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Zusammenfassung 

Die fortlaufende Erhaltung konstanter Fließeigenschaften eines für ein spezielles 
Anwendungsprofil maßgeschneiderten Cellulosederivates ist eine tägliche Herausforderung 
der Cellulose verarbeitenden Industrie. Diese Problematik besteht, da Cellulose als 
nachwachsender Rohstoff bedingt durch unterschiedliche Wachstumsbedingungen und 
Umwelteinflüsse eine variierende Molmasse bzw. Molmassenverteilung aufweist. Um die 
Produkteigenschaften konstant zu halten, ist es eine übliche Vorgehensweise in der 
chemischen Reaktionstechnik die umzusetzende Cellulose aus verschiedenen Proben 
abzumischen, um den Einfluß der Molmasse bzw. der Molmassenverteilung (MMD, molar 
mass distribution) der einzelnen Cellulosechargen zu minimieren. Obwohl durch dieses 
Verfahren eine annähernd konstante Ruhescherviskosität 0η  gewährleistet werden kann, sind 
die Zusammenhänge in „realen“ Fließfeldern komplexer. Dort sind durch verschiedene, dem 
Scherfließen überlagerte Dehnfelder Fließanomalien wie z.B. Schmelzenbruch oder Fadenzug 
zu beobachten, weshalb den Dehnviskositäten- und spannungen in der technischen 
Applikation eine besondere Bedeutung zukommt. Da Fließphänomene wie der Fadenzug 
oberflächenspannungsgesteuerte Prozesse sind, bei denen nur jeweils die längsten 
Relaxationsmoden 0τ  eines Polymers angesprochen werden, ist die genaue Kenntnis der 
Molmassenverteilung von gravierender Bedeutung. Bedingt dadurch, dass die längsten 
Relaxationsmoden eines Polymers mit zunehmender Molmassenverteilungsbreite bei 
konstanter gewichtsmittlerer Molmasse ansteigen, ist eine enge Verteilung für eine 
Optimierung des Fadenzugverhaltens zu gewährleisten. Da die absolute Bestimmung der 
Molmassenverteilung mittels Lichtstreuung eine sehr kosten- und arbeitsintensive 
polymeranalytische Methode ist, war es das Hauptziel der hier in dieser Arbeit vorgestellten 
Forschungsbemühungen zu untersuchen, ob die Molmassenverteilung mit den rheologischen 
Materialfunktionen korreliert werden kann.  

Der erste Teil dieser Arbeit behandelt die Rheologie des Polymerstandards Polystyrol 
(PS) gelöst in Diethylphthalat (DEP) und Styrololigomeren. Dieses bereits in vergangenen 
Arbeiten gut charakterisierte Polymer [1] wurde herangezogen, um die Möglichkeiten, aber 
auch die experimentellen Grenzen der relativ neuen Methode des capillary break-up mit dem 
uniaxialen Dehnrheometer CaBER in Hinblick auf ihre Empfindlichkeit gegenüber der 
Molmasse bzw. ihrer Verteilung, der Konzentration und der Lösungsmittelgüte zu überprüfen. 

Zunächst wurde die Konzentrations- und Molmassenabhängigkeit der 
Materialfunktionen des stationären Scherfließens (Scherviskosität η , längste Relaxationszeit 

0τ  und Steigung der Fließkurve n) und der dynamischen Oszillation (G'  und G'' ) 
untersucht. Um die visko-elastischen Eigenschaften dieses Polymer-Lösungsmittel-Systems 
quantitativ zu erfassen, wurden die Struktur-Eigenschafts-Beziehungen des Scherfließens für 
Polystyrol in DEP aufgestellt.  

 

[ ]0 cη η− −  [ ] [ ] [ ]( )2 4.822 3
0 /( ) 1.10 10 0.368 8.46 10 1Pa s c c cη η η η− −⋅ = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ +  

[ ]0 cτ η− −  [ ]( ) [ ]( ) [ ]( )( )2 3 5.8210 2.423 3
0 / 1.29 10 0.368 8.46 10s c c c cτ η η η− − −= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅  

[ ]n cη− −  [ ]0.0790.82 0.65 10 cn η⋅= − + ⋅  
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Mit diesen Struktur-Eigenschafts-Beziehungen ist es möglich die Fließkurve eines 
beliebigen Polystyrols in DEP theoretisch als eine Funktion von Konzentration c und 
Staudinger Index [ ]η  zu berechnen. Um den Staudinger Index [ ]η  in die gewichtsmittlere 
Molmasse Mw zu überführen, wurde die bislang unbekannte Kuhn-Mark-Houwink-Sakurada 
Beziehung für Polymer-Lösungsmittel System bestimmt: 

[ ] 3 0.7028.23 10 wMη −= ⋅ ⋅  [ml/g] 

Für dieselben Polystyrole gelöst in DEP, wurden dann über einen weiten 
Konzentrationsbereich die dehnrheologischen Materialfunktionen des capillary break-up 
bestimmt. Die transienten Dehnviskosiät Eη  zeigten im Newtonischen Fließbereich die nach 
dem Trouton-Verhältnis für uniaxiale Dehnfelder erwarteten dreifachen Wert der 
Ruhescherviskosität des Scherfließens 0η , im instationären Fließbereich wurden dann 
aufgrund der coil-stretch-transition Dehnviskositäten in der Größenordnung von bis zum 100-
fachen von 0η  bestimmt. Die längsten Relaxationszeiten 0τ  stiegen für die verschiedenen 
Molmassen im untersuchten Konzentrationsbereich um zwei Größenordnungen.  

Da die Konzentrationsabhängigkeit der längsten Relaxationszeit 0τ  von 
ultrahochverdünnten Polymerlösungen in letzter Zeit in der Literatur kontrovers diskutiert 
worden ist, wurden zusätzlich noch eine Reihe von Polystyrollösungen in hoher Verdünnung 
(Polystyrol in Styrololigomeren, sog. Bogerfluide) untersucht, da in DEP bei Konzentrationen 
im ppm Bereich keine sinnvollen Ergebnisse aufgrund von nicht mehr detektierbaren 
Relaxationszeiten erhalten wurden. Es konnte gezeigt werden, dass die längste 
Relaxationszeit 0τ  auch noch unterhalb einer konservativen Definition der kritischen 
Konzentration c∗  mit sinkender Konzentration abnimmt. Diese Abnahme endet erst unterhalb 
einer neu definierten kritischen Konzentration für uniaxiale Dehnströmungen c§: 

[ ]
§

2

3 1 (3 )
2

c
L

ζ ν
η

>
⋅  

Dieses ist die kleinste Konzentration, bei der sich das Polymer noch im uniaxialen 
Dehnströmfeld elastisch bemerkbar macht. Es konnte im Gegensatz zur aktuellen 
Interpretation von experimentellen CaBER-Ergebnissen durch numerische Kalkulationen 
gezeigt werden, dass unterhalb dieser kritischen Konzentration die längste Relaxationszeit 0τ  
mit der Zimm-Relaxationszeit zτ  übereinstimmt und nicht unterhalb dieses theoretischen 
Wertes fällt. 

Um den Einfluß der Molmassenverteilung auf das rheologische Fließverhalten zu 
erfassen bzw. die längste Relaxationszeit über definierte Moden der Molmassenverteilung zu 
bschreiben, wurden verschiedene Polystyrole definiert abgemischt, sodass die 
gewichtsmittlere Molmasse Mw der Abmischungen konstant 65.8 10⋅ g/mol betrug, während 
sich die Molmassenverteilungen und die dazugehörigen Polydispersitäten Mw/Mn in einem 
Fenster von 1.0 bis 1.84 bewegten. Während Scherexperimente diese Unterschiede in der 
Molmassenverteilungsbreite nicht auflösen konnten, zeigten sich in der uniaxialen Dehnung 
gravierende Unterschiede in den längsten Relaxationszeiten für die untersuchten 
Polystyrolabmischungen. Die so erhaltenen Relaxationszeiten konnten, normiert über die 
längste Relaxationszeit der monodispersen Probe, über definierte Moden der 
Molmassenverteilung, das z+2-Mittel 2zM +  und das Gewichtsmittel wM  beschrieben werden: 
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Der zweite Teil der Arbeit behandelt die Rheologie der Cellulosederivate 
Methylhydroxyethylcellulose (MHEC) und hydrophob modifizierter Hydroxyethylcellulose 
(hmHEC). Auch diese beiden Hydrokolloide wurden im Hinblick auf den Einfluß der 
Molmassenverteilung auf das Fließverhalten vollständig rheologisch charakterisiert. 

Hierfür wurde zuerst die Konzentrations- sowie Molmassenabhängigkeit der 
Materialfunktionen des stationären Scherfließens und der dynamischen Oszillation in den 
Lösungsmitteln Wasser und Natronlauge (2 Gew.%) quantitativ bestimmt. Da die hier 
untersuchten MHECs aus verschiedenen Cellulosen abgemischt wurden, galt es auch hier vor 
allem den Einfluß der Molmassenverteilung auf das rheologische Fließverhalten aufzuklären. 
Es zeigte sich, dass die uniaxiale Dehnung die einzige Methode war, die die Unterschiede in 
der Molmassenverteilung quantitativ in Form von unterschiedlichen Relaxationszeiten τ  
erfassen konnte. Desweiteren wurde gefunden, dass das für die Polystyrole erhaltene 
Skalierungsgesetz zur Korrelation der unterschiedlichen Moden der Molmassenverteilung mit 
den längsten Relaxationszeiten auch auf die Methylhydroxyethylcellulosen übertragbar war. 
Die Ergebnisse der uniaxialen Dehnung konnten zudem direkt mit den zuvor mittels einer 
kombinierten Anlage aus SEC/MALLS/DRI (Größenausschlußchromatographie, 
Vielwinkellaserlichtstreuung und Differentialrefraktometer) bestimmten absoluten 
Molmasssenverteilungen der untersuchten MHECs korreliert werden. Zusätzlich dazu zeigte 
sich die uniaxiale Dehnung als wirksames Instrument zur empfindlichen Bestimmung der 
nicht molekular dispers gelösten Anteile der untersuchten Cellulosederivate (MHEC und 
hmHEC) in Lösung. Die für die unzentrifugierten Lösungen der Hydrokolloide erheblich 
längeren Abrisszeiten (obwohl auch diese zum großen Teil optisch transparent waren) 
konnten direkt mit der Wiederfindungsrate der Lichtstreuung korreliert werden. 
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Abstract 

One of the major problems in cellulosic industry is to maintain a constant flow profile 
of a respective special product, tailored for a decisive application, because cellulose as a 
biopolymer shows a pronounced variation in its molar mass or its molar mass distribution due 
to varying growing conditions. To keep the product properties constant, it is common use to 
blend the raw cellulose, which is to be chemically converted to its final form, from different 
cellulose pulps. This blending results in a minimisation of the influence of the molar mass or 
the molar mass distributions (MMD) of the single cellulose pulp. Although this procedure 
ensures almost constant zero-shear rate viscosities 0η , interellations in “real” flow fields are 
more complex than that. In complex flow fields simple shear is superposed by different kinds 
of elongational stresses resulting in flow anomalies like filament formation or die swell, 
therefore elongational viscosities or – stresses are particularly important. As flow phenomena 
like filament formation are surface tension controlled processes, only the longest modes of 
relaxation 0τ  of a polymer are excited. Since the longest relaxation time increases with the 
broadness of the MMD at a constant weight-average molar mass the distribution has to be 
kept narrow for optimization of the filament formation behaviour. As light scattering methods 
are very expensive and labour-intensive, the main aim of this work is therefore to examine the 
possibility of a correlation of the MMD of a polymer with the rheological or better 
elongational material functions.  

The first part of this work is dealing with the rheology of the polymer standard 
polystyrene dissolved in diethylphthalate (DEP) and styrene oligomere. This already in 
former works well characterized polymer [1] was consulted to record the possibilities of the 
relatively new method of capillary break-up with the uniaxial elongational rheometer CaBER 
in regards of its sensitivity to the molar mass or its distribution, concentration and quality of 
the solvent. 

First of the concentration- and molar mass dependence of the material functions of 
steady shear flow (shear viscosity η , longest relaxation time 0τ  and slope of the flow curve 
n), and oscillatory shear (G'  and G'' ) were investigated. To quantify the visco-elasticity of 
the system polystyrene (PS) in diethylphthalate (DEP) the structure-property-relationships of 
shear flow were established.  

 

[ ]0 cη η− −  [ ] [ ] [ ]( )2 4.822 3
0 /( ) 1.10 10 0.368 8.46 10 1Pa s c c cη η η η− −⋅ = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ +  

[ ]0 cτ η− −  [ ]( ) [ ]( ) [ ]( )( )2 3 5.8210 2.423 3
0 / 1.29 10 0.368 8.46 10s c c c cτ η η η− − −= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅  

[ ]n cη− −  [ ]0.0790.82 0.65 10 cn η⋅= − + ⋅  

 

With these structure-property-relationships one is able to describe the complete flow 
curve of polystyrene in diethylphthalate theoretically as a function of the concentration and 
the intrinsic viscosity [ ]η . To transfer these intrinsic viscosities [ ]η  to the weight-average 
molar mass Mw, the Kuhn-Mark-Houwink-Sakurada relationship was established via 
viscosimetry for this polymer-solvent-system: 
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[ ] 3 0.7028.23 10 wMη −= ⋅ ⋅  [ml/g] 

For the same polystyrenes dissolved in DEP the elongational material functions were 
then determined over a wide range of concentrations in capillary break-up experiments. The 
transient elongational viscosity Eη  reflected the Trouton ratio of uniaxial elongation in the 
Newtonian flow regime, resulting in trice the value of the zero-shear viscosity 0η  of steady 
shear. In the non-Newtonian flow regime transient elongational viscosities around a 
hundredfold the values of 0η  were determined according to the coil-stretch-transition. The 
longest relaxation times 0τ  rose about to orders of magnitude for the different molar masses 
in the investigated concentration range. As the concentration dependence of the longest 
relaxation times 0τ  of ultradilute solutions was discussed rather controversely in literature 
recently, polystyrene Boger fluids (polystyrene in styrene oligomer) at very high dilution were 
also investigated, since at concentrations in the ppm regime no reasonable data could be 
obtained for the polystyrene solutions in DEP as the relaxation processes were not detectable 
anymore in capillary break-up. It could be shown that the relaxation times 0τ  show even 
below the most conservative definition of the critical concentration c∗  a strong decrease with 
a decreasing concentration. This decrease of relaxation times ends below a concentration c§: 

[ ]
§

2

3 1 (3 )
2

c
L

ζ ν
η

>
⋅

 

This is the lowest concentration for an observable polymer contribution to a capillary 
break-up experiment. It could be shown in contrast to the current interpretation, that below 
this concentration the longest relaxation times 0τ  are equal to the Zimm relaxation times zτ  
and do not fall below that theoretical value. 

To analyse the influence of the MMD in order to describe the longest relaxation time 
of the polymers in uniaxial elongation via integral mean values of the molar mass distribution, 
defined polystyrene blends in diethylphthalate were then prepared. This was done in a fashion 
that the weight-average molar masses Mw were kept constant at 5.8 Mg/mol with different 
MMDs varying in its polydispersity indices Mw/Mn from approx. 1.0 to 1.84. Whereas the 
methods steady shear flow and oscillatory shear where not able to detect these differences in 
the MMD even qualitatively, uniaxial elongation in capillary break-up yielded different 
longest relaxation times 0τ  for the investigated blends. These longest relaxation times, 
reduced by the relaxation times of the mono disperse sample could be scaled via the z+2-
average and the weight-average molar mass: 
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The second part of this work is dealing with the rheology of the cellulosic derivatives 
methylhydroxyethyl cellulose (MHEC) and hydrophobically modified hydroxyethyl cellulose 
(hmHEC). These two hydrocolloids were also characterized rheologically in regards to the 
influence of the MMD on the flow behaviour.  

As for the polystyrenes, first of all the concentration- and molar mass dependence of 
the material functions of steady shear flow and oscillatory shear were quantified in the 
solvents water and aqueous 2 wt% sodium hydroxide. As the investigated MHEC samples 
were blended from different cellulose pulps, the influence of the MMD had to be clarified. 
Again only uniaxial elongation proved to be the right tool to correlate the rheological 
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behaviour in terms of the determined longest relaxation times 0τ . It could be shown that the 
scaling law determined for the polystyrene blends could be directly assigned to the here 
investigated commercially available, blended celluloseethers. 

The results of uniaxial elongation could then be correlated directly with the absolute 
molar mass distributions obtained via means of SEC/MALLS/DRI (size-exclusion-
chromatography, multi-angle laser light scattering and differential refractometer). 

In addition to this, uniaxial elongation in capillary break-up proved to be a method 
allowing for a very sensitive detection of non molecularly dispersed fractions of the 
investigated native cellulosic derivatives (MHEC and hmHEC), because the non centrifuged 
sample solutions (even though they mostly appeared optically transparent) showed 
pronounced longer break-up times than the uncentrifuged ones.  
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  1 Introduction 1 

 

1 Introduction 

Cellulosic derivatives, as one of the most important representatives of watersoluble 
biopolymers in technical application ( 52.5 10⋅  t/a production in Germany alone [2]), show a 
more than complex rheological flow behaviour. Since most cellulosic derivatives are 
watersoluble biopolymers there is a whole variety of problems that can occur in technical 
application, but more to that later. Despite the possibility of handling problems, cellulosic 
derivatives are constantly gaining in importance in a time of a globally growing energy and 
resource demand, especially with increasing ecological awareness of the consumer. From the 
about 6 billion tons of renewable resources, that is about 3 % of the annualy produced 
biomass, only a tiny amount is used for chemical industry [3, 4]. This tiny amount still makes 
about 10 % of the annual resource demand of chemical industry on the whole [4]. A reason 
for this growing interest is found not only in the almost limitless availability of cellulose itself 
and the biological compatibility but particularly in the large number of various cellulosic 
derivatives that can be synthesized to fulfil the most diverse tasks in the process of 
rheological modelling of a special product. This chemical and rheological versatility is 
obtained rather easily via etherification and esterification with various agents. 

Cellulosic derivatives find use in a large range of technical applications [5, 6]. The 
most important fields at this point are building materials [5, 6] where they are used as 
thickening- and water retention agents in mortars and plasters, foods [7, 8] as thickening and 
gelation agents as well as pharmaceuticals and cosmetics [9, 10], where they are used as 
superabsorbing- and stabilizing agents and paints as thickening and in some cases associative 
thickening agents [11]. 

The good solubility in water, which is usually aimed for, has the disadvantage of 
pronounced problems arising with the molecular characterization in comparison to organic 
solvents. This is a result of the distinctive hydrogen-bonds (and other energetic Van der Waals 
interactions like Coulomb interactions) that more than often prevent the single cellulose 
molecules from being solved molecular dispersely. Besides the problems with dissolving the 
respective polymer, the characterization of the molecular structure in aqueous solvents is 
more than difficult. In the last few years many studies have been done on this issue [12], as 
well on the rheo-mechanical detectable flow behaviour in as well steady shear- as oscillatory 
shear fields [1, 10, 12, 13] as on the topic of rheo-optical detection of flow phenomena 
incorporating associating structures [14-16]. In addition to this the flow behaviour of 
cellulosic derivatives in elongational flows was also investigated recently [17]. 

For polymeranalytics, the studies published for example in this working group are as 
extensive, for example on NMR-spectroscopy and ultrasonic degradation to get information 
on how the substituents are distributed along the polymer backbone [18-20]. Like afore said 
the molar mass and the particle size or its distributions play a major role in technical 
application, so there was a quiet a lot of research invested on that issue via light scattering 
methods with different means of fractionation [21-24]. Another very simple and easy 
accessible analytical method to obtain information on the molecular structure of the single 
polymer coil is viscosimetry [25]. 

Besides the topic of the solution structure another major problem with cellulosic 
derivatives in comparison to synthezised polymers like polyolefines is that maintaining 
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constant visco-elastic properties of a respective cellulosic derivative designed for a decisive 
application is not a trivial task. This problem occurs since cellulose as a biopolymer naturally 
shows a pronounced variation in its molar mass or its MMD in dependence from origin and 
growing conditions of the respective sample. To circumvent this problem and maintain a 
constant flow profile, it is common use in cellulose processing industry to blend the raw 
sample, which is to be chemically converted to its final form, from different cellulose pulps. 
This blending results in a minimisation of the influence of the molar mass or the MMD of the 
single cellulose pulp, ensuring almost constant zero-shear rate viscosities 0η , independently 
of the respective origin and growing conditions of the employed cellulose. 

Although this procedure ensures almost constant zero-shear rate viscosities 0η , 
interellations in real flow fields are far more complex than that. As in these complex flow 
fields simple shear is usually superposed by different kinds of elongational stresses, 
knowledge of the elongational viscosities or – stresses are particularly important.  

As elongational induced flow phenomena like filament formation are surface tension 
controlled processes, only the longest mode of relaxation 0τ  of a polymer is excited. Since the 
longest relaxation time of a polymer increases with the broadness of the MMD at a constant 
weight-average molar mass, knowledge of the molar mass distribution is of great importance. 
As light scattering methods for determination of the absolute molar mass or its distribution are 
very expensive and labour-intensive, the main aim of this work is therefore to examine the 
possibility of a correlation of the MMD of a polymer with the rheological or better 
elongational material functions. 

However, being the most complicated flow field to set up, it was not until recently that 
the first easy to handle commercial elongational rheometer for polymer solutions entered the 
market. With the CaBER (capillary break-up extensional rheometer) elongational rheometer 
the determination of a longest relaxation time as a characteristic viscoelastic parameter has 
recently gained much attention mainly because of the simplicity of this approach. Following 
the derivation of Entov and Hinch [26], the elastic thinning of a polymer solution filament in a 
CaBER like experiment can be described by an exponential decrease in time. The longest 
relaxation time 0τ  of the polymers undergoing a molecular unravelling in the uniaxial flow 
can then be easily determined. The validity of this approach and its consistency with other 
determination methods have been shown in several publications for a range of different 
polymers, molar masses and concentrations in dilute to semi dilute solutions [27-33]. In these 
cases, the exponential decay of the filament could be observed over sufficiently long times. 

The capillary break-up experiment provides a convenient means for probing chain-
chain interactions as a function of polymer concentration through measurements of the 
characteristic time-scale of the fluid in a strong extensional flow and several investigations of 
the transient elongational behaviour of a range of different polymers and molar masses [28, 
30-33] in semi dilute to dilute solutions have been reported. 

This work focuses on the one hand on a detailed investigation of the capillary break-up 
dynamics and relaxation times of semi-dilute to ultradilute polymer solutions. This is to be 
investigated via the polymer standard polystyrene dissolved in different solvents 
(diethylphthalate and styrene oligomer). However, in order to quantitatively analyze the 
dynamics of the capillary break-up process in very dilute solutions it was first of all necessary 
to answer the question of how much stress is carried by the polymer and how much by the 
solvent. In other words, under what physical conditions does a coil-stretch transition on the 
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molecular scale occur and affect the resulting macroscopic fluid dynamics. Since the 
deformation rate is not constant in these surface tension driven flows in dependence of the 
concentration, a satisfactory description of the occurrence of coil-stretch transition in this 
evolving flow field requires more than a simple definition of a critical concentration.  

On the other hand, like afore said, the pronounced sensitivity of uniaxial elongation in 
capillary break-up is to be exploited in a fashion that the longest relaxation times obtained for 
the investigated polymer solutions are to be correlated with the molar mass or the molar mass 
distribution of the polymer. This problem specification is to be met at first via defined blends 
of polystyrene standards of varying molar masses dissolved in diethylphthalate. These blends 
are to be prepared in a way that the polydispersity Mw/Mn of the MMD varies, whereas the 
weight-average molar mass Mw is to be kept constant. The elongational material functions and 
especially the longest mode of relaxation 0τ  is then to be directly correlated with different 
mean values of the MMD.  

After acquisition of the possibilities and the threshold conditions of the relatively new 
method of capillary break-up, outlined via the standard system polystyrene in DEP and 
styrene oligomer, it is to be investigated if the same principles can be transferred to the 
elongational behaviour of the celllulosic derivatives MHEC and hmHEC. In addition to this, 
the influence of the non-molecularly dispersed fraction of the cellulosic solutions on the 
elongational behaviour is to be investigated. 

Polymers in solution are used in a broad range of molar masses in a multitude of 
applications. Ultra high molecular polyelectrolytes (polycations) are used as flocculation 
agents for wastewater treatment. Here, the electrostatic interactions of the polymer and the 
solid particles in the solution are used [34, 35]. The use of either polycations with a high 
molar mass or a combined use of polycations and polyanions depends on the separation 
problem [36]. Other polymers with high molar masses are being used for the drag reduction in 
aqueous solutions [1], e.g. poly(ethylene oxide) (PEO) to increase the range of fire 
extinguishing systems  and oil-soluble vinyl copolymers or poly(isobutene) (PIB) in oil 
pipelines [37]. Other application areas include the use of sodium poly(acrylamide-co-acrylate) 
(PAAm/AAcNa) in enhanced oil recovery (polymer flooding) [38]. Even bodily biopolymers 
with a high molar mass, such as the hyaluronic acid in the synovial fluid of the knee joint 
provide, for example, the right lubrication [39, 40]. Polymers with a very low molar mass, 
such as poly(acrylic acids) are used as encrustation inhibitors. Other low molar mass 
polymers such as poly(methylmethacrylate) or styrene-isoprene- or styrene-butadiene 
copolymers with molar masses of 1⋅104-2⋅104 g/mol are utilized to improve the viscosity 
index (VI) of motor oils [41]. Biopolymers from renewable sources find many areas of use in 
solution. An example is hydroxyethyl starch (HES) with a range of the molar mass of M = 
7⋅104-3⋅105 g/mol for the use in medical applications as blood plasma expander [19, 42]. In 
this case, the colloid osmotic pressure of the polymer is used to propagate the flow of tissue 
water into the veins. Fig. 1 shows the broad range of molar masses in which polymers in 
solution find applications.  
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Figure 1: Application areas of polymers in regards of the molar mass. 
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2 Investigated Polymers 

2.1 Polystyrene standards (PS) 

The investigated polystyrenes are narrowly distributed standard systems, which allow 
for an exact correlation of the determined visco-elastic material functions with the molecular 
parameters such as the molar mass and the intrinsic viscosity. Polystyrene exhibits a slightly 
expanded coil structure and does not tend to form aggregates in the used solvents, so that it is 
suited very well for reproducable rheological measurements for calibration. Polystyrene was 
investigated in this work in the solvents toluene, diethylphthalate and styrene oligomers. 

The molecular structural parameters of the investigated polystyrenes were already 
characterized in detail in former works in this research group [43-46]. The molecular 
structural parameters of our investigated polystyrenes are shown in Tab. 1. 

 
Table 1: Intrinsic viscosities [η] and critical concentration of investigated polystyrene 

standards in toluene and weight average molar masses Mw with polydispersity index Mw/Mn. 

Standard + 

 

No. [η] 

cm3/g 

c*
[η] 

wt% 

Mw 

Mg/mol 

Mw/Mn 

- 

0.956 1 230 -21.2 10⋅  1.0 1.00-1.05 

1.8 1b 483 -35.5 10⋅  2.8 1.00-1.05 

3.848 2 592 -34.3 10⋅  3.7 1.00-1.05 

7.11 3 810 -33.0 10⋅  5.8 1.00-1.05 

11.4 4 1124 -32.2 10⋅  9.1 1.00-1.05 

13.2 5 1054 -32.3 10⋅  8.2 1.00-1.05 

16.8 5b 1176 -32.1 10⋅  9.5 1.20 

20.0 5c 987 -32.5 10⋅  7.5 1.20 

23.6 6 822 -33.0 10⋅  5.9 1.30 

+ Molar masses provided by manufacturers in Mg/mol (see chapter 8.2 for details) 
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2.2 Methylhydroxyethyl cellulose (MHEC) 

Methylhydroxyethyl cellulose is a mixed cellulose ether and one of the most common 
cellulosic derivatives that finds use in a vast field of technical applications. Synthesis is 
usually achieved, as for the here investigated samples, via Williamson eherification in a slurry 
process [47-49], leading to a structure shown schematically in Fig. 2.  
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Figure 2: Anhydro glucose unit (AGU) of methylhydroxyethyl cellulose. 

Multiple substitution is an important issue for cellulosic derivatives that incorporate 
modifications with terminal hydroxyl group, in this case a hydroxyethyl group. The degree of 
substituition (DS), that varies from 0-3 (for the three protons per AGU that can be 
substituted), is not a sufficient means of characterization. The so-called molar degree of 
substitution (MS) has to be taken into account, a value that incorporates multiple substitution 
and usually varies from 1-5 [48]. The molecular structural parameters of our MHECs are 
shown together with the blending composition in the Tables 2 and 3. 

The main application of MHEC can be found in building industry as thickener or agent 
for water retention in plasters, mortars and tile adhesives, as shown schematically in Fig. 3. 

  

Figure 3: MHEC as thickener and water retention agent in plasters. 

With R = -CH3 or  

–(CH2CH2O)nH 
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Table 2: Blending composition, DS and MS of investigated MHECs. 

MHEC Pulp 1 

1738+ 

Pulp 2 

925+ 

Pulp 3 

356+ 

DS MS 

1st Batch 

1 37.5 25 37.5 1.64 0.25 

2 25 50 25 1.65 0.24 

3 12.5 75 12.5 1.65 0.26 

4 - 100 - 1.68 0.19 

5 50 - 50 1.67 0.30 

2nd Batch 

6 37.5 25 37.5 1.78 0.31 

7 25 50 25 1.75 0.30 

8 12.5 75 12.5 1.79 0.31 

9 - 100 - 1.80 0.29 

10 50 - 50 1.76 0.33 

+ Intrinsic viscosities of the native cellulose samples (provided by manufacturer) 

 
Table 3: Molecular structural parameters of the investigated MHECs 1-10. 

MHEC [η] 

cm
3
/g 

c*[η] 

wt% 

Mw 

Kg/mol 

Mw/Mn c*LS 

wt.% 

Recovery Rate 

wt% 

RG 

nm 

1st batch 

1 853 0.29 327 2.3 0.0069 94 85 

2 926 0.27 335 2.6 0.0079 98 82 

3 790 0.32 307 2.3 0.0095 99 75 

4 947 0.26 297 2.1 0.01 99 71 

5 876 0.29 360 2.9 0.006 92 91 

2nd batch 

6 691 0.36 323 2.9 0.0051 79 83 

7 547 0.46 294 2.5 0.0087 70 72 

8 689 0.36 298 2.7 0.0093 87 75 

9 676 0.37 299 2.3 0.01 87 76 

10 604 0.41 341 3.5 0.0059 74 90 
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2.3 Hydrophobically modified hydroxyethyl cellulose (hmHEC) 

Hydrophobically modified hydroxyethyl cellulose (hmHEC) is a cellulosic derivative, 
that is used as an associative thickener agent [50, 51], mainly in water soluble paints. Another 
field of application is drag reduction. The anhydro glucose unit (AGU) of hmHEC is shown in 
Fig. 4. 

 

Figure 4: Anhydro glucose unit (AGU) of hmHEC. 

The alkyl substituent, highlighted with the circle in Fig. 4 (with approx. 10 to 24 C-
atoms), is introduced via Williamson etherification into the cellulosic backbone [52]. Because 
of steric hindrance, the alkylhalogenide substitutes only the proton of the hydroxyethyl group 
in position 6. The degree of substitution (DS) is around 0.02-0.04 for the most typical, 
commercially availabel hmHECs, which means that only every 50th-25th AGU carries a 
hydrophobic modification. The molecular structural parameters of our investigated hmHECs 
are shown in Table 4. 

 

Figure 5: To scale (in regards of hydrophobic sidechains compared to the backbone of the 
polymer) schematic depiction of a hmHEC coil. 
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However, this tiny amount of hydrophobic sidechains (see Fig. 5 for a to scale 
schematic depiction of a hmHEC coil) enables the polymer to show a pronounced shear 
thickening behaviour, especially when surfactants are added to the solution, that support the 
build-up of micellar structures together with the hydrophobic sidechains (see Fig. 6). The 
water soluability of this polymer is decreasing with increasing DS and lenght of the 
hydrophobic modification [14].  

The effect of associative thickening derives from the transition from intra- to inter-
molecular micellar structures (see Fig. 6). The hydrophobic modifications form 
intramolecular micelles under equilibrium conditions. These intra-molecular micelles are 
degraded in shear flow, so that the hydrophobic chains are free to form inter-moelcular 
micelles [14] that lead to shear thickening behaviour. This explicit behaviour, which is 
referred to as dilatancy is shown experimentally in chapter 6.2.1. 

 

 

γ�
U  

 

Figure 6: Shear induced transition from intra- to intermolecular micellar structures formed 
by the hydrophobic sidechains of hmHEC together with surfactants. 

 
Table 4: Molecular structural parameters of the investigated hmHECs 1 and 2. 

Sample [η] 

cm
3
/g 

c*[η] 

wt% 

Mw 

Kg/mol 

Mw/Mn c*LS 

wt% 

Recovery Rate 

wt% 

RG 

nm 

hmHEC 1 712 0.35 277 2.6 0.042 45 68 

hmHEC 2 403 0.62 262 1.3 0.040 47 56 
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3 Polymeranalytical Methods  

 

3.1 Viscosimetry  

 

Viscosimetry is one of the basic analytical methods for examining the structure and 
the properties of polymer fluids. Many different polymers from varying production processes 
are utilized in solution in diverse applications. Furthermore, it is possible, by varying the 
molar mass of one and the same polymer system, to specifically tailor the properties of the 
polymer to the area of use. Polymers are chain- or thread-shaped molecules that take on a 
coil-like structure in dilute solutions. Even though the molecule continuously changes its form 
under the influence of statistic thermodynamic movement, it fills out a constant spherical 
space in solution over a time average. In principle, a molecule can also take the shape of 
compact aggregated spherical particles (glycogen, globular proteins), or in the case of ionic 
polymers take on a linear rod-like structure, since through the same charges on the chain 
repelling forces are in effect.  

Theoretical approaches to determine solution structures of neutral polymers act on the 
assumption of the pseudo ideal state. Here the solvation forces from the solvent and the 
aggregation forces of the chain segments are in an equilibrium where the coil appears to be 
unaffected by forces. This pseudo ideal state is called the theta state. Theta conditions exist 
when the exponent a of the [η]-M-relationship has the value a = 0.5, for sufficiently long 
chains to show long range interactions, and even more important at the same time the value of 
the second virial coefficient is A2 = 0. Accordingly, a pseudo ideal solvent is called theta 
solvent and the corresponding temperature is called theta temperature. As Flory showed in his 
Nobel price lecture [53], the theta state can be described mathematically exactly from the 
chemical structure of the chain. 

Real polymer solutions mostly do not occur in the theta state. Both, the undisturbed 
dimensions of the polymer coils and other thermodynamical states of the coil can be 
experimentally determined with the help of viscosimetry. 

For all polymer solutions a characterization of the molar mass and the flow properties 
has to be made in order to tailor the properties to the area of use as shown in Fig. 1. 
Practically the determination of the molar mass and the solution structure is done using 
viscosimetry. The solution structure, or to be more precise, the solution conformation of a 
polymer is the constant volume requirement of the coiled thread-like molecule over the time 
average. The description of the dimensions of the coil is made in practice by using the 
intrinsic viscosity [η] that represents a measure for the effective experimentally observed 
density of the thread-like molecule in solution. Within a theta solvent, the polymer thread can 
be viewed as infinitely thin for all practical reasons (see Fig. 7). 
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Figure 7: Influence of the coil shape on the exponent a of the [η]-M-relationship. 

In a so-called “good” solvent the hydrodynamic interactions around the polymer chain 
increases, the thread appears to become thicker, and the volume requirement increases (see 
Fig. 7). The volume requirement also increases with an increasing molar mass and the 
accompanying elongation of the polymer chain. The effect of this increased volume 
requirement on the flow behavior of the solution can be measured directly using viscosimetry.  

Since the viscosity of a polymer solution is not only dependent on the molar mass, but 
also on the concentration, the solvent, the type and composition of the polymer solution 
fraction, the temperature and the pressure. The measurement of the viscosity therefore is not 
only for the practical and simple determination of a single product trait. Besides a simple 
single-point measurement and the quality control, viscosimetry allows for a much deeper 
insight into the flow properties of a polymer solution. The increase of the internal friction of a 
solution (the “viscosity”) can be described using well-defined laws of physics by assuming 
the polymer to require a volume fraction of the solution, depending on the molecular 
dimensions of the single coil, the rigidity of the chain, the intermolecular interactions of the 
polymer coils. Furthermore, direct information about the solution structure can be obtained 
using an [η]-M-relationship (Kuhn-Mark-Houwink-Sakurada-relationship). 

For practical reasons, it is especially relevant to be able to directly determine the molar 
mass M of a polymer from the [η]-M-relationship using only simple viscosimetry. But often it 
is enough to be able to perform a single-point measurement with viscosimetry in order to 
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verify the product properties for the daily incoming and outgoing goods control. Relevant 
application areas are listed in Fig. 1. 

The viscosity enhancing properties of a polymer coil due to an increasing internal 
friction caused by assumed spherical shaped, rigid particles (that the coils can be represented 
by as suggested by Einstein) can be described via a Taylor-series: 

2 3
sp 1 2 3 ...B B Bη φ φ φ= ⋅ + ⋅ + ⋅ +       (Eq. 1) 

Here the fraction of the polymer in solution is given by the volume fraction φ: 

polymer

solution

V
V

φ =
        (Eq. 2) 

Fortunately, all higher powers in Eq. 1 can be disregarded for an ideal state of 
dilution! According to Einstein, the polymer coils are assumed to be perfectly inelastic and 
behave like hard spheres. Therefore, the following simple (and experimentally confirmed) 
relationship is obtained: 

sp 2.5η φ= ⋅         (Eq. 3) 

The volume of the polymer coils Vpolymer can be described via the ratio of the mass 
mpolymer of the polymer to its density ρequ . This density ρequ does not correspond to the density 
in the dry state, but with the density of the polymer in solution, where solvent molecules 
surround the polymer chain. 

polymer

equpolymer

solution solution equ

m
V c
V V

ρ
φ

ρ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠= = =

      (Eq. 4) 

With this, the specific viscosity for a truly dilute solution is: 

sp
equ

2.5 cη
ρ

= ⋅         (Eq. 5) 

Therefore the specific viscosity depends not only on the concentration but also on the 
density in solution and therefore on the molecular dimensions in solution according to Eq. 5. 
In order to obtain the true viscosity enhancing properties of a specific polymer, the reduced 
viscosity ηred is introduced: 

sp
red

equ

2.5
c

η
η

ρ
= =

        (Eq. 6) 

This reduced viscosity only depends on the density in solution and the concentration.The 
concentration dependence of the reduced viscosity is given by folllwing term: 

[ ] [ ]2sp
red 2B c

c
η

η η η= = + ⋅ ⋅        (Eq. 7) 

The unit of the reduced viscosity is defined via the used concentration unit, which is 
usually [g ml-1] for viscosimetric measurements. With this, the unit for the reduced viscosity 
is [ml g-1]. 
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However, also the reduced viscosity is not independent of the concentration if we 
lwave the truly dilute state. Even though viscosimetric measurements are performed below the 
critical concentration c*, where the single polymer coils start to interpenetrate, the truly dilute 
state is roughly reached at /100c∗  and therefore below the experimental range of 
visossimetric measurements and small polymer interactions (that are decreasing with a 
decreasing concentration) have to be considered. The true viscosity enhancing properties of a 
polymer is therefore the reduced viscosity extrapolated to c→0: 

[ ] red0
0

lim
c
γ

η η
→
→

=
�         (Eq. 8) 

According to the IUPAC nomenclature, the intrinsic viscosity should be named 
limiting viscosity number but this denomination is not widely used yet. As shown in Eq. 8, 
another condition for the determination of the intrinsic viscosity is that the shear rate has to be 
γ�→0.  

The intrinsic viscosity [η] has the same unit, [ml g-1], as the reduced viscosity ηred. For 
a better understanding, the intrinsic viscosity can be considered as a measure for the volume 
demand of the single polymer coil in ideally diluted solution. The intrinsic viscosity is 
proportional to the reciprocal density of the polymer coil in solution according to Eq. 5 and 6 
and therefore directly related to the polymer dimensions.  

Determination of the intrinsic viscosity can then be achieved by incorporating the first 
higher order term of Eq. 1 leading to Eq.7 for the reduced viscosity. Substitution of B2 in Eq.7 
leads to the Huggins virial equation [54], which yields the intrinsic viscosity via extrapolation 
of the reduced viscosity to zero: 

[ ] [ ]2sp
HK c

c
η

η η= +         (Eq. 9) 

The slope [ ]2
HK η  can be directly correlated with the second virial coefficient A2, 

describing the intermolecular interactions between polymer and solvent. 

The intrinsic viscosity [η] represents the most relevant variable to describe the viscous 
behavior of a polymer solution and most viscosimetric measurements have the aim of its 
determination. 

The knowledge of the dimensions of a single polymer coil allows for the calculation of 
the solution volume filled with polymer. A matter of particular interest is the polymer 
concentration where the solution is completely filled with polymer coils and the coils start to 
interpenetrate as shown in Fig. 8. The intrinsic viscosities and the resulting critical 
concentrations of the investigated polymers are listed in Tables 1-4. 
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Figure 8: Definition of the critical concentration c*. 

This concentration is denoted as the critical concentration c*. The critical 
concentration marks the transition from a dilute to a semi-concentrated solution. This 
transition is accompanied by great changes in the flow properties of a polymer solution. At 
concentrations above c* the flow behavior is dominated by the intermolecular interactions of 
the polymer coils whereas below c* mainly the polymer-solvent interactions determine the 
flow properties. Nearly all technical applications of polymer solutions require concentrations 
equal to or above c*. For example, the blood plasma volume expander hydroxyethyl starch 
(HES) is used at the critical concentration to obtain a maximum polymer concentration 
without a superproportional increase of the viscosity. 

The critical concentration is reached for a volume fraction φ of the polymer of one. In 
this case, Eq. 3 yields: 

polymer
solution polymer

equ

m
V V

ρ
= =

       (Eq. 10) 

With Eq. 5 the critical concentration of the viscosimetry c*
[η] is obtained: 

[ ] [ ]
polymer*

equ
solution

2.5m
c

Vη ρ
η

= = =        (Eq. 11) 

Therefore the critical concentration c*
[η] is proportional to the reciprocal intrinsic 

viscosity. The factor of 2.5 assumes that the polymer coils behave like hard spheres in 
solution. Viscosimetric measurements for the determination of the intrinsic viscosity have to 
be performed in dilute solutions at concentrations clearly below c* to assure that terms of (O)2 
and higher in Eq. 1 can be neglected. 

The intrinsic viscosity [η] of a polymer in a certain solvent can also be empirically 
correlated with the molar mass M:  
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[ ] [ ]
aK Mηη = ⋅         (Eq. 12) 

In the literature, this dependence is referred to as the [η]-M-relationship or the Kuhn-
Mark-Houwink-Sakurada-relationship (KMHS-relationship). K[η] and a are constant for a 
given solvent and temperature. 

The exponent a is a measure for the solvent quality and therefore for the solution 
structure of the dissolved polymer. The knowledge of K[η] and a allows for an easy 
determination of the molar mass of a polymer by measuring the intrinsic viscosity. The 
determination of the molar mass from Eq. 12 yields the viscosity average molar mass Mη. The 
values of Mη lie between the number average molar mass Mn and the weight average molar 
mass Mw (see Fig. 9). The parameters of K and a can be obtained from molecular theory for 
the limiting cases of theta or good solvents as shown in chapter 4.1. However, the exact 
determination of these parameters for a given polymer-solvent-system requires viscosimetry. 

 

3.2 Determination of the molar mass and the molar mass 
distribution 

 

The solution structure and the visco-elastic properties of polymers in solution are 
mainly dominated by the molar mass and the molar mass distribution. Particularly the 
formation of entanglements between the single polymer coils that occur above a critical molar 
mass has a great influence on the flow- and visco-elastic properties of a polymer solution (see 
chapter 4.4.1 and 4.4.2). 

Cellulosic derivatives that are of native origin do not show a uniform degree of 
polymerization but a distribution in its molar mass. Subject to where the origin of the resource 
is and how the climatic backround is, the molar mass and its distribution vary. However, one 
has to keep in mind that the molar mass distribution is not symmetric but usually asymmetric 
because of the influencing parameters listed above. A typical distribution for native cellulose 
derivatives is shown in Fig. 9 [25]. 
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Figure 9: Schematic depiction of the molar mass distribution of a native cellulose derivative 
with the mean moments of the distribution Mn, M[η], Mw und Mz.  
 

The exact determination of the absolute distribution of the molar mass is 
experimentally very complicated to achieve, so that usually different mean values of the 
molar mass distribution are consulted to characterize a polymer 

The most commonly used mean values of the molar mass distribution are the number-
average molar mass Mn (β = 0), weight-average molar mass Mw (β = 1) and the centrifuge-
average molar mass Mz (β = 2). The exact definitions of these modes are given in Eq. 13.  
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Another mean value is the viscosity-average molar M[η] which is accesible via 
viscosimetric measurements. It can be calculated according to Eq. 14. For allmost every 
polymer, M[η] is an intermediate value between Mn and Mw. 
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       (Eq. 14) 

The ratio of Mw and Mn, /w nM M  is a measure for the width of the distribution and is 
called the polydispersity.  

However, often the degree of polymerization P is given instead of the molar mass of a 
polymer. It can be directly related to the molar mass of the single repeating unit. In Table 5 
the different mean values of the molar mass are summarized together with the corresponding 
analytical method of determination.  
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Table 5: Different mean values of the molar mass and the corresponding analytical method 

for determination.  

 Method Mean Value 

Viscosimetry M[η] 
Relative Size-Exclusion-

Chromatography (SEC)
MSEC 

Osmosis Mn 

Light-Scattering Mw Absolute 

Ultracentrifugation Mz 

 

The relative methods for determination of the molar mass still need some kind of 
calibration with a substance of known chemical structure and molar mass. Viscosimetry 
belongs to the relative methods and was discussed in detail in chapter 3.1. Another relative 
method is the size-exclusion chromatography which will be discussed in detail in the 
following section. The advantage of the so called absolute methods is that no information on 
the chemical and physical structure is needed to determine the molar mass. Examples for 
these absolute methods are the membrane osmosis, ultracentrifugation and light scattering 
[55].  

 

3.2.1 Light Scattering  

Elastic light scattering is divided into Rayleigh-, Debye- and Mie-scattering in 
dependence on the size of the interacting particle. For Rayleigh-scattering the interacting 
particle can be understood as a uniform scattering center with an isotropic scattered light 
distribution [56]. From a particle size on that is one twentieth of the wavelenght λ of the used 
lightsource (d ≥ λ / 20) the scattering centres within the molecule dissapear and the intensity 
of the scattered light decreases with increasing scattering angle. The single molecule can not 
be understood as a single scattering center anymore which is referred to as Debye-scattering 
[57]. Is the particle size in the range of the wavelenght of the used light, not only destructive- 
but also constructive interference between the scattering centers is the result. The scattered 
light distribution shows maxima and minima around the scattering center. Mie showed for the 
first time that even this problem could be solved for spherical particles [58].  

In the area of validity of the Rayleigh and Debye approximation Eq. 15 is the central 
equation for analysis of the light scattering measurements.  

ϑϑ PMR
cK

w ⋅
=

⋅ 1

        (Eq. 15) 

with 
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        (Eq. 17) 

The intensity of the scattered light Iϑ is refered to as the reduced variable Rϑ, that is 
standardized on the intensity of the primary light beam I0 and the distance h of the detector 
from the scattering volume VS. The scattering function Pϑ gives the dependence of the 
intensity of the scattered light from the scattering angle ϑ and the radius of gyration RG. 

The scattering function can be described independently of the geometry of the 
particles via a virial function. In this case analysis of the light scattering experiment is carried 
out via the following equation that gives the weight-average molar mass via the ordinate 
interception and the radius of gyration RG via the slope  

2 2
2 20

2
0

161 sin ...
3 2G

w

nK c R
R M Mϑ

π ϑ
λ

⋅ ⋅⋅ ⎛ ⎞= + ⋅ ⋅ +⎜ ⎟⋅ ⋅ ⎝ ⎠
     (Eq. 18) 

 

3.2.2 Size Exclusion Chromatography (SEC) 

To determine the absolute distribution of the molar mass of a polymer, fractionation of 
the sample in single slices with monodispersely distributed molar mass is essential. In the last 
years size-exclusion chromatography (SEC) was established as a powerful tool of 
fractionation of polymer samples. 

Advantages of this method are the very small amounts of sample needed (mg-range), 
the braod range of molar masses that can be fractioned (103-107 g⋅mol-1) and the short period 
of analysis (1-2 h) [59].  

Fractionation of the sample results from the hydrodynamic volume of the single 
molecule and is shown in Fig. 10. When the polymer solution flows through the column the 
single polymer coils can diffuse in every part of the matrix that offers enough space for them. 
Small molecules can diffuse deeper into the pores of the matrix and stay therefore longer on 
the column, they elute later than the bigger molecules. Molecules that are bigger than the 
biggest pores in the matrix eluate first, they are not kept back at all. Via this size-exclusion the 
upper limit of this method is set. In the past crosslinked polystyrenes where used as matrix 
material, nowadays they got replaced by polysaccharides like dextrane, agarose or cellulose 
[60]. 
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Figure 10: Schematic depiction of the fractionation principle of a SEC column via the 
hydrodynamic radius of the particles. 

The applicableness of SEC as fractionation method is limited to molecularly dispersed 
polymer solutions. Polymers that tend to structure build-up in solution and the formation of 
aggregates may complicate the analysis, because the filling matrix of the columns induces an 
elongational flow field that may lead to degradation of the sample. In addition to this, ionic 
interactions (absorption phenomena) are a great issue, so that polyelectrolytes can not be 
characterized with this method [61].  

 

3.2.3 Combined Methods of SEC/MALLS/DRI  

The disadvantage of the relative methods for determination of the molar mass and the 
molar mass distribution, like mentioned before, is that one has to have the right polymer 
standard systems for callibration. Via coupling of the SEC with a concentration detector and a 
light scattering device one comes to an absolute method [22].  

The principle of this coupling of SEC, multi-angle-laser-light-scattering (MALLS) and 
differential refractometer (DRI) is shown in Fig. 11. The assignment of a multi-angle-laser-
light photometer has the advantage that via the dependece of the scattered light from the angle 
the primary beam reaches the sample, information on the radius of gyration can be obtained as 
can be seen in Eq. 18.  

For determination of the molar mass and the radius of gyration for every fraction of 
the sample the concentration and the intensity of the scattered light is measured 
simultaneously at different angles for every slice made by the SEC (see Fig. 11 A). The 
values for K⋅c/Rϑ are then plotted in a 1D ZIMM-plot versus sin2(ϑ/2). Extrapolation of the 
data to ϑ = 0 gives the reciprocal value of the weight-average molar mass Mw via the ordinate 
section for every fraction, via the slope one can determine the radius of gyration RG (see Fig. 
11 B). Via this method one can determine the molar mass and the particle size depending on 
the volume of elution (see Fig. 11 C).  
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Figure 11: Determination of the absolute molar mass and molar mass distribution as well as 
the radius of gyration via SEC/MALLS/DRI. 

 

Are the volumes of elution for each single fraction small enough, one can assume that 
the single fractions are monodispers in matters of the molar mass. Via the single molar masses 
Mi and the corresponding concentrations ci the mean values of the molar mass Mn, Mw and Mz 
of the polydisperse sample can be evaluated according to Eq. 13. The mean values of the 
radius of gyration can be determined analogous. Plotting of the absolute molar mass 
distribution can be done as well cumulativly as differentially (see Fig. 11 D). 

Like already described in chapter 3.1 it is possible to evaluate the critical 
concentration c* of viscosimetry via the intrinsic viscosity (see Eq. 11). Via light scattering 
experiments one can evaluate another critical concentration via the weight-average molar 
mass Mw, the radius of gyration RG and the Avogardo-constant NA [62].  
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        (Eq. 19) 

This critical concentration of light scattering *
LSc  describes, in contrast to the critical 

concentration of viscosimetry [ ]cη
∗ , the real conditions in solution, because the evaluation is 

not based on a simple model, like the solid spheres are in the Einstein-approximation (see Eq. 
3) for the polymer coils.  

The radius of gyration RG of a polymer in a certain solvent can also be correlated with 
the molar mass M in analogy to Eq. 12 (see chapter 3.1):  

GG RR K M ν= ⋅         (Eq. 20) 

The exponent ν is referred to as the excluded volume factor. It can be correlated with 
the exponent a from the Mark-Houwink-relationship (Eq. 12) as follows: 

3 1a ν= −         (Eq. 21) 

For theta conditions both exponents show the same value of 0.5, in thermodynamically 
better solvents the factors differ from each other. 

The light-scattering measurements for this work were carried out on a device shown 
schematically in Fig. 12. Results fort he systems investigated are given in Tables 3 and 4. 
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Figure 12: Combined means of SEC/MALLS/DRI for determination of molar mass and coil 
size, as well as their distributions. 
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3.3 Rheology  

The basic principle of rheology (derives from the greek rheos = river) is the 
correlation of the deformation of a fluid with the occuring stresses, in particularly during 
flowing processes. As in polymer solutions flowing processes are very complex, a closer 
description of the resulting deformations and stresses is to follow. 

Whereas the viscosity of fluids like oil or water remains constant, independently from 
the nature and velocity of the applied deformation, polymer solutions of all kinds show very 
sophisticated flow properties. Polymer solutions and polymer melts show as well a 
deformation dependent viscosity as elasticity induced flow anomalies like the Weissenberg-
effect[63] and die swell [64]. 

To clarify the visco-elastic properties of a polymer solution, rheology offers three 
different measurement methods, steady shear, small amplitude oscillatory shear (SAOS) and 
elongational flow shown in Fig. 13 in form of the rheological circle [65]. The detection of the 
deformation induced stress can be actively achieved via mechanical transducers or passsivly 
from optical detection of the polymer conformation and application of the so-called stress-
optical rule. 
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Figure 13: Rheological Circle [65]. 

All three experimental means shown in Fig. 13 are essential to determine the visco-
elastic properties of a polymer fluid quantitatively in all different flow conditions. 
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3.3.1 Steady shear flow  

The most commonly used rheological method for characterization of polymer fluids is 
the steady shear flow. Fig. 14 shows a schematic depiction of steady shear between two 
parallel plates. The upper plate is moved parallel to its surface with the stress σ21, while the 
lower plate is fixed with a velocity of v = 0. Under stationary conditions, a laminar flow 
profile is build up in the fluid with a gradient in deformation γ� . The stress σ21 that acts on the 
moving plate is called shear stress, the gradient in deformation γ�  is called shear rate [66].  

x

v = max
σ21

γ = d /dv x

v = 0

.

 

Figure 14: Schematic depiction of steady shear flow between to parallel plates. 

In a laminar flow profile, the shear stress is directly proportional to the shear rate, with 
a factor of proportionality η that is called shear viscosity. The one dimensional mathematical 
definition was found by Newton and is therefore called Newtons law of viscosity.  

γησ �⋅=21         (Eq. 22) 

For so-called Newtonian fluids like water and oil, the shear viscosity is a shear 
independent material constant. However, for non-Newtonian fluids like polymer solutions or 
polymer melts this linear correlation is only valid for small shear rates. Above a so-called 
critical shear rate .critγ�  the steady state shear viscosity (zero-shear viscosity) is left and the 
shear viscosity becomes a function of the deformation rate. A decreasing shear viscosity with 
increasing shear rate, which is the commonly observed response of nearly all polymer fluids, 
is referred to as shear thinning behaviour. The inverse response, an increasing shear viscosity 
with increasing shear rate is referred to as shear thickening behaviour (dilatancy) and is 
observed for example for associative thickeners like hydrophobicaly modified 
hydroxyethylcellulose (hmHEC, see chapter 2.3 and 6.2.1, for further information also see 
[14]). However, in comparison to Newtonian fluids non-newtonian fluids do not dissipate the 
whole deformation energy via viscous flow, but store a part of it elastically. In this case these 
fluids are usually referred to as visco-elastic. 

To completely describe the visco-elastic properties of a polymer fluid, the shear stress 
is not enough, because it reflects only the viscous behaviour. In Fig. 15 the complete state of 
deformation in a shear field is shown schematically. 
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Figure 15: Schematic depiction of the state of deformation in a shear field.  

The deformation of the fluid can be described via the velocity gradient tensor L: 
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L        (Eq. 23) 

L can be very complex in a real flow field were different kinds of deformations may 
bear on the fluid. Therefore rheology aims for the investigation of simple flow fileds that can 
be covered completely with simple mathenatics. For simple shear for example L becomes: 

0 0
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        (Eq. 24) 

As L is not symmetrical, a rotational share results. To get rid of rotation the sum of L 
with its transpose LT is established: 
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This new tensor 2 D is called the rate of deformation tensor. For the complete state of 
stress the elastic components σii (normal forces) that act on the polymer coil in direction of 
the face normals have to be considered. The coordinate system is given by the flow direction 
(direction 1), the direction of the shear rate gradient (direction 2) and the neutral direction 
(direction 3). With the aid of tensor notation an arbitrary stress tensor σij can be described by 
the following three addends [66]: 
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   (Eq. 25) 

where I is the identity tesor. The first term of Eq. 25 includes the hydrostatic pressure 
po that acts compressing on the polymer fluid. The second term describes the state of stress of 
the solvent and the third term describes the state of stress of the polymer. Besides the shear 
stresses (σ12 and σ21) the normal stresses (σ11, σ22 & σ33) , that result because the deformed 
coil wants to relax back in the entropically favored conformation, have to be considered. 
However, the absolute values of the normal stresses still incorporate the hydrostatic pressure. 
For this reason the normal stresses are converted to normal stress differences, resulting in four 
material functions altogether (see Eqs. 26-29) that allow for a precise description of the flow 
behaviour in steady shear [65].  

σ12 = σ21 = f1( �γ )        (Eq. 26) 

σabs, 11 - σ abs, 22 = N1 = f2( �γ )      (Eq. 27) 

σ abs, 22 - σ abs, 33 = N2 = f3( �γ )      (Eq. 28) 

σ abs, 11 - σ abs, 33 = N3 = f4( �γ )      (Eq. 29) 

 

3.3.2 Small amplitude oscillatory shear (SAOS) 

Another rheological method to determine the visco-elastic properties of a fluid is the 
small amplitude oscillatory shear. Here the response of a fluid (shear stress 21σ ) is determined 
depending on a sinusoidal small amplitude deformation γ  (see Fig. 16). An advantage of this 
method is that shear-sensitive structures like gelating systems can be characterized free of 
destruction, because over the whole measuring range the amplitude is kept very small, so that 
the so-called linear visco-elastic regime is not left.  

For a Newtonian fluid the phase difference δ becomes the maximum value of 90°, 
because the sample acts purely viscous, whereas a purely elastic fluid (Hookean fluid) does 
not show any phase difference at all (δ = 0°).  
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Figure 16: Schematic depiction of SAOS experiment with progression of deformation γ, shear 
stress σ21 (response) and phase difference δ for visco-elastic fluids.  

The constant of proportionality between the induced deformation and the responding 
shear stress is the elastic modulus G according to the Hookean law for a purely elastic solid:  

21 Gσ γ= ⋅         (Eq. 30) 

For visco-elastic fluids the value of the phase difference lies somewhere between the 
maxima (0 < δ < 90°), so that analog to the Hookean law a complex shear modulus G* can be 
defined that describes the ratio of maximum shear stress σo to the maximum amplitude of 
deformation γ0 incorporating the phase difference δ:  

δ

γ
σ ⋅⋅= ieG

0

0*         (Eq. 31) 

By means of Eulers correlation [67] this complex shear modulus can be splitted a real 
part G´ that is refered to as the storage modulus and an complex part G´´ that is refered to as 
the loss modulus.  

GiGG ′′⋅+′=*         (Eq. 32) 

The storage modulus counts for the part of the inserted energy that is stored elastically, 
whereas the loss modulus counts for the energy that is dissipated irreversiblely via viscous 
flow.  

δ
γ
σ cos

0

0 ⋅=′G         (Eq. 33) 

δ
γ
σ sin

0

0 ⋅=′′G         (Eq. 34) 

The ratio of storage- and loss modulus the so-called loss factor tan δ  gives a direct 
measure if the viscous or the elastic components of the polymer fluid outweights:  
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Analog to the Newtonian law (see Eq. 22) a complex viscosity η* can be defined, that 
again splits up in a real and a complex part. As the complex part can not be measured the 
absolute value of the complex viscosity |η*| is used instead [68] 

η
ω
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G G2 2

2 2       (Eq. 36) 

The progression of storage- and loss moduli (see Fig. 17) with the frequency allows 
for an interpretation of the solution structure. 
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GṔ

b

a c

Transition
Region

Plateau-
Region

Glass
Region

Flow
Region

 

Figure 17: Schematic depiction of the progression of the storage modulus G’ and the loss 
modulus G’’ with the angular frequency ω for different solution structures (a: temporary 
network, b: permanent network, c: no network). 

For temporary networks like high molecular weight polymers in solution, that form 
intermolecular entanglements, trend (a) is characteristic and can be devided qualitatively in 
four different regions. In the range of the so-called flow region, the values of the loss modulus 
G’’ lie above the values of the storage modulus G’. At these low frequencies the viscous 
behaviour of the polymer solution dominates, because the single polymer coils are still able to 
slide of each other, so that the inserted energy is dissipated.  

With increasing frequency the polymer chains are not able to relax completely 
anymore, a temporary network results. The moduli discharge into a plateau region where 
almost no dependece of the moduli from the frequency can be observed, because the inserted 
energy is stored between the entanglements of the temporary network. With further increasing 
frequency not even the single chain segments are able to follow the deformation anymore. In 
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this transition region the bonds between the single atoms are distorted and the moduli are 
rising again. This increase finally ends in the glass region, where even the single atoms are 
not able to follow the high velocity of deformation anymore, the modes of motion are 
completely frozen [69]. 

 

3.3.3 Elongational Rheology 

For most of the technical applications in polymer processing, the elongational 
behaviour of polymer solutions and melts is of the utmost importance, because elongational 
flow fields play a superior role. For a Newtonian liquid, the viscosity measured in a shearing 
flow can be used to predict the stress in other types of deformation. This, in general, is not so 
for complex fluids. In a steady elongational flow, for example, the rheological behaviour of a 
complex fluid, especially one in which there are long polymer molecules, is often very 
different from that in shear. An elongational flow is one in which fluid elements are stretched 
or extended without being rotated or sheared. 
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Figure 18: Schematic depiction of the available techniques for measuring the elongational 
viscosity in regards to the zero-shear viscosity of the fluid to be investigated. 

In the past several approaches have been done to determine the elongational viscosity 
of highly concentrated polymer solutions and polymer melts (see Fig. 18), such as the “fano 
flow” [70], the “triple jet” [71] or pressure drop in sudden contractions [72], the “opposing 
jets” introduced by Fuller [73] have been used in several variants to extract material functions 
for biplanar elongational flows [74-76]. However, a comparison of these experimental 
techniques in the project M1 [77] showed that severe problems in the quantitative correlation 
of the material functions determined with the opposed jet device [78] demanded other 
investigation methods for elongational flows of polymer solutions.  

Rheo-optical measurements of the conformation of polymer coils in solution in axis-
symmetric geometries [79, 80] and 2- and 4-roller mills [81-84] allowed a passive way of 
determining the state of stress in strong elongational flows, however only in the range of 
applicability of the stress optical rule [85].  
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The flow through porous media finally provided a suitable method for the 
investigation of dilute solutions in extension [38, 59, 86, 87], however, since these geometries 
do not provide a uniform elongational flow field, their use for a quantitative investigation of 
dilute solutions is limited. 

A first mechanical detection of the transient state of stress of a polymer solution in a 
defined uniaxial flow field could be obtained in filament stretching setups by Sridhar et al. 
[88, 89]. A comparison of different approaches of this type of experiment [32] showed for the 
first time the possibility of a quantitative determination of material functions in elongational 
flow in a purely uniaxial flow field. A recent overview of filament stretching rheometry is 
given in [90]. However, filament stretching setups are complex and expensive. Recent 
investigation of jet break-up [91] and drop pinch-off [92, 93] as well as the groundbreaking 
work of Entov and Co-workers [26, 31, 94, 95] have demonstrated the capability of a 
capillarity driven uniaxial elongation for the determination of transient elongational material 
functions. The development and testing of kinetic models [96-98] as well as the technical 
realisation [28, 97-99] enabled an accessible and affordable investigation of polymer solution 
in elongational flow with this capillary break-up elongational rheometry.  

Especially for dilute solutions a distinction between the dynamics of capillary break-
up experiment and of a filament stretching experiment, as carried out by Gupta et al. [100], is 
necessary, since most reported filament stretching experiments had to be carried out at 
Deborah numbers De >> 1 whereas the capillary break-up of filaments chooses a natural 
Deborah number of De = 2/3 according to the theoretical analysis of Entov and Hinch [26] 
and backed up by several experimental observations [33].  

The capillary break-up experiment provides a convenient means for probing chain-
chain interactions as a function of polymer concentration through measurements of the 
characteristic time-scale of the fluid in a strong elongational flow and several investigations of 
the transient elongational behaviour of a range of different polymers and molar masses [28, 
30-33] in semi dilute to dilute solutions have been reported. Because all elongational 
experiments in this work were achieved on a capillary breakup elongational rheometer 
(CaBER1 by ThermoHaake, the first commercially available elongational rheometer, see Fig. 
19), only the theoretical backround for uniaxial deformation is to be discussed in the 
following section. 
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Figure 19: Front view of the capillary break-up elongational rheometer (CaBER) and the 
endplates between which the actual stretching takes place. 

 

3.3.3.1 Uniaxial deformation in CaBER like experiments 

The uniaxial deformation ε of a fluid cylinder equals the elongation of the cylinder ∆L 
based on its initial lenght L (see Fig. ): 
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ε ∆
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        (Eq. 37) 

The deformation rate ε�  is the temporal derivation of the deformation: 
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⎝ ⎠=�  it comes to following expression for the time dependent lenght of 

the fluid cylinder: 
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tL L eε= �         (Eq. 39) 

With constant deformation rate, the lenght of the fluid cylinder increases 
exponentially! A so-called Hencky strain can then be defined to account for this correlation: 
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With a constant cylinder volume: 
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one comes to following expression for the elongation: 
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       (Eq. 42) 

so that applies for the deformation rate: 
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lnln
2

DL dd DL dD
dt dt D dt

ε

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ −⎝ ⎠ ⎝ ⎠= = =�      (Eq. 43) 

and analog for the Hencky strain: 

0

0

2 ln 2ln DD
D D

ε = − =        (Eq. 44) 

integrated in analogy to the elongation, one comes to the temporal evolution of the 
diameter with constant deformation rate: 

2
0

t

D D e
ε⎛ ⎞−⎜ ⎟

⎝ ⎠=
�

        (Eq. 45) 

 

3.3.3.2 Real fluid cylinder in capillary breakup experiments 

In comparison to the ideal case described above the real fluid cylinder is exposed to 
gravity. To quantify this effect, the Bond number gives the ratio from hydrostatic pressure to 
surface tension, here already related to the CaBER experiment: 

0

0

2
g LBo

D

ρ
σ

⋅ ⋅
=         (Eq. 46) 

For values >>1 the gravitational influence becomes pronounced and the fluid cylinder 
is highly deformed before the experiment starts (see Fig. 20). If the worst comes to the worst, 
the sample even can not be filled into the device. 
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Figure 20: „Sagging“ fluid cylinder in the CaBER for Bo >> 1. 

Another important aspect of the CaBER experiment is that the initial deformation of 
the fluid (with rapid stretching between the endplates) is not influenced by surface tension or 
viscosity of the fluid but only by fluid inertia (inertia controlled). The filament rapidly forms 
an hourglass-like shape between the endplates (see Fig. 21). 

 

Figure 21: Filament shape after separation of the endplates (“hourglass”) and filament 
evolution with time for a polystyrene Boger fluid. 
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The diameter of the hourglass right after stretching D1 can be evaluated via the ratio of 
the initial aspect ratio (Λ0) and final aspect ratio (Λf) an the initial diameter D0 according to 
reversed squeeze flow theory (Spiegelberg et al. [101]): 

4
3

0
1 0

f

D D
⎛ ⎞Λ

= ⎜ ⎟⎜ ⎟Λ⎝ ⎠
        (Eq. 47) 

with the aspect ratio being 2L L
R D

Λ = = . 

However, the determination of the initial diameter D0 is not easy, because it depends 
strongly on the filling and is therefore not automatically equal to the diameter of the plates.  

Another result of the initial deformation because of rapid separation is the build-up of 
a polymer stress before the actual CaBER experiment (surface tension controlled contraction 
of the filament) even starts. This initial stress of the polymer is of some importance for the 
following considerations. 

 

3.3.3.3 Newtonian fluids in capillary break-up 

The behaviour of a Newtonian fluid in a CaBER experiment is fairly simple. The 
„effective“ surface tension γ /R acts vertically to the surface of the fluid filament and squeezes 
it together. The occuring stress σs (suffix s means solvent) results in a deformation rate ε�  that 
depends on the elongational viscosity eη  of the fluid: 

3

2

s sD
γσ η ε= = ⋅

⎛ ⎞
⎜ ⎟
⎝ ⎠

�         (Eq. 48) 

The elongational viscosity has according to the Trouton Ratio [102] the triple value of 
the shear viscosity 3e sη η= . 

Combining Eqs. 43 and 48 gives: 

3 s
dD
dt

γ η= − ⋅         (Eq. 49) 

The temporal evolution of the filament diameter can the be obtained via integration of 
this expression: 

0 3 s

D D tγ
η

= −         (Eq. 50) 

The filament diameter decreases linear with time for a Newtonian liquid. 

Experimentally, the slope obtained is not the predicted 
3 s

γ
η

−  (Eq. 50), but a more flat one. 

With considerations involving the longitudinal stresses in the filament (see [98] for a 
detailed analysis) one comes to a slightly extended expression of Eq. 50: 
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0 (2 1)
3 s

D D X tγ
η

= − −        (Eq. 51) 

The value of X depends strongly on the nature of the investigated polymer fluid. For 
the polymer systems investigated in this work the best value is X = 0.7127, found by 
Papageorgiou for standard Newtonian fluids in CaBER experiments [103].  

 

3.3.3.4 Visco-elastic fluids in capillary break-up 

For polymer solutions Eq.48, describing the elongational stress of a Newtonian fluid 
with the stress component of the polymer σp: 

3

2

s pD
γ η ε σ= ⋅ + ∆

⎛ ⎞
⎜ ⎟
⎝ ⎠

�         (Eq. 52) 

The surface tension γ/(D/2) is therefore not only used to deform the solvent (3 sη ε� ), 
but also the polymer coil pσ∆ . Eq. 52 derives from the tensor expression for the complete 
elongational stress condition: 

2abs s p s pp p η= − + + = − + +σ I σ σ I D σ      (Eq. 53) 

or 
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  (Eq. 54) 

Summing up the single stress contributions of the polymer and resolving gives: 

( ),11 ,223

2

s p pD
γ η ε σ σ= + −

⎛ ⎞
⎜ ⎟
⎝ ⎠

�        (Eq. 55) 

with ,11 ,22p p pσ σ σ− = ∆ , the first normal stress difference of elongational rheology. In 
the following the longitudinal stress ,11pσ  is referred to as ,p zzσ  and the radial stress 

,22 ,33p pσ σ=  is referred to as ,p rrσ . 

According to Entov and Hinch [26] the normal stress difference of elongation can be 
directly correlated with the conformational tensor A, the conformations the coil takes in the 
different space directions: 
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∆ = − = ⋅ ⋅ −∑     (Eq. 56) 

As the relaxation behaviour of a polymer coil depends not only on the longest mode, 
but on the different modes of relaxation Nmodes refers to the number of modes of relaxation 
that are accounted for; gi refers to the elastic modulus of the respective mode and fi the FENE 
factor (see chapter 4.3.2 for details) of the respective mode that is to be evaluated as follows: 
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1
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i

i

f tr
L

=
−

A         (Eq. 57) 

whereas Li is the finite extensibility of the respective mode. The respective elastic 
moduli gi can be evaluated according to the Zimm theory (see chapter 4.1.3) and are 
considered as constant for the different modes of relaxation: 

i Bg G nk T≡ ≡         (Eq. 58) 

with n = particle density, kB = Boltzmann constant and τZ = Zimm relaxation time.  

The finite extensibility L2 can be determined via the Kuhn chain model [104], which is 
a simple approach to convert molecular information from a real hydrocarbon macromolecule 
into the parameters describing a polymer chain of statistically equvalent freely-rotating rigid 
rods: 

2 3 KL N=         (Eq. 59) 

Where N is the Kuhn step size, a value that relates the mean square size of the coil at 
equilibrium conditions 2

0eqQ  (the subscript 0 on the root mean square size indicates that the 
unperturbed chain is regarded to) to the mean square size of the coil at maximal aspect ratio 

2
maxQ : 

2
max

2

0

K
eq

Q
N

Q
=         (Eq. 60) 

The value of N can be directly correlated with the weight-average molar mass of a 
polymer wM , the molar mass of a single monomer uM : 

4
3

w
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u

MN
M C∞

=
⋅

        (Eq. 61) 

with C∞  being the so-called characteristic ratio of the polymer: 
2

0
2

eqQ
C

Nb∞ =         (Eq. 62) 

with N being the number of bonds and b being the bond length. 

This model can be expanded in a manner that the thermodynamical quality of the 
solvent has an effect on the coil expansion at equilibrium conditions: 

2 2(1 )3 KL N υ−=         (Eq. 63) 

where ν is the excluded volume coefficient. 
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Coming back to the conformation A of a polymer coil. This is to be understood as a 
measure for the shape and the orientation of the coil. The end-to-end distance of a polymer 
coil can be described via a vector Q

G
: 

1
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x
Q x

x

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

G
        (Eq. 64) 

However, more commonly used is the scalar product of the end-to-end distance, 
because it refers directly to the square value of its length: 

( ) 22 2 2
1 2 3Q Q x x x Q⋅ = + + =

G G G
       (Eq. 65) 

One comes to the following expression for the mean square value of the end-to-end 
distance (see [69] and [66] for details) as already described in Eq. 60: 

2 2 2
eq eq K KQ Q N l= =    (Eq. 66) 

The mean value over all polymer coils of the dyadic product QQ
G G

 describes the 
conformation distribution of the polymer coils in solution. 

To transform this tensor to its non dimensional shape A, that only reflects the general 
state of deformation and orientation of the polymer coil, it has to be divided with the third of 

2
eqQ
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: 

2

3
eq

QQ
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= A

G G

G         (Eq. 67) 

To describe the temporal evolution of the conformation A during the CaBER 
experiment, the evolution equation for the ith mode of the appropriate spectrum (see chapter 
4.1.3) has to be solved: 
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f
τ

∇

= − −A A I         (Eq. 68) 

Here i

∇

A  is the upper convected derivative of Ai: 
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with A�  being the substantial temporal derivative. The product of Nabla operator ∇  
with the conformation tensor A equals the gradient of A [67]: 
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       (Eq. 70) 

Another gradient needed is the velocity gradient: 
Tv∇ = LG         (Eq. 71) 

Combining the information on the conformation one comes to following expression 
for the upper convected derivative: 
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    (Eq. 72) 

Inserting this expression into Eq. 68 results in the conformations of the polymer coil in 
longitudinal direction (z- or 1-direction) and axial direction (r- or 2-direction, conformation in 
2- and 3-direction is the same for uniaxial elongation, therefore only direction 2 is used in the 
following) for uniaxial deformation:  

( ), , , ,
12 1zz i zz i zz i zz i

i

A A f Aε
τ

− = − −� �       (Eq. 73) 

( ), , , ,
1 1rr i rr i rr i rr i

i

A A f Aε
τ

+ = − −� �       (Eq. 74) 

However, the z-direction (or 1-direction) is enough to describe the conformation of the 
polymer coil, because it is the direction in which the filament grows during the experiment 
and therefore , ,rr i zz iA A� . The differential equation for ,zz iA  can be solved via a few 
assumptions: 

Azz is greater than 1 during the filament evolution (Azz = 1 only at equilibrium state!): 

, 1zz iA �         (Eq. 75) 

finite extensibility is not yet reached (see chapter 4.3.2): 
2

,zz i iA L�         (Eq. 76) 

and correspondingly is: 

1if ≅         (Eq. 77) 

Insertion of Eq. 73 in Eq. 43 and integration gives:  
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        (Eq. 78) 

This expression again can be inserted into Eq. 56 so that for the polymer stress results: 
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Inserting this expression again in Eq. 55 and resolving for the temporal dependency of 
the filament diameter D gives: 
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       (Eq. 80) 

With the assumption that only the longest mode of relaxation is of relevance in the 

elastic flow regime 
modes
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t tN
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g e G eτ τ
− −

=

≅ ⋅∑  and that all this does not only apply to Zimm fluids but 

also for every other polymer fluid with the longest relaxation time τ0, one comes to the 
following fairly simple expression for the time dependence of the filament diameter: 
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       (Eq. 81) 

Only the longest mode of relaxation is excited, as the CaBER experiment as a surface 
tension driven flow “naturally” uses a Weissenberg number We of 2/3 [26]. This confirms the 
validity of the above asssumtion leading to Eq. 81. The longest relaxation time of uniaxial 
deformation of a polymer can therefore be determined via a linear fit of lnD as a function of t.  

 

3.3.3.5 Elongational viscosity 

Determination of the elongational viscosity is like in shear flow or SAOS experiments 
possible via the ratio of stress and deformation rate: 

E
ση
ε

=
�

        (Eq. 82) 

The driving force in the fluid filament is, like mentioned before, given by the surface 
tension (see Eq. 48), the deformation rate was derived in Eq. 43. Inserting these expressions 
into Eq 82 gives: 

E dD
dt

γη = −         (Eq. 83) 

However, one has to keep in mind, that the elongational viscosity provided from 
CaBER experiments is not constant for most of the investigated polymer fluids. The provided 
viscosity is a transient one, because the deformation of the polymer coil is increasing with 
time and is not measured at equilibrium conditions, however determination is achieved at a 
constant deformation rate ε� . Despite this “drawback” compared with other elongational 
devices, the CaBER gives very interesting data, because most of the arising elongational flow 
fields in technical application are of a transient nature.  
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4 Molecular and Kinetic Theories  

 

4.1 Molecular models 

 

4.1.1 Random walk theory 

Eq. 67 showed that for the evaluation of the conformation A it is of utmost importance 
to know the mean value of the end-to-end distance at equilibrium conditions 2

eqQ . Via the 
random walk theory, it is possible to describe the dimensions even of dynamic polymer coils 
in solution with the radius of gyration RG and the average end-to-end distance ‹Q2›1/2 of the 
chain [105]. They can be calculated for a polymer coil in its unperturbed dimensions from the 
bond angles and lengths and the steric factors of the monomer units as shown in the following 
chapter. 

The end-to-end distance 0Q
G

 of a freely jointed chain directly describes the absolute 
distance of the chain ends as shown in Fig. 22. 

 

Figure 22: Definition of end-to-end distances 0Q
G

 and 00Q
G

. 

For a close-up of a polymer chain with two bond lengths b, the distance Q00 of the 
ends can simply be calculated from the bond angle τ  between the two bonds: 

2 2 2
00 2 2 cosQ b b τ= −
G

        (Eq. 84) 

For N bonds in the polymer coil and a random angle τ, the second term equals zero. 
The average end-to-end distance (denoted by the brackets ‹ ›) for all possible conformations, 
‹Q2›00, is therefore: 

2 2
00Q Nb=
G

        (Eq. 85) 

In a real polymer coil, not all angles τ are possible. As one can see in Fig. 23, in a real 
polymer chain, the bond angle τ is fixed and the rotation of the chain is restricted and reduced 
to the most probable torsion angle θ. Additional short-range interactions of the polymer chain 

0Q
G

00Q
G

τ 
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segments can be captured with an additional factor ζ. In consideration of all these short-range 
interactions, the end-to-end distance of a polymer coil in its unperturbed dimensions, ‹Q2›0, 
can be described with the following expression: 

2 2

0

1 cos 1 cos
1 cos 1 cos

Q Nb τ θ ζ
τ θ

− −⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠
     (Eq. 86) 

 

Figure 23: Schematic depiction of a hydrocarbon polymer. 

Fortunately, most of the variables in Eq. 86 are fixed for a polymer-solvent system and 
can be combined into a constant, the so-called characteristic ratio C∞: 

2 2

0
Q C Nb∞=         (Eq. 87) 

The characteristic ratio C∞ contains all steric hindrance factors that reduce a freely 
jointed chain to a polymer chain in its unperturbed dimensions. The characteristic ratio is 
listed for a lot of polymers in the "Polymer Handbook" [106]. The number of bond lengths N 
can be calculated from the degree of polymerization P or the molar mass M (and the molar 
mass of a monomer unit in the chain Mu): 

2N P=         (Eq. 88) 

u

2MN
M

=         (Eq. 89) 

With the bond length b (0.154 nm for a simple polyethylene backbone) the average 
end-to-end distance ‹Q2›0 of a polymer coils in its unperturbed dimensions (so-called theta-
conditions) can be calculated directly from Eq. 87. 

For polymers with a more complicated backbone structure and different bond lengths 
along the backbone (for example polysaccharides), it is not possible to assume a simple bond 
length b. In this case, the average end-to-end distance is not described via the characteristic 
ratio, but the steric hindrance parameter σ. 
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       (Eq. 90) 

The characteristic ratio as well as the hindrance parameter is a measure for the rigidity 
of the polymer chain. However, both values are not suitable to compare the rigidity of 
different chain types, since Eq. 87 and 90 both need an additional measure of the bond length 
that differs for different chain types. Therefore, the bond length b and the characteristic ratio 
C∞ are combined to obtain a general measure for the rigidity of the chain. The so-called 
persistence length Lp is defined as: 

2p
C bL ∞ ⋅

=         (Eq. 91) 

The persistence length can be seen as half of the shortest chain length that is needed to 
form a circle without obstruction from the chain rigidity. The smaller the persistence length 
(or C∞), the more flexible a chain is and the more coiled it is in its unperturbed dimensions. 
The persistence length is independent of the chain type and can be used to compare the 
rigidity and coil expansion of different polymers without knowledge of the bond length. 

The average end-to-end distance is not experimentally observable. Directly 
measurable (for example via light scattering, see chapter 3.2.1) is the radius of gyration RG. 
The radius of gyration RG is correlated to the end-to-end distance [107]: 

2 2

0
6 GQ R=         (Eq. 92) 

In the following chapters, the dimensions of a polymer coil are expressed in form of 
the radius rather than the end-to-end distance. The radius of gyration is the average distance 
of all mass points in a polymer coil from the center of gravity. Other than in a homogeneous 
hard sphere, the polymer segment density in a real coil is highest in the center of gravity and 
decreases with the distance from the midpoint as shown in.Fig. 24. 
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Figure 24: Definition of the radius of gyration RG. 

According to Fig. 24 only 92% of the polymer segments are inside a sphere with the 
radius RG, 8% of the segments are outside of this sphere. 

 

4.1.2 Elastic dumbbell 

As Eq. 68 showed, the upper convected devirative of the conformation tensor A is of 
utmost importance for analysis of elongational data. First of, an explanation on the basis of a 
simple molecular model, the elastic dumbbell or bead and spring model, is to be found. In Fig. 
25, the polymer is modeled as a series of beads equally spaced along the polymer backbone 
and connected to each other by springs. 

1
2

3
4

5

N6
7  

Figure 25: Schematic depiction of a polymeric chain modelled by beads and springs. 

The beads in Fig. 25 account for the viscous forces of a polymer, the springs account 
for the elastic forces in the molecule. The portion of the chain represented by a single spring 
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is called a submolecule. The bead-spring model is appropriate if the internal motions of each 
submolecule are rapid enough that they remain nearly at equilibrium under flow. Long-range 
changes in conformation controlled by cooperative and therefore slow relaxation processes 
are well represented by the bead and spring model. Surprisingly, for dilute polymer solutions 
in the linear visco-elastic regime, even the much faster relaxation processes (even of the 
single submolecule) are well described by the bead and spring model [108].  

The longest mode of relaxation, which is that of the entire molecule, can be captured 
via the elastic dumbbell model. The elastic dumbbell has just one spring with a bead at each 
end of it, like described by Kuhn [104]. For an elastic dumbbell in a solvent there are three 
different forces to be considered, the viscous drag, the elastic spring force and a random 
Brownian force (the inertia of the beads can be neglected). The configuration of the dumbbell 
is described simply by the end-to-end vector Q

G
. The balance of the three forces described 

above is given by: 

( ) 2

1 3 ln 0
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eq

Q Q k T Q k T
QQ
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G G G� G     (Eq. 93) 

The first term in Eq. 93, ( )1
2

d Q Qζ= − ⋅∇F v
G G� , is the drag force, which is directly 

proportional to the difference between the rate of stretching of the spring Q
G�  and the 

continuum fluid element containing the spring Q ⋅∇v
G

.  

The second term of Eq. 93 is the elastic spring force sF . The shape assumed, 
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⎛ ⎞
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F
G

, is that of a linear or Hookean spring. It is an appropriate expression, if 

the molecule is stretched to no more than about a third of its maximum extension. 

The third term of Eq. 93 is the Brownian force lnb
Bk T

Q
ψ∂

=
∂

F G . It represents the 

average force exerted by bead 2 as a result of random bombardments by the surrounding 
solvent molecules. 

If Eq. 93 is solved for Q
G�  and inserted into a probability balance function: 

( ) 0Q
t Q
ψ ψ∂ ∂

+ ⋅ =
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G�G         (Eq. 94) 

with ψ  being the probability balance function for Q
G

 the result is the Smoluchowski 
equation (see [69] p. 125 for details): 
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To solve this equation it is multiplied with QQ
G G

 and the summands are integrated 

partially: 
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  (Eq. 96) 

With the upper convected derivative and transforming QQ
G G

 to its dimensionless form 

A via division with 2 / 3eqQ  we come to following expression: 
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= −A A I         (Eq. 97) 

The prefactor has the unit of a reciprocal time, its reciprocal value equals the longest 
relaxation time of the spring: 
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12
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Q
k T

ζ
τ =         (Eq. 98) 

With this result we finally come to the most simple evolution equation of the 
conformation tensor A, as already shown in Eq. 68, derived from the bead and spring model: 

1 ( - )
τ

∇

= −A A I         (Eq. 99) 

 

4.1.3 Rouse/ Zimm Theory 

To describe the relaxation behaviour of a polymer coil completely, the longest mode 
of relaxation is not sufficient. Incorporating different modes of relaxation the Rouse model is 
the earliest and simplest molecular model predicting a nontrivial distribution of polymer 
relaxation times. 

The derivation of the constitutiv equation for the dumbbell model Eq. 93 can also be 
extended to allow multiple beads and springs. From the force balance for such a model one 
obtains [69, 109]: 
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where 
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      (Eq. 101) 

jQ
G

 is the end-to-end vector of the jth spring in the chain and Ns is the number of 

springs. The constant bζ  is the drag coefficient for a single bead, and 
2

,

3

eq jQ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 is calculated 

for a single spring. With ,K sN  the number of Kuhn steps corresponding to the portion of the 
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polymer comprising a single spring, is , /K s K sN N N= . It is very important to note, that Eq. 
100 for spring i is coupled to the corresponding equations for the neighbouring springs, i-1 
and i+1, because beads attached to spring i feel forces from the neighbouring springs. This 
implies that Eq. 100 is a matrix equation with off-diagonal matrix elements. 

Rouse transformed this matrix equation into a set of uncoupled equations [110]: 

.
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2( 1)b Bi i i

s eq
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v

∼
∼ ∼

∼

G G G
G  (Eq. 102) 

where iQ
∼G

 is a transformed end-to-end vector. The first normal mode. i=1, corresponds 
to cooperative relaxation of the entire chain, whereas the other normal modes, i=2,3,...,n, 
correspond to successively higher harmonics, which involve increasingly more localized 
motion. 

The normal-mode decomposition allows for a break-up of for example the complete 
conformation of a polymer coil into the sum of the single contributions (compare Eq. 56): 

1

sN

i
i=

= ∑A A         (Eq. 103) 

Each iA  obeys an upper convected Maxwell equation (see chapter 4.3.1), as already 
derived in Eq. 68: 

1 ( )i i
iτ

∇

= ⋅ −A A I         (Eq. 104) 

where: 

2 216 sin ( / 2( 1))
b

i
B s sk T i N

ζτ
β π

=
+

      (Eq. 105) 

The stress contribution, arising from one of the modes can be described via 
conformation and modulus: 

( )i i iG= − ⋅σ A I         (Eq. 106) 

where: 

i BG G nk T= =         (Eq. 107) 

As the relaxation time τ  is responsible for the conformation A and the conformation 
itself effects the stress σ  we have confirmation of the distribution in Eq. 56 and 68 here. 

Since the total friction drag acting on the molecule must be divided among Ns +1 
beads, the drag coefficient bζ  that one must assign to each bead should be inversely 
proportional to the number of beads Ns +1 used to describe the chain. Hence 

0 /( 1)b sN Nζ ζ= +  where N is the number of monomers in the whole chain, and 0ζ  is the drag 
coefficient per monomer. Thus, Eq. 105 can be rearranged to a form that is independent of Ns 
[69, 111] 
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≈ =        (Eq. 108) 
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Here b is statistical segment lenght. The polymer contribution to the shear viscosity is 
sη η− . The second equality in Eq. 108 derives from following relationship 

1

sN

s B i
i

vk Tη η τ
=

− = ∑         (Eq. 109) 

However, in most polymer fluids, the relaxation modes observed do not correspond 
very well to the mode distribution predicted by the Rouse theory. For dilute polymer 
solutions, there are hydrodynamic interactions that affect the visco-elastic properties of the 
solution and that are unaccounted for in the Rouse theory. These hydrodynamic interactions 
between the single polymer coils referred to as entanglements are discussed in chapter 4.4.1 
and 4.4.2.  

The failure to predict the correct frequency dependence of the modulus G and the 
failure to predict the correct molecular weight dependence of the intrinsic viscosity [η] (see 
chapter 3.1) can be corrected by accounting for hydrodynamic interactions [69, 112, 
113].Suppose a force Fc is exerted by a bead on the Newtonian solvent at the origin. This 
force sets the surrounding solvent in motion; away from the origin at a point r the solvent 
velocity (calculated according to the Stokes equation) reaches the steady state value 

' c= ⋅v Ω F         (Eq. 110) 

where Ω  is the Oseen tensor [114] 

2

1( )
8 sr rπη

⎡ ⎤= +⎢ ⎥⎣ ⎦
rrΩ r I        (Eq. 111) 

and I is the unit tensor. The influence of a force applied by a bead in asolvent therefore 
decays as 1/r as the distance r from the bead increases. If the number of beads Ns+1 is large, 
then the longer relaxation times depend on a single dimensionless parameter 

*
sh h N≡         (Eq. 112) 

where 

*

312
b

s s

h
R

ζ

π η
≡         (Eq. 113) 

where bζ  is the friction parameter for each bead and Rs is the root mean square lenght 
of a spring at equilibrium [115]. At high molecular weights h → ∞ , this defines the 
nondraining limit. In the nondraining limit, Zimm found a set of approximate normal modes 
[112]. From these the relaxation times are obtained. It turns out that their spacing is changed 
from 2

i iτ −∼ (Rouse theory) to 3/ 2
i iτ −∼  from Zimm theory. Therefore, the Rouse time iτ  in 

Eq. 105 is to be replaced by the Zimm spectrum. 
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4.2 Kinetic models of linear viscoelasticity 

 

4.2.1 Maxwell Model 

 

During the latter half of the nineteenth century, scientist began to note that a number 
of materials showed time dependence in their elastic response. When materials like gum 
rubber were loaded in shear or extension, an instantenous deformation, as expected for a 
Hookean solid, was followed by a continous deformation or “creeping” behaviour. When the 
load was removed, part of the deformation recovered instantly, more recovered with time, and 
in some materials there was a permanent set [66].  

Today one calls this time-dependent response visco-elasticity. It is typical for all 
polymeric materials. A common way to measure this phenomenon is by stress relaxation. 

t

τ3

τ

1/e⋅τ3

t5 t6t4 t7tR  

Figure 26: Stress response versus time for a polymer fluid. The longest relaxation time can be 
evaluated according to 0 5Rt tτ = − . 

As illustrated in Fig. 26, when a polymeric liquid is subject to a step increase in strain, 
the stress relaxes in an exponential fashion. If a purely viscous liquid is subjected to the same 
deformation, the stress relaxes instantly to zero. If we convert stress relaxation data to a 
relaxation modulus 

( )( ) tG t σ
γ

=         (Eq. 114) 

all the data for small strains fall on the same curve. This linear dependence of stress 
relaxation on strain shown in Eq. 114 is called linear visco-elasticity. 
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In an early attempt to model the experiments on visco-elastic solids, Boltzmann [116] 
suggested that small changes in stress equal small changes in the modulus times the strain 

d dGσ γ=         (Eq. 115) 

In terms of the relaxation modulus one comes to 

dd Gd G dt G dt
dt
γσ γ γ= = = �        (Eq. 116) 

Integrating this expression gives 

( ') ( ') '
t

G t t t dtσ γ
−∞

= −∫ �        (Eq. 117) 

With 0( ) tG t G e τ−= one comes to the single relaxation or simple Maxwell model [117] 

( ')
0 ( ') ( ') '

t
t tG e t t t dtτσ γ− −

−∞

= −∫ �       (Eq. 118) 

The concept of linear visco-elasticity can also be written in a differential form [111] 

d
dt
σσ τ ηγ+ = �         (Eq. 119) 

This Maxwell model can be represented as a series combination of springs, elastic 
elements, and viscous dashpots as illustrated in Fig. 27. 

Spring

Dashpot  

Figure 27: Spring and Dashpot representation of the Maxwell model. 

Fig. 27 and Eq. 119 show, that for slow motions the dashpot or Newtonian behaviour 
dominates, whereas for rapidly changing stresses the elastic (derivative term) behaviour 
dominates. However, for large strains another type of derivative is needed, because the 
linearity between stress and strain is left. 
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4.3 Kinetic models of non-linear viscoelasticity 

4.3.1 Upper convected Maxwell (UCM) – Lodge/UCM – Olderoyd-B 

 

During World War II, Karl Weissenberg made shear flow experiments to improve 
predictions of the pressure drop through spray nozzles [118]. He found that “in addition to the 
shear stress there is a pull along the lines of flow”. This “pull” is caused by so-called normal 
stresses, that are reffered to as non-linear material functions, as are shear thinning behaviour 
in the non-Newtonian flow regime and elongational thickening. The simple Maxwell model 
(Eq. 119), describing linear visco-elasticity, discussed in chapter 4.2.1 is not able to predict 
these non-linear phenomena.  

Perhaps the simplest way to combine time dependent phenomena and rheological 
nonlinearity is to incorporate nonlinearity into the simple Maxwell equation (Eq. 119). This 
can be done via replacing the substantial time derivative in a tensor version of Eq. 119 with 
the upper-convected time derivative of σ [109]: 

02τ η
∇

+ =σ σ D         (Eq. 120) 

This equation, called the upper-convected Maxwell (UCM), is non-linear because 
∇

σ  
contains products of the velocity gradient ∇v  and the stress tensor σ. For small strain 
amplitudes, the non-linear terms disappear and the upper convected time derivative reduces to 
the substantial time derivative and Eq. 120 becomes the simple Maxwell model again. 

The same result is obtained via the approach already introduced in chapter 4.1.3 via 
Eq. 104: 

1 ( )i i
iτ

∇

= ⋅ −A A I  

When the conformation from Eq. 106 is written in the form 
G

+ =
σ I A  and inserted in 

Eq. 104 one comes to: 

1G
τ

∇ ∇

+ = −σ I σ         (Eq. 121) 

As the upper convected derivative of I  equals 2D, Eq. 121 becomes Eq. 120, meaning 
that molecular and kinetic theory both result in the same conclusion concerning the stress 
evolution described in Eq. 120. 

However, the question remains if the UCM predicts the elastic components of shear 
and extension. First Eq. 120 can be written in expanded form as follows: 

0( ) 2T

t
τ τ τ τ η∂

+ + ⋅∇ − ∇ ⋅ − ⋅∇ =
∂

σ σ v σ v σ σ v D     (Eq. 122) 
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The term ∇σ  is zero, because we consider a homogenous flow field. The symmetry of 
the shearing flow leads to a stress tensor (see Eq. 25) containing only the components 

12 21 11 22 33, , ,  and σ σ σ σ σ . Using  

1
1 2 2 2 3

2

 and 0dvv x x v v
dx

γ= = = =�       (Eq. 123) 

for the velocity gradient, one comes to the following expression 
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  (Eq. 124) 

To obtain the steady state results the time derivative is set to zero. It immediatly 
becomes obvious that 22 33 0σ σ= = . With this result for 22σ , it follows that 12 0σ η γ= � , from 
which it can be obtained that 2

11 02σ η τγ= � . This result implies that the shear viscosity is a 
constant 0η , the first normal stress coefficient also is a constant 02η τ  and the second normal 
stress coefficient is zero.The non-linear upper convected Maxwell equation can also be 
written in an integral form 

( ') /0
2 ( ( , ') ) '

t
t te t t dtτησ

τ
− −

−∞

= −∫ B I       (Eq. 125) 

with I being the unit tensor and B being the finger tensor ([66], p. 29). This equation is 
usually referred to as the Lodge/UCM equation. Thus, although Eq. 125 has some of the 
qualitive behaviour of real polymeric fluids, it is still far from being a quantitative constitutive 
equation for most polymeric fluids. 

However, for dilute solutions of polymers, the UCM equation, or a simple variation of 
it like the Lodge/UCM equation, seems to be satisfactory. For these solutions, polymer 
molecules do not entangle very much with each other, and the visco-elastic properties of the 
polymer solutions are particularly simple. In most dilute solutions the longest relaxation times 
τ is so small that visco-elasticity is shown at very high strain rates.  

On the other hand, if the solvent viscosity is very high, the longest relaxation time 
becomes very big, even for dilute solutions at low shear rates [64] (see chapter 6.1.1). Such 
solutions are referres to as Boger fluids. Although the UCM equation gives the polymer 
contribution to the stress in such a dilute solution, the solvent contribution to the stress cannot 
be neglected, and so the total stress tensor σ in these solutions is the sum of the polymeric and 
solvent contributions 
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p s= +σ σ σ         (Eq. 126) 

Here pσ  is given by the UCM equaion and sσ  is usually just a Newtonian term 2 sη D , 
where sη  is the solvent viscosity. The combination of these two terms is the Olderoyd-B 
constitutive equation 

{ }1 22τ η τ
∇ ∇

+ = +σ σ D D        (Eq. 127) 

 

4.3.2 FENE-P/ FENE-PM 

The rheological data for dilute solutions indicate that the main limitation of the elastic 
dumbbell (see chapter 4.1.2) and the Olderoyd-B constitutive equation is that it assumes that 
the polymer molecules are infinitly extensible, which is objectionable for larger polymer 
extensions [69]. This defect can be corrected simlpy by making the relation between the sring 
force sF  and the molecular extension Q

G
 nonlinear, such that the stress becomes very large as 

the molecular extension approaches the fully extended length L of the molecule.  

For the freely jointed chain model (random walk theory see chapter 4.1.1 also [105] 
for detail) the force-extension relationship can be assumed to be a Warner Spring Law [119] 
also known as the finite extensibility (FENE) spring: 
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3s B
FENE

eq

k T f Q
Q
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 with 2
1

1

f
Q
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=
⎛ ⎞
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⎝ ⎠

G      (Eq. 128) 

As Q
G

 is an element of f, the Smoluchowski equation (see Eq. 95) can not be solved 
and no analytic expression for the stress tensor is obtained unless an approximation is made. 
This is done via the preaveraged quantity [120] 2Q

G
. When the average value of 2Q

G
 is used 

the Smoluchowski equation can be solved to give rise to an expression for the stress as 
already derived in Eq.106: 

( )f G= ⋅ − ⋅σ A I         (Eq. 129) 

with BG nk T=  and 
2

1

1
f tr

L

=
−

A       (Eq. 130) 

Since the non-linearity in the spring law shows up mostly at high molecular extension, 
the predictions of the preaveraged FENE dumbbell model (FENE-P) are changed from those 
of an elastic dumbbell at high shear rates in shearing flows, and in elongational flows when 
the extension rateε�  exceeds the critical value for a coil-stretch transition.  

If one assumes that the polymer coil has not just one, but different modes of 
relaxation, so that one longest relaxation time is not enough for a complete description one 
has to use a multi-mode version of the FENE dumbbell model (FENE-PM). 
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4.4 Characterization of the concentrated polymer solution 

4.4.1 Entanglement concept 

In nondilute polymer solutions and melts, the polymer coils interpenetrate each other 
enough that the molecular motions of one chain are greatly slowed by the interfering effects 
of other chains. These interferences are usually referred to as intermolecular entanglements.  

However, to understand the entanglement behaviour of the polymer chain and 
therefore the flow behaviour of complex polymeric fluids, it is important to know about the 
solution conformation of the polymer. Fig. 28 gives an overview of the different 
conformations of polymers in solution, that are due to different chain flexibilities and 
thermodynamical interactions of the polymer chain with the solvent.  

(B) (C). (D). (E)(A)

 

Figure 28: Examples of the structure of polymers in solution: sphere (A), random coil (B), 
expanded coil (C), rod-like structure (D) and aggregated structure (E). 

Another very important factor that influences the flow behaviour of polymer fluids is 
the molar mass. Bueche [121] postulated a direct proportinonality between the zero-shear 
viscosity in the Newtonian flow regime and the molar mass. Above a critical value for the 
molar mass cM , entanglements between the single polymer coils result. Via a so-called slip 
factor that was introduced and that refers to the velocity that a moving polymer molecule 
drags with on an entangled neighbouring molecule, a relationship between molar mass and 
zero-shear viscosity derives 

1,0
0  for cM M Mη ∝ ≤        (Eq. 131) 

and 
3.4

0  for cM M Mη ∝ ≥        (Eq. 132) 

This molar mass dependence is shown schematically in Fig. 29 for polymers in 
different states of solution. 
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Figure 29: Schematic Depiction of the molar mass dependece of the zero-shear viscosity for 
different states of solution. 

Graessley [122] extended this theory by Bueche, because it was not plausible to him 
that the molecule can rotate freely in a concentrated solution, whereas relative motion is 
imposed on the system as molecules, which had been close enough to each other to entangle, 
separate. The number of entanglements for a particular polymer, therefore, must depend on its 
rate of entanglement formation with approaching molecules.  

If the entanglement process is modeled as a first-order kinetic process [123], the 
elastic character of entanglements is well described, but a shear rate independent flow 
behaviour is obtained. However, the process of entanglement is a cooperative process, 
diffusion of the chain segments and the build-up of entanglement loops by random motion 
happens simultaneously for multiple polymer chains. In steady shear flow, the entanglement 
density between any two passing molecules will depend on the characteristic time necessary 
for entanglement compared to the contact time between the molecules. As the molecules pass, 
disentanglement occurs.  

For an entanglement to exist, two molecules first must be within a certain distance of 
each other. Second, the molecules must stay in this “sphere” for a finite time. Hence, the 
entanglement density is reduced by high shear rates, because fewer molecules will remain in 
the “entanglement sphere”, with increasing shear rate disentanglement is favoured in 
comparison to entanglement, the shear viscosity decreases [45, 124]. 

The approach of the entanglement concept was difficult to extend to visco-elastic 
effects quantitatively and has been abandoned in favor of the reptation model described in the 
following chapter. 

 



54  4 Molecular and Kinetic Theories  

 

 

4.4.2 Reptation concept 

In 1971 DeGennes proposed a new model for molecular motion in concentrated 
polymer solution [125]. He described the relaxation of polymers by sliding along its own 
contour like a snake. DeGennes called this motion reptation. The mesh of constraints confines 
the molecule laterally to a tube like region [126] as shown in Fig. 30. 
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Figure 30: Schematic depiction of the reptation concept. The polymer chain slides along its 
own contour (build by entanglements of other chains) and has three different modes of 
relaxation. 

The chain changes its conformation by sliding back and forth along the tube. Because 
it is a diffusive process, the time required for the chain to vacate the original tube is 
proportional to the square of the countour lenght Lt of the tube divided by the diffusion 
coefficient of the snaking motion. The diffusion coefficient of the snaking motion is 
proportional to M-1, while the square of the tubes contour lenght is proportional to M2. Thus 
the reptation time, the time dτ  (corresponds with τrep in Fig. 30) for disengagement from the 
tube is proportional to 2 1 3/M M M− = [127]. Hence the longest relaxation time, 1 dτ τ=  is 
predicted to be proportional to M3, not too different from the measured scaling law 

3.4 0.1
1 Mτ ±∼ . 

The diameter, a, of the tube corresponds to the entanglement spacing, Me, that is a 
strand of polymer that spans a random walk end-to-end distance a 

2
2 0

0
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5

A B

N

N k T R
a

MG

ρ
=        (Eq. 133) 

The tube itself is a random walk, each step of it has a lenght a. This random walk of 
the tube is called the primitive path of the chain [128]. The lenght of this primitive path (or 
the contour lenght) is therefore /t eL aM M= . 

The repatation theory has been controversial, because experimental data and numerical 
simulations usually show some derivations from the behaviour expected for pure reptation. A 
prime example is the observed 3.4 power law for the viscosity by Kröger et al. [129] which 
differs from the predicted 3.0 power law [127]. These deviations are due to relaxation 
processes other than reptation. The most important of these are primitive-path fluctuations and 
constraint release, that correspond with the other two relaxation times in Fig.30 [130].  
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Doi and Edwards developed a constitutive equation for entangled polymeric fluids 
[128, 130] that combine the linear visco-elastic response predicted by DeGennes [125] for a 
reptating chain with a non-linear response to large deformations. Analysis ot the reptation 
process [125] shows that after a time t, only a fraction P(t) of the original tube remains 
unvacated 

2

2 2

8( ) exp
iodd d

i tP t
iπ τ

⎡ ⎤−
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⎣ ⎦
∑        (Eq. 134) 

The linear relaxation modulus is P(t) times 0
NG  

[ ]( ) exp /i i
iodd

G t G t τ= −∑ , 0 2 28 /i NG G iπ= , 2/i d iτ τ=   (Eq. 135) 

The storage and loss moduli, G’ and G’’, are obtained from the relaxation spectrum in 
the usual way (see chapter 4.1.3). That is, using 

2 2 2 2' /(1 )i i iG G ω τ ω τ⎡ ⎤= +⎣ ⎦∑ , 2 2'' /(1 )i i iG G ωτ ω τ⎡ ⎤= +⎣ ⎦∑   (Eq. 136) 

The longest relaxation mode of the relaxation modulus in Eq. 135 is the dominant one, 
it accounts for 96 % of the zero-shear viscosity. Thus, the reptation model predicts that for a 
nearly monodisperse melt, the relaxation spectrum is dominated by a single relaxation time 

1 dτ τ= . This is in reasonable accord with experimental data at low and moderate frequencies. 
However, at higher frequencies there is a deviation from the Doi-Edwards model, apparantly 
because reptation is the only relaxation process considered, primitive-path fluctuations and 
constraint release are neglected. 

 

4.4.3 Molecular modelling of viscosity - States of solution 

To describe the viscous properties of a polymer fluid exactly, the models described 
above in chapter 4.2 - 4.4 have to be assigned to the different states of solution, a polymeric 
fluid can adopt. 

The standardization of the zero-shear viscosity η0 via the product of ρ ⋅ M found by 
Bueche for polymer melts [121], can be transferred to concentrated polymer solutions via a 
plot according to c ⋅ M. The transfer of this model to the ideally diluted polymer solution does 
not give satisfactory results. This is due to the fact that the idea of a free interpenetration of 
the polymer coils in a homogenous network solution is not given by every polymer-solvent 
system. Daoud et al. [131] showed via the determination ot the radius ot gyration by light 
scattering methods, that there can be a coil contraction with increasing concentration. This 
indicated that there ought to be more states of solution than the ideally diluted- and the 
concentrated solution.  

A first approach to describe the region between the two limits was introduced by 
Simha, who described the state of solution via a so-called overlap parameter, that is the 
product of intrinsic viscosity [η] and concentration c [132]. Onogi extended this model via 
expressing this relation by a virial equation that introduced the specific viscosity ηsp, that is 
independent of the solvent [133] 
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This approach was then extended by Bouldin via including the thermodynamical 
quality of the solvent, resulting in five different states of solution for a polymer in a 
thermodynamically good solvent [46] as shown in Fig. 31.  
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Figure 31: The five states of solution for polystyrene in toluene in dependence of molar mass 
and consentration. 

In the following these five states of solution are to be explained in detail. 

1. Ideally diluted particle solution [ ]( ) [ ]( )( )c cη η
+

⋅ < ⋅  

In an ideally diluted particle solution, the single polymer coils are isolated from each 
other, because of the ample disctance between the molecules. There is no interpenetration 
occuring between the chain segments, so that the viscosity is dominated only by the 
hydrodynamical volume of the polymer coils. The transition concentration c+  was empirical 

determined to be 
100
c∗

∼ . 

Above a critical molar mass, the slope of the transition line to the next state of solution 
can be evaluated via the reciprocal value of a, the exponent of the [η]-M-relationship (see 
chapter 3.1). Below this critical molar mass, the [η]-M-relationship becomes independent of 
solvent influences and the slope becomes -2, which is the apparent solvent quality of the theta 
state (see chapter 3.1). In this state of solution the Zimm theory (see chapter 4.1.3 for details) 
applies. The polystyrene Boger fluids investigated in this work do reflect this state of solution. 
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2. Semi dilute particle solution [ ]( ) [ ]( ) [ ]( )( )*** ; ηηη ⋅<⋅<⋅< + ccccc  

In the region of the semi dilute particle solution (in the literature this state of solution 
is oftgen referred to as “dilute”), the rheological material functions are dominated by 
polymer-solvent interactions. Although the single polymer coils start to interact with each 
other, the coils are not able at this concentration to build-up enduring entanglements. To 
minimize polymer-polymer interactions, coil contraction may be the result. 

 

3. Semi dilute network solution [ ]( ) [ ]( )( )*** ; ηη ⋅>⋅< cccc  

When the critical product of concentration and intrinsic viscosity (c⋅[η])* is exceeded, 
the polymer coils are able to form enduring entanglements and reptation begins to dominate 
the polymer movements. The degree of entanglement dominates the viscosity of the polymer 
fluid in the respective solvent.  

In thermodynamically good solvents, the onset of an inhomogenous network results, 
because the free interpenetration of the polymer coils is hindered by the solvation of the 
chain. Under pseudo-ideal theta conditions, the coil is not expanded by solvation, because the 
polymer-solvent interactions fit the polymer-polymer interactions. Free interpenetration of the 
polymer coils is therefore possible and a homogenous network results. Under theta conditions, 
the semi dilute network solution does therefore not exist.  

 

4. Concentrated particle solution ( ) ( )( )*** ; McMccc ⋅<⋅>  

The state of the concentrated solution is reached, when the coils are shrinked to theta 
dimensions. The rheological material functions like the viscosity are then dominated by 
polymer-polymer interactions, polymer-solvent interactions can be neglected. However, the 
so-called Bueche parameter wc M⋅  is not surpassed yet, so that the polymer coils do not form 
enduring entanglements, the viscosity is directly proportional to the product of concentration 
and molar mass. Interestingly the Rouse theory (see chapter 4.1.3 for details) applies here. 

 

5. Concentrated network solution ( ) ( )( )*** ; McMccc ⋅>⋅>  

In the regime of the concentrated network solution, the Bueche parameter is surpassed. 
That means that the polymer chains are long enough, under theta conditions, to form enduring 
entanglements to build up a homogenous enduring network. The resulting viscosity scales 
with 3.4M  as described in chapter 4.4.2. The behaviour of the polymer coils in this state of 
solution (reflected by the higher concentrated MHEC solutions investigated in this work) is 
described via the reptation concept (see chapter 4.4.2). 
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5 Structural Analysis of investigated polymers 

5.1 Molecular structural parameters of investigated polystyrenes 

The polystyrenes investigated in this work came from Polysciences Inc. (2.8 Mg/mol), 
Polymer Standard Sevices (16.8 Mg/mol and 23.6 Mg/mol) and Polymer Laboratories (all 
remaining samples). To correlate the rheological properties of a polymer with its molecular 
composition, several structural parameters have to be determined. First of all, the investigated 
polystyrene standards were fully characterized in regards of their intrinsic viscosities in the 
miscellenous solvents used in this work via viscosimetry (see chapter 3.1). Determination of 
the structure-property relationship of the polymer in the respective solvent is necessary for 
obtaining information on the thermodynamical solvent quality and therefore the coil structure 
of the polymer in the investigated solutions.  

The Huggins plots for the different polystyrene standards in toluene as a solvent are 
shown in Fig. 32. 
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Figure 32: Huggins plots for the investigated polystyrenes in toluene, given molar masses are 
specifications provided by the manufacturers (for experimental conditions see chapter 8.2). 

Via the intrinsic viscosities of the polystyrenes in toluene one can evaluate the molar 
masses very accuratly, because polystyrene in toluene belongs to the best characterized 
polymer-solvent-systems at all. However, the [η]-M-relationship used was originally 
determined by Kulicke et al. [43] and is back-uped by dynamic light-scattering results [44]: 

[ ] 3 0.7368.62 10 wMη −= ⋅ ⋅        (Eq. 138) 
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The intrinsic viscosities of the investigated polystyrenes are listed in Table 1 together 
with the evaluated weight-average molar masses, the molar masses provided by the 
manufacturers and the polydispersity index. 

As one can see there is a vast difference between the provided molar masses and the 
actual molar masses determined via viscosimetric measurements. This deviation reaches its 
maximum of about 400 % for the sample with a provided molar mass of 23.6 Mg/mol. 
However, all viscosimetric measurements were repeated at least twice, so that the data is to be 
reliable. In the following chapters this “true” molar mass will be used for calculations 
referring to the molar mass of the polystyrenes. 

Another solvent used for the polystyrenes in the following chapters is diethylphthalate 
(DEP). This solvent was used, because the coil expansion is supposed to be closer to theta 
conditions, as it is in the familiar solvent dioctylphthalate (DOP) [134], as in toluene. As for 
the polystyrenes in toluene the intrinsic viscosities of the polystyrene standards were 
determined to establish a new [η]-M-relationship. Fig. 33 shows the Huggins plots for the 
viscosimetric measurements of the polystyrenes in DEP. 
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Figure 33: Huggins plots for the investigated polystyrenes in diethylphthalate, given molar 
masses are evaluated according to Eq. 138 (for experimental conditions see chapter 8.2). 

The intrinsic viscosities determined are listed in Table 6. 
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Table 6: Intrinsic viscosities [η] of investigated polystyrene standards in diethylphthalate 

(DEP) with corrected Mw. 

Mw / Mg/mol 1.0 2.8 3.7 5.8 7.5 9.1 9.5 

[η] / cm3/g 140 283 339 464 559 644 669 

 

For the viscosimetric measurements in DEP, the same trend as for the previous 
measurements in toluene is observed regarding the molar mass dependence of the intrinsic 
viscosity. The trend does not follow the expected intrinsic viscosities for the provided molar 
masses. The results obtained for the measurements in toluene are therefore confirmed. 

Combining the measured intrinsic viscosities in DEP and the evaluated molar masses 
from the measurements in toluene gives a new [η]-M-relationship for polystyrene in 
diethylphthalate, as shown in Fig. 34. 
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Figure 34: [η] versus Mw for the investigated polystyrene standards in diethylphthalate. 

Linear regression of the data in Fig. 34 results in the [η]-M-relationship for polystyrene in 

DEP: 

[ ] 3 0.7028.23 10 wMη −= ⋅ ⋅        (Eq. 139) 

As the factor a of 0.702 shows, DEP is a thermodynamically inferior solvent 
compared to toluene, the polymer coils therefore exist more compact in solution. However, 
theta conditions are not even remotely reached, because a does not show a value close to 0.5 
(see chapter 3.1 for details). The influence of diethylphthalate as a solvent on the flow 
properties of polystyrene is to be discussed in chapter 6.1. 
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In addition to these two “regular” solvents, polystyrene oligomers are utilized as a 
solvent for the polystyrene standards in the upcoming chapters. The main effect these so-
called Boger fluids [64, 135, 136] show is that the coils are almost in theta conditions and that 
the relaxation processes are slowed down to a high degree because of the pronounced zero-
shear viscosity. This pronounced viscosity and the resulting increasing relaxation times for 
polystyrene fluids at a very low concentration lead to an enhanced detectability of relaxation 
processes as will be shown in chapter 6.1.3.1. 

As the shear viscosity of polystyrene oligomers, and therefore also for the prepared 
Boger fluids themselves is very ample (about 50 Pas, see chapter 6.1.1 for details), 
viscosimetry is an analytical method that cannot be used to determine the coil dimensions of 
the polymer. However, one assumes that the polymer coil exists close to theta conditions, 
because the environment is very similar to a polymer melt [102], because the polymer coil 
does “see” only styrene in its neighbourhood. Solomon et al. [134] showed via viscosimetric 
measurements with polystyrene in a solvent mixture of styrene oligomers and dioctylphthalate 
(DOP) that the excluded volume factor ν lies  beneath the ideal theta value of 0.5 (see chapter 
3.2.3), as shown in Fig. 35. 
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Figure 35: Intrinsic viscosity [η] versus weight-average molar mass Mw for polystyrene 
standards of varying molar masses in different solvents. 

Fig. 35 shows that the [η]-M-relationships for polystyrene in the different solvents 
start from the same origin in molar mass of about 2x104 g/mol that is the critical molar mass 
the dissolved polystyrenechains start to form coils in solution. From this origin, the different 
[η]-M-relationships show a slope that is dependent of the thermodynamical quality of the 
solvent (see chapter 3.1). The [η]-M-relationship for polystyrene in a solvent mixture of DOP 
and low molar mass polystyrene (LMPS, styrene oligomer) yields an excluded volume factor 
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of 0.453 that corresponds to a factor a of 0.359. This means that the polymer coils in this 
solvent are shrinked below theta conditions. This can be explained by a preferential attraction 
of the better of the two solvents (styrene oligomere) in the solvent mixture to the polystyrene 
coil. The coil therefore contracts to reduce the amount of preferential concentration of the 
better solvent [137]. 

 

5.2 Molecular structural parameters of investigated MHECs 

The investigated MHECs were provided by Wolff Cellulosics GmbH (for details on 
the polymer see chapter 2.2), and were blended from different native cellulosic pulp samples 
to provide different molar mass distributions (MMD, see chapter 3.2.3 for details) for the 
different application areas. However blending of cellulosic derivatives is also a standard 
method to minimize the effect of single native pulps on the shear viscosity and other flow 
properties of the finished product [47, 48]. 

The exact blending composition of the different MHEC samples is summarized in 
Table 2, together with the degree of substitution (DS) and molar degree of substitution (MS) 
for the complete blended samples. 

As can be seen in Table 2, the different pulps used for blending of the samples differ 
in their molar mass or intrinsic viscosity, which results in different MMDs for the blended 
MHEC samples. In addition to this the investigated MHECs were split into two batches of 5 
samples each, that were synthezised under different slurry conditions resulting in varying DS 
and MS for the batches, as can be seen in Table 2. According to the blending composition 
(provided by the manufacturer) in the first batch sample MHEC 5 should show the broadest 
distribution, followed by sample MHEC 1, MHEC 2, MHEC 3 and finally MHEC 4 with the 
most narrow distribution. For the second batch the same order is observed, starting with 
sample MHEC 10 and ending with sample MHEC 9, with decreasing width of the MMD. 

As for the polystyrenes discussed in the previous chapter, the same structural 
parameters have to be determined for the investigated methyhydroxyethyl celluloses to 
correlate the molecular structure to the rheological behaviour discussed in the following 
chapters. Again the investigated MHECs were fully characterized in regards of their intrinsic 
viscosities in water as the solvent via viscosimetry (see chapter 3.1). The results are shown in 
Fig. 36 in form of the Huggins plots.  
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Figure 36: Huggins plots for the investigated MHECs in water (for experimental conditions 
see chapter 8.2). 

As Fig. 36 shows, are the slopes [ ]2
Hk η⋅  for all investigated MHECs about the same. 

The Huggins-coefficient kH is in the order of (O)1, so that one can assume that the 
thermodynamical interactions of the coils with the solvent and therefore the solution structure 
is the same for all samples. 

For more precise information on the solution structure or the quality of the solvent, the 
molar masses of the MHECs had to be determined. However, there is no [η]-M-relationship 
for MHEC in water that allows for direct evaluation of the molar masses, determination was 
achieved via combined means of SEC/MALLS/DRI (see chapter 3.2.3). The results for the 
two different batches are shown in Figs. 37 to 38 in form of the differential molar mass 
distributions and particle size distributions. 
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Figure 37: Differential molar mass distributions achieved via combined means of 
SEC/MALLS/DRI for the first batch of MHECs (MHEC 1-5, for experimental conditions see 
chapter 8.2). 
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Figure 38: Differential molar mass distributions achieved via combined means of 
SEC/MALLS/DRI for the second batch of MHECs (MHEC 6-10, for experimental conditions 
see chapter 8.2). 
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Figure 39: Differential particle size distributions achieved via combined means of 
SEC/MALLS/DRI for the first batch of MHECs (MHEC 1-5, for experimental conditions see 
chapter 8.2). 
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Figure 40: Differential particle size distributions achieved via combined means of 
SEC/MALLS/DRI for the second batch of MHECs (MHEC 6-10, for experimental conditions 
see chapter 8.2). 

As can be seen in Fig. 37 and 38, the trend of width in the MMD correlates very well 
for both batches of samples with the expected order in blending composition (see Table 2 for 
details), the same accounts for the particle size distributions shown in Fig. 39 and 40. The 
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molecular structural parameters determined so far for the investigated MHECs are 
summarized in Table 3. 

As one can see in Table. 3 the weight average molar masses Mw of the MHECs are 
very close together, varying from only 294 Kg/mol for the sample MHEC 2 to 360 Kg/mol for 
the sample MHEC 10. However, one has to keep in mind that the determined molar mass only 
accounts for the molecular dispersed fraction of the investigated polymer solution. As one can 
see in chapter 3.2.3 (Fig. 12) there is a series of filters and a precolumn in the light scattering 
device. Unsolvable parts of the solution are separated there to protect the SEC-columns from 
contamination. The molecular dispersed fraction of a sample is characterized by the recovery 
rate, ranging from 72-99 wt%. 

The polydispersity Mw/Mn shows at least for the samples 2, 3, 4 and 5 (1st batch, 
varying from 2.3-3.5) and for the samples 7, 8, 9 and 10 (2nd batch, varying from 2.1-2.9) the 
expected order in regards of the blending composition (see Table 2). Another important 
characteristic of a polymer is its particle-, or better coil size, characterized via the radius of 
gyration RG. It varies from 71 nm for the sample MHEC 2 to 91 nm for the sample MHEC 10; 
the samples show the same order as in regards of the molar mass.  

Combining the information on the molecular structure achieved via light scattering 
leads to the RG-M-relationship shown in Fig. 41. 

100

90

80

70

60
400270

R G
 / 

nm

Mw / kg⋅mol-1

 

Figure 41: RG as a function of Mw for the investigated MHECs 1-10. 

Linear regression of the data in Fig. 41 results in the RG-M-relationship for 
methylhydroxyethyl cellulose in water: 

2 0.582.33 10G wR M−= ⋅ ⋅        (Eq. 140) 
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With 3 1a ν= −  one comes to a value of 0.74 for a, which means that water is a fairly 
good solvent for MHEC. 

 

5.3 Molecular structural parameters of investigated hmHECs 

The hmHECs investigated in this work were provided by our project partner 
Beiersdorf AG (see chapter 8.2 for details). The manufacturer gave just a few specifications 
on the polymers. These specifications are summarized in Table 7. 

 
Table 7: Molecular structural parameters of the investigated hmHECs provided by 

manufacturer. 

Sample Lenght of hydrophobic 

modification+ 

Molar mass 

/ Dalton+ 

hmHEC 1 16 700.000 

hmHEC 2 16 600.000 

 + Data provided by the manufacturer 

As this information on the molecular structure is a little “insufficient”, the two 
investigated hydrophobically modified hydroxyethyl celluloses were characterized in the 
same manner as the polystyrenes and the MHECs, to get in the position to correlate the 
molecular structure to the rheological behaviour discussed in the chapters following.  

First off the hmHECs were characterized in regards of their intrinsic viscosities in 
water as the solvent via viscosimetry. The results are shown in Fig. 42 in form of the Huggins 
plots. 

When reducing the slope [ ]2
Hk η⋅  with the intrinsic viscosity one comes to almost the 

same Huggins-coefficient kH in the order of (O)1 for both samples, meaning that the 
thermodynamical interaction of the coils with the solvent water is comparable. 
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Figure 42: Huggins plots for the investigated hmHECs in water (for experimental conditions 
see chapter 8.2). 

For determination of the molar mass and its distribution as for the particle size and its 
distribution of the two hmHECs, light scattering experiments have been accomplished. The 
results are shown in Fig. 43 and 44. 
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Figure 43: Differential molar mass distributions achieved via combined means of 
SEC/MALLS/DRI for the investigated hmHECs (experimental conditions see chapter 8.2). 
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Figure 44: Differential particle size distributions achieved via combined means of 
SEC/MALLS/DRI for the investigated hmHECs (experimental conditions see chapter 8.2). 

The determined molecular structural parameters of the hmHECs are summarized in 
Table 4. 

Figs. 43 and 44 and Table 4 show that the two investigated hmHECs exhibit almost 
the same weight average molar mass Mw, but a very different shape of its distribution. As the 
sample hmHEC 1 shows almost a bimodal distribution, the MMD of sample hmHEC 2 is 
more narrow, which reflects in the different polydispersities.  

However, one has to keep in mind, as earlier described (compare Table 3 in chapter 
2.2), that the determined structural molecular parameters only account for the molecular 
dispersed fraction of the investigated solution. The recovery rates of the light scattering 
measurements here are very low at about 50 wt.% for the hmHECs. This is due to the fact that 
these hydrophobically modified cellulosic derivatives tend to pronounced structure build-up 
via hydrogen-bonding and hydropgobic interactions. These gel structures are again separated 
from the investigated solution via filters and the pre-column in the light scattering device (see 
Fig. 12 in chapter 3.2.3).  
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6 Results and Discussion  

6.1 Rheological characterisation of investigated polystyrenes 

6.1.1 Steady shear flow 

The polystyrene standards investigated in this work were fully characterized in regards 
of their viscous properties via shear flow experiments. The influencing parameters on the 
shear behaviour examined in this chapter include the concentration, the molar mass (and its 
distribution) and the solvent.  

In former works accomplished in this working group the concentration and molar mass 
dependence of the viscous behaviour could already be shown for the system polystyrenes in 
toluene [44]; The molar mass dependence of the zero-shear viscosity is shown in Fig. 45, the 
concentration dependence of the zero-shear viscosity is shown in Fig. 46. 
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Figure 45: Molar mass dependence of the zero-shear viscosity for polystyrene solutions in 
toluene (3 wt%) for different molar masses (shown in g/mol in the figure) at 25°C (data taken 
from [44]). 

 

c = 3 wt%  
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Figure 46: Concentration dependence of the zero-shear viscosity for polystyrene solutions in 
toluene (23.6 Mg/mol) for different concentrations at 25°C (data taken from [44]). 

As Fig. 45 and Fig. 46 show, the influence of the concentration on the zero-shear 
viscosity is more pronounced than the influence of the molar mass, the viscosity scales with a 
higher power for an increasing concentration, than for an increasing molar mass.  

For semi dilute network solutions the dependence of the shear viscosity from the shear 
rate observed in Fig 45 and 46 was described by Graessley [122] via the Entanglement 
concept (see chapter 4.4.1). At small shear rates, the entanglements between the single 
polymer coils are unravel. However, they entangle again at the same time scale, so that the 
total number of entanglements keeps constant and therefore also the viscosity, which depends 
mainly on tghe entanglement density. At a critical shear rate .critγ� , that corresponds to the 
reciprocal value of the longest relaxation time 0τ  of the polymer solution, the shear viscosity 
decreases, because more entanglements are unraveled than build up. The flow curves in Fig. 
45 show all the same slope of -0.818, that was derived theoretically as the highest slope 
achievable by Graessley for polymer melts and concentrated polymer solutions, even though 
the molar masses of the polystyrenes investigated are different from each other. However the 
concentration is constant for the solutions, so that after complete disentanglement of the coils, 
the viscosity is only influenced by the segment density. As this segment density is constant 
for a constant concentration, the slope of the flow curves has to be the same. In Fig. 46 the 
investigated solutions do not have the same segment density because of different 
concentrations, so that the resulting slopes in the non-Newtonian flow regime differ from each 
other. 

The polystyrene standards investigated in this work were additionally characterized in 
regards of their visco-elastic flow behaviour in other solvents than toluene. Fig. 47 shows the 
flow curves for the investigated polystyrene standards in diethylphthalate (DEP) at a constant 
concentration of 1.0 wt% at a temperature of 25°C.  

Mw = 23.6 Mg/mol 
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Diethylphthalate was chosen as a solvent, because its solvent quality was suposed to 
be closer to θ -conditions (see chapter 3.1) than for toluene. As the elastic components of the 
investigated solutions were of high interest (see upcoming chapters) a thermodynamical worse 
solvent than toluene was chosen, because of the resulting elasticity enhancement via coil 
shrinkage. As could be seen in chapter 5.1 that is only partly true as altogether DEP is 
thermodynamically very similar to toluene. Nevertheless, DEP is a good solvent to use, 
because its vaporating- and boiling points are much higher than for toluene, so that the 
solutions prepared are much longer stable in DEP than for toluene. 
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Figure 47: Shear viscosity η  versus shear rate γ�  for polystyrene standards with different 
molar masses (see Table 1 for details) in diethylphthalate (1.0 wt%) at 25°C. 

As Fig. 47 shows, the zero-shear shear viscosity can be detected for all molar masses 
at a concentration of 1.0 wt%, giving the highest value of 1.6 Pas for the 9.1 Mg/mol 
polystyrene and the lowest value of 0.4 Pas for the 3.7 Mg/mol polystyrene. The critical shear 
rate shifts to smaller values for an increaing molar mass, because the longest relaxation times 
resulting via the reciprocal value increase with molar mass. 

To quantify the viscous and elastic components of shear flow the shear stress σ  and 
the first normal stress difference N1 are the right means. Fig. 48 shows these material 
functions for the poylstyrene standards already investigated in Fig 47. 
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Figure 48: Shear stress σ  and 1st normal stress difference N1 versus shear rate γ�  for 
polystyrene standards with different molar masses (see Table 1 for details) in diethylphthalate 
(1.0 wt%) at 25°C. 

The shear stresses, representing the viscous part of the shear flow behaviour, for the 
investigated polystyrenes shown in Fig. 48 all follow, as expected, almost the same trend. 
However, the first normal stress differences, representing the elastic part of the shear flow 
behaviour, show a slightly more distinctive trend for the different molar masses, above all in 
regards of the shear rate where N1 occurs. As expected the first normal stress difference 
occurs at lower shear rates with increasing molar mass. However, the differences between the 
three samples with the higher molar masses (5.9-9.1 Mg/mol) and the two samples with the 
lower molar masses (3.7-5.8 Mg/mol) are not very pronounced.  

To investigate the influence of the solvent quality on the elastic behaviour of 
polystyrene, two additional solvents were used for determination of the material functions of 
shear flow. In Fig. 49 the shear viscosity η  and the first normal stress difference N1 is 
compared for the sample with a molar mass of 8.2 Mg/mol at 2.0 wt% in the solvents toluene, 
DEP and trans decalin. 
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Figure 49: Shear viscosity η  and first normal stress difference N1 versus shear rate γ�  for a 
polystyrene standard with Mw = 8.2 Mg/mol at 2.0 wt% in different solvents at 25°C. 

As one can see in Fig. 49, the zero-shear viscosity is dependent on the coil expansion. 
With increasing thermodynamical quality of the solvent, the zero-shear viscosity increases, 
for the elastic component of shear flow, the first normal stress difference N1, the opposite 
trend can be observed. With decreasing coil expansion, that is with decreasing 
thermodynamical quality of the solvent the onset and the maximum value of N1 shifts to lower 
shear rates. 

To emphasise the influence of the concentration on the shear flow behaviour, Fig. 50 
comprisingly shows the results for steady shear flow for the polystyrene standard with a molar 
mass of 5.8 Mg/mol in DEP for various concentrations ranging from 0.0001 – 5.0 wt%. The 
zero-shear viscosities in this concentration range vary from approx. 0.002 – 350 Pas, over 
almost five orders of viscosity. The slope of the flow curves in the non-Newtonian flow 
regime reach almost the maximum value of 0.818 for the solution with a concentration of 5.0 
wt%, because at this concentration the state of the concentrated network solution is reached 
(see chapter 4.4.3 for details). From a concentration of 0.1 wt% on, no shear thinning 
behaviour can be observed anymore, the shear viscosity remains constant, means that the 
solutions show just Newtonian behaviour. 
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Figure 50: Shear viscosity η  versus shear rate γ�  for a polystyrene standard with Mw = 5.8 
Mg/mol at different concentrations in diethylphthalate at 25°C. 

 

6.1.1.1 Structure-property-relationships of shear flow 

For the regime of the semi dilute solutions (see chapter 4.4.3 for details) one can 
summarize the flow properties in form of the shear viscosity η  quantitativly via a series of so-
called structure-property relationships. As varying parameter the so-caled opverlap parameter, 
the product of concentration c and intrinsic viscosity [ ]η , is used instead of the molar mass 
Mw, because it incorporates the solvent influence on the coil size [132]. However, it can 
always be transferred to the molar mass via the Mark-Houwink-Sakurada-relationship (see 
chapter 3.1 Eq. 12). 

The zero-shear viscosity (or specific viscosity) 0η  or spη  can then be plotted as a 

function of the overlap parameter [ ]c η  as shown in Fig. 51 for the investigated polystyrenes 
in diethylphthalate. A mathematical discription of this correlation is given via an extended 
Huggins virial equation (see Eq. 9) [44]: 

[ ] [ ]( ) [ ]( )2 n
sp H nc k c B cη η η η= ⋅ + ⋅ + ⋅      (Eq. 141) 
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Whereas the Huggins-Equation (see Eq. 9) breaks of after the second term, which is 
perfect for particle solutions, complete description including network solutions is achieved via 
the higher order terms, combined in one with a power of n.  

The dependence of the zero-shear viscosity from the overlap parameter can then be 
described via following relationship: 

[ ] [ ]( ) [ ]( )( )2
0 1

n
S H nc k c B cη η η η η= ⋅ + ⋅ + ⋅ +     (Eq. 142) 
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Figure 51: Specific viscosity spη  versus overlap parameter [ ]c η  for polystyrene in 
diethylphthalate. The solid line corresponds to the linear regression according to Eq 141. 

In addition to the Huggins constant HK  and the intrinsic viscosity [ ]η , determined via 
viscosimetric measurements (see chapter 3.1) the constants Bn  and n are essential; They can 
be achieved via linear regression of the curve at high overlap parameters [ ]c η . This leads to 

the [ ]0 cη η− − -relationship for polystyrene in diethylphthalate: 

[ ] [ ] [ ]( )2 4.822 3
0 / 1.10 10 0.368 8.46 10 1Pa s c c cη η η η− −⋅ = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ +  (Eq. 143) 
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The exponent n is theoretically correlated to the exponent a of the Mark-Houwink-
Sakurada-relationship and therefore incorporates the solvent quality. 

3.4n
a

=         (Eq. 144) 

 

Because of its easy handling these [ ]0 cη η− − - or 0 M cη − − -relationships were 
provided for various polymer-solvent systems in the past [1]  

The dependence of the longest relaxation time on different molecular parameters for 
dilute solutions was already described by Rouse and Ferry [110, 138] (see chapter 4.1.3 for 
details). Here the interest lies on the longest relaxation time 0τ  because it is the reciprocal 
value of the critical shear rate .critγ� , the shear rate where the shear viscosity leaves the 
Newtonian flow regime. The longest relaxation time of dilute solutions as well as 
concentrated soltions here is directly correlated with the molar mass [139, 140]. The influence 
of the solvent can be accounted for with a modification of the Rousse model via the intrinsic 
viscosity [45, 46]: 

( ) [ ]( ) [ ]( ) [ ]( )( )2 3 11 1
0

na
H nK c c K c B n cττ η η η

+− += ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅   (Eq. 145) 

 

Plotting of 1 1
0

acτ +⋅  versus the overlap parameter [ ]c η  gives a mastercurve that takes 
into account only the third term of Eq. 145, because the non-Newtonian flow regime is 
usually not to be detected in dilute solutions. Fig. 52 shows this plot for the investigated 
polystyrenes in diethylphthalate. 
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Figure 52: Longest relaxation time of shear flow 0τ  versus overlap parameter [ ]c η  for 
polystyrene in diethylphthalate. The solid line corresponds to the linear regression of the 
third term of Eq 145. 

This leads to the [ ]0 c relationshipτ η− − −  for polystyrene in diethylphthalate: 

[ ]( ) [ ]( ) [ ]( )( )2 3 5.8210 2.423 3
0 / 1.29 10 0.368 8.46 10s c c c cτ η η η− − −= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅  (Eq. 146) 

 

Another crucial parameter to describe a flow curve is the slope n in the non-Newtonian 
flow regime. Whereas for polymer melts and concentrated polymer solutions a constant slope 
of about -0.818 is observed, which was theoretically derived via the entanglement concept by 
Graessley [122, 139], the slopes of the flow curves of polymer solutions in the semi dilute 
state of solution are often not as steep. Fig. 53 shows the slopes n of the flow curves for 
polystyrene in DEP as a function of the overlap parameter [ ]c η .  
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Figure 53: Slope of the flow curve n in the non-Newtonian flow regime versus overlap 
parameter [ ]c η  for polystyrene in diethylphthalate. The solid line corresponds to the 

[ ]n cη− − -relationship (Eq.147). 

The slope of the flow curve n can also be described via a virial equation of the overlap 
parameter [45]: 

[ ]2
10.82 10 nk c

nn k η⋅= − + ⋅        (Eq. 147) 
 

The constants 1nk  and 2nk  can be determined via linear regression according to Eq. 
148, as can be seen in Fig. 54: 

[ ]1 2log( 0.82) log n nn k k c η+ = + ⋅       (Eq. 148) 
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Figure 54: Slope of the flow curve n in the non-Newtonian flow regime versus overlap 
parameter [ ]c η  for polystyrene in diethylphthalate according to Eq. 148. The solid line 
corresponds to the linear regression of the presented data. 

The description of the shear flow behaviour of a polymer fluid over the whole regime 
of shear rates is possible via its critical parameters. As can be seen in Fig. 55 a normalization 
of the flow curves for polystyrene in DEP is possible via reduced variables like 0/η η  and 

0γ τ⋅�  with normalization of the slopes. Whereas this normalization is very accurate for the 
purely Newtonian or non-Newtonian flow regime, minor derivations can be observed in 
between these two regimes close to a reduced shear rate of 0 1γ τ⋅ =� , which is due to different 
widths of the transition area. A closer investigation of this transition area can be achieved via 
the modified Carreau model [141, 142]: 

( )0 01
n

b bη η γ τ⎡ ⎤= ⋅ + ⋅⎣ ⎦�        (Eq. 149) 

Besides the parameters zero-shear viscosity 0η , longest relaxation time 0τ  and slope 
of the flow curve n, the modified Carreau model uses the so-called transition parameter b to 
fit the shear viscosity.  

However, the transition parameter is independent of molar mass and concentration, it 
only depends on the width of the molar mass distribution of the investigated polymer [65]. 
Further discussion on this specific topic will follow in chapter 6.1.3.2. 
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Figure 55: Reduced viscosity 0.82 /
0/ nη η −  versus reduced shear rate 0γ τ⋅�  for polystyrene in 

diethylphthalate at different molar masses and concentrations. 

With the modified Carreau model, it is now possible to evaluate the shear viscosity of 
the investigated polymer fluid over the whole range of shear rates. The crucial parameters 
needed for the evaluation are obtained via the different structure-property-relationships 
discussed in this chapter. Table 8 gives an overview on these structure property-relationships 
obtained for the system polystyrene in diethylphthalate. 

 
Table 8: Structure-property-relationships of shear flow for the investigated polystyrenes in 

diethylphthalate. 

[ ]0 cη η− −  [ ] [ ] [ ]( )2 4.822 3
0 / 1.10 10 0.368 8.46 10 1Pa s c c cη η η η− −⋅ = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ +  

[ ]0 cτ η− −  [ ]( ) [ ]( ) [ ]( )( )2 3 5.8210 2.423 3
0 / 1.29 10 0.368 8.46 10s c c c cτ η η η− − −= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅  

[ ]n cη− −  [ ]0.0790.82 0.65 10 cn η⋅= − + ⋅  
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6.1.2 Small amplitude oscillatory shear (SAOS) 

To quantify the visco-elastic flow behaviour of polymer solutions, oscillatory 
experiments have to be accomplished according to the Rheological Circle [65] (see Fig. 13). 
The elastic components of a polymer solution can then directly be correlated with the storage 
modulus G’, whereas the viscous components are represented by the loss modulus G’’ (see 
chapter 3.3.2 for a detailed discussion). 

10-2 10-1 100 101 102 10310-4

10-3

10-2

10-1

100

101

102

PS in DEP (1 wt%) at 25°C 
(Mw in Mg⋅mol-1)

 3.7
 5.8
 5.9
 8.2
 9.1

 G
' /

 P
a

ω / rad-1

 

Figure 56: Storage modulus G’ versus angular frequency ω for polystyrene standards with 
different molar masses (see Table 1 for details) in diethylphthalate (1.0 wt%) at 25°C. 

For investigation of the molar mass dependence of the moduli of SAOS 
measurements, Figs. 56 and 57 show exemplarily the storage- and the loss moduli for the 
investigated polystyrene standards at 1.0 wt% in diethylphthalate for the different molar 
masses at 25°C.  

As one can see in Figs. 56 and 57, the evolution of the moduli G’ and G’’ with 
increasing angular frequency ω is very much the same for the whole range of molar masses 
from 3.7 – 9.1 Mg/mol. The slopes at low frequencies very much reflect the theoretical values 
of 2 for the elastic component G’ and 1 for the viscous component G’’. For this concentration 
of 1.0 wt% the plateau value of the storage modulus is not reached in the investigated regime 
of angular frequencies. The network parameters of the temporary networks, that are build-up 
via the polymer coils that can not slide along each at high frequencies, can thus not be 
determined. 
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Figure 57: Loss modulus G’’ versus angular frequency ω for polystyrene standards with 
different molar masses (see Table 1 for details) in diethylphthalate (1.0 wt%) at 25°C. 

For investigation of the concentration dependence of the moduli, Figs. 58 and 59 show 
the storage- and the loss moduli G’ and G’’ for the investigated polystyrene standard with a 
molar mass of Mw = 5.8 Mg/mol for a concentration range from 0.00316 – 5.0 wt% in 
diethylphthalate at 25°C.  

As Figs. 58 and 59 demonstrate has the concentration, as expected, a far more 
pronounced influence on the visco-elastic properties of the investigated polystyrene than the 
molar mass. In the investigated range of concentrations the slopes at low frequencies equal the 
theoretical values of 2 for the elastic component G’ and 1 for the viscous component G’’ like 
expected for a standard system.  

However, the plateau modulus G’p here is only reached for the higher concentrated 
solutions with 5.0- and 3.0 wt%. As can be seen in Fig. 58 the 5.0 wt% solution has a value of 
approx. 300 Pa for the plateau modulus, for the 3.0 wt% solution the plateau modulus has a 
value of approx. 100 Pa. For the lower concentrations from 0.00316 – 2.0 wt% the angular 
frequency is still not high enough to prevent the entangled polymer coils from relaxation, 
plateaus in G’ are thus not reached yet. 
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Figure 58: Storage modulus G’ versus angular frequency ω for a polystyrene standard with 
Mw = 5.8 Mg/mol for different concentrations in diethylphthalate at 25°C. 

As one can see in Fig. 59 very nicely, the trend for the loss moduli G’’ for the higher 
concentrated solutions (5.0- and 3.0 wt%) do follow the theoretical trend shown in Fig. 17. 
For these concetrations the angular frequency is already high enough to enter the third region 
considered for ocillatory strains, the transition area between plateau- and glassy region. At 
these high oscillatory strains the polymer solution starts to behave like a glassy solid, visco-
elastic responses can not be observed anymore. 

As polystyrene standards are very well characterized polymer systems in a variety of 
different solvents (see [143] for example) that do not build aggregated structures in solution, a 
correlation of the complex viscosity η ∗  and the shear viscosity η , according to the Cox-
Merz rule [144] to qualitatively discuss energetic interactions between the polymer coils, is 
set aside. 
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Figure 59: Loss modulus G’’ versus angular frequency ω for a polystyrene standard with Mw 
= 5.8 Mg/mol for different concentrations in diethylphthalate at 25°C. 

 

6.1.3 Uniaxial Deformation 

6.1.3.1 Influence of concentration/ numerical simulations  

To complete the quantification of the visco-elastic flow behaviour of polystyrene in 
solution, elongational experiments have to be accomplished according to the Rheological 
Circle [65] (see Fig. 13).  

An advantage of elongational characterization of a polymer fluid is its pronounced 
sensitivity to visco-elastic effects. The determination of a longest relaxation time as a 
characteristic viscoelastic parameter via a capillary break-up experiment has recently gained 
much attention mainly because of the simplicity of this approach. Following the derivation of 
Entov and Hinch [26], the elastic thinning of a polymer solution filament in a CaBER like 
experiment can be described by an exponential decrease in time as described by Eq. 81. The 
longest relaxation time τ0 of the polymers undergoing a molecular unravelling in the uniaxial 
flow can be easily determined from this relationship. The validity of this approach and its 
consistency with other determination methods have been shown in several publications for a 
range of different polymers, molar masses and concentrations in dilute to semi dilute solutions 
[27-33]. In these cases, the exponential decay of the filament could be observed over 
sufficiently long times.  
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However, the more dilute a solution becomes, the harder is the detection of a distinct 
regime of purely exponential thinning regime, since the initial Newtonian flow and the finite 
extensibility cannot be neglected during the short exponential thinning. Nevertheless, linear 
fits of experimental data in a semi log plot to Eq. 81 are often performed even for very dilute 
solutions to extract a relaxation time. The critical overlap concentration c* of a polymer 
solution is one of its most important characteristic values. It does not only define the 
borderline between two distinct viscoelastic property regimes, but also the theoretical 
approach of a dilute solution by Rouse/Zimm theory or an entangled solution by the enhanced 
reptation concept. 

The general definition of a dilute polymer solution refers to the critical concentration 
c*. It is generally accepted that for concentrations c/c* < O(1) the steric and frictional 
interactions of neighbouring polymer coils are negligible and the rheological response of the 
fluid is solely governed by the hydrodynamic interactions of the isolated polymer coil and the 
solvent. However, this definition of diluteness is only applicable in the equilibrium state of 
polymer coils (for example for SAOS flow). Especially in elongationally-dominated flow 
fields, the coil-stretch transition of a polymer coil leads to an increased interaction volume 
and a domain overlap of the extended coils as reported by [83] and therefore to polymer-
polymer interactions even for concentrations of c/c* < O(1). The term “ultradilute” solution 
has been introduced recently to describe systems that remain truly dilute even when the 
polymer chains are in a highly stretched and deformed non-equilibrium state [145]. 

The capillary break-up experiment provides a convenient means for probing chain-
chain interactions as a function of polymer concentration through measurements of the 
characteristic time-scale of the fluid in a strong elongational flow and several investigations of 
the transient elongational behaviour of a range of different polymers and molar masses [28, 
30-33] in semi dilute to dilute solutions have been reported.  

Recently Bazilevskii et al. [27], Stelter et al. [29] and Tirtaatmadja et al. [146] 
focussed on polymer in dilute to very ultradilute solution, finding that the characteristic 
relaxation time in capillary break-up experiments depends on the concentration in contrast to 
the Rouse/Zimm theory. In addition to this Bazilevskii et al. and Tirtaatmadja et al. observed 
a power law dependency of the relaxation time on the concentration. Whereas these authors 
generally reported on higher then expected relaxation times in capillary break-up, Bazilevskii 
et al. [27] also found for very dilute solutions relaxation times even below the lowest 
predicted Zimm relaxation time.  

This chapter focuses on the detailed investigation of the capillary break-up dynamics 
and relaxation times of dilute to ultradilute polymer solutions. However, in order to analyze 
the dynamics of the capillary break-up process in very dilute solutions quantitatively it is 
necessary to answer the question of how much stress is carried by the polymer and how much 
by the solvent? In other words, under what physical conditions does a coil-stretch transition 
on the molecular scale occur and affect the resulting macroscopic fluid dynamics. This 
provides an effective distinction between a dilute and an ultradilute polymer solution. 
Viscoelastocapillary thinning and breakup of a fluid filament captures the naturally occurring 
transient elongational flow fields associated with jet break-up, drop formation and other free-
surface deformations of complex fluids. Since the deformation rate is not constant in these 
surface tension driven flows, a satisfactory description of the occurrence of coil-stretch 
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transition in this evolving flow field requires more than a simple definition of a critical 
concentration. 

Therefore, in this chapter experimental investigations on a surface-tension-driven flow 
(CaBER) of narrowly distributed polystyrenes in dilute and ultradilute solutions in high and 
low viscous solvents are presented together with numerical calculations of the stress 
evolution. For these calculations a FENE-PM (see chapter 4.3.2 for details) chain algorithm is 
utilized to determine the contribution of the polymer chains in different states of coil-stretch 
transition to the overall stress balance as a function of concentration and molar mass. 

Fig. 60 to Fig. 70 show the experimentally determined temporal mid-diameter 
evolution of the investigated polystyrene boger fluids and solutions in diethylphthalate for 
different molar masses and concentrations.  
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Figure 60: Normalized filament diameter D/D0 versus time for investigated polystyrene boger 
fluids , Mw=2.8 Mg/mol at various concentrations and 25°C. 
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Figure 61: Normalized filament diameter D/D0 versus time for investigated polystyrene boger 
fluids , Mw=5.7 Mg/mol at various concentrations and 25°C. 
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Figure 62: Normalized filament diameter D/D0 versus time for investigated polystyrene boger 
fluids , Mw=5.7 Mg/mol at various concentrations and 25°C. 
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Figure 63: Normalized filament diameter D/D0 versus time for investigated polystyrene boger 
fluids , Mw=8.2 Mg/mol at various concentrations and 25°C. 
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Figure 64: Normalized filament diameter D/D0 versus time for investigated polystyrene boger 
fluids , Mw=8.2 Mg/mol at various concentrations and 25°C. 
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Figure 65: Normalized filament diameter D/D0 versus time for investigated polystyrene 
standrd Mw=2.8 Mg/mol in diethylphthalate at various concentrations and 25°C. 
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Figure 66: Normalized filament diameter D/D0 versus time for investigated polystyrene 
standrd Mw=2.8 Mg/mol in diethylphthalate at various concentrations and 25°C. 
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Figure 67: Normalized filament diameter D/D0 versus time for investigated polystyrene 
standrd Mw=5.7 Mg/mol in diethylphthalate at various concentrations and 25°C. 
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Figure 68: Normalized filament diameter D/D0 versus time for investigated polystyrene 
standrd Mw=5.7 Mg/mol in diethylphthalate at various concentrations and 25°C. 
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Figure 69: Normalized filament diameter D/D0 versus time for investigated polystyrene 
standrd Mw=8.2 Mg/mol in diethylphthalate at various concentrations and 25°C. 
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Figure 70: Normalized filament diameter D/D0 versus time for investigated polystyrene 
standrd Mw=8.2 Mg/mol in diethylphthalate at various concentrations and 25°C. 

 

It can clearly be seen in Figs. 60 to 64, that at early times all solutions follow the 
thinning behaviour of the Newtonian solvent, controlled by an initial balance of the viscous 
term 3 �sη ε  in the force balance of Eq. 81 and the capillary pressure. The polymeric stress of 
the initial conformation A0

zz,i (Eq. 73), caused by the step strain, is rapidly decaying in this 
primary phase since the extension rate is not sufficiently high enough to keep at least the 
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longest mode excited. However, with an increasing extension rate, the system crosses over to 
the second phase of the exponential thinning according to Eq. 81. The crossover shifts to 
earlier times and higher ratios D(t)/D0 with rising concentrations. At late times the finite 
extensibility limit of the polymer is approached and the factor fi (chapter 4.3.2) cannot longer 
be neglected. In this third phase the extension rate increases again and reaches a quasi-
Newtonian state of thinning of the fully extended polymer coils that leads into the ultimate 
filament break-up. This third phase is not observed for the dithyphthalate solutions in Figs. 65 
to 70, as the filament diameter drops below the resolution limit of the experiment before the 
finite extensibility shows effect. The first phase of Newtonian thinning in Figs. 65 to 70 
shows a concentration dependence at higher concentrations since the Newtonian viscosity is 
determined by the solution rather then by the pure solvent as shown in Figs. 60 to 64 for the 
boger fluids.  

The relaxation times τ0 determined from fitting of the second phase in Figs. 60 to 70 to 
Eq. 81 from capillary break-up experiments are shown in Fig. 71.  
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Figure 71: Relaxation times 0τ  versus concentration c, determined by fitting of the 
experiments in Figs. 60 to 70 to Eq. 81. Critical concentrations c* were determined by 
extrapolating the experimental data to the critical values determined via Eqs. 150 to 153. 

 

The relaxation times show a strong dependence on the concentration and are 
decreasing with a decreasing concentration.  

In addition to the obtained relaxation times Fig. 71 also depicts a rough estimation of 
the critical concentration calculated from the intrinsic viscosity  

[ ] [ ]
* 1

=cη η         (Eq. 150) 

which is obtained by extrapolating the observed trends of relaxation times to these 
respective concentrations.  

However, a direct determination of the intrinsic viscosity of the boger fluids via a 
Huggins extrapolation of directly determined steady shear viscosities is hardly possible 
because of the high solvent viscosity and therefore the required resolution for a differentiation 
of the zero-shear viscosities of a dilution series. In contrast to an earlier publication [32], 
polystyrene in styrene oligomers as a solvent might actually lead to slightly less then theta 
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conditions of the solution (see chapter 5.1 for details). So far there are no reported reliable 
direct measurements of the intrinsic viscosity for a pure polystyrene boger fluid. Solomon and 
Muller [134] reported on intrinsic viscosity measurements of polystyrene dissolved in the 
theta solvent mixture dioctylphthalte/styrene oligomer that showed an excluded volume 
exponent ν of slightly less then 0.5 as can be seen in Fig. 35 in comparison to several Mark-
Houwink relationships of polystyrene in solvents of different quality. 

This observation may also be explained by a preferential attraction of the better of the 
two solvents in the solvent mixture towards the high polymer, and the contraction of the coil 
to reduce the amount of preferential concentration of the better solvent. In the following the 
constant Kη of the Mark-Houwink relation derived from Solomon and Muller is to be used for 
the investigated boger fluids to determine intrinsic viscosities from the molar mass for the 
calculations of the critical concentration from Eq. 11 and the Zimm relaxation time in the 
following section. However, the nature of boger fluids is still not fully understood, and it 
should be considered for the calculated Zimm times in the following that there might be slight 
deviations due to this uncertainty of the intrinsic viscosities. 

The Mark-Houwink relation for the system polystyrene in DEP, shown in Figure 35, 
was determined for this report from capillary viscometric measurements of the intrinsic 
viscosity to [ ] 3 3 1 0.7048.1 10 wcm g Mη − −= ⋅  (see chapter 5.1 for details) with Mw in the units of 
g/mol. 

To avoid the controversial discussion of the definition of the critical concentration, 
geometrical calculations are incorporated in Fig. 71, outgoing from a finite radius of the 
polymer coil [25]: 

*

34
3

=R

A

Mc
R Nπ

        (Eq. 151) 

The definition of the radius as the radius of gyration RG, assuming near theta 
conditions for boger fluids, leads to the critical concentration: 

2

3G
u

b C MR R
M

∞≡ =         (Eq. 152) 

The much more conservative radius definition via the mean square end to end distance 
gives: 

2 2

0
6≡ = gR r R         (Eq. 153) 

The critical concentrations of the investigated solutions of polystyrene/styrene 
oligomers and polystyrene/DEP are listed in Table 9 and 10. 
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Table 9: Critical concentrations of the investigated polystyrene boger fluids. 

Mw / 

(Mg/mol) 

c*
[η] / 

(g/cm3) 

c*
RG / 

(g/cm3) 

c*
<r^2>0 / 

(g/cm3) 

c§ /  

(g/cm3) 

8.2 5.6 ⋅ 10-3 7.0 ⋅ 10-2 4.8 ⋅ 10-4 5.3 ⋅ 10-7 

5.7 6.4 ⋅ 10-3 8.4 ⋅ 10-3 5.7 ⋅ 10-4 8.7 ⋅ 10-7 

2.8 7.0 ⋅ 10-3 1.2 ⋅ 10-2 8.1 ⋅ 10-4 2.1 ⋅ 10-6 

 

Table 10: Critical concentrations of the investigated polystyrene solutions in diethylphthalate. 

Mw / 

(Mg/mol) 

c*
[η] / 

(g/cm3) 

c*
RG / 

(g/cm3) 

c*
<r^2>0 / 

(g/cm3) 

8.2 1.6 ⋅ 10-3 6.6 ⋅ 10-2 4.4 ⋅ 10-4 

5.7 2.1 ⋅ 10-3 7.9 ⋅ 10-3 5.4 ⋅ 10-4 

2.8 3.5 ⋅ 10-3 1.1 ⋅ 10-2 7.6 ⋅ 10-4 

 

The observed relaxation times of the DEP solutions span the range from already close 
to or above the critical concentration in the semi dilute regime, whereas the relaxation times 
of the boger fluids lie below even the most conservative definition of c*. 

In these dilute solutions the relaxation times of isolated coils should be independent of 
the concentration according to Eq. 151. In contrast to this, the relaxation times show even 
below the most conservative definition of the critical concentration a strong decrease with a 
decreasing concentration. Similar observations of concentration dependent relaxation times 
below c* have recently been reported by Bazilevskii et al. [27] and Stelter et al. [29] for 
polyacrylamide in water/glycerol mixtures and by Tirtaatmadja et al. [146] for polyethylene 
oxide in water/glycerol mixtures. 

To evaluate these relaxation times obtained from uniaxial extension, one can compare 
them to relaxation times obtained from different flow fields. Lindner et al. [147] calculated 
relaxation times for dilute aqueous solutions down to 250 ppm from normal stress data fitted 
to an appropriate constitutive equation, in good agreement with the Zimm relaxation times. 
However, for the boger fluids investigated in this report the elastic response can be observed 
to even lower concentrations with from small amplitude oscillatory shear (SAOS) [32]. The 
Zimm relaxation times for the investigated boger fluids for the have been obtained from 
fitting the moduli G’ and G’’ (Eq. 154 and 155 already incorporating the oligomeric nature of 
the solvent): 
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     (Eq. 154) 
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The obtained longest relaxation times are given in Fig. 72. 
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Figure 72: Reduced relaxation times 0 / zτ τ  versus reduced concentration c/c*, determined 
from SAOS experiments and fits to Eqs. 154 and 155. 

Shown are the dimensionless values 0 / Zτ τ  as a function of */c c  (with *c  as the 
critical concentration from Eq. 150. To obtain the Zimm relaxation time τz (assuming a Zimm 
spectrum for the isolated polymer coil in solution), the universal ratio can be calculated to: 

( )
0

3= ≅
∑ i

iUητ

τ
ζ ν

τ
        (Eq. 156) 

with ζ as the Riemann zeta function and ν as the excluded volume exponent, giving a 
Zimm relaxation time Zτ  of: 

( )
[ ]1

3
= s w

Z

M
RT

η η
τ

ζ ν
        (Eq. 157) 

Obviously at low concentrations in Fig. 72 the Zimm relaxation time is adhered to in 
SAOS experiments. Approaching the critical concentration, the relaxation time increases due 
to arising intermolecular interactions with an increasing concentration. The approach in Fig. 
72 to obtain a master curve by reducing the concentration by *c  is backed up by the 
consideration that the polymer viscosity ηp can be expanded as a Taylor series in the 
concentration (see Eq. 142). This gives in combination with Eqs. 154, 157 and 9 a dependence 
on the reduced concentration */c c : 
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Using this approach one can also plot the longest relaxation times of the capillary 
break-up experiments in their reduced form 0 / Zτ τ  as a function of */c c  as shown in Fig. 73. 
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Figure 73: Reduced relaxation times 0 / zτ τ  versus reduced concentration c/c*, determined 
from CaBER experiments and fits to Eq. 81 in comparison to the theoretical Zimm relaxation 
times. 

It can clearly be seen from the obtained mastercurve that the expected scaling of the 
longest relaxation time τ0 with the molar mass M to the power 3ν (obtained from the 
definition of the Zimm relaxation time in Eq. 157, incorporating the molar mass dependence 
of the intrinsic viscosity [η] according to Eq. 12 is adhered to when using an excluded volume 
exponent ν of 0.453 comparable the ν reported by Solomon and Muller [134]. Comparing this 
mastercurve to the trend of the relaxation times from the SAOS experiments as also shown in 
Fig. 73, it can clearly be seen that the relaxation times in uniaxial extension show already at 
much lower concentrations a deviation to higher values from the Zimm time in comparison to 
the oscillatory shear experiment. 

In addition to this, Fig. 73 seems to indicate that at very low concentrations the 
relaxation time in uniaxial extension falls below the Zimm relaxation time and this is in 
accordance with a similar observation of Bazilevskii et al. [27] for very dilute 
polyacrylamide/water/glycerol solutions. For an explanation of this peculiar phenomenon, one 
has to go deeper into the details of the break-up dynamics at very low concentrations.  

Generally lowering the concentration of a polymer in solution and approaching its 
Zimm relaxation time leads to the question whether the flow is still dominated by the 
timescale of the viscous solvent or of the polymer. One dimensionless number that captures 
these timescales is the Deborah number De:  
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0 3
0

=De
R
τ

ρ γ
         (Eq. 159) 

 

In Eq. 159 the Deborah number is defined for the capillary break-up experiment as the 
polymer relaxation time relative to the Rayleigh time for the initial filament radius R0 that 
determines the flow time scale for the necking process of a liquid filament. This Deborah 
number is thus an intrinsic quantity that cannot be selected but is rather set by the surface 
tension [148] and this in contrast to the governing, selectable Weissenberg number = �We τε  
of the filament stretching experiment. 

The other dimensionless number is the Ohnesorge number Oh  

0

=Oh
R
µ

ρ γ
        (Eq. 160) 

that incorporates the viscosity controlled capillary time 0Rµ γ  relative to the 
Rayleigh time. 

The ratio of the Deborah to the Ohnesorge number therefore defines the polymer to the 
viscous timescale: 

0

=
De
Oh R

τγ
µ

        (Eq. 161) 

For ratios below 1, the elastic forces of the polymeric contribution to the observed 
flow are negligible compared to the viscous forces and a capillary break-up experiment will 
not allow the extraction of a polymeric relaxation time. The polymeric influence on the ratio 
De/Oh is solely by its relaxation time, we therefore expect for the Zimm relaxation times a 
lower limit of the molar mass for a given experimental setup of surface tension γ, solvent 
viscosity µ and initial Radius. 

However, even for De/Oh > 1 the observation of a thinning process mainly dominated 
by the elastic forces and an exponential decrease of the filament diameter according to Eq. 81 
is not possible if the concentration is not high enough. In this case the temporal evolution of 
the stress distribution in the filament has to be taken into account. The transition from the 
initial balance of capillary and viscous force to the balance of capillary and elastic forces is 
shifted to later times, since the elastic contribution ∆ pσ  in the force balance (Eq. 81) depends 
on the modulus G and hence on the concentration c: 

= = A

w

cN kTG nkT
M

        (Eq. 162) 

Figs. 74 to 76 show the temporal stress distribution for three different concentrations 
of the same polymer obtained from numerical integration of the following set of ordinary 
differential equations already derived in the previous chapters. For the polymer conformation 
in the different room directions Eqs. 73 and 74 are consulted: 
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 (Eq. 163) 
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With known conformations the elatic contribution to the stress can be evaluated 
according to Eq. 56: 
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The visous stress 3 sη ε�  and the capillary pressure 
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 can then be evaluated via the 

force balance already shown in Eq. 55: 
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=� (Eq. 165) 

Solving these equations demands known initial diameter 0D  (from experimental data), 
modulus BG nk T= , surface tension γ  of the investigated fluid, relaxation time τ  (from 
experimental data or via fitting in the elastic thinning regime) and that 0zzA ≠ . 
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Figure 74: Numerical Simulation of the stress distribution in capillary break-up experiments. 
Shown are the driving capillary pressure and the stress distribution between the solvent and 
the polymer for a 50 ppm polystyrene boger fluid (Mw = 5.7 Mg/mol). 
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Figure 75: Numerical Simulation of the stress distribution in capillary break-up experiments. 
Shown are the driving capillary pressure and the stress distribution between the solvent and 
the polymer for a 5 ppm polystyrene boger fluid (Mw = 5.7 Mg/mol). 
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Figure 76: Numerical Simulation of the stress distribution in capillary break-up experiments. 
Shown are the driving capillary pressure and the stress distribution between the solvent and 
the polymer for a 0.62 ppm polystyrene boger fluid (Mw = 5.7 Mg/mol). 

It can clearly be seen, that for lower concentrations the transition from a solvent 
dominated to an elasticity dominated flow shifts to later times during the thinning process. 
While this shifts the desired observation range of the elastic thinning regimes to smaller radii 
and therefore to the lower resolution limit of the experimental setup, it also means a faster 
approach of the finite extensibility limit of the polymer. Once also the higher modes of the 
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configuration A reach their finite extensibility limit that is incorporated in the evolution 
equations via the factor fi and therefore in our numeric calculation in Figs. 74 to 76, the flow 
pattern again crosses over to a Newtonian flow of the expanded coils and the respective 
increasing filament thinning resulting in the final break-up. An extraction of a relaxation time 
by the simple exponential fit to Eq. 81 is therefore not possible once the finite extensibility 
starts to dominate the flow. At low concentrations, these two limiting effects are closing in on 
each other on the time axis and may alter the observed slope of the time dependent filament 
thinning in the semi log plot. This is demonstrated in Fig. 77 for numerical calculations of a 
dilution series of a polystyrene boger fluid.  
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Figure 77: Numerical Simulation of the normalized diameter D/D0 as a function of the 
reduced time 0/t τ  for a dilution series of a polystyrene boger fluid (Mw = 2.8 Mg/mol) with 
constant longest relaxation time 0τ . 

The longest relaxation time τ0 for these calculations is chosen to be constant for all 
dilutions and the value is assumed to agree with the Zimm time τz. As one can see, the break-
up times are decreasing with a decreasing concentration, however, at the same time the slope 
of the curves in the intermediate thinning regime in the semi log plot of Fig. 77 seems to 
become steeper and suggests relaxation times below the Zimm time used for these 
calculations. This effect is also enhanced by a “smearing out“ of the transition from the initial 
Newtonian thinning to the elastic regime. 

The ultimate limit of the capillary break-up experiment for the observation of the 
polymeric contribution can be seen in Fig. 76. Even though all modes of the polymer 
configuration have reached their finite extensibility limit at late times, the contribution of the 
viscous forces of the solvent dominates the flow behaviour. The minimum concentration at 
which even the sum of all modes of elastic forces of the fully expanded coils just balance the 
viscous forces of the solvent can be obtained from the force balance in Eq. 55. 
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Following Entov and Hinch [26], close to the finite extensibility limit with Azz >> Arr 
and a negligible temporal change of Azz the relevant evolution equation (Eq. 73) reduces to  

, ,
12 =� zz i i zz i

i

A f Aε
τ

        (Eq. 166) 

This gives for fi: 

2= �i if ετ         (Eq. 167) 

and with trA = Azz a solution for Azz at the finite extensibility limit: 
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        (Eq. 168) 

Combining Eqs. 167 and 168 in the polymer contribution ∆σp (Eq. 56) with Azz >> Arr 
we obtain for the finite extensibility limit: 
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       (Eq. 169) 

or: 

( )
22

5
∆ ≈ �p zG Lσ ετ

ζ ν
        (Eq. 170) 

From this we get the maximum, constant polymer viscosity ( )22 3 5≈p zG Lη τ ζ ν  for 
the finite extension limit in the thinning filament. Now assuming that the viscous stress 
carried by the solvent starts to dominate even at late times if the viscous stress in Eq. 55 
becomes larger than the polymer stress in Eq. 170, the polymer contribution is only 
observable in capillary break-up experiments for: 
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>         (Eq. 171) 

Replacing the modulus according to Eq. 162, we derive a lowest possible polymer 
concentration c§ for an observable polymer contribution to a capillary break-up experiment:  
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⋅

        (Eq. 172) 

At the concentration c§ the extended polymer is still contributing to the overall stress 
at late times, however, this concentration marks the point below which even a fully extended 
polymer will carry less stress than the solvent.  

The concentrations c§ of the investigated polymers are shown in Table 9. c§ was also 
chosen for the numerical calculation in Fig. 76 where it can clearly be seen that viscous and 
polymeric stresses have the same contribution to the overall stress at late times. 

With regard to these limitations of a direct extraction of the relaxation time from an 
assumed elastic thinning regime, we have also used a different approach to obtain the 
relaxation times close to the critical concentration limit c§ of Eq. 172. Therefore the numerical 
integration of Eqs. 163 to 165 for the calculation of the filament thinning with the longest 
relaxation time τ0 as the only adjustable parameter has been used to obtain the best 
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concordance of several single numerical calculations with the experimentally obtained 
filament thinning profiles in Figs. 60 to 70. The derived best fits to the experimental data are 
shown exemplarily for several decades of concentration and one molar mass in Fig. 78. In 
addition to this, the calculated stress distributions for each of the concentrations are shown in 
Figs. 79 to 83. 
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Figure 78: Comparison of numerical calculated filament evolution with experimental data for 
a dilution series of a polystyrene boger fluid (Mw = 2.8 Mg/mol.) 
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Figure 79: Numerical Simulation of the stress distribution in capillary break-up experiments. 
Shown are the driving capillary pressure and the stress distribution between the solvent and 
the polymer for a 1.24 ppm polystyrene boger fluid (Mw = 2.8 Mg/mol). 
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Figure 80: Numerical Simulation of the stress distribution in capillary break-up experiments. 
Shown are the driving capillary pressure and the stress distribution between the solvent and 
the polymer for a 4.4 ppm polystyrene boger fluid (Mw = 2.8 Mg/mol). 
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Figure 81: Numerical Simulation of the stress distribution in capillary break-up experiments. 
Shown are the driving capillary pressure and the stress distribution between the solvent and 
the polymer for a 14 ppm polystyrene boger fluid (Mw = 2.8 Mg/mol). 
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Figure 82: Numerical Simulation of the stress distribution in capillary break-up experiments. 
Shown are the driving capillary pressure and the stress distribution between the solvent and 
the polymer for a 44 ppm polystyrene boger fluid (Mw = 2.8 Mg/mol). 
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Figure 83: Numerical Simulation of the stress distribution in capillary break-up experiments. 
Shown are the driving capillary pressure and the stress distribution between the solvent and 
the polymer for a 140 ppm polystyrene boger fluid (Mw = 2.8 Mg/mol). 

The relaxation times derived from the numerical calculations were then used to replot 
the reduced relaxation times of Fig. 73. As it can be seen in Fig. 84, the actual relaxation 
times in uniaxial extension reach a constant value at low concentrations in accordance with 
the constant relaxation times obtained from the SAOS experiments at low concentrations. 
However, one has to note that the constant value of reduced relaxation times obtained for the 
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molecular unravelling in uniaxial extension from the numerical calculations is slightly lower 
than 1, the average molecular unravelling time from Fig. 84 at low concentrations is a factor 
of ~ 1.38 lower than the Zimm times. 
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Figure 84: Reduced relaxation times 0 / zτ τ  versus reduced concentration c/c*, obtained from 
best fits of numerically calculated filament evolution. For comparison also the relaxation 
times from SAOS experiments (see Fig. 73) are given. 

Relaxation times obtained from the numerical calculations of the uniaxial flow at 
higher concentrations are as expected in very good agreement with the directly extracted 
relaxation times from the fit of Eq. 81 to the experimental data. Still, these values are higher 
than the relaxation times obtained from the oscillatory shear flow experiments. This can also 
be seen in Fig. 85 for polystyrene in the good solvent diethylphthalate. 
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Figure 85: Reduced relaxation times 0 / zτ τ  versus reduced concentration c/c* for dilution 
series of polystyrene in diethylphthalate at different molar masses. In addition the theoretical 
concentration dependence according to Eq. 158 is shown. 

Since these solutions have a much smaller viscosity than the observed boger fluids, the 
observable range of relaxation times is shifted to higher concentrations determined by the low 
viscosity limit of the Ohnesorge number Oh in Eq. 160 and it is therefore not possible to 
obtain relaxation times close to the Zimm limit neither via capillary break-up, nor via SAOS 
experiments. However, for this system one is able to experimentally determine the required 
constants KH and Bn and n of the structure property relationship in Eq. 141 from capillary 
viscometric measurements at lower, and cone and plate shear rheometry at higher 
concentrations for several different molar masses as shown in Fig. 51, to fully obtain Eq. 141 
over the observable range of concentrations Eq. 141 is also shown in Fig. 51. In this case the 
intrinsic viscosities could directly be determined for the required calculation of c*. Again, it 
can be seen that the relaxation times start to rise from their lowest possible value at much 
smaller concentrations than expected from the approach of Eq. 141.  

The onset of the rising relaxation times gives a rough estimation of a concentration of 
ultradilution. Below this concentration (and above c§) one is still able to observe the presence 
of the polymer in a delayed break-up time and a deviation from the Newtonian behaviour of 
the solvent, although the onset of this deviation shifts with decreasing concentration to later 
times and smaller diameters of the filament and might be lost in the observation resolution of 
the experiment. The relaxation time, or better, the molecular unravelling time is in this case 
constant and that of the single polymer coil.  

Above the concentration of ultradilution the concentration of the polymer coils is high 
enough, that the long range interactions of the increasing hydrodynamic radius of unravelling 
polymer coils lead to an increase of relaxation time of the solution. The scaling of the 
relaxation time in this regime with the reduced concentration seems to obey the following 
relation as proposed by Tirtaatmadja et al. [146]: 
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We determined a gradient of m = 0.58 in Fig. 51 for the system polystyrene in the 
relative good solvent DEP in comparison to m= 0.65 observed by Tirtaatmadja et al. [146] for 
PEO in glycerol/water mixtures. In contrast to this, for the investigated polystyrene dissolved 
in the near theta solvent of styrene oligomers a gradient of m = 0.89 is obtained from Fig. 85. 

However, a correlation of the gradient m or the concentration of an ultradilution with 
the solvent quality of the investigated system is not possible yet. Whereas the concentration of 
ultradilution of the system polystyrene in the good solvent DEP is roughly ~1.2 decades 
below c* in the definition of Eq. 150, the concentration of ultradilution is roughly ~2.5 
decades below c*. After disussion of the influence of the concentration on the elongational 
behaviour of polystyrene in solution a more detailed look on the molar mass or the molar 
mass distribution follows in the next chapter. 

 

6.1.3.2 Influence of molar mass/ molar mass distribution 

To investigate the influence of the molecular weight distribution on the flow behaviour 
of polymer solutions defined blends were prepared, using the standard system polystyrene in 
diethylphthalate already discussed in the previous chapters in terms of their rheological 
behaviour in steady shear flow or SAOS experiments. 

The polystyrene standard solutions investigated in this chapter were blended from 
different narrowly distributed polystyrene standards with varying molar masses to achieve an 
approx. constant molar mass Mw of 5.8 Mg/mol with different molecular weight distributions 
varying in Mw/Mn from approx. 1.0 to 1.84 (first of the manufacturers specifications were used 
for primary evaluation of molar mass distribution). The true molar masses of the polystyrene 
standards were acquired via viscosimetry in toluene and the Mark-Houwink-Sakurada 
equation [25] (see Table 1 in chapter 2.1 for details). 

In Tab. 11 the absolute composition of the investigated polystyrene blends are listed 
together with the width of the MMD.  
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Table 11: Absolute blending composition of investigated polystyrene blends 1.0 - 3.0 (for 

details on the used polystyrenes see Table 1). 

Blend Composition / wt% 

 

Blend 

PS 1 PS 2 PS 3 PS 4 PS 5 PS 6 

Mw / Mn 

(Q) 

1.0 - - 100 - - - 1.00 - 1.05 

1.1 - 22.2 66.0 9.8 2.0 - 1.06 

1.2 0.3 34.0 46.6 13.5 5.3 0.3 1.11 

1.5 7.7 37.3 32.2 13.7 7.8 1.3 1.36 

2.0 18.9 33.7 25.0 12.3 7.7 2.4 1.66 

3.0 27.6 30.3 20.6 10.6 7.5 3.5 1.84 

 

The flow curves shown in Fig 86 for these blends (1.0 wt% in diethylphthalate) show 
approx. the same flow characteristics. The zero-shear viscosities 0η  for the investigated 
polystyrene blends balance between values of 0.3-0.5 Pas. The transition area between the 
Newtonian- and non-Newtonian flow regime does not allow for qualitative or quantitative 
evidence on the shape of the molar mass distribution. The flow curves were then fitted via the 
modified Carreau model [141]: 

0 01 ( )
n

b bη η γ τ⎡ ⎤= ⋅ + ⋅⎣ ⎦�        (Eq. 174) 

with n as the slope of the flow curve and b being the transition parameter. The 
obtained values for the longest relaxation times of steady shear flow are summarized in Table 
12. In favor of clarity only the Carreau fit for the flow curve of blend 1.5 is shown in Fig. 86. 
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Figure 86: Shear viscosity η  versus shear rate γ�  for investigated polystyrene blends 1.0 – 
3.0 in diethylphthalate (1.0 wt%) at 25°C. 

In contrast to this the results of uniaxial elongation in a CaBER experiment are shown 
in Fig. 87 for the same polystyrene blends. 

Fig. 87 shows, that in contrast to steady shear flow experiments one can determine 
pronounced differences in the capillary thinning behaviour for the investigated polystyrene 
blends. In the linear regime of this semi-logarithmic plot one can evaluate longest relaxation 
times according to Eq. 81.  
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Figure 87: Normalized filament diameter D/D0 versus time for the investigated polystyrene 
blends 1.0-3.0 in diethylphthalate at 1.0 wt% and 25°C. 

The longest relaxation times obtained via the CaBER experiments are summarized in 
Table 12 together with the longest relaxation times of shear flow for the six investigated 
blends. 

 
Table 12: Longest relaxation times 0τ  determined via CaBER experiments for polystyrene 

blends 1.0 - 3.0 (for details on the used polystyrenes see Table 1). 

Blend 
0τ  shear flow 0τ  CaBER 

1.0 0.018 0.062 

1.1 0.019 0.076 

1.2 0.019 0.083 

1.5 0.021 0.098 

2.0 0.025 0.104 

3.0 0.025 0.120 

 

As one can see from Table 12, the longest relaxation time in uniaxial elongation 
increases with a factor 2 from blend 1.0 to blend 3.0, whereas the longest relaxation times of 
steady shear flow stay at a constant value of about 0.02 s.  

For a correlation of linear viscoelastic terms like 0η  and 0J  with the MMD of a 
polymer, different approaches have been made in literature [149-151] with the general form 
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ˆ ˆMa a P= ⋅         (Eq. 175) 

with P being a correction term that depends on different modes of the MMD and â and 
ˆMa  being a viscoelastic characteristic value of the distributed and the mondisperse sample. To 

correlate the relaxation behaviour of the polystyrene blends with the MMD, a model equation 
was searched for, that directly relates the ratio of relaxation times of monodisperse (blend 1.0) 
and polydisperse samples with the MMD. The factor P in the majority of approaches is of the 
form 

c

X
y

W

MP
M

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
        (Eq. 176) 

with Mx being the x-mean molar mass 1

x
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X x
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n M
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n M −

⋅
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∑

 and y and c being empirical 

or theoretical predicted parameters. Least square fits of the experimentally obtained values of 
τ0 and τ0,M as our characteristic viscoelastic properties as a function of P (see Eq. 176) for 
several different x-mean distributions and c and y as fitting parameters were accomplished to 
determine the best suited MX. As shown in Fig. 88, the best correlation could be obtained for 
MX as the z+2 average molar mass. 

1
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Figure 88: Least square fit of the parameters c and y (see Eq. 176) to 2z wM M+  for 
investigated polystyrene blends in diethylphthalate. 

The least square fit of the data in Fig. 88 gave the following equation to describe the 
dependency of the relaxation times from the width of the MMD:  
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The integraly determined longest relaxation time of uniaxial elongation in CaBER like 
experiments of a distributed sample is hence mainly influenced by the Mz+2 mean molar mass 
of the MMD. As expected has the high molar mass tail of the molecular weight distribution 
the most pronounced influence on the elongational behaviour. However, one has to keep in 
mind, that the quantitative correlation in Eq. 177 of the Mz+2 mean molar mass and the values 
of c and y are so far purely empirical.  

Another important material function of elongational rheology is the elongational 
viscosity eη . According to the Trouton ratio for uniaxial flow fields [89], this elongational 
viscosity should show thrice the value of the zero-shear viscosity in the Newtonian flow 
regime, as can be seen by comparison of the values of the respective viscosities in Fig. 89 
with and Fig. 86.  
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Figure 89: Apparent elongational viscosity eη +  versus Hencky strain ε  for the investigated 
polystyrene blends 1.0 - 3.0 in diethylphthalate at 1.0 wt% and 25°C. 

Fig. 89 also shows that for the investigated polystyrene solutions the steady state 
extensinal viscosity eη  is not reached in the regime of available strains. The first thing getting 
obvious is that, in contrast to steady shear, one can observe differences in the elongational 
viscosity of the investigted blends; The absolute values are increasing with increasing 
broadness of the MMD from blend 1.0 to blend 3.0. However one has to keep in mind that the 
viscosity observed here is the transient elongational viscosity eη + , which is, compared to the 
steady state value eη , the more interesting material function regarding to application, because 
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elongational flow fields in polymer processing usually are instationary ones. The value of the 
transient elongational viscosity eη +  for the investigated polystyrene solutions is increasing 
over the whole regime of extension, reaching values around 300-400 Pas. These considerably 
high values, compared to the moderate zero-shear viscosities of about 0.3-0.5 Pas, are a result 
of pronounced strain hardening processes of the polymer coil in uniaxial elongation [100, 
152].  

To point out the influence of the high-molar mass fraction on the elongational 
behaviour in capillary breakup, two polystyrene standards of different weight-average molar 
masses Mw (PS 1b and PS 5, see Table 1 for details) were blended at a constant concentration 
of 250 ppm in styrene oligomer (low molecular weight polystyrene, LMPS) as the solvent. 
The absolute blending composition of the investigated binary blends is summarized in Table 
13 together with the resulting weight average molar masses and the polydispersities.  

 
Table 13: Absolute blending composition of investigated binary polystyrene blends (for 

details on the used polystyrenes see Table 1). 

Blend Composition / wt% 

 

Blend 

PS 1b PS 5 

Mw 

Mg/mol 

 

Mw / Mn 

(Q) 

 

90 9.9 90.1 7.65 1.15 

50 49.8 50.2 5.49 1.31 

10 90.2 9.8 3.32 1.10 

3.1 96.9 3.1 3.00 1.04 

1.0 99.0 1.0 2.88 1.01 

0.31 99.7 0.3 2.85 1.00 

0.1 99.9 0.1 2.84 1.00 

 

The resulting zero shear viscosity of these Boger fluids [153] is very high compared to 
a solution in DEP, so that relaxation actions of the polymer coils are slowed down to a high 
degree which therefore leads to an improved detectability even at concentrations below c* 
(critical overlap concentration). The results of steady shear flow measurements for these 
Boger fluids are shown in Fig. 90. 
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Figure 90: Shear viscosity η  versus shear rate γ�  for investigated binary polystyrene blends 
in styrene oligomer (for absolute composition see Table 13), 250 ppm at 25°C. 

Fig. 90 shows that almost no differences in zero shear viscosity can be detected for the 
set of investigated binary Boger blends, the values balance around 50 Pas, which is a fairly 
high value for a polymer solution. In comparison to this one has to keep in mind that honey 
for example has a zero-shear viscosity of about 1-5 Pas! However, the missing differences in 
the flow curves were expected for a mainly solvent dominated shear flow in a dilute solution. 
In contrast to this, the results of uniaxial elongation for this set of Boger blends are shown in 
Fig. 91. 
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Figure 91: Normalized filament diameter D/D0 versus time for the investigated binary 
polystyrene blends in styrene oligomer (for absolute composition see Table 13), 250 ppm at 
25°C. 

As shown in Fig. 91, a fraction of 0.31 wt% of the high-molecular species already 
results in measureable longer breakup times. Since the CaBER experiment reacts very 
sensitive to the longest relaxation time of the high-moleclar edge of the MMD according to 
Eq. 81, tiny amounts of high-molecular species already lead to a pronounced influence on the 
elongational behaviour.  

However, one has to keep in mind, that in contrast to the blends in Fig. 87, these 
binary blends do not have a constant weight average molar mass Mw, but rather an increasing 
Mw (see Table 13 for details) with an increasing part of the high molecular weight species. 
Therefore, one would naturally expect the relaxation time to rise with increasing part of high 
molecular weight species.  

A better way to observe the influence of the distribution is again to plot a reduced 
0 0,/ Mτ τ . The required 

0,Mτ  can be obtained from the pure low and high molar mass solutions, 

since the relaxation time dependence scales with 3
wM ν  for narrow distributions [32, 33], with 

ν being the excluded volume coefficient: 
10 (1.62 0.05)

0, (2.3 1.7) 10M wMτ − ±= ± ⋅       (Eq. 178) 
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and can therefore plot 0 2

0,

z

M w

Mf
M

τ
τ

+⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. The results are shown in Fig 8. 

1

1

 polystyrene blends in DEP  
  ......   least square fit of y 

 binary polystyrene blends in LMPS
  - - -   least square fit of y 

2

2

τ 0 / 
τ 0,

M

Mz+2 / Mw

 

Figure 92: Least square fit of the parameters c and y (see Eq. 176) to 2z wM M+  for 
investigated polystyrene blends in diethylphthalate and binary blends in LMPS. 

From Fig. 92 one can see that the relaxation times of the binary blends do not scale 
with the same exponent c as the polystyrene blends in DEP (see Eq. 178). Still, linear fitting 
of the data works out quiet well, as shown in Fig. 92. However, one has to keep in mind, that 
we are dealing not with a flory distribution in this case, but a bimodal distribution of the 
molar mass. In addition to this the styrene oligomers are a worse solvent than diethylphthalate 
and close to theta conditions [134]. We therefore refrain from comparing c for 
diethylphthalate and Boger fluid. 

As for the polystyrene blends in DEP, Fig. 93 shows the transient elongational 
viscosity eη +  for the investigated binary polystyrene blends.  
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Figure 93: Apparent elongational viscosity eη +  versus Hencky strain ε  for the investigated 
binary polystyrene blends in styrene oligomer (for absolute composition see Table 13), 250 
ppm at 25°C. 

As one can see in Fig. 93, even for these very dilute solutions of 250 ppm the steady 
state value of the elongational viscosity is not reached in the regime of available strains. 
Again the Trouton ratio of three is met in the regime of Newtonian flow as one can see via 
comparing the elongational values of about 140-150 Pas with the zero-shear viscosity of about 
45-50 Pas deriving from Fig. 90.  

However, for the two blends with the highest amount of high molecular weight 
fraction, blend 50 and blend 90, the transient elongational viscosity does not start from the 
equilibrium value, but it seems to start of with a higher value. This may be the result of an 
initial deformation in the test fluid, resulting in pre-stretched polymer coils resulting in a 
higher viscosity yield. As for the blends in DEP one can observe again, that, in contrast to the 
results from steady shear flow, the evolution of the transient elongational viscosity is clearly 
distinguishable for the binary blends. 
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6.2 Rheological characterisation of investigated MHECs and 
hmHECs 

6.2.1 Steady shear flow 

As shown for the polystyrene standards in chapter 6.1.1, the methylhydroxyethyl 
celluloses investigated in this work were also fully characterized in regards of their viscous 
properties via shear flow experiments.  

The influencing parameters examined here include the concentration and the solvent 
(for the influence of the molar mass or its distribution see chapter 6.2.3.2 for a detailed 
discussion). 
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Figure 94: Shear viscosity η  versus shear rate γ�  for methylhydroxyethyl celluloses 1-10 with 
different molar masses (see Table 3 for details) in water (1.0 wt%) at 20°C. 

The MHEC samples investigated in this work were blended from different cellulose 
samples (see chapter 5.2 for details), before synthesis was achieved via Williamson 
etherification (see chapter 2.2). As the resulting MHECs were, according to the manufacturer, 
very similar in terms of their rheological behaviour , the primary task was to work out specific 
differences in their flow comportment.  
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Fig. 94 shows the flow curves for the full set of investigated MHECs in water at 1.0 
wt% and 20°C (this temperature was used instead of RT for the MHECs, because it is the 
standard temperature the manufacturer and project partner uses). As one can see in Fig. 94, 
the flow curves partially exhibit very pronounced yielding points. For a better resolution of 
this effect, one can also plot the shear viscosity η  versus the shear stress σ  instead of the 
shear rate γ� , as can be seen in Fig. 95.  

This plot has the advantage that if a polymer solution exhibits a real yielding point, 
one finds a sudden drop in shear viscosity in contrast to a linear decrease with the slope of 
exactly -1.0 (according to Newtons law of viscosity, see Eq. 22) for the plot shown in Fig. 94. 
As Fig. 95 shows, the samples MHEC 4, 5, 9 and 10 show real yielding points of about 10 
Pas, whereas the other samples do not exhibit a sudden viscosity drop. However, this yielding 
point is a result of an unwanted structure build-up in solution via H-bonding between the 
single MHEC coils. 
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Figure 95: Shear viscosity η  versus shear stress σ  for methylhydroxyethyl celluloses 1-10 
with different molar masses (see Table 3 for details) in water (1.0 wt%) at 20°C. 

Fig. 96 shows the flow curves of the same set of MHECs investigated at 2.0 wt% in 
water as the solvent. The first thing that attracts attention here is that the yielding points seem 
to have vanished for the higher concentrated solutions.  

A possible reason for this unexpected behaviour is that the zero-shear viscosity 0η  of 
about 30 Pas of the respective solutions more than compensates the value of the yielding point 
itself (∼ 10 Pas). 
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Figure 96: Shear viscosity η  versus shear rate γ�  for methylhydroxyethyl celluloses 1-10 with 
different molar masses (see Table 3 for details) in water (2.0 wt%) at 20°C. 

As yielding points prevent the direct determination of – and the comparability of the 
flow curves in terms of their zero-shear viscosities 0η , a solvent had to be used that 
suppresses the structure build-up via breaking of the H-bonds between the 
hydroxyethylgroups of a MHEC coil with the protons of another MHEC coil. The first choice 
fell on NaOH in water (2.0 wt%) because of its very pronounced alkalinity.  

The same flow curves shown in Fig. 94 and Fig. 96 for the investigated MHECs in 
water at concentrations of 1.0 or 2.0 wt% are shown again in Figs. 97 and 98 for the same 
concentrations in aqueous NaOH (2.0 wt%). 
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Figure 97: Shear viscosity η  versus shear rate γ�  for methylhydroxyethyl celluloses 1-10 with 
different molar masses (see Table 3 for details) in 2 wt% NaOH (1.0 wt%) at 20°C. 

As one can see in Fig. 97, the yielding points observed for the respective MHEC 
solutions in water disappear for the use of NaOH as solvent. The MHEC solutions are better 
molecularly dispersed without the strong structure build-up, so that the zero-shear viscosities 
can be determined for both concentrations. For the 1.0 wt% solutions the zero-shear 
viscosities range from approx. 0.2 – 0.7 Pas (see Fig. 97), whereas for the 2.0 wt% solutions 
(see Fig. 98) the zero-shear viscosity ranges from 2 – 16 Pas for the investigated set of 10 
MHECs. However both figures show that the flow curves are very much alike each other 
inside each one of the two different sets of MHECs (see chapter 5.2 for details). 

In contrast to the flow curves for the polystyrene standards (see chapter 6.1.1) one can 
see that the transition area from the Newtonian- to the non-Newtonian flow regime is much 
broader. This is directly correlated to the width of the molar mass distribution (MMD) shown 
in Fig. 37 and 38 in chapter 5.2. As the investigated MHECs are far from being ideal standard 
systems like the investigated polystyrenes, the transition is naturally far more broad (a more 
detailed discussion on this topic will follow in chapter 6.2.3.2). 

The third material function yielded via shear flow experiments is the slope of the flow 
curve n in the non-Newtonian flow regime. Figs. 97 and 98 show that the slopes are very 
much the same for the ten samples and each respective concentration. For the 1.0 wt% 
solutions this characteristic has a value of 0.43, whereas the slopes of the flow curves for the 
2.0 wt% solutions balance around 0.64.  
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Figure 98: Shear viscosity η  versus shear rate γ�  for methylhydroxyethyl celluloses 1-10 with 
different molar masses (see Table 3 for details) in 2 wt% NaOH (2.0 wt%) at 20°C. 
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Figure 99: Shear viscosity η  versus shear rate γ�  for both investigated hmHECs at different 
concentrations in water at 25°C. 

The two hmHECs investigated in this work are supposed to see application as 
stabilizing agents in cosmetic emulsions. The stabilizing effect results from their amphiphilic 
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like nature, that makes it possible for these polymers to be solved in hydrophobic and 
hydrophibic solvents.  

As for the MHECs, the question was again if the two samples could be distinguished 
from each other with rheological means. As it could be seen in chapter 5.3, the molecular 
weight distributions of the two investigated samples show very ample differences from each 
other (see Fig. 43 for details). While sample hmHEC 1 shows a bimodal distribution with a 
very pronounced shoulder in the regime of small molar masses, sample hmHEC 2 exhibits an 
almost normal distribution resulting in a much smaller polydispersity index. As can be seen in 
Fig. 99 these ample differences in terms of their MMD do not reflect in the results of steady 
shear flow. For all three investigated concentrations, the flow curves very much look alike.  

However, in terms of their zero-shear viscosity that was an expected result, as the 
weight-average molar masses Mw are very similar to each other, the differences in terms of the 
broadness of their distributions Q does not affect the transition area between Newtonian and 
non-Newtonian flow regime. Steady shear flow therefore does not yield any qualitative or 
quantitative information on distinguishing the two samples in regards of their molar mass 
distribution. 
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6.2.2 Small amplitude oscillatory shear (SAOS) 

As for the polystyrenes in chapter 6.1.2, the visco-elasticity of the investigated 
MHECs and hmHECs was analyzed further via SAOS experiments. The elastic components 
of the visco-elastic behaviour of these cellulosic derivatives can again be correlated with the 
storage modulus G’, whereas the viscous components are represented by the loss modulus G’’ 
(see chapter 3.3.2 for a detailed discussion).  

For the methylhydroxyethyl and the hydrophobically modified hydroxyethyl celulloses 
a comparison of the shear viscosity η  and the from SAOS measurements obtained complex 
viscosity η∗  according to the empirical rule of Cox and Merz [144] is also very usefull. As 
there may be energetic interactions via ionic groups in the backbone of the MHEC or the 
hydrophobic modifications of the HECs and the fact that both polymers tend to structure 
build-up via Van der Waals- and London interactions, particularly H-bonding, this 
comparison may yield quatitative information on the level of energetic interactions. 
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Figure 100: Storage moduli G’ versus angular frequency ω  for methylhydroxyethyl 
celluloses 1-10 in 2 wt% NaOH (1.0 wt%) at 20°C. 

As shown in Fig. 100 and Fig. 101 for the 1.0- or 2.0 wt% solutions of the investigated 
MHECs 1-10 in 2 wt% NaOH, there is no distinctive information gained from the frequency 
dependence of the storage moduli G’. For the 1.0- and 2.0 wt% solutions, the high frequency 
limit of about 200 rad/s (maximum frequency achievable by used ARES II rheometer, for 
detailed specifications refer to chapter 8.2.2) is not large enough to enter the plateau regime of 
the storage modulus, means that the network parameters are not accessible for both 
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concentrations without extrapolation. The moduli for the 2 wt% solutions at least show a 
slight snap off at a frequence of about 10 rad/s. 

As for the evolution of the storage moduli G’ one can observe very analogue trends 
within one of the two investigated concentrations shown here. The slopes of the curves lie 
somewhere in between the theoretically predicted value of 2 and a slope of 1 for both 
concentrations. Only the sample MHEC 3 at 2.0 wt% gives the theoretical value of 2 at low 
frequencies. The only differences between the two concentrations is that, on the one hand, the 
values of the moduli for the higher concentration outrank the values for the lower 
concentration with about one order of magnitude as expected. On the other hand, the yielding 
points discussed in chapter 6.2.1 for the 1.0 wt% solutions are observed here also in the 
minimum behaviour observed in Fig. 100. At low frequencies the aggregated structures in 
solution behave like a “real” gel, resulting in a fake first plateau modulus for very small 
deformations. 
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Figure 101: Storage moduli G’ versus angular frequency ω  for methylhydroxyethyl 
celluloses 1-10 in 2 wt% NaOH (2.0 wt%) at 20°C. 
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Figure 102: Loss moduli G’’ versus angular frequency ω  for methylhydroxyethyl celluloses 
1-10 in 2 wt% NaOH (1.0 wt%) at 20°C. 
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Figure 103: Loss moduli G’’ versus angular frequency ω  for methylhydroxyethyl celluloses 
1-10 in 2 wt% NaOH (2.0 wt%) at 20°C. 

The same trends discussed before for the storage moduli G’ for both concentrations of 
the investigated MHECs also applies for the loss moduli G’’. The slope for both 
concentrations fits very well to the theoretically predicted value of 1 (see chapter 3.3.2 for 
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details). Again the absolute values for the loss moduli of the higher concnetrated soltions 
outrank the ones for the lower concentrations with about (O)1. This is due to the fact that not 
only the elastic properties of the resulting gels in form of G’ increase with concentration 
(because more inserted energy can be stored elastically in a network wich consists of more 
and denser meshs), but also the flexibility in form of G’’ of the network.  

A qulitative discussion of energetic interactions between the single polymer coils can 
happen in form of the Cox-Merz plot shown in Fig. 104. As one can see in form of the 
comparisson of the shear viscosities η  and complex viscosities η∗  for a set of selected 
MHECs (not all material functions for the whole set of investigated MHECs were plotted, to 
keep a certain degree of clarity in the figure), are the different viscosities in good agreement 
with each other. This result reflects the fact that the Cox-Merz rule applies just for the non-
Newtonian flow regime [144] where the increasing deformation already degraded the 
aggregated structures responsible for the yielding points. As the number of ionic groups in the 
sidechain is very small for MHEC the energetic interactions are not ample enough to result in 
a derivation of the complex viscosity from the shear viscosity. 
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Figure 104: Comparison of shear viscosity η  and complex viscosity η∗  for 
methylhydroxyethyl celluloses 1-3 and 6-8 in 2 wt% NaOH (2.0 wt%) at 20°C. 
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Figure 105: Storage moduli G’ and loss moduli G’’ versus angular frequency ω  for both 
investigated hmHECs at different concentrations in water at 25°C. 

As shown in Fig. 105 for the 1.0- or 2.0 wt% solutions of the investigated hmHECs 1 
and 2 in water, there is no distinctive information gained from the frequency dependence of 
the storage moduli G’ and loss moduli G’’. For the 1.0- and 2.0 wt% solutions, the high 
frequency limit of about 200 rad/s (maximum frequency achievable by used ARES II 
rheometer, for detailed specifications refer to chapter 8.2.2) again, is not large enough to enter 
the plateau regime of the storage modulus, means that the network parameters are not 
accessible for both concentrations without extrapolation.  

As shown in Fig. 106, comparison of the shear viscosity η  and the complex viscosity 
η∗  via the Cox-Merz plot yields higher values for the shear viscosity of the sample hmHEC 2. 
This is due to the fact, that the structure build-up resulting in higher values of the viscosity via 
hydrophobic interactions is a shear induced phenomenon. The SAOS experiment does not 
“see” this effect of shear thickening, thus the complex viscosity shows lower values. 
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Figure 106: Comparison of shear viscosity η  and complex viscosity η∗  for both investigated 
hmHECs at different concentrations in water at 25°C. 

 

6.2.3 Uniaxial Deformation 

6.2.3.1 Influence of concentration 

To point out the influence of the concentration on the break-up behaviour of the 
investigated methylhydroxyethyl celluloses, the results for uniaxial elongation are shown in 
Fig. 107 for the 1.0 wt% solutions and in Fig. 108 for the 2.0 wt% solutions in 2.0 wt% 
NaOH. The results of the elongational experiments of the purly aqueous solutions are not 
presented here, because the influence of aggregated structures on the break-up behaviour is 
far more explicit than on the steady shear - or oscillatory shear characteristics.  

The aggregated structures in the non-molecularly dispersed MHEC solutions lead to 
yielding points that are too strong to be “cracked” by the surface trension driven flow, 
meaning that if the surface tension of the investigated fluid is not big enough, the filament 
remains at a defined constant diameter. 
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Figure 107: Normalized filament diameter D/D0 versus time for the investigated 
methylhydroxyethyl celluloses 1-10 in 2 wt% NaOH (1.0 wt%) at 20°C. 

As one can see in Fig. 107, the same trend as for the steady shear flow experiments for 
the same MHEC solutions (compare 6.2.1 for details) is observed in capillary break-up. 
Whereas the yielding points led to an increase in shear viscosity η  for shear flow 
experiments, the same yielding points result in stationary filament diameters for the same 
solutions in elongational flow. After this plateau region, the filament collapses because of the 
growing stress in the axial direction of the filament and the diameter decreases instantly. 
However, in addition to the yielding stresses one observes no “smooth” evolutions of the 
filament diameters with time for the 1.0 wt% solutions. This may be due to the very short time 
scales of the experiments, the longest break-up time for the sample MHEC 10 is about 10-1 s. 
For this time scale, surface effects like the migrating behaviour of the polymer coils to the 
surface of the filament to repeatingly refresh the surface are not neglectible. Another 
influencing parameter is that MHEC is a surface active substance via the hydrophobic 
methylgroups. This leads to inhomogenieties on a molecular scale, again leading to 
everything but a perfect behaviour in capillary break-up. 
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Figure 108: Normalized filament diameter D/D0 versus time for the investigated 
methylhydroxyethyl celluloses 1-10 in 2 wt% NaOH (2.0 wt%) at 20°C. 

Compared to Fig. 107, the results for the 2.0 wt% solutions of the same MHECs in 2.0 
wt% NaOH shown in Fig. 108 do exhibit a far nicer behaviour in capillary break-up. The 
concentration is ample enough to over compensate the effects induced by the yielding points 
already discussed in chapter 6.2.1. In addition to this, the absolute break-up times of the 
experiment increase pronouncly compared to the break-up times observed in Fig. 107, the 
longest break-up time is in the order of 4 s for the sample MHEC 10, surface build-up does 
not disturb the experiment anymore, because its time scale is of no relevance for the filament 
evolution.  

As the data for both concentrations implicate, the broadness of the molar mass 
distributions shown in chapter 5.2 seem to have an influence on the bereak-up behaviour in 
uniaxial elongation. A detailed look at this importrant issue is given in the next chapter. 



134  6 Results and Discussion  

 

 

6.2.3.2 Influence of molar mass/ molar mass distribution  

Since the influence of the width of the MMD on the elongational behaviour of 
polymer fluids was already discussed on polystyrene standards in chapter 6.1.3.2 the same 
should apply for the investigated MHECs. 

To point out the influence of the molar mass or the molar mass distribution on the 
break-up behaviour of the investigated methyhydroxyethyl celluloses three samples with long 
break-up times and pronounced differences in the molar mass distribution were chosen for 
deeper analysis. The absolute molar masses and their distributions were determined for the 
investigated commercial MHECs 6, 7 and 10 to correlate the results with the elongational 
behaviour. Determination of the absolute molar masses and the molar mass distributions was 
achieved via coupled methods of size exclusion chromatography (SEC), multi angle laser 
light scattering (MALLS) and differential refractometer (DRI) [154] (see chapter 3.2.3 for 
details). The results of the light scattering experiments for the three different MHECs are 
shown in Fig. 109 in terms of the differential molar mass distributions. 
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Figure 109: Differential molar mass distributions achieved via combined means of 
SEC/MALLS/DRI for selected MHECs 6, 7 and 10 (for experimental conditions see chapter 
8.2). 

As shown in Fig. 109 the sample MHEC 10 exhibits the broadest distribution of the 
molar mass that also is close to being bimodular. The other two samples MHEC 6 and MHEC 
7 follow up with MHEC 6 having a broader distribution than MHEC 7; all three samples have 
very similar weight average molar masses. The determined mean values of the molar mass 
distribution and the polydispersity indices for the investigated MHECs were already listed in 
Table 3 (see chapter 5.2 for details). For a better overview, the very same mean values are 
listed together with the recovery rates of the SEC for the three here investigated MHEC 
samples in Table 14. The recovery rate is the fraction of polymer that reaches the differential 
refractometer based on the amount of polymer that was originally injected. 
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Table 14: Mean molar masses and recovery rates for the investigated MHECs 6, 7 and 10. 

Sample Mw 

Kg/mol 

Mw/Mn Mz 

Kg/mol 

Recovery Rate 

wt% 

6 323 2,9 655 79 

7 294 2,5 577 70 

10 341 3,5 738 74 

 

As one can see from Table 14 the weight-average molar masses Mw are very close 
together for the three samples, it varies around 300 kg/mol, whereas the polydispersity index 
Mw/Mn varies from 2.5 for the sample MHEC 7 to 3.5 for the sample MHEC 10. Another very 
important measure for the broadness of the molar mass distribution is the z-average molar 
mass Mz. This mean value represents the standard mean value used that describes the high 
molar mass tail of the distribution best. As one can see, this parameter increases in the same 
manner as the polydispersity indices do for the three samples from 577 kg/mol for the 
narrowest distributed sample MHEC 7 to 738 kg/mol for the broadest distributed of the three 
samples, MHEC 10. 

The results of steady shear flow experiments for these three investigated MHECs at 
2.0 wt% in 2 wt % NaOH are shown in Fig. 110 together with the Carreau fits of the flow 
curves according to the modified Carreau model [102] (see Eq. 149 for details). The obtained 
relaxation times are listed together with the other Carreau parameters in Table 15.  

 
Table 15: Carreau parameters for the investigated MHECs 6, 7 and 10. 

Sample η0 

/ Pas 

τ0 Carreau  

/ s 

b n 

6 12.8 0.18 0.53 -0.70 

7 7.9 0.17 0.53 -0.61 

10 9.3 0.17 0.53 -0.65 

 

As one can see in Fig. 110 and Table 15, the differences in the molar mass distribution 
of the methylhydroxyethyl celluloses do not reflect in the results for steady shear flow. The 
zero-shear viscosities 0η  show very mucthe same values, they balance from 7.9 -12.8 Pas. 
However, most significant for the fit parameters is the constant value for the longest 
relaxation time of shear flow 0τ  at 0.17 s and for the transition parameter b of 0.53. 
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Figure 110: Shear viscosity η  versus shear rate γ�  for selected methylhydroxyethyl celluloses 
6, 7 and 10 in 2 wt% NaOH (2.0 wt%) at 20°C. 

This transition parameter b is a direct measure for the width of the molar mass 
distribution of a polymer, but here it fails to confirm the results of the light scattering 
experiments shown in Fig. 109. This is due to the fact that in the past b was discussed to be 
just a insufficient measure for the broadness of the distribution [141], another reason for the 
failure to predict a trend in the broadnes of the distribution is that the distributions are still 
quiet alike each other, only differing in the high molar mass tail. The transition parameter b 
therefore is no sensitive measure for the MMD, another method than steady shear has to be 
consulted to get quantitative information instead. 

As one could already see in chapter 6.2.3.1, uniaxial elongation is an appropriate 
means to determine differences in flow behaviour between the investigated MHEC samples. 
To point out the influence of the MMD on the elongational behaviour of the MHECs, Fig. 111 
shows the results of the CaBER experiments for the samples MHEC 6, 7 and 10 at 2.0 wt% in 
2 wt% NaOH instead of the full set of samples as shown in Fig. 108. 



  6 Results and Discussion 137 

 

10-2

10-1

100

6420

 MHEC 10   
 Fit to Eq. 75 
 MHEC 6    
 Fit to Eq. 75 
 MHEC 7   
 Fit to Eq. 75

D
 / 

D
0

t / s
 

Figure 111: Normalized filament diameter D/D0 versus time for selected methylhydroxyethyl 
celluloses 6, 7 and 10 in 2 wt% NaOH (2.0 wt%) at 20°C. The three lines represent the 
respective fits according to Eq. 81 for the three MHECs. 

However the determined MMDs shown in Fig. 109 do not correlate with the results for 
uniaxial elongation for the MHECs shown in Fig. 111, because sample MHEC 10 with the 
broadest distribution and hence the highest ratio of high molecular weight polymer does not 
show the longest breakup time. Instead, as shown in Fig. 111 the sample MHEC 7 with the 
narrowest distribution shows the longest breakup time.  

As shown in Table 14, the ratios of recovery for the light scattering experiments 
indicate a rather large amount of not molecularly dispersed sample that is seperated from the 
solution by filtration and the following pre- columns, especially for the sample MHEC 7 with 
about 30 wt%. To adjust the sample preparation for the CaBER experiments to the sample 
preparation for the light scattering measurements the MHEC solutions were centrifuged and 
again examined via CaBER measurements. The results are shown in Fig. 112.  
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Figure 112: Normalized filament diameter D/D0 versus time for selected methylhydroxyethyl 
celluloses 6, 7 and 10 in 2 wt% NaOH (2.0 wt%) after centrifugation at 20°C. The three lines 
represent the respective fits according to Eq. 81 fot the three MHECs. 

In contrast to Fig. 111 the centrifuged samples show the order in breakup times 
expected from the distributions determined with light scattering. Sample MHEC 10 with the 
broadest MMD shows the longest breakup time sample MHEC 7 with the narrowest MMD 
the shortest breakup time. The results of the CaBER experiments and the results of light 
scattering can thus be correlated with the same sample preparation, because in both cases only 
the molecularly dispersed fraction of the sample is characterized. The relaxation times 
evaluated from Figs. 111 and 112 via Eq. 81 are listed together with the relaxation times of 
the non-centrifuged samples in Table 16. 

 
Table 16: Longest relaxation times 0τ  of uniaxial elongation for MHECs 6, 7 and 10. 

Sample τ0  CaBER 

/ s 

centrifuged 

τ0  CaBER 

/ s 

Non centrifuged 

10 1.14 1.12 

6 1.08 0.92 

7 0.98 1.85 

 

As one can see from Fig. 111 and Fig. 112 as well as from Table 16 the relaxation 
times show pronounced differences for the three here investigated MHEC samples, as it was 
expected in regards of their MMDs. 
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Comparing the breakup behaviour of the molecularly dispersed samples of MHEC to 
the polystyrene blends (see chapter 6.1.3 for detail) one can observe differences in the shape 
of the curves. Whereas the polystyrene blends show a steady thinning in the semi-log plot of 
Fig. 89 in accordance with Eq. 81, for late times the MHECs show a sudden increase in the 
thinning rate and a fast breakup. Stelter et al. [29] showed that the elongational behaviour of 
polymer solutions differs for ionic or non-ionic polymers. The main reason for this is that 
ionic polymers form more rigid and therefore more expanded polymer coils than non-ionic 
polymers of the same molar mass. This results in shorter breakup-times because the coils are 
closer to their finite extensibility. This effect results qualitativly in different shapes of the 
curves shown in Fig. 111 and Fig. 112 for the rigid MHECs and in Fig. 89 for the more 
flexible polystyrenes. Stelter et al. also showed that this effect quantitativly results in two 
distinct 

0,E t τη  dependencies for flexible or rigid like behaviour where ,E tη  refers to the 
terminal elongational viscosity that is obtained once the polymer chains have reached their 
finite extensibility limit [29]. In Fig. 114 the steady state terminal elongational viscosity is 
ploted versus the relaxation times for the investigated polymers. The terminal elongational 
viscosity ,E tη  has been determined from the general transient elongational viscosity 

/E
middD dt

ση −
=         (Eq. 179) 

that has been extrapolated at late times to its time independent limit. As can be seen in 
Fig. 113 the transient elongational viscosity Eη +  does not reach its equilibrium state in the 
regime of Henckey strains that yield reasonable results. 
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Figure 113: Apparent elongational viscosity Eη +  versus Hencky strain ε  for the investigated 
MHECs 6, 7 and 10 at 2.0 wt% in 2 wt% NaOH at 25°C. 

As Fig. 113 also shows, do the three MHEC solutions behave like a Newtonian fluid 
until a Henckey strain of about 2.2. The elongational viscosity observed at these early times is 
independent of the strain and shows values aroung 0.7 Pas, less than the zero-shear viscosities 
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shown in Fig. 110. This is due to the fact that gthe centrifuged samples are examined here in 
the CaBER experiment, whereas the aggregated structures count for the zero-shear viscosity. 
After a Hencky strain of four, the transient elongatinal viscosities decrease again (not shown 
in Fig. 113), because the time dependent derivation of the filament diameter (see Eq. 179 for 
the definition of the elongational viscosity) does not yield reasonable results. 
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Figure 114: Comparison of two distinct 0/Eη τ+  dependencies for flexible (1) or rigid like 
behaviour (2) according to Stelter et al. [29] to experimental data. 

Fig. 114 shows that the polystyrene blends in diethylphthalate correspond well to the 
behaviour of flexible polymers in elongational flows observed by Stelter et al. (line 1). In 
comparison to this the MHECs in NaOH show the expected lower values for 

0,E t τη  since 
they are much more rigid. However, these values do not fit the trend for rigid like behaviour 
found by Stelter et al. which is diagrammed by line 2 in Fig. 114, but even lower values. 
Nevertheless, a linear trend can be observed for the relaxation times of the MHEC solutions 
(line 3 in Fig. 114). The shift of the linear trend to higher relaxation times is probably due to 
higher concentrations used in this work and an even greater expansion due to the ionization by 
the NaOH. As the concentrations used for the MHEC solutions are relativly high (2.0 wt%) a 
structure buildup via hydrogen bonding may be an issue even though NaOH is used as 
asolvent. These aggregates may have great influence on the elongational behaviour of the 
MHEC solutions even in the centrifuged state and superpose the results obtained for the single 
polymer coil.  

However, the absolute measured MMDs of the MHECs can be consulted to evaluate 

the ratio 0

0,M

τ
τ

 qualitatively according to Eq. 176. With the CaBER relaxation times (see Table 

16) uniform values for 0,Mτ  should be the result if Eq. 176 is also valid for the MHECs. The 
evaluated values for 0,Mτ  are listed in Table 17 for the MHECs 6, 7 and 10. 

 



  6 Results and Discussion 141 

 

Table 17: Longest relaxation times 0τ  of uniaxial elongation for MHECs 6, 7 and 10. 

Sample τ0,M theor. 

/ s 

10 0.140 

6 0.136 

7 0.134 

 

As table 17 shows, the theoretical predicted longest relaxation times for a hypothetical 
monodisperse MHEC sample are in good agreement with each other. In addition to this the 
calculated longest relaxation time 0,Mτ  is in fairly good agreement with the longest relaxation 
times for shear flow predicted by the modified Carreau model as shown in Fig. 110 and Tab. 
15. 

To verify the results obtained for the MHECs in regards to the molar mass 
distribution, the investigated hmHECs were also characterized via CaBER experiments as can 
be seeen in Figs. 115 and 116.  
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Figure 115: Normalized filament diameter D/D0 versus time for selected hydrophobically 
modified hydroxyethyl celluloses (hmHEC) 1 and 4 in water (2.0 wt%) as raw solutions and 
after centrifugation at 20°C. 

As can be seen in chapter 5.3, the molar mass distributions of the two samples are 
considerably different from each other. Whereas both samples show approx. the same weight-
average molar mass wM  of about 270 kg/mol, sample hmHEC 1 is the much broader 
distributed polymer ( / 2.6w nM M =  in comparison to 1.3 for the sample hmHEC 2), showing 
an almost bimodal distribution. This result suggests that this sample was blended from two 
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different cellulose pulps, whereas the sample hmHEC 2 was synthezised from one 
homogenous cellulose sample. The high molar mass tail of the molar mass (see Fig. 43 for 
details) has an even more distinctive influence on the break-up behaviour as for the MHECs. 
As one can see in Figs. 115 and 116, the broader distributed sample hmHEC 1 shows a break-
up time of about 80 s in the uncentrifuged state, that is about 20 times higher as the break-up 
time of the same sample after centrifugation. The aggregated structures in solution again slow 
down the break-up process very much. However, the high molar mass fraction of the sample 
hmHEC 1 seems to have great influence on the gelation behaviour, because for the sample 
hmHEC 2 the difference between non-centrifuged and centrifuged solution is not as 
pronounced. 
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D
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Figure 116: Normalized filament diameter D/D0 versus time for selected hydrophobically 
modified hydroxyethyl celluloses (hmHEC) 1 and 4 in water (2.0 wt%) as raw solutions and 
after centrifugation at 20°C. 
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7 Outlook 

In recent years rheology made a big leap forward by introduction of rheometers that 
worked, although presenting a new level of robustness, with increasing sensitivity and 
accuracy. To take advantage of rheology as an analytical method that allows for the detection 
of an overall picture of the visco-elasticity of a polymer fluid, all three different types of strain 
available, steady shear flow, small amplitude oscillatory shear and elongation, have to be 
utilized. However, for elongational rheology one major problem existed for the last decades, 
since only polymer melts could be characterized satisfactorily. 

As it could be shown in this work the new method of uniaxial elongation in capillary 
break-up is the right means to easily monitor elastic phenomena in the non-Newtonian flow 
regime of polymer solutions. This applies since capillary break-up establishes, in contrast to 
previously introduced methods of elongational rheology, a surface tension controlled flow 
field. For this special case the Weissenberg number We naturally chooses a value of 2/3 [69] 
independently of the investigated polymer fluid, ensuring that the critical Weissenberg 
number of 1/2 for the onset of non-Newtonian flow behaviour [86] is exceeded. This effect 
can be utilized in the future to monitor the relevant elongational material functions for a 
whole range of polymer containing formulations in technical applications, where elongational 
flow fields play a major role. Especially in application fields for cosmetic, pharmaceutical and 
medical industry, where complex fluids are utilized for body care- and health care products 
e.g. uniaxial elongation in capillary break-up should be the proper method to obtain the 
information needed to prevent unwanted flow anomalies like filament build-up, squirting and 
spattering.  

In regards of the concentration dependence of the longest relaxation times of 
ultradilute polymer solutions in uniaxial elongation, a correlation of the gradient m for the 

relation 0
m

z

c
c

τ
τ ∗

⎛ ⎞
⎜ ⎟
⎝ ⎠
∼  to the solvent quality of the investigated system is an issue that is still to 

be clarified. Whereas m for polystyrene in DEP was found to be 0.58, the value of m 
increased for the near theta solvent styrene oligomer to a value of 0.89. The future discussion 
of this issue should also take into account the possibility of increasing long range interactions 
due to the polymeric nature of the solvent in the boger fluids. 

In terms of the influence of the molar mass distribution on the elongational behaviour 
of polymer solutions there also is still questions to be clarified in the future. The scaling law 
determined for the investigated polystyrene blends and blended MHECs is to be dicusssed via 
other polymer-solvent systems, especially water soluble biopolymers. 
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8 Appendix 

8.1 Abbreviations 

8.1.1 Latin letters 

a exponent of the [η]-M-relationship  

A area, Eyring coefficient 

A2 2. virial coefficient  

A3 3. virial coefficient 

b bond length 

B1, B2, Bn constants of the virial equation 

Bo Bond number 

c concentration 

C∞ characteristic ratio 

c* critical concentration of polymer coil overlap 

c*
[η] critical concentration of viscosimetry 

c*
LS critical concentration of light scattering 

c⋅[η] overlap parameter 

d diameter of a polymer coil 

D capillary diameter, filament diameter 

D0 initial filament diameter 

De Deborah number 

DIN German industrial standards 

DRI differential rhefractometer 

Eq. equation 

f function 

F force, sphere factor of the visco-balance 

Fig. figure 

g gravity constant 

h height, cylinder height 

∆h correction factor of cylinder height 

hmHEC hydrophobically modified hydroxyethyl cellulose 

ISO International Organization for Standardization 
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IUPAC International Union of Pure and Applied Chemistry 

K constant, constant of the capillary viscosimeter 

Kb known capillary constant 

KFS Fuoss constant 

K[η] constant of the Kuhn-Mark-Houwink-Sakurada equation ([η]-

M-equation) 

KH Huggins constant 

Kn constant of the [η]-M-equation determined with number average 

molar masses 

KSB Schulz-Blaschke constant 

Kw constant of the [η]-M-equation determined with mass average 

molar masses 

KMHS Kuhn-Mark-Houwink-Sakurada equation 

l length, capillary length 

Lp persistence length 

m correction factor of the Hagenbach correction 

mcoil mass of a single polymer coil 

mi mass of fraction i 

mpolymer mass of the polymer 

M molar mass,  

Mn number average molar mass 

Mu molar mass of a monomer unit 

Mw weight average molar mass 

Mz centrifuge average molar mass 

Mη viscosity average molar mass 

M1, M2 start and end marks at capillary and falling sphere viscosimeters, 

molar mass of different solvent components 

Mg mega (106) gramms  

MALLS multi angle laser light scattering 

MHEC methylhydroxyethyl cellulose 

MMD molar mass distribution (new for MMD) 

MWD molecular weight distribution (obsolete term for MMD) 

n number, rotational frequency 

N number of bonds in a polymer chain 
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NA Avogadro number 

NaN3 sodium azide 

NaOH sodium hydroxide 

NaNO3 sodium nitrate 

Oh Ohnesorge number 

p pressure 

∆p pressure difference 

pH reciprocal hydrogen ion concentration 

P degree of polymerization 

PEO polyethyleneoxide 

PS polystyrene 

q polydispersity correction factor 

qn polydispersity correction factor for number average molar 

masses 

qw polydispersity correction factor for mass average molar masses 

Q polydispersity 

r radius of a sphere 

‹r2›1/2 average end-to-end distance 

ro end-to-end distance of a polymer coil with unperturbed 

dimensions 

roo end-to-end distance of a freely jointed chain 

R radius, gas constant 

RG radius of gyration 

RG,θ radius of gyration at theta-condition 

RH,θ hydrodynamic radius at theta-conditions 

Rs radius of the shaft 

Rsph equivalent radius of a hard sphere 

R1, R2, R3, R4 Radii of the double gap fixture 

Re Reynolds number 

SEC size exclusion chromatography 

t time 

tb flow time in a capillary visc. with a known capillary constant 

tsolution characteristic measurement time of a polymer solution 

tsolvent characteristic measurement time of the solvent 
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tmin minimum flow time 

T temperature, torque 

υ velocity 

∆υ velocity difference 

V volume 

Vcoil equivalent volume of a single polymer coil in solution 

Vpolymer volume of polymer in solution (equivalent fraction) 

Vsolvent volume of free solvent 

w(M) fraction of molar mass 

xi molar fraction 

x, y, z direction in space 

wi mass fraction 

y1, y2 fraction (w1, xi or φi) 

 

8.1.2 Greek symbols 

α cone angle 

αRG expansion factor for the radius of gyration 

α3
[η] expansion factor for the intrinsic viscosity 

ε correction factor of the Flory constant for non-theta-conditions, 

Henckey strain 

φ, φi volume fraction 

Φ Flory constant 

Φθ Flory constant at theta-condition 

γ�  shear rate 

γ� crit critical shear rate of the onset of non-Newtonian flow behavior 

γ� max maximum shear rate 

ϑ Hagenbach correction 

η dynamic viscosity 

[η] intrinsic viscosity, limiting viscosity number 

η0 zero shear viscosity 

η1, η2 viscosity of different solvent components 

ηi relative viscosity increment 
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ηp polymer viscosity 

ηs solvent viscosity 

ηt time dependent viscosity 

ηsp specific viscosity 

ηr relative viscosity 

ν kinematic viscosity, Flory exponent (exponent of the RG-M-

relationship) 

θ theta-condition, torsion angle 

ρ density 

ρ1, ρ2 density of different solvent components 

ρequ equivalent density (density of the polymer coil in the solution 

conformation without the solvent) 

ρsolution solution density 

ρsolvent solvent density 

σ shear stress, hindrance parameter 

τ bond angle, relaxation time 

ω angular frequency 

ξ radius conversion factor 

ζ correction factor for short range rotational interactions 
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8.2 Experimental Section 

8.2.1 Sample preparation 

The methylhydroxyethylcelluloses (MHEC) used were made available from Wolff 
Cellulosics GmbH (Walsrode, Germany). The investigated hmHECs were provided by 
Beiersdorf AG (Hamburg, Germany). The polystyrenes (1.8 Mio. g/mol with PDI = 1.02 and 
6.0 Mio. g/mol with PDI=1.22) came from Polysciences Inc. and the molecular weights and 
PDIs were verified by SEC with a multi-angle light scattering detector. The other polystyrene 
standards used for this work where acquired from polymer laboratories (PL) and Polymer 
Standard Sevices (PSS). The given molar masses were also stated to be crosschecked via 
SEC/MALLS/DRI 

Preparation of the polystyrene solutions was done by solving the respective amount of 
polymer in the accordant solvent. Homogenization was achieved by permanent agitation over 
a period of time not shorter than, at least 7 days (polystyrene in diethylphthalate, toluene or t-
decalin) with alternating temperature or at least 60 days for Boger fluids (polystyrene in 
styrene oligomere). The solutions were prepared by adding the polymer to the oligomer 
(degased Picolastic A-5, Fxsupply, USA) at room temperature (1.8 M - 0.166wt% and 6.0 M - 
0.107wt %). The samples were placed in an oven at 100°C, without stirring, until the polymer 
dissolved (1-2 weeks). The experimental concentrations were achieved by diluting the above 
samples with Picolastic A-5. 

Preparation of the MHEC solutions was achieved by solving the respective amount of 
polymer in the accordant solvent (2.0 wt% NaOH). Homogenization was achieved by 
permanent agitation over a period of time not shorter than 3 days. 

All concentrations stated are in wt%. 

 

8.2.2 Mechanical rheometry 

Intrinsic viscosities [η] where determined with an Ubbelohde micro capillary Ic 
(polystyrene) or IIc (MHEC, hmHEC) in a watertub temperated at 25.0 ± 0.05 °C.  

Steady shear flow and SAOS measurements where achieved on a rate controlled 
rheometer of the type Ares II (torque: 4⋅10-7 bis 0.01 N⋅m, TA Instruments) with cone and 
plate geometries (50 mm diameter, 4° cone angle). Elongational characterization was carried 
out on a CaBER (capillary breakup elongational rheometer) device (ThermoHaake, 
Germany). All measurements were carried out at 25°C (298 K, RT). 

 

8.2.3 SEC/MALLS/DRI 

The solvent for elution was prepared by water that was filtered with ionic exchange 
columns (Adsorber, Universal and Research, Novodirect, Kehl/Rh.) and addition of 200 ppm 
NaN3 (sodium azide) as bacericide and 0.1 mol/l NaNO3 (sodium nitrate) as low molecular 
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electrolyte. Filtrating of this solvent was achieved with a cellulosic filter of a pore size of 0.1 
µm (Sartorius GmbH, Germany). 

The solvent was advanced with a HPLC-pump (Gynkotek, Germany) with a flow rate 
of 0.513 ml/min.  

Degasing was done on-line with a Degasser ERC 3315a (ERC, Germany). 

Determination of the molar mass and its distribution of the MHECs was achieved 
using a combined method of size exclusion chromatography (SEC, 4 columns TSK PWXL: 
G3000, G4000, G5000 & G6000, ToSoHass), multi-angle laser light scattering (MALLS, 
DAWN-F light scattering photometer, Wyatt Technology) and differential refractometer 
(DRI, Showa Denko). 
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