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1 Introduction

Two-dimensional conformal field theories are renowned for their richness, in the sense
that through studying them, one often reveals connections between different disciplines in
both physics and mathematics, at the same time deepens the understanding thereof. In
this thesis, with the aim of constructing consistent systems of correlators for worldsheets
with topological defects and physical boundaries in rational conformal field theories, we
generalize and apply the string-net models for spherical fusion categories, which were
first introduced in [LW05] as lattice models of topological phases and later formalized in
[KJ11] as 2-dimensional skein theories.

The primary theoretical foundation of this project is three-fold: First, it is widely
believed [MS89, BK01] (and proven for the cases of genus 0 and genus 1) that through
a Riemann-Hilbert type correspondence, the notion of an algebraic modular functor
provided by the Reshetikhin-Turaev 3-dimensional topological field theory for a modular
fusion category C, is equivalent to that of a complex-analytic modular functor for a
rational chiral conformal field theory whose monodromy is governed by the very same
modular fusion category C (e.g. as a suitable representation category of a rational
chiral vertex operator algebra V). Second, it is demonstrated in a series of works
[FRS02, FRS04a, FRS04b, FRS05, FFRS06a] from two decades ago that upon specifying
the chiral theory as well as the representation theoretic data in the category C that
decorate the (topological) worldsheets, a consistent system of correlators can be fully
constructed; by the latter we mean an assignment of an invariant of the appropriate
mapping class group in the relevant space of conformal blocks (provided by the 3d TFT)
to every worldsheet that satisfies sewing constraints. Third, it has been established that
we have the following chain of equivalences of once-extended topological field theories of
top-dimension three:

SNC ≃ TVC ≃ RTZ(C) (1.0.1)
for any spherical fusion category C, where TVC stands for the Turaev-Viro state-sum
TFT for C and RTZ(C) stands for the Reshetikhin-Turaev surgery TFT for the Drinfeld
center Z(C), the equivalence between which was proven independently and via different
approaches in [Bal11] and [TV13], and SNC is the TFT extended from the string-net
model for C, whose existence and equivalence to the other two TFTs were established in
[KJ11] and [Goo18]. In view of the equivalence of braided tensor categories

Crev ⊠ C ≃ Z(C)

which is equivalent to the modularity of C [Shi19], and the fact that one can achieve the
necessary procedure of “combining the left and right movers” (which is called holomorphic
factorization [Wit92] in the literature) for the construction of correlators by taking the
braided double Crev⊠C as the category of chiral data, (1.0.1) suggests that the construction
of a consistent system of correlators can be carried out via the string-net model SNC.
The relevant backgrounds as well as a precise formulation of the tasks of establishing the
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chiral theory as an open-closed modular functor and constructing a consistent system of
correlators for all worldsheets with topological defects are provided in Chapter 2, and
the concrete construction of correlators in terms of string-nets is given in Chapter 5.

As it turned out, not only does the string-net approach to RCFT correlators reduce
the technicality of the construction greatly compared to the TFT approach adopted in
[FRS02, FRS04a, FRS04b, FRS05, FFRS06a] (for instance, the proof of fulfillment of the
sewing constraints in the latter involves rather complicated 3-dimensinal topology), it also
verifies (in the semisimple setting) the conjecture proposed in [FS21a] that internal homs,
internal natural transformations and their compositions [FS21b] provide the algebraic
structures that describe the field contents and their operator products in conformal field
theories. These results are presented in Chapter 6. As an additional demonstration
of the usefulness of the string-net construction for relating algebraic structures in the
braided category Z(C) to the geometric ones provided by the decorated worldsheets,
in Chapter 7 we present the proof (and a concrete formulation) of the statement that
the vertical and horizontal compositions of the internal natural transformations obey a
braided version of the Eckmann-Hilton relation satisfied by the compositions of ordinary
natural transformations, which is done by concretizing the observation that the objects
of internal natural transformations are braided algebras over the braided colored operad
WSC of genus-0 worldsheets.

Moreover, by including line and point defects into the theory, one realizes that it is
necessary to generalize the string-net models to the bicategorical setting: The collection
of representation theoretic defect conditions for the worldsheets in an RCFT with fixed
chiral data C comprises a pivotal bicategory Fr(C) of simple special symmetric Frobenius
algebras, bimodules and bimodule morphisms internal to C, whose composition rules
describe the fusion of (point and line) defects. In Chapter 8, we show that worldsheets
related by the local composition rules for defects provided by the pivotal bicategory Fr(C)
share the same correlator. Put differently: the prescription of string-net correlators gives
rise to a family of MCG-intertwiners between string-net spaces for the pivotal bicategory
Fr(C) which classify the worldsheets up to local relations, and the string-net spaces
for the modular fusion category C which model the spaces of conformal blocks of the
theory. We call these intertwiners universal correlators, alluding to the non-linear analog
provided by universal bundles and classifying spaces. In this sense, it is the equivalence
classes of worldsheets, which form a vector space of Fr(C)-colored string-nets upon
fixing a boundary datum for the defect patterns, that are detectable by “observing” the
correlators – we therefore refer to these equivalence classes as quantum worldsheets, and
define the mapping class groups for them that take the local relations into account. The
short proof of Theorem 8.1.1 relies on the careful formulation of the unframed graphical
calculi and the string-net models for strictly pivotal bicategories, as well as the discussion
of their functoriality under rigid separable Frobenius functors, which are given in Chapter
3 and Chapter 4. It should be noted that our formulations do not require any finiteness
of the bicategories.

Chapter 9 concludes this thesis with an observation of theoretical interest: our sporadic
constructions of string-net modular functors, field functors and universal correlators fit
neatly into the framework of double categories: the symmetric monoidal functors of the
type Bordor

2,o/c → Profk (which is what the term “open-closed modular functors” means
to us in this thesis) provided by the string-net models for pivotal bicategories canonically
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extend to symmetric monoidal double functors, and the universal correlators along with
the field functors comprise a monoidal vertical transformation, whereas various desired
properties such as factorization of modular functors, MCG-invariance and the fulfillment
of sewing constraints of the correlators correspond directly to the axioms of double
functors and vertical transformations, respectively.

Relevant contribution
This thesis is based on the following preprint that has been accepted after refereeing for
publication in the book series Springer Briefs in Mathematical Physics, volume 45 and
that has appeared as a preprint in:

• Jürgen Fuchs, Christoph Schweigert, and Yang Yang. String-net construction of
RCFT correlators. arXiv:2112.12708 [math.QA]

The publication is also listed in the bibliography at the end of the thesis and is cited
as [FSY21]. The results therein were developed together with the coauthors, whose
contributions I fully acknowledge.

The idea to use string-net models to understand CFT correlators in the Cardy case
was proposed to the author already for his master thesis. The original proposal was
substantially simplified through the insights of the author of the present thesis; in
particular he realized the importance of empty string-nets in the Cardy case.

The construction of string-net correlators for general worldsheets with values in string-
net spaces was developed in discussions with Jürgen Fuchs and Christoph Schweigert.
All authors contributed to shaping these results. The idea to generalize disorder fields
for two defects as in [FS21a] to multi-pronged bulk fields is due to the author of this
thesis. The author also developed the idea that the construction of correlators factorizes
through a bicategorical string-net construction based on the bicategory of defect data.
Conceptual aspects, including the interpretation as quantum worldsheets, of this were
sharpened in discussions with Jürgen Fuchs and Christoph Schweigert. The mathematical
realization of this idea using rigid separable Frobenius functors is also due to the author.
The idea of formalizing unframed graphical calculus as a symmetric monoidal functor
from a category of corollas and graphs as well as that of recognizing the string-net spaces
as colimits were inspired by the discussions between the author and Lukas Woike during
the preparation for a separate project, but the formalisms adapted to pivotal bicategories
were conceptualized and written up by the author after discussions with Jürgen Fuchs
and Christoph Schweigert. The author provided after the discussions a first draft of the
material published in [FSY21] that was subsequently polished by contributions from all
authors. The ideas of those parts of the thesis that do not appear in [FSY21] (Chapter
3, Chapter 4, Chapter 9, as well as the proof of Theorem 8.1.1) have been discussed
with Jürgen Fuchs and Christoph Schweigert, but were written up independently by the
author.

Acknowledgment
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and tireless support, especially during the difficult times when I needed patience and
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2 Backgrounds

In this chapter, we give a brief review of the categorical framework of RCFT correlators
developed in [FRS02, FRS04a, FRS04b, FRS05, FFRS06a, FFS12], emphasizing the
point of view that RCFT correlators are surface defects [KS11]. After introducing the
recent insight [FS21b, FS21a] that the field contents are internal homs of suitable module
categories, we give a precise formulation of the task of solving an RCFT with topological
defects in this framework.

2.1 A brief review of the 3d-TFT approach
In a categorical approach to CFT correlation functions, the starting point is not a
Lagrangian or a partial differential equation describing classical field equations, and
one does not rely on any type of perturbation theory. Instead, one postulates that
the correlation functions of the theory exhibit certain chiral symmetries, which means
concretely that they are solutions to a collection of linear differential equations, also
known as chiral Ward identities. For the two-dimensional conformal field theories of
our interest, these symmetries can be encoded in the structure of a conformal vertex
algebra, and the chiral Ward identities on any surface can be derived from that algebra.
The solutions to these equations – which are called conformal blocks and contain the
correlation functions we are looking for as particular elements – form vector spaces. For
the models of our interest these vector spaces are finite-dimensional; when regarded
as elements of these spaces, we refer to the correlation functions for brevity also as
correlators. Typically the solutions are multi-valued, so the fundamental groups of the
relevant parameter spaces (conformal structure of the surfaces and positions of insertion
points), i.e. mapping class groups of surfaces, act on the solution spaces. The particular
elements in these spaces that are correlation functions of bulk fields must be single-valued,
and thus transform trivially under the action of the mapping class group, while correlation
functions involving general defect fields are invariant under a subgroup of the mapping
class group. In addition to the invariance under the actions of the corresponding mapping
class groups, the assignment of correlators to worldsheets should be compatible with
sewing.

Let’s fix once and for all a conformal vertex operator algebra V and denote its (suitable)
category of representations by C, to be referred to as the category of chiral data. For a
rational CFT – the case of interest in this thesis – the vertex operator algebra V is required
to be rational, meaning that C is a modular fusion category (i.e. a non-degenerate braided
fusion category with a spherical pivotal structure). It is a widely accepted assumption,
and proven for the cases of genus 0 and 1 , that in this case the Reshetikhin–Turaev
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topological field theory1

RTC : B̂ord
or,C-ribbons
3 → Vectk

provides the correct spaces of conformal blocks.
We now give a very rough summary of the so-called TFT approach to the construction

of correlators for worldsheets with topological defects developed in [FRS02, FRS04a,
FRS04b, FRS05, FFRS06a].

Given a worldsheet with physical boundaries, (topological) line and point defects, as
well as field insertions, for instance

S = . (2.1.1)

It is part of the construction to determine the labels of the decorations, that is, to
determine a sensible set of boundary conditions, as well as that of defect conditions, and
degeneracy spaces for the field insertions. It turns out that these labels are representation
theoretic. As an illustration, we spell out all the labels for the worldsheet S displayed in
(2.1.1):

• The labels for the two bulk phases A and B are simple, special symmetric Frobenius
algebras (see Section 5.1 for a brief review) in C.

• The boundary conditions M and N are given by right A-modules in C, and the
boundary condition N

′ is given by a right B-module.

• The defect conditions X and Y for the line defects are given by A-B-bimodules.

• The defect conditions α and β for the point defects are give by module morphisms:
α ∈ modC-B(N ′,M ⊗A X), β ∈ modC-B(N ⊗A Y,N

′).

• The boundary field insertion ψM,N
i ∈ modC-A(i⊗M,N), where the chiral label i is

a simple object in C.

• The defect field insertion ϕX,Y
j,k ∈ A-modC-B(j ⊗− X ⊗+ k, Y ), where the chiral

labels j and k are simple objects in C and j ⊗− X ⊗+ k is an A-B-bimodule with
underlying object j ⊗X ⊗ k and specific A- and B-actions defined with the help of
the braiding of C (for details see e.g. [FRS02] or [Run10, Definition 6.7]).

• The bulk field insertion φA
r,s ∈ A-modC-A(r ⊗− A⊗+ s,A), where the chiral labels

r and s are simple objects in C.
1We view the Reshetikhin–Turaev TFT for the modular fusion category C as a symmetric monoidal
functor from (a central extension of) the category of closed oriented surfaces with C-colored marked
points and 3-dimensional bordisms with embedded C-colored framed string diagrams to the category of
vector spaces and linear maps. We refer the readers to [Tur16] for the details therein.
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Note that the boundary conditions being right modules is a consequence of the chosen
convention for the orientation of the physical boundaries, see Definition 2.3.3.

In order to account for the combination of left and right movers in the full field theory
(in this thesis we focus on the situations where the monodromies of left- and right movers
are controlled by the same modular fusion category C), one takes the holomorphic double
Σ̂S of the worldsheet S, i.e. a closed oriented surface with marked points obtained by
taking two copies of the surface ΣS underlying the worldsheet (forgetting the defects)
and identifying their boundaries, with the marked points colored by the chiral labels of
the field insertions. For the worldsheet S given by (2.1.1), we have

Σ̂S = .

The procedure of taking holomorphic doubles of the worldsheets is called holomorphic
factorization.

The relevant space of conformal blocks is the vector space RTC(Σ̂S) assigned to the
marked surface Σ̂S by the TFT and the correlator for the worldsheet S is an element
thereof. We have the following expression for the correlator via evaluating the TFT on a
specific bordism from the empty manifold ∅ to the holomorphic double Σ̂S:

Cor(S) = RTC( )(1) ∈ RTC( ).

(2.1.2)
Here the colored 2-dimensional regions are actually networks of string diagrams colored
with the corresponding Frobenius algebras and their structure morphisms (products,
coproducts, units, and counits) along with a choice of fine triangulations on both regions,
and the coupons at the sites of the field insertions are given by the corresponding module
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morphisms. For instance, if we zoom in on the defect field insertion ϕj,k ≡ ϕX,Y
j,k , we see

.

For any mapping class group element of the worldsheet S, that is, any isotopy class of
diffeomorphisms from ΣS to itself preserving the defects and field insertion points, the
canonical action on the vector space RTC(Σ̂S) thereof merely modifies the triangulations
of the 2d regions, therefore preserves the element Cor(S) due to that the axioms of a
special symmetric Frobenius algebra accounts for the 2d Pachner moves.

2.2 RCFT correlators as surface defects
An important insight of [KS11] is that the correlators obtained via the TFT approach
(more precisely, the network of Frobenius lines) should be considered as surface defects
(along with the line and point defects as we include them in the worldsheets) separating
two 3d bulk theories of Reshetikhin-Turaev type labeled by their categories of Wilson lines,
both of which being C. The collections of such 2-, 1-, and 0-dimensional defects make
up the objects, 1-morphisms and 2-morphisms2 of a pivotal bicategory B (see Chapter
3 for a review of pivotal bicategories and the graphical calculus thereof), respectively,
where the horizontal composition of 1-morphisms is induced by the fusion of parallel line
defects, while the vertical and horizontal compositions of the 2-morphisms are given by
fusing point defects along a line defect, and fusing point defects across two parallel line
defects, respectively.

2Notice that the dimension of a defect is Poincaré dual to its categorical level.
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Let us denote by C-Mod the bicategory of finitely semisimple left C-module categories,
module functors and module natural transformations. This bicategory is in fact pivotal
[Sch13a, Theorem 4.5.1]. In [FSV13], the authors proposed the ansatz

B = C-Mod (2.2.1)

and gave their heuristic justification thereof based on the analysis of the local interactions
between the defects and the bulk Wilson lines. We now give a partial account of their
argument in the following.

We start off with folding the 3-manifold along the surface region in which the lower
dimensional defects are located, thereby reducing the setting to that of bulk-versus-
boundary. Reflected over the surface, the braidings of the bulk Wilson lines get reversed,
therefore we get a new bulk theory whose category of Wilson lines is the Deligne product
Crev ⊠ C. Now pick an arbitrary object a ∈ B and focus on its endomorphism category
Wa := EndB(a). The horizontal composition of B endows Wa with the structures of a
monoidal category.

Figure 2.2.1: Different ways (from the left v. from the right) of fusing a line defect on the
boundary with the image of a Wilson line produce canonically isomorphic objects
in the monoidal category Wa = EndB(a). On the other hand, the image of any
point defects on Wilson line in the bulk under the projection can freely pass through
line defects on the boundary. Therefore, the monoidal functor F : Crev ⊠ C → Wa

factors through the forgetful functor Z(Wa) → Wa, i.e. it is central. Note that
we have taken into account the fact that the category C of bulk Wilson lines is
braided, hence the different relative positions of the images of purple lines.
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Now, for any diagram of Wilson lines in the bulk and any diagram of line and point
defects (separating the phase a with itself) on the boundary, by projecting the diagrams
in the bulk onto the boundary (see Figure 2.2.1), we get a combined picture of the two,
where the intersecting parts manifest as half-braidings (see (5.0.3) for our convention
for half-braidings, and note that apart from Figure 2.2.1 we use an over crossing of a
strand labeled with Y ∈ Z(C) to represent the half-braiding of Y ). Due to the topological
nature of the Wilson lines, the relative position between the two types of diagrams is
unessential. Assuming the maximum compatibility with the fusion of bulk Wilson lines,
it follows that the act of projecting bulk Wilson lines onto the boundary can be described
by a central functor F : Crev ⊠ C → Wa. This means we have the following commutative
diagram of strong monoidal functors:

Z(Wa)

Crev ⊠ C WaF

F̃ (2.2.2)

where the unnamed vertical arrow stands for the forgetful functor of the Drinfeld center
Z(Wa) and F̃ is in addition braided. If we further assume that the projection is holographic
and saturated, i.e. it preserves all information of the bulk Wilson lines and conversely, any
information of the Drinfeld center Z(Wa) can be obtained from looking at the projection
of some Wilson lines from the bulk, then the functor

F̃ : Crev ⊠ C → Z(Wa)

is required to be an equivalence of ribbon categories. Such F̃ is called a Witt trivialization
of the ribbon category Crev ⊠ C.

Let’s halt our review of the arguments presented in [FSV13] and appreciate that
already at this point, non-trivial constraints have been imposed on the bicategory B of
the surface defects. For instance, combining with the fact that the ribbon fusion category
C is modular, which is equivalent to the statement that the canonical braided functor
ΞC : Crev ⊠ C → Z(C) is a braided equivalence (see (5.0.4)), it follows that the Drinfeld
center Z(Wa) of the endomorphism category Wa := EndB(a) is braided equivalent to
Z(C), i.e. the monoidal categoriesWa and C are Morita equivalent, for an arbitrary object
a ∈ B. This constraint is fulfilled by any full sub-bicategories of C-Mod, since (see e.g.
[EGNO15, Corollary 7.16.2] for a more general statement) for any finitely semisimple C-
module category M, we have a canonical braided equivalence Z(EndC-Mod(M)) ≃ Z(C).

Under a mild extra assumption (see [KMRS21, Section 3.3]), we see that the identity of
B should be narrowed down to the full sub-bicategory3 C-Modtr ⊂ C-Mod, whose objects
are finitely semisimple left C-module categories that admits module traces. Ultimately, the
legitimacy of C-Modtr as a bicategory B of surface defects separating two bulk theories
of Reshetikhin–Turaev type with label C is confirmed by the concrete construction of
such TFT with defects given in [KMRS21] which provides a link between the model
3Note that by taking the full sub-bicategory C-Modtr ⊂ C-Mod, we are keeping all the module functors
rather than just the isometries.
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independent analysis in [FSV13] and the general description of defect TFT as a symmetric
monoidal functor developed in [CRS19].

On the other hand, according to our description of the defect conditions for the
RCFT worldsheets, the bicategory B should contain the bicategory Fr(C) of simple
special symmetric Frobenius algebras, bimodules, and bimodule morphisms as a full
sub-bicategory. Indeed, according to the following theorem, the bicategory C-Modtr is
canonically biequivalent to F̂r(C) of all special symmetric Frobenius algebras in C.

Theorem 2.2.1 ([Sch13b]). Let C be a pivotal fusion category. The pseudofunctor
F̂r(C)→ C-Modtr given by

• A 7→ modC-A

• X 7→ − ⊗A X

• φ 7→ − ⊗A φ

is an equivalence of bicategories. (Recall that the canonical left C-module structure on
modC-A is given by tensoring with objects in C on the left.)

2.3 Field contents and worldsheets with sewing boundaries
It is advantageous, both methodologically and conceptually, to combine all the field
insertions of a given type (with all possible chiral labels) into a single object, seen as the
space of all fields of the sort. Such an object naturally carries an action of an appropriate
VOA, which is either the chiral algebra V if the fields are inserted on a physical boundary,
or V ⊗ V if the fields are inserted in the bulk or on line defects. Thus the objects
associated to the boundary field insertions, which we call boundary field contents, are
objects in C and the objects associated to the bulk/defect field insertions, which are
called bulk/defect field contents, are objects in the Drinfeld center Z(C) ≃ Crev ⊠ C.

Let’s illustrate this by a concrete example: consider the worldsheet with field insertions
S as in (2.1.1). By removing a little disk encircling each field insertion, we obtain a
worldsheet S with sewing boundaries:

S = . (2.3.1)

In this example, we have three sewing boundaries of different types: one separating two
physical boundaries with boundary conditions M and N , one separating two line defects
with defect conditions X and Y , and the remaining one surrounded by the bulk phase A.
The associated field contents (in this construction) are:

• boundary field content BM,N :=
⊕

i∈I(C)
modC-A(i⊗M,N)⊗k i ∈ C,

16



• defect field content DX,Y :=
⊕

i,j∈I(C)
A-modC-B(i⊗−X⊗+ j, Y )⊗k ΞC(i⊠ j) ∈ Z(C),

• bulk field content DA,A :=
⊕

i,j∈I(C)
A-modC-A(i⊗− A⊗+ j, A)⊗k ΞC(i⊠ j) ∈ Z(C).

Here I(C) is a set of representatives for the isomorphism classes of simple objects of C
that contains the tensor unit 1 ∈ C.

One arrives at these prescriptions by an analysis of the requirement of independence on
the chosen triangulation. The resulting explicit expressions may seem unenlightening at
first. It turns out, however, that all of them are instances of the notion of internal homs
in module categories. Recall that for a left module category M over a tensor category A
and a pair of objects m,n ∈M therein, the internal hom HomM(m,n) ∈ A, if exists, is
an object in A defined (up to unique isomorphisms) by the adjunction

M(c ▷ m, n) ∼= A(c,HomM(m,n)).

When the module category M and the tensor category A are both finitely semisimple,
all internal homs exist. Applying this to the left C-module category modC-A, we find:

BM,N =
⊕

i∈I(C)
modC-A(i⊗M,N)⊗k i

=
∫ c∈C

modC-A(c⊗M,N)⊗k c

∼=
∫ c∈C

C(c,HommodC-A(M,N))⊗k c

= HommodC-A(M,N) ∈ C. (2.3.2)

Here we first converted the direct sum over all simples into a coend as allowed by the
finitely-semisimplicity of C, then used the existence and definition of the internal hom, and
finally arrived at the last line by a generalization of the co-Yoneda lemma (see [FSS20,
Proposition 2.7]). It should be mentioned that for any M ∈ modC-A with non-zero
dimension, the boundary field content BM,M = HommodC-A(M,M) is a simple special
symmetric Frobenius algebra in C that is Morita equivalent to A. Moreover, BM,M is
haploid (another term used for this is “connected”), i.e. C(1,BM,M ) = k, if and only if
M is a simple module.
Remark 2.3.1. In fact, for the C-module category modC-A, we can express the ob-
ject HommodC-A(M,N) in more concrete terms: from the canonical natural isomor-
phism modC-A(c⊗M,N) ∼= C(c,N ⊗A M

∨), we see that, up to a unique isomorphism,
HommodC-A(M,N) = N ⊗A M

∨.
The recognition of bulk and defect field contents as internal homs is less straight

forward and crucially relies on the theory of internal natural transformations developed
in [FS21b].

Let us denote
GX := −⊗A X and GY := −⊗A Y, (2.3.3)

where X,Y ∈ A-modC-B. They are left C-module functors from modC-A to modC-B, i.e.

GX , GY ∈ [modC-A,modC-B] ≡ C-Modtr(modC-A,modC-B).
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The hom-category [modC-A,modC-B] is finitely semisimple and has a canonical left Z(C)-
module structure induced by the half-braidings. As a consequence, the internal homs for
this Z(C)-module category exists. We denote for each pair G,G′ ∈ [modC-A,modC-B],

Nat(G,G′) := Hom[modC-A,modC-B](G,G
′) ∈ Z(C),

and call it the object of internal natural transformations from G to G′.
Using the biequivalence from Theorem 2.2.1, we now recognize the defect field content

DX,Y as Nat(GX , GY ):

DX,Y =
⊕

i,j∈I(C)
A-modC-B(i⊗− X ⊗+ j, Y )⊗k ΞC(i⊠ j)

∼=
∫ z∈Z(C)

[modC-A,modC-B](z ▷ GX , GY )⊗k z

∼=
∫ z∈Z(C)

Z(C)(z,Nat(GX , GY ))⊗k z

= Nat(GX , GY ) ∈ Z(C). (2.3.4)

Just like for conventional set of natural transformations, we have the following expres-
sion of Nat(GX , GY ) as an end [FS21b, Theorem 18]:

Nat(GX , GY ) =
∫

M∈modC-A
HommodC-B(GX(M), GY (M)) ∈ Z(C).

Here we have made the canonical half-braiding γNat(GX ,GY ) ≡ γDX,Y obtained from the
universal coaction of the central comonad of C (for details see [FS21b, Lemma 13])
for the moment implicit, see (6.1.2) for the explicit formula. Combining this with the
finitely-semisimplicity of modC-A and Remark 2.3.1, we have

DX,Y = (
⊕

m∈I(modC-A)

m⊗A Y ⊗B X∨ ⊗A m
∨, γDX,Y ) ∈ Z(C). (2.3.5)

Remark 2.3.2. It’s worth pointing out that taking the Poincaré dual of the picture (after
we simplify the sewing circle to a vertex)

GX

GY

(2.3.6)

gives us

modC-A modC-B

GY

GX

(2.3.7)
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The reminiscence of this picture with the standard depiction of natural transformations
in terms of pasting diagrams fits well with the choice of terminology for Nat.

Bulk fields should be thought of as a special case of defect fields, where the defect
conditions are all trivial, i.e. given by the algebra itself, viewed as a bimodule. In the
example of ours, we have

A

A

.

Since the functor GA = −⊗AA is canonically isomorphic to the identity functor idmodC-A,
the bulk field content is indeed the full center of A:

DA,A = Nat(idmodC-A, idmodC-A) = Z(A) ∈ Z(C),

which has a canonical structure of a commutative symmetric Frobenius algebra in the
modular fusion category Z(C) that is canonically isomorphic to the one investigated in
[KR08].

After discussing the heuristics, we now formulate the precise notion of a worldsheet
(with sewing boundaries). This will proceed in two steps: first we describe the purely
geometric features, then complement with the algebraic data. In this thesis, we work with
topological manifolds to avoid bureaucracy. After all, the category of two-dimensional
oriented smooth manifolds is equivalent to that of two-dimensional oriented topological
manifolds.

Definition 2.3.3. An unlabeled worldsheet S̆ is an oriented compact surface (with
possibly non-empty boundary) equipped with a collection of closed submanifolds of
dimension 0, 1, and 2 – to be referred to as 0-cells, 1-cells and 2-cells, respectively –
satisfying the following conditions:

• The number of cells is finite.

• The set of 0-cells is precisely the set of boundaries of all 1-cells, the union of the
1-cells is the union of the boundaries of all 2-cells, and the union of the 2-cells is S̆.

• The intersection of any pair of 1-cells is contained in the set of 0-cells, and the
intersection of any pair of 2-cells is contained in the set of 1-cells.

• The interior of every 1-cell is either contained in the interior of S̆ or in the boundary
∂S̆.

• Every 1-cell in the interior of S̆ is oriented as a 1-manifold.
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• There are two types of boundary 1-cells, i.e. 1-cells in ∂S̆: oriented and unoriented.
The orientation of an oriented boundary 1-cell is opposite to the one induced by
orientation of S̆.

• A 0-cell in ∂S̆ at which two unoriented boundary 1-cells meet is in addition met by
precisely one oriented 1-cell, whose interior is contained in the interior of S̆.

• A 0-cell in ∂S̆ at which an unoriented and an oriented boundary 1-cell meet, is not
met by any further 1-cell.

• Every connected component of ∂S̆ contains at least one 0-cell.

The stratification prescribed in Definition 2.3.3 is intended to capture the notions of
topological defects, physical boundaries and sewing boundaries. In detail: the 1-cells in
the interior of an unlabeled worldsheet S̆ are called line defects; the oriented 1-cells in
∂S̆ are called physical boundaries; 0-cells in the interior and on the boundary at which
two physical boundaries meet are called point defects or defect junctions; the unoriented
1-cells in ∂S̆ are called sewing boundaries. We refer to the connected components of the
boundary of S̆ as geometric boundary circles and denote the set of these by π0(∂S̆). If all
1-cells in a geometric boundary circle c are sewing boundaries, then c is called a sewing
circle. If a geometric boundary circle c contains at least one physical boundary, then
each connected component of the complement of the interior of the union of all physical
boundaries in c is called a sewing interval. A geometric boundary circle can contain any
finite number of sewing intervals.

Example 2.3.4. The following picture shows an example of an unlabeled worldsheet of
genus 1 and with three geometric boundary circles, among which two of them are sewing
circles and the remaining one contains a sewing interval.

(2.3.8)

Here for clarity we have dyed the two 2-cells with different colors.

Having the terminologies at hand, we can now formulate the notion of a worldsheet
whose strata are colored with Fr(C).

Definition 2.3.5. A worldsheet S is an unlabeled worldsheet S̆ together with the
following assignments of labels to the strata (aka cells) of S̆:

• to any 2-cell of S̆ a simple special symmetric Frobenius algebra in C called its phase;
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• to any line defect an Al-Ar-bimodule called its defect condition, where Al and Ar
are the labels for the adjacent 2-cells to the left and to the right4 of it, respectively;

• to any physical boundary a right A-module called its boundary condition, where A
is the label for the adjacent 2-cell;

• to any point defect v in the interior of S̆ a bimodule morphism (called its defect
condition) in a space Hv, which is determined by the defect conditions of the line
defects that meet at v;

• to any point defect w on the boundary of S̆ a module morphism (also called its
defect condition) in a space Hw determined by the conditions of the line defects
and the physical boundaries meeting at w.

The sewing boundaries, as well as their end points are not labeled and the spaces Hv

and Hw will be specified in (2.3.10) and (2.3.11).

Before specifying the spaces of point defect conditions, let us first illustrate the already
somewhat lengthy description of a worldsheet by an example.

Example 2.3.6. The worldsheet

M1

M2

X1

X6

X2

X3

X4

X5

φ1

φ2

φ3

(2.3.9)

with the underlying unlabeled worldsheet (2.3.8) has:

• two 2-cells, colored with green and blue, with respective phases A,B ∈ Fr(C);

• six line defects with respective defect conditions X1, X2, X3, X5 ∈ A-modC-B,
X4 ∈ A-modC-A, X6 ∈ B-modC-A;

• two physical boundaries with respective boundary conditions M1 ∈ modC-A and
M2 ∈ modC-B;

• three point defects with defect conditions φ1, φ2 and φ3 (in the corresponding
morphism spaces that will be given in Example 2.3.7 below).

Concerning the space of defect conditions Hv assigned to a point defect v in the interior
of a worldsheet, we first note that the orientation of the worldsheet furnishes a cyclic
order of the line defects5 incident to v in such a way that this cyclic order is clockwise if
4Here the perspective is given by an imaginary observer standing on the line defect facing towards the
direction of the defect, whose “up” pointing towards the direction given by the orientation of the surface
according to the right-hand rule.

5Here they should be thought of as half-edges.
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the orientation of the surface is counter-clockwise. Suppose that for some selected linear
order compatible with this cyclic order, the defect lines meeting at v are labeled clockwise
by bimodules Xi for i = 1, 2, . . . , n. We write X∨

i for the bimodule dual to Xi, and set

Xϵ :=
{
X for ϵ = +,
X∨ for ϵ = −.

Then Xϵi
i is an Ai-Ai+1-bimodule for i < n and Xϵn

n an An-A1-bimodule, for Frobenius
algebras Aj the corresponding phases, where ϵi = + if the line defect labeled by Xi is
oriented away from v, while ϵi = − if it is oriented towards v. For the chosen linear order,
the space Hv is now defined to be

Hv := A1-modC-A1(A1, X
ϵ1
1 ⊗A2 · · · ⊗An X

ϵn
n ). (2.3.10)

If a different choice of linear order of the defect lines incident at v is made, the same
prescription gives instead the space

Aj-modC-Aj(Aj , X
ϵj
j ⊗Aj+1 · · · ⊗Aj−1 X

ϵj−1
j−1 )

for some j ∈ {2, 3, . . . , n} (with labels counted modulo n). Owing to pivotality of the
bicategory Fr(C), this space is canonically isomorphic to Hv as defined in (2.3.10).
Accordingly, the choice of linear order is immaterial. This will be articulated more
formally in Section 3.2.

For a point defect located at w in the boundary ∂S̆, there is directly a linear order
on the set of (half-edges of) physical boundaries and line defects incident to w. If the
physical boundary oriented towards w is labeled by a right An+1-module M and the
physical boundary oriented away from w is labeled by a right A1-module N , then the
space assigned to w is defined to be

Hw := modC-An+1(M,N ⊗A1 X
ϵ1
1 ⊗A2 · · · ⊗An X

ϵn
n ), (2.3.11)

with the same convention for ϵi’s as before. In particular, in case n = 0, so that only the
two physical boundaries meet at w, we deal with the space modC-A1(M,N).

Example 2.3.7. For the worldsheet shown in Example 2.3.6 the situations near the
three point defects appear as follows:

φ1 X3

X4

X5

φ2 X6

X4

X6
φ3

M1

M2

X5

Then for a suitable choice of linear order the prescription (2.3.10) amounts to

φ1 ∈ A-modC-A(A,X5 ⊗B X∨
3 ⊗A X

∨
4 ) and φ2 ∈ B-modC-B(B,X6 ⊗A X4 ⊗A X

∨
6 ),

while (2.3.11) gives φ3 ∈ modC-A(M1,M2 ⊗B X∨
5 ).
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We end this section by giving a detailed discussion of field contents associated to the
general types of sewing circles and intervals appearing in the worldsheets that are allowed
by Definition 2.3.5.

Let us start with the boundary field contents. Consider a sewing interval r, we associate
to it an object Br ∈ C as follows. Denote the set of 0-cells in r at which line defects
end by Or. On this set there is a linear order inherited from the prescription for the
orientation of physical boundaries. Assume that the physical boundary oriented towards
one of the end points of r is labeled by a right An+1-module M and the physical boundary
oriented away from the other end point of r is labeled by a right A1-module N , and that
the defect lines that meet the 0-cells in Or are labeled clockwise by bimodules Xi for
i = 1, 2, . . . , n = |Or|. Define ϵi ∈ {+,−} in a way analogous to that in (2.3.10) and
(2.3.11), i.e. set ϵi = + if the defect line labeled by Xi is oriented away from a 0-cell in
Or and ϵi = − otherwise. Then the boundary field content for the sewing interval r is

Br := HommodC-An+1
(M,GXϵn

n ◦ · · · ◦GX
ϵ1
1 (N))

= N ⊗A1 X
ϵ1
1 ⊗A2 · · · ⊗An X

ϵn
n ⊗An+1 M

∨ ∈ C. (2.3.12)

In particular, in case n = 0 we have Br = BM,N .

Example 2.3.8. For the sewing interval

r =

N

M

X1

X2

,

the boundary field content is

Br = Hommod-A3(M,GX∨
2 ◦GX1(N)) = N ⊗A1 X1 ⊗A2 X

∨
2 ⊗A3 M

∨ ∈ C.

Finally, let’s look at defect field contents, which include, as already mentioned, bulk
field contents as special cases. Recall that a geometric boundary circle c is called a sewing
circle if it does not contain any physical boundaries. Denote by Oc the finite set of 0-cells
contained in c, which inherits from the orientation of the worldsheet a cyclic order that
agrees with the induced orientation of the sewing circle c. Unlike the space of defect
conditions Hv of a point defect living in the interior of a worldsheet, the defect field
content Dc ∈ Z(C) for the sewing circle c does depend on the choice of linear order on
Oc (that is compatible with the cyclic order): even though different choices thereof result
in isomorphic objects in Z(C), the isomorphisms are not canonical. Let’s say a linear
order is chosen and the line defects ending at the 0-cells in Oc are labeled by bimodules
Xi for i = 1, 2, . . . , n = |Oc|, numbered according to the chosen linear order, with each
corresponding Xϵj

j an Aj-Aj+1-bimodule (where An+1 = A1). Then

Dc := Nat(idmodC-A1
, GXϵn

n ◦ · · · ◦GX
ϵ1
1 )
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=
∫

M∈modC-A1
HommodC-A1

(M,M ⊗A1 X
ϵ1
1 ⊗A2 · · · ⊗An X

ϵn
n )

= (
⊕

m∈I(modC-A1)

m⊗A1 X
ϵ1
1 ⊗A2 · · · ⊗An X

ϵn
n ⊗A1 m

∨, γDc) ∈ Z(C). (2.3.13)

Note that for the situation in Remark 2.3.2, we have n = 2 and Oc is implicitly ordered
such that X1 = Y and X2 = X, while ϵ1 = + and ϵ2 = −. In this case, we have a
canonical isomorphism

Dc = Nat(idmodC-A, G
X∨ ◦GY ) ∼= Nat(GX , GY ) = DX,Y .

We end this section by another example of a defect field content.

Example 2.3.9. Consider the following sewing circle parameterized by the standard
circle S1 ⊂ C:

c =

X1 X2

X3

,

where the canonical orientation of the standard circle S1 (conventionally chosen to be
counterclockwise) is reversed under the parametrization, and the image of the distin-
guished point −1 ∈ S1 is marked by a red dot. This parametrization allows us to pick a
linear order on Oc, as we will always do hereafter, by choosing the starting point to be
the 0-cell immediately before the red dot (which is the endpoint of the line defect labeled
by X1 in this case). Under this choice, we have

Dc = Nat(idmodC-A1
, GX3 ◦GX∨

2 ◦GX1)
= (

⊕
m∈I(modC-A1)

m⊗A1 X1 ⊗A2 X
∨
2 ⊗A3 X3 ⊗A1 m

∨, γDc) ∈ Z(C).

2.4 Complemented worldsheets and ambient bordisms
An important fact about the spaces of conformal blocks is that they only depend on
the topology and the types of sewing boundaries of the worldsheets for which they are
defined. Therefore, it is necessary to provide a suitable notion of the underlying surface
for a worldsheet with sewing boundaries.

It turns out to be natural for the constructions in this thesis to equip every worldsheet
with an embedding into a surface that is homeomorphic to the worldsheet itself. Before
giving a complete formulation, let us return to the expression of the correlator in (2.1.2)
for some insights. As we already mentioned, correlators should be viewed as surface
defects separating two bulk TFTs of Reshetikhin-Turaev type with categories of Wilson
lines both given by the modular fusion category C. If one looks at (2.1.2) carefully enough,
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they will notice that there are in fact transparent surface defects (i.e. those that are
labeled by the trivial Frobenius algebra 1 or equivalently, the trivial C-module category
C = modC-1) filling the gap between the physical boundaries of S and the holomorphic
double Σ̂S. After being detached from the field insertions, the continuum of surface
defects looks like:

(2.4.1)

The above picture differs from (2.3.1) in that it carries an extra 2-cell, glued along the
union of physical boundaries, that is labeled by the trivial Frobenius algebra 1. We
call 2-cells like this transparent 2-cells. Consequently, we should now view each physical
boundary as a line defect separating the trivial phase from the corresponding (possibly)
non-trivial phase. This is consistent with the fact that the category of right modules
modC-A is canonically equivalent to the category of bimodules 1-modC-A.

In general, if a geometric boundary circle c contains sewing boundaries, we attach to
each connected component of the union of physical boundaries in c a transparent 2-cell
that is homeomorphic to a disk, as depicted below:

X

M

N

φ
7→

X

M

N

φ

On the other hand, if c is a pure physical boundary, i.e. it does not contain any sewing
boundaries, we then attach to it a transparent 2-cell that is homeomorphic to a cylinder,
for instance:

X

Y

N M

ψ

φ

7→

X

Y

N M

ψ

φ

.

In this way, we obtain from a worldsheet S a new stratified surface S̃, to be referred to
as the complemented worldsheet of S. We call the underlying surface of S̃ (forgetting
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all the strata along with their labels), denoted by ΣS , the ambient surface of S. The
terminology is inspired by the canonical embedding S ↪→ ΣS . Strictly speaking, neither
the complemented worldsheet S̃ nor the ambient surface ΣS is uniquely determined by
our prescription. However, given any pair of such constructions, there exists a unique
homeomorphism (up to isotopies) between the ambient surfaces that is compatible with
the embeddings.

Example 2.4.1. For the worldsheet in Example 2.3.6, we illustrate its complemented
worldsheet as:

M1

M2

X1

X6

X2

X3

X4

X5

φ1

φ2

φ3

(2.4.2)

Just by looking at a complemented worldsheet itself, one cannot always tell whether it
came from a worldsheet that contains sewing intervals. For instance, the complemented
worldsheet in (2.4.2) might as well have come from a worldsheet with three sewing circles.
To keep tract of the sewing intervals, we equip the ambient surface ΣS the structure of an
open-closed bordism: we parameterize (we call an embedding ℓ1 ↪→ ℓ2 of the 1-manifold
ℓ1 into the 1-manifold ℓ2 a parametrization of ℓ2 by ℓ1) the image of each sewing circle
(under the embedding S ↪→ ΣS) in ΣS by the standard circle S1 ⊂ C; and for each
sewing interval r, we first choose a closed interval Ir in ∂ΣS whose interior contains
(aside from portions of the boundaries of some transparent 2-cells) only the image of r,
then parameterize it with the standard interval I = [0, 1] ⊂ R. As an example:

N

M

X1

X2

(2.4.3)

Here the image of I under the parametrization is depicted by an red arrow pointing
from the image of 1 towards the image of 0. Let us always equip the standard circle
with the orientation going counterclockwise and the standard interval with the one
going from 1 to 0. A parametrization either preserves or reverses the orientation of the
standard circle/interval, where the orientation of the boundary ∂ΣS is induced by that
of ΣS extending the orientation of S. We call the image of an orientation preserving
parametrization out-going circle/interval and that of an orientation reversing one in-going
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circle/interval. For instance, the red interval in (2.4.3) is in-going, if the partially shown
ambient surface is oriented counterclockwise.

An ambient surface ΣS equipped with a parametrization for every sewing circle and
sewing interval of the original worldsheet S is called an ambient bordism. This is an
additional structure and for a given worldsheet there can be several of such. However, we
use the same symbol for an ambient bordism and its underlying ambient surface leaving
the parametrization implicit.

Example 2.4.2. The ambient surface in Example 2.4.1 can be promoted to an ambient
bordism as follows:

M1

M2

X1

X6

X2

X3

X4

X5

φ1

φ2

φ3

(2.4.4)

It has one in-going interval, denoted by the red arrow on the left, and two out-going
circles, denoted by the two oriented green circles on the right.

2.5 Boundary data and sewing
We need the following notion of a boundary datum.

Definition 2.5.1. An Fr(C)-boundary datum b on a compact oriented 1-manifold ℓ with
possibly non-empty boundary is a collection of following data:

• a finite set Oℓ ⊂ int ℓ of points in the interior of the 1-manifold ℓ;

• a coloring of the connected components of the complement of Oℓ with the objects
in Fr(C), i.e. a map C0

b : π0(ℓ \Oℓ)→ objFr(C);

• a coloring of Oℓ with the 1-morphisms in Fr(C), i.e. a map C1
b : Oℓ → 1-morFr(C),

such that for p ∈ Oℓ and al, ar ∈ π0(ℓ \ Oℓ), where al and ar are the components
on the left and right hand side of p, respectively, with the convention that the
orientation of ℓ points from the right to the left, the color of p is a 1-morphism
in Fr(C) from the color of al to that of ar, i.e. C1

b(p) ∈ Fr(C)(C0
b(al),C0

b(ar)) =
C0

b(al)-modC-C0
b(ar).

We will refer to an Fr(C)-boundary datum simply as a boundary datum most of the
time from now on.
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Example 2.5.2. Let A,B,C ∈ Fr(C) and X ∈ A-modC-B, Y ∈ C-modC-B, Z ∈
C-modC-A, then

b1 =

A

B

CX

Y ∨

Z

, b2 =
A B

X Y ∨

C

are boundary data on the standard circle S1 and the standard interval I, respectively.

Given an ambient bordism ΣS of a worldsheet S, the information of the sewing circles
and sewing intervals of S can be encoded in the boundary data pulled back along the
parametrization maps. Let ℓ be a finite disjoint union of standard circles and intervals.
Under a parametrization ℓ ↪→ ∂ΣS , the image of ℓ covers a union of sewing circles and
sewing intervals. We can pull back the 0-cells, which provides the finite set Oℓ ⊂ int ℓ,
and the coloring for π0(ℓ \Oℓ). More care should be taken for the coloring of Oℓ due to
the orientation:

1. If ℓ is out-going, i.e. the parametrization map preserves the orientation of ℓ, then
we define the coloring to be

C1
b : Oℓ → 1-morFr(C)

p 7→ Xϵp
p , (2.5.1)

where Xp is the label of the line defect ending at the image of p, and ϵp ∈ {+,−}
is set to be + if the line defect is oriented towards the image of p and − otherwise.

2. On the other hand, if ℓ is in-going, i.e. the parametrization reverses the orientation
of ℓ, then we define the coloring to be

C1
b : Oℓ → 1-morFr(C)

p 7→ X−ϵp
p , (2.5.2)

with the same convention for ϵp but be aware of the minus sign in front of it.

Denote by bℓ the boundary datum on ℓ obtained this way.

Example 2.5.3. Let the ambient bordism be the one in Example 2.4.2, we have ℓin = I
parameterizing the in-going interval and ℓout = S1 ⊔ S1 parameterizing two out going
circles. The corresponding boundary data are

bℓin = M1 X1 M∨
2 , bℓout =

X1

X2

X∨
3

X∨
2

.
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Notice that a boundary datum obtained by the parametrization of any sewing interval
always has its outermost 1-cells colored with the trivial Frobenius algebra 1.

We would like to implement the sewing of worldsheets along matching sewing boundaries
by sewing their appropriate choices of ambient bordisms along matching parametrizations.
Let ℓout = ℓin be a disjoint union of standard circles and intervals parameterizing subsets
of out-going and in-going sewing boundaries of some worldsheet S, respectively, with
their respective images not necessarily laying in the same connected component of the
ambient surface. The parametrizations are called matching if we have bℓout = bℓin . In
this case, the corresponding sewing boundaries of the worldsheet S matches as well and
sewing the corresponding ambient bordism ΣS along the parametrizations by ℓout and
ℓin implements the sewing of S along the corresponding matching sewing boundaries.
For instance, the sewing of matching sewing intervals depicted by

N

M

X X

N

M

7→ X

N

M

is implemented by the following sewing of ambient bordism along matching parametriza-
tions:

N

M

X X

N

M

7→ X

N

M

Here the out-going and in-going intervals are denoted by a green and a red arrow,
respectively. Note that it is necessary to require the image of the standard interval to
cover a range that is slightly larger than the sewing interval under a parametrization, so
that the act of taking complemented worldsheet is compatible with sewing, i.e. ∪ℓS̃ = ∪̃ℓS
up to isotopies6. In comparison, it is more straightforward to sew along sewing circles,
since no extra transparent 2-cells are involved:

X1

X2

X1

X2

7→
X1

X2

6Unlike in 2-dimensional topological field theories, the topology of the regions with trivial phase matters
in a 2d CFT. This is essentially due to the fact that the central monad for a non-trivial tensor category
acts non-trivially, which ensures the non-trivial dependence of spaces of conformal blocks on the topology
of the surfaces.
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2.6 Formulation of the task
We are now in the position to give a clear formulation of the task of solving a rational
conformal field theory with given category of chiral data C, which is assumed to be
small for convenience7, for all worldsheet with possibly non-empty topological defects
and physical boundaries. Let’s start with a precise definition of an open-closed modular
functor.

Definition 2.6.1. An open-closed modular functor is a symmetric monoidal pseudofunc-
tor

Bl : Bordor
2,o/c → Profk

from the symmetric monoidal bicategory of two-dimensional open-closed bordisms to the
symmetric monoidal bicategory of k-linear profunctors.

Let us unwrap this definition. First, the bicategory Bordor
2,o/c of 2-dimensional oriented

open-closed bordisms is the symmetric monoidal bicategory with:

• objects: finite disjoint unions of the standard closed interval I = [0, 1] ⊂ R with the
orientation going from 1 to 0, and the standard circle S1 ⊂ C with the orientation
going counterclockwise;

• 1-morphisms: for objects α and β, a 1-morphism8 Σ : α 7→ β, called an open-
closed bordism from α to β has an underlying compact oriented surface Σ with an
orientation reversing embedding α ↪→ ∂Σ, called the in-going parametrization, and
an orientation preserving embedding β ↪→ ∂Σ, called the out-going parametrization,
such that the images of the two are disjoint (and their union is not necessarily the
whole boundary);

• 2-morphisms: for 1-morphismsΣ,Σ′ : α 7→ β, a 2-morphism ξ : Σ ⇒ Σ′ is an isotopy
class of homeomorphisms from Σ to Σ′, with every homeomorphism ξ ∋ x : Σ → Σ′

therein compatible with the parametrizations, i.e. the diagram

∂Σ

α β

∂Σ′

x|∂Σ

commutes9;

• vertical composition: is induced by the composition of homeomorphisms;
7Note that C is already essentially small due to its finitely-semisimplicity.
8We use a marked arrow here because the bicategory Bordor

2,o/c (as well as Profk, and we regard a
bicategory as a double category with only trivial vertical 1-morphisms) can be canonically embedded in
a double category where the images of the 1-morphisms of Bordor

2,o/c are horizontal 1-morphisms (also
called proarrows).

9Due to the compatibility with the parametrizations, the homeomorphism x : Σ → Σ′ necessarily preserves
orientation.
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• horizontal composition: for a composable pair of 1-morphisms α β γ,Σ′
pΣp

the horizontal composite is given by the bordism Σ ·Σ′ := Σ∪βΣ
′ : α 7→ β obtained

from sewing along the parametrizations by β; the horizontal composition for 2-
morphisms is induced thereby;

• monoidal structure given by disjoint union, with the usual symmetric braiding.

While the bicategory Profk of k-linear profunctors10 is the symmetric monoidal bicategory
with:

• objects: small categories that are enriched in the cocomplete category Vectk of all
k-vector spaces;

• 1-morphisms: for objects A and B, a 1-morphism P : A 7→ B, called a k-linear
profunctor from A to B, is a k-linear functor P : Aop ×B → Vectk;

• 2-morphisms: for 1-morphisms P,Q : A 7→ B, a 2-morphism φ : P ⇒ Q is a natural
transformation of the underlying functors;

• vertical composition: given by the vertical composition of natural transformations;

• horizontal composition: for a composable pair of 1-morphisms A B C,
QpPp

the horizontal composite is given by the coend11

P ·Q :=
∫ b∈B

P (−, b)⊗k Q(b,∼) : A 7→ C;

the horizontal composition for 2-morphisms is induced thereby; (Note that those
coends exist because all the domain categories are small and the target categories
are cocomplete, see [Ric20, Proposition 4.5.3].)

• monoidal structure given by the Cartesian product, with the obvious symmetric
braiding.

Empowered by the coherence theorem for bicategories [Gur13, Chapter 2], in the sequel
we tacitly strictify each of the bicategories Bordor

2,o/c and Profk, i.e. consider them as
(strict) 2-categories. We then also take the pseudofunctor Bl as strict, and thus require
strict preservation of the horizontal composition. Therefore, for any composable pair of
1-morphisms α β γΣ′

pΣp in the source bicategory Bordor
2,o/c, we have

Bl(Σ ·Σ′) = Bl(Σ) · Bl(Σ′)

=
∫ y∈Bl(β)

Bl(Σ;−, y)⊗k Bl(Σ′; y,∼) : Bl(α) 7→ Bl(γ), (2.6.1)

10Note that we’ve made a different choice for the bicategory of k-linear profunctors in this thesis than
that in [FSY21], which contains the latter as a sub-bicategory.

11Strictly speaking, the composite is only defined up to a contractible choice of coend, i.e. different choices
of coend along with the canonical isomorphisms between them for each composite form a contractible
groupoid, which is just as good as being well-defined.
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where we used the abbreviation Bl(Σ;−,∼) ≡ Bl(Σ)(−,∼). As a coend, (2.6.1) comes
with a universal dinatural family of natural transformations, whose component at
(x0, y0, z0) ∈ Bl(α)× Bl(β)× Bl(γ) is given by a linear map

sΣ,Σ′
x0,y0,z0 : Bl(Σ;x0, y0)⊗k Bl(Σ′; y0, z0)→ Bl(Σ ·Σ′;x0, z0), (2.6.2)

which will be later thought of as the induced sewing map for the conformal blocks.
Moreover, for any 1-morphism Σ in Bordor

2,o/c, the profunctor Bl(Σ) naturally carries
an action of the mapping class group Map(Σ) of the bordism12 Σ, i.e. the group of
2-endomorphisms of Σ, by evaluating the pseudofunctor Bl on the 2-morphisms in
Bordor

2,o/c.
We need a specific open-closed modular functor BlC to model the spaces of conformal

blocks for our RCFT. Such an open-closed modular functor needs to satisfy certain
constraints: first of all, the categories BlC(I) and BlC(S1) obtained by evaluating BlC
on the standard 1-manifolds should be canonically equivalent to the category of chiral
data C and its Drinfeld center Z(C), respectively; secondly, when restricted to the closed
sector, i.e. the sub-bicategory Bordor

2 of Bordor
2,o/c of closed bordisms, the modular functor

should be equivalent to the modular functor induced by the once-extended topological
field theory TVC of Turaev-Viro type for C, or equivalently [TV13, TV17, Bal11] the one
of Reshetikhin-Turaev type for Z(C). We formulate these requirements in the following
problem that will be solved in this thesis (Section 4.7):

Problem 2.6.2. Construct an open-closed modular functor BlC : Bordor
2,o/c → Profk,

equipped with

• canonical equivalences of k-linear categories

ΦI : BlC(I) ≃−→ C (2.6.3)

and
ΦS1 : BlC(S1) ≃−→ Z(C); (2.6.4)

• a canonical equivalence of (closed) modular functors

BlC,c
≃=⇒ TVC,ϵ-2-1 : Bordor

2 → Profk, (2.6.5)

where BlC,c and TVC,ϵ-2-1 are given by the restrictions of symmetric monoidal
pseudofunctors13:

BlC,c = (Bordor
2 ↪→ Bordor

2,o/c
BlC−→ Profk);

TVC,ϵ-2-1 = (Bordor
2 ↪→ Bordor

3-2-1
TVC−→ Profk).

12Later on, we will be interested in the mapping class group Map(S) of a worldsheet S, which is a
subgroup of the mapping class group Map(ΣS) of its ambient bordism ΣS .

13Here Bordor
321 is the symmetric monoidal bicategory of closed oriented 1-manifolds, 2-bordisms and

equivalence classes of 3-bordisms with corners. The symmetric monoidal bicategory Bordor
2 is embedded

therein via taking every isotopy class of homeomorphisms to the mapping cylinder of any of its
representatives.
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The next ingredient we need is a family of field maps. Let S be an arbitrary worldsheet
and ΣS : ℓin 7→ ℓout an ambient bordism thereof. Recall that by the construction
introduced in Section 2.5, we obtain boundary data bℓin and bℓout on the 1-manifolds

ℓin =
pin⊔
i=1

I ⊔
qin⊔
j=1

S1 and ℓout =
pout⊔
i=1

I ⊔
qout⊔
j=1

S1, respectively.

Problem 2.6.3. Construct for every 1-manifold ℓ ∈ Bordor
2,o/c a field map, i.e. an

assignment14

Fℓ : {Fr(C)-boundary data on ℓ} → obj BlC(ℓ),

such that
Fℓin(bℓin)

Φℓin7−→ FS
in ∈

pin∏
i=1
C ×

qin∏
j=1
Z(C) (2.6.6)

and
Fℓout(bℓout)

Φℓout7−→ FS
out ∈

pout∏
i=1
C ×

qout∏
j=1
Z(C) (2.6.7)

for every worldsheet S, where FS
in and FS

out are the combinations of field contents associated
to the in-going and out-going sewing boundaries of the worldsheet S and we define for

every 1-manifold ℓ =
p⊔

i=1
I ⊔

q⊔
j=1

S1 an equivalence of categories

Φℓ : BlC(ℓ) =
p∏

i=1
BlC(I)×

q∏
j=1

BlC(S1) ≃−→
p∏

i=1
C ×

q∏
j=1
Z(C) (2.6.8)

obtained from combining p copies of (2.6.3) and q copies of (2.6.4).

Example 2.6.4. Let bℓin and bout be as in Example 2.5.3. Then the requirement for the
field maps amounts to

ΦI ◦ FI(bℓin) = HommodC-B(M2,M1 ⊗A X1) ∈ C

and

ΦS1×S1 ◦ FS1×S1(bℓout) = Nat(idmodC-B, G
X1 ◦GX∨

2 )×Nat(idmodC-A, G
X∨

3 ◦GX2)
= Nat(GX∨

1 , GX∨
2 )×Nat(GX3 , GX2) ∈ Z(C)×Z(C).

With the open-closed modular functor BlC and the field maps {Fℓ}ℓ∈Bordor
2,o/c

at hand,
we obtain for each worldsheet S with ambient bordism ΣS : ℓ 7→ ℓ′, a vector space with
Map(ΣS)-action

BlC(S) := BlC(ΣS ;Fℓ(bℓ),Fℓ′(bℓ′)), (2.6.9)

which we take as the space of conformal blocks for the worldsheet S.

14For every 1-manifold ℓ ∈ Bordor
2,o/c, the field map Fℓ will be extended to an actual functor later, see

Section 5.2.
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Remark 2.6.5. Our prescription for the vector space BlC(S) depends on the choice of
the ambient worldsheet ΣS a priori. However, with a fixed in-going and out-going
type, there is between any two choices of ambient bordism ΣS , Σ

′
S : ℓ 7→ ℓ′ a unique

invertible 2-morphism in the double category Bordor
2,o/c, which will be defined in Section

9.1, that is compatible with the canonical embeddings S ↪→ ΣS and S ↪→ Σ′
S . This

induces, when provided that the pseudofunctor BlC can be naturally upgraded to a double
functor BlC : Bordor

2,o/c → Profk, a unique isomorphism between each pair of vector spaces
BlC(S) resulted from different choices of ambient bordisms. Then we only need to ensure
that given a choice of ambient surface ΣS , different choices of parametrization result in
canonically isomorphic spaces of conformal blocks. Such spaces constructed in this thesis
using the string-net model turn out to be in fact parametrization-independent.

Before finally formulating the problem of finding correlators for all worldsheets, we
need to define the notion of the mapping class group of a worldsheet with chosen ambient
bordism. Recall that a line (resp. point) defect is transparent if its defect condition is a
trivial bimodule (resp. trivial bimodule endomorphism).

Definition 2.6.6. The mapping class group Map(S) of a worldsheet S with chosen
ambient bordism ΣS : ℓ 7→ ℓ′, is a subgroup of Map(ΣS) = EndBordor

2,o/c(ℓ,ℓ′)(ΣS) that
consists of the isotopy classes of homeomorphisms from ΣS to itself, which are already
required to preserve the parametrizations hence also the orientation of ΣS , that fix the
non-transparent line and point defects as well.

From now on, it is understood that we have chosen for every worldsheet an ambient
bordism in a way that is compatible with sewing.

Problem 2.6.7. Construct a consistent system of correlators for all worldsheets in an
RCFT with category of chiral data C, i.e. an assignment

S 7→ CorC(S) ∈ BlC(S),

with the vector CorC(S) called the correlator for the worldsheet S, such that:

• CorC(S) ∈ BlC(S) = BlC(ΣS ;Fℓ(bℓ),Fℓ′(bℓ′)) is Map(S)-invariant with respect to
the canonical Map(ΣS)-action on BlC(S);

• the assignment satisfies the sewing constraints: for every composable pair

ℓ ℓ′ ℓ′′
ΣS′p

ΣSp

with matching parametrizations by ℓ′, we have

s
ΣS ,ΣS′
Fℓbℓ,Fℓ′ bℓ′ ,Fℓ′′ bℓ′′

: BlC(S)⊗k BlC(S ′)→ BlC(S ∪ℓ′ S ′)
CorC(S)⊗k CorC(S ′) 7→ CorC(S ∪ℓ′ S ′), (2.6.10)

i.e. the induced sewing maps for conformal blocks, see (2.6.2), send correlators to
correlators.
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3 Graphical calculus for pivotal bicategories

3.1 A review of string diagrams for bicategories
Recall that a bicategory is a category weakly enriched in the symmetric monoidal 2-
category Cat of small categories, functors and natural transformation, with monoidal
product given by the Cartesian product. This in particular means that given any
bicategory B and objects a, b ∈ B therein, there is a hom-category B(a, b). In this and
the next chapters, we assume that these hom-categories are themselves enriched in the
category Vectk of (not necessarily finite dimensional) k-vector spaces and linear maps.

It is common to use pasting diagrams to express composites of 2-morphisms therein.
For example, for objects a, b, c ∈ B, 1-morphisms f, f ′, f ′′ ∈ B(a, b), g, g′ ∈ B(b, c) and
2-morphisms α : f ⇒ f ′, β : f ′ ⇒ f ′′, γ : g ⇒ g′, the following pasting diagram expresses
the composite (β ◦ α) · γ : f · g ⇒ f ′′ · g′:

a b c

f ′′

f

f ′

g

g′

α

γ
β

Note that in this thesis, we mostly use the diagrammatic order for horizontal compositions.
By taking the Poincaré dual of the pasting diagram, we obtain the string diagram on the
standard square I × I expressing the same composite:

f

f ′

f ′′

g

g′
β

α

γ

Here we have drawn the vertices of the string diagram as rectangular coupons and labeled
the regions corresponding to different objects with different colors, as is standard in the
literature.

Both pasting diagrams and string diagrams can express more complicated composites,
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for instance the pasting diagram

b′′

a b′ c d

b

f ′

f ′′
g′

g
f h

h′

i
α

β

γ

and the string diagram

f

f ′

f ′′

g

g′β

α

γ

h

h′

i

are supposed to express the same composite of certain 2-morphisms in B. Except that to
make sense of either of the diagrams, one first needs to decide for each layer of horizontal
composite of 1-morphisms a bracketing which includes a choice of insertions of identity
1-morphisms. However, thanks to the coherence theorem for bicategories, see e.g. [JY21,
Section 3.6], there exists between each pair of bracketed horizontal composites of the same
composable sequence of 1-morphisms a unique 2-isomorphism made up of combination
of associators and unitors that connects the pair. As a consequence, given any choice
of bracketings for the source and the target of a (string or pasting) diagram, there is
a unique 2-morphism assigned to it. Moreover, for any two such choices, there is a
unique isomorphism of 2-hom spaces connecting the corresponding pair of 2-morphisms.
Therefore, a pasting diagram or a string diagram uniquely determines a contractible
groupoid1 in Vectk (as a subcategory thereof) whose vertices are the 2-hom spaces that
correspond to different choices of bracketings, as well as a coherent choice of elements in
each of the 2-hom spaces, which we call the value of the diagram.

Accordingly, every equation of string diagrams (or pasting diagrams) should be in-
terpreted as an infinite family of equations in different 2-hom spaces, one for each
simultaneous choice of bracketings for both sides of the equation. Alternatively, one
invokes the strictification theorem for bicategories which states that every bicategory is
canonically biequivalent to a canonical strict 2-category associated to it (see e.g. [Gur13,
Chapter 2]), and treat any bicategory as if they were strict. We alternate between these
two viewpoints in this thesis.

The rules of interpreting string diagrams as well as the axioms of a bicategory together
guarantee that the value of a string diagram is unaffected by any isotopy of the diagram
that fixes the orientation of the rectangular coupons while keeps the diagram progressive
and the endpoints of its legs fixed. To allow for non-progressive string diagrams, i.e.
those containing “U-turns”, one needs dualities.
1A groupoid G is called contractible if the unique functor G → 1 to the terminal category is an equivalence.
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A dual pair (or an adjoint pair) in a bicategory B is a tuple (f, g, η, ε) that consists
of 1-morphisms f ∈ B(a, b), g ∈ B(b, a), a unit η : ida ⇒ f · g, expressed by the string

diagram

f g

η
, and a counit ε : g · f ⇒ idb, drawn as

fg

ε , such that the

following two yanking equations holds:

g

g

f =

g

g

,

f

f

g =

f

f

Note that we have made the identity 1-morphisms invisible. We call f the left dual (or
the left adjoint) of g and write f =∨g. Conversely, g is called the right dual (or the right
adjoint) of f and g = f∨. The usage of generalized “the” here is justified by the fact that
left (resp. right) duals are defined up to unique isomorphisms.

A bicategory with duals is a bicategory B such that every 1-morphism therein has
both left and right duals. By fixing for each 1-morphism a right dual, we obtain a
pseudofunctor

(−)∨ : B → Bcoop,

where Bcoop stands for the bicategory obtained from reversing both the 1- and the
2-morphisms in B, and the pseudofunctor acts as identities on objects, sends every
1-morphism to its chosen right dual and every 2-morphism α : f ⇒ g to its transpose
α∨ : g∨ ⇒ f∨.

Definition 3.1.1. Let B be a bicategory with fixed left and right duals.

• A pivotal structure on B is an identity component pseudonatural transformation
(i.e. every component 1-morphism is identity)

ω : idB ⇒ (−)∨∨.

Equipped with a pivotal structure, B is called a pivotal bicategory.
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• B is a strictly pivotal bicategory if the choice for duals satisfies

idB = (−)∨∨.

For a strictly pivotal bicategory B, we have ∨f = (∨f)∨∨ = f∨, therefore we can speak
of the dual of a 1-morphism and denote it in string diagrams by a string with the same
label but opposite direction. Consequently, non-progressive diagrams are meaningful for
strictly pivotal bicategories. Moreover, for any 2-morphism α : f ⇒ g in a strictly pivotal
bicategory B,

f

g

α =

f

g

α . (3.1.1)

This implies that we can now rotate any coupon in a string diagram by a full circle via
isotopy without changing the value of the diagram. Note that both diagrams in (3.1.1)
have their coupons aligned with the frame, meaning that the coupons’ boundaries are
parallel to the boundary of the standard square I × I. Combining all of these, we arrive
at the following conclusion:

Proposition 3.1.2. Given a strictly pivotal bicategory B, there is a well defined value for
any not necessarily progressive string diagram whose coupons are not necessarily aligned
with the frame, and the value is unchanged under any isotopy of the diagram that fixes
the endpoints of its legs with rotations of the coupons allowed.

Proof. Any string diagram Γ on the square I × I is isotopic (through an isotopy that
fixes the endpoints of its legs) to a string diagram Γ̃ whose coupons are aligned with
the frame, and any other choice of Γ̃ differs by an isotopy that fixes the endpoints and
rotates the relevant coupons by full circles, which does not change the value according to
(3.1.1).

In this thesis, we focus on pivotal bicategories of the following types.

Example 3.1.3. Given a pivotal tensor category C, its delooping BC, i.e. C viewed as a
bicategory with a single object, is a pivotal bicategory with the same pivotal structure,
now viewed as a pivotal structure for the bicategory BC. Upon strictifying the pivotal
structure of C, which is always possible due to [NS07, Theorem 2.2], the bicategory BC
becomes strictly pivotal.

Example 3.1.4. Given a pivotal tensor category C, the bicategory Fr(C) of simple special
symmetric Frobenius algebras, bimodules and bimodule morphisms therein inherits a
canonical pivotal structure from C. If C is strictly pivotal, then so is Fr(C).

3.2 Unframed graphical calculus for pivotal bicategories
In our previous discussion of string diagrams for bicategories, we used the standard
square I × I as the canvas. The standard square comes with a canonical 2-framing, i.e.
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a section of its tangent bundle, where the value of the section at each point p ∈ I × I
is (0, 1) ∈ R2 = T (I × I), and asserting that a coupon is aligned with the frame is the
same as saying the coupon is aligned with the canonical 2-framing of the standard square.
Proposition 3.1.2 then says that the 2-framing in the interior of the square is irrelevant
to the evaluation of any string diagram for a (strictly) pivotal bicategory: the value is
unchanged under isotopies that do not necessarily preserve the alignment of the coupons
with the 2-framing. However, so far we are still using the 2-framing at the boundary of
the square: it tells us which part of the boundary is the bottom: this is the interval in
∂(I × I) where the values of the framing are pointing inwards; likewise it characterizes
the top of the square. We use the top and the bottom of the square to separate the
output ports from the input ports of the string diagram. As we will see in this section, the
difference between input and output is immaterial to the graphical calculus for a pivotal
bicategory, and the 2-framing of our canvas can be completely forgotten. This is a crucial
step towards the formulation of string-net models – in a sense, they are generalizations of
the graphical calculus where the canvas for a string diagram can be any compact oriented
surface.

We fix in this section a strictly pivotal bicategory B (recall that we require each of its
hom-categories to be k-linear). Let us first establish the formal definition of a partially
B-colored graph on an oriented surface and the relevant notations. For the moment the
relevant surface will be the standard disk only. However, more general types of surfaces
will be considered in the following chapters.

Definition 3.2.1. A partially B-colored graph Γ on a compact oriented surface Σ with
possibly non-empty boundary is the following data:

• an underlying directed finite graph, i.e. a diagram of finite sets

E(Γ ) H(Γ ) I(Γ ) V (Γ )
δ

i

s t

where V (Γ ), H(Γ ) and I(Γ ) are the sets of internal vertices, half-edges, and half-
edges that touch an internal vertex, respectively; the map t indicates the incidence
of half-edges to the vertices, s is the canonical inclusion, i is a fixed-point-free
involution that indicates the juncture of pairs of half-edges, whose set of orbits is
E(Γ ), to be interpreted as the set of edges, and those edges that consist of pairs of
internal half-edges are called internal edges whereas the rest are called legs; the
map δ is a section of the canonical quotient map H(Γ ) ↠ E(Γ ) and it picks out
for each edge its starting half-edge, thereby directs the edges;

• an embedding of the geometric realization2 |Γ | of the underlying graph into the
2We define |Γ | to be the topological space (

⊔
v∈V (Γ )

{v}) ⊔ (
⊔

e∈H(Γ )

[0, 1]e)/ ∼, where the equivalence relation

is given by:

1. ∀e ∈ H(Γ ): [0, 1]e ∋ 1 ∼ 1 ∈ [0, 1]i(e);

2. ∀e ∈ I(Γ ): [0, 1]e ∋ 0 ∼ {t(e)}.
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surface, such that the intersection of the boundary ∂Σ with the image of |Γ | is
exactly the image of the endpoints of the legs, i.e. the image of {0 ∈ [0, 1]l ↪→
|Γ |}l∈H(Γ )\I(Γ );

• a coloring of the patches, i.e. the connected components of Σ \ |Γ |, with the objects
of B, as well as a coloring of the directed edges with the 1-morphisms of B in a way
that is analogous to how we label the line defects in a worldsheet. Note that the
vertices are not colored.

Let D ⊂ C be the closed unit disk centered at 0 ∈ C with radius 1 (to be referred to
as the standard disk), it has the standard circle S1 ⊂ C as its boundary. By a partially
B-colored corolla on the standard disk we mean a partially B-colored graph on D that
has an underlying contractible directed finite graph with a single vertex, called the center
of the corolla, whose image under the embedding is 0 ∈ D ⊂ C, and the image of each of
its edges (the number of which is allowed to be zero) connects the center with a point on
the boundary ∂D = S1 by a straight line that is oriented either towards or away from
the center. For instance, we have the following partially B-colored corolla on D:

K =
v

f

h g

, (3.2.1)

where a, b, c ∈ objB and correspond to the colors green, blue, and purple, respectively,
and f ∈ B(a, b), g ∈ B(b, c), h ∈ B(c, a) are 1-morphisms. Here we have implicitly
equipped the standard disk D with the orientation that goes counterclockwise. Note that
due to the lack of coloring for the single vertex v, there is a canonical bijection between
the set of partially B-colored corollas and the set of B-boundary data on S1 (defined by
replacing the specific pivotal bicategory Fr(C) with B in Definition 2.5.1):

f

h

g ←→

f

h∨

g. (3.2.2)

We would like to associate to the center v of a partially B-colored corolla K a vector
space HB

v that will be the space of colors for the vertex v. Note that the orientation of
D naturally induces a cyclic order on the set H(v) of half-edges incident to the vertex v:
if we draw D as oriented counterclockwise (as we always do), then the cyclic order on
H(v) is clockwise. Recall that in (2.3.10), we defined the space of defect conditions for a
point defect with the help of a linear order on the set of half-edges incident to it that is
compatible with the cyclic order. What we are going to do in the following is essentially
the same, but more formal.

A linear order on H(v) that is compatible with the induced cyclic order can be uniquely
determined by the choice of a starting half-edge, i.e. a root, e ∈ H(v). Let’s say, for the
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example of K in (3.2.1), that we choose e to be the half-edge that is labeled by the
1-morphism h ∈ B(c, a), or by abusing notation, e = h. We then associate to v with the
choice of root e = h a 2-hom space hB

v (e) in B in an obvious way:

hB
v (e = h) := EndB(c)(idc, h · f · g).

Likewise, for the choices e = f and e = g, the associated 2-hom spaces are

hB
v (e = f) := EndB(a)(ida, f · g · h)

and
hB

v (e = g) := EndB(b)(idb, g · h · f).

By using the units and counits of the dual pairs to turn the edges around, we canonically
induce from a change of root an isomorphism between the assigned 2-hom spaces. For
instance, the change of root from h to f then to g gives rise to the following chain of
isomorphisms of vector spaces:

hB
v (h)

∼=−→ hB
v (f)

∼=−→ hB
v (g),

whose action on an arbitrary element φ ∈ hB
v (h) = EndB(c)(idc, h · f · g) is given by

φ

h f g

7−→ φ

hf g

7−→ φ

h fg

.

A crucial observation is that, by dragging the left most leg of the coupon counterclockwise
to the right one more time, we get back the original element φ ∈ hB

v (h), i.e.

φ

h f g

= φ

h f g

,

which is due to the strict pivotality of B, or more directly the yanking equations for duals
together with (3.1.1). All in all, we obtained in this way a groupoid in Vectk that is
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generated by the following diagram:

hB
v (f)

hB
v (h) hB

v (g)

∼=
∼=

∼=

This groupoid is contractible, which means that for any ordered pair of objects therein,
there is only one morphism in the groupoid between them, hence any composites of
morphisms in this groupoid sharing the same source and target are the same. The upshot
is that, by choosing an element in any of the three 2-hom spaces, we are simultaneously
choosing an element in each of the spaces since the groupoid gives an coherent way to
identify them. Inspired by this, we formulate as follows:

Let K be a partially B-colored corolla on D with center v and n = |H(v)| > 0. Define:

1. a contractible groupoid GB
v with the set of objects being the setH(v) = {e1, e2, · · · , en}

of half-edges incident to v, which is conveniently indexed according to an arbitrary
choice of compatible linear order. The morphisms are generated by the diagram

e1 e2 e3

en · · · e4

with relations uniquely determined by asserting that the groupoid is contractible,
i.e. that each hom-set GB

v (ei, ej) is the singleton set;

2. a functor
hB

v : GB
v → Vectk

that acts on objects by

ei 7→ hB
v (ei) := EndB(ai)(idai , f

ϵi
i · f

ϵi+1
i+1 · · · · · f

ϵi+n−1
i+n−1 ),

where the indices are counted mod n and fj is the color of the half-edge ej with
f

ϵj
j ∈ B(aj , aj+1), ϵj = + if ej is directed away from v and ϵj = − otherwise; The

action on the generating morphisms are given by “dragging the leg around”.

We now define the desired vector space of colors HB
v as a limit

HB
v := lim hB

v ∈ Vectk (3.2.3)

for a partially colored corolla with at least one leg. For a corolla Ka with no leg and its
single patch D \ va colored with an object a ∈ B, we define the space of color as

HB
va

:= EndB(a)(ida, ida). (3.2.4)

Being the limit of a contractible groupoid, HB
v is determined by an isomorphism

pe
v : HB

v

∼=−→ hB
v (e)
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for any choice of e ∈ H(v), which uniquely extends to a limit cone over hB
v with every

leg being an isomorphism of vector spaces. Therefore, by choosing a color for the vertex
v, i.e. an element c ∈ HB

v , we produce a coherent family of 2-morphisms in B

{pe
v(c) ∈ hB

v (e)}e∈H(v)

in the sense that any pair (pei
v (c), pej

v (c)) therein is connected by the unique isomorphism

hB
v (ei)

∼=−→ hB
v (ej)

obtain by evaluating the functor hB
v on the unique morphism ei

∼=−→ ej in the groupoid
GB

v .
Remark 3.2.2. The relation between the elements determined by the same color c ∈ HB

v

can be further clarified as follows: by choosing a root e ∈ H(v), we can produce, up to
isotopies that fix the boundary ∂D = S1, a string diagram with a rectangular coupon
on D in an obvious way, which is isotopic (rel. ∂D) to the string diagram produced by
choosing any other root. We demonstrate this by the example in (3.2.1), if we choose
e = h, we obtain the string diagram

f

h g

phv (c) ; (3.2.5)

If we have chosen e = f , then the diagram will be

f

h g

p
fv(c) =

f

h g

p
hv(c)

, (3.2.6)

which is isotopic to (3.2.5). It is crucial that the 2-hom spaces are labeled by the half-edges
instead of their colors, because we need to know which of them has been chosen as the
root when producing a string diagram on the standard disk. Therefore, one should really
avoid conflating half-edges with their labels as what we are doing here, especially when
all the half-edges are colored with the same 1-morphism.
Remark 3.2.3. So far we have only considered the type of 2-morphisms that have all
non-trivial 1-morphisms in their outputs, which is quite restrictive for applications. To
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remedy this, we introduce the following notion: given a partially B-colored corolla K, a
polarization on its vertex v is a partition

H(v) = H in(v) ⊔Hout(v)

of the cyclically ordered set of half-edges into two linearly ordered sets of input and
output half-edges, such that any two half-edges of the same type (either in- or output)
are consecutive with respect to the cyclic order on H(v) if they are consecutive with
respect to the linear order on H in(v) or Hout(v), which by definition is induced by the
cyclic order on H(v). For instance, we denote by

v

f

h g

(3.2.7)

the polarization that has H in(v) = {h} and Hout(v) = {f, g}. Note that in the special
cases where H in(v) = ∅, a polarization is reduced to a compatible linear order on H(v).
Therefore we have a canonical extension of the groupoid GB

v :

GB
v ↪

≃−→ ĜB
v

≃−→ 1

where the groupoid ĜB
v is contractible and generated by the set of all polarizations on v.

Moreover, we have the following extension of the functor hB
v :

ĜB
v Vectk

GB
v

≃

hB
v

ĥB
v

by defining for an arbitrary polarization k given by Hout(v) = {ei, ei+1, . . . , ej} and
H in(v) = {ej+1, ej+2, . . . , ei+n−1} with indices counted mod n,

ĥB
v (k) := HomB(ai,aj+1)(f

−ϵi+n−1
i+n−1 · · · · · f−ϵj+2

j+2 · f−ϵj+1
j+1 , f ϵi

i · f
ϵi+1
i+1 · · · · · f

ϵj
j ).

As an example, for K as in (3.2.1) and the polarization k as in (3.2.7), we have

ĥB
v (k) = HomB(a,c)(h∨, f · g).

Consequently, HB
v is also equipped with a unique limit cone over ĥB

v : ĜB
v → Vectk that

restricts to the limit cone over hB
v , with the legs (which are isomorphisms) denoted by

{pk
v : HB

v

∼=−→ ĥB
v (k)}

k∈obj ĜB
v

. (3.2.8)

Now, given a color c ∈ HB
v , we obtain from it an entire family of 2-morphisms

{pk
v(c) ∈ ĥB

v (k)}
k∈obj ĜB

v
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that are mates to each other. For instance, with k as in (3.2.7), the 2-morphism
pk

v(c) ∈ HomB(a,c)(h∨, f · g) can be expressed in terms of ph
v (c) ∈ EndB(c)(idc, h · f · g) as

pk
v(c) = p

h
v (c)

h

f g

.

Together with a choice of polarization, a color c ∈ HB
v again determines an isotopy class

of string diagrams with a rectangular coupon on D, and the isotopy class is independent
of the choice of polarization.

From now on, we will place a circular coupon labeled by a color c ∈ HB
v at the vertex

v to represent the isotopy class of string diagrams the color produces, without choosing a
specific polarization. For instance,

f

h g

c (3.2.9)

represents the isotopy class of string diagrams that contains both (3.2.5) and (3.2.6).
Conversely, a diagram like (3.2.9) can be represented by a string diagram on D that
corresponds to any choice of polarization and a 2-morphism in the associated 2-hom
space.

Let us assign to a partially B-colored corolla K the space of color for its center v and
write

CalB(K) := HB
v . (3.2.10)

This assignment is functorial with respect to any orientation preserving embedding of the
standard disk to itself that induces a local isomorphism of the partially colored embedded
corollas, where the colors of the patches are required to match while a half-edge is allowed
to be mapped to either a half-edge with the same orientation and the same color or a
half-edge with the opposite orientation and the dual color. For instance, we can have an
embedding depicted by

K =

f

h g

↪→

f

h∨

g

= K ′
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where the image of the corolla on the left is indicated by the shaded area, and the
half-edge colored with the 1-morphism h is mapped to the one that is colored with the
dual h∨. The action of the assignment (3.2.10) in this case is given by

CalB(K) = HB
v

∼=−→ hB
v (eh) = EndB(c)(idc, h · f · g) = hB

v′(eh∨)
∼=−→ HB

v′ = CalB(K ′).

Note that due to this functoriality, for a monochromatic corolla Kmnc, i.e. a corolla whose
half-edges are all colored with the same 1-morphism and oriented in the same way, the
vector space CalB(Kmnc) carries an action of the cyclic group of appropriate order.

We now extend the assignment CalB to a symmetric monoidal functor from a category
of partially B-colored corollas and graphs to the category of vector spaces and linear
maps, in order to capture the unframed graphical calculus for pivotal bicategories.

Let us first introduce the source category CorollasB: it is a symmetric monoidal category
with objects given by finite disjoint unions of partially B-colored corollas. A morphism of
the type K1⊔ · · ·⊔Kn → Kn+1 is given by a partially B-colored graph G on the standard
disk whose boundary datum coincides with that of Kn+1, together with an orientation
preserving embedding D1 ⊔ · · · ⊔Dn ↪→ Dn+1 of the underlying disks of the source (the
number of which is allowed to be zero) to the underlying disk of the target that induces a
local isomorphism of the graphs, where the colorings of the patches are respected, while
for a half-edge only the combination of its orientation and color is required to match,
and each internal vertex of G is covered by the image of exactly one disk. For instance,
we have

G :
v1

f6

f1 f2

⊔
v2

f6

f4 f5

f5

→ v3

f4
f3

f3

f2
f1

where

G =

f1

f2

f6

f4

f3

f5 (3.2.11)

with the images of the disks indicated by the shaded area. General morphisms in CorollasB
are obtained by taking disjoint unions. The composition G2 ◦G1 is given by blowing up
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the internal vertices of G2 by G1 using the embeddings of disks, for instance we have

f4

f1

f2 ◦

f4

f3

f1

f2

f2

=

f4

f3

f1

f2 .

The monoidal product on CorollasB is given by disjoint union, and the symmetric braiding
is the obvious one.

We now define the functor CalB : CorollasB → Vectk. Its action on the objects is given
by

CalB(K1 ⊔ · · · ⊔Kn) := CalB(K1)⊗k · · · ⊗k CalB(Kn) = HB
v1 ⊗k · · · ⊗k H

B
vn , (3.2.12)

where it is implied that for the monoidal unit ∅ of CorollasB, the value is defined to
be CalB(∅) := k. Its action on the morphisms is given by the following procedure,
demonstrated on the morphism G : K1 ⊔K2 → K3 given by (3.2.11). Take an arbitrary
c1 ⊗k c2 ∈ CalB(K1)⊗k CalB(K2) = HB

v1 ⊗kH
B
v2 , we would like to assign to it an element

c3 ∈ CalB(K3) = HB
v3 and then obtain a linear map by linear extension. To this end, we

first choose a polarization for each of the vertices v1 ∈ K1 and v2 ∈ K2, say,

k1 :
v1

f6

f1 f2

and k2 :
v2

f6

f4 f5

f5

,

where the labels of the input half-edges are colored red and the labels of the outputs
are colored green. Let c̃i = pki

vi(ci) ∈ ĥB
vi(ki) for i = 1, 2 (see (3.2.8) for the definition

of pk
v). According to Remark 3.2.3, we obtain (up to isotopies relative to the boundary

of D) two string diagrams with rectangular coupons on D corresponding to the choice
of colors and polarizations. These string diagrams are then pushed forward along the
embedding D1 ⊔D2 ↪→ D3, replacing the images of the corollas K1 and K2. In this way,
up to isotopies fixing the boundary, we obtain a string diagram with rectangular coupons
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on D, which shares the same boundary datum with K3:

f1

f2

f6

f4

f3

f5

c̃1

c̃2

String diagrams with rectangular coupons (or, more generally, coupons with chosen
polarizations) are called polarized. We now choose a polarization for the vertex v3 ∈ K3,
e.g.

k3 : v3

f4
f3

f3

f2
f1

.

According to this choice, we then produce a string diagram on the standard square I × I,
which is unique up to isotopies fixing the top and the bottom of the square setwise:

c̃2

c̃1

f1 f2

f6

f3

f5

f4

This rectified string diagram uniquely determines a 2-morphism c̃3 ∈ ĥB
v3(k3), which in

turn determines a unique element c3 = (pk3
v3 )−1(c̃3) ∈ HB

v3 = CalB(K3) that only depends
on, besides the colors c1 and c2, the isotopy class (rel. boundary) of G and in particular
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does not depend on the auxiliary choice of polarizations. We write

c3 =
〈 f1

f2

f6

f4

f3

f5

c1

c2

〉
(3.2.13)

and refer to c3 as the value of the string diagram with circular coupons on the right
hand side. String diagrams with circular coupons are called unpolarized. In this way, we
obtain a linear map

CalB(G) : CalB(K1 ⊔K2) = CalB(K1)⊗k CalB(K2)→ CalB(K3),

which is set to be the value of the morphism G : K1 ⊔K2 → K3 under the functor. By
declaring CalB(G1 ⊔G2) = CalB(G1)⊗k CalB(G2), we finish the definition of the functor

CalB : CorollasB → Vectk.

Remark 3.2.4. So far we have used corollas on standard disks as local models for internal
vertices of embedded graphs. However, the notion of a space of color HB

v and that of a
polarization can be directly defined for an arbitrary internal vertex of a partially B-colored
embedded graph on any oriented surface and we can make sense of the evaluation of
an unpolarized string diagram on D as in (3.2.13) without referring to embedded disks.
Formally, given a partially B-colored graph G on the standard disk with its set of internal
vertices denoted by V (G), by choosing for each internal vertex v ∈ V (G) an embedding
of some partially colored corolla Kv (which is also called a parametrization by a corolla),
we can turn G into a morphism Ĝ :

⊔
v∈V (G)

Kv → KG in the category CorollasB, where

KG is the unique corolla on the standard disk that share the same boundary datum
with G. Using the canonical isomorphism

⊗
v∈V (G)

HB
v

∼=−→
⊗

v∈V (G)
CalB(Kv) induced by the

embeddings of corollas, we obtain a linear map

ĈalB(G) :
⊗

v∈V (G)
HB

v

∼=−→
⊗

v∈V (G)
CalB(Kv)

CalB(Ĝ)
−−−−−→ CalB(KG) = HB

vG
. (3.2.14)

This map is independent of the choice of embeddings of corollas due the the coherent
isomorphisms between the vector spaces

⊗
v∈V (G)

CalB(Kv) obtained from different such

choices and is moreover unaffected by any isotopy of G that fixes its boundary. We then
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define the value ⟨Gc⟩ ∈ HB
vG

of the fully colored graph Gc with the coloring of its internal
vertices given by c ∈

⊗
v∈V (G)

HB
v as

⟨Gc⟩ := ĈalB(G)(c) ∈ HB
vG

(3.2.15)

and think of it as the color for the vertex vG ∈ KG obtained by replacing G with the
corolla KG. For example, for

G =

f1

f2

f6

f4

f3

f5

v1

v2

7→

f1

f2

f4

f3

f3

vG = KG,

we have

ĈalB(G) : HB
v1 ⊗k H

B
v2 → HB

vG

c = c1 ⊗k c2 7→ ⟨Gc⟩,

and the value ⟨Gc⟩ ∈ HB
vG

= CalB(KG) is the same as the one in (3.2.13), but with the
color c = c1⊗k c2 understood as living in the vector space HB

v1 ⊗kH
B
v2 directly associated

to the internal vertices of G.
We can think of the functor CalB : CorollasB → Vectk as a rule to assign a space of

morphisms to each partially colored corolla and a composition map to each partially
colored graph. An important observation is that the composition map configured by
any partially colored graph can be decomposed into a sequence of maps that consist of
operadic compositions, partial trace maps, horizontal products, and whiskerings, all of
which will be introduced in Proposition 3.2.5. We call an internal edge that connects
a pair of distinct internal vertices regular, and otherwise a loop. A partially colored
embedded graph in the standard disk is called trivial if it is isotopic to a partially colored
corolla or it does not contain any internal vertices. A morphism in CorollasB is called
trivial if its underlying partially colored embedded graph is trivial. Compositions of the
type G2 ⋄G1 := (K1 ⊔K2

G1⊔1
−−−−→ K3 ⊔K2

G2
−−−−→ K4) are called partial compositions.

Proposition 3.2.5. Any non-trivial morphism G : K1 ⊔ · · · ⊔Kn → Kn+1 in CorollasB
that has one partially colored embedded graph on the standard disk as its underlying graph
can be decomposed into a finite partial composition of morphisms of the following types:

50



(a) ...
...

g

f1

fn

h1

hm

(b) ...
...

f1

fn

h1

hmg

(c) ...
...

f1

fn

g1

gm

(d) ...

f1

fn

g

Proof. 1) Assuming that the morphism G has a non-zero number of regular edges
(otherwise we jump to the next step), we can pick a regular edge of G and embed the
standard disk to a small disk shaped neighborhood containing it. The embedding pulls
back a partially colored graph on the standard disk which gives rise to a morphism
G1 of type (a) after we parameterize each internal vertex by a corolla, and we have
G = G′

1 ⋄G1, where G′
1 is obtained by replacing the part of G that is contained in image

of the aforementioned embedding with a corolla. Repeat this until G = G′
n ⋄Gn ⋄ · · · ⋄G1,

where all the Gi’s are of type (a) and G′
n does not contain any regular edges. This can

be reached within finite steps because each step reduces the number of internal vertices
by 1 and we require all our graphs to be finite. If G′

n is isotopic to a corolla, then the
composite G′

n ⋄Gn is of type (a) and we are done. Otherwise, we proceed to the next
step.

2) We now look for the loops in G′
n. Without loss of generality, we assume that

G′
n contains a loop (otherwise we jump to the next step), we can then choose one of

the loops and embed a standard disk to a small neighborhood that contains it. This
gives us G = G′′

1 ⋄G
(1)
1 ⋄Gn ⋄ · · · ⋄G1, where G(1)

1 is of type (b). Repeat this step until
G = G′′

m ⋄G(1)
m ⋄ · · · ⋄G

(1)
1 ⋄Gn ⋄ · · · ⋄G1, where all the G(1)

i ’s are of type (b) and G′′
m

does not contain any loops. If G′′
m is isotopic to a corolla, then the composite G′′

m ⋄G(1)
m

is of type (b) and we are done. Otherwise, G′′
m must be a union of corollas and edges

that do not contain internal vertices and we proceed to the next step.
3) Let’s assume that G′′

m contains at least two internal vertices, if not we jump
to the next step. We can then pick a pair of internal vertices of G′′

m and embed a
standard disk to a small neighborhood containing them. This gives us the decomposition
G = G′′′

1 ⋄G
(2)
1 ⋄G

(1)
m ⋄ · · · ⋄G

(1)
1 ⋄Gn ⋄ · · · ⋄G1, where G

(2)
1 is of type (c). Repeating

this process until G = G′′′
l ⋄G

(2)
l ⋄ · · · ⋄G

(2)
1 ⋄G

(1)
m ⋄ · · · ⋄G

(1)
1 ⋄Gn ⋄ · · · ⋄G1, where all

the G(2)
i ’s are of type (c) and G′′′

l contains only one internal vertex and no regular edges
or loops. If G′′′

l is isotopic to a corolla, then the composite G′′′
l ⋄G

(2)
l is of type (c) and
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we are done. Otherwise, G′′′
l must consist of only one corolla and multiple edges that are

without internal vertices. If this is the case, then let’s move on to the final step.
4) After repeatedly searching for disk shaped neighborhoods that are of type (d) and

replacing them with corollas, we arrive at the desired decomposition

G = G
(3)
k ⋄ · · · ⋄G

(3)
1 ⋄G

(2)
l ⋄ · · · ⋄G

(2)
1 ⋄G

(1)
m ⋄ · · · ⋄G

(1)
1 ⋄Gn ⋄ · · · ⋄G1,

where all the G(3)
i ’s are of type (d).

We call the linear maps obtained from evaluating the functor CalB : CorollasB → Vectk
at morphisms of the types (a), (b), (c), and (d) operadic compositions, partial trace maps,
horizontal products, and whiskerings, respectively, for evident reasons. The implication
of Proposition 3.2.5 is that a linear map obtained from evaluating the functor CalB at
any non-trivial morphism can be decomposed into either a partial composite of such
elementary maps or a tensor product of such partial composites.

Let us denote by Corollasconn
B the subcategory of CorollasB that consists of all the objects

and only the morphisms whose underlying graphs are all connected in the corresponding
disks they are embedded in3. We have the following corollary:

Corollary 3.2.6. The subcategory Corollasconn
B is spanned by the trivial morphisms with

connected embedded graphs4 and the morphisms of the types (a) and (b) under partial
composition and monoidal product (which is given by disjoint union).

Denote by Calconn
B : Corollasconn

B ↪→ CorollasB
CalB
−−−−→ Vectk the restriction of the functor

CalB to the subcategory Corollasconn
B . As a consequence of Corollary 3.2.6, evaluating

Calconn
B at any non-trivial morphism in its domain produces a partial composite of operadic

compositions and partial trace maps, or a tensor product of such partial composites.
Remark 3.2.7. The constructions we introduced in this section are inspired by [Cos04],
where the author described various types of operads as symmetric monoidal functors
defined on different categories of graphs. Indeed, when B contains a single object, i.e.
when B is the delooping of some (strictly) pivotal tensor category, the functor CalB gives
us its underlying non-symmetric colored modular operad with horizontal products for
operations (since we allow non-connected graphs to be embedded in the standard disk
when defining the category CorollasB), and the restricted functor Calconn

B gives us its
underlying non-symmetric colored modular operad.

3.3 What rigid separable Frobenius functors preserve
Let B and B′ be two strictly pivotal bicategories. Recall that a lax functor is a triple
(F, F (2), F (0)), where by F we denote both a map of objects F : objB → objB′ and a
local functor (i.e. a functor on the respective hom-category) F : B(a, b)→ B′(Fa, Fb) for

3For instance, a disjoint union of several morphisms of type (a) belongs to Corollasconn
B while a morphism

of type (c) does not.
4Here we are excluding the morphisms whose underlying graphs contain several distinct edges on the
same disk.
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each pair of objects a, b ∈ B, while F (2) and F (0) are families of natural transformations
given by

B(a, b)× B(b, c) B(a, c)

B′(Fa, Fb)× B′(Fb, Fc) B′(Fa, Fc)

c

FF ×F

c′

F (2)

and
1 B(a, a)

B′(Fa, Fa)

ida

idFa
FF (0)

for every a, b, c ∈ B, where c and c′ are the horizontal composition functors of B and
B′, respectively. F (2) and F (0) are called the lax functoriality constraint and the lax
unity constraint and they are required to be natural and satisfy a set of conditions
that are akin to the axioms of an algebra (i.e. a monoid object) in a monoidal category.
The naturality and the lax associativity of the lax functoriality constraint5 F (2) can be
expressed conveniently in terms of string diagrams:
Naturality:

α β

F (f ′g′)

Ff Fg

F (fg)

F

=

F (f ′g′)

Ff Fg

Fα Fβ

Ff ′ Fg′

(3.3.1)

for every triple of objects a, b, c ∈ B, 1-morphisms f, f ′ ∈ B(a, b), g, g′ ∈ B(b, c) and
2-morphisms α : f ⇒ f ′, β : g ⇒ g′, where we used F followed by a window containing
a string diagram to express the evaluation of the functor on the 2-morphism expressed
by the string diagram, and the unnamed trivalent vertices stand for the corresponding
components of the lax functoriality constraint F (2). Note that we have suppressed the
colors that stand for different objects.
Lax associativity:

Ff Fg Fh

F (fg)

F (fgh)

=

FhFgFf

F (gh)

F (fgh)

(3.3.2)

5Note that the naturality of the lax unity constraint is redundant, because the terminal category 1
contains only the identity morphism.
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for every composable triple of 1-morphisms f, g, h in B.
Lax left and right unity:

Ff

Ff

F ida =

Ff

Ff

=

Ff

Ff

F idb (3.3.3)

for every pair of objects a, b ∈ B and 1-morphism f ∈ B(a, b), where the unnamed nodes
stand for the corresponding components of the lax unity constraint.

Due to the lax associativity, for every composable string of 1-morphisms a1
f1
−−−→

a2
f2
−−−→ · · ·

fn
−−−→ an+1 in B, we have a unique 2-morphism

F
(n)
f1,...,fn

: Ff1 · · ·Ffn ⇒ F (f1 · · · fn)
obtained by composing suitable components of the lax functoriality constraint in arbitrary
order, which we denote by the string diagram

F (f1 . . . fn)

Ff1 Ff2 Ffn−1Ffn. . .

. . .
.

Dually, we have the notion of an oplax functor between two bicategories B and B′ given
by the triple (G,G(2), G(0)), where G(2) and G(0) are called oplax functoriality constraint
and oplax unity constraint. We refer to [JY21, Section 4.1] for the details.

Let F : B → B′ be a functor with both lax and oplax structures, i.e. we have a
tuple (F, F (2), F (0), F(2), F(0)). Then we can speak of the F -conjugate of a 2-morphism
α : f1 . . . fm ⇒ g1 . . . gn defined by composing with the lax and oplax constraints. More
precisely, if all the 1-morphisms in the domain and codomain are non-trivial, we define
the F -conjugate to be

αF : Ff1 . . . Ffm

F
(m)
f1,...,fm

======⇒ F (f1 . . . fm)
F α

===⇒ F (g1 . . . gn)
F(n) g1,...,gn
======⇒ Fg1 . . . Fgn,

which is depicted by the string diagram

F (f1 . . . fm)

Ff1

Fα

Ffm. . .

. . .

F (g1 . . . gn)

Fg1 Fgn. . .

. . .

. (3.3.4)
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If any of the 1-morphisms are identities, we need to insert the lax and/or oplax unity
constraints accordingly.

In general, given a functor between bicategories with both lax and oplax structures,
there is no reason for the conjugation to preserve compositions or partial traces, nor
should it respect the coherent isomorphisms between the 2-hom spaces related by dualities.
For this, we need to impose properties on the lax and oplax structures. The following
notions are generalizations of their monoidal counterparts, see e.g. [MS10].

Definition 3.3.1. Let (F, F (2), F (0), F(2), F(0)) : B → B′ be a functor between two strictly
pivotal bicategories that is equipped with lax and oplax structures. It is

• rigid, if F -conjugation preserves the units and counits of the duals, i.e. for all
a, b ∈ B and f ∈ B(a, b), we have F (f∨) = (Ff)∨ and

F idb

F (f∨) Ff

F (f∨f)

F f

=

FfFf

, (3.3.5)

etc.

• separable, if for every composable pair of 1-morphisms a
f
−−−→ b

g
−−−→ c, we have

Ff Fg

F (fg)

F (fg)

=

F (fg)

F (fg)

. (3.3.6)

• Frobenius, if for all composable triple of 1-morphisms a
f
−−−→ b

g
−−−→ c

h
−−−→ d, we

have

F (fg)

Ff

Fh

F (gh)

Fg =

F (fg)

Ff

Fh

F (gh)

F (fgh) (3.3.7)
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and

F (gh)

Fh

Ff

F (fg)

Fg =

F (gh)

Fh

Ff

F (fg)

F (fgh). (3.3.8)

It turns out that a rigid separable Frobenius functor almost preserves the unframed
graphical calculus, as we shall see in the following theorem. Let K be a partially B-colored
corolla on the standard disk and F ≡ (F, F (2), F (0), F(2), F(0)) : B → B′ a rigid separable
Frobenius functor. The map of objects and the local functors entailed by F give rise
to a symmetric monoidal functor F∗ : CorollasB → CorollasB′ by changing the colors of
the patches and edges of the partially colored graphs. Moreover, the functor F∗ can be
restricted to F∗ : Corollasconn

B → Corollasconn
B′ because the change of colors does not affect

the connectedness of the embedded graphs.

Theorem 3.3.2. Let F : B → B′ be a rigid Frobenius functor between two strictly pivotal
bicategories. The F -conjugation canonically induces a monoidal natural transformation

Corollasconn
B

Vectk

Corollasconn
B′

F∗

Calconn
B

Calconn
B′

(−)F

which we also call the F -conjugation, whose component at a corolla K ∈ Calconn
B is given

by

(−)F
K : Calconn

B (K)
pkv
−−−−→ ĥB

v (k)
(−)F
−−−−→ ĥB′

v′ (k)
(pk
v′ )−1

−−−−→ Calconn
B (F∗K) (3.3.9)

for any choice of polarization k on the vertex v ∈ K, where all labels of the edges are
treated as non-trivial 1-morphisms, whereas (−)F

K1⊔K2
:= (−)F

K1 ⊗k (−)F
K2.

Proof. First we need to show that (3.3.9) is well defined, i.e. it is independent of the choice
of polarization. This amounts to showing that the F -conjugation commutes with all
canonical isomorphisms between 2-hom spaces that are related by duality. For simplicity,
we consider a specific case, the argument for which can be generalized straightforwardly.
Let us show that the diagram

HomB(a,a)(ida, f · g) HomB(a,b)(g∨, f)

HomB′(F a,F a)(idF a, Ff · Fg) HomB′(F a,F b)((Fg)∨, Ff)

(−)F (−)F

∼=

∼=
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commutes, where a, b ∈ B are arbitrary objects and f ∈ B(a, b) and g ∈ B(b, a) are
arbitrary 1-morphisms (note that F (g∨) = (Fg)∨ due to the rigidity). To this end, we
pick an arbitrary 2-morphism α ∈ HomB(a,a)(ida, fg) and chase the diagram. Note that
since the 1-morphisms f and g are supposed to come from the coloring of edges, they
are considered non-trivial and will be treated as such by the F -conjugation. First we go
right then down which gives us

α

f g

7→ α

f

g

7→ α

Ff

Fg

F ,

with

RHS =
F α

F

FgF ida

Ff F idb

F (fgg∨) =

FgF ida

Ff F idb

F

Fα

F (fgg∨)
F (fg)

F (gg∨)

=

FgF ida

Ff F idb

F

Fα

F (fg)

F (gg∨)
=

FgF ida

Ff

Fα

F (fg)

,

which is equal to tracing the diagram first down then right.
Now we need to show the naturality. The naturality squares for the trivial morphisms

in Corollasconn
B commute trivially. According to Corollary 3.2.6, we only need to verify

the naturality for morphisms of the types (a) and (b), i.e. we need to verify that the
F -conjugation commutes with the operadic compositions and the partial trace maps.

We first consider the operadic compositions. To keep things simple, let us pick a
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specific morphism of type (a), say G : K1 ⊔K2 → K3 given by

G =
gf h

with f, g, h ∈ B(a, b). We need to show that the naturality square

Calconn
B (K1)⊗k Calconn

B (K2) Calconn
B (K3)

Calconn
B′ (F∗K1)⊗k Calconn

B′ (F∗K2) Calconn
B′ (F∗K3)

(−)FK1
⊗k(−)FK2

(−)FK3

Calconn
B (G)

Calconn
B′ (F∗G)

commutes. To this end, we choose a polarization for each of the three corollas as well as
an element in each of the corresponding 2-hom spaces for K1 and K2. Let’s say we have
α ∈ ĥB

v1(k1) = HomB(a,a)(ida, fg
∨) and β ∈ ĥB

v2(k2) = HomB(a,a)(ida, gh). We need to
show that composing α with β before taking the F -conjugate produces the same element
in ĥB

v3(k3) = HomB(a,a)(ida, fh) as taking the F -conjugates first then composing them.
Indeed, we have

(α ·g β)F =

F ida

F α β

F (fh)

Ff Fh

=

F ida

F α β

Ff Fh

F
F (fg∨gh)

F (fh)

=

F ida

Ff Fh

Fα Fβ

F

F (fg∨gh)
F (fg∨) F (gh)

F (fg∨g)

F ida

=

F ida

Ff Fh

Fα Fβ

F

F (fg∨)
F (gh)

F (fg∨g)

F ida

Fg
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=

F ida

Ff Fh

Fα Fβ

F

F (fg∨) F (gh)

F ida

=

F ida

Ff Fh

Fα Fβ

F (fg∨) F (gh)

F ida

Fg

= αF ·F g β
F .

We now consider the partial trace maps. Let G : K1 → K2 be the type (b) morphism
in Corollasconn

B given by

G =

g

f

with f ∈ B(a, a) and g ∈ B(b, a). To show the commutativity of the naturality square

Calconn
B (K1) Calconn

B (K2)

Calconn
B′ (F∗K1) Calconn

B′ (F∗K2)

(−)FK1
(−)FK2

Calconn
B (G)

Calconn
B′ (F∗G)

we make a choice of the polarizations k1 and k2 for the corollas as well as a 2-morphism
in ĥB

v1(k1). Let’s say we have α ∈ ĥB
v1(k1) = HomB(a,a)(ida, fg

∨g) and ĥB
v2(k2) =

HomB(a,a)(ida, f). We then need to show that taking partial trace commute with the
F -conjugation. Indeed,

(trg α)F = αF

F ida

Ff

=

αF

F ida

Ff

F
F (fg∨g)

F ida

=

Fα
F ida

Ff

F

F (fg∨) Fg

F (g∨g)
=

Fα
F ida

Ff

F

F (fg∨) Fg
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=

Fα
F ida

Ff Fg

= trF g α
F .

Therefore we did construct a natural transformation (−)F : Calconn
B ⇒ Calconn

B′ ◦F∗, which
is evidently monoidal.

To understand why rigid separable Frobenius functors in general do not preserve the
complete unframed graphical calculus, let us consider the following morphism G : K1 ⊔
K2 → K3 of type (c) given by

G =

f1

f2

g1

g2

with f1, f2 ∈ B(a, b) and g1, g2 ∈ B(b, c), which leads to the horizontal product

α β

f1

f2

g1

g2

upon choosing appropriate polarizations and 2-morphisms. Let us compute the F -
conjugate of the horizontal product:

(α · β)F = F α β

Ff2

Ff1

Fg2

Fg1

=

Ff2

Ff1

Fg2

Fg1

Fα Fβ

Ff2 Fg2

F (f2g2)
,
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which deviates from αF · βF = Fα · Fβ by the idempotent

Ff2 Fg2

Ff2 Fg2

. (3.3.10)

Let us call a functor F : B → B′ equipped with both lax and oplax structures whose lax
functoriality constraint is the inverse of its oplax functoriality constraint strongly separable.
It immediately follows that a rigid strongly separable Frobenius functor preserves the
horizontal products as well as the whiskerings, hence the complete unframed graphical
calculus of its domain pivotal bicategory. However, the notion of a strongly separable
Frobenius functor is in fact redundant. Recall that a pseudofunctor can be regarded as a
functor with lax and oplax structures, with the two being inverse to each other.
Proposition 3.3.3. Let F : B → B′ be a functor between two bicategories that is equipped
with lax and oplax structures.

• F is strongly separable if and only if F is a pseudofunctor.

• F is Frobenius if F is a pseudofunctor.

Proof. 1) We first show that being strongly separable is equivalent to being a pseudofunc-
tor. It is trivial that a pseudofunctor is necessarily strongly separable. To show that F
being strongly separable implies it being a pseudofunctor, we need to show that the lax
and oplax unity constraints are inverse to each other. Let a ∈ B be an arbitrary object,
we have

F ida

F ida

=

F ida

F ida

=

F ida

F ida

=

F ida

F ida

,

where we have used the premise that F is strongly separable for the second equality. On
the other hand, for a 1-morphism f ∈ B(a, b) whose space of endomorphisms is non-zero
(if there does not exist such an f for any b ∈ B, then the statement we are proving holds
trivially true), we have

Ff

Ff

=

Ff

Ff

=

Ff

Ff

F ida ,
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therefore F(0) a ◦ F (0)
a = idF a.

2) We now prove that “F is a pseudofunctor” ⇒ “F is Frobenius”. We show that

F (gh)

Fh

Ff

F (fg)

Fg =

F (gh)

Fh

Ff

F (fg)

F (fgh)

and leave the analogous proof of (3.3.7) to the reader:

LHS =

F (gh)

Fh

Ff

F (fg)

Fg

FhF (fg)

=

F (gh)

Fh

Ff

Fg

FhF (fg)

= RHS.

Therefore, the notion of a strongly separable Frobenius functor is equivalent to that of
a pseudofunctor.

Corollary 3.3.4. Let F : B → B′ be a rigid pseudofunctor between two strictly pivotal
bicategories. The F -conjugation defined in Theorem 3.3.2 canonically extends to a
monoidal natural transformation

CorollasB

Vectk

CorollasB′

F∗

CalB

CalB′

(−)F

We end this chapter by an example of a rigid separable Frobenius functor that will be
important for our construction of RCFT correlators.

Example 3.3.5. Let C be a strictly pivotal fusion category, and Fr(C) the strictly
pivotal bicategory of simple special symmetric Frobenius algebras in C. Recall that C
can be viewed as a strictly pivotal bicategory BC (i.e. its delooping, see Example 3.1.3)
with a single object ∗. Consider the functor

U : Fr(C)→ BC
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that is defined by

A ∗

B ∗

U
X Y Ẋ Ẏ

α α̇

for arbitrary Frobenius algebras A,B ∈ Fr(C), A-B-bimodules X,Y and bimodule
morphism α : X ⇒ Y , i.e. U sends all objects in Fr(C) to the sole object ∗ in BC and
every bimodule (resp. bimodule morphism) to its underlying object (resp. morphism) in
C. In the following, we suppress the dot and use the same symbol for a bimodule (resp.
bimodule morphism) and its underlying object (resp. morphism) when the context is
clear.
U is canonically a rigid separable Frobenius functor, with the components of the lax

and oplax functoriality constraints

U (2)
X,Y : X ⊗ Y → X ⊗B Y and U(2) X,Y : X ⊗B Y → X ⊗ Y

at (X,Y ) ∈ Fr(C)(A,B)×Fr(C)(B,C) given by the splitting of idempotent:

U (2)
X,Y ◦ U(2) X,Y = idX⊗BY , (3.3.11)

U(2) X,Y ◦ U
(2)
X,Y =

X Y

X Y

X ⊗B Y =

X Y

X Y

, (3.3.12)

and the lax and oplax unity constraints given by the units and counits of the Frobenius
algebras. Note that when verifying the axioms, one needs to insert the associators and
unitors accordingly.
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4 String-net models for pivotal bicategories
In this chapter, whenever we mention an unspecified strictly pivotal bicategory, we assume
it to be small and locally small, i.e. its objects form a set and all its hom-categories are
small.

4.1 The definition of string-net spaces
First recall the notion of an Fr(C)-boundary datum (see Definition 2.5.1) on a compact
oriented 1-manifold, and note that it can be easily generalized by replacing Fr(C) with
any bicategory. Let Σ be a compact oriented surface and b a B-boundary datum on
∂Σ, where B is a strictly pivotal bicategory. A (fully) B-colored graph Γ on Σ with
B-boundary datum b on ∂Σ is a partially B-colored graph Γ̊ on Σ together with a
coloring of its internal vertices, i.e. a choice of an element in the vector space HB

v for
each internal vertex v ∈ V (Γ̊ ), such that the canonical embedding ∂Σ ↪→ Σ viewed as
an outgoing parametrization of the boundary itself pulls back a B-boundary datum on
∂Σ that is b. For instance, the complemented worldsheet S̃ in Example 2.4.2 can be
viewed as an Fr(C)-colored graph on the ambient surface ΣS with the Fr(C)-boundary
datum given schematically by

M
∨
1

M2

X
∨
1

X
∨
2

X
∨
3

X1

X2

(4.1.1)

where the coloring of internal vertices (interpreted as point defects in the RCFT context)
is furnished by the choice of linear orders and the corresponding 2-morphisms.

Denote by G(Σ, b) the set of all B-colored graphs on Σ with B-boundary datum b and
kG(Σ, b) the k-vector space generated by it. We now define the string-net space for the
pair (Σ, b) as follows:

Definition 4.1.1. Let B be a strictly pivotal bicategory, Σ a compact oriented surface,
and b a B-boundary datum on ∂Σ. The string-net space SN◦

B(Σ, b) is the quotient

SN◦
B(Σ, b) := kG(Σ, b)/N(Σ, b), (4.1.2)

where N(Σ, b) is the subspace of kG(Σ, b) generated by null graphs: a null graph is an
element

∑
i

λiΓi of kG(Σ, b) such that there exists an embedding of the standard disk
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D ↪→ intΣ to the interior of the surface, whose image of the boundary of disk intersects
with all the Γi’s transversally at the edges and does not touch any vertices, such that the
Γi’s coincide outside of (the image of) D , as well as

∑
i

λi⟨Γi ∩D⟩D = 0, i.e. the values

of the graphs pulled back by the embedding sum up to zero.

We call a vector in the quotient space SN◦
B(Σ, b) that is the image of an element of

the generating set G(Σ, b) of kG(Σ, b) a bare string-net, or just a string-net. The reason
for the qualification “bare” and for the choice of the notation SN◦

B is that later, we will
construct a Karoubified version of string-net spaces, where the boundary data are replaced
by certain idempotents. A string-net that has a B-colored graph Γ as representative is
denoted by [Γ ]; by abuse of language, the term string-net is also used for individual
(B-colored) graphs that represent an element [Γ ] ∈ SN◦

B(Σ, b). The string-net space is
linear in the color of each vertex of a graph and additive with respect to taking direct
sums of objects labeling the edges. Due to the nature of the (unframed) graphical calculus,
isotopic graphs represent the same string-net. Furthermore, all identities valid in the
graphical calculus for B also hold inside any disk embedded in Σ. Thus for string-nets
the graphical calculus for B applies locally on Σ.

Homeomorphisms of the surface Σ act naturally on embedded graphs. Since in the
string-net space isotopic graphs are identified, this action descend to an action of the
mapping class group Map(Σ) of the surface on SN◦

B(Σ, b). String-nets with matching
boundary data can be concatenated, in a manner similar to the sewing of worldsheets.
Remark 4.1.2. Recall that a color c ∈ HB

v for an internal vertex v of a partially B-colored
graph Γ̊ is completely determined by a choice of 2-morphism ck ∈ ĥB

v (k) for any choice of
polarization on v, and the 2-morphisms for different choices of polarization are related by
coherent isomorphisms. Since the coherent isomorphisms are devised in such a way that
the string diagrams produced according to different choices of polarizations share the
same value when restricted to embedded disks, it is equally good, if not more convenient
for calculation, to represent string-nets with polarized string diagrams, i.e. string diagrams
with rectangular coupons.

Example 4.1.3. Let b be an B-boundary datum on S1 = ∂D. Recall that there is
a unique partially colored corolla Kb associated to it according to (3.2.2). We have a
canonical isomorphism

SN◦
B(D, b)

∼=−→ CalB(Kb)
given by the evaluation

[Γ ] 7→ Γ 7→ cΓ ∈
⊗

v∈V (Γ̊ )

HB
v

ĈalB(Γ̊ )
7−−−−−→ ⟨Γ ⟩,

where cΓ stands for the coloring of the internal vertex of the underlying partially colored
graph Γ̊ given by Γ . The linear map is well defined because the graphical calculus is
local in nature; it is injective since graphs with the same value under the evaluation on
D must have the same value when evaluated on a slightly smaller disk embedded in D
(after being replaced by isotopic graphs when necessary) hence they represent the same
string-net; it is also surjective because given any element c ∈ CalB(Kb), we can color the
center of Kb with it and produce a fully colored corolla Kb

c whose value is c itself.
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Remark 4.1.4. When the input bicategory is the delooping of a spherical fusion category
C, Definition 4.1.1 is reduced to the definition of string-net spaces for C given in [KJ11]
and we write

SN◦
C(Σ, b) ≡ SN◦

BC(Σ, b).

We hereby emphasize that our definition does not require any homological properties
such as semisimplicity or finiteness.

4.2 String-net spaces as colimits
In the last section, we defined the string-net spaces as quotients of vector spaces. We
now show that they are actually colimits in a very nice way.

Definition 4.2.1. Let B be a strictly pivotal bicategory, Σ a compact oriented surface,
and b a B-boundary datum on ∂Σ.

1. We define GraphsB(Σ, b) to be the category with:
• objects: partially B-colored graphs on Σ that have b as their boundary data;
• morphisms: they are freely generated under composition (upon adjoining

identities) by the morphisms exemplified by the following example (where the
labels of the edges are suppressed):

−−−−−−−−−−−−−−−−→

(4.2.1)
here the morphism is given by an embedding of the standard disk D into the
interior of the surface, such that the image of ∂D intersects with the edges of
the partially colored graph Γ̊1 in the domain transversally and does not touch
any vertices, and the codomain is the graph Γ̊2 obtained by replacing Γ̊1 ∩D
with the image of the unique partially colored corolla on D associated with
the boundary datum on S1 = ∂D pulled back by the embedding.

2. We define
EΣ,b

B : GraphsB(Σ, b)→ Vectk (4.2.2)

to be the evaluation functor that
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• sends an object (i.e. a partially B-colored graph on Σ) Γ̊ to the vector space
EΣ,b

B (Γ̊ ) :=
⊗

v∈V (Γ̊ )

HB
v ;

• sends a generating morphism γ : Γ̊1 → Γ̊2 to the linear map

EΣ,b
B (γ) :

⊗
v∈V (Γ̊1)

HB
v

id⊗kĈalB(Γ̊1∩Dγ)
−−−−−−−−−−−−−−−−→

⊗
v′∈V (Γ̊2)

HB
v′

obtained by applying the unframed graphical calculus to the partially colored
graph on D pulled back by the embedding.

Theorem 4.2.2. Let B be a strictly pivotal bicategory, Σ a compact oriented surface,
and b a B-boundary datum on ∂Σ. We have

SN◦
B(Σ, b) = colim EΣ,b

B ,

where the legs of the cocone are given by

EΣ,b
B (Γ̊ ) =

⊗
v∈V (Γ̊ )

HB
v → SN◦

B(Σ, b)

c =
⊗

v∈V (Γ̊ )

cv 7→ [Γ̊c] (4.2.3)

for every Γ̊ ∈ GraphsB(Σ, b), here Γ̊c is the fully colored graph obtained by coloring Γ̊
with c ∈

⊗
v∈V (Γ̊ )

HB
v .

Proof. It is evident that (4.2.3) gives rise to a cocone. To show that the cocone is initial,
consider an arbitrary cocone given by

{fΓ̊ : EΣ,b
B (Γ̊ )→ V }Γ̊ ∈GraphsB(Σ,b), (4.2.4)

where V is an arbitrary k-vector space. We need to show that there is a unique linear
map

f : SN◦
B(Σ, b)→ V

making the diagram
EΣ,b

B (Γ̊ )

SN◦
B(Σ, b) V

f

fΓ̊

for every object Γ̊ ∈ GraphsB(Σ, b) commute. Indeed, the desired linear map is given by

f : [Γ ] 7→ Γ 7→ cΓ ∈ EΣ,b
B (Γ̊ ) 7→ fΓ̊ (cΓ ).
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To show that the linear map is well-defined, assume that the string-net [Γ ] is represented
by two different colored graphs Γ and Γ ′. By the definition of the string-net space, the
underlying partially colored graphs Γ̊ and Γ̊ ′ are necessarily connected by a zigzag

. . . Γ̊ ′

...

Γ̊ (1) Γ̊ (2)

Γ̊

in the category GraphsB(Σ, b), and the corresponding vertex colors cΓ and cΓ ′ are related
by the zigzag in Vectk obtained by applying the functor EΣ,b

B : GraphsB(Σ, b)→ Vectk,
therefore are mapped to the same element in V by the legs of the cocone (4.2.4). By
construction, f makes the relevant diagrams commute and is unique.

The recognition of the string-net space SN◦
B(Σ, b) as a colimit provides a new perspective

of the canonical map class group action: let ξ ∈ Map(Σ) be a mapping class group
element and x a representing homeomorphism thereof. We have a canonical natural
isomorphism

GraphsB(Σ, b)

Vectk

GraphsB(Σ, b)

x∗

EΣ,bB

EΣ,bB

∼=

whose component at an object Γ̊ ∈ GraphsB(Σ, b) is given by the canonical identification

EΣ,b
B (Γ̊ ) =

⊗
v∈V (Γ̊ )

HB
v

∼=−→
⊗

v′∈V (x∗Γ̊ )

HB
v′ = EΣ,b

B (x∗Γ̊ ),

where x∗ is the endofunctor obtained by pushing forward the partially colored graphs.
Now consider

EΣ,b
B (Γ̊ ) =

⊗
v∈V (Γ̊ )

HB
v SN◦

B(Σ, b)

EΣ,b
B (x∗Γ̊ ) =

⊗
v′∈V (x∗Γ̊ )

HB
v′ SN◦

B(Σ, b)

∼=
SN◦

B(ξ,b)

68



since the composite indicated by the color violet is a component of a natural transformation
followed by a leg of a cocone, it is the leg of a cocone under EΣ,b

B . As a consequence,
there is a unique endomorphism

SN◦
B(ξ, b) : SN◦

B(Σ, b)→ SN◦
B(Σ, b)

of the string-net space SN◦
B(Σ, b) filling the dashed vertical arrow making the square

commute. By a straightforward diagram-chase we see that this endomorphism coincides
with the action of ξ = [x] ∈ Map(Σ) on SN◦

B(Σ, b).

4.3 Functoriality under rigid pseudofunctors
As we have seen in Section 3.3, rigid pseudofunctors preserve the unframed graphical
calculus for strictly pivotal bicategories. Since the string-net spaces are built from such
graphical calculus, it is correct to expect that a rigid pseudofunctor induces canonical
linear maps between string-net spaces by changing the colors.
Theorem 4.3.1. Let Σ be a compact oriented surface, B and B′ two strictly pivotal
bicategories, F : B → B′ a rigid pseudofunctor, and b a B-boundary datum on ∂Σ. There
is a canonical Map(Σ)-intertwiner

SN◦
F (Σ, b) : SN◦

B(Σ, b)→ SN◦
B′(Σ,F∗b),

where F∗b is the B′-boundary datum on ∂Σ obtained by changing the coloring according
to the map of objects and the local functors of F . The linear map is defined by sending
each representing B-colored graph to the B′-colored graph obtained by the F -conjugation
(3.3.4). Moreover, the collection of such intertwiners corresponding to different surfaces
and boundary data is compatible with the concatenation of string-nets.
Proof. Consider the natural transformation

GraphsB(Σ, b)

Vectk

GraphsB′(Σ,F∗b)

F∗

EΣ,bB

EΣ,F∗b
B′

(−)F

whose component at Γ̊ ∈ GraphsB(Σ, b) is given by the F -conjugation

(−)F
Γ̊

: EΣ,b
B (Γ̊ ) =

⊗
v∈V (Γ̊ )

HB
v →

⊗
v′∈V (F∗Γ̊ )

HB′
v′ = EΣ,F∗b

B′ (Γ̊ ).

The naturality square for a generating morphism γ : Γ̊1 → Γ̊2 reads⊗
v1∈V (Γ̊1)

HB
v1

⊗
v2∈V (Γ̊2)

HB
v2

⊗
v′

1∈V (F∗Γ̊1)

HB
v′

1

⊗
v′

2∈V (F∗Γ̊2)

HB
v′

2

(−)F
Γ̊1

(−)F
Γ̊2

id⊗kĈalB(Γ̊1∩Dγ)

id⊗kĈalB′ (F∗Γ̊1∩DF∗γ)
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whose commutativity follows from Corollary 3.3.4. Now consider

EΣ,b
B (Γ̊ ) =

⊗
v∈V (Γ̊ )

HB
v SN◦

B(Σ, b)

EΣ,F∗b
B′ (F∗Γ̊ ) =

⊗
v′∈V (F∗Γ̊ )

HB
v′ SN◦

B′(Σ,F∗b)

(−)F
Γ̊

SN◦
F (Σ,b)

since the composite indicated by the color violet is a component of a natural transformation
followed by a leg of a cocone, it is the leg of a cocone under EΣ,b

B . Therefore, there is a
unique linear map

SN◦
F (Σ, b) : SN◦

B(Σ, b)→ SN◦
B′(Σ,F∗b)

making the square commute. By an easy diagram-chase, we see that this linear map is
as described in the theorem. The equivariance and the compatibility with concatenation
is evident.

Note that since in general a rigid separable Frobenius functor only preserve horizontal
products and whiskerings up to idempotents of the type (3.3.10), the corresponding
change of colors provided by conjugation does not descend to linear maps between
string-net spaces.

4.4 Cylinder categories over circles
The notion of string-net spaces for a strictly pivotal bicategory B allows us to promote
the set of B-boundary data on a closed oriented 1-manifold to a (small) k-linear category.
Definition 4.4.1. Let B be a strictly pivotal bicategory and ℓ a closed oriented 1-
manifold. If ℓ is non-empty, the cylinder category for B over ℓ is the category Cyl◦(B, ℓ)
with

• objects: given by all B-boundary data on ℓ;

• morphisms: a morphisms between two boundary data is given by a string-net on
the cylinder ℓ× I matching the boundary data, for instance:

g

g′

f

h

f ′

α β

:

f ′∨

g′∨

→ f

g∨

h

(4.4.1)

is a morphism in Cyl◦(B, S1), with an appropriate B-coloring. Note that the
boundary component ℓ × {0} is considered in-going and supports the domain
boundary datum, hence the opposite convention for the edge labels. The composition
is given by the concatenation of string-nets.
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If ℓ is the empty 1-manifold ∅, we define Cyl◦(B, ∅) := Vectk.
Note that for each compact oriented surface Σ, the string-net construction provides a

functor
SN◦

B(Σ,−) : Cyl◦(B, ∂Σ)→ Vectk,
where the morphisms of the cylinder category act by concatenation.
Remark 4.4.2. Since the cylinder over a 1-manifold comes with a canonical 2-framing,
one can define the cylinder categories for a bicategory without a pivotal structure by
requiring the use of rectangular coupons that are aligned with the frame.

4.5 Pointed pivotal bicategories and cylinder categories over
intervals

We have defined the cylinder category over a closed oriented 1-manifold in the last section.
One might wonder: what about the 1-manifolds with boundaries? It turns out to be the
most appropriate to define the cylinder categories over them for a pointed strictly pivotal
bicategory (B, ∗B), i.e. a strictly pivotal bicategory with a distinguished object ∗B ∈ B.
Definition 4.5.1. Let (B, ∗B) be a pointed strictly pivotal bicategory and ℓ a compact
oriented 1-manifold with possibly non-empty boundary. The cylinder category for (B, ∗B)
over ℓ is the category Cyl◦(B, ∗B, ℓ) with

• objects: given by the B-boundary data whose 1-cells adjacent to the boundary
components of ℓ are all colored with the distinguished object ∗B, which are called
the (B, ∗B)-boundary data on ℓ. For instance,

b =
f g h

is an object in Cyl◦(B, ∗B, I), where we used the color gray to denote the distin-
guished object ∗B.

• morphisms: given by string-nets on the cylinder ℓ× I over ℓ. The composition is
given by concatenating string-nets.

Note that for a closed oriented 1-manifold ℓ, we have Cyl◦(B, ∗B, ℓ) ≡ Cyl◦(B, ℓ).
Example 4.5.2. The delooping BC of a strictly pivotal tensor category C is automatically
pointed due to having only a single object, therefore the restriction on the objects in
Definition 4.5.1 is vacuous in this case. We therefore write

Cyl◦(C, ℓ) ≡ Cyl◦(BC, ∗, ℓ)

and call an object therein a C-boundary value on ℓ.
Example 4.5.3. The strictly pivotal bicategory Fr(C) of simple special symmetric
Frobenius algebras in a strictly pivotal tensor category C is canonically pointed with

∗Fr(C) := 1 ∈ Fr(C),

i.e. the tensor unit of C canonically viewed as a Frobenius algebra. The Fr(C)-boundary
data on the standard interval I obtained by parametrizations of the boundaries of the
complemented worldsheets are all objects in the cylinder category Cyl◦(Fr(C),1, I).
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4.6 Functoriality under embeddings
We claimed that the appropriate categorical input for the definition of a cylinder category
over a compact oriented 1-manifold with boundary is a pointed strictly pivotal bicategory.
In this section we provide the reason behind this claim.

Recall that, for two arbitrary 1-manifolds ℓ1 and ℓ2, any continuous map f : ℓ1 → ℓ2
extends canonically to a map f × I : ℓ1× I → ℓ2× I between the cylinders by the formula
f × I : (p, t) 7→ (f(p), t). Therefore, an orientation preserving automorphism of the circle
x : S1 → S1 induces a functor

Cyl◦(B, x) : Cyl◦(B, S1)→ Cyl◦(B, S1)

by pushing forward the objects via x and the morphisms via x× I. Notably, the cylinder
category Cyl◦(B, S1) carries an action of the circle group U(1) ⊂ Aut(S1).

One soon realizes that when the input bicategory B has more than one object, there
is no functoriality under the embeddings of general oriented 1-manifolds if we assign to
each 1-manifold the naive version of cylinder category over it. The remedy is to fix a
distinguished object.

First consider an orientation preserving embedding f :
n⊔

i=1
I ↪→ I of n copies of the

standard interval into itself. Due to the restriction on the B-coloring of the 1-cells, now
it is possible to define a functor

Cyl◦(B, ∗B, f) : Cyl◦(B, ∗B,
n⊔

i=1
I) =

n∏
i=1

Cyl◦(B, ∗B, I)→ Cyl◦(B, ∗B, I) (4.6.1)

by pushing forward the objects and morphisms via f and f × I, respectively, then color
the complement I \ im f (resp. I2 \ im(f × I)) with the distinguished object ∗B. As a
special case, the embedding of the empty 1-manifold ∅ ↪→ I induces a functor of the
type Cyl◦(B, ∅) = Vectk → Cyl◦(B, ∗B, I) by sending k to the B-boundary datum b∗

I

on I that has the interval completely colored with ∗B. (This in fact works with the
embedding ∅ ↪→ ℓ for any oriented 1-manifold ℓ. In this sense, all cylinder categories are
canonically pointed by pointing the input bicategory.) By fixing a binary embedding
I ⊔ I → I, (4.6.1) endows the category Cyl◦(B, ∗B, I) with a monoidal structure, where
the tensor unit is given by b∗

I . Moreover, by sending each object in Cyl◦(B, ∗B, I) to
the corresponding horizontal composite of the coloring 1-morphisms, we establish an
equivalence of tensor categories Cyl◦(B, ∗B, I) ≃ EndB(∗B), where the monoidal product
for the endomorphism category is given by the horizontal composition.

Proposition 4.6.1. Let (B, ∗B) be a pointed strictly pivotal bicategory. There is a
canonical monoidal equivalence

Cyl◦(B, ∗B, I) ≃ EndB(∗B).

Now consider an embedding f : I ↪→ S1. Again by pushing forward the objects (resp.
morphisms) via the embedding (resp. f × I) and color the complement of the image with
the distinguished color, we obtain a functor

Cyl◦(B, ∗B, f) : Cyl◦(B, ∗B, I)→ Cyl◦(B, S1) ≡ Cyl◦(B, , ∗B, S1).
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This can be demonstrated by the following figure:

7→

f g h

f

g

h

Combining all of these, we have the following statement.

Proposition 4.6.2. The assignment of cylinder categories for a pointed pivotal bicategory
(B, ∗B) to compact oriented 1-manifolds canonically extends to a symmetric monoidal
functor1

Cyl◦(B, ∗B,−) : Embor
1 → Catk,

where the domain category Embor
1 is the symmetric monoidal category of compact oriented

1-manifolds and orientation preserving embeddings whose monoidal product is given by
disjoint union, whereas the codomain is the symmetric monoidal category of small k-
linear categories and k-linear functors whose monoidal product is given by the Cartesian
product.2

Lastly, let ℓ be a compact oriented 1-manifold and ℓ̄ the same underlying 1-manifold
but with the opposite orientation. Due to the strict pivotality of B, we have a canonical
isomorphism

Cyl◦(B, ∗B, ℓ)op ∼=−→ Cyl◦(B, ∗B, ℓ̄)

which sends an object in Cyl◦(B, ∗B, ℓ)op to the boundary datum on ℓ̄ obtained by taking
the duals of the coloring 1-morphisms. With the help of this identification, an orientation
reversing embedding f : ℓ1 → ℓ2 induces a functor

Cyl◦(B, ∗B, f) : Cyl◦(B, ∗B, ℓ1)op → Cyl◦(B, ∗B, ℓ2).

Remark 4.6.3. Let us choose the 2-framings for the cylinders I × I and S1 × I to be
the ones that uniformly point from (p, 0) towards (p, 1) for p in the interval I and the
circle S1, respectively. This allows us to define the cylinder categories Cyl◦(B, a, I) and
Cyl◦(B, S1) for a bicategory B without a pivotal structure and every object a ∈ B, by
restricting to progressive string diagrams. Upon fixing an embedding I ↪→ S1, we obtain
a functor ⊔

a∈B
B(a, a) ≃

⊔
a∈B

Cyl◦(B, a, I)
⊔
a∈B Cyl◦(B,a,f)
−−−−−−−−−−−→ Cyl◦(B, S1). (4.6.2)

1In fact, the functor Cyl◦(B, ∗B,−) factors through the forgetful functor Catpointed
k

→ Catk, because as
already mentioned, every cylinder category is pointed by the embedding of the empty manifold ∅.

2Even better, we actually obtain a symmetric monoidal 2-functor Cyl◦(B, ∗B,−) : Embor
1 → Catk, where

Embor
1 is the symmetric monoidal (2,1)-category of compact oriented 1-manifolds, orientation preserving

embeddings, and isotopy classes of isotopies between embeddings.
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This functor admits the structure of a categorified trace on B: a categorified trace on a
bicategory B with values in a category A is a functor

J−K :
⊔

a∈B
B(a, a)→ A

from the hom-categories of B to the category A equipped with a natural isomorphism

θ : JfgK
∼=−→ JgfK

where f : a → b and g : b → a are cyclically composable 1-morphisms in B, such that
two hexagon and two triangle diagrams commute. When the natural isomorphism θ
is an involution, the categorified trace is called symmetric, also known as a shadow
[Pon10, PS13]. An important example of a symmetric categorified trace/shadow is
provided by the topological Hochschild homology (THH) of spectral categories [CP19,
Theorem 2.17]. Recently [Ber22, HR21], the notion of topological Hochschild homology
was extended to that of a bicategory, and it was shown [HR21, Theorem 3.19] that the
THH of a bicategory B, which is a category THH(B) given by a pseudocolimit of a
certain 2-truncated cyclic bar construction, is canonically endowed with the structure of
a universal shadow on B in the sense that we have a canonical equivalence of categories

Fun(THH(B),D) ≃−→ Sha(B,D)

for every category D, where Sha(B,D) is the category of shadows on B with values in D.
We expect that the cylinder category Cyl◦(B, S1) provides a non-symmetric analogue
of THH(B) – the topological cyclic homology of the bicategory B. More precisely: we
expect that the non-symmetric categorified traces they give rise to are universal, and
that the cylinder categories over the circle are pseudocolimits of a variant of the cyclic
bar construction where the simplicial category ∆ is replaced by the cyclic category ∆C
introduced in [Con83].

4.7 Idempotent completion and the string-net models for
spherical fusion categories

Recall that given a category A, the Karoubi envelope Kar(A) is the idempotent completion
of A whose objects are idempotents in A, and a morphism f ∈ Kar(A)(p1, p2) between
idempotents pi ∈ EndA(ai) has an underlying morphism f : a1 → a2 in A, such that
f ◦ p1 = f = p2 ◦ f . Note that the identity of an idempotent p ∈ EndA(a) viewed as an
object in Kar(A) is given by p itself, while ida in general does not belong in EndKar(A)(p),
unless p = ida. The Karoubi envelope Kar(A) comes with a canonical fully faithful
functor

A → Kar(A) (4.7.1)

that sends an object a ∈ A to the idempotent ida, which is universal among the functors
from A that have a chosen splitting for every idempotent in their codomains. Moreover,
the functor (4.7.1) is cofinal3 in the sense that we can restrict functors from Kar(A)
3Note that we are using the terminology used in [Bor94] and [Lur09], which differs from the one used in
[ML98] and [Joh02] where they are called final functors instead.
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to functors from A along (4.7.1) without changing their colimits (see [Lur09, Lemma
5.1.4.6] for the (∞, 1)-version of the statement).

Let ℓ be a compact oriented and not necessarily closed 1-manifold and (B, ∗B) a pointed
strictly pivotal bicategory. We define the Karoubified cylinder category for (B, ∗B) over ℓ
to be the Karoubi envelope

Cyl(B, ∗B, ℓ) := Kar(Cyl◦(B, ∗B, ℓ)).

An object B ∈ Cyl(B, ∗B, ℓ) is given by an idempotent B : B◦ → B◦ in the ordinary
cylinder category Cyl◦(B, ∗B, ℓ) and is called a thickened (B, ∗B)-boundary datum on ℓ.
Subsequently, we define the Karoubified string-net space SNB(Σ,B) for a compact oriented
surface Σ and a thickened (B, ∗B)-boundary datum B ∈ Cyl◦(B, ∗B, ∂Σ) ≡ Cyl◦(B, ∂Σ)
to be the subspace

SNB(Σ,B) := SN◦
B(Σ,B◦)B ⊂ SN◦

B(Σ,B◦) (4.7.2)

consisting of string-nets that are invariant under the concatenation with B. In this way,
we obtain a functor

SNB(Σ,−) : Cyl(B, ∂Σ)→ Vectk
for every compact oriented surface Σ. Note that the assignment Cyl(B, ∗B,−) is also
functorial with respect to the embeddings of 1-manifolds.

The reason for introducing the notions of Karoubified cylinder categories and string-net
spaces is the following. Let C be a spherical fusion category (with tacitly strictified
pivotal structure) and write

Cyl(C, ℓ) ≡ Cyl(BC, ∗, ℓ)

and
SNC(Σ,B) ≡ SNBC(Σ,B).

First of all, since, according to Proposition 4.6.1, Cyl◦(C, I) ≃ EndBC(∗) = C and C is
idempotent complete, there is a unique monoidal equivalence

ΦI : Cyl(C, I) ≃ C (4.7.3)

up to a choice of a spitting for each idempotent in C. Moreover, by regarding −1 ∈ S1 as
the distinguished point in S1, we have a canonical fully faithful functor ([KJ11, Theorem
6.4])

Φ◦
S1 : Cyl◦(C, S1)→ Z(C)

which sends a C-boundary value whose marked points (staring from −1 ∈ S1 going
clockwise for one cycle) are colored with X1, . . . , Xn ∈ C to L(X1 ⊗ · · · ⊗Xn) ∈ Z(C),
where

L : C → Z(C)

X 7→ (
∫ C∈C

C∨ ⊗X ⊗ C =
⊕

i∈I(C)
i∨ ⊗X ⊗ i, γLX)
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is the two-sided adjoint (the adjoint is two-sided because C is unimodular, see [Shi17]) of
the forgetful functor U : Z(C)→ C, and by γLX we denote the canonical half-braiding
obtained from the universal action of the central monad of C. See [KJ11, Theorem 8.2] or
for more general unimodular finite tensor categories [Shi17, Theorem 4.10]. To describe
the action of Φ◦

S1 on morphisms, it suffices to consider φ ∈ C(X,Z∨ ⊗ Y ⊗ Z) and set

φ̃ := X

Y

Z

φ

∈ HomCyl◦(C,S1)(bX , bY ).

The morphism Φ◦
S1(φ̃) : L(X)→ L(Y ) in Z(C) is then defined by the dinatural family

C∨
0 ⊗X ⊗ C0

id⊗φ⊗id
−−−−−→ C∨

0 ⊗ Z∨ ⊗ Y ⊗ Z ⊗ C0
ıY ;Z⊗C0
−−−−−→ L(Y ),

where ıY ;− is the dinatural structure morphism of the coend L(Y ). Using that C is finitely
semisimple, we have

Φ◦
S1(φ̃) =

∑
i,j∈I(C)

dj α φ α

i X

Y jj

i

Z Z
, (4.7.4)

where dj ≡ dim(j) is the quantum dimension of j ∈ C and we have used the convention
that the appearance of a pair of circular coupons labeled by the same Greek letter
indicates the summation over a dual pair of bases of the relevant hom-spaces with respect
to the non-degenerate pairing given by

C(U∨, V ∨)⊗k C(U, V )
(evr

V )∗◦(coevl
U )∗

−−−−−−−−−−→ C(1,1) = k.

Since Z(C) is idempotent complete, after choosing a splitting for each idempotent in
Z(C) there is a unique extension of Φ◦

S1 to a functor

ΦS1 : Cyl(C, S1) = Kar(Cyl◦(C, S1)) ≃−→ Z(C) (4.7.5)

which is moreover an equivalence4 ([KJ11, Theorem 6.4]). The functor (4.7.5) sends a
thickened C-boundary value B ∈ Cyl(C, S1) to the image im(Φ◦

S1(B)) ∈ Z(C) given by
the chosen splitting with Φ◦

S1(B) ∈ EndZ(C)(Φ◦
S1(B◦)). In fact, the equivalence (4.7.5)

4Note that for this result, the semisimplicity of C is important. If C is a non-semisimple spherical finite
category, the functor ΦS1 is still fully faithful but not essentially surjective.
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can be extended for an arbitrary closed oriented 1-manifold ℓ̇ with a marked point in
each connected component thereof to a canonical equivalence

Φℓ̇ : Cyl(C, ℓ̇) ≃−→
∏

i∈π0(ℓ̇)

Z(C).

Now consider an orientation preserving embedding f : I ↪→ S1 whose image does not
contain the distinguished point −1 ∈ S1. In view of the definition of the equivalences
(4.7.3) and (4.7.5), we have the following commutative diagram in Catk:

Cyl(C, I) Cyl(C, S1)

C Z(C)

Cyl(C,f)

ΦS1ΦI

L

(4.7.6)

This can be better understood given the result from [KJT21] which states that the
assignment of the Karoubified cylinder categories for a spherical fusion category to
compact oriented 1-manifolds satisfies excision hence provides 1-dimensional factorization
homologies. Calculated via excision, the functor Cyl(C, f) is transported via the canonical
equivalences to

C → C ⊠ C → C ⊠C⊠Cop C ≃−→ Z(C), (4.7.7)

where the right most equivalence uses the pivotal structure of C. Note that morally
speaking, Cyl(C, S1) gives us the cocenter or equivalently, the twisted center ZD(C), i.e.
the Drinfeld center twisted by the double dual functor, which does not admit a monoidal
structure a priori and can be realized by the relative Deligne product C⊠C⊠Cop C according
to [FSS17, Proposition 2.18 (i)]. Here the composite C → C ⊠ C → C ⊠C⊠Cop C is the
left adjoint LD of the forgetful functor UD : ZD(C) = C ⊠C⊠Cop C → C, which leads to
L : C → Z(C) by postcomposing with the equivalence C ⊠C⊠Cop C ≃−→ Z(C). In the
same spirit, embedding two copies of the interval I into S1 gives rise to the functor
L ◦ ⊗ : C × C → Z(C). Geometrically, one sees that

L(C ⊗D) ∼= L(D ⊗ C) (4.7.8)

for any pair of objects C,D ∈ C, where a non-canonical isomorphism is provided by an
isotopy between the two corresponding embedding of the type I ⊔ I ↪→ S1. One can also
construct an isomorphism explicitly as follows:

Consider the morphisms f : L(C ⊗D) ⇌ L(D ⊗ C) : g given by

f

ıX

L(C ⊗ D)

L(D ⊗ C)

C DX X

=
ı′C∨X

L(D ⊗ C)

X X

C

CD
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and

g

ı′X

L(C ⊗ D)

L(D ⊗ C)

CDX X

=
ıCX

L(C ⊗ D)

XX

C

CD

,

where the jellyfishes stand for the dinatural structure morphisms of the coends. The
composite g ◦ f satisfies

g ◦ f

ıX

L(C ⊗ D)

L(C ⊗ D)

C DX X

=

ıCC∨X

L(C ⊗ D)

XX

C

CD

C

=

ıX

L(C ⊗ D)

XX CD

where the second equality follows from dinaturality. Together with (one of) the yanking
equation, this shows that g ◦ f = idL(C⊗D). Similarly one sees that g is also the right
inverse of f . Moreover, it is readily checked that all morphisms involved are compatible
with the half-braidings, so that they are actually morphisms in Z(C).

We conclude this section by recalling the following important theorem obtained in
[KJ11] and [Goo18]:

Theorem 4.7.1. Let C be a spherical fusion category.

1. The Karoubified string-net construction SNC canonically extends to a 3-2-1 topo-
logical field theory that is canonically equivalent to TVC, i.e. the once-extended
Turaev-Viro state sum TFT for C.

2. Let Σ be a compact oriented surface whose boundary ∂Σ has a marked point in
each of its connected components5 and B ∈ Cyl(C, ∂Σ) a thickened boundary value.
Denote by

Φ∂Σ : Cyl(C, ∂Σ) ≃−→
∏

i∈π0(∂Σ)
Z(C)

the canonical equivalence and
∏

i∈π0(∂Σ)
Yi = Φ∂Σ(B) ∈

∏
i∈π0(∂Σ)

Z(C). Then there is

an isomorphism
SNC(Σ,B) ∼= Z(C)(1,

⊗
i∈π0(∂Σ)

Yi ⊗K⊗g) (4.7.9)

5For instance, a marking on Σ (in the sense of [BKJ00]) provides such marked points.
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of Map(Σ)-representations, where K :=
∫ Z∈Z(C)

Z∨ ⊗ Z ∈ Z(C) is the canonical
coend for Z(C) and the Map(Σ)-action on the RHS is given by Lyubashenko in
[Lyu96], which is fixed upon a choice of a marking on Σ that connects the marked
points on ∂Σ.

4.8 Factorization
Consider a bordism Σ : α 7→ β given by an underlying compact oriented surface Σ and
in-going parametrization ϕ− : ᾱ ↪→ ∂Σ as well as out-going parametrization ϕ+ : β ↪→ ∂Σ,
where α, β ∈ Bordor

2,o/c are disjoint unions of intervals and circles. By the functoriality
of Cyl◦(B, ∗B,−) and Cyl(B, ∗B,−) under the embeddings of 1-manifolds, we obtain a
k-linear profunctor

SN◦
B(Σ;−,∼) : Cyl◦(B, ∗B, α) 7→ Cyl◦(B, ∗B, β)

as the composite

Cyl◦(B, ∗B, α)op × Cyl◦(B, ∗B, β)
(ϕ−)∗⊔(ϕ+)∗
−−−−−−−−→ Cyl◦(B, ∗B, ∂Σ)

SN◦
B(Σ,−)

−−−−−−−−→ Vectk

where we have abbreviated ϕ∗ ≡ Cyl◦(B, ∗B, ϕ), and likewise its Karoubified version

SNB(Σ;−,∼) : Cyl(B, ∗B, α) 7→ Cyl(B, ∗B, β).

We are now ready to state:

Theorem 4.8.1. Let Σ : α ⊔ β 7→ β ⊔ γ be a bordism, where α, β, γ ∈ Bordor
2,o/c are

disjoint unions of intervals and circles. Then the dinatural family

{sΣ
−,b0,∼ : SN◦

B(Σ;−, b0, b0,∼)⇒ SN◦
B(∪βΣ;−,∼)}b0∈Cyl◦(B,∗B,β) (4.8.1)

whose components are given by the sewing of string-nets, exhibits SN◦
B(∪βΣ;−,∼) as the

coend ∫ b∈Cyl◦(B,∗B,β)
SN◦

B(Σ;−, b, b,∼) : Cyl◦(B, ∗B, α) 7→ Cyl◦(B, ∗B, γ).

Proof. We need to show that the dinatural family (4.8.1) is universal. To this end,
consider a dinatural family

{gb0 : SN◦
B(Σ; a0, b0, b0, c0)→ V }b0∈Cyl◦(B,∗B,β)

for arbitrary boundary data a0 ∈ Cyl◦(B, ∗B, α) and c0 ∈ Cyl◦(B, ∗B, γ) and k-vector
space V ∈ Vectk. Define a linear map

g : SN◦
B(∪βΣ; a0, c0)→ V

[Γ ] 7→ [cut(Γ )] 7→ gbΓ ([cut(Γ )]), (4.8.2)
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where cut(Γ ) is the fully colored graph on Σ obtained by cutting the representative
graph Γ along β and bΓ ∈ Cyl◦(B, ∗B, β) is the boundary datum obtained from the cut.
The scenario can be presented schematically by:

The linear map (4.8.2) is well-defined because all isotopies and the generating local
relations provided by the unframed graphical calculus are contained within embedded
discs hence a different choice of representative for the string-net [Γ ] ∈ SN◦

B(∪βΣ; a0, c0)
only differs by an action of some morphism in the cylinder category Cyl◦(B, ∗B, β), as
well as the premise that the family {gb0}b0∈Cyl◦(B,∗B,β) is dinatural. The uniqueness of
the map is by design, hence the dinatural family at each component does exhibit a coend
at the level of vector spaces and linear maps. It is standard that the componentwisely
defined coends are automatically enhanced to a coend at the level of linear functors and
linear natural transformations.

There is an analogous statement for the Karoubified string-net. In order to show
that, we make the following observation: Let A be a category, recall the notion of the
twisted arrow category Tw(A): it is the category with objects given by the morphisms
in A, and a morphism in Tw(A) from f : a → b to f ′ : a′ → b′ is given by a pair
(g, h) ∈ Aop(a, a′)×A(b, b′) such that the square

a b

a′ b′

f

g h

f ′

commutes. The twisted arrow category Tw(A) comes with a canonical projection functor

πA : Tw(A)→ Aop ×A
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that sends an object f : a→ b to (a, b) ∈ Aop ×A and keeps the morphisms as they are.
The relevance of this construction to us is that given a functor

F : Aop ×A → Vectk,

we can identify its coend with a colimit over the twisted arrow category:
∫ a∈A

F (a, a) = colim(Tw(Aop)op
πop

Aop
−−−−→ Aop ×A

F
−−−−→ Vectk), (4.8.3)

see e.g. [Lor21, Section 1.2].

Lemma 4.8.2. Let A be a category and F : Kar(A)op×Kar(A)→ Vectk a functor whose
coend exists. Then ∫ a∈A

F |A(a, a) =
∫ A∈Kar(A)

F (A,A),

where F |A : Aop × A → Kar(A)op × Kar(A)
F

−−−−→ Vectk is the restriction of F along
the canonical embedding.

Proof. Due to the commutativity of the square

Tw(Aop)op Tw(Kar(A)op)op

Aop ×A Kar(A)op ×Kar(A)

G

πop
Kar(A)opπop

Aop

it suffices to show that the functor

G : Tw(Aop)op → Tw(Kar(A)op)op

(a
f

←−−−− b) 7→ (ida

f
←−−−− idb)

is cofinal, because then we have
∫ a∈A

F |A(a, a) = colim(Tw(Aop)op
πop

Aop
−−−−→ Aop ×A → Kar(A)op ×Kar(A)

F
−−−−→ Vectk)

= colim(Tw(Aop)op G
−−−−→ Tw(Kar(A)op)op

πop
Kar(A)op

−−−−−−→ Kar(A)op ×Kar(A)
F

−−−−→ Vectk)

= colim(Tw(Kar(A)op)op
πop

Kar(A)op

−−−−−−→ Kar(A)op ×Kar(A)
F

−−−−→ Vectk)

=
∫ A∈Kar(A)

F (A,A).

Recall that G : Tw(Aop)op → Tw(Kar(A)op)op being cofinal is equivalent to that for
every object (p

g
←−−−− q) ∈ Tw(Kar(A)op)op, where p ∈ EndA(a) and q ∈ EndA(b) are
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idempotents, the comma category g ↓ G is connected, i.e. it is non-empty and for each
pair of objects therein, there exists a zigzag connecting them. First consider the square

p q

ida idb

g

p q

g

it is commutative due to the defining condition for g to be a morphism of the type q → p.
This commutative square provides us an object (g → Gg) ∈ g ↓ G, therefore g ↓ G is
non-empty. Then assume that we have a pair of objects g → Gf and g → Gh in the
comma category g ↓ G given by the commutative squares

p q p q

idc idd idc′ idd′

g

r s

f

g

r′ s′

h

and

respectively. Observe that the following diagram

idc idd

ida idb

p q

idc′ idd′

q

r′ s′

h

g

s

s′r′

r
r s

f

g

p

commutes and hence the two squares colored with violet give rise to a span

(g → Gf)←− (g → Gg) −→ (g → Gh)

in the comma category g ↓ G. Therefore, g ↓ G is connected for every g ∈ Tw(Kar(A)op)op

hence G : Tw(Aop)op → Tw(Kar(A)op)op is cofinal.

Corollary 4.8.3. Let Σ : α ⊔ β 7→ β ⊔ γ be a bordism, where α, β, γ ∈ Bordor
2,o/c are

disjoint unions of intervals and circles. Then the dinatural family

{ŝΣ
−,b0,∼ : SNB(Σ;−,B0,B0,∼)⇒ SNB(∪βΣ;−,∼)}B0∈Cyl(B,∗B,β) (4.8.4)

whose components are given by the sewing of string-nets, exhibits SNB(∪βΣ;−,∼) as the
coend ∫ B∈Cyl(B,∗B,β)

SNB(Σ;−,B,B,∼) : Cyl(B, ∗B, α) 7→ Cyl(B, ∗B, γ).

Proof. Applying Theorem 4.8.1 and Lemma 4.8.2, we have

SNB(∪βΣ; ,A0,C0) = SN◦
B(∪βΣ; ,A◦

0,C◦
0)(A0,C0)
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=
∫ b∈Cyl◦(B,∗B,β)

SN◦
B(Σ; A◦

0, b, b,C◦
0)(A0,C0)

=
∫ b∈Cyl◦(B,∗B,β)

SNB(Σ; A0, idb, idb,C0)

=
∫ B∈Cyl(B,∗B,β)

SNB(Σ; A0,B,B,C0)

for every A0 ∈ Cyl(B, ∗B, α) and C0 ∈ Cyl(B, ∗B, γ).

4.9 Open-closed modular functors from string-net models
An implication of Theorem 4.8.1 is that for any composable pair of bordisms Σ : α 7→ β
and Σ′ : β 7→ γ, the dinatural family of sewing maps exhibits a coend

SN◦
B(Σ ∪β Σ

′;−,∼) =
∫ b∈Cyl◦(B,∗B,β)

SN◦
B(Σ ⊔Σ′;−, b, b,∼)

=
∫ b∈Cyl◦(B,∗B,β)

SN◦
B(Σ;−, b)⊗k SN◦

B(Σ′; b,∼).

Therefore, the assignment
α 7→ Cyl◦(B, ∗B, α)

and
Σ 7→ SN◦

B(Σ;−,∼)

extends to a symmetric monoidal pseudofunctor

SN◦
B : Bordor

2,o/c → Profk,

i.e. an open-closed modular functor. Likewise, Corollary 4.8.3 implies that the Karoubified
string-net spaces give rise to an open-closed modular functor

SNB : Bordor
2,o/c → Profk

as well.
Now, let C be the modular fusion category of chiral data for a rational conformal theory.

The results listed in Section 4.7 assert that SNC satisfy all the conditions from Problem
2.6.2 hence provides an open-closed modular functor that models the conformal blocks.
In other words, by defining

BlC(α) := Cyl(C, α)

for every α ∈ Bordor
2,o/c, and

BlC(Σ;−,∼) := SNC(Σ;−,∼)

for every bordism Σ, we obtain a solution to Problem 2.6.2.
Remark 4.9.1. As mentioned in Section 4.7, we have BlC(I) = Cyl(C, I) ≃ C and
BlC(S1) = Cyl(C, S1) ≃ Z(C) which are finitely semisimple. Therefore for any bordism
Σ : α 7→ β, BlC(Σ;−,∼) = SNC(Σ;−,∼) is exact in each variable and can be replaced
by an exact functor B̂lC(Σ;−⊠ ∼) : BlC(α)op ⊠ BlC(β) → Vectk. Consequently, for a
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modular fusion category C, the open-closed modular functor BlC factors through the
forgetful functor

ProfLex
k → Profk,

where ProfLex
k is the symmetric monoidal bicategory of finite k-linear abelian categories,

left exact profunctors and natural transformations, the horizontal composition of which
is given by left exact coends (in the sense of [FS17a]) and the monoidal product given by
the Deligne product.

Finally, note that by taking (Fr(C),1) as the decorating pointed pivotal bicategory,
we obtain an open-closed modular functor

SN◦
Fr(C) : Bordor

2,o/c → Profk

that turns out to be also relevant to the RCFT (see Chapters 8 and 9).
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5 String-net construction of correlators

In this chapter, we use the string-nets to construct the field maps and a consistent system
of correlators requested in Problem 2.6.3 and Problem 2.6.7. The construction involves
calculating in the spherical fusion category C of chiral data (recall that a modular fusion
category is in particular spherical) via string diagrams, so let us first introduce the
relevant notations and results.

Recall that a pivotal fusion category C is spherical if for every object X ∈ C, the left
and right dimensions are equal:

diml(X) = dimr(X) = dim(X).

The global dimension of a spherical fusion category C is the number

D2
C :=

∑
i∈I(C)

d2
i

(no choice of square root implied); this number is non-zero [ENO05, Theorem 2.3].
Let X1, . . . , Xn ∈ C be objects in a spherical fusion category. We have the completeness

relation

⊕
i∈I(C)

di

X1 Xn. . .

X1 Xn. . .

α

α
i =

X1 Xn. . .

, (5.0.1)

where we have used the summation convention mentioned after (4.7.4).
There is a virtual object of particular interest that is called the canonical color (or

Kirby color, or surgery color). It is denoted by an undirected purple line and defined as
the morphism

:=
∑

i∈I(C)

di

D2
C

i

∈ EndC(
⊕

i∈I(C)
i). (5.0.2)

Recall that an object in the Drinfeld center Z(C) is given by a pair Y = (U(Y ), γ),
where U(Y ) ∈ C is its underlying object in C and the natural isomorphism

γ : U(Y )⊗− ⇒ −⊗ U(Y )
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is the half-braiding of Y which has to obey a hexagon diagram. We draw the component
γX : U(Y )⊗X → X ⊗ U(Y ) of the half-braiding γ at X ∈ C as:

γX

U(Y ) X

U(Y )X

= γX

U(Y ) X

U(Y )X

=

Y X

YX

. (5.0.3)

Here in the last picture we slightly abused the notation by using the label Y ∈ Z(C) in
the description of a morphism in C, the reason behind which is that by doing so, the
morphism indicated by the over-crossing of the green line cannot be mixed up with a
braiding in C (if the spherical fusion category C is equipped with one, e.g. when C is the
modular fusion category of the chiral data) and thus be omitted. For clarity, in addition
we draw the strands labeled by objects of C and strands labeled by objects of Z(C) in
two different color, i.e. in dark blue and green, respectively.

Lastly, recall that for a modular fusion category C (and more generally for a non-
degenerate braided finite category, see [Shi19]), the functor

ΞC : Crev ⊠ C → Z(C)
U ⊠ V 7→ (U ⊗ V, γΞC(U⊠V )) (5.0.4)

is a braided equivalence, where the component of the half-braiding γΞC(U⊠V ) at an object
W ∈ C is given by

γΞC(U⊠V );W :=

U V W

U VW

. (5.0.5)

5.1 Frobenius algebras and their modules
The notion of a Frobenius algebra is of great important to 2-dimensional topological and
conformal field theories. Let C be a monoidal category, an object A ∈ C equipped with
the structure of a unital algebra and that of a counital coalgebra is a Frobenius algebra if
the following relation holds:

A A

A A

=

A A

A A

=

AA

AA

, (5.1.1)
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where the trivalent red and blue coupons stand for the multiplication µ : A⊗A→ A and
comultiplication ∆: A→ A⊗A, respectively. A Frobenius algebra A ∈ C is special if

A

A

= βA

A

and A = β1id1 (5.1.2)

for non-zero βA, β1 ∈ k, where the pink and the light blue coupons stand for the unit
η : 1 → A and the counit ε : A → 1 of A, respectively. If C has, in addition, a pivotal
structure, then a Frobenius algebra A ∈ C is called symmetric if we have

A

A

=

A

A

, (5.1.3)

where the pivotal structure is left implicit. Note that for a special symmetric Frobenius
algebra A ∈ C, the constants βA and β1 obey

βAβ1 = diml(A) = dimr(A) ̸= 0.

Note that βA, β1 ∈ k are required to be non-zero, therefore their product is non-zero. In
this thesis, we will always assume (without loss of generality) that the comultiplication
of a special symmetric Frobenius algebra A ∈ C is normalized such that βA = 1 and
β1 = diml(A) = dimr(A).

Let M,N be a right module and a left module over a special symmetric Frobenius
algebra A ∈ C. The relative tensor product M ⊗A N can be realized as the image of the
idempotent

PM⊗AN :=

M N

≡

M N

, (5.1.4)

where we have omitted the orientation of the A-line and the occurrence of the unit on
the right hand side, using that the dual A∨ = ∨A is canonically identified with A itself
via the unique isomorphism (5.1.3). Note that for any object X ∈ C, the hom-space
C(X,M ⊗A N) is canonically isomorphic to the subspace (which is in fact a retract)
C(A)(X,M ⊗N) ⊂ C(X,M ⊗N) that consists of those morphisms which are invariant
under postcomposing with the idempotent PM⊗AN . We therefore tacitly identify

C(X,M ⊗A N) = C(A)(X,M ⊗N). (5.1.5)

Analogously, we identify the space C(M ⊗A N,X) with the subspace C(A)(M ⊗N,X) of
C(M ⊗N,X) that consists of morphisms that are invariant under precomposing with the
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idempotent PM⊗AN , and similarly for the analogous morphism spaces involving three or
more bimodules.

We will need the following lemmas.

Lemma 5.1.1. For a simple special symmetric Frobenius algebra A in a spherical fusion
category C and M a right A-module the equality

M

A

= dim(M)
dim(A)

A

(5.1.6)

holds.

Proof. Consider the endomorphism

fM :=

M

A

A

of A, obtained by combining the left hand side of (5.1.6) with the coproduct of A. Since
A is symmetric Frobenius, fM is not just a morphism in C, but also a morphism of
A-bimodules with respect to the regular A-bimodule structure on A. Since A is simple,
this implies that fM is a multiple of the identity morphism, i.e. fM = ξM idA, for some
ξM ∈ k. Postcomposing with the counit then shows that the morphism on the left hand
side of (5.1.6) equals ξMε. Further precomposing with the unit gives dim(M) = ξMε ◦ η.
Since A is special, this implies (5.1.6).

Denote by dm for a simple right A-module m the dimension of the object ṁ ∈ C that
underlies m ∈ modC-A.

Lemma 5.1.2. For a special symmetric Frobenius algebra A in a spherical fusion category
C we have ∑

m∈I(modC-A)

d2
m = dim(A)D2

C , (5.1.7)

with D2
C being the global dimension of C.

Proof. We have

dim(A)D2
C =

∑
i∈I(C)

di Ai =
∑

i∈I(C)
m∈I(modC-A)

didm

A

i

α

α

m
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=
∑

m∈I(C)
dm

A

m =
∑

m∈I(C)
d2

m. (5.1.8)

Here in the second equality we used the identity

⊕
m∈I(A-modC-B)

dm

α

α

m

X

X

=

X

(5.1.9)

valid for any A,B ∈ Fr(C) and X ∈ A-modC-B, where the α-summation is over a basis
of A-modC-B(m,X); this is a variant of the completeness relation (5.0.1). The third
equality of (5.1.8) follows from the identity [FFRS06a, Lemma 4.3]

⊕
i∈I(C)

di

M N

M N

α

α
i =

M N

(5.1.10)

which holds for any M ∈ modC-A and N ∈ A-modC , with the α-summation being over a
basis of C(A)(i,M ⊗N) ∼= C(X,M ⊗A N), where C(A)(i,M ⊗N) stands for the subspace
of C(i,M ⊗N) that is invariant under postcomposing with the idempotent (5.1.4).

Combining Lemma 5.1.1 with Lemma 5.1.2 we obtain:
Corollary 5.1.3. For a simple special symmetric Frobenius algebra A in a spherical
fusion category C the equality

∑
m∈I(modC-A)

dm

D2
C

m

A

=

A

(5.1.11)

holds.

5.2 Field functors
We are now ready to construct the field maps (see Problem 2.6.3). In fact, we are going
to construct a field functor

Fℓ : Cyl◦(Fr(C),1, ℓ)→ BlC(ℓ) = Cyl(C, ℓ)
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for every compact oriented 1-manifold ℓ with possibly non-empty boundary, such that for
every worldsheet S with ambient bordism ΣS : ℓin 7→ ℓout, (2.6.6) and (2.6.7) are satisfied,
i.e.

Fℓin(bℓin)
Φℓin7−→ FS

in ∈
pin∏
i=1
C ×

qin∏
j=1
Z(C) (5.2.1)

and
Fℓout(bℓout)

Φℓout7−→ FS
out ∈

pout∏
i=1
C ×

qout∏
j=1
Z(C) (5.2.2)

where FS
in and FS

out are the combinations of field contents associated to the in-going and
out-going sewing boundaries. We start with giving two examples of thickened C-boundary
values on S1, i.e. objects in the Karoubified cylinder category Cyl(C, S1):

Example 5.2.1. For Y = (U(Y ), γ) ∈ Z(C) consider the string-net

pcan
Y :=

Y

,

where the unlabeled edge in purple that runs along the non-contractible cycle of the
cylinder, stands for the canonical color (5.0.2), and the half baring γ is indicated by an
over crossing, as explained below (5.0.3). Using the completeness relation (5.0.1) it is
readily seen that pcan

Y is an idempotent (see e.g. [SY21, Remark 2.6]), therefore supplies
an object pcan

Y ∈ Cyl(C, S1) in the Karoubified cylinder category for C over S1. We have

Φ◦
S1(pcan

Y ) =
∑

i,j,k∈I(C)

djdk

D2
C

α α

i Y

jj

i

k k =
∑

i,j∈I(C)

dj

D2
C

Y

j

i

by the definition of the fully faithful functor Φ◦
S1 : Cyl◦(C, S1) → Z(C), see (4.7.4). It

is then easily seen [KJ11, Lemma 8.3] that the image of the morphism Φ◦
S1(pcan

Y ) ∈
Z(C)(LU(Y ), LU(Y )) is (up to a canonical isomorphism) the object Y ∈ Z(C). We
write1

Bcan
Y := pcan

Y ∈ Cyl(C, S1) (5.2.3)
for every Y ∈ Z(C). We thus have

ΦS1(Bcan
Y ) = im(Φ◦

S1(pcan
Y )) = Y ∈ Z(C)

for every Y ∈ Z(C), where ΦS1 : Cyl(C, S1) ≃−→ Z(C) is the canonical equivalence (4.7.5).
1Strictly speaking, one needs to choose a marked point on S1 before defining these objects.
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Example 5.2.2. For any simple special symmetric Frobenius algebras A and B in C
and any two A-B-bimodules X and Y consider the string-net

pX,Y :=

Y

X

A B ,

where we used the convention in (5.1.4), i.e. we omitted the orientations and the units for
the strands labeled by the Frobenius algebras. Using that A and B are special Frobenius
algebras, one sees again directly that pX,Y is an idempotent and thus provides an object
pX,Y ∈ Cyl(C, S1) in the Karoubified cylinder category for C over S1. Furthermore we
find

im(Φ◦
S1(pX,Y )) = Nat(GX , GY ) = DX,Y ∈ Z(C).

Let us explain this isomorphism in detail, using manifestly that C is finitely semisimple
(the statement is, however, in fact valid beyond semisimplicity). Recall from (2.3.5) that
by inserting the explicit form (2.3.3) of the functors GX and GY , we have

DX,Y = (
⊕

m∈I(modC-A)

m⊗A Y ⊗B X∨ ⊗A m
∨, γDX,Y ) ∈ Z(C),

where the component of the half-braiding γDX,Y at an object V ∈ C is given by

γDX,Y ;V =
⊕

m,n∈I(modC-A)

dm α α

m Y

X nn

m

V

V

,

where the α-summation is over module morphisms. Now consider the two string-nets

eX,Y :=
∑

m∈I(modC-A)

dm

D2
C

Y

X

m (5.2.4)
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and

rX,Y :=
∑

m∈I(modC-A)

dm

D2
C

Y

X

m (5.2.5)

Using that A and B are simple special Frobenius and invoking Corollary 5.1.3 we see
that

eX,Y ◦ rX,Y = pX,Y . (5.2.6)
For the composition in the opposite order we get

rX,Y ◦ eX,Y = pcan
DX,Y , (5.2.7)

shown by the following identities of string-nets:

rX,Y ◦ eX,Y =
∑

m,n∈I(modC-A)

dm

D4
C

Y X

n
m

=
∑

i∈I(C)
m,n∈I(modC-A)

didm

D2
C

Y X

n

m

n

m

α α

i

= pcan
DX,Y ,

where the cylinders are drawn in a slightly different manner – deformed by a homeomor-
phism – than in (5.2.4) and (5.2.5), and the middle equality uses (5.1.10). Write

BX,Y := pX,Y ∈ Cyl(C, S1)

and according to (5.2.6) and (5.2.7), we have the isomorphism

eX,Y : Bcan
DX,Y ⇌ BX,Y : rX,Y (5.2.8)
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in the Karoubified cylinder category Cyl(C, S1), which furnishes an identification

im(Φ◦
S1(pX,Y )) = ΦS1(BX,Y ) = ΦS1(Bcan

DX,Y ) = DX,Y .

Example 5.2.2 inspires us to define the action of the field functor

FS1 : Cyl◦(Fr(C), S1)→ BlC(S1) = Cyl(C, S1)

for the standard circle S1 to be (demonstrated using a generic object in the domain
category):

b =

X

Y

Z

7→

X

Y

Z

=: FS1(b). (5.2.9)

That is, we take the identity morphism idb of an Fr(C)-boundary datum b ∈ Cyl◦(Fr(C), S1)
and remove the colors of the patches, replacing each of the colors with a single strand col-
ored with the corresponding Frobenius algebra; this produces an idempotent FS1(b) = pb
in Cyl◦(C, S1) (i.e. an object in Cyl(C, S1)) that contains all the information about the
Fr(C)-boundary datum b, and is sent to the corresponding field content Db ∈ Z(C) by
the equivalence ΦS1 : Cyl(C, S1) ≃−→ Z(C) according to an argument similar to that of
Example 5.2.2.

Before prescribing the action of the field functor FS1 on the morphisms of Cyl◦(Fr(C), S1),
let us introduce the notion of a Frobenius graph.

Definition 5.2.3. Let Γ be a fully Fr(C)-colored graph on a compact oriented surface Σ,
ϑ the 2-cell underlying a patch, i.e. a connected component of the complement Σ \Γ , and
A ∈ Fr(C) the color of the patch. A Frobenius graph on ϑ is a fully C-colored graph Γϑ

(this in particular means that the edges are oriented) on ϑ having the following features:

• The vertices of Γϑ are either univalent or trivalent. Each of the vertices of Γϑ

that lies on the boundary ∂ϑ is univalent and lies in the interior of an edge of the
Fr(C)-colored graph Γ .

• Each edge of Γϑ is labeled by the underlying object of the Frobenius algebra A.

• Each trivalent vertex is labeled either by the multiplication µ or comultiplication
∆ of A, and each univalent vertex in the interior of ϑ either by the unit η or the
counit ε; each univalent vertex on the boundary ∂ϑ is labeled by the structure
morphism for the left or right A-module that labels the corresponding edge of Γ .

A full Frobenius graph on ϑ is a Frobenius graph Γϑ on ϑ such that in addition the
following condition is satisfied:

• Γϑ is full in the sense that adding any further edges and vertices in a way compatible
with the previous requirements results in a graph that can be reduced to Γϑ by a
finite sequence of moves provided by the axioms of a special symmetric Frobenius
algebra and its modules.
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When drawing a Frobenius graph, it is convenient to use the simplified graphical
notation for morphisms involving symmetric Frobenius algebras in which, as explained
below (5.1.4), orientations as well as univalent vertices are omitted. We refer to the thus
obtained simplified version of a (full) Frobenius graph as a simplified (full) Frobenius
graph. Upon such simplification, the moves provided by the axioms of a special symmetric
Frobenius algebra and its modules can be gathered into the following list of elementary
Frobenius moves:

• The a-move:

←→ (5.2.10)

• The b-move:

←→ (5.2.11)

• The r-move:

←→ (5.2.12)

The blue line in (5.2.12) stands for a bimodule, and we used one side of the action to
demonstrate the r-move. The composite of a finite sequence of elementary Frobenius
moves is called a Frobenius move. Note that each of the elementary Frobenius moves
between simplified Frobenius graphs stands for a whole family of moves between non-
simplified graphs. For instance, the moves

A

A

←→

A

and

A

A

←→

A

as well as
A A

←→
A A

constitute three possible realizations of the b-move as a move between non-simplified
Frobenius graphs.
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Example 5.2.4. The following pictures show an example of a full Frobenius graph on a
2-cell (left) and its simplified version (right):

X1 X2 ≡ X1 X2

Note that this Frobenius graph can be reduced to the one of the form PX1⊗AX2 , see
(5.1.4), by a suitable Frobenius move.
Remark 5.2.5. (i) A convenient way to construct a (simplified) Frobenius graph Γϑ on
a given 2-cell ϑ is to remove sufficiently many disks Di from ϑ and take Γϑ to be the
graph that is obtained from ϑ \ ∪iDi as a retract. This procedure of “punching holes” is
similar to the way in which the presence of a triangulation of the worldsheet in the TFT
construction of correlators is explained in [KS11] and [FSV13, Section 6].
(ii) If the 2-cell ϑ is labeled by the monoidal unit 1 ∈ C, like e.g. any of the additional
transparent 2-cells in a complemented worldsheet S̃ (see Section 2.4), then each edge
of a full 1-graph on ϑ is labeled by 1 and each vertex by an identity morphism. As a
consequence the graph is transparent and may be suppressed completely.
Lemma 5.2.6. Any two full Frobenius graphs on a 2-cell ϑ are related by a Frobenius
move up to isotopy.
Proof. The assertion follows by combining the following two statements, each of which is
easy to verify. First, any two realizations of a simplified (not necessarily full) Frobenius
graph as a non-simplified Frobenius graph are related by a (not necessarily unique)
Frobenius move up to isotopy. Second, any two simplified full Frobenius graphs on a
2-cell ϑ can be related by a finite sequence of the elementary Frobenius moves that are
shown in (5.2.10), (5.2.11), and (5.2.12).

We now demonstrate the action of FS1 on morphisms by an explicit example. Let
Φ : b1 → b2 be the morphism in the cylinder category Cyl◦(Fr(C), S1) given by

Y

Y ′

X

Z

X′

α β

:

X′∨

Y ′∨

→ X

Y ∨

Z

for Frobenius algebras A,B,C ∈ Fr(C), bimodules X ∈ A-modC-B, X ′ ∈ B-modC-C,
Z ∈ C-modC-A, Y, Y ′ ∈ C-modC-B, and vertex colors α, β given by a choice of polariza-
tions and bimodule morphisms. First we remove the colors of the patches and replace
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the labels of the edges by their underlying objects in C and the labels of the vertices by
their U -conjugation (see Example 3.3.5 for the definition of the rigid separable Frobenius
functor U : Fr(C)→ BC), with the latter denoted by for instance α̊ ≡ αU . Note that the
U -conjugates necessarily intertwine with the actions of the Frobenius algebras. We then
put a full Frobenius graph Γϑ on each of the 2-cells ϑ and obtain a fully C-colored graph
ΓΦ on the cylinder S1 × I, for instance

ΓΦ = Y

Y ′

X

Z

X′

α̊ β̊

. (5.2.13)

Due to Lemma 5.2.6 and the fact that the Frobenius graphs Γϑ are full, ΓΦ gives rise to a
unique string-net upon taking the equivalence class [ΓΦ] which is independent of the choice
of full Frobenius graphs. In fact, the string-net [ΓΦ] depends only on the Fr(C)-colored
string-net underlying the morphism Φ which is an equivalence class of Fr(C)-colored
graphs on the cylinder S1 × I: this is a corollary of Theorem 8.1.1. Moreover, the string-
net [ΓΦ] is invariant under precomposing with the idempotent FS1(b1) and postcomposing
with the idempotent FS1(b2) and thus we define

FS1(Φ) := [ΓΦ] ∈ HomCyl(C,S1)(FS1(b1),FS1(b2)). (5.2.14)

Again, because of Lemma 5.2.6, the assignments (5.2.9) and (5.2.14) are compatible
with the concatenation of string-nets (see the proof of Theorem 5.3.3), therefore define a
functor

FS1 : Cyl◦(Fr(C), S1)→ BlC(S1) = Cyl(C, S1). (5.2.15)

Similarly, one defines the field functor for the standard interval I

FI : Cyl◦(Fr(C),1, I)→ BlC(I) = Cyl(C, I) (5.2.16)

by, for example:

b = M X N∨
7→

M X N

=: FI(b) (5.2.17)

where M ∈ modC-A, N ∈ modC-B and X ∈ A-modC-B, and the action on morphisms is
analogous to the one given by (5.2.13). Under the equivalence

ΦI : Cyl(C, I) ≃−→ C,
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the right hand side of (5.2.17) is sent to Bb = HommodC-B(N,M ⊗A X) = M ⊗A X ⊗B

N∨ ∈ C, therefore FI also satisfy the requirement listed in Problem 2.6.3. Extending
(5.2.15) and (5.2.16) by taking the Cartesian product, we thus obtain a field functor
Fℓ : Cyl◦(Fr(C),1, ℓ)→ BlC(ℓ) for every object ℓ ∈ Bordor

2,o/c.
It is also straight forward to generalize the field functors and define a functor

F∂Σ : Cyl◦(Fr(C), ∂Σ)→ Cyl(C, ∂Σ) (5.2.18)

for a compact oriented surface Σ (note that ∂Σ is necessarily a closed 1-manifold).

5.3 Correlators
Let S be a worldsheet and ΣS : ℓin 7→ ℓout its ambient bordism. As defined in (2.6.9), the
space of conformal blocks for the worldsheet S is given by

BlC(S) = BlC(ΣS ;Fℓin(bℓin),Fℓout(bℓout))
= SNC(ΣS ;Fℓin(bℓin),Fℓout(bℓout)),

where bℓin ∈ Cyl◦(Fr(C),1, ℓin) and bℓout ∈ Cyl◦(Fr(C),1, ℓout) are the Fr(C)-boundary
data pulled back by the parametrization maps of the ambient bordism ΣS and the
profunctor SNC is given by the composite

SNC : Cyl(C, ℓin)op × Cyl(C, ℓout)→ Cyl(C, ∂ΣS)
SNC(ΣS ,−)
−−−−−−−−→ Vectk,

where we left the functor induced by the parametrization maps unnamed.
We have a commutative diagram

Cyl◦(Fr(C),1, ℓin)op × Cyl◦(Fr(C),1, ℓout) Cyl◦(Fr(C),1, ∂ΣS)

Cyl(C, ℓin)op × Cyl(C, ℓout) Cyl(C, ∂ΣS)

Fop
ℓin

×F
ℓin

F
∂ΣS

composed of the field functors for ℓin and ℓout, the functor F∂Σ , and the functors induced
by the parametrization maps of ΣS (they are the unnamed horizontal arrows). Note
that the functor denoted by the upper unnamed horizontal arrow sends (bℓin , bℓout) ∈
Cyl◦(Fr(C),1, ℓin)op × Cyl◦(Fr(C),1, ℓout) to the Fr(C)-boundary datum

bS ∈ Cyl◦(Fr(C), ∂ΣS)

that is the boundary datum of the complemented worldsheet S̃ viewed as a fully Fr(C)-
colored graph on ΣS , therefore independent of the choice of in- and outgoing parametriza-
tions of the ambient bordism ΣS . For example, for the worldsheet (2.3.9) whose com-
plemented worldsheet is given by (2.4.2), the boundary datum bS is given by (4.1.1).
Consequently, we have

BlC(S) = SNC(ΣS ;Fℓin(bℓin),Fℓout(bℓout))
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= SNC(ΣS ,F∂Σ(bS)), (5.3.1)

which means that the space of conformal blocks for a worldsheet S, realized as a space of
string-nets, is in fact parametrization independent.

We are now ready to prescribe the correlator CorC(S) for a worldsheet S, which is a
vector in the space of conformal blocks BlC(S) = SNC(ΣS ,F∂Σ(bS)).

Definition 5.3.1. Let S be a worldsheet with ambient surface ΣS . We define the
correlator CorC(S) ∈ BlC(S) = SNC(ΣS ,F∂Σ(bS)) to be the vector obtained by the
following two-step procedure:

1. Take the complemented worldsheet S̃ viewed as a fully Fr(C)-colored graph on the
surface ΣS and remove the colors of the patches, replace the edge colors (i.e. the
line-defect conditions) with their underlying objects in C and the vertex colors with
their U -conjugates, thereby producing a fully C-colored graph ΓS on ΣS , which we
refer to as the partial defect network for S.

2. Modify the graph ΓS by putting a full Frobenius graph Γϑ on each of the 2-cells of
S̃. The correlator for the worldsheet S is defined to be the string-net it represents:

CorC(S) := [ΓS ∪
⋃

ϑ∈S̃

Γϑ] ∈ SNC(ΣS ,F∂Σ(bS)). (5.3.2)

Note that, analogous to how we defined the actions of the field functors on morphisms,
the definition of CorC(S) involves a choice of full Frobenius graph for each 2-cell of S̃.
However, by Lemma 5.2.6, any two such choices are related by a Frobenius move. Now
each Frobenius move corresponds to an equality of string diagrams in C, and thus also to
an equality of string-nets. Therefore, the correlator CorC(S) does not depend on these
choices and is well defined.

Example 5.3.2. Let S be the worldsheet given by (2.3.9). Its correlator CorC(S) is the
string-net represented by the C-colored graph

M1

X1

X6

X2

X3

X4

X5

φ̊1

φ̊2

φ̊3

M2

We now show that Definition 5.3.1 indeed provides a consistent system of correlators:

Theorem 5.3.3. The assignment of the vector CorC(S) ∈ BlC(S) = SNC(ΣS ,F∂Σ(bS))
to every worldsheet S given by Definition 5.3.1 provides a consistent system of correlators
in the sense of Problem 2.6.7.
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Proof. (i) Invariance under the mapping class group Map(S): By definition, any mapping
class group element in Map(S) maps the partial defect network ΓS to itself. Thus when
studying the correlator (5.3.2) we only have to deal with the full Frobenius graphs for
the 2-cells. Let Γϑ be such a graph and ξ ∈ Map(S) a mapping class group element.
Then the graph ξ(Γϑ) is clearly again a Frobenius graph; the following consideration
shows that it is even a full Frobenius graph: Let ξ(Γϑ)+ be a Frobenius graph obtained
by adding an edge labeled by the corresponding Frobenius algebra. Then the graph
ξ−1(ξ(Γϑ)+) can be obtained from Γϑ by adding a Frobenius line. Since Γϑ is full, it is
related to ξ−1(ξ(Γϑ)+) by some Frobenius move. Upon applying ξ, that move transports
to a Frobenius move that relates ξ(Γϑ) to ξ(Γϑ)+. Hence just like Γϑ, ξ(Γϑ) is also a full
Frobenius graph; by Lemma 5.2.6, they are thus related by a Frobenius move. Since, as
already pointed out, a Frobenius move corresponds to an equality of string-nets, and this
implies that the two graphs on ΣS that are related by replacing Γϑ with ξ(Γϑ) represent
one and the same string-net. Altogether we then have

ξ(CorC(S)) = [ξ(ΓS ∪
⋃

ϑ∈S̃

Γϑ)] = [ΓS ∪
⋃

ϑ∈S̃

ξ(Γϑ)] = CorC(S)

for every ξ ∈ Map(S).
(ii) Compatibility with sewing: Without loss of generality we can restrict our attention
to what happens when two 2-cells ϑ′ and ϑ′′, both labeled by the same Frobenius algebra,
are sewn to a single new 2-cell ϑ = ϑ′ ∪α ϑ

′′, whereby the full Frobenius graphs Γϑ′ and
Γϑ′′ combine to a graph Γ := Γϑ′ ∪α Γϑ′′ . The graph Γ is clearly a Frobenius graph, and
we can show that it is even a full Frobenius graph. To this end, we add an edge labeled
by the corresponding Frobenius algebra to Γ , resulting in a new Frobenius graph Γ+, and
show that Γ+ is related to Γ by a Frobenius move. If the new edge of Γ+ lies entirely
in either ϑ′ or ϑ′′ (regarded as embedded in ϑ), then with obvious notation we have
either Γ+ = Γ+

ϑ′ ∪α Γϑ′′ or Γ+ = Γϑ′ ∪α Γ
+
ϑ′′ , so that the statement follows immediately,

just because Γϑ′ and Γϑ′′ are both full. Otherwise, i.e. if the new edge lies partly in ϑ′

and partly in ϑ′′, we can perform a suitable Frobenius move together with isotopy to
transform the graph Γ in such a way that we deal again with the previous situation.

Remark 5.3.4. As we will see in Theorem 8.1.1, the construction of correlators gives rise
to a Map(Σ)-intertwiner

UCorC(Σ, b) : SN◦
Fr(C)(Σ, b)→ SNC(Σ,F∂Σ(b))

[S̃]→ CorC(S)

for each compact oriented surface Σ and Fr(C)-boundary datum b ∈ Cyl◦(Fr(C), ∂Σ),
by viewing each Fr(C)-colored graph as a complemented worldsheet. When specialized
to the cylinders, these linear maps reproduce the actions of the field functors on the
morphisms in the cylinder categories. In this sense, the field functors describe the
correlators for the neighborhoods around the sewing boundaries.
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6 Correlators of particular interest

The prescription of correlators presented in the previous chapter applies to all worldsheets
of the theory. However, a few specific correlators are of particular interest: concretely,
partition functions on the one hand, and correlators which determine operator products,
i.e. composition morphisms on the field contents, on the other hand. The present chapter
provides detailed information about such correlators. Similar to the case of point defects
(point defects on a surface can be composed in two directions – in general, defects of
codimension k can be composed in k directions), there are two ways of forming a product
of defect fields: either along a defect line or accompanying the fusion of two defect lines.
The former is analyzed in Section 6.1, and two variants of the latter, which are related
by a braiding, are exhibited in Section 6.2. In Section 6.3 we specialize from defect fields
to bulk fields – the most basic type of field insertions in the bulk, and in Section 6.4
we discuss the torus partition function. The final Sections 6.5 and 6.6 of the chapter
are devoted to the operator product of boundary fields and the bulk-boundary operator
products, respectively.

6.1 Vertical operator product
A crucial feature of a full conformal field theory are the the operator products among the
various types of fields. In the case of defect fields, there are two ways of forming a product,
either along a given defect line, or such that a fusion of two defect lines is involved.
In terms of the description of defect field contents as internal natural transformations,
these correspond to the vertical and horizontal compositions [FS21a]. The vertical and
horizontal products coincide if the relevant line defects are all trivial, i.e. labeled by
identity 1-morphisms in Fr(C): in such cases, we deal with bulk fields. The purpose of
the present section is to exhibit how the algebraic notion of vertical product of defect
fields can be related to the string-net construction of correlators.

Thinking of defect fields in terms of two-pronged defect junctions, as already visualized
in (2.3.6), the situation on the worldsheet that is relevant for the vertical composition
amounts to a sewing operation, according to

X1

X3

◦

X1

X2

X3

=

X1

X2

X3

(6.1.1)

100



It is worth stressing that a string-net correlator as constructed in Section 5.3 is directly
assigned to the worldsheet S using the geometric information encoded in its complemented
form S̃, without making use of further auxiliary data such as, say, a fine marking of the
surface ΣS (the latter is, for example, needed in the Lego-Teichmüller based approach of
[FS17b]). In contrast, relating algebraic structures – like the compositions of internal
natural transformations that formalize operator products – to correlators does require
such auxiliary data. Via the string-net construction of correlators one thus achieves a
more invariant description of operator products than what can be seen based on the
underlying purely algebraic structures alone.

Let A,B ∈ Fr(C) be simple special symmetric Frobenius algebras and X1, X2 ∈
A-modC-B bimodules. First recall the explicit form of the defect field content DX1,X2 :

DX1,X2 = Nat(GX1 , GX2) = (
⊕

m∈I(modC-A)

m⊗A X2 ⊗B X∨
1 ⊗A m

∨, γDX1,X2 ) ∈ Z(C),

where the half-braiding γDX1,X2 comes from the universal coaction of the central comonad
of C and can be explicitly expressed in components as

γDX1,X2 ;Y :=
⊕

m,n∈I(modC-A)

dm α α

m X2

X1 nn

m

Y

Y

(6.1.2)

for every Y ∈ C.
The vertical composition

µver ≡ µver(X1, X2, X3) ∈ Z(C)(DX2,X3 ⊗ DX1,X2 ,DX1,X3)

of internal natural transformations is nothing but a particular instance of the canonical
composition morphism of internal homs [FS21b, Definition 23]. Just like for ordinary
natural transformations it amounts to the composition of components (and due to
semisimplicity, it is enough to restrict to components labeled by simple objects), according
to

µver :=
⊕

m∈I(modC-A)

m m

m

X1X2

X3

∈ Z(C)(DX2,X3 ⊗ DX1,X2 ,DX1,X3).

(6.1.3)
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To relate this morphism to a string-net correlator, take the surface to be a pair of pants
Σp.o.p. – a sphere with three boundary circles, two of them regarded as incoming and
one as outgoing – and fix a marking w without cuts (in the sense of [FS17b, Definition
2.3]) on Σp.o.p.. Given these data, we will specify a worldsheet Sver

w ≡ Sver
w (X1, X2, X3)

with ambient surface Σp.o.p. as well as a linear isomorphism

φw : Z(C)(DX2,X3 ⊗ DX1,X2 ,DX1,X3)
∼=−→ SNC(Σp.o.p.,F∂Σp.o.p.(bSver

w
)), (6.1.4)

in such a way that φw maps the vertical composition (6.1.3) to the correlator CorC(Sver
w )

that the string-net construction yields for the worldsheet Sver
w , i.e.

φw(µver) = CorC(Sver
w ). (6.1.5)

We first present the isomorphism (6.1.4) for a particular marking w. The prescription
for any other marking without cuts is then obtained via an action of the mapping class
group, as will be described in more detail below. Moreover, for describing the isomorphism
(6.1.4) it is convenient to split it up into a composition of two simpler isomorphisms: In
a first step, we consider an isomorphism

φcan
w : Z(C)(DX2,X3 ⊗ DX1,X2 ,DX1,X3)

∼=−→ SNC(Σp.o.p.,Bcan
w )

to the string-net space for a pair of paint with a different boundary value Bcan
w , namely

one that involves the boundary value Bcan
Y , as defined in Example 5.2.1, for Y ∈ Z(C)

being the object DX1,X2 , DX2,X3 and DX1,X3 , respectively. The second step consists
of implementing the isomorphism (5.2.8) between Bcan

DX,Y and BX,Y as objects in the
Karoubified cylinder category Cyl(C, S1).

For a standard pair of pants Σp.o.p., which we draw as a disk with two holes, the
marking of our choice is

w := (6.1.6)

The corresponding boundary value Bcan
w is

Bcan
w = (Bcan

DX2,X3 ,B
can
DX2,X3 ,Bcan

DX1,X3 ) ∈ Cyl(C, S1)×3 = Cyl(C, ∂Σp.o.p.), (6.1.7)

where we denote by Bcan
Y the thickened boundary value obtained from Bcan

Y by reversing
the orientation of the strand that is labeled by Y ∈ Z(C). The isomorphism φcan

w is then
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defined by

DX2,X3 DX1,X2

DX1,X3

g

φcan
w

7−−−−→

D
X

2
,X

3 D X
1 ,X

2

DX1,X3

g

Hereby the vertical composition µver is mapped to the string-net

φcan
w (µver) =

⊕
i,j,k∈I(C)

m,n,p,q∈I(modC-A)

didjdkdmdndp

D6
C

m n

q X1X3

X2

i j

p

q

m n

k

p p

=
⊕

m,n,q∈I(modC-A)

dmdn

D4
C

m n

q

X1X3

X2

(6.1.8)

in SNC(Σp.o.p.,Bcan
w ). Here the second equality holds as a consequence of the identity

(5.1.10) and Corollary 5.1.3. (Also, in the first picture – and likewise in several other
pictures later on – we omit, for lack of space, the summation labels of the module
morphisms; the appropriate parings are instead indicated by matching colors.) The
second step in the construction of φw then amounts to setting

φw(−) := eX1,X3 ◦ φcan
w ◦ (rX2,X3 × rX1,X2), (6.1.9)
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with the morphisms e−,− and r−,− as defined in (5.2.4) and (5.2.5), respectively. Accord-
ingly, the boundary value Bw is given by

Bw = (BX2,X3 , BX1,X2 , BX1,X3) ∈ Cyl(C, S1)×3 = Cyl(C, ∂Σp.o.p.). (6.1.10)

Via (6.1.9), the string-net (6.1.8) gets mapped to

φw(µver) =

X1X3

X2

∈ SNC(Σp.o.p.,Bw). (6.1.11)

We can now read off that we have indeed achieved to express φw(µver) as a string-net
correlator CorC(Sver

w ), namely as the one for the worldsheet

Sver
w :=

X1X3

X2

(6.1.12)

that is, a pair of pants with three defect lines labeled by X1, X2 and X3, respectively,
which pairwise connect the boundary circles.
Remark 6.1.1. By a homeomorphism, the worldsheet (6.1.12) can be redrawn as follows:

X1

X3

X2 (6.1.13)
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This way of representing Sver
w slightly obscures its relevance for the algebraic notion of

vertical operator product. On the other hand, it clarifies the relation to other approaches:
It makes it obvious that one deals with an “operator product along a defect line”, and it
is precisely what is commonly called the fundamental worldsheet for three defect fields
on the sphere, see e.g. [FRS05, Section 4.5].

We finally comment on the dependence of the construction on the marking of the
surface. A different choice w′ of a marking without cuts on the pair of pants leads to a
string-net which, in general, differs from (6.1.11). The two worldsheets are related by the
unique element ξw,w′ of the mapping class group of Σ that corresponds to (see [FS17b,
Section 3.1]) to a move of markings mapping w to w′. In particular, two markings w
and w′ without cut and with the same end points on the boundary circles give the same
worldsheet, and thus the same correlator, if and only if they are isotopic.

As a particular case, any two markings without cuts give the same correlator when
each of the three defect fields is actually a bulk field, i.e. when X1 = X2 = X3 = A = B.

6.2 Horizontal operator products
We now analyze the horizontal composition of defect fields, in analogy with the study of
the vertical composition in Section 6.1. Horizontal composition happens in combination
with the fusion of line defects, in which two parallel segments of defect lines get replaced
by a single one. That such a fusion process is possible is an ingredient of the description
of line defects in other approaches to CFT. In the present setting, fusion is algebraically
realized as the tensor product over the relevant Frobenius algebra, which is the horizontal
composition of the 1-morphisms in Fr(C).

In the same way as done in (6.1.1) for the vertical operator product, the horizontal
composition can be expressed as a specific sewing operation, according to

X1 X2

X3 X4

◦

X1 X2

X3 X4

=

X1 X2

X3 X4

(6.2.1)

When attempting to translate this picture into an expression for composition

DX2,X4 ⊗ DX1,X3 → DX1⊗BX2,X3⊗BX4

of internal natural transformations, some care is needed. To explain the subtleties
involved, it is convenient to recall first how the horizontal composition of ordinary
natural transformations is described in components: The horizontal products of two
natural transformations dG1,G3 between functors G1, G3 : M→M′ and dG2,G4 between
functors G2, G4 : M′ →M′′ – a natural transformation from G2 ◦G1 to G4 ◦G3, which
are functors from M to M′′ – amounts to a suitable composition of their components,
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i.e. of morphisms dG1,G3
M ∈ M′(G1(M), G3(M)) and dG2,G4

M ′ ∈ M′′(G2(M ′), G4(M ′)),
respectively. In more detail, the composition can be expressed both as

G2 ◦G1(M)
G2(dG1,G3

M )
−−−−−−−−→ G2 ◦G3(M)

d
G2,G4
G3(M)

−−−−−−−−→ G4 ◦G3(M), (6.2.2)

and as

G2 ◦G1(M)
d
G2,G4
G1(M)

−−−−−−−−→ G2 ◦G3(M)
G4(dG1,G3

M )
−−−−−−−−→ G4 ◦G3(M). (6.2.3)

Equality of the two composite (6.2.2) and (6.2.3) for all M ∈M holds by naturality of
dG2,G4 . Now, in the case of internal natural transformations DX1,X3 and DX2,X4 , the
components are internal homs, and accordingly it is appropriate to interpret the dinatural
structure morphisms

ȷM ≡ ȷF,F ′

M : Nat(F, F ′)→ HomN (F (M), F ′(M))

of the end Nat(F, F ′) =
∫

M∈M
HomN (F (M), F ′(M)) as the “projection to components”.

The analogues of the morphisms (6.2.2) and (6.2.3) are then the composites

Nat(G2, G4)⊗Nat(G1, G3)
ȷ
G2,G4
G3(M)⊗ȷ

G1,G3
M

−−−−−−−−−−−→ HomM′′(G2 ◦G3(M), G4 ◦G3(M))⊗HomM′(G1(M), G3(M))
id⊗G2

−−−−−−→ HomM′′(G2 ◦G3(M), G4 ◦G3(M))⊗HomM′′(G2 ◦G1(M), G2 ◦G3(M))
µ

−−−−−−→ HomM′′(G2 ◦G1(M), G4 ◦G3(M)) (6.2.4)

and

Nat(G1, G3)⊗Nat(G2, G4)
ȷ
G1,G3
M ⊗ȷ

G2,G4
G1(M)

−−−−−−−−−−−→ HomM′(G1(M), G3(M))⊗HomM′′(G2 ◦G1(M), G4 ◦G1(M))
G4⊗id

−−−−−−→ HomM′′(G4 ◦G1(M), G4 ◦G3(M))⊗HomM′′(G2 ◦G1(M), G4 ◦G1(M))
µ

−−−−−−→ HomM′′(G2 ◦G1(M), G4 ◦G3(M)) (6.2.5)

for M ∈M, respectively. Here µ is the standard composition of internal homs, while the
morphisms of the type

G : HomM(M,M ′)→ HomN (G(M), G(M ′))

is defined via applying the Yoneda lemma to the composite

C(C,HomM(M,M ′))
∼=−→M(C ▷M,M ′)

G
−−−−→M(G(C ▷M), G(M ′))

∼=−→M(C ▷ G(M), G(M ′))
∼=−→ C(C,HomN (G(M), G(M ′)))
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for every C ∈ C.
It is straightforward to see that both of the families (6.2.4) and (6.2.5) are dinatural

in M ∈ M. Owing to the universal property of Nat as an end, they thus factorize to
unique morphisms

µl
hor : Nat(G2, G4)⊗Nat(G1, G3)→ Nat(G2 ◦G1, G4 ◦G3) (6.2.6)

and
µr

hor : Nat(G1, G3)⊗Nat(G2, G4)→ Nat(G2 ◦G1, G4 ◦G3) (6.2.7)
respectively.

We call the morphisms µl
hor and µr

hor the left and right horizontal operator product.
The reason for this choice of terminology is the description of (6.2.6) and (6.2.7) in terms
of string diagrams, in which the basis morphisms that are summed over are located in
the left and right half of the graph, respectively: we have

µl
hor =

⊕
m∈I(modC-B)
n∈I(modC-A)

dm

α α

X4X2 X3X1

X3X4X2X1n n

m nnm

(6.2.8)

and

µr
hor =

⊕
m∈I(modC-B)
n∈I(modC-A)

dm

ββ

X4X2X3X1

X3X4X2X1 nn

mn n m

(6.2.9)

Let us now express these two compositions through string-nets. Recall from Section 6.1
that this requires the specification of auxiliary data beyond the structure of a worldsheet
(and its ambient surface), concretely the choice of a marking without cuts. Note that these
auxiliary data do not appear in the purely algebraic treatment of horizontal composition
that is given in [FS21b]. (Also, in our discussion of the horizontal composition we partly
deviate from the exposition in [FS21b].)

In the same vein as done for the vertical composition µver, we will now determine
the image of the morphism µl

hor ∈ Z(C)(DX2,X4 ⊗ DX1,X3 ,DX1⊗BX2,X3⊗BX4) under the
composite map

φw : Z(C)(DX2,X4 ⊗ DX1,X3 ,DX1⊗BX2,X3⊗BX4)
φcan
w

−−−−→ SNC(Σp.o.p.,Bcan
w )
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eX1⊗BX2,X3⊗BX4 ◦(−)◦(rX2,X4 ×rX1,X3 )
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ SNC(Σp.o.p.,Bw), (6.2.10)

where w is the marking (6.1.6) on the pair of pants Σp.o.p., the isomorphism φcan
w is

defined analogously as in (6.1.9), and the boundary values are

Bcan
w = Bcan

w = (Bcan
DX2,X4 ,B

can
DX1,X3 ,Bcan

DX1⊗BX2,X3⊗BX4 )

and
Bw = (BX2,X4 , BX1,X3 , BX1⊗BX2,X3⊗BX4)

analogously as in (6.1.7) and (6.1.10).
By direct calculation we obtain

φcan
w (µl

hor) =

D
X

2
,X

4 D X
1 ,X

3

DX1⊗A′X2,X3⊗A′X4

µl
hor

=
∑

i,j,k∈I(C)
m,p∈I(modC-B)
n,q,r∈I(modC-C)

didjdkdmdndpdq

D6
C

m m n n

X3 X4 X2 X1r r

q q

q

X3

p
p

i j

k

=
∑

m,p∈I(modC-B)
n,q,r∈I(modC-C)

dmdndpdq

D6
C

m n

X3 X4 X2 X1

r

q

X3
p
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=
∑

m∈I(modC-B)
n,r∈I(modC-C)

dmdn

D4
C

m n

X3 X4 X2 X1

r

This implies that φw(µl
hor) gives the worldsheet for the left horizontal composition as

follows:

φw(µl
hor) = eX1⊗BX2,X3⊗BX4 ◦ φcan

w (µl
hor) ◦ (rX2,X4 × rX1,X3)

=

X3 X4 X2 X1

= CorC(S l
hor) (6.2.11)

with

S l
hor =

X3 X4 X2 X1

(6.2.12)

Likewise, the image of µr
hor under φw gives the worldsheet for the right horizontal
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composition:

φw(µr
hor) = CorC(Sr

hor) with Sr
hor =

X3 X4 X2 X1

(6.2.13)

Remark 6.2.1. (i) Up to isotopy we have

S l
hor = β(Sr

hor), (6.2.14)

where β is the action of the braid move, which (when expressed in terms of markings)
acts as

7→ (6.2.15)

As we will observe in Remark 7.3.2 below, this implies that the left and right horizontal
compositions µl

hor and µr
hor merely differ by a half-braiding.

(ii) By applying suitable homeomorphism, both worldsheets S l
hor and Sr

hor may be redrawn
as

X3 X4

X1 X2

(6.2.16)

which is the form familiar from the the sewing operation shown in picture (6.2.1).

6.3 Bulk algebras
The most basic type of field insertion in the bulk is the one obtained for sewing circle
c = cA

bulk where A ∈ Fr(C) is a simple special symmetric Frobenius algebra in C, whose
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local neighborhood in the worldsheet is depicted by:

A

A

Recall that the associated field content is given by the full center of A (a canonically
isomorphic form is given in [FFRS06b] whereas an axiomatic definition of the concept is
given in [Dav10]):

Z(A) = DA,A = Nat(idmodC-A, idmodC-A)

=
∫

M∈modC-A
HommodC-A(M,M) ∈ Z(C). (6.3.1)

In the semisimple case of our interest, we thus have

Z(A) = DA,A = (
⊕

m∈I(modC-A)

m⊗A m
∨, γZ(A)) ∈ Z(C). (6.3.2)

The half-braiding γZ(A) is the one already described in (6.1.2), which now specializes to

γZ(A);Y =
⊕

m,n∈I(modC-A)

dm α α

m

nn

m

Y

Y

for Y ∈ C. (6.3.3)

As already mentioned, the special case (6.3.1) of defect field contents is known as the
field content of bulk fields of a CFT. For bulk fields, the vertical product µver(A,A,A) as
defined in (6.1.3) and the left and right horizontal products µl

hor(A,A,A) and µr
hor(A,A,A)

as defined in (6.2.8) and in (6.2.9), respectively, all coincide (up to transformation by a
canonical isomorphism) with the multiplication

µZ(A) =
⊕

m∈I(modC-A)

m m

m

(6.3.4)
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By the same strategy that we already pursued in the more general case of defect fields
we can, after fixing a marking w without cuts on the pair of pants Σp.o.p., map the
product (6.3.4) to the string-net correlator on the worldsheet S: as a special case of
(6.1.5) we get

φw(µZ(A)) = CorC(S) ∈ SNC(Σp.o.p.,BA
w)

with

S ≡ Sw :=

Note that the so obtained worldsheet S is nothing but any of the worldsheets Sver
w ,

S l
hor and Sr

hor as displayed in (6.1.12), (6.2.12) and (6.2.13), respectively, each specialized
to the case that the 2-cells are both labeled by the same Frobenius algebra and the three
defect lines are all transparently labeled. Owing to their transparency, the defect lines
can be omitted from the worldsheet, and the boundary value BA

w – a choice of points on
S1 ⊔ S1 ⊔ S1 at which the transparent defect lines start or end – is immaterial. For the
same reason, the choice of marking w is actually irrelevant as well. It follows that µZ(A)
endows the object Z(A) ∈ Z(C) with the structure of a commutative special symmetric
Frobenius algebra, and that the correlator CorC(S) is invariant under the total mapping
class group Map(Σp.o.p.) of the pair of pants. Further, invoking [KR09, Theorem 3.4], it
follows that Z(A) is even a modular Frobenius algebra in the modular fusion category
Z(C) in the sense of [FS17b].
Remark 6.3.1. The Frobenius algebra Z(1) that is obtained when A is the monoidal unit
1 of C is the Cardy bulk algebra considered in [SY21]. It should be noted that in [SY21]
a less natural boundary value

Bcan
Z(1) :=

Z(1)

is considered. This choice results in more complicated graphs than the ones appearing
above, having additional edges around the boundary circles. However, the boundary
values BA

w and Bcan
Z(1) are in fact isomorphic, and as a consequence the present description

and the one used in [SY21] indeed yield the same correlator for the pair of paints that is
colored with the trivial algebra 1 ∈ C.

112



6.4 Torus partition function
Next we consider the correlator CorC(T ) for a torus T ≡ TA without sewing boundaries
and without non-transparent defect lines and colored with a simple special symmetric
Frobenius algebra A ∈ Fr(C). This correlator, commonly called the torus partition
function, is of much interest. For instance, in rational CFT it allows one to directly read
off the decomposition of the bulk field object Z(A) = DA,A into simple objects of Z(C).
Also, modular invariance of CorC(T ) is an important constraint on the consistency of a
full conformal field theory, to the extent that often it has even been assumed, erroneously,
to be even a sufficient condition for consistency.

The string-net form of the torus partition follows immediately from Definition 5.3.1:
we have

CorC(T ) = (6.4.1)

with the green lines labeled with the Frobenius algebra A ∈ Fr(C). Using the expression
(6.3.2) for the bulk field content Z(A) = DA,A together with Corollary 5.1.3 and the
identity (5.1.10), this can be rewritten as

CorC(T ) =
⊕

k∈I(C)
m∈I(modC-A)

dkdm

D2
C

α

α

m m

k

=
Z(A)

(6.4.2)
Moreover, since C is semisimple the object Z(A) ∈ Z(C) ≃ Crev ⊠ C can be decomposed
into a direct sum of simple objects of Z(C) as

Z(A) =
⊕

i,j∈I(C)
Z(A)i,j ⊗k ΞC(i⊠ j).

Recall that ΞC : Crev ⊠ C → Z(C) is the canonical braided equivalence, while Z(A)i,j are
the vector spaces

Z(A)i,j := Z(C)(ΞC(i⊠ j),Nat(GA, GA))
∼= [modC-A,modC-B](z ▷ GA, GA)
∼= A-modC-A(i⊗− A⊗+ j, A).

This in particular reproduces the decomposition rule for bulk field contents. For the
torus partition function we thus get

CorC(T ) =
∑

i,j∈I(C)
z(A)i,j i j (6.4.3)
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with z(A)i,j := dimk(Z(A)i,j).
Remark 6.4.1. The full Frobenius graph in the string-net correlator (6.4.1) is the same as
the one appearing in the TFT construction of CorC(T ). In that case, the torus in which
the graph is embedded is the subset {0} × T of the 3-manifold [−1, 1]× T (see [FRS02,
Equation (5.24)]). An analogous relationship between the two constructions holds for all
other partition functions, i.e. for the correlator of any worldsheet that neither has field
insertions nor contains any physical boundaries or non-trivial defect lines.

The expression (6.4.1) for CorC(T ) shows manifestly that the torus partition function
is invariant under the geometric action of the modular group Map(T ) ∼= PSL(2,Z) of the
torus. The result (6.4.3) allows us to translate this geometric invariance to the algebraic
modular invariance of the |I(C)| × |I(C)|-matrix z(A) = (z(A)i,j). To see this, first note
that the set {Gi,j |i, j ∈ I(C)} with

Gi,j :=
∑

k∈I(C)

dk

D2
C k

i j

(6.4.4)

is a basis of the string-net space SNC(T ) [Run20, Proposition 4.8]. It is therefore sufficient
to show that the image

S(Gi,j) =
∑

k∈I(C)

dk

D2
C

k

i

j

of Gi,j under the modular S-transformation satisfies

S(Gi,j) =
∑

i′,j′∈I(C)

si∨,i′sj,j′

D2
C

Gi′,j′ with si,j :=

i j

(6.4.5)

The validity of (6.4.5) is established by the following chain of equalities:

∑
i′,j′∈I(C)

si∨,i′sj,j′

D2
C

Gi′,j′ =
∑

i′,j′,k∈I(C)

si∨,i′sj,j′dk

D4
C k

i′ j′
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=
∑

i′,j′,k∈I(C)

di′dj′dk

D4
C k

i

j

i′ j′

=
∑

i′,j′,k,l∈I(C)

di′dj′dkdl

D4
C k

i

j

kl
α α

i′ j′

=
∑

i′,j′,l∈I(C)

di′dj′dl

D4
C

i

j

l

i′ j′

=
∑

i′,j′,l,m∈I(C)

di′dj′dldm

D4
C

i′ j′

i

j

l

α

α

m

m

=
∑

i′,l,m∈I(C)

di′dldm

D4
C

i′

i

j

l

m

=
∑

l,m∈I(C)

dldm

D2
C
δl,0

i

j

l

m

=
∑

m∈I(C)

dm

D2
C

m

i

j

= S(Gij). (6.4.6)

Recalling the expansion (6.4.3), it follows that

S(SNC(T )) =
∑

i,j∈I(C)
z(A)i,jS(Gi,j)

= 1
D2

C

∑
i,i′,j,j′∈I(C)

si′,i∨z(A)i,jsj,j′Gi′,j′ =
∑

i′,j′∈I(C)
(S−1z(A)S)i′,j′Gi′,j′

with Si,j := si,j/DC. Hence indeed we have the equivalence of the two invariance
(geometric v. algebraic):

S(SNC(T )) = SNC(T ) ⇐⇒ [S, z(A)] = 0. (6.4.7)

Similarly, invariance of the correlator CorC(T ) under the modular T -transformation is
equivalent to [T, z(A)] = 0 which, in turn, is equivalent to the statement that the object
Z(A) ∈ Z(C) has trivial twist.
Remark 6.4.2. A calculation similar to the one in (6.4.6) has been presented in [Har21].
The consideration therein are within the framework of the tube category of the modular
fusion category C and of its category of representations, which correspond to the cylinder
category Cyl◦(C, S1) and its idempotent completion Cyl(C, S1), respectively.
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6.5 Boundary operator product
Among the correlators involving only boundary field contents, the most basic one is
the correlator for a disk with three sewing intervals, which describes the operator
product of boundary insertions. The worldsheet for this correlator is a disk D with
a single 2-cell, labeled by a simple special symmetric Frobenius algebra A, and with
three physical boundary segments labeled by right A-modules M1,M2 and M3. We
denote this worldsheet by DM1,M2,M3 , and the corresponding complemented worldsheet
by D̃ ≡ D̃M1,M2,M3 . In pictures,

DM1,M2,M3 =
M1

M2

M3

and D̃M1,M2,M3 =
M1

M2

M3

(6.5.1)
Analogously as we did in the case of defect fields, we want to obtain the complemented

worldsheet D̃ from a suitable string-net on the disk D that encodes the algebraic
information about the boundary operator product. We choose conventions such that
two of the boundary fields, say BM1,M2 and BM2,M3 are incoming, while the third is
outgoing and is thus given by BM1,M3 . Recall that these field contents are internal homs,
BMi,Mj = HommodC-A(Mi,Mj). The natural candidate for their operator product is thus
the canonical composition

µ(M1,M2,M3) ∈ C(HommodC-A(M2,M3)⊗HommodC-A(M1,M2),HommodC-A(M1,M3))

of internal homs. Accordingly we consider the string-net represented by the graph

ΓD;M1,M2,M3 :

B
M

2
,M

3 B M
1 ,M

2

BM1,M3

µ
∈ SNC(D,BM1,M2,M3). (6.5.2)

where the boundary value BM1,M2,M3 is the circle S1 = ∂D with three points labeled by
(BM1,M2)∨, (BM2,M3)∨ and BM1,M3 . Note that (using Example 4.1.3)

SNC(D,BM1,M2,M3) = SN◦
C(D,B◦

M1,M2,M3)
∼=∈ C(HommodC-A(M2,M3)⊗HommodC-A(M1,M2),HommodC-A(M1,M3)),

where we used the fact that the choice of in- and outgoing boundary field contents endows
the corolla with a polarization.

Now since C is pivotal, we have BMi,Mj = Mj⊗AMi, and we then identify the boundary
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value BM1,M2,M3 with an isomorphic one so as to rewrite the representing graph (6.5.2) as

Γ ′
D;M1,M2,M3 =

M1

M2

M3

(6.5.3)

We can thus read off that we indeed have

[Γ ′
D;M1,M2,M3 ] = CorC(DM1,M2,M3).

6.6 Bulk-boundary operator product
Among the correlators involving both bulk and boundary field contents, the most basic
one is the correlator for one bulk and one boundary insertion on a disk. This correlator
encodes a connection between bulk and boundary field contents, which is called the
bulk-boundary operator product. Since in our approach defect fields can be treated in
much the same way as bulk fields, we consider here the more general situation of one
defect and one boundary insertion on a disk. The corresponding worldsheet (with sewing
boundaries), which we denote by CX,Y ;M , is the cylinder

CX,Y ;M =

Y X

M

(6.6.1)

where the two 2-cells in green and in blue are labeled by simple special symmetric
Frobenius algebra A,B ∈ Fr(C), respectively, the two line defects labeled by A-B-
bimodules X,Y ∈ A-modC-B and the physical boundary (in red) labeled by a right
A-module M ∈ modC-A.

The crucial algebraic datum describing the connection between bulk and boundary in
this situation is the component

ȷM =
⊕

m∈I(modC-A)

dm α α

m Y

X MM

m

∈ C(
∫

M ′∈modC-A
M ′ ⊗A Y ⊗B X∨ ⊗A M

′∨,M ⊗A Y ⊗B X∨ ⊗A M
∨)

(6.6.2)
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at the object M ⊗A Y ⊗B X∨ ⊗A M
∨ = BM⊗AX,M⊗AY of the structure morphism ȷ of

the end ∫
M ′∈modC-A

M ′ ⊗A Y ⊗B X∨ ⊗A M
′∨ = U(DX,Y ) ∈ C.

Accordingly we consider the string-net (represented by the graph)

ΓD;X,Y ;M :=

Y X MM

DX,Y

ȷM

∈ SNC(S1 × I,Bcan
DX,Y × BX,Y ;M ).

Here the thickened boundary value Bcan
DX,Y is the one defined according to (5.2.3), while

BX,Y ;M in the first place consists of four points on S1 labeled by M,Y,X∨ and M∨,
respectively, together with an idempotent consisting of three relative tensor product
idempotents (see (5.1.4)) combined, but is in an obvious manner isomorphic to the
boundary value that consists of a single point on S1 labeled by BM⊗AX,M⊗AY together
with the identity cylinder. Using (4.7.6) and Theorem 4.7.1, we note that

SNC(S1 × I,Bcan
DX,Y × BX,Y ;M ) ∼= Z(C)(DX,Y , L(BM⊗AX,M⊗AY ))

∼= C(U(DX,Y ),BM⊗AX,M⊗AY ),

where we used that, C being finitely semisimple, L is also right adjoint to the forgetful
functor U : Z(C)→ C. Inserting the explicit form (6.6.2) and the identities (5.1.9) and
(5.1.10), we can write

[ΓD;X,Y ;M ] =
∑

i∈I(C)
m,n∈I(modC-A)

didmdn

D2
C

Y X MM

i

m m

n n

=
∑

m∈I(modC-A)

dm

D2
C

Y X

m

M
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Now recall from Example 5.2.2 the idempotent rX,Y defined in (5.2.5), which furnishes
an isomorphism BX,Y

∼=−→ Bcan
DX,Y in the Karoubified cylinder category Cyl(C, S1). Pre-

composing with rX,Y yields the string-net

[ΓD;X,Y ;M ] ◦ rX,Y = CorC(CX,Y ;M ).

In short, the component (6.6.2) of the structure morphism of the end U(DX,Y ) indeed
reproduces the string-net correlator for the worldsheet CX,Y ;M . In particular, specializing
to the case that A = B ∈ Fr(C) and that X = A = Y ∈ A-modC-B as bimodules, we
obtain the worldsheet describing the bulk-boundary operator product.

119



7 Internal Eckmann-Hilton relation

The exchange law for ordinary natural transformation turns out to have an analogue for
internal natural transformations. To obtain this analogue, which we call the internal
Eckmann-Hilton relation, we introduce three braided colored operads. The string-net
correlator defined in Section 5.3 provides a morphism from the braided colored operad
of worldsheets to the one of string-nets. We compose this morphism with a morphism
from the string-net operad to a certain (braided) endomorphism operad. We can then
derive the internal Eckmann-Hilton relation by invoking compatibility of the so obtained
composite morphism with operadic composition. The result illustrates the utility of
string-nets for understanding algebra in braided tensor categories.

7.1 An internalized Eckmann-Hilton argument
Recall the diagram (2.3.7) which gives a Poincaré-dual view of (two-pronged) defect
fields. In this section we consider multiple operator products of defect fields for which
the description in terms of (2.3.7) looks as follows (for better readability we suppress the
labels of the defect fields):

modC-A modC-B modC-C

X1

X5

X3

X2

X6

X4

D

D

D

D

with A,B,C ∈ Fr(C) simple special symmetric Frobenius algebras.
Now recall that for ordinary natural transformations (and, more generally, for 2-

morphisms in a bicategory), the horizontal and vertical compositions satisfy the exchange
law

µver ◦ (µhor ⊗ µhor) = µhor(µver ⊗ µver). (7.1.1)

It should be appreciated that this is a statement about elements of sets, and it implicitly
relies on the fact that the category Set of sets is a symmetric monoidal category.

In contrast, internal natural transformation are objects of the category Z(C) which
is braided but (generically) not symmetric. However, we will show in Section 7.3 the
following generalization to the internalized setting:

Theorem 7.1.1. Let C be a spherical fusion category and A,B,C ∈ Fr(C) simple special

120



symmetric Frobenius algebras in C. Then the diagram

DX4,X6 ⊗ DX2,X4 ⊗ DX3,X5 ⊗ DX1,X3

DX4,X6 ⊗ DX3,X5 ⊗ DX2,X4 ⊗ DX1,X3

DX2,X6 ⊗ DX1,X5

DX3⊗BX4,X5⊗BX6 ⊗ DX1⊗BX2,X3⊗BX4

DX1⊗BX2,X5⊗BX6

id⊗γDX2,X4 ;DX3,X5 ⊗id

µl
hor⊗µl

hor

µver

µver⊗µver

µl
hor

(7.1.2)
involving the horizontal and vertical compositions of internal natural transformations and
the half-braiding of the defect field content DX2,X4 ∈ Z(C) commutes for all X1, X3, X5 ∈
A-modC-B and all X2, X4, X6 ∈ B-modC-C.

Since the equality (7.1.1) provides the prototype for the Eckmann-Hilton argument,
we refer to the commutativity of (7.1.2) as the internal Eckmann-Hilton relation.
Remark 7.1.2. (i) The construction of string-net correlators introduced in Section 5.3,
which will be the key component of our proof of Theorem 7.1.1, operates under the
premise that C is a modular fusion category. However, it can be observed that the whole
construction only requires C to be spherical fusion. Therefore, Theorem 7.1.1 is valid for
any spherical fusion category.
(ii) Theorem 7.1.1 renders Proposition 14 in [FS21b] precise. In the latter, neither the
relevant (left or right) horizontal composition nor the relevant half-braiding were specified.
(iii) There is, of course, also a variant in which the right rather than left horizontal
composition appears: the diagram

DX3,X5 ⊗ DX1,X3 ⊗ DX4,X6 ⊗ DX2,X4

DX3,X5 ⊗ DX4,X6 ⊗ DX1,X3 ⊗ DX2,X4

DX1,X5 ⊗ DX2,X6

DX3⊗BX4,X5⊗BX6 ⊗ DX1⊗BX2,X3⊗BX4

DX1⊗BX2,X5⊗BX6

id⊗γDX1,X3 ;DX4,X6 ⊗id

µver

µver⊗µver

µr
hor

µr
hor⊗µr

hor

(7.1.3)
commutes as well. This follows directly by combining Theorem 7.1.1 with the identity
(7.3.10) which will be established below.
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7.2 Three braided colored operads
Preparing and giving the proof of Theorem 7.1.1 will occupy most of the rest of this
section. A main ingredient are certain braided colored operads in Set [Yau21]. With the
help of string-nets we will establish morphisms between these operads. The operads in
question are:

• The braided colored operad WSC of genus-0 worldsheets (with topological defects)
in an RCFT whose chiral data is given by the modular fusion category C.
The set of colors is obj Cyl◦(Fr(C), S1), i.e. the set of Fr(C)-boundary data on
the circle S1. The sets of operations of WSC consists of all genus-0 worldsheets
(more precisely: the n-ary operation is given by a genus-0 worldsheet with n+ 1
boundary circles), with the boundary data on their boundary circles regarded as in-
and outputs, and taken up to isotopy (rel. boundary). The operadic composition
on WSC is obtained by identifying the braid group Bn as a subgroup of Map(Σ0

n+1),
with Σ0

n+1 being a standard sphere with n+ 1 holes.

• The braided colored operad SNC of C-colored string-nets.
The set of colors of SNC is obj Cyl(C, S1), i.e. the set of thickened C-boundary values
on the circle S1. The sets of operations consists of the sets underlying the string-net
spaces on genus-0 surfaces with appropriate boundary values, e.g.

SNC

(
C

A B

)
= SNC(Σ0

3 ,A× B× C).

The operadic composition on SNC is the concatenation of string-nets, and the braid
group action is again obtained by identifying Bn as a subgroup of Map(Σ0

n+1) which
acts on the string-net space via pushforward.

• The braided colored endomorphism operad HomZ(C).
The colors of HomZ(C) are the objects of the Drinfeld center Z(C). The sets of
operations consists of the sets underlying the hom-spaces of Z(C) whose domains
are given by the tensor products of the inputs. The operadic composition on
HomZ(C) is the composition of morphisms. We define the braid group action to be
generated by

(
β

7−−−−→
)
7→

(

X1 X2

Y

f
β

7−−−−→

X1X2

Y

f

)

(7.2.1)
for X1, X2, Y ∈ Z(C), with the over braiding standing for the half-braiding γX2;X1

(i.e. the diagram is interpreted in the braided tensor category Z(C)).

Remark 7.2.1. For both SNC and HomZ(C) there is an obvious linear version, in which the
operations are given by the vector spaces SNC(−) and HomZ(C)(−), respectively, instead
of by their underlying sets. We could indeed formulate the present considerations in
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a linear setting, by linearizing also the worldsheet operad via the Fr(C)-colored (bare)
string-nets SN◦

C(−), and applying the universal correlators that will be introduced in
Chapter 8.

7.3 Proof of the relation
Now we define morphisms

CorC : WSC → SNC (7.3.1)

and
φHom : SNC → HomZ(C) (7.3.2)

of braided colored operads in Set by the following prescriptions:

• CorC acts on colors by sending a Fr(C)-boundary datum b to the corresponding
thickened C-boundary value FS1(b) ∈ Cyl(C, S1). CorC acts on operations by
sending a worldsheet S to its string-net correlator CorC(S). Compatibility with
the operadic compositions and braid group equivariance of these prescriptions are
evident.

• The definition of φHom is slightly more involved. It depends on two types of auxiliary
data: for each genus-0 surface Σ a marking w = w(Σ) without cuts, and for each
object B ∈ Cyl(C, S1) an isomorphism ψ = ψ(B) from B to its “canonical form”
Bcan

Φ(B), i.e. the one that is analogous to (5.2.3), with Φ ≡ Φ∂Σ : Cyl(C, S1) ≃−→ Z(C)
the canonical equivalence. With a fixed choice for these data, φHom acts on colors
as B 7→ Φ(B). Its action on operations is by the inverse of the isomorphisms
Z(C)(. . . , . . . )

∼=−→ SNC(Σ,B) that are analogous to (6.1.9). To give an example,
when choosing again the marking (6.1.6) on the pair of pants we have

φHom :

X1X3

X2
Ψ

7−−−−→
∑

m,n,q∈I(modC-A)

dmdn

D4
C

m n

q

X1X3

X2

=

D
X

2
,X

3 D X
1 ,X

2

DX1,X3

g

Ψ
7−−−−→ µver ∈ HomZ(C)

(
DX1,X3

DX2,X3 DX1,X2

)
,
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where Ψ stands for pre- and post-composition with appropriate isomorphisms ψ
and φw is given by (6.1.9). Similarly, with φw as in (6.2.10) we have

X3 X4 X2 X1

φHom
7−−−−→ µl

hor ∈ HomZ(C)

(
DX1⊗BX2,X3⊗BX4

DX2,X4 DX1,X3

)
.

Operadic composition results in a marking with cuts with an internal edge e which
connects the outgoing circle of the inserted surface to the new root of the marking.
Compatibility with the operadic compositions is achieved by complementing the
prescription for φHom given by the requirement to replace this marking by the
marking without cuts that is obtained by contracting the internal edge e. (This is
analogous to the F-move on markings, compare Figure 5.7 of [BKJ00].)

Remark 7.3.1. A different choice of the isomorphism between the boundary values and
their canonical forms results in composing every element in a given morphisms space
with one and the same isomorphism or its inverse. Similarly, a different choice of the
markings results in composing them with braiding and twist isomorphisms. The choices
we make are particularly convenient for revealing the internal Eckmann-Hilton relation,
but other choices will lead to the same relation as well.

Let us verify that our prescription (7.2.1) leads to the correct braid group action on
HomZ(C): Under the move β that is shown on the left hand side of (7.2.1) we have

X1 X2

Y

f

7→ X1X2

Y

f

= X1X2

Y

f

(7.3.3)

where the equality holds by the cloaking relation [SY21, Lemma 3.7]

X

Y
=

X

Y
(7.3.4)
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Note that the over braiding on the right hand side of (7.3.3) is the half-braiding γX2;X1 .
Thus we indeed obtain the braid group action on HomZ(C) as defined in (7.2.1). (A priori,
in (7.2.1) one might have considered instead the inverse half-braiding γ−1

X1;X2
; the present

calculation shows that the choice made in (7.2.1) is the correct one.)

Proof of Theorem 7.1.1. Consider the composite

C̃orC := φHom ◦ CorC : WSC → HomZ(C)

of the morphism (7.3.1) and (7.3.2). We have

Sw
ver

(6.1.12)===

X1X3

X2 C̃orC
7−−−−→ µver (7.3.5)

and

S l
hor

(6.2.12)===

X3 X4 X2 X1

C̃orC
7−−−−→ µl

hor. (7.3.6)

Invoking the compatibility of C̃orC with the operadic composition, we further get

Sh;v,v :=

X1
X2X6X5

X3X4
C̃orC
7−−−−→

DX1,X3DX3,X5DX2,X4DX4,X6

DX1,X5DX2,X6

DX1,2,X5,6

µver µver

µl
hor (7.3.7)

as well as

Sv;h,h :=

X1
X2X6X5

X3

X4

C̃orC
7−−−−→

DX1,X3DX3,X5 DX2,X4DX4,X6

µver

µl
horµl

hor

DX3,4,X5,6 DX1,2,X3,4

DX1,2,X5,6

(7.3.8)
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where we used the short-hand Xi,j = Xi ⊗B Xj . Moreover, applying the braid group
element β2,3 to (7.3.8) gives

β2,3(Sv;h,h) :=

X1
X2X6X5

X3X4
C̃orC
7−−−−→

DX1,X3DX3,X5DX2,X4DX4,X6

µver

µl
horµl

hor

DX1,2,X5,6

DX3,4,X5,6 DX1,2,X3,4

(7.3.9)

Notice that
β2,3(Sv;h,h) = Sh;v,v.

By comparison of (7.3.7) and (7.3.9) we arrive at the desired equality that states the
commutativity of the diagram (7.1.2).

Remark 7.3.2. By similar arguments one sees that the equality S l
hor = β(Sr

hor) obtained
in (6.2.14) gets mapped under C̃orC to

µl
hor = β(µr

hor) = µr
hor ◦ γDX2,X4 ;DX1,X3 , (7.3.10)

showing that the left and right horizontal compositions are related by a half-braiding.
Remark 7.3.3. Consider the special case that A = B = C and that all defect fields
involved are actually bulk fields DA,A, for which the vertical and horizontal compositions
coincide. The commutativity of the diagram (7.1.2) amounts to the statement that the
bulk algebra DA,A = Z(A) in Z(C) is braided commutative (compare [FS21b, Corollary
15]).
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8 Universal correlators

8.1 Quantum worldsheets and the universal correlators
Using the (bare) string-net construction for the strictly pivotal bicategory Fr(C), we can
enrich our description of the correlators with further information and sharpen the concept
of the mapping class group of a worldsheet. First, note that worldsheets related by local
relations provided by the unframed graphical calculus for Fr(C) have the same boundary
data and thus have the same space of conformal blocks. Their correlators thus take
value in the same vector space. We claim that a much stronger statement holds: such
worldsheets that represent the same Fr(C)-colored string-net share the same correlator.
Concretely, consider a worldsheet S with ambient surface Σ. Let b ∈ Cyl◦(Fr(C), ∂Σ)
be the Fr(C)-boundary datum of its complemented worldsheet S̃, and

δS̃ : k→ SN◦
Fr(C)(Σ, b)

1 7→ [S̃]

the linear map that picks out the string-net represented by the complemented worldsheet
(viewed as a fully Fr(C)-colored graph on Σ). Likewise,

δCorC(S) : k→ SNC(Σ,F∂Σ(b))
1 7→ CorC(S)

is the map that picks out the correlator for S. Note that by default, the k-vector space
k carries the trivial Map(Σ)-action, and the string-net spaces (bare or Karoubified,
colored with any strictly pivotal bicategory) are acted on by the mapping class groups
via pushforward.

Theorem 8.1.1. Let Σ be a compact oriented surface and b ∈ Cyl◦(Fr(C), ∂Σ) an
Fr(C)-boundary datum on ∂Σ. There exists a unique Map(Σ)-intertwiner

UCorC(Σ, b) : SN◦
Fr(C)(Σ, b)→ SNC(Σ,F∂Σ(b)), (8.1.1)

to be referred to as the universal correlator for the pair (Σ, b), such that for every
worldsheet S that has Σ as its ambient bordism and b as the boundary datum of its
complemented worldsheet S̃, the following diagram of Map(Σ)-representations

k SN◦
Fr(C)(Σ, b)

SNC(Σ,F∂Σ(b))

δ
S̃

UCorC(Σ,b)δCorC(S)

commutes. Moreover, the collection of universal correlators is compatible with sewing.
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Proof. (i) Since every representative of a string-net in SN◦
Fr(C)(Σ, b) can be viewed as a

complemented worldsheet, the commuting triangles force the universal correlator to be

UCorC(Σ, b) : SN◦
Fr(C)(Σ, b)→ SNC(Σ,F∂Σ(b))

[S̃]→ CorC(S), (8.1.2)

we first need to show that this is indeed well defined as a linear map, which is equivalent
to the statement that any two worldsheets related by the unframed graphical calculus
for the pivotal bicategory Fr(C) share the same correlator. To this end, we assume
(without loss of generality) that S̃1 and S̃2 are two complemented worldsheets who are
identical outside of an embedded disk D ↪→ Σ and share the same value on the disk,
i.e. ⟨S̃1 ∩ D⟩Fr(C) = ⟨S̃2 ∩ D⟩Fr(C). Now let CorC(S1) = [Γ1] and CorC(S2) = [Γ2] be
the correlators for the corresponding worldsheets, with the representative graphs Γ1
and Γ2 chosen in a way such that they coincide outside of the embedded disk, and
for each of them, there are no Frobenius lines within the disk except for each pair of
distinct connected components (within the disk) of the partial defect network (see part
1 of Definition 5.3.1), a single Frobenius line connecting them: it is always possible to
choose the representative graphs Γ1 and Γ2 as such because all U -conjugates of bimodule
morphisms commute with the action of Frobenius algebras and all the Frobenius graphs
involved are full. We then only need to show that ⟨Γ1 ∩D⟩C = ⟨Γ2 ∩D⟩C . This is true
because the functor

U : Fr(C)→ BC

introduced in Example 3.3.5 (with the canonical lax and oplax structures) is rigid separable
Frobenius and therefore the U-conjugation preserves operadic compositions and partial
trace maps (Theorem 3.3.2), whereas the presence of the Frobenius lines connecting the
connected components (on the embedded disk) of the partial defect networks compensates
the fact that the U -conjugation only preserves horizontal products and whiskerings up to
idempotents of the type (3.3.12). It is readily clear that the linear map (8.1.2) intertwines
with the mapping class group actions.
(ii) That the collection of universal correlators is compatible with sewing translates
exactly to the statement that the prescription of string-net correlators is compatible with
sewing.

Theorem 8.1.1 implies that the correlator for every worldsheet S can be obtained
by precomposing the universal correlator with the map δS̃ . Since precomposition is
nothing but the pullback along a function, the situation may be regarded as an analogue
– linearized and at one categorical level lower – of the description of a principal G-bundle
via the universal bundle on the classifying space BG of a group G. This is the reason
behind the choice of the name “universal correlator”.

It is a major insight that it is the equivalence class [S̃] in the vector space SN◦
Fr(C)(Σ, b),

rather than the worldsheet S itself, that is amenable to the “observation” of any aspects
of correlators. It is thus appropriate to refer to the class [S̃] ∈ SN◦

Fr(C)(Σ, b) as the
“observable worldsheet” that correspond to a given “classical” worldsheet S, or also as the
corresponding quantum worldsheet. Note that for being able to introduce this concept,
allowing for the presence of defects is essential.
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8.2 Mapping class group of a quantum worldsheet
Another crucial insight is that, since the universal correlators (8.1.2) intertwine with the
mapping class group actions on the string-net spaces, there is a more refined notion of
the mapping class group that, morally speaking, should supersede the Definition 2.6.6 of
Map(S), namely as the stabilizer of the quantum worldsheet [S̃] ∈ SN◦

Fr(C)(Σ, b) under
the Map(Σ)-action on SN◦

Fr(C)(Σ, b):

M̂ap(S) := StabMap(Σ)([S̃]). (8.2.1)

We think of M̂ap(S) as the mapping class group of the quantum worldsheet [S̃]. By design,
the correlator CorC(S) for a worldsheet S is invariant under the action of the mapping
class group M̂ap(S) of the associated quantum worldsheet [S̃].

As an illustration, let X ∈ B-modC-A be an invertible bimodule and consider the
following worldsheets S1 and S2 which are identified by the local relations provided by
the unframed graphical calculus for Fr(C):

S1 :=

X X

and S2 := dim(B)
dim(X)

X

X

represent the same quantum worldsheet, i.e.

[S̃1] = [S̃2].

In this case, the mapping class group Map(S1) of the worldsheet S1 does not include Dehn
twists along the boundary circles, whereas Map(S2), hence also M̂ap(S1) = M̂ap(S2) ⊃
Map(S2), does.
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9 A double categorical perspective

Introduced by Ehresmann [Ehr63], the notion of a double category is the less popular
cousin of that of a bicategory. However, the flexibility that is intrinsic to double
categories allows for their applications in both formal [Kou19, Kou22, Mye20] and applied
[BC20, Cou20, Mye21] category theory. And it turns out, our string-net construction of
CFT correlators can be better understood within the double categorical framework. Recall
that the string-net construction gives rise to two sets of (apparently related) assignments:
On one hand, one assigns linear categories to 1-manifolds and functors to embeddings, and
on the other hand, in addition to the assignment of categories, one assigns profunctors to
open-closed bordisms; our prescription of string-net correlators also involves two closely
related assignments: for every 1-manifold, we have a field functor between cylinder
categories, and for every bordism we have a natural transformation between string-net
profunctors (with field functors inserted in the target profunctor) whose components are
the universal correlators (see Theorem 9.3.1, which is an enhancement of Theorem 8.1.1
that states in a precise way that the collection of universal correlators is natural). The
observation that will be presented in the last chapter of this thesis is that the open closed
modular functors provided by the string-net construction can be naturally promoted to
symmetric monoidal double functors, and that the field maps and universal correlators can
be assembled into a monoidal vertical transformation. In a sense, the double categorical
point of view incorporates more locality of the field theory.

We refer to [Cou20, Section A.2] for a nice exposition of the fundamentals of double
category theory.

9.1 The double categories Bordor
2,o/c and Profk

A (pseudo) double category is a pseudocategory object internal to the 2-category (with
finite limits) Cat of small categories, functors and natural transformations, whereas a
strict double category is a category object internal to the category (with finite limits) Cat
of small categories and functors. Invoking [GP99, Theorem 7.5] which states that every
double category can be (functorially) strictified, we will treat every double category (and
every double functor) as if they were strict.

Unraveling the concise definition, a double category A has:

• a collection of objects: a, b, c, . . . ∈ A;

• a collection of vertical 1-morphisms: f : a→ b, g : b→ c, . . . whose composition is
strictly unital and associative;

• a collection of horizontal 1-morphisms: P : a 7→ b, Q : b 7→ c, . . . whose composition
is weakly unital and associative; (Note that we use the marked arrow 7→ for
horizontal 1-morphisms.)
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• a collection of 2-morphisms:
a b

a′ b′

Pp

Q
p

f gα , ... that can be composed both vertically

and horizontally, e.g.

a b a b c

a′ b′ and a′ b′ c′

a′′ b′′

p

p

p p

p p

p

α

α′

α β

with the vertical composition being strictly unital and associative whereas the
horizontal composition unital and associative only up to coherent isomorphisms;
moreover the two types of compositions satisfy a middle-four exchange law that
is akin to that for bicategories. Note that the squares cannot be interpreted as
commutative squares since the composition of different types of 1-morphisms is not
defined within the double category1.

The framework of internal categories provides the notions of (pseudo) double functors
and vertical transformations (or double transformations) [Cou20, Definition A.2.8 &
A.2.9], which gives rise to the symmetric monoidal 2-category Dbl of double categories,
double functors and vertical transformations. A symmetric monoidal double category is a
symmetric pseudomonoid in Dbl, see [Cou20, Section A.2.1] for the unpacked description
thereof.

There are plenty of naturally occurring examples of symmetric monoidal double cate-
gories: sets, functions, and (co)spans; sets, functions, and relations; rings, ring morphisms,
and bimodules; manifolds, diffeomorphisms, and bordisms; categories, functors, and co-
functors, (here we have listed the objects, vertical 1-morphisms, horizontal 1-morphisms
of the double categories and left the 2-morphisms implicit) and so on. In short: most
of the commonly known symmetric monoidal bicategories are secretly the horizontal
bicategory (i.e. the bicategory obtained from keeping only the horizontal 1-morphisms
and globular 2-morphisms) of a symmetric monoidal double category that has enough
conjoints and companions (see [Mye21] for a neat graphical description of both concepts),
the rationale of which can be found in [WHS19].

The two symmetric monoidal double categories of our interest are:

Example 9.1.1. We have the following symmetric monoidal double categories:

1. The symmetric monoidal double category Bordor
2,o/c with:

• objects: disjoint unions of the standard interval I and the standard circle
S1 endowed with the default orientations (see Definition 2.6.1), denoted by
α, β, γ, etc.;

1There is a double category □A whose vertical and horizontal 1-morphisms are both given by the
morphisms in a category A and whose 2-morphisms are given by commutative squares in A. However,
the composition of a vertical morphism with a horizontal morphism, though possible due to the contents
of □A, is not intrinsic to the framework of double categories.
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• vertical 1-morphisms: orientation preserving embeddings, denoted by f : α→
β, etc., with composition given by the composition of embeddings;

• horizontal 1-morphisms: open-closed bordisms, denoted by Σ : α 7→ β, etc,
with composition given by sewing;

• 2-morphisms: isotopy classes of orientation preserving embeddings that restrict
to the embeddings of the parameterizing 1-manifolds, an example for a 2-
morphism of the type

α β

α′ β′

f

Σ′p

Σp
gξ

is the one that, for suitable Σ and Σ′, is depicted as:

The vertical composition of 2-morphisms is induced by composition of em-
beddings, whereas the horizontal composition of 2-morphisms is induced by
sewing. For instance, the horizontal composite

α β γ

α′ β′ γ′

Σ1p Σ2p

Σ′
1
p

Σ′
2
p

f g hξ ζ

is depicted as:

The monoidal product is given by disjoint union.
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2. The symmetric monoidal double category Profk with:
• objects: small k-linear categories, denoted by A,B,C, etc;
• vertical 1-morphisms: k-linear functors, denoted by F : A → B, etc, with

composition given by the composition of functors;
• horizontal 1-morphisms: k-linear profunctors, denoted by P : A 7→ B, etc,

with composition given by coends;
• 2-morphisms: natural transformations (with functors inserted in the target

profunctor), for instance:
A B

A′ B′

F G

Pp

Q
p

φ

is given by a natural transformation

φ : P (−,∼)⇒ Q(F (−), G(∼)).

The vertical composition of 2-morphisms is given by the vertical composition of
natural transformations (accompanied by the composition of functors) and the
horizontal composition is induced by taking coends2. The monoidal product
is given by the Cartesian product.

Remark 9.1.2. Both of the symmetric monoidal double categories Bordor
2,o/c and Profk are

so called proarrow equipments in the sense that every vertical 1-morphism can be “bent”
into a horizontal 1-morphism in two ways, giving rise to its conjoint and companion. For
instance, an embedding of a 1-manifold can be transformed into two bordisms by taking
the mapping cylinders, whereas we can construct two profunctors from a given functor
F : A → B by taking B(F−,∼) and B(−, F∼). Consequently [WHS19], upon taking
horizontal bicategories, we obtain two symmetric monoidal bicategories. Indeed, the
symmetric monoidal bicategory Bordor

2,o/c is the full sub-(2,1)-category of the horizontal
bicategory H(Bordor

2,o/c) (i.e. we keep all the objects and 1-morphisms of H(Bordor
2,o/c)

but discard all those non-invertible 2-morphisms) and the symmetric monoidal bicategory
Profk is the horizontal bicategory H(Profk).

2In detail: the component of the horizontal composite of the 2-morphism φ : P (−A,∼B) ⇒ P ′(F−A, G∼B)
with ψ : Q(−B ,∼C) ⇒ Q′(G−B , H∼C) at (a, c) ∈ Aop × C is given by the dinatural family

P (a, b0) ⊗k Q(b0, c)
φa,b0 ⊗kψb0,c

−−−−−−−−−−−−−→ P ′(Fa,Gb0) ⊗k Q
′(Gb0, Hc)

−→
∫ b∈B

P ′(Fa, Fb) ⊗k Q
′(Gb,Gc)

for every b0 ∈ B.
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9.2 String-net models as double functors
Given two double categories A and B, we have the notion of a double functor F : A→ B.
F transforms a 2-morphism in A to a 2-morphism in B:

a b Fa Fb

a′ b′ Fa′ Fb′

f

Q
p

Pp
g

F Pp
F f

F Q
p

F gα 7→ F α

such that (along with the preservation of units) both the vertical and the horizontal
compositions are preserved:

Fa Fb Fa Fb

Fa′ Fb′ Fa′ Fb′

Fa′′ Fb′′ Fa′′ Fb′′

p p

p =

pp

F α

F (α′◦α)

F α′

(9.2.1)

and
Fa Fb Fc Fa Fb Fc

Fa′ Fb′ Fc′ Fa′ Fb′ Fc′

p p

p p

p

p

p

p

F (α·β)F α F β = (9.2.2)

for all composable pairs of 2-morphisms. Note that here we either interpret the equalities
as up to simultaneous insertions of associators and unitors, or invoke the strictification
theorem [GP99, Theorem 7.5] for double categories and double functors.

Let (B, ∗B) be a pointed strictly pivotal bicategory. Recall that we have a symmetric
monoidal pseudofunctor:

SN◦
B : Bordor

2,o/c → Profk
α 7→ SN◦

B(α) ≡ Cyl◦(B, ∗B, α)
Σ 7→ SN◦

B(Σ) ≡ SN◦
B(Σ;−,∼)

ξ 7→ SN◦
B(ξ)

which we call an open-closed modular functor, where the assignment of cylinder categories
to 1-manifolds is functorial under the embeddings. Consequently, we can define a double
functor :

SN◦
B : Bordor

2,o/c → Profk (9.2.3)

by

α β SN◦
B(α) SN◦

B(β)

α′ β′ SN◦
B(α′) SN◦

B(β′)

f

Σ′p

Σp
g

SN◦
B(Σ)
p

SN◦
B(f)

SN◦
B(Σ′)
p

SN◦
B(g)ξ 7→ SN◦

B(ξ)
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where we have extended the action of SN◦
B on mapping class group elements to that on

isotopy classes of embeddings. The preservation of vertical composition (9.2.1) and of
horizontal composition (9.2.2) is guaranteed by the functoriality of the pseudofunctor
SN◦

B and that of the functor Cyl◦(B, ∗B,−). In fact, the double functor SN◦
B is canonically

symmetric monoidal (see [Cou20, Section A.2.2] for the definition). There is also the
similar statement for the Karoubified string-nets. All together we have:

Theorem 9.2.1. Let (B, ∗B) be a pointed strictly pivotal bicategory. We have symmetric
monoidal double functors

SN◦
B, SNB : Bordor

2,o/c → Profk

that canonically extend the open-closed modular functors

SN◦
B,SNB : Bordor

2,o/c → Profk.

9.3 Universal correlators as a vertical transformation
Now, Let F,G : A→ B be two double functors. A vertical transformation θ : F ⇒ G is
given by a family of vertical 1-morphisms in B:

{θa : Fa→ Ga}a∈A

and a family of 2-morphisms in B that is parameterized by the horizontal 1-morphisms
in A:

Fa Fb

Ga Gb

F Pp

GP
p

θa θbθP

for every P : a 7→ b in A, such that the following two properties are satisfied:
Horizontal functoriality:

Fa Fb Fc Fa Fc

Ga Gb Gc Ga Gc

F Pp

GP
p

θa θb

GQ
p

F Qp
θc θa

F (P ·Q)p
θc

G(P ·Q)
p

θP θQ θP ·Q=

Note that our presentation of the horizontal functoriality uses the strictness assumption
for the double category A and the double functors F and G.
Vertical naturality:

Fa Fb Fa Fb

Fa′ Fb′ Ga Gb

Ga′ Gb′ Ga′ Gb′

F P ′p

GP ′p

θa θb

F PpF Pp
F gF f

GP ′p

θa θb

Gf Gg

GP
p=

θP ′

θPF α

Gα
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It turns out the family of field maps as well as that of universal correlators allows for
the definition of a vertical transformation

CftC : SN◦
Fr(C) ⇒ SNC (9.3.1)

via setting the family of vertical 1-morphisms to be
{Fα : SN◦

Fr(C)(α)→ SNC(α)}α∈Bordor
2,o/c

and the family of 2-morphisms to be given by

SN◦
Fr(C)(α) SN◦

Fr(C)(β)

SNC(α) SNC(α)

Fα

SN◦
Fr(C)(Σ)
p

Fβ

SNC(Σ)
p

UCorC(Σ)

where the components of the natural transformation
UCorC(Σ) : SN◦

Fr(C)(Σ;−,∼)⇒ SNC(Σ,Fα−,Fβ∼) (9.3.2)
is given by the universal correlators. The horizontal functoriality then translates to the
compatibility of UCorC with sewing:

and the vertical naturality correspond to the compatibility with embeddings (this is
evident), which implies the invariance under the actions of the mapping class groups of
quantum worldsheets. In fact, the so defined vertical transformation is monoidal ([Cou20,
Definition A.2.15]): the verification is straightforward and uses the fact that both the
field functors and the string-net modular functors are monoidal.
Theorem 9.3.1. Let C be a modular fusion category. There is a canonical monoidal
vertical transformation CftC : SN◦

Fr(C) ⇒ SNC whose components at objects are given by
the field functors {Fα}α∈Bordor

2,o/c
, and whose components at horizontal 1-morphisms are

given by the universal correlators {UCorC(Σ,−)}.
Finally, we state the functoriality of the string-net construction as double functors

under rigid pseudofunctors (Section 3.3), which follows directly from Corollary 3.3.4:
Theorem 9.3.2. Let B,B′ be two strictly pivotal bicategories and F : B → B′ a rigid
pseudofunctors. There is a canonical vertical transformation

SNF : SNB ⇒ SNB′ (9.3.3)
that is given by the change of colors via the F -conjugation.
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