0
,1
] (1
/2
,0
)

[1
,0
,0
] (1

,1
/2
)

[0
,0
,1
] (1
/2
,1
)

[1
,0
,0
] (0

,1
/2
)

4
[0
,0
,0
] (0

,0
)

[0
,0
,0
] (1

,1
)

[0
,0
,0
] (0

,0
)

−[
1,

0,
1]
(0
,0
)

9 /2
−[

1,
0,

0]
(1
/2
,0
)

−[
0,

0,
1]
(0
,1
/2
)

5
−[

0,
0,

0]
(1
/2
,1
/2
)

Y
2

3 2
1

1 2
0

−1 2
−1

−3 2
−2
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Let us continue with N = 2 multiplets. These are representations as given in [88, 112]. Let
us start with the multiplet E2 which has dimension 16

∆
2 0(0,0)
5
2

1
2 (0, 1

2 )

3 0(0,1),1(0,0)
7
2

1
2 (0, 1

2 )

4 0(0,0)
r 2 3

2 1 1
2 0

The multiplet E2 follows similarly.
The stress tensor multiplet in N = 4 is Ĉ0(0,0) and has dimension 48

∆

2 0(0,0)

5
2

1
2 ( 1

2 ,0)
1
2 (0, 1

2 )

3 0(1,0) 1( 1
2 ,

1
2 )
, 0( 1

2 ,
1
2 )

0(0,1)

7
2

1
2 (1, 1

2 )
1
2 ( 1

2 ,1)

4 0(1,1)
−0(0,0), −1(0,0)

9
2 −1

2 ( 1
2 ,0)

−1
2 (0, 1

2 )

5 −0( 1
2 ,

1
2 )

r 1 1
2 0 −1

2 −1
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Next we have the multiplet B̂1 which also has dimension 16

∆
2 1(0,0)
5
2

1
2 ( 1

2 ,0)
1
2 (0, 1

2 )

3 0(0,0) 0( 1
2 ,

1
2 )

0(0,0)
7
2 −1

2 ( 1
2 ,0)

−1
2 (0, 1

2 )

4 −0(0,0)
r 1 1

2 0 −1
2 −1

Last we have the multiplet D 1
2 (0,0)

with dimension 16 and its analogous counterpart D 1
2 (0,0)

∆

2 1
2 (0,0)

5
2 0( 1

2 ,0)
1(0, 1

2 )
, 0(0,± 1

2 )

3 −1
2 (0,0)

1
2 ( 1

2 ,
1
2 )
, −1

2 ( 1
2 ,±

1
2 )

1
2 (0,1), ±

1
2 (0,0)

7
2 0(0, 1

2 )
, −1(0,± 1

2 )
0( 1

2 ,1)
, 0( 1

2 ,0)
0(0, 1

2 )

−1( 1
2 ,0)

4 −1
2 (0,1), −

1
2 (0,0) −1

2 ( 1
2 ,

1
2 )

−3
2 (0,0)

9
2 −2(0, 1

2 )

r 2 3
2 1 1

2 0 −1
2

These N = 2 muliplets can be combined into the N = 4 stress tensor multiplet

B
1
2 ,

1
2

[0,2,0](0,0)
≃ 3B̂1 ⊕ E2(0,0) ⊕ E2(0,0) ⊕ Ĉ0(0,0) ⊕ 2D 1

2 (0,0)
⊕ 2D 1

2 (0,0)
. (C.1)

As a consistency check we can see that the dimensions match

256 = 3 × 16 + 16 + 16 + 48 + 2 × 32 + 2 × 32 . (C.2)
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Appendix D

Some details on supersymmetry
transformations

For the superconformal Ward identity (2.16) we need to know the supersymmetry trans-
formation of the field ψ JK

Iα of the stress tensor multiplet as well as of the displacement
primary fields OIJ .

The SUSY transformation of ψ JK
Iα is given in a so(6) index notation in [87]. in this

appendix we derive the transformation using su(4) indices only.

δSUSY ψrα = i∂αα̇ϕrsγ̄sε̄α̇ + 4ϕrsγ̄sηα − frαβεβ −
1
6fsαβγ̄rγsε

β

+ ρεαβεβ + Jrsαα̇γ̄sε̄α̇ +
1
6Jstαα̇γ̄rγsγ̄tε̄

α̇ . (D.1)

Note already that the indices for the contribution with ρ are not matching. Therefore we
will add a matrix γr here to restore the missing index. Furthermore, this representation
supresses the SU(4) indices. Let us restore these.

δSUSY ψIrα = i∂αα̇ϕrsγ̄sIJ ε̄Jα̇ + 4ϕrsγ̄sIJηJα − frαβεβI −
1
6fsαβγ̄rIJγ

JK
s εβK

+ ρIJεαβγJKr εβK + Jrsαα̇γ̄sIJ ε̄Jα̇ +
1
6Jstαα̇γ̄rIJγ

JK
s γ̄tKLε̄

Lα̇ . (D.2)

For convenience let us contract all terms with γMN
r

δψIrαγ
MN
r = i∂αα̇ϕrsγ̄sIJγMN

r ε̄Jα̇ + 4ϕrsγ̄sIJγMN
r ηJα − frαβγMN

r εβI

− 1
6fsαβγ̄rIJγ

MN
r γJKs εβK + ρIJεαβγJKr γMN

r εβK + Jrsαα̇γMN
r γ̄sIJ ε̄

Jα̇ (D.3)

+ 1
6Jstαα̇γ̄rIJγ

MN
r γJKs γ̄tKLε̄

Lα̇ .
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This is now fully consistent in all indices. In the next step we want to get rid of the SO(6)
indices1 Note that the gamma matrices contract to deltas γrIJ γ̄KLr = 2δKI δLJ − 2δLI δKJ .

δψJKIα γ̄rJKγ
MN
r = i∂αα̇ϕMN

IJ ε̄Jα̇ + 4ϕMN
IJ ηJα − 4fMN

αβ εβI −
4
3δ

M
I f

NK
αβ εβK +

4
3δ

N
I f

MK
αβ εβK

− 4ρIJεαβεJKMNεβK + JMN
αα̇IJ ε̄

Jα̇ + 1
3
(δMI JNKαα̇KL − δNI JMK

αα̇KL) ε̄Lα̇ , (D.5)

δψJKIα =
i
4∂αα̇ϕ

JK
IL ε̄

Lα̇ + ϕJKIL ηLα − fJKαβ εβI −
1
3δ

J
I f

KL
αβ ε

β
L +

1
3δ

K
I f

JL
αβ ε

β
L

− ρILεαβεJKLMεβM + JJKαα̇ILε̄Lα̇ +
1
3
(δJI JKMαα̇ML − δKI JJMαα̇ML) ε̄Lα̇ . (D.6)

Note that we found for the Killing spinor the constraint ε̄Iα̇ = −σ̄α̇α3 εIα. Then we find

δψJKIα = −
i
4∂αα̇ϕ

JK
IN σ̄

α̇α
3 εNα + ϕJKIN ηNα − fJKαβ εβI −

1
3δ

J
I f

KN
αβ εβN +

1
3δ

K
I f

JN
αβ ε

β
N

− ρILεαβεJKNOεβO − JJKαα̇ILσ̄
α̇β
3 εLβ −

1
3
(δJI JKMαα̇ML − δKI JJMαα̇ML) σ̄α̇β3 εLβ . (D.7)

Then we readily see that the Ward identity (2.16) indeed yields

0 = ⟨δψJKIα OLM⟩
W
= 2ΩNL ⟨�Mβ ψ JK

Iα ⟩W εβN − 2ΩNM ⟨�Lβψ JK
Iα ⟩W εβN +ΩLM ⟨�Nβ ψ JK

Iα ⟩W εβN

− i
4∂αα̇

⟨ϕJKIN OLM⟩
W
σ̄α̇α3 εNα + ⟨ϕJKIN OLM⟩

W
ηNα − ⟨fJKαβ OLM⟩

W
εβI

− 1
3δ

J
I ⟨fKNαβ OLM⟩

W
εβN +

1
3δ

K
I ⟨fJNαβ OLM⟩

W
εβN

− ⟨ρILOLM⟩
W
εαβε

JKNOεβO − ⟨JJKαα̇INOLM⟩
W
σ̄α̇β3 εNβ

− 1
3
(δJI ⟨JKPαα̇PNOLM⟩

W
− δKI ⟨JJNαα̇PNOLM⟩

W
) σ̄α̇β3 εNβ . (D.8)

Now consider the displacement multiplet. Before we apply the supersymmetry transforma-

1Recall that

ψIrα = ψ
MN

Iα γ̄rMN , (D.4a)

f IJ
αβ =

1
4
frαβγ

IJ
r , frαβ = f

IJ
αβ γ̄rIJ , (D.4b)

Jrsαα̇ = J
IJKL
αα̇ γ̄rIJ γ̄sKL , (D.4c)

ϕIJ
KL = ϕrsγ

IJ
r γ̄sKL . (D.4d)
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tion we derive the primary O in terms of the scalar fields. This can be done by commuting
the broken R-symmetry generator with the Wilson line. Consider first that for RI

J

[RI
J ,A] = [RI

J ,A3 − inrΦr] = −iΩKL[RI
J ,ΦKL] (D.9)

= − i
2ΩKL (δKJΦIL − δLJΦIK) + i

2ΩKLε
IKLM Φ̄MJ (D.10)

= −i2 (ΩJLΦIL −ΩKJΦIK) + iΩIM Φ̄MJ (D.11)

= iΦIKΩKJ + iΩIM Φ̄MJ . (D.12)

The broken R-symmetry generator is the anti-symmetric part of the original generators.
We thus find

[RIJ ,A] = 1
2[R

I
M ,A]ΩMJ − 1

2[R
J
M ,A]ΩMI (D.13)

= i
2ΦIKΩKMΩMJ + i

2ΩIN Φ̄NMΩMJ − i
2ΦJKΩKMΩMI − i

2ΩJN Φ̄NMΩMI (D.14)

= − i
2ΦIJ + i

2ΦJI + iΩIKΦ̄KLΩLJ (D.15)

= −iΦIJ + iΩJKΦ̄KLΩLJ = −2iΦIJ + i
2ΩIJΩKLΦKL . (D.16)

The operator O can be read off from this following Equation (2.9c)

OIJ = ΦIJ −ΩIKΦ̄KLΩLJ = 2ΦIJ − 1
2ΩIJΩKLΦKL . (D.17)

The antisymmetric OIJ obeys the trace condition ΩIJ = 0 has five components. These are
the five scalars that are not coupled to the WL through the unit vector nr. The sixth field
is the Konishi primary operator [116].
Let us now consider how the preserved supercharge acts on this operator

δζOIJ = δζΦIJ −ΩIKδζΦ̄KLΩLJ

= 1
2
(λIαζJα − λJαζIα + εIJKLζ̄Kα̇λ̄α̇L)

− 1
2ΩIK (λ̄α̇K ζ̄Lα̇ − λ̄α̇Lζ̄Kα̇ + εKLMNζ

MαλNα )ΩLJ

= 1
2
(λIαζJα − λJαζIα + εIJKLΩKMζ

M
α ε

αβσ3
βα̇λ̄

α̇
L)

− 1
2ΩIK (ΩLMζ

M
α ε

αβσ3
βα̇λ̄

α̇
K −ΩKMζ

M
α ε

αβσ3
βα̇λ̄

α̇
L + εKLMNζ

MαλNα )ΩLJ (D.18)
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= (λIαζJα − λJαζIα + εIJKLΩKMζ
M
α ε

αβσ3
βα̇λ̄

α̇
L)

− 1
2
(ζJαΩIKσ3

αα̇λ̄
α̇
K − ζIαΩJLσ3

αα̇λ̄
α̇
L +ΩIKεKLMNζ

MαλNα ΩLJ)

= −1
2ζ

Iα (λJα −ΩJKσ3
αα̇λ̄

α̇
K) +

1
2ζ

Jα (λIα −ΩIKσ3
αα̇λ̄

α̇
K)

− 1
2ζ

Mα (ΩIKεKLMNλ
N
α ΩLJ − εIJKLΩKMσ

3
αα̇λ̄

α̇
L) .

Let us first rewrite the totally antisymmetric tensor as

εIJKL = −ΩIJΩKL +ΩIKΩJL −ΩILΩJK

⇒ ζMαΩIKεKLMNλ
N
α ΩLJ = ζMαλNα (−ΩIKΩKNΩLMΩLJ +ΩIKΩKLΩMNΩLJ

+ΩIKΩKMΩLNΩLJ)

= ζMαλNα (δINδJM +ΩIJΩMN − δIMδJN) (D.19)

= ζJαλIα − ζIαλJα +ΩIJζαMλ
M
α .

And ζMαεIJKLΩKMσ
3
αα̇λ̄

α̇
L = ζMασ3

αα̇λ̄
α̇
L (−ΩILΩJKΩJM −ΩIJΩKLΩKM

+ΩIKΩJLΩKM)

= ζMασ3
αα̇λ̄

α̇
L (ΩILδJM +ΩIJδLM −ΩJLδIM) (D.20)

= ζJαΩILσ3
αα̇λ̄

α̇
L − ζIαΩJLσ3

αα̇λ̄
α̇
L

+ΩIJζαMΩMLσ3
αα̇λ̄

α̇
L .

From this we finally can combine all the expressions to the displacement operators
�Iα = λIα −ΩIJσ3

αα̇λ̄
α̇
J and thus find

δζOIJ = −ζJα�Iα + ζIα�Jα −
1
2ΩIJζαK�Kα . (D.21)
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Appendix E

Reduction to N = 2 SYM

The correlators including the displacement and stress tensor multiplet are known for the
zero temperature case in N = 2 from [38]. We should be able to obtain these from the
N = 4 correlators above. This is a consistency check for the correlators (2.12). In order to
do that assume nr = δr,3. We make this choice because then we find

ΩIJ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

⇒ Ωab = −iεab , Ωab = iεab for a, b = 1,2 . (E.1)

Note furthermore that the field ΦIJ in terms of the three complex scalars is given by

ΦIJ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 φ1 φ2 φ3

−φ1 0 φ̄3 −φ̄2

−φ2 −φ̄3 0 φ̄1

−φ3 φ̄2 −φ̄1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (E.2)

We choose the scalar field of N = 2 to be φ = φ1 = Φ12. Therefore we are generally interested
in the components with I, J = 1, 2 (or I, J = 3, 4 for the complex conjugate). We call these
indices a, b, . . . = 1,2. Let us check that we indeed find the results of [38] step by step.
Note that contrary to the cited paper we define the Wilson line to be in the x3 not the x0

direction.

Displacement Multiplet

Let us start with the operators in the displacement multiplet. We have the following fields:

OIJ = ΦIJ −ΩIKΦ̄KLΩLJ , (E.3a)
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�Iα = λIα −ΩIJσ3
αα̇λ̄

α̇
J , (E.3b)

Dm = −iF 3m − 1
2ΩIJD

mΦIJ . (E.3c)

Including the above ΩIJ we thus find

O = −O12 = −Φ12 +Ω1KΦ̄KLΩL2 = φ̄ − φ , (E.4a)

�aα = λaα − iεabσ3
αα̇λ̄

α̇
b , (E.4b)

Dm = −iF 3m − 1
2ΩIJD

mΦIJ = −iF 3m − i
2D

m (Φ12 −Φ21 +Φ34 −Φ43)

= −i (F 3m +Dmφ +Dmφ̄) . (E.4c)

This fits the expressions in [38]. For consistency consider the two-point functions

⟨OIJOKL⟩
W
= γ

3τ 2 (Ω
IKΩJL −ΩILΩJK − 1

2ΩIJΩKL) , (E.5a)

⟨�Iα�Jβ⟩W =
2iγ
3τ 3 ΩIJεαβ , (E.5b)

⟨DmDn⟩W =
γδmn

τ 4 . (E.5c)

Reducing as above we find

⟨OO⟩W =
γ

3τ 2 (Ω
11Ω22 −Ω12Ω21 − 1

2Ω12Ω12) = γ

6τ 2 , (E.6a)

⟨�aα�bβ⟩W = −
2γ
3τ 3 ε

abεαβ , (E.6b)

⟨DmDn⟩W =
γδmn

τ 4 . (E.6c)

Thus we find that for γ = 12B the correlators indeed match.

Stress Tensor Multiplet

For the stress tensors multiplet we are only interested in some of the fields in the N = 4
multiplet. These are

ρIJ → O2 = ρ12 , (E.7a)

f IJαγ →H β
α = f 12

αγε
γβ , (E.7b)

J IJµ KL → jµ = J12
µ 34 + J34

µ 34 , (E.7c)
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ψ KL
Iα → χaα = Ωabψ 34

bα , (E.7d)

Tµν → Tµν , (E.7e)

OIJ → O = O12 , (E.7f)

�Iα → �aα . (E.7g)

Here we defined the fields with the same letters as in [38].

Bulk-to-Defect Functions

Let us turn to the correlators which are actually included in the Ward identity. These are
for N = 4

⟨f IJαβ(x⃗,0)OKL(0⃗, y)⟩(T=0)
W

= −3h
2π
∑2
m=0 (xmσmσ̄3)αβ
x3(y2 + x2)

× (ΩIKΩJL −ΩILΩJK − 1
2ΩIJΩKL) , (E.8a)

⟨J IJ3 KL(x⃗,0)OMN(0⃗, y)⟩(T=0)
W

= By
π

1√
x2(y2 + x2)2

ΩKL

× (ΩIMΩJN −ΩINΩJM − 1
2ΩIJΩMN) , (E.8b)

⟨J IJm KL(x⃗,0)OMN(0⃗, y)⟩(T=0)
W

= B2π
xm(y2 − x2)
x3(y2 + x2)2 ΩKL

× (ΩIMΩJN −ΩINΩJM − 1
2ΩIJΩMN) , (E.8c)

⟨ψ KL
Iα (x⃗,0)�Jβ(0⃗, y)⟩

(T=0)
W

= h

2π
[iyεαβ −∑2

m=0 (xmσmσ̄3)αβ]

× (3δJI ΩKL − δKI ΩJL + δLI ΩJK)x(y2 + x2)2 , (E.8d)

⟨ρIJ(x⃗,0)OKL(0⃗, y)⟩(T=0)
W

= 0 . (E.8e)

This would yield for the N = 2 case

⟨H β
α (x⃗,0)O(0⃗, y)⟩

(T=0)
W

= −3h
2π (Ω

11Ω22 −Ω12Ω21 − 1
2Ω12ΩΩ12) ∑

2
m=0 (xmσmσ̄3) βα
x3(y2 + x2)

= −3h
4π
∑2
m=0 (xmσmσ̄3) βα
x3(y2 + x2) , (E.9a)
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⟨j3(x⃗,0)O(0⃗, y)⟩
(T=0)
W

= B
π

iy√
x2(y2 + x2)2

[Ω12 (Ω31Ω42 −Ω32Ω41 − 1
2Ω34Ω12)

+Ω34 (Ω31Ω42 −Ω32Ω41 − 1
2Ω34Ω12)]

= B
π

y√
x2(y2 + x2)2

, (E.9b)

⟨jm(x⃗,0)O(0⃗, y)⟩
(T=0)
W

= B2π
xm(y2 − x2)
x3(y2 + x2)2 , m = 0,1,2 , (E.9c)

⟨χaα(x⃗,0)�bβ(0⃗, y)⟩
(T=0)
W

= − h2πΩac (3δbcΩ34 − δ3
cΩb4 + δ4

cΩb3)
[iyεαβ −∑2

m=0 (xmσmσ̄3)αβ]
x(y2 + x2)2

= 3h
2πε

ab
[iyεαβ −∑2

m=0 (xmσmσ̄3)αβ]
x(y2 + x2)2 , (E.9d)

⟨O2(x⃗,0)O(0⃗, y)⟩
(T=0)
W

= 0 . (E.9e)
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Appendix F

Anomaly calculation at zero coupling

In this appendix we calculate the anomaly of the phase transformations at zero coupling,
(3.18). We closely follow the calculation of the anomaly as presented in Terning [6]. The
spinor fields are transformed with a phase factor. This field redefinition must be accounted
for in the path integral measure thus yielding a Jacobean which generally might be nonzero.
We will show that the transformations (3.18) are anomaly-free in the free theory. As all
interactions are turned off, we will furthermore see no effects of the gauge fields as one
might expect for such a transformation.
For the purpose of this appendix we ignore R-symmetry indices. In the free theory the
spinors of the tuple λI can get an overall phase factor thus preserving R-symmetry. The
anomaly can then be calculated independently for each of the fields λI . It is therefore
convenient to focus on a single spinor field λ. If the transformation of this single field
is anomaly-free the free N = 4 theory is also anomaly-free consequentially. From the
Lagrangian only the spinor part is relevant for our considerations

Lλ = iλ̄σ̄µ∂µλ . (F.1)

We then Wick rotate and compactify the time dimension. Recall that this yields Euclidean
Pauli matrices σµE = (i1, σi) and σ̄µE = (−i1,−σi). Therefore we also have

σµνE =
i
4 (σ

µ
Eσ̄

ν
E − σνEσ̄µE) and σµEσ̄

ν
E + σνEσ̄µE = −2δµν . (F.2)

For better readability we drop the subscript indicating Euclidean Pauli matrices in the
following. To account for the periodicity conditions (KMS) we redefine the spinor fields
with an explicit phase

λ→ λ̃ = eiατλ with α = (2n + 1)π
β

, for n ∈ Z . (F.3)

The fields with the tilde are the new fields respecting the thermal KMS conditions which
are made explicit through the phases. The fields λ are periodic. The Lagrangian thus
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becomes

Lλ → Lλ + iαλ̄σ̄0λ (F.4)

The original Lagrangian Lλ is the one depending on periodic fields only and thus preserves
supersymmetry. The additional mass-like term breaks supersymmetry. The full quantum
theory is given by the path integral over the exponentiated action. Therefore, we need
to consider the Jacobean of the above transformation. This is where possibly anomalies
might arise. We will follow the anomaly calculation as presented in [6]1.
Let us first consider which differential operators act as we will need them to regularize in
a later step. For the fermionic fields we find

i
2

˜̄λσ̄µ∂µλ̃ =
i
2e
−iατ λ̄σ̄µ∂µe

iατλ = i
2 λ̄
(σ̄µ∂µ + iσ̄0α)λ . (F.5)

the calculation follows analogously for λ̄. This leads to the definition of the slashed
differential operators similar to the covariant derivative mentioned above, see Equation
(3.20),

/∇ = i (σ̄µ∂µ + iσ̄0α) , /̄∇ = i (σµ∂µ − iσ0α) . (F.6)

Following [6] it will prove convenient to build an operator which does not depend on a
single Pauli Matrix. We therefore define

D2
λ = /̄D /D = i (σµ∂µ − iσ0α) i (σ̄ν∂ν + iσ̄0α) = ∂µ∂µ + 4σ0iα∂i + α2 , (F.7)

D̄2
λ = /D /̄D = ∂µ∂µ − 4σ̄0iα∂i + α2 . (F.8)

We used that σµσ̄ν + σν σ̄µ = −2δµν in Euclidean signature and the fact that the derivatives
commute.
For completeness we check that the differential operators defined above are hermitian and
have negative eigenvalues. We work in a basis with fermionic eigenfunctions χn(x) and
ηn(x). The completeness properties are

∑
n

χ̄n(x)χn(y) = δ(x − y) , ∑
n

η̄n(x)ηn(y) = δ(x − y) , (F.9)

−i tr∫
Mβ

d4xχ̄n(x)σ̄0χm(x) = δmn , −i tr∫
Mβ

d4xη̄n(x)σ̄0ηm(x) = δmn . (F.10)

1Concretely Section 7.2.
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We included a unity matrix by writing 1 = −iσ0 to contract right and left spinors. We now
focus on the operator D2

λ showing that it is hermitian by considering

⟨χ∣D2
λη⟩ = −i tr∫Mβ

d4xχ̄n(x)σ̄0D2
ληn(x)

= −i tr∫
Mβ

d4xχ̄n(x)σ̄0 (∂µ∂µ + 4σ0iα∂i + α2) ηn(x)

= −i tr∫
Mβ

d4x(∂µ∂µ + 4σ0iα∂i + α2)χn(x)σ̄0ηn(x) = ⟨D2
λχ∣η⟩ . (F.11)

Negativity is shown by setting η = χ

⟨χ∣D2
λχ⟩ = −itr∫Mβ

d4xχ̄n(x)σ̄0D2
λχn(x)

= itr∫
Mβ

d4xχ̄n(x) (σ̄µ ⃗∂µ − iσ̄0α)σ0 (σ̄ν∂ν + iσ̄0α)χn(x)

= −tr∫
Mβ

d4x ∣(σ̄ν∂ν + iσ̄0α)χn(x)∣
2 ≤ 0 . (F.12)

The calculation for D̄2
λ is analogous.

Equipped with this we can define the above introduced functions χ and η as eigenfunctions
of the respective differential operators with eigenvalues cn

D2
λχn(x) = −c2

nχn(x) , D2
ληn(x) = −c2

nηn(x) . (F.13)

The spinor fields can thus be expanded in terms of those eigenfunctions

λ(x) =∑
n

anχn(x) , λ̄(x) =∑
n

bnηn(x) . (F.14)

The coefficients an and bn are Grassmann variables. Let us now write our phase factor
as a transformation of these coefficients. Therefore consider the field λ. It transforms as
follows

λ(x) =∑
n

anχn(x)→ λ̃(x) = eiατλ(x) =∑
n

a′nχn(x) (F.15)

The redefined field is expanded in the same basis but with different coefficients. The new
primed coefficients can be obtained from the original ones due to the completeness relation

∑
n

a′nχn(x) =∑
n

ane
iατχn(x)

⇒ a′n = Cnmam , Cnm = ∫
Mβ

d4xeiατ χ̄n(x)χm(x) . (F.16)
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In an analogous way we define the transformation matrices for the conjugate spinor

b′n = C̄nmbm , C̄nm = ∫
Mβ

d4xe−iατ η̄n(x)ηm(x) . (F.17)

The Jacobian is then given by the inverse determinant of the transformation matrices [6],

Jacλ = det (CC̄)−1 = exp(−i∫
Mβ

d4xαA(x)) , (F.18)

A(x) = tr∑
n

(χ̄n(x)χn(x) − η̄n(x)ηn(x)) . (F.19)

The function A(x) can be evaluated by introducing a regulator function R which suppresses
the highest eigenvalues. The regulator is chosen in such a way that its value and all its
derivatives vanish at x =∞. Furthermore it is regularized to unity at zero, R(0) = 1. An
example for such a function is e−x. Using the completeness relations we can write

A(x) = lim
Λ→∞

lim
y→x

tr
⎡⎢⎢⎢⎢⎣
R(−D

2
λ

Λ2 ) −R
⎛
⎝
−D̄2

λ̄

Λ2
⎞
⎠

⎤⎥⎥⎥⎥⎦
δ(x − y) . (F.20)

We use the Fourier expansion of the Dirac delta function allowing us to express the
differential operator in terms of Fourier momenta and Matsubara frequencies ωn = nπ/β

A(x) = lim
Λ→∞

T∑
n
∫

d3p

(2π)3 tr [R(−(p
2 + ω2

n + 4σ0iα̂pi − α2)
Λ2 )

−R(−(p
2 + ω2

n − 4σ̄0iα̂pi − α2)
Λ2 )] . (F.21)

We can use a formal Taylor expansion of the regulator functions R. Expanding around
4σ0ipi = 0 yields the exact formula

A(x) = lim
Λ→∞

T tr∑
n
∫

d3p

(2π)3
∞
∑
j=0

α̂j

j! [(
4σ0ipi

Λ2 )
j

− (−4σ̄
0ipi

Λ2 )
j

]R(j) (−(p
2 + ω2

n − α2)
Λ2 )

= lim
Λ→∞

T tr∑
n
∫

d3p̂

(2π)3
∞
∑
j=0

α̂jΛ3

j! [(
4σ0ip̂i

Λ )
j

− (−4σ̄
0ip̂i

Λ )
j

]R(j) (−p2 − ω
2
n − α2

Λ2 )

In the second step we rescaled p → p̂Λ. This Taylor expansion is not a perturbative
expansion. We need to consider all terms of the infinite sum, however the cut-off parameter
Λ allows us to ignore certain higher order terms. The limit Λ→∞ in fact cancels all terms
with j ≥ 4. These must eventually converge to zero when the limit is taken. The term with
j = 0 vanishes readily due to the intermediate minus sign. The odd terms with j = 1,3
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vanish due to the even integration over d3p̂. Therefore only the j = 2 term can contribute

A(x) = lim
Λ→∞

trT∑
n
∫

d3p̂

(2π)3
16α2Λ

2 [(σ0ip̂i)
2 − (σ̄0ip̂i)

2]R(2) (−p2 − ω
2
n − α2

Λ2 ) . (F.22)

Let us now look at the spinor traces. We need

trσµνσρσ = 1
2 (δ

µρδνσ − δµσδνρ + εµνρσ) ⇒ trσ0iσ0j = 1
2δ

ij ,

trσ̄µν σ̄ρσ = 1
2 (δ

µρδνσ − δµσδνρ − εµνρσ) ⇒ trσ̄0iσ̄0j = 1
2δ

ij . (F.23)

Plugging this back into the anomaly calculation we find

A(x) = lim
Λ→∞

trT∑
n
∫

d3p̂

(2π)3 2α2Λ [p̂2 − p̂2]R(2) (−p2 − ω
2
n − α2

Λ2 ) = 0 . (F.24)

Conclusively, there is no quantum anomaly arising from the transformations of the spinors
(3.18) in the free (g = 0) N = 4 SYM theory.
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Appendix G

Thermal quantum anomaly at
nonzero coupling

Similar to the previous Appendix F we consider the anomaly of the phase transformations
(4.9). Here we consider the interacting theory which most importantly yields that also
gauge interactions need to be included.
For the calculation of the quantum anomaly we again closely follow the derivation of
Terning [6]. In a first step we show that a phase transformation acting on a single free
scalar field is anomaly free. Using this result and the calculation of Appendix F we then
consider N = 4 showing that it is indeed anomaly-free.

G.1 Thermal anomaly for a free scalar

The calculations for the free scalar are analogous to the free spinor. We start with an
action

Sφ = −∫ d4x∂µφ∗∂µφ . (G.1)

We then Wick rotate and compactify the time dimension as above and introduce phases
to the scalar fields

φ→ φ̃ = eiα̂τφ where α̂ = (2m)π
β

, for m ∈ Z . (G.2)

The scalars with an without tilde have to be periodic to satisfy the KMS conditions.
Forconvenience let us again consider which differential operators act. For the scalar field
we have

−1
2 φ̃
∗∂µ∂

µφ̃ = −1
2e
−iα̂τφ∗∂µ∂

µeiα̂τφ = −1
2φ
∗ (∂µ∂µ + 2iα̂∂τ − α̂2)φ

⇒ D2
φ = ∂µ∂µ + 2iα̂∂τ − α̂2 . (G.3)
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The calculation for φ∗ is analogous. Again we check that these differential operators
are hermitian and negative. Therefore define a basis of eigenfunctions fn(x), gn(x) with
completeness properties

∑
n

f∗n(x)fn(y) = δ(x − y) , ∑
n

g∗n(x)gn(y) = δ(x − y) , (G.4)

∫
Mβ

d4xf∗n(x)fm(x) = δmn , ∫Mβ

d4xg∗n(x)gm(x) = δmn . (G.5)

Hermitianity is then shown by considering

⟨f ∣D2
φg⟩ = ∫Mβ

d4xf∗n(x)D2
φgn(x) = ∫Mβ

d4xf∗n(x) (∂µ∂µ + 2iα̂∂τ − α̂2) gn(x)

= ∫
Mβ

d4x (∂µ∂µ − 2iα̂∂τ − α̂2) f∗n(x)gn(x)

= ∫
Mβ

d4x(∂µ∂µ + 2iα̂∂τ − α̂2) fn(x)gn(x) = ⟨D2
φf ∣g⟩ . (G.6)

Setting f = g we find that the operator is negative definite

⟨f ∣D2
φf⟩ = ∫Mβ

d4xf∗n(x) (∂µ∂µ + 2iα̂∂τ − α̂2) fn(x)

= ∫
Mβ

d4x (−∂µ + iα̂δµ0) f∗n(x) (∂µ + iα̂δµ0) fn(x)

= −∫
Mβ

d4x ∣(∂µ + iα̂δµ0) fn(x)∣2 ≤ 0 . (G.7)

Conclusively D2
φ is indeed hermitian and negative. By an analogous calculation the same

holds for D̄2
φ̄
. Once again f and g are now defined as eigenfunctions of the respective

differential operators

D2
φfn(x) = −ĉ2

nfn(x) , D̄2
φ̄
gn(x) = −ĉ2

ngn(x) . (G.8)

The scalars can thus be expanded in terms of those eigenfunctions

φ(x) =∑
n

anfn(x) , φ̄(x) =∑
n

bngn(x) . (G.9)

The coefficients an and bn are now C-numbers.
Let us now write our phase factor as a transformation of these coefficients

φ(x) =∑
n

anfn(x)→ eiα̂τφ(x) =∑
n

a′nfn(x) (G.10)
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The redefined field is expanded in the same basis but with different coefficients. The new
primed coefficients can be obtained from the original ones due to the completeness relation

∑
n

a′nfn(x) =∑
n

ane
iα̂τfn(x)

⇒ a′n = Cnmam , Cnm = ∫
Mβ

d4xeiα̂τf∗n(x)fm(x) . (G.11)

In an analogous way we define the transformation matrices

b′n = C̄nmbm , C̄nm = ∫
Mβ

d4xe−iα̂τg∗n(x)gm(x) . (G.12)

The Jacobian is then again given by the inverse determinant of the transformation
matrices [6],

Jacφ = det (CC̄)−1 = exp(−i∫
Mβ

d4x α̂Â(x)) , (G.13)

Â(x) =∑
n

(f∗n(x)fn(x) − g∗n(x)gn(x)) . (G.14)

We introduce the same regulator function R which suppresses the highest eigenvalues as
above. Using the completeness relations we can write

Â(x) = lim
Λ→∞
∑
n

[f∗n(x)R(
ĉ2
n

Λ2) fn(x) − g
∗
n(x)R(

ĉ2

Λ2) gn(x)]

= lim
Λ→∞
∑
n

⎡⎢⎢⎢⎢⎣
f∗n(x)R(

−D2
φ

Λ2 ) fn(x) − g
∗
n(x)R

⎛
⎝
−D̄2

φ̄

Λ2
⎞
⎠
gn(x)

⎤⎥⎥⎥⎥⎦

= lim
Λ→∞

lim
y→x

⎡⎢⎢⎢⎢⎣
R(
−D2

φ

Λ2 ) −R
⎛
⎝
−D̄2

φ̄

Λ2
⎞
⎠

⎤⎥⎥⎥⎥⎦
δ(x − y) . (G.15)

We can again use the Fourier representation of the delta function. The anomaly can thus
be rewritten as

Â(x) = lim
Λ→∞

T∑
n
∫

d3p

(2π)3 [R(
−(p2 + ω2

n + 2iα̂ωn − α̂2)
Λ2 )

−R(−(p
2 + ω2

n − 2iα̂ωn − α̂2)
Λ2 )] (G.16)

Let us now write down a formal power series expansion of R around 2iα̂ωn/Λ2 → 0. All even
term cancel readily as (2iα̂ωn)2j = (−2iα̂ωn)2j for integers j. Therefore

Â(x) = lim
Λ→∞

T∑
n
∫

d3p

(2π)3
∞
∑
j=0

−2
(2j + 1)! (

2iα̂ωn
Λ2 )

2j+1
R(2j+1) (−(p

2 + ω2
n − α̂2)

Λ2 ) . (G.17)
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Recalling that ωn ∝ n it is easy to see that the above expression is zero. The sum runs
over all integers n, positive and negative. However, the power series consists only over
terms with odd powers and hence is uneven in n. Note that this is the same symmetry
argument Terning uses to cancel all odd term in his calculation [6]. Only here instead of a
Fourier integral we have a fourier series in the 0-th component. Henceforth

Â(x) = 0 , (G.18)

and the transformation of free Bosons is indeed anomaly-free.

G.2 Thermal anomaly in N = 4 SYM

The above anomaly calculation provides a basis for the anomaly calculation of N = 4
SYM theory. In principle all steps can be adapted. We only need to be careful about two
changes which arise. N = 4 is an interacting theory yielding that the partial derivative ∂µ
has to be promoted to a covariant derivative including the gauge field

Dµ = ∂µ + iAµ , D̄µ = ∂µ − iAµ . (G.19)

Additionally, we need to be careful about R-symmetry indices. Each scalar field and
each fermionic field comes with a distinct phase, see Equation (4.9). For the purpose of
calculating the anomaly they can be considered independently. It is not relevant that
we have R-symmetry indices of su(4)R which eventually gets broken. We can keep these
indices arbitrary and sum in a final step. Therefore, for the purposes of this chapter we
do not assume that repeated R-symmetry indices are summed.
Consider the action of the differential operators on the scalar fields analogous to before

−1
2

˜̄ΦIJDµD
µΦ̃IJ = −1

2e
−iα̂IJτ Φ̄IJDµD

µeiα̂IJτΦIJ = −1
2e
−iα̂IJτ Φ̄IJ (∂µ + iAµ) (∂µ + iAµ) eiα̂IJτΦIJ

= −1
2e
−iα̂IJτ Φ̄IJ (∂µ∂µ + i(∂µAµ) + 2iAµ∂µ +

1
2{Aµ,A

µ}) eiα̂IJτΦIJ

= −1
2Φ̄IJ (∂µ∂µ + i(∂µAµ) + 2iAµ∂µ +

1
2{Aµ,A

µ} + 2iα̂IJ(∂τ + iA0) − α̂2
IJ)ΦIJ

= −1
2Φ̄IJ (DµD

µ + 2iα̂IJDτ − α̂2
IJ)ΦIJ . (G.20)

Similarly we find for the fermions

D2
λ = /̄D /D = i (σµ∂µ − iσµAµ − iσ0αI) i (σ̄ν∂ν + iσ̄νAν + iσ̄0αI)

= ∂µ∂µ + σµσ̄νAµAν − iσµσ̄ν(∂µAν) + 2σµνA[µ∂ν] + 4σ0iαI∂i + 2A0αI + α2
I (G.21)
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= ∂µ∂µ +
1
2{Aµ,Aν} − σ

µνFµν + 2σµνA[µ∂ν] + i∂ ⋅A + 4σ0iαI∂i + 2A0αI + α2
I . (G.22)

Let us collect the differential operators we are thus interested in. They are

D2
Φ = ∂µ∂µ + i(∂µAµ) + 2iAµ∂µ +

1
2{Aµ,A

µ} + 2iα̂IJ(∂τ + iA0) − α̂2
IJ

=∶ ∂2 +A2 − α̂2
IJ + 2α̂IJA0 + ∆̂ (G.23)

D̄2
Φ = ∂µ∂µ − i(∂µAµ) − 2iAµ∂µ +

1
2{Aµ,A

µ} − 2iα̂IJ(∂τ + iA0) − α̂2
IJ

=∶ ∂2 +A2 − α2
IJ + 2α̂IJA0 + ˆ̄∆ (G.24)

D2
λ = ∂µ∂µ +

1
2{Aµ,A

µ} − σµνFµν + i(∂ ⋅A) + 2σµνA[µ∂ν] + 4σ0iαI∂i + 2A0αI + α2
I

=∶ ∂2 +A2 + α2
I + 2A0αI +∆ (G.25)

D̄2
λ = ∂µ∂µ +

1
2{Aµ,A

µ} + σ̄µνFµν − i(∂ ⋅A) − 2σ̄µνA[µ∂ν] − 4σ̄0iαI∂i + 2A0αI + α2
I

=∶ ∂2 +A2 + α2
I + 2A0αI + ∆̄ . (G.26)

We defined A2 = 1/2{Aµ,Aµ}. The terms which differ between the derivative without and
with bar are called ∆ and ∆̄, respectively, for the fermions. For the Bosons we include use
∆̂ and ˆ̄∆, respectively. These operators are slighly different for each of the fields ΦIJ and
for each λI due to the different phases that appear. In consequence we will compute the
anomaly for each I, J independently. Further note that operators with a hat generally
refer to the bosonic versions. The derivation on how the anomaly is computed in a basis
of eigenfunctions is identical to the case of free fields,

JacN=4 = exp(−i∫
β

0
dτ ∫

d3x

(2π)3 τ (∑I,J
α̂IJÂIJ(x) +

4
∑
I=1
αIAI(x))) , (G.27)

AIJ(x) = tr∑
n

(f̄nIJ(x)fnIJ(x) − ḡnIJ(x)gnIJ(x)) , (G.28)

ÂI(x) = tr∑
n

(χ̄nIJ(x)χnIJ(x) − η̄nIJ(x)ηnIJ(x)) . (G.29)

The traces here are taken with respect to the color group SU(N) and - for the fermionic
case only - over spinor matrices.
The regulator function R(z) can be introduced in the same manner as in the calculations
for the free fields. Likewise we write the resulting Dirac delta function in the Fourier
representation and take a formal power series expansion of R around the respective ∆ = 0.
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In the bosonic case this yields substituting again p→ p̂Λ

ÂIJ(x) = lim
Λ→∞

T∑
n
∫

d3p̂

(2π)3
∞
∑
j=0

Λ3

j! tr
⎡⎢⎢⎢⎢⎢⎣
( ∆̂

Λ2)
j

−
⎛
⎝

ˆ̄∆
Λ2
⎞
⎠

j⎤⎥⎥⎥⎥⎥⎦
×

×R(j) (−p2 − ω
2
n −A2 − α̂2

IJ + 2α̂IJA0

Λ2 ) . (G.30)

The trace, as mentioned above, is taken with respect to the SU(N) color group. The j = 0
term vanishes readily. In the limit Λ→∞ the highest term in ∆̂ has O(Λ) and hence all
terms with j ≥ 4 also vanish. We then only need to consider j = 1,2,3. It is convenient to
choose a gauge ∂ ⋅A = 0 as the final result cannot depend on the gauge choice. Then we
find

ÂIJ(x) = lim
Λ→∞

T∑
n
∫

d3p̂

(2π)3
3
∑
j=1

Λ3

j! trR(j) (−p2 − ω
2
n −A2 − α̂2

IJ + 2α̂IJA0

Λ2 )× (G.31)

× [(2iα̂IJωn + 2iA0ωn + 2iΛAipi
Λ2 )

j

− (−2iα̂IJωn − 2iA0ωn − 2iΛAipi
Λ2 )

j

] = 0 .

The term for j = 2 is zero readily while for j = 1,3 the even sum over all integers is taken
over an odd function of n thus vanishing or the three-momentum integral vanishes due to
an odd power of pi in the expansion. Recall that we used an identical argument to show
that the bosonic transfomrations are anomaly-free in the free model.

In the fermionic case we assume the trace to be acting on the color group and on the Pauli
matrices. We find

AI(x) = lim
Λ→∞

trT∑
n
∫

d3p

(2π)3
3
∑
j=1

1
j!

⎡⎢⎢⎢⎢⎣
(∆

Λ2)
j

− ( ∆̄
Λ2)

j⎤⎥⎥⎥⎥⎦
R(j) (−p

2 + ω2
n −A2 − α2

I + 2A0αI
Λ2 )

= lim
Λ→∞

trT∑
n
∫

d3p

(2π)3
3
∑
j=1

1
j!

⎡⎢⎢⎢⎢⎣
(
−σµνFµν + 2σµνA[µPν] + 4σ0iαIpi

Λ2 )
j

−(
+σµνFµν − 2σµνA[µPν] − 4σ0iαIpi

Λ2 )
j⎤⎥⎥⎥⎥⎦
R(j) (−p

2 + ω2
n −A2 − α2

I + 2A0αI
Λ2 )

= lim
Λ→∞

trT∑
n
∫

d3p̂

(2π)3
3
∑
j=1

Λ3

j! R
(j) (−p2 + −ω

2
n +A2 + α2

I + 2A0αI
Λ2 )

⎡⎢⎢⎢⎢⎣

(
−σµνFµν + 2σi0 (Aiωn −ΛA0p̂i) + 2ΛσijA[ip̂j] + 4σ0iαIΛp̂i

Λ2 )
j

(G.32)
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− (
σ̄µνFµν + 2σ̄i0 (Aiωn −ΛA0p̂i) + 2Λσ̄ijA[ip̂j] − 4σ̄0iαIΛp̂i

Λ2 )
j ⎤⎥⎥⎥⎥⎦
.

In the last step we substituted p→ Λp̂. Any terms with j ≥ 4 vanish readily in the Λ→∞
limit. Following [6] trσµν = 0. Therefore only terms with j = 2, 3 contribute. From the free
model we know that for j = 2 we will have to consider contractions

trσµνσρσ = 1
2 (δ

µρδνσ − δµσδνρ + εµνρσ) (G.33)

trσ̄µν σ̄ρσ = 1
2 (δ

µρδνσ − δµσδνρ − εµνρσ) . (G.34)

Here, only the epsilons can lead to terms which do not cancel each other due to symmetry
between the two terms we substract. Furthermore terms linear in pi will readily cancel in
the integration and analogously all linear terms in P0 = ωn cancel against the sum. For
simplicity we ignore the dependence on Λ and consider 3-momenta pi with Pµ = (ωn, pi).
Hence for the j = 2 term we find a contribution

tr∆2 = tr [−σµνFµν + 2σµνA[µPν] + 4σ0iαIpi]
2

= tr[σµνσρσFµνFρσ − σµνσρσFµνA[ρP̂σ] − σµνσρσA[µP̂ν]Fρσ

− 4σµνσ0jFµναIpj − 4σ0iσρσαIpiFρσ + 4σµνσρσA[µP̂ν]A[ρP̂σ]

+ 8σµνσ0jA[µP̂ν]αIpj + 8σ0iσρσαIpiA[ρP̂σ] + 16σ0iσ0jαIαIpipj] (G.35)

= tr (εµνρσFµνFρσ + 4εµνρσA[µP̂ν]A[ρP̂σ]) + . . .

= εµνρσFµνFρσ + . . . . (G.36)

The dots represent terms which eventually will cancel against respective terms of ∆̄. The
last term in the second line with the anti-symmetriced indices also canceled. Either the
term depends on a linear momentum canceling against the single integral or the two indices
of the momenta are identical thus canceling against the totally anti-symmetric epsilon.
Similarly we have

tr∆̄2 = tr [σ̄µνFµν − 2σ̄µνA[µPν] − 4σ̄0iαIpi]
2 = −εµνρσFµνFρσ + . . . . (G.37)

We then find

AI(x) = lim
Λ→∞

trT∑
n
∫

d3p̂

(2π)3
εµνρσFµνFρσ

2Λ R(2) (−p̂2 − ω
2
n −A2 − α2

I

Λ2 ) . (G.38)
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The first term is the instanton term and yields the difference between chiral and anti-chrial
spinors in the action, nλ − nλ̄ [6]. Due to the thermal theory, the limit Λ→∞ eventually
cancels the instanton contribution. This difference arose because instead of the integral
over 4-momenta we only integrated spatial 3-momenta and had a frequency sum. This
leads to Λ3 in the numerator instead of the Λ4 dependence found in the zero temperature
case. This is the reason for the instanton cancellation in the finite temperature theory.
Now let us look at the j = 3 term. Consider again the dependence on Λ. Due to the
pre-factor Λ3 all terms from the expansion in j that go like Λ≥4 in the denominator can
be ignored as they are eventually zero in the limit we consider. In turn this yields that
only terms with a dependence on pi can give non-zero results. On the other hand, each of
these terms will be uneven in some p̂i and hence cancel against the symmetric integral.
Therefore no terms with j = 3 contribute.
Conclusively also the fermionic transformations introduced (3.18) are anomaly-free and
we find that the Jacobean of the phase transformations (4.9) is

JacN=4 = 1 . (G.39)
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Appendix H

Self-energy from phase redefinitions

When considering N = 4 SYM at finite temperature we found it convenient to write the
action in terms of periodic fields only. By doing this the terms breaking supersymmetry
can be identified readily. In Section 4.1 we considered these phase transformations and
found further conditions on the phases from the Yukawa interactions. This yielded the
transformations in (4.15). It is straight forward to see that R-symmetry is broken by these
phases. The dependence on three different integers creates an ambiguity. A priori these
integers can take any value. For some specific choices different amounts of R-symmetry
can be preserved. Some examples are reviewed in Table 4.1.
In this appendix we consider restriction on these choices by a dynamic calculation of
self-energies. We present the respective considerations to the best of our understanding.
We emphasize, however, that the steps in this appendix are novel and have not yet been
fully verified.
The scalar self-energy for N = 4 is known at leading order in a weak coupling expansion
[123,131]. In the Hard Thermal Loop (HTL) limit it yields the thermal mass m2

∞ = λT 2

which is identical for scalars, vectors and spinors. Looking at our ansatz with only periodic
fields and correction terms, we should be able to obtain an identical result for the self-energy.
We will eventually show that the conditions imposed by the phase redefinitions yield an
inconsistency. It turns out to not be possible to find the expected result. Therefore, a
different approach is then proposed in Appendix I.
Although the ansatz with the phase definitions was introduced in straight forward manner
we find said inconsistency. This strongly indicates that at least one of the steps we took or
present here is not fully consistent. At the current state of the art it is difficult to identify
this problematic step precisely.

Consider a perturbative expansion around the ’t-Hooft coupling λ = g2N . The counting in
Feynman diagrams is simplified by the replacements in (3.1)

Aµ → gAµ , λI → gλI , ΦIJ → gΦIJ , c̄→ gc̄ . (H.1)
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Then all propagators are independent of the coupling while all three-point vertices are
proportional to g and four-point vertices are proportional to g2. Note that when comparing
to the Feynman rules presented in Appendix J below, the old definitions were used.
Considering the phases we use the field redefinitions of Equation (4.9). This yielded the
mass terms presented in (4.19)

Lmass = tr[ − πT (2n1 + 1)λ̄1σ̄0λ1 − πT (2n2 + 1)λ̄2σ̄0λ2 − πT (2n3 + 1)λ̄3σ̄0λ3

− πT (2n4 + 1)λ̄4σ̄0λ4 + 4iπT n̂1 (φ1∂0φ̄1 − ∂0φ
1φ̄1) (H.2)

+ 4iπT n̂2 (φ2∂0φ̄2 − ∂0φ
2φ̄2) + 4iπT n̂3 (φ3∂0φ̄3 − ∂0φ

3φ̄3)

+ 8π2T 2n̂2
1φ

1φ̄1 + 8π2T 2n̂2
2φ

2φ̄2 + 8π2T 2n̂2
3φ

3φ̄3] ,

n1, n2, n3, n4, n̂1, n̂2, n̂3 ∈ Z .

The restrictions (4.14) yield that

n1 + n2 + n3 + n4 = −2 , n̂1 = n1 + n2 + 1 , n̂2 = n1 + n3 + 1 , n̂3 = n1 + n4 + 1 . (H.3)

Then the transformations are in fact the ones presented in (4.15). We kept all phases
independent as this allows to write the following equations more conveniently. The phases
were replaced by their expression in terms of temperature and integers to make the
dependence on T explicit.

H.1 Feynman rules for new mass terms

The new terms of the action are mass-like depending on the different phases. They yield
new building blocks for the Feynman diagram calculation. For both scalars and fermions
we use the convention of a cross along the propagator to indicate the insertion of the
respective propagator . For the Feynman rule consider for example

4iπT n̂1∫
β

0
dτ ∫ d3x (φa1∂0φ̄a1 − ∂0φ

a
1φ̄

a
1)

= 4iπT n̂1δ
ab∫

β

0
dτ ∫ d3xT 2∑

m,n
∫ d3q∫ d3k×

× (eiω̂nτ+iq⃗x⃗∂0e−iω̂mτ−ik⃗x⃗ − e−iω̂mτ−ik⃗x⃗∂0e
iω̂nτ+iq⃗x⃗)φa1(q, n)φ̄b1(k,m)

= 8πT n̂1δ
ab(2π)3∑

m,n
∫ d3q∫ d3kδm,nδ(q⃗ − k⃗)ω̂mφa1(q, n)φ̄b1(k,m) (H.4)
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= T 2∑
m,n
∫ d3q∫ d3k [(2π)316π2T 2n̂1mδ

abδm,nδ(q⃗ − k⃗)]φa1(q, n)φ̄b1(k,m) .

From this the Feynman rule can be read off. Overall we find

(ωn, ~q) (ωm,~k)

a, I b, J
= −(2π)32πT (2nI + 1)δabδIJδm,nδ(q⃗ − k⃗) , (H.5)

(ωn, ~q) (ωm,~k)

a, i b, j
= (2π)316π2T 2 (n̂2

i + n̂im) δabδijδm,nδ(q⃗ − k⃗) . (H.6)

For a convenient phrasing we will refer to these diagrams as ”phase insertion” from now
on.
Note that these insertions are of order g0T 2 and g0T 1 for bosons and fermions, respectively.
Henceforth, in a perturbative expansion these ”vertices” do not increase the order of the
coupling. An expansion around small temperatures then seems suggestive although we
will see below that the above insertions yield IR divergences and hence a resummation is
in any case need.

H.2 Leading order self-energy from original N = 4
SYM

Consider first the terms that are equivalently obtained in a zero temperature theory. This
meant that we exclude the phase insertions. The relevant self-energy are derived for the
gauge and the scalar in Section 5.3.1. The final result for a theory at finite temperature is
given in (5.37)

Σ = −8λ⨋
Q
(δB − δF )

1
Q2 + 2λP 2⨋

Q
(δB − 2δF )

1
Q2(Q + P )2 , (H.7)

Πµν = −8ληµν ⨋
Q
(δB − δF )

1
Q2 + 2λ (P 2ηµν − PµPν)⨋

Q
(δB − 2δF )

1
Q2(Q + P )2 (H.8)

− 4λPµPν ⨋
Q
(δB − δF )

1
Q2(Q + P )2 + 16λ⨋

Q
(δB − δF )

QµQν

Q2(Q + P )2 .

Note that these results where derived considering that the fermions are anti-periodic. In
the above equations δB thus indicated the need to substitute in even (periodic) frequencies
while odd (anti-periodic) frequencies are indicated by δF . The periodicity condition of
the fermions is now absorbed in the phase leading to the new correction terms. For
all calculations we hence only consider periodic fermions. Therefore δB = δF and the
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self-energies simplify to

Σ = −2λP 2⨋
Q

1
Q2(Q + P )2 , (H.9)

Πµν = −2λ (P 2ηµν − PµPν)⨋
Q

1
Q2(Q + P )2 . (H.10)

The self-energy of the fermion is given in [20] and shown to depend on the same integral

Σαα̇
λ ∝ λ /Pαα̇

⨋
Q

1
Q2(Q + P )2 . (H.11)

Consider the remaining integral. We split it into two pieces

⨋
Q

1
Q2(Q + P )2 = ⨋Q

1
Q2(Q + P )2 ∣

T=0
+ ⨋

Q

1
Q2(Q + P )2 ∣

T≠0
(H.12)

The first term in the above is the zero temperature term. It is know for example from [62]

⨋
Q

1
Q2(Q + P )2 ∣

T=0
= ∫

d4−2εQ

(2π)4−2ε
1

Q2(Q + P )2 =
Γ(ε)
(4π)2 . (H.13)

We used dimensional regularization in d = 4 − 2ε dimensions to determine the divergence
explicitly.
We are then left with the thermal contribution of the remaining integral. In thermal
field theories one usually uses a Hard Thermal Loop (HTL) approximation. It is straight
forward to also employ this approximation here. Note that in thermal N = 4 there are no
known phase transitions. The constraints in the HTL approximation are thus the same as
the ones for the general theory and it is legitimate to pursue this ansatz. Therefore we
assume that the external momenta are soft p ∼ gT . As is known, the leading contribution
to the integral will come from hard internal momenta q ∼ T [47,100,119]. Therefore we
can conveniently expand around p/q << 1. Following [100] this yields that all dependence
on external momenta in the numerator can be neglected. In this case we find

Σ = −2λP 2⨋
Q

1
Q2(Q + P )2 → 0 , (H.14)

Πµν = −2λ (P 2ηµν − PµPν)⨋
Q

1
Q2(Q + P )2 → 0 , (H.15)

Σαα̇
λ ∝ λ /Pαα̇

⨋
Q

1
Q2(Q + P )2 → 0 . (H.16)
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Hence the terms coming from the zero temperature theory can all be neglected in the HTL
approach. In other words, the terms yielding thermal masses are those with a quadratic
UV divergence at zero temperature which the above integrals do not posses.
What is next, we will consider the phase insertion to the scalar self-energy. We eventually
find that the scalar fields get a mass due to an IR resummation. This is in fact analogous
to the resummation needed in general thermal theories. We discussed the main effects for
φ4 theory in Section 5.1.

H.3 IR resummation

We need to further consider the self-energy diagrams with the internal propagators dressed
with phase transitions. Let us first consider the scalar tadpole as it is the most straight
forward example. This means including the new mass terms (H.5). We consider here the
scalar tadpole diagram which contributes to the self energy. The mass insertion is denoted
by a cross. We have at order T 2

a i b j

P P

Q Q

= 16π2T 2λδabδijT
∞
∑

m=−∞
∫

d3q

(2π)3
3
∑
k=1

(n̂2
k + n̂km)

((2πimT )2 − q2)2
(H.17)

= 16π2T 2λ(n̂2
1 + n̂2

2 + n̂2
3)δabδijT

∞
∑

m=−∞
∫

d3q

(2π)3
1

((2πimT )2 − q2)2
. (H.18)

The piece anti-symmetric in m readily is evaluated to zero. Compare the remaining piece
with the expression in (5.7). The sum and integral are precisely the same and we find an
infrared divergence for the zero mode. The zero mode namely behaves as 1/q2 creating
the IR divergence. Therefore a resummation is needed. All diagrams that contribute
have the form of the one in Figure 5.1 but with crosses (phase insertions) instead of
additional bubbles. The resummed version then is (the circle around the cross indicating
the resummed result)

a i b j

P P

Q Q

= λδabδijT
∞
∑

m=−∞
∫

d3q

(2π)3
∞
∑
N=1

MN−1

(ω2
m − q2)N

= λδabδijT
∞
∑

m=−∞
∫

d3q

(2π)3
1

ω2
m − q2 +M2 , (H.19)
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M2 = 16π2T 2(n̂2
1 + n̂2

2 + n̂2
3)

= 16π2 (5n2
1 + n2

2 + n2
3 + (n1 + n2 + n3 + 2) 2 − 1) .

In the last step we used the constraints for the n̂i and the nI as given above in (H.3).
The resummation was, as indicated, carried out in analogy to (5.9). The difference here,
however, is that the new mass M is not dependent on the coupling and therefore we
cannot simply expand around it. Recall that in the usual thermal IR resummation such
an expansion yields diagrams of order λ3/2 in the perturbative expansion. In fact our
calculation shows that we have to consider all scalars in the diagrams we compute as being
massive with the mass M .

What is more, let us consider the fermionic loop. Also here similar insertions must be
considered potentially leading to the same kind of IR divergence. Note, however, that
as the node in (H.5) is inserted to an internal propagator all indices are summed. This
yielded the sum ∑3

k=1 (n̂2
k + n̂km) in case of the scalar above. For the fermions we find

schematically

4
∑
I=1

(ωn, ~q) (ωm,~k)

a, I b, J
= −

4
∑
I=1
(2π)3NαIδabδIJδm,nδ(q⃗ − k⃗)

= −(2π)32N(α1 + α2 + α3 + α4´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

)δabδIJδm,nδ(q⃗ − k⃗) = 0 . (H.20)

In the last step the Constraint (4.14) coming from the constraints on the phases was used.
Therefore we see that there are no relevant mass terms for the fermions. Only the scalars
become massive.

H.4 Self-energy with massive scalars

We can then reconsider the scalar self-energy. In the following all scalar propagators are im-
plicitly assumed to be massive withM2 = 16π2 (5n2

1 + n2
2 + n2

3 + (n1 + n2 + n3 + 2) 2 − 1) , ni ∈
Z. The diagrams are the same as in (5.32). The mass is included readily

(Σ1,f)abIJ ∶ = g2
P

Q

Q+ P

P

a I b J
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= 4λδabδIJ ⨋
Q
[ 2
Q2 −

P 2

Q2(Q + P )2 ] , (H.21a)

(Σ1,sv)abIJ ∶ = g2

P Q

P +Q

P

a I b J

= 2λδabδIJ ⨋
Q
[ 1

2Q2 + 2M2 +
P 2

(Q2 +M2) (Q + P )2 ] , (H.21b)

(Σ1,s)abIJ ∶ = g2

P

Q

P

a I b J

= −5λδabδIJ ⨋
Q

1
Q2 +M2 , (H.21c)

(Σ1,v)abIJ ∶ = g2

P

Q

P

a I b J

= −4λδabδIJ ⨋
Q

1
Q2 . (H.21d)

As bosonic and fermionic frequencies are even we can combine all diagrams to

(Σ1)abIJ = λδabδIJ [−4P 2⨋
Q

1
Q2(Q + P )2 + 4⨋

Q

1
Q2

+2P 2⨋
Q

1
(Q2 +M2) (Q + P )2 − 4⨋

Q

1
Q2 +M2 ]

→ λδabδIJ [4⨋
Q

1
Q2 − 4⨋

Q

1
Q2 +M2 ] . (H.22)

In the second line we took the HTL limit. Consider the remaining integral [47]

⨋
Q

1
Q2 +M2 =

1
(4π)2 [Λ

2 −M2 ln( Λ2

M2)] +
1

2π2 ∫
∞

0
dq q2
√
q2 +M2

1
eβ
√
q2+M2 − 1

. (H.23)

We introduced a cut-off Λ to regularize the quadratic and logarithmic UV divergence.
Therefore we find the final result for the HTL limit

(Σ1)abIJ = λδabδIJ [
M2

(2π)2 ln( Λ2

M2) +
T 2

3 − 4I(M)] . (H.24)
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I(M) ∶ = 1
2π2 ∫

∞

0
dq q2
√
q2 +M2

1
eβ
√
q2+M2 − 1

. (H.25)

The UV divergent term can be renormalized by a mass counter-term and we ignore it for
the following argument.
This result can be compared to known finite temperature corrections. If the anti-periodic
boundary conditions of the fermions are kept in the Lagrangian, supersymmetry is fully
broken [129]. The computation of the thermal masses, however, showed that all particles,
scalars, gauges and fermions, obtain an identical thermal mass m2

∞ = λT 2 [123, 131].
Demanding consistency of this result with our calculation yields

(Σ1)abIJ = λT 2δabδIJ . (H.26)

Therefore we need to consider the integral I(M) more closely. We expect to find I(M) =
−T 2/6. In the form the integral is written in now we cannot solve it. We therefore substitute

q̃2T 2 ∶= q2 + T 2M̃2 , T 2M̃2 =M2 , ⇒ dq = T q̃ dq̃√
q̃2 − M̃2

. (H.27)

The integral thus reads

I(M) = T 2

2π2 ∫
∞

M̃
dq̃
√
q̃2 − M̃2

eq̃ − 1 (H.28)

As we are integrating a smooth function the resulting expression I(M) will also be smooth.
Furthermore consider the limit of lagre M . Using the original definition (H.25) it is easy
to convince ourselves that

lim
M→∞

I(M) = 0 . (H.29)

Furthermore a numerical evaluation for some arbitrary M shows that

I(M) ≥ 0 . (H.30)

In figure H.1 we show some numerical results for arbitrary M underlining the above two
arguments. Conclusively there is clearly still an ambiguity in this approach. Note that we
used it exploiting the Fourier representation in an attempt to identify a supersymmetry
preserving part of the Lagrangian. When considering the full Fourier series we, however,
found an interaction between different modes, see Section 4.2. Such an interaction was
ignored in this approach which might henceforth explain the inconsistency we found.

All in all, this dynamical calculation suggests that there is in fact a flaw in the manner
we define the field redefinitions with phases and that we are, in fact, not allowed to do
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Figure H.1: Plot of Σ1 depending on M between 0 and 5. The integral I(M) was solved
numerically. The results are clearly all positive and approach a value of 1

3λT
2 as expected.

It is further clear that they cannot the expected result Σ1 = λT 2

this in the way we did. One important restriction yielded by the Yukawa-interactions
was that the fermions do not obtain a resummed mass as the bosons do, as the sum of
all fermionic phases is set to zero. without this restriction it might be possible to find a
consistent result in the thermal mass calculation.
In the following Appendix I we suggest another approach which does not suffer from the
problem we found here. We will show that generally R-symmetry is preserved for thermal
N = 4 SYM and from this derive a general Lagrangian.

In this Appendix we will finally find the Action (I.8). This action depends only on periodic
fields and we show that it can be made consistent with the thermal mass of N = 4 SYM.
This suggests that we can derive a thermal BWI for this theory similar to equation
(3.27). In Subsection 4.1.3.1 starting around Equation (4.40) we discuss the implications
of additional operators to the Ward identity. These arguments can likewise be applied to
the new Lagrangian we found here. This then suggests that the Relation (1.1), B = 3h
indeed holds for any coupling g in thermal N = 4 SYM theory. This then is the first exact
thermal result.
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Appendix I

Implicit field redefinitions

In the previous Appendix H we considered a dynamical calculation for the phase redef-
initions introduced in Section 4.1. We demanded consistency for the computation of
thermal masses which is naturally considered in a HTL approximation. We were able to
show, however, that the known thermal masses of N = 4 SYM cannot be obtained in the
suggested approach. Therefore, we concluded that the ansatz was flawed. Inspired by the
results we found, we suggest a different ansatz here. We are in fact able to show that the
SU(4)R symmetry of N = 4 is unbroken at finite temperature. We then assume that we
are able to write the Lagrangian in terms of only periodic fields with breaking terms, see
(4.1). In this appendix we derive these corrections from scratch.
The obvious ambiguity with this ansatz is that we will assume that the anti-periodic
spinors are written in a periodic manner. We do not give these field redefinitions of the
spinors, and assume that possible anomalies or constraints arising are either not present
or can be ignored. This then yields that action of N = 4 SYM but depending only on
periodic field plus correction terms.

I.1 Ward identities & unbroken R-symmetry

We start by considering Ward identities similar to the ones studied in Sections 2.1 and 3.1.
For any symmetry of the theory at zero temperature we find [90]

Q⟨ϕ1 . . . ϕn⟩ = ∫
R1,3

d4x∂µ⟨Jµ(x)ϕ1 . . . ϕn⟩ = 0 . (I.1)

In the above equation Q is the charge associated to the symmetry and Jµ its current. The
ϕi denote any operators in the theory. We ignored R-symmetry and spinor indices in the
above equation. They may or may not be present depending on the symmetry we consider.
We do not make further assumptions on it.
We now consider finite temperature. First and foremost one assumption must be made.
Symmetries can only be softly broken at finite temperature. A soft breaking of symmetries
is then visible in the Ward identities by yielded breaking terms. We saw one example
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of this in Section 3.1 where the breaking of the SUSY Ward identity was studied in a
non-interacting setting. We hence exclude all symmetries that transform the coordinates.
The breaking terms can be seen when using Stoke’s theorm on the above equation. The
integral will now be over the thermal manifold S1

β ×R3,

Q⟨ϕ1 . . . ϕn⟩β = ∫
S1

β
×R3

d4x∂µ⟨Jµ(τ, x⃗)ϕ1 . . . ϕn⟩β

= ∫
δ(S1

β
×R3)

dΣµ⟨Jµ(τ, x⃗)ϕ1 . . . ϕn⟩β

= ∫
β

0
dτ lim

x⃗→∞
ni⟨J i(τ, x⃗)⟩β⟨ϕ1 . . . ϕn⟩β (I.2)

+ ∫
R3

d3x⟨(J0(β, x⃗) − J0(0, x⃗))ϕ1 . . . ϕn⟩β ,

with ni, i = 1,2,3 a unit vector in the spatial direction. For the first term in the last line
we used clustering at large distances x⃗→∞ [54]. We assume that the one-point function
of any spatial component of a current is zero

⟨J i(τ, x⃗)⟩β = 0 (I.3)

in any thermal theory. This follows because the spatial components must obey the residual
3d Lorentz symmetry, see also [54]. Then we only need to consider the second term. Here,
the boundary conditions yielded by finite temperature can be used

J0(β, x⃗) − J0(0, x⃗) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 for bosonic symmetries ,

2J0(β, x⃗) for fermionic symmetries .
(I.4)

Note that when considering bosonic symmetries the yielded current is also bosonic and
hence obeys periodic boundary conditions. Fermionic currents similarly obtain anti-periodic
boundary conditions.
As the gauge and R-symmetry are bosonic they are thus unbroken by finite temperature.
This underlines the result we found when considering the reduction to three dimensions
by a Fourier series, Section 4.2. It also further puts into question the first approach using
explicit phase prefactors, Section 4.1. As stated previously this is probably linked to the
interaction between different modes. With a more careful analysis it might be possible to
re-interpret the Fourier modes as phase transitions for the full theory. We saw that this is
indeed possible when the coupling is set to zero.
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I.2 Periodic Lagrangian

The above consideration showed how bosonic symmetries are preserved at finite temperature.
This is, however, not true for the fermionic supersymmetry. The supersymmetry Ward
identity (2.16) is thus broken. For consistency, we want to write the full action of N = 4
SYM at finite temperature in terms of periodic fields with possible additional breaking
terms as in (4.1). This will clearly then yield the breaking terms of the supersymmetric
Ward identity at finite temperature. We suggest the following approach:
Let us assume that there is a consistent way of making the fermions periodic and deriving
corrections. This will yield

LT≠0N=4 = LT≠0N=4 periodic +Lnew, periodic . (I.5)

Consider the new term (also depending on periodic fields) conceptually. We need to write
down all relevant operators which are allowed by the preserved symmetries and further
make sure that mass dimensions are consistent. The new terms can generally have various
conformal dimensions ∆. The dimension of the Lagrangian is [L] = 4. Deformations with
∆ > 4 are irrelevant. They would contribute with a prefactor 1/T∆−4 which blows up in zero
temperature limit. This is forbidden by the samll temperature limit using our assumption
of soft breakings. It is therefore consistent to discard these transformations. Hence only
deformations ∆ < 4 can contribute. They can be considered one by one. The unbroken
gauge and R-symmetry restrict the possible choices. All deformations need to be singlets
as is the Lagrangian.
At ∆ = 0 only the identity operator exists. As there is no field dependence the spacetime
integral in the action readily yields a volume of spacetime factor. Following [137] the
prefactor of the identity is the free energy F . For ∆ = 1 we are not able to construct a
singlet operator which could contribute. Due to the low conformal dimension only a single
field could be added which would not be gauge invariant. Also single scalar fields and
spinors are not R-symmetry singlets.
The primary Konishi operator is [116]

K1 =
1
2trφiφ̄i . (I.6)

It has mass dimension [K] = 2 and hence is a possible contribution at the next order. The
spinor fields have a conformal dimension of [λ] = 3/2 and hence are only relevant at the
next order. Considering gauge fields, it turns out impossible to include a term which does
not break the gauge symmetry.
For ∆ = 3 we find Chern-Simons terms of the gauge fields. One might suspect to find
derivatives acting on the Konishi operator. However, the partial derivative will yield a
total derivative term inside the spacetime integral. The covariant part including the gauge
field is similar to the consideration in (4.18) and can be shown to eventually cancel. All in
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all we thus write

ST≠0N=4 = ST≠0N=4 periodic + F T 4 Vol (S1
β ×R3)

+ ∫
β

0
dτ ∫ d3xtr [m2

φK1 +mλλ
Iσ0λ̄I + aTεijk (AiAjAk +

2
3Ai∂jAk)] . (I.7)

The coefficient a is real and a priori arbitrary and so are the masses mφ,mλ ∝ T . The
first two terms in the second line give masses to the scalars and fermions, respectively. A
priori these masses are free parameters. We assume that the Chern-Simons term can be
shown to cancel. The volume of the thermal manifold diverges and we can consider it
renormalized thus omitting it. Hence

ST≠0N=4 = ST≠0N=4 periodic + ∫
β

0
dτ ∫ d3xtr [m2

φK +mλλ
Iσ0λ̄I] . (I.8)

This action is now build in a manner that preserves R- and gauge symmetry. However,
it will clearly break supersymmetry and insofar it is as expected. Further note that the
term λIσ0λ̄I is precisely the SUSY breaking term we discovered in Section 3.1 in the
consideration at zero coupling.
The above is thus a consistent suggestion for a Lagrangian which preserves the symmetries
we showed are preserved. In contrast, it manifestly breaks supersymmetry. Also Lorentz
symmetry is broken from four to three dimensions. This can be seen by the explicit σ0

which appears in the fermionic mass term.

I.3 Scalar self-energy

The above action depends on two newly introduced mass coefficients

mφ = m̃φT and mλ = m̃λT . (I.9)

They are a priori arbitrary, however, we again demand that the thermal mass m2
th. = λT 2

can be obtained consistently. We therefore go back to the calculation of self-energy as in
the previous Appendix H.4. As previously, all fields are assumed periodic and we should
demand consistency in the computation of the scalar self-energy. The relevant Feynman
diagrams are given in Equation (H.21). The difference in the case at hand are the masses
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for the fermionic particles. Hence we find

(Σ1,f)abIJ ∶ = g2
P

Q

Q+ P

P

a I b J

= 4λδabδIJ ⨋
Q

⎡⎢⎢⎢⎢⎣

2
Q2 +m2

λ

− P 2

(Q2 +m2
λ) ((Q + P )2 +m2

λ)

⎤⎥⎥⎥⎥⎦
, (I.10)

and all other diagrams are the same with M2 →m2
φ. Thus the full diagram is, in the HTL

approximation, given by

(Σ1)abIJ = λδabδIJ [−4⨋
Q

1
Q2 − 4⨋

Q

1
Q2 +m2

φ

+ 8⨋
Q

1
Q2 +m2

λ

]

= −4λδabδIJ [I(0) + I(mφ) − 2I(mλ)] . (I.11)

We introduced an integral similar to the Equations (H.23), (H.24) and (H.25) in the
previous chapter. With an analogous substitution this yields

I(m) = ⨋
Q

1
Q2 +m2 ∣

ren.
= T 2

2π2 ∫
∞

m/T
dq̃

√
q̃2 − m2

T 2

eq̃ − 1 . (I.12)

We implicitly renormalized the UV divergence. As discussed above the integral is positive
and converges to zero for high m. Note for the remaining term that the temperature
dependence is entirely in the prefactor. We have that m∝ T and hence the combination
m̃ = m/T does not depend on the temperature.
Using that I(0) = T 2/12 we find in the HTL limit

(Σ1)abIJ = λT 2δabδIJ

⎡⎢⎢⎢⎢⎢⎣
−1

3 −
2
π2 ∫

∞

m̃φ

dq

√
q2 − m̃2

φ

eq − 1 + 4
π2 ∫

∞

m̃λ

dq
√
q2 − m̃2

λ

eq − 1

⎤⎥⎥⎥⎥⎥⎦
. (I.13)

The thermal mass of N = 4 is [123, 131] m2
th. = λT 2. Therefore we need to find solutions in

terms of m̃φ and m̃λ to the equation

−1
3 −

2
π2 ∫

∞

m̃φ

dq

√
q2 − m̃2

φ

eq − 1 + 4
π2 ∫

∞

m̃λ

dq
√
q2 − m̃2

λ

eq − 1 = 1 . (I.14)

In principle this equation will yield a relation between the two masses. Figure I.1 shows
this relation through numeric results. The values for the new masses are thus also generally
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Figure I.1: Plot of Σ1 depending on mλ between 0 and 0.6 and mφ between 0 and 10. The
result Σ is plotted in orange while we included the plane Σ = 1 in blue. This is the result
we expect to find following [123, 131]. The intersection between the two planes are the
allowed values when demanding consistency. This clearly shows that there is some relation
between the two masses. The integrals I(m) were solved numerically.

constrained. Taking only the first four digits we find

mφ ≳ 0.3205T , mλ ≲ 0.5315T . (I.15)

Employing more numerical results it is possible to further restrict these masses. Employing
a numerical calculation it is further feasible to fit a function to the relation between the
two masses.
This suggest that our ansatz is indeed consistent. It might further be possible by similar
consistency calculations to fully determind the masses m2

φ and m2
λ.

With this result it is possible to consider the BWI similar to the considerations in Section
3.1. Starting from Equation (4.40) we argue why the new terms in the BWI will not
change the final result. With the Lagrangian as given above we indeed obtain the Relation
(1.1), B = 3h.
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Feynman Rules of N = 4 SYM

We defined our conventions for the Lagrangian in (1.56). The Feynman rules can be
read off readily from it. We will discuss the momentum space Feynman rules at zero
temperature. Thermal effects include the discretisation on the Matsubara circle and are
taken in account when computing the self-energies. For details see [47].
Following the overall dependence on the Yang-Mills coupling, 1/g2, every vertex scales with
g−2 and every propagator with g2 thus making any diagrammatic expansion and power
counting rather intuitive. The bare propagators are

⟨AaµAbν⟩(p) = g2 δ
ab

p2 (ηµν + (1 − ξ)
pµpν
p2 ) , ⟨c̄

acb⟩(p) = g2 δ
ab

p2 ,

⟨Φa
rΦb

s⟩(p) = g2 δ
abδrs
p2 , ⟨λaλ̄b⟩(p) = −2ig2 δ

abγµpµ
p2 . (J.1)

Note that our calculations are carried out in the Feynman gauge ξ = 1 and the gauge
propagator thus simplifies and only has a metric prefactor.
For the vertices we find 1 rules

p k

q

aµ

cρ

b ν

= −i
g2 f

abc [ηνρ(q − k)µ + ηµρ(k − p)ν + ηµν(p − q)ρ] ,

(J.2a)

1These and all other Feynman diagrams where created with TikZ-Feynman [138] unless indicated
differently.
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b ν

aµ

cρ

dσ = 1
g2 [f

abef cde (ηµρηνσ − ηµσηνρ)

+ facefdbe (ηµσηνρ − ηµνηρσ) (J.2b)

+ fadef bce (ηµνηρσ − ηµρηνσ) ] ,

a

bµ

c

= if
abc

2g2 γµ , (J.2c)

p

q

Ia

bµ

Jc

= −i
g2 f

abcδIJ(p + q)µ , (J.2d)

Jd

Ia

bµ

c ν = 1
g2 δIJηµν (f

abef cde + facef bde) , (J.2e)
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p

a

bµ

c

= −if
abc

g2 pµ , (J.2f)

Ia

b

c

= i

2g2f
abcΓI , (J.2g)

Jb

Ia

Kc

Ld = 1
g2 [f

abef cde (δIKδJL

−δILδJK) + facefdbe (δILδJK − δIJδKL)

+ fadef bce (δIJδKL − δIKδJL) ] . (J.2h)
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