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1. Synopsis  

1.1 Introduction 

Extracellular vesicles (EVs) are double-membrane structures released from possibly 

all types of cells. In the past years, a wide variety of subgroups of EVs have been 

identified and classified, based on their cellular biogenesis, size, cellular source, or 

function (1). EVs range in diameter from 50 nm to 5 µm and they can carry a cargo 

composed of lipids, metabolites, nucleic acids, and proteins (1-3).  

For several decades, EVs have been successfully isolated from cell culture media 

and body fluids (e.g., CSF, blood, urine)(4, 5) and, only recently, protocols to isolate 

EVs from tissue have been published (6-8). 

EVs are involved in several biological processes, both physiological and 

pathological, such as angiogenesis, the transfer of genetic material into recipient 

cells, the activation of immune cells, inflammation, and cancer invasion (9-13).  

This introduction intends to give a detailed overview of EVs’ biogenesis, 

characteristics, cargo content, and their involvement in physiological and 

pathological processes in the central nervous system (CNS), specifically in ischemic 

stroke. The pathophysiology of ischemic stroke will be analyzed, together with the 

contribution of EVs and the prion protein (PrP). The mentioned topics (EVs, ischemic 

stroke, and PrP) are fundamental to understand the results and data of the papers 

that contributed to this thesis. 

 

1.1.1 EVs: background 

In 1946, Chargaff and West observed that after ultracentrifugation plasma was losing 

its capacity to coagulate, deducing that there was a factor in the resulting pellet that 

was necessary for this process (14). Later in 1967, Wolf et al. reported minute lipid 

particles with “platelet-like” activity recovered after ultracentrifugation from serum 

and plasma (15). The lipidic material was first referred to as “platelet dust”, and later 

as “microparticles”. In 1971 the term “extracellular vesicles” was first used by 

Aaronson and colleagues to describe the different-sized secreted membranous 

structures they observed with electron microscopy in the golden alga, Ochronomas 

Danica (16).  

In 1981, Trams and colleagues proposed the term “exosomes” to describe shed 

vesicles isolated from conditioned media of glioblastoma cell lines. These vesicles 

had a particular membrane composition and a function, as they were able to 

dephosphorylate surface constituents in the recipient cells (17). A few years later, 

two different labs studying the maturation of reticulocytes to erythrocytes reported in 

parallel that the transferrin receptor was eliminated via “exosomes”, particles formed 

at the endocytic compartment and then released by fusion of multivesicular bodies 

(MVB) with the plasma membrane (18-20). 

During those years, EVs were described by many names (“shedding vesicles", 

“microparticles”, "microvesicles", "exosomes”), often even in the same manuscript. 

Moreover, scientists were skeptical about specific EVs functions. In fact many of 

them considered exosomes as mere garbage bags, produced and released by cells 

to eliminate old or superfluous proteins, such as during the maturation of 

reticulocytes to erythrocytes (21). 
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It was only later in 1996 that Raposo and colleagues could prove an actual active 

role of exosomes in a more complex biological process. They were able to show that 

antigen-presenting exosomes derived from B lymphocytes specifically stimulated T 

cells (11). Moreover, it was also shown that the co-receptors CCR5 and CXCR4 (key 

players in HIV infection) could be transferred via EVs released from platelets and 

blood peripheral monocytes from a susceptible to a refractory cell, making the latter 

susceptible to the infection (22, 23). 

In the early 2000s, different studies reported that EVs carry genetic material that can 

be transferred and translated on a recipient cell (10, 24). In addition to reticulocytes, 

lymphocytes, and platelets, the release of exosomes was soon proved to be a 

mechanism employed also by mast, dendritic, intestinal epithelial, and several other 

cells (1, 25-27). 

In the following years, the interest for EVs grew exponentially and different protocols 

for their isolation from conditioned media, body fluids, and, more recently, from 

tissue have been published (6-8). This growing attention urged for more rigorous 

guidelines, allowing to compare the studies. In 2011 the International Society for 

Extracellular Vesicles (ISEV) was founded, with the mission to increase interaction 

between researchers in the EVs field and with the attempt to standardize the 

isolation, purification, and characterization protocols, among other goals. Since then, 

ISEV is releasing position papers intending to update the guidelines not only for the 

isolation and characterization, but also for the storage, handling, and nomenclature 

of EVs (28). 

 

1.1.2 EVs: nomenclature 

EVs have been grouped according to size and biogenesis in 

microvesicles/ectosomes (with a size of 100-1000 nm), which are vesicles 

released directly from the plasma membrane and exosomes (with a size of 50-150 

nm), released vesicles of endosomal origin. Additionally, when cells are undergoing 

apoptosis, they release apoptotic EVs (ApoEVs) (100-5000 nm), which are also 

shed from the plasma membrane and comprise large vesicles named “apoptotic 

bodies” and smaller apoptotic microvesicles (Figure 1). 

Recently, a new type of particles has been observed, the exomeres (30-50 nm), but 

their function is still unclear and are not considered EVs (29, 30). 

Currently, since exosomes and microvesicles have overlapping sizes, their 

classification only based on size is not recommended, and current protocols and 

markers used for their isolation and characterization cannot specifically differentiate 

between them. Therefore, if no specific proof of the cellular origin is available (e.g. 

electron microscopy pictures of the fusion of MVB with the plasma membrane 

releasing exosomes), the agreement is to name them “extracellular vesicles (EVs)” 

(28, 31), which can be further categorized by size (i.e., small EVs (≤200 nm) or 

medium/large EVs (≥200 nm); density (low, middle, high); composition 

(presence/absence of markers such as CD81, CD9, Annexin 5…) and 

origin/conditions of origin (primary neural EVs, hypoxic EVs…). 
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Figure 1: Schematic representation of a generic EV. EVs are double-membrane vesicles that carry 

proteins, nucleic acids, metabolites and lipids. In the figure are represented protein markers common 

for all types of EVs, such as tetraspanins, flotilin, MHC class I and II, and protein markers typical of 

exosomes, such as Alix, TSG101, and mature (m) ADAM10. Phosphorylated proteins and GPI-

anchored proteins are enriched in microvesicles but present in all EVs. EVs can carry RNA (mRNA, 

miRNA, lncRNA…). Exosomes have been shown to carry mtDNA and ApoEVs to carry dsDNA and 

mitochondria. Image created with Biorender. 

1.1.3 EVs: formation and release 

Generally, EVs are formed either via the endocytic pathway (exosomes) or by direct 

shedding at the plasma membrane (ectosomes/microvesicles) (Figure 2). 

-Exosomes 

Exosomes are intraluminal vesicles (ILVs) that are released to the extracellular 

space upon fusion of the multivesicular endosome (MVEs)/multivesicular bodies 

(MVBs) with the plasma membrane. Thus, they are formed at the endocytic pathway. 

This pathway consists of a series of dynamic membrane compartments that 

internalize extracellular material or cellular components from the plasma membrane 

directing them either to degradation or recycling. 

In the first endocytic pathway step, primary vesicles budding off the plasma 

membrane, together with the material that has to be internalized, pinch off inside the 

cell, forming a primary vesicle which fuses and delivers the cargo to the early 

endosomes (EEs). In there, molecules that have to be degraded at the lysosome are 

sorted by invaginations of the endosomal membrane. These invaginations pinch off 

during the maturation process of the EEs to late endosomes (LE) and, once free, 

they are known as ILVs. The carriers of these ILVs are the MVEs which are an 

intermediate compartment between EEs and late endosomes (LEs) (32). Very 

important for the ILVs biogenesis (although not fundamental, as ESCRT-

independent mechanisms have also been described) is the Endosomal Sorting 

Complex Required for Transport (ESCRT), a machinery composed of cytosolic 

proteins assembled into four complexes (ESCRT-0, ESCRT-I, ESCRT-II, and 
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ESCRT-III) together with associated proteins (ALIX, VPS4, VTA1)(33, 34). This 

process starts in specific domains of the endosomal membrane, where ubiquitin-

tagged proteins are recognized by the ubiquitin-binding subunits of ESCRT-0. 

ESCRT-I clusters the ubiquitinated proteins and together with ESCRT-II, drives the 

membrane deformation that leads to the formation of the ILVs (35). ESCRT-0, -I, and 

-II combine with ESCRT-III, which promotes the final budding process and vesicles 

scission (35). 

Segregation of proteins to ILVs imply that they can follow three possible pathways: 

(i) degradation at the lysosomes, acidic organelles containing hydrolytic enzymes 

that can degrade several types of biomolecules (36), (ii) back-fusion with the 

endosome, or (iii) fusion of the endosomes with the plasma membrane and release 

of the vesicles, now renamed as “exosomes”, into the extracellular space (37). The 

mechanisms involved in the selection of the pathways are currently unknown (32). 

During their biogenesis, there is selective incorporation of proteins into the 

membrane of the exosomes together with cytosolic components. However, the 

mechanisms responsible for this sorting are still unknown. Exosomes also carry 

proteins that are involved in their biogenesis, such as the ESCRT accessory protein 

ALIX and TSG101, which is part of the ESCRT-I complex. Both have been found to 

play a key role in the biogenesis of exosomes, as silencing them either decreases 

the number of released exosomes or modifies their cargo (38). It has been also 

shown that ALIX binds syntenin, a soluble multifunctional adapter protein, facilitating 

ILVs formation, in a partially ESCRT-independent fashion (39). Other ESCRT 

proteins found to affect the release of exosomes are STAM1 and Hrs (40, 41). 

However, the precise mechanisms and the role of each protein of the complexes in 

the biogenesis of exosomes, and their cargo loading is not yet well understood. It 

has been shown that exosome biogenesis could occur via ESCRT-independent 

mechanisms (34). For example, even after silencing key proteins of all ESCRT 

complexes, vesicles were still formed in MVBs (42). Tetraspanins, transmembrane 

proteins enriched in exosomes, such as Tspan8, CD9, CD82, and CD63 are involved 

in the biogenesis of exosomes (43-45).  

 

-Microvesicles 

As mentioned above, EVs released by outward budding at the plasma membrane 

are defined as “ectosomes” or “microvesicles”. The biogenesis of microvesicles is far 

less characterized than exosomes. It is known that the budding of microvesicles 

occurs in specific cholesterol-rich and detergent-resistant microdomains, known as 

lipid rafts (46), and that this process involves the redistribution of phospholipids on 

the plasma membrane and the contraction of cytoskeletal proteins. Particularly, 

when calcium increases in the cytosol, enzymes like floppase and scramblase are 

activated, allowing the movement of lipids from the inner to the outer membrane, 

enhancing bi-directional lipid movements. Enzymes like flippases, which move lipids 

from the extracellular to the cytoplasmic face, are inactivated, causing the flipping of 

negatively charged phosphatidylserine (PS) to the outer leaflet of the membrane 

bilayer (47). Nevertheless, since this modification does not always take place, not all 

microvesicles expose PS on the outer leaflet (48).  
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Together with the redistribution of the membrane lipids, a contractile machinery at 

the cell surface pulls opposite membranes together and then cuts off the connection, 

allowing the newly formed vesicles to be released into the extracellular milieu (49). 

The microvesicles’ shedding depends on the interaction between actin and myosin 

and the subsequent ATP-dependent contraction (50). ARF6 has been shown to play 

a key role in microvesicles shedding, as it promotes the downstream phosphorylation 

of the myosin light chain and therefore the activation of the contractile machinery 

responsible for the budding of microvesicles (51).  

During the shedding, specific proteins in the membrane and the cytosol are 

selectively included or excluded in the vesicles (52, 53). However, the sorting 

mechanism, as for exosomes, is still unknown. 

 

-Apoptotic EVs 

During apoptosis or programmed death, cells release apoptotic EVs (ApoEVs), 

which include large vesicles like apoptotic bodies and smaller apoptotic 

microvesicles. Apoptosis occurs in multicellular organisms and it is a type of energy-

dependent cell death that activates intrinsic mechanisms characterized by chromatin 

condensation and nuclear fragmentation, followed by blebbing of the cell and its 

shrinkage, leading to the division of the cellular component into the apoptotic bodies 

(54). Apoptotic bodies are quite large (up till 5 µm) and they can carry cell organelles 

such as mitochondria (55-57). Studies have pointed out that membrane blebbing is 

partially mediated by the interaction between actin and myosin (58, 59). Specifically, 

the Rho effector protein ROCK I contributes to the increase of the phosphorylation of 

the myosin light chains (MLC), to the myosin ATPase activity, and the increase of 

actin-myosin filaments coupling to the membrane. All these steps, allow the dynamic 

membrane blebbing typical of apoptosis (58, 59).  

 
 

Figure 2: Schematic representation of the biogenesis of EVs. In steady-state conditions and during 

stress, cells release exosomes via the endocytic pathway. First, the plasma membrane invaginates 
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forming primary vesicles that will fuse with the EEs, delivering their cargo. EEs mature then into MVBs 

and LEs, gathering ILVs in their lumen by inward budding of the endosomal membrane. The MVBs 

can either fuse with the lysosomes, back-fuse with the endosome, or fuse with the plasma membrane, 

releasing ILVs (now called exosomes) into the extracellular space. In steady-state conditions and 

during stress, the cell can also release microvesicles by direct budding of the plasma membrane. 

During apoptosis, the cell releases apoptotic bodies, along with other ApoEVs, by budding at the 

plasma membrane.   

 

1.1.4 EVs: uptake   

Generally, the biogenesis and release of EVs are far more studied and understood 

than their uptake. Many pieces of evidence are suggesting that after their release in 

the extracellular space, EVs reach and are taken up by a target/recipient cell, in 

proximity or distance (60). Thus, when EV membranes are stained with fluorescent 

lipid dyes, fluorescence could be measured in recipient cells by confocal microscopy 

or by flow cytometry after uptake (61, 62). Moreover, indirect proofs of EVs 

internalization are the downstream effects of their cargo on the recipient cells. Thus, 

when EVs were loaded with GAPDH siRNA and delivered specifically to neurons, 

microglia, oligodendrocytes in the brain, this resulted in a specific gene knockdown 

(63).  

So far, different pathways have been suggested for EVs uptake, which can be 

grouped into two main routes: endocytosis and fusion (64)(Figure 3). However, the 

exact mechanism of uptake has been proven elusive. 

 

-Endocytosis 

Several studies suggested that EVs can be taken up via endocytosis, a term that 

includes different types of molecular internalization pathways, among them clathrin-

mediated endocytosis, macropinocytosis, phagocytosis, and specific protein-protein 

interaction-induced endocytosis (65). 

In clathrin-mediated endocytosis, proteins from the cytosol assemble at the plasma 

membrane, bending it and forming a vesicular bud (clathrin-coated pit), which after 

scission from the plasma membrane is released as a vesicle, gets un-coated, and 

fuses with the endosome. It was shown that inhibiting the formation of clathrin-

coated pits significantly decreased the uptake of EVs by cancer cells (66). Moreover, 

a negative mutant of the Epidermal Growth Factor Receptor Pathway Substrate 

clone 15 (EPS15), a component of clathrin-coated pits, was shown to induce a 

reduction in the uptake of EVs by macrophages (67).  

Macropinocytosis in most cell types occurs when a change in actin dynamics forms 

protrusions at the plasma membrane, the so-called “ruffles”, that enclose fluid and 

small particles from the extracellular space, the macropinosome, which then 

pinches-off forming an internal vesicle. The maturation and fate of these vesicles are 

very much cell-dependent, some of them will become late endosomes and fuse with 

the lysosome, while others will fuse back with the plasma membrane (68). This 

process seems to be triggered by specific substances, such as growth factors, 

apoptotic cell debris, and some viruses. Several players are involved, such as the 

protein Rac1 and the Na +/H+ exchanger. Hence, it was shown that both the 

inhibition of Rac1 and the Na+/H+ exchanger, reduced EVs uptake by microglia (69). 

However, it seems that macropinocytosis might be a pathway less used by cells for 
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EVs uptake, or used only by specific cell types, as other studies also inhibiting this 

pathway did not observe changes in EVs uptake (67, 70). 

Phagocytosis is a receptor-mediated pathway that involves rearrangements of the 

actin cytoskeleton and the formation of infoldings (phagosomes) around opsonized 

particulate matter, such as bacteria and fragments of apoptotic cells, larger particles 

compared to EVs. The size difference might speak against the uptake of EVs via this 

route, yet EVs were found to co-localize with phagosomes, and the inhibition of 

PI3K, which plays an important role in the formation of phagosomes, decreased EVs 

uptake (67). Moreover, many EVs present PS in the outer leaflet, similarly to 

apoptotic cells and contrary to the physiological orientation in healthy cells, which is 

a crucial feature for triggering phagocytosis. Blocking TIM4, a receptor involved in 

PS-dependent phagocytosis, reduced EVs uptake in macrophages (67). When 

dendritic cells were treated with a soluble PS-analogue that competed for the binding 

with αv/β3 integrin on the cell surface, they lowered the EVs uptake (61) and, 

similarly, when EVs were pre-treated with Annexin V, which binds PS with high 

affinity, they were less taken up by natural killer cells (71) and macrophages (72).  

Several studies, especially on cells of the immune system, have pointed out an 

uptake mechanism dependent on the interaction between proteins on the surface of 

the recipient cell and proteins on the surface of EVs that would facilitate subsequent 

endocytosis. It is proposed that tetraspanins, integrins, immunoglobulins, and 

proteoglycans play a role in protein-interaction mediated endocytosis. Tetraspanins, 

known to have a role in cell adhesion and motility, are highly enriched on the EVs 

surface (73). Particularly, CD63, CD9, and CD81 are considered typical markers of 

EVs (74). It has been shown that dendritic cells reduced the uptake of EVs after 

treatment with antibodies against CD9 and CD81 (61). It was observed that the 

tetraspanin complex Tspan8-CD49d was important for the EVs’ uptake by 

endothelial cells, a process mediated by Immunoglobulin Intercellular Adhesion 

Molecule 1 (ICAM-1 or CD54) (75). Moreover, the EVs’ uptake by dendritic cells can 

be decreased with antibodies that block ICAM-1 receptor, or one of its ligands (61). 

EVs from Antigen Presenting Cells (APCs) can trigger a proliferative and 

differentiation response in naïve T-cells after three different receptor/ligand 

interactions which lead to EVs’ internalization: the T cell receptor (TCR) with the 

major histocompatibility complex (MHC), the lymphocyte function-associated antigen 

1 (LFA-1) with ICAM-1 and CD28 with membrane protein B7 (76). CD4+ cells take 

up EVs isolated from dendritic cells via the interactions between LFA-1 and ICAM-1 

(77). Proteoglycans (PG), such as the family of heparin sulphate proteoglycans 

(HSPGs), are proteins with a high carbohydrate component, used by viral particles to 

entry into target cells (78). Cell-surface proteoglycans also have been suggested to 

have a role in the uptake of EVs. For instance, the uptake of EVs was lowered both 

in WT cells treated with a drug to stop the normal production of HSPGs and in 

mutant cells lacking PGs (70). 

 

-Fusion 

Fusion occurs when two separate membranes merge in an aqueous environment, 

exposing the hydrophilic and keeping the hydrophobic part protected. Different 
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proteins are involved in this process, such as the SNAREs and Rab proteins, and 

Sec1/Munc-18-related proteins (SM-proteins) (79).  

It has been shown that in acidic conditions cancer cells increase the EVs uptake via 

fusion, as they contain increased amounts of the monosialodihexosylgangliosid GM3 

and sphingomyelin (SM), which alter the EVs’ membrane rigidity, increasing their 

ability to fuse. This study also showed that lipidic vesicles depleted of proteins do not 

fuse, suggesting that not only the type of lipids but also proteins exert a key role in 

the fusion process (80). The fusion pathway might be facilitated by the lipid raft-like 

composition of the EVs membrane (81). 

After reaching the target, the EV’s cargo should be delivered. By direct fusion with 

the plasma membrane, EVs could directly release their cargo into the cytoplasm of 

the recipient cell, while with endocytosis the EVs’ cargo can only reach the cell 

cytoplasm by “escaping” the endosomal compartments, as observed for viruses. 

Several studies pointed out minimal successful transfer of cargo in the recipient cell, 

suggesting “endosomal escape” as a limiting step in EVs’ cargo transfer (82-84).  

However, EVs from dendritic cells were shown to be able to deliver miRNAs and 

luciferin in the cytoplasm of recipient cells, proving fusion of EVs membrane with 

either the plasma membrane or the endosomal membrane (85).  

 

 
 
Figure 3: Schematic representation of EVs’ uptake routes. EVs are endocytosed through protrusions 

of the cell plasma membrane (macropinocytosis, phagocytosis), via the formation of clathrin-coated 

pits (clathrin-mediated endocytosis), or after specific protein-protein interaction. After being 

encapsulated, EVs enter the endosomal membrane compartments. The EVs’ cargo can reach the 

cytoplasm only by “escaping” the endosomal compartments. EVs can also be taken up via fusion at 

the plasma membrane of the recipient cell, where the cargo is directly delivered in the cytoplasm. The 

image was created using Biorender. 

 

1.1.5 EVs: cargo and composition  

EVs’ cargo can be composed of proteins, nucleic acids, lipids, and metabolites, 

which vary according to the cell of origin and its status. 

 



12 
 

-Proteins 

Exosomes, which originate from the endocytic pathway, are enriched in proteins of 

the ESCRT complexes, such as TSG101 and Alix (86), while microvesicles, 

originating directly at the plasma membrane, are enriched in proteins with post-

translational modifications, such as glycoproteins, phosphoproteins, and integrins 

(87, 88). While first considered exosome markers, tetraspanins (CD9, CD63, CD81, 

and CD82) have been also found in microvesicles (89-91). MHC proteins and 

Flotilin-1 and 2 are common EVs markers (89, 92), with the latest also being involved 

in their biogenesis (93-95).  

In contrast, resident proteins of the Golgi apparatus and the endoplasmic reticulum, 

such as GM130 and calnexin, have been reported to be absent in EVs, and are 

therefore commonly used as a confirmation for the purity of EVs preparations (28, 

96). 

The disintegrin and metalloproteinase ADAM10 is considered a specific marker for 

small extracellular vesicles (97) and it has been found on the surface of EVs isolated 

from cell culture in its cleaved and activated form (98). 

EVs carry protein markers specific to the cell of origin. For instance, in the case of 

brain cells, PLP and CNPase, specific oligodendrocytes markers, have been found 

on oligodendrocyte-derived EVs (99). Excitatory amino acid transporter EAAT-1 and 

EAAT-2, characteristic of astrocytes, have been found in EVs derived from 

astrocytes (100). 

EVs’ cargo reflects the status of the cell of origin. For example, it has been shown 

that after stimulation with ATP, the proteome of microglia-derived EVs changes, 

influencing the response of recipient cells (101). 

 

-Nucleic acids 

RNA, and to a lesser extend DNA, have been reported to be present in EVs. The 

presence of DNA in EVs has been documented for apoptotic bodies (102) and for 

large EVs, where the entire genome of the parental tumor cell was detected (103). 

Exosomes, on the other hand, have been shown to carry mitochondrial DNA 

(mtDNA) (104, 105). The presence of double-stranded DNA (dsDNA) in exosomes 

raises a debate, as some studies were able to detect dsDNA in exosomes while 

others ruled this possibility out (106, 107). 

Most of the genetic information found in EVs correspond primarily to RNA, such as 

small non-coding RNAs (e.g., miRNA), mRNA, ribosomal RNA (rRNA), and long 

non-coding RNA (lncRNA). As with proteins, the RNA contained in EVs is related to 

the type and the status of the cell of origin, but at the same time, it differs 

substantially from the cellular RNA, indicating selective incorporation in EVs (108-

110). Generally, cellular RNAs form ribonucleoprotein (RNP) complexes by 

associating with RNA-binding proteins (RBPs), which are highly expressed in EVs 

(108, 111). Mechanisms for RNA sorting into EVs include the association with RBPs 

and the presence of specific RNA sequence motifs (112). Specifically, it has been 

shown that several members of the heterogeneous nuclear RNP (hnRNPs) family 

are involved in the sorting of RNA into EVs. hnRNPA2B1 sorts miR-17 and miR-93 

containing AGG and UAG motifs into EVs, which also requires the interaction of 
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caveolin-1 (113). Y-box binding protein 1 (YBX1), another RBP, is involved in the 

packaging of miR-223 into exosomes released from HEK293T cells, possibly 

recognizing specific secondary RNA structures, such as hairpins in the 3’-UTR 

region (114, 115). YBX1 is also implicated in the sorting of miR-133 in hypoxic 

conditions into human endothelial progenitor cell (EPC)-derived exosomes, leading 

to increased angiogenesis (116). ALIX also seems to be involved in the packaging of 

miRNAs with antitumor and regenerative activities in EVs released by human liver 

stem-like cells (117).  

As for functional studies (although it seems that the RNA copies per EV are very low 

(118, 119)), it has been shown that miR-26a-5p present in astrocytic EVs modulates 

dendritic complexity in neurons (120) and that during inflammation, microglia deliver 

microRNA 146-a-5p via EVs to neurons, affecting negatively synaptic density and 

strength (12). Moreover, translation of mRNA delivered by EVs in recipient cells has 

been observed (10), and, more recently, gene silencing in recipient cells was 

possible by delivering the mRNA of endonuclease CRISPR associated protein 9 

(Cas9), loaded by electroporation into EVs (121). These experiments point out that 

translation of mRNA delivered by EVs in recipient cells is possible, yet it remains 

unclear its relevance in physiological and pathological conditions. 

 

-Lipids 

The lipid composition of EVs has been extensively studied (122, 123) and, as for 

proteins and genetic material, reflects the cell of origin, although some lipids might 

be specifically enriched in EVs.  

EVs are enriched in cholesterol, sphingomyelin, phosphatidylserine ganglioside, and 

ceramide, among others (123), while phosphatidylcholine and diacyl-glycerol are 

significantly less present when compared to the membrane of the cell of origin (124). 

The lipid composition of EVs might play a fundamental role in binding and uptake, as 

it has been shown that the enrichment of “reversed” PS (facing the extracellular 

space) may facilitate their uptake by recipient cells (69). 

Exosomes are particularly enriched in disaturated phospholipids (123, 124), which 

causes increased membrane rigidity compared to the membrane of the cell of origin. 

The rigidity is also increased by the high ratio of protein/lipid in exosomes (125) and 

might be relevant to ensure a longer half-life when circulating in body fluids. When 

treated with detergents, exosomes are more resistant than microvesicles (125). 

When injected intravenously in mice, exosomes showed a half-life of 4 min, with 10% 

detectable after 4h (126), while microvesicles were faster degraded in the circulation, 

probably because the lipids on their membrane tend to be hydrolyzed by circulating 

phospholipases (127, 128).  

 

1.1.6 EVs isolation  

To study and analyze EVs and their cargo, it is necessary to isolate them from the 

biological source. EVs have been successfully purified from cell culture media, body 

fluids, and more recently from tissue. Several isolation approaches are used. Each 

method takes advantage of different EVs’ characteristics, such as density, size, and 
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affinity to specific ligands, and each approach has its degree of EVs’ recovery and 

contamination.  

For instance, differential ultracentrifugation (UC) is the most popular technique for 

EVs’ isolation and it uses centrifugal force to separate substances according to the 

sedimentation principle: larger and more dense particles pellet at the bottom, while 

smaller and less dense particles remain in the supernatant (89, 129). UC is often 

accompanied by density gradients, which isolate particles solely based on their 

density, to further purify the sample from contaminants, especially when the isolation 

is done on tissue such as brain (6, 7). EVs have a size of 50-5000 nm and a density 

in the range of 1.06–1.23 g/mL, which distinguish them from molecules such as 

chylomicrons, very low-density lipoprotein (VLDL), intermediate-density lipoprotein 

(IDL), and low-density lipoprotein (LDL), since these particles have a lower density 

than EVs. On the other hand, high-density lipoproteins (HDL) have a similar density 

to EVs, but different sizes. Samples such as blood are enriched in lipoproteins, 

representing a problem when it comes to EVs isolation. 

Size exclusion chromatography (SEC) has also been used for EVs’ isolation (130-

132). A typical SEC column is composed of a mobile phase, a solvent that carries 

the sample down the column, and a porous stationary phase. SEC separates 

particles according to their size, as larger particles are eluted first and the porous 

stationary phase captures the smaller particles, which are eluted later. Contrarily to 

UC, SEC is effective in removing HDLs, but not chylomicrons, VLDL, IDL, and LDL, 

as they have the same size range of EVs. 

Other techniques that exploit the size of EVs for their isolation are ultrafiltration (UF) 

and tangential flow filtration (TFF)(133, 134). UF utilizes pressure or centrifugation to 

pass the sample through a membrane with a defined molecular weight cut-off 

(MWCO), that allows the passage of particles with the size of interest. UF is widely 

used for diluted samples and cell cultures. It is a relatively simple technique and the 

isolation of EVs is faster when compared to, for example, UC, which is more time 

consuming and needs a trained operator (134). UF does not eliminate contaminating 

particles having the same size as EVs and protein contaminants (135).  

TFF is also based on the passage through a membrane with a cut-off, but the fluids 

flow tangentially across the membrane and therefore the smaller particles passing 

through it are discarded, while particles larger than the cut-off level stay on the 

membrane and are recovered. The samples with TFF at the end are more 

concentrated, while SEC on the contrary dilutes the sample (136). 

Apart from density and size, EVs can also be purified using selective affinity to 

proteins present at their surface with their specific ligands, which are immobilized or 

conjugated on solid material, such as beads or columns. For instance, a common 

affinity-based approach used for EVs’ isolation consists of the use of magnetic beads 

covalently coupled with antibodies against molecules such as CD9, CD63, and 

CD81, which are highly enriched in EVs (73, 137).  

More recently, microfluidic technologies, chambers able to manipulate fluids on the 

microscale, have also been used for the isolation of EVs, based either on their size 

or on their affinity with specific molecules (138). 

As of today, more and more techniques are being employed for EVs’ isolation, but 

the gold standard is still considered to be UC (139). When choosing the technique to 
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isolate EVs, is fundamental to consider the type of sample. For instance, when 

isolating EVs from conditioned cell culture media the volume of the sample is the 

limiting factor. When isolating EVs from body fluids, the critical factor is their 

viscosity, as they carry several non-EV structures, such as lipidic components in the 

plasma and serum, fat-containing vesicles in milk, and surfactant in bronchoalveolar 

lavage, that can be isolated together with EVs (5, 28).  

More complex is the purification process on tissue, such as brain, which has first to 

be mechanically disrupted and enzymatically digested to liberate the EVs from the 

extracellular matrix (ECM) (6, 7). During this procedure, the risk of isolating 

contaminants together with EVs is high, therefore the sample undergoes several 

rounds of centrifugation, including UC in the presence of a density gradient of 

sucrose, percoll, or iodixanol (28). 

 

1.1.7 EVs and the central nervous system 

The isolation of EVs from cerebral spinal fluid (CSF), from cell culture, and, more 

recently, directly from brain tissue has allowed the characterization and functional 

studies of EVs from the CNS (140, 141).  

The CNS is composed mainly of neurons and glial cells. Neurons are electrically 

excitable cells composed of a cell body (soma), dendrites, and a single axon that 

extrude from the soma. At the axon terminal, the neuron can transmit a signal to 

another cell across a structure called synapse.  

Glial cells (or glia), comprising -among others- astrocytes, oligodendrocytes, and 

microglia, provide metabolic and structural support to neurons, contribute to 

neurotransmission and synaptic plasticity and are involved in the immunological 

response in the brain. 

Astrocytes are the most abundant type. They are star-shaped cells that during 

development secrete growth-promoting and inhibiting molecules important for axon 

guidance, and they are also involved in the homeostasis of synapses, by removing 

excess of glutamate, the major CNS excitatory transmitter (142, 143). Astrocytes 

also play a role in neuronal signaling, the so-called tripartite synapse (144), as they 

modulate synaptic transmission by the release of chemical transmitters, such as 

glutamate and γ-aminobutyric acid (GABA)(143, 145). The astrocytic end feet form 

part of the blood-brain barrier (BBB), a semipermeable barrier that selects the 

solutes allowed to pass from the circulating blood to the extracellular fluid of the CNS 

(146). The BBB allows the passage of hydrophobic molecules (oxygen, CO2, and 

hormones) and small non-polar molecules (147). Interestingly, EVs can also cross 

the BBB (148). 

In response to harmful stimuli, astrocytes proliferate, progressively becoming 

hypertrophic, and change their molecular expression towards a pro-inflammatory 

phenotype.  Proliferating reactive astrocytes are essential for scar formation, which 

reduces the spread of inflammatory signals to the healthy tissue after inflammation 

or severe tissue damage (149, 150). Astrocytes are in close communication with 

microglia, playing an important role in CNS inflammation (151).  

Microglia cells are the resident immune cells of the CNS. They are specialized 

macrophages with phagocytic ability that in normal conditions have long branching 

processes and are mobile ("resting" microglia). Following exposure to pathogen-
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associated molecular patterns (PAMPs) or endogenous damage-associated 

molecular patterns (DAMPs) change their phenotype to “reactive”/“activated”, with 

phagocytic activity. Microglia can also release substances such as hydrogen 

peroxide and proinflammatory cytokines such as IL-1, to eliminate infected cells, 

viruses, and bacteria. This cytotoxic secretion can also cause collateral damages, 

such as neural cell death and demyelination of neuronal axons (152, 153). Post-

inflammation microglia can also secrete anti-inflammatory cytokines and recruit 

astrocytes and oligodendrocyte progenitor cells (OPCs) to the damaged area, 

promoting tissue repair (154).  

Microglial cells are also involved in normal physiological processes, such as synaptic 

pruning. During development, unwanted synapses are tagged with C1q, triggering 

the complement cascade and microglial phagocytosis via recognition of activated 

complement molecule C3 by its receptor CR3 (155, 156). Recent studies have 

proposed that aberrant synaptic pruning by microglia is a mechanism underlying 

several neurodegenerative diseases, such as Alzheimer’s disease (AD), Multiple 

Sclerosis (MS), Parkinson’s disease (PD), or schizophrenia (157-159). 

Oligodendrocytes cover the neuronal axons of the CNS, forming the so-called 

myelin, which provides insulation and permits the electrical signal transmission. They 

provide trophic support by producing the brain-derived neurotrophic factor (BDNF), 

the glial cell-derived neurotrophic factor (GDNF), and the insulin-like growth factor-1 

(IGF-1)(160). In both, physiological and pathological conditions, the communication 

and the interplay between these different cell types are pivotal. Although the study of 

the communication between brain cells through EVs is a very young field, they 

probably play an important role in the activity and coordination of cells in healthy and 

diseased brain. 

 

-Role of the EVs in the CNS under physiological conditions 

Neurons (161), astrocytes (162, 163), oligodendrocytes (99), and microglia (162) 

release EVs. Neuronal EVs have been linked to synaptic transmission, as their 

release is induced by KCl-induced depolarization (164), and to neuronal excitation, 

as they carry the AMPA receptor subunits GluR2/3, which might alter the excitability 

of recipient cells (165).  

Neuronal EVs may be important for the development of neuronal circuits, as human 

primary neurons showed increased neurogenesis and neuronal differentiation when 

incubated with EVs isolated from human-induced pluripotential stem cells (hiPSC). In 

the same study, when rat neuronal primary cultures-derived EVs were injected into 

the lateral ventricle of P4 mice, they led to neurogenesis (166). EVs isolated from 

primary neurons can deliver miR-132 to endothelial cells, regulating the expression 

of Cdh5, a vascular junction protein, highlighting a possible role in neurovascular 

communication for neuronal EVs (167). Neurons regulate the release of 

oligodendrocytes-derived EVs with an autoinhibitory effect on oligodendrocyte 

surface expansion, modulating myelin sheath formation (168). 

Astrocytic EVs carrying miR-26a-5p modulate dendritic complexity in neurons (169). 

Additionally, EVs secreted by astrocytes deliver Apolipoprotein D (ApoD) to neurons, 

modulating their survival after oxidative stress (170). 
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Lastly, microglia-derived EVs can either stimulate neuronal synaptic activity via 

enhanced sphingolipid metabolism or can inhibit it via endocannabinoid signaling 

activated by N-arachidonoylethanolamine (AEA) exposed on the EVs’ surface (171, 

172).  

 

-EVs’ involvement in CNS pathologies 

The role of EVs in CNS pathologies has been best studied in the context of 

neurodegenerative diseases (NDs) and brain tumors. 

NDs are disorders of the CNS that can be classified by the aggregation and deposit 

of specific misfolded proteins in the brain, such as Aβ and Tau for AD and α-

synuclein for PD.  

In AD, the Aβ peptides, derived from the cleavage of the amyloid precursor protein 

(APP), aggregate to form oligomers, which accumulate extracellularly as amyloid 

plaques, one of the characteristic hallmarks of AD. Tau becomes abnormally 

hyperphosphorylated and it polymerizes into filaments which aggregate in 

neurofibrillary tangles (NFTs), the other typical hallmark of the disease. Several 

studies point to a role of EVs in the development of the disease, as ALIX is found in 

amyloid plaques, thus suggesting a possible role of EVs in plaque formation (92). 

Moreover, BDEVs isolated from a mouse model of AD contain tau, that can 

propagate in a prion-like fashion to primary neurons (173). EVs carry Aβ, APP, and 

other APP-derived proteolytic fragments (174), acting as vehicles for intercellular 

transmission (175, 176). Interestingly, EVs bind Aβ via PrPc, accelerating the 

fibrillization of Aβ, thus reducing the neurotoxic effects caused by oligomeric Aβ 

(177). Recent studies also suggested that EVs may contribute to the accumulation in 

the brain of certain APP fragments, which might be the at the origin of the 

neurodegenerative process (6, 178). 

In PD, abnormal isoforms of α-synuclein, a cytosolic protein physiologically involved 

in the regulation of the synaptic transmission, aggregate in oligomers forming the 

characteristic structures, Lewy bodies, and Lewy neurites. EVs carrying α-synuclein 

and EVs carrying its oligomers are toxic to primary neurons (179-181). Moreover, 

EVs isolated both from the CSF and brains of PD patients induced the formation of 

α-synuclein aggregates in recipient cells, implying participation in the disease 

progression (182, 183).  

However, in humans, where NDs last for years, it is unclear whether EVs are 

promoting the spread of the disease, or they are trying -unsuccessfully- to clear the 

misfolded proteins, or both (184). 

In Multiple Sclerosis (MS), an inflammatory autoimmune disease where the myelin 

sheet on the axons is damaged, myeloid microvesicles are increased in the CSF of 

patients. When incubated with primary glia cells or injected into a mouse model of 

MS these EVs could spread inflammatory signals, suggesting their involvement in 

the disease progression (185). Interestingly, plasma EVs from naïve WT mice 

delivered to mice at the clinical peak of the disease induced a spontaneous 

phenotype of a relapsing−remitting disease. This effect was hypothesized to be 

caused by the fibrinogen contained in the EVs, which influence the activity of CD8+ T 

cells (186). Finally, let-7i miRNA is increased in EVs of MS patients and could play a 
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crucial role in the development of the disease as they suppress the differentiation of 

CD4+T cells into Treg cells, a hallmark of MS (187).  
Lastly, EVs have been extensively studied in the context of brain tumors. 

Glioblastoma (GBM), a tumor of glial origin, is one of the most aggressive. It has 

been shown that EVs isolated from the serum of GBM patients polarize monocytes 

to the anti-inflammatory phenotype M2, favouring the growth of the tumor in vitro 

(188). Moreover, EVs released by GBM cells are enriched in miR-451 and miR-21, 

which downregulate the expression of c-myc in recipient cells, increasing the 

activation of glial cells, and supporting the tumor growth (189, 190). GBM-EVs 

influence astrocytes, increasing their migratory capacity and their cytokine 

production, promoting tumor cell growth (191). 

It is worthy to note that EVs have been studied as potential biomarkers not only for 

all of the previously mentioned diseases (140, 184, 192) but also for other 

neurological disorders such as traumatic brain injury and ischemic stroke (193, 194). 

 

1.1.8 Ischemic stroke 

Stroke is globally one of the primary causes of mortality and long-term disability. 

Ischemic stroke accounts for 87% of the cases, being the other type haemorrhagic 

stroke (195). Ischemic stroke occurs when a brain artery is occluded by a blood clot 

(thrombus). The thrombus can originate in the arteries supplying the brain 

(thrombotic stroke); or the blood clot can form in a different organ, such as the heart, 

and travel through the bloodstream to the brain (embolic stroke). This leads to a lack 

of blood flow and thus, a lack of nutrients and oxygen supply in the affected brain 

area. Cells at the core of the lesion will die rapidly by oncosis (cellular swelling) and 

necroptosis (programmed necrosis, or inflammatory cell death), while cells in the 

surrounding area, the so-called “penumbra”, enter into a state of electrical silence 

(although still metabolically active) and either die by programmed death (apoptosis) 

or survive in the following hours, depending on several factors (Figure 4).  
 

-Pathophysiology of ischemic stroke  

Within minutes, the hypoxia caused by the lack of blood flow leads to ATP depletion. 

In the infarct core, this leads to the failure of the Na+/K+ pump, neuronal 

depolarization, and the release of glutamate. Since at that point, neither neurons nor 

astrocytes can take up the glutamate (196), its levels in the extracellular space rise 

rapidly, hyperactivating the N-Methyl-D-Aspartate Receptors (NMDAR).  

Once activated, there is a rise of intracellular entry of Ca2+, which activates calpains 

and phospholipases, causing excitotoxic cell death. Neurons in the peri-infarct area 

also receive glutamate from the necrotic core, triggering their depolarization. 
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Figure 4: Schematic representation of the infarct core and the penumbra after ischemic stroke. In the 

upper part, a blocked brain artery (yellow) causes the hypoperfusion of the brain, leading to the 

formation of the core infarct area (where cells die by oncosis/necroptosis) and of the penumbra 

(where cells are electrically silent but metabolically active). The lower part depicts what happens in 

the penumbra. Here, neurons receive an influx of glutamate, Ca2+, and spreading depolarizations 

(SD) originated at the core of the stroke. If a neuron in the penumbra reaches the commitment point, it 

will die by apoptosis generating apoptotic bodies and ApoEVs, which will be engulfed by phagocytic 

cells, without triggering inflammation. This step is critical to avoid secondary necrosis and 

inflammatory response. Whether ApoEVs influence other cells such neurons is unknown. Originally 

published in (197). 

 

These repetitive cycles of depolarization/repolarization (spreading depolarization, 

SD) can last for hours, further depleting neurons of energy (198). In the ischemic 

core, the dying cells release DAMPs such as adenosine triphosphate (ATP) and heat 

shock proteins (HSPs), triggering inflammation (199), and rapidly activating 

microglia, which proliferate and migrate to the stroke area. The BBB is disrupted due 

to the activation of matrix metalloproteinases, which degrade the basal lamina and 

the tight junctions of endothelial cells. As a consequence, macrophages and other 

immune cells from the blood, such as neutrophils, lymphocytes, and dendritic cells 

can now infiltrate to the brain, aggravating the inflammatory process.  

In the early phase of stroke, microglia contribute to the ischemic damage by 

releasing pro-inflammatory cytokines, such as TNFα, IL-1β, C1q, or IL-6, which 

activate astrocytes, that can either further exacerbate neuronal death or can be 

neuroprotective by promoting the formation of the glial scar, limiting inflammation 

and protecting the surrounding healthy tissue (149, 200-203). After the acute phase 

of stroke, microglia turn beneficial. It has been shown that 72h after stroke, microglia 

release important neuroprotective factors (204). Hence, the environment and its 

stimuli are crucial for the activation state of both microglia and astrocytes.  
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In the penumbra, cells undergoing apoptosis release ApoEVs, which are cleared by 

microglia (205). If not properly removed, ApoEVs lead to secondary necrosis, 

resulting in inflammation (206), however, they can also have a decisive role in 

communication (207). It has been shown that they can transfer DNA to recipient cells 

(102) and that, through ApoEVs, aggressive cancer cells can transfer therapy 

resistance to other cells (208, 209). Lastly, oligodendrocytes are very sensitive to 

ischemic damage, and many die after stroke. However, in the recovery phase, OPCs 

migrate to the affected area to remyelinate the sprouting axons, an action promoted 

by microglia (154). 

 

-EVs and ischemic stroke 

The communication among the resident cells of the brain, and between them and the 

infiltrating ones, is pivotal for the fate of neurons in the penumbra and EVs may play 

a role in this process (Figure 5). For instance, oligodendrocyte release EVs that 

rescue neurons under in vitro ischemic or stress conditions, and stimulate microglial 

phagocytosis (210-212). When microglia are activated by extracellular ATP, they 

release EVs with a modified proteome compared to steady-state conditions, that 

activates astrocytes (101); and vice versa, astrocytes release ATP that induces 

shedding of microglial EVs containing the pro-inflammatory cytokine IL-1β (213, 

214). Moreover, microglia exposed to inflammatory stimuli release EVs containing 

miR-146a-5p, which decrease the synaptic stability (12), and EVs containing IL6 and 

TNFα, which exacerbate inflammation (215). Neuronal EVs deliver miRNA 124a to 

astrocytes, leading to an increased expression of glutamate transporter 1 (GLT-1) 

(216). Furthermore, neuronal EVs can support the functionality of the neurovascular 

unit (NVU) and the endothelial integrity after stroke, by releasing EVs containing 

miR132 (167). Interestingly, EVs from astrocytes containing mitochondria lead to 

increased neuronal survival in both conditions, in vitro (after Oxygen Glucose 

Deprivation (OGD), a model of stroke) and in vivo (in mice subjected to transient 

middle cerebral artery occlusion (tMCAO), a mouse model of stroke) (55). 

 

 

Figure 5: Schematic representation of some of the positive (green arrows) and negative (red arrows) 

effects of EVs (exosomes and microvesicles) in ischemic stroke. After ischemia, oligodendrocytes 
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release EVs containing miR132, which are taken up by neurons and promote their survival. By 

contrast, microglia exposed to inflammatory stimuli release EVs containing miR146, which decrease 

the synaptic stability, and cytokines that exacerbate inflammation. Neurons contribute to the NVU 

functionality by releasing EVs containing miR132. Neurons also regulate the expression of GLT1 in 

astrocytes through miR124. Lastly, astrocytes can release EVs carrying mitochondria, which promote 

neuronal survival. Originally published in (197). 

 

1.1.9 The prion protein 

A protein that is protective against ischemic stroke is the cellular prion protein (PrPC). 

PrPC is a cell surface glycoprotein, encoded by the PRNP gene, highly expressed in 

the brain, but also in other tissues (217). Mature PrPC is mainly located in lipid rafts, 

and its structure consists of a flexible N-terminal tail, which includes an octapeptide 

repeat region, a charged and a hydrophobic domain, and a globular C-terminal 

domain, which includes two N-glycosylation sites. It is attached to the outer leaflet of 

the plasma membrane by a GPI anchor (218, 219) (Figure 6). 

PrPC is highly conserved in mammals, and some domains such as the C-terminal are 

even preserved from fishes, pointing to an important physiological function. 

Nevertheless, the exact physiological role of PrPC is still not fully clarified, as mice 

knock-out for PrPc do not present major deficiencies (220). 

Several functions have been attributed to PrPC, such as being a regulator of 

neuritogenesis and being involved in peripheral myelination. PrPC is also a 

modulator of synaptic activity and a receptor for toxic oligomers, such as Aβ (221). 

This wide range of functions might be explained by the various ligands and binding 

partners of PrPC (222), and by its post-translational modifications giving rise to 

several biologically active fragments (223). 

PrPC can go through several types of cleavages (Figure 6). The major cleavage 

event in physiological conditions is the α-cleavage, performed by a yet-to-be-

identified protease(s), at position 111. The α-cleavage produces the soluble N1 

fragment and the C1 fragment which remains attached to the membrane. The C1 

fragment exposes N-terminally a hydrophobic domain, which reminds of some viral 

surface glycoproteins critical for host cell attachment and membrane fusion (224, 

225). 

β-cleavage occurs around position 90 and produces a soluble N2 fragment and a 

membrane-attached C2 fragment, and it is mainly generated under pathological 

conditions (226, 227). γ-cleavage takes place presumably between residues 176 and 

200 and produces a large, soluble, non-glycosylated N3 fragment and a short, 

membrane-attached, C3 fragment (228). Finally, shed PrP (sPrP) is generated by 

the action of the metalloprotease ADAM10 which cuts the protein near the GPI-

anchor (229-231). N1, N2, N3 and shed PrP can be un-, mono- and di-glycosilated. 

PrP is mostly known because of its misfolded and pathogenic form, PrPSc, the 

causative agent of prion diseases (PrD), such as Creutzfeldt-Jakob disease (CJD) 

and the bovine spongiform encephalopathy (BSE), which are fatal transmissible 

neurodegenerative diseases (232). Both PrPC and PrPSc are released via EVs (233, 

234). PrP is enriched in EVs and involved in the biogenesis of exosomes through the 

interaction with Caveolin-1 (CAV-1). 
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Figure 6: Schematic representation of murine PrP. (A) The prion protein is attached to the outer 

leaflet of the cellular membrane via a GPI-anchor. The flexible N-terminal has a neurotoxic domain 

(red box) and binds copper ions and oligomeric amyloid β (purple triangles). The globular C-terminal 

has two N-glycan side chains. PrPc is involved in protective or toxic signaling (dotted thunderbolt). (B) 

The N-terminal signal sequence (1-22) is removed by signal peptidases in the endoplasmic reticulum. 

At the C-terminal part (aa 231-254) there is the sequence for attachment of the GPI-anchor. The 

octameric repeat region (aa 51-90), the neurotoxic domain (aa 105-125), and the hydrophobic core 

(aa 111-134) are present in the mature protein. PrP presents also a disulfide bridge (between aa 178 

and 213) and two N-glycosylation sites (aa 180 and 196). Below are represented the three most 

important cleavage events of PrP. (I) α-cleavage (aa 111) produces a soluble N1 fragment of 11 kDa 

and a membrane-bound C1 fragment of 18 kDa, destroying the neurotoxic domain. (II) β-cleavage 

(around aa 90) produces N2 (9 kDa) and C2 (20 kDa) fragments. (III) Shedding close to the GPI-

anchor causes the release of -nearly- full-length PrP from the membrane. Originally published in 

(224). 

 

Thus, PrP modulates CAV-1 distribution between the plasma membrane and the 

cytosol, where CAV-1 can inhibit the autophagy, allowing the MVBs to release 

exosomes instead of fusing with the lysosomes for degradation (235). 

 

-PrP and stroke 

Several studies have pointed out that PrPC (and its fragments) have a protective role 

in stroke. Thus, cells lacking PrPC are more vulnerable to oxidative stress than wild-

type (WT) cells. PrP knock-out mice (Prnp0/0) subjected to permanent middle 

cerebral artery occlusion (pMCAO), a mouse model of stroke, had a larger infarct 

volume compared to WT mice. The effect was dependent on the amount of PrPC, as 

the heterozygous mice showed a rescued phenotype (236). Moreover, mice infected 

with PrPSc increase oxidative stress, probably as a consequence of a loss of function 

of PrP (237). Interestingly, PrPC was found increased in the penumbra of mice 

subjected to pMCAO (236). The analysis of human brain samples with stroke 

showed similar results, coinciding with neuronal survival and with higher PrPC levels 

in plasma 24h after stroke (238). However, another study suggested that the 

upregulation of PrPC is a survival mechanism only used in the early time-points of 

severe stroke damage, as it was only observed in pMCAO between 4 and 8h after 

stroke/reperfusion (and back at normal levels 24h after), whereas in tMCAO (which 
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usually leads to a milder stroke), PrPC was not upregulated (239). Lastly, PrP could 

have a function in the long-term recovery effects. Mice overexpressing PrP (Tga20) 

one month after tMCAO had decreased infarct volume and neurological 

improvement when compared to WT and PrP KO mice (240). 

Different mechanisms have been proposed for the neuroprotective function of PrP 

(241). For example, PrP is involved in neural precursor cells (NPCs) recruitment 

(homing) to the site of injury, and their differentiation and neurogenesis (240). PrPC 

fragments were reported to modulate the quiescence of neural stem cells (242), 

suggesting a potential role in adult neurogenesis. PrPC and its fragments appear to 

also have a role in the recruitment of bone marrow-derived cells (BMDC) from the 

periphery to the affected brain area (243, 244), probably supporting angiogenesis. 

The docking of BMDC to endothelial cells and their migration through the vessel 

seem to be dependent on the presence of PrPC at the recipient cell’s surface and 

therefore on homophilic ligand–receptor interaction. Moreover, the N1 fragment 

showed to be protective for neurons after ischemic damage and able to regulate the 

interaction of microglia with other brain cells (245, 246). Lastly, EVs released by 

astrocytes contain PrPC which showed to be protective when delivered to primary 

neurons under ischemic conditions (247). 
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1.2 Aims of the thesis 

Much of the basic knowledge of EVs’ functions in the healthy and diseased brain is 

lacking and there are still many unanswered questions regarding their biology. In 

CNS’ pathologies, EVs are regarded as attractive biomarkers and as potential 

therapeutic tools due to their ability to cross the blood-brain barrier (BBB). EVs have 

been successfully purified from conditioned media of neural cell lines, primary brain 

cells and CSF, but protocols for the isolation of EVs directly from brain tissue have 

only recently been published. The analysis of BDEVs can help to understand 

complex and multicellular physiological and pathological processes of the CNS, 

which is simply not possible with in vitro studies.  

The main aim of the present thesis was to isolate EVs from murine brain to study the 

variations of their content at different time points after stroke. We hypothesized that 

with this approach we could shed light on their role in neuronal death/survival at the 

penumbra. 

To pursue this goal, we wanted: 

a) to establish a reliable protocol to isolate brain-derived EVs (BDEVs) from 

murine tissue and to characterize their proteomic content in steady-state 

conditions and after stroke;  

b) to further characterize BDEVs from stroke mice from a transcriptional point of 

view;  

c) to assess possible changes in PrP content and composition (fragments) in 

BDEVs after stroke and its function;  

d) to study the role of immune cell-derived EVs in the control of immune 

responses; 

e) to assess the efficiency and the influence of different published protocols for 

EVs’ isolation from brain tissue on BDEVs’ protein cargo.  

The papers included in this thesis are: 

 

1) Characterization of brain-derived extracellular vesicles reveals changes 

in cellular origin after stroke and enrichment of the prion protein with a 

potential role in cellular uptake (2020, Journal of Extracellular Vesicles) 

 

2) Multiplexed mRNA analysis of brain-derived extracellular vesicles upon 

experimental stroke in mice reveals increased mRNA content related to 

inflammation and recovery processes (2021, bioRxiv) 

 

3) Brain-Derived Extracellular Vesicles in Health and Disease: A 

Methodological Perspective (2021, International Journal of Molecular 

Sciences) 

 

4) CD73-mediated adenosine production by CD8 T cell-derived 

extracellular vesicles constitutes an intrinsic mechanism of immune 

suppression (2021, Nature Communications) 
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1.3 Material and methods 

1.3.1 Methods performed by the doctoral candidate 

- “Characterization of brain-derived extracellular vesicles reveals changes in cellular 

origin after stroke and enrichment of the prion protein with a potential role in cellular 

uptake”: isolation of EVs from murine brain tissue; isolation of EVs from conditioned 

cell culture media; Nanoparticle Tracking Analysis (NTA); fluorescence labeling of 

EVs; primary neuronal culture; mixed glia culture; immunocytochemistry (ICC); flow 

cytometry (labelling); western blot (WB); PNGase F assay. 

 

-“Multiplexed mRNA analysis of brain-derived extracellular vesicles upon 

experimental stroke in mice reveals increased mRNA content related to inflammation 

and recovery processes”: isolation of EVs from murine brain tissue; NTA; WB; PCR. 

- “CD73-mediated adenosine production by CD8 T cell-derived extracellular vesicles 

constitutes an intrinsic mechanism of immune suppression”: WB. 

 

1.3.2 WB antibodies list 

14--3-3- Santa Cruz, sc-16-57 

Alix- Cell Signaling, #2171S 

CD40- Novusbio, NB100-56127SS 

CD73- Cell Signaling, #13160 

CD81- Cell Signaling, #10037 

CD81- Cell Signaling, #56039 

CNP- Sigma, C5922 

EAAT1- Novusbio, NB100-1869SS 

EAAT2- Novusbio, NBP1-20136SS,  

Flotilin-1- BD biosciences, #610820 

GM130- BD biosciences, #610822 

NCAM- Cell Signaling, #99746 

PLP- Novusbio, NB100-74503 

P2Y12- LSBio, LS-C209714 

P2Y12- Proteintech, #11976-1-AP 

PrP (POM1) (248) 

PSD95- Millipore, MABN68 

SNAP-25- Cell Signaling, #3926 

Synapsin1- Synaptic Systems, 
#106103  

TMEM119- Proteintech, #66948-1-Ig 

anti-rabbit-HRP conjugated secondary 
antibody- Cell Signaling  

anti-mouse-HRP conjugated 
secondary antibody- Cell Signaling 

1.3.3 ICC antibodies and dyes list 

Phalloidin-iFluor 488- Abcam, 
ab176753 

Alexa Fluor donkey antirat 488- Life 
Technologies, A21208 

Alexa Fluor donkey anti-rabbit 555- 
Life Technologies, A31572 

Alexa Fluor donkey anti-rat 555- 
Abcam, ab150154 

IBA1- Wako, 019–19,741 

LAMP-1- Invitrogen, 4–1071-82 

MAP2- Sigma, M9942 

mCLING- Synaptic Systems 

1.3.4 Flow cytometry antibodies list 

CD11b-FITC- Biolegend, Clone M 1/70 
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GLAST-PE- MiltenyiBiotec   

1.3.5 PCR primers 

C1qa: 
5´ATGGAGACCTCTCAGGGATGG3´(
sense), 
3´TCAGGCCGAGGGGAAAATGA5´(a
ntisense);  

C1qb: 
5´TGAAGACACAGTGGGGTGAGG3´(
sense), 
3´TACGCATCCATGTCAGGGAAAA 
5´(antisense);  

C1qc: 
5´ATGGTCGTTGGACCCAGTTG3´(se
nse), 
3´CTAGTCGGGAAACAGTAGGAAAC
5´(antisense); 

Gfap: 
5´ATGGAGCGGAGACGCATCA3´(sen
se), 

3´ACATCACCACGTCCTTGTGC5´(an
tisense);  

Cd44: 
5´GTTTTGGTGGCACACAGCTT3´(se
nse), 
3´CAGATTCCGGGTCTCGTCAG5´(an
tisense) 

1.3.6 qPCR probes (Thermo Fischer): 

Hmox1 #Mm00516005_m1 

Fcrls #Mm00472833_m1 

Cd44 #Mm01277161_m1 

C1qb #Mm01179619_m1 

Gfap # Mm01253033_m1 

Asb7 #Mm01318985_m1 

Fam104a #Mm01245127_g1
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1.4 Results 

Paper 1: “Characterization of brain-derived extracellular vesicles reveals changes in 

cellular origin after stroke and enrichment of the prion protein with a potential role in 

cellular uptake” 

• small BDEVs (diameter <200 nm) are highly enriched in ribosomal proteins 

when compared to large BDEVs (diameter >200 nm); 

• in steady-state conditions, microglia are the main contributors to the BDEVs’ 

pool; 

• 24h after stroke/reperfusion, the BDEVs released from astrocytes are 

significantly increased in stroke mice compared to shams; 

• BDEVs are enriched in PrPC  and its C1 fragment; 

• 24h after stroke, PrPC is significantly increased in BDEVs; 

• the presence of PrPC on the surface of BDEVs influences the uptake route of 

the recipient cells. 

Paper 2: “Multiplexed mRNA analysis of brain-derived extracellular vesicles upon 

experimental stroke in mice reveals increased mRNA content related to inflammation 

and recovery processes” 

• 72h after stroke/reperfusion, BDEVs released by oligodendrocytes are 

significantly increased in stroke mice compared to shams; 

• 72h after stroke, BDEVs increase their content of mRNA related to 

inflammatory and recovery processes; 

• the mRNA of the top 5 most upregulated genes in BDEVs after stroke are 

present as full-length; 

• in BDEVs, the mRNA analysis with the Nanostring nCounter panels is feasible 

even bypassing the RNA extraction from the EVs, thus eliminating steps from 

the protocol. 

Paper 3: “Brain-Derived Extracellular Vesicles in Health and Disease: A 

Methodological Perspective”  

• although all published protocols considered in our study were successful in 

BDEVs isolation, the total number of proteins detected (and so, the 

performance of each protocol) was different; 

• differences are also reflected when GO pathways are compared between the 

studies, as specific protein enrichment were differently distributed. 

Paper 4: “CD73-mediated adenosine production by CD8 T cell-derived extracellular 

vesicles constitutes an intrinsic mechanism of immune suppression”  

• human activated CD8 T cells release EVs expressing CD73 with high 

AMPase activity; 

• the AMPase activity of CD8 T cells-derived EVs is sufficient to degrade the 

AMP produced by the high ATPase activity of human Tregs; 

• the interplay between CD8 T cells-derived EVs and Tregs lowers T cell 

proliferation and function, controlling the immune response. 

 



28 
 

1.5 Discussion 

The studies included in this thesis focus on the characterization and the analysis of 

BDEVs in steady-state conditions and at different time-points after stroke, and the 

role of EVs in inflammation.  

In this chapter, the results obtained from each study (summarized in chapter 1.4) will 

be discussed as a whole and put into their scientific context and current knowledge. 

Moreover, an outlook including ongoing and future directions of EVs research will be 

provided. 

 

-Proteomic characterization of BDEVs in steady-state conditions 

Until recently, most of the studies related to EVs in the CNS have been performed on 

vesicles isolated from cell culture media and body fluids. The purification of EVs from 

brain tissue has been increasingly used only in the last years, after 2012, when the 

first protocol for isolation was published (6).  

Isolating EVs from brain is challenging, as the first necessary step is to liberate them 

from the network of glycosaminoglycans, proteoglycans, glycoproteins, and fibrous 

proteins forming the ECM. This is generally achieved by mechanical disruption (i.e., 

the tissue being cut into small pieces) and enzymatic digestion. For the latter, the 

two enzymes widely reported are papain (6), a cysteine protease found in papaya, 

and collagenase (7), which breaks the collagen peptide bonds of the ECM. However, 

due to the mechanical disruption, it is very difficult that after this step there is no 

contamination with intracellular vesicles and membrane debris or the creation of 

artifacts, such as synaptosome-like vesicles. Therefore several steps of 

centrifugation, filtration, and gradient ultracentrifugation (among other approaches) 

have to be introduced.  

For our studies, we decided to use a recently (at that moment) published protocol 

that used collagenase III as the enzyme of choice, several centrifugation steps, and 

a final ultracentrifugation with a sucrose gradient (7). We introduced some 

modifications, such as a filtering step through a 0.2 µm porous membrane to isolate 

small BDEVs (sBDEVs). Because we wanted to know whether this modification was 

leading to the isolation of different BDEVs populations, we performed quantitative 

proteomic analysis. We found that, indeed, sBDEVs were particularly enriched in 

ribosomal proteins, while the non-filtered larger BDEVs were enriched in proteins 

associated with metabolic pathways (249). By searching recently published 

literature, we found some studies that used our protocol with modifications, or a 

completely different protocol using a precipitation method to isolate BDEVs (250). As 

in these studies also proteomic data was published, we decided to address the 

question of how the protocol influenced (if so) the protein cargo identified in BDEVs. 

Thus, we compared the available proteomic raw data from three human and three 

mouse studies, including our publication (249, 251)(Figure 7). 
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Figure 7:  Summarizing scheme of the protocols used for isolation of brain EVs in the studies 

considered for proteomics comparison. (a) Schematic workflow in the mouse studies. (b) Schematic 

workflow in human studies. Originally published in (251). 

 

In general, collagenase was the chosen enzyme in all of the protocols (7, 249, 252, 

253), except for one, where the tissue dissociation was performed only mechanically, 

with a bullet blender homogenization (250). The following purification steps included 

a series of centrifugations, membrane pore filtration through a 0.22 µm filter, either 

sucrose cushion or density gradients, size exclusion chromatography, or the 

PROSPR method, which precipitate EVs using organic solvents. A summary of the 

protocols is shown in Figure 7. 

After re-analysis and comparison of the proteomic data from each study, we 

observed some differences in both, the absolute numbers of proteins detected in 

each study, and the enrichment of specific gene ontology pathways (GO terms). 

Specifically, from the six studies, four (among them our study introducing the 

filtration step) detected an enrichment of ribosomal-related proteins (Figure 8).  

We observed that the studies showing an enriched presence of ribosomal proteins 

shared major steps in the protocols, including ultracentrifugation with sucrose 

gradients, suggesting that this step isolates BDEVs with similar characteristics 

and/or contaminants. However, as not all the protocols were completely detailed, 

differences among the six proteomic data sets could have also depended on other 

aspects, such as the amount and area (especially in human samples) of tissue used 

for EVs purification, the mass spectrometric strategy for the analysis, and the mass 

spectrometer itself. Despite the massive advancement in the last few years in terms 

of isolation techniques, the characterization and categorization of EVs is still a 

challenge (28). 

 

- Main cell contributors to the BDEVs‘ pool in steady-state conditions and after stroke 

The cargo of EVs is cell type-dependent and reflects their cellular origin, but it is not 

an easy issue to assess the cell contribution to the pool of EVs isolated from tissue. 
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Figure 8: Bar charts showing the 15 most enriched GO Cellular Components (GOCCs) in studies on 

mice (on the left) and humans (on the right). The gene enrichment analysis was performed with 

DAVID. Originally published in (251). 

 

Only in a previous study by Silverman et al. (252), also considered in our proteomic 

comparison study (251), the relative proportion of EVs derived from different brain 

cell populations was assessed by flow cytometry (FCM). We decided to undertake a 

different approach, by performing western of 2 specific membrane-bound protein 

markers and analyze their relative enrichment in BDEVs compared to total murine 

brain homogenates (249). The G-protein coupled P2Y receptor (P2Y12) and the 

Transmembrane protein 119 (TMEM119) were used as microglial markers (254, 

255), synapsin1 and the Synaptosomal Nerve-Associated Protein 25 (SNAP25) as 

neuronal markers (256, 257), PLP and 2′-3′-Cyclicnucleotide 3′-phosphodiesterase 

(CNP) as oligodendrocytes’ markers (160, 258) and EAAT-1 and EAAT-2 as 

astrocytic markers (259). We assessed that, in steady-state conditions, microglia 

were the main contributor to the whole pool of BDEVs, as P2Y12 and TMEM119 

were the most enriched in this fraction compared to the total homogenates. Contrary 

to us, Silverman et al. detected enrichment of astrocytic and neuronal markers in 

their pool of BDEVs in steady-state conditions. This difference could depend on the 

isolation protocol used, as we included a further filtration step which probably 

enriched for a different subpopulation of EVs. However, because of the detection 

limit of FCM (400 nm for conventional FCM (260)), it is also plausible that this 

technique might have excluded sBDEVs from the analysis, which were considered 

debris. Unlike FCM, western blot analysis includes all the EVs. In our assessment, 

we also considered that one of the proteins used as cell markers (e.g., P2Y12) could 

be, per se, more loaded into EVs, without implying the presence of more EVs of 

microglial origin in the pool of BDEVs. Therefore, we reasoned that by only using 

one cell marker, this could be the case, but that the probabilities were reduced when 

two specific cell markers significantly presented the same trend. 
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Ischemic stroke has different phases (acute, subacute, and chronic) and the 

molecular mechanisms that are detrimental in the acute phase can turn beneficial in 

the recovery (subacute/chronic) phase of the disease (261). Moreover, different brain 

cell types and infiltrating ones are involved, differently contributing to the progression 

of the pathology over time (262). Interpreting how neurons and glial cells 

communicate is of utmost importance for understanding the pathophysiology of 

ischemic stroke and the inner mechanisms of recovery. By using the same 

methodology as in steady-state conditions, we studied the cellular contribution to the 

BDEVs pool 24h after stroke/reperfusion. By comparing EVs isolated from sham 

controls to mice subjected to tMCAO, we observed that 24h after stroke, astrocytes 

significantly increased their release of EVs. Additionally, we observed that 72h after 

stroke/reperfusion, oligodendrocytes significantly increased their EVs release. 

Astrocytes have several important functions in steady-state and pathological 

conditions. They regulate synapses and synaptic transmission, immune response, 

modulation of neuronal excitability, and BBB formation, among others (150, 151). In 

early time points after stroke, they proliferate, become hypertrophic, and form the 

glial scar (149, 150). But through EVs, they may also contribute to recovery 

processes, as neurons exposed to reactive oxygen species (ROS) and hypoxic 

conditions increased their survival after being incubated with EVs derived from 

astrocytes (170). Moreover, it was shown that EVs released by astrocytes conferred 

protection to neurons after OGD treatment, and this property was dependent on the 

presence of PrP (247). After brain injury, astrocytes and microglia are in close 

communication with each other, as it was shown that microglia activate astrocytes by 

releasing inflammatory cytokines and in turn, activated astrocytes contribute to the 

activation of distant microglia (101, 201, 203, 213, 214). Whether the astrocytic 

BDEVs increase that we detected in brain 24h after stroke is related to the formation 

of the glial scar, neuronal survival, or microglial activation, clearly needs further 

investigations. 

Oligodendrocytes are the myelinating cells of the CNS and, besides that after 

ischemic damage, oligodendrocytes progenitor cells (OPCs) migrate into the 

penumbra to proliferate and start the remyelination process (154), not much is 

known about their role after stroke. However, it has been shown that after OGD 

treatment, neurons can be rescued by oligodendrocyte-derived EVs (210). 

Oligodendrocytes are also in close communication with microglia, as microglial 

phagocytosis can be promoted by chemokines and other factors (possibly EVs) 

released by oligodendrocytes (211). 72h after stroke is a time when recovery 

processes start to take place, so the increase of EVs derived from oligodendrocytes 

that we observed at this time-point in brain might be related not only to the neuronal 

remyelination, but also to neuronal survival and removal of debris, probably via 

interaction with microglia.  

Overall, our results show that there is a high dynamism among brain cell populations 

after stroke and that BDEVs clearly contribute to the communication among them. 
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-Transcriptomic analysis of BDEVs after stroke 

The pivotal role of microglia 72h after stroke is suggested also by our analysis of the 

RNA content of BDEVs at this time-point, as we detected that most of the 

upregulated mRNA in tMCAO mice could be ascribed to microglia. 

In this study, we focused on the analysis of the mRNA content of brain EVs 72h after 

stroke, comparing BDEVs isolated from tMCAO mice to BDEVs isolated from sham 

mice. We applied a targeted approach using the nCounter© Neuropathology Panel, 

which allows the simultaneous analysis of 770 genes related to neurotransmission, 

neuron-glia interaction, and neuroinflammation, among others. We observed that the 

most upregulated mRNAs in EVs 72h after stroke were related to inflammatory 

response, stress defense, and recovery processes, and that 13 out of the 20 most 

upregulated mRNAs that could be ascribed to a cell type, belonged to microglia. The 

upregulation of the highest top hits, Hmox1, Cd44, C1q, and Gfap, was further 

confirmed via qPCR and, interestingly, the mRNA was present in full-length in 

BDEVs, as we could assess by PCR of their open reading frames (ORFs). A few 

studies reported that the mRNA in EVs is mainly fragmented (263, 264), yet another 

study performing RNAseq identified full length mRNA (up to 19.000 bp) in EVs 

isolated from human blood (265). Another study showed that most full-length mRNAs 

are less than 1 kb (264), even though, similarly to viruses, longer sequences could 

be packed if condensed (266). In our case Gfap, with approximately 1.5 kb, was 

present in BDEVs in full-length. 

From a methodological point of view, since these panels can also work bypassing 

the prior step of mRNA isolation, we wanted to investigate if this was also applicable 

to BDEVs samples, as it has been used so far only in cellular approaches. And 

indeed, even when incubating the nCounter panels circumventing the mRNA 

extraction, we obtained similar results to the panels incubated with isolated mRNA, 

proving the effectiveness of the panel in these settings. This represents a technical 

advantage as it eliminates non-necessary steps from the protocol, decreasing 

variability and increasing the chances to detect species that otherwise would be lost. 

Recent studies using these panels to analyze EVs isolated from human plasma 

samples and cell cultures supernatants reported the need for intermediate steps, 

such as RNA retro-transcription and cDNA amplification, as the amount of EVs 

obtained was too low (267, 268). Since the analysis of RNA from EVs is still a 

problem in the EVs’ research field (269), our results by studying mRNA from EVs 

obtained from complex tissues represent an important advance for the field, as we 

gain more knowledge about available tools and techniques to analyze EVs’ mRNA. 

As already discussed in the previous paragraph, we showed that small BDEVs were 

enriched in ribosomal proteins when compared to not filtered (larger) BDEVs (249). 

In the transcriptomic analysis, when comparing small EVs (≤200 nm) and larger EVs 

(≥200), we did not detect differences in amounts of mRNA. Although we cannot rule 

out the possibility of technical issues (i.e. the increased amounts of proteins due to 

the inclusion of larger BDEVs could partially impair mRNA binding to their targets), 

this could imply that small EVs carry the majority of mRNAs. In this line, a study 

investigating EVs from cell lines demonstrated that RNA was mainly carried by 

exosomes, included in the category of small EVs, thus confirming our data (90). 
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Since BDEVs have been found to carry tRNA (270), it could be hypothesized that 

BDEVs, unlike EVs isolated from cell lines (10), can deliver most of the translation 

machinery plus the full-length mRNA to the recipient cells. 

Full-length mRNAs in EVs could potentially be translated in the recipient cells and 

therefore be a source of new proteins. However, to be functional, the mRNA in the 

EVs must reach the cytoplasm of the recipient cell, which is feasible when the 

vesicle enters via fusion, but more challenging when the EVs enter via the endocytic 

pathway, as an “endosomal escape” is then necessary. The transfer of EVs’ RNA 

(and their cargo in general) is difficult to assess, as there is a lack of stoichiometry in 

experiments and reliable assays to determine cargo’s activity (271). Moreover, EVs 

isolated with different protocols and techniques carry different types of contaminants 

(e.g RNA-protein complexes) that can bias the experiments. EVs usually carry both, 

the mRNA and its translated protein, complicating the assessment of direct 

translation in the recipient cells (272). Thus, studying the biological relevance and 

proving the functionality of the EVs’ mRNA (and other RNA) content is still a major 

challenge in the field, and while some studies reported the translation in recipient cell 

of mRNA transferred via EVs (10, 273), other studies point out that this process is 

minor, if not undetectable (82, 274). We tried to make a rough estimation of the ratio 

mRNA per EVs in our study, by using the full-length mRNA with the highest counts 

(Gfap) and the amount of EVs used to load the panel. This resulted in a ratio of 

approximately 1 mRNA copy every 19.000.000 EVs. Another study estimated from 1 

copy every 1000 EVs for the most abundant mRNA, to 1 copy in a million EVs for 

some RNA species (264). Thus, the possible biological relevance of full-length 

mRNAs present in these relatively low amounts is difficult to assess, considering our 

current knowledge and the available tools for analysis. 

 

-Role of EVs in the immune response 

As discussed in chapter 1.1.8, the dying cells in the ischemic core release ATP, 

which activates microglia, triggering inflammation (199). The release of extracellular 

ATP during inflammation is favoured by immune cell activation, cellular stress, or 

metabolic changes and, to avoid unnecessary damage to healthy tissue, it is of 

utmost importance that it is rapidly metabolized and degraded by specific enzymes 

(275). CD39 is an ecto-nucleotidase that dephosphorylates ATP and ADP to 

AMP(275). CD73, an ecto-5′-nucleotidase, then converts AMP to adenosine, which 

limits inflammation (275). Regulatory T cells (Tregs) can suppress the immune 

response by inhibiting T cell proliferation and cytokine production (276). While 

mouse Tregs express both CD39 and CD73, human Tregs almost do not express 

CD73 (277, 278). Therefore, it is not known how Tregs in humans perform their 

immunosuppressive function. In our study, we demonstrated that the amounts of 

CD73 contained in EVs released upon activation of CD8 T cells, are sufficient to 

degrade the AMP produced by the high ATPase activity of Tregs (279). The interplay 

between these cells warrants sufficient immune suppression, as it lowers T cell 

proliferation and function. We hypothesized that, even though CD73 has a higher 

enzymatic activity in its soluble form, the EVs-bound form could be an advantage, as 

it has an extended half-life and presumably a better distribution through body fluids. 
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Moreover, we analyzed EVs isolated from the synovial fluid (SF) of patients with 

juvenile idiopathic arthritis (JIA) ) to assess the above-mentioned results in the frame 

of human inflammation. We found that EVs isolated from the SF also carried CD73. 

These EVs were mainly released by T cells (as they also carried CD8), endothelial, 

and mesenchymal stem cells. When incubated in vitro, they promoted T cell 

activation and proliferation, probably due to their cargo of cytokines and growth 

factors (280). However, after the addition of an inhibitor of adenosine deaminase 

(ADA), which degrades adenosine, and ATP to enhance the purinergic signaling 

cascade, these EVs showed immunosuppressive activity (279), similarly to CD73-

containing EVs released by tumor cells (281). Thus, in sites of inflammation and 

ischemia, an environment enriched in ATP, the purinergic signaling cascade is 

pivotal for immune regulation, and EVs play a key role in this process. 

 

-The function of PrP in EVs 

Since PrP is a known resident of EVs and is neuroprotective in ischemic conditions, 

we investigated the presence and the role of PrP in BDEVs from healthy mice and 

mice subjected to tMCAO (249). Western blot analyses of BDEVs isolated from 

healthy WT mice revealed enrichment of PrP in the EVs’ fractions when compared to 

total brain homogenates. Interestingly, the pattern of PrP in EVs was different 

compared to the total homogenates when using a specific antibody against the C-

terminal part of the protein (248). A previous study reported that PrP present in EVs 

was largely not recognized by antibodies against the N-terminal of the protein, 

suggesting cleavage (234). After treatment with PNGase to remove N-linked 

glycans, we could observe that the prominent band detected at 34 kDa in BDEVs 

was the C1 fragment. Thus, we concluded that BDEVs carry mainly PrP-C1 and full-

length PrP, both in their di-glycosylated form. The hydrophobic domain N-terminally 

exposed by C1 after α-cleavage reminds of some fusion peptides of viral surface 

proteins (224), which allow viruses to dock and fuse with the host cells. The 

comparison between EVs and viruses traces back to 1975 (282), as it was already 

observed that they share many similarities (266, 283). Thus, we hypothesized that a 

possible role for C1 on BDEVs could be the tethering of EVs to recipient cells and/or 

facilitating their uptake, similarly to what is observed for viral proteins. We incubated 

labeled BDEVs with primary neurons and we observed that already one hour after 

incubation BDEVs isolated from PrP0/0 mice were readily taken up by neurons and 

glial cells in higher amounts than BDEVs isolated from WT mice. The WT EVs 

presented a rather diffuse staining surrounding the plasma membrane, while PrP-KO 

EVs were rapidly colocalizing with lysosomes. Our data suggest that the presence of 

PrP and/or PrP-C1 indeed influences fusion events. On the one hand, we observed 

a more diffuse staining at the plasma membrane when primary neurons were 

incubated with WT BDEVs. On the other hand, PrP-KO BDEVs were delivered to late 

endosomes/lysosomes. This indicates that PrP is either enhancing the fusion of EVs 

at the plasma membrane, or the fusion at endocytic compartments (i.e. endosomal 

escape), and that only when PrP is missing, EVs end up in the lysosomes (Figure 9).  

However, it is worth mentioning that WT BDEVs were found (at later time points) 

also colocalizing with lysosomes, indicating that most likely the balance between 



35 
 

fusion/endocytosis is not only dependent on PrP/PrP-C1, but also on other 

proteins/ligands. 

 

 
 
Figure 9: Schematic representation of the differential uptake of WT BDEVs and PrPKO BDEVs, 

probably influenced by PrP. WT-sEVs (small EVs, on the left) carry both fl-PrP and its C1 fragment. 

These EVs seemingly fuse with the plasma membrane (PM). PrP-KO EVs (on the right) are rather 

endocytosed and transported to lysosomes (red circles). Lysosomes containing EVs are coloured in 

yellow. Originally published in and modified from (249). 

 

Likewise, we cannot rule out that an altered EVs’ lipid composition can be 

responsible for the differential uptake, as it has been shown in vitro that membrane 

detergent-resistant domains can be modified by the presence of GPI-anchored 

proteins, such as PrP (284). Therefore, the lack of PrP could influence the type of 

lipids present in the BDEVs. A previous study reported that for EVs’ fusion with 

purified membrane sheets in a cell-free system, both, the presence of proteins on 

both surfaces and an acidic pH were necessary (285). As discussed above, how the 

EVs are taken up by recipient cells is still poorly understood (271), and further 

studies are clearly necessary to define the possible role of PrP in the EVs’ uptake 

process.  

We observed that 24 h after stroke, the amount of PrP is further increased in stroke 

BDEVs compared to shams. Interestingly, another study showed that EVs released 

by astrocytes were protective when delivered to primary neurons under ischemic 

conditions and that this protective effect was dependent on the presence of PrP on 

EVs. In the same study, the authors also found that after OGD, the amounts of PrP 

in astrocyte-derived EVs were increased. Apart from the increase of BDEVs-

associated PrP after stroke, we also observed an increase in EVs released by 

astrocytes (249). Due to technical limitations, we could not assess the cell origin of 

the BDEVs that presented PrP increase, however, the fact that (i) astrocytic EVs are 

increased and (ii) PrP is increased in BDEVs after stroke, could represent a 

protective mechanism in the acute phase after stroke and it may have functional 

consequences in intercellular communication, as it influences the BDEVs uptake. 

Nevertheless, further studies are necessary to clarify the role of BDEVs-associated 

PrP. 
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-Conclusions and future perspectives 

Since the publication of the first isolation protocol (6), BDEVs have become 

important tools for studying intercellular communication in both, healthy and 

diseased brain. Being the EVs’ research field relatively young and rapidly growing, 

there is a major need for protocol and experimental standardization. As highlighted 

by our proteomic comparison study, it is important for the sake of reproducibility, to 

report the exact experiment parameters, such as protein amounts, tissue brain 

regions, etc., for reliable and reproducible results.  

In our studies, we have analyzed BDEVs from WT brains by proteomics, and BDEVs 

from stroke and sham mice with a transcriptomic approach. Proteomic, lipidomic, 

and metabolomic analyses at different time points after stroke (from the acute to 

recovery phase) are still necessary to picture a full overview of the EVs’ content. We 

expect that this kind of study will help us in the understanding of brain 

communication after ischemic injury, increasing the knowledge of underlying 

processes in stroke, but also leading to the discovery of new potential therapeutic 

targets. 

However, there are still a lot of open questions about the basic EVs’ biology. To 

bestow them a clear function, one of the main questions to be solved is where does 

the cargo go, and how it is taken up by recipient cells (271). Since EVs and viruses 

share similarities (266), and in the latter the entry cell mechanism has been 

extensively studied for years, it seems logical to learn from the virology field when 

trying to find answers for EVs’ research.  

As the study of EVs is so young and there are so many unexplored territories, it 

represents a fantastic opportunity to bring together different research fields with their 

specific background and expertise. Only with a highly collaborative spirit this 

promising field will advance in the exploration of new biomarkers and future 

therapies. 
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2. List of abbreviations 

Aβ 

AD 

ADAM10 

AEA 

ApoEVs 

APP 

ATP 

BBB 

BDEVs 

BDNF 

BMDC  

BSE 

Cas9 

CAV-1 

CJD 

CNS 

CSF 

DAMPS 

dsDNA 

EAAT 

ECM 

EE 

EPC 

EVs 

GABA 

GBM 

GDNF 

GLT-1 

HDL 

Amyloid  β peptide 

Alzheimer’s disease 

A disintegrin and metalloproteinase 10 

N-arachidonoylethanolamine 

Apoptotic cell-derived extracellular vesicles 

Amyloid precursor protein 

Adenosine triphosphate 

Blood-brain barrier 

Brain-derived extracellular vesicles 

Brain-derived neurotrophic factor 

Bone marrow-derived dendritic cell 

Bovine spongiform encephalopathy 

CRISPR associated protein 9 

Caveolin-1 

Creutzfeldt-Jakob disease 

Central nervous system 

Cerebrospinal fluid 

Damage-associated molecular patterns 

Double strand DNA 

Excitatory amino acid transporter 

Extracellular matrix 

Early endosomes 

Endothelial progenitor cell 

Extracellular vesicles 

γ-aminobutyric acid 

Glioblastoma 

Glial cell-derived neurotrophic factor 

Glutamate transporter 1 

High-density-lipoprotein
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hiPSC 

hnRNPs 

HSPs 

HSPGs 

ICAM-1 

IDL 

IGF-1 

IGF1R 

ILVs 

IS 

ISEV 

LDL 

LE 

LFA-1 

lncRNA 

MHC 

MLC 

miRNA 

MS 

mtRNA 

MVB 

MVE 

NDs 

NMDARs 

NPCs 

NVU 

OGD 

OPCs 

PAMPS 

 

human-induced pluripotential stem cell 

heterogeneous nuclear ribonucleoproteins 

heat shock proteins 

heparan sulphate proteoglycans 

immunoglobulin Intercellular adhesion molecule 1 

Intermediate density lipoprotein 

Insulin-like growth factor-1 

Insulin-like growth factor-1 receptor 

Intraluminal vesicles 

Ischemic stroke 

International society for extracellular vesicles 

Low density lipoprotein 

Late endosomes 
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4. “Characterization of brain-derived extracellular vesicles reveals changes in 

cellular origin after stroke and enrichment of the prion protein with a potential 

role in cellular uptake”   
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5. “Multiplexed mRNA analysis of brain-derived extracellular vesicles upon 

experimental stroke in mice reveals increased mRNA content related to 

inflammation and recovery processes” 
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6. “Brain-Derived Extracellular Vesicles in Health and Disease: A 

Methodological Perspective” 
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7. “CD73-mediated adenosine production by CD8 T cell-derived extracellular 
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8. Summary in English and German  

Extracellular vesicles (EVs) are lipid bilayer enclosed structures, formed via the 

endocytic pathway (exosomes) or shed from the plasma membrane 

(ectosomes/microvesicles). EVs are powerful communication tools, as they can be 

taken up by recipient cells, transferring their cargo composed by proteins, nucleic 

acids, and lipids. The cargo reflects the status of the cell of origin and, as EVs are 

found in body fluids, they are very promising biomarkers. EVs are involved in 

physiological and pathological processes in the Central Nervous System (CNS), 

playing a role in disease progression and recovery. To be studied, EVs are isolated 

either from cell-conditioned media, body fluids, and tissue. 

Ischemic stroke occurs when a brain artery is occluded, causing a lack of blood flow 

and subsequent lack of oxygen and glucose supply in the affected area. The cells at 

the core of the infarct die immediately, while neurons in the surrounding area could 

be rescued, depending on the signals received in the next hours/days. The 

pathophysiology of stroke is complex, involving different brain and infiltrating cells, 

which are in close communication with each other, possibly also by EVs. 

In this thesis, EVs isolated from the brain of mice subjected to transient Middle 

Cerebral Artery Occlusion (tMCAO, mouse model of stroke) and sham controls 

together with healthy mice, were analyzed at proteomic and transcriptomic levels. 

We reported that small brain-derived EVs (sBDEVs; ≤200nm) from healthy mice are 

enriched in ribosomal proteins, while large BDEVs (≥200nm) carry more proteins 

related to metabolic pathways. We confirmed the ribosomal protein enrichment also  

by re-analysing the proteome of BDEVs published in other studies using different 

isolation protocols. We saw that in steady-state conditions microglia are the main 

contributors to the BDEVs pool. 24h after stroke, astrocytes increase significantly 

their EVs release, possibly in relation to glial scar formation, neuronal survival, 

and/or microglial activation. Differently, there is a significant increase of 

oligodendrocyte-derived EVs 72h after stroke, a time when recovery processes such 

as remyelination start to take place. At a transcriptomic level, BDEVs isolated 72h 

after stroke carry mRNAs that are related mainly to inflammatory response and 

stress defense, but also to recovery processes. These mRNAs are mostly released 

by microglia. Moreover, we found that the most upregulated mRNAs after stroke are 

present in the EVs as full-length, and therefore potentially translatable in the 

recipient cells. How EVs reach the target cell and how they deliver their cargo are 

still unanswered questions. We saw that the presence of prion protein (PrP) on the 

surface of BDEVs influences their uptake by recipient cells, as EVs carrying PrP 

behaved differently to EVs lacking PrP. We demonstrated that PrP is significantly 

increased in BDEVs 24h after stroke/reperfusion, and we hypothesize a role for PrP 

in EVs’ fusion with the plasma membrane of the recipient cells, which could influence 

stroke.  

Lastly, we showed that activated human CD8T cells release EVs containing CD73, 

which has AMPase activity and activity and can degrade to adenosine the AMP 

resulting from ADP and ATP. This purinergic signaling cascade is fundamental for 

immune regulation during inflammation and ischemia, where the levels of 

extracellular ATP are critical and EVs seem pivotal for its degradation. 
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Extrazelluläre Vesikel (EV) sind von einer Lipiddoppelschicht umschlossene 

Strukturen, die entweder im endosomalen System gebildet (Exosomen) oder direkt 

von der Plasmamembran freigesetzt werden (Ektosomen/Mikrovesikel). EV gelten 

als wichtiges interzelluläres Kommunikationsmittel. Durch Aufnahme von 

Empfängerzellen kann ihre Ladung, bestehend aus Proteinen, Nukleinsäuren und 

Lipiden der Ursprungszelle, so weitergegeben werden. Da EV in Körperflüssigkeiten 

vorkommen, sind sie vielversprechende Biomarker verschiedener Erkrankungen. Sie 

sind an zahlreichen (patho-)physiologischen Prozessen im zentralen Nervensystem 

(ZNS) beteiligt. Um EV untersuchen zu können, müssen sie entweder aus 

Zellkulturüberständen oder Körperflüssigkeiten wie dem Liquor isoliert werden. Seit 

kurzem ist es außerdem möglich, EV aus Gehirnen aufzureinigen. 

Ein ischämischer Schlaganfall tritt auf, wenn sich eine Hirnarterie verschließt und es 

durch den Mangel an Blutfluss folglich zu einer Minderversorgung mit Sauerstoff und 

Glukose im betroffenen Hirnareal kommt. Zellen im Zentrum des Infarktgebiets 

sterben sofort ab, während die Neuronen in der Umgebung (sog. Penumbra) 

abhängig von Signalen innerhalb der nächsten Stunden/Tagen, noch gerettet 

werden können. Die Pathophysiologie des Schlaganfalls umfasst sowohl 

hirnansässige als auch infiltrierende Zelltypen, die möglicherweise durch 

Übermittlung von Molekülen und Signalen via EV in enger Kommunikation 

miteinander stehen. 

In dieser Arbeit wurden EV aus Gehirnen von Mäusen mit experimentellem 

Schlaganfall (“tMCAO“), zusammen mit EV aus Hirnen von Kontrolltieren auf 

proteomischer und transkriptomischer Ebene analysiert. Wir stellten fest, dass kleine 

hirnabgeleitete EV (sBDEVs; Durchmesser ≤200 nm) von gesunden Mäusen mit 

ribosomalen Proteinen angereichert sind, während große BDEVs (≥200 nm) in 

Abhängigkeit von bestimmten Stoffwechselwegen mehr Proteine enthalten. Wir 

bestätigten die Anreicherung ribosomaler Proteine auch durch Analyse des 

Proteoms von BDEV mit unterschiedlichen Isolierungsprotokollen anderer Studien. 

Es zeigte sich, dass Mikrogliazellen unter physiologischen Bedingungen den größten 

Beitrag zum gesamten BDEV-Pool leisten. 24 Stunden nach Schlaganfall im 

Mausmodell ist die EV Freisetzung aus Astrozyten signifikant erhöht, was mit der 

glialen Narbenbildung, dem neuronalen Überleben oder der Aktivierung von 

Mikroglia zusammenhängen könnte. Im Gegensatz dazu besteht ein signifikanter 

Anstieg der aus Oligodrendrozyten stammenden EV 72 Stunden nach Schlaganfall. 

Unsere Analysen ergaben, dass 72 Stunden nach Schlaganfall isolierte BDEV 

mRNA enthalten, die mit Entzündungsreaktionen, Stressabwehr und 

Genesungsprozessen in Zusammenhang stehen und hauptsächlich von Mikroglia 

stammen. Des Weiteren konnten wir zeigen, dass die am stärksten hochregulierten 

mRNAs nach Schlaganfall in den EV in voller Länge vorhanden sind und daher in 

Empfängerzellen translatierbar wären. 

Wie EV die Zielzelle erreichen und wie (z.B. Fusion mit Plasmamembran oder 

endozytotische Aufnahme) sie ihre Ladung übertragen, ist noch unklar. Wir konnten 

zeigen, dass die Anwesenheit des Prionproteins (PrP) auf der Oberfläche von BDEV 

deren Aufnahme durch die Zielzellen deutlich beeinflusst. Da 24 Stunden nach 

Schlaganfall PrP auf BDEV signifikant erhöht ist, stellten wir die Hypothese auf, dass 

es eine wichtige modulatorische Rolle bei der Aufnahme durch, bzw. Fusion mit den 

Empfängerzellen und somit auch der Progredienz des Schlaganfalles spielt. 
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Schließlich haben wir gezeigt, dass aktivierte humane CD8 T-Zellen EV freisetzen, 

die das Protein CD73 enthalten, welches AMPase-Aktivität besitzt und ATP abbauen 

kann. Diese purinerge Signalkaskade ist von hoher Bedeutung für die 

Immunregulation bei Entzündungen und Ischämie, bei denen der Gehalt an 

extrazellulärem ATP kritisch ist und EV für dessen Abbau eine zentrale Rolle zu 

spielen scheinen. 
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