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Zusammenfassung

In dieser Doktorarbeit untersuchen wir Wirkungen der Abbildungsklassengruppe der drei-
dimensionalen Reshetikhin-Turaev topologischen Quantenfeldtheorie, motiviert durch Fra-
gen in der drei-dimensionalen Quantengravitation, wo Durchschnitte der Abbildungsklas-
sengruppe als Kandidaten für Gravitationszustandsummen gelten. Ein Hauptergebniss ist
eine holographische Korrespondenz zwischen Durchschnitten der Abbildungsklassengruppe
und einer konformen Feldtheorie, deren chirale Darstellungen der Abbildungsklassengruppe
irreduzibel sind und eine Endlichkeiteigenschaft besitzen. Als wesentliches Beispiel finden
wir heraus, dass modulare Fusionskategorien von Ising-Typ und ihre Reshetikhin-Turaev
topologische Quantenfeldtheorien diese Eigenschaften erfüllen. Abschließend zeigen wir
für eine modulare Fusionskategorie C dass, wenn die Darstellungen der Abbildungsklassen-
gruppe jeder Fläche ohne markierte Punkte irreduzibel ist, es eine eindeutige unzerlegbare
C-Modulkategorie mit Modulspur, nämlich C, gibt. Solche Modulkategorien beschreiben
Oberflächendefekte in drei-dimensionalen Reshetikhin-Turaev topologische Quantenfeldthe-
orien. Dies verlinkt die Irreduzibilität der Abbildungsklassengruppendarstellungen und die
Abwesenheit von nicht-trivialen Oberflächendefekten.

Abstract

In this thesis we study mapping class group actions of the three-dimensional Reshetikhin-
Turaev topological quantum field theory motivated by questions in three-dimensional quan-
tum gravity where mapping class group averages appear as candidates for gravity partition
functions. One of the main results is a bulk-boundary correspondence between mapping
class group averages and a rational conformal field theory whose chiral mapping class group
representations are irreducible and obey a finiteness property. As primary examples we
find that Ising-type modular fusion categories and their Reshetikhin-Turaev topological
quantum field theories are characterised by these properties. Finally, for a given modular
fusion category C we show that if the mapping class group representation on every surface
without marked points is irreducible then there is a unique indecomposable C-module cat-
egory with module trace, namely C itself. Such module categories describe surface defects
in three-dimensional Reshetikhin-Turaev topological quantum field theories. This links
irreducibility of mapping class group representations and absence of non-trivial surface
defects.

4



Relevant publications

This thesis is based on the following preprint:

� I. Romaidis and I. Runkel, Mapping class group representations and Morita classes
of algebras, [2106.01454 [math.QA]].

and the following as of yet unpublished work:

� I. Romaidis and I. Runkel, in preparation.

The idea of linking irreducibility of mapping class group representations and Morita
classes of algebras (later Theorem 7.1) was developed together with Ingo Runkel which
resulted in the joint preprint mentioned above. These results are contained in Section 7 of
this thesis. The details of the proof were worked out by me, which concerns in particular
Lemmas 7.8 to 7.21.

The rest of the original work presented in this thesis was developed in the unpublished
work in collaboration with Ingo Runkel mentioned above, expected to be published after the
submission of this dissertation. This includes the correspondence between mapping class
group averages and RCFT correlators in Section 5 and irreducibility and property F of
Ising categories in Section 6. The idea of this correspondence was the original motivation
for this dissertation as proposed by my supervisor Ingo Runkel. The explicit proofs of
Theorems 5.4, 6.8 and 6.10 were worked out by me. The proof of Theorem 5.4 relies in
combining some known results presented in Sections 3 and 5.1. The proofs of Theorems 6.8
and 6.10, which take up all of the Section 6.2, make use of explicit computations specific to
Ising categories with the first one emulating the proof given in [JLLSW] for irreducibility
with respect to surfaces without marked points and restricted to the Ising CFT. Finally, I
have obtained the proof of Proposition 7.22 in Section 7.4 by mainly combining results of
[ENOM].

Both works are the result of a collaboration with my supervisor Ingo Runkel, whose
contributions and ideas I fully acknowledge.
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1 Introduction

Topological quantum field theory (TQFT) combines geometry with various algebraic and
higher categorical structures which makes it a powerful computational tool to use in the
study of quantum field theory as well as representation theory. An essential feature of a
TQFT is its underlying modular functor which encodes a family of mapping class group
representations. Mapping class group averages appear in 3D quantum gravity while looking
for a computable approximation of the path integral. This surprising aspect of mapping
class group actions offers a natural gateway between a candidate theory for 3D quantum
gravity in the bulk and a 2D conformal field theory (CFT) on the boundary in the spirit
of the AdS/CFT correspondence. More precisely, the goal of this work is to establish a
correspondence between mapping class group averages and rational CFT (or RCFT) using
the 3D Reshetikhin-Turaev (RT) TQFT.

An n-dimensional TQFT in the Atiyah-Segal formulation is a symmetric monoidal func-
tor from a bordism category into the category of vector spaces. The bordism category
captures the geometries which may include various structures such as Wilson lines, defects
and boundaries.

Let C be a modular fusion category (MFC), that is, a finitely semisimple ribbon category
with simple tensor unit whose braiding is non-degenerate. Famously, such a category gives
rise to a three-dimensional topological quantum field theory [RT, Tu]

ZC : B̂ord
C
3 → Vect (1.1)

called the Reshetikhin-Turaev TQFT of C. The bordism category here consists of 3-
dimensional bordisms with embedded C-coloured ribbon graphs which are morphisms be-
tween decorated surfaces or just d-surfaces (surfaces with framed points and C-labels). Due
to gluing anomalies the bordism category includes some additional structures, denoted by
the hat.

The mapping class group ModC(Σ) of a d-surface Σ consists of isotopy classes of dif-
feomorphisms which preserve the relevant structure [FM, Tu]. The RT state space V C(Σ)
on a d-surface is a (projective) representation of ModC(Σ). For our discussions it is often
sufficient to restrict to the pure mapping class group PModg,n of a connected d-surface,
i.e. the subgroup consisting of mapping classes which fix every marked point. Here the
integers g and n denote the genus and number of framed points of Σ. The generators
of the pure mapping class group are Dehn twists along the curves depicted in Figure 1.1
[FM].

In more detail, let I denote a choice of representatives of the isomorphism classes of
simple objects in C and write L =

⊕
i∈I i ⊗ i∗. Let X1, . . . , Xn be the point labels of a

genus g d-surface. Then PModg,n acts projectively on the Hom-space

V Cg,n := C(1, X1 ⊗ · · · ⊗Xn ⊗ L⊗g) , (1.2)

and we recall this action in Section 3. Having an explicit description of this action will
prove to be useful in the case of Ising categories.
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Defects

Defects provide conceptually a richer geometry, where the top-dimensional manifold (world-
volume) may include embedded manifolds of lower-dimension. The theory is allowed to be-
have differently on these lower-dimensional manifolds, called strata, thus justifying the term
defect. This allows one to study the interplay between theories separated by codimension-
one defects. Defects can be used to gain insight about symmetries in the theory and as we
shall see defects in RT TQFT offer a topological approach to RCFT.

Similarly, physical or free boundaries are codimension-one boundaries of the worldvolume
where the theory abruptly ends. They are distinguished from gluing boundaries (which
are present in a functorial field theory) and they can be thought as defects between the
theory and a trivial theory.

An n-dimensional TQFT with defects has been axiomatised in [CMS] for n = 3 and
then in [CRS1] for n ≥ 3 as symmetric monoidal functors from a defect bordism category
Borddef

n (D) to Vect. Bordisms are now stratified and each stratum carries a defect label
from the defect datum D. Defects in RT TQFT have been studied in [KaS, FSV] and a
construction of a functorial defect RT TQFT has been given in [CRS2]. The construction
works with a single governing bulk theory associated to an MFC C. Surface defects are
labelled by symmetric ∆-separable Frobenius algebras and line defects are certain multi-
modules over algebras, which label incident surface defects. This has been then extended
to multiple bulk theories in [KMRS]. An equivalent interpretation of RT defects is obtained
by the language of module categories. A surface defect internal in C, i.e. separating two
regions labelled by C, corresponds to a left C-module category with module trace. Module
categories with module trace have been introduced in [Sch] and are in direct correspondence
with Morita classes of symmetric special Frobenius algebras.

Boundary conditions are treated in a similar fashion. We relate bordisms with free
boundary to stratified bordisms by taking the double, defined by gluing two copies of
the manifold along the free boundary which then defines a stratification on the resulting
manifold. This is summarised by a symmetric monoidal functor

(̂−) : Bordbnd
n → Bordstr

n (1.3)

from the category of bordisms with boundary to the category of stratified bordisms. This
gives a way to construct from a defect TQFT Z a TQFT with boundary conditions Ẑ
by applying the defect TQFT on the double. For an MFC C the Drinfeld centre Z(C) is
equivalent to C�Crev. Conceptually, the TQFT of Z(C) with boundary can be seen as the

α1
α2 αg

β1 β2 βg

γ1 γ2 γg−1. . .

δ1

δ2

δn−1

. .
.

Figure 1.1: Generators of the unframed pure mapping class group.
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C � Crev

(i, j)

∼

C

C

i

j

Figure 1.2: The construction of correlators via boundary in C � Crev or defects in C.

double ẐC,def of the defect RT TQFT of type C. This provides two pictures for the TQFT
approach to RCFT.

Rational conformal field theory

Two-dimensional CFT is a mathematically well-understood QFT which goes beyond TQFTs
and is employed even in the study of higher-dimensional QFTs and string theory. In
particular, rational CFT is a well-behaved theory characterised by the nice property of
semisimplicity. In this text we work with the approach of [FRS, FjFRS1, FjFRS2] to
RCFT using the defect RT TQFT of C, which corresponds to the representation category
of the associated chiral algebra [H]. In this case, chiral conformal blocks on a surface Σ
correspond to states in V C(Σ) and a correlator is an element in the double, i.e.

Cor(Σ) ∈ V C(Σ̂) . (1.4)

Correlators are subject to modular invariance (invariant under the action of ModC(Σ)) and
the factorisation property (compatibility with cuttings on the surface). We mostly focus
on modular invariance and we will later see that under certain conditions on the modular
functor the factorisation property is automatic.

The construction of [FjFRS1] is essentially using a surface defect labelled by some sym-
metric special Frobenius algebra A to obtain a consistent system of correlators {CorCA(Σ)}Σ.
A d-surface Σ here carries C � Crev labels as it includes a holomorphic and an antiholo-
morphic part. The correlator CorCA(Σ) is obtained by taking the cylinder Σ × [0, 1] and
interpreting Σ × {1/2} as a surface defect labelled by A. The bulk fields connect to the
surface defect via Wilson lines. Equivalently, it is obtained by the TQFT of C � Crev on
the cylinder but with one boundary interpreted as a free boundary. These two pictures
are illustrated in Figure 1.2.

Mapping class group averages in quantum gravity

As already mentioned, mapping class group averages appear in three-dimensional quantum
gravity. A special feature of gravity in three dimensions is the lack of local degrees of
freedom. This implies that classical solutions to the equations of motion of Einstein gravity
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Mγ =

↑ γ

Figure 1.3: The manifold obtained by twisting the torus boundary of the solid torus by γ.

have constant curvature. Classical solutions are obtained by a quotient of a model geometry
by a group of isometries. For a negative cosmological constant Λ < 0 the corresponding
model geometry (for Euclidean signature) is that of the hyperbolic space H3 (or Euclidean
Anti-de-Sitter space AdS3).

A particular solution is thermal AdS3 which is obtained from the Anti-de-Sitter space-
time by imposing an additional periodicity condition (see Section 8). The result is topo-
logically a solid torus and a torus with conformal parameter τ as its asymptotic boundary.
This solution is considered as the vacuum geometry of Einstein gravity.

Famously, Brown and Henneaux [BH] showed that the algebra of asymptotic symmetries
of gravity on AdS3 of radius l is isomorphic to two copies of the Virasoro algebra Virc with
central charge

c =
3l

2G
(1.5)

where G is Newton’s constant and assumed to be much smaller than l. This result was one
of the first hints for the conjecture of an AdS/CFT correspondence by Maldacena [Ma].

The path integral approach requires studying the gravity partition function

Z =
∑

M topologies

∫
Dg eiS[g] (1.6)

with a fixed conformal boundary Σ for the topologies M . However, this is a highly ill-
defined object. In the semi-classical limit c � 1 the classical solutions have dominating
contributions to the path integral [MW], which makes a semi-classical approximation to
the partition function a meaningful object to consider. A family of classical solutions Mγ

with a conformal torus as the asymptotic boundary is obtained by taking thermal AdS3

and twisting its boundary by a mapping class of the torus γ ∈ Sl(2,Z) (see Figure 1.3).
The contribution of thermal AdS3 is Zvac = |χ0(τ)|2 where χ0(τ) is the vacuum character.
The contribution of Mγ is obtained by the action of γ on Zvac. Therefore, if it exists,
the semi-classical torus partition function is a mapping class group average of the vacuum
contribution Zvac. This is the motivating idea for studying mapping class group averages
as candidates of gravity.

Mapping class group averages and RCFT

Our boundary theory is an RCFT with an associated MFC C. In order to obtain a well-
defined notion of a mapping class group average we impose a finiteness condition (see also
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Definition 5.2):

Definition 1.1. Let Σ be a d-surface such that the representation imageG := V C(ModC(Σ))
is finite in End(V C(Σ)). Then, define the linear map

〈−〉Σ : V C(Σ̂)→ V C(Σ̂)Mod(Σ), x 7→ 〈x〉Σ :=
1

|G|
∑
g∈G

g.x (1.7)

where Mod(Σ) acts diagonally on V C(Σ̂).

Let dΣ : V C(Σ̂)→ k be the linear map obtained from the TQFT pairing (3.16). Imposing
an additional irreducibility condition we obtain the following correspondence theorem (see
also Theorem 5.4) [RR2]:

Theorem 1.2. Let Σ be a d-surface such that the projective representation V C(Σ) is
irreducible and V C(ModC(Σ)) ⊂ End(V C(Σ)) is finite and let x ∈ V C(Σ̂) be an element
such that dΣ(x) 6= 0. In addition, suppose that A is a symmetric special Frobenius algebra
in C. Then, there exists λΣ ∈ k such that

CorCA(Σ) = λΣ 〈x〉Σ . (1.8)

The element x is the seed and dΣ(x) 6= 0 is a non-degeneracy condition explained
in Section 3. For example, for the torus Σ = T 2 the seed x can be chosen to be the
contribution of the solid torus or in other words the vacuum seed.

The above result is in the spirit of AdS/CFT and it gives a class of examples where the
bulk theory is an RT TQFT which is under particularly good mathematical control and
an RCFT with chiral MFC C when C obeys these additional finiteness and irreducibility
properties. To be precise, the bulk theory is modelled by the RT TQFT of C � Crev with
partition functions given by mapping class group averages. It is thus sensible to study the
finiteness and irreducibility properties and find examples. An example theory and guiding
example of this work is the Ising CFT. In this setting, where C is the MFC associated
to Ising, the statement of Theorem 1.2 was a known result of [CGHMV] for Σ = T 2

later extended to higher genus surfaces without marked points in [JLLSW]. The reason is
precisely because the associated MFC satisfies the finiteness and irreducibility properties
for all such surfaces. The first property is also referred to as property F, terminology
borrowed from [NR] which used this with respect to braid group representations.

There are 16 MFCs of Ising-type fusion [DGNO] for which we prove the following result
(see Theorems 6.8 and 6.10) [RR2]:

Theorem 1.3. Let C be an Ising-type MFC and let Σg,n be an extended surface whose
marked points are labelled by simple objects. Then, V C(Σg,n) is an irreducible projective
representation of the pure mapping class group and the representation image V C(PModg,n)
is finite.

This extends the results of [JLLSW] to surfaces with framed points and to all 16 Ising
categories.

Another known example of property F with respect to mapping class groups is for C =
Rep(DωG) [G], i.e. twisted Dijkgraaf-Witten theories of a finite group G. There are further
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results of property F with respect to braid group representations [GrN, GRR, NR, RW],
which are related to genus 0 d-surfaces. It is expected and conjectured for this case that
property F is equivalent to the weak integral property. A fusion category A is weakly
integral if its Frobenius-Perron dimension FPdim(A) is an integer.

Examples of C where all V Cg are irreducible are when C is of Ising-type [JLLSW, RR2],
and when it is given by C(sl(2), k) – the modular fusion category for the affine Lie algebra

ŝl(2) at level k – when k+ 2 is prime [Ro]. We will review examples for both properties in
Section 6.1.

Absence of defects

In [RR1] we studied the irreducibility property in more detail and we found that such
theories admit no non-trivial surface defects in the following way.

An algebra A ∈ C is called non-degenerate if its trace pairing is non-degenerate. Non-
degenerate algebras carry a symmetric Frobenius structure. An algebra is called simple if
it is simple as a bimodule over itself. Two algebras A,B are Morita-equivalent if there are
bimodules AXB and BYA in C such that X ⊗B Y ∼= A and Y ⊗A X ∼= B as bimodules.

The main result of [RR1] is (see Theorem 7.1):

Theorem 1.4. Let C be a modular fusion category over an algebraically closed field of
characteristic zero. If the projective mapping class group representations V Cg are irreducible
for all g ≥ 0, then every simple non-degenerate algebra in C is Morita-equivalent to the
tensor unit.

Suppose now that the modular fusion category C is defined over C. In this case, C is
called pseudo-unitary if all simple objects have positive quantum dimension, see [ENO1,
Sec. 8] for details. Combining Theorem 1.4 with results on the existence of module traces
in [Sch], it turns out we can drop the non-degeneracy condition (see Corollary 7.3):

Corollary 1.5. Suppose that in addition to the hypotheses in Theorem 1.4, C is defined
over C and is pseudo-unitary. Then all simple algebras in C are Morita-equivalent to the
tensor unit.

Recalling the brief introduction to defects, the statement of Theorem 1.4 can be inter-
preted as an absence of surface defects.

Absence of defects is maybe not surprising in the context of an AdS/CFT correspondence
as it is conjectured [HO] that quantum gravity has no global symmetries, also known as
absence of global symmetries. Since our model bulk theory is a RT TQFT of C � Crev (or
Turaev-Viro TQFT of type C) its global symmetries are invertible defects. Invertibility is
defined with respect to the fusion of topological defects. In terms of module categories,
these correspond to invertible C�Crev-module categories or equivalently invertible bimodule
categories over C (see Section 2.3).

The relation of absence of defects for C and absence of invertible defects for C � Crev is
not entirely clear. However, we prove the following Proposition (see Proposition 7.22):

Proposition 1.6. Let C be a non-degenerate braided fusion category which has no non-
trivial indecomposable left module categories. Then, its invertible bimodule categories

13



(up to equivalence) are in one-to-one correspondence with isomorphism classes of tensor
autoequivalences on C.

Indeed, for all examples, with the same hypothesis we are aware of, the group of tensor
autoequivalences is trivial [EM].

In summary, the examples considered in this thesis are particularly tractable models for
a bulk-boundary correspondence of 3D gravity and 2D CFT and they capture some key
features like a well-defined average over classical solutions and absence of global symme-
tries.

Thesis structure

The aim of this thesis is to study mathematical questions motivated by problems in quan-
tum gravity. Excluding the introduction, Sections 2 to 7 form the mathematical part of
this thesis using the formal language of tensor category theory, TQFTs and RCFTs.

Section 8 plays the role of a translator and gives gravitational context to this thesis. On
the one hand, it is meant to be read by a mathematician to gain some insight into the
topics of quantum gravity in three dimensions. On the other hand, a physicist can safely
skip the previous sections and may read the last section as a physics introduction to this
work.

The thesis is organized as follows:

� In Section 2.1 we introduce and review basic notions in tensor category theory mostly
following [BK, EGNO, TV2] such as modular fusion categories. Algebras, modules
and their graphical calculus are reviewed in Section 2.2 following the conventions in
[FRS]. Finally, Section 2.3 offers a brief exposition in module categories.

� Section 3.1 introduces the RT TQFT [Tu] by first defining the relevant bordism
category of decorated surfaces and the associated mapping class groupoid. We make
a note on gluing anomalies and their treatment, but most of the emphasis is put
on mapping class groups [FM]. In Section 3.2 we give an explicit description of the
mapping class group representations for an MFC C.

� Section 4 discusses defects and boundaries in TQFTs. More precisely, Section 4.1
gives the definitions of stratified manifolds and TQFTs with defects as in [CRS1]. In
addition, we summarise the construction of the defect RT TQFT based on [CRS2].
Section 4.2 considers TQFTs with boundaries for which we review manifolds with
corners [SP] and the bordism category with free boundaries. Moreover, we give
the construction of the double enabling to pass from bordisms with boundaries to
bordisms with defects.

� Section 5.1 summarises the TQFT approach to RCFT of [FRS, FjFRS1]. We define
mapping class group averages in Section 5.2 which we use to establish our correspon-
dence Theorem in Section 5.3.

� In Section 6 we study the properties of irreducibility and finiteness. A review of
known examples is given in Section 6.1. One of the primary results of this thesis is
irreducibility and finiteness property of Ising categories proven in Sections 6.2.

14



� Section 7 is primarily a presentation of our results in [RR1]. We review the notion
of the universal grading group in Section 7.1 and give the explicit construction of
mapping class group invariants in Section 7.2 which are used for the proof which is
completed in Section 7.3. Section 7.4 addresses the question of global symmetries or
invertible defects.

� Section 8 reviews some of the physics background and motivation for this thesis. We
give context to our results in the spirit of a holographic duality between quantum
gravity and CFT. Furthermore, we address and discuss some questions and interest-
ing directions.
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2 Prerequisites

2.1 Tensor categories

We will briefly introduce some notions of tensor category theory and fix conventions and the
graphical calculus used in this thesis. We will follow mainly the definitions of [EGNO, TV2]
and the graphical calculus of [BK].

Throughout this thesis, the field k will be an algebraically closed field of characteristic
zero, unless specified otherwise. The category of finite dimensional k-vector spaces will be
denoted by Vect as the field k will be clear from context.

A monoidal category is a category C together with a functor ⊗ : C×C → C, associativity
isomorphisms α : ⊗◦(⊗×id) ∼= ⊗◦(id×⊗), a unit object 1 ∈ C and unitality isomorphisms
l : ⊗ ◦ (1 × id) ∼= id and r : ⊗ ◦ (id×1) ∼= id. The associators α and unitators l, r are
subject to the pentagon and triangle axioms. Given a monoidal category C, we write Cmop

for the monoidal category with underlying category C, but opposite monoidal product

A⊗mop B := B ⊗ A.

Its associators are given by αmop
X,Y,Z = α−1

Z,Y,X and its unitators by lmop
X = rX and rmop

X = lX .
The category Cmop is not to be confused with the opposite category Cop obtained from
reversing all morphism directions. The category Cop is also given a monoidal structure,
when C is monoidal, equipped with the same bifunctor⊗ and with associators and unitators
given by the respective inverses.

A functor F : C → D between monoidal categories C,D is called monoidal if it is
equipped with structure isomorphisms F2 : F ◦ ⊗C ∼= ⊗D ◦ (F × F ) and F0 : F (1C) ∼= 1D
subject to compatibility conditions. By a natural transformation between two monoidal
functors, we will always mean a natural transformation which is compatible with the
monoidal structures.

A braiding on C is a family of natural isomorphisms cX,Y : X⊗Y → Y ⊗X which satisfy
the hexagon axioms, i.e. they are compatible with associators and unitators. Without loss
of generality, we only consider strict monoidal categories, for which the associators and
unitators are trivial. A monoidal category C equipped with a braiding c is called braided
monoidal. An object T in a braided monoidal category C is called transparent if its double
braiding with any other object in C is trivial, i.e.

cX,T ◦ cT,X = idT⊗X (2.1)

for any X ∈ C. A trivial example of a transparent object in any braided monoidal category
is its unit object 1. By Crev we denote the braided category with the same underlying
category equipped with the reverse braiding crev

X,Y = c−1
Y,X (see Figure 2.1). A monoidal

functor F : C → D between two braided monoidal categories C,D is called braided, if it is
compatible with the braidings.

Given a monoidal category C, there is a construction of a braided monoidal category
Z(C), called the Drinfeld centre of C, cf. [EGNO, Def. 7.13.1]. Objects in Z(C) are pairs
(V, γ) consisting of an object V in C and a natural isomorphism γ : idC ⊗V → V ⊗ idC

16



cX,Y =

X Y

Y X

, c−1
Y,X =

X Y

Y X

Figure 2.1: Graphical notation of a braiding and its inverse.

called a half-braiding and is subject to a hexagon axiom much like the braiding in a braided
monoidal category. If C is braided monoidal then there is a natural braided monoidal
functor

C → Z(C) (2.2)

which takes an object X in C to the pair (X, c−,X) where the braiding in C is used to define
a half-braiding. Similarly, there is a braided monoidal functor

Crev → Z(C) (2.3)

which takes an object X to the pair (X, c−1
X,−).

Let X be an object in a monoidal category C. We say that ∗X is a left dual of X if there
is a (left) evaluation map

evLX : ∗X ⊗X → 1 (2.4)

and a (left) coevaluation map
coevLX : 1→ X ⊗ ∗X (2.5)

which satisfy the rigidity, or zig-zag, axioms. Similarly, we say that X∗ is a right dual of
X if there are (right) evaluation and coevaluation maps:

evRX : X ⊗X∗ → 1 (2.6)

and
coevRX : 1→ X∗ ⊗X (2.7)

Graphically, these maps are represented as follows:

evLX =
∗X X

, coevLX =

∗XX
, evRX =

X X∗
, coevRX =

X∗ X
(2.8)

A rigid category is a monoidal category for which every object X has a left dual ∗X and
a right dual X∗. Taking left duals and right duals defines monoidal functors

∗(−), (−)∗ : C → (Cmop)op . (2.9)

On morphisms, duals are obtained by using the evaluation and coevaluation maps. For
instance, the right dual of a morphism f : X → Y is defined as:

f ∗ := (idX∗ ⊗evRY ) ◦ (idX∗ ⊗f ⊗ idY ∗) ◦ (coevRX ⊗ idY ∗)
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Similarly, for left duals. In a rigid category C one can canonically identify

∗(V ∗) ∼= V, (2.10)

that is we have a canonical equivalence of monoidal functors ∗((−)∗) ∼= idC.

Let C be rigid monoidal category. A pivotal structure on C is a monoidal isomorphism
idC

'−→ (−)∗∗ between the identity functor idC and the monoidal endofunctor obtained from
taking double duals. A rigid category together with a pivotal structure is called a pivotal
category. Functors between pivotal categories will be called pivotal, if they satisfy some
additional compatibility conditions involving the pivotal structures.

The pivotal structure allows one to define the notion of left and right traces, as left duals
can and will be canonically identified with right duals via ∗V ∼= ∗(V ∗∗) ∼= V ∗ where the
pivotal structure gives the first isomorphism and the second is provided by the canonical
isomorphism from rigidity (2.10). Let V be an object in a pivotal category C and f : V → V
be an endomorphism of V . The left trace trL(f) respectively the right trace trR(f) are
defined via

trL(f) = f , trR(f) = f (2.11)

as endomorphisms of 1, where the canonical isomorphism ∗V ∼= V ∗ is used but not included
in the string diagram. In particular, this gives the notion of left and right dimensions by
taking the respective traces of the identity morphism, i.e.

dimL(V ) := trL(idV ) and dimR(V ) := trR(idV ) . (2.12)

A spherical category is a pivotal category where left traces coincide with right traces. In
particular, in a spherical category we write tr(f) := trL(f) = trR(f) for the uniquely
defined trace of f and dim(V ) := dimL(V ) = dimR(V ) for the dimension of V .

Let C be a braided rigid monoidal category. A ribbon structure on C consists of a natural
automorphism θ : idC

'−→ idC of the identity functor such that for any objects V,W ∈ C

θV⊗W = cW,V ◦ cV,W ◦ (θV ⊗ θW ) (2.13)

and (θV )∗ = θV ∗ . A braided rigid monoidal category equipped with a ribbon structure is
called ribbon category and the isomorphism θ is called the twist. A ribbon category inherits
naturally the structure of a spherical category. From now on, we will not distinguish
between left and right duals in pivotal categories as they are canonically identified, and we
will use the right dual notation. For a ribbon category C with twist θ, the reversed ribbon
category Crev is obtained by reversing both the braiding and the twist, i.e. θrev

X = θ−1
X . Any

braided pivotal functor F : C → D between ribbon categories automatically preserves the
ribbon structure in that F (θ) = θ, where θ denotes the respective twists. We may also
refer to them as ribbon functors.
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A multitensor category C is a locally finite1
k-linear abelian rigid monoidal category such

that the functor ⊗ : C ×C → C is bilinear. If in addition the unit 1 is simple, i.e. C(1,1) ∼=
k, then it is a tensor category. Moreover, a multifusion category is a finite semisimple
multitensor category and a fusion category is a finite semisimple tensor category. The
finiteness condition requires in addition to locally finiteness that there are only finitely
many simple objects up to isomorphism and every simple object has a projective cover.
For the details on abelian, locally finite and finite categories see [EGNO].

Deligne’s tensor product2 C�D of locally finite k-linear abelian categories C,D inherits
a (braided) (multi)tensor or (multi)fusion category structure if C and D are also equipped
with this structure [EGNO, Prop. 4.6.1]. Suppose C is a braided multitensor category. The
functors (2.2) and (2.3) form a braided tensor functor

C � Crev → Z(C) . (2.14)

Given a fusion category C, we write I for the set of representatives of isomorphism classes
of simple objects in C and choose 1 as the representative of [1]. The duality in C induces
an involution map ( ) : I → I, since for any i ∈ I there exists i such that i ∼= i∗. We also
define the object

L =
⊕
i∈I

i⊗ i∗ . (2.15)

Suppose now C is a ribbon fusion category. Define an |I| × |I|-matrix s with matrix
elements

si,j = tr(cj,i ◦ ci,j) = j i (2.16)

given by taking the trace of the double braiding. An object of great significance in this
thesis is the modular fusion category which is defined in the following Proposition:

Proposition 2.1. A modular fusion category (MFC) is a ribbon fusion category C satis-
fying one of the following equivalent statements:

1. The s-matrix (2.16) is a non-degenerate matrix.

2. The Müger centre (C)′, which consists of all transparent objects in C, is trivial,
i.e. (C)′ ' Vect.

3. The (ribbon) tensor functor (2.14) is an equivalence, i.e. C � Crev ' Z(C).

1The condition of locally finiteness requires that the category is enriched over finite dimensional vector
spaces in that morphism spaces are finite dimensional and every object has finite length, see [EGNO,
Def. 1.8.1].

2The Deligne tensor product C �D is equipped with a bilinear right biexact functor � : C × D → C �D
and characterised by the universal property with respect to any other such abelian category A and
bilinear right biexact functor C × D → A.
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The condition (ii) is equivalent to requiring that every transparent object is a direct sum
of 1’s. We will often refer to the equivalence obtained in (iii) without specifying the exact
functor of which it is obtained.

A trivial example of a (modular) fusion category is of course the category of finite
dimensional vector spaces Vect. A more rich family of examples comes from the following
observation: The Drinfeld centre Z(S) of a spherical fusion category S is a modular fusion
category.

Let C be a fusion category, X an object and i ∈ I. We write N i
X for the dimension of

the morphism space C(i,X). That is the multiplicity of the simple i in X. An i-partition

of X [TV2, Chapter 4] consists of a basis {p(i)
α }α=1,...,N i

X
of the vector space C(i,X) and a

basis {q(i)
α }α=1,...,N i

X
of the vector space C(X, i) which are dual in the sense that

q(i)
α ◦ p

(i)
β = δα,β . (2.17)

By semisimplicity, taking the union of i-partitions for each i ∈ I, we get the property∑
i∈I

∑
α

p(i)
α ◦ q(i)

α = idX . (2.18)

We will use the following notation for a fixed i-partition, p
(i)
α = α and q

(i)
α = α.

The fusion coefficients are defined by

Nk
ij := dim C(k, i⊗ j) (2.19)

and satisfy

Nk
ij = Nk

ji = N j

ik
= Nk

ij
. (2.20)

For i, j, k ∈ I, a k-partition of X = i ⊗ j describes the fusion and split of i and j.
Graphically, fusion basis elements are

k

i j

α ,

k

i j

ᾱ (2.21)

When considering the fusion of four labels i, j, k, l in I, we have two natural decompositions,
namely

C(l, i⊗ j ⊗ k) ∼=
⊕
m∈I

C(l,m⊗ k)⊗k C(m, i⊗ j) (2.22)

∼=
⊕
n∈I

C(l, i⊗ n)⊗k C(n, j ⊗ k) (2.23)

which gives two bases respectively. The transition matrix between these two bases is called
an F -matrix and is defined by the relation (cf. [FRS, Eq. (2.39)])

(α⊗ idk) ◦ β =
∑
n,γ,δ

F
(ijk)l
γnδ, αmβ (idi⊗δ) ◦ γ . (2.24)
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The matrix elements of the transformation inverse to F will be denoted by G:

(idi⊗δ) ◦ γ =
∑
m,α,β

G
(ijk)l
αmβ, γnδ (α⊗ idk) ◦ β . (2.25)

The string diagrams for equations (2.24) and (2.25) are

ki j

α

β

l

m =
∑
n,γ,δ

F
(ijk)l
γnδ, αmβ

ki j

δ

γ

l

n , (2.26)

ki j

δ

γ

l

n =
∑
m,α,β

G
(ijk)l
αmβ, γnδ

ki j

α

β

l

m . (2.27)

In a spherical fusion category we can compute them by:

F
(ijk)l
γnδ, αmβ =

1

dl

k

i

j
δ

γ
n

ᾱ

β̄

l

m

, G
(ijk)l
αmβ, γnδ =

1

dl
k

i
j

α

β

m

δ̄

γ̄

l

n

(2.28)

Let C be a braided fusion category. The R-matrix describes how the fusion basis changes
under the braiding of C. Namely, it is defined as

ci,j ◦ α =
∑
β

R
(ij)k
βα β , c−1

j,i ◦ α =
∑
β

R
− (ij)k
βα β (2.29)

and graphically:

k

j i

α
=
∑
β

R
(ij)k
βα

k

j i

β ,

k

j i

α
=
∑
β

R
− (ij)k
βα

k

j i

β (2.30)
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Another useful transformation we will use is the B-matrix, which is defined by

(idi⊗ck,j) ◦ (α⊗ idj) ◦ β =
∑
n,γ,δ

B
(ijk)l
γnδ, αmβ (γ ⊗ idk) ◦ δ . (2.31)

Graphically, the B-matrix is defined as follows:

ki j

α

β

l

m =
∑
n,γ,δ

B
(ijk)l
γnδ, αmβ

ki j

γ

δ

l

n (2.32)

Using the F - and R-matrices, one can write for the expression on the left:

(idi⊗ck,j) ◦ (α⊗ idj) ◦ β
(2.24)
=

∑
p,µ,ν

F
(ikj)l
µpν,αmβ(idi⊗ck,j) ◦ (idi⊗ν) ◦ µ

(2.29)
=

∑
p,µ,ν,λ

F
(ikj)l
µpν,αmβR

(kj)p
λν (idi⊗λ) ◦ µ

(2.25)
=

∑
n,γ,δ

∑
p,µ,ν,λ

F
(ikj)l
µpν,αmβR

(kj)p
λν G

(ijk)l
γnδ,µpλ(γ ⊗ idk) ◦ δ (2.33)

Inserting this into (2.31) and comparing both sides we obtain an expression for the B-
matrix in terms of F - and R-matrices

B
(ijk)l
γnδ,αmβ =

∑
p,µ,ν,λ

F
(ikj)l
µpν,αmβR

(kj)p
λν G

(ijk)l
γnδ,µpλ . (2.34)

The reverse B-matrix is defined by

(idi⊗c−1
j,k) ◦ (α⊗ idj) ◦ β =

∑
n,γ,δ

B
− (ijk)l
γnδ, αmβ (γ ⊗ idk) ◦ δ (2.35)

and pictorially:
ki j

α

β

l

m =
∑
n,γ,δ

B
−(ijk)l
γnδ, αmβ

ki j

γ

δ

l

n (2.36)

Its computation resembles that of the B-matrix according to (2.33) but using in the second
step the reversed R-matrix from (2.29) because we work with the reverse braiding. One
can easily verify that

B
− (ijk)l
γnδ,αmβ =

∑
p,µ,ν,λ

F
(ikj)l
µpν,αmβR

− (kj)p
λν G

(ijk)l
γnδ,µpλ . (2.37)
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2.2 Algebras

We now recall some algebraic notions following the conventions in [FRS].

Definition 2.2. Let C be a monoidal category. An algebra in C is an object A ∈ C
equipped with morphisms η : 1→ A (unit) and µ : A⊗A→ A (product or multiplication)
represented graphically3:

η = , µ = . (2.38)

These morphisms are subject to the unitality and associativity conditions:

= = , = . (2.39)

Dually, a coalgebra C in C is an algebra object in the opposite category Cop. It consists
of morphisms ε : C → 1 (counit) and ∆ : C → C ⊗ C (coproduct or comultiplication)
represented by

ε = , ∆ = . (2.40)

that are subject to the counitality and coassociativity conditions (obtained from the re-
flection of (2.39) along the horizontal axis).

Definition 2.3. Let C be a monoidal category. A Frobenius algebra is an object A with
an algebra structure (A, η, µ) and a coalgebra structure (A, ε,∆) which are compatible in
the following way:

= = . (2.41)

3We often omit labels for string diagrams if labels are clear from context.
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Let C be a braided category and (A, η, µ) an algebra in C. Then, we define the opposite
algebra Aop = (A, η, µop) with opposite product

µop := µ ◦ cA,A . (2.42)

The algebra A is called commutative if µop = µ. Similarly, for a coalgebra (C, ε,∆) the
opposite coalgebra (C, ε,∆op) is defined by the coproduct

∆op = c−1
C,C ◦∆ (2.43)

and C is called cocommutative if ∆op = ∆. Notice that composing the coproduct with the
ordinary braiding cC,C instead of the reverse braiding in (2.43) would also give rise to a
coalgebra structure. However, to be consistent with Frobenius algebras we fix the opposite
coproduct as above. For instance, suppose that A is a Frobenius algebra with product µ
and coproduct ∆. The opposite algebra Aop with product µop as in (2.42) and coproduct
∆op as in (2.43) forms a Frobenius algebra.

Definition 2.4. 1. Let C be a monoidal category and A an algebra in C. A left A-
module is a pair (M,ρ) ≡ AM where M is a object in C and ρ is a left action of A
on M , i.e. a morphism

ρ = : A⊗M →M (2.44)

such that

= . (2.45)

A right A-module is a left A-module in Cmop

2. Suppose A and B are two algberas. An A-B-bimodule M carries a left A-action
A⊗M →M and a right B-action M ⊗B →M which are compatible

= . (2.46)

We will write AMB to indicate that M is an A-B-bimodule.
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Remark 2.5. An algebra A has a canonical A-A-bimodule structure with actions given
by its product. In this sense, the Frobenius condition (2.41) is equivalent to the coproduct
∆ being an A-A-bimodule map.

Two algebras A and B are called Morita equivalent, if there exist an A-B-bimodule X
and a B-A-bimodule Y such that X ⊗B Y ∼= A and Y ⊗A X ∼= B as bimodules.

Definition 2.6. 1. A Frobenius algebra A in C is ∆-separable if µ ◦ ∆ = id, and for
C fusion it is special if ε ◦ η 6= 0 and µ ◦ ∆ = ζ id for some ζ ∈ k

×. We call A
normalised-special if ζ = 1, or, equivalently, if it is ∆-separable and special.

2. A Frobenius algebra A in a pivotal category C is called symmetric if

A

A∗

=

A

A∗

. (2.47)

An algebra A in a tensor category C is called simple if it is simple as a bimodule over
itself. It is called haploid if C(1, A) = k η. A haploid algebra is automatically simple
[FSc1, Lem. 4.5].

Given an algebra A in a pivotal category C, define the morphism Φ : A→ A∗ as

Φ :=

A

A∗

. (2.48)

An algebra A is called non-degenerate if Φ is an isomorphism.

Lemma 2.7. Let A be a non-degenerate algebra in a pivotal tensor category C. Then:

1. There is a unique coproduct and counit on A such that A becomes a symmetric
Frobenius algebra, and such that the isomorphism A → A∗ in (2.47) agrees with Φ
in (2.48).

2. The Frobenius algebra in part 1 is ∆-separable, and it is normalised-special iff
dimC(A) 6= 0.

3. If C is spherical and A is simple, then dimC(A) 6= 0.

Parts 1 and 2 of this lemma are proved in [KR1, Lem. 2.3]. Part 3 is proven in Lemma 2.9
using the additional constraint of sphericality.
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Remark 2.8. The reason why we work with non-degenerate algebras instead of directly
with Frobenius algebras is that being non-degenerate is a property of an algebra. Being
Frobenius is, first of all, more data (coproduct and counit). It becomes a property when one
adds the conditions of symmetry and ∆-separability. Namely, an algebra is non-degenerate
iff it is ∆-separable symmetric Frobenius, cf. [KR1, Lem. 2.3]

The following Lemma proves part 3 of Lemma 2.7 and can be found in [RR1, Lem. A.1].

Lemma 2.9. Let F be a spherical multifusion category over an algebraically closed field
k (of any characteristic) and let A ∈ F be a simple ∆-separable symmetric Frobenius
algebra. Then dimF(A) 6= 0.

Proof. To avoid cumbersome notation, in this proof we assume F to be strict. Let Atop :=
F(1, A) denote the topological algebra of A, cf. [FRS, Sec. 3.4]. It is an algebra over k via
the product and unit

µtop(x, y) := µ ◦ (x⊗ y) , 1top := η . (2.49)

Define a pairing on Atop by
〈x, y〉 := ε ◦ µtop(x, y) . (2.50)

Let x 6= 0 be an element in Atop. The non-degeneracy of A (cf. Remark 2.8) implies that
Φ ◦ x 6= 0. Since F is semisimple, there is a ϕ : A∗ → 1 such that ϕ ◦Φ ◦ x 6= 0. Using the

expression in (2.47) for Φ, it follows for y =
[
1

coevA−−−→ A⊗ A∗ idA⊗ϕ−−−−→ A
]

that

〈x, y〉 = ϕ ◦ Φ ◦ x 6= 0 . (2.51)

Therefore, the pairing on Atop is non-degenerate. Consider now the linear map p : Atop →
Atop defined by

p(x) = x . (2.52)

Since A is ∆-separable, it follows that p2 = p and p(η) = η. The pairing satisfies the
following invariance property:

〈p(x), y〉 (1)
= x

y

(2)
= x

y

(3)
= 〈x, p(y)〉 , (2.53)
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where (1) uses the associativity of A, (2) is immediate from sphericality of F and (3) can
be verified using that A is a symmetric Frobenius algebra.

Write AFA(A,A) for the subspace of A-A-bimodule morphisms in F(A,A). Consider
the linear map ψ : AFA(A,A)→ Atop given by ψ(f) := f ◦ η. It satisfies

ψ(f) = f ◦ η = f ◦ p(η) = p(f ◦ η) = p(ψ(f)) , (2.54)

where we used that f is a bimodule morphism to exchange p with f . Hence, we have
Im(ψ) ⊂ Im(p). Conversely, let x ∈ Atop and define fx ∈ F(A,A) by

fx = x . (2.55)

One checks that fx ∈ AFA(A,A) and ψ(fx) = p(x), so that Im(p) ⊂ Im(ψ), i.e. altogether
Im(p) = Im(ψ).

Since the algebra A is simple, AFA(A,A) = k id (this uses that k is algebraically closed).
Therefore, dim Im(p) ≤ 1 and so in fact we have Im(p) = kη. By non-degeneracy of the
pairing in (2.50) we can find some y such that 〈η, y〉 6= 0. As η is a basis for Im(p) there
is λ ∈ k with p(y) = λ η. Using this, we compute

0 6= 〈η, y〉 = 〈p(η), y〉 = 〈η, p(y)〉 = λ〈η, η〉 . (2.56)

Therefore 〈η, η〉 6= 0. Finally, dimF(A) = ε ◦ η = 〈η, η〉 6= 0.

The condition that A is symmetric cannot be dropped from Lemma 2.9. For example,
the two-dimensional Clifford algebra with one odd generator in the category of super vector
spaces SVect is simple ∆-separable Frobenius (but not symmetric) and has dimension zero.

Suppose C is an MFC. For B ∈ C � Crev let {α} be a basis of C � Crev(i× j, B) and let
{α} be the dual basis of C�Crev(B, i×j) in the sense that α◦β = δα,β idi×j, i.e. they define
an i × j-partition of B. A key ingredient in our proof of Theorem 7.1 will be the notion
of a modular invariant algebra from [KR2, Def. 3.1] (using the alternative formulation in
[KR2, Lem. 3.2]).

Definition 2.10. An algebra B in C � Crev is called modular invariant if θB = idB and if
the product is S-invariant, i.e.

B

i× j

i× j

=
D2

didj

∑
α

α

α

B

i× j

i× j

.
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The full centre

We now recall the definition of the full centre of an algebra, as well as a result from [KR1]
that will be used later for the proof of Theorem 7.2. We assume C to be a ribbon fusion
category throughout this section.

Definition 2.11. The left centre Cl(A) of a non-degenerate algebra A is the image of the
idempotent Pl : A→ A,

Pl =

A

A

.

More details on the definition of left (and right) centres and their properties can be found
e.g. in [FrFRS, Sec. 2.4]. The left centre inherits a natural structure of a non-degenerate
algebra from the original algebra and it is also commutative [FrFRS, Prop. 2.37]. If A in
Definition 2.11 is commutative, then the idempotent is trivial Pl = idA and thus Cl(A) = A.

The tensor functor T : C � Crev → C, X × Y 7→ X ⊗ Y admits a two-sided adjoint.
Explicitly, the adjoint is given by R : C → C � Crev, X 7→

⊕
i∈I(X ⊗ i∗) × i, see [KR2,

Sec. 2.4].

Definition 2.12. Let A ∈ C be a non-degenerate algebra. The full centre of A is Z(A) =
Cl(R(A)) ∈ C � Crev.

Remark 2.13. The full centre was first introduced in [FjFRS2, Def. 4.9]. Actually, one
can assign to an algebra A in a monoidal category M a commutative algebra in the
Drinfeld centre Z(M) which is characterised by a universal property [Da1]. The notion in
Definition 2.12 is a special case of this more general characterisation.

The full centre is important in our construction because it produces modular invariant
algebras. The following theorem is the first key input in our construction. It is shown in
[KR1, Prop. 2.7] and [KR2, Thm. 3.18].

Theorem 2.14. Let A ∈ C be a simple non-degenerate algebra and let C be modular.
Then the full centre Z(A) ∈ C � Crev is a haploid commutative non-degenerate modular
invariant algebra with dimC�Crev Z(A) = D2.

Example 2.15. The fundamental example is to choose A = 1 ∈ C. We describe the
Frobenius algebra structure of Z(1) explicitly, as we will need it later. The expressions
below are taken from [KR2, Eq. (2.58)], which gives R(A), together with the observation
that for A = 1 it is already commutative, and so equal to Z(1). The underlying object of
Z(1) is

⊕
i∈I i

∗× i. The unit is given by the natural embedding of 1× 1, while the counit
is given by the projection to 1×1 times D2. Let {α} be a basis of C(k, i⊗ j) and {α} the
dual basis in C(i⊗ j, k) in the sense that α ◦ β = δα,β, i.e. a fusion basis as in (2.21). The
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product and coproduct are given by

µZ(1) =
⊕
i,j,k

N k
ij∑

α=1

j∗i∗

k∗

i j

k

α α
⊗k

,

∆Z(1) =
⊕
i,j,k

N k
ij∑

α=1

didj
dkD2

j∗i∗

k∗

i j

k

α α⊗k
. (2.57)

The next theorem is the second key input for our construction, as it relates Morita
equivalence to isomorphisms of full centres.

Theorem 2.16 ([KR1, Thm. 1.1]). Let A and B be simple non-degenerate algebras. Then
the following are equivalent:

1. A and B are Morita equivalent.

2. Z(A) and Z(B) are isomorphic as algebras.

2.3 Module categories

The definitions in this section can be found in [ENOM] and [Sch].
Let C be a fusion category.

Definition 2.17. A left C-module category is a finite semisimple k-linear abelian category
M together with a bilinear functor B : C ×M→M, a natural isomorphism

λV,W,M : (V ⊗W )BM
∼−→ V B (W BM) (2.58)

and lM : 1BM
∼−→ M for each object V,W ∈ C and M ∈ M. The natural isomorphisms

λ and l are subject to compatibility conditions, see [Os, Def. 2.6].

A (left) C-module functor F :M→N between two left C-module categoriesM and N
is an abelian k-linear functor equipped with a structure isomorphism

F (−B−) ∼= −B F (−)

subject to compatibility conditions [Os, Def. 2.7]. Module natural transformations are nat-
ural transformations between such module functors, which respect their structure isomor-
phisms. Left C-module categories, module functors and module natural transformations
form the bicategory C-Mod of C-modules.

Two fusion categories C and D are Morita equivalent if there is an equivalence C-Mod '
D-Mod of bicategories. An equivalent condition is given by the following theorem due to
[ENO2, Thm. 3.1] and [Mü, Rem. 3.18]:
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Theorem 2.18. Two fusion categories C and D are Morita equivalent if and only if the
respective Drinfeld centres Z(C) and Z(D) are braided equivalent.

Given a left C-module categoryM, the category of C-module endofunctors onM forms
a multi-fusion category

C∗M := FunC(M,M) (2.59)

which is also referred to as the dual of C with respect to M. The tensor product is given
by the composition of endofunctors. If M is an indecomposable module category, i.e. it is
not equivalent to any product of non-trivial C-module categories, the identity functor idM
is simple and therefore C∗M becomes a fusion category.

Let F : C → D be a tensor functor between fusion categories C and D. There is a
natural way to pull-back a D-module structure to a C-structure along F . SupposeM is a
D-module category. Then,M inherits the (pull-back) C-module structure, with the action
of some object X in C on an object M in M defined by

X BM := F (X)BM .

Example 2.19. The fusion category C can be seen as a left C-module category by using
the tensor product as the action, i.e.M = C and B = ⊗. The coherence morphisms (2.58)
correspond to the associators (which are trivial due to the strictness). This is the (left)
regular module category over C and is denoted by CC. Let A be an algebra in C. Then,
the category of right A-modules in C, denoted by CA, forms a left C-module category. The
action C is given by tensoring on the left. More precisely, for a given right A-module (M,ρ)
we define V B (M,ρ) := (V ⊗M, idV ⊗ρ).

A right C-module category is the same as a left C-module category, but with an action
from the right, i.e. a functor C :M×C →M with corresponding coherence isomorphisms.
Equivalently, a right C-module is a left Cmop-module.

Let M be a left C-module category. The left C-action on M is equivalent to the left
action of the opposite category Cop on Mop. By pulling back this action via the dual
functor (−)∗ : Cmop → Cop we obtain a Cmop-module structure on Mop. In other words,
Mop is a right C-module category with action

M CX := X∗ BM (2.60)

for X in C and M in M.

Let C and D be two fusion categories. A C-D-bimodule category M has both a left
C-module category structure and a right D-module category structure with additional
coherence isomorphisms

(X BM)C Y
∼−→ X B (M C Y ) (2.61)

where X ∈ C, M ∈ M and Y ∈ D. These natural isomorphisms are compatible with the
left and right coherence isomorphisms [EGNO, Def. 7.1.7]. A C-D-bicategory is simply a
left C�Dmop-category. We write CMD to denote the C-D-bimodule structure onM. Once
again, a natural example of a bimodule category is the fusion category C itself, seen as a
C-C-bimodule category with action given by the tensor product from both sides.
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Given a right module M and a left module N over an algebra A, one can take their
balanced tensor product M ⊗A N which equalises the right action on M with the left
action on N . There exists the following analogous construction for tensoring right module
categories with left module categories over a fusion category C.

LetM be a right C-module category and N be a left C-module category. Their balanced
tensor product is a finite semisimple k-linear abelian category M �C N , equipped with a
k-linear functor

F :M�N →M�C N .

The functor F is balanced in the sense that it is equipped with natural isomorphisms

F (−C−�−) ∼= F (−�−B−) (2.62)

(compatible with the coherence isomorphisms). Moreover, it satisfies the universal property
that for any other semisimple A the functor F induces an equivalence of categories:

Funbal(M�N ,A) ' Fun(M�C N,A)

where the subscript on the left points at balanced functors in the sense of (2.62). Hence,
the balanced tensor product is uniquely determined up to equivalence4. Its existence is
proven in [ENOM, Prop. 3.5] presenting it as a category of module functors, i.e.

M�C N ∼= FunC(Mop,N ) . (2.63)

Suppose CMD and DNE are bimodule categories of the corresponding fusion categories
indicated in the the subscripts. Their balanced tensor productM�DN obtains a natural
C-D-bimodule structure [ENOM, Rem. 3.6]. This allows one to define the tricategory
Fusion [ENOM, Sec. 3.2] consisting of:

� Objects: Fusion categories.

� 1-morphisms: A 1-morphism C → D is a C-D-bimodule category.

� 2-morphisms: Bimodule functors.

� 3-morphisms: Bimodule natural isomorphisms.

The 1-category Fusion is obtained by truncation of Fusion and consists of equivalence
classes of bimodule categories as morphisms. The composition of 1-morphisms in Fusion
is given precisely by the balanced tensor product. The identity 1-morphism on a fusion
category C according to this composition is the regular bimodule CCC. The bicategory of
endomorphisms Fusion(C, C) is the monoidal bicategory consisting of C-C-bimodules with
the balanced tensor product and it is denoted by C-Bimod. Its truncation is a monoidal
category consisting of bimodule categories and isomorphism classes of bimodule functors,
and is denoted by CBimod.

4For any other M � N → M�̃CN satisfying the same universal property, their universal properties
guarantees the existence of an equivalence Φ : M �C N

∼−→ M�̃CN such that Φ ◦ �C ∼= �̃C . Such an
equivalence Φ is unique up to natural isomorphism by the universal property of �C
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We are also interested in the invertibility of morphisms in Fusion, in particular the
1-morphisms (invertible 2- and 3-morphisms correspond to bimodule equivalences and
bimodule natural isomorphisms). It is clear that a C-D-bimodule M is invertible if there
exists some D-C-bimodule N and

M�D N ' C (2.64)

as C-C-bimodules and
N �CM' D (2.65)

as D-D-bimodules. The existence of such N along with the above bimodule equivalences
determines it uniquely up to bimodule equivalence. It is in fact equivalent to the definition
from [ENOM, Def. 4.1]:

Definition 2.20. A C-D-bimodule categoryM is invertible if there exist bimodule equiv-
alences

M�DMop ' C (2.66)

and
Mop �CM' D . (2.67)

The maximal subgroupoid or core of the tricategory Fusion consists of fusion categories,
invertible bimodule categories, bimodule equivalences and bimodule natural isomorphisms.
It is called the Brauer-Picard 3-groupoid and it is denoted by

BrPic = core(Fusion) ⊂ Fusion . (2.68)

Its truncation is denoted by BrPic and the group of its automorphisms on a fusion cate-
gory C is the Brauer-Picard group BrPic(C).

Module categories with traces

We review the notion of module categories with trace as introduced in [Sch].

Definition 2.21. Let C be a pivotal fusion category and letM be a left C-module category.
A trace Θ on M is a family of linear maps

ΘM :M(M,M)→ k (2.69)

for each M ∈M such that:

1. For any morphisms f ∈M(M,N) and g ∈M(N,M),

ΘM(g ◦ f) = ΘN(f ◦ g). (2.70)

2. The pairing
M(M,N)×M(N,M)→ k, (f, g)→ ΘM(g ◦ f) (2.71)

is non-degenerate.
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The trace Θ is called a module trace, if in addition, for all V ∈ C,M ∈M,

ΘV BM = ΘM ◦ trCL (2.72)

where the linear map trCL :M(V BM,V BM)→M(M,M) is obtained by tracing on the
left the V -argument using the pivotal structure of C.

Remark 2.22. Given a pivotal fusion category C, there is a natural module trace on the
regular module category CC which is given by the left trace, i.e. Θ = trL. The properties
(2.70) and (2.72) are easy to check using the definition of the left trace. That the left (or
right) trace of a pivotal fusion category is non-degenerate in the sense of (2.71) is more
involved and relies on the fusion structure [Sch, Rem. 3.8], [Tu, Lem. II.4.2.3].

LetM be a C-module category with (module)-trace Θ. Then, any non-zero scalar λ ∈ k×
gives rise to a further (module) trace λΘ. In fact, any module trace on the left regular
module category CC is obtained by a multiple of the left trace.

Finally, we state a correspondence theorem of module categories with trace and sym-
metric special haploid Frobenius algebras due to Schaumann.

Theorem 2.23 ([Sch]). Let C be a pivotal fusion category. There is a one-to-one corre-
spondence between:

1. Indecomposable left C-module categories with module trace (up to equivalence).

2. Morita classes of symmetric special haploid Frobenius algebras in C.
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3 Reshetikhin-Turaev TQFT and mapping class group
representations

In this section we introduce Reshetikhin-Turaev TQFT and its underlying modular functor.
We review the notions of mapping class groups and their explicit (projective) action on
the Reshetikhin-Turaev state spaces.

3.1 Reshetikhin-Turaev topological quantum field theories

The Reshetikhin-Tureav TQFT is a construction of a 3-dimensional TQFT associated to
an MFC C. In this section, we recall the geometric input of this TQFT and the underlying
modular functor, namely the decorated bordism category BordC and the mapping class
groupoid ModC following [Tu, Chapter IV].

A connected decorated surface, or just d-surface, is a (smooth, compact, oriented, closed)5

surface Σ together with a finite set of framed points. A framed point is a point p ∈ Σ
equipped with a tangent vector vp, a label X ∈ C and a sign εp ∈ {±}. More generally,
a d-surface is a coproduct, or disjoint union, of connected d-surfaces where one includes
the empty coproduct, meaning the empty set ∅. We will refer to framed points also as
punctures or just marked points, where the framing is always implied unless specified
otherwise. The negation of a d-surface Σ is the d-surface obtained by orientation reversal
−Σ and replacing the tangent vectors by −vp and signs by −εp. For simplicity we often
leave signs unspecified for which we assume every sign to be positive. The negation of such
labels will result to the corresponding dual objects which will become more clear later.
Given a d-surface Σ, its double is the d-surface

Σ̂ = Σq−Σ . (3.1)

A diffeomorphism of d-surfaces is a diffeomorphism between the underlying surfaces, which
in addition preserves the framed points. Two such diffeomorphisms are isotopic, if they
are isotopic through diffeomophisms of decorated surfaces.

A decorated 3-manifold is a smooth, oriented, compact 3-dimensional manifold with an
embedded C-coloured ribbon graph such that all ribbon ends lie on the boundary ∂M .
The colouring and framing of the ribbon graph give the boundary ∂M the structure of
a decorated surface. A decorated bordism Σ → Σ′ between two decorated surfaces is a
decorated 3-manifold M together with a boundary parametrisation, i.e. a d-diffeomorphism
∂M

'−→ −Σ q Σ′. Two d-bordisms are equivalent if there is a diffeomorphism compatible
with the ribbon graphs and boundary parametrisations.

The d-bordism category BordC is the symmetric monoidal category formed by d-surfaces
as objects and classes of d-bordisms as morphisms. The monoidal product is given by the
disjoint union and the unit is the empty set ∅.

5For the purpose of this text, we may always assume that a surface is smooth, compact, oriented and
closed unless specified otherwise. Smoothness is not a strictly stronger condition here, as for n ≤ 3
topological and smooth n-manifolds are equivalent.
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The construction of Reshetikhin-Turaev TQFT (RT-TQFT) assigns to any d-surface
Σ a finite dimensional vector space V C(Σ), called the state space, and to a d-bordism
(M ; Σ,Σ′, ϕ) it assigns a linear map

ZC(M ; Σ,Σ′, ϕ) : V C(Σ)→ V C(Σ′) , (3.2)

called operator invariant, between the respective state spaces. In the tuple (M ; Σ,Σ′, ϕ)
the element ϕ denotes the boundary parametrisation ϕ : ∂M → −Σq Σ′ which admits Σ
as the ingoing and Σ′ as the outgoing boundary. The RT-TQFT turns out to have gluing
anomalies, which means that the operator invariants preserve the gluing of bordisms only
up to scalars, i.e. functoriality holds only projectively. In order to fix that and produce an
honest symmetric monoidal functor, one introduces the extended version of the bordism
category.

The extended bordism category B̂ordC has objects of the form (Σ, λ) where Σ ∈ BordC

and λ ⊂ H1(Σ;R) is a Lagrangian subspace. Its morphisms are given by pairs (M,n)
where M is a morphism in BordC and n is an integer, also referred to as the weight. This
gives an anomaly-free TQFT as a symmetric monoidal functor

ZC : B̂ordC → Vect . (3.3)

Even though, the complete RT TQFT will be present in the thesis, we will mostly focus
on one particular feature, that of mapping class group representations. These representa-
tions and how they behave are encoded by the modular functor.

The mapping class groupoid ModC is the symmetric monoidal groupoid consisting of
decorated surfaces as objects and isotopy classes of diffeomorphisms of decorated surfaces
as morphisms. The mapping class groupoid can be considered as the subgroupoid of the
bordism category via the symmetric monoidal functor

M : ModC ↪→ BordC (3.4)

which acts as the identity on objects and to a mapping class f it assigns the bordism

M(f) := (Σ× [0, 1]; Σ,Σ, f q id) (3.5)

where f appears in the boundary parametrisation by ”twisting” the ingoing boundary.
The bordism M(f) is called the mapping cylinder of f as it consists of the underlying
cylinder over Σ and the mapping class f , which appears in the boundary parametrisation.

Restricting the RT TQFT on the mapping class groupoid via the functor in (3.4) yields
the modular functor. However, as with the TQFT itself functoriality holds only projectively
due to the gluing anomalies. Similarly, one introduces the extended mapping class groupoid

M̂od
C

with the same objects as B̂ord
C

and pairs (f, n) as morphisms, where f is a mapping
class and n is an integer. The outcome is now a symmetric monoidal functor

V C : M̂od
C
→ Vect (3.6)

called the modular functor. We will often omit writing C in the superscript when it is clear
from the context.
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Σ

γ

 ji

Figure 3.1: Cutting a d-surface Σ along a simple closed curve γ and the resulting d-surface
obtained by inserting labels i and j in the filled holes.

i

Figure 3.2: A local picture of Nγ
i around the cut along γ.

An important ingredient of the modular functor is formed by the gluing isomorphisms
which describe how the state spaces behave under cutting and gluing of surfaces. Let γ
be a simple closed curve on a d-surface Σ. By cutting along γ we obtain a surface Σ\γ
which has two boundary circles γ(1) and γ(2) obtained from cutting. Denote by Σγ(i, j)
the d-surface obtained from filling the holes in Σ\γ with disks and inserting in the middle
of each disk a framed point labelled by an object i for the γ(1) component and an object
j for the γ(2) component, see Figure 3.1.

Then, there are gluing isomorphisms

gγ,Σ =
⊕
i∈I

gi :
⊕
i∈I

V (Σγ(i∗, i))→ V (Σ) (3.7)

which are natural in Σ and compatible with the symmetric monoidal structure. These
isomorphisms are provided by the RT TQFT as follows: Define the 3-manifold

Nγ
i := (Σγ(i∗, i)× [0, 1])/ ∼ (3.8)

where ∼ identifies on Σγ(i∗, i) × {1} the glued-in disks, therefore resulting in Σ. The
manifold Nγ

i has an incoming boundary at 0 which is Σγ(i∗, i) and an outgoing boundary
at 1 being Σ. The two framed points on the ingoing boundary are connected via an i-
labelled ribbon in the interior of Nγ

i , see Figure 3.2 and [FjFRS1, Sec. 2.6] for more details.
Therefore, it defines a bordism

Nγ
i : Σγ(i∗, i)→ Σ (3.9)

in BordC. The TQFT evaluation on this bordism defines the i’th summand gi in (3.7),
i.e. gi = ZC(Nγ

i ).
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Figure 3.3: Generator curves of the (unframed) pure mapping class group.

For a d-surface Σ, the group of automorphisms ModC(Σ) := ModC(Σ,Σ) is called the
mapping class group of Σ. This is closely related to the ordinary geometric definition of
mapping class groups as in [FM, Chapter 2]. For instance, let (X, ε) ∈ ob(C)×{±} be the
label of every framed point on a d-surface Σ. Then, ModC(Σ) corresponds to the framed
mapping class group Mod(Σ) as in [FM, Chapter 2]. Here, we include a superscript of C
to indicate that framed points carry labels. In general, ModC(Σ) will be a subgroup of
Mod(Σ) as its elements are required to also preserve labels.

Furthermore, consider the subgroup of diffeomorphisms (up to isotopy), which fix each
framed point pointwise. This subgroup is called the (framed) pure mapping class group and
we denote this by PMod(Σ), where we omit the superscript of C as such diffeomorphisms
preserve by definition the label of each framed point. The mapping class group Mod(Σg,n)
of a surface Σg,n with genus g and n framed points will be also denoted by Modg,n for short
and the associated pure mapping class group by PModg,n. In fact, there is a short exact
sequence

1→ PModg,n → Modg,n → Sn → 1 (3.10)

where the first arrow is the inclusion of PModg,n in Modg,n and the second arrow is de-
termined the restriction of mapping classes onto the set of framed points. The unframed
version is obtained by simply omitting the data of tangent vectors in the description above.
The unframed pure mapping class group is finitely generated by Dehn twists around the
simple closed curves shown in figure 3.3 [FM, Section 4.4.4]. A generating set for the
framed pure mapping class group PModg,n is then obtained by adding Dehn twists around
each point to the generating set.

Example 3.1. Genus 0 mapping class groups are directly related to braid groups. Let
D2
n denote the unit disk with n framed points on the x-axis ordered from left to right and

framings directed to the right. For labels X1, . . . , Xn in C the braid group with such labels
can be defined as the mapping class group of the disk

BCn(X1, . . . , Xn) := Mod(D2
n(X1, . . . , Xn), ∂) (3.11)

where the definition of the mapping class group is modified for surface with boundary, by
requiring that diffeomorphisms fix pointwise the boundary. As before, we omit writing the
labels X1, . . . , Xn when it is clear from context. Forgetting the labels or equivalently taking
X = X1 = · · · = Xn recovers the ordinary notion of the framed n-braid group denoted by
Bn. Moreover, if one forgets the framing, then one obtains the unframed version.
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The pure braid group PBn is the subgroup in Bn consisting of diffeomorphisms which
fix every framed point and the analogue of (3.10) holds.

By capping the boundary of D2
n with a disk one obtains the sphere with the same framed

points (and possible labels). Pick any point p on the glued disk (and any framing) such
that the sphere has n+ 1 framed points. There is an isomorphism [FM, Sec. 4.2.5]

Bn
∼−→ Mod(S2

n+1)p (3.12)

where Mod(S2
n+1)p is the stabiliser of the ”new” framed point p. This is by extending a

mapping class to the glued disk via the identity. If we include C-labels X1, . . . , Xn, we
may write BCn(X1, . . . , Xn) ∼= ModS2

n+1(X1,...,Xn,Y ) where Y is the label of p and we assume

Y 6∈ {X1, . . . , Xn}.

The modular functor obtained from the RT TQFT as described above gives rise to
representations over the mapping class groups. Due to the gluing anomaly there are two
ways of describing these representations: as honest representations over extended mapping

class groups M̂od
C
(Σ) or as projective representations over the (non-extended) mapping

class groups ModC(Σ).

Let (Σ, λ) be an extended d-surface, i.e. in M̂od
C

and (f, n) an element in the extended

mapping class group M̂od
C
(Σ). Then, the (extended) modular functor (3.6) encodes by

V (f, n) the action of (f, n) on the state space V C(Σ, λ). This functorial assignment makes

V C(Σ, λ) into a representation over M̂od
C
(Σ).

Forgetting the extended structure and working with the gluing anomalies, we get pro-
jective representations V C(Σ) over the mapping class group ModC(Σ). From now on, for
simplicity we will only work with the non-extended mapping class groups as the projec-
tivity of the associated representations will not pose a problem in our discussions. Notice
that the extended mapping class group relates to the ordinary via the short exact sequence

0→ Z→ M̂odg,n → Modg,n → 1 (3.13)

where the first arrow maps n ∈ Z to the weighted identity mapping class (id, n) and the
second arrow is the projection onto the first factor (f, n) 7→ f .

Remark 3.2. For an MFC C define the scalars

p± =
∑
i∈I

θ±1
i d2

i . (3.14)

The projective factors appearing from the gluing anomalies are integer powers of the so-
called anomaly factor p+/p−. If p+/p− = 1 then C is called anomaly-free and its RT
TQFT resp. its modular functor descend to honest symmetric monoidal functors on the
non-extended bordism category resp. non-extended mapping class groupoid.

The Drinfeld centre Z(C) ' C � Crev of any MFC is automatically anomaly-free. Its
RT TQFT of Turaev-Viro type in the sense that ZZ(C) ∼= ZTV,C with the latter being the
Turaev-Viro TQFT of C [TV].
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Figure 3.4: A handlebody with embedded ribbon graph and boundary Σg,n. The coupon
is labelled by a morphism f ∈ C(1, Xε1

1 ⊗ · · · ⊗Xεn
n ⊗ L⊗g).

Let Σ be a d-surface and fix an ordering of its labels (X1, ε1), . . . , (Xn, εn). The state
space V (Σg,n) ≡ Vg,n is isomorphic to the morphism space

C(1, Xε1
1 ⊗ · · · ⊗Xεn

n ⊗ L⊗g), (3.15)

where X+ ≡ X, X− ≡ X∗ and L =
⊕

i∈I i⊗ i∗ from (2.15). For a vector f ∈ Vg,n, consider
the handlebody with an embedded ribbon graph in Figure 3.4, where the i’th ribbon strand
is directed upwards respectively downwards if εi = + respectively εi = − and the coupon is
labelled by the morphism f . In this figure, the framing is the one where all tangent vectors
point to the right. This represents a d-bordism ∅ → Σg,n. Then, f is obtained by evalu-
ating the RT TQFT on this bordism, which gives a geometric picture of the vectors in Vg,n.

An important property of the modular functor associated to the RT-TQFT is that there
exists a non-degenerate pairing

dΣ : V C(Σ)⊗ V C(−Σ)→ k (3.16)

(see [Tu, Eq. III.(1.2.4)] and [Tu, Thm. III.2.1.1]). Here, natural means that the pairing
is compatible with d-diffeomorphisms. In particular, it is invariant under the action of
the mapping class group, i.e. for any (x, y) ∈ V C(Σ) × V C(−Σ) and any mapping class
f ∈ Mod(Σ)

dΣ(f.x, f.y) = dΣ(x, y) . (3.17)

In fact, dΣ is the result of applying the RT TQFT on the cylinder Σ × [0, 1] seen as a
bordism Σq−Σ→ ∅. For a mapping class f on Σ the diffeomorphism f × id[0,1] does not
change the equivalence class of Σ × [0, 1], which implies invariance of the pairing under
mapping class group action.

Example 3.3. Let Σ be a d-surface without marked points and let HΣ be the handlebody
bounding Σ. Evaluating the TQFT on HΣ seen as a bordism ∅ → Σ gives a vector

x := ZC(HΣ) ∈ V C(Σ) (3.18)

Similarly, evaluating the handlebody with reversed orientation −HΣ : ∅ → −Σ gives a
vector

x̂ := ZC(−HΣ) ∈ V C(−Σ) . (3.19)
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One can show that x and x̂ are dual with respect to the pairing dΣ in the sense that

dΣ(x, x̂) 6= 0 . (3.20)

There are two different ways of showing (3.20): the first one uses a topological argument
subject to general 3D TQFTs and the second one involves computing the pairing explicitly
for RT TQFTs. We will describe the first one and refer to specific equations in [Tu] for
the second one.

By definition (and functoriality of TQFTs) dΣ(x, x̂) is obtained by gluing HΣ and −HΣ

onto the (bend down) cylinder Σ × [0, 1] and then applying the TQFT on this closed
manifold. Notice that gluing only −HΣ onto the cylinder amounts to the bordism HΣ :
Σ→ ∅ and thus the resulting closed manifold M is obtained by gluing the handlebody HΣ

to itself via the identity. Topologically, M is the connected sum of g copies of S1×S2 where
g is the genus of HΣ, i.e.M = #g(S1×S2). For (normalised) TQFTs where Z(S3) 6= 0 and
V (S2) ∼= k we have

dΣ(x, x̂) = Z(#g(S1 × S2)) = DgZ(S1 × S2)g = Dg 6= 0 (3.21)

whereD := Z(S3)−1 and we apply multiple times the multiplicative property Z(M1#M2) =
Z(S3)−1Z(M1)Z(M2) of such normalised TQFTs [CR, Prop. 2.10]. For RT TQFTs D is
the usual fixed square root of the global dimension, i.e.D2 =

∑
i∈I d

2
i .

For the second approach, which uses the explicit formulas, use the fact that the cylinder
is presented by the special ribbon graph shown in [Tu, Fig. IV.2.4] and use formula [Tu,
Eq. (IV.2.3.a)].

3.2 Mapping class group action on RT state spaces

We will only need explicit expressions for the action of the pure mapping class group. Fix a
surface Σg,n of genus g and n framed points labelled by simple objects l1, . . . , ln ∈ I. Recall
that the pure mapping class group PModg,n is the subgroup consisting of mapping classes
that fix the framed points pointwise. For a simple closed curve γ on Σg,n one can define
the Dehn twist Tγ along γ as a mapping class in PModg,n. It is obtained by cutting out
an annular neighbourhood of γ, performing a full twist and gluing it back to the surface.
A set of generators of the pure mapping class group is given as the set of Dehn twists
along the curves in Figure 3.5 and also (due to the framings) Dehn twists Tλk around each
framed point, see [FM, Corollary 4.15]. We further define the so-called S-transformations
by Sk := Tαk ◦ Tβk ◦ Tαk and we replace in our generating set the Dehn twists Tβk by the
corresponding S-transformations Sk.

Following [Tu, Ch. IV] we can now describe explicitly how these generators act on vectors
of the state space V C(Σg,n) up to projectivity. Recall from (3.15) that this vector space is
identified with the morphism space

C(1, l1 ⊗ · · · ⊗ ln ⊗ L⊗g) (3.22)

which in turn, by definition of L decomposes into a direct sum

V C(Σg,n) =
⊕

i1,...,ig∈I

C(1, l1 ⊗ · · · ⊗ ln ⊗ i1 ⊗ i∗1 ⊗ · · · ⊗ ig ⊗ i∗g) . (3.23)
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α1
α2 αg

β1 β2 βg

γ1 γ2 γg−1. . .

δ1

δ2

δn−1

. .
.

Figure 3.5: Generators of the unframed pure mapping class group.

α1 α2

γ1 γ2

. . .

δ1
δn−1

l1 l2 ln

i1 i2

fi

Figure 3.6: Arrangement of coupon and ribbons in the handlebody used to derive the
mapping class group action on the Hom-space (3.22).

For i = (i1, . . . , ig) ∈ Ig we denote by Vi the corresponding summand in (3.23). For a vector
fi ∈ Vi, the mapping class group generators act as follows (up to a projective factor):

Tλk(fi) = θlk

l1 ln i1 i∗1 ig i
∗
g

fi

· · · · · ·
Tδk(fi) =

l1 lk · · · lni1 i∗1 ig i
∗
g

fi

θ · · ·

Tαk(fi) = θik

l1 ln i1 i∗1 ig i
∗
g

fi

· · · · · ·
Tγk(fi) =

l1 ln i1 i∗1 ig i
∗
g

fi

i∗k ik+1

θ· · · · · · · · ·

Sk(fi) =
⊕
j∈I

dj
D

l1 ln i1 i∗1 ig i
∗
g

fi

j j∗

· · · · · · · · ·
(3.24)

Here, we used θ to denote the twist morphism in C and θi ∈ k
× to denote the twist

eigenvalue corresponding to a simple object i. Note that all generators except for Sk map
the direct summand Vi back to itself and have eigenvalues in the set of twist eigenvalues
{θi}i∈I .

To arrive at these expressions, consider a handlebody with a coupon labelled by fi as in
Figure 3.6. The pure mapping class group acts on the state space assigned to the boundary
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surface via mapping cylinders as in (3.5). Thus the action of a mapping class h on fi is
obtained by gluing the mapping cylinder M(h) over Σg,n to the handlebody.

For a simple closed curve γ on Σg,n, which is contractible with respect to the handlebody,
the Dehn twist Tγ acts by twisting the ribbons passing through the disc in the handlebody
bounded by the curve. This is the origin of the twists θ in the first four equations in (3.24).

The generator Sk does not correspond to a Dehn twist along a curve, but rather to a
composition of those. Details on the derivation of the last equation in (3.24) can be found
e.g. in [BK, Def. 3.1.15].
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4 Surface defects in TQFTs

In this section we will review defects and boundary conditions in 3D TQFT. The algebraic
objects that were defined in Section 2 such as symmetric special Frobenius algebras and
module categories with trace will become relevant as they model topological defects and
boundary conditions for TQFTs of Reshetikhin-Turaev type.

Defects provide a model of introducing embedded manifolds of lower dimension, called
strata, whose nature describes the interplay of theories meeting there. For instance, a de-
fect of codimension one may divide two theories which live in the bulk (the top-dimensional
regions). Lower dimensional defects encode information about the adjacent higher dimen-
sional defects. Boundaries are codimension one boundaries of the worldvolume where the
theory ends. These are not to be confused with gluing boundaries, which encode the func-
torial nature of the field theory. A familiar example of such boundaries are in the 2D case
of open-closed TQFTs.

4.1 Strata and TQFTs with defects

In the case of three-dimensional TQFTs, in which we are interested, codimension one de-
fects correspond to surface defects or domain walls and one may include lower-dimensional
defects such as line defects and point defects. Three-dimensional and later n-dimensional
TQFTs with defects have been axiomatised in [CMS] and [CRS1] as in the Atiyah-Segal
formulation as a symmetric monoidal functor now on the source category Borddef

n (D) of
bordisms with defects. This is achieved by enlarging the ordinary bordism category Bordn
(consisting of closed oriented (n − 1)-manifolds and n-bordisms) into Bordstr

n of stratified
bordisms.

A closed stratified n-manifold means a smooth, oriented, compact n-manifold M without
boundary and with a filtration M = Fn ⊃ · · · ⊃ F0 ⊃ F−1 = ∅ such that:

� Mk = Fk\Fk−1 is a k-dimensional open smooth manifold with choice of orientation
such that the orientation of Mn agrees with that of M . The connected components
Mα

k are the k-strata of M .

� If Mα
k ∩M

β

j is non-empty, then Mα
k is contained in M

β

j .

� There are finitely many strata.

Generalising to stratified n-manifolds M with boundary ∂M , one requires that:

� The filtration of M induces a stratification in the interior of M.

� Mk = Fk\Fk−1 is a properly embedded submanifold and therefore ∂Mk ⊂ ∂M , such
that all strata meet transversally the boundary of M .

� The restriction of the filtration on the boundary induces a stratification on ∂M ,
with k-strata in ∂M corresponding to (k+ 1)-strata in M inheriting their associated
orientation.
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C D

Figure 4.1: A surface defect between two theories labelled by C and D.

A morphism between stratified manifolds f : M → M ′ is a map that is compatible with
the stratificiations. It sends k-strata in M to k-strata in M ′, for details see [CRS1].

Based on these definitions one can define stratified n-bordisms in the obvious way and
obtain the definition of the symmetric monoidal category Bordstr

n of stratified bordisms.
A defect datum D provides defect labels for strata of any dimension. In particular, it
consists of label sets Dk for each 0 ≤ k ≤ n and additional adjacency maps which describe
the relation between labels on k-strata and their adjacent higher-dimensional strata. A
defect of dimension k is then a k-stratum carrying a label of Dk. Decorating in this fashion
stratified bordisms defines the defect bordism category Borddef

n (D) (see [CRS1] for details).

Definition 4.1. An n-dimensional TQFT with defects D is a symmetric monoidal functor

Z : Borddef
n (D)→ Vect . (4.1)

Defects are naturally described by higher categorical structures, as there is an associated
tricategory of defects (or n-category for n-dimensional TQFTs with defects). Objects are
n-dimensional defects and k-morphisms are (n − k)-dimensional defects with a natural
composition provided by their topological nature.

Defects in TQFTs of RT type have been first studied in [KaS, FSV] and an explicit
construction of a defect RT TQFT appeared in [CRS2]. The construction in [CRS2]
assumed that a single RT TQFT lives in the bulk with its associated modular fusion
category C serving as the single label in D3 = ∗. Defect TQFTs with different bulk
theories of RT type have been constructed in [KMRS]. We will also use the associated
MFC to refer to the type of the bulk theory living in some 3-stratum.

Suppose that a surface defect separates two 3-dimensional regions where theories of
type C and D live. According to [FSV] such a surface defect exists if there is a braided
equivalence

C �Drev ' Z(A) (4.2)

where Z(A) is the Drinfeld centre of some pivotal fusion category A. In other words,
domain walls between RT TQFTs of type C and D exist if C and D in the same Witt class.

The fusion category A is interpreted as the category of Wilson lines on the surface, with
the fusion structure originating from the topological manipulation of such Wilson lines.
Bulk Wilson lines approaching from the bulk labelled by C can come arbitrarily close to
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the surface defect and be seen as Wilson lines on the surface. However, since they are not
bound to the surface they can ”pass through” other surface Wilson lines. All in all, this
produces a braided functor

C → Z(A) (4.3)

where the half-braiding in Z(A) corresponds to the ”passing through” operation. Similarly,
bulk Wilson lines approaching from the other side give a braided functor

Drev → Z(A) . (4.4)

The functors (4.3) and (4.4) form the braided equivalence (4.2).
Introducing the fusion category A allowed one to view Wilson lines on a fixed surface

defect. Suppose now there is a line defect separating the fixed surface defect with some
other surface defect. A similar manipulation of surface Wilson lines close to this line
defect leads one to the structure of an A-module category. Further analysis of sphere
defects leads to the existence of a module trace on the A-module categories, cf. [KMRS,
Prop. 3.9]. For that reason, it is argued that the relevant bicategory of surface defects
from C to D is the bicategory A-Modtr of A-module categories with module trace. This
description is independent of the choice ofA as fixing any other such pivotal fusion category
A′ corresponding to another surface defect one can show Z(A) ' Z(A′), or equivalently
A-Mod ' A′-Mod (Theorem 2.18).

Remark 4.2. One may consider defects internal to the theory C, i.e. when C lives in each
3-dimensional stratum (D3 = ∗). In this case, we obtain a natural choice for the fusion
category A in (4.2); C itself as it is modular fusion and we have the braided equivalence
from Proposition 2.1

C � Crev ' Z(C) . (4.5)

Therefore, module categories (with module trace) over C appear naturally in the study of
surface defects in C.

The construction of RT TQFT with defects can be made more explicit using the notion
of symmetric ∆-separable Frobenius algebras instead of module categories with traces
following [CRS2]. We briefly recall how this construction of the RT TQFT with defects
associated to a single MFC C works. The defect labelling sets are:

� DC3 = {C},

� DC2 = {∆-separable symmetric Frobenius algebras in C},

� DC1 = {Cyclic multi-modules}.

Multi-modules are modules over a tensor product A1⊗ · · · ⊗An of algebras Ai. Regarding
labels of line defects, the algebras Ai correspond to the algebras labelling the adjacent
surface defects. We do not recall the full definition of cyclic multi-modules for which we
refer to Section 2 in [CRS2].

Let M be a stratified decorated bordism in Bord3(DC). One assigns to M an associated
d-bordism M̃ in BordC3 , i.e. a bordism with an embedded ribbon C-coloured graph, in the
following way:
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Figure 4.2: The triangulation on the left gives rise to a ribbon graph labelled by A by its
Poincaré dual.

T

A1

A2

A3

Figure 4.3: A line defect labelled by a cyclic multi-module T carrying a module structure
over the adjacent surface defect algebras A1, A2, A3. Surface defects are trian-
gulated, replaced by ribbon graphs labelled by the corresponding algebra and
finally attached to the ribbon labelled by M using the module structure.

� Pick a triangulation for every 2-stratum in M labelled by A. Its Poincaré dual is
thickened into a ribbon network with coupons. Each ribbon is coloured by A and
each coupon is labelled by the product µ or the coproduct ∆ of A depending on the
orientation.

� Every 1-stratum in M is also thickened into a ribbon coloured by the corresponding
multi-module and attached to it one finds the algebras of the incident 2-strata via
the corresponding module maps.

The first step is illustrated in Figure 4.2 whereas the construction involving line defects is
sketched in Figure 4.3. Evaluating the RT TQFT on the d-bordism M̃ is independent
of the choice of triangulation in the interior. A further limit construction gets rid of
the dependence on the boundary and completes the construction of the defect TQFT, cf.
Construction 5.5 in [CRS2].
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Theorem 4.3. The above construction defines a 3-dimensional TQFT with defects, i.e. a
symmetric monoidal functor

ZC,def : Borddef
3 (DC)→ Vect . (4.6)

Remark 4.4. One can compute using the above steps that the contribution of a sphere
defect labelled by a symmetric ∆-separable Frobenius algebra A is given by its dimension
dimC(A). As it is pointed out in [CRS2, Rem. 1.2.(ii)] this is not invariant under Morita
equivalence. To obtain a Morita invariant defect theory one has to introduce so-called Euler
defects. These form an invertible6 defect TQFT. Each defect N contributes by ψχsym(N),
where ψ is a non-zero scalar7 and

χsym(N) := 2χ(N)− χ(∂N)

is the symmetric Euler characteristic of N . One can tensor ZC,def with such an invertible
Euler defect TQFT to obtain a Morita invariant theory.

The above construction has been then enhanced to include domain walls between dis-
tinct MFCs C and D [KMRS], which are according to (4.2) Witt equivalent. For Witt
equivalent MFCs C ∼ D one can find commutative ∆-separable Frobenius algebras A,B
in an auxiliary MFC E such that their categories of local modules are equivalent to C and
D, namely E loc

A ' C and E loc
B ' D [KMRS, Rem. 2.15]. Then, surface defects correspond to

∆-separable symmetric Frobenius algebras over (A,B) in E which means that in addition
to their ∆-separable symmetric Frobenius algebra structure they carry an A-B-bimodule
structure subject to some additional compatibility conditions. For details of such defects
and the explicit construction we refer to [KMRS, Sec. 2.3].

4.2 Boundaries and TQFTs with boundary conditions

Boundaries in TQFTs can be treated similarly to defects as they can be thought as domain
walls between the TQFT of interest and the trivial8 TQFT. We will give a definition of a
general n-dimensional TQFT with boundaries and construct such a TQFT for an associated
TQFT with defects using the doubling procedure.

We recall manifolds with corners while adjusting the definitions of [SP, Chap. 3] for
corners of maximal codimension 2.

Let M be a topological n-manifold with boundary. A chart at m ∈ M is given by a
continuous map

φ : U → Rn−2 × R2
≥0 (4.7)

for U an open neighbourhood of m and φ homeomorphic onto its image. The index of m
is the number of zero coordinates of φ(m) in R2

≥0 and denoted by index(m). Two charts
φi : Ui → Rn−2 × R2

≥0 for i = 1, 2 are compatible if their transition map

φ2 ◦ φ−1
1 : φ1(U1 ∩ U2)→ R× Rn−2 × R2

≥0 (4.8)

6Invertible in the monoidal category of defect TQFTs, see [CRS1, Sec. 2.3.2].
7The non-zero scalar may depend on the stratum dimension and therefore we really have non-zero scalars
ψk for each dimension k.

8It factors through the (symmetric monoidal) category with one object and one morphism, which is a
zero-object in the 2-category of symmetric monoidal categories.
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C

Figure 4.4: Boundary condition for a theory labelled by C.

is diffeomorphic9 to its image.

Definition 4.5. A manifold with corners is a topological, compact, oriented n-manifold
with a maximal atlas consisting of compatible charts at every m ∈M .

Due to compatibility of the charts, the index is independent of the chart and it can
be interpreted as the distinction of bulk, boundary and corners. For instance, the set
{m ∈ M | index(m) = 0} coincides with the interior M◦. The constraint of smoothness of
the transition maps (4.8) gives M◦ the structure of a smooth n-manifold.

A connected face in a manifold M with corners is the closure of a connected component of
{m ∈M | index(m) = 1}. A manifold with faces is a manifold with corners such that every
point m of index 2 (a corner point) belongs to exactly two distinct connected faces. A face
in such a manifold is the disjoint union of connected faces and is itself an (n− 1)-manifold
with boundary.

Definition 4.6. A 〈2〉-manifold is a manifold with faces M and with distinguished faces
∂0M and ∂1M such that ∂M = ∂0M ∪ ∂1M . In addition, if m ∈ ∂0M ∩ ∂1M , then m has
index(m) = 2.

In other words, the faces ∂0M and ∂1M meet exactly on the corners and every corner
point belongs to both ∂0M and ∂1M (as faces are disjoint unions of connected faces). We
can now define an n-bordism (with corners) between (n− 1)-manifolds with free boundary
as follows: Let Σ and Σ′ be smooth, compact, oriented (n−1)-dimensional manifolds with
boundary. A bordism from Σ to Σ′ is a 〈2〉-manifold with a diffeomorphism

∂0M ∼= −Σq Σ′ . (4.9)

Notice that there is no requirement of a boundary parametrisation for ∂1M , since ∂1M
will not be treated as a gluing boundary but as the free boundary. For that reason, we
will write ∂1 ≡ ∂f to distinguish from the bordisms used to define the extended bordism
category in [SP].

Two bordisms M,M ′ : Σ→ Σ′ are equivalent if there is a diffeomorphism f : M → M ′

compatible with the boundary parametrisations of ∂0M and ∂0M
′.

9The smooth structure on Rn−2 × R2
≥0 is the one induced from its inclusion in Rn.
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Definition 4.7. The bordism category Bordbnd
n consists of:

� Objects are smooth, oriented, compact (n− 1)-manifolds (without corners) possibly
with boundary.

� Morphisms Σ→ Σ′ are equivalence classes of bordisms with corners from Σ→ Σ′.

Bordbnd
n is a symmetric monoidal category with monoidal product given by the disjoint

union. Composition is given by the gluing of two bordisms with corners. The smooth
structure on the gluing is a priori ambiguous. Suppose, for instance, that M is a bordism
from Σ to Σ′ and N is a bordism from Σ′ to Σ′′. One has to specify collars of Σ′ in M and
in N , which induce a smooth structure on the gluing M ∪Σ′ N . However, different choices
of collars lead to different smooth structures. The resulting smooth structures are related
by a non-canonical diffeomorphism. In our definition of Bordbnd

n this problem is eliminated
by two facts:

1. Any 〈2〉-manifold admits collars for each of its faces [La, Lem. 2.1.6].

2. Bordisms are taken up to a diffeomorphism, which is compatible with the boundary
parametrisations. The non-canonical diffeomorphism relating two different smooth
structures on M ∪Σ′ N is equal to the identity outside a neighbourhood of Σ′ in
M ∪Σ′ N [SP, Thm. 3.3]. In particular, it gives an equivalence of bordisms.

There is a obvious (symmetric monoidal) functor

Bordn → Bordbnd
n (4.10)

which is the inclusion of surfaces without boundary and ordinary bordisms, albeit not full.
We can now define the double of objects and morphisms in Bordbnd

n to obtain stratified
manifolds.

Let Σ ∈ Bordbnd
n . Its double is the manifold

Σ̂ := Σq−Σ/ ∼ with (x,+) ∼ (x,−) ∀x ∈ ∂Σ . (4.11)

This is a closed stratified (n−1)-manifold with filtration Σ̂ = Fn−1 ⊃ Fn−2 = ∂Σ ⊃ Fn−3 =
∅ where ∂Σ ↪→ Σ̂ is naturally embedded via the identification in (4.11). Thus, π0(∂Σ) is
the collection of all (n− 2)-strata and there are no lower-dimensional ones. Keep in mind
that we secretly make a choice of a collar for ∂Σ to extend to a smooth structure on Σ̂.
We will only recall this choice when it becomes relevant10.

Similarly, we define for a 〈2〉-manifold M its double by

M̂ := M q−M/ ∼ with (m,+) ∼ (m,−) ∀m ∈ ∂fM . (4.12)

where we only identify boundary points in the free boundary ∂fM . This is a stratified
n-manifold with filtration M = Fn ⊃ Fn−1 = ∂fM ⊃ Fn−2 = ∅ with stratified boundary

∂̂0M . Once again, we make a choice of a collar for the face ∂fM to define the smooth
structure on M̂ .

We summarise the above discussion in the following Proposition:

10Different choices of collars will lead to naturally isomorphic functors Bordbnd
n → Bordstr

n in the sense of
Proposition 4.8.
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7→

Figure 4.5: The double of a bordism in Bordbnd
2 .

Proposition 4.8. The double defines a symmetric monoidal functor

(̂−) : Bordbnd
n → Bordstr

n . (4.13)

Example 4.9. In Bordbnd
2 , in addition to circles, intervals [0, 1] are allowed as objects and

they each have two boundary components. The double of the interval is clearly a circle
with two 0-strata.

For a non-trivial example of a double of a bordism, consider the bordism S1 → [0, 1] on
the left side of Figure 4.5, where the outgoing boundary component of ∂0M meets on its
respective boundary points the free boundary ∂fM , which also happens to be an interval.
The double of this bordism on the right is a pair of pants, stratified by a single 1-stratum
with end points on its outgoing boundary.

Based on the bordism category Bordbnd
n , one can consider the notion of n-dimensional

TQFTs with boundary conditions. For that we include a set B of boundary conditions,
which will be the labelling set of free boundaries.

For a set B define the bordism category Bordbnd
n (B) by labelling free boundaries as

follows:

� Objects are smooth, oriented, compact (n− 1)-manifolds with a map bΣ : π0(∂Σ)→
B, which labels each connected boundary component by an element in B.

� A bordism M with corners is now equipped with a map bM : π0(∂fM) → B la-
belling each free boundary component with a boundary condition. This induces a
B-boundary labelling of ∂0M . We further ask that the boundary parametrisation
respects this labelling. Two bordisms are equivalent, if there is a diffeomorphism,
which is compatible with the free boundary labels and the boundary parametrisa-
tions. Equivalence classes of such bordisms form the morphisms in Bordbnd

n (B).

In the above definition, we have no labels for the bulk regions. In terms of TQFT, we
therefore consider a single TQFT with boundary conditions.
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We will now define a TQFT with boundary as a symmetric monoidal functor on the
bordism category Bordbnd

3 of bordisms with free boundaries and relate it to a given TQFT
with defects.

Definition 4.10. An n-dimensional TQFT with boundary conditions given by B is a
symmetric monoidal functor

Z : Bordbnd
n (B)→ Vect . (4.14)

Let D be a defect datum for n-dimensional bordisms as in [CRS1] with a single bulk
label, i.e.Dn = ∗. Choose as a candidate for boundary conditions the set D̂ := Dn−1.
Then, the functor from Proposition 4.8 extends to a functor

(̂−) : Bordbnd
n (D̂)→ Borddef

n (D). (4.15)

by labelling each stratum in M̂ by the boundary label of the corresponded connected
component of ∂fM .

Let Z be an n-dimensional defect TQFT with defect datum D, such that Dn = ∗. In
other words, all defects are internal to a single governing bulk theory. Then, composing Z
with the symmetric monoidal functor (4.15) yields a symmetric monoidal functor

Ẑ : Bordbnd
n (D̂)→ Borddef

n (D)
Z−→ Vect (4.16)

which will be called the double theory of Z.

Boundaries in RT TQFT of type C have been analysed similarly to defects. A boundary
condition exists according to [FSV] if there is central functor

F : C → A (4.17)

to some fusion category A. A central functor F is endowed with a lift F̃ : C → Z(A) with
respect to the forgetful functor Z(A) → A. For the existence of a boundary condition,
F̃ is further required to be an equivalence and therefore a Witt trivialisation of C, i.e. C
is in the Witt class of Vect. This relates to the previous discussion of surface defects as
a boundary for C may be viewed as a surface defect separating C from the trivial theory
Vect and the central functor (4.17) corresponds to the functor (4.2) for D = Vect. Hence,
RT TQFTs which admit boundaries are of Turaev-Viro type.

For example, the RT TQFT associated to the double C � Crev has a natural boundary
condition of C�Crev ' Z(C). Its boundary conditions are therefore classified by C-module
categories. Let S be a spherical fusion category. The construction of Turaev-Viro TQFT
ZTV,S associated to S has been extended to a TQFT with boundary conditions [KK].

Suppose C is an MFC. Let ZC,def : Borddef
3 (DC) → Vect be the RT TQFT with defects

from Theorem 4.3 and ZTV,C : Bordbnd
3 (D̂C) → Vect be the Turaev-Viro TQFT with

boundary associated to the (underlying) spherical fusion category C.

Proposition 4.11. There is a natural isomorphism of TQFTs ẐC ∼= ZTV,C, as symmetric
monoidal functors on the ordinary bordism category.
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C � Crev

Σ

Σ

∼
C

C

Σ

Σ

Figure 4.6: The cylinder over Σ on the left viewed as a bordism in ∅ → Σ in Bordbnd
3 and

its double on the right viewed as a defect bordism ∅ → Σ̂ with a surface defect
Σ× {1/2} in Bordstr

3 .

Proof. Let Σ be a closed surface, i.e. ∂Σ = ∅. Then, we have the following isomorphisms:

ẐC := ZC(Σ̂) = ZC(Σq−Σ)

∼= ZC(Σ)⊗ZC(−Σ)

∼= ZC(Σ)⊗ZCrev

(Σ)

∼= ZC�C
rev

(Σ)

∼= ZZ(C)(Σ) ∼= ZTV,C(Σ) . (4.18)

The last isomorphism is the result of comparing Turaev-Viro TQFTs with RT TQFTs from
[TV]. All these isomorphisms are natural and therefore we have a natural isomorphism of

ẐC ∼= ZTV,C : Bordn → Vect .

Remark 4.12. It would be interesting to compare the TQFT with boundary ẐC,def ob-
tained from the double of the RT TQFT of C with the Turaev-Viro TQFT of C with
boundary as treated in [KK]. It is natural to expect that these are isomorphic enhanc-
ing Proposition 4.11. In other words, there should be an isomorphism of TQFTs with

boundary ẐC,def ∼= ZTV,C, i.e. the following diagram commutes up to natural isomorphism:

Borddef
3 (DC) Vect

Bordbnd
3 (D̂C)

ZC,def

(̂−) ZTV,C
(4.19)

Example 4.13. Let Σ be a surface without boundary. The cylinder MΣ = Σ× I over Σ
typically represents the identity bordism in Bord3. However, we view here M as a bordism
∅ → Σ in Bordbnd

3 by renaming the incoming boundary a free boundary, i.e. ∂fM = Σ and

∂0M = Σ. Its double M̂Σ is a stratified manifold, which may be viewed as the cylinder
Σ× I with a single surface defect, namely the surface Σ× {1/2}.
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Fix a boundary condition for Σ in MΣ which corresponds to fixing a defect label for
Σ × {1/2} in M̂Σ. Proposition 4.11 implies that under the isomorphism of TQFTs Ψ :

ẐC,def ∼= ZC�Crev
we have an equality:

ZC�Crev

(MΣ) = ΨΣ(ZC,def(M̂Σ)) (4.20)

This equality is represented by Figure 4.6. The bulk region on the left is labelled by C�Crev

whereas the bulk regions on the right are labelled by C.
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5 Correlators as mapping class group averages

The goal of this section is to establish a correspondence between RCFT correlators and
MCG averages. This is surprisingly motivated by physics considerations in 3D quantum
gravity, which will be explained in the later Section 8. In 5.1 we briefly recall the basics of
rational CFT and its RT TQFT description. In 5.2 we define mapping class group averages
under a finiteness condition and in 5.3 we relate for certain theories RCFT correlators with
MCG averages.

5.1 RCFT correlators

A 2-dimensional rational CFT is characterised by its chiral algebra V , which can be mod-
elled as a rational vertex operator algebra (VOA), and its correlation functions that live
on Riemann surfaces with field insertions.

Suppose C is a Riemann surface with n framed points labelled by representations
V1, . . . , Vn over the chiral algebra V . The CFT assigns a vector space B(C) which is a
subspace of linear functionals on V1 ⊗ · · · ⊗ Vn. This is the space of (chiral) conformal
blocks which are the building blocks from which the correlation functions are made. Let
us fix the genus to be g and the number of framed points to be n with corresponding
labels V1, . . . , Vn. The set of isomorphism classes of Riemann surfaces of this type forms
the so-called moduli space Mg,n. By using the assignment

C 7→ B(C), (5.1)

one can consider the vector bundle of conformal blocks over the moduli space

Bg,n →Mg,n (5.2)

where Bg,n consists of pairs ([C],B(C)) with an isomorphism class [C] ∈ Mg,n of a Rie-
mann surface C of genus g and n punctures and the corresponding space of conformal
blocks B(C)11. This bundle is equipped with the projectively flat Knizhnik-Zamolodchikov
connection ∇KZ with respect to which horizontal sections correspond to conformal blocks
of our CFT. The above results in what is called a chiral CFT.

Due to the non-trivial monodromies, conformal blocks are multi-valued. To determine
the full CFT one has to determine a consistent system of correlators which are subject
to the following conditions: i) They solve the chiral Ward identities. ii) They are single-
valued. iii) They solve sewing (or gluing) constraints.

In a rational CFT the representation category C = Rep(V) of the associated chiral
algebra is shown to be an MFC [H]. The TQFT approach to RCFT in [FRS] utilises the
RT TQFT associated to C to provide a solution to finding a consistent system of correlators.
The RT TQFT of C or C itself will be referred to as the chiral theory.

The topological nature of the problem can be described roughly as follows: Let C be
complex curve with framed points and fixed labels. Let U(C) denote the underlying

11This is well-defined as for any two isomorphic Riemann surfaces C ' C ′ the corresponding vector spaces
B(C) = B(C ′) are identical.
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topological surface by forgetting the complex structure, but keeping track of the framed
points with their insertions. In particular, U(C) is a d-surface. The conformal block space
on the complex curve C is isomorphic to the state space on U(C), i.e. there exists an
isomorphism

ΨC : B(C)→ V C(U(C)) . (5.3)

This isomorphism is natural in C in the following sense: Let γ be a curve in the moduli
space Mg,n starting at [C] and ending at [C]′. On the one hand, the connection on (5.2)
provides an isomorphism

Γγ : B(C)
∼−→ B(C ′) (5.4)

via parallel transport along γ. On the other hand, the curve γ induces a isomorphism of
the underlying surfaces γ̃ ∈ ModC(U(C), U(C)′). Naturality of the isomorphism in (5.3)
means

ΨC′ ◦ Γγ ∝ V C(γ̃) ◦ΨC . (5.5)

We will therefore refer to the state space V C(Σ) for a surface Σ also as the space of chiral
conformal blocks, even though the complex-analytic structure is forgotten. To be precise,
it is the space of projectively flat sections over the moduli space on Σ, which recovers the
complex-analytic description. Similarly, correlators are viewed as elements in the state
space of the double Σ̂.

We summarise the topological description of correlators:

� The correlator Cor(Σ) on a surface Σ is an element of the state space V C(Σ̂) of the
double surface Σ, i.e.

Cor(Σ) ∈ V C(Σ̂) . (5.6)

This is known as holomorphic factorisation in that correlators solve the chiral Ward
identities.

� The correlator Cor(Σ) is invariant under the diagonal action of the mapping class
group Mod(Σ), i.e.

Cor(Σ) ∈ V C(Σ̂)Mod(Σ) . (5.7)

This invariance, also called modular invariance, implies that correlation functions are
single-valued.

� Correlators solve the sewing constraints, i.e. they behave nicely under cutting and
gluing of a surface along some boundary circle. This property is captured in terms
of the modular functor by the gluing isomorphism g from (3.7). Let Σ be a d-surface
and γ be a simple closed curve on Σ. Then

Cor(Σ) = gγ,Σ̂

(∑
i,j,λ

Cor(Σγ(i, j))

)
(5.8)

where Σγ(i, j) is the cut surface with label (i, j) ∈ C � Crev resp. its dual and λ
runs over possible multiplicities. The sum is over intermediate states which means
over all simple labels i, j ∈ I. Finally, the gγ,Σ̂ is the gluing isomorphism (3.7) when
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C � Crev

(i, j)

∼

C

C

i

j

Figure 5.1: The construction of correlators via boundary in C � Crev or defects in C.

gluing along γ in both copies in Σ̂. This is also called the factorisation property of
correlators and for the sphere with four marked points this is the realisation of an
operator product expansion (OPE).

The explicit construction of RCFT correlators for a given chiral theory C relies further
on a symmetric special Frobenius algebra A in C. The corresponding CFT correlators
depending on A are:

CorCA(Σ) ∈ V C(Σ̂) (5.9)

Recall that symmetric special Frobenius algebras give rise to surface defects in C. We can
exploit this to construct the correlators given in [FjFRS1] in terms of the RT TQFT with
defects from Theorem 4.3.

The doubling procedure introduced in Section 4 can be extended to include Wilson lines.
Let Σ be a d-surface with framed points labelled by pairs (i, j) ∈ C × C which correspond
to bulk field insertions. Consider the defect cylinder

M̂Σ : ∅ → Σ̂

from Example 4.13 with the surface defect Σ × {1/2} labelled by the symmetric special
Frobenius algebra A. The candidate for the RCFT correlator on Σ is then defined as

CorCA(Σ) = ZC,def(M̂Σ) (5.10)

by applying the defect RT TQFT on the right.
Applying Proposition 4.11 and Remark 4.12 we may also write

CorCA(Σ) = ZC�Crev,bnd(MΣ) ∈ V C�Cdef

(Σ) (5.11)

where the TQFT of C � Crev is applied to the cylinder MΣ from example 4.13. The two
approaches (5.10) and (5.11) are illustrated by Figure 5.1.

The following theorem is a result from [FjFRS1, Thm. 2.2, Sec. 5]:

Theorem 5.1. Let C be an MFC and A a symmetric special Frobenius algebra in C.
The correlators {CorCA}Σ defined in (5.10) form a consistent system of correlators, i.e. they
satisfy (5.6), (5.7) and (5.8).
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The result is even stronger in that they prove in [FjFRS2] that Morita equivalent sym-
metric special Frobenius algebras in C lead to the same correlators and thus equivalent
CFTs. This forms in fact a one-to-one correspondence between 2D RCFTs and pairs
(C, [A]) of an MFC C and a Morita class of a symmetric special Frobenius algebra A in C.

5.2 Mapping class group averages

We now define the mapping class group averages, which should be thought as candidates
for quantum gravity correlators (discussed in Section 8).

For a given MFC C we ask for a finiteness condition on its mapping class group repre-
sentations. If the representation image is finite, and in particular has finite orbits we give
the following definition of a mapping class group average.

Definition 5.2. Let Σ be a d-surface such that the representation imageG := V C(Mod(Σ))
is finite in End(V C(Σ)). Then, define the linear map

〈−〉Σ : V C(Σ̂)→ V C(Σ̂)Mod(Σ), x 7→ 〈x〉Σ :=
1

|G|
∑
g∈G

g.x (5.12)

where Mod(Σ) acts diagonally on V C(Σ̂).

Remark 5.3. 1. One can express the mapping class group average as an orbit sum

〈x〉Σ :=
1

|G|
∑
g∈G

g.x =
1

|Ox|
∑
y∈Ox

y (5.13)

where Ox is the mapping class group orbit of x. In fact to define 〈x〉Σ it is sufficient
to require finiteness of its orbit and not of the representation image. To go beyond
the finiteness requirement itself would require a good notion of a measure. This fails
for the mapping class group itself as it is non-amenable as pointed out in [JLLSW].
However, we are not aware if there is still hope for its representation image.

2. The definition above depends on the finiteness condition as for an infinite orbit, there
is no natural regularisation procedure which allows the definition of an average.

However, for the torus Σ = T 2 the finiteness condition is always satisfied. This
follows from a result of [NS] showing that the kernel of the associated mapping class
group representation is a congruence group and thus a finite index group.

3. The semisimplicity of the MFC C proves to play an important role in the finite-
ness condition. For non-semisimple modular tensor categories12 [Ly] constructed
projective mapping class group representations generalising the semisimple case. In
[DGGPR, DGGPR2] they extended these representations to a 3-dimensional TQFT.

12We used the term modular fusion category instead of the traditional modular tensor category, which also
assumed an underlying semisimple tensor category, to allow for a more general definition of modular
tensor categories. A modular tensor category is then a finite ribbon tensor category with trivial Müger
centre as condition 2 in Proposition 2.1.
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A standard example of non-semisimple modular tensor category is the representation
category of the quantum group Uq(sl2). The finiteness condition fails for such theories
after the following observation: Let γ be an essential closed curve on a surface Σ
without framed points. The Dehn twist along γ has infinite order in the mapping
class group representations [DGGPR2, Prop. 5.1].

Even though going beyond semisimplicity is of great interest as it allows one to
go from rational to logarithmic CFTs, we will only work with the semisimple case
without needing to fix the above problem.

5.3 Main correspondence

The state space of the double Σ̂ can be decomposed using the tensoriality isomorphisms
of the modular functor, i.e.

V C(Σ̂) ∼= V C(Σ)⊗ V C(−Σ). (5.14)

Naturality of these isomorphisms implies in particular that they are Mod(Σ)-intertwiners.
By abuse of notation let dΣ : V C(Σ̂) → k denote the pullback of the pairing (3.16). If

in addition to the finiteness property C obeys an irreducibility property, we get a relation
between conformal correlators and mapping class group averages as stated in the following
theorem.

Theorem 5.4. Let Σ be a d-surface such that the projective representation V C(Σ) is
irreducible and V C(Mod(Σ)) ⊂ End(V C(Σ)) is finite and let x ∈ V C(Σ̂) be an element such
that dΣ(x) 6= 0. In addition, suppose that A is a symmetric special Frobenius algebra in
C. Then, there exists λΣ ∈ k such that

CorCA(Σ) = λΣ 〈x〉Σ . (5.15)

The proof will follow after the following Lemma:

Lemma 5.5. Let Σ be a d-surface such that the projective representation V C(Σ) is irre-
ducible. The space of mapping class group invariants on the double Σ̂ is one-dimensional,
i.e.

V C(Σ̂)Mod(Σ) ∼= k . (5.16)

Proof. The non-degeneracy of the pairing dΣ : V C(Σ)⊗V C(−Σ)→ k gives an isomorphism
ψ : V C(−Σ)

∼−→ V C(Σ)∗, y 7→ dΣ(−, y). This is a Mod(Σ)-intertwiner (with respect to the
dual action on V C(Σ)∗). Indeed, for any y ∈ V C(−Σ) and f ∈ Mod(Σ):

ψ(f.y) := dΣ(−, f.y)
(3.17)
= dΣ(f−1.−, y) = f.ψ(y)

Furthermore, there is an obvious Mod(Σ)-isomorphism V C(Σ) ⊗ V C(Σ)∗ ∼= End(V C(Σ)),
which intertwines the diagonal action on the left with the conjugation action on the right.
Combining this with (5.14) we obtain a Mod(Σ)-isomorphism

V C(Σ) ∼= End(V C(Σ)) .
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In particular, they have isomorphic spaces of Mod(Σ)-invariants. The space of Mod(Σ)-
invariants in End(V C(Σ)) coincides with the subspace EndMod(Σ)(V

C(Σ)) of Mod(Σ)-intertwiners.
By Schur’s Lemma, irreducibility of V C(Σ) implies EndMod(Σ)(V

C(Σ)) ∼= k which concludes
the proof.

Now we can prove Theorem 5.4:

Proof of Theorem 5.4. Irreducibility of V C(Σ) implies by Lemma 5.5 that the space of
modular invariants V C(Σ̂)Mod(Σ) is 1-dimensional. The correlators CorCA(Σ) are mapping
class group invariant (5.7) and so is the mapping class group average 〈x〉Σ by definition
and, therefore, they both lie in the same 1-dimensional space. For the statement to hold,
we only need to show that 〈x〉Σ is non-zero. To show that this is the case, it is sufficient
to check that dΣ(〈x〉Σ) 6= 0. This follows from the invariance property (3.17) and linearity
of dΣ, namely

dΣ(〈x〉Σ) =
1

|G|
∑
g∈G

dΣ(g.x) =
1

|G|
∑
g∈G

dΣ(x) = dΣ(x) 6= 0 . (5.17)

The element x in Theorem 5.4 is referred to as the seed. Since correlators are mapping
class group invariant, they are invariant under averaging, i.e.

〈CorCA(Σ)〉Σ = CorCA(Σ) . (5.18)

However, they are not interesting choices of seed elements.
Consider a handlebody HΣ with boundary Σ without framed points, seen as a bordism

HΣ : ∅ → Σ. The RT TQFT evaluated on its double offers a natural choice of a seed

xvac := ZC(ĤΣ) (5.19)

called vacuum seed. As we will see in Section 8 xvac will be the vacuum contribution to
the gravity path integral. For the torus Σ = T 2 the element ZC(HT 2) corresponds to the
vacuum character χ0(τ) [FRS, Eq. (5.15),(5.16)] (τ is the conformal parameter) and xvac

to |χ0(τ)|2. Finally, notice that xvac satisfies dΣ(xvac) 6= 0 which follows directly from
Example 3.3 (where xvac = x⊗ x̂).

Remark 5.6. 1. Theorem 5.4 gives a correspondence between conformal correlators
and mapping class group averages. In particular, for theories (MFCs) C such that
the hypothesis holds for any d-surface, one can obtain any conformal correlator via
a mapping class group average (up to a non-zero scalar).

In fact, for the irreducibility property we have found in [RR1] (see later Theorem 7.1)
the following result:

Let C be an MFC such that the mapping class group representations V C(Σ)
are irreducible for any surface Σ (with no insertions). Then, there exists a
unique Morita class of simple symmetric special Frobenius algebras, namely
that of the trivial algebra 1.
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The above statement implies in particular that there is a unique CFT with MFC C.
In such a setting we may write CorC(Σ) for the unique CFT correlator.

2. The finiteness condition in Theorem 5.4 will also be referred to as property F, or
prop F for short. This terminology was originally used when studying a finiteness
property for braided fusion categories [NR]. Namely, we will say that an MFC C has
property F, if for every d-surface Σ the group V C(Mod(Σ)) is finite. We may also
specify to only a family of surfaces, for example with respect to surfaces without
framed points.

The correspondence (5.15) has been established for the vacuum seed xvac and the Ising
CFT on the torus in [CGHMV] and then extended to partition functions on higher genus
surfaces in [JLLSW]. In the following section we will extend this to surfaces with framed
points for all Ising-type MFCs.

60



6 Irreducibility and property F

In this section we discuss theories with the irreducibility and/or finiteness property used
in the hypothesis of the main correspondence Theorem 5.4. We review in 6.1 some known
examples and in 6.2 we extend in the case of Ising categories some existing results.

6.1 Irreducibility and property F examples

A trivial example which has irreducible representations and property F with respect to
any d-surface Σ is Vect. There are further trivial examples of theories with irreducible
representations when restricting to specific surfaces. For instance, any MFC C has an
irreducible representation on the sphere, as V C(S2) ∼= k. However, we are interested in
examples with an apparent irreducibility property, present on a large family of surfaces.

The only non-trivial examples with irreducible representations V C(Σ)’s for all surfaces Σ
we are aware of are Ising-type categories and the MFC C(sl(2), k) associated to the affine

Lie algebra ŝl(2) at certain levels k ∈ Z>0. Let us list these examples, as well as some
non-examples.

1. It is shown in [Ro] that for C = C(sl(2), k) and r = k + 2 prime, all projective
representations V C(Σg,0), g ≥ 0 are irreducible.

Most of the remaining cases can be excluded already by looking at g = 1. Namely by
[GQ, App. A] and [CIZ, Prop. 1], invariants in the representation V C�C

rev

g=1 are obtained
from divisors d of r, with divisors d and r/d describing the same invariant subspace,
and where d with d2 = r is excluded. Thus, when r ≥ 3 is not a prime or a square of
a prime, the space of invariants satisfies dim(V C�C

rev

1 )Mod1 > 1, and so by Lemma 5.5,
V C1 is not irreducible.

On the other hand, for k = 2 (r = 4), one obtains a category of Ising-type, for which
all V Cg are irreducible, see point 2. Some results on the irreducibility of V Cg≥2 for the
remaining cases of r = p2 with p > 2 prime can be found in [Kor] but this remains
an open problem and we hope to return to this in the future.

2. The Ising model without marked points is studied in [CGHMV, JLLSW]. Irreducibil-
ity of all V Cg , g ≥ 0 is shown in [JLLSW, Sec. 4.3]. In the next section we will extend
this result to all 16 Ising-type MFCs and to surfaces with marked points.

3. Let C = C(sl(N), k) be the MFC for the affine Lie algebra ŝl(N) at any level k ∈ Z>0,
for N ≥ 3. It is shown in [AF2, Thm. 3.6] that the V Cg are reducible for each g ≥ 1.

4. For C(sl(2), k), irreducibility has also been studied for the mapping class group of
surfaces with marked points in [KoS] where it is shown with respect to surfaces which
contain at least one marked point labelled by the fundamental label 1. In [KM] they
studied irreducibility for surfaces with boundary. For Ising-type MFCs, irreducibility
in the presence of marked points will be shown in the next section.

Definition 6.1. We say that an MFC C has property F with respect to a d-surface Σ if
the associated mapping class group image V C(ModC(Σ)) is a finite group.
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Remark 6.2. 1. It does not matter if we define property F with respect to the whole
mapping class group ModC or just the pure mapping class group PMod. This is
because the following conditions are equivalent:

a) V C(ModC(Σ)) is finite.

b) V C(PMod(Σ)) is finite.

a)⇒ b): The pure mapping class group is a subgroup and therefore V C(PMod(Σ)) ⊂
V C(ModC(Σ)).

b) ⇒ a): The mapping class group ModC(Σ) is an extension of PMod(Σ) by a
subgroup H of the symmetric group Sn, cf. (3.10), where n is the number of framed
points and H is determined by allowed permutations of framed points. In particular
H is a finite group and V C(ModC(Σ)) is finite as an extension of a finite group by a
finite group.

Therefore, we will not distinguish between the two conditions and work with the
pure mapping class group instead.

2. Let T1, . . . , Tn denote the Dehn twists around each framed point in PModg,n. Such
Dehn twists act on the state space by scalar multiplication of θl where l is the label of
the corresponding point, see (3.24). Since MFCs have twist eigenvalues of finite order,
the image of the subgroup 〈T1, . . . , Tn〉 will always be finite. Hence, it is sufficient
to check property F with respect to the remaining generators which are Dehn twists
around the curves in Figure 3.5, corresponding to the unframed mapping class group
PModun

g,n.

Similar to irreducibility, there are trivial examples where property F is present. For
example, according to the above Remark, if PModun

g,n is trivial (for (g, n) = (0, n) with
n ≤ 3) then PModg,n is fully generated by Dehn twist around its marked points and its
representation image is finite.

Property F on higher genus surfaces

A non-trivial result of [NS], briefly mentioned in Remark 5.6, guarantees the presence
of property F on the torus Σ = T 2 for any MFC C. However, we are also interested
in examples on a larger family of surfaces, particularly of higher genus. Such examples
include:

1. The MFC C = Rep(DωG) of representations of the twisted Drinfeld double of a finite
group G is shown in [G] to have property F with respect to any d-surface (any genus
and number of framed points).

2. In [JLLSW] it is shown that the MFC associated to the Ising CFT has property F
with respect to surfaces without marked points. In the next section we extend this
to all 16 Ising MFCs and all d-surfaces.
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Property F on genus 0 surfaces

As mentioned before, the term property F is borrowed from [NR] where such a finiteness
property is studied with respect to braid group representations.

Let B be a braided fusion category. For an object X ∈ B, the endomorphism space
End(X⊗n) carries a natural action of the braid group by mapping a braid generator in Bn

to the corresponding braiding of the strands labelled by X. The braided fusion category
is said to have property Fbraid with respect to X if the braid group image is finite for all
n. If this is the case for every X and any n ∈ N, then B is said to have property Fbraid as
a braided fusion category.

Remark 6.3. Since braid groups can be seen as mapping class groups as in Example 3.1,
we may compare the above mentioned notion of finiteness with that of the mapping class
group.

Let C be a MFC and X an object in C. Let S2(X, . . . , X, i) be the sphere with the first n
points labelled by X and the (n+1)’th point labelled by i ∈ I. By semisimplicity property
Fbraid with respect to X (as a braided fusion category) is equivalent to property F with
respect to S2(X, . . . , X, i) for all i ∈ I. I am not aware of a counterexample MFC which
satisfies property Fbraid but not property F.

Before discussing results on property Fbraid, we recall the following notions.
A fusion category A is weakly integral if its Frobenius-Perron dimension is an integer,

i.e. FPdim(A) ∈ N. This is equivalent to the condition that FPdim(X)2 ∈ N for all simple
objects X [ENO1, Prop. 8.27]. If FPdim(X) ∈ N for all simple objects X, then A is
integral. An example of a weakly integral (but non-integral) fusion category is an Ising-
type category, which has FPdim(σ) =

√
2 for the spin object σ ∈ I. Ising categories will

be introduced in the next section in detail.
A fusion category is group-theoretical if it is Morita equivalent to a pointed fusion cat-

egory. Every pointed fusion category is equivalent to VectωG for some group G. Equiv-
alently, a group-theoretical fusion category A has Drinfeld centre Z(A) ' Rep(DωG).
Every group-theoretical fusion category is integral, but the converse does not hold [Ni].

There is a further notion of weakly group-theoretical, which we do not recall in detail.
The defining property of weakly group-theoretical fusion categories is that they are Morita
equivalent to nilpotent13 fusion categories. Weakly group-theoretical fusion categories are
weakly integral and the converse is conjectured to be true.

Regarding property Fbraid, it is conjectured by the authors in [NR, Sec. 1] that:

A braided fusion category B has property Fbraid if and only if it is weakly
integral.

This conjecture has been verified in one direction for weakly group-theoretical braided
fusion categories [GrN]. This extends an earlier result that group-theoretical braided fusion
categories have property Fbraid by [ERW] as well as some weakly group-theoretical examples

13A fusion category N is nilpotent if the sequence N ⊃ Nad ⊃ (Nad)ad ⊃ . . . , constructed by taking
adjoint subcategories, converges to Vect. Adjoint subcategories or rather adjoint subrings will be
recalled briefly in Section 7.1.
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[RW, GRR]. The proof also relies on a result by [Na] showing that the core of any weakly
group-theoretical fusion category is equivalent to either a pointed fusion category or the
Deligne product of a pointed fusion category with an Ising category.

Remark 6.4. 1. One motivation for studying braid group representations and partic-
ularly their finiteness or lack thereof is due to topological quantum computing. To
have universal quantum computation one is interested in dense (thus infinite) braid
group images. A famous example is that of the Fibonacci category Fib. Moreover,
for a family of non weakly integral examples coming from C(g, k) there are infinite
images [NR]. Since for g = sl2 the associated category is weakly integral only if
k ∈ {2, 3, 4, 6}.

2. From part 1 one can observe that there are many levels which admit irreducible
mapping class group representations but not Fbraid, e.g. for all k ≥ 5 with k + 2
prime. Conversely, property F does not imply irreducibility (e.g. levels k = 4, 6).

6.2 Irreducibility and property F of Ising

In this section, we will review Ising-type MFCs and compute their associated mapping class
group representations explicitly. Thereafter, we will present a proof that such categories
satisfy property F and the irreducibility property, thus extending the result of [JLLSW] to
surfaces with marked points and all 16 Ising-type MFCs.

6.2.1 Ising categories and their mapping class group representations

We introduce Ising categories following [DGNO, App. B] and compute their mapping class
group action explicitly following the previous section. Up to equivalence there are 16 Ising
modular fusion categories. This family is parametrized by an 8’th root of −1, which will
be denoted by ζ, and a sign ν ∈ {±}. The first determines the braided structure of the
category, whereas the second determines the spherical structure. We will also need

λ := ζ2 + ζ−2 (6.1)

which satisfies λ2 = 2.
The Ising category C(ζ, ν) has three simple objects 1, ε, σ and the fusion rules are given

in the following table:

⊗ 1 ε σ
1 1 ε σ
ε ε 1 σ
σ σ σ 1⊕ ε

In particular, there are no multiplicities in the fusion basis Nk
ij ∈ {0, 1}. This simplifies the

notation of R,F ,B-matrices and the associated graphs. The dimensions are d1 = dε = 1,
dσ = νλ, and the twist values are θ1 = 1, θε = −1 and θσ = νζ−1.
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The braidings in terms of R-matrices are given by:

R(εε)1 = −1, R(εσ)σ = R(σε)σ = ζ4, R(σσ)1 = ζ, R(σσ)ε = ζ−3.

The (non-trivial) F-matrices are given as:

F (εσε)σ = F (σεσ)ε = −1

F (σσσ)σ =

(
F

(σσσ)σ
11

F
(σσσ)σ
1ε

F
(σσσ)σ
ε1 F

(σσσ)σ
σσ

)
=

1

λ

(
1 1
1 −1

)
.

The S-matrix is

S =
1

2

 1 1 νλ
1 1 −νλ
νλ −νλ 0

 (6.2)

where the order of the basis is {1, ε, σ}.
Notice that the F-matrices are self-inverse, i.e.F (ijk)l = G(ijk)l. It will be convenient to

use the following notation: {εa}a∈Z2 , where ε0 = 1 and ε1 = ε. With this notation we have
for example: R(σσ)εa = ζ1−4a.

Using the above data one can also compute the B-matrices according to (2.34) and
(2.37). When Hom(l, i⊗ j ⊗ k) is 1-dimensional (in other words when at least one of the
labels is not σ) we have the following non-trivial B-matrices:

B±(εaεε)εa = (−1)

B±(εaσσ)εb = ζ±(1−4[a+b]) . (6.3)

These follow easily from R- and F-matrices. Note also that we write [a + b] in the end
to emphasize that we take a + b mod 2 (a and b live in Z2). Otherwise, the expression
would be wrong. When all labels i, j, k and l are σ-labels the corresponding Hom-space
is 2-dimensional. By inserting R- and F-matrices into (2.34) and (2.37) one obtains the
following 2× 2-matrices:

B±(σσσ)σ = ζ±
(
ζ∓2 ζ±2

ζ±2 ζ∓2

)
. (6.4)

Remark 6.5. Half of the 16 Ising categories are unitary and the other half are non-unitary
dictated by the positivity respectively negativity of dσ.

The Ising category associated to the Ising CFT as well as the C(sl2, k) at level k = 2 are
among the unitary Ising categories.

6.2.2 Modular Action of Ising Categories

In this section, we will explicitly describe how the pure mapping group acts on the as-
sociated state spaces in the case of Ising categories. Therefore, we fix an Ising category
C = C(ζ, ν) as introduced in section 6.2.1.

Let Σ be a surface of genus g and n framed points labelled by simple objects l1, . . . , ln,
i.e. the underlying vector space of the state space is

Vg,n = C(1, l1 ⊗ . . . ln ⊗ L⊗g) . (6.5)
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We now describe a basis of this space that we will use to give the action of the generators
as listed in (3.24).

Consider the oriented graph

Γ :=

L1 L2 Ln I1 I ′1 Ig I ′g

D3

K1

Kg
Dn+1

Ag

. . .

. . .

. . .

, (6.6)

where L1, . . . , Ln, D3, . . . , Dn+1, K1, . . . , Kg, A2, . . . , Ag, I1, . . . , Ig, I
′
1, . . . , I

′
g are the edges

of the graph. This choice of notation will become convenient later.

A coloring is a map χ : E(Γ) → I, which assigns to every edge of the graph a label
in I. We say that the coloring is admissible if at any trivalent vertex of the graph the
associated fusion is non-zero. For instance, the coloring χ is admissible at the first vertex
in (6.6) if N

χ(D3)
χ(L1)χ(L2) 6= 0. Let col(Γ) denote the set of admissible colorings of the graph Γ.

Moreover, we consider the subset col(Γ)◦ ⊂ col(Γ) consisting of all colorings χ such that

χ(L1) = l1 , . . . , χ(Ln) = ln and χ(Ik) = χ(I ′k) , k = 1, . . . , g . (6.7)

Notice that for χ ∈ col(Γ)◦ we have χ(Km) ∈ {1, ε} for all m = 1, . . . , g as χ(Km) = σ is
not admissible due to the condition of χ(Im) = χ(I ′m) and the Ising fusion rules.

In terms of this notation, for χ ∈ col(Γ)◦ the graph Γ coloured by χ represents a vector
χ̂ ∈ Vg,n, with Vg,n as in (6.5), and where the embedding χ(Ik)⊗ χ(Ik)

∗ → L is implicit.
Altogether, the set

{χ̂}χ∈col(Γ)◦ (6.8)

forms a basis of Vg,n.
We proceed by computing the mapping class group action on V (Σg,n) with respect to

this basis using the equations in (3.24). It is clear that

Tλmχ̂ = θlmχ̂ (6.9)

and
Tαmχ̂ = θχ(Im)χ̂ . (6.10)

To give the expression for the action of Sm on a basis vector χ̂ we make the following
distinction:

For χ(Im) = εp, which by admissibility also implies χ(Km) = 1, we compute

Smχ̂ =
1

2

(
χ̂|Im=1 + χ̂|Im=ε + (−1)pνλ χ̂|Im=σ

)
(6.11)
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where the slash notation indicates that for example χ̂|Im=σ represents the vector with the
same colouring χ everywhere up to the edge Im, which is now labelled by σ. The factor 1

2

appears as D = 2 for Ising categories.
For χ(Im) = σ and χ(Km) = 1 we find

Smχ̂ =
λ

2

(
χ̂|Im=1 − χ̂|Im=ε

)
. (6.12)

Equations (6.11) and (6.12) can be formed into one:

Smχ̂ =
∑
j∈I

Sχ(Im),jχ̂|Im=j (6.13)

using the S-matrix S from (6.2) where χ such that χ(Km) = 1.
The last case is when χ(Km) = ε and hence χ(Im) = σ. The result is

Smχ̂ = ζ2χ̂ (6.14)

which follows from the computation

k

σ σ

σ = δk,ε
2ζ2

dσ

k

σ σ

. (6.15)

In fact, let me demonstrate how to perform the above computation to familiarise the reader
with string diagrammatic computations involving Ising categories:

k

σ σ

σ
(1)
= ζ2

1∑
a=0

(−1)a

k

σ σ
σ

σ

εa
(2)
=

νζ2

λ

1∑
a=0

(−1)a

k

σ σ

σ σ

εa

(3)
=

νζ2

λ

1∑
a=0

(−1)a

k

σ σ

σ
σ

σ

σ

k

εa

(4)
=

νζ2

λ

1∑
a=0

(−1)aF (σεaσ)k

k

σ σ
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(5)
= δk,ε

2ζ2

dσ

k

σ σ

. (6.16)

In (1) the left diagram is isotoped to the right and the double braiding of σ with itself
decomposes into summands of 1 and ε. The phase ζ2(−1)a is the result of the double
R-matrix applied twice. Step (2) might seem enigmatic but it is obtained by changing the
orientation of the two fusion vertices by bending the σ-labelled strings. The factor ν/λ
is the result of this change of basis (we refer to [TV2, Chap. 4.7] for a general graphical
calculus with fusion bases). Step (3) is fusing the two σ strings on the top and step (4)
follows from the definition of F-matrices (here a one dimensional matrix). Finally, (5) is
the result of:

νζ2

λ

1∑
a=0

(−1)aF (σεaσ)k =
νζ2

λ

1∑
a=0

(−1)a(1+p(k)) = δk,ε
2νζ2

λ
= δk,ε

2ζ2

dσ
. (6.17)

This completes the proof of (6.15).
The action of Tγm is described by twisting with θ the tensor product of two neighbouring

strands as seen in equation (3.24). If the fusion is again a simple object, the action
produces just the twist eigenvalue of this simple object. That is, let χ ∈ col(Γ)◦ such that
χ(Im)⊗ χ(Im+1) is simple. Then, we have

Tγmχ̂ = θχ(Im)⊗χ(Im+1) χ̂ . (6.18)

If χ(Im)⊗χ(Im+1) is not simple, then we have χ(Im) = χ(Im+1) = σ according to the Ising
fusion rules. In this case, we claim

Tγmχ̂ = χ̂|{Km,Km+1,Am+1}⊗ε (6.19)

where {Km, Km+1, Am+1}⊗ε indicates that we change the colouring of the edges Km, Km+1

and Am+1 to χ(Km)⊗ ε, χ(Km+1)⊗ ε and χ(Am+1)⊗ ε respectively.
Let us expand on how (6.19) is obtained. Fix χ̂ with labels χ(Im) = χ(Im+1) and to

simplify notation write ki ≡ χ(Km), ai ≡ χ(Ai) for its labels:

Tγmχ̂ =

am

am+1

am+2

σ σ σ σ

θ

km
km+1

= ζ−2

am

am+1

am+2

σ σ σ σ

km
km+1
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= ζ−2
∑

k′m,k
′
m+1

F
(amσσ)am+1

kmk′m
F

(am+1σσ)am+2

km+1k′m+1

am

k′m

am+1

σ σ σ σ

k′m+1

= ζ−2
∑
k′m,k

′′
m,

k′m+1,k
′′
m+1,

a′m+1

Mk′mk
′′
mk
′
m+1k

′′
m+1a

′
m+1

am

a′m+1

am+2

σ σ σ σ

k′′m
k′′m+1

(6.20)

where Mk′mk
′′
mk
′
m+1k

′′
m+1a

′
m+1

in the last expression is defined as:

F
(amσσ)am+1

kmk′m
F

(am+1σσ)am+2

km+1k′m+1
(B(k′mσσ)k′m+1)2

am+1a′m+1
F

(amσσ)a′m+1

k′mk
′′
m

F
(a′m+1σσ)am+2

k′m+1k
′′
m+1

(6.21)

The last term in (6.20) might seem complicated at first, but it is only matrix multiplication.
Using the explicit formulas we found in Section 6.2.1 we obtain (6.19).

To compute the action of Tδm we will use the tensoriality property of the twist as we did
essentially for Tγm . For instance, the action of Tδm on χ̂ is the composition of pure braids
in strands labelled by χ(Lm+1), . . . , χ(Ln), χ(I1) and products of the twist eigenvalues of
these labels. Therefore, we study the action of pure braids.

We start by considering pure braids in l1, . . . , ln. Let

Tij χ̂ =

χ(Di)

χ(Di+1)

χ(Dj)

χ(Dj+1)

li li+1 lj−1 lj

. . .

. . .

(6.22)

be the pure braid between the li- and lj-coloured strands.
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If li and lj have a unique fusion, i.e. if li ⊗ lj is a simple object, then Tij acts by a
phase θli⊗ljθ

−1
li
θ−1
lj

, which is obtained by expressing the double braid using the twist and
its inverses.

Otherwise, for li = lj = σ, we prove the following lemma.

Lemma 6.6. If li = lj = σ, then

Tijχ̂ = ζ2(−1)p(χ(Dj+1))ζ4mχ̂|{Di+1,...,Dj}⊗ε

where p(σ) ≡ 0 and some m ∈ Z4 which may depend on χ(Di), . . . , χ(Dj) but it does not
depend on χ(Dj+1).

Proof. We prove this by induction on |i− j|. We start with j = i+ 1. This is the case of
applying the B-matrix twice on the strands li and li+1. We compute this for the different
admissible labels of Di+1 = Dj.

� For χ(Di+1) = σ, let χ(Di) = εa and χ(Di+2) = εb be the admissible labels. Then,
we find:

Tii+1χ̂ = (B(εaσσ)εb)2χ̂
(6.3)
= ζ2(−1)a+bχ̂

� For χ(Di+1) = εa, we get admissible labels χ(Di) = σ and χ(Di+2) = σ. The result
is:

Tii+1χ̂
(6.4)
= ζ2(−1)aχ̂|Di+1⊗ε .

Assuming that the statement is true for fixed i and j, we make the induction step and
prove it for i and j + 1:

Tij+1χ̂ = ζ2ζ4m
∑

sj+1,d′j+1

(−1)p(sj+1)B
−(dj lj+1lj)dj+2

dj+1sj+1
B

(ε⊗dj lj lj+1)dj+2

sj+1d′j+1

χ̂|{Di+1,...,Dj}⊗ε,Dj+1=d′j+1
.

where m depends only on di ≡ χ(Di), . . . , χ(Dj) ≡ dj allowing us to take the factor ζ4m

out of the sum14. The above is obtained by using the inverse B-matrix, the induction
assumption and the B-matrix again15. After computing this for all labels, one verifies the
statement. We give the phases for each case:

� For lj = ε: ζ2ζ4m(−1)p(dj+2)+1.

� For lj = σ:

1. for dj+2 = εa: ζ
2ζ4m+2p(dj)(−1)a

2. for dj+2 = σ: ζ2ζ4mζ4(−1)p(dj+1)

14This is the whole reason why we assume this special dependence of m on the D-labels; for the induction
to work.

15There is a pure braid relation Tij+1 = (id⊗c−1j−1,j) ◦ Tij ◦ (id⊗cj−1,j) where Tij denotes the pure braid

of strands i and j as before and c denotes the braid generator with c−1 the inverse braid.
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Similar to this, we can prove the following lemma, which includes braids with i1.

Lemma 6.7. If li = i1 = σ, then

Tlii1 χ̂ = ζ2 ζ4m χ̂|{Di+1,...,Dn+1,K1}⊗ε

where p(σ) ≡ 0 and m ∈ Z4 which may depend on χ(Di), . . . , χ(Dn+1) but not on χ(A2).

6.2.3 Irreducibility property of Ising categories

In this section we prove our second main result:

Theorem 6.8. Let C = C(ζ, ν) be an Ising-type MFC and let Σg,n be an extended surface
whose marked points are labelled by simple objects. Then, V C(Σg,n) is an irreducible
projective representation of the pure mapping class group.

Remark 6.9. 1. The case without marked points, i.e. n = 0, was already shown in
[JLLSW, Sec. 4.3] (for one of the 16 Ising-type categories). It turns out that the
same method works in all 16 cases and that it can be easily adapted to the case with
marked points, and so our proof follows closely that of [JLLSW].

2. Irreducibility with respect to the pure mapping class group PModg,n implies irre-
ducibility with respect to the mapping class group ModC(Σg,n), as PModg,n is a
subgroup.

Proof of Theorem 6.8. Let Σg,n be a d-surface with simple point labels and set Vg,n :=
V C(Σg,n). To prove irreducibility, we will show that the inclusion k[V (PModg,n)] ⊂
End(Vg,n) is actually an equality. In terms of the basis {χ̂} of Vg,n from (6.8), denote
by E(χ̂, χ̂′) the elementary matrix in End(Vg,n), which maps χ̂ to χ̂′ and which maps all
other basis elements to zero. We have completed the proof once we have shown that

∀χ, χ′ ∈ col(Γ)◦ : E(χ̂, χ̂′) ∈ k[V (PModg,n)] . (6.23)

As a first step towards this goal, define the operators:

P1(γ) =
1

16

16∑
k=1

V (T kγ ) , Pσ(γ) =
(1− V (T 2

γ ))

1− ζ−2
, Pε(γ) = 1− P1(γ)− Pσ(γ) , (6.24)

where γ is a simple closed curve and Tγ is the Dehn twist around γ. One checks16 that
the Pj(γ), j ∈ {1, σ, ε}, for γ a simple closed from Figure 6.1, are pairwise orthogonal
idempotents. Note that for all simple closed curves γ, by construction

P1(γ) , Pσ(γ) , Pε(γ) ∈ k[V (PModg,n)] . (6.25)

16Notice that 1
16

∑16
k=1 θ

k
i = δ1,i and

1−θ2i
1−ζ−2 = δσ,i.
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I1 A2

. . .

Di+1

l1 li ln

K2

Figure 6.1: Curves of type D, I,A,K on the surface based on the handlebody with an
embedded graph and a coupon.

Let a be one of the edge labels Dm, Im, Am, or Km as used in (6.6) and denote by γa
the corresponding simple closed curve as shown in Figure 6.1. The Dehn twist along γa
acts diagonally on each basis vector χ̂, giving twist eigenvalue of the edge colour χ(a).
From this it is easy to check that the idempotents Pj(γa) for j ∈ I project onto those basis
elements where the edge a is labelled by j:

Pj(γa) χ̂ = δj,χ(a) χ̂ . (6.26)

This implies that diagonal maps of the form E(χ̂, χ̂) ≡ E(χ̂) are in k[V (Modg,n)] as they
are realized as a product of Pj maps, namely

E(χ̂) =
∏
E edge

Pχ(E)(E) . (6.27)

More precisely, E runs over the edges D3, . . . , Dn+1, K1, . . . , Kg, A2, . . . , Ag, I1, . . . , Ig and
by abuse of notation they also denote the corresponding curves in Figure 6.1. We will now
describe how to move through different basis elements by changing the respective labels,
i.e. how to construct the rest of the E(χ̂, χ̂′) maps using mapping classes. We will use the
computations of section 6.2.2.

Changing only Im labels: Let χ ∈ col(Γ)◦ be a colouring such that χ(Km) = 1. Then,
the colourings {χ|Im=j}j∈I are all admissible. To jump between the corresponding basis
vectors, we use equations (6.11) and (6.12) to show

E(χ̂|Im=εp ; χ̂|Im=εp+1) = 2Pεp+1(Im)SmE(χ̂|Im=εp) (6.28)

and
E(χ̂|Im=εp ; χ̂|Im=σ) = (−1)pλPσ(Im)SmE(χ̂|Im=εp) (6.29)

and
E(χ̂|Im=σ; χ̂|Im=εp) = (−1)pλPεp(Im)SmE(χ̂|Im=σ). (6.30)

Note that χ(Km) = ε only allows σ as an Im-label.

Changing Km-labels: We will now describe how to change Km-labels while keeping the
labels of D3, . . . , Dn+1 unchanged. Therefore, we will fix labels d3 ≡ χ(D3), . . . , dn+1 ≡
χ(Dn+1) and only consider basis elements with such labels. The labels of A2, . . . , Ag are in
fact uniquely determined by the labels for Dn+1, K1, . . . , Kg and they are all in the label
set {1, ε}.
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γij

Figure 6.2: The curve γij connects the i’th with the j’th genus.

Consider first the case where dn+1 = 1. In this case, χ(K1) = · · · = χ(Kg) = 1

and χ(I1) = · · · = χ(Ig) = 1 are admissible and let χ0 denote this colouring and the
already fixed labels for D3, . . . , Dn+1. For any other basis vector χ̂ (with the same D-
labels dn+1 = 1 as mentioned) we will construct the operators E(χ̂0, χ̂). Let {Kml}l=1,...,L

be the maximal subset of K-edges such that χ(Kml) = ε and m1 < · · · < mL. In particular,
we have χ(Iml) = σ for all l. The fusion rules imply that the number of non-trivial K-labels
L is even as we have fixed dn+1 = 1. Then

E(χ̂0, χ̂) = E(χ̂′, χ̂)TγmL−1,mL
· · ·Tγm3,m4

Tγm1,m2
E(χ̂0, χ̂0|Iml=σ) (6.31)

where the curves γi,j connect the i’th with the j’th hole as shown in Figure 6.2. The
action of Tγmimi+1

is obtained similar to (6.19) and changes the labels of Kmi and Kmi+1

to ε. The operator E(χ̂0, χ̂0|{Im1 ,...,ImL}=σ) changes the Iml labels to χ(Iml) = σ and is a
product of the operators in (6.29). The vector χ̂′ is obtained from the colouring χ, but
with χ(Im) = 1 for all m /∈ {m1, . . . ,mL}. Similarly, the operator E(χ̂′, χ̂) is obtained as
a product of operators in (6.28), (6.29).

In the opposite direction, one gets

E(χ̂, χ̂0) = E(χ̂′, χ̂0)TγmL−1,mL
· · ·Tγm1,m2

E(χ̂) (6.32)

where χ̂′ now is obtained by χ but with all Km-labels set to 1.
Consider now the case where dn+1 = ε. In this case, fix the colouring χ0 with labels

χ0(K1) = ε, χ0(I1) = σ and χ0(K2) = · · · = χ0(Kg) = 1 and χ(I2) = · · · = χ(Ig) = 1.
As before, let χ̂ be any basis element (now with dn+1 = ε) and consider the maximal
subsequence {Kml}l=1,...,L with χ(Kml) = ε, which is in this case has an odd number of
elements L. Then, similar to the previous considerations we get

E(χ̂0, χ) = E(χ̂′, χ)TγmL−1,mL
· · ·Tγm2,m3

Tγ1,m1
E(χ̂0, χ̂0|Iml=σ) (6.33)

where we omit the γ1,m1 Dehn twist if m1 = 1. Similarly,

E(χ̂, χ̂0) = E(χ̂′, χ̂0)TγmL−1,mL
· · ·Tγm2,m3

Tγ1,m1
E(χ̂, χ̂|I1=σ) . (6.34)

To conclude17, we have constructed for any two basis elements χ̂, χ̂′ with fixed labels
d3, . . . , dn+1 the operators E(χ̂, χ̂′), namely by passing through the distinguished basis
element χ0, i.e.

E(χ̂, χ̂′) = E(χ̂0, χ̂
′)E(χ̂, χ̂0) . (6.35)

17The label σ is not admissible for dn+1 due to the Ising fusion rules, C(σ, Lg) = 0 for Ising categories.
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Changing Dm-labels: Changing the labels Dm-labels which previously were left unchanged,
is the final step to complete the irreducibility proof. For Dm to have two admissible labels,
i.e. such that both 1 and ε are admissible, we have either #(σ−labelled marked points) ≥ 4
or #(σ − labelled marked points) ≥ 2 and g ≥ 1. Therefore, consider the case where 1
and ε are both admissible for Dm. There exists some m− < m such that lm− = σ and let
m− be the maximal such index, which directly implies that the only admissible label for
Dm− is σ.

If there exists some m+ ≥ m such that lm+ = σ, let m+ be the minimal such index.
Then, consider the curve δm−,m+ that encircles the m−’th and m+’th marked point and all
the marked points in between. Then, using the result of Lemma 6.6

E(χ̂, χ̂|Dm⊗ε) = αTδm−,m+
E(χ̂) (6.36)

where α is a phase. To see how Lemma 6.6 is applied, note that the twist of the product of
the strands from m− to m+ will lead to a pure braid thereof multiplied by their respective
twist eigenvalues. The twist eigenvalues are absorbed in the phase α and the pure braid is
a product of the pure braid generators whose action we described in Lemma 6.6.

If however there does not exist such m+ ≥ m, then g ≥ 1 and therefore consider the
curve δm−1 in Figure 3.6. Then,

E(χ̂, χ̂|Dm⊗ε) = αTδm−1E(χ̂) (6.37)

where the phase α appears according to Lemma 6.7.

6.2.4 Property F of Ising Categories

In this section we prove that Ising categories have property F with respect to any extended
surface.

Theorem 6.10. Let C = C(ζ, ν) be any Ising-type modular fusion category. Then, C has
property F with respect to d-surfaces.

To prove that Ising categories have property F, we will give for any surface Σg,n with
simple point labels l1, . . . , ln a certain set X ≡ Xg,n(l1, . . . , ln) ⊂ Vg,n such that:

1. X is finite

2. X spans V (Σg,n)

3. X is PMod(Σg,n)-invariant

This is sufficient to show property F. The representation image of PMod(Σg,n) is contained
in the subgroup of transformations that preserve X by the invariance condition on X,
i.e.V (PMod(Σg,n)) ⊂ {T ∈ GL(Vg,n) | T (X) = X}. The latter group is isomorphic to
the group of bijections on X, Aut(X), which follows from the fact that X spans Vg,n.
Since X is a finite set and the group of bijections consists of |X|! elements, the image
V (PMod(Σg,n)) has finitely many elements.
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Remark 6.11. As already mentioned in Remark 6.2 property F with respect to the pure
mapping class group PMod is equivalent to property F with respect to the non-pure map-
ping class group ModC. In fact, consider a surface Σg,n carrying the same point labels
l1 = · · · = ln and a finite PModg,n-invariant set Xg,n. Pick a section s : Sn → Modg,n of
the short exact sequence (3.10) and define the set

Xs
g,n := {s(t).x |x ∈ Xg,n, t ∈ Sn} ⊂ Vg,n . (6.38)

This set is also finite as both Xg,n and Sn are finite. Let f ∈ Modg,n be a mapping class
and t ∈ Sn any permutation. Then, s(π(f) ◦ t−1) ◦ f ◦ s(t) ∈ ker(π) = PModg,n, i.e. there
exists g ∈ PModg,n such that f ◦ s(t) = s(π(f) ◦ t) ◦ g. Then, for some x ∈ Xg,n we have

f ◦ s(t).x = s(π(f) ◦ t) ◦ g.x = s(π(f) ◦ t).x′ (6.39)

for some x′ ∈ Xg,n which is provided by the PModg,n-invariance.
The same can be applied for distinct point labels, when Modg,n is the extension of

PModg,n by some subgroup of the permutation group Sn.
An analogous argument works for property F for the extended mapping class group

M̂odg,n. Taking the weighted mapping class (id, n) which is the identity mapping class
with weight n we have by definition of the TQFT

V (id, n) =

(
p+

p−

)−n/2
id, (6.40)

where p+/p− = θ2
σ is the anomaly factor of the Ising MFC which follows from a quick

calculation using (3.14). Since θσ has a finite order θ16
σ = 1, the set X can be extended by

multiplying all elements with powers of θσ such that it is M̂odg,n-invariant while remaining
finite.

Before proving Theorem 6.10 in its generality, we will start with the torus case and the
sphere with four marked points to give an idea of how the elements of Xg,n will look like.

Torus Case

The mapping class group of the torus PMod1,0 = Mod1,0 is isomorphic to the group SL(2,Z)
with generators T and S. The two generators consist of the Dehn twist Tα along the single
meridian α, see Figure 6.3, and the S-transformation.

The state space V1,0 has basis elements

ei =

i i

(6.41)

where i ∈ I = {1, ε, σ} and the action of the generators as described in section 6.2.2 is
given explicitly as:

Tα(ei) = θiei
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α

β

Figure 6.3: Dehn twists which generate the mapping class group of the torus

S(e1) =
1

2
(e1 + eε + λeσ)

S(eε) =
1

2
(e1 + eε − λeσ)

S(eσ) =
λ

2
(e1 − eε) (6.42)

Now, for the elements e± := e1± eε one can easily check using the above equations that

Tαe± = e∓, Tαλeσ = νζ−1λeσ (6.43)

and
S(e+) = e+, S(e−) = λeσ, S(λeσ) = e− (6.44)

where the last equality also holds trivially from the fact that S2 = id. Therefore, the set
X1,0 := {θmσ e±, θmσ λeσ |m ∈ Z16} is invariant under the generators Tα and S.

Before we conclude invariance under the whole mapping class group, we have to consider
that the representation as presented here is projective. The projective factors of the MCG
representation, not only for the torus, are integer powers of the anomaly factor

√
p+/p−.

In the case of Ising categories, these are integer powers of θσ. In the torus case, we notice
that X1,0 is already invariant under multiplication of such factors and is therefore PMod1,0.
Not to mention that it is obviously finite and spans the state space, it satisfies the desired
conditions.

Sphere with four framed points

We continue by considering the sphere with four framed points with labels l1, . . . , l4. This
is the smallest number of points when the state space V has dim(V ) > 1 when all framed
points are labelled by σ.

The pure mapping class group of the sphere is generated by Dehn twists Tτ1 and Tτ2
along the curves τ1 and τ2 shown in Figure 6.4 as well as the Dehn twists around each
framed point.
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τ1 τ2

Figure 6.4: Generators of the (pure) mapping class group of the sphere with four marked
points.

The basis elements of V0,4 are

ed3,d4 =

l1 l3 l4

d3

d4

l2

(6.45)

where d3, d4 run over admissible labels. In particular, d4 = l4 is the only admissible label
and thus we have only dependence on d3. As already mentioned, d3 has more than one
admissible choices only when l1 = · · · = l4 = σ.

The action on the basis is given explicitly as

Tτ1e
d3 = θd3e

d3 (6.46)

and
Tτ2e

d3 =
∑
d′3,q

θqF
(l1l2l3)l4
d3q

G
(l1l2l3)l4
qd′3

ed
′
3 . (6.47)

For the action of Tτ2 , we notice that if any of the point labels is distinct from σ, then ed3

is an eigenvector (as the state space is one-dimensional) and the eigenvalue is expressed
as an integer power of θσ. However, if l1 = · · · = l4 = σ then 1 and ε are both admissible
labels for d3 and we compute by using twists and F-matrices18

Tτ2e
εa =

1

2
(1 + (−1)a+1)e1 +

1

2
(1 + (−1)a)eε = eεa+1 . (6.48)

The above calculations imply that

X0,4(l1, l2, l3,4 ) = {θkσed3 | k ∈ Z16, d3} (6.49)

is PMod0,4-invariant. Notice however that it is not Mod0,4-invariant.

18Alternatively, notice that θ2σ(B(σσσ)σ)2 =

(
0 1
1 0

)
using (6.4).
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Closed Surfaces

We choose to prove property F with respect to closed surfaces as the proof can be then
easily be extended to the case with framed points. Recall the basis elements obtained from
colourings of the graph Γg,0 in (6.6). For any colouring χ ∈ col(Γ)◦ we consider an alternate
colouring χ̃, in which we change every Im labelled by 1 to the plus label + and every Im
labelled by ε to the minus label −. This gives a new colouring set c̃ol(Γ)◦ consisting of

these alternate colourings. Let χ̃ be a colouring in c̃ol(Γ)◦ with Im1 , . . . , ImL the maximal
subsequence of edges labelled by signs ± with the rest of I-edges labelled by σ. We define
the associated vector in Vg,0 by

[χ̃] =
∑

p1,...,pL=0,1

χ̃(Im1)p1 · · · χ̃(ImL)pLχ̂|Im1=εp1 ,...,ImL=εpL
(6.50)

where χ̂|Im1=εp1 ,...,ImL=εpL
is the basis element corresponding to the colouring in col(Γ)◦

obtained from χ̃ by changing the indicated ±-labelled I edges accordingly. This notation
is the higher genus analogue of e± for the torus case.

Proposition 6.12. The finite set

Xg,0 = {θkσλmχ̃ [χ̃] | k ∈ Z16, χ̃ ∈ c̃ol(Γ)◦},

where mχ̃ = |{k | χ̃(Ik) = σ}|, spans the state space and is Modg,0−invariant.

Proof. 1. The fact that this set spans the state space comes from the definition of the
±-notation. Let χ̂ be some basis element of the state space and let Im1 , . . . , ImL be
the maximal subsequence of I-edges such that χ(Im1) = εp1 , . . . , χ(ImL) = εpL (all
non-sigma labels). Then, by inverting (6.50):

χ̂ =
1

2L

∑
ν1,...,νL=±

νp1

1 · · · ν
pL
L [χ̃|Im1=ν1,...,ImL=νL ]

where χ̃|Im1=ν1,...,ImL=νL is the alternate colouring obtained from χ by changing non
σ-labels of I-edges into ±-labels.

2. We now prove Modg,0-invariance. It is invariant under Tαm ’s as on the basis, one has
from (6.10):

Tαmχ̂ = θχ(Im)χ̂

and from the observation in (6.43) it follows for an element of Xg,0:

Tαmθ
k
σλ

mχ̃ [χ̃] =

{
θk+1
σ λmχ̃ [χ̃] , χ̃(Im) = σ

θkσλ
mχ̃ [χ̃|Im=−χ̃(Im)] , χ̃(Im) = ±

Recall from (6.11), (6.12) and (6.14) how Sm acts on our fixed basis. Then, one can
easily check that the action on the set elements is given by

Smθ
k
σλ

mχ̃ [χ̃] =


θkσλ

mχ̃ [χ̃] χ̃(Im) = +
θkσλ

mχ̃+1[χ̃|Im=σ] χ̃(Im) = −
θkσλ

mχ̃−1[χ̃|Im=−] χ̃(Im) = σ, χ̃(Km) = 1

ζ2θkσλ
mχ̃ [χ̃|Im=σ] χ̃(Im) = σ, χ̃(Km) = ε
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which means that the set Xg,0 is Sm-invariant.

Recall from (6.18) and (6.19) how Tγm acts on the fixed basis. This results in

Tγmθ
k
σλ

mχ̃ [χ̃] =


θkσλ

mχ̃ [χ̃|Im=−χ̃(Im),Im+1=−χ̃(Im+1)] χ̃(Im), χ̃(Im+1) = ±
θk+1
σ λmχ̃ [χ̃] χ̃(Im) = ±, χ̃(Im+1) = σ

θkσλ
mχ̃ [χ̃|{Km,Km+1,Ak+1}⊗ε] χ̃(Im) = χ̃(Im+1) = σ

This concludes Tγm−invariance.

Invariance under the generators implies invariance under Modg,0, even though the
representation is only projective as discussed in section 6.2.4 for the torus case. This
is because the projective factors can be expressed as integer powers of θσ.

General Case

In this section, we will complete the proof of Proposition 6.10 by proving the following
proposition. Here, c̃ol(Γ)◦ is obtained again by col(Γ)◦ as previously by changing I-labels
to allow ±-labels.

Proposition 6.13. The finite set

Xg,n = {θkσλmχ̃ [χ̃] | k ∈ Z16, χ̃ ∈ c̃ol(Γ)◦},

where mχ̃ = |{k | χ̃(Ik) = σ}|, spans the state space and is PModg,n−invariant.

Proof. The invariance under the generators Tαk , Sk and Tγk follows in exactly the same
way as in Proposition 6.12 as the action of these generators does not depend on or affect
the labels of L1, . . . , Ln, D3, . . . , Dn+1. It only remains to find out what happens when we
act with the Tδ generators.

To show invariance under Tδk ’s, it is sufficient to prove that the set is invariant under
pure braids in l1, . . . , ln, i1 strands as discussed in section 6.2.2. The proof follows from
Lemmata 6.6 and 6.7.
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7 Irreducible mapping class group representations and
absence of surface defects

Theories with irreducible representations on surfaces without marked points have an in-
teresting feature which is an absence of surface defects. This is implied by the following
Theorem we prove in [RR1]:

Theorem 7.1. Let C be a MFC such that the projective mapping class group represen-
tations V Cg are irreducible for all g ≥ 0. Then C has a unique Morita class of simple
non-degenerate algebras, namely the Morita class of the tensor unit 1.

The proof is contained in Sections 7.2 and 7.3.

In [AF1, Thm. 1] the following closely related statement is shown:

Let A ∈ C be a simple non-degenerate algebra such that Z(A) is not isomorphic
to Z(1) as an object in C � Crev. Then all projective mapping class group
representations V Cg , g ≥ 1 are reducible.

In contrapositive form this reads: Suppose there is a g ≥ 1 such that V Cg is irreducible.
Then for every simple non-degenerate algebra A one has that Z(A) is isomorphic to Z(1)
as an object in C � Crev.

From this point of view, on the one hand, Theorem 7.1 needs the stronger assumption
that V Cg is irreducible for all g ≥ 0 (however, see Remark 7.2 (1) below). On the other hand,
under these assumptions it gives a stronger result, namely together with Theorem 2.16 it
follows that Z(A) ∼= Z(1) as algebras in C � Crev, and not just as objects. This confirms
an expectation formulated in [AF1, Rem. 1], at least under our stronger assumptions. The
method to prove Theorem 7.1 is different from that used in [AF1], and thus may be of
independent interest.

Note that it is not at all obvious that there are examples where Z(A) ∼= Z(1) as objects
but not as algebras. Such examples were first provided in [Da2].19 In fact, that paper
provides examples of Lagrangian algebras, but each such algebra can be realised as a full
centre by [KR2, Thm. 3.22] (see also [DMNO, Prop. 4.8] for a more general statement).

Remark 7.2.

1. In the proof of Theorem 7.1 we actually need irreducibility of the representations V Cg
only for 1 ≤ g ≤ 3N + 2, where N is a bound introduced in Section 7.1 in terms of
the adjoint subring. The place in the proof where this maximal g occurs is pointed
out in Remark 7.20. The constant N in turn is trivially bounded by the number of
isomorphism classes of simple objects, N ≤ |I|. In other words, one can relax the
hypothesis of Theorem 7.1 to assume irreducibility only for V Cg with 1 ≤ g ≤ 3N + 2.

19In these examples it is not required that all simple non-degenerate algebras have Z(A) ∼= Z(1) as objects.
Thus these examples do not yet imply that the conclusion of Theorem 7.1 is indeed stronger than that
of [AF1, Thm. 1].
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2. The condition of irreducibility on surfaces with marked points is not necessary.
Nonetheless, let us for the moment consider the surface Σ0,3, i.e. the sphere with
three punctures, and assume that the punctures are labelled by simple objects, say
i, j, k ∈ I. The (framed, pure) mapping class group Mod(Σ0,3) acts on V C(Σ0,3) by
rotation of the framing at the marked points, and so by a scalar given by the corre-
sponding twist eigenvalue. If V C(Σ0,3) is non-zero, for Mod(Σ0,3) to act irreducibly
we must hence have dimV C(Σ0,3) = 1.

On the other hand, V C(Σ0,3) = C(1, i⊗ j ⊗ k). Thus, requiring irreducibility of the
mapping class group action also on surfaces with marked points implies in particular
that the fusion coefficients of C must satisfy N k

ij ∈ {0, 1}. Considering only surfaces
without punctures, as we do, does not a priori impose this requirement, but we do
not know any example where the V Cg , g ≥ 0 are irreducible but N k

ij > 1 can occur.

3. Due to the defect analysis in Section 4 one can interpret the statement of the Theorem
as an absence of surface defects, in the sense that C (or rather its RT TQFT) has
no non-trivial surface defects. More precisely any defect is an invertible Euler defect
(see Remark 4.4).

Examples which satisfy the criterion of Theorem 7.1 have been reviewed in Section 6.1.
In all these examples it was already known that there is a unique Morita class of simple
non-degererate algebras.

Theorem 7.1 can be reformulated using module categories with module trace from Sec-
tion 2.3. From [Sch, Thm. 6.6, Prop. 6.8] we get the following reformulation of Theorem 7.1:

Theorem 7.1 (v2). Let C be a MFC such that the projective mapping class group rep-
resentations V Cg are irreducible for all g ≥ 0. Then there is up to equivalence a unique
semisimple indecomposable C-module category with module trace, namely C itself.

As an application of this point of view, let us explain how under certain conditions the
non-degeneracy of a simple algebra is implied. The MFC C is called pseudo-unitary if k = C
and if the quantum dimensions of all simple objects are positive. By [Sch, Prop. 5.8], for
pseudo-unitary C, a semisimple C-module category can be equipped with a module trace.
Hence in this situation we can drop the existence of a module trace from Theorem 7.1 (v2).
We obtain the following corollary to Theorem 7.1 (see also [Sch, Cor. 6.11]):

Corollary 7.3. Suppose that in addition to the hypotheses in Theorem 7.1, C is pseudo-
unitary. Then all simple algebras in C are Morita-equivalent to the tensor unit.

Before going into the details, let us briefly sketch the proof of Theorem 7.1. By The-
orem 2.16 it suffices to show that for any simple non-degenerate algebra A we have
Z(A) ∼= Z(1) as algebras. To obtain this isomorphism we proceed in several steps:

1. In Section 7.1 we will review the notion of the adjoint subring and universal grading
group as well as the bound N mentioned in Remark 7.2.
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2. In Section 7.2, we will use irreducibility on the torus and obtain multiplication con-
stants (λkij)

α
β relating the structure morphisms of Z(A) to those of Z(1). Furthermore,

we use irreducibility for genus 2 to obtain constants λkij independent of the multi-
plicity labels α, β. We then use irreducibility for g > 2 to obtain constraints on the
λkij.

3. In Section 7.3 we construct a sequence of algebra isomorphisms using the results of
the previous step and the universal grading group to arrive to an algebra isomorphism
Z(A) ∼= Z(1).

7.1 The adjoint subring and the universal grading group

We briefly recall from [GeN] the notion of the universal grading group and of the adjoint
subring (see also [EGNO, Ch. 3]).

Let F be a fusion category and I a set of representatives of isomorphism classes of simple
objects in F . The duality on F defines an involution ( ) : I → I by requiring that i ∼= i∗.
Then, the Grothendieck ring Gr(F) ≡ R is a unital based ring with basis {bi}i∈I . The ring
R is transitive in the sense that for any i, j ∈ I there exists k ∈ I such that N j

ik 6= 0.

Definition 7.4. The adjoint subring Rad ⊂ R is generated by all basis elements contained
in bibi for some i ∈ I. We denote by Iad ⊂ I the index set of the basis {bi}i∈Iad of Rad.

It is shown in [GeN, Thm. 3.5] that the ring R decomposes into a direct sum of indecom-
posable based Rad-bimodules R =

⊕
g∈GRg, and that the product of R induces a group

structure on G with Re = Rad. In particular, R is a faithful G-graded ring. The set Ig ⊂ I
will denote the index set of the basis {bi}i∈Ig of Rg. Transitivity of R now implies that Rad

acts transitively on Rg for each g ∈ G: for all x, y ∈ Ig there is i ∈ Iad such that N y
xi 6= 0.

Definition 7.5. The group G is called the universal grading group of R.

We define a filtration on Rad as follows. For i ∈ Iad let n(i) be the minimal integer such
that bi is contained in bm1bm1 . . . bmn(i)

bmn(i)
for some m1, . . . ,mn(i) ∈ I. Such labels exist

by the definition of the adjoint subring. For the unit we set n(1) = 0. Setting

R
(n)
ad = 〈 bi ∈ Rad | n(i) ≤ n 〉 . (7.1)

we get the filtration
Z b1 = R

(0)
ad ⊂ R

(1)
ad ⊂ R

(2)
ad ⊂ · · · (7.2)

of Rad. Let N denote the minimal number such that R
(N)
ad = Rad. Since the filtration is

strictly increasing until degree N , and since Iad ⊂ I, we trivially have that N ≤ |I|.

7.2 Mapping class group invariants and structure constants

We give an explicit construction to mapping class group invariants closely related to RCFT
partition functions on surfaces without marked points and exploit irreducibility to relate
the algebraic structure of the full centre.
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Let C be an MFC and B be a symmetric Frobenius algebra in C. For an integer n ≥ 2
we write ∆(n) : B → B⊗n for the iterated coproduct, so that ∆ = ∆(2). Let L denote the
object defined in (2.15), but now in C � Crev. For g ≥ 1 define the elements

C(B)g ∈ V C�C
rev

(Σg) = C � Crev(1× 1,L⊗g) (7.3)

by setting

C(B)g :=
⊕

i1,j1,...,ig ,jg

∑
α1,...,αg

∆(2g)

α1 α∗1 αg α∗g

Φ Φ

i1 × j1 i∗1 × j∗1 ig × jg i∗g × j∗g

η

. (7.4)

For g = 0 we have Σg = S2 and we set

C(B)0 := ε ◦ η ∈ V C�C
rev

(S2) = C � Crev(1× 1,1× 1) = k id1×1 . (7.5)

The next proposition follows from [FRS, KR2, KLR], but it can also be shown directly
and we give a short proof here for the convenience of the reader.

Proposition 7.6. Let B ∈ C� Crev be a non-degenerate modular invariant algebra. Then
for each g ≥ 0 the vector C(B)g ∈ V C�C

rev
(Σg) is Modg-invariant.

Proof. For g = 0 there is nothing to show. Let thus g ≥ 1. We need to check that the
generators in (3.24) (for the MFC C � Crev) leave C(B)g invariant.

Tαk : Invariance is immediate from the fact that B has a trivial twist, i.e. θB = idB.

Tγk : Choose the iterated coproduct ∆(2g) such that the 2k’th and (2k+ 1)’th strand form
the output of one coproduct, i.e. write

∆(2g) =
(

idB⊗(2k−1) ⊗∆⊗ idB⊗(2g−2k−1)

)
◦∆(2g−1) .

Invariance under Tγk now boils down to the observation that θB⊗B ◦∆ = ∆◦θB = ∆.

Sk: Choose the iterated coproduct ∆(2g) such that the (2k− 1)’th and 2k’th strand form
the output of one coproduct. Applying Sk to C(B)g only affects the (2k− 1)’th and
2k’th strand, and there we obtain:

dikdjk
D2

∑
m,n∈I

∑
αk

αk α∗k

Φ

B

ik × jk i∗k × j∗k
m× n

(1)
=

dikdjk
D2

B

ik × jk i∗k × j∗k

83



(2)
=

∑
αk

αk

αk

B

ik × jk i∗k × j∗k

(3)
=

∑
αk

αk α∗k

Φ

B

ik × jk i∗k × j∗k

For the first expression in this computation, recall that we have to evaluate the
formula for Sk in (3.24) for C � Crev. We take j  ik × jk and ik  m × n in
(3.24), so that the prefactor there becomes dikdjk/D

2. In step (1) we carry out
the sum over m,n and αk which gives the identity on B, and we use that B is ∆-
separable and symmetric to remove Φ. Step (2) is precisely S-invariance of B as
in Definition 2.10. Step (3) is easier to see backwards, and again uses that B is
∆-separable and symmetric.

This shows that Sk ◦ C(B)g = C(B)g.

Remark 7.7.

1. The construction of mapping class group invariants as in (7.4) first appeared in the
study of consistent systems of correlators for rational 2d conformal field theories
via 3d topological quantum field theories [FRS, FjFRS1]. Recall from Section 5.1
that V C�C

rev
(Σ) describes the space of holomorphic times antiholomorphic conformal

blocks, and a vector Cor(Σ) ∈ V C�C
rev

(Σ) describes a bulk correlation function on
Σ. To be consistent, the collection {Cor(Σ)} has to satisfy modular invariance and
factorisation conditions. Here, we only make use of the former.

2. The categorical form of the modular invariance condition for algebras first appeared
in [Kon, Sec. 6.1] in the context of vertex operator algebras and has been investigated
in detail in [KR2]. The notion of a Cardy algebra from [Kon] was used in [KLR] to
classify solutions to the open/closed factorisation and modular invariance conditions.
In this context, the algebra B in Proposition 7.6 corresponds to the closed part of a
Cardy algebra, and (7.4) is the correlator for a closed genus-g surface.

3. The classification of solutions to the consistency conditions in [KLR] relied on semisim-
plicty of C and C�Crev. A more general approach applicable to non-semisimple mod-
ular tensor categories has been developed in [FSSt, FSc2]. See in particular [FSSt,
Eqn. (5.3)] for the generalisation of (7.4) and [FSc2, Def. 4.9] for the definition of
modular invariant algebras in this non-semisimple setting. These ingredients will be
important when trying to generalise the present results to non-semisimple modular
tensor categories.

Let A ∈ C be a simple non-degenerate algebra. By Theorem 2.14 and Lemma 2.7 the
full centre Z(A) is a haploid normalised-special commutative symmetric modular invariant
Frobenius algebra.
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Lemma 7.8. The full centre Z(A) has the same underlying object as Z(1), i.e.Z(A) ∼=⊕
i∈I i

∗ × i as objects in C � Crev.

Proof. By [KR2, Eq. (3.7)], the matrix Z(A)ij = dim C � Crev(i× j, Z(A)) commutes with
the S-generator, and it commutes with the T -generator since Z(A) has trivial twist. By
irreducibility of V Cg=1, the space of invariants in V C�C

rev

g=1 is one-dimensional (Lemma 5.5).
Hence there exists a constant λ ∈ k such that

Z(A)ij = λZ(1)ij = λ δij . (7.6)

By haploidity, Z(A)11 = 1 and therefore λ = 1. Altogether, dim C�Crev(i× j, Z(A)) = δi,j
i.e. the underlying object of Z(A) is

⊕
i∈I i

∗ × i.

Denote by ei : i∗ × i → Z(A) and ri : Z(A) → i∗ × i the embedding and projection of
i∗ × i as a subobject of Z(A), i.e. ri ◦ ei = id. Given the underlying object of Z(A) as in
Lemma 7.8, we now make a general ansatz for the Frobenius algebra structure on Z(A).
Namely, in terms of constants η0, ε0, (λkij)

β
α, (λijk )αβ ∈ k we set

ηZ(A) = η0 e1

εZ(A) = ε0D
2 r1

µZ(A) =
⊕
i,j,k

N k
ij∑

α,β=1

(λkij)
β
α

j∗i∗

k∗

i j

k

α β⊗k

∆Z(A) =
⊕
i,j,k

N k
ij∑

α,β=1

didj
dkD2

(λijk )αβ

j∗i∗

k∗

i j

k

α β⊗k
. (7.7)

On the right hand side of µZ(A) we did not spell out the embedding and projection mor-
phisms rk ◦ (· · · ) ◦ (ei ⊗ ej), and dito for ∆Z(A).

Lemma 7.9. The elements C(Z(A))g from (7.4) are non-zero for every g ≥ 0.

Proof. The element C(Z(A))0 is non-zero since εZ(A) ◦ ηZ(A) = dimC�Crev(Z(A)) = D2,
where the first equality follows from the symmetric normalised-special Frobenius algebra
structure. Now, let g ≥ 1 and consider in (7.4) the summand of C(Z(A))g where im =
jm = 1 for m = 1, . . . , g. Since 1 × 1 appears in Z(A) with multiplicity one, there is no
sum over multiplicities. Up to factors of ε0D

2 6= 0, the result is the same as composing
all out-going Z(A)-factors with the counit εZ(A). The overall expression then reduces to
εZ(A) ◦ ηZ(A) = D2.

As in [FRS, Sec. 2.2], for every i ∈ I fix an isomorphism πi : i → i
∗
, which exists by

definition of the involution i 7→ i. We use these isomorphisms to express the fusion basis
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in C(i ⊗ i,1) and its dual in terms of dualities in C. Namely, there exist φi, φ̃i ∈ k× such
that

i i

= φi

i i

π−1
i ,

i i

= φ̃i

i i

πi
(7.8)

as the respective morphism spaces are one-dimensional. By the normalisation chosen for
fusion bases, one obtains

φi φ̃i =
1

di
. (7.9)

In the following lemma we will give the isomorphism Φ for Z(A) in a basis, which will
later be used to express the modular invariants C(Z(A))g.

Lemma 7.10. For any i ∈ I, we have

e∗i ◦ ΦZ(A) ◦ ei =
D2θi
di

ε0 λ
1

ii
(π−1

i
)∗ ⊗k πi : i

∗ × i −→ i∗∗ × i∗ .

Proof. By using (7.7) in the expression for Φ on the left hand side of (2.47), one obtains:

e∗i ◦ ΦZ(A) ◦ ei = D2ε0λ
1

ii

i∗∗

i

i
∗

⊗k

i∗

i

=
D2 θi
di

ε0 λ
1

ii
(π−1

i
)∗ ⊗k πi ,

where the horizontal line denotes the identity idi∗ . The last equality follows from (7.8) and
(7.9).

The allowed structure constants are non-zero, diagonal and independent of the multi-
plicity index:

Lemma 7.11. For i, j, k ∈ I with N k
ij 6= 0 we have (λkij)

β
α = δα,β λ

k
ij and (λijk )βα = δα,β λ

ij
k

with λkij, λ
ij
k 6= 0.

Proof. Consider the modular invariant vector C(Z(A))g=2 as defined in (7.4), which is
given as20

C(Z(A))2 =
⊕
i,k

i∗ × i i∗∗ × i∗ k∗ × k k∗∗ × k∗

Φ Φ

Z(A)

=
⊕
i,k

i∗ × i i∗∗ × i∗ k∗ × k k∗∗ × k∗

Φ

(7.10)

20To be precise, the element C(Z(A))2 is defined in the isomorphic morphism space
⊕

i,k C � Crev(1 ×
1, (i× i)⊗ (i

∗ × i∗)⊗ (k× k)⊗ (k
∗ × k∗)), but we find it convenient to use the form given here, rather

than to include the isomorphisms π−1
i
× idi and π∗

i
× idi, etc.
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where the horizontal lines denote the embeddings and projections, and where we used that
Z(A) is symmetric Frobenius to remove one of the Φ’s. Using Lemma 7.10, we can write
C(Z(A))2 explicitly:

⊕
i,k

∑
j

∑
α,β,γ,δ

diθi
D2

ε0 λ
1

ii
(λikj )αβ (λijk )γδ

α

γ

i∗ i∗∗

(π−1
i

)∗ ak

k∗ k∗∗

j

⊗k

i i∗

πi

k k∗

β

δ

j

where ak : k → k∗∗ denotes the pivotal structure isomorphism.
Since C(Z(A))2 and C(Z(1))2 are both modular invariant vectors and the space of in-

variants is one-dimensional, and since C(Z(A))2 and C(Z(1))2 are non-zero by Lemma 7.9
there exists λ2 ∈ k× such that

C(Z(A))2 = λ2C(Z(1))2 . (7.11)

Let i, j, k ∈ I such that N k
ij 6= 0, then by comparing both sides of (7.11) and using

Example 2.15 we obtain

ε0 λ
1

ii
(λikj )αβ (λijk )γδ = δα,β δγ,δ λ2 . (7.12)

For α = β and γ = δ we get

ε0 λ
1

ii
(λikj )αα (λijk )γγ = λ2 6= 0 . (7.13)

This shows that (λikj )αα and (λijk )γγ are non-zero and independent of α, γ. I.e. for N k
ij 6= 0

there exists λijk ∈ k× such that (λijk )γγ = λijk for γ = 1, . . . , N k
ij . Taking α = β but γ 6= δ in

(7.12) gives the desired form for the comultiplication structure constants

(λijk )γδ = δγ,δ λ
ij
k . (7.14)

To get also the expression for the structure constants of the product as claimed in the
lemma, insert (7.7) into µ = ((ε ◦ µ)⊗ id) ◦ (id⊗∆). This gives

(λkij)
β
α = δα,β ε0 λ

1

ii
λikj = δα,β λ

k
ij , (7.15)

with λkij = ε0 λ
1

ii
λikj 6= 0.

Lemma 7.12. The structure constants obey the following properties:

1. (Unitality and counitality) λi
1i = λii1 = η−1

0 and λ1ii = λi1i = ε−1
0

2. (Commutativity) λkij = λkji

3. (Index lowering and raising) λkij = ε0 λ
1

ii
λikj and λijk = η0 λ

ii
1
λj
ik
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Proof. Part 1 follows directly by evaluating the unitality and the counitality conditions for
the morphisms in (7.7).

For part 2, let i, j, k ∈ I with N k
ij 6= 0. From Lemma 7.11 we get

rk ◦ µZ(A) ◦ (ei ⊗ ej) = λkij rk ◦ µZ(1) ◦ (ei ⊗ ej) . (7.16)

Composing both sides of this equation with the braiding cj,i : j ⊗ i → i ⊗ j and using
naturality, we get

rk ◦ µZ(A) ◦ cZ(A),Z(A) ◦ (ej ⊗ ei) = λkij rk ◦ µZ(1) ◦ cZ(1),Z(1) ◦ (ej ⊗ ei)
= λkij rk ◦ µZ(1) ◦ (ej ⊗ ei) . (7.17)

In the last step we used the commutativity of Z(1). Making use of commutativity of Z(A),
i.e.µZ(A) ◦ cZ(A),Z(A) = µZ(A), finally implies part 2.

In part 3, the first equality was already given at the end of the previous proof, and the
second follows analogously by inserting (7.7) into ∆ = (id⊗µ) ◦ ((∆ ◦ η)⊗ id).

7.3 Sequence of isomorphisms

Given an object automorphism f ∈ Aut(Z(A)), one can give an isomorphic (haploid
commutative symmetric normalised-special modular invariant) Frobenius algebra Z̃ ≡
f∗(Z(A)). Its underlying object is again Z(A) but its structure morphisms are

µ̃ = f ◦ µZ(A) ◦ (f−1 ⊗ f−1) , η̃ = f ◦ ηZ(A) ,

∆̃ = (f ⊗ f) ◦∆Z(A) ◦ f−1 , ε̃ = εZ(A) ◦ f−1 . (7.18)

This is the unique Frobenius algebra structure such that f : Z(A)→ Z̃ is an isomorphism
of Frobenius algebras.

The isomorphism f is determined by invertible scalars {fi} as the underlying object of
Z(A) is

⊕
i∈I i

∗ × i:
f =

∑
i∈I

fi ei ◦ ri . (7.19)

The new structure constants are then given by

λ̃kij =
fk
fifj

λkij , λ̃ijk =
fifj
fk

λijk , η̃0 = f1 η0 , ε̃0 = f−1
1
ε0 . (7.20)

The new constants defined as above still obey the equations of Lemmata 7.12 and 7.14.
We will find a sequence of such Frobenius algebra isomorphisms that take Z(A) into

Z(1). In other words, we need to find (a sequence of) transformations fi such that η̃0 =
ε̃0 = 1 and λ̃kij = λ̃ijk = 1 whenever N k

ij 6= 0.
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First Step

Our first step will be to normalise the constants λii1, λ
i
1i and λ1

ii
. We do this by fixing

fi such that fifi = λ1
11
λ1
ii

(for instance pick any square root fi = fi =
√
λ1
11
λ1
ii
) and fix

f1 = λ1
11

. For example,

λ̃1
ii

=
f1
fi fi

λ1
ii

=
λ1
11

λ1
11
λ1
ii

λ1
ii

= 1 . (7.21)

Assuming we applied this isomorphism, we may now start with constants such that λii1 =
λi
1i = 1 = λ1

ii
for all i ∈ I. By Lemma 7.12, this implies η0 = ε0 = 1, as well as

λijk = λj
ik
. (7.22)

i.e. we can raise or lower indices by conjugating the respective label. To avoid confusion,
we will denote this algebra by Z, which is isomorphic to Z(A) as a Frobenius algebra.

The above conditions on λkij, λ
ij
k , η0, ε0 are preserved by isomorphisms f that satisfy

f1 = 1 and fifi = 1 for all i ∈ I . (7.23)

Second Step

To exploit the irreducibility of the V Cg for higher genus, it is convenient to introduce the
notion of an I-fusion tree.

Definition 7.13. � A 3-valent tree is a tree graph, where each vertex is 3-valent with
one incoming edge and two outgoing edges.

� An I-fusion tree is a 3-valent tree such that each edge is labelled by an element in
I, and such that at each vertex v the following condition is satisfied: if the incoming
edge at v is labelled k and the two outgoing edges at v are labelled i, j, then N k

ij 6= 0.

The outgoing edges of an I-fusion tree are ordered (we will label them 1, . . . ,m).

� Let i, j1, . . . , jm ∈ I. An (i; j1, . . . , jm)-fusion tree is an I-fusion tree such that the
incoming edge is labelled by i and the outgoing edges are labelled by j1, . . . , jm.

We stress that an I-fusion tree Ω is not a string diagram in C. Namely, Ω only records
labels in I and does not include a specific morphism at each vertex.

Let Z be a Frobenius algebra isomorphic to Z(A) as a Frobenius algebra, and with
structure constants λijk , etc., normalised as in the first step. To a vertex v of an I-fusion
tree with incoming label k and outgoing labels i, j we assign the number λ(v) := λijk . To
the whole I-fusion tree we assign the product of the structure constants at each vertex,

λ : {I-fusion trees} −→ k
× , Ω 7−→ λ(Ω) =

∏
v vertex

λ(v) . (7.24)
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Lemma 7.14. Let i1, . . . , ig ∈ I and Ω be a (1; i1, i1, . . . , ig, ig)-fusion tree. Then

λ(Ω) = 1 , (7.25)

independent of the choice of i1, . . . , ig and Ω.

Proof. By irreducibility of the V Cg and by Lemma 7.9 there is a λg ∈ k× such that

C(Z)g = λg C(Z(1))g . (7.26)

Fix a 3-valent tree Γ with 2g leaves. By decorating each vertex with the coproduct, each
such tree gives a realisation of the iterated coproduct ∆(2g) : Z → Z⊗2g. Using labellings
of Γ by I, we get a direct sum decomposition

∆
(2g)
Z ◦ ηZ =

⊕
Ω

λ(Ω)DΩ . (7.27)

Here, the direct sum runs over I-fusion trees Ω with underlying unlabelled tree Γ, where
the unique incoming edge is labelled by 1. The factor λ(Ω) is the product of structure

constants as defined in (7.24). DΩ is the summand of ∆
(2g)
Z ◦ηZ where for an edge labelled k

the corresponding tensor factor Z is projected to k∗×k. The following example illustrates
the procedure for g = 2:

Γ = Ω =

i1 i1 i2 i2

k k DΩ =

i∗1 × i1 i
∗
1 × i1 i∗2 × i2 i

∗
2 × i2

k∗ × k k
∗ × k

1× 1
Z(1)

Z(1) Z(1)

(7.28)
Here, the coproduct is that of Z(1) as given in (2.57), for which all structure constants are
1.

The important point to realise is that the DΩ are linearly independent for the different
choices of Ω (but for fixed Γ). This can be seen for example by composing with the
corresponding dual graph with in- and outgoing edges exchanged, which provides a non-
degenerate pairing.

We can thus evaluate (7.26) summand by summand. For Z we get a factor λ(Ω) as
in (7.24), while for Z(1) the structure constants are all 1. Altogether we obtain, for all
I-fusion trees Ω with underlying 3-valent tree Γ,

λ(Ω)DΩ = λgDΩ . (7.29)

Finally, to compute λg, take the I-fusion tree Ω where all edges are labelled by 1. Since
λ11
1

= 1, this results in λ(Ω) = 1.
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The next lemma is the first place where the universal grading group becomes important.
Namely, the elements in the neutral component Rad are precisely those that “can be created
by handles” (cf. Figure 3.4). This property can be used to set the corresponding structure
constants to 1:

Lemma 7.15. There exist fi satisfying (7.23) such that λ̃ijk = 1 for all i, j, k ∈ Iad with
N k
ij 6= 0.

Proof. Recall the filtration of the adjoint subring given in (7.2). For bi ∈ R(n)
ad , i 6= 1 there

are m1, . . . ,mn such that bi is contained bm1bm1 . . . bmnbmn . In other words, there exists a
(i;m1,m1, . . . ,mn,mn)-fusion tree

Ωi =

m1 m1 m2 m2 mn mn

k1 k2 kn

i

d3

dn

· · ·

. . .

. (7.30)

We set fi = λ(Ωi). To check that the condition fifi = 1 in (7.23) is satisfied, apply
Lemma 7.14 to the fusion tree

Ωi Ωi

. . . . . .

i i

. (7.31)

For i, j, k ∈ Iad and their associated fusion trees Ωi,Ωj and Ωk, consider the graph

Ωk Ωi Ωj

. . . . . . . . .

k k

i j
. (7.32)

Lemma 7.14 gives the condition

λ(Ωk)λ(Ωi)λ(Ωj)λ
ij
k = 1 . (7.33)

Substituting fi = λ(Ωi) and recalling that fkfk = 1 finally gives λijk = fk
fifj

, i.e. λ̃ijk = 1.
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We will need to know how the λ(Ωi) change in the new normalisation given by the fi.
We have

λ̃(Ωi) =
fm1fm1 · · · fmnfmn

fi
λ(Ωi) = 1 , (7.34)

since fmfm = 1 and fi = λ(Ωi).
Note that in the proof of Lemma 7.15 we have only used the irreducibility of V Cg up to

g = 3N , where N was defined in Section 7.1 to be the maximal degree in the filtration of
Rad. Below we will need to go up to g = 3N + 2, see Remark 7.20.

Let i, j, k ∈ I be such that N k
ij 6= 0. At this point we have achieved λijk = 1 whenever

at least one of i, j, k is given by 1 (Step 1), and λijk = 1 for i, j, k ∈ Iad (Step 2). We
are still free to choose all fi with i /∈ Iad, subject to (7.23). Recall that in the proof of
Lemma 7.15 we fixed a fusion graph Ωi for each i ∈ Iad, and that by (7.34) we have in the
new normalisation:

λ(Ωi) = 1 for i ∈ Iad . (7.35)

Third Step

The following lemma is an extension of Lemma 7.14 to allow any reordering of the outgoing
labels.

Lemma 7.16. Let i1, . . . , ig ∈ I, σ ∈ S2g and Ω be a (1; (i1, i1 . . . , ig, ig).σ)-fusion tree
where the permutation σ acts by changing the order of the 2g outgoing labels accordingly.
Then λ(Ω) = 1.

Proof. Let β2g be any 2g-braid, whose underlying permutation is σ ∈ S2g. Since Z and
Z(1) are cocommutative, we have β2g ◦∆(2g) = ∆(2g) for both of them.

We proceed as in the proof of Lemma 7.14 by expressing ∆Z ◦ ηZ as a direct sum where
such fusion trees appear. Using cocommutativity of Z and Z(1), we get a direct sum
decomposition

∆
(2g)
Z ◦ ηZ = β2g ◦∆

(2g)
Z ◦ ηZ =

⊕
Ω

λ(Ω) β2g ◦DΩ , ∆
(2g)
Z(1) ◦ ηZ(1) =

⊕
Ω

β2g ◦DΩ . (7.36)

where the direct sum is over I-fusion trees Ω. Next, insert this into the definition of C(Z)g
and use C(Z)g = C(Z(1)) as in the proof of Lemma 7.14. Comparing linearly independent
terms gives

λ(Ω) = 1 (7.37)

for any (1; (i1, i1 . . . , ig, ig).σ)-fusion tree Ω.

Using Lemma 7.16, one can deduce from the fusion tree

Ω =

i j i j

k k
(7.38)

the equality

λij
k

= (λijk )−1 . (7.39)
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Lemma 7.17. Let k, l ∈ Ig and i, j ∈ Iad such that N l
ik, N

l
jk 6= 0. Then, λikl = λjkl .

Proof. Recall the fusion trees Ωi we picked for each i ∈ Iad in Step 2. Consider the fusion
tree

Ωi Ωj

. . . . . .

i jk k

l l

(7.40)

By Lemma 7.14 this gives the identity λ(Ωi)λ(Ωj)λ
ik
l λ

kj

l
= 1. Together with (7.35) and

(7.39), we conclude λikl = λjkl .

Lemma 7.18. There exist fi satisfying (7.23) for all i ∈ I and fi = 1 for i ∈ Iad, such
that λ̃ikk′ = 1 if i ∈ Iad and N k′

ik 6= 0.

Proof. For each g ∈ G, fix an element kg ∈ Ig, such that ke = 1. By transitivity there

exists some ig ∈ Iad such that N
kg−1

igkg
6= 0. Then, find and fix fkg for every g such that

fkgfkg−1 = λ
igkg
kg−1

(7.41)

and such that f1 = 1. For instance fkg = fkg−1 =
(
λ
igkg
kg−1

) 1
2 is a consistent choice, since

λ
igkg−1

kg
= λ

igkg
kg−1

by raising and lowering indices (Lemma 7.12). Note that this choice satisfies

f1 = 1. Let k ∈ Ig and i ∈ Iad be such that Nk
ikg
6= 0 and define

fk = λ
ikg
k fkg . (7.42)

This is independent of the choice of i by Lemma 7.17 and is consistent with k = kg as

λ
ikg
kg

= 1 (choose i = 1).

Let k, k′ ∈ Ig and i, i′, j ∈ Iad such that N
kg
i′k′ , N

k′

jk , N
k
ikg
6= 0. The fusion tree

Ωi′ Ωj Ωi

i′ j i

. . . . . . . . .kg

kg

k′

k

kg

(7.43)
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implies
λ
ikg
k λjkk′ λ

i′k′

kg = 1 . (7.44)

From (7.39) and Lemma 7.12 we get λi
′k′

kg
= (λ

i
′
kg

k′ )−1. Inserting this in (7.44) and using

(7.42) gives λjkk′ =
fk′
fk

. Furthermore,

fkfk
(7.42)
= λ

ikg
k λ

jkg−1

k
fkgfkg−1

(7.41)
= λ

ikg
k λ

jkg−1

k
λ
igkg
kg−1

= λ
ikg
k λjk

kg−1
λ
igkg−1

kg

(∗)
= 1 , (7.45)

where (∗) follows from setting k′ = kg−1 in (7.44).

Therefore, in the new normalisation we have λikk′ = 1 if N k′

ik 6= 0 and i ∈ Iad.

Lemma 7.19. The structure constants depend only on the universal grading group, i.e. for
i, i′ ∈ Ig, j, j′ ∈ Ih, k, k′ ∈ Igh with N k

ij , N
k′

i′j′ 6= 0 we have λijk = λi
′j′

k′ .

Proof. By transitivity of R, there exist i0, j0, k0 ∈ Iad such that N i′
i0i
, N j′

jj0
and N k

k′k0
are

non-zero. Consider the fusion tree

Ωi0 Ωj0 Ωk0

. . . . . . . . .i j

k

j′i′

k′

k

i j

(7.46)

which implies λi
′j′

k′ λ
ij

k
= 1 and so by (7.38) also λi

′j′

k′ = λijk .

Remark 7.20. The proof of Lemma 7.19 above is the place where the maximal genus g
occurs for which we use irreducibility of V Cg , namely g = 3N + 2.

The conditions on λijk achieved up to this point are preserved by renormalisation con-
stants fi which satisfy (7.23) as well as

fi = 1 for all i ∈ Iad , fi = fj whenever i, j ∈ Ig for some g . (7.47)

Final Step

To conclude the proof, we will use group cohomology for the universal grading group G.
Namely, we define a 2-cochain ω : G × G → k

× as follows. Given g, h ∈ G, pick bi ∈ Rg,
bj ∈ Rh as well as a bk ∈ Rgh that appears in the product bibj. Then N k

ij 6= 0 and we set

ω(g, h) := λijk . (7.48)

By Lemma 7.19, this is independent of the choice of i, j, k.
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Lemma 7.21. The 2-cochain ω is a symmetric normalised 2-cocycle.

Proof. That ω is normalised, i.e. that ω(e, g) = 1 = ω(g, e), is just the normalisation
condition λ1ii = 1 = λ1ii achieved in step 1. Symmetry of ω, that is ω(g, h) = ω(h, g)
follows from the commutativity property of λijk in Lemma 7.12.

To show the cocycle condition we will use coassociativity of the algebra Z. Given
f, g, h ∈ G, pick bi ∈ Rf , bj ∈ Rg, and bk ∈ Rh. Then choose l ∈ I such that bl is a
summand in the product bibjbk. This implies that bl ∈ Rfgh.

In terms of structure constants, one side of the coassociativity condition for Z can be
rewritten as

(ri ⊗ rj ⊗ rk) ◦ (∆Z ⊗ id) ◦∆Z ◦ el
(1)
=

∑
p∈I

(ri ⊗ rj ⊗ rk) ◦ (∆Z ⊗ id) ◦ ((ep ◦ rp)⊗ id) ◦∆Z ◦ el

(2)
=

∑
p∈I

λijp λ
pk
l (ri ⊗ rj ⊗ rk) ◦ (∆Z(1) ⊗ id) ◦ ((ep ◦ rp)⊗ id) ◦∆Z(1) ◦ el

(3)
= ω(f, g)ω(fg, h)

∑
p∈I

(ri ⊗ rj ⊗ rk) ◦ (∆Z(1) ⊗ id) ◦ ((ep ◦ rp)⊗ id) ◦∆Z(1) ◦ el

(4)
= ω(f, g)ω(fg, h) (ri ⊗ rj ⊗ rk) ◦ (∆Z(1) ⊗ id) ◦∆Z(1) ◦ el (7.49)

In step 1 we expanded idZ into a direct sum over its component simple summands. This
allows us in step 2 to insert the factors of λ which give the difference between ∆Z and ∆Z(1)

in each simple summand. (In this expression we take λ’s to be zero if their indices are not
allowed by fusion.) The key step is equality 3. Here one uses that by the properties of the
universal grading group, all p ∈ I which give a nonzero contribution must have bp ∈ Rfg,
for else N p

ij = 0. Thus, if we replace λ by ω via (7.48), the prefactor becomes independent
of p and can be taking out of the sum. The sum over p can then be carried out giving the
result of step 4.

An analogous computation for the other side of the coassociativity condition for Z gives

(ri ⊗ rj ⊗ rk) ◦ (id⊗∆Z) ◦∆Z ◦ el
= ω(g, h)ω(f, gh) (ri ⊗ rj ⊗ rk) ◦ (id⊗∆Z(1)) ◦∆Z(1) ◦ el . (7.50)

Comparing the two expressions and using coassociativity of Z and Z(1) results in

ω(f, g)ω(fg, h) = ω(g, h)ω(f, gh) , (7.51)

which is the cocycle condition.

In group cohomology there is a short exact sequence

0→ Ext(G,k×)→ H2(G,k×)→ Hom(Λ2G,k×)→ 0 , (7.52)

see [Br, Exercise V.6.5]. However, Ext(G,k×) = 0 (as k is algebraically closed, k× is a
divisible group, and so injective as an abelian group). The second map in (7.52) is given
by

ψ 7−→
(
g ∧ h 7→ ψ(g, h)

ψ(h, g)

)
, (7.53)
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and so any symmetric 2-cocycle is a coboundary.
In particular, by Lemma 7.21 ω is a coboundary, that is, there exist γg ∈ k× such that

ω(g, h) =
γg γh
γgh

. (7.54)

As ω is normalised, we have γe = 1. Now choose fi = γ−1
g whenever i ∈ Ig. This

choice satisfies the conditions in (7.47). To see that also (7.23) holds, note that fifi =
(γgγg−1)−1 = ω(g, g−1)−1. But by (7.48) we have ω(g, g−1) = λii

1
= 1, by step 1. This

finally gives

λijk =
fk
fi fj

. (7.55)

We have now completed the proof that Z(A) ∼= Z(1) as algebras and thereby the proof of
Theorem 7.1.

7.4 Global symmetries

Previously, we have found that irreducibility of mapping class group representations of an
MFC C is linked to the absence of surface defects in the associated RT TQFT of C. In
Section 8, Theorem 5.4 will receive some gravitational context in that the bulk gravity
theory will be modelled after the RT TQFT of C � Crev. Since it is conjectured in [HO]
that a 3D quantum gravity has no global symmetries, we study global symmetries of the
RT TQFT of C�Crev under the assumption of an absence of surface defects of the (chiral)
TQFT of C.

Global symmetries of a 3D TQFT are in direct correspondence with invertible surface
defects and thus we want to study invertible C � Crev-module categories or in other words
invertible C-bimodule categories.

We show the following statement:

Proposition 7.22. Let C be a braided fusion category which has no non-trivial indecom-
posable left module categories. Then, its invertible bimodule categories (up to equivalence)
are in one-to-one bijection with isomorphism classes of tensor autoequivalences on C.

The proof of Proposition 7.22 is given by Corollary 7.27.

Remark 7.23. To get an absence of global symmetries statement we would like to prove
that all invertible bimodule categories are trivial or, equivalently by Proposition 7.22, that
the group of tensor autoequivalences on C is trivial. As we shall see, there is evidence where
this holds for the examples discussed in Example 7.29. We hope to revisit this problem in
the future.

We introduce the definition of quasi-trivial bimodule categories as in [ENOM, Sec. 4.3]

Definition 7.24. An invertible C-C-bimodule categoryM is called quasi-trivial if as a left
module category it is equivalent to the left regular module category C.
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Recall that inner equivalence in a fusion category C means conjugation by an invertible
object. An outer equivalence is a tensor autoequivalence modulo inner equivalences. The
group of isomorphism classes of outer equivalences of C will be denoted by Out(C). If C is
braided, then inner equivalences are isomorphic to the identity and thus Out(C) = Aut⊗(C).

Given a tensor autoequivalence φ ∈ Aut⊗(C), one can consider the bimodule category

idCφ with the regular action from the left and the right action twisted by φ, i.e.M /X :=
M ⊗ φ(X). This bimodule is clearly quasi-trivial.

The statement of the following lemma is contained in [ENOM, Sec. 4.3] but without
detailed proof:

Lemma 7.25. Let C be a fusion category. A quasi-trivial bimodule category M is deter-
mined uniquely up to bimodule equivalence by the isomorphism class of an outer equiva-
lence [φ] ∈ Out(C). Namely, there exists a unique [φ] such that CMC ' idCφ as bimodule
categories.

Proof. Let M be a quasi-trivial bimodule category. Without loss of generality suppose C
is the underlying left module category. The bimodule isomorphisms

bX,M,Y : (X .M) / Y = (X ⊗M) / Y
'−→ X ⊗ (M / Y ) = X . (M / Y ) (7.56)

give in particular the natural isomorphism

bM,1,X : M /X = (M ⊗ 1) / X
'−→M ⊗ (1 / X). (7.57)

Define the endofunctor φ : C → C by φ := (1 /−). It follows from the bimodule category
structure that φ is a tensor autoequivalence21, i.e.φ ∈ Aut⊗(C). The bimodule isomor-
phisms provide the equivalenceM' idCφ as bimodules. This concludes the existence part
of the statement.

We now show the uniqueness up to inner equivalence. Suppose φ, ψ ∈ Aut⊗(C) such
that there is a bimodule equivalence F : idCφ ' idCψ. This equivalence comes equipped
with isomorphisms

F (X ⊗M ⊗ φ(Y )) ∼= X ⊗ F (M)⊗ ψ(Y ) (7.58)

and in particular, we have natural isomorphisms

φ(X)⊗ F (1) ∼= F (φ(X)⊗ 1) = F (φ(X)) ∼= F (1)⊗ ψ(X) . (7.59)

The object P := F (1) is invertible as 1 ∼= F (F−1(1)) ∼= F−1(1)⊗ F (1). Hence, as tensor
functors we have ψ ∼= P ∗⊗ φ⊗P (the choice of left or right dual here does not play a role
due to [EGNO, Prop. 2.11.3]).

Conversly, if ψ = P ∗ ⊗ φ⊗ P for some invertible object P ∈ C, the functor F = id⊗P
is a bimodule equivalence.

Therefore, we have proved that any quasi-trivial bimodule category M is determined
uniquely by a tensor auto-equivalence φ up to inner equivalence, i.e. by its outer equivalence
class [φ].

21For instance, one has isomorphisms φ(X⊗Y ) = 1/(X⊗Y ) ∼= (1/X)/Y = φ(X)/Y = (φ(X)⊗1)/Y ∼=
φ(X)⊗ φ(Y ).
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Lemma 7.26. Let C be a fusion category which has no non-trivial indecomposable left
module categories. Then, every invertible bimodule category is quasi-trivial.

Proof. By [ENOM, Cor. 4.4] any invertible bimodule category M is indecomposable as a
left module category. This follows directly from the invertibility property

M�CMop ' C

as bimodule categories. However, since C has only the left regular category C as an inde-
composable left module category up to equivalence, M is equivalent to C as left module
categories and thus quasi-trivial.

Given a fusion category C, the Brauer-Picard group consists of all invertible bimodule
categories up to equivalence, where multiplication is given by the balanced tensor product
�C.

Corollary 7.27. Let C be a braided fusion category with no non-trivial indecomposable
left module categories. Then, the Brauer-Picard group BrPic(C) is isomorphic to Aut⊗(C).

Proof. Since C is braided, inner equivalences are trivial and hence Out(C) = Aut⊗(C). By
Lemma 7.25 and Lemma 7.26 it follows that the map

Out(C)→ BrPic(C), [φ]→ idCφ (7.60)

is an isomorphism.

Recall that for a braided fusion category C, there is a natural way to consider left
module categories as bimodule categories by using the braiding of C. This allows to define
invertibility for left module categories. The group such invertible module categories up to
equivalence is called the Picard group Pic(C).

Lemma 7.28. Let C be a non-degenerate braided fusion category with no non-trivial left
module categories. Then, the group of braided auto-equivalences is trivial, i.e. Autbr(C) =
1.

Proof. By [ENOM, Thm. 5.2] the Picard group Pic(C) is isomorphic to Autbr(C). However,
by hypothesis Pic(C) = 1.

Example 7.29. In [EM] the group Aut⊗(C) is determined for C = C(slr, k). In particular,
we can check that these groups are trivial for all the known examples of MFCs with
irreducibility property. This implies that the bulk theory, we are interested in for mapping
class group averages, has no invertible defects or equivalently no global symmetries as
proposed in Remark 7.23.
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8 Applications to 3D gravity

8.1 Geometry of classical solutions to euclidean 3D gravity

One fundamental property of gravity in three dimensions is that it has no local degrees of
freedom. The curvature tensor is completely determined by the Ricci tensor and therefore
solutions of Einstein gravity have constant curvature. In the study of gravity with a
negative cosmological constant Λ < 0, which equates to a negative constant curvature R,
such solutions are locally isometric to the three-dimensional Anti-de-Sitter spacetime AdS3.
The AdS3 spacetime here is identified with the 3-dimensional hyperbolic space H3 since
we consider only Euclidean signature. This space is a subspace of the four-dimensional
Minkowski space M4:

H3 = {(x0, x1, x2, x3) ∈M4| − x2
0 + x2

1 + x2
2 + x2

3 = 1/Λ, x0 > 0} (8.1)

where Λ < 0 is the negative cosmological constant and its metric is induced by the
Minkowski metric. By a change of coordinates22, the AdS3-metric can be expressed as

ds2 = l2(dρ2 + (cosh ρ)2dt2E + (sinh ρ)2dφ2) (8.2)

where l is called the AdS radius and coincides with the curvature R. It is related to the
cosmological constant as we can guess from (8.1) by l2 = −1/Λ. We also have parameters
ρ ∈ R≥0, a spatial cycle parameter φ ∈ [0, 2π) and Euclidean time tE ∈ R. By introducing
the complex coordinate z = −tE + iφ with the obvious identification z ∼ z+ i2π, one finds
that in the asymptotic boundary ρ→∞ the metric becomes flat with the associated |dz|2.
This asymptotic behaviour indicates that the conformal boundary of AdS3 is precisely the
Riemann sphere CP1.

The group of isometries of AdS3 is Isom(AdS3) = Sl(2,C)/Z2, which is isomorphic
to the proper orthochronous Lorentz group SO(3, 1)+, i.e. the connected component of
the Lorentz group containing the identity. The global geometry of solutions of Einstein
gravity are obtained by gluing patches together which are locally isometric to AdS3. Such
a solution is globally isometric to a quotient U/Γ of a certain domain U in AdS3 by a
subgroup of isometries Γ ⊂ Sl(2,C)/Z2. The Anti-de-Sitter spacetime has a rather trivial
topology as it is homeomorphic to the three-dimensional ball D3 with conformal boundary
given by the Riemann sphere CP1. However, the gluing isometries of Γ in the quotient
U/Γ are responsible for non-trivial topologies both for the 3-dimensional part and for the
conformal boundary.

As already mentioned the group of isometries of (Euclidean) AdS3 coincides with SO(3, 1)+

which happens to be the conformal group on the Euclidean plane. This can be viewed, at
least on a preliminary level, as a motivation for an AdS3 /CFT2 correspondence23. The
story becomes even more compelling when studying boundary conditions and asymptotic
symmetries. A fundamental solution of 3D gravity with Λ < 0 with such a boundary

22Set x0 = l cosh ρ sinh tE , x1 = l cosh ρ cosh tE , x2 = l sinh ρ cosφ, x3 = l sinh ρ sinφ.
23The idea of an AdS/CFT correspondence originates from Maldacena [Ma] and later Witten [W] matching

type IIB supergravity on AdS5×S5 with 4D N = 4 super Yang-Mills theory.
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condition is thermal AdS3 and is locally the ordinary Anti-de-Sitter spacetime of radius l
with metric (8.2) but with an additional boundary condition given by

z ∼ z + i2πτ

where τ is a complex number. Recall that z was already subject to z ∼ z + i2π. This
gives thermal AdS3 the topology of a solid torus and its conformal boundary is the torus
T 2 with conformal (or modular) parameter τ .

The classical phase space of gravity can be thought as the space of solutions, asymptot-
ically AdS, which obey boundary conditions (e.g. thermal AdS3) modulo small diffeomor-
phisms which respect the boundary conditions. Small diffeomorphisms are diffeomorphisms
homotopic to the identity. By computing the relevant Poisson structure in the limit l� G,
Brown and Henneaux [BH] found that the algebra of asymptotic symmetries, which is gen-
erated by such diffeomorphisms, is isomorphic to two copies of the Virasoro algebra Virc
of central charge

c =
3l

2G
. (8.3)

8.2 Path integral formulation of quantum gravity

By fixing a conformal boundary, i.e. a Riemann surface Σ, the path integral approach to
the pure Einstein gravity partition function suggests to study the path integral

Z =
∑

M topologies

∫
Dg eiS[g] (8.4)

where the sum is over diffeomorphism classes of smooth 3-manifolds M with conformal
boundary Σ and we perform a path integral over Riemannian metrics g with conformal
boundary Σ. Here, S[g] is the Einstein-Hilbert action. Of course, this expression is far
from a well-defined object as not only the “geometries” M are not specified but also the
integration of such seems far-fetched. However, one might try to compute sensible approx-
imations. The semi-classical approach of [MW] suggests that the dominating contributions
to (8.4) are precisely classical solutions. In this semi-classical limit, the central charge is
large c� 1 which translates to a weak coupling. Fixing a genus 1 Riemman surface, i.e. a
torus with conformal parameter τ , they consider the solutions of type U/Γ, where U is a
certain domain of AdS3 and Γ a group of isometries. When Γ is freely generated by one
element, i.e. Γ ∼= Z, the solutions Mγ are topologically solid tori and they are parameterised
by elements γ in the modular group

Sl(2,Z) =

{(
a b
c d

)
|a, b, c, d ∈ Z, ad− bc = 1

}
.

To be precise, some elements of Sl(2,Z) lead to equivalent solutions. The solutions are
uniquely determined by a pair (c, d) of coprime integers up to sign, i.e.Mc,d. The manifold
M0,1 has already appeared earlier as it represents precisely thermal AdS3. The manifold
M1,0 is special, since it represents the Euclidean BTZ black hole, and is the result of [BTZ]
showing the existence of black holes in 3D Einstein gravity. In the BTZ black hole, time
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Mγ =

↑ γ

Figure 8.1: The manifold obtained by twisting the torus boundary of the solid torus by γ.

S
 

Figure 8.2: The S-transformation on the torus exchanges the meridian and the parallel.

becomes contractible and ρ = 0 represents the black hole horizon. This can be understood
in the following topological consideration: The manifolds Mγ are obtained from the thermal
AdS3 manifold M0,1 by gluing the torus boundary using γ ∈ Sl(2,Z)24, see Figure 8.1. This
corresponds to the transformation

τ 7→ aτ + b

cτ + d
. (8.5)

In M0,1 the spatial loop corresponds to the meridian and the time loop to the parallel of the
boundary torus. The BTZ black hole M1,0 can be obtained by the S-generator of Sl(2,Z).
Hence, the spatial loop becomes now the parallel and therefore is non-contractible, whereas
the time loop becomes the meridian and therefore contractible, see Figure 8.2.

Other choices of the group Γ lead to geometries different than the solid tori solutions Mγ.
For instance, if Γ consists of two free generators, then one obtains hyperbolic 3-manifolds
with a cusp. If Γ contains a torsion element, the result is an orbifold. Evaluating the
contribution of these more complex geometries to the path integral is not as clear as for
the solid tori geometries and therefore are excluded from the semi-classical consideration
of [MW]25. Hence, equation (8.4) becomes in this semi-classical approximation

Zgrav =
∑

γ∈Sl(2,Z)

Z(Mγ) (8.6)

where Z(Mγ) is the contribution of Mγ. Since some of these include the same contributions,

24Recall that Sl(2,Z) coincides with the mapping class group of the torus.
25The contribution of cusp geometries is assumed to vanish in the semi-classical limit, whereas orbifolds

which contain singularities might have a physical interpretation of containing massive particles [MW,
Sec. 2.1].
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one may regularise and redefine

Zgrav =
∑

Zγ∈Ovac

Zγ (8.7)

where Zvac = Z(M0,1) is the ”vacuum” contribution of thermal AdS3 and Ovac is the orbit
of Zvac with respect to the mapping class group of the torus Sl(2,Z). This sum is seemingly
significantly more manageable. Indeed, for rational CFT considerations one arrives at a
well-defined computable sum.

8.3 RCFT considerations

In [CGHMV] they used precisely this semi-classical approach to study gravity duals of
unitary minimal models (a family of RCFTs). Even though for these models c < 1 and
therefore is not subject to the limit c � 1, it is reasonable to study the semi-classical
contribution as it should be included in the overall path integral and it produces the
property of mapping class group or modular invariance, on which we will expand later.
Nevertheless, assuming the vacuum contribution (or vacuum seed) to be

Zvac = |χ0(τ)|2

where χ0(τ) is the holomorphic vacuum character, the contribution of Mγ is given by

Zγ = |χ0(γ.τ)|2

where γ.τ is specified by the modular transformation (8.5). Topologically, the vacuum seed
is obtained by the evaluation of the corresponding RT-TQFT on two copies of the solid
torus:

ZC

 q −

 (8.8)

As mentioned in Remark 5.6, these minimal models and more general RCFTs satisfy a
special property, which allows the sum to be finite, in particular well-defined. This is the
discussed property F of mapping class group representations. Thus, given a RCFT on the
boundary, we may write (8.5) in terms of the mapping class group averages as defined in
Section 5:

Zgrav := 〈Zvac〉T 2 . (8.9)

The analysis of [CGHMV] showed that the expression in (8.9) is equal (up to a non-zero
scalar) to a unitary minimal model CFT partition function, precisely for the Ising and the
tricritical Ising model, i.e.

〈ZCvac〉T 2 ∼ ZCCFT(T 2) (8.10)
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for C the MFC corresponding to the Ising CFT, respectively the three-state Potts model.
Topologically, (8.10) is

〈ẐC


〉T 2 = ZC




(8.11)

For other central charges, it produces a sum which may include independent partition
functions and even unphysical modular invariants.

So far, we have only discussed gravity with a conformal boundary of a torus, but one
can consider boundary conditions which lead to higher genera Riemannian surfaces on the
boundary. Choosing appropriate gluing isometries Γ for the quotient space U/Γ one can
create geometries, which are topologically handlebodies of genus g, similar to the solid tori
in the g = 1 case. We may assume the vacuum contribution to be given by the holomorphic
factorised of the TQFT on the empty handlebody, i.e.

Zvac = ẐC

 Σg

Hg

 (8.12)

we might want to write Zgrav as the mapping class group average of Zvac. In general, this
might prove to be problematic as such the action of a mapping class group of a higher
genus surface (even for RCFTs) might have infinite orbits (e.g. for the tricritical Ising CFT
[JLLSW, Sec. 4.5]), with no clear way of regularisation of the sum. We bypass this problem
by working with MFCs which obey property F and thus allow for a working definition of
such mapping class group averages as finite sums. In this framework, we use Definition 5.2
and define the gravity partition function candidate:

Zgrav := 〈Zvac〉Σ (8.13)

It is a result by [JLLSW] that (8.10) extends to any genus g for the Ising CFT. Unfortu-
nately, the tricritical Ising model fails to extend.

In Section 5, we took this one step further and give this correspondence for boundary
surfaces, which may include field insertions. These insertions are to be connected via
Wilson lines in the bulk theory. We found that an essential property which ensures this
correspondence for general RCFTs is irreducibility of the (chiral) mapping class group rep-
resentations, i.e. the mapping class group representations encoded by the modular functor
V C of the MFC C. The result is

〈x〉Σ ∼ CorC(Σ) (8.14)

where x is an element in the full conformal block space and subject to the non-degeneracy
conditions we described. The element x can be thought as a generalised vacuum seed, but
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we do not argue what is an appropriate physical choice. One might for instance choose in
the Ising model for a surface with two insertions of the spin field σ the double of

σ
σ

(8.15)

which also satisfies the non-degeneracy condition similar to the empty handlebody from
Example 3.3.

8.4 Summing over more Topologies

In the path integral (8.4), naively one should sum over topologies M and perform a path
integral over geometries g on M , which solve the asymptotic boundary conditions. How-
ever, in the semi-classical approach the topologies which have been considered were that
of the solid tori for genus 1, or handlebodies for higher genera boundary surfaces. It is a
natural and an important question, if we can perform a sum over more topologies, but we
will not address it directly here as there is no obvioius way to do this. This consideration
is made and discussed in [BM] with interesting results in lower-dimensions. Let us instead
make the following observation:

Let Σ be a closed oriented surface and BΣ be the set of all 3-manifolds M that bound
Σ (up to diffeomorphism which restricts to the identity on the boundary). The set BΣ

coincides directly with the morphism space of the bordism category from ∅ to Σ, i.e.

BΣ = Bord3(∅,Σ). (8.16)

This encodes the more complicated topologies we would like to include in our summation.
The mapping class group Mod(Σ) has a natural action on BΣ. Therefore, we can decompose
BΣ into the disjoint union of mapping class group orbits

BΣ = qi∈OBi (8.17)

Let us consider the example of the torus. The (black hole) family

{Mc,d | (c, d) ∈ Z2/±, gcd(c, d) = 1} (8.18)

is the mapping class group orbit of thermal AdS3, or topologically the solid torus. Similarly,
for a genus g surface Σ we may write

BHg = {Hγ
g |γ ∈ Mod(Σ)} (8.19)

for the orbit of the genus g handlebody Hg, which bounds Σ. The orbit elements Hγ
g are

obtained by the twisting the boundary of Hg via the corresponding mapping class γ. Some
Hγ
g ’s might represent the same bordism (for instance Dehn twists along meridians do not

change the topology). These orbits are typically infinite. However, the image of such orbits
under a 3D TQFT

Z(Bi) = {Z(M)|M ∈ Bi} (8.20)
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can become finite. Indeed, if a MFC C has property F with respect to a surface Σ, then
the RT TQFT gives a finite image

ZC(Bi)

for each orbit Bi.
If there is a sensible definition (regularisation) for the ”sum over topologies”∑

M∈BΣ

Z(M),

then we can expand it as ∑
M∈BΣ

Z(M) =
∑
i∈O

∑
v∈Z(Bi)

v (8.21)

where the second sum
∑

v∈Z(Bi) v is finite and mapping class group invariant by definition.
In particular, if the space of such mapping class group invariants is one-dimensional then

computing only the finite mapping class group averages, which we studied in this thesis, will
lead us to the correct ansatz for the more general sum over all topologies. As we have seen,
irreducible mapping class group representations, say of the RT TQFT associated to C, lead
to such one-dimensional spaces of invariants in the double theory (evaluating on the double
surface Σ). In the picture of the double theory, where one copy corresponds to holomorphic
blocks and the other to antiholomorphic blocks, the topologies we have considered are two
copies of the corresponding handlebodies, i.e. ”diagonal” topologies. However, one can
consider topologies with multiple boundary components, i.e. ”wormholes”.

8.5 Absence of global symmetries

In Section 7 we have studied global symmetries in the topological bulk theory of Z(C),
which models the gravity dual candidate by providing mapping class group average con-
structions. It is a conjecture by [HO] that quantum gravitational theories do not admit
any global symmetries. Hence, we would to prove that the RT TQFT of Z(C) for a MFC
C subject to the hypothesis in Theorem 7.1 has no non-trivial global symmetries.

Global symmetries of TQFTs correspond to invertible module categories, see Section 4.
Since the Drinfeld centre Z(C) obeys the factorisation property

Z(C) ' C � Crev

as C is non-degenerate (as a MFC), invertible module categories over Z(C) coincide with
invertible bimodule categories over C. The MFCs from Theorem 7.1 have the irreducibility
property with respect to mapping class groups. However, because we want to study an
algebraic structure such as module and bimodule categories, we prefer to start with the
following hypothesis:

Let C have no non-trivial defects.

This is a hypothesis that holds for the MFCs of interest as it follows by Theorem 7.1,
albeit strictly weaker than irreducibility (see Remark 7.2). Under this assumption, we
have reduced the question of global symmetries to that of tensor autoequivalences on
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C (see Proposition 7.22). Indeed, any examples we are aware of, which are subject to
the irreducibility property and therefore examples with no non-trivial defects, possess
only trivial tensor autoequivalences (see Example 7.29). Hence, they produce no global
symmetries in the bulk theory of Z(C).

8.6 Beyond irreducibility

So far, irreducibility has been used as a tool to obtain a bulk-boundary correspondence,
ensuring there is unique sensible boundary theory. This concerns only certain theories like
the Ising CFT with this property. When there are more mapping class group invariants,
mapping class group averages can produce a linear combination of such as for most of
the minimal model CFTs [CGHMV] or [MMS]. There are some unknowns for these cases
which go beyond irreducibility.

1. One possibility or strategy is that including more topologies (than the mapping class
group average) will put more constraints on the mapping class group invariant and
single out one partition function on the boundary.

2. The alternative idea, which experiences a recent emergence in physics literature [CM],
is to consider an ensemble of CFTs on the conformal boundary rather than a single
CFT. This is motivated already by the lower-dimensional AdS2 /CFT1 correspon-
dence [SSS] with Jackiw-Teitelboim (JT) gravity as the gravity dual of the Sachdev-
Ye-Kitaev (SYK) model, which consists a random matrix ensemble.
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