
Quantum embedding methods in dual
space for strongly interacting electronic

systems

Dissertation
zur Erlangung des Doktorgrades

an der Fakultät für Mathematik, Informatik und Naturwissenschaften
des Fachbereichs Physik

der Universität Hamburg

vorgelegt von

Matteo Vandelli

Hamburg
2022



ii

Weitere Identifier: urn:nbn:de:gbv:18-ediss-105052

Gutachter der Dissertation: Prof. Dr. Ángel Rubio
Prof. Dr. Alexander I. Lichtenstein

Zusammensetzung der
Prüfungskommission: Prof. Dr. Ángel Rubio

Prof. Dr. Alexander I. Lichtenstein
Prof. Dr. Michael Potthoff
Prof. Dr. Daria Gorelova
Prof. Dr. Nils Huse

Vorsitzende der
Prüfungskommission:

Prof. Dr. Michael Potthoff

Datum der Disputation: 29.11.2022

Vorsitzender Fach-
Promotionsausschusses Physik: Prof. Dr. Wolfgang J. Parak

Leiter des Fachbereichs Physik: Prof. Dr. Günter H. W. Sigl

Dekan der Fakultät MIN: Prof. Dr.-Ing. Norbert Ritter



iii

Zusammenfassung
Derzeit besteht eine große methodische Lücke zwischen den numerischen Instrumenten, die in den ab-initio
rechnergestützten Materialwissenschaften verwendet werden, und den Methoden, welche eingesetzt werden,
um die Auswirkungen starker Korrelationen zu untersuchen.

Erstere sind in der Lage, realistische große Systeme zu behandeln, während letztere sich auf Mod-
elle mit geringerer Anzahl an Freiheitsgraden konzentrieren, die sehr akkurat gelöst werden können. Das
Ziel vorliegender Arbeit besteht darin, Instrumente zu entwickeln, die eine Brücke zwischen diesen beiden
Ansätzen bilden. Um dieses Ziel zu erreichen, wurde der Pfad der dualen Theorien starker Korrelationen
(Theorie dualer Fermionen und Bosonen) gewählt, welche diagrammatische Erweiterungen der dynamis-
chen Molekularfeldtheorie sind. Die dualen Theorien beruhen auf der Aufteilung eines großen Systems in
zwei Teile, d.h. in eine lokale Störstelle und einen nichtlokalen Teil. Dadurch wird das Anfangsproblem auf
ein effektives Referenzproblem reduziert, welches exakt gelöst werden kann. In dieser Hinsicht gehören die
dualen Theorien zur Klasse der quantenmechanischen Einbettungsmethoden.

Das erste wichtige Resultat vorliegender Arbeit ist die Erweiterung einer Approximation der The-
orie dualer Bosonen, die als D-TRILEX-Theorie bezeichnet wird. Die D-TRILEX-Theorie ist aus nu-
merischer Sicht besonders attraktiv, da sie die Komplexität der Berechnung nichtlokaler, starker Korrela-
tionen auf die Komplexität einer GW-Theorie reduziert und gleichzeitig exakte lokale Vertexkorrekturen
nicht-störungstheoretisch berücksichtigt. Ein weiterer Großteil vorliegender Arbeit wurde der Implemen-
tierung eines effizienten Codes gewidmet, welcher die Berechnung von Multi-Band-Systeme mit mehreren
Orbitalen mittels der D-TRILEX-Theorie ermöglicht. Obwohl physikalische Argumente zugunsten der D-
TRILEX-Näherung vorgebracht werden können, ist ihr Gültigkeitsbereich nicht a-priori bekannt. Folglich
wird ein Benchmark benötigt, um die Genauigkeit und die Grenzen des Anwendungsbereiches bewerten zu
können.

Des Weiteren stellt ein wesentlicher Bestandteil der vorliegenden Dissertation die Implementierung
eines diagrammatischen Monte-Carlo-Schemas für die Theorie dualer Bosonen (DiagMC@DB) dar, die es
erlaubt, alle Feynman-Diagramme der Theorie zusammenzufassen. In einer detaillierten Diskussion be-
trachten wir, wie die Analyse dieser Methode Ordnung-für-Ordnung es ermöglicht, Informationen über
Phasenübergänge zu extrahieren. Insbesondere fassen wir die Instabilität der Ladungsdichtewellen des er-
weiterten Hubbard-Modells ins Auge. Später wurde DiagMC@DB verwendet, um die Genauigkeit der
D-TRILEX Methode für das Hubbard-Modell mit einem Orbital (dotiert und bei halber Füllung), sowie für
das erweiterte Hubbard-Modell mit nichtlokalen Wechselwirkungen zu untersuchen. Dabei wurden Bereiche
ermittelt, in denen die D-TRILEX-Theorie die Ergebnisse der Theorie dualer Bosonen in guter Genauigkeit
reproduziert.

Ein weiterer wichtiger Teil dieser Arbeit besteht darin, die Gültigkeit dieser Näherung an einem System
mit mehreren Orbitalen zu untersuchen. Der Grund dafür ist, dass leider nur wenige exakte Lösungen für
solche Systeme bestehen. Deswegen haben wir die D-TRILEX-Methode mit der exakten Diagonalisierung
für ein System mit mehreren Orbitalen bestehend aus einem Dimer verglichen. Dabei haben wir sehr genaue
Übereinstimmungen in den Ergebnissen festgestellt, obwohl für solch ein niederdimensionales System er-
wartet wird, dass DMFT kein gutes Referenzsystem ist. Außerdem haben wir sie mit der dynamischen
Vertex-Approximation (DΓA) für ein Modell mit zwei Orbitalen auf einem Gitter verglichen.

Im letzten Teil diskutieren wir zwei Anwendungen der D-TRILEX-Methode. Die erste Anwendung
besteht darin, Bleiadatomen auf einer Siliziumoberfläche zu untersuchen, wobei langreichweitige Wechsel-
wirkungen und Fluktuationen entscheidend für die Beschreibung der Eigenschaften des Systems sind. Als
zweite Anwendung untersuchen wir eine hoch interessante Situation, in der die Einbeziehung von nicht-
lokalen Fluktuationen das Bild einer rein lokalen Beschreibung der Korrelationen erheblich verändert und
zu einer ausgedehnten Region mit koexistierenden metastabilen metallischen und isolierenden Phasen führt.
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Abstract
There is currently a large methodological gap between the numerical tools used in ab-initio com-
putational materials science and the methods used to investigate the effects of strong correlations.
The former can treat realistic large-scale systems, while the latter focus on models with few de-
grees of freedom that can be solved very accurately. The purpose of this thesis is to develop tools
that act as a bridge between these two approaches.

The route chosen in this thesis is the dual theories of strong correlations (dual fermion and
dual boson theories), that are diagrammatic extensions of the dynamical mean field theory. The
dual theories rely on dividing a large system into two parts, an impurity and a non-local part,
reducing the initial problem into an effective reference problem that can be solved exactly. From
this perspective, the dual theories effectively belong to the class of quantum embedding methods.

As first major result of this thesis, we extend an approximation of the dual boson theory,
named D-TRILEX theory, to the multi-band framework. D-TRILEX is particularly attractive from
a computational point of view, because it reduces the complexity of the calculation of non-local
strong correlations to that of a GW calculation, while including exact local vertex corrections
non-perturbatively. The development of this theory allowed us to implement an efficient code
for multi-orbital and multi-site D-TRILEX calculations. Even though physical arguments can be
made in favor of the D-TRILEX approximation, its regime of validity is not a-priori known. As a
consequence, a benchmark is needed to assess its accuracy and limitations.

To this aim, an important portion of this work consisted in the implementation of a diagram-
matic Monte Carlo scheme for the dual boson theory (DiagMC@DB), that allows to sum up all
the Feynman diagrams of the theory in an unbiased way. I show that the order-by-order analysis
of this method allows to extract information about phase transitions, in particular a charge density
wave instability in the extended Hubbard model. I use the DiagMC@DB at later stages to assess
the accuracy of the D-TRILEX method for the single-orbital Hubbard model at half-filling and in
the doped regime, as well as for the extended Hubbard model with non-local interactions. Based
on this analysis, we identify the regimes where it accurately reproduces the dual boson results.

Moreover, we investigate the validity of the approximations in a multi-orbital framework,
where exact results are rare. Specifically, we compare the D-TRILEX method with exact diagonal-
ization for a multi-orbital dimer system, finding very accurate results even for this low-dimensional
system, where the impurity problem is not a good reference system. we also present an additional
comparison with the dynamical vertex approximation (DΓA) for a two-orbital model on a lattice.

In the last part, we discuss two applications of the D-TRILEX method. The first consists in
the study of lead adatoms (Pb) on a silicon surface, where long-range interactions and fluctua-
tions are crucial to describe the properties of the system. As a second application, we investigate
an intriguing situation where the inclusion of non-local fluctuations significantly changes the pic-
ture provided by a purely local description of the correlations and leads to an extended region of
coexisting metastable metallic and insulating phases.
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1 Introduction

In order to explain several emergent exotic properties of materials, it is crucial to empha-
size that microscopic particles behave in an extremely different way from the picture we
experience at macroscopic scales.

Specifically, our picture of a particle as a small sphere is insufficient as soon as quan-
tum phenomena come into play. The microscopic world at nanoscopic or smaller scales
is a quantum realm, where particles not only behave as small waves that can be more or
less localized in space, but they are also indistinguishable from other particles of the same
kind, in such a way that it is impossible to attach a small label to one of them and follow
its motion as we can do in classical physics.

These properties are not only important for our understanding of nature, but are also
crucial for the development of new technological applications. Quantum effects were seen
at least as a nuisance if not as a severe limitation until few years ago, when the main goal
was to push the realization of Moore’s law for the density of transistors per chip to the
extreme limit. Feynman and others pointed out that quantum phenomena could potentially
be exploited to achieve better computational performances and to develop more sensitive
sensors. Nowadays, quantum phenomena are recognized as a source of potentially un-
limited ways of tuning the properties of devices, by modifying the chemical composition
of the involved materials or through the creation of complex nano- and heterostructures.
Quantum technologies and quantum information have become very hot topics not only in
research, but also in the industry sector. However, the design of materials for new applica-
tions, capable of exploiting quantum effects, requires a deep understanding of the behavior
of quantum many-body systems.

Very suitable materials for device applications are the so-called strongly-correlated
electronic systems. In these systems, electrons do not behave as independent particles, but
they strongly interact due to the Coulomb repulsion between them. The presence of strong
interactions among the electrons is a necessary but not a sufficient condition to obtain a
strongly correlated system. In a weakly interacting regime, also known as the Fermi liq-
uid regime, electrons behave similarly to a gas of particles and it is the regime where the
usual picture provided by the bandstructure theory of solids is applicable. This regime can
be very interesting for several applications, but the electrons are nearly indenpedent and
only weakly entangled. On the other hand, too strong interactions often lead to a system
frozen in an insulating configuration. Typically, strong correlations between the electrons
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appear in an intermediate regime between these two opposite cases of Fermi regime and
the strong-coupling limit. In the intermediate regime between these two cases, we observe
metal-to-insulator transitions, strong magnetic and density response functions or even su-
perconductive fluctuations at high-temperature in some classes of materials. Since strongly
correlated electrons behave as a single entangled ensemble of particles with collective be-
havior, a relatively weak perturbation of the system can result in very strong responses.
With a proper choice of the materials, it is also possible to achieve the completely oppo-
site situation in which the system is extremely robust against external attempts to change
its state. In the most interesting cases for applications, these systems are additionally char-
acterized by a very rich phase diagram, that offers many routes for tunability, and can
host high-temperature superconductivity, heavy-fermion materials, charge density wave,
complex magnetic textures or Kondo physics.

A rule-of-thumb for distinguishing materials with strong or weak correlations among
the electrons is to check whether they have partially unoccupied localized orbitals, i.e.
open d− or f−shells, combined with delocalized s− or p−orbitals, that allow the electrons
to hop between the different atoms. An example of materials belonging to this class are
the metal oxides that can host Mott insulating phases as well as magnetism and multi-
ferroicity [1]. Interestingly, strong correlations among electrons have also been observed
in completely different electronic systems, namely two-dimensional materials where the
electronic orbitals are mostly only of p− and sp− character, as discussed in Chapter 7. As
in most of the strongly correlated materials, the characterization of these systems requires
a deep understanding of all the different degrees of freedom involved (electronic orbitals,
localized magnetic moments, lattice vibrations...), which can become accessible only with
a synergic effort of experiments, theory and computational methods.

The theoretical and computational modeling of these systems is particularly impor-
tant to understand the origin of the experimental observations. However, methods for the
description of strong correlations are currently often limited to aspects of the systems.
The fundamental reason for this limitation is the absence of an exact method that can
treat all the occurring degrees of freedom simultaneously. The exponential scaling of the
many-body wave function with respect to the number of particles makes it computation-
ally impossible to go beyond rather small clusters, while the fermionic sign problem affects
many quantum Monte Carlo methods when they are applied to electrons, especially at low
temperatures.

On the opposite side of the spectrum, the major tool of materials science for the de-
scription of electrons, namely the density functional theory (DFT), is very efficient in
treating all the degrees of freedom of an electronic problem, but it has often proven in-
effective in predicting the properties of strongly correlated electronic systems, especially
the susceptibilities. Another very successful method is the dynamical mean field theory
(DMFT), which is based on some assumption of locality of the self-energy of the sys-
tem. This means that within DMFT the self-energy is momentum-independent and spatial
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fluctuations are neglected. DMFT is able to describe strong correlations as long as they
are localized on the atomic sites. This assumption of locality is well-established in some
classes of compounds and can explain the interplay between itinerant electrons occupying
delocalized orbitals and localized electrons in atomic-like orbitals to some extent. How-
ever, it cannot describe non-local correlations, in particular the long range correlations
which are important to characterize the collective bosonic modes appearing in several cor-
related materials.

For these reasons, there has been an high demand for a method bridging between these
different perspectives within the community of quantum many-body scientists. This high
demand has prompted several attempts aimed at the development of a method to achieve
that goal. The work presented in this thesis outlines a novel possible route in this direction,
which is free from most of the problems occurring in the other methods described here.

The methods we propose in this thesis are based on the dual theories for treating non-
local strong correlations beyond the local approximation usually provided by DMFT. Dual
theories provide an exact formalism for performing a perturbative expansion around an ar-
bitrary interacting starting point, that can be modeled as an impurity problem and solved
exactly. They are based on the idea of splitting the system into two parts, couple them with
an arbitrary hybridization function and then perform an Hubbard-Stratonovich transforma-
tion, which replaces the electronic variables with new dual fermionic and bosonic fields.
The new system described by these new particles is in general much less correlated than the
original electronic problem, since the effect of the local fluctuations is already taken into
account in the impurity reference system. It is then possible to compute the observables
of the original lattice system analytically. These theories have been very successful in de-
scribing several phenomena related to strong correlations and generally provide results in
excellent agreement with exact calculations, in regimes where the latter are available.

Since the interacting reference point for the perturbative expansion is an impurity prob-
lem, we can look at these theories as quantum embedding methods. This correspondence
can be very important since it creates a bridge between different areas of condensed matter
physics and chemistry that would otherwise be separated by the respective methods and
jargon. Quantum embedding methods are very important in current research on computa-
tional chemistry. They allow us to split the system of interest in different pieces. The most
correlated parts are treated with very accurate methods and the rest is treated under some
kind of simplified scheme, often a mean field approach. These methods are useful for two
main reasons.

• They consider a much smaller subspace, limiting the number of involved degrees of
freedom in the high-level part of the calculations, which is usually the most compu-
tationally expensive.

• They provide a scheme to propagate self-consistently the feedback from one part of
the system into the other, by means of the hybridization between them.
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• They can help the development of quantum computation, since quantum computers
will probably not be able to deal with a large number of degrees of freedom in the
close future. Quantum embedding could help in splitting the problem into a small
system solvable with quantum computers and the rest that can be treated with hybrid
methods in polynomial time.

Our expectation is that the multi-orbital and multi-site formulation of the D-TRILEX
theory presented in this work can be used in combination with other methods, such as
cluster Monte Carlo methods and even quantum devices, in order to extend their range
of applicability to more general lattice problems and even realistic materials on the long
term.

1.1 Structure of the thesis
This thesis is devoted to the development of a framework for the prediction of properties
of materials with strong spatial electronic correlations. In order to achieve this goal, we
briefly introduce the general framework of Green’s function methods and path integral
formalism in Chapter 2.

Computational challenges in the calculation of many-body electronic systems are dis-
cussed in detail in Chapter 3, where we recall the most-widely used methods to tackle
the problem. Here, we also introduce the Anderson’s impurity problem and we discuss
quantum embedding methods such as DMFT, density matrix embedding theory (DMET),
rotationally-invariant slave boson method (RISB) and self-energy embedding theory (SEET).

In Chapter 4, we introduce the dual theories of strong correlations. In particular, we
derive the dual boson action in a general multi-band formalism. Here, we derive one of
the main results of this work, the partially bosonized action in the multi-band framework.
The latter is an optimal approximation of the dual boson theory, that allows to remove
the four-point vertex functions appearing in the dual boson theory and to keep only the
relatively inexpensive two- and three-point correlation functions. The additional advantage
of the theory is that it can be written as an effective fermion-boson theory, similar to the
electron-phonon theory in the Holstein model for polarons.

In Chapter 5, we discuss the diagrammatic Monte Carlo solution to the dual boson
action (DiagMC@DB), which was developed as a part of the work for this thesis. Here,
we show how the order-by-order analysis of the dual boson perturbative series can provide
information about phase transitions, in particular in the case of the charge density wave
(CDW) transition in the extended Hubbard model.

In Chapter 6, we present the D-TRILEX solution of the partially bosonized action
discussed in Chapter 4. It consists in the first set of Feynman diagrams obtained as an ex-
pansion in terms of the fermion-boson interaction. We use this chapter to test the validity
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of the theory. In order to do that, we compare D-TRILEX with DiagMC@DB and with
the ladder dual fermion approximation (LDF) for the single-orbital Hubbard model on a
square lattice. We additionally use the partially bosonized approximations of the four-
point vertex within DiagMC@DB to analyse the role of each set of diagrams in different
regimes. We also compare D-TRILEX results with the DiagMC@DB solution for the ex-
tended Hubbard model with nearest-neighbor interactions V and for the doped Hubbard
model to assess the limits of validity of the approximation. Finally, we present some calcu-
lations aimed at evaluating the method in multi-orbital cases. In particular, we benchmark
D-TRILEX calculations for the two-orbital Hubbard-Kanamori dimer, which can be ex-
actly solved by exact diagonalization (ED). We conclude with a comparison with the DΓA
method for the Hubbard-Kanamori model on a square lattice.

In Chapter 7, we collect results for a system of lead (Pb) adatoms on a silicon (111)
surface. This system is particularly interesting, because it involves strong local as well
as strong non-local interactions, that lead to a variety of phases. Additionally, spin-orbit
coupling plays a major role in the geometry of magnetic excitations of this system. We
disentangle the contribution coming from each channel in order to understand the origin
of the CDW phase transition in this system, and at the same time we show that our method
can efficiently treat this large variety of competing degrees of freedom.

In Chapter 8, we attach a pre-print based on the framework developed for this thesis,
for the sake of completeness. In particular, we study a two-orbital model on a cubic lattice
with crystal-field splitting and density-density on-site Coulomb interaction. Contrary to
DMFT, in the vicinity of the Mott metal-to-insulator transition, we find a very broad region
of the local interaction U where it is possible to obtain two different metastable solutions,
corresponding to a metallic and an insulating phases. The same phase coexistence can be
observed if the Hund’s coupling J is included in the calculations. These findings show
that non-local effects can strongly modify the picture resulting from local approximations
even in three dimensions, where DMFT is widely believed to provide a very accurate
description of the properties of the system.

Finally, in Chapter 9, we highlight the main conclusions and new perspectives opened
by this work.
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2 From quantum mechanics to Green’s
functions

2.1 The problem of many interacting electrons in solids

2.1.1 The Hamiltonian of an electronic system
The fundamental problem that appears in materials science and electronic structure calcu-
lations is theoretically described by the following Hamiltonian operator, that accounts for
the energy of N interacting electrons

Ĥ =
N∑︂

i=1

(︄
−ℏ2∇2

i

2m
+ U(ri, {R})

)︄
+

1
2

N∑︂
i≠ j

e2

|ri − r j|
(2.1)

where m is the mass of the electron, ri indicates the position of the i-th electron and
U({r,R}) is the external potential which depends on the position of the atomic nuclei and
external fields as well. This term can also contain the effect of spin-orbit coupling, hence
it is not necessarily diagonal in spin space. The last term describes the Coulomb repulsion
between electrons.

Even if we decide to focus only on the electronic degrees of freedom, assuming that
the motion of the nuclei can be disregarded or it can be treated in the Born-Oppenheimer
approximation, the Hamiltonian of Eq.(2.1) still poses a formidable challenge to compu-
tational physics, when the system is a large molecule or a solid. Following the quantum
theory, the spectrum of the electronic system can be obtained by solving the stationary
Schrödinger equation for a system of particles with spin 1/2 as

Ĥψ(r1σ1, ..., rNσN) = E ψ(r1σ1, ..., rNσN). (2.2)

If we are able to compute the energy spectrum and the eigenvectors of the Hamiltonian Ĥ,
all the dynamical and statistical properties of the system at equilibrium can be computed
from them by using quantum mechanical expectation values, as explained in the following
sections of this Chapter. Interestingly, the two equations (2.1) and (2.2) are sufficient
to describe most of the physical systems occurring at energy scales small enough that
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relativistic effects can be disregarded. This fact induced Dirac to make a bold statement in
1929 [2], claiming that

“the underlying physical laws necessary for the mathematical theory of ... the whole of
chemistry are thus completely known, and the difficulty is only that the exact application

of these laws leads to equations much too complicated to be soluble.”

After years of successful applications of quantum theory to the simulation and interpre-
tation of the experimental results, we can confirm that this statement is essentially true
when applied to usual chemical processes and materials science. This quote from Dirac
foresaw a very fundamental issue in the solution of the equations of quantum mechanics,
in particular that the diagonalization of a problem of N quantum interacting particles (or at
least of interacting fermions) is an extremely hard problem from the computational point
of view [3]. As a matter of fact, it has an exponential computational cost on a classical
hardware [4]. For this reason, the Hamiltonian (2.1) can be exactly diagonalized only for
very small systems.

We could think of fighting the exponential scaling by using quantum computers, which
work based on qubits instead of bits [5]. Quantum devices of course do not directly exhibit
an exponential scaling in the number of particles that can be simulated. However, the full
many-body problem is challenging also for quantum computers [6, 7], as the encoding
of the very large amount of degrees of freedom that appear require very deep quantum
circuits with a large amount of gates to be applied on the qubits to change their state.

The additional limitation of currently available quantum devices is that they are prone
to errors induced by interaction with the environment. An error in the single operation
on the qubits propagates through the computation and this results in a limitation on how
deep the quantum circuits can be, before the noise makes the result unusable. This cur-
rently severely limits the number of quantum gates that can be applied, hence it reduces
the complexity of the Hamiltonians that can be directly simulated on quantum hardware.
Currently, no quantum advantage over classical devices has been established so far for the
solution of the ab-initio Hamiltonian of large many-electron quantum systems in general
cases of interest. This motivates the development of classical methods for the simulation
of quantum systems as well as hybrid methods, that can combine the currently limited
quantum devices with classical hardware.

2.1.2 Fermions, Bosons and second quantization
The Hamiltonian (2.1) is written in the space of positions of the electrons, also known as
real space. however, in general the state of the system can be written in the complete basis
corresponding to the set of eigenstates | j⟩ of an arbitrary Hermitian operator Ô,

Ô | j⟩ = O j | j⟩ (2.3)
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The index j characterising these states is called a quantum number, and it can be real
space, momentum or spin of the particle and so on depending on the system. Indeed, if we
consider a single-particle system, we can consider the state of the system to be represented
by a generic vector |ψ⟩ in a single-particle Hilbert space H (1). The wave function of the
system in the space can be recovered from the scalar product with the basis vector |r⟩, as
ψ(r) = ⟨r |ψ⟩. Similarly, we can express the vector in the basis of the chosen operator Ô as

|ψ⟩ =
∑︂

j

⟨ j|ψ⟩ | j⟩ =
∑︂

j

ψ j | j⟩. (2.4)

In turn, the index j can be composite and corresponding to different degree of freedom. For
instance, we can consider j = r = (x, y, z) or, in the case of solids, we can considered the
combined momentum, spin and orbital index j = (k, σ, l). In an analogous way, the state of
an N-particle system is described by the vector in an Hilbert space spanned by vectors the
direct product of single-particle states | j1⟩| j2⟩...| jN⟩ ≡ | j1⟩⊗ | j2⟩⊗ ...⊗ | jN⟩. However, there
is a crucial fundamental symmetry in the description of quantum mechanical particles:
quantum particles are inherently indistinguishable. As a consequence, the probability p(2)

of measuring the first particle with quantum number j1 and the other with quantum number
j2 should be the same as if we swap the numbers. This can be expressed as p(2)( j1, j2) =
p(2)( j2, j1). In practice, the state describing two particles characterised by sets of quantum
numbers j1 and j2 should obey the relation

| j1, j2⟩ = eimπ | j2, j1⟩ (2.5)

such that the probability density p(2) is left invariant upon an exchange of the two particles

p(2)( j1, j2) = || | j1, j2⟩ ||
2 = ||eimπ | j2, j1⟩ ||

2 = || | j2, j1⟩ ||
2 = p(2)( j2, j1). (2.6)

It can be shown that the phase factor must be eimπ = ±1 in more than two dimensions.
Elementary particles, that live in (3+1)-dimensional space, can be divided into only two
categories, named bosons (m = 0) or fermions (m = 1) due to topological considerations
about the exchange of different particles. Photons are an example of bosonic particles,
while electrons are fermions. In dimensions equal to or less than two dimensions, this is
not necessarily true [8] and the number describing the phase m can be non-integer or even
a non-abelian operator [9]. The exotic particles described by these different phase factors
are called anyons [10] and have been suggested as a way of realising topological quantum
computing [11].

Focusing on the less exotic particles, a very important consequence of the fermionic
phase eiπ = −1 on the behavior of fermionic particles is the Pauli exclusion principle. This
principle states that two fermions in many-particle system cannot be in a state described by
the exact same set of quantum numbers j at the same time. The most simple, yet important
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example, is the well-known fact that an atomic or molecular energy level can contain
only up to two electrons, one with spin up and one with spin down. This symmetry with
respect to the exchange of particles dictates that the state of N particles is described by
a suitably (anti-)symmetrized state | j1, j2, ..., jN⟩. In the interacting case, the state cannot
in general be easily decomposed in product states, but this symmetry has to hold. In the
case of a system of independent fermions, the anti-symmetrized states is known as Slater
determinant. The formalism described so far is known as first quantization.

An equivalent formalism is the second quantization. It can be formulated introducing
a new Hilbert space, called Fock space, in which each state is indexed by the number of
times each set of single-particle quantum numbers is occupied. Explicitly, we can write

FB =
{︂
|n0, n1, ...n j...⟩ with n j ∈ {0, 1, 2, ...}

}︂
for bosons, (2.7)

FF =
{︂
|n0, n1, ...n j...⟩ with n j ∈ {0, 1}

}︂
for fermions. (2.8)

For this reason, it is often referred to as occupation number basis. This allows to repre-
sent many-particle states in a more convenient way. Additionally, we can simultaneously
describe systems with varying number of particles, which is very important in the case
of grand-canonical ensemble, where only the average number of particles is fixed. The
mathematical objects that allow to construct this mapping are the creation/annihilation
operators ĉ†j/ĉ j. The basic rule common to all the kinds of particles is that ĉ†j creates a
particle in the state j, which we assume to be integer without any loss of generality, so we
have the immediate identification

| j⟩ ≡ ĉ†j |0⟩ = |...,
j−2
0 ,

j−1
0 ,

j
1,

j+1
0 ,

j+2
0 , ...⟩F (2.9)

with |0⟩ = |0, ..., 0⟩ denoting the empty state (or ground state). Additionally, we can remove
a particle by using the annihilation operator

ĉ j |...,
j−1

n j−1,
j

ni,
j+1

n j+1, ...⟩ =

{︄
(ξ)

∏︁ j−1
i=1 n j |..., n j−1, n j − 1, n j+1, ...⟩ if n j > 0

0 else
. (2.10)

where ξ = 1 for bosons and ξ = −1 for fermions. Here 0 denotes the null vector in the
Fock space, not to be confused with the empty state |0⟩. The null vector is such that any
operator applied to it yields 0 again. Now that we are perfectly able to describe single-
particle states with creation operators, we need to introduce rules to create many-particle
states. In order to do that, it is necessary to introduce commutation relations between the
new operators. At this point, the difference between bosons and fermions becomes even
more evident.
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• Bosons: the particles do not acquire a phase when they are exchanged, so the oper-
ators commute. [︂

ĉi , ĉ j

]︂
= 0,

[︂
ĉ†i , ĉ

†

j

]︂
= 0,

[︂
ĉi , ĉ

†

j

]︂
= δi j (2.11)

where [A, B] = AB − BA is the usual commutator operator.

• Fermions: exchanging two particles leads to a minus sign. Hence, the correct choice
is {︂

ĉi , ĉ j

}︂
= 0,

{︂
ĉ†i , ĉ

†

j

}︂
= 0,

{︂
ĉi , ĉ

†

j

}︂
= δi j, (2.12)

where {A, B} = AB + BA is the anticommutator of two operators. This is clear from
the following example:

(︂
c†i c†j + c†jc

†

i

)︂
|0⟩ = |i, j⟩ + | j, i⟩ = |i, j⟩ + (−|i, j⟩) = 0. When

i = j, we get c†i c†i |0⟩ = 0, which is precisely the Pauli principle.

Another important concept that will be crucial in the rest of this work is the notion of
single-particle and two-particle operators [12]. Single-particle operators are those that act
only on the Hilbert space of a single-particle. In first quantization, this can be expressed
as

Â|q0, ..., qN⟩ =
∑︂

i

(︂
Â|qi⟩

)︂
⊗ |q0, ..., qi−1, qi+1..., qN⟩ (2.13)

In second quantization (assuming the action on Slater wave functions), they can be ex-
pressed as

Â =
∑︂

i j

ai j ĉ†i ĉ j , (2.14)

Two-particle operators that act only on the Hilbert space of a two particles. In first quanti-
zation, two-particle operators are expressed as

B̂|q0, ..., qN⟩ =
∑︂

i, j

(︂
B̂|qi, q j⟩

)︂
⊗ |q0, ..., qi−1, qi+1..., q j−1, q j+1, qN⟩ (2.15)

In second quantization, they are written as

B̂ =
∑︂
i jkl

bi jkl ĉ†i ĉ†j ĉl ĉk . (2.16)

The derivation of these expressions are discussed in a pedagogical way in Ref. [13]. These
definitions can be generalized to n-particle operators, that contain n pairs of creation/anni-
hilation operators.
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2.1.3 Rewriting the electronic Hamiltonian in second quantized form
It is possible to rewrite the electronic Hamiltonian of Eq. (2.1) in a second-quantized form,
using Eqs.(2.14) and (2.16), neglecting the degrees of freedom of the nuclei. In the basis of
the position r and spin projection σ, the Hamiltonian for an electronic system in second-
quantized form reads

Ĥ =
∑︂
σσ′

∫︂
dr ϕ̂†σ(r)

(︄
−∇2

2m
+ U(r)

)︄
σσ′

ϕ̂σ′(r)

+
1
2

∑︂
σσ′

∫︂
dr

∫︂
dr′ϕ̂†σ(r)ϕ̂†σ′(r

′)V(r − r′)ϕ̂σ′(r
′)ϕ̂σ(r), (2.17)

where the ϕ̂σ(r) operators are the annihilation operators in real space, often called field
operators in the literature, and we introduced the simplified notation V(r) for the Coulomb
interaction. Here, we keep the spin-dependence in the single-particle term as it can be non-
diagonal in spin-space if it contains spin-orbit coupling terms, that mix the orbital angular
momentum L̂ with the spin operator Ŝ =

(︂
Ŝx, Ŝy, Ŝz

)︂
in the form ∼ L̂ · Ŝ, or if a magnetic

field acts on the system.
In the case of lattice problems or molecules, it is often more convenient to express the

Hamiltonian in a more localised basis, for example the basis of functions centered on the
atoms or the single-particle molecular orbitals constructed using the linear combination
of atomic orbitals (LCAO). This can be done by decomposing the field operators on the

chosen basis with site, spin and orbital indices
{︃
| jσl⟩

}︃
using

ϕ̂σ(r) =
∑︂
jσ′l

ψ jl(r)δσσ′ ĉ jσ′l, (2.18)

where we defined the wave function ψ jl(r) = ⟨r| jl⟩ of the state | jl⟩ and we used the trivial
basis in spin-space {(1, 0), (0, 1)}. In this expression, we introduced an index correspond-
ing to a basis of wave functions localised at each site j and another index l corresponding
to the orbitals that appear when solving a Schrödinger equation for a localized potential.

In this localised basis of the single-particle Hilbert space, the Hamiltonian can be fi-
nally written as

Ĥ =
∑︂

i j,l1l2,
σσ′

tσσ
′

i j,l1l2 ĉ
†

iσl1
ĉ jσ′l2

+
1
2

∑︂
i jmn,σσ′
l1l2l3l4

∑︂
U l1l2l3l4

i jmn ĉ†iσl1
ĉ†jσ′l2 ĉnσ′l4

ĉmσl3
. (2.19)
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This Hamiltonian is also known as lattice Hamiltonian, as it is expressed in a basis of
localized functions. The quantities defined here are the so-called hopping term

tσσ
′

i j,l1l2 =

∫︂
drψ∗il1(r)

(︄
−∇2

2m
+ U(r))

)︄
σσ′

ψ jl2
(r) (2.20)

and the interaction term (assumed to be spin-independent) reads

U l1l2l3l4
i jmn =

∫︂
drdr′ ψ∗il1(r)ψ∗jl2(r

′)V(r − r′)ψml3(r)ψnl4(r
′). (2.21)

The name hopping terms intuitively indicates their role in the theory: they describe an
electron at site j in the orbital l2 with spin σ′ jumping to a site i. In principle, the electron
can change its orbital and spin in the process, if this is not forbidden by a symmetry
that enforces orbital and/or spin conservation. The steps discussed so far did not involve
any relevant approximation and they are valid for the description of both molecules and
materials.

Specialising it to the case of a lattice model, the Hamiltonian (2.19) can be written in
the basis of Wannier’s functions. These functions are localized on the lattice sites, but they
exploit Bloch’s theorem for periodic systems. Bloch’s theorem allows to recast a problem
on an infinite periodic lattice into a problem defined in a finite unit cell and a wavevector
belonging to the first Brillouin Zone (BZ) of the lattice.

In a lattice problem, we can identify a unit cell with lattice vectors a1, a2 and a3 and
containing Nimp atoms with Nl orbitals. The notation Nimp means “number of impurities”
and it is chosen as the atoms are hybridized with the rest of the system. With a slight
change of notation, here we move the index of the inequivalent atoms in the unit cell into
the orbital index l. As a consequence, the index l runs over orbitals and atom indices such
that l ∈ {0, 1, ...,Nimp×Nl−1}. The index j is then the position of the j-th unit cell identified
by the lattice vector R j. With these definitions, we can apply Fourier analysis on a periodic
domain to decompose the annihilation operators as

ĉ jσl =
∑︂

k

eik·R j ĉkσl (2.22)

where
∑︁

k is the average over the Brillouin Zone. A Fourier transform of the hopping terms
in the single-particle part Ĥ0 of the Hamiltonian leads to

Ĥ0 =
∑︂

k,ll′,σσ′
εσσ

′

k,ll′ ĉ
†

kσlĉkσ′l′ , (2.23)
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where εσσ
′

k,ll′ =
∑︁
m,n

tσσ
′

mn,ll′e
−ik·(Rm−Rn). Diagonalizing the matrix εσσ

′

k,ll′ in spin- and orbital-space

gives the non-interacting electronic dispersion of the problem.
A similar transformation to the one introduced for the single-particle term can be per-

formed also for the interaction. After few manipulations, the interacting term can be writ-
ten as

V̂ =
1
2

∑︂
k,kv′,q

∑︂
{l}, σσ′

U l1l2l3l4
q ĉ†kσl1

ĉ†q−kσ′l2 ĉq−k′σ′l4 ĉk′σl3
. (2.24)

In momentum-space, it becomes clear that a translationally-invariant interaction depend-
ing only on the difference between the positions of the two particles r−r′ implies a conser-
vation of momentum. This is a consequence of Noether’s theorem, that relates symmetries
of a physical system to its conserved quantities [14].

2.1.4 Statistical ensemble and the density matrix
The quantum mechanics described so far completely relies on the full knowledge of the
state of the system. This immediately poses a question: what can we do in all the cases
in which the state of the system is not fully accessible? The statistical nature can emerge
because of uncertainty in the preparation of the state, as often occurs in quantum comput-
ing, or because we are interested in studying a system at finite temperature, hence we are
interested in the thermodynamic properties of the system.

In fact, we can define the grand-canonical partition function of the system of interest
with C possible configurations at inverse temperature β = T−1 and chemical potential µ as

Z =

C∑︂
i=1

e−β(Ei−µ) (2.25)

where Ei are the energies of the allowed states. From statistical mechanics [13], it is well
known that the statistical probability associated to each state in the grand-canonical ensem-
ble is given by the Boltzmann probability distribution pi = e−β(Ei−µ)/Z. The knowledge
of the partition function fully characterises the thermal properties of the system, either via
logarithmic derivatives of it or via the free energy of the system defined asF = −β−1 logZ.

In the framework of the quantum mechanics described so far, we can diagonalize the
Hamiltonian, get the whole spectrum of the operator and then directly construct the par-
tition function. This is indeed a legit method and it might be the most convenient one in
the case of small systems, where the Hamiltonian can be easily diagonalized. However,
in its current formulation, it does not allow for a simple way of devising systematically-
improvable approximations. It turns out that there is a way of encoding statistical uncer-
tainties on the states in an elegant way, which is called density matrix formalism.
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In the density matrix formalism, we define a set of real numbers {λi}i=1,...,C such that
C∑︁

i=1
λi = 1 and 0 ≤ λi ≤ 1. This set of numbers is the probability (density) that the state of

the system is in a state |i⟩. The density matrix associated to this system in the operator ρ̂
defined as

ρ̂ =

C∑︂
i=1

λi|i⟩⟨i|. (2.26)

This formulation immediately allows to include uncertainty in the states, hence statistics,
in the density matrix. Another important property of the density matrix is that the average
of an operator on a system defined by the density matrix ρ̂ is given by

⟨A⟩ = Tr
[︂
Â ρ̂

]︂
(2.27)

The connection with statistical physics becomes much easier to draw in this case. If the
numbers λi are chosen in such a way that

λi = pi = e−β(Ei−µ)/Z. (2.28)

The thermal density matrix can be written as

ρ̂ =

C∑︂
i=1

e−β(Ei−µN̂)

Z
|i⟩⟨i| =

C∑︂
i=1

e−β(Ĥ−µN̂)

Z
|i⟩⟨i| =

=
e−β(Ĥ−µN̂)

Z

C∑︂
i=1

|i⟩⟨i| =
e−β(Ĥ−µN̂)

Z
, (2.29)

where we used the completeness relation for a basis
∑︁

i |i⟩⟨i| = 1, so that the quantum
thermal average of an operator in Eq. (2.27) can be expressed as

⟨A⟩th =
Tr

[︂
e−β(Ĥ−µN̂)Â

]︂
Tr

[︂
e−β(Ĥ−µN̂)

]︂ (2.30)

where we have used the fact that the partition function can be written in a basis-independent
way as

Z = Tr
[︂
e−β(Ĥ−µN̂)

]︂
(2.31)

The fact that in this expression there is no explicit reference to the eigenstates of the
Hamiltonian shows that we do not need to diagonalize the Hamiltonian in the first place.
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We only need the Hamiltonian operator and a suitable set of basis states. It is important
to notice that there is very close connection between the thermal density matrix and the
time-evolution operator U(t− t′) = exp{−i

(︂
Ĥ − µN̂

)︂
(t − t′)}. Indeed, apart from unimpor-

tant normalization factors, the density matrix corresponds to computing the time-evolution
operator at an imaginary-time t = −iβ. This deep connection allows to extract a certain
amount of information about the dynamics of the system from its thermodynamic observ-
ables.

We conclude this section with a comment on the different statistical distributions of
fermions and bosons. In the case of fermions, the available occupation numbers for a
given state are only |0⟩ or |1⟩, so that the probability of a state at energy E is given by the
Fermi-Dirac distribution [12]

p(E) = nF(E) =
1

eβ(E−µ) + 1
. (2.32)

This means that the states up to µ are almost all occupied, while the states above are almost
all empty. In a small window of width ≈ T around µ, there is a noticeable probability of
finding empty states below µ and filled states above µ. The level of the last occupied state
at T = 0 is also called the Fermi energy of the system.

The bosons on the other hand can occupy the same state without any limitation and are
described by the Bose-Einstein distribution function

p(E) = nB(E) =
1

eβE − 1
, (2.33)

which diverges when E → 0.

2.2 Path Integral formalism and Green’s functions at fi-
nite temperature

2.2.1 Correlation functions, measurement and information
If the electronic properties are usually conveniently described in the Hamiltonian formal-
ism and with methods based on the wave function, extended electronic systems are often
conveniently investigated within the Green’s function formulation of quantum mechanics,
also known as path integral formalism.

The path integral approach provides a very "natural" description of many interacting
quantum particles, as it allows for a straightforward method of performing perturbation
theory at arbitrary order, at least from a formal view-point. Perturbation theory can be
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then visualized in terms of Feynman diagrams, that offer an intuitive picture of the in-
volved processes and allow to formulate physically-motivated approximations in a sim-
pler way compared to the Hamiltonian formalism. Additionally, it directly gives access to
observables, bypassing the need of computing the full wave function of the system.

In the previous paragraphs, we saw that the system is fully characterized by the knowl-
edge of its state or density matrix. The full knowledge of these quantities in general
contains a very large amount of redundancy. As a matter of fact, in a given basis, the full
wave function is described by an exponential number of parameters while each observable
is often just a function. Indeed, many of the coefficients of the wave function do not even
contribute to the value of the observables. In the path integral formalism, the need of com-
puting the full wave function is replaced by the computation of the Green’s function, for
what concerns single-particle observables, and the two-particle Green’s function.

These are two examples of expectation values of creation/annihilation operators, that
go under the name of correlation function [15] and in general it can be expressed as

⟨ĉi ĉ j ...ĉ
†

l ĉ†m⟩. (2.34)

In this thesis, we only focus on systems at the thermal equilibrium in the grand-canonical
ensemble, where the angular brackets indicate the thermal average defined in Eq. (2.30).
This formalism is based on the density matrix ρ̂ of Eq. (2.29) and it is also known as
Matsubara formalism. It is also called imaginary-time formalism, for its connection with
the time-evolution operator. A path integral formalism for systems out-of-equilibrium can
be formulated in real-time in a similar fashion (see Ref. [16] for a textbook introduction).

Many experimental techniques in solid state physics involve only correlation functions
with two or four fermionic operators, that correspond to measuring single-particle and
two-particle observables respectively.

2.2.2 Single-particle Green’s function
Working in the Matsubara formalism, we can define the Green’s function of the system as
the following expectation value

Gi j(τ) = −
⟨︂
T ĉi (τ) ĉ†j(0)

⟩︂
= −

1
Z

Tr
[︂
e−(Ĥ−µN̂)β ĉi (τ) ĉ†j(0)

]︂
(2.35)

where the operator evolved at the imaginary-time τ is defined as ĉk(τ) = e−(Ĥ−µN̂)τĉke
(Ĥ−µN̂)τ

and T is the time-ordering operator defined as

T
[︂
Â(τ)B̂(τ′)

]︂
= θ(τ − τ′)Â(τ)B̂(τ′) ± θ(τ′ − τ)B̂(τ′)Â(τ), (2.36)

where the plus sign refers to bosons and minus sign to fermions.
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Additionally, by exploiting the properties of the trace, it can be shown that the Green’s
function in Eq. (2.35) in imaginary-time is a periodic function with period 2β and it is even
for bosons and odd for fermions around τ = 0, since G(τ) = ±G(τ−β), where the plus sign
refers to bosons and minus sign to fermions [12, 15]. As a consequence, we can express
it as a Fourier series. Furthermore, by Fourier analysis, it is known that the Fourier series
of functions with defined parity can be expressed in terms of only even/odd coefficients,
depending on whether the parity is even/odd. For this reason, the Fourier series becomes

Gi j(τ − τ′) =
1
β

+∞∑︂
n=−∞

e−iνn (τ−τ′)Gi j,νn . (2.37)

where

νn =

{︄
2nπ/β for bosons

(2n + 1)π/β for fermions (2.38)

are called Matsubara or imaginary frequencies. In the case of periodic systems, the cre-
ation and annihilation operators can additionally be Fourier-transformed from real-space
to k-space within the first Brillouin zone, as ĉi =

∑︁
k∈BZ

eik·Ri ĉkl where the index l indicates

the orbitals/inequivalent sites in the unit cell. The Green’s function for the lattice system
becomes

Gkν,ll′ = −

β∫︂
0

dτ eiντ
⟨︂
ĉkl(τ) ĉ†kl′(0)

⟩︂
(2.39)

This correlation function gives access to important information on the system.

Single-particle thermal averages In particular, expectation values of any static single-
particle operator on the (thermal) ground state can be computed knowing the Green’s
function. Recalling the expression for the thermal average of Eq. (2.30) and the second-
quantized form of single-particle operator (2.14), we can write⟨︂

Â
⟩︂
=

1
Z

Tr
[︂
e−(Ĥ−µN̂)β Â

]︂
=

1
Z

∑︂
i j

ai j Tr
[︂
e−(Ĥ−µN̂)βĉ†i ĉ j

]︂
=

=
1
Z

∑︂
i j

ai j Tr
[︂
e−(Ĥ−µN̂)β

(︂
δi j − ĉ jĉ

†

i

)︂ ]︂
=

∑︂
i j

ai j Gi j(τ = 0−) (2.40)
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Spectral function The single-particle Green’s function also leads to single-particle ex-
citation energies, i.e. the energies that are available in the system if we want to re-
move or add a particle. Spectroscopic techniques that are sensitive to this observable
are the angle-resolved photoemission spectroscopy (ARPES) [17] and inverse photoemis-
sion spectroscopy (I-ARPES). Scanning Tunnelling microscopy (STM) is also sensitive to
the value of the spectral function of the highest-occupied state, also known as the Fermi
energy EF . By modelling these types of spectroscopy, as done in detail in Appendix of
Ref. [18], we get that the spectral function describing these excitations is

A(k, E) = −
1
π

Tr
[︂
Im GR

k,E

]︂
, (2.41)

where we have defined the retarded Green’s function on the real-frequency E as

GR
k,E =

(︁
Gk,ν

)︁
ν≡−iE+δ (2.42)

and δ is a small broadening factor. The calculation of the retarded Green’s function from
the Matsubara Green’s function requires the computation of the Matsubara Green’s func-
tion at the complex value ν = −iE + δ. This step is also known as a Wick’s rotation to real
frequency, which is an application of the analytical continuation of a function defined on
a certain domain in the complex plane to another domain. In cases where Gk,ν is known
analytically this amounts to a simple replacement of ν. When this is not the case, nu-
merical techniques have to be used to compute the retarded Green’s function from data
in the Matsubara formalism. This is general an ill-posed problem. For this reason, it is
strongly affected by noise present in the data for Gk,ν when the latter is computed using
Monte Carlo methods. Bayesian techniques such as the maximum entropy method (Max-
Ent) [19] or stochastic optimization methods (SOM) [20, 21] have been developed for this
task. During the work for this thesis, we mostly used the MaxEnt method for this task in
the implementation provided by the ana_cont software package [22].

2.2.3 Two-particle correlation functions
Two-particle correlation functions involve expectation values of two-particle operators (2.14),
so in total involve four creation and annihilation operators. There are many important ex-
amples of two-particle correlation functions that will be discussed later. From the physical
point of view, the most important two-particle observables are the susceptibilities. Indeed,
a review of spectroscopic techniques that allow an access to two-particle observables can
be found in Ref. [18]. A relevant selection for this thesis is:

• the electron energy-loss spectroscopy (EELS), whose perturbation can be expressed
as VEELS = Mqn̂q,lle−iEt + h. c. with E = Eout − Ein the energy difference and q =
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kout−kin the momentum difference between incoming and outgoing electrons. Here,
the electronic density operator is

nq,ll =
∑︂
kσ

ĉ†k+q,σlĉk,σl (2.43)

and Mq is the matrix element of the interaction. We can apply linear response the-
ory to obtain the response function to this external perturbation [12]. Keeping in
mind that in principle we can obtain the correlation functions at the real-frequency
E by analytical continuation, we get that the response function is proportional to
the charge susceptibility. At the Matsubara frequency ω, this susceptibility can be
written as

Xch
qω =

∑︂
ll′

∫︂ β

0
dτ e−iωτ

⟨︂
n̂qll(τ) n̂−q,l′l′(0)

⟩︂
, (2.44)

where the operators at time τ are computed using the Heisenberg equation of motion
in imaginary time.

• Neutron scattering experiments work in a similar way to EELS. However, the neu-
trons are sensitive to the the spin operator

Sq,ll =
∑︂
kσσ′

ĉ†k+q,σlσσσ′ ĉk,σl (2.45)

instead, so the output signal is proportional to the spin susceptibility

Xsp
qω =

∑︂
ll′

∫︂ β

0
dτ e−iωτ

⟨︂
Ŝ

sp
qll(τ) Ŝ

sp
−q,l′l′(0)

⟩︂
(2.46)

where the spin component is sp = x, y, z.

2.2.4 Path integral formalism for fermions
So far no additional practical recipe for calculating correlation function has been provided,
apart from the explicit evaluation of the trace in Eq.(2.35) in a complete basis set. In the
case of a small system, the basis set can be constructed using the eigenstates obtained by
diagonalizing the Hamiltonian operators.

However, very powerful tools to tackle the problem of many interacting quantum par-
ticles become available if the problem is rewritten in the path integral formalism, in partic-
ular a consistent way of constructing perturbation theory at arbitrary order and the renor-
malization group method. The path integral formalism is extremely general and can be
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applied in the basis of any full set of operators. In our case, we focus on the eigenstates of
the creation/annihilation operators in a generic basis of states characterized by index {i}.
As any operator in the formalism develop so far is expressed in terms of ĉ/ĉ† operators,
one quite natural possibility at this point is to choose these as operator to construct the
basis set. This choice is also referred to as coherent state path integral approach, as the
eigenstates of ĉ are known as coherent states. The description here changes depending on
the kind of particles we would like to treat. here, we focus on fermions and we highlight
the difference with bosons in the end of the Chapter.

Following Ref. [13], it can be shown that the eigenvalues and eigenvectors of the cre-
ation operators for fermions are

ĉi |ζ⟩ = ci |ζ⟩ (2.47)

⟨ζ | ĉ†i = ⟨ζ | c
∗
i (2.48)

where ci and c∗i are the so-called Grassmann’s numbers and any of them anticommute
with the others. The eigenstates |ζ⟩ are known as the fermionic coherent states and can be
explicitly constructed as

|ζ⟩ = exp

⎛⎜⎜⎜⎜⎜⎝−∑︂
i

ci ĉ†i

⎞⎟⎟⎟⎟⎟⎠ |0⟩ = ⎛⎜⎜⎜⎜⎜⎝1 −∑︂
i

ci ĉ†i

⎞⎟⎟⎟⎟⎟⎠ |0⟩. (2.49)

Here, only the zero-th and first-order terms survive, since repeated applications of the
creation operator to the |0⟩ return 0. It is possible to show the following closure relation
for these states ∫︂

d(c, c∗) exp

⎛⎜⎜⎜⎜⎜⎝−∑︂
i

c∗i ci

⎞⎟⎟⎟⎟⎟⎠ |ζ⟩⟨ζ | = 1 (2.50)

with
∫︁

d(c, c∗) ≡
∏︁

i

∫︁
dci

∫︁
dc∗i . An expression for the expectation value on any operator

in second-quantized form can be obtained by including a completeness relation in terms
of a generic basis {|n⟩} of the Fock space different from the coherent states into Eq. (2.30)

⟨A⟩ =
1
Z

Tr
[︂
e−(Ĥ−µN̂)β Â

]︂
=

1
Z

∑︂
n

⟨n| e−(Ĥ−µN̂)β Â|n⟩. (2.51)
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This leads to the expression

⟨A⟩ =
1
Z

∑︂
n

⟨n| e−(Ĥ−µN̂)β Â
∫︂

d(c, c∗) exp

⎛⎜⎜⎜⎜⎜⎝−∑︂
i

c∗i ci

⎞⎟⎟⎟⎟⎟⎠ |ζ⟩⟨ζ |n⟩ (2.52)

=
1
Z

∫︂
d(c, c∗) exp

⎛⎜⎜⎜⎜⎜⎝−∑︂
i

c∗i ci

⎞⎟⎟⎟⎟⎟⎠∑︂
n

⟨n| e−(Ĥ−µN̂)β Â|ζ⟩⟨ζ |n⟩. (2.53)

The next step would be to bring the number ⟨ζ |n⟩ to the left. Since this involves commu-
tation of Grassmann numbers, we have to recall the explicit expression for the fermionic
coherent states to do that

|ζ⟩⟨ζ |n⟩ =

⎛⎜⎜⎜⎜⎜⎝1 −∑︂
i

ci ĉ†i

⎞⎟⎟⎟⎟⎟⎠ |0⟩⟨0| ⎛⎜⎜⎜⎜⎜⎝1 −∑︂
i

c∗i ĉi

⎞⎟⎟⎟⎟⎟⎠ |n⟩
= ⟨0|

⎛⎜⎜⎜⎜⎜⎝1 −∑︂
i

(−1) c∗i ĉi

⎞⎟⎟⎟⎟⎟⎠ |n⟩ ⎛⎜⎜⎜⎜⎜⎝1 −∑︂
i

ci ĉ†i

⎞⎟⎟⎟⎟⎟⎠ |0⟩ = ⟨−ζ |n⟩|ζ⟩ (2.54)

where the sign −1 appears when we exchange the Grassmann numbers. No commutation
relation has to be used on the operators, since ⟨0|ĉi |ζ⟩ is within the expectation value.
Putting this equation inside the previous one and recalling that

∑︁
n |n⟩⟨n| = 1, we get

⟨A⟩ =
1
Z

∫︂
d(c, c∗) exp

⎛⎜⎜⎜⎜⎜⎝−∑︂
i

c∗i ci

⎞⎟⎟⎟⎟⎟⎠ ⟨−ζ | e−(Ĥ−µN̂)β Â|ζ⟩. (2.55)

The next step is to use the Trotter-Suzuki decomposition, that has the form

e−(Ĥ−µN̂)β = lim
M→+∞

[︃
e−(Ĥ−µN̂) βM

]︃M
(2.56)

to transform the integrals over Grassmann variables into a path integral. The details are
discussed in books, such as Ref. [13]. The important result is that

⟨A⟩ =
1
Z

∫︂
D[c, c∗]e−S[c,c∗]A[c, c∗], (2.57)

where we introduced the symbol for the path integral D[c, c∗] = lim
M→+∞

M−1∏︁
m=0

∏︁
i

dci,m dc∗i,m
with m the label of the corresponding imaginary-time slice. Additionally, we have defined
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the electronic action

S[c, c∗] = lim
M→+∞

β

M

M−1∑︂
m=0

(︄
c∗i,m+1

[︄ci,m+1 − ci,m

β/M
− µci,m

]︄
+ H[c∗m+1, cm]

)︄
=

=

∫︂ β

0
dτ

(︂
c∗i,τ (∂τ − µ) ci,τ + H[c∗τ, cτ]

)︂
(2.58)

where now the fermionic variables carry an additional time index m in the discrete form
and τ in the continuous expression after we take the limit to infinity. The only caveat here
is that we assumed that the operator Â is written in the normal order, that means that the
creation operators are located before all the annihilation operators.

Notable examples are the partition function, that can be written as

Z =

∫︂
D[c, c∗] e−S[c,c∗] (2.59)

and the single-particle Green’s function that becomes

Gi j(τ) = −
1
Z

∫︂
D[c, c∗] e−S[c,c∗]ci,τc

∗
j,0. (2.60)

The big advantages of this formalism is that everything is written in a functional form using
Grassmann variables instead of operators and that path integral expressions are already
written in a time-ordered way. Of course, by following this route, we pay a price, since it
is not immediately clear how to evaluate path integral expressions.

Very similar considerations hold for bosonic fields, even though the eigenstates of
the bosonic annihilation operators, the bosonic coherent states, are indexed over complex
numbers. As a consequence, bosonic variables commute within the path integral.

2.2.5 Key formulas for path integral evaluation
Up to this point, it is not possible to directly evaluate the path integrals discussed above. In
order to to do actual calculations, we need to have a practical way of computing them. This
is possible only in a limited number of cases. The most important example is a quadratic
action in the Grassmann variables. Considering a quadratic action with classical fermionic
sources η(∗) in the form

S0[c, c∗, η, η∗] = −
∑︂

i j

c∗i
(︂
G−1

)︂
i j

c j +
∑︂

i

ηi c∗i +
∑︂

i

ci η
∗
i , (2.61)
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where we have included the time indices inside the Latin letter for simplicity, the key ob-
servation for the evaluation of the partition function and the correlation functions in the
path integral formalism is to notice that, apart from the continuous limit in the imaginary-
time labels, the expression for Z0 with action (2.61) is nothing more than a multidimen-
sional version of a Gaussian integration for Grassmann variables. This means that the
corresponding path integral (with external sources) can be evaluated as

Z0[η, η∗] =
∫︂
D[c, c∗] e−S0[c,c∗,η,η∗] = det

(︃
Ĝ
−1

)︃
exp

⎧⎪⎪⎨⎪⎪⎩∑︂
i j

η∗i Gi j η j

⎫⎪⎪⎬⎪⎪⎭ . (2.62)

Eq. (2.62) is particularly interesting, because it has two use cases. It can be used from left
to right to solve a path integral with a quadratic action or to remove a fermionic degree
of freedom if fermions with different flavors are involved, a procedure which is known as
"integrating out" a fermionic field. Additionally, it can be used from right to left within
a path integral

∫︁
D[η, η∗] over the η(∗) variables to introduce a new fermionic field. This

operation is effectively the inverse operation of integrating out and it is known as Hubbard-
Stratonovich transformation. It allows to rewrite quartic actions in terms of a quadratic
action coupled to a new field, and, despite its deceptively complicated formulation, it has
a simple connection with the Gaussian integral.

Thanks to Eq. (2.62), it is possible to take successive functional derivatives of this
expression to compute n-particle correlation functions in the form

⟨︂
ci1 ...cinc

∗
j1 ...c

∗
jn

⟩︂
=

(−1)n

Z0

δ(2n)Z0[η, η∗]
δη∗i1 ...δη

∗
in
δη j1 ...δη jn

⃓⃓⃓⃓⃓
⃓
η,η∗≡0

=
∑︂
p∈P

sgn(p)
n∏︂
α=1

Giα jp(α) (2.63)

= det
(︂
Ĝiα jβ

)︂
α,β=1,...,n

(2.64)

where we defined the set of permutations over the numbers α = 1, ..., n as P. This ex-
pression is a very important result, as the last expression is precisely the definition of the
determinant of an n×n matrix. This result is known as Wick’s theorem, in its path integral
formulation [23]. The case of n = 1 corresponds to the single-particle Green’s function in
the non-interacting case so that, restoring the time indices, we get

Gi j(τ) = −
⟨︂
ci(τ)c∗j(0)

⟩︂
= Gi j(τ, 0) (2.65)

In a similar way, if we consider real bosonic fields b, the integral (2.62) has be replaced
by an integral over complex variables that lead to the very well known expression for
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Gaussian integration

Zb
0[η] =

∫︂
D[b] e−

∑︁
i j bi Ai j b j+

∑︁
i ηi bi =

[︂
det

(︂
Â
)︂]︂− 1

2 exp

⎧⎪⎪⎨⎪⎪⎩∑︂
i j

ηi

(︂
A−1

)︂
i j
η j

⎫⎪⎪⎬⎪⎪⎭ . (2.66)

Wick’s theorem then states that the non-interacting correlation functions can be ob-
tained in a very similar way as for fermions, with the difference that the determinant is
replaced by the permanent, as

⟨︁
bi1 ...bin

⟩︁
=

1
Z0

δ(n)Zb
0[η]

δηi1 ...δηin

⃓⃓⃓⃓⃓
⃓
η≡0

=
∑︂
p∈P

n∏︂
α=1

A−1
iα jp(α)

= perm
(︃[︂

Â
−1]︂

iα jβ

)︃
α,β=1,...,n

(2.67)

2.2.6 Perturbation theory
In the case of a non-quadratic action, it is in general not possible to directly compute the
path integral. However, the path integral is particularly useful for developing perturbation
theory, since we are working with exponential functions of Grassmann numbers instead of
operators.

In particular, if we consider an action in the form

S[c, c∗, η, η∗] = S0[c, c∗, η, η∗] + ξV[c, c∗], (2.68)

where S 0 is the Gaussian action (2.61), V is a possibly non-Gaussian perturbation with
strength represented by the real number ξ. The path integral can be rewritten using the
Taylor expansion of the exponential as

Z[η, η∗] =
∫︂
D[c, c∗] e−S0[c,c∗,η,η∗]−ξV[c,c∗] =

∫︂
D[c, c∗] e−S0[c,c∗,η,η∗]

+∞∑︂
n=0

(−ξV[c, c∗])n

n!

=
⟨︂
e−ξV[c,c∗]

⟩︂
0
, (2.69)

provided the sum converges, a matter that will be discussed in more detail later on. Given
an expression for V, it is in principle possible to apply (2.64) for the computation of the
terms in the summation.

If we consider the Hamiltonian (2.19) for electrons on a lattice, the perturbationV rep-
resents an interaction between two particles. This term describes two incoming particles
that interact with each other with strength U l1l2l3l4

i jmn and then they are scattered away. In the
action formalism, we can write the action in a compact way as

S[c, c∗] = −
∑︂

i j

c∗iG
−1
i j c j +

∑︂
i jmn

Ui jmnc∗i c∗jcncm, (2.70)
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where the Latin index is a short-hand notation for i = {Ri, li, σi, τi}. The perturbative
expansion can be easily visualized in terms of Feynman diagrams. Indeed, if we represent
the interaction Ui jmn as the vertex of a graph with four connections and Gi j as an oriented
line that can be attached to this vertex and that represents the propagation of a free fermion,
the perturbative term at order n in the series can be written as a planar graphs obtained by
connecting n vertices with lines in all the possible ways. These graphs are known as
Feynman diagrams. A diagram at order n is characterized by n closed loops. The partition
function has no external indices and it can be consequently represented as a collection of
"bubbles", no matter if they are all connected or not.

Figure 2.1: The diagrammatic representation of the terms with four and two Grassmann vari-
ables of the interacting quartic action S[c, c∗] of Eq. (2.70).

The Green’s function Gi j(τ) can be obtained by applying two times the functional
derivative to Eq. (2.69)

Gi j(τ) = −

⟨︂
ci,τc

∗
j,0e−ξV[c,c∗]

⟩︂
0⟨︁

e−ξV[c,c∗]⟩︁
0

. (2.71)

By expanding order-by-order in terms of the interaction, we may realise that the de-
nominator simply cancels the disconnected terms that would appear in the series. Hence,
the expansion for the Green’s function, and all the expectation values of operators, con-
sist only of fully connected Feynman diagrams. This result is known as the linked-cluster
theorem [12, 13].
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Figure 2.2: The diagrammatic representation of the first few terms of the expansion for the
partition function Z and the Green’s function Gi j of the interacting quartic action S[c, c∗] of
Eq. (2.70).

2.2.7 Dyson’s equation for the Green’s function
At this point, we can derive an equation of motion for the Green’s function which is also
known as Dyson’s equation. We start by calculating the expression

∑︂
k

G−1
ik Gk j = −

1
Z

∫︂
D[c, c∗]

⎛⎜⎜⎜⎜⎜⎝∑︂
k

G−1
ik ck

⎞⎟⎟⎟⎟⎟⎠ c∗je
−S0[c,c∗]−ξV[c,c∗], (2.72)

where we recall that Gi j is the Green’s function for the non-interacting reference action
and Gi j is the Green’s function of the interacting theory. We notice that, by combining
Eqs. (2.62) and (2.65), we can get the quantity in brackets by differentiating S0[c, c∗] with
respect to c∗i . After that, we can also anticommute the derivative and c∗j to get

∑︂
k

G−1
ik Gk j =

1
Z

∫︂
D[c, c∗] c∗j

(︄
δ

δc∗i
e−S0[c,c∗]

)︄
e−ξV[c,c∗]. (2.73)

We then use the chain rule to obtain that

δ

δc∗i

(︂
e−S0[c,c∗]−ξV[c,c∗]

)︂
=

(︄
δ

δc∗i
e−S0[c,c∗]

)︄
e−ξV[c,c∗] + e−S0[c,c∗]

(︄
δ

δc∗i
e−ξV[c,c∗]

)︄
=

(︄
δ

δc∗i
e−S0[c,c∗]

)︄
e−ξV[c,c∗] − ξ

(︄
δ

δc∗i
V[c, c∗]

)︄
e−S0[c,c∗]−ξV[c,c∗]. (2.74)

Plugging back in the previous equation, we get∑︂
k

G−1
ik Gk j =

1
Z

∫︂
D[c, c∗] c∗j

(︄
δ

δc∗i
+ ξ

δ

δc∗i
V[c, c∗]

)︄
e−S0[c,c∗]−ξV[c,c∗]. (2.75)
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Figure 2.3: The diagrammatic representation of the self-energy Σi j and of the Dyson’s equa-
tion (2.78), relating the Green’s function Gi j of the interacting quartic action S[c, c∗] of
Eq. (2.70) denoted by a thick line, Σi j and the non-interacting Green’s function Gi j.

We can then integrate by parts the first term, getting δi j, and we can define the self-
energy Σi j through the expression

ξ

⟨︄
c∗j

δ

δc∗i
V[c, c∗]

⟩︄
≡

∑︂
k

ΣikGk j. (2.76)

This term is absent if the interaction is zero, hence it carries the contribution to the single-
particle Green’s function due to the fact that the propagating particle interacts with the
the rest of the system. In a perturbative picture in the interaction, Σi j represents all the
possible scattering mechanisms between a single-particle propagating in the interacting
system at all the possible orders. In the language of Feynman diagrams, it consists in the
sum of all the connected diagram with two external points that cannot be split into two
valid diagrams by cutting a fermionic line. These diagrams are also known as one-particle
irreducible diagrams. This leads to the Dyson’s equation in the form∑︂

k

G−1
ik Gk j = δi j +

∑︂
k

ΣikGk j. (2.77)

The terms can be reshuffled and the equation can be written in the final form as

Gi j = Gi j +
∑︂

kl

GikΣklGl j. (2.78)

This derivation holds for every form of the interaction V irrespective of the form of
the non-interacting Green’s function. Additionally, it is possible to derive an analogous
equation for bosons, which is formally identical to (2.78). The formula (2.78) will be
extensively used in the following chapters.
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3 Quantum embedding for strong
correlations

3.1 Strongly correlated electronic systems

3.1.1 What are strong correlations?
The simplest definition of strong correlations in electronic systems is a regime where
the electrons cannot be described in any way as non-interacting particles. This can be
reformulated by saying that in a strongly correlated regime electrons acquire some kind
of collective behavior. In order to develop strong correlations, the electrons in the system
need to strongly interact with each other by means of the Coulomb interaction. This is the
case in Mott scenario, when some components of the interaction in Eq. (2.21) are strong
enough compared to the hopping terms [24, 25]. Alternatively, the interaction strength
among the electrons can be relatively weak and the electrons can still interact strongly
with each other at low enough temperature. This case is known as the Slater scenario [26].
At the same time, interactions should not be too strong, otherwise the system turns into an
atomic system where electrons are frozen into their positions.

A general characteristic of strong correlations is that they destroy the usual picture
provided by bandstructure theory. According to bandstructure theory, electronic properties
can be described by single-particle Bloch eigenstates in the form εkσl, where l indicates
the band, σ the electronic spin and k is the quasi-momentum in the Brillouin zone of the
lattice. In this case, the non-interacting Green’s function can be computed exactly and
reads

Gkσl =
1

iν + µ − εkσl
, (3.1)

where k = (k, ν). By replacing ν = −iE + δ with δ −→ 0, this expression corresponds
to a δ−function in real-frequency, meaning that there is no damping and, once an electron
is excited in the system, it stays in the excited state forever. Interactions among particles
modify this picture, because the particles tend to scatter with each other, leading to a renor-
malization of their energy spectrum and additionally introducing a finite lifetime. Indeed,
when the correlations electrons in solids is weak but sizeable, a good approximation is



30 Chapter 3. Quantum embedding for strong correlations

the Fermi liquid model [15], where the notion of electrons is abandoned in favor of the
concept of quasi-particles. The quasi-particle states are described similarly to the bare
electrons with the difference that they possess a self-energy Σkσl due to the fact that they
interact with each other. As a consequence, the Green’s function becomes

Gkσl =
1

iνn + µ − εkσl − Σkσl
. (3.2)

In general, the quantity Σkσl is complex, hence it leads to a broadening of the δ-function
of the bare electrons. According to the Fermi liquid theory, quasi-particles at the Fermi
level EF are not damped, meaning that in this regime they are still the most important
contribution to the properties of the system. In a Fermi liquid regime, the self-energy of
the quasi-electrons can be approximately written as a Taylor expansion around the first
Matsubara frequency

Σkσl ≈ Re (Σkσł)ν=π/β +
(︄
∂ImΣkσl

∂ν

)︄
ν=π/β

ν. (3.3)

The underlying assumption is that there is no constant imaginary part. The Green’s func-
tion can be rewritten as

Gkσl =
Zkσl

iν + µ − ε̃kσl
, (3.4)

such that, close to the Fermi level, the quasi-particle spectral function becomes

Akω ≈
∑︂
σl

Zkσlδ (ω − ε̃kσl) . (3.5)

The quantity Zσl is called quasi-particle weight and ε̃kσl = εkσl + (Σkσł)E=EF is the renor-
malized dispersion. Here, we see the effect of our assumption. When the imaginary part of
the self-energy is negligible compared to the bandwidth of the system, the excitation spec-
trum can be well described by the renormalized dispersion ε̃kσl and we can still use these
energies to define a bandstructure of the system, using the renormalized dispersion ε̃kσl.
The Fermi liquid theory is based on a perturbative approach in the interaction and on the
fact that the ground state of the interacting system is adiabatically connected to one of the
non-interacting system. As a consequence, the result is guaranteed only in the absence of
gapped states appearing in the evolution from the non-interacting to the interacting system,
a result which is known as the Gell-Mann and Low theorem [27].

However, in the limit of large interaction strength compared to the bandwidth, the
system behaves like an atomic system, where the system is described by discrete states
that have no hybridization with each other. This means that we cannot apply perturbation
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theory from the non-interacting limit up to the atomic limit, since the system develops a
gap in between and the Gell-Mann and Low theorem is not applicable any longer.

This is the reason why the self-energy in strongly correlated systems can be strongly
affected by collective effects, leading to strong modifications of the Green’s function at the
Fermi surface and even opening gaps in the spectrum. As a matter of fact, strong corre-
lations appear at the crossover between the Fermi liquid physics and the atomic physics.
Depending on which kind of physics wins this competition, we can observe a metallic sys-
tem, an insulating behavior or a pseudogap physics, where the opening of the gap occurs
only in a part of the Brillouin zone of the system. If the single-particle gap appears in
the normal phase, it is usually referred to as the Mott gap and the related transition is the
Mott transition [24, 25]. On the other hand, usually the pseudogap physics is also related
to strong spin, charge or particle-particle correlations [28–30]. The excitations in these
channels are described by two-particle correlations, as they are associated with pairing of
an electron and a hole in the case of spin and charge channels, or two electrons in the
particle-particle channel. When this is the case, the term “strong fluctuations” is also often
used, as usually the emergence of these correlations is accompanied by unusually large
responses to external electric or magnetic fields, that are in turn linked to the susceptibility
of the system in the corresponding channel.

Understanding the effect of electronic correlations in materials is currently a very ac-
tive topic of research. Strong interaction between electrons is responsible for their non-
trivial collective behavior and for the formation of a variety of different states of matter, as
for instance Mott insulating [24, 25] and unconventional superconducting [31–33] phases.
Usually, the low-energy physics of materials with strong electronic correlations is deter-
mined by a subspace of electronic bands that lie near the Fermi energy. In several situa-
tions, this correlated subspace can be effectively reduced to one band, which, for instance,
is a standard approximation for cuprate superconductors [32, 34–37]. However, in most of
the cases an accurate description of realistic materials with strong electronic correlations
usually requires to take into account several bands that originate from different orbitals
and/or atoms in the unit cell. Prominent examples of materials where the interplay of or-
bital degrees of freedom and strong correlations is believed to be of crucial importance
are vanadates [38–41], ruthenates [42–48], nikelates [49–55], and iron-based supercon-
ductors [56–65]. Even in the case of cuprates the question whether an effective three-band
model should be used instead of a single-band one is still under debate [66–75].

3.1.2 The exponential scaling of the wave function for quantum sys-
tems

The problem of many interacting electrons is a hard problem from the computational point
of view. The first manifestation of this hardness appears when we consider the scaling of
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the wave function in the case of N electrons. We consider a one-particle Hilbert spaceH (1)

with Nimp sites and with N(l)
orb orbitals on each site l. The dimension of this Hilbert space

is Ntot = 2
∑︁Nimp

l=1 N(l)
orb where the factor 2 comes from the inclusion of the possible spin

projections σ ∈ {↑, ↓}. If we consider a single-particle (or analogously N non-interacting
particles), the dimension of the full Hilbert space is just the total number of degrees of
freedom for the particle Ntot.

On the other hand, the wave function of N electrons can be conveniently decomposed
in the Fock space F as

|ψ⟩ =
∑︂
{n∈[0,1]}

an1...nNtot
|n0, n1...nNtot⟩. (3.6)

As each electronic state can be either empty or singly occupied ( |0⟩ or |1⟩ respectively),
there are 2 possibilities per site, orbital and spin. The total dimension of the Fock space is
then

D = dim (F ) = 2Ntot . (3.7)

This is the famous exponential wall that plagues the exact diagonalization method and
prevents us from obtaining exact solutions for most of the quantum many-body problems
of interest by using a direct approach.

The scaling with respect to the number of electrons can be improved if quantities like
the total particle number N̂ or spin Ŝ are conserved, as it is done in several implementations
of the exact diagonalization method (ED) [76, 77]. In this case, the Hamiltonian is block-
diagonal. If we consider for simplicity a single-orbital case per each site, each block is
only characterised by total number of particles N and number of spin up electrons N↑ and
has dimension

Dblock = CN↑
N CN−N↑

N (3.8)

where Ck
n =

(︂
n
k

)︂
= n!

k!(n−k)! is the binomial coefficient [77]. Each of these sectors can be
computed independently in parallel, so the bottleneck is represented by the largest block.
Using that the binomial coefficient Ck

n is maximum when k = n/2 if n is even (or the
floor/ceiling if it is odd) and the Stirling’s approximation for the factorial for large n, we
find that the largest block has dimension

max
N,N↑

Dblock =
(︂
CN/2

N

)︂2
−→

N>>1
22N

2πN
, (3.9)

which is an improvement over the exponential scaling, but it is still much faster than
polynomial in the number of electrons N.
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In principle, a lattice problem contains an infinite number of sites and the situation is
not significantly improved if we consider a real material with N ∼ 1023 atoms. Since a
lattice has a periodic structure, we are able to formulate the problem on an infinite lattice
in terms of a finite unit cell that in turn implies the presence of a finite Brillouin Zone.
This is very useful in the case of a non-interacting problem, but the interacting problem
is still exponential in the number of points used in the Brillouin zone, in the number of
atoms and number of orbitals per atom within the unit cell. Hence, this approach is still
not sufficient to solve the problem in a solid. For this reason, usually a finite plaquette is
the system of choice in the context of exact diagonalization. Even though calculations on
a finite plaquette can give very interesting insights on some physical processes [78], the
size of the systems that can be considered are too modest to simulate realistic materials.

3.1.3 The second curse of many-fermion systems: the sign problem
A second kind of exact and unbiased numerical methods to approach many-body quantum
systems are the quantum Monte Carlo methods. These methods work extremely well
as long as they are applied to classical or bosonic particles, resulting in an unmatched
agreement with experimental results [79] even for rather large systems. However, when
they are applied to fermionic systems [80], the computational time needed to converge
error bars below a chosen accuracy ϵ grows exponentially with number of particles N and
inverse temperature β as ∼ eβN [4]. This is the infamous fermionic sign problem [81] and
appears when we try to sample numerically the Taylor expansion of the partition function
Z of the full Hamiltonian Ĥ = Ĥ0 + Ĥ1, as

Z = Tr
[︂
e−β(Ĥ0+Ĥ1)

]︂
=

+∞∑︂
n=0

(−1)n

n!
⟨︁
(S1[c, c∗])n⟩︁

0 (3.10)

where S1[c, c∗] is the action corresponding to Ĥ1. If we consider a fermionic system de-
scribed by an action with a quadratic term S0[c, c∗] and a quartic interacting term S1[c, c∗]
of the kind of Eq. (2.70) with non-interacting Green’s function G, we can rewrite the par-
tition function using Eq. (2.64) as

Z =

+∞∑︂
n=0

∑︂
{i, j}

(−1)n

n!

⎛⎜⎜⎜⎜⎜⎝ n∏︂
m=1

Uim in+m jm jm+n

⎞⎟⎟⎟⎟⎟⎠ det
(︂
Gi1, j1 ...Gi2n, j2n

)︂
≡

∑︂
c∈C

wc (3.11)

where
∑︁
{i, j} indicates summation over the range of each of the internal variables i1, ..., i2n

and j1, ..., j2n. On the other hand, the space of configurations C contains the combination
of order n and the set of degrees of freedom of the vertices {i, j}. This way of writing
the partition function is the basis for Determinant Diagrammatic Monte Carlo (DDMC)
method [82–84]. The usual Monte Carlo sampling methods involves a stochastic sampling
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from a probability distribution, that has to be positive definite (see Section 5.1.2 for more
details). However, the expression (3.11) contain determinants, that can have negative sign.
The way of fixing this problem is to sample the sign of the configurations sgn(wc) from
the probability distribution |wc|. This means that any observable O can be obtained as

O =

+∞∑︂
n=0

(−1)n

n!
⟨︁
(S1[c, c∗])n

O[c, c∗]
⟩︁

0 . (3.12)

The expectation value of (S1[c, c∗])n
O[c, c∗] can be rewritten in terms of determinants

similarly to Eq. (3.11). In the language of Monte Carlo, the expression can be rewritten in
terms of a summation over the configurations as

O =

∑︁
c∈C

Oc sgn(wc) |wc|

⟨sgn(wc)⟩
. (3.13)

The sign in the denominator of this equation is exactly the origin of the exponentially
slow reduction of the error bars of the observables. In particular, this ⟨sgn(wc)⟩ has to be
computed with exponential accuracy ϵ, in order to obtain sensible results.

Several possible algorithms have been proposed to alleviate or even solve the sign
problem for specific classes of problems [85–89]. However, none of them is universal.
The fundamental reason behind this issue is that the problem of N interacting fermions
belongs to the computational class of complexity of NP-hard problems [4]. Indeed, it can
be shown that it is equivalent to the MAXCUT problem [90], a prototypical NP-complete
problem. A universal “solution” of the sign problem is an algorithm that allows to compute
the average sign with accuracy ϵ in polynomial time. An algorithm for the solution of the
sign problem would imply an algorithm that solves an NP-hard problem in polynomial
time, hence it would lead to the conclusion that NP ≡ P, which is widely believed to be
false.

Notably, some important classes of relevant systems, such as the single-orbital Hub-
bard model at half filling, are sign-problem free as pointed out in Ref. [83], allowing for
an exact solution using quantum Monte Carlo methods, as the DDMC method quickly
sketched here. Another very important example of system without sign problem is the
single-orbital Anderson impurity model [91]. Other approaches to reducing this com-
plexity are based on the stochastic sampling not from the partition function, but from
the distribution of Feynman diagrams, as the diagrammatic Monte Carlo algorithm. An-
other possibility is to subtract the connected diagrams, which are ultimately related to the
denominator in Eq. (3.13) hence to the sign problem, as it is done in the connected deter-
minant diagrammatic Monte Carlo algorithm (CDet). These methods will be described in
Sec. 5.
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3.1.4 Density functional theory: mapping many-body problems into
non-interacting particles

As we have seen before, the scaling of the full many-body wave function is exponential
in the number of degrees of freedom of the problem. Correspondingly, the scaling of the
dimension of the Hilbert space in the single-particle case is linear. For this reason, it is
very tempting to try to map the problem into a single-particle case.

The most successful scheme to achieve this mapping is the density functional theory
(DFT) [92]. DFT is based on the Hohenberg-Kohn theorems that establish a one-to-one
correspondence between the external potential acting on an interacting electron gas and its
density [93]. The external potential can be for instance the lattice potential. These theo-
rems allow us to write the energy of the system as a functional of the electronic density
alone. In practice, the problem is then solved by using the Kohn-Sham construction [94],
which consists in introducing a set of non-interacting Kohn-Sham quasi-particles that have
the same total energy and total energy as the original electronic problem. This allows to
formally write down a set of non-linear Schrődinger-like equations for these independent
particles that can be solved in polynomial time. Due to its computational efficiency, DFT
is for sure the most-widely used tool for materials science calculations and allows to ef-
ficiently obtain the structure and several ground state properties of many materials and
molecules. Strictly speaking, DFT is a not controllable approximation as it relies on the
construction of the unknown energy functional in terms of the density. However, this
functional cannot be exactly determined in a polynomial time on a classical machine [95],
therefore these approximations are required in order to gain insights on the properties of
the system of interest. Usually, the functional is derived based on physically-motivated
Ansatz, with parameters fitted from Monte Carlo calculations.

The incredible amount of studies based on DFT and its practical predictive power in the
ab-initio description of materials cannot be underestimated and it is based on the fact that
DFT is accurate whenever the functional representing the correlations in the energy is an
accurate approximation of the exact functional. However, approximations to the unknown
functional are empirically not able to reproduce the features of systems where the strength
of the interaction in a local basis exceeds some system-dependent threshold.

Additionally, in principle, DFT can be used to compute only observables that depend
on the ground state energy or density. The application of DFT to obtain the single-particle
band structure of the system is based on the assumption that the dispersion of the Kohn-
Sham quasi-particles coincides with that of the electrons. This assumption is empirically
valid in many cases, but it has no a-priori theoretical foundation. Moreover, since the den-
sity is a single-particle object, DFT should not be expected to give reliable answers when
it is applied to the calculation of two-particle response functions, such as susceptibilities.
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3.2 Lattice models for strongly interacting electrons

3.2.1 A general action for electrons on a lattice
All the results obtained in this thesis are valid for a general form of lattice model with
several atoms in the unit cell and possibly several orbitals per atom. We additionally
include non-local interactions. The model that we use is a multi-band extended Hubbard
model, as described in Ref. [96]. The general action for this model has the form

S = −
∑︂
k,{l},
σσ′

c∗kσl

[︂
(iν + µ)δσσ′δll′ − ε

σσ′

k,ll′
]︂

ckσ′l′ +
1
2

∑︂
q,{l},
{k},{σ}

U pp
l1l2l3l4

c∗kσl1c
∗
q−k,σ′l2cq−k′,σ′l4ck′σl3

+
1
2

∑︂
q,{l},
ς=d,m

Vς
q, l1l2, l3l4

ρς
−q, l1l2

ρςq, l4l3
+

∑︂
q,{l},
ϑ=s,t

Vϑ
q, l1l2, l3l4 ρ

∗ϑ
q, l1l2 ρ

ϑ
q, l3l4 (3.14)

In this expression, c(∗)
kσl is the Grassmann variable that describes the annihilation (creation)

of an electron with momentum k, fermionic Matsubara frequency ν, and spin projection
σ ∈ {↑, ↓}. The label l numerates the orbital and the site within the unit cell. To simplify
notations, we use a combined index k = (k, ν). Summations over momenta and frequencies
are defined as: ∑︂

k

=
1
β

∑︂
ν

1
Nk

∑︂
k

(3.15)

where again β = T−1 is the inverse temperature and Nk is the number of k-points in the
discretized Brillouin zone (BZ). The single-particle part of the lattice action (first term
in Eq. (3.14)) contains the chemical potential µ and the single-particle Hamiltonian term
εσσ

′

k,ll′ that has the following structure in the spin space: εσσ
′

k,ll′ = εk,ll′δσσ′ + i γ⃗k,ll′ · σ⃗σσ′ . The
diagonal in the spin space part εk,ll′ of this matrix contains the momentum- and orbital-
space representation of the hopping amplitudes between different lattice sites, and may
also account for the effect of the crystal field splitting (CFS) and of the external electric
field. The non-diagonal in spins contribution γ⃗k,ll′ describes the spin-orbit coupling (SOC)
in the Rashba form [97, 98] and the effect of the external magnetic field. σ⃗ = {σx, σy, σz}

is a vector of Pauli matrices.
The on-site Coulomb potential is written in the conventional (particle-particle) form

U pp
l1l2l3l4

=

∫︂
drdr′ψ∗l1(r)ψ∗l2(r

′)V(r − r′)ψl3(r)ψl4(r
′) (3.16)

where V(r − r′) is the screened Coulomb interaction and ψl(r) are localized on-site basis
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functions. The local interaction can also be rewritten in the particle-hole representation
using the following relation U ph

l1l2l3l4
= U pp

l1l4l2l3
. The remaining part of the interaction Vr

q
in Eq. (3.14) is written in the channel representation r ∈ {ς, ϑ}, where ς ∈ {d,m} denotes
charge (d) and magnetic (m ∈ {x, y, z}) channels, and ϑ ∈ {s, t} depicts singlet (s) and triplet
(t) channels. This interaction can have an arbitrary momentum q and bosonic Matsubara
frequency ω dependence as depicted by a combined index q = (q, ω). Usually, Vr

q corre-
sponds to the non-local interaction. However, it may also contain the frequency-dependent
part of the local interaction that is not included in the Ul1l2l3l4 term.

The splitting between the local and the non-local part of the interaction is not just
meant to simplify or approach. Its physical motivation is based on the fact that the non-
local interaction is strongly suppressed in metals due to screening. On the other hand,
usually band insulators are not strongly correlated, even in the case of strong interactions,
since strong correlations typically arise in the vicinity of the Fermi surface.

Standard tools for obtaining the hopping parameters of this model from ab-initio calcu-
lations, in particular DFT calculations, are based on the so called Wannier projection [99,
100], implemented in many software packages, for instance [101]. The Wannier projection
is based on the projection of the Bloch’s states obtained from DFT onto localized functions
at each site in the Brillouin zone. On the other hand, the extraction of the local U pp

l1l2l3l4
and

non-local Vς/θ
q,l1l2l3l4

components of the Coulomb interaction can be done using constrained
random phase approximation (cRPA) [102–104].

Composite fermionic variables ρr
q, l1l2

for the considered bosonic channels describe fluc-

tuations of corresponding densities around their average values ρr
q, l1l2
= nr

q, l1l2
−

⟨︂
nr

q, l1l2

⟩︂
.

The orbital-dependent charge and magnetic densities can be introduced as follows

nd
q, l1l2 =

∑︂
k,σ

c∗k+q,σl1ckσl2 , n⃗ m
q, l1l2 =

∑︂
k,{σ}

c∗k+q,σl1σ⃗σσ′ckσ′l2 (3.17)

The corresponding densities for the particle-particle channel are the following

ns
q, l1l2 =

1
2

∑︂
k

(︂
cq−k,↓l2ck↑l1 − cq−k,↑l2ck↓l1

)︂
, n∗ s

q, l1l2 =
1
2

∑︂
k

(︂
c∗k↑l1c

∗
q−k,↓l2 − c∗k↓l1c

∗
q−k,↑l2

)︂
nt0

q, l1l2 =
1
2

∑︂
k

(︂
cq−k,↓l2ck↑l1 + cq−k,↑l2ck↓l1

)︂
, n∗ t0

q, l1l2 =
1
2

∑︂
k

(︂
c∗k↑l1c

∗
q−k,↓l2 + c∗k↓l1c

∗
q−k,↑l2

)︂
nt+

q, l1l2 =
1
√

2

∑︂
k

cq−k,↑l2ck↑l1 , n∗ t+
q, l1l2 =

1
√

2

∑︂
k

c∗k↑l1c
∗
q−k,↑l2

nt−
q, l1l2 =

1
√

2

∑︂
k

cq−k,↓l2ck↓l1 , n∗ t−
q, l1l2 =

1
√

2

∑︂
k

c∗k↓l1c
∗
q−k,↓l2 . (3.18)
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They account for interactions in the singlet and triplet channels. In most physical sys-
tems, the most important channel for non-local correlations is nd

q,l1l2
, that comes from the

Coulomb interaction. However, the interactions in the other channels will be exploited in
the derivation of the dual theories in Sec. 4.

It is important to point out that this model usually is sufficient to describe a few bands
close to the Fermi surface. The embedding of these bands can have a noticeable feedback
on the properties of the extended system treated at the low level approximation from which
the parameters of the embedded system are extracted. For example, a discussion of the
problem of charge-consistency can be found in Ref. [105]. In the rest of this thesis, we
assume that the parameters of the model Hamiltonian are not significantly modified by the
solution of the embedded system. The only exception is the total number of electrons,
which can be adjusted by changing the chemical potential µ of the model system to match
the desired total number of electrons. The validity of this approach in truly ab-initio
calculations, where consistency is needed should be validated case by case and a self-
consistency loop should be implemented in cases where the approximation is not valid.

3.2.2 A multi-orbital case: the Hubbard-Kanamori model
In the result section, we mainly focus on model systems. A particularly important case is
the Hubbard-Kanamori model. In this model, the on-site Coulomb interaction term in the
Hamiltonian is parametrized in the Kanamori form [106, 107] as:

HU = U
∑︂

l

nl↑nl↓ +
∑︂
l≠l′

⎧⎪⎪⎨⎪⎪⎩U′nl↑nl′↓ +
1
2

(U′ − J)
∑︂
σ

nlσnl′σ − Jc†l↑cl↓c
†

l′↓cl′↑ + Jc†l↑c
†

l↓cl′↓cl′↑

⎫⎪⎪⎬⎪⎪⎭
(3.19)

Here, c(†)
lσ is the annihilation (creation) operator for an electron at the orbital l with the spin

projection σ ∈ {↑, ↓}. nlσ = c†lσclσ is the local spin-dependent density. In the notation of
Eq. (3.14), the non-zero components of the Kanamori interaction are

U pp
llll = U intraorbital density-density

U pp
ll′ll′ = U′ interorbital density-density

U pp
ll′l′l = J pair hopping

U pp
lll′l′ = J spin flip (3.20)

Hamiltonian (3.19) is particularly important because it represents one of the simplest
multi-orbital models that contain the features of the Hund’s physics. Indeed, this inter-
action term represent the simplest possible model for an atom where electrons interact
differently depending on the orbital they occupy (so their orbital angular momentum) and
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Figure 3.1: Simplified scheme of a lattice of sites with on-site Hubbard-Kanamori interaction.
The configurations on each column of atoms is characterized by the same energy. We addi-
tionally highlight the hopping term ti j,ll′ between different atoms i and j and bands l and l′,
which is the inverse Fourier transform of ϵk,ll′ .

on whether they have the same or different spin projection σ. If J = 0, the electrons inter-
act with a Coulomb interaction that depends only on whether they are on the same orbital
or not, no matter which spin they have. The Hund’s coupling J breaks this symmetry and
reduces the strength of the interaction if the electrons have parallel spin. This model cap-
tures the physics of superexchange and it is used to describe the physics of the so-called
Hund’s metals [107].

In our calculations, we also fix U′ = U − 2J to ensure rotational invariance [107]. In
the single-orbital case, the on-site Coulomb interaction reduces to a Hubbard form given
by the first term in Eq. (3.20).

3.2.3 A single-orbital case: the Hubbard model
When the correlated subspace consists only in a single-orbital, the local interaction Eq. (3.20)
simply reduces to the first term. The corresponding lattice model is the Hubbard model [108,
109] and it is described by the full Hamiltonian

H = −t
∑︂
⟨i j⟩, σ

c†iσc jσ + U
∑︂

i

ni↑ni↓, (3.21)

where t is the nearest-neighbor hopping. This model is very important in condensed matter
theory, as it is the simplest non-trivial model that describes the interplay between kinetic
energy (hopping term t between different sites) and potential energy (given by the local
Coulomb interaction U). The former in minimized if the electrons are delocalized in the
whole lattice, while the latter is minimized if no sites are doubly occupied. In momen-
tum space, we can introduce the dispersion εk as the Fourier transform of ti j, as done in
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Eq. (2.23). If U is small compared to the bandwidth of the system, the electrons are free
to move in the crystal and the model describes a metallic system. If U ≫ t, the system
describes an atomic system with two atomic orbitals with energies approximately ±U/2.
In this case, the system is clearly an insulator. These two phases are competing with each
other, so that somewhere in between these regimes a phase transition has to occur. This
interaction-driven metal-to-insulator transition is a realization of the Mott transition men-
tioned previously.

3.3 Quantum embedding schemes

3.3.1 Quantum embedding as dimensional reduction
As we have seen in Sec. 3.1.2 and Sec. 3.1.3, the dimensionality of the problem plays
a crucial role in hindering most efforts to accurately simulate fermionic systems. The
problem becomes particularly severe when we consider complex materials with several
atoms in the unit cell and few orbitals each. In order to make the calculations practical,
we have to reduce the complexity by reducing the size of degrees of freedom which are
described accurately. In order to achieve this goal, we notice that in many situations not
all the degrees of freedom are equally relevant to describe the physics of the system of
interest. The two main cases where only a subset of degrees of freedom plays a crucial
role are the following:

1. when we are interested in processes that involve only a specific energy scale and are
weekly affected by processes on different scales, or

2. when only a subset of the system exhibits strong interactions, while the rest is effec-
tively weakly correlated.

The first situation is very common when excitation with different energy scale appear in
the system. For example, for most applications, we can neglect the bands that do not
intersect the Fermi surface, as they are either completely full, if they lay below the Fermi
energy EF, or completely empty, if they lay above it. The second situation occurs when
s− or p− delocalized orbitals coexist with d− or f−shells that are very localized in space,
as for example in transition metal oxides. The d− and f−orbitals can be described as
strongly interacting while the interactions within the others can be neglected or treated
under simplifying assumptions.

In most cases, the rest of the system exerts an important feedback on the subsystem,
so we cannot simply forget about it altogether. However, we can split the system into
two parts, a part which contains the physics relevant to our problem and the rest. The
relevant part of the system is treated with high-level methods, that ensure a very accurate
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Figure 3.2: General scheme for quantum embedding methods. The lattice problemL, depicted
in green, is mapped into a correlated impurity problem I coupled to the remaining weakly (or
non-)interacting sites B (light blue) by a hybridization function ∆. The parameters of the
mapping, as the hybridization ∆, have to be computed according to some self-consistency
condition, that quantifies the convergence of a property of the auxiliary model I + B to the
desired physical property of the original lattice L.

description of the subsystem, while the rest is treated in a simplified way, that reduces
the complexity of the calculation. Typically, the self-consistency between the relevant
subsystem system and the rest is achieved by introducing an hybridization function ∆
between the two systems as an unknown parameter that has to be optimized by assuming
some general property of the combined system. This class of methods is referred to as
quantum embedding methods [110] and has been extensively applied in the context of
quantum chemistry [111]. The smaller relevant subsystem is often referred to as impurity.
Indeed, the quantum embedding scheme can be applied to study the properties of point
defects in solids [112], where the full system is treated within DFT and the degrees of
freedom of the point defect are solved using exact diagonalization. All the embedding
methods require the careful determination of the values of the Coulomb interaction within
the subspace, in order to avoid issues with double counting of the contributions accounted
for in the extended system.

The embedding model that we use is based on the mapping of the original lattice into
an impurity model, as described in Fig. 3.2. In particular, we have a lattice problem L,
which is too large to be solved directly, because it contains too many degrees of freedom.
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To make the problem tractable, we introduce an impurity problem consisting of a smaller
system I with few atomic sites, coupled to a non-interacting bath B. The parameters of
the I+B system are then optimized, often self-consistently, in order to reproduce a target
property of the lattice.

The embedding can be performed based on different choices of this property. As we
are interested in a statistic ensemble at finite temperature, one possibility is to use the
density-matrix ρ̂ as a central quantity to achieve the embedding. This is the case for
the density-matrix embedding theory (DMET) [113, 114]. The same quantity is central
within the rotationally-invariant slave-boson approach (RISB) [115, 116]. In particular,
the DMET method was later recognized as a limiting case of the RISB method [117].
Other important embedding schemes aim at reproducing spectroscopic experiments. These
schemes often involve dynamical quantities in the embedding. This is the case for the self-
energy in the dynamical mean field theory (DMFT) [118]. DMFT is a method that allows
to map an extended problem into an Anderson impurity problem (see Eq. (3.22)) and self-
consistently obtain an approximation to the Green’s function.

The use of the self-energy as basis for the embedding is used also in the case of the
self-energy embedding theory (SEET) [119–121]. The SEET method describes a general
way of embedding the self-energy of a smaller strongly interacting cluster within a larger,
possibly weakly interacting, system. For this reason, SEET is not directly comparable
with DMET, RISB or even DMFT. As a matter of fact, some diagrammatic extensions
of DMFT can be seen as applications of the SEET formalism [120], even though their
derivation follows completely different routes.

3.3.2 The Anderson’s impurity model
Most of the quantum embedding methods are based on the assumption that the lattice
problem can be efficiently mapped into a smaller system consisting of a single or a few
correlated sites coupled to an environment made of non-interacting bath sites. This prob-
lem is known as an impurity model. This model was initially proposed to explain the
Kondo effect, that appears when the nearly-free conduction electrons in a material interact
with the spin of magnetic point defects, inducing a minimum of the resistivity at a char-
acteristic temperature TK [122]. The impurity model is also extremely important in the
description of quantum dots and molecular junctions [123].

In this section, we describe a general multi-orbital and multi-site impurity problem,
so that we do not introduce any distinction between a multi-orbital impurity and a cluster
impurity containing different sites. The larger system is described as a collection of non-
interacting degrees of freedom of the bath indicated with b ∈ B. The atomic system I is
modeled as a discrete set of orbitals {l} populated by interacting electrons. The coupling
between the bath sites and the atomic system is described in terms of hopping processes
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Figure 3.3: Pictorial representation of an impurity model coupled to several non-interacting
bath sites (left) and to an infinite number of bath sites (right). The latter mimics the coupling
to an infinite lattice with a continuous density of states (DOS). In limit of an infinite lattice,
we integrate out the bath sites and we obtain the frequency-dependent hybridization function
∆, written in Eq. (3.26).

Vσ
lb: an electron can be destroyed on the impurity and created on a bath site and vice versa.

We assume without loss of generality that this process conserves spin.
An impurity model is described by the following Hamiltonian

Ĥimp =
∑︂
σ

εσσ
′

ll′ ĉ†σlĉσ′l′ + Hint[ĉ†, ĉ]⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
Ĥatom

+
∑︂
bσ

εb f †σb fσb⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
Ĥbath

+
∑︂
blσ

Vσ
lbĉ†σl fσb + V∗, σlb f †σbĉσl⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

Ĥhyb

. (3.22)

where the electronic interaction on the atom is written in general form as

Hint[ĉ†, ĉ] =
1
2

∑︂
{l},{σ}

U pp
l1l2l3l4

ĉ†σl1
ĉ†σ′l2 ĉσ′l4 ĉσl3 (3.23)

The impurity problem in the Hamiltonian form can be solved by diagonalizing the Hamil-
tonian (exact diagonalization or ED) when the number of sites is small. Current com-
putational tools allow to diagonalize systems up to few dozens of atoms before hitting
the exponential wall. The problem can be also conveniently formulated in the action for-
malism. The reason for choosing this route is that the resulting impurity action can be
formulated in terms of the impurity electrons only, and the bath sites can be integrated out.

By using the path integral formulation of Section 2.2.4, the problem (3.22) can be
converted to the action formalism as

Zimp =

∫︂
D[c∗, c]

∫︂
D[ f ∗, f ] exp

⎧⎪⎪⎨⎪⎪⎩−∑︂
νσll′

c∗νσl

[︂
(iν + µ)δσσ′δll′ − ε

σσ′

ll′

]︂
cνσl′ + Hint[c∗, c]

⎫⎪⎪⎬⎪⎪⎭
× exp

⎧⎪⎪⎨⎪⎪⎩−∑︂
νbσ

f ∗νσb (iν + µ − εb) fνσb +
∑︂
νblσ

(︂
Vσ

lbc∗νσl fνbσ + V∗, σlb f ∗νσbcνσl

)︂⎫⎪⎪⎬⎪⎪⎭ (3.24)
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The bath degrees of freedom in the equation above can be integrated out by means of
Gaussian integration, since they appear only up to second-order in the bath f (∗) operators.
The integration leads to

Zimp =

∫︂
D[c∗, c] exp

⎧⎪⎪⎨⎪⎪⎩−∑︂
νσll′

c∗νσl

[︂
(iν + µ)δσσ′δll′ − ε

σσ′

ll′ − ∆
σσ′

ν,ll′

]︂
cνσl′ + Hint[c∗, c]

⎫⎪⎪⎬⎪⎪⎭
(3.25)

where we have defined the hybridization function as

∆σσ
′

ν,ll′ =
∑︂

b

Vσ
lb V∗, σl′bσ′

iν − εb
(3.26)

In the case of a collection of a finite number of bath sites, the density of states (DOS) of
the impurity problem consists in several discrete levels available. If we want to correctly
capture the physics of a lattice problem, it is desirable to have a continuous DOS, as shown
in Fig. 3.22. In order to achieve this goal, we have to take the limit of an infinite number of
bath sites. The Anderson impurity model (AIM) is the limit of an infinite number of bath
sites for this model [124], so the case when b = 1, ...,+∞. In this case, the bath index b is
often replaced by a sum over the momenta k within the Brillouin zone of a lattice in the
continuous limit. In this case, the hybridization function ∆ν is the central quantity when
describing the impurity problem. Most of the solvers based on Monte Carlo schemes work
in the action formalism and make use of the hybridization function.

3.3.3 Difference between density matrix embeddings and DMFT
The impurity model described above is a suitable candidate for the embedding, as it can
describe conduction electrons thanks to the bath sites, strongly interacting localized elec-
trons on the atomic sites by means of the local parameters ϵσσ

′

ll′ and U pp
l1l2l3l4

, and the hop-
ping between them through the hopping terms Vσ

lb in the Hamiltonian formalism or the
hybridization function ∆σσ

′

ν,ll′ in the action formalism.
The next step is the choice of the target quantity of the lattice that we want to re-

produce with the embedding strategy. The difference between the embedding methods
described previously regards precisely the observables which are extracted from the im-
purity problem. DMET and RISB aim at extracting information about static observables,
while DMFT aims at the Green’s function (or alternatively the self-energy). This turns out
to be the main reason why the computational complexity of the DMET and RISB methods
in substantially lower than that of DMFT, but also the reason why DMFT results in a better
approximation of the lattice problem for a given impurity model. However, the possibility
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of using cluster impurity problems at a lower computational cost can favor RISB in some
cases.

In the DMET/RISB methods, the quantity to be computed is the single-particle density
matrix of the embedded problem, that can be then written as

ρ̂1P =

(︄
ρimp ρhyb

ρ†hyb ρbath

)︄
with

(︂
ρimp

)︂σσ′
ll′
= ⟨ĉ†lσĉl′σ′⟩imp(︂

ρhyb

)︂σσ′
ll′
= ⟨ f̂

†

lσĉl′σ′⟩imp. (3.27)

where the c(†) and f (†) are the impurity and bath creation (annihilation) operators respec-
tively.

Despite the very different theoretical foundation of the two methods, the only practical
difference appears in the number of free parameters to be optimized in the two methods.
Both methods require only a finite number of bath levels that are related to the number
of sites not included in the impurity problem N − Nimp and work using the Hamiltonian
representation of the impurity model (3.22). Specifically, in the DMET formalism the
only free parameters of the auxiliary impurity model to be optimized are the local energies
ϵσσ

′

ll′ . In the RISB method, on the other hand, an additional matrix R that describes the
quasiparticle weight of each band is optimized as well [125]. This parameter is computed
as

Rσσ′

ll′ =
∑︂
σ′′l′′

{︃(︂
ρ̂imp

)︂σσ′′
ll′′

[︂
ρ̂hyb

(︂
1 − ρ̂hyb

)︂]︂−1/2
}︃σ′′σ′

l′′l′
. (3.28)

DMFT differs from these two embedding methods as it is based on the self-consistent
optimization of the impurity Green’s function, which can be obtained from the path inte-
gral (3.25) as

gσσ
′

ν,ll′ = −⟨cνσlc
∗
νσl′⟩imp (3.29)

and it is a function of the non-hermitian hybridization function ∆σσ
′

ν,ll′ .
The impurity Green’s function contains information both about the atomic physics

related to the subsystem and about the physics of the delocalized electrons that can hop
onto the atomic subsystem.

Since the Green’s function is a function of the Matsubara frequency ν (or alternatively
of the imaginary time τ), an infinite number of equations should in principle be available
in order to compute it for each Matsubara frequency νn with indices n = 0, ...,+∞. The
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impurity problem contains a sufficient number of degrees of freedom to determine inde-
pendently gν for each Matsubara frequency if the number of bath sites is infinite. The
determination of the Green’s function in DMFT will be discussed in the next section.

The embedding between all these methods were shown to be connected to each other
by Ayral et al. in Ref. [125]. In their analysis, it turns out that DMFT can be regarded
as the limit of RISB when the number of bath sites goes to infinity. From the impurity
Green’s function, we can define the self-energy of the impurity

(︂
Σ

imp
ν

)︂σσ′
ll′

using the Dyson
equation (︂

g−1
ν

)︂σσ′
ll′
= (iν + µ)δll′δσσ′ − ∆

σσ′

ν,ll′ −
(︂
Σ

imp
ν

)︂σσ′
ll′

. (3.30)

In the DMFT approach, the self-energy at each frequency is determined numerically in
an independent fashion for each frequency ν, so that no explicit functional form is as-
sumed for

(︂
Σ

imp
ν

)︂σσ′
ll′

. DMFT assumed that the non-local self-energy of the lattice is Σσσ
′

k,ll′ ≈(︂
Σ

imp
ν

)︂σσ′
ll′

. On the other hand, it is possible to compute the self-energy in DMET and RISB.
Both methods assume a precise form of the self-energy. Explicitly, they read

Σσσ
′

k,ll′ ≈ −ε
σσ′

ll′ for DMET, (3.31)

Σσσ
′

k,ll′ ≈
{︂
iν

[︂
1 − (R† · R)−1

]︂
− ε + R · ε · (R†)−1

}︂σσ′
ll′

for RISB. (3.32)

The DMET self-energy is fully local and it is not dynamical at all, while the RISB self-
energy is linear in frequency and contains information about the quasi-particle weights R,
which appear in the coefficients of the linear term of the self-energy in terms of ν. Since the
self-energy in both methods contain a constant term, both methods contain the necessary
information to describe the Mott transition. Indeed, both DMET and RISB have been
applied to the one- and two-dimensional Hubbard model [117, 126], leading to accurate
spectra in regimes where the computational cost of DMFT is prohibitive.

3.3.4 DMFT: self-consistency equations and methods for its solution
In this section, we will dive into the DMFT method, which is currently the most-widely
used method for describing strong correlations in solids [127, 128], also due to its feasi-
bility in combination with DFT [129, 130]. The reason behind its success is that DMFT
approximates very well the local physics of realistic materials and it is able to capture
the Mott transition [107]. Indeed, DMFT assumes neither weak interactions among elec-
trons nor a narrow bandwidth, so in this sense it is non-perturbative in both the interaction
strength and the bandwidth. DMFT consists in assuming a mapping between the original
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Figure 3.4: DMFT self-consistency cycle for the determination of the lattice Green’s function.

lattice problem of Eq. (3.14) with only local interaction U pp
l1l2l3l4

S = −
∑︂
k,{l},
σσ′

c∗kσl

[︂
(iν + µ)δσσ′δll′ − ε

σσ′

k,ll′
]︂

ckσ′l′ +
1
2

∑︂
q,{l},
{k},{σ}

U pp
l1l2l3l4

c∗kσl1c
∗
q−k,σ′l2cq−k′,σ′l4ck′σl3

(3.33)

and Anderson impurity model, described by the action in the path integral Eq. (3.25),
namely

Simp = −
∑︂
νσ

c∗νσ
[︂
(iν + µ)δσσ′δll′ − ∆

σσ′

ν,ll′

]︂
cνσ +

1
2

∑︂
ω,{l},
{ν},{σ}

U pp
l1l2l3l4

c∗νσl1c
∗
ω−ν,σ′l2cω−ν′,σ′l4cν′σl3

(3.34)

Historically, this mapping was derived as an exact result in the limit of infinite connectiv-
ity z of the lattice, where z is the number of nearest-neighbor sites [118, 131]. For this
reason, DMFT provides the exact solution of the Hubbard model on the Bethe lattice. The
application to finite connectivity is motivated by scaling reasons, as the DMFT solution is
the leading term when z is sufficiently large.
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The main assumption behind the DMFT mapping is that the self-energy is local, i.e. it
does not depend on momentum. This approximation can be summarized as

Σσσ
′

k,ll′ ≈
(︂
Σ

imp
ν

)︂σσ′
ll′
= (iν + µ)δll′δσσ′ − ∆

σσ′

ν,ll′ −
(︂
g−1
ν

)︂σσ′
ll′

(3.35)

where the gν and ∆ν are the Green’s function and hybridization function of the impurity
model. The only parameter that must be adapted in order to fully characterise the optimal
model is the impurity hybridization function ∆ν. Here comes the second important piece
of the DMFT workflow: the self-consistency condition to determine ∆ν. The condition of
choice is that the Green’s function of the impurity problem has to be equal to the local
Green’s function of the lattice Gloc

ν =
∑︁

k∈BZ
Glatt

kν . This condition can be explicitly written as

(︂
Gloc
ν

)︂σσ′
ll′
≡ gσσ

′

ν,ll′ , (3.36)

which is a set of equations in ν, σ(′) and l(′). This equation implicitly determines a self-
consistency condition on the hybridization function, where the form of the local Green’s
function explicitly reads

(︂
Gloc
ν

)︂σσ′
ll′
=

∑︂
k∈BZ

(︄
1

iν + µ − εk − Σ
latt
kν

)︄σσ′
ll′
=

∑︂
k∈BZ

(︄
1

g−1
ν + (∆ν − εk)

)︄σσ′
ll′

. (3.37)

Since at fixed ∆ν the quantities gν and Σimp
ν are uniquely defined and can be obtained by

solving the corresponding Anderson impurity problem, we can write the implicit equation
for ∆ν as

∑︂
k∈BZ

(︄
1

g−1
ν + (∆ν − εk)

)︄σσ′
ll′
= gσσ

′

ν,ll′ . (3.38)

The DMFT self-consistency scheme is depicted in Fig. 3.4.

3.3.5 Solving the Anderson impurity model
The solution of the AIM to extract the gν is far from trivial, as the computation of gν from
Eq. (3.29) based on the action (3.34) cannot be done directly, as the action is non-quadratic.

Without aiming at a thorough review of the methods, we summarise the main routes for
the exact solution of the impurity model that have been pursued recently. One possibility is
to use exact diagonalization, where a finite number of bath sites is considered such that the
Hamiltonian (3.22) can be used instead of the action (3.34) [132]. Convergence as a func-
tion of the number of bath sites has to be checked, keeping in mind the exponential scaling
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of the wave function as a function of the number of bath sites considered. This approach
has seen a recent revival thanks to the use of efficient algorithms for the calculation of the
first few eigenvectors of sparse Hamiltonians based on the Lanczos method [133]. Re-
cently, an efficient implementation of ED for solving the impurity problem on a quantum
hardware has been suggested in Ref. [134].

A second main route consists in using quantum Monte Carlo methods (QMC). The first
method deployed for the study of impurity problems is the Hirsch-Fye QMC method [135],
which is based on the discrete Trotter factorization of the imaginary time. The most
used class of stochastic algorithms for quantum impurity problems is the continuous-time
QMC, in its various flavors based on the strong-coupling expansion (CT-INT) [136], the
introduction of auxiliary fields (CT-AUX) [137–139] or on the hybridization expansion
(CT-HYB) [140–142]. The detailed discussion of these methods is beyond the scope of
this thesis and can be found in Ref. [143].

In addition to these widely used methods, it is worth mentioning that the diagrammatic
Monte Carlo based on connected determinants [144] as well as the inchworm QMC algo-
rithm [145] were recently proposed as methods to overcome the sign problem in multi-
orbital quantum impurity models. Other techniques have been efficiently applied to the
solution of the Anderson impurity model such as numerical renormalization group ap-
proach [146] and density-matrix renormalization group approach (DMRG) [147] have
been employed for the solution of the Anderson impurity problem. The DMRG can be
efficiently combined with matrix product states (MPS) [148, 149].

3.4 Methods for the study of non-local correlations

3.4.1 Considerations about single-site DMFT
The main strength of DMFT compared to most of the other methods is that it is a non-
perturbative method. In this sense, there is no assumption that the interaction is much
smaller or much larger than the bandwidth. However, it assumes that the connectivity of
the lattice is large (or alternatively that the number of dimensions of the lattice is large).
In low dimensions, this is not a-priori a justified assumption as d ≤ 3 ≪ +∞, so a the
use of DMFT is based on the assumption that correlations among electrons act mostly at
the local level. When this is not the case, the DMFT approximation is not valid. One
evident failure of DMFT in low dimensions is probably the prediction of spurious phase
transitions that would be allowed in larger dimensions but not in one- or two-dimensional
cases, as discussed in more detail in Chapter 5.

Currently, the main parameters that one can use to determine the choice of the method
are how weak the local interaction is with respect to the bandwidth of the system. When
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the local interaction is strong compared to the bandwidth, for example, we expect weak-
coupling approaches to give a poor description of the system, as they assume an underlying
Fermi liquid structure, while the actual physics moves in the direction of a Mott insulating
phase. Single-site DMFT is able to capture the Mott transition and also the coexistence of
metallic and insulating phases that accompanies this first order transition in both single-
band [150–156] and multi-orbital [157–161] systems.

Despite its numerous successes, single-site DMFT is insufficient in some cases, be-
cause this theory accounts only for local correlation effects. Even if the interaction is
purely local, it can give rise to important non-local correlation effects that extend over
several lattice sites. Another obvious limitation is that DMFT does not account for non-
local Coulomb interactions at all in its single-site version. This problem can be partially
cured by using the extended DMFT (EDMFT), which introduces a bosonic hybridization
function Yω in addition to the electronic hybridization function described so far [162–165].
Despite accounting for non-local interactions, EDMFT is still based on the assumption of
locality of the correlations.

3.4.2 Cluster methods
A route to go beyond the local picture provided by DMFT, while still taking advantage
of the non-perturbative description of local electronic correlations, consists in consider-
ing a finite cluster of lattice sites instead of a single-site impurity problem. The cluster
problem allows to take into account spatial correlation effects within the cluster [29, 127,
166–170]. As a matter of fact, considering even only short-range correlations beyond
single-site DMFT significantly modifies the shape of the coexistence region for the Mott
transition and drastically reduces the critical value of the interaction. This modification
can be observed when a 2×2 cluster is considered in DMFT, instead of a single-site [155].

However, cluster extensions of DMFT can treat only correlations (or interactions)
within the cluster size. Considering a finite-size cluster also limits the kind of orderings of
the system that can be observed. Indeed, a finite-size cluster corresponds to considering
only certain points the the Brillouin zone, usually restricted to the some high-symmetry
points. Considering a 2 × 2- or 4 × 4-cluster is sufficient to describe short-range anti-
ferromagnetism or charge ordering between nearest-neighbors, but cannot describe the
effects of long range fluctuations, that can have even more dramatic consequences [171].
Long-range collective modes, such has plasmons and magnons described by the density
and magnetic susceptibilities, with incommensurate structure, such as spin spirals, are de-
scribed by a wavevector q which does not lie at high-symmetry points of the Brillouin
zone of the lattice, hence information about these modes would be lost. The effect of con-
sidering a small cluster in the presence of incommensurate orders and the corresponding
loss of resolution on the orderings present in the system has been studied in Ref. [172].



3.4. Methods for the study of non-local correlations 51

Additionally, these methods are usually based on quantum Monte Carlo solvers that
often suffer from a fermionic sign problem in multi-orbital calculations [173]. This is-
sue can be cured only in very specific cases by a proper design of the Monte Carlo up-
dates [174–177]. Other solvers for cluster problems rely on the exact diagonalization
(ED) method [32, 178], the complexity of which scales exponentially with the number of
orbitals and the total number of impurity sites plus bath sites.

Attempts to go beyond these assumptions of locality using unbiased quantum Monte
Carlo (QMC) methods are so far limited to specific parameter regimes or symmetries due
to the fermionic sign problem [177, 179–184].

3.4.3 Diagrammatic techniques
The other main route to study non-local correlations in condensed matter physics is rep-
resented by diagrammatic methods, based on considering only certain classes of Feynman
diagrams. Unfortunately, most of the available theoretical methods for multi-orbital sys-
tems are limited to a weakly correlated regime, such as the GW [92, 185–187] or the
fluctuation-exchange approximation (FLEX) [188–192]. The GW method is able to de-
scribe non-local charge fluctuations and, as such, it can be combined with DMFT in order
to efficiently account for non-local density-density interactions [40, 193–207]. An issue
common to all the approaches based on the GW formalism is that only charge fluctua-
tions are taken into account, but spatial magnetic fluctuations are neglected. In most of the
realistic materials, the Coulomb interaction is the main source of correlations, especially
in three-dimensional systems. In these cases, spin fluctuations are strongly screened by
charge fluctuations, hence the effect of the local interaction is well described by DMFT.
However, in cases where spin fluctuations cannot be neglected altogether, the idea of com-
bining diagrammatic approaches with DMFT is still a particularly promising route towards
an accurate description of the non-local correlation effects [208]. In all these cases, the
key idea of these approaches is to use the DMFT impurity problem as a reference system
for a diagrammatic expansion in order to describe the non-local electronic correlations in
the form of the most relevant Feynman diagrams. Since all these methods combine the
local self-energy Σimp

ν of the strongly interacting impurity problem with additional non-
local self-energy contributions Σrest

k coming from the non-local, presumably more weakly
interacting extended system, they can be considered as applications of the ideas behind
the SEET formalism. Examples of such theories are the the dynamical vertex approx-
imation (DΓA) [209–214], the triply irreducible local expansion (TRILEX) [215–217],
the dual fermion (DF) [218–223], the dual boson (DB) [224–230], and the dual TRILEX
(D-TRILEX) [48, 231–235] methods.

Among them, DF, DB, and DΓA have the most sophisticated diagrammatic struc-
tures that allow for a very accurate description of both local and non-local correlation
effects [236]. At the same time, these methods generally suffer from high computational
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costs that limit the application of these approaches in multi-band setups. For instance, the
diagrammatic expansion in DF, DB, and DΓA involves the exact local four-point vertex
function of the reference system. Evaluating this frequency-dependent object in a multi-
band case is very expensive numerically, because it contains four external points that have
independent frequency and band indices. Additionally, using the four-point vertex in a di-
agrammatic expansion is frequently hindered by the need of inverting the Bethe-Salpeter
equation (BSE), which requires large computational resources both in terms of time for
the calculation and of memory consumption for storing the full momentum and frequency
dependent vertices. For this reason, among the three methods only the DΓA [211–213]
and the second-order DF [237] approaches have been extended to the multi-band case so
far.

Figure 3.5: Sketch of the main diagrams included in the diagrammatic methods beyond
DMFT. Dual theories (DF, DB and D-TRILEX) are discussed separately. Straight lines de-
scribe the DMFT Green’s function. Wiggly lines represent the renormalized interaction in the
theory (or the bare interaction in DΓA).

On the contrary, GW+DMFT and TRILEX methods have a much simpler diagram-
matic structure compared to DF, DB, and DΓA, which makes the former very attractive
for multi-band calculations. Indeed, as we have already mentioned, GW+DMFT has been
intensively used many realistic calculations. This simplicity is shown in Fig. 3.5. On
the contrary to the other diagrammatic extensions of DMFT, the GW+DMFT does not
require the evaluation of three- or four-point correlation functions of the impurity. This
is a major advantage from the computational point of view, since the evaluation of these
correlation functions using Monte Carlo methods is computationally expensive and ef-
ficient ways based on the Lanczos algorithm to extract correlation functions from exact
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diagonalization are limited to the single-particle Green’s function and the susceptibility
(two-point correlation functions) [238]. However, the GW+DMFT sacrifices vertex cor-
rections that can be crucial for an accurate description of magnetic, optical and transport
properties [48, 204, 239–246]. The TRILEX method partially cures these drawbacks by
considering both the charge and magnetic fluctuations, and also by introducing vertex cor-
rections in the form of the local Hedin’s vertex [247] of the DMFT impurity problem.
The diagrammatic expansion based on the three-point vertices is still relatively simple,
because it does not require to invert the BSE in momentum and frequency space. This is
a clear computational advantage over DF, DB, and DΓA. However, TRILEX is affected
by a double-counting problem known as Fierz ambiguity [248–250] when the charge and
magnetic fluctuations are taken into account simultaneously [217]. Additionally, vertex
corrections in the original formulation of TRILEX are included in diagrams in an asym-
metric way. This diagrammatic structure leads to inconsistent results in a strong-coupling
limit [251] and does not have a correct symmetry in the orbital [48] space. Overall better
performances of the TRILEX method were shown in the weak coupling limit when a sym-
metric version of the theory was used [236]. This symmetric version, however, does not
solve the Fierz ambiguity and partially sacrifices the consistency of the theory. In order to
resolve the aforementioned issues of GW+DMFT and TRILEX, the D-TRILEX approach
was recently developed [231].
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4 Dual theories of strong correlations

4.1 A dual space with weakly correlated particles

4.1.1 The idea behind the dual theories
In this Chapter, we introduce a class of diagrammatic extensions of DMFT, known as dual
theories, that are able to deal with systems with non-local strong correlations. Here, we
follow very closely the derivation presented by the author of this thesis and collaborators
in Ref. [96].

Dual theories consist in a formally exact way of performing a perturbative expansion
around a generic interacting starting point [222, 223]. As a consequence, they are in prin-
ciple exact. Approximations have to be introduced at later stages in order to make the
calculations tractable. The arbitrary interacting reference point is often chosen to be an
impurity problem, consisting of one or more atoms coupled to the external environment
by means of an hybridization function. The reason for this choice is that the impurity
problems mimics the separation that physically occurs in a lattice between itinerant elec-
trons, nearly free to hop from one atomic site to another, and localized electrons on d− or
f−orbitals.

The introduction of the impurity reference problem starts with the arbitrary separa-
tion between the "local" degrees of freedom of an impurity problem and the "non-local"
lattice degrees of freedom. These are then coupled with each other by introducing the
up-to-now arbitrary hybridization function that can be fixed with a proper choice of the
self-consistency procedure. From this perspective, it is clear that dual theories consist in a
formally exact way of performing a quantum embedding by separating a strongly interact-
ing subspace and a weakly interacting one. This correspondence is strengthened further by
solving the impurity problem exactly and then applying approximations to the non-local
part, in a very similar way to what is done in lattice quantum embedding methods, where
approximations are imposed on the interacting part of the weakly interacting subsystem.

The two main representatives of these theories are the dual fermion theory (DF), origi-
nally proposed in Ref. [218], and the dual boson theory (DB) [224]. The DF is formulated
with an action without non-local interactions and as such in requires only the additions of
dual fermionic variables f and f ∗. The DB additionally allows us to treat non-local inter-
actions Vq and achieves this goal by decoupling the non-local interactions by introducing
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Figure 4.1: Scheme to obtain observables from the dual theories.

bosonic fields φ. Since the DF technique can be regarded as a particular application of the
DB technique to cases where non-local interactions are absent, we will focus on the latter.
We will then refer to the theory as DF if the interactions are only local and DB otherwise.

The last part of the Chapter is devoted to the derivation of an approximation to the DB
theory, the partially bosonized action in dual space, originally introduced in Refs. [231]
and extended to the multi-band case in Ref. [96]. This approximation allows us to derive
a particularly efficient numerical method, the D-TRILEX method, described in Chapter 6.

From the conceptual point of view, all the theories belonging to this class follow the
same scheme, sketched in Fig. 4.1:

1. The original electronic action of Eq. (3.14) is divided into a local part Simp and a
non-local part Srem, such that Slatt = Simp + Srem.

2. An arbitrary hybridization function is added to Simp and subtracted from Srem.

3. One or several path integral transformations known as the Hubbard-Stratonovich
transformation are exploited to introduce new fields in the theory. These can be
fermions f and f ∗ or bosons φ.

4. The original fermions now appear only in the impurity problem and their coupling to
the dual fields is at most quadratic. They are integrated out using exact path integral
relations. This leads to an action defined only in terms of the dual particles S̃.

5. Apply the required approximations to simplify the action S̃ and/or to restrict the set
of diagrams considered in the diagrammatic expansion.

6. Use exact relations between the dual and the lattice observables to compute the
observables of the original lattice problem.
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4.1.2 Some relevant results of the dual theories
The dual theories have been so far mainly applied to single-orbital lattice models. In the
early stages of the theory, it was shown that the DF was able to capture antiferomagnetic
fluctuations as well as the formation of Fermi arcs in a two-dimensional Hubbard model
on a square lattice [219].

Another important phenomenon well-captured by the dual theories is the Mott metal-
to-insulator transition. Even though the DMFT approach captures this transition for the
Hubbard model, DMFT predict a too large value for the Hubbard interaction U, because it
lacks non-local correlations that generally give a more insulating character to the system.
However, even the simple second-order dual fermion describes the transition to a much
higher level of accuracy, in rather good agreement with cluster DMFT calculations [252].

From a computational point of view, the development of the ladder dual fermion (LDF)
set the current standard for dual calculations. This approximation is based on considering
only a subclass of diagrams, as shown later in Chapter 5. This approximation is able to
predict long range charge [253] as well as magnetic fluctuations [254]. In the same work,
it was also argued that the LDF method fulfills the Mermin-Wagner theorem, that forbids
the spontaneous breaking of continuous symmetries in dimensions lower than three [255],
provided that the size of the lattice (or the corresponding number of k-points in momen-
tum space) and the number of Matsubara frequencies is large enough. Furthermore, a
LDF study of the cubic Hubbard model showed a phase boundary for the antiferromag-
netic state appearing in the model in close agreement with exact quantum Monte Carlo
calculations [256].

The same considerations hold true for its extension to the extended Hubbard model,
the ladder dual boson methods, that were shown to predict a phase boundary for the CDW
in very good agreement with cluster calculations [225–227]. The presence of a resonant
antiferromagnetic mode in a model for cuprates was discussed in Ref [228].

Calculations beyond the ladder approximation with a larger subset of diagrams, known
as parquet approximation, was applied to the low-energy description of magnetic and su-
perconductive excitations in the Hubbard model, showing a phase diagram for parameters
[257]. These results predict a superconductive ground state for the doped Hubbard model
with next- and next-to-next-nearest-neighbor hopping t′ and t′′ with all the parameters set
to those predicted for the BSSCO high-temperature superconductor. These results have
been obtained under the approximation that a single Matsubara frequency is the only rele-
vant contribution. Other attempts towards a parquet dual fermion methods were based on
some assumption to simplify the form of the vertex functions [258, 259].

Going beyond the single-site impurity starting point is a challenging task, because
these theories require the computation of the four-point vertex functions of the impu-
rity problem and computationally expensive inversions of Bethe-Salpeter equations in fre-
quency and orbital indices. some applications of dual theories beyond the single-orbital
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and single-site Hubbard model were attempted. As an example, an early attempt in the
direction of extending the DF method to multi-site systems was discussed in Ref. [260],
when the LDF method was applied to the problem of quantum criticality in an honeycomb
lattice. The second-order DF method was recently extended to the multi-band case, based
on the well-established machinery of the TRIQS software library [261] in Ref. [237],
where calculations based on a dimer reference system are reported. The viability of the
DF method based on a cluster reference system was investigated in Refs. [262, 263]. Re-
cently, this concept was used in Ref. [78] to show that superconductivity can be efficiently
described at the level of an Hubbard plaquette.

We conclude by mentioning that, based on dual techniques, it was possible to derive
effective Heisenberg model for spin densities and Ising models for charge densities, that
not only allow one to calculate all possible exchange interactions, but also provide the full
description of the dynamics of the system [264–266].

4.2 Multi-orbital dual boson action

4.2.1 Introducing the dual variables
We start with isolating the reference (impurity) problem from the initial lattice action (3.14).
Here, we consider a very general impurity model with possibly many orbitals and many
sites. Additionally, we consider also a bosonic hybridization function in addition to the
fermionic hybridization discussed in the context of DMFT. The addition of the bosonic
hybridization is necessary to treat non-local correlations, but can also be used to describe
physical bosonic excitations of the system, such as phonons. The action for this general
reference system

Simp = −
∑︂
ν,{l},
σσ′

c∗νσl

[︂
(iν + µ)δσσ′δll′ − ∆

σσ′

ν,ll′

]︂
cνσ′l′ +

1
2
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q,{k},
{l},{σ}

U pp
l1l2l3l4

c∗k,σ,l1c
∗
q−k,σ′,l2cq−k′,σ′,l4ck′,σ,l3

+
1
2
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Yς
ω, l1l2, l3l4

ρς
−ω, l1l2

ρςω, l4l3
+
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Yϑ
ω, l1l2, l3l4 ρ

∗ϑ
ω, l1l2 ρ

ϑ
ω, l3l4 (4.1)

contains momentum-independent parts of the lattice action (3.14). The fermionic ∆σσ
′

ν,ll′

and bosonic Yr
ω, l1l2, l3l4

hybridization function enter the impurity problem of the (extended)
DMFT [118, 162–165, 267]. In Eq. (4.1) these quantities are written in a general frequency
ν (ω), band l, spin σ, and channel r ∈ {ς, ϑ} dependent form. The explicit definition of
these channels can be found in the discussion of Eq. (3.14). These hybridization func-
tions are usually determined according to some self-consistency condition and their form
depends on the choice of the reference system and on the initial problem. The composite
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variables ρr
ω, l1l2

coupled to the bosonic hybridization functions are defined in Eqs. (3.17)-
(3.18), with the obvious difference that being local they do not carry a spatial momentum.

The remaining part of the lattice action reads

Srem =
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(4.2)

Here, we defined the quantities ε̃σσ
′

k,ll′ = ε
σσ′

k,ll′ − ∆
σσ′

ν,ll′ and Ṽr
q, l1l2, l3l4 = Vr

q, l1l2, l3l4
− Yr

ω, l1l2, l3l4
, so

that the relation

Slatt = Simp + Srem (4.3)

still holds true. At this point, we want to decouple the non-local terms in Eq. (4.2) and, in
order to achieve this goal, we need to introduce new fermionic fields f , f ∗ and new bosonic
fields φr. This is the first step of the famous dual boson transformation. The reason for
decoupling the ρr

q,l1l2
terms is to remove the quartic operators associate with these terms.

The reason for decoupling the fermionic fields will become clear after few more steps. In
order to achieve this goal, we perform the following exact path integral transformation,
know as Hubbard-Stratonovich transformations, to the partition function of Srem

exp

⎧⎪⎪⎨⎪⎪⎩−∑︂
k,{l}

∑︂
σσ′

c∗kσl ε̃
σσ′

k,ll′ ckσ′l′

⎫⎪⎪⎬⎪⎪⎭ =
D f

∫︂
D[ f ∗, f ] exp

⎧⎪⎪⎨⎪⎪⎩∑︂
k,{l}

∑︂
σσ′

(︃
f ∗kσl

[︂
ε̃−1

k

]︂σσ′
ll′

fkσ′l′ − f ∗kσlckσl − c∗kσl fkσl

)︃⎫⎪⎪⎬⎪⎪⎭ (4.4)

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−1
2

∑︂
q,{l},ς

ρς
−q, l1l2

Ṽς
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The terms D f = −det [ε̃k] and D−1
φ = −

√︂
det

[︂
Ṽq

]︂
can be neglected, because they do not

affect the calculation of expectation values. After these transformations the lattice action
takes the following form
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where we additionally introduced source fields η(∗) and j(∗) for fermionic c(∗) and composite
ρ(∗) variables, respectively. These fields will be used to derive the connection between the
dual and lattice quantities.

4.2.2 Integrating out the lattice operators

Now, we shift fermionic f (∗) → f̂
(∗)
= f (∗) − η(∗) and bosonic φ(∗) → φ̂(∗) = φ(∗) − j(∗) vari-

ables to decouple the source fields from original Grassmann variables c(∗). After that the
lattice action becomes
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Ṽς

q

)︂−1
]︃

l1l2, l3l4
φ̂ςq, l4l3

−
∑︂

q,{l},ϑ

φ̂∗ϑq, l1l2

[︃(︂
Ṽϑ
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At this step, we notice that all the operators corresponding to lattice fermions are coupled
only locally and they are connected non-locally only through the dual variables. For this
reason, we can integrate out the reference problem Simp by explicitly taking the path inte-
gral over fermionic c(∗) variables. For a matter of convenience, we additionally rescale the
fermionic f (∗) and bosonic φ(∗) fields by the arbitrary parameters B−1

ν and α−1
ω , respectively.

These parameters could have been introduced in Eqs. (4.4)- (4.5) and (4.6) directly in the
definition of the HS transformation but were omitted to keep a light-weight notation. They
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can be fixed depending on convenience and are useful in practical implementations.∫︂
D[c∗, c] exp

{︄
− Simp −

∑︂
k,ll′,σσ′

(︃
f ∗kσl

[︂
B−1
ν

]︂σσ′
ll′

ckσ′l′ + c∗kσl

[︂
B−1
ν

]︂σσ′
ll′

fkσ′l′

)︃
−

∑︂
q,{l},{r}

(︂
φς
−q, l1l2

[α−1
ω ]ςς

′

l1l2, l3l4
ρς
′

q, l4l3
+ φ∗ϑq, l1l2[α

−1
ω ]ϑϑ

′

l1l2, l3l4ρ
ϑ′

q, l3l4 + ρ
∗ϑ
q, l1l2[α

−1
ω ]ϑϑ

′

l1l2, l3l4φ
ϑ′

q, l3l4

)︂ }︄
=

Zimp exp
{︄
−

∑︂
k,{l},{σ}

f ∗kσ1l1

[︂
B−1
ν

]︂σ1σ2

l1l2
gσ2σ3
ν,l2l3

[︂
B−1
ν

]︂σ3σ4

l3l4
fkσ4l4

−
1
2

∑︂
q,{l},{ς}

φς1
−q, l1l2

[α−1
ω ]ς1ς2

l1l2, l′1l′2
χς2ς3
ω, l′1l′2, l

′
3l′4

[α−1
ω ]ς3ς4

l′3l′4, l3l4
φς4

l4l3

−
∑︂

q,{l},{ϑ}

φ∗ϑ1
q, l1l2

[α−1
ω ]ϑ1ϑ2

l1l2, l′1l′2
χϑ2ϑ3
ω, l′1l′2, l

′
3l′4

[α−1
ω ]ϑ3ϑ4

l′3l′4, l3l4
φϑ4

q, l3l4
− F̃ [ f , φ]

}︄
(4.9)

Zimp, gσσ
′

ν, ll′ and χrr′
ω, l1l2, l3l4

are respectively the partition function, the Green’s function, and
the susceptibility of the reference (impurity) problem. Following the rescaling, the fields
φ(∗)ˆ are redefined as φ(∗)ˆ = φ(∗)α−1 − j(∗).

4.2.3 The dual boson action
After integrating out the reference system Simp, the action contains only the dual degrees
of freedom and takes the form of the dual boson problem

S̃ = −
∑︂
{l′},{σ′}

f̂
∗

kσ1l1 Bσ1σ
′
1

ν, l1l′1

[︃(︂
(εk − ∆ν)−1

− gν
)︂−1

]︃σ′1σ′2
l′1l′2

Bσ′2σ2

ν, l′2l2
f̂ kσ2l2 + F̃ [ f , φ]

−
1
2

∑︂
q,{l},{ς}

{︄
φ̂ς
−q, l1l2

[︃(︂
Ṽς

q

)︂−1
]︃

l1l2, l3l4
φ̂ςq, l4l3

− φς1
−q, l1l2

[α−1
ω ]ς1ς2

l1l2, l′1l′2
χς2ς3

q, l′1l′2, l
′
3l′4

[α−1
ω ]ς3ς4

l′3l′4, l3l4
φς4

q, l4l3

}︄

−
∑︂

q,{l},{ϑ}

{︄
φ̂∗ϑq, l1l2

[︃(︂
Ṽϑ

q

)︂−1]︃
l1l2, l3l4

φ̂ϑq, l3l4 − φ
∗ϑ1
q, l1l2

[α−1
ω ]ϑ1ϑ2

l1l2, l′1l′2
χϑ2ϑ3
ω, l′1l′2, l

′
3l′4

[α−1
ω ]ϑ3ϑ4

l′3l′4, l3l4
φϑ4

q, l3l4

}︄
. (4.10)

where the dual interaction F̃ collects all the non-quadratic terms in the dual fields. The
quadratic terms describe the bare propagators of the dual particles. In particular, the dual
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Figure 4.2: Diagrammatic representation of the terms in the dual boson action (4.10). In
particular, the fermionic Green’s function of Eq. (4.11) is indicated by a straight line, while
the bosonic propagator in Eq. (4.12) is represented by a wiggly line. The first few terms
contributing to F [ f , f ∗, φ] are also shown.

fermions f (∗) are described by the bare dual fermionic Green’s function that has the fol-
lowing form

G̃
σ1σ2

k, l1l2 =
∑︂
{l′},{σ′}

Bσ1σ
′
1

ν, l1l′1

[︃(︂
(εk − ∆ν)−1

− gν
)︂−1

]︃σ′1σ′2
l′1l′2

Bσ′2σ2

ν, l′2l2
. (4.11)

On the other hand, the propagation of the dual bosons ϕ(∗), described by the dual bosonic
propagator

W̄
r1r2
q, l1l2, l3l4 =

∑︂
{r′},{l′}

α
r1r′1
ω, l1l2, l′1l′2

[︃(︂
Ṽ−1

q − χω
)︂−1

]︃r′1r′2

l′1l′2, l
′
3l′4
α

r′2r2

ω, l′3l′4, l3l4
. (4.12)

Since the impurity problem is not Gaussian, the dual interaction F̃ contains an infinite
series of terms, that can be written as

F̃ [ f , φ] =
∑︂
{k},{l},{σ}

+∞∑︂
n=2

(−1)n

n!

[︂
Γ(2n)
ν1...ν2n

]︂σ1σ
′
1...σnσ

′
n

l1l′1...lnl′n
f ∗k1σ1l1 fk′1σ

′
1l′1
... f ∗k1σ1l1 fk′nσ′nl′n

+
∑︂
{k},{l},{σ}
{q},{L},{ς}

+∞∑︂
n,m=1

(−1)n

n!m!

[︂
Γ(2n,m)
ν1...ν2n;ω1...ωm

]︂σ1σ
′
1...σnσ

′
n; ς1...ςm

l1l′1...lnl′n; L1L′1...LmL′m
f ∗k1σ1l1 fk′1σ

′
1l′1
... f ∗k1σ1l1 fk′nσ′nl′n

φς1
q1,L1L′1

...φςm
qm,LmL′m

(4.13)
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where Γ(2n) is the connected 2n-point (or n−particle) impurity vertex, while Γ(2n,m) is the
(2n+m)-point (or n−fermion-m−boson) impurity vertex. The expression for these vertices
are connected to the correlation functions of the impurity problem as[︂

Γ(2n,m)
ν1...ν2n;ω1...ωm

]︂σ1...σ2n; ς1...ς2m

l1...l2n; L1...L2m
=∑︂

{σ},{l},{ς}

⟨︃
c
ν1σ1l1

c∗
ν2,σ2l2

...c
ν2n−1σ2n−1l2n−1

c∗
ν2n,σ2nl2n

ρ
ς1

ω1, L1L2
... ρ

ςm

ωm, L2m−1L2m

⟩︃
connected

×
[︂
B−1
ν1

]︂σ1σ1

l1l1
...

[︂
B−1
ν2n

]︂σ2nσ2n

l2nl2n

[︂
α−1
ω1

]︂ς1ς1

L1L′1L1L2
...

[︂
α−1
ωm

]︂ς2m−1ς2m

L2mL2m−1L2m−1L2m
. (4.14)

The expressions for the vertices with only external fermionic lines are given by the
same formula with Γ(2n) = Γ(2n,m=0). Indeed, the only reason to separate them is to dis-
tinguish between purely fermionic interactions and interaction terms involving external
bosons. The latter are absent in the dual fermion theory. Due to energy conservation, the
sum of the frequencies of the vertex has to be 0, reducing the number of free external
frequencies by one. In principle, all these correlation functions can be computed using
suitable impurity solvers. However, due to the increasing number of external legs, the
number of external parameters to be sampled increases fast with the number of legs, mak-
ing the sample of high-order correlations functions unpractical. Additionally, the diagram-
matic structure of the theory becomes more complicated, when higher-order diagrams are
included.

4.2.4 The dual boson action in the two-particle approximation
The calculation of the impurity correlation functions beyond the first few vertices with
n > 2 and m > 1 is numerically challenging and was rarely attempted [222, 268]. For
this reason, the standard approximation considers only the four-point fermionic vertex and
three-point vertex coupling two fermions with one boson [269]. The validity of this ap-
proximation for many models and in several ranges of parameters is confirmed by bench-
marks with methods that do not rely on the dual transformation [220, 221, 263]. Following
this standard approximation used in most of the works based on dual theories, the inter-
action part of the action F̃ [ f , φ] is truncated at the level of the two-particle correlations
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Figure 4.3: Representation of the effect of the dual transformation on the lattice. The original
lattice problem is transformed into a lattice of impurities, solved exactly. The original hopping
ti j and non-local interaction Vi j between sites on the original lattice is replace by hopping of
dual fermions and bosons between impurities with renormalized hopping terms, as highlighted
in the figure. In turn, the particles can interact with each other through the various interaction
terms contained in F̃ [ f , φ].

functions and reads

F̃ [ f , φ] ≃
∑︂
q,{k}

∑︂
{ν},{l}

∑︂
{σ},ς/ϑ

×

×

{︄
1
4

[Γνν′ω]σ1σ2σ3σ4
l1l2l3l4

f ∗kσ1l1 fk+q,σ2l2 f ∗k′+q,σ4l4 fk′σ3l3 + Λ
σσ′ς
νω, l1, l2, l3l4

f ∗kσl1 fk+q,σ′,l2φ
ς
q, l4l3

+
1
2

(︂
Λσσ

′ϑ
νω, l1, l2, l3l4 f ∗kσl1 f ∗q−k,σ′,l2φ

ϑ
q, l3l4 + Λ

∗σσ′ϑ
νω, l1, l2, l3l4 φ

∗ϑ
q, l3l4 fq−k,σ′,l2 fkσl1

)︂ }︄
(4.15)
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Here, Γ = Γ(4) is the four-point (fermion-fermion) vertex function, which is related to the
exact correlation function of the reference problem. Using

[Γνν′ω]σ1σ2σ3σ4
l1l2l3l4

=
∑︂
{l′},{σ′}

⟨︂
cνσ′1l′1

c∗ν+ω,σ′2l′2
c∗ν′σ′3l′3

cν′+ω,σ′4l′4

⟩︂
connected

×

×
[︂
B−1
ν

]︂σ′1σ1

l′1l1

[︂
B−1
ν+ω

]︂σ′2σ2

l′2l2

[︂
B−1
ν′

]︂σ′3σ3

l′3l3

[︂
B−1
ν′+ω

]︂σ′4σ4

l′4l4
. (4.16)

The three-point (fermion-boson) vertex functions Λ = Γ(2,1) have the following form

Λ
σ1σ2ς
νω, l1, l2, l3l4

=
∑︂

{σ′},{l′},ς′

⟨︃
cνσ′1l′1

c∗ν+ω,σ′2l′2
ρς
′

−ω, l′3l′4

⟩︃ [︂
B−1
ν

]︂σ′1σ1

l′1l1

[︂
B−1
ν+ω

]︂σ′2σ2

l′2l2

[︂
α−1
ω

]︂ς′ς
l′3l′4l3l4

(4.17)

Λ
σ1σ2ϑ
νω, l1, l2, l3l4

=
∑︂

{σ′},{l′},ϑ′

⟨︂
cνσ′1l′1

cω−ν,σ′2l′2
ρ∗ϑ

′

ω, l′3l′4

⟩︂ [︂
B−1
ν

]︂σ′1σ1

l′1l1

[︂
B−1
ω−ν

]︂σ′2σ2

l′2l2

[︂
α−1
ω

]︂ϑ′ϑ
l′3l′4l3l4

(4.18)

Λ
∗σ1σ2ϑ
νω, l1, l2, l3l4

=
∑︂

{σ′},{l′},ϑ′

⟨︂
ρϑ
′

ω, l′3l′4
c∗ω−ν,σ′2l′2

c∗νσ′1l′1

⟩︂ [︂
B−1
ν

]︂σ′1σ1

l′1l1

[︂
B−1
ω−ν

]︂σ′2σ2

l′2l2

[︂
α−1
ω

]︂ϑ′ϑ
l′3l′4l3l4

(4.19)

If the scaling parameters are chosen as Bσσ′

ν,ll′ = gσσ
′

ν,ll′ and

αrr′
ω, l1l2, l′1l′2

= δl1,l′1
δl2,l′2

δrr′ +
∑︂
l3,l4

Ũr
ω, l1l2, l3l4 χ

rr′
ω, l3l4, l′1l′2

(4.20)

where Ũr
ω, l1l2, l3l4 = Ur

l1l2, l3l4
+ Yr

ω, l1l2, l3l4
is the bare interaction of the reference system and

Ur is defined in Eqs. (4.53)–(4.56), then Λσσ
′r

νω takes the usual form of the three-point ver-
tex of the reference system [18, 227, 230–232, 269]. This rescaling is used in Chapter 5.
However, in this case the vertex functions contain the inverse of the impurity Green’s func-
tion gσσ

′

ν,ll′ , that has to be determined numerically, usually by means of CT-QMC methods.
If this is the case, then a big numerical noise can appear at large frequencies at large fre-
quencies. At the same time, inverting αrr′

ω does not lead to the numerical noise due to the
presence of a delta-function term in Eq. (4.20). For this reason in the implementation of
the D-TRILEX method, we keep αrr′

ω in the form of Eq. (4.20) and set Bσσ′

ν,ll′ = δσσ′δll′ to
avoid divisions by noisy impurity quantities. The calculation of the vertex functions from
common impurity solvers is discussed in Sec. 4.6.
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4.3 Partially bosonized theory in the multi-orbital frame-
work

4.3.1 The partially bosonized approximation for the four-fermion ver-
tex

In this section, we aim at deriving a simplified version of the dual boson action of Eq. (4.10)
with interaction truncated at the two-particle level (4.15), by removing the four-point
vertex from the theory. This has important computational consequences, because ver-
tex (4.16) is rather numerically expensive to compute, especially in a multi-orbital case.
Additionally, this is the first step to derive the D-TRILEX theory discussed in later chap-
ters. The reader not interested in the details of this derivation can directly skip the next
subsections and go to Sec. 4.3.5.

This approximation allows us to eliminate the four-point vertex from the theory by
introducing arbitrary counter terms w̄ in the lattice action according to Eq. (4.40) that
should approximately cancel the four-point vertex. First, we rewrite the interaction of the
reference system (4.1) in the particle-hole representation

1
2

∑︂
ω,{ν}

∑︂
{l},{σ}

U pp
l1l2l3l4

c∗νσl1c
∗
ω−ν,σ′l2cω−ν′,σ′l4cν′σl3 =

1
2

∑︂
ω,{ν}

∑︂
{l},{σ}

U pp
l1l2l3l4

c∗νσl1cν′σl3c
∗
ω−ν,σ′l2cω−ν′,σ′l4 −

1
2

∑︂
ν,{l},σ

U pp
l1l2l3l4

c∗νσl1cνσl4δl2l3 =

1
2

∑︂
ω,{ν}

∑︂
{l},{σ}

U ph
l1l2l3l4

c∗νσl1cν+ω,σl2c
∗
ν′+ω,σ′l4cν′σ′l3 −

1
2

∑︂
ν,{l},σ

U pp
l1l2l3l4

c∗νσl1cνσl4δl2l3 (4.21)

which results in the following relation U ph
l1l2l3l4

= U pp
l1l4l2l3

. Now, let us antisymmetrize the
interaction as (quadratic terms in Grassmann c(∗) variables are neglected for simplicity)

1
2

∑︂
ω,{ν}

∑︂
{l},{σ}

U ph
l1l2l3l4

c∗νσl1cν+ω,σl2c
∗
ν′+ω,σ′l4cν′σ′l3 =

1
8

∑︂
ω,{ν}

∑︂
{l},{σ}

Γ0 d
l1l2l3l4

(︂
c∗νσl1cν+ω,σl2

)︂ (︂
c∗ν′+ω,σ′,l4cν′,σ′,l3

)︂
+

1
8

∑︂
ω,{ν}

∑︂
{l},{σ}

Γ0 m
l1l2l3l4

(︂
c∗νσ1l1σ⃗σ1σ2cν+ω,σ2l2

)︂ (︂
c∗ν′+ω,σ4l4σ⃗σ4σ3cν′σ3l3

)︂
(4.22)
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in order to obtain the expressions for the bare four-point vertex functions of the reference
system in the particle-hole channel

Γ0 d
l1l2l3l4 = 2U ph

l1l2l3l4
− U ph

l1l3l2l4
= 2U pp

l1l4l2l3
− U pp

l1l4l3l2
, Γ0 m

l1l2l3l4 = −U ph
l1l3l2l4

= −U pp
l1l4l3l2

(4.23)

Alternatively, the interaction can also be antisymmetrized in the particle-particle channel

1
2

∑︂
ω,{ν}

∑︂
{l},{σ}

U ph
l1l2l3l4

c∗νσl1cν+ω,σl2c
∗
ν′+ω,σ′l4cν′σ′l3 =

1
4

∑︂
ω,{ν},{l}

Γ0 s
l1l2l3l4

(︂
c∗ν↑l1c

∗
ω−ν↓l2 − c∗ν↓l1c

∗
ω−ν,↑l2

)︂ (︂
cω−ν′,↓l4cν′↑l3 − cω−ν′,↑l4cν′↓l3

)︂
+

1
4

∑︂
ω,{ν},{l}

Γ0 t
l1l2l3l4

(︂
c∗ν↑l1c

∗
ω−ν,↓l2 + c∗ν↓l1c

∗
ω−ν,↑l2

)︂ (︂
cω−ν′,↓l4cν′↑l3 + cω−ν′,↑l4cν′↓l3

)︂
+

1
2

∑︂
ω,{ν},{l}

Γ0 t
l1l2l3l4

{︄ (︂
c∗ν↑l1c

∗
ω−ν,↑l2

)︂ (︂
cω−ν′,↑l4cν′↑l3

)︂
+

(︂
c∗ν↓l1c

∗
ω−ν,↓l2

)︂ (︂
cω−ν′,↓l4cν′↓l3

)︂ }︄
(4.24)

which gives the corresponding bare vertex functions

Γ0 s
l1l2l3l4 =

1
2

(︂
U ph

l1l3l4l2
+ U ph

l1l4l3l2

)︂
=

1
2

(︂
U pp

l1l2l3l4
+ U pp

l1l2l4l3

)︂
(4.25)

Γ0 t
l1l3l4l2 =

1
2

(︂
U ph

l1l3l4l2
− U ph

l1l4l3l2

)︂
=

1
2

(︂
U pp

l1l2l3l4
− U pp

l1l2l4l3

)︂
(4.26)

Note that the obtained expressions (4.23), (4.25) and (4.26) coincide with the standard
definition for the vertex functions in FLEX approach (see e.g. Ref. [130]).

One can also formally rewrite the interaction of the reference system (4.1) in the chan-
nel representation as

1
2

∑︂
ω,{ν}

∑︂
{l},{σ}

U ph
l1l2l3l4

c∗νσl1cν+ω,σl2c
∗
ν′+ω,σ′l4cν′σ′l3+

1
2

∑︂
ω,{l},ς

Yς
ω, l1l2, l3l4

ρς
−ω, l1l2

ρςω, l4l3
+

∑︂
ω,{l},ϑ

Yϑ
ω, l1l2, l3l4 ρ

∗ϑ
ω, l1l2 ρ

ϑ
ω, l3l4 =

1
2

∑︂
ω,{l},ς

Ũς

ω, l1l2, l3l4ρ
ς
−ω, l1l2

ρςω, l4l3
+

∑︂
q,{l},ϑ

Ũϑ

ω, l1l2, l3l4ρ
∗ϑ
q, l1l2 ρ

ϑ
q, l3l4 (4.27)

In order to determine the bare interaction Ũr
ω, l1l2, l3l4 = Ur

l1l2, l3l4
+ Yr

ω, l1l2, l3l4
of the refer-

ence system for every r channel, we antisymmetrize the expression (4.27). Following
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Figure 4.4: Diagrammatic representation of the partially bosonized approximation of the four-
fermion vertex corresponding to Eq. (4.34). Coefficients and channel indices are omitted for
clarity. The pictorial representation explains the distinction between the horizontal contribu-
tions

[︂
Mςς′

νν′ω

]︂σ1σ2σ3σ4

l1l2l3l4
, the vertical contributions

[︂
Mςς′

ν,ν+ω,ν′−ν

]︂σ1σ3σ2σ4

l1l3l2l4
and the particle-particle

contributions
[︂
Mϑϑ′

ν,ν′,ω+ν+ν′

]︂σ1σ4σ3σ2

l1l4l3l2
. Fermionic legs are attached to the vertices for clarity.

the works [231, 232], the bare four-point vertex functions (4.23) take the following form[︂
Γ0 d
νν′ω

]︂
l1l2l3l4

= 2Ũd
ω, l1l2,l3l4 − Ũd

ν′−ν, l1l3,l2l4 − 3Ũm
ν′−ν, l1l3,l2l4 + Ũ s

ω+ν+ν′, l1l4,l3l2 − 3Ũ t
ω+ν+ν′, l1l4,l3l2

= 2U ph
l1l2l3l4

− U ph
l1l3l2l4

+ o (Y) (4.28)[︂
Γ0 m
νν′ω

]︂
l1l2l3l4

= 2Ũm
ω, l1l2,l3l4 + Ũm

ν′−ν, l1l3,l2l4 − Ũd
ν′−ν, l1l3,l2l4 − Ũ s

ω+ν+ν′, l1l4,l3l2 − Ũ t
ω+ν+ν′, l1l4,l3l2

= −U ph
l1l3l2l4

+ o (Y) (4.29)

Using the idea of Ref. [231] we associate the static parts U ph of the vertex functions (4.28)
and (4.29) with the longitudinal contributions Ũς

ω. After doing that, we immediately get

Ud
l1l2, l3l4 =

1
2

(︂
2U ph

l1l2l3l4
− U ph

l1l3l2l4

)︂
=

1
2

(︂
2U pp

l1l4l2l3
− U pp

l1l4l3l2

)︂
(4.30)

Um
l1l2, l3l4 = −

1
2

U ph
l1l3l2l4

= −
1
2

U pp
l1l4l3l2

(4.31)

The same procedure can be performed for the particle-particle channel. Since the vari-
ables ρ(∗)ϑ

ω are already defined in the antisymmetrized form (3.18), the bare interaction in
the particle-particle channel simply coincides with the bare vertex defined in Eqs. (4.25)
and (4.25)

U s
l1l2, l3l4 =

1
2

(︂
U ph

l1l3l4l2
+ U ph

l1l4l3l2

)︂
=

1
2

(︂
U pp

l1l2l3l4
+ U pp

l1l2l4l3

)︂
(4.32)

U t
l1l2, l3l4 =

1
2

(︂
U ph

l1l3l4l2
− U ph

l1l4l3l2

)︂
=

1
2

(︂
U pp

l1l2l3l4
− U pp

l1l2l4l3

)︂
(4.33)

As in previous works on D-TRILEX method [231, 232], The conventional definition for
the four-point vertex corresponds to the choice Bσσ′

ν,ll′ = gσσ
′

ν,ll′ .
Following the derivation presented in Refs. [231, 232] and inspired by Refs. [264,
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265], in the multi-band case the partially approximation for the fermion-fermion vertex
function reads[︂
Γνν′ω

]︂σ1σ2σ3σ4

l1l2l3l4
=

∑︂
{r}

{︃[︂
Mςς′

νν′ω

]︂σ1σ2σ3σ4

l1l2l3l4
−

[︂
Mςς′

ν,ν+ω,ν′−ν

]︂σ1σ3σ2σ4

l1l3l2l4
−

[︂
Mϑϑ′

ν,ν′,ω+ν+ν′

]︂σ1σ4σ3σ2

l1l4l3l2

}︃
(4.34)

where the partially bosonized collective electronic fluctuations in different channels are[︂
Mςς′

νν′ω

]︂σ1σ2σ3σ4

l1l2l3l4
=

∑︂
{l′}

Λ
σ1σ2ς
νω, l1, l2, l′1l′2

w̄ςς′

ω, l′1l′2, l
′
3l′4
Λ
σ4σ3ς

′

ν′+ω,−ω, l4, l3, l′4l′3
(4.35)[︂

Mϑϑ′

νν′ω

]︂σ1σ2σ3σ4

l1l2l3l4
=

∑︂
{l′}

Λ
σ1σ2ϑ
νω, l1, l2, l′1l′2

w̄ϑϑ′

ω, l′1l′2, l
′
3l′4
Λ
∗σ3σ4ϑ

′

ν′ω, l3, l4, l′3l′4
(4.36)

The bosonic fluctuation that connects the three-point vertices in Eqs. (4.35) and (4.36) is

w̄rr′
ω, l1l2, l3l4 = wrr′

ω, l1l2, l3l4 − ūr
l1l2l3l4δrr′ (4.37)

It corresponds to the renormalized interaction wrr′ of the reference system that can be
obtained from the corresponding susceptibility as

wrr′
ω, l1l2, l3l4 = Ũr

l1l2, l3l4δrr′ +
∑︂
{l′}

Ũr
l1l2, l′1l′2

χrr′
ω, l′1l′2, l

′
3l′4

Ũr′

l′3l′4, l3l4 (4.38)

As has been discussed in Refs. [231, 232], the choice (4.53)–(4.56) for the bare interaction
Ur in different r channels provides the best possible partially bosonized approximation for
the four-point vertex function (4.34). However, this choice leads to the double-counting of
the bare interaction of the reference problem. This double-counting is removed by the ūr

term that enters Eq. (4.37). The expression for this term can be obtained in the same way
as in Refs. [231, 232], and for the multi-band case explicitly reads

ūςl1l2, l3l4
=

1
2

Uς
l1l2, l3l4

, ūϑl1l2, l3l4 = Uϑ
l1l2, l3l4 (4.39)

4.3.2 Effect of the approximation on the vertex
We may wonder what is the effect of the approximation (4.34) on the fermion-fermion ver-
tex. Of course, if the approximation leads to unreasonable values of the fermion-fermion
vertex, there would be no point in developing a theory based on it, no matter how at-
tractive the theory would be in terms of simplicity of its solution. To check whether the
approximation reproduces well the exact fermion-fermion vertex, we can look at the exact
vertex in the Γνν′,ω=0 and compare it with its approximated version Γνν′,ω=0. In particular,
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we studied the case of an impurity obtained by converging a DMFT calculation based on
the half-filled Hubbard model on a square lattice in a broad region of the local interac-
tion U and we found very comparable results for the exact fermion-fermion interaction Γ
and its approximated form that only contains contributions that are reducible in terms of
bosonic interaction lines. This can be seen by looking at figures 4.5-4.8, where we show
four different values of the interaction U, starting at small coupling U = 2 up to strong
coupling U = 12. In all the figures, in the upper panels we show the vertex in the density
channel for the exact calculation Γd (left) and in the partially bosonized approximation Γ

d
.

In the middle panels, the results for Γm and Γ
m

are displayed for the magnetic channel m.
Finally, the bottom row shows the density (left) and magnetic (right) vertices in the exact
case (crosses with dashed lines) and partially bosonized case (dots with full lines) along
some symmetry path in the (ν, ν′)-plane. The hopping for the corresponding square lattice
Hubbard model is set to t = 1.

In all the figures, there is a very evident noise at large frequencies in the exact vertex
function. This is related to the fact that we compute the impurity single-particle Green’s
function and impurity four-point correlation function using continuous-time QMC. In par-
ticular, to obtain these plots, we used the CT-HYB method in its implementation provided
in the ALPS software package [142, 270]. In order to obtain the vertex from the four-point
correlation function, we have to use Eq. (4.16) and we have to fix the arbitrary functions
Bν. In these calculations, we stick to the conventional choice of the vertex function, putting
Bν = gν, hence the noisy data at large frequency. However, dual calculations based on this
vertex functions are still accurate, since the dual Green’s function is G̃kν = GDMFT

kν − gν, so
that it decays as ∼ ν−2 as a function of the Matsubara frequency. The results obtained with
the approximated Γ at the two lower values of the interaction U = 2 and U = 4 are rather
similar to the exact result Γ both in the density (d) and in the magnetic (m) channels. On
the other hand, the structure at U = 8 is well reproduced but the values differ significantly
if ν = −ν′ at low frequency. Finally, in the case U = 12, the partially bosonized approxi-
mation reproduces very well the main peaks appearing at νn = ν

′
n for the n = ±1. Based on

these observations, we expect that replacing the exact vertex with its partially bosonized
approximation could have a noticeable impact on the calculation of the observables in the
regime of interaction strength close to the bandwidth of the system, i.e. U ≈ 8.
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Figure 4.5: Comparison between the exact vertex Γνν′ω and its partially bosonized approx-
imation Γνν′ω for the impurity obtained solving self-consistently the DMFT problem for the
Hubbard model on the square lattice at half-filling. The parameters are U = 2 and β = 4,
which means weakly interacting regime. The bosonic frequency is ω = 0.
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Figure 4.6: Comparison between the exact vertex Γνν′ω and its partially bosonized approx-
imation Γνν′ω for the impurity obtained solving self-consistently the DMFT problem for the
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coupling regime with parameters U = 4 and β = 4.
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Figure 4.7: Same vertices as in Fig 4.5 for a stronger coupling regime with parameters U = 8
and β = 2. Here, the interaction strength equals the bandwidth of the lattice system of the
converged DMFT.
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Figure 4.8: Same vertices as in Fig 4.5 for the strong coupling regime with parameters U = 12
and β = 2. The interaction strength is considerably larger than the bandwidth of the lattice
system of the converged DMFT.
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4.3.3 An additional bosonic Hubbard-Stratonovich transformation
In order to eliminate the four-point vertex function Γph from the theory, we add and subtract
the following terms

1
2

∑︂
q,{l}

∑︂
ςς′

φς
−q, l1l2

[︂
w̄−1
ω

]︂ςς′
l1l2, l3l4

φς
′

q, l4l3
+

∑︂
q,{l}

∑︂
ϑϑ′

φ∗ϑq, l1l2

[︂
w̄−1
ω

]︂ϑϑ′
l1l2, l3l4

φϑ
′

q, l3l4 (4.40)

from the dual action (4.10). At this step, w̄ω are introduced as arbitrary quantities. Further,
they will be adjusted to obtain the partially bosonized approximation for the four-point
vertex function (see Appendix 4.3.1). After restoring the explicit form of the bosonic
source fields, the dual boson action becomes

S̃ = −Trσ,l
∑︂

k

{︂
f̂
∗

kε̃
−1
k f̂ k − f ∗k gν fk

}︂
+ F̃ [ f , φ] +

1
2

Trς,l
∑︂

q

φ−qw̄−1
ω φq + Trϑ,l

∑︂
q

φ∗qw̄−1
ω φq

− Trϑ,l
∑︂

q

{︄
φ∗qα

−1
ω

(︂
Ṽ−1

q − χω + αωw̄−1
ω αω

)︂
α−1
ω φq + j∗qṼ−1

q jq − φ
∗
qα
−1
ω Ṽ−1

q jq − j∗qṼ−1
q α

−1
ω φq

}︄
− Trς,l

∑︂
q

{︄
1
2
φ−qα

−1
ω

(︂
Ṽ−1

q − χω + αωw̄−1
ω αω

)︂
α−1
ω φq +

1
2

j−qṼ−1
q jq − φ−qα

−1
ω Ṽ−1

q jq

}︄
(4.41)

where we explicitly isolated the terms that contain the bosonic source fields j(∗). To shorten
the expression, we omitted band, spin, and channel indices that can be easily restored using
the fact that all multiplications in Eq. (4.41) are performed in the matrix form. Now, we
perform the following Hubbard-Stratonovich transformations

exp

⎧⎪⎪⎨⎪⎪⎩1
2

Trς,l
∑︂

q

φ−qα
−1
ω

[︂
Ṽ−1

q − χω + αωw̄−1
ω αω

]︂
α−1
ω φq

⎫⎪⎪⎬⎪⎪⎭ = Db

∫︂
D[bς]×

× exp

⎧⎪⎪⎨⎪⎪⎩−Trς,l
∑︂

q

(︄
1
2

b−qw̄−1
ω αω

[︂
Ṽ−1

q − χω + αωw̄−1
ω αω

]︂−1
αωw̄−1

ω bq − φ−qw̄−1
ω bq

)︄⎫⎪⎪⎬⎪⎪⎭ (4.42)

exp

⎧⎪⎪⎨⎪⎪⎩Trϑ,l
∑︂

q

φ∗qα
−1
ω

[︂
Ṽ−1

q − χω + αωw̄−1
ω αω

]︂
α−1
ω φq

⎫⎪⎪⎬⎪⎪⎭ = Db

∫︂
D[bϑ]×

× exp

⎧⎪⎪⎨⎪⎪⎩−Trϑ,l
∑︂

q

(︃
b∗qw̄−1

ω αω
[︂
Ṽ−1

q − χω + αωw̄−1
ω αω

]︂−1
αωw̄−1

ω bq − φ
∗
qw̄−1

ω bq − b∗qw̄−1
ω φq

)︃⎫⎪⎪⎬⎪⎪⎭
(4.43)
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where the terms D−1
b =

√︂
det

[︂
w̄α−1

[︂
Ṽ−1
− χ + αw̄−1α

]︂
α−1w̄

]︂
can again be neglected, be-

cause they also do not affect the calculation of correlation functions. The dual action
becomes

S̃
′
= −Trσ,l

∑︂
k

{︂
f̂
∗

kε̃
−1
k f̂ k − f ∗k gν fk

}︂
+ F̃ [ f , φ]

+ Trϑ,l
∑︂

q

b∗qw̄−1
ω αω

[︂
Ṽ−1

q − χω + αωw̄−1
ω αω

]︂−1
αωw̄−1

ω bq − Trϑ,l
∑︂

q

j∗qṼ−1
q jq

+
1
2

Trς,l
∑︂

q

b−qw̄−1
ω αω

[︂
Ṽ−1

q − χω + αωw̄−1
ω αω

]︂−1
αωw̄−1

ω bq −
1
2

Trς,l
∑︂

q

j−qṼ−1
q jq

+ Trϑ,l
∑︂

q

φ∗qw̄−1
ω φq − Trϑ,l

∑︂
q

{︄
φ∗qw̄−1

ω

(︂
bq − w̄ωα

−1
ω Ṽ−1

q jq

)︂
+

(︂
b∗q − j∗qṼ−1

q α
−1
ω w̄ω

)︂
w̄−1
ω φq

}︄
+

1
2

Trς,l
∑︂

q

φ−qw̄−1
ω φq − Trς,l

∑︂
q

φ−qw̄−1
ω

(︂
bq − w̄ωα

−1
ω Ṽ−1

q jq

)︂
(4.44)

4.3.4 Integrating out the old bosonic fields

We shift bosonic variables as b(∗) → b̂
(∗)
= b(∗) + w̄α−1Ṽ−1 j(∗) to decouple the sources j(∗)

from the dual bosonic fields φ(∗). After that the fields φ(∗) can be integrated out as∫︂
D[φς] exp

⎧⎪⎪⎨⎪⎪⎩−1
2

Trς,l
∑︂

q

φ−qw̄−1
ω φq + Trς,l

∑︂
q

⎛⎜⎜⎜⎜⎜⎜⎝b−qw̄−1
ω −

∑︂
k,σσ′

f ∗kσ fk+q,σ′Λ
σσ′

νω

⎞⎟⎟⎟⎟⎟⎟⎠φq

⎫⎪⎪⎬⎪⎪⎭ =
Zφ exp

{︄
1
2

Trς,l
∑︂

q

b−qw̄−1
ω bq − Trς,l

∑︂
q,k

∑︂
σσ′

Λσσ
′

νω f ∗kσ fk+q,σ′bq

+
1
2

Trς,l
∑︂
q,{σ}

∑︂
k,k′
Λσ1σ2
νω w̄ωΛ

σ4σ3
ν′+ω,−ω f ∗kσ1

fk+q,σ2
f ∗k′+q,σ4

fk′σ3

}︄
(4.45)
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∫︂
D[φ∗ϑ, φϑ] exp

{︄
− Trϑ,l

∑︂
q

φ∗qw̄−1
ω φq + Trϑ,l

∑︂
q

(︂
b∗qw̄−1

ω φq + φ
∗
qw̄−1

ω bq

)︂
−

1
2

Trϑ,l
∑︂
q,k

∑︂
σσ′

(︂
f ∗kσ f ∗q−k,σ′Λ

σσ′

νω φq + φ
∗
qΛ
∗σσ′

νω fq−k,σ′ fkσ

)︂ }︄
=

Zφ exp
{︄

Trϑ,l
∑︂

q

b∗qw̄−1
ω bq −

1
2

Trϑ,l
∑︂
q,k

∑︂
σσ′

(︂
f ∗kσ f ∗q−k,σ′Λ

σσ′

νω bq + b∗qΛ
∗σσ′

νω fq−k,σ′ fkσ

)︂
+

1
4

Trϑ,l
∑︂
q,{σ}

∑︂
k,k′
Λσ1σ2
νω w̄ωΛ

σ3σ4
ν′ω f ∗kσ1

f ∗q−k,σ2
fq−k′,σ4

fk′σ3

}︄
(4.46)

where Zφ is a partition function of the Gaussian part of the bosonic action. As discussed
in Appendix 4.3.1 and Refs. [231, 232], quartic terms that appear at the last lines of
Eqs. (4.45) and (4.46) approximately cancel the fermion-fermion (Γ) part of the inter-
action (4.15) if the w̄rr′

ω quantities are taken in the form of Eq. (4.37).
As the result, the problem reduces to a partially bosonized dual action

S̃ f b = −Trσ,l
∑︂

k

{︂
f̂
∗

kε̃
−1
k f̂ k − f ∗k gν fk

}︂
+

1
2

Trς,l
∑︂

q

b̂−qw̄−1
ω αω

[︂
Ṽ−1

q − χω + αωw̄−1
ω αω

]︂−1
αωw̄−1

ω b̂q −
1
2

Trς,l
∑︂

q

j−qṼ−1
q jq

−
1
2

Trς,l
∑︂

q

b−qw̄−1
ω bq + Trς,l

∑︂
q,k

∑︂
σσ′

Λσσ
′

νω f ∗kσ fk+q,σ′bq

+ Trϑ,l
∑︂

q

b̂
∗

qw̄−1
ω αω

[︂
Ṽ−1

q − χω + αωw̄−1
ω αω

]︂−1
αωw̄−1

ω b̂q − Trϑ,l
∑︂

q

j∗qṼ−1
q jq

− Trϑ,l
∑︂

q

b∗qw̄−1
ω bq +

1
2

Trϑ,l
∑︂
q,k

∑︂
σσ′

(︂
f ∗kσ f ∗q−k,σ′Λ

σσ′

νω bq + b∗qΛ
∗σσ′

νω fq−k,σ′ fkσ

)︂
(4.47)

that upon neglecting fermionic η(∗) and bosonic j(∗) source takes the simple form shown
in Eq. (4.49) of the main text. The new bare fermionic Green’s function for this action is
defined in Eq. (4.50). The bare dual bosonic propagator reads

W̃
r1r2

q, l1l2, l3l4 =
∑︂
{r′},{l′}

α
r1r′1
ω, l1l2, l′1l′2

[︃(︂
Ṽ−1

q − χω
)︂−1

]︃r′1r′2

l′1l′2, l
′
3l′4
α

r′2r2

ω, l′3l′4, l3l4
+ w̄r1r2

ω, l1l2, l3l4
(4.48)
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Substituting the explicit expression (4.37) for the w̄rr′
ω quantities leads for the final form

for the bare bosonic propagator shown in Eq. (4.51).

4.3.5 The partially bosonized action
The steps developed so far allow us to extend the formalism of the partially bosonized
action presented in Refs. [231, 232] to multi-band systems. Collecting the terms and
removing the sources in Eq. (4.47), we obtain an expression for the effective partially
bosonized dual action written in terms of fermion f and boson b variables that explicitly
reads

S f b = −
∑︂
k,{l}

∑︂
σσ′

f ∗kσl

[︂
G̃
−1
k

]︂σσ′
ll′

fkσ′l′ −
1
2

∑︂
q,{l}

∑︂
ςς′

bς
−q, l1l2

[︃
W̃
−1
q

]︃ςς′
l1l2, l3l4

bς
′

q, l4l3

−
∑︂
q,{l}

∑︂
ϑϑ′

b∗ϑq, l1l2

[︃
W̃
−1
q

]︃ϑϑ′
l1l2, l3l4

bϑ
′

q, l3l4 + F [ f , b] (4.49)

It is important to emphasize that this action describes only those correlation effects that
are not taken into account by the reference problem, hence there are no double counting
issue between the impurity problem and the dual action. This means that double counting
issues have to be taken care of when constructing the initial lattice model of (3.14), but
they are absent in our theory.

As mentioned before, in the multi-orbital D-TRILEX implementation we exclude these
scaling factors by setting Bσσ′

ν, ll′ = δll′δσσ′ . This simplifies the expression (4.11) for the bare
dual fermionic Green’s function to

G̃
σσ′

k, ll′ =

[︃(︂
(εk − ∆ν)−1

− gν
)︂−1

]︃σσ′
ll′

(4.50)

where ∆σσ
′

ν, ll′ and gσσ
′

ν, ll′ = −⟨cνσlc
∗
νσ′l′⟩ are respectively the fermionic hybridization and the

Green’s function of the reference system. Note that within the convention chosen here, the
dimension of the dual Green’s function (4.50) does not correspond to [1/Energy] dimen-
sion of a physical Green’s function.

The bosonic propagator (renormalized interaction) of the partially bosonized dual ac-
tion (4.49) is the following (see Appendix 4.2.1)

W̃
rr′

q, l1l2, l3l4 =W
rr′
q, l1l2, l3l4 − ūr

l1l2, l3l4δrr′ (4.51)

Here, ūςl1l2, l3l4
= 1

2Uς
l1l2, l3l4

and ūϑl1l2, l3l4
= Uϑ

l1l2, l3l4
are the corrections that prevent the double

counting of the interaction between different channels (see Appendix 4.3.1). The renor-
malized interaction Wrr′

q of extended DMFT [162–165, 267] can be obtained from the
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corresponding Dyson equation[︂
W−1

q

]︂rr′

l1l2, l3l4
=

[︃(︂
Ur + Vr

q

)︂−1
]︃

l1l2, l3l4
δrr′ − Π

imp rr′

ω, l1l2, l3l4
(4.52)

that involves the polarization operator Πimp rr′

ω, l1l2, l3l4
of the reference (impurity) problem and

the bare interaction in the channel representation (see Appendix 4.3.1)

Ud
l1l2l3l4 =

1
2

(︂
2U ph

l1l2l3l4
− U ph

l1l3l2l4

)︂
=

1
2

(︂
2U pp

l1l4l2l3
− U pp

l1l4l3l2

)︂
(4.53)

Um
l1l2l3l4 = −

1
2

U ph
l1l3l2l4

= −
1
2

U pp
l1l4l3l2

(4.54)

U s
l1l2l3l4 =

1
2

(︂
U ph

l1l3l4l2
+ U ph

l1l4l3l2

)︂
=

1
2

(︂
U pp

l1l2l3l4
+ U pp

l1l2l4l3

)︂
(4.55)

U t
l1l2l3l4 =

1
2

(︂
U ph

l1l3l4l2
− U ph

l1l4l3l2

)︂
=

1
2

(︂
U pp

l1l2l3l4
− U pp

l1l2l4l3

)︂
(4.56)

The interacting term of the effective action (4.49) (see Appendix 4.2.1)

F [ f , b] =
∑︂
q,{k}

∑︂
{ν},{σ}

∑︂
{l},ς/ϑ

{︄
Λ
σσ′ς
νω, l1, l2, l3l4

f ∗kσl1 fk+q,σ′,l2b
ς
q, l4l3

+
1
2

(︂
Λσσ

′ϑ
νω, l1, l2, l3l4 f ∗kσl1 f ∗q−k,σ′,l2b

ϑ
q, l3l4 + Λ

∗σσ′ϑ
νω, l1, l2, l3l4 b∗ϑq, l3l4 fq−k,σ′,l2 fkσl1

)︂ }︄
(4.57)

contains only the momentum-independent three-point interaction vertex function Λ(∗)
νω of

the reference system. The explicit expression of Λ(∗)
νω can be found in Eqs. (4.17)–(4.19).

The four-point (fermion-fermion) vertex function (4.16) is eliminated from the theory by
using a partially bosonized approximation for the interaction [231, 232, 264–266].

4.4 Physical quantities from the dual space

4.4.1 Dressed dual Green’s functions
The dual theories work in the virtual space of dual variables (4.49) that describes electronic
correlations beyond the ones of the reference system. This formulation of the theory allows
one to avoid double-counting of correlation effect that are already taken into account by
the reference problem. We specialize our treatment to the partially bosonized action of
Eq. (4.49), even though most of the equations hold also for the dual boson action with
very small variations. In particular, the treatment of the dual fermionic variables as well
as their connection with the Green’s function of the lattice is identical for the two actions,
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since the transformation introduced in the partially bosonized action does not affect the
fermionic degrees of freedom. In order to discuss the relation between dual and lattice
quantities, we first have to extract information about the interacting dual problem. This
can be done through the dressed (or interacting) dual Green’s functions

G̃σσ′

k,ll′ = −⟨ fkσl f ∗kσ′l′⟩ (4.58)

Wςς′

q, l1l2, l3l4
= −⟨bςq, l2l1

bς
′

−q, l3l4
⟩ (4.59)

Wϑϑ′

q, l1l2, l3l4 = −⟨b
ϑ
q, l1l2 b∗ϑ

′

q, l3l4⟩. (4.60)

The first step is to introduce the Dyson equations for the dual Green’s functions. These
are the equations that allow us to compute the interacting fermionic and bosonic Green’s
functions of the dual problem and they valid for both the dual boson theory and the partially
bosonized action.

The dressed Green’s function G̃k and the renormalized interaction W̃ς

q of the effective
partially bosonized dual problem (4.49) are related to the non-interacting Green’s functions
via Dyson equations [︂

G̃−1
k

]︂σσ′
ll′
=

[︂
G̃
−1
k

]︂σσ′
ll′
− Σ̃

σσ′

k,ll′ (4.61)[︂
W̃−1

q

]︂ςς′
l1l2, l3l4

=

[︃
W̃
−1
q

]︃ςς′
l1l2, l3l4

− Π̃
ςς′

q, l1l2, l3l4[︂
W̃−1

q

]︂ϑϑ′
l1l2, l3l4

=

[︃
W̃
−1
q

]︃ϑϑ′
l1l2, l3l4

− Π̃
ϑϑ′

q, l1l2, l3l4 (4.62)

where we introduced the dual self-energy Σ̃k,ll′ and the dual polarization Π̃ςq, l1l2, l3l4 , which
are the dual counterparts of the self-energy and polarization of the lattice. Indeed, it can be
shown that there is an exact connection between the corresponding quantities in the dual
space and in the original lattice space.

In a similar way to what has been discussed for the lattice space, the dual quantities Σ̃k,ll′

and Π̃ςq, l1l2, l3l4 can be written in terms of Feynman diagrams as the sum of all the diagrams
which are irreducible with respect to the cut a fermionic or a bosonic line respectively.

4.4.2 Connecting the dual quantities and lattice quantities
The source fields introduced in Eq. (4.7) allows one to derive expressions for the corre-
lation functions of the initial lattice problem (3.14) even though the original Grassman
variables c(∗) have been already integrated out. This can be done by taking functional
derivatives of the action (4.47) with respect to the fields with the sources η(∗) and j(∗),
which amounts to derive with respect to f̂

(∗)
and φ(∗) and remove the hat. By definition,
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the fermionic Green’s function can be found as

Gσσ′

k,ll′ = −⟨ckσlc
∗
kσ′l′⟩ = −

1
Z

∂2Z

∂η∗kσl∂ηkσ′l′
(4.63)

whereZ is the partition function of the problem. Taking into account that the source fields
enter only the partially bosonized dual action (4.47), the lattice Green’s function becomes

Gσσ′

k,ll′ = −
[︂
ε̃−1

k

]︂σσ′
ll′
−

∑︂
l1l2

∑︂
σ1σ2

[︂
ε̃−1

k

]︂σσ1

ll1
⟨ fkσ1l1 f ∗kσ2l2⟩S̃ f b

[︂
ε̃−1

k

]︂σ2σ
′

l2l′

= −
[︂
ε̃−1

k

]︂σσ′
ll′
+

∑︂
l1l2

∑︂
σ1σ2

[︂
ε̃−1

k

]︂σσ1

ll1
G̃σ1σ2

kl1l2

[︂
ε̃−1

k

]︂σ2σ
′

l2l′
(4.64)

Using the Dyson equation for the dressed dual fermionic Green’s function (4.61) and sub-
stituting the explicit form for the bare dual fermionic Green’s function (4.50) allows us to
obtain the following relation for the lattice Green’s function[︂

G−1
k

]︂σσ′
ll′
=

[︃(︂
gν + Σ̃k

)︂−1
]︃σσ′

ll′
+ ∆σσ

′

ν,ll′ − ε
σσ′

k,ll′ . (4.65)

The expression (4.67) for the lattice self-energy can then be obtained straightforwardly
using the standard Dyson equation for the lattice Green’s function[︂

G−1
k

]︂σσ′
ll′
=

[︂
G−1

k

]︂σσ′
ll′
− Σσσ

′

k,ll′ = (iν + µ)δll′δσσ′ − ε
σσ′

k,ll′ − Σ
σσ′

k,ll′ . (4.66)

Alternatively, one can compute directly the lattice self-energy. Indeed, comparing Eqs. (4.65)
and (4.66) and after a few manipulations, we get to the expression

Σσσ
′

k,ll′ = Σ
imp, σσ′

ν,ll′ +
∑︂
l1σ1

Σ̃
σσ′

k,ll1

[︃(︂
1 + gν · Σ̃k

)︂−1
]︃σσ′

l1l′
. (4.67)

The lattice susceptibilities can be obtained in a similar way as

Xςς′

q, l1l2, l3l4
= −⟨ρςq, l2l1

ρς
′

−q, l3l4
⟩ = −

1
Z

∂2Z

∂ j ς
−q, l1l2

∂ j ς
′

q, l4l3

(4.68)

Xϑϑ′

q, l1l2, l3l4 = −⟨ρ
ϑ
q, l1l2 ρ

∗ϑ′

q, l3l4⟩ = −
1
Z

∂2Z

∂ j∗ϑq, l1l2
∂ jϑ′q, l3l4

(4.69)
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The part of the action that depends on the bosonic sources is in the following form

S̃ j =
1
2

Trς,l
∑︂

q

j−q Cq jq + Trς,l
∑︂

q

j−q Rq bq

+ Trϑ,l
∑︂

q

j∗q Cq jq + Trϑ,l
∑︂

q

(︂
j∗q Rq bq + j∗q Rq bq

)︂
(4.70)

where the terms Cq and Rq explicitly read

Cq = Ṽ−1
q

[︂
Ṽ−1

q − χω + αωw̄−1
ω αω

]︂−1
Ṽ−1

q − Ṽ−1
q

Rq = Ṽ−1
q

[︂
Ṽ−1

q − χω + αωw̄−1
ω αω

]︂−1
αωw̄−1

ω (4.71)

Therefore, the susceptibility takes the form

Xr1r2
q, l1l2, l3l4

= Cr1ς2
q, l1l2, l3l4

+
∑︂
{l′},{r′}

Rr1r′1
q, l1l2, l′1l′2

W̃r′1r′2
q, l′1l′2, l

′
3l′4

Rr′2r2

q, l′3l′4, l3l4
(4.72)

Importantly, the terms Cq and Rq are not divergent. For this reason, the divergence of
the susceptibility Xq and of the renormalized dual interaction W̃q occurs at the same time.
After some algebra, the expression (4.72) can be drastically simplified, and the inverse
susceptibility takes the form of a standard Dyson equation[︂

X−1
q

]︂rr′

l1l2, l3l4
=

[︂
Π−1

q

]︂rr′

l1l2, l3l4
−

(︂
Ur

l1l2, l3l4 + Vr
q, l1l2, l3l4

)︂
δrr′ (4.73)

with the following polarization operator of the lattice problem

Πrr′
q, l1l2, l3l4 = Π

imp rr′

ω, l1l2, l3l4
+

∑︂
l′l′′,r1

Π̃
rr1
q, l1l2, l′l′′

[︃(︂
1 + ū · Π̃q

)︂−1
]︃r1r′

l′l′′, l3l4
(4.74)

The ūr
l1l2, l3l4

term is defined in Sec. 4.3.1. It is important to emphasize that the derived
relations for the Green’s function (4.65) and the susceptibility (4.73) do not depend on the
particular approximation used to obtain the dual self-energy Σ̃ and the dual polarization
operator Π̃.

4.5 Quantum embedding in dual space
The dual boson action (4.10) is a general method to develop a perturbation theory with
respect to an interacting reference system. The reference system is introduced to account
for some (usually local or short-range) part of electronic correlations numerically exactly,
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Figure 4.9: Distinction between different choices of the splitting of the lattice (a) with different
types of atoms, A and B. In (b), we show the choice of a cluster reference system, which is a
problem that involves Nimp × Nl orbitals in the impurity problem. It includes short-range hop-
ping terms and interactions within the cluster in the reference AIM, but it breaks translational
symmetry, as highlighted by the cut dashed bonds. In (c), we show a multi-impurity reference
system. It does not include even short-range hopping terms and interactions, that have to be
included diagrammatically, but neither it breaks the symmetry of the lattice (all the bonds are
"cut").

and its particular form depends on the considered lattice problem [223]. This system can
be a general impurity problem in the form of Eq. (4.1). For instance, in DMFT-based
calculations the reference system corresponds to a single-impurity [118], several isolated
impurities [260, 271], or a finite cluster [29, 127, 166–170] problems. The choice of the
reference system is not restricted to a converged DMFT calculation. Another possibility
is to reduce the DMFT local impurity problem to an atomic problem in the spirit of the
Hubbard-I approximation [108, 109, 130]. It is also possible to build the diagrammatic
expansions on the basis of the impurity problem of the extended dynamical mean field
theory (EDMFT) [162–165, 267] by introducing a bosonic hybridization function (see
Section 4.2.1). The latter accounts for the effect of the non-local interaction on the local
electronic correlations and could play an important role when the non-local interactions
are strong. Alternatively, in the spirit of the cluster perturbation theory, one can consider
a finite plaquette as a reference system [78, 223]. The limit of an infinite plaquette as
a reference system corresponds to the exact solution of the problem. For this reason, we
expect the accuracy of the dual theories to improve with enlarging the cluster size similarly
to what has been shown for the TRILEX approach [217]. Indeed, as the spatial size of the
reference problem is increased, the range of electronic correlations that are treated within
the exactly-solved cluster reference problem is also increased. Additionally, using a cluster
reference system allows for the study of broken symmetry phases. In this regard, instead
of viewing the cluster methods and the multi-band dual theories as competing approaches,
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one could consider the dual theories as a method to improve the cluster solution of a
problem by diagrammatically adding long-range correlations that are not captured by a
finite cluster, in situations where the computational costs prevent a further increase of
the cluster’s size. As mentioned before, this can be particularly appealing for quantum
computation as the number of available qubits is usually not large enough to encode the
whole system and it is preferable to use them to represent only the strongly correlated part.

As such, the dual boson method can be already viewed as a quantum embedding the-
ory with the advantage that it is formulated in an exact way. This allows for any kind
of systematic improvements and choices of the most suitable approximations in a given
context. The improvement with respect to DMFT, DMET and RISB is that non-local ef-
fects are added using diagrammatic expansions around the impurity problem, instead of
approximating the solution of the problem directly with the impurity density matrix in the
case of DMET/RISB or the impurity self-energy in the case of DMFT, that is local by
definition. As a matter of fact, the impurity self-energy corresponds to the zeroth-order
approximation to the dual boson diagrammatics.

Unfortunately, the exact action (4.10) is not practical to be solved directly and ap-
proximations have to be introduced. This can be done at the dual boson level by trun-
cating the form of the interaction and, at a later stage, by putting limitations on the con-
sidered diagrams, either by considering a limited number of allowed topologies (dressed
second-order dual boson or ladder diagrams) or in the order to be reached (DiagMC@DF
or DiagMC@DB, discussed in Chapter 5). Similar considerations hold for the partially
bosonized action, even though this theory already involves an additional approximation at
the action level.

In this theses, we are mainly concerned in assessing the accuracy of the dual theories
and benchmarking the methods. For this reason, we perform all the calculations based on
the single-impurity DMFT reference problem for a matter of consistency. Further studies
on the performances of other choices of the reference problem are important and they will
be carried out in future works. In particular, we speculate that a cluster starting point could
resolve the issues that the method faces when a single-impurity reference problem is used
in broken symmetry phases. In those cases, even simpler reference systems, such as the
DMET impurity with several sites, could be a better starting point when the size of the
cluster reference problem is increased. Indeed, DMET for a 2-by-2 cluster was shown to
be almost as accurate as cluster DMFT and is characterised by a considerably lower com-
putational cost. Unfortunately, even for this simplified impurity problem, vertex functions
should be computed using ED with a certain number of auxiliary bath sites, QMC methods
or approximate schemes. The solution of the impurity based on wave function methods,
such as matrix-product states or neural network quantum states [272], would grant access
to all the correlation functions of the impurity without hitting the exponential wall of the
regular ED techniques, at the cost of exactness in the solution of the reference problem.
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4.6 Numerical calculation of vertex functions
It is important to mention that in the most available impurity solvers based on continuous-
time QMC method [83, 140, 143, 273], the two-particle quantities of the reference system
are defined in imaginary time τ with a different order of the operators compared to our
case.

For instance, in w2dynamics package [274] the time-ordered two-particle correlation
functions are computed as Gabcd = ⟨Tτcac†bccc†d⟩ [275]. Here, Tτ is the imaginary-time
ordering operator and the Latin indices a = {la, σa, τa} describe the orbital, spin, and
imaginary-time dependence. Often, the correlation functions are directly measured in the
Matsubara space as a function of ω (or ν and ω), by performing a Fourier transform on
the fly. In order to exploit these correlation functions in D-TRILEX, they have to be recast
in the form used in Eqs. (4.17)–(4.19) for the vertex functions and in the form of the sus-
ceptibility χςς

′

ω, l1l2, l3l4
= −⟨ρςω, l2l1

ρς
′

−ω, l3l4
⟩. Taking into account that ρr

ω, l1l2
= nr

ω, l1l2
−

⟨︂
nr
ω, l1l2

⟩︂
,

where the densities nr
ω are defined in Eqs. (3.17) and (3.18), the quantities required for con-

structing D-TRILEX diagrammatic expansion can be obtained by subtracting the discon-
nected parts from the corresponding correlation functions of the reference system. Note
also that the fermionic operators in Gabcd have to be placed in a desired order by applying
commutation relations, which may also lead to additional contributions to the disconnected
terms. Below we report how to retrieve the susceptibility and the three-point vertex from
correlation functions usually computed in CT-QMC methods. Similar procedures can be
used to compute the four-point and higher-order vertices.

4.6.1 Calculation of the impurity susceptibility
In this subsection, we derive the explicit connections with the vertex functions used in D-
TRILEX and those computed in w2dynamics. We report them, as different choices of the
order of the operators in the definition of the correlation functions used in other software
packages require similar manipulations. In the following, we omit time-ordering operators
in the correlation functions and we define the combined indices a = {la, σa, τa} to simplify
the notation. Here, we assume the paramagnetic case. Similar considerations hold for the
polarized case, but the derivation needs some small modifications, as we cannot simply
average over spin.

In w2dynamics, the impurity two-particle Green’s function with one bosonic frequency
is computed as the integral

Gw2dyn
abcd,ω =

∫︂ β

0
dτeiωτ⟨Tτda(τ)d†b(τ)dcd

†

d⟩. (4.75)
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In D-TRILEX, the impurity susceptibility is defined as

χ
ph
abcd = −⟨ρ

ph
baρ

ph
cd ⟩. (4.76)

Inserting ρ = n − ⟨n⟩, we arrive at

χ
ph
abcd = −⟨n

ph
banph

cd ⟩ + ⟨n
ph
ba⟩⟨n

ph
cd ⟩. (4.77)

If we explicitly insert the density channel, we have

χd
abcd = −⟨n

d
band

cd⟩ + nbancd, (4.78)

where the disconnected term is written in a way that includes the possibility for off-
diagonal contributions to the density.

Here, we make the dependence on spin explicit, so that the Latin indices do not carry
spin σa anymore for the rest of the derivation. Additionally, we define the impurity density
matrix as

nab ≡ ⟨nd
ab⟩ = nab,↑ + nab,↓. (4.79)

In usual cases, where the dispersion is constant and so is the hybridization function of
the impurity problem, we can replace the local density matrix with the occupation of the
orbital as nab = naδab.

The very same steps can be repeated in the magnetic channel, where we have

χm
abcd = −⟨n

m
banm

cd⟩ = −⟨mbamcd⟩ + mbamcd. (4.80)

Here the disconnected term mbamcd vanishes, since the expectation value of the magneti-
zation is zero in the paramagnetic regime.

Unfortunately w2dynamics measures not ⟨d†dd†d⟩, but ⟨dd†dd†⟩. That means that we
have to transform the expectation value ⟨nn⟩ to this operator ordering. This has to be done
outside the path integral formalism. This is a tricky point. In the path integral formalism,
we are allowed to swap operators appearing in the action or due to expansions of the the
exponent, but we are not allowed to swap the operators appearing in the expectation value,
since a time-ordering is implied. The commutation of these operators has to be performed
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in the operatorial formalism.

⟨nd/m
ba nd/m

cd ⟩ = ⟨
(︁
d†b↑da↑ ± d†b↓da↓

)︁(︁
d†c↑dd↑ ± d†c↓dd↓

)︁
⟩

= ⟨d†b↑da↑d
†

c↑dd↑ ± d†b↑da↑d
†

c↓dd↓ ± d†b↓da↓d
†

c↑dd↑ + d†b↓da↓d
†

c↓dd↓⟩

= ⟨
(︁
δab − da↑d

†

b↑

)︁(︁
δcd − dd↑d

†

c↑

)︁
±

(︁
δab − da↑d

†

b↑

)︁(︁
δcd − dd↓d

†

c↓

)︁
±

(︁
δab − da↓d

†

b↓

)︁(︁
δcd − dd↑d

†

c↑

)︁
+

(︁
δab − da↓d

†

b↓

)︁(︁
δcd − dd↓d

†

c↓

)︁
⟩

= ⟨2δabδcd(1 ± 1)

− δab
(︁
dd↑d

†

c↑ + dd↓d
†

c↓ ± dd↓d
†

c↓ ± dd↑d
†

c↑

)︁
− δcd

(︁
da↑d

†

b↑ + da↓d
†

b↓ ± da↑d
†

b↑ ± da↓d
†

b↓

)︁
+ da↑d

†

b↑dd↑d
†

c↑ ± da↑d
†

b↑dd↓d
†

c↓ ± da↓d
†

b↓dd↑d
†

c↑ + da↓d
†

b↓dd↓d
†

c↓⟩

= 2δabδcd(1 ± 1)

− δab(1 ± 1)
(︁
⟨dd↑d

†

c↑⟩ + ⟨dd↓d
†

c↓⟩
)︁
− δcd(1 ± 1)

(︁
⟨da↑d

†

b↑⟩ + ⟨da↓d
†

b↓⟩
)︁

+ ⟨da↑d
†

b↑dd↑d
†

c↑ ± da↑d
†

b↑dd↓d
†

c↓ ± da↓d
†

b↓dd↑d
†

c↑ + da↓d
†

b↓dd↓d
†

c↓⟩ (4.81)

Now, we can add and subtract the densities

⟨nd/m
ba nd/m

cd ⟩ = 2δabδcd(1 ± 1) − δab(1 ± 1) ncd − δcd(1 ± 1) nba

+ ⟨da↑d
†

b↑dd↑d
†

c↑ ± da↑d
†

b↑dd↓d
†

c↓ ± da↓d
†

b↓dd↑d
†

c↑ + da↓d
†

b↓dd↓d
†

c↓⟩ (4.82)

where again we have used the spin-summed occupation nba = ⟨nba↑ + nba↓⟩. Altogether the
density susceptibility is

χd
abcd = nbancd − 2δab (δcd − ncd) − 2δcd (δab − nba) −

∑︂
σσ′

⟨daσd†bσddσ′d
†

cσ′⟩ (4.83)

and the magnetic susceptibility is

χm
abcd = −

∑︂
σσ′

(−1)σ+σ
′

⟨daσd†bσddσ′d
†

cσ′⟩. (4.84)

The symbol (−1)σ+σ
′

gives +1 if both spins are equal, and (−1) if they are opposite.
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4.6.2 Calculation of the impurity three-point correlation function
In w2dynamics, the impurity two-particle Green’s function with one fermionic and one
bosonic frequency is defined as

Gνω
abcd =

1
β

∫︂ β

0
dτ1dτ2dτ3eiντ1−i(ν−ω)τ2−iωτ3⟨Tτda(τ1)d†b(τ2)dc(τ3)d†d(τ3)⟩ (4.85)

In order to compute the impurity three-point vertex defined in Eq. (4.17)-(4.19), we addi-
tionally need the impurity three-point correlation function Ld/m

abcd, defined as

Ld/m
abcd = ⟨da↑d

†

b↑ρ
d/m
cd ⟩. (4.86)

Again, the time/frequency dependence is omitted for a clearer notation. In the following,
keep in mind, that the second operator pair is at equal time. We have to bring this to a
form that depends only on correlation functions that we directly obtain in quantum Monte
Carlo. This requires a modification of the ordering of the operators, as follows

Ld/m
abcd = ⟨da↑d

†

b↑ρ
d/m
cd ⟩

= ⟨da↑d
†

b↑n
d/m
cd ⟩ − ⟨da↑d

†

b↑⟩⟨n
d/m
cd ⟩

= ⟨da↑d
†

b↑

[︁
d†c↑dd↑ ± d†c↓dd↓

]︁
⟩ − ⟨da↑d

†

b↑⟩⟨n
d/m
cd ⟩

= ⟨da↑d
†

b↑

[︁
δcd − dd↑d

†

c↑ ± (δcd − dd↓d
†

c↓)
]︁
⟩ − ⟨da↑d

†

b↑⟩⟨n
d/m
cd ⟩

= δcd(1 ± 1)⟨da↑d
†

b↑⟩ −
[︁
⟨da↑d

†

b↑dd↑d
†

c↑⟩ ± ⟨da↑d
†

b↑dd↓d
†

c↓⟩
]︁
− ⟨da↑d

†

b↑⟩⟨n
d/m
cd ⟩

= δabδcd⟨da↑d
†

b↑⟩
[︁
(1 ± 1) − ⟨nd/m

cd ⟩
]︁
−

[︁
⟨da↑d

†

b↑dd↑d
†

c↑⟩ ± ⟨da↑d
†

b↑dd↓d
†

c↓⟩
]︁

(4.87)

In the density channel this amounts to

Ld
abcd = −Gab(2δcd − ncd) −

[︁
⟨da↑d

†

b↑dd↑d
†

c↑⟩ + ⟨da↑d
†

b↑dd↓d
†

c↓⟩
]︁

(4.88)

and in the magnetic channel

Lm
abcd = −

[︁
⟨da↑d

†

b↑dd↑d
†

c↑⟩ − ⟨da↑d
†

b↑dd↓d
†

c↓⟩
]︁

(4.89)

We can now exploit spin-symmetry/paramagnetism to average over components:

Ld
abcd = −Gab(2δcd − ncd) −

1
2

∑︂
σσ′

⟨daσd†bσddσ′d
†

cσ′⟩ (4.90)
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and
Lm

abcd = −
1
2

∑︂
σσ′

(−1)σ+σ
′

⟨daσd†bσddσ′d
†

cσ′⟩ (4.91)

A multiplicative factor β has to be introduced, because the definition of the correlation
function in w2dynamics is divided by that factor.
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5 Diagrammatic Monte Carlo for dual
theories

Chapter based on the publication:
M. Vandelli, V. Harkov, E. A. Stepanov, J. Gukelberger,

E. Kozik, A. Rubio, A. I. Lichtenstein
Phys. Rev. B 102, 195109 (2020)

5.1 The DiagMC algorithm

5.1.1 A scheme for summing up all the Feynman diagrams
In this section, we summarize a technique originally introduced by N. Prokof’ev and B.
Svistunov [276] to numerically evaluate a perturbation expansion up to an arbitrary order,
dubbed diagrammatic Monte Carlo method (DiagMC). The difference between DiagMC
and other QMC algorithms is that QMC algorithms usually explore the configurations
based on the probability distribution of the diagrams of the partition function, while Di-
agMC draws samples from the probability distribution of the diagrams of the observable
of interest. This is a crucial difference, because the former is an extensive quantity that
depends on the size of the system, while the observables do not depend on the size. As a
consequence, DiagMC can be applied directly in the thermodynamic limit.

In this thesis, this idea is applied to the calculation of the dual self-energy of dual the-
ories. As the perturbative series is a Taylor expansion of an analytical function, it can be
shown that the result of summing up the series coincides with the value of the function at
the point where the series is computed, as long as the point lies within its convergence
radius. If this condition is met, the result of diagrammatic Monte Carlo is exact and
unbiased. Additionally, it is possible to give an upper bound to the error by analysing
the convergence order-by-order, as opposed to the usual techniques such as second-order
perturbation theory or theories based on certain subsets of diagrams, like the ladder ap-
proximation. The main idea behind the DiagMC method is to rephrase perturbation theory
in terms of Feynman diagrams. As discussed in previous sections, Feynman diagrams at
arbitrary order can be constructed by following simple graphical rules. In the specific case
of a quartic interaction term, as for instance both the extended Hubbard model and the DF
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action with only four-point vertices, the diagrammatic elements in the simplest scheme are
a line corresponding to bare fermionic propagator and a vertex with four legs correspond-
ing to the interaction. This method is of particular interest, because it is exact, it works in
the thermodynamic limit and it is not plagued by the infamous sign problem to the same
extent as most of the other Monte Carlo methods when applied to many-particle fermionic
systems [4, 81, 277, 278].

The application of this technique to the dual boson action requires a truncation of the
infinite series of interaction terms. Here, we truncate the expansion at the two-particle
level, so we stick to Eq. (4.15) of Sect. 4.2.1. By doing that, we sacrifice the “exactness”
of the method to some extent, as we do not get an exact solution of the original lattice
problem. However, we do still obtain an exact solution of the dual action at the two-
particle level and we can estimate the impact of considering only certain classes of dual
diagrams on the solution of that action, as discussed in Refs. [221, 230, 232]. Additionally,
here we consider only the original bare and “semi-bold” DiagMC scheme of Ref. [279]
for reasons that will be clarified later. In this section, we follow very closely the work
presented by the author of this thesis and collaborators in Ref. [230].

5.1.2 The Metropolis-Hastings algorithm in a nutshell
When dealing with summations of Feynman diagrams, it is necessary to compute high-
dimensional summations/integrals and also it is necessary to explore a large space of dif-
ferent diagram topologies. This becomes quickly unfeasible by using direct summation
and deterministic quadrature schemes. However, there is a useful tool that can deal with
summations over very large configuration spaces, namely the class of Markov chain Monte
Carlo methods (MCMC), which is one of the most successful and widely used schemes in
computational sciences. A detailed description of the method at the textbook level can be
found in Ref. [280].

The MCMC allows to evaluate summations over multi-dimensional configuration spaces
of both discrete and continuous variables in the form

Ip =
∑︂
C

fC pC. (5.1)

As highlighted, it is necessary to split the integral into an integrand function f and a
probability (distribution) p, which is characterised by the property of being real, positive
and bounded. The idea of MCMC is to generate a random sequence of configurations
ci = {C} for i = 0, ...,M steps according to some rules and to sample from this sequence,
in such a way that the expectation value ⟨ f ⟩MC over the sequence converges to the value of
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the integral as the number of Monte Carlo steps M is increased

lim
M→+∞

⟨ f ⟩MC ≡ Ip . (5.2)

As the name of the method suggests, this sequence is chosen to be a Markov chain, which
is a discrete stochastic process in which the conditional probability of generating any ele-
ment ci+1 at the (i + 1)-th step depends only on the element ci at the previous step.

In order to correctly reproduce the quantity Ip, the generated Markov chain must re-
produce the distribution pC as M → +∞. In order for that to be true, we need to enforce
two conditions:

1. the Markov chain {ci} is ergodic, meaning that system is able to explore all the
available configurations and it does not get stuck in any specific of them. In other
words, the Markov chain is non-periodic.

2. the detailed balance condition is satisfied, namely P(ci+1 = C|ci = C) pC = P(ci+1 =

C|ci = C) pC.

The first condition is necessary in order to explore the role of all the configurations. In-
stead, the second condition is sufficient [281] and there are schemes that are based on
weaker conditions (see for instance [282]).

In particular, we stick to the original choice of the Metropolis-Hastings technique [283,
284] to perform a high-dimensional summation [285]. Other possibilities to sum over the
diagrams using quasi-Monte Carlo techniques based on low-discrepancy sequencies have
been recently suggested [286].

The Metropolis-Hastings (MH) algorithm provides an explicit rule for constructing a
Markov chain, that respects the detailed balance condition (see Ref. [284]) and has the
correct probability distribution, given that the updates are designed in such a way that all
the configurations are accessible. Explicitly, the Markov chain is constructed as follows:

1. At the i-th step, the configuration is ci = C.

2. A new configuration cp = C is randomly proposed.

3. the probability of accepting a move RC−→C from the current configuration ci to the
proposed configuration cp is computed, according to the formula

RC−→C = min

⎧⎪⎪⎨⎪⎪⎩ 1,
P(C|C)

P(C|C)
·

pC
pC

⎫⎪⎪⎬⎪⎪⎭ , (5.3)

where pC and pC are the probabilities of the initial and proposed configuration re-
spectively.
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4. After the acceptance probability is computed, the proposed configurationC is chosen
as a new configuration with probability RC−→C. This means that a random number
u is generated from the uniform distribution in the interval [0, 1]. If u ≤ RC−→C, the
move is accepted and the configuration ci+1 = C becomes the next configuration.
Otherwise, the next configuration is chosen to be equal to the old one ci+1 = C.

5. After the update, the measurements are performed on the new configuration ci+1.

The Metropolis-Hastings algorithm has become one of the most successful algorithms
for estimating high-dimensional sums and integrals due to its simplicity, the various tech-
niques to estimate the error and the generality of the scheme.

5.1.3 DiagMC for fermions with quartic interaction
Here we present the DiagMC algorithm for fermions with a general quartic interaction, as
introduced originally in Refs. [287, 288]. Any action defined on lattice in the form

Sξ[c, c∗] = −
∑︂

i j

c†i G−1
i j c j +

ξ

2

∑︂
i jkl

Γi jklc
†

i c†jcl ck (5.4)

where Gi j is the single particle Green’s function, Γi jkl is the interaction vertex and ξ is
a complex parameter that controls the convergence. The case ξ = 1 corresponds to the
physical action. Any correlation function can be expressed as a perturbative series in
terms of the parameter ξ within the convergence radius of the series |ξ| < R for some
R ≥ 0. The case we are interested in is when R > 0, meaning that the perturbative series in
convergent in some region around ξ = 0. The convergence radius of diagrammatic series
can in principle present a null convergence radius, as pointed out originally by Dyson in
his paper about the convergence of the diagrammatic series in Quantum Electrodynamics
(QED) [289]. Contrary to QED, lattice problems have a bounded spectrum so there are
no issues with ultraviolet divergencies. Additionally, it was later proven mathematically
that the convergence radius of the diagrammatic series on a discrete lattice at large enough
temperature compared to the interaction strength is always larger than 0 [290].

The first step of the method is to define the partial summation of Feynman diagrams
ONmax corresponding to the quantity O, with increasing number of vertices Nmax, as

ONmax(y) =
Nmax∑︂
n=0

∑︂
{xi}, Cn

DCn({xi}, y) ξn. (5.5)

In this expression, the term DCn is the value of the diagram corresponding to a given
topology Cn, while y is a combined index that collects all the dependence on the external
legs, n indicates the number of vertices that appear in the diagram and DCn is the value
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of a specific diagram. Additionally xi is shorthand notation for the internal degrees of
freedom, that can be for example (i, τ, σ)i corresponding to band-site index, time and spin
that originate from the presence of loops of Green’s functions. If the indices vary over
a continuous range, as in the case of time or momentum components, the corresponding
summation has to be converted into an integral.

Since the reference actionS0[c, c∗] = −
∑︁

i j c†i G−1
i j c j is quadratic, we can apply Wick’s

theorem to compute the numerical value of each diagram as products of bare Green’s func-
tions Gi j and vertices Γi jkl only. This means that the diagrammatic expansion of this action
is characterised by lines that connect vertices with 4 corners. Each line is directed and
each vertex has two slots for the incoming (outgoing) lines corresponding to the destruc-
tion (creation) operators.

In the limit of infinite Nmax → +∞, the series of Eq. (5.5) converges to the exact value
of the observable O

O(y) = lim
Nmax→+∞

ONmax(y), (5.6)

provided that the limit in Eq. (5.5) is well defined and convergent for the chosen parame-
ters as Nmax → +∞. Divergencies of the diagrammatic series are often related to physical
instabilities or to some unphysical behavior of the starting point, for example the antifer-
romagnetic phase transition of DMFT [221].

In the DiagMC method, we aim at summing up the series in Eq. (5.5) numerically.
However, the direct computation of the series by numerical quadrature and summations
is impossible. The reasons are that at any order of the perturbation expansion, the num-
ber of diagram topologies in general increases as (2n)!, which are the permutations of
2n directed connections between n vertices with 2 incoming and 2 outgoing slots. In the
case of the Hubbard model, thanks to the simple form of the interaction, the scaling is
significantly reduced to (n!)2 as explained in Ref. [291], but it remains still factorial in
the number of diagrams. More details about the counting of Feynman diagrams can be
found in Ref. [292]. This is a manifestation of the fermionic sign problem and makes the
sampling time needed for an accurate estimation of the series longer and longer as the or-
der increases. Even without this fundamental issue, that intrinsically limits the maximum
order Nmax that can be reasonably reached with this method, the number of internal de-
grees of freedom involved in Eq. (5.5) makes any deterministic evaluation of the first few
diagrams of the series impractical already at relatively low orders. If we consider a single
diagram with two external legs, quartic interactions and n vertices, the number of loops
L is equal to the number of vertices L = n. Each loop introduces a free summation over
sites (or momentum) and over time (or frequency), introducing at least a total number of
n × (D + 1) degrees of freedom to sum over.

The idea of DiagMC is to alleviate this “curse of dimensionality” in the evaluation
of the terms by using the Metropolis-Hastings algorithm to construct all the Feynman
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diagrams up to any finite order. However, the termsDCn are not necessarily real in general
and for sure not positive for fermions. For this reason, the value of a diagram needs to be
split into its absolute value and a complex phase factor, which in this context is called the
complex sign, as follows

DCn({xi}, y) = sgn
(︁
DCn({xi}, y)

)︁
·
⃓⃓⃓
DCn({xi}, y)

⃓⃓⃓
. (5.7)

By performing this splitting, the quantity
⃓⃓⃓
DCn({xi}, y)

⃓⃓⃓
has the correct properties to be

identified as a probability distribution, hence we can apply the method.
The summation over the perturbation order n, topologies and internal degrees of free-

dom is performed using a Metropolis-Hastings scheme [285], where the function to be
sampled is the sgn

(︁
DCn({xi}, y)

)︁
, and the probability distribution is given by the amplitude⃓⃓⃓

DCn({xi}, y)
⃓⃓⃓
in order to respect the requirement of positive weight function.

Following the original implementation by Gukelberger (see Ref. [293]), each configu-
ration C corresponds to a directed graph, which is identified by an ordered set of vertices
V1,V2, ...,Vn, with n the order of the diagram. In order to uniquely represent the graph, we
also have to attach information about the connection of each vertex with the others. Each
of four slots of a vertex is connected to another slot of a vertex, that can be the same or
a different one. The four possible slot positions of a vertex are p ∈ {NE,SE,NW,SW}
corresponding to the cardinal positions. The information about the connections of a vertex
is stored by attaching the id number of the neighboring vertex and its slot id to each slot
of each vertex Vm =

(︂
s(m)

NE , s
(m)
SE , s

(m)
NW, s

(m)
SW

)︂
, where each slot carries the index and the neigh-

bor identification number s(m)
p = (i,Vi, pi). This is enough to fully characterize a diagram

since the value of a vertex is simply Γi jkl = Γ (Vm) and the bare Green’s functions can be
computed by retrieving the incoming/outgoing indices of the vertices Gi j = G(Vout,Vin).

This representation gives an intuitive and efficient picture that allows us to design the
updates so that all the contributions to the expansion (5.5) can be generated by changing
how the vertices are connected to each other by means of the bare Green’s functions. One
efficient way of updating the configuration in the bare diagrammatic Monte Carlo algo-
rithm is the worm algorithm used in Ref. [221], as described later in the Section. This
algorithm is based on the evaluation of topologies one by one, by means of local updates.
The advantage is that only a small subset of elements of the diagram have to be recom-
puted and updated. The drawback is that the sampling has to explore the full space with
a factorially growing number of topologies. The grouping of different topologies of dia-
grams into a single class of diagrams that could be sampled at once (like the Hugenholz
diagrams) could improve the algorithm. Indeed, efficient algorithms that express all con-
nected diagrams of the perturbative expansion with different topologies up to a given order
have been developed by using determinants [294] for various observables and correlation
functions [295–298]. The use of connected determinants significantly reduces the compu-
tational cost of the calculation and increases substantially the maximum order that can be
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reached [299]. A detailed description of the CDet method and of DiagMC schemes based
on bold series can be found in ref. [291].

5.1.4 Worm algorithm and updates in DiagMC
In our implementation, we work in momentum and frequency-space. The worm algorithm
is needed in our implementation as it allows to enforce momentum conservation, which is
a non-local property of the diagram, by means of updates that act locally on few elements
of a diagram [221]. As a consequence, the number of floating point operations at each step
of the MH algorithm is dramatically reduced. The Worm algorithm introduces a set of
unphysical updates that allow the transition between all the different possible topologies
contributing to a given observable. In particular, these updates introduce a fictitious prop-
agator, the “worm”, which carries a frequency-momentum δ = (νδ,kδ). The introduction
of the worm itself violates Matsubara frequency and momentum conservation. However,
it allows to switch between configurations where the frequency and momentum are con-
served. In our implementation, there are two different sectors of the configuration space:
the physical one with no worm where the measurements can occur, and the worm space,
which is used to explore the configurations and topologies.

Since the DiagMC explicitly handles a single diagram at a time, it is possible to explic-
itly reduce the number of topologies considered by introducing appropriate checks. This
allows for example to compute the self-energy, which is the sum of all the one-particle
irreducible diagrams with two external legs, and two-particle irreducible quantities di-
rectly [293]. This means that we sample all the diagrams with one incoming and one
outgoing line that are also irreducible with respect to a cut of a fermionic line. This can
be practically implemented by imposing the condition that no internal line can carry the
same momentum and frequency dependence of the external lines. Of course, this excludes
some valid diagrams that by accident carry the same momentum and frequency, but the set
of these contributions has zero measure in momentum space, hence it does not change the
value of the integral.

We provide a quick overview of the updates used to switch between different config-
urations. The set of updates that we use is the same proposed in Ref. [221], so we follow
closely what was presented there. A diagrammatic sketch of the main updates is provided
in Fig. 5.1. Here, we already denote the propagator lines with the symbol for the dual
Green’s function G̃ and the vertices are indicated as Γ, but this set of updates is valid also
for other actions in momentum space, such as the Hubbard model.

Create/Delete Worms (CWO/DWO) This update is needed to switch between the space
of the physical diagrams and the unphysical worm sector. If the diagram already has a
worm, the CWO update is directly rejected. Otherwise, a random corner of a random
vertex is chosen with both ends attached there. The momentum and the frequency of the
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Create/Destroy Worm Move Worm Line

Add/Remove Interaction Vertex Switch to/from normalization sector

1

Reconnect Worm Lines

Figure 5.1: Summary of the main updates in our implementation of DiagMC based on
the worm algorithm. The worm is described by a direct red line that carries an unphysi-
cal frequency-momentum δ. Grey boxes indicate fermion-fermion vertices, while the white
box indicates a vertex that evaluates to 1 whenever frequency-momentum conservation is re-
spected.

worm are drawn from a uniform distribution over the BZ Pδ and from a discrete set of
bosonic frequencies −ωN∆ , . . . , ωN∆ with P∆ = 1/(2N∆ + 1). The proposal probability for
a specific CWO move is hence PCWO = PδP∆/4n, where n denotes the number of vertices
in the current diagram. The converse DWO update is accepted with PDWO = 1 if the two
ends of the worm are on the same corner of the same vertex, and rejected otherwise. Since
the worm sector is unphysical, we can add an arbitrary weight factor CW(n, δ).

Now, we can construct the acceptance ratio by imposing the detailed balance between
these updates

RCWO ≡
ACWO

ADWO
=

1
RDWO

=
PDWO

PCWO
CW(n, δ) =

4nCW(n, δ)
Pδ⃗P∆

. (5.8)

With the choice CW(n, δ) = PδP∆/4n all the allowed updates are accepted, maximizing the
sampling efficiency.

Move Worm along Line/Vertically/Horizontally (MWL/MWV/MWH) Once a worm
is created, one of its ends can be randomly chosen with probability 1/2 and it can be moved
to a neighboring corner of the same vertex or along the propagator line to the corner of the
neighbor vertex, keeping in mind that the worm behaves as a propagator. The convention
is that any excess frequency enters the diagram between the end of the propagator and the
(amputated) leg of the vertex.
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The resulting acceptance ratios are then

RMWL = G̃′/G̃, RMWV = Γ
′/Γ = RMWH, (5.9)

where G̃ = G̃kνσ and G̃′ = G̃k±δ,ν±∆,σ denote the propagators with old and new 4-momentum
indices, respectively, and correspondingly for the vertex.

Reconnect Worm Lines (RWL) This update allows to change the topology of the dia-
grams and is possible only if both ends of the worm are at the beginning of a propagator
line. The two ends of the propagators located at the position of the two worm ends are
swapped and the frequency-momentum of the worm is modified by the difference k − k′

between the two lines. Additionally, the number of fermionic loops always changes by
±1, so a −1 sign has to be included. Again, this update is its own inverse update and reads

RRWL = −CW(n, δ′)/CW(n, δ). (5.10)

With the above choice for CW , |RRWL| = 1 unless the new excess frequency would be too
large and P∆′ = CW(n, δ′) = 0.

Add/Remove Interaction Vertex (AIV/RIV) The AIV and the RIV updates allow to
increase or decrease the diagram order n by one respectively. Without focusing on the
details, the AIV removes a worm and adds a four-fermion vertex Γ instead, while the
RIV removes a vertex and replaces it with a worm carrying the bosonic frequency and the
exchanged momentum of the removed vertex Γ.

Taking into account that adding/removing a vertex changes the number of loops, hence
it increases/decreases the number of summations over momentum and frequency, we have
to multiply/divide by a factor −T/VBZ where VBZ is the volume of the Brillouin zone.

The final expression for the acceptance ratio reads

RAIV =
1/4n

1/(2 − δσσ′)
·

−sFTΓ′
(︄

4∏︁
i=1

G̃′i

)︄
/VBZ(︄

2∏︁
i=1

G̃i

)︄
CW(n, δ)

= −

sF(2 − δσσ′)TΓ′
(︄

4∏︁
i=1

G̃′i

)︄
4VBZn

(︄
2∏︁

i=1
G̃i

)︄
CW(n, δ)

, (5.11)

where sF = −1 if the updates change the number of fermion loops and +1 otherwise, n
is the diagram order before the AIV update, the primed quantities denote the vertex and
propagators inserted by AIV, and the non-primed G̃i the replaced propagators.

Switch To/From Normalization sector (STN/SFN) Since the Metropolis algorithm
samples the integral up to an unknown constant, this update designed to keep track of
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this constant. A possible strategy to achieve this goal is to select a specific configuration
that can be computed directly and sample it.

In our case, we introduce an unphysical diagram, that can be easily computed explicitly
outside Monte Carlo, and we store its value in a suitable accumulator Nnorm. The chosen
diagram is simply a single vertex with unitary value with the upper corners connected by
a single bare dual Green’s function. Its value is given by

N =
∑︂
kν

⃓⃓⃓
G̃kν

⃓⃓⃓
, (5.12)

which is computed directly from the analytical expression for the bare dual propagator G̃.
The normalized dual self-energy Σ̃kν is then straightforwardly computed from the normal-
ization accumulator Nnorm using the following equation

Σ̃kν =
N

Nnorm

⟨︂
Σ̃kν

⟩︂
MC

. (5.13)

Given this choice of the normalization diagram, this move to the unphysical normal-
ization space can occur only if the diagram order is n = 1. In the STN, a Γ vertex is
replaced by an identity vertex 1. The converse update replaces a 1 vertex by a Γ vertex
and spin is randomly chosen to improve ergodicity. We therefore have proposal probabili-
ties PSTN = 1/2 and PSFN = 1/4. Finally, the acceptance ratio reads

RSTN =
G̃′

2ΓG̃
. (5.14)

In the paramagnetic phase, G̃′ = G̃ and RSTN = 1/(2Γ).

Swap Measuring Propagator (SMP) A new propagator is chosen as the measuring
propagator. This update simply improves the efficiency of the sampling. The acceptance
ratio is given by

RSMP =
G̃′

G̃
(5.15)

where G̃′ is the value of the old measuring propagator, which was assigned the value of 1,
and G̃ is the value of new measuring propagator, before it is assigned the value of 1.
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5.2 DiagMC in dual space

5.2.1 Dual fermion DiagMC
Approaches based on a small-coupling expansion work very well in the regime of small to
moderate couplings, but start to fail when U is of the order of half of the bandwidth [277,
300], no matter how efficiently the different topologies are sampled. These failures are re-
lated to the finite convergence radius of the diagrammatic series and can be improved using
resummation techniques [295] or by using different reference points for the diagrammatic
expansion [301]. However, no general recipe has so far been found to interpolate between
the small and the large coupling regimes in all cases.

The DF technique, described in the Chapter 4, is a very promising tool to perform this
interpolation between the weak and the strong coupling regimes. Indeed, diagrammatic
Monte Carlo was applied to the dual fermion technique in Refs. [220, 221]. Additionally,
it was used as a benchmark method in Ref. [232]. In analogy to the case of the dual boson
action, the dual fermion action has an infinite series of interaction terms. These terms
correspond to any even-legged fermionic correlation functions. In the following we restrict
ourselves to the action truncated at the two-particle level. In this case, the action has the
same shape as Eq. (5.4). The bare Green’s function is the bare dual Green’s function G̃
while the vertex function is the 4-point vertex obtained from the impurity problem.

It is important to point out that in principle the DiagMC scheme is not limited to the
case of a quartic interaction, but could be applied to the full series of interaction terms.
Currently, the main limitation lies in the capability of accurately computing correlation
functions with six or more external points using continuous-time quantum Monte Carlo
codes, as discussed in the previous chapter.

Since our implementation is based on that of Ref. [221], it makes sense to quickly
review the results obtained in that work, which enables us to describe the DiagMC for
dual fermions (DiagMC@DF). The DiagMC@DF was compared with the Determinantal
Diagrammatic Monte Carlo technique (DDMC) and with the ladder approximation to the
dual fermion expansion. Following the notations introduced in Ref. [230], the quantity
computed within DiagMC@DF is the dual self-energy, so the coefficients an(k, ν) in the
expansion of the dual self-energy

Σ̃kν(ξ) =
Nmax∑︂
n=1

an(k, ν) ξn. (5.16)

Even though the dual self-energy is not a correlation function of the dual theory, it is
connected to the bare dual Green’s function by a Dyson equation, hence it has an expansion
in terms of Feynman diagrams in terms of one-particle irreducible diagrams, in the same
way as its lattice counterpart.



102 Chapter 5. Diagrammatic Monte Carlo for dual theories

The self-energy can be the computed using Eq. (4.65) together with the Dyson equation
G−1

kν = iν+µ−hk−Σkν. In the simplest case of the single-band Hubbard model, this becomes
simply

Σkν = Σ
imp
ν +

Σ̃kν

1 + gνΣ̃kν
. (5.17)

An important consideration that allows to reduce the number of the topologies that
need to be sampled is that the bare dual Green’s function based on a converged EDMFT
impurity problem is completely non-local as a consequence of the EDMFT self-consistency
conditions. Explicitly, this means that

∑︂
k

G̃kν =

⎛⎜⎜⎜⎜⎜⎝∑︂
k

GEDMFT
kν

⎞⎟⎟⎟⎟⎟⎠ − gν = 0. (5.18)

This allows to remove all the diagrams where a Green’s function line has the two ends con-
nected to the same local fermion-fermion vertex, the so-called tadpole diagrams, indicated
as Σtd in the following, since they involve expressions of the kind∑︂

k

∑︂
ν

Γσσ
′σ′′σ′′′

νν′ω G̃kν = 0, (5.19)

no matter how they are connected to the rest of the diagram. The property (5.19) does not
hold if the reference impurity problem is chosen to be different from the (E)DMFT one.

Tadpole diagrams are important to ensure ergodicity and are useful to switch between
physical and normalization sectors, due to their simple structure. However, simply avoid-
ing measurements of the tadpole diagrams allows for a significant reduction of the number
of measurements needed to reduce the error bars below a certain threshold. During our
simulations, this reduction was up to an order or magnitude.

Results in Ref. [221] are shown at half-filling for the single-band Hubbard model on a
square lattice. At the inverse temperature β = 2, the agreement with DDMC is within the
error bars for all the value of the Hubbard interaction U. At lower temperature, however, a
slower convergence or even divergence of the series (5.16) was observed. The divergence
was related to the fact that the DMFT starting point exhibits an unphysical Neél temper-
ature also in two-dimensions. Indeed, the lattice system has to obey the Mermin-Wagner
theorem that forbids the breaking of continuous symmetries in one- and two-dimensional
systems [255]. However, DMFT is exact in infinite dimensions and carries information
about the antiferromagnetic broken-symmetry phase, that occurs in dimensions equal or
larger than three [302]. Comparisons with the results for the DMFT Neél temperature
shown in Ref. [303] seem to confirm this statement. This shows that one has to be careful
in the choice of the starting point in the case of dual theories, in cases where the reference
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problem breaks some fundamental symmetry of the system.
Calculations in the case of the doped Hubbard model are also reported in Ref. [221].

They demonstrate the validity of the method also away from half-filling. In that case,
the DDMC method suffers from a severe sign problem that prevents its application. The
DiagMC@DF results are benchmarked against bare DiagMC results, based on a weak
coupling expansion [287, 288].

The measurement is performed in the space of Matsubara frequencies and irreducible
representations of the momentum [293]. The different irreducible representations of mo-
mentum on the square lattice are Γ = {A1g, A2g, B1g, B2g, Eux, Euy}. the basis functions
are given by ψ(γ)

l,m(k) with γ ∈ Γ and l,m integers. These functions are simply symmetrized
and real combinations of the functions eilkx and eimky , which respect the symmetries of the
lattice. The projection of a function f (k) on this complete and orthonormal basis set can
be obtained as

f (γ)
(l,m) =

∑︂
k

ψ
(γ)
l,m(k) f (k). (5.20)

Analogously, the original function can be retrieved by its coefficients as

f (k) =
∑︂
γ∈Γ

∑︂
l,m

ψ
(γ)
l,m(k) f (γ)

(l,m). (5.21)

Conveniently, the (dual) self-energy is a function of the electronic dispersion. From group-
theoretical arguments follows that the only non-zero contribution comes from basis func-
tions corresponding to the γ = A1g representation, also called s-wave symmetry. Instead
of using two indices (l,m), we can also recall that the condition on the construction of
these functions is 0 ≤ m ≤ l, hence we can enumerate them with a single index i which
follows l + m and choosing the smaller l if the sum is the same for different cases. For
example, we have that i = 0→ (0, 0), i = 1→ (1, 0), i = 2→ (1, 1), i = 2→ (2, 0) and so
on. We can then measure the dual self-energy projected onto the i-th basis function ψ(s)

i (k)
with s−symmetry by sampling the new coefficients within Monte Carlo

Σ̃Nmax(i, ν; ξ) =
Nmax∑︂
n=1

⎡⎢⎢⎢⎢⎢⎣∑︂
k

an(k, ν)ψ(s)
i (k)

⎤⎥⎥⎥⎥⎥⎦ ξn =

Nmax∑︂
n=1

an(i, ν) ξn. (5.22)

where we simply have applied Eq. (5.20) and have exploited the linearity of the projection.
The self-energy of Eq.(5.16) in momentum space can be then obtained from Eq. (5.22) for
any k-point by applying Eq. (5.21). This allows to reduce the basis for measurements of
several orders of magnitude by exploiting the symmetries of the lattice. Additionally, since
the basis of irreducible representations is discrete, there is no need for an explicit binning
of momentum space.
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In practical calculations, a finite maximum number of basis functions has to be intro-
duced. The number imax of basis functions considered effectively acts as a cut-off in real-
space and convergence as a function of the number of the number of basis functions has
to be checked. This check was performed in the case of the dual fermion technique [221],
where it was shown that 10 basis functions are sufficient to describe the behavior of the
dual self-energy in all the cases considered there.

5.2.2 Introducing the dual bosons in the DiagMC scheme

Figure 5.2: Σ̃ladd
k represents the topology of higher-order diagrams included in the ladder ap-

proximation of the dual boson theory, while Σ̃corr
k represents topologies that appear in the full

diagrammatic expansion, but are not included in the ladder.

The goal of this Chapter is to introduce the non-local interactions in the theory, so
that we can treat the extended Hubbard model. In order to achieve this goal, we have to
solve the dual boson action instead of the dual fermion action. The reason is that the only
way to decouple the non-local interaction Vq in the action of the extended Hubbard model
is by introducing additional bosonic degrees of freedom through an additional Hubbard-
Stratonovich transformation. However, even if we truncate the expansion in terms of the
vertices at the two-particle level, we have an action that contains both fermions and bosons
that interact with each other. Indeed, the dual boson action (4.10) at the two-particle
approximation (4.15) for the single-orbital case leads to

S̃ = −
∑︂
k,ν,σ

f ∗kνσG̃
−1
kνσ fkνσ −

1
2

∑︂
q,ω,ς

ϕς−q,−ωW̃
ς −1
qω ϕςqω + F̃ [ f , ϕ]. (5.23)

where the bare dual propagators have been defined as

G̃kνσ =
[︂
g−1
ν + ∆ν − ϵk

]︂−1
− gν = GEDMFT

kνσ − gνσ, (5.24)

W̃
ς

qω = α
ς
ω

[︂
Vς −1

q − χςω
]︂−1

αςω = Wς EDMFT
qω − wς

ω, (5.25)
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where gν and wς
ω are the Green’s function and renormalized interaction of the auxiliary

impurity problem, respectively, and the impurity susceptibility is χςω = −
⟨︁
ρς−ω ρ

ς
ω

⟩︁
imp. Ad-

ditionally, αςω = 1 + Uς χςω with Uch/sp = ±U/2. In the single-orbital case, the interaction
term truncated at the two-particle level (4.15) is given by the fermion-boson part with a
charge and spin components and the local fermion-fermion part

F̃ [ f , ϕ] =
∑︂

q,k,ω,ν
ς,σ,σ′

Λςνω f ∗kνσσ
ς
σσ′ fk+q,ν+ω,σ′ϕ

ς
qω

+
1
4

∑︂
q,ω
{k,ν,σ}

Γσσ
′σ′′σ′′′

νν′ω f ∗kνσ fk+q,ν+ω,σ′ f
∗
k′+q,ν′+ω,σ′′′ fk′ν′σ′′ . (5.26)

This action is clearly not suitable to apply the DiagMC algorithm for a quartic interac-
tion described before. We might apply a different version of DiagMC that was designed to
tackle the polaron problem [276, 285, 304]. However, by inspection of the action (5.23), it
turns out that there is no need to stir away from the algorithm for fermions with quartic in-
teraction. The reason is that the action (5.23) is at most quadratic in the bosonic fields ϕςqω,
hence the bosons can be integrated out exactly. The procedure is analogous to Eq. (4.45),
if we set the fields bςω = 0.

The result of this procedure is a modified dual fermion action

S̃ = −
∑︂
k,ν,σ

f ∗kνσG̃
−1
kνσ fkνσ

+
ξ

8

∑︂
q,ω,ς
{k,ν,σ}

Γ
ς,kk′q
νν′ω f ∗kνσσ

ς
σσ′ fk+q,ν+ω,σ′ f

∗
k′+q,ν′+ω,σ′′′σ

ς
σ′′′σ′′ fk′ν′σ′′ , (5.27)

where we introduced a new momentum dependent fermion-fermion vertex that combines
the vertex function of the local impurity problem and the non-local interaction contained
in the bare W̃q between fermions mediated by dual bosonic fields

Γ
ch,kk′q
νν′ω = Γch

νν′ω + 2M̃ch,q
ν,ν′,ω − M̃ch,k′−k

ν,ν+ω,ν′−ν − 3M̃sp,k′−k
ν,ν+ω,ν′−ν,

Γ
sp,kk′q
νν′ω = Γ

sp
νν′ω + 2M̃sp,q

ν,ν′,ω + M̃sp,k′−k
ν,ν+ω,ν′−ν − M̃ch,k′−k

ν,ν+ω,ν′−ν. (5.28)

Here, we introduce the momentum-dependent contributions to the vertex obtained by in-
tegrating out the bosonic degrees of freedom as M̃ς,q

ν,ν′,ω = Λ
ς
ν,ωW̃ς

qωΛ
ς
ν′+ω,−ω.

Each contribution to the series expansion (5.5) can be written as a combination of the
two kinds of diagrammatic elements introduced in the DiagMC@DF scheme: fermionic
lines that represent dual Green’s functions G̃ (called also propagator lines) and vertices Γ,
which are now described in Eq. (5.28). Thanks to this transformation, we do not need to
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Figure 5.3: First diagram topologies in the representation used in the DiagMC@DB represen-
tation compared with those of the original dual boson theory.

introduce any substantial changes from DiagMC@DF in the acceptance-rejection scheme.
The only difference is the fact that in our case the bare fermion-fermion vertex func-
tion (5.28) contains a momentum-dependent part, hence it is not local in space anymore.
The simultaneous sampling of contributions coming from the fermion-fermion scattering
and boson exchange processes efficiently reduces the number of topologies, compared to a
sampling where treat local and non-local vertices as separate diagrammatic objects. How-
ever, it has a consequence on the sampling, since the property expressed in Eq. (5.19) does
not hold anymore if the vertex is momentum-dependent, even in the case of EDMFT start-
ing point. For this reason it is necessary to sample the tadpole diagrams, that contain the
insertion of second-order DB diagram for the self-energy.

5.2.3 Using the semi-bold scheme to reduce the number of topologies
Even though we cannot neglect the tadpole diagrams completely, there is a way of con-
sistently removing diagrammatic contributions by using the semi-bold DiagMC scheme
of Ref. [279]. Within this scheme, we can identify the contribution to self-energy of the
topologies that we want to exclude and write it as a functional of the Green’s function
Σ̃

sb
= Σ̃

sb[G̃]. In the semi-bold scheme, we replace the bare Green’s function of the Di-
agMC scheme in all diagrams with a new Green’s function G̃sb that is dressed by the
self-energy Σ̃sb found as the self-consistent solution of the Dyson equation

G̃
−1
sb = G̃

−1
− Σsb[G̃sb]. (5.29)

This formal transformation of the series is exact in the sense that they are guaranteed to
converge to the same physical answer within the convergence radius of both series, so
when the convergence parameter |ξ| < Rbare∧ |ξ| < Rsb, as discussed in Ref. [279], with the
only caveat that the subset of diagrams excluded with the semi-bold procedure is finite.
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Figure 5.4: Diagram topologies for the self-energy up to the second order. Topology (a)
represents the tadpole diagram, (b) is the second-order diagram with a tadpole insertion, while
(c) is the topology with two vertices connected by three propagator lines.

However, the convergence properties of the semi-bold series are generally different from
the bare series [305].

In principle, any kind of topology can be excluded by this procedure, but there is a
balance between the computational time saved by avoiding the sampling of the additional
diagrams corresponding to the topology and the computational overhead introduced to
self-consistently solve Eq. (5.29) and to perform the necessary tests to identify the cur-
rent topology during the DiagMC run. As an example, in the work on DiagMC@DB of
Ref. [230], we chose to exclude only the tadpole diagrams Σ̃sb[G̃] = Σ̃(1)[G̃sb], so that ef-
fectively we reduced the number of diagrammatic topologies needed for a DiagMC@DB
calculation to those of DiagMC@DF based on EDMFT. However, by using the semi-bold
scheme, we do not need to start from a EDMFT impurity problem at all, but we can exclude
the diagrams independently on the starting point. The exclusion of the tadpole diagrams
is quite simple. It suffices to check that no propagator line has both ends connected to the
same vertex. However, we can choose to exclude even more complicated sets of diagram-
matic contributions. As a matter of fact, in the work presented in Ref. [232], we opted for
the exclusion of both the tadpole and the second-order diagrams. In that case, we com-
puted Σ̃sb

= Σ̃
(1)[G̃] + Σ̃(2)[G̃] self-consistently using DiagMC@DB with maximum order

Nmax = 2 and we used the resulting G̃sb as a bare propagator for DiagMC. Excluding the
topologies up to second-order is again rather simple, as the two diagrammatic topologies
at second order correspond to a diagram that features a tadpole insertion (excluded by the
exclusion of the tadpoles) and a diagram where two vertices are connected to each other
by three propagators. The overhead introduced to perform the checks for the exclusion of
these diagrams does not seem to hinder the efficiency of the procedure, based on our tests.

In our tests, we did not observe any noticeable extension of the convergence radius Rsb
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compared to the bare convergence radius Rbare. The improvement of using the semi-bold
scheme in the range of parameters we considered is purely in terms of reduced error bars,
hence a sharp reduction in the computational time needed to reach a target accuracy.

5.3 Results obtained using DiagMC@DB
The problem that we addressed using DiagMC@DB is the extended Hubbard model on a
square lattice with nearest-neighbor tight-binding hopping t, local Hubbard interaction U
and nearest-neighbor interaction. The Hamiltonian of this system reads

Ĥ = −t
∑︂
⟨i, j⟩,σ

c†iσc jσ + U
∑︂

i

ni↑ni↓ + V
∑︂
⟨i, j⟨

nin j. (5.30)

The filling was chosen to be half filling, hence the chemical potential µ = U/2. As previ-
ously discussed, the DiagMC@DB calculations are performed in momentum space, which
is a continuous space. In momentum space, the dispersion reads

ϵk = −2t
(︂
cos kx + cos ky

)︂
(5.31)

and the non-local interaction term of the Hamiltonian can be rewritten as

Vq = 2V(cos qx + cos qy). (5.32)

5.3.1 Output of a DiagMC@DB calculation
In order to efficiently store the results, we sample the series in the space of irreducible
representations according to Eq. (5.22). Additionally, if we want to study the convergence
to the exact self-energy at infinite order, we should consider the cumulative sum of coeffi-
cients rather than the coefficients themselves. With the expression the “dual self-energy at
order n”, we indicate the cumulative sum over the coefficients

Σ̃n(k, ν) =
n∑︂

m=1

am(k, ν) (5.33)

as a function of the order n = 1, ...,Nmax, and we set ξ = 1 to obtain the physical result.
The dual self-energy Σ̃n(k, ν) can be obtained from the measured coefficients as

Σ̃n(k, ν) =
imax∑︂
i=0

Σ̃n(i, ν)ψ(s)
i (k) =

n∑︂
m=1

imax∑︂
i=0

am(i, ν)ψ(s)
i (k), (5.34)
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Figure 5.5: Convergence of the real (top panel) and imaginary (bottom panel) parts of the
dual self-energy Σ̃n(k, ν) obtained for the zeroth Matsubara frequency ν0. The result is plotted
along the high-symmetry path in momentum space k as a function of the expansion order
n. The parameters are U = 5, V = 1.25, and β = 2 in the units of the hopping amplitude.
The inset shows the convergence of the real part around the M = {π, π} point. This figure is
reproduced from Ref. [230].

where the basis functions ψ(s)
i (k) are defined in Eq. (5.21). The physical partial sums are

given by setting Σ̃n(i, ν) = Σ̃n(i, ν; ξ = 1) in Eq. (5.22). The cut-off index imax of the basis
functions is chosen to guarantee appropriate convergence. An example of the results that
can be obtained from a DiagMC@DB calculation is shown in Fig. 5.5. This calculations
shows the dual self-energy at the first Matsubara frequency along the high-symmetry path
in the Brillouin zone and it is performed at U = 5, V = 1.25 and β = 2. The series
considered is the bare series without the exclusion of any topology. As a consequence, the
last order that was possible to converge within reasonable error bars is the fifth-order.

The order-by-order analysis of the dual self-energy is a very useful tool to determine
which diagrammatic contributions are important in dual theories. As a matter of fact,
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we can directly judge if second-order approximations are accurate in this context. As
it can clearly be seen, the first-order term, which contains the diagrams in the first line
of Fig. 5.3, contributes significantly to the real part of the dual self-energy, making up
to approximately 50% of the value along the whole path in the Brillouin zone. This is
not surprising as the value of the non-local interaction V is quite large and we expect the
diagram with a dual boson insertion to be roughly proportional to the non-local interac-
tion V . The second-order contribution contains the second-order dual fermion diagram,
so two fermion-fermion vertices connected to each other. It is not surprising then that
this contribution almost fully contains the remaining contribution to the real part of the
dual self-energy. Based on this analysis, we expect second-order DF and second-order DB
methods to accurately describe the real part of the dual self-energy. However, by looking
at the imaginary part we notice that the second order still misses around 50% of the mo-
mentum dependence at the nodal point N =

(︂
π
2 ,

π
2

)︂
anti-nodal point X = (π, 0). In order

to capture this contribution, it is necessary to include diagrams at the third order (which
still miss around 5% of the contributions) or higher orders. The error bars are obtained
by applying the standard Jackknife resampling analysis to a sufficiently large number of
Monte Carlo runs.

5.3.2 Charge density wave in the extended Hubbard model on a square
lattice

The extended Hubbard model of Eq. (5.30) exhibits a competition between the local in-
teraction U and the non-local interaction V . This competition leads to a phase transition
between the regime where the local physics dominates and the regime where the non-local
physics wins.

The reason is that putting two electrons on the same site costs an energy U, hence
the local U favors a configuration with one electron per site. On the other hand, putting
two electrons on neighbouring sites becomes unfavourable if V is large, hence the non-
local interaction favors a charge density wave (CDW) with a checkerboard configuration,
in which doubly occupied sites alternate with empty sites. On a mean field level and at
T = 0, in both configurations the electrons are frozen to their sites, so they have zero
kinetic energy. In this situation, the CDW phase transition to this state occurs when V is
large enough to overcome the effect of the on-site Coulomb repulsion. The transition from
the Mott state with mainly singly-occupied states to the CDW state occurs when V = U/z,
where z is the number of neighbours. Based on this consideration, on a square lattice the
CDW transition occurs around VMF = V/4.

Of course, both the presence of temperature and of quantum tunnelling effects quantita-
tively affects this picture. As a consequence, a perturbative expansion at small values of U,
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where the assumption of perfect electronic localization is surely not valid, predicts the on-
set of the CDW phase at V ≃ U/8+const [306]. In the intermediate regime, more advanced
mean-field estimates can be obtained based on RPA or GW theories and give the transition
point at V ≃ U/4 [205], in agreement with the simplest classical mean field argument.
This behavior is reproduced at moderate interaction strength by DCA calculations [307,
308]. Finally, as we shall see below, for large values of U and large temperatures the po-
sition of the onset of the CDW phase appears shifts towards the value V ≃ U which can
be found using the Peierls-Feynman-Bogoliubov variational principle [309]. Dual boson
calculations are in good agreement with the DCA results and interpolate between all these
different trends in the weak-, moderate- and strong-coupling regimes [225, 227].

Depending on the method used, the transition to a symmetry broken phase can be iden-
tified in different ways. The first possibility is to use a large enough cluster to reproduce the
larger unit induced by the breaking of the symmetry. The system can be pushed towards
the broken-symmetry phase by applying small symmetry-breaking fields in the Hamilto-
nian, that bias the system towards the lower symmetry state. We can then extrapolate the
broken-symmetry state in the limit of vanishing external fields. This technique is exploited
in cluster calculations, for instance in DCA calculations [307, 308].

Usually, the appearance of a broken-symmetry phase is signalled already in the normal
phase by a divergence of the corresponding component of the susceptibility. In the case
of the CDW [225, 227, 229], this susceptibility is the charge susceptibility, related to our
conventions as

Xch
qω = −Xd

qω =
⟨︂
nd

qωnd
−q,−ω

⟩︂
. (5.35)

This approach is used in most diagrammatic techniques. Among those, the ladder dual
boson approach will be used as a comparison with DiagMC@DB.

5.3.3 CDW from single-particle observables
As we discussed before, two-particle quantities inherently convey information about second-
order phase transitions and symmetry-breaking. However, we can extract information
about a phase transition also from single-particle observables. In particular, we know that
a physical phase transition is associated with a non-analyticity of the series corresponding
to the observables of interest. This does not necessarily mean that we observe a divergence
of the self-energy, for example. Indeed, in a self-consistent method, extracting informa-
tion about a phase transition from the single-particle observables, such as the self-energy,
requires a careful analysis that goes under the name of fluctuation diagnostics [30, 259,
310]. On the other hand, within DiagMC, we can exploit an additional possibility to in-
vestigate the transition. We recall that we construct the series order-by-order starting from
the a non-interacting case which is our case is the non-interacting dual fermion action.
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Since the dual action (5.27) is explicitly constructed for the translationally-symmetric
phase, we expect to have a non-analytical point, also called singularity in this context, on
the real axis corresponding to 0 < Re ξ ≤ 1 and Im ξ = 0. This results in a divergence of
the infinite diagrammatic expansion in terms of bare quantities of the theory at the value
corresponding to the phase transition [221, 225, 227, 229, 265]. When this happens, it
is sufficient to analyse some specific components of the self-energy in order to find the
parameters at which the transition takes place. In this case, the critical value VCDW for the
CDW phase transition can be found in a controlled way from the analytic structure of the
dual self-energy Σ̃ as a function of the complex expansion parameter ξ. The critical point
V = VCDW is marked by the singularity appearing in the function Σ̃(ξ) at ξ = 1. When V is
increased beyond VCDW in the symmetry-broken phase, the singularity moves closer to the
origin of the complex plane ξ = 0, so that the physical Σ̃(ξ = 1) remains inaccessible by
its power-series expansion (5.16). A different power series expansion based on the ground
state with broken symmetry should be used there.

There are several ways of extracting the critical value VCDW at which the transition
occurs. A simple method is to look at some component of the self-energy an(k, νn) as a
function of n and to apply the Cauchy-D’Alemebert ratio test for the convergence of the
series. This test states that, if we consider the quantity,

L = lim
n→+∞

⃓⃓⃓⃓⃓
an+1

an

⃓⃓⃓⃓⃓
, (5.36)

the series is convergent if L < 1 and divergent if L > 1. Unfortunately, this method often
requires the calculation of many series coefficients to extract a reliable estimation of the
limit n→ +∞. A more sophisticated method that allows for a less crude estimation of the
transition point was introduced in Ref. [311] and has been routinely applied in the context
of DiagMC [295]. This method allows to accurately evaluate the specific location of the
singularity ξs, when several expansion orders for the series are available. In particular, this
method assumes a generic power-law behavior near the singularity

Σ̃(ξ) ∝ (ξs − ξ)η (5.37)

for |ξ − ξs| ≪ 1 with some real number η. Assuming this kind of behavior is typical for a
continuous phase transition. The method allows to extract the ξs from the behavior of the
series coefficients an in Eq. (5.16). The position of the singularity ξs crosses ξ = 1 at the
critical value VCDW. As shown in Refs. [230, 295], ξs can be found from a finite number
of coefficients {an} with a reliable error bar that includes both the systematic and statistical
Monte Carlo error.
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Figure 5.6: Convergence properties of the cumulative dual self-energy Σ̃ as a function of the
expansion order for the first few basis functions characterized by index i. Parameters are
chosen to be U = 3.5, V = 1.08 and β = 4 and exhibit a clear convergence for all the basis
functions.

5.3.4 Order-by-order analysis of the dual self-energy
It is important to choose the coefficient of the series that exhibits a clear divergence as the
order n increases. In principle all the components that are non-zero by symmetry are a
suitable choice for the analysis, however we found that the best choices are the physical
motivated ones. The choice of the Matsubara frequency is clear, since in most of our
calculations the components with ν = ν0 = π/β are the largest ones. The only possible
exception at large U, where the system is Mott insulating and the self-energy at the lowest
Matsubara component is not necessarily the largest component. For what concerns the
momentum space, we explored the choice of a specific point in momentum space an(k =
M, ν0). However, we noticed that the choice of a specific point in momentum space was
extremely sensitive to noise. Additionally, the divergence may not occur simultaneously at
each point in momentum space, as it is clear from the original paper about DiagMC@DF.

The choice of Ref. [230] was to consider the coefficient {Re an(k, ν0)}, for n = 1, . . . ,Nmax

projected on the first A1g-symmetric harmonic ψ(s)
1 (k) = cos(kx) + cos(ky) to produce a

numerical series from the functional one. In practice, there is no need to perform this
projection, as in our implementation the measurement is already directly performed in the
basis of irreducible representations of the square lattice symmetry group.

The choice of this basis function can be understood by looking at Fig. 5.6 and Fig. 5.7,
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Figure 5.7: Convergence properties of the cumulative dual self-energy Σ̃ as a function of the
expansion order for the first few basis functions characterized by index i. Parameters are
chosen to be U = 3.5, V = 1.18 and β = 4. Data for some choice of the basis function exhibit
a clear divergence, for instance i = 1 for the real part and i = 2 for the imaginary part.

that show the behavior of the partial sums Σ̃n(i, ν0) =
∑︁n

m=0 am(i, ν0) for the different indices
i corresponding to s-symmetry of the basis. In the semi-bold case, we added the contribu-
tions m = 0 that correspond to the semi-bold dual self-energy Σ̃sb projected on the basis
of symmetrized functions. Fig. 5.6 shows the convergent case at U = 3.5 and V = 1.08,
while Fig. 5.7 shows results for the divergent case U = 3.5 and V = 1.18. The projection
on the first function ψ(s)

0 (k) = 1, which is constant, does not seem a good option, because
it does not exhibit any clear divergent behavior as n is increased. On the other hand, pro-
jection on the s−symmetric function with index 1 is the largest contribution to the real part
of Σ̃ and clearly displays a change of behavior from the convergent to the divergent case.
Another possible choice is the coefficient of the ψ(s)

2 (k) = cos kx cos ky basis function that
represents the main contribution to the imaginary part and corresponds to the index 2 in
the plots. The figures also show the convergence of the coefficients as a function of the
number of basis functions in the momentum basis. Coefficients higher than i > 5 can be
safely neglected in most cases. In Figs. 5.8 and 5.9, we show the cumulative coefficients
Σ̃n(i = 1, ν0) for different values of V up to order 6 for U = 2.5 and U = 3.5 respectively.
The upper panel displays data for the bare series, while the lower panel displays results for
the semi-bold series. The width of the line collecting the points represents the stochastic
Monte Carlo error. Clearly, results obtained with the semi-bold series have much smaller
error bars than for the bare series for both the values of U considered and across all the
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Figure 5.8: Convergence properties of the cumulative dual self-energy as a function of the
expansion order for different values of the non-local interaction V . Upper panel shows the
bare expansion and lower panel the semi-bold one. The parameters are chosen to be U = 2.5
and β = 4. The data is shown for a particular component of the irreducible representation
of momentum, the A1g, and at Matsubara frequency ν0. The semi-bold series clearly shows
smaller error bars compared to the bare series at a fixed number of measurements.

values of V considered in both cases, allowing for a much better infinite-order limit extrap-
olation. It is already possible to see from inspection of Fig. 5.8, that the partial sums for
U = 2.5 exhibit a change of behavior around the value of non-local interaction V = 0.78.
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This change of behavior involves the transition between a clear convergence to a divergent
behavior and it occurs both in the bare and in the semi-bold series. This is visible also for
U = 3.5 around V = 1.14 in Fig. 5.9. In the same way, we can identify the same kind of
behavior in the large-U behavior in Fig. 5.10.
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Figure 5.9: Convergence properties of the cumulative dual self-energy as a function of the
expansion order for different values of the non-local interaction V . Upper panel shows the
bare expansion and lower panel the semi-bold one. The parameters are chosen to be U = 3.5
and β = 4. The data is shown for a particular component of the irreducible representation of
momentum, the A1g, and at Matsubara frequency ν0. As before, the semi-bold series clearly
shows smaller error bars compared to the bare series at a fixed number of measurements.
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Figure 5.10: Convergence properties of the cumulative dual self-energy as a function of the
expansion order obtained with the semi-bold expansion at large value of U. The parameters
are chosen to be U = 6.5 (upper panel) and U = 7.5 (lower panel). The inverse temperature
is β = 2. Different colors represent different values of the non-local interaction V . The data
is shown for a particular component of the irreducible representation of momentum, the A1g,
and at Matsubara frequency ν0.
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Figure 5.11: Convergence radius of the series at small U. Upper panel shows U = 2.5 and
the lower panel shows U = 3.5. Results are obtained at β = 4. The right panels show the
corresponding static charge susceptibility at the k-point M= (π, π).

5.3.5 Extrapolation of the convergence radius of the series in CDW
regime

From this data, we can extract the position of the critical V at which the phase transi-
tion occurs by using the expression of Eq. (5.37). In particular, we can compute the
VCDW at which the singularity reaches ξs = 1, meaning that the convergence radius of
the series must be smaller that ξ = 1. We also validated this result by computing the
charge susceptibility (5.35) in the ladder DB approximation and we showed that its inverse
1/Xch(ω = 0,k = M) diverges roughly at the same position where ξs of series crosses 1 in
all the considered cases. Figures 5.11 and 5.12 show the results for the convergence radius
ξs (left panels) and the charge susceptibility (right panels) precisely show this agreement.
The shaded area in the plots for the convergence radius shows the error bar that contains
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Figure 5.12: Convergence radius of the series at large U. Upper panel shows U = 6.5 and
the lower panel shows U = 7.5. Results are obtained at β = 2. The right panels show the
corresponding static charge susceptibility at the k-point M= (π, π).

both the stochastic and the fitting error. These error bars are estimated in the most con-
servative way and probably overestimate the actual uncertainty in the convergence radius.
That said, the error becomes smaller as ξs is closer to 1 and, despite the large error bars
given by the method, it is possible to unambiguously determine the critical value of V
where ξs crosses the line ξs(V) = 1 in all the considered cases.

The specific values of VCDW are:

U VCDW (DiagMC@DB) VCDW (ladder DB)
2.5 0.81(1) 0.77
3.5 1.15(1) 1.09
6.5 3.42(1) 3.41
7.5 5.20(2) 5.15
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Figure 5.13: Phase diagram of the dual boson action obtained using DiagMC@DB. Originally,
published in Ref. [230].

The four points exhibit a clear non-linear behavior, with some change of the slope of
the phase boundary somewhere between U = 3.5 and U = 6.5. We find a quantitative good
agreement with previous dual boson, which also predict a change in the slope around the
onset of the Mott transition [225, 227, 265], and DCA calculations [307, 312]. Our results
for U = 2.5 show also a very good agreement with the value obtained with GW+DMFT
in Ref. [205].

We find that ladder DB underestimates the critical V of the CDW phase. This behavior
is reasonable, since the DiagMC@DB method contains additional diagrammatic contribu-
tions that contribute to the screening of the longitudinal fluctuations. The difference with
respect to the DiagMC@DB method, however, is always less than 5%. This is a result that
has fundamental implications on the ladder DB method. Indeed, it shows that the longi-
tudinal contributions contained in the ladder DB method are the largest contributions and
are sufficient to accurately characterize the phase transition.
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5.3.6 Comparison with ladder DB
In addition to the study of the CDW phase transition within DiagMC@DB, we also com-
pared the results with the ladder DB method for different values of U and V parameters.
In order to quantify the difference between the two methods, we investigated the quantity

δM = Re

⎡⎢⎢⎢⎢⎢⎢⎢⎣Σ
DiagMC
M,ν0

− Σ
ladd.
M,ν0

Σ
DiagMC.
M,ν0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (5.38)

where ΣM,ν0 is the difference between the self-energy in the specified method and the
DMFT self-energy Σimp

ν0 , and ν0 is the lowest positive Matsubara frequency. The self-
energy is computed from the dual self-energy using Eq. (5.17) and we considered the
result at Nmax = 5 to be converged to a sufficient accuracy, so that we can simply apply the
formula without considering the effects of errors. The choice of the M-point in the formula
is based on the fact that the largest difference in the Brillouin Zone is always located at the
point in our calculations for this model and at half filling.

By considering the quantity δM, we could get a picture of the regions in the U − V
plane where the ladder approximation is a good approximation and where it is not, as it
is shown in Fig. 5.13. In general, we find a rather good agreement in the whole plane, as
the difference between the two methods never exceeds 8%. However, it is also clear that
the region of largest difference between the two methods is located around U ≈ 7 and at
lower values of V . As a matter of fact, the region of largest mismatch between the methods
coincides with the region where calculations using cluster DMFT and dual theories locate
the Mott transition of the square lattice Hubbard model. Indeed, in this regime, transverse
fluctuations in the spin channel can significantly screen the ladder hence affecting the self-
energy. These non-linear and incoherent processes related to the onset of the transition
cannot be captured within the ladder approximation.

On the other hand, when V is large enough, the physics of the CDW dominates over
all the other processes in the spin channel, no matter if they are longitudinal or trans-
verse. This physics manifests itself in the longitudinal charge channel, included both in
DiagMC@DB and in the ladder approximation.

Indeed, from our studies we observe that the absolute difference between the Di-
agMC@DB and ladder DB is not strongly modified upon the increase of V . However,
the self-energy is strongly increased so that the relative difference δM is reduced.

5.4 Summary of the Chapter
In this Chapter, we introduced the DiagMC@DB and we showed how this method can
be used to compute observables of the dual action truncated at the two-particle level in
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an exact and unbiased way. In order to reduce the computational time to achieve reason-
able error bars, we introduced a semi-bold scheme that allows for the exclusion of simple
diagrammatic topologies that can be computed in advance.

We then discussed how to obtain the critical parameters of phase transitions by analysing
the series order-by-order and we applied this method to estimation of the CDW phase tran-
sition in the extended Hubbard model on a square lattice.

Finally, we compared the ladder DB method with DiagMC@DB in order to estimate
when the method is accurate. We found that ladder DB is a rather good approximation in
the whole U − V plane, but shows the largest discrepancy with respect to DiagMC@DB
in the region of values of U around the Mott transition and small values of the non-local
interaction V .
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6 The D-TRILEX approach to strong
correlations

6.1 D-TRILEX solution for the partially bosonized action

6.1.1 Advantages of the D-TRILEX method
D-TRILEX has a very similar diagrammatic structure to TRILEX. However, it was derived
following a rather different route, namely as an approximation of the DB theory. For this
reason, D-TRILEX has the same degree of internal consistency as the DB approach. In
particular, it treats both charge and magnetic fluctuations without facing the Fierz ambi-
guity issue, and also possesses a desired symmetry for the vertex corrections. Originally,
the D-TRILEX method was formulated and implemented in the single-orbital form [231].
In this context, it retains a high degree of accuracy compared with its parental DB the-
ory [232]. Specifically, this approach captures both the reduction of the critical value of
the critical interaction for the Mott transition with respect to the DMFT prediction [231]
and the pseudogap formation in the Slater regime of a single-orbital Hubbard model [232].
Additionally, D-TRILEX correctly reproduces the momentum differentiation in the elec-
tronic self-energy predicted by an exact benchmark in a model relevant for cuprates [232].
These successes of the method achieved in a single-orbital context made it desirable to
extend the D-TRILEX approach to a multi-band framework. An early attempt in this di-
rection was the application of a simplified version of the method to the study of magnetic
fluctuations in a three-orbital model for perovskites [48]. The promising results obtained
in that case motivated us to derive a general formulation of the multi-band D-TRILEX
theory and to develop a numerical implementation that does not rely on a specific model.

6.1.2 General form for D-TRILEX diagrams
In this Chapter, we present the derivation of the multi-band D-TRILEX approach and we
discuss some benchmark calculations. In this theses, we strictly follow the derivation
presented in Ref. [96], which was coauthored by the author of this thesis. The D-TRILEX
method is derived as the simplest set of diagrams that can be constructed from the partially
bosonized action, in a very similar fashion to the GW formalism.
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In order to extend this formalism to the multi-band framework, we follow the deriva-
tion presented in Refs. [231, 232]. We recall from Sec. 4.3.5 the form of the effective
partially bosonized dual action of Eq. (4.49) written in terms of fermion f and boson b
variables

S f b = −
∑︂
k,{l}

∑︂
σσ′

f ∗kσl

[︂
G̃
−1
k

]︂σσ′
ll′

fkσ′l′ −
1
2

∑︂
q,{l}

∑︂
ςς′

bς
−q, l1l2

[︃
W̃
−1
q

]︃ςς′
l1l2, l3l4

bς
′

q, l4l3

−
∑︂
q,{l}

∑︂
ϑϑ′

b∗ϑq, l1l2

[︃
W̃
−1
q

]︃ϑϑ′
l1l2, l3l4

bϑ
′

q, l3l4 + F [ f , b] (6.1)

with the interaction term F [ f , b] defined in Eq. (4.57). In order to obtain the leading di-
agrams of the theory, we can expand the action up to the second order within the path
integral. This procedure corresponds to calculating the Luttinger-Ward functional of the
dual theory to the second order. In the D-TRILEX approach the self-energy Σ̃ and the po-
larization operator Π̃ are obtained self-consistently from an analog of the Almbladh func-
tional [313] that corresponds to the partially bosonized dual action (4.49). The Almbladh
functional is a generalization of the Luttinger-Ward functional [314–316] that includes
also the possibility for a screened interaction. Keeping only the first diagrammatic terms,
we derive the explicit expressions for the functional as

Φ[G̃, W̃,Λ] = −
1
2

∑︂
q,k

∑︂
{l},{σ}

∑︂
ςς′

Λ
σ1σ2ς
νω, l1, l2, l3l4

G̃σ2σ8
k+q,l2l8 G̃σ7σ1

k,l7l1 W̃ςς′

q, l3l4, l5l6 Λ
σ8σ7ς

′

ν+ω,−ω, l8, l7, l6l5

+
1
2

∑︂
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∑︂
{l},{σ}

∑︂
ςς′

Λ
σ1σ2ς
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k′,l7l8 W̃
ςς′

q=0, l3l4, l5l6 Λ
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ν′,ω=0, l8, l7, l6l5
.

(6.2)

Note that the contribution of the particle-particle ϑ channel to the introduced functional
is neglected, because the renormalization of the bare interaction in the particle-particle
channel is believed to be negligibly small at standard fillings in the case of repulsive in-
teractions at general fillings [232, 317]. The dual self-energy and the dual polarization
operator can be found by taking the functional derivative of the functional (6.2)

Σ̃
σσ′

k,ll′ =
∂Φ[G̃, W̃,Λ]

∂G̃σ′σ

k,l′l

⃓⃓⃓⃓⃓
⃓
W̃,Λ

, Π̃
ςς′

q, l1l2, l3l4 = − 2
∂Φ[G̃, W̃,Λ]

∂W̃ς′ς

q,, l3l4, l1l2

⃓⃓⃓⃓⃓
⃓
G̃,Λ

(6.3)
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Figure 6.1: Diagrammatic representation for the dual self-energy Σ̃ (left) and the dual polar-
ization operator Π̃ (right). The two processes contributing to Σ̃ are expressed mathematically
in Eqs. (6.4). The expression for Π̃ is explicitly written in Eq. (6.5). Wavy lines represent dual
bosonic propagators and straight lines depict dual Green’s function, as explicitly indicated in
the Figure. Triangles represent three-point vertex functions Λςνω. Numbers correspond to band
indices. The bosonic end of the triangle can be identified by the fact that it carries two band
indices. Reproduced from Ref. [96].

This results in the following equations for the dual self-energy and polarization

Σ̃
σ1σ7
k,l1l7 =

(︂
Σ̃

TP)︂σ1σ7

k,l1l7
+

(︂
Σ̃

GW)︂σ1σ7

k,l1l7

= −
∑︂
q,ςς′

∑︂
{l},{σ}

Λ
σ1σ2ς
νω, l1, l2, l3l4

G̃σ2σ8
k+q,l2l8 W̃ςς′

q, l3l4, l5l6 Λ
σ8σ7ς

′

ν+ω,−ω, l8, l7, l6l5

+
∑︂
k′,ςς′

∑︂
{l},{σ}

Λ
σ1σ7ς
ν,ω=0, l1, l7, l3l4

W̃
ςς′

q=0, l3l4, l5l6 Λ
σ8σ2ς

′

ν′,ω=0, l8, l2, l6l5
G̃σ2σ8

k′,l2l8 (6.4)

Π̃
ςς′

q, l1l2, l7l8 =
∑︂

k

∑︂
{l},{σ}

Λ
σ4σ3ς
ν+ω,−ω, l4, l3, l2l1

G̃σ3σ5
k,l3l5 G̃σ6σ4

k+q,l6l4 Λ
σ5σ6ς

′

νω, l5, l6, l7l8
(6.5)

Here, G̃σσ′

k and Wςς′

q are the dressed fermionic and bosonic propagators of the partially
bosonized dual problem (4.49) that can be found using Dyson equations (4.61) and (4.62),
respectively. The diagrammatic representation of these equations is shown in Fig. 6.1. In
the expression for the dual self-energy, we highlighted the two contributions Σ̃TP and Σ̃GW ,
that have the same diagrammatic structure as the Hartree term and the GW self-energy
respectively up to local vertex corrections.

These two equations in combination with the corresponding fermionic and bosonic
Dyson’s equations of Eqs. (4.61)-(4.62) consist in a system of equations that have to be
solved self-consistently. This kind of non-linear fixed point equations does not have a
unique solution and one has to adopt strategies to achieve convergence in difficult regimes
as discussed in Ref. [318]. In most cases, regimes of difficult convergence or divergence
of the self-consistent cycle correspond to physical instabilities.
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Note that the D-TRILEX diagrams (6.4)-(6.5) represent the leading contribution to
the self-energy and the polarisation operator of the partially bosonized dual action (4.49)
in both the weak and the strong coupling limits independently from the dimensionality
of the problem. Indeed, at weak coupling the D-TRILEX diagrammatic expansion is a
perturbative expansion in terms of the renormalised interaction (4.51). On the other hand,
in the strong coupling limit the bare dual Greens function, which is purely non-local, is
small, because electrons in the system are strongly localized (4.50).

6.1.3 Lattice quantities from a D-TRILEX calculation
Here, we quickly smmarize all the steps of a D-TRILEX calculation. For simplicity, in
this summary we neglect the particle-particle channels and we assume a paramagnetic
calculation. In paramagnetic regime, all the fermionic quantities do not depend on spin.
As a consequence, we can write the Green’s function and all the single-particle fermionic
quantities in a spin-independent fashion as

Gσσ′

k,ll′ = Gk,ll′δσσ′ . (6.6)

Similarly, the matrix structure of the susceptibility and all the other bosonic quantities
reduces to (︂

Xq

)︂ςς′
l1l2, l3l4

=
(︂
Xq

)︂ς
l1l2, l3l4

δςς′ (6.7)

for ς = d,m with m = sx = sy = sz, hence we can do calculations only for a single spin
projection and the others will be identical.

The single- and two-particle quantities for the initial lattice problem (3.14) can be
obtained from the dual quantities using the following exact relations (see Section 4.4).
The most convenient relation for the practical calculation of the lattice Green’s function
Gk,ll′ involves the dual self-energy Σ̃[︂

G−1
k

]︂
ll′
=

[︃(︂
gν + Σ̃k

)︂−1
]︃

ll′
+ ∆ν,ll′ − εk,ll′ (6.8)

Calculating Gk,ll′ be means of Eq. (6.8) has an advantage, because this expression does
not involve the self-energy of the reference problem Σimp

ν,ll′ . The latter is not a correlation
function and is usually calculated by inverting the corresponding Dyson equation for the
Green’s function gν,ll′ of the reference problem

Σ
imp
ν,ll′ = (iν + µ)δll′ − ∆ν,ll′ −

[︂
g−1
ν

]︂
ll′

(6.9)
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Consequently, Σimp
ν,ll′ obtained in this way contains big numerical noise at large frequencies

ν. This problem can be cured by employing improved estimator methods that consist in
computing higher-order correlation functions [319–321]. However, in multi-band calcula-
tions this procedure is numerically expensive. For this reason, it is preferable to compute
the lattice Green’s function using Eq. (6.8), and the lattice self-energy (4.67) separately.

Contrary to the self-energy, the polarization operator of the reference system Πimp ς
ω is

not very noisy, because it has the same dimension as the susceptibility of the reference
system χςω, l1l2, l3l4

= −⟨ρςω, l2l1
ρς
−ω, l3l4

⟩. Indeed, the polarization operator is defined through
the corresponding Dyson equation as[︃(︂

Π
imp ς
ω

)︂−1
]︃

l1l2, l3l4
=

[︂(︁
χςω

)︁−1
]︂

l1l2, l3l4
+ Uς

l1l2, l3l4
(6.10)

For this reason, the lattice susceptibility Xς
q is convenient to obtain directly from the Dyson

equation (see Section 4.4)[︃(︂
Xς

q

)︂−1
]︃

l1l2, l3l4
=

[︃(︂
Πςq

)︂−1
]︃

l1l2, l3l4
−

[︂
Uς + Vς

q

]︂
l1l2, l3l4

(6.11)

that involves the polarization operator of the lattice problem

Π
ς
q, l1l2, l3l4

= Π
imp ς
ω, l1l2, l3l4

+
∑︂
l′,l′′
Π̃
ς

q, l1l2, l′l′′

[︃(︂
1 + ūς · Π̃ςq

)︂−1
]︃

l′l′′, l3l4
(6.12)

Importantly, as shown in Section 4.4, the divergence in the lattice susceptibility Xς
q occurs

at the same time as in the renormalized interaction W̃ς

q that enters the term Σ̃GW in the
self-energy (6.4). This allows the D-TRILEX approach to capture the formation of the
pseudogap in the electronic spectral function in the paramagnetic regime in the vicinity of
a symmetry broken phase in the system [233, 235].

Finally, the polarization operator in the D-TRILEX approach (6.5) has the same struc-
ture as the exchange interaction Jς between charge and/or magnetic densities derived in
Refs. [264–266] in the many-body framework. This fact allows for a direct calculation of
the exchange interaction within the D-TRILEX scheme using the following relation

J
ς
q, l1l2, l3l4

=
∑︂
{l′}

[︃(︂
Π

imp ς
ω

)︂−1
]︃

l1l2, l′1l′2

[︂
Π̃
ς

q

]︂
l′1l′2, l

′
3l′4

[︃(︂
Π

imp ς
ω

)︂−1
]︃

l′3l′4, l3l4
(6.13)

This quantity is computed at the first iteration of the D-TRILEX self-consistent cycle, be-
cause instead of the dressed dual Green’s functions G̃ the dual polarization operator (6.5)
in the expression for the exchange interaction contains the bare dual Green’s functions G̃
(see Ref. [266]). Note that in Eq. (6.13) the inverse of the polarization operator of the
reference problem appears to the left and right of the dual polarization operator due to



128 Chapter 6. The D-TRILEX approach to strong correlations

a different definition of the vertex function used in Refs. [264–266]. We stress that the
obtained relations between the dual and the lattice quantities are valid for any form of the
self-energy and the polarisation operator of the partially bosonized dual action (4.49). Fo-
cusing on the D-TRILEX approach, it accounts for the leading diagrammatic contributions
in both the weak and the strong coupling limits, as previously mentioned. Specifically, the
D-TRILEX polarisation operator (6.5) becomes the leading contribution (the second-order
in terms of the dual Green’s functions) to the susceptibility (apart from the impurity polar-
isation operator) in the strong coupling limit. More elaborate contributions have at least
four dual Green’s functions in their structure, so they can be disregarded and D-TRILEX
becomes accurate in the regime close to the atomic limit also at the two-particle level. As
an additional confirmation of this fact, the expression in Eq. (6.13) gives the correct result
for the exchange interaction ∼ t2/U in the atomic limit [264]. For the sake of complete-
ness, we note that the D-TRILEX solution based on the DMFT reference problem is exact
for arbitrary interaction strength in the limit of infinite dimensions at the single-particle
level, but not at the two particle level, because it uses the partially bosonized approxima-
tion (see Section 4.3.1) instead of the exact four-point vertex function. However, based
on the results presented in the current and previous works [232], we stress that there is no
correlation between the exactness of the theory in the limit of infinite dimensions and the
accuracy of the theory in finite dimensions.

In addition to dynamical quantities it is possible to compute the density and the energy
in a D-TRILEX calculation. The density for each site-orbital index l can be calculated
using the regular formula, based on the Green’s function

⟨nlσ⟩ =
1
2
+

∑︂
k

Re (Gk)σσll =
1
2
+

1
β

∑︂
ν

Re
(︂
Gloc
ν

)︂σσ
ll

(6.14)

and the total density is simply ⟨n⟩ =
∑︁

lσ⟨nlσ⟩. In our calculations, we employed a fitting
of the first few even orders in 1/ν of the tail of the local Green’s function Gloc

ν to get an
accurate result.

Another important single-particle observable of the system is the average energy of the
system. It can be obtained as the expectation value of the Hamiltonian H corresponding to
action (3.14) of the system, ⟨E⟩tot = ⟨H⟩. The total energy ⟨E⟩tot = ⟨E⟩kin + ⟨E⟩pot can be
split into a single-particle kinetic contribution ⟨E⟩kin and a potential energy ⟨E⟩pot coming
from the interaction. The kinetic part corresponds to

⟨E⟩kin =
∑︂
k,{l},
σσ′
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εσσ

′

k,ll′ − µδll′δσσ′
]︂ ⟨︁
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σσ′

(︂
εσσ

′

k,ll′ − µδll′δσσ′
)︂
Gσσ′

k,ll′ (6.15)
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The potential contribution is the expectation value of the interacting terms

⟨E⟩pot =
1
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∑︂
{l},{σ}
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l1l2l3l4
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(6.16)

where we neglected particle-particle contributions. After recasting the interaction in the
particle-hole representation (4.21), we can use the relation (4.68) and the definition of
ρςq,ll′ to replace the expectation values of four operators with the quantities computed in
D-TRILEX

⟨nςq, l2l1
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−q, l3l4

⟩ = −Xς
q, l1l2, l3l4

+ ⟨nςq, l2l1
⟩ ⟨nς

−q, l3l4
⟩ (6.17)

Following these replacements and excluding unphysical term due to Pauli principle, the
final expression for the potential energy in the Kanamori approximation for the interaction
reads
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(6.18)

6.1.4 Scheme of a D-TRILEX calculation
The computational workflow is divided into several parts, as shown in Fig 6.2. The first
step (St.1) consists in solving the reference system, e.g. the DMFT impurity problem. This
produces the inputs necessary for the initialization of the diagrammatic part of the calcu-
lation. Hence, the inner steps are denoted with (Init.). The second step (St.2) takes care of
the self-consistent dressing of the dual Green’s function G̃ and the renormalized interaction
W̃. The inner steps (I.) of the self-consistent diagrammatic iteration are highlighted below.
After the dressed dual quantities are determined, the single- and two-particle quantities for
the initial (lattice) problem are evaluated at the third step (St.3). Here, we assume a para-
magnetic calculation, so we can omit spin indices in fermionic quantities as well as the
matrix channel dependence that appears in the bosonic quantities if an off-diagonal spin
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Figure 6.2: Workflow of the D-TRILEX method. The input consists in the parameters of the
electronic lattice problem (Init.1-2 in the main text). The red box indicates the solution of the
reference impurity problem (Init.3), that in some case has to be updated until self-consistency
is reached (for instance in DMFT, EDMFT and cluster DMFT). The blue box contains the
operations performed in the dual space, i.e. the calculation of the bare dual propagators (Init.4)
and the self-consistency cycle on the dual quantities (St.2). The output consists in the Green’s
function, self-energy, susceptibility and polarization operator of the lattice problem, obtained
by applying the exact relations between lattice and dual quantities (St.3).

dependence appears in the Hamiltonian. The computational workflow has the following
form:

(St.1) Input initialization:

(Init.1) Specify the single-particle term εk,ll′ , the interactions U pp/ph
l1l2l3l4

and Vς
q, l1l2, l3l4

, and
the temperature T that enter the initial action (3.14).

(Init.2) Define the chemical potential µ and the hybridization function ∆ν,ll′ .

(Init.3) Solve the reference system and get the corresponding Green’s function gν,ll′ ,
the susceptibility χςω, l1l2, l3l4

, and the vertex function Λςνω, l1,l2, l3l4
.

(Init.4) Compute the bare fermionic G̃k,ll′ and bosonic W̃
ς

q, l1l2, l3l4 propagators of the ef-
fective partially bosonized dual action (4.49) according to Eqs. (4.50) and (4.51),
respectively.

(St.2) Self-consistent calculation of D-TRILEX diagrams:

(I.1) Compute the dual polarization operator Π̃ using Eq. (6.5).

At the first iteration only: Compute the exchange interaction Jς
q, l1l2, l3l4

via
Eq. (6.13).

(I.2) Compute the dual renormalized interaction W̃ using Eq. (4.62).

(I.3) Compute the diagrams Σ̃TP and Σ̃GW for the dual self-energy (6.4).
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(I.4) Compute the dressed dual Green’s function G̃ using Eq. (4.61).

(I.5) If the desired accuracy δ for the self-consistent condition is reached, go to
(St.3). Otherwise go back to (I.1).

(St.3) Evaluation of lattice quantities:

Compute the dressed Green’s function Gk,ll′ (6.8), the self-energy Σk,ll′ (4.67),
the susceptibility Xς

q, l1l2, l3l4
(6.11), and the polarization operatorΠςq, l1l2, l3l4

(6.12)
for the lattice problem (3.14). From these quantities determine the orbital-
resolved average density ⟨nl⟩ (6.14) and the average energy ⟨E⟩ of the sys-
tem (6.15) and (6.16). If one aims at the specific density ⟨n⟩, it is possible to
update the chemical potential µ and go back to the beginning of the outer loop.
In that case, go to (St.1 of Init.2) and fix the new µ and update the hybridization
function ∆ν,ll′ if needed.

6.1.5 Details of the calculation
The complexity of the diagrammatic part of the D-TRILEX calculation is estimated as

O (NνNω) O

⎛⎜⎜⎜⎜⎜⎜⎝N2
imp ×

Nimp∑︂
i=1

N8
li

⎞⎟⎟⎟⎟⎟⎟⎠ O (︁
Nk log Nk

)︁
(6.19)

where Nν (ω) is the number of fermionic (bosonic) Matsubara frequencies, Nimp is the num-
ber of impurities in the reference system, Nli is the number of orbitals for the i-th impurity
and Nk is the total number of k-points. In this context, Nimp is the number of independent
impurities in the unit cell of the reference problem. Note that the case of Nimp > 1 corre-
sponds to a collection of impurities, as explained in Ref. [260], and not to a cluster of Nimp

sites. If the impurities are all identical, then the reference system reduces to a single site
impurity problem. If some of them are different, it is sufficient to solve an impurity prob-
lem only for the non-equivalent ones. In the multi-impurity case, fluctuations between
the impurities are taken into account diagrammatically in the framework of D-TRILEX
approach. On the other hand, a cluster reference system corresponds to a multi-orbital
problem with Nimp = 1. In this case, Nl is the total number of orbitals and sites of the
considered cluster. The separation between orbitals and sites that we introduce is useful to
reduce the computational complexity when addressing problems with several atoms in the
unit cells.

The scaling as a function of k-points is determined from the fact that we utilise the
fast-Fourier transform (FFT) algorithm for computing convolutions in momentum space.
This shows that the multi-impurity calculation has a quadratic scaling with respect to the
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number of impurities. In our current implementation, the local Coulomb matrix is consid-
ered as a non-sparse matrix within each site subspace, hence the scaling to the 6th power
in the number of orbitals. However, before running the actual calculations, we introduced
a check to assess which components of the vertices are zero. These components are au-
tomatically skipped in order to avoid unnecessary calculations and to automatically take
advantage of a possible sparsity of the Coulomb matrix, effectively reducing the com-
plexity (6.19) in most cases. The summation over frequencies and band indices can be
efficiently parallelized both in a shared-memory framework (as done in the current imple-
mentation) and in an message-passing interface (MPI) framework.

To measure the accuracy at the n-th iteration of the self-consistent cycle, we use the rel-
ative Frobenius norm of the Green’s function F = ||G̃n − G̃n−1||/||G̃n−1|| as a metric, where
||...|| is the square root of the squared sum over all the components of the array. If F is
smaller than some predefined accuracy value δ, the self-consistent cycle stops. The cycle
stops also if a specified maximum number of iterations is reached. The stability of the
bosonic Dyson equation (4.62) can be problematic in regimes of parameters, where one
or more of the eigenvalues of the quantity Π̃ · W̃ become equal or larger than 1. In par-
ticular, this happens when the system is close to a phase transition or if the correlation
length in some channel of instability exceeds a critical value. This issue appears in similar
forms in other diagrammatic extensions of DMFT (see, e.g., Ref. [254]). In one- and two-
dimensional systems, where Mermin-Wagner theorem forbids the breaking of continuous
symmetries [255], the issue can be mitigated by imposing that the eigenvalues λi of the
Π̃ · W̃ matrix in the orbital space for a physical meaningful solution are always smaller
than 1. In our implementation, we check whether any eigenvalue λi ≥ 1 (i ∈ {k, ς}). If
this happens, the eigenvalue can be rescaled as described in Ref. [254] in order to improve
convergence.

Several strategies can be used to improve the stability of the self-consistent procedure
in the general case. The first strategy is implemented when updating the D-TRILEX self-
energy. The updated dual self-energy at the n-th iteration is computed as Σ̃n = (1 − ξ)Σ̃n−1 + ξΣ̃
for ξ ∈ (0, 1), where Σ̃n−1 is the value of the dual self-energy computed at the previous
(n − 1) iteration, and Σ̃ is computed using the propagators G̃n−1 and W̃n−1 obtained at
the previous iteration. This procedure was shown to improve stability in GW-like theo-
ries [318]. A similar mixing scheme can be applied to the dual polarization. To the same
aim, we also introduce multiplicative factors for the dual self-energy and the dual polar-
ization at the first iteration. Of course, no rescaling is expected to work in the presence of
the symmetry breaking due to a true phase transition. The latter case should be addressed
using a suitable cluster or multi-impurity reference problem.

It is worth mentioning that the efficiency of the whole scheme is strongly affected by
the computational cost of the impurity solver. In our tests, the time needed to solve the
impurity problem and to obtain the required correlation functions of the reference system
using continuous time quantum Monte Carlo solvers [83, 140, 143, 273] always exceeds
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the computational cost for the diagrammatic part of the calculation, even by several orders
of magnitude. For example, a single iteration of the self-consistent diagrammatic cycle for
a two-orbital Hubbard-Kanamori model on a two-dimensional lattice with 64×64 points
in the momentum-space, 64 fermionic and 32 bosonic frequencies takes only few minutes.

6.2 Implementation of the D-TRILEX code
A large part of the work for this theses aimed at the development of a general and effective
D-TRILEX code to solve a generic multi-orbital and multi-impurity problem. In order to
do that, it is important to balance several different aspects. In order of importance, the
crucial aspects to consider are:

1. Efficiency both in CPU time and in memory usage.

2. Flexibility due to the rather general formulation of the problem to address (see
Eq. (3.14) in Chapter 3).

3. Need to create an interface with existing impurity solvers.

4. Simplicity of use and readability. The user should be able to run the code straight
away without any issue related to the compilation.

It turns out that the set of D-TRILEX equations in a many-body framework involves
convolutions in both k-space and Matsubara frequency, as well as summation over the
internal orbitals. The direct implementation of all these summations with a large lattice is
hopeless without parallelization and optimization, even by using copiled languages such
as C++.

However, the poblem can be efficiently addressed even in an interpreted language as
Python, by using the correct combination of libraries for vector operations, parallelization
techniques and optimization in order to avoid any unnecessary calculation. Based on this
consideration, we implement the whole program package in Python 3, slightly sacrificing
the performances when for-loops are involved, but improving all the other points listed
above.

6.2.1 Requirements
Our implementation exploits the following libraries:

• numpy: any quantity is stored in a numpy.ndarray object. This allows to perform
efficient operations without the use of slow loops. The use of this library allows to
perform operations on arrays almost at the same speed of C with a small overhead,
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but with very optimized libraries. In particular, we use the numpy.linalg module
based on the LAPACK routines for matrix inversion and computation of eigenvalues
and numpy.fft module as an implementation of the FFT algorithm.

• multiprocessing: we employ a shared-memory parallelization scheme to spam
processes to the available CPUs. It is possible to do this by using a custom function
based on the multiprocessing.Process class. Using this library is also conve-
nient for distributing the code since it is readily available in most standard Python
distributions.

• h5py: Input/output is managed by this library that uses the hierarchical hdf5 format
for storing the data. It also allows to compress the output data, that would require a
too large storage capacity on small clusters or regular laptops.

Currently, our implementation relies on the w2dynamics software package for the im-
purity calculation base on the hybridization expansion [274]. The reason for this choice
is that w2dynamics allows for a large flexbility in the system that can be treated and addi-
tionally provides an internal implementation of the calculation of the three-point vertices.
However, the dependence on the w2dynamics package appears in the loading subroutine
only. Currenly, the interested users can refer to the loading subroutine for w2dynamics to
implement their own script to load from a custom impurity solver.

6.2.2 Input files
In order to run a w2dynamics calculation, the user must specify a model or an Hamil-
tonian. In order to use the w2dynamics output as an input to our code, it is necessary
to specify an Hamiltonian file in the wannier90 format as explained in the w2dynamics
wiki (for details see [322]). Our code will automatically read the name and path of the
Hamiltonian file from the w2dynamics file. It is very important to consider that currently
the Hamiltonian has to start from the Γ point, so k = (0, 0, 0) and has to be periodic in
all directions, because the FFT algorithm is used as is without specifying the geometry of
the problem. This is not an issue in lattices with orthogonal axis, but might require some
unitary transformation in non-orthogonal systems. This additionally requirement on the
specified Hamiltonian requires some additional pre-processing, but removes any explicit
dependence on the lattice type within the code. As an example, for a linear chain the
momentum along the x-direction can be specified as

# generate an array with Nkx equally space points
# between 0 and 2*pi
kx = np.linspace(0, 2*pi, Nkx, endpoint=False)

but NOT as
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# generate an array with Nkx equally space points
# between -pi and pi
kx = np.linspace(-pi, pi, Nkx, endpoint=False)

It is also possible to specify the full local Coulomb matrix for the impurity problem.
In this case, the Atoms section of the w2dynamics input files have to be modified adding
the lines

Hamiltonian = ReadNormalUmatrix
umatrix = u_matrix.dat

and provide a file u_matrix.dat with the structure as follows.

2 BANDS # example with kanamori interaction
1 1 1 1 4.0
1 2 1 2 2.0
1 2 2 1 1.0
1 1 2 2 1.0
2 2 1 1 1.0
2 1 1 2 1.0
2 1 2 1 2.0
2 2 2 2 4.0

Our code requires three different hdf5 files obtained using the DMFT python script
provided with w2dynamics:

• a DMFT calculation: contains the local single-particle quantities for each impurity.

• a p2iw calculation based on the DMFT: contains the two-point bosonic correlators
needed to compute the impurity susceptibilities Xω.

• a p3iw calculation based on the DMFT: contains the three-point correlators needed to
compute the impurity three-point vertices Λνω.

It is important to recall that w2dynamics uses a specific encoding for the components
of two-particle objects, such as the two- and the three-point correlators. These have to be
specified in the field WormComponents in the p2iw and p3iw input files. More information
can be found in the examples folder of our project (currently available upon request). It
is important to check whether all the relevant components are computed by w2dynamics.
Our code loads all spin components and then averages over equivalent spin components.

In the run_w2dynamics folder of our project, we provide a file check_index.py to
compute all the required components with/without SU(2) spin-symmetry and with/without
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Z2 symmetry for the local Hamiltonian in orbital space, which corresponds to the Hubbard-
Kanamori interaction.

In addition to the Hamiltonian file (plain text file in wannier90 format) and the three
output files from w2dynamics, the user might want to include a file for the non-local inter-
action. The non-local interaction is not used in the impurity problem. In the case of cal-
culations with non-local interactions, it is necessary to add the key nonloc_potential
to the input file for the D-TRILEX code Parameters_DTRILEX.py. This key should
be associated with a hdf5 file containing a group nonloc_potential with two datasets
charge and spin containing the non-local Vq in each of the channels. These two datasets
should have the dimension of a bosonic quantity except for the channel index, so (2 *
BOSONIC_FREQS+1, Nk_x, Nk_y, Nk_z, l1, l2, l3, l4) as they can contain fre-
quency dependent interactions.

6.2.3 Structure of the code
The structure of the code we developed in the version available during the writing of this
theses is depicted in Fig.6.3.

The main runfile of the code can be summarized in very few lines of code and looks
like the following:

# Loading DMFT calculation
DMFT = PrepareTRILEX(Parameters)
# Actual D-TRILEX calculation
gwrun = GW_CYCLE(DMFT, Parameters)

# Get dual quantities from the gwrun
GF = gwrun.DTRILEX.GF
W = gwrun.DTRILEX.W
Pi = gwrun.Pi
sigma = gwrun.Sigma
Vq = gwrun.vq

# Get lattice quantities from the latticeQuantities subroutine
lattice_GF = Lattice_GreenFunction(DMFT, gwrun.Sigma)
lattice_sigma = Lattice_SelfEnergy(DMFT, gwrun.Sigma)
lattice_pol = Lattice_Polarization(DMFT, gwrun.Pi, Vq)
lattice_chi = Lattice_Susceptibility(DMFT, gwrun.Pi, Vq)

Here, we attach a sample of the code for the calculation of the dual self-energy Σ̃k in the
absence of spin-orbit coupling. The function is written in a form that can be independently
distributed for any fermionic nu among different processors without any communication
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between the processes. As mentioned before this is done using the multiprocesses.Process.
This happens only inside the calculation of the diagrams, where the calculation of Σ̃k and
of the dual polarization Π̃q is split among different processes.

def computeSelfEnergy_no_SpinOrbit(self, nu):
"""
Returns the self-energy at frequency nu optimized for the case
without spin-orbit
"""
# 2 because spin channel has to be computed only once
sigma_nu = np.zeros(self.Nkpoints + 2 * (self.Nb, ), complex)
for omega in np.arange(-self.Nwb, self.Nwb+1):
nupom = nu+omega
for ch in [0, 1]:
ch_vtx = ’charge’ if ch == 0 else ’spin’
for orb_right in self.comb_orbs_pi:
for orb_left in self.comb_orbs_pi:
i1, l1, l2, l3 = orb_right
i2, l4, l5, l6 = orb_left
vtx = self.Lambda_b(
nu, omega, (i1, l1, l2, l3), ch_vtx)

vtx_conj = self.Lambda_b(
nu+omega, -omega, (l6, i2, l5, l4), ch_vtx)

if (abs(vtx) < 1e-6) or (abs(vtx_conj) < 1e-6):
continue

GFnupom = self.symm(self.GF[..., l1, l6], nupom)
W = self.W[omega+self.Nwb, :, :, :, l2, l3, l4, l5,
ch]

bubble = convolution_fft(GFnupom, W, axis=(0, 1, 2))
sigma_nu[:, :, :, i1,

i2] -= (2.*ch+1.)*vtx*bubble*vtx_conj
return sigma_nu
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6.3 Benchmark for the single-orbital Hubbard model on
the square lattice

Section largely based on the publication:
V. Harkov, M. Vandelli, S. Brener,
A. I. Lichtenstein, E. A. Stepanov
Phys. Rev. B 103, 245123 (2021)

In this section, we investigate the performances of the D-TRILEX approximation in
several single-orbital examples. This step is crucial to understand which contributions are
effectively missing and in which regimes the method is not expected to work well. Addi-
tionally, there are many available methods that can deal with the single-orbital Hubbard
model. An extensive review of these methods in the weak-coupling regime can be found
in Ref. [236]. Each of the subsections treats a different system.

6.3.1 D-TRILEX vs DiagMC@DB on the square lattice with Hub-
bard interaction

The first system considered here is the Hubband model of Eq. (3.21) for the d = 2 case on
the square lattice. The dispersion of the system is chosen to be the simple nearest-neighbor
tight-binding form of Eq. (5.31) in Chapter 5

ϵk = −2t
(︂
cos kx + cos ky

)︂
. (6.20)

We start by considering a scan over a broad range of local Coulomb interactions U at
half-filling. We remind the reader that DMFT predicts the Néel transition at a finite tem-
perature in two-dimensions, even though any transition with symmetry breaking is for-
bidden by Mermin-Wagner theorem [255] and thus it is an artefact of the method. In
this benchmark, we compare results for in the D-TRILEX approximation with ladder
dual fermion (LDF), DiagMC@DF and the DiagMC results obtained with two different
partially bosonized dual approximations for the fermion-fermion vertex (PBDT), called
DiagMC@PBDT and DiagMC@PBDT-s. The vertex function in both approximations is
obtained using Eq. (4.34).

The difference consists in the fact that the DiagMC@PBDT contains all the constribu-
tions including the exchange of bosons in the singlet channel, while this term is neglected
in the DiagMC@PBDT-s approximation. The DiagMC solution with the two approxi-
mations for the fermion-fermion vertex corresponds to the exact solution of the partially
bosonized dual action (4.49) with or without the particle-particle channels in the interact-
ing term F [ f , b] (4.57). Considering all these different approaches, that exclude different
classes of diagrams, is important to understand which contributions are negligible and in
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Figure 6.4: Summary of the diagrammatic contributions included in each of the methods con-
sidered in this Section. The DiagMC@DF corresponds to the exact solution of the dual action
at the two-particle level. The order in which the methods are presented reflects the degree of
approximation of the local fermion-fermion vertex Γ, from exact to more approximated.

what regimes. A sketch of the approximations and diagrams for each method in summa-
rized in Fig. 6.4.

Since the DiagMC@DF method uses the DMFT impurity problem as a starting point
for the diagrammatic expansion, the DiagMC@DF theory shows difficult convergence or
even divergent result close to the DMFT Néel point [220, 221]. The same convergence
issues appear at a somewhat smaller temperature in LDF calculations(large β) [236] and
D-TRILEX [232]. It is known that at any finite temperature considering a sufficiently
large number of k-points Nk and Matsubara frequencies in the LDF method ensures that
Mermin-Wagner theorem at low temeprature. The number of k-points Nk necessary to get
sensible results at low temperature increases too quickly to be viable in practical calcula-
tions [254]. A similar study for D-TRILEX is currently still missing. As a consequence,
calculations are performed at the inverse temperature β = T−1 = 2, so that the DiagMC
results are not affected by any convergence issue. In Fig. 6.5 we show results for the lat-
tice self-energy (4.67) calculated for all the different approaches at different values of the
Hubbard interation U. The results are obtained for the first Matsubara frequency ν0 = π/β
along the high symmetry path connecting Γ = (0, 0), X = (0, π), and M = (π, π) points
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Figure 6.5: The lattice self-energy Σlatt
k,ν obtained for the first Matsubara frequency ν0 = π/β

for the inverse temperature β = 2 along the high symmetry path in momentum space k. The
value of the on-site Coulomb potential U for which the calculation was performed is specified
in panels. Upper and lower part of each panel corresponds to real and imaginary part of the self
energy, respectively. Results are obtained using D-TRILEX (red line), LDF (dark blue line),
DiagMC@DF (light blue line), DiagMC@PBDT (purple crosses), and DiagMC@PBDT-s
(green crosses) methods. Figure reproduced from Ref. [232].

in momentum space k = (kx, ky). We use a mesh of 128 × 128 k-points in the Brillouin
Zone. The self-energy does not contain the constant Hartree part that is equal to U/2 at
half-filling.

We take advantage of the diferences between the different methods to investigate which
contributions are important in which regimes. The first important contribution to in-
vestigate is the effect of the irreducible part of the four-point vertex. The impact of
this contribution can be obtained by looking at the difference between the self-energy of
DiagMC@DF (light blue line) and DiagMC@PBDT (purple crosses) approaches shown
in Fig. 6.5. We find that at U = 2 both methods produce identical results, which means that
in a weakly-correlated regime the irreducible contributions to the vertex do not affect the
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self-energy in a relevant way. The discrepancy between these two methods also increases
as the interaction strength U is incresed and is particularly large in the strongly-correlated
regime at U = 8, which is equal to the bandwidth. After that, at very large interactions
U = 10 and U = 12 the real part of the DiagMC@PBDT self-energy again nearly coin-
cides with the one of the DiagMC@DF approach. The agreement in the imaginary part
of the self-energy also improves, but the discrepancy between these two methods remains
visible and not negligible.

To quantify the difference between the given self-energy and the exact solution of the
dual theory given by DiagMC@DF, we calculate the following normalized deviation

δ =
∑︂

k

⃓⃓⃓⃓⃓
⃓⃓Σref

k,ν0
− Σk,ν0

Σref
k,ν0

⃓⃓⃓⃓⃓
⃓⃓ . (6.21)

A similar quantity but for only one k-point was introduced in Ref. [230]. The correspond-
ing result for all considered approaches is presented in Fig. 6.6. We find that the normal-
ized deviation of the DiagMC@PBDT method reaches its maximum value δ = 15% at
U = 8. As has been pointed out in the Section 4.3.1, the irreducible part can be excluded
from the renormalized four-point vertex only in the ladder approximation. In the strongly-
correlated regime diagrams in a non-ladder form become relevant [220, 221, 230], which
is also confirmed by the increase of the normalized deviation of the LDF approach (blue
line in Fig. 6.6). Consequently, the contribution of the irreducible part of the vertex to
the electronic self-energy also becomes noticeable. We would like to emphasise that the
strength of electronic correlations does not depend on the strength of the interaction U
only, but also on the proximity of the system to an instability. Indeed, it has been shown
that close to a transition the fluctuations become strongly non-linear [323]. The strength
of antiferromagnetic fluctuations, that are the sources of instability in this regime, can
be estimated by the leading eigenvalue (l.e.) of the Bethe-Salpeter equation of the LDF
theory [222, 254] (black line in Fig. 6.6).

The next class of diagrams that we can investigate contains the diagrams with singlet
contributions in the partially bosonized four-point vertex (4.34). We investigate the effect
of the additional exclusion of all singlet contributions by comparing the DiagMC@PBDT-s
and the DiagMC@PBDT results. At small (U = 2) and moderate (U = 4) interactions,
this exclusion immediately leads to a large discrepancy between DiagMC@PBDT-s (green
crosses) and DiagMC@PBDT (purple crosses) results for the self-energy presented in
Fig. 6.5. In addition, from Fig. 6.6 we find that for these values of the interaction the
DiagMC@PBDT-s strongly differs from the reference result, while the DiagMC@PBDT
performs reasonably well. Therefore, one can conclude that singlet fluctuations play an
important role in weakly- and moderately-correlated regime when all the diagrams are
considered. This observation seems to contradict the statement that particle-particle fluc-
tuations are believed to be negligibly small at standard fillings [324]. This point is clarified
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Figure 6.6: The normalized deviation δ calculated for LDF (blue), D-TRILEX (red),
DiagMC@PBDT (purple), and DiagMC@PBDT-s (green) approximations with respect to the
reference Diag@DF result. The black line shows the leading eigenvalue (l.e.) of AFM fluc-
tuations. The vertical left axis shows the scale for the normalized deviation, while the ver-
tical right axis displays values for the leading eigenvalue. The inset compares δ obtained for
D-TRILEX and second-order DF (DF(2), orange) approaches for different inverse temperatures
β = 2 (circles), β = 4 (triangles), and β = 10 (squares). The figure is taken from Ref. [232].

below when we discuss the result of the D-TRILEX approach. Increasing the interaction to
U = 6, makes the discrepancy between DiagMC@PBDT and DiagMC@PBDT-s results
rapidly decrease, and in the strongly-correlated regime (U = 8) both methods produce
almost identical results, signalling that the singlet contribution is negligibly small in that
regime. Remarkably, for U = 10 and U = 12 the DiagMC@PBDT-s method shows
the best agreement with the DiagMC@DF result among all considered DiagMC-based
approximations. This result suggests that in the regime of very large interactions contribu-
tions to the self-energy that stem from the irreducible and singlet parts of the renormalized
four-point vertex, which are not considered in the DiagMC@PBDT-s theory, nearly can-
cel each other. This analysis shows that the partially bosonized theory should be handled
with care and the exclusion of the singlet contributions should be considered depending
on the regime of interest. In general, this shows that inclusing more diagrammatic contri-
butions in the theory does not necessarily mean that the reuslt will improve, especially in
fermionic systems, where cancellations between different diagrams play a crucial role in
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the convergence properties of the series [300].
Finally, we consider the D-TRILEX method that can be obtained as the first diagram-

matic contribution of the partially bosonized action. Alternatively, we can look at it as an
approximation to the LDF theory where the irreducible part and transverse particle-hole
and particle-particle fluctuations ae neglected from the exact local impurity four-point ver-
tex. As shown in Fig. 6.5, the best agreement between the D-TRILEX (red line) and the
reference DiagMC@DF (light blue line) results for the imaginary part of the self-energy
occurs at U = 2. At small and moderate values of U, the D-TRILEX self-energy seems to
be pinned to the LDF result (dark blue line) at Γ and M points. Therefore, the difference
between these two methods is mostly visible around local minima located at antinodal
AN = (0, π) and nodal N = (π/2, π/2) points. This difference increases with the interac-
tion, and the observed trend persists up to U = 6. At larger interactions, when the value of
the self-energy at local minima becomes similar, the D-TRILEX result shifts downwards,
and at U = 12 becomes pinned to the LDF result at N and AN points.

The discrepancy between the D-TRILEX and the reference results for the real part of
the self-energy also increases with the interaction up to U = 8, and after that decreases
again for very large interaction strengths. However, here the best agreement with the exact
result is achieved at U = 4 (see red line in Fig. 6.5). It can be explained by the fact, that
in the perturbative regime of small interactions (U = 2) and high temperatures (β = 2)
the second-order dual self-energy Σ̃(2) gives the main contribution to the nonlocal part of
the total self-energy [220, 221, 230, 300]. The D-TRILEX theory is not based on a per-
turbation expansion, because it takes into account only a particular (GW-like) subset of
diagrams. For this reason, this simple theory does not fully reproduce the second-order
self-energy Σ̃(2) [232]. On the contrary, the D-TRILEX approach correctly accounts for
the screening of the interaction that is represented by longitudinal part of the infinite two-
particle ladder in all bosonic channels. At lower temperatures and/or larger interactions,
when the system enters the correlated regime, these types of diagrams become more im-
portant than the second-order self-energy. To illustrate this point, we also obtained the
normalized deviation for the D-TRILEX approach for β = 4 (for U = 2 and U = 4) and
β = 10 (for U = 2), and compared it with δ calculated for the second-order DF (DF(2))
approximation that considers only Σ̃(2) contribution to the dual self-energy. The corre-
sponding result is shown in the inset of Fig. 6.6. As expected, the accuracy of the DF(2)

approximation rapidly decreases with the temperature and becomes δ = 16.5% (for β = 10
and U = 2) and δ = 22.5% (for β = 4 and U = 4) in the regime, which is yet above the
DMFT Néel point βN ≃ 12.5 for U = 2 and βN ≃ 4.3 for U = 4. At the same time, the
D-TRILEX theory remains in a reasonable agreement with the reference result.

Fig. 6.6 shows that in the regime of weak and moderate interactions the D-TRILEX
self-energy is relatively close to the DiagMC@DF result (δ = 2% for U = 2 and δ = 3%
for U = 4). This fact looks paradoxical at a first glance, because the D-TRILEX method
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does not take into account singlet fluctuations that were found to be important in this
regime of interactions. To explain this result, let us first note that at U ≤ 4 the LDF
method is in a very good agreement with the DiagMC@DF theory. Therefore, in the
weakly- and moderately-correlated regime ladder diagrams provide the most important
contribution to the self-energy. This fact allows for a direct comparison of the self-energies
produced by ladder DF and D-TRILEX methods with the result of DiagMC@ methods that
account for all diagrammatic contributions. Note however, that all DiagMC-based schemes
with approximated interactions tend to overestimate the reference result, while ladder-like
approaches underestimate it. Therefore, the normalized deviation presented in Fig. 6.6
should be compared cautiously. Fig. 6.5 shows that D-TRILEX and DiagMC@PBDT
self-energies obtained at U = 2 and U = 4 are very close to the reference result. Both
methods do not take into account the irreducible part of the four-point vertex function, but
the D-TRILEX approach additionally neglects all transverse particle-hole and particle-
particle modes. Keeping in mind that for these interaction strengths the exclusion of only
singlet fluctuations leads to a large overestimation of the self-energy, we can conclude that
transverse particle-hole and particle-particle fluctuations partially screen each other. This
means that the exclusion of both types of vertical insertions in diagrams, as it is done in the
D-TRILEX theory, turns out to be a good approximation in the weakly- and moderately-
correlated regime. On the other hand, excluding only one channel leaves the other channel
unscreened, which results in a large contribution to the self-energy.

Remarkably, the normalized deviation for all considered approximations shown in
Fig. 6.6 resembles the behavior of the leading eigenvalue of the magnetic channel (black
line). For instance, the D-TRILEX and LDF methods show the largest discrepancy with
the DiagMC@DF result exactly in the region where the l.e. is maximal. As has been
pointed out in Ref. [323], approaching an instability leads to collective fluctuations be-
coming strongly anharmonic, which cannot be captured by considering only a single
class of diagrammatic contributions. Consequently, in this regime transverse momentum-
dependent fluctuations are expected to be important. At U = 10 and U = 12 the agreement
of the D-TRILEX theory with the DiagMC@DF result improves again. Above we have
found that at very large interaction strengths contributions to the self-energy that stem from
singlet and irreducible parts of the vertex partially cancel each other. This result suggests
that the effect of remaining transverse particle-hole fluctuations becomes weaker at very
large interactions, which again justifies the applicability of the D-TRILEX theory.

6.3.2 Beyond half-filling: doped model close to a pseudogap
The doped two-dimensional Hubbard model on a square lattice with nearest-neighbor t
and next-nearest-neighbor t′ hopping amplitudes is widely known as a prototype model
for high-temperature superconducting cuprate compounds, even though it is still under
debate whether this model is sufficient to explain the physics observed in these materials.
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Figure 6.7: Lattice self-energy Σν0k of the doped Hubbard model along the high-symmetry
path in the Brillouin zone. The upper panel shows the real part and the lower panel the
imaginary part. D-TRILEX method (green dots) compared with DiagMC@DF and Di-
agMC@PBDT at half-filling and the small value of hole-doping δ = 5%. Results show that
in this regime the D-TRILEX diagrams capture the main physics occurring in the system and
reproduce very well the exact benchmark for the dual theory. The other parameters are t = 1,
t′ = 0, U = 4 and β = 4.

In this model, the dispersion acquires an additional term due to the next-nearest neighbor
hopping if compared with the nearest neighbor dispersion, and becomes

ϵk = −2t
(︂
cos kx + cos ky

)︂
− 4t′ cos kx cos ky. (6.22)

We start the discussion of this benchmark by assessing the range of validity of D-
TRILEX as a function of doping only and, to that aim, we initially we set t′ = 0. We study
the discrepancy between the D-TRILEX method and the reference DiagMC@DF, that
represents the exact solution of the dual action. Additionally, we use the DiagMC@PBDT
method to obtain an exact solution of the partially bosonized action, in order to clarify



6.3. Benchmark for the single-orbital Hubbard model on the square lattice 147

δ = 10% δ = 15%

Γ X M Γ

1.5

1.6

1.7

1.8

1.9

R
eΣ

(ν
0
,k

)

DiagMC@DF

DiagMC@PBDT

D−TRILEX

Γ X M Γ

0.50

0.45

0.40

0.35

0.30

0.25

0.20

Im
Σ

(ν
0
,k

)

Γ X M Γ

1.4

1.5

1.6

1.7

R
eΣ

(ν
0
,k

)

DiagMC@DF

DiagMC@PBDT

D−TRILEX

Γ X M Γ

0.40

0.35

0.30

0.25

0.20

Im
Σ

(ν
0
,k

)

Figure 6.8: Lattice self-energy Σν0k of the doped Hubbard model along the high-symmetry
path in the Brillouin zone. D-TRILEX method (green dots) compared with DiagMC@DF and
DiagMC@PBDT at intermediate values of hole-doping δ = 10% and δ = 15%. The other
parameters are t = 1, t′ = 0, U = 4 and β = 4.

the source of the mismatch with DiagMC@DF. In Figures 6.7-6.9, we show the lattice
self-energy for the parameters t = 1, t′ = 0, U = 4 and β = 4 and different levels of
hole-doping δ. A mesh of 64 × 64 k-points is used. Since the model is particle-hole
symmetric for t′ = 0, these findings are valid also for the electron-doped case. The green
dots represent the D-TRILEX results, while the shaded blue and orange areas repesent
DiagMC@DF and DiagMC@PBDT respectively. The width of the shaded are represent
the stochastic error on the data. The results were obtained summing all the diagrams up to
6th order for both DiagMC schemes.

Results in Fig. 6.7 show that in the regime close to half-filling the D-TRILEX diagrams
describes accurately the main physics of the system. In this regime D-TRILEX even out-
performs the result obtained by summing up all the diagrams of the partially bosonized ac-
tion in DiagMC@PBDT. This result can be explained by noting that the partially bosonized
action was derived as an approximation to the ladder approximation. As such, we do not
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δ = 20%

Figure 6.9: Lattice self-energy Σν0k of the doped Hubbard model along the high-symmetry
path in the Brillouin zone. D-TRILEX method (green dots) compared with DiagMC@DF and
DiagMC@PBDT at the large value of hole-doping δ = 20%. The other parameters are t = 1,
t′ = 0, U = 4 and β = 4.

expect this approximation to be always accurate when non-ladder diagrams are included.
It is certainly true that including only selected subsets of diagrams can lead to wrong re-
sults away from regimes where the choice is physically well-motivated in general [300].
Additionally, the inclusion of additional vertex corrections does not always result in an
improvement of the results. Sometimes, vertex corrections can be screened by terms that
are not taken into account in the considered classes of diagrams leading to the paradoxical
situation that considering more diagrams results in a worse accuracy [325].

In the small-doping regime, the minimum of the imaginary self-energy lies at the X
point and a secondary minimum appears the nodal point N, lying in the middle between M
and Γ. This picture changes for larger values of doping. Indeed, for doping between δ =
10% and δ = 15%, the exact solution of the dual action displays a change in the position of
the imaginary self-energy minimum, which is shifted in an intermediate incommensurate
position between X- and M-points. The partially bosonized action mimics the behavior
even if the effect is smaller, while the D-TRILEX result fails to capture this effect and it
has a minimum at the X-point. Apart from the small shift in the minimu around the X-
point, D-TRILEX and DiagMC@PBDT appear to be in quantitative good agreement up to
δ = 15%. The behavior of ImΣ at the M-point is strongly different from DiagMC@DF in
both the methods based on the partially bosonized action. The same kind of trend appears
in the largest doping δ = 20% considered here in Fig. 6.9. There, the picture is very
similar to the case δ = 15%, but it becomes more clear that the minimu in the ImΣ in
the DiagMC@PBDT method follows the correct trend predicted by DiagMC@DF, while
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D-TRILEX still predicts a minimum at the X-point.
These results show that the D-TRILEX method appears to be in good agreement with

DiagMC@DF up to some value of doping, around 10 − 15%. In this regime, horizon-
tal spin fluctuations are the largest contribution to the self-energy. This is signalled by a
large value of the leading AFM eigenvalue of the dual Dyson equation, which goes from
λd = 0.81 at half-filling to λd = 0.72 at δ = 10%. The AFM eigenvalue drops signifi-
cantly above this value of doping and becomes λd = 0.62 at δ = 15% and λd = 0.48 at
δ = 20%, signalling that horizontal spin fluctuations are probably not so large anymore.
The discrepancy between the DiagMC@DF and DiagMC@PBDT suggests that non-local
transverse fluctuations are responsible for the shift of the minimum away from the X point,
but are not sufficient to accurately describe the behavior of the imaginary self-energy at
the M-point. Probably, the mismatch at the M point is related to irreducible contributions
to the fermion-fermion vertex.

Preliminary results show that the disagreement with the benchmark methods is fol-
lowed by a complete breakdown on the theory at even larger doping levels (δ ∼ 30%).
In that regime, D-TRILEX which predicts an instability in the charge channel which is
absent in the ladder approximation, at least at the same values of temperature/doping. For
this reason, we argue that this behavior might be related to the absence of irreducible con-
tributions or perhaps local transverse fluctuations that would screen the horizontal charge
fluctuations. When left unscreened, the horizontal fluctuations cause the divergence of the
method. More extensive studies of the U−doping parameters for which this breakdown
appears and possible solutions to avoid it are subject of current research.

These results show that our method can be applied in the vicinity of the pseudogap
regime where spin fluctuations are large. This regime is the most difficult regime to per-
form calculations with weak coupling methods like FLEX. The opening of a pseudogap
and the dichotomy between the N and AN points in this model has been studied recently
in Ref. [326] in the framework of the exact DiagMC method.

There, the authors considered the following set of model parameters t′ = −0.3, U =
5.6, β = 5, and 4% hole-doping that leads to a largest onset temperature for the pseudogap.
In our work of Ref. [232], we addressed this physically interesting regime for a compa-
rable hole doping level of 3.4% within the D-TRILEX and DiagMC@DF approaches.
For this calculation, we could not converge a D-TRILEX calculation based on the DMFT
impurity problem. As a consequence, we introduced an additional outer loop to update
self-consistently the parameters of the impurity problem. To stress this difference with the
other calculations, we introduce the label scD-TRILEX for this specific calculation. The
obtained self-energies are compared with the exact result of DiagMC method that was pro-
vided by the authors of the Ref. [326]. For the sake of consistency, the DiagMC@DF ex-
pansion was performed based on the impurity problem determined with the scD-TRILEX
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Figure 6.10: Imaginary part of the nonlocal self-energy obtained for the zeroth Matsubara
frequency ν0 = π/β along the high symmetry path in momentum space k. Calculations are
performed for U = 5.6, t′ = −0.3, and β = 5 using scD-TRILEX (red line) and DiagMC@DF
(light blue line) methods for 3.4% hole-doping. The DiagMC result (dark blue line) for 4%
doping is provided by the authors of Ref. [326]. The figure is taken from Ref. [232].

approach.
In Fig. 6.10 we compare the imaginary part of the nonlocal self-energy Σnonloc

k,ν0
cal-

culated for the first Matsubara frequency along the high-symmetry path in momentum-
space for all three approaches. To obtain this quantity we subtract the local part Σloc

k,ν0

from the lattice self energy Σlatt
k,ν0

, where Σloc
k,ν0
=

∑︁
k Σ

latt
k,ν0

. Due to the lack of reference
DiagMC data, the sum over the Brillouin zone in this expression is approximated by the
sum over the high-symmetry path in momentum space. We find that the nonlocal part
of the DiagMC@DF self-energy is in a very good agreement with the reference DiagMC
result. The scD-TRILEX approach also performs remarkably good in this physically non-
trivial regime, especially given that the considered value of the local Coulomb interaction
U = 5.6 exceeds the half of the bandwidth. This good agreement in ImΣnonloc

k,ν0
indicates

that the simple ladder-like scD-TRILEX method accurately captures the N/AN dichotomy
in the formation of a pseudogap in this regime [326]. This fact additionally confirms our
finding that going away from the Slater regime allows to use less sophisticated methods to
capture the effect of collective fluctuations.

At the same time we find that the DiagMC@DF and the scD-TRILEX methods do
not provide a good value for the local part of the lattice self-energy. Indeed, ImΣloc

k,ν0
of

the DiagMC@DF calculated for the zeroth Matsubara frequency is equal to −0.77. The
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corresponding value for the scD-TRILEX approach is −0.80, while the exact DiagMC
result reads −1.04. This discrepancy can again be explained by the fact that DMFT impu-
rity problem does not provide a good starting point for a diagrammatic expansion already
for moderate interactions. To address this issue, we exploited the dual self-consistency
condition to update the fermionic hybridization as an attempt for the improvement of the
reference system. However, the result obtained in this Section clearly demonstrates the
need for an even better starting point, which should be able to provide more accurate local
quantities to reproduce the exact result.

6.4 Detecting instabilities with D-TRILEX
So far, we have discussed the impact of the partially bosonized approximation and D-
TRILEX method on the single-particle observables. However, the method also allows
to investigate two-particle observables. As we have discussed previously, two-particle
observables are related to ordering of the system. In particular, a diverging susceptibility
in one channel signals a symmetry-breaking phase transition in that channel. The aim
of this Section is to show that D-TRILEX is able to capture the tendency towards an
instability and even predict the corresponding transition point, in the presence of a physical
phase transition. To this aim, the plain two-dimensional Hubbard model is not a suitable
candidate, since symmetry-breaking phase transitions are in principle forbidden. On the
other hand, the Hubbard model on the cubic lattice and the extended Hubbard model are
very interesting systems in this regard, as they show an AFM phase transition and a CDW
phase transition respectively.

6.4.1 Antiferromagnetic transition in the Hubbard model on a cubic
lattice

The second benchmark we investigated is the Hubbard model on a cubic lattice. The
dispersion is taken to be the tight-binding dispersion with only nearest-neighbors, which
explicitly reads

ϵk = −2t
(︂
cos kx + cos ky + cos kz

)︂
(6.23)

We set the value of the nearest-neighbor hopping to t = 1, so that the half-bandwidth is
D = 6t = 6. This system is expected to undergo a second-order phase transition to an AFM
state, as in a 3D case the Mermin-Wagner theorem does not hold. This phase transition
clearly appears in mean-field methods such as Hartree-Fock calculations [327]. In addition
to that, DMFT is able to describe the transition [328], but clearly overestimates the Néel
temperature at any U ≥ 5. Indeed, the presence of this transition is confirmed by more
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Figure 6.11: The plot shows the static magnetic susceptibility Xm(q, ω = 0) along the high-
symmetry path in the BZ of the cubic lattice (sketched in the upper panel). The upper panel is
computed at the value of the Hubbard interaction U = 4, the lower panel at U = 8. Different
colors correspond to different temperatures. The peak at q =R is clearly visible.

accurate and exact methods as shown in Fig. 6.13. However, this is not enough to state a
priori that D-TRILEX is able to even capture this transition.

To confirm that D-TRILEX accurately describes the AFM phase transition on a cubic
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Figure 6.12: The plot shows the quantity 1 − λs, where λs is the leading eigenvalue of the
dual Dyson equation, computed for the cubic lattice Hubbard model at half-filling for different
values of the Hubbard interaction U plotted as a function of temperature T . The curves show
a clear trend towards 0, signalling a divergence of the effective interaction W̃ at the point
R = (π, π, π), that corresponds to the AFM ordering.

lattice, we performed calculations for few values of the Hubbard interaction U to inves-
tigate how accurate the D-TRILEX method is in describing the phase boundary of this
transition. In our calculations, we use a 32 × 32 × 32 mesh in the Brillouin Zone, 48
fermionic frequencies and 32 bosonic frequencies. In Figure 6.12, we show that indeed D-
TRILEX captures the AFM transition. In a cubic lattice, the AFM transition corresponds
to an ordering vector corresponding with the so-called R point, so qAFM = R = (π, π, π).
The magnetic ordering of the system can be revealed by looking at the static magnetic
susceptibility Xm

q,ω=0. Indeed, we show in Fig. 6.11 that plotting this susceptibility in the
BZ reveals the expected behavior. The D-TRILEX method gives an alternative and simple
way of analysing the transition. Since the W̃ς

q is obtained by inverting the Dyson’s equa-
tion of Eq. (4.62), we can look at the divergent behavior of this equation to identify phase
transitions. The divergence occurs when the eigenvalue 1−λς of the denominator vanishes
in some channel ς = d, m.

In this simple single-band case, the bosonic Dyson equation is not a matrix-valued
equation so the eigenvalue simply corresponds to plotting the maximum over the Brillouin
zone of the quantity

λm(q) = W̃ω=0,qΠ̃ω=0,q. (6.24)
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Figure 6.13: AFM bounary for the Hubbard model on a cubic lattice in the U − T plane. The
D-TRILEX values obtained for the critical temperature for the Néel transition TN as a result of
our calulations have been added on top of the figure taken from Ref. [302] and are indicated by
blue-navy circles connected with full lines. We have additionally superimposed DMFT data
(black line) taken from Ref. [256]. The source of the other data are cited in the main text and
summarized in the legend. Results from the D-TRILEX method compare very well with exact
methods such as DiagMC and QMC.

When the maximum of this quantity reaches unity, the bosonic Dyson equation becomes
unstable and the method breaks. Indeed, in Ref. [232], we showed that the W̃q diverges at
the same point as the physical susceptibility Xq, hence the eigenvalue is an alternative way
of assessing a divergence of the susceptibility. The parameters for which this happens are
typically the critical values associated with a phase transition. Indeed, by inspecting the
plot, it is clear that the quantity 1 − λm(q) goes to 0 as the temperature is decreased. For
this model, the transition occues at any finite value of U, so there is no critical value Uc.
On the other hand, at each value of U, the transition occurs at a critical Néel temperature
TN , so it makes sense to investigate the behavior TN = TN(U).

The values are obtaied from a linear fitting of the eigenvalue λm in the range of temper-
atures close to where it crosses λm = 1. The results of the TN obtained from the D-TRILEX
data as a function of U are sumarized in the table below.
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U TN

3.0 0.093 ±0.016
4.0 0.181 ±0.006
5.0 0.248 ±0.005
6.0 0.289 ±0.009
7.0 0.313 ±0.014
8.0 0.327 ±0.014

Errorbars contain the contribution from the fitting procedure, assuming that the Monte
Carlo errors in the calculation of the impurity quantities is normally distributed and equal
among all the calculations.

Our aim is to compare these results with approximate calculations based on dynamical
cluster approximation (DCA) [329] and DΓA calculations [330] as well as by numerically
exact results obtained with QMC [327] , DDMC [331] and DiagMC [302]. Additionally,
it is known that the LDF (ladder dual fermion) method is able to accurately capture this
transition, as shown by the results presented in Ref. [256]. In Fig. 6.13, we adapt a fig-
ure originally presented in Ref. [302], that collects the Néel temperatures obtained with
the methods presented in all these references. On top of the previous results, we add the
transition temperature obtained from our D-TRILEX calculations. The figure show that
the TN predicted by D-TRILEX is in very good agreement with the exact methods (QMC,
DDMC and DiagMC) within the stochastic error bars of these methods as well as with
the LDF method. This fact is not surprising, as the AFM transition is well-described by
horizontal spin fluctuations which are accounted for in D-TRILEX. D-TRILEX consis-
tently improves the DMFT results even in the most correlated regime. For instance, in
Ref. [328] it is shown that TN predicted by DMFT at U = 8 is around TN ≈ 0.45 [256],
while D-TRILEX predicts a value much closer to the more advanced methods. These find-
ings confirm the previously made statement that it is not necessary to have an exact theory
in the d = ∞ at the two-particle level to accurately describe a phase transition at finite
dimensions.

6.4.2 Benchmark in the single-orbital extended Hubbard model
Previous works on D-TRILEX [231–233] suggest that the method is able to account for
the effect of the non-local interactions. However, no thorough benchmarking of the results
for the extended Hubbard model has been performed so far. For this reason, in this work
we investigate the performance of D-TRILEX in the case of a single-orbital extended Hub-
bard model on a square lattice with the local U and the nearest-neighbor Vd interactions
between electronic densities (3.14). To simplify notations, in the following the superscript
“d” for the non-local interaction is again omitted. The single-particle dispersion for this
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model for the case of a nearest-neighbor hopping amplitude reads

ϵk = −2t
(︂
cos kx + cos ky

)︂
(6.25)

Similarly, the momentum-space representation for the non-local interaction is

Vq = 2V
(︂
cos qx + cos qy

)︂
(6.26)

We set the value of the nearest-neighbor hopping to t = 1, so that the half-bandwidth is
D = 4t = 4. To benchmark our results, we compare the lattice self-energy Σ calculated
using D-TRILEX approach with the result of the dual boson diagrammatic Monte Carlo
(DiagMC@DB) method presented in Ref. [230]. DiagMC@DB allows for the exact so-
lution of an effective dual boson action (4.10), where the renormalized interaction is trun-
cated at the two-particle level (4.15). Note that the dual boson action is derived within the
exact analytical transformation of the initial lattice problem (3.14) (see Section 4.2.1). In
addition, diagrammatic Monte Carlo methods applied to dual theories show a very good
agreement with the exact results [221, 232] and the results of the cluster methods [307,
312].

We perform calculations at half-filling for different strengths of the Hubbard inter-
action U = 2, U = 4, and U = 6. For each value of U we consider three different val-
ues of the nearest-neighbor Coulomb interaction V = 0, V = U/8, and V = U/4. As in
Ref. [230], for U = 2 and U = 4 the temperature is set to T = 0.25, for U = 6 to T = 0.50.
The obtained results for the lattice self-energy are shown in Fig. 6.14. We find that for the
smallest value of the Hubbard interaction U = 2 the agreement between the two methods
is almost perfect. A slight difference appears only in the imaginary part of the self-energy
in the vicinity of the X = (π, 0) point for V = 0.25 and near the Γ = (0, 0) point for V = 0.5.
When the interaction reaches the value of the half-bandwidth U = 4, the real part of the
D-TRILEX self-energy remains very close to the DiagMC@DB result for all values of V
considered here. On the other hand, we observe a constant shift in the imaginary part of the
self-energy that increases with the strength of the non-local interaction V . A constant but
smaller shift was also observed between DF and DiagMC@DF results [221, 232], hence
it does not seem to be a feature of only the D-TRILEX method. Finally, at U = 6.0 we
observe that D-TRILEX does not agree with DiagMC@DB as accurately as for smaller
values of the interaction. In the real part, the difference between the two methods is not
very large and appears to be independent on the value of V . On the contrary, the imaginary
part of the self-energy displays a rather large mismatch already at V = 0, and the agreement
seems to become worse as V increases. This result comes as no surprise and agrees with
the findings of Refs. [221, 230, 232] that the ladder-like dual approximations become less
accurate in the regime of strong magnetic fluctuations. The reason is that magnetic fluc-
tuations become strongly non-linear close to a magnetic instability (see, e.g., Ref. [323]).
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Figure 6.14: Real (top row) and imaginary (bottom row) parts of the lattice self-energy for
the half-filled single-band extended Hubbard model on a square lattice. The result is obtained
for U = 2.0 (left column), U = 4.0 (middle column), and U = 6.0 (right column) for three
different values of the nearest-neighbor interaction V = 0.0 (light red), V = U/8 (dark red),
and V = U/4 (purple). The D-TRILEX result is depicted by dots. The DiagMC@DB data is
taken from Ref. [230] and is represented by solid lines with the width that corresponds to the
estimated stochastic error. Reproduced from Ref. [96].

This non-linear behavior originates from the mutual interplay between different bosonic
modes as well as from an anharmonic fluctuation of the single mode itself. The description
of these effects requires to consider much more complex diagrammatic structures that ac-
count for vertical (transverse) insertions of momentum- and frequency-dependent bosonic
fluctuations, which are present in the DiagMC@DB approach but are not considered in
ladder-like dual approximations including the D-TRILEX approach. However, despite the
quantitative disagreement, at U = 6.0 D-TRILEX qualitatively captures the correct mo-
mentum dependence of the self-energy, which is completely missing in DMFT.

In addition to single-particle quantities, D-TRILEX also provides two-particle quanti-
ties, namely the susceptibility and the polarization operator of the lattice problem. These
quantities are calculated as momentum- and frequency-dependent functions, which al-
lows one to get the information about the full energy spectrum of the charge and spin
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Figure 6.15: Static charge (red panels) and spin (blue panels) susceptibilities Xch/sp(q, ω = 0)
in the Brillouin zone. Calculations are performed for the half-filled single-band extended
Hubbard model on a square lattice for U = 4 and β = 4. The value of the non-local interaction
V is indicated above each panel. Reproduced from Ref. [96].

excitations in the system. In Fig. 6.15, we show the static (ω = 0) charge and spin sus-
ceptibilities Xch/sp = −Xd/m in the Brillouin zone (BZ) computed for the same model at
U = 4, T = 0.25, and different values of the non-local interaction V = 1.0 and V = 1.25.
Both, charge and spin susceptibilities display a maximum value at the M = (π, π) point of
the BZ, which signals that corresponding order parameters tend to have a checkerboard
configuration on a square lattice. From the physical point of view, this means that in this
parameter range the system has a tendency towards the charge density wave (CDW) for
large values of V and the antiferromagnetic (AFM) ordering at small values of V . The
enormous increase in the value of the charge susceptibility indicates that the system is
very close to the CDW transition point, that corresponds to a divergence of the charge
susceptibility. On the contrary, the spin susceptibility does not change significantly, and
its value is slightly reduced upon increasing V . This reduction is expectable, since in this
particular case the spin fluctuations are screened by strong charge fluctuations.

If we analyse more quantitatively the behavior of the charge susceptibility at the M
point, we find that the inverse Xch at that k-point exhibits a typical linear behavior for
large values of V and crosses the zero axis close to V = 1.25,which means a divergence
of the value of susceptibility Xch, as shown in Fig. 6.16. A linear fitting close to the
crossing point gives an estimation of the critical interaction VCDW = 1.25(2). The static
spin susceptibility Xsp, on the other hand, has a rather large value at small values of V .
This value is weakly, but noticeably reduced by the large charge fluctuations thanks to the
self-consistency condition. This screening appears to be linear up to a value of V = 1.2.
Close to the divergence in correspondence to the CDW phase, this screening becomes
clearly non-linear.

It is commonly believed that in strongly-correlated systems the non-local interactions
have to be treated in the framework of the extended DMFT by introducing a bosonic hy-
bridization function in the impurity problem [162–165, 267]. However, the diagrammatic
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Figure 6.16: Values of the static charge (red dots) and spin (blue dots) susceptibilities
Xch/sp(q = M = (π, π), ω = 0) as a function of the non-local iteraction V . The inverse of the
susceptibility is shown to emphasise the linear behavior near the transition point to the CDW
phase. A linear fitting of X−1, ch close to the point where it crosses the value X−1 = 0 gives
a value VCDW = 1.25(2) for the CDW transition point. Calculations are performed for the
half-filled single-band extended Hubbard model on a square lattice for U = 4 and β = 4. The
value of the non-local interaction V is indicated above each panel.

expansion in dual theories can be performed for of an arbitrary reference system. In par-
ticular, the results of this section demonstrate that the D-TRILEX approach can accurately
treat the non-local interactions on the basis of the DMFT impurity problem. The latter
does not contain the bosonic hybridization function and thus is easier to solve numeri-
cally. In addition, in D-TRILEX the non-local collective electronic fluctuations are not
restricted in the range, which is a big advantage over cluster extensions of DMFT. More-
over, the D-TRILEX method is able to capture the interplay between the collective elec-
tronic fluctuations in different channels through the self-consistent procedure that involves
single-particle quantities. As a matter of fact, the bosonic propagators from all channels
contribute to the self-energy. Therefore, a large value of the bosonic propagator in one
channel considerably increases the value of the self-energy, hence it reduces the value of
the Green’s function. In turn, the reduced value of the Green’s function leads to a smaller
value of the dual polarization for app channels, which is the main ingredient for computing
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the physical susceptibility and the polarization operator. This feature is not provided by
DMFT calculations of the susceptibility with dynamical vertex corrections [45, 47, 332]
that are performed non-self-consistently.

6.5 Benchmarks for the two-orbital Hubbard model
After assessing the performances of the D-TRILEX method in the single-orbital case and
finding the regimes of problematic behavior, namely the regime of intermediate coupling
strength 6 ≤ U ≤ 8 and the large-doping regime, we are ready to address the first multi-
orbital systems.

6.5.1 The exactly-solvable Hubbard-Kanamori dimer
The first case-study we discuss is a two-site model, also known as dimer. Due to a small
size of this system, the exact solution for the dimer problem for small number of orbitals
can be achieved by ED. This makes the dimer an ideal platform to benchmark various
approximate methods. To test our multi-orbital D-TRILEX implementation, we consider
a particular case of a Hubbard-Kanamori dimer, where each of the two identical sites has
two degenerate orbitals. The single-particle part of the corresponding Hamiltonian reads:

H0 = −t
∑︂
l,σ

∑︂
j≠ j′

c†jσlc j′σl (6.27)

The single-particle Hamiltonian (6.27) can be diagonalized in the site-space. After that,
the dimer problem can be effectively considered as a periodic system with the dispersion

εk,ll′ = −2t cos(k) δll′ (6.28)

defined for Nk = 2 points in momentum space that correspond to k = 0 (symmetric so-
lution) and k = π (anti-symmetric solution). Based on this consideration, we can apply
our multi-band D-TRILEX method, that is designed for solving periodic lattice models,
to this benchmark system. The interacting part is considered in the Kanamori form (3.19)
discussed above.

We chose the single-site two-orbital impurity problem of DMFT as the reference sys-
tem for the D-TRILEX calculation. Since interorbital hoping processes are not taken into
account, different orbitals do not hybridize. For the case of degenerate orbitals considered
here it implies that the Green’s function is diagonal in the orbital space and has identi-
cal components for both orbitals (Gll′ = Gδll′). To compare the D-TRILEX result with
the exact solution for the dimer problem we perform ED calculations using the pomerol
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Figure 6.17: Panels (a) and (b) respectively show the real and the imaginary parts of the
Green’s function for the Hubbard-Kanamori dimer calculated for the frequency ν0 = π/β at
momenta k = 0 (solid line) and k = π (dashed line). The panel (c) shows the average energy
of the system. Panels (d) and (e) respectively show the real and the imaginary parts of the self-
energy Σ for the frequency ν0 = π/β. The local component is denoted by a think line, while the
non-local component is represented by a dashed line. Non-local components are identically
zero for DMFT, but are displayed for consistency. Results obtained using D-TRILEX (red),
DMFT (blue), and ED (black) methods for different values of the Hund’s coupling J. Model
parameters for these calculations are t = 0.2, U = 0.5, β = 10, and µ = 0.75, and are equal
across all panels.

package [76]. The total number of degrees of freedom for the two-orbital Hubbard-
Kanamori dimer for the ED calculation is 2NlNimp = 8 and the total number of states is
Ntot = 28 = 256. This makes the ED calculation numerically inexpensive.

First, we focus on the effect of the Hund’s exchange coupling J. To this aim we perform
calculations for different values of J fixing other model parameters to t = 0.2, U = 0.5,
β = 10, and µ = 0.75. A very similar set of model parameters for a single-orbital dimer
problem was recently used in Ref. [237] to benchmark another diagrammatic extension
of DMFT. In Fig.6.17, we show the real (Re G, left panel) and imaginary (Im G, middle
panel) parts of the Green’s function produced by D-TRILEX (red), DMFT (blue), and ED
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(black) methods. We find that the D-TRILEX result for the Re G lies on top of the exact
solution in the whole range of values for the Hund’s coupling considered here. DMFT is
also rather accurate in calculating the real part of the Green’s function, but the discrep-
ancy between the DMFT and ED results is noticeable. The D-TRILEX solution for Im G
is very close to the one provided by ED, while the DMFT result becomes substantially
different from the exact solution, especially for small values of J. A very good agreement
between D-TRILEX and ED methods is also confirmed by analyzing the result for the
average energy ⟨E⟩ (right panel in Fig. 6.17). The average energy for ED is obtained as
⟨E⟩ED =

∑︁
i(Ei − µ)e−β(Ei−µ) where the index i runs over the eigenstates of the system. The

average energy in D-TRILEX is calculated using Eq. (6.18). The DMFT energy ⟨E⟩DMFT

has been computed using the same formula (6.18) by setting Σ̃ = 0 and Π̃ = 0. We show
that the mismatch in D-TRILEX and ED results for the energy is 1.1% (δE = 0.034) at
J = 0 and decreases as J increases. The largest difference between DMFT and ED results
is found at J = 0.1 and amounts to 3.7% (δE = 0.134), which is approximately four times
larger than the one of the D-TRILEX approach. Nevertheless, we observe that in this case
DMFT is surprisingly close to the exact result. The reason is that for the considered set
of model parameters the system lies very far away from half-filling, hence the non-local
fluctuations between the two sites of the dimer are suppressed. This fact can be confirmed
by looking at the self-energy Σ shown in panels (d) and (e) of Fig. 6.17. The local contri-
bution to the self-energy 2Σlocal = Σ(k = 0) + Σ(k = π) is dominant and is in a very good
agreement among all three methods. The non-local part 2Σnon−local = Σ(k = 0) − Σ(k = π),
which is completely missing in DMFT, is relatively small and is also well reproduced by
D-TRILEX approach.

At half-filling, DMFT ceases to be a good approximation. To illustrate that D-TRILEX
is able to improve and even to cure a wrong behavior of the DMFT result, we perform cal-
culations for t = 0.5 and β = 10 for different values of the Hubbard interaction U for a
fixed ratio U/J = 4. The chemical potential is set to µ = (3U − 5J)/2 in order to ensure
half-filling [333]. Panel (a) of Fig. 6.18 shows the imaginary part of the local Green’s func-
tion as a function of the Matsubara frequency. The result is obtained in a weak (U = 0.5,
dots) and strong coupling (U = 2.0, triangles) regimes of the interaction. At U = 0.5,
the D-TRILEX result coincides with the exact solution in the whole frequency range. The
DMFT result is also very accurate and only slightly deviates from the ED solution at lowest
frequencies. This situation changes completely at U = 2.0, where the exact Im G provided
by ED is strongly reduced at low frequencies. Remarkably, DMFT does not capture this
change and predicts approximately the same result for the Im G for both values of the inter-
action. Instead, the D-TRILEX solution lies very close to exact result and reproduces the
correct behavior of the Im G. To confirm this fact, we compute the normalized difference
from the ED result for D-TRILEX and DMFT as

δ [Im G(νn)] = Im [G(νn) −GED(νn)] /Im GED(νn) (6.29)
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Figure 6.18: (a) Imaginary part of the local Green’s function Im G(νn) calculated as a function
of the Mastubara frequency index n for two values of the interaction U = 0.5 (dashed lines)
and U = 2.0 (solid lines). The result is obtained at half-filling for t = 0.5, β = 10, and J = U/4
using the D-TRILEX (red), the DMFT (blue), and the ED (black) methods. (b) Normalized
difference δ [ImG(νn)] (6.21) with respect to the ED solution calculated for D-TRILEX (red),
the DMFT (blue) methods as a function of U. The result is obtained for three difference
Matsubara frequencies with indices n = 0 (empty circles), n = 1 (pluses), and n = 5 (crosses).
(c) Real part of the self-energy Σ as a function of the interaction U at the first Matsubara
frequency ν0. (d) Real part of the self-energy Σ(νn) as a function of the Matsubara index
obtained at U = 1. In panels (c) and (d), the local and non-local parts are shown and the
chemical potential µ is subtracted from the local part.

The corresponding result obtained for three different frequencies as a function of U is
shown is the panel (b) of Fig. 6.18. We find that the normalized difference for DMFT is rel-
atively large and drastically increases upon increasing the interaction strength. At U = 2.0,
the Im G(ν) calculated at the zeroth and the first Matsubara frequency using DMFT is re-
spectively almost two and 1.5 times larger than the exact result. On the contrary, the
Im G(ν) of D-TRILEX lies very close to the ED result. Indeed, the normalized difference
for D-TRILEX calculated for the first and the fifth frequency does not exceed 2%. The
difference for D-TRILEX calculated for the zeroth frequency becomes larger than 2% at
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Figure 6.19: Spin (full lines) and charge (dashed lines) static (ω = 0) susceptibility X. Left
panel shows results computed at the q = π point, right panel at the q = 0 point. Results are
obtained obtained using D-TRILEX (red) and ED (black) methods for different values of the
Hund’s coupling J. Model parameters for these calculations are t = 0.2, U = 0.5, β = 10, and
µ = 0.75, and are equal across both panels.

U > 1.5 and reaches the maximum value of 7.6% at U = 2.0. We find that the DMFT
result strongly deviates from the considered benchmark at moderate and large values of
U. By looking at the real part of the self-energy ReΣ (panels (c) and (d) in Fig. 6.18), we
can immediately understand the origin of the large mismatch between ED and DMFT. As
a matter of fact, the real part of the self-energy at moderate to large U is dominated by
the non-local contributions (dashed lines), which are completely missing in DMFT, while
local contributions (solid lines) are approximately zero. D-TRILEX does not exactly re-
produce all the contributions to the non-local self-energy, as they correspond to roughly
25% of the value of self-energy at U = 1. However, it follows the same trend as the ED
result and this ensures the correct behavior of the Green’s function as U is increased. We
do not show the imaginary part of the self-energy, since it is at least an order of magnitude
smaller than the real part in the whole range of parameters considered here.

In addition to single-particle quantities we calculate the charge and spin susceptibilities
defined as Xch/sp = −

∑︁
ll′ Xd/m

lll′l′ . Fig. 6.20 shows the corresponding results for the static
susceptibilities Xch/sp(q, ω = 0) obtained at the q = π point. The susceptibilities at the
q = 0 point are very small in the whole range of considered parameters and are not shown
here. In the left panel of Fig. 6.20, we illustrate the results for the half-filled Hubbard-
Kanamori dimer considered above. We find that the susceptibilities of the D-TRILEX
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Figure 6.20: Spin (full lines) and charge (dashed lines) static (ω = 0) susceptibility X ob-
tained at the q = π point for the half-filled system with model parameters t = 0.5, J = U/4,
and β = 10. The left panel shows the result as a function of the local interaction strengths U in
the absence of the non-local interaction (V = 0). The right panel illustrates the susceptibility
as a function of V calculated for the fixed value of the local interaction U = 1.

approach are in a very good agreement with the exact ED solution in the whole range of
local interaction strength 0.25 ≤ U ≤ 2. In the right panel, we demonstrate the dependence
of the static charge and spin susceptibilities on the value of the non-local interaction Vd

between electronic densities on neighboring sites ⟨i, j⟩ (3.14). More explicitly, we consider
the non-local interaction in the form

Vd

2

∑︂
ll′,i≠ j

ρd
i,llρ

d
j,l′l′ (6.30)

To simplify notations, in the following the superscript “d” for the non-local interaction
is omitted. We find that in the presence of the non-local interaction the susceptibilities
obtained using ED and D-TRILEX methods are nearly identical up to V = 0.3. Above
that threshold, the D-TRILEX susceptibility starts to deviate from the exact ED result. At
V > 0.3 the D-TRILEX spin susceptibility continues to decrease almost linearly with in-
creasing the value of V , while the exact result shows a stronger non-linear damping. This
trend continues also above V = 0.5, where the difference between the D-TRILEX result
and the exact result continues to increase. This behavior can be explained by the fact that
the strong non-local interaction favors either full or zero occupancy of a lattice site. This
charge density wave instability strongly suppresses magnetic fluctuations. In this regime
the D-TRILEX calculations break down, because they are performed on the basis of the
DMFT impurity problem, which does not incorporate any effect of the non-local interac-
tion. The inclusion of the bosonic hybridization function in the spirit of EDMFT could
improve the result, because in this case some contributions of the non-local interaction
would be taken into account in the impurity problem via the bosonic hybridization.

These findings show that D-TRILEX improves the DMFT results in all considered
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regimes. Additionally, D-TRILEX reproduces the trends observed in ED calculations in
all the cases, even when DMFT fails. This fact suggests that for the considered system the
difference between DMFT and ED mostly stems from non-local correlations that have the
form accounted for in the D-TRILEX diagrams. These results are particularly remarkable
taking into account that DMFT approximation is not very accurate in low dimensions,
hence the DMFT impurity problem is probably not an optimal reference system for a
diagrammatic expansion in this case.

6.5.2 Comparison with ladder DΓA
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Figure 6.21: Real (left panel) and imaginary (right panel) parts of the local self-energy as a
function of the index n of the Matsubara frequency. Dashed lines correspond to DMFT, dots
to D-TRILEX and triangles to ladder DΓA results. the blue (red) color corresponds to the
l = 0 (l = 1) orbital.

The next system we are going to address is a Hubbard-Kanamori model on a square
lattice. Unfortunately, benchmark methods for this system are rare and we have to com-
par with non-exact methods, making it difficult to assess which approximation should be
trusted in which regime. In spite of the difficult interpretation of the results, we believe it
is instructive and potentially useful as a future reference to compare with another approx-
imate method. In particular, we compare the D-TRILEX approach with data provided by
Josef Kaufmann obtained using the ladder DΓA method. While comparing the two meth-
ods, we have to keep in mind that both methods are diagrammatic extensions of DMFT
base on ladder diagrams, but the approximations involved at the level of the local vertex are
almost opposite. Indeed, DΓA builds the diagrammatic expansion on top of the two-article
irreducible vertex, while D-TRILEX completely neglects it. The model has two-orbitals
l = 0 and l = 1 characterized by the same local Kanamori interaction with U = 4, U′ = 2,
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J = 1. The two orbitals differ by their half-bandwidths Dl, which are D0 = 4 and D1 = 1
with nearest-neighbor dispersion

εk,ll′ = −2tl

(︂
cos kx + cos ky

)︂
δll′ (6.31)

in terms of the hopping-amplitude tl = Dl/4. The inverse temperature is set to β = 5.
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Figure 6.22: Real (upper panel) and imaginary (lower panel) parts of the self-energy along the
high-symmetry path of the BZ. Blue and Green lines describe the D-TRILEX results for the
l = 0 and l = 1 orbitals respectively. Similarly, the orange and red lines correspond to the DΓA
results.

Additionally, the model is doped with filling n = 1.7 electrons per site (n = 2 would
be half-filling), which coresponds to a doping δ = 15%. The chemical potential of the
impurity problem was adjusted in DΓA to ensure the desired filling. In our case, we ran D-
TRILEX on top of the same impurity problem obtained by DΓA, hence the two methods
have the same chemical potential µ = 1.8158. Since we are not addressing a specific



168 Chapter 6. The D-TRILEX approach to strong correlations

physical system, we can just stick to a comparison at fix chemical potential. However, we
obviously get a slightly different filling n = 1.75 in the D-TRILEX calculation.

As a consequence, it comes as no surprise that the local self-energy shown in Fig. 6.21
is slightly different and we get the fillings for the two orbitals n0 = 0.794 and n1 = 0.952,
instead of the values n0 = 0.766 and n1 = 0.934 obtained in DΓA. Despite this rather small
difference, the overall agreement between the local self-energies as a function of frequency
is very good for both orbitals l = 0, 1 and both methods remain very close to the DMFT
results.
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Figure 6.23: Imaginary part of the self-energy for l = 0 (left panel) and l = 1 (right panel) as a
function of the Matsubara index n. Dots correspond to D-TRILEX results, triangles to ladder
DΓA results. Different k-points are highlighted by different colors. The local self-energy is
subtracted to emphasise the differences between the two methods.

Of course, it is much more significant to compare non-local quantities to assess the
difference between the two methods. We start by investigating the lattice self-energy Σk

in the Brillouin Zone for the two orbitals. In Fig. 6.22, we show a comparison between
the methods. As we can see, the momentum dependences of ReΣ and ImΣ for the orbital
l = 0 are both very similar to each other, with the exception of the behavior around the
M-point in the imaginary part. The overall difference is rather small, especially if we
keep in mind the underlying opposite approximations involved. If we consider the orbital
l = 1, on the other hand, the differences between the two methods are larger. However,
we can immediately notice that ReΣ is very flat and can be approximated as constant,
hence its impact is not crucial. The imaginary part ImΣ shows a quantitative difference
around the M-point but the overall qualitative behavior remains very similar between the
two methods.
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Figure 6.24: Static susceptibility X(ω = 0,q) in the density (left panel) and magnetic (right
panel) channels along the high-symmetry path of the BZ. Colors for different components can
be found in the legend on the plot.

The same behavior appears also at higher frequency, as it can be seen be found by plot-
ting the ImΣ as a function of the Matsubara frequency for the different k-points. Results for
this case are shown in Fig. 6.23, where we subtract the local part of the self-energy for bet-
ter visibility of the features. Even though, there is a clear quantitative difference between
the methods, these differences do not show any dramatic change at larger frequencies.

In addition to single-particle quantities, both methods give access to the density and
magnetic susceptibilities Xd/m

q of the system. Since the susceptibilities are different for
each orbital, we plot the static susceptibility for each orbital separately in Fig. 6.24. The
left panel of the figure represents the density channel. In this channel, we fid a very good
agreement between the two methods for all the considered orbital components. In particu-
lar, we notice that the band with the largest bandwidth l = 0, hence the weakly interacting
orbital, has a peak at M-point in the Xd

0000, while the strongly interacting orbital has a peak
at Γ. On the contrary, we find an interesting qualitative difference in the magnetic chan-
nel. For all the components, the D-TRILEX has a peak at the M-point, hence it shows
that magnetic flucutations are very strong. However, the peak is rather broad and far away
from the usually very sharp peak that signals an AFM instability. DΓA exhibits an appar-
ently different behavior: Xm has four distinct pokets around the M-point in the direction
of the X-point for all the considered components. This behavior signals the formation of
an incommensurate spin density wave. This is clearly visualized as a splitting of the peak
around the M-point in Fig. 6.24. Since we are comparing two approximate methods, it
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is perfectly possible that the difference between the two methods is only quantitative and
not qualitative, since also the D-TRILEX peak is rather broad and could signal a split-
ting for a slightly different choice of the parameters. On the other hand, we know that
D-TRILEX overestimates the horizontal fluctuations and has issues at large doping. As
a consequence, the peak might be reduced and split, due to irreducible vertex corrections
included in DΓA but not properly accounted for in the D-TRILEX method. However, we
have to keep in mind that ladder DΓA is also not an exact method, so we should not expect
a perfect agreement between the two. Further investigations by changing doping and tem-
perature are required to understand if the two methods agree, but lead to slightly different
parameters for the formation of the spin density wave, or if D-TRILEX does not capture
this behavior.

Despite this difference, these results show that the D-TRILEX results are in reasonable
agreement with ladder DΓA.
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7 Theoretical study of Pb adatoms on
the Si(111) surface

Chapter based on:
M. Vandelli, A. Galler, A. Rubio, A. I. Lichtenstein, S. Biermann and E. A. Stepanov
The origin of the rich variety of phases in a system of Pb adatoms on Si(111) surface

(in preparation)

7.1 Systems of adatoms on surfaces as a platform for tun-
able systems

Recent advances in scanning tunneling microscopy allow extensive control and manipula-
tion of single atoms placed on surfaces [334]. These techniques can open the way to a new
class of synthetic two-dimensional materials constituted by atomic structures organized in
precise geometries on top of different substrates, such as tin (Sn) and lead (Pb) adatoms
disposed on silicon Si(111), germanium Ge(111) or SiC(0001) surfaces. The possibil-
ity of tuning the structure and the chemical composition in these artificial systems allows
to directly modify the properties of these two-dimensional materials in a similar way to
what has been achieved in systems of cold atoms, with the potential advantage of having a
much more stable platform. In this regard, control over the geometry and the type of atoms
arranged on these surfaces allows to achieve an effect analogous to varying the twisting
angle in Moiré bilayer heterostructures as proposed in Ref. [335]. As a consequence, these
systems of adatoms atomically arranged on surfaces are also a promising new platform for
"a condensed-matter quantum simulator", mimicking the title of Ref. [335].

In addition to the tunability of their properties, systems of adatoms arranged in trian-
gular structures were proposed as suitable candidates to host topological superconductiv-
ity [336–338]. Experiments on a doped system of adatoms on Si(111) revealed the validity
of these predictions [339].

Despite early suggestions that this kind of systems can be effectively described by
a simple single-site Hubbard model, experimental findings showed a much more com-
plicated picture. These include the effects of nonlocal Coulomb correlations, magnetic
frustration, as well as strong spin-orbit coupling in case of heavy adsorbants (Sn, Pb,



172 Chapter 7. Theoretical study of Pb adatoms on the Si(111) surface

etc). Among various distinctive features, these artificial surface systems reveal unexpected
magnetic properties. This breakthrough result showed that the magnetism is not limited
to d-electron materials, but can be found in sp- and p-systems as well. Unfortunately,
the theoretical description of these effects belongs to the class of the most challenging
problems of condensed matter physics.

Most of the theoretical studies in this field are focused on a single-particle descrip-
tion, without considering collective effects of the electronic or magnetic subsystems. As
an exception to that, a study based on the combination of DMFT, variational cluster ap-
proximation (VCA) and dual fermions predicts the formation of row-wise collinear order
that is stabilized in Sn:Si(111) due to hopping processes beyond the nearest-neighbors was
reported in Ref.[340].

For our studies, we can use D-TRILEX method described in Chapter 6 to address the
problem. By means of this method, we can consistently address the problem collective
of excitations and charge/magnetic orders appearing as a result of symmetry breaking in
this kind of systems, even including long-range non-local interactions and the effect of
spin-orbit coupling.

7.1.1 Rich phase diagram and ultra-strong spin-orbit coupling in Pb
on Si(111)

Figure 7.1: The right panel shows the ideal structure of the Pb:Si(111) system, adapted from
Ref. [341]. The arrangement of the Pb adatoms forms a lattice that displays a rotation of 30◦

with respect to the host Si. With red and blue colors we indicate the atoms that are equivalent
in the

√
3 ×
√

3-phase and that become inequivalent in the 3 × 3-phase. The middle and right
panels show results of an STS scan for the topology and local density of states (LDOS) in the
3 × 3-phase, reproduced from Ref. [341].

In this work, we focus on adatom systems on top on Si(111) surfaces. This choice is
based on the fact that Pb on Si(111) has attracted wide interest in the past few years due
to the large variety of phases that can be experimentally observed in such system [342].
The Pb adatoms arrange themselves to form patches of triangular geometry rotated of 30◦
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with respect to the substrate, as shown in Fig. 7.1. Indeed, the peculiarity of triangular
lattices is a high degree of frustration, that can lead to highly non-trivial competition be-
tween different ordering phenomena. In addition to the usual frustration of the triangular
lattice, this class of systems displays both very strong onsite interaction and very large
values of the non-local interaction between nearest-neighbor adatoms. These character-
istics make the system an ideal candidate to study competition between charge and spin
excitations. When the type of adatoms is chosen to have a sufficiently large atomic num-
ber Z, additional effects appear due to spin-orbit coupling. These effects can indeed be
experimentally observed when lead adatoms (Pb, Z = 82) are chosen, and they consist in a
split of the Fermi surface and in ordered states with non-commensurate ordering vectors.
Additionally, spin-orbit coupling is responsible for the Dzyaloshinskii–Moriya interaction,
hence skyrmion lattices or chiral phases could appear in the system [343].

Experimentally, it was observed by using scanning tunnelling microscopy (STM) that
the system develops structural instabilities, a charge density wave and that the quasi-
particle interference patterns are influenced by the strong value of spin-orbit coupling [341,
342]. Several different arragements of the atoms on the surface were identified, namely a√

3 ×
√

3 phase with respect to the underlying Si surface, a 3 × 3 phase and a
√

7 ×
√

3
phase, that becomes superconductive at very low temperatures [344, 345]. Among those,
the origin of the CDW phase is the most debated, as two completely different mechanisms
have been proposed as a driving mechanism for it. Indeed, many experiments confirm that
the system exhibits a structural transition to a charge ordered phase at a temperature of 86
K. However, it is still a matter of on-going research to understand whether this transition
has to be attributed to a Peierls-like transition, an intrinsic asymmetry induced by the sub-
strate or to strong electronic correlations. The reason why it is so difficult to investigate
this transition is that the 3 × 3 pahse of Pb:Si(111) forms very small domains, which can-
not be investigated by usual optical measurements. The most widely used experimental
technique for this system is STM, which is not suitable for determining whether the or-
der occurs due to single-particle effects or collective fluctuations. At this point, it is also
important to stress that the experimental control over doping conditions in this kind of
systems is not an easy task. The reason is the fact that adatoms can attract dopants from
the the bulk. Another reason is that STM measurements require a finite conductance in the
system. As we explain in the next sections, these sources of doping may play an important
role in the physics of this material. It is worth noticing that a similar effect appears in other
similar systems of adatoms, notably in Pb:Ge(111) and Sn:Ge(111) [346, 347], but not in
the Sn:Si(111) compound.

The interpretation of the experimental results for Pb:Si(111) as well as for Pb:Ge(111)
found in literature is mostly based on density functional theory, in particular DFT+U cal-
culations [342, 348]. Notable exceptions are the GW+DMFT method used in Ref. [349]
and an extended version of the VCA method, called XVCA, used to interpret the experi-
mental result in Ref. [341]. However, in both cases calculations were performed without
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spin-orbit coupling. Additionally, the use of GW+DMFT predicted that this material lies
very close to a coexistence region of Mott insulating phase and metallic charge density
wave phase. Of course, this picture is very unstable and can be easily modified if vertex
corrections are included or the Fermi surface is modified by the addition of the spin-orbit
coupling. On the other hand, the XVCA calculation of Ref. [341] cannot take into account
any kind of long-range interaction or fluctuation.

In this thesis, we show that the physics of the system cannot be fully captured by a sim-
ple extended Hubbard model on a triangular lattice, as previously pointed out in Ref. [348].
Many concurrent factors affect the physics of this material. Namely the presence of strong
non-local interactions causes the emergence of long-range correlations, while a strong hy-
bridization with the substrate effectively destroys the symmetry between the sites and the
large value of the spin-orbit coupling introduces a split between the single-particle bands.
By disentangling and investigating separately each contributions, we can highlight the role
that each factor plays in the physics of the material. Indeed, each of them plays an im-
portant role in specific regions of the phase diagram and induces the formations of a large
variety of different magnetic as well as charge-ordered phases. In particular, we will point
out what could be a cause of the charge ordering and what are the ordering mechanisms in
the low temperature magnetic phases.

7.1.2 Model for the system with spin-orbit and non-local interactions
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Figure 7.2: Non-interacting bandstructure of the adatom systems of IV-group elements de-
posited on Si(111) with geometry

√
3 ×
√

3, as obtained using the parameters taken from
Ref. [343] along the high-symmetry path of the BZ of the triangular lattice. The different col-
ors indicate the different spin-orbital-resolved bands. Among these, Pb exhibits a noticeable
splitting between the bands even at the Fermi surface E = 0.
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The model that we use to study this system is the extended Hubbard model with spin-
orbit coupling in the form of Rashba interaction, as introduced when discussing Eq. (3.14).
According to DFT calculations, this system is characterized by a single band in the vicinity
of the Fermi surface and localized on the Pb atoms while the other bands corresponding to
the substrate are gapped and are rather well-separated by the Pb band. As a consequence,
we can describe this system within a single-orbital to a high degree of accuracy [343].

The Hamiltonian for this model reads

Ĥ =
∑︂

i j, σσ′
c†iσ

(︂
ti j δσσ′ + iγi j · σσσ′

)︂
c jσ′ + U

∑︂
i

ni↑ni↓

+
1
2

∑︂
i≠ j,

Vi j ni n j +
1
2

∑︂
i≠ j

Ji j Si · S j . (7.1)

where γi j = γ|i− j|

(︂
r̂i j × ẑ

)︂
is the Rashba interaction, U describes the usual Hubbard interac-

tion, Vi j is the regular density-density Coulomb interaction and Ji j represents the exchange
interaction among the electrons. In this work, we use the same parameters estimated from
DFT calculations in Ref. [343] in the

√
3 ×
√

3-phase. From a Wannier projection on the
localized orbitals, the nearest-neighbor and next-nearest-neighbor hoppings are estimated
to be t = t01 = 31.3 meV and t′ = t02 = −19.2 meV in this material. The Rashba parame-
ters wer found to be γ01 = 16.7 meV and γ02 = 2.1 meV. The parameters of the model were
obtained using cRPA in the same work. The Hubbard interaction is taken to be U = 900
meV, the nearest-neightbor interaction is V01 = 500 meV and the exchange integral reads
J01 = 1.67 meV. These parameters are rather similar to those computed in Ref. [349] with
a similar method. In the momentum-space, we can write the Fourier transform of the
single-particle term as εσσ

′

k,ll′ = εk,ll′δσσ′ + i γ⃗k,ll′ · σ⃗σσ′ with l(′) indicating the site within the
unit cell, as discussed in Eq. (3.14) of Chapter 3.

In the
√

3×
√

3 phase each site is equivalent with l = l′ = 1, so ϵll′,k becomes the next-
nearest neighbor dispersion for the triangular lattice ϵk and similarly for the Rashba term.
In the 3 × 3 phase, the unit cell contains three atoms. Experiments show that these three
Pb atoms are not equivalent to each other and display a 1-up-2-down configuration. For
this reason, we perform DFT calculation displacing one of the Pb atoms upwards in the
cell and letting all the atoms relax to the equilibrium configuration. As in previous DFT
studies [104, 342, 343, 350, 351], the surface is simulated by a slab geometry consisting
of a 1/3 monolayer of Pb adatoms on top of three Si bi-layers. The Pb adatoms occupy the
T4 positions. The dangling bonds of the bottom Si bilayer are compensated by hydrogen
capping, and 19 Å of vacuum are included in the simulation. For all structural relaxations
we employ the WIEN2k [352, 353] program package, a full-potential linear-augmented
plane-wave code. A k-grid with 6 × 6 × 1 k-points in the reducible Brillouin zone was
used and internal coordinates were relaxed until forces were less than 2 mRy/bohr. In all
DFT calculations, we employed the generalized gradient approximation (PBE), spin-orbit
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Figure 7.3: Comparison between the DFT band structure obtained using the generalized gra-
dient approximation with the PBE functional for the 3 × 3 structure and the corresponding
tight-binding obtained as a result of the fitting by just varying the values of the local shift on
each atom ∆l.

coupling was neglected. In agreement with experiment, we find the stabilisation of a 3× 3
reconstruction, where one Pb adatom is vertically displaced by 0.22Å compared to the
other two Pb adatoms in the supercell. The energy gain of this 1-up-2-down structural
reconstruction is found to be 9.5 meV with respect to a flat adatom layer. This leads to
a situation where the sites are not all equivalent. In particular, the two sites in the down
configuration are equivalent to each other and the one in the up position is inequivalent.

We model this behavior in a tight-binding model with three atoms in the unit cell with
the same parameters as in the single-site case, but with a different local component of the
single-particle Hamiltonian matrix ∆l (not to be confused with the hybridization function
in the impurity model) for each site l in the unit cell. Since the values found for∆l are rather
small, we can safely neglect the modification of the Coulomb interaction. The resulting
tight-binding model becomes εk,ll′ = ε1s

k,ll′ + ∆l under the constraint that ∆0 = ∆1 ≠ ∆2,
where ε1s

k,ll′ is the tight-binding Hamiltonian of three sites using the same parameters as the
single-site case. We fit the DFT band-structure obtained for the 3×3 phase using the two
fitting parameters ∆0 and ∆1. The result of this fitting is displayed in Fig. 7.3. The tight-
binding model obtained with the fitting exhibits a very good agreement with the DFT result
close to the Fermi surface and a rather good agreement elsewhere. We perform DMFT
calculations using the w2dynamics package [274]. The D-TRILEX solution is based on
the numerical implementation described in Ref. [96]. The local density of states (DOS) is
obtained from the corresponding local Green’s functions via analytical continuation using
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the ana_cont package [22], based on the maximum entropy method.
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Figure 7.4: D-TRILEX spectral function
√

3×
√

3 phase with nearest-neighbor interactions at
T = 65 K obtained with the ana_cont package [22]. Upper panel shows electron doping, lower
panel hole doping.

7.2.1 The spectral function of a protoypical Mott insulator
In order to disentangle the different sources that can lead to the observed CDW transi-
tion, we start by considering the

√
3 ×
√

3 phase with only nearest-neighbor interactions.
We consider single-particle observables first, in particular the interacting density of states



178 Chapter 7. Theoretical study of Pb adatoms on the Si(111) surface

(DOS) of the system, which contains information about the conduction properties of the
system.

Figure 7.5: D-TRILEX spectral function at T = 65 K obtained with the ana_cont package [22].
Upper panel shows electron doping, lower panel hole doping.

We first notice that the system lies rather deep in the Mott phase, no matter if we
include spin-orbit coupling or not. Using the dispersion obtained from the downfold-
ing of DFT calculations and local Hubbard interaction obtained by cRPA calculations in
Ref. [343], the ratio between the interaction and bandwidth is about U/W ∼ 3, which is
large enough to motivate this behavior. As a matter of fact, the results obtained in Ref [343]
with a mean-field Hartree approximation predict a Mott insulating ground state for the sys-
tem. Since the value of the interaction is very large, we expect the Hartree calculations to
predict roughly the correct spectrum. A very small value of doping in the system causes
a phase transition to a metallic behavior with a very clear quasi-particle peak at the Fermi
level, no matter whether it is p- or n-doping. This behavior is a characteristic manifesta-
tion of the physics of a doped Mott insulator. We additionally analyse the spectral function
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of the system for different values of doping δ in Fig. 7.4. The upper panel shows the elec-
tron (n-)doping for the values δ = 3% and δ = 7.3%, while the lower panel shows the
electron (n-)doping for the values δ = 4% and δ = 6%. The black dashed line shows
the result at half-filling which corresponds to a simple Mott insulator with two Hubbard
sub-bands located roughly at ±U/2. The two are separated by a large Mott gap, where
no single-particle excitations can occur. On the contrary, at any value of the doping the
system is metallic and shows the typical features of a doped Mott insulator, i.e. a quasi-
particle weight in the correspondence of the Fermi surface and the two Hubbard subbands,
that are shifted in energy of a value corresponding to the chemical potential at the given
doping µ = µ(δ). Interestingly, these are not the only features appearing in the density of
states of this system. We additionally observe other features such as an intermediate peak
between the quasi-particle peak and the closest Hubbard subband and a smaller replica
of the quasi-particle peak. We explain these peaks by taking a closer look at the DOS in
the hole-doped case in Fig. 7.5. These additional peaks correspond to the signature of the
van Hove singularity (vHS in the figure) that appears in tight-binding dispersion of the
system at zero temperature and the spin-orbit splitting (SO1/2 in the figure) respectively.
The LHB and UHB in the figure indicate the lower Hubbard subband and the upper Hub-
bard subband. We note that the spectra presented here appear to be similar to what has
been measured for the p−doper Sn:Si(111) in Refs. [339, 354], which is characterized by
similar parameters to the Pb:Si(111).

7.2.2 Phase diagram
The phase diagram of the system in the

√
3 ×
√

3 phase obtained with a single-shot D-
TRILEX calculation is shown in Fig. 7.6. The model exhibits a Mott insulating (MI) phase
denoted in black in plot, which exists only at half-filling at high-temperature. As soon as
a doping |δ| > 0 is introduced, there is a transition to a metallic phase as discussed for the
DOS. In addition to these phases, we also observe symmetry-breaking transitions in the
magnetic and/or in the density sector. In our method, we are not able to access the region
of broken symmetry, but we can do calculations in the disordered phase and monitor the
susceptibilities Xςς′

q,ω=0 with ς(′) = {d, sx, sy, sz} to look for a divergence. Depending on the
momentum at which it occurs, we can understand the ordering vector Q of the geometry
in the broken-symmetry phase. In the magnetic channel, we observe two different kinds
of magnetic phases that differ for the ordering vector. We call them chiral M and chiral
K phases for reasons explained below. The chiral M phase appears with the typical dome
structure in the vicinity of half-filling, while the chiral K phase occurs at larger electron
doping. Both phases exhibit a top of their respective dome structure at around T = 60
K. Both in the n− and p−doped regimes, we find a CDW instability that appears around
δ = ±7.5% by means of a dynamical symmetry breaking. Interestingly, for this model the
CDW phase has a peak at the Q = K and it occurs independently on the temperature. We
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Figure 7.6: Phase diagram of the system with only nearest-neighbor interactions in the
√

3 ×√
3-phase as a function of the doping δ and the temperature T , obtained with single-shot D-

TRILEX calculations. The ordered phases are highlighted in colors, while the white area
describes the regular metallic phase phase. The dots signal the middle point between the last
point in a phase and the first in the next phase.

repeated calculations without spin-orbit coupling and the results did not qualitatively differ
from what is shown here, except that the chiral M and chiral K phases turn into a row-wise
order with Q = M and a 120◦-Néel ordering with Q = K respectively. The the take-away
messages are that, under these approximations, the system does not exhibit a dynamical
CDW only at finite-doping and not at half-filling, but it shows a variety of chiral phases
with incommensurate ordering vector Q.

7.2.3 Effects of spin-orbit on the order of the system
In the previous subsection, we discussed the different phases occurring in the system.
Here, we show the susceptibilities for the phases discussed above. In Fig. 7.7, we compare
the susceptibilities obtained without (left column) and with (right column) the spin-orbit
coupling in the calculations. The top row corresponds to the magnetic susceptibilities at
half-filling. The lowest row shows the magnetic susceptibility at δ = 7.4%. Even though
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Figure 7.7: Comparison between the largest eigenvalue of the static spin susceptibility Xςς′

q,ω=0
with ς(′) = {sx, sy, sz}. The panels show the cases without (left) and with spin-orbit coupling
(right). The two upper panels show the δ = 0% case, while the lower panels are computed
at δ = 7.4% for spin (blue) and charge (red) respectively. The temperature is chosen to be
T = 65K.

the susceptibility has not diverged yet, peaks appearing at specific points in the BZ clearly
signal the ordering vectors characterizing the symmetry-broken phases.

Without spin-orbit coupling, at half-filling the strongest magnetic fluctuations corre-
spond to the commensurate row-wise antiferromagnetic modes with peaks located at the
ordering vector Q = M, in accordance with mean-field results [343], while in the doped
case at δ = 7.4% the magnetic susceptibility exhibits a large peak at Q = K which corre-
sponds to the 120◦-Néel phase. A discussion of these different phases can be found, for
instance, in Refs. [343, 355]. The spin-orbit coupling partially changes this picture, by
splitting the peaks into three different peaks located at different points of the BZ. These
points are located on the line connecting M/K and Γ and are close to Q ≈ 2

3 M for the
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Figure 7.8: Comparison between the static density susceptibility Xd
q,ω=0 without (left) and with

spin-orbit coupling (right) at δ = 7.4%.

so-called chiral M phase and close to Q ≈ 3
4 K for the chiral K phase. The new location

of the peaks between the corresponding M/K ordering to a point in the BZ between M/K
and Γ signals the emergence of an incommensurate spin spiral in both cases. As discussed
in Ref. [343], the presence of these spin spirals is very attractive from the point of view
of applications, as it can be exploited to realize skyrmion lattices. Despite this important
physical difference, it is worth noticing that the position of the boundaries between the
phases remains roughly unchanged and the quantitative picture exhibits only a small shift
in the magnetic phases towards a slightly larger critical temperature.

A similar displacement of the ordering vector was observed in Ref. [340] varying the
Hubbard interaction in the Sn:Si(111) system. This is again due to the high degree of
frustration of lattice. In the absence of spin-orbit coupling, indeed our spin susceptibility
strongly resembles the one computed for the largest value of the Hubbard interaction pre-
sented in the reference. We point out that cluster methods consider a plaquette with few
atoms or, alternatively, a rather coarse grid in momentum-space. This means that, while
they are able to capture ordering appearing at the high-symmetry points in the BZ, they
can hardly capture this kind of features that appear at incommensurate points in the BZ.

On the other hand, the charge susceptibility does not change dramatically if we include
spin-orbit coupling. In the lowest row of Fig 7.8, we show the charge susceptibility at
δ = 7.4%, hence quite close to the CDW phase boundary in the electron-doping sector.
The main instability in the charge channel remains Q = K in all the regimes investigated
in this study. This is consistent with the presence of the very strong nearest neighbour
interaction. We do not show the density susceptibility at half-filling since it is basically
negligible and does not exhibit any characteristic peak.
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7.2.4 Exchange interactions
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Figure 7.9: Exchange interactions as a function of doping divided by the nearest-neighbor ex-
change coupling J01. D01 is the nearest-neighbor Dzyaloshinskii–Moriya interaction (orange
line with dots) and J02 is the next-nearest-neighbor exchange (blue line with dots). The vertical
dashed line indicates the transition from chiral M to chiral K phases according to our calcu-
lations. The black hexagon and dot represent the value at half-filling computed in Ref. [343],
using the Hartree approximation. The horizontal dashed line represents the prediction for the
M-to-K transition in the antiferromagnetic Heisenberg model with J01 and J02 obtained from
Monte Carlo calculations in Ref. [356].

An additional quantity which is accessible from D-TRILEX calculations is the ex-
change interactionJς

q, l1l2, l3l4
of an effective Heisenberg model using Eq. (6.13), that can be

computed with a single iteration of the method. The calculation of this quantity helps to
shed a light on the different behaviors observed in the magnetic susceptibility as a function
of doping.
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In particular, we consider the exchange coupling terms that appear in the effective spin
Hamiltonian

HHeis = J01

∑︂
⟨i j⟩

Si · S j + J02

∑︂
⟨⟨i j⟩⟩

Si · S j + D01

∑︂
⟨i j⟩

ẑ ·
(︂
Si × S j

)︂
(7.2)

where ⟨i j⟩ represents summation over nearest-neighbors and ⟨⟨i j⟩⟩ represents summa-
tion over next-nearest-neighbors. We refer to J01 as exchange coupling, to J02 as the
next-nearest-neighbor exchange coupling, and D01 as the nearest-neighbor Dzyaloshin-
skii–Moriya interaction, which appears in our system as a consequence of the spin-orbit
coupling.

In Fig. 7.9, we plot the J02 (blue line with dots) and D01 (orange line with hexagons)
normalized by the value of J01 as a function of the doping δ. It is important to notice that
the value of D01 is very large and of magnitude comparable with the exchange coupling.
This explains why we observe a clear shift of the intensity from the high-symmetry point
to an incommensurate position in the magnetic susceptibility in Fig. 7.7. This results in a
superposition of spin spirals with period that extends over several lattice sites. Addition-
ally, it has a roughly linear dependence on doping in both the p− and n−doped regimes,
with different slopes in the two different doping regions. Interestingly, its value is very
similar to the value predicted by Hartree mean-field calculations at half-filling reported
in Ref. [343], which again shows that the system lies deep in the Mott insulating phase,
where a t2/U estimation for the exchange interaction used in that work is justified.

The calculation of the J02 exchange coupling also helps understanding the M-to-K shift
in the magnetic ordering observed in our calculations. The magnitude of this coupling
constant is rather small compared to J01 and D01. However, it is not negligible and in our
calulations we obtain a larger value of the J02 coupling compared to mean-field estimates.
An important feature is that J02/J01 is roughly constant in the p−doped regime while
D01 is strongly modified. Hence, D01 is responsible for the formation of the chiral phase.
Conversely, in the n−doped regime the value of J02/J01 decreases and it even changes sign,
while D01 increases again linearly. We attribute the shift of the magnetic susceptibility
from M to K to the variation in the magnitude of the J02/J01 coefficient. This is consistent
with Monte Carlo calculations of the phase diagram of the Heisenberg model with both J01

and J02 on a triangular lattice that show a transition from a row-wise AFM configuration
(peak at M point) to a 120◦-Néel when J02/J01 ≈ 0.12 [356], as highlighted in Fig. 7.9.
In the figure we additionally mark the mean-point between the last calculated point with
peak at M and the first point with peak at K.
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7.3 Preliminary results with full Coulomb coupling

7.3.1 CDW phase: 1/r tail and 3 × 3 phase
In the previous section, we gained a general understanding of the properties of this system,
under the simplifying assumption of next-nearest-neighbor interaction. In this section,
we generalize these findings to a realistic case by performing calculations of the phase
diagram using the long-range potential with the full 1/r tail [349]. The aim of this Section
is to try to understand the origin of the CDW phase observed in experiments.

As previously discussed, the Pb:Si(111) system exhibits a 3 × 3-phase at low temper-
ature. The mechanism that leads to the formation of this phase has been highly debated,
since several mechanisms can be responsible for its formation. The most accredited hy-
potheses are either an electronic instability that leads to a spontaneous symmetry-breaking
or a purely structural deformation appearing due to the surface-substrate interaction. The
facts that the 1-up-2-down configuration with one displaced atom has a lower energy al-
ready in DFT calculations and that we do not observe a CDW at half-filling with only
nearest-neighbor interaction, favor the second hypothesis.

However, the 1/r tail can have a noticeable effect on the CDW instability. Additionally,
the local contribution ∆l that differs from atom to atom in the 3 × 3-phase can act as an
effective doping and can strongly affect results in that phase. To this aim, we compute the
phase diagram obtained with the unit cell containing three atoms to investigate the 3 × 3-
phase, using the tight-binding Hamiltonian introduced when discussing Fig. 7.3 in the
1-up-2-down configuration. A discussion of the CDW and superconductivity as a function
of doping and temperature in a very similar model can be found there. The non-local
interaction strength can be written in real space as

Vq = V
∑︂
j≠0

e−iq·R j0

|R j0|/a
(7.3)

where V is the nearest-neighbor interaction strength, Ri j is the distance between atoms i
and j. The long-range non-local interaction is computed using an Ewald-type to obtain a
smooth curve in the same way as in Ref. [338]. The only complication when computing
the 3 × 3-phase is the presence three atoms in the unit cell, instead of a single atom as
for the

√
3 ×
√

3. In this section, we are mainly interested in understanding the origin of
the CDW and we can simplify our calculations by neglecting spin-orbit coupling for that
phase. In the previous calculations, we showed that the effect of spin-orbit coupling in the
Rashba form is to simply tilt the direction of the localized spins, inducing the formation
of a spin spiral instead of the corresponding row-wise or 120◦-Néel AFM structures. The
charge ordering in the system is hardly affected by the inclusion of the Rashba term in
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the calculations. For this reason, we slightly simplify our model for calculations in the
3 × 3-phase by neglecting the spin-orbit coupling.

7.3.2 Preliminary results for the phase diagram

Figure 7.10: Phase diagram of the system as a function of the doping δ and the temperature
T , obtained with single-shot D-TRILEX calculations. The ordered phases are highlighted in
colors, while the white area describes the regular Fermi liquid phase. The black area represents
the Mott insulating phase, the red area the CDW phase, the cyan area is the row-wise magnetic
phase (or chiral M phase when spin-orbit is included) and dark blue indicates the 120◦-Néel
phase (or chiral K with spin-orbit).

In this subsection, we report results for the (n,T )-phase diagram in the two cases with
one atom and three inequivalent atoms in the unit cell with the full potential. Since the
number of calculations required to precisely draw the phase boundary is very large, we
present here only preliminary results to discuss the effect of introducing the full 1/r tail
of the Coulomb interaction. The dots connected with full lines in the plots 7.10 and 7.11
describe the lines which are known with sufficient accuracy, highlighted by the error bars.
The dashed lines and the points on that line represent the phase boundary extrapolated with
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only the currently available calculations and need to be refined. These last points could be
even strongly modified as a result of further calculations.

The known points are located at the mean point between the last point outside and
the first point within a certain phase. The error bars are related to the fact that we do
calculations on a grid of chemical potentials µ and then compute the density n = 1 + δ.
Addtionally, the stochastic error appearing in the CT-HYB solver for the impurity affects
the susceptibility (despite the relatively large number of measurements is Nmeas = 107) and
leads to a certain uncertainty even on the single point, especially at low temperature T . For
this reason, an arbitrary accuracy could not be reached for all the points.

Figure 7.11: Phase diagram of the system as a function of the doping δ and the temperature
T , obtained with single-shot D-TRILEX calculations. The ordered phases are highlighted in
colors, while the white area describes the regular Fermi liquid phase. The black area represents
the Mott insulating phase, the red area the CDW phase, the cyan area is the row-wise magnetic
phase (or chiral M phase when spin-orbit is included) and dark blue indicates the 120◦-Néel
phase (or chiral K with spin-orbit).

In Fig. 7.10, we show the phase diagrams for the
√

3 ×
√

3 configuration.
The inclusion of the realistic long-range potential has a noticeable effect on the phase

boundaries compared to the nearest-neighbor interaction of Fig. 7.6. If the boundaries of
the CDW at large doping are only slightly deformed, the creation of a cusp structure close
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to half-filling with an asymmetric structure signals a clear difference from the previously
calculated phase diagram.

In Fig. 7.11 we show the results for the 3 × 3 unit cell obtained using the dispersion of
Fig. 7.3. At this stage, the result for the

√
3 ×
√

3-phase does not differ qualitatively from
the 3×3 reconstructed phase. The reason is that the value of the chemical potential needed
to dope the system is around 200 meV both in the case of electron and hole doping. The
on-site potential ∆l with l = 0, 1, 2 that breaks the symmetry can be interpreted as an on-
site doping that differs from site to site. However, the value of the local on-site potential is
much smaller than the critical chemical potential needed to induce a non-negligible doping
level in the system. As a consequence, the net result a simple lowering of the transition
temperature of the SDW phase compared to the

√
3 ×
√

3-phase.

7.3.3 Charge ordering: effect of interactions or driven by the sub-
strate?

It is clear from the results shown in the previous sections, that they do not provide a
definitive answer to the problem of the origin of charge ordering in the system. As the
STM is a single-particle probe, one has to proceed with care since the observed pattern can
emerge both from a dynamical transition as a consequence of a spontaneous symmetry-
breaking followed by a Peierls mechanism [341] or from a structural relaxation as argued
in Ref. [348]. From the STM spectrum, it appears that the material exhibits a modulation
of the electron density and a pseudo-gap behavior at low temperatures. It is possible that
this pseudogap is related to the CDW and to the simultaneous presence of strong magnetic
fluctuations, as predicted by our calculations. However, by looking at the STM spectrum
of Ref. [341], the atomic configuration is clearly that of a 1-up-2-down configuration. In
our calculations, the predicted CDW has a row-wise structure at half-filling and appears at
temperature of around T =60 K. From our calculations, two arguments are in favor of a
simple structural relaxation.

The first argument is that the structure observed in experiments does not seem to have
a symmetry which is favored by a spontaneous symmetry-breaking of the potential Vq of
Eq. 7.3, since that potential has a minimum at the K-point and the M-point has an energy
very close to K. Additionally, the polarization operator in our calculations has its lagest
absolute value close to the M and K points. This structure seem to favor either a 120◦-
Néel broken-symmetry phase with three inequivalent sites in the unit cell or a row-wise
structure rather than a 3 × 3 unit cell with a single inequivalent atom.

The second argument is that interactions with an environment and phonons in real sys-
tems usually tend to reduce the temperature of the phase transition compared to theoretical
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predictions. Since the measured T exp
CDW = 86 K [357, 358], there should be a physical mech-

anism that dramatically increases the TCDW in the experiments compared to the predicted
one.

On the other hand, the analysis of the STM data does not provide any information on
collective excitations of the system, but rather on the local density of states. The only way
to determine with confidence if the origin of this transition is related to the CDW, is to use
a probe which is sensitive to the symmetry-breaking. Experiments on the transition tem-
perature seem to reproduce quite closely the model of the order-disorder phase transition
suggested in Ref. [359] for a reconstruction of Sn on a germanium substrate rather than
the CDW model [357]. However, the existence of a CDW at half-filling in calculations
in both phases at low temperature does not allow us to completely rule out that this is the
source of the phase transition.

In addition to these considerations, the other very important aspect to assess is the
determination of doping. According to our calculations, it would be desirable to have a
detailed control over the doping in the system, since a different doping might result in a
completely different physical phase. The control over the doping of the surface states can
be tricky to control and requires some fine calibration of the experimental setup of a similar
system with Sn adatoms instead of Pb [339, 354]. All the experiments report some degree
of doping occurring in the system, which is needed in order to have any conduction and
thus to measure the STM spectrum. For instance, Ref. [341] reports the use of a p−doped
Si substrate, while a heavily n-doped substrate was used in Ref. [342], according to its
Supplemental Material. The precise estimation of the doping and the possibility to tune it
would be really useful in better understanding the processes occurring in the system.

7.4 Conclusion
We performed D-TRILEX calculations for the system consisting in Pb adatoms on a
Si(111) substrate, including spin-orbit coupling and non-local interactions. By includ-
ing fluctuations in both charge and spin-channels, we found a rich variety of different
magnetic phases in the low temperature regime by varying the doping level. Different
magnetic phases appear both in the presence and without the inclusion of spin-orbit cou-
pling, one with a typical dome structure around the half-filling and the other localized at
large electronic doping. The spin-orbit coupling introduces a distortion of the spin struc-
tures that leads to non-commensurate spin spirals and is compatible with the formation of
skyrmions, as highlighted in previous theoretical calculations. The effect of the spin-orbit
coupling could be investigated thanks to the use of the diagrammatic D-TRILEX method
and it is unlikely to be captured in cluster calculations, due to its incommensurate nature.
Our findings support the idea that Pb on Si(111) has potential applications in the creation
of skyrmionic lattices with different structures.
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We observe the formation of a CDW at large doping levels. This occurs both for
electron and hole dopings. We additionally report the CDW at half-filling if we include
the full tail of the Coulomb interaction in our calculations. This preliminary result has to be
analysed more in detail to reveal the precise ordering occuring in the system in that regime.
Since a CDW transition takes place also at large doping, according to our calculations, it
is important to determine the intrinsic doping level occurring in the system due to the use
of a p− or n−doped Si substrate. Due to the smaller transition temperature found in the
preliminary results for this system compared to the experimental one, the spatial charge
modulation observed in experiments seems to be imputable to the vertical displacement of
the Pb atoms, induced by the substrate, rather than to the CDW.
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(2022). The author of this thesis contribution to this work consisted in the development of
the D-TRILEX code used to obtain the results, in the collection and analysis of the results
and in writing the manuscript.

In this preprint, we study a two-orbital model with crystal-field splitting on a cubic
lattice and Hubbard-Kanamori interactions using D-TRILEX. We report the simultaneous
presence of two different phases, a metallic and an insulating one for a large range of the
Hubbard interaction U. This region of metastability is not present in DMFT.

These results show that non-local fluctuations in the system can lead to a redistribution
of density between different orbitals and between above and below the Fermi energy. It
is a clear demonstration that the picture provided by DMFT can change dramatically if
non-local correlations are included.

These findings might appear surprising, especially in three-dimensions where DMFT
is widely expected to provide a good approximation. However, we believe that we can
apply D-TRILEX in this regime without incurring in any problem related to the reduced
accuracy as doping is increased described in the benchmarking section. The reason is
that the model chosen here as an almost empty band, so it is weakly correlated, and an
other band which is almost at half-filling, where we have shown that D-TRILEX generally
provides good results.

The considered model describes the low-energy physics of vanadates [38] and of ful-
leride molecular crystals [360–364]. Our results could explain experimental reports of
phase coexistence in VO2 thin-film samples [365, 366].
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8.1 Extended regime of coexisting metallic and insulating
phases in a two-orbital electronic system

Introduction
There are two main mechanisms responsible for the formation of an insulating phase in
electronic materials: a gap at the Fermi energy in the non-interacting band structure and the
many-body localization induced by strong electronic interactions, as for instance the Mott
scenario [24, 25]. The interplay between these different mechanisms can strongly affect
the degree of electronic correlations and therefore the phase diagram of the material [367].
Both these effects are especially important when a subset of doubly- or triply-degenerate
localized orbitals appears in the electronic spectrum at Fermi energy. Usually, the charge
distribution on neighboring atoms lifts this degeneracy, which results in a local splitting of
the orbitals called crystal field splitting. Strong electronic correlations may greatly renor-
malize the electronic spectral distribution, thus affecting the orbital splitting [39, 368–
370]. The crystal field splitting also has a strong influence on the Mott transition in several
materials, as it favors orbital polarization and orbital selective phenomena [38, 371–383].

The dynamical mean field theory (DMFT) [118] is currently the most-widely used the-
oretical method for describing the Mott transition in realistic materials [107, 127]. For
instance, this method captures the coexistence of metallic and insulating phases that ac-
companies the Mott transition in both, single-band [150–156] and multi-orbital [157–161]
systems. However, in some cases DMFT is insufficient, because this theory accounts only
for local correlation effects. Considering even short-range correlations beyond DMFT
significantly modifies the coexistence region and drastically reduces the critical value
of the interaction [155]. Long-range correlations can have even more dramatic conse-
quences [171]. Therefore, an important leap towards an accurate theoretical description
of correlated materials would be to understand the effect of non-local collective electronic
fluctuations on the spectral function. Unfortunately, most of the available theoretical meth-
ods for multi-orbital systems are either limited to a weakly correlated regime [92, 185–188,
190, 191], or do not take into account all desired physical ingredients, such as long-range
correlations [174–177] or spatial magnetic fluctuations [40, 193, 194, 196–198, 202, 204,
206, 207]. Attempts to go beyond these assumptions using diagrammatic methods lead to
expensive numerical calculations [45, 47, 211–213, 332, 384, 385], while unbiased quan-
tum Monte Carlo methods are so far limited to specific parameter regimes or symmetries
due to the fermionic sign problem [179–184].

In this work, we investigate the effect of non-local correlations on the Mott transition
in a two-orbital model with the crystal field splitting and the density-density approxima-
tion for the interaction. This model is relevant for investigating the low-energy physics of
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some transition metal oxides [38] and of fulleride molecular crystals [360–364]. More im-
portantly, this model is the simplest multi-orbital system, where the influence of the orbital
splitting on the Mott transition was studied in details using DMFT [369]. We challenge
this solution of the problem by utilizing a relatively inexpensive diagrammatic extension
of DMFT 1 – the dual triply irreducible local expansion (D-TRILEX) method [48, 96, 231,
232]. This approach accounts for the effect of the non-local collective electronic fluctua-
tions on the spectral function in a self-consistent manner [232, 233, 235]. We find that, de-
spite the apparent simplicity, the considered model displays a non-trivial behavior around
the Mott transition. In particular, considering the non-local correlations beyond DMFT
reveals a broad coexistence region of meta-stable metallic and Mott insulating phases that
extends from approximately the bandwidth to more than twice the bandwidth in the value
of the interaction. Our results might guide the understanding of the memristive effects
experimentally observed in VO2 thin-film samples [365, 366].

Method
The Hamiltonian of the considered two-orbital model on a cubic lattice

H =
∑︂
j j′,l,σ

c†jlσ
(︂
tl
j j′ + ∆l δj j′

)︂
cj′lσ +

U
2

∑︂
j,ll′

njl njl′

contains three contributions. We restrict the hopping to the nearest-neighbor lattice sites
and set it to tl

⟨ j j′⟩ = 1/6 for each of the two orbitals l ∈ {1, 2}. Hereinafter, the energy
is expressed in units of the half-bandwidth of the cubic dispersion W/2 = 6t = 1. The
interaction U between electronic densities njl =

∑︁
σ c†jlσcjlσ describes both the intra- and

interorbital Coulomb repulsion. Calculations are performed at quarter-filling, which cor-
responds to the average density of ⟨n⟩ = 1 electron per two orbitals. In order to induce an
orbital polarization δn = (⟨n2⟩ − ⟨n1⟩)/⟨n⟩, we take a relatively large value for the crystal
field splitting ∆ = 2∆1 = −2∆2 = 0.3. This case was studied in details in Ref. [369] using
DMFT. It was demonstrated, that local electronic correlations enlarge the orbital splitting,
resulting in a high degree of orbital polarization. Consequently, the single electron mostly
populates the lower orbital (l = 2) that undergoes the Mott transition at a critical value of
the electronic interaction. A similar interplay between the orbital polarization and Mott
physics is also found in actual materials such as V2O3 [38] and SrVO3 [203, 386, 387],
where it is important for the Mott transition.

In order to investigate how non-local correlations affect the DMFT scenario of the Mott
transition, we employ the D-TRILEX method [96, 231, 232], where collective electronic
fluctuations are treated diagrammatically beyond DMFT. This method was derived as an
approximation to the dual boson theory [224–230, 264–266], one of the most commonly

1For a review on diagrammatic extensions of DMFT see [208].
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used diagrammatic extensions of DMFT, cf. [208–211, 213, 215–219, 222, 223, 236, 258,
388, 389]. The D-TRILEX method stands out for its lowered complexity, which allows one
to address multi-band problems [48, 96, 235], cf. [211, 212], and its capability of correctly
reproducing the results of more elaborate theories. The reduction of the critical interaction
for the Mott transition compared to DMFT [231] is very similar to cluster DMFT [155].
Additionally, it shows a precise agreement with exact benchmarks for some single- and
multi-band systems [96, 232].

If the system exhibits strong magnetic fluctuations, as frequently happens at half-
filling, the Mott transition usually lies inside the antiferromagnetic (AFM) phase. In this
case, addressing the Mott transition requires to perform calculations in a symmetry bro-
ken phase, which is problematic. Going away from half-filling suppresses the magnetic
fluctuations and allows one to access the Mott transition from the paramagnetic phase.
According to our calculations, the highest critical temperature for the Néel transition for
the considered quarter-filled model lies below T = 0.06. For this reason, we set the inverse
temperature to T−1 = 15, which ensures that the system is located outside the AFM phase
but close to its boundary to observe strong magnetic fluctuations. We perform DMFT
calculations using the w2dynamics package [274]. The D-TRILEX solution is based on
the numerical implementation described in Ref. [96]. The local density of states (DOS) is
obtained from the corresponding local Green’s functions via analytical continuation using
the ana_cont package [22].
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Figure 8.1: DOS for the upper (l = 1, blue line) and lower (l = 2, red line) orbitals calculated
for different interactions U = 1.8 (left column), U = 2.0 (middle column), and U = 2.2 (right
column). Top row: DMFT solution at quarter-filling that corresponds to the chemical poten-
tial µd. Middle row: quarter-filled metallic D-TRILEX solution for the chemical potential µ.
Bottom row: a further D-TRILEX∗ calculation based on the DMFT solution. Calculations
for U = 1.8 and U = 2.0 are performed for µd. The resulting ⟨n⟩ > 1 is specified in panels.
At U = 2.2 the quarter-filled D-TRILEX∗ solution appears at µ∗ ≃ µd and corresponds to the
Mott insulating state.
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Results
To illustrate the effect of non-local correlations on the Mott transition, we compare the
DOS predicted by DMFT and D-TRILEX methods. The result of these calculations
is shown in Fig. 8.1 for three different values of the interaction U = 1.8, U = 2.0, and
U = 2.2. First, let us focus on the quarter-filled calculations presented in the two upper
rows of this figure. We find that the results of the DMFT and D-TRILEX methods are
different already at U = 1.8. In both cases, the DOS is metallic. The lower orbital (l = 2,
red line) displays a three-peak structure consisting of the quasi-particle peak at Fermi en-
ergy E = 0 and two side peaks that correspond to lower and upper Hubbard bands (LHB
and UHB). The upper orbital (l = 1, blue line) also exhibits the quasi-particle peak in the
DOS that appears close to the Fermi energy at E ≃ ∆. However, the three-peak struc-
ture predicted by DMFT possesses a high degree of electron-hole symmetry. Instead, the
DOS of obtained for the same orbital (l = 1) using the D-TRILEX approach resembles the
DOS of a hole-doped Mott insulator with the quasi-particle peak being shifted closer to
the LHB [118]. The quasi-particle peaks in the DOS of DMFT vanish simultaneously be-
tween U = 1.8 and U = 2.0, which signals the tendency towards a Mott insulating state in
a multi-orbital system at finite temperature. A further increase of the interaction decreases
the electronic density at Fermi energy A(E = 0). The latter reaches zero at U∗c ≃ 2.2 (blue
line in Fig. 8.2), and the DMFT solution enters the Mott insulating phase. On the contrary,
the D-TRILEX solution remains metallic for the discussed values of the interaction (mid-
dle row in Fig. 8.1). Thus, even at U∗c it reveals pronounced quasi-particle peaks in the
DOS for both orbitals. Fig. 8.2 shows that A(E = 0) in the metallic D-TRILEX solution
also decreases upon increasing the interaction. However, this solution turns into a Mott
insulator only at a very strong critical interaction Uc ≃ 4.5, which is larger than twice the
bandwidth. This result seems surprising, since in the single-orbital case the non-local cor-
relations lead to a more insulating electronic behavior [155], as correctly captured by the
D-TRILEX method [231].

To explain the observed effect, we note that quarter-filling in DMFT and D-TRILEX
corresponds to different values of the chemical potential. The left panel of Fig. 8.3 shows
that at U ≥ 1.5 the chemical potential µ of D-TRILEX (red dots) significantly deviates
from µd of DMFT (blue dots), and this difference increases with increasing the interaction.
We point out that D-TRILEX calculations are based on the DMFT solution of the local
impurity problem that plays a role of the reference system [231, 232]. We find that the
quarter-filled metallic D-TRILEX solution originates from the metallic reference system
that has smaller average density. Fig. 8.4 shows that due to ⟨n⟩ < 1 the reference system
(dashed lines) remains metallic even at U∗c . At the same time, the DOS predicted by
D-TRILEX (solid lines) is not dramatically different from the one of the reference system.
This fact suggests that for a given value of the chemical potential the effect of non-local
collective electronic fluctuations in the metallic regime consists in moving the spectral
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Figure 8.2: Electronic density at Fermi energy A(E = 0) for the lower orbital (l = 2) as a func-
tion of the interaction U. The result is obtained from DMFT (blue dots), metallic D-TRILEX
(red dots), and insulating D-TRILEX∗ (red asterisks) solutions. The red shaded area highlights
the simultaneous existence of the metallic and the Mott insulating solutions. The inset sketches
the difference in the DOS between the insulating (top) and metallic (bottom) D-TRILEX so-
lutions. In the insulating case, the Fermi energy lies between the LHB and UHB that are split
approximately by U. In the metallic case, the difference in the chemical potential δµ = µ∗ − µ
brings the upper part of the LHB to the Fermi energy, which results in the formation of the
quasi-particle peak at E = 0. The splitting between the quasi-particle peaks coincides with the
value of the crystal field splitting ≃ ∆.

weight from above to below the Fermi energy, which brings the filling of the system to
⟨n⟩ = 1.

To confirm this statement, we perform D-TRILEX calculations for the chemical po-
tential µd of the quarter-filled DMFT solution. The corresponding result is shown in the
bottom row of Fig. 8.1 and is referred to as the D-TRILEX∗ calculation in order not to con-
fuse it with the metallic solution. We observe that the obtained DOS is again practically
identical to the one of DMFT (bottom vs. top row in Fig. 8.1). However, the D-TRILEX∗

calculations performed in the regime 1.0 ≲ U < 2.2, where DMFT solution is metallic,
correspond to ⟨n⟩ > 1. Moreover, no quarter-filled D-TRILEX∗ solution is found near µd

in this regime of interactions. This fact supports our previous finding that in the metallic
regime non-local correlations increase the average density of the considered system.
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Figure 8.3: Chemical potential (left panel) and orbital polarization (right panel) for the quarter-
filled DMFT (blue dots), metallic D-TRILEX (red dots), and insulating D-TRILEX (red as-
terisks) solutions. The result is obtained for different values of the interaction U. Chemical
potentials for the insulating D-TRILEX (µ∗) and DMFT (µd) solutions nearly coincide. For
1.0 ≲ U < 2.2 no quarter-filled D-TRILEX solution exists near µd. The chemical potential µ
for the metallic D-TRILEX solution strongly deviates from µd at U ≥ 1.5.

This physical picture changes when the DMFT solution becomes Mott insulating. We
find that the corresponding D-TRILEX∗ solution undergoes the Mott transition at the same
critical interaction U∗c as in DMFT (bottom right panel of Fig. 8.1). Moreover, at U ≥ U∗c
the average density for the D-TRILEX∗ solution becomes ⟨n⟩ = 1 for µ∗ ≃ µd (bottom
left panel of Fig. 8.1). The right panel of Fig. 8.3 shows that the insulating DMFT and
D-TRILEX∗ solutions are almost fully polarized and have approximately the same value
of δn, which results in electron-hole symmetric DOS for the lower orbital (top and bottom
left panels of Fig. 8.3). Consequently, the upper orbital becomes nearly unoccupied and
thus cannot strongly interact with the lower one. Therefore, no transfer of the spectral
weight between the orbitals by means of the non-local fluctuations occurs in the insulating
regime. Remarkably, the metallic D-TRILEX solution has a lower δn compared to DMFT.

At U ≥ U∗c the D-TRILEX∗ solution remains quarter-filled and Mott insulating, which
is confirmed by the zero electronic density at Fermi energy (red asterisks in Fig. 8.2).
Therefore, both, the DMFT and the D-TRILEX methods predict the Mott transition for
the considered system at the same value of the critical interaction U∗c . However, includ-
ing non-local collective electronic fluctuations beyond DMFT allows one to additionally
capture the metallic solution that coexists with the Mott insulating one up to the second
critical interaction Uc. For U > Uc any value of the chemical potential inside the Mott
gap gives the same average density, and the two solutions corresponding to µ and µ∗ can
be considered equivalent. A more detailed discussion of the hysteresis curve appearing in



8.1. Extended regime of coexisting metallic and insulating phases in a two-orbital
electronic system

199

Fig. 8.3 can be found in Supplemental Material (SM) [390].

Figure 8.4: DOS for the metallic D-TRILEX solution (solid lines) and its DMFT reference
system (dashed lines) obtained for the same value of the chemical potential µ at the critical
interaction U∗c . The reference system is a doped Mott insulator with ⟨n⟩ = 0.96.

Coexisting solutions with the same average density but different values of the chemical
potential have also been found in the DMFT solution of the Hubbard-Kanamori model for
small doping around half-filling [391–395], and for different parameters using a strong-
coupling expansion [393]. Since the quarter-filled model considered in our work displays
a strong orbital polarization, it can be expected that taking into account the Hund’s rule
coupling J, which is present in the Kanamori parametrization of the electronic interac-
tion [107, 396], should not qualitatively change the observed results. To confirm this
point, we perform calculations for the case of J = U/6 and find that the meta-stability
discussed above survives also in this case, as shown in SM [390].

Conclusion
We investigated the effect of non-local collective electronic fluctuations on the Mott tran-
sition in a two-orbital quarter-filled model with density-density interaction by comparing
the results of the D-TRILEX and DMFT methods. At the considered temperature, the
DMFT solution of the problem remains metallic below the critical interaction U∗c = 2.2,
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and at this value of the interaction undergoes the Mott transition. We find that the inclu-
sion of non-local correlations by means of the D-TRILEX approach stabilizes the metal-
lic phase up to the very large critical interaction Uc = 4.5. The D-TRILEX method also
captures the appearance of Mott insulating phase at U∗c as a second meta-stable solution.
This leads to a remarkably broad coexistence region between the metallic and the Mott
insulating phases that exist at the same filling, but with different values of the chemical
potential between the U∗c and the Uc critical interactions. Our results show, that for a sim-
ple two-orbital model, DMFT cannot correctly interpolate between the moderately- and
strongly-interacting regimes, in analogy with the single-orbital case. This fact brings fur-
ther evidence that non-local correlations may lead to non-trivial effects due to the presence
of additional channels for collective electronic fluctuations also in multi-orbital systems.

8.2 Supplemental material of the previous pre-print

8.2.1 Charge compressibility and meta-stability
The meta-stability of the two solutions is signalled by the appearance of two different
values of the chemical potential µ and µ∗ leading to the same average density ⟨n⟩, as
demonstrated in the left panel of Fig. 3 in the main text. As shown there, the presence of
two meta-stable solutions manifest itself with the appearance of an hysteresis loop. The
branch of the hysteresis chosen by the system depends on whether the corresponding ref-
erence system is metallic or Mott insulating. As a matter of fact, if we follow the µ(U)
curve that gives ⟨n⟩ = 1 in the weak coupling regime (red dots), we obtain the metallic
solution until it continuously turns into an insulating phase at Uc. Above this threshold,
any value of the chemical potential inside the Mott gap gives the same average density,
and the two solutions corresponding to µ and µ∗ can be considered equivalent from there
on. On the other hand, if we start from the chemical potential µ∗ that corresponds to the
insulating phase and decrease the interaction following the condition ⟨n⟩ = 1, we obtain
the insulating solution (red asterisks). The latter exists until the critical interaction U∗c be-
low which no solution for µ∗ ≃ µd is available at quarter-filling. This behavior means that
the function ⟨n⟩(µ) is not monotonic and exhibits a region of negative charge compress-
ibility κ = 1

⟨n⟩2
d⟨n⟩
dµ . According to our calculations, the metallic and insulating D-TRILEX

solutions are both characterized by κ > 0, hence they are thermodynamically meta-stable.
Since the density is the same for both phases, they have to be separated by a region of
chemical potentials associated with a negative charge compressibility.

From the perspective of applications, this region of negative charge compressibility be-
tween the two meta-stable solutions could forbid the spontaneous switch between the two
solutions. In this case, the application of a static electric field should be sufficient to drive
the transition between the metallic and Mott insulating phases, as this perturbation would
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effectively change the chemical potential from µ to µ∗ or vice versa. A similar switch-
ing between two meta-stable phases as a function of an electric field was investigated in
Ref. [397], where a similar regime of parameters with coexisting metallic and Mott insu-
lating meta-stable solutions was reported. One can speculate that the observed presence
of two meta-stable phases could be exploited in the realization of Mott-based electronic
switches or transistors. Indeed, the experimental realization of Mott field effect transistors
(MottFET) was shown to be practically viable [386, 398, 399]. The simultaneous pres-
ence of metallic and Mott insulating states could be detected experimentally, for example
by measuring dielectric properties of the system [400].

Figure 8.5: DOS for the upper (l = 1, blue line) and lower (l = 2, red line) orbitals obtained
for U = 4.2 and J = U/6 using D-TRILEX (solid lines) and DMFT (dashed lines) methods.
Left panel corresponds to the chemical potential µ = 0.65 at which the D-TRILEX solution
is metallic and quarter-filled (⟨n⟩ = 1.00). Right panel corresponds to the chemical potential
µ = 0.95 at which both, D-TRILEX and DMFT solutions are Mott insulating and quarter-filled.

8.2.2 Calculations for a non-zero Hund’s coupling
The quarter-filled (⟨n⟩ = 1 electrons per lattice site) two-orbital model considered in the
main text has a relatively big value of the crystal-field splitting. This leads to a large
orbital polarization that appears already in the metallic regime before the system undergoes
the Mott transition. The latter means that the single electron at each lattice site mostly
populates the lower orbital (l = 2), and the upper orbital (l = 1) stays nearly unoccupied.
In this case, it can be expected that including the Hund’s rule coupling J in the electronic
interaction should not qualitatively change the physical effect observed in the absence of
J. To confirm this point, we perform calculations for the local density of states (DOS) for
two different interaction strength U = 2.4 (Fig. 8.6) and U = 4.2 (Fig. 8.5) for a non-zero
value of the Hund’s coupling J = U/6.
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Figure 8.6: DOS for the upper (l = 1, blue line) and lower (l = 2, red line) orbitals obtained
for U = 2.4 and J = U/6 using D-TRILEX (solid lines) and DMFT (dashed lines) methods.
Left panel corresponds to the chemical potential µ = 0.45 at which the D-TRILEX solution is
quarter-filled (⟨n⟩ = 1.00). Right panel corresponds to the chemical potential µ = 0.55 of the
quarter-filled DMFT solution.

Due to the effect of J, the system is still metallic at U = 2.4 in contrast to the J = 0
case, and we find a single value of the chemical potential µ for which the D-TRILEX
solution has an average density ⟨n⟩ = 1. As in the case of J = 0 discussed in the main
text, the quarter filling in DMFT and D-TRILEX methods corresponds to different values
of the chemical potential. At µ = 0.45 (left panel in Fig. 8.6), when the D-TRILEX solu-
tion is quarter-filled, the average density in DMFT is ⟨n⟩ = 0.96 electrons per lattice site.
The chemical potential µ = 0.55 (right panel in Fig. 8.6) corresponds to the quarter-filled
DMFT solution, while the average density in D-TRILEX is ⟨n⟩ = 1.04. We find that both
methods predict a rather similar DOS for each of the two values of the chemical potential.
However, the average density of D-TRILEX is always larger than in DMFT. This obser-
vation is in agreement with the results reported in the main text for the case of J = 0 and
illustrates that in the metallic regime the role of the non-local fluctuations in the considered
system consists in redistributing the spectral weight between the orbitals.

At U = 4.2 the quarter-filled DMFT solution that corresponds to µ = 0.95 lies in the
Mott insulating regime (right panel in Fig. 8.5). For this value of the chemical poten-
tial the D-TRILEX solution is also quarter-filled and Mott insulating, because no spec-
tral weight redistribution induced by the non-local fluctuations occurs in the insulating
regime. Finally, at smaller value of the chemical potential µ = 0.65 (left panel in Fig. 8.5)
the D-TRILEX reveals the second quarter-filled solution, which is metallic. The DOS
predicted by DMFT for this value of the chemical potential is again similar to the one of
D-TRILEX, but the DMFT solution does not reside at quarter filling and corresponds to
⟨n⟩ = 0.99. Therefore, we find that when the DMFT solution becomes Mott insulating
D-TRILEX reveals two different quarter-filled solutions even for the case of a non-zero
value of the Hund’s coupling.
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9 General conclusions

In this thesis, we have shown that dual theories represent a very promising tool for the
description of multi-orbital and multi-site problems. Additionally, we argued that their
use is by far not limited to the case of single-orbital (extended) Hubbard model to which
they were mostly applied before.

An important aspect of this thesis was to highlight the connection of dual theories with
quantum embedding methods. We can employ the intrinsically multi-scale nature of dual
theories to split an otherwise intractable problem with strong electronic correlations into a
relatively small impurity problem, that can be solved using exact methods, and a weakly
correlated remaining system. This strongly reduces the size of the effective system to
be solved, correspondingly reducing the computational cost of the simulations. Interac-
tions among the collection of strongly interacting impurities are mediated by the weakly
correlated system, in a way similar to the strong coupling perturbation theory, but with
the advantage that dual methods return reliable results also in the weak and intermediate
coupling regimes.

The multi-band formulation of the problem is crucial in drawing this connection, as
the usual application of the dual theories only to the Hubbard model in different flavors
could be responsible for the wrong assumption that dual theories can be applied only to
a small class of model systems. This is certainly not the case, as we prove in this thesis.
The use of multi-orbital or multi-site reference problems has been proven a viable route
and it paves the way to the possibility of using cluster reference systems, that could even
describe broken-symmetry phases. In our opinion, this is a fascinating development of
dual theories that cold be soon combined with quantum Monte Carlo methods or quantum
hardware to include long range interactions and correlations that exceed the size of the
cluster used in these methods.

We would like to stress once again that the work of code development and implemen-
tation was a crucial aspect of this thesis. Arguments about the applicability of the dual
techniques to many-orbital systems would not have been as convincing without the work-
ing python implementation used in the applications presented here.

Analogously, advancing beyond the current standard approximation based on the single-
orbital ladder dual boson approximation was very important to extend our understanding
of the approximations involved in the dual techniques. As a matter of fact, an equally im-
portant part of this work was devoted to the implementation of the DiagMC@DB starting
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point. Even though this method has not shown any significant advantage in the application
to physically relevant systems compared to previous approximations, it has proven a very
valuable tool for understanding the limits of applicability of dual theories as well as for
benchmarking approximations.

Another important part of this work has been devoted to finding and understanding
the limitations of the D-TRILEX method. The final result is that D-TRILEX performs
very well in the regime where a single main channel of fluctuations or few non-interfering
channels are present. This is the case, for example, of the (extended) Hubbard model at
half-filling and it is very likely to be the case in most multi-orbital or multi-band systems,
where correlations tend to be weaker than in a single-band system. When all the sorts of
channels of fluctuations, including transverse ones, are important, the theory starts to show
the first cracks when compared with more advanced methods. This happens mainly in the
case of large doping in the system, and it is certainly something that has to be investigated
in more detail in the future.

Additionally, even in cases where the method does not produce very accurate results,
it might be possible to modify the reference impurity problem to improve the results.

The use of cluster starting points could allow to study broken-symmetry phases and su-
perconductive states directly by inducing the symmetry breaking at the cluster level, even
though this is still under debate and it is a very interesting direction for further research.

A final comment concerns the applications of the D-TRILEX theory presented here.
Both the main applications, namely the study of the Pb adatoms on Si(111) and the two-
orbital model, resulted in exciting results that hint towards physics well beyond the stan-
dard approximations, but it is currently not so clear what their implications are from the
point of view of real materials.

Access to new experimental data based on the current theoretical developments is cru-
cial in understanding whether the new findings can explain the physics observed in those
systems, at least partially. Certainly, some observations seem to confirm the picture that
we have outlined for the Pb:Si(111) system, where our results suggest a CDW related to
a surface-substrate interaction rather than to a dynamical symmetry breaking induced by
correlations. We propose that measuring the density and magnetic susceptibility of this
system could give a definitive answer to this intricate problem.
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[392] M. Chatzieleftheriou, M. Berović, P. Villar Arribi, M. Capone, and L. de’Medici.
“Enhancement of charge instabilities in Hund’s metals by breaking of rotational
symmetry”. Phys. Rev. B 102 (20 Nov. 2020), p. 205127. doi: 10.1103/PhysRevB.
102.205127. url: https://link.aps.org/doi/10.1103/PhysRevB.102.
205127.

[393] A. Sherman. “Hubbard-Kanamori model: spectral functions, negative electron com-
pressibility, and susceptibilities”. Physica Scripta 95.9 (Aug. 2020), p. 095804.
doi: 10.1088/1402-4896/aba923. url: https://doi.org/10.1088/1402-
4896/aba923.

[394] M. Chatzieleftheriou. “Charge instabilities, Mott transition and transport in Hund
metals”. Theses. Université Paris sciences et lettres, July 2021. url: https://
pastel.archives-ouvertes.fr/tel-03391043.

[395] M. Chatzieleftheriou, A. Kowalski, M. Berović, A. Amaricci, M. Capone, L. De
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