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               Abstract 

 

 

 

 
In general, coupling in a climate model is performed by exchanging fluxes between its model 

components through a software called "coupler". However, it is unclear whether this coupling strategy 

provides a consistent solution. Therefore, our study is motivated by a Schwarz iterative method, which 

provides a stable and consistent coupling solution. In order to implement this method, we considered a 

simple 1D test case called Stefan problem, where a domain is divided into two subdomains (say liquid 

and solid domains) with a moving interface called Stefan condition between them. The solution of Stefan 

problem is considered as a reference to our coupling methods. We implemented two coupling methods 

(loose and tight) and derived a coupling equation which is different from the Stefan problem. The liquid 

and solid domains are determined by diffusion equation with different diffusion coefficients. As we are 

dealing with a moving interface for our coupling methods, a coupling equation is derived based on first 

principle approach. We considered a grid point overlap between the subdomains and called it as loose 

coupling, which is similar to non-overlapping Schwarz method. In addition, we implemented tight 

coupling, similar to overlapping Schwarz method, where we considered five grid point overlap between 

the sub-domains in order to increase the overlap region. In loose and tight coupling, the diffusion 

equations for liquid and solid domains are discretized using forward in time and centered difference in 

space. However, the fluxes in the loose and tight coupling methods are discretized using low order and 

higher order finite difference method respectively. We then implemented iterative method to update the 

boundary conditions at the interface and interpolation to compute the new interface position. The results 

of loose and tight coupling methods are compared to the solution of Stefan problem. Also, in our study, 

we discussed how the different values of parameters in the coupling equation effects the solution of 

loose and tight coupling methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                              

                                                        

 
 

  

 
 
 
 
 
 



                                                  

                                                 Zusammenfassung 
 

 

 
Im Allgemeinen erfolgt die Kopplung in einem Klimamodell durch den Austausch von Flüssen 

zwischen den Modellkomponenten über eine Software, einen Koppler. Es ist jedoch unklar, ob diese 

Kopplungsstrategie eine konsistente Lösung bietet. Daher ist unsere Studie durch eine iterative Methode 

von Schwarz motiviert, die eine stabile und konsistente Kopplungslösung liefert. Um diese Methode zu 

implementieren, haben wir einen einfachen 1D Testfall, das so genannte Stefan-Problem, betrachtet, bei 

dem ein Rechengebiet in zwei Untergebiete (z. B. ein liquides und ein solides Gebiet) mit einer 

beweglichen Grenze, definiert durch die so genannte Stefan Bedingung, unterteilt ist. Die Lösung des 

Stefan-Problems wird als Referenz für unsere Kopplungsmethoden betrachtet. Wir haben zwei 

Kopplungsmethoden (eine schwache und steife) implementiert und eine Kopplungsgleichung abgeleitet, 

die sich vom Stefan-Problem unterscheidet. Die jeweiligen liquiden und soliden Bereiche werden durch 

eine Diffusionsgleichung mit unterschiedlichen Diffusionskoeffizienten bestimmt. Da wir es bei unseren 

Kopplungsmethoden mit einer beweglichen Grenzfläche zu tun haben, wird eine Kopplungsgleichung 

auf der Grundlage eines grundlegenden physikalischen Prinzips hergeleitet. Wir haben eine 

Gitterpunktüberlappung zwischen den Teilgebieten berücksichtigt und sie als schwache Kopplung 

(loose coupling) bezeichnet, die der nicht überlappenden Schwarz-Methode ähnelt. Darüber hinaus 

haben wir eine steife Kopplung (tight coupling) implementiert, die der überlappenden Schwarz-Methode 

ähnelt, bei der wir eine Überlappung von fünf Gitterpunkten zwischen den Unterdomänen 

berücksichtigen, um den Überlappungsbereich zu vergrößern. Bei der schwachen und der steifen 

Kopplung werden die Diffusionsgleichungen für die jeweiligen fluiden und soliden Teilgebiete durch 

Vorwärtsdifferenzen in der Zeit und zentrierte finite Differenzen im Raum diskretisiert. Die in den 

Flüssen auftretenden Ableitungen in den Methoden der schwachen und steifen Kopplung werden jedoch 

mit Finite-Differenzen-Methoden niedriger Ordnung bzw. höherer Ordnung diskretisiert. Wir haben 

weiterhin eine iterative Methode zur Aktualisierung der Randbedingungen an der Schnittstelle und eine 

Interpolation zur Berechnung der neuen Schnittstellenposition eingeführt. Die Ergebnisse der Methoden 

mit schwacher und steifer Kopplung werden mit der Lösung des Stefan-Problems verglichen. 

Schließlich haben wir untersucht, wie sich die verschiedenen Parameterwerte in der 

Kopplungsgleichung auf die Lösung unter der schwachen und steifen Kopplungsmethode auswirken. 
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Chapter 1

Introduction

1.1 Motivation

In recent years, various climate models and couplers have been developed. A typical

Earth System Model (ESM) is coupled with various model components, such as atmosphere,

ocean, land, sea ice etc [1], [2], [3], [4], [5], [6]. Some of the examples of an ESM are: A Com-

munity Climate System Model (CCSM) developed at the National Center for Atmospheric

Research (NCAR). A Community Earth System Model (CESM), which is an extension of

CCSM provides various options like additional land - ice component, land - ocean biogeo-

chemistry etc. These climate models use various couplers like OASIS(Ocean Atmosphere

Sea Ice Soil) [7], [8] and its various versions (OASIS3, OASIS3-MCT, OASIS3-MCT3.0,

OASIS3-MCT4.0), YAC(Yet Another Coupler), FMS(Flexible modeling system) etc. Al-

though the implementation of these couplers are different, they provide similar functions

like managing data transfer between model components, interpolating the coupling data

between different grids and coordinating the model components. However, these couplers

have some constraints related to conservation, synchronisation and consistency as explained

in [9]. Moreover, these coupling methods do not provide a converging solution to the cou-

pling problem since they are equivalent in performing single iteration [9], [10], [11]. The

solution for such problems is addressed by Schwarz iterative method, which can yield a

stable and consistent coupling method [10]. Therefore, our study is motivated by Schwarz

iterative method and the hypothesis of this study is to understand complex coupling process
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and we attempt to see if the iterative method could improve the coupling solution. Since

the climate models are quite complex to understand, we consider 1D equations to perform

this method. The research with Schwarz iteration with a fixed interface is already been

done for 1D equations [10], [11], [12], [13], [14] and later extended to complex atmosphere

and ocean coupling [9]. These studies are conducted only with a fixed interface between

the subdomains. We also implemented Schwarz method to 1D poisson and diffusion equa-

tion with a fixed interface, explained in Appendix A as a preliminary result. But, in a

real world, the interface between two models is not fixed. Some of the examples are: The

sea ice forms the interface between the ocean and the atmosphere for extended periods of

time [15], [16]. The movement of sea ice, which results in its melting or formation, depends

on the exchange of solar radiation, salinity, heat and other factors between atmosphere and

ocean. The ice movement reflects the export and loss of ice into the ocean through surface

meltwater fluxes [17]. Also, the movement caused by drifting of snow, depends on factors

like near-surface wind speeds, surface snow density, associated threshold friction velocity,

meltwater runoff etc [18]. The glacier movement caused due to the interaction between the

gravitational driving force of downward ice movement and the resistance encountered at the

bed and margins [19]. As there are difficulties in assessing the interface of ice-bed in a glacier,

surface movement of a glacier is used as a proxy to represent the glacier motion [20]. The

glacier velocity is explained in [21] to understand the surface morphology of both clean-ice

and debris-covered glacier. Hence, it is important to investigate coupling strategies to a mov-

ing interface. According to our knowledge, research has not yet done on Schwarz iterations

with a moving interface. As a result, in our study we considered Schwarz iterative method

to couple 1D diffusion equation for two subdomains with different diffusion coefficients and

a moving interface between them.

Why diffusion equation?

From the literature review, we found a 1D test case called "Stefan problem" [24], [23], [25], [22],

which is a prototype for some of the examples mentioned above (sea-ice interface, drifting
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of snow and the movement of glacier). The solution of the Stefan problem is simple yet

conserved and therefore we consider it as reference to our coupling methods. Stefan problem

involves the distribution of heat in a phase changing medium, which uses a diffusion equation

and a Stefan condition to understand the heat flow and change of phase respectively. On the

basis of Stefan problem, we use diffusion equation for the subdomains in order to implement

our coupling methods.

1.2 Present Coupling methods

In this chapter, we discuss the present coupling methods, like using a coupler (for ex-

ample OASIS coupler) [26], which couples different model components, described in 1.2.1.

Also in section 1.2.2, we discuss the 1D coupling, which couples 1D diffusion equation for

atmosphere and land with fixed interface using a exchange grid [27] and by using Schwarz

iterations [10] with a fixed interface. In section 1.2.3, we discuss the synchronous and asyn-

chronous coupling methods with different time scales [9]. In section 1.2.4, we describe the

Schwarz iterative method based on [9], which solves the problems obtained by synchronous

and asynchronous coupling.

1.2.1 Coupling using a Coupler

As mentioned in section 1.1, there are various couplers being used, however their main

function is to exchange fluxes between various model components and to interpolate the

coupling fields. Here we discuss the OASIS coupler used in Sein et.al., [26], where it couples

various components like atmosphere, marine bio-geochemistry, river runoff along with ocean

and ice components. The figure 1.1 shows the coupling between REMO [28], [1], a atmo-

spheric component and a ocean component, MPIOM [2], [5], [29]. Here, the ocean model

needs to run in both coupled subdomain and as a stand-alone model simultaneously. In the

coupled sub-domain, the ocean model receives the heat, freshwater, and momentum fluxes

from the atmosphere model at specified time step, whereas in uncoupled sub-domain, the
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surface boundary condition fields are calculated from the predefined atmospheric fields using

Bulk formula. Now, the atmosphere model receives fluxes from the ocean model (both cou-

pled and uncoupled mode) which provides sea surface conditions [30], [31]. To summarise

this coupling process, a coupler interpolates the coupling fields in order to compute the fluxes

at the interface and provides input to each sub-component of the model. However, still it is

unclear if this coupling strategy provides a consistent framework for coupling components of

climate models.

The aim of our study is not to prove that this coupling process is incorrect, but we attempt

to see if we could improve the coupling solution by Schwarz iteration method. However, cou-

pling in an earth system model is quite complex to understand and therefore, we considered

a simple test case where we implement Schwarz iterative method to couple two 1D diffusion

equations with different diffusion coefficients and a moving boundary at the interface further

described in chapter 3 and 4.

1.2.2 1D Coupling with a fixed interface

Here, we describe 1D coupling with a fixed interface using a exchange grid based on

Balaji et al., 2008 [27]. It considers vertical diffusion of temperature in a coupled atmosphere-

land system. Vertical diffusion in atmosphere model is discretized using implicit method and

fluxes are also computed implicitly at the interface to improve the stability.

∂u

∂t
= k

∂2u

∂z2
(1.1)

(un+1
i – uni )

Δt
=

k

(Δx)2
(un+1

i+1 – 2un+1
i + un+1

i–1 ) (1.2)

Aun+1 = un (1.3)

This is a tridiagonal matrix inversion which was solved using an up-down sweep. Some of the

layers are considered in atmosphere and others are in land. This paper [27] uses a exchange

grid as an independent model component to compute the fluxes at the surface boundary
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.
Figure 1.1: Coupling scheme from [26]. Red colour denotes the prescribed forcing used as lateral boundary conditions for
REMO and as surface forcing for MPIOM in the uncoupled area. The workflow of heat, momentum, and mass fluxes from the
atmosphere (REMO) to the ocean (MPIOM) in the coupled area is marked with green. The data flow from MPIOM to REMO
is marked with blue.
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layer. The diffusion equation is partially solved in the atmosphere model and quantities

are sent to the exchange grid to compute fluxes. Now the ocean model receives the fluxes

from the exchange grid and calculates diffusion for the ocean(other sub-domain) and return

values to the exchange grid. However, we understood from the literature [10], [11], [9] that

use of Schwarz iteration converges to the exact solution, therefore we now follow some of

the research conducted using Schwarz method to couple 1D diffusion equation with a fixed

interface between the sub-domains [10]. This study [10] uses various interface conditions

like Dirichlet-Neumann, Neumann-Robin and Robin-Robin with various ratios of diffusion

coefficients. The results shows that the coupling solution not only depends on interface

condition but also on the ratio of diffusion coefficients [10]. Moreover, when the ratio between

the diffusion coefficients is increased, the coupling solution becomes less sensitive to the use

of interface condition. Therefore, in our study, we also performed numerical tests for coupling

methods (named as loose and tight, further explained in chapter 3) with various ratios of

diffusion coefficients. Also, coupling of 1D diffusion equation using a moving interface, which

is a more "realistic" case is attempted in our study. However, we needed to derive a coupling

equation (3.15), in section 3.4 as we are dealing with a moving interface.

1.2.3 Coupling of different time scales

In this section, we describe the usual coupling methods used in global and regional

climate models. According to Lemarié et al., 2015, the existing coupling methods like asyn-

chronous and synchronous methods do not provide a exact coupling solution, but an approx-

imation [9]. Therefore, it is important to understand these coupling methods (1.2.3.1 and

1.2.3.2) and their issues which are solved by using Schwarz iterative method (1.2.4).

Consider Latm and Loce as the partial operators to the system of equations for atmosphere

and ocean models respectively. Let the atmosphere domain be Ωatm and Ωoce be the ocean

domain with a common interface Γ. Let Ω be the union of atmopshere and ocean domains,

Ω = Ωatm ∪ Ωoce, with external boundaries as ∂Ωextatm and ∂Ωextoce. The below equations are
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considered from the literature [9].

LatmUa = fatm in Ωatm × [0, T ], (1.4)

BatmUa = gatm in ∂Ωextatm × [0, T ], (1.5)

FatmUa = Foa(Uo, Ua,R) on Γ× [0, T ], (1.6)

LoceUo = foce in Ωoce × [0, T ], (1.7)

BoceUo = goce in ∂Ωextoce × [0, T ], (1.8)

FoceUo = Foa(Uo, Ua,R) on Γ× [0, T ], (1.9)

where Boce and Batm are the boundary operators, which provides initial and boundary

conditions. In equations from (1.4) to (1.9), Ua = (uah, Ta)t and Uo = (uoh, To)t are the

state variables with uh the horizontal velocity and T the (potential) temperature, whereas

fatm in (1.4) and foce in (1.7) are considered as forcing terms. Foa is a function that allows the

computation of air-sea fluxes. Fatm and Foce are the interface operators, further explained

in [9]. In further subsections, we discuss the coupling methods to solve (1.4) - (1.9). In

sub-section 1.2.3.1, we discuss the first approach, called asynchronous coupling, which is

based on the exchange of averaged fluxes between the models, whereas in sub-section 1.2.3.2,

synchronous coupling is discussed where instantaneous fluxes are exchanged.

1.2.3.1 Asynchronous coupling

In most of the climate models, asynchronous coupling is used. In this method, total

simulation time [0,T] is split into M smallest time windows [ti, ti+1], i.e [0,T] = ∪Mi=1 [ti,

ti+1]. Consider 〈.〉i as a temporal average over time window [ti, ti+1]. The algorithm below

for atmosphere, ocean and coupling are taken from the literature [9].

LatmUa = fatm in Ωatm × [ti, ti+1] (1.10)

FatmUa = Foa(〈Uo〉i–1, Ua,R) on Γ× [ti, ti+1] (1.11)
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LoceUo = foce in Ωoce × [ti, ti+1] (1.12)

FoceUo = 〈FatmUa〉i on Γ× [ti, ti+1] (1.13)

In equation (1.11), the averaged ocean fluxes of previous time step i-1 are given to atmosphere

model to advance from i to i+1. Now, the averaged atmosphere flux are applied to the ocean

model at the same time interval, see in equation (1.13). However, the algorithm does not

solve the original problem (1.4) - (1.9) because of the synchronicity issue. This is described in

literature [9] as follows: synchronicity problem occurs as the values of the ocean component

are not provided to the atmospheric component at same time interval, but at the next time

interval.

1.2.3.2 Synchronous coupling

In synchronous coupling, ocean and atmosphere components exchange instantaneous

fluxes at same time interval. If we consider the ocean step as Δto, such that Δto = NΔta,

where ta is the atmospheric step. The algorithm for ocean, atmosphere and coupling are

taken from Lemarié et al., 2015 [9].

LatmUa = fatm in Ωatm × [ti, ti + NΔta] (1.14)

FatmUa = Foa(Uo(ti), Ua(t),R(t)) on Γ× [ti, ti + NΔta] (1.15)

LoceUo = foce in Ωoce × [ti, ti +Δto] (1.16)

FoceUo = Foa(Uo(ti), Ua(ti),R(ti)) on Γ× [ti, ti +Δto] (1.17)

Although the above algorithm (1.14 - 1.17) may appear as the solution to the problem (1.4)

- (1.9), but the algorithm (1.14 - 1.17) is difficult to implement from computational and nu-

merical point of view. Also, from the stability analysis mentioned in Lemarié et al., 2015 [9],

the numerical implementation of synchronous coupling can be unstable.

Since asynchronous and synchronous coupling have issues with respect to consistency, con-

servation and synchronisation (refer to Lemarié et al., 2015 [9] for further analysis), in section

1.2.4, these problems are solved using Schwarz iterations [10], [11], [9].
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1.2.4 Schwarz iterative method

The idea of Schwarz method is to separate the original problem on Ω = Ωatm ∪ Ωoce

into sub problems on Ωatm and Ωoce, which can be solved separately. This is, however,

true for what we have mentioned in the previous section as well. However, in this method,

we assume that the system of LatmUa=fatm together with LoceUo=foce on Ωatm ∪ Ωoce

forms one wholistic system. In other words, we assume that we have a problem LU=f on

Ω that can be decomposed into Latm|Ωatm
⊕
Loce|Ωoce and their corresponding solutions.

An iterative process is then applied to achieve convergence to the solution of the original

problem [13]. Schwarz methods were introduced for stationary problems (say for example

Poisson equation), but later extended to time dependent problems to provide a global in

time Schwarz method, refer to Blayo et al., 2007 [32], where optimized Schwarz method is

applied for convective-diffusion problems with discontinuous coefficients. Also, this method

is applied to diffusion equation with constant coefficients [10] and later extended for variable

coefficients case [11]. Later, these methods ( [10], [11]) developed by Lemarié are applied

for ocean-atmosphere coupling [9], described in this section 1.2.4 to solve the coupling prob-

lem(1.4) - (1.9). Moreover, Schwarz method solves the problem of synchronicity mentioned

in synchronous and asynchronous coupling, refer to stability analysis in section.3 in [9].

The iterative algorithm below is taken from the paper [9] is written as follows :

LatmUa
k = fatm in Ωatm × [ti, ti+1], (1.18)

FatmUa
k = Foa(Uo

k–1, Ua
k,Rk) on Γ× [ti, ti+1], (1.19)

LoceUo
k = foce, in Ωoce × [ti, ti+1], (1.20)

FoceUo
k = FatmUa

k on Γ× [ti, ti+1], (1.21)

where the subscript k denotes the iteration number. The first guess Uo
k=0 on Γ × [ti,ti+1] is

generally taken from the converged solution on the previous time window [ti-1,ti]. When the

convergence is reached, this algorithm gives the exact solution to the problem (1.4) - (1.9).
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However, the Schwarz iterative method described in this section is basically for a non-moving

interface and for Dirichlet boundary conditions. In our study, we had the problem, that we

needed to deal with the fluxes over the boundary because of the moving boundary at the

interface. In order to solve this problem, we changed the scheme, described in section 1.3.

1.3 1D Coupling with a moving interface

Research has been conducted on 1D coupling using a fixed interface [27] and Schwarz

iterative method [10], [11], [9], explained in section 1.2.1. In our study, we implemented a

moving interface which is more "realistic" test case compared to a fixed interface. Some

of the examples of a moving interface are sea-ice interface between atmosphere and ocean,

drifting of snow and the movement of a glacier.

In this section, we describe 1D coupling with a moving interface and Schwarz iterative

method. In these coupling methods, we divide the 1D domain into two sub-domains, say

liquid and solid. The liquid and solid domains are represented by diffusion equations with

different diffusion coefficients. We use explicit finite differences to discretize the diffusion

equation. At the interface, we considered one grid point overlap between the subdomains

and called it as loose coupling. It is similar to non-overlapping Schwarz method, which is

described in the subsection 3.3.1.1. In addition, we also implemented tight coupling where

we consider larger overlap between the two subdomains (five grid point). It is similar to

overlapping Schwarz method described in subsection 3.3.1.2. However non-overlapping and

overlapping Schwarz methods described in Chapter 3 are only for a fixed interface. In our

study, as we are dealing with a moving interface, we derived a coupling equation derived

based on first principle approach, described in section 3.4.2. In loose coupling, the coupling

equation is discretized using single order forward and backward finite difference approxima-

tions to compute solid and liquid fluxes respectively. In tight coupling, due to larger overlap,

we discretized the coupling equation using second order finite difference approximations for

solid and liquid fluxes, thereby new interface temperature is computed. We then considered
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Schwarz like iterations to update the boundary conditions at the interface and interpolation

to compute the new interface position, described in Chapter 4. The results of loose and tight

coupling methods are compared to the numerical solution of Stefan problem. The physical

derivation and the mathematical formulation of the Stefan problem is described in Chapter

2.

With the implemented coupling method, we address whether this iterative method could im-

prove the coupling when compared to Stefan problem. The literature [33], [34], [35] showed

that the increase of overlap between the subdomains improves the coupling solution, but

with a fixed interface. However, in our study, we address if the larger overlap, so called tight

coupling could improve the coupling with a moving interface. Moreover, the coupling solu-

tion not only depends on the interface conditions but also on the parameters in the coupling

equation [10], [11], [36], [37]. Therefore, our study addresses whether the constant parame-

ters of the coupling equation effects the loose and tight coupling solutions. The answers for

these questions and conclusions are explained in chapter 4.



Chapter 2

Two Phase Stefan problem

2.1 1D Diffusion Equation

2.1.1 Introduction

In this chapter, we derive 1D diffusion equation in three different ways in section 2.1.1,

2.1.2, 2.2.1. The diffusion equation is a partial differential equation which describes density

fluctuations in a material undergoing diffusion. The equations below are taken from [38]

∂u(r, t)

∂t
= ∇ · (D(u(r, t), r)∇u(r, t)). (2.1)

where u(r,t) is the density of the diffusing material at location r = (x,y,z) at time t.

D(u(r,t),r) is the diffusion coefficient for density u at location r.

In case if the diffusion coefficient does not depend on density, then the equation (2.1) be-

comes:
∂u(r, t)

∂t
= D∇2u(r, t)). (2.2)

Equation (2.2) also describes the distribution of temperature over time and is called heat

equation. The heat equation can be derived from the continuity equation, which states that

a change in density in any part of the system is due to inflow and outflow of material into

and out of that part of the system. As a result, no matter is created or destroyed.

∂u

∂t
+∇ · Γ = 0 (2.3)
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where Γ is the flux of the diffusing material. Equation (2.2) can be obtained easily from

the last equation when combined with the phenomenological Fick’s first law, which assumes

that the flux of the diffusing material in any part of the system is proportional to the local

density gradient:

Γ = –D∇(u(r, t). (2.4)

2.1.2 Physical Derivation

In this section, we describe the three physical principles to understand the flow of

heat from higher temperature to lower temperature region from the lecture notes of partial

differential equations [39].

(1) Heat energy of a body with uniform properties

Heat energy = cmu

where m is the body mass, u is the temperature, c is the specific heat which states the

amount of heat per unit mass required to raise the temperature by one degree Celsius.

(2) Fourier’s law of heat transfer : The law of heat conduction also known as Fourier’s

law states that the rate of heat transfer through a material is proportional to the

negative gradient in the temperature and to the area, at right angles to that gradient,

through which the heat flows.

Rate of heat transfer
Area

= –k0
∂u

∂x
(2.5)

where k0 is the thermal conductivity, units [k0] = MLT-3U-1.
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(3) Conservation of Energy : Consider a rod of length l with non-uniform temperature

lying on x-axis from x = 0 to x = l, with constant density ρ, specific heat c, thermal

conductivity k0, cross sectional area A. Consider an arbitrary thin slice of rod of

width Δx between x and x+Δx. We consider thin slice so that the temperature

throughout the rod remains same i.e, u(x,t). We assume that the sides of the rod

are insulated and the ends are only exposed. It is also assumed that there is no heat

source within the rod.

Heat energy of segment = c ρ A Δx u(x, t)

By conservation of energy,

Change of heat energy at time Δt = heat in from left boundary – heat out from right boundary

From Fourier’s law (2.5),

c ρ AΔxu(x, t+Δt) – cρAΔxu(x, t) = ΔtA
(

– k0
∂u

∂x

)
x

–ΔtA
(

– k0
∂u

∂x

)
(x+Δx)

(2.6)

Rearranging (2.6) leads to

u(x, t +Δt) – u(x, t)

Δt
=

k0
cρ

((∂u
∂x

)
(x+Δx) –

(∂u
∂x

)
x

Δx

)
Taking the limit Δt, Δx x→0 gives the heat equation

∂u

∂t
= D

∂2u

∂x2
(2.7)

where

D =
k0
cρ

(2.8)

is called thermal diffusivity, units [k] = L2 / T. Since the slice was chosen arbitrarily,

the heat equation (2.7) applies throughout the rod.
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2.1.3 Analytical Solution

The analytical solution below for the diffusion equation is taken from the literature [39].

Consider the following initial condition

u(x, 0) = f(x) ∀ x ∈ [0, L] (2.9)

and with boundary conditions

u(0, t) = u(L, t) = 0, ∀ t > 0. (2.10)

Using separation of variables to (2.7) with boundary conditions (2.10), it is attempted

here [39] to find a non-trivial solution; i.e

u(x, t) = X(x)T(t)

Substituting above equation in (2.7), we get

1

D

∂T
′
(t)

∂T(t)
=

∂X
′′
(x)

∂X(x)

Since left hand side depends on t and right hand side depends on x, a constant λ is considered

to make both sides equal. Negative sign for λ is used here for convenience.

1

D

∂T
′
(t)

∂T(t)
=

∂X
′′
(x)

∂X(x)
= –λ

X
′′
(x) + λX(x) = 0, (2.11)

T
′
(t) + DλT(t) = 0. (2.12)

By taking into account, the boundary condition (2.10) for equation (2.11), we get

u(0, t) = X(0)T(t) = 0 =⇒ X(0) = 0,

u(L, t) = X(L)T(t) = 0 =⇒ X(L) = 0.

The problem of finding the solution for (2.7) reduces to the solving of linear ODE and three

different cases are considered with respect to sign of λ.
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(1) λ < 0:

X(x) = C1e
√
–λx + C2e–

√
–λx.

Taking into boundary condition one gets C1 and C2 = 0, so for λ < 0, there exits

only trivial solution.

(2) λ = 0 :

X(x) = C1x + C2

Again, we get only trivial solution for the problem (C1 = C2 = 0 ) due to the

boundary conditions.

(3) λ > 0 :

X(x) = C1cos(
√
λx) + C2sin(

√
λx)

Substituting the boundary conditions leads to the following equations for C1 and

C2.

X(0) = C1 = 0,

X(L) = C2sin(
√
λL) = 0 =⇒ sin(

√
λL) = 0, λn = (

πn

L
)2, n = 1, 2, ...

Hence

X(t) = Cnsin
(
πn

L
x
)

The second equation (2.12) for the function T(t) takes the form :

T
′
(t) + D

(
πn

L

)
T(t) = 0 =⇒ T(t) = Bn exp

(
– D
(
πn

L

)2
t
)

,

where Bn is constant. The general solution for equation (2.7) can be written as :

u(x, t) =
∞∑
n=1

An sin
(
πn

L
x
)

exp
(

– D
(
πn

L

)2
t
)

,

where An is a constant. We use the initial condition (2.9), to find An. If we write

the function f(x) as a Fourier series, we obtain :

f(x) =
∞∑
n=1

Fn sin
(
πn

L
x
)

=
∞∑
n=1

An sin
(
πn

L
x
)

,
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Fn = An =
2

L

∫ L

0
f(ξ) sin

(
πn

L
ξ

)
dξ.

Hence the general solution for (2.7) reads:

u(x, t) =
∞∑
n=1

( 2

L

∫ L

0
f(ξ) sin

(
πn

L
ξ

)
dξ
)

sin
(
πn

L
x
)

exp
(

– D
(
πn

L

)2
t
)

2.2 1D Stefan Problem

2.2.1 Physical Background

A Stefan problem is a specific type of boundary value problem for a differential equa-

tion that involves the distribution of heat in a phase changing medium [22], [23], [24], [25],.

Some of the examples of Stefan problem are the melting of ice, solidification, fluid flow in

porous media, shock waves in gas dynamics [40]. In 1889, Austrian physicist and mathemati-

cian Joseph Stefan published a paper [22] describing mathematical models for real physical

problems with a change of phase state. When a phase transition occurs(for example change

of phase from solid to liquid during melting of ice or liquid to solid during freezing of water),

latent heat is either absorbed or released by the thermodynamic system without changing

the temperature.

In this section, the equation for the distribution of heat is derived based on the literature [41].

Consider any open and piece-wise smooth region Ω where Ω ⊂ Rn, with a boundary ∂Ω. By

natural assumption the rate of change of a total quantity should be equal to the net flux

through the boundary ∂Ω:

d

dt

∫
Ω

u dV =

∫
∂Ω

F.ν dS =

∫
Ω

–∇ · F dV (2.13)

where u is the density of some quantity (such as heat), ν being the unit normal pointing

inwards and F being the flux density. Gauss theorem is used for the equation (2.13) under

the condition that the flux function F defined on the domain Ω is continuously differentiable.

Leibniz rule is used for differentiation under the integral sign on the first integral in equation
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(2.13), assuming u and ut exist and are continuous.∫
Ω

∂u

∂t
dV =

∫
Ω

–∇ · F dV (2.14)

Theorem 1 Let f be any function such f ∈ C(Ω ) where Ω ∈ Rn, If
∫
V f dV(x) = 0 , for

all test volumes V ⊂ Ω, then f ≡ 0 on Ω.

Proof. Assume f 6≡ 0, then at a point x0 ∈ Ω, f(x0) = λ > 0. But since f is continuous we

have for any ε, for instance ε = λ/2 > 0, there is a δ > 0 such that if

|x – x0| < δ, x ∈ Ω⇒ |f(x) – f(x0)| < ε = λ/2

which implies that

λ/2 < f(x) < 3λ/2

and by integrating the inequality above over the test volume V∫
V

f(x) dx >

∫
V
λ/2 dx = λ/2× volume(V) > 0

Therefore, we can conclude that ∫
V

f(x) dx > 0.

This is a contradiction, thus we have f ≡ 0. �

By writing the equation (2.14) as ∫
Ω

∂u

∂t
+∇ · F dV = 0

we must conclude from the above theorem that

ut = –∇ · F. (2.15)

The flux density F is often proportional to the negative gradient of u (minus since the flow

is from higher heat to lower heat):

F = –αDu(α > 0) (2.16)
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where α is the thermal diffusivity. Assuming that α is constant, we get by equation (2.16)

and equation (2.15) the heat equation:

ut = ∇ · (Du) = αΔu. (2.17)

2.2.2 Stefan Condition

The derivation below for the Stefan condition is taken from [41]. However, we do not

consider the interface in the shape of disc as mentioned in [41], but in our study, we consider

a 1D interface. From the Figure 2.1, consider a domain Ω at a fixed time t = t0 divided

into two sub-domains Ω1 and Ω2 called as liquid and slid phases respectively. We assume

plane symmetry to have the temperature u to depend on only t and x. At s(t0), the interface

divides the two phases. The temperature at the interface s(t) is assumed to be constant at

um. The movement of the interface s(t) depends on the difference of heat fluxes between the

two phases. During the transition, there will be a small volume change, but this property

is ignored for simplicity. By physical reason the temperature should be continuous at the

interface x = s(t) between the two phases.

lim
x→s(t)+

us(x, t) = lim
x→s(t)–

uL(x, t) = um for all t. (2.18)

Here we consider the melting case., where the interface moves to the right. In such case,

it is expected that the temperature is greater than or equal to interface temperature (u ≥

um) in the liquid phase and less than or equal to the interface temperature (u ≤ um) in the

solid phase. At time t = t0 consider a interface of area S. Later at time t1 > t0 the position

of the interface has changed to s(t1 ) > s(t0 ). Consider a volume S × (s(t1) - s(t0)) has

melted and therefore released a quantity of heat Q.

Q = S(s(t1) – s(t0))× ρ Hf (2.19)
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.
Figure 2.1: Figure is taken from [41]. Domain Ω separated into two phases at x = s(t), which are Ω1 = Ω ∩ x < s(t) and Ω2

= Ω ∩ x > s(t)

where Hf is the specific heat content and ρ is the density. The heat flux for liquid and solid

domains respectively are

Φl = klDul (2.20)

Φs = ksDus (2.21)

where kl and ks are the conductivity for liquid and solid respectively. By energy conservation

it is natural to assume that the total heat absorbed in equation (2.19) is equal to

Q =

∫ t1

t0

[Φl.x̂ + Φs.(–x̂)]dτ =

∫ t1

t0

[–kl.Dul(s(τ), τ).x̂ – ks.Dus(s(τ), τ).(–x̂)] dτ (2.22)

where x̂ is the unit vector in the x direction. Integrating expression (2.22) over the spatial

coordinates gives

Q =

∫ t1

t0

[–kl
∂ul
∂x

(s(τ), τ) + ks
∂us
∂x

(s(τ), τ)] dτ (2.23)

we assume this to be equal to expression (2.19). Equating the equations (2.19) and (2.23),

we get

(s(t1) – s(t0)) ρ Hf =

∫ t1

t0

[–kl
∂ul
∂x

(s(τ), τ) + ks
∂us
∂x

(s(τ), τ)] dτ (2.24)

by dividing with (t1-t0) and taking the limit t1 –→ t0, we get

ρ Hf lim
t1→t0

s(t1) – s(t0)

(t1 – t0)
= lim

t1→t0

1

(t1 – t0)

∫ t1

t0

[–kl
∂ul
∂x

(s(τ), τ) + ks
∂us
∂x

(s(τ), τ)] dτ. (2.25)
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Theorem 2 (The Intermediate Value Theorem) Let f:[a,b] –→ R and f ∈ C, then f

attains all values between the end points f(a) and f(b), Proof in [42]

Theorem 3 (The Extreme Value Theorem) A continuous function on a bounded and

a closed interval [a,b], attains both a maximum and a minimum value at least once, Proof

in [42].

Theorem 4 (Mean Value Theorem) If f : [a,b] –→ R and f ∈ C on [a,b], the there exists

a number c ∈ [a,b] such that ∫ b

a
f(x) dx = (b – a) f(c) (2.26)

From Theorem 3 (Extreme value theorem), we know that a continuous function f(x) has a

minimum value m and a maximum value M on a interval [a,b]. From the monotonicity of

integrals and m≤f(x)≤M, it follows that

mI =

∫ b

a
mdx ≤

∫ b

a
f(x)dx ≤

∫ b

a
Mdx = MI (2.27)

where

I =

∫ b

a
dx = b – a (2.28)

using (2.28) and dividing by I (assuming I > 0) in equation (2.27) gives

m ≤ 1

b – a

∫ b

a
f(x)dx ≤ M (2.29)

From Theorem 3, we know that both m and M is attained at least once by the integral.

Therefore the Intermediate value theorem says that the function f attains all values in [m,M],

more specific it exits a c ∈ [a,b] such that

f(c) =
1

b – a

∫ b

a
f(x)dx. (2.30)

With the help of theorem for integrals, we can write equation (2.25) as

ρ Hf s
′
(t1) = lim

t1→t0

1

(t1 – t0)
× (t1 – t0) f(c) (2.31)
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where f(c) is a new function we have introduced for simplicity

f(c) = –kl ux(s(c), c) + ks ux(s(c), c) (2.32)

c ∈ [t0,t1]. But as t1 –→ t0 and f is continuous, then

ρ Hf s
′
(t1) = f(t1) (2.33)

However since the same procedure could be done at any time t instead of t1, we could instead

write

ρ Hf s
′
(t) = f(t)

Hence with the expression for f we reach

ρ Hf
ds

dt
= ks ux(s(t), t) – kl ux(s(t), t) (2.34)

which is called the Stefan condition and is a boundary condition for the moving interface.

2.2.3 Mathematical Formulation of the model

The Stefan problem is motivated by physical melting of sea ice and is named after the

Austrian physicist Joseph Stefan [22], [40]. We consider a two phase Stefan problem; where

the initial phase is solid at a temperature less than melting one. The solid domain is heated

from the side and as a result the temperature increases to reach the melting point and then

the liquid appears.

We denote the temperature in the point x at time t by u(x,t). s(t) is the point separating

the two phases, which determines the position of the interface.The heat transport through

the interface causes its displacement.

This problem can be formulated as heat conduction problem and are described by the fol-

lowing equation :
∂u

∂t
= kl

∂2u

∂x2
, 0 < t < T, 0 < x < s(t) (2.35)

∂u

∂t
= ks

∂2u

∂x2
, 0 < t < T, x > s(t) (2.36)
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u(s(t), t) = um, ∀ t > 0, 0 < t < T (2.37)

where kl and ks are assumed to constant in time and position. The interface temperature

um is assumed to be constant.

The position of the interface is determined by the jump condition also called Stefan condition,

it represent the energy conservation on the interface. Stefan condition is described by the

following equation :

ρ Hf
ds

dt
= ks

∂u

∂x
|x>s(t) – kl

∂u

∂x
|x<s(t), (2.38)

where Hf and ρ are assumed to be constant.

u(x, 0) = us < um, 0 < x ≤ X (2.39)

s(0) = 0 (2.40)

u(0, t) = ul > um, ∀ t > 0, 0 < t < T (2.41)

u(X, t) = us < um, ∀ t > 0, 0 < t < T (2.42)

equations (2.39) and (2.40) are the initial conditions and equations (2.41) and (2.42) are the

constant boundary conditions for the domain.

2.2.4 Similarity Solution

Figure 2.2 represents the Similarity solution (analytical solution) of the Stefan problem.

The derivation of the similarity solution for the Stefan problem is given by [41]. A similarity

ξ is introduced, which is defined by :

ξ =
x√
t

(2.43)

and thus seeks the solution of function

u(x, t) = F(ξ(x, t)) (2.44)

where F(ξ) is an unknown function, yet to be found. Substituting (2.44) in (2.35) we get,

∂u(x, t)

∂t
=

dF

dξ

∂ξ

∂t
=

–x

2t
√

t

dF

dξ
, (2.45)
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∂u(x, t)

∂x
=

dF

dξ

∂ξ

∂x
=

–1√
t

dF

dξ
, (2.46)

kl
∂u2(x, t)

∂x2
= kl

1√
t

d

dξ
(
dF

dξ
)
∂ξ

∂x
= kl

1

t

d2F

dξ2
(2.47)

Equations (2.45) and (2.47) gives the second order linear homogeneous differential equation.

d2F

dξ2
+
ξ

2kl

dF

dξ
= 0 (2.48)

which can be solved with an integrating factor

M(ξ) = e

∫
ξ

s0
s

2kl
ds

= C1e
ξ
2

4kl (2.49)

where C1 is an integration constant. M(x) in Equation (2.49) is multiplied with (2.48) and

by the product rule we get,

d2F

dξ
M(ξ+

ξ

2kl
M(ξ)

dF

dξ
=

d

dξ
(M(ξ)

dF

dξ
) = 0 (2.50)

and by integrating (2.50) we get

M(ξ)
dF

dξ
= C2 (2.51)

where C2 is an integration constant. From the fundamental theorem of calculus the solution

of equation (2.51) is

F(ξ) = C

∫
ξ

0
e
–s2

4kl
ds

+ D (2.52)

where D is an integration constant. By substituting y = s√
2kl

, Equation (2.52) could be

written in terms of error function.

F(ξ) = Aerf(
ξ

2
√

kl
+ D (2.53)

and thus the solution to (2.35) is

u(x, t) = F(
x√
t
) = Aerf(

x

2
√

tkl
) + D (2.54)

From the boundary condition x = 0 and x = s(t), we get

D = u0 (2.55)
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and

A =
0 – u0
erf(λ)

(2.56)

where

λ ≡ s(t)

2
√

tkl
(2.57)

Since A in equation (2.56) is constant, it follows that λ is also constant thus

s(t) = 2λ
√

tkl (2.58)

with the constants A and D, the solution is

u(x, t) = u0 –
u0

erf(λ)
erf(

x

2
√

klt
) (2.59)

About the parameter λ:

The Stefan condition at the free boundary x = s(t) is

ρ Hf
ds

dt
= –kl ux(s(t), t) (2.60)

and the time derivative of s(t) is

ds

dt
=

d

dt
(2λ
√

kl t) = λ

√
kl√
t

(2.61)

and for the other derivative in the Stefan condition, we need to take the spatial derivative

of the solution u, given by (2.59)

ux(x, t) = –
u0

erf(λ)

2√
π

d

dx

∫ x
2
√

klt

0
e( – y2)dy = –

u0
erf(λ)

1√
π

e
–x2

4klt√
klt

(2.62)

and at x = s(t)

ux(s(t), t) = –
u0

erf(λ)

e–λ2√
klt
√
π

(2.63)

By putting the equations (2.63) and (2.61) in the Stefan condition (2.60) and solving for λ,

we get the following transcendental equation.

λeλ2 erf(λ) =
Stl√
π

(2.64)
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where Stl is the Stefan number in [24]

Summing up the solution of u(x,t) and s(t), and the condition for λ, gives


u(x, t)=u0 - uo

erf(λ)
erf( x

2
√
kl t

)

s(t)=2λ
√

klt

λ eλ2 erf(λ) = Stl√
π

The above solution can be derived only for certain parameters. As a result, we do not

consider the above solution of Stefan problem as the reference. We compare the solution of

coupling methods with a numerical solution of Stefan problem.

2.3 Discretization

2.3.1 Explicit method

We discretize the diffusion equation using forward in time and centred difference in

space. Let ib is the index at the interface. The numerical algorithm for diffusion equation

(2.35) in liquid domain:

(un+1
i – uni )

Δt
=

kl
(Δx)2

(uni+1 – 2uni + uni–1) (2.65)

The numerical algorithm for diffusion equation (2.36) in solid domain is:

(un+1
i – uni )

Δt
=

ks
(Δx)2

(uni+1 – 2uni + uni–1) (2.66)

The numerical algorithm for the Stefan condition ((2.38)) to compute the change in interface

is:

ρHf
(sn+1 – sn)

Δt
=

ks
Δx

(unib+1 – unib) –
kl
Δx

(unib – unib–1) (2.67)

where ks
Δx (unib+1 –unib) and

kl
Δx (unib –unib–1) are discretized using forward and backward finite

difference method, representing solid and liquid flux respectively.
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.
Figure 2.2: represents analytical solution for the Stefan problem. Red line represents diffusion of temperature and blue line s(t)
represents the position of interface. x axis denotes the domain, where left of s(t) is liquid and the right is solid. y axis denotes
the temperature
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.
Figure 2.3: Discretization of Stefan problem using explicit method. Red line represents diffusion of temperature and blue line
s(t) represents the position of interface. x axis denotes the domain, where left of s(t) is liquid and the right is solid and y axis
denotes the temperature
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2.3.2 Implicit method

Here we discretize the diffusion equation and Stefan condition using implicit method

in order to avoid instability in the explicit method. The principal reason for using implicit

solution methods, which are more complex to program and require more computational effort

in each solution step, is to allow for large time-step sizes.

However, in our study, we do not use implicit method as our interest is not to run our model

for long time steps, but to understand the loose and tight coupling methods with a moving

interface using Schwarz iterations. Therefore we use only explicit method to discretize Stefan

problem and coupling methods.

The numerical algorithm for heat equation in liquid region is

(un+1
i – uni )

Δt
=

kl
(Δx)2

(un+1
i+1 – 2un+1

i + un+1
i–1 ) (2.68)

The corresponding numerical algorithm for heat equation in solid is

(un+1
i – uni )

Δt
=

ks
(Δx)2

(un+1
i+1 – 2un+1

i + un+1
i–1 ) (2.69)

The numerical algorithm for Stefan condition

ρHf
(sn+1 – sn)

Δt
=

ks
Δx

(unib+1 – unib) –
kl
Δx

(un+1
ib – un+1

ib–1) (2.70)

Now, in chapter 3, we discuss the loose and tight coupling methods similar to non-overlapping

and overlapping Schwarz method respectively. However, these Schwarz methods [10], [11]

described in 3.3 are for a fixed interface, therefore in section 3.4.2 we derived the coupling

equation (3.15) for the moving interface. The results comparing these coupling method with

Stefan problem (in chapter 2) are further explained in chapter 4.



Chapter 3

Coupling Strategies

3.1 Introduction

The interaction of sea ice with ocean and atmosphere is one of the important interac-

tions among the models represent [43], [4], [44], [45]. This is because the sea ice forms an

interface between ocean and atmosphere and is responsible for exchange of heat, moisture

and momentum between them [43], [46], [47], [48]. The factors that effect sea-ice by thermal

processes are downward radiation, turbulent heat flux from the atmosphere, the oceanic heat

flux from below and by the dynamical processes are wind stress, ocean ice stress and internal

ice stress. The relationship between sea ice melt and the heat supplied to the upper ocean

from the atmosphere is explained in [49]. It also explains that during the ice melt season, the

upper ocean and sea ice are strongly coupled thermodynamically. In addition, the growth

and decay of sea ice affects the global thermohaline circulation and the intensity of oceanic

deep convection [50].

The study of sea-ice thermodynamics was started by classical Stefan problem (ex-

plained in Chapter 2) and the studies continued [51], [52], [53], [13], [54], [55], [56] are

useful to understand ice-ocean interactions, ice growth and meting, and mechanism of heat

exchange between ocean-ice. Some of the thermodynamic sea-ice models are further sum-

marised in [57]. Various numerical methods (say., explicit, implicit, semi-implicit) are used

to discretize the thermal interaction between ocean and ice models by exchanging tempera-

ture values and heat fluxes at the fixed interface between them [58] and the stability of these
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Solid phase (us < um)

Interface

Δxx=0 x=X
;

Figure 3.1: Stefan problem and Coupling strategies at t=0

methods are explained in [59] and [60]. These studies to couple ocean and ice subdomains

are applied only for a fixed interface between them. But in our study, we implement a mov-

ing interface between the two subdomains which is a more "realistic" case. Therefore, in

this chapter, we derive the coupling equation(3.15) in section 3.4 at the interface based on

first principle approach and implemented loose and tight coupling methods based on non-

overlapping and overlapping Schwarz methods respectively. The results of these coupling

methods are compared to the Stefan problem discussed in chapter 4.

3.2 Description of the model setup

Figure 3.1 shows the initial condition of the model, where the material is solid and the

interface is x = 0. Figure 3.2 represents the movement of the interface based on new interface

temperature. We impose a liquid temperature ul which is greater than melting temperature

um at x = 0. This results in an increase of temperature from the side x = 0, and when the

temperature reaches the melting point, the material starts melting into liquid. The interface

separates the two phases, where there is an exchange of temperature values and heat fluxes

between the liquid and solid domains.

We consider the same heat equations for liquid and solid domains as in (2.35) and (2.36)

respectively, but the interface condition in these coupling methods is different from Stefan’s

condition (2.38). For simplicity, the interface temperature in a Stefan problem is assumed to
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Liquid phase Solid phase

Interface

Heat flux

Temperature
value

Δx Δxx=0 x=X

Figure 3.2: Stefan problem and Coupling strategies at t>0.

be constant. We, on the other hand, implement loose and tight coupling methods in which

we compute the temperature at the interface using the coupling equation (3.15) derived

in section 3.4. In loose coupling, the coupling equation is discretized using low order finite

difference method, whereas in tight coupling, higher order finite difference is used to discretize

the coupling equation. The solutions to loose and tight coupling methods are compared to

the numerical solution of Stefan problem. In the following sections, we elaborate on the

implementation of loose and tight coupling methods.

3.3 Description of Schwarz iterative coupling

3.3.1 Schwarz method

Originally Schwarz methods are applied for stationary problems but now widely used

for time dependent problems [13]. The idea of Schwarz methods is to separate the whole

domain into two sub-domains, which are solved separately. An iteration process is then

applied to achieve convergence to the solution of original problem. The drawback of this

approach is its iterative nature, which increases the cost of coupling, especially when the

convergence is slow.

Schwarz method explained in chapter 1 is for atmosphere-ocean coupling [9], however this

numerical model is complex to understand. As a result, in this section we describe Schwarz

methods based on [10], [11], applied to a simple one dimensional diffusion equation.

The description of the domain and the equations below are taken from [10]. Consider a one
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.
Figure 3.3: Figure is taken from [10]. Decomposition of spatial domain Ω into two non-overlapping subdomains

dimensional diffusion equation in a bounded domain Ω, where Ω = ]L1, L2[,(L1,L2 ∈ R+)

with a diffusion coefficient D(x) > 0, x ∈ Ω. Let the diffusion equation be

Lu = ∂tu – ∂x(D(x)∂xu) = f in Ω× [0, T], (3.1)

The initial and boundary conditions respectively are:

u(x, 0) = u0(x) x ∈ Ω, (3.2)

B1u(–L1, t) = g1 B2u(L2, t) = g2 t ∈ [0, T], (3.3)

where B1 and B2 are two partial operators.

In order to apply Schwarz method, the domain Ω is divided into two non-overlapping domains

Ω1 and Ω2 (Figure 3.3). Each subdomain having its own diffusion coefficients Dj(x), (j =

1,2). These subdomains communicate through their common interface Γ = x = 0. A non-

overlapping global-in-time Schwarz algorithm is used to solve the corresponding coupling

problem [10], explained further in 3.3.1.1. This method consists in solving iteratively sub

problems in Ω1×[0, T ] and Ω2×[0, T ] using as an interface condition at x = 0 the values

computed at the previous iteration in the other subdomain.
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3.3.1.1 Non overlapping Schwarz method

Consider a operator L is split into two operators Lj = ∂t - ∂x(Dj(x) ∂x) restricted to

Ωj (j = 1, 2). Introducing the operators F1, F2, G1 and G2 to define the interface conditions,

the algorithm below is taken from [10]:

L1uk1 = f in Ω1 × [0, T] (3.4)

uk1(x, 0) = uo(x) x ∈ Ω1 (3.5)

B1uk1(–L1, t) = g1, t ∈ [0, T] (3.6)

F1uk1(0, t) = F2uk–12 (0, t) in Γ× [0, T], (3.7)

L2uk2 = f in Ω2 × [0, T] (3.8)

uk2(x, 0) = uo(x) x ∈ Ω2 (3.9)

B2uk2(L2, t) = g2, t ∈ [0, T] (3.10)

G2uk2(0, t) = G1uk1(0, t) in Γ× [0, T], (3.11)

where k = 1,2,.. is the iteration number and where the initial guess u02(0, t) is given. The

algorithm (3.4 - 3.11) is called the multiplicative form of the Schwarz method. The loose

coupling method, described in section 3.4.3 is similar to the non overlapping method, as there

is one grid point overlap between the two sub-domains. However, the method described in

this section is basically for a non-moving interface and Dirichlet boundary conditions. We

had the problem, that we needed to deal with fluxes over a moving boundary and therefore

we changed this scheme in our study.

3.3.1.2 Overlapping Schwarz method

The overlapping of adjacent subdomains Ω1, and Ω2 is performed on the region Ω12

and Ω21 (Figure 3.4) and then a Schwarz alternating procedure or similar algorithms can be

applied [33], [35]. Starting with an initial guess in one subdomain (say Ω1), the computed
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Figure 3.4: The above Figure is taken from [33]. Splitting the domain into Overlapping subdomains

field variables are used to supply the required boundary conditions for the neighbouring

(overlapped) subdomain Ω2. Alternatively, the solution constructed in Ω2, is employed to

update the boundary conditions in Ω1. The overall iteration is then repeated until conver-

gence. In the case of more than two subdomains they can be implemented in such a way that

half of them are treated in parallel. The convergence of Schwarz alternating algorithm has

been proven for the model Laplace equation [61] and for nonlinear elliptic equations in [62].

The convergence rate of the Schwarz algorithm improves exponentially with the overlapping

size [33], [34], [63],[35].

The tight coupling method, described in section 3.4.4 is similar to the overlapping method,

but with a moving boundary at the interface of two subdomains.

3.4 Coupling methods

3.4.1 Introduction

As a preliminary study, we considered a interface condition (B.1) from the literature[58].

This equation (B.1) computes the temperature at the interface based on exchanging fluxes

at the interface. However, this equation (B.1) from [58] is used to compute interface temper-
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ature for the case of fixed interface. Our problem deals with moving interface and therefore,

we derived a coupling equation (3.15) based on first principle approach, where interface

temperature is computed for a moving interface. Moreover, in the following sections, we

elaborate the further improvements like Schwarz iterations in section 3.3.1 to update the

boundary conditions at the interface and interpolation in section 3.4.5 to compute the new

interface position. We consider linear interpolation for loose coupling and higher order in-

terpolation for tight coupling to compute the new interface position.

We now apply a logic for implementing coupling methods which is different from the Stefan

problem (reference). The two sub-domains, liquid and solid are represented by independent

solvers, which communicate by exchanging boundary conditions at the interface. At the

interface, we consider one grid point overlap between the sub-domains and called it as loose

coupling. It is similar to non - overlapping Schwarz method, which is described in section

3.3.1.1. Loose coupling is widely used in coupling these days to couple various sub compo-

nents in climate models, for which they use a coupler. This coupler exchanges the averaged

fluxes at the boundary layer (one grid point). However, the method is different as our study

is focused on moving boundary at the interface. In addition, for tight coupling, we consider

five grid point overlap between the sub-domains in order to increase the overlap region at

the interface. It is similar to overlapping Schwarz method described in 3.3.1.2, but for a

moving interface.

Initially, only one grid point is liquid, and the other nx-1 grid points are considered to be

solid. The interface and its position needs to be determined as a diagnostic property after

solving the two independent problems and applying some physically meaningful exchange

mechanism. We consider Schwarz like iterations to update the boundary conditions at the

interface and interpolation to compute the new interface position. In the following sections,

we derive the coupling equation to compute the interface temperature, and thereby using

low and higher order finite difference methods to discretize the coupling equation for loose

and tight coupling methods respectively.
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3.4.2 Derivation of Coupling equation

The coupling equation for loose and tight coupling methods described in this section

is based on first principle approach. We assume that at any fixed time there is an interface

between the solid and the liquid phase of area A. Then we consider that the total energy

flux Q through that interface equals

Q = A · ρ Hf (3.12)

Where ρ is the density of the fluid (in our case we assume it to be normalized to ρ = 1) and

Hf is the latent heat, which is considered to be constant. A is the area of the interface, in

1D it is normalised to 1. With the same nomenclature described in Chapter 2 and 3, we also

assume that the heat fluxes out of each of the solid and liquid domains can be described by

fs = ks ·
∂us
∂x

, fl = kl ·
∂ul
∂x

,

Now, at any fixed time, the heat flux Q through the interface between the liquid and the

solid phase is given by the area integral

Q =

∫
A

[–f l · x̂ – fs · (–x̂)] dA.

where x̂ is the unit vector in the x direction. By energy conservation, we assume that the

total heat absorbed in equation (3.12) is equal to

Q = A · ρHf =

∫
A

[–f l · x̂ – fs · (–x̂)] dA (3.13)

= –

∫
A

kl
∂ul
∂x
· x̂ dA +

∫
A

ks
∂us
∂x
· x̂ dA (3.14)

Since we consider the function u is uniform throughout the area A, equation (3.14) can be

written as

ρHf = –kl
∂ul
∂x

+ ks
∂us
∂x

(3.15)
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3.4.3 Algorithm for loose coupling

In loose coupling, we discretize the equation (3.15) by using single order forward and

backward finite difference approximation to obtain the new temperature at the interface.

Δx ρ Hf + kl[ul(i) – ul(i – 1)] = ks[us(i + 1) – us(i)]

⇒ Δx ρ Hf + klul(i) + ksus(i) = klul(i – 1) + ksus(i + 1).

Since we know – from continuity considerations – that at the interface i we have ul(i) =

us(i) =: ū, we can now use as the new interface temperature

ū =
ksus(i + 1) + klul(i – 1) – ρ Hf Δx

kl + ks
(3.16)

3.4.4 Algorithm for tight coupling

In tight coupling, we discretize the coupling equation (3.15) by using second order finite

difference approximations to first order derivatives for liquid and solid fluxes.

for liquid domain(left) :

∂ul
∂x

=
1

2Δx
[3ul(i) – 4ul(i – 1) + ul(i – 2)]

for solid domain(right) :

∂us
∂x

=
1

2Δx
[–3us(i) – 4us(i + 1) – us(i + 2)]

Now, by replacing ∂ul
∂x and ∂us

∂x in (3.15), to obtain the new interface temperature

2 Δx ρ Hf = –3[ksus(i) + klul(i)] + 4ksus(i + 1) – ksus(i + 2) + uklul(i – 1) – klul(i – 2)

2 Δx ρ Hf + 3[ksus(i) + klul(i)] + 4ksus(i + 1) – ksus(i + 2) + uklul(i – 1) – klul(i – 2)

Since we know – from continuity considerations – that at the interface i we have ul(i) =

us(i) =: ū, we can now use as the new interface temperature

ū =
ks[4us(i + 1) – us(i + 2)] + kl[4ul(i – 1) – ul(i – 2)] – 2Δx ρ Hf

3[kl + ks]
(3.17)
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In further sections, we describe the interpolation to compute the new interface position. We

considered linear and higher order interpolation for loose and tight coupling respectively.

3.4.5 Interpolation

Interpolation is explained in this subsection based on the literature [64]. Consider a

unknown function f(x) for which there are values at (n+1) distinct points x0 < x1 <...< xn,

i.e., f(x0), . . . , f(xn) are given. The interpolation problem is to construct a function Q(x)

that passes through these points, i.e., to find a function Q(x) such that Q(xj) = f(xj), 0 ≤

j ≤n are satisfied. For example, consider (Figure 3.5) the values of a function that are pre-

scribed at two points: (x0, f(x0)) and (x1, f(x1)). There are infinitely many functions that

pass through these two points. However, if we limit ourselves to polynomials of degree less

than or equal to one, there is only one such function that passes through these two points,

it is the line that connects them. A line, in general, is a polynomial of degree one, but if the

two given values are equal, f(x0) = f(x1), the line that connects them is the constant Q0(x)

≡ f(x0), which is a polynomial of degree zero.

In the next subsections 3.4.5.1 and 3.4.5.2, we explain linear and higher order polynomial in-

terpolation. In loose and tight coupling methods, we use linear and higher order interpolation

respectively to determine the new position of the interface.

3.4.5.1 Linear Interpolation

From the Figure 3.6, we consider two known grid points (x0, y0), (x1, y1) , the distance

between these grid points is called the linear interpolate. For a value x in the interval (x0,

x1), the value y along the straight line is given from the equation of slopes

y – y0
x – x0

=
y1 – y0
x1 – x0

(3.18)

We solve the above equation for y, which is the unknown value at x, gives

y = y0 + (x – x0)
y1 – y0
x1 – x0

(3.19)
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.
Figure 3.5: The above figure is taken from [64]. The function f(x), the interpolation points x0, x1, x2 and the interpolating
polynomial Q(x)
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.
Figure 3.6: The figure is taken from [65]. Given the two red points, the blue line is the linear interpolation between the points,
and the value y at x may be found by linear interpolation
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It is the formula for linear interpolation in the interval (x0, x1). Now, let us consider the two

known points as (ip, uip) and (ip+1, uip+1), where ip and ip+1 are the left and right grid

points of interface position, and uip, uip+1 are temperatures at ip and ip+1 respectively. We

assume the temperature in between these grid points ip and ip+1 as melting temperature

um. Now, in loose coupling, we compute the position of the interface at temperature um

using linear interpolation.

3.4.5.2 Higher order Interpolation

We use fifth degree polynomial interpolation for tight coupling, as we consider five

overlapping grid points between the two domains. Consider a interpolating polynomial

P(x) of degree ≤ (n-1) that passes through n points (x1,y1 = f(x1)), (x2,y2=f(x2)), ...,

(xn,yn=f(xn)), and is given by

P(x) =
n∑

j=1

Pj(x) (3.20)

where

Pj(x) = yj

n∏
k=1,k6=j

x – xk
xj – xk

(3.21)

By writing it explicitly we get

P(x) =
(x – x2)(x – x3)...(x – xn)

(x1 – x2)(x1 – x3)...(x1 – xn)
y1 +

(x – x1)(x – x3)...(x – xn)

(x2 – x1)(x2 – x3)...(x2 – xn)
y2 + ... (3.22)

... +
(x – x1)(x – x2)...(x – xn)

(x1 – x2)(x1 – x3)...(x1 – xn)
yn

In tight coupling, we consider higher order polynomial to compute the new interface position.

Let us consider five overlapping points (ip-2, uip–2), (ip-1, uip–1), (ip, uip), (ip+1, uip+1),

(ip+2, uip+2) where uip–2, uip–1, uip, uip+1 and uip+2 are temperatures at ip-2, ip-1, ip,

ip+1 and ip+2 grid points respectively. Also consider that the interface position is passing

through these points and the temperature at the interface position uip is assumed to be

equal to melting temperature(um). Now, by using fifth order interpolation, we compute new

interface position at temperature uip.
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The Figure 3.7 compares the results of numerical solution of Stefan problem (a), solution of

loose(b) and tight coupling(c). We further discuss the results in chapter 4.
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(a)

(b)

(c)

Figure 3.7: Comparing the results of (a) Numerical solution of two phase Stefan problem, (b) Solution of loose coupling, (c)
Solution of tight coupling at t ≈ 1. The red line represents temperature and the blue line represents the position of the interface.



Chapter 4

Discussion

4.1 Numerical tests

Figure 3.7 in chapter 3 shows the results of numerical solution of Stefan problem (a),

solution of loose (b) and tight coupling (c). We observe that we cannot draw conclusions

from the results of coupling solutions (b) and (c) as both the temperature and position of

the interface in coupling methods does not look similar to the reference (a). Therefore, we

further analyse the results in the following sections. The convergence rate is given by the ratio

between the discontinuous diffusion coefficients (kl/ks) [10]. The convergence properties of

the coupling problem have been extensively studied in the case of constant and continuous

diffusion coefficients [12]. There is another parameter from the coupling equation (3.15),

latent heat content Hf which explains about the energy transfer between the liquid and

solid subdomains. Moreover, Hf effects the speed of the movement of the interface, shown in

Figures. Therefore, we study the behaviour of the coupling methods and Stefan problem with

respect to the parameters of the diffusion equation. In this chapter, we conduct sensitivity

experiments for the parameters involved and so we considered different ratios of diffusion

coefficients kl/ks ≈ 1, kl/ks = 2,5,10 and different values of latent heat Hf = 1,10 and 20

and compared the results of numerical solution of Stefan problem and coupling solutions.

Also, we analysed the results of interface position, L∞ norm for interface and L2 norm for

temperature in section 4.1.1, 4.1.2 and 4.1.3 respectively.
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4.1.1 Interface Position

Figure 4.1 shows the results for the interface position comparing the loose (blue) and

tight (red) coupling methods to the solution of Stefan problem as the reference solution

(black) for different ratios of diffusion coefficients (kl/ks) and with different values of Hf .

In Figure 4.1, we observe that when the ratio of (kl/ks) ≈ 1 in (a), (b), (c), the interface

position s(t) for tight moves closer to the reference as the Hf value increases, whereas s(t)

for loose moves away from the reference as the Hf value increases. Also, when the ratio of

diffusion coefficients kl/ks = 2 in (d), (e), (f), the position of interface s(t) for tight moves

closer and moves away for loose when compared to the reference as the latent heat Hf in-

creases. However, when the ratio kl/ks = 5 in (g), (h), (i), we observe that the s(t) for tight

moves away from the reference as Hf increases, whereas s(t) for loose moves close to the

reference as Hf increases. Similarly, for kl/ks = 10 in (j), (k), (l), the interface position for

tight gradually deviates away from the reference, whereas it moves closer for loose as the Hf

value increases.

Therefore, from the above results, we can say that as the ratio of diffusion coefficients

of liquid and solid domains kl/ks increases, the solution for loose coupling looks better as

the latent heat Hf increases. Whereas, the solution of tight coupling looks better for the

smaller ratios of diffusion coefficients (kl/ks ≈ 1, kl/ks) = 2) as the latent heat increases.

Though the literature [10] shows that the convergence rate to the reference increases using

Schwarz iteration method when the ratio of the discontinuous diffusion coefficients (kl/ks)

≈ 1. However this is true for a fixed and non overlapping interface. In our case, we have

compared different coupling methods with moving boundary interface, thereby the results

shows the tight coupling looks better for smaller ratios of diffusion coefficients and loose

coupling solution looks better for relatively larger ratios, when compared to the reference.

Also, as Hf increases, the amount of energy transfer between the subdomains increases, which
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could have increased the movement of the interface s(t) towards the reference for tight when

kl/ks ≈ 1 and for loose when kl/ks increases to 5,10.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.1: Comparing interface position of Stefan problem (black),loose coupling (blue) and tight coupling solutions (red) at

different ratios of diffusion coefficients and latent heat of fusion Hf. kl/ks ≈ 1 for (a) Hf = 1, (b) Hf = 10, (c) Hf = 20. kl/ks

= 2 for (d) Hf = 1, (e) Hf = 10, (f) Hf = 20. kl/ks = 5 for (g) Hf = 1, (h) Hf = 10, (i) Hf = 20. kl/ks = 10 for (j) Hf = 1, (k)

Hf = 10, (l) Hf = 20.
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4.1.2 L∞ - norm

In this section, we consider L∞ norm for the interface in order to detect the phase

errors more clearly. Let s(t)reference be the interface position s(t) for the Stefan problem and

s(t)coupling be the interface position of loose (blue) and tight (red) coupling methods. The

L∞ norm for the interface s(t) at time tn is given by

||s(t)||L∞ = max[s(tn)reference – s(tn)coupling] (4.1)

Figure 4.2 shows the results of L∞ norm for the interface comparing between the reference to

loose (in blue) and tight (red) coupling solutions for different ratios of diffusion coefficients

(kl/ks) = (a) ≈ 1, (b) 2, (c) 5, (d) 10 and different values of latent heat Hf = 1, 10 and

20. In Figure 4.2 in (a), (b), and (c), when the ratio kl/ks ≈ 1 and as the Hf increases, we

observe that the error for loose slightly increases, whereas for tight, the error approximately

maintained at zero as Hf increases. Also, when the ratio kl/ks = 2 in (d), (e), and (f), the

error for tight reaches to zero and the error for loose gradually increases as the Hf value

increases. However, when kl/ks = 5 in (g), (h), (i), as Hf increases, it shows that the error

for both tight and loose slightly deviates from zero but when compared to (a), (b) and (c),

it seems that loose is better in (g), (h), (i). Similarly, in (j), (k) and (l), when the ratio

kl/ks = 10, we observe that the error for loose reaches to approximately zero as Hf increases,

whereas for tight, the error slightly deviates from zero.

From the results, we can say that when the ratio kl/ks ≈ 1 and kl/ks = 2, tight coupling

looks better with zero error as Hf increases. Whereas, as the ratio increases (kl/ks = 5, 10),

we observe that the error for loose reaches to zero as Hf increases. From the above results,

we may say that, as the value of Hf increases, the L∞ error norm reaches approximately

to zero for tight when the ratio kl/ks ≈ 1 and kl/ks = 2. But as the ratio kl/ks increases,

the L∞ error norm reaches approximately to zero for loose as the value of Hf increases.

As explained in section 4.1.1, as the latent heat Hf increases, the amount of energy transfer
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between the subdomains increases, which could have increased the movement of the interface

s(t) towards the reference for tight when kl/ks ≈ 1 and for loose when kl/ks increases to 5,

10. Therefore, resulting in approximately zero L∞ norm for tight when the ratio kl/ks ≈

1 and kl/ks = 2. Similarly, the increased value of latent heat Hf resulted to approximately

zero L∞ norm for loose when kl/ks increases to 5, 10.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.2: Comparing L_infinity of Stefan problem (Black),loose coupling (Blue) and tight coupling solutions (Red) at different

ratios of diffusion coefficients and latent heat of fusion Hf. kl/ks ≈ 1 for (a) Hf = 1, (b) Hf = 10, (c) Hf = 20. kl/ks = 2 for

(d) Hf = 1, (e) Hf = 10, (f) Hf = 20. kl/ks = 5 for (g) Hf = 1, (h) Hf = 10, (i) Hf = 20. kl/ks = 10 for (j) Hf = 1, (k) Hf =

10, (l) Hf = 20.
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4.1.3 L2-error norm

In order to investigate the relative error between the reference and the coupling meth-

ods, we consider L2-error norm, i.e., the root mean square error, for the temperature. Let

ureference be the numerical solution of the Stefan problem and ucoupling be the solution for

loose and tight coupling methods. The relative L2-error norm at time tn for nx (number of

grid points) is given by

||ureference – ucoupling||2L2 =

∑nx
i=1 |ui,reference – ui,coupling|2∑nx

i=1 |ui,reference|2
(4.2)

Figure 4.3 compares the relative error (L2 norm) between the coupling methods (loose (blue)

and tight (red) and reference solution for different ratios of diffusion coefficients((kl/ks) and

values of latent heat Hf . In Figure 4.3 (a), (b) and (c), we observe that, as Hf increases for

the ratio kl/ks ≈ 1, the relative error for tight gradually decreases, but increases for loose.

The jump in (c) for loose is due to large time step. Also, when the ratio kl/ks = 2 in (d), (e),

(f), the relative error for tight gradually decreases and the error for loose increases. However,

when the ratio of diffusion coefficients kl/ks = 5, in (g), (h), (i), we observe that as the value

of Hf increases, the relative error for tight increases and decreases for loose. Similarly, when

kl/ks = 10 in (j), (k) and (l), the relative error increases for tight and decreases for loose as

the value of Hf increases.

From these results, we can say that, as the value of Hf increases, the relative error

decreases for tight when the ratio kl/ks ≈ 1 and kl/ks = 2. Whereas, the relative error

decreases for loose when the ratio kl/ks = 5, 10 and value of Hf increases. As explained

in section 4.1.1 and 4.1.2, as Hf increases, the amount of energy transfer between the sub-

domains increases, which could have increased the movement of the interface s(t) towards

the reference for tight when kl/ks ≈ 1 and kl/ks = 2. Similarly, increases the movement of

interface towards the reference for loose when kl/ks increases to 5 and 10. This movement

of the interface position could have effected the value of temperature at the interface from
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equations 3.16 and 3.17 for loose and tight coupling respectively. Thereby, producing similar

results as in 4.1.1 and 4.1.2 i.e; resulted in less relative error for tight when the ratio kl/ks

≈ 1 and kl/ks = 2 as Hf increases and less relative error for loose when ratio increases to 5

and 10 when the latent heat Hf increases.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.3: Comparing L2 error between the reference and loose (blue) and tight coupling (red) solutions at different ratios of

diffusion coefficients and latent heat of fusion Hf. kl/ks ≈ 1 for (a) Hf = 1, (b) Hf = 10, (c) Hf = 20. kl/ks = 2 for (d) Hf = 1,

(e) Hf = 10, (f) Hf = 20. kl/ks = 5 for (g) Hf = 1, (h) Hf = 10, (i) Hf = 20. kl/ks = 10 for (j) Hf = 1, (k) Hf = 10, (l) Hf = 20.
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4.2 Conclusions

One of the conclusions of our thesis: The studies from [33], [34], [63],[35] showed that a

large overlap between the sub-domains can improve the accuracy of a coupling method with

fixed interface. However, our results showed that an increase of overlap in tight coupling

with a moving interface may not contribute to the improvement of coupling solution. It can

be explained as follows: The results of sensitivity experiments looks better for tight coupling

with the smaller ratios of diffusion coefficients (kl/ks ≈ 1 and kl/ks = 2) and as the latent

heat value (Hf) increases from 1 to 20. With smaller diffusion ratios, we observed that the

tight coupling solutions shows kink at the interface, which allows for a sharp transition. Also,

as the latent heat Hf increases, the amount of energy transfer between the sub-domains in-

creases, which could have increased the movement of the interface s(t) towards the reference

for tight coupling. Moreover, due to the large overlap and interpolation at the interface, the

kink gets smoothed between the subdomains, resulting in smaller deviation from the refer-

ence compared to loose coupling. However, these results are not accurate as the smoothing

of kink due to large overlap and interpolation does not represent the physical behaviour. As

the ratio increases (kl/ks = 5 and kl/ks = 10), the kink between the two subdomains gets

more pronounced at the interface. Also, as the Hf increases, even with larger overlap and

interpolation at the interface, the tight coupling solution does not improve its solution when

compared to results with smaller ratios. For higher ratios, the loose coupling solution with

one grid point overlap looks better compared to tight coupling, producing less deviation from

interface and less error as the latent heat increases. From these results, we conclude that the

increase in overlap with a moving interface (tight coupling) may not improve the coupling

solution due to the pronounced kinks formed due to higher ratios of diffusion coefficients and

the moving boundary at the interface.

Other part of the conclusion of our study: The studies from [10], [11], [9] showed that
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the iterative method provides stable and consistent coupling solution with a fixed interface

between the subdomains. Our study attempts to see if we could improve the coupling using

iterative method. We used iteration method to update the boundary conditions at the

moving interface. However, from the results we noticed that the pronounced kink formed

due to the diffusion coefficients and moving interface does not contribute to the improvement

of solution, even though the iterations were used at the interface. Therefore, we conclude

that the iterative method may not improve the coupling solution with a moving interface,

at least with our simple test case.



Appendix A

Domain decomposition method (DDM)

A.1 Introduction

In Appendix A and B, we describe our preliminary results which explains our failed

ideas to test coupling. In Appendix A, we started with implementing DDM to a stationary

problem, 1D Poisson equation[66] and later extended DDM to time dependent problem, 1D

parabolic equation[10], [67]. These results are for a fixed interface, comparing with larger

overlap and with a number of iterations. Later, we tried to couple shallow water equation

for atmosphere and ocean, which did not work because there is only one point (in the ver-

tical) that can be coupled - so no freedom to iterate over. Therefore, we used coupling idea

based on [68] and [69], further explained in A.2.3. As mentioned in Chapter 1, our study is

intended to see if iterative method could improve the coupling solution for a problem with a

moving interface. In order to implement this, we used a interface condition (B.1) from the

literature [58]. The interface condition (B.1) is valid only for the case of fixed interface and

therefore we implemented a criteria to move the interface. However, it is not accurate way

to represent the moving interface, but nevertheless important to document our failed idea

(Appendix B).

In 1870, H.A.Schwarz introduced an iteration over a decomposition of the domain, for solving

Laplace’s equation [13]. In the earlier, the use of this idea was to prove the existence and

uniqueness of the solution on domains that are unions of simple geometries [63], [70]. More

than a century later, domain decomposition methods came back to interest and are now an
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active area of research, for developing efficient solvers for partial differential equations. The

idea of Schwarz decomposition methods is to separate the original problem on a domain into

sub-domains (sub-problems) which can be solved separately. An iterative process is then

applied to achieve convergence to the solution of the original problem. There are two main

classical Schwarz methods at the continuous level: the alternating Schwarz method invented

by Schwarz in [71] as a mathematical tool, and the parallel Schwarz method introduced by

[36] for the purpose of parallel computing. The convergence rate of these Schwarz methods

depends on the transmission conditions employed between subdomains [13]. Domain decom-

position methods are divided into overlapping and non overlapping methods. These methods

uses alternatively the solution on one subdomain to update the Dirichlet data of the other.

The rate of convergence of Schwarz method depends upon the overlapping length between

the subdomains [62]. Originally these methods are introduced for stationary problems, but

recently extended to time dependent problems to provide a global-in-time Schwarz method

[13]. According to Lemarie [9], the adaptation of Schwarz domain decomposition methods

obtain a stable and consistent coupling method. These methods are now widely used for

coupling problems.

In this Chapter, we explain the implementation of the domain decomposition methods to 1D

poisson, parabolic and shallow water equations. The preliminary results compares the solu-

tion of these equations between with and without decomposition methods, however there is

no reference to compare these solutions. Also, our interest lies in understanding the coupling

using iterative method for a moving interface (refer to motivation in Chapter 1). Therefore,

after a rigorous literature review, we found a Stefan problem, with a moving interface. It

provides a consistent and energy conserving solution (explained in Chapter 2). As a result,

we use the solution of Stefan problem as a reference to our coupling methods (explained in

Chapters 3 and 4).

Figure A.1 shows the original domain used by Schwarz, with the associated domain decom-

position into two subdomains, which are geometrically much simpler, namely a disk Ω1 and
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.
Figure A.1: The Figure is taken from [13]. The first domain decomposition method was introduced by Schwarz for a complicated
domain,composed of two simple ones, namely a disk and a rectangle.

a rectangle Ω2, with interfaces Γ1 = ∂Ω1 ∩ Ω2 and Γ2 = ∂Ω2 ∩ Ω1. The equations below

are taken from [13].

Δu = 0 in Ω, u = g on ∂Ω (A.1)

where Δu = 0 is the Laplace equation on a bounded domain Ω with Dirichlet boundary

conditions u = g on ∂Ω. By using alternating Schwarz method, an iterative method which

only uses solutions on the disk and the rectangle, where solutions can be obtained using

Fourier series [13].

Δun+1
1 = 0 in Ω1, (A.2)

Δun+1
2 = 0 in Ω2, (A.3)

un+1
1 = un2 on Γ1, (A.4)

un+1
2 = un+1

1 on Γ2, (A.5)

The method starts with an initial guess u02 along Γ1 (Figure A.1), and then computes it-

eratively for n = 0,1,..the iterates un+1
1 and un+1

2 according to the algorithm (A.2 - A.5),

where it is omitted from now on for simplicity that both un+1
1 and un+1

2 satisfy the given

Dirichlet condition in (A.1) on the outer boundaries of the respective subdomains. There

is another method, called parallel Schwarz method, in contrast to the alternating Schwarz
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method. From the Figure A.1, the method is given by [13]

Δun+1
1 = 0 in Ω1, (A.6)

Δun+1
2 = 0 in Ω2, (A.7)

un+1
1 = un2 on Γ1, (A.8)

un+1
2 = un1 on Γ2, (A.9)

The only change is the iteration index in the second transmission condition, which makes

this method parallel: given initial guesses u01 and u2
0, one can now simultaneously compute,

for n = 0,1,.. both subdomain solutions in parallel. In this simple two subdomain case, there

is, however, no gain, since the sequence computed on Ω1 every two steps coincides with the

sequence computed on Ω1 by the alternating Schwarz method.

A.2 Application of DDM

A.2.1 Poisson equation

In this section, we discuss the idea of domain decomposition method to 1D Poisson’s

equation [66]. Consider the problem associated with finding the solution of poisson’s equation

for a rectange. The problem is solved according to [66]:

Δu = f in Ω (A.10)

u = g on ∂Ω

The basic strategy of the domain decomposition procedure is to decompose the region into

two pieces Ω1 and Ω2 and construct a solution to (A.10) by taking the union of solutions

to (A.10) on sub-domains. If the domain is split up into two pieces, then the sub-domain

problems are specified as follows:

Δui = f i in Ωi (A.11)
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Figure A.2: The Figure is taken from[66]. Basic strategy of Domain decomposition method

ui = g on ∂Ωi/Γ

ui = uΓ on ∂Γ

for i = 1,2 and Γ is the interface between the two sub-domains (Figure A.2).The difficulty in

implementing this technique is the determination of the boundary values uΓ. So, they[66] find

the equations which satisfy the uΓ and then solve these equations. With the uΓ determined,

the complete solution over the domain is obtained by solving (A.11) for u1 and u2. The

equations which determine uΓ are the equations which ensure that if they are solved, and

these values are used in the two boundary value problems (A.11), then the resulting solutions

combine to form a solution on the whole domain. For the two solutions of (A.11), u1 and u2

are to be combined to form a solution of the problem on the whole domain and they must

be continuous and their normal derivatives must also be continuous across the interface Γ.

The condition at the overlap region Γ are taken from [66] :

u1 = u2 on Γ (A.12)

∂u1
∂n

= –
∂u2
∂n

on Γ (A.13)

We assume that u1 = u2 = uΓ along Γ, so that (A.12) is satisfied. These conditions are

called the "transmission" or "flux" boundary conditions, which determine the equations for

uΓ.
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Now in Figure A.3, we considered 100 grid points for the 1D domain, the whole domain x

∈ (a,b) is divided into two sub-domains. We discretize the equation (A.14) using implicit

method using boundary conditions (A.15). Here we observe from the equations that we use

same coefficients unlike in the Stefan problem , loose and tight coupling methods we have

described in Chapter 2 - 4. Below are the 1D Poisson equation A.14 and boundary conditions

A.15 we considered.

–
∂2ui
∂x2

= f, i = 1, 2 x ∈ (a, b) (A.14)

u1(a) = 0, u2(b) = 1 (A.15)

We write the linear system of equations in matrix-vector form Au = f, where A is coefficient

matrix, u is the solution matrix and f is vector matrix.

–1 –2 –1 0 . .

0 –1 –2 –1 0

0 0 –1 –2 –1

... ... ... ... ...

... ... ... ... ...

0 0 . –1 –2





u0

...

...

...

...

un


=



f0

...

...

...

...

fn


(A.16)

The matrix is similar for the two subdmomains which computes the solution for Poisson

equation. Now, at the overlap region we consider Dirchlet boundary conditions (A.17) and

(A.18) to exchange values at the interface at each iteration between the sub-domains.

The Boundary conditions at the interface are specified as follows:

u
(n+1)
1 = u

(n)
2 (A.17)

u
(n+1)
2 = u

(n+1)
1 (A.18)

Figure A.3 compares with and without domain decomposition methods for the solution of 1D

Poisson equation. We considered 10 iterations for the decomposition methods, and compared
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to the solutions by increasing the overlap region. However there is no reference solution to

compare both these results.

A.2.2 Parabolic equation

In the similar way as above sub section A.2.1, we consider DDM for 1D parabolic

equation. We divide the whole domain u[0, π] into two subdoamins u1 and u2 with the space

step Δx and the time step Δt, to solve the following 1D parabolic equation (A.19). We

discretize the equation using finite differences and with the following initial condition (A.20)

and boundary conditions (A.21).

∂ui
∂t

= K
∂2ui
∂x2i

, i = 1, 2 x ∈ (0, π) , t ∈ (0, T) (A.19)

u1(x, 0) = u2(x, 0) = sin(x), x ∈ (0, π) (A.20)

u1(0, t) = u2(π, t) = 0, t ∈ (0, T] (A.21)

We write the linear system of equations in matrix-vector form Au = f similar to (A.16),

where A is coefficient matrix, u is the solution matrix and f is vector matrix. The matrix is

similar for the two sub-domains (Aun+1
1 = un1 and Aun+1

2 = un2) which computes the solution

for Parabolic equation.

1 + 2p –p 0 . .

–p 1 + 2p –p 0 .

0 –p 1 + 2p –p .

... ... ... ... ...

... ... ... ... ...
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(A.22)

where p = k Δt
(Δx)2

Now, at the overlap region we consider Dirchlet boundary conditions

(A.23) to each exchange values at the interface at each iteration between the subdomains.
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Figure A.3: Comparing solution of Poisson equation with and without domain decomposition method. x axis denotes grid
points and y axis denotes the solution of Poisson equation.
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The Boundary conditions at the interface are specified as follows:

un+1
1 = un2 , un+1

2 = un+1
1 (A.23)

Figure A.4 represents the preliminary result showing the implementation of domain decom-

position to the solution of 1D heat equation at each time step where t20 > t19 > ...t1.

However there is no reference (like Stefan problem) to compare these solutions.

A.2.3 Shallow water equation

Shallow water equations are hyperbolic type of equations. The equations are derived

from depth-integrating the Navier Stokes equations, in the case where the horizontal length

scale is much greater than the vertical length scale.The shallow water equations are derived

from equations of conservation of mass and conservation of linear momentum (the NavierâS-

tokes equations). Situations in fluid dynamics where the horizontal length scale is much

greater than the vertical length scale are common, so the shallow water equations are widely

applicable. They are used with Coriolis forces in atmospheric and oceanic modelling, as a

simplification of the primitive equations of atmospheric flow.

We tried to couple shallow water equation for atmosphere and ocean, which did not work

because there is only one point (in the vertical) that can be coupled - so no freedom to

iterate over. Therefore, we used coupling idea based on [68] and [69]. In this section, we

consider two superposed one-layer fine-resolution shallow-water models and their coupling

according to [68] and [69]. The upper layer represents the atmosphere and the lower layer

the ocean, with their only interaction being through a frictional force at the interface, which

is parametrized by a quadratic drag law. In this paper [69], the drag coefficient over the

surface according is based on [72]. This physical model can be described by two coupled
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Figure A.4: Solution of 1D Parabolic equation with domain decomposition method at t20 > t19 >..t1. x axis denotes grid
points and y axis denotes the solution of Parabolic equation.
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reduced-gravity shallow water equations[69],

∂uk

∂t
= gk

∂hk

∂x
+ Fk

x (A.24)

∂hk

∂t
= Hk∂uk

∂x
(A.25)

where

k represents atmosphere and ocean respectively(a,o)

u is the velocity in the x direction, or zonal velocity

h is the height deviation of the horizontal pressure surface from its mean height H: η = H

+h

H is the mean height of the horizontal pressure surface

g is the acceleration due to gravity

Initially the atmosphere is considered to be moving with a constant velocity 1m/s and ocean

is at rest. The equations are discretized by Lax-Friedrichs schemes with initial conditions

for velocity (A.26) and height (A.27) for atmosphere and ocean. The boundary conditions

are considered to be periodic [69].

ua(x, 0) = 1, uo(x, 0) = 0 (A.26)

ha(x, 0) = exp(–(x – 50)2), ho(x, 0) = 0 (A.27)

Concerning the atmosphere, a Dirichlet boundary condition is imposed, which means the

wind is supposed to vanish at the surface, without considering the direct effect of ocean

currents. For the ocean, a Neumann boundary condition is imposed; that is, the shear of the

atmosphere on the ocean is applied to the ocean. In one-way interactions, the shear applied

to the atmosphere neglects the effects of ocean currents; the ocean is a rough motionless

surface. In two-way interactions, the shear applied to the atmosphere is opposite the shear

applied to the ocean. Here [69], one way interaction is considered where the two layers are

only coupled by frictional forces at the interface, parameterized by a quadratic drag law.
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The frictional acceleration between the two layers are taken from [69] and are defined as

Fk
x = ± 1

ρkhk
(fkx) (A.28)

where fx is the surface force depending on x, ρa and ρo are densities for atmosphere and

ocean respectively. The shear applied to the ocean is calculated using the velocity difference

between wind and ocean current

fox = ρaCd|u|(uo – ua) (A.29)

where |u| =
√

(uo – ua)2. The drag coefficient is constant in our calculations : Cd = 8 ×

10–4 is a classical value [72]. We have considered one-way interaction, shear applied to the

atmosphere neglects the effects of ocean currents

fax = ρaCd

√
(ua)2(–ua) (A.30)

Figure A.2.3 represents the initial conditions for velocity and height profile for atmosphere

and ocean. From Figure A.6, we observe that at time t = 1, the coupling between lower

atmosphere and upper ocean surfaces through frictional forces.

For more realistic representation, we drop the assumption which states that atmospheric

pressure is constant. For a shallow homogeneous ocean, the momentum equation becomes

∂uo

∂t
= go

∂ho

∂x
+ ga

∂ha

∂x
(A.31)

∂ho

∂t
= Ho∂uo

∂x
(A.32)

These are similar to earthquake generated tsunamis, but caused by air pressure disturbances

often caused by fast moving weather. Meteotsunamis are generated by meteorological events,

particularly moving pressure disturbances due to squalls, thunderstorms, frontal passages

and atmospheric gravity waves. Relatively small initial sea-level perturbations, of the order

of a few centimetres, can increase significantly through multi-resonant phenomena to create

destructive events through the superposition of different factors. These disturbances can
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generate waves in the ocean that travel at the same speed as the overhead weather system.

A key factor in the generation of meteotsunamis is the speed of the pressure disturbance

relative to the phase speed of long waves in the ocean. When the speed of the pressure

disturbance approaches the long-wave speed, the coupled wave becomes amplified: an effect

termed Proudman resonance [73]. In Figure A.7, we represent the effects of atmosphere

pressure on the ocean velocity and height profile.

These coupling ideas are the preliminary results based on research performed on a fixed

interface [66], [10]. Also, the iteration method applied to 1D poisson and parabolic equation

are with same coefficients for both the subdomains. As mentioned above, we could not apply

the iterative method to shallow water equations and we used the coupling based on [68] and

[69]. Our interest lies in coupling two subdomains with different diffusion coefficients with

a moving interface in order to model a more "realistic" test case. Now, in Appendix B, we

further explain our failed ideas for coupling two subdomains with a moving interface.
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Figure A.5: Initial conditions of velocity and height for atmosphere and ocean. x axis denotes the domain and y axis denotes
the velocity and height profile of atmosphere and ocean.
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Figure A.6: One way interaction between atmosphere and ocean through momentum flux. x axis denotes the domain and y
axis denotes the velocity and height profile of atmosphere and ocean.

Figure A.7: Effect of pressure forcing term on ocean. x axis denotes the domain and y axis denotes the velocity and height
profile of atmosphere and ocean.



Appendix B

Coupling Strategies we tried

B.1 Introduction

After we tested our coupling ideas to equations with a fixed interface in Appendix A

as a preliminary result, we further tested our coupling idea to couple 1D diffusion equation

with different diffusion coefficients with a moving boundary at the interface. From the

literature, we found a interface condition (B.1) from [58] which couples diffusion equations

with different diffusion coefficients at the interface, thereby computes interface temperature.

However, this equation computes interface temperature for a fixed interface. This Chapter

describes our failed idea to implement moving boundary at the interface. As a preliminary

result, we considered coupling equation for the fixed interface to couple diffusion equations.

Then in order to move the interface, we used a criteria at the interface: When the interface

temperature is greater than melting temperature, we consider that the interface position

moves to the right side of the domain resulting in melting of the solid domain. When the

interface temperature is less than the melting temperature, we considered that interface

position moves to the left representing freezing of liquid domain. We implemented these

ideas to two coupling methods., say loose and tight coupling. In loose coupling, we consider

one grid point overlap between the subdomains. In addition, we implemented tight coupling

where we considered larger overlap with five grid point overlap. We realise that the coupling

equation (B.1) for a moving interface and our criteria to move the interface is not accurate,

however we think that it is important to document our failed ideas. Since our results in
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this Chapter are only the implementation of our failed ideas, we do not proceed further to

analyse these results with the Stefan problem (reference).

The heat equation for liquid and solid domains is same as in (2.35) and (2.36) respectively.

As a preliminary result, we used the coupling equation (B.1) for the fixed interface from the

literature [58]
∂u

∂t
= (ks

∂u

∂x
– kl

∂u

∂x
) . (B.1)

However, the equation (B.1) is not suitable for our case, as we are dealing with a moving

interface. As a result, we derived the coupling using First principle approach, described in

chapter 3 and 4. In the further sections, we explained loose and tight coupling methods we

tried using the above equation (B.1).

B.2 Coupling methods tried

B.2.1 Loose Coupling

We discretize the diffusion equation using forward in time and centred difference in

space similar to 2.65 and 2.66. Let ib is the index at the interface. At the interface, we

discretise the equation B.1, however the equation B.1 does not fit to our moving interface

and thereby we use the equation 3.15 in chapter 3

The numerical algorithm for diffusion equation (2.35) in liquid domain:

(un+1
i – uni )

Δt
=

kl
(Δx)2

(uni+1 – 2uni + uni–1) (B.2)

The numerical algorithm for diffusion equation (2.36) in solid domain is:

(un+1
i – uni )

Δt
=

ks
(Δx)2

(uni+1 – 2uni + uni–1) (B.3)

The numerical algorithm at the interface to compute the temperature at the interface,

(un+1
ib – unib)

Δt
=

ks
Δx

(unib+1 – unib) –
kl
Δx

(unib – unib–1) (B.4)
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where Δt and Δx are the temporal and spatial step size respectively. The interface temper-

ature (un+1
ib ) obtained from (B.4) is for fixed interface. In order to move the interface, we

used the following condition:

i f uib
n+1 ≥ um :

ib = ib+1

e l i f uib
n+1 < um :

ib = ib –1

If the interface temperature is greater than melting temperature, we consider it to move

to right of the domain resulting in melting. If not, to the left showing freezing. However

this process of moving the interface position may not be correct and the correction of this

method is described in chapter 3.

B.2.2 Implicit Algorithm for coupling

We consider an algorithm which i implicit on both sides of the interface, but with

explicit updating of the data used at the interface. The numerical algorithm for diffusion

equation (2.35) in liquid domain:

(un+1
i – uni )

Δt
=

kl
(Δx)2

(uni+1 – 2uni + uni–1) (B.5)

The numerical algorithm for diffusion equation (2.36) in solid domain is:

(un+1
i – uni )

Δt
=

ks
(Δx)2

(uni+1 – 2uni + uni–1) (B.6)

The numerical algorithm at the interface to compute the temperature at the interface,

(un+1
ib – unib)

Δt
=

ks
Δx

(unib+1 – unib) –
kl
Δx

(un+1
ib – un+1

ib–1) (B.7)

The interface temperature (un+1
ib ) obtained from (B.7) is for fixed interface. In order to move

the interface, we used the following condition:
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.
Figure B.1: Solution of loose coupling method using explicit method at t ≈ 1. Red line represents diffusion of temperature and
blue line represents the position of interface
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i f un+1
ib ≥ um :

ib = ib+1

e l i f un+1
ib < um :

ib = ib –1

However this process of moving the interface position to one grid point may not be correct

and the correction of this method is described in chapter 3.

B.3 Tight Coupling

In order to achieve higher order accuracy, better approximations of the derivatives are

used. We consider fourth order central difference approximations for first order derivatives

to calculate solid and liquid fluxes. These approximations use five point stencils in 1D. We

consider forward in time and centred difference in space for discretization of solid and liquid

domains.

The numerical algorithm for diffusion equation (2.35) in liquid domain:

(un+1
i – uni )

Δt
=

kl
(Δx)2

(uni+1 – 2uni + uni–1) (B.8)

The numerical algorithm for diffusion equation (2.36) in solid domain is:

(un+1
i – uni )

Δt
=

ks
(Δx)2

(uni+1 – 2uni + uni–1) (B.9)

At the interface, we consider the higher order derivative over the interface, but this is not

really defined, since there is a phase change at the interface, which is mathematically a

discontinuity (at least in the derivative). So, what we did was that we compared the left

side derivative with the right side derivative.

Δx

Δt
(un+1

ib –unib) =
ks
Δx

(
unib–2

12
–2

unib–1
3

–2
unib+1

3
+

unib+2

12
)–

kl
Δx

(
unib–2

12
–2

unib–1
3

–2
unib+1

3
+

unib+2

12
), i = ib

(B.10)

In order to change the position of the interface based on the interface temperature, we used

the following code at the interface.
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.
Figure B.2: Solution of loose coupling method using implicit method at t ≈ 1. Red line represents diffusion of temperature and
blue line represents the position of interface
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i f uib
n+1 ≥ um :

ib = ib+1

e l i f uib
n+1 < um :

ib = ib –1

B.4 Problems Encountered

We have encountered some problems in the implementation of the interface condition

(B.1) in these coupling methods. The Stefan condition (2.38) is used to determine the

new interface position s(t) based on the temperature gradients of liquid and solid domains.

Whereas the interface condition (B.1) in the coupling methods computes the temperature

at the fixed interface based on exchanging fluxes at the interface [58]. In order to compare

the results of coupling methods to solution of Stefan problem, the interface position in (B.1)

should move. In order to move the position of interface, we used a criteria in this Chapter.

However, it is not accurate and therefore we derived a coupling equation (3.15) based on

first principle approach, where interface temperature is computed for a moving interface. We

then compared the results of our coupling methods to the solution of Stefan problem further

explained in Chapter 4.
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.
Figure B.3: Solution of tight coupling method at t ≈ 1. Red line represents diffusion of temperature and blue line represents
the position of interface
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(a)

(b)

(c)

Figure B.4: Comparing the results of (a) Numerical solution of two phase Stefan problem, (b) solution of loose coupling, (c)
solution of tight coupling at t ≈ 1. The red line represents temperature and the blue line represents the position of the interface.
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