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Zusammenfassung

Neue wissenschaftliche Erkenntnisse und die Schaffung neuartiger Materialien liegen in den Pro-

duktionstechnologien, der Industrieentwicklung, dem Digitalisierungsgrad, den Hightech-Anwendungen

und damit dem Lebensstandard und dem Wohlstand. Die Entwicklung dieser hochmodernen Materi-

alien hängt entscheidend von den verfügbaren Instrumenten und Technologien zu ihrer systematis-

chen Untersuchung und Analyse ab. Eines dieser Instrumente, das den Fortschritt vorantreibt, ist ein

Röntgenmikroskop in Großforschungsanlagen, eine hochmoderne Maschine, welche
”
die Komplexität

der Natur entschlüsselt“. Die Synchrotron-Speicherringe (SSR) der 4. Generation, die auch als beu-

gungsbegrenzte Speicherringe (DLSR) oder Röntgen-Freie-Elektronen-Laser (XFEL) bekannt sind, sind

die besten Beispiele für solch fortschrittliche Mikroskope. Das Untersuchungsprinzip solcher Röntgen-

mikroskope in Großforschungsanlagen basiert auf der Anwendung fortschrittlicher Forschungsmeth-

oden und bildgebender Verfahren. Die Hauptmerkmale der angewandten Methoden und Techniken

basieren auf der räumlichen und zeitlichen Auflösung des Röntgenstrahls und der Verwendung einer

hochkohärenten hellen Röntgenphotonenquelle.

Eine der anspruchsvollsten Aufgaben für die DLSR- und XFEL-Photonendiagnostik ist die genaue

Bestimmung der statistischen Parameter der Photonenquelle. Ein hervorragender Ansatz und die Anal-

ysemethode, die Informationen über die Photonenquelle liefert, liegt im Rahmen der statistischen Optik.

Die Strahlungsquelle an DLSR-Anlagen unterscheidet sich deutlich von der ihres Vorgängers, und die

Strahlungsquelle am XFEL besitzt eine einzigartige zeitliche Struktur und statistische Eigenschaften.

Daher besteht ein erheblicher Bedarf an der Entwicklung geeigneter und wirksamer Methoden, die die

Strahlungseigenschaften solcher hochmodernen Einrichtungen korrekt beschreiben.

Die vorliegende Arbeit konzentriert sich auf die umfassende Analyse statistischer Eigenschaften

moderner Röntgenquellen an Großforschungsanlagen, wie dem Hochenergiespeicherring PETRA IV

der 4. Generation, European XFEL (EuXFEL) und XFEL am Pohang-Beschleunigerlabor (PAL-XFEL).

Besondere Aufmerksamkeit wird den Effekten geschenkt, die die Kohärenzeigenschaften und die Quel-

leneigenschaften in diesen Einrichtungen beeinträchtigen können. Die vorliegende Arbeit gliedert sich

in zwei Teile, wobei im ersten Teil eine umfassende Analyse der Kohärenzeigenschaften der DLSR-

Strahlung vorgestellt wird. Aufmerksamkeit wird den optischen Effekten auf den durch die Strahllinie

transportierten Photonenstrahl, den Effekten der Elektronenstrahl-Energieverteilung auf die Kohärenz

und Helligkeit einer DLSR-Photonenquelle und den Resonanzenergie-Verstimmungseffekten geschenkt.

Als adäquater Ansatz zur Charakterisierung von Photonenstrahleigenschaften an DLSR-Anlagen wird

eine Methode im Rahmen der statistischen Optik vorgeschlagen. Die Analyse wird durch semianalytis-

che Simulationen basierend auf dem vorgeschlagenen Modell und spezialisierter Software unterstützt.

Der zweite Teil der Arbeit widmet sich der Photonenquellendiagnostik und der genauen Bestim-

mung der statistischen Parameter von Hochenergie-XFEL-Anlagen. In diesem Teil werden die Ergeb-

nisse von Experimenten diskutiert, die am EuXFEL und PAL-XFEL durchgeführt wurden. Die Photo-

nenstrahlcharakterisierung wird im Rahmen der statistischen Optik beschrieben, wobei besonderes Au-

genmerk auf die Monochromatorauflösung und das Zusammenspiel zwischen Auflösung und Größe

der Austrittsspalte des Monochromators gelegt wurde. Die verwendete Methode wurde auf drei ver-

schiedene Betriebsmodi des EuXFEL angewendet und mit einfachen analytischen Simulationen überprüft.

Auch der Einfluss des Energy-Chirp-Effekts auf die Analyseergebnisse wurde berücksichtigt. Darüber

hinaus wird die Photonenquellendiagnostik für die PAL-XFEL-Anlage vorgestellt. Diese Anlage kann

sowohl im Modus der selbstverstärkten Spontanemission mit einem breitbandigen Strahl und einem

gefilterten monochromatischen Strahl als auch im Modus des Self-Seeding mit hochintensiver Strahlung

betrieben werden.
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Abstract

The development of cutting-edge materials crucially depends on the available instruments and tech-

nologies for its systematic study and analysis. One of the instruments that drive the progress is an X-ray

microscope, a state-of-the-art machine that is “decoding the complexity of nature”. The 4th generation

synchrotron storage rings (SSR), which are also known as Diffraction-limited storage rings (DLSR), and

X-Ray Free-Electron Lasers (XFEL) are the best examples of such advanced microscopes. The investiga-

tion principle by such X-ray microscopes is based on applying advanced research methods and imaging

techniques. The key requirements are the space and time resolution, high flux, and coherence of the

probing X-ray beam that are provided by the 4th generation X-ray sources and XFELs.

One of the most challenging tasks for the DLSRs and XFELs is photon diagnostics, namely, the pre-

cise determination of the photon source statistical parameters. The photon statistics of the 4th generation

sources are notably different from that of their predecessors. Therefore, there is a significant demand

for developing adequate and effective methods that correctly describe radiation properties from such

ultimate facilities. An excellent approach and the analysis method, providing the information about the

photon source, lies within the framework of statistical optics.

The present thesis is focused on the extensive analysis of statistical properties of modern X-ray

sources at large-scale facilities, such as the 4th generation high-energy storage ring PETRA IV, Euro-

pean XFEL (EuXFEL), and XFEL at Pohang Accelerator Laboratory (PAL-XFEL). Special attention is

paid to the effects that may decrease coherence characteristics and impact source properties at these fa-

cilities. The present thesis is divided into two parts, where a comprehensive analysis of the coherence

properties of the DLSR radiation is presented in the first part. Attention is paid to the optics effects on

the photon beam transported through the beamline, electron beam energy spread effects on coherence

and brightness of a DLSR photon source, and resonant energy detuning effects. A method in the frame-

work of statistical optics is proposed as an adequate approach for the characterization of photon beam

properties at DLSR facilities. The analysis is backed up with semi-analytical simulations based on the

proposed model.

The second part of the thesis is devoted to photon source diagnostics and precise determination

of the statistical parameters at the high-energy XFEL facilities. Results of experiments performed at

EuXFEL and PAL-XFEL are discussed in this part of the thesis. The method within the framework of

statistical optics for the EuXFEL photon beam characterization is described, where special attention was

paid to the monochromator resolution and interplay between the resolution and the size of the exit slits

of the monochromator. The method was applied to three different regimes of the XFEL operation and

was checked with simple analytical simulations. The influence of the energy chirp effect on the analysis

results was considered as well. Further, the photon source diagnostics is presented for the PAL-XFEL

facility, operating in the Self-Amplified Spontaneous Emission (SASE) regime with the wide bandwidth

beam and filtered monochromatic beam, as well as in the regime of Self-Seeding (SS) with highly intense

radiation.
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Chapter 1

Introduction

Optical Coherence and Quantum Optics

Coherence is the most fundamental aspect of light and quantum theory. In the field of

quantum optics, M. Born, L. Mandel, E. Wolf, and R. J. Glauber during the 20th century, devel-

oped most of the coherence quantum theories of light. The concept of coherence is very closely

related to wave-particle duality. According to quantum physics, which was developed at the

beginning of the 20th century, electromagnetic radiation appears in the form of quanta, pack-

ets with fixed energies, which can be described as both waves and as particles, photons [1, 2].

Considering the wave picture, coherence is described best as a property of light that causes in-

terference effects, firstly observed with conventional thermal sources. In the ’30s, M. Born, who

made significant contributions to quantum mechanics, solid-state physics, and optics, gave a

more detailed look at the theory of electromagnetic light, diffraction, and interference [3] within

the frame of classical optics. The field of quantum optics has largely developed since the first

lasers appeared at the beginning of the ’60s. At that time, E. Wolf, who made significant ad-

vances in optics, including diffraction, coherence, spectroscopy, and scattering, together with

M. Born, published the famous book ”Principles of Optics” where the basic principles of elec-

tromagnet radiation, diffraction, and interference effects were described [4]. However, no fun-

damental in-depth theory of light based on quantum theory existed before R. Glauber [5] and

E. C. G. Sudarshan [6] established the foundation for quantum optics in 1963 so that the theory

on the relationship of the visibility (waves) and distinguishability (particles) was developed.

In particular, R. Glauber by introducing coherent photon states developed a quantum mechan-

ical treatment of the correlation functions. This dramatically changed the scope of scientific

research. Since then, coherent light has given rise to more quantum physical phenomena than

regular light. In 1965, in Reviews of Modern Physics, L. Mandel and E. Wolf published ”Coher-

ence properties of optical fields”, bridging classical, semiclassical and quantum optical theories

of coherence and statistical optics [7], followed by the brilliant book ”Optical Coherence and

Quantum Optics” published in 1995 [8]. So much effort devoted to the study of coherence and

correlations was not in vain. Coherence, both classical and quantum, can explain many phys-

ical phenomena. Therefore, exploiting coherence and interference methods nowadays allows

us to discover and percieve, ultimately helping us deepen our understanding of nature.
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Interferometry

Countless experiments have been performed to understand the properties of light and co-

herence, pioneered by T. Young, A. Michelson and E. Morley, C. Davisson and L. Germer, R.

Hanbury Brown, and R. Q. Twiss. Young’s double-slit interferometry experiment was part of

classical physics long before the development of quantum mechanics and the concept of wave-

particle duality. At the beginning of the 19th century, this experiment demonstrated the wave

behavior of light [9], while at the beginning of the 20th century, the same type of experiment,

conducted by C. Davisson and L. Germer demonstrated that particles may show the wave

behavior [10] as well. Michelson and Morley’s interferometry disproved the existence of the

aether [11], leading to the special theory of relativity and the revolution in physics at the be-

ginning of the 20th century. Hanbury Brown and Twiss (HBT) intensity interferometers [12, 13]

were originally used in astronomy, although they are also heavily used in the field of quantum

optics. In general, the HBT interference effect can be attributed to the wave-particle duality of

the beam under investigation. The results of a given experiment depend on whether the beam

is composed of fermions or bosons. Even nowadays, this type of interferometry experiment lift

the veil of secrecy, shrouding the physics of light and matter, space and time.

Applications of coherence methods and correlation techniques

Coherence and correlations techniques play a prominent role in many-body physics, sta-

tistical physics, and information technology. Correlation itself is a measure of how two or

more systems or processes are related. Correlation techniques and methods have been exten-

sively used in physics, and quantum physics [14] over the past several years. For instance, a

fundamental challenge nowadays for quantum computation and simulation is to construct a

large-scale network of highly connected coherent qubits. A recent experiment on a 53-qubit

processor completed the task, whereas a supercomputer would take 10,000 years [15].

In astrophysics, correlation methods and interferometry are used to extract precise informa-

tion about astronomical objects and large-scale cosmic events. For instance, the interferometer

at Laser Interferometer Gravitational-Wave Observatory (LIGO) made the first direct observa-

tion of gravitational waves [16] in 2015. The experiment confirmed a vital prediction of general

relativity, validating the theory’s prediction of space-time distortion in the context of large-scale

cosmic events. Another example can be made of the Event Horizon Telescope, which consists

of several interferometry stations around Earth, where interferometry techniques were used in

order to get the first-ever created image of the shadow of the black hole [17].

In modern condensed matter physics, the coherence properties of light are the key to the

successful investigation of materials on the atomic scales [18]. Rapidly evolving imaging meth-

ods, which are staying in the core of structural analysis, are based on the utilization of coherent

properties of the incoming bright x-ray beams. In this case, a fundamental understanding of

the structure of modern materials is essentially based on X-ray measurements at large-scale

facilities, such as SSRs or XFELs. Therefore, a better understanding of source properties is

needed.
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Coherent sources

With the development of new technologies [19], the construction of next-generation x-ray

storage rings has become possible. Source brilliance and coherence of the future storage rings

are the critical parameters for successful synchrotron radiation experiments. High values of

these properties will allow focusing of the synchrotron beams efficiently to the nanometer

range [20, 21]. It will enable an effective application of coherence-based techniques such as

Coherent Diffraction Imaging (CDI), potentially reaching sub-nanometer resolution [21]. It

will also extend X-ray photon correlation techniques into the regime of nanoseconds and allow

for low dose correlation experiments [22].

To exploit coherence properly, a better understanding of the coherence properties of DLSR

sources is necessary. These ultimate storage rings are expected to have a high degree of coher-

ence, which means that traditional methods of X-ray tracing will not be sufficient to predict

the parameters of X-ray beams at the experimental stations. Therefore, presently it is a big de-

mand for developing adequate and effective methods that may correctly describe properties of

radiation from the ultimate storage rings close to the diffraction limit. Clearly, such description

should be based on the application of the first- and higher-order correlation functions [20, 23].

In parallel to the development of new DLSRs, the appearance of XFELs with their laser-like

X-rays and unprecedented short and intense pulses open new possibilities for X-ray imaging

and material investigation. For instance, XFELs proved extremely useful in Single Particle

Imaging (SPI) experiments [24–26] and biomolecular imaging [27] in order to determine its

three-dimensional (3D) structure with the ultimate resolution. Performance of the pump-probe

experiments is another excellent application of the ultrashort XFEL pulses. In this kind of ex-

periment, a sample is first pumped by the conventional infrared laser, and after some time

delay, the dynamics is measured by the probe pulse. Results obtained during these experi-

ments allow us to reveal ultrafast phase transition [28, 29], study dynamics of plasma–matter

interactions [30] and ionization process, and laser–induced molecular dynamics [31, 32]. With

the advent of such XFEL sources, it has become clear that essential information about the sam-

ple may be deduced only from multiple measurements accomplished by many realizations

(pulses) of the radiation field from these sources. Therefore, these pulsed sources, in principle,

cannot be treated as stationary ones; hence, such properties as spatial and temporal coherence

have to be revised as well.
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Thesis outline

The present thesis is focused on the extensive analysis of statistical properties of modern

X-ray sources such as 4th generation high-energy storage ring PETRA IV and European X-ray

free-electron laser (EuXFEL) as well as Pohang Accelerator Laboratory X-ray free-electron laser

(PAL-XFEL). Special attention is paid to the effects that may lead to a degradation of coherence

characteristics at these sources.

The first part of the thesis is dedicated to the demonstration of the applicability of the gen-

eral partially coherent radiation treatment approach developed in optics. This theory was ap-

plied to describe the properties of partially coherent X-ray beams at synchrotrons of the third

generation and ultra-low emittance, high-brightness synchrotron light sources of the fourth

generation as PETRA IV. A short introduction of the X-ray sources, brief theory of light and

statistical optics, and compressed theory of the synchrotron radiation are given in the first

chapters. The first part ends with a chapter where a comprehensive analysis of the coherence

properties of the DLSR radiation is presented. Attention is paid to the optics effects on the pho-

ton beam transported through the beamline, electron beam energy spread effects on coherence

and brightness of a DLSR photon source, and resonant energy detuning effects. A method in

the framework of statistical optics is proposed as an adequate approach for the characterization

of photon beam properties at DLSR facilities. The analysis is backed up with semi-analytical

simulations based on the proposed model and simulations carried out by the specialized soft-

ware.

The second part of the thesis is devoted to photon beam diagnostics and the precise deter-

mination of the statistical parameters at the high-energy XFEL facilities. Results of experiments

performed at EuXFEL and PAL-XFEL are discussed in this part of the thesis. The method within

the framework of statistical optics for the EuXFEL photon beam characterization is described,

where special attention was paid to the monochromator resolution and interplay between the

resolution and the size of the exit slits of the monochromator. The relationship between the

beam statistics determined in the interferometry experiments and the statistical properties of

the X-ray beam incoming to the monochromator is demonstrated. This method was applied

to the three different regimes of the XFEL operation and was checked with simple analytical

simulations. The influence of the energy chirp effect on the analysis results was considered as

well. The second part ends with a chapter where photon beam diagnostics is presented for the

PAL-XFEL facility, operating in a Self-Amplified Spontaneous Emission regime with the wide

bandwidth beam and filtered monochromatic beam, as well as in the regime of Self-Seeding

with highly intense radiation.
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X-rays and Synchrotron sources

2.1 X-rays

X-ray is high-energy electromagnetic radiation, naturally occurring from various sources,

such as radioactive elements, astrophysical objects, and can be produced artificially (see Fig.

2.1) by a human made source. X-rays were discovered in 1895 by German physics profes-

sor Wilhelm Röntgen while experimenting with Crookes tubes and Lenard tubes (modified

Crookes tube, [33]). He wrote a report, ”On a new kind of rays.”, which was the first paper

written on X-rays [34]. Röntgen referred to the radiation as ”X” to indicate that it was an un-

known type of radiation. Later the article was published in Nature [35], describing the behavior

and properties of X-rays in the different media. Since then, X-rays have found use in a wide

range of scientific and medical applications.

Before their discovery, X-rays were just a type of unidentified radiation emanating from

experimental discharge tubes. They were noticed by scientists investigating cathode rays pro-

duced by such tubes, which are energetic electron beams that were first observed in 1869. Many

of the early Crookes tubes (see for example Fig. 2.1 (b)) were radiating X-rays. Crookes tubes

created free electrons by ionization of the residual air in the tube by a high voltage in the range

from a few kilovolts to 100 kV. This voltage accelerated electrons coming from the cathode

to the anode. X-rays were created when electrons struck the anode or the glass wall of the

tube. The spectrum of radiation emitted by an X-ray tube is a characteristic curve with several

peaks (see Fig. 2.1 (c)). Two separate processes result in such a curve: the bremsstrahlung

and the characteristic radiation. During the first process, the deceleration of an electron by an

atomic nucleus results in electromagnetic radiation, described by a continuous spectrum. The

characteristic radiation is caused by the atoms in the anode, ionized due to the electron-atom

collisions. In this case, core holes formed as a result of the ejection of bound electrons from the

inner shells due to the photoelectric effect, filled by the electrons from the outer shells, so that

the energy of the emitted photon is the energy difference between the higher and lower states.

The latter leads to the characteristic spikes in the spectrum of the emitted radiation.

In general, these electromagnetic waves can be observed in the wavelength range from 0.01

nm to 10 nm. Therefore, this kind of radiation becomes useful for structure determination on

5



6 Chapter 2. X-rays and Synchrotron sources

Figure 2.1: (a) The most bright astrophysical X-ray photon sources. (b) A picture of a Crookes tube (c)
The spectrum from an X-ray tube.
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atomic length scales, as well as relatively thick objects, since the X-rays possess high penetra-

tion depth. The latter also implies that a scattered signal from a relatively small sample can

be weak as well. In this case, a highly intense X-ray source is required in order to obtain a

high signal-to-noise ratio. The intensity of X-ray radiation is usually characterized by the spec-

tral photon flux F, which shows the number of emitted photons per unit time and 0.1% of the

radiation bandwidth (BW)

F ≈ photons/sec

0.1%bandwidth
, (2.1)

and by spectral brightness B, which shows amount of spectral photon flux per unit solid angle

Ω [mrad2] and per unit projected area S [mm2]

B ≈ F

ΩS
. (2.2)

The spectral brightness of the X-ray sources varies in the wide range from 105 to 1035

photons/ s/mm2/ mrad2/ 0.1%BW (see Fig. 2.2 for examples). The brightness of the mod-

ern X-ray tubes is in the range 107 - 1012 photons/ s/mm2/ mrad2/ 0.1%BW, which is com-

parably small. However, X-ray tube-based instruments made their quick way into numerous

applications in medicine, materials science, chemistry, and biology. For instance, the first ex-

periment studying diffraction on crystals was performed with the X-ray tube by William Henry

and William Lawrence Bragg [36], who became one of the founders of X-ray crystallography

field. The discovery of the synchrotron radiation and modernization of storage rings raised

the brightness bar to the level 1023 photons/s/mm2/mrad2/0.1%BW, which only XFELs can

overcome, setting a limit to the enormous value of 1035 photons/ s/mm2/ mrad2/ 0.1%BW.

2.2 Synchrotron sources

2.2.1 First generation storage ring facilities

The storage rings are currently the main sources of bright X-ray radiation. In addition to

its high brightness, X-rays from the synchrotron are also highly stable in energy, intensity, size,

and position of the beam. The energy of photons varies within a wide spectrum, from the IR

range to hard X-rays. Often, beams from the storage rings are linearly polarized in the plane

of the ring, although elliptically polarized beams can also be created by adding special devices

[38].

For the first time, synchrotron radiation was observed in the ’40s as a parasitic one in the

particle accelerators designed for experiments in high-energy physics. The observation was

made in a wide variety of different research laboratories: General Electric Research Labora-

tory, USA; Lebedev Institute, Russia; Cornell Electron Synchrotron, USA. In such experiments,

bending magnets (Fig. 2.4) hold the particles in the accelerating ring and set their trajectory.

The synchrotron radiation properties depend on multiple factors, the energy of the particle Eγ
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Figure 2.2: (a) Evolution and peak brightness of X-ray sources. This Figure was adapted from [37]

in the storage ring is one of them.

Eγ = γmc2, (2.3)

where mc2 is the rest mass energy of the particle and γ is the Lorentz factor

γ =
1

√

1 −
(

ν
c

)2
=

1
√

1 − β2
ν

, (2.4)

with ν being the speed of particles, c is the speed of light in vacuum and βν = ν/c. First accel-

erators that emerged in the ’30s maintained comparably low energy of the beam up to 1 GeV.

In the next 30 years, the upper limit of the particle beam energy raised to the bar of 100 GeV.

Modern particle colliders, such as the Large Hadron Collider (LHC) capable of maintaining

electron beam energy up to huge energies of 6.5 TeV and collision energy of 13.6 TeV. However,

synchrotron accelerators are dedicated to studying the condensed matter, biology, and chem-

istry, operating in standard regimes with the electron beam energy up to 8 GeV. In this case

typical Lorentz factor, found at synchrotron accelerators, lie in the range 2 · 103
< γ < 16 · 103,

and the electron beam is considered to be ultrarelativistic. Synchrotron radiation is generated

when relativistic particles are accelerated or subjected to periodic acceleration in a magnetic

field. At the synchrotron accelerators, due to centripetal acceleration, particles lose energy and

emit electromagnetic waves (Fig. 2.3 (b)) [39]. If the particle is moving at relativistic speeds,

then the radiation is emitted as a narrow cone tangent to the path of the particle (Fig. 2.3 (c))
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Figure 2.3: (a) Schematic view of the high energy collider (b) Isotropic electromagnetic radiation emitted
due to acceleration of a charged particle traveling at small velocities compared to the speed of light. (c)
Relativistically moving charged particles emit radiation in a narrow cone tangent to the path of the
particle.

θ ≈ 1

γ
. (2.5)

Such synchrotron radiation, produced at a particle accelerator already may be exploited in the

experiments [40, 41]. While the number of synchrotrons was growing, the next major advance

was the development of first-generation facilities. In particular, the development concerned

the electron storage ring, which is the basis for all of today’s synchrotron sources.

2.2.2 Second generation storage rings. Dedicated synchrotron radiation sources

Second generation facilities, which are dedicated synchrotron radiation sources, built al-

ready containing several main components [42], which maintain the viability of the particles

and provide a stable X-ray radiation beam (see Fig. 2.4 (a)): an electron gun, a booster ring, the

storage ring, radiofrequency section, bending magnets and beamlines.

The electron gun is the source of electrons, usually generated by thermionic emission from

a hot filament. The electron gun is working in the continuous regime since a regular supply

of electrons is required. The electrons are accelerated using a linear accelerator (linac) to about

100 MeV. Electrons have the ability to be lost in the machine due to collisions with gas particles

(remaining after obtaining a vacuum) in the storage ring. After the electron current is obtained,

it is directed from the linac to a booster ring for further acceleration (Fig. 2.4 (a)). The accelera-

tion may be continued to the desired energy of the electrons in the main storage. Injection from

the booster ring is happening periodically into the storage ring so that the specified storage
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Figure 2.4: a) Schematic view of the storage ring with the main components : Accelerator, Radio fre-
quency (RF) system, Bending magnet (BM), Insertion device (ID) and Beamline (reproduced from [43]).
Schematic representation of the various magnetic devices commonly used to produce synchrotron radi-
ation: b) bending magnet, c) wiggler, d) undulator.

ring current is maintained.

To form a bright photon beam, a large number of emitting particles are needed. Most syn-

chrotron sources are storage rings in which particles repeatedly circulate and generate X-rays

each time they pass through sections with magnetic devices (see Fig. 2.4 (b-d)). Several dif-

ferent experimental stations are located along the synchrotron ring and use the same electron

bunches. The distance between the electronic bunches is set by radio frequency (RF) accelera-

tors. In addition, RF accelerators recover the electron energy spent on synchrotron radiation.

The frequency of field oscillations in RF accelerators can be from several MHz up to 1 GHz,

which means that the time difference between successive X-ray pulses can be up to 1 ns.

Stable trajectory and a closed path of the electrons are provided by the use of an array of

magnets [42] of the ring. Three types of magnets are commonly used: bending magnets (cause

the electrons to change their path and eventually maintain a circular orbit), quadrupole mag-

nets (focus the electron beam and compensate for Coulomb repulsion between the electrons),

sextupole magnets (correcting for chromatic aberrations that arise from the focusing by the

quadrupoles). Bending magnets were commonly used at second-generation facilities, which

cause a curved trajectory of the electron beam and a broad radiation cone around the bend Fig.

2.4 (b). However, dipole bending magnets alone (Fig. 2.4 (a,b)) cannot maintain a closed orbit

of the electrons if the latter deviates from the ideal reference orbit. Since then, focusing pair
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of vertical and horizontal quadrupole magnets has brought them back towards the ideal orbit.

The arrangement of different types of magnets is called the magnetic lattice.

The beamline is finishing the list of main elements of the synchrotron facility. Beam defin-

ing apertures placed in the beginning of the beamline to set the angular acceptance of the syn-

chrotron radiation. By that, radiation filters out the low-energy tail of the synchrotron radi-

ation spectrum, which is strongly absorbed by matter and can damage optical components.

Then the beam is monochromatized (if necessary) and focused in the optics hutch before it

becomes available at the experimental hutch to researchers. Second-generation facilities main-

tained electron bunch energy in the range of 0.7 to 5 GeV. Examples include the following

dedicated synchrotron facilities: Tantalus, University of Wisconsin-Madison, USA; National

Synchrotron Light Source at the Brookhaven National Laboratory, USA; Aladdin at the Univer-

sity of Wisconsin Synchrotron Radiation Center, USA; Photon Factory at the KEK laboratory,

Japan; BESSY II at the Helmholtz-Zentrum Berlin, Germany; Stanford Synchrotron Radiation

Laboratory at SLAC, USA; and HASYLAB (Hamburger Synchrotronstrahlungslabor) at DESY,

Germany. Development of the dedicated synchrotron sources allowed to increase brightness

up to 1015 photons/s/mm2/mrad2/0.1%BW (see Fig. 2.2).

2.2.3 Third generation storage ring facilities

The next step in the modernization up to 3rd generation synchrotron facilities was made

towards increasing the source coherence and brightness. Examples of the third generation stor-

age rings include the following facilities: ESRF, Grenoble, France; APS, Chicago, USA; SPring-

8, Japan and PETRA III, Hamburg, Germany. Coherent characteristics and brightness of the

photon beam were sufficiently improved by adding special devices such as wigglers and un-

dulators. If a magnetic structure is periodically set and the magnetic field is strong, then the

wiggler radiation is produced Fig. 2.4 (c). At this type of radiation source, the particle experi-

ences a harmonic oscillation as it moves through the structure with high oscillation amplitude

and, as a consequence, a broader spectrum. Although one may obtain more power from such

a source, the brightness will be lower due to the broader radiation cone. If the magnetic field is

relatively weak, then the undulator radiation is produced Fig. 2.4 (d). At this type of radiation

source, the particle experiences a harmonic oscillation with a small undulation amplitude due

to a lower magnetic field. In this case, the radiation cone will be much narrower. Introducing

such a structure in the electron storage ring, one may obtain synchrotron radiation with small

angular divergence and higher intensity.

Third generation synchrotrons typically reliant upon undulators and their brightness reaches

up to 1021 photons/s/mm2/mrad2/0.1%BW (see Fig. 2.2). Coherence properties of the X-ray

radiation are also improved. However, only 1 % of the beam is sufficiently coherent to be used

in coherence-based applications. Consequently, the sources with a higher degree of coherence

are strongly required in order to get the full benefit from the X-ray beam without the use of

strong spatial filtering of the radiation [44].
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Figure 2.5: Examples of the 4th generation synchrotron sources with the specified parameters.

2.2.4 Fourth generation facilities. Diffraction - limited storage rings

Nowadays, fourth-generation facilities are constructed (see examples in Fig. 2.5), having

many straight sections specially optimized to produce high brightness undulator radiation.

Due to a new conceptual approach, that is, the design of a multi-bend achromat lattice of the

synchrotron storage ring, the brightness of the next generation X-ray storage rings can be in-

creased by two to three orders of magnitude [45], [46] (for the comparison of X-ray sources see

in Fig. 2.2).

Another distinctive feature of these 4th generation facilities is a very small size of the main

source of X-rays (i.e., electron bunch), and as a consequence, highly coherent X-ray radiation

(up to 90% [47]) Corresponding characteristics describing dimensional parameters of the source

are electron beam emittance εe,x in horizontal and in εe,y vertical directions accordingly. Typical

values of electron beam emittance found at storage rings of the 4th generation do not exceed

350 pm rad in both spatial directions. The first storage ring constructed using multi-bend
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Table 2.1: The present and planned fourth generation sources target parameters [47–51].

Source MAX IV SIRIUS ESRF-EBS APS-U PETRA IV

Energy, GeV 3 3 6 6 6

εx (pm · rad) 200-330 250 120-30 42-32 20-30

εy (pm · rad) 2-8 2 5-30 4-32 4-10

Current, mA 500 350 200 200 200

Brightness,
ph/(s·mm2·mrad2·0.1%)

4 · 1021 1021 1022 2 · 1022 1023

achromat technology was 3 GeV synchrotron source MAX IV (Lund, Sweden) (see Fig. 2.5),

which recently reached its planned specifications of horizontal emittance of about 200 - 330 pm

rad (depending on insertion device gap settings) [48]. Additional parameters are given in the

Table 2.1. Brazilian SIRIUS 3 GeV project is in the commissioning stage with horizontal emit-

tance planned in the range of 150 – 250 pm rad [52]. The high-energy ESRF 6 GeV storage ring

has finished the upgrade to the EBS ESRF facility, which is reached the horizontal emittance of

133 pm rad, and other facilities worldwide (APS-U, SPring-8, ALS, Soleil, Diamond, and etc.)

are in construction or planning stage. At DESY in Hamburg, an upgrade of the high-energy 6

GeV storage ring PETRA III to PETRA IV facility (Fig. 2.6 (a)) is also planned, and the world’s

lowest emittance of about 4 pm rad for hard x-rays is targeted at this storage ring [51]. In

addition, a very high brilliance of the source will be maintained at this facility (see Fig. 2.6 (b)).

Next-generation synchrotron sources, in particular PETRA IV facility, have the potential

to make a significant contribution to today’s main challenges in the investigation of multi-

functional hybrid materials, electronic transport phenomena, and electrochemical processes in

charge storage materials under working conditions, as well as materials under extreme con-

ditions of pressure and temperature with highest resolution and sensitivity [53]. Another ad-

vantage of this synchrotron facility is well defined time structure of the pulse with a short

duration. Such pulsed synchrotron radiation sources are ideal facilities for performing time-

resolved experiments, as it was shown during the last years using pump-probe X-ray spec-

troscopy and diffraction, X-ray photon correlation spectroscopy, nuclear resonance scattering,

and time-of-flight spectroscopy of electrons and ions. Although time-resolved studies emerge

more at free-electron lasers, like FLASH or European XFEL utilizing femtosecond pulse width,

time-resolved experiments will be coveted at the future storage-ring-based synchrotron radia-

tion sources as well.

As the X-ray source will be highly coherent up to 10 keV, the full beam can, in principle, be

captured and focused, limited in performance only due to optics quality. Experiments at higher

X-ray energies or with high energy resolution will also experience these brightness gains. To

fully exploit the potential of 4th generation sources, optics need to be adapted in size, improved

in terms of aberrations, and be able to handle higher X-ray intensities. X-ray microscopy tech-

niques are those that will profit the most from the record emittance and spectral brightness of

4th generation synchrotron sources. Diffraction-limited focusing of the full undulator beam will

have a significant impact on all X-ray analytical techniques, as they can then all be efficiently
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Figure 2.6: (a) Schematic view of the 4th generation synchrotron radiation source (reproduced from [54])
(b) Comparison between the brightness of PETRA IV storage ring (blue, green, and red curves) and
PETRA III (black curves) storage ring. This figure was adapted from reference [51]

used as contrast mechanisms in scanning microscopy. In this way, the “X-ray microscope”

will give quantitative access on the nanometer scale to the local structure and properties of the

materials under investigation.
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Theory of light and statistical optics

In this chapter, a brief electromagnetic theory is reviewed, as well as the propagation of

light in free space and through optical elements. Moreover, the correlation theory of scalar

wavefields, the concept of radiometry, and the notion of radiance are considered. Such notions

as time and space coherence within the framework of statistical optics are discussed as well. It

is also shown how the coherence properties of the source will determine the nature of the field.

It is convenient and simpler mathematically to employ the space-frequency rather than space-

time description while addressing these problems. Corresponding results in the space-time

and space-frequency domains are related via the basic Fourier transform relations.
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3.1 Theory of light and wave propagation

The starting point for the description of the evolution of electromagnetic waves in vacuum

and matter is set by Maxwell’s equations, which are the basis of classical electrodynamic theory:

▽×B(r, t) = µ0ǫ(r)
∂

∂t
E(r, t) (3.1)

▽×E(r, t) = − ∂

∂t
B(r, t) (3.2)

▽ ·B(r, t) = 0 (3.3)

▽ ·ǫ(r)E(r, t) = 0 (3.4)

The Eqs. (3.1)-(3.4) are written under the assumption of a static and linear medium without

charge and current densities. The electric field E(r, t) depends on the three dimensional spatial

coordinate r = (x, y, z) and time t. The magnetic induction B(r, t) can be expressed through

the magnetic field as

B(r, t) = µ0H(r, t), (3.5)

where for non-magnetic static media, magnetic permeability equal to the magnetic field con-

stant µ = µ0.

In the case when the electric permittivity ǫ(r) = ǫ0ǫr(r) varying only slowly on length

scales comparable to the wavelength of the field Eqs. (3.1)-(3.4) can be combined to form a pair

of vector wave equations, describing the propagation of electromagnetic waves by applying

the curl vector operator ▽× to ▽× E and using the vector identity ▽×▽ = ▽(▽ · A)−▽
2

[

ǫ(r)µ0
∂2

∂2t
−▽

2
]

E(r, t) = 0, (3.6)

[

ǫ(r)µ0
∂2

∂2t
−▽

2
]

H(r, t) = 0. (3.7)

Decoupled Eqs. (3.6) and (3.7) imply that the electric field does not depend on the components

of the mangetic field, which allows the transition to a scalar theory.

The Fourier decomposition into a continuous sum of monochromatic components of the

scalar electric wave field E(r, t) may be written as

E(r, t) =
1√
2π

∫ ∞

0
E(r, ω)e−iωtdω. (3.8)

The so-called Helmholtz equation for an inhomogeneous media can be derived by inserting

the spectral wave field decomposition of Eq. (3.8) into Eq. (3.6):

[▽2 + k2n2(r, ω)]E(r, ω) = 0, (3.9)
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Figure 3.1: Scheme of the free space propagation. The source plane located at z = 0 with the vector r⊥=
(x,y). The plane located at z1 represents the area of the near-field propagation. In the paraxial far-field
plane at z2 the vector in transverse coordinates r′⊥ = (x′,y′). The Fresnel number NF is the number that
determines the applicability of the near- and far-field approximations.

where k = 2π/λ is the wave number, n(r, ω)=
√

ǫ(r, ω)/ǫ0 is the refractive index. The quan-

tity ǫ(r, ω) cointains all non-magnetic and spatially dependent properties of the matter. It is

convenient to use the solutions of the Helmholtz equation when considering the propagation

of monochromatic wave fields either through free space or through a medium characterized by

a refractive index.

3.1.1 Free space propagation

The absence of any matter and sources of electromagnetic waves prompts the definition

of free space, where the electric permittivity is constant ǫ(r, ω) = ǫ0. In vacuum the index of

refraction is n(r, ω) = 1 and in this case the Helmholtz Equation (3.9) reduces to

[▽2 + k2]E(r, ω) = 0. (3.10)

Following [55, 56], for a description of free space forward propagation along an optical axis z,

it is necessary to derive an equation connecting the wave field at a plane z = z1 to an incident

wavefield at a plane z0. It can be done with the help of angular spectrum decomposition of

plane waves (PW), so that the required equation is

EPW(r, ω) = exp[ikr] = exp[i(kxx + kyy)] · exp[ikzz], (3.11)

being a solution to the Helmholtz Eq. (3.10). In Eq. (3.11) the wave vector kz = ±
√

k2 − k2
x − k2

y

describing evanescent waves traveling in opposite directions, and the propagation of a plane

wave along z is represented by the multiplicative factor exp[ikzz]. For the initial wave E(x, y, z =

0; ω) same propagation factor can be used if the wave can be represented as the infinite sum

of plane waves. The latter is achieved by a two-dimensional Fourier integral with respect to kx
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and ky

E(x, y, z = 0, ω) =
1

(2π)2

∫ ∫

Ẽ(kx, ky, z = 0, ω)exp[i(kxx + kyy)]dkxdky. (3.12)

Here Ẽ(kx, ky, z = 0; ω) denotes the Fourier transform of the initial wave E(x, y, z, ω). Since

the plane wave propagation factor is known, it can be used to propagate each plane wave

component by multiplication with the factor

EPW = exp[ikzz] (3.13)

into a plane at z1 > 0. The Eq. (3.13) is called the plane wave propagator. The final equation of

propagation can thus be described by the method of angular spectrum decomposition of plane

waves [56, 57]

E(x, y, z1, ω) =
1

(2π)2

∫ ∫

Ẽ(kx, ky, z = 0)exp[iz1

√

k2 − k2
x − k2

y]exp[i(kxx + kyy)]dkxdky.

(3.14)

or

E(x, y, z1, ω) = F−1

{

exp[iz1

√

k2 − k2
x − k2

y] · F{E(x, y, z = 0)},

}

(3.15)

where F and F−1 denote the Fourier and inverse Fourier transform with respect to x, y and

kx, ky.

There are two approximations that significantly simplify Eq. (3.14). As shown in Figure

3.1 in particular, the paraxial (small-angle or Fresnel) and second the far-field (Fraunhofer)

approximation within the small-angle approximation are useful for fast calculations of wave

field propagation.

3.1.2 Fresnel approximation

The propagation of wave fields within Fresnel approximation may be applied if the trans-

verse components kx and ky of the wave vector k are small compared to its magnitude |k|. In

this case, the field is called paraxial, it has amplitude values only in the vicinity ∼ D of the

optical axis z and obeys the relation k2 ≫ k2
x + k2

y=(2π/D)2. The latter implies that the paraxial

condition is

D ≫ λ. (3.16)

The Eq. (3.16) states, that the paraxial approximation can be used, when the field under consid-

eration has the projected area in the transverse xy-plane much larger than its wavelength. In

this case the plane wave propagator in Eq. (3.13) can be rewritten with the help of a binomial

expansion of kz =
√

k2 − k2
x − k2

y≈ k − (k2
x + k2

y)/2k + ..., truncated after the 2nd term:

EFresnel
PW = exp(ikz)exp

[

i
( k2

x + k2
y

2k

)

z
]

. (3.17)
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The propagation equation (3.15) described by the method of spectrum decomposition of plane

waves may be rewritten taking into account the Eq. (3.17)

E(x, y, z1, ω) ≈ exp(ikz)F−1

{

exp
[

iz
( k2

x + k2
y

2k

)]

· F{E(x, y, z = 0, ω)}
}

. (3.18)

Introducing the two-dimensional convolution of two functions f (x, y) and g(x, y) as

f (x, y) ⋆ g(x, y) = F−1[{F [ f (x, y)]} · {F [g(x, y)]}], (3.19)

the Eq. (3.18) may be rewritten in slightly different but more convenient convolution form. To

do so, the Eq. (3.18) first should be modified as

E(x, y, z1, ω) = F−1

{

FF−1
{

exp(ikz)exp
[

iz
( k2

x + k2
y

2k

)]}

· F{E(x, y, z = 0, ω)}
}

, (3.20)

then compared to Eq. (3.19) can be rewritten into convolution form

E(x, y, z, ω) = E(x, y, z = 0, ω) ⋆ P(x, y, z), (3.21)

where the real-space form of the Fresnel propagator P(x, y, z) is given by

P(x, y, z) = exp(ikz)F−1
{

exp
[

iz
( k2

x + k2
y

2k

)]}

= (3.22)

= − ik exp(ikz)

z
exp

[

ik
( x2 + y2

2z

)]

.

The other form of Eq. (3.18) is [57]

E(x′, y′, z) ≈ − ik exp(ikz)

z
exp

[

ik
( x′2 + y′2

2z

)]

· F
{

E(x, y, z = 0, ω)exp

[

ik
( x2 + y2

2z

)

]}

, (3.23)

obtained using the spherical wave definition and the following transverse coordinates r′⊥ =

(x′, y′), which are scaled with respect to the propagation distance via the reciprocal coordinates

k⊥ = (kx, ky), kx = kx′/z, and ky = ky′/z (see Fig. 3.1).

3.1.3 Far-field propagation within the paraxial approximation

The far zone is reached by the wave for the case of propagation distances that are very large

compared to the characteristic length scale D of the unpropagated wave-field (at the source

position z=z0 and D ∼ r⊥), i.e., λz ≫ D. In terms of dimensionless Fresnel number [56]

NF =
D2

λz
(3.24)
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the far zone is reached for NF ≪ 1, or at distances z ≫ D2/λ. This is a sufficient condition

to ignore the exponent which appears under Fourier transform in Eq. (3.23), so that dedicated

far-field propagation equation is gives

E(x′, y′, z, ω) ≈ − ik exp(ikz)

z
exp

[

ik
( x′2 + y′2

2z

)]

· F
{

E(x, y, z = 0, ω)

}

. (3.25)

Therefore, the propagated wave field in the far zone can be obtained simply by the single

Fourier transform.

3.1.4 Propagation through the optical elements

Considering the propagation of wave fields , optical elements are often involved, such as

apertures (Fig. 3.2 (a, b, c), thin lenses, compound refractive lenses (CRLs) (Fig. 3.2 (d)) and

transmission gratings. The transmission through a thin optical element can be performed by

multiplication with a transmission function T(r, ω) defined in the transverse plane so that the

propagated field right after the optical element is

Eout(r⊥, z, ω) = T(r⊥, ω) · Ein(r⊥, z, ω), (3.26)

where Ein(r⊥, z, ω) is the incident field. For instance the transmission function of a pinhole of

the diameter D (Fig. 3.2 (a)) is

T(r⊥, ω) =







1, for |r| < D/2

0, elsewhere.
(3.27)

The transmission function of the slit of a size D (Fig. 3.2 (b)) may be defined as

T(r⊥, ω) =







1, for |rx| < Dx/2 and |ry| < Dy/2

0, elsewhere.
(3.28)

A thin lens with the focal distance f(ω) and an infinite aperture may be defines as

T(r⊥, ω) = exp

(−ik|r⊥|2
2 f (ω)

)

. (3.29)

In this case, lenses used for the optical light can also be used for the focusing of X-rays with a

small change related to the complex refractive index

n(ω) = 1 − δ(ω) + iβabs(ω), (3.30)

where δ(ω) is the decrement of the refractive index and βabs(ω) is the absorption coefficient.

Because the real part of the refractive index n(ω) is smaller than unity for X-rays, these lenses

are produced by making voids in the material. Then lenses are combined together to improve
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Figure 3.2: Propagation scheme of wave fields through optical elements and the far-field amplitude
distribution in the case of (a) a pinhole with the diameter D (b), a slit with size D (c) double slits at a
distance L. Example of the CRL with the opening aperture D0 and the curvature radius R of the lens.

the focusing properties of the lens (Fig. 3.2 (d)). The transmission function of CRLs with the

focal distance f (ω) maybe defined as [58]

T(r⊥, ω) = O(r⊥, ω)exp

(−ik|r⊥|2
2 f (ω)

)

, (3.31)

with the additional function O(r⊥, ω), which describes the opening aperture of the lens D0

O(r⊥, ω) ∼ exp

( −|r⊥|2
4D2

0(ω)

)

, (3.32)

The focal distance and the opening aperture of the CRL stucked from N lenses can be found

through the curvature radius R of the lens, decrement of the refractive index, and the absorp-

tion coefficient

f (ω) =
R

2Nδ(ω)
, D0(ω) =

√

R

4Nkβabs(ω)
. (3.33)

If the optical element is not thin, then the complete integral should be considered, using the

transmission function of the element and the propagator. In some particular cases, the descrip-

tion of the element may be simplified. For instance, such an optical element as the VLS grating,

which gives simultaneously focusing of the wave field and the energy dispersion, may be re-

placed with the plane grating followed by the ’virtual’ thin lens with the focal distance f (ω)
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Figure 3.3: Fluctuating source of light, consisting of a number of radiators. Top panels show source
fluctuations at different times t1 and t2 due to random realizations of radiators. The bottom panels
show source fluctuations at different times due to random energy realizations.

given by the VLS grating [59]. Then the scattered field from the VLS grating may be found as

Eout(r, ω) =
∫

T(r′, ω)Rgr(r
′)P(r − r′)Ein(r

′, ω)eikr′dr′, (3.34)

where Rgr(r′) is the reflection function of the grating, transmission function of T(r′, ω) is given

by Eq. (3.29), and the propagator in the paraxial approximation for the focal distance f (ω)

defined as

P(r − r′) =
−ik

2π f (ω)
exp

[

ik
(r − r′)2

2 f (ω)

]

. (3.35)

3.2 Framework of statistical optics

Due to the statistical nature of light, a description of radiation properties within the classical

electromagnetic theory will not be sufficient. Usually, the real system under consideration im-

plies a heterogeneous source or several independent point sources. For instance, let us assume

a system where each point source radiates for some period of time, but due to Heisenberg’s

uncertainty principle [60], it is not known when precisely (see Fig. 3.3).



3.2. Framework of statistical optics 23

In this case, the concept of probability plays an important role. Studying the source fluctu-

ations, with each of the possible outcome of the measurement x1, x2 · · · xn, one may associate a

probability ρi (i=1, 2 · · · ) or probability density ρ(x) for continuous variate x. The latter shows

the probability for x to be found in the interval x to x + dx. The corresponding normalization

condition at the interval [a, b] is
∫ b

a
ρ(x)dx = 1. (3.36)

Associated important quantities are average < x > (expectation value) and nth moment < xn
>

of random variable x defined as

< x >=
∫

xρ(x)dx, (3.37)

σn =< xn
>=

∫

xnρ(x)dx. (3.38)

Considering a source fluctuating in time t, random variables x1 · · · xn form a continuum,

where x(t) is called a random process [8]. If the x does not depend on t deterministically, its

values can only be described statistically by a probability distribution or probability density

ρ(x, t). In this case, for < x(t) > and < x(t)n
> the probability density ρ(x) in Eqs. (3.37) and

(3.38) may be written as ρ(x, t) [8].

Alternatively, the random process may be represented as the set of all possible realizations

or samples of the function x(t). The countable collection of all possible realizations is known as

the ’ensemble’ of x(t). In the experiments the repetition of time-dependent measurements will

yield different realizations (samples of function x(t)), which can be labeled as (1)x(t),(2) x(t) · · ·
(see for example Fig. 3.4(a)). Therefore, the average < x(t) > is defined as [8]

< x >= lim
N→∞

1

N

N

∑
r=1

(r)x(t), (3.39)

which is equivalent to Eq. (3.37).

In the case, when the character of the fluctuations does not change with time, the random

process is called ’stationary’ (see for example Fig. 3.4(b)). The latter means that the probability

density is invariant under an arbitrary translation T of the origin of time [8]

ρ(x, t) = ρ(x, t + T), (3.40)

and so the average < x(t) >=< x(t + T) >.

In the situation, when every realization of the ensemble (r)x(t) of the stationary process x(t)

carries the same statistical information, the different time averages <
(r) x(t) > become equal

and coincide with the ensemble average. In this case, the stationary random process x(t) is

called the ’ergodic’ process.

For the system with heterogeneous sources or several independent point sources, due to

the superposition principle, the total radiation field, being the sum of all fields from individual

sources, fluctuates as a function of time. As optical fields fluctuate very rapidly, much faster

than it is possible to measure, only average intensities are accessible within experiments. In
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this case, expected values of wave fields can be found within the concept of ergodicity, when

the ensemble average replaces the time average.

3.2.1 Joint probability and correlations

The probability function ρ(x, t), introduced earlier, contains no information about possible

correlations between x(t1) and x(t2) and does not describe the random process completely.

Such information is provided by the joint probability density [8]

p[x2(t2); x1(t1)], (3.41)

or

p(x2, t2; x1, t1) = p(x2, x1; t2, t1). (3.42)

Such probability p(x2, x1; t2, t1) contains all the informatoin carried by ρ(x, t), and implies the

following property
∫

p(x2, t2; x1, t1)dx2 = ρ(x1, t1), (3.43)

where t2 disappeared during the integration for reasons of compatibility [8]. The probability

allows calculating two-time correlation (or autocorrelation) function of the random process x(t)

such as [8]

Γ(t1, t2) =< x(t1)x(t2) >=
∫

x1x2p(x2, t2; x1, t1)dx1dx2. (3.44)

The function Γ(t1, t2) yields information on how far correlations extend in time. For the station-

ary process p(x2, t2; x1, t1) = p(x2, t2 + T; x1, t1 + T). If time translation T is chosen as T = t− t1

then according to Eq. (3.44)

Γ(t1, t2) =< x(t1)x(t2) >=
∫

x1x2p(x2, t2 + t − t1; x1, t)dx1dx2 = (3.45)

< x(t)x(t + τ) >= Γ(τ), (3.46)

where τ = t2 − t1 is the time difference. When < x(t) > is independent of t and Γ(t1, t2)

depends only from τ, the process x(t) is called ’stationary in the wide sense’.

In the general case, the function Γ(t1, t2) may depend on spatial coordinates r as well, pro-

viding information on how far correlations extend in space and time.

3.2.2 Coherence

Coherence is the manifestation of the purity of a quantum state of light or matter [8, 62].

The concept of coherence has long been associated with interference since it is the most direct

way of measuring it. In the framework of statistical optics, the radiation field is characterized

by notions such as time and space coherence, which are temporal and spatial measures over

which the fields are well correlated. If the direction of propagation of fields is well defined, it is

convenient to decompose the region of coherence into orthogonal components in the direction
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Figure 3.4: (a) An ensemble of simple functions (1)x(t), · · ·(n) x(t) of a random process x(t). (b) An

ensemble of simple functions (1)x(t), · · ·(n) x(t) of a stationary process x(t), but not ergodic. (c) Repre-
sentation of transverse and longitudinal (temporal) coherence of the radiation. (d) Scheme of calculation
of the coherence length from the uncertainty of angle and source size. (e) Double slit diffraction pattern
for the radiation from the incoherent source. Figures (a,b) were adapted from [55] and (c-e) from [61].

of propagation and transverse to it (see Fig. 3.4 (c)). Notions time and space coherence are

closely related to Heisenberg’s Uncertainty Principle, which define limits of quantum mechan-

ical distributions

∆E · ∆τ ≥ h̄/2, (3.47)

∆x · ∆p ≥ h̄/2, (3.48)

where ∆E is the rms bandwidth of photon energy required to generate a pulse of rms duration

∆τ and ∆p = h̄∆k defines uncertainty in vector momentum. The Eqs. (3.47, 3.48) divided by

the Planck constant h̄ give

∆ω · ∆τ ≥ 1/2, (3.49)

∆x · ∆k ≥ 1/2, (3.50)

relations between the quantities of pulse duration and the spectral bandwidth as well as un-

certainty in position and wave vector, obeying Gaussian statistics. Therefore, resultant fields

are described mathematically in terms of Fourier transforms in time and space. In this frame,

according to Eq. (3.49), temporal coherence defines the degree of monochromaticity of the

source. In other words, the larger range of frequencies ∆ω a wave contains, the faster the wave

decorrelates. Temporal coherence is the measure of the average correlation between the value

of a wave and itself delayed by τ, at any pair of times t1 and t2 (or coordinates P1 = ct1 and

P2 = ct2, see Fig. 3.4 (a)).
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Thus, it characterizes how well a wave can interfere with itself at a different time. The delay

over which the phase difference of the radiation changes by a significant amount (and hence

the correlation decreases by significant amount) is defined as the coherence time τc.

Coherence time may be explained in the frame of Michelson type of experiment, where

the radiation pulse is separated into two and forced to pass different path lengths to combine

them back together again afterward. If the difference between the path lengths is less than cτc,

the interference pattern will occur at the end, after averaging over a large number of radiation

pulses. The latter means that the radiation field is correlated within the time of coherence. The

optical path difference at which the interference pattern disappears l
‖
coh is defined as

l
‖
coh =

λ2

2∆λ
. (3.51)

It can be shown from Eq. (3.50) that spatial coherence is related to the finite source size and the

characteristic emission angle of the radiation. In this case, the framework of interest is located

in planes orthogonal to the direction of propagation. The smallest source size D resolvable

with finite wavelength λ can be determined from Eq. (3.50). If the spectral bandwidth is small

δλ/λ, then the uncertainty in momentum may be replaced by uncertainty in angle ∆θ, which

yields

∆x · ∆θ ≥ λ

4π
. (3.52)

Replacing ∆x by the source diameter D and uncertainty ∆ω with half angle θ (see Fig. 3.4 (b))

the phase space volume is obtained

D · θ ∼ λ/2π. (3.53)

The Eq. (3.53) will be important when considering the following chapters. If theta is replaced

with θ ∼ l⊥coh/z (see Fig. 3.4) in Eq. (3.53) then relation for the spatial coherence length is

obtained

l⊥coh ∼ zλ

D
. (3.54)

which will be discussed in section 3.5. As longitudinal coherence in Michelson type of exper-

iment, in the same way, the spatial coherence can be shown in the frame of Young’s pinhole

experiment. In this case, the radiation is directed through two slits to the screen in the far

diffraction zone, and the interference pattern is observed by changing the distance L between

the slits (see Fig. 3.2 (c)). If the slits are located close to each other, then a clear diffraction

pattern is seen. As the distance between the slits increases to some value L = D > l⊥coh, one

comes to the situation when the interference pattern is not seen anymore after averaging over

the ensemble of pulses.

3.2.3 Mutual Coherence Function

The basic theory of optical coherence is the first-order coherence theory, when the ampli-

tudes of wave fields or intensities are correlated [4, 8, 62]. The measure of the first-order coher-
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ence is given by the mutual coherence function (MCF) defined as [8]

Γ(r1, r2, t1, t2) =< E∗(r1, t1)E(r2, t2) > . (3.55)

It describes correlations between two values of the electric field E(r1, t1) and E(r2, t2) at differ-

ent points r1 and r2 and times t1 and t2. The brackets < . . . > denote ensemble average. In the

space-time domain the corresponding normalized MCF is defined as [8]

γ(r1, r2, t1, t2) =
Γ(r1, r2, t1, t2)

√

< I(r1, t1) >
√

< I(r2, t2) >
, (3.56)

where τ = t1 − t2 is the time difference, and the avaerage intensity < I(r, t) > is obtained when

two points and times coincide

< I(r, t) >= Γ(r, r, t, t) =< |E(r, t)|2 > . (3.57)

The function γ(r1, r2, t1, t2) is known as the complex degree of coherence (SDC). The modulus

of the CDC is often measured in interference experiments as the contrast of the interference

fringes. A characteristic width of the CDC |γ(r1, r2, t1, t2)| in the spatial domain and in the

temporal domain is usually called the transverse and the temporal coherence length.

For stationary and ergodic wave-fields, the MCF is invariant under time translation and can

be written as [8]

Γ(r1, r2, τ) =< E∗(r1, t)E(r2, t + τ) >T, (3.58)

where the time average

f (r, t) = lim
T→∞

∫ T/2

−T/2
f (r, t)dt. (3.59)

In the space-frequency domain the cross-spectral density function (CSD) of a stationary

source is introduced by the Fourier transform of the MCF (see for example Fig. 3.5 (b))

W(r1, r2, ω) =
∫

Γ(r1, r2, τ)e−iωτ dτ, (3.60)

where τ = t1 − t2 (which is valid for a stationary source). It is important to note, that CSD

function is Hermitian in the sense that

W(r2, r1, ω) = W∗(r1, r2, ω).

The spectral density of the radiation field is obtained when two points r1 and r2 coincide r =

r1 = r2

S(r, ω) = W(r1, r2, ω). (3.61)

A convenient measure of the spatial coherence is the normalized CSD (see for example Fig.

3.5 (c))

µ(r1, r2, ω) =
W(r1, r2, ω)

√

S(r1, ω)
√

S(r2, ω)
, (3.62)
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which is called the spectral degree of coherence (SDC). The values of this function are ranging

from zero to one.

Another convenient measure of coherence is the degree of coherence ζ, which characterizes

coherence properties of the wavefield by a single number and can be introduced as [63, 64]

ζ(ω) =

∫

|W(r1, r2, ω)|2 dr1dr1

(
∫

S(r, ω) dr)2
. (3.63)

The values of the parameter ζ(ω) lie in the range of 0 ≤ ζ(ω) ≤ 1, where ζ(ω) = 0 and

ζ(ω) = 1 correspond to incoherent and fully coherent radiation, respectively.

In order to perform coherence analysis in the spatial domain, it is assumed that temporal

separation τ is small relative to the coherence time τc = 2π/ω, defined by the spectral band-

width ∆ω of the wave field. In this case, a source is considered narrow-band, and the radiation

produced by such a source, which spectrum lies inside a narrow band [ω0 − ∆ω, ω0 + ∆ω] is

quasi-monochromatic.

In the quasi-monochromatic regime (i.e. ∆ω ≪ ω), it is possible to approximate the MCF

in Eq. (3.55) as [8]

Γ(r1, r2, τ) ≈ J(r1, r2)e
−iω0τ, (3.64)

provided that |τ| ≤ 1/∆ω. Here J(r1, r2) is the Mutual Optical Intensity (MOI) defined as

J(r1, r2) = Γ(r1, r2, 0) =< E∗(r1, t)E(r2, t) > . (3.65)

Taking into account all of the above, one may represent CSD for quasi-monochromatic radiation

as

W(r1, r2, ω) = J(r1, r2)δ(ω − ω0), (3.66)

which describes correlations between two complex values of the electric field at different points

r1 and r1 at a given frequency.

Finally, for quasi-monochromatic radiation, which means that the effective bandwidth is

small compared with its mean frequency (i.e ∆ω/ω0 ≪ 1), the CSD W(r1, r2, ω) and MOI

J(r1, r2) functions as well as spectral density S(r, ω) and intensity I(r) ≡ Γ(r, r, 0) =< E∗(r, t)E(r, t) >

functions are equivalent.

In some particular cases it is convinient to replace positional vector of CSD function with

the following vectors

r = (r1 + r2)/2, ∆r = (r1 − r2), (3.67)

where vector r indicates position at which a two-slits system is introduced to probe coherence,

and ∆r is the vector describing the separation between the two slits. Thus, a new CSD function

G(r, ∆r, ω) (see for example Fig. 3.5 (f)) defined as

G(r, ∆r, ω) =

〈

E∗(r + ∆r/2, ω)E(r − ∆r/2, ω)

〉

, (3.68)
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Figure 3.5: (a) Intensity distribution of the modeled radiation, with the degree of coherence ζ = 0.4, (b)
Absolute value of the CSD function in the horizontal direction for the modeled radiation. The intensity
function in the horizontal direction x, may be found as the diagonal cut of |W(x1, x2)| shown by the
dashed line. (c) The absolute value of the normalized SDC function |µ(x1, x2)| and (d) the absolute
value of the SDC along the anti-diagonal line shown in (c) as a function of the separation of two points
|µ(∆x/ξx)|, normalized to the coherence length of the modeled radiation ξx = 0.1 mm. At a separation
equal to the coherence length ξx the SDC drops to 1/

√
e = 0.61. (e) The first four modes E1...E4 of

the modeled radiation, showed in (a). (f) Absolute value of the CSD function G(x, ∆x) of the modeled
radiation.

and normalized SDC in this case is defined as

g(r, ∆r, ω) =
G(r, ∆r, ω)

√

G(r + ∆r/2, ω)G(r − ∆r/2, ω)
. (3.69)

The fringe visibility V = Imax−Imin
Imax+Imin

= 2
√

I1 I2
I1+I2

g of an interference experiment may be written as

V =
2G(r, ∆r, ω)

G(r + ∆r/2, 0, ω)G(r − ∆r/2, 0, ω)
(3.70)
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3.3 Coherent-mode representation of the cross-spectral density func-

tion

It is well-known [8] that, under very general conditions, one can represent the CSD of a

partially coherent, statistically stationary field of any state of coherence as a series

W(r1, r2, ω) = ∑ β j(ω)E∗
j (r1, ω)Ej(r2, ω), (3.71)

here β j(ω) are eigenvalues and independent coherent modes Ej(r, ω) are eigen-functions of the

Fredholm integral equation of the second kind

∫

W(r1, r2, ω)Ej(r1, ω) dr1 = β j(ω)Ej(r2, ω). (3.72)

According to Eq. (3.71) and Eq. (3.61) the spectral density can be represented as (see for exam-

ple Fig. 3.5 (e))

S(r, ω) = ∑ β j(ω)|Ej(r, ω)|2. (3.73)

Substitution of Eq. (3.71) and Eq. (3.73) into Eq. (3.63) gives for the global degree of coherence

ζ(ω) =
∑ β2

j (ω)

(∑ β j(ω))2
(3.74)

Important characteristics of this coherent mode decomposition are: the mode functions Ej(r, ω)

form an orthonormal set, the eigenvalues β j(ω) are real and non-negative β j(ω) ≥ 0, and

β0(ω) ≥ β1(ω) ≥ .... If there is only one single mode present then radiation is fully coher-

ent, while for incoherent radiation the CSD contains a significant number of modes. Thus we

can define the coherent fraction (CF) of radiation field ζCF(ω) as an occupation or normalized

weight of the first mode

ζCF(ω) =
β0(ω)

∑
∞
0 β j(ω)

(3.75)

3.4 Gaussian Schell-model

Gaussian Schell-model (GSM) is a simplified but often used model [8, 64, 65] that repre-

sents radiation from a real X-ray source based on the following approximations. The source is

modelled as a plane two-dimensional source, the source is spatially uniform, i.e. the SDC de-

pends only on the difference r2 − r1, the SDC µ(r2 − r1) and spectral density S(r) are Gaussian

functions. In the frame of GSM cross-spectral density function, spectral density and SDC are

defined as [8]

W(r1, r2) = µ(r2 − r1)
√

S(r1)
√

S(r2), (3.76)

S(r) = S0exp

(−r2
x

2σ2
x

+
−r2

y

2σ2
y

)

, (3.77)
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µ(r2 − r1) = exp

(−(rx2 − rx1)
2

2ξ2
x

+
−(ry2 − ry1)

2

2ξ2
y

)

, (3.78)

where S0 is a normalization constant, σx,y is the rms source size and ξx,y is the transverse co-

herence length in the source plane in x- and y- direction, respectively (see for example Fig. 3.5

(d)). One of the important features of this model is that CSD function is separable into two

transverse directions

W(r1, r2) = W(rx1, rx2)W(ry1, ry2). (3.79)

The same is valid for the global degree of coherence defined in Eq. (3.63)

ζ = ζxζy, (3.80)

where in each transverse direction [65]

ζi(ω) =

∫

|W(ri1, ri2)|2 dri1dri2

(
∫

S(ri) dri)2
=

ξi/σi
√

4 + ( ξi
σi
)2

, (3.81)

with i = x, y.

Coherent modes in the GSM are described by the Hermite-Gaussian functions [64–67]

βi/β j = κ
j, (3.82)

Ej(ri) =

(

κ
j

2πkσ2ζi

)1/4
1

√

2j j!
Hj

(

ri

σ
√

2ζi

)

exp

(

r2
i

4σ2ζi

)

, (3.83)

where the coefficient κi = (1 − ζi)/(1 + ζi) is introduced, Hj

(

ri/σ
√

2ζi

)

are the Hermite poly-

nomials of order j, and i = x,y. The zero mode is a Gaussian function and propagation of

Hermite-Gaussian modes in the far-field region gives Hermite-Gaussian modes of the same

shape. In the frame of GSM, according to Eq. (3.75) coherent fraction of the radiation field for

one transverse direction may be determined as

ζCF
i =

(

∞

∑
j=0

β j(ω)

β0(ω)

)−1

=

(

∞

∑
j=0

κ j

)−1

≈ 2ζi

1 + ζi
. (3.84)

3.5 Propagation of correlation functions

It can be shown then that propagation of a cross-correlation function is described by the

Helmholtz equation as well

[▽2 + k2]W(r1, ω1, r2, ω2) = 0 (3.85)

and the propagation of the cross-spectral correlation function is described as [8]

W(r1, r2, z1, ω) =
∫

W(r1
′, r2

′, z0, ω)P∗(r1, r1
′, ω)P(r2, r2

′, ω)dr1
′dr2

′ (3.86)
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Figure 3.6: Scheme of propagation of correlation functions for (a) general case and (b) Van Cittert-
Zernike theorem.

where P(r, r′, ω) is a propagator in free space (see Fig. 3.6 (a))

P(r, r′, ω) =
−ik

2π

eikz

z
exp

(

ik
|r − r′|2

2z

)

(3.87)

The propagation of the CSD function through a thin optical element with a transmission func-

tion T(r, ω) (listed in section 3.1.4) by the analogy with Eq. (3.26) can be described as [64]

Wout(r1, r2, z, ω) = T∗(r1, ω)T(r2, ω)Win(r1, r2, z, ω). (3.88)

The important Van Cittert-Zernike theorem concerning correlation functions, implies that

the wavefront from an incoherent source will appear mostly coherent at large distances. For an

incoherent source MOI function at the source is defined as

J(r1, r2) = I(r1)δ(r2 − r1). (3.89)

In the paraxial approximation, assuming quasimonochromaticity of radiation, the propa-

gated mutual intensity function from the source position can be written as

J(r′1, r′2) =
(

k

2π

)2 ∫

I(r)
exp(ik(|r′2 − r| − |r′1 − r|))

|r′2 − r||r′1 − r| dr, (3.90)

or in the far zone

J(r′1, r′2) =
(

k

2π

)2 exp
(

ik
z

(

|r′2|2 − |r′1|2
))

z2
× (3.91)

×
∫

I(r)exp
(

− ik

z
(r′2 − r′1)

)

dr =

=
exp(iΨ)

(λz)2

∫

I(r)exp
(

− i2π

λz
(r′2 − r′1)

)

dr.

The normalized MOI in this case, may be written as

µ(r1
′, r2

′) =
exp(−iΨ)

∫

I(r)exp
(

− i2π
λz (r

′
2 − r′1)

)

dr
∫

I(r)dr
. (3.92)
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In Eqs. (3.90, 3.91), r and r′ are the vectors located in the transverse plane at the source position

and observation position accordingly (see Fig. 3.6 (b)). As a result, MOI at the observation

plane, up to a factor exp(iΨ), may be found by the two-dimensional Fourier transform of the

intensity distribution I(r) over the source surface. The factor exp(iψ) can be neglected in cases:

z ≫ |r′2|2 − |r′1|2
λ

→ exp(iΨ) ≈ 1

points r2 and r1 are at the same separation → exp(iΨ) = 1

For example, according to the Van Cittert-Zernike theorem, the normalized MOI of the source

with the radius D is described by the Airy function (see Fig. 3.6 (b)). In the frame of GSM, for

completely incoherent sources (ζ = 0), the effect of an increased spatial coherence length upon

far-field propagation can be found as well [44]

ξ ∼ λz

D
. (3.93)

Equation (3.93) implies, that coherence length improves by propagation distance z and by a

reduction of the source size D. It was also shown that coherence properties of synchrotron ra-

diation sources are not accurately described by the Van Cittert-Zernike theorem [68], since the

latter is assumed to be partially coherent. However, Eq. (3.93) is useful to obtain a rough esti-

mate of the coherence properties of undulator-based X-ray sources described in the following

chapter.

3.6 Basic concept of radiometry. Wigner distribution

In the frame of basic radiometry, the radiant intensity Fω (with the help of Eq. (3.89)) [8]

Fω =
∫

2π
I(r′, ω)dΩ, (3.94)

shows the rate at which the source radiates energy at frequency ω per unit solid angle dΩ

around r′-direction. A basic radiometry law describes the rate dFω at which energy at frequency

ω is radiated into the element dΩ of solid angle by an element dσ of planar source with σ size

d2Fω = Bω(r, r′, ω)cos(θ)dσdΩ, (3.95)

where r position vector of the point in the source plane at which the element dσ is located, θ

is the angle between vector r′ and the normal to the element dσ. Here the function Bω(r, r′) is

called the spectral radiance or brightness. Therefore, Eq. (3.95) implies the total radiation rate

as

Fω =
∫

2π
dΩcos(θ)

∫

σ
d2rBω(r, r′, ω). (3.96)
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Comparing Eq. (3.94) and (3.96) it can be found, that

I(r′, ω) = cos(θ)
∫

σ
Bω(r, r′, ω)d2r. (3.97)

In Eq. (3.98) the intensity I(r′, ω) may be calculated via back propagation in Eq. 3.90, acounting

for Eq. 3.66

I(r′, ω) =

(

k

2π

)2

cos2(θ)
∫

σ
W(r1, r2, ω)exp(−ikr′(r2 − r1))dr1dr2. (3.98)

Comparing Eqs. (3.97) and (3.98), in the paraxial approximation with small angle θ, it is possi-

ble to write

∫

Bω(r, r′, ω)dr =

(

k

2π

)2 ∫

W(r1, r2, ω)exp(−ikr′(r2 − r1))dr1dr2. (3.99)

At this point, it is convenient to replace positional vectors according to Eq. (3.67), then the

relation in Eq. (3.99) is satisfied for

Bω(r, r′, ω) =

(

k

2π

)2 ∫

G(r − ∆r/2, r + ∆r/2, ω)exp(−ikr′∆r)d∆r. (3.100)

Thus, the final expression for the radiance or spectral brightness Bω(r, r′, ω) is derived. This

expression is very similar to the definition of the Wigner function, describing the phase-space

distribution function

W(r, r′) =
(

k

2π

)2 ∫

G(r, ∆r)exp(−ikr′∆r)d∆r, (3.101)

which is, in fact, the Fourier transform of the CSD function. Therefore Wigner-function formu-

lation may describe the diffraction effects. If the thin object is defined in the transverse plane

by the transmission function T(r) then the Wigner function of the trnasnission function

WT(r, r′) ∼
∫

T∗(r + ∆r/2)T(r − ∆r/2)exp(−ikr′∆r)d∆r, (3.102)

can be introduced to describe the diffraction, where the filed which leaving the object as the

convolution [69]

Bout(r, r′, ω) ∼
∫

Bin(r, r′)WT(r, r′ − r′′)dr′′. (3.103)



Chapter 4

Theory of Synchrotron Radiation

A brief Synchrotron Radiation theory is reviewed in this chapter concerning power radiated

by relativistic electrons subjected to the periodic acceleration, the spectrum of the radiation,

electron bunch phase space, and main parameters of radiation such as photon source size,

divergence, and brightness.

The concept of brightness, which is used as a quality factor of synchrotron radiation and

free-electron laser (FEL) sources, is historically rooted in radiometry [4, 8], as has been shown in

section 3.6. Radiometry treats radiation within the framework of geometrical optics and char-

acterizes sources in terms of radiance, that is the maximum photon flux density in phase space,

measured as a spectral photon flux per unit area per unit of the solid angle (see Eq. (3.95)). A

pleasant peculiarity of the radiance is that for non-dissipative systems this quantity is invariant

along the direction of propagation. Therefore, it is strictly related to the maximum spectral pho-

ton flux that can be obtained at the sample position, assuming an ideal optical system. Other

macroscopic quantities of interest can be derived by the convolution with the computed phase-

space distribution. Starting from the very basics, various publications are available, which deal

with the generalization of the concept of radiance and Wigner distribution to the case of par-

tially coherent sources of synchrotron radiation [70–73]. During the generalization process, it is

crucial to have a working transition from pure geometrical optics (when source parameters are

relatively big) to wave optics (in the case when the source dimensional parameters are close to

the diffraction limit). Such transitions are provided by the substitution of the phase space of op-

tical rays in geometrical optics with a Wigner distribution W. For the case of storage rings, one

can approximate the transverse phase space distribution with a Gaussian distribution, obtain-

ing such vital parameters as transverse beam size divergence. Moreover, for undulator sources,

it is common to approximate the single-electron radiation at resonance with a Gaussian beam.

In contrast to the real undulator field, Gaussian functions are factorizable in transverse direc-

tions, and therefore a simplified expression for the brightness is usually presented.
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Figure 4.1: Schematic representation of the procedure for calculating the power radiated by relativistic
electrons subjected to the periodic acceleration in the undulator (reproduced from [74]). (a) Initial labo-
ratory frame of reference, (b) Relativistic Doppler shift, (c) Frame of reference moving with the average
velocity of the electron, (d) Dipole radiation of the oscillating electron in the frame of reference moving
with the average velocity, (e) Dipole radiation of the oscillating electron in the laboratory frame.

4.1 Synchrotron Radiation

An outline for the procedure of calculating power radiated by relativistic electrons sub-

jected to the acceleration in the periodic magnetic structure is shown in Fig. 4.1. In Fig. 4.1 (a)

schematically shown the lateral position of an electron as a function of propagation along the

z-axis. The electron moves from left to right. Due to the relativistic Doppler shift effect, the

frequency of light emitted by the electron and seen by an observer in the laboratory frame is

defined as [75]

ω = ω′γ(1 − βνcos(θ′)), (4.1)

where ω′ is the frequency emitted by the moving source, θ is the angle at which the source

emits the radiation. For the system, shown in Fig. 4.1, the electron is moving towards the

observer, then the angle θ′ = π, and the radiation frequency is



4.1. Synchrotron Radiation 37

ω = ω′γ(1 + βν), (4.2)

or the wavelength

λ =
λ′

γ(1 + β)
∼ λ′

2γ
. (4.3)

Therefore, the wavelength of radiation that the observer sees will be much smaller than the

source emits. In order to find the radiation wavelength of the source, it is easier to move to

the reference frame moving with the average speed of the electron. In Fig. 4.1 (c) the same

motion is shown in the frame of reference moving along the z-axis together with the average

speed of the electron. In the particle rest frame, it sees a magnetic field from the undulator

rushing towards it. If in the laboratory frame the magnet period is λu then because of Lorentz

contraction the electron sees it as

λ′ =
λu

γ
. (4.4)

In the particle rest frame during one period of electron oscillations along x, two electron

oscillations along z pass (’trembling’, see [76]). These oscillations generate dipole radiation

(see Fig. 4.1 (d)). The radiation frequency in the frame of reference moving with the electron

is equal to the electron oscillation frequency which, in terms of wavelength, is represented by

Eq. (4.4). The radiation diagram of an electron in the laboratory frame of reference can be

obtained using the Lorentz transformations. In this case the angle at which the observer views

the radiation from source will also be affected as [75]

sinθ =
sinθ′

γ(1 − βνcosθ′)
. (4.5)

Since the point at which the electric dipole has zero amplitude in the moving frame corresponds

to the angle θ′=π/2, the same point appears in the laboratory frame, according to Eq. (4.5) at

the angle θ≈1/γ.

As can be seen from Fig. 4.1 (d), due to perpendicular motion of the electron, generated

radiation propagating along the z-axis, while the radiation produced due to longitudinal os-

cillation is observed off-axis. Since particles move with relativistic velocities, in the laboratory

frame, due to Lorentz transformations, the wavelength of the emitted radiation according to

Eqs. (4.3) and (4.4) is reduced to the X-ray wavelength

λ =
λu

2γ2
. (4.6)

For instance, an undulator with a period of a few centimeters, in the case when the Lorentz

factor is about γ ∼ 104 will provide radiation with wavelengths of nanometers (i.e. X-ray

range).
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Figure 4.2: (a) Oscillating electron trajectory in the periodic magnetic structure with the magnetic field
B and period λu. Difference between wigglers (b) and undulators (c) in the size of the excursions from a
straight path of electron motion. In these figures, distances and angles were over-exaggerated.

4.2 Insertion devices and spectrum of the radiation

The lateral position of an electron as a function of propagation along the z-axis is shown in

Fig. 4.2(a). The deflection of the electron is caused by a magnetic field which induces a Lorentz

force on the particle.

F = e[E + ν × B]. (4.7)

In the absence of external fields, the force is perpendicular to both the motion of the electron

and the magnetic field vector B

F = m
d2r

dt2
= e[ν × B]. (4.8)

It is convenient to replace the time derivative dt with the space derivative dz = cdt as

dr

dt
= c

dr

dz
,

d2r

dt2
= c2 d2r

dz2
. (4.9)

Then equations of motion for the electron in the periodic magnetic field are
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d2x

dz2
=

e

γmec
(By −

dy

dz
Bz),

d2y

dz2
=

e

γmec
(

dx

dz
Bz − Bx),

(4.10)

where the mass m was replaced with the relativistic mass γme. In the case where the electron

deflection occurs only in horizontal plane induced only by vertical magnetic field, as shown in

Fig. 4.2, the Eq. (4.10) simplifies as

d2x

dz2
=

eBy

γmec
,

d2y

dz2
= 0.

(4.11)

The magnetic field is assumed to be sinusoidal with the period λu

By = −B0sin
(2πz

λu

)

, (4.12)

where B0 is the value of the undulator magnetic field. The integration of Eq. (4.11) with the

help of Eq. 4.12 gives the relative transverse velocity in the horizontal direction

βν,x =
dx

dz
(z) =

B0e

γmec

λu

2π
cos

(2πz

λu

)

. (4.13)

The Eq. (4.13) shows a horizontal angular deflection from z axis, therefore, the deflection pa-

rameter which shows the peak angular deflection is defined as

K =
B0e

mec

λu

2π
. (4.14)

Second integration of the Eq. (4.11) gives the electron motion in the periodic magnetic structure

depending on its properties

x(z) =
K

γ

λu

2π
sin

(2πz

λu

)

. (4.15)

Therefore, the peak angular deflection is K/γ. As recalled, due to the relativistic motion, the

radiation cone from the particle lies within the angle θcen ∼ 1/γ. The latter means that if the

K ≫ 1 the electron trajectory will not overlap with the emitted cone of SR (see Fig. 4.2 (b)),

and there will be much more overlap if K ≤ 1 (Fig. 4.2 (c)). In this way, the transition from

undulatory radiation to wiggler radiation can be explained by the coefficient of undulation K

as







K ≤ 1, undulator radiation.

K ≥ 1, wiggler radiation.
(4.16)
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In the undulator case, if the angular deviations of the electron are significantly less than the

angular divergence of the radiation, then the radiation field of the electron interferes with the

field of the same electron, formed at the next period of the magnetic field, at a given wavelength

and at its harmonics n. As a consequence, this radiation has a lower angular divergence and a

smaller spectral width (Fig. 2.4 (d)). The opening angle of such radiation can be approximated

by the expression

θ ≈ 1

γN1/2
, (4.17)

and the intensity increases by approximately N2
u times due to constructive interference. For the

constructive interference between wavefronts emitted by the electron, the distance d between

the first emitted wavefront and the second one (see Fig. 4.2 (a)) should contain a whole num-

ber of wavelengths over one period of the electron oscillation. Introduced relative transverse

velocity in the horizontal direction βν,x is the part of the total velocity

β2
ν = β2

ν,x + β2
ν,z. (4.18)

The relative longitudinal velocity then is defined as

β2
ν,z = β2

ν −
K2

γ2
cos2

(2πz

λu

)

, (4.19)

where βν for the relativistic case is simplified as

βν =

√

1 −
( 1

γ2

)2 ≈ 1 − 1

2γ2
, (4.20)

Using the result, cos2α = 2cos2 − 1 and the approximation (1 − x)1/2 ∼ 1 − x/2, in Eq. (4.19)

the longitudinal velocity can be rewritten as

βν,z = βν

(

1 − K2

4β2
νγ2

− K2

4β2
νγ2

cos
(4πz

λu

)

)

, (4.21)

which means that the average velocity in the forward direction is

βν,z = βν −
K2

4βνγ2
≈ 1 − 1

2γ2
− K2

4βνγ2
, (4.22)

The time, which takes the electron to travel one period is t = λu/νz= λu/cβν,z. During this

time the first wavefront will travel the distance ct = λu/βν,z. Therefore, the separation between

the wavefronts, which should be equal to the whole number of wavelengths, is defined as

nλ =
λu

βν,z
− λucos(θ), (4.23)

Inserting Eq. (4.22) into Eq. (4.23), considering (1 − x)−1 ≈ 1 + x, and 1 − cos(θ) = 2sin2(θ/2),
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Figure 4.3: Difference between undulator spectrum for changing K parameter: (a) K = 1 (b) K = 4 and
wiggler (c) K = 4. The figure is adapted from [77]. (d) Examples of spectral brightness form different
insertion devices: Undulator, Wiggler, and Bending Magnet.

as well as the approximation for a small angles, the final common undulator equation can be

obtained

λn =
λu

n 2γ2

(

1 +
K2

2
+ γ2θ2

)

. (4.24)

The Eq. (4.24) shows that the wavelength of the undulator radiation primarily depends on the

period λu and the energy, but also K and the observation angle θ. The radiation spectrum of

a linear undulator consists not only of the wavelengths described by equation (4.24), but also

contains harmonics with wavelength λn = nλ , where n = 1, 2, 3, 4, ... Example of the undulator

spectrum is show in Fig. 4.3.

The transformation from wiggler to undulator radiation is achieved in practice not by re-

ducing the amplitude of electron oscillations (which is achieved by decreasing the magnetic
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field strength between the magnetic pole pairs and would result in a drop in flux) but instead

by reducing the magnetic pole period λu. The harmonic spectrum (see Fig. 4.3) transforms

into a continuous spectrum at K ≫ 10. Such a spectrum includes a range of high photon ener-

gies; therefore, wigglers are used to generate X-ray photons with energies from several tens to

hundreds of keV.

According to Eq. (4.24) undulator spectrum can be tuned by changing K, which in turn is

achieved by changing the gap between the two sets of magnetic poles and thereby the magnetic

field strength B0. The relative bandwidth or the spectral width of the undulator harmonics is

much smaller than for other insertion devices and depends on the number of periods

∆λ

λ
=

1

Nn
, (4.25)
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Figure 4.4: (a) Example of the electron transverse lx, ly and angular ηx, ηy displacements from the central
orbit in the phase space representation. (b) Transformation of the electron beam emittance along the
propagation direction. (c) Definition of phase space area through optical functions. (d) Emittance of the
electron beam at focus position.

4.3 Emittance of the electron bunch

The properties of the X-ray radiation, including the spectral brightness and the degree of

spatial coherence, are determined by the properties of a single electron along with the prop-

erties of the total electron bunch. Since the electron bunch is circulating in the storage ring,

passing many insertion devices, correcting and refocusing magnets, the beam dynamics is al-

ways changing. A real electron beam consists of a huge number of particles ∼ 1012 so that the

calculation of each electron trajectory becomes difficult. In this case, it is more convenient to

trace the evolution of macroscopic electron beam parameters like beam size and beam diver-

gence along a storage ring. Each particle of a beam is characterized by its transverse lx, ly and

angular ηx, ηy displacements from the central orbit (see Fig. 4.4 (a)). These displacements are

dependent on the longitudinal position z and thus vary along the storage ring. Four of these

quantities together with z compose the phase space of the electron beam. By taking a Poincaré

section (a snapshot at a fixed z) a distribution of points in the 4-dimensional transverse phase

space area (x,x′,y,y′) may be obtained, where each point represents a single particle. Implying

linear beam dynamics the motions in the horizontal and vertical planes may be decoupled,

so that transverse areas of the phase space (x,x′) and (y,y′) may be considered separately and

written as (r,r′). The transverse and angular displacements (r,r′) usually characterized by the

variances values
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σ2
e =< r2

>=
1

N

N

∑
i=1

r2
i , σ′

e =< r′2 >=
1

N

N

∑
i=1

r′2i , (4.26)

while their mean values are vanishing < r2
>=< r′2 >=0 if the beam is centered on the orbit

axis. The quantity σe represents electron beam size and σ′
e represents electron beam divergence.

According to Liouville’s theorem, the phase space distribution is invariant under conservative

forces. The same applies to the phase space area. This gives rise to the definition of the electron

beam emittance

εe =
phase space area

π
= σeσ

′
e, (4.27)

which indicates the area in the phase space covered by the beam and therefore characterizes an

intrinsic property of the electron beam. The electron beam emittance stays invariant, however,

electron beam size and divergence may vary while particles are moving through the magnetic

lattice of the storage ring. In order to trace the beam parameters through the storage ring, the

phase space area is defined by the convenient form of an ellipse (see Fig.4.4 (b,c))

εe = γer
2 + 2αerr′ + βer

′2, (4.28)

where γe,αe,βe are called optical functions (Twiss parameters) and represent electron beam

parameters per unit emittance. Therefore, the electron beam parameters across the storage

ring may be found through these optical functions, which also change through the magnet lat-

tice. For example, a transformation of the Beta function βe through the Double-bend-achromat

(DBA) and Multi-bend-achromat magnetic lattices of the storage ring is shown in Fig. 4.5.

There are special positions across the magnetic lattice: the straight sections where the insertion

devices are placed, and the electron beam is focused. At this position, the machine is tuned

such that the Alpha function αe vanishes (Fig. 4.4 (d)), so the electron beam parameters may be

easily found as

σe =
√

εeβe σ′
e =

√

εe

βe
. (4.29)

In general an electron beam with emittance εe = εx
e ε

y
e described by a Gaussian distribution

function in the longitudinal and transverse directions. In the straight section at the electron

beam focus z = 0, the electron bunch distribution function fe may be written as

fe(x, x′, y, y′, z = 0) =
1

(2π)2εe
x
ε

y
e

exp

{

−1

2

(

x2

σx
e

2
+

x′2

σx
e
′2 +

y2

σ
y
e

2
+

y′2

σ
y
e
′2

)}

(4.30)

4.4 Brightness of the Synchrotron Radiation source

The photon source of the electron bunch may be completely characterized by its spectral

brightness B which is defined through the phase space distribution function of emitted photons
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Figure 4.5: (a) Example of the Beta function in the DBA lattice. The positions of the straight sections and
corresponding Beta functions are marked with blue color. (b) Example of the optical functions of the
hybrid multi-bend-achromat (MBA) of PETRA IV (adapted from [54]).

by the analogy with the phase space of particles. If the diffraction effects are neglected and

photons are considered as classical point particles, the phase space method is a convenient

way to describe geometric optics. The distribution of the photon flux F at transverse plane z is

specified by the brightness function B, which shows the intrinsic strength of a radiation source,

defined as [78]

B(r, r′, z) =
d4F

d2rd2r′
. (4.31)

Similar to the conservation law of the phase space of the electron beam, the brightness at a

given phase point z0 on a transverse plane is the same as the brightness at the corresponding

phase point z1 on another transverse plane.

B(r, r′, z0) = B(r, r′, z1) = B0. (4.32)

The total flux F may be found from the Eq. (4.31) as

F =
∫

B0(r, r′)d2rd2r′. (4.33)

The integration of Eq. (4.31) only over angles d2r′ or positions d2r gives a spatial density of flux

d2F/d2r or angular (spectral) flux d2F/d2r′

d2F

d2r
=

∫

B0(r, r′)d2r′, (4.34)

d2F

d2r′
=

∫

B0(r, r′)d2r.

At this point, abstracting from the electron bunch current and focusing on the filament

electron beam (i.e., parallel electrons, spread along z with εe = 0 and current I), either spectral

flux or brightness of the radiation from such a beam can be found individually. The same

quantities F and B for the radiation from the total electron beam may be obtained thereafter
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by the convolution of a filament beam with the electron bunch distribution fe (Eq. (4.30)). The

spectral flux F may be found from the radiated power from the single electron. In this case,

Poynting vector S, which describes an energy flux (the energy transfer per unit area per unit

time) of an electromagnetic field, is used

S ∼< E(r, t)× H(r, t) >∼< |E(r, t)|2 >, (4.35)

where E(r, t) and H(r, t) are the electric and magnetic field vectors of single electron radiation.

The energy radiated per unit surface is given by

d2P
dr2

∼
∫

|E(r, t)|2dt (4.36)

The following Parseval’s theorem is helpful to transfer to the spectral domain

∫

|E(r, t)|2dt =
∫

|F
{

E(r, t)
}

|2dt ∼
∫

|E(r, ω)|2dω, (4.37)

where the F defines a Fourier transform. Such a radiation power into a small bandwidth from

a filament electron beam may be written as

d3P
dr2dω

∼ |E(r, ω)|2 (4.38)

The flux F, as defined in Eq. (2.1) shows a number of emitted photons Nph per unit time into a

small bandwidth ∆ω. Assuming that the number of emitted photons Nph = P/h̄ω, radiation

power from a filament electron beam is an additive quantity (sum of power produced by each

electron), and the number of electrons per second is Ne = I/e, the definition of the flux F may

be given using Eq. (4.38)

d2F

d2r
∼ ∆ω

ω

I
e
|E(r, ω)|2 (4.39)

In the framework of wave optics spectral brightness may be found through the definition of

the Wigner function W(r, r′, z) of the electric fields (see Eq. (3.100)) [79]

B(r, r′, z) ∼ W(r, r′, z) ∼
∫

< E∗(r − 1

2
∆r)E(r +

1

2
∆r) > e−ikr′∆rd∆r (4.40)

which is also invariant and satisfies the Eq. (4.32). In Eq. (4.40) coordinates r′ and ∆r′ are

introduced according to Eq. (3.67).

Both definitions of flux and brightness in Eq. (4.39) and Eq. (4.40) require the informa-

tion about an amplitude of the electric field E(r, ω) of the radiation produced by a single elec-

tron. Due to the periodic structure of the undulator, the angular distribution of the electric

field, formed by a single electron in the paraxial approximation, appears in the form of a sinc-

function. [76, 78, 80] (see Fig. 4.6 (a,b))

E(r′, ω) ∼ sinc

(

Nπω

ω1(r′)

)

, (4.41)
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where sinc(x) = sin(x)/x and ω1(r
′) for the fundamental harmonic is defined by Eq. (4.24).

Therefore the angular density of the spectral flux from a single electron is also described by

sinc-function
d2F

d2r′
=∼ |sinc

(

Nπω

ω1(r′)

)

|2. (4.42)

Approximating the spectral flux in Eq. (4.42) by a Gaussian function

d2F

d2r′
∼ exp

(

− r′2

2σ′2
r

)

(4.43)

simultaneously imposing the condition that the integrals over the solid angle of both functions

in Eq. (4.42) and Eq. (4.43) give the same result, an intrinsic characteristic of single-electron

radiation is obtained [71]

σ′
r =

√

λn

2Lu
, (4.44)

where σ′
r is angular divergence of single electron radiation, Lu = Nuλu is the undulator length,

and λn determined by Eq. (4.24). Approximating the far-field distribution of the electric field

of undulator radiation in resonant conditions from a single electron (Eq. (4.41)) by a Gaussian

beam, the following expression for the brightness is obtained from Eq. (4.40) [71]

BG(r, r′, z) ∼ exp

(

− 1

2

(r − zr′)2

2σ2
r

+
r′

2σ′2
r

)

, (4.45)

where σr is the transverse size of the Gaussian beam. Since both characteristics are assumed to

be Gaussian, the following relation is satisfied for the characteristics of single-electron radiation

for the Gaussian beams

σrσ′
r =

λ

4π
, (4.46)

from which the transverse size σr of the single-electron radiation can be found

σr =

√
2λnLu

4π
. (4.47)

Integrating Eq. (4.45) over r and r′ in Eq. (4.33), the coherent flux of the radiation Fcoh (i.e.

produced by a filament beam with εe = 0) may be obtained

B0 =
Fcoh

(2πσrσ′
r)

2
=

Fcoh

(λ/2)2
(4.48)

At this point it is worth noticing, that when considering the Wigner function in Eq. (4.40) on the

optical axis (i.e. r′ → 0) and the vanishing size of the source (i.e. r → 0 ), the correlation func-

tion under the integral and corresponding Wigner function takes the maximum value. In this

case the integral in the Eq. (4.40) yields simply the integrated intensity I ∼
∫

|E(∆r′/2)|2d∆r′

from the coherent source in the narrow cone around the optical axis. The latter, according to

Eq. (4.39) describes the coherent flux Fcoh of the radiation, and implies that max(W) ∼ Fcoh.
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Figure 4.6: Undulator radiation from a single electron (a, b), an electron bunch (c, d), an electron bunch
in the DLSR (e, f).

Therefore, it was analytically shown [81] that the brightness of the diffraction-limited source

may be represented as the maximum value of the Wigner distribution on axis, which satisfies

Eq. (4.45)

B0 = max(W) =

(

2

λ

)2

Fcoh (4.49)

It is also worth mentioning that the size of the photon source σr can be calculated without

Gaussian approximation of the single-electron radiation function in Eq. (4.40). In this case

Gaussian approximation used for the flux per unit surface Eq. (4.34) (which calculation is

based on Eqs. (4.40) and (4.41)). This approach gives another value for the transverse size σr

[82]

σr =

√
2λnLu

2π
. (4.50)

Brightness of the radiation from the total electron bunch may be obtained through a convo-

lution integral of brightness function for a single electron radiation (Eq. (4.45)) and the bunch

distribution function fe(re, r′e) defined in Eq. (4.30)

B(r, r′, 0) ∼
∫

BG(r − re, r′ − r′e, 0) fe(re, r′e)d
2red

2r′e, (4.51)

which gives well-known approximation for the brightness of undulator radiation [71, 83].

B =
1

4π2

F

ΣphxΣ′
phxΣphyΣ′

phx

, (4.52)

where F is the spectral photon flux into the central core. In Eq. (4.52) the total photon source
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size Σph and divergence Σ′
ph are defined as

Σph ≈ [σ2
e + σ2

r ]
1/2, Σ′

ph ≈ [σ′2
e + σ′2

r ]1/2. (4.53)

It has also been shown [73], how the Eq. (4.53) may be modified due to effect concerning

finite energy distribution ∆Eγ/Eγ of the electrons in the bunch. The energy distribution in the

electron beam at the synchrotron storage ring obeys Gaussian statistics. As noted in several

publications, [73, 82], the effects of electron energy distribution can affect the properties of

the synchrotron radiation source. In the Gaussian approximation for each of the transverse

directions, the following expressions were obtained for the size and divergence of the beam

[73]

Σph ≈
[

σ2
e + σ2

r · 4 · Qa(ρ/8π)2/3)

]1/2

, Σ′
ph ≈

[

σ′2
e + σ′2

r · Qa(ρ/2π)

]1/2

, (4.54)

where σr
′ and σr- internal characteristics of single-electron radiation, defined in the Eqs. (4.44,

4.47). Normalization factor Qa(ρ) for the energy distribution of electrons in the storage ring in

the equations (4.54) defines as

Qa(ρ) =

[

2ρ2

−1 + exp(−2ρ2) +
√

2πρ · er f (
√

2ρ)

]1/2

. (4.55)

where ρ = 2πσγ/σn is proportional to the ratio between the relative value of the spread of

electrons in energy σγ = ∆Eγ/Eγ and relative bandwidth σn = ∆λ/λ (see Eq. 4.25) of the n-th

harmonic of undulator radiation. Subscript ’a’ in Eq. (4.55) stands for ’Approximated’. In Eq.

(4.55) the Gauss error function defined as

er f (ρ) =
2√
π

∫ ρ

0
exp(−t2)dt (4.56)

Normalizing function Qa(ρ) for the zero energy spread of electrons is equal to unity Qa(0) = 1.

It should be noted that the effective size of the photon source for the radiation of filament

electron beam in formula (4.54) is twice as large as that determined in equations (4.53). The

difference in the size of the photon source is due to the fact that the angular profile of radiation

from a filament electron beam in the far field is not Gaussian. This fact is taken into account

in equations (4.50) and (4.54) by introducing the factor of 2. The total photon emittance of the

undulator source is then introduced as

εphx,y = Σphx,y · Σ′
phx,y. (4.57)

The following important case is considered, when σe ≫ σr and σ′
e ≫ σ′

r. In this case brightness

may be approximated as

B ∼ 1

4π2

F

εe,xεe,y
, (4.58)

since the total electron emittance is relatively huge, and characteristic parameters of the radi-
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ation are dominated by the electron beam parameters. Therefore the total radiation from an

electron bunch may be approximated with a Gaussian function (see Fig. 4.6(c,d)). In the op-

posite case, when σe ≪ σr and σ′
e ≪ σ′

r, the low emittance of the electron bunch defines the

low emittance of the photon beam ε
ph
x,y, and, consequently, the high brightness and high flux of

coherent photons from the source,

B ∼ 1

4π2

F

σ2
r σ′2

r

. (4.59)

In this case, the total radiation from an electron bunch is hardly approximated by a Gaussian

function (see Fig.4.6(e,f)). A common property of all 3rd generation storage rings is a relatively

large emittance in the horizontal direction. As a consequence, the photon beam has a low de-

gree of spatial coherence in this direction. Interestingly, from Eqs. (4.53) under approximation

of vanishing electron emittance (σe = 0 and σ′
e = 0) it can be seen, that there is certain limit

on minimum achievable photon emittance, which is λ/4π [78]. The latter means that the wave

nature of light determines the minimum value of the photon beam emittance, and the source

can be called diffraction-limited when the relation is satisfied

εe ≤ εph =
λ

4π
(4.60)

If this relation is satisfied, then the characteristic parameters of the source may be improved by

a great amount. Reduction of the electron bunch emittance of the synchrotron facility below the

diffraction limited could prove difficult but may be implemented using a multi-bend achromat

lattice design of the storage rings at the synchrotron facilities of the 4th generation.



Chapter 5

Modeling and analysis of the 3rd and 4th

generation synchrotron sources

As discussed in previous chapters, source brilliance and coherence of the storage rings are

the critical parameters for successful synchrotron radiation experiments. However, a better un-

derstanding of the source parameters is necessary in order to exploit them properly. Presently,

there is a big demand for adequate and effective methods to describe radiation properties from

synchrotron sources correctly. It is interesting to note that even basic parameters of synchrotron

sources are not very well established nowadays. The cause of this problem is based on the fact

that Gaussian distributions cannot describe radiation from a single electron subjected to peri-

odic acceleration.

This problem is easy to overcome at the synchrotron facilities of 3rd generation due to the

relatively huge size of the source. It implies that the overall coherence of such source is low

and traditional methods of X-ray optics within the framework of partial coherence will provide

a sufficient estimate of the radiation properties. On the contrary, ultimate DLSRs are expected

to have a high degree of coherence, which means that traditional methods of X-ray tracing will

not be sufficient to predict parameters of X-ray source and radiation characteristics at the exper-

imental stations. Effective coherence methods, in this case, should be based on the application

of the first- and higher-order correlation functions [20, 23]. At the same time, accurate simula-

tion models based on synchrotron radiation theory and wave optics are necessary. Generally,

electrons of the beam current at any synchrotron storage ring, being statistically distributed,

can be described in 6-dimensional space, composed of spatial coordinates, angles, electron en-

ergy, and time. Therefore, it would be impossible to describe the overall emission by a single

wavefront but by statistically distributed wavefronts. In such a way, it is easier to introduce

new or take into account peculiar properties of the single electron radiation.
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Figure 5.1: (a) Scheme of the electron trajectory and radiation geometry of the undulator field, repro-
duced from reference [85].

5.1 Modeling of the synchrotron radiation sources. Basic approach

The radiation field of a single electron, moving along trajectory R(t), in the paraxial ap-

proximation in the far zone according to [84] defined as

E(R0, ω) = − iωe

cR0

∫ ∞

−∞
dt′[n × (n × βν(t

′))]eiω(t− nR(t′)
c ) (5.1)

In expression (5.1), the following values are used: R0 ≈ (z0, r0) is the observation point,

n = R0−R(t′)
|R0−R(t′)| is the unit vector, directed from the point of motion of the electron towards the

observer (see Fig. 5.1). If the observer is at sufficient distance, it is possible to simplify the

expression R0 − R(t′) = R0 − n · R(t′). It is assumed that the ultrarelativistic (i.e., γ ≫ 1)

approximations for the synchrotron radiation source have been fulfilled, so that n × (n ×βν)≈
βν − n. It is also assumed that the spectrum of wavelengths in the field E(r, t) is given by Eq.

(3.8). In this case, the time dependence of a plane wave propagating in the positive direction

along the z-axis can be described as follows

E(z, r, ω) = E0(r)e
iωz

c −iωt. (5.2)

Introducing the angles θx = x0/z0 and θy = y0/z0, the transverse field components in

expression (5.1) in the far zone in the paraxial approximation can be written in the following

form

E(z, r, ω) = − iωe

c2z0

∫ +∞

−∞
dzeiΦt ·

[

(βν,x(z)− θx)nx + (βν,y(z)− θy)ny

]

, (5.3)

where the total phase Φt is written as

Φt = ω

[

s(z)

c
− z

c

]

+
ω

2c
[z0(θ

2
x + θ2

y)− 2θxx(z)− 2θyy(z) + z(θ2
x + θ2

y)]. (5.4)
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In expressions (5.3) and (5.4) βν,x(z) and βν,y(z) horizontal and vertical components of the

electron transverse velocity, x(z) and y(z) - functions of the longitudinal coordinate denoting

the position of the electron in the plane transverse to the motion, ex and ey unit vectors in

the transverse plane, s(z) - longitudinal coordinate along the trajectory of the electron. The

electron, in this case, will move at speed υ, whose amplitude is constant and equal to υ = ds/dt.

Expression (5.3) can be used to describe the field from a single electron in the far zone moving

along any trajectory.

Modeling of the undulator radiation source

In order to find the amplitude distribution of the undulator source, at first, a far filed am-

plitude distribution can be calculated by knowing the electron trajectory inside the magnetic

structure. When the field from a single electron inside the ensemble is known at a certain posi-

tion z1, the fields at any other position z2 can be found by applying a propagator according to

the paraxial law

Ẽ(z2, r2, ω) =
iω

2πc(z2 − z1)

∫

Ẽ(z1, r1, ω)e
i

ω|r2−r1 |2
2c(z2−z1) (5.5)

In particular, it is possible to use a propagator to find the radiation field inside the studied

magnetic structure. In this case, the field distribution is virtual. In the paraxial approximation,

the radiation field of a single electron can be fully characterized if it is known in the transverse

plane in one arbitrary position z. However, there is a special position z = z0, where the electric

field takes on a simple form, where the wavefront of the field from a single electron is flat. For

an undulator source, such a position is in the middle of the magnetic structure, in the waist

of the electron beam. Therefore, it is possible to take this position as an initial z0 = 0, or as

the position of the source of undulator radiation [81]. In this case, the following relationship is

fulfilled between the electric fields of a single electron in the center of the magnetic structure of

the undulator and in the far zone

Ẽ(0, r, ω) =
iz0ω

2πc

∫

Ẽ(z0,θ, ω)ei ωrθ
c e−

iθ2z0ω
2c dθ (5.6)

Ẽ(z,θ, ω) =
iω

2πcz0

∫

e
iθ2z0ω

2c Ẽ(0, r, ω)e
−iωrθ

c dr (5.7)

In the case of single-electron radiation, taking into account the parameters introduced ear-

lier in Eqs. (4.12 - 4.24) and equation (5.3), the well-known expression for the angular distribu-

tion of the field of the first harmonic of undulator radiation polarized in the horizontal direction

in the far zone at z ≫ Lu is derived [85]

E(z,θ) = −KωeLu

2c2z0γ
Ajje

i
ωz0θ

2

2c sinc(
ωLuθ

2

4c
), (5.8)

where Lu – length of the undulator, and the coupling parameter Ajj defines as
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Ajj = J0(
K2

4 + 2K2
)− J1(

K2

4 + 2K2
), (5.9)

where Jn is n-order Bessel functions of the first kind. Function Ẽ(z0, r0, ω) in the expression (5.3)

is symmetric about the undulator axis. Therefore function E(z0, θ) in Eq. (5.8) can be written as

a function of a single angle θ2 = θ2
x + θ2

y, where angles θx and θy determined from the undulator

z-axis in the horizontal and vertical directions.

To characterize the parameters of an undulator source, the field distribution from the en-

semble of electrons is required. In this case, the virtual source may completely characterize the

radiation field from the ensemble of electrons, where each electron has a given displacement l

relative to the optical axis of the undulator and angle deviation η upon entering the undulator

(see Fig. 4.4 (a)). The displacement of electrons relative to the optical axis of the undulator and

the angular deviation obey a Gaussian distribution and are determined by the transverse phase

space of the ensemble of electrons f (l,η). When considering an electron entering the undulator

at a small angle η and small deviation from its axis l, with fixed energy defined by the Lorentz

factor γ, the following expression for the angular distribution of the field is obtained [81]

E(θ) = −KωeLu

2c2zγ
Ajje

i ω
c (

zθ2

2 −θl)sinc

(

ωLu|θ− η|2
4c

)

(5.10)

Distribution of the field in the position of the source itself, i.e., at the center of the undulator,

can be obtained using the propagator by applying equation (5.6)

E0(r) =
iωz

2πc

∫

E(θ)e
iθ2z0ω

2c e
−iωrθ

c dr (5.11)

The total distribution of the field in the far zone from the ensemble of electrons is obtained

as the convolution of the single electron radiation (Eq. (5.10)) with a full electron beam

Etotal(θx, θy) =
∫

E(θx, θy) fηx(ηx) fηy(ηy) flx
(lx) fly(ly)dηxdηydlxdly (5.12)

using the folowing functions

fηx(ηx) =
1

σ́e

√
2π

exp

(

− η2
x

2σ́2
e

)

, fηy(ηy) =
1

σ́e

√
2π

e

(

−
η2

y

2σ́2
e

)

,

flx
(lx) =

1

σe

√
2π

exp

(

− l2
x

2σ2
e

)

, fly(ly) =
1

σe

√
2π

exp

(

−
l2
y

2σ2
e

)

.

(5.13)

where fηx(ηx), fηy(ηy) are the Gaussian electron angular distribution functions and flx
(lx), fly(ly)

are distribution functions of a deviation from the undulator axis. This procedure implies that

an individual electron in the beam acquires an arbitrary deviation in angle and spatial devia-

tion from the optical axis of the undulator within the size of the emittance of the electron beam.

The total field distribution in the center of the undulator at the source position is obtained using

a propagator (see Eq. (5.11)), where E(θ) is replaced with Etotal(θ).
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5.2 Modeling of the 3rd generation SSR in soft X-rays

In this section, the analysis of the coherence properties of 3rd generation synchrotron source

in the soft X-ray range of photon energies is given. The effect of soft X-ray beamline optics on

the coherence properties of radiation is analyzed as well. The simulations of the synchrotron

undulator radiation, as well as beamline optics, are performed utilizing a semi-analytical ap-

proach given in sections 3.1.4, 5.1, and X-ray Tracing Software (XRT) [86], which is primarily

meant for modeling synchrotron sources, beamlines, and beamline optics (see A.1).

The starting point of the analysis is the selection of the simple substitution model, an ap-

propriate analysis method, and the radiation treatment approach. Taking into account relation

in Eq. (4.60) and knowing the electron beam parameters (εe,x ≈ 1nmrad and εe,y ≈ 10 pm rad)

of the present storage ring like PETRA III, it can be concluded that present third-generation

x-ray sources should be described as partially coherent sources

εe,x ≫ εe,y > εph =
λ

4π
. (5.14)

The substitutional model, in this case, is represented by a Gaussian-Schell model. The coher-

ence analysis may be completed in the frame of GSM and compared to the analysis of correla-

tion functions within the semi-analytical approach, which includes calculations of the radiation

field from the undulator source. Knowing the amplitude distribution of the source, one may

easily calculate the coherence properties of the beam by methods of statistical optics (see section

3.2). On the other side, if only photon source parameters Σph and Σ′
ph are known, then in the

frame of basic coherence theory, one can get a reasonable estimate of the coherence properties

of the radiation produced by 3rd generation synchrotron sources.

As an example of the 3rdgeneration synchrotron source, simulation of the high-brilliance

synchrotron source PETRA III at DESY was performed. Simulations took into account storage

ring and undulator parameters usually exploited for the generation of soft X-rays in the photon

range of 500 eV to 4keV. PETRA III storage ring operates at an electron beam energy of 6 GeV

with emittance εe,x = 1 nm rad in the horizontal direction and the emittance εe,y = 10 pm

rad in the vertical direction due to 1% coupling. The photon energy of 1.2 keV is considered,

produced by a 5 m long undulator at the first harmonic. Storage ring and undulator parameters

are summarized in Table 5.1.

5.2.1 Coherent fraction of the radiation

In order to calculate the value of the coherent fraction of the synchrotron radiation, turning

to the basic theory of synchrotron radiation is necessary. A simple estimation based on syn-

chrotron radiation theory implies that a coherent fraction of the radiation ζCF, which shows the

amount of coherent flux within the total flux

ζCF =
Fcoh

F
, (5.15)
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Table 5.1: Parameters of third generation synchrotron ring and undulator, used in simulations.

Parameter Value

Electron energy 6 GeV

Beam current, mA 100 mA

Horizontal electron beam emittance εe,x 1 nm rad

Vertical electron beam emittance εe,y 10 pm rad

Horizontal betatron functions, βx, 20 m

Vertical betatron functions, βy 2.36 m

Undulator length Lu 5 m

Undulator period 65.6 mm

Number of undulator periods 76

Photon energy 1.2 keV

Number of electrons 5·103

may be estimated taking into account Eqs. (4.48), (4.52). Therefore, the required definition of

the coherent fraction of synchrotron radiation defined as

ζCF =
Fcoh

F
=

(

λ

2

)2
1

εx
phε

y
ph

=
ε2

r

εx
phε

y
ph

. (5.16)

Strictly speaking, this expression is valid only for Gaussian radiation with the parameters de-

termined in Eqs. (4.53, 4.57). A more precise estimation of the coherent fraction may be ob-

tained within the framework of statistical optics (Eq. (3.75)), where the Fcoh is defined by the

normalized weight of the zero mode of the radiation. It can be shown that this equation (3.75)

satisfies the definition of the coherent fraction Eq. (5.15). Indeed, the total flux of radiation F

may be represented through the spectral density integrated over the solid angle (see Eq. (4.39))

F(ω) =
∫

S(r′, ω)dr′. (5.17)

The spectral density may be decomposed into a sum of modes according to Eq. (3.71), which

are orthonormal. Performing angular integration in this expression (5.17) will lead to a sum of

mode eigenvalues.

F(ω) =
∫

∑ β j(ω)E∗
j (r

′, ω)Ej(r
′, ω)dr′ = ∑ β j. (5.18)

Following the same arguments, the coherent flux Fcoh may be represented as a weight of the

zero mode

Fcoh(ω) = β0. (5.19)

Such the value of the coherent fraction is obtained directly from the spectral density of the

radiation. However, for the synchrotron sources of the 3rd generation, simple estimation by use

of Eq. (5.16) is sufficient. For instance, coherent fraction, calculated according to Eq. (5.16) for
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Figure 5.2: (a) Intensity distribution of the soft X-ray undulator radiation and (d) it cuts in horizontal
and vertical directions, fitted by the Gaussian function. Absolute values of the normalized SDC function
|µ(x1, x2)| (b) and |µ(y1, y2)| (c) with the calculated degree of coherence ζi=x,y and its cut (e,f) along the
anti-diagonal line shown in (b,c) as a function of the separation of two points |µ(∆r = ∆x, ∆y)|, fitted
by a Gaussian function.

the radiation at a photon energy of 1.2 keV produced by the electron beam with parameters

specified in Table. 5.1, is ζCF
y = 0.82 and ζCF

x = 0.05 in the vertical and horizontal directions,

respectively. The value of the coherent fraction of the radiation ζCF
y in the vertical direction,

calculated according to Eq. (5.16) is underestimated. In reality, ζCF
y for the monochromatic

radiation in soft X-ray range at SSR of the 3rd generation should be higher. In section 5.5.2 it

will be shown how Eq. (5.16) can be rewritten, to get a more accurate estimation. However, in

the horizontal direction, the coherence is poor, and estimation via Eq. (5.16) is sufficient. Such

a low value of the horizontal coherent fraction is explained directly from the Eq. (5.16), namely

due to huge electron emittance in this direction compared to the vertical one. More adequate

analysis of coherence properties of the radiation is obtained in the frame of statistical optics in

the next section.

5.2.2 Degree of coherence

For the simulation of the undulator source employing a semi-analytical approach and the

XRT software, parameters given in Table 5.1 were used. Initially, the amplitude distribution

at the distance of 27.9 m (NF ≈ 0.01 ÷ 0.68 according to Eq. 3.24), was calculated according

to Eqs. (5.10)-(5.13) within the semi-analytical approach and by XRT software. Knowing the

amplitude distribution of the source, one may easily calculate the coherence properties of the
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beam in the frame of basic coherence theory (see section 3.2.3). Both simulation methods give

similar results, which are shown in Fig. 5.2.

The intensity distribution of the beam at 27.9 from the undulator source is shown in Fig.

5.2 (a). The rms sizes of the intensity distribution are σx =362 µm in the horizontal direction

and σy = 304 µm in the vertical direction. For the direct correlation analysis according to Eqs.

(3.55-3.62) in transverse x and y directions, a thin cut of the central amplitude distribution in

the corresponding direction was taken (see Fig. 5.2 (a)). The absolute value of the normalized

SDC function |µ(∆r = ∆x, ∆y) for the horizontal and vertical directions is shown in Fig. 5.2

(b,c).

The analysis of the correlation function shows a relatively high degree of coherence in the

vertical direction around 80%. This value was calculated directly according to Eq. (3.63) with-

out the assumption of functional dependence of correlation functions and amplitude distribu-

tions of the undulator radiation. In the horizontal direction, due to huge electron emittance εe,x,

the degree of coherence is only 5%. Fitting of the |µ(∆r = ∆x, ∆y)| function (see Fig. 5.2 (e,f))

with the Gaussian function Eq. (3.78), the corresponding coherence length of the radiation in

the vertical and horizontal direction was obtained ξy = 761 µm and ξx = 33 µm. In the frame of

the GSM model, knowing the beam size σx,y and the coherence length ξx,y, the degree of coher-

ence may be calculated according to Eq. (3.81). In this case, calculated values of the degree of

coherence are slightly lower ζx = 78% in the vertical direction and ζx = 4.6% in the horizontal

direction. It also should be noted here, due to highly coherent radiation in the vertical direction

at 1.2 keV photon energy, the functional dependence of |µ(∆y| is non-Gaussian (see Fig. 5.2 (f)).

As the result of this analysis, the undulator source at a soft photon energy of 1.2 keV pos-

sesses a high degree of coherence in the vertical direction and comparably low in the horizontal.

However, the ’balance of powers’ can be reversed by introducing optical elements in the way

of field propagation. Such, by implementing apertures, which cut the radiation tales, coherent

fraction and degree of coherence may be increased. On the contrary, adding absorbent ele-

ments, optical elements with distorted surfaces, and elements that cause optical aberrations

may significantly reduce the degree of coherence. Such effect of the coherence degradation

due to optical aberrations is considered in the next section. A related question arises whether

the degree of coherence of the undulator beam can be transported without losses through a

beamline.

5.2.3 Coherence at soft X-ray beamline

Abstracting from the synchrotron source and moving on to an overview of coherent proper-

ties at the 3rd generation facility in the soft X-ray region, simulations of the beamline similar in

type to P04 beamline at PETRA III were completed. The coherence characteristic of the photon

beam transported through the beamline may significantly deteriorate due to aberrations in the

optical system. Since that, a more detailed look at beamline optics is required. The analysis

performed in this section is very similar to what is given in the work [87]. The beamline layout

used in the simulation is shown in Fig. 5.3.
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Figure 5.3: (a) Schematic arrangement of the optical elements at the P04 beamline at PETRA III. (b)
Simulated intensity distribution from the undulator source is shown at the position of BDS (27.9 m), (c)
at the position of BES in zero grating order and (d) +1 order, as well as at the focus position (e)

X-ray radiation at the P04 beamline is generated via a 5 m long APPLE-II type helical un-

dulator. All distances of the optical elements listed further are given downstream from the

reference point of the undulator position. Parameters of the simulated optical elements are

given in Table. 5.2. A beam-defining slit (BDS) is placed at 27.9 m. The BDS is used to define

the angular acceptance of the beamline and select a coherent volume of the beam. The hori-

zontal plane mirror (HPM) at 35 m switching the photon beam between two branches of the

beamline. The beam monochromatization is achieved via varied-line-spacing (VLS) grating at

46 m. The VLS grating disperses the beam vertically and focuses it in the vertical direction into

the plane of the beam exit-slit (BES). The BES monochromatizes the beam by spatial filtering of

the spectral focal distribution. The maximum resolving power achieved in the simulation by

closing BES up to 30 µm is ≈ 2 · 104. The horizontal BES may be used to select the coherent

volume of the photon beam in the horizontal direction as well. Finally, the beam is focused

in the vertical and horizontal direction by the use of a Kirkpatrick-Baez (KB) mirror system

consisting of two plane-elliptical focusing mirrors located 78.5 m (VFM) and 79.1 m (HFM). In

the horizontal direction, the undulator source is directly imaged to the focus position by HFM.

In the vertical direction, the exit slit of the monochromator is imaged to the focus position by

VFM. The minimum achievable focal spot size in the simulation, by closing BES to 30 µm is 7

µm × 7µm
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Figure 5.4: Absolute value of the CSD function |W(x1, x2)|2 of the radiation at position of VFM upon
closed BES to 100 µm while BDS is open (a,b) and closed BDS to 30 µm (c), 75 µm(d), 100µm(e), 200µm
(f) while BES is open. In plots (a-f) ζx is the horizontal degree of coherence determined in each case
according to Eq. (3.81).

5.2.4 Analysis of beamline optics

In order to determine the coherence properties of the beam transported through the optics,

several virtual screens were placed along the beamline to record the amplitude and intensity of

the radiation. Screens placed after the BDS at the position of VPM and after BES at the position

of VFM were used for the correlation analysis. Additional screens were placed to monitor the

focal position of the grating (i.e., at BES position) and focus (i.e., at focal position 81 m). The

analysis of coherence properties is divided separately into vertical and horizontal parts.

The impact from the BDS and BES on beam characteristics may differ for the beamline

setup presented in Fig. 5.3. The BDS located closer to the undulator source may be used as the

secondary source, while BES can be used as a spatial filter. In this case, the focal spot size is

determined either by the undulator source with open BDS or by secondary source provided by

BDS upon closing (see for details [87]).

The first simulation is dedicated to the analysis of the coherence properties of radiation

in the horizontal direction. In all following cases of the beamline setup, required coherent

characteristics are determined only by the degree of coherence, calculated directly according to

Eq. (3.81) using the recorded CSD function W(r1, r2) at different positions along the beamline.

The CSD function, in this case, simultaneously provides the degree of coherence and gives a

rough estimation of the size of the incoming beam at the virtual screen.

In order to see the impact upon closing BDS and BES on coherence properties of the beam,

in the initial simulation, BDS was fully opened while BES was closed up to 40 - 100 µm. Results

of the analysis are shown in Fig. 5.4 (a,b). The degree of coherence in the horizontal direction, in
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Table 5.2: Parameters of the simulated optical elements. Distance is defined from the source position.
For the elliptical mirrors focal and defocal lenghts are defined as ”q” an ”p” accordingly

Parameter Distance, m Grazing angle, ◦ p /q /focus, m Material coating

HPM 35 0.8 -/ -/ Pt

VPM 45.796 2.11 -/ -/ Pt

VLS 46 2.7 -/ -/25 Au

VFM 78.5 0.58 7.5/2.5/- Pt

HFM 79.1 1 79.1/1.96/- Pt

Table 5.3: Parameters of the VLS grating. The groove density is described as N(z) = N0(1 + 2b2z +
3b3z2), where the density in the center is N0 =1200 mm−1

Parameter Value

Groove density parameters b2=6.05 · 10−5, b3=−1.97 · 10−9

Duty ratio (groove size/grating period) 0.65

Groove depth 9 nm

this case, is raised by 0.92 from the initial and reaches the value of 0.97. Closing BES further than

100 µm did not change the degree of coherence. Next, BES in horizontal direction stayed fully

open, while BDS was varying from 30 to 200 µm (see Fig. 5.4). The degree of coherence, in this

case, was also changing from 0.91 to 0.28. Thus, a maximum degree of coherence, achievable

at the soft X-ray beamline in the horizontal direction, is very close to unity to the detriment of

the radiation flux. The maximum degree of coherence in the horizontal direction, achievable

under reasonable BDS parameters, providing sufficient flux is 0.53 - 0.57.

The next part of the simulation concerns vertical direction. In these simulations, BDS slits

in the vertical direction were closed to 30-100 µm, and the correlation function is recorded at

the VPM position.

Since the undulator source at photon energy 1.2 keV provided the radiation with 0.8 of

coherence, after closing the BDS, it improved up to unity in both cases (see Fig. 5.5 (a,d)). Since

the maximum value of the degree of coherence is achieved, in this case, closing BES would

not improve the coherence of the radiation at VFM position and further downstream, which

stays at unity at any BES separation (see Fig. 5.5 (b,c,e,f)). Therefore, a maximum degree

of coherence, achievable at the soft X-ray beamline, is equal to unity to the detriment of the

radiation flux.

Another related question concerns the possible degradation of radiation characteristics at

the beamline and its origin. Reduction of the spatial degree of coherence may originate from

diverse sources within the beamline, such as optical elements which embodying vibration-

induced effects, dispersive effects and effects concerning the surface quality. Vibrations of op-

tical elements can have a significant impact on the spatial coherence properties of the beam.

It can be explained due to a significant increase of the virtual source size caused by optics

vibrations, which immediately influences spatial coherence. Undulator photon source in the

horizontal direction is already relatively huge in comparison to the vertical due to the enlarged
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Figure 5.5: Absolute value of the CSD function |W(y1, y2)|2 of the radiation at position of VPM upon
closing BDS to 30 µm (a) and 100 µm (d). Absolute value of the CSD function |W(y1, y2)|2 of the radiation
at position of VFM upon closing BDS to 30 µm at the same time BES to 100 µm (b) and to 40 µm(c), as
well as upon closing BDS to 100µm at the same time BES to 100 µm (e) and to 40 µm(f). In plots (a-f) ζy

is the vertical degree of coherence determined in each case.

electron beam emittance. Since then, vibrational effects on the horizontal coherence properties

have been negligible. Due to the fact that simulations are performed with ideal optics, the only

elements that can harm the coherence of radiation in the vertical direction by means of their vi-

bration are VPM, VLS, VFM, and HFM. Among these elements, the vibrational effect of VLS on

coherence in vertical direction should be considered carefully. In addition, due to the vibration

of this optical element, an energy variation effect is superimposed since the dispersive plane of

the grating is in the vertical direction.

The effect of energy dispersion on the coherence properties of the beam will require addi-

tional simulations and will not be present here (see A.6). However, if the energy bandwidth

is small, the vibration effect may be considered within the framework of statistical optics in

the quasi-monochromatic regime (see Chapter 3). In this case, only the effect of virtual source

enlargement will play a dominant role. It is interesting to note, due to the monochromator

design, where VPM is redirecting beam to the VLS, the effect of the source enlargement due to

VPM vibrations is doubled and also should be considered for completeness.

A frequency analysis of photon beam vibrations, performed at soft X-ray beamline P04 [87]

at the focal position using the beam diagnostic tool, showed vertical photon-beam vibrations

with frequencies of 13 Hz, 18 Hz, 25 Hz, and 50 Hz. In this case, to analyze the effect on co-

herence properties of the final radiation in the presence of the vibrational impacts from optical

elements, simulations may be carried out at least by two methods. The first headlong method

implies calculations of the amplitude distribution at the focal position, propagated through the
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Figure 5.6: (a,d) Absolute value of the CSD function |W(y1, y2)|2 of the radiation at position of VPM
upon fully opened BDS for different pitch vibrations, written in the left column. Absolute value of the
CSD function |W(y1, y2)|2 of the radiation at position of VFM upon closed BES to 100 µm (b,e) and to 40
µm (c,f) for different pitch vibrations. In plots (a-f) ζy is the vertical degree of coherence determined in
each case.

optical and diffraction elements. In addition, besides that final amplitude of the undulator ra-

diation source at the desired position is obtained as a convolution integral with the electron

bunch distributions (Eqs. (5.12), (5.12)), the angular distribution of the pitch vibration of each

optical element should be added to the integral as well. In order to exclude errors of the simula-

tion, it should be repeated several times until the simulation results differ for each transmitted

radiation by 1-5%. Such a procedure is time-consuming and computationally is hardly bene-

ficial. Another method is to obtain the amplitude distribution of the source, the same as for

the case with vibration effects but for static optical elements. In this case, simulation can be

completed with static elements but for an enlarged effective source. Therefore, the method im-

plies calculation of the effective source size. This can be done by running a calculation of the

field propagation through the setup at two opposite (maximum) possible deviations of optical

elements following the specified value. After that, the backpropagation of the calculated field

gives the effective source size. The size of the source can also be calculated analytically by the

following equation, which gives the same result for the effective source size Σ
y
vib [87, 88]

Σ
y
vib =

√

Σ2
ph,y + (2σVPM · zVPM)2 + (2σVLS · zVLS)2, (5.20)

where σVPM and σVLS is the VPM and VLS rms values of the pitch vibrations accordingly, zVPM

is the distance from the undulator source to VPM, zVLS is the distance from the undulator

source to VLS, and Σph,y is the size of the source. Therefore, in the simulation, to save compu-

tational power, the vibration effect was modeled as an enlargement of the photon source for
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Figure 5.7: (a,d) Absolute value of the CSD function |W(y1, y2)|2 of the radiation at position of VPM
upon fully opened BDS for different pitch vibrations. Absolute value of the CSD function |W(y1, y2)|2
of the radiation at position of VFM upon closed BES to 100 µm (b,e) and to 40 µm (c,f) for different pitch
vibrations. In plots (a-f) ζy is the vertical degree of coherence determined in each case. Pitch vibrations
of the VPM and VLS are written in the left column.

static optical elements. The pitch vibration of the VLS was varying in the range from 0 to 800

nrad and of the VPM from 0 to 200 nrad. Results of these simulations are shown in Fig. 5.6,

Fig. 5.7 and Fig. 5.8. For the fully open BDS, the degree of coherence in vertical direction at

position of VPM was significantly dropped from initial 80% to 13% at pitch vibration values of

VPM and VLS in the range from σVPM = 0, σVLS = 0 to highest vibration σVPM = 200 nrad

and σVLS = 800 nrad (see Fig.5.6 (a,d), 5.7 (a,d) and Fig. 5.8 (a,d,g)). However, under the same

pitch vibrations, while the BES is closed to 100 µm the degree of coherence in the vertical di-

rection at the VFM position slightly changed from 80% to 73% (see Figs. 5.6 (b,e) - 5.8 (b,e,h).

Moreover, when the BES is closed down to 40 µm, the lowest degree of coherence achieved in

the vertical direction at the VFM position with the highest pitch vibration of VPM and VLS is

82% (5.8 (i)). This underlines the important function of the BES and BDS in spatial filtering

of the synchrotron radiation and imaging of the source at the focal position. If both slits are

set correctly at the beamline, providing sufficient flux to the focal position, then large devia-

tions of the coherent vertical fractions obtained in the experiments [89] in comparison with the

theoretical values cannot be described only by optics vibrations.

Results of this analysis for the degree of coherence in a vertical direction depending on op-

tics vibrations are given in Table. 5.4. As mentioned earlier, the degradation of X-ray beam

coherence can be due to complex phase changes caused by the imperfection of optics. In this

case, significant imperfections of optical elements will play the role of secondary sources, fur-
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Figure 5.8: (a,d,g) Absolute value of the CSD function |W(y1, y2)|2 of the radiation at position of VPM
upon fully opened BDS for different pitch vibrations. Absolute value of the CSD function |W(y1, y2)|2 of
the radiation at position of VFM upon closed BES to 100 µm (b,e,h) and to 40 µm (c,f,i) for different pitch
vibrations. In plots (a-i) ζy is the vertical degree of coherence determined in each case. Pitch vibrations
of the VPM and VLS are written in the left column.
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Table 5.4: Degree of coherence in vertical direction under different BDS/BES configuration and elemnts
pitch vibrations.

VPM pitch vibration VLS pitch vibration BDS open BES 100µm BES 40µm

Total vibration Degree of coherence

0 0 0.8 0.78 0.84

0 100 0.66 0.78 0.83

0 200 0.45 0.77 0.82

100 200 0.36 0.78 0.85

100 400 0.27 0.76 0.84

100 800 0.14 0.74 0.84

200 800 0.13 0.73 0.82

ther degrading the beam quality [87].

5.2.5 Summary of the analysis

In summary, it was shown that coherence properties of the 3rd generation synchrotron

source might be calculated with reasonably good accuracy within the framework of statisti-

cal optics as well as conventional phase space methods.

The analysis of the beam at soft X-ray beamline showed important functions provided by

the beamline apertures and outlined negative influence on coherence characteristics of the

beam from the vibrational optical elements. It was found that the horizontal degree of co-

herence may be significantly increased from the original values by closing BDS or BES while

maintaining a sufficient amount of flux.

On the contrary, in the vertical direction, due to vibration of optical elements, the degree

of coherence may significantly drop down by 67%. However, in this case, closing the BES to

the detriment of flux may raise the coherence values to the original level and beyond. In order

to maintain high coherence in the vertical direction, the VLS pitch vibration should not exceed

100 nrad in the case of fully open BDS. The effects of surface imperfections of the optical ele-

ments on the radiation’s coherence properties and energy shifts due to vibration of dispersive

elements require additional studies.

In conclusion, understanding the coherence properties of the radiation and effects concern-

ing their conversation are of vital importance for the design and optimization of future beam-

lines at 4th generation synchrotron facilities.
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5.3 Modeling of the DLSR sources

For the analysis of coherence properties of the DLSRs, a starting point should be modeling

the synchrotron source at vanishing electron emittance or the filament electron beam. The

next step is a generalization to the full electron beam case by applying statistical methods.

Each of the electrons, in this case, will contribute to the total radiation, providing the final

beam with certain characteristics, whether it is beam size, coherence, or brightness. As a result,

simulation of the synchrotron radiation source by such an approach is more effective and less

time-consuming. The simulations presented in the following sections are completed within the

described approach, based on the theoretical works [90, 91].

Equation (5.12) does not include detuning or energy-spread effects on the radiation beam.

However, for diffraction-limited rings, studying the influence of energy spread of undulator

radiation properties is becoming more important because of the ultra-low electron emittance.

Therefore, it is interesting to study energy spread effects on the brightness of undulator radia-

tion, avoid the Gaussian beam approximation, and define the brightness function through the

Wigner distribution. It will also be quite helpful to study the effects on brightness together

with effects on coherence.

In order to take into account the effect of electron energy distribution, it is required to in-

troduce a correction to the Lorentz factor in expression (5.8). When considering an electron en-

tering the undulator at a small angle η and small deviation from its axis l, with energy defined

by the Lorentz factor γ, but different from the ensemble mean γ0, the following expression is

obtained for the angular distribution of the field [90]

E(θ) = −KωeLu

2c2zγ
Ajje

i ω
c (

zθ2

2 −θl)sinc

(

ωLu|θ− η|2
4c

+
2πNu(γ − γ0)

γ0

)

. (5.21)

This equation is similar to Eq. (5.10), except for the last part, accounting for the electron

energy spread. The total distribution of the field in the far zone is obtained in a similar way,

namely by taking the convolution of the radiation of a single electron (Eq. (5.21)) with a full

electron beam and electron energy spread distribution

Etot(θx, θy) =
∫

E(θx, θy) fηx(ηx) fηy(ηy) flx
(lx) fly(ly) fγe(γe)dηxdηydlxdlydγe (5.22)

using the same distributions, as introduced in Eq. (5.13) and the Gaussian energy distribution

of the electron beam

fγe(γe) =
1

σγ

√
2π

e
− γ2

e
2σ2

γ . (5.23)

The described method implies that an individual electron in the beam, besides acquiring an

arbitrary deviation in angle and spatial deviation from the optical axis of the undulator within

the size of the emittance of the electron beam, additionally gets an arbitrary energy shift within

the value of the total energy spread. Distribution of the field in the position of the source it-
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Table 5.5: Parameters of the storage ring and undulator, used in the analysis.

Parameter Value

εe x,y, pm rad 10

βx,y, m 1

Electron bunch energy, GeV 6

Undulator period λu, mm 65.6

Number of undulator periods Nu 76

Photon energy, keV 0.58 and 4

self, i.e., at the center of the undulator, can be obtained using the propagator by applying the

equation (5.11). In the case when the required parameters of the function cannot be calculated

within the Gaussian approximation, it is suggested to calculate its variance values instead (sec-

ond moment in Eq. 3.38). For instance, in order to determine the size and divergence of the

photon source, with the distribution other than a Gaussian, the following equations can be

used

Σ2
phx

=

∫∫

x2|E(x, y)|2dxdy
∫∫

|E(x, y)|2dxdy
, Σ′2

phx
=

∫∫

θ2
x|E(θx, θy)|2dθxdθy

∫∫

|E(θx, θy)|2dθxdθy
(5.24)

where E(x, y) and E(θx, θy) are the amplitude distribution of the photon source at the source

position and in the far region accordingly.

Further, the analysis of the coherence properties may be performed by utilizing methods

given in sections 3.2.3, 3.3, 3.6. The analysis of the DLSR radiation source parameters was

divided into three parts depending on electron beam emittance: filament electron beam (i.e.,

εe = 0), vanishing electron emittance (εe x,y ≈ 1 − 10 pm rad) and the wide range of electron

emittance values εe x,y from 10 pm rad to 300 pm rad. The photon energy considered in the

analysis lies in the range from 500 eV to 50 keV. The analysis dedicated to studying coher-

ence properties of SR from the filament electron beam and the beam with vanishing emittance

(section 5.4) is generalized and given in normalized units.

5.4 Diffraction-limited storage ring. Vanishing electron emittance

For studying the effect of the vanishing electron emittance and the energy spread effect, the

DLSR, operating at 6 GeV (for parameters of the source see Table 5.5) was considered as an

example. The basic value for the vanishing electron emittance was considered 10 pm rad both

in the vertical and horizontal direction by that considering a round beam shape.

5.4.1 Source amplitude and intensity distribution

The considerations in this section, being fully general, apply to other magnetic systems

as well. Derivations of the formulas are based on the works [63, 81] For the analysis of SR

coherence properties at vanishing electron emittance, the following normalized units [90]
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Table 5.6: Converted values of basic functional parametrs in accordance with the source parameters
defined in Table 5.5. Note ± sign corresponds to a positive/negative detuning

Parameter/ Normalized value 0 ±1 ±2

Energy spread detuning ξE 0 ∓10−3 ∓2.1 · 10−3

rms value of the energy spread distribution
√

∆E 0 10−3 2.1 · 10−3

Photon energy of 580 eV

Spatial coordinate r̂ 0 ± 0.1 mm ±0.2 mm

Angle θ̂ 0 ±20 µrad ±41 µrad

Photon energy of 4000 eV

Spatial coordinate r̂ 0 ±40 µm ±79 µm

Angle θ̂ 0 ±7.7 µrad ±15.7 µrad

η̂ =
η

(λ/Lu)1/2
, θ̂ =

θ

(λ/Lu)1/2
,

r̂ =
r

(λLu)1/2
, l̂ =

l

(λLu)1/2
,

ξ̂E = −4πNu
γ − γ1

γ1
,

(5.25)

and normalized parameters

Nx,y =
σ2

x,y

λLu
, Dx,y =

σ′
x,y

2

λ/Lu
,

∆E = (4πNuσ∆γ/γ)
2,

(5.26)

are used for the electron beam distributions given in Eq. (5.13) and (5.23). In Eqs. (5.25), (5.26)

σ∆γ/γ = (γ − γ1)/γ1 and the normalization is shown for the angles to the diffraction angle√
λ/Lu of single-electron emission, sizes to the diffraction size

√
λLu, and the energy deviation

to the undulator resonant bandwidth.

Considering Eqs. (5.25) and (5.26), far-zone amplitude of the single electron radiation in Eq.

(5.21) in normalized units can be written as [90]

Ê(θ̂) =
1

ẑ
exp

(

i
ẑθ̂2

2
− iθ̂ · l̂)

)

sinc(
|θ̂− η̂|2

4
+

ξ̂E

2
) (5.27)

where ẑ = z/Lu. Using the Eq. (5.6), it is possible to calculate the analogous field at the virtual

source as [90]

Ê(r̂) = −iexp
[

iη̂ · (r̂ − l̂)
]

×
∫ ∞

0
dθ̂θ̂ J0

(

θ̂|r̂ − l̂|
)

sinc

(

ξ̂E

2
+

θ̂E

4

)

(5.28)

In the panels (a,b) of Fig. 5.9 amplitude ẑÊ(θ̂)/exp(iθ̂2ẑ/2) and intensity ẑ2|Ê(θ̂)|2 func-

tions are shown, i.e. the well known far-field profiles for l̂ = 0 and η̂ = 0 (which is azimuthal-

symmetric) as a function of θ̂ for different values of the electron energy detuning ξ̂E, while in

the panels (c,d) the field at the virtual source for the same choices of the detuning parameter
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Figure 5.9: Functions (a) ẑÊ(θ̂)/exp(iθ̂2ẑ/2) and (b) ẑ2|Ê(θ̂)|2, the field in the middle of the undulator,

−iÊ(r̂) (c), and intensity |Ê(r̂)| (d) are drawn for different values of ξ̂E. Here l̂ = 0 and η̂ = 0. For a
more explicit assessment and comparison with existing sources, the values of the electron beam energy
detuning, angles, and positions are given in Table 5.6

are shown. Corresponding intensity distributions in panels (b,d) are shown for comparison

with amplitude distribution in (a,c). It can be shown that for negative values of ξ̂E, the maxi-

mum intensity at the source increases and tends to ‘saturate’ for large negative values while it

remains constant in the far zone.

Also, even at ξ̂E = 0, the intensity distribution at the virtual source and in the far zone is not

Gaussian. Therefore, any Gaussian approximations for the source amplitude should be taken

with caution. In this regard, it is important to note that the intensity distribution in the far

zone and at the virtual source are related by the laws of field propagation in free-space. One

may fit the intensity at the virtual source with a Gaussian, but in this case, the real intensity

in the far-zone does not match the propagated Gaussian beam. Or vice versa, one may fit the

intensity in the far zone with the Gaussian, but in this case, the intensity at the virtual source

does not match the backpropagated Gaussian beam.

In other words, there is some freedom in applying the Gaussian approximation. As it was

discussed in section 4.4, different methods of approximation can be found in the literature (see,

for example, [71], [72], [73]).

5.4.2 Cross - spectral density, spectral degree of coherence and brightness

Cross-spectral density function for the source amplitude distribution in the far field Ê(θ̂) in

normalized units accoding to Eq. (3.68), may be written in the following way
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Ĝ(θ̂, ∆θ̂) =

〈

Ê(θ̂+ ∆θ̂/2)Ê∗(θ̂− ∆θ̂/2)

〉

, (5.29)

where θ̂ is the vector position at which a two-slits system is introduced to probe coherence, and

∆θ̂ is the vector describing the separation between the two slits, see Eq. (5.25).

Accordingly, spectral degree of coherence (Eq. (3.69)) for the source amplitude distribution

in the far field is defined as

ĝ(θ̂, ∆θ̂) =
Ĝ(θ̂, ∆θ̂)

[

Ĝ(θ̂+ ∆θ̂/2)Ĝ(θ̂− ∆θ̂/2)

]1/2
, (5.30)

and the fringe visibility in Eq. (3.70) is given by

V̂ =
2Ĝ(θ̂, ∆θ̂)

Ĝ(θ̂+ ∆θ̂/2, 0)Ĝ + (θ̂− ∆θ̂/2, 0)
, (5.31)

The Wigner distribution function in Eq. (3.101) in terms of the CSD in the far-zone in nor-

malized units at the source position is defined as

Ŵ(r̂, θ̂) =
∫

d2(∆θ̂)exp(ir̂ · ∆θ̂)Ĝ(θ̂, ∆θ̂). (5.32)

According to Eq. (4.49), the brightness of the filament electron beam with current I is pro-

portional to the maximum of the Wigner distribution

B = C max(Ŵ). (5.33)

Following the work [81], the corresponding result for brightness in dimensional units is

found to be linked to equation (5.32) by the constant [90]

C =
z2IK2ω3αA2

jj

64π4ec3γ2Lu
, (5.34)

with α = e2/(h̄c) being the fine structure constant, Ajj-coupling parameter, and z is the coordi-

nate along the propagation distance.

Substitution of Eq. (5.27) into equation (5.29) gives the following explicit expression for the

cross-spectral density in the case of undulator radiation around the fundamental harmonic [90]

Ĝ(θ̂, ∆θ̂) =
1

(2π)3/2
(

DxDy∆E

)1/2
ẑ2

exp(−iẑθ̂ · ∆θ̂)exp

(

− Nx∆θ̂2
x

2

)

exp

(

−
Ny∆θ̂2

y

2

)

×
∫ ∞

−∞
dη̂x

∫ ∞

−∞
dη̂y

∫ ∞

−∞
dξ̂Eexp

(

− η̂2
x

2Dx

)

exp

(

−
η̂2

y

2Dy

)

exp

(

− ξ̂2
E

2∆E

)

×sinc

(

ξ̂E

2
+

|θ̂− η̂ + ∆θ̂/2|2
4

)

sinc

(

ξ̂E

2
+

|θ̂− η̂ + ∆θ̂/2|2
4

)

(5.35)

Then, for a Gaussian distribution of energy spread, divergence and size of the electron
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beam, the maximum of the Wigner distribution must be at r̂ = 0 and θ̂ = 0, and therefore

B = CŴ(0, 0) = C
∫

d2(∆θ̂)Ĝ(0, ∆θ̂) (5.36)

5.4.3 Effect of the energy spread on brightness

In order to investigate the effect of the energy spread on brightness, first, the simplest case of

a beam with vanishing electron emittance was considered. Equation (5.35) simplifies accord-

ingly, and substitution into equation (5.36) gives the following expression for the brightness

[90]

B =

√
2πC√
∆E ẑ2

∫ ∞

0
d(∆θ̂)∆θ̂

∫ ∞

−∞
dξ̂Eexp

(

− ξ̂E

2∆E

)

×sinc2

[

ξ̂E

2
+

(∆θ̂/2)2

4

]

,

(5.37)

where azimuthal symmetry of Ĝ(0, ∆θ̂)) is assumed. The Eq. (5.37) can be rewritten by taking

integral over ∆θ̂

B =

√
2πC√
∆E ẑ2

∫ ∞

−∞
dξ̂Eexp

(

− ξ̂E

2∆E

)

F(ξ̂E), (5.38)

where

F(ξ̂E) =
∫ ∞

0
d(∆θ̂)∆θ̂sinc2

[

ξ̂E

2
+

(∆θ̂/2)2

4

]

=
4

ξ̂E

[

2 + πξ̂E − 2cos(ξ̂E)− 2ξ̂ESi(ξ̂E)
]

,

(5.39)

with Si(ξ̂E) =
∫ ξ̂E

0 dt sinc(t) being the sine integral function.

By definition, the function F(ξ̂E) is proportional to the angle-integrated spectral flux from a

single electron (compare Eq. (4.42)), and therefore the brightness is proportional to the single-

electron angle-integrated spectral flux, averaged over the energy spread distribution.

Also, it is possible to conclude that for zero emittance and symmetric energy spread distri-

bution, there should be no effect of the energy spread on the brightness [90]

B =
IK2ω3αA2

jjLu

8π2ec3γ2
(5.40)

For the verification of statements above, a simulation was done with the parameters similar

by the type to PETRA IV project. The parameters used in the simulation are presented in

Table 5.5. The electron emittance was put to zero, and two single-electron cases with resonant

energies at 580 eV and 4000 eV were considered. The results are shown in Fig. 5.10. Should

be noted that function F(ξ̂E) is roughly anti-symmetrical with respect to the point ξ̂E = 0. The

latter indicates that for zero emittance and symmetric energy spread distribution, the energy

spread has no effect on the brightness, in agreement with the analysis of Eqs. (5.37) and (5.39).
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Figure 5.10: Function F(ξ̂E), calculated for parameters specified in the Table 5.5.

It is also interesting to compare the result in Eq. (5.40) with that from the work of [73], where

an approximated formula for the brightness was proposed. The formula was derived from Eq.

(4.52), which is the usual expression for the brightness based on Gaussian approximation but

includes the impact of a modified spatial and angular profile of the undulator radiation in the

presence of electron energy detuning Eq. (4.54). This formula, rewritten in the normalized

units, is

Ba =
B

[

D
π + Q2

a

(√
∆E
2

)][

4πN + 4Q4/3
A

(√
∆E
8

)] , (5.41)

where N ≡ Nx = Ny, D ≡ Dx = Dy, and Qa(x) defined in Eq.(4.55). Subscript ’a’ in Eq. (5.41)

stands for ’Approximated’.

A comparison of the brightness as a function of the energy spread for zero electron emit-

tance at the two different resonance photon energies of 580 eV and 4000 eV is shown in Fig.

5.11. The main parameters used in the calculation are summarized in Table 5.6. In order to

give a dimensional idea of the parameters under investigation, their values were converted

and summarized in Table 5.6 as well.

From Fig. 5.11 it is seen that there is a factor of four difference between Eq. (5.41) and Eq.

(5.40) in the limit for zero emittance and energy spread. In the frame of [73] approach, this

seems to be explained as due to the fact that while the Gaussian approximation was used to

determine the angular divergence and source size, the spatial profile was derived by the spatial

Fourier transform of the angular distribution of the complex amplitude, leading to a factor of

two in the source size. This procedure should not lead to any difference in the brightness in the

case of zero emittance and energy spread because the limit is set by Eq. (4.48)

From this, one may conclude that, while Eq. (5.41) may constitute a good approximation in

some regions of the parameter space when it comes to the limit for a diffraction-limited beam

with non-negligible energy spread, a more detailed study is needed.
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Figure 5.11: A comparison of the brightness as a function of the energy spread for zero electron emittance
at two different resonant photon energies (580 eV and 4000 eV) and using different methods: semi-
analytical approach and Eqs. (5.41)

5.4.4 Effect of the energy spread on coherence

It is interesting to discuss the possible effects of the energy spread on the coherence proper-

ties of undulator radiation. The case for zero emittance will be considered first.

It is seen from Eq. (5.27), that the phase of the field only depends on the electron offset and

is fully independent of ξ̂E, i.e., of γ. However, it should be noted that the magnitude and, most

importantly, the sign of the field depend on ξ̂E. Below the impact of this sign on the spectral

degree of coherence will be shown. A simplified expression in the case of zero emittance for

the SDC function according to Eq. (5.29) and Eq. (5.30) can be written as [90]

ĝ(θ̂, ∆θ̂) = Ĝ(θ̂, ∆θ̂)exp
(

− iẑθ̂∆θ̂
)

= exp
(

− iẑθ̂∆θ̂
)

∫ ∞

−∞
dξ̂E sinc

[

ξ̂E

2
+

(θ̂ + ∆θ̂/2)2

4

]

×

sinc

[

ξ̂E

2
+

(θ̂ − ∆θ̂/2)2

4

]

exp

(

− ξ̂2
E

2∆E

)/({

∫ ∞

−∞
dξ̂E sinc2

[

ξ̂E

2
+

(θ̂ + ∆θ̂/2)2

4

]

×exp

(

− ξ̂2
E

2∆E

)}1/2

×
{

∫ ∞

−∞
dξ̂E sinc2

[

ξ̂E

2
+

(θ̂ − ∆θ̂/2)2

4

]

× exp

(

− ξ̂2
E

2∆E

)}1/2)

(5.42)

This equation is written on the basis of Eq. (5.30), where the limit for zero emittance was

taken, and it is assumed, for simplicity, that the two vectors θ̂ and ∆θ̂ are directed along the

same direction. This simplification does not spoil the model but makes it easier to consider.

Further on, since the phase of the field in Eq. (5.27) only depends on the electron offset, it is

possible to factorize ĝ(θ̂, ∆θ̂) in the product of Ĝ(θ̂, ∆θ̂) and of the phase factor exp(−iẑθ̂∆θ̂).

It is seen from Eq. (5.42) that, when σ∆γ/γ → 0, G(θ̂, ∆θ̂) is different from unity, but

|g(θ̂, ∆θ̂)| = |G(θ̂, ∆θ̂)| → 1 everywhere. Moreover, on-axis, i.e., for θ̂ = 0, one has g =

G = 1, while off-axis (θ̂ 6= 0), one has jumps of G from +1 to −1 at all values of ∆θ̂ where

(θ̂ + ∆θ̂/2)2/4 and (θ̂ − ∆θ̂/2)2/4 differ by an odd multiple of π.
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First, the case of non-zero energy spread will be considered. Observing function g on-axis

at θ̂ = 0, from Eq. (5.42), it is seen that g(θ̂, ∆θ̂) = G(θ̂, ∆θ̂) = 1. However, off-axis, an inter-

esting phenomenon takes place. The field from different electrons with different detuning ξ̂E

experiences a change in sign at different values of ∆θ̂. This means that different electrons gen-

erate radiation with different wavefronts, and coherence is therefore decreased. This effect is

encoded in the function G(θ̂, ∆θ̂), while the phase factor exp(iθ̂∆θ̂) cannot change. This mech-

anism was not considered before, which is at the basis of any possible coherence deterioration

related to energy spread effects. It is important to underline that it is present only off-axis, while

energy spread alone cannot influence coherence properties on-axis. In the presence of a finite

emittance, one must include the effect of different angles η̂ in Eq. (5.35). Then, even on-axis,

different electrons generate radiation with different wavefronts, and coherence deteriorates.

In order to illustrate these statements and to estimate the importance of the effects of en-

ergy spread on coherence, semi-analytical calculations for the case of zero emittance were per-

formed. Different values of θ̂ were fixed, and the cross-spectral density G, the spectral degree

of coherence g, and the visibility V were calculated in the far-zone as a functions of ∆θ̂ for

different values of the energy spread.

Fig. 5.12 presents results for θ̂ = 0.5 and θ̂ = 1. The definition of used dimensionless units

is given in Eq. (5.25) and converted values in Table 5.6. The normalization factor (λ/Lu)1/2 is

of the order of the angular size of the central cone. Therefore, it does not make too much sense

to consider values of θ̂ larger than unity. As one immediately sees from the figures, even at θ̂

= 1, the effects of energy spread on coherence deterioration are very small. This is because the

first change in the sign for G(θ̂, ∆θ̂) happens at ∆θ̂ = 2π (and the second would be at ∆θ̂ = 4π).

Since there are fewer particular cases when it is interesting to go at such a distance from the

axis, the conclusion is made that the effect of energy spread on the degradation of coherence

is usually negligible in the far zone for a filament electron beam. It is also interesting to look

at the virtual source in the middle of the undulator. In this case, the previous analysis must be

repeated using the quantities defined as before but considering Eq. (5.28) instead of Eq. (5.27).

Fig. 5.13 presents results for r̂ = 0.5 and r̂ = 1. This time, the normalization factor (λLu)1/2

in Eq. (5.25) is of the order of the transverse size of the central cone at the virtual source and,

by analogy with the far zone, sufficient area for the analysis is up to values of r̂=1. The same

remarks made for the far zone hold for the values of the energy spread parameter. Inspection of

Fig. 5.13 shows an important effect of the energy spread on coherence properties at the virtual

source position. While there is not a simple expression as equation (5.27) at the virtual source

position, the mechanism that leads to coherence degradation is the same: namely, there is a

change in the sign of the field (see Fig. 5.9). This happens, however, for smaller values of r̂,

which leads to degradation already for small values of ∆r̂, as seen from Fig. 5.13.

The situation becomes more complicated when the finite emittance effects are introduced.

In particular, in this section, the two settings of parameters are considered. First setting is for

the source with parameters Nx = Ny = 0.006, Dx = Dy = 0.15, corresponding to a resonant energy

of 580 eV, and second setting is for the source with parameters Nx = Ny = 0.04, Dx = Dy = 1.05,

corresponding to a resonant energy of 4000 eV. The values of θ̂ in the far zone and r̂ at the virtual
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Figure 5.12: Far zone, zero emittance. a) and b) Modulus of the cross-spectral density |g|, c) and d) the
fringe visibility V as a functions of ∆θ̂ for different values of the energy spread (see legend). Here in a)
and c) shown cut for θ̂ = 0.5 and b) and d) for θ̂ = 1.0.

Figure 5.13: Virtual source, zero emittance. a) and b) Modulus of the cross-spectral density |g|, c) and d)
the fringe visibility V as a functions of ∆r̂ for different values of the energy spread (see legend). Here in
a) and c) shown cut for r̂ = 0.5 and b) and d) for r̂ = 1.0.
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Figure 5.14: Simulations for non-zero emittance case at soft X-ray energy of 580 eV. a) and b) Modulus
of the cross-spectral density |g|, c) and d) the fringe visibility V as a functions of ∆r̂ and ∆θ̂ for different
values of the energy spread (see legend). Here in a) and c) shown cut for r̂ = 0.5 and b) and d) for
θ̂ = 0.5.

source position were setted to θ̂ = 0.5 andr̂=0. Two functions |g| and V at the virtual source

and in the far zone were calculated. Results are shown in Fig. 5.14 and Fig. 5.15. Comparing

Fig. 5.13 with Fig. 5.14 and Fig.5.15 one can see how the effects of emittance become more

and more important and finally dominate over energy spread effects. One can see coherence

degradation already at zero energy spread, both at the virtual source and in the far zone. As

is to be expected from the previous discussion, energy spread effects are more visible at the

virtual source, while in the far zone, they are much less noticeable but still present.

It should be noticed here that none of the degradation effects on coherence has an impact on

the brightness when the electron beam has zero emittance. This fact was also checked by using

the expression for CSD Ĝ to evaluate the brightness according to Eq. (5.36). No deterioration of

brightness was found in the case of zero emittance. However, in the case of non-zero emittance,

brightness degrades [90].

The fact that the brightness cannot be affected by the energy spread alone, whereas the

energy spread alone has an impact on the coherence properties of the radiation, seems amusing.

However, it is seen from the fact, that the brightness, according to the definition in Eq. (5.36),

is the Wigner distribution on-axis, i.e. at r̂ = 0 and θ̂ = 0. As one can see from the previous

analysis, at r̂ = 0 and θ̂ = 0 there is no coherence degradation, at any energy spread value. In

general, brightness can be spoiled by decreased spectral photon flux, degradation of coherence,

or wavefront distortions.

In this section, a mechanism for degradation of coherence off-axis was discussed, while
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Figure 5.15: Simulations for non-zero emittance case at X-ray energy of 4 keV. a) and b) Modulus of the
cross-spectral density |g|, c) and d) the fringe visibility V as a functions of ∆r̂ and ∆θ̂ for different values
of the energy spread (see legend). Here in a) and c) shown cut for r̂ = 0.5 and b) and d) for θ̂ = 0.5.

on-axis, it was shown that coherence is preserved. The case of a finite emittance was consid-

ered for the coherence and brightness by introducing semi-analytical simulations. The same

was done for the enlarged emittance, and its impact on coherence and brightness was studied,

showing how it degrades for parameters applicable for diffraction-limited storage rings of the

next generation. The spectral degree of coherence is seen to decrease off-axis: this result is in

agreement with the conclusion concerning the brightness.
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Table 5.7: Storage ring parameters, used in the analysis.

Parameter Value

Electron energy 6 GeV

Beam current 100 mA

Horizontal and vertical electron beam emittance 10 pm rad

Horizontal and vertical betatron functions, βx, βy 2 m

Relative energy spread values 0, 1·10−3, 2·10−3

Table 5.8: Undulator and electron beam parameters, as well as intrinsic characteristics of the photon
beam.

Photon energy, keV 0.5 12 24 50

Number of undulator periods, Nu 72 170 170 170

Harmonic number, n 1st 3rd 3rd 5th

Size of single electron radiation σr, µm, [Eq. (4.47)] 12.5 2.55 1.79 1.25

Divergence of single electron radiation σ′
r, µrad [Eq. (4.44)] 15.7 3.2 2.3 1.5

Emittance of single electron radiation , pm rad [Eq. (4.46)] 197 8.2 4.1 1.9

Electron beam size [Eq. (4.29)] σe, µm 4.47 4.47 4.47 4.47

Electron beam divergence [Eq. (4.29)] σ′
e, µm 2.24 2.24 2.24 2.24

Total photon emittance εph, pm rad [Eq. (4.57)] 211 20 15.5 12.5

5.5 Diffraction-limited storage ring. Finite electron beam emittance

5.5.1 Analysis of the photon emittance

In this section, photon beam parameters and coherence of the DLSR source are analyzed for

the broad range of electron beam emittance values. Four photon energy values of 500 eV, 12

keV, 24 keV, and 50 keV were considered in the analysis. All simulations in this section were

performed according to semi-analytical approach (section 5.3) and backed up with the XRT

software [86] (see A.1 for the details).

For an example of the DLSR source, a high-energy storage ring operating at 6 GeV with the

parameters close to PETRA IV with an expected electron emittance of 10 pm rad and a new

beta βe function of 2 m is considered. In addition, in order to have a better understanding of

the photon properties of the source, a broader range of electron emittance values from 1 pm

rad to 300 pm rad is considered. The standard parameters of the DLSR and undulator used for

simulations and analysis are given in Table 5.7 and Table 5.8.

The analysis starts from a comparison of natural photon emittance of single-electron radi-

ation with the designed electron emittance of the DLSR εe = 10 pm rad. The analysis shows

(see Table 5.8) that at the energy of 12 keV, emittance values εe and εr are comparable, at 500

eV εe ≤ εr and at 24 keV as well as at 50 keV εe > εr. From this simple estimation, one may

expect to reach the diffraction limit at 500 eV and have parameters of radiation close to the

diffraction-limited source at 12 keV. It is expected that at higher energies of 24 keV and 50 keV,

radiation will be highly coherent but not diffraction-limited.
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Table 5.9: Details of XRT simulations and analytical approach. Ne,1 and Ne,2 is the number of electrons
used in the simulations of photon emittance and simulations of CSD accordingly. The angular mesh,
used in the simulation, is given by the number of pixels A1 for the XRT and semi-analytical simulation
of photon emittance, A2 for the mode decomposition performed by XRT and A3 for the analytical mode
decomposition. DA is the size of the virtual detector
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To fully characterize source properties, one needs to know the amplitude and intensity dis-

tributions at the source position and in the far-field region, which were calculated within the

frame of the semi-analytical approach and simulated utilizing the XRT software. The XRT soft-

ware calculates an amplitude of the radiation for a single electron from the undulator source

at the given photon energy on a given angular mesh (see Table 5.9). The transverse field from

each electron gets individual random angular and coordinate offsets within the emittance dis-

tribution, assuming Gaussian statistics of the electron bunch. An individual random shift to

gamma Lorentz factor within the energy spread is included as well.

Amplitude and intensity calculations in the far-field for all photon energies considered in

this section were performed at a distance of 30 m from the undulator source, which corre-

sponds to Fresnel numbers given in Table 5.9. For a defined number of electrons Ne (see Table

5.9), their corresponding amplitudes were stored in the matrix to analyze coherence functions

further. The resulting intensity was determined as a sum of intensities of each electron. Angu-

lar divergence of the source was determined as the variance value of the intensity distribution

at the far-field position (Eq. (5.24)). Transverse positional distribution at the source was ob-

tained by taking the Fourier transform of the angular field distribution in the far-field.

The size of the source was determined as the variance value of the intensity distribution at

the source position (Eq. (5.24)). Integration in Eqs. (5.24) was performed over the finite area

defined as the detector size D in the far zone or as the size of the source at the source position.

In both cases, the area corresponded to 95% of the total recorded intensity at the virtual screen.

Total photon emittance was calculated as the product of the source size and source divergence

(Eq. 4.57). The error of the performed simulation with the XRT software for each natural

electron emittance value was calculated as the standard deviation of the corresponding value.

The photon emittance as a function of the electron beam emittance (from 1 pm rad to 300

pm rad) for different relative energy spread values is presented in Fig. 5.16.
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Figure 5.16: Photon emittance εph as a function of the electron beam emittance εe for the different values
of the photon energy and energy spread in one transverse direction. A dashed horizontal line corre-
sponds to the value of the photon emittance of λ/2π.

As a result of these simulations, one may see the lower is electron emittance εe, the lower

is the photon emittance εph. Notably, at 500 eV and 12 keV photon energies and at 10 pm rad

electron beam emittance, the photon emittance reaches its asymptotic value (also note different

scale for 500 eV photon energy). This is a clear indication that at these energies, the synchrotron

source may be considered diffraction-limited.

It is seen that photon emittance increases at larger energy spread values for the same elec-

tron emittance. However, the energy spread induced difference does not exceed 12% at 500 eV

(10 pm rad), while at higher energy, this difference goes up to 50 %. It can be explained by the

fact that at low photon energies, the properties of the beam (source size and divergence) are

comparably large, and their small changes caused by the energy spread effect are not notice-

able. In contrast, the energy spread effects impact strongly at high energies due to the smaller

characteristic sizes of the radiation source. These results were compared with the analytical

ones obtained using Eqs. (5.10, 5.11) (circles in Fig. 5.16 ).

One may see that the results of the analytical approach and simulations performed with the

XRT software correspond to each other very well (both for different electron emittance values

and for different energy spread values) within the margins of the error bars. Both approaches

were also compared with the calculations made according to the approach of Tanaka & Kita-

mura [73] Eqs. (4.54, 4.55) (shown by lines in Fig. 5.16 ). It is observed that all three approaches

give similar results for three values of energy spread that were considered here.

As can be seen in Fig. 5.16 (see also Table 5.10), the lowest value of the photon emittance
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Table 5.10: Photon emittance values determined at different energies and zero electron energy spread
using XRT simulations, analytical approach, and Eqs. (4.54, 4.55). Results are presented for the 1 pm rad
and 10 pm rad electron emittance values.

Photon energy, keV 0.5 12 24 50

εcoh = λ/2π, pm rad 395 16.4 8.2 3.9

1 pm rad electron emittance

εXRT
ph , pm rad 380 20 10 5

ε
Analyt
ph , pm rad 391 16.3 8.9 5

εT&K
ph , pm rad 396 17.5 9.3 5

10 pm rad electron emittance

εXRT
ph , pm rad 398 24.6 18.5 15.2

ε
Analyt
ph , pm rad 402 24.9 17.7 13.8

εT&K
ph , pm rad 403 26.5 18.3 13.8

for zero energy spread in the simulations is asymptotically reaching the value of λ/2π, when

electron emittance vanishes. This is a strong indication that for low-emittance SSRs, X-ray ra-

diation cannot be approximated as Gaussian, because in this case, the lowest photon emittance

should reach the value of λ/4π as suggested in Ref. [78]. At the same time, these results are in

concordance with the other results (see, for example, [73, 82]), where non-Gaussian behavior of

synchrotron radiation of a single electron was considered.

5.5.2 Coherent fraction. Basic approach

According to a new asymptotic limit for the photon emittance, it is useful to determine a co-

herent fraction of radiation, similar to Eq. (5.16), at vanishing electron emittance. If one will use

conventional expression (5.16) with the emittance values εph shown in Fig. 5.16 coherent frac-

tion values would reach an asymptotic value of 0.5 and would never reach unity. Concerning

this, the previous expression was slightly redefined to the new one

ζCF =
Fcoh

F
=

ε2
coh

εx
phεx

ph

(5.43)

where εcoh=λ/2π and εph are photon emittance values obtained through different simulations.

The results of simulations in one transverse direction are presented in Fig. 5.17. First,

coherent fraction from the XRT simulations (triangles) was determined by using expression

(5.43) and the results of emittance simulations shown in Fig. 5.16. Then these results were

compared to the analytical calculation. Expression (5.10) was used to calculate the wave field

amplitudes in the far-field region. Eqs. (5.24) were applied to determine the source parameters.

Using the same expression (5.43) analytical values of coherent fraction (circles) were obtained

(see Fig. 5.17) Finally, the expressions (4.54) and (4.55) were used in equation (5.43) (lines) with

the help of Eq. (4.57).
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Figure 5.17: Coherent fraction of radiation ζCF as a function of the electron beam emittance εe for the
different values of the photon energy and energy spread in one transverse direction calculated according
to Eq. (5.43).

It is seen from the figure 5.17 that all three results excellently agree with each other and

show the same trend that was observed for emittance. It is important to note that in order to

obtain this result, the use of expression (5.43) is necessary instead of commonly exploited Eq.

(5.16). A more general definition of coherent fraction through coherent mode decomposition

will be discussed in the next section.

5.5.3 Coherent mode representation

As it was discussed in the section 3.3, the four-dimensional CSD function may be decom-

posed to a sum of two-dimensional coherent modes as given in Eq. (3.71). The XRT software is

also providing an opportunity to directly analyze these modes (see A.2).

The mode decomposition of the CSD was performed according to Eqs. (3.71), (3.72), (3.73).

The analysis was performed for the studied case of electron beam emittance of 10 pm rad.

The mode decomposition was used to determine the shape and contribution of each mode at

different photon energies and different values of the relative energy spread.

The first four modes and their normalized weights are shown in Fig. 5.18. An orthogonal

set of modes determined by the simulations represents a mixture of Laguerre-Gaussian-type

and Hermite-Gaussian-type modes [92] for the whole range of energy spread values from 0

to 2 · 10−3. These two different sets of modes have different symmetries. Hermite-Gaussian

modes may be represented as a product of two separable amplitude functions in the transverse
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plane. In contrast, Laguerre-Gaussian modes possess cylindrical modes symmetry and do not

allow factorization in two orthogonal directions.

It can also be noticed that the contribution of Laguerre-Gaussian modes is increased for

both energies with the increase of the energy spread values. It is interesting to note here that

the contribution of Laguerre-Gaussian modes is coming solely from the energy spread effect.

It can be shown that if electron offset parameters (entering angle η and axis offset l) are put to

zero, then all modes of radiation field may be represented by Laguerre-Gaussian modes (see

section 5.6, Fig. 5.28). Therefore, it means that in general, for the diffraction-limited source, it is

not possible to factorize CSD function in two orthogonal transverse directions and define the

degree of coherence as a product of its values in each direction (see Eq. (3.80)).

The first four coherent modes and their normalized weights for high photon energies of 24

keV and 50 keV for different energy spread values are shown in Fig. 5.19. The behavior of these

modes is similar to the ones observed at 500 eV and 12 keV cases (see Fig. 5.18).

The number of modes that contribute dominantly to CSD (Eq. (3.71)) and their spectral

densities (Eq. (3.73)) were calculated as well. The weights of different modes normalized to

zero mode β j/β0 were analyzed, introducing a threshold value of 1%. The values of these

mode weights are presented in Fig. 5.20 as a function of the mode number for all photon

energies and energy spread values considered in this work. As seen from this figure for 500

eV photon energy and zero energy spread, only three modes contribute significantly. With the

increase of the energy spread number of contributing modes increased to only four.

However, for 12 keV photon energy, the number of modes with a contribution higher than

1% is about ten. It is rising with the increased energy spread values reaching 42 modes at

2 · 10−3 relative energy spread value. The number of modes that contribute dominantly to CSD

and spectral density with a threshold of 1% is 19 for 24 keV and 35 for 50 keV in zero relative

energy spread case. With the increase of energy spread to the value of 2 · 10−3, the number

of modes contributing dominantly to CSD also increasing to 54 at 24keV and to 90 at 50 keV,

which is significantly larger than in the previous case of lower photon energies.

As soon as mode weights were determined, the global degree of coherence was calculated

for the considered photon energies and energy spread values according to Eq. (3.74) (see Table

5.11). The global degree of coherence value varies from 90% to 11% for photon energies from

500 eV to 50 keV, respectively. It drops down by 18% - 73% with the increase of energy spread

from zero to 2 · 10−3 for the same range of photon energies.

5.5.4 Coherent fraction. Framework of statistical optics

As soon as the modes are normalized by the sum of all modes ∑
∞
j=0 β j(ω), the weight of

the first mode naturally gives the coherent fraction of radiation (see Eq. (3.75)). The values

of the coherent fraction are presented in Fig. 5.21 for all photon energies considered in this

section (shown by triangles) as a function of electron beam emittance for different values of

energy spread. It is seen from this figure (see also Table 5.11) that at 10 pm rad one gets very

high coherence values about 95% at 500 eV and 55% at 12 keV at zero energy spread. With
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Figure 5.18: First four modes and their normalized weights β j obtained from the coherent mode decom-
position of the CSD at 500 eV (left column) and 12 keV (right column) photon energy for three different
relative energy spread values obtained by XRT simulations.



86 Chapter 5. Modeling and analysis of the 3rd and 4th generation synchrotron sources

Figure 5.19: First four modes and their normalized weights β j obtained from the coherent mode decom-
position of the CSD at 24 keV (left column) and 50 keV (right column) photon energy for three different
relative energy spread values obtained by XRT simulations.
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Figure 5.20: Weights of different modes normalized to the weight of a zero-mode β j/β0 as a function
of the mode number j. Horizontal dashed line corresponds to the value of 1%. Points are connected by
lines for better visibility. Number of modes exceeding 1% threshold is given in each panel.

the increase of the energy spread, these values become slightly lower 91% and 41% at 1 · 10−3

spread and significantly lower at the energy spread values of 2 · 10−3 (85% and 28%). At higher

photon energies, the coherent fraction of the radiation drops from 40% to 26% at 24 keV and

from 26% to 15% at 50 keV, while energy spread increases from zero to 2 · 10−3.

Results of XRT simulations were compared with calculations of coherent fraction in the

frame of the analytical approach (shown by circles in Fig. 5.21). Semi-analytical simulations

were performed by taking field amplitudes at the source and in the far-field region according

to Eqs. (5.10, 5.11). From Fig. 5.21 it is seen that the results of the analytical approach fit well

to the results of XRT simulations for all energies and energy spread values considered in this

work.

5.5.5 Transverse Cross-spectral density function

Finally, the results obtained in the previous sections were compared with the results of

simulations of correlation functions in the single transverse dimension. Coherent-mode repre-

sentation of correlation functions, being very general, provides an excellent theoretical insight

into the problem. At the same time, the shape of the coherent modes is not easy to determine

experimentally. Since the cross-spectral density W(r1, r2) is a 4D function, its determination

from the experimental data is challenging. In most of the experiments (as Young’s double pin-

hole experiment) correlation functions are determined in each transverse direction separately
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Figure 5.21: Coherent fraction of radiation ζCF as a function of the electron beam emittance εe for the
different values of the photon energy and energy spread in one transverse direction. Calculations per-
formed according to Eq. (3.75). A dashed vertical line corresponds to the value of the electron emittance
of 10 pm rad. Note the different scale for 500 eV coherent fraction value.

Table 5.11: Degree of coherence (Eq. (3.74)) and coherent fraction (Eq. (3.75)) determined from coherent
mode decomposition using XRT software and analytical approach of Eq. (5.10). All simulations are
performed at the electron beam emittance value of 10 pm rad for different photon energies and energy
spread values.

Photon energy, keV 0.5 12 24 50

Zero energy spread

Degree of coherence ζDC
XRT 0.90 0.34 0.20 0.11

Coherent fraction ζCF
XRT 0.95 0.55 0.40 0.26

Coherent fraction ζCF
Analyt 0.95 0.56 0.41 0.26

1 · 10−3 energy spread

Degree of coherence ζDC
XRT 0.84 0.20 0.13 0.06

Coherent fraction ζCF
XRT 0.91 0.41 0.35 0.22

Coherent fraction ζCF
Analyt 0.93 0.37 0.3 0.17

2 · 10−3 energy spread

Degree of coherence ζDC
XRT 0.74 0.11 0.07 0.03

Coherent fraction ζCF
XRT 0.85 0.28 0.26 0.15

Coherent fraction ζCF
Analyt 0.89 0.26 0.21 0.12
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(see, for example, [64, 89]). Next, it is assumed that the CSD of the whole field may be repre-

sented as a product of its orthogonal directions (see Eq. 3.79). This problem was analyzed for

the case of the DLSR source.

Simulations of the correlation functions in one transverse direction were performed in the

far-field region at a 30 m distance from the source. To determine these functions, the XRT soft-

ware and analytical expression of the wave field from a single electron in the far-field region

(see Eq. (5.10)) were used. The results of these simulations for two photon energies of 500

eV and 12 keV are presented in Table 5.12 and Fig. 5.22 (results of the analytical approach for

the same energies are shown in the A.4). The intensity distribution I(x) (Fig. 5.22 (a,b)), the

absolute value of the CSD in the horizontal direction |W(x1, x2)| (Fig. 5.22 (c,d)), the absolute

value of the SDC |µ(x1, x2)| (Fig. 5.22 (e,f)), and the absolute value of the spectral degree of

coherence as a function of spatial separation of two points |µ(∆x)| (Fig. 5.22 (g,h)) for both en-

ergies are presented in Fig. 5.22. It is well seen from this figure that the functional dependence

of these parameters is non-Gaussian for the 500 eV photon energy. But already at 12 keV, these

parameters can be successfully described by Gaussian functions (the same is valid for higher

energies).

As a general rule, the more modes contribute to the CSD, the more this dependence resem-

bles Gaussian. The rms values σx,y of the intensity distribution were determined in the far-field

region as the variance values of corresponding distributions(see Fig. 5.22 (a,b)). The values of

the transverse degree of coherence ζDC
x (see Fig. 5.22 (c,d)) were calculated according to Eq.

(3.63). Anti-diagonal cuts of the spectral degree of coherence function (see Fig. 5.22 (e,f)) were

used to determine the coherence length of radiation ξx as the variance values of corresponding

|µ∆x| distribution. As it is seen from Fig. 5.22 results of simulations performed by the XRT

software match extremely well to the ones performed analytically (A.4).

As it is seen from simulations, the CSD function |W(x1, x2)| has a rectangular shape (see

Fig. 5.22 (c,d)) since the coherence length of the beam is much larger than the beam size at this

photon energy. This observation is similar to earlier studies of correlation functions described

in the work [93]. Also, in this diffraction-limited case, the SDC shows strong oscillations at the

tails of the beam profile since the total photon radiation is defined mostly by characteristics

of single-electron radiation. In this diffraction-limited case, a Gaussian approximation is not

valid, and more careful analysis is required. Similar to the previous studies, a decrease of the

transverse degree of coherence with the increase of energy spread was observed. (see Table

5.12).

A similar analysis was completed for higher photon energies of 24 keV, 50 keV in the frame

of the semi-analytical approach and XRT software. The results of the analysis are shown in

section A.3 (Fig. A.2 and Fig. A.3) and section A.4 (Fig. A.6 and A.7).

Note, although Gaussian approximation fits nicely for the spectral degree of coherence pro-

file as well as for cross-spectral density at higher energies, the global degree of coherence is not

equal to the product of transverse coherence values ζ 6= ζxζy (compare Tables 5.11 and 5.12).

This observation also highlights that correlation functions for synchrotron radiation close to

the diffraction limit cannot be factorized in the two transverse directions.
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Figure 5.22: Simulations of the correlation functions in horizontal direction performed by the XRT soft-
ware for 500 eV (left column) and 12 keV (right column) photon energy. Intensity distribution I(x) (a,b),
absolute value of the cross-spectral density in the horizontal direction |W(x1, x2)| (c,d), absolute value of
the SDC |µ(x1, x2)| (e,f), and absolute value of the spectral degree of coherence along the anti-diagonal
line (shown in (e,f)) as a function of separation of two points |µ(∆x)| (g,h) simulated in horizontal direc-
tion 30 m downstream from the undulator source. In (a,b) σ is the rms value of the beam size, in (c,d)
ζx is the transverse degree of coherence, in (g,h) ξx is the coherence length determined in horizontal
direction.
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Table 5.12: Degree of coherence in one transverse direction obtained from the XRT simulations at 10 pm
rad electron beam emittance compared with the analytical analysis for the different photon energies and
relative energy spread values.

Photon energy, keV 0.5 12 24 50

Zero relative energy spread

Degree of coherence ζXRT
x 0.92 0.37 0.26 0.15

Degree of coherence ζ
Analyt
x 0.92 0.39 0.25 0.15

Degree of coherence ζGSM
x 0.87 0.39 0.28 0.16

1 · 10−3 relative energy spread

Degree of coherence ζXRT
x 0.89 0.25 0.17 0.11

Degree of coherence ζ
Analyt
x 0.89 0.23 0.17 0.09

Degree of coherence ζGSM
x 0.85 0.29 0.19 0.11

2 · 10−3 relative energy spread

Degree of coherence ζXRT
x 0.82 0.17 0.12 0.07

Degree of coherence ζ
Analyt
x 0.80 0.15 0.12 0.07

Degree of coherence ζGSM
x 0.84 0.21 0.14 0.09

5.6 Undulator detuning

The effect of the undulator detuning will be discussed in this section. The detuned energy

for the maximum flux defined as [82]

ω′ = ωn(1 − 1/nN) (5.44)

Knowing the amplitude distribution of the detuned undulator source, the coherence prop-

erties of the beam can be calculated in the frame of the basic coherence theory. As it was

discussed in the section 3.3 the four-dimensional CSD function may be decomposed to a sum

of two-dimensional coherent modes as given in Eq. (3.71) in the case of the detuned energy as

well. As shown previously, such an approach gives a more accurate estimation of the coherence

properties of the source in the diffraction limit since the radiation field cannot be approximated

by Gaussian functions. The mode decomposition of the CSD was performed according to Eqs.

(3.71). The analysis was done for the studied case of the electron beam emittance of 10 pm rad.

The mode decomposition was used to determine the shape and contribution of each mode at

different photon energies and at different values of relative energy spread at the resonant and

detuned to maximum flux photon energy.

The first four modes and their normalized weights for the detuned energy of 492.3 eV are

shown in Fig. 5.23. Similar to the resonance case, an orthogonal set of modes determined by

the simulations, for the whole range of energy spread values from 0 to 2 · 10−3, represents a

mixture of Laguerre-Gaussian-type and Hermite-Gaussian type modes [92]. One should note

that the modes only look similar to Laguerre-Gaussian and Hermite-Gaussian type of modes,

simultaneously being neither one nor the other, but the orthogonal set. For the detuned energy

first coherent modes slightly differ from the modes for the resonant energy, forming a more
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Figure 5.23: The first four modes and their normalized weights β j obtained from the coherent mode
decomposition of the CSD for the detuned energy of 492.3 eV (left column) 11.97 keV (middle column)
and 49.97 keV (right column) for three different relative energy spread values.
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Figure 5.24: Coherent fraction of radiation ζCF (global, calculated in both transverse directions) as a
function of the electron beam emittance εe for the different values of the photon energy (resonant and
detuned) and energy spread. Donuts are simulations performed at the resonant energy, and circles are
simulation performed at the detuned energy. Red, green, and blue color correspond to 0, 1 · 10−3, and
2 · 10−3 relative energy spread values, respectively.

donut shape profile (see β0 at detuned in Fig. 5.23). The latter usually occurs for the radiation

source tuned to maximum photon flux [82]. The same conclusion as in the case without detun-

ing can be made from the mode analysis performed for the detuned energy. Since the modes

possess different symmetry, the analysis and applied models using factorability of functions in

different transverse directions should be used with caution. For the detuned energy, Laguerre-

Gaussian-type modes are coming naturally from the decomposition of cross-spectral density

function without contribution of energy spread. When the energy spread of the electrons is

present, the contribution of the Laguerre-Gaussian-type modes is increased even more. It can

be shown by setting electron offset parameters (entering angle η and axis offset l) to zero (see

Fig. 5.28 in the red dashed square). Another interesting observation is that due to the soft pho-

ton energies and high divergences of the beam in this region, the oscillatory shape of the modes

is occuring, indicating once more a non-Gaussian origin of the source at vanishing electron

emittance. In the case of detuned energies, the central spot of the donat is squeezing higher the

energy (see Fig. 5.23), and due to the finite electron beam emittance, the mode translates into a

more Gaussian shape. In this case, produced coherent beam in the form of a donut with small

divergent angles spreads over the emitted cone, and the total radiation smears due to the finite

emittance. The coherent fraction in the case of soft X-rays slightly depends on energy spread,

but combined with the frequency detuning, it may experience major changes. For example, in

the soft x-ray energy range, the CF may drop down by 18% for 0.002 relative energy spread

value depending on the electron beam emittance (see Fig.5.24 (a)). In the case of higher photon

energies, this difference is even bigger, about 20-70% depending on the electron beam emittance

(see Fig. 5.24 (b)) As soon as mode weights were determined during the mode decomposition

process, the global degree of coherence for the considered photon detuned energies and energy

spread values according to Eq. (3.74) were determined as well. The tendency for the DOC is

preserved the same as it was for CF, and with the combination of the energy detuning effect,

it may experience significant changes. The DOC values vary for 20% for soft photon resonant
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Figure 5.25: Degree of coherence ζ (calculated in both transverse directions) as a function of the electron
beam emittance εe for the different values of the photon energy (resonant and detuned) and energy
spread. Donuts are simulations performed at the resonant energy and circles are simulation performed
at the detuned energy. Red, green, and blue color correspond to 0, 1 · 10−3, and 2 · 10−3 relative energy
spread values, respectively.

Figure 5.26: Degree of coherence ζ (calculated in both transverse directions) as a function of the photon
energy for the different values of the energy spread at 10 pm rad electron emittance. Red, green, and
blue color correspond to 0, 1 · 10−3, and 2 · 10−3 relative energy spread values, respectively.
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and detuned energies depending on electron beam emittance. However, significant change

arises again for hard X-rays of 12 keV resonant and 11.93 detuned photon energies with energy

spread effect. The DOC values, in this case, may drop down by 20-70%. It is also interesting to

look at the dependence of the DOC from the detuned photon energy (see Fig. 5.26). In this case,

simulations of the emitted undulator radiation were done around the resonant energy, and the

DOC is calculated from the mode weights obtained after the decomposition procedure. One

can see from Fig. 5.26 that the highest DOC may be achieved only around the resonant photon

energy at zero relative energy spread, while detuning from it may result in degradation of co-

herent characteristics. For other values of the relative energy spread, the tendency is the same,

although small deviations may be seen as well. As it was shown in the section 5.5.1, the energy

spread effect results in bigger photon source size and divergence. Therefore, the deviations

may happen due to slightly different simulation conditions, as the area of the beam used in the

decomposition procedure varies depending on the energy spread. Thus, simulations showed,

although detuning from the resonant energy may increase the spectral flux, it will happen at

the expense of deterioration of the coherent characteristics of the beam.

While simulating 1D radiation amplitudes, another interesting observation can be made in

the case of detuning. For all cases under consideration, the radiation profile is presented in the

form of a donut (see Fig. 5.27 (b) in left and right columns), as it was seen before from zero

mode (see Fig. 5.23). The hollow of the beam intensity at the central spot may vary depending

on the photon energy, relative energy spread value, and electron beam emittance. For higher

energy spread values, the hollow at the central part is usually smaller. In the case of hard x-

rays, due to the small beam sizes and relatively big electron beam emittance, the beam intensity

profile may be smeared, and the hollow may disappear. What is more interesting, that the first-

order correlation function in the presence of detuning effects may differ significantly in shape

of SDC function |µ(x1, x2)| (see Fig. 5.27 (d,f,h)) and its profile on antidiagonal cut |µ(∆x)| (see

Fig. 5.27(j)). Another important observation is that calculated DOC in 2D case is not equal

to the product of DOCs obtained in 1D cases (according to Eq. (3.63)) at different transverse

directions (ζ2D 6= ζ1D
x · ζ1D

y ), regardless of whether the resonant energy conditions is satisfied or

not. The feasibility of the latter also depends on the electron beam emittance. For relatively big

electron beam emittance (εe > 300 pm rad) the factorability of the CSD functions is valid, due

to the Gaussian distribution of the bunch. Therefore, the condition ζ2D = ζ1D
x · ζ1D

y is fulfilled.

In the case when the electron beam emittance is put to zero εe = 0, only effects connected to

the energy spread of the electron beam may be studied. As it was shown in the sections 5.4.1

and 5.4.4, the field from various electrons with different energy spread experiences a change

in sign at specific distances from the central axis. This effect is encoded in the correlation

functions and can be seen directly after the mode decomposition. It can be seen from Fig. 5.28,

that as soon as the energy spread effect was introduced immediately, the contribution of the

Laguerre-Gaussian-type modes increased (shown by red dashed square). As a result of this

analysis, one can see that the method for characterizing the coherence properties based on the

mode decomposition is more adequate and contains rich information on the parameters of the

source.
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Figure 5.27: Simulations of the correlation functions in horizontal direction for 500 eV (left column)
and 12 keV (right column) photon energy. Intensity distribution I(x) (a,b), shown for different values
of energy spread (zero (red), 1 · 10−3 (green) and, 2 · 10−3 (blue)) .Absolute value of the SDC |µ(x1, x2)|
for different energy spread values: zero energy spread (c,d); 1 · 10−3 energy spread (e,f); 2 · 10−3 energy
spread (g,h), and absolute value of the spectral degree of coherence along the anti-diagonal line (shown
in (c-h)) as a function of separation of two points |µ(∆x)| (i,j) simulated in horizontal direction in the far
field region. In (c)-(h) the transverse degree of coherence ζx is shown.
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Figure 5.28: First two modes and their normalized weights β j obtained from the coherent mode decom-
position of the CSD for the resonant energy (left column) and detuned (right column) photon energy, for
three different relative energy spread values. In the simulation electron beam emittacne is set to zero.
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5.7 Summary of the analysis

In summary, a detailed analysis of the coherence properties of a high-energy synchrotron

storage ring with ultra-low emittance values near 10 pm rad and a wide range of photon en-

ergies from 500 eV to 50 keV was provided. Such low values of electron beam emittance are

expected to be reached at PETRA IV facility ([51], [54]). In addition, the effect of electron energy

spread on the radiation properties of a DLSR source for the same energy range was analyzed.

All simulations were performed within the semi-analytical approach based on equations of

synchrotron radiation and compared with the simulations carried out by XRT software. The fol-

lowing important points were discussed during this work. In order to determine the properties

of radiation from diffraction-limited sources, an approach based on statistical optics ([62]; [8])

should be used. The single-electron radiation defines the overall photon beam parameters in

this low-emittance regime. Consequently, a minimum photon emittance (diffraction limit) that

may be reached at such storage rings within the framework of the considered model is rather

λ/2π. Another point is that even for such low emittance values as 10 pm rad true diffraction

limit will be reached, in fact, only at soft X-ray energies of about 500 eV. In this case, only a few

modes will contribute to the radiation field, but already at 12 keV radiation field will consist

of about ten modes and approach Gaussian type. This effect will be even more pronounced at

high energies. In order to reach the true diffraction limit for hard X-rays, electron emittance at

beam focus should be pushed down to about 1 pm rad, which is, unfortunately, out of reach for

present technology. The results also show that, for a full description of the radiation properties

of these sources, eigenvalue decomposition of the radiation field has to be performed, which

offers good theoretical insight and complete generality. It also means that present experimental

approaches which measure coherence properties of radiation in each direction separately ([64];

[94]; [95]) should be generalized to 2D methods of coherence determination. Another outcome

of this work is the analysis of the electron energy spread effects on the coherence properties of

DLSRs. It was demonstrated that this effect becomes more noticeable for low electron beam

emittance. The larger the energy spread values, the more the source size and divergence are af-

fected as well as the radiation wavefront. Consequently, the degree of coherence and coherent

fraction value of the radiation is decreased. It was shown that, in order to keep high coherence

values of radiation, the relative energy spread should not exceed the value of 1 · 10−3 at the

electron emittance values of 10 pm rad. It is also should be noted that at 1 pm rad emittance

values the energy spread should be sufficiently smaller than 1 · 10−3 to keep high coherence of

the x-ray beam. It was also shown that the effect related to undulator resonant energy detun-

ing with the combination of the energy spread effect may significantly reduce the coherence

characteristics of the DLSR source. Finally, the results demonstrate that the coherence proper-

ties of the future diffraction-limited sources will be outstanding ([46]; [53]). It is believed that

the general approach and new tools for an adequate description of the coherence properties

of synchrotron sources provided in this chapter will be helpful for the design and planning of

future diffraction-limited sources worldwide.



Chapter 6

X-ray free-electron lasers

Over several decades, femtosecond lasers, operating in the near-infrared and visible re-

gions, have been available. They allowed the investigation of many processes with characteris-

tic times below a picosecond, such as vibrational motions in molecules or generation of the ex-

citon. However, the resolution of lasers is limited to a few hundred nanometers, and the power

is by the wavelengths in use. On the other side, structural information retrieved by X-rays is

on the atomic scale. However, the generation of focused X-ray pulses with a small duration

(down to a few femtoseconds), very intense, and utterly coherent from the synchrotron storage

facilities is challenging. This difficulty has been overcome by the invention of the so-called

X-ray free electron laser (XFEL), which can operate in the far ultraviolet and X-ray modes.

The invention of the XFELs allowed increasing coherence up to 95% [93, 97, 98] and peak

brightness by ten orders of magnitude, up to 1035 ph/(s mm2 mrad2 0.1%BW) (see Fig. 6.1).

The first FELs demonstrating SASE principle were FLASH in Hamburg [99] operating in the

extreme ultraviolet photon range and LCLS at SLAC [100], operating in hard X-rays. Soon

many other SASE XFELs such as SACLA [101], European XFEL [102], Swiss FEL [103] and

PAL-XFEL [104] started their operation.

Producing extremely bright and short pulses of X-ray radiation, XFELs are based on an

entirely new concept, which Madey initially suggested in 1971 [105], and the working source

was demonstrated in the infrared domain in 1977 [106]. With the improved concept of Self-

Amplified Spontaneous Emission (SASE) process, proposed by A. Kondratenko and E. Saldin

in 1980 [107] and R. Bonifacio, C. Pellegrini, L. M. Narducci, and J. Murphy in 1984 [108], [109],

construction of FELs in the X-ray range providing extremely short pulse durations become

possible. The basic principle [105, 107] makes use of the fact that an electron beam passing a

long undulator magnet amplifies an initially produced radiation field.
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Figure 6.1: Examples of Free-Electron Lasers, operating in tender and hard X-rays with the given pa-
rameter of the electron beam energy. The bottom right plot shows a comparison in the peak brightness
of FELs (adapted from [96])
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6.1 Basic concept of the XFEL machine

6.1.1 Electron beam

Photocathode RF gun is generally used for XFEL machines because they require high-

quality injection electron beams with a low emittance to improve FEL generation. The electron

beam of the initial condition represents the shot noise signal driven from the photo-injector.

Due to extraction by a laser beam, the obtained electron signal has quantum random fluctua-

tions (Poisson process). Such random fluctuations in the beam current correspond to intensity

modulation of the beam current at all frequencies simultaneously – including the frequency to

which the undulator is tuned. When the electron beam enters the undulator, the presence of

the beam modulation at frequencies close to the resonance frequency initiates the process of

radiation. It is assumed that the input current has homogeneous spectral distribution since all

possible harmonics occur in the shot noise beam. The spectrum of the transversely coherent

fraction of radiation is concentrated within the narrow band, ∆λ, so that the typical amplifica-

tion bandwidth of the XFEL is of the order of 0.1% (see Eq. (4.25)).

After extraction, the bunch is accelerated by an electron radio frequency (RF) gun and di-

rected towards the linac. In the linac, consisting of a long sequence of superconducting ac-

celerating modules, magnets for beam focusing, and diagnostic equipment, the electrons are

accelerated to energies from a few up to tens of GeV. Next, electron bunches passing through

the undulators channeled down to the beamlines.

6.1.2 Microbunching and Self-Amplified Spontaneous Emission

Due to the interaction between the radiation field and the electron bunch in the presence of

the undulator’s magnetic field, a density modulation (microbunching) of the electron bunches

at the electro-magnetic wavelength builds up. This results in the enhanced power and coher-

ence of radiation during the passage of the bunch through the undulator.

In general, the electron-radiation interaction, during the process of microbunching, de-

scribed by the Lorentz force, according to Eq. (4.7) with the help of Maxwell’s equations (Eqs.

(3.1)-(3.4)), accounting for charge and current density, which are solved within the method of

a self-consistent radiation field. However, a simple picture of the process may be described

within the standard framework of the synchrotron radiation mechanism. Electrons propagate

along a sinusoidal path and emit synchrotron radiation in a narrow cone in the forward direc-

tion (see Fig. 4.2 (a,c)). When an electron beam goes through an undulator, it emits radiation

at the resonance wavelength (Eq. (4.24)). Moving with the speed of light, an electromagnetic

wave is always faster than the electrons, and a resonant condition occurs when the radiation is

ahead of the electrons by a distance λ after one undulator period. The fields produced by the

moving charges in one part of the electron bunch react on moving charges in another part of

the bunch, causing a small perturbation. Due to that, occurred tail-head instability leads to a

growing concentration of particles. In general, the Coulomb forces between the electrons pre-

vent the formation of a strong electron density modulation. However, the radiation produced
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Figure 6.2: (a) Electron energy modulation (gain energy - green area and loss - red area). The rate of
change of the electron energy can be described according to Eq. (4.7) (b) Density modulation, where
redistribution of particles occurred due to electron energy exchange and ponderomotive forces (for in-
homogeneous fields).

by the electron bunch itself is strong enough to slow down some of the electrons and accelerate

others, finally redistributing them into smaller microbunches at distances equal to the resonant

radiation wavelength. Redistribution takes place under the electron energy exchange, between

particles emitted the radiation and particles accelerated by the emitted radiation (see Fig. 6.2

(a)).

Thus, this collective instability in the electron beam produces an exponential growth (along

the undulator) of the electron density modulation on the scale of undulator radiation wave-

length (see Fig. 6.2 (b)). Before the micro-bunching occurs, all Ne electrons are treated as indi-

vidually radiating charges, and the resulting spontaneous emission power is proportional to Ne

(as in the case of bending magnet, wiggler, and undulator radiation). Within a micro-bunched

beam, all electrons radiate almost in phase. This leads to a radiation power growth as N2
e , and

thus, to amplification of many orders of magnitude with respect to spontaneous emission of

the undulator (typical number of electrons in the microbunch is around 108 − 109).

Stronger the electromagnetic radiation produced by such a bunch, stronger microbunching

is occurring and so on, which in fact form a positive feedback loop so that the process only

amplifies with propagation distance. This regime of FEL operation is called ’Linear Regime’

(LR), and the radiation produced during the amplification process Self-Amplified Spontaneous

Emission (see Fig. 6.3). The name originates from the fact that the magnitude of an electromag-

netic field is still proportional to the starting signal during the amplification process, which is

spontaneous undulator radiation. Therefore, the statistical properties of SASE FEL in the linear

regime are close to spontaneous undulator radiation and obey Gaussian statistics [111]. In ad-

dition, if the beam is perfectly microbunched the phase of the radiation field is constant across

the beam, so that the longitudinal coherence length is eqaual to the lenght of the electron beam.

Lcoh, z ≈ Le beam (6.1)
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Figure 6.3: Michrobunching process and the power radiated by an electron bunch as it propagates
through a long undulator (reproduced from [110]).

At a certain point, the microbunches are fully formed, and the exponential power growth

stops. It is called FEL saturation (see Fig. 6.3). In this regime, most of the electrons are out of

the resonant bandwidth of the radiation. Beyond this point radiation power can be extracted

at best linearly as a function of the undulator length by properly adjusting unduator paramter

K (undulator tapering) to maintain the resonant condition as the electron beam loses energy:

1 + K(z)2

2γ(z)2
= constant (6.2)

The radiated power produced at FEL is closely connected to the FEL parameter (Pierce param-

eter) or efficiency parameter ρ, which describes the energy transfer efficiency between electrons

and photons. If the peak electron beam power Ppeak, defined as

Ppeak =
γmec

2I
e

, (6.3)

then the peak saturation power Psat at which no further power improvement can be achieved

at FELs is proportional to Ppeak through the efficiency parameter

Psat ≈ ρPpeak. (6.4)

The efficiency parameter is introduced as [111]

ρ =

[ I
γ3IA

λ2
u

2πσe,xσe,y

(KAjj)
2

32π

]1/3

, (6.5)

where Ajj is the coupling parameter defined in Eq. (5.9) and IA is the Alfvén current accounting
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for electron beam self-interaction. It is seen from Eq. 6.5, that for the best FEL performance,

high electron beam current, small transverse beam emittance, and a small energy spread σγ are

required. The method of a self-consistent radiation field in the 1D FEL theory imposes constrain

on the magnitude of the efficiency parameter (should be much smaller than the unity) [111].

Usually, ρ is on the order of 10−3 and defines such FEL characteristic parameters as the gain

length Lg and the cooperation length Lc. Gain length is a characteristic length defining power

growth of the pulse in the undulator with the propagation distance in the linear regime

Lg =
λu

4πρ
, (6.6)

so that power dependence is determined as

P(z) ∼ exp

(

z

Lg

)

. (6.7)

The cooperation length Lc is describing a slippage of photons in comparison to electrons in

one gain length, introduced as

Lc ≈
λ

λu
Lg. (6.8)

The resonance condition imposes that radiation slips forward with respect to the electron beam,

one wavelength every undulator period. Slippage implies how far during the propagation

the radiation pulse profile will slip from the envelope of the axial electron beam profile at a

distance of the gain length Lg [111]. Therefore, the parameter Lc describes the distance at which

radiation from microbunches is still interfering. Usually, the electron bunch length is much

larger than the cooperation region. Electrons emit radiation coherently within this region, but

phase differences between any two of them are uniformly distributed. It results in multiple

longitudinal modes of radiation in both time and frequency domains. Therefore, Lc can be used

to estimate the coherence time of the radiation τc = Lc/c. Thus, the buildup of longitudinal

correlation of the electric field during the FEL process is limited to the scale of the number

of wavelengths multiplied by the number of undulator periods within a gain length. Finally,

through the FEL parameter, the saturation length can be calculated

Lsat ≈
λu

ρ
. (6.9)

6.2 Seeding

Although the radiation from SASE FEL is spatially highly coherent, it may have a very spiky

temporal structure, which may spoil the temporal (or longitudinal) coherence. Still, there is a

way to clean the spectrum of FEL SASE radiation, achieving relatively high coherence and peak

brightness. This method is called ”seeding” since the beam is seeded with a highly temporally

coherent source during the amplification process. ”Direct seeding” refers to any method where

the seed signal has the same wavelength as the resonance wavelength of the FEL with a power
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Figure 6.4: Main components of the XFEL facility. For instance, a self-seeding scheme utilizing hard
X-rays is shown.

level above the shot noise power but below saturation power of the FEL. For instance, seed

radiation at the resonant wavelength can be obtained via infra-red Ti: sapphire laser [112, 113].

One of the main challenges in seeding FEL externally is the temporal synchronization of

the FEL electron bunch. This problem is solved if the same electron bunch creates a highly

temporally coherent source (seeding radiation) and amplifies the latter. This concept is called”

self-seeding”, which was first proposed utilizing soft X-rays [114] (SXRSS) and thereafter hard

X-rays [115] (HXRSS).

In the self-seeding scheme, initially, the undulator is operating in the SASE regime, then

the photon beam is filtered through a monochromator and is used as a seed. The scheme

requires two undulators tuned at the same radiation wavelength. The SASE radiation is gener-

ated by the first undulator before reaching saturation. Then it passes through the narrowband

monochromator. In the case of the SXRSS, a grating is used, while in HXRSS, the FEL pulse is

monochromatized with a single diamond crystal. The initial self-seeding concept as described

in Ref. [116], required a long electron bypass line, where control over the electron beam proper-

ties was achieved by many quadrupole and sextupole magnets. The problem of a long electron

bypass was successfully solved by Geloni, Kocharyan, and Saldin in 2011 [117]. They proposed

using the transmission around the stopband of a Bragg reflection. In this case, after FEL SASE

radiation is generated, it is spectrally filtered by passing through a diamond crystal (see Fig.

6.4). After that, the bandwidth of the radiation is reduced. In order to violate the density mod-

ulation of the electron bunches produced by the first SASE FEL and at the exact time match

entering of the bunch into the second undulator section, the electron beam is forced through

a magnetic chicane. Thus a narrow band photon pulse, which overlaps the electron bunch

when they enter the second undulator, provides the necessary seed to induce coherent amplifi-

cation in this second FEL amplifier stage. The self-seeding method was successfully realized at

LCLS in both soft and hard x-ray regimes [116, 118], and this allowed to increase the temporal

coherence of the beam.

6.2.1 High-gain harmonic generation

FEL can be seeded by the formation of a coherent bunching of the electron beam at the

resonant wavelength. This scheme implies electron beam manipulation and is called High-
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gain harmonic generation (HGHG). In the HGHG scheme, the beam is first modulated by an

external seed laser. The modulation occurs in the first undulator section due to the pondero-

motive force resulting from the external seed laser. Ponderomotive force describes a nonlinear

force that a charged particle experiences in an inhomogeneous oscillating electromagnetic field,

which causes the particle to move towards the area of the weaker field strength. Further, the

energy modulation is converted into a current modulation by a dispersion magnet. In the dis-

persion section, particles with higher energy will be deflected less effectively and thus travel

short paths than those with lower energy. As a result, the electron beam will be bunched. This

bunched beam induces bright coherent radiation at a higher harmonic when it passes through

the next undulator, which is tuned to this resonance harmonic. The HGHG scheme can be gen-

eralized to a cascade system with more than one harmonic multiplication. This scheme was

first proposed by Yu [119] and tested in Brookhaven [120]. Later the first seeded-FEL source

FERMI operating with wavelength down to 4 nm was commissioned at the Sincrotrone Trieste

Laboratory [121]. The limitation of the HGHG seeding scheme is the lack of power of the con-

ventional lasers, which makes it impossible to seeding at x-ray wavelength. This problem was

partly solved by the invention of the so-called echo-enable harmonic generation (EEHG) FEL

scheme [122, 123]. In this scheme, a more complex configuration with two modulators and dis-

persive sections is used to achieve strong overcompression of the electron beam. Consequently,

much higher harmonics conversion in the HGHG stage occurs, providing smaller wavelengths

but no smaller than 1 nm in practice.

6.3 Science at the XFELs

The highest goals of imaging single molecules and obtaining molecular movies were the

cause of the construction of XFELs. The whole concept of imaging at the FEL is based on

recording diffraction patterns before the inevitable destruction of the samples in the form of

a Coulomb explosion occurs. The increased pulse rate, short pulse itself, and its transverse

coherence are the key enabling factors for single-particle X-ray diffractive imaging [24], which

implies averaging the weak diffraction signal from single biological particles during multiple

measurements. In such dedicated imaging experiments performed at XFEL sources, hundreds

of thousands of coherent X-ray pulses interact with differently oriented replicas of the target

sample in order to determine its three-dimensional structure with the highest resolution.

Conduction of the pump-probe experiments is another application of the ultrashort XFEL

pulses, where the conventional infrared laser first pumps a sample, and after some time delay,

the dynamics is measured by the probe pulse. This kind of experiment is used to reveal the

dynamics of plasma–matter interactions [30, 124], ultrafast phase transition, and laser-induced

molecular dynamics [31]. Using time-resolved small-angle x-ray scattering in pump & probe

experiments at XFELs, it is possible to study topological phases of matter (like skyrmions) or

highly non-trivial configurations of the electronic or spin system, which often result in exotic

and previously unimaginable material properties [125].

Exploiting incoherent X-ray radiation (artificially deteriorated at FELs) with the application
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Figure 6.5: Schematic layout of the EuXFEL instruments.

of higher-order photon correlation techniques, the incoherent source or irradiated sample may

be resolved as well [126–130]. At the same time, applying higher-order photon correlation

techniques, statistical properties of the XFEL beams may be studied [94, 126, 131–133]. The

obtained results from these works pave the way towards exploiting high coherent properties,

short pulse duration, and repetition rate of XFELs.

6.3.1 Science at the European XFEL

The European XFEL induces novel studies in physics that haven’t been considered before.

The dynamics and kinetics which occur on sub-microsecond and ultrafast timescales are diffi-

cult to probe experimentally. With the construction of XFEL, such experiments became avail-

able via collecting series of diffraction patterns at repetition rates of up to several MHz. Us-

ing the EuXFEL pulsed source, with such high repetition rate, it is possible to determine the

structure of viruses on the atomic level, trace ultrafast energy transfers within molecules, take

three-dimensional images of the nanoscale objects, film chemical reactions, and probe the char-

acteristics of extreme states of matter.

Opening up opportunities for new experiments, the European XFEL facility possesses three

different light sources (undulators SASE1-SASE3), providing X-ray radiation with the best

properties directed to the instruments in the facility’s experiment hall (see Fig. 6.5 ). Research

is possible at various complex experiment stations in the hard X-ray range (MID, HED, SPB,

SFX, FXE) or soft x-rays (SQS, SCS) utilizing advanced methods such as pump-probe [134].

The arrangement of SASE1 undulators represents the radiation source for the Materials

imaging & dynamics (MID) and High Energy Density Science (HED) end stations. The MID

beamline [135] pertains to scientific research for condensed matter physics (glass formation and

magnetism research), as well as for soft and biological material (colloids, cells, and viruses)

employing X-ray scattering, imaging [136] and pump-probe techniques. The latter is possible

due to the highly coherent beam, increased flux, and ultrashort duration of the X-ray pulses.

Recent studies conducted at the MID instrument showed interesting behavior and anomalous

dynamics in the soft matter utilizing X-ray photon correlation spectroscopy (XPCS) [137–139] as
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Figure 6.6: Map of techniques and methods available at various beamline stations of the EuXFEL (a) and
PAL-XFEL (b) facilities.

well as revealed the transition regime of the heat diffusion due to ultrafast laser interaction with

solids [140]. Such studies became possible due to pump-probe methods available at EuXFEL at

the MID station.

The HED instrument at the EuXFEL is a unique platform for experiments combining hard

X-ray FEL radiation and the capability to generate matter under extreme conditions of pressure

[141], temperature, or electric field. Experiments and available in situ studies at the beamline,

equipped with high-precision X-ray diffraction setup [142], provide the information on the new

extreme-pressure phases and solid-density plasmas, structural phase transitions of complex

solids in high magnetic fields. Recent studies at the HED beamline revealed an unexpected

cubic symmetry in Si materials [143], captured the process of new material synthesis at high

pressures [144], as well as structural changes in silicate, melts under extreme pressure [145].

Such material studies under extreme temperature and pressures are becoming possible at high-

power XFEL facilities.

From the other side, in the soft X-ray branch of the EuXFEL (undulator source SASE3, see

Fig. 6.5), scientific objectives include the understanding and control of complex materials, the

investigation of ultrafast magnetization processes on the nanoscale, and the real-time obser-

vation of chemical reactions in liquids, by means of Resonant X-ray Emission Spectroscopy

(XES), CDI and XPS. Combined with femtosecond laser pulses, it is possible to induce phase

transitions and unexpected transient states of matter on ultrafast timescales. Recent studies at

the SCS with a single-shot infrared pump–X-ray probe measurements captured the topologi-

cal switching dynamics in the skyrmion phase in real time [146]. An exceptional sensitivity to

the process is achieved due to the short X-ray pulse duration and reciprocal-space resolution

available at the SCS instrument.

SPB/SFX instrument is primarily dedicated to diffractive imaging and structure determi-

nation of micrometer-scale and smaller objects at atomic or near-atomic resolution. The instru-

ment implies research on biological objects, organelles, and cells, as well as viruses and crystals



6.3. Science at the XFELs 109

Figure 6.7: Schematic layout of the PAL-XFEL instrumnets.

of macromolecules.

The FXE instrument’s primary research is devoted to dynamic studies of chemical and bio-

chemical reactions in liquids. With enabling laser pump source, femtosecond time resolution

studies are available, exploiting different techniques (XRD, X-ray diffuse scattering, wide-angle

X-ray scattering X-ray emission, and absorption spectroscopies).

6.3.2 Science at the PAL-XFEL

X-ray free-electron laser at Pohang Accelerator Laboratory can provide transversely coher-

ent X-ray pulses with tens of GW (109 W) power scales and the duration of few tens of fem-

tosecond (10 -15 fs, for SASE operation mode). Although the transverse coherence is excellent,

the longitudinal coherence is poor due to the limitation of the SASE mode that starts from

the shot noise of the electron beam. To improve longitudinal coherence, the harmonic lasing

self-seeding is applied at FEL (HLSS FEL) (see section 6.2). The first Hard X-ray Self-Seeded

beam was provided by PAL-XFEL at a photon energy of 9.0 keV. The beam has an extremely

narrow spectrum band characteristic compared to the conventional self-amplified spontaneous

emission (SASE) method and is effective in experiments using a monochromatic beam. Such

SS X-ray beams will be effective to use in the experiments, concerning resonant Auger effect

[147], two-photon absorption [148], electronic quantum dynamics [149], nanocrystallography

[27]. The current self-seeding X-ray energy available at PAL-XFEL varies from 5.0 keV to 14

keV. On the other hand, SASE beams cover the photon range from 2.8 keV to 14 keV.

The hard x-ray branch of PAL-XFEL is dedicated to x-ray scattering, spectroscopy, imaging,

and crystallography experiments in a wide range of x-rays. The XSS (X-ray Scattering and

Spectroscopy) consists of FXS (Femtosecond X-ray Scattering) and FXL (Femtosecond X-ray

Liquidography) endstations. The NCI (Nano Crystallography and coherent Imaging) consists

of CXS (Coherent diffraction Imaging/Scattering and Spectroscopy), SFX (Serial Femtosecond

Crystallography) endstations (see Fig. 6.7).

The FXS (Femtosecond X-ray Scattering) induces researches on ultrafast dynamic phenom-

ena in solid-state materials by means of XRD, DXS, X-ray absorption, and emission spec-
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troscopy [150]. The optical laser pump source is available at the station, with an estimated

temporal resolution of 40 femtoseconds.

The FXL (Femtosecond X-ray Liquidography) instrument is designed for the study of ul-

trafast electronic and molecular structural dynamics of samples by means of SAXS/WAXS and

X-ray absorption and emission spectroscopy for capturing the laser-induced changes in the

sample.

The CXS (Coherent X-ray Imaging/Scattering and Spectroscopy) endstation is designed for

structure determination by means of SAXS, CXI, and XAS.

Serial Femtosecond Crystallography (SFX) experimental endstation offers advanced sam-

ple environments, including microcrystal delivery systems and sample chambers to perform

macromolecular structure studies. Besides the conventional sample delivery techniques using

liquid streams, 1D and 2D fixed target scanning systems are available. The X-ray focusing is

achieved to the area of about 5 × 5 µm2. The achievable resolution using the detector is about

1.4 Å. Applicable optical pumping instruments for structural dynamics are fs- and ns-lasers.

Soft X-ray Spectroscopy and Scattering (SSS) Beamline at PAL-XFEL covers soft X-ray en-

ergy range (250 – 1200 eV), utilizing for direct observation the transition of valence electrons.

Spectroscopy tools and time-resolved methods are available at the station. There are three end-

stations in the SSS beamline: XAS/XES, RSXS, FTH.

It is seen from the name that XAS/XES stations perform time-resolved spectroscopy exper-

iments on the conduction and valence bands materials.

RSXS endstation allows investigating the complex electronic ordering (charge/spin/orbital)

using time-resolved resonant soft X-ray scattering experiments on quantum materials and strongly

correlated systems.

FTH/Forward scattering endstation allows time-resolved imaging experiments as well as

X-ray absorption spectroscopy.



Chapter 7

Hanbury Brown and Twiss

interferometry

The development of quantum optics has not been without interference and intensity corre-

lation experiments. In 1956, Hanbury Brown and Twiss, who were eager to develop a new

method to determine the size of stars, stirred up optical physics with the observation of a

new form of interference produced by correlations of the intensity fluctuations of light from

a chaotic source [151]. Their stellar interferometer collected light produced by independent

sources on the disc of a star and detected at two different detectors on Earth [152]. The obser-

vation of a second-order interference effect in this configuration was intriguing because, at that

time, it appeared that classical and quantum theories of light offered different predictions. The

fact that initially unrelated photons, emitted from the disc of a star (or even different stars),

would exhibit a bunching effect provoked much disputation among the prominent physicists

of the time, despite having a sufficient interpretation [153]. A quantum-mechanical description

of photon correlations and further generalization of the concept of optical coherence, which is

based on the analysis of correlation functions of higher order, were introduced by R. J. Glauber.

Ever since, this effect has motivated extensive studies of higher-order correlations and their

quantum counterparts in optics, as well as in condensed matter and particle physics [154].

Nowadays, The Hanbury Brown–Twiss effect is universally accepted and, being so fundamen-

tal, embodies many subtleties of our understanding of the nature of light.
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Figure 7.1: Schematic representation of the HBT experiment.

7.1 HBT experiment

Different methods are generally applied for the experimental characterization of the radi-

ation source. For instance, double pinholes or non-regular arrays of slits at FELs and third-

generation synchrotron sources [89, 98] utilized to measure the spatial coherence of radiation.

Usually, such methods exploit diffraction elements to get an interference pattern. For instance,

in the Young interferometry experiment, double slits with several sets of distances between

apertures are used. In the case of a non-regular array, interference occurring from all pinholes

simultaneously at all distances present in the array. The conventional approach implies using

Michelson type interferometry [94, 155] to determine longitudinal coherence. The most exotic

of these experiments is Hanbury Brown and Twiss (HBT) intensity interferometry. Informa-

tion provided by the HBT interferometry connected to the second-and higher-order statistical

properties of the source. A schematic representation of the HBT experiment is shown in Fig.

7.1.

Initially, Hanbury Brown demonstrated the effect by measuring the angular size of the two

intense sources in the Cygnus and Cassiopeia constellations [156]. Afterward, Hanbury Brown

and Twiss proposed the interferometry method [157], and were able to demonstrate the ex-

istence of the excess fluctuations from laboratory source [12]. As the result of the experiment,

Hanbury Brown and Twiss discovered the so-called ”photon bunching” of thermal light, which

was further explained by Purcell [153] as a ”photon clump” (a tendency of photons to arrive

on the detector together). For instance, the probability of detecting a photon at position r1, t1

given that a photon is recorded at position r2, t2 revealed by the second-order photon correla-

tion function G(2)(r1, t1, r2, t2)

G(2)(r1, t1, r2, t2) =< I(r1, t1)I(r2, t2) > . (7.1)

In this case interference may occur in the absence of first-order coherence, and the information

about incoherently emitting objects can still be extracted. The effect is described in the frame

of quantum statistics as a pair-correlation between bosons caused by their indistinguishability

[153].
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In HBT intensity interferometry, the transition between the initial and final states involves

the emission and absorption of two indistinguishable photons at two detectors. The overall re-

sult of the HBT experiment is obtained through these two (in reality ≈ 106 pixels for a modern

detector) distinct channels. By measuring and collecting statistics, one can study the correlation

between signals and get information about the source. It was shown [151] that the correlation is

fully preserved even in the process of photoelectric emission (photoemissive detectors). During

the coincidence detection in the HBT interferometry experiment, the concept of photon bunch-

ing implies that photodetection is more likely to occur at the same time, or very close together

than farther apart in time. In this case, the probability function (section 3.2.1) of joint photoelec-

tric detection p(t, t + τ) clearly shows a photoelectric bunching within the range of coherence

time, with the maximum at τ = 0 [8]. In more general cases, the photoelectric detections are

correlated not only in time but also in space within the range of coherence length [8]. Therefore,

it is convenient to consider such practical parameter as the degeneracy parameter δω, which

shows the number of photons Nph in the coherence volume Vcoh. The parameter describes the

average number of photons in one quantum state, consequently enables interference. It can be

determined from Heisenberg’s uncertainty relations Eq. (3.47) for longitudinal direction and

Eq. (3.48) for transverse direction, where the phase space volume is given

V = ∆p∆r∆E∆t ≥
(

h̄

2

)3

. (7.2)

Therefore, the coherence volume comes naturally from Eq. (7.2) as Vcoh = (h̄/2)3, so that the

degeneracy parameter can be defined as

δ =
NphVc

V
(7.3)

Thus, the basic idea of HBT interferometry is to explore the correlation of intensities at

different spatial or temporal positions, i.e., to perform measurements of the second-order cor-

relation functions. For example, if measurements are carried out in the spatial domain, this

leads to the following normalized second-order correlation function

g(2)(x1, x2) =
< I(x1)I(x2) >

< I(x1) >< I(x2) >
(7.4)

where I(x1), I(x2) are the intensities of the wave field recorded at two spatial positions x1, x2

and averaging, denoted by brackets < ... >, is performed over a large ensemble of different

realizations. If radiation is cross-spectrally pure and obeys Gaussian statistics, which is typical

for chaotic fields, then g(2)-function can be expressed as [8]

g(2)(x1, x2) = 1 + ζ(Dω)|g(1)(x1, x2)|2 (7.5)

where g(1)(x1, x2) = µ(x1, x2) =< E∗(x1)E(x2) > /
√

(I(x1)I(x2)) is the first-order correlation

function and ζ(Dω) is the contrast function, which depends on the radiation bandwidth Dω.
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7.2 Application of Gaussian Schell-model in HBT interferometry at

FELs

The HBT method for the FEL pulses may be described in the frame of the Gaussian Schell-

model (GSM). In this case the cross-spectral density in the spatial-frequency domain can be

written as [65, 158, 159]

Win(x1, x2; ω1, ω2) = W0W(x1, x2)W(ω1, ω2), (7.6)

where W0 is the normalization constant and spatial dependence is defined by the function

W(x1, x2) = exp

[

− x2
1 + x2

2

4σ2
i

− (x2 − x1)
2

2L2
coh

]

. (7.7)

Here σI is the root mean square (rms) size and Lcoh = ξ is the spatial coherence of the incoming

beam. The frequency dependence is defined by

W(ω1, ω2) = exp

[

− ω2
1 + ω2

2

4Ω2
− (ω2 − ω1)

2

2Ω2
c

]

, (7.8)

where Ωc is the rms spectral width of radiation, Ωc is the spectral coherence, and it is assumed

that the frequency is counted from the central frequency ω0. Together with the cross-spectral

density Win(x1, x2; ω1, ω2) in Eq. (7.6) the spectral density functions both in spatial and fre-

quency domains can be introduced as

Sin(x) = Win(x, x), Sin(ω) = Win(ω, ω). (7.9)

It should be mentioned here that the cross-spectral density in spatial Win(x1, x2) and frequency

Win(ω1, ω2) domains is defined through its first-order correlation functions, g
(1)
in (x1, x2) and

g
(1)
in (ω1, ω2), respectively, as

Win(x1, x2) = [Sin(x1)]
1/2[Sin(x2)]

1/2g
(1)
in (x1, x2),

Win(ω1, ω2) = [Sin(ω1)]
1/2[Sin(ω2)]

1/2g
(1)
in (ω1, ω2).

(7.10)

Here, the first-order correlation functions are defined as

g
(1)
in (x1, x2) =

< E∗
in(x1)Ein(x2) >

√

|Ein(x1)|2
√

|Ein(x2)|2
, g

(1)
in (ω1, ω2) =

< E∗
in(ω1)Ein(ω2) >

√

|Ein(ω1)|2
√

|Ein(ω2)|2
, (7.11)

where Ein(x) and Ein(ω) are the amplitudes of the incoming fields. The parameters Ω and Ωc in

Eq. (7.8) can be also expressed through the rms values of the pulse duration σT and coherence

time τc of the pulse in front of the monochromator as [158, 159]

Ω2 =
1

τ2
c

+
1

4σ2
T

, Ωc =
τc

σT
Ω (7.12)
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For the SASE pulses at XFELs in most of the cases the coherence time τc is much shorter than

the pulse duration σT (τc ≪ σT). Taking this into account we have from Eqs. (7.12)

Ω ≈ 1

τc
, Ωc ≈

1

σT
(7.13)

In this limit, taking into account Eqs. (7.6-7.10), one can rewrite the spectral density in fre-

quency domain as

Sin(ω) = S0exp

[

− τ2
c ω2

2

]

(7.14)

and the second-order correlation function as

g(2)(ω2 − ω1) = exp

[

− σ2
T(ω2 − ω1)

2

2

]

. (7.15)

In the next section, deriviations accroding to [59] will be presented of the second-order cor-

relation functions taking into account the finite energy resolution of the monochromator unit.

Hereafter, frequency and spatial domains will be considered separately.

7.3 Second-order correlation functions in frequency domain and the

monochromator resolution

The normalized second-order correlation function g(2)(ω1, ω2) in frequency domain can be

defined as

g(2)(ω1, ω2) =
< S(ω1)S(ω2) >

< S(ω1) >< S(ω2) >
, (7.16)

where S(ω) is a spectral density. As it is shown in [59] (see appendix B), this g(2)-function for

chaotic light can be expressed through the correlation functions of the beam incoming on the

monochromator unit as

g(2)(ω1, ω2) = 1 + ζgin(ω1, ω2) (7.17)

Here ζ is the degree of spatial coherence of the incoming X-ray beam [68]

ζ =

∫∫

|Win(x′, x′′)|2dx′dx′′

[
∫

Sin(x)dx]2
(7.18)

and

gin(ω1, ω2) =

∫∫

R(ω1 − ω′)R(ω2 − ω′′)|Win(ω
′, ω′′)|2dω′dω′′

∫

R(ω1 − ω′)Sin(ω′)dω′ ∫ R(ω2 − ω′)Sin(ω′)dω′ , (7.19)

where R(ω) is the resolution function of the monochromator. In the following, the resolution

function is considered to be a Gaussian function with the root mean square (rms) value σr

R(ω) = exp

(

− ω2

2σ2
r

)

. (7.20)
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Figure 7.2: Schematic layout of
the HBT experiment performed at
the XFEL facility. The incoming
beam is scattered on the VLS grat-
ing. The exit slits are positioned at
the focal plane of the VLS grating
at the grating order n. The second-
order spatial correlation measure-
ments are performed by the pixe-
lated detector positioned far from
the monochromator unit to resolve
spatial modes of the incoming x-
ray pulses. The coordinate systems
for the incoming beam, the grating,
and detector are shown.

It can be shown [59], that in the case of Gaussian Schell-model pulses the function g
(1)
in (ω1, ω2)

in Eq. (7.19) can be expressed as

g
(1)
in (ω1, ω2) =

exp

[

− σ2
T

1+4σ2
r σ2

T
(ω2 − ω1)

2

]

(1 + 4σ2
r σ2

T)
1/2

(7.21)

Equation (7.21) was obtained in the limit σrτc ≪ 1. This condition is well satisfied for the typical

SASE pulses of an XFEL. Equations (7.16-7.21) were used in the analysis of the EuXFEL pulses

in frequency domain. Here, it should be noted, that if one can neglect the monochromator

resolution (by putting σr = 0) then the function g
(1)
in (ω1, ω2) in Eq. (7.21) can be expressed

through the function g
(1)
in (ω2 − ω1) defined in Eq. (7.15) as

gin(ω1, ω2) = exp[−σ2
T(ω2 − ω1)

2] = |g(1)in (ω2 − ω1)|2. (7.22)

7.4 Second-order correlation functions in spatial domain

In the HBT experiment at the FELs the intensities measured at the detector, if located far

from the monochromator unit ID(xD) (xD are coordinates at this detector), may be correlated

to determine the normalized second-order correlation function as

g(2)(xD
1 , xD

2 ) =
< ID(xD

1 )ID(xD
2 ) >

< ID(xD
1 ) >< ID(xD

2 ) >
(7.23)

The intensities ID(xD) are determined after projecting the intensities measured on the two-

dimensional pixelized detector along the vertical (dispersion) direction. It can be shown [59],

that the g(2)-function defined in Eq. (7.23) can be related to the statistical properties of the

incoming on the monochromator unit pulses as

g(2)(xD
1 , xD

2 ) = 1 + ζin(Dω)|gin(xD
1 , xD

2 )|2. (7.24)
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In this expression, the contrast function ζin(Dω), which depends on the radiation bandwidth

Dω, is defined as

ζin(Dω) =

∫∫

T̃sl(ω1)T̃sl(ω2)|Win(ω1, ω2)|2dω1dω2

[
∫

T̃sl(ω)Sin(ω)dω]2
(7.25)

In Eq. (7.25) the function T̃sl(ω) is determined as

T̃sl(ω) = T2
sl(ω)⊗ R(ω) =

∫

T2
sl(ω

′)R(ω − ω′)dω′ (7.26)

where ⊗ is the convolution sign. The transmission function of the slits Tsl(ω) in Eq. (7.26) is

defined as a finite window in the spectral domain of the size of the spectral bandpass Dsl
ω as

Tsl(ω) = rect

[

ω

Dsl
ω

]

, (7.27)

where rect(x) is the rectangular function. The expression (7.26) means that when the spectral

bandpass of the slits Dsl
ω is much wider than the resolution function,Dsl

ω ≫ σr, then the band-

pass will be defined by the bandpass of the slits Dsl
ω. In the opposite case, when Dsl

ω ≪ σr, the

bandpass will be determined by the resolution function R(ω). This means that by closing the

slits one can reduce the bandwidth up to some limit defined by the resolution function of the

monochromator unit. In Eq. (7.24) the correlation function gin(xD
1 , xD

2 ) is determined by

gin(xD
1 , xD

2 ) =

∫∫

P∗
f+L(xD

1 − x1)Pf+L(xD
2 − x2)Win(x1, x2)dx1dx2

[SD(xD
1 )]

1/2[SD(xD
2 )]

1/2
, (7.28)

where

SD(xD
i ) =

∫∫

P∗
f+L(xD

i − x1)Pf+L(xD
i − x2)Win(x1, x2)dx1dx2 (7.29)

and i=1,2. In Eqs. (7.28,7.29)

PL(x − x′) =
( −ik

2πL

)1/2
exp

[

i
k

2L
(x − x′)2

]

(7.30)

is the propagator of the field in free space for the distance L, k = 2π/λ is the wavenumber, and

λ is the wavelength of X-ray radiation. In Eqs. (7.28, 7.29) f is the focal distance from the VLS

grating to the focal position (see Fig. 7.2) of this grating and L is the distance from the exit slits

(that are positioned in the focal plane of the VLS grating) to the detector.

It can be shown [59] , that in the case of Gaussian Schell-model the contrast function ζin(Dω)

in Eq. (7.25) can be expressed as

ζin(Dω) =

∫ ∞

−∞
F(ω)|g(1)in (ω)|2dω

[ ∫ ∞

−∞
˜̃T(ω)dω

]2
, (7.31)

where F(ω) is the autocorrelation function

F(ω) =
∫ ∞

−∞

˜̃T(ω′) ˜̃T(ω′ + ω)dω′ (7.32)
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the function ˜̃T(ω) is defined as
˜̃T(ω) = Sin(ω)T̃sl(ω) (7.33)

and the function g
(1)
in (ω) is defined in Eq. (7.15).

In the HBT interferometry the contrast values are determined directly from the experiment

for different exit slit opening from the relation (7.24). In order to estimate the pulse duration,

these contrast values should be fitted by Eq. (7.31).

7.5 Coherence time

According to Wiener–Khinchin theorem, the complex degree of coherence may be deter-

mined through the average spectral density S(ω) as

γ(τ) =

∫ ∞

0 S(ω)e−iωτdω
∫ ∞

0 S(ω)dω
. (7.34)

In the statistical optics coherence time is defined through the complex degree of coherence γ(τ)

as [8, 55]

τc =
∫ ∞

−∞
|γ(τ)|2. (7.35)

In this way, the coherence times may be determined for simple spectrum shapes [55]. For

example, if the spectrum has a rectangular shape, then τc = 2π/Dω, where Dω is the width of

the spectrum; if the spectrum is Gaussian then τc =
√

π/σω , where σω is the rms value of the

Gaussian spectrum.

In the case, when the spectral density maybe presented in the form of a sum of two Gaussian

functions,

S(ω) = A1exp

[

− (ω − ω0
1)

2

2σ2
1

]

+ A2exp

[

− (ω − ω0
2)

2

2σ2
2

]

, (7.36)

where A1 and A2 are scaling coefficients, ω0
1 and ω0

2 are the centers of each Gaussian line and

σ1 and σ2 are their rms values, the coherence time may be found using Eqs. (7.35)- (7.36) as

τc =

√
π

[A1σ1 + A2σ2]2

{

A2
1σ1 + A2

2σ2 +
2
√

2A1A2σ1σ2
√

σ2
1 + σ2

2

exp

[

∆ω2
0

2(σ2
1 + σ2

2 )

]}

, (7.37)

where ∆ω0 = ω0
2 − ω0

1.



Chapter 8

Hanbury Brown and Twiss

interferometry at EuXFEL

One of the most challenging tasks for the XFEL photon diagnostics is the precise determi-

nation of the photon source parameters. Understanding the properties of recently constructed

XFEL facilities [100, 101, 160, 161] appears vital as many experiments rely on the high degree of

coherence and short pulse durations of these sources. The radiation source at XFEL possesses

a unique temporal structure. Therefore, there is a significant demand for developing adequate

and effective methods that correctly describe radiation properties from such ultimate facilities.

An excellent approach and the analysis method, providing the information about the pho-

ton source, lies within the framework of statistical optics. Various phenomena occurring with

light propagating in free space, interaction with optical systems, extended media, and particle

bunching are discussed within this framework. In general, an approach within statistical op-

tics includes rigorous mathematical methods applicable for the statistical analysis of a photon

source.The first-order coherence properties of these sources were determined in double pinhole

Young’s experiments [94, 98] or by the speckle contrast analysis [162, 163]. By performing HBT

experiments at XFEL sources, rich information on their statistical properties, such as the degree

of spatial coherence and average pulse duration, can be determined [131, 133, 164, 165] (see for

review [65]). These experiments may also shed light on the fundamental statistical properties

of XFEL sources and clearly indicate whether an FEL behaves as a true single-mode laser source

or rather as a chaotic source of radiation [132]. This chapter is dedicated to a comprehensive

statistical analysis of experimental results for the high-power European XFEL (EuXFEL) ra-

diation utilizing HBT interferometry. The HBT method was applied in both the spectral and

spatial domains. As a result, three XFEL operation modes were characterized, involving linear

(LT) and quadratic (QT) undulator tapering at saturation, as well as the operation in the lin-

ear gain regime (LR). Finally, the degree of coherence and characteristic pulse durations for all

three regimes were determined.
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Figure 8.1: Schematic layout of the experiment. The monochromator focuses the SASE3 undulator
source located about 300 m upstream onto the exit slits (ES) located 100 m downstream. Vertical fo-
cusing mirror (VFM), part of a variable bending mirrors Kirkpatrick-Baez (KB) system, located 28 m
downstream from the ES, refocuses the x-ray beam at 2.8 m downstream from this mirror. The measure-
ments were taken at a distance of about 6.4 m from the focal position. Horizontal KB focusing mirror
located 1.35 m upstream of the VFM, refocuses the intermediate horizontal focus located at 374 m after
the undulator source.

8.1 Experiment

The HBT experiment was carried out at the European XFEL’s Spectroscopy and Coherent

Scattering (SCS) instrument. The EuXFEL linac was operated at 14 GeV electron energy with

an electron bunch charge of 250 pC in a single bunch mode at a 10 Hz repetition rate. The

SCS instrument is located at the SASE3 undulator beamline, producing intense X-ray pulses

in the soft X-ray photon energy range (250 eV - 3000 eV). A schematic representation of the

beamline is shown in Fig. 8.1. The experiment was performed at 1.2 keV photon energy with

three undulator configurations, i.e., LT and QT at saturation which are dedicated settings to

provide high power radiation, and a configuration for operating the XFEL in the LR with the

average pulse energies of 1.2 mJ, 6.5 mJ, and 0.117 mJ, respectively (see Fig. 8.2 for details).

The SCS instrument is equipped with a variable line spacing (VLS) diffraction grating

monochromator [166, 167]. The monochromator was operating in the second diffraction or-

der, corresponding to a photon energy dispersion of 2.69 eV/mm in the exit slit (ES) plane

along the vertical direction. The experimental resolution at this energy was estimated to be

better than 0.3 eV at the full-width at half maximum (FWHM) (theoretical resolution at this

energy is 0.2 eV [167]). In the case of spectral measurements, the spectral distribution of XFEL

pulses were acquired in the ES plane of the monochromator. This was achieved by introducing

a YAG:Ce crystal just behind the fully opened ES and detecting the optical luminescence from

this crystal by a charge coupled device (CCD) gated by a microchannel plate (MCP) detector.

Spatial second-order correlation measurements were performed using a back-illuminated

CCD detector (Andor iKon-M 934, 1024×1024 pixels, pixel size of 13×13 µm2) with 8 pixels

binned in the vertical direction and no binning in the horizontal direction. The detector was

located at the end of the beamline at a distance of about 6.4 m from the X-ray beam focus.

The bending of the horizontal Kirkpatrick-Baez (KB) mirror was adjusted for QT and LT/LR

measurements, thus changing the horizontal size of the beam on the detector (Fig. 1). In the
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Figure 8.2: K-values of the SASE3 undulators, used during the HBT experiment at EuXFEL. For linear
(magenta dots) and quadratic (green circles) tapering in saturation regime cells 5-21 were used and in
linear regime (blue circles) cells 7-14 were used.

case of spatial correlation measurements, the bandwidth of X-ray radiation at the CCD detector

was controlled by the size of the monochromator ES opening.

8.1.1 Undulator settings explored in the experiment

The soft X-ray undulator beamline SASE3 of the European XFEL consists of 21 undulator

cells each being 6.1 m long. The magnetic structures are 5 m long followed by a 1.1 m long in-

tersection with a quadrupole magnet, a phase shifter, horizontal and vertical air coil correction

magnets as well as a beam position monitor. The K-parameter of the individual cells can be

changed by the variable gaps of the undulators. The undulator period length is 68 mm [168].

All measurements of this experiment have been carried out with a photon energy of 1.2 keV.

This required the undulator gaps between 15.73 mm and 16.2 mm depending on the undula-

tor cells position as well as on the taper setting. The gaps of the first 4 undulator cells were

not closed during the whole experiment. The undulator cells 5-21 were used for the first two

measurement steps with the linear (LT) and quadratic (QT) tapering. These 17 cells delivered

sufficient pulse energy as well as a single spot on a downstream FEL imager with no halos,

which is an indication that the beams trajectory through the undulator is straight. For the LT

and QT, the undulator cells 5 to 13 were tapered linearly using the same K-parameters. The

taper settings differ only in the cells 14 to 21 as shown in Fig. 8.2. The respective tapering

settings were found by optimization of the SASE pulse energy signal, first with linear tapering

only, and then including the quadratic taper starting from cell 14. The measurement in the lin-

ear gain regime (LR) was carried out using the undulator cells 7 to 14 with a LT as presented in

Fig. 8.2.

8.1.2 Monochromator at the SCS instrument

The experiment has been performed at the SASE3 undulator beamline of European XFEL in

the monochromatic mode of operation. The SASE3 beamline is equipped with a plane grating
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monochromator which consists of elliptical focusing mirror and the plane variable line spacing

(VLS) grating [169]. The elliptical mirror focuses the undulator source located at about 300 m

upstream onto the exit slit located 100 m downstream, and the grating disperses the beam in

the vertical plane. Presently, the monochromator is equipped with a provisional 140 mm long

grating [167] which cuts the beam vertically. In this experiment about 1.4 – 2 rms values of the

vertical beam size have been transmitted by the grating. In the horizontal direction, where spa-

tial correlation measurements were performed, the beam was not cut by the monochromator.

The monochromator was operating at 1200 eV in the 2-nd diffraction order. The grazing angle

of incidence and diffraction were 18.03 mrad and 21.97 mrad, respectively. Thus, the grating of

140 mm length was transmitting 2.52 millimeters of the vertical beam size. The FWHM of the

vertical beam size at the grating position was estimated to be about 4.2 mm for LT, 3.4 mm for

QT, and 2.5 mm for LR. This would lead to geometrical cut by the grating in the vertical direc-

tion to about of 1.4 rms of the vertical beam size for LT, 1.8 for QT, and 2.4 for LR, respectively.

Note that the beam was not centered on the grating vertically.

8.2 Spectral analysis

Single-pulse spectra were recorded for all three regimes of the EuXFEL operation prior to

spatial measurements by introducing YAG screen (see Fig. 8.1). Each run consisted of about

3·103 pulses for each operating condition of the EuXFEL. Below the results of spectral and spa-

tial measurements for all regimes are presented. As shown in Fig. 8.3 (a,c,e), one can observe

a multimodal structure in the single pulse spectrum intensity distribution for all operating

regimes of the EuXFEL. The number of spectral modes varies depending on the operation con-

ditions. As it is well seen in Fig. 8.3 (a,c,e), the average spectrum does not resemble a single

Gaussian function but is rather a sum of two distributions, which applies for all operating

conditions. The FWHM of the average normalized spectrum was estimated directly from the

experimental data which was in the range of 0.7% - 1% from the resonant energy, depending

on the experimental conditions (see Table 8.1). This spectrum is about three times wider than

the theoretically predicted one for the SASE3 undulator [170], which may be affected by the

energy chirp of the beam (see simulation section C ). The knowledge of the average spectrum

allows one to estimate the coherence time of X-ray radiation as according to Eq. 7.35. The av-

erage spectrum was fitted by the sum of two Gaussian functions to determine the coherence

time in each operating condition of the SASE3 undulator. For all three operation conditions the

coherence time was in the range from 200 as to 300 as.

To determine the bandwidth of single spike spectral lines the autocorrelation analysis of the

spectra was performed. The result of this analysis for all regimes is shown in Fig. 8.3 (b,d,f).

This was done in the following way: the autocorrelation function for each pulse spectral line

was evaluated first and then it was averaged over all pulses. Similar features are observed for

the autocorrelation functions determined in such a way for all three regimes of SASE3 oper-

ation. In Fig. 8.3 (b,d,f) one can observe a sharp peak, corresponding to the averaged single

spike spectral lines, positioned on the top of a broad peak, which corresponds to the average
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Figure 8.3: (a, c, e) Typical single shot spectra for different operation regimes of SASE3 beamline and
an average spectrum of about 3 · 103 pulses. (b, d, f) Autocorrelation function of individual spectral
lines averaged over 3 · 103 pulses (blue solid line) and the fit with the sum of two Gaussian functions
(magenta dashed line). The FWHM values of the Gaussian fits are also given. Here (a, b) refer to LT, (c,
d) to QT, and (e, f) to LR of the SASE3 undulator settings.

spectrum. By fitting these peaks with Gaussian functions one can determine an average width

of both spectral lines. An average width of the peaks in spectra ∆E is related to the width of the

peaks determined from the autocorrelation function ∆EACF, by ∆E = ∆EACF/
√

2. The narrow-

est value of the sharp peak was measured in the regime of QT with the value of 0.45 eV, which,

in this case, is close to the monochromator resolution of 0.3eV. Therefore, in this regime the

limit of sufficient resolution for the fine structure of the spectrum was reached. The bandwidth

of radiation was determined from the autocorrelation analysis of the spectra by Gaussian fit of

the broad peaks. For the LT and LR the radiation bandwidth is almost the same, 9.3 eV and

8.7 eV, respectively, and for the regime with QT it is 12 eV (see Table 8.1 ). The values of the

FWHM of both peaks corrected for the factor of
√

2 are provided in Table 8.1.

The average pulse duration in spectral domain was determined by performing correlation

analysis [59] (according to Eq. 7.16). The second-order correlation functions in the frequency

domain for all cases are presented in Fig. 8.4. In Fig. 8.4 (b,d,f) the behavior along the white

dashed diagonal line of the second-order correlation function in Fig 8.4 (a,c,e) is shown. Note,

that the contrast value is below unity for all three undulator settings due to the finite degree

of coherence in spatial domain and monochromator resolution function (see Appendix Eqs.

(7.17-7.19).

These profiles were fitted by expressions (7.17) and (7.21) assuming the FWHM resolution

function R(ω) of 0.3 eV. The values of the degree of coherence ζin were determined from the

spatial analysis discussed below, but set to unity during the fitting procedure. The latter was

done due to artifacts from spectrometer, influencing the contrast values. As a result of this
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Table 8.1: Results of the analysis in spectral and spatial domains for LT, QT, and LR operation regimes.
Parameters determined from the analysis of autocorrelation function are noted as ”ACF”. Parameters
specified from the HBT analysis in spectral and spatial domains are indicated as ’spec’ and ’spat’ ac-
cordingly.

Operation regime LT QT LR

Photon energy, eV 1205 1205 1202

Spectral analysis

FEL bandwidth (FWHM), eV 10.0 ± 0.1 12.6±0.1 8.8±0.1

Width of spectrum fromACF (FWHM), eV 9.2±0.1 12.0±0.1 8.5±0.1

Width of spike spectral linesACF (FWHM), eV 0.49±0.02 0.49±0.02 0.57±0.02

Coherence time (rms), as 309±7 235±5 316±7

Pulse duration Tspec (FWHM), fs 6.56±0.2 5.86± 4.86±0.1

Spatial analysis

Average beam size (FWHM), mm 2.3±0.03 1.7±0.02 2.2±0.03

Coherence length (rms), mm 2.4±0.1 1.3±0.4 2.6±0.2

Degree of spatial coherence, % 91.6±3 71±5 89±3

Pulse duration Tspat (FWHM), fs 8.5±1.1 12.8±1.5 7.3±1.2

Figure 8.4: (a, c, e) Intensity correlation functions of spectra g(2)(ω1, ω2). (b, d, f) Cut along the anti-
diagonal lines shown by the white dashed lines in (a, c, e) and its fit with the profile given in Eqs. (7.17,

7.21) (black dashed line). In the inset the profiles along the diagonal of the g(2)(ω, ω) function in (a, c,
e) are shown. Here (a, b) refer to LT, (c, d) to QT, and (e, f) to LR of the SASE3 undulator settings. In the
analysis the assumed resolution of the monochromator unit is 0.3 eV (FWHM).
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fitting by Eq. (7.21) (see Fig. 8.4 (b,d,f)) we determined the rms values σT of an average pulse

duration, from which the FWHM values (TFWHM = 2.355σT) were deduced. The FWHM values

(TFWHM = 2.355σT) lie in the range from 4.9 fs to 6.6 fs depending on the undulator setting (see

Table 8.1 ). The measurements were performed by the YAG:Ce crystal positioned behind the

fully opened exit slits of the monochromator. The optical luminescence from this crystal was

detected by a charge coupled device (CCD) gated by a microchannel plate (MCP) detector. This

scheme does not provide high resolution measurements, especially for the QT regime, when a

non-linear response of the detection system may affect the results of the measurements. Due

to this detection scheme adapted at the EuXFEL values of the transverse degree of coherence

and the contrast were set to unity in the expression (7.17) during the fitting procedure. The

histogram of the pulse intensities was evaluated for the linear regime of operation from the

spectral measurements (see Fig. 8.5). This histogram was compared with the Gamma probabil-

ity distribution function which describes statistical behavior of the FEL SASE radiation in the

linear regime of operation

p
( I

< I >

)

=
MM

Γ(M)

( I

< I >

)M−1
exp

(

− M
I

< I >

)

, (8.1)

where I is the integrated intensity at the spectrometer camera for a single pulse, < I > is the

intensity averaged over many pulses, and M is the number of longitudinal modes of radiation.

According to the FEL theory [111], the number of modes M is inversely proportional to the

normalized dispersion of the intensity distribution

M =< I >2 /σ2
I , (8.2)

where σI is the standard deviation of the intensity distribution. The number of modes obtained

by this method in the linear regime of SASE3 undulator was M = 21. The Gamma probability

distribution function with this number of modes is shown in Fig. 8.5. The intensity histogram

is well described by the Gamma probability distribution in Eq. (8.1). It should be noted here

that the observed spectrum of radiation from the SASE3 undulator is substantially wider than

it was theoretically predicted [170]. It is attributed to a possible frequency chirp of radiation

that will be further analyzed by simulations.
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Figure 8.5: Histogram of the spectral pulse intensity distribution for the linear regime of the SASE3
operation. The green background corresponds to the Gamma probability distribution function with
the number of modes M=21 that is inversely proportional to the normalized dispersion of the power
distribution.

8.3 Transverse coherence properties at the EuXFEL

Transverse coherence properties at the EuXFEL were determined via spatial analysis from

recorded intensity distributions (see Fig. 8.6).

In order to perform intensity correlation analysis, first, the CCD detector background (av-

erage dark signal) was determined and subtracted from all measured 2D intensities for each

pulse. This led to the appearance of sparse negative values in the intensity distribution for

some pulses. These 2D intensity distributions were then projected along the vertical (disper-

sion) direction and thus 1D intensity distributions were obtained. Next, the same constant

intensity value was added to each pulse, in order to have values always larger or equal to zero.

This constant value was determined as the maximum negative value in the 1D intensity dis-

tribution. These intensity distributions were used for the further spatial correlation analysis

(see Eqs. (7.23, 7.24)). It should be noted that such data correction procedure does not change

correlation between pulses.

Typical intensity distributions of individual pulses, measured with small and wide ES’s

width, are shown in Fig. 8.6. A visual inspection of the individual pulses reveals that between

one and five spectral spikes were present in the XFEL beam at 2.5 mm wide ES’s (see Fig. 8.6 (d-

f)). For further intensity correlation analysis, these intensity distributions were projected along

the vertical (dispersion) direction and correlation analysis was performed in the horizontal

direction according to Eq. 7.4 for about 104 XFEL pulses.

The average pulse intensity distribution for different monochromator ES’s width and typi-

cal intensity correlation g(2)-function for the smallest ES’s width of 0.02 mm in the LT mode are

shown in Fig. 8.7. The growth of the average pulse intensity is clearly observed with the in-
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Figure 8.6: Typical intensity distribution of single pulses measured by the CCD detector for the slit
opening of 20 µm (a-c) and slit opening 2.5 mm (d-f). Here (a, d) is LT, (b, e) is QT, and (c, f) is LR of the
SASE3 undulator settings.

crease of the monochromator ES’s width. The non-Gaussian shape of these intensity profiles is

due to the slope error of the beam transport mirrors. The FWHM of the beam size was directly

estimated from these profiles which was in the range from 1.7 mm to 2.3 mm, depending on

the KB mirror settings and mode of the undulator operation (see Table 8.1).

As it can be seen from 8.7 (d, f) (see Fig. 8.7) the shape of the g(2))-function resembles a

flat-top function. Such form of the g(2)-function is typical for highly coherent radiation when

the coherence length of radiation is much larger than the size of the beam (see section 3.2.3 and

[91, 132].

In Fig. 8.8(a) the results of intensity correlation analysis for the LT mode as a function of

the monochromator ES’s width are presented (see Fig. 8.9 and Fig. 8.10 for the other operation

regimes). The intensity correlation functions determined along the white dashed lines in Fig.

8.8(a) are presented in Fig. 8.8(b) for different ES’s width. One can see that the larger the

ES’s width the lower is the contrast ζ(Dω) in Eq. (7.5) (that is the maximum value of the

g(2)(∆x) function), which obeys the typical behavior predicted by this equation for a Gaussian

chaotic source. Should be noted that for the separation of two points of about ∆x = 4 mm,

the correlation function g(2)(∆x) takes values below unity. These features are attributed to low

values of intensity at these separations and to positional jitter of the beam [131].

A more detailed analysis of the g(2)-function for each monochromator exit slit opening in

QT and LR regimes of the SASE3 undulator operation is presented in Figs. (8.9)-(8.10). As it

can be seen from Fig. 8.8 and Fig. 8.10, the g(2)-function behaves in a similar way for the LT and

LR. As a consequence, one can observe similar behavior of the contrast function and degree of

coherence in these regimes of operation. When XFEL operates with QT of undulator settings,
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Figure 8.7: (a-c) Pulse intensities averaged over the vertical (dispersion) direction as a function of the
slit opening. The top curve corresponds to the slit opening of 2.5 mm and the lowest one to the slit

opening of 0.1 mm. (d-f) Intensity correlation function g(2)(x1, x2) for the exit slit opening of 0.02 mm
measured by the CCD detector. Here (a, d) corresponds to LT, (b, e) to QT, and (c, f) to the LR of the
SASE3 undulator settings.

the g(2)-function looks more Gaussian (see Fig. 8.9). In this case the degree of coherence is

slightly lower, but the behavior of the contrast as a function of the monochromator exit slit

opening remains the same as for the LT and LR (see Fig. 8.11 (c-e)), which is typical for a

chaotic source.

Next, the degree of spatial coherence ζ (according to Eq. (3.63) for definition) and the coher-

ence length Lcoh as a function of coherence time for all three undulator settings were determined

(see Fig. 8.11). The coherence length Lcoh was obtained as the variance value of the g(2)(∆x)

function for different ES’s width. The coherence time was determined according to Appendix

Eqs. ((7.35), (7.34)), in which the spectral density S(ω) was substituted by the function T̃sl(ω)

defined in Eq. (7.26) that accounts for the finite monochromator resolution [59]. The first ob-

servation here is that the degree of spatial coherence and coherence length essentially do not

depend on the coherence time, being practically constant in the range of coherence times from

1 fs to 12.8 fs. Second, one can see that the value of coherence length for the LT and LR settings

was about the FWHM width of the corresponding beams. For the QT slightly smaller values

of the coherence length were observed, which were also lower than the corresponding beam

sizes (see Table 8.1). From these observations one may conclud that the degree of spatial coher-

ence reaches high values of about 85-95% for the LT and LR modes. In the case of QT mode a

slightly lower degree of spatial coherence of about 70% was observed. The values of contrast

ζ(Dω) = g(2)(x, x)− 1 taken at x=0 as a function of coherence time for all three settings of the
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Figure 8.8: (a) Second-order intensity correlation functions g(2)(x1, x2) determined in measurements in
the LT mode. Each panel corresponds to a certain width of the monochromator ES’s. (b) Profiles of the

g(2)(∆x) function taken along the white dashed anti-diagonal lines shown in panel (a) as a function of

the ES’s width. In the inset the corresponding g(2)(x, x)-functions taken along the black dashed diagonal
lines in panel (a) are shown.

Figure 8.9: (a) Intensity correlation functions g(2)(x1, x2) measured by the CCD detector in the QT regime
of the undulator settings, for different openings of the exit slit of the monochromator. (b) Profiles of the

g(2)(∆x)-function taken along the white dashed anti-diagonal lines shown in panel (a) as a function of

the slit opening. In the inset the corresponding autocorrelation functions g(2)(x, x) taken along the black
dashed diagonal lines in panel (a) are shown.
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Figure 8.10: (a) Intensity correlation functions g(2)(x1, x2) measured by the CCD detector in the QT
regime of the undulator settings, for different openings of the exit slit of the monochromator. (b) Pro-

files of the g(2)(∆x)-function taken along the white dashed anti-diagonal lines shown in panel (a) as a

function of the slit opening. In the inset the corresponding autocorrelation functions g(2)(x, x) taken
along the black dashed diagonal lines in panel (a) are shown.

Figure 8.11: Degree of coherence (a) and coherence length (b) as a function of coherence time for different
undulator operation modes. (c-e) Contrast values as a function of coherence time for different modes of
undulator settings. (a) LT, (b) QT, and (c) LR of the undulator operation. Circles represent experimental
points. Errors are calculated as the standard deviation of the contrast. The black dashed lines are the fit
over all experimental data points according to Eq. (7.31)
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undulators were evaluated in the last turn. As it is clearly visible from Fig. 8.11 (c-e) the val-

ues of contrast strongly depend on coherence time and show the typical behavior of a chaotic

source [131, 133]. One may observe in Fig. 8.11 (c-e) that the contrast values do not reach the

maximum value of unity at saturation, which is due to the finite resolution of the monochro-

mator. Fitting the obtained contrast values with Eq. (7.31) and, assuming the resolution of the

monochromator unit R(ω) to be 0.3 eV (see Eq. (7.20)), provides us with the average pulse du-

ration values from about 7 fs to 13 fs for the different SASE3 undulator settings of the EuXFEL

(see Table 8.1).

Additional simulations were carried out to investigate statistical properties of the SASE3

undulator at the EuXFEL and the behavior of the intensity correlation g(2)-functions. These

simulation were performed in the time-frequency domain according the proposed work [171]

(see C.1.1 for the details). As the result of these simulations the significant broadening of the

spectrum and spectral spikes for the chirped pulses was confirmed. It was also shown that the

number of modes does not depend on the resolution function or chirp effects and stays about

the same for all considered simulations. It was possible to get a correct pulse duration applying

HBT method in spectral domain in simulations, for unchirped pulses and pulses affected by the

monochromator resolution (see C.1.2).However, the fit gave twice shorter pulse durations, for

the chirped pulses. This is related to the broadening of the spectrum twice from its nominal

initial value. From this one can conclude that the HBT spectral analysis in the case of chirped

pulses provides only the lower boundary for a possible pulse duration. Similar results were

obtained using HBT spatial analysis (see C.1.3), where the correct values of pulse durations

were determined for unchirped pulses and pulses affected by the monochromator resolution.

Simulations show that in the case of chirped pulses the spatial analysis also will provide only

the lower boundary for the pulse duration.
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8.4 Summary of the HBT interferometry at EuXFEL

By performing HBT interferometry it was possible to determine not only the degree of spa-

tial coherence, but also the average pulse duration of radiation before the monochromator unit.

The determined values of the pulse duration both in spectral and spatial domains were on the

order of 10 fs (except of QT mode of operation) (see Tables 8.1). These short pulse durations

should be considered with the certain caution. The nominal pulse duration of the European

XFEL was about 20 fs as determined for the electron bunch. The spectral bandwidth of the

SASE3 undulator in the performed experiment was 1% and thus about 2-3 times larger than

the baseline parameter, i.e. 0.35% at 1200 eV [170]. The observed broadening of the spectral

profiles including individual spikes may be caused by the finite monochromator resolution as

well as frequency chirp of the X-ray pulses. As soon as the broadening due to monochromator

resolution is about 3%, most of the observed broadening was attributed to the frequency chirp.

The frequency chirp of the X-ray pulses is a result of the electron bunch chirp in the accelerator

modules. As it follows from the simulations, the spectral width, as well as the spectral spikes

width, may change significantly due to the frequency chirp effects. This may cause an apparent

lower pulse duration obtained from both spectral and spatial measurements from the nominal

one. Thus, pulse durations upstream of the monochromator can be about twice longer, lying in

the range of 10 fs to 20 fs, than deduced from the analysis. As such, performed measurements

provide the lower boundary for the pulse durations of the European XFEL at different modes

of operation. From this discussion it is clear that additional measurements with a controlled

frequency chirp of radiation will be an important step in understanding the properties of the

EuXFEL radiation. It will be also important to carry out measurements using complementary

methods, for example, gas ionization at the same photon energy of 1.2 keV at the Small Quan-

tum Systems (SQS) instrument [172] that is sharing the same undulator SASE3 at the EuXFEL

facility.



Chapter 9

Hanbury Brown and Twiss

interferometry at PAL-XFEL

This chapter is devoted to one of the first high-energy FELs, producing hard X-rays in the

self-seeding regime. The XFEL is located in Pohang, Korea, and named accordingly Pohang

Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) [160],[173], [174].

At the PAL-XFEL, the self-seeding regime is provided by the HLSS scheme, which consists

of two undulator parts. In the first undulator part, the fundamental and third harmonic FELs

are generated then pass through the second undulator part. In the second part, the resonance

is set to the third harmonic, so only the third harmonic is amplified, while the fundamental is

suppressed using the optimized phase shifters setting. At PAL-XFEL HLSS scheme has been

successfully demonstrated [175] at a soft X-ray with the highest photon energy up to 1250 eV. As

a result, the longitudinal coherence was improved, and a 170% increase of the spectral flux was

achieved compared to that of the SASE mode. In general, this HLSS scheme can be employed

for existing and planned X-ray FEL facilities with gap-tunable undulators to generate a stable

and high brightness X-ray FEL.

The self-seeding regime at PAL-XFEL was demonstrated in the broad range of photon en-

ergies starting from 3.5 keV to 14.6 keV with the highest peak brightness of 3.2 × 1035 ph/s/

mm2/mrad /0.1%BW at 10 keV [176]. PAL-XFEL facility provides an amazing X-ray beam with

0.19 eV bandwidth and the peak spectral brightness 40 times higher than in the SASE regime.

It was shown that the use of such seeded XFEL pulse results in high-quality serial femtosecond

crystallography. Therefore, many experiments conducted at PAL-XFEL will rely on the stable,

highly coherent source, providing strongly intense short pulses. It is clear that these pulsed

sources, in principle, cannot be treated as stationary ones and, hence, such properties as spatial

and temporal coherence have to be revised.
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Figure 9.1: Schematic layout of the experiment. The PAL-XFEL source consist of 20 undulator cells.
Seeding is provided by including the diamond crystal between 8 and 9 cells. Each optical components
were aligned as shown in the figure. The measurements were taken at a distance of about 11.5 m from
the focal position. Horizontal KB focusing mirror located 5.37 m upstream from the focus.

9.1 Experiment setup

At the PAL-XFEL, a transmitting Bragg scattering method (see section 6.2) is utilized in

the SS scheme. This Brag scattering section is located after 8 undulator sections, where x-ray

beams become monochromatic by passing through the Bragg section. The seeded X-ray beam

is then amplified as it passes through the remaining 12 undulator sections and delivered to the

beamline.

The HBT interferometry experiment at PAL-XFEL was conducted at Nano-Crystallography

and Coherent Imaging (NCI-CXI) hard X-ray beamline [160, 177] (see Fig. 6.7). The standard

operational electron energy at PAL XFEL is around 10 GeV, with electron bunch charges of

120 pC - 200 pC at 30 Hz repetition rate. The schematic representation of the experimental

set-up is shown in Fig. 9.1. The PAL-XFEL source under the investigation is represented as

the 5 m undulators combined into 20 cells [104]. Provided by such a source, the X-ray photon

energy that used for the experiment was 10 keV (λ = 1.24 Å). Three main regimes of PAL-

XFEL operation with different bunch charges were studied: Self-Seeding regime (SS), SASE

regime with the broad radiation bandwidth (PINK), and the monochromatic regime (MONO).

The latter implies the use of the double-crystal monochromator (DCM) unit at the NCI-CXI

instrument.

The standard operation mode of high radiation power at saturation implies 20 undulator

cells while in the top-linear (TL) gain regime around 12-13 cells, depending on the electron

bunch charge. Saturation and TL operation modes were studied in the SASE regime to compare

the FEL source’s statistical properties.

For the MONO operation, DCM was installed at 99.84 m downstream from the source point.

For the SS operation, the forward Bragg diffraction (FBD) diamond crystal was used, placed

after the eight undulators, and monochromatizing the x-ray beam for the last twelve undulators

downstream [176].

In order to retrieve the spectral distribution of the PAL-XFEL pulses in-line spectrometer,
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Figure 9.2: (a) Typical spectral intensity distribution of single pulse measured by the Andor CCD de-
tector, and its projection (b) on horizontal axis. (c)Typical spatial intensity distribution measured by
Hamamatsu detector, and its projections on horizontal and vertical axes. The bottom pictures show
COM jitter of photon energy and intensity distribution. All examples showed in the figure attributed to
the studied SASE PINK operating regime with 180 pC bunch charge. Due to mirror imprint effect on the
Hamamatsu detector, the region of interest for the correlation analysis in spatial domain was selected,
which is shown in (c) by white dashed square. Typical measured spatial intensity distributions in the
MONO and SS regimes are shown in (d) and (e).

consisting of the Si bend crystal and the CCD detector was used. The crystal was tuned to

Si (333) Bragg reflection and placed after 25.4 m from the DCM. The estimated spectrometer

resolution was 0.1 eV. The CCD detector, Andor ZYLA5.5X-FO (2560 × 400 pixels, pixels size of

6.5 × 6.5 µm2), placed at 1.17 m from bend crystal [104].

All spatial data were recorded by Hamamatsu X-ray sCMOS Camera (2048 × 2048 pixels,

pixels size of 6.5 × 6.5 µm2) with 600 × 600 pixels cropped area. The Hamamatsu detector was

placed at 11.5 m downstream from the beam focus, provided by Kirkpatrick-Baez (KB) mirrors

located 5.37 m upstream (see Fig. 9.1). To prevent the beam damage of the detectors, a silicon

0.28 mm thick attenuator was placed in front of the in-line spectrometer, as well as 1.175 mm -

1.5 mm attenuators in front of the Hamamatsu detector depending on beam conditions. Typical

spectral and spatial intensity distributions of the single pulse, recorded by both detectors, are

shown in Fig. 9.2

To characterize the source in full, spatial measurements were performed in parallel to the

spectral ones. In the hard X-ray range, it is unlikely to perform the same analysis as it was

done at the SCS instrument at Soft X-rays, where the contrast as a function of bandwidth was

controlled to retrieve the beam pulse duration. The value of the pulse duration, in this case,

may be retrieved only from spectral data by calculating correlation functions in the spectral do-

main. As it was shown in section 7.3 and derived in B the analysis in spectral-domain relies on
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Figure 9.3: Pearson correlation of the measured spatial and spectral data in the case of SASE PINK (a),
MONO (b) and SS (c) regimes of operation. The Pearson correlation coefficient p varies in the range
from 0.8 to 1, depending on the operating regime in the case of 180 pC charge.

the results from the analysis of the spatial domain. Therefore, a good correspondence between

the measured data in spatial and spectral domains is expected. The correspondence of the

measured spatial (Ispat) and spectral (Ispec) data was checked by the simple Pearson correlation

p =
∑

n
i=1(I

spat
i − < Ispat

>)(I
spec
i − < Ispec

>)
[

∑
n
i=1(I

spat
i − < Ispat

>)2 ∑
n
j=1(I

spec
j − < Ispec

>)2
]1/2

, (9.1)

where p is the Pearson correlation coefficient. According to the analysis, the Pearson correla-

tion coefficient p lies in the range from 0.8 to 1, which shows the good correspondence of the

measured data (see Fig. 9.3).

9.2 Spectral analysis

In order to reach sufficient statistics for the intensity correlation analysis 9·103 to 2·104

pulses were collected in each operating condition. Prior to the analysis, each spectral and spa-

tial 2D image was corrected by subtracting the background (dark image averaged over 1,000

dark signal shots). This led to the appearance of sparse negative values in the intensity dis-

tribution for some pulses. The one-dimensional spectral intensity distribution was obtained

by projecting along the vertical direction from the 2D spectrum image (see Fig. 9.2 (b)). In

order not to break the intensity-intensity correlations and dispose of the negative values addi-

tionally, the same constant was added to each spectral distribution. This constant value was

determined as the maximum negative value in the 1D intensity distribution. Note, such data

correction procedure may slightly change the correlation between pulses and reduce the con-

trast value, determined from the g(2)-function if the constant value is higher than 1% of the

maximum average intensity distribution.

A comparison between spectra and its mean is shown in Fig. 9.4. As expected, the highest

intensity in narrow bandwidth is provided in the SS regime. In the MONO regime, the nar-

rowband pulses were provided as well, however, the mean intensity is ten times lower than in

the SS regime. A comparison between spectral distributions of individual pulses measured for
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Figure 9.4: Comparison of the spectral intensity for 30 random pulses. In the inset, the average spectrum
of each PAL-XFEL operation regime is shown.

all operating regimes is shown in Fig. 9.5 (a,c,e). The multimodal structure in the single pulse

spectrum intensity distributions is observed for operating regimes except for the self-seeding

case Fig. 9.5 (e), where the presence of the single mode is expected. The number of spectral

spikes in other cases varies depending on the operating conditions. In the case of monochro-

matic SASE beam, only 3 to 4 spectral spikes are presented 9.5 (c), indicating on a small number

of spectral modes, while for the PINK SASE beam from 30 to 40 spectral spikes are observed

Fig. 9.5 (a).

As it is well seen in Fig. 9.5, for some of the studied operating conditions, the average

spectrum does not resemble a single Gaussian function but is rather a sum of two distributions.

In order to get the bandwidth of single spike spectral lines and the FWHM width of the average

spectrum, the autocorrelation analysis was performed. Each operation mode of SASE PINK,

MONO, and SS showed similar shapes of the autocorrelation function regardless of the bunch

charge. For SASE PINK, it was possible to distinguish between a single spike and a broad

peak of the autocorrelation function ACF (see Fig. 9.5). On the contrary, for the case of the

monochromatic and SS beam, the average spectral spike and the average spectrum were hardly

distinguishable (see Fig. 9.5 (d). The Gaussian fitting of the autocorrelation functions allowed

to extract the FWHM widths of the average spectrum and single spike spectral lines. The values

of the FWHM of both peaks corrected for the factor of
√

2 are provided in Table 9.1. The width

of the single spike lines, determined from the ACF, lies in the range from 0.48 eV to 0.5 eV

(see Table 9.1). The width of the average spectrum lies in the range from 0.5 eV to 12.6 eV. The

coherence time was determined according to Eq. (7.35). The second-order correlation functions

in the frequency domain for various operation modes are presented in Fig. 9.6 (a,c,e).

In Fig. 9.6(b,d,f) its behavior was analyzed along the white dashed diagonal line shown

in Fig. 9.6 (a,c,e). Note that the contrast value is below unity for SASE PINK operation mode
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Figure 9.5: Spectral distributions of random shots and average spectrum (a,c,e), the average autocorre-
lation function of the spectrum (b,d,f). The following regimes of operation are presented: SASE PINK
(a,b), MONO (c,d), and SS (e,f) at 180 pC bunch charge.

Table 9.1: Results of the analysis in spectral domain for the operation mode with 180 pC bunch charge.
Width of spectrum and spectral spike were determined from the analysis of ACF.

Operation regime PINK MONO SS

FEL bandwidth (FWHM), eV 12.5 ± 0.2 1.2±0.1 0.43±0.01

Width of spectrum from (FWHM), eV 12.6±0.1 1.3±0.02 0.5±0.02

Width of spectral spike (FWHM), eV 0.48±0.02 0.48±0.02 0.5±0.02

Coherence time (rms), fs 0.17±0.02 2.48±0.28 4.19±0.2

Pulse duration T (FWHM), fs 7.0±0.23 8.77±0.22 -

Contrast 0.26±0.02 0.47±0.07 0.32±0.02
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Figure 9.6: (a, c, e) Intensity correlation functions of spectra g(2)(ω1, ω2). (b, d, f) Cut along the anti-
diagonal lines shown by the white dashed lines in (a, c, e) and its fit with the profile given in Eqs.
(7.17, 7.21) (dashed line), taking into account additional background. In the inset the profiles along the

diagonal of the g(2)(ω, ω) function in (a, c, e) are shown. Here (a, b) refer to SASE PINK, (c, d) to MONO,
and (e, f) to SS operation regimes.

due to the finite degree of coherence in the spatial domain, monochromator resolution function

(see Eq. (7.17)) and Ref. [59]), as well as possible energy jitter [131]. On the contrary, for the

monochromatic and self-seeding cases, the contrast values always above unity and g(2)(∆ω)-

function experiences major distortions. The origin of this distortion, which manifests itself in

the form of the additional wide peaks and the pedestal in g(2)(∆ω)-function, may be attributed

to the variation of the pulse duration from shot to shot in combination with energy jitter (see

section C.2.1). Fitting this profile with a function, which takes into account resolution of the

monochromator σres = 0.26 eV (defined by Eq. (7.21)), as well as additional background gave

the root mean square (rms) values σT of average pulse duration, from which were deduced

the FWHM values T = 2.355 · σT. The values lie in the range from 7.0 fs to 9.0 fs for all three

operating settings (see Table 9.1). The pulse duration in the self-seeding operation mode is

about 7 fs (see section 9.4.2 for the details).

The same analysis in the spectral domain was carried out for the electron bunch charge

of 120 pC and 200 pC (see C.3). In this case, the Pearson correlation analysis showed good

correspondence of the data in the case 120 pC bunch charge, while due to higher instabilities

of the beam with 200 pC charge, the correlation coefficient is reduced in the SASE regime of

operation (see Fig. C.9 and Fig. C.10). The pulse duration for different operational regimes in

the case of 200 pC charge was deduced from the g(2)(ω1, ω2) correlation function as well (C.11).

The determined values of the pulse duration are in the range from 6.4 fs (in the MONO case)

to 10.3 fs (in the SS case).
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Figure 9.7: Intensity correlation functions g(2)(x1, x2) (a,e,i) and g(2)(y1, y2) measured by the Hama-

matsu detector in the horizontal and vertical directions accordingly. Profiles of the g(2)(∆x) (b,f,j) and

g(2)(∆y) (d,h,l) - functions taken along the white dashed anti-diagonal lines shown in panels (a,e,i) and

(c,g,k) accordingly. In the inset the corresponding autocorrelation functions g(2)(x, x) taken along the

diagonal lines of g(2)(r1, r2)- function are shown. Here results for the SASE PINK operating regime
shown in (a-d), SASE MONO radiation in (e-h) and SS regime in (i-l). In order to get an average beam
size on the Hamamatsu detector, the projected intensities were fitted with the Gaussian function (results
shown in Table 9.2).

9.3 Transverse coherence properties at the PAL-XFEL

The typical spatial intensity distribution of individual pulse, measured for the case of SASE

operating regimes with 180 pC bunch charge, is shown in Fig. 9.2 (c,d). It is seen from the

figure that the average beam is nicely shaped in the Gaussian form, but some small artifacts

and distortions are present, which is attributed to the imperfections of mirrors. Due to the mir-

ror imprint effect on the Hamamatsu detector during the measurement, the region of interest

(ROI) for the correlation analysis in the spatial domain was selected, which is shown in Fig.

9.2 (c) by white dashed square. The ROI for the analysis was about 1 mm2. For further inten-

sity correlation analysis, these intensity distributions were projected either along the vertical

or horizontal directions, and correlation analysis was performed in the horizontal or vertical

direction accordingly, by use of Eq. (7.4) for about 9·103 to 2·104 XFEL pulses.

In Fig. 9.7 the results of intensity correlation analysis for the SASE PINK operating regime

(a-d), SASE MONO beam (e-h), and SS regime (i-l) with 180 pC bunch charge are presented.

(see C.3 for the other bunch charges). The intensity correlation functions determined along the

white dashed lines in Fig. 9.7 (a,c,e,g,i,k) are shown in Fig. 9.7 (b,d,f,h,j,l) accordingly. One can
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Table 9.2: Results of the analysis in spatial domain for the operation mode with 180 pC bunch charge

Operation regime PINK MONO SS

Horizontal direction, x

Average beam size (FWHM), mm 0.74±0.01 0.75±0.01 0.72±0.01

Coherence length (rms), mm 0.41±0.03 0.9±0.03 0.9±0.02

Degree of spatial coherence, % 64.0±1.2 78±2.7 79±1.3

Contrast 0.03±0.01 0.5±0.08 0.19±0.01

Vertical direction, y

Average beam size (FWHM), mm 0.48±0.01 0.52±0.01 0.46±0.01

Coherence length (rms), mm 0.28±0.01 0.81±0.03 0.59±0.01

Degree of spatial coherence, % 75±0.9 81±0.8 78±1.7

Contrast 0.02±0.01 0.48±0.07 0.20±0.01

see that the obtained g(2)(i1, i2)-functions (where i=x,y) in both directions are shaped in the un-

usual form, as well as g(2)(i, i) - function maxima position shifts and intensity variations along

the diagonal. It was also noticed that for the separation of two points of about ∆x=1 mm in the

anti-diagonal direction, the correlation function g(2)(∆x) takes values slightly below unity. All

these observable features indicate on positional jitter effect (∆r see Fig. 9.2), as well as the pos-

sible presence of multiple sources in the beam. This phenomenon was studied in the work of O.

Y. Gorobtsov et al. [131]. Interesting to note, that the g(2)(i1, i2)-function has slight ripples, very

similar to ones, observed in the average intensity shown in Fig. 9.2 (c,d,e). The intensity ripples

are attributed to the mirror imperfections projected on the detector during the measurement.

The use of such distorted intensity patterns in the correlation analysis led the g(2)(i1, i2)- func-

tion take the form of the checkered pattern. The contrast value for various operating regimes

deduced directly from the g(2)(i1, i2)- function as the maximum value on the diagonal cut ζi =

g(2)(i, i)-1 at i=0. The contrast values for the monochromatic SASE and the self-seeding radia-

tion lies in the range from 0.02 to 0.4 (values are listed in Table 9.2). Despite the fact, that the

g(2)(∆x = 0) in the SASE operating regime is very close to unity (ζi = 0.02), which may give

an idea of laser type source [132], the number of spikes in the spectral distribution is still large,

which is typical for a chaotic source [133],[131].

Next, the degree of spatial coherence ζi in each transverse direction and the corresponding

coherence length were determined. The degree of spatial coherence was calculated according

to Eq. (3.63). Depending on the operating regimes, electron bunch charge, and the transverse

direction under the investigation, the degree of spatial coherence took values in the range from

64% to 81% (see Fig.(9.7) and Table 9.2). In the SASE operating regime with the bunch charge of

180 pC the degree of coherence has taken a relatively small value around 65%, compared with

the case of MONO and SS (≈ 80%). Interestingly, the SS beam shows slightly better spatial

coherence than the monochromatic beam in the horizontal direction but the opposite in the

vertical direction.

The coherence length Lcoh was obtained as the variance value (second moment in Eq. (3.38))

of the distribution of the g(2)(i1, i2)-function at anti-diagonal cut. The obtained values of the
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coherence length for the SASE, MONO, and self-seeding beams lie in the range from 0.3 to 0.9

mm depending on electron bunch charge and transverse direction (see Table 9.2).

9.4 Modeling of the FEL SASE pulse

In order to understand the statistical properties of the undulator source at the PAL-XFEL

and the behavior of the intensity correlation g(2)-functions, additional simulations were done,

combining several effects, similar to those, described in section C.1.1. Paying attention to the

fact that the FEL is a complicated machine, many instabilities may arise during the electron

bunch acceleration and radiation amplification process. Results of such instability can manifest

themselves in the resonant energy jittering effect. In order to study the energy jitter effect on

the intensity correlation functions through the simulation, the resonant energy of 10 keV, which

was used in the initial simulation, was allowed to have variation within 5 eV (rms) photon

energy according to Gaussian distribution. As the result of simulation, deeps and additional

maxima were also observed in the correlation function similar to the obtained in the experiment

at PAL-XFEL, indicating possible energy jittering effects (see C.2.2 for the details).

As mentioned earlier, instabilities arising during the acceleration or radiation amplification

process, such as an energy jitter, complicate determining the pulse duration. But it is very often

that these effects, in turn, do not come alone. Along with the energy jitter, another effect that

may affect the correlation functions and make it difficult to determine beam parameters is the

pulse duration jitter. The latter means that there is a variation of the pulse duration, which

may change from shot to shot. In order to study this effect, the rms value for the Gaussian time

filter on the modeling stage allowed to have variation within 1 fs from shot to shot according

to Gaussian distribution. As the result of the simulation, a slight broadening of the spectral

correlation function is appeared (see C.2.3 for the details). The presence of such a bump in

correlation functions obtained from experimental data may indicate a possible pulse variation

effect.

The last studied effect, which may arise from the mentioned instabilities and influence the

outcome of the HBT interferometry method and the performance of the XFEL, is the effect of

multiple beam sources. In this case, performed simulations with small source inhomogeneities

still affect results of the HBT interferometry, where g(2)(∆ω)-function gives slightly reduced

values of the pulse duration (see C.2.4 for the details).

9.4.1 Modeling of the FEL SASE monochromatic pulse

Results for monochromatic radiation and g(2)-function of the FEL pulses were simulated as

well. In this case a bandwidth of ∆E=1.9 eV in frequency domain (see Fig. 9.8) was applied

for the generated pulses. Only two modes were obtained in the distribution of modes, that

considerably contribute to the result. For the g(2)(ω1, ω2)-correlation function result shown in

Fig. 9.8(c) were obtained, that is similar to the experimental result for monochromatic case (see

Fig. 9.6 (c)).
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Figure 9.8: Spectral analysis simulation with the monochromator installed in the beamline. (a) Simulated
profiles of single pulse intensities and an averaged spectrum (blue line) with the bandwidth of 1.9 eV. (b)
Histogram of intensities of single pulses obeying Gamma function distribution (green background) with

the number of modes M=2. (c) Second-order intensity correlation function g(2)(ω1, ω2) of the simulated

spectra with the monochromator. (d) Second-order intensity correlation function g(2)(∆ω) (black curve)
taken along the white dashed line in (c) and its fit (red dashed line) with Eq. (B.78). In the inset the

profile of g(2)(ω, ω) function along the diagonal in (c) is shown.
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9.4.2 Modeling of the FEL seeded pulse

In order to simulated a seeded pulse the same approach (see section C.2.1) was used. The

pulse duration was fixed to T=5 fs and, at the same time, the bandwidth of the generated pulses

in frequency domain (∆E=0.4 eV (FWHM)) was reduced until a single mode distribution (see

Fig. 9.9 (g)) was obtained. It is interesting to note that each pulse in this simulation has a

varying phase both in the energy and time domains that is random from pulse to pulse (see

Fig.9.9 (c)). Then the pulses were modified in time domain by putting a constant value to the

phases of each pulse and these phases were allowed to change randomly from pulse to pulse

(see Fig. 9.9 (d)). In this case the shape of the g(2)(ω1, ω2)-correlation function in the form of

the leaf (see Fig. 9.9(e)) was obtained, similar to the results for self-seeding operation mode

(see Fig 9.6 (e)). It was shown, that the distance between two maxima along the anti-diagonal

line depends on the pulse duration. To analyse this in detail, this distance in frequency ∆ω as

a function of the pulse duration is calculated and obtained curve is shown in Fig. 9.9(h). From

that curve for the distance between two maxima determined from the experiment (∆ω=3.5

f s−1) a pulse duration for the self-seeding operation mode was estimated (about 7 fs).

9.5 Summary of the HBT interferometry method at PAL-XFEL

The second-order correlation experiment performed at the PAL-XFEL facility at 10 keV pho-

ton energy demonstrated the high degree of spatial coherence of radiation, around 65-80 % in

both perpendicular directions. These values agree with the results of experiments carried out

on various XFEL sources and are sufficiently high enough considering the energy of X-rays.

The HBT interferometry method allowed to determine the degree of spatial coherence and the

average pulse duration of radiation. The determined pulse duration values turn out to be in

the range of 7-10 fs.

As it follows from the simulations (see section C.2.1), several effects may take the cause of

inhomogeneities of the intensity correlation functions. It is hard to determine whether one of

the listed effects is presented individually or a combination of the effects modifies the spectral

intensity correlation function. The presence of these effects can be confirmed indirectly using

additional detectors and complementary absorption methods. These effects may lead to an

overestimation (depending on the present effect) of the pulse duration from the nominal one,

obtained from spectral analysis.

In summary, the statistical analysis of X-ray radiation by means of HBT interferometry

again proves to be a powerful tool to understand the basic properties of the beams generated

by the hard X-ray source even in self-seeding mode at the PAL-XFEL. These experiments pro-

vide necessary parameters, such as the degree of coherence and pulse duration. It is assumed

that results obtained in this work will greatly help the experiments requiring and utilizing the

high coherence properties at PAL-XFEL.
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Figure 9.9: Spectral simulations for the seeded beam. (a-d) An example of generated single pulses in (a)
energy domain with the bandwidth 0.4 eV and (b) time domain with the pulse duration T=5 fs (FWHM).
(c,d) The corresponding phases for these pulses in energy domain (c) and in time domain (d). The phases
in time domain were put to a constant value corresponding to phase at T=0. (e) Second-order intensity

correlation function g(2)(ω1, ω2) of the simulated spectra of the seeded beam. (f) Second-order intensity

correlation function g(2)(∆ω) (black curve) taken along the white dashed line in (e). (g) Histogram of
intensities of single pulses obeying Gamma function distribution (green background) with the number

of modes M=1. (h) Distance between two maxima ∆ωmaxima in g(2)(∆ω)-correlation function in (f) as a
function of pulse duration.
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Chapter 10

Summary

This thesis is devoted to the state-of-the-art XFELs and new generation DLSRs known to

be irreplaceable instruments for a wide variety of scientific research fields. It is assumed that

the characteristic properties of the XFELs and 4th generation synchrotrons will be outstand-

ing. The photon source of these machines will be recognized as an invaluable research tool.

Therefore, the important part of the thesis was dedicated to the performance of these machines

and their characterization methods. A general theoretical approach based on the principles of

synchrotron radiation and statistical optics was applied to understand the properties of fields

generated by DLSRs and XFELs. As a result, the complete procedure is described from the

simulation to the analysis of the photon sources at large-scale facilities.

In particular, for the DLSRs with the vanishing electron emittance, a mechanism for degra-

dation of coherence properties was discussed. A detailed analysis of the coherence properties

of a high-energy DLSR with emittance values near 10 pm rad operating in a wide range of pho-

ton energies from 500 eV to 50 keV is provided. In order to suppress deterioration of brightness

and coherence characteristics at DLSRs, proposals were made regarding the effects of beamline

optics, energy spread, and detuning from the resonant energy. It was suggested to determine

radiation properties from DLSRs sources within the approach based on statistical optics since

the single electron radiation defines the overall photon beam parameters. It was shown that

in this low-emittance regime, characterization methods based on Gaussian models should be

treated with caution. A method based on the radiation field’s eigenvalue decomposition was

proposed to describe the radiation properties of these sources fully. It was proven that for such

low emittance values as 10 pm rad, a true diffraction limit at DLSRs would be reached, in fact,

only at soft X-ray energies. It was shown that in order to achieve the same result at higher pho-

ton energies, the electron emittance at beam focus should be pushed down to about 1 pm rad.

It was also demonstrated that, in order to keep high coherence values of radiation, the energy

spread of the electron beam should not exceed the value of 1 · 10−3 at the emittance values of 10

pm rad, and it should be sufficiently smaller than 1 · 10−3 at the emittance of 1 pm rad. Applied

methods of statistical optics also showed that the effect related to undulator resonant energy

detuning, in combination with the energy spread effect, might significantly reduce the coher-

ence characteristics of the DLSR source. In conclusion, it should be noted that understanding
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the coherence properties of the radiation and effects concerning their conservation is of vital

importance for the design and optimization of future beamlines at 4th generation synchrotron

facilities. It is believed that the general approach and new tools for an adequate description of

the coherence properties of synchrotron sources provided in this thesis will be helpful for the

design and planning of future diffraction-limited sources worldwide.

Regarding the analysis of XFEL machines, methodological improvements of photon beam

diagnostics are also given, including treatment of monochromator resolution effects, photon

beam frequency chirp, and FEL’s pulse jittering. In particular, it was demonstrated how second-

order intensity measurements performed in correlation experiments are related to the statistical

properties of the x-ray pulses incident on the monochromator unit. Importantly, relations by

which coherence properties and average pulse duration may be determined in such experi-

ments were derived. The derivations in this work are quite general and are not limited to the

case of soft x-ray beamlines. They will be valid also for hard x-ray beamlines at XFELs as soon

as the intensity of the field delivered by the monochromator is expressed through its resolu-

tion function by a convolutional integral. The proposed method based on these derivations

was applied to characterize photon source properties at large-scale facilities such as European

XFEL and PAl-XFEL in different operation conditions. At the EuXFEL, by performing HBT

interferometry, it was possible to determine the degree of spatial coherence of the source and

the average pulse duration of radiation under different settings of the undulator tapering. Ad-

ditional simulations were carried out to understand how the results of the HBT interferometry

method will change in the presence of limited monochromator resolution and frequency chirp

effect. A similar analysis was completed for the PAL-XFEL, where the studied cases concern

SASE regime with the wide bandwidth beam, filtered monochromatic beam, and the regime

of Self-Seeding with highly intense radiation. Effects of energy and pulse jittering on the out-

come of the HBT interferometry were analyzed through additional simulations. It was possible

to determine the average pulse duration under different operating conditions and the degree

of spatial coherence of the source. As a result, the intensity-intensity correlation analysis has

proved to be an efficient method for measurements of FEL statistical behavior.

In conclusion, this thesis proposes an adequate approach within the framework of statistical

optics concerning applications for the determination of photon source parameters at large-scale

facilities. The thesis may represent a sufficient contribution to the methodology development.

Hopefully, these methods will help better utilize coherent beams by beamline scientists and

experimentalists and provide an accurate description of the photon source at the experimental

stations.
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List of Abbreviations

2D Two-dimensional

3D Three-dimensional

ACF Autocorrelation function

BDS Beam-defining slit

BES Beam exit-slit

CDI Coherent Diffraction Imaging

CDC Complex degree of coherence

CSD Cross-spectral density

CXDI Coherent X-ray Diffraction Imaging

CRL Compound refractive lenses

DBA Double-bend-achromat

DOC Degree of Coherence

DLSR Diffraction-limited storage ring

EEHG Echo-enable Harmonic Generation

EuXFEL European X-ray Free-electron Laser

FEL Free-electron Laser

FWHM Full Width at Half Maximum

GSM Gaussian Schell-model

HBT Hanbury Brown and Twiss (interferometery)

HFM Horizontal focusing mirror

HGHG High-gain Harmonic Generation

HPM Horizontal plane mirror

LCLS Linac Coherent Light Source
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LHC Large Hadron Collider

LIGO Laser Interferometer Gravitational-Wave Observatory

LR Linear regime

LT Linear tapering

MBA Multi-bend-achromat

MCF Mutual coherence function

MOI Mutual Optical Intensity

PAL-XFEL Pohang Accelerator Laboratory - X-ray Free-electron Laser

PCA Principal component analysis

PW Plane waves

QT Quadratic tapering

RF Radio frequency

RMS Root mean square

SASE Self Amplification of Spontaneous Emission

SDC Spectral degree of coherence

SPI Single Particle Imaging

SS Self-Seeding

SSR Synchrotron storage ring

VFM Vertical focusing mirror

VLS Variable-line-spacing (grating)

VPM Vertical plane mirror

XES X-ray Emission Spectroscopy

XFEL X-ray Free-electron Laser

XPCS X-ray photon correlation spectroscopy

XRT X-ray Tracer (software)



List of commonly encountered variables

c Speed of light in vacuum

e Elementary charge

k Wavevector

λ Wavelength of radiation

me Electron mass

ω Radiation frequency

I Intensity

F Fourier transform

r Vector of spatial coordinates

r′ Vector of angular coordinates

t Time

x, y, z Spatial coordinates

x′, y′, z′ Angular coordinates

F Force

n Unit vector

h̄ Planck constant

E Electric field

B Magnetic field

ǫ Electric permitivity
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Chapter 1

Eγ Energy of the particle

γ Lorentz factor

ν Speed of the particle

βν Relative speed of the particle with respect to speed of light

εx,y Electron beam emittance in horizontal and vertical directions

Chapter 3

P Propagator

NF Fresnel number

T Transmission function

n Complex refractive index

δ Decrement

βabs Absorption coefficient

E Photon energy

τ Pulse duration

τc Coherence time

Γ Mutual coherence function

γ Complex degree of coherence

W Cross-spectral density

S Spectral density

µ Spectral degree of coherence

ζ Degree of coherence

J Mutual optical intensity

G Modifed cross-spectral density

g Modifed spectral degree of coherence

V Visibility
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β j Eigenvalue

ζCF Coherent fraction

σx,y RMS source size

ξx,y Transverse coherence length

Hj Hermite polynomial

Fω Radiant intensity

Ω Solid angle

Bω Spectral radiance or brightness

W Wigner function

Chapter 4

Eγ Energy of the particle

γ Lorentz factor

ν Speed of the particle

βν Relative speed of the particle with respect to speed of light

m Mass of the particle

λu Undulator period

me Mass of the electron

B0 Magnetic field in the undulator

K Undulator deflection parameter

N Number of the undulator periods

n Harmonic number

εe Electron beam emittance

σe Electron beam rms size

σ′
e Electron beam rms divergence

βe Beta (optical) function

F Photon beam flux
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B Brightness

S Poynting vector

P Radiation power

Nph Number of photons

Ne Number of electrons

I Electron beam current

r Vector of spatial coordinates

r′ Vector of angular coordinates

ω1 Fundamental harmonic

σ′
r Angular divergence of the single-electron radition

σr Transverse size of the single-electron radiation

Fcoh Coherent flux

Lu Length of the undulator magnetic period

B0 Brightness of the filament electron beam

BG Brightness function within the Gaussian approximation

fe Electron beam distribution

Σph Photon source size

Σ′
ph Divergence of the photon source

Qa Normalization factor

σγ Energy spread of the electron beam

σn Relative bandwidth of the n-th harmonic

εph Photon beam emittance

Chapter 5

n Unit vector

βν Vector of the relative speed

r Positional vector
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θ Angular vector

Jn Bessel function of the nth order

Lu Length of the undulator magnetic period

K Undulator deflection parameter

l Vector of transverse displacement

η Vector of angular displacement

γ Lorentz factor

σe Electron beam rms size

σ′
e Electron beam rms divergence

εph Photon beam emittance

εcoh Diffraction-limitted photon emittance

εe Electron beam emittance

Fcoh Coherent flux

F Total Flux

ζCF Coherent fraction

ζ Degree of coherence

ζ2D Global degree of coherence

ζ1D Degree of coherence in one transverse direction

ξ Coherence lenght

εr Photon emittance of the single-electron radiation

S(r′, ω) Spectral density

β j Eigenvalue (weight) of the mode

β0 Eigenvalue (weight) of zeroe mode

NF Fresnel number

µ Spectral degree of coherence

W Cross-spectral density
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σx,y RMS sizes of the photon beam

Σph Photon source size

σVPM,VLS RMS pitch vavration of the optical elements

γ0 Lorentz factor coresponding to resonance energy

σγ RMS size of the energy distribution of the electron beam

r̂ Normalized vector of spatial coordinates

l̂ Normalized vector of transverse displacement

η̂ Normalized vector of angular displacement

ξ̂E Normalized parameter of the energy spread detuning

∆E Normalized size of the energy distribution of the electron beam

Ĝ Modifed cross-spectral density, normalized to difraction sizes

ĝ Modifed spectral degree of coherence, normalized to difraction sizes

V̂ Normalized visibility to difraction sizes

W Normalized Wigner function to difraction sizes

Nx,y Normalized size of the electron beam distribution

Dx,y Normalized divergence of the electron beam distribution

I Electron beam current

B Brightness of the filament electron beam

BA Brightness apporximated by Gaussian distributions

σ∆γ/γ RMS size of the energy spread distribution of the electron beam

βx,y Horizontal/vertical beta (optical) function

DA Size of the virtual detector

Ne Number of electrons

Chapter 6

I Electron beam current

Le Electron beam lenght
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Lcoh,z Longitudinal coherence

γ Lorentz factor

me Mass of the electron

λu Undulator period

me Mass of the electron

ρ Efficiency parameter

ωp Plasma frequency

re Classical electron radius

ne Electron density

Lg Gain length

Lc Cooperation length

Chapter 7, 8, 9

V Phase space volume

Vcoh Coherence volume

Nph Number of photons

g(2)(r1, r2) Second order correlation function

ζ(Dω) Contrast function

ζ Degree of coherence

Dω Radiation bandwidth

σi Size of the photon beam

ξ Spatial coherence length of the photon beam

Ωc Spectral coherence

Ω Spectral width of the radiation
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W Cross-spectral density

S Spectral density

σT Pulse duration

τc Coherence time

σr RMS size of the monochromator reolution function

R(ω) Resolution function

ID Intensity on the spatial detector

Tsl Transmission function of the slits

T̂sl Transmission function of the slits convolved with the monochromator reso-

lution

PL Propagator for the distance L

γ(τ) Normalized autocorrelation function of time

∆E Average width of the spectrum and spectral spikes

T Pulse duration (FWHM)

< I > Average intensity

p Probability distribution

M Number of modes

σI Standard deviation of the intensity distribution

Lcoh Spatial coherence length
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Appendix A

Simulations of 3rd and 4th generation

synchrotron sources

A.1 X-Ray Tracing Software

XRay Tracer package (xrt) is a python software library for ray tracing and wave propagation

in the x-ray regime. It is primarily meant for modeling synchrotron sources, beamlines, and

beamline elements (optical elements, apertures, screens) [86]. For scripting in python, one

needs to prepare a script that gives instructions on how to get the wanted ray properties and

prepare the graphs. The scripting is different for different backends (backend is a module or an

external program that supplies ray distributions). The main advantageous features of XRT are

listed below (according to [178]):

1. Rays and waves. Classical ray tracing and wave propagation via Kirchhoff integral. No

further approximations, such as thin lens or paraxial. The optical surfaces may have

figure errors, analytical or measured. In wave propagation, partially coherent radiation

is treated by incoherent addition of coherently diffracted fields generated per electron.

2. Scripting in Python. XRT can be run within Python scripts to generate a series of images

under changing geometrical or physical parameters.

3. Synchrotron sources. Bending magnet, wiggler, undulator and elliptic undulator are cal-

culated internally within XRT.

4. Energy dispersive elements. Implemented are gratings (also with efficiency calculations),

Fresnel zone plates, Bragg-Fresnel optics. Crystals can work in Bragg or Laue cases, in

reflection or in transmission.

5. Materials. The material properties are incorporated using three different tabulations of

the scattering factors, with differently wide and differently dense energy meshes. Re-

fractive index and absorption coefficient are calculated from the scattering factors. Two-

surface bodies, such as plates or refractive lenses, are treated with both refraction and

absorption.
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6. Global coordinate system. The optical elements are positioned in a global coordinate

system. This is convenient for modeling a real synchrotron beamline. The coordinates in

this system can be directly taken from a CAD library. The optical surfaces are defined in

local systems for the user’s convenience.

7. Beam categories. XRT discriminates rays by several categories: good, out, over and dead.

This distinction simplifies the adjustment of entrance and exit slits. An alarm is triggered

if the fraction of dead rays (for instance, absorbed or cut) exceeds a specified level.

8. Parallel execution. XRT can be run in parallel in several threads or processes, which

accelerates the execution on multi-core computers. It can run on an external server, also

without X window system (X11) support.

A.2 Mode decomposition and PCA method

In general, to determine independent coherent modes of radiation or perform coherent

mode decomposition, one needs to solve Fredholm integral equation according to Eq. (3.72).

Mode decomposition of the CSD in the studied cases was completed according to Eqs. (3.71-

3.73). In the XRT software, CSD is calculated according to Eqs. (3.65, 3.66) for the radiation in

the far field region for a single electron. The CSD of radiation is, in fact, a four-dimensional

(4D) matrix (the CSD function depends on coordinates x1, y1; x2, y2). Effectively in the XRT

software, one more dimension is added by including a number of electrons so that the correla-

tion function is saved for each electron, which gives additional dimension. The next step is to

compose the 4D CSD matrix from the 5D field distribution and to solve the CSD for eigenvalues

and eigenfunctions.

The eigenvalue problem for the CSD matrix in XRT software is reduced to two-dimensional

(2D) by applying principal component analysis (PCA) (see Fig. A.1). After the diagonaliza-

tion of this matrix, the eigenvalues (mode weights) and eigenfunctions (modes) of CSD are

obtained. If the mode weights are known, then the global degree of coherence and the coherent

fraction of radiation may be calculated according to Eqs. (3.74) and (3.74). It should also be

noted that the global degree of coherence according to the PCA method can be obtained with-

out solving a huge eigenvalue problem. The global degree of coherence, in this case, can be

calculated as the ratio between traces of the CSD matrix

ζ =
Tr(W2

PCA)
(

Tr(WPCA)
)2

,

which is equivalent to Eq. (3.74), where WPCA is the rearranged CSD matrix according to the

PCA method. The number of electrons used in the coherent-mode simulations is given in Table

5.9.
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Figure A.1: PCA method used in the coherent mode decomposition. a) 2D amplitudes stored in a 3D
matrix for each electron e1. . . en, where 3rd dimension is connected to the number of electrons. b) 3D ma-
trix of amplitudes, rearranged to 2D matrix Ee1−en , where each column contains all spatial information
about an amplitude corresponding to one of the electrons ei from the electron bunch. c) Cross-spectral
density matrix WPCA obtained by multiplication of matrix Ee1−en by its complex conjugated and trans-
posed matrix.
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A.3 Transverse CSD function at higher photon energies

Simulations of amplitudes and correlation functions in one transverse direction for higher

photon energies were performed by XRT software as well. One dimensional CSD function at

given photon energy was simulated in the far field region as averaged over an ensemble of

electrons according to Eq. (3.66) in the horizontal direction. Results of simulations for high

photon energies of 24 keV and 50 keV are shown in Fig. A.2 and Fig. A.3. As it is seen from

these figures, energy spread enlarges rms values σ of the intensity distribution (calculated as

the variance value of the corresponding distribution) (Fig. A.2, A.3 (a,b,c)), while it narrows the

CSD and the spectral degree of coherence in anti-diagonal direction (Fig. A.2, A.3(d-i)), which

leads to a decrease of coherence. The values of the degree of transverse coherence in these cases

are summarized in Table 5.12. Thus, in the case of higher photon energies, the results are very

similar (in the sense of energy spread dependence) to those shown previously for 500 eV and

12 keV photon energies.

A.4 Details of semi-analytical simulations

A.4.1 Source parameters simulation

In the frame of the analytical approach, source properties were calculated as well [81, 90].

In this case, the amplitude E(θx, θy) in the far field region from a single electron was calculated

according to Eq. (5.10). Total amplitude in the far field region for the electron bunch was

defined according to Eq. (5.12), (5.12). Additionally, the 2D amplitude distribution was saved

for each electron into 3D matrix, where the third dimension is connected to the number of

electrons. The amplitude at the source position E0 (x,y) (in the middle of an undulator) was

obtained by the use of the propagator, according to Eq. (5.11).

A.4.2 Field amplitude simulation

Calculations of source parameters were done for zero, 1 · 10−3, and 2 · 10−3 relative energy

spread values. Amplitude and intensity distribution in the far field region at a distance of 30

m from the source for different photon energies were simulated on the same angular mesh, as

in the case of XRT simulations (see Table 5.9). Total photon emittance was calculated in the

same way as it was done previously according to Eq. (5.24) (see Fig. 5.16 (dots)). Due to the

narrowing of divergence of the radiation, higher is the photon energy, more electrons were

needed to sample the radiation on the virtual detector in order to obtain uniform intensity

distribution. In order to accumulate good statistics and get a uniform intensity distribution

number of electrons used in this calculation was increased (see Table 5.9). This adjustment is

also valid for larger energy spread values.
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Figure A.2: Simulations of the correlation functions in horizontal direction performed by the XRT soft-
ware for 24 keV photon energy and different energy spread values. Intensity distribution I(x) (a-c), ab-
solute value of the CSD in the horizontal direction |W(x1, x2)| (d-f), absolute value of the SDC |µ(x1, x2)|
(g-i), and absolute value of the SDC along the anti-diagonal line (shown in (g-i)) as a function of separa-
tion of two points |µ(∆x)| (j-l) simulated in horizontal direction 30 m downstream from the undulator
source. In (a-c) σ is the rms value of the beam size, in (d-f) ζx is the transverse degree of coherence, in
(j-l) ξx is the coherence length determined in the horizontal direction.
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Figure A.3: Simulations of the correlation functions in horizontal direction performed by the XRT soft-
ware for 50 keV photon energy and different energy spread values. Intensity distribution I(x) (a-c), ab-
solute value of the CSD in the horizontal direction |W(x1, x2)| (d-f), absolute value of the SDC |µ(x1, x2)|
(g-i), and absolute value of the SDC along the anti-diagonal line (shown in (g-i)) as a function of separa-
tion of two points |µ(∆x)| (j-l) simulated in horizontal direction 30 m downstream from the undulator
source. In (a-c) σ is the rms value of the beam size, in (d-f) ζx is the transverse degree of coherence, in
(j-l) ξx is the coherence length determined in the horizontal direction.
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A.4.3 Coherent-mode representation, coherent fraction and degree of transverse

coherence.

The exact parameters of the analytical simulations of the CSD function were used for XRT

simulations (see Table 5.8). Correlation functions were calculated and saved for each electron

according to Eq. (3.66), with the amplitude distribution calculated according to Eq. (5.10). The

eigenvalue problem for the 5D CSD matrix was also reduced to two-dimensional by applying

PCA as it was done previously by XRT software. In this case, a coherent fraction of the radiation

as a function of electron emittance is shown in Fig. 5.21 (dots). In order to accumulate good

statistics, the number of electrons used in this calculation was also increased.

Simulations of the amplitude and CSD were also performed in one transverse direction in

the frame of the analytical approach (see Figs. A.4-A.7). One dimensional amplitude distribu-

tions for all photon energies considered in this work are shown in Figs. A.4-A.7 (a,b,c). One

dimensional CSD was calculated in the far field region as average over an ensemble of electrons

according to Eq. (3.66) of the main text in the horizontal direction (see Figs. A.4-A.7 (d,e,f)).

The degree of transverse coherence was calculated according to Eq. (3.81). As it is seen from

these figures effect of energy spread again enlarges rms values σ of the intensity distribution

at the same time it narrows the spectral degree of coherence in anti-diagonal direction, which

also leads to a decrease in coherence value as it was already shown by XRT simulations. These

results are very close to the results obtained from simulations by XRT software.

Since analytical analysis matches very well to the simulation of correlation functions per-

formed by XRT software (see Fig. 5.21 and Figs. A.4-A.7), it has been extended to other natural

electron emittances in a range from 1 to 100 pmrad. The degree of transverse coherence (Eq.

(3.81)) calculated in the frame of the analytical approach as a function of natural electron emit-

tance for various relative energy spread values is shown in Fig. A.8. We observe the same

tendencies for the degree of transverse coherence as for the coherent fraction of the radiation

shown above in Fig. 5.17 and Fig. 5.21. At 500 eV and 12 keV, we reach diffraction-limited case

already at 10 pmrad and 1 pmrad respectively. However, at 24keV and 50 keV, even 1 pmrad

electron emittance is not sufficient to reach the diffraction limit.
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Figure A.4: Simulations of the correlation functions in horizontal direction performed by the analytical
approach for 500 eV photon energy and different energy spread values. (a-c) Intensity distribution I(x),
(d-f) absolute value of the CSD in the horizontal direction |W(x1, x2)|, (g-i) absolute value of the SDC
|µ(x1, x2)|, (j-l) absolute value of the SDC along the anti-diagonal line (shown in (g-i)) as a function of
separation of two points |µ(∆x)| simulated in horizontal direction 30 m downstream from the undulator
source. In (a-c) σ is the rms value of the beam size, in (d-f) ζx is the transverse degree of coherence, in
(j-l) ξx is the coherence length determined in the horizontal direction.
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Figure A.5: Simulations of the correlation functions in horizontal direction performed by the analytical
approach for 12 keV photon energy and different energy spread values. (a-c) Intensity distribution I(x),
(d-f) absolute value of the CSD in the horizontal direction |W(x1, x2)|, (g-i) absolute value of the SDC
|µ(x1, x2)|, (j-l) absolute value of the SDC along the anti-diagonal line (shown in (g-i)) as a function of
separation of two points |µ(∆x)| simulated in horizontal direction 30 m downstream from the undulator
source. In (a-c) σ is the rms value of the beam size, in (d-f) ζx is the transverse degree of coherence, in
(j-l) ξx is the coherence length determined in the horizontal direction.
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Figure A.6: Simulations of the correlation functions in horizontal direction performed by the analytical
approach for 24 keV photon energy and different energy spread values. (a-c) Intensity distribution I(x),
(d-f) absolute value of the CSD in the horizontal direction |W(x1, x2)|, (g-i) absolute value of the SDC
|µ(x1, x2)|, (j-l) absolute value of the SDC along the anti-diagonal line (shown in (g-i)) as a function of
separation of two points |µ(∆x)| simulated in horizontal direction 30 m downstream from the undulator
source. In (a-c) σ is the rms value of the beam size, in (d-f) ζx is the transverse degree of coherence, in
(j-l) ξx is the coherence length determined in the horizontal direction.
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Figure A.7: Simulations of the correlation functions in horizontal direction performed by the analytical
approach for 50 keV photon energy and different energy spread values. (a-c) Intensity distribution I(x),
(d-f) absolute value of the CSD in the horizontal direction |W(x1, x2)|, (g-i) absolute value of the SDC
|µ(x1, x2)|, (j-l) absolute value of the SDC along the anti-diagonal line (shown in (g-i)) as a function of
separation of two points |µ(∆x)| simulated in horizontal direction 30 m downstream from the undulator
source. In (a-c) σ is the rms value of the beam size, in (d-f) ζx is the transverse degree of coherence, in
(j-l) ξx is the coherence length determined in the horizontal direction.
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Figure A.8: Simulation of the degree of transverse coherence ζx obtained from XRT and analytical anal-
ysis (Eq. (3.63)) as a function of natural electron emittance for 500 eV, 12 keV, 24keV, and 50 keV.

A.5 Source and optics vibrations

This chapter provides additional calculations on spatial coherence degradation due to op-

tics vibrations at higher photon energies. In this case, the setup under consideration (presented

in Fig. A.9) contains an undulator source, a DCM at 47 meters from the source, and a lens at 3

meters after the DCM.

The first part is dedicated to the vibrations of the DCM and the analysis done according

to [179]. The DCM angular vibrations are characterized as root-mean-square (RMS) deviation

from the equilibrium position

σ2
m =

1

T

∫ T

0
dtφ2

m(t) =< (φm1(t)− φm2(t))
2
>=< φ2

m1(t) > + < φ2
m2(t) > −2 < φm1(t)φm2(t) >,

(A.1)

where φm1 and φm1 are angular vibrations of the DCM crystals. The contribution of the corre-

lation part depends on the type of monochromator. The correlation part almost disappears for

a long-arm monochromator with individual angular stages for the crystals. The beam at the

position of the lens is broadened by xl=σm(z0 − zm). Considering Gaussian beams, beam size

at the position of the lens accounting for broadening due to DCM vibrations may be calculated

as
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Figure A.9: Diagram of the beam propagation through the optical system which includes the DCM
located at zm = 47 m and the lens at z0 = 50 m. The beam is turned due to DCM vibration by ±2φm.
Image position is zi (equals to z f in the system without vibrations). Deviations from the central axis in
lens plane, image and source positions are denoted by xl , xi, and x0 accordingly.

ΣL =
√

Σ2
x + Σ2

S + Σ
′2
x z2

0 + Σ
′2
S z2

0 + σ2
m(z0 − zm)2, (A.2)

where Σx and Σ′
x are source size and divergence defined in Eq.4.54. In Eq. A.2 due to source

vibrations, additional broadening of the photon beam is introduced through photon source size

ΣS (transverse movement of the source) and divergence Σ′
S (pointing vibrations of the source).

At the source position the size of the beam and divergence may be calculated as

Σ0 =
√

Σ2
x + Σ2

S + σ2
mz2

m, (A.3)

Σ′
0 =

√

Σ
′2
x + Σ

′2
S + σ2

m. (A.4)

The calculated source broadening for the case of E = 12keV photon energy presented in Fig.

A.10. The source transverse movement ΣS was chosen as 0.45Σx in order to get 10% broadening

of the photon source without DCM angular vibrations (when σm = 0).

The results show that in order to stay within 20% of beam broadening without source vibra-

tions, the angular pitch vibration of the DCM should not exceed 45 nrad in vertical and 70 nrad

in horizontal direction accordingly. Photon source vibration of 10% (ΣS = 0.45Σx) tightens

these limitations to 30 nrad vertically and 50 nrad horizontally.

The DCM vibration leads not only to an increase of the beam size but also to a shift of the

image position. The position denoted by distance z f in Fig. A.9 is a new focus position, where

the beam deviation from the central axis is zero independent of the amplitude of the vibrations.

This is the image position for the virtual source at the monochromator position. In the case

without vibrations positions zi and z f coincide. In Fig. A.11, the calculation results for different

angular pitch vibrations are presented. The shift of the focus and the source broadening due to

angular vibrations of the DCM are shown in Fig. A.11(a),(b). When the DCM vibration is zero,

the broadening of the focused beam occurs only due to transverse movement of the source(see

Fig. A.11 (c),(d)). In this case, the broadening is 1.1Σx, and the focus position stays the same
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Figure A.10: Relative source size broadening as a function of DCM angular pitch vibrations for the case
with and without source vibrations.

zi=z f 50 meters.

As a result of the source and DCM vibrations, the coherence properties of the beam may

significantly degrade, as shown in Fig. A.12. As can be seen from Fig. A.12, without DCM and

source vibrations, the coherent fraction of the beam (calculated from the coherence volume

of the beam Σcoh= λ/2π in Eq. 5.43) is 50% and 33% in vertical and horizontal directions

accordingly (Fig. A.12(a), dashed lines). By introducing angular pitch vibrations, the coherent

fraction drops to 27% in vertical and 22% in horizontal directions. The coherent fraction drops

down further by an additional 4% by raising source vibrations in both directions. The total

coherent fraction (assuming Gaussian approximation), without vertical DCM vibrations (only

horizontal pitch vibration of the DCM is considered), is shown in Fig. 4(b). In this case, one can

see a significant drop in the coherent fraction by 50%, accounting for both angular DCM and

source vibrations.
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Figure A.11: Beam size RMS value as a function of distance after the lens for different amplitudes of the
DCM angular vibrations σm.
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Figure A.12: Transverse coherent fraction (a) and total coherent fraction (b) as a function of DCM angular
pitch vibrations for the case with and without source vibrations.
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A.6 Soft X-ray grating monochromators as a source of spatial coher-

ence degradation: A wave-optical approach

A wave-optical simulations and coherence analysis of the beam transported through the

optics are presented in this section, paying particular attention to a focusing varied line spacing

(VLS) plane grating monochromator (PGM). It was shown that this beamline optical element

used in several soft X-ray beamlines at synchrotron sources and free-electron lasers can cause

a non-negligible spatial coherence degradation. It was demonstrated that the origin of this

effect arises from the entanglement between spatial and spectral properties (spatiotemporal

coupling [180, 181]) of the photon beam generated by the grating. The latter implies that space

and frequency (or space and time) dependencies are not separable into independent functions

after such a dispersive element. It was shown which parameters are essential for this effect and

how they are linked to each other.

In the soft X-ray range, most existing sources are already diffraction-limited, at least in the

vertical direction. However, at this photon energy range, diffraction-limited storage rings are

expected to reach a spatial degree of coherence of the total beam close to 100% (see section 5.5)

and thus, in terms of spatial coherence, will resemble a laser source. In this case, the photon flux

of the source can be considered completely coherent, and thus, the spatial degree of coherence

does not need to be increased by, for example, slit systems at the expense of flux. These beam

properties not only bring new scientific opportunities, but also pose enormous challenges for

the optical layout of the beamlines and the quality of the optics used. The high spatial coher-

ence of the source must be preserved by the photon beam transport system to make it available

for the actual experiment at the sample position. It has already been demonstrated that the

degradation of the spatial coherence of the source may occur, for example, due to optical sur-

face defects [182–185], incoherent scattering [186, 187], or vibrations of optical elements [87, 88,

188]. The latter effect imposes the most significant influence on spatial coherence so far. This

becomes obvious with modern beamline designs and their use of almost exclusively horizon-

tally deflecting optics, which are less susceptible to vibrations.

One way to reproduce measurement or identify the phenomena involving the coherence

degradation, as well as clarify their cause, is through wave-optical simulations [86, 189]. Wave-

optical simulations allow to explore varies beamline design options including real optical sur-

faces, vibrations, misalignments and many other aspects. Almost every simulation tool that of-

fers wave-optical calculations also has built-in tools to determine the spatial coherence proper-

ties from the obtained wave fields. Many of the coherence analysis tools can also be integrated

in existing wave-optical simulation software or the coherence can be calculated externally us-

ing the obtained wave fields. The presented results are based on wave-optical simulations with

slightly polychromatic light using the software Xrt [86] and are supported by experimental ob-

servations [87, 95, 190]. In the following, it is shown that the soft X-ray focussing VLS plane

grating monochromator used in many soft X-ray beamlines is a source of spatial coherence

degradation and can cause a huge drop in spatial coherence.
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A.6.1 Beamline layout and focusing VLS-PGM

The beamline layout used for the wave-optical simulations is based on the layout of the

P04 beamline at PETRA III [191] (see figure A.13). The insertion device is an APPLE-II undu-

lator, which delivers photon energies in the range of E = 250 − 3000 eV in the first harmonic.

The first element of the beamline is a beam-defining aperture 27.9 m downstream from the

source. It serves as an angular filter and increases the spatial coherence when the aperture is

closed. The monochromator is a focusing VLS-PGM and consists of a plane mirror, a variable

line spacing plane (VLS) grating and an exit slit (EXSU). The monochromator is located 46 m

downstream from the source. The VLS plane grating spectrally splits the photon beam. Due to

the variable line spacing of the grating, the photon beam is additionally focused on the exit slit

in the vertical direction, which is located 25 m behind the grating. The exit slit selects a certain

bandwidth and together with the VLS grating defines the energy resolution of the monochro-

mator. The plane mirror in front of the grating illuminates the grating at an angle of incidence

that simultaneously satisfies the grating equation nkλ = sin α + sin β and the focusing condi-

tion of the plane grating cos β/ cos α = c f f [192]. The angles α and β are the angles of incidence

and diffraction, n is the diffraction order, λ is the wavelength and k is the line density. When

scanning the photon energy with the monochromator, c f f is kept constant, resulting in exact

focusing with fixed entrance r and exit arm length r′. The magnification of the VLS grating is

defined by [193]:

M =
r′

r · c f f
(A.5)

Using the distances shown in figure A.13 and described above, and a c f f = 2.0 (PETRA III

beamline P04, k = 1200 lines/mm grating), the source is demagnified with M = 0.27 onto the

exit slit. Due to the variable line spacing of the grating, the angular dispersion of the photon

beam occurs, implying that each wavelength is focused individually at different z-positions

along the exit slit (see figure A.13). Due to the finite resolution function of the monochromator

and the finite photon beam size for each wavelength, the individual photon beams also overlap,

representing the angular dispersion function of the grating. The spatial extend of the dispersed

photon beam at the exit slit position can be determined by the reciprocal linear dispersion [193]

and the bandwidth of the illuminating photon beam and is given by:

∆z[mm] =
1.24 · 10−3 · nkr′[m]

cos β · E2[eV]
∆E[eV] (A.6)

A photon beam incident on the VLS grating with a photon energy of E = 1200 eV and an

energy bandwidth of ∆E = 200 meV will generate a beam profile with a size of 89 µm (FWHM)

at the exit slit position.
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Figure A.13: Beamline Layout used for the wave-optical simulations. The coherence analysis of the
wave fields using the standard methods and the CMD is performed at screen A after the beam-defining
aperture, at screen B closely before the exit slit, and at screen C after the exit slit.

A.6.2 Wave-optical simulations

For the wave-optical simulations the XRT software [86] was used. For efficiency and perfor-

mance reasons, a filament electront beam with zero energy spread was employed as the source

of radiation. Such a photon source has a spatial degree of coherence of ζ = 100%. The photon

energy has been set to E = 1200 eV for all simulations. Furthermore, the size of the beam-

defining aperture was chosen to be 50 µm x 400 µm (h x v). In addition, a horizontal size of 50

µm was set for the exit slit.

Assuming that the statistical process is stationary, the calculation of the spatial coherence is

based on the standard methods [23] and the use of the coherent mode decomposition (CMD)

[47]. As a result, one obtains the spatial degree of coherence ζ (Eqs. (3.63),(3.74)) and the co-

herent fraction (CF) (Eq. (3.75)) of the investigated wave fields. Both are single values that rep-

resent the spatial coherence properties of the total beam. The photon beam energy bandwidth

∆E used for the simulations was selected such that the quasi-monochromatic approximation

can be applied for the coherence analysis methods, which is the case if ∆E ≪ E. In the sim-

ulations, it was ensured that the number of electrons used lead to reasonable statistics where

the obtained spatial coherence values converge and does not change anymore with increasing

number of electrons. The number of modes was chosen such that the cumulative sum of the

mode weights always equals one. These two facts lead to reliable coherence values for the

presented simulations.

A.6.3 Results and discussion

To analyse the spatial coherence properties of the photon beam along the beamline and thus

the influence of the VLS plane grating monochromator on the spatial coherence properties, the

spatial degree of coherence ζ (Eq. (3.74)) was determined at three different positions. The first

position (screen A) has been set after the beam-defining aperture and closely before the plane
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mirror, the second position (screen B) is after the grating and closely before the exit slit, and

the third position (screen C) is after the exit slit (see figure A.13). As mentioned in the previous

section, the source generates a fully coherent beam with a spatial degree of coherence of ζ =

100%. In case of a monochromatic source with just a single photon energy E = 1200 eV, the

VLS grating monochromator generates a focused beam at the exit slit position with a size of

σb = 7 µm (rms) based on the magnification described in equation (A.5). The exit slit size was

set to we = 20 µm in this case. The spatial degree of coherence of the photon beam at screen A,

B, and C is ζ = 100%, as expected. The exit slit size is larger than the beam size at the exit slit

and therefore has no effect on the beam size or spatial coherence after the exit slit.

The same analysis was performed for a polychromatic source with a very narrow pho-

ton energy bandwidth of ∆E = 200 meV. This bandwidth results in an energy resolution of

∆E/E = 1.6 · 10−4 at 1200 eV. It has been found that at a finite bandwidth of ∆E = 200 meV, the

beam at the source and at screen A still has a spatial degree of coherence of ζ = 100%, this is

also true for all bandwidths below ∆E = 600 meV. In this case and at these positions, the spatial

coherence properties of the photon beam is therefore decoupled from the spectral properties of

the beam, which is to be expected. The photon beam size after the grating is determined by ∆E

incident on the grating as described in equation (A.6). Hence, at screen position B spatial and

spectral properties are correlated to some extent. When analysing the coherence properties of

the photon beam at screen B, it was found that the degree of spatial coherence drops signifi-

cantly to ζ = 17% (at ∆E = 200 meV). This is at first glance a very surprising and unexpected

result, since the photon beam at this position is a superposition of several fully coherent single

Gaussian beams whose spacing is determined by the dispersion properties of the grating. The

coherence properties after the exit slit at screen C were further analysed to investigate the effect

of the slit on the spatial coherence properties of this beam. For this, the slit was varied between

we = 100 µm and 8 µm and the spatial degree of coherence of the photon beam at screen C was

determined (see figure A.14). It was found that the spatial degree of coherence increases with

decreasing slit size, which is an expected result considering the coherence properties of the in-

cident beam. The obtained results are in line with several independent experimental findings

which also describe that the assumed fully coherent beam of the source at soft X-ray beamlines

in the vertical direction show a rather low spatial degree of coherence in this direction and

that it can be increased or decreased with closing or opening the exit slit, respectively [87, 95,

190]. The experimental findings thus support the results of the simulations. Starting from an

exit slit size of around we = 20 µm and going towards smaller exit slit sizes, we see an effect

which is opposite to the expected behaviour. Below an exit slit size of we = 20 µm, the degree

of spatial coherence saturates to ζ = 56% and remains constant with decreasing exit slit size.

Looking at the transmitted ∆E, the same effect is seen. The photon energy bandwidth even

remains constant with ∆E = 25 meV. In terms of ∆E, this is an expected behaviour since the

minimum photon energy bandwidth achieved is determined by the dispersion properties of

the grating and cannot be further reduced by closing the exit slit. The observed phenomena

lead to the assumptions that there is a strong correlation between the spatial and the spectral

properties of the photon beam after the grating. This effect is related to the first-order spatio-
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Figure A.14: Spatial degree of coherence and coherent fraction at screen C for different exit slit sizes.
The corresponding energy bandwidth at screen C is indicated in red. The incident energy bandwidth
has been set to ∆E = 200 meV.

temporal distortions, that is, couplings between spatial (or spatial-frequency) and temporal (or

frequency) coordinates, of Gaussian pulses and beams. These distortions include pulsefront

tilt, spatial dispersion and angular dispersion [180, 181, 194]. To explore this effect more in

detail and to determine its dependencies, a fixed exit slit size of we = 20 µm was set and ∆E of

the source varied (see figure A.15). In figure A.15(a), the degree of spatial coherence at screen B

and screen C was compared as a function of ∆E. Figure A.15(b) shows the transmitted photon

energy bandwidth at screen C as a function of the incident photon energy bandwidth at screen

B. It was found, that in case of ∆E = 10 meV and ∆E = 20 meV, the spatial degree of coherence

is similar to the monochromatic case. The photon beam, in this case, is smaller than the 20 µm

exit slit size and hence the photon energy bandwidth of the incoming and transmitted beam

is the same. At ∆E = 50 meV the size of the photon beam incident on the exit slit is slightly

larger than the exit slit size. The transmitted photon energy bandwidth is slightly smaller than

the incoming one. In this case, the degree of spatial coherence of the incoming and transmitted

beam is different. After the exit slit the spatial degree of coherence is about 10% larger. With

increasing ∆E, it was found that the degree of spatial coherence determined at screen C con-

verges to ζ = 50% and does not further decrease whereby the degree of spatial coherence at

screen B further decreases. This happens exactly at the point where the transmitted ∆E 44 meV

does not change anymore due to the finite bandpass of the 20 µm exit slit size.
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Figure A.15: (a) Comparison of the obtained spatial degree of coherence between the photon beam
incident on the exit slit (screen B) and the photon beam after the exit slit (screen C) for different incident
photon energy bandwidths (∆E = 10 meV - 600 meV). The exit slit size has been set to we = 20 µm. (b)
Spectrum of the photon beam at screen C for a set of five different incident photon energy bandwidths.

A.6.4 Theoretical substantiation of the effect.

An attempt to explain this effect is made within the framework of laser physics. In the laser

physics and applications of ultrafast pulse optics space and time dependences of an pulse’s

electric field are often assumed to be factorizable functions

E(r, t) = E(r)E(t) (A.7)

Spatio-temporal distortion occurs when such assumption is violated. It was shown [181] that

any manifestations associated with angular dispersion automatically include the pulse front

tilt (PFT) phenomena [181]. At the synchrotron facility in the soft X-ray range such dispersive

optical element is the monochromator consisitng of a grating and the focusing lens or the VLS

grating (see Fig. A.16).

Assuming beam propagation in the z-direction and the disperssion in x plane, negletic an-

other transverse direction ’y’ the Eq. (A.7) may be rewritten acounting for the PFT in x-z plane

E(x, z, t) = E(x, z)E(t − px) (A.8)

where p is the PFT introduced as [181]

p =
dkx

dω
(A.9)

Using the Fourier transform and the Shift theorem of Eq.(A.8) with respect to t yields an addi-

tional factor corresponding to the PFT

E(x, z, ω) = E(x, z)E(ω)e−ipx∆ω, (A.10)
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Figure A.16: A beam propagating through a grating monochromator undergoes a pulse-front tilt. After
propagation in the far zone, the pulse-front tilt results in angular dispersion. After free-space propaga-
tion, the beam may enter an optical system, here a lens.

where ∆ω is counted from the center frequency ω0 of the diffracted beam if the dispersive

element, such as grating, is considered (see Fig. A.17). Applying the second Fourier transform

and the Shift theorem one obtains components of the electric field in the k-ω domain

E(kx, kz, ω) = E(kx + p∆ω, kz)E(ω) (A.11)

Thus, without additional effects of spatial or frequency chirp, the Eqs. (A.8), (A.11) show the

translation between the components of the electic filed from x-t to k-ω domain. The translation

may be used in order to calculate spatial coherence fuction. It should be taken into account that

the pulse front and phase front after the dispersive optical element may have a certain angle

between them (see Fig. A.16).

In oder to charecterize spatial properties of the pulse in the dispersive x direction acounting

for PFT the basic theory of optical coherence is used. Assuming stationary process and the

ergodicity of the process, the ensemble average in Eq. (3.58), may be replaced by the time

average

Γ(x1, x2) =
∫ ∞

−∞
E∗(x1, t)E(x2, t)dt (A.12)

It is more convinient to work in the frequency domain, utilizing CSD function, assuming that

the quasi-monochromatic approximation is valid and the ensemble averaged replaced by the
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Figure A.17: A beam propagating through a grating monochromator results in angular dispersion.

average over narrow frequency distribution ∆ω.

J(x1, x2) =
∫ ∞

−∞
E∗(x1, ∆ω)E(x2, ∆ω)d∆ω (A.13)

A Gaussian spatial profile of the beam with the PFT is assumed,

f (x) = e
−x2

2σ2
x , (A.14)

with a certain bandwidth

S(ω) = | f (ω)|2 = e
−∆ω2

2σ2
ω . (A.15)

For the calculation of the CSD function for the beam with the PFT at a certain z position, z-

dependence was omitted. Taking into account Eq. (A.10) and Eqs. (A.14) and (A.15) one can

write the CSD function for the beam with PFT

J(x1, x2) = f (x1) f (x2)
∫ ∞

−∞
| f (∆ω)|2e−i∆ωp(x2−x1)d∆ω

= e
−x1

2

2σ2
x e

−x2
2

2σ2
x

∫ ∞

−∞
e
−∆ω2

2σ2
ω e−i∆ωp(x2−x1)d∆ω

=
√

2πσωe
− x2

1+x2
2

2σ2
x

− p2σ2
ω (x2−x1)

2

2

=
√

2πσωe
−(x2

1+x2
2)(

1

σ2
x
+p2σ2

ω)+2p2σ2
ω x1x2

(A.16)

Integration with respect to x1 in Eq. (3.63)

I1 =
∫ ∞

−∞
|J(x1, x2)|2dx1 =

2π3/2σ2
ωσx

√

1 + p2σ2
ωσ2

x

e
x2

2
σ2

x
( 1

1+p2σ2
ω σ2

x
−2)

(A.17)
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Integration with respect to x2 in Eq. (3.63) acounting for Eq. (A.17)

I2 =
∫ ∞

−∞
I1dx2 =

2π2σ2
ωσ2

x
√

1 + p2σ2
ωσ2

x

(A.18)

The spectral density of the radiation is

S(x) = J(x = x1 = x2) =
√

2πσωe
− x2

σ2
x (A.19)

The degree of coherence according to Eq. (3.63) is

ζ =
1

√

1 + 2p2σ2
ωσ2

x

(A.20)

In this case, it is assumed that the partial coherence of the beam is introduced by the grating.

Taking into consideration a simple grating equation and assuming diffraction into the first

oder

λd̄ = cos(θi)− cos(θd) (A.21)

where d̄ is the grating’s grooves density, θi and θd are incident and diffracted angles accordingly.

Differentiation of Eq. (A.21) gives
dθd

dλ
=

d̄

θd
(A.22)

Taking into account Eq. (A.9) one can find the PFT from the grating parameters [181]

p =
dkx

dω
= − kdθd

dω
=

λ

c

dθd

dλ
=

λd̄

cθd
(A.23)

Degree of coherence may be calculated according to Eq. (A.20) as

ζ =
1

√

1 + 2λ2d̄2σ2
ωσ2

x

c2θ2
d

(A.24)

It is assumed that the degree of coherence will not change with the propagation, unless ad-

ditional optics is introduced. It is assumed that a VLS grating may be substituted by a plane

grating with the same groove density d̄ followed by the ’virtual’ lens with the focal distance

f , determid by the VLS grating paramters. In this case additional focusing factor may play a

significant role. A transmission function of the ’virtual’ lens should be introduced as

Tf (x) = e
−ikx2

2 f , (A.25)

and the propagator for the focal distance f in the paraxial approximation as

Pf (x) =

√

−ik

2π f
e

ik(x−x′)2
2 f . (A.26)
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Then for the amplitude at the focal plane of the VLS, taking into account Eqs. (A.10), (A.14),

(A.25),(A.26) one gets the following expression

E f (x′) =

√

−ik

2π f
e

ik(x′)2
2 f

∫ ∞

−∞
e
−x2

2σ2
x e−ip∆ωxe

− i2πxx′
λ f dx (A.27)

Integration in the Eq. (A.27) gives

E f (x′) =

√
2πσx

√

i f λ
e

iωx′2
2c f − σ2

x ( f pλ∆ω+2πx′)2
2λ2 f 2

=

√
σx√

i
√

σf

e

iωx′2
2c f − 1

2σ2
f

( f p∆λω
2π +x′)2

(A.28)

where σf = f λ/2πσx represents the focused beam for a single frequency. The same result can

be obtained taking into account Fourier properties of the lens. In this case the field in the focal

position is FT from the input field (Eq. (A.14))

f (kx) ≈ e
−σ2

x k2
x

2 , (A.29)

and the PFT is taken into account according to Eq. (A.11), by the variable substitution. The

correlation function is

J(x1, x2) =
∫ ∞

−∞
E∗

f (x1)E f (x2)| f (∆ω)|2d∆ω

=
σx

σf

∫ ∞

−∞
e
− 1

2σ2
f

( f pλ∆ω
2π +x1)

2

e
− 1

2σ2
f

( f pλ∆ω
2π +x2)

2

e
iω(x2−x1)

2

2c f e
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2σ2
ω d∆ω
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√
2πσxσω

σf

√

1 + 2p2σ2
x σ2

ω

e
− 1

4σ2
f

[

(x1−x2)
2+

(x1+x2)
2

1+2p2σ2
x σ2

ω

]

(A.30)

Integration with respect to x1 and x2 in (3.63)

∫∫ ∞

−∞
J(x1, x2)dx1dx2 =

2π2σ2
ωσ2

x
√

1 + 2p2σ2
ωσ2

x

(A.31)

Integration of the the spectral density of the radiation gives

∫ ∞

−∞
S(x)dx =

∫ ∞

−∞
J(x = x1 = x2)dx

=
∫ ∞

−∞

√
2πσxσω

σf

√

1 + 2p2σ2
x σ2

ω

e
− 1

σ2
f

x2

1+2p2σ2
x σ2

ω dx =
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2πσxσω

(A.32)

The degree of coherence according to Eq. (3.63) is

ζ =
1

√

1 + 2p2σ2
ωσ2

x

(A.33)
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or the same value through the focusing parameters σf and f

ζ =
σf

√

σ2
f +

f 2λ2 p2σ2
ω

4π2

(A.34)

A.6.5 Conclusion

From results of the simulations it is seen that due to the dispersive properties of the grating,

the spatial coherence properties of the photon beam after the grating are entangled with its

spectral properties and exhibit a certain dependency. The spatio-frequency coupling is caused

by the spatial redistribution of different wavelength by the grating. Photon beams with differ-

ent wavelengths still overlap at the exit slit position. The degree of overlap is determined by the

reflection order, size of the individual photon beams of each wavelength and the intrinsic grat-

ing properties such as spacing. In the decoupled state, as it is the case upstream of the grating

before despersion occurs, the degree of spatial coherence is unaffected. Hence, it is assumed

that the spatio-frequency coupling is the root cause of the spatial coherence degradation. Cau-

tion is advised when the photon bandwidth becomes so large that the quasi-monochromatic

approximation no longer applies and the temporal coherence properties affect the spatial co-

herence properties. It was found that the degree of spatial coherence after the exit slit is mainly

determined by the bandpass and thus the angular dispersion of the grating if a large photon

beam (large energy bandwidth) is incident on the exit slit, which is the case at the beamline.

Thus, due to this dependence, the transmitted beam is to a large extent independent of the

spatial coherence of the incident beam. Nevertheless, the simulated data show that the VLS

plane grating monochromator can lead to a non-negligible spatial coherence degradation. This

effect of coherence degradation of the beam in the dispersive direction was experimentally ob-

served utilizing first [87, 95, 190] and second order correlation theory [97]. Further simulations

with varying photon energies and grating parameters can be performed to find out to what

extent this effect can be mitigated to ensure an optimal coherent flux even for highly-coherent

radiation sources.
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Appendix B

Theoretical analysis of the HBT

interferometry at XFELs

In this chapter, theoretical derivations are given to analyze the propagation of x-ray pulses

through the VLS monochromator and then further to the pixelated detector, where spatial HBT

measurements are typically performed. The detector’s position is usually considered so that

there will be sufficient resolution to resolve individual spatial modes of the incoming x-ray

pulses. The interplay between the monochromator resolution and the size of the exit slits of the

monochromator is especially considered. The relationship between the beam statistics deter-

mined in HBT interferometry and the statistical properties of the x-ray beam incoming to the

VLS monochromator is demonstrated. Results for the Gaussian Schell model pulses describ-

ing the statistical properties of the XFELs are provided. The following section starts with the

elemental analysis of x-ray propagation through the VLS monochromator.

B.1 Propagation of the X-ray beams through the VLS grating

The incoming field is considered in the form

E′
in(r, t) = Ein(r, t)eik0r−iω0t, (B.1)

where k0 = k0s0, k0 = ω0/c, s0 is the direction of the incoming momentum vector, ω0 is the

carrier frequency, and c is the speed of light. In Eq. (B.1) it is assumed that incoming field

Ein(r, t) is slow varying function of its arguments. By performing the Fourier transform for the

incoming amplitude Ein(r, t) it is possible to change to spatial-frequency domain:

Ein(r, t) =
1

2π

∫ ∞

−∞
Ein(r, ω)e−iωtdω. (B.2)

Substituting Eq. (B.2) in Eq. (B.1) shows the total frequnecy ωt = ω0+ω and the region of

convergence in the frequency domain (ω ≪ ω0) of the integral in Eq. (B.2).

Each amplitude Ein(r, ω) for the further analysis is propagated separately through the beam-

line, and the final amplitude E f (r, ω) in spatial-frequency and in spatial-time will be deter-

205
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Figure B.1: (a) Scattering from the VLS grating is shown. Different spectral components of the incoming
beam are focused at the focal distance f forming the zeroth, first, and nth orders of grating reflections.
The coordinate systems for the grating and for the scattered beams are also shown. (b) Scattering from
the VLS grating is substituted by the scattering on a grating with the constant period d0 followed by a
virtual lens with the focusing distance f .

mined. The latter obtained by the Fourier transform:

E f (r, t) =
1

2π

∫ ∞

−∞
E f (r, ω)e−iωtdω. (B.3)

The intensity obtained from the amplitude as

I f (r, t) = |E f (r, t)|2 =
1

(2π)2

∫∫ ∞

−∞
E∗

f (r, ω)E∗
f (r, ω′)e−i(ω−ω′)tdωdω′. (B.4)

where integration over the times gives
∫∫ ∞

−∞
exp[i(ω − ω′)t]dt = 2πδ(ω − ω′). So that the

final integrated intensity at the position r [195]

I f (r) =
∫ ∞

−∞
|E f (r, t)|2dt =

1

(2π)

∫ ∞

−∞
|E f (r, ω)|2dω. (B.5)

Expression (B.5) shows the conservation of the beam energy in time and frequency domains.

The scattering of the incoming fields is considered if the form of Eqs. (B.1) and (B.2) on a

VLS grating in reflection geometry as shown in Fig. B.1(a). Each apmlitude Ein(r, ω) will be

propagated independently through the grating. The VLS grating is usually characterized by

changing the groove spacing according to

d(y) = d0 + d1y + d2y2 + ..., (B.6)
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where d0 is the spacing at the pole of the grating located at the coordinate y = 0 and d1 abd d2

are the parameters for the variation of the line spacing with the coordinate y. If the expansion

(B.6) only the first two terms are kept, such grating will focus the incoming beam at the focal

distance

f =

[

λd1

d2
0sin2θ f

]−1

(B.7)

where θ f is the exit scattering angle (see Fig. B.1(a)). It is clear that such VLS grating may

be substituted by a plane grating with spacing d0 followed by the ’virtual’ lens with the focal

distance given by expression (B.7) (see Fig. B.1(b)). In the following this geometry will be

considered for the description of scattering on the VLS grating.

The scattered filed Egr(r, ω) from such a VLS grating can be written as

Egr(r, ω) = E0

∫

Rgr(r
′)Tf (r

′)Pf (r − r′)Ein(r
′, ω)eik0r′dr′ (B.8)

where E0 is the amplitude of the filed, containing nonessential preintegral factors. In the fol-

lowing, where it is not specifically indicated, the integration is performed from minus to plus

infinity. In Eq. (B.8) Rgr(r′) is the reflection function of the grating and Tf (r
′) is the transmission

function of the ’virtual’ lens given by the following equation

Tf (r) = exp(−i
k

2 f
r2), (B.9)

and

Pf (r − r′) =
(−ik0

2π f

)

exp

[

i
k

2 f
(r − r′)2

]

(B.10)

is the propagator, for the focal distance f in the paraxial approximation. Consider the plane

grating location in the origin of the coordinate system as shown in Fig. B.1. The groovs are

considered along the x′ axis. In this geometry Rgr(r′)=Rgr(y′). It is assumed that the virtual

lens in Eq. (B.9) is focusing only in one y direction (see Fig. B.1(b)), Tf (r
′)=Tf (y

′), and the

observation plane is located at the focal plane of this lens. In this case

Tf (y
′)Pf (r − r′)eik0r′ =

(−ik0

2π f

)1/2
exp

[

i
k

2 f
y2 − iqyy′

]

Pf (x − x′) (B.11)

where qy = ksy − k0s
y
0, sy is the y component sy = y/ f of the unit vector s towards the obser-

vation point, and Pf (x − x′) is the propagator in the x direction. The x component of the unit

vector in Eq. (B.11) is considered sx
0 = 0 (see Fig. B.1(a)). Substituting everything listed above

in Eq. (B.8), the scattered field is

Egr(x, qy, ω) = E0

∫∫

Rgr(y
′)Pf (x − x′)Ein(x′, y′, ω)e−iqyy′dx′dy′. (B.12)
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Integrating over x′ in the Eq. (B.12) will give expression for the scattered amplitude

Egr(x, qy, ω) = E0

∫

Rgr(y
′)Ein(x, y′, ω)e−iqyy′dy′, (B.13)

where

Ein(x, y′, ω) =
∫

Pf (x − x′)Ein(x′, y′, ω)dx′. (B.14)

The function of the finite size grating is introduced as

Rgr(y
′) =

N/2

∑
n=−N/2

rgr(y
′ − yn) = RN(y

′)
∞

∑
n=−∞

rgr(y
′ − yn) = RN(y

′)
∞

∑
hn=−∞

rgr(hn)e
ihny′ , (B.15)

where N is the number of grating periods, rgr(y) is the reflection function of one period, and

yn = d0n, and n = 0, ±1, ±2.... In Eq. (B.15) RN(y) is a finte window of the size of the grating,

which can be introduced as

RN(y
′) = rect

( y′

DN

)

, (B.16)

where DN = d0N and rect(y) is the rectangular function defined as

rect(y) =







1, if |y| ≤ 1/2

0, if |y| > 1/2
. (B.17)

In Eq. (B.15) the decomposition of the finite periodic function over reciprocal space was used

with hn = (2π/d0)n, and the Fourier transform of the reflection function of one grating period

was introduced as

rgr(hn) =
1

d

∫ d/2

−d/2
rgr(y)e

−ihnydy. (B.18)

Substituting Eq. (B.15) in Eq. (B.13) and changing order of summation and integration will give

Egr(x, qy, ω) = E0

∞

∑
hn=−∞

rgr(hn)
∫

RN(y
′)Ein(x, y′, ω)e−i(qy−hn)·y′dy′ (B.19)

Assuming that the incoming amplitude is constant over the grating in the vertical direction

Ein(x, y′, ω) ∼= Ein(x, ω) from the Eq. (B.19)

Egr(x, ω) = E0

∞

∑
hn=−∞

rgr(hn)Ein(x, ω)
∫

RN(y
′)e−i(qy−hn)·y′dy′ (B.20)

and integrating

∫

RN(y
′)e−i(qy−hn)·y′dy′ =

[

(qy − hn)
DN

2

]−1

sin

[

(qy − hn)
DN

2

]

= sinc[αn], (B.21)
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where

αn = (qy − hn)DN/2 (B.22)

the amplitude of the filed scattered from the grating is finnaly obtained.

Egr(x, ω) = E0

∞

∑
hn=−∞

rgr(hn)sinc[αn]Ein(x, ω) (B.23)

The scattered amplitude for one of the grating order n is

Egr(x, ω) = E0rgr(hn)sinc[αn]Ein(x, ω). (B.24)

The argument αn of the sinc function can be presented as

αn = (qy − hn)DN/2 = (ksy − k0s
y
0 − hn)DN/2 = (kcosθ f − k0cosθi − hn)DN/2. (B.25)

The maximum of the sinc function is at αn = 0 that gives for the central frequency ω0 the

grating equation [196]

k0(cosθn
f − cosθi) = hn, (B.26)

where θi and θn
f are the incidence and scattered angles from the VLS grating as shown in Fig.

B.1(a). Taking into account that k = (ω0 + ω)/c and θ f = θn
f + θ, where ω ≪ ω0 and θ ≪ θn

f ,

the paramter αn from Eq. (B.25) is obtained, neglecting small terms of the second order

αn = cosθn
f

[(

ω

ω0

)

− θtanθn
f

]

k0DN

2
(B.27)

Condition αn = 0 in Eq. (B.25) should also be valid for the other frequencies and corresponding

angles. so that

kcosθ f − k0cosθi = hn. (B.28)

Performing similar expansion as before, k = (ω0 + ω′)/c and θ f = θn
f + θ, where the frequency

ω′ in the observation plane is introduced, one obtains

(

ω′

ω0

)

= θtanθn
f (B.29)

Substituting this Eq. (B.29) in Eq. (B.27), the paramter αn is obtained

αn = cosθn
f

(

ω − ω′

ω0

)

k0DN

2
. (B.30)

To determine an expression for the intensity in the observation plane, the scattered amplitude

value in Eq. (B.24) is substituted to Eq. (B.5) so that

Igr(x, ω′) = |E0|2|rgr(hn)|2
∫

R(ω′ − ω)|Ein(x, ω)|2dω, (B.31)
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where the function R(ω′ − ω) is introduced as

R(ω′ − ω) = sinc2(αn) (B.32)

It will be shown that this function is, in fact, a resolution function of the monochromator unit.

Indeed, if one considers that the incoming field is monochromatic, with a fixed frequency ω0,

the incoming field can be written as Ein(x, ω) → (2π)δ(ω − ω0)Ein(x). this expression in Eq.

(B.31) gives

Igr(x, ω′) = |E0|2|rgr(hn)|2R(ω′ − ω0)|Ein(x)|2, (B.33)

that shows that the function R(ω′ − ω0) givesthe broaening of the monochromatic frequency

ω0 and may be treated as the resolution function. The full width at half maximum (FWHM)

of the resolution function R(ω′ − ω) defines, typically, the resolution of the VLS grating. The

resolution function of the monochromator is often considered to be a Gaussian function,

R(ω) = exp

(

− ω2

2σ2
r

)

(B.34)

where σr is the root mean square (rms) value of the resolution function with FWHM equal to

2
√

2ln2σr ≃ 2.355σr.

In a typical experiment at an XFEL in order to obtain spectral characteristics of the pulse

the measured two-dimensional intensity distribution Igr(x, ω) is integrated over the x axis thus

providing the one-dimensional spectrum Igr(ω). Performing such integration in Eq. (B.31) and

also taking into account Eq. (B.14) the spectrum is obtained

Igr(ω) =
∫

Igr(x, ω)dx = |E0|2|rgr(hn)|2
∫∫

R(ω − ω′)|Ein(x′, ω′)|2dω′dx′, (B.35)

In this derivation, the following property of the propagator was considered:

∫

P∗
f (x − x′)Pf (x − x′′)dx = δ(x′ − x′′) (B.36)

Equation (B.35) provides an expression for the measurements of the single pulse spectrum at

the XFEL experiment by the VLS grating spectrometer expressed through the incoming beam

intensity |Ein(x′, ω′)|2.

In the next section, will be determined which kind of information may be obtained by per-

forming HBT analysis in the spectral domain and relate it to the statistical properties of the

beam incoming to the monochromator unit.

B.2 Second-order correlations in the frequency domain

The second-order correlation functions in the frequency domain defined as

g(2)(ω1, ω2) =
< Igr(ω1)Igr(ω2) >

< Igr(ω1) >< Igr(ω2) >
(B.37)
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where intensities Igr(ω) are defined in Eq. (B.35). Substituting these intensities in Eq. (B.37)

gives

g(2)(ω1, ω2) = (B.38)
∫

R(ω1 − ω′)R(ω2 − ω′′) < |Ein(x′, ω′)|2|Ein(x′′, ω′′)|2 > dx′dx′′dω′dω′′)
∫

R(ω1 − ω′) < |Ein(x′, ω′)|2 > dω′dx′
∫

R(ω2 − ω′) < |Ein(x′, ω′)|2 > dω′dx′
.

Assuming Gaussian statistics for the incoming field the average correlation can be written in

the following form

< |Ein(x′, ω′)|2|Ein(x′′, ω′′)|2 >= (B.39)

=< |Ein(x′, ω′)|2 >< |Ein(x′′, ω′′)|2 > +| < E∗
in(x′, ω′)E∗

in(x”, ω”) > |2 =

= Sin(x′, ω′)Sin(x”, ω”) + |Win(x′, x”, ω′, ω”)|2,

where the spectral density introduced as

Sin(x, ω) =< |Ein(x, ω)|2 >, (B.40)

and cross-spectral density as

Win(x′, x”, ω′, ω”) =< E∗
in(x′, ω′)Ein(x”, ω”) > (B.41)

Substituting Eq. (B.38) in Eq. (B.39) the following expression for the g(2)(ω1, ω2) is obtained

g(2)(ω1, ω2) = (B.42)

1 +

∫

R(ω1 − ω′)R(ω2 − ω′′)|Win(x′, x”, ω′, ω”)|2dx′dx”dω′dω”
∫

R(ω1 − ω′)Sin(x′, ω′)dω′dx′
∫

R(ω2 − ω′)Sin(x′, ω′)dω′dx′

The cross-spectral purity of the incoming x-ray beam implies

Win(x′, x”, ω′, ω”) = Win(ω
′, ω”)Win(x′, x”) (B.43)

and

Sin(x′, ω′) = Sin(ω
′)Sin(x′) (B.44)

Substituting these expressions in Eq. (B.42), the final general expression for the g(2)(ω1, ω2)

function is obtained

g(2)(ω1, ω2) = 1 + ζgin(ω1, ω2), (B.45)

where

ζ =

∫ ∫

|Win(x′, x”)|2dx′dx”

[
∫

Sin(x)dx]2
(B.46)
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and

gin(ω1, ω2) = (B.47)
∫∫

R(ω1 − ω′)R(ω2 − ω”)|Win(ω
′, ω”)|2dω′dω”

∫

R(ω1 − ω′)Sin(ω′)dω′ ∫ R(ω2 − ω′)Sin(ω′)dω′ .

By that, the second-order correlation function g(2)(ω1, ω2) measured in the frequency domain

was expressed through the statistical properties of the x-ray radiation incoming to the monochro-

mator unit. It is immediately seen that the g(2)(ω1, ω2) function defined in Eq. (B.45) is deter-

mined by the degree of spatial coherence ζ of the incoming x-ray beam. We have to recall here

that the spectral density in spatial Win(x1, x2) and frequency Win(ω1, ω2) domains is defined

through its first-order correlation functions as

Win(x1, x2) =
√

Sin(x1)
√

Sin(x2)g
(1)
in (x1, x2), (B.48)

Win(ω1, ω2) =
√

Sin(ω1)
√

Sin(ω2)g
(1)
in (ω1, ω2),

where the first-order correlation functions g
(1)
in (x1, x2) and g

(1)
in (ω1, ω2) are defined as

g
(1)
in (x1, x2) =

< E∗
in(x1)Ein(x2) >

√

< |Ein(x1)|2 >

√

< |Ein(x2)|2 >

, (B.49)

g
(1)
in (ω1, ω2) =

< E∗
in(ω1)Ein(ω2) >

√

< |Ein(ω1)|2 >

√

< |Ein(ω2)|2 >

.

The expression for the correlation function g
(1)
in (ω1, ω2) in Eq. (B.47) can be further analyzed.

It should be noted that resolution of the monochromator is typically much narrower than the

bandwidth of the incoming radiation. Assuming perfect monochromator resolution or substi-

tuting resolution function by a delta function R(ω1 −ω′) → δ(ω1 −ω′), a simplified expression

of Eq. (B.47) is obtained

gin(ω1, ω2) =
|Win(ω1, ω2)|2
Sin(ω1)Sin(ω2)

= |g(1)in (ω1, ω2)|2 (B.50)

and the for the Eq. (B.45)

g(2)(ω1, ω2) = 1 + ζ|g(1)in (ω1, ω2)|2. (B.51)

By this expression the g(2) function in the spectral domain is expressed through the square

modulus of the first-order correlation function of the incoming beam. This expression is valid

only if one can assume an ideal resolution of the monochromator. It is interesting to note

also, that for a chaotic source the second-order correlation function in the spectral domain at

maximum is g
(2)
max = 1 + ζ. It is seen that the g(2)-function is directly related to the degree of

spatial coherence of the incoming beam (see Eq. (B.45)) as g
(2)
max ≤ 2, and will be equal to 2 only



B.3. Second-order correlations in the spatial domain 213

Figure B.2: Schematic layout of the HBT experiment performed at the XFEL facility. The incoming beam
is scattered on the VLS grating. The exit slits are positioned at the focal plane of the VLS grating at
the grating order n. The second-order spatial correlation measurements are performed by the pixelated
detector positioned far from the monochromator unit to resolve spatial modes of the incoming x-ray
pulses. The coordinate systems for the incoming beam, the grating, and detector are shown.

for the fully coherent beam in the spectral domain. It will be shown in the following how these

results will be modified when the final resolution of the VLS monochromator will be taken into

account. In the next section, will be determined which kind of information may be obtained by

performing the HBT interferometry in the spatial domain and how its related to the statistical

properties of the beam incoming to the VLS monochromator.

B.3 Second-order correlations in the spatial domain

The HBT experiments in the spatial domain at the soft x-ray beamlines at the XFEL facilities

are performed on a pixelated detector positioned far from the focal plane of the beamline. Such

arrangement provides sufficient resolution to separate spatial modes of the individual XFEL

pulses of the incoming x-ray beam at the detector position.

A two-dimensional (2D) detector is introduced with the coordinates xD, yD at which single

pulse intensities ID(xD, yD) from the XFEL are measured for further correlation analysis (see

Fig. B.2). As soon as the intensities are measured, they are connected with the amplitudes of

the incoming field in the spatial-frequency domain as (see Eq. (B.5))

ID(xD, yD) =
1

2π

∫ ∞

−∞
|ED(xD, yD, ω)|2dω (B.52)

Each of these intensities is typically integrated in the vertical (dispersion) direction to provide
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a one-dimensional (1D) distribution of the intensity,

ID(xD) =
1

2π

∫∫ ∞

−∞
|ED(xD, yD, ω)|2dωdyD. (B.53)

The basic idea of HBT interferometry is the correlation of intensities at different spatial po-

sitions, or, in other words, measurements of the second-order correlation functions. In such

measurements, the normalized second-order correlation function can be defined as

g(2)(xD
1 , xD

2 ) =
< ID(xD

1 )ID(xD
2 ) >

< ID(xD
1 ) >< ID(xD

2 ) >
, (B.54)

where averaging, denoted by brackets < ... >, is performed over a large ensemble of different

realizations of the wave field. In the HBT experiment for the nonstationary source, such as

XFELs, averaging may be performed over different pulses, with the assumption that all pulses

are realizations of the same statistical process.

Now, the intensities ID(xD
1 ) will be expressed, as given in Eq. (B.53) through the amplitudes

of the wave field incoming to the monochromator unit and then will be correlated according to

Eq. (B.54). The x-ray field amplitudes are the result of propagation over the free space from the

exit slits of the monochromator equipped by the VLS grating. Such slits are located in the focal

plane of the VLS grating and the field amplitudes ED(xD, yD, ω) may be presented as

ED(xD, yD, ω) =
∫∫

PL(xD − x′)PL(y
D − y′)Esl(x′, y′, ω)dx′dy′, (B.55)

where PL PL(xD − x′) is the propagator (see Eq. (B.10)), the distance L is defined in Fig. B.2 as

the distance from the exit slits of the monochromator to the detector plane, Esl(x′, y′, ω) is the

amplitude of the field passing through the exit slits, and x′, y′ are the coordinates in the slits

plane.

The amplitude of the field after the exit slits Esl(r, ω) may be obtained by multiplying the

amplitude of the field scattered from the VLS grating to a fixed order Egr(x, ω) (see Eq. (24)) by

the transmission function of the slits, Tsl(ω),

Esl(x′, y′, ω) = Tsl(ω)Egr(x, ω) (B.56)

= E0rgr(hn)Tsl(ω)sinc[αn]
∫

Pf (x′ − x1)Ein(x1, ω)dx1,

where an expression (B.14) was taken into account for the incoming amplitude Ein(x, ω). In Eq.

(B.56), the transmission function of the slits Tsl(ω) is defined as a finite window in the spectral

domain of the size of the spectral bandpass Dsl
ω as

Tsl(ω) = rect

[

ω

Dsl
ω

]

, (B.57)

where rect(x) is the rectangular function defined in Eq. (B.17). Substituting Eqs. (B.55) and
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(B.56) in Eq. (B.53) we obtain for the intensity on the detector,

ID(xD) = |E0|2|rgr(hn)|2
∫∫∫ ∞

−∞
P∗

f+L(xD − x1)Pf+L(xD − x2) (B.58)

× T̂sl(ω)E∗
in(x1, ω)Ein(x2, ω)dx1dx2dω,

where a function T̂sl(ω) was introduced as

T̂sl(ω) =
∫

T2
sl(ω

′)R(ω − ω′)dω′. (B.59)

In deriving Eq. (B.58) the following properties of the propagator was used

∫

PL2
(x′ − x)PL1

(x′ − x”)dx = PL1+L2
(x′ − x”) (B.60)

as well as Eq. (B.36). According to Eq. (B.59), the square of the exit slit transmission function

T2
sl(ω

′) defined in Eq. (B.59) is convoluted with the resolution function R(ω) given in Eq. (B.34).

For the function T2
sl(ω) in Eq. (B.59) the following relationship is valid, T2

sl(ω) = Tsl(ω), due to

its definition in Eq. (B.57).

Expression in Eq. (B.58) for the intensity ID(xD) is substituted in Eq. (B.54) for the g(2)

function and it is assumed that the incoming x-ray radiation obeys Gaussian statistics. In this

case

< E∗
in(x1, ω1)Ein(x2, ω1)E∗

in(x3, ω2)Ein(x4, ω2) >= (B.61)

=< E∗
in(x1, ω1)Ein(x2, ω1) >< E∗

in(x3, ω2)Ein(x4, ω2) > +

+ < E∗
in(x1, ω1)Ein(x4, ω2) >< E∗

in(x3, ω2)Ein(x2, ω1) > .

Further the spectral density function and cross-spectral density function in the spatial-frequency

domain are introduced as given in Eqs. (B.40) and (B.40) and, cross-spectral purity of the incom-

ing x-ray radiation is assmued as in Eqs. (B.43) and (B.44). After straightforward deriaviation

one can, obtain for the g(2) function,

g(2)(xD
1 , xD

2 ) = 1 + ζ(Dω)|ginxD
1 , xD

2 |2. (B.62)

In this expression, the contrast function ζ(Dω), which depends on the radiation bandwidth Dω

is defined as

ζ(Dω) =

∫∫

T̂sl(ω1)T̂sl(ω2)|Win(ω1, ω2)|2dω1dω2

[
∫

T̂sl(ω)Sin(ω)dω]2
(B.63)

and a correlation function gin(xD
1 , xD

2 ) is determined by

gin(xD
1 , xD

2 ) =

∫∫

P∗
f+L(xD

1 − x1)Pf+L(xD
2 − x2)Win(x1, x2)dx1dx2

√

SD(xD
1 )

√

SD(xD
2 )

, (B.64)
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where

SD(xD
i ) =

∫ ∫

P∗
f+L(xD

i − x1)Pf+L(xD
i − x2)Win(x1, x2)dx1dx2, (B.65)

and i = 1, 2.

By that, the second-order correlation function measured at the far detector (Eq. (B.62)) was

expressed through the statistical properties of x-ray radiation incoming to the VLS monochro-

mator. It will be shown in the following that by changing the exit slits opening Dω the contrast

function ζ(Dω) also changes according to Eq. (B.63). This, finally, allows to determine the pulse

duration of the incoming x-ray pulses. In the next section, the incoming x-ray pulses will be

represented by the Gaussian Schell model.

B.4 Gaussian Schell model X-ray pulses

After receiving these general results in both the frequency and spatial domains a special

type of incoming pulsed beams in the form of the Gaussian Schell model (GSM) pulses will

be considered. In this case, the cross-spectral density in the spatial-frequency domain can be

written as

Win(x1, x2; ω1, ω2) = W0W(x1, x2)W(ω1, ω2), (B.66)

where the spatial dependence is defined by the function

W(x1, x2) = exp

[

− x2
1 + x2

2

4σ2
I

− (x2 − x1)
2

2ξ2

]

. (B.67)

where σI is the rms size and ξ is the spatial coherence of the incoming beam. The frequency

dependence is defined by

W(ω1, ω2) = exp

[

− ω2
1 + ω2

2

4Ω2
− (ω2 − ω1)

2

2Ω2
c

]

, (B.68)

where Ω is the rms spectral width of radiation, Ωc is the spectral coherence, and it is assumed

that the frequency is counted from the corresponding grating order. The parameters Ω and Ωc

can also be expressed through the rms values of the pulse duration σT and coherence time τc of

the pulse in front of the monochromator unit,

Ω2 =
1

τ2
c

+
1

4σ2
T

, Ωc =
τc

σT
Ω. (B.69)

For the self-amplified spontaneous emission (SASE) pulses at XFELs for most of the cases the

coherence time τc in front of the monochromator unit is much shorter than the pulse duration

σT(τc ≪ σT). Taking this into account Eq. (B.69) can be simplified

Ω ≈ 1

τc
, Ωc ≈

1

σT
(B.70)



B.5. Spectral domain in the frame of GSM 217

In this limit, the spectral density defined as

Sin(ω) = S0exp

[

− τ2
c ω2

2

]

, (B.71)

and the first-order correlation function defined as

g(1)(ω2 − ω1) = exp

[

− σ2
T(ω2 − ω1)

2

2

]

. (B.72)

Here, it should be noted that if one can neglect the monochromator resolution then Eq. (B.51)

will be valid. With a combination of Eq. (B.72) this allows to determine the average pulse

duration through analysis of the g(2) function as a function of ∆ω in the spectral domain. In

the next section, it will be shown which results may be obtained if the finite energy resolution

of the monochromator unit will be taken into account. The spectral and spatial domains will

be considered separately in the following.

B.5 Spectral domain in the frame of GSM

The integration in Eqs. (B.46) and (B.47) can be performed assuming that the incoming

beam obeys the Gaussian Schell model. Substituting in these equations expressions (B.66)–(B.68)

for the incoming cross-spectral density function the degree of coherence is obtained

ζ =

[

1 + 4

(

σI

ξ

)2]−1/2

, (B.73)

and the correlation function

gin(ω2 − ω1) =

αexp

[

− 1
αβ

(ω2−ω1)
2

Ω2
c

]

(αβ)1/2
, (B.74)

where

α = 1 +
(σr

Ω

)2
, β = 1 +

(σr

Ω

)2
[

1 + 4

(

Ω

Ωc

)2]

. (B.75)

In the limit of Eq. (B.70) one has

gin(ω2 − ω1) =

αexp

[

− σ2
T

αβ (ω2 − ω1)
2

]

(αβ)1/2
, (B.76)

where

α = 1 +
(

σrτc

)2
, β = 1 +

(

σrτc

)2
[

1 + 4

(

σT

τc

)2]

. (B.77)

First, it is immediately seen that if the monochromator has a perfect resolution σr = 0, then

both α and β are equal to 1 and gin(ω2 − ω1)=|g(1)in (ω2 − ω1)|2, where g
(1)
in (ω2 − ω1) is defined
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by Eq. (B.72). It should be noted that this result coincides with previous result of Eqs. (B.52)

and (B.52). It is also should be noted that for typical SASE beams the product σrτc ≪ 1. In

this case, the coefficients in Eq. (B.77) are α ≈ 1 and β ≈ 1 + 4(σrσT)
2. Substituting this in Eq.

(B.76) the following expression is obtained

gin(ω2 − ω1) =

exp

[

− σ2
T

1+4σ2
r σ2

T
(ω2 − ω1)

2

]

(1 + 4σ2
r σ2

T)
1/2

(B.78)

It is seen from this expression that when the finite resolution of the monochromator σr is taken

into account, the function gin(ω2 − ω1) does not reach unity even at ω1 = ω2. Its maximum

value at the same frequency values is equal to

gin(0) =
1

(1 + 4σ2
r σ2

T)
1/2

(B.79)

Substituting this value of gin(ω2 − ω1) in the expression for the g(2) function (B.45), and as-

suming that the resolution of the VLS monochromator is known, one may determine the pulse

duration σT as

σT =
1

2σr

[

ζ2

(g
(2)
in (ω, ω)− 1)2

− 1

]−1/2

. (B.80)

Therefore, HBT analysis in the spectral domain with the assumption that XFEL pulses obey the

GSM provides the way to determine the pulse duration.

B.6 Spatial domain in the frame of HBT

B.6.1 Contrast function

In this subsection focus will be on the evaluation of the contrast function ζ(Dω) in Eq. (B.63)

and show how an average pulse duration of XFEL pulses may be determined by evaluating

this contrast function. Expressing the cross-spectral density in the frequency domain through

its first-order correlation function (see Eq. (B.48)) gives for the contrast function in Eq. (B.63)

ζ(Dω) =

∫∫

T̂sl(ω1)T̂sl(ω2)Sin(ω1)Sin(ω2)|g(1)in (ω1, ω2)|2dω1dω2

[
∫

T̂sl(ω)Sin(ω)dω]2
. (B.81)

It is assumed that the spectral first-order correlation function is uniform or of the Schell type.

This means that it depends only on the difference of frequencies as g
(1)
in (ω1, ω2)= g

(1)
in (ω2 − ω1).

In this case, after changing the variables, one has, for the nominator of the contrast function
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ζ(Dω) in Eq. (B.81),

∫∫ ∞

−∞
T̂sl(ω1)T̂sl(ω2)Sin(ω1)Sin(ω2)|g(1)in (ω2 − ω1)|2dω1dω2 (B.82)

=
∫ ∞

−∞
F(ω)g

(1)
in (ω)|2dω

where F(ω) is the autocorrelation function,

F(ω) =
∫ ∞

−∞

ˆ̂Tsl(ω
′) ˆ̂Tsl(ω

′ + ω)dω′ (B.83)

and
ˆ̂Tsl(ω) = Sin(ω)T̂sl(ω) (B.84)

the contrast function ζ(Dω), after substituting these results in Eq. (B.81) is deined as

ζ(Dω) =

∫ ∞

−∞
F(ω)|g(1)in (ω)|2dω

[ ∫ ∞

−∞
ˆ̂Tsl(ω)dω

]2
, (B.85)

This is quite a general expression assuming only uniformity of the spectral first-order correla-

tion function. The next approximation can be made by the assumption that the bandwidth of

x-ray radiation incoming to the monochromator unit is much wider than the transmitted one

by the exit slits Dsl
ω ≪ Ω. In this case, it can be also assumed that Sin(ω) is constant in the

integration region in Eq. (B.83), and ˆ̂Tsl(ω) can be substituted by T̂sl(ω) in this equation.

By substituting Eq. (B.72) in Eq. (B.85) and varying the bandwidth of x-ray radiation by

opening and closing the exit slits, a typical dependence of the contrast function can be obtained.

Fitting this curve to the experimentally determined values of the contrast will give us the rms

value of the pulse duration σT and hence the average pulse duration T = 2.355σT.

Two limits for the evaluation of the contrast function ζ(Dω) will be considered in the follow-

ing. In the first limit, the opening of the slits will be much larger than the resolution function

width Dsl
ω ≫ σres and in the second limit, the opposite will be assumed, Dsl

ω ≪ σres . In the

first limit, the function T̂sl(ω) in Eq. (B.59) may be, with a good approximation, substituted by

the rectangular function T̂sl(ω) ∼= T2
sl(ω) =Tsl(ω)=rect[ω/Dsl

ω]. In this case the autocorrelation

function F(ω) in Eq. (B.83) is represented as,

F(ω) =
∫ ∞

∞
Tsl(ω

′)Tsl(ω
′ + ω)dω′ =











1 −
∣

∣

∣

∣

ω
Dsl

ω

∣

∣

∣

∣

, ω ≤ Dsl
ω,

0, ω > Dsl
ω

(B.86)

Substituting Eq. (B.86), as well as the first-order correlation function from Eq. (B.72), in expres-

sion (B.85) the contrast function ζ(Dω) is found as

ζ(Dω) =

∫ Dsl
ω

−Dsl
ω
[1 − ω

Dsl
ω
]e−σ2

Tω2dω

[Dsl
ω]

2
(B.87)
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Performing the integration, the contrast function ζ(Dω) in this limit (see, for example, [197]) is

obtained

ζ(Dω) =

√
π

Dsl
ωσT

er f (Dsl
ωσT) +

1

(Dsl
ωσT)2

[e−(Dsl
ωσT)

2 − 1] (B.88)

where er f (x) is an error function.

According to the definition of the coherence time for rectangular slits τc = 2π/Dsl
ω, in the

limit τc ≪ 1 for the contrast function ζ(Dω) ∼ [1/(2
√

π)](τc/σT)=∼ [1/(2
√

π)](1/Mt), where

Mt is the number of temporal modes.

In the other limit, Dsl
ω ≪ σr, according to Eq. (B.59), the function T̂sl(ω) can be represented

by the resolution function R(ω). Substituting an expression (B.34) for the resolution function

R(ω) into Eqs. (B.83) and (B.83), one can show that the contrast function ζ(Dω) in this limit

has the following form:

ζ(Dω) =
1

√

1 + 2(σrσT)2
(B.89)

In this case of a Gaussian spectrum, coherence time is well approximated by τc =
√

π/σr and

substituting it in expression (B.89) gives

ζ(Dω) =
1

√

1 + 2π(σT/τc)2
(B.90)

In the limit of τc/σT ≫ 1 the contrast function is given by ζ(Dω) ∼= 1− π(σT/τc)2. Expressions

(B.89) and (B.90) indicate that in the case of a limited resolution of the monochromator the

contrast function is always below 1. If the resolution of the monochromator is known, in the

conditions Dsl
ω ≪ σr, an estimate of the pulse duration can be given from Eq. (B.89) as

σT =
1

σr

√

1 − ζ2(Dω)

2ζ2(Dω)
. (B.91)

This equation provides an alternative (to spectral domain) way to determine the pulse duration

of XFEL pulses in the conditions of the GSM.

B.6.2 Spatial correlations

In this subsection the spatial part of the second-order correlation function given in Eq. (B.64)

will be expressed with an assumption that the incoming field is of the Gaussian Schell model

type. It is assumed that measurements are performed in the far field and the propagators in

Eqs. (B.64) and (B.65) may be expressed by simple exponential functions:

Pf+L(xD − x) ∝ e−iqDx, qD = k
xD

( f + L)
(B.92)
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Substitution of these relations for the propagator in Eqs. (B.64) and (B.65) gives, for the corre-

lation function,

gin(q
D
1 , qD

2 ) =

∫∫

exp[iqD
1 x1 − iqD

2 x2]Win(x1, x2)dx1dx2

[SD(qD
1 )]

1/2[SD(qD
2 )]

1/2
, (B.93)

and for SD(q
D
i )

SD(q
D
i ) =

∫

exp[iqD
1 x1 − iqD

2 x2]Win(x1, x2)dx1dx2. (B.94)

The correlation function gin(q
D
1 , qD

2 ) is found by integrating Eqs. (B.93) and (B.94) with the

cross-spectral density function given in Eqs. (B.66) and (B.67)

∫∫

exp[iqD
1 x1 − iqD

2 x2]Win(x1, x2)dx1dx2 = (B.95)

= exp(−[a(x2
1 + x2

2)− 2bx1x2])exp(iqD
1 x1 − iqD

2 x2)dx1dx2

=
π

(a2 − b2)1/2
exp

{

−[α((qD
1 )

2
+ (qD

2 )
2
)− 2βqD

1 qD
2 ]

}

where

α =
a

4(a2 − b2)
, β =

b

4(a2 − b2)
. (B.96)

This result is obtained by the use of the known integral

∫

e−αt2
eiqtdt =

√

π

α
e−q2/4α. (B.97)

In the denominator similar integration of Eq. (B.94) gives

SD(q
D
i ) =

∫

exp[iqD
1 x1 − iqD

2 x2]Win(x1, x2)dx1dx2 =
π

(a2 − b2)1/2
e−2(α−β)qD

i . (B.98)

Substituting the results of integration in Eqs. (B.95) and (B.98) in Eq. (B.93) gives.

gin(q
D
1 , qD

2 ) = e−β(qD
2 −qD

1 )2
. (B.99)

where parameter β is equal to

β =
2σ4

I

ξ2 + 4σ2
I

(B.100)

Finnaly, the second-order correlation function in Eq. (B.62) in the far field and for the GSM

pulses for the incoming x-ray radiation is given by the following expression,

g(2)(xD
1 , xD

2 ) = 1 + ζ(Dω)e
−2β(qD

2 −qD
1 )2

(B.101)

where the contrast function Dω is defined by the expression (B.85).
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Appendix C

Modeling of the HBT experiment

C.1 Simulations related to the EuXFEL

C.1.1 Modeling of the FEL statistical properties

To investigate the statistical properties of the SASE3 undulator at the EuXFEL and the be-

havior of the intensity correlation g(2)-functions, additional simulations were performed. Sim-

ulations of the stochastic XFEL-type radiation in the time-frequency domain were performed

as proposed in the work [171]. In these simulations, first, the spectral amplitude as

Ein(ω) =
√

Sin(ω)eiφr

To investigate the statistical properties of the SASE3 undulator at the EuXFEL and the be-

havior of the intensity correlation g(2)-functions, additional simulations were performed. Sim-

ulations of the stochastic XFEL-type radiation in the time-frequency domain were performed

as proposed in the work [171]. In these simulations, first, the spectral amplitude as Q is de-

fined, where Sin is the defined spectral density, and φr is a random phase. Next, this amplitude

is Fourier transformed to the time domain, and a new envelope function in the time domain

with a certain pulse duration is applied. After that, to this amplitude back Fourie transform

is applied, and final spectral distribution is obtained. We note here that a single pulse is fully

coherent as soon as the Fourier transform connects frequency and time domains, but due to

initial random phases, the ensemble of these pulses obeys a Gaussian statistic. For initial simu-

lations, the average spectrum was considered to be Gaussian and centered at the frequency ω0,

corresponding to the resonant energy of E0 = 1.2 keV. The spectral width was considered to be

∆EFWHM = 5 eV, and an average pulse duration was also considered to be Gaussian with the

duration TFWHM = 10 fs. To simulate the stochastic XFEL radiation 5 · 103 pulses were generated

by this method.

C.1.2 Spectral simulations

To study the effect of the monochromator resolution on the results of the second-order cor-

relation analysis, the following simulations were performed. The spectral density Sin(ω) gen-

223
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erated for each pulse, was convolved with the monochromator resolution function R(ω) given

in Eq. (7.20) as

S(ω) =
∫

Sin(ω
′)R(ω − ω′)dω′ (C.1)

For the resolution function R(ω) the FWHM value of 0.2 eV was used, to match the spike

width in simulations. The same features were observed in our experiment. Further, the spec-

tral values defined by Eq. (C.1) were correlated according to Eq. (7.16) in order to determine

second-order correlation function g(2)(ω1, ω2) in frequency domain.

The other important effect, which may influence the outcome of the HBT analysis, is the

frequency chirp. The situation when the average electron energy at the head of the electron

bunch differs significantly from that on the tail of the bunch is known as energy chirp. The

resulting radiation pulse, in this case, is also frequency chirped. Such frequency chirp in the

simulations was set by introducing a linear correction to the resonant frequency as ω(t) =

ω0 + αt, where α = dω/dt is the linear chirp coefficient. This frequency chirp was applied to

the amplitude function in the time domain on the last step prior to the final inverse Fourier

transform to the frequency domain. For the chirped pulses, a linear chirp coefficient value of

α=0.62 f s−2 was considered. For the chirped pulses in the simulations, two situations without

and with monochromators resolution function R(ω) were considered. It also should be noted

that for chirped pulses, the spectral width becomes larger, however, the pulse duration does

not change.

Results of the spectral analysis for the cases described above are presented in Fig. C.1.

First, the significant broadening of the spectrum for the chirped pulses was observed. If initial

spectrum had the bandwidth of 5 eV, then for chirped pulses it was obtained about twice larger

bandwidth of 9.5 eV (see Fig. C.1 (a,d,g,j) and Table C.1). The same effect was observed for the

spike width, which is especially well seen in the analysis of the autocorrelation function (see

Fig. C.1(b,e,h,k)). The broadening of the spectral width of the spikes was also observed when

the finite monochromator resolution was considered (see Fig. S10). Their FWHM has changed

from 0.19 eV to 0.28 eV for non-chirped pulses and from 0.36 eV to 0.42 eV for the chirped

pulses (see Table C.1).

The histogram analysis (see Fig. C.1(c,f,i,l)) shows that the number of modes does not de-

pend on the resolution function or chirp effects and stays about the same for all simulations

considered here. The number of modes determined by Eq. (8.2) in our simulations was M=28±1

(see Table C.1).

Next, the g(2)(ω1, ω2) –function was evaluated by applying Eq. (7.16) to the simulated

pulses for all cases considered here (see Fig. C.2(a, c, e, g)). First, one can clearly see that the

spectral g(2)(ω1, ω2)–function behaves as the one originating from a single chaotic source (see

[131]). One can also observe some small modulations of intensity around the value of unity in

all cases attributed to the limited statistics (5 · 103 pulses) in our simulations. The contrast value

is about unity for the simulation of the pulses without and with the chirp (see Fig. C.2(a,b) and

Fig. C.2(e,f)). However, it reduces when the finite monochromator resolution is considered
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Table C.1: Results of simulations with the spectrum bandwidth ∆E= 5 eV and pulse duration 10 fs as
input parameters. Here, 5·103 pulses were generated for the analysis. The spectral bandwidth as well
as the bandwidth of spikes was determined from the autocorrelation function. The number of modes
M was determined from the intensity distribution analysis. The contrast ζ2 value was determined from
the maximum of the spectral and spatial g(2)-functions. An averaged pulse duration T (FWHM) was
determined from the spectral and spatial analysis. Result are presented for the flowing cases: Initial
simulation (IS), simulation of the monochromator resolution (R = 0.2 eV), simulation of the chirped
pulses (CP) and chirped pulses with the same resolution

Parameters IS

R
=

0.
2

eV

C
P

C
P

(R
=

0.
2

eV
)

Spectral band-width (FWHM), eV 5.0 5.0 9.5 9.5

Spectral band-width of spikes (FWHM), eV 0.19 0.28 0.36 0.42

Numer of modes M 28 28 28 28

Contrast from spectral analysis ζin 0.97 0.67 1 0.87

Pulse duration T from HBT spectral analysis (FWHM), fsζin 10.0 10.0 5.1 5.1

Contrast from spatial analysis ζin 0.98 0.67 0.99 0.87

Pulse duration T from HBT spatial analysis (FWHM), fs 10.0 10.0 5.2 5.2
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Figure C.1: Spectral analysis simulations. (a, d, g, j) Typical single shot simulated spectra and an av-
eraged spectrum. (b, e, h, k) Autocorrelation function of individual spectral lines averaged over 5 · 103

pulses (blue solid line) and the fit with the two Gaussian functions (magenta dashed line). The FWHM
values of the Gaussian fits are also given. (c, f, i, l) Histograms of the spectral pulse intensity distribu-
tion (blue). The green background corresponds to the gamma probability distribution function with the
given number of modes M. Here (a-c) corresponds to the initially simulated spectra neglecting resolu-
tion of the monochromator, (d-f) same spectra as in (a-c) with the monochromator resolution of 0.2 eV,
(g-i) same spectra as in (a-c) with the linear frequency chirp of 0.62 1/ f s2 and neglecting resolution of
the monochromator, (j-l) same spectra as in (g-i) with the monochromator resolution of 0.2 eV.
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for both cases (see Fig. C.2(c,d) and Fig. C.2(g,h)). To determine an average pulse duration

TFWHM = 2.355 · σT, the g(2)(ω1, ω2)–function along the white dashed line was analyzed. For

the cases without the monochromator resolution, these profiles were fitted by the Gaussian

function

g(2)(∆ω)− 1 = exp(−σ2
T∆ω2) (C.2)

where it was assumed full spatial coherence of the incoming beam (see Eqs. (7.15, 7.17,

7.22). For the cases with the monochromator resolution Eqs. (7.17, 7.21) were used, assuming

full spatial coherence of the incoming beam. The results of the fit for the pulse duration are

summarized in Table C.1. As it is seen from this Table, it was possible to get a correct pulse du-

ration of about 10 fs for unchirped pulses, however, the fit gives twice shorter pulse durations,

of about 5 fs, for the chirped pulses. This is related to the broadening of the spectrum twice

from its nominal initial value. From this, one can conclude that our HBT spectral analysis in

the case of chirped pulses provides only the lower boundary for a possible pulse duration. The

actual pulse duration, in this case, may be only longer. Unfortunately, it is difficult to determine

the actual pulse duration if the type of the chirp (linear quadratic, etc.) and its value are not

known.



228 Appendix C. Modeling of the HBT experiment

Figure C.2: (a, c, e, g) Intensity correlation functions of simulated spectra g(2)(ω1, ω2). (b, d, f, h) Cut
along the anti-diagonal lines shown by white dashed lines in (a, c, e,g) and its fit (black dashed line). In

the inset the profiles along the diagonal of the g(2)(ω, ω) function in (a, c, e, g) are shown. Here (a, b)
corresponds to the initially simulated spectra neglecting resolution of the monochromator, (c, d) same
spectra as in (a,b) with the monochromator resolution of 0.2 eV, (e,f) same spectra as in (a,b) with the
linear frequency chirp of 0.62 fs-2 and neglecting resolution of the monochromator, (g, h) same spectra
as in (e,f) with the monochromator resolution of 0.2 eV.
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Figure C.3: (a) Intensity correlation functions g(2)(x1, x2) simulated in the linear regime of the undulator

settings, for different openings of the exit slit of the monochromator. (b) Profiles of the g(2)(∆x)-function
taken along the white dashed anti-diagonal lines shown in panel (a) as a function of the slit opening. In

the inset the corresponding autocorrelation functions g(2)(x, x) taken along the black dashed diagonal
lines in panel (a) are shown.

C.1.3 Spatial simulations

For the spatial analysis, the focus was made on analyzing the contrast function ζin(Dω)

given in Eq. (7.25), assuming again that in the spatial domain, the pulses are fully coherent.

For evaluation of the contrast function ζin(Dω) the following values of the slit opening were

considered: 20 µm, 50 µm, 100 µm, 160 µm, 270 µm, 500 µm, 1 mm, 1.5 mm, and 2.5 mm. The

result of the intensity-intensity correlation analysis for the simulation in the original case, with

100 % monochromator resolution, is shown in Fig. C.3. In these simulations, fully coherent

beams were considered in the spatial domain, which may be seen from the correlation function

in Fig. C.3. The contrast, as the function of the bandwidth, taken as the maximum value of

the g(2)(∆x)-function, obtained from the antidiagonal cuts of the g(2)(x1, x2)-function. This

contrast function shows similar behavior, which was also observed in the experiment.

In the case of the finite monochromator resolution R(ω) the function T̃sl(ω) was determined

from Eq. (7.26) and in the case when the monochromator resolution was neglected this function

was substituted by the rectangular function Tsl(ω) given in Eq. (7.27). For the resolution func-

tion R(ω) the same FWHM value of 0.2 eV was considered. The cross-spectral density function

Win(ω1, ω2) was generated according to its definition as correlation function of amplitudes in

spectral domain: Win(ω1, ω2) = < Ein ∗ (ω1)Ein(ω2) > and the brackets < . . . > define an en-

semble average. The spectral amplitudes for each pulse were the same as generated before for

the spectral analysis: the initial ones and the ones with the linear chirp.

As a result of these simulations, the values of the contrast function ζin(Dω) as a function

of coherence time were determined for the same cases as discussed before (see Fig. C.4). To

determine an average pulse duration for each case, these contrast values were fitted by Eq.

(7.31). In this expression, the autocorrelation function was used F(ω) defined by Eqs. (7.32,
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Figure C.4: Contrast values ζin(Dω) evaluated according to Eq. (7.31) as a function of the coherence time.
(a) Simulated intensity patterns neglecting resolution of the monochromator, (b) same intensity patterns
as in (a) with the monochrometer resolution of 0.2 eV, (c) same intensity patterns as in (a) with the linear
frequency chirp of 0.62 f s−2, (d) same intensity patterns as in (c) with the monochromator resolution of
0.2 eV. Note the reduced value of the contrast function and different range for the coherence time in (b)
and (d) due to the finite monochromator resolution.

7.33) as well as the first-order correlation function g
(1)
in (ω) defined in Eq. (7.15). As a result

of this fit, the pulse duration values were obtained and listed in Table C.1. Similar to spectral

analysis, the correct values of pulse durations of about 10 fs were obtained for unchirped pulses

and twice shorter pulse durations of about 5 fs for the chirped pulses. This analysis also tells

that the spatial analysis will provide only the lower boundary for the pulse duration in the case

of chirped pulses.
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C.2 Simulations and analysis related to the PAL-XFEL

C.2.1 Modeling of the FEL SASE source

In order to investigate statistical properties of the undulator source at the PAL-XFEL and

the behavior of the intensity correlation g(2)-functions, additional simulations were done, com-

bining several effects, similar to those, described in section C.1.1. To simulate the stochastic

XFEL radiation in the time-frequency domain 5 · 103 pulses were generated by this method for

each particular simulation case: initial simulation, resonant energy jitter, pulse duration distri-

bution, and multiple beams. For initial simulations, the average spectrum was considered to

be Gaussian and centered at the frequency ω0, corresponding to the resonant energy of E0 =

10 keV. The spectral width was considered to be ∆EFWHM = 10 eV, and average pulse duration

was also considered to be Gaussian with the duration TFWHM = 5 fs. Results of the simulation

for the initial case are shown in Fig. C.5. Typical single shot simulated spectra and an averaged

spectrum, as well as autocorrelation function of individual spectral lines, are shown in Fig.

C.5(a,b). The ACF analysis showed the size (FWHM) of the average spectrum is 10 eV, and the

single spectral spike size (FWHM) is 0.4 eV. Analyzing variation of the integrated spectral in-

tensity distribution, it was concluded that the number of modes, present in the simulated SASE

spectrum is around M=28. After building the intensity correlation function of simulated spec-

tra g(2)(ω1, ω2) (see Fig. C.5(c)), its cut along the anti-diagonal line (function g(2)(∆ω), shown

by white dashed lines in Fig. C.5(c)), was fitted according to Eq. (7.15). The fit provided the

correct average pulse duration of 5 fs. Following simulations in sections C.2.2, C.2.3, C.2.4 will

be compared with these initial ones.

C.2.2 Energy jitter effect

Since the FEL itself is a complicated machine, many instabilities may arise during the elec-

tron bunch acceleration and radiation amplification process. One of the results of such instabil-

ity can manifest itself in the resonant energy jittering effect. In order to study the energy jitter

effect on the intensity correlation functions through the simulation, the resonant energy of 10

keV, which was used in the initial simulation, allowed to have variation within 5 eV (rms) pho-

ton energy according to Gaussian distribution. Results of the simulation are shown in Fig. C.6.

Two typical spectral intensity distributions and the average spectrum are shown in Fig. C.6(a).

It is already seen from this figure that some of the spectra have shifted resonant energy within 5

eV distribution, although the average spectrum did not change dramatically. The ACF analysis

showed almost the same width (FWHM) of the average spectrum, which is around 10 eV, and

the single spectral spike width (FWHM) ∼ 0.4eV. The histogram of the spectral pulse intensity

distribution and the resonant energy distribution is shown in Fig. C.6(c) and (d) correspond-

ingly. It is seen from the histogram that the number of longitudinal modes stayed the same

M=28. Up to this moment, there were no dramatic changes in the considered functions. Signif-

icant changes are appearing, and the studied effect manifests itself in the correlation functions.

The intensity correlation function of simulated spectra g(2)(ω1, ω2) in this case, as the result
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Figure C.5: Spectral analysis simulations. (a) Typical single shot simulated spectra and an averaged
spectrum. (b) Autocorrelation function of individual spectral lines averaged over 5 · 103 pulses (blue
solid line) and the fit with the two Gaussian functions (magenta dashed line). The FWHM values of the

Gaussian fits are also given. (c) Intensity correlation function of simulated spectra g(2)(ω1, ω2). (d) Cut
along the anti-diagonal line shown by white dashed lines in (c) and its fit (black dashed line) with the

Eq. (7.15) . In the inset the profile along the diagonal of the g(2)(ω, ω) function in (c) are shown.
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of the energy jittering effect, shaped in the form of two maxima and two minima, each posi-

tioned on the same line but in mutually perpendicular directions (see Fig. C.6(e)). The effect

is also clearly seen on the cut (Fig. C.6(f)) along the anti-diagonal line (g(2)(∆ω)-function, and

the diagonal line (insent in Fig. C.6(f)). Since the g(2) intensity correlation function was dis-

torted, the fit of g(2)(∆ω)-function provides with slightly lower pulse duration TFWHM=4.7 fs.

Besides this distortion, no other effects of SASE beam parameters under consideration were

found. Such laydowns and maxima were also observed in the correlation function obtained in

the experiment at PAL-XFEL, indicating at possible energy jittering effects.

C.2.3 Pulse duration distribution

As mentioned earlier instabilities, arising during the acceleration or radiation amplification

process, such as an energy jitter, complicate the process of determining the pulse duration. But

it is very often that these effects, in turn, do not come alone. Along with the energy jitter, an-

other effect that may deform the correlation functions and make it difficult to determine beam

paramters is the pulse duration jittering. The latter means that there is a variation of the pulse

duration, which may change from shot to shot. In order to study this effect, the rms value

for the Gaussian time filter on the modeling stage allowed to have variation within 1 fs from

shot to shot according to Gaussian distribution. Results of this simulation are shown in Fig.

C.7. Although, the width of the average spectrum and spectral spike did not change signifi-

cantly (see Fig. C.7(a,b)), the number of modes, determined from the variation analysis of the

integrated spectral intensity distribution, reduced almost twice to M=17 (see Fig. C.7(c)). The

pulse variation distribution used in the simulation is shown in Fig. C.7(d). As in the previous

case with the energy jitter, the intensity correlation function of simulated spectra g(2)(ω1, ω2)

shaped in the form of two maxima and two minima (see Fig. C.7(e)). Another interesting ob-

servation is that the cut of this function along the anti-diagonal line (g(2)(∆ω)-function) shows

an additional faintly discernible bump around ∆ω=0. Such bump was also observed in the cor-

relation function obtained in the experiment at PAL-XFEL. Since that, the g(2)(∆ω)-function was

fitted with two Gaussians (green and black dashed lines in Fig. C.7(f)), providing with slightly

higher pulse duration of TFWHM=5.3 fs. The presence of such a bump in correlation functions

obtained from experimental data may indicate on possible pulse variation effect.

C.2.4 Multiple sources

The last studied effect, which may arise from the mentioned instabilities and influence the

outcome of the HBT interferometry method and the performance of the XFEL, is the effect of

multiple beam sources. This effect in the frame of spatial analysis was studied in the work [131]

and will not be touched here. In the frame of spectral analysis, it can be simulated by introduc-

ing two resonant energies with fixed bandwidth. In order to study effect of multiple sources on

the intensity correlation in the spectral domain, half of the simulated shots were generated at

resonant energy of 9999 eV and the other half at 10001 eV. Results of the simulation are shown

in Fig. C.8. It is seen the Fig. C.8(a) that such procedure of splitting the resonant energy into
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Figure C.6: Spectral analysis simulations with the energy jitter of 5 eV. (a) Typical single shot simulated
spectra and an averaged spectrum. (b) Autocorrelation function of individual spectral lines averaged
over 5 · 103 pulses (blue solid line) and the fit with the two Gaussian functions (magenta dashed line).
The FWHM values of the Gaussian fits are also given. (c) Histogram of the spectral pulse intensity
distribution (blue). The green background corresponds to the gamma probability distribution function
with the given number of modes M. (d) Histogram of the resonant energy distribution. (e) Intensity

correlation function of simulated spectra g(2)(ω1, ω2). (f) Cut along the anti-diagonal line shown by
white dashed lines in (c) and its fit (black dashed line) with the Eq. (7.15) . In the inset the profile along

the diagonal of the g(2)(ω, ω) function in (e) are shown.
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Figure C.7: Spectral analysis simulations with the pulse duration distribution of 1 fs (rms). (a) Typical
single shot simulated spectra and an averaged spectrum. (b) Autocorrelation function of individual
spectral lines averaged over 5 · 103 pulses (blue solid line) and the fit with the two Gaussian functions
(magenta dashed line). The FWHM values of the Gaussian fits are also given. (c) Histogram of the
spectral pulse intensity distribution (blue). The green background corresponds to the gamma probabil-
ity distribution function with the given number of modes M. (d) Histogram of the energy distribution.

(e) Intensity correlation function of simulated spectra g(2)(ω1, ω2). (f) Cut along the anti-diagonal line
shown by white dashed lines in (c) and its fit (black dashed line) with the Eq. (7.15) . In the inset the

profile along the diagonal of the g(2)(ω, ω) function in (e) are shown.
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two did not change dramatically the width of the average spectrum or the spike width, which

is also confirmed by ACF analysis (see Fig. C.8(b)). The number of modes, determined from

the histogram analysis (see Fig. C.8(c)), stayed the same M=28. The only observable artifacts

are present in the correlation function in the form of two maxima and minima (see Fig.C.8(e)).

The distortion of the g(2)(ω, ω), in this case, is less pronounced and can be examined along

the diagonal of this function (see Fig. C.8(f) and inset). Although in the present case inhomo-

geneities are less pronounced, still the fit of g(2)(∆ω)-function gives slightly reduced values of

the pulse duration TFWHM=4.7 fs.

As a result of these simulations, we determined possible effects, which may influence the

correlation functions obtained from the experimental data. It is hard to determine whether

one of the listed effects is presented individually or a combination of the effects modifies the

spectral intensity correlation function. The presence of these effects can be confirmed indirectly

using additional detectors and complementary absorption methods. One way or another, it is

still possible in the range of error to determine the average pulse duration of the SASE FEL

beam by utilizing the HBT interferometry method.

C.3 HBT interferometry analysis for 120 pC and 200 pC bunch charge

In this section, additional results from the HBT interferometry analysis at PAL-XFEL are

presented for the studied SASE and SS operational regimes in the case of 120 pC and 200 pC

electron bunch charge. Results concern the Pearson correlation analysis are shown in Fig. C.9

and Fig. C.10, and discussed in Section 9.1. The spectral correlation analysis is presented in Fig.

C.11, the analysis and methods discussed in Section 9.2. The results of the HBT interferometry

analysis in the spatial domain, for bunch charges of 120 pC and 200 pC, are presented in Fig.

C.12, Fig. C.13, and Fig. C.14, Fig. C.15. The results of spatial analysis and methods were

discussed in Section 9.3.
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Figure C.8: Spectral analysis simulations of the two beams, with the difference between resonant en-
ergies of 2eV. (a) Typical single shot simulated spectra and an averaged spectrum. (b) Autocorrelation
function of individual spectral lines averaged over 5 · 103 pulses (blue solid line) and the fit with the
two Gaussian functions (magenta dashed line). The FWHM values of the Gaussian fits are also given.
(c) Histogram of the spectral pulse intensity distribution (blue). The green background corresponds to
the gamma probability distribution function with the given number of modes M. (d) Histogram of the

resonant energy distribution. (e) Intensity correlation function of simulated spectra g(2)(ω1, ω2). (f) Cut
along the anti-diagonal lines shown by white dashed lines in (c) and its fit (black dashed line) with the

Eq. (7.15) . In the inset the profile along the diagonal of the g(2)(ω, ω) function in (e) are shown.
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Figure C.9: Pearson correlation of the measured spatial and spectral data in the case of SASE PINK (a,b),
MONO (c,d) and SS (e) in linear and saturation regimes of operation. The Pearson correlation coefficient
p varies in the range from 0.92 to 0.98, depending on the operating regime in the case of 120 pC charge.



C.3. HBT interferometry analysis for 120 pC and 200 pC bunch charge 239

Figure C.10: Pearson correlation of the measured spatial and spectral data in the case of SASE PINK (a),
MONO (b) and SS (c) and SS with linear tapering (d). The Pearson correlation coefficient p varies in the
range from 0.5 to 1, depending on the operating regime in the case of 200 pC charge.



240 Appendix C. Modeling of the HBT experiment

Figure C.11: (a,d,g) Spectral distributions of random shots and average spectrum , for the following
regimes of operation: SASE PINK (a,b,c), MONO (d,e,f), and SS (g,h,i) at 200 pC bunch charge. (b, e, h)

Intensity correlation functions of spectra g(2)(ω1, ω2). (c, f, i) Cut along the anti-diagonal lines shown
by the white dashed lines in (b, e, h) and its fit with the profile given in Eqs. (7.17, 7.21) (dashed line),

taking into account additional background. In the inset the profiles along the diagonal of the g(2)(ω, ω)
function are shown.
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Figure C.12: Intensity correlation functions g(2)(x1, x2) (a,c,e) measured by the Hamamatsu detector

in the horizontal direction. Profiles of the g(2)(∆x) (b,d,j)- function was taken along the white dashed
anti-diagonal lines shown in panels (a,c,e). In the inset the corresponding autocorrelation functions

g(2)(x, x) taken along the diagonal lines of g(2)(x1, x2)-function are shown. Here results for the SASE
PINK operating regime shown in (a,b), SASE MONO in (c,d) and SS regime in (e,f) shown for the case
of 120 pC bunch charge.
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Figure C.13: Intensity correlation functions g(2)(xy, y2) (a,c,e) measured by the Hamamatsu detector

in the vertical direction. Profiles of the g(2)(∆y) (b,d,j)- function was taken along the white dashed
anti-diagonal lines shown in panels (a,c,e). In the inset the corresponding autocorrelation functions

g(2)(y, y) taken along the diagonal lines of g(2)(y1, y2)-function are shown. Here results for the SASE
PINK operating regime shown in (a,b), SASE MONO in (c,d) and SS regime in (e,f) shown for the case
of 120 pC bunch charge.
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Figure C.14: Intensity correlation functions g(2)(x1, x2) (a,c,e) measured by the Hamamatsu detector

in the horizontal direction. Profiles of the g(2)(∆x) (b,d,j)- function was taken along the white dashed
anti-diagonal lines shown in panels (a,c,e). In the inset the corresponding autocorrelation functions

g(2)(x, x) taken along the diagonal lines of g(2)(x1, x2)-function are shown. Here results for the SASE
PINK operating regime shown in (a,b), SASE MONO in (c,d) and SS regime in (e,f) shown for the case
of 200 pC bunch charge.
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Figure C.15: Intensity correlation functions g(2)(y1, y2) (a,c,e) measured by the Hamamatsu detector

in the vertical direction. Profiles of the g(2)(∆y) (b,d,j)- function was taken along the white dashed
anti-diagonal lines shown in panels (a,c,e). In the inset the corresponding autocorrelation functions

g(2)(y, y) taken along the diagonal lines of g(2)(y1, y2)-function are shown. Here results for the SASE
PINK operating regime shown in (a,b), SASE MONO in (c,d) and SS regime in (e,f) shown for the case
of 200 pC bunch charge.
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