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Abstract

The Two-Higgs-Doublet-Standard Model-Axion-Seesaw-Higgs-Portal Inflation
(2hdSMASH) model containing two Higgs doublets, a Standard Model (SM) singlet
complex scalar and three SM singlet right-handed Majorana neutrinos addresses the
following shortcomings of the SM: i) dark matter by axions, ii) strong CP problem by
the Peccei-Quinn mechanism, iii) neutrino masses and mixing by the seesaw mecha-
nism, iv) baryon asymmetry by thermal leptogenesis and v) inflation by Higgs portal
inflation. In this thesis we investigate the inflationary aspects of 2hdSMASH and its
subsequent impact on low energy phenomenology. In particular, we identify four
inflationary directions whose parameter values required for successful inflation do
not violate perturbative unitarity and vacuum stability conditions. By analyzing
the Renormalization-Group (RG) flow of the parameters we identify the constraints
from thermal leptogenesis, baryon asymmetry, vacuum stability, perturbative uni-
tarity and Higgs phenomenology. Satisfying all of these constraints ensures a con-
sistent picture of our universe from the electroweak all the way up to the Planck
scale. We determine typical benchmark points satisfying theoretical and experimen-
tal constraints which can be potentially probed by future colliders.
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Zusammenfassung

Das Two-Higgs-Doublet-Standard Model-Axion-Seesaw-Higgs-Portal Inflation (2hd
SMASH) Modell, das zwei Higgs-Dubletts, ein komplexes skalares Standard Modell
(SM) Singlet und drei rechtshändige SM-Singlett-Majorana-Neutrinos enthält, be-
hebt die folgenden Mängel des SM: i) dunkle Materie durch Axionen, ii) starkes
CP-Problem durch den Peccei-Quinn-Mechanismus, iii) Neutrinomassen durch den
Seesaw-Mechanismus, iv ) Baryonen-Asymmetrie durch thermische Leptogenese und
v) Inflation durch Higgs-Portal-Inflation. In dieser Dissertation untersuchen wir die
inflationären Aspekte von 2hdSMASH und ihre daraus resultierenden Auswirkun-
gen auf die niederenergetische Phänomenologie. Insbesondere identifizieren wir
vier Inflationsrichtungen, deren für eine erfolgreiche Inflation erforderlichen Param-
eterwerte, die Bedingungen der perturbativen Unitarität und der Vakuumstabilität
nicht verletzen. Durch die Analyse des Renormierungsgruppen (RG)-Flusses der
Parameter identifizieren wir die Beschränkungen durch thermische Leptogenese,
Baryon-Asymmetrie, Vakuumstabilität, perturbative Unitarität und Higgs Phäno-
menologie. Die Erfüllung all dieser Beschränkungen gewährleistet ein konsistentes
Bild unseres Universums von der elektroschwachen bis hin zur Planck-Skala. Wir
bestimmen typische Benchmark-Punkte, die mit theoretischen und experimentellen
Beschränkungen vereinbar sind und potenziell mit zukünftigen Teilchenbeschleu-
nigern untersucht werden können.
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1. Introduction

The Higgs Boson discovery in 2012 by the ATLAS [1] and CMS [2] collaborations
brought a lot of excitement into the field of particle physics. Its existence was pre-
dicted by P. Higgs, T.W.B. Kibble, G. S. Guralnik, F. Englert and R. Brout in 1964
[3, 4, 5], who were able to explain with the so-called Brout-Englert-Higgs-mechanism
(BEH-mechanism) how the masses of elementary particles were generated. Within
its theoretical and experimental bounds it is compatible with the Standard Model
(SM) of particle physics. However, the Higgs Boson is by no means a completion of
the SM and compatible with Beyond the Standard Model (BSM) physics. In fact, the
SM is lacking an explanation for the following phenomena:

1) The non-observation of strong CP-violation

2) Non-baryonic dark matter (DM)

3) Neutrino masses and mixing

4) Baryon asymmetry of the universe (BAU)

5) inflation

A minimal extension of the SM which is capable of solving all five of these short-
comings in one smash [6, 7] consists of three SM singlet right-handed neutrinos and
a Kim-Shifman-Vainshtein-Zakharov (KSVZ) type axion model [8, 9] involving an
exotic quark and a complex SM singlet scalar. This model is dubbed SM-Axion-
Seesaw-Higgs Portal inflation (SMASH) and features a solution to 1) by the Peccei-
Quinn (PQ) mechanism [10], 2) by axion dark matter [11, 12, 13], 3) by the seesaw
mechanism [14, 15, 16, 17], 4) by thermal leptogenesis [18], and 5) by Higgs portal
inflation [19, 20]. SMASH is remarkably predictive and provides a complete model
from particle physics to inflationary cosmology.

A possible variant of SMASH is dubbed Two-Higgs-Doublet-SM-Axion-Seesaw-Higgs-
Portal inflation (2hdSMASH) which was superficially introduced in Ref. [21]. The
2hdSMASH model entertains two Higgs doublets, a complex SM singlet PQ scalar
and three SM singlet right-handed Majorana neutrinos. This SMASH variant differs
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by replacing the KSVZ axion model by a Dine-Fischler-Srednicki-Zhitnitsky (DFSZ)
axion model [22, 23] without an additional exotic quark.

There are in general two versions, namely 2hdSMASH(d) and 2hdSMASH(u) which
correspond to a Type-I DFSZ and Type-II DFSZ model. Both versions differ by
whether leptons couple to the down-type Higgs Hd or to the up-type Higgs Hu. The
former is capable of being embedded into familiar Grand-Unified-Theories (GUTs).
Henceforth, we describe 2hdSMASH(d) when we talk about the model.

Originally, 2hdSMASH was proposed in Refs. [24, 25] which explained neutrino
masses, baryogenesis, the strong CP problem, and dark matter. In Ref. [25] it was
therefore dubbed ‘Neutrino-DFSZ’ (νDFSZ) model to account for the extension with
right-handed neutrinos. In this thesis, we add inflation to the νDFSZ model in order
to give a complete model for particle physics and cosmology.

Outline and Contribution

After a briew review of SMASH in chapter 2 we introduce 2hdSMASH in chapter 3
by discussing and deriving its features in detail. The field- and particle content of
2hdSMASH is discussed in sections 3.1-3.2 which serve as a review of the field- and
particle content of the νDFSZ model discussed in Refs. [24, 25]. In section 3.3 we
specify the scalar masses which include three neutral CP-even scalars (the SM-like
Higgs h, the heavy Higgs H and the PQ-scalar s), two charged CP-even Higgses H±,
one CP-odd Higgs A and the axion a. All masses, except for the axion, have been
stated in Ref. [26] but weren’t derived in detail, which we do in appendix B with the
help of Refs. [26, 27]. In section 3.4 we discuss the neutrino masses which are in ac-
cordance with the seesaw mechanism of Refs. [14, 15, 17, 28]. In section 3.5, we state
the theoretical constraints which are specified by the Boundedness-from-Below (BfB)
and perturbative unitarity conditons, derived in appendix C. The BfB conditions de-
rived in appendix C.1 are in agreement with Refs. [29, 30, 31]. In appendix C.2 we
derive the perturbative unitarity conditions by using a Mathematica package of
ScannerS, cf. Ref. [32], whose procedure follows Ref. [33]. The results obtained for
the perturbative unitarity conditions in 2hdSMASH could not be fully compared to
any reference so far but were partially verified with Ref. [34]. In section 3.6, we re-
iterate the naturalness philosophy stated in Refs. [25, 35] and adopt it to our model.
In sections 3.7-3.8 we derive the matching of 2hdSMASH to its effective low energy
theory and the subsequent alignment limit in order to account for a SM-like Higgs.
The former has been superficially discussed in Refs. [26, 34] while the latter has been
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discussed in the context of the 2HDM in Ref. [36]. Both in combination have only
been superficially shown in Ref. [25] but not worked out in detail as we do. In sec-
tion 3.9 we discuss the intricacies of the scalar mass spectrum and its dependencies
on the parameter space. The discussion has been partially adopted from Ref. [26]
and combined with the concepts of Ref. [25] to serve the purpose of acquiring pa-
rameter space which is compatible with inflation.

Chapters 4-5 are the main chapters of this thesis and discuss inflation and its con-
nection to particle phenomenology, which has not been discussed in any reference
in the context of the νDFSZ model.

Chapter 4 introduces inflationary cosmology in 2hdSMASH and its wide range of
realizations. Sections 4.1-4.2 serve as motivation and introduction to inflationary cos-
mology and are based on the reviews of Refs. [37, 38, 39, 40]. In section 4.3 we specify
the various inflationary scenarios, i.e. 2HDM-inflation (THI), PQ-inflation (PQI) and
mixed PQ-2HDM inflation (PQTHI). The inflationary quantities, i.e. parameters and
observables, are derived in appendix D which contribute to the understanding of
effective single field inflation and are attributed to the various inflationary scenar-
ios. THI has been discussed in detail by Refs. [41, 42] and was briefly discussed in
Ref. [43] in the context of the DFSZ model. We supplement this discussion by in-
cluding the inflationary conditions and predictions in detail. Moreover, we explain
that THI contradicts our naturalness philosophy with regard to non-minimal infla-
tion for which the non-minimal couplings should be generated radiatively. We adopt
this concept of non-minimal inflation from Refs. [7, 6, 21, 44]. Consequently we dis-
cuss in section 4.3.2 the four main inflationary scenarios, i.e. PQI and PQTHI. These
inflationary realizations in the context of the νDFSZ model do not exist in current
literature. In particular we find an inflationary single field direction which is com-
posed by three field space directions. This has not been discussed in any reference
to date.

In chapter 5, we connect inflation with particle phenomenology by means of RG-
running. Sections 5.1-5.4 discuss the various intricacies of RG-running and RG-
analysis in order to satisfy the inflationary constraints at the Planck scale while re-
maining vacuum stable and perturbative. Within this analysis we include thermal
leptogenesis and BAU with regard to neutrino masses and its implications to RG-
running. Our RG-analysis considers all constraints and provides analytical under-
standing and expressions for the RG running parameters. Subsequently, we produce
benchmark points of the accumulated analysis which we discuss in section 5.5 with
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regard to its phenomenological viability. The RG-analysis with regard to inflation
in the νDFSZ model has not been covered by any reference so far. In chapter 6 we
conclude and discuss our results.
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2. Brief Review of SMASH

This review is based on the review [21] and serves as an introduction to the original
model proposed in Refs. [6, 7] from which 2hdSMASH originates. In the following
we quote the content of Refs. [6, 7, 21] on SMASH.

The Standard-Model-Axion-Seesaw-Higgs portal inflation (SMASH) model [6, 7] is
a minimal extension of the Standard Model (SM). It consists of three right handed
SM-singlet neutrinos Ni, with i = 1, 2, 3, a vector-like Dirac fermion Q which trans-
forms under the SM-gauge group SU(3)C × SU(2)L × U(1)Y as (3, 1,−1/3) or as
(3, 1, 2/3) and is based on a KSVZ-type axion model [8, 9] involving a complex SM-
singlet scalar σ. SMASH is charged under a global U(1)PQ symmetry given in table
2.1, cf. Ref. [7]. The most general scalar potential of SMASH featuring a global
U(1)PQ symmetry is given by

V(H, σ) = λH

(
H†H − v2

2

)2

+ λσ

(
|σ|2 − v2

σ

2

)2

+ 2λHσ

(
H†H − v2

2

)(
|σ|2 − v2

σ

2

)
,

(2.1)

with scalar fields

H =

(
G+(x)

1√
2
(h(x) + v + iG0(x))

)
, (2.2)

σ(x) =
1√
2
(ρ(x) + vσ)eia(x)/vσ , (2.3)

where h(x) is the SM-like Higgs, ρ(x) is the PQ-scalar, a(x) is the axion field, G±(x)
and G0(x) are the Goldstone modes which get "eaten" by the W±- and Z bosons,
respectively. The vacuum expectation values (VEVs) are given by

〈H†H〉 = v2/2 , 〈|σ|2〉 = v2
σ/2 , (2.4)

with v = 246 GeV as the electroweak VEV and vσ as the PQ-breaking scale. The
vacuum structure given by the VEVs is protected for λH,σ > 0 and λ2

Hσ < λHλσ.
Furthermore, the VEVs follow a hierarchy, i.e. vσ/v� 1, which causes the PQ-scalar
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q u d L N E Q Q̃ σ

1/2 −1/2 −1/2 1/2 −1/2 −1/2 −1/2 −1/2 1

Table 2.1.: SMASH charge assignments under U(1)PQ and U(1)L symmetries. This
table is taken from Ref. [7].

(saxion) to acquire a large mass

mρ =
√

2λσvσ +O
(

v
vσ

)
, (2.5)

whereas the axion acquires a tiny mass after the QCD phase transition,

ma ≡
√

χ0

fa
' mπ fπ

fa

√
mumd

mu + md
, (2.6)

with χ0 as the QCD topological susceptibility, mπ and fπ as the neutral pion mass
and its decay constant and mu,d as the masses of the lightest quarks, cf. Ref. [21].
Here, fa is the axion decay constant which is related to vσ via

fa ≡ vσ/NDW (2.7)

with NDW = 1 resulting in fa = vσ.

The fermion sector is represented by the most general Yukawa interaction of SMASH
cf. Ref. [7]

L ⊃−
[

YuijqiεHuj + YdijqiH†dj + GijLiH†Ej + FijLiεHNj +
1
2

YijσNiNj

+ y Q̃σQ + yQd iσQdi + h.c.

]
,

(2.8)

where SM-like interactions are supplemented by mass terms for the new quark Q
and for Dirac- and Majorana neutrinos. The Dirac neutrino masses are generated via
the type-I Seesaw mechanism where the smallness is explained by the hierarchy of
scales vσ/v� 1, i.e.

mν = −F Y−1 FT
√

2
v2

vσ
(2.9)
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Figure 2.1.: SMASH’s complete expansion history of the universe for HHSI. This
figure is taken from Ref. [7].

while the Majorana neutrinos and the extra quark acquire very large masses in com-
parison, cf. Ref. [7]

Mij =
Yij√

2
vσ +O

(
v
vσ

)
, mQ =

y√
2

vσ +O
(

v
vσ

)
(2.10)

In SMASH, the complex scalar singlet σ is non-minimally coupled to gravity, i.e. to
the Ricci scalar R via ξσ,

S ⊃ −
∫

d4x
√
−g ξσ σ∗σ R . (2.11)

which provides the possibility for inflation, cf. Ref. [6, 7, 21]. Here, the non-
minimal coupling ξσ can be generated radiatively in a Friedman-Robertson-Walker
background. Realizations of inflation in SMASH are based on two inflationary tra-
jectories, where inflation can go along the Hidden-Scalar direction (HSI) or along
the mixed Higgs-Hidden-Scalar direction (HHSI) which is featured by λHσ > 0 or
λHσ < 0, respectively. After inflation ended, SMASH provides an easy expansion
history of the universe where the universe expands radiation-like during preheating
and reheating, as can be seen in figure 2.1, cf. Ref. [6, 7, 21]. For HHSI, the PQ
symmetry is non-thermally restored by the end of preheating. This occurs below the
reheating temperature of approximately TR ∼ 1012 − 1013 GeV, cf. Ref. [45].
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3. The 2hdSMASH Model

In this chapter, we introduce the 2hdSMASH model which is a SMASH variant and
is based on a νDFSZ-type axion model. First and foremost, we specify its field- and
particle content in sections 3.1-3.2 which serves as a review of the νDFSZ proposed
in Refs. [24, 25]. In section 3.3 we provide the scalar masses of the 2hdSMASH scalar
particle spectrum, which include three neutral CP-even scalars (h, H, s), two charged
CP-even scalars (H±) and two CP-odd scalars (A, a). We identify a as the DFSZ QCD
axion which acquires a mass after the QCD phase transition. The other scalar masses
are rigorously derived in appendix B where we approximate the mass expressions
of the three neutral CP-even scalars by a second order expansion. These mass ex-
pressions are numerically verified to an accuracy of more than the digits shown in
this thesis. In section 3.4 we state the type-I seesaw formulae providing Dirac- and
Majorana neutrino masses. In section 3.5 we discuss theoretical constraints which
we derive in appendix C. These involve tree-level Boundedness-from-Below (BfB)
and perturbative unitarity conditions which guarantee vacuum stability in a pertur-
bative model. We use these conditions in chapter 4 and particularly in chapter 5
when considering RG running. In section 3.6 we introduce our naturalness philos-
ophy which we adopted from Refs. [25, 35]. Sections 3.7-3.8 serve the purpose of
matching 2hdSMASH to its effective low energy theory which is then matched to
the SM by means of the alignment limit in order to reproduce SM-like interactions of
the 125-GeV neutral Higgs boson. In section 3.9 we discuss the characteristics of the
scalar mass spectrum and its interesting features with regard to possible signatures
at the High Luminosity Large-Hadron-Collider (HL-LHC) or future colliders.

3.1. Field content and PQ symmetry

The 2hdSMASH model is a SMASH-variant and serves as an extension of the SM
where the scalar sector features a complex SM-singlet scalar field S and a type-II
2HDM with two SU(2)L Higgs doublets Φi, i = 1, 2. Furthermore, the SM fermion
sector is extended by three right handed neutrinos NR,i for which Dirac- and Ma-
jorana neutrinos are generated via the type-I Seesaw mechanism. The model is
charged under a global U(1)PQ-Symmetry and provides an "invisible" axion which
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resembles the νDFSZ axion model (see Ref. [25]). The corresponding PQ-charges of
our theory are distributed among the fields as shown in table 3.1. The most general

Field S Φ1 Φ2 qL uR dR lL NR eR
Charge XS X1 X2 Xq Xu Xd Xl XN Xe
Value 1 − 2x

1+x
2

1+x 0 2
1+x

2x
1+x

3
2 −

2
1+x -1

2
7
2 −

4
1+x

Table 3.1.: Charges of fields under the PQ symmetry [25]. Here x ≡ tan2 β.

renormalizable scalar potential invariant under U(1)PQ symmetry transformations
is then given by [25]:

V(Φ1, Φ2, S) = M2
11 Φ†

1Φ1 + M2
22 Φ†

2Φ2 + M2
SS S∗S (3.1)

+
λ1

2

(
Φ†

1Φ1

)2
+

λ2

2

(
Φ†

2Φ2

)2
+

λS

2
(S∗S)2

+ λ3

(
Φ†

1Φ1

) (
Φ†

2Φ2

)
+ λ4

(
Φ†

1Φ2

) (
Φ†

2Φ1

)
+ λ1S

(
Φ†

1Φ1

)
(S∗S) + λ2S

(
Φ†

2Φ2

)
(S∗S)− λ12S

(
Φ†

2Φ1S2 + h.c.
)

.

Moreover, the most general type-II 2HDM Yukawa Lagrangian extended by Dirac-
and Majorana interactions reads1 [25]:

−LY = YuqLΦ̃2uR + YdqLΦ1dR + YelLΦ1eR + YνlLΦ̃1NR +
1
2

yN(NR)cSNR + h.c. ,
(3.2)

where we imply family indices and denote Φ̃i ≡ iτ2Φ∗i .

3.2. Vacuum structure and particle content

The vacuum is determined by the vacuum expectation values (VEVs)

〈Φi〉 ≡
(

0, vi/
√

2
)T

, 〈S〉 ≡ vS/
√

2 (3.3)

for which the scalar potential reaches its minimum, provided that the parameters
are adequately chosen2. Combining the VEVs of the two-Higgs doublets establishes

the electroweak VEV
√

v2
1 + v2

2 ≡ v ' 246 GeV with tan β ≡ v2/v2. By comparison
the VEVs respect the hierarchy vS/v � 1. This hierarchy is essential to 2hdSMASH
since it supports a tiny DFSZ QCD-axion which we will comment on in section 3.3.2.

1Choosing another charge assignment to the right handed charged leptons, eR, one may also
realise a Flipped 2HDM in 2hdSMASH [25].

2We will discuss the theoretical constraints on these parameters in section 3.5.
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After spontaneous symmetry breaking, the two SU(2)L Higgs doublets Φi and the
complex singlet S can be expanded around their VEVs and are given by

Φi =

(
h+i

1√
2
(hi + vi + iai)

)
, S =

1√
2

s + vS + iaS . (3.4)

Counting all degrees of freedom amounts to a total of 4 + 4 + 2 = 10 spin-zero par-
ticle excitations around the vacuum. In order to account for physical particle excita-
tions of the two Higgs doublets, a basis transformation into the so-called Higgs-mass
basis is required by rotating the fields(

h1

h2

)
= Oα

(
h
H

)
,

(
a1

a2

)
= Oβ

(
A
G0

)
,

(
h+1
h+2

)
= Oβ

(
H±

G±

)
(3.5)

with transformation matrices:

OX =

(
cos (X) − sin (X)

sin (X) cos (X)

)
, X = α, β (3.6)

and by rotating the Higgs doublets(
Φ′1
Φ′2

)
=

(
cos(β) sin(β)

− sin(β) cos(β)

)(
Φ1

Φ2

)
=

(
Φ1 cos(β) + Φ2 sin(β)

−Φ1 sin(β) + Φ2 cos(β)

)
. (3.7)

As a result, we obtain the following expression for Φ′i

Φ′1 =

 H+

1√
2
(v + h cos(β− α) + H sin(β− α) + iA)

 (3.8)

Φ′2 =

 G+

1√
2

(
h sin(β− α) + H cos(β− α) + iG0)

 (3.9)

where G0 corresponds to one neutral and G± to two charged Goldstone bosons
which are later "eaten" by the Z- and W±-boson after symmetry breaking. The other
seven degrees of freedom are associated to seven particle excitations in the spectrum:
three neutral CP-even states h, H and s, two charged CP-even states H± and two CP-
odd states a and A. We identify h as the SM-like Higgs with a mass of 125 GeV, H as
the heavy Higgs, H± as the two charged Higgses, A as the pseudoscalar Higgs and a
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as the axion [46, 47]. We note in equations (3.8)-(3.9) the sine- and cosine functions of
mixing angles β− α. These functions determine whether the 2HDM reduces to the
SM, i.e. β− α ≈ π/2 via the alignment limit which we will comment on in section
3.8 for 2hdSMASH.

3.3. Masses of scalars

In the following, we will give the tree-level scalar and neutrino masses which are
calculated in detail in appendix B (see also refs. [24, 26]). Here we just quote the
results.

3.3.1. Masses of charged Higgs bosons

The tree-level masses of the charged Higgs bosons are given by

m2
H± =

1
2


(

t2
β + 1

)
λ12S

tβ
− λ4v2

v2
S

 v2
S . (3.10)

3.3.2. Masses of CP-odd scalars

One of the two CP-odd scalars is massless at tree level. It is the axion, a, the Nambu-
Goldstone boson from the breaking of the U(1)PQ symmetry [46, 47]. It acquires
non-perturbatively a small mass through mixing with the neutral pion,

ma '
√

z
1 + z

mπ fπ

fa
' 0.57 meV

(
1010 GeV

fa

)
, (3.11)

where z = mu/md is the ratio of the up- and down quark masses, mπ the pion mass,
fπ the neutral pion decay constant and fa the axion decay constant given by:

fa =

√
v2

S + 4v2
1v2

2
v2

6
. (3.12)

The axion decay constant fa and thus the PQ-scale vS ' 6 fa, is constrained by astro-
physics and cosmology. From the measured duration of the neutrino signal of the
supernova 1987A [48] a lower bound is provided for fa. An upper bound on fa is
acquired by assuming all cold dark matter consisting of axions. Hence, the PQ-scale
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in 2hdSMASH is preferably in the range

3.1× 109 GeV . vS . 5.9× 1010 GeV , for tan β . 0.5 ,

5.9× 109 GeV . vS . 5.9× 1010 GeV , for tan β & 5 . (3.13)

which we argue in appendix A. Since the hierarchy of scales is so large, i.e. vS/v� 1,
fa consists mostly of vS.

The tree-level mass of the second CP-odd scalar boson, i.e. the pseudoscalar Higgs
boson A, is given by

m2
A =

2λ12S

1 + t2
β

 v2

v2
S

tβ +

(
1 + t2

β

)2

4tβ

 v2
S . (3.14)

In order to avoid a tachyonic mass for mA, we require

λ12S ≥ 0 . (3.15)
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3.3.3. Masses of CP-even scalars

The masses of the CP-even scalars are given in units of v2
S where we expanded the

expressions for v/vS � 1 in a power series up to second order:

m2
h

v2
S
=

1(
1 + t2

β

)2

λ1 + t4
β λ2 + 2 t2

β λ34 −

(
λ1S + t2

β λ2S − 2tβλ12S

)2

λS

( v
vS

)2

(3.16)

+O
((

v
vS

)4
)

,

m2
H

v2
S

=

(
1 + t2

β

)
λ12S

2tβ
+

tβ(
1 + t2

β

)2

[
2
(
(λ1S − λ2S) tβ + λ12S

(
1− t2

β

))2

λ12S

(
1 + t2

β

)
− 2tβλS

(3.17)

+ (λ1 + λ2 − 2λ34) tβ

](
v
vS

)2

+O
((

v
vS

)4
)

,

m2
s

v2
S
= λS +

tβ(
1 + t2

β

)2

[(
λ1S + λ2St2

β − 2tβλ12S

)2

λS
(3.18)

−
2t2

β

(
(λ1S − λ2S) tβ + λ12S

(
1− t2

β

))2

λ12S

(
1 + t2

β

)
− 2tβλS

](
v
vS

)2

+O
((

v
vS

)4
)

.

The leading contribution in the series expansion, i.e. (v/vS)
0, vanishes for m2

h/v2
S

but remains for m2
H/v2

S and m2
s /v2

S. Since mh is of O(v), we can associate h as the
SM-like Higgs boson which is constrained by collider searches to 125.25± 0.17 GeV
[49]. The masses of H and s are of order vS. We checked the accuracy of the masses
shown in eqs. (3.16)-(3.18) with numerically determined eigenvalues of the squared
mass matrix given in (B.10) of appendix B. The results give an accuracy more than
the digits shown in this thesis. The rest of the discussion about the characteristics of
the scalar mass spectrum is deferred to sec. 3.9.

3.4. Masses of neutrinos

After symmetry breaking, the last two terms in eq. (3.2) give rise to the aforemen-
tioned Majorana- and Dirac neutrino mass terms, realizing the type I seesaw mech-
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anism [14, 15, 16, 17]. The neutrino mass matrix reads:

Mν =

(
03×3 MD

MT
D MM

)
=

1√
2

(
03×3 Yνv1

YT
ν v1

1
2YNvS

)
, (3.19)

where MM represents the Majorana neutrino mass matrix and MD represents the
Dirac neutrino mass matrix. The smallness of the masses of the SM active neutrinos
is thus explained by the hierarchy vS � v1:

mν = −MD M−1
M MT

D = −
YνY−1

N YT
ν√

2

v2
1

vS
. (3.20)

Assuming a diagonal ansatz for the Yukawa coupling matrix YN, we obtain the
masses for Majorana neutrino masses in a simple way

MN =
1√
2

YNv2
S +O

(
v
vS

)
. (3.21)

3.5. Theoretical constraints

In this section we provide theoretical constraints to ensure vacuum stability and per-
turbative unitarity in order to have a stable, finite and renormalizable theory. Vac-
uum stability is determined by the Boundedness-from-Below (BfB) conditions where
quartic couplings are constrained by imposing a positive scalar potential in order to
avoid tachyonic energy states in all field directions for large and small field values.

The necessary and sufficient BfB conditions are based on copositivity criteria [31,
50, 30] which we derive in appendix C.1. For now, we simply state the results of our
analytic derivation. We start with the necessary BfB conditions which are given by:

λ1 > 0 , λ2 > 0 , λ3 > −
√

λ1λ2 , λ34 > −
√

λ1λ2 ,

λS > 0 ,
√

λ1λS > λ1S > −
√

λ1λS ,
√

λ2λS > λ2S > −
√

λ2λS ,

λSλ34 − λ1Sλ2S +
√(

λ1λS − λ2
1S
) (

λ2λS − λ2
2S
)
> 0 , (3.22)

λ1S > 0 , λ2S > 0 , λ1Sλ2S − |λ12S|2 > 0 ,

where λ34 ≡ λ3 + λ4. The sufficient BfB conditions are acquired by imposing the
portal terms of the scalar potential to be positive, i.e.

VPortal
4 = λ1Sh2

1s2 + λ2Sh2
2s2 − λ12Sh1h2s2 + h.c. ≥ 0 (3.23)
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which amounts to:

λ1S ≥ 0 , λ2S ≥ 0 , λ1Sλ2S − λ2
12S ≥ 0 . (3.24)

The sufficient BfB conditions of the copositivity criteria are very restrictive. Depend-
ing on the values of the parameter set they can be, however, softened. This can be
numerically determined by use of the Mathematica package BFB from Ref. [30]
where the BfB conditions are found with the resultants method. If a parameter point
is positive (semi-)definite then it’s allowed, otherwise it’s dismissed. This will be
useful when considering inflation in section 4.3.

With the BfB conditions we have ensured a stable vacuum by avoiding tachyonic
vacuum states. In order to ensure a finite and renormalizable theory, we impose
the perturbative unitarity conditions. These are applied at low- and high energies
to prevent large divergencies and thus Landau poles which would make any theory
unpredictable. The perturbative unitarity conditions which are derived in appendix
C.2 are given by:

|λ1,2,3,1S,2S| < 8π , (3.25)

|λ3 ± λ4| < 8π , (3.26)∣∣∣∣12
(

λ1 + λ2 ±
√
(λ1 − λ2)

2 + 4λ2
4

)∣∣∣∣ < 8π , (3.27)∣∣∣∣12
(

λ1S + λ2S ±
√

16λ2
12S + (λ1S − λ2S)

2
)∣∣∣∣ < 8π , (3.28)∣∣∣∣12

(
λ3 + 2λ4 + λS ±

√
16λ2

12S + (λ3 + 2λ4 − λS)
2
)∣∣∣∣ < 8π , (3.29)

1
2
|k1,2,3| < 8π . (3.30)

Furthermore, we consider the perturbative unitarity constraints for the Yukawa cou-
plings Yu,d,e of the type-I DFSZ model which affect tan β ≡ v2/v1. The bounds on
tan β are thus given by Ref. [51]:

0.25 . tan β . 170 . (3.31)

3.6. Naturalness philosophy

According to Refs. [25, 24, 35, 36] there are technically natural limits associated with
enhanced Poincaré symmetries for extended Higgs and/or neutrino models. In par-
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ticular, the νDFSZ model hosts a variety of parameters which are technically natural
to be small, cf. [25, 35]. We adopt these considerations to our naturalness philosophy
by applying them to 2hdSMASH. Henceforth, we will consider the portal couplings
λ1S, λ2S and λ12S, as well as the Yukawa couplings Yν and YN to be naturally small,
such that λ1S,2S,12S, YN,ν → 0 follows. This leads to the enhanced Poincaré symme-
try Gν

P × G2HDM
P × GS

P effectively decoupling the 2HDM from the neutrino- and PQ-
sector below the matching scale determined by the PQ-scalar mass ms cf. Ref. [25].
This enhanced Poincaré symmetry protects the electroweak scale from large radia-
tive quantum corrections. We can identify two subsystems with the aforementioned
natural limits. The limit YN,ν, λ12S → 0 reinstates the U(1)L-symmetry associated
with lepton number, which we can associate with an enhanced Poincaré symmetry
Gν

P×GDFSZ
P where νR decouples from the DFSZ. Furthermore, the limit λ1S,2S,12S → 0

decouples the ν2HDM- from the PQ-sector, leading to the enhanced Poincaré sym-
metry Gν2HDM

P ×GS
P. Moreover, we will consider in chapter 4 inflation in 2hdSMASH

where the PQ-scalar s will be non-minimally coupled to gravity via the non-minimal
coupling ξS. We require that ξS to be radiatively generated, i.e. ξS . 1, which we
adopt to our naturalness philosophy from Refs. [44, 52, 7].

3.7. Matching to 2HDM

In this section we show that the full high energy theory of 2hdSMASH reduces to
a softly broken U(1)-symmetric ν2HDM low-energy theory where the extra U(1)L-
symmetry can be associated with lepton number caused by a technically natural
limit for YN, Yν, λ12S → 0, cf. [25]. As discussed in section 3.6, we consider the limit
λ1S,2S,12S, YN,ν → 0 corresponding to the enhanced Poincaré symmetry
Gν

P × G2HDM
P × GS

P which protects the electroweak scale from large radiative correc-
tions, cf. [35, 25]. We will motivate these consideration by matching 2hdSMASH
at the matching scale ms to its low-energy theory where we show that tiny portal
couplings will prove to protect the electroweak scale. Therefore, we consider the
equation of motion of s at zero momentum at ms:

∂V
∂s

= 0 ⇒ s2 = −
h2

1λ1S

λS
+

2h1h2λ12S

λS
− h2

2λ2S

λS
−

2M2
SS

λS
. (3.32)
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By considering now the scalar potential with s at zero momentum, i.e. integrating s
out, we obtain the threshold corrected scalar potential:

V =
h2

1
2

(
M2

11 −
λ1S M2

SS
λS

)
+

h2
2

2

(
M2

22 −
λ2S M2

SS
λS

)
+

λ12S M2
SS

2λS
h1h2

(
h2

1λ1S + h2
2λ2S

M2
SS

+ 2

)
(3.33)

+
h4

1
8

(
λ1 −

λ2
1S

λS

)
+

h4
2

8

(
λ2 −

λ2
2S

λS

)
+

h2
1h2

2
4

(
λ34 −

λ1Sλ2S + 2λ2
12S

λS

)
−

M2
SS

2λS
.

The third quadratic term of eq. (3.33) constitutes a non-linear term given by the
coupling λ12S. By taking into account that h2

1λ1S + h2
2λ2S � M2

SS ∼ m2
s we can

approximate the terms as follows:

λ12SM2
SS

2λS
h1h2

(
h2

1λ1S + h2
2λ2S

M2
SS

+ 2

)
≈

λ12SM2
SS

λS
h1h2 . (3.34)

Therefore, the scalar potential can be approximated to:

V ' h2
1

2

(
M2

11 −
λ1S M2

SS
λS

)
+

h2
2

2

(
M2

22 −
λ2S M2

SS
λS

)
+

λ12S M2
SS

λS
h1h2 (3.35)

+
h4

1
8

(
λ1 −

λ2
1S

λS

)
+

h4
2

8

(
λ2 −

λ2
2S

λS

)
+

h2
1h2

2
4

(
λ34 −

λ1Sλ2S + 2λ2
12S

λS

)
−

M4
SS

2λS
.

The corresponding threshold corrections for the matching of 2hdSMASH to its ef-
fective low energy theory can be read off:

M̄2
11,22 =

(
M2

11,22 −
λ1S,2SM2

SS
λS

)
, (3.36)

M̄2
12 = 2λ12SM2

SS , (3.37)

λ̄1,2 =

(
λ1,2 −

λ2
1S,2S

λS

)
, (3.38)

λ̄34 =

(
λ34 −

λ1sλ2s + 2ε2

λs

)
, (3.39)

which represents a softly broken U(1)-symmetric 2HDM. The tadpole equation for
M2

SS is calculated by:

∂V
∂s

!
= 0 ⇒ M2

SS =
1
2

(
−λ1Sv2

1 + 2v1v2λ12S − λ2Sv2
2 − λSv2

S

)
. (3.40)
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The VEVs v1,2,S follow a hierarchy, namely v2
S � v2

1,2. Hence, the tadpole equation
M2

SS can be approximated as follows:

M2
SS =

v2
S

2

(
−λ1S

v2
1

v2
S
+ 2

v1v2

v2
S

λ12S − λ2S
v2

2
v2

S
− λS

)
v2

S�v2
1,2≈ −

λSv2
S

2
. (3.41)

Finally, the threshold corrected scalar potential of the effective low-energy theory is
acquired and reads:

V ' h2
1

2

(
M2

11 +
λ1Sv2

S
2

)
+

h2
2

2

(
M2

22 +
λ2Sv2

S
2

)
−

h1h2λ12Sv2
S

2
(3.42)

+
h4

1
8

(
λ1 −

λ2
1S

λS

)
+

h4
2

8

(
λ2 −

λ2
2S

λS

)
+

h2
1h2

2
4

(
λ34 −

λ1Sλ2S + 2λ2
12S

λS

)
,

where the effective mass term ms '
λSv4

S
8 was omitted. The following coupling

associations for the effective low-energy theory are thus given by:

m2
11,22 =

(
M2

11,22 +
λ1S,2Sv2

S
2

)
m2

12 = λ12Sv2
S

λ̄1,2 =

(
λ1,2 −

λ2
1S,2S

λS

)
(3.43)

λ̄34 =

(
λ34 −

λ1Sλ2S + 2λ2
12S

λS

)

M2
SS ' −

λSv2
S

2

where M2
SS is related to the aforementioned matching-scale via ms '

√
−2M2

SS. The
threshold corrections are negligible, i.e. λ2

iS/λS � 1. Therefore, the effective low
energy theory of a softly broken U(1)-symmetric 2HDM has approximately the fol-
lowing scalar potential Vν2HDM:

Vν2HDM 'm2
11|Φ1|2 + m2

22|Φ2|2 −m2
12

(
Φ†

1Φ2 + Φ†
2Φ1

)
(3.44)

+
λ1

2
|Φ1|4 +

λ2

2
|Φ2|4 + λ3 |Φ1|2 |Φ2|2 + λ4

(
Φ†

1Φ2

) (
Φ†

2Φ1

)
.
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3.8. Alignment limit

From our discussion on the particle content in section 3.2, we arrived at the align-
ment limit by considering the two Higgs doublets in the Higgs-mass-basis. The
alignment limit describes in an extended Higgs sector, such as the 2HDM, the limit
to a SM-like Higgs boson which reproduces SM-like couplings. In order to account
for SM-like interactions in 2hdSMASH, we need to match the effective low energy
theory, i.e. ν2HDM, from section 3.7 to the SM by computing the alignment limit
where β − α ≈ π/2. We do this in two-steps: a) we express the neutral CP-even
squared mass matrix for the case of 2HDM matching; b) we perform the alignment
limit in the context of the 2HDM (see Ref.[36]), thus showing that 2hdSMASH repro-
duces SM-like Higgs boson interactions.

Hence, we start with the most general scalar potential of 2hdSMASH:

V(Φ1, Φ2, S) =M2
11 |Φ1|2 + M2

22 |Φ2|2 + M2
SS |S|

2 (3.45)

+
1
2

λ1 |Φ1|4 +
1
2

λ2 |Φ2|4 + λ3 |Φ1|2 |Φ2|2 + λ4

(
Φ†

1Φ2

) (
Φ†

2Φ1

)
+

1
2

λS |S|4 + λ1S |Φ1|2 |S|2 + λ2S |Φ2|2 |S|2 − λ12S

(
Φ†

1Φ2S2 + Φ†
2Φ1S∗2

)
which leads to the most general neutral CP-even squared scalar mass matrix:

M2
0+ = (3.46)
1
2

(
2M2

11 + 3λ1v2
1 + v2

2(λ3 + λ4) + λ1Sv2
S

)
v1v2(λ3 + λ4)−

v2
Sλ12S

2 λ1Sv1vS − v2vSλ12S

v1v2(λ3 + λ4)−
v2

S λ12S
2

1
2

(
2M2

22 + v2
1(λ3 + λ4) + 3λ2v2

2 + λ2Sv2
S

)
λ2Sv2vS − v1vSλ12S

λ1Sv1vS − v2vSλ12S λ2Sv2vS − v1vSλ12S
1
2

(
2M2

SS + λ1Sv2
1 − 2v1v2λ12S + λ2Sv2

2 + 3λSv2
S

)


with the tadpole equations:

M2
11 = −

−v2v2
Sλ12S + v3

1λ1 + v1v2
Sλ1S + v1v2

2λ34

2v1
, (3.47)

M2
22 = −

−v1v2
Sλ12S + v3

2λ2 + v2v2
Sλ2S + v2v2

1λ34

2v2
, (3.48)

M2
SS =

1
2

(
2v1v2λ12S − v2

1λ1S − v2
2λ2S − v2

SλS

)
, (3.49)
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for which we get:

M2
0+ =


λ1v2

1 +
v2v2

Sλ12S
2v1

v1v2(λ3 + λ4)−
v2

Sλ12S
2 λ1Sv1vS − v2vSλ12S

v1v2(λ3 + λ4)−
v2

Sλ12S
2

v1v2
Sλ12S

2v2
+ λ2v2

2 λ2Sv2vS − v1vSλ12S

λ1Sv1vS − v2vSλ12S λ2Sv2vS − v1vSλ12S λSv2
S

 .

(3.50)

By matching 2hdSMASH with its effective low-energy theory given by the soft U(1)-
symmetric ν2HDM, we can write down the corresponding scalar potential with thresh-
old corrections:

V̄ ' h2
1

2

(
m2

11 +
λ1Sv2

S
2

)
+

h2
2

2

(
m2

22 +
λ2Sv2

S
2

)
−

h1h2λ12Sv2
S

2
(3.51)

+
h4

1
8

(
λ1 −

λ2
1S

λS

)
+

h4
2

8

(
λ2 −

λ2
2S

λS

)
+

h2
1h2

2
4

(
λ34 −

λ1Sλ2S + 2λ2
12S

λS

)
,

with the following squared mass matrix:

M2
0+ '


1
2

(
2m2

11 + 3v2
1

(
λ1 −

λ2
1S

λS

)
+ v2

2

(
λ34 −

λ1S λ2S+2λ2
12S

λS

)
+ λ1Sv2

S

)
v1v2

(
λ34 −

λ1Sλ2S+2λ2
12S

λS

)
−

v2
Sλ12S

2

v1v2

(
λ34 −

λ1S λ2S+2λ2
12S

λS

)
−

v2
S λ12S

2
1
2

(
2m2

22 + 3v2
2

(
λ2 −

λ2
2S

λS

)
+ v2

1

(
λ34 −

λ1Sλ2S+2λ2
12S

λS

)
+ λ2Sv2

S

)
 . (3.52)

For simplicity we make the association λ̃ij = λij − λ2
ijS/λS as discussed in eq. (3.43).

The squared mass matrix is then given by:

M̃2
0+ =

(
m2

11 +
1
2

(
3λ̃1v2

1 + λ̃34v2
2
)

λ̃34v1v2 −m2
12

λ̃34v1v2 −m2
12 m2

22 +
1
2

(
λ̃34v2

1 + 3λ2v2
2
)) (3.53)

with m2
12 = λ12SvS/2. With a 2× 2-rotation matrix R:

R =

(
cos α − sin α

sin α cos α

)
, (3.54)

we diagonalize the above squared mass matrix of eq. (3.53)

D2
0+ ≡ diag

(
m2

H, m2
h

)
= R†M2

0+R , (3.55)

for which we obtain the following condition to determine tan 2α:

(
D2

0+

)
1,2

!
= 0 ⇒ tan 2α =

2M2
12√

M2
11 −M2

22

, (3.56)
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whereMij ≡
(
M2

0+
)

i,j. Hence, we can also determine cos 2α and sin 2α:

cos 2α =
M2

11 −M2
22√(

M2
11 −M2

22
)2

+ 4M4
12

, (3.57)

sin 2α =
2M2

12√(
M2

11 −M2
22
)2

+ 4M4
12

. (3.58)

The alignment limit is given by cos (α− β) ' 0, which we can determine with:

cos2 (α− β) =
1
2
(1 + cos (2β) cos (2α) + sin (2β) sin (2α)) . (3.59)

The expressions for cos 2β and sin 2β are:

cos 2β =
v2

1 − v2
2

v2
1 + v2

2
, (3.60)

sin 2β =
2v1v2

v2
1 + v2

2
, (3.61)

which gives us the following expression for cos (α− β):

cos2 (α− β) = (3.62)(
v2

1 + v2
2
)√

(M2
11 −M2

22)
2 + 4M4

12 + (M2
11 −M2

22)(v1 − v2)(v1 + v2) + 4M2
12v1v2

2
(
v2

1 + v2
2
)√

(M2
11 −M2

22)
2 + 4M4

12

.

By inserting the expressions for the matrix elements Mij into cos2 (α− β) of eq.
(3.62), we obtain:

cos2 (α− β) = (3.63)(
v2

1 + v2
2
)√ 1

4

(
2m2

11 − 2m2
22 + v2

1(3λ̃1 − λ̃34) + v2
2(λ̃34 − 3λ̃2)

)2
+ 4(m2

12 − λ̃34v1v2)2

2
(
v2

1 + v2
2

)√ 1
4

(
2m2

11 − 2m2
22 + v2

1(3λ̃1 − λ̃34) + v2
2(λ̃34 − 3λ̃2)

)2
+ 4(m2

12 − λ̃34v1v2)2

+
1
2 (v1 − v2)(v1 + v2)

(
2m2

11 − 2m2
22 + v2

1(3λ̃1 − λ̃34) + v2
2(λ̃34 − 3λ̃2)

)
+ 4v1v2(λ̃34v1v2 −m2

12)

2
(
v2

1 + v2
2

)√ 1
4

(
2m2

11 − 2m2
22 + v2

1(3λ̃1 − λ̃34) + v2
2(λ̃34 − 3λ̃2)

)2
+ 4(m2

12 − λ̃34v1v2)2
.
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Since, we are only considering tan β in the range 5 . tan β . 170, we acquire
v2 � v1. The 2HDM tadpole equations are given by:

m2
11 =

v3
1
(
λ2

1S − λ1λS
)
+ v1v2

2
(
λ1Sλ2S − λ34λS + 2λ2

12S
)
− λ1SλSv1v2

S + λSv2v2
Sλ12S

2λSv1
,

(3.64)

m2
22 =

v3
2
(
λ2

2S − λ2λS
)
+ v2v2

1
(
λ2Sλ1S − λ34λS + 2λ2

12S
)
− λ2SλSv2v2

S + λSv1v2
Sλ12S

2λSv2
,

(3.65)

which we can approximate with v2
S � v2 � v1 as follows:

m2
11 '

m2
12v2

v1
− 1

2
v2

2λ̃34 ⇒ v1 '
m2

12
m2

11

v2(
1 + λ̃34v2

2
2m2

11

) , (3.66)

m2
22 ' −

λ̃2v2
2

2
, (3.67)

where m2
22 < 0. Similar as in Ref.[36], we get a naturally small v1 which also accom-

modates small Dirac neutrino masses via the type-I seesaw mechanism3. Consider-
ing that λ12S → 0 as discussed in sections 3.6 and 3.7, we utilize the technically natu-

ral limit given by m2
12

m2
11
� 1 for m2

12 ' λ12Sv2
S. This limit restores the U(1)L-symmetry.

Hence, we get with x ≡ m2
12

m2
11
� 1 the following expression for cos2 (α− β):

cos2 (α− β) = (3.68)

− 1
2

((
λ̃34v2

2
2m2

11
+ 1
)2

− x2

)(
λ̃2

34v6
2(λ̃34−2λ̃2)

8m6
11

+
λ̃34v4

2(3λ̃34−4λ̃2)

4m4
11

+
v2

2(3λ̃34−2λ̃2)

2m2
11

+
v2

2x2(3λ̃1−λ̃34)

2m2
11

+ 1
)

(
λ̃34v2

2
2m2

11
+ 1
)4

 x2(
λ̃34v2

2
2m2

11
+1

)2 + 1



√√√√√√√√√√√√√


v2

2

−2λ̃2+λ̃34+
x2(3λ̃1−λ̃34)(

λ̃34v2
2

2m4
11

+1

)2


2m2

11
+ 1



2

+
4x2

(
1−

λ̃34v2
2

2m2
11

)2

(
λ̃34v2

2
2m2

11
+1

)2

+

1
2

(
λ̃34v2

2
2m2

11
+ 1
)2
((

λ̃34v2
2

2m2
11

+ 1
)2

+ x2

)
√√√√√√√√√√√√√


v2

2

−2λ̃2+λ̃34+
x2(3λ̃1−λ̃34)(

λ̃34v2
2

2m2
11

+1

)2


2m2

11
+ 1



2

+
4x2

(
1−

λ̃34v2
2

2m2
11

)2

(
λ̃34v2

2
2m2

11
+1

)2 − 2x2
(

1− λ̃34v2
2

2m2
11

)(
λ̃34v2

2
2m2

11
+ 1
)2

(
λ̃34v2

2
2m2

11
+ 1
)4

 x2(
λ̃34v2

2
2m2

11
+1

)2 + 1



√√√√√√√√√√√√√


v2

2

−2λ̃2+λ̃34+
x2(3λ̃1−λ̃34)(

λ̃34v2
2

2m4
11

+1

)2


2m2

11
+ 1



2

+
4x2

(
1−

λ̃34v2
2

2m2
11

)2

(
λ̃34v2

2
2m2

11
+1

)2

,

3We note that Φ1 and Φ2 of Ref. [36] are switched compared to our notation.
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which we can expand in a Taylor-series for x0 = 0 up to second order:

cos2 (α− β) ≈
m4

12

m4
11

v4
2

m4
11

(λ̃2 − λ̃34)
2(

1 + v2
2

2m2
11

λ̃34

)2 (
1− v2

2
2m2

11
(2λ̃2 − λ̃34)

)2 (3.69)

≈
v4

1

v4
2

4(λ̃2 − λ̃34)
2(

λ12S
v2

S
v2

2
− λ̃2

v1
v2

)2 , (3.70)

where in the last step we recovered m2
11 and m2

12. We can show that this expression
goes to zero with a double suppression given by an approximate U(1)-symmetry
m2

12
m̄2

11
� 1 and by the decoupling limit v2/v1 � 1 (cf. Ref.[36])

cos2 (α− β) ≈
4(λ̃2 − λ̃34)

2v4
1

λ2
12Sv4

S
−→ 0 . (3.71)

This result reflects that 2hdSMASH accommodates a SM-like Higgs boson with SM-
like interactions in the low-energy limit.

3.9. Characteristics of the scalar mass spectrum

In order to satisfy the cosmological and astrophysical constraints, cf. (3.13), we re-
quire a hierarchy of scales vS/v � 1 which implies the mass spectrum to follow the
same hierarchy:

i) a very light axion a which scales like ma ∝ 1/vS;

ii) a light neutral CP-even Higgs h identified as the SM-like Higgs which scales
like mh ∝ v;

iii) heavy neutral CP-even Higgs H, CP-odd Higgs A and charged Higgses H±

which scale like mH,A,H± ∝ vS.

The mass of the light Higgs as stated in i) is at the electroweak scale and it has to
accommodate the LHC measurements determining its mass to be mh = 125.10± 0.14
GeV [37]. This puts stringent constraints on the quartic couplings as we can see
from eq. (3.16). In most parts, the 2HDM couplings λi, i = 1, 2, 34, will determine
the mass, while the portal couplings λiS, i = 1, 2, 12, will play a sub-dominant role
according to our naturalness philosophy discussed in section 3.6. Hence, the 2HDM
couplings have to be chosen to satisfy the measured Higgs mass. The spectrum of
the other scalars, on the other hand, strongly depend on the value of tan β, λ12S, vS



3.9. Characteristics of the scalar mass spectrum 25

and λS (see also ref. [26]). This can be seen by considering the following range of
parameter values

λ12S, λS � (v/vS)
2 ' 6× 10−16

(
1010 GeV

vS

)2

, (3.72)

where leading mass terms of eqs. (3.10), (3.14), (3.17) and (3.18) are proportional to v2
S

and dominate over the next-to-leading terms proportional to v2. As a consequence
we obtain a nearly degenerate mass spectrum of Higgses A, H± and H which are
mostly determined by tan β, λ12S and vS,

m2
A ≈ m2

H± ≈ m2
H ≈

1
2

t2
β + 1

tβ
λ12S v2

S , (3.73)

while the PQ-scalar s differs from the other scalars by the dependence of λS and vS,

m2
s ≈ λSv2

S. (3.74)

In order to illustrate this concept, we give four benchmarks points in table 3.2 with
different values for λ12S and λS. All parameters were chosen such that BfB and per-
turbative unitarity constraints are obeyed while reproducing a SM-like Higgs with a
mass of 125 GeV. Furthermore, the scalar masses were calculated with the full tree-
level expression up to order (v/vS)

2. We find good agreement by comparing the re-
sults to the approximate mass spectrum of eqs. (3.73)-(3.74), even for λ12S ' (v/vS)

2.

BP1 illustrates the extreme decoupling limit for λ12S, λS = O(1), where all extra
Higgses are at the PQ-symmetry breaking scale and decoupled from the SM. In this
region of parameter space, 2hdSMASH cannot be tested at the LHC or future collid-
ers.

BP2 provides masses of the extra Higsses in the range of ∼ 103 − 104 TeV for λ12S ∼
(v/vS) ∼ 10−8. Only the PQ-scalar s is still decoupled and has a mass around the
PQ-symmetry breaking scale for λS ∼ 1.

BP3 is phenomenologically more interesting. It illustrates that a portal coupling as
low as λ12S ∼ (v/vS)

2 ∼ 10−16 pushes the masses of the extra Higgses all the way
down to near the electroweak scale [24, 26]. Observable effects at the HL-LHC and
future colliders may be a result of this case [26].

BP4 provides in a addition to λ12S ∼ (v/vS)
2 ∼ 10−16 a tiny PQ self-coupling, i.e.
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Parameters BP1 BP2 BP3 BP4
λ1 0.1 0.1 0.1 0.1
λ2 0.258 0.258 0.258 0.258
λ3 0.54 0.54 0.54 0.54
λ4 -0.14 -0.14 -0.14 -0.14
λS 1.0 1.0 1.0 10−10

λ1S 10−15 10−15 10−15 10−15

λ2S 10−15 10−15 10−15 10−15

λ12S 0.1 2.5× 10−8 2.5× 10−16 2.5× 10−16

tan β 26 26 26 26
vS 3.0× 1010 3.0× 1010 3.0× 1010 3.0× 1010

mh (GeV) 125.1 125.1 125.1 125.1
mH (GeV) 3.4× 1010 1.7× 107 1711.5 1711.5
ms (GeV) 3.0× 1010 3.0× 1010 3.0× 1010 3.0× 105

mA (GeV) 3.4× 1010 1.7× 107 1711.5 1711.5
mH± (GeV) 3.4× 1010 1.7× 107 1712.8 1712.8

Table 3.2.: List of benchmarks considering various values of λS and λ12S for which
BfB- and perturbative unitarity constraints apply while accommodating a
125 GeV Higgs.

λS ∼ 10−10, which is required for inflation, as we will discuss in chapter 4. In this
case, the mass of the PQ-scalar s is pushed to intermediate scales between the elec-
troweak and the PQ scale, i.e.

√
λSvS ∼ 105 GeV.

By considering the range of portal couplings given in BP3 and BP4, we obtain pre-
dictions that could lead to possible signatures at colliders while being favored by
theoretical constraints. In fact, tiny values for the portal couplings provide a techni-
cally natural limit [24, 35, 25], as we discussed in section 3.6. This technically natural
limit helps stabilizing the required hierarchy of scales, i.e. the electroweak- and the
PQ-scale v/vS � 1 while protecting electroweak masses from large radiative correc-
tions. This can be seen from the following portal terms

−Lportal = λ1S

(
Φ†

1Φ1

)
(S∗S)+λ2S

(
Φ†

2Φ2

)
(S∗S)−λ12S

(
Φ†

2Φ1S2 + h.c.
)

. (3.75)

where clearly, tiny portal couplings decouple the 2HDM- from the PQ sector. Most
importantly, we note that tiny λ12S is mandatory to decouple both sectors while λ1S

and λ2S can be slightly larger, but suffciently smaller than 2HDM couplings

|λ12S| .
(

v
vS

)2

' 6× 10−16
(

1010 GeV
vS

)2

. |λ1S|, |λ2S| � λ1,2,34. (3.76)
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4. Inflationary Cosmology in
2hdSMASH

In this chapter, we will discuss inflationary cosmology in 2hdSMASH which consists
of a brief motivation to inflationary cosmology in section 4.1 and a short introduction
to single field inflation in section 4.2. In section 4.3 we introduce the general infla-
tionary setup in 2hdSMASH which is described by an effective single field model
allowing for seven single field directions. In section 4.3.1 we consider the three sin-
gle field directions for 2HDM inflation where we comment on the need to describe
inflation in the PQ- or mixed PQ-2HDM directions. This will be discussed in section
4.3.2 where the other four field directions are described in the context of PQ- (PQI)
and mixed PQ-2HDM inflation (PQTHI).

4.1. Motivation for inflation

In the 1940s, R.A. Alpher, G. Gamow and R.C. Herman proposed the hot big bang
model and its subsequent expansion to describe the cosmological origin of elements
in the early universe1 [54, 55]. Not much later, they predicted the cosmic microwave
backgound [56, 57] which was detected 16 years later in 1964 by A.A. Penzias and
R.W. Wilson [58] and layed the foundation of the widely accepted hot big bang
model. Thereinafter, two main problems arose with the hot big bang model, namely
the horizon and flatness problem which we will discuss in the next section. As a con-
sequence, Alan Guth [53] and Alexei A. Starobinsky [59] proposed a solution in
the 1980s in which the very early universe experienced a phase of accelerated ex-
pansion termed cosmic inflation. During this period of accelerated expansion the
universe became flat, homogeneous and isotropic. Ever since, various inflationary
models aimed at describing CMB data taken by the Cosmic Background Explorer
(COBE), the Wilkinson Microwave Anisotropy Probe (WMAP) and most recently
the PLANCK satellite [60, 61].

1The information given in this paragraph was extracted from Refs. [37] and [53].
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In the following we will formulate the standard big bang model in more detail and
discuss the solution of the aforementioned problems in the context of the shrinking
Hubble sphere during inflation [38]. In particular, we view all problems associated
with the standard big bang model, i.e. horizon problem, flatness problem, entropy
and monopole problem, as part of just one problem, namely the horizon problem (see
Ref. [38] for more details). We therefore follow the general calculations done in Ref.
[38].

On large scales, our universe is homogeneous and isotropic and can therefore be de-
scribed by a 4D space-time metric with maximally symmetric space geometry. This
4D space-time metric is given by the Friedmann-Robertson-Walker (FRW) metric:

ds2 = −dt2 + a2(t)
[

dr2

1− kr2 + r2dΩ2
]

, (4.1)

where dΩ2 = dΘ2 + sin2Θ dϕ2 corresponds to the two-dimensional polar metric
and k to the curvature parameter with k = 0, 1,−1 corresponding to a flat, open and
closed universe, respectively. By defining conformal time τ via

dτ =
dt

a(t)
, (4.2)

we can study the causal structure of the FRW metric by studying the propagation of
light. Hence, we express the FRW metric in terms of conformal time

ds2 = a2(τ)

[
−dτ2 +

dr2

1− kr2 + r2dΩ2
]

, (4.3)

with a time-dependent scale factor a(τ). For light traveling radially in an isotropic
universe the FRW metric is represented by a static Minkowski metric

ds2 = a2(τ)
[
−dτ2 + dr2

]
, (4.4)

for which we consider null geodesics, i.e. ds2 = 0. This gives us the causal structure
of the FRW universe:

r(τ) ' ±τ , (4.5)

where light propagates through space in straight lines by ±45◦ angles and thus rep-
resents light cones of spacetime (see fig. 4.1). Any event outside of these light cones
is causally disconnected to the particle horizon, since all massive particles travel on
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timelike geodesics, i.e. ds2 > 0 within light cones. Massive particles which travel
spacelike, i.e. ds2 < 0 are thus causally disconnected.

Figure 4.1.: Light cones represented by light traveling on null geodesics, i.e. ds2 = 0,
through an event in four dimensional spacetime. Any region outside
these light cones is causally disconnected to the event, i.e. ds2 < 0,
whereas all causally connected massive particles in relation to the event
travel on timelike geodesics, i.e. ds2 > 0.

This can be quantified by defining the comoving particle horizon

∆r = τ − τi =
∫ t

ti

dt′

a(t′)
, (4.6)

which is the maximum distance light travels in the interval ∆t = t− ti. Here, ti = 0
and a(ti) = 0 is at the big bang singularity for which the physical particle horizon

d(t) = a(t)r (4.7)

is finite. Correspondingly, the big bang started out to be of finite size which restricted
causal contact of regions in space. This describes the horizon problem and its impor-
tant motivation for inflation.

We briefly outline this concept by considering Einstein’s field equations in general
relativity [62]. The Einstein tensor is given by

Gµν ≡ Rµν −
1
2

gµνR =
1

M2
p

Tµν (4.8)

with Ricci-tensor Rµν, Ricci-scalar R, FRW metric gµν, reduced Planck mass M2
p =
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1/8πGN and energy momentum tensor Tµν. As mentioned above, we assume an
isotropic and homogeneous universe with flat FRW metric. Therefore, we can de-
scribe the universe as perfect fluid represented by the energy momentum tensor Tµν,

Tµ
ν = gµλTλν = (ρ + p) uµuν − pδ

µ
ν , (4.9)

where ρ is the energy density and p the pressure. Since the universe is at rest in
the comoving reference frame, we can take the 4-velocity to be uµ = diag (1, 0, 0, 0)
which gives us the following energy momentum tensor

Tµ
ν = diag (ρ,−p,−p,−p) . (4.10)

From the time- and spatial components of the Einstein tensor we acquire the Fried-
mann equations:

H2 ≡
(

ȧ
a

)2

=
ρ

3
− k

a2 , (4.11)

Ḣ+H2 =
ä
a
= −1

6
(ρ + 3p) , (4.12)

whereH is the Hubble parameter. The Friedmann equations describe the expansion
and acceleration rate of the universe, respectively. By combining both Friedmann
equations we obtain the continuity equation

dρ

dt
+ 3H (ρ + p) = 0 , (4.13)

which we can reformulate into

dρ

da
= −3

a
(ρ + p) . (4.14)

Integrating both sides gives us the dependence of the energy density w.r.t. the scale
factor a

ρ ∝ a−3(1+w) (4.15)

with w ≡ p/ρ as the equation of state parameter. Depending on the energy content
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of the universe, the equation of state parameter w is given by

w =


1
3 radiation domination

0 matter domination

−1 cosmological constant Λ

. (4.16)

Since the universe can consist of a collection of energy densities, we introduce the
relative energy density

Ωi ≡
ρ0,i

ρcr
, (4.17)

where ρ0,i are the energy densities measured today and ρcr is the critical energy den-
sity given by

ρcr = 3H2
0M2

p (4.18)

with H0 as the present-day Hubble expansion rate given by H0 = 100 h km s−1

Mpc−1 and h as the Hubble parameter given by h = 0.674(5) [37]. The total relative
energy density is expressed as

Ωtot = ∑
i

Ωi + Ωk = 1 (4.19)

with the relative energy density of curvature Ωk = −k/a2
0H2

0. We can now define the
comoving Hubble radius as

(aH)−1 = H−1
0 a

1
2 (1+3w) ∝ a

1
2 (1+3w) , (4.20)

which we can use to describe the conformal time and thus the comoving particle
horizon

τ ≡
∫ t

ti

dt′

a(t′)
=
∫ a

0
d log(a) (aH)−1 . (4.21)

Evaluating this integral with comoving Hubble radius (aH)−1 ∝ a
1
2 (1+3w) will result

in the following comoving particle horizon

τ ∝ a
1
3 (1+3w) . (4.22)

For w ≥ 0 the comoving particle horizon and the comoving Hubble radius grow
monotonically with time which indicates that scales at very early times, i.e. at CMB
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decoupling, were causally disconnected and outside the comoving Hubble radius.
However, these scales which enter the horizon today are near-homogeneous which
raises the question whether this picture of the standard big bang cosmology is com-
plete. In fact, the horizon problem is really a problem of the comoving Hubble ra-
dius. Furthermore, the flatness problem is also related to the comoving Hubble ra-
dius. The time-dependent relative energy density of the universe can be expressed
with the Friedmann equation (4.11) as

1−Ω(a) = − k

(aH(a))2 , (4.23)

where Ω(a) = ρ(a)/ρcr(a) and ρcr(a) = 3H2(a). As expected, the Ω(a) also de-
pends on the comoving Hubble radius which grows monotonically with time. The
right hand side decreases therefore when going back to the big bang, which would
make the universe even more flat than today. Thus, a huge amount of fine-tuning
would be necessary to salvage this problem while being unnatural.

By solving the problem of the increasing Hubble sphere, i.e. the comoving Hubble
radius, the horizon- and flatness problem is simultaneously solved as well. Introduc-
ing an epoch where the Hubble sphere decreases, i.e. (aH)−1 decreases, at very early
times therefore solves the horizon- and flatness problem. This epoch is called cosmic
inflation and describes a period of accelerated expansion of the universe, i.e. ä > 0, at
very early times. Before inflation comoving scales where causally connected. During
inflation the Hubble sphere shrunk and comoving scales where outside the Hubble
radius. These comoving scales which enter our horizon today are thus causally dis-
connected but nearly homogeneous. The equation of state parameter w, is therefore
required to be w < −1/3 which describes negative pressure and is determined by
the condition of a shrinking comoving Hubble sphere. As a result, conformal time
goes to negative infinity when approaching the big bang singularity, i.e.

τi ∝
2

1 + 3w
a

1
2 (1+3w)
i = −∞ (4.24)

for ai = 0 and w < −1/3.
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4.2. Physics of single field inflation

We will briefly outline the physics behind single field inflation and follow the calcu-
lations done in Ref. [38].

The shrinking of the Hubble sphere is related to the Friedmann equations and sets
the following equivalent conditions for inflation

d
dt

(
1

aH

)
< 0 (4.25)

⇔ ä > 0 (4.26)

⇔ p < −ρ

3
(4.27)

⇔ ε ≡ − ḢH2 < 1 (4.28)

where accelerated expansion, negative pressure and a slowly changing Hubble rate
are described, respectively. In particular, the latter is regarded as the first slow-roll
parameter which we use as one of two main conditions for inflation. As mentioned
above, it is equivalent to the previous two descriptions. The second slow-roll param-
eter is given by

|η̃| ≡ |ε̇|Hε
< 1 , (4.29)

which describes the rate at which ε changes per Hubble time. This is taken to be
small in order to make inflation last to solve the horizon- and flatness problem. Thus,
the conditions for inflation are given by ε, |η̃| < 1.

Inflation can be realized by the dynamics of a scalar field φ, the so-called inflaton,
which is minimally coupled to Einstein gravity described by the total action

S = SEH + Sφ =
∫

d4x
√
−g
(

1
2

R +
1
2

gµν∂µφ∂νφ−V(φ)

)
(4.30)

with g as the metric and V(φ) as the scalar potential. The total action consists of the
Einstein-Hilbert action SEH and the action of the inflaton Sφ with canonical kinetic
term. In scalar field theory, the time-dependent dynamics of φ are given by the Klein-
Gordon equation

φ̈ + 3Hφ̇ + Vφ = 0 , (4.31)
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where Vφ denotes the partial derivative of the scalar potential w.r.t. to φ. The second
term is called the Hubble friction term and is determined by the Hubble rate

H2 =
1

3M2
p

(
1
2

φ̇2 + V
)

, (4.32)

where we substituted the energy density of the inflaton ρφ into the Friedmann equa-
tion for k = 0. The Hubble rate consists of kinetic energy and potential energy. By
taking the time derivative ofH and inserting this into ε we get

ε =
1
2 φ̇2

M2
pH2 � 1 , (4.33)

which states that potential energy dominates over kinetic energy during inflation.
By taking the time derivative of ε and inserting it into η we get

η̃ = 2 (ε− η) = 2
(

ε +
φ̈

Hφ̇

)
� 1 , (4.34)

where η is given by

η ≡ − φ̈

Hφ̇
� 1 . (4.35)

These slow-roll conditions w.r.t. φ can be used for the so-called slow-roll approxima-
tion. Since ε� 1, the Hubble rate is approximated by

H2 =
V

M2
p(3− ε)

≈ V
3M2

p
. (4.36)

Furthermore, ε � 1 and η � 1 lead to the approximation of the Klein-Gordon
equation

3Hφ̇ ≈ −Vφ . (4.37)

These approximations, hence, lead to the slow-roll parameters in the slow-roll ap-
proximation given by

ε ≈ εV ≡
M2

p

2

(
Vφ

V

)2

, (4.38)

η ≈ ηV − εV , (4.39)

ηV ≡ M2
p

Vφφ

V
, (4.40)
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where the latter was obtained by the time derivative of the approximated Klein-
Gordon equation.

Having explained the dynamics of inflation, we require a measure for the amount
of time between the start and the end of inflation. This is quantified by the number
of e-folds N defined by

N ≡ log
aend

ai
=
∫ tend

ti

Hdt . (4.41)

In the slow-roll approximation we can approximate the number of e-folds by

N '
∫ φend

φi

1√
2εV

dφ

Mp
, (4.42)

where the inflaton field φ acts like a clock which measures the time remaining until
inflation ends for εV = 1.

Since φ is a quantum mechanical object, i.e. a scalar field, it is subject to quan-
tum fluctuations. These quantum fluctuations around the background field φ(t) are
quantified by

φ(t)→ φ(x, t) ≡ φ(t) + δφ(x, t) . (4.43)

In particular, δφ(x, t) is responsible for local time delays during inflation. These local
time delays cause different regions of space to end inflation at different times. As a
consequence there are local energy density fluctuations δρ which lead to anisotropies
on the homogeneous background. We will briefly outline the concepts of quantum
perturbations on the inflaton φ and thus on the metric g and derive the scalar- and
tensor-perturbation amplitudes, as well as their spectral indices. In the following we
adopt the general calculations and concepts of Refs. [38, 39].

We consider the unperturbed FRW metric gµν of an homogeneous and isotropic
spacetime which is given by the following line element

ds2 = gµνdxµdxν = −dt2 + a2(t)dx2 , (4.44)
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where dx2 = δijdxidxj represents flat spatial slices. Then, the unperturbed action is
given by (4.30) and can be written as

S =
1
2

∫
d4x
√
−g

[
R− gµν∂µφ∂νφ− 2V

]
(4.45)

with Mp = 1 for simplicity. Since perturbations of the inflaton φ are connected to the
metric via Einsteins equations, this metric becomes also perturbed during inflation

gµν(t)→ gµν(x, t) = gµν(t) + δgµν(x, t) . (4.46)

These metric fluctuations are thus not independent and are described with the ADM
formalism [63]. The perturbed line element reads

ds2 = −N2dt2 + gij

(
Nidt + dxi

) (
N jdt + dxj

)
(4.47)

with N(x) as the lapse function, Ni(x) as the shift vector, and gij as the three-dimensional
metric on hypersurfaces of constant time t [39]. The action of the inflaton φ can be
written in terms of the perturbed metric of eq. (4.47) as

S =
1
2

∫ √
gN
[

R(3) − 2V + N−2
(

EijEij − E2
)
+ N−2

(
φ̇− Ni∂iφ

)2
− hij∂iφ∂jφ

]
,

(4.48)

where the 4D Ricci scalar R consists of an intrinsic curvature represented by the 3D
Ricci scalar R(3) and an extrinsic curvature represented by Kij,

Kij ≡
1

2N
(

ġij −∇iNj −∇jNi
)
≡ 1

N
Eij , (4.49)

R = R(3) + N−2
(

EijEij − E2
)

(4.50)

with E ≡ hijEij. Here, N(x) and Ni(x) act as Lagrange multipliers which are non-
dynamical and can therefore be fixed by two constraint equations

R(3) − 2V − gij∂iφ∂jφ− N2
[

EijEij − E2 −
(

φ̇− Ni∂iφ
)2
]
= 0 , (4.51)

∇i[N−1(Ei
j − Eδi

j)] = 0 . (4.52)

We are now left with φ and gij as dynamical variables and we choose the comoving
gauge2 to derive the quadratic action describing the perturbations from the metric.

2It’s also possible to choose the spatially flat gauge where all perturbations are treated by the
perturbations of the inflaton, δφ 6= 0, while the metric perturbations vanish.
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Thus, the inflaton fluctuations vanish and remain unperturbed in this gauge, i.e.

δφ = 0 , (4.53)

for which we can fix space and time reparametrizations. The perturbations on the
metric g, the lapse function N and on the shift vector Ni are given by [39]

gij = a2 (1 + 2ζ(t, x)) δij , N ≡ 1 + α(t, x) , Ni ≡ ∂iβ(t, x) , (4.54)

where we have used ζ(t, x) as the comoving curvature perturbation as gauge-invariant
quantity [38, 39]. Inserting these perturbations into the constraint equations will give
us [39, 64]

α =
ζ̇

H , ∂2β = −∂2ζ

H + a2εζ̇ , (4.55)

where ε is the first slow-roll parameter given by

ε ≡ − ḢH2 =
1
2 φ̇2

H2 . (4.56)

Applying this solution to (4.48), utilizing the equation of motion (eom) of the back-
ground and integrating by parts, the action of (4.48) can by expanded to second order
[39]

S2 =
∫

dt d3x a3ε

(
ζ̇2 − 1

a2 (∂ζ)2
)

. (4.57)

The absence of a matter term in S2 leads to the conservation of ζ outside the horizon3,
i.e. on superhorizon scales given by k � aH. This can be seen by the eom for the
Fourier modes ζk [39]

ζ̈k + (3 + η)Hζ̇k +
k2

a2 ζk = 0 (4.58)

with η as the second slow-roll parameter given by

η =
ε̇

Hε
, (4.59)

3We note that this is only true for single field inflation. In multi field settings this is not true (see
Ref. [65] for details).
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where on superhorizon scales it simplifies to

ζ̈k + (3 + η)Hζ̇k ≈ 0 . (4.60)

Thus, the comoving curvature perturbation is frozen for k � aH and stays con-
served.

By introducing a canonically normalized field v ≡ a
√

2εζ ≡ zζ, i.e. the Mukhanov
variable, we can replace ζ with v/z in the action of eq. (4.57). Varying this action will
give us the Mukhanov-Sasaki equation which is the eom for v [38, 39],

v′′k +

(
k2 − z′′

z

)
vk = 0 , (4.61)

where primes denote derivatives w.r.t. the conformal time τ and vk are the Fourier
modes given by [38, 39]

v(τ, x) =
∫ d3k

(2π)3 vk(τ)eik·x . (4.62)

In eq. (4.61) we note an effective mass [38, 39]

m2
eff ≡

z′′

z
≈ ν̃2 − 1/4

τ2 , (4.63)

which is given in the first order slow-roll approximation by [39]

ν ≈ 3
2
+ ε +

η

2
. (4.64)

Thus, the Mukhanov-Sasaki equation reads [39]

v′′k +

(
k2 − ν2 − 1/4

τ2

)
vk = 0 (4.65)

with exact solution [38, 39]

vk(τ) =
√
−τ
[
αH(1)

ν (−kτ) + αH(2)
ν (−kτ)

]
, (4.66)

where H(1,2)
ν (−kτ) are Hankel functions of first and second kind. In order to deter-

mine α and β we need initial conditions for eq. (4.66). This is obtained by consid-
ering the Mukhanov-Sasaki equation of (4.65) deep inside the Hubble radius, i.e. on



4.2. Physics of single field inflation 39

subhorizon scales k� aH where τ → −∞ [38, 39]

v′′k + k2vk = 0 , (4.67)

which resembles an ordinary differential equation of a time-independent harmonic
oscillator. Its unique solution is thus given by [38, 39]

lim
τ→−∞

vk(τ) =
e−kτ

√
2k

, (4.68)

which implies β = 0 and α =
√

π/2. This initial condition is called the Bunch-Davies
boundary condition. Hence, we obtain the Bunch-Davies mode function [39]

|vk(τ)| =
√

π

2
√
−τ

∣∣∣H(1)
ν (−kτ)

∣∣∣ kτ→0−→ 2νΓ(ν)
2
√

π

1√
k
(−kτ)−ν+1/2 (4.69)

in the limit to superhorizon scales, i.e. k � aH or equivalently kτ → 0. Hence, the
power spectrum for ζ, i.e. Pζ(k), is given in this limit by [39]

Pζ(k) ≡ lim
kτ→0

k3

2π2 |ζk(τ)|2 =
1

z2(τ)
lim

kτ→0

k3

2π2 |vk(τ)|2

=
1

2a2ε

k2

4π2 (−kτ)−2ν+1 =
1

8π2
H2(τ)

ε(τ)
(−kτ)−2ν+3 , (4.70)

where time dependencies cancel. At horizon exit the fiducial scale is of Hubble ra-
dius, i.e. k∗ = a∗H∗, which is when ζ becomes frozen and perturbations are con-
served. The comoving time is then given by τ∗ = −1/k∗ which results in [39]

Pζ(k) =
1

8π2
1
ε∗

H2
∗

M2
p

(
k
k∗

)−2ε∗−η̃∗

= As

(
k
k∗

)ns−1

(4.71)

with the scalar perturbation amplitude As and the spectral tilt ns given by [39]

As =
1

8π2
1
ε∗

H2
∗

M2
p

, (4.72)

ns = 1− 4ε∗ + 2η∗ , (4.73)
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where we used the relation η̃ = 2(ε − η). In slow-roll approximation with εV , ηV

andH2 ≈ V/3M2
p we get

As '
1

24π2
V

εV M4
p

, (4.74)

ns ' 1− 6εV + 2ηV . (4.75)

Determining the power spectrum of tensor perturbations, i.e. primordial gravita-
tional waves, is very similar to scalar perturbations. First, we consider the spatial
part of the metric, i.e. the tensor part, which is perturbed [39, 40]

gij = a2(τ)
(
δij + 2hij

)
(4.76)

with δgij = 2hij as transverse
(
∇ihij = 0

)
and traceless

(
hi

i = 0
)
. The second order

Einstein-Hilbert action is thus given by [39]

S2 =
M2

p

8

∫
dτ d3x a2

[
h′2ij − (∂hij)

2
]

. (4.77)

By making a Fourier transformation, we get the Fourier expansion of the transverse
and traceless tensor [38, 40]

hij =
∫ d3k

(2π)3 ∑
t=+,×

εs
ij(k)hk,s(τ)eik·x (4.78)

with a sum over the two polarizations "+" and "×" describing gravitational waves.
The tensor modes are arranged by εt

ii = kiεt
ij = 0 and εt

ijε
t′
ij = δtt′ . By introducing the

canonically normalized field [38, 40]

vk,t ≡
a
2

Mphk,t , (4.79)

we can rewrite the second order Einstein-Hilbert action as [38, 40]

S2 = ∑
s

1
2

∫
dτd3k

[
v′2k,t −

(
k2 − a′′

a

)
v2

k,t

]
(4.80)

with an effective mass [39]

m2
eff =

a′′

a
=

ν2 − 1/4
τ2 , (4.81)
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where ν ≈ 3/2 + ε. Hence, we get with the Bunch-Davies mode function the follow-
ing power spectrum for primordial gravitational waves [39]

Pt(k) =
2

π2
H2
∗

M2
p

(
k
k∗

)−2ε∗

= At

(
k
k∗

)nt

, (4.82)

where the factor of "2" represents the two polarization modes. The spectral index
and the tensor perturbation amplitude are given by

nt = −2ε , (4.83)

At ≡
2

π2
H2
∗

M2
p

, (4.84)

from which we can define the tensor-to-scalar ratio

r ≡ At

As
= 16ε . (4.85)
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4.3. Inflation in 2hdSMASH

Inflation in 2hdSMASH is described by chaotic inflation. Any theory with a plateau-
like scalar potential at sufficiently high field values which hosts a slow-roll regime
for the fields involved can give rise to chaotic inflation. This idea was first introduced
by Andrei Linde in Ref. [66]. In 2hdSMASH chaotic inflation is an automatic feature
where the Higgs doublets Φ1, Φ2 and the PQ-singlet S are non-minimally coupled to
the Ricci scalar R [67, 68, 69, 70, 19]. At operator mass dimension four we show the
action of 2hdSMASH in Jordan frame:

S2hdSMASH ⊃ −
∫

d4x
√
−g
(

M2

2
+ ξ1 |Φ1|2 + ξ2 |Φ2|2 + ξS |S|2

)
R, (4.86)

where ξi, i = 1, 2, S, are the dimensionless non-minimal couplings and M is the mass
which is related to the reduced Planck mass, Mp ≡ 1/

√
8πG, given by

M2 = M2
p + ξ1v2

1 + ξ2v2
2 + ξSv2

S. (4.87)

By means of metric- and scalar field transformation via the so-called Weyl transfor-
mation, we transform the action of eq. (4.86) from Jordan to Einstein frame. In Ein-
stein frame the non-minimal couplings cause the quartic potential to be asymptoti-
cally flat and convex such that a plateau-like region is created suitable for inflation.
This is true for any quartic potential and is preferred by current cosmic microwave
background (CMB) measurements [60]. We restrict ourselves to the neutral part of
the two SU(2)L doublets Φ1,2 and define the scalar fields involved in inflation as:

Φ0
1 =

h1√
2

ei·θ1 , Φ0
2 =

h2√
2

ei·θ2 , S =
s√
2

ei·θS , (4.88)

where the angular fields are expressed by θi ≡ ai/vi. The Weyl-transformation is
given by the frame function

Ω2(x) = 1 +
ξ1h2

1(x) + ξ2h2
2(x) + ξSs2(x)

M2
P

. (4.89)

Thus, we transform the metric into Einstein frame via

g̃µν(x) = Ω2(h1(x), h2(x), s(x)) gµν(x), (4.90)
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for which we obtain the action in Einstein frame relevant for inflation

S(E)
2hdSMASH ⊃

∫
d4x
√
−g̃

[
−

M2
P

2
R̃ +

1
2 ∑

i,j
Gij g̃µν∂µφi∂νφj − Ṽ(φi)

]
, (4.91)

with fields φ = (φ1, φ2, φ3, φ4, φ5, φ6) = (h1, h2, s, θ1, θ2, θS), Weyl-transformed metric
g̃µν(x) = Ω2(x)gµν(x), canonical Einstein-Hilbert action given by the graviational

term M2
P

2 R̃, induced field space metric Gij and scalar potential Ṽ(φi). The scalar po-
tential is transformed under Weyl-transformation as follows

Ṽ(φi) =
1

Ω4(φi)
V(φi) , (4.92)

where a field dependent factor of Ω−4 rescales the Jordan frame scalar potential into
the Einstein frame and makes it flat for large field values. Therefore, we neglect the
quadratic part and only consider the quartic part of the scalar potential at large field
values

Ṽquartic(h1, h2, s, θ̃1) (4.93)

=
λ1h4

1 + λ2h4
2 + λSs4 + 2

(
λ34h2

1h2
2 + λ1Sh2

1s2 + λ2Sh2
2s2 − 2λ12Sh1h2s2 cos

(
θ̃
))

8
(

1 + ξ1h2
1+ξ2h2

2+ξSs2

M2
p

)2 ,

where λ34 ≡ λ3 + λ4. We note that we have four dynamical fields, namely h1, h2, s
and an effective angle θ̃ which is defined as follows

θ̃ ≡ 2θS + θ1 − θ2 , (4.94)

where orthogonal directions to θ̃ are omitted since they correspond to flat directions.
The cosine of the λ12S-term can take extrema in the interval [−1, 1]. We make the
restriction θ̃ ∈ [0, π] and determine the extrema by taking the partial derivative of
Ṽquartic w.r.t. θ̃:

∂Ṽquartic

∂θ̃

!
= 0 ⇒ θ̃0 = {0, π} . (4.95)
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The sufficient conditions for θ̃ at its extrema are calculated by taking the second
partial derivative of Ṽquartic w.r.t. θ̃

∂2Ṽquartic

∂θ̃2
=



λ12Sh1h2s2M4
p

8
(

M2
p + ξ1h2

1 + ξ2h2
2 + ξSs2

)2 ≥ 0 , θ̃0 = 0

−λ12Sh1h2s2M4
p

8
(

M2
p + ξ1h2

1 + ξ2h2
2 + ξSs2

)2 ≤ 0 , θ̃0 = π

. (4.96)

Since λ12S ≥ 0 and the product h1h2s2 is rotation invariant, θ̃ is stabilized in its
minimum at θ̃0 = 0. Hence, the potential reads:

Ṽquartic(h1, h2, s) =
λ1h4

1 + λ2h4
2 + λSs4 + 2

(
λ34h2

1h2
2 + λ1Sh2

1s2 + λ2Sh2
2s2 − 2λ12Sh1h2s2)

8
(

1 + ξ1h2
1(x)+ξ2h2

2(x)+ξSs2(x)
M2

p

)2 .

(4.97)

There is now a three-dimensional induced field space metric in Einstein frame spanned
by φ = (h1, h2, s) which is calculated via:

Gij =
δij

Ω2 +
3
2

M2
p

∂ log Ω2

∂φi

∂ log Ω2

∂φj

=
1

Ω2


1 + 6ξ2

1
h2

1
Ω2 M2

p
6ξ1ξ2

h1h2
Ω2 M2

p
6ξ1ξS

h1s
Ω2 M2

p

6ξ1ξ2
h1h2

Ω2 M2
p

1 + 6ξ2
2

h2
2

Ω2 M2
p

6ξ2ξS
h2s

Ω2 M2
p

6ξ1ξS
h1s

Ω2 M2
p

6ξ2ξS
h2s

Ω2 M2
p

1 + 6ξ2
S

s2

Ω2 M2
p

 .

The scalar potential is thus symmetric under h1 → −h1, h2 → −h2, and s → −s.
Therefore, we use spherical field space coordinates as parametrisation for h1, h2 and
s:

h1(x) = φ(x) cos ϑ sin γ, h2(x) = φ(x) sin ϑ sin γ, s(x) = φ(x) cos γ . (4.98)

During inflation the scalar potential given in eq. (4.97) becomes a constant by can-
cellation since numerator and denominator scale as φ4. Hence, we can make the
following approximation

φ2(x)�
M2

p(
ξ1 cos2 ϑ sin2 γ + ξ2 sin2 ϑ sin2 γ + ξS cos2 γ

) , (4.99)
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which allows us to express the scalar potential solely by angles ϑ and γ:

Ṽquartic(ϑ, γ) ' (4.100)

M4
p

t4
γ

(
λ1 + λ2t4

ϑ + 2λ34t2
ϑ

)
+ 2t2

γ

(
t2
ϑ + 1

) (
λ1S + λ2St2

ϑ − 2λ12Stϑ

)
+ λS

(
t2
ϑ + 1

)2

8
(

t2
γ(ξ1 + ξ2t2

ϑ) + ξS(1 + t2
ϑ)
)2 ,

where tx ≡ tan x. Furthermore, we require the portal couplings to be tiny in order
to avoid large radiative corrections which is technically natural and associated by
an enhanced Poincaré symmetry 4 [25]. Therefore we consider two portal coupling
regimes

λ12S � λ1,2,34,1S,2S,S , (I)

λ12S . λ1S ∼ λ2S � λ1,2,34,S , (II)

where cases with λ12S � λiS are neglected due to scale-invariance, and cases with
λ1S,2S � λ2S,1S are neglected due to the intricacies of RG running5. Case (I) is
the most general case to consider, whereas case (II) can be understood as the limit
λ1S,2S → 0 by going from (I) to (II). In (II), all of the portal couplings are tiny, so
that the PQ-sector decouples completely from the 2HDM sector. In order to find the
most general description, we will focus on (I) and note when (II) can be applied. The
scalar potential for case (I) is therefore given by

Ṽquartic(ϑ, γ) ' (4.101)

M4
p

t4
γ

(
λ1 + λ2t4

ϑ + 2λ34t2
ϑ

)
+ 2t2

γ

(
t2
ϑ + 1

) (
λ1S + λ2St2

ϑ

)
+ λS

(
t2
ϑ + 1

)2

8
(

t2
γ(ξ1 + ξ2t2

ϑ) + ξS(1 + t2
ϑ)
)2 .

From this expression we are able to determine the minima and thus the effective
single field trajectories. This is done by considering the Jacobian of eq. (4.101) in
two-dimensional field space :

J (ϑ, γ) =

(
∂Ṽquartic(ϑ, γ)

∂ϑ

∂Ṽquartic(ϑ, γ)

∂γ

)2

. (4.102)

4This was introduced by Ref. [25] in the context of the νDFSZ model which we adopted for
2hdSMASH and discussed in section 3.9.

5We comment on the features of RG running with portal couplings in section 5.
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With J2 ≡
∂Ṽquartic

∂γ = 0 we determine the extrema of γ:

γ0,i =


γTHI =

π

2
γPQI = 0

γPQTHI = γPQTHI(ϑ)

, (4.103)

which correspond to the three coarse field space directions for inflation, i.e. 2HDM-
inflation denoted by THI, PQ-inflation denoted by PQI and mixed PQ-2HDM-inflation
denoted by PQTHI. We have omitted for now the detailed expression of γPQTHI

which will be mentioned in section 4.3.2. There are in principle seven inflationary
directions, namely three 2HDM-field directions (h1, h2, h12), one PQ-field direction s
and three mixed PQ-2HDM directions (sh1, sh2, sh12). All of these field directions are
effective single field trajectories which omit multi-field effects.

As mentioned above, we will use case (I) as the most general description and take
the limit to case (II) for THI and PQI since both sectors decouple from each other and
are thus technically natural [25]. In the following, we will start with the discussion
on THI, followed by the discussion on PQI and PQTHI. This is done by considering
the γ-directions given by γTHI, γPQ and γPQTHI(ϑ), respectively.
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4.3.1. 2HDM inflation in 2hdSMASH

In this section we will introduce THI by deriving its field directions, its inflationary
conditions and its slow-roll potential. Inflation in the 2HDM model has already been
discussed in numerous Refs. [41, 43, 71, 42].

In order to decouple the 2HDM-field directions from the PQ-direction we implement
a hierarchy of non-minimal couplings, i.e. ξ1,2 � ξS. The effective scalar potential is
thus given by

Ṽquartic(ϑ, γ) ' (4.104)

M4
p

t4
γ

(
λ1 + λ2t4

ϑ + 2λ34t2
ϑ

)
+ 2t2

γ

(
t2
ϑ + 1

) (
λ1S + λ2St2

ϑ

)
+ λS

(
t2
ϑ + 1

)2

8t4
γ

(
ξ1 + ξ2t2

ϑ

)2 .

The Jacobian from eq. (4.102) for the 2HDM-field directions is determined by γTHI:

J (ϑ, γTHI) =

(
∂Ṽquartic(ϑ, γ)

∂ϑ

∂Ṽquartic(ϑ, γ)

∂γ

)T
∣∣∣∣∣
γ=γTHI

(4.105)

=

(
0

tϑ

(
t2
ϑ + 1

) (
−λ1ξ2 + λ34ξ1 + t2

ϑ(λ2ξ1 − λ34ξ2)
)

2
(
ξ1 + ξ2t2

ϑ

)3

)T

,

for which we acquire via J2 (ϑ, γTHI) = 0 the extrema ϑTHI:

ϑTHI =


ϑh1 = 0

ϑh2 =
π

2
ϑh12 = arctan

(√
λ34ξ1 − λ1ξ2

λ34ξ2 − λ2ξ1

) . (4.106)

The corresponding inflationary vacuum energies are thus given by [41]

ṼTHI
0 =


Ṽh1

0 '
λ1
8ξ2

1

Ṽh2
0 '

λ2
8ξ2

2

Ṽh12
0 ' λ1λ2−λ2

34
8(λ1ξ2

2+λ2ξ2
1−2λ34ξ1ξ2)

(4.107)

with quartic couplings couplings λTHI
i

2HDM-h1 : λ1 , 2HDM-h2 : λ2 , 2HDM-h12 : λ12 ≡ λ1λ2 − λ2
34 . (4.108)
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The critical points {γTHI, ϑTHI} of eq. (4.106) correspond to the three field space di-
rections, i.e. h1, h2 and h12. The hessian matrix in two dimensional space is required

H (ϑTHI, γTHI) =


∂2Ṽquartic(ϑ, γ)

∂γ2

∂2Ṽquartic(ϑ, γ)

∂γ∂ϑ
∂2Ṽquartic(ϑ, γ)

∂γ∂ϑ

∂2Ṽquartic(ϑ, γ)

∂ϑ2


∣∣∣∣∣∣∣∣γ=γTHI

ϑ=ϑTHI

(4.109)

in order to obtain the sufficient minimum conditions

det H (ϑTHI, γTHI) ≥ 0 , (4.110)

H1,1 (ϑTHI, γTHI) ≥ 0 or H2,2 (ϑTHI, γTHI) ≥ 0 .

These are calculated to be:

2HDM-(h1):

κ1 ≡ λ34ξ1 − λ1ξ2 > 0 ,

κ1s ≡ λ1S > 0 .

2HDM-(h2):

κ2 ≡ λ34ξ2 − λ2ξ1 > 0 ,

κ2s ≡ λ2S > 0 .

2HDM-(h12):

− κ1κ2 (κ1ξ2 + κ2ξ1) > 0 ,

κ1κ2 (κ1 + κ2) (κ1ξ2 + κ2ξ1) (κ1λ2s + κ2λ1S) > 0 .

We note that these conditions simplify drastically for tiny portal couplings and re-
produce the known results for pure 2HDM inflation [41] where κ1s = κ2s ' 0. As
discussed in section 4.3 this is regarded as the limit from case (I) to case (II). For the
remainder, we keep the discussion on the minimum conditions for 2HDM-inflation
as general as possible and consider case (I) in order to quantify the results in com-
parison to PQI and PQTHI.

These minimum conditions, however, just describe a part of the inflationary condi-
tions. Since inflation proceeds along a valley (minimum) of a given field space direc-
tion it requires that orthogonal field space directions are ridges (maxima). Therefore,
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the minimum conditions need to be supplemented by the maximum conditions of
the other field space directions in order to fully describe the inflationary conditions.
This applies, in particular to the 2HDM-h1 and 2HDM-h2 direction. For the 2HDM-
h12 direction this is already an automatic feature since this field direction is described
by a mixture of both field directions and thus requires each individual field direction
to be a ridge. However, the minimum conditions for the 2HDM-h12 direction needs
more refining. Effectively, the first one of the two conditions states

κ1 ≤ 0 , κ2 ≤ 0 . (4.111)

Therefore, the second condition for ξ1,2 > 0 reads

κ1λ2s + κ2λ1S > 0 , (4.112)

which is only true for

κ1s ≡ λ1S < 0 , κ2s ≡ λ2S < 0 . (4.113)

Moreover, there are kinetic mixing terms for the 2HDM-h12 direction. These are
quantified by

K =
6ξ1ξ2

Ω2
h1h2

M2
p

, (4.114)

which we avoid in the field space metric by assuming a hierarchy for the non-
minimal couplings, i.e. ξi � ξ j. The inflaton field φ proceeds along the mixed
direction composed by h1 and h2 but is parametrically close to either h1 or h2. Both
options are equivalent since either self-coupling, i.e. λ1 and λ2, is ofO(1) and allows
for the same predictions. We therefore choose without loss of generality to make the
2HDM-h12-direction parametrically close to the h2 direction6. Hence, we assume a
hierarchy for the non-minimal couplings, i.e. ξ2 � ξ1. Given this hierarchy, the
inflationary conditions for the 2HDM-h12 direction simplify

κ1s,2s,2 ' λ1S,2S,34 ≤ 0 ∧ κ1 ' λ1 ≥ 0 . (4.115)

The field space metric of (4.98) reduces for all 2HDM-directions to a two dimensional
field space and becomes quite simple under the above assumptions for the 2HDM-

6The same discussion applies to the 2HDM-h12 direction being parametrically close to h1.
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h12 direction

Gh12
ij '

b
Ω2

12

1 0

0
Ω2

12+6ξ2
2

φ2

M2
p

Ω2
12

 , (4.116)

where b is the mixing parameter given by

b ≡ 1 +
∣∣∣∣λ34

λ1

∣∣∣∣ , (4.117)

which is determined via cos2 ϑh12 = 1− b−1. The frame function Ω2
12 for the mixed

direction becomes

Ω2
12 = b + ξ2

φ2

M2
p

, (4.118)

which reduces to the frame function for the 2HDM-h2 direction when λ34 → 0. This
would be the limit where the 2HDM becomes an effective SM. However, we demand
λ34 6= 0 since it will be useful for RG-analysis (see section 5). In order to justify our
approach for describing 2HDM-h12-inflation in an effective single field regime, we
need to compute the instantaneous masses of h1 and h2

m2
hi

∣∣∣ϑ=ϑh12
γ=γTHI

' Ghihi ∂2
hi

Ṽquartic

∣∣∣ϑ=ϑh12
γ=γTHI

'


−λ34

ξ2
(h1)

λ2
34

6λ1ξ2
2

(h2)

. (4.119)

To estimate whether the orthogonal directions are heavy, i.e. stabilized, or light, i.e.
dynamical, we relate those masses to the Hubble rateH2 ≈ Ṽ/3M2

p

m2
hi

H2 '


−24λ1λ34ξ2

λ1λ2−λ2
34
& 1 (h1)

4λ2
34

λ1λ2−λ2
34
. 1 (h2)

, (4.120)

which shows that h1 is stabilized for ξ2 � 1 and h2 is dynamical for sufficiently small
λ34, i.e. λ1λ2 ≥ 5λ2

34.

There are three inflationary trajectories where effective single field inflation proceeds
with the inflaton φ which can be seen in figure 4.2. Since φ is a non-canonical field
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Figure 4.2.: Decadic log Einstein frame scalar potential depicting the 2HDM-field
directions in 2hdSMASH shown in units of Mp as a function of the two
Higgs fields h1 and h2 for pure single field directions (left) and mixed
single field direction (right).

we introduce a canonical normalization in the h1- and h2-field directions via

Ω2 dχi

dφi
=

√
Ω2 + 6ξ2

i
φ2

M2
p

for i = 1, 2 . (4.121)

The canonically normalized 2HDM-h12-field direction is determined by a mixture of
h1 and h2 which is controlled by the mixing parameter b and is given by

Ω2
12

dχ12

dφ
=

√√√√b

(
Ω2

12 + 6ξ2
2

φ2

M2
P

)
. (4.122)

This allows us to determine the effective single-field slow-roll potential with canon-
ically normalized inflaton field χj, for j = 1, 2, 12:

ṼTHI
j (φ) =

λTHI
j φ4(χj)

8
(

1 + ξ j
φ2(χj)

M2
P

)2 . (4.123)

The conditions on the coupling parameters for inflation in each 2HDM field direc-
tion along with the corresponding effective single field slow-roll potential are sum-
marized in Table 4.1
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As discussed in section 4.2, inflation occurs when the Hubble radius decreases at

inflation along Potential (4.104) minimized at Inflationary conditions Einstein frame slow roll potential

h1

γ0 =
π

2

ϑ0 = 0

κ1 ≥ 0 , κ1s ≥ 0

κ2 ≤ 0 , κ2s ≤ 0

λ1

8
φ4
(

1 + ξ1
φ2

M2
P

)−2

h2

γ0 =
π

2

ϑ0 =
π

2

κ2 ≥ 0 , κ2s ≥ 0

κ1 ≤ 0 , κ1s ≤ 0

λ2

8
φ4
(

1 + ξ2
φ2

M2
P

)−2

h12

γ0 =
π

2

ϑ0 = arctan
(√

κ1
κ2

) κ1 ≤ 0 , κ2 ≤ 0

κ1s ≤ 0 , κ2s ≤ 0

λ12

8
φ4
(

1 + ξ2
φ2

M2
P

)−2

Table 4.1.: Conditions & characteristics for h1-, h2- and h12-inflation in 2hdSMASH.

which point the potential energy density dominates the universe. This process is
quantified by the slow-roll parameters demanding that the inflaton rolls down the
potential well slowly. In slow-roll approximation these parameters are expressed as

εV =
M2

p

2

(
Ṽ′(χ)
Ṽ(χ)

)2

, ηV = M2
p

Ṽ′′(χ)
Ṽ(χ)

(4.124)

where primes denote derivatives w.r.t. χ and are used to calculate the inflationary
observables created during slow-roll inflation. Due to this prolonged stage of slow-
roll inflation, the inflaton produces quantum fluctuations along the field trajectory.
These quantum fluctuation are transferred to scalar metric perturbations in form of
density waves Ps(k) and tensor metric perturbations in form of gravitational waves
Pt(k). We give Ps(k) and Pt(k) as (see section 4.2 for details):

Ps(k) = As

(
k
k∗

)ns−1+...

, Pt(k) = At

(
k
k∗

)nt+...

(4.125)

with ns as the spectral scalar index and nt as the tensor spectral index, quantify-
ing the deviation from scale-invariance of the power spectra. The scalar- and tensor
metric perturbations are reduced to the scalar perturbation amplitude As and to the
tensor perturbation amplitude At for k = k∗ when the modes exit the horizon at
the pivot scale k∗. Moreover, the gravitational amplitude At is normalized by As to
acquire the tensor-to-scalar ratio r which relates gravitational waves to CMB mea-
surements. Additionally, the spectral tensor index nt is related to the tensor-scalar
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ratio r for single field inflation via

nt = −
r
8

, (4.126)

which leaves us with the relevant inflationary observables As, ns and r in slow-roll
approximation for single field inflation:

As =
1

24π2M4
Pl

Ṽ
εV

, ns = 1− 6εV + 2ηV , r = 16εV . (4.127)

As discussed in Refs. [41, 43, 71, 42], we consider large non-minimal couplings in or-
der to satisfy the scalar density perturbations of the CMB given by PLANCK [61, 60].
We will show that this is required for the 2HDM-field directions by calculating the
expression for As and constraining the non-minimal couplings ξ1,2 with CMB mea-
surements by PLANCK [61, 60]. Moreover, we will calculate ns and rs in the large
non-minimal coupling limit and relate their expressions to the number of e-folds and
make the well-know predictions for Higgs inflation [19].

In the large field limit, i.e. ξ1,2 � 1, we can approximate φ(χ) and its inverse χ(φ)

by solving equations (4.121) and (4.122) 7

φi(χi) '
Mp√

ξi

√√√√exp

(√
2
3

χi

Mp

)
− b , (4.128)

χ(φi) '
√

3
2

Mp log

(
b M2

p + ξi
φ2

i
M2

p

)
, (4.129)

from which we acquire with φ(χ) the following slow-roll potential

Ṽ(χi) '
λ

8ξ2 M4
p

(
1− b exp

(
−
√

2
3

χ

Mp

))2

(4.130)

with mixing parameter b which quantifies whether inflation proceeds in a mixed
direction (b 6= 1) or in a non-mixed direction (b = 1). By taking the first and second
partial derivatives of Ṽ allows us to compute the slow-roll parameters and thus the

7The derivation of the canonically normalized field χ, the slow-roll parameters and the inflation-
ary observables (As, ns, r) in the large ξ limit can be found in appendix D.3.
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inflationary observables As, ns and r in the large ξ limit [7]

As '
λi

128π2ξ2
i b

(1− b xi)
4

x2
i

, ns ' 1− 8 b
3

b + xi

(b− xi)
2 , ' 64 b2

3 (xi − b)2 (4.131)

with xi ≡ exp
(√

2/3χi/Mp
)
. This reduces for b = 1 to

As '
3λ sinh4

(
χ√

6Mp

)
2ξ2 , r ' 64 b2

3 (xi − b)2 , (4.132)

ns '
4
3

(
coth

(
χ√
6Mp

)
− csch2

(
χ√
6Mp

)
− 1

)
− 1

3
. (4.133)

These quantities can be constrained by CMB measurements. Current constraints on
r, As and ns are given by PLANCK 2018 data [61],[60] which were recently updated
by Ref. [72]:

r0.002 < 0.0387985 (95%C.L., TT,TE,EE+lowE+lensing+BK18+BAO) , (4.134)

As = (2.105± 0.030)× 10−9 (68%C.L., TT,TE,EE+lowE+lensing+BAO) , (4.135)

ns = 0.9665± 0.0038 (68%C.L., TT,TE,EE+lowE+lensing+BAO) . (4.136)

The scalar perturbation amplitude As can be used to relate the non-minimal coupling
ξi to the self-coupling λi. From eq. (4.131) we can approximate As ∝ λi/ξ2

i for which
we obtain an approximate relation

As ∝
λi

ξ2
i

∝ 10−9 (4.137)

⇒ ξi ∝
√

λi10−5 . (4.138)

We show this λ-ξ relation in figure 4.3 (left), which we acquired numerically. This
relation is furthermore constrained by ns and r: the non-minimal coupling ξ is con-
strained by r as shown in figure 4.3 (right) and r is constrained by ns with PLANCK
2018 [61],[60] and BICEP 2021 [72] data. The blue and red curves correspond to a
bluer and redder spectrum of ns, respectively. The 2HDM quartic couplings are of
order λ ∼ O(1) at the Planck scale. This is required by RG running and Higgs phe-
nomenology to accommodate a 125 GeV Higgs mass at low energies. Later, we will
see that the size of 2HDM quartic couplings cannot be changed by considering dif-
ferent field space directions since the RGEs are strongly coupled. From figure 4.3
(left) and from eq. (4.138) we can see that the non-minimal coupling is of the order
ξ ∼ 104.
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Figure 4.3.: Shown are the 95% C.L. contours of λ vs. ξ (left) and r vs. ξ (right). The
red and blue curves indicate the redder and bluer spectrum of ns.

In order to determine the inflationary observables As, ns and r in the large ξ limit
from equation (4.131) properly, we require χI and χE at horizon crossing and at the
end of inflation, respectively. Therefore, we need to compute χ(N) to determine the
number of e-folds required for successful inflation. As defined in eq. (4.41) of section
4.2, the number of e-folds during inflation between some initial time tI and the time
at the end of inflation is given by

N =
∫ tend

tI

H(t)dt '
∫ χend

χI

dχ√
2ε

(4.139)

and is approximated to 8

N ' 1 + 6ξi

8M2
p

(
φ2

I − φ2
E

)
− 3b

4
log

(
b M2

p + ξiφ
2
I

b M2
p + ξiφ

2
E

)
. (4.140)

However, the exact number of e-folds can be obtained by solving the Klein-Gordon
equation for the canonically normalized field χ. In appendix D.4 we derived the
Klein-Gordon equation for χ

d2χ

dN2 + 3
dχ

dN
− 1

2M2
p

(
dχ

dN

)3

+
√

2ε

(
3Mp −

1
2Mp

(
dχ

dN

)2
)

= 0 , (4.141)

which is evaluated until the condition ε = 1 marks the end of inflation. This differen-
tial equation, however, can only be computed numerically and requires appropriate
initial conditions. These initial conditions can be estimated with the covariant for-
malism described in appendix D.5. We use the expressions φ(∆N) from eq. (D.71)

8We give a detailed calculation in appendix D.1.



56 4. Inflationary Cosmology in 2hdSMASH

and φ(χ) from eq. (4.129) to determine χ(∆N)

χ(∆N) '
√

3
2

Mp log
(

b2(1 + 6ξ) + 8∆Nξ

b(1 + 6ξ)

)
≈ 5Mp , (4.142)

χ′(∆N) ' Mp
4
√

6Mp

∆N (b2(1 + 6ξ) + 8∆Nξ)
≈ 0.02Mp . (4.143)

Furthermore, we have derived in appendix D.5 the e-fold dependencies of As, ns

and r with the covariant formalism. This gives us a better understanding of the
parameters scale. In the large ξ limit, these quantities are given by

ns (∆N) ' 1− 2
∆N

, r ' 12b
∆N2 , As(∆N) ' λ∆N2

144π2bξ2 , (4.144)

where in the non-mixed direction they are given by

ns (∆N) ' 1− 2
∆N

, r ' 12
∆N2 , As(∆N) ' ∆N2

144π2
λ

ξ2 . (4.145)

These inflationary predictions resemble the results of Starobinsky-type inflation [59,
73, 74, 75] and Higgs inflation [19]. As in Higgs inflation and Starobinsky’s R2-
inflation, the spectral index ns and the tensor-to-scalar ratio r are solely dependent
on ∆N and independent of ξ. In figure 4.4 we plot the r vs. ns predictions for 2HDM
inflation in the large ξ limit. The general ns and r predictions are shown as black
solid lines which go from low to large ξ where the red dots at ξ = ∞ mark our r vs.
ns predictions. Each solid black line corresponds to a given number of e-fold which
is in the range of N ∈ [50, 70]. Furthermore, we show the isocontours of constant
ξ as gray dashed lines. In fact, the ns and r predictions are true for any chaotic in-
flationary model with a single field attractor. The predictions are constrained by the
95% and 68% C.L. contours of PLANCK 2018 data [60, 61] and the BICEP update
[72]. Furthermore, we note the remarkable r vs ns prediction for N = 60, which we
will also encounter for PQI and PQTHI.
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Figure 4.4.: Shown are the 95% and 68% C.L. contours of r vs. ns (blue) and the
inflationary predictions by 2hdSMASH for 2HDM-inflation (solid
black). The dashed curves correspond to the isocontours of constant ξ.
The main inflationary prediction for the 2HDM are given by ξ = ∞ and
N ∈ [50, 70] (red dot).

As mentioned before, we require for THI non-minimal couplings of the order of
ξ ∼ 104. Various authors have discussed the negative impact of such a large non-
minimal coupling on perturbative unitarity (e.g. Refs. [76, 77]). The claim is that the
unitarity scale is below the inflationary scale, i.e. ΛU = MP/ξ1,2 . MP/

√
ξ1,2 = ΛInf

for ξ1,2 � 1, which puts predictiveness under scrutiny. Recently, this issue was
addressed by Ref. [78] in which they claim that the unitarity scale during inflation is
actually higher than previously calculated and thus resolving this issue. However,
the results of Ref. [78] are beyond the scope of this work and we leave it to future
explorations to investigate whether this applies to Higgs inflation in our model. For
our considerations, large non-minimal couplings are unnatural since there isn’t an
explanation on how these large couplings were generated. The approach by the
authors of Refs. [44, 52, 7] alleviate the above concerns on predictive power by non-
minimal couplings of the size ξi . 1 which implies λ . 10−10. We adopt these
considerations of Refs. [44, 52, 7] which is according to our philosophy more natural.
Non-minimal couplings with the size of ξi . 1 can be radiatively generated in the
very early universe. Therefore, we require the inflaton’s quartic self-coupling to be
of order λ . 10−10. However, the RGEs for λ1 and λ2 are dominated by couplings
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which are of O(1) as can be seen by eqs. (4.146)-(4.147)
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g4
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4
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1 (4.146)
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(
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+ 4λ3λ4 + 4λ2
3 + 2λ2

4 + 2λ2
2S + 12λ2Y2

t − 12Y4
t .

On the other hand, any scenario with λ1,2,34 ∼ 10−10 would endanger Higgs phe-
nomenology since these small self-couplings could not reproduce a 125 GeV Higgs.
Therefore, we can safely neglect inflationary realizations where only 2HDM-fields
are involved. This is the main reason to solely focus on PQI and PQTHI.
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4.3.2. PQ- and PQ-2HDM-inflation in 2hdSMASH

In this section, we discuss inflation in the PQ- and PQ-2HDM directions. This cor-
responds to the field directions determined by γPQI and γPQTHI respectively. These
types of inflationary field directions have been discussed in the context of a KSVZ-
type model, dubbed SMASH [7], where the number of field directions is drastically
reduced compared to 2hdSMASH. In the context of the DFSZ-type model, inflation
was only discussed in the 2HDM direction where quartic self-couplings where taken
to be of order O(1) (see Ref. [43]). Nevertheless, in the context of the DFSZ model,
inflation was not considered in other field space directions nor with a small inflaton
self-coupling.

As discussed in the previous section, THI requires λTHI
i . 10−10 for ξ1,2 . 1 [44,

52, 7]. According to our naturalness philosophy non-minimal couplings should be
radiatively generated and are thus an automatic feature in the very early universe.
Accounting for RG running of the 2HDM self-couplings, i.e. βλ1 and βλ2 , this would
spoil the picture since either coupling would make the other one large in order to
satisfy Higgs phenomenology. Hence, we consider PQI and PQTHI for which we
implement a hierarchy of non-minimal couplings, i.e. ξS � ξ1,2, in order to effec-
tively decouple the PQ- from the 2HDM-sector. This makes PQTHI parametrically
close to the PQI which results in the suppression of large self-coupling contributions
from the 2HDM-sector at the Planck scale. Therefore, we require at the Planck scale
ξS . 1 and thus λPQI, PQTHI . 10−10. These small self-couplings can be generated
quite naturally for PQI and PQTHI since their RGE’s are effectively decoupled from
the 2HDM-sector and thus hidden from low energy phenomenology. We discuss
these intricacies in section 5 and explain in the following our naturalness philoso-
phy regarding the portal couplings and which role they play for decoupling.

We consider for PQI and PQTHI case (I) but note for PQI the limit to case (II). This
consideration can be understood by the decoupling of the 2HDM- from the PQ- sec-
tor by going from case (I) to (II). For PQTHI, however, the mixing between these two
sectors is allowed to a certain extend. In fact, the mixing is sufficiently suppressed
which refines case (I) by

λ12S � λS . λ1S,2S � λ1,2,34 with λ2
iS/λS � λ1,2,34 (I’)

and denotes a mild decoupling compared to case (II). Therefore, case (I’) decouples
the two sectors as well, which corresponds to an enhanced Poincaré symmetry, i.e.
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G2HDM
P × GPQ

P . This is due to the fact, that all 2HDM couplings are much greater
than the portal couplings which accounts to a technically natural limit where radia-
tive corrections are negligible to low energy physics.

Hence, we will start with the mixed PQ-2HDM directions before we proceed with
the PQ-direction. As mentioned in section 4.3.1, we will keep the discussion on PQI
as general as possible, i.e. use case (I), but mention the limiting case by going from
(I) to (II).

Thus, we obtain the following scalar potential

Ṽ(ϑ, γ) ' (4.148)
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ϑ
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The Jacobian for the PQTHI is given by

J(ϑ, γPQTHI) =

(
∂Ṽquartic

∂ϑ

∂Ṽquartic

∂γ

)T

(4.149)

=

 (t3
ϑ+tϑ)(λ1S+λ2St2

ϑ)(−λ1λ2S+λ1Sλ34+t2
ϑ(λ1Sλ2−λ2Sλ34))

2ξ2
S(λ1+λ2t4

ϑ+2λ34t2
ϑ)

2

0

 ,

where we used γPQTHI(ϑ) for the PQ-2HDM direction which is given by

γPQTHI(ϑ) = arctan

(√(
t2
ϑ + 1

) (
−λ1S − λ2St2

ϑ

)
λ1 + λ2t4

ϑ + 2λ34t2
ϑ

)
. (4.150)

The extrema for ϑ are thus obtained via J1(ϑ, γPQTHI)
!
= 0

ϑPQTHI =


ϑsh1 = 0

ϑsh2 =
π

2

ϑsh12 = arctan
(√

λ1λ2S − λ1Sλ34

λ1Sλ2 − λ2Sλ34

) , (4.151)
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which corresponds to the following γPQTHI-values

γPQTHI =


γsh1 = arctan

(√
−λ1S

λ1

)
γsh2 = arctan

(√
−λ2S

λ2

)
γsh12 = arctan

(√
−λ1S(λ2−λ34)+λ2s(λ1−λ34)

λ1λ2−λ2
34

) (4.152)

for the three possible field directions, i.e. sh1, sh2 and sh12. We can now determine the
inflationary vacuum energies in the PQ-2HDM direction which need to be positive
in order to avoid tachyonic vacuum states

VPQTHI
0 ≥ 0 ⇔ 1

8ξ2
S



λS −
λ2

1S
λ1
≥ 0

λS −
λ2

2S
λ2
≥ 0

λS −
λ1λ2

2S+λ2
1Sλ2−2λ1Sλ2Sλ34

λ1λ2−λ2
34

≥ 0

. (4.153)

In the following we give the minimum conditions for the PQ-2HDM direction, i.e.
for sh1,2,12, in order to determine whether the extrema correspond to inflationary
valleys while other directions correspond to inflationary ridges. As in section 4.3.1,
the minima conditions are determined via the hessian and obey the conditions given
by eq. (4.110) for the PQ-2HDM direction, i.e. sh1,2,12.

PQTHI-(sh1):

κ1s ≡ λ1S ≤ 0 ,

κs1 ≡ λ2Sλ1 − λ1Sλ34 ≥ 0 .

PQTHI-(sh2):

κ2s ≡ λ2S ≤ 0 ,

κs2 ≡ λ1Sλ2 − λ2Sλ34 ≥ 0 .

PQTHI-(sh12):

κs1κs2 (κs1 + κs2) ≤ 0 ,

(κs1 + κs2) (λ1Sκs2 + λ2Sκs1) ≤ 0 .

Most importantly, the inflationary conditions are given by the minimum conditions
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which are supplemented by the maximum conditions of other field directions in or-
der to classify inflationary valleys and ridges accordingly. Similar to our discussion
for 2HDM field space directions of section 4.3.1, the PQTHI-sh12 direction already
contains this feature automatically since PQTHI-sh12 is a mixture of all three fields.
However, the conditions of the PQTHI-sh12 direction need some refining. The first
of the two conditions state

κs1 ≤ 0 , κs2 ≤ 0 . (4.154)

This leads to the second condition to become

κ1s ≡ λ1S > 0 , κ2s ≡ λ2S > 0 . (4.155)

We list the complete set of inflationary conditions for the 2HDM-h12 direction in Ta-
ble 4.2.

Considering that PQTHI is composed of two or three field directions, i.e. sh1,2,12, we
need to examine whether orthogonal field directions contribute to inflation. There-
fore, we provide the field space metric in these three inflationary directions

Gshi
ij '

bi

Ω2
shi


1 0 0
0 1 0

0 0
Ω2

shi
+6ξ2

S
φ2

M2
p

Ω2
shi

 , (4.156)

where bi are the mixing parameters determined via sin2 γshi = 1− b−1
i ,

b1 ≡ 1 +
∣∣∣∣λ1S

λ1

∣∣∣∣ , (4.157)

b2 ≡ 1 +
∣∣∣∣λ2S

λ2

∣∣∣∣ , (4.158)

b12 ≡ 1 +

∣∣∣∣∣λ2S(λ1 − λ34) + λ1S(λ2 − λ34)

λ1λ2 − λ2
34

∣∣∣∣∣ (4.159)

and Ω2
shi

are the frame functions given by

Ω2
shi

= bi + 6ξS
s2

M2
p

. (4.160)
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We can see from the field space metric and its corresponding frame functions that the
mixing parameter determine whether inflation occurs in the PQ-2HDM (bi 6= 1) or
in the PQ direction (bi = 1) resembling case (II). In order to examine whether the or-
thogonal field space directions contribute to PQTHI, we compute the instantaneous
masses

m2
φi

∣∣∣ϑ=ϑshi
γ=γshi

'



−λ1S
ξS

, κs2
2λ2ξS

, − κs2λ1
ξS(λ1λ2−λ2

34)
(h1)

−λ2S
ξS

, κs1
2λ1ξS

, − κs1λ2
ξS(λ1λ2−λ2

34)
(h2)

λ2
1S

λ1ξS(1+6ξS)
, λ2

2S
λ2ξS(1+6ξS)

, κs1λ2S+κs2λ1S
ξS(6ξS+1)(λ1λ2−λ2

34)
(s)

, (4.161)

where the masses are given for sh1, sh2 and sh12 directions from left to right. These
results are now related to the Hubble rateH2 ≈ Ṽ/3M2

p

m2
s
H2

∣∣∣∣ϑ=ϑshi
γ=γshi

' 24ξS

1 + 6ξS

δλS

λ̃
. 1 , (4.162)

m2
hi

H2

∣∣∣∣∣ϑ=ϑshi
γ=γshi

' 12ξS

λ̃



2 |λiS| & 1 (shi)

(
λiS + (bj − 1)λ34

)
& 1 (shj)

2λ1λ2(λiS+(bj−1)λ34)

λ1λ2−λ2
34

& 1 (sh12)

, (4.163)

with ξS ∼ 2× 104
√

λ̃ and λ̃ = λS − δλS & 0. This shows that all masses of orthogo-
nal directions are stabilized while the inflaton remains dynamical at the inflationary
valley.

For the PQ-direction, i.e. γPQ = 0, we acquire the following minimum condition
given by the single component hessian

ξS
(
λ1S + λ2St2

ϑ − 2λ12Stϑ

)
− λS

(
ξ1 + ξ2t2

ϑ

)
2ξ3

S
(
1 + t2

ϑ

) ≥ 0 . (4.164)

In order to obtain minimum conditions w.r.t. all field directions, we simply apply
the ϑ-extrema of the 2HDM- and PQ-2HDM directions, i.e. ϑTHI and ϑPQTHI. This
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amounts to a total of four minimum condition for the PQ-direction:

PQI:

κ1s ≡ λ1S ≥ 0 ,

κ2s ≡ λ2S ≥ 0 ,

(κs1 + κs2) (λ1Sκs2 + λ2Sκs1) ≥ 0 ,

(κs1 + κs2) (λ1 + λ2 − 2λ34) ≥ 0 ,

where the first two correspond to the 2HDM-h1,2 directions and the last two con-
ditions correspond to the PQTHI-sh12 direction and to the 2HDM-h12 direction, re-
spectively. By considering the last two conditions, we cannot make a conclusive
statement whether κs1 and κs2 are positive or negative. This can only be determined
if either λ1,2 ≥ λ34 or λ1,2 ≤ λ34 is given. Thus, the last two conditions can be
neglected. Moreover, we note that these conditions vanish by taking the limit to
case (II). The absence of the portal couplings and the non-minimal coupling hierar-
chy, i.e. ξS � ξ1,2, are mainly responsible for an inflationary valley to exist in the
PQ-direction. For completeness we refer to the above minimum conditions as the
inflationary conditions and add case (II) as a another condition in our model.

Since we are considering four inflationary trajectories, we need an adequate descrip-
tion of the inflaton field φ which we identify as the PQ-scalar s. Therefore, we canon-
ically normalize the inflaton field s with the following field redefinitions for inflation
in the s-, sh1-, sh2- and sh12 direction, respectively

Ω2 dχs

ds
=

√
Ω2 + 6ξ2

S
s2

M2
p

, (4.165)

Ω2 χshi

ds
=

√√√√bi

(
Ω2

i + 6ξ2
S

s2

M2
p

)
. (4.166)

By integration we obtain the canonically normalized fields χs,sh1,sh2,sh12

√
ξS

Mp
χs =

√
1 + 6ξS arcsinh

(√
1 + 6ξS u(s)

)
−
√

6ξS arctanh

( √
6ξS u(s)√

1 + (1 + 6ξS) u2(s)

)
,

(4.167)

1
Mp

√
ξS

bi
χshi =

√
1 + 6ξS arcsinh

(√
1 + 6ξS

bi
u(s)

)
−
√

6ξS arctanh

( √
6ξS u(s)√

bi + (1 + 6ξS) u2(s)

)
(4.168)
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inflation along Potential (4.148) minimized at Inflationary conditions Einstein frame slow roll potential

s h1

γ0 = arctan
(√
−λ1S

λ1

)
ϑ0 = 0

κs1 ≥ 0 , κs2 ≤ 0

κ1s ≤ 0 , κ2s ≥ 0

λsh1

8
s4
(

1 + ξS
s2

M2
P

)−2

s h2

γ0 = arctan
(√
−λ2S

λ2

)
ϑ0 =

π

2

κs1 ≤ 0 , κs2 ≥ 0

κ1s ≥ 0 , κ2s ≤ 0

λsh2

8
s4
(

1 + ξS
s2

M2
P

)−2

s h12

γ0 = arctan
(√
− κs2+κs2

λ1λ2−λ2
34

)

ϑ0 = arctan
(√

κs1
κs2

)
κs1 ≤ 0 , κs2 ≤ 0

κ1s ≤ 0 , κ2s ≤ 0

λsh12

8
s4
(

1 + ξ2
s2

M2
P

)−2

s
γ0 = 0

ϑ0 =
{

0, π
2

} κ1s ≥ 0 , κ2s ≥ 0

∨ λ1S,2S � λS

λS

8
s4
(

1 + ξS
s2

M2
p

)−2

Table 4.2.: Conditions and characteristics for PQI and PQTHI, i.e. s- and
sh1,2,12-inflation, with ξS � ξ1,2.

with u(s) ≡
√

ξSs/Mp. By taking the inverse of the canonically normalized fields, we can

write the inflationary scalar potential in Einstein frame for PQI and PQTHI in the usual form:

Vs,shi(χi) =
λ̃

8
s4 (χi)(

1 + ξS
s2(χi)

M2
p

)2 , (4.169)

where λ̃ is given by the following inflationary directions:

λ̃ =


λS (PQI)

λS −
λ2

iS
λi

(PQTHI-shi)

λS −
λ1λ2

2S + λ2
1Sλ2 − 2λ1Sλ2Sλ34

λ1λ2 − λ2
34

(PQTHI-sh12)

. (4.170)

In Table 4.2 we summarize the extrema, inflationary conditions and Einstein frame slow-roll

potential for PQI and PQTHI. We show the two inflationary scenarios in figure 4.5 which

represents PQI (left) and PQTHI (right). As discussed in the previous section (see sec. 4.3.1),

the inflationary predictions As, ns and r are constrained by PLANCK/BICEP data [61, 60,

72]. According to our naturalness philosophy, we demand the non-minimal coupling to be

constrained by ξS . 1 which is shown in figure 4.6. Thus, As sets the following limits to ξS

and λ̃

8.5× 10−3 . ξ . 1 implying 9× 10−10 & λ̃ & 4.5× 10−13 . (4.171)

In order to determine ns and r we require the number of e-folds from some time t∗ where
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Figure 4.5.: Decadic log Einstein frame scalar potential depicting PQI (left) and
PQTHI (right) in units of Mp as a function of the PQ-scalar s and the
two Higgs fields h1 and h2.

the scale k∗ = a∗H∗ exited the horizon to the time where inflation ended denoted by kend =

aendHend. This is defined by

N∗ ≡ log
(

aend

ak∗

)
=
∫ χend

χI

dχ√
2ε

, (4.172)

which can be solved exactly by the Klein-Gordon equation

d2χ

dN2 + 3
dχ

dN
− 1

2M2
p

(
dχ

dN

)3

+
√

2ε

(
3Mp −

1
2Mp

(
dχ

dN

)2
)

. (4.173)

During inflation, the largest scales exit the horizon at k∗ which re-enter the horizon at a later

time, i.e. at matter or radiation domination, cf. Ref. [79]. In fact, the largest scales are the last

to re-enter the horizon which corresponds to scales of our current horizon, i.e. k0 = a0H0.

The required amount of e-folds for solving the horizon problem is therefore related to the

complete expansion history of the universe and is given by [80]

k∗
k0
≡ k∗

a0H0
=

ak∗Hk∗
a0H0

=
ak∗

aend

aend

aeq

Hk∗
Heq

aeqHeq

a0H0
, (4.174)

where the subscripts "eq" and "0" denote matter-radiation equality and the present time,

respectively. With the ratio ak∗/aend = exp(−N∗), we identify the number of e-folds during
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Figure 4.6.: Shown are the 95% C.L. contours of r vs. ξS (left) and the effective
quartic coupling for inflation λ̃ vs. ξS at the pivot scale k∗ = 0.002
Mpc−1. The red shaded region given by ξS > 1 indicates the unnatural
regime according to our naturalness philosophy. The red and blue
curves indicate constraints given by the redder spectrum and the bluer
spectrum of ns [61, 72].

inflation N∗ by reformulating eq. (4.174) to find [80]

N∗ = − log
k∗

a0H0
+ log

aend

aeq
+ log

Hk∗
Heq

+ log
aeqHeq

a0H0
. (4.175)

By using the slow-roll approximation for the Hubble rate during inflation, i.e.

Hk∗ '
√

Vk∗/3 M2
p, we obtain [80]

N∗ = − log
k∗

a0H0
+ log

aend

aeq
+ log

√
Vk∗

3 M2
p

1
Heq

+ log
aeqHeq

a0H0
. (4.176)

In 2hdSMASH we adopt the simplicity of the expansion history of the universe from SMASH

[7] (see also figure 2.1). Based on the smallness of the non-minimal couplings, they can be

neglected by the end of inflation. Correspondingly, preheating and reheating occur in an

approximate quartic potential, where the universe is radiation-dominated. This has been

worked out for SMASH in detail by elaborate lattice simulations where it was shown that

after a few oscillations the scalar potential is approximately quartic [7, 45].

By using the relation

log
aend

aeq
= log

aend

a0
+ log

a0

aeq
, (4.177)

we can simplify the number of e-folds as follows

N∗ = − log
k∗

a0H0
+ log

aend

a0
+ log

√
Vk∗

3 M2
p
+ log

1
H0

. (4.178)
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The ratio aend/a0 relates the scale of the end of inflation with the scale of the present time

which is given by [81]

aend

a0
=

aend

aRD

aRD

aend
=

(
g∗s,RD

g∗s,0

)−1/3 ( g∗ρ,RD

g∗ρ,0

)1/4 (ρ0,RD

ρend

)1/4 ( aend

aRD

)(1−3w)

, (4.179)

where the subscript "RD" denotes radiation domination, g∗,ρ and g∗,s denote the number of

relativistic degrees of freedom for the energy density and entropy, respectively. Since the uni-

verse is radiation-dominated by the end of inflation, the energy of state parameter w = p/ρ

approaches 1/3 instantaneously in the epoch of preheating for which we can approximate

eq. (4.179)

aend

a0
'
(

g∗s(TR)

g∗s(T0)

)−1/3 ( g∗ρ(TR)

g∗ρ(T0)

)1/4 (
ρ0,RD

Vend

)1/4

, (4.180)

where the subscript "R" denotes reheating. The corresponding number of relativistic degrees

of freedom are given by [82]

g∗s(T0) ' 3.91 , g∗ρ(T0) ' 2 , g∗s(TR) ' g∗ρ(TR) ' 124.5 (4.181)

and the present time energy density of radiation ρ0,RD is given by [82]

ρ0,RD =
π2T4

0
15
' 2.02× 10−15 eV4 . (4.182)

Furthermore, we give the updated values of the present time Hubble parameter H0 and

Hubble scale k0 = a0H0 by Ref. [37]

H0 ' 5.9× 10−61 h Mp with h ' 0.674 , (4.183)

a0H0 ' 22.47× 10−5 Mpc−1 ,

where h is the Hubble constant. The number of e-folds can now be approximated and reads

[80, 83]

N∗ ' 61.25− log
k∗

a0H0
− log

1016 GeV
V1/4

k∗

+ log
V1/4

k∗

V1/4
end

(4.184)

' 59− log

(
k∗

10−3 Mpc−1

)
− log

(
10−4 Mpc−1

a0H0

)
− log

1016 GeV
V1/4

k∗

+ log
V1/4

k∗

V1/4
end

,

where we included the maximum horizon of the observable universe given by the upper

bound V1/4
k∗

. 1016 GeV, cf. [6, 7, 82]. The scale of horizon exit is k∗ = 0.002 Mpc−1 which

corresponds to the largest observable scales in the CMB measured by Planck/BICEP [61, 72].
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Figure 4.7.: Shown are the 95% C.L. contours of V1/4
k∗

and V1/4
end vs. ξS at the pivot

scale k∗ = 0.002 Mpc−1. The red shaded region given by ξS > 1
indicates the unnatural regime according to our naturalness philosophy.
The red and blue curves indicate constraints given by the redder
spectrum and the bluer spectrum of ns [61, 72]. The black solid curves
take the 2hdSMASH expansion history of our universe into account
where inflation is followed by immediate radiation-domination.
Correspondingly, the black dots specify the range of validity for a
consistent expansion history.

With the constants of eq. (4.183) we obtain

N∗ ' 59.06− log
1016 GeV

V1/4
k∗

+ log
V1/4

k∗

V1/4
end

, (4.185)

which illustrates that only the energy scales V1/4
k∗

and V1/4
end are relevant. By utilizing the the

Planck constraints to fit the quartic coupling λ̃ to As we can determine N∗ of eq. (4.185)

which must match the number of e-folds obtained from solving the inflaton’s eom from eq.

(4.173). Correspondingly, the energy scales V1/4
k∗

and V1/4
end are determined. In figure 4.7 we

show this correspondence of V1/4
k∗

and V1/4
end as a function of the non-minimal coupling ξS

where the solid black curve manifests this result. Typical values of V1/4
k∗

and V1/4
end are in the

range of

8× 1015 GeV . V1/4
k∗

. 1.4× 1016 GeV , (4.186)

3.8× 1015 GeV . V1/4
end . 4.8× 1015 GeV (4.187)
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for

1.35× 10−2 . ξS . 1 implying 9× 10−10 & λ̃ & 2.2× 10−12 . (4.188)

These ranges are indicated by the black dots in figure 4.7 for which we can compute the

corresponding range of the number of e-folds N∗ from eq. (4.185)

59.3 . N∗ . 60.7 . (4.189)

We show our result in figure 4.8 where the thick red curve is obtained by eq. (4.185) which

accounts for the numerically determined expansion history9. The black solid lines have been

acquired by solving the Klein-Gordon equation (4.173) without taking the expansion history

of our universe into account. The red curve is close to N = 60 as indicated in eq. (4.189).

Figure 4.8.: Shown are the 95% and 68% C.L. contours of r vs. ns constrained by
PLANCK/BICEP [61, 60, 72] (shaded blue), the isocontours of constant
ξ (gray dashed), the isocontours of constant N (solid black) and the
inflationary predictions by 2hdSMASH for PQI/PQTHI taking into
account the numerically determined expansion history of the universe
(thick red).

9We utilized a numerical code from Ref. [7] to obtain the red curve shown in figure 4.8.
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Correspondingly, we provide the range of ns and r for PQI and PQTHI in 2hdSMASH

ξS ' 1⇒

0.9664 . ns . 0.9668

0.0037 & r & 0.0036
, ξS ' 1.35× 10−2 ⇒

0.9646 . ns . 0.9651

0.037 & r & 0.036
.

(4.190)
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5. Connecting inflation with TeV Scale
Particle Physics

This section is dedicated to make the connection between inflationary constraints and low

energy constraints. For this reason, we consider the one-loop RGEs (see Appendix E) which

run the 2hdSMASH parameters from low- to high-scale and meet the constraints at their re-

spective scales.

As discussed in section 4.3.2, we require amongst others λS(Mp) . 10−10 for successful

inflation. Moreover, there are two inflationary scenarios realized in 2hdSMASH, namely PQI

and PQTHI, which differ by sign and size of the portal couplings. These constraints must

be met at the Planck scale. In order to account for thermal leptogenesis and BAU, we obtain

constraints on the neutrino Yukawa couplings Yν and YN which influence the RG evolution

of the portal couplings. As we will see, this effect will only consider PQI while PQTHI sce-

narios will face the challenge to run the portal couplings stable all the way up to the Planck

scale. According to our naturalness philosophy, we further demand that the portal couplings

do not impact Higgs phenomenology through large radiative corrections. Hence, the portal

couplings are very important in connecting inflation with particle phenomenology. Along

these lines, we also need to attest for vacuum stability and perturbative unitarity. This is

done by obeying the BfB and perturbative unitarity conditions for all energy scales until the

Planck scale, which ensures high-scale validity. By breaking perturbative unitarity, Landau

poles emerge which lead to a breakdown of predictivity. If vacuum stability is not guaran-

teed, our universe would not correspond to the universe we know today. We will discuss

these intricacies in the following sections of this chapter.

We structure the sections as follows: In section 5.1 we will discuss the stability requirements

for λS by considering the RG running effects of the right handed neutrino Yukawa and por-

tal couplings. In section 5.2 we discuss the constraints from thermal leptogenesis and BAU

and their impact on RG running. In section 5.3 we will analyze the running of the portal

couplings and give conditions which motivate PQI and PQTHI. Therefore, we give three

benchmark points which underline our considerations and illustrate the interconnection of

inflation and Higgs phenomenology. In section 5.4 we discuss vacuum-stability, perturba-

tivity and high-scale validity by identifying the effective 2HDM model in our RG-analysis.

Since all other couplings are fixed, i.e. portal couplings λ1S,2S,12S, neutrino Yukawa couplings
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Yν,N and PQ self-coupling λS, we consider the remaining 2HDM couplings λ1,2 and λ34. In

particular we pay attention to the stability of λ2 which tends to run negative. We will argue

that λ3 and λ34 can cure this instability while keeping λ1 fixed. This is illustrated by repre-

sentative benchmarks. In section 5.5 we accumulate all of the analysis and provide bench-

mark points which accommodate inflation, theoretical and experimental constraints while

presenting interesting Higgs phenomenology relevant for HL-LHC and future colliders.

5.1. Stability analysis of λS

In this section we want to outline the stability condition on the running of λS for successful

inflation. This in turn will lead to conditions on the Higgs portal couplings λ1S, λ2S, λ12S and

the right handed Yukawa couplings YN . We give to one-loop accuracy, the renormalization

group evolution of λS(µ) (see Appendix E)

(4π)2 d
d ln µ

λS = (5.1)

10λ2
S + 4λ2

1S + 4λ2
2S + 8λ2

12S − 2Tr
(

Y†
NYNY†

NYN

)
+ 2λSTr

(
Y†

NYN

)
.

As discussed in section 4.3.2, we require for successful inflation λS(Mp) . 10−10 [7]. Such a

small quartic coupling can in fact suffer from RG-running instability, i.e. large enhancements

of λS at high energies, thus spoiling inflation. Therefore, we require λS(ms) ∼ λS(Mp)

for stability reasons. Imposing this requirement on eq. (5.1) leads to constraints on the

squared Higgs portal couplings λ2
1S,2S,12S and on the trace of right handed neutrino Yukawas

Tr
(
Y†

NYNY†
NYN

)
, as we will argue now.

As a first observation, we can neglect the terms proportional to λS on the right hand side

of eq. (5.1). This is per our request for negligible running of λS. Furthermore, the RG run-

ning effects of the portal couplings and the right handed neutrino Yukawas are taken to be

negligible due to RG stability. With these reasonable assumptions, we can integrate eq. (5.1)

and find

λS(µ)

λS(ms)
≈ (5.2)

1 +
1

4π2λS(ms)

[
λ2

1S(ms) + λ2
2S(ms) + 2λ2

12S(ms)−
1
2

Tr
(

Y†
NYNY†

NYN

)
ms

]
log

µ

ms
.

From eq. (5.2) we can see that the portal couplings enhance, while the right handed neutrino

Yukawas diminish λS. This endangers vacuum stability (cf. Ref. [7]) and can be avoided in

one of two ways. Either the portal coupling contribution is greater than the Yukawa contri-

bution or both contributions are negligible compared to λS. By choosing the latter, we avoid
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tremendous fine tuning at the matching scale ms which leads to the following constraints

|λ1S(ms)|
|λ2S(ms)|
|λ12S(ms)|√

Tr
(
Y†

NYNY†
NYN

)
|ms


�
√

λS(ms) ≈ 10−5 , (5.3)

implying λS(MP) ≈ λS(ms) ≈ 10−10 as expected.

5.2. RG-analysis with BAU and thermal leptogenesis

In the previous section we derived an upper bound on Tr
(
Y†

NYNY†
NYN

)
at the scale ms (see eq.

(5.3)). This upper bound can be further specified for higher energy domains, e.g. µ ' 30Mp,

in order to investigate the minimum condition of λS [7]. Therefore, by considering µ ' 30Mp

we obtain

YN .

 8π2λS

163 log
(

30MP
ms

)
1/4

, (5.4)

where YN,33 = YN,22 = 3YN,11 accommodates vanilla leptogenesis with hierarchical right-

handed neutrinos. By considering the right-handed neutrino masses given by

MN,i =
YN,ivS√

2
(5.5)

with MN,3 = MN,2 = 3MN,1, we can convert the upper bound of eq. (5.4) to an upper bound

on MN,1:

MN,1 .

√
2

vS

 8π2λS

163 log
(

30MP
ms

)
1/4

. (5.6)

The CP-violating and out-of-equilibrium decay of the lightest right-handed neutrino N1 →
lΦ1 produces BAU via thermal leptogenesis [25, 36, 7]. This is quantified by the CP-asymmetry

ε1 which is given by [84, 85, 86, 87]:

ε1 =
ΓD (N1 → lΦ1)− ΓD (N1 → l∗Φ∗1)
ΓD (N1 → lΦ1) + ΓD

(
N1 → l∗Φ∗1

) ' 1
8π

∑j Im
[(

YνY†
ν

)2
1j

]
(YνY†

ν )11
g
(
x1j
)

(5.7)

where g1j
(
x1j
)

is given as

g1j
(
x1j
)
=
√

x1j

(
2− x1j

x1j − 1
+ (1 + x1j) log

(
1 + x1j

x1j

))
with x1j =

M2
j

M2
1

. (5.8)
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For x1j > 1 we can approximate the CP-asymmetry as follows [87]:

ε1 ' −
3

16π

∑j Im
[(

YνY†
ν

)2
1j

]
(YνY†

ν )11

(
M1

Mj

)
= −3M1

16π

∑j Im
[(

Yνm†
νY†

ν

)2
1j

]
(YνY†

ν )11
, (5.9)

where we used eq. (3.20) to substitute the light neutrino mass matrix mν. Based on the

observed BAU we need to place an upper bound on ε1. Therefore, we further simplify ε1 by

using the Casas-Ibarra parametrization for the light neutrino Yukawa coupling Yν:

Yν =

√
2

v1
D√M R D√m U†

ν , (5.10)

where D√A ≡ diag (
√

a1,
√

a2,
√

a3) and R is an orthogonal (complex) matrix with R†R = 1.

In particular, we use the fact that we sum over two right-handed neutrinos and use the

orthogonality condition ∑j R2
1j = 1. We can therefore approximate the upper bound as:

|ε1| .
3

16π

M1

v2
2
(m3 −m1) . (5.11)

For simplification we set m1 ' 0 and therefore get:

|ε1| .
3

16π

M1

v2
2

m3 . (5.12)

This upper bound on ε1 can be translated into a lower bound on the lightest right-handed

neutrino mass MN,1, i.e. Davidson-Ibarra bound [87]:

MN,1 &
5× 108 GeV

1 + t2
β

, (5.13)

which translates into a lower bound for YN,11

YN,11 &
7.1× 108 GeV

vS

(
1 + t2

β

) . (5.14)

By combining equations (5.14) and (5.4) we obtain the range for YN,11:

7.1× 108 GeV

vS

(
1 + t2

β

) . YN,11 .

 8π2λS

163 log
(

30MP
ms

)
1/4

. (5.15)

Once YN,11 is constrained by vS, tβ and λS we are left with only nine degrees of freedom,

namely Yν,ij. In order to obtain the left-handed neutrino Yukawa couplings Yν, we need to
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calculate [88]

Yν =

√
1 + t2

β

v
D√MOD√mν

U†
ν , (5.16)

where

D√M ≡ diag
(√

MN,1,
√

3MN,1,
√

3MN,1

)
, (5.17)

D√mν
≡ diag (

√
mν,1,

√
mν,2,

√
mν,3) (5.18)

denote the diagonalized right-handed Majorana and left-handed Dirac neutrino mass ma-

trix respectively. Uν is the PMNS-neutrino mixing matrix whose components are given by

the best global fits of Ref. [89]. O is a 3× 3-orthogonal matrix which is in general complex

and consists of three complex angles. However, we follow the same line of reasoning as in

Ref. [7] by taking O to be of unity since we can neglectO(1) contributions for the RGE stabil-

ity analysis. Furthermore, the left-handed neutrinos are constrained by neutrino oscillation

experiments [89] and cosmological neutrino observations [61]. From the PLANCK 2018 [61]

constraints we obtain the upper bound on the sum of the neutrino masses:

3

∑
i=1

mν,i < 0.12 eV (95% C.L. Planck TT,TE,EE+lowE+lensing+BAO) . (5.19)

The experimental best fit constraints of neutrino masses from atmospheric and solar mass

splitting [89] for normal ordering (NO) are given by:

∆m2
21
(
10−5 eV2) = 7.5+0.22

−0.2 , ∆m2
31
(
10−3 eV2) = 2.55+0.02

−0.03 (best fit ±1σ, NO) . (5.20)

We consider a hierarchical mass ordering mν,1 < mν,2 < mν,3 where we take, as mentioned

above, mν,1 ≡ m1 ' 0. Then, the left-handed neutrino Yukawa matrix is given by:

Yν,(i+1)j '
1
v

√
3√
2

YN,11mν,(i+1)

(
1 + t2

β

)
vS U∗ν,j(i+1) with Yν,1j ' 0 , (5.21)

where mν,2 and mν,3 are given by:

mν,2 ' ∆m2,1 ' 8.66 meV , mν,3 '
√

∆m2
2,1 + ∆m2

3,1 ' 51.23 meV . (5.22)

Since mν,3 � mν,2 � mν,1 and U∗ν,32,33 & U∗ν,ij, we only consider Yν,32,33 for the remainder of

this paper, i.e.

Yν,32,33 '
1
v

√
3√
2

YN,11mν,3

(
1 + t2

β

)
vS U∗ν,32,33 . (5.23)
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The aforementioned nine degrees of freedom are thus constrained by experimental values

and by the benchmark relevant parameter tβ. Hence, we can account for BAU by vanilla

thermal leptogenesis with hierarchical normal ordering of the light neutrino masses.

There are a few caveats to consider regarding the size of the neutrino couplings in the RG-

flow of λ1S. Therefore, we consider the RGE of λ1S:

Dλ1S = λ1S

(
−3

2
g2

1 −
9
2

g2
2 + 4λ1S + 4λS + 6λ1

)
+ λ2S (4λ3 + 2λ4) + 8λ2

12S

+ λ1S

(
6Y2

b + 2Y2
τ + 2Tr

(
Y†

ν Yν

)
+ Tr

(
Y†

NYN

))
− 4Tr

(
Y†

ν YνY†
NYN

)
. (5.24)

As we can see the running is dominated by the size of λ1S, λ2S and Tr
(
Y†

ν YνY†
NYN

)
where

the latter contributes negatively on the running. For PQTHI-scenarios we do not have to

worry about the size of the neutrino Yukawa term since λ1S,2S � Tr
(
Y†

ν YνY†
NYN

)
which

is thus negligible. However, for PQI the portal couplings can be of the same size as the

neutrino Yukawa term, i.e. λ1S,2S ∼ Tr
(
Y†

ν YνY†
NYN

)
, which causes λ1S to run negative at

higher energies. In order to secure positive portal couplings at the inflationary scale for PQI,

we impose a condition on the initial value of λ1S to guarantee λ1S(MP) > 0:

λ1S & Tr
(

Y†
ν YνY†

NYN

)
. (5.25)

For the remainder of the paper, we will only consider the real entries of Yν, i.e. Re(Yν,ij),

since the RG-analysis, except for Yν itself, is independent of the imaginary part. The RG-

running of Yν is severly suppressed by multiplicatives of its own value at the electroweak

scale (see eq. (E.18)). Therefore, its value at the electroweak scale can be approximated to be

the same at the inflationary scale. The same applies even more so for YN . We demonstrate

this fact in figure 5.1 for Yν,32,33 and YN,1. We can see that the values of the Yukawa couplings

are approximately the same at the inflationary scale as they are at the electroweak scale.

However, for completeness, we will include the running of the neutrino Yukawas into our

RG-analysis but note that their value is almost scale-invariant, as we would expect from

looking at the RGEs of eqns (E.18)-(E.19) of appendix E.
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Figure 5.1.: Shown are the the RG-running of the largest components of the Dirac
neutrino couplings Yν,32,33 and the main Majorana neutrino coupling
YN,1 with tβ = 5.5, λS = 10−10 and vS = 1010 GeV. The renormalization
scale is set by the top pole mass mt = (172.5± 0.7) GeV given by Ref.
[37] to run from low- to high scale.

5.3. Interconnection of portal couplings

In this section we consider the effects of the one-loop RG running of the portal couplings and

make the connection between inflation and Higgs phenomenology. We evolve the couplings

from the electroweak scale all the way up to the Planck scale and discuss the intricacies

of satisfying the constraints for successful inflation (see Table 4.2) while accommodating a

125 GeV Higgs with additional heavy Higgses at the electroweak/TeV scale. In particular,

we will discuss the running of the portal couplings and its impact on the inflationary field

direction with regard to inflationary conditions (see Table 4.2 for details). Therefore, we

pay attention to the size of the portal coupling and consider its sign at the Planck scale.

We introduce in Table 5.1 benchmark points representing inflation in the sh12-, sh2- and s-

direction which satisfy our considerations and convey the statement of our discussion.

As discussed in section 3.9 we determined that the squared masses of the heavy Higgses

strongly depend on λ12Sv2
S. In fact, a tiny value for λ12S is preferred by high-scale validity

analysis [90, 91] since λ12Sv2
S resembles a soft breaking parameter in a softly broken U(1)-

symmetric 2HDM1 [25, 34]. Therefore, we first consider the RG running of λ12S. We can

already see that the running of λ12S is proportional to itself:

Dλ12S = λ12S

(
−3

2
g2

1 −
9
2

g2
2 + 2λ3 + 4λ4 + 2λS + 4(λ1S + λ2S) + 3Y2

t + 3Y2
b + Y2

τ

)
. (5.26)

1In section 3.7 we describe the effective low-energy matching of 2hdSMASH to a softly broken
U(1)-symmetric 2HDM.
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Parameters BP-sh12 BP-sh2 BP-s
λ1 0.07 0.07 0.07
λ2 0.263 0.316 0.258
λ3 0.60 0.54 0.54
λ4 -0.40 -0.14 -0.14
λS 6.5× 10−10 4.44× 10−10 10−10

λ1S −6.59× 10−6 5.57× 10−6 4.8× 10−14

λ2S 10−15 −4.27× 10−6 10−15

λ12S 2.5× 10−16 2.5× 10−16 2.5× 10−16

tan β 5.5 5.5 26
YN,1 9× 10−4 9× 10−4 4× 10−5

Yν,3 5.18× 10−3 5.18× 10−3 1.09× 10−3

vS 3× 1010 3× 1010 3× 1010

mh (GeV) 125.2 125.1 125.1
mH (GeV) 799.4 798.8 1711.5
ms (GeV) 6.6× 105 6.3× 105 3× 105

mA (GeV) 799.5 799.5 1711.5
mH± (GeV) 807.0 802.2 1712.8

Table 5.1.: Three benchmarks passing theoretical and experimental constraints
representative for inflation in sh12-, sh2- and s-direction. The top pole
mass is given by Ref. [37] to be mt = (172.5± 0.7) GeV.

By considering the value of λ12S at the electroweak scale we determine the size of heavy

Higgs masses since we fix the PQ-breaking scale at vS = 3× 1010 GeV. Hence, λ12S is chosen

to be tiny as argued in section 3.9 to acquire a phenomenologically viable model which can

be tested at the HL-LHC or future colliders. This smallness is associated with an enhanced

Poincaré symmetry which we have discussed in section 3.7. The size of λ12S will be pre-

served all the way up to the Planck scale, thus justifying the considerations of Section 4.3.

By analyzing the RG evolution of λ1S and λ2S we can determine whether we satisfy PQI or

PQTHI directions at the Planck scale. The RGEs of λ1S and λ2S are given by:

Dλ1S = λ1S

(
−3

2
g2

1 −
9
2

g2
2 + 4λ1S + 4λS + 6λ1

)
+ λ2S (4λ3 + 2λ4) + 8λ2

12S

+ λ1S

(
6Y2

b + 2Y2
τ + 2Tr

(
Y†

ν Yν

)
+ Tr

(
Y†

NYN

))
− 4Tr

(
y†

νYνY†
NYN

)
, (5.27)

Dλ2S = λ2S

(
−3

2
g2

1 −
9
2

g2
2 + 4λ2S + 4λS + 6λ2

)
+ λ1S (4λ3 + 2λ4) + 8λ2

12S

+ λ2S

(
6Y2

t + Tr
(

Y†
NYN

))
. (5.28)
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Since λ12S, YN and Yν are very small, we can safely neglect terms involving them. Thus, we

can rewrite the RGEs of the portal couplings as follows:

Dλ1S ' λ1S

(
−3

2
g2

1 −
9
2

g2
2 + 4λ1S + 4λS + 6λ1 + 6y2

b + 2y2
τ

)
+ λ2S (4λ3 + 2λ4) , (5.29)

Dλ2S ' λ2S

(
−3

2
g2

1 −
9
2

g2
2 + 4λ2S + 4λS + 6λ2 + 6y2

t

)
+ λ1S (4λ3 + 2λ4) . (5.30)

There are two terms to consider, namely the first term which is proportional to the evolving

portal coupling itself and the second term which is proportional to the other portal coupling.

We notice that the combination of both terms will determine the size of the portal coupling at

the Planck scale. Unfortunately, we cannot solve these RGEs analytically but we can analyze

their contributions and make a statement about the size and the behavior of their evolution

so that we end up with the required conditions for PQI or PQTHI at the Planck scale. There

are three separate scenarios concerning the size of the portal couplings, i.e.

|λ1S| < |λ2S| , |λ1S| > |λ2S| , |λ1S| ∼ |λ2S| , (5.31)

where only two of them will be our main focus. Therefore, we will consider without loss of

generality benchmarks BP-sh12 and BP-sh2 - BP-s of Table 5.1 for the cases |λ1S| > |λ2S| and

|λ1S| ∼ |λ2S| respectively. Starting with the latter will help clarify the various contributions

to the RGEs of λ1S and λ2S.

|λ1S| ∼ |λ2S|: Both portal couplings will influence the running of each other. Therefore it

is necessary to analyze which contributions will have the dominant influence. Since the top

Yukawa coupling is larger than the bottom- and the τ-Yukawa couplings, the influence of λ2S

will dominate the evolution of λ1S. Hence, λ1S will evolve towards the value of λ2S when

approaching the Planck scale. This can be circumvented by approximating the RGEs further

and modifying the portal couplings accordingly. By comparison, we can neglect Yb,τ, λ1,2,S

and g1,2 since the portal couplings are equal in size and the top Yukawa term dominates the

running of λ2S. This is due to the fact that the top Yukawa dominates in the low-energy

regime and becomes in comparison less dominant in the high energy regime. Thus, the run-

ning of λ2S affects the running of λ1S by the coupling term involving λ3 and λ4. We therefore

assume λ3 and λ4 not to grow significantly when approaching the Planck scale2. Hence, the

RGEs of λ1S,2S for |λ1S| ∼ |λ2S| can be approximated to:

Dλ1S ≈ λ2S (4λ3 + 2λ4) , (5.32)

Dλ2S ≈ 6λ2Sy2
t . (5.33)

2We require λ3 and λ4 to run perturbative to high energies and thus prefer that exponential
growth near the Planck scale is suppressed.
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The running of λ2S will dominate unless we implement a correction to the initial value of λ1S

so that both portal couplings will preserve their respective sign and size at the Planck scale.

Considering the chain rule, we can reformulate the two RGEs in order to obtain a differential

equation:

Dλ1S =
∂λ1S

∂λ2S
Dλ2S ≈ λ2S (4λ3 + 2λ4) (5.34)

⇒ ∂λ1S

∂λ2S
≈ 2λ3 + λ4

3y2
t

. (5.35)

By integrating both sides, we obtain the necessary correction for λ1S to counter the effect of

the top Yukawa:

δλ1S ≈
λ2S (2λ3 + λ4)

3y2
t

, (5.36)

where |λ1S| ' |λ2S|. Hence, the initial value for λ1S is given by:

|λcorr.
1S (µEW)| = |λ1S + δλ1S|µEW

≈
∣∣∣∣λ2S ×

(
1 +

2λ3 + λ4

3y2
t

)∣∣∣∣
µEW

, (5.37)

where µEW is the electroweak scale and λcorr.
1S is the corrected value of λ1S. This correction

causes both RGEs to be of equal size and preserve their respective sign at the Planck scale.

Therefore, this case describes inflation in the sh1 or sh2 direction where either portal cou-

pling differs by sign change. For illustration we consider the case where λ1S > 0 and λ2S < 0

given by benchmark point BP-sh2. In figure 5.2 we can see the running of both portal cou-

λ1S
corr

(μ) λ2S
corr

(μ)

λ1S(μ) λ2S(μ)
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Figure 5.2.: RG evolution of λ1S and λ2S of BP-sh2 where |λ1S| ∼ |λ2S| with opposite
signs. Here, the initial value of λcorr

1S is given by eq. (5.37) which affects
the running of λ1S positively compared to the running where no
correction is applied.
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plings with and without a correction applied to λ1S(µ). As described above, we can see that

the correction preserves the sign of both portal couplings all the way up to the Planck scale.

The same line of reasoning applies to sh1 by switching signs of λ1S and λ2S. For the bench-

mark point BP-s of Table 5.1 both portal couplings are taken positive. However, the running

of λ1S and λ2S is dominantly determined by the left- and right-handed Yukawa couplings.

In section 5.2 we discussed the appropriate initial value λ1S needs (see eq. (5.25)) in order for

both portal couplings to remain positive at the Planck scale.

|λ1S| > |λ2S|: In general, this case describes either PQI or PQTHI-sh12 since both portal cou-

plings will be either positive (PQI) or negative (PQTHI-sh12) at the Planck scale, as we will

argue now. For PQI, we consider tiny portal couplings which is represented in benchmark

BP-s. Therefore, we will refer to PQTHI-sh12 for a more general discussion where portal cou-

plings are assumed to be sizable compared to PQI. We consider BP-sh12 of table 5.1, where

λ1S < 0 and λ2S > 0 but differ in size, i.e. |λ1S| > |λ2S| at the electroweak scale. Thus, we

can approximate the RGEs of λ1S and λ2S by

Dλ1S ≈ λ1S

(
−3

2
g2

1 −
9
2

g2
2 + 4λ1S + 4λS + 6λ1 + 6y2

b + 2y2
τ

)
+ . . . , (5.38)

Dλ2S ≈ λ1S (4λ3 + 2λ4) + . . . , (5.39)

where only contributions of λ1S are considered since λ2S is sub-dominant in comparison.

This approximation is illustrated in Figure 5.3 where λ2S approaches the value of λ1S and

they become equal at the Planck scale.
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Figure 5.3.: RG evolution of portal couplings λ1S and λ2S for sh12-inflation using
BP-sh12 from Table 5.1. The top pole mass mt = (172.5± 0.7) GeV given
by Ref. [37] is used to set the renormalization scale for the benchmarks
to run from low- to high scale.
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5.4. Stability analysis

In this section we analyze vacuum stability, perturbative unitarity and high-scale validity

of 2hdSMASH. Vacuum stability is mostly endangered by λ2 running negative. For a Type-

II 2HDM, the Higgs doublet Φ2 couples to the top-quark which can force λ2 into negative

values. The same phenomenon has been observed in the SM, which is regarded as the top-

quark instability. We show, that we can circumvent this problem by stabilizing the running of

λ2 with the mixing parameter λ34. For that reason, we consider the necessary BfB condition

of the 2HDM

λ34 ≥ −
√

λ1λ2 , (5.40)

which we can translate into the following form

λ2
34

λ1
≥ −λ2 . (5.41)

We identify in eq. (5.41) the parameter δ given by

δ ≡
λ2

34
λ1

, (5.42)

which we will use to stabilize the running effects of λ2 as we will argue in the following.

The instability can be understood by considering the one-loop RGE of λ2:

Dλ2 =
3
4

g4
1 +

3
2

g2
1g2

2 +
9
4

g4
2 −

9
5

g2
1λ2 − 9g2

2λ2 + 12λ2
2 + 2λ2

2s (5.43)

+ 4λ2
3 + 4λ3λ4 + 2λ2

4 + 12λ2Y2
t − 12Y4

t ,

where the dominant negative top Yukawa contribution ∝ Y4
t is competing with other domi-

nant quartic coupling terms. It proves useful to consider λ3 and λ4 for stabilization since it

contributes positively to its RG-running and λ1 is absent. However, enhancing λ1 would

only contribute indirectly to the RG-running of λ2 by its mediator couplings λ3 and λ4.

Hence, we fix λ1 and vary λ3 and λ4 for stabilization. By considering the RGE of λ1, we

recognize that the same λ3 and λ4 contributions affect its running

Dλ1 =
3
4

g4
1 +

3
2

g2
1g2

2 +
9
4

g4
2 − λ1

(
3g2

1 + 9g2
2
)
+ 12λ2

1 + 4λ3λ4 + 4λ2
3 + 2λ2

4 + 2λ2
1S

+ 12λ1Y2
b − 12Y4

b + 4λ1Y2
τ − 4Y4

τ + 4λ2Tr
(

Y†
ν Yν

)
− 4Tr

(
Y†

ν YνY†
ν Yν

)
, (5.44)

where negative terms, such as the down-type Yukawa contribution is sub-dominant in com-

parison. Therefore, any enhancement of λ3 and λ4 will enhance λ1 by going to higher en-

ergies and thus endangering perturbative unitarity. This can be avoided by applying the
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perturbative unitarity bounds for λ1 and λ34, such that

|δ| ≡
∣∣∣∣λ2

34(µ)

λ1(µ)

∣∣∣∣ < 8π , ∀µ (5.45)

is bounded from above. Furthermore, we have to ensure that we maintain a 125 GeV light

Higgs. Its mass is approximately

m2
h ≈

v2
S(

1 + t2
β

)2

[
λ1 + t4

β λ2 + 2 t2
β λ34

]
, (5.46)

where portal terms are neglected for now. We can see that for tβ > 1, as considered in our

case, the λ2 term is t2
β times larger than the one with λ34. Therefore, any enhancement in λ34

is met with a slight decrease in λ2 since its decrease will counterbalance the increase of λ34

by a factor of t2
β. Thus, λ34 is capable to influence the RG-running of λ2 without violating

Higgs phenomenology.

There are two intertwining effects which stabilize the RG-running of λ2, namely

1) initial values given to λ2, λ3 and λ4 and

2) an RG-running effect caused by λ3 and λ4.

Both effects, namely 1) and 2), contribute to the RG stabilization of λ2 and are interconnected.

Here, the emphasis is on the RG-running effects since they are responsible to uplift λ2 from its

negative top Yukawa running term at energy scales µ & mt. In order to gain some analytical

understanding, we consider the Coleman-Weinberg potential, cf. Ref. [92], which we will

utilize to acquire λ2(µ), i.e. the integrated version3 of Dλ2, to identify the dominant RG-

running contributions. The full expression of the Coleman-Weinberg potential is given in

appendix F, whose general analytical form is given by

VCW(φi) =
1

64π2 (5.47)

×
(

∑
b

gbm4
b(φi)

[
log

(
m2

b(φi)

Λ2

)
− 3

2

]
−∑

f
g f m4

f (φi)

[
log

(
m2

f (φi)

Λ2

)
− 5

2

])
,

where g f /b are the degrees of freedom and m f /b are the masses of fermions/bosons. By

performing a matching to an effective tree-level potential in the h2-direction

Veff ' V0 + VCW '
λeff

2 h4
2

8
(5.48)

3This can be verified by using the Callan-Symanzik equation.
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with

V0 '
λ2h4

2
8

, (5.49)

where h1 ' s ' 0, we acquire an RG-improved potential for h2. As a result we obtain the

effective coupling λeff
2 by computing

λeff
2 =

8
h4

2
Veff(h2) , (5.50)

which is given by

λeff
2 ' λ2(mt) +

λ2
2S

(
log
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2λ2S
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t
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− 3

2

)
+ λ2

3

(
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t
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2

)
16π2 (5.51)

+
(λ3 + λ4)

2
(
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)
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2Y2
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t

)
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2

))
16π2 ,

where we neglected the sub-dominant gauge couplings g1,2,3. Furthermore, we can
neglect the portal coupling term ∝ λ2

2S since its contribution is small in comparison4.
Thus, we find

λeff
2 ≈ λ2(mt) +

λ2
3

(
log
(

h2
2λ3

2m2
t

)
− 3

2

)
+ (λ3 + λ4)

2
(
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16π2 (5.52)
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)
−Y4

t

(
log
(
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2Y2

t
2m2

t

)
− 3

2

))
16π2

with running scale µ ≡ h2. We can identify four stabilizing contributions, namely
λ2(mt), λ2

2, λ2
34 and λ2

3. The former two, i.e. λ2(mt) and λ2
2, are capable of stabilizing

its running when large initial conditions are applied. Moreover, we can see that
contributions proportional to λ2

34 and λ2
3, enter quadratically as well and provide

a further source of stabilization. In the case where λ4 is negative, as we consider in
our benchmarks, the most important parameter for RG-running stability becomes λ3

which enters quadratically in two terms of eq. (5.52). This phenomenon is illustrated
in figure 5.4 where λ2(µ) is depicted for benchmark points BP-sh′2 and BP-sh′′2 of table
5.2. Naively, we would expect that benchmark BP-sh′2 has a sub-dominant effect on
the running of λ2 compared to BP-sh′′2 . Despite the fact, that the initial value of λ2 is
smaller in comparison, the dominance of λ3 causes λ2(µ) to run higher. This leaves
BP-sh′2 with the biggest impact. Moreover, we can associate the tree-level stability

4We list in table 5.2 three benchmarks, which represent the most extreme case where portal cou-
plings are sizable, i.e. benchmarks for PQTHI-sh2. The contribution of the shown portal couplings is
sub-dominant to eq. (5.51).
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Figure 5.4.: Shown are λ2(µ) from benchmark BP-sh′2 and BP-sh′′2 given in table 5.2.
The top pole mass mt = (172.5± 0.7) GeV given by Ref. [37] is used to
set the renormalization scale for the benchmarks to run from low- to
high scale.

condition of eq. (5.41) to an RG-running stability condition

δ(µ) + λ2(µ) ≥ 0 , ∀µ , (5.53)

where negative λ2(µ) can be counterbalanced by δ(µ). This effect can be seen in
figure 5.5 by considering benchmarks BP-sh2 and BP-sh′2 of table 5.2. The tree-level
effect is given by BP-sh2 and depicted in figure 5.5 (left) with δBP-sh2 > λBP-sh2

2 . By
comparison, we can see in figure 5.5 (right) the RG-running effect of benchmark
BP-sh′2 which is mainly caused by the term ∼ λ2

3 of eq. (5.52). In our analysis we
neglected terms ∝ λ2

2S in the RG-running of λ2. This is due to the fact, that λ2S is
constrained by another stability condition, namely

λ̃S ≡ λS −
λ2

2S
λ2
≥ 0 . (5.54)

This stability condition would be violated if we chose λ2
2S ∼ λ2, since λS ∼ 10−10.

Thus, the portal coupling is constrained to be λ2S .
√

λS (see sec. 5.1). We show
in figure 5.6 the RG-evolution of λ̃S and its scale-invariance. We note, that λ3 and
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Parameters BP-sh2 BP-sh′2 BP-sh′′2
λ1 0.07 0.07 0.07
λ2 0.316 0.336 0.343
λ3 0.54 0.54 0.44
λ4 -0.14 -0.44 -0.44
λS 4.44× 10−10 4.44× 10−10 4.44× 10−10

λ1S 5.57× 10−6 5.57× 10−6 5.57× 10−6

λ2S −4.27× 10−6 −4.27× 10−6 −4.27× 10−6

λ12S 2.5× 10−16 2.5× 10−16 2.5× 10−16

tan β 5.5 5.5 5.5
YN,1 9× 10−4 9× 10−4 9× 10−4

Yν,3 5.18× 10−3 5.18× 10−3 5.18× 10−3

vS 3× 1010 3× 1010 3× 1010

mh (GeV) 125.1 125.1 125.2
mH (GeV) 798.7 799.5 799.7
ms (GeV) 6.3× 105 6.3× 105 6.3× 105

mA (GeV) 799.5 799.5 799.5
mH± (GeV) 802.1 807.7 807.7

Table 5.2.: List of three benchmarks representing the most extreme case of portal
coupling configuration which pass theoretical and experimental
constraints and differ by λ2, λ3 and λ4.
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Figure 5.5.: Shown are the RG-running of λ2 and δ given by benchmark BP-sh2 (left)
and the RG-running of λ2 and δ given by benchmark BP-sh′2 of table 5.2.
The renormalization scale is set at the top pole mass mt = (172.5± 0.7)
GeV, cf. Ref. [37], to run from low- to high scale.

λ34 are mainly responsible for stabilizing the RG-running of λ2. By erasing λ1, λ3,
λ4, λ1S and λ12S from our model, we would recover the SMASH model. In par-
ticular, in the absence of λ3 and λ4, the RG-running of λ2 in 2hdSMASH becomes
the RGE of λH in SMASH. By comparison, 2hdSMASH provides further parameters
for stabilization, i.e. λ3 and λ4, which is depicted in figure 5.7. We conclude, the
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Figure 5.6.: RG-evolution of λ̃S(µ) ≡ λS(µ)−
λ2

2S(µ)

λ2(µ)
from benchmark BP-sh2. The

renormalization scale is set at the top pole mass mt = (172.5± 0.7) GeV,
cf. Ref. [37], to run from low- to high scale.
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Figure 5.7.: Depicted are the RG evolutions of λ2(µ) for 2hdSMASH (blue solid
curve) and SMASH (orange solid curve) for PQTHI using BP-sh2 of
Table 5.1. The renormalization scale is set at the top pole mass
mt = (172.5± 0.7) GeV, cf. Ref. [37], to run from low- to high scale.

mixing parameters λ3 and λ4 assist stabilizing the RG-running of λ2. Furthermore,
the two intertwining effects, i.e. tree-level initial conditions and RG-effects, provide
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an analytic understanding how λ2(µ) behaves. The analysis of this section is repre-
sentative of the analysis done for all benchmarks acquired in section 5.5. We chose
benchmarks of type PQTHI-sh2 in table 5.2 as an extreme case where portal cou-
plings become sizable and thus provide a more general discussion. We were able to
see that portal couplings are constrained and have a sub-dominant effect. This can
be seen on tree-level by the following relation

λ2 +
1
2

(
δ−

λ2
2S

λS

)
≥ 0 , (5.55)

where δ is typically larger. Moreover, we demand that perturbative unitarity con-
straints (3.25)-(3.30) must be obeyed along the RG evolution, thus ensuring high-
scale validity by avoiding Landau-Poles, cf. Ref. [34]. In section 5.5, we give bench-
mark points which satisfy all theoretical constraints at tree- and one-loop level. The
analysis of this section can be easily adopted to scenarios where we consider PQI
and other PQTHI directions.

5.5. Benchmarks points

The discussion of inflation in chapter 4 and its connection to electroweak physics by
means of RG-analysis in sections 5.1-5.4, culminates to the discussion of benchmark
points which satisfy theoretical and experimental constraints. We present bench-
marks which are consistent with BfB- and perturbative unitarity conditions from
electroweak- all the way up to the Planck scale, thus providing high-scale validity
and vacuum stability. Furthermore, the benchmarks are tested against experimental
constraints from B-physics and collider experiments on the Higgs sector, thus ensur-
ing 2hdSMASH to be phenomenologically viable.

For this part of the analysis, 2hdSMASH was implemented in SARAH-v4.14.4 [93],
SPheno-v4.0.4 [94], HiggsSignals-v2 [95] and HiggsBounds-v5 [96]. With
SARAH-v4.14.4, the necessary equations were provided to use in SPheno-v4.0.4,
such as the RGEs given in appendix E, the scalar- and fermionic masses and its
decays. For a given benchmark, this was computed with SPheno-v4.0.4 and
checked with HiggsSignals-v2 to account for a low-energy signal-strength mea-
surement of the 125 GeV SM-like Higgs scalar at the LHC. Furthermore, the same
SPheno output was cross-checked with HiggsBounds-v5 against constraints from
heavy Higgs searches at LEP, Tevatron and LHC. With the benchmarks BP1-BP5
listed in table 5.3 we cover all interesting parameter configurations which also allow
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Parameters BP1 BP2 BP3 BP4 BP5
λ1 0.07 0.07 0.07 0.07 0.07
λ2 0.316 0.263 0.257 0.258 0.257
λ3 0.54 0.60 0.24 0.54 0.24
λ4 -0.14 -0.4 0.27 -0.14 -0.28
λS 4.44×10−10 6.5×10−10 1.0×10−10 1.0×10−10 1.0×10−10

λ1S 5.57×10−6 -6.59×10−6 4.8×10−14 4.8×10−14 3.6×10−13

λ2S −4.27× 10−6 1.0×10−15 1.0×10−15 1.0×10−15 1.0×10−15

λ12S 2.5×10−16 2.5×10−16 2.5×10−16 2.5×10−16 2.5×10−16

tan β 5.5 5.5 26 26 18
YN,1 9× 10−4 9× 10−4 4× 10−5 4× 10−5 10−4

Yν,3 5.175× 10−3 5.175× 10−3 1.09× 10−3 1.09× 10−3 1.2× 10−3

vS 3.0×1010 3.0×1010 3.0×1010 3.0×1010 3.0×1010

mh (GeV) 125.1 125.1 125.2 125.2 125.1
mH (GeV) 798.7 799.4 1711.5 1711.5 1425.2
ms (GeV) 6.3×105 6.7×105 3.0×105 3.0×105 3.0×105

mA (GeV) 799.5 799.5 1711.5 1711.5 1425.2
mH± (GeV) 802.1 807.0 1709.1 1712.8 1422.2

Table 5.3.: List of benchmarks passing the theoretical constraints and experimental
constraints as discussed in the text with a pole top mass of
mt = (172.5± 0.7) GeV according to Ref. [37].

for PQI and PQTHI. The 2HDM couplings λ1-λ4 are of O(1) such that the SM-like
Higgs mass mh = (125.10± 0.14) GeV [37] is obtained. Furthermore, we consider
tan β & 5.5 to accommodate the constraint on the axion decay constant fa as dis-
cussed in appendix A. There is a stringent constraint from B → Xsγ [97] on the
charged Higgs sector of the Type-II 2HDM which provides a lower bound on the
charged Higgs masses

mH± > 650 GeV . (5.56)

This lower bound was recently corrected to be higher in Type-II 2HDM models by
computation of (B→ Xsγ) at NNLO QCD level [98]

mH± > 800 GeV . (5.57)

For choosing λ12S ' O( v
vS
)2, as discussed in section 3.9 (cf. Ref. [26]), the heavy

Higgs sector becomes nearly degenerate with mH ≈ mA ≈ mH± . The constraints
from electroweak precision tests, namely S, T, U variables, are satisfied for the nearly
degenerate mass spectrum of the neutral heavy Higgs sector. We note that the
charged Higgs mass has a small mass splitting compared to the other heavy
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Higgses which is conceived by considering the change in value for λ4 of table 5.3.
The portal couplings λ1S and λ2S do not have a sizable effect on the scalar masses.
However, they are considered in the RG-analysis and connect inflation with parti-
cle phenomenology, as discussed in section 5.3. The portal couplings are chosen
such that successful inflation is guaranteed and constraints from neutrino physics
for thermal leptogenesis and BAU are considered for RG-evolution. The neutrino
Yukawa couplings given in table 5.3 satisfy the constraints from neutrino oscillation
experiments and BAU as discussed in sec. 5.2. Moreover, the portal couplings are
naturally small which protects the SM-like Higgs mass from high-scale radiative cor-
rections. The benchmarks given in table 5.3 are in the TeV range which is established
by λ12S ' O( v

vS
)2. Due to this relation, λ12Sv2

S is of order O(v2) and resembles a
soft breaking parameter of the effective 2HDM low-energy theory. This provides an
additional parameter to control the mass spectrum without endangering Higgs phe-
nomenology and its RG evolution all the way up to the Planck scale, cf. Ref. [91].

Therefore, the benchmarks provided in table 5.3 facilitate a mass spectrum at the TeV
scale which are allowed by theoretical and experimental constraints. The smallness
of the portal couplings imply a considerable suppression of Higgs to axion decays.
Hence, 2hdSMASH is indistinguishable from other extended Higgs sectors without
axion at upcoming collider experiments based on Higgs decays. However, signals
from axion dark matter searches may serve as detection probe of 2hdSMASH.
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6. Conclusions

In this thesis, we realized the description of successful inflation and subsequent RG-
analysis in 2hdSMASH. In particular, we worked out inflationary directions, i.e. PQI
and PQTHI, which are compatible with a naturally generated non-minimal coupling
to gravity. Correspondingly, we provided an analytical understanding of RG run-
ning which aims at preserving the various interesting features of our parameter
space at the Planck scale, thereby connecting directly inflationary constraints with
particle phenomenology.

After introducing 2hdSMASH, we discussed in chapter 3 the scalar- and neutrino
masses, the theoretical constraints, the model’s matching to its effective low-energy
theory with subsequent alignment limit and the characteristic mass spectrum. The
detailed derivation of the scalar masses, which include three CP-even neutral scalars
(h, H, s), one CP-odd scalar (A) and two charged CP-even scalars (H±), were per-
formed in appendix B and agree with Ref. [26] up to factors of O(1)1. The analytical
expressions of the scalar masses are numerically verified to an accuracy of more than
the digits shown in this thesis. Furthermore, we proved that 2hdSMASH effectively
reduces to the SM, thus providing a SM-like particle spectrum. The characteristic
mass spectrum beyond SM-like physics, was introduced by inflationary considera-
tions and by the naturalness philosophy adopted from Refs. [35, 25] which provides
TeV scale particles.

In chapter 4.3, we describe chaotic inflation in 2hdSMASH where the scalar fields
are non-minimally coupled to gravity. For a natural explanation of chaotic inflation
we impose that these non-minimal couplings ξi, i = 1, 2, s, are radiatively generated,
i.e. ξi . 1, as discussed in Ref. [21] in the context of SMASH. By exploiting the
parameter space, we found seven inflationary directions, from which three could be
dismissed. Those three field space directions belong to the three 2HDM-directions
which are incapable of providing inflation with a non-minimal coupling given by
ξi . 1. This is based on the phenomenological requirement for the 2HDM quartic

1We choose a different normalization convention for the scalar fields compared to Ref. [26], i.e.
Φ0

i = 1√
2
(hi + vi + iai), resulting in differences of factors.
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couplings λi, i = 1, 2, 3, 4 to be of order λi ∼ O(1) to generate a SM-like Higgs at the
electroweak scale. Thus, we exploit the parameter space for PQI and PQTHI which
allowed us to provide four viable inflationary directions, i.e. s-inflation and sh1,2,12-
inflation. Their inflationary predictions are consistent with the expansion history of
the universe where during preheating and reheating, that is immediately after the
end of inflation, the universe expands radiation-like. This corresponds to the same
inflationary predictions SMASH could provide, see Refs. [6, 7, 45]. In fact, 2hd-
SMASH provides the same PQ-breaking scale fa with the same size of non-minimal
couplings which makes it compatible with SMASH’s expansion history of the uni-
verse and serves as a good assumption. Our results have shown that further cal-
culations with high precision, e.g. lattice calculations, might be needed to derive a
correct reheating temperature for 2hdSMASH. This is beyond the scope of this thesis
and we leave it to future explorations on the model.

In chapter 5 we discussed the connection of inflation and particle physics by means
of RG-running. We performed an extensive RG-analysis to respect constraints from
inflation, thermal leptogenesis, BAU, Higgs phenomenology, vacuum stability and
perturbative unitarity, thus providing a consistent and complete model of cosmol-
ogy and particle physics. Therefore, we derived analytic expressions and constraints
for crucial RG-running parameters, i.e. λ1S,2S,12S,S and λ1,2,34, which allowed us to
gain an analytic understanding of the viable parameter space. We were able to con-
strain the portal couplings and right handed neutrino Yukawa couplings in terms of
λS:

λ1S,2S,12S, YN <
√

λS . (6.1)

Moreover, we acquired RG constraints for λ1S in a PQI-scenario by respecting ther-
mal leptogenesis and BAU

λ1S & Tr
(

Y†
ν YνY†

NYN

)
, (6.2)

which ensures the portal couplings to remain positive all the way up to the Planck
scale. For PQTHI-scenarios, we considered two cases, namely PQTHI-shi repre-
sented by |λ1S|µew

' |λ2S|µew
and PQTHI-sh12 represented by |λ1S|µew

≶ |λ2S|µew
.

Considering PQTHI-shi, we obtained a correction to the initial value of λ1S which
counterbalances the negative top Yukawa contribution of λ2S,

|λcorr.
1S (µEW)| = |λ1S + δλ1S|µEW

≈
∣∣∣∣λ2S ×

(
1 +

2λ3 + λ4

3y2
t

)∣∣∣∣
µEW

, (6.3)
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where λcorr.
1S is the corrected initial value of λ1S. In the case of PQTHI-sh12, we

found the responsible couplings, i.e. λ3 and λ4, which force λ2S to run towards λ1S.
Furthermore, we obtained an analytic understanding of RG-running in the 2HDM,
where the couplings λ3 and λ4 provide RG-running stability. This is ensured by the
relation

δ(µ) + λ2(µ) ≡
λ2

34(µ)

λ1(µ)
+ λ2(µ) ≥ 0 , ∀µ (6.4)

which prevents λ2(µ) to run negative. We identified two intertwining effects which
stabilize λ2(µ) by 1) the initial value and 2) by RG-effects caused by λ2

3 and λ2
34.

Moreover, we included perturbative unitarity conditions in our RG-analysis which
causes the couplings to be bounded from above. Amongst others, we considered the
most prominent perturbative unitarity conditions on the couplings which we used
for stabilization, i.e.

|λ1,3(µ)| < 8π , |λ3(µ)± λ4(µ)| < 8π , |δ(µ)| < 8π , (6.5)

in order to avoid Landau poles. From this elaborate RG-stability analysis we ac-
quired viable benchmark points which account for all theoretical and experimen-
tal constraints, i.e. vacuum stability, perturbative unitarity, inflationary cosmology,
thermal leptogenesis, BAU and Higgs phenomenology. The latter was confirmed by
testing the benchmarks with HiggsSignals-v2 and HiggsBounds-v5 which are
in accordance with current LEP, Tevatron and LHC data.



96 6. Conclusions



97

Appendices

97





99

A. Constraints on the Axion Decay
Constant

The axion decay constant fa faces astrophysical and cosmological constraints. One
of which is obtained from the measured duration of the neutrino signal of the super-
nova SN 1987A. From this signal, an upper bound on the emission rate of axions is
provided [48]. Current improved determinations on the axion emission rate [99, 100]
are translated into current lower bounds on fa:

fa &

{
5.2× 108 GeV , for tan β . 0.5 ,
9.8× 108 GeV , for tan β & 5 .

(A.1)

There are further restrictions which apply to axion dark matter by considering the
early universe which we will argue now.

During inflation the PQ-symmetry is maximally broken and non-thermally restored
in the preheating phase, as discussed in SMASH1 [6, 7]. After the PQ symmetry is
restored it is broken again in the radiation dominated era which corresponds to an
energy scale of fa. There are two mechanisms which produce axion dark matter,
namely the misalignment mechanism [11, 12, 13] and the decay of topological de-
fects [101, 102]. Topological defects are described by: i) strings which are vortex-like
defects that are formed at the PQ phase transition and ii) domain walls which are
surface-like defects to which strings attach when the temperature of the universe
reaches the temperature of the QCD phase transition. The domain wall structure
in 2hdSMASH is given by the domain wall number NDW > 1. As long as the PQ
symmetry is an exact symmetry, these domain walls are stable and thus threaten to
overclose the universe. This would be in conflict with standard cosmology [103, 104].
However, the PQ symmetry, like any global symmetry, can be explicitly broken by
Planck-suppressed operators which appear in the effective low energy Lagrangian
[105, 106, 107, 108] which may resolve the issue with the domain walls but at the
same time cause another problem. These Planck-suppressed operators in the ef-

1We consider preheating in 2hdSMASH to be similar to preheating in SMASH.
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fective low energy Lagrangian affect the axion potential which shifts the minimum
away from zero and therefore destroy the solution to the strong CP problem. Most
importantly, this can be circumvented by considering the PQ-symmetry as an auto-
matic or accidental symmetry of an exact discrete ZN symmetry [109]. Therefore, the
axion solution can be protected from semi-classical gravity effects by considering a
discrete symmetry for N ≥ 9 [110, 111, 112, 113, 114, 115, 116]. This allows for a
small explicit symmetry breaking term which is needed to make the domain walls
with NDW > 1 unstable and thus cosmologically viable. We assume in 2hdSMASH
such a ZN symmetry with N ≥ 9. In order to explain all cold dark matter in the
universe by axions [116, 117], we require the axion decay constant to be in the range
of

4.4× 107 GeV . fa . 9.9× 109 GeV, for N = 9, (A.2)

1.3× 109 GeV . fa . 9.9× 109 GeV, for N = 10. (A.3)

which is partly excluded by the SN 1987A constraint for N = 9. The preferred PQ
scale range in 2hdSMASH is therefore

3.1× 109 GeV . vS . 5.9× 1010 GeV , for tan β . 0.5 , (A.4)

5.9× 109 GeV . vS . 5.9× 1010 GeV , for tan β & 5 . (A.5)
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B. Derivation of Scalar Masses

We derive the charged, neutral CP-odd and CP-even scalar masses by diagonalizing
the corresponding squared mass matrices respectively. We will see that computing
the charged and CP-odd scalar masses is simpler than computing the CP-even scalar
masses. In fact, we will have to use an expansion in order of v/vS for the latter,
while the computation of the former is exact. In the following we will start with the
derivation of the charged and CP-odd scalar masses, i.e. H± and A, before we move
on to the neutral CP-even scalar masses.

For the charged CP-even and the neutral CP-odd masses, we expand the Higgs dou-
blets Φi and the PQ-scalar singlet S about their vacuum:

Φ1 =(h+1 ,
1√
2
(v1 + h1 + ia1))

T , (B.1)

Φ2 =(h+2 ,
1√
2
(v2 + h2 + ia2))

T , (B.2)

S =
1√
2
(vS + s + iaS) . (B.3)

in order to derive the squared mass matrices:

M2
H± =

 v2(v2
Sλ12S−λ4v1v2)

2v1
1
2

(
λ4v1v2 − v2

Sλ12S
)

1
2

(
λ4v1v2 − v2

Sλ12S
) v1(v2

Sλ12S−λ4v1v2)
2v2

 , (B.4)

M2
A =


v2v2

Sλ12S
2v1

− v2
Sλ12S

2 −v2vSλ12S

− v2
Sλ12S

2
v1v2

Sλ12S
2v2

v1vSλ12S

−v2vSλ12S v1vSλ12S 2v1v2λ12S

 , (B.5)

which can be diagonalized by considering the characteristic polynomial in an eigen-
value equation:

det
(
M2

i − 1λ
)
= 0 . (B.6)
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The obtained eigenvalues correspond to the charged CP-even and neutral CP-odd
masses. In the case of the charged CP-even eigenvalues, we acquire a charged Gold-
stone boson which is "eaten" by the W±-bosons and a charged Higgs with a squared
mass given by:

m2
H± =

1
2

v2
S


(

t2
β + 1

)
λ12S

tβ
− λ4v2

v2
S

 . (B.7)

For the CP-odd eigenvalues, we get two pseudo-Nambu-Goldstone bosons and one
pseudoscalar Higgs. One of the two pseudo-Nambu-Goldstone bosons is "eaten" by
Z-Boson while the other one corresponds to the axion which acquires a mass from
the mixing with the neutral pion (see sec. 3.3.2). The pseudoscalar squared Higgs
mass is given by:

m2
A =

2λ12Sv2
S

1 + t2
β

 v2

v2
S

tβ +

(
1 + t2

β

)2

4tβ

 . (B.8)

We proceed with the CP-even scalar masses and derive the squared-mass matrix in
the right basis by making an ansatz for the unitary rotation matrix R. The procedure
is the following:

1.) Calculate the squared-mass matrix in the correct basis, i.e. the basis-vectors
need to be specified with respect to the physical field basis given by (h, β, s):

M′2
0+ =



∂2V
∂h∂h

∣∣∣∣
v,vS

1
h

∂2V
∂h∂β

∣∣∣∣
v,vS

∂2V
∂h∂s

∣∣∣∣
v,vS

1
h

∂2V
∂β∂h

∣∣∣∣
v,vS

1
h2

∂2V
∂β∂β

∣∣∣∣
v,vS

1
h

∂2V
∂β∂s

∣∣∣∣
v,vS

∂2V
∂s∂h

∣∣∣∣
v,vS

1
h

∂2V
∂s∂β

∣∣∣∣
v,vS

∂2V
∂s∂s

∣∣∣∣
v,vS


. (B.9)

2.) Make use of the fact that v/vS � 1 by factoring out vS fromM′2
0+ :

M′2
0+ = (B.10)

v2
S



(
v

vS

)2
(

λ2t4
β+2λ34t2

β+λ1

)
(

t2
β+1

)2

(
v

vS

)2 tβ

(
(λ2−λ34)t2

β−λ1+λ34

)
(

t2
β+1

)2

(
v

vS

) (λ2S t2
β−2λ12S tβ+λ1S

)
t2
β+1(

v
vS

)2 tβ

(
(λ2−λ34)t2

β−λ1+λ34

)
(

t2
β+1

)2

(
v

vS

)2 t2
β(λ1+λ2−2λ34)(

t2
β+1

)2 +

(
t2
β+1

)
λ12S

2tβ

(
v

vS

) ((t2
β−1

)
λ12S+tβ(λ2S−λ1S)

)
t2
β+1(

v
vS

) (λ2S t2
β−2λ12S tβ+λ1S

)
t2
β+1

(
v

vS

) ((t2
β−1

)
λ12S+tβ(λ2S−λ1S)

)
t2
β+1

λS


.
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3.) Choose the unitary matrix, cf. Ref. [27]1

R = exp

{
A
(

v
vS

)
+ B

(
v
vS

)2
}

, (B.11)

where A, B ∈ R3×3 with AT = −A and BT = −B, to diagonalize the squared-
mass matrixM′2

0+ .

4.) Match A
(

v
vS

)
+ B

(
v

vS

)2
in powers of v/vS withM′2

0+ :

A
(

v
vS

)
+ B

(
v
vS

)2

=


0 B12

(
v
vS

)2

A13

(
v
vS

)
−B12

(
v
vS

)2

0 A23

(
v
vS

)
−A13

(
v
vS

)
−A23

(
v
vS

)
0


(B.12)

with A12 = B13 = B23 = 0 .

5.) Diagonalize the squared-mass matrix by calculating:

D = RTM′2
0+R (B.13)

and expanding D up to second order in v/vS, cf. Refs. [26, 27]

D =
∞

∑
n=0

∂n

∂xn

(
RTM2

0+R
)∣∣∣∣

x=0

xn

n!

∣∣∣∣∣
x=
(

v
vS

) ' D̃ +O
((

v
vS

)3
)

(B.14)

⇒ D̃ =

m2
h/v2

S 0 0
0 m2

H/v2
S 0

0 0 m2
s /v2

S

 =

D̃11 D̃12 D̃13

D̃12 D̃22 D̃23

D̃13 D̃23 D̃33

 . (B.15)

6.) Utilize the fact that we have three equations
(
D̃12,13,23

!
= 0

)
for three parame-

ters (B12, A13,23) and solve these equations for these parameters:

D̃12,13,23
!
= 0 =⇒ B12 , A13,23 . (B.16)

1This ansatz was introduced in Ref. [27] in order to diagonalize the neutral CP even squared mass
matrix of the DFSZ model with a cubic term ∝ c Φ†

2Φ1S + h.c. instead of a quartic term.
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7.) Use the results of B12, A13,23 to obtain D̃11,22,33 in order to calculate the masses:

m2
h

v2
S
=

(
v

vS

)2

(
1 + t2

β

)2

λ1 + t4
β λ2 + 2 t2

β λ34 −

(
λ1S + t2

β λ2S − 2tβλ12S

)2

λS

 (B.17)

+O
((

v
vS

)4
)

,

m2
H

v2
S

=

(
1 + t2

β

)
λ12S

2tβ
+

tβ(
1 + t2

β

)2

[
2
(
(λ1S − λ2S) tβ + λ12S

(
1− t2

β

))2

λ12S

(
1 + t2

β

)
− 2tβλS

(B.18)

+ (λ1 + λ2 − 2λ34) tβ

](
v
vS

)2

+O
((

v
vS

)4
)

,

m2
s

v2
S
= λS +

tβ(
1 + t2

β

)2

[(
λ1S + λ2St2

β − 2tβλ12S

)2

λS
(B.19)

−
2t2

β

(
(λ1S − λ2S) tβ + λ12S

(
1− t2

β

))2

λ12S

(
1 + t2

β

)
− 2tβλS

](
v
vS

)2

+O
((

v
vS

)4
)

.

These analytically derived masses are valid for BP1-BP4 of section 3.9.

8.) The limit of small portal couplings (λ1S,2S,12S � 1) represents the decoupling
of the 2HDM from the PQ-scalar singlet. We choose the following ansatz for
the unitary matrix R:

R = exp

{
M
(

v
vs

)2
}

, (B.20)

which makes the components
(
M′2

0+
)

12,13,23 marginally small since they are
weighted up to second order in v/vs. Thus, we obtain

m2
h ≈

v2(
1 + t2

β

)2

(
λ1 + λ2t4

β + 2λ34t2
β

)
, (B.21)

m2
H ≈

v2
Sλ12S

(
1 + t2

β

)
2t2

β

+
t2
β (λ1 + λ2 − 2λ34) v2(

1 + t2
β

)2 , (B.22)

m2
s ≈ λSv2

S , (B.23)

which are represented by BP4 of section 3.9.
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C. Theoretical Constraints

We give the derivation of the two theoretical constraints, namely the BfB and the
perturbative unitarity conditions for the 2hdSMASH model, which we specify in C.1
and C.2 respectively.

C.1. Bounded from Below Conditions

We derive the BfB conditions in 2hdSMASH by imposing copositivity (conditionally
positive conditions) where the biquadratic form of the quartic scalar potential is pos-
itive on non-negative vectors. This is realized by applying Sylvester’s criterion. We
quote the copositivity condition from Refs. [31, 50] and Sylvester’s criterion from
Ref. [31] in the following:

Copositivity:
"A symmetric matrix A is copositive if the quadratic form xT Ax > 0 for all vectors x > 0 in
the non-negative orthant Rn

+. (The notation x > 0 means that xi > 0 for each i = 0, . . . , n.)
A symmetric matrix A is strictly copositive if the quadratic form xT Ax > 0 for all vectors
x > 0 in the non-negative orthant Rn

+.", cf. Refs. [31, 50].

Sylvester’s criterion:
". . . for a symmetric matrix A to be positive semidefinite, the principal minors of A have to
be non-negative. (The principal minors are determinants of the principal submatrices. The
principal submatrices of A are obtained by deleting rows and columns of A in a symmetric
way, i.e. if the i1, . . . , ik rows are deleted, then the i1, . . . , ik columns are deleted as well.
The largest principal submatrix of A is A itself.) Thus if the matrix A is positive, all of its
submatrices, in particular the diagonal elements aii have to be non-negative.", cf. Ref. [31].

Note that Sylvester’s criterion is a necessary requirement for a matrix A to be copos-
itive and by extension V4 > 0. In order to utilize copositivity and thus Sylvester’s
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criterion, we write the quartic part of the scalar potential V4:

V4 =
1
8

(
λ1h4

1 + λ2h4
2 + λSs4

)
(C.1)

+
1
4

(
h2

1h2
2(λ3 + ζ4λ4) + λ1Sh2

1s2 + λ2Sh2
2s2 − 2λ12Sζ12Sh1h2s2

)
> 0 ,

where

Φ†
1Φ2 = ζ4h1h2 , ζ4 =

∣∣Φ†
1Φ2

∣∣2
|Φ1|2 |Φ2|2

, (C.2)

Φ†
1Φ2S2 = ζ12Sh1h2s2 , ζ12S =

Re
(
Φ†

1Φ2S2)
|S|2 |Φ1| |Φ2|

(C.3)

with ζ4 ∈ [0, 1] and ζ12S ∈ [−1, 1]. As a first step, we consider the biquadratic form
by imposing λ12S = 0:

V′4 ≡ V4|λ12S=0 =
(

h2
1 h2

2 s2
) λ1 λ3 + ζ4λ4 λ1S

λ3 + ζ4λ4 λ2 λ2S

λ1S λ2S λS


h2

1

h2
2

s2

 > 0 (C.4)

to obtain the necessary BFB conditions by applying Sylvester’s criterion:

λ1 > 0 , λ2 > 0 , λ3 + min {0, λ4} > −
√

λ1λ2 ,

λS > 0 ,
√

λ1λS > λ1S > −
√

λ1λS ,
√

λ2λS > λ2S > −
√

λ2λS (C.5)

,√
λ1λ2λS + λ2S

√
λ1 + λ1S

√
λ2 + (λ3 + min {0, λ4})

√
λS

+

√
2
(
(λ3 + min {0, λ4}) +

√
λ1λ2

) (
λ1S +

√
λ1λS

) (
λ2S +

√
λ2λS

)
> 0 ,

where the last condition is given by the combination of the following two conditions1

[31, 50]:

det A > 0 , (C.6)
√

a11a22a33 + a12
√

a33 + a13
√

a22 + a23
√

a11 > 0 (C.7)

1Either of the two conditions of eqns. (C.6)-(C.7) has to hold for V′4 > 0
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with aij as the components of A ∈ R3×3 where

A =

 λ1 λ3 + ζ4λ4 λ1S

λ3 + ζ4λ4 λ2 λ2S

λ1S λ2S λS

 .

By considering the s-dependent portal terms of the quartic scalar potential with
ζ12S = ±1 we get:

VPortal
4 = λ1Sh2

1s2 + λ2Sh2
2s2 − 2

(
±λ12Sh1h2s2

)
(C.8)

=
(

h1s h2s
)( λ1S ∓λ12S

∓λ12S λ2S

)(
h1s
h2s

)

to obtain the sufficient BFB conditions:

λ1S > 0 , λ2S > 0 , λ1Sλ2S − |λ12S|2 > 0 . (C.9)

It’s important to note that the sufficient BfB conditions can be overly strict and there-
fore exclude parameter points which are BfB but do not pass these conditions. Suf-
ficient BfB conditions ensure that V4 > 0 but they are not necessary. For that reason
we chose to break these sufficient BfB conditions and checked numerically whether
individual parameter points are BfB. We have used the Mathematica package BFB
by Ref. [30].

C.2. Perturbative Unitarity Bounds

The full tree-level perturbative unitarity constraints are calculated by requiring that
the unique eigenvalues of the 2→ 2 scalar scattering matrix (scalar S-matrix)M2→2

are below the upper bound of 8π (suggested in Refs. [32] and [33]). The following
calculations are done by using the perturbative unitarity Mathematica package in-
cluded in the directory of ScannerS which is described in Ref. [118]. Therefore we
follow the calculations on perturbative unitarity of Ref. [118].

First, we need to derive the 2→ 2 scalar S-matrix which is given by:

MAB→CD = 〈AB|M |CD〉 = 1√
(1 + δAB) (1 + δCD)

∂4V4

∂A∂B∂C∂D
, (C.10)
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where the δij- functions are necessary symmetry factors. Here, we have used the

quartic scalar potential V4 in the gauge eigenbasis
(

h1,2, s, h±1,2, a1,2,S

)
which is given

by the following field definition:

Φ1 =

 h+1
1√
2
· (h1 + v1 + i · a1)

 , (C.11)

Φ2 =

 h+2
1√
2
· (h2 + v2 + i · a2)

 , (C.12)

S =
1√
2
· (s + vS + i · aS) . (C.13)

The resulting 2 → 2 scalar S-matrix M2→2 is block diagonal and its eigenvalues
Mi

2→2 for i = {1, . . . , n} are bounded by 8π:∣∣∣Mi
2→2

∣∣∣ < 8π . (C.14)

It’s important to note that the eigenvalues are basis independent since unitary trans-
formations are basis independent (see Ref.[118, 119] for details). Part of the eigenval-
ues reproduce the same eigenvalues for a soft U(1)-symmetric 2HDM in the absence
of the PQ-scalar s:

e1,2,3 = λ1,2,3 , (C.15)

e4 = λ3 − λ4 , (C.16)

e5 = λ3 + λ4 , (C.17)

e± =
1
2

(
λ1 + λ2 ±

√
(λ1 − λ2)

2 + 4λ2
4

)
. (C.18)

By including the PQ-scalar s we get the following additional eigenvalues:

s1,2 = λ1S,2S , (C.19)

s3± =
1
2

(
λ1S + λ2S ±

√
16λ2

12S + (λ1S − λ2S)
2
)

, (C.20)

s4± =
1
2

(
λ3 + 2λ4 + λS ±

√
16λ2

12S + (λ3 + 2λ4 − λS)
2
)

, (C.21)

1
2

k1,2,3 , (C.22)
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where the eigenvalues 1
2 |k1,2,3| are the real roots of the following cubic potential:

1
2

(
48λ1λ2

2S + 48λ2
1Sλ2 − 144λ1λ2λS − 64λ1Sλ2Sλ3 − 32λ1Sλ2Sλ4 + 64λ2

3λS

)
(C.23)

+
1
2

(
64λ3λ4λS + 16λ2

4λS + x
(

36λ1λ2 + 24λ1λS − 8λ2
1S + 24λ2λS − 8λ2

2S

))
− x

2

(
λ2

3 − 16λ3λ4 − 4λ2
4

)
+

1
2

(
x2(−6λ1 − 6λ2 − 4λS) + x3

)
.

Taking the absolute value of all eigenvalues, we obtain the full tree-level perturbative
unitarity conditions for 2hdSMASH:

|λ1,2,3,1S,2S| < 8π , (C.24)

|λ3 ± λ4| < 8π , (C.25)∣∣∣∣12
(

λ1 + λ2 ±
√
(λ1 − λ2)

2 + 4λ2
4

)∣∣∣∣ < 8π , (C.26)∣∣∣∣12
(

λ1S + λ2S ±
√

16λ2
12S + (λ1S − λ2S)

2
)∣∣∣∣ < 8π , (C.27)∣∣∣∣12

(
λ3 + 2λ4 + λS ±

√
16λ2

12S + (λ3 + 2λ4 − λS)
2
)∣∣∣∣ < 8π , (C.28)

1
2
|k1,2,3| < 8π . (C.29)
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D. Derived Quantities for Inflation in
2hdSMASH

All results in this appendix are expressed in terms of a mixing parameter b which
distinguishes between mixed and non-mixed field space directions

b =

bi (mixed)

1 (non-mixed)
(D.1)

where bi are the mixing parameters1 given in sections 4.3.1-4.3.2 and correspond to
the four mixed field space directions, i.e. h12, sh1, sh2 and sh12. This allows us to give
the most general result w.r.t. field space directions. During our discussion we will
note at appropriate passages the non-mixed results as well.

D.1. Deriving N(φ) in the potential slow-roll

approximation

We can approximate N in a very simple way by starting with the first cosmological
slow-roll parameter:

ε ≡ − ḢH2 =
1

2M2
p

χ̇2

H2 (D.2)

with Hubble parameter given by:

H2 =
1

3M2
p

(
1
2

χ̇2 + V
)

. (D.3)

By taking the time derivative ofH we get

Ḣ = −1
2

χ̇2

M2
p

, (D.4)

1This concept was introduced in Ref. [7].
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where we inserted the relation from the equation of motion:

χ̈ + 3Hχ̇ +
∂V
∂χ

. (D.5)

From the relation of eq. (D.2) we get:

χ̇2

H2 = 2M2
pε with χ̇2 =

(
dχ

dt

)2

. (D.6)

By additionally using the relation dN = −Hdt we get:

χ′2 = 2M2
pε with χ′2 =

(
dχ

dN

)2

, (D.7)

which leads to:

dχ

dN
= Mp

√
2ε =⇒ N =

1
Mp

∫ dχ√
2ε

. (D.8)

Recalling that ε can be approximated by the potential slow-roll parameter ε ≈ εV we
get:

N ' 1
Mp

∫ dχ√
2εV

. (D.9)

Now, we transform the expression from εV(χ) to εV(φ):

dV
dχ

=
dV
dφ

dφ

dχ
=⇒ εV(φ) =

M2
p

2

(
V′(φ)
V(φ)

dφ

dχ

)2

. (D.10)

This gives us the following expression for N:

N ' 1
M2

p

∫
dφ

V(φ)

V′(φ)

(
dχ

dφ

)2

, (D.11)

where we have used the fact that dχ =
dχ

dφ
dφ. This allows us to derive a general

expression for N in the slow-roll approximation without making any assumptions
about the non-minimal coupling ξ. Therefore the expression for the integrand of N
is given by:

V
V′(φ)

(
dχ

dφ

)2

=
φ

4
+

6ξ2φ3

4
(

bM2
p + ξφ2

) (D.12)
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and thus leading to:

N =
φ2

8M2
p
+

1
M2

p

∫ 6ξ2φ3

4
(

b M2
p + ξφ2

)dφ (D.13)

=
φ2

8M2
p
+

3ξφ2

4M2
p

log

(
b +

ξφ2

M2
p

)
− 3

4

∫
log (b + x) dx ,

where in the last step partial integration was performed with the substitution rule

x ≡ ξφ2

M2
p

. By using this substitution rule again and by using the following integral

relation integral: ∫
log (b + x) dx = (x + b) log (b + x)− x (D.14)

we get:

N =
1 + 6ξ

8M2
p

φ2 − 3 b
4

log

(
b +

ξφ2

M2
p

)
. (D.15)

Inserting the boundaries gives us:

∆N ' 1
M2

p

∫ φI

φE

dφ
V(φ)

V′(φ)

(
dχ

dφ

)2

(D.16)

=⇒ ∆N ' 1 + 6ξ

8M2
p

(
φ2

I − φ2
E

)
− 3 b

4
log

(
b M2

p + ξφ2
I

b M2
p + ξφ2

E

)
. (D.17)

D.2. Approximating N(φ) with L’Hospital’s rule

In order to acquire a simpler expression for N(φ) from eq. (D.15), we prove with
L’Hospitals rule that such an approximation is justified. There are two competing
terms to consider in the expression for the number of e-folds

N =
1 + 6ξ

8M2
p

φ2 − 3 b
4

log

(
b +

ξφ2

M2
p

)
. (D.18)

Our hypothesis is the following approximation

N ' 1 + 6ξ

8M2
p

φ2 . (D.19)
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By applying L’Hospital’s rule, we are able to determine the limit of the ratio of the
two terms of eq. (D.15).

Proof. Let f , g : I → R be two differentiable functions defined on an interval
I = ]x1, x2[, (−∞ ≤ x1 < x2 ≤ ∞) with g′(x) 6= 0 for all x ∈ I for which the limit

lim
x→b

f ′(x)
g′(x)

:= c ∈ R (D.20)

exists. Then, this leads to the following limit:

lim
x→b

f (x)
g(x)

= lim
x→b

f ′(x)
g′(x)

:= c ∈ R . (D.21)

By association the functions read

f (ξ) =
3 b
4

log

(
b +

ξφ2

M2
p

)
, (D.22)

g(ξ) =
(1 + 6ξ) φ2

8M2
p

, (D.23)

for which we get with L’Hospital’s rule and α ∈ [0, ∞):

lim
ξ→α

3
4

log

(
1 +

ξφ2

M2
p

)
(1 + 6ξ) φ2

8M2
p

= lim
ξ→α

1

1 +
ξφ2

M2
p

=

0, if α→ ∞

1, if α→ 0
. (D.24)

Hence, ∃L with 0 ≤ L ≤ 1 defined as:

lim
ξ→α

1

1 +
ξφ2

M2
p

:= L . (D.25)

Therefore, we have an upper limit with L ≤ 1 and we get:

3
4

log

(
1 +

ξφ2

M2
p

)
≤ (1 + 6ξ) φ2

8M2
p

∀ξ ∈ [0, ∞) . (D.26)
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D.3. Deriving As, ns and r in the Large Non-Minimal

Coupling Limit

We consider a general inflaton field φ and its canonically normalized field χ. The
canonical transformation from φ to χ is given by

dχ

dφ
=

√√√√√√√√√√
b

(
b +

φ2

M2
p

(
ξ + 6ξ2))

(
b +

ξφ2

M2
p

)2 . (D.27)

In the large non-minimal coupling limit we consider ξ � 1 and obtain

dχ

dφ
'

√√√√√√√√√
6ξ2φ2b

M2
p

+O (ξ)(
b +

ξφ2

M2
p

)2 '
√

6ξφ

Mp

b

b +
ξφ2

M2
p

.

With the help of

dχ

dφ
=

dχ

dΩ2
dΩ2

dφ
(D.28)

⇒ dχ

dΩ2 =
dχ

dφ

dφ

dΩ2

we get the canonically normalized field χ(φ) by integration:

dχ

dΩ2 '
√

3
2

Mp
1

Ω2 (D.29)

⇒χ(φ) '
√

3
2

Mp log

(
b +

ξφ2

M2
p

)
.

By inverting the function, we acquire φ(χ):

φ(χ) '
Mp√

ξ

√√√√exp

(√
2
3

χ

Mp

)
− b (D.30)
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which can be used to determine the scalar potential in Einstein frame2

VE(χ) =
λφ4(χ)

Ω4 (D.31)

' λ

8ξ2 M4
p

(
1− b exp

(
−
√

2
3

χ

Mp

))2

.

Its first and second derivates w.r.t. χ are thus given by

V′E(χ) ' −
λM3

pb

2
√

6ξ2
exp

(
−
√

2
3

χ

Mp

)(
b− exp

(
−
√

2
3

χ

Mp

))
, (D.32)

V′′E (χ) ' −
λM2

pb
6ξ2 exp

(
−
√

2
3

χ

Mp

)(
1− 2b exp

(
−
√

2
3

χ

Mp

))
. (D.33)

Hence, we can now calculate the first slow-roll parameter εV in slow-roll approxi-
mation:

εV '
4b2

3

(
exp

(√
2
3

χ

Mp

)
− b

)−2

, (D.34)

and the second slow-roll parameter ηV in slow-roll approximation:

ηV '
4b
3

(
2b− exp

(√
2
3

χ

Mp

))(
exp

(√
2
3

χ

Mp

)
− b

)−2

. (D.35)

The inflationary observables are calculated in slow-roll approximation to

As =
1

24π2M4
Pl

V
εV

, ns = 1− 6εV + 2ηV , r = 16εV . (D.36)

With the above slow-roll parameters in large ξ limit, we can now calculate As, ns and
r:

As '
λ

128π2ξ2 b
exp

(
−2

√
2
3

χ

Mp

)(
1− b exp

(√
2
3

χ

Mp

))4

, (D.37)

2We denote the Einstein frame scalar potential with subscript "E".
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ns ' 1− 8 b
3

b + exp

(√
2
3

χ

Mp

)
(

b− exp

(√
2
3

χ

Mp

))2 , (D.38)

r ' 64 b2

3

(
exp

(√
2
3

χ

Mp

)
− b

)2 . (D.39)

D.4. Derivation of the Canonically Normalized

Equation of Motion

The dynamics of the canonically normalized background field is characterized by
χ(N). As a first step, we derive the Euler-Lagrange equation by varying the action

δS
δχ

= 0⇒ ∂L
∂χ
− ∂µ

(
∂L

∂
(
∂µχ

)) = 0 . (D.40)

Now, we can write down the Klein-Gordon equation from eq. (D.40)

χ̈ + 3Hχ̇ + Vχ = 0 , (D.41)

where Vχ describes the derivative of the potential with respect to the field χ.

Using the relation dN = −Hdt, we can transform each time derivatives into deriva-
tives with respect to N:

χ̇ = Hχ′ , (D.42)

χ̈ = H2χ′′ +HH′χ′ , (D.43)

where primes denote N derivatives. With ε expressed in terms of N,

ε = −H
′

H , (D.44)



118 D. Derived Quantities for Inflation in 2hdSMASH

and the Hubble rate expressed as

H2 =
V

M2
p(3− ε)

, (D.45)

we get the following Klein-Gordon equation:

χ′′ + 3χ′ − 1
2M2

p
χ′3 +

(
3Mp −

χ′2

2Mp

)√
2ε = 0 . (D.46)

D.5. Derivation of As(N), ns(N) and r(N) in Covariant

Formalism

In this section we briefly discuss the covariant formalism in the effective single field
inflationary model in order to derive the e-fold-dependent inflationary observables
As(N), ns(N) and r(N).
We start with the general covariant formalism in a multi field model which we re-
duce later to an effective single field model. The first slow-roll parameter can be
written as

ε =
Gijφ

′iφ′j

2M2
p

(D.47)

with Gij as the field space metric. In slow-roll approximation, the potential first slow-
roll parameter εV is thus given by:

εV =
M2

p

2

G ijVφiVφj

V2 (D.48)

with the inverse metric G ij for which GijG ij = G ijGij = 1 holds. This can be applied to
an effective single field model where we choose a certain field direction, i.e. 2HDM-,
PQ- or mixed direction, and describe for simplicity the non-canonical field by φ and
use a general description non-minimal couplings. Then the first slow-roll parameter
reads

ε =
Gφφφ′2

2M2
p

, (D.49)

εV =
M2

p

2

GφφV2
φ

V2(φ)
, (D.50)
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with Gφφ as the field space metric for φ in either field space direction and Gφφ as its
inverse. Each field space direction is therefore represented by Gφφ with the appro-
priate non-minimal coupling ξ,

Gφφ =
b

Ω4

(
Ω2 +

6ξ2φ2

M2
p

)
(D.51)

with frame function Ω2 given by

Ω2 = b +
ξφ2

M2
p

. (D.52)

If we were to transform from φ to χ, we would just have to use the following relation

Gχχ = Gρρ

(
dρ

dχ

)2

= GρρGρρ = 1 (D.53)

which results to Gχχ = 1 as expected.

The Klein-Gordon equation in covariant formalism for the non-canonical field φ is
expressed in terms of covariant time derivates given as

Dtφ̇
i + 3Hφ̇i + G ijVφ = 0 (D.54)

with

Dtφ̇
i ≡ dφ̇i

dt
+ Γi

abφ̇aφ̇b (D.55)

as the covariant time derivative and Γi
ab as the Christoffel symbol given by

Γi
ab = Γi

ab =
1
2
G ic (∂bGca + ∂aGcb − ∂cGab) . (D.56)

By using the relation dN = −Hdt and by implementing eq. (D.47) in eq. (D.55) we
get the general Klein-Gordon equation for the inflaton φ w.r.t. to derivates of N,

φ′′i + Γi
abφ′aφ′b + φ′i (3− ε) +

G ijVj

H2 = 0 , (D.57)

whereH is the Hubble rate defined as

H2 =
V

M2
p (3− ε)

(D.58)
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and ε is the slow-roll parameter defined in eq. (D.47).

Since we are solely interested in effective single field inflation, the Klein-Gordon
equation for φ w.r.t. derivatives of N reduces to

φ′′i + Γφ
φφφ′2 + φ′ (3− ε) +

GφφVφ

H2 = 0 (D.59)

with Christoffel symbol for the inflaton in either field space direction given by

Γφ
φφ = −

ξφ
(

bM2
p(1− 6ξ) + ξφ2(6ξ + 1)

)
(

bM2
p + ξφ2

) (
bM2

p + ξφ2(6ξ + 1)
) . (D.60)

The Klein-Gordon equation given in eq. (D.59) can only be solved numerically. How-
ever, we can use the slow-roll approximation to simplify the expressions in (D.59)
and thus find an analytic solution. As a first step, we determine the inflaton’s field
value at the end of inflation3, i.e. φE, which can be obtained by setting εV ' 1. εV is
given by

εV =
M2

p

2

GφφV2
φ

V2 (φ)
=

8M4
p b

φ2
(

b M2
p + ξ (1 + 6ξ) φ2

) (D.61)

which gives us

φ2
E '

b M2
p

(√
32ξ(6ξ+1)

b + 1− 1
)

2ξ(6ξ + 1)
(D.62)

=

16M2
p b
(√

(8ξ+1)(24ξ+1)−1
b + 1− 1

)
(√

(8ξ + 1)(24ξ + 1)− 1
) (√

(8ξ + 1) (24ξ + 1) + 1
)

where we used in the last step of the equation the following relations

32ξ(6ξ + 1) = (8ξ + 1)(24ξ + 1)− 1 , (D.63)

2ξ(6ξ + 1) =
16(√

(8ξ + 1)(24ξ + 1)− 1
) (√

(8ξ + 1) (24ξ + 1) + 1
) . (D.64)

3We denote subscript "E" as the field value at the end of Inflation and subscript "I" as the field
value at the beginning of Inflation.
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This simplifies for the non-mixed field space directions to

φ2
E '

16M2
p√

(8ξ + 1) (24ξ + 1) + 1
. (D.65)

In a second step, we want to relate the inflaton field φ with the number of e-folds N.
In appendix D.1 we have derived an approximate expression for N which is given
by eq. (D.17)

∆N ' 1 + 6ξ

8M2
p

(
φ2

I − φ2
E

)
− 3 b

4
log

(
b M2

p + ξφ2
I

b M2
p + ξφ2

E

)
. (D.66)

This expression can be further simplified by applying L’Hospitals rule where the log-
term can be neglected4. Thus, we can approximate the number of e-folds as follows

∆N ' 1 + 6ξ

8M2
p

(
φ2

I − φ2
E

)
. (D.67)

With ∆N from eq. (D.67), we acquire an expression for φ(∆N)

φ2(∆N) '
8M2

p

1 + 6ξ
∆N +

M2
p b
(√

32ξ(6ξ+1)
b + 1− 1

)
2ξ(6ξ + 1)

(D.68)

which reduces to

φ2(∆N) '
8M2

p

1 + 6ξ
∆N +

16M2
p√

1 + 32ξ (1 + 6ξ) + 1
(D.69)

for non-mixed directions. In order to determine the As, ns and r w.r.t. ∆N we need
to determine εV(∆N)

εV(∆N) =
b(1 + 6ξ)

∆N (b + 8∆Nξ)
, (D.70)

where we used the approximation given by:

φ2 (∆N) ≈
8M2

p∆N
1 + 6ξ

+O
(

φ2
E

)
≈

8M2
p∆N

b(1 + 6ξ)
(D.71)

4We give a proof in appendix D.2.
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since φ2
E < φ2

I at horizon crossing. This approximation will be used for the following
computations as well. The second slow-roll parameter η is given by

η = ε +
1
2ε

ε′ , (D.72)

where we insert εV(∆N) of eq. (D.70) into η to acquire η(∆N):

η (∆N) ' b(1 + 12ξ)− 16∆Nξ

2∆N (b + 8∆Nξ)
. (D.73)

With this at hand, we can now compute the scalar perturbation amplitude As(∆N),
the spectral index ns(∆N) and the tensor-to-scalar ratio r(∆N)

ns (∆N) = 1− 4εV (∆N) + 2η (∆N) , (D.74)

r = 16εV(∆N) , (D.75)

As =
1

24π2
V(φ(∆N))

εV(∆N)M4
p

, (D.76)

for which we get:

ns (∆N) ' 1− b(3 + 12ξ) + 16∆Nξ

∆N (b + 8∆Nξ)
, (D.77)

As(∆N) ' λ∆N3 (b + 8∆Nξ)

3π2b(1 + 6ξ) (1 + (6 + 8∆N)ξ)2 , (D.78)

r ' 16
b(1 + 6ξ)

∆N (b + 8∆Nξ)
. (D.79)

This reduces to

ns (∆N) ' 1− 3 + 12ξ + 16∆Nξ

∆N (1 + 8∆Nξ)
, (D.80)

As(∆N) ' λ∆N3 (1 + 8∆Nξ)

3π2(6ξ + 1) ((6ξ + 1) + 8∆Nξ)2 , (D.81)

r ' 16
(1 + 6ξ)

∆N (1 + 8∆Nξ)
, (D.82)

for the non-mixed directions.
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E. Renormalisation Group Equations

In the following is the full list of one-loop RGEs in the 2hdSMASH model1:

DM2
11 = M2

11

(
6λ1 −

3
2

g2
1 −

9
2

g2
2 + 6Y2

t

)
+ M2

22 (4λ3 + 2λ4) + M2
SS2λ1S, (E.1)

DM2
22 = M2

22

(
6λ2 −

3
2

g2
1 −

9
2

g2
2 + 6Y2

b + 2Y2
τ + 2Tr

(
Y†

ν Yν

))
(E.2)

+ M2
11 (4λ3 + 2λ4) + M2

SS2λ2S,

DM2
SS = M2

SS

(
4λS + Tr

(
Y†

NYN

))
+ M2

114λ1S + M2
224λ2S, (E.3)

D〈S〉2 = − Tr
(

Y†
NYN

)
〈S〉2 [i.e. the wave function renormalisation], (E.4)

Dg{1,2,3} = {7,−3,−7}g3
{1,2,3}, (E.5)

Dλ1 =
3
4

g4
1 +

3
2

g2
1g2

2 +
9
4

g4
2 − λ1

(
3g2

1 + 9g2
2

)
+ 12λ2

1 (E.6)

+ 4λ3λ4 + 4λ2
3 + 2λ2

4 + 2λ2
1S + 12λ1Y2

b − 12Y4
b

+ 4λ1Y2
τ − 4Y4

τ + 4λ2Tr
(

Y†
ν Yν

)
− 4Tr

(
Y†

ν YνY†
ν Yν

)
, (E.7)

Dλ2 =
3
4

g4
1 +

3
2

g2
1g2

2 +
9
4

g4
2 − λ2

(
3g2

1 + 9g2
2

)
+ 12λ2

2

+ 4λ3λ4 + 4λ2
3 + 2λ2

4 + 2λ2
2S + 12λ2Y2

t − 12Y4
t , (E.8)

Dλ3 =
3
4

g4
1 −

3
2

g2
1g2

2 +
9
4

g4
2 − λ3

(
3g2

1 + 9g2
2

)
+ (6λ3 + 2λ4) (λ1 + λ2)

+ 4λ2
3 + 2λ2

4 + 2λ1Sλ2S + λ3

(
6Y2

t + 6Y2
b + 2Y2

τ + 2Tr
(

Y†
ν Yν

))
− 12Y2

t Y2
b ,

(E.9)

Dλ4 = 3g2
1g2

2 − λ4

(
3g2

1 + 9g2
2

)
+ 2λ4 (λ1 + λ2) + 8λ4λ3 + 4λ2

4 + 4λ2
12S

+ λ4

(
6Y2

t + 6Y2
b + 2Y2

τ + 2Tr
(

Y†
ν Yν

))
+ 12Y2

t Y2
b , (E.10)

DλS = 10λ2
S + 2λSTr

(
Y†

NYN

)
+ 4λ2

1S + 4λ2
2S + 8λ2

12S − 2Tr
(

Y†
NYNY†

NYN

)
,

(E.11)

Dλ1S = λ1S

(
−3

2
g2

1 −
9
2

g2
2 + 4λ1S + 4λS + 6λ2

)
+ λ2S (4λ3 + 2λ4) + 8λ2

12S

+ λ1S

(
6Y2

b + 2Y2
τ + 2Tr

(
Y†

ν Yν

)
+ Tr

(
Y†

NYN

))
− 4Tr

(
Y†

ν YνY†
NYN

)
,

(E.12)

Dλ2S = λ2S

(
−3

2
g2

1 −
9
2

g2
2 + 4λ2S + 4λS + 6λ2

)
+ λ1S (4λ3 + 2λ4) + 8λ2

12S

+ λ2S

(
6Y2

t + Tr
(

Y†
NYN

))
(E.13)

1Ref. [25] has also given the one-loop RGEs of 2hdSMASH, but neglected terms quadratic in λ12S
systematically. We have restored them here using SARAH and PYR@TE.
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Dλ12S = λ12S

(
−3

2
g2

1 −
9
2

g2
2 + 2λ3 + 4λ4 + 2λS + 4λ1S + 4λ2S + 3Y2

t + 3Y2
b + Y2

τ

)
+ λ12S

(
Tr
(

Y†
ν Yν

)
+ Tr

(
Y†

NYN

))
, (E.14)

DYt = Yt

(
−17

12
g2

1 −
9
4

g2
2 − 8g2

3 +
9
2

Y2
t +

1
2

Y2
b

)
, (E.15)

DYb = Yb

(
− 5

12
g2

1 −
9
4

g2
2 − 8g2

3 +
9
2

Y2
b +

1
2

Y2
t + Y2

τ

)
, (E.16)

DYτ = Yτ

(
−15

4
g2

1 −
9
4

g2
2 +

5
2

Y2
τ + 3Y2

b

)
, (E.17)

DYν = Yν

(
−3

4
g2

1 −
9
4

g2
2 + 3Y2

b + Tr
(

Y†
ν Yν

))
+ YνY2

τ −
3
2

Diag
(

0, 0, Y2
τ

)
Yν

+
3
2

YνY†
ν Yν +

1
2

YνY†
NYN, (E.18)

DYN =
1
2

Tr
(

Y†
NYN

)
YN + YNY†

NYN + YNY†
ν Yν + YT

ν Y∗ν YN, (E.19)

where D ≡ (4π)2 d
d ln µR

.



126 E. Renormalisation Group Equations



127

F. Coleman-Weinberg Potential

The Coleman-Weinberg potential is an RG-improved potential which is given by, cf.
Ref. [92],

VCW(φi) =
1

64π2 (F.1)

×
(

∑
b

gbm4
b(φi)

[
log

(
m2

b(φi)

Λ2

)
− 3

2

]
−∑

f
g f m4

f (φi)

[
log

(
m2

f (φi)

Λ2

)
− 5

2

])

where g f /b are the degrees and m f /b are the masses of fermions/bosons. The sum
is performed over all scalars S =

{
h1, h2, s, h+1 , h+2 , a1, a2, aS

}
, Fermions1 F = {t, Ni}

and transverse (longitudinal) vectors VT,L =
{

ZT,L, W±T,L

}
with the following de-

grees of freedom:

gZT = 2 , gZL = 1 , gW±T
= 4 , gW±L

= 2 , gt = 12 , gh1 = gh2 = gs = 1 (F.2)

gh+1
= gh+2

= 2 , ga1 = ga2 = gaS = 1 , gN = 6 .

The masses of S, F and V are given by:

m2
Z =

1
4

(
h2

1 + h2
2

) (
g2

1 + g2
2

)
, m2

W± =
1
4

(
h2

1 + h2
2

)
g2

1 , m2
t =

Yt

2
h2

2 (F.3)

m2
h1,2

=
3h2

1,2λ1,2 + h2
2,1λ34 + s2λ1S,2S

2
, m2

s =
h2

1λ1S − 2h1h2λ12S + h2
2λ2S + 3s2λS

2

m2
a1,2

=
1
2

(
h2

1,2λ1,2 + h2
2,1(λ3 + λ4) + h2

3λ1S

)
, m2

h+1,2
=

1
2

(
h2

1,2λ1,2 + h2
2,1λ3 + h2

3λ1S

)
,

m2
as =

1
2

(
h2

1λ1S + 2h1h2λ12S + h2
2λ2S + s2λS

)
.

1We only consider the top quark and Majorana neutrino contributions since their masses are the
largest amongst the fermions. However, we note that one has to include all fermions in order to give
a complete description, which is beyond the scope of what we are considering.
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