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Abstract

Magnetic particle imaging (MPI) is a functional, tracer-based medical imaging
technique, which measures the non-linear response of magnetic nanoparticles to
a dynamic magnetic field. The visualization of tracer dynamics with high tem-
poral resolution is of particular interest in many applications, e.g. cardiovascular
interventions or blood flow measurements.
While MPI offers a very high spatial and temporal resolution, the size of its
field-of-view is limited by physiological constraints. Multi-patch scans, sequen-
tially scanning smaller subvolumes, so-called patches, allow to increase the total
field-of-view. The forward operator, or system matrix, required for image recon-
struction can be determined by calibration scans or physical models. Neither
measured system matrices nor the standard forward models in MPI account for
changes in the tracer concentration during a single scanning cycle. As a result,
to date, non-periodic dynamic tracer distributions are mostly reconstructed as
a time-series of frames under the assumption of nearly static behavior during
the scan of each frame. While being a feasible approach for limited velocities,
the reduced temporal resolution and data gaps in multi-patch sequences and the
ignorance of dynamics in the forward operators cause motion and displacement
artifacts in the case of strong dynamics.
In this thesis, we introduce a reconstruction method for dynamic tracer distri-
butions based on a dynamic forward model and a spline representation of the
concentration. First, we present the dynamic MPI model and analyze its influ-
ence on the measurements and reconstructions with and without noise compared
to the static model. Second, we establish the dynamic reconstruction approach
for non-periodic motion in multi-patch sequences. Third, the new method is eval-
uated on the basis of synthetic single- and multi-patch data showing that the
dynamic model enables for the reconstruction of fast tracer dynamics from a few
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frames and the spline approach approximates the missing data, which reduces
multi-patch artifacts. Even in the absence of a specific motion model, a reduc-
tion of motion and multi-patch artifacts for fast dynamic tracer distributions is
achieved.
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Kurzfassung

Magnetic Particle Imaging (MPI) ist ein funktionelles bildgebendes Verfahren in
der Medizin, das auf einem Kontrastmittel aus magnetischen Nanopartikeln be-
ruht. Das gemessene Signal entsteht durch das nicht-lineare Verhalten der Nano-
partikel in Gegenwart eines dynamischen Magetfeldes. Eine zeitlich hochaufgelöste
bildliche Darstellung der Kontrastmittelverteilung ist für viele Anwendungen von
großem Interesse, z.B. bei Blutflussmessungen oder kardiovaskulären Eingriffen.
MPI weist zwar eine sehr hohe räumliche und zeitliche Auflösung aufweist, jedoch
ist die Größe des abtastbaren Bereichs durch physiologisch bedingte Grenzwerte
limitiert. Eine Vergrößerung dieses Bereichs kann durch Multi-Patch Scans, bei
denen nacheinander kleinere Teilvolumina, sogenannte Patches, gescannt werden,
erzielt werden. Für die Bildrekonstruktion wird in der Regel ein Vorwärtsope-
rator oder eine Systemmatrix benötigt. Diese kann durch Kalibrierungsmessun-
gen oder physikalische Modelle bestimmt werden. Allerdings werden Bewegungen
während der Messung weder von gemessenen Systemmatrizen noch vom Stan-
dardmodell für MPI berücksichtigt. Daher werden dynamische Kontrastmittel-
verteilungen momentan hauptsächlich in Form von Zeitreihen einzelner Bilder
rekonstruiert, wobei ein statisches Verhalten während der Messung jedes Bildes
angenommen wird. Ist dieser Ansatz für geringe Geschwindigkeiten akzeptabel, so
führen sowohl die veringerte zeitliche Auflösung und Datenlücken bei Multi-Patch
Messungen als auch die Vernachlässigung der Bewegung im Vorwärtsoperator zu
Bewegungs- und Verschiebungsartefakten im Fall von schnellen Konzentrations-
änderungen.
In dieser Arbeit geht es um eine neue Rekonstruktionsmethode für dynamische
Kontrastmittelverteilungen, die auf einem dynamischen Vorwärtsmodell und einer
Spline-Repräsentation der Partikelkonzentration basiert. Zunächst stellen wir das
dynamische MPI-Modell vor und analysieren dessen Einfluss auf Messungen und
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Rekonstruktionen mit und ohne Rauschen im Vergleich zum statischen Modell.
Danach wird die dynamische Rekonstruktionsmethode für nicht-periodische Bewe-
gungen in Multi-Patch Sequenzen eingeführt. Mit Hilfe synthetischer Single- und
Multi-Patch Daten wird gezeigt, dass durch das dynamische Modell eine Rekon-
struktion schneller Bewegungen aus wenigen Scanzyklen möglich wird. Darüber
hinaus werden die fehlenden Daten in Multi-Patch Scans durch den Spline-Ansatz
approximiert, wodurch Verschiebungsartefakte reduziert werden. Auch ohne ein
spezifisches Bewegungsmodell wird eine Reduzierung von Bewegungs- und Multi-
Patch Artefakten für schnelle dynamische Kontrastmittelverteilungen erreicht.
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1. Introduction

Non-invasive medical imaging has become an integral part of modern medicine.
From the discovery of X-rays by Wilhelm C. Röntgen in 1895 to the invention of
modern tomographic imaging methods like computed tomography (CT) by Allan
M. Cormack and Godfrey N. Hounsfield in the 1970s, medical imaging has con-
tinued to develop significantly to this day. The number of imaging diagnostics
performed in German hospitals was increasing every year until the beginning of the
Covid-19 pandemic in 2020 (see Figure 1.1a). In 2019 alone, 13,703,689 imaging
procedures were applied in German hospitals. Technologies like CT, magnetic res-
onance imaging (MRI), ultrasound, single-photon emission computed tomography
(SPECT), positron emission tomography (PET) or classic X-ray cover a broad
range of diagnostic purposes and are used up to 6.56 million times per year (see
Figure 1.1b) [74]. Each of them has its advantages and disadvantages. Features
like resolution, sensitivity, speed, cost, usability and amount of radiation decide
whether, how often and under which indications it can be applied. Hence, they
determine the range of patients in which it can be used for therapeutic or dia-
gnostic purposes.
To further expand the possibilities of medical imaging, new modalities are still
being developed. Magnetic particle imaging (MPI) is a rather young technology
which was invented by Jürgen Weizenecker and Bernhard Gleich in 2005 [28].
Like SPECT and PET, MPI is tracer-based, meaning that the measured signal
stems from the tracer material. The tracer can be injected into the blood stream
or target organs of interest. The identification of the tracer distribution (over
time) allows to visualize physiological processes. While SPECT and PET de-
tect radioactive decay events, MPI is non-ionizing. Its tracer material consists of
magnetic nanoparticles (MNPs) that are exposed to dynamic magnetic fields. As
with MRI, magnetic fields are not harmful to the human organism within certain
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Figure 1.1.: Numbers of inpatient medical imaging procedures in German hospitals
[74].

limits. MPI takes the non-ionizing property of MRI and the functional imaging
property of PET and SPECT together with a high spatial and temporal resolu-
tion. This makes MPI a very attractive method for real-time imaging of highly
dynamic processes.
Although magnetic particle imaging is still in a preclinical state, its potential ap-
plications are numerous. Examples are physiological diagnostics like acute stroke
detection [55], blood flow measurements [43], visualization of blood flow [87] or
localization of medical instruments in vascular interventions [37]. Given that car-
diovascular diseases were the leading cause of death in Germany in 2020 [75], MPI
has enormous potential to meet the need for fast, safe and precise diagnostic tools.
Image reconstruction usually states an ill-posed inverse problem. Novel imaging
methods require finding suitable optimization and regularization techniques. To
date, the standard method for static MPI reconstruction is the Kaczmarz method
with Tikhonov regularization [50, 87]. Especially for functional imaging, recon-
struction of dynamic tracer distributions is of high interest. Measurements from
dynamic concentrations can be considered a time-series of measurements that
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can be reconstructed with static methods. Alternatively, more complex methods
taking the dynamics during the measurement into account have been developed.
Having already been investigated for other imaging modalities, dynamic image
reconstruction has now become a research direction for MPI as well. In dynamic
image reconstruction the ill-posedness becomes more severe due to the increased
degrees of freedom. For that reason, the existing approaches to dynamic MPI
reconstruction focus on special cases like periodic motion [25], limited velocities
or rigid motion [23].

In this thesis, we investigate possibilities to improve image reconstruction of
dynamic tracer distributions in magnetic particle imaging. First, we introduce a
general model that allows to represent measurements from dynamic tracer dis-
tributions. Second, we examine the data structure of dynamic multi-patch MPI
sequences and third, we combine these findings to develop a new dynamic recon-
struction method for dynamic MPI measurements with arbitrary motion.
In Chapter 2, we give an introduction into the basics of inverse problems and dy-
namic inverse problems which provide the theoretical basis for the reconstruction
problems later in this work.
Chapter 3 summarizes the basic theory of magnetic particle imaging beginning
with the physics of signal generation in Section 3.1, continuing with standard
methods for image reconstruction in Section 3.2 and presenting a selection of spe-
cial measurement setups which are relevant for this thesis in Section 3.3.
Chapter 4 deals with MPI forward models. In Sections 4.1 and 4.2, we present
forward models for dynamic tracer distributions. The new models show an addi-
tional second term compared to the standard model. In Section 4.3, we examine
the influence of the second term on the signal.
In Chapter 5, a novel reconstruction method for dynamic concentrations based on
the dynamic model and spline curves is introduced. Beginning with a discussion
of the challenges of reconstructing multi-patch data in Section 5.1, a suitable con-
centration model is presented in Section 5.2, followed by basics of spline theory
in Section 5.3 and suitable configurations for dynamic concentration models in
Section 5.4.
The reconstruction method is evaluated on phantoms of different levels of com-
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1. Introduction

plexity in Chapter 6. We used computational phantoms with very simple spa-
tial setups in Section 6.1 to further investigate the influence of the second term
in the dynamic model as well as the influence of noise on the reconstructions.
In Section 6.2, more complex computational phantoms are studied to evaluate
the reconstruction quality of the dynamic reconstruction method compared to
Kaczmarz reconstructions. We close with a conclusion and discussion of the res-
ults in Chapter 7.
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2. Inverse Problems

The term inverse problem refers to a mathematical or scientific problem. It de-
scribes the task of deducing the cause of an observed impact. It is the opposite
of a direct or forward problem where the impact of a cause is determined.
Inverse problems appear frequently in various fields of science and industry where
system parameters cannot be observed directly. Applications range from seis-
mic imaging and astronomy to machine learning tasks like classification or nat-
ural language processing as well as all kinds of tomographic imaging including
non-destructive testing and medical applications. A classic example is computed
tomography. A CT image depicts attenuation coefficients which vary for different
organs or materials. In order to get an image of a slice of the human body, the
slice is exposed to X-rays from a set of angles. A detector measures the attenuated
radiation for each angle. These measurements are called sinogram. Deducing the
attenuation coefficients on the inside of the slice from the sinogram corresponds
to solving an inverse problem [17].
There are ill-posed and well-posed inverse problems, whereas the majority is ill-
posed, meaning that a solution might not exist, is not unique or that the solution
is very sensitive to measurement noise. Thus, ill-posed problems are usually not
trivial to solve and require methods, such as regularization, tailored to the specific
problem in order to achieve a stable solution.
We will get into the basic theory of inverse problems in Section 2.1. In contrast
to static inverse problems that have been researched extensively, dynamic inverse
problems have not been covered deeply in the literature until today. This topic
will be discussed in Section 2.2.
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2. Inverse Problems

2.1. Fundamentals of Inverse Problems

This section deals with basic theory of inverse problems which will be used in
the remainder of this work. For further details we refer to [66]. Section 2.1.1
introduces the most relevant terms while Section 2.1.2 presents solution strategies
for (ill-posed) inverse problems.

2.1.1. Definition and Properties

We start with the mathematical description of an inverse problem.

Definition 2.1 (Inverse Problem). Given two Hilbert spaces X and Y , let
A : X → Y be a continuous map between the two spaces. Considering X the
space of parameters (causes) and Y the space of observable data (impacts),
computing data

y = Ax

from given parameters x ∈ X is called a forward problem. Determining
a parameter x ∈ X from given data y ∈ Y with

Ax = y

is called inverse problem with forward operator A.

For many practical inverse problems it is quite challenging to determine a unique
parameter x solving Ax = y, e.g. if the measuring system is highly sensitive to
noise. A categorization of inverse problems into ill- and well-posed problems was
introduced by Hadamard in 1932.
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2.1. Fundamentals of Inverse Problems

Definition 2.2 (Ill-posedness [35]). Let a map A : X → Y between two
normed spaces X and Y. The problem (A,X,Y ) is called well-posed if the
following conditions are fulfilled:

1. (Existence) For every y ∈ Y exists a solution x ∈ X, such that
Ax = y.

2. (Uniqueness) The solution x ∈ X is unique.

3. (Stability) The inverse map A−1 : Y → X is continuous, i.e. the
solution x depends continuously on the data y.

If one of the three conditions is not fulfilled, the problem is called ill-posed.

A unique solution can be determined with the help of the normal equation and
the Moore-Penrose inverse.

Theorem 2.3 (Normal Equation). Let y ∈ Y and A a continuous lin-
ear map between X and Y and P an orthogonal projection, the following
statements are equivalent.

1. x ∈ X fulfills Ax = P
ran(A)

y.

2. x ∈ X minimizes the residuum: ‖Ax− y‖Y ≤ ‖Aϕ− y‖Y
for all ϕ ∈ X.

3. x ∈ X solves the normal equation A∗Ax = A∗y.

A proof is provided in Appendix A. The set of solutions to the normal equation
is denoted by L(y) = {x ∈ X | A∗Ax = A∗y}.
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2. Inverse Problems

Definition 2.4 (Moore-Penrose-Inverse). Let A+ : dom(A+) ⊂ Y → X

with dom(A+) = ran(A) ⊕ ran(A)⊥ be a map of every x ∈ dom(A+) to a
unique x+ being the element of minimal norm of L(y). A+ is then called
Moore-Penrose-Inverse of A. Element x+ = A+y is the Minimum-
Norm-Solution of Ax = y.

After defining an ill-posed inverse problem and a unique solution the next sec-
tion will present the theory to find such a solution.

2.1.2. Solution Strategies

Most ill-posed problems violate the stability condition in Definition 2.2, such that
a measurement sequence limn→∞ yn → y does not necessarily imply limn→∞ xn →
x. Furthermore, in practice, measurement data yε is usually corrupted by noise,
i.e. ‖y − yε‖Y ≤ ε.
An ill-posed problem cannot be solved directly via the inverse operator, as small
perturbations in the measurement data might imply large errors in the recon-
structed data. Regularization methods allow to overcome this problem and find
an approximation to the minimum norm solution based on noisy data.

Definition 2.5 (Regularization). Let A a continuous linear map between
X and Y and {Rt}t>0 a family of continuous maps from Y to X with
Rt0 = 0. Given a map γ : (0,∞)× Y → (0,∞) with

sup
{
‖A+y −Rγ(ε,yε)y

ε‖X | yε ∈ Y , ‖y − yε‖Y ≤ ε
}
→ 0 for ε→ 0 ,

for all y ∈ ran(A), ({Rt}t>0, γ) is called regularization (method) for
A+ with regularization parameter γ := γ(ε, yε).

One of the most common methods is Tikhonov regularization.
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2.1. Fundamentals of Inverse Problems

Definition 2.6 (Tikhonov regularization). Given a regularization para-
meter γ > 0, a Banach space Z and an map B : X 7→ Z which is continu-
ously invertible on ran(B), the regularized normal equation

(A∗A+ γB∗B)x = A∗y

has a unique solution xγ ∈ X which depends continuously on the measure-
ment y ∈ Y . The solution is also the minimizer of the Tikhonov functional

Jγ,y(x) = ‖Ax− y‖2Y︸ ︷︷ ︸
fidelity

+γ ‖Bx‖2Z︸ ︷︷ ︸
regularization

. (2.1)

(cf. Theorem A.1 for a proof). The functional consists of a fidelity term
which punishes deviations from the measurement and a regularization term
which allows to incorporate prior knowledge about the solution and penalize
deviations from features like sparcity, limited curvature etc.

The Tikhonov functional can be minimized with any suitable optimization al-
gorithm depending on the chosen norms. Possible algorithms are gradient descent,
newton or quasi-newton method, conjugate gradient descent, stochastic gradient
descent, proximal gradient methods or the Kaczmarz algorithm which will be
presented in Section 3.2. The two terms of the functional can also be stacked to
achieve the following simpler least squares form

Jγ,y(x) =

∥∥∥∥∥
(

A√
γB

)
︸ ︷︷ ︸

=Ã

x−
(
y

0

)
︸︷︷ ︸

=ỹ

∥∥∥∥∥
2

= ‖Ãx− ỹ‖2 . (2.2)

Using an iterative method to solve the normal equation, the maximum iteration
number forms a regularization parameter, as well [66]. The functional B and the
spaces X and Y need to be chosen according to the given problem. Another as-
pect of solving inverse problems is the determination of an optimal regularization
parameter that minimizes the reconstruction error. The reconstruction error of

9



2. Inverse Problems

Rγ can be decomposed into approximation and data error

‖A+y −Rγyε‖X︸ ︷︷ ︸
reconstruction error

≤ ‖A+y −Rγy‖X︸ ︷︷ ︸
approximation error

+ ‖Rγ(y − yε)‖X︸ ︷︷ ︸
data error

.

The two errors behave in opposite ways in the limits of γ, meaning that the
regularization parameter decides whether the solution fits closer to the measured
data or the regularization condition. In order to find the optimal parameter for
minimizing the reconstruction error, the two errors have to be balanced. There are
different methods to determine the regularization parameter for a given problem,
like L-curve or discrepancy principle [66]. In practice however they are not always
feasible e.g. because they require many evaluations of the target function which
might be too expensive. As a result, the regularization parameter is sometimes
determined by visual inspection.

2.2. Dynamic Inverse Problems

While there is a broad range of literature about solving static inverse problems in
various applications, Schmitt and Louis were one of the first introducing dynamic
inverse problems in 2002 [69]. They considered inverse problems where the meas-
ured object evolves over time during the measurement process which are specified
in the following definition.

Definition 2.7 (Dynamic inverse problem). Given two Hilbert spaces X
and Y and discrete time sampling points (ti)

nT
i=1 ∈ [0,T ], let Ai := A(ti, ·) :

X → Y be a continuous map between the two spaces. Determining a para-
meter xi := x(ti, ·) ∈ X from given data yi := y(ti, ·) ∈ Y with

Aixi = yi (2.3)

for all time points ti is called dynamic inverse problem.

The forward operator A does not necessarily depend on time, while in some
applications it may be intrinsically time dependent, e.g. in MPI which will be
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2.2. Dynamic Inverse Problems

introduced in Chapter 3.
Dynamic inverse problems can be found in many imaging applications. Most
functional imaging methods like PET, SPECT and MPI can be considered dy-
namic inverse problems since their signal stems from liquid tracer materials that
can move through the blood stream, accumulate or decay. Furthermore, there is
also 4D-CT and the effects caused by motion during the measurement process.
In a medical context, these motion artifacts mainly originate from respiratory or
cardiac motion.
Additionally to the fact, that image reconstruction in these modalities is already
an ill-posed inverse problem, measurements of a spatiotemporal image will usu-
ally be strongly under-sampled. Therefore, the reconstruction of a dynamic image
from a time-series of measurements is an ill-posed problem. Time discrete setups
obviously allow for independent reconstructions of each time step. However, prior
knowledge about the image or the underlying motion can improve image quality
and computation costs. Thus, proper descriptions of the dynamics are an im-
portant aspect of dynamic reconstruction approaches. A literature overview on
dynamic inverse problems from 2018 can be found in [72]. Furthermore, there
is a survey on variational methods for image reconstruction in dynamic inverse
problems from 2021 [39]. The authors classify solution strategies for dynamic
inverse problems into reconstruction methods without explicit temporal models,
methods with motion models, methods based on deformable templates and data
driven approaches based on machine learning.
Solving a time continuous dynamic inverse problem

A (t,x(t, ·)) = y(t, ·) for T ∈ [0,T ], (2.4)

with continous map A(t, ·) : X → Y , x(t, ·) ∈ X and y(t, ·) ∈ Y , without known
temporal model that connects data and images requires regularization. One ap-
proach is minimizing∫ T

0
L (A(t,x(t, ·)), y(t, ·)) + γsRs (x(t, ·)) + γtRt (∂tx(t, ·)) dt

with respect to x, with L being a data fidelity term, Rs being a spatial regular-
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2. Inverse Problems

ization, Rt being a temporal regularization and γs and γt the respective regular-
ization parameters. While for the spatial regularization there is a broad range
of literature usually chosen as some energy functional, like the L2 or L1 norm of
the spatial gradient, there is much less theory on proper temporal regularization
methods. Simple penalties on the temporal variation like

Rt(∂txi) =
‖xi+1 − xi‖2
(ti+1 − ti)2

were proposed by Schmitt and Louis, but might damp dynamics to much. They
become aware of the computational difficulties due to the high number of degrees
of freedom and develop algorithms based on the Kronecker product but without
a temporal model [69, 70]. Other approaches use sparsifying transforms. In [15],
an image time series is reconstructed from sparse non-periodic dynamic CT data.
The ill-posedness due to the sparsity of the data and the underlying motion is
regularized with 3D shearlets, an extension of wavelets, that describe 2D images
over time. Gravier et al. deal with the reconstruction of time activity curves from
gated cardiac SPECT data [33]. The dynamic tracer distribution is modeled with
cubic spline curves, an idea which we pick up in Section 5.1. Also the authors
of [18] aim to reconstruct time activity curves from dynamic SPECT measure-
ments. Infimal convolution of Bregman distances is used to enforce alignment of
edges in sequential frames, while they do not use a temporal model but a sparse
concentration representation. Methods without known temporal model can be
applied to a broad range of problems, but their solution remains a challenge.
Thus, for dynamic inverse problems whose underlying motion can be modeled,
solution strategies will often benefit from incorporating this prior knowledge.
If there is the option to model the temporal evolution of the ground truth one
can expand (2.4) to

A (t,x(t, ·)) = y(t, ·)
s.t. Ψ(t,x(t, ·)) = 0

with Ψ : [0,T ] × X → X being a motion model for x. If Ψ depends only on
a time dependent parameter, it will probably be easier to solve, reducing the
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degrees of freedom and acting as a regularization. Usually an additional spatial
regularization will be necessary nevertheless. An example of a motion model with
high relevance in dynamic image reconstruction is the optical flow constraint

∂x

∂t
+∇x>v = 0

with velocity field v, which promotes constancy of brightness in consecutive image
frames. The dynamic image is often reconstructed jointly with its velocity field.
E.g. Burger et al. reconstruct an image time series from sparse dynamic CT data
using a joint image and motion reconstruction method based on optical flow [16].
Another approach is the dynamic reconstruction based on deformable templates.
Similar to the preceding idea, the dynamics in an image are modeled as deform-
ations of initial image x0 at time point t such that (2.4) changes to solving

A (t, Φ(λt,x0)) = (t, ·)

for x0 ∈ X and temporally dependent parameter λt. Also in this case additional
spatial and temporal regularizers might be required. For discrete problems the
theory of image registration can be applied such that the deformation parameters
for each time step are reconstructed jointly with the initial template. An example
for dynamic, template-based reconstruction can be found in [38]. The author re-
constructs static images from dynamic CT measurements by motion estimation
based on estimating contour deformations and motion compensating filtered back
projection. Blanke et al. interpret dynamic inverse problems as problems with
inexact forward operators and develop a motion compensation approach based
on sequential subspace optimization and the Kaczmarz algorithm [7]. While the
temporal evolution is initially modeled with deformable templates, their method
does not explicitly compute deformation fields.
Since solving dynamic inverse problems turns out to be so challenging due to
the enormous degrees of freedom, a potential non-convexity of the problem and
high computation costs, a natural step is to use the nowadays ubiquitous learning
methods. Methods like deep learning are quite flexible, can be applied to prob-
lems which are difficult to model and after the training phase are rather cheap
to apply. Without an explicit temporal model, data driven methods can be used
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to determine a post processing operator, applied to a reconstruction operator e.g.
based on a known forward model. If a suitable motion model is available learn-
ing methods can be used to speed up the reconstruction process e.g. by learning
motion fields from given time series x(t, ·). Data driven methods can be used to
determine the temporal evolution of a deformation parameter or to learn the class
of deformations. Also regularizations for the deformation can be estimated.
In the context of medical imaging another problem arises. Supervised learning
methods require a vast amount of training data. Medical data sets are rare as
they are strongly protected and not publicly available. This makes setting up
reliable machine learning systems in this field very challenging.
The referenced articles emphasize the progress that has been made in the research
field of dynamic inverse problems. Nevertheless, depending on the chosen applic-
ation the setups are varying, e.g. signal-to-noise ratio (SNR), the data structure
or the time dependence of the forward operators, such that a general solution ap-
proach does not exist. We will continue with an introduction to magnetic particle
imaging physics and modeling. An overview of recent articles on dynamic inverse
problems in MPI will be given Section 3.3.
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3. Magnetic Particle Imaging

Magnetic particle imaging is a tracer-based medical imaging modality for physiolo-
gical examinations. The measured signal is generated by the magnetic tracer ma-
terial (Figure 3.1a). Hence, there is no signal from surrounding organs. To add

(a) Magnetic nano-
particles [71]

(b) Lab mouse [65] (c) Preclinical MPI scanner at the University
Medical Center Hamburg-Eppendorf (UKE)
[58]

(d) Cone-shaped
phantom filled with
tracer material [58]

(e) Reconstruction of the
cone phantom [58]

Figure 3.1.: Currently magnetic particle imaging allows to visualize the multidimen-
sional distribution of magnetic nanoparticles on the inside of phantoms
or small animals.

morphological context, MPI images can be combined with CT or MRI images.
Its high spatial and temporal resolution make MPI a very attractive method for
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real-time imaging of highly dynamic processes.
To date, MPI is in the preclinical research phase and the scanner size is still
limited. Thus, its field of application is currently limited to examinations of
test objects, so called phantoms, tissue or small animals like mice (Figure 3.1b).
While scaling the standard setup to human size remains a challenge [62], there is
a human-sized MPI brain imager [32]. Nevertheless, approval for clinical applic-
ations is still pending. Figure 3.1c shows the preclinical MPI scanner (Bruker,
Ettlingen, Germany) at the University Medical Center Hamburg-Eppendorf. Re-
constructed MPI images visualize the particle concentration of the tracer in space
(and time). An example phantom, a 3D printed cone-shaped phantom filled with
magnetic nanoparticles, is depicted in Figure 3.1d. The respective reconstruction
from the openMPI data set [58] can bee seen in Figure 3.1e.
Although MPI has not entered the clinical research phase yet, its potential ap-
plications are numerous, e.g. targeted imaging of tumor cells [82], imaging of in-
struments during interventions [36, 37] and vascular examinations. This includes
imaging of stenosis [83], aneurysms [73], internal bleeding [88], brain perfusion
[32], stroke detection [55] and blood flow measurements [43]. Another promising
application is interventional MPI. Magnetic fields are used to steer catheters [2, 64]
or to heat targeted tissue in hyperthermia therapy [5, 59]. An extensive overview
on the range of applications can be found in [49].
In the remainder of this chapter we will explain the basic physics of magnetic
particle imaging, the mathematics of image reconstruction in MPI and a few
measurement setups which are relevant for the remaining chapters.

3.1. Signal Generation

Magnetic particle imaging being tracer-based means that the measured signal
is generated by the tracer material and not by applied radiation or the object
under consideration. The non-linear magnetization response of magnetic particles
exposed to a dynamic magnetic field induces a current in the receive coils of the
MPI scanner. Specific excitation fields allow to map the measured voltages to the
multi-dimensional tracer distribution. The physical and technical fundamentals
of the signal generation and acquisition are explained in the following sections.
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3.1. Signal Generation

3.1.1. Magnetic Particles

The tracer material in MPI is required to be sensitive to dynamic magnetic fields,
liquid and safe for medical use. In 2002, Schering introduced an MRI contrast
agent for liver diagnostics, called Resovist, containing superparamagnetic iron
oxide nanoparticles (SPIONs) that was used in the first MPI experiments [21, 28].
The magnetic nanoparticles (MNPs) consist of a magnetic iron oxide core and a
sufficiently thick coating to prevent agglomeration of particles. Furthermore, they
are superparamagnetic, meaning that while an external magnetic field is applied,
they behave like tiny magnets with each particle having its own magnetic moment
which is larger than the atomic moment. After the applied magnetic field is
removed, there is no remanent magnetization [6].
The particles’ diameter in the nanometer range facilitates their use as a tracer
which can be injected into a living organism. Due to their size, a single particle
cannot be located but the concentration of the particles within a volume can be
detected and visualized.

H M
(a) No magnetic field strength

H M
(b) Small magnetic field

strength

H M
(c) Large magnetic field

strength

Figure 3.2.: Superparamagnetic nanoparticles in a magnetic field. With increasing
field strength H := ‖H‖ the magnetic moments of more particles align
with the applied magnetic field. As a result the magnetization M within
the depicted volume increases.

The magnetic moments of superparamagnetic particles point in random directions
when there is no external magnetic field applied, see Figure 3.2a. Depending
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on the magnetic field strength, a higher fraction of particles will align with the
direction of an external magnetic field. As a result the magnetization of the
volume of particles will increase. This behavior is illustrated in Figure 3.2.
The exact behavior of the SPIONs can be described by different magnetization
models. A simple and popular model is the Langevin or equilibrium model. The
Langevin function

Lα,β(z) = α coth(αβz)− 1

βz
with α = McVc, β = (kBT0)−1

describes the magnetization as a function of the magnetic field strength z and
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(b)

(c)

‖H‖

L′ 1
,1
0

(b) Derivative

Figure 3.3.: The Langevin model for the magnetization of a paramagnetic particle.
Red circles mark the magnetization states shown in Figure 3.2.

particle dependent parameters α and β. While α is determined by th product
of the saturation magnetization of the core material Mc and the core volume Vc,
β depends inversely on the Boltzmann constant kB and temperature T0. The
Langevin function and its derivative are shown in Figure 3.3 for exemplary values
of α and β. The three magnetization states from Figure 3.2 are also marked in
Figure 3.3. A nonlinear behavior of the magnetization can be observed. The
magnetization change is strongest for small field strengths and saturates for large
ones. The mean magnetic moment for a given tracer material in a magnetic field
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H at position r and time point t

m̄(r, t) = Lα,β

(
‖H(r, t)‖

) H(r, t)

‖H(r, t)‖ (3.1)

is described by a vector in the direction of the magnetic field and with the length
proportional to the value of the Langevin function for the magnetic field strength.
Thus, the product of the mean magnetic moment and the particle concentration
c yields the magnitude of the magnetization

M(r, t) = c(r)m̄(r, t) . (3.2)

The Langevin model assumes that the particles are in thermal equilibrium and the
applied magnetic fields are static. This strong simplification and the negligence of
magnetic relaxation effects give rise to modeling errors. Therefore, more complex
models were studied by Kluth [47] and Weizenecker [85]. In [44], magnetization
models for single domain particles, i.e. particles so small that their magnetic
domain is composed of a single domain, with uniaxial anisotropy are presented.
The article covers two types of relaxation. A magnetic nanoparticle can change the
direction of its magnetic moment by an internal rotation, called Néel relaxation,
or the rotation of the whole particle, called Brownian rotation. The authors of [47]
discovered that their models are able to model the correct relaxation behavior of
the particles much better than the equilibrium model. Nevertheless, the Langevin
model is used throughout this work due to its simplicity, while incorporating the
more advanced model into the approaches presented in this work seems practicable
and might be realized in the future.

3.1.2. Spatial Signal Encoding

Spatiotemporal encoding of the signal is of high importance in each imaging mod-
ality. It enables us to decode the spatial origin of the signal from a measured time
signal and thus links measurements and positions.
An MPI scanner has several coils to generate dynamic magnetic fields. The num-
ber of coils and shape of the magnetic fields depend on the scanner type. We
start with the description of a scanner with ideal magnetic fields. MPI signal
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generation is realized by the spatiotemporally inhomogeneous magnetic field

H(r, t) = HS(r) +HD(t) ∈ L2(Ω× R+,R3) .

It is an overlay of the static linear gradient field HS , named selection field, and
the dynamic drive field HD. The field-of-view (FOV) is denoted by Ω ⊂ R3.
The selection field is inhomogeneous in space and has a region of vanishing field
strength. The shape of this region depends on the scanner setup. There are
field-free line (FFL) and field-free point (FFP) scanners. In this work we restrict
ourselves to the more common FFP scanner. The selection field

HS(r) =

gx 0 0

0 gy 0

0 0 gz

 r, r ∈ Ω ⊂ R3 ,

with gx, gy, gz ∈ R is zero at r = [0, 0, 0]> and increases linearly to the periphery
which can be seen in Figure 3.4a. According to the equilibrium model, the mag-
netization of particles is sensitive to low magnetic field strengths and saturated at
high field strength. Thus, if the FFP moves to a new position, the field strength
at the new position drops and the particle magnetization changes rapidly, which
induces a voltage in a measurement coil. Such a shift of the FFP can be achieved
by adding another magnetic field, the drive field. The setup of this field depends
on the intended FFP trajectory. A common choice is the Lissajous trajectory (see
Figure 3.4b). The drive field

HD(t) =

ax sin(2πfxt+ ϕx)

ay sin(2πfyt+ ϕy)

az sin(2πfzt+ ϕz)

 ,

of this trajectory is a temporally sinusoidal 3-dimensional field and has three
parameters per dimension. The amplitudes ax, ay, az ∈ R determine the size of
the covered area, the frequencies fx, fy, fz ∈ R define the density and the phase
shifts ϕx, ϕy, ϕz ∈ R set the starting point of the scan trajectory.
Adding the two fields and choosing the parameters appropriately, the FFP is
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traveling through the volume on a grid-like closed curve which can bee seen in
Figure 3.4b.
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(a) The selection fieldHs is a static gradient field with
vanishing field strength in the center and linearly
increasing field strength to the border of the field
of view.
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(b) The trajectory of the field-free point
forms a Lissajous curve during a single
excitation cycle.

Figure 3.4.: Magnetic field setup of an FFP scanner

Additionally to the particle signal that is needed for the reconstruction, the dy-
namic excitation field also induces a voltage that is dominating the measurement.
Fortunately, the parameters of the excitation field are known such that its contri-
bution to the signal can be removed with a bandstop filter.
The setup presented in this section, i.e. FFP scanner with Lissajous trajectory, is
the most common scanner setup so far. Nevertheless, there are alternative traject-
ories e.g. cartesian trajectory for FFP scanners or rotations for the FFL scanner
setup. The latter provides Radon data which enables the use of extensive CT-
reconstruction theory. In practice however, problems arise as magnetic fields are
not ideal but are distorted versions of the ones presented above. As a result, the
FFP and FFL are not perfect circles and lines but ellipses and banana-shaped.
Spherical harmonics allow to describe ideal magnetic fields with a small set of
coefficients [13]. With the help of calibration scans non-ideal fields can be ap-
proximated and incorporated in reconstruction schemes [14]. Also the filtering of
the measured signal is not perfect in practice and noise is part of every physical
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measuring system. However, under the condition that the modeling errors are
tolerable, a measured voltage at a certain time can be connected to the particle
concentration at a certain location. This process is called image reconstruction
and the topic of the following section.

3.2. Image Reconstruction

Image reconstruction requires suitable forward operators, i.e. knowledge of how
the measured data is linked to the image to be reconstructed, and reconstruc-
tion algorithms. In MPI, reconstruction methods can be classified into model-
and measurement-based techniques [34]. In the measurement-based approach,
the forward operator, which describes the mapping between the object and the
measurement, is determined in a calibration scan [63, 86]. The FOV is subdivided
into a finite grid and the signal for a delta sample is measured at each node, which
is very time-consuming. For a 3D scan with 643 voxels the calibration time takes
about three days [34]. While this is the main drawback of this approach, the
calibration includes the transfer function of the system. This function provides
a mathematical description of (analog) components of the receive chain such as
impedance matching, band-stop filters and preamplifiers [48], and may also in-
clude system-specific noise and imperfections. Unfortunately, the scan needs to
be repeated if settings like resolution, tracer material etc. change. The efficiency
and flexibility of the measurement-based approach can be improved with machine
learning techniques. The forward operator can be generated from a few sampling
points and adapted for different tracer material with the help of deep learning
[3]. In the model-based approach particle physics and the measurement process
are modeled by physical laws [51] as described in the previous section. While the
modeling approach is more flexible to parameter changes, it remains a challenge to
balance modeling errors and simplicity of the models allowing for efficient compu-
tations. This is an ongoing topic of research and the still large amount of modeling
errors are a reason why the measurement-approach still prevails in practice.
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3.2.1. Direct MPI Problem

This work deals with model-based reconstruction. The standard model for the
direct MPI problem is based on Faraday’s law of induction

û(k) = ak · F
(
−µ0

d
dt

∫
Ω
ps(r)

>(c(r)m̄(r, t) +H(r, t)
)
dr3
)

(3.3)

for each frequency component k [48]. It describes the measurement process in
frequency space for static tracer distributions. The continuous Fourier transform
is denoted by F : L2(R) 7→ L2(R), µ0 is the permeability constant and ps : R3 7→
R3 the sensitivity of the receive coils. A band-stop filter ak filters the signal to
separate the signal generated by the excitation field H from the one originating
from the tracer material. Assuming ak to be a perfect filter the problem can be
reformulated to

û(k) =

∫
Ω
−µ0 ps(r)

>F
(∂m̄
∂t

(r, t)
)

︸ ︷︷ ︸
=:Ŝ(r,k)

c(r) dr3 (3.4)

where Ŝ is called system function in Fourier domain. As defined in Section 3.1.2
the excitation field is multi-dimensional such that the system function Ŝ maps to
C3 and û ∈ C3 is a voltage vector, where each value is measured by a respective
receive coil. To simplify the mathematical description in the following, we will
refer to a single receive channel while the computations are analogous for all
channels.

Discretization Numerical reconstruction methods require discretized models and
data. In order to discretize forward problem (3.4), we use a basis {φi}i=1,...,R ⊂ L2

of a finite-dimensional subspace XR ⊂ L2 and choose piecewise constant basis
functions on equisized, pairwise disjoint quadratic or cubic domains. This is a
common choice since the basis functions can be interpreted as the pixels or voxels
in an image as well as the delta sample used for the calibration scans at different
positions in space.
Using the basis functions, we obtain piecewise constant approximations of the
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concentration and system function by

c̃(r) =

R∑
i=1

ciφi(r) and S̃(r, k) =
R∑
i=1

Ŝk,iφi(r) ∈ XR .

Inserting c̃ in (3.4) yields the following discrete forward problem

û(k) =

R∑
i=1

Ŝk,ici . (3.5)

It can also be written as a matrix vector multiplication of a concentration vector
c and the system matrix Ŝ

û = Ŝc with û ∈ RnK , Ŝ ∈ RnK×R, c ∈ RR , (3.6)

with nK denoting the total number of frequencies. Reconstructing the concentra-
tion vector c from the given measurement vector û is a classic inverse problem.

3.2.2. Inverse MPI Problem

Image reconstruction in MPI means to solve (3.4) for the particle distribution c.
It was shown in [46, 57] that the multidimensional MPI reconstruction problem is
severely ill-posed. As discussed in Section 2.1.2, there a numerous regularization
techniques that can be used to solve such problems. Solving (3.4) can be written
as a variational least-squares problem

arg min
c≥0

1

2

∥∥∥∥∫
Ω
Ŝ(r, k)c(r) dr − û(k)

∥∥∥∥2

2

+ γR(c) . (3.7)

Using the L2-norm is a typical choice since the measurement noise is Gaussian
[76]. In general, image reconstruction problem (3.7) can be solved with many
optimization methods. One of the most common reconstruction algorithms in
MPI is the Karzmarcz algorithm with Tikhonov regularization [87].
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Kaczmarz Reconstruction The Kaczmarz algorithm is an iterative solver pro-
posed in 1937 by Stefan Kaczmarz [42], also known as algebraic reconstruction
technique (ART). The Kaczmarz method was used in the first computed tomo-
graphy reconstructions since it models the discrete CT imaging process quite
intuitively [17]. Later it was replaced, in practice, by the filtered back projection
due to computational advantages.
The linear system (3.6) has nK equations and R unknowns. The idea is to start
off with a starting value c(0), approximate a voltage u(0) = Sc(0), compute the
error to the true measurement u correct the current estimate to obtain c(1) and
repeat. This is realized by dividing the R dimensional solution space into nK
hyperplanes, one for each equation. In a sub-iteration, the current estimate c(q)

is projected onto the hyperplane defined by the k-th equation. Each sub-iteration

c(q+1) = c(q) +
uk − 〈s̄k , c(q)〉
‖sk‖22

s̄k, q = 1, . . . , qmax ,

requires only one matrix row sk. One sweep through all matrix rows is called one
Kaczmarz iteration. It is advantageous if successive rows are nearly orthogonal
but in general any sequence of rows can be used e.g. k = (q mod nK) + 1 or a
random order [77]. If the algorithm is not run until convergence, the parameter
qmax is a regularization parameter [45]. Further regularization can be added by
using `2-Tikhonov regularization, cf. Equation (2.2). An additional improvement
of the convergence and reconstruction quality of the Kaczmarz algorithm can be
achieved by adding a diagonal weighting matrix that normalizes the matrix rows
with their squared reciprocal energy [50].

Advanced Reconstruction Methods Although the Kaczmarz method is still
dominating MPI reconstruction in practice, several alternatives or extensions
have been developed in the last years. The `2-Tikhonov regularization leads to
oversmooth edges in the reconstructed images. Regularizers allowing for sharp
edges require alternative optimization techniques. Storath et al. propose a recon-
struction method called non-negative fused lasso that includes `1-regularization
combined with a total variation penalty and a non-negativity constraint on the
concentration c. The inverse problem is solved with a forward-backward scheme
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which results in reconstructions with reduced noise while edges are preserved [76].
More approaches using `1-regularization combined with total variation penalty
can be found e.g. in [41] for FFL scanners, in [56] for FFP scanners, both based
on the alternating direction method of multipliers or in [54] using an adaptation
called non-negative garrote (NNG) thresholding.
Zdun et al. also replace the `2-regularization used in the regularized Kaczmarz
method by non-smooth priors. They propose a stochastic primal-dual hybrid
gradient method combined with a data-driven splitting scheme that allow a wider
choice of regularizers and data fidelity terms. Additionally, the runtime of their
method is absolutely competitive with the Kaczmarz method [89].
Recently, another fast reconstruction method for MPI was proposed by Droigk
et al. [20]. They exploit the similarity of the system function to tensor products
of Chebychev polynomials of the second kind to create a direct reconstruction
method for multi-dimensional MPI. While the reconstruction quality was com-
parable to model-based Kaczmarz reconstructions, they could show a significant
reduction of the runtime for measured 2D phantoms.
There is a variety of other methods that incorporate prior knowledge from other
imaging modalities [4], consider `1-fidelity terms [45] or approaches with different
structures like representing the solution by a deep neural network [19] or x-space
reconstruction, a direct inversion method for cartesian trajectories [30, 31]. We
refer to [49] for an overview.

3.3. Special Measurement Setups

The physics and mathematics described in the preceding sections allow to under-
stand the principles of MPI and how images can be generated from measurements.
As discussed there are many assumptions and limitations in the theory. Some ap-
plications require settings that remain a technical and theoretical challenge. Two
of them, multi-patch and dynamic imaging, which are highly relevant for this
work, are presented in the following.
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3.3.1. Multi-Patch Measurements

The volume of the field-of-view

VFOV =
2ax
gx

2ay
gy

2az
gz

,

which is covered by the drive field, depends on the quotients of the drive field
amplitudes and the gradient strengths. While magnetism is generally considered
to be harmless, there is a risk of tissue heating or peripheral nerve stimulation
(PNS) for dynamic magnetic fields. In order to prevent these negative side ef-
fects, there are safety limits on the drive field amplitudes which consequently
limit the size of the FOV [10, 67, 68]. Considering typical gradient strengths
of [−1,−1, 2] Tm−1µ−1

0 , a drive field strength of 5 mTµ−1
0 results in a FOV of

10× 10× 5 mm3, which is too small for many applications.

(a) A large vessel can be scanned
using a setup with four
patches

SM FOV 1 SM FOV 2

DF FOV 1 DF FOV 2
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O
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(b) Illustration of the the terms
drive field FOV, system mat-
rix FOV, overscan and over-
lap

Figure 3.5.: Large objects can be scanned by using multiple patches. The FOVs of
the patches might overlap.

One approach to cover a larger volume, is to move the object of interest step-
wise through the FOV [78], while the more common method shifts the FOV by
low frequency focus fields [29]. The focus field can be shifted continuously [61]
or step-wise in between excitation cycles [53]. In the latter case, the total scan-
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ning volume is subdivided into several smaller FOVs, called patches, which are
scanned sequentially. This scanning routine is called multi-patch scan and an
example setup is shown in Figure 3.5a. The figure illustrates how a large vessel
tree can be covered by four patches.
In this example, the drive field FOVs do not overlap. The rectangular area covered
by the trajectory is called drive field field-of-view (DF FOV). MPI scanners are
sensitive to signals slightly off the DF FOV such that particles located outside
the region of interest or in neighboring patches generate a signal that cannot be
mapped to the correct location. For single patches, these artifacts can be handled
by using an overscan, meaning to choose a larger field-of-view for the system
matrix (SF FOV) than for the drive field [84]. The larger SM FOV can also be
observed in the example setup in Figure 3.5a. Depending on the location of mul-
tiple patches, the SM FOVs and DF FOVs might overlap. The terms SM FOV,
DF FOV, SM overlap, DF overlap and overscan are illustrated in Figure 3.5b.
For multiple patches, overscans can be used as well, but redundant information
due to the SM overlap need to be taken into account. An example can be found
in [1]. The authors reconstruct overlapping patches and use the redundant data
in a post-processing step to compensate the artifacts occurring at the respective
edges. An example for a DF overlap can be found in [25].
Another challenge is the distortion of the magnetic fields which becomes stronger
with the distance from the center of the scanner. Consequently, a measurement-
based multi-patch reconstruction requires more calibration scans. The authors of
[53] present a joint reconstruction method for static measurement-based multi-
patch sequences, where a dedicated system matrix is used for each patch. Meas-
uring and storing several system matrices causes a long calibration time and high
memory consumption. A performance upgrade is made by Szwargulski et al. by
using shifted versions of the same central system matrix for all patches at the
cost of artifacts for non-ideal magnetic fields [81]. The authors of [80] and [9]
compromise between these two approaches by either exploiting symmetries and
generating neighboring system matrices by mirroring in the former case and by
using the same system matrices for clusters of patches based on an error metric
depending on the magnetic fields in the latter case. Boberg et al. discovered an-
other method which reuses calibration measurements from the center and warps
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them according to the patch location thus saving time for additional calibration
scans [8].

3.3.2. Dynamic Measurements

A common challenge in many imaging modalities is motion during the measure-
ment process. Section 2.2 gives an overview of dynamic inverse problems. One
of the main fields of application of MPI is physiological diagnostics. The MNPs
form a liquid tracer which flows through the patient’s body, spreading, accumu-
lating or dissipating according to the processes in the body. Thus, the dynamics
of the tracer concentration over time are of high diagnostic value. Further typical
sources of dynamics are cardiac and respiratory motion.
The MPI theory we have discussed so far assumes (quasi) static tracer distribu-
tions during signal acquisition. Regardless of whether we consider measurement-
or model-based reconstruction, the presented methods are not designed to ac-
count for tracer dynamics. The concentration c in (3.3) depends only on the
spatial variable r and the delta probe is static during each cycle of the calibra-
tion scan. Image sequences of objects with slow dynamics can be generated by
reconstructing a time-series of MPI scans with the methods known from static
reconstruction. This is intuitive and due to the speed of MPI a realistic approach
which was used in [37, 76]. In the last years, dynamic reconstruction has gained
more interest in MPI research. In [26], motion in single-patch MPI measurements
is detected and compensated for the special case of periodic motion. The au-
thors assume a limited velocity and group the measured data into virtual frames
to reconstruct images with the measurement-based approach. An extension to
multi-patch sequences is presented in [25]. Ehrhardt et al. deal with dynamic
non-periodic multi-patch reconstruction. They use polyrigid image registration
for joint reconstruction of the object and its motion to compensate e.g. res-
piratory motion [23]. A more general approach for dynamic non-periodic MPI
reconstruction for single and multiple patches is the topic of Chapter 5.
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4. Forward Models for
Dynamic Tracer
Distributions

In the preceding chapter we presented the standard MPI forward problem and
discussed its shortcomings when it comes to the reconstruction of dynamic tracer
distributions. We begin with incorporating dynamic behavior in the forward
model in Section 4.1, extend it to multi-patch MPI in Section 4.2 and continue
with studying the components and their influence on the measurement in Sec-
tion 4.3. The models from Section 4.2 have already been published in [11] as well
as parts of the analyses in Section 4.3. The models from Section 4.2 have been
introduced in [12].

4.1. Dynamic Single-Patch Models

Independently of the explicit magnetization model, the magnetization function
(3.2) is modified such that it contains a time-dependent concentration

M(r, t) = c(r, t)m̄(r, t) , c ∈ H1(Ω× R+), (4.1)

M , m̄ ∈ H1(Ω× R+) .

This changes the model (3.3) to

u(t) = −µ0
d
dt

∫
Ω
ps(r)

>(c(r, t)m̄(r, t) +H(r, t)
)
dr .
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4. Forward Models for Dynamic Tracer Distributions

We assume that the signal generated by the excitation field is removed by a
filter and that the coil sensitivity ps is constant such that it can be summarized
in η := −µ0ps ∈ R together with the permeability constant. This yields the
dynamic forward model

u(t) = η
d
dt

∫
Ω
c(r, t)m̄(r, t) dr (4.2)

= η

∫
Ω

∂m̄

∂t
(r, t)︸ ︷︷ ︸

=:S1(r,t)

c(r, t) + m̄(r, t)︸ ︷︷ ︸
=:S2(r,t)

∂c

∂t
(r, t) dr , (4.3)

Dynamic model

u(t) = η

∫
Ω
S1(r, t)c(r, t) + S2(r, t)

∂c

∂t
(r, t) dr , (4.4)

c ,S2 ∈ H1(Ω× R+) ,

describing a measurement u : R+ 7→ R3 in time domain. It contains a sum of two
system functions S1,S2 : Ω × R+ 7→ R3 multiplied with the tracer concentration
c : Ω× R+ 7→ R+ and its time derivative. Since the concentration c and S2 = m̄

are in the Sobolev space H1(Ω × R+), the derivatives ∂c
∂t , S1 = ∂m̄

∂t and the
measurement u are L2-functions.

Dynamic forward model in frequency domain In practice, MPI measurements
are either measured in or transferred to frequency domain for preprocessing steps
like frequency selection or spectral leakage correction. The freqency domain model

û(k) = η

∫
Ω
c(r)F

{∂m̄
∂t

}
(r, k) dr

corresponding to (3.3) changes to

û(k) = η

∫
Ω
F
{
c
}

(r, k) ∗ F
{∂m̄
∂t

}
(r, k) + F

{∂c
∂t

}
(r, k) ∗ F

{
m̄
}

(r, k) dr , (4.5)
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4.1. Dynamic Single-Patch Models

Dynamic model in frequency domain

û(k) = η

∫
Ω
ĉ(r, k) ∗ Ŝ1(r, k) +

∂̂c

∂t
(r, k) ∗ Ŝ2(r, k) dr , (4.6)

ĉ , Ŝ2 ∈ H1(Ω× R+) .

The measurement in frequency space û : R+ 7→ C3 and the derivatives ∂̂c
∂t :

Ω × R+ 7→ C, Ŝ1 : Ω × R+ 7→ C3 are L2-functions because ĉ , Ŝ2 ∈ H1(Ω × R+).
Due to the time dependence of the concentration, the dynamic forward model in
frequency domain contains convolutions which are only applied to the frequency
components.

Discretization The dynamic model can be discretized analogously to the static
model with the pixel-basis {φi}i=1,...,R ⊂ L2 used in Section 3.2.1. We get the
representation

c̃(r, t) =
R∑
i=1

ci(t)φi(r) ∈ XR

of a piecewise constant dynamic concentration and the derivative ∂c
∂t and system

functions S1 and S2 analogously. Using these function and the time sampling
points {tj}j=1,...,nT from Section 3.2.1, yields the discretized dynamic forward
problem

Discrete dynamic model

u(tj) = η
R∑
i=1

S1,i(tj)ci(tj) + S2,i(tj)
(∂c
∂t

)
i
(tj) , j = 1, . . . ,nT . (4.7)

In practice, scan protocols often take multiple cycles. For measurements with
l ≥ 1 cycles, the time sampling for the measurement and concentration changes
to {τj}j=1,...,lnT with τj = (j − 1)lTc/(lnT − 1) while the system functions are
evaluated at tj mod nT . Equation (4.7) can no longer be interpreted as a matrix-
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4. Forward Models for Dynamic Tracer Distributions

vector multiplication as in (3.6) but a sum of element-wise multiplied matrices

u = η
[
S1 � c + S2 �Dc

]
· 1R

with u ∈ RnT , c,Dc ∈ RnT×R, S1,S2 ∈ RnT×R, 1R = [1, . . . , 1]> ∈ NR and �
being an element-wise matrix multiplication, e.g. A � B = [aijbij ]

j=1,...,m
i=1,...,n , with

matrices A,B ∈ Rn×m.
The dynamic model in frequency space can be discretized analogously resulting
in the following discrete forward problem

û = η
[
Ŝ1 ∗ ĉ + Ŝ2 ∗ D̂c

]
· 1R

with û ∈ CnK , ĉ, D̂c ∈ CnK×R, Ŝ1, Ŝ2 ∈ CnK×R, 1R = [1, . . . , 1]> ∈ NR. Again
the convolution is only applied to the frequency components, i.e. the respective
matrix columns. Note that in contrast to the static case a frequency domain re-
construction computes ĉ. To see the behavior of the concentration in time, the
inverse Fourier transform needs to be applied.
Another alteration is that frequency domain reconstruction becomes a deconvo-
lution problem. The standard approach for solving this ill-posed inverse problem
is to make use of the convolution theorem of the Fourier transform which in this
case results in time domain reconstruction. Thus, at least in the case simulated
data where time domain measurements are easily available, reconstruction in time
domain is more intuitive and computationally attractive.
The dynamic model (4.3) has already been introduced in [25] but prior knowledge
of periodicity and velocity limits allows the authors to neglect the second sum-
mand. However, the models proposed in this work are valid for a broad range
of dynamics, e.g. rapid changes or non-periodic behavior. For our derivations
we assume the concentration and magnetization function to be in H1 and the
dynamic concentration model in Section 5.1 describes tracer distributions which
are differentiable in time and integrable in space.

4.2. Dynamic Multi-Patch Models

The dynamic model 4.4 can be adapted to the
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Dynamic multi-patch model

up(t) = η

∫
Ω
S1(r, t)cp(r, t) + S2(r, t)

∂cp

∂t
(r, t) dr , p = 1, . . . ,P , (4.8)

for P patches. Assuming ideal magnetic fields the same system matrices can be
used for all patches. As discussed in Section 3.3, system matrices are not shift-
invariant in practice and magnetic fields are distorted. This affects especially
measurements of off-center patches. Patch specific system matrices can be gen-
erated e.g. by additional calibration scans or by transforming a system matrix
according to the current patch location [8]. The model can be easily adapted to
patch-specific system matrices by using Sp1 and Sp2 , while generating or loading a
new system matrix for each patch will increase the computational costs.

Discretization Also the dynamic multi-patch model can be discretized analog-
ously to the static model with the pixel-basis {φi}i=1,...,R ⊂ L2 used in Sec-
tion 3.2.1. This yields the representations

c̃p(r, t) =

R∑
i=1

cpi (t)φi(r) ∈ XR

of the piecewise constant dynamic concentration for each patch p = 1, . . . ,P and
the derivative ∂cp

∂t and system functions S1 and S2 analogously. Here, we choose
equidistant sampling points

{tj}j=1,...,FlPnT with tj = (j − 1)FPlTc/(FPnT − 1)

for a measurement with F frames, P patches, l cycles per patch and Tc being the
time of one excitation cycle. This yields the

Discrete dynamic multi-patch model

up(tj) = η
R∑
i=1

S1,i(tj)c
p
i (tj) + S2,i(tj)

(∂cp
∂t

)
i
(tj) , p = 1, . . . ,P , (4.9)

35



4. Forward Models for Dynamic Tracer Distributions

in time-domain with periodic system functions, i.e. Si(tj) = Si(tj mod nT ). For
all the forward models presented in this section holds that solving them for the
tracer concentration c poses an ill-posed inverse problem.

4.3. Relevance of Dynamic Models for Different
Velocities

In the beginning of this chapter, we presented MPI forward models for dynamic
tracer distributions. In practice however, the concentration is still assumed to be
constant during single scanning cycles. This corresponds to a time derivative of
the concentration that is nearly zero, so that the second addend of the dynamic
model (4.4) becomes negligibly small. In order to determine the influence of the
second summand, we investigate the structure of S2 in comparison to S1. A set of
simulated dynamic concentrations is used to identify cases where neglecting the
second summand of (4.4) is reasonable.
The two system matrices are simulated according to the Langevin model on a
19 × 19 × 1 grid with 1632 sampling points in time and the parameters listed in
Table B.1. The dynamic forward model in frequency domain (4.6) forms a sum of
two convolutions. In the first summand the time derivative of the magnetization
function Ŝ1 is convolved with the concentration and in the second summand the
magnetization function Ŝ2 is convolved with the time derivative of the concentra-
tion.
First, we are interested in the shape of the convolution kernels Ŝ1 and Ŝ2. There-
fore, we compute

max
r∈Ω
{|Ŝω(r, k)|}, ω ∈ {1, 2}

which are shown in Figure 4.1 together with an approximation of their convex
hulls. The approximation of the convex hull was calculated by determining and
connecting the maximum values within the next 15 frequency steps to include all
peaks of the function. The structure of the curves is very similar. Both exhibit
multiple peaks with a distance of ca. 15 frequency steps. While the convex hulls
show the same full-width-at-half-maximum (FWHM) of about 33 frequency steps,
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4.3. Relevance of Dynamic Models for Different Velocities

the maximum of the second system matrix Ŝ2 is 104 smaller than the maximum
of the first system matrix Ŝ1. This first experiment makes a case for neglecting
the second term in the dynamic model.

0.0 0.3 0.6 0.9 1.2

0

2

4

6

·10−6

Frequency, k in [MHz]

maxr{|Ŝ1|}
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(a) Shape of system matrix 1 in Fourier
space
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Convex hull

(b) Shape of system matrix 2 in Fourier
space

Figure 4.1.: Comparing the influence of the two system matrices by analyzing the
maximum over all voxels of the absolute values of the matrices in Fourier
space. The orange line is an approximation of the convex hull.

Second, we surveyed four types of dynamic concentrations together with their
time derivatives and the respective Fourier transforms, visible in Figure 4.3. The
dynamics occur during one scanning cycle in all four examples.
Example concentration 1 is depicted in Figure 4.3a which shows one peak at the
beginning of the scan. The tracer is flowing through the voxel for a short period
of time. This could be a small tracer bolus moving fast through the volume of
the voxel. Example 2 is a periodic version of the first example. Figure 4.3b shows
two peaks within the scan time. The tracer flows two times through the voxel
with a high velocity. This represents a small bolus with fast periodic motion. In
the third example, shown in Figure 4.3c, the concentration increases strongly in
the beginning, remains constant for a short period of time and decreases again.
This could be a larger tracer bolus with a high velocity. Example 4, shown
in Figure 4.3d, shows a slow increase and decrease of the concentration. This
represents bolus with low velocity.
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Figure 4.2.: Absolute values of the convolution of the system matrices with example
concentration 4 and its derivative. Each curve shows the frequency amp-
litudes for one of the 192 voxels.

It can be observed that the maximal absolute values of the Fourier transformed
concentrations ĉ are about 104 smaller than the maximal absolute values of the
Fourier transformed time derivatives d̂c

dt . The imaging process in Fourier space
is a convolution of the Fourier transformed system matrices with the Fourier
transformed concentration and its time derivative. Thus, the concentration is
smoothed by the system matrix. The kernels S1 and S2 have the same width
meaning that the concentration and its derivative are smoothed equally. For the
given dynamic concentrations, the different magnitudes are compensated such
that the order of magnitude of the two summands is the same.
Third, we split up the discrete forward model such that the signal

û(kj) = η

R∑
i=1

Ŝ1(ri, kj) ∗ ĉ(ri, kj)︸ ︷︷ ︸
=:ua(i,j)

+η

R∑
i=1

Ŝ2(ri, kj) ∗
∂̂c

∂t
(ri, kj)︸ ︷︷ ︸

=:ub(i,j)

= η
R∑
i=1

a(i, j)︸ ︷︷ ︸
=:uA(kj)

+η
R∑
i=1

b(i, j)︸ ︷︷ ︸
=:uB(kj)

, j = 1, . . . ,nK ,
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(a) Example 1: A small bolus moves through the voxel with a high velocity
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(b) Example 2: A small bolus moves through the voxel with a high velocity twice

Figure 4.3.: (Continued on the next page)
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(c) Example 3: A larger tracer bolus moves through the voxel with a high velocity
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(d) Example 4: A bolus moves through the voxel with a slow velocity

Figure 4.3.: Example concentrations and their time derivatives in time and frequency
domain. The dynamics appear within one scanning cycle.
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is now the sum of uA and uB, where uA denotes the signal component gener-
ated by the first system matrix S1 and uB the signal component generated by
the second system matrix S2. The convolution of the frequency components of
system matrix 1 and the tracer distribution is named ua and the convolution of
system matrix 2 with the derivative of the concentration is named ub.
The slower the dynamics the smaller is its time derivative and the higher the
probability that the dynamic term, the second summand, is negligible. Using a
concentration where each voxel behaves like example concentration 4 (see Fig-
ure 4.3d), Figure 4.2 shows ua and ub for each voxel. As expected, one can see
that the shape and the maximum values of both terms are similar. Both plots
show maximum values of about 1.2 · 10−4.
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Figure 4.4.: Concentrations with different velocities

All four example concentrations exhibit dynamics within one scanning cycle which
is very fast. Example concentration 4 is non-zero in the interval [0,Tc]. In order
to find examples with negligible dynamic term, five variants of concentration 4 are
introduced. Figure 4.4a shows six concentrations with low velocities over time.
The respective derivatives are illustrated in Figure 4.4b. The concentrations are
smooth, symmetric, have a peak with value 1 and span a time interval of 1, 2, 3,
4, 6 and 8 times Tc with Tc = 0.6528 ms being the time of one 2D-Lissajous cycle.
Variant 1Tc corresponds to example concentration 4.
To see the strength of the dynamics in the context of flow velocities, we relate
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these values to a 2 × 2 × 2 mm3 bolus with constant concentration cmax = 1

moving through a 2×2×2 mm3 voxel with a constant velocity v (see Figure 4.5).
The average change rate yields a bolus velocity of vav = 2 · 10−3/(0.5w) m/s with
w ∈ {1Tc, 2Tc, 3Tc, 4Tc, 6Tc, 8Tc}. The velocities are listed in Table 4.1.

Table 4.1.: Phantom velocities

Width w Velocity vav

1Tc 6.13 m/s
2Tc 3.06 m/s
3Tc 2.04 m/s
4Tc 1.53 m/s
6Tc 1.02 m/s
8Tc 0.77 m/s

Figure 4.5.: Simplified bolus
moving through a voxel.

Signal part uA and uB are computed for all six concentrations using spectral
leakage correction since the concentrations are not periodic over multiple scan-
ning cycles. Figure 4.6 shows the results for the frequencies k ∈ [0.08, 1.25] MHz.
uA and uB are of order of magnitude 10−5 for all six examples. In each cycle,
uA shows about three peaks for low frequencies below 0.2 MHz and nearly zero
for higher frequencies while for uB high amplitudes can be observed in the whole
frequency range. The height of the peaks in uB decreases with the velocity. For
1Tc and 2Tc the peaks of uA and uB have the same magnitude. Thus, in these
cases the influence of the second addend on the signal is significant. For the slower
concentrations, its influence depends on the respective cycle. The amplitude of
the main peaks in uA mimics the concentration curve (see Figure 4.4a) while the
amplitude of the peaks in uB depends on the concentration derivative (see Fig-
ure 4.4b).
Considering phantom 4Tc, the absolute value of the change rate lies in the range
of 0% and 50% of ċmax, with ċmax = 1533, in cycle 1 to 4. At the same time,
the concentration shows values within 0% and 50% of cmax in cycle 1 and 4 and
values within 50% and 100% of cmax in cycle 2 and 3. So the influence of the
second summand is large in cycles with strong dynamics and low concentration
values. This can be observed e.g. in the first and last cycle of 3Tc to 8Tc. As the
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first and last cycle represent respectively 66% and 50% of the signal of 3Tc and
4Tc, and respectively 33% and 25% of the signal of 6Tc and 8Tc, we can conclude
that the second addend contributes significantly to the signal of 1Tc and 2Tc, less
but depending on the cycle to the signal of 3Tc and 4Tc and weakly to 6Tc and
8Tc.
This experiment is not complex enough for a general statement but points out
that the proportion of concentration to dynamics is relevant as well as the total
velocity. We state a preliminary threshold velocity of v∗ = 1.53 m/s for 2D
trajectories. For tracer distributions with slower dynamics than v∗, the second
summand in Equation (4.6) is negligible.
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Figure 4.6.: (Continued on the next page)
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Figure 4.6.: uA and uB for different velocities. The phantoms’ dynamics cover
1, 2, 3, 4, 6 and 8 cycles. In order to visualize uA and uB, the Fourier
transform, spectral leakage correction and frequency selection are applied
to each cycle separately. Thus, the frequency axis is a concatenation of
several axes depending on the phantom.
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5. Reconstruction of Dynamic
Tracer Distributions

In the preceding chapters we have discussed the need for dynamic reconstruction
methods in magnetic particle imaging. Furthermore, we have introduced a dy-
namic forward model including dynamic tracer concentrations and evaluated the
relevance of the extended model. Reconstruction, however, remains a challenge,
the increased degrees of freedom intensify the problem of ill-posedness even fur-
ther. We remark that much of the material presented in this chapter has been
published in [12].

5.1. Data Structure in Dynamic Multi-Patch Scans

In MPI literature the term frame often refers to one measured cycle. In this work
however, the term is used in analogy to video processing. A video is a time-series
of frames showing the full spatial range. Consequently in the MPI context, one
frame covers P patches each scanned for l cycles, see Figure 5.1a.
Multi-patch sequences introduce additional challenges to dynamic MPI recon-
struction. In practice, patches are usually scanned multiple times to increase the
signal-to-noise ratio by averaging. The voltage measured in a multi-patch ima-
ging sequence with F = 2 frames, P = 2 patches and l = 3 excitation cycles per
patch is outlined in Figure 5.2. The focus shift takes ∆f seconds and the repe-
tition time of one cycle is denoted by Tc. Thus, the scanning time of one patch
takes TP = lTc + ∆f seconds, TF = PTP is the scanning time of one frame and
T = FTf is the total scanning time. The scheme shows that the voltage signal u
is a concatenation of the measurements of each patch and each frame. For each
patch there are F gaps of length (P −1)TP where no voltage is measured. Hence,
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(b) Displacement artifact in a dynamic multi-patch reconstruc-
tion caused by strong dynamics. The dashed white box
shows the outlines of the phantom at this point of time.

Figure 5.1.: Dynamic multi-patch MPI

the temporal resolution decreases proportional to the number of patches and re-
petitions per patch. The data from focus shift intervals is not used in this work.
Although reconstruction of the focus shift is possible [60, 79], this data cannot be
related to one specific patch.
Moreover, the scheme in Figure 5.2 illustrates that patches belonging to the same
frame are not measured at the same time point. This temporal displacement in
the measurement results in spatial displacements in the reconstruction. Objects
covering the patch border can be distorted or objects with parallel motion might
appear at different positions if they are covered by different patches. An example
of these displacement or multi-patch artifacts is depicted in Figure 5.1b. The
figure shows a Kaczmarz reconstruction of a phantom with a linearly moving box
with high velocity which is scanned in a two-patch sequence. The left half of the
box located in the first patch is shifted with respect to the right half located in
the second patch. The second patch was scanned at a later time point when the
box had already moved forward. An increasing number of patches or repetitions
per patch implies a reduction in temporal resolution and an extension of the data
gaps and thus an increase of multi-patch artifacts. In the remainder of this work,
we will assume l = 1 and ∆f = 0 so that Tc = TP .
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Figure 5.2.: Visualization of a multi-patch imaging sequence for F = 2 frames, P = 2
patches and l = 3 excitation cycles per patch. The measured voltage is a
concatenation of the measurements of each patch and each frame. The
focus shift to move the FFP to the starting point of the next patch takes
∆f seconds. Tc denotes the repetition time of the trajectory. TP =
lTc + ∆f is the scanning time of one patch, TF = PTP is the scanning
time of one frame and T = FTf is the total scanning time.

5.2. Modelling of Dynamic Tracer Distributions for
Multi-Patch Scans

Using a parameterized model for the dynamic tracer distribution allows to include
prior knowledge in the reconstruction process and reduces the degrees of freedom.
To find a feasible model, relevant characteristics of the tracer distribution need
to be identified. The tracer is located in vessels or organs with strict boundaries.
In order to represent these cases of high spatial gradients correctly, the concen-
tration c may be discontinuous in space. Another property of the tracer is that it
does not appear instantaneously, but accumulates, is dissipated or flows through
the volume covered by one voxel. As a consequence, concentration c should be
continuously differentiable in time.
In [33] spline curves are used to reconstruct dynamic concentrations from gated
cardiac SPECT data. For each voxel and gate, a time activity curve of the ra-
dioactive tracer is modeled by a cubic B-spline curve. This allows for a repres-
entation of the smooth accumulation and radioactive decay in time and strong
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5. Reconstruction of Dynamic Tracer Distributions

spatial gradients, e.g. at organ boundaries, in space while using only few para-
meters. The method presented in this chapter builds on this idea to approach
the challenges of dynamic multi-patch MPI reconstruction. We start with the
main concept of the proposed reconstruction method, which is followed by a brief
introduction to splines in Section 5.3 and presentation of a suitable spline setup
for modeling dynamic concentrations in Section 5.4.
A dynamic tracer distribution in voxel ri ∈ Ω ⊂ R3 of patch p and its time-
derivative can be modeled by the spline curves

cp(ri, t) =
∑
m∈Mp

bm,iBm(t) and
∂cp

∂t
(ri, t) =

∑
m∈Mp

bm,i
d
dt
Bm(t) (5.1)

for t ∈ [0,T ]. Here, Bm(t) denotes the m-th cubic B-spline and bm,i one of the mp

coefficients or control points for each voxel. There is a separate set of coefficients
and splines for each patch. To reduce the amount of multiple indices, we define
the index set

Mp = {m |m = m̃+
∑
p̃<p

mp̃, m̃ = 1, . . . ,mp}

containing the indices of coefficients and B-splines of patch p.
These spline curves cp are defined on the total scanning interval [0,T ] and allow
to describe twice continuously differentiable tracer distributions in time and dis-
continuities in space. The concentration is now a parameterized curve c(ΛB, t)

depending on parameter

ΛB = {bm,i | bm,i ≥ 0, p = 1, . . . ,P , m ∈Mp, i = 1, . . . ,R}

which is the set of all coefficients. In contrast to [33] where the time activity
curves model relatively simple decay processes requiring only few basis splines,
here the spline curve approximates more complex dynamics. So the reduction of
parameters is less than in [33]. Nevertheless, this model reduces the degrees of
freedom and imposes an implicit regularization. Furthermore, it is able to com-
pensate the problem of data gaps by approximating the data during the scanning
time of the remaining patches.
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The dynamic concentration model is plugged into the multi-patch model (4.9) to
state the minimization problem

Dynamic reconstruction in time domain

min
b∈ΛB

P∑
p=1

1

2

∥∥∥∥[ R∑
i=1

S1(ri, tj)
∑
m∈Mp

bm,iBm(tj)

+ S2(ri, tj)
∑
m∈Mp

bm,i
d
dt
Bm(tj)

]FnT
j=1
− up

∥∥∥∥2

2

+ γR(ΛB) (5.2)

for dynamic multi-patch reconstruction with ri ∈ Ω and tj ∈ Ip ⊂ [0,T ]. It is
minimized with respect to the set of all control points ΛB. While measurement
data up is only available in the intervals

Ip =

F⋃
f=1

[(p− 1)TP + (f − 1)TF , pTP + (f − 1)TF ] ,

the parameterized concentration curves cp can be computed on the total scanning
interval [0,T ].
Alternatively, we can formulate the dynamic multi-patch reconstruction problem
in Fourier domain. This minimization problem

Dynamic reconstruction in frequency domain

min
b∈ΛB

P∑
p=1

1

2

∥∥∥∥ 1√
nT

[ R∑
i=1

Ŝ1(ri, kj) ∗ ĉp(ri, kj)

+ Ŝ2(ri, kj) ∗
∂̂cp

∂t
(ri, kj)

]FnK
j=1
− ûp

∥∥∥∥2

2

+ γR(ΛB) (5.3)

contains convolutions of the system matrices and the Fourier transform of the
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5. Reconstruction of Dynamic Tracer Distributions

concentration modeled by splines

ĉp(ri, kj) =
∑
m∈Mp

bm,iB̂m(kj) ,
∂̂cp

∂t
(ri, kj) =

∑
m∈Mp

bm,i
d̂
dt
Bm(kj) .

The number of sampled frequencies is denoted by nK while R ∈ L2(Ω) and γ ∈ R
in (5.2) and (5.3) denote an optional regularization term and parameter. The
convolution is only applied to the frequency components.
Note that in time as well as in frequency domain the set of control points is recon-
structed. Thus, a given spline basis yields the tracer distribution in time domain
while the computation of its time derivative and Fourier transform is cheap.
Since measured data is oftentimes given in frequency domain and processing steps
like frequency selection or spectral leakage correction are applied on frequency
data, reconstruction is usually realized in frequency space. The additional de-
convolution problem and the handling of complex numbers makes this approach
computationally more costly and reconstruction in time domain more interesting.
The minimization problems above can be solved with various minimization meth-
ods, e.g. gradient descent, or extended with further regularization terms. The
computation of the gradient dominates the computational complexity in gradient-
based methods. Reconstructing a sequence of FPnT images of P patches with
the dynamic approach, one gradient computation costs O(FPnTR

2M2) with
M = max{mp, p = 1, . . . ,P}. As one Kaczmarz iteration costs O(nTR) [48],
the corresponding iteration for a frame-by-frame Kaczmarz reconstruction of F
images and P patches has a complexity of O(FPnTR).

5.3. Fundamentals of Splines

B-splines are an important tool in the fields of approximation geometric modeling
and computer graphics. This section introduces the fundamentals of B-spline
theory required for the setup which will be presented in Section 5.4. For a more
comprehensive treatment of B-splines we refer to [40]. A Spline curve is a linear
combination of B-spline basis functions which are defined via a so-called knot
vector.

52



5.3. Fundamentals of Splines

Definition 5.1 (Knot vector). A vector t = [τj ]
ν+d+1
j=1 ∈ Rν+d+1 with

τj ≤ τj+1 for j = 1, . . . , ν + d is called a knot vector.
A knot vector is called d+ 1-extended if

1. ν ≥ d+ 1,

2. τd+1 < τd+2 and τν < τν+1,

3. τj < τj+d+1 for j = 1, . . . , ν.

A d+ 1-extended knot vector is called d+ 1-regular if τ1 = τd+1 and τν+1 =

τν+d+1.

τm τm+1 τm+2 τm+3 τm+4

0

0.5

1

1.5

x

B
d m
,t

d=0
d=1
d=2
d=3

(a) The support of a B-spline depends on its degree and knot
vector

τµ−3 τµ−2 τµ−1 τµ τµ+1 τµ+2 τµ+3 τµ+4

0

0.5

1

x

B
3 m
,t

(b) Computing f(x) with x ∈ [τµ, τµ+1) requires only d+1 basis
splines, here d = 3.

Figure 5.3.: B-splines of different degrees with finite support.
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Definition 5.2 (B-Spline). Given a knot vector t, the B-splines Bd
m,t of

degree d are defined by the recursion

Bd
m,t = αdm,tB

d−1
m,t + (1− αdm+1,t)B

d−1
m+1,t, αdm,t(x) =

x− τm
τm+d − τm

,

starting from the characteristic functions

B0
m,t =

{
1 x ∈ [τm, τm+1),

0 otherwise.

If the degree and knot vector are fixed we can write Bm = Bd
m,t.

Figure 5.3a shows B-splines with different degrees for a knot vector with equally
spaced knots.

Definition 5.3 (Spline). Let t = [τj ]j=1,...,ν+d+1 be a knot vector for ν
B-splines of degree d. The linear space of all linear combinations of these
B-splines is the spline space Sd,t defined by

Sd,t = span{B1,d, . . . ,Bν,d}

=
{
f(x) =

ν∑
m=1

bmBm(x)
∣∣∣bm ∈ R for 1 ≤ m ≤ ν

}
. (5.4)

An element f ∈ Sd,t is called a spline function, or just a spline, of degree
d with knots t, and [bm]νm=1 are called the B-spline coefficients of f .

Spline curves have a few interesting properties. B-splines have finite support.
Thus, computing the function value of a spline curve within a knot interval, only
d+ 1 B-splines are required. Moreover smoothness of spline curve is determined
by the setup of the knot vector.
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5.3. Fundamentals of Splines

Lemma 5.4. Let t = [τj ]j=1,...,ν+d+1 be a knot vector for splines of degree
d with ν ≥ d+ 1 and let

f(x) =

ν∑
m=1

bmBm(x) ∈ Sd,t.

Then the spline f has the following properties:

1. If x is in the interval [τµ, τµ+1) for some µ in the range d+1 ≤ µ ≤ ν
then

f(x) =

µ∑
m=µ−d

bmBm(x).

2. If z = τj+1 = · · · = τj+d < τj+d+1 for some j in the range 1 ≤ j ≤ ν
then f(z) = bm.

3. If z occurs q times in t then f has continuous derivatives of order
0, . . . , d− q at z.

A proof can be found in [40, p. 64].

Property 1 in Lemma 5.4 is highlighted in Figure 5.3b. The geometric inter-
pretation of the coefficients are the y-coordinates of the so-called control polygon.

Definition 5.5 (Control polygon). Let f(x) =
∑ν

m=1 bmB
d
m(x) be a spline

in Sd,t. The control points of f are the points with coordinates (τ∗m, bm) for
m = 1, . . . , ν, where

τ∗m =
τm+1 + · · ·+ τm+d

d

are the knot averages of t. The control polygon of f is the piecewise linear
function obtained by connecting neighboring control points by straight lines.
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5. Reconstruction of Dynamic Tracer Distributions

An example of a control polygon can bee seen in Figure 5.5.

5.4. Spline Setup for Dynamic Concentration Models

In the preceding section we discussed characteristics of the tracer material which
should be incorporated in the dynamic concentration model and proposed the
usage of spline curves (5.1). The exact properties of a spline curve depend on
the B-spline space they are contained in. B-splines are a used extensively in
approximation, geometric modeling or computer graphics due to their efficiency
and flexibility. Spline curves are defined via their degree, control points and knot
vector. We refer to Appendix 5.3 for theoretical details.

0 TP TF 2TF T
0

0.5

1

Time, t

(a) Set of cubic B-splines Bm,t1(t) with m ∈M1 which spans spline space S3,t1 3 c1.

0 TP TF 2TF T
0

0.5

1

Time, t

(b) Set of cubic B-splines Bm,t2(t) with m ∈M2 which spans spline space S3,t2 3 c2.

Figure 5.4.: Knots and cubic B-spline basis for P = 2 patches and F = 3 frames.
In each scanning interval of the patch are M0 = 5 uniformly distributed
knots. Additional knots at 0 and T have multiplicity 4.
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5.4. Spline Setup for Dynamic Concentration Models

The basis splines Bm are defined via the degree and the knot vector. In order to
satisfy the required features from Section 5.2, feasible spline parameters need to
be determined.

a) A twice continuously differentiable tracer distribution in the scan time (0,T )

is guaranteed by B-splines of degree d = 3 with d + 1-regular knot vectors
tp = [τj ]

mp+d+1
j=1 with τj < τj+1 for j = d+ 1, . . . ,mp and p = 1, . . . ,P .

b) In a single-patch setting, it is ensured that the spline curve is defined on
[0,T ] and coincides with the control points in 0 and T if M0F knots are
uniformly distributed in [0,T ] and the multiplicity of the knots in 0 and T
is increased to 4.

c) In a multi-patch setting, we do have gaps in the measurement data, as
discussed in Section 5.2. To ensure that the spline curve is defined on [0,T ]

and coincides with the control points in 0 and T in this case, M0 knots are
uniformly distributed in each scanning interval of the patch in each frame.
Additional knots with multiplicity 4 are added at 0 and T .

With this setup the knot vector tp for the first and last patch p has M0F + 2d+ 1

elements (M0F + 2d + 2 for other patches) and the concentration curve cp lies
in the spline space Sd,tp (cf. (5.4)) spanned by mp = M0F + d B-splines (mp =

M0F + d+ 1 for other patches) of degree d.
Figure 5.4 shows the cubic B-spline basis and knots with this setup for P = 2

patches, F = 3 frames and M0 = 5 while an example concentration curve for a
multi-patch sequence using this knot vector and spline basis is shown in Figure 5.5.
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(a) The concentration in patch 1.
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(b) The concentration in patch 2.

Figure 5.5.: Time development of a random spline concentration curve in an arbitrary
fixed voxel r∗ scanned with P = 2 patches and F = 3 frames. In each
scanning interval of the patch, there are M0 = 5 uniformly distributed
knots. The first an last knots have multiplicity 4.
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6. Experiments

To evaluate the dynamic forward model presented in Chapter 4 and the dynamic
reconstruction method presented in Chapter 5.1, a simulation and reconstruction
framework for magnetic particle imaging was implemented in Julia. Its structure
is depicted in Figure 6.1. The system matrices are modeled according to the as-
sumptions made in Chapters 3.1 and 4, Lissajous trajectory, ideal magnetic fields
and the equilibrium model.

Model System Matrices

Equilibrium Model

Lissajous Trajectory

Ideal Magnetic Fields

Visualization

Preprocessing

Concentration

Simulate  
Dynamic Measurement

Number of Frames

Number of Patches

Spline Parameters

Parameters Dynamic Reconstruction

Static Reconstruction

Frame-by-frame Kaczmarz

Time
Domain

Generate Phantom

Scanner Parameters

Number of Time Sampling Points Conjugate Gradient Descent

Gradient Descent

Frequency
Domain

Time
Domain

Frequency
Domain

Splines

Spline Basis

Time Derivative of the Spline Basis

Coefficients

Figure 6.1.: Simulation framework for computational phantom simulations

We begin with simulated measurements from very small dynamic single-patch
phantoms in Section 6.1 in order to investigate the effect of the concentration
derivative on the reconstructions in Section 6.1.1 and the influence of noise on the
quality of these reconstructions in Section 6.1.2. Furthermore, a dynamic meas-
urement is reconstructed under the assumption of static behavior during each
excitation cycle with a dynamic and the Kaczmarz method in Section 6.1.3 to
include a case where the state-of-the-art is compatible. In Section 6.2 larger dy-
namic phantoms with single and multiple patches are reconstructed with dynamic
and static reconstruction methods.
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6.1. Computational Phantom Studies with Small
Single-Patch Phantoms

The dynamic inverse problem (4.7) has many degrees of freedom. Since we focus
on dynamics, we limit the spatial resolution of the phantoms. Two phantoms
with a minimalist setup with a grid of 3 × 3 × 1 voxels are generated. The one-
peak phantom is used in Sections 6.1.1 and 6.1.2 and the three-peak phantom in
Section 6.1.3. Their spatial setup can be seen in Figure 6.2. We point out that
the experiments and results presented in Section 6.1.1 and the noise-free case in
Section 6.1.3 have already been published in [11].

r1

r2

r7

r8

r9r3

r4

r5

r6

Figure 6.2.: Spatial setup of the one- and three-peak phantom. They consist of
3× 3× 1 voxels indexed from 1 to 9.

6.1.1. Influence of the Concentration Derivative on Dynamic
Reconstructions

The tracer concentration of the one-peak phantom is described by a cubic B-spline
curve

c(ri, t) =

M∑
m=1

bm,iBm(t) = c(Λ∗B, t) ∈ L2(R3)× C2(R) (6.1)

for i = 1, . . . , 9, with cubic B-splines Bm and parameter set

Λ∗B = {bm,i | bm,5 ≥ 0, bm,i = 0, i ∈ {1, . . . , 9} \ 5, m = 1, . . . ,M} .
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6.1. Computational Phantom Studies with Small Single-Patch Phantoms

We design three variants of the one-peak phantom, 1F, 2F and 4F that vary only
in c(r5, t), t ∈ [0,T ]. The concentration of version 1F is non-zero within the scan
time of one frame. The development of the tracer distribution for the total scan
time is shown in Figure 6.3a where each curve describes the concentration within
one voxel. There is one concentrations peak at t = 0.41 ms with a value of 2.67

for voxel r5. Versions 2F and 4F differ in the width of the concentration peak.
The concentration peak for r5 lasts for the scan time of 2 frames in version 2F
and 4 frames in version 4F (see Figure 6.3b).
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(a) The tracer distribution of the central voxel r5
of one-peak phantom 1F changes during the
scan of the first frame. The remaining voxels
have a constant tracer concentration of zero.
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(b) The tracer distribution of the central voxel r5
of the three versions of the one-peak
phantom.

Figure 6.3.: The three versions of the one-peak phantom only differ in the width of
the concentration peak of voxel r5, while the remaining voxels have a
constant tracer concentration of zero.

We simulate a measurement with 4 frames which are each sampled at 408 time
points using the discrete dynamic forward model (4.7) with modeled system
matrices S1 = ∂m̄

∂t and S2 = m̄. Table B.1 lists the physical and scanner para-
meters and the phantom specific parameters for the simulations can be found in
Table B.2. The concentration curves are reconstructed with two different settings.
In the first experiment, the inverse problem of determining parameter ΛB from
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given u and (4.7) with both matrices is solved by minimizing

arg min
ΛB

∥∥∥∥[ R∑
i=1

S1(ri, tj)c(ΛB, tj) + S2(ri, tj)
∂c

∂t
(ΛB, tj)

]FnT
j=1
− u

∥∥∥∥2

2

(6.2)

with u ∈ RFnT and R = 9. Thus, the resulting tracer distribution is again a
cubic spline curve and an implicit regularization is included since the solution
set is restricted to parametric spline curves in L2(R3) × C2(R). Therefore, we
forgo further regularization and minimize Problem (6.2) with 200 iterations of a
conjugate gradient descent [27].
The average of reconstructions of the x- and y-channel of one-peak phantom 1F
are shown in Figure 6.4a. The peak for voxel r5 is located at t = 0.44 ms with a
concentration of 2.96 which is very close to ground truth. In the same period of
time also the concentration of the remaining voxels is non-zero. The peaks of the
voxels with even indices have concentration values of about 0.9 and the peaks of
the voxels with odd indices have even smaller values of about 0.4. Even though
these voxels have a non-zero concentration, it is significantly lower than the value
of r5, so that we can expect sufficient contrast in the reconstructed images. The
observation of higher values for the off-diagonal voxels (voxels with even indices,
cf. Figure 6.2) than the ones on the diagonal can be explained by the averaging of
two channels. The x-channel reconstruction locates the concentration correctly in
x and the y-channel reconstruction locates the concentration correctly in y. Thus,
the off-diagonal voxels are masked by the high concentration in the central voxel.
In the next experiment the same measurement is reconstructed only with S1 which
corresponds to minimizing

arg min
ΛB

∥∥∥∥[ R∑
i=1

S1(ri, tj)c(ΛB, tj)
]FnT
j=1
− u

∥∥∥∥2

2

(6.3)

with u ∈ RFnT and R = 9. Figure 6.4b depicts the average of x- and y-channel
reconstructions from 200 conjugate gradient iterations. The concentration peak
for voxel r5 is located at t = 0.38 ms which is close to the ground truth but with
a significantly smaller concentration of 0.85. Again there are concentration peaks
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(a) Reconstruction of 1F with the dynamic model
using S1 and S2.
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(b) Reconstruction of 1F using only S1.
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(c) Reconstruction of 2F with the dynamic model
using S1 and S2.
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(d) Reconstruction of 2F using only S1.

Figure 6.4.: (Continued on the next page)
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(e) Reconstruction of 4F with the dynamic model
using S1 and S2.
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(f) Reconstruction of 4F using only S1.

Figure 6.4.: Measurements of the dynamic one-peak phantoms 1F, 2F and 4F are
simulated with the dynamic forward model (4.7). They are reconstructed
with either both S1 and S2 (left) or only S1 (right). All plots show
averages of x- and y-channel reconstructions. The dashed lines outline
the true concentration in voxel r5 and the vertical grid lines mark the
start and end of frames.

in the same time interval for the remaining voxels with values of about 0.4. As
a consequence, the reconstructed images will exhibit reduced contrast while the
true concentration is underestimated.
The more intuitive way to judge the reconstruction quality of dynamic images,
is to examine single frames. One frame of the phantom and the two reconstruc-
ted time-series at the time point of the maximum concentration (t = 0.41 ms) is
shown in Figure 6.5. As expected, the reconstruction with both system matrices
in Figure 6.5b exhibits high contrast and slightly higher concentration values for
the off-diagonal voxels. Figure 6.5c shows the frame from the second experiment
using only the first system matrix. The concentration is significantly lower com-
pared to the phantom in Figure 6.5a and exhibits poor contrast.
In the next experiment, version 2F and 4F of the one-peak phantom are re-
constructed analogously to version 1F. The reconstruction with both matrices
(solution of 6.2) of version 2F is depicted in Figure 6.4c. It shows that the peaks
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Figure 6.5.: Reconstructions of the one-peak phantom 1F at the time point of the
concentration peak t = 0.41 ms

are again located correctly and the amplitude of the main peak is 83% of the
ground truth. Also here, the remaining voxels have low non-zero concentrations
which are higher for the off-diagonal voxels. For the reconstruction using only S1

(solution of 6.3), visible in Figure 6.4d, the main peak is less than 50% compared
to the phantom. The amplitude of the peaks of the remaining voxels reaches 35%

of the main peak. Thus, also for version 2F the reconstruction will exhibit poor
contrast. Figure 6.4e and 6.4f show reconstructions with and without S2 of ver-
sion 4F. Again, the temporal location of the peaks is correct, while the amplitude
of the peak for r5 reaches 87% of the ground truth for the reconstruction with
both matrices and 73% for using only S1. The concentrations for the remaining
voxels are sufficiently low in both cases. Figure 6.6 shows a frame of one-peak
phantom 4F and the two reconstructed time-series at the time point of the max-
imum concentration (t = 1.30 ms). Looking at the reconstruction without S2

(see Figure 6.6c) an improved contrast compared to version 1F can be observed.
The reconstruction quality is similar to the reconstruction using S1 and S2 (see
Figure 6.6b).
To get an impression on the strength of the dynamics in one-peak phantom 4F,
as in Section 4.3, the concentration change rate of a phantom was related to the
flow velocity of a 2 × 2 × 2 mm3 bolus with constant concentration cmax moved
through a 2 × 2 × 2 mm3 voxel with a constant velocity v (see Figure 4.5). The
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Figure 6.6.: Reconstructions of one-peak phantom 4F at the time point of the con-
centration peak t = 1.30 ms

average change rate depends on the voxel size in flow direction (x=2 mm) and
the time spent until the concentration reaches its maximum cmax = 2.67, for
phantom 4F it is ∆t = 2Tc s. The average change rate yields a bolus velocity
of vav = 2 · 10−3/(2 · Tc) = 1.53 m/s for 2D trajectories with T 2D

c = 0.6528 ms.
For 3D trajectories, which are mostly used in practice, T 3D

c = 21.54 ms leads to
vav = 4.64 cm/s, which is a velocity that is reached e.g. in human arterioles (cf.
Table 6.2).

6.1.2. Noise Sensitivity

The initial experiments with the one-peak phantom in the preceding section use
simulated measurements without noise. Since this is not a realistic setting, we
examine the effects of different noise levels on the reconstruction with and without
the second system matrix in this section. Again, we use the three variants of the
one-peak phantom. Noisy measurements are simulated with

uδ(tj) = u(tj) + δ max
l=1,...,FnT

{|u(tl)|}Nj , j = 1, . . . ,FnT , (6.4)

with Nj ∼ N (0, 1) i.i.d. and noise level δ. This model has previously been used
to model measurement noise in magnetic particle imaging in [57, 76]. We repeat
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the experiments from Section 6.1.1 for noise levels δ ∈ {10, 20, 30, 50}% while the
results are shown in Figures 6.7 to 6.10.

10 percent (Figure 6.7) For 10%, noise the reconstruction results are very
similar to the noiseless reconstructions. For all reconstructions except the one
with both matrices of version 1F, the height of the peaks is slightly reduced. For
phantom 1F and 2F, the concentration in interval [0.65, 2.61] s and [1.30, 2.61] s
is no longer zero but still low.

20 percent (Figure 6.8) The reconstruction of 1F with both matrices still shows
a significant peak for the central voxel. The noise affects mainly the concentration
of the off-center voxels, whose peaks increased and show non-zero values in the
whole scanning interval. The contrast will be reduced but the dynamics in voxel
r5 will still be clearly recognizable. In contrast to this, the reconstruction with S1

does not show any specific peaks anymore and is completely dominated by noise.
For version 2F, the main peaks are slightly decreased while the peaks for the off-
center voxels increase which results in reduced contrast for both reconstruction
methods.
For version 3F, the main peaks have the same amplitude as for 10% noise. The
noise mainly influences the off-center voxels. For the reconstruction with both
matrices there is no longer a difference in between the voxels off and on the
diagonal.

30 percent (Figure 6.9) For 30%, the effects observed for 20% noise are amp-
lified. For 4F both reconstruction methods yield similar results while for 1F and
2F the reconstructions with S1 are useless while the main peak is still clearly
distinguishable in the reconstructions with both matrices.

50 percent (Figure 6.10) For the extremely high noise level of 50%, also the
reconstruction with both matrices of 1F becomes useless. The main peaks in all
other reconstructions decreased further. The reconstructions with both matrices
show distinguishable main peaks while the reconstruction without S2 of version
4F exhibits a false side peak for voxel r5.
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(c) Reconstruction of 2F with the dynamic model
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(d) Reconstruction of 2F using only S1.
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(e) Reconstruction of 4F with the dynamic model
using S1 and S2.
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(f) Reconstruction of 4F using only S1.

Figure 6.7.: Measurements of the dynamic one-peak phantom with 10% noise recon-
structed with and without S2.
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(f) Reconstruction of 4F using only S1.

Figure 6.8.: Measurements of the dynamic one-peak phantom with 20% noise recon-
structed with and without S2.
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(f) Reconstruction of 4F using only S1.

Figure 6.9.: Measurements of the dynamic one-peak phantom with 30% noise recon-
structed with and without S2.
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(e) Reconstruction of 4F with the dynamic model
using S1 and S2.
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(f) Reconstruction of 4F using only S1.

Figure 6.10.: Measurements of the dynamic one-peak phantom with 50% noise recon-
structed with and without S2.

71



6. Experiments

Discussion The noise-free experiments in Section 6.1.1 show that including the
second system matrix and the concentration derivative into the reconstruction
process leads to superior reconstruction quality for velocities below 4.64 cm/s in
a 3D setting. As the simulations use the dynamic forward model (4.7) with both
matrices, it can be expected that the respective least-squares solution (6.2) per-
forms superior to the solution of (6.3) using only S1. Until now, the effects of
actually using S2 and ∂c

∂t have never been investigated.
The extension of the experiments to simulated measurements with noise emphas-
ize the initial findings. The solution of (6.3) deteriorates much faster with in-
creasing noise levels than the solution of (6.2), while these effects are strongest
for the faster phantoms with velocities over 4.64 cm/s.

6.1.3. Dynamic Frame-by-Frame Reconstruction and Noise
Sensitivity

In the preceding sections, the impact of the second summand in (4.7) on recon-
structions was investigated with the dynamic spline-based reconstruction method.
The current state-of-the-art reconstruction method for dynamic non-periodic MPI
measurements is a frame-by-frame Kaczmarz reconstruction assuming static tracer
distributions within each scanning cycle. In this section, we investigate the recon-
struction quality of the state-of-the-art method compared to methods based on
a dynamic forward model and assumption of static concentrations within single
excitation cycles.
Adapting (4.7) to concentrations which are static within one frame, yields

uf = S1c
f + S2

cf − cf−1

∆t
, f = 1, . . . ,F , (6.5)

with uf ∈ RnT , cf ∈ RR, S1,S2 ∈ RnT×R. Analogous to the previous experiment,
we are solving (6.5) for cf once with both matrices and once with the first sum-
mand only. The latter corresponds to a frame-by-frame Kaczmarz reconstruction.
A dynamic single-patch phantom called three-peak phantom is used to simulate a
dynamic measurement with different noise levels. Since the reconstruction meth-
ods in this section assume static behavior during single excitation cycles, the
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dynamics of a feasible phantom are required to cover several frames. Like the
one-peak phantom, the tracer distribution of the three-peak phantom is described
by a cubic B-spline curve (6.1) with parameter set

Λ∗B = {bm,i | bm,l ≥ 0, l ∈ {4, 5, 6}, bm,i = 0, i ∈ {1, 2, 3, 7, 8, 9}, m = 1, . . . ,M}

while its spatial setup can be found in Figure 6.2. Figure 6.11a depicts the tracer
distribution during the total scan time. Each curve describes the concentration
within one voxel. There are three temporally shifted concentration peaks of 6.67

for voxel r4, r5 and r6. Considering the location of the voxels in Figure 6.2, this
dynamic can be interpreted as an object or tracer bolus moving from voxel r4 to
voxel r6. The peaks are located in the scan time of frame 3, 4 and 5 and have
a temporal width of about 4 frames. The experiments in Sections 4.3 and 6.1.1
indicate that for dynamics over at least four frames the second summand becomes
less important. Thus, a comparable performance of both reconstruction methods
is conjectured.
A dynamic measurement with with F = 10 frames, each sampled at 408 time
points, is simulated according to the dynamic forward model (4.7) with S1 and
S2. The general physical and scanner parameters are listed in Table B.1 and the
phantom specific parameters can be found in Table B.2.
The dynamic tracer distribution is reconstructed with two different methods both
assuming a constant tracer distribution during a scanning cycle. The first one
uses information about the tracer dynamics from the reconstructions of previous
frames and the second one reconstructs each frame independently. The recon-
structions are piecewise constant functions over time. For better comparison the
results depicted in Figure 6.11 show linear interpolations of the piecewise constant
reconstructions.
In the first experiment both matrices are used for the reconstruction of each frame
while the time derivative ∂c/∂t = (cf − cf−1)/∆t is the divided difference of the
concentration vector of the current and the preceding frame. This corresponds to
minimizing

min
cf

∥∥∥(S1c
f + S2

cf − cf−1

∆t

)
− uf

∥∥∥2

2
, f = 1, . . . ,F , (6.6)
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(b) Average of x- and y-channel frame-by-
frame reconstructions with the dynamic
model using S1, S2 without noise.
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only S1 without noise.

Figure 6.11.: (Continued on the next page)
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(d) Average of x- and y-channel frame-by-
frame reconstructions with the dynamic
model using S1, S2 with 10% noise.
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(e) Average of x- and y-channel frame-by-frame
reconstructions with the static model using
only S1 with 10% noise.

1 3 5 7 9
0

1

2

3

4

5

6

Frame, f

C
on

ce
nt

ra
ti
on

c
(r
,t
)

r1
r2
r3
r4
r5
r6
r7
r8
r9

(f) Average of x- and y-channel frame-by-
frame reconstructions with the dynamic
model using S1, S2 with 20% noise.
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only S1 with 20% noise.

Figure 6.11.: (Continued on the next page)
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(h) Average of x- and y-channel frame-by-
frame reconstructions with the dynamic
model using S1, S2 with 30% noise.
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(i) Average of x- and y-channel frame-by-frame
reconstructions with the static model using
only S1 with 30% noise.
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(j) Average of x- and y-channel frame-by-
frame reconstructions with the dynamic
model using S1, S2 with 50% noise.
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(k) Average of x- and y-channel frame-by-frame
reconstructions with the static model using
only S1 with 50% noise.

Figure 6.11.: A measurement of the dynamic three-peak phantom is simulated with
the dynamic forward model (4.7) and different noise levels. Each frame
is reconstructed separately assuming a static tracer distribution within
each frame. The frames are reconstructed with the dynamic and the
static model.
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with uf ∈ RnT , cf ∈ RR, S1,S2 ∈ RnT×R. Alternatively forward or central
divided differences could be used while the backward differences are the easiest to
implement. Figure 6.11b shows the average of x- and y-channel reconstructions
which were reconstructed in time domain with 100 iterations of a gradient descent
algorithm [27] and no further regularization. It can be observed that the peaks
are correctly located in frame 3, 4 and 5. The amplitude of the peaks is slightly
lower than the ground truth and decreasing, 5.41 for r4, 4.96 for r5 and 4.82 for
r6. There is a non-zero concentration for the remaining voxels in the first 5 frames
of less than 0.5. So the reconstructed images will exhibit sufficient contrast.
In the second experiment the same dynamic measurement is reconstructed using
only S1, i.e. minimizing

min
cf

∥∥S1c
f − uf

∥∥2

2
, f = 1, . . . ,F , (6.7)

with uf ∈ RnT , cf ∈ RR, S1 ∈ RnT×R in time domain with 100 iterations of a
gradient descent algorithm and no further regularization. This is the same min-
imization problem that is solved by a frame-by-frame Kaczmarz reconstruction.
The result is shown in Figure 6.11c. Again, the peaks are located correctly in
frame 3, 4 and 5. The amplitudes 5.47 for r4, 5.07 for r5 and 5.49 for r6 are also
slightly lower than in the phantom and differ less than in the first experiment.
The remaining voxels show non-zero concentrations up to 1.2 being more than
twice as high as for the first experiment.
In a third experiment, the two reconstruction methods were applied to noisy data
simulated with noise model (6.4) and noise level δ ∈ {10, 20, 30, 50}%. The res-
ults can be found in Figures 6.11d to 6.11k. The reconstructions for 10% and
20% noise are very good for both methods. The main peaks do not change sig-
nificantly by increasing the noise level. Only the concentration for the remaining
voxels begins to differ more from zero for 20% noise. For the high noise levels
30% and 50%, the main peaks become smaller, the three peaks differ more in their
height and the concentration of the remaining voxels increases further. Thus, the
contrast will decrease and the correct motion will not be recognizable anymore.
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Discussion As suspected, the two methods perform equally well on a phantom
with motion covering 4 frames. They yield reconstructions of similar quality and
are both robust to low noise levels. This confirms that under the assumption of
slow velocities, the second term in (4.4) can indeed be neglected (e.g. in [25]) and
a frame-by-frame Kaczmarz reconstruction suffices.

6.2. Computational Phantom Studies with Single- and
Multi-Patch Phantoms

In this section, we validate our dynamic reconstruction method using computa-
tional phantoms. The experiments in the beginning of this chapter used phantoms
with minimal spatial resolution to keep the computational costs low and focus on
the temporal development. Now, the spatial resolution and the number of affected
voxels are increased to get closer to real life applications. Dynamic measurements
from two phantoms with fast non-periodic motion are simulated and reconstruc-
ted with the dynamic multi-patch reconstruction method (5.2) and the Kaczmarz
algorithm. The first phantom discussed in Section 6.2.1 shows one moving object
and is scanned in a single-patch scan. The second phantom, covered in in Sec-
tion 6.2.2, is scanned in a multi-patch sequence and shows two objects moving in
parallel each within one patch. The parameters of the reconstruction algorithms

Table 6.1.: Reconstruction algorithm parameters

Phantom Single-patch Multi-patch

Reconstruction dynamic static dynamic static

Algorithm CG Kaczmarz CG Kaczmarz
Number of iterations 20 50 20 50
γ 0.15 0.1 0.3 0.1
M0 5 - 5 -

applied in this section are listed in Table 6.1, while all regularization paramet-
ers were determined by visual inspection. We point out that experiments with
the same setup as in Section 6.2.1 as well as the experiments and results in Sec-
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tion 6.2.2 have already been published in [12].
Compared to mean blood flow velocities in the human body, the velocities of the
phantoms in this section might appear very high. This can be explained by the
simulation setup using only one repetition per patch and a switching time of zero
seconds. The phantoms are designed to show an object that moves through its
patch within the total scan time of four frames and the respective number of
patches. Assuming a realistic scenario, a 3D scan might require six repetitions
per patch and a switching time of four cycles to shift the focus field. In the case
of F = 4 frames, P ∈ {1, 2} patches with a FOV size of 24× 24× 1 mm3, using

vP = ∆x
PF (6+4)·T 3D

c
with T 3D

c = 21.54 ms (6.8)

yields speeds of v1 = 2.8 cm/s and v2 = 1.4 cm/s. Considering the blood flow
velocities listed in Table 6.2 it becomes clear that these velocities are in fact
already reached in human arterioles and venules.

Table 6.2.: Velocities in human vessels [24]

Vessel Diameter [cm] Mean velocity [cm/s]

Aorta 3 12
Vena cavae 3 14
Arteries 10−1 45
Veins 1.8 · 10−1 10
Arterioles 5 · 10−3 5
Venules 10−2 2
Capillaries 8 · 10−4 0.1

6.2.1. Dynamic Single-Patch Reconstruction

The dynamic single-patch phantom is a computational phantom which is shown
at eight time points in the left column of Figure 6.13. It exhibits a box of size
6 × 12 × 1 mm3 with a non-zero concentration. It moves linearly in x with a
velocity of 7.28 m/s. The temporal concentration development is described by a
cubic spline curve. So, the concentration increases and decreases smoothly with
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a maximum of 3. Figure 6.12a shows the concentration over time with each line
describing the concentration of one voxel.
A dynamic single-patch scan over F = 4 frames is simulated using model (4.7)
and the parameters enumerated in Tables B.1 and B.3. We reconstruct the data
with dynamic and static methods. In the first experiment, problem (5.2) with
regularization term

R(ΛB) =
1

2

P∑
p=1

∑
m∈Mp

R∑
i=1

b2m,i (6.9)

and parameter γ = 0.15 is minimized with 20 iterations of a conjugate gradient
algorithm. We use the spline setup from Section 5.4 with M0 = 5 to achieve the
same spline basis as in the phantom. While the phantoms in the preceding sec-
tions could be reconstructed without spatial regularization due to their extremely
low number of voxels, we now add a penalty term on the spline coefficients. Thus,
the problem is regularized by Tikhonov regularization and implicitly by the dy-
namic concentration model. Figure 6.12c shows the reconstructed concentration
curves for each voxel. In the second experiment a static frame-by-frame method
is used. Each frame of the simulated dynamic measurement is reconstructed is
reconstructed as a static image with 50 Kaczmarz iterations and Tikhonov regu-
larization with γ = 0.1. As early abortion of the iteration introduces an additional
regularization, the number of Kaczmarz iterations is chosen unusually high [45].
A linear interpolation of the reconstructed concentration curves for each voxel is
shown in Figure 6.12e.
Since the overlay of 100 curves is challenging to interpret, we show the concen-
tration curves for the phantom and both reconstructions for a selection of voxels
in Figures 6.12b, 6.12d and 6.12f. The selected voxels are located on the line at
y = −3 mm and are marked by the red x-es in the first image in Figure 6.13. The
color coding in the concentration curves is the same so that curves with the same
color represent the same position in all three plots. It can be observed that the
location of the peaks is approximately correct in both reconstructions, while their
height is slightly underestimated in the dynamic reconstruction and overestimated
in the static reconstruction. The frame-by-frame reconstruction obviously suffers
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(b) Phantom, y = −3
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(c) Dynamic Reconstruction
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(d) Dynamic Reconstruction, y = −3
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(e) Static Reconstruction

0 0.65 1.30 1.96 2.61
0

1

2

3

4

Time, t in [ms]

C
on

ce
nt

ra
ti
on

c
(r
,t
)

(f) Static Reconstruction, y = −3

Figure 6.12.: Dynamic single-patch simulation. The tracer concentration over time for
each voxel is shown for the phantom, the dynamic reconstruction and
a linear interpolation of the static reconstruction. The grid lines mark
the end of the scanning interval of a frame. Figures 6.12a, 6.12c and
6.12e show the concentration for all voxels, while Figures 6.12b, 6.12d
and 6.12f show the concentration for the voxels at y = −3 mm marked
by the red x-es in Figure 6.13.
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Figure 6.13.: (Continued on the next page)
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Figure 6.13.: Dynamic single-patch simulation. The continuous tracer distribution
of the phantom (left column) and the dynamic reconstruction (central
column) is shown at 2 time points of each of the 4 frames. The 4 frames
reconstructed with the static frame-by-frame method are shown in the
right column. The dashed white box shows the outlines of the phantom
at the respective point of time. The red x-es mark the set of voxels
studied in Figures 6.12b, 6.12d and 6.12f.

83



6. Experiments

from its lower temporal resolution.
A more intuitive visual inspection of the reconstruction quality can be made by
comparison of selected frames shown in Figure 6.13. It depicts the dynamic re-
construction at 8 time points and the 4 frames of the static reconstruction. A
slightly lower intensity of the box compared to the phantom can be observed in
the dynamic reconstruction. While the outline of the box is blurred, it is loc-
ated correctly in all frames. In accordance with the concentration curves, the
static reconstruction yields boxes with higher concentration values compared to
the phantom. While the box is located almost correctly in x-position, it shows
severe motion artifacts in form of diagonal smearing. The boxes have sharper
edges and better contrast than in the dynamic reconstruction but the rectangular
outlines are vanished.
For a more objective assessment of the reconstruction quality, we computed the
mean squared error (MSE)

MSE(t) =
1

R

R∑
i=1

(
cphant(ri, t)− creco(ri, t)

)2 (6.10)

for each time point for the dynamic and static reconstruction, visible in Fig-
ure 6.19a. The mean and variance values of the MSE are listed in Table 6.3. The
MSE of the dynamic reconstruction oscillates around its mean MSE of 0.049 with
a relatively small variance of 2.25 ·10−5. The mean MSE for the static reconstruc-
tion is 0.058 and thus slightly higher, while showing a significantly larger variance
of 1.23 · 10−4. The error shows a wave structure with local minima in each frame.
This can be explained with the fact that at some point in the scanning cycle of
each frame, the static reconstruction is close to the true position of the box. In
the middle of frame two and three the error is even lower than for the dynamic
reconstruction.
A benefit of the spline-based reconstruction method is that the reconstruction
of the B-spline coefficients allows to jointly reconstruct the concentration and
its temporal derivative. The change rates of the phantom concentration and the
dynamic reconstruction are illustrated in Figure 6.14 for the selection of voxels.
As the color coding of the curves is the same, one can observe that e.g. for the
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(b) Dynamic Reconstruction

Figure 6.14.: Change rates of the concentration for the voxels at y = −3 mm

dark blue line the curve is reconstructed correctly while many others show false
oscillations. For a more intuitive illustration, derivative images at time point
t = 0.32 ms are depicted in Figure 6.15 for the phantom and the reconstruction.
The corresponding concentration images can be found in the second row of Fig-
ure 6.13. In this frame the derivative is reconstructed quite well. There is a thin
rectangular region with large negative change rates of about -3000 and a nearly
rectangular region with large positive change rates of about 4000. The values
in the phantom are ±5000. While the strength of the concentration change is
underestimated, the region of strong changes is located very well.

Discussion Visual inspection of the concentration curves and the frames does
not clearly show a superior reconstruction quality of the new method. The static
reconstruction shows better contrast while the dynamic reconstruction is able to
follow the movement of the box more precisely due to its high temporal resolution.
This is also supported by the analysis of the reconstruction error which is lower for
the dynamic reconstruction on average but not for all time points. The strength
of the new approach in this example lies above all in the high temporal resolution
and the reduced motion artifacts compared to the static approach.
Additionally, the dynamic reconstruction method jointly reconstructs the time
derivative of the concentration which is an interesting feature for applications
like blood flow analysis. In accordance with the reconstructed concentration,
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Figure 6.15.: Concentration change rates at time point t = 0.32 ms shown as 2D
images. The dynamic reconstruction method jointly reconstructs the
temporal derivative of the concentration.

the reconstruction quality of the derivative is not optimal but the localization
of regions with strong change rates is satisfactory. The underestimation of the
strength of the change rate corresponds to the absence of sharp edges in the
reconstructed concentration, as a blurred moving box causes minor concentration
changes over time.

6.2.2. Dynamic Multi-Patch Reconstruction

In this section, we use the dynamic multi-patch phantom that consists of two boxes
of size 4.5× 9× 0.75 mm3 with a non-zero concentration which move linearly in
x with a velocity of 6.36 m/s. The FOV covers two patches aligned in y. Each
box is located in the central y position of one of the patches. Eight time points
of the phantom are shown in the left column of Figure 6.17. Just as with the
dynamic single-patch phantom, the maximum concentration in a voxel is 3 and
the temporal behavior of the concentration is described by a cubic spline curve
such that there is a smooth increase and decrease of the concentration. The con-
centration for a selection of voxels in patch 1 over time where each line describes
the concentration of one voxel can be seen in Figure 6.16a. Since the movement
is the same in both patches, the curves for patch 2 look identical. The selected
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voxels lie on the line at y = −2 mm and are marked by red x-es in the first image
in Figure 6.17.
A dynamic multi-patch measurement with F = 4 frames is simulated using model
(4.7) and the parameters enumerated in Tables B.1 and B.3. An overscan [84] is
omitted to simplify the imaging sequence.
Again we run two experiments, a dynamic and a static frame-wise reconstruc-

tion. First, we minimize problem (5.2) with regularization (6.9) and parameter
γ = 0.3 with 20 iterations of a conjugate gradient descent algorithm. The spline
setup presented in Section 5.3 is used with M0 = 5 in order to obtain a good
approximation of the velocities in the phantom. Choosing a lower value would
increase the distance of the knots resulting in basis splines with larger support.
Hence, the maximum speed that can be reconstructed would be limited. Fig-
ure 6.16b shows the reconstructed concentration over time for the selected voxels
with y = −2 mm.
Second, we reconstruct the dynamic multi-patch measurement with the static
frame-by-frame method. Each patch of the four frames is reconstructed under
the assumption of static behavior with 50 Kaczmarz iterations and Tikhonov reg-
ularization with γ = 0.1. Linearly interpolated concentration curves for the voxels
with y = −2 mm are shown in Figure 6.16c. The curves in the three plots have
the same color coding so that curves with the same color represent the same voxel
in all three plots.
The maxima in the dynamic reconstruction exhibit values of 2 − 3. Especially
the orange and blue lines are close to ground truth. As expected, the static re-
construction suffers from a low temporal resolution. Nevertheless, the peaks of
the purple, light green and light blue lines are located correctly in time and reach
values of about 3. The blue and orange line, however, are showing significantly
lower concentration values compared to the phantom.
For further analysis of the reconstruction quality, we show the the phantom and
the dynamic reconstruction at 8 time points in Figure 6.17 and the 4 frames of
the static reconstruction in Figure 6.18. With values of about 2 − 3.5, the con-
centration values in the dynamic reconstruction are close to ground truth. As
in the single-patch reconstructions in the previous section, the outlines of the
boxes are blurred. The boxes are located correctly not only in y but also in x.
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(a) Phantom
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(b) Dynamic Reconstruction
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(c) Static Reconstruction

Figure 6.16.: Dynamic multi-patch simulation. The tracer concentration over time is
shown for the phantom, the dynamic and static reconstruction. Each
curve shows the concentration in a voxel at y = −2 mm marked by the
red x-es in Figure 6.17. Figure 6.16c shows a linear interpolation of the
4 statically reconstructed frames.The dashed grid lines mark the end of
a scanning interval of a patch and the solid lines mark the end of a
scanning interval of a frame.
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Figure 6.17.: (Continued on the next page)
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Figure 6.17.: Dynamic multi-patch simulation. The continuous tracer distribution
of the phantom (left column) and the dynamic reconstruction (cent-
ral column) is shown at 8 time points. The dashed white boxes show
the outlines of the phantom at the respective point of time. The red
x-es mark the set of voxels studied in Figure 6.16.
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Figure 6.18.: Dynamic multi-patch simulation. The tracer distribution of the phantom
is shown at 4 time points in the left column and the corresponding 4
frames reconstructed with the static frame-by-frame method in the right
column. The dashed white boxes show the outlines of the phantom at
the respective point of time. The red x-es mark the set of voxels studied
in Figure 6.16.
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The algorithm is indeed able to reconstruct the boxes’ parallel movement. In the
static reconstruction, the boxes show concentration values of 4 which is slightly
higher than in the phantom. The boxes show slightly better contrast than in the
dynamic reconstruction but exhibit motion artifacts in form of diagonal smearing.
Additionally, multi-patch artifacts can be observed. The location of the boxes is
shifted in x due to the different time points of the scans of the individual patches,
which was expected and discussed in Section 5.1.
In addition to the visual inspection of reconstructed frames and concentration
curves, we analyze the mean squared error (6.10) for each time point for the dy-
namic and static reconstruction which is plotted in Figure 6.19b. The mean and
variance values of the MSE are listed in Table 6.3. The MSE of the dynamic re-
construction is lower for all time points and its mean MSE of 0.019 is 32% smaller
than in the static case.
As the boxes disappear from the FOV in the last frame, which is captured cor-
rectly in both experiments, a significant drop of the MSE can be observed. Thus,
we focus on the variance within the first three frames. The MSE of the dynamic
reconstruction oscillates around its mean with a small variance of 1.97 ·10−6. The
MSE of the static reconstruction exhibits a wave shape with local minima at the
transitions from the first patch to the second. With 2.18 · 10−5, the variance is
an order of magnitude larger than in the dynamic case. The pattern corresponds
to the trade-off that the error in each patch increases with the temporal distance
to its scan time. While one patch is scanned and can be reconstructed with a low
MSE, motion in the other patch has not yet been included in the reconstruction
and causes a larger MSE. These effects are balanced at the transition between the
patches.

Discussion While the dynamic reconstruction is affected by blurring, the advant-
ages of this new method become evident. Displacement artifacts are compensated
and motion artifacts reduced compared to the static reconstruction. The visual
impression is confirmed by the error metric. To be a valid alternative in practice,
the blurring should be reduced by further regularization. Furthermore, the high
temporal resolution comes at the cost of a high computational complexity. This
might be alleviated by finding more efficient minimization methods.
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Figure 6.19.: Reconstruction error over time.
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Table 6.3.: Mean and variance of the MSE (within the first three frames)

Reconstruction Single-patch phantom Multi-patch phantom

Mean of MSE

Dynamic 0.049 0.019 (0.023)
Static 0.058 0.028 (0.032)

Variance of MSE

Dynamic 0.225 · 10−4 8.108 · 10−5 (0.197 · 10−5)
Static 1.227 · 10−4 7.222 · 10−5 (2.177 · 10−5)
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7.1. Summary

In the beginning of this thesis, we gave an introduction to inverse problems and
the principles of magnetic particle imaging where we discussed the current state
of research and the challenges in solving dynamic inverse problems as well as the
issues specific to magnetic particle imaging in the single and multi-patch case. Es-
pecially the high number of degrees of freedom and the data gaps in multi-patch
scans due to sequential scanning were highlighted.
Since the standard model does not account for dynamic tracer distributions, we
proceeded with an extended forward model for dynamic tracer distributions. The
evaluation of the influence of the newly introduced second summand with the
second system matrix showed that for low concentration values and fast change
rates the order of magnitude of the two summands is the same.
In order to find an alternative reconstruction method to static frame-by-frame
approaches that is not limited to low velocities or specific motion patterns, we
investigated the data structure of dynamic multi-patch measurements. As a con-
sequence, a new dynamic reconstruction approach based on a spline model for the
concentration and the new forward model was introduced.
Finally, a set of experiments was conducted to highlight the relevance of the new
method. First, measurements from synthetic dynamic concentrations were sim-
ulated with the dynamic model and then reconstructed once with both system
matrices and once using only S1. Three simple phantoms with different change
rates were examined. For one-peak 4F, the phantom with the lowest change rates,
the static approach using only one system matrix provided an acceptable recon-
struction quality. For the phantoms with higher change rates, one-peak phantom
2F and 1F, the static approach resulted in reconstructions with low contrast and
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significantly lower amplitudes than ground truth while the dynamic approach per-
formed well on all three phantoms. These reconstructions were obtained with the
spline-based method.
Second, a dynamic measurement from another phantom, the three-peak phantom,
was simulated. The change rates were slower and more frames were scanned to
enable a frame-by-frame reconstruction with one and two system matrices. Due
to the low change rates the frame-by-frame approach was able to deliver compat-
ible results.
Third, the experiments with one-peak phantom 1F, 2F, 4F and the three peak
phantom were repeated with noisy measurements with different noise levels. With
increasing noise the reconstruction quality degraded for both methods but the dy-
namic method with S1 and S2 was much more robust to noise. Even for 30% noise
its performance on the one-peak phantoms was very good.
Fourth, the dynamic reconstruction method was evaluated on more complex dy-
namics. A single and a multi-patch phantom with linearly moving boxes were used
for synthetic measurements and reconstructed with the dynamic reconstruction
method and a frame-by-frame Kaczmarz reconstruction. The latter reconstruc-
ted 4 frames exhibiting motion artifacts and in the multi-patch case additional
displacement artifacts. The dynamic reconstruction method resulted in slightly
blurred boxes with few motion artifacts and reduced displacement artifacts com-
pared to the static approach. It produced a dynamic concentration sampled at
408 · 4 in the single and 408 · 2 · 4 time points in the multi-patch case.

7.2. Discussion

We have shown that for certain velocities and concentrations levels the proposed
dynamic reconstruction method performs superior to the standard method. Its
general formulation does not limit it to applications with specific motion pat-
terns or low velocities. Moreover, more sophisticated magnetization models can
be included alternatively to the equilibrium model used in this thesis. The dy-
namic concentration model limits the degrees of freedom such that the dynamic
reconstruction method already includes an implicit regularization which can be
extended with additional spatial or temporal regularization, like sparsity in time
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and space. Furthermore, the method allows for joint reconstructions of the particle
concentration and its time derivative, a beneficial feature for blood-flow analyses.
The experiments with small dynamic phantoms and different noise levels show
a higher robustness against noise for the dynamic reconstruction methods which
becomes even more evident with increasing velocities. We point out that in the
experiment with the one-peak phantom reconstructions with the true forward
operator are compared with reconstructions with a simplified forward operator,
the one using only S2. Thus, a better performance of the former was expected.
Nevertheless, the experiments with the one- and three-peak phantom show that
for velocities over 4.64 cm/s, the dynamic model should be considered. For slower
movements, a frame-wise Kaczmarz reconstruction will suffice.
The simulation studies with larger dynamic phantoms show that both the static
and the dynamic method are able to reconstruct dynamic tracer distributions
with high velocities from single and multi-patch data. While the boxes in the
dynamic reconstructions are blurred, motion artifacts are reduced compared to
the static frame-by-frame reconstructions for both phantoms. In the multi-patch
case, the dynamic reconstruction approach compensates displacement artifacts
that can be clearly observed in the frame-wise Kaczmarz reconstruction. Corres-
pondingly, the MSE of the dynamic reconstruction is below the the MSE of the
static reconstruction for all time points. In the single-patch case, the superiority
of the dynamic method is less obvious by visual inspection and is confirmed by
the MSE. The mean squared error of the dynamic reconstruction is lower than
for the static reconstruction on average and for most time points. The error met-
ric indicates that the advantages of the dynamic reconstruction method become
more evident in the case of fast dynamics during multi-patch sequences than in
the single-patch case. Another benefit of the new reconstruction method is its
high temporal resolution. Due to the cubic spline model the reconstructed tracer
distributions are temporally smooth.
The price for the named benefits is a higher complexity and thus a longer compu-
tation time. At this stage of development, the method has not yet been optimized
in terms of speed and memory consumption. A temporal splitting as in existing
real-time methods might be an option. Making use of the finite support of the
basis splines, the data can be split in time. The intervals can then be reconstruc-
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ted sequentially with the associated set of B-splines (see Lemma 5.4).
Another useful extension, which was neglected in this thesis, would be the inclu-
sion of overscans. Magnetic nanoparticles that are outside the FOV but close to
a drive field trajectory can cause a signal which cannot to be assigned to a unique
location. These artifacts can be reduced by choosing a larger FOV for the sys-
tem matrix. In multi-patch sequences overlapping drive field FOVs can be used
to achieve consistent reconstructions along the patch borders. The above-named
artifacts affect mostly particles close to the patch borders. As this thesis focuses
on the artifacts from different scanning intervals of the patches, we ensured the
absence of these border artifacts in the simulations. Including the respective com-
pensation strategies into the simulation and reconstruction framework is possible
and remains future work.
We tried to evaluate our reconstruction method on experimental data. As dy-
namic multi-patch reconstruction is still an emerging field of research, suitable
data sets have been very rare. We acquired dynamic multi-patch data sets with
the preclinical Bruker MPI system at UKE. Unfortunately, the planned meas-
urement setup could not be realized due to the system protocols such that the
measured data set became quite large. Until the completion of this thesis, we were
not able to produce acceptable dynamic reconstructions from these data sets.
The choice of options and parameters to determine when reconstructing exper-
imental data is vast. One option already discussed in Chapter 4, is whether to
reconstruct in time or frequency domain. On the one hand, most processing steps
to improve the signal-to-noise ratio are done in frequency domain. So it seems
natural to accept the increased computational costs due to the convolutions and
memory requirements caused by a frequency space reconstruction. On the other
hand, the convolution theorem of the Fourier transform is used in fast convolu-
tion methods anyway. Thus, transforming the processed data back to time domain
poses a valid alternative.

7.3. Conclusion and Outlook

The new dynamic reconstruction method together with the dynamic forward
model successfully reduces displacement and motion artifacts in dynamic non-
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periodic multi-patch MPI reconstructions. Nevertheless, there are still many
directions of potential improvement and the general formulation of the method
allows for numerous extensions. The experiments to determine the influence of
the second summand in relation to the level of dynamics should be extended
to a quantitative study of phantoms with different velocities. This might al-
low for a proposition about when the dynamic model is necessary based on the
level of dynamics and the desired reconstruction quality. A more theoretical re-
search direction of interest is the analysis of the ill-posedness of the dynamic
reconstruction problem including the concentration model. The method should
be evaluated on more complex synthetic phantoms of realistic size as well as on
physical phantoms. This motivates the search for faster reconstruction techniques
for large 4D-volumes. In the case of reconstructions from experimental data, pos-
sible combinations of measured and modeled system matrices can be evaluated.
E.g. system matrix S1 can be used together with a modeled and transfer function
corrected system matrix S2 or might be determined from S1 with machine learn-
ing methods. The blurring observed in the reconstructions in Section 6.2 despite
the use of regularization methods is not yet fully understood and needs to be
investigated in detail. Additionally, further regularization e.g. in space or with
different norms, should be tested. While currently the spatial patch arrangement
is completely arbitrary, the knowledge of the patch positions and the inclusion of
overlapping patches will improve the reconstruction quality in practice. Moreover,
replacing the equilibrium model by more advanced magnetization models will be
very interesting direction of research. Also the replacement of splines by other
basis functions like wavelets or shearlets is a promising extension of this work.
All in all, the presented method must be subjected to further studies to gain
impact in clinical applications. The field of dynamic inverse problems and dy-
namic MPI reconstruction has gained more attention in the last years and will
stay a popular research topic. Our approach to approximate the missing data in
multi-patch sequences will gain importance with increasing number of patches or
repetitions per patch which can be expected in clinical applications.
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Abbreviations
ART Algebraic reconstruction technique
CT Computed tomography
DF FOV Drive field field-of-view
FFL Field-free line
FFP Field-free point
FOV Field-of-view
FWHM Full-width-at-half-maximum
MNP Magnetic nano particles
MPI Magnetic particle imaging
MRI Magnetic resonance imaging
MSE Mean squared error
PET Positron emission tomography
PNS Peripheral nerve stimulation
SM FOV System matrix field-of-view
SNR Signal-to-noise ratio
SPECT Single-photon emission computed tomography
SPION Superparamagnetic iron oxide nanoparticle
TUHH Hamburg University of Technology
UKE University Medical Center Hamburg-Eppendorf

Mathematical Symbols
∗ Convolution
dom(·) Domain
·̂ Variable in Fourier space
F Fourier transform
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O Big O notation
� Element-wise multiplication
ran(·) Range
A+ Moore-Penrose inverse
A∗ Adjoint operator of A : X → Y with 〈Ax, y〉Y = 〈x,A∗y〉X
H1 Sobolev space

Spline Parameters
ΛB Set of all coefficients
Sd,t Spline space of B-splines with knot vector t and degree d
t Knot vector
B B-Spline with known degree and knot vector
b Spline coefficient
Bd
m,t B-spline with degree d, knot vector t and support on knot interval

[τm, τm+1)

d Degree of a B-spline
M0 Number of equally distributed knots within the scan time of a patch

per frame
Mp Set of indices determining the B-splines and coefficients belonging to

patch p

Functions, Variables and Parameters
α Parameter for the Langevin function
m̄ Mean magnetic moment
β Parameter for the Langevin function
∆f Shifting time to move the focus field
ċ Time derivative of the concentration, ∂c/∂t
η Summary of constants, −µ0ps ∈ R
γ Regularization parameter
û Measured voltage in frequency domain
Dc Discrete version of ∂c/∂t
L Langevin function
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R Regularization functional
µ0 Permeability constant
ak Bandstop filter
c Tracer concentration
H Magnetic field
HD Drive field
HS Selection field
kB Boltzmann constant
l Repetitions per patch
M Magnetization function
Mc Saturation magnetization of the core material
nc Number of channels respectively the dimension of the magnetic field
nK Number of frequencies
nT Number of time points within one repetition time
P Number of patches
ps Coil sensitivity
R Number of voxels
S1 System function 1 or system matrix 1, ∂m̄/∂t
S2 System function 1 or system matrix 2, m̄
T Total scanning time, FTF
T0 Temperature
Tc Repetition time of the (Lissajous) trajectory
TF Time period for the scan of one frame, PTP
TP Time period for the scan of one patch, lTc + ∆f

u Measured voltage in time domain
Vc Volume of the particle core
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A. Proofs

This section lists some proofs of statements in Chapter 2.

Proof of Theorem 2.3. We proof the equivalence with a circular argument.
1) → 2) Assuming there exists a ϕ ∈ X with ‖Ax− y‖Y > ‖Aϕ− y‖Y ,

‖Ax− y‖Y > ‖Aϕ− y‖Y
‖P

ran(A)
y − y‖Y > ‖Aϕ− y‖Y

min
u∈ran(A)

‖u− y‖Y > ‖Aϕ− y‖Y

⇒ Aϕ /∈ ran(A)

which is a contradiction.
2) → 3) Defining the quadratic function F (λ) = ‖A(x+ λϕ)− y‖2Y , we consider
its derivative

F ′(λ) = 2λ〈Aϕ,Ax〉Y + 2〈Aϕ,Ax〉Y − 2〈Aϕ, y〉Y

for λ = 0

F ′(0) = 2〈Ax,Aϕ〉Y − 2〈y,Aϕ〉Y = 0

⇔ 〈A∗Ax,ϕ〉Y − 〈A∗y,Aϕ〉Y = 0

⇔ 〈A∗Ax−A∗y,ϕ〉Y = 0, for all ϕ ∈ X
⇔ A∗Ax = A∗y.

3) → 1) In order find the space which contains Ax − y, we first consider the
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A. Proofs

normal equation

A∗Ax = A∗y

A∗(Ax− y) = 0 ⇒ Ax− y ∈ N (A∗)

〈A∗(Ax− y),ϕ〉X = 0

〈Ax− y,Aϕ〉X = 0 for all ϕ ∈ X ⇒ Ax− y ∈ ran(A)⊥.

In a second step we consider the projection. For y ∈ Y and an orthogonal pro-
jection on ran(A) holds

‖P
ran(A)

y − y‖Y = arg min
u∈ran(A)

‖u− y‖Y

= arg min
u∈ran(A)

{
1

2
〈u,u〉Y − 〈y,u〉Y

}
which corresponds to solving

〈u,w〉Y = 〈y,w〉Y w ∈ ran(A)

〈u− y,w〉Y = 0

⇔ u− y ∈ ran(A)
⊥

.

This yields

Ax = P
ran(A)

y ⇔ Ax ∈ ran(A) and Ax− y ∈ ran(A)
⊥

which is fulfilled, as we showed in the first step.
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We provide a Theorem on the properties of the Tikhonov functional.

Theorem A.1. Let continuous linear maps A : X 7→ Y , B : X 7→ Z,
y ∈ Y and γ ≥ 0. For xγ ∈ X the following two statements are equivalent:

1. xγ is a solution of the regularized normal equation:

(A∗A+ γB∗B)xγ = A∗y (A.1)

2. xγ minimizes the Tikhonov functional, i.e.

xγ = arg min
x∈X

Jγ,y(x) . (A.2)

Proof. Consider the function F : R→ R,

F (t) := Jγ,y(xγ + tv) . (A.3)

Then,

F (t) = Jγ,y(xγ)+2t 〈A∗ (Axγ − y) + γB∗Bxγ |v〉X+t2‖Av‖2Y +t2γ‖Bv‖2Z . (A.4)

2) → 1) Let xγ be a minimizer of the Tikhonov functional Jγ,y. Thus, the
directional derivative ∇Jγ,y(xγ)v must vanish in every direction v:

d
dt
F (t)

∣∣∣∣
t=0

= lim
t→0

F (t)− F (0)

t

= 2〈A∗ (Axγ − y) + γB∗Bxγ |v〉X

= 2

〈
(A∗A+ γB∗B)xγ −A∗y︸ ︷︷ ︸

∇Jγ,y(xγ)

|v
〉
X

and thus
0

!
= 2 〈(A∗A+ γB∗B)xγ −A∗y|v〉X ∀v ∈ X .
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This yields
‖(A∗A+ γB∗B)xγ −A∗y‖2X = 0 ,

which implies that xγ is a solution of the regularized normal equation

(A∗A+ γB∗B)xγ = A∗y .

1)→ 2) Assuming that xγ is a solution of the regularized normal equation. Let
w ∈ X which can be written as w = xγ + tv with v = w − xγ and t = 1. We
obtain

Jγ,y(w) = Jγ,y(xγ + v)
(A.3)
= F (1)

(A.4)
= Jγ,y(xγ) + 2〈A∗Axγ + γB∗Bxγ −A∗y︸ ︷︷ ︸

=0

|v〉X + ‖Av‖Y 2 + γ‖Bv‖Z2

= Jγ,y(xγ) + ‖Av‖Y 2 + γ‖Bv‖Z2

≥ Jγ,y(xγ) .

This implies that xγ minimizes the Tikhonov functional.
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B. Simulation Parameters

In this section we list all parameters used for the simulations in Sections 4.3, 6.1
and 6.2.

Table B.1.: Physical constants and parameters for a simulated MPI scanner

Parameter Value cf.

Constants

Permeability constant µ0 4π · 10−7 N/A2

Boltzmann constant kB 1.38064852 · 10−23 J/K

Particles

Temperature T0 310 K [51]
Saturation magnetization Mc

0.6
µ0

T [51]
Particle core diameter D 20 · 10−9 m [22]
Particle core volume Vc

1
6πD

3 m3 [51]
Particle magnetic moment α MCVC Am2 [51]
Parameter of Langevin
function β (kBT )−1 N−1m−1 [51]

Scanner [52]

Excitation frequencies [fx, fy, fz] [2.5/102, 2.5/96, 2.5/99] MHz
Excitation amplitudes [ax, ay, az] [12, 12, 0] mT
Excitation phase shifts [ϕx,ϕy,ϕz] [π2 , π2 , π2 ]
Gradient strengths [gx, gy, gz] [−1,−1, 2] T/m
Excitation repetition time Tc 652.8 · 10−6 s
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Table B.2.: Simulation parameters for the one-peak and three-peak phantom from
Section 6.1

Parameter Value

Number of voxels 3× 3× 1
Voxel size [mm3] 10.7× 10.7× 10.7
FOV size [mm3] 32.0× 32.0× 10.7
Time sampling per cycle nT 408
Transition time between frames [s] ∆f 0
Number of frames for the one-peak phantom F 4
Number of frames for the three-peak phantom F 10

Table B.3.: Simulation parameters for the dynamic single and multi-patch phantom
from Section 6.2

Single-patch Multi-patch
Parameter Value Value (patch) Value (total)

Measurement

Number of voxels 12× 12× 1 16× 16× 1 16× 32× 1
Voxel size [mm3] 2× 2× 1 1.5× 1.5× 0.75
FOV size [mm3] 24× 24× 1 24× 24× 0.75 24× 48× 0.75

Reconstruction

Number of voxels 10× 10× 1 12× 12× 1 12× 24× 1
Voxel size [mm3] 2.4× 2.4× 1 2× 2× 0.75
FOV size [mm3] 24× 24× 1 24× 24× 0.75 24× 48× 0.75
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