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Zusammenfassung

Gegenstand der vorliegenden Arbeit ist die Entwicklung und Anwendung numerischer
Methoden basierend auf quantenmechanischen Gittermodellen zur Beschreibung kollek-
tiver Anregungen in Systemen stark korrelierter Fermionen. Zu diesem Zweck wird
die effiziente D-TRILEX Methode vorgestellt, deren Herleitung auf der partiellen
bosonisierung kollektiver elektronischer Anregungen basiert. Mit geringen numerischen
Aufwand schafft es die Methode, die wesentlichen Effekte räumlicher Korrelationen
in stark korrelierten Systemen zu beschreiben. Dabei erlaubt die spezielle Wahl der
nicht renormierter Wechselwirkungen die bekannte Fierz Mehrdeutigkeit zu umge-
hen, die üblicherweise in Methoden basierend auf partieller Bosonisierung auftritt.
Die Anwendung aufwendiger Methoden zur Berechnung realistische Systeme mit
mehreren Orbitalen ist oft sehr schwierig oder gar unmöglich aufgrund der komplexen
diagrammtischen Struktur und der aufwendigen Berechnung der Zwei-Teilchen Ver-
texfunktion. In der D-TRILEX Theorie wird die Zwei-Teilchen Vertexfunktion durch
den führenden longitudinalen Beitrag bosonischer Moden genähert, sodass die dia-
grammatische Struktur der Selbstenergie sich drastisch vereinfacht und aufwendige
Berechnung der Zwei-Teilchen Vertexfunktion entfällt. Dies ermöglicht die Berech-
nung komplexer Mehrorbitalsysteme.

Der Hauptteil der Arbeit behandelt die D-TRILEX Methode. Dabei wird die
Methode vorgestellt und ihre Anwendung am Beispiel des zweidimensionalen Ein-
Band Hubbard Models untersucht. Des Weiteren wird eine ausführliche Diagramm-
analyse durchgeführt. Dabei werden Methoden mit unterschiedlichen Diagrammk-
lassen und Näherungen für die Zwei-Teilchen Vertexfunktion miteinander verglichen.
Es wird gezeigt, dass die in D-TRILEX berücksichtigten longitudinal bosonischen
Moden den führenden Beitrag zu der Selbstenergie bilden. Ferner wird die D-
TRILEX Methode verwendet, um Effekte kollektiver Anregungen im dotierten mono-
lagigen InSe zu studieren. Im betrachteten Parameterbereich befindet sich das Sys-
tem größtenteils in einem Zustand der Ladungsdichtewelle. Innerhalb dieses Zus-
tandes wurde in Koexistenz eine ferromagnetische Phase gefunden.
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D-TRILEX kann als eine Näherung der Theorie dualer Bosonen betrachtet wer-
den. Die Theorie dualer Bosonen ist eine diagrammatische Erweiterung der dynamis-
chen Molekularfeldtheorie, welche nicht-lokale Korrelationen störungstheoretisch be-
handelt. Als weiteres Resultat der Arbeit wird das Regime schwacher Wechsel-
wirkung im Rahmen der Leiternäherung für duale Bosonen untersucht. Die Ergeb-
nisse werden außerdem mit der numerisch exakten diagramatischen Quanten Monte
Carlo Methode verglichen. Dabei stimmen die Ergebnisse für die Ein- und Zwei-
Teilchen-Größen für hohe und mittlere Temperaturen quantitativ gut überein. Je-
doch werden bei niedrigen Temperaturen die antiferromagnetischen Fluktuationen
in der Leiternäherung unterschätzt. Dies führt zu leichten Abweichungen zwischen
den Ergebnissen der beiden Methoden.

In der letzten Untersuchung der Arbeit wird eine Parametrisierung der lokalen
Zwei-Teilchen Vertexfunktion durchgeführt. Dabei wird der Vertex mittels des Hedin
Vertex und renommierter Wechselwirkungen ausgedrückt im Rahmen der Ein-Boson-
Austausch Zerlegung. Ähnlich zu der D-TRILEX Methode wird hier der wechsel-
wirkungsirreduzible Teil des Vertex vernachlässigt und dadurch der Rechenaufwand
erheblich reduziert. Diese Näherung für die Vertexfunktion wird verwendet, um die
Suszeptibilität im Rahmen der dynamischen Molekularfeldtheorie bei unterschiedlichen
Wechselwirkungsstärken und Temperaturen zu berechnet. Es wird gezeigt, dass die
Näherung gute Übereinstimmung im Bereich schwacher und starker Wechselwirkun-
gen aufweist. Im Rahmen der Untersuchung wird die wichtige Bedeutung des Hedin
Vertex deutlich.
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Abstract

The main focus of the present thesis lies on the development and application of nu-
merical approaches based on quantum lattice models to describe collective excitations
in strongly correlated materials. To this end, an efficient and balanced dual triply
irreducible local expansion (D-TRILEX) approach that captures the major effects
of spatial correlations in strongly correlated fermionic systems is presented, which
is based on partial bosonization of the collective electronic fluctuations. Thereby, a
specific choice of the bare interaction in the corresponding channel of instability al-
lows a simultaneous description of collective excitations in different channels without
facing the Fierz ambiguity problem which usually arises in methods based on partial
bosonization. Compared to more elaborate methods, D-TRILEX does not require
the computation of the numerically expensive four-point vertex. Furthermore, taking
into account only the leading longitudinal contribution of the bosonic modes to the
self-energy reduces the complexity of the diagrammatic structure drastically making
the method applicable to more complex realistic multi-orbital systems.

As the main result of this thesis, the D-TRILEX approach is introduced and its
limit of applicability is studied by applying it to the two-dimensional single-band
Hubbard model. Performing a comprehensive diagrammatic analysis by comparing
D-TRILEX with methods, which consider different sets of diagrams and different
approximations for the four-point vertex, we find that contributions that are not
considered by the partially bosonized approximation of the four-point vertex have
only a minor effect on electronic degrees of freedom and the longitudinal bosonic
modes taking into account in D-TRILEX self-energy are the leading ones in a broad
range of control parameters. After investigating the applicability of the D-TRILEX
approach we apply the method to study collective electronic effects in the hole-doped
InSe monolayers using a realistic electronic-structure model. Thereby, we find that
due to the weakly screened long-range Coulomb interaction the system shows a charge
density waves phase for the broad range of considered parameters, however, inside
this regime we have found a coexisting ferromagnetic phase.

D-TRILEX can be considered as an approximation of the more elaborate dual
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boson (DB) theory, which accounts for local correlations within the dynamical mean-
field theory (DMFT) and nonlocal correlations perturbatively. As a further result of
this thesis, we investigate the weak coupling regime of the two-dimensional single-
band Hubbard model within the ladder DB approximation and compare our results
to the numerically exact diagrammatic quantum Monte Carlo (DiagMC) method.
We find that the DB method qualitatively captures all the different regimes. Even
quantitatively DB shows a good agreement with the exact results for single- and
two-particle quantities at high and moderate temperatures. However, the ladder
approximation slightly underestimates the strong antiferromagnetic fluctuations that
appear in the system at low temperatures.

As the final result of this thesis, we perform a parametrization of the local four-
point vertex in terms of the (three-point) Hedin vertex and screened interactions
in the framework of single-boson exchange (SBE) decomposition. Similar to the D-
TRILEX approach the computational costs are reduced by neglecting the interaction-
irreducible part of the four-point vertex. The approximated vertex is used to calculate
the DMFT susceptibility for different interaction strengths at different temperatures.
We find that the approximation shows a good agreement in the limits of weak and
strong couplings. Thereby, our study highlights the importance of the Hedin vertex
for local vertex corrections.
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Introduction

Each of us meets many-body problems in our daily life. For example, I interact with
members of my family who live in the same household. When I leave my home in the
morning I may encounter the neighbour living next door picking up his newspaper.
While walking down the street, I might see a neighbour from the next street, as we
usually leave for work at the same time.
So far, these have been, so called, few body encounters – I’ve met a well defined and
easily countable number of people, and I can simultaneously think about them: How
do I handle the family argument we had this morning, can I ask my neighbour for a
favor, and is the next-street-neighbour, whom I did not see today, left for vacations
or just got sick today?
Then, I enter the subway and, together with hundreds of other people, go to the main
station. Thousands of people are on their way to work at exactly the same moment.
Nearly two million people are living in Hamburg right now. How am I related to each
of them? How knows, but may be the tax accountant of mine is sitting in another
wagon. The student next to me might work as a waiter in a cafe where I will go this
afternoon. The guy who’s bag I stepped on accidentally might be my future dentist.
And, maybe, the cookie I will have with coffee later today will be responsible for
me visiting the dentist next week. And all of this happens, without any of us being
aware of improbable correlations between these actions.
I keep thinking about these countless encounters, the uncountable number of people
surrounding me, and the ‘if’s and ‘when’s of each of them. How do I determine
which of them are relevant for me and which of them I don’t need to think about?
There are just so many entities and interactions, so it’s impossible to account for all
of them at every moment. But do I really have to?
Similar questions one asks in many-body physics. In particular, in condensed matter
theory we want to understand how the behaviour of some electrons affects macro-
scopic properties of the entire system. And we ask the same question: What inter-
action of the many particles lead to significant outcomes and which of them can be
neglected in order to make the calculations feasible?
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For all practical purposes (e.g., when neglecting relativistic effects) the funda-
mental laws, that determine many-body phenomena we are interested in, are clear
and given by the static Schrödinger equation:

Hψ = Eψ.

In solids, the position of atoms in a crystal lattice can be considered as fixed due to the
significant mass difference between the nuclei and the electrons. Therefore, the first
and rather accurate approximation is to consider only the motion of the electrons in a
static potential V and the interaction between them. Upon neglecting the relativistic
effects, the Hamiltonian of this so-called Born-Oppenheimer approximation is the
following:

H =
N∑︂

i=1

(︂ p2i
2m

+ V (ri)
)︂
+ e2

∑︂

i<j

1

| ri − rj |
. (1)

The first term in this expression is the non-interacting part of the Hamiltonian that
describes the motion of N electrons in the presence of the ionic potential V (ri).
Thereby, the i-th electron with the mass m has the momentum pi. The mutual
Coulomb interaction between the electrons is described by the second term. This
interaction is inversely proportional to the distance between two electrons of an
elementary charge e. Due to a large number of electrons N in a macroscopic system,
which is of the order of the Avogadro constant (O(1023)), the exact solution for
the Hamiltonian (1) is practically impossible to obtain. To approach the solution
numerous approximations have been developed over time.

In many materials the interaction between the electrons can be considered as
rather weak due to screening effects related, e.g., to the spatially extended nature
of the s- and p-orbitals. In this case, mean-field theories, where the many-electron
problem is mapped onto an effective problem of a single electron interacting with
an effective field caused by the other electrons, yield results in good a agreement
with experiments. The most famous mean-field like approaches are the Landau-
Fermi liquid theory (FL) [1] and the local density functional approximation (LDA).
The latter is the most common approximation used in the framework of the density
functional theory (DFT) theory [2, 3]. DFT is based on the Kohn-Sham theorem [2]
that says that the ground state of a material is a functional of only the density of the
electrons and can be obtained by minimizing the universal functional. Even though
this would yield the exact ground state of the system, the universal functional is
a propri unknown and thus has to be approximated. The most common approach
is the LDA [4], where the exchange-correlation energy (the unknown part of the
universal functional) is approximated by a homogeneous but interacting electron
gas. With this approximation, DFT can be successfully applied to simple metals,
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semiconductors, and band-insulators. However, it fails even at a qualitative level
when applied to strongly correlated materials, like the Mott insulator NiO, where it
predicts a metallic phase.

All the theories mentioned so far are not suitable for addressing physical phenom-
ena when electronic correlations in the system become strong, i.e. the interaction
of electrons among each other cannot be correctly described within a mean-field ap-
proach only. For instance, it happens when the Coulomb interaction between the
electrons is of the same order of magnitude as their kinetic energy. Such behavior
can be found in materials with partially filled d- and f -orbitals, like lanthanides,
actinides, and transition metal oxides. A standard way to tackle the problem is to
introduce an interacting electronic model for the system of interest. The simplest
model that describes the behavior of interacting electrons in a crystal is the Hubbard
model. In this model, the interaction between the electrons is assumed to be local,
which means that only electrons that are sitting at the same lattice site interact
between themselves. (This will be discussed in more detail in section 1.1). However,
this approximation still allows one to capture the essential properties of the system.
Despite seeming simplicity, the exact analytical solution for the Hubbard model can
be obtained only in one dimension [5]. In higher dimensions, solving the Hubbard
model requires the use of some approximations or numerical techniques. One of the
most famous numerical approaches that can be used for this purpose is the dynamical
mean-field theory (DMFT) [6]. This theory performs a self-consistent mapping of the
Hubbard model onto an Anderson impurity model (AIM) that is solved numerically
exactly. Even though this mapping is exact only in infinite dimensions, DMFT turns
out to be a very good approximation also in finite dimensions in the case when local
correlations in the system are dominant.

A significant advance in our understanding of correlated materials has come
through the development of DMFT. For the first time, it allowed to capture the
coherent quasi particles at Fermi energy and incoherent excitations at high energies
(Hubbard bands) simultaneously and provided a proper understanding of the Mott
transition [7]. Nowadays, LDA combined with DMFT is an established approach to
capture the effect of local correlations in real materials1. A famous example is the
successful description of the many-body features of the single electron spectrum and
magnetic properties in iron and nickel [9]. However, DMFT accounts only for the
local part of electronic correlations while the nonlocal ones are completely neglected.
But the latter can have a crucial impact on several physical phenomena, e.g., in low-
dimensional systems, where the interaction between electrons is usually long-range
and weakly-screened [10–14].

1For an extensive review on LDA+DMFT the reader is referred to [8].
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One way to consider the nonlocal correlations is a mean-field theory (MFT) based
on a partial bosonization of collective electronic fluctuations in leading channels of
instability. Thereby, these collective excitations are taken into account by performing
a diagrammatic expansion around a proper reference system. This procedure enables
a simple diagrammatic treatment of a problem in terms of electrons interacting using
effective bosonic fields. Still, as has already been mentioned, MFT only yields proper
results when correlations between electrons are rather weak. In the case of strongly-
correlated electronic systems more advanced approaches are required. Such methods
are usually based on DMFT in order to ensure a proper description of local correlation
effects. One possible way to take into account nonlocal correlations based on DMFT
is to perform a cluster extension of this theory, where a single site AIM is replaced by
a cluster problem that contains several lattice sites. Theories like CDMFT [15, 16]
and DCA [17–19] belong to this class. However, such an extension often breaks the
translational symmetry of the system [17, 20] and is able to account for only short-
range correlation effects limited by the size of the cluster2. To capture correlations at
all length scales diagrammatic extensions around the DMFT solution, which serves
as the reference system, can be performed. Thereby, following the mean-field idea, a
partially bosonized description of collective electronic excitations leads to methods
like GW+DMFT [21–27] and triply irreducible local expansion (TRILEX) [28–30].
GW+DMFT is a simple method and does not involve any vertex corrections. This
makes the approach numerically inexpensive and, for this reason, it is often used
in realistic multi-band calculations [22, 31–37]. However, these vertex corrections
are known to play a very important role for an accurate description of magnetic,
optical, and transport properties of the system [37–46]. In addition, GW+DMFT
takes into account only collective charge fluctuations and neglects magnetic ones. The
diagrammatic structure of the TRILEX method is similar to the one of GW+DMFT,
but contains exact local three-point Hedin vertex corrections [47]. In addition, the
TRILEX approach attempts to account for the fluctuations in the magnetic channel,
which, however, leads to a famous Fierz ambiguity problem when both, charge and
spin channels are considered simultaneously [30, 48, 49]. This means that the way
these channels are introduced in the theory has a significant impact on the result
of the calculation. More elaborate methods that perform a diagrammatic expansion
on top of (E)DMFT are the dynamical vertex approximation (DΓA) [50–53], the
dual femion (DF) method [54–57], and the dual boson (DB) approach [58–62]. In
general, the calculations using these methods are rather accurate but suffer from high
computational costs due to the complex diagrammatic structure and the use of the
four-point vertex functions. Therefore, to this day, realistic multi-band calculations

2Note that increasing the size of the cluster increases the computational costs drastically since
the Hilbert space grows exponentially with the number of sites in a cluster.
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in the framework of these methods are limited to only a few works [63–66].
In this thesis, a new method called dual triply irreducible local expansion (D-

TRILEX) which can be seen as an approximation of the DB approach is presented.
The derivation of this method is based on the partially bosonized representation for
the renormalized local four-point vertex function, which approximates the four-point
vertex in terms of the three-point (Hedin) vertices and bosonic propagators. Similar
vertex decomposition can be found in [67–71]. It is demonstrated that the spe-
cific choice of the partially bosonized approximation introduced in D-TRILEX [72],
namely taking into account only longitudinal bosonic modes, reduces the complex-
ity of the diagrammatic structure to the level of GW+DMFT or TRILEX methods
while keeping the efficiency of DB theory even in strongly correlated regimes. Such
a representation allows one to explicitly consider the contributions of collective ex-
citations from different channels of instability. Another advantage of D-TRILEX is
that considering different channels, e.g., charge and magnetic channels, does not lead
to the Fierz ambiguity problem. Furthermore, unlike in the original formulation of
the TRILEX method, D-TRILEX takes into account vertex corrections in the self-
energy and in the polarization operator in a symmetric way. Overall, D-TRILEX
shows the most optimal balance between computational efficiency and complexity.
It was already successfully applied to several multi-orbital systems [38, 73, 74].

Additionally, in the framework of this thesis, a similar parametrization of the
local four-point vertex is performed. This parametrization is called single-boson
exchange (SBE) decomposition [70]. The SBE approximation is applied on the four-
point vertex to study two-particle quantities within DMFT and its diagrammatic
extensions [75]. The study highlights the importance of the Hedin vertex in the
weak and strong coupling limits. Similar to D-TRILEX, the SBE approximation
reduces computational costs by excluding the U -irreducible part of the four-point
vertex. However, in SBE approximation the transverse and particle-particle bosonic
modes are taken into account.

As the main part of this thesis, the D-TRILEX approach is introduced and applied
to the single-band Hubbard model. The thesis consists of three parts. In Part I
the Hubbard and Anderson models as well as the basic concepts which are relevant
to this thesis are introduced. Further, DMFT and the DB approach are introduced
followed by the partially bosonized approximation for the four-point vertex. Then the
D-TRILEX formalism is presented. Finally, an overview of the SBE decomposition is
given. In the main part, Part II, the results are presented. This part is divided into
three. First, in Chapter 4 DB approach is compared to numerically exact DiagMC
results in different regimes. Chapter 5 is the main part of this thesis. Here, the
D-TRILEX theory is introduced and the limits of applicability of the method are
studied. In the last part, Chapter 6, a parametrization of the local four-point
vertex of the Anderson impurity model in terms of SBE is used to calculate the
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Néel temperature of DMFT and investigate the role of the tree-point Hedin vertex
corrections.

Finally, the main conclusions and an outlook on prospective research based on
the findings of this work are given.
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Part I

Theory
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Chapter 1

Models

In this chapter, the single-band Hubbard model and its extension as well as the An-
derson model are introduced. The concepts presented here can be found in standard
literature about many-body physics and condensed matter field theory like e.g, [76–
79]. Knowledge of fundamental quantum mechanics and second quantization is re-
quired.

1.1 Hubbard model
In condensed matter physics, when it comes to systems with strong electronic corre-
lations the computational costs needed to accurately solve the many-electron prob-
lem are usually very high or even not affordable at all. Hence, in practice, simpler
methods that are able to capture the main properties of the system are used. Such
methods are usually constructed using methods of quantum field theory. Thereby,
the many-body Hamiltonian 1 can be written in a second quantization form in terms
of field operators Ψσ(r) as follows:

H = H0 +Hint

=
∑︂

σ

∫︂
ddrΨ†

σ(r)
(︂
− ℏ2∆

2m
+ V (r)

)︂
Ψσ(r)

+
1

2

∑︂

σσ′

∫︂
ddrddr′Ψ†

σ(r)Ψ
†
σ′(r′)

e2

|r − r′|Ψσ′(r′)Ψσ(r). (1.1)

In this expression the lattice potential V (r) = V (r + R) is periodic with respect
to the lattice vector R. The up or down projection of the spin of an electron is
denoted by σ ∈ {↑, ↓}. The mass of an electron is given by m, and the elementary
charge is denoted by e. The antisymmetric properties of the many-body states impose
anticommutation relations between creation and annihilation operators, respectively,
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which are given by1

[Ψσ(r),Ψσ′(r′)]+ = 0, [Ψσ(r),Ψ
†
σ′(r′)]+ = δσσ′δ(r − r′). (1.2)

Since the single-particle part of the HamiltonianH0 is periodic, the eigenfunctions
of H0, according to the Bloch theorem, are Bloch states with the eigenvalues εk that
have the following form

Ψk(r) = eikruk(r), (1.3)

with the wave vector k which takes values in the first Brillouin zone. The function
uk(r) obeys the symmetry of the lattice. The Bloch states form a complete basis with
respect to the non-interacting Hamiltonian H0 and, hence, each field operator can
be expressed in terms of this basis. Bloch states suit well as a basis for systems with
the extended s- and p-valence electrons. However, for strongly correlated systems,
where valence electrons are rather localized d- and f -shell electrons, we can use the
freedom to choose the phases of the Bloch function and construct a new basis using
more appropriate localized Wannier functions ϕ. Wannier functions are related to
the Bloch function in the following way

Ψk(r) =
1√
N

∑︂

R

eikRϕ(r − R), ϕ(r − R) =
1√
N

∑︂

k

e−ikRΨk(r). (1.4)

Next, one can define the annihilation (creation) operator in the Wannier space c(†)iσ

and rewrite the Hamiltonian (1.1) using the following basis transformation from the
real to the Wannier space,

Ψ(†)
σ (r) =

∑︂

i

ϕ(∗)(r − Ri)c
(†)
iσ . (1.5)

As the result, one gets the lattice representation for the Hamiltonian:

H =
∑︂

ij,σ

tijc
†
iσcjσ +

∑︂

ijkl

∑︂

σσ′

Uijklc
†
iσc

†
jσ′clσ′ckσ, (1.6)

with the following matrix elements for the hopping amplitude

tij = −
∫︂
ddrϕ∗(r − Ri)

(︂
− ℏ2∆

2m
+ V (r)

)︂
ϕ(r − Rj)

= − 1

N

∑︂

k

eik(Ri−Rj)εk, (1.7)

1Note that in this thesis we only consider fermionic many-body states.



1.1. Hubbard model 11

and the interaction

Uijkl =
1

2

∫︂
ddr

∫︂
ddr′ϕ∗(r − Ri)ϕ

∗(r′ − Rj)
e2

|r − r′|ϕ(r
′ − Rk)ϕ(r − Rl). (1.8)

The Hamiltonian (1.6) is the exact tight-binding representation of Eq. (1.1). We limit
ourselves to the nearest-neighbor approximation for the hopping amplitude: tij = −t
if i and j are nearest-neighbor lattice sites, and tij = 0 otherwise. This approximation
is valid for materials, where the valence electrons are tightly bounded to the rest of
the atom, which is the case of systems with partially filled d- and f -shells. In some
cases mentioned explicitly, we additionally take into account more distant hopping
processes. Further, we assume that the intra-atomic Coulomb interaction is much
larger then the inter-atomic one and consider only the local part of the Coulomb
interaction: ∑︂

i

∑︂

σσ′

Uiiiic
†
iσc

†
iσ′ciσ′ciσ =

∑︂

i

Uni↑ni↓, (1.9)

where the particle number operator niσ = c†iσciσ is introduced. The on-site Coulomb
interaction is set to Uiiii = U/2, which leads to a single-band Hamiltonian of the
Hubbard model [80–84]:

H = −t
∑︂

⟨ij⟩,σ
c†iσcjσ + U

∑︂

i

ni↑ni↓, (1.10)

where ⟨ij⟩ denotes that the sum is taken only over the nearest-neighbor lattice sites.
In this thesis, we mainly focus on the two-dimensional single-band Hubbard

model. Let us recall some basic properties of this system in the absence of the
Coulomb interaction at half-filling, where the average electronic density at each lat-
tice site is n = 1. The chemical potential is set to µ = 0 and the hopping t = 1
defines the energy scale of the system. The dispersion of the electrons in the system
is following

εk = −2[cos(kx) + cos(ky)], (1.11)

which yields the bandwidth D = 8t. The momentum dependence of the dispersion
along the high-symmetry path is shown in Fig. 1.1 (c). The plateau at the antinodal
point (0, π) leads to a van Hove singularity in the density of states (DOS) depicted
in Fig. 1.1 (b). When we consider the electronic dispersion in the first Brillouin
zone shown in Fig. 1.1 (a), we can see that the Fermi surface (black line) has a
shape of a diamond leading to a perfect nesting of the momentum vector q = (π, π)
that connects different points on the Fermi surface (black arrows). Such nesting is
responsible for strong antiferromagnetic fluctuations in the system.

Nowadays, the Hubbard model is a standard model to study strongly correlated
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Figure 1.1: (a) Electronic dispersion in the first Brillouin zone of the tight-binding
model for the square lattice. The hopping parameter is set to t = 1. Black solid lines
denote the Fermi surface (µ = 0). The arrows show the vector q = (π, π) connecting
points of the Fermi surface and characterizing perfect nesting. (b) The corresponding
density of states ρ0(ε) as a function of energy ε. (c) Dispersion along a high symmetry
path. At the antinodal point (0, π) one can see a plateau leading to the van Hove
singularity at the Fermi level shown in (b). The figure is adapted from Ref. [85].

systems. It played a central role in the study of magnetism [86, 87], Mott transi-
tion [88, 89], and motion of electrons in high-temperature superconductors [90–92].

However, many features remain not understood. But even though the Hubbard
model is rather a simple approximation of realistic systems, it can be realized in
experiments of cold atomic gases in optical lattices [93–95].

Similar to the next-nearest-neighbor hopping the Coulomb interaction can also
be extended taking into account nonlocal matrix elements in Eq. (1.1). In this case,
the Hubbard model is called extended.
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t

V

↑ ↓ ↑↓

↑↓ ↑ ↑

↑ ↑ ↑ ↓

↓ ↑↓
U

↑

Figure 1.2: The schematic representation of the extended Hubbard model (1.12) in
the real space for a square lattice. The sites are depicted by cycles and the spin of a
particle occupying a site by a black arrow. The next neighbor hopping is indicated by
a red arrow and t, the nonlocal interaction by a wiggly blue line and V , and the on-site
Coulomb repulsion by U .

Extended Hubbard model

The Hubbard model presented in Eq. (1.10) disregards the nonlocal interaction be-
tween electronic densities. In order to properly describe charge fluctuations in the
system account for their effect on the electronic dispersion it is necessary to include
the inter-site Coulomb interaction. As in the case of the hopping amplitude, we
restrict ourselves to nearest-neighbor electronic interactions (in addition to the local
one). In this case the Hamiltonian (1.6) takes the following form

H = −t
∑︂

⟨ij⟩σ
c†iσcjσ + U

∑︂

i

ni↑ni↓ +
1

2

∑︂

⟨ij⟩

∑︂

α

V α
ij ρ

α
i ρ

α
j , (1.12)

where V α
ij denotes the nonlocal interactions in the charge (α = ch) and the magnetic

(α = sp ∈ {x, y, z}) channels. For convenience, the last term in this expression is
written in terms of variables that describe fluctuations of the densities around the
average value: ραi = nα

i − ⟨nα⟩. Usually, the magnetic exchange interaction term
V sp
ij = −Jij is very small and thus can be neglected. The schematic representation of

the extended Hubbard model is depicted in Fig. 1.2. On the contrary, the density-
density interactions V ch

ij = Vij are sometimes taken into account. In two-dimensional
materials, for instance, the nonlocal Coulomb interaction can be weakly screened
and long-ranged [10]. This is a direct consequence of the reduced dimensionality [13,
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14] and may result in a Coulomb-driven charge density wave (CDW) instability [96,
97].

1.2 Anderson impurity model
The Anderson impurity model (AIM) was first introduced by P.W. Anderson in
1961 [98] to study the formation of local magnetic moments in impurity atoms with
partially filled d- or f -shells embedded in a metal, where the interaction between
electrons is small and can be modeled by a non-interacting bath. The impurity and
the bath interact with each other by exchanging electrons. The Hamiltonian of AIM
therefore can be divided into three parts as

HAIM = Himp +Hbath +Hhyb, (1.13)

where the first term describes the impurity with four eigenstates {|0⟩ | ↑⟩, | ↓⟩, | ↑↓⟩}
as

Himp =
∑︂

σ

εimp
σ c†σcσ + Un↑n↓, (1.14)

where the operator c(†)σ annihilates (creates) an electron on the impurity with the
spin σ and energy εimp

σ . The number of particles with the corresponding spin on the
impurity is described by nσ = c†σcσ, and U denotes the Coulomb repulsion between
two electrons occupying the impurity simultaneously. As mentioned previously the
AIM neglects the mutual interaction of electrons in the bath, so that the Hamiltonian
of the bath takes the following simple form,

Hbath =
∑︂

kσ

εkf
†
kσfkσ. (1.15)

Here f (†)
kσ annihilates (creates) an electron in the bath with spin σ, and εk denotes

the dispersion of the electrons. The last term in the Hamiltonian describes the
hybridization between the impurity and the bath:

Hhyb =
∑︂

kσ

(Vkc
†
σfkσ + V ∗

k f
†
kσcσ). (1.16)

The hopping of electrons between the impurity and the bath is parameterized by the
probability amplitude Vk.

The Anderson model can be solved numerically exactly by means of, e.g., continuous-
time quantum Monte Carlo solvers [99–103] with improved estimators [104–106].
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Chapter 2

Concepts

In this section we give an overview over the theoretical concepts used in this thesis.
First, the formalism of Matsubara Green’s functions on the lattice is introduced. A
general comprehensive summary of the Green’s functions in the many-body physics
would overextend this work. Thus for further details we refer the reader to the
literature (see e.g. [76]). For an thorough and systematic analysis of the n-particle
Green’s function and their properties the reader is also referred to [107, 108] and
to the doctoral thesis of G. Rohringer [109]. Further, the Dyson and the Bethe-
Salpeter equations are derived. The final part of this chapter about the path integral
formalism closely follows the derivation in Ref. [76].

2.1 Matsubara Green’s functions
Due to a large number of particles in the system, it is more common to work with
Green’s functions instead of constructing many-particle wave function of the system
from single particle wave functions. The full Green’s function contains the full infor-
mation about the system including all interactions of electrons with each other. But
since the solution of the many-body problem can be obtained only approximated,
developing Green’s functions based methods accordingly means approximating the
full Green’s functions. In this thesis we focus on single- and two-particle Green’s
functions.

The single-particle Green’s function is directly connected to an experimentally
measurable spectral function A(k, w) = 1/πImG(k, w) that can be measured in the
angle-resolved photoemission spectroscopy (ARPES) experiments where it is even
possible to qualitatively differentiate contribution from different types of interac-
tions [110, 111]. The spectral function provides the spectrum of single-particle exci-
tations in the system.

The two-particle Green’s functions in turn are connected to the response of the
system to external fields, the susceptibility, and can be measured by the inelastic
neutron and X-ray (RIXS) scattering techniques [112–114], or by electron energy loss
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spectroscopy (EELS) [115], and nuclear magnetic resonance (NMR) methods [116,
117].

Here, we consider the imaginary time Green’s functions defined as the thermo-
dynamic average of time-ordered products of annihilation and creation operators. In
particular, the single-particle lattice Green’s function is defined as

Gijσ(τ) = −⟨T ciσ(τ)c†jσ(0)⟩ = −Θ(τ)⟨ciσ(τ)c†jσ(0)⟩+Θ(−τ)⟨c†jσ(0)ciσ(τ)⟩, (2.1)

where τ ∈ [0, β] is the imaginary time and β = 1/T is the inverse temperature
and T is the time-ordering operator. The Green’s function is invariant under time
translation and hence depends only on the time difference Gijσ(τ, τ

′) = Gijσ(τ − τ ′),
where the triangular brackets denote the thermodynamic average

⟨A⟩ = 1

Z
Tr
(︁
e−βHA

)︁
, (2.2)

with the partition function
Z = Tr

(︁
e−βH)︁, (2.3)

where the Hamiltonian H = H − µN describes a grand canonical system with the
chemical potential µ and the particle number operator N . And the trace Tr(...) =∑︁

n⟨n|...|n⟩ denotes a summation over a complete set of states in the Fock space.
The creation and annihilation operators are considered in the Heisenberg picture,

c
(†)
i (τ) = eτHc(†)i e−τH. (2.4)

Since the many-body problems are typically translationally invariant in space for
convenience in this work we consider the Green’s functions in the reciprocal space
determined by the Fourier transformation

Gk =
1

N

∑︂

ij

Gije
i(ri−rj)k, Gij =

1

N

∑︂

k

Gke
−i(ri−rj)k. (2.5)

As a consequence, the Green’s function is diagonal in the momentum space. Anal-
ogously, the Fourier transformation can be applied to the creation and annihilation
operators

ck =
1√
N

∑︂

i

cie
irik, ci =

1√
N

∑︂

k

cke
−irik. (2.6)
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The imaginary time Green’s function is related to the Matsubara Green’s function
trough the following transformation

Gij(iν) =

∫︂ β

0

dτGij(τ)e
iντ , Gij(τ) =

1

β

∞∑︂

n=−∞
Gij(iν)e

−iντ , (2.7)

where νn = (2n + 1)π/β are the discrete fermionic Matsubara frequencies1. The
discretization arises from the fact that the imaginary time Green’s function is anti-
periodic with G(τ + β) = −G(τ) and is defined on the finite interval τ ∈ [0, β].
Furthermore, since in this thesis we are merely considering the paramagnetic case,
due to SU(2) symmetry, the Green’s function becomes spin independent G↑↑ = G↓↓.

In order to obtain the observable quantities from the Matsubara Green’s functions
in terms of real energies one has to perform analytical continuation. Consider as an
example again the spectral function and the relation

G(iν) =

∞∫︂

−∞

dω
1

iν − ω
A(ω). (2.8)

But due to numerical noise in G(iν) the solution to this problem is ill-posed. There
are infinitely many A(ω) that approximately satisfy this relation. Naively trying
to find one that best approximates the solution by minimizing the deviation in the
context of some chosen measure leads to over-fitting and strongly fluctuating re-
sult. Thus one needs more sophisticated methods. The ones used in this work
are analytical continuation using the maximum entropy method implemented in the
ana_cont package [118] and stochastic optimization method for analytic continuation
(SOM) [119].

The (two-particle) four-point correlation function in the momentum space is de-
fined as [108],

G
(2),σ1σ2σ3σ4

kk’q (τ1, τ2, τ3) = −
⟨︁
T ckσ1(τ1)c

†
k+qσ2

(τ2)ck′+qσ3
(τ3)c

†
k′σ4

(0)
⟩︁
, (2.9)

where one momentum index and one time index was dropped due to the corre-
sponding transnational invariance. This representation of the four-point correlation
function is called particle-hole notation, since this process can be considered as a
scattering between a particle and a hole. This notation is used to investigate charge
and spin fluctuations in the system. In the paramagnetic case the four-point corre-
lation function is diagonal in the charge and spin channels. The transformation can

1Note that the index n is sometimes omitted for sake of simplicity.
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be performed using Pauli matrices σα as [120],

G
(2),α
kk’q(τ1, τ2, τ3) = −1

2

∑︂

σ1σ2σ3σ4

σα
σ1σ2

σα
σ3σ4

⟨︁
T ckσ1(τ1)c

†
k+qσ2

(τ2)ck′+qσ3
(τ3)c

†
k′σ4

(0)
⟩︁

(2.10)
The four-point correlation function has 24 = 16 spin components in general.

However, spin conservation leads to 6 non-vanishing components. From the 6 only
two remain relevant, namely, ↑↑↑↑ and ↑↑↓↓. The others can be extracted from
them using the SU(2) or the crossing symmetries [109]. The relevant components
can be expressed in the shorthand notation σσ′, where σ describes the first two and
σ′ the last two spin components. Finally, the four-point correlation function can be
transformed to the momentum space due to

G
(2),σσ′

kk′q =

∫︂ β

0

dτ1dτ2dτ3e
iντ1e−i(ν+ω)τ2ei(ν

′+ω)τ3G
(2),σσ′

kk’q (τ1, τ2, τ3), (2.11)

where compact notations k = (k, ν) and q = (q, ω) were defined.

2.2 Dyson equation
The Dyson equation can be derived diagrammatically in the framework of perturba-
tion theory. It is a powerful tool where the problem is divided in a exactly solvable
reference problem and a small perturbation. The Hamiltonian can then be written as
H = H0+Hint as in the case of the Hubbard Hamiltonian (1.10). Thereby we perform
a perturbation expansion around the non-interacting system, i.e. U = 0, described
by H0 which can be solved exactly. For a detailed explanation of perturbation theory
and Feynman diagrams the reader is referred to [76–78, 121]. In this chapter we will
consider only some features which are needed for the derivation of the Dyson equa-
tion. There are two basic object needed to construct the diagrams. The first object is
the non-interacting (bare) propagator G0 describing a free propagation of an electron
(hole). Note that for the sake of readability we drop the indices. The second object
is the interaction U , a dot (dashed line) connecting two incoming and two outgoing
lines representing two fermions interacting with each other. There is frequency, mo-
mentum and spin conservation at each vertex. In the case of Hubbard interaction
both fermions have the opposite spin. Now, using these two objects we can construct
any diagram appearing in the perturbation expansion. However, we are interested in
the (full) interacting propagator G. It can be calculated by summing over all possible
connected diagrams. Let us find a way to collect all the diagrams systematically. To
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= + Σ

Figure 2.1: Diagrammatic depiction of Dyson’s equation (2.13). Thin lines denote
non-interacting Green’s functions, the bold lines denote interacting Green’s functions
and the circle denotes the self-energy.

do so, first, we define the so-called self-energy insertions [78, 122]. Those are any
parts of diagrams without external lines. Since the external lines are missing, these
diagrams parts can be inserted into any propagator in the diagrammatic series. Such
insertions can be classified in two topologically different types. The first class can
be divided in two disconnected parts by removing a single propagator line. Those
diagrams are called (one-particle) reducible. The rest of the diagrams belong to the
second class and are called (one-particle) irreducible. Using this classification we can
defined the self-energy Σ diagrammatically as the sum over all possible irreducible
self-energy insertions. By connecting all irreducible self-energy insertions with bare
propagators, we find a way to collect all possible diagrams systematically. Summing
over all contributions leads us to the Dyson equation:

G = G0 +G0ΣG0 +G0ΣG0ΣG0 + · · · , (2.12)

which can be written in a self-consistent equation as

G = G0 +G0ΣG. (2.13)

Analogously the Dyson equation can be rewritten in the following way

Σ = [G0]−1 −G−1. (2.14)

Since we have found a way to construct diagrams for the interacting Green’s function
we can reformulate the definition of the self-energy to express it in terms of interacting
Green’s function which we also call dressed. Therefore we first define the so-called
skeleton diagrams [122]. Those are irreducible self-energy diagrams without any self-
energy insertions. The skeleton diagrams can then be dressed by replacing all the
bare propagators with the interacting ones. With this Σ can be defined as the sum
over all possible dressed skeleton diagrams. This definition of self-energy is called
skeleton-diagram expansion [122].
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The bare Green’s function of the Hubbard model can be obtained from

G0
k =

1

iν − εk + µ
, (2.15)

with dispersion εk and chemical potential µ. To determine the exact solution of the
interacting Green’s function G is usually not possible because the exact self-energy
is unknown, even for simple models such as the Hubbard model. Only for some
specific cases the self-energy can be calculated. For this reason, we try to find the
best possible approximation for the self-energy Σ. All the information about the
electronic correlations of the system is contained in the self-energy. Especially, the
momentum dependence of Σ provides information about spatial correlation.

2.3 Bethe-Salpeter equation and the four-point ver-
tex

In this section we consider the diagrammatic derivation of the Bethe-Salpeter equa-
tion and of the four-point vertex function. We stick to the notations of [108]. For
more details and further derivations as well as for an extensive description of the
four-point vertex function and its symmetries the reader is referred to G. Rohringer
et al. [107], Bickers et al. [123], and to the doctoral thesis of G. Rohringer [109], F.
Krien [120] and H. Hafermann [124].

Considering the diagrammatic extension of the four-point correlation function (2.9),
it can be divided into two parts, namely in a disconnected contribution that contains
products of two separated single-particle Green’s functions which are diagrammati-
cally separated from each other, and a second part containing all connected diagrams.
Hence, the four-point correlation function can be written as

G
(2),σσ′

kk′q = G
(2),σσ′,con
kk′q +G

(2),σσ′,discon
kk′q , (2.16)

where the disconnected part is given by

G
(2),σσ′,discon
kk′q = −βGkσGk′σ′δq + βGkσGk+qσδkk′δσσ′ , (2.17)

and the connected part reads (what about sum here)

G
(2),σσ′,con
kk′q = GkσGk+qσF

σσ′
kk′qGk′σ′Gk′+qσ′ . (2.18)

The disconnected part contains the full four-point vertex F σσ′
kk′q. The four-point vertex

encloses all connected diagrams that also connect the four external Green’s functions
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with each other (sometimes also referred to as external legs).
Considering the non-interacting case (U = 0), Wick’s theorem applied to the

four-point correlation function yields

G
0,(2),σσ′

kk′q = −βG0
kσG

0
k′σ′δq + βG0

kG
0
k+qδkk′δσσ′ . (2.19)

This equation contains bare (non-interacting) Green’s functions and is similar to the
disconnected part of the four-point correlation function with the difference that in
Eq. (2.16) we consider dressed Green’s functions which are dressed by the self-energy
through the Dyson equation (2.13).

According to Eq. (2.18), the full four-point vertex function F can be extracted
from the four-point correlation function by amputating the external legs. The Feyn-
man diagrams containing the full four-point vertex function can be classified similarly
to the concept of the one-particle irreducibility discussed in the previous section.
However, to classify the diagrams the concept has to be extended to two-particle
irreducible since F does not contain any one-particle reducible diagrams. Diagrams
are called two-particle reducible if they can be separated by cutting two internal lines
(Green’s functions). Therewith, we can separate diagrams that are fully two-particle
irreducible from two-particle reducible diagrams. Though compared to the single-
particle case, the two-particle diagrams have a more complex structure and hence
the class of two-particle reducible diagrams can be further grouped in three different
sub-classes usually referred to as channels, namely two-particle reducible in (and only
in) the longitudinal particle-hole (ph), transversal particle- (ph) or particle-particle
(pp) channels. The full four-point vertex can then be written as

Fα
kk′q = Λα

kk′q + Φα,ph
kk′q + Φα,ph

kk′q + Φα,pp
kk′q . (2.20)

Note that here F was expressed in terms of charge α = ch and spin α = sp = {x, y, z}
channels using Eq. (2.10) since in the recent theses we are mainly focused on collective
charge and magnetic fluctuations. Furthermore, Λ denotes the fully two-particle
irreducible contribution and Φϱ the contribution in the corresponding two-particle
reducible channel ϱ = ph, ph, pp. The primary emphasis of this thesis is on the ph
channel, which describes scattering processes between a particle and a hole in the
system, hence let us take a closer look at this channel. As mentioned before, all
components of Eq. (2.20) beside Φα,ph

kk′q are two-particle irreducible with respect to
the ph channel and thus can be combined in quantity namely Γα,ph

kk′q which is called
the irreducible four-point vertex. The full four-point vertex then can be written as

Fα
kk′q = Γα,ph

kk′q + Φα,ph
kk′q . (2.21)
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Similar to the Dyson equation we can then construct a self-consistent equation for
F using the irreducible vertex Γ. This yield us the Bethe-Salpeter equation (BSE)
for the ph channel

Fα
kk′q = Γα,ph

kk′q +
1

βN

∑︂

k′′

Γα,ph
kk′′qGk′′Gk′′+qF

α
k′′k′q. (2.22)

This type of Feynman diagrams are usually called ladder diagrams. They describe
scattering processes in the corresponding channel. Of course, the BSE can be con-
structed in the same way for all three channels. Note that since we are considering
the paramagnetic case the vertex F is diagonal in α due to SU(2) symmetry which
means that the charge and spin channels do not couple.

In an analog way, we can obtain the BSE for the generalized susceptibility. The
generalized susceptibility can be calculated from the four-point correlation func-
tion (2.16) by subtracting the trivial contribution of the disconnected part (2.17),
namely

Xσσ′
kk′q = G

(2),σσ′

kk′q + βGkGk′δq, (2.23)

or in the charge and spin channel representation, using Eq. (2.10), as

Xα
kk′q = G

(2),α
kk′q +

β

2

∑︂

σσ′

σα
σσσ

α
σ′σ′GkσGk′σ′δq. (2.24)

The connection between both representations is given by

Xch
kk′q = X↑↑

kk′q +X↑↓
kk′q, (2.25)

Xsp
kk′q = X↑↑

kk′q −X↑↓
kk′q. (2.26)

The generalized susceptibility in channel representation can be written as

Xα
kk′q = X0,α

kk′q +
1

β2N2

∑︂

k′′k′′′

X0,α
kk′′qF

α
k′′k′′′qX

0,α
k′′′k′q, (2.27)

and can be rewritten as the BSE through the irreducible four-point vertex function
in the same way as Eq. (2.22),

Xα
kk′q = X0,α

kk′q +
1

β2N2

∑︂

k′′k′′′

X0,α
kk′′qΓ

α
k′′k′′′qX

α
k′′′k′q, (2.28)
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where we define the bubble as

X0,α
kk′q = βGkσGk+qσδkk′ . (2.29)

Performing a sum over k and k′ in Eq. (2.28) as,

Xα
q =

1

β2N2

∑︂

kk′

Xα
kk′q = Xα

q = −
⟨︁
ρα−qρ

α
q

⟩︁
+ β ⟨ρα⟩ ⟨ρα⟩ δq, (2.30)

yields us the response function which we refer to as the susceptibility. Diagrammat-
ically the summation corresponds to a connection of the external legs on each side.
The response function describes the linear response of the system to an external
perturbation and can be measured in an experiment.

As already mentioned, the full four-point vertex F can be obtained from the
BSE using the irreducible four-point vertex Γϱ in each channel. However, practically
this turns out to be a very difficult task due to its dependence on several momenta
and frequencies. Therefore, approximations for the irreducible four-point vertex are
considered. In DMFT, e.g., in the limit of infinite dimensions, the irreducible four-
point vertex becomes purely local [6, 50]. In the equivalent dual fermion formulation,
the full local vertex of AIM is used [54, 125, 126]. In this case, since only a subset of
diagrams is taken into account, the full four-point vertex becomes channel dependent.
Throughout the present thesis, as an approximation of the irreducible four-point
vertex, we utilize the full local vertex f of the AIM, which can be calculated from
the four-point correlation function of the AIM in the same way as F as shown above
(for more details see [75]). The full lattice vertex is then calculated from the BSE in
the following way

Fα
νν′q = fα

νν′ω +
1

β

∑︂

ν′′

fα
νν′′ωX̃

0,α

ν′′qf
α
ν′′ν′q, (2.31)

where the bubble of nonlocal propagators is defined as

X̃
0,α

νq =
1

N

∑︂

k

G̃kσG̃k+qσ. (2.32)

Thereby, if considering DMFT, we set G̃k = Gk where the nonlocal part of the DMFT
Green’s function G is obtained by subtracting the impurity Green’s function from
the DMFT lattice Green’s function (Gk = GDMFT

k − gν). In dual fermion and dual
boson approaches the nonlocal part of the DMFT Green’s function is additionally
dressed in the dual self-energy, G̃

−1

k = G−1
k − Σ̃k.

Despite the approximation for the four-point vertex function, the computation of
the local vertex f usually remains numerical the most expensive part of a calculation
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scheme. Especially, when it comes to realistic multi-orbital calculations. Hence,
in this thesis, we will present approximations for the full local vertex f of the AIM,
which allows us to express the vertex f by means of the (three-point) Hedin vertex [47]
and screened interactions. In recent years many works based on this idea were
published [38, 61, 69, 70, 72–75, 127–137].

2.4 Coherent state path integral
The following derivation is based on [76].2 In single-particle quantum mechanics, the
Feynman path integral formalism is represented in terms of coordinate and momen-
tum eigenstates due to the corresponding structure of the Hamiltonian. However,
in many-body physics, such representation is not feasible due to a large number of
particles. Since in the second quantization the Hamiltonian is represented by means
of creation and annihilation operators, it seems reasonable, in analogy to the single-
particle case, to find a formulation using eigenstates of these operators. Such states
are called coherent states and are defined as

|ξ⟩ = |ξ1, ..., ξk⟩ = e−
∑︁

α ξαc
†
α|0⟩ =

∏︂

α

(1− ξαc
†
α)|0⟩. (2.33)

These are eigenstates of the annihilation operator

cα|ξ⟩ = ξα|ξ⟩, ⟨ξ|c†α = ⟨ξ|ξ∗α, (2.34)

where the eigenvalues ξ(∗)α are Grassmann numbers3 and the adjoint coherent state
reads ⟨ξ| = ⟨0|∏︁α(1 + ξ∗αcα).

Unlike the annihilation operator, the creation operator does not possess any eigen-
states since the coherent state contains a superposition of Fock states with a minimum
number of particles. A creation operator would increase the minimum number and
can therefore not have eigenstates. The fact that for α ̸= β the fermionic annihilation
operators anti-commute implies that their eigenvalues anti-commute:

[cα, cβ]+ = 0 ⇒ ξαξβ = −ξβξα. (2.35)
2We are only considering fermionic systems.
3Note that the Grassmann numbers ξα and ξ∗α are independent variables and not related through

some conjugation.
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For this reason, the Grassmann numbers are numbers that square to zero, i.e. ξ2α = 0.
Furthermore, for consistency of anti-commutation relations, we require that

[ξα, cβ]+ = 0 (2.36)

The coherent states form an overcomplete basis of the generalized Fock space. This
can be easily seen considering the overlap of the two states,

⟨ξ|ξ′⟩ = e
∑︁

α ξ∗αξ
′
α (2.37)

so it forms an overcomplete basis of Fock space. Further, the matrix element of a
normal-ordered operator A(c†α, cα) between two coherent states is given by

⟨ξ|A(c†α, cα)|ξ′⟩ = e
∑︁

α ξ∗αξ
′
αA(ξ∗α, ξ

′
α). (2.38)

The closure relation is given by
∫︂ ∏︂

α

dξ∗αdξαe
−∑︁

α ξ∗αξα|ξ⟩⟨ξ| = 1 (2.39)

with the unity operator 1 in the Fock space. Since we are interested in correlation
functions which are the thermodynamic average over products of creation and an-
nihilation operators (see eq. (2.2)), let us express the trace over a physical operator
A with an even number of annihilation and creation operators in terms of coherent
states. Using the fact that for the states |ψi⟩ and |ξ⟩ in the Fock space follows due
to the anticommutation relations that

⟨ψi|ξ⟩⟨ξ|ψi⟩ = ⟨−ξ|ψi⟩⟨ψi|ξ⟩. (2.40)

Therewith and with Eq. (2.39), for the complete set of Fock states {|n⟩} the trace
of an operator can be written in the coherent state representation as

Tr(A) =
∑︂

n

⟨n|A|n⟩ =
∫︂ ∏︂

α

dξ∗αdξαe
−∑︁

α ξ∗αξα⟨−ξ|A|ξ⟩ (2.41)

where |n⟩ is short for |n1, ..., nk⟩. Using the new representation let us consider the
partition function of a grand canonical system:

Z = Tre−βH =

∫︂ ∏︂

α

dξ∗αdξαe
−∑︁

α ξ∗αξα⟨−ξ|e−βH|ξ⟩ (2.42)

The imaginary time interval (τf − τi) = β can be divided in M equal steps of the size
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ϵ = β/M . Then insert the closure relations (2.39) between the exponentials. Finally,
taking the limit M → ∞ or respectively (ϵ → 0) the partition function takes the
following form

Z = lim
M→∞

∫︂ M∏︂

i=1

∏︂

α

dξ∗α,idξα,ie
−∑︁

i

∑︁
α ξ∗α,iξα,i

M∏︂

i=1

⟨ξi| : e−ϵH : +O(ϵ2)|ξi−1⟩, (2.43)

with the antiperiodic boundary conditions ξα,0 = ξα and ξ∗α,M = −ξ∗α due to Eq. ((2.42)).
We used that e−ϵH is normal ordered up to the second order in ϵ so that

e−ϵH =: e−ϵH : +O(ϵ2). (2.44)

The normal order is denoted by colons. In the limit ϵ → 0 the second term can be
neglected. We then use Eq. (2.38) to rewrite

⟨ξi| : e−βH : |ξi−1⟩ = e−εH(ξ∗α,iξα,i−1)e
∑︁

α ξ∗α,iξα,i−1 +O(ε2). (2.45)

Therewith, the partition function takes the following form

Z = lim
M→∞

∫︂ M∏︂

i=1

∏︂

α

dξ∗α,idξα,ie
−∑︁M

i=1

∑︁
α ξ∗α,i(ξα,i−ξα,i−1)e−ϵ

∑︁M
i=1

(︁
H(ξ∗α,i,ξα,i−1)+µξ∗α,i,ξα,i−1

)︁
.

(2.46)
And in the continuum limit with boundary condition ξα,0 = −ξα,M

Z =

∫︂
D[ξ∗(τ), ξ(τ)]e−

∫︁ β
0 dτ

∑︁
α ξ∗α(τ)(∂τ−µ)ξα(τ)+H[ξ∗(τ),ξ(τ)] =

∫︂
D[ξ∗, ξ]e−S[ξ∗,ξ],

(2.47)
where D[ξ∗(τ), ξ(τ)] is a symbolic notation of the measure and S is action, which is
defined by this equation. Now we can similarly derive the expectation values and
write them as

⟨A⟩ = 1

Z
Tr[e−βHA] =

1

Z

∫︂
D[ξ∗, ξ]A(ξ∗, ξ)e−S[ξ∗,ξ] (2.48)

With this framework correlation functions can be expressed through coherent path
formalism as

Gαβ(τ) := −⟨ξα(τ)ξ∗β(0)⟩ = − 1

Z

∫︂
D[ξ∗, ξ]ξα(τ)ξ

∗
β(0)e

−S[ξ∗,ξ]. (2.49)
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Chapter 3

Methods

In this chapter methods used throughout the thesis are introduced. In the first
section, the dynamical mean-field theory is introduced. Sections 3.2 and 3.4 introduce
the dual boson and D-TRIELX approaches, respectively. The derivations are based
on Refs. [72, 128]. Section 3.3 discusses the partially bosonized approximation for
the four-point vertex and is based on [72]. The last Section 3.5 is based on [70, 75]
and gives a brief overview of the single-boson exchange decomposition.

3.1 Dynamical mean-field theory
In the last decades, the dynamical mean-field theory (DMFT) has become one of the
most used approaches to treat strongly correlated systems [6, 7, 138]. Not only that
DMFT was successfully applied to materials where local correlations were dominant,
but nowadays it is frequently employed as the basis for diagrammatic extensions that
take into account nonlocal correlation effects. DMFT is a self-consistent approach
based on a mapping of the (lattice) Hubbard model on a numerically exact solvable
AIM. It was shown that this mapping becomes exact in the limit of infinite dimensions
providing an exact solution for the Hubbard model in this [139]. Thereby, the self-
energy of the lattice becomes purely local. DMFT provides an insight into the
local properties of the system via the single-particle Green’s function. However, as
already mentioned, a computation of momentum-dependent response functions by
means of the local vertex function is also possible [107, 109, 125]. In this thesis,
the effective local impurity problem of DMFT is used as a reference system for the
diagrammatic extension in D-TRILEX and DB. Moreover, we show the importance
of the local (three-point) Hedin vertex by means of the DMFT susceptibility using
different parametrizations of the local four-point vertex of the AIM[75].

DMFT maps a lattice problem (1.10) onto a single site problem (1.13) called
impurity, which is embedded in an effective bath of non-interacting electrons. In the
path-integral formalism, the action of the effective (local) impurity problem can be
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obtained by integrating out the degrees of freedom of the bath which yields

Simp = −
∫︂ β

0

dτ

∫︂ β

0

dτ ′
∑︂

σ

c∗σ(τ)G−1(τ − τ ′)cσ(τ
′) + U

∫︂ β

0

dτ n↑(τ)n↓(τ), (3.1)

or in the Matsubara frequency space

Simp =
∑︂

νσ

c∗νσG−1
ν cνσ + U

∑︂

ω

n−ω↑nω↓, (3.2)

where the inverse of the non-interacting Green’s function is defined as

G−1
ν = iν + µ−∆ν . (3.3)

The hybridization function of problem (1.13) that describes the dynamics of the
system (hopping of electrons from the impurity in the bath and back) is given by

∆ν =
∑︂

k

|Vk|2
iν − εk

. (3.4)

The impurity self-energy can then be obtained from the Dyson equation (2.14):

Σimp
ν = G−1

ν − g−1
ν , (3.5)

where the impurity Green’s function is calculated numerically exactly as

gνσ ≡ −⟨cνσc∗νσ⟩imp (3.6)

by means of continuous-time quantum Monte Carlo (CT-QMC) solvers [101, 102,
140, 141].

Further, let us consider the lattice model. In general, the self-energy Σk is non-
local. It depends on frequency and momentum. The lattice Green’s function of
the Hubbard model can be obtained using the Dyson equation (2.14) and the bare
Green’s function (2.15) as

Gk =
1

iν + µ− εk − Σk

. (3.7)

In DMFT one neglects all nonlocal correlations by approximating the self-energy
in Eq. (3.7) by the impurity self-energy, i.e., Σij ≃ Σimpδij. As already mentioned
previously this approximation becomes exact in the limit of infinite dimensions. This
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defines the DMFT Green’s function

GDMFT
k =

1

iν + µ− εk − Σimp
ν

, (3.8)

where the momentum dependence arises due to the dispersion εk. The local part of
the DMFT Green’s function is given by summing over momentum,

Gloc
ν =

1

N

∑︂

k

GDMFT
k . (3.9)

The mapping of the lattice problem to the impurity problem implies that the local
part of the lattice Green’s function equals the impurity Green’s function leading us
to the following equation, which determines the hybridization function, namely

Gloc
ν =

1

N

∑︂

k

1

g−1
ν +∆ν − εk

. (3.10)

In practice, the self-consistency loop starts with an initial guess for the hybridiza-
tion function. This can be done, e.g., by setting the self-energy to zero. Then the
hybridization can be updated iteratively by means of the following equation

∆new
ν = ∆old

ν + ξ(g−1
ν − [Gloc

ν ]−1), (3.11)

with the control parameter ξ which allows controlling the convergence of the self-
consistent loop. The impurity problem is fully characterised by ∆ν , U and µ. These
parameters are used in the impurity solver to determine the impurity Green’s function
gν and with it the impurity self-energy by means of the Dyson equation (3.5). The
knowledge of the impurity self-energy is not necessary as can be seen in Eq. (3.10)
but can be useful, e.g., to investigate the conservation properties [120, 142]. The
local Green’s function is then obtained from Eq. (3.8) and Eq. (3.9), or directly from
Eq. (3.10). The new hybridization function is then used as an input for the impurity
solver. After several iterations, the self-consistent loop converges. A solution is found
in the case when the self-consistency condition

Gloc
ν = gν (3.12)

is fulfilled.
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Impurity correlation functions

The derivation presented in this chapter can be found in [75]. The exact local four-
point correlation function is defined as

g
(4),α
νν′ω = −1

2

∑︂

σi

σα
σ′
1σ1
σα
σ′
2σ2

⟨cνσ1
c∗ν+ω,σ′

1
cν′+ω,σ2

c∗ν′σ′
2
⟩, (3.13)

where α = ch, sp denotes the charge and spin channel, respectively. As described
above, by subtracting the disconnected parts and truncating the legs from the four-
point correlation function g(4), we obtain the four-point vertex function as

fα
νν′ω =

g
(4),α
νν′ω − βgνgν+ωδνν′ + 2βgνgν′δωδα,ch

gνgν+ωgν′gν′+ω

. (3.14)

The full local four-point vertex can be obtained from Eq. (2.31). Further, the three-
point correlation function is defined as,

g(3),ανω = −1

2

∑︂

σσ′

σα
σ′σ⟨cνσc∗ν+ω,σ′ραω⟩, (3.15)

with the charge and spin densities ρch = n↑ + n↓ and ρsp = n↑ − n↓, respectively.
Similarly, as in the case of the four-point vertex, the Hedin vertex is obtained from
g(3) as [143, 144],

λανω =
g
(3),α
νω + βgν ⟨n⟩ δωδα,ch
gνgν+ωwα

ω/U
α

, (3.16)

in the charge and spin channels and as,

λs
νω =

⟨cν↑cω−ν,↓ρ+ω ⟩
gνgω−νws

ω/U
s , (3.17)

in the singlet channel. The screened interaction is denoted by wϑ
ω and the bare

interaction is denoted by Uϑ in the corresponding channel. The index ϑ = {α, s}
denotes a combined index, where s is the singlet component in the particle-particle
channel. Thereby, the bare interaction is defined as,

U ch = +U, U sp = −U, U s = +2U. (3.18)
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The screened interaction is obtained from the susceptibility as,

wϑ(ω) = Uϑ +
1

2
Uϑχϑ(ω)Uϑ, (3.19)

where the susceptibilities are defined as

χα
ω =−

⟨︁
ρα−ωρ

α
ω

⟩︁
+ β ⟨n⟩ ⟨n⟩ δωδα,ch, (3.20)

χs
ω =−

⟨︁
ρ+−ωρ

−
ω

⟩︁
. (3.21)

3.2 Dual Boson approach
As can be seen from the fact that the self-energy is purely local, DMFT considers
only local correlations of the system. One promising way to account for nonlocal
correlations is by performing a diagrammatic perturbation expansion around a ref-
erence system. This reference system, however, should fulfill two main conditions.
On the one hand, the reference system should be exactly solvable, and on the other
hand, it should provide a good starting point for the perturbation expansion. For
strongly correlated systems DMFT fulfills both criteria. In DMFT the strong local
correlations are already taken into account and the weaker spatial correlations can
thus be treated perturbatively. The first advanced diagrammatic extensions based
on DMFT which account for higher order correlation functions of the local reference
system were DF [54] and DΓA [50]. In the DF approach, the lattice problem is rewrit-
ten in terms of impurities which are coupled through nonlocal degrees of freedom.
Applying a Hubbard-Stratonovich (HS) transformation [145, 146] the impurities can
be decoupled introducing new auxiliary fields called dual fermions and integrating
out the original degrees of freedom transform the original problem into one that
depends only on the new fields. The interaction between the dual fermions is then
treated perturbatively. If considering nonlocal parts of Coulomb interaction, the DF
approach can be generalized by introducing additional auxiliary bosonic fields called
dual bosons [58]. The dual boson (DB) approach will be introduced in this chapter.
Explicit derivations of the DB method can be found in [58–62, 72]. Note that in the
absence of nonlocal interaction and bosonic hybridization the DB scheme reduces to
the DF approach.

Usually, the DB approach is derived for taking into account fluctuations in the
particle-hole charge and spin channels. In the following, we extend the derivation by
additionally considering the particle-particle singlet channel following the derivation
in Refs. [72, 128]. We begin the derivation by considering the partition function in
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the path integral formalism

Z =

∫︂
D[c∗, c]e−Slatt , (3.22)

with c and c∗ denoting the Grassmann variables. The action of the extended Hubbard
model (1.12) is given by

Slatt =−
∑︂

k,σ

c∗kσG−1
kσ ckσ + U

∑︂

q

n∗
q↑nq↓ +

∑︂

q,ϑ

ξϑ

{︄
ρ∗ϑq V ϑ

q ρ
ϑ
q

}︄
, (3.23)

where the bare lattice Green’s function is defined as Gkσ = [iν+µ−εk]−1. The index
ϑ = {ς, s} denotes different bosonic channels with density (ς = ch) and magnetic
(ς = sp = {x, y, z}) components in the particle-hole channel ς, and the singlet
component s in the particle-particle channel. Note that the triplet particle-particle
channel vanishes in the single-band case. The prefactor for the particle-hole and
particle-particle channels, respectively, is defined as ξς = 1/2 and ξs = 1.

The variables ρϑq = nϑ
q − ⟨nϑ⟩ describe the fluctuations around the average value

in the corresponding channel. Thereby, the corresponding densities for the different
components are introduced as follows

nς
q =

∑︂

k,σσ′

c∗k+q,σ σ
ς
σσ′ckσ′ , (3.24)

ns
q =

1

2

∑︂

k,σσ′

cq−k,σ σ
z
σσ′ckσ′ , (3.25)

n∗ s
q =

1

2

∑︂

k,σσ′

c∗kσ σ
z
σσ′c∗q−k,σ ′ , (3.26)

where σς denotes the Pauli matrices and σ denotes the opposite spin projection to
σ. n∗ ς

q is given by the relation n∗ ς
q = nς

−q.
In general, the DB approach is a diagrammatic expansion, which can be per-

formed for an arbitrary reference system [57]. The most commonly used reference
system is the numerically exactly solvable single-impurity problem of DMFT [6].
Other reference systems based on DMFT are, e.g., isolated impurities [147, 148] or
finite cluster problems [8, 15–18, 149] to name a few. However, throughout the the-
sis, we use the common effective single-impurity problem introduced in Section 1.2
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whose action is given as

Simp =−
∑︂

ν,σ

c∗νσ [iν + µ−∆ν ] cνσ + U
∑︂

ω

n∗
ω↑nω↓, (3.27)

Note that we do not consider the bosonic hybridization function, which arises in the
framework of extended dynamical mean-field theory (EDMFT) [150–154], since un-
like in the case of the fermionic hybridization function no clear method to determine
the bosonic hybridization function was found yet. In contrast to the hybridization
∆, which is determined when the self-consistency relation (3.12) is achieved.

By adding and subtracting the fermionic hybridization function within the action
of the origin lattice problem (3.23) it can be rewritten in an action consisting of
impurity models at each lattice site and a remaining part that couples the impurities
mutually. The lattice action (3.23) can then be written as

Slatt =
∑︂

i

S(i)
imp + Srem, (3.28)

where the remaining part has the following form

Srem =−
∑︂

k,σ

c∗kσ [∆ν − εk] ckσ +
∑︂

q,ϑ

ξϑ

{︄
ρ∗ϑq V ϑ

q ρ
ϑ
q

}︄
. (3.29)

The first term in Eq. (3.28) well describes the isolated atoms in the limit of large
interaction U and can be solved numerically exactly. The second term, in contrast,
well describes delocalized fermions in the opposite limit. Due to its momentum
dependence, the second term can not be solved directly, therefore, we perform a
HS transformation to decouple the impurities. The transformation is performed as
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follows, introducing new dual fermions f and bosons φ,

exp

{︄∑︂

k,σ

c∗kσ [∆ν − εk] ckσ

}︄
(3.30)

= Df

∫︂
D[f ∗, f ] exp

{︄
−
∑︂

k,σ

(︁
f ∗
kσg

−1
νσ [∆ν − εk]

−1g−1
νσ fkσ + f ∗

kσg
−1
νσ ckσ + c∗kσg

−1
νσ fkσ

)︁
}︄
,

exp

{︄
−
∑︂

q,ϑ

ξϑ
(︁
ρ∗ϑq V ϑ

q ρ
ϑ
q

)︁
}︄

(3.31)

= Dφ

∫︂
D[φϑ] exp

{︄∑︂

q,ϑ

ξϑ
(︁
φ∗ϑ
q αϑ−1

ω V ϑ−1
q αϑ−1

ω φϑ
q − φ∗ϑ

q αϑ−1
ω ρϑq − ρ∗ϑq αϑ−1

ω φϑ
q ,
)︁
}︄

where gν is the full local Green’s function of the impurity problem and αϑ
ω is given as

αϑ
ω = wϑ

ω/U
ϑ, where wϑ

ω denote the renormalized interaction of the impurity problem
in the corresponding bosonic channel. The impurity quantities are defined as

g−1
νσ = iν + µ−∆ν − Σimp

νσ , (3.32)

wϑ −1
ω =

(︁
Uϑ + Y ϑ

ω

)︁−1 − Πϑ imp
ω . (3.33)

The determinants Df = det [gν (∆ν − εk) gν ] and D−1
φ = −

√︂
det
[︁
αϑ
ωV

ϑ
q α

ϑ
ω

]︁
denote

arbitrary matrices which can be neglected when calculating expectation values. To
express the interaction part of the transformed action in terms of full local vertex
functions of the impurity problem the factors gν and αϑ

ω were introduced [61].
From the first terms in the exponential of this expressions we see that the fields

f and φ are coupled to the ones on other sites in the same way as c and ρ before the
transformation. Also we see that the new degrees of freedom f and φ are coupled
locally to the original ones c and ρ via g and α. After applying the HS transformation
to the partition function the lattice action takes the following form

S ′ =
∑︂

i

S(i)
imp +

∑︂

k,σ

(︁
f ∗
kσg

−1
νσ ckσ + c∗kσg

−1
νσ fkσ

)︁
+
∑︂

q,ϑ

ξϑ
(︁
φ∗ϑ
q αϑ−1

ω ρϑq + ρ∗ϑq αϑ−1
ω φϑ

q

)︁

−
∑︂

k,σ

f ∗
kσg

−1
νσ [εk −∆ν ]

−1g−1
νσ fkσ −

∑︂

q,ϑ

ξϑ
(︂
φ∗ϑ
q

[︁
αϑ
ωV

ϑ
q α

ϑ
ω

]︁−1
φϑ
q

)︂
. (3.34)
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The impurity problem can be integrated out formally by taking the average over the
impurity degrees of freedom as

∫︂
D[c∗, c] exp

{︄
−
∑︂

i

S(i)
imp −

∑︂

k,σ

(︁
f ∗
kσg

−1
νσ ckσ + c∗kσg

−1
νσ fkσ

)︁
−
∑︂

q,ϑ

ξϑ
(︁
φ∗ϑ
q αϑ−1

ω ρϑq + ρ∗ϑq αϑ−1
ω φϑ

q

)︁
}︄

= Zimp× exp

{︄
−
∑︂

k,σ

f ∗
kσg

−1
νσ fkσ −

∑︂

q,ϑ

ξϑ
(︁
φ∗ϑ
q αϑ−1

ω χϑ
ωα

ϑ−1
ω φϑ

q

)︁
− F̃ [f, φ]

}︄
, (3.35)

where Zimp denote the impurity partition function and χϑ
ω = −

⟨︁
ρϑω ρ

ϑ ∗
ω

⟩︁
is the sus-

ceptibility of the impurity problem. For more details, the reader is referred to [124].
This, together with the remaining terms in Eq. (3.34) leads us to the dual boson
action,

S̃ =−
∑︂

k,σ

f ∗
kσG̃

−1

kσ fkσ −
∑︂

q,ϑ

ξϑ

{︄
φ∗ϑ
q W̃ϑ−1

q φϑ
q

}︄
+ F̃ [f, φ], (3.36)

The first term defines the bare fermionic and the second term the bare bosonic
propagators of the dual problem as,

G̃kσ = gνσ
[︁
[εk −∆ν ]

−1 − gνσ
]︁−1

gνσ = Ǧkσ − gνσ, (3.37)

W̃ϑ

q = αϑ
ω

[︁
V ϑ−1
q − χϑ

ω

]︁−1
αϑ
ω = W̌

ϑ

q − wϑ
ω, (3.38)

where Ǧkσ and W̌ ϑ

q are the Green’s function and renormalized interaction of EDMFT,
namely,

Ǧ
−1

kσ = G−1
kσ − Σimp

νσ , (3.39)
[︂
W̌

ϑ

q

]︂−1

=
(︁
Uϑ + V ϑ

q

)︁−1 − Πϑ imp
ω . (3.40)

The interaction part of the action F̃ [f, φ] being truncated to the two-particle level
explicitly reads

F̃ [f, φ] ≃
∑︂

q,k,ϑ

ξϑ

{︄
Λϑ

νωη
∗ϑ
q,kφ

ϑ
q + Λ∗ϑ

νωφ
∗ϑ
q ηϑq,k

}︄

+
1

4

∑︂

q,{k},{σ}
Γσσ′σ′′σ′′′
ph, νν′ω f ∗

kσfk+q,σ′f ∗
k′+q,σ′′′fk′σ′′ , (3.41)
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where, ηϑq,k were defined similar to Eqs. (3.24), (3.25) and (3.26) as

ηςq,k =
∑︂

σσ′

f ∗
k+q,σ σ

ς
σσ′fkσ′ ,

ηsq,k =
1

2

∑︂

σσ′

fq−k,σ σ
z
σσ′fkσ′ ,

η∗ sq,k =
1

2

∑︂

σσ′

f ∗
kσ σ

z
σσ′f ∗

q−k,σ ′ . (3.42)

The four-point vertex functions in the particle-hole Γph and particle-particle Γpp

form are obtained by truncating the legs from the connected part of the four-point
correlation function denoted by ⟨. . .⟩c:

Γσ1σ2σ3σ4

ph, νν′ω =

⟨︁
cνσ1

c∗ν+ω,σ2
c∗ν′,σ3

cν′+ω,σ4

⟩︁
c

gνσ1gν+ω,σ2gν′σ3gν′+ω,σ4

,

Γσ1σ2σ3σ4

pp, νν′ω =

⟨︁
cνσ1

cω−ν,σ2
c∗ν′σ3

c∗ω−ν′,σ4

⟩︁
c

gνσ1gω−ν,σ2gν′σ3gω−ν′,σ4

. (3.43)

The following relation between two representations holds [109],

Γσ1σ2σ3σ4

pp, νν′ω = Γσ1σ3σ4σ2

ph, ν,ω−ν′,ν′−ν = −Γσ1σ4σ3σ2

ph, ν,ν′,ω−ν−ν′ . (3.44)

The Density (ch), magnetic (sp), singlet (s), and triplet (t) components of the four-
point vertex are defined as

Γ
ch/sp
νν′ω = Γ ↑↑↑↑

ph, νν′ω ± Γ ↑↑↓↓
ph, νν′ω,

Γ
s/t
νν′ω =

1

2
Γ ↑↓↑↓
pp, νν′ω ∓ 1

2
Γ ↑↓↓↑
pp, νν′ω. (3.45)

The three-point vertices in the corresponding channels are defined as follows,

Λς
νω =

⟨︁
cν↑c

∗
ν+ω↑ ρ

∗ ς
ω

⟩︁

gν↑gν+ω↑ας
ω

; Λ∗ ς
νω =

⟨︁
cν+ω↑c

∗
ν↑ ρ

ς
ω

⟩︁

gν+ω↑gν↑ας
ω

;

Λs
νω =

⟨︁
cν↑cω−ν↓ ρ

∗ s
ω

⟩︁

gν↑gω−ν↓αs
ω

; Λ∗ s
νω =

⟨︁
c∗ω−ν↓c

∗
ν↑ ρ

s
ω

⟩︁

gω−ν↓gν↑αs
ω

. (3.46)

In the particle-hole channel, the three-point vertex obeys the useful relation Λ∗ ς
νω =

Λς
ν+ω,−ω. The three-point vertex in the triplet channel is not introduced, because the

composite variable ρt is identically zero in the single-band case.
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The self-energy and the polarization in the ladder approximation can be obtained
from the dual functional [60]. The self-energy then reads

Σ̃
LDB

kσ = Σ̃
LDF

kσ + Σ̃
mix

kσ . (3.47)

Compared to LDF, in LDB an additional so-called mixing term Σ̃
mix

kσ arises. Before
considering the self-energy in more detail, let us introduce the screened three- and
four-point vertices in the horizontal particle-hole (charge and spin) and particle-
particle (singlet) channels:

Lϑνq = Λϑ
νω +

∑︂

k1

Pϑ
νν1q

X̃
0ϑ

k1,q
Λϑ

ν1ω
(3.48)

Pϑ
νν′q = Γϑ

νν′ω +
∑︂

k1

Pϑ
νν1q

X̃
0ϑ

k1,q
Γϑ
ν1ν′ω (3.49)

Here, we define X̃
0 ς

k,q = G̃kσG̃k+q,σ and X̃
0 s

k,q = − G̃k↑G̃q−k,↓. The screened vertices
in the vertical P

ς and horizontal P ς particle-hole channels are connected via the
relation P

ς

kk′ω = −P ς
ν,ν+ω,k′−k. Note that the particle-particle fluctuations in the

ladder approximation are negligibly small and therefore are not considered. Hence,
the LDB self-energy (3.47) only contains the three- and four-point vertices that are
screened in the particle-hole (ς) channel.

The ladder DF self-energy,

Σ̃
LDF

kσ = Σ̃
ladd

kσ − Σ̃
(2)

kσ , (3.50)

is given by the two-particle ladder diagram

Σ̃
ladd

kσ = −
∑︂

q,k′,{σ}
G̃k+q,σ′Pσσ′σ′′σ′′′

ph, νν′q δkk′δσσ′′δσ′σ′′′ . (3.51)

In order to avoid double counting the second-order diagram,

Σ
(2)
kσ = −1

2

∑︂

q,k′,{σ}
Γσσ′σ′′σ′′′
ph, νν′ω G̃k′,σ′′G̃k′+q,σ′′′G̃k+q,σ′Γσ′′σ′′′σσ′

ph, ν′νω , (3.52)

has to be excluded, since it appears twice, as follows from the Schwinger-Dyson
equation [124]. The mixed diagram that appears due to the presence of the bosonic
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Σ̃
ladd

kσ = ; Σ̃
mix

kσ = ; Π̃
ς

q =

= + ; = +

Figure 3.1: Diagrammatic representation of dual quantities. Top row: The ladder
Σ̃
ladd
kσ (3.51) and mixed diagram Σ̃

mix
kσ (3.53) contributions to the LDB self-energy. The

LDB polarization operator is denoted by Π̃
ς
q (3.56). Bottom row: Screened three-

point Lϑνq (3.48) (left) and the four-point Pϑ
νν′q (3.49) vertex functions in the LDB

approximation (right). The figure is adapted from Ref. [128].

propagator W̃
ς

q is given as,

Σ̃
mix

kσ = −
∑︂

q,ς

LςνqG̃q+k,σW̃
ς

qL
∗ ς
νq. (3.53)

The full dual fermionic and bosonic propagators appearing in the self-energy can be
obtained from the Dyson equations:

G̃
−1

kσ = G̃−1

kσ − Σ̃kσ, (3.54)

W̃
ς −1

q = W̃ ς −1

q − Π̃
ς

q, (3.55)

where the dual polarization operator in the ladder approximation reads

Π̃
ς

q =
∑︂

k,σ

Λ∗ ς
νωG̃kσG̃q+k,σL

ς
νq. (3.56)

The Diagrammatic expressions for the LDB self-energy and polarization operator
(top row) together with the screened three- and four-point vertices (bottom row) are
shown in Fig. 3.1.

The transformation of the self-energy from the dual space back to the original
lattice problem can be performed using the exact relation [58, 60, 61]

Σlatt
kσ = Σimp

ωσ +
Σ̃kσ

1 + gνσΣ̃kσ

. (3.57)

Here, the denominator excludes unphysical terms from the Dyson equation for the
lattice Green’s function [57]. In practice, however, to reduce the numerical noise, that
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arises from the impurity self-energy Σimp
νσ at high frequencies, it is more convenient to

calculate the lattice Green’s function from the dual self-energy using an other exact
relation that does not involve Σimp

νσ , namely [58, 155]

G−1
kσ =

[︂
gνσ + gνσΣ̃kσgνσ

]︂−1

+∆ν − εk. (3.58)

For more details on back transformation from the dual space, the reader is referred
to the thesis of E.G.C.P. van Loon [156].

3.3 Partially bosonized approximation for the four-
point vertex

In this section, an approximation for the full local four-point vertex is derived.
We begin the derivation by considering the effective sing-impurity action shown in
Eq. (3.27) including the bosonic hybridization Y ς

ω . Thereby, the term that includes
the local interaction is rewritten in terms of variables ρς as 1

2

∑︁
ς U

ςρςρς . Such a repre-
sentation is used to partially bosonize the leading electronic collective excitations [48,
49, 157]. Note that for the sake of simplicity, in this section, we only consider the
channels ς = {ch, sp}. Combining this term with the term which contains the bosonic
hybridization yield the following effective impurity action:

Simp =−
∑︂

ν,σ

c∗νσ[iν + µ−∆ν ]cνσ +
1

2

∑︂

ω,ς

U ς
ω ρ

ς
ω ρ

ς
−ω, (3.59)

where the bare interaction of the impurity problem in the corresponding bosonic
channel is denoted by U ς

ω = U ς + Y ς
ω . Thereby, the local Coulomb interaction U can

be decoupled arbitrarily, respectively, in the charge and spin channels. Further, the
interaction part is antisymmetrized as,

Simp =−
∑︂

ν,σ

c∗νσ[iν + µ−∆ν ]cνσ

+
1

8

∑︂

ν,ν′,ω

∑︂

ς,σ

Γ 0 ς
νν′ω c

∗
νσ1
σς
σ1σ2

cν+ω,σ2
c∗ν′+ω,σ3

σς
σ3σ4

cν′,σ4
. (3.60)

Such antisymmetrization can be performed by interchanging indices of two Grass-
mann variables c (or c∗) in the interaction term (see, e.g., Section II A in Ref. [158]).



40 Chapter 3. Methods

The different components of the vertex functions are given by the following relation:

Γ0 ch
νν′ω = 2U ch

ω − U ch
ν′−ν − Ux

ν′−ν − Uy
ν′−ν − U z

ν′−ν = U + 2Y ch
ω − Y ch

ν′−ν − 3Y sp
ν′−ν , (3.61)

Γ0x
νν′ω = 2Ux

ω − Ux
ν′−ν + Uy

ν′−ν + U z
ν′−ν − U ch

ν′−ν = −U + 2Y sp
ω + Y sp

ν′−ν − Y ch
ν′−ν , (3.62)

Γ0 y
νν′ω = 2Uy

ω − Uy
ν′−ν + U z

ν′−ν + Ux
ν′−ν − U ch

ν′−ν = −U + 2Y sp
ω + Y sp

ν′−ν − Y ch
ν′−ν , (3.63)

Γ0 z
νν′ω = 2U z

ω − U z
ν′−ν + Ux

ν′−ν + Uy
ν′−ν − U ch

ν′−ν = −U + 2Y sp
ω + Y sp

ν′−ν − Y ch
ν′−ν . (3.64)

Using the exact relation between charge and spin components of the bare Coulomb
interaction we find that the expression for the bare four-point vertex Γ 0 ς does not
depend on the performed decoupling and contains the contribution of the full U
in all considered channels. Therefore, including the main contribution ±U only
in the horizontal contribution U ς

ω leads to a unique form of the bare interaction
U ch = −U sp = U/2 that excludes ladderlike irreducible contributions from the full
local four-point vertex function of the impurity problem [72]. The approximation of
the full four-point vertex is discussed in the following.

The following part (highlighted as bald text) has already been published in APS
Journal:
E. A. Stepanov, V. Harkov, A. I. Lichtenstein, “Consistent partial bosonization of
the extended Hubbard model”. Phys. Rev. B 100, 205115 (2019) (see Ref. [72]).

We start with the expressions (3.61), (3.62), (3.63) and (3.64) for the bare
vertex Γ 0 ς

νν′ω of the impurity problem (3.60). Using the exact relation be-
tween charge and spin components of the bare Coulomb interaction we
find that the expression for this bare vertex does not depend on the
performed decoupling of the local Coulomb interaction and contains the
contribution of the full U in all considered channels. This result is in
agreement with the fact that the bare interaction in the Bethe-Salpeter
equation for the susceptibility is given by the full local Coulomb interac-
tion [134]. In order to find the origin of the reducible contribution with
respect to a bosonic line (hereinafter, we will call this contribution w-
reducible) to the fermion-fermion vertex, let us dress the bare vertex in
the corresponding “horizontal” particle-hole channel as

Γ
ς

νν′ω =
∑︂

ν′′,ν′′′

Γ0 ς
νν′′ω χ

ς
ν′′ν′′′ω Γ

0 ς
ν′′′ν′ω, (3.65)
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where

χ ς
νν′ω = −

⟨︁(︁
c∗ν+ω,σ1

σς
σ1σ2

cν,σ2

)︁ (︁
c∗ν′σ3

σς
σ3σ4

cν′+ω,σ4

)︁⟩︁
conn

(3.66)

is a generalized susceptibility of the impurity problem in a correspond-
ing channel. After the antisymmetrization, this screened vertex (3.65)
together with the bare vertex Γ 0 ς

νν′′ω makes up the simplest approximation
for the fermion-fermion vertex function of the impurity problem

Γ ch
νν′ω ≃ Γ0 ch

νν′ω +
1

2
Γ

ch
νν′ω − 1

4
Γ

ch
ν,ν+ω,ν′−ν −

3

4
Γ

sp
ν,ν+ω,ν′−ν ,

Γ sp
νν′ω ≃ Γ0 sp

νν′ω +
1

2
Γ

sp
νν′ω +

1

4
Γ

sp
ν,ν+ω,ν′−ν −

1

4
Γ

ch
ν,ν+ω,ν′−ν . (3.67)

Since the bare vertex function does not depend on the decoupling, this
approximation is valid for any decomposition of the local Coulomb inter-
action. In the absence of bosonic hybridizations Y ς = 0, the bare fermion-
fermion vertex can be simply replaced by the bare Coulomb interaction
Γ

0 ch/sp
νν′ω = ±U as derived above. Then, the generalized susceptibility (3.66)

in the expression for the screened vertex (3.65) reduces to a bosonic sus-
ceptibility χ ς

ω, and the approximation for the full fermion-fermion vertex
takes the following simple form:

Γ ch
νν′ω ≃ U +

1

2
Uχch

ω U − 1

4
Uχ ch

ν′−νU − 3

4
Uχ sp

ν′−νU,

Γ sp
νν′ω ≃ −U +

1

2
Uχ sp

ω U +
1

4
Uχ sp

ν′−νU − 1

4
Uχ ch

ν′−νU. (3.68)

This approximation fully coincides with the approximation obtained in
the work [159]. The only difference is that here we do not perform a
bosonization of collective fluctuations in the particle-particle channel as
discussed in the main text. We also note that the susceptibility defined
in our work is two times larger than the one introduced in Ref. [159].
Importantly, in the framework of the fermion-boson theory the interac-
tion is introduced as the bosonic propagator. Thus, bare charge and spin
interactions that enter the bare fermion-fermion vertex Γ 0 ς

νν′ω have to be
considered as “horizontal” U ς

ω and “vertical” bosonic U ς
ν′−ν lines. In this

case, a simple replacement of the bare fermion-fermion vertex by the full
local Coulomb interaction is no longer possible. First, let us isolate the
w-reducible contribution in the approximation for the fermion-fermion
vertex (3.67). If we take only horizontal (ω-dependent) terms U ς

ω from
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the bare vertex Γ 0 ς
νν′ω in the expression (3.65), the generalized suscepti-

bility again reduces to the bosonic one, and the w-reducible part of the
screened vertex (3.65) becomes Γ

ς

νν′ω = 4U ς
ω χ

ς
ω U ς

ω. Other w-reducible terms
in the screened vertex (3.65) appear from w-reducible contributions to the
generalized susceptibility χ ς

ν′′ν′′′ω. If the latter contains at least one hori-
zontal bosonic line U ς

ω on which it can be cut into two separate parts, the
bare vertex Γ 0 ς

νν′ω in the expression (3.65) does not necessarily have to be
w-reducible in order to make the total expression reducible with respect
to a bosonic propagator. This leads to an additional fermion-boson vertex
correction Λς

νω to the previously derived approximation for the screened
vertex

Γ
ς

νν′ω = 4Λς
νωU ς

ω χ
ς
ω U ς

ωΛ
ς
ν′+ω,−ω + 2Λς

νωU ς
ωΛ

ς
ν′+ω,−ω − 2U ς

ω. (3.69)

The term 2U ς
ω is already contained in the bare vertex Γ0 ς

νν′ω and introduced
here to simplify the expression. We note that Eq. (3.67) is only an approx-
imation for the exact charge and spin fermion-fermion vertex functions.
The exact w-reducible contribution to the screened fermion-fermion ver-
tex (3.65) is given by the expression

Γ
ς

νν′ω = 4Λς
νωw

ς
ωΛ

ς
ν′+ω,−ω − 4U ς

ω, (3.70)

where wς
ω = U ς

ω + U ς
ω χ

ς
ωU ς

ω is the full renormalized interaction of the im-
purity problem, and Λς

νω is the exact fermion-boson vertex of the prob-
lem. Here, the term 4U ς

ω is again excluded from the expression, since
it is already contained in the (nonsymmetrized) bare interaction. The
remaining part of the generalized susceptibility in the expression (3.67)
for the screened vertex is irreducible with respect to the bosonic prop-
agator. Together with vertical lines U ς

ν′−ν from the bare fermion-fermion
vertex Γ0 ς

νν′ω it makes the w-irreducible contribution to the full fermion-
fermion vertex function that is not accounted for by the fermion-boson
theory. As discussed in the main text, the ladder-like irreducible contri-
butions to the fermion-fermion vertex function can be fully excluded by a
proper choice of the bare interaction Uch = −U sp = U/2 that has the same
value for all sp = {x, y, z} spin components. Since this unique form of the
bare interaction cannot be obtained by any of the decoupling of the local
Coulomb interaction, we will make separate decouplings for every bosonic
channel to keep the bare interaction in the proposed form. Then, com-
ing back to a nonsymmetrized form of the bare fermion-fermion vertex
function (3.61), (3.62), (3.63) and (3.64), we get Γ 0 ς

νν′ω = 2U ς
ω + 2Y ς

ω . Together
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with the screened interaction Γ
ς

νν′ω from (3.70), which is also written in the
antisymmetrized form, it makes the total approximation for the nonsym-
metrized full fermion-fermion vertex function

1

8
Γ ς
νν′ω ≃ 1

2
M ς

νν′ω =
1

2

(︁
Λς

νωw
ς
ωΛ

ς
ν′+ω,−ω − U ς/2

)︁
. (3.71)

The term U ς/2 appears here, because we use separate mutually exclusive
decouplings of the bare Coulomb interaction in different bosonic channels.
This term avoids the double counting of the bare Coulomb interaction in
the bare vertex Γ 0

νν′ω. Note that the same procedure can be performed
for the Ising form of the bare interaction Uch = −U z = U/2 and Ux = Uy =
0. Since this form of decoupling is identical for all channels, this does
not lead to a double counting of the local Coulomb interaction. Then,
the approximation for the fermion-fermion vertex in the antisymmetrized
form is given by the expression M ς

νν′ω = Λς
νωw

ς
ωΛ

ς
ν′+ω,−ω.

The final expression for the w-reducible approximation of the full
fermion-fermion vertex function can be obtained after antisymmetrizing
the expression (3.71)

Γ ch
νν′ω = 2Mch

νν′ω −Mch
ν,ν+ω,ν′−ν − 3M sp

ν,ν+ω,ν′−ν ,

Γ sp
νν′ω = 2M sp

νν′ω +M sp
ν,ν+ω,ν′−ν −Mch

ν,ν+ω,ν′−ν . (3.72)

Note that the w-reducible interaction (3.71), which is introduced to exclude
the exact fermion-fermion vertex from the action, does not have a uni-
form structure due to a presence of the −U ς/2 term that does not contain
fermion-boson vertex functions. Therefore, the correction M ς

νν′ω cannot
be easily generated performing transformations of the lattice action dis-
cussed below. Thus, we make a small additional approximation for the
w-reducible fermion-fermion vertex M ς

νν′ω ≃ Λς
νωw̄

ς
ω Λ

ς
ν′+ω,−ω including the

U ς/2 term in the propagator w̄ς
ω = wς

ω − U ς/2. After that, the exact (3.70)
expression for the reducible contribution to the fermion-fermion vertex
function coincides with the approximate one derived in Eq. (3.69). In addi-
tion, the last approximation can be motivated by the asymptotic behavior
of the fermion-boson vertex function Λνω → 1 at large frequencies.

3.4 D-TRILEX approach
In this section, we derive the partially bosonized dual action of the D-TRILEX theory
from the dual boson problem (3.36) following Refs. [72, 128]. Therefore, a further
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HS transformation is performed in a way that the four-point vertex in the action is
nearly canceled using the partially bosonized form of Eq. (3.72). Similar to the DB
theory we begin the derivation by adding and subtracting the following term from
the dual action (3.36), namely

∑︂

q,ϑ

ξϑ
(︁
φ∗ϑ
q w̄ϑ−1

ω φϑ
q

)︁
. (3.73)

Similar to the hybridization functions, the quantity w̄ϑ
ω is arbitrary, however, the

proper choice of this quantity will help to exclude the four-point vertex from the
action as will be seen below. In the next step, we perform the following HS trans-
formation

exp

{︄∑︂

q,ϑ

ξϑφ∗ϑ
q

[︂
W̃

ϑ−1

q + w̄ϑ−1
ω

]︂
φϑ
q

}︄
= (3.74)

Db

∫︂
D[bϑ] exp

{︄
−
∑︂

q,ϑ

ξϑ

(︄
b∗ϑq w̄ϑ−1

ω

[︂
W̃

ϑ−1

q + w̄ϑ−1
ω

]︂−1

w̄ϑ−1
ω bϑq − φ∗ϑ

q w̄ϑ−1
ω bϑq − b∗ϑq w̄ϑ−1

ω φϑ
q

)︄}︄
,

where we define D−1
b =

√︃
det
[︂
w̄ϑ

ω

(︂
W̃

ϑ−1

q + w̄ϑ−1
ω

)︂
w̄ϑ

ω

]︂
. After the transformation

the dual action (3.36) takes the form:

S̃ ′
=−

∑︂

k,σ

f ∗
kσG̃

−1

kσ fkσ +
∑︂

q,ϑ

ξϑ

{︄
b∗ϑq w̄ϑ−1

ω

[︂
W̃

ϑ−1

q + w̄ϑ−1
ω

]︂−1

w̄ϑ−1
ω bϑq

}︄

+
∑︂

q,ϑ

ξϑ

{︄
φ∗ϑ
q w̄ϑ−1

ω φϑ
q − φ∗ϑ

q w̄ϑ−1
ω bϑq − b∗ϑq w̄ϑ−1

ω φϑ
q

}︄
+ F̃ [f, φ]. (3.75)

Finally, the dual bosonic fields φ can be integrated out with respect to the new
Gaussian part of the dual action as,

∫︂
D[φς ] exp

{︄
−
∑︂

q,k,ϑ

ξϑ

(︄
φ∗ϑ
q w̄ϑ−1

ω φϑ
q − φ∗ϑ

q

[︁
w̄ϑ−1

ω bϑq − Λ∗ϑ
νωη

ϑ
q,k

]︁
−
[︁
b∗ϑq w̄ϑ−1

ω − η∗ϑq,kΛ
ϑ
νω

]︁
φϑ
q

)︄}︄
=

Zφ × exp

{︄∑︂

q,k,ϑ

ξϑ

(︄
b∗ϑq w̄ϑ−1

ω bϑq − Λϑ
νωη

∗ϑ
q,kb

ϑ
q − Λ∗ϑ

νωb
∗ϑ
q ηϑq,k + η∗ϑq,kΛ

ϑ
νωw̄

ϑ
ωΛ

∗ϑ
νωη

ϑ
q,k

)︄}︄
,

(3.76)
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where Zφ is the partition function of the Gaussian part of the bosonic action. The
quartic term η∗ϑq,kΛ

ϑ
νωw̄

ϑ
ωΛ

∗ϑ
νωη

ϑ
q,k in Eq. (3.76) is the partially bosonized representation

for the four-point vertex [72]. This term cancels the four-point vertex in the action
after defining w̄ϑ

ω as

w̄ς
ω = wς

ω − U ς/2, (3.77)
w̄s = ws

ω − U s. (3.78)

After integrating out the dual bosonic fields the partially bosonized action of the
D-TRILEX theory reads,

Spb =−
∑︂

k,σ

f ∗
kσG̃

−1

kσ fkσ −
∑︂

q,ϑ

ξϑ

{︄
b∗ϑq Wϑ−1

q bϑq

}︄

+
∑︂

q,k,ϑ

ξϑ

{︄
Λϑ

νωη
∗ϑ
q,kb

ϑ
q + Λ∗ϑ

νωb
∗ϑ
q ηϑq,k

}︄
. (3.79)

Here, the bare Green’s function G̃kσ remains the same as in the dual action (3.36),
however, the bosonic propagator takes the following form

W ς
q = W̌

ς

q − U ς/2, (3.80)

Ws
q = W̌

s

q − U s. (3.81)

The effective four-point interaction in a partially bosonized form (including the
singlet channel) is given by

Γch
νν′ω ≃ 2M ch

νν′ω −M ch
ν,ν+ω,ν′−ν − 3M sp

ν,ν+ω,ν′−ν +M s
ν,ν′,ω+ν+ν′ ,

Γsp
νν′ω ≃ 2M sp

νν′ω +M sp
ν,ν+ω,ν′−ν −M ch

ν,ν+ω,ν′−ν −M s
ν,ν′,ω+ν+ν′ ,

Γs
νν′ω ≃M s

νν′ω +
1

2

(︁
M ch

ν,ν′,ω−ν−ν′ +M ch
ν,ω−ν′,ν′−ν

)︁

− 3

2

(︁
M sp

ν,ν′,ω−ν−ν′ +M sp
ν,ω−ν′,ν′−ν

)︁
, (3.82)

with

Mϑ
νν′ω = Λϑ

νω w̄
ϑ
ω Λ

∗ϑ
ν′ω. (3.83)
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Using the analog of the Almbladh functional [160] Ψ[G̃,W,Λ] = 1
2
G̃ΛϑW ϑΛ∗ϑG̃,

which was introduced in the dual space, we can extract the simplest set of diagrams
for the self-energy and polarization operator used in the D-TRILEX approach [72]:

Σ̃kσ = −
∑︂

q,ς

{︄
Λς

νωG̃q+k,σW
ς
qΛ

∗ ς
νω − Λs

νωG̃q−k,σW
s
qΛ

∗ s
νω

}︄
, (3.84)

Π̄
ς
q = +

∑︂

k,σ

Λ∗ ς
νωG̃kσG̃q+k,σΛ

ς
νω, (3.85)

Π̄
s
q = −

∑︂

k

Λ∗ s
νωG̃k↑G̃q−k↓Λ

s
νω, (3.86)

where G̃kσ and W ϑ
q are the full propagators, which can be obtained using the Dyson

equations

G̃
−1

kσ = G̃−1

kσ − Σ̃kσ, (3.87)

W ϑ −1
q = Wϑ −1

q − Π̄
ϑ
q . (3.88)

A schematic relation between the simpleGW -like diagrams (3.84), (3.85), and (3.86)
of the D-TRILEX approach and the DB theory is shown in Fig. 3.2. For an exten-
sive discussion, the reader is referred to Ref. [128]. In the following, for simplicity,
we consider the case V ϑ

q = 0 in which case the DB and DF theories coincide. The
dual self-energy Σ̃

LDF
in the ladder approximation [56] is given by the Schwinger-

Dyson equation [124]. The corresponding diagram is depicted in the upper row of
Fig. 3.2. In the same row, the D-TRILEX self-energy (3.84) is depicted in red. As
mentioned above, the second-order diagram Σ̃

(2)
in the ladder (middle row) is sub-

tracted once in order to avoid double-counting. Therefore, a factor “1/2” appear in
front of this diagram, which does not appear in front of the higher order diagrams
Σ̃

(3+)
[55] (bottom row). The red insertions show how the D-TRILEX diagrams can

be constructed by approximating the four-point vertex in Σ̃
LDF

using the longitudi-
nal contributions Mϑ

νν′ω of the partially bosonized representation (3.82). In Ref. [128]
we perform an elaborate analysis of different diagrammatic contributions and show
that the longitudinal contributions are the main ones. Also, an explicit analytical
derivation of the relation between D-TRILEX and ladder DB (LDB) self-energies
for the general case is shown. The approximation of the vertex leads to a much
simpler diagrammatic structure in the D-TRILEX approach compared to the LDB
method. The advantage of D-TRILEX is that on the one hand it does not require the
computation of the numerically costly four-point vertex and on the other hand due
to the simple diagrammatic structure no inversion of the Bethe-Salpeter equation is
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Figure 3.2: In the top row, the dual fermion self-energy Σ̃
LDF

in the ladder approx-
imation is shown in black. The black square illustrates the four-point vertex Γ and
the arrow represents the dressed Green’s function. In the same row, the D-TRILEX
self-energy is shown in red. The triangle represents the three-point vertex and the wig-
gly double line denotes the full bosonic propagator. The first term in the ladder is the
first-order Hartree-like term. The second term is the second-order diagram Σ̃

(2)
also

shown in the middle row. The third term represents the remaining part of the ladder
Σ̃
(3+)

and is also shown in the bottom row. The four-point vertex is approximated
by the longitudinal contribution of the partially bosonized representation. The red
parts resulting from the approximation are D-TRILEX polarization operators, which
are connected by renormalized interactions (wiggly line). The figure is adapted from
Ref. [128].

needed. In the ladder DF/DB theory the inversion of the Bethe-Salpeter equation
in the frequency space is required because of the three-frequency dependence of the
local vertex function Γνν′ω.
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3.5 Single-boson exchange decomposition for the four-
point vertex

In this chapter, we introduce another approximation for the full local four-point
vertex of the impurity model. The derivation presented in this section can be found in
Ref. [70]. The approximation is based on the decomposition of the four-point vertex
in terms of a single-boson exchange (SBE) in the ph, ph, and pp channels similar to
the parquet decomposition. Thereby, similar to the concept of two-particle reducible
and irreducible diagrams, respectively, the SBE is based on the fact that the local
full four-point vertex contains two classes of diagrams, namely, the ones which can
be divided into two parts by removing a bare interaction Uα where α = ch, sp, s in
the corresponding channel, those diagrams are called U -reducible, and the remaining
diagrams which are U -irreducible. While the U -irreducible part of the vertex which is
intrinsically a four-point quantity is neglected in the SBE approximation [70, 75], the
U -reducible is represented in terms of the (three-point) Hedin vertex and the screened
interaction. The new representation reduces the computational effort drastically
since it does not require any computation of a four-point object and matrix inversion
of the Bethe-Salpeter equation.

Let us discuss the classification of the diagrams contributing to the full vertex in
terms of reducibility in more detail. All possible diagrams can be divided into four
classes. Each diagram is exclusively either gg-reducible in the horizontal particle-hole
(ph), the vertical particle-hole (ph), or in the particle-particle (pp) channels. The last
class contains fully irreducible (firr) diagrams. We classify a diagram as reducible
in the corresponding channel if it can be separated into two parts by cutting a pair
of ph-, ph- or pp-propagator lines, respectively. Further, let us consider one class
of reducible diagrams. A diagram in that class can but not necessarily be also U -
reducible in the same channel. For instance, a gg-reducible diagram in the particle-
particle channel can also be U -reducible in the particle-particle channel, but not in
the other channels. The class of U -reducible diagrams in the particle-particle channel
is a subclass of gg-reducible diagram in the particle-particle channel. Accordingly,
the same is true for other channels. We classify the U -reducibility of diagrams in
the respective channel in a similar fashion as gg-reducibility by removing a bare
interaction line Uα in the respective channel. The bare interaction Uα is defined as

U ch = +U, U sp = −U, U s = +2U. (3.89)

It is important to note that the bare interaction itself Uα is reducible in all three
channels. So the bare Uα is a common element in all U -reducible classes. With this
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fα

ν ν′

ν + ω ν′ + ω

= ϕfirr,α +

∇ph

ω

λ̄α λα − 1
2

∇ph

ν
′−

ν

λ̄ch

λch

− 3−4δα,sp
2

λ̄sp

ν
′−

ν

λsp

∇pp

+ 1−2δα,sp
2

ν1

λ̄s
ω + ν + ν′

λs − 2 Uα

Figure 3.3: Diagrammatic representation of the single-boson exchange decomposition
of the four-point vertex for α = {ch, sp}. The Hedin vertices are denoted by λα and
the screened interactions wα by wiggly lines. The first term in the decomposition is
the U -irreducible four-point vertex φfirr,α. The following diagrams belong to the class
of U−reducible diagrams in the corresponding ph, ph and pp channels. The last term
is the double-counting correction that cancels the bare interaction Uα two times which
arises in all U -reducible channels. The figure is adapted from Ref. [70].

considerations, we can decompose the full local vertex f in the following way

fα = φfirr,α +∇SBE,α
νν′ω , (3.90)

where the SBE vertex is defined as

∇SBE,α
νν′ω = ∇ph,α

νν′ω +∇ph,α
νν′ω +∇pp,α

νν′,ω+ν+ν′ − 2Uα. (3.91)

Thereby, the subtraction of 2Uα results from the aforementioned fact that Uα is
reducible in all three U -reducible channels. So in order to compensate the over-
counting we have to subtract it twice.

In the following, we briefly discuss the U -reducible contributions (3.91). The
horizontally U -reducible diagrams ∇ph can be derived from the Hedin formalism [47,
69, 161, 162]. Thereby, the Hedin vertex is obtained from the three-point correlation
function (3.15). The U -reducible diagrams is then given by,

∇ph,α
νν′ω=λ

α
νωw

α
ωλ

α
ν′ω. (3.92)

In Fig. 3.3 this diagram is depicted as the second diagram. In the context of the
decomposition, we should note that by construction the Hedin vertex λ is irreducible
in the U -ph channel [163].

The vertically particle-hole U -reducible diagrams ∇ph for the paramagnetic case
can be obtained from ∇ph via crossing relations of the four-point vertex [107] and
are given by

∇ph,α
νν′ω=−1

2
∇ph,ch

ν,ν+ω,ν′−ν−
3−4δα,sp

2
∇ph,sp

ν,ν+ω,ν′−ν (3.93)
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In Fig. 3.3 the vertical particle-hole diagrams are depicted as the third and fourth
diagrams. The pp-diagrams we construct in analogy to the ph-diagrams [70]. Ac-
cordingly, they are given by

∇pp,α
νν′ω=

1− 2δα,sp
2

λs
νωw

s
ωλ

s
ν′ω (3.94)

and are depicted as the fifth diagram in Fig. 3.3.
Lastly, we comment that the triplet channel, which consists of two particles with

the same spin [107], does not contribute to the the full vertex f , since the Hub-
bard interaction term Un↓n↑ only contains particles with opposite spins. As can be
seen in Fig. 3.3 diagrammatically the decomposition can be interpreted as processes
mediated by the exchange of effective bosons.

The bosonic line is the screened interaction (3.19) in the corresponding channel.
The fully irreducible diagrams φfirr can not be described as single-boson exchange
but describes multiboson exchange or other processes, which do not involve boson
exchanges at all. At last, in the SBE approximation the full four-point vertex fα is
approximated by neglecting the fully irreducible part φfirr:

fα
νν′ω ≈ ∇SBE,α

νν′ω . (3.95)

By waiving the four-point vertex we also ease the computational effort significantly.
As one might expect this approximation performs well in the weak-coupling regime.
But more surprisingly, for large interactions SBE captures the dominant scattering
processes [70, 75].
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Chapter 4

DB

This chapter is based on the following publications:

T. Schäfer, N. Wentzell, F. Šimkovic, Y.-Y. He, C. Hille, M. Klett, C. J. Eckhardt,
B. Arzhang, V. Harkov, F. M. C.-M. Le Régent, A. Kirsch, Y. Wang, A. J. Kim, E.
Kozik, E. A. Stepanov, A. Kauch, S. Andergassen, P. Hansmann, D. Rohe, Y. M.
Vilk, J. P. F. LeBlanc, S. Zhang, A.-M. S. Tremblay, M. Ferrero, O. Parcollet, A.
Georges, “Tracking the Footprints of Spin Fluctuations: A MultiMethod, MultiMes-
senger Study of the Two-Dimensional Hubbard Model”. Phys. Rev. X 11, 011058
(2021)

M. Vandelli, V. Harkov, E. A. Stepanov, J. Gukelberger, E. Kozik, A. Rubio, A.
I. Lichtenstein, “Dual boson diagrammatic Monte Carlo approach applied to the ex-
tended Hub-bard model”. Phys. Rev. B 102, 195109 (2020)

4.1 Tracking the Footprints of Spin Fluctuations:
A MultiMethod, MultiMessenger Study of the
Two-Dimensional Hubbard Model

Despite the simplicity of the Hubbard model, for a long time, an exact solution
was only available analytically in one dimension and numerically in the formal limit
of infinite dimensions (where the spatial fluctuations can be neglected [138, 139])
in the framework of DMFT by mapping it on an exactly solvable impurity model.
However, in the case of two dimensions, where, e.g., the Hubbard-model is known as
a prototype model for high-temperature superconducting cuprate compounds [164–
167], the Hubbard model holds many open questions.
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But owing to new developments in recent years new numerical techniques were
presented. Some of them even allow for a numerical exact treatment of the finite-
dimensional Hubbard model at certain regimes [85]. Due to the complexity of such
techniques the convergence radius usually is restricted, for instance, to high temper-
atures or regions away from phase boundaries [85, 131, 168, 169]. Nevertheless, such
methods provide a perfect testing ground for already established more flexible, and
computationally efficient methods or as a benchmark for newly developed methods
in future works.

This chapter is based on the study presented in Ref. [85], where all the results
of this section were already published. In Ref. [85] different methods are bench-
marked against two numerically exact methods, namely diagrammatic Monte Carlo
(DiagMC) and determinantal quantum Monte Carlo (DQMC) methods. Thereby,
the authors perform a comprehensive study of the weak coupling regime of the
two-dimensional Hubbard model which reveals several distinct physical regimes and
crossovers between them. In this section of the thesis, we only focus on the results
of the DB approach, which were provided by the author of this thesis. For the ex-
tensive discussion as well as comparison with other methods the reader is referred to
Ref. [85].

The investigation is focused on the weak coupling regime of the single-band Hub-
bard model on the square lattice. Thereby, the calculations are performed for U = 2
at different temperatures at half-filling. The unit of energy for the calculations is set
to t = 1. Despite the simplicity of the Hubbard model, already in this region, the
system reveals nontrivial physical phases with interesting crossover regions between
them as the temperature decreases. These features have different origins. First, the
ground state of the system is an antiferromagnetic insulator which can be qualita-
tively explained by the Slater mechanism [170]. However, at any finite temperature,
the antiferromagnetic long-range order is destroyed by fluctuations in accord with
the Mermin-Wagner theorem [171, 172]. In addition, the van Hove singularity at
the antinodal point at AN=(π, 0) leads to a larger scattering probability compared
to the nodal point at N=(π/2, π/2) which results in the suppression of the coher-
ence of single-particle excitations around this point and with it a nodal/antinodal
dichotomy [173–175]. The schematic representation of the physical regimes and the
crossover regions are illustrated in Fig. 4.1. The left-hand side shows a schematic
T − U phase diagram where the different regimes are illustrated in different colors.
The vertical dashed line denotes the considered interaction U = 2t in terms of the
hopping t. The right-hand side shows the qualitative behavior of the Matsubara
frequency-dependent imaginary part of the self-energy in the corresponding regime.
The dots denote the AN and the triangles the N points, respectively. The critical
temperatures between the different regions are defined by the change of the slope be-
tween the first and second Matsubara frequency at the corresponding k-point, which
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Figure 4.1: Schematic representation of the phase diagram for the two-dimensional
Hubbard model on the square lattice in dependence of temperature T and coupling U in
the weak-coupling regime around U/t = 2 (left panel) and qualitative depictions of the
imaginary parts of the self-energy in dependence of the Matsubara frequencies ωn for
temperatures marked by X in the left panel in the corresponding colors (right panel).
The upper labels N and AN stand for the nodal k = (π/2, π/2) and antinodal points
k = (π, 0) respectively, and the lower labels QP and * for the onset of coherence and
(pseudo)gap respectively. (The data in the right panel for the self-energy is extracted
from DΓA calculations.) The figure is adapted from Ref. [85].

will be discussed in more detail in the following.
At high temperatures, the system is governed by strong thermal fluctuations.

This region 1 is depicted in red in Fig. 4.1. These thermal fluctuations suppress
the formation of the long-lived single-particle excitations resulting in a divergent
behavior in the self-energy at low frequencies. Decreasing the temperature reduces
the thermal fluctuations and the long-lived quasiparticles start to develop in the
system1. The increasing coherence in the single-particle spectrum shows itself in the
changing behavior of the self-energy. The self-energy at low frequencies increases
and the slope between the first two Matsubara frequencies changes. The coherence
temperature TQP is therefore defined by the change of the sign in the slope between
the first and second frequencies [52, 176, 177]. However, due to the vHS in the AN
point the coherence temperature TN

QP at the N point is higher than TAN
QP at the AN

point, which defines the crossover region 2 denoted by the orange color. In this
region, the system becomes coherent at the N point while remaining incoheren close
to the AN point. The system becomes metallic 3 when the slope at both points
becomes negative. This regime is denoted by the light blue color. Lowering the

1Note that in the considered system due to the perfect nesting the quasiparticles do not obey
Landau’s Fermi-Liquid theory. For more details see Ref. [85].
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Figure 4.2: Phase diagram of the Hubbard model on the square lattice at half filling
within the DMFT approach. The red and blue lines denote the quasiparticle coherence
temperature and the antiferromagnetic (AF) transition temperatures, respectively. For
comparison, the orange line indicates the Néel transition temperature according to the
mean-field theory. The figure is adapted from Ref. [85].

temperature suppresses the thermal fluctuations, which further increases the lifetime
of the quasiparticles until AFM fluctuations start to develop in the system reaching
the long-range AFM order at T = 0. Their correlation length increases exponentially.
The scattering rate of the quasiparticles increases due to the development of the AFM
order and a pseudogap develops at the Fermi surface in the single-particle spectrum.
This leads to a decrease of the self-energy at low frequencies defining the crossover
temperature T∗ again with the change of the sign of the slope in the opposite way
compared to the coherence temperature. T∗ denotes the temperature where the
coherence is suppressed and the pseudogap begins to develop. The pseudogap first
appears at the AN point at TAN

∗ and with the temperature decreasing it propagates
along the Fermi surface until it opens at the N point at TN

∗ . This crossover region
4 with a partially gapped Fermi surface is depicted in blue. The region 5 , drawn
in purple, is governed by long-ranged AFM fluctuations and the pseudogap occurs
everywhere on the Fermi surface.
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DMFT

Since in the DB approach we have performed a diagrammatic extension of DMFT
to account for nonlocal correlations, DMFT can be considered as the zero-order
approximation. Therefore, before discussing the results of the DB approach let us
consider the T − U phase diagram within DMFT. The phase diagram is shown in
Fig. 4.2. Since the DMFT self-energy is local, no crossover appears in the phase
diagram. At U = 2 DMFT shows a good agreement with the local part of the
exact results obtained from DiagMC (not shown) up to temperature T ≃ 0.1 [85].
The coherence temperature TDMFT

QP denoting the crossover to the metallic regime is
obtained in the same way as discussed above. The red line in Fig. 4.2 denotes this
crossover temperature. At U = 2 the transition occurs at TDMFT

QP ≃ 0.45. The exact
shows a transition at TN

QP ≃ 0.42 and TAN
QP ≃ 0.35 [85]. The DMFT result lies within

the error bars of the exact result at the N point, however, shows a larger mismatch
compared to the AN point due to the absence of momentum dependence. The DMFT
Néel temperature is used as the estimation of TDMFT

∗ . Due to the absence of the
nonlocal correlations which destroy the AFM order an actual phase transition to the
AFM ordered phase appears in DMFT at finite temperatures. TDMFT

∗ is depicted
in Fig. 4.2 as the blue line. The DMFT Néel temperature exhibits a large crossover
region with a maximum at U = 8 between the weak coupling regime where the Néel
temperature behaves exponentially and the strong coupling regime where the Néel is
proportional to the superexchange J = 4t2/U and the Hubbard model can be mapped
on the effective Heisenberg model. For comparison, the Néel temperature TMFT

∗ of
the static mean-field theory (MFT) is depicted in orange. At U = 2 the DMFT
Néel temperature lies around TDMFT

∗ ≃ 0.08. For comparison, the numerically exact
results is around TAN

∗ ≃ 0.065 and TN
∗ ≃ 0.0625, respectively [85].

DB

In the following the results of the DB approach are discussed. To this end we first
consider a part of a text which has been already published in the APS Journal:
T. Schäfer, N. Wentzell, F. Šimkovic, Y.-Y. He, C. Hille, M. Klett, C. J. Eckhardt,
B. Arzhang, V. Harkov, F. M. C.-M. Le Régent, A. Kirsch, Y. Wang, A. J. Kim, E.
Kozik, E. A. Stepanov, A. Kauch, S. Andergassen, P. Hansmann, D. Rohe, Y. M.
Vilk, J. P. F. LeBlanc, S. Zhang, A.-M. S. Tremblay, M. Ferrero, O. Parcollet, A.
Georges, “Tracking the Footprints of Spin Fluctuations: A MultiMethod, MultiMes-
senger Study of the Two-Dimensional Hubbard Model”. Phys. Rev. X 11, 011058
(2021) (see Ref. [85]).

The dual boson (DB) approach [58–60] is an extension of the DF ap-
proach that, additionally to the local Coulomb interaction, accounts for
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the effect of nonlocal interactions in different bosonic channels (ς). Within
the DB approach, local electronic correlations are considered exactly in
the framework of the (extended) dynamical mean-field theory [21, 178].
Nonlocal collective fluctuations are treated diagrammatically beyond the
EDMFT level. For this aim, dual-boson fields φς are introduced in ad-
dition to dual-fermion variables f (∗) that are already present in the DF
approach. The DB theory is derived analytically using a path-integral
formalism, so many existing EDMFT-based approaches can be obtained
as a certain approximation of the DB [60, 72]. Also, the DB theory fulfills
the Mermin-Wagner theorem, which allows us to avoid unphysical phase
transitions in two dimensions [62].

The action of the DB theory is as follows:

S̃ =−
∑︂

k,ω,σ

f ∗
kωσG̃

−1

kωσfkωσ −
1

2

∑︂

q,Ω,ς

ϕς
qΩW̃

ς−1

qΩ ϕς
-q,−Ω + F̃ . (4.1)

Here, the bare fermion G̃k,ν,σ and boson W̃ ς

q,Ω propagators are given
by nonlocal parts of the EDMFT Green function and renormalized inter-
action [60], respectively. The interaction part F̃ [f ∗, f, φ] of the dual ac-
tion contains all possible, exact, local fermion-fermion and fermion-boson
vertex functions of the impurity problem. Here, as well as in most of
the DB approximations, we restrict ourselves to the lowest-order (two-
particle) interaction terms that are given by the four-leg fermion-fermion
and three-leg fermion-boson vertex functions. This truncation of the in-
teraction allows us to describe collective charge [134, 179] and spin [133,
180] degrees of freedom in a conserving way using the ladder DB approx-
imation [58–60, 125].

In the main part of the text, only single-shot ladder dual-boson results
are discussed. These calculations are performed on the basis of the con-
verged DMFT solution of the problem, where the bosonic hybridization
function is equal to zero. Importantly, in the latter case, the DB theory
fully coincides with the DF approach if only the local Coulomb interac-
tion is considered. The corresponding local impurity problem is solved
using the open-source CT-HYB solver [181, 182] based on the ALPS li-
braries [183]. This solution requires Ncycles = 8.1× 107 Monte Carlo steps.
After that, we calculate the dual self-energy and polarization operator di-
agrammatically and perform only the inner self-consistency loop in order
to obtain the dressed Green function and renormalized interaction using
the Dyson equation. For this purpose, we use a momentum grid with a
maximum linear mesh size of Nk = 128, with the number of fermionic and
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bosonic Matsubara frequencies being Niω = 256 and NiΩ = 64, respectively.
The expression for the lattice self-energy of the DB approach coincides
with the one of the DF theory in Eq. (D8)2 . The lattice polarization
function can be found using a similar expression [61]:

Π(q, iΩn) =
Π̃(q, iΩn)

1 +W(iΩn)Π̃(q, iΩn)
+ ΠEDMFT(iΩn). (4.2)

The fully self-consistent DB calculations can be performed as follows.
To obtain the fermionic hybridization of the effective impurity problem,
we use the outer self-condition that equates the local part of the lattice
Green function and local impurity Green function

∑︁
kGkωσ = gωσ. Regard-

ing the bosonic hybridization function, there is no clear method for how
this quantity has to be determined. Here, we investigate two different
self-consistency schemes that fix the bosonic hybridization. For the X-
self-consistent (Xsc) result, the local part of the lattice susceptibility is
equated to the corresponding local susceptibility of the impurity problem∑︁

qX
ς
Ω = χς

Ω. The other self-consistency can be imposed on a renormalized
(screened) interaction (Wsc)

∑︁
qW

ς
Ω = wς

Ω. The renormalized interaction
W of the lattice problem can be defined as

W ς−1(q, iΩn) = U ς−1 − Πς(q, iΩn), (4.3)

where Uch/sp = ±U/2 [72]. The EDMFT renormalized interaction can be
obtained by neglecting the dual contribution to the polarization operator
in Eq. 4.3, so that Πς(q, iΩn) = ΠςEDMFT(iΩn). The renormalized interaction
of the impurity problem can be found as

wς−1(iΩn) = (U ς + Y ς(iΩn))
−1 − ΠςEDMFT(iΩn), (4.4)

where Y ς(iΩn) is the bosonic hybridization function. Corresponding re-
sults are shown in Figs. 4.3, 4.6, 4.5 and 4.4. We note, as well, that the
comparisons between self-consistent DB and self-consistent DF schemes
are in good agreement, but they differ from the exact result. As we point
out in the main text, the single-shot DB approach correctly reproduces ex-
act DiagMC results at almost all temperatures. Surprisingly, we observe
that the Xsc DB calculations strongly deviate from the exact result pre-
sented in both figures. At the same time, we find that the Wsc DB result
for the self-energy agrees with DiagMC calculations even better than the

2See Eq. (3.57).
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single-shot DB one. However, two-particle quantities, such as the lattice
susceptibility and double occupancy, get worse when the self-consistency
on the renormalized interaction is utilized. This observation can be ex-
plained by the fact that the considered bosonic self-consistencies cannot
fix all desired single-and two-particle quantities at the same time. There-
fore, the question of a good self-consistency for the bosonic hybridization
function remains open.

In the following, the results of the DB calculations will be discussed in more
detail. We begin the discussion by comparing the single-shot DB results with the
results of the DiagMC approach. Note that by single-shot we do not mean that the
bare Green’s function is used to calculate the self-energy. In DF and DB a full (or
outer) self-consistency cycle can be performed. Thereby, after obtaining the lattice
quantities the hybridization function ∆ν is updated imposing the self-consistency
condition

∑︁
k G̃k = 0 [54, 124]. The new hybridization function is then used as a

new initial guess for the impurity solver. In this case, the DMFT is not viewed as the
reference system. Hence, the full self-consistency cycle is not used in our calculation
and we refer to our results as single-shot calculations.

In Fig. 4.3 we show the comparison between the numerical exact DiagMC (on
the left) and the single-shot DB (on the right) methods. The upper row shows the
Matsubara frequency dependent imaginary part of the self-energy at the AN point.
The lower row shows same results for the N point. Since for single-particle quantities
DiagMC and DQMC are in agreement within error bars, we only show the results
obtained within DiagMC. For the considered interaction strength both methods are
able to be converged until T ≈ 0.063 due to different reasons [85]. The different
temperatures (and colors) of the DiagMC result correspond to the different regimes
shown in Fig. 4.1. This does not hold for the right hand side. Note that the same
colors on both sides do not always correspond to the same temperature.

At high temperatures (red and orange) DB shows a good agreement to the exact
result. It correctly reproduces the incoherent behaviour and correctly predicts the
coherence temperature TN

QP ≃ 0.42 and TAN
QP ≃ 0.35 at both N and AN points,

respectively (not shown) [85]. However, DB shows a deviation at low temperature.
Even though the tendency towards a pseudogap is clearly visible, the temperature T∗
could not be reached due to convergence problems. The results show, that single-shot
DB underestimate the scattering rate. This underestimation arises due to missing
transverse contributions in the ladder approximation [131, 168, 169].

In Fig. 4.4 we show results obtained from DB calculations which take into account
the bosonic hybridization function Y ς obtained from to different self-consistency
conditions [156]. The main difference between the obtained hybridization functions
is that the one obtained from the self-consistency condition of the screened interaction
goes to zero for large frequencies. Beside an additional self-consistency condition,
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Figure 4.3: Comparison of the imaginary part of the Matsubara self-energy at the
antinodal k = (π, 0) (upper row) and nodal k = (π/2, π/2) (lower row) points between
the diagrammatic Monte Carlo (DiagMC) (left column) and dual boson (DB) (right
column) methods for different temperatures. (Note the slight difference in the lower
temperatures.) The figure is adapted from Ref. [85].

taking the bosonic hybridization function into account leads to a more complex
dramatic structure. For this reason, achieving convergence becomes more difficult.
In case of Xsc DB, e.g, the convergence could be achieved only up to T = 0.1 as
shown on the left hand side of Fig. 4.4. Additionally, the results for Xsc DB shows
the largest deviation to the exact results at all temperatures compared to the other
presented DB schemes. Obviously, in this regime the considered self-consistency
condition does not provide a good bosonic hybridization function. In contrast, the
results for Wsc DB are very similar to single-shot DB results. For temperatures up
to T = 0.1 Wsc DB shows a good agreement with the exact results and shows even
a larger tendency towards the pseudogap formation then single-shot DB. However,
in the following we will see that for the considered parameters quantities on the
two-particle level, such as lattice susceptibility and double occupancy, show a larger
deviation from the exact result if the bosonic hybridization function is not zero.
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Figure 4.4: Comparison of the imaginary part of the Matsubara self-energy at the
antinodal k = (π, 0) (upper row) and nodal k = (π/2, π/2) (lower row) points be-
tween the alternative DB schemes, self-consistent (XscDB) (left column) and W-self-
consistent (WscDB) (right column) for different temperatures. The figure is adapted
from Ref. [85].

To investigate magnetic correlations in the system we consider the static spin
susceptibility at q = (π, π) and iΩn = 0 as well as the correlation length ξ at
different temperatures. The real part of the susceptibility (left) and ξ (right) are
depicted in Fig. 4.5. For comparison, MFT (orange) and DMFT (gray) results are
shown with the Néel temperature denoted by a vertical dashed line. Here, q = (π, π)
is of particular interest because of the strong enhancement of the susceptibility at this
point due to the perfect nesting of this moment vector. At high temperature where
the magnetic fluctuations are weak, the magnetism can be described by the Curie law
where χsp(q = (π, π), iΩn = 0) ∝ T−1. However, at lower temperatures, when the
AFM correlation becomes large, the susceptibility and the correlation length grows
exponentially. The correlation length is extracted by a fitting procedure using the
Ornstein-Zernik form [85].

At small temperatures up to T ≈ TMFT
Néel all DB schemes are in good agreement
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AN,DiagMC
́

DiagMC
MFT
DB
XscDB
WscDB

Figure 4.5: Real part of the spin susceptibility (left panel) at q = (π, π) and the
first Matsubara frequency iΩ0 and correlation length ξ (right panel) in dependence of
the inverse temperature for various methods on the logarithmic scale. The figure is
adapted from Ref. [85].

with the DiagMC (black) result. At higher temperatures, the results start deviat-
ing. Xsc DB (red) performs the worst. Wsc DB (blue) shows a better performance,
however, the method does not capture the second exponential regime at low temper-
atures. The single-shot DB (brown) shows good agreement in the first exponential
(metallic) regime at intermediate temperatures between TMFT

Néel and TDMFT
Néel . Further-

more, at low temperatures, it captures the second exponential regime qualitatively.
Quantitatively single-shot DB lies slightly below the benchmark at low T . This
shows again, as discussed above, that at low temperatures the ladder approximation
underestimates the AFM fluctuations. The correlation length shows qualitatively
the same results.

As the final result we discuss the temperature dependence of the double occu-
pancy,

D = ⟨n↑n↓⟩. (4.5)

The DB double occupancy is obtained from the local part of the lattice susceptibil-
ity [184]. The results are illustrated in Fig. 4.6. First, let us consider the DiagMC
result in more detail. At high temperatures, the double occupancy is rather high due
to the thermal fluctuations and decreases with cooling until at T ≃ 1 a minimum
is reached. Further decreasing the temperature leads to an increase of D. This be-
havior can be qualitatively understood considering the entropy of the system since
the main part of this region lies within the metallic regime [85]. The increase of D
is followed by a sudden drop at low temperature due to a gain in potential energy
because of increasing AFM fluctuations [85].
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Figure 4.6: Comparison of the double occupancy D between diagrammatic Monte
Carlo (diagMC) and alternative DB schemes, single-shot (DB), self-consistent (XscDB),
and W-self-consistent (WscDB). The figure is adapted from Ref. [85].

We find that all DB calculation scheme shows a good agreement at high temper-
atures up to T ≃ 1 (not shown). Xsc (squares) and Wsc (triangles) DB captures the
increasing of the double occupancy below T = 1 qualitatively but fails to capture
the drop of D at low temperatures due to the large underestimation of AFM fluctua-
tions in this region. In contrast, single-shot DB (dots) show an accurate quantitative
agreement with the benchmark at all accessible temperatures.

To summarize, we have investigated the weak coupling regime of the two-dimensional
single-band Hubbard model at half filling. Despite the simplicity of this regime, the
model reveals interesting physical regimes and crossover regions with characteristic
properties. Single-shot DB captures qualitatively all the regimes and the crossovers
between them. The method reproduces very accurately the exact benchmark re-
sults for single- and two-particle quantities up to low temperatures where the AFM
fluctuation becomes large. In this regime, however, the results show small devia-
tions, since the ladder approximation underestimates the AFM fluctuations due to
the missing transversal contributions. Additionally, we find that the inclusion of the
bosonic hybridization function using different self-consistency conditions leads to a
larger deviation from the benchmark and complicates the convergence due to a more
complex diagrammatic structure.



4.2. Dual boson diagrammatic Monte Carlo approach applied to the extended
Hubbard model 65

4.2 Dual boson diagrammatic Monte Carlo approach
applied to the extended Hubbard model

In the next study [131] the dual boson diagrammatic Monte Carlo (DiagMC@DB)
technique for strongly correlated systems is introduced which is an extension of a
previous diagrammatic Monte Carlo scheme based on the DF approach [168, 169].
However, since the author of the current thesis provided the ladder DB results for this
study, we consider the work [131] from the perspective of investigating the accuracy
of the ladder approximation by comparing it to the numerical exact DiagMC@DB
solution of the dual boson problem. The DiagMC@DB method allows one to sample
all possible Feynman diagrams on the level of the four-point impurity vertex func-
tion. We perform calculations for the half-filled extended Hubbard model (1.12) on a
square lattice for different strengths of the local U and non-local V electronic interac-
tions. The inverse temperature is set to β = 4 for U ≤ 4 and to β = 2 for U > 4. We
find that the ladder DB approach performs very accurately in the regime of small to
moderate local Coulomb interaction U up to half of the bandwidth, which can be ex-
plained due to the perturbation nature of electronic correlations in this regime. But
also for other interaction strengths, the deviation from the exact solution remains
within δM = 8% errorbar. Moreover, we observe that the deviation is the largest
around U = 7, which means that in this regime the diagrammatic contributions
beyond the ladder become important. Further increase of the coupling leads to a
decrease in the mismatch. Additionally, the mismatch between the results decreases
with increasing V due to larger charge fluctuations in the longitudinal channel which
are captured in the ladder approximation. Finally, we find that both methods yield
a good agreement in predicting charge density wave (CDW) phase transition for con-
sidered control parameters justifying the argument that the ladder contribution is
the leading one.
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In this work we introduce the dual boson diagrammatic Monte Carlo technique for strongly interacting
electronic systems. This method combines the strength of dynamical mean-filed theory for nonperturbative
description of local correlations with the systematic account of nonlocal corrections in the dual boson theory by
the diagrammatic Monte Carlo approach. It allows us to get a numerically exact solution of the dual boson theory
at the two-particle local vertex level for the extended Hubbard model. We show that it can be efficiently applied to
description of single-particle observables in a wide range of interaction strengths. We compare our exact results
for the self-energy with the ladder dual boson approach and determine a physical regime, where the description of
collective electronic effects requires more accurate consideration beyond the ladder approximation. Additionally,
we find that the order-by-order analysis of the perturbative diagrammatic series for the single-particle Green’s
function allows to estimate the transition point to the charge density wave phase.

DOI: 10.1103/PhysRevB.102.195109

I. INTRODUCTION

Strongly correlated systems represent a formidable chal-
lenge in condensed matter physics. For this reason, the study
of model systems can allow us to investigate the effects of
strong interactions and analyze the effects of different ap-
proximations. Among these models, the Hubbard model [1]
has been extensively studied in the past decades due to its
capacity of successfully describing the emerging physics of
some classes of strongly correlated materials, where local
interactions are assumed to be much stronger than nonlocal
ones. A major breakthrough in the solution of the Hubbard
model was made by dynamical mean-field theory (DMFT) [2].
This method becomes exact in the limit of infinite spacial
dimensions or connectivity of the lattice [3], and serves as an
accurate approximation for single-particle quantities in finite
dimensions [4].

At the same time, many real materials exhibit interesting
physical effects, such as a charge density wave (CDW) phase,
that cannot be described by a local Hubbard interaction term
alone. To consider these phenomena, nonlocal interactions

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

have to be taken into account. For this aim, in analogy with
DMFT, an extended dynamical mean-field theory (EDMFT)
has been developed [5–9]. However, in this approach the
self-energy and polarization operator are local, meaning that
they are frequency dependent, but not momentum dependent.
Extensions of EDMFT, such as the GW + EDMFT [10–16],
the dual boson (DB) [17–20], the triply irreducible local
expansion (TRILEX) [21–23], and the dual TRILEX (D-
TRILEX) [24] approaches have been developed to cope with
this issue. In particular, the DB and D-TRILEX techniques
are based on the exact transformation that allows to rewrite
the initial action of the extended Hubbard model in terms of
the local impurity problem, which can be solved numerically
exactly [25–29], and a diagrammatic series around the impu-
rity. Since the effective impurity problem already includes the
main contribution coming from local correlations, this looks
to be a naturally convenient starting point for perturbation
theory and approximate approaches.

So far, calculations in the framework of the dual boson
approach have been performed only in the ladder approxima-
tion [30–34]. This approach is based on the calculation of a
specific sub-set of diagrams that, in principle, can be justified
by physical considerations only in the regime of developed
collective electronic fluctuations [35,36]. However, the lad-
der DB approximation provides remarkably good results in
comparison with other advanced methods, as, for instance,
dynamical cluster approximation (DCA) [37,38]. An alter-
native approach that involves solution of parquet equations
based on dual theories was recently proposed in Ref. [39]. A

2469-9950/2020/102(19)/195109(12) 195109-1 Published by the American Physical Society
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comparison between various methods based on extensions of
(E)DMFT can be found in Ref. [40].

Another route to study strongly correlated systems has
recently been attempted—the use of unbiased methods based
on the combination of diagrammatic approaches with Markov
chain Monte Carlo [41]. In particular, the bare diagrammatic
Monte Carlo (DiagMC) method has been successfully applied
to the Hubbard model at weak and moderate Coulomb inter-
actions [42]. This method starts from an expansion in terms of
the Hubbard coupling U and constructs all Feynman diagrams
up to some finite but high order in U . The algorithm allows
to sample all possible diagrams without any restriction to
specific topologies. Efficient algorithms that express all con-
nected diagrams of the perturbative expansion up to a given
order by means of determinants [43] have been developed
for various observables and correlation functions [44–47], sig-
nificantly reducing the computational cost of the calculation.
Approaches based on a small-coupling expansion work very
well in the regime of small to moderate couplings, but start to
fail when U is of the order of half of the bandwidth [4,48].
These failures are related to the finite convergence radius of
the diagrammatic series and can be improved using resumma-
tion techniques [44].

To allow for a nonperturbative treatment of strong cor-
relation effects, a diagrammatic Monte Carlo scheme based
on the dual fermion (DF) approach [49] was proposed in
Refs. [50,51]. The advantage of this method in comparison
with diagrammatic expansions in terms of the bare Coulomb
interaction U is that the impurity problem already accounts for
the main effects of local correlations, which strongly screen
the bare interaction U . The expansion is thus performed in
terms of the renormalized local interaction vertex function,
which appears to be naturally more convenient at the moderate
and strongly interacting regime. Additionally, the diagrams
are sampled continuously in the momentum space without the
discretization of the Brillouin zone. Hence, the result of the
calculation is not influenced by any finite-size effects.

In this paper we generalize this approach to the extended
Hubbard model, performing an additional dual transformation
that introduces effective bosonic fields related to nonlo-
cal interactions. Our dual boson diagrammatic Monte Carlo
(DiagMC@DB) method combines the advantages of DMFT,
because it already accounts for the screened local interaction
in the impurity problem, with the capability of sampling all
the possible Feynman diagrams without any restriction. The
result is an efficient diagrammatic Monte Carlo algorithm that
naturally incorporates the nonlocal Coulomb interaction in the
original DiagMC@DF approach [51].

II. DUAL BOSON THEORY

Our starting point is the extended Hubbard model in the
action formalism

S = −
∑
k,ν,σ

c∗
kνσ [iν + μ − εk]ckνσ

+ U
∑
q,ω

n−q,−ω,↑ nqω↓ + 1

2

∑
q,ω,ς

V ς
q ρ

ς
−q,−ω ρς

qω. (1)

Here, c(∗)
kνσ

are Grassman variables corresponding to the anni-
hilation (creation) of electrons with momentum k, fermionic
Matsubara frequency ν, and spin σ . We also introduced
the electronic dispersion εk and chemical potential μ. The
model additionally includes an on-site Coulomb interaction
of strength U in terms of the electron density nqωσ at mo-
mentum q and bosonic Matsubara frequency ω, as well as a
nonlocal interaction V ς

q , where the index ς represents charge
(ς = ch) or spin (ς = sp = {x, y, z}) degrees of freedom.
Variables ρ

ς
qω = nς

qω − 〈nς 〉 are expressed in terms of com-
posite quantities nς

qω = ∑
kν,σσ ′ c∗

k+q,ν+ω,σ σ
ς

σσ ′cq,ω,σ ′ . In the
previous expression σ ch = 1, and σ x,y,z is the corresponding
Pauli matrix in spin space. The general idea of dual theories
is to split the action into two parts: a local impurity problem
that contains the full local interaction and a nonlocal part
that can be treated perturbatively. Instead of directly applying
a perturbation theory to the nonlocal part, a transformation
that introduces new variables is performed. This allows to
dress the nonlocal part with the local impurity quantities. An
additional important consideration is that, once the DMFT
impurity is chosen, the dual theories represent a diagrammatic
expansion around the DMFT solution. This starting point
for the perturbation theory looks appealing since the DMFT
already accounts for local many-body effects, which allows
to correctly reproduce both the small and large U limits. To
perform this transformation, we add and subtract an arbitrary
fermionic hybridization function �ν , so that we can isolate
a local impurity part of the action. With this fermionic hy-
bridization function the action reads S = ∑

i S(i)
imp + Snonloc,

where the impurity part is

S(i)
imp = −

∑
ν,σ

c∗
νσ [iν + μ − �ν]cνσ + U

∑
ω

n−ω,↑ nω↓, (2)

and the nonlocal part reads

Snonloc = −
∑
k,ν,σ

c∗
kνσ [�ν − εk]ckνσ + 1

2

∑
q,ω,ς

V ς
q ρ

ς
−q,−ω ρς

qω.

(3)

In the following, 〈. . .〉imp denotes the average with respect
to the local action (2). The impurity problem of Eq. (2)
can be solved exactly using continuous-time quantum Monte
Carlo solvers [25–29]. In the same way we could include a
bosonic hybridization function [17–19]. However, this step
would require an additional discussion of the self-consistency
condition needed to determine it. Therefore, we exclude the
bosonic hybridization from the current discussion to reduce
the number of external parameters in the system. The hy-
bridization function can be defined in an arbitrary way, but
some choices are more convenient than others. In the rest of
the paper we will use �ν obtained from the single-site DMFT
impurity problem.

The dual boson transformation amounts to perform a
fermionic and a bosonic Hubbard-Stratonovich transforma-
tions over the nonlocal part of the action Snonloc, which
introduces new dual fermionic variables f , f ∗, and bosonic
φς fields. The action obtained after this transformation is
quadratic in the electronic operators c(∗), so we can integrate
them out [32]. The original problem of interacting electrons
is then recast into a new problem in terms of the dual degrees
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of freedom only. Single- and two-particle observables of the
original electron system can be exactly related to dual corre-
lation functions, as shown for example in Ref. [32]. The result
for the dual action reads (see Ref. [24] for the derivation)

S̃ = −
∑
k,ν,σ

f ∗
kνσ G̃−1

kνσ fkνσ

− 1

2

∑
q,ω,ς

φ
ς
−q,−ωW̃ς −1

qω φς
qω + F̃ [ f , φ]. (4)

The bare dual propagators are defined as

G̃kνσ = [
g−1

ν + �ν − εk
]−1 − gν = GEDMFT

kνσ − gνσ , (5)

W̃ς
qω = ας

ω

[
V ς −1

q − χς
ω

]−1
ας

ω = W ς EDMFT
qω − wς

ω, (6)

where gν and wς
ω are the Green’s function and renormalized

interaction of the auxiliary impurity problem, respectively,
and the impurity susceptibility χς

ω = −〈ρς
−ω ρς

ω〉imp. Addition-

ally, ας
ω = 1 + U ς χς

ω with U ch/sp = ±U/2. The choice of the
Matsubara frequency space is natural in this case because
in Eq. (5) the ∼ν−1 part of the tail in GEDMFT

kν is exactly
canceled by gν . This means that the dual fermion Green’s
function decays as fast as ∼ν−2, and there are no convergency
issues related to summations over Matsubara frequencies. The
interaction term truncated at the two-particle level is given by

F̃ [ f , φ] =
∑

q, k, ω, ν

ς, σ, σ ′

ς
νω f ∗

kνσ σ
ς

σσ ′ fk+q,ν+ω,σ ′φ
ς
qω

+ 1

4

∑
q, ω

{k, ν, σ }

�σσ ′σ ′′σ ′′′
νν ′ω f ∗

kνσ

× fk+q,ν+ω,σ ′ f ∗
k′+q,ν ′+ω,σ ′′′ fk′ν ′σ ′′ , (7)

where ς
νω and �σσ ′σ ′′σ ′′′

νν ′ω are the impurity fermion-boson and
fermion-fermion vertex functions, respectively. These quanti-
ties are defined in the particle-hole form as in Ref. [24], that
in terms of impurity variables explicitly read

ς
νω = 〈cν↑c∗

ν+ω,↑ ρ
ς
−ω〉imp

gνgν+ωα
ς
ω

, (8)

�σσ ′σ ′′σ ′′′
νν ′ω = 〈cνσ c∗

ν+ω,σ ′c∗
ν ′σ ′′cν ′+ω,σ ′′′ 〉c,imp

gνgν+ωgν ′gν ′+ω

. (9)

In general, the interaction term also contains all the higher-
order vertices that conserve the number of dual fermions,
but we will limit our study to the two-particle interaction
terms only. Terms beyond this approximation were shown
to lead to very small corrections in many regimes [52]. As
a matter of fact, dual theories with only two-particle vertex
functions show a rather good agreement with other unbi-
ased methods, and it is still under debate if deviations with
other methods are due to higher-order vertices or to different
effects [50–54]. Additionally, the inclusion of higher-order
vertices would enormously increase the complexity of the
diagrammatic Monte Carlo scheme. In light of all these con-
siderations, we exclude them from our calculations.

In our case, the solution of the impurity problem is ob-
tained using a continuous-time Monte Carlo solver based on

FIG. 1. Schematic diagrammatic interpretation of Eq. (12). The
full antisymmetrized fermion-fermion interaction � (gray box) is
a combination of the impurity vertex � (white box) and processes
involving a boson exchange (wiggly line). The full vertex acquires
a momentum dependence due to the presence of the bosonic lines.
White and black dots represent incoming and outgoing particles,
respectively. Triangles represent νω vertices. The exact dependence
on the channel indices and prefactors is shown in Eq. (12).

hybridization expansion (CT-HYB) [29]. This gives an access
to all the impurity observables needed for the construction of
the dual boson diagrammatics. In particular, we compute �ν ,
gν , and χω for the construction of bare propagators, as well as
the fermion-fermion vertex �σσ ′σ ′′σ ′′′

νν ′ω and the fermion-boson
vertex ς

νω. Within this approximation, the dual action (4)
with the interaction (7) is quadratic in the bosonic fields. This
means that it is possible to integrate dual bosonic degrees of
freedom out exactly and obtain a fully fermionic action. The
bosonic Hubbard-Stratonovich transformation is necessary for
decoupling of the nonlocal interaction term that otherwise
would prevent the integration of the local impurity action out.
Moreover, the introduction of the bosonic variables dresses
the interaction in terms of the impurity quantities, so that the
bosonic propagator is already partially screened. To construct
a form of the full fermion-fermion vertex after the integration
of the bosons, it is useful to decompose the impurity fermion-
fermion vertex (9) in channel representation as

�σσ ′σ ′′σ ′′′ = 1

2

∑
ς

�ς σ
ς

σσ ′σ
ς

σ ′′σ ′′′ . (10)

The result is a modified dual fermion action

S̃ = −
∑
k,ν,σ

f ∗
kνσ G̃−1

kνσ fkνσ

+ ξ

8

∑
q, ω, ς

{k, ν, σ }

�
ς,kk′q
νν ′ω f ∗

kνσ σ
ς

σσ ′

× fk+q,ν+ω,σ ′ f ∗
k′+q,ν ′+ω,σ ′′′σ

ς

σ ′′′σ ′′ fk′ν ′σ ′′ , (11)

where ξ is a formal expansion parameter, which must be set
to unity (ξ = 1) in the actual calculations and keeps track
of the expansion order. Importantly, we introduced a new
momentum-dependent fermion-fermion vertex that combines
the vertex function of the local impurity problem and the non-
local interaction between fermions mediated by dual bosonic
fields

�
ch,kk′q
νν ′ω = �ch

νν ′ω + 2M̃ch,q
ν,ν ′,ω − M̃ch,k′−k

ν,ν+ω,ν ′−ν − 3M̃sp,k′−k
ν,ν+ω,ν ′−ν,

�
sp,kk′q
νν ′ω = �

sp
νν ′ω + 2M̃sp,q

ν,ν ′,ω + M̃sp,k′−k
ν,ν+ω,ν ′−ν − M̃ch,k′−k

ν,ν+ω,ν ′−ν .

(12)
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Here, M̃ς,q
ν,ν ′,ω = ς

ν,ωW̃ ς
qω

ς

ν ′+ω,−ω. Since Eq. (10) holds for

both vertices �νν ′ω and �
kk′q
νν ′ω , it is possible to switch easily

between the two representations using the relations

�ch = �↑↑↑↑ + �↑↑↓↓, �sp = �↑↑↑↑ − �↑↑↓↓. (13)

Additionally, all the other nonzero components can be simply
obtained by applying the SU(2) symmetry in Eq. (10)

�↑↓↑↓ = �↑↑↑↑ − �↑↑↓↓ = �sp (14)

or by exploiting the fact that a simultaneous flipping of all
the spins leads to the same result in the paramagnetic case.
We note that the structure of the new fermion-fermion vertex
function (12) shown in Fig. 1 is reminiscent of the D-TRILEX
theory [24], and appears due to the antisymmetrized form
of the interaction. Integrating out of bosonic fields is very
important for the calculation of diagrams because it allows to
eliminate the bosonic degrees of freedom from the theory an-
alytically and to avoid their sampling in diagrammatic Monte
Carlo.

In our implementation we compute the dual self-energy. To
obtain the single-particle observables of the lattice problem,
we can use the standard equation that relates the dual self-
energy to the lattice self-energy �kν ,

�kν = �imp
ν + �kν, (15)

with �kν = �̃kν

1+gν �̃kν
, where �

imp
ν is the self-energy of the

impurity problem, as shown, for example, in Ref. [32]. The
lattice Green’s function can be obtained via the usual Dyson
equation from the lattice self-energy or using its relation with
the dual Green’s function [32].

III. DIAGRAMMATIC MONTE CARLO SCHEME

The algorithm tested in this paper is an extension of
the DiagMC@DF method proposed in Refs. [50,51]. Our
DiagMC algorithm computes numerically exactly the coeffi-
cients an(k, ν) in the expansion of the dual self-energy

�̃kν (ξ ) =
∑

n

an(k, ν) ξ n, (16)

for the action (11) up to some maximum order Nmax. The
value of the dual self-energy can be recovered by setting
ξ = 1. We will call it diagrammatic Monte Carlo for dual
bosons (DiagMC@DB). In the same way as the original al-
gorithm, our method is based on bare diagrammatic Monte
Carlo approach [55]. This algorithm allows to construct all the
Feynman diagrams up to any finite order and to sum over them
using Markov chain Monte Carlo. According to the authors of
Refs. [41,56], any correlation function O can be expressed as
a sum of diagrams as follows:

O(y) = lim
Nmax→+∞

Nmax∑
n=0

∑
{xi}
OCn ({xi}, y)

= lim
Nmax→+∞

Nmax∑
n=0

∑
{xi}

sgn
[OCn ({xi}, y)

] · ∣∣OCn ({xi}, y)
∣∣,

(17)

where y is a combined index that contains all the dependence
on external points, n indicates the number of vertices that
appear in the diagram, Cn are the topologies, and OCn is
the value of a specific diagram. Additionally xi is shorthand
notation for the internal degrees of freedom (k, ν, σ )i corre-
sponding to momentum, Matsubara frequency, and spin that
originate from the presence of loops of Green’s functions.
This statement is true provided that the limit in Eq. (17) is
well defined and convergent for the chosen parameters as
Nmax → +∞. Divergencies of the diagrammatic series are
often related to physical instabilities, as we show in Sec. IV, or
to some unphysical behavior of the starting point, for example,
the antiferromagnetic phase transition of DMFT [51].

The summation over the perturbation order n, topolo-
gies, and internal degrees of freedom is performed using a
Metropolis-Hastings scheme [55], where the function to be
sampled is the sgn(O), and the probability distribution is given
by he amplitude |O| to respect the requirement of positive
weight function. This approach automatically satisfies the de-
tailed balance condition for the Markov chain (see Ref. [57]),
given that the acceptance probability to go from a configura-
tion C to another configuration C is constructed as

RC−→C = min

{
1,
PC
PC · |OC|

|OC|
}
, (18)

where PC and PC are the probabilities of the initial and
final configurations, respectively. There are no substan-
tial changes from DiagMC@DF in the acceptance-rejection
scheme adopted, except for the fact that in our case the bare
fermion-fermion vertex function (12) is momentum depen-
dent. Each contribution to the series expansion (17) can be
written as a combination of two kinds of diagrammatic ele-
ments: fermionic lines that represent dual Green’s functions
G̃ (called also propagator lines) and vertices � described in
Eq. (12). Each vertex is attached to four propagator lines,
two incoming and two outgoing. The terms at order n in
the expansion are represented in terms of Feynman dia-
grams with n vertices connected by lines in all the possible
combinations.

These diagrams give an intuitive and efficient picture that
allows us to design the updates so that all the contributions to
the expansion (17) can be generated by changing how the ver-
tices are connected to each other by means of the propagator
lines. In particular, we use the same worm algorithm described
in Ref. [51] to update the diagram topologies. The aim of the
worm algorithm is to enforce momentum conservation, which
is a nonlocal property of the diagram, by means of updates that
act locally on few elements of a diagram. The worm algorithm
introduces a set of unphysical updates that allow the transition
between all the different possible topologies contributing to
the dual self-energy �̃kν . This means that we sample all the di-
agrams with one incoming and one outgoing line that are also
irreducible with respect to a cut of a fermionic line. This can
be practically implemented by the condition that no internal
line can carry the same momentum and frequency dependence
of the external lines. All the subtleties and details related to the
implementation are discussed in detail in Ref. [51].

Each configuration is identified by an ordered set of ver-
tices, where each vertex is stored together with the incoming
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FIG. 2. Convergence of the real (top panel) and imaginary (bot-
tom panel) parts of the dual self-energy �̃k,ν obtained for the
zeroth Matsubara frequency ν0. The result is plotted along the high-
symmetry path in momentum space k as a function of the expansion
order n. The parameters are U = 5, V = 1.25, and β = 2 in the units
of the hopping amplitude. The inset shows the convergence of the
real part around the M = {π, π} point.

and outgoing frequencies, momenta, spins, and the connec-
tions with the other vertices. The original implementation
found in Ref. [51] works with unsymmetrized diagrams to
avoid topology-dependent prefactors. However, the local ver-
tex � itself has an antisymmetric form in spin space, and we
find it convenient to introduce also the nonlocal vertex correc-
tions M̃ς, q

ν,ν ′ω in the antisymmetrized form shown in Eq. (12).
The corresponding vertex in the unsymmetrized diagrammatic
theory can be obtained by simply dividing this vertex by
2 [51].

The simultaneous sampling of contributions coming from
the fermion-fermion scattering and boson exchange processes
efficiently reduces the number of topologies. On the other
hand, we do not distinguish between local and nonlocal
diagrams, so that we cannot exclude local diagrams from
the beginning simply by a proper choice of the DMFT
self-consistency condition, as it was done in DiagMC@DF
calculations. However, in the spirit of Refs. [42,58], we can
reduce the diagrammatic space and thereby increase the effi-
ciency of DiagMC sampling by self-consistently eliminating
all diagrams that contain insertions of the topology �(1)

depicted in Fig. 3. This is accomplished by the so-called
“semi-bold” DiagMC scheme of Ref. [59], in which the
bare Green’s function in all diagrams is replaced with Gsb

that is dressed by the first-order self-energy, found as the
self-consistent solution of the Dyson equation G̃−1

sb = G̃0
−1 −

�(1)[G̃sb]. Here �(1)[G̃sb] is the first-order diagram where the
bare propagator is replaced by the self-consistently calculated
one G̃sb. This formal transformation of the series is exact in
the sense that it does not change the final result [59], although
the convergence properties of the semi-bold series are gen-
erally different [60]. Using the Metropolis-Hastings scheme
allows us to compute observables up to a normalization factor.
To keep track of the normalization, we sample the absolute
value of an additional diagram that we can calculate explicitly

FIG. 3. Most important self-energy diagrams. Top row shows
the only nonzero contribution to the first order diagram, taking into
account that we cannot connect two slots of the same local vertex
with a propagator line due to DMFT self-consistency condition. The
middle row shows the second-order diagrams �̃ (2). If V is small
compared to U/4, it can be approximated by the second-order dual
fermion diagram on the right-hand side. The last term �̃corr shows
few diagrams that enter �̃ in our calculations, but are not included in
the ladder DB.

outside Monte Carlo and we store its value in a suitable
accumulator Nnorm. The chosen diagram is simply a single
vertex with unitary value with the upper corners connected
by a single bare dual Green’s function. Its value is given by

N =
∑
kν

|G̃kν |, (19)

which is computed directly from the analytical expression for
the bare dual propagator G̃. The normalized dual self-energy
�̃kν is then straightforwardly computed from the normaliza-
tion accumulator Nnorm using the following equation:

�̃kν = N
Nnorm

〈�̃kν〉MC. (20)

IV. RESULTS

A. Computational details

We perform our calculations on a two-dimensional (2D)
square lattice with the nearest-neighbor hopping amplitude
t = 1 that fixes the energy units. The chemical potential μ is
set to U/2, ensuring that the system is at half-filling. To avoid
the low temperature issues related to the DMFT Néel transi-
tion discussed in details in Ref. [51], all the calculations are
performed at β = 4 when U � 4 and at β = 2 for U > 4. We
would like to stress that this is not a limitation of the method,
which works with any dispersion and with a general form of
the interaction as a function of momentum. We start from the
description of the output of the calculation, namely the dual
self-energy �̃kν obtained within the bare diagrammatic Monte
Carlo scheme. The only obvious difference between a bare
and and semi-bold run is that the �(1)[G̃sb] is computed in
advance and added to the DiagMC result. Since the DiagMC
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FIG. 4. Comparison between DiagMC@DB (solid lines with er-
ror bars) and ladder DB (dots) results for the real (top panel) and
imaginary (bottom panel) parts of the lattice self-energy �kν0 . The
result is obtained for U = 2, β = 4, and different values of the
nonlocal Coulomb interaction V specified in the legend of the bottom
panel.

result sums diagrams up to a given order, one has to check that
the result is converged with respect to the order. In Fig. 2 we
show a converged output of our calculations. In particular, the
result for the maximum order of the diagrammatic expansion,
order 5, differs from order 4 of ∼1%, hence we consider the
result converged. Practically, this means that the performed
calculation can be considered converged already at order 4.
This is the case for most of the presented calculations.

Far away from instabilities, it is not possible to observe any
improvement in going beyond the fifth order of the diagram-
matic expansion, and the computation necessary to achieve
convergence at the order 6 increases significantly. Thus, a
standard DiagMC@DB computation requires around 12 hours
with a hundred parallel runs to obtain a converged result at the
fifth order. Instead, for a converged result at the sixth order, the
required computational time increases to more than 24 hours
to reach a reasonable accuracy. For this reason, all results
presented in this work are calculated up to the fifth order of
expansion, except the ones that are used for the analysis of the
phase transition.

An important remark is that the contribution coming from
the nonlocal interaction can be quite large, even up to val-

FIG. 5. Comparison between DiagMC@DB (solid lines with er-
rorbars) and ladder DB (dots) results for the real (top panel) and
imaginary (bottom panel) parts of the lattice self-energy �kν0 . The
result is obtained for U = 4, β = 4, and different values of the
nonlocal Coulomb interaction V specified in the legend of the bottom
panel.

ues around U = 6t . Additionally, we observe that the main
contribution to the real part of the self-energy comes from
two kind of diagrams that are shown in Fig. 3. The first is
the single boson diagram �̃(1) that contains only one factor
M̃ς, q

ν,ν ′ω, which is the only nonzero contribution at the first order
of the diagrammatic expansion in terms of the vertex function.
This can be already seen in Fig. 2, where the first-order con-
tribution accounts for around 50% of the real part of the dual
self-energy. The second important contribution is the second-
order dual fermion diagram �̃(2) that contains two fermion-
fermion vertices connected to each other. At values of V far
away from the CDW instability, other contributions to Re�̃
are rather small compared to these ones. On the other hand,
the imaginary part of the self-energy is much more sensitive to
higher-order corrections. In Fig. 2 we can see that the second
order is way off compared to the third order, accounting for
only around 50% of the contributions to Im�̃. Interestingly,
the third order already accounts for most of the contribu-
tions. We deduce that the inclusions of third-order diagrams
in our expansion that contain multiple fermion-fermion scat-
tering and bosonic exchanges are important for the imaginary
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FIG. 6. Comparison between DiagMC@DB (solid lines with er-
rorbars) and ladder DB (dots) results for the real (top panel) and
imaginary (bottom panel) parts of the lattice self-energy �kν0 . The
result is obtained for U = 6, β = 2, and different values of the
nonlocal Coulomb interaction V specified in the legend of the bottom
panel.

part of the self-energy. These diagrams contribute to around
40% of Im�̃ at high symmetry points for U = 5, and their
impact on dual quantities becomes even more important at
larger U . Orders larger than the third typically amount to
a correction of less than 10% of Im�̃ at high symmetry
points.

However, the overall momentum dependence of the lattice
self-energy is still dominated by Re�̃ in the regimes where
U � 4 or U � 8 because of the denominator in Eq. (15), as
shown also in Ref. [51]. The most important corrections to
the lattice self-energy coming from Im�̃ appear exactly in
the regime between half of the bandwidth and the bandwidth,
where it can account for around 40% of the difference with
DMFT solution at high symmetry points. Even though second
order is thought to already account for the most important con-
tributions far away from instabilities, as shown in Ref. [4], the
inclusion of two-boson exchanges and third-order corrections
in fermion-fermion vertices can lead to significant quantitative
improvements over second-order calculations.

FIG. 7. Comparison between DiagMC@DB (solid lines with er-
rorbars) and ladder DB (dots) results for the real (top panel) and
imaginary (bottom panel) parts of the lattice self-energy �kν0 . The
result is obtained for U = 8, β = 2, and different values of the
nonlocal Coulomb interaction V specified in the legend of the bottom
panel.

B. Comparison with the ladder DB approach

Figures 4 to 7 show a comparison of the DiagMC@DB
and ladder DB calculations for different values of the local
U and nonlocal V ch

q Coulomb interactions. In all the figures
we show the result of the calculation at the fifth order. In
particular, we show results from a quarter of the bandwidth
U = 2 up to the bandwidth U = 8. We note that the agree-
ment between these two methods is substantially exact up
to a half of the bandwidth for all considered values of the
nonlocal interaction. In fact, in this regime the ladder DB
result for the lattice self-energy lies inside the error bars of
the DiagMC@DB calculation. For larger values of the on-site
Coulomb interaction exceeding the half of the bandwidth, the
difference between two theories is more noticeable, especially
for small strength of the nonlocal interaction V . To quantify
the difference between these two methods, we look at the
M = (π, π ) point in the momentum space and calculate the
following quantity

δM = Re

[
�

DiagMC
M,ν0

− �
ladd.

M,ν0

�
DiagMC.

M,ν0

]
, (21)
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where �M,ν0 is the difference between the self-energy in the
specified method and the DMFT self-energy �

imp
ν0 (15), and

ν0 is the lowest positive Matsubara frequency. We measure
differences with respect to DMFT self-energy because this last
is constant in momentum space and quite large. If we want
to resolve relatively small differences in momentum space,
we have to exclude its contribution. Additionally, we choose
the M point because it shows the largest difference between
the two curves in the Brillouin zone. In this way, we
are sure that the δM parameter contains information only
about the maximum mismatch coming from the dual correc-
tions. The reason for taking the real part of this quantity comes
from the fact that the imaginary part of the dual self-energy
Im�̃ shows a systematic shift already at V = 0, i.e., at the
dual fermion level (see Ref. [51]). Here, we aim to assess the
behavior of the self-energy as a function of the nonlocal V
rather than to investigate this aspect.

The result for the mismatch parameter δM is summarized in
a tentative phase diagram shown in Fig. 8. We can conclude
that the difference between DiagMC@DB and ladder DB
approaches is negligible at small U below the half of the
bandwidth and further increases with the local interaction.
This behavior can be explained considering that for small
local Coulomb interaction U the regime is still perturbative
in the dual boson theory, so we expect all the methods to
give quantitatively similar results. This finding is also in
agreement with the result of DiagMC@DF calculations [51]
obtained for the zero nonlocal Coulomb interaction. On the
other hand, we observe that the mismatch is more severe at
V = 0 and decreases as V increases. Indeed, when the non-
local Coulomb interaction is large, charge fluctuations in the
horizontal channel are expected to give the main contribution
to physical observables such as self-energy and susceptibil-
ity [36] because the system lies close to the charge density
wave (CDW) phase. Ladder DB approach accounts for this
kind of fluctuations by construction, and for this reason the
mismatch δM decreases. From Fig. 8, we find that the values
of U at which the largest mismatch occurs (red area) lie in the
region where the phase transition to the Mott-insulating state
was predicted by cluster DMFT [61] and dual fermion [62]
calculations at lower temperature. This means that in this
regime contributions not included in the ladder approxima-
tion cease to be negligible. These contributions correspond
to bosonic lines in a direction orthogonal to the ladder di-
rection (see, e.g., �̃corr in Fig. 2), which are included in
DiagMC@DB. It means that the correct description of this
phase transition, especially at V = 0 would require advanced
approaches beyond the ladder approximation. Another consid-
eration that emerges from this analysis as a function of U and
V is that up to a half the bandwidth a momentum dependence
of the real part of the self-energy at V = U/4 is dominated
by the nonlocal interaction V . It plays a very important role
even for U = 6, where we would expect the local interaction
to give the most important contribution.

C. Monitoring the CDW phase transition
from single-particle observables

In the current implementation, the DiagMC@DB theory
is based on a solution of a single-site impurity problem,

FIG. 8. Summary of the results of our calculations as a function
of the local U and nonlocal V Coulomb interactions. Results for
U � 4 were obtained at β = 4, while for U > 4 they were calcu-
lated at β = 2. The mismatch parameter δM is depicted by color.
Points correspond to physical parameters for which calculations are
performed. The red area highlights the region where the mismatch
parameter is larger. Transition points between the normal and CDW
phases obtained in DiagMC@DB and ladder DB calculations are
depicted by an orange circle and cross, respectively. The dashed
black line V = U/4 represents an estimation of the phase boundary
predicted by mean-field arguments.

which does not allow for a description of broken-symmetry
phases. A practical example of the failure of an expansion
based on single-site DMFT is given by the strong anti-
ferromagnetic fluctuations arising in the Hubbard model at
low temperature, as discussed in detail in Ref. [51] for the
DiagMC@DF. In particular, this results in a divergence of
the infinite diagrammatic expansion in terms of bare dual
quantities at the phase transition [18,20,32,36,51]. The most
interesting phase of the extended Hubbard model that is
associated with the presence of the nonlocal Coulomb inter-
action is the charge density wave phase, i.e., a checkerboard
configuration in the real space with alternating empty sites
and doubly occupied sites. The phase transition to this state
occurs when V is large enough to overcome the effect of
the on-site Coulomb repulsion that favors a single-electron
occupation of lattice sites. A perturbative expansion at small
values of U predicts the onset of the CDW phase to be located
at V � U/8 + const. [63]. A mean-field estimate based on
random phase approximation (RPA) or GW theories gives the
transition point at V � U/4 [16]. This behavior is reproduced
at moderate interaction strength by DCA calculations [38,64].
Finally, as we shall see below, for large values of U and large
temperatures the position of the onset of the CDW phase ap-
pears to shift towards the value V � U that can be found, for
example, using the Peierls-Feynman-Bogoliubov variational
principle [65]. Dual boson calculations are in good agreement
with the DCA results and reproduce all these different trends
in the different regimes [18,32].

The description of the system inside the CDW state re-
quires an inclusion of symmetry breaking terms in the theory.
However, the instability can be identified already in the nor-
mal phase studying the charge susceptibility [18,20,32]. In
particular, we expect the susceptibility to show a very sharp
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peak when the instability occurs. This trend can be seen in
the upper right panel of Fig. 9, where the inverse of the
charge susceptibility linearly decreases. Our ladder dual bo-
son calculations predict a transition point VCDW at V = 0.77
for U = 2.5 and V = 1.09 for U = 3.5 at inverse temperature
β = 4. In the strongly correlated regime, the transition points
evaluated with this method are V = 3.41 for U = 6.5 and
V = 5.15 for U = 7.5 at β = 2.

However, the critical value VCDW for the CDW phase tran-
sition can also be found in a controlled way from the analytic
structure of the dual self-energy �̃ as a function of the com-
plex expansion parameter ξ . Since the dual action (11) is
explicitly constructed for the translationally symmetric phase,
the critical point V = VCDW is marked by a singularity ap-
pearing in the function �̃(ξ ) at ξ = 1. When V is increased
beyond VCDW in the symmetry-broken phase, this singularity
must move along the real axis towards the origin for the
physical �̃(ξ = 1) to remain inaccessible by its power-series
expansion (16). The method introduced in Ref. [66] and
routinely applied in the context of DiagMC [44] allows to
accurately evaluate the specific location of the singularity ξs.
It assumes a generic power-law behavior near the singularity,
which is typical for a continuous phase transition, �̃(ξ ) ∝
(ξs − ξ )η for |ξ − ξs|  1 with some real number η, and
extracts ξs from the behavior of the series coefficients an in
Eq. (16). As shown in Ref. [44], ξs can be found from a finite
number of coefficients {an} with a reliable error bar that in-
cludes both the systematic and statistical (Monte Carlo) error.
The result of this procedure for different values of V is shown
in the bottom right panel of Fig. 9, where ξs(V ) is obtained
from {Re an(k, ν0)}, for n = 1, . . . , Nmax = 6 projected on the
first A1g-symmetric harmonic ψ s

(1,0)(k) = cos(kx ) + cos(ky)
to produce a numerical series from the functional one. The
condition ξs(V ) = 1 then gives the critical value VCDW. To
study the behavior of the series close to the phase transition,
it is crucial to get very well-converged coefficients and to
achieve high orders in the expansion. For this reason the
calculations of the phase boundary were performed using
the semi-bold scheme described in Sec. III up to the sixth
order. The critical values VCDW obtained with this method are
V = 0.81(1) at U = 2.5 and β = 4. In the same fashion we
can estimate the transition to occur at V = 1.15(1) for U =
3.5, V = 3.42(1) for U = 6.5 and V = 5.20(2) for U = 7.5.
These points are highlighted in orange in Fig. 8.

In combination with this controlled method, we propose
an additional empirical way to obtain the instability point. It
is important to notice that the checkerboard configuration of
electrons is insulating. This means that strong charge fluctu-
ations create a pseudogap in the electronic spectrum, which
can be detected calculating the spectral function. In particular,
the spectral function at the Fermi energy is directly connected
to the local Green’s function G(β/2) calculated at imaginary
time τ = β/2 by the relation A(EF) ≈ −β G(β/2)/π (see, for
example, Ref. [18]), without the need of analytical contin-
uation from Matsubara to real frequencies. This situation is
conceptually similar to the antiferromagnetic pseudogap, but
the analysis in the framework of our theory is very different. In
fact, the divergence of the dual fermion series is not associated
with a true physical instability, as discussed previously, hence
the divergence of the diagrammatic series in terms of the

FIG. 9. Left panel: Gloc(τ = β/2) as a function of nonlocal in-
teraction V for the various perturbation orders in the bare DiagMC
scheme at U = 2.5 and β = 4. In the inset it is shown the estimated
V of the CDW transition as a function of the order. An additional
fitting of the curve with the function f (n) = C0 + C1 n−C2 , where C0,
C1, and C2 are fitting parameters, allows to extrapolate the value at
infinite order VCDW = C0 = 0.77(2). Upper right panel: The inverse
of the charge susceptibility at the M = {π, π} point obtained by
ladder dual boson calculations as a function of V for the same U
and β. The value VCDW can be obtained by a linear fitting of the data
and checking where the fitting line crosses zero. Lower right panel:
Position ξs of the singularity on the real axis obtained within the
method presented in Ref. [66] for the bare and semi-bold DiagMC
schemes. The phase transition occurs when ξs crosses ξ = 1. This
analysis predicts the transition at VCDW = 0.82(1) for the bare series
and VCDW = 0.81(1) for the semi-bold series.

local interaction does not have a clear physical interpretation.
On the contrary, the nonlocal interaction V enters only the
effective fermion-fermion vertex function of Eq. (12) in a
trivial form through the dual boson propagator, which up to
a local prefactor is proportional to [32]

W̃ς
qω ∼ V ς

q

1 − χ
ς
ωV ς

q
. (22)

We consider the local Green’s function obtained by replacing
the dual self-energy up to order n into the Dyson equation
G(n)(β/2) as a function of the nonlocal interaction V , keeping
the local interaction U fixed. If we inspect left panel of Fig. 9,
the behavior of this function resembles a Fermi function

G(n)
V (β/2) ≈ G(n)

V =0(β/2)

exp [αn(V − V ∗
n )] + 1

, (23)

where V ∗
n is the critical value of the nonlocal interaction at

which the function shows a steep drop, and αn is a numerical
value that defines the broadening of the Fermi function at
order n. From these empirical and physical considerations, we
expect that V ∗

n → VCDW as the order n → +∞, which means
that, if we extrapolate the central point of the Fermi function
as a function of n, we expect it to converge to the value VCDW.
Results based on this analysis for the bare series are plotted
in the left panel of Fig. 9, and the expected behavior is clearly
visible in the figure. Fitting the value of V ∗ as a function of the
order n allows to extrapolate the value of VCDW by letting the
order go to infinity. In the case of the semi-bold series, there is
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a redistribution of weight between the various orders and the
extrapolation to infinite order from the first six coefficients
based on the same fitting function described in the caption of
Fig. 9 is not as accurate as in the bare case. The inset in the left
panel of Fig. 9 clearly shows the convergence of the values of
V ∗

n to a finite value as the order increases. We compared the
extrapolated values from the bare series with the susceptibility
at M = (π, π ) calculated from ladder calculations. With this
simple analysis we obtained values for VCDW compatible with
the ladder results. The specific values are VCDW = 0.77(2) at
U = 2.5 and VCDW = 1.09(2) at U = 3.5 with β = 4.

The methods presented in this section show how order-
by-order or cumulative analysis of the series allows for
an accurate extrapolation of results in the limit of infinite
order of perturbation expansion. Our results for U = 2.5
show a very good agreement with the value obtained with
GW + DMFT in Ref. [16]. Additionally there is a good
agreement with previous dual boson [18,32,36] and DCA
calculations [37,64].

V. CONCLUSIONS AND OUTLOOK

Even though the method presented in the previous sec-
tions is not exact because higher-order impurity vertices are
neglected, the DiagMC@DB scheme allows to include con-
tributions coming from all the possible diagrams with no
restriction on a particular class of topologies. In other words,
DiagMC@DB is the exact solution of the dual boson ac-
tion truncated at the level of two-particle scattering. Due to
this consideration, the results provided by DiagMC@DB are
based on theoretically much more stable grounds than other
approximations based on partial resummation of specific dia-
grams, as in the case of the ladder dual boson. Additionally,
there are no finite-size effects since we worked in momentum
space and Matsubara frequencies directly.

In our calculations we observed a very accurate agreement
between DiagMC@DB and ladder calculations for U up to
half of the bandwidth. Even above this value of U , the ladder
dual boson seems to capture the main contributions and the
difference between the two methods is quite small. In fact, we
never observed a value of the δM parameter bigger than 8% in
the region of the parameter space where the series converges.
This offers a further validation of the ladder dual boson tech-
nique over a very wide range of interaction strengths. The
presence of strong nonlocal interaction V enhances nonlocal
bosonic excitations in the charge channel that are accounted
for in ladder approximation. This can be captured by looking

at the real part of the self-energy, which coincides for the two
methods at large values of V .

The advantage of the DiagMC@DB is that is allows to
consider diagrams order by order and investigate the conver-
gence properties of the series in an unbiased and systematic
way. In particular, starting from DMFT impurity, the solution
is a series is terms of a complicated function of V . Since V
does not enter the impurity, it is possible to use resummation
techniques to estimate the value of V at which the charge order
occurs already from the study of single-particle quantities.
Different choices of the hybridization functions, obtained,
for instance, from ladder dual boson calculations, could, in
principle, extend the convergence radius of the series at lower
temperatures (see Ref. [51]).

Another strategy that could improve the efficiency of sam-
pling could be the formulation of the series in terms of the
semi-bold Green’s function, in which some diagrams are in-
cluded in the bare dual propagator from the very beginning,
or the fully bold Green’s function, substantially reducing the
configuration space. It is expected that both approaches could
improve the convergence properties as well, but a systematic
study is required. In our calculations for the phase diagram,
we observe that the computational time needed for a con-
verged result at the sixth order is typically decreased by an
order of magnitude if the first order diagram is included in
the semi-bold Green’s function. At the same time, this choice
of the semi-bold scheme consistently gives results compatible
with the bare series in the whole parameter space investigated
in this study.

We are currently working in the direction of extending
this method to calculate also two-particle observables in two-
dimensional heterostructures. In addition, the inclusion of a
checkerboard configuration with two nonequivalent sublat-
tices (impurity problems) can allow to study the extended
Hubbard model inside the broken symmetry phases, as the
CDW phase or the antiferromagnetic phase.
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Chapter 5

D-TRILEX

This chapter is based on the following publications:

E. A. Stepanov, V. Harkov, A. I. Lichtenstein, “Consistent partial bosonization of
the extended Hubbard model”. Phys. Rev. B 100, 205115 (2019)

V. Harkov, M. Vandelli, S. Brener, A. I. Lichtenstein, E. A. Stepanov, “Impact of
partially bosonized collective fluctuations on electronic degrees of freedom”. Phys.
Rev. B 103, 245123 (2021)

E. A. Stepanov, V. Harkov, M. Rösner, A. I. Lichtenstein, M. I. Katsnelson, A. N.
Rudenko, “Coexisting charge density wave and ferromagnetic instabilities in mono-
layer InSe”. npj Computational Materials 8, 118 (2022)

5.1 Consistent partial bosonization of the extended
Hubbard model

Description of various many-body effects in condensed matter theory is usually done
in the context of mean-field theory performing a partial bosonization of collective
fermionic fluctuations in leading (charge, spin, etc.) channels of instability. How-
ever, a simultaneous account for different bosonic channels in this framework gives
rise to a so-called Fierz ambiguity problem related to the decomposition of the lo-
cal Coulomb interaction into considered channels, which drastically affects the final
result of the calculation. This issue remains yet unsolved for all mean-field-based
theories, although many of them, such as GW or GW+EDMFT, are intensively
used for the solution of realistic problems in and out of equilibrium.

In Ref. [72], we introduce a consistent partial bosonization of the fermionic model
that solves the Fierz ambiguity problem. We apply our method to the extended
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Hubbard model and derive an effective theory that is formulated in terms of dual
fermionic degrees of freedom, new bosonic fields, and an effective fermion-boson
interaction. Moreover, we perform a parametrization of the full local four-point
vertex1 of the auxiliary Anderson impurity model which allow us to express the
vertex in terms of the fermion-boson (three-point) vertex and screened interactions
w and show that the local four-point vertex can be safely excluded from the model
action, which results in a very simple and efficient approximation that inherits the
high performance of more elaborate dual methods. However, the action can be also
used in more complex calculation schemes like, e.g., diagrammatic Monte Carlo as
it was done in [128]. The new efficient approach is called dual triply irreducible
local expansion (D-TRILEX)2 for the partially bosonized theory. The structure of
the self-energy (3.84) and polarization operators (3.85) and diagrams (3.86) in D-
TRILEX is reminiscent of GW+DMFT and TRILEX approaches, but accounts for
the exact local three-point vertex function in a symmetric way. The importance of
a symmetric inclusion of the vertex is discussed in Ref. [61].

In Ref. [72], the derived D-TRILEX approached is applied to the half-filled Hub-
bard model on a square lattice. Calculations are performed at temperature T = 0.1.
Note that the energy scale is set to half of the bandwidth D = 4t = 1. The results
are shown for the Coulomb interactions U = 0.5, 1.0, 1.5. We find that the dual
self-energy D-TRILEX provides a very accurate agreement compared to the ladder
DF results at moderate interaction strength U = 1.0. A small mismatch appears
due to the missing transversal contributions. This effect is even more pronounced at
weak coupling. The largest deviation we observe at U = 1.5. Finally, we show that
D-TRILEX provides a qualitatively good estimation of the metal-to-Mott-insulator
transition by predicting it at smaller interaction strength then DMFT similar to
cluster DMFT [187] and second-order DF [188].

1Similar parametrizations were introduced in [69, 133, 134]. Simpler parametrizations based on
a weak coupling perturbation expansion can be found in [159, 185, 186].

2Note that previously (in Ref. [72]) the method was called TRILEX2.



PHYSICAL REVIEW B 100, 205115 (2019)

Consistent partial bosonization of the extended Hubbard model

E. A. Stepanov,1,2 V. Harkov,1,3 and A. I. Lichtenstein1,2,3

1Institute of Theoretical Physics, University of Hamburg, 20355 Hamburg, Germany
2Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia

3European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany

(Received 25 July 2019; revised manuscript received 11 October 2019; published 11 November 2019)

We design an efficient and balanced approach that captures major effects of collective electronic fluctuations in
strongly correlated fermionic systems using a simple diagrammatic expansion on a basis of dynamical mean-field
theory. For this aim we perform a partial bosonization of collective fermionic fluctuations in leading channels
of instability. We show that a simultaneous account for different bosonic channels can be done in a consistent
way that allows to avoid the famous Fierz ambiguity problem. The present method significantly improves a
description of an effective screened interaction W in both charge and spin channels, and has a great potential for
application to realistic GW -like calculations for magnetic materials.

DOI: 10.1103/PhysRevB.100.205115

I. INTRODUCTION

Mean-field theory is a simple and transparent method that
is used for a description of collective fermionic excitations in
a broad range of physical problems from condensed matter
physics to quantum field theory. It allows to capture both
magnetic and superconducting fluctuations in Hubbard [1,2]
and t-J [3,4] models, as well as spontaneous symmetry
breaking and formation of various condensates in Nambu–
Jona-Lasinio and Gross-Neveu models [5–13]. The underly-
ing idea of the method is based on a partial bosonization
of collective fermionic fluctuations in leading channels of
instability in the system [14–16]. This allows a simple dia-
grammatic solution of the initial problem in terms of original
fermionic and effective new bosonic fields in a GW fashion
[17–19].

Theoretical description of many-body effects in a regime
of strong electronic interactions requires more advanced ap-
proaches that are usually based on (extended) dynamical
mean-field theory (EDMFT) [20–25]. DMFT provides an
exact solution of the problem in the limit of infinite di-
mension [26] and is found to be a good approximation for
single-particle quantities [27], especially when properties of
the system are dominated by local correlations. However,
collective electronic fluctuations are essentially nonlocal. For
this reason, a number of proposed approaches that treat many-
body excitations beyond DMFT grow as fast as a degree of
their complexity [28]. These new methods provide a very
accurate solution of model (single-band) problems, but are nu-
merically very expensive for realistic multiband calculations
[29–34].

Following the mean-field idea, a partially bosonized de-
scription of collective electronic effects in strongly correlated
systems can also be performed on a basis of EDMFT. Re-
search in this direction resulted in GW +EDMFT [35–41] and
TRILEX [42–44] methods. Although the GW -like extension
of EDMFT is an efficient and inexpensive numerical ap-
proach, it has a significant drawback that is common for every

partially bosonized theory. This severe problem is known as
the Fierz ambiguity [14–16]. It appears when two or more dif-
ferent bosonic channels are considered simultaneously. Then,
the theory becomes drastically dependent on the way how
these channels are introduced. Surprisingly, this issue remains
unsolved even for a standard mean-field theory, let alone the
GW +EDMFT method that is actively used for solution of
realistic multiband [36,45–49] and time-dependent problems
[50,51].

Recently, the authors of TRILEX approach showed that the
effect of the Fierz ambiguity can be reduced using a cluster
extension of the theory [44]. However, this approach is much
more time consuming numerically than its original single-site
version and, in fact, breaks a translational symmetry of the
initial lattice problem. Indeed, the nonlocal in space self-
energy obtained within the cluster becomes different from
the corresponding one between two clusters. All above dis-
cussions suggest that there is no reliable simple theory that
can accurately describe an interacting fermionic system in the
regime of coexisting strong bosonic fluctuations in different
channels.

In this work we introduce a consistent partial bosonization
of an extended Hubbard model that solves the famous Fierz
ambiguity problem without a complicated cluster extension
of the method. We show that the resulting action of the
problem contains only an effective fermion-boson vertex
function, while a fermion-fermion interaction can be safely
excluded from the theory. The derived approach combines a
simplicity of a mean-field approximation with an efficiency
of much more advanced EDMFT-based methods. This allows
to improve many existing extensions of GW method and
include an effect of magnetic fluctuations in a standard GW
scheme in a consistent way. Although the introduced theory is
discussed in a context of an extended Hubbard model, it is not
restricted only to this particular single-band model, and can
be applied to other fermionic problems from different areas of
physics.

2469-9950/2019/100(20)/205115(13) 205115-1 ©2019 American Physical Society
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II. PARTIAL BOSONIZATION OF A FERMION MODEL

A. Fierz ambiguity

We start the derivation of a partially bosonized theory
for strongly correlated electrons with the following action of
extended Hubbard model:

Slatt = −
∑
k,ν,σ

c∗
kνσ [iν + μ − εk]ckνσ

+ U
∑
q,ω

nqω↑n−q,−ω↓ + 1

2

∑
q,ω,ς

V ς
q ρς

qω ρ
ς
−q,−ω. (1)

Here, c(∗)
kνσ

is a Grassmann variable corresponding to an-
nihilation (creation) of an electron with momentum k,
fermionic Matsubara frequency νn, and spin projection σ =
↑,↓. We also introduce following bilinear combinations
of fermionic variables ρ

ς
qω = nς

qω − 〈nς 〉 that correspond to
charge (ς = c) and spin (ς = {x, y, z}) degrees of free-
dom with momentum q and bosonic frequency ωm. nς

qω =∑
k,ν,σσ ′ c∗

kνσ σ
ς

σσ ′ck+q,ν+ω,σ ′ , σ c = 1, and σ x,y,z are Pauli ma-
trices in the spin space. U corresponds to a local Coulomb
interaction, V ς

q describes a nonlocal Coulomb and direct
exchange interactions in the charge and spin channels, respec-
tively. Dispersion relation εk can be obtained via a Fourier
transform of hopping matrix elements ti j between lattice sites
i and j. All numerical calculations in this work are performed
for a half-filled two-dimensional Hubbard model (V ς

q ,Y ς
ω =

0) on a square lattice with a nearest-neighbor hopping ampli-
tude t . The half of the bandwidth D = 4t = 1 sets the energy
scale. The temperature is T = 0.1.

For a simplified description of many-body effects in the
system, leading collective electronic excitations can be par-
tially bosonized [14–16]. For this aim, the local interaction
term Un↑n↓ has to be rewritten in terms of bilinear combi-
nations of fermionic variables as 1

2

∑
ς U ςρςρς . This allows

to introduce an effective bosonic field for every bilinear com-
bination using the Hubbard-Stratonovich transformation for
the total (local and nonlocal) interaction part of the problem
[52,53]. It should be noted, however, that the decoupling
of the local Coulomb interaction U into different channels
can be done almost arbitrary. As discussed, for instance,
in Ref. [42], a free choice for the bare interaction U c in
the charge channel immediately fixes the U s = (U c − U )/3
value of the spin interaction if all three s = {x, y, z} spin
channels are introduced simultaneously. The Ising decoupling
with U z = U c − U corresponds to the case when only the
z component of the spin is considered. Then, if the initial
problem (1) is solved exactly, the result does not depend on
the way how the decoupling of U is performed. However, an
approximate (mean-field or GW -like) solution of the problem
dramatically depends on the decoupling [44]. This issue is
known as Fierz ambiguity [14–16].

B. Collective electronic effects beyond EDMFT

As follows from the above discussions, the Fierz ambiguity
problem can be avoided if the local interaction term Un↑n↓
stays undecoupled in its original form. However, this form of
the interaction prevents any Hubbard-Stratonovich transfor-
mation. Nevertheless, in this case we still can benefit from

the idea of (extended) dynamical mean-field theory (EDMFT)
[20–26], where all local correlations are treated exactly via an
effective local impurity problem

S(i)
imp = −

∑
ν,σ

c∗
νσ [iν + μ − �ν]cνσ

+ U
∑

ω

nω↑n−ω↓ + 1

2

∑
ω,ς

Y ς
ω ρς

ω ρ
ς
−ω. (2)

The latter is a local part of the lattice action (1), where a dis-
persion relation and nonlocal interaction are replaced by local
fermionic (εk → �ν) and bosonic (V ς

q → Y ς
ω ) hybridization

functions that effectively account for nonlocal single- and
two-particle fluctuations, respectively. In the absence of these
hybridizations, EDMFT reduces to a static mean-field ap-
proximation. Since the impurity model is solved numerically
exactly using, e.g., continuous-time quantum Monte Carlo
solvers [54–57], the Fierz ambiguity problem on the local
level is absent by construction.

Further, we integrate out the impurity problem in order to
exactly account for all local fluctuations in the effective lattice
model. As shown in the dual fermion (DF) approach [58],
this can be done after the nonlocal part of the lattice action is
rewritten in terms of new fermionic variables c(∗) → f (∗). In
addition, we perform a partial bosonization ρς → ϕς of the
nonlocal interaction following the dual boson (DB) scheme
[59,60], which does not lead to the Fierz ambiguity either.
Then, the initial problem (1) transforms to a dual action (see
Ref. [61] and Appendix B)

S̃ = −
∑
k,ν,σ

f ∗
kνσ G̃

−1
kνσ fkνσ − 1

2

∑
q,ω,ς

ϕς
qωW̃

ς−1
qω ϕ

ς
−q,−ω + F̃.

(3)

After the impurity problem is integrated out, bare fermion
G̃kνσ = GEDMFT

kνσ − gνσ and boson W̃ς

qω = W ς EDMFT
qω − wς

ω

propagators are given by nonlocal parts of EDMFT Green’s
function and renormalized interaction [61], respectively.
Thus, they already account for local single- and two-particle
fluctuations in the system via an exact local self-energy 


imp
νσ

and polarization operator �
ς imp
ω of the effective impurity

problem, respectively. Here, gνσ and wς
ω are the full local

Green’s function and renormalized interaction of the impurity
problem.

The interaction part F̃ [ f , ϕ] of the dual action (3) contains
all possible fully screened local fermion-fermion and fermion-
boson vertex functions of the impurity problem [59,60]. Here,
as well as in most of DB approximations, we restrict ourselves
to the lowest-order (two-particle) interaction terms that are
given by the fermion-fermion �νν ′ω and fermion-boson νω

vertex functions

(4)

Exact definition of these quantities can be found in Appendix
B. The dual theory with only two-particle interaction terms
has been tested against exact benchmark results showing a
good performance of the theory in a broad regime of model
parameters [62–64]. Moreover, the fact that the screened
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six-fermion vertex function has only a minor effect on the
self-energy of the Hubbard model has been observed in [65].

In the absence of the interaction part F̃ [ f , ϕ] the dual the-
ory (3) reduces to EDMFT [59,60]. However, an account for
vertex corrections beyond the dynamical mean-field solution
is desirable [66–68]. Especially, it is an important problem
for description of spin fluctuations and magnetic polarization
in realistic systems [69,70] as they are not captured by a
standard GW +DMFT scheme [35–41]. While the use of the
fermion-boson vertex in a diagrammatic solution of multiband
problems is possible [44], an inclusion of the fermion-fermion
vertex in realistic calculations is extremely challenging and
time consuming numerically [29–34]. The fermion-fermion
vertex describes the full (renormalized) local fermion-fermion
interaction, so it cannot be simply discarded.

It would be extremely helpful to find an additional trans-
formation of the problem (3) in which the full local fermion-
fermion vertex function �νν ′ω vanishes from the effective
action. Then, the resulting theory will be written in terms of
fermion and boson propagators, and the remaining fermion-
boson interaction νω. An effective fermion-fermion vertex
function in this theory appears only after bosonic fields are
integrated out. Such a fermion-fermion vertex is by definition
reducible with respect to a bosonic propagator and serves as an
approximation for the original fermion-fermion vertex func-
tion �νν ′ω. Since irreducible contributions are not contained
in this approximation, the effective fermion-fermion vertex
of the resulting fermion-boson theory becomes drastically
dependent on the way how bosonic fields are introduced. This
fact again leads to the Fierz ambiguity problem.

C. Approximation for the fermion-fermion vertex

We have found a unique form of the bare interaction in
every considered bosonic channel that almost fully suppresses
the effect of missing irreducible diagrams. As a consequence,
an effective reducible fermion-fermion interaction almost ex-
actly coincides with the full local fermion-fermion vertex
�νν ′ω, which automatically solves the Fierz ambiguity prob-
lem. This unique form of the bare interaction can be found
by analyzing the bare fermion-fermion vertex of the impurity
problem. Let us arbitrarily decouple the local Coulomb in-
teraction U of the impurity problem (2) into charge U c and
spin U s parts. This leads to the following bare interaction
Uς

ω = U ς + Y ς
ω in a corresponding bosonic channel. Then,

we rewrite the interaction part of the impurity problem in
an antisymmetrized form of the bare fermion-fermion vertex
� 0

νν ′ω:

S(i)
imp = −

∑
ν,σ

c∗
νσ [iν + μ − �ν]cνσ

+ 1

8

∑
ν,ν ′,ω

∑
ς,σ (′ )

�
0 ς

νν ′ωc∗
νσ σ

ς

σσ ′cν+ω,σ ′c∗
ν ′+ω,σ ′′σ

ς

σ ′′σ ′′′cν ′,σ ′′′ .

(5)

This procedure can be performed in a standard way (see,
for instance, Sec. II A in Ref. [71]) interchanging indices
of two creation (or annihilation) Grassmann variables in the
interaction term. Charge and spin “z” components of the bare

FIG. 1. Fermion-boson vertex function νω in the charge (left)
and spin (right) channels as a function of fermionic νn and bosonic
ωm frequencies. The result is obtained for different values of the local
Coulomb interaction.

fermion-fermion vertex are given by the expressions

� 0 c
νν ′ω = 2Uc

ω −Uc
ν ′−ν −Ux

ν ′−ν −Uy
ν ′−ν −Uz

ν ′−ν

= U + 2Y c
ω − Y c

ν ′−ν − Y x
ν ′−ν − Y y

ν ′−ν − Y z
ν ′−ν,

� 0 z
νν ′ω = 2Uz

ω −Uz
ν ′−ν +Ux

ν ′−ν +Uy
ν ′−ν −Uc

ν ′−ν

= −U + 2Y z
ω − Y z

ν ′−ν + Y x
ν ′−ν + Y y

ν ′−ν − Y c
ν ′−ν, (6)

and spin “x” and “y” components can be obtained by a circle
permutation of spin {x, y, z} indices in the second equation.

As can be seen from Eq. (6), the ladderlike irreducible
contributions to the fermion-fermion vertex �

ς

νν ′ω of the impu-
rity problem originate from the presence of “vertical” bosonic
lines Uς

ν ′−ν in the bare vertex. Dressed by a two-particle lad-
der they become irreducible with respect to the (“horizontal”)
bosonic line Uς

ω and will not be included in the reducible
approximation. As the second line in Eq. (6) shows, the bare
vertex �

0 ς

νν ′ω does not depend on the way how the decoupling
of the local Coulomb interaction is performed. This fact fol-
lows from the exact relation between bare interactions U ς in
different bosonic channels. Therefore, let us include the main
contribution ±U of the charge/spin bare vertex only to the
horizontal line Uς

ω. This immediately leads to a unique form
of the bare interaction U c = −U s = U/2 with the same value
for all s = {x, y, z} spin components that excludes ladderlike
irreducible contributions from the full local fermion-fermion
vertex function. If more complicated nonladder irreducible
contributions to the fermion-fermion vertex become impor-
tant, they cannot be completely excluded from the theory, but
are still strongly suppressed by our choice of the bare interac-
tion. Importantly, this result for the bare interaction cannot
be obtained by any decoupling of the Coulomb interaction
U discussed above. Note that the fermion-boson vertex is by
definition irreducible with respect to the bosonic propagator,
the inclusion of the full local Coulomb interaction U in the
horizontal line leads to a correct asymptotic behavior of this
vertex c/s

νω → 1 at large frequencies as shown in Fig. 1.
The best possible decoupling-based approximation for the

fermion-fermion vertex can be obtained for the Ising form
of the bare interaction U c = −U z = U/2 and U x,U y = 0.
This approximation still reproduces the “−U” contribution
to the bare vertex �

0 x/y
νν ′ω via U c and U z terms, but neglects

the screening of this vertex by two-particle fluctuations in x
and y channels. Note that the Ising decoupling leads to a cor-
rect Hartree-Fock saddle point in the mean-field description
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FIG. 2. The sketch of the approximation for the full local
fermion-fermion vertex function �νν′ω introduced in Eq. (7) (left).
The illustration of the TRILEX2 approximation of the nonlocal
self-energy 
̃ of the ladder dual theory that accounts only for the
horizontal (shown in red) contribution to the fermion-fermion vertex
function (right).

of spin fluctuations [72]. Moreover, the Ising decoupling
provides the best possible result for a single-site TRILEX
approach [44]. However, as we show below, the result for
physical observables, such as the self-energy, can be drasti-
cally improved using our unique form of the bare interaction,
which is not based on the decoupling ideology.

After all, a final result for the reducible approximation
of the full fermion-fermion vertex function of the impurity
problem can be written in the following form (see Fig. 2):

�c
νν ′ω = 2Mc

νν ′ω − Mc
ν,ν+ω,ν ′−ν − 3Ms

ν,ν+ω,ν ′−ν,

� s
νν ′ω = 2Ms

νν ′ω + Ms
ν,ν+ω,ν ′−ν − Mc

ν,ν+ω,ν ′−ν, (7)

where

(8)

and the term U ς/2 excludes a double counting of the bare
Coulomb interaction between different channels. Note that in
the case of Ising decoupling of the Coulomb interaction, the
term U ς/2 does not appear in Eq. (8) because this form of
the decoupling is identical for every bosonic channel and does
not lead to a double counting. A detailed derivation of these
expressions can be found in Appendix A.

A simpler parametrization of the fermion-fermion vertex,
which is based on a weak coupling perturbation expansion,
has been derived in Refs. [73–75]. A more advanced approx-
imation that additionally accounts for fermion-boson vertex
corrections ς

ν,ω has been later introduced in [76,77]. There,
a decomposition of the local Coulomb interaction in only one
(spin or charge) channel has been considered. Note also that
in these two works the approximation for the fermion-fermion
vertex appears in a nonsymmetrized form that contains only a
horizontal contribution Mς

νν ′ω (8). However, it can be identi-
cally rewritten in the antisymmetrized form of Eq. (7) that has
both horizontal Mς

νν ′ω and vertical Mς

ν,ν+ω,ν ′−ν components.
Our present parametrization (7) improves the idea of

Refs. [76,77] and exploits a unique multiple-channel decom-
position of the fermion-fermion vertex. We find that this
approximation (7) is in a good agreement with the exact
result not only in the weakly interacting regime U = 0.5, but
also at much larger values of the local Coulomb interaction

FIG. 3. Charge and spin components of the exact (�ν,ν′ω) and
approximate (�′

ν,ν′ω) fermion-fermion vertex functions at zeroth
bosonic frequency ω0. The result is obtained for U = 1.0.

U = 1.0 and 1.5. For this reason, Fig. 3 shows the result
for the exact and approximate vertex functions only for U =
1.0, which were obtained for the same impurity problem of
dynamical mean-field theory. Note that the contribution from
the particle-particle channel, which at ω0 is located along the
νn = −ν ′

n line [78,79], is not considered in our approximation.
Although this contribution to the fermion-fermion vertex is
not small itself, it has a minor effect on physical observables,
such as a self-energy, at general fillings [80]. The exclusion
of a particle-particle channel from the approximation of the
vertex greatly simplifies the theory as it does not require the
calculation of the “anomalous” fermion-boson vertex function
with two incoming or two outgoing fermionic lines. However,
if a certain physical problem needs an account for the particle-
particle channel, the latter can be introduced in the theory in
the same way as it is done for the particle-hole (charge and
spin) channel. We have noticed that a similar decomposition
of the fermion-fermion vertex is proposed in [81]. In contrast,
our derivation of an approximate fermion-fermion vertex aims
to explain why irreducible contributions are almost fully
suppressed by the unique choice of the bare interaction. This
is a key ingredient for our study that allows to exclude the
fermion-fermion vertex function from the theory.

Figure 4 shows the cut of the fermion-fermion vertex
function �ν,ν ′,ω obtained for U = 0.5 (top row), U = 1.0
(middle row), and U = 1.5 (bottom row) at zeroth bosonic
frequency ω0 in two most important directions. We find that
the frequency dependence of the exact vertex along ν ′

0 (left
column) and νn = ν ′

n (right column) lines is captured reason-
ably well by the horizontal Mς

νν ′ω and vertical Mς

ν,ν+ω,ν ′−ν

diagrams, respectively. A neglected particle-particle contri-
bution results in a mismatch between the approximate and
exact results for the fermion-fermion vertex in a small region
around the ν−1 point. Since the particle-particle contribution
has a minor effect on the ↑↑ component of the vertex [75], our
approximation provides a reasonably good result for �

↑↑
νν ′ω =

(�c
ν,ν ′,ω + �s

ν,ν ′,ω )/2.

D. Effective fermion-boson model

Further, we make an additional approximation for the
reducible fermion-fermion vertex Mς

νν ′ω 	 ς
νωw̄ς

ω 
ς

ν ′+ω,−ω
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FIG. 4. Frequency dependence of charge, spin, and ↑↑ com-
ponents of the exact (black triangles) and approximate (lines with
diamonds) fermion-fermion vertex function �ν,ν′ω along ν ′

0 (left
column) and νn = ν ′

n (right column) lines at zeroth bosonic frequency
ω0. Results are obtained for U = 0.5 (top row), U = 1.0 (middle
row), and U = 1.5 (bottom row).

including the term U ς/2 in the propagator w̄ς
ω = wς

ω − U ς/2.
Without this step it would be impossible to find a simple
transformation of the problem (3) that generates the Mς

νν ′ω
correction in order to cancel the full local vertex function
�νν ′ω from the theory. This approximation is justified in the
high-frequency limit where the fermion-boson vertex function
νω is equal to unity (Fig. 1), and also by a good agreement
of the resulting theory with much more elaborate approaches
discussed below. Following recent works [76,77], the Mς

νν ′ω
correction can be obtained with the help of an additional
Hubbard-Stratonovich transformation over bosonic variables
ϕς → bς (for details, see Appendix B). As a result, we get the
final expression for the action of the effective fermion-boson
model

S f -b = −
∑
k,ν,σ

f ∗
kνσ G̃

−1
kνσ fkνσ − 1

2

∑
q,ω,ς

bς
qωWς −1

qω bς
−q,−ω

+
∑
k,q

∑
ν,ω

∑
ς,σ,σ ′

ς
νω f ∗

kνσ σ
ς

σσ ′ fk+q,ν+ω,σ ′ bς
−q,−ω. (9)

The bare Green’s function G̃kνσ remains unchanged during the
last transformation, and the bare bosonic propagator becomes

equal to Wς
qω = W ς EDMFT

qω − U ς/2. Note that if the local
Coulomb interaction is considered in the Ising decoupling
form, the bare bosonic propagator of the new fermion-boson
theory coincides with the renormalized interaction of EDMFT
Wς

qω = W ς EDMFT
qω as discussed in Appendix B.

The simplest set of diagrams for the self-energy and polar-
ization operator has the following form:

(10)

Here, G̃kνσ and W ς
qω are full propagators of the derived

fermion-boson problem (9). We prefer to keep fermions in
the dual space, which results in the following connection
between dual and lattice self-energies 
latt

kνσ = 

imp
ν + 
′

kνσ ,
where 
′

kν = 
̃kν (1 + gν
̃kν )−1, as derived in Refs. [59–61].
The last expression excludes the double counting between
contributions of the local 


imp
ν and nonlocal 
̃kν self-energies

to the lattice Green’s function Gkν that arise in the Dyson
equation. Here, gν is the full local Green’s function of the
impurity problem. Although the introduced diagram for the
nonlocal self-energy has a very simple form (10), it effectively
contains the leading “horizontal” part of the two-particle
ladder contribution that is present in much more advanced
DF [58] and DB [54,55] theories (see Fig. 2). Moreover, an
account for this contribution does not require an inversion
of the Bethe-Salpeter equation, which is a big advantage for
numerical calculations.

At first glance, nonlocal diagrams introduced in Eq. (10)
do not obey the Hedin form [17], where the full lattice
fermion-boson vertex function appears only at one side of the
diagram. However, in the resulting action (9) the full local
fermion-boson vertex ς

νω is the bare interaction vertex for
an effective lattice problem that consequently enters diagrams
for the self-energy and polarization operator from both sides.
The importance to have the local vertex function at both sides
of dual diagrams has been discussed in details in Ref. [61].

The present approach immediately suggests an improve-
ment for already existing partially bosonized theories. Indeed,
if two or one fermion-boson vertices in Eq. (10) are replaced
by unity, our method reduces to GW +DMFT or TRILEX
approaches, respectively, but with a more accurate Fierz-
ambiguity-free form of the bosonic propagator. Thus, we will
call the introduced set of diagrams (10) for the self-energy
and polarization operator that contains a double-triangular
fermion-boson vertex correction as the TRILEX2 approxima-
tion of the partially bosonized theory.

III. RESULTS

A. Nonlocal self-energy

The performance of the TRILEX2 approach can be tested
against a more elaborate ladder DF method, which is ac-
curate enough in the regime of strong interactions U not
exceeding the bandwidth (U � 2.0) [62–64]. Figure 5 shows
the nonlocal self-energy 
̃kν at zero Matsubara frequency
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FIG. 5. Real and imaginary parts of the nonlocal self-energy 
̃kν

at the first fermionic Matsubara frequency ν0 obtained for the ladder
dual fermion and TRILEX2 (for the “unique” and Ising form of the
bare interaction) approaches. Results are calculated for U = 0.5 (top
row), U = 1.0 (middle row), and U = 1.5 (bottom row).

ν0 for different approaches. The result is obtained within a
single-shot calculation performed on top of the converged
DMFT solution, so that the local self-energy 


imp
ν has the

same value for all compared theories. For numerical solution
of the impurity problem we used the open source CT-HYB

solver [82,83] based on ALPS libraries [84].
We find that the result for the self-energy of the TRILEX2

approximation is in a very good agreement with the one of the
ladder DF approach even in the strongly interacting U = 1.0
regime. A small mismatch between these two results appears
because the TRILEX2 theory does not account for “vertical”
contributions Mς

ν,ν+ω,ν ′−ν to the fermion-fermion vertex that
are present in the DF approach. The absence of these correc-
tions only slightly modifies the result, but greatly simplifies
numerical calculations. The effect of neglected contribution
of vertical diagrams is more visible in the weakly correlated
regime (U = 0.5). This can be explained by the fact that
the horizontal contribution to the vertex function becomes
leading when collective fluctuations in the corresponding
channel are strong [76,77]. In the regime of U = 0.5, charge
and spin fluctuations only start to develop, which results in
a larger mismatch with the exact result for the self-energy.
However, the value of the nonlocal self-energy in this regime

is relatively small, so this inconsistency should not lead to
a serious problem for calculation of physical observables.
At larger value of the interaction (U = 1.5) the contribution
of vertical diagrams becomes more important. As expected,
the TRILEX2

I result, which is based on the Ising decoupling,
provides a less accurate result due to missing diagrams in x
and y spin channels.

B. Metal-to-Mott-insulator phase transition

The present approach also shows a qualitatively good
estimation for a metal-to-Mott-insulator phase transition. The
corresponding phase boundary can be obtained from the
behavior of the local Green’s function at imaginary time
τ = β/2, which approximates the quasiparticle density of
states at the Fermi level [85]. For this aim we perform a
fully self-consistent TRILEX2 calculation using a standard
self-consistency condition on the local part of the lattice
Green’s function

∑
k Gkν = gν to determine the fermionic

hybridization function �ν of the impurity problem. We find
that in our case, the phase transition occurs at much smaller
values of the local Coulomb interaction U 	 1.7 compared
to the DMFT result [86]. The same trend and qualitatively
similar results were previously reported for cluster DMFT
[86] and second-order DF [87] calculations. Surprisingly, the
elimination of one fermion-boson vertex in diagrams (10), as
originally proposed in the TRILEX approach [42–44], drasti-
cally changes the metal-to-Mott-insulator transition point and
shifts it to a larger value of the local Coulomb interaction
compared even to the DMFT result [43]. This can be attributed
to the fact that the fermion-boson vertex at low frequencies
considerably deviates from unity in the strongly interacting
regime as shown in Fig. 1.

IV. CONCLUSIONS

To conclude, the derived fermion-boson theory is a pow-
erful tool for description of many-body effects beyond the
dynamical mean-field level. The main advantage is that the
method does not suffer from the Fierz ambiguity problem,
which is present in all partially bosonized theories. The
TRILEX2 approximation of the theory combines a simplic-
ity of mean-field and GW -like diagrammatic descriptions of
collective excitations with a high performance of the method
comparable to much more elaborate approaches. A rigorous
account for spin fluctuations in this approach provides an
opportunity for a solution of a challenging problem of re-
alistic magnetic GW -based calculations [69,70]. Finally, it
is worth noting that the derived formalism is not restricted
only to diagrams for the self-energy and polarization operator
introduced in Eq. (10), respectively. The effective fermion-
boson action (9) also allows for a more advanced solution
of the problem using, for example, functional renormaliza-
tion group (fRG) [88–93], parquet [94–97], or diagrammatic
Monte Carlo [62,63] methods.
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APPENDIX A: APPROXIMATION FOR THE
FERMION-FERMION VERTEX

In this Appendix we derive an approximation for the full
local fermion-fermion vertex. We start with the expression (6)
for the bare vertex �

0 ς

νν ′ω of the impurity problem (5). Using
the exact relation between charge and spin components of the
bare Coulomb interaction we find that the expression for this
bare vertex does not depend on the performed decoupling of
the local Coulomb interaction and contains the contribution
of the full U in all considered channels. This result is in
agreement with the fact that the bare interaction in the Bethe-
Salpeter equation for the susceptibility is given by the full
local Coulomb interaction [77]. In order to find the origin
of the reducible contribution with respect to a bosonic line
(hereinafter, we will call this contribution w reducible) to the
fermion-fermion vertex, let us dress the bare vertex in the
corresponding “horizontal” particle-hole channel as

�
ς

νν ′ω =
∑
ν ′′,ν ′′′

�
0 ς

νν ′′ω χ
ς

ν ′′ν ′′′ω �
0 ς

ν ′′′ν ′ω, (A1)

where

χ
ς

νν ′ω = −〈(
c∗
ν+ω,σ1

σς
σ1σ2

cν,σ2

) (
c∗
ν ′σ3

σς
σ3σ4

cν ′+ω,σ4

)〉
conn (A2)

is a generalized susceptibility of the impurity problem in
a corresponding channel. After the antisymmetrization, this
screened vertex (A1) together with the bare vertex �

0 ς

νν ′′ω
makes up the simplest approximation for the fermion-fermion
vertex function of the impurity problem

� c
νν ′ω 	 �0 c

νν ′ω + 1
2�

c
νν ′ω − 1

4�
c
ν,ν+ω,ν ′−ν − 3

4�
s
ν,ν+ω,ν ′−ν,

� s
νν ′ω 	 �0 s

νν ′ω + 1
2�

s
νν ′ω + 1

4�
s
ν,ν+ω,ν ′−ν − 1

4�
c
ν,ν+ω,ν ′−ν .

(A3)

Since the bare vertex function does not depend on the de-
coupling, this approximation is valid for any decomposition
of the local Coulomb interaction. In the absence of bosonic
hybridizations Y ς = 0, the bare fermion-fermion vertex can
be simply replaced by the bare Coulomb interaction �

0 c/s
νν ′ω =

±U as derived above. Then, the generalized susceptibility
(A2) in the expression for the screened vertex (A1) reduces
to a bosonic susceptibility χ ς

ω , and the approximation for the
full fermion-fermion vertex takes the following simple form:

� c
νν ′ω 	 U + 1

2Uχ c
ωU − 1

4Uχ c
ν ′−νU − 3

4Uχ s
ν ′−νU,

� s
νν ′ω 	 −U + 1

2Uχ s
ωU + 1

4Uχ s
ν ′−νU − 1

4Uχ c
ν ′−νU . (A4)

This approximation fully coincides with the approximation
obtained in the work [75]. The only difference is that here
we do not perform a bosonization of collective fluctuations
in the particle-particle channel as discussed in the main text.

We also note that the susceptibility defined in our work is two
times larger than the one introduced in Ref. [75].

Importantly, in the framework of the fermion-boson theory
the interaction is introduced as the bosonic propagator. Thus,
bare charge and spin interactions that enter the bare fermion-
fermion vertex �

0 ς

νν ′ω have to be considered as “horizontal”
Uς

ω and “vertical” bosonic Uς

ν ′−ν lines. In this case, a simple
replacement of the bare fermion-fermion vertex by the full
local Coulomb interaction is no longer possible. First, let us
isolate the w-reducible contribution in the approximation for
the fermion-fermion vertex (A3). If we take only horizontal
(ω-dependent) terms Uς

ω from the bare vertex �
0 ς

νν ′ω in the
expression (A1), the generalized susceptibility again reduces
to the bosonic one, and the w-reducible part of the screened
vertex (A1) becomes �

ς

νν ′ω = 4Uς
ω χ ς

ω Uς
ω. Other w-reducible

terms in the screened vertex (A1) appear from w-reducible
contributions to the generalized susceptibility χ

ς

ν ′′ν ′′′ω. If the
latter contains at least one horizontal bosonic line Uς

ω on
which it can be cut into two separate parts, the bare vertex
�

0 ς

νν ′ω in the expression (A1) does not necessarily have to be w

reducible in order to make the total expression reducible with
respect to a bosonic propagator. This leads to an additional
fermion-boson vertex correction ς

νω to the previously derived
approximation for the screened vertex

�
ς

νν ′ω = 4ς
νωUς

ω χ ς
ω Uς

ω
ς

ν ′+ω,−ω

+ 2ς
νωUς

ω
ς

ν ′+ω,−ω − 2Uς
ω. (A5)

The term 2Uς
ω is already contained in the bare vertex �

0 ς

νν ′ω
and introduced here to simplify the expression. We note that
Eq. (A3) is only an approximation for the exact charge and
spin fermion-fermion vertex functions. The exact w-reducible
contribution to the screened fermion-fermion vertex (A1) is
given by the expression

�
ς

νν ′ω = 4ς
νωwς

ω
ς

ν ′+ω,−ω − 4Uς
ω, (A6)

where wς
ω = Uς

ω +Uς
ω χς

ωUς
ω is the full renormalized inter-

action of the impurity problem, and ς
νω is the exact fermion-

boson vertex of the problem. Here, the term 4Uς
ω is again

excluded from the expression since it is already contained in
the (nonsymmetrized) bare interaction.

The remaining part of the generalized susceptibility in
the expression (A3) for the screened vertex is irreducible
with respect to the bosonic propagator. Together with vertical
lines Uς

ν ′−ν from the bare fermion-fermion vertex �
0 ς

νν ′ω it
makes the w-irreducible contribution to the full fermion-
fermion vertex function that is not accounted for by the
fermion-boson theory. As discussed in the main text, the
ladderlike irreducible contributions to the fermion-fermion
vertex function can be fully excluded by a proper choice of
the bare interaction U c = −U s = U/2 that has the same value
for all s = {x, y, z} spin components. Since this unique form
of the bare interaction cannot be obtained by any of the
decoupling of the local Coulomb interaction, we will make
separate decouplings for every bosonic channel to keep the
bare interaction in the proposed form. Then, coming back to
a nonsymmetrized form of the bare fermion-fermion vertex
function (6), we get �

0 ς

νν ′ω = 2Uς
ω + 2Y ς

ω . Together with the
screened interaction �

ς

νν ′ω from (A6), which is also written
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in the antisymmetrized form, it makes the total approxi-
mation for the nonsymmetrized full fermion-fermion vertex
function

1
8�

ς

νν ′ω 	 1
2 Mς

νν ′ω = 1
2

(
ς

νωwς
ω

ς

ν ′+ω,−ω − U ς/2
)
. (A7)

The term U ς/2 appears here because we use separate mutu-
ally exclusive decouplings of the bare Coulomb interaction
in different bosonic channels. This term avoids the double
counting of the bare Coulomb interaction in the bare vertex
� 0

νν ′ω. Note that the same procedure can be performed for
the Ising form of the bare interaction U c = −U z = U/2 and
U x = U y = 0. Since this form of decoupling is identical for
all channels, this does not lead to a double counting of the
local Coulomb interaction. Then, the approximation for the
fermion-fermion vertex in the antisymmetrized form is given
by the expression Mς

νν ′ω = ς
νωwς

ω
ς

ν ′+ω,−ω.
The final expression for the w-reducible approximation of

the full fermion-fermion vertex function can be obtained after

antisymmetrizing the expression (A7):

� c
νν ′ω = 2Mc

νν ′ω − Mc
ν,ν+ω,ν ′−ν − 3Ms

ν,ν+ω,ν ′−ν,

� s
νν ′ω = 2Ms

νν ′ω + Ms
ν,ν+ω,ν ′−ν − Mc

ν,ν+ω,ν ′−ν . (A8)

Note that the w-reducible interaction (A7), which is intro-
duced to exclude the exact fermion-fermion vertex from the
action, does not have a uniform structure due to a presence of
the −U ς/2 term that does not contain fermion-boson vertex
functions. Therefore, the correction Mς

νν ′ω cannot be easily
generated performing transformations of the lattice action
discussed below. Thus, we make a small additional approx-
imation for the w-reducible fermion-fermion vertex Mς

νν ′ω 	
ς

νωw̄ς
ω 

ς

ν ′+ω,−ω including the U ς/2 term in the propagator
w̄ς

ω = wς
ω − U ς/2. After that, the exact (A6) expression for

the reducible contribution to the fermion-fermion vertex func-
tion coincides with the approximate one derived in Eq. (A5).
In addition, the last approximation can be motivated by the
asymptotic behavior of the fermion-boson vertex function
νω → 1 at large frequencies.

APPENDIX B: DERIVATION OF THE EFFECTIVE FERMION-BOSON PROBLEM

In this Appendix we derive an effective fermion-boson problem. We start with two Hubbard-Stratonovich transformations of
the nonlocal part of the lattice action of the extended Hubbard model (1):

exp

{∑
k,ν,σ

c∗
kνσ [�νσ − εk]ckνσ

}

= D f

∫
D[ f ∗, f ] exp

{
−

∑
k,ν,σ

(
f ∗
kνσ g−1

νσ [�νσ − εk]−1g−1
νσ fkνσ + c∗

kνσ g−1
νσ fkνσ + f ∗

kνσ g−1
νσ ckνσ

)}
,

exp

{ ∑
q,ω,ς

1

2
ρς

qω

[
Y ς

ω − V ς
q

]
ρ

ς
−q,−ω

}

= Dϕ

∫
D[φς ] exp

{
−

∑
q,ω,ς

(
1

2
ϕ ς

qωας −1
ω

[
Y ς

ω − V ς
q

]−1
ας −1

ω ϕ
ς
−q,−ω + ϕ ς

qωας −1
ω ρ

ς
−q,−ω

)}
, (B1)

where terms D f = det[gν (�νσ − εk )gν] and D−1
ϕ =

√
det[ας

ω(Y ς
ω − V ς

q )ας
ω] can be neglected when calculating expectation

values. Here, gν is the full local Green’s function of the impurity problem.Uς
ω = U ς + Y ς

ω , and wς
ω are the bare and renormalized

interactions of the local impurity interaction in the corresponding bosonic channel. Factors gν and ας
ω = wς

ω/Uς
ω in the

Hubbard-Stratonovich transformations are introduced for the special reason to express the interaction part of the transformed
action in terms of full local vertex function of the impurity problem [61]. After these transformations, the action takes the
following form:

S′ =
∑

i

S(i)
imp +

∑
k,ν,σ

[
c∗

kνσ g−1
νσ fkνσ + f ∗

kνσ g−1
νσ ckνσ

] +
∑

q,ω,ς

ϕς
qωας −1

ω ρ
ς
−q,−ω

−
∑
k,ν,σ

f ∗
kνσ g−1

νσ [εk − �νσ ]−1g−1
νσ fkνσ − 1

2

∑
q,ω,ς

ϕς
qωας −1

ω

[
V ς

q − Y ς
ω

]−1
ας −1

ω ϕ
ς
−q,−ω. (B2)

The above introduced transformations allow to integrate out the impurity part of the problem as

∫
D[c∗, c] exp

{
−

∑
i

S(i)
imp −

∑
k,ν,σ

[
c∗

kνσ g−1
νσ fkνσ + f ∗

kνσ g−1
νσ ckνσ

] −
∑

q,ω,ς

ϕς
qωας −1

ω ρ
ς
−q,−ω

}

= Zimp× exp

{
−

∑
k,ν,σ

f ∗
kνσ g−1

νσ fkνσ − 1

2

∑
q,ω,ς

ϕς
qωας −1

ω χ ς
ω ας −1

ω ϕ
ς
−q,−ω − F̃ [ f , ϕ]

}
, (B3)
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where Zimp is a partition function of the impurity problem. Here, the interaction part of the action F̃ [ f , ϕ] contains an infinite
series of full vertex functions of impurity problem as discussed in [59,60]. The lowest-order interaction terms are

F̃ [ f , ϕ] 	
∑

k,k′,q

∑
ν,ν ′,ω

∑
ς,σ (′ )

(
ς

νω f ∗
kνσ fk+q,ν+ω,σ ′ ϕ

ς
−q,−ω + 1

4
� σσ ′σ ′′σ ′′′

νν ′ω f ∗
kνσ fk+q,ν+ω,σ ′ f ∗

k′+q,ν ′+ω,σ ′′ fk′ν ′σ ′′′

)
, (B4)

where the fermion-fermion and fermion-boson vertices have the following form:

�νν ′ω = 〈cνσ c∗
ν+ω,σ ′c∗

ν ′σ ′′′cν ′+ω,σ ′′ 〉c imp

gνσ gν+ω,σ ′gν ′+ω,σ ′′gν ′σ ′′′
, ς

νω =
〈
cνσ c∗

ν+ω,σ ′ ρ
ς
ω

〉
imp

gνσ gν+ω,σ ′α
ς
ω

. (B5)

Then, the initial lattice problem transforms to the following dual action:

S̃ = −
∑
k,ν,σ

f ∗
kνσ G̃

−1
kνσ fkνσ − 1

2

∑
q,ω,ς

ϕς
qωW̃

ς −1
qω ϕ

ς
−q,−ω + F̃ [ f , ϕ]. (B6)

Here, bare propagators G̃kνσ = GEDMFT
kνσ − gνω and W̃ς

qω = W ς EDMFT
qω − wς

ω are nonlocal parts of the Green’s function GEDMFT
kνσ

and renormalized interaction W ς EDMFT
qω of EDMFT defined as

GEDMFT −1
kνσ = iν + μ − εk − 
imp

νσ , W ς EDMFT −1
qω = (

U ς + V ς
q

)−1 − �ς imp
ω . (B7)

Here, gν and wς
ω are the full local impurity Green’s function and renormalized interaction of the impurity problem

g−1
νσ = iν + μ − �ν − 
imp

νσ , wς −1
ω = (

U ς + Y ς
ω

)−1 − �ς imp
ω . (B8)

The second transformation of bosonic variables that excludes the fermion-fermion vertex function from the dual action can
be performed as follows. Let us add and subtract the term 1

2

∑
q,ω,ς ϕ

ς
qωw̄ς −1

ω ϕ
ς
−q,−ω in the dual action

S̃ = −
∑
k,ν,σ

f ∗
kνσ G̃

−1
kνσ fkνσ + 1

2

∑
q,ω,ς

ϕς
qωw̄ς −1

ω ϕ
ς
−q,−ω + F̃ [ f , ϕ]

− 1

2

∑
q,ω,ς

ϕς
qωας −1

ω

{[
V ς

q − Y ς
ω

]−1 − χ ς
ω + ας

ωw̄ς −1
ω ας

ω

}
ας −1

ω ϕ
ς
−q,−ω. (B9)

Then, we can perform the following Hubbard-Stratonovich transformation:

exp

{
1

2

∑
q,ω,ς

ϕς
qωας −1

ω

{[
V ς

q − Y ς
ω

]−1 − χ ς
ω + ας

ωw̄ς −1
ω ας

ω

}
ας −1

ω ϕ
ς
−q,−ω

}

= Db

∫
D[bς ] exp

{
−

∑
q,ω,ς

(
1

2
bς

qωw̄−1
ω ας

ω

{[
V ς

q − Y ς
ω

]−1 − χ ς
ω + ας

ωw̄ς −1
ω ας

ω

}−1
ας

ωw̄−1
ω bς

−q,−ω − ϕς
qωw̄−1

ω bς
−q,−ω

)}
.

(B10)

The action transforms to

S̃′ = −
∑
k,ν,σ

f ∗
kνσ G̃

−1
kνσ fkνσ + 1

2

∑
q,ω,ς

bς
qωw̄−1

ω ας
ω

{[
V ς

q − Y ς
ω

]−1 − χ ς
ω + ας

ωw̄ς −1
ω ας

ω

}−1
ας

ωw̄−1
ω bς

−q,−ω

+ 1

2

∑
q,ω,ς

ϕς
qωw̄ς −1

ω ϕ
ς
−q,−ω −

∑
q,ω,ς

ϕς
qωw̄−1

ω bς
−q,−ω + F̃ [ f , ϕ]. (B11)

205115-9



STEPANOV, HARKOV, AND LICHTENSTEIN PHYSICAL REVIEW B 100, 205115 (2019)

Finally, bosonic fields ϕς can be integrated out with respect to the Gaussian bosonic part of the dual action as∫
D[ϕς ] exp

{
−1

2

∑
q,ω,ς

ϕς
qωw̄ς −1

ω ϕ
ς
−q,−ω +

∑
q,ω,ς

ϕς
qωw̄−1

ω bς
−q,−ω − F̃ [ f , ϕ]

}

= Zϕ × exp

{
1

2

∑
q,ω,ς

bς
qωw̄ς −1

ω bς
−q,−ω − F [ f , b]

}
, (B12)

where Zϕ is a partition function of the Gaussian part of the bosonic action. The integration of dual bosonic fields modifies the
interaction that now has the following form:

F [ f , b] =
∑
k,q

∑
ν,ω

∑
ς,σ,σ ′

ς
νω f ∗

kνσ σ
ς

σσ ′ fk+q,ν+ω,σ ′ bς
−q,−ω

+ 1

8

∑
k,k′,q

∑
ν,ν ′,ω

∑
ς,σ (′ )

(
�

ς

νν ′ω − 4Mς

νν ′ω

)
f ∗
kνσ σ

ς

σσ ′ fk+q,ν+ω,σ ′ f ∗
k′+q,ν ′+ω,σ ′′σ

ς

σ ′′σ ′′′ fk′ν ′σ ′′′ . (B13)

The 4Mς

νν ′ω term that was introduced in (A7) is exactly the approximation that excludes the full fermion-fermion vertex � ςνν′ω .
After collecting and simplifying all terms, the action (B11) takes a very compact form

S f -b = −
∑
k,ν,σ

f ∗
kνσ G̃

−1
kνσ fkνσ − 1

2

∑
q,ω,ς

bς
qωWς −1

qω bς
−q,−ω +

∑
k,q

∑
ν,ω

∑
ς,σ,σ ′

ς
νω f ∗

kνσ σ
ς

σσ ′ fk+q,ν+ω,σ ′ bς
−q,−ω, (B14)

where the bare bosonic propagator is equal toWς
qω = W̃ς

qω + w̄ς
ω, which can also be rewritten asWς

qω = W ς EDMFT
qω − U ς/2 for

our choice U c/s = ±U/2 of the bare interaction. Since for the Ising decoupling w̄ς
ω = wς

ω, the bare bosonic propagator coincides
with the renormalized interaction of EDMFTWς

qω = W ς EDMFT
qω .

Remarkably, for our unique choice of the bare interaction U ς the renormalized interaction of EDMFT can be identically
rewritten in the form using in FLEX approach [71,98]

W ς EDMFT
qω = 1

2Û ς
q

[
1 − �̂ς imp

ω Û ς
q

]−1
, (B15)

where Û c/s
q = ±U + 2V c/s

q and �̂
ς imp
ω = �

ς imp
ω /2 are the bare interaction and local polarization operator in FLEX notations.

Thus, the introduced theory can be seen as an efficient combination of FLEX approach for local degrees of freedom with
GW -like description of nonlocal fluctuations beyond the EDMFT level and additionally accounts for the fermion-boson vertex
corrections.
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94 Chapter 5. D-TRILEX

5.2 Impact of partially bosonized collective fluctua-
tions on electronic degrees of freedom

In the previous work, the D-TRILEX approach was introduced as an approximation
of the DB theory. To this aim, we performed an additional Hubbard-Stratonovich
transformation for the dual action and introduced a simple action of the partially
bosonized dual theory (PBDT). This action can be used not only to construct dia-
grams for the simple D-TRILEX theory but also allows for the exact solution using
diagrammatic Monte Carlo methods [128]. In this work, we investigate the valid-
ity of the D-TRILEX method in a broad range of parameters by comparing it to
different methods. In addition, we compare methods with different diagrammatic
structures in order to study the impact of different diagrammatic contributions on
the single-particle properties of the system. To this aim, we compare the numerically
exact DiagMC@DF and the ladder DF approximation, which use the full four-point
impurity vertex, with the DiagMC@PBDT and D-TRILEX, where the vertex is ap-
proximated.

Since the work [128] is focused on the applicability of D-TRILEX let us consider
the workflow of the method, which is illustrated in Fig. 5.1, in more detail in the
following. The calculation can be divided into two main parts. In the first part,
depicted in red, the reference system, which in our case is the Anderson impurity
problem, is solved numerically exactly as already discussed in section 3.1 (DMFT).
The solver, in the first step, takes some control parameters and computes the corre-
lation functions from the first guess of the hybridization function. These are in turn

Figure 5.1: Schematic representation of the D-TRILEX workflow. The solver takes
the control parameter of the system as an input and solves the reference problem (the
Anderson impurity model in our case) self-consistently. The correlation functions are
then used to contract the diagrams in D-TRILEX. The dual self-consistency cycle is
performed until convergence is reached. The lattice quantities are obtained in the last
step from the converged result. The figure is adapted from Ref. [73].
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used to provide a new hybridization function for the solver (3.11). This procedure
is repeated until the self-consistency condition is reached (3.12). Subsequently, the
extracted correlation functions are used as building blocks to construct the diagrams
of D-TRILEX. The second part starts with computing the bare dual propagators
G̃k from Eq. (3.37) and W̃q from Eq. (3.80) and Eq. (3.81). Including the Green’s
function in Eq. (3.85) and Eq. (3.86) together with the vertex function, we obtain
the dual polarization, which can be used in Eq. (3.88) to computed the renormalized
interaction W̃ q. The dual self-energy is then obtained from the renormalized inter-
action and the bare dual Green’s function using Eq. (3.84) and is used to dress the
bare Green’s function by means of the Dyson equation (3.87). The cycle is repeated
until the result for the Green’s function converges and the single- and two-particle
quantities of the lattice problem are obtained from Eq. (3.57) and Eq. (3.58).

In the following study, we perform calculations for the Hubbard model on a square
lattice at half-filling, where the unit of energy is determined by the nearest-neighbor
hopping t = 1. First, we compare the self-energies obtained from different methods
at different interaction strengths to investigate the impact of different diagrammatic
contributions. In Table I. of [128] we summarise different forms of the four-point
vertex and types of diagrams used in the considered methods. Comparing different
methods we find that the irreducible part of the vertex can be safely excluded in a
wide range of model parameters. Its contribution enhances in regions where AFM
fluctuations increase. At weak to moderate interaction strength, the diagrams apart
of the ladder remain small. At large interactions, these contributions are nearly can-
celed by transverse singlet fluctuations. Furthermore, we find that the longitudinal
singlet bosonic modes are negligibly small for all parameters. The main finding of
the analysis is that the longitudinal particle-hole bosonic modes can be considered
as the main contribution for a broad range of considered parameters, which leads to
the assumption that the efficient D-TRILEX method provides a promising tool for
solving a broad class of interacting electronic problems.

Further, we show that D-TRILEX yields good results at weak and moderate
couplings even below the DMFT Néel temperature where the AFM fluctuations be-
come strong. However, at U = 2, in the Slater regime of magnetic fluctuations [170]
D-TRILEX, similar to other ladder approximations, underestimates the strong mag-
netic fluctuations, due to their anharmonic behaviour [189] and shows a formation
of the pseudo gap at a lower temperature compared to the exact result.

In addition, we apply the D-TRILEX method on the hole-doped t− t′ Hubbard
model at U = 5.6, β = 5, and 4% hole-doping and compare our results to exact
DiagMC results recently presented in Ref. [175]. We find that in this regime the
DMFT does not provide an accurate starting point which results in a mismatch in
the local part of the self-energy. On the contrary, D-TRILEX provides a reasonably
accurate result for the nonlocal part of the self-energy.
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In this work we present a comprehensive analysis of collective electronic fluctuations and their effect on
single-particle properties of the Hubbard model. Our approach is based on a standard dual fermion and boson
scheme with the interaction truncated at the two-particle level. Within this framework we compare various
approximations that differ in the set of diagrams (ladder vs exact diagrammatic Monte Carlo), and/or in the
form of the four-point interaction vertex (exact vs partially bosonized). This allows to evaluate the effect of
all components of the four-point vertex function on the electronic self-energy. In particular, we observe that
contributions that are not accounted for by the partially bosonized approximation for the vertex have only a
minor effect on electronic degrees of freedom in a broad range of model parameters. In addition, we find that
in the regime, where the ladder dual fermion approximation provides an accurate solution of the problem, the
leading contribution to the self-energy is given by the longitudinal bosonic modes. This can be explained by
the fact that contributions of transverse particle-hole and particle-particle modes partially cancel each other. Our
results justify the applicability of the recently introduced dual triply irreducible local expansion (D-TRILEX)
method that represents one of the simplest consistent diagrammatic extensions of the dynamical mean-field
theory. We find that the self-consistent D-TRILEX approach is reasonably accurate also in challenging regimes
of the Hubbard model, even where the dynamical mean-field theory does not provide the optimal local reference
point (impurity problem) for the diagrammatic expansion.
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I. INTRODUCTION

Long-range correlations play a crucial role in strongly
interacting electronic systems. They are responsible for var-
ious phenomena as, for instance magnetism, charge density
waves, and superconductivity. A consistent treatment of non-
local collective electronic fluctuations often appears to be a
challenging task. It is important for an accurate description
not only of these effective bosonic modes themselves, but also
of their influence on the single-particle characteristics of the
system.

A consistent model description of strongly correlated ma-
terials should be able to identify leading collective instability
channels governing physical processes in the system. Apart
from giving physical insight, this often drastically diminishes
technical efforts required for solving the problem. The Hub-
bard model is a minimal model that accounts for the interplay
between kinetic energy and Coulomb interaction of electrons.
For infinite number of spatial dimensions, the Hubbard model
can be solved exactly by means of the dynamical mean-field
theory (DMFT) [1], where the self-energy becomes purely
local [2]. DMFT is a nonperturbative method that accurately
accounts for local correlations by mapping the original lattice

*evgeny.stepanov@polytechnique.edu

model onto an auxiliary local impurity problem, which can
be solved numerically exactly. In finite dimensions DMFT
turns out to be a good approximation for single-particle quan-
tities, in particular when local correlations are strong [3,4].
However, DMFT reaches its limits when spatial fluctuations
become large [5].

Further, cluster extensions of DMFT [6–12] have been
introduced to consider nonlocal correlation effects. However,
the range of spatial correlations captured by these meth-
ods is limited by the size of the cluster. For this reason,
long-range collective fluctuations are usually described by
various diagrammatic extensions of DMFT [13]. Some of
these approaches, such as the GW +DMFT [14–20], the triply
irreducible local expansion (TRILEX) [21–23], and the dy-
namical vertex approximation (D�A) [24,25], as well as most
applications of the dual fermion (DF) [26–29] and the dual
boson (DB) [30–34] theories, take into account only a partic-
ular subset of diagrams corresponding to certain channels of
instability. Others are based on the exact diagrammatic Monte
Carlo (DiagMC) method [35,36], which allows to consider all
diagrammatic contributions [37–39].

GW +DMFT is a simple method that is widely used for
calculating properties of realistic materials [40–44]. However,
among various long-range fluctuations this approach consid-
ers only collective charge excitations and does not account
for vertex corrections. The latter are important for an accurate
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description of magnetic, optical, and transport properties of
the system [45–55]. More elaborate theories like DF, DB,
and D�A, which address all leading collective fluctuations on
equal footing, account for vertex corrections and appear to be
in a good agreement with numerically exact methods [4,37–
39,56]. However, the use of the renormilized local four-point
vertex makes all these methods numerically expensive for
application to realistic materials [57–59]. At the same time,
this vertex cannot be simply neglected because it represents
the screened local interaction between electrons. Therefore,
a consistent description of the long-range collective fluctu-
ations requires a theory that combines the simplicity of the
GW +DMFT diagrammatic scheme with vertex corrections
and the equal-footing description of the leading collective
modes provided by more elaborate approaches.

To resolve this issue, a simple consistent diagrammatic
extension of DMFT, dubbed “dual TRILEX” (D-TRILEX),
has recently been proposed in Ref. [60]. This method is
a derivative of the DB approach and is based on a set
of Hubbard-Stratonovich transformations of fermionic and
bosonic variables. This allows to consider local correlation
effects exactly within the impurity problem of DMFT, and
nonlocal effects perturbatively. The resulting approach con-
siders all leading collective electronic fluctuations on equal
footing without any limitation on the range. Unlike the
DB method, the D-TRILEX approach relies on a partially
bosonized representation for the renormalized local four-point
vertex [60] that uncovers explicit contributions of different
collective modes. A single (spin or charge) mode approxi-
mation of the vertex can be found in prior works [33,61,62].
Similar approximations for the four-point vertex have also
been discussed in Refs. [63–66]. However, only the special
form of the partially bosonized approximation introduced in
Ref. [60] allows to derive the D-TRILEX theory that with
a low computational complexity comparable to GW +DMFT
or TRILEX methods reproduces the result of the much more
elaborate DB theory even in the strongly interacting regime.
Additionally, unlike the TRILEX method, the D-TRILEX ap-
proach accounts for vertex corrections for both lattice sites
that are involved in nonlocal diagrams for the self-energy
and the polarization operator. For instance, this allows to pre-
serve the correct orbital structure of considered diagrams [67].
Furthermore, the D-TRILEX approach does not suffer from
the famous Fierz ambiguity problem [68–70], which plagues
many theories that perform a partially bosonized description
of collective modes.

The D-TRILEX theory was introduced only recently [60],
and although it has already been extended to a multiorbital
case [67], its limits of applicability have not been studied in
details so far. In this work we address this important question
and justify the validity of the theory in a broad range of phys-
ical parameters. To this aim we consider a two-dimensional
(2D) Hubbard model on a square lattice and compare the
performance of the D-TRILEX approach with its parental
DB method and the numerically exact DiagMC theory. Note
that in this case the absence of the nonlocal interaction and
the bosonic hybridization function identically reduces the DB
theory to the DF approach. To evaluate the impact of dif-
ferent collective fluctuations on the self-energy, we exploit a
partially bosonized representation of the full local four-point

vertex and obtain the exact solution of the dual problem with
the DiagMC@DF method [38,39], as well as the approximate
ladder DF solution of the problem. In particular, we explicitly
investigate the effect of particle-particle fluctuations that enter
the four-point vertex function since they are believed to be
negligibly small at standard fillings [71]. As the result, we
show that exclusion of the irreducible part and transverse
contributions from the four-point vertex function often does
not lead to a noticeable change of the result, but significantly
reduces costs of numerical calculations.

The paper is organized as follows: Section II contains
a brief derivation of the D-TRILEX theory presented in
Ref. [60]. In Sec. III we compare the D-TRILEX self-energy
with the ladder DF, the DiagMC@DF, and the exact DiagMC
results in a broad range of temperatures and local interactions.
Finally, Sec. IV is devoted to conclusions.

II. THEORY

In this section we highlight the key points of the deriva-
tion of the D-TRILEX method. We begin with the extended
Hubbard model described by the following lattice action:

Slatt = −
∑
k,σ

c∗
kσG−1

kσ ckσ + U
∑

q

n∗
q↑nq↓

+
∑
q,ϑ

ξϑ
{
ρ∗ ϑ

q V ϑ
q ρϑ

q

}
. (1)

Here, the Grassmann variable c(∗)
kσ

with the combined index
k = {k, ν} describes the annihilation (creation) of an electron
with momentum k, fermionic Matsubara frequency ν, and
spin σ = {↑,↓}. Gkσ = [iν + μ − εk]−1 is the bare lattice
Green’s function, where εk is the dispersion of electrons, and
μ is the chemical potential. U describes the onsite Coulomb
interaction between electron densities nqσ = ∑

k c∗
k+q,σ ckσ

that depend on momentum q and bosonic Matsubara fre-
quency ω through the combined index q = {q, ω}. For the
sake of generality, we also introduce a nonlocal interaction Vq
in different bosonic channels ϑ = {ς, s}, where “ς” denotes
the particle-hole channel with density (ς = d) and magnetic
(ς = m = {x, y, z}) components, and “s” labels the particle-
particle singlet channel. For numerical calculations we restrict
ourselves to the Hubbard model and set these nonlocal inter-
actions to zero at the end of the derivation. To shorten the
expression for the action we introduce the prefactor ξϑ that
for the particle-hole and particle-particle channels, respec-
tively, reads as ξς = 1

2 and ξ s = 1. Corresponding composite
bosonic variables ρϑ

q = nϑ
q − 〈nϑ 〉 are introduced as follows:

nς
q =

∑
k,σσ ′

c∗
k+q,σ σ

ς

σσ ′ckσ ′ , (2)

ns
q = 1

2

∑
k,σσ ′

cq−k,σ σ z
σσ ′ckσ ′ , (3)

n∗ s
q = 1

2

∑
k,σσ ′

c∗
kσ σ z

σσ ′c∗
q−k,σ ′ , (4)

where σ x,y,z are Pauli matrices in the spin space, σ d is the
identity matrix in the same space, and σ is the opposite spin
projection to σ . The variable n∗ ς

q can be found from the
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relation n∗ ς
q = nς

−q, and is introduced to unify notations. Note
that in the single-band case considered here the composite
bosonic variables for the triplet channel are identically equal
to zero.

The D-TRILEX approach, as well as its parental DB the-
ory, performs a diagrammatic expansion around a reference
system [29], which in this particular work is given by the
exactly solvable effective local impurity problem of DMFT
[1]:

Simp = −
∑
ν,σ

c∗
νσ [iν + μ − �ν]cνσ + U

∑
ω

n∗
ω↑nω↓. (5)

Here, we introduce the fermionic hybridization function �ν

that aims to describe the screening effect of “bath” electrons
that surround the given lattice site, which plays a role of the
local impurity. Note that in this work we do not consider
the bosonic hybridization function, which is usually intro-
duced for the impurity problem of the extended dynamical
mean-field theory (EDMFT) [72–76]. In DMFT the fermionic
hybridization is determined self-consistently demanding that
the local part of the dressed lattice Green’s function Gkσ is
equal to the Green’s function gνσ of the impurity problem
(5). To be consistent, the same hybridization function �ν has
to be subtracted from the remaining part of the lattice action
Srem = Slatt − ∑

i Simp so that the original lattice problem (1)
remains unchanged.

The impurity problem (5) can be solved numerically
exactly using, e.g., continuous-time quantum Monte Carlo
(CTQMC) solvers [77–80]. This allows to obtain not only
the single-particle Green’s function gνσ and the correspond-
ing self-energy �

imp
νσ , but also the two-particle quantities in

all bosonic channels ϑ of interest. The latter include the
susceptibility χω, the renormalized interaction wω, and the
polarization operator �

imp
ω , as well as the renormalized local

four-point �νν ′ω and three-point �(∗)
νω vertex functions. The

remaining part of the lattice action Srem cannot be taken into
account exactly. Instead, it is treated diagrammatically per-
forming an expansion around the impurity problem (5). In a
consistent way, this procedure can be carried out with the help
of a Hubbard-Stratonovich transformation. The latter allows
to rewrite the Srem in terms of new fermionic f and bosonic
ϕ fields that are dual to original electronic c and composite
ρ variables. After that, the impurity problem (5) with all
original variables can be integrated out, which excludes the
possibility of the double counting betweenSimp andSrem parts
of the lattice problem. This yields the dual boson action (see
Ref. [60] and Appendix A)

S̃ = −
∑
k,σ

f ∗
kσ G̃−1

kσ fkσ −
∑
q,ϑ

ξϑ
{
ϕ∗ ϑ

q W̃ϑ −1
q ϕϑ

q

} + F̃ [ f , ϕ].

(6)

Here, the bare dual fermion G̃kσ = Ǧkσ − gνσ and boson
W̃ϑ

q = W̌ ϑ
q − wϑ

ω propagators are given by the difference
between corresponding EDMFT and impurity quantities. To
prevent misunderstanding, by the EDMFT Green’s function
Ǧkσ and the renormalized interaction W̌ ϑ

q we understand the
bare lattice Green’s function and the bare interaction that are

dressed, respectively, in the local impurity self-energy and
polarization operator via Dyson equations

Ǧ−1
kσ = G−1

kσ − �imp
νσ , (7)[

W̌ ϑ
q

]−1 = (
U ϑ + V ϑ

q

)−1 − �ϑ imp
ω . (8)

In this way, bare dual quantities that describe spatial fluctua-
tions already take into account the effect of local correlations.
Note that in the dual problem (6) the bare local interaction U ϑ

is introduced as a fictitious quantity that does not affect the re-
sult for physical observables (see Appendix A). This directly
follows from the fact that the DB theory is free from the Fierz
ambiguity in decoupling of the local Coulomb interaction U
into different channels (see, e.g., Ref. [60]).

For actual numerical calculations, the dual interaction
F̃ [ f , ϕ] is truncated at the two-particle level, which contains
only the four-point �νν ′ω and three-point �(∗)

νω vertices of the
impurity problem (5). These quantities are explicitly defined
in Appendix A. With this approximation the theory shows
a good agreement with the exact benchmark results [4,37–
39,56]. However, it still remains relatively complex due to
the presence of the four-point vertex function �νν ′ω. The latter
depends on three frequencies, so calculating and using it in
realistic multiorbital simulations, which involve the inversion
of the Bethe-Salpeter equation in the frequency-orbital space,
becomes time consuming numerically [57–59]. To cope with
this problem, one can make use of yet another Hubbard-
Stratonovich transformation over bosonic variables ϕ −→ b
that generates an effective four-point interaction in a partially
bosonized form

�d
νν ′ω 	 2Md

νν ′ω − Md
ν,ν+ω,ν ′−ν − 3Mm

ν,ν+ω,ν ′−ν + Ms
ν,ν ′,ω+ν+ν ′ ,

�m
νν ′ω 	 2Mm

νν ′ω + Mm
ν,ν+ω,ν ′−ν − Md

ν,ν+ω,ν ′−ν − Ms
ν,ν ′,ω+ν+ν ′ ,

�s
νν ′ω 	 Ms

νν ′ω + 1

2

(
Md

ν,ν ′,ω−ν−ν ′ + Md
ν,ω−ν ′,ν ′−ν

)
− 3

2

(
Mm

ν,ν ′,ω−ν−ν ′ + Mm
ν,ω−ν ′,ν ′−ν

)
. (9)

This approximation uncovers the underlying structure of the
vertex, which consists of all possible collective electronic
fluctuations

Mϑ
νν ′ω = �ϑ

νω w̄ϑ
ω �∗ϑ

ν ′ω (10)

that behave as bosonic modes

w̄ς
ω = wς

ω − U ς/2, (11)

w̄s = ws
ω − U s. (12)

As Ref. [60] shows, the partially bosonized representation
(9) for the four-point vertex can be fine tuned in such a way
that it nearly cancels the exact four-point vertex from the dual
action. Indeed, this approximation does not take into account
contributions to the vertex function that cannot be reduced to a
single boson propagator. However, this irreducible part can be
completely excluded on the level of the ladder approximation
for the vertex by a special choice of bare local interactions
in different channels U d/m = ±U/2 and U s = U . The precise
effect of nonladder irreducible contributions on the electronic
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self-energy is investigated below. As a consequence, this spe-
cific choice for the bare interactions U ϑ provides the most
accurate partially bosonized approximation for the four-point
vertex function given by Eq. (9). In addition, it also leads
to a correct high-frequency (ν → ∞ or ω → ∞) asymptotic
behavior of the three-point vertex �(∗)

νω → 1 [60].
At the same time, it should be noted that this special

choice of the bare interaction U ϑ cannot be obtained by any
decoupling of the local Coulomb interaction U into different
bosonic channels [60]. Therefore, it results in a double count-
ing of U in the vertex function, which is explicitly subtracted
from the renormalized interaction wϑ

ω of the impurity problem
in Eqs. (11) and (12). As follows from these equations and
the fact that wθ (ω → ∞) = U θ , we prefer to keep the bare
Coulomb interaction U only in the particle-hole channel. In
this way, it does not contribute to the renormalized singlet
interaction w̄s

ω (12), and becomes equally distributed between
density and magnetic channels. The reason for such decom-
position lies in the fact that the renormalization of the bare
interaction in the particle-particle channel is believed to be
negligibly small at standard fillings [71]. Therefore, the cor-
responding singlet contribution Ms, which in the considered
form (12) does not contain the bare interaction U s, can be
excluded from the theory, as it was consciously done in the
previous work [60]. To clarify this statement, we explicitly
introduce and investigate the effect of singlet terms in this
work. Note that although the bare interaction is (partially or
fully) subtracted from the local renormalized interactions (11)
and (12), the partially bosonized approximation (9) for the
four-point vertex has a correct asymptotic behavior at high
frequencies � d/m → ±U and � s → U . This follows from the
fact that the four-point function does not depend on the way
how the onsite Coulomb interaction U is distributed between
different bosonic channels [60]. For example, although the
singlet bosonic mode w̄s does not contain the constant con-
tribution U s, the latter is still present in the singlet vertex
function �s (9) due to transverse charge and spin fluctuations.

After the last Hubbard-Stratonovich transformation the
dual problem (6) reduces to a simple action of a partially
bosonized dual theory (PBDT) written in terms of fermion f
and boson b variables, and the local three-point interaction
vertex �(∗)

νω only [60]:

Spb = −
∑
k,σ

f ∗
kσ G̃−1

kσ fkσ −
∑
q,ϑ

ξϑ
{
b∗ ϑ

q Wϑ −1
q bϑ

q

}

+
∑
q,k,ϑ

ξϑ
{
�ϑ

νωη∗ ϑ
q,k bϑ

q + �∗ϑ
νωb∗ ϑ

q ηϑ
q,k

}
, (13)

where, similarly to Eqs. (2), (3), and (4), we define

η
ς

q,k =
∑
σσ ′

f ∗
k+q,σ σ

ς

σσ ′ fkσ ′ , (14)

ηs
q,k = 1

2

∑
σσ ′

fq−k,σ σ z
σσ ′ fkσ ′ , (15)

η∗ s
q,k = 1

2

∑
σσ ′

f ∗
kσ σ z

σσ ′ f ∗
q−k,σ ′ . (16)

The bare Green’s function G̃kσ of this new problem (13)
remains unchanged, and the bare bosonic propagators become

Wς
q = W̌ ς

q − U ς/2, (17)

Ws
q = W̌ s

q − U s, (18)

where the same exclusion of the double counting between
different bosonic channels as in Eqs. (11) and (12) takes place.

The simplest set of diagrams for the self-energy and polar-
ization operator used in the D-TRILEX approach [60]

�̃kσ = −
∑
q,ς

{
�ς

νωG̃q+k,σW ς
q �∗ ς

νω − �s
νωG̃q−k,σW s

q �∗ s
νω

}
,

(19)

�̄ς
q = +

∑
k,σ

�∗ ς
νωG̃kσ G̃q+k,σ �ς

νω, (20)

�̄s
q = −

∑
k

�∗ s
νωG̃k↑G̃q−k↓�s

νω (21)

can be obtained from the analog of the Almbladh functional
[81] �[G̃,W,�] = 1

2 G̃�ϑW ϑ�∗ϑ G̃ introduced in the dual
space. This ensures the consistency between single- and two-
particle quantities produced by the theory. Here, G̃kσ and W ϑ

q
are full propagators of the fermion-boson problem (13) given
by Dyson equations

G̃−1
kσ = G̃−1

kσ − �̃kσ , (22)

W ϑ −1
q =Wϑ −1

q − �̄ϑ
q . (23)

This simple GW -like diagrammatics (19), (20), and (21) of
the D-TRILEX approach can also be related to its parental
DB theory. For simplicity, the main text of the paper contains
only a sketch of this derivation presented in Fig. 1. Also, here
we only consider the case when the nonlocal interaction is
discarded (V ϑ

q = 0). Then, the DB theory (6) identically co-
incides with the DF approach, and the dual self-energy in the
ladder approximation takes the form of �̃LDF [28] displayed
in the first line of Fig. 1. This expression can be obtained
using the Schwinger-Dyson equation for the dual self-energy
[82]. As the result, the second-order contribution �̃(2) has a
“ 1

2 ” prefactor that does not appear for the rest of the ladder
self-energy �̃(3+) [27]. As two subsequent lines in Fig. 1
show, if one uses the partially bosonized representation (9) for
every vertex function that enters �̃LDF and keeps only longitu-
dinal contributions in this approximation, the dual self-energy
immediately reduces to the D-TRILEX form (19). By longi-
tudinal contributions we understand Mϑ

νν ′ω terms, where the
bosonic propagator w̄ϑ

ω carries the main bosonic frequency ω.
The exclusion of transverse particle-hole and particle-particle
fluctuations from the four-point vertex can be motivated by the
fact that their contributions to the self-energy partially cancel
each other, which is demonstrated in Sec. III B. The explicit
analytical derivation of the relation between D-TRILEX and
ladder DB (LDB) self-energies for the general case when the
nonlocal interaction is not neglected is shown in Appendix
C. This result demonstrates the important advantage of the
D-TRILEX theory over its parental LDB method, which dras-
tically reduces costs of numerical calculations. Thus, although
the D-TRILEX approach accounts for the main longitudinal
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FIG. 1. Top row shows the ladder dual fermion self-energy �̃LDF, which consists of the first-order Hartree-type term, second-order diagram
�̃ (2), and the rest of the ladder �̃ (3+). Keeping only longitudinal modes of the partially bosonized representation for the four-point vertex �

(black squares), the LDF self-energy reduces to the self-energy of the D-TRILEX approach (red diagram at the end of the top row). For
�̃ (2) and �̃ (3+) the result of this approximation is explicitly shown in the middle and bottom rows, respectively. Red parts of these diagrams
that consist of two triangles (three-point vertices) connected by two solid lines (dual Green’s functions) is the polarization operator of the
D-TRILEX theory. Wiggly line corresponds to the renormalized interaction.

part of the full two-particle ladder fluctuation, the calculation
of the self-energy (19) and polarization operators (20) and
(21) does not require the inversion of the Bethe-Salpeter equa-
tion in the momentum-frequency space. In the ladder DF/DB
theory the inversion of the Bethe-Salpeter equation in the
frequency space cannot be avoided due to a three-frequency
dependence of the local vertex function �νν ′ω.

We note that the diagrammatic expansion in DF, DB, and
D-TRILEX methods is performed in the dual space. The self-
energy of the original lattice problem (1) can be obtained from
the following exact relation [30,32,33]:

�latt
kσ = �imp

ωσ + �̃kσ

1 + gνσ �̃kσ

. (24)

Here, the dual contribution to the lattice self-energy comes
with the denominator (1 + gνσ �̃kσ ) that excludes unphysical
terms from the Dyson equation for the lattice Green’s function
[29]. Note that the expression (24) requires the explicit cal-
culation of the impurity self-energy that cannot be measured
directly as a single-particle correlation function. Instead, �imp

νσ

is usually obtained by inverting the Dyson equation for the
full impurity Green’s function gνσ , which makes the result
noisy at high frequencies. The noise in the self-energy can be
reduced using the improved estimators method that, however,
requires the measurement of higher-order correlations func-
tions [83–85]. Therefore, for calculation of the lattice Green’s
function it is more convenient to use another exact relation
that does not involve �

imp
νσ [30,86]:

G−1
kσ = [

gνσ + gνσ �̃kσ gνσ

]−1 + �ν − εk. (25)

This expression for the dressed lattice Green’s function Gkσ

completes the derivation of the D-TRILEX approach.

III. RESULTS

A. Comparing different methods

In this section we consistently investigate the effect of
different contributions that make up the renormalized local
four-point vertex on the electronic self-energy. To this aim
we consider a two-dimensional (2D) Hubbard model on a
square lattice with the nearest-neighbor hopping amplitude
t = 1 and different values of the onsite Coulomb potential U .
Numerical calculations are performed at half-filling unless the
other filling is explicitly specified. All nonlocal interactions
are set to zero V ϑ

q = 0. Note that in this case the renormalized
interaction of EDMFT W̌ ϑ

q (8) coincides with the impurity
wϑ

ω , and the dual boson propagator W̃ ϑ
q becomes zero. As

TABLE I. Summary of considered methods that specifies the
form of the local four-point vertex and types of diagrams that are
used for the diagrammatic expansion. The square corresponds to
the exact four-point vertex �νν′ω of the impurity problem. Lon-
gitudinal and transverse components Mνν′ω that enter the partially
bosonized approximation for the vertex (9) are depicted by two tri-
angles connected by the wavy line placed horizontally and vertically.
The “−” sign in front of the transverse contribution corresponds to
the antisymmetric form of the vertex (9). The DiagMC@PBDT-s
approximation can be obtained from the DiagMC@PBDT method
by excluding the singlet contribution Ms

ν,ν′,ω+ν+ν′ from the partially
bozonized vertex (9).
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FIG. 2. The lattice self-energy �latt
k,ν obtained for the first Matsubara frequency ν0 = π/β for the inverse temperature β = 2 along the

high-symmetry path in momentum space k. The value of the onsite Coulomb potential U for which the calculation was performed is specified
in panels. Upper and lower parts of each panel correspond to real and imaginary parts of the self-energy, respectively. Results are obtained
using D-TRILEX (red line), LDF (dark blue line), DiagMC@DF (light blue line), DiagMC@PBDB (purple crosses), and DiagMC@PBDB-s
(green crosses) methods.

a consequence, the DB action (6) reduces to the DF prob-
lem [26]. Restricting the interaction F̃ [ f ] to the four-point
vertex function �νν ′ω, the dual problem (6) can be solved
numerically exactly within the diagrammatic Monte Carlo
method for dual fermions (DiagMC@DF) [37–39]. In this
work we perform DiagMC@DF calculations on the basis
of the converged DMFT solution of the lattice problem (1).
The corresponding single-site impurity problem of DMFT
(5) is solved numerically exactly using the open source CT-
HYB solver [87,88] based on ALPS libraries [89]. After that,
the calculated bare dual Green’s function G̃kσ and the local
four-point vertex function �νν ′ω are used as building blocks
for a diagrammatic expansion. A detailed description of the
DiagMC@DF method can be found in Ref. [38]. For physical
parameters considered in this work, the converged result for
the dual self-energy is achieved at the fifth order of expansion.

Different levels of approximation for the four-point vertex
can be investigated to reveal the effect of contributions that are
not accounted for in the D-TRILEX theory. In particular, the
contribution to the self-energy that stems from the irreducible
part of the four-point vertex function can be identified by com-
paring the exact DiagMC@DF solution of the dual problem

(6) with the result of another DiagMC calculation, where the
exact local vertex �νν ′ω is replaced by its partially bosonized
approximation (9). Hereinafter this method is referred to as
DiagMC@PBDT and corresponds to the exact evaluation of
the self-energy of the partially bosonized dual theory (13).
The next level of approximation that allows to observe the
effect of collective fluctuations in the singlet channel can be
achieved by performing DiagMC calculations with the par-
tially bosonized vertex (9) where all Ms terms are neglected.
This calculation is referred to as DiagMC@PBDT-s.

We note that the DiagMC@DF method does not distin-
guish between longitudinal and transverse components of the
four-point vertex because the Monte Carlo sampling considers
all possible topologies of diagrams. As has been discussed
in the Sec. II, the contribution of these modes can be disen-
tangled comparing the self-energy of the ladder dual fermion
(LDF) approach, which exploits the exact local four-point
vertex, with the result of the D-TRILEX theory, where only
longitudinal modes are taken into account. These calculations
are also performed on the basis of the converged DMFT so-
lution, so that the local impurity problem remains the same
for all compared theories. Note that the LDF and D-TRILEX
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results for the self-energy are obtained within the self-
consistent scheme in terms of dressed fermionic (22) and
bosonic (23) propagators. When possible, we compare our
results with the exact DiagMC solution [90–92] of the lat-
tice problem (1) that was kindly provided by the authors of
Refs. [4,93]. All methods are summarized in Table I.

B. Effect of the local interaction

First, we make a scan over a broad range of local Coulomb
interactions U at a fixed temperature. We note that in two
dimensions DMFT predicts the Néel transition at a finite
temperature. This transition is forbidden by Mermin-Wagner
theorem [94] and thus is an artifact of the DMFT theory.
However, since the DiagMC@DF method uses the DMFT
impurity problem as a starting point for the diagrammatic
expansion, the DiagMC@DF theory shows difficult conver-
gence or even divergent result close to the DMFT Néel point
[37,38]. For this reason, calculations are performed at the
inverse temperature β = 2, so that the DiagMC results are
not affected by any convergence issue. Figure 2 shows the
lattice self-energy (24) calculated for all above-mentioned
approaches (see Sec. III A). Note that the self-energy does
not contain the constant Hartree part that is equal to U/2
at half-filling. The results are obtained for the first Matsub-
ara frequency ν0 = π/β along the high-symmetry path that
connects � = (0, 0), X = (0, π ), and M = (π, π ) points in
momentum space k = (kx, ky).

Let us first consider the effect of the irreducible part
of the four-point vertex comparing the self-energy of Di-
agMC@DF (light blue line) and DiagMC@PBDT (purple
crosses) approaches shown in Fig. 2. We find that at U = 2
both methods produce identical results, which means that in a
weakly correlated regime the irreducible contributions to the
vertex do not affect the self-energy. Upon increasing the local
interaction, the discrepancy between these two methods also
increases and is noticeable the most in the strongly correlated
regime at U = 8, which is equal to the bandwidth. After that,
at very large interactions U = 10 and 12 the real part of
the DiagMC@PBDT self-energy again nearly coincides with
the one of the DiagMC@DF approach. The agreement
in the imaginary part of the self-energy also improves, but the
discrepancy between these two methods remains noticeable.

To quantify the difference of the given self-energy from
the reference DiagMC@DF result we calculate the following
normalized deviation:

δ =
∑

k

∣∣∣∣∣�
ref
k,ν0

− �k,ν0

�ref
k,ν0

∣∣∣∣∣. (26)

A similar quantity but for only one k-point was introduced
in Ref. [39]. The corresponding result for all considered ap-
proaches is presented in Fig. 3. We find that the normalized
deviation of the DiagMC@PBDT method reaches its maxi-
mum value δ = 15% at U = 8. As has been pointed out in
the Sec. II, the irreducible part can be excluded from the
renormalized four-point vertex only in the ladder approxima-
tion. In the strongly correlated regime nonladder diagrams
become important [37–39], which is also confirmed by the in-
crease of the normalized deviation of the LDF approach (blue
line in Fig. 3). Consequently, the contribution of the irre-

FIG. 3. The normalized deviation δ calculated for LDF (blue),
D-TRILEX (red), DiagMC@PBDT (purple), and DiagMC@PBDT-
s (green) approximations with respect to the reference Diag@DF
result. The black line shows the leading eigenvalue (l.e.) of AFM
fluctuations. The vertical left axis shows the scale for the normal-
ized deviation, while the vertical right axis displays values for the
leading eigenvalue. The inset compares δ obtained for D-TRILEX
and second-order DF (DF(2), orange) approaches for different in-
verse temperatures β = 2 (circles), β = 4 (triangles), and β = 10
(squares).

ducible part of the vertex to the electronic self-energy also
becomes noticeable. We would like to emphasize that by
the strength of electronic correlations we mean not only the
strength of the interaction, but also the proximity of the system
to an instability. The latter can be estimated by the leading
eigenvalue (l.e.) of the Bethe-Salpeter equation of the LDF
theory [28,95] (black line in Fig. 3), which in our case indi-
cates the strength of antiferromagnetic (AFM) fluctuations.

In the next step we investigate the effect of an addi-
tional exclusion of all singlet contributions from the partially
bosonized four-point vertex (9). At small (U = 2) and mod-
erate (U = 4) interactions this immediately leads to a large
discrepancy between DiagMC@PBDT-s (green crosses) and
DiagMC@PBDT (purple crosses) results for the self-energy
presented in Fig. 2. In addition, from Fig. 3 we find that for
these values of the interaction the DiagMC@PBDT-s strongly
differs from the reference result, while the DiagMC@PBDT
performs reasonably well. Therefore, one can conclude that
singlet fluctuations play an important role in weakly and mod-
erately correlated regime. At a first glance this observation
is in a contradiction with the statement that particle-particle
fluctuations are believed to be negligibly small at stan-
dard fillings [71]. This point is clarified below when we
discuss the result of the D-TRILEX approach. Increasing
the interaction to U = 6 makes the discrepancy between
DiagMC@PBDT and DiagMC@PBDT-s results rapidly de-
crease, and in the strongly correlated regime (U = 8) both
methods produce identical results. Remarkably, for U = 10
and 12 the DiagMC@PBDT-s method shows the best agree-
ment with the DiagMC@DF result among all considered
DiagMC-based approximations. This result suggests that in
the regime of very large interactions contributions to the
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self-energy that stem from the irreducible and singlet parts of
the renormalized four-point vertex, which are not considered
in the DiagMC@PBDT-s theory, nearly cancel each other.

Finally, let us consider the D-TRILEX method that can be
obtained from the LDF theory excluding the irreducible part
and neglecting transverse particle-hole and particle-particle
fluctuations from the exact local impurity four-point vertex.
As Fig. 2 shows, the best agreement between the D-TRILEX
(red line) and the reference DiagMC@DF (light blue line)
results for the imaginary part of the self-energy occurs at U =
2. At small and moderate values of U , the D-TRILEX self-
energy seems to be pinned to the LDF result (dark blue line)
at � and M points. Therefore, the difference between these
two methods is mostly visible around local minima located
at antinodal AN = (0, π ) and nodal N = (π/2, π/2) points.
This difference increases with the interaction, and the ob-
served trend persists up to U = 6. At larger interactions, when
the value of the self-energy at local minima becomes similar,
the D-TRILEX result shifts downwards, and at U = 12 be-
comes pinned to the LDF result at N and AN points.

The discrepancy between the D-TRILEX and the reference
results for the real part of the self-energy also increases with
the interaction up to U = 8, and after that decreases again
for very large interaction strengths. However, here the best
agreement with the exact result is achieved at U = 4 (see red
line in Fig. 2). It can be explained by the fact, that in the
perturbative regime of small interactions (U = 2) and high
temperatures (β = 2) the second-order dual self-energy �̃(2)

gives the main contribution to the nonlocal part of the total
self-energy [3,37–39]. The D-TRILEX theory is not based on
a perturbation expansion because it takes into account only
a particular (GW -like) subset of diagrams. For this reason,
this simple theory does not fully reproduce the second-order
self-energy �̃(2), which leads to a slight underestimation of
the result as discussed in Appendix C. On the contrary, the
D-TRILEX approach correctly accounts for the screening of
the interaction that is represented by longitudinal part of the
infinite two-particle ladder in all bosonic channels. At lower
temperatures and/or larger interactions, when the system en-
ters the correlated regime, these types of diagrams become
more important than the second-order self-energy. To illus-
trate this point, we also obtained the normalized deviation for
the D-TRILEX approach for β = 4 (for U = 2 and 4) and
β = 10 (for U = 2), and compared it with δ calculated for the
second-order DF (DF(2)) approximation that considers only
�̃(2) contribution to the dual self-energy. The corresponding
result is shown in the inset of Fig. 3. As expected, the ac-
curacy of the DF(2) approximation rapidly decreases with the
temperature and becomes δ = 16.5% (for β = 10 and U = 2)
and δ = 22.5% (for β = 4 and U = 4) in the regime, which
is yet above the DMFT Néel point βN 	 12.5 for U = 2 and
βN 	 4.3 for U = 4. At the same time, the D-TRILEX theory
remains in a reasonable agreement with the reference result.

Figure 3 shows that in the regime of weak and moderate
interactions the D-TRILEX self-energy is relatively close to
the DiagMC@DF result (δ = 2% for U = 2 and δ = 3% for
U = 4). This fact looks paradoxical at a first glance because
the D-TRILEX method does not take into account singlet
fluctuations that were found to be important in this regime of
interactions. To explain this result, let us first note that at U �

4 the LDF method is in a very good agreement with the Di-
agMC@DF theory. Therefore, in the weakly and moderately
correlated regime ladder diagrams provide the most important
contribution to the self-energy. This fact allows for a direct
comparison of the self-energies produced by ladder DF and
D-TRILEX methods with the result of DiagMC@ methods
that account for all diagrammatic contributions. Note, how-
ever, that all DiagMC-based schemes tend to overestimate the
reference result, while ladderlike approaches underestimate it.
Therefore, the normalized deviation presented in Fig. 3 should
be compared cautiously. Figure 2 shows that D-TRILEX and
DiagMC@PBDT self-energies obtained at U = 2 and 4 are
very close to the reference result. Both methods do not take
into account the irreducible part of the four-point vertex func-
tion, but the D-TRILEX approach additionally neglects all
transverse particle-hole and particle-particle modes. Keeping
in mind that for these interaction strengths the exclusion of
only singlet fluctuations leads to a large overestimation of the
self-energy, we can conclude that transverse particle-hole and
particle-particle fluctuations partially screen each other. This
means that the exclusion of both types of vertical insertions
in diagrams, as it is done in the D-TRILEX theory, turns out
to be a good approximation in the weakly and moderately
correlated regimes. On the other hand, excluding only one
channel leaves the other channel unscreened, which results in
a large contribution to the self-energy.

Remarkably, the normalized deviation for all considered
approximations shown in Fig. 3 resembles the behavior of
the leading eigenvalue of the magnetic channel (black line).
For instance, the D-TRILEX and LDF methods show the
largest discrepancy with the DiagMC@DF result exactly in
the region where the l.e. is maximal. As has been pointed
out in Ref. [5], approaching an instability leads to collective
fluctuations becoming strongly anharmonic, which cannot be
captured by simple diagrammatic theories. Consequently, in
this regime transverse momentum-dependent fluctuations are
expected to be important. At U = 10 and 12 the agreement of
the D-TRILEX theory with the DiagMC@DF result improves
again. Above we have found that at very large interaction
strengths contributions to the self-energy that stem from sin-
glet and irreducible parts of the vertex partially cancel each
other. This result suggests that the effect of remaining trans-
verse particle-hole fluctuations becomes weaker at very large
interactions, which again justifies the applicability of the D-
TRILEX theory.

We would like to note that the largest discrepancy between
the D-TRILEX and reference DiagMC@DF result δ = 18%
corresponds to the most correlated regime (U = 8). At small
and moderate interactions the normalized difference does not
exceed 3.5% (U = 4). At the same time, the maximal dif-
ference from the parental LDF is only around 10% (U = 8),
which can be considered as relatively good result for such a
simple theory. Finally, we looked at the contribution of the
longitudinal particle-particle fluctuations to the D-TRILEX
self-energy (19) and, as expected, found it to be negligi-
bly small. Indeed, the renormalized singlet interaction in the
D-TRILEX form (18) does not contain the bare constant in-
teraction U s and therefore describes only the screening of
the Coulomb interaction by particle-particle fluctuations. As
the result, we observe that the part of the self-energy that
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FIG. 4. Imaginary part of the lattice self-energy as the func-
tion of Matsubara frequency ν obtained for U = 2 at the antinodal
AN = (0, π ) (top row) and nodal N = (π/2, π/2) (bottom row)
points. Results are calculated at the inverse temperature β = 10 (left
column) and β = 15 (right column) using D-TRILEX (red line),
scD-TRILEX (red stars), and LDF (dark blue line) approaches. The
DiagMC results (light blue line) are provided by the authors of
Ref. [4].

stems from the singlet bosonic mode makes only 3% of
the D-TRILEX self-energy at U = 2, and does not exceed
1% for other interaction strength. Taking into account all
above discussions, this result confirms that all particle-particle
fluctuations can indeed be safely excluded from the simple
D-TRILEX theory, which, however, does not hold for every
diagrammatic approach.

C. Low-temperature regime

In the previous section we considered only the high-
temperature regime (β = 2), where AFM fluctuations are not
very strong especially at U = 2 and 4. As the next step,
we perform calculations at substantially lower temperatures

FIG. 5. Imaginary part of the D-TRILEX self-energy as the func-
tion of Matsubara frequency ν obtained for U = 2 at the nodal
N = (π/2, π/2) (left panel) and antinodal AN = (0, π ) (right panel)
points for different inverse temperatures β = 10 (red line), β = 15
(dark blue line), and β = 20 (light blue line).

FIG. 6. Imaginary part of the lattice self-energy as the function of
Matsubara frequency ν obtained for U = 4 at the AN (top row) and N
(bottom row) points. Results are calculated at the inverse temperature
β = 4 (left column) and β = 6 (right column) using D-TRILEX (red
line), scD-TRILEX (red stars), and LDF (dark blue line) approaches.
The reference DiagMC@DF result (light blue line) is presented only
for β = 4 and is reproduced by the scD-TRILEX method.

around the DMFT Néel point for the interaction strengths up
to a half of the bandwidth (U � 4). A detailed investigation of
the Hubbard model for U = 2 and different temperatures has
been performed in the recent work [4]. This allows for a direct
comparison of LDF and D-TRILEX results with the exact
DiagMC solution of the lattice problem (1) presented in that
paper. For U = 4 we consider only the LDF, the D-TRILEX,
and the DiagMC@DF methods due to the lack of the lattice
DiagMC reference data. The LDF, the D-TRILEX, and the Di-
agMC@DF results are obtained on the basis of the converged
DMFT solution in the same way as in the previous section.
In addition, we also performed fully self-consistent (sc) D-
TRILEX calculations, for which the fermionic hybridization
function �ν of the impurity problem was updated imposing
the following self-consistency condition on the local part of
the dual Green’s function

∑
k G̃kν = 0 (see, e.g., Ref. [26]).

As has been demonstrated in Ref. [4], upon lowering the
temperature even a weakly interacting system goes from a
metallic regime, which is characterised by the imaginary part
of the self-energy extrapolating to zero at low Matsubara
frequencies, to a correlated regime where a pseudogap opens.
The latter can be explained by a Slater mechanism [96] as-
sociated with the increase of long-range AFM fluctuations of
itinerant electrons. The pseudogap opens first at the AN point,
which can be detected by the change of the sign in the slope
of the self-energy between the first and the second Matsubara
frequency. This N/AN dichotomy appears due to additional
suppression of the coherence of single-particle excitations due
to the presence of the van Hove singularity at the AN point.

Figure 4 shows that despite a small mismatch at the
first Matsubara frequency the LDF and D-TRILEX methods
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correctly reproduce the DiagMC result at U = 2 and β = 10
above the DMFT Néel point (βN 	 12.5). Moreover, both
D-TRILEX approaches provide identical results for the self-
energy, which almost exactly coincides with the one of the
LDF approach. Below the DMFT Néel point at β = 15 the
DiagMC self-energy already shows the formation of a pseu-
dogap at the AN point, while the D-TRILEX and the LDF still
exhibit a metallic behavior. However, for all other frequencies
than the first one the LDF self-energy remains in a very good
agreement with the exact result. In its turn, the D-TRILEX
self-energy starts to deviate from the LDF result, and this
discrepancy is more visible at the AN point. We recall that
close to the AFM instability collective fluctuations become
strongly anharmonic [5]. In particular, this anharmonicity is
significant in the Slater regime of weak interactions, where the
magnetic fluctuations are formed by itinerant electrons. As a
consequence, one can expect that in this regime the transverse
modes start to play an important role [37–39]. We note that
in the D-TRILEX method these transverse contributions are
fully discarded, while the LDF approach at least accounts for
them in the local four-point vertex function of the impurity
problem. This fact explains why the LDF shows the formation
of the pseudogap at the AN point at a bit lower tempera-
ture T AN

∗ = 0.059 (β = 17, see Ref. [97]) than the one of
the DiagMC method T AN

∗ = 0.065 [4], and the D-TRILEX
approach captures it at T AN

∗ = 0.050 (β = 20, see Fig. 5).
This also explains the result that the most noticeable deviation
of the self-energy from the exact result corresponds to the
D-TRILEX method and appears at the AN point where the
pseudogap opens first.

Now we increase the strength of the interaction to U = 4
(Fig. 6) and find that at β = 4 slightly above the DMFT
Néel point (βN 	 4.3) the D-TRILEX self-energy is in a good
agreement with the LDF result for the AN point and shows
the beginning of the formation of a pseudogap. In its turn, the
LDF approach agrees with the DiagMC@DF theory for all
frequencies except for the first one. At the N point the LDF
self-energy lies on top of the DiagMC@DF curve, but the
deviation of the D-TRILEX method from the reference result
is more visible. However, the fully self-consistent calculation
strongly improves the D-TRILEX self-energy, which now per-
fectly agrees with the DiagMC@DF result. At β = 6 below
the DMFT Néel point the DiagMC@DF result suffers from
the convergence issue [37,38] and is not shown here. All other
considered methods show an insulating self-energy at the AN
point, while the N point remains metallic. This result confirms
the N/AN dichotomy in the formation of a pseudogap. Also,
this result suggests that at moderate interactions collective
magnetic fluctuations are less anharmonic in contrast to the
weakly interacting regime. This fact can be attributed to a
more localized behavior of electrons when going away from
Slater towards Heisenberg regime of magnetic fluctuations.
As a consequence, for stronger interactions the formation of
the AFM pseudogap can be captured by simpler ladderlike
theories. We also note that at moderate interactions the dis-
crepancy between the D-TRILEX and the LDF approaches
slightly increases upon lowering the temperature. However,
the self-consistent update of the hybridization function �ν

again improves the agreement between both methods. As
explicitly stated in Sec. II, in dual theories the hybridization

function �ν is added to the reference system Simp and sub-
tracted from the remaining part of the action Srem so that the
initial problem (1) remains unchanged. Therefore, if the dual
problem (6) is solved exactly, �ν can be taken arbitrarily.
At the same time, any approximate solution depends on the
choice for the hybridization function. In the latter case, the
imposed self-consistency condition aims at tuning �ν in such
a way that it accounts for the effect of missing diagrams.
In this context the fact that at U = 2 both sc and non-sc
D-TRILEX methods produce identical results demonstrates
that the impurity problem of DMFT serves as good reference
system in the weakly interacting regime. On the contrary,
already for moderate interaction U = 4 the self-consistency
clearly improves the result of the D-TRILEX approach, which
shows that in this case the DMFT impurity problem does not
provide the best possible starting point for partial diagram-
matic resummations.

D. Doped regime of the t-t ′ Hubbard model

The two-dimensional Hubbard model on a square lattice
with nearest-neighbor t and next-nearest-neighbor t ′ hop-
ping amplitudes is widely known as a prototype model for
high-temperature superconducting cuprate compounds. The
opening of a pseudogap and the dichotomy between the N
and AN points in this model has been studied recently in
Ref. [93] in the framework of the exact DiagMC method.
There, the authors considered the following set of model
parameters t ′ = −0.3, U = 5.6, β = 5, and 4% hole doping
that leads to a largest onset temperature for the pseudogap.
In our work we address this physically interesting regime for
a comparable hole doping of 3.4% within the scD-TRILEX
and DiagMC@DF approaches. The obtained self-energies are
compared with the exact result of DiagMC method that was
provided by the authors of the Ref. [93]. For the sake of con-
sistency, the DiagMC@DF expansion was performed based
on the impurity problem of the scD-TRILEX approach.

In Fig. 7 we compare the imaginary part of the non-
local self-energy �nonloc

k,ν0
calculated for the first Matsubara

frequency along the high-symmetry path in momentum space
for all three approaches. To obtain this quantity we subtract
the local part �loc

k,ν0
from the lattice self-energy �latt

k,ν0
, where

�loc
k,ν0

= ∑
k �latt

k,ν0
. Due to the lack of reference DiagMC data,

the sum over the Brillouin zone in this expression is approxi-
mated by the sum over the high-symmetry path in momentum
space. We find that the nonlocal part of the DiagMC@DF
self-energy is in a very good agreement with the reference
DiagMC result. The scD-TRILEX approach also performs
remarkably good in this physically nontrivial regime, espe-
cially given that the considered value of the local Coulomb
interaction U = 5.6 exceeds the half of the bandwidth.
This good agreement in Im �nonloc

k,ν0
indicates that the simple

ladderlike scD-TRILEX method accurately captures the
N/AN dichotomy in the formation of a pseudogap in this
regime [93]. This fact additionally confirms our finding that
going away from the Slater regime allows to use less sophisti-
cated methods to capture the effect of collective fluctuations.

At the same time we find that the DiagMC@DF and the
scD-TRILEX methods do not provide a good value for the
local part of the lattice self-energy. Indeed, Im �loc

k,ν0
of the
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FIG. 7. Imaginary part of the nonlocal self-energy obtained for
the zeroth Matsubara frequency ν0 = π/β along the high-symmetry
path in momentum space k. Calculations are performed for U =
5.6, t ′ = −0.3, and β = 5 using scD-TRILEX (red line) and Di-
agMC@DF (light blue line) methods for 3.4% hole doping. The
DiagMC result (dark blue line) for 4% doping is provided by the
authors of Ref. [93].

DiagMC@DF calculated for the zeroth Matsubara frequency
is equal to −0.77. The corresponding value for the scD-
TRILEX approach is −0.80, while the exact DiagMC result
reads as −1.04. This discrepancy can again be explained by
the fact that DMFT impurity problem does not provide a good
starting point for a diagrammatic expansion already for mod-
erate interactions. To address this issue, we exploited the dual
self-consistency condition to update the fermionic hybridiza-
tion as an attempt for the improvement of the reference system
(see Sec. III C). However, the result obtained in this section
clearly demonstrates the need for an even better starting point,
which should be able to provide more accurate local quantities
to reproduce the exact result.

IV. CONCLUSION

To conclude, in this work we investigated the effect of dif-
ferent collective fluctuations on the single-particle properties
of correlated electronic systems. In order to disentangle local
and nonlocal effects, we introduced an effective reference
system: a local impurity problem. This effective local problem
has been solved numerically exactly providing building blocks
for a diagrammatic expansion aiming at describing nonlocal
correlation effects. Following the dual fermion and boson
idea, we performed this diagrammatic expansion in the dual
space truncating the interaction at the two-particle level and
thus preserving only the local renormalized four-point ver-
tex function. Using the partially bosonized representation for
this four-point vertex, we investigated the effect of different
bosonic modes contributing to the vertex on the electronic
self-energy. Performing a comprehensive analysis based on
DiagMC, DiagMC@DF, LDF, and D-TRILEX approaches,
we have found that irreducible contributions that are not ac-
counted for by the partially bosonized vertex function can be
excluded from the theory in a broad range of physical param-
eters. Indeed, they can be completely eliminated in the ladder
approximation by a special choice of the bare local interac-

tion in different channels. In a weakly interacting regime, the
remaining nonladder contributions have only a minor effect
on the electronic self-energy, and at large interactions these
contributions are nearly canceled by transverse singlet fluctu-
ations. In turn, these transverse singlet modes partially cancel
transverse particle-hole fluctuations in weakly and moder-
ately interacting regimes. Finally, longitudinal singlet bosonic
modes have been found to be negligibly small in all consid-
ered cases. All these results confirm that in a broad regime of
physical parameters the leading contribution to the self-energy
is given by the longitudinal particle-hole bosonic modes. This
important statement allows for a drastic simplification of the
diagrammatic expansion, which implies a huge reduction of
computational efforts. Consequently, the D-TRILEX theory,
which appears as the result of this simplification, looks as a
very promising and powerful tool for solving a broad class of
interacting electronic problems.

At the same time, the theory should not be oversimplified.
Thus, we have shown that considering only second-order dual
self-energy does not provide a good result even at weak and
moderate interactions when the system enters the correlated
regime lowering the temperature. Instead, the D-TRILEX
method performs remarkably good even below the DMFT
Néel temperature in the regime where the AFM pseudogap
starts to develop. A good performance of the D-TRILEX the-
ory has been confirmed in the moderately correlated half-filled
regime of the Hubbard model, and in the case of a t-t ′ model
for hole-doped cuprate compounds. Importantly, in the latter
case we have found that the D-TRILEX approach provides
a reasonably accurate result for the nonlocal part of the self-
energy, while the local part is not reproduced correctly. This
fact indicates that DMFT does not always provide an optimal
way of constructing the local reference (impurity) problem.
We have also found that the simple ladderlike D-TRILEX
theory fails to correctly reproduce the pseudogap formation in
the weakly interacting Slater regime of magnetic fluctuations.
This can be explained by a strong anharmonicity of collective
fluctuations of itinerant electrons close to the AFM instability.
On the contrary, increasing the local Coulomb interaction
drives the system away from the Slater regime. Thus, the
electrons become more localized and their collective behavior
turns more harmonic, which can be captured by less demand-
ing ladderlike methods.
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APPENDIX A: DUAL BOSON THEORY

The explicit derivation of the DB method can be found
in many previous papers on the topic [30–34,60]. However,
for the purpose of this work we have to additionally intro-

duce bosonic variables for the singlet channel. For this reason
here we present a brief derivation of the dual boson theory
one more time. We start with the remaining part of the lattice
action (1)

Srem = −
∑
k,σ

c∗
kσ [�ν − εk]ckσ +

∑
q,ϑ

ξϑ
{
ρ∗ ϑ

q V ϑ
q ρϑ

q

}
. (A1)

Let us perform two Hubbard-Stratonovich transformations:

exp

{∑
k,σ

c∗
kσ [�ν − εk]ckσ

}
= D f

∫
D[ f ∗, f ] exp

{
−

∑
k,σ

(
f ∗
kσ g−1

νσ [�ν − εk]−1g−1
νσ fkσ + f ∗

kσ g−1
νσ ckσ + c∗

kσ g−1
νσ fkσ

)}
, (A2)

exp

{
−

∑
q,ϑ

ξϑ
(
ρ∗ ϑ

q V ϑ
q ρϑ

q

)} = Dϕ

∫
D[ϕϑ ] exp

{∑
q,ϑ

ξϑ
(
ϕ∗ ϑ

q αϑ −1
ω V ϑ −1

q αϑ −1
ω ϕϑ

q − ϕ∗ ϑ
q αϑ −1

ω ρϑ
q − ρ∗ ϑ

q αϑ −1
ω ϕϑ

q

)}
. (A3)

Here, quantities gν and wϑ
ω are the full Green’s function and the renormalized interaction of the local impurity problem, respec-

tively, and αϑ
ω = wϑ

ω/U ϑ . Terms D f = det[gν (�ν − εk )gν] and D−1
ϕ = −

√
det[αϑ

ωV ϑ
q αϑ

ω ] can be neglected when calculating
expectation values. After these transformations the action takes the form

S′
rem =

∑
i

S(i)
imp +

∑
k,σ

(
f ∗
kσ g−1

νσ ckσ + c∗
kσ g−1

νσ fkσ

) +
∑
q,ϑ

ξϑ
(
ϕ∗ ϑ

q αϑ −1
ω ρϑ

q + ρ∗ ϑ
q αϑ −1

ω ϕϑ
q

)

−
∑
k,σ

f ∗
kσ g−1

νσ [εk − �ν]−1g−1
νσ fkσ −

∑
q,ς

ξϑ
(
ϕ∗ ς

q

[
ας

ωV ς
q ας

ω

]−1
ϕς

q

)
. (A4)

Then, the impurity problem can be integrated out as∫
D[c∗, c] exp

{
−

∑
i

S(i)
imp −

∑
k,σ

(
f ∗
kσ g−1

νσ ckσ + c∗
kσ g−1

νσ fkσ

) −
∑
q,ϑ

ξϑ
(
ϕ∗ ϑ

q αϑ −1
ω ρϑ

q + ρ∗ ϑ
q αϑ −1

ω ϕϑ
q

)}

= Zimp × exp

{
−

∑
k,σ

f ∗
kσ g−1

νσ fkσ −
∑
q,ϑ

ξϑ
(
ϕ∗ ϑ

q αϑ −1
ω χϑ

ω αϑ −1
ω ϕϑ

q

) − F̃ [ f , ϕ]

}
, (A5)

where Zimp and χϑ
ω = −〈ρϑ

ω ρϑ ∗
ω 〉 are the partition function

and the susceptibility of the impurity problem, respectively.
This results in the dual boson action

S̃ = −
∑
k,σ

f ∗
kσ G̃−1

kσ fkσ −
∑
q,ϑ

ξϑ
{
ϕ∗ ϑ

q W̃ϑ −1
q ϕϑ

q

} + F̃ [ f , ϕ].

(A6)

The explicit form of the bare fermionic and bosonic propaga-
tors of the dual problem is

G̃kσ = gνσ

[
[εk − �ν]−1 − gνσ

]−1
gνσ = Ǧkσ − gνσ , (A7)

W̃ϑ
q = αϑ

ω

[
V ϑ −1

q − χϑ
ω

]−1
αϑ

ω = W̌ ϑ
q − wϑ

ω, (A8)

where Ǧkσ and W̌ ϑ
q are the Green’s function and renormalized

interaction of EDMFT.
The interaction part of the action F̃ [ f , ϕ] being truncated

to the two-particle level explicitly reads as

F̃ [ f , ϕ] 	
∑
q,k,ϑ

ξϑ
{
�ϑ

νωη∗ϑ
q,kϕ

ϑ
q + �∗ϑ

νωϕ∗ ϑ
q ηϑ

q,k

}

+ 1

4

∑
q,{k},{σ }

�σσ ′σ ′′σ ′′′
ph, νν ′ω f ∗

kσ fk+q,σ ′ f ∗
k′+q,σ ′′′ fk′σ ′′ , (A9)

where ηθ
q,k have been defined in Eqs. (14), (15), and (16).

The four-point vertex functions in the particle-hole �ph and
particle-particle �pp form are defined as

�
σ1σ2σ3σ4
ph, νν ′ω =

〈
cνσ1

c∗
ν+ω,σ2

c∗
ν ′,σ3

cν ′+ω,σ4

〉
c

gνσ1 gν+ω,σ2 gν ′σ3 gν ′+ω,σ4

,

�
σ1σ2σ3σ4
pp, νν ′ω =

〈
cνσ1

cω−ν,σ2
c∗
ν ′σ3

c∗
ω−ν ′,σ4

〉
c

gνσ1 gω−ν,σ2 gν ′σ3 gω−ν ′,σ4

, (A10)

where 〈. . .〉c denotes the connected part of the correlation
function. The following relation between two representations
holds:

�
σ1σ2σ3σ4
pp, νν ′ω = �

σ1σ3σ4σ2
ph, ν,ω−ν ′,ν ′−ν

= −�
σ1σ4σ3σ2
ph, ν,ν ′,ω−ν−ν ′ . (A11)

Density (d), magnetic (m), singlet (s), and triplet (t) compo-
nents of the four-point vertex are defined as

�
d/m
νν ′ω = �

↑↑↑↑
ph, νν ′ω ± �

↑↑↓↓
ph, νν ′ω,

�
s/t
νν ′ω = 1

2
�

↑↓↑↓
pp, νν ′ω ∓ 1

2
�

↑↓↓↑
pp, νν ′ω. (A12)
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The three-point interactions in the channel representation are
defined as

�ς
νω =

〈
cν↑c∗

ν+ω↑ ρ∗ ς
ω

〉
gν↑gν+ω↑α

ς
ω

; �∗ ς
νω =

〈
cν+ω↑c∗

ν↑ ρς
ω

〉
gν+ω↑gν↑α

ς
ω

;

�s
νω =

〈
cν↑cω−ν↓ ρ∗ s

ω

〉
gν↑gω−ν↓αs

ω

; �∗ s
νω =

〈
c∗
ω−ν↓c∗

ν↑ ρs
ω

〉
gω−ν↓gν↑αs

ω

. (A13)

In the particle-hole channel the three-point vertex obeys the
useful relation �∗ ς

νω = �
ς
ν+ω,−ω. The three-point vertex in the

triplet channel is not introduced because the composite vari-
able ρ t is identically zero in the single-band case.

It is important to note that in dual diagrams the bosonic
line always connects two three-point vertex functions. Using
Eqs. (A8) and (A13), one finds that

�ϑ
νωW̃ ϑ

q �∗ϑ
νω ∼ αϑ −1

νω W̃ ϑ
q αϑ −1

νω = [
V ϑ −1

q − χϑ
ω

]−1
. (A14)

This relation shows that αϑ
ω , which is the only quantity that

explicitly contains the bare local interaction U ϑ , drops out
from the dual diagrammatics. Therefore, physical observables
that can be found via the exact relation between correlation
function written in terms of dual f and original c fermion
variables also do not depend on the choice of the bare in-

teraction U θ for different bosonic channels. This fact is not
surprising because the onsite Coulomb interaction U is fully
accounted by the impurity problem and is already contained
in the four-point vertex.

APPENDIX B: D-TRILEX THEORY

In this Appendix we explicitly show the transformation
that reduces the dual boson problem (6) to the fermion-boson
action (13) of the D-TRILEX theory. The key idea is to find
such Hubbard-Stratonovich transformation that produces the
interaction in the partially bosonized form of Eq. (9) that
nearly cancels the exact four-point vertex function from the
theory. To this aim let us first add and subtract the term∑

q,ϑ

ξϑ
(
ϕ∗ ϑ

q w̄ϑ −1
ω ϕϑ

q

)
(B1)

from the dual action (A6). At this step one can consider w̄ϑ
ω

as an arbitrary function that will be determined later. This
procedure will allow us to integrate out dual bosonic fields
ϕ with respect to the arbitrary Gaussian part of the action
introduced in Eq. (B1). To illustrate this point, we make use
of following Hubbard-Stratonovich transformations:

exp

{∑
q,ϑ

ξϑϕ∗ ϑ
q

[
W̃ ϑ −1

q + w̄ϑ −1
ω

]
ϕϑ

q

}

= Db

∫
D[bϑ ] exp

{
−

∑
q,ϑ

ξϑ
(
b∗ ϑ

q w̄ϑ −1
ω

[
W̃ ϑ −1

q + w̄ϑ −1
ω

]−1
w̄ϑ −1

ω bϑ
q − ϕ∗ ϑ

q w̄ϑ −1
ω bϑ

q − b∗ ϑ
q w̄ϑ −1

ω ϕϑ
q

)}
, (B2)

whereD−1
b =

√
det[w̄ϑ

ω (W̃ ϑ −1
q + w̄ϑ −1

ω )w̄ϑ
ω]. The action transforms to

S̃′ = −
∑
k,σ

f ∗
kσ G̃−1

kσ fkσ +
∑
q,ϑ

ξϑ
{
b∗ ϑ

q w̄ϑ −1
ω

[
W̃ ϑ −1

q + w̄ϑ −1
ω

]−1
w̄ϑ −1

ω bϑ
q

}

+
∑
q,ϑ

ξϑ
{
ϕ∗ ϑ

q w̄ϑ −1
ω ϕϑ

q − ϕ∗ ϑ
q w̄ϑ −1

ω bϑ
q − b∗ ϑ

q w̄ϑ −1
ω ϕϑ

q

} + F̃ [ f , ϕ]. (B3)

Finally, dual bosonic fields ϕ can be integrated out with respect to the new Gaussian part of the dual action as

∫
D[ϕς ] exp

⎧⎨
⎩−

∑
q,k,ϑ

ξϑ
(
ϕ∗ ϑ

q w̄ϑ −1
ω ϕϑ

q − ϕ∗ ϑ
q

[
w̄ϑ −1

ω bϑ
q − �∗ ϑ

νωηϑ
q,k

] − [
b∗ ϑ

q w̄ϑ −1
ω − η∗ϑ

q,k�
ϑ
νω

]
ϕϑ

q

)⎫⎬⎭
= Zϕ × exp

⎧⎨
⎩

∑
q,k,ϑ

ξϑ
(
b∗ ϑ

q w̄ϑ −1
ω bϑ

q − �ϑ
νωη∗ϑ

q,k bϑ
q − �∗ ϑ

νωb∗ ϑ
q ηϑ

q,k + η∗ϑ
q,k�

ϑ
νωw̄ϑ

ω�∗ ϑ
νωηϑ

q,k

)⎫⎬⎭, (B4)

where Zϕ is a partition function of the Gaussian part of the
bosonic action. Being written in the antisymmetrized form,
the quartic term η∗ϑ

q,k�
ϑ
νωw̄ϑ

ω�∗ ϑ
νωηϑ

q,k in Eq. (B4) makes the
partially bosonized representation for the four-point vertex
specified in Eq. (9) [60]. Since this effective vertex function
is generated with the opposite sign, it cancels the exact four-
point vertex if w̄ϑ

ω is defined as in Eqs. (11) and (12). After
that, the dual problem reduces to the action of the D-TRILEX
theory (13).

APPENDIX C: RELATION BETWEEN DB AND D-TRILEX
DIAGRAMS

In this Appendix we establish the relation between ladder
DB and D-TRILEX diagrams for the self-energy. As shown in
Ref. [32], the LDB diagrams for the self-energy and polariza-
tion operator can be obtained form the dual functional, which
yields

�̃LDB
kσ = �̃LDF

kσ + �̃mix
kσ . (C1)
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The ladder DF self-energy

�̃LDF
kσ = �̃ladd

kσ − �̃
(2)
kσ

(C2)

is given by the two-particle ladder diagram

�̃ladd
kσ = −

∑
q,k′,{σ }

G̃k+q,σ ′P σσ ′σ ′′σ ′′′
ph, νν ′q δkk′δσσ ′′δσ ′σ ′′′ . (C3)

As follows from the Schwinger-Dyson for the dual self-
energy, the ladder diagram accounts for twice the contribution
of the second-order self-energy [82]

�
(2)
kσ

= −1

2

∑
q,k′,{σ }

� σσ ′σ ′′σ ′′′
ph, νν ′ω G̃k′,σ ′′G̃k′+q,σ ′′′G̃k+q,σ ′� σ ′′σ ′′′σσ ′

ph, ν ′νω

(C4)

which has to be excluded from the expression (C2) in order
to avoid the double counting. The mixed diagram that addi-
tionally appears in the DB theory due to the presence of the
bosonic propagator W̃ ς

q is as follows:

�̃mix
kσ = −

∑
q,ς

Lς
νqG̃q+k,σW̃ ς

q L∗ ς
νq . (C5)

Dressed dual fermionic and bosonic propagators can be found
using corresponding Dyson equations

G̃−1
kσ = G̃−1

kσ − �̃kσ , (C6)

W̃ ς −1
q = W̃ς −1

q − �̃ς
q , (C7)

where the dual polarization operator in the ladder approxima-
tion reads as

�̃ς
q =

∑
k,σ

�∗ ς
νωG̃kσ G̃q+k,σ Lς

νq. (C8)

The screened three- and four-point vertices in the horizontal
particle-hole (charge and spin) and particle-particle (singlet)
channels are

Lϑ
νq = �ϑ

νω +
∑

k1

P ϑ
νν1qX̃ 0 ϑ

k1,q�
ϑ
ν1ω

, (C9)

P ϑ
νν ′q = � ϑ

νν ′ω +
∑

k1

P ϑ
νν1qX̃ 0 ϑ

k1,q�
ϑ
ν1ν ′ω. (C10)

Here, X̃ 0 ς

k,q = G̃kσ
G̃k+q,σ

and X̃ 0 s
k,q = − G̃k↑G̃q−k,↓. The

screened vertices in the vertical P
ς

and horizontal P ς

particle-hole channels are connected via the relation
P

ς

kk′ω = − P ς

ν,ν+ω,k′−k . Note that the DB theory does not
account for fluctuations in the particle-particle channel
because they are negligibly small in the ladder approximation.
Therefore, the LDB self-energy (C1) contains the three- and
four-point vertices that are screened only in the particle-hole
(ς ) channel. Diagrammatic expressions for the LDB
self-energy and polarization operator, as well as for the
screened three- and four-point vertices, are shown in Fig. 8.

FIG. 8. Top row: ladder �̃ladd
kσ (C3) and mixed �̃mix

kσ (C5) contri-
butions to the LDB self-energy, and the LDB polarization operator
�̃ς

q (C8). Bottom row: Screened three-point Lϑ
νq (C9) and four-point

P ϑ
νν′q (C10) vertex functions in the LDB approximation.

Let us derive D-TRILEX diagrams for the self-energy as
an approximation of the ladder DB theory. To this aim, one
can use the partially bosonized representation for the four-
point vertex function (9) and keep only longitudinal bosonic
fluctuations.

1. First-order self-energy

The first-order contribution to the ladder part of the self-
energy (C3) written in the channel representation becomes

�̃(1)
νσ = −

∑
q,σ ′

G̃k+q,σ ′�
σσ ′σσ ′
ννω

= −1

2

∑
q,ς

G̃k+q,σ
� ς

ννω

	 −
∑
q,ς

G̃k+q,σ
Mς

ννω +
∑

q

G̃q−k,σ
Ms

ννω

= −
∑
q,ς

{
�ς

νωG̃q+k,σ w̄ς
ω�∗ ς

νω − �s
νωG̃q−k,σ w̄s

ω�∗ s
νω

}
.

(C11)

Here, a trivial Hartree-type contribution to the dual self-
energy �̃H

νσ = 2�d
ν,0w̄

d
0

∑
k′ �d

ν ′,0G̃k′σ that appears due to
Mν,ν+ω,ν ′−ν terms in Eq. (9) have been omitted for simplicity.

2. Second-order self-energy

The second-order self-energy (C4) can be simplified in the
same way. Equation (C4) can first be rewritten in the channel
representation as

�̃
(2)
k,σ1

= −1

4

∑
k′,q,ς

G̃k+q�
ς

νν ′ωG̃k′G̃k′+q�
ς

ν ′νω. (C12)

We omit spin labels for Green’s functions in this expression
because in the considered paramagnetic case the Green’s func-
tion does not depend on the projection of spin. One can again
use the partially bosonized representations for the four-point
vertex function (9), which leads to

�̃
(2)
k = − 1

4

∑
k′,q

{
4

∑
ς

(
Mς

ν,ν ′,ωMς

ν ′,ν,ω + Mς

ν,ν+ω,ν ′−νMς

ν ′,ν ′+ω,ν−ν ′
) + 4Ms

ν,ν ′,ν+ν ′+ωMs
ν ′,ν,ν+ν ′+ω − 4 Md

ν,ν ′,ω Md
ν ′,ν ′+ω,ν−ν ′

+ 12 Mm
ν,ν ′,ω Mm

ν ′,ν ′+ω,ν−ν ′ − 24 Mm
ν,ν ′,ωMd

ν ′,ν ′+ω,ν−ν ′ + 8 Md
ν,ν ′,ωMs

ν ′,ν,ν+ν ′+ω − 24 Mm
ν,ν ′,ωMs

ν ′,ν,ν+ν ′+ω

}
G̃k′ G̃k′+q G̃k+q.

(C13)
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Shifting momentum and frequency indices as k′ → k + q′′ and q → k′′ − k one can show that the product of two transverse
fluctuations results in the same contribution to the self-energy as the product of two longitudinal ones

∑
k′,q

Mς

ν,ν+ω,ν ′−νMς

ν ′,ν ′+ω,ν−ν ′G̃k′G̃k′+qG̃k+q →
∑
k′′,q′′

Mς

ν,ν ′′,ω′′M
ς

ν+ω′′,ν ′′+ω′′,−ω′′G̃k+q′′G̃k′′+q′′G̃k′′

=
∑
k′′,q′′

Mς

ν,ν ′′,ω′′M
ς

ν ′′,ν,ω′′G̃k′′G̃k′′+q′′G̃k+q′′ . (C14)

The last relation can be obtained imposing the symmetry of
the four- and three-point vertex functions (A10) and (A13).
The product of two singlet fluctuations can also be simplified
shifting q → q′′ − k − k′ as∑

k′,q

Ms
ν,ν ′,ν+ν ′+ωMs

ν ′,ν,ν+ν ′+ωG̃k′G̃k′+qG̃k+q

→
∑
k′,q′′

Ms
ν,ν ′,ω′′Ms

ν ′,ν,ω′′G̃k′G̃q−kG̃q−k′ . (C15)

Then, keeping only longitudinal contributions in �̃
(2)
k,σ1

, one
gets the second-order self-energy of the D-TRILEX approach

�̃
(2)
k,σ

	 −
∑
q,ς

G̃k+q,σ �ς
νωw̄ς

ω

(∑
k′,σ ′

�
∗ ς

ν ′ωG̃k′σ ′G̃k′+q,σ ′�
ς

ν ′ω

)

× w̄ς
ω�∗ ς

νω

+
∑

q

G̃q−k,σ �s
νωw̄s

ω

(
−

∑
k′

�∗ s
ν ′ωG̃k′↑G̃q−k′↓�s

ν ′ω

)

× w̄s
ω�∗ s

νω

= −
∑
q,ς

�ς
νωG̃q+k,σ w̄ς

ω �̄ς
q w̄ς

ω�∗ ς
νω

+
∑

q

�s
νωG̃q−k,σ w̄s

ω�̄s
qw̄

s
ω�∗ s

νω. (C16)

Neglecting nonlongitudinal contributions in Eq. (C13) ex-
plains the mismatch in the real part of the D-TRILEX
self-energy in the trivial regime of high temperatures (β = 2)
and weak interactions (U = 2).

3. Remaining part of the LDB self-energy

The D-TRILEX form of the remaining part of the LDB
self-energy can be obtained preserving only longitudinal fluc-
tuations in the partially bosonized representation for the
four-point vertex (9) �

ς

νν ′ω 	 2Mς

νν ′ω. Then, the renormalized
three-point (C9) and four-point vertices (C10) become

Lς
νq 	 �ς

νω

(
1 + W̄ ς

q �̄ς
q

)
, (C17)

P ς

νν ′q 	 2�ς
νωW̄ ς

q �∗ ς
νω, (C18)

where

W̄ ς −1
q = w̄ς −1

ω − �̄ς
q . (C19)

Substituting these expressions to the remaining part of the
ladder contribution to the self-energy (C3), one gets

�̃
(3+)
kσ

	 −
∑
q,ς

�ς
νωG̃q+k,σW̄ ς

q �̄ς
q w̄ς

ω �̄ς
q w̄ς

ω�∗ ς
νω

+
∑

q

�s
νωG̃q−k,σW̄ s

q �̄s
q w̄s

ω �̄s
q w̄s

ω�∗ s
νω. (C20)

In this expression we additionally introduced the screening of
the four-point vertex in the particle-particle channel, which
is usually not accounted for the LDF theory. Combining all
ladder terms (C11), (C16), and (C20) together, the LDF self-
energy simplifies to

�̃LDF
kσ = −

∑
q,ς

{
�ς

νωG̃q+k,σW̄ ς
q �∗ ς

νω − �s
νωG̃q−k,σW̄ s

q �∗ s
νω

}
.

(C21)

Under the same approximation, the mixed diagram (C5) be-
comes

�̃mix
kσ = −

∑
q,ς

�ς
νωG̃q+k,σ

(
1 + W̄ ς

q �̄ς
q

)
W̃ ς

q

(
1 + �̄ς

qW̄ ς
q

)
�∗ ς

νω

+
∑

q

�s
νωG̃q−k,σ

(
1 + W̄ s

q �̄s
q

)
W̃ s

q

(
1 + �̄s

qW̄ s
q

)
�∗ s

νω,

(C22)

where we also added the contribution from the particle-
particle channel. Using the Dyson equation (C7) for the dual
bosonic propagator W̃ ϑ

q with the approximate dual polariza-
tion operator (C8)

�̃ϑ
q = �̄ϑ

q (1 + W̄ ϑ
q �̄ϑ

q ), (C23)

the total self-energy reduces to the D-TRILEX result (19)

�̃D-TRILEX
kσ = �̃LDF

kσ + �̃mix
kσ

	 −
∑
q,ς

{
�ς

νωG̃q+k,σW ς
q �∗ ς

νω

− �s
νωG̃q−k,σW s

q �∗ s
νω

}
. (C24)

The renormalized interaction of the theory can be found as
follows:

W ϑ −1
q =Wϑ −1

q − �̄ϑ
q , (C25)

where the partially dressed bosonic propagator [see Eqs. (17)
and (18)] is

Wϑ
q = W̃ϑ

q + w̄ϑ
ω. (C26)

245123-15



V. HARKOV et al. PHYSICAL REVIEW B 103, 245123 (2021)

[1] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Dynamical mean-field theory of strongly correlated fermion
systems and the limit of infinite dimensions, Rev. Mod. Phys.
68, 13 (1996).

[2] W. Metzner and D. Vollhardt, Correlated Lattice Fermions in
d = ∞ Dimensions, Phys. Rev. Lett. 62, 324 (1989).

[3] J. Gukelberger, L. Huang, and P. Werner, On the dangers of
partial diagrammatic summations: Benchmarks for the two-
dimensional hubbard model in the weak-coupling regime, Phys.
Rev. B 91, 235114 (2015).

[4] T. Schäfer, N. Wentzell, F. Šimkovic, Y.-Y. He, C. Hille,
M. Klett, C. J. Eckhardt, B. Arzhang, V. Harkov, François-
Marie Le Régent, A. Kirsch, Y. Wang, A. J. Kim, E. Kozik,
E. A. Stepanov, A. Kauch, S. Andergassen, P. Hansmann,
D. Rohe, Y. M. Vilk et al., Tracking the Footprints of Spin
Fluctuations: A MultiMethod, MultiMessenger Study of the
Two-Dimensional Hubbard Model, Phys. Rev. X 11, 011058
(2021).

[5] A. N. Rubtsov, E. A. Stepanov, and A. I. Lichtenstein, Collec-
tive magnetic fluctuations in Hubbard plaquettes captured by
fluctuating local field method, Phys. Rev. B 102, 224423 (2020).

[6] M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke,
and H. R. Krishnamurthy, Nonlocal dynamical correlations
of strongly interacting electron systems, Phys. Rev. B 58,
R7475(R) (1998).

[7] A. I. Lichtenstein and M. I. Katsnelson, Antiferromagnetism
and d-wave superconductivity in cuprates: A cluster dynamical
mean-field theory, Phys. Rev. B 62, R9283 (2000).

[8] T. A. Maier, M. Jarrell, T. Pruschke, and M. Hettler, Quantum
cluster theories, Rev. Mod. Phys. 77, 1027 (2005).

[9] G. Kotliar, S. Y. Savrasov, G. Pálsson, and G. Biroli, Cellular
Dynamical Mean Field Approach to Strongly Correlated Sys-
tems, Phys. Rev. Lett. 87, 186401 (2001).

[10] A.-M. S. Tremblay, B. Kyung, and D. Sénéchal, Pseudogap
and high-temperature superconductivity from weak to strong
coupling. Towards a quantitative theory (Review Article), Low
Temp. Phys. 32, 424 (2006).

[11] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.
Parcollet, and C. A. Marianetti, Electronic structure calculations
with dynamical mean-field theory, Rev. Mod. Phys. 78, 865
(2006).

[12] M. Harland, M. I. Katsnelson, and A. I. Lichtenstein, Plaque-
tte valence bond theory of high-temperature superconductivity,
Phys. Rev. B 94, 125133 (2016).

[13] G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanin, A. E.
Antipov, M. I. Katsnelson, A. I. Lichtenstein, A. N. Rubtsov,
and K. Held, Diagrammatic routes to nonlocal correlations be-
yond dynamical mean field theory, Rev. Mod. Phys. 90, 025003
(2018).

[14] P. Sun and G. Kotliar, Many-Body Approximation Scheme be-
yond GW, Phys. Rev. Lett. 92, 196402 (2004).

[15] S. Biermann, F. Aryasetiawan, and A. Georges, First-Principles
Approach to the Electronic Structure of Strongly Correlated
Systems: Combining the GW Approximation and Dynamical
Mean-Field Theory, Phys. Rev. Lett. 90, 086402 (2003).

[16] T. Ayral, P. Werner, and S. Biermann, Spectral Properties of
Correlated Materials: Local Vertex and Nonlocal Two-Particle
Correlations from Combined GW and Dynamical Mean Field
Theory, Phys. Rev. Lett. 109, 226401 (2012).

[17] T. Ayral, S. Biermann, and P. Werner, Screening and non-

local correlations in the extended Hubbard model from
self-consistent combined GW and dynamical mean field theory,
Phys. Rev. B 87, 125149 (2013).

[18] L. Huang, T. Ayral, S. Biermann, and P. Werner, Extended
dynamical mean-field study of the Hubbard model with long-
range interactions, Phys. Rev. B 90, 195114 (2014).

[19] L. Boehnke, F. Nilsson, F. Aryasetiawan, and P. Werner, When
strong correlations become weak: Consistent merging of GW
and DMFT, Phys. Rev. B 94, 201106(R) (2016).

[20] T. Ayral, S. Biermann, P. Werner, and L. Boehnke, Influence
of Fock exchange in combined many-body perturbation and
dynamical mean field theory, Phys. Rev. B 95, 245130 (2017).

[21] T. Ayral and O. Parcollet, Mott physics and spin fluctuations: A
unified framework, Phys. Rev. B 92, 115109 (2015).

[22] T. Ayral and O. Parcollet, Mott physics and spin fluctuations: A
functional viewpoint, Phys. Rev. B 93, 235124 (2016).
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5.3 Coexisting charge density wave and ferromag-
netic instabilities in monolayer InSe

In this work [130], we apply the D-TRILEX approach to study many-body effects
in a recently discovered monolayer indium selenide (InSe) system – a material with
unique characteristics of the electronic spectrum. Due to large on-site Coulomb
repulsion, InSe monolayer can not be treated using perturbative methods like GW or
RPA to investigate the many-body correlation effects. A weakly-screened and long-
ranged character of the Coulomb interaction also does not allow one to use DMFT
for describing this system. Therefore, in order to take into account the non-local
correlations we perform calculations using the D-TRILEX method, which allows
one to consider collective electronic fluctuations in the charge and spin channels
simultaneously without any restriction on the range. We demonstrate that the 2D
phase of InSe is a rare example of a system, where collective electronic fluctuations
lead to the formation of exotic states of matter, such as coexisting charge density
wave and ferromagnetic ordering. This behavior is highly unusual for a sp-electron
system.

The electronic spectral function of the monolayer InSe has prominent van Hove
singularities that are usually responsible for a very rich and exotic many-body physics
in the system. This kind of band topology is now intensively studied in twisted
bilayer graphene, which is, however, a very complicated system to work with, both
experimentally and theoretically. InSe is more accessible from both, the experimental
and the computational points of view. At the same time, InSe can be considered a
prototype for flat band systems with largely unexplored properties. To study this
material, we use a combination of first-principles calculations and advanced many-
body techniques that allow us to consider dynamical correlation effects at arbitrary
wavelengths. We find that upon moderate hole doping and realistic temperatures
monolayer InSe tends to form an ordered phase with commensurate charge density
wave ordering which is driven by non-local Coulomb interactions. Remarkably, there
is a regime where this phase coexists with a ferromagnetic ordering, which is highly
unexpected for a system without localized d-electrons. This makes the monolayer
InSe a promising candidate for exploring collective electronic effects, which paves the
way for further theoretical and experimental studies.

Under normal conditions InSe monolayer is an indirect semiconductor with a fully
filled valence band, therefore we investigate the system at different temperatures for
realistic dopings so that the van Hove singularity (vHS) appears close to the Fermi
energy. The obtained results show a commensurate CDW ordering for a broad range
of doping levels. We find that the formation of the CDW can be seen in the single-
particle spectral function through the development of a pseudogap at the Fermi
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energy, which is due to the feedback effect of the collective fluctuations on the single-
particle quantities. Inside the CDW phase, we found a ferromagnetic phase that
has a dome-like shape. The top of the dome is located at the doping where the
vHS meets the Fermi energy. We find that taking the electron-photon coupling into
account does not lead to qualitative changes in the obtained phase diagram. This
result shows that the formation of the CDW phase in the monolayer InSe is driven
by strong electronic correlations rather than by the electron-phonon mechanism.
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INTRODUCTION
Two-dimensional (2D) group III–VI metal chalcogenides have
recently attracted great interest because of their appealing
characteristics. Among them are high charge carrier mobility,
controllable energy gaps, excellent thermoelectric and optical
properties, as well as excellent stability at ambient conditions1–6.
The electronic structure of ultrathin InSe features flat regions in
the valence band dispersion leading to prominent van Hove
singularities (vHS) in the hole density of states (DOS)7.
Importantly, this kind of electronic structure is only observed
in the monolayer limit of these materials, as has been
experimentally demonstrated by means of angular resolved
photoemission spectroscopy8,9. If the vHS appears at the Fermi
energy, it may result in numerous competing channels of
instabilities such as magnetic, charge, or superconducting order
with a very non-trivial interplay between them10–12. Scientific
interest to flat-band materials has been triggered in recent years
by the discovery of unconventional superconductivity and
related exotic phenomena in twisted bilayer graphene13–15.
Therefore, thin films group III–VI materials turn out to be
prospective candidates for studying many-body correlation
effects, which are closely related to the above-mentioned
features in the electronic spectrum16, circumventing the need
for any twist engineering.
The theoretical description of many-body effects in monolayer

InSe is challenging and is limited to a few works mainly focusing
on the electron–phonon coupling. In particular, it has been shown
that hole states in this material undergo significant renormaliza-
tion due to the interaction with acoustic phonons, which gives rise
to the appearance of unusual temperature-dependent optical
excitations17. Also, a strong electron–phonon interaction may
result in a charge density wave (CDW) instability predicted

recently18. At the same time, monolayer InSe is expected to
possess strong many-body electronic effects that have not been
accurately studied yet. For instance, the presence of the Mexican-
hat-like band in this material might favor a magnetic instability
that could lead to the formation of a magnetically ordered state at
low temperatures. Up to now the existence of a magnetic solution
for InSe monolayer has been demonstrated based on density
functional theory (DFT)19 without systematic consideration of
many-body effects. In addition, the weakly screened Coulomb
interaction in 2D may result in a Coulomb-driven CDW instability.
However, a systematic many-body consideration of these effects is
still missing in the literature.
In this work, we address the problem of collective electronic

effects in monolayer InSe. For this purpose, we derive a realistic
model that considers both, long-range Coulomb interactions and
the electron–phonon coupling. The introduced interacting
electronic problem is further solved using an advanced many-
body approach that explicitly takes into account non-local
collective electronic fluctuations. In the regime of hole-doping,
we find that charge ordering represents the main instability. It is
formed in a broad range of doping levels and corresponds to a
commensurate CDW, which indicates that this instability is rather
driven by strong electronic Coulomb correlations than by an
electron–phonon mechanism as discussed previously. Inside the
CDW phase, we detect another collective effect that drives the
system towards a ferromagnetic (FM) ordering. This instability is
formed in close proximity to the vHS in the DOS. Finally, we
observe that the electron–phonon coupling tends to suppress the
FM ordering, enlarging the CDW phase. However, the presence of
the electron–phonon coupling does not qualitatively affect the
observed effects.
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RESULTS
Model
InSe is a layered van der Waals material, where each layer
consists of two vertically displaced In-Se honeycombs, giving rise
to four Se-In-In-Se atomic planes (Fig. 1a). Each layer has D3h

point group symmetry. In the monolayer limit DFT calculations
predict InSe to be a semiconductor with an indirect energy gap
of ~2 eV. The electronic dispersion shows a single well-separated
valence band, which has the shape of a Mexican hat, as depicted
in Fig. 1b. This shape is characterized by a ring of radius k0 ≈
0.3 Å−1 formed by the valence band edge, and by a well of E0=
0.09 eV deep at the Γ point. These parameters are in reasonable
agreement with those obtained from photoemission spectro-
scopy in Ref. 8. This peculiar band structure is of great advantage
for many-body considerations as it allows us to reduce the
correlated subspace to a single band. To this end, we construct a
tractable tight-binding model that accurately reproduces this
highest valence band (Fig. 1b). The corresponding model is
defined in terms of maximally localized Wannier functions on an
effective triangular lattice, as shown in Fig. 1a. Each Wannier
function is reminiscent of an In-In bonding orbital with tails on
Se atoms. The resulting single-band model Hamiltonian on a
triangular lattice reads

H ¼
X
ij;σ

tijc
y
iσcjσ þ U

X
i

ni"ni# þ
1
2

X
i≠j;σσ0

Vij niσnjσ0 þ ωph

X
i

byi bi þ g
X
i;σ

niσ bi þ byi
� �

(1)

where cðyÞiσ operator annihilates (creates) an electron on the site i
with the spin projection σ= {↑, ↓}. The ab initio electronic
dispersion is reproduced by five neighboring hopping ampli-
tudes tij: t01= 127.9 meV, t02=− 41.8 meV, t03=− 45.0 meV, t04
= 13.0 meV, and t05=−4.4 meV. We neglect spin-orbit coupling
because it is not important in truly 2D crystals with the mirror
symmetry20, which is also supported by earlier DFT calculations
showing that the relevant valence states in monolayer InSe
remain unaffected by the presence of spin-orbit coupling21.

Figure 1c shows the bare and screened Coulomb interaction
between the Wannier orbitals calculated as a function of R
within the constrained random phase approximation (cRPA) to
avoid a double counting of the screening channels from the
correlated subspace (see Methods for more details). R(a)
corresponds to the distance between the sites of an effective
triangular lattice and is expressed in units of the lattice constant
a. The on-site screened Coulomb repulsion U= 1.78 eV greatly
exceeds the bandwidth ≈1 eV, which usually indicates strong
magnetic fluctuations in the system22. As expected for a 2D
material23, the non-local Coulomb interaction Vij in monolayer
InSe is weakly screened and long-ranged (see blue line in
Fig. 1c). Weak long-range screening in 2D is a direct
consequence of the reduced dimensionality. In particular, the
softer q-dependence of the bare Coulomb interaction V2D(q)=
2πe2/q (in contrast to ~1/q2 in 3D) ensures that the dielectric
constant ε(q, ω)→ 1 as q→ 0 for any gapped 2D system (see,
e.g., Ref. 24). At finite wave vectors this behavior is less obvious,
yet the trend is similar23,25,26. Thus, cRPA Coulomb matrix
elements for layered materials indeed show as a general trend
the described weakly screened and long-ranged behavior with
graphene27 and NbS228 being representative metallic examples.
Moreover, in monolayer InSe the interaction V01= 1.04 eV
between nearest-neighbor electronic densities niσ ¼ cyiσciσ is
larger than the half of the on-site Coulomb repulsion U. This
suggests that the considered system may have a tendency to
form a CDW phase due to the competition between local and
non-local Coulomb interactions29,30. The full form of the long-
range Coulomb interaction is presented in Methods.
To estimate the phonon properties without double counting

screening channels from the correlated subspace we utilize the
constrained Density Functional Perturbation Theory (cDFPT)31 at
hole doping. We find that the effective electron–phonon coupling
λ ¼ 2

R
dω α2FðωÞ

ω is dominated by a rather sharp resonance at low
phonon frequency, which we can approximate with a local
phonon model, i.e α2F(ω)= N0g2δ(ω− ωph). Here, N0 is the DOS at

Fig. 1 First-principle calculation of model parameters. a Schematic crystal structure of monolayer InSe shown in two projections.
Superimposed is an isosurface of the Wannier function describing the valence states in InSe. The black lines depict an effective electronic
lattice; (b) Band structure and DOS calculated in DFT (blue), and from tight-binding model parametrization (red); (c) The Coulomb interaction
between the Wannier orbitals shown as a function of the distance calculated within the cRPA scheme. The bare (unscreened) Coulomb
interaction is shown for comparison.
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the Fermi level, ωph= 8.5 meV the phonon energy, and g=
34.7 meV its coupling strength to the topmost valence band (see
Methods). The strong local coupling of electrons to phonons
renders the CDW formation even more favorable. Indeed, upon
integrating out bosonic operators b(†) that correspond to phonon
degrees of freedom one gets an effective local frequency-
dependent attractive interaction Uph

ω ¼ 2g2 ωph

ω2
ph�ω2 that reduces

the repulsive on-site Coulomb potential as U ! U � Uph
ω

32–34 and
thus enhances the effect of the non-local Coulomb interaction Vij.
An accurate theoretical investigation of many-body instabilities

in InSe monolayer cannot be performed within conventional
perturbative methods like the random phase approximation35–37

or the GW approach38–40. Local correlation effects that are
governed by such a large value of the local Coulomb interaction
U require a systematic many-body consideration using, e.g., the
dynamical mean-field theory (DMFT)41. At the same time, spatial
collective electronic fluctuations and the long-range Coulomb
interaction cannot be captured by DMFT and require diagram-
matic extensions of this theory42. In this work, we solve the
considered many-body problem using the dual triply irreducible

local expansion (D-TRILEX) method43–45 that allows one to account
for leading collective electronic fluctuations on equal footing
without any limitation on the range46. More details on the
theoretical approach are provided in Methods.

Collective electronic instabilities
One of the most remarkable features of the InSe monolayer is
the presence of a Mexican-hat-like valence band in the electronic
dispersion8,9. The top of this band exhibits flat regions that lead
to a sharp vHS in the DOS. However, under normal conditions
this valence band is fully filled, making the material an indirect
semiconductor. To enhance correlation effects in the system we
consider realistic hole dopings with the Fermi level close to the
vHS10–12. Practically, high concentration of holes of the order of
1014 cm−2 can be achieved in 2D materials by means of
electrostatic solid- or liquid-electrolyte gating47 or by surface
molecular doping48. First, we solve the many-body problem
without considering the electron–phonon coupling in order to
investigate purely Coulomb correlation effects. For detecting
main instabilities in the system we perform single-shot D-TRILEX
calculations for the charge and spin susceptibilities Xς

qω. In this
case, divergences of charge and spin susceptibilities do not
affect each other through the self-energy, which allows one to
detect instabilities inside broken-symmetry phases (see Methods
for more details). Fig. 2 shows the obtained phase diagram for
the InSe monolayer, where 〈n〉 is the filling of the considered
valence band (〈n〉= 2 in the fully filled band that corresponds to
the undoped case). Phase boundaries indicate points in the
temperature (T) vs. doping space, where corresponding suscept-
ibilities diverge. We find that the charge susceptibility diverges in
a broad range of hole dopings 〈n〉 ≥ 1.29, and the corresponding
phase boundary is independent of temperature. Fig. 3a displays
the momentum resolved charge susceptibility Xc

qω obtained at
the zero frequency ω= 0 near the transition point (T= 300 K,
〈n〉= 1.29). It shows that the corresponding Bragg peaks in the
charge susceptibility appear at the K points of the Brillouin zone
(BZ), which indicates the formation of a commensurate CDW
ordering. In turn, the spin susceptibility remains finite at the
CDW transition point and diverges only inside the CDW phase.
The corresponding instability has a dome shape as depicted in
Fig. 2 by a blue dashed line. Remarkably, we find that the
top of the dome corresponds to the filling 〈n〉= 1.70 at which
the vHS appears exactly at the Fermi level. The momentum
resolved spin susceptibility obtained close to the top of the
dome (T= 375 K, 〈n〉= 1.70) is shown in Fig. 3b. It reveals a sharp
Bragg peak at the Γ point of the BZ, which indicates the
tendency towards FM ordering.

Fig. 2 Phase diagram for the monolayer InSe as a function of
temperature and doping. Solid vertical lines correspond to the
CDW phase boundaries, dashed lines depict the FM instabilities.
Results are obtained in the presence (red line) and in the absence
(blue line) of the electron–phonon coupling. The top of the FM
dome corresponds to the filling 〈n〉= 1.70 at which the vHS appears
at the Fermi energy. Black arrows with the label “ph” illustrate the
effect of phonons that tend to suppress the FM instability and favor
the CDW ordering. Orange triangles indicate the CDW transition
points 〈n〉= 1.40 and 〈n〉= 1.92 obtained at T= 300 K taking into
account the electron–phonon coupling in the absence of the non-
local Coulomb interaction.

Fig. 3 Momentum resolved susceptibilities Xς
q;ω calculated at zero frequency ω = 0 in the absence of the electron–phonon coupling.

Results are obtained close to the CDW (T = 300 K, 〈n〉 = 1.29) and the FM (T = 375 K, 〈n〉 = 1.70) instabilities, respectively. Bragg peaks that
appear in the charge susceptibility (a) at the K points of the hexagonal BZ correspond to a commensurate CDW ordering. A single peak at the
Γ point in the spin susceptibility (b) confirms that the observed instability is FM.
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Electronic density of states
The obtained phase diagram illustrates that the commensurate
CDW represents the main instability in the InSe monolayer
contrary to the DFT prediction19. The formation of this phase is
associated with strong long-range collective charge fluctuations
that are expected to renormalize the electronic dispersion.
Therefore, the development of the CDW ordering should also be
reflected in single-particle observables such as the electronic DOS.
In order to account for the feedback effects of long-range
collective electronic fluctuations to single-particle quantities49,50

we perform self-consistent D-TRILEX calculations43–45. The
obtained result is compared to the one of the DMFT that does
not take into account spatial correlation effects. Fig. 4 shows the
DOS calculated close to the CDW phase boundary (T= 300 K and
〈n〉= 1.29). We find that the DOS obtained within DMFT (blue) is
similar to the one of DFT (black) and shows a sharp peak in the
vicinity of the Fermi energy, which reflects the presence of the
vHS in the electronic spectrum. However, if one includes the effect
of spatial correlations via the D-TRILEX approach, one observes
that at the transition point this peak turns into a pseudogap (red).
In this particular case, the pseudogap appears due to strong
collective charge fluctuations that lead to an almost diverged
charge susceptibility Xc

qω at the q= K point of the BZ close to a
phase transition. As a consequence, the renormalized interaction
Wc

qω that enters the self-energy also becomes nearly divergent,
which causes the formation of a pseudogap according to the
tendency towards electron-hole pairing. This mechanism is similar
to the formation of the excitonic insulator state51–53 with the only
difference that in our case electrons and holes belong to the same
band and that excitons in the condensate have non-zero
momentum corresponding to the CDW wave vector. If the
tendency towards electron-hole pairing results in long-range
order, one gets a true gap whereas strong short-range order
without long-range order leads to a pseudogap in the electronic
spectrum54,55.

Effect of the electron–phonon coupling
In order to investigate the effect of phonons on the observed
instabilities we repeat the same calculation in the presence of the
electron–phonon coupling. As Fig. 2 shows, in this case the CDW
phase boundary is shifted to smaller values of the filling
〈n〉= 1.23. At the same time, the FM instability is pushed down
to lower temperatures, but the top of the FM dome remains at the
vHS filling 〈n〉= 1.70 as in the absence of phonons. This result is

consistent with the fact that the electron–phonon coupling
effectively reduces the on-site Coulomb potential, which conse-
quently decreases the critical temperature for the magnetic
instability. The observed shift of the CDW phase boundary can
also be explained by the same argument. Indeed, the local
Coulomb repulsion favors single occupation of lattice sites. On the
contrary, the non-local Coulomb interaction promotes the CDW
ordering, which upon reducing the local Coulomb interaction
becomes energetically preferable.
Remarkably, Fig. 5 demonstrates that taking into account the

electron–phonon coupling does not change the position of Bragg
peaks in the charge susceptibility calculated close to the CDW
phase transition point T= 300 K and 〈n〉= 1.23. As in the absence
of phonons, the momentum-space structure of this susceptibility
Xc
qðω ¼ 0Þ consists of six delta-function-like Bragg peaks that

appear at K points of the BZ. This fact illustrates that the
developed charge ordering also corresponds to a commensurate
CDW. Moreover, we do not observe any additional Bragg peaks in
the charge susceptibility at twice the Fermi wave vector q*= 2kF,
which would indicate a tendency to the charge ordering due to
the electron–phonon mechanism.
The effect of phonons can be revealed only upon excluding the

contribution of the non-local Coulomb interaction Vq from the
charge susceptibility. In this case, an additional exclusion of
phonons eliminates both sources of the CDW instability, and Xc

qω
remains finite at any filling. If the electron–phonon coupling is
taken into account, the maximum value of Xc

qðω ¼ 0Þ corresponds
to the wave vector q* that changes with doping. For instance, at
〈n〉= 1.23 this wave vector lies between Γ and K points of the BZ
(Fig. 6a). However, the value of this susceptibility is negligibly
small compared to the almost diverged one calculated in the
presence of the non-local Coulomb interaction (see Fig. 5).
Increasing the filling, the maximum of the charge susceptibility
calculated for the case of Vq= 0 also increases, and the
corresponding wave vector q* shifts towards the K point of the
BZ (Fig. 6b). At 〈n〉≃ 1.40 (T= 300 K) the q* reaches the K point
(Fig. 6c), and the charge susceptibility diverges. This means that
the CDW instability mediated purely by phonons is shifted to
much larger values of the filling compared to the one driven by
strong Coulomb correlations (orange triangles in Fig. 2). Increasing
the filling even more, the charge susceptibility becomes finite
again at 〈n〉= 1.92 (Fig. 6d). Remarkably, Figs. 6c and d show that
Bragg peaks that correspond to CDW ordering vectors q* are
drastically different for two fillings 〈n〉= 1.40 and 〈n〉= 1.92. This
means that the ordering vector of the phonon-driven CDW also
changes inside the CDW phase. These results confirm that the

Fig. 4 DOS of the InSe monolayer. Results are obtained within
DMFT (blue), D-TRILEX (red), and DFT (black) methods close to a
CDW phase boundary at T = 300 K and 〈n〉 = 1.29 without taking
into account the electron–phonon coupling. Note that the DOS of
DFT is divided by a factor of 2 for easier comparison.

Fig. 5 Momentum resolved charge susceptibility Xc(q, ω = 0).
Result is obtained close to the CDW transition point T = 300 K and
〈n〉 = 1.23 taking into account the electron–phonon coupling.

E.A. Stepanov et al.

4

npj Computational Materials (2022)   118 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



metal-to-CDW phase transition in the monolayer InSe is driven by
strong Coulomb correlations rather than by the electron–phonon
mechanism as suggested previously18.
The momentum-structure of the spin susceptibility also

changes with doping. At the CDW transition point it stays
finite and has a Néel antiferromagnetic (AFM) behavior that
manifests itself in the largest value of the susceptibility at K
point of the BZ (Fig. 7a). At a larger filling 〈n〉= 1.42 the Néel
AFM form of the spin susceptibility changes to a more complex
structure with the largest value at Γ point of the BZ, which
indicates the FM instability, and less pronounced intensities at
M points corresponding to row-wise AFM fluctuations (Fig. 7b).
Increasing the filling to 〈n〉= 1.70 the van Hove singularity
(vHS) in the electronic spectral function appears at the Fermi
energy, which strongly enhances collective electronic fluctua-
tions. Fig. 7c shows that close to the magnetic instability the
spin susceptibility becomes purely FM, which is indicated
by the single delta-function-like Bragg peak that at the Γ point
of the BZ. At even larger filling of the band 〈n〉= 1.92 the spin
susceptibility remains FM, but the value of the susceptibility
at Γ point decreases compared to the case of the vHS filling
(Fig. 7d), which confirms the dome-like structure of the FM
instability.
For completeness, we also show the electronic DOS calculated

close to the CDW phase transition point T= 300 K and 〈n〉= 1.23
in the presence of the electron–phonon coupling (Fig. 8). We find
that in this case the effect of spatial correlations on the DOS is
qualitatively the same as in the absence of phonons. Note that in
this case DMFT considers the effect of the local electron–phonon
coupling via the renormalized on-site Coulomb potential
U� ¼ U � Uph

ω .

DISCUSSION
We have systematically studied many-body effects in the hole-
doped InSe monolayer. We have found that this material displays
coexisting instabilities that are mainly driven by non-local Coulomb
correlations. The commensurate CDW ordering represents the main
instability in the system and is revealed in a broad range of doping
levels and temperatures. The presence of this ordering is confirmed
by the appearance of a pseudogap in the DOS close to the transition
point, which illustrates the importance of considering spatial
electronic fluctuations. We also observed the tendency to a FM
ordering that manifests itself only inside the CDW phase and is
related to a vHS in the electronic spectrum. The inclusion of the
electron–phonon coupling results in a shift of the CDW and FM
ordering phases on the phase diagram, which can be explained by
an effective reduction of the local Coulomb interaction. However,
the qualitative physical picture does not change in the presence of
phonons. Our results suggest that monolayer InSe can serve as an
attractive playground for investigation of coexisting many-body
correlation effects and, in particular, of 2D magnetism, although in a
bulk phase this material is non-magnetic.
In general, the Coulomb-driven CDW instability in electronic

systems appears as the result of a competition between local and
non-local electron-electron interactions that favor different
distribution of electrons on a lattice. In order to change the
balance between these interactions, the free standing InSe
monolayer considered here could be exposed to external
dielectric screening as, e.g., resulting from a substrate or from
encapsulation. This mechanism is especially effective in 2D as the
environmental screening is non-local in layered materials, which
reduces long-ranged interactions stronger than the on-site
interaction25,26,56. This kind of Coulomb engineering paves the

Fig. 6 Momentum resolved charge susceptibility Xc (q) calculated at zero frequency ω = 0. Results are obtained at T = 300 K for different
values of the filling 〈n〉 = 1.23 (a), 〈n〉 = 1.33 (b), 〈n〉 = 1.40 (c), and 〈n〉 = 1.92 (d) taking into account the electron–phonon coupling and
excluding the effect of the non-local Coulomb interaction (Vq = 0).
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way for exploring additional degrees of freedom to tune the
correlation effects in this 2D material.

METHODS
First-principle calculations
The band structure presented in Fig. 1b was calculated within density
functional theory utilizing the projected augmented wave (PAW)

formalism57,58 as implemented in the Vienna ab initio simulation package
(VASP)59,60 version 5.4. The exchange-correlation effects were considered
using the generalized gradient approximation (GGA)61 and the standard
In and Se pseudopotentials in version 5.4. A 500 eV energy cutoff for the
plane-waves and a convergence threshold of 10−7 eV were used in the
calculations together with tetrahedron method for all involved integrals.
The Brillouin zone was sampled by a (36 × 36) k-point mesh. We adopted
fully relaxed atomic structure with a lattice constant of 3.94 Å, In-In
vertical distance of 2.76 Å, and Se–Se vertical distance of 5.37 Å. A ~30 Å-
thick vacuum layer was added in the direction perpendicular to the 2D
plane in order to avoid spurious interactions between supercell images.
The Wannier functions and the tight-binding Hamiltonian were
calculated within the scheme of maximal localization62,63 using the
WANNIER90 package64 version 1.2.
The Coulomb interaction was evaluated using the maximally localized

Wannier functions within the constrained random phase approximation
(cRPA)65,66 as Uij= 〈wiwj∣U∣wjwi〉, where U is the partially screened
Coulomb interaction defined by U= v+ vΠU with v being the bare
Coulomb interaction, Π the cRPA polarization, and wi is the Wannier
function at the lattice site i. The polarization operator Π describes
screening from all electronic states except those given by the tight-
binding Hamiltonian obtained in the Wannier basis. For these calcula-
tions, we used a recent cRPA implementation by Kaltak within VASP66. To
converge the cRPA polarization with respect to the number of empty
states with used in total 64 bands. To derive a light-weighted Coulomb
model for arbitrary q-grids, we fitted the cRPA Coulomb interaction in
momentum space according to:

UðqÞ ¼ vðqÞ=εðqÞ (2)

with the bare Coulomb interaction of a monolayer

vðqÞ ¼ h
2π

Z þπ=h

�π=h

4πe2

Vq2
dqz ¼

4e2

A

arctan π
qh

� �

q
(3)

Fig. 7 Momentum resolved spin susceptibility Xs(q) calculated at zero frequency ω= 0 taking into account the electron–phonon
coupling. Results are obtained at T= 300 K for different values of the filling 〈n〉= 1.23 (a), 〈n〉= 1.42 (b), 〈n〉= 1.70 (c), and 〈n〉= 1.92 (d).

Fig. 8 DOS of the monolayer InSe. Results are obtained within
DMFT (blue), D-TRILEX (red), and DFT (black) methods close to a
CDW phase boundary at T = 300 K and 〈n〉 = 1.23 taking into
account the electron–phonon coupling. Note that the DOS of DFT is
divided by a factor of 2 for easier comparison.
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and the dielectric function

εðqÞ ¼ ε0ðqÞ ε0ðqÞ þ 1� ðε0ðqÞ � 1Þe�qd

ε0ðqÞ þ 1þ ðε0ðqÞ � 1Þe�qd
(4)

with

ε0ðqÞ ¼ aþ q2

a sinðqcÞ
bqc þ q2

: (5)

Here, e, A, and h are the elementary electron charge, the InSe unit cell area and
its effective height, respectively, and a, b, c, and d are fitting parameter. In
Fig. 9 we show the corresponding ab initio values together with their fits using
h= 15.35Å, a= 1.07Å−2, b= 5.79, c= 0.14Å, and d= 8.09Å. In this
expression ε0(q) represents the (semi-conducting) cRPA screening in the
middle of the film, i.e., z= 0, which is assumed to be the same for the
entire film thickness d and which we parameterized following Ref. 67.
The surrounding of the film is supposed to be vacuum. This defines a classical
electrostatics problem, which can be analytically solved (see e.g., Ref. 68). The
full non-local cRPA background screening than takes the form of Eq. (4). More
details on this can be found in Ref. 26. The real-space Uij are calculated via a
conventional Fourier transform of U(q) from Eq. (2) and using these fits.
The phonon properties are calculated within QUANTUM ESPRESSO69 version

6.5 using norm-conserving pseudopotentials generated using the “atomic”
code by A. Dal Corso (v.5.0.99 svn rev. 10869, 2014), the local density
approximation, an energy cutoff of 80 Ry, and a finite hole doping of 0.04
holes per unit cell. For the initial constrained Density Functional
Perturbation Theory (cDFPT)31 calculation we use (16 × 16) k and (8 × 8)
q-point meshes and exclude the highest (hole doped) valence band
within the evaluation of the Sternheimer equation. Afterwards we use the
EPW code70 version 5.0.0 to extrapolate the cDFPT results to (32 × 32) k- and

q− point meshes using a Wannier interpolation based on a single Wannier
projection for the highest valence band (in the very same way as we
constructed them in VASP for the cRPA calculations). This allows us to
accurately calculate the cDFPT Eliashberg function α2F(ω) as shown in
Fig. 10. From this we calculate the effective electron–phonon coupling

λ ¼ 2
R
dω α2FðωÞ

ω which we finally use to fit our local phonon model via α2F
(ω) ≈ N0g

2δ(ω−ωph) with N0= 3.88 eV−1 per spin per unit cell.

Many-body calculations
The introduced many-body electronic model (1) is solved using the finite-
temperature diagrammatic D-TRILEX approach43–45. In this method, local
correlation effects are treated via the self-energy Σimp

ν and the polarization
operator Πς imp

ω of an effective local impurity problem of DMFT. These
quantities are written in the fermionic (ν) and bosonic (ω) Matsubara
frequency space, respectively. The corresponding impurity problem is
solved numerically exactly using the open source CT-HYB solver71,72

based on ALPS libraries73.
Within the self-consistent calculations, the spatial fluctuations are

considered in a partially bosonized form of the renormalized charge
(ς= c) and spin (ς= s) interactions Wς

qω that enter the diagrammatic part

of the self-energy Σkν introduced beyond DMFT43–45. The dressed Green’s
function Gkν of the problem can be found using the standard Dyson
equation G�1

kν ¼ iν þ μ� εk � Σkν written in momentum k space. In this
expression μ is the chemical potential, εk is the electronic dispersion that
can be obtained as a Fourier transform of the hopping amplitudes tij, and
Σkν ¼ Σimp

ν þ Σkν is the total self-energy. The renormalized interaction Wς
qω

can be found via the following Dyson equationWς�1
qω ¼ Uς�1

qω � Πς
qω , where

Uc
qω ¼ U=2� Uph

ω þ Vq and Us
qω ¼ �U=2 are the bare interactions in the

charge and spin channels, respectively43–45. Πς
qω ¼ Πς imp

ω þ Π
ς
qω is the total

polarization operator of the problem, where Π
ς
qω is the diagrammatic

contribution introduced in the D-TRILEX approach43–45. In this way, the
dressed lattice Green’s function Gkν takes into account both, local and non-
local correlation effects. To obtain the electronic DOS, we take the local
part of the lattice Green’s function Gloc

ν ¼ 1
N

P
kGkν and perform an

analytical continuation from Matsubara frequency space (ν) to real
energies (E) using the stochastic optimization method74.
In the single-shot D-TRILEX calculations for the susceptibility the

diagrammatic part of the polarization operator Π
ς
qω is obtained non-self-

consistently. In this case, Π
ς
qω accounts only for DMFT Green’s functions GD

kν

that are dressed by the local self-energies: GD�1
kν ¼ iν þ μ� εk � Σimp

ν .
Charge and spin susceptibilities Xς

qω can then be obtained straightfor-
wardly as Xς�1

qω ¼ Πς�1
qω � Uς

qω
45. We note that this form of the D-TRILEX

susceptibility resembles the DMFT susceptibility75–77 with a longitudinal
dynamical vertex corrections44.
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Chapter 6

SBE

This chapter is based on the following publication:

V. Harkov, A. I. Lichtenstein, F. Krien, “Parameterizations of local vertex corrections
from weak to strong coupling: Importance of the Hedin three-leg vertex”. Phys. Rev.
B 104, 125141 (2021)

6.1 Parametrizations of local vertex corrections from
weak to strong coupling: Importance of the Hedin
three-leg vertex

Previously we have shown that the local four-point vertex of the impurity model can
be parameterized in terms of the three-point Hedin vertex and screened interaction.
Moreover, we have shown that the irreducible part of the vertex can be excluded in a
broad range of parameters. A similar parametrization of the four-point vertex, called
SBE decomposition (3.90), was recently introduced in [70]. In the approximation,
the four-point vertex is decomposed in terms of effective exchange bosons and their
coupling to fermions mediated by the three-point Hedin vertex similar to [128, 131,
136, 185, 190–192].

In the following study [75] we apply the SBE approximation on the two-dimensional
single-band Hubbard model to calculate the DMFT susceptibility on the two-dimensional
single-band Hubbard model and show that the results are recovered to a good ap-
proximation in the limits of weak and strong couplings. At the same time, neglecting
the irreducible part of the four-point vertex φUirr (as it is done in the SBE approxima-
tion) reduces the computational costs drastically. In our extensive study, we show the
importance of the frequency-dependent Hedin vertex by comparing the results of the
SBE decomposition with the w approximation where the vertex in SBE is set to its
non-interactive limit and with parametrization based on its asymptotic limits [193]
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which we call asymptotic approximation. Thereby, we find that the Hedin vertex
captures the Kanamori screening at weak coupling and suppresses the Néel tempera-
ture compared to the static mean-field approximation, while at strong couplings the
vertex is important for a correct description of the spin fluctuations and therefore
the results where the vertex is partially (or totally) neglected become qualitatively
wrong. Furthermore, comparing the SBE approximation with the asymptotic ap-
proximation at U/t = 8 for different temperatures in a nontrivial crossover regime
(from a local moment phase1 to the Fermi liquid) we show that the SBE decomposi-
tion should be preferred over the asymptotic approximation since the former retains
the correspondence to all resonant features of the full four-point vertex at all energy
scales.

In an additional study, we apply the SBE approximation to compute the momentum-
dependent self-energy within the ladder DF approximation at weak coupling U/t = 2
to investigate the formation of the pseudo gap as it was done in Ref. [85] and in
Ref. [128]. We find that the SBE approximation underestimates the magnetic fluc-
tuations and shows the opening of the pseudo gap at lower temperatures, compared
to numerical exact results. However, the SBE approximation results are in good
quantitative agreement with the results of the ladder DF approximation.

Since the SBE approximation reduces the computational costs drastically, gen-
eralizing it to multi-orbital settings may provide solutions for systems where the
computation of the four-point is numerically challenging or not even possible [65, 66,
197]. It can be also used in advanced schemes like state-of-the-art fRG [198] and
parquet schemes [136, 137] to reduce computational costs.

1For the recent progress regarding the formation of the local moment see, i.a., Ref. [194–196].
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In the study of correlated systems, approximations based on the dynamical mean-field theory
(DMFT) provide a practical way to take local vertex corrections into account, which capture, respec-
tively, particle-particle screening at weak coupling and the formation of the local moment at strong
coupling. We show that in both limits the local vertex corrections can be efficiently parametrized in
terms of single-boson exchange, such that the two-particle physics described by DMFT and its dia-
grammatic extensions is recovered to good approximation and at a reduced computational cost. Our
investigation highlights the importance of the frequency-dependent fermion-boson coupling (Hedin
vertex) for local vertex corrections. Namely, at weak coupling the fermion-spin-boson coupling
suppresses the Néel temperature of the DMFT approximation compared to the static mean-field,
whereas for large interaction it facilitates a huge enhancement of local spin-fluctuation exchange,
giving rise to the effective-exchange energy scale 4t2/U . We find that parametrizations of the vertex
which neglect the nontrivial part of the fermion-boson coupling fail qualitatively at strong coupling.

Two-particle electronic correlations provide an essen-
tial and complementary viewpoint on correlated sys-
tems [1]. For example, the calculation of susceptibilities
greatly simplifies the study of second order phase transi-
tions, compared to calculations on the one-particle level
which require the introduction of complicated unit cells
and conjugate fields [2–5]. Further, in a great variety of
perturbative many-body techniques the electronic self-
energy is given as a set of vertex diagrams, so that in
effect two-particle quantities need to be evaluated before
one obtains information about the one-particle correla-
tions [6]. In fact, even the celebrated Fermi liquid theory
is at its core defined through two-particle scattering am-
plitudes, the Landau parameters [7–10].

However, two problems are often encountered in the
study of two-particle correlations. First, even in case
of simple systems, it is exceedingly difficult to compute
or even only memorize [11] on present-day computing
devices the complete two-particle information, as repre-
sented by the four-point vertex function. Second, a clear
organizing principle for two-particle correlations is often
missing, which would allow to decode the physics encap-
sulated in the vertex function.

Here we like to put forth the notion, and demon-
strate in practice on a particular example, that the two
mentioned problems are in fact related: When the two-
particle correlations are organized in a way that mirrors
the key physics at play, the computational effort can be
reduced. Or one can more easily define suitable approx-
imations which achieve this goal.

We derive this guiding theme from both established
and recently introduced (partial) bosonizations of the
vertex function [12–14]. Namely, in the context of the
functional renormalization group (fRG, [15, 16]) the ver-
tex is often decomposed into various channels [17–24], or
parametrized in terms of bosonic fluctuations and their
(Yukawa) coupling to fermions [25–28]. In particular the

latter procedure provides, simultaneously, and in accord
with the guiding theme of this work, (i) an organizing
principle for two-particle correlations and (ii) a reduc-
tion of the computational effort. This is because, on the
one hand, the bosonic propagators and Yukawa couplings
have a transparent physical interpretation, and, on the
other hand, they can be computed and stored more easily
than a genuine four-point vertex.

In this context, it can be shown under very general
assumptions [29] that vertex diagrams have special prop-
erties when they are reducible with respect to the in-
teraction. Namely, interaction-reducible diagrams give
rise to the high-frequency asymptotics of the vertex func-
tion [22], and in the case of a lattice model, they carry
crucial information about its dependence on the mo-
menta [30–32]. In the single-boson exchange (SBE) de-
composition [33] the vertex diagrams are grouped into
three interaction-reducible classes and one irreducible
class. Each reducible class corresponds to the exchange
of a single boson and the irreducible class represents
multiple boson exchange [30, 31]. In this formalism the
bosons and Yukawa couplings can be identified, respec-
tively, as the screened interaction and the Hedin three-leg
vertex of the GWγ theory [34]. In this way, the SBE de-
composition provides a conceptual link between Hedin’s
equations [31], vertex asymptotics [22], partial bosoniza-
tions [14, 35–37], and the parquet approach [38–40].

Here we apply this general framework to a specific
problem, namely, the calculation of two-particle corre-
lation functions within dynamical mean-field theory [41]
and its diagrammatic extensions [6]. These methods
rely on the solution of an auxiliary Anderson impurity
model (AIM) which provides the local correlations non-
perturbatively. Here, the computationally most expen-
sive step is in general the evaluation of the local vertex
function f(ν, ν′, ω) of the impurity model, for example,
using continuous-time quantum Monte Carlo (CTQMC)
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algorithms [42], due to its dependence on one bosonic
(ω) and two fermionic (ν, ν′) Matsubara frequencies.
This step is especially expensive in multi-orbital settings,
where the calculation of a single vertex function may re-
quire hundreds of thousands of core hours [43], raising
questions regarding the feasibility of frequent calculations
and parameter scans.

We address this problem in the spirit of the discussed
strategy to first find a useful organizing principle for the
two-particle correlations, and second to define a cheap
approximation for the impurity vertex function based on
this insight. To this end, we employ the approximation
for the impurity vertex sketched on the top of Fig. 1,
where the vertex is parametrized in terms of the screened
interaction (wiggly lines) and the Hedin vertex (trian-
gles), which are computationally cheap to obtain. On
the other hand, the approximation neglects a residual
(interaction-irreducible) four-point vertex ‘ϕUirr’, whose
calculation is computationally expensive.

In the following, we show that this ‘SBE approxima-
tion’ is sufficient in the sense that it recovers the two-
particle physics described by DMFT and its extensions
at both weak and strong coupling. But we also show
that it is necessary to keep this much information about
the impurity vertex function. In particular, the nontriv-
ial (interacting) part of the Hedin vertex should not be
neglected, because it leads to qualitatively wrong results
at strong coupling. In this limit parametrizations based
only on the screened interaction or on vertex asymptotics
fail. In the latter case, we show that this can be re-
lated to qualitative differences in the frequency structure
of the residual vertices (also called rest functions [22])
of, respectively, the SBE decomposition and the vertex
asymptotics.

For concreteness, we consider the paramagnetic Hub-
bard model on the square lattice at half-filling,

H =−
∑

〈ij〉σ
tijc
†
iσcjσ + U

∑

i

ni↑ni↓, (1)

where tij denotes the hopping between nearest neighbors
i and j, its absolute value t = 1 sets the unit of energy.
c, c† are the annihilation and creation operators with the
spin index σ =↑, ↓. The Coulomb repulsion between the
densities nσ = c†σcσ is denoted by U .

LOCAL VERTEX CORRECTIONS

In DMFT [41] the Hubbard model (1) is mapped to
the auxiliary AIM with the action,

SAIM =−
∑

νσ

c∗νσ(ıν + µ−∆ν)cνσ + U
∑

ω

n↑ωn↓ω, (2)

where c and c∗ are Grassmann numbers and ν and ω
are fermionic and bosonic Matsubara frequencies, respec-
tively. Half-filling is implied by setting the chemical
potential to µ = U

2 to enforce particle-hole symmetry.

f ≈ + +

F = f + f F

FIG. 1. Top: Symbolic representation of the SBE-
approximation. Wiggly lines and triangles represent, respec-
tively, the screened interaction w and the Hedin vertices λ.
The w-approximation corresponds to setting |λ| = 1. Arrows
denote the impurity Green’s function g; prefactors, flavor la-
bels, and a double counting correction are omitted. Bottom:
The nonlocal Bethe-Salpeter equation constructs the lattice
vertex function F from impurity vertex f and nonlocal prop-
agator G̃ (double arrows).

Summations over Matsubara frequencies ν, ω contain im-
plicitly the factor T , the temperature. The DMFT hy-
bridization function ∆ν is fixed by the self-consistency
condition, Gii(ν) = g(ν), for the local Green’s function
Gii of the Hubbard model (1) and the Green’s function
of the impurity model (2), gσ(ν) = −〈cνσc∗νσ〉. The label
σ is suppressed where unambiguous.

In the DMFT approximation the nonlocal two-particle
correlations arise from a Bethe-Salpeter equation with
local vertex corrections [41, 44]. In the equivalent dual
fermion formulation [45–47] one avoids the (particle-hole)
irreducible vertex and instead builds the vertex correc-
tions from the full vertex function f of the AIM (2), cf.
Fig. 1 bottom,

Fανν′(q) = fανν′ω +
∑

ν′′

fανν′′ωX̃
0
ν′′(q)Fαν′′ν′(q). (3)

Here, X̃0
ν (q) =

∑
k G̃kG̃k+q is a bubble of nonlocal prop-

agators G̃, where k = (k, ν), q = (q, ω), and the summa-
tion over the momentum k implies division by the num-
ber of lattice sites N . For the precise definition of the
impurity vertex function f see Appendix A. At DMFT
level G̃ = G, where Gk ≡ Gk − gν is the nonlocal DMFT
Green’s function, whereas in the dual fermion approach G̃
is further dressed with a self-energy [45], G̃−1k = G−1k −Σ̃k.
In the following, Eq. (3) serves us as a generic start-
ing point to evaluate the two-particle correlations within
DMFT (Σ̃ = 0) and in the ladder dual fermion approach

(LDFA, [48]; with Σ̃ given as described further below).

In our applications we evaluate Eq. (3) with a physical
cutoff νmax = 45t for the fermionic Matsubara frequen-
cies νn, that is, a variable grid with −bνmax/(2πT )c−1 ≤
n ≤ bνmax/(2πT )c, and similarly 0 ≤ m ≤ bνmax/(πT )c
for bosonic frequencies ωm. The lattice size is 64× 64.
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VERTEX PARAMETRIZATIONS

The Bethe-Salpeter Eq. (3) above requires the local
vertex function f of the AIM (2) as an input. In this
work we focus on the two-particle level of DMFT and
on the LDFA, however, this requirement is quite general.
Indeed, all diagrammatic extensions of DMFT [6] which
take local four-point vertex corrections into account re-
quire, by construction, knowledge of f . However, this is
connected with the calculation of the four-point correla-
tion function of the AIM,

fα(ν, ν′, ω) ∝
∑

σi

sασ′
1σ1
sασ′

2σ2
〈cνσ1

c∗ν+ω,σ′
1
cν′+ω,σ2

c∗ν′σ′
2
〉,

where sα are the Pauli matrices (α = ch or α = x, y, z ≡
sp) and 〈...〉 denotes an impurity average, see also Ap-
pendix A.

Previously, this correlation function has been calcu-
lated using a variety of different methods, for example,
full exact diagonalization (ED, [44]), Lanczos ED [49],
CTQMC, and, very recently, the numerical renormaliza-
tion group (NRG, [50, 51]). All these methods have in
common that the evaluation of f is computationally ex-
pensive, in fact, at the present stage only CTQMC solvers
are applicable in multi-orbital settings [52, 53]. To allevi-
ate this problem we investigate in the following approx-
imations for the impurity vertex function f , which do
not require the calculation of the four-point correlation
function of the AIM. A suitable approximation should
recover the two-particle physics described by DMFT and
its extensions, if not quantitatively, at least qualitatively.

To this end, we make use of the fact that the vertex
f can be decomposed into single-boson exchange (SBE)
diagrams and a residual four-fermion vertex [33],

fανν′ω = ϕUirr,α
νν′ω +∇SBE,α

νν′ω . (4)

Only the residual vertex ϕUirr is intrinsically a four-point
quantity, whereas the single-boson exchange can be con-
structed from the screened interaction wα(ω) and the
Hedin vertex λα(ν, ω) of the AIM, where α = ch, sp, s
denotes the charge, spin, or singlet flavor.

The measurement of these quantities requires much
less computational resources than the measurement of
the four-point vertex because they can be expressed, re-
spectively, in terms of two- and three-point correlation
functions of the AIM (cf. Appendix A, [54]),

wαω ∝
〈
ρα−ωρ

α
ω

〉
, λαν,ω ∝

∑

σσ′

sασ′σ

〈
cνσc

∗
ν+ωσ′ραω

〉
,

ws
ω ∝

〈
ρ+−ωρ

−
ω

〉
, λsν,ω ∝

〈
cν↑cω−ν,↓ρ

+
ω

〉
,

where in the first line α = ch, sp and ρch = n↑ + n↓ and
ρsp = n↑ − n↓ are the charge and spin densities; in the
second line ρ+ = c∗↑c

∗
↓ and ρ− = c↓c↑ describe creation

and annihilation of electron pairs, respectively.
In terms of w and λ the SBE diagrams ∇SBE in Eq. (4)

are given as the sum of three SBE contributions and a

double counting correction 2U , for α = ch, sp it reads,

∇SBE,α
νν′ω = ∇ph,ανν′ω +∇ph,ανν′ω +∇pp,ανν′,ω+ν+ν′ − 2Uα, (5)

where U ch = +U,U sp = −U is the bare interaction in
the respective channel and the ∇’s are defined as,

∇ph,ανν′ω=λανωw
α
ωλ

α
ν′ω, (6a)

∇ph,ανν′ω=−1

2
∇ph,chν,ν+ω,ν′−ν−

3−4δα,sp
2

∇ph,spν,ν+ω,ν′−ν , (6b)

∇pp,ανν′ω=
1− 2δα,sp

2
λsνωw

s
ωλ

s
ν′ω. (6c)

In the following we investigate parametrizations of the
impurity vertex function based on SBE diagrams, where
we test the following three approximations:

• In the ‘SBE approximation’ [33] we keep the dia-
grams shown symbolically on the top of Fig. 1,

fανν′ω ≈ ∇SBE,α
νν′ω . (7)

The organizing principle here is to parametrize the
vertex in terms of bosonic fluctuations w(ω) and
their coupling λ(ν, ω) to the fermions.

• The ‘w approximation’ is similar to the SBE ap-
proximation but we simplify also the fermion-boson
couplings, setting λch/sp = 1 and λs = −1. As a re-
sult, this approximation requires only knowledge of
the screened interaction w(ω). Here the organizing
principle is to parametrize the vertex in terms of
bosonic fluctuations only. Similar approximations
were introduced in Refs. [55–57].

• In the ‘asymptotic approximation’ the vertex f is
parametrized based on its asymptotic value when
one or multiple frequencies [58] are large [22]. To
be unbiased with respect to the limit that is taken,
the asymptotic expressions are combined so that
the correct vertex asymptote is recovered in each
limit [57]. The asymptotic approximation can be
obtained from the SBE approximaton by replacing

∇ανν′ω =λανωw
α
ωλ

α
ν′ω

≈λανωwαω(±1) + (±1)wαωλ
α
ν′ω − wαω , (8)

where + corresponds to α = ch, sp and − to α = s,
and inserting into Eq. (7) using Eqs. (5) and (6).
The organizing principle here is, of course, to re-
cover the vertex asymptotically. Since the asymp-
totic approximation can be derived from the SBE
approximation they become equivalent at high fre-
quencies. This parametrization is used frequently
in fRG schemes, combined with a more elaborate
treatment of the corresponding rest function [22].

The three approximations defined above all have in
common that they do not require the four-point vertex f
of the AIM. The w approximation requires even only the
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FIG. 2. Main panel: Néel temperature of the half-filled Hubbard model (1) in various approximations (see text). A dashed line
indicates 4t2/U = T ; orange crosses show points where J = T , with the effective exchange J calculated from Eq. (11). Insets:
Local fermion-spin-boson coupling of the self-consistent AIM corresponding to indicated (U, T ) in main panel.

screened interaction as an input and is therefore compu-
tationally very cheap. It is motivated by the fact that
the asymptotic value of the Hedin vertex is unity,

lim
|ν|→∞

λch/spνω = 1, lim
|ν|→∞

λsνω = −1. (9)

Therefore, the asymptotic approximation lies in between
the SBE approximation and the w approximation, be-
cause of the two fermion-boson couplings λ one is kept
and the other is set to its asymptotic value, cf. Eq. (8).

DMFT – PHASE DIAGRAM

To benchmark the three approximations defined in the
previous section, we first calculate the antiferromagnetic
phase boundary of the Hubbard model (1).

In fact, in two dimensions this phase transition is for-
bidden by the Mermin-Wagner theorem. Nevertheless,
the phase boundary predicted by DMFT is a useful in-
dicator for the region of the phase diagram with strong
spin fluctuations [6]. Furthermore, it has been shown
in various studies that even below the critical tempera-
ture of DMFT both the paramagnetic and the ordered
DMFT solution capture remarkably well many aspects
of the phases that can be realized in accord with the
Mermin-Wagner theorem or in the experiment. This in-
cludes local observables [59], the effective exchange J at
strong coupling [60–62], commensurate and incommen-
surate spin-density waves out of half-filling [63], Fermi

surface reconstruction [64], and even stripe order [65].
It is therefore of a vital interest to gain insight into the
mechanism of the Néel order predicted by DMFT and to
identify its key ingredients [66].

Fig. 2 shows the various phase boundaries obtained
from the random phase approximation (RPA, blue line)
and DMFT, where the green line is obtained from
the leading eigenvalue of the Bethe-Salpeter kernel [cf.
Eq. (3)],

∑

ν′′

f spνν′′ω=0X̃
0
ν′′(q = (π, π), ω = 0), (10)

where X̃0 is the nonlocal bubble defined below Eq. (3)

(with Σ̃ = 0). At the phase transition the leading eigen-
value approaches unity. Note that here f still corre-
sponds to the numerically exact four-point vertex of the
self-consistent AIM (2).

The comparison of DMFT and RPA at weak cou-
pling highlights the fact that, in two dimensions, the
exponential Néel temperature ∝ exp(−2π

√
t/U) of the

RPA is nowhere quantitatively predictive of the onset
of strong spin fluctuations. This is instead the case
for DMFT which includes an important vertex correc-
tion due to particle-particle (Kanamori) screening, lead-
ing to renormalization of the exponent [67–70]. It has
been emphasized that this vertex correction is included
in the fermion-spin-boson coupling [30, 31, 71]. For large
U & 12 the Néel temperature of DMFT inflects towards
its strong-coupling asymptote 4t2/U (dashed line) [41].
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Next, we apply the parametrizations of the local vertex
corrections defined in the previous section and estimate
the leading eigenvalue of the Bethe-Salpeter kernel (10)
using the corresponding approximation for the impurity
vertex f . First, using the w approximation we obtain
the black curve in Fig. 2. Apparently, this approxima-
tion deviates from the original DMFT curve already at
weak coupling and fails qualitatively at strong coupling,
in fact, its Néel temperature drops sharply already at
intermediate U . Second, we consider the asymptotic ap-
proximation represented by the purple curve in Fig. 2.
This approximation agrees well with the original DMFT
phase boundary for weak coupling. However, at inter-
mediate coupling the Néel temperature drops similar to
the w approximation and shows an inflection point near
U/t ≈ 9 that connects to a strong-coupling asymptote
∝ 1/U with a coefficient different from 4t2. Finally,
the red curve shows the SBE approximation, which is
quantitatively accurate both in the weak and strong cou-
pling limits and agrees qualitatively with the original
DMFT curve throughout the phase diagram. In terms
of quantitative accuracy the asymptotic approximation
lies closer to DMFT for weak to intermediate couplings,
which seems to be a result of its overall smaller Néel tem-
perature compared to the SBE approximation.

As shown in Ref. [33], the SBE approximation can be
justified in the weak coupling limit [72] because it recov-
ers all diagrams for f up to order O(U3). However, the
agreement with the full DMFT solution at strong cou-
pling requires a further explanation. Indeed, it has been
shown for the ordered [61] and for the paramagnetic [62]
DMFT solution that at strong coupling it is sufficient
to approximate f sp ≈ ∇ph,sp, where ∇ph,sp is defined in
Eq. (6a). On the top of Fig. 1 this corresponds to keeping
only the first diagram on the right-hand-side. Using this
approximation the effective exchange is given as [62]

J =
2t2

(πsp
ω=0)2

∑

ν

λspν,ω=0(gν)4λspν,ω=0, (11)

where πsp is the spin polarization of the impurity. As
shown in Ref. [62], for large U this expression approaches
4t2/U (see orange crosses in Fig. 2). Since ∇ph corre-
sponds to a subset of the SBE diagrams, the SBE ap-
proximation also recovers the effective exchange in this
limit. Importantly, the Hedin vertex λsp makes a large
contribution to Eq. (11) and hence approximations may
fail to recover the energy scale J when λsp is set to 1 in
some place, as is confirmed by the results shown in Fig. 2.

Notice that, while the SBE approximation recovers the
strong-coupling limit exactly, this does not imply that
the residual vertex ϕUirr,sp is small. Instead, at strong
coupling the DMFT Green’s function turns insulating,
suppressing contributions of the residual vertex [9, 62].

We will now analyze and explain in detail the behav-
ior of the different approximations, where we rely on the
useful insights of Ref. [66] into the role of different fluc-
tuations for DMFT’s Néel temperature. We begin by
comparing the SBE approximation (red curve) to the w

approximation (black curve), whose difference is partic-
ularly transparent on a formal level: The SBE approx-
imation on the top of Fig. 1 retains the Hedin vertices,
but they are set to ±1 in the w approximation. Hence,
remarkably, the Hedin vertices make all the difference
between the red and the black curves in Fig. 2. This is
even more surprising considering the fact that the SBE
approximation is composed of the same basic fluctuations
as the w approximation (wch, wsp, ws), and therefore the
Hedin vertices can only emphasize or suppress contri-
butions of fluctuations that are already included in the
w approximation, nevertheless leading to the substantial
differences between the two approximations.

As seems natural, we find that the key difference be-
tween the Néel temperatures of the w and SBE approxi-
mations originates in their different emphasis of the spin
fluctuations represented by wsp. It is shown in Ref. [66]
that the contribution of spin fluctuations to the impu-
rity vertex f works to enhance the Néel temperature of
DMFT. Therefore, in order to get from the black curve in
Fig. 2 to the red curve, the fermion-spin-boson coupling
λsp(ν, ω = 0) needs to slightly suppress the contribution
of spin fluctuations at weak coupling [73] and hugely en-
hance it in the strong coupling limit. This quantity is
shown in the insets of Fig. 2 for three pairs (U, T ). In-
deed, at weak coupling λsp(ν, ω = 0) is suppressed due to
the Kanamori screening [30], while at strong coupling it
is enhanced by multiple times of its noninteracting value
1; in both cases these features are localized at small fre-
quencies. In fact, in the deeply insulating regime λsp

grows without limit, for example, for U/t = 11, T/t ≈ 0.2
values as large as 25 were observed [74].

Finally, this comparison also explains the behavior of
the asymptotic approximation for strong coupling, which
lies in the middle between the two other approximations
(compare black, purple, and red curves in Fig. 2). This is
the case because compared to the w approximation only
one of the Hedin vertices λsp(ν, ω = 0) is set to 1 [cf.
Eq. (8)] and thus the effect of this truncation is alleviated.
However, as Fig. 2 and Eq. (11) underline, the effective
exchange J is mediated by both Hedin vertices [62] and
thus also the asymptotic approximation eventually fails
at strong coupling.

DMFT – SUSCEPTIBILITIES

As a further benchmark we calculate the DMFT sus-
ceptibility using the vertex F [75] obtained from the
Bethe-Salpeter Eq. (3),

Xα(q) =
∑

ν

X0
ν (q) +

∑

νν′

X0
ν (q)Fανν′(q)X0

ν′(q). (12)

Here, X0
ν (q) =

∑
kGkGk+q denotes a bubble of DMFT

Green’s functions.
We evaluate the static homogeneous charge suscepti-

bility Xch(q = 0, ω = 0) = −dndµ and spin susceptibility
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Xsp(q = 0, ω = 0) = −dmdh and compare the SBE ap-
proximation to the full DMFT solution (for simplicity
we do not consider here the w and asymptotic approxi-
mations). The result is shown in Fig. 3, showing excel-
lent agreement over a wide range of temperatures and
interactions, regardless of whether the DMFT solution
describes a good/bad metal or a Mott insulating phase.
The largest absolute deviations occur in the spin channel
for intermediate U/t ≈ 8. Actually, the relative devia-
tions in the charge channel are similar, but the charge
susceptibility is vanishingly small in this case.

Using the SBE approximation, we also confirm qual-
itative agreement of the momentum dependence with
the DMFT solution in the most delicate coupling regime
U/t = 8. Fig. 4 shows −Xch/sp(q, ω = 0) for q on the
high-symmetry path. −Xch is shown at a low tempera-
ture, where the DMFT solution corresponds to a strongly
correlated Fermi liquid (cf. also left panel of Fig. 3). The
spin susceptibility was computed slightly above the Néel
temperature of the SBE approximation, showing a sizable
quantitative difference compared to DMFT but qualita-
tively correct momentum dependence. Of course, since
the SBE approximation has a different Néel temperature
compared to DMFT, the quantitative difference can be
arbitrarily large near this point.

LDFA – PSEUDOGAP AT WEAK COUPLING

As our last benchmark, we use the SBE approximation
to evaluate the momentum-dependent self-energy within
the ladder dual fermion approach (LDFA). We calculate

the dual self-energy Σ̃ via the Schwinger-Dyson equation
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in the following form [76],

Σ̃(k) =−
∑

k′

f chνν′,ω=0G̃(k′) (13)

+
1

4

∑

q

G̃(k + q)[V chνν′(q) + 3V spνν′(q)],

where V α is defined as

V ανν′(q) =
∑

ν′′

fανν′′ωX̃
0
ν′′(q)[2Fαν′′ν′(q)− fαν′′ν′ω]. (14)

Note that here G̃(k) denotes the dual Green’s functions

dressed with the dual self-energy Σ̃. At the end of the
calculation the lattice self-energy is obtained using the
relation Σlatt

k = Σν + Σ̃k(1 + gνΣ̃k)−1, where Σν is the
local self-energy of the AIM [77]. As we are interested
in the low-energy behavior of the self-energy we use a
physical cutoff νmax = 15t for improved performance.

We apply the LDFA to the Hubbard model (1) at
weak coupling U/t = 2, this regime was recently investi-
gated in Ref. [59] using diagrammatic Monte Carlo (Di-
agMC, [78]). Top panel of Fig. 5 shows the LDFA result
for Σlatt(kN/kAN , ν) (open symbols), where kN = (π2 ,

π
2 )

and kAN = (π, 0) correspond to the nodal and antinodal
point, respectively. The LDFA captures the opening of
the pseudogap at a temperature TPG ≈ 0.059t, which lies
below the numerically exact value of 0.065t (see Ref. [59]
and black dashed lines in Fig. 5). To achieve a better
quantitative agreement with DiagMC parquet diagrams
need to be taken into account [32]. The top panel also
shows the LDFA result when the SBE approximation is
used for the impurity vertex f (closed symbols), in quan-
titative agreement with the original LDFA. Hence, the
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SBE approximation recovers signature physics also of di-
agrammatic extensions of DMFT [6].

LDFA – INTERMEDIATE COUPLING

We benchmark the combination of LDFA and SBE ap-
proximation also for U/t = 8 and T/t = 0.4. The bottom
panels of Fig. 5 show a reasonable agreement of the self-
energy at node and antinode, which are both insulating
in this regime. Interestingly, we observe that the leading
eigenvalue of the matrix (10) is larger for LDFA+SBE
(λmax ≈ 0.81) compared to LDFA (λmax ≈ 0.75), while
the absolute value of the self-energy is smaller. This
implies a nontrivial relationship between the frequency
structure of the impurity vertex and the feedback on the
self-energy. This is not obvious from comparison of LDFA
self-energies at different temperatures, where it may ap-
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FIG. 6. Relative standard deviation of indicated matrix ele-
ments of three- and four-leg vertices λ and f , respectively, as
functions of the measurement time using 192 CPUs.

pear that the feedback is mainly controlled by the leading
eigenvalue.

However, let us note that the essential physics of the
Hubbard model in this interaction regime corresponds
to localized spins interacting via the effective exchange.
Hence, it is plausible that the mere self-consistent feed-
back of spin fluctuations on the electronic self-energy cap-
tured by the ladder approximation is not the salient phys-
ical effect, but that instead self-renormalization of (i.e.,
interaction between) spin fluctuations should be taken
into account, see, e.g., Ref. [79]. This requires more so-
phisticated diagrammatic resummation schemes, such as
the parquet diagrams [32, 80, 81].

COMPUTATIONAL COST

The SBE approximation depicted in Fig. 1 avoids the
measurement of the four-point vertex function f(ν, ν′, ω),
which is the computationally most demanding task in cal-
culations of the DMFT susceptibility and in ladder ex-
tensions of DMFT [43]. The measurement of the three-
leg vertices λ(ν, ω) is cheaper, however, the reduction of
computational cost depends on details of the implemen-
tation, on the autocorrelation time that is specific both
to the observable and to the physical regime, and on the
method of measurement (e.g. segment or worm sam-
pling). Fig. 6 provides an illustrative example of a DMFT
calculation at U/t = 8, T/t = 0.1 where f ch/sp and λch/sp

were measured on 142 fermionic and 142 bosonic fre-
quencies using the segment solver with improved esti-
mators presented in Refs. [52, 82]. We used 192 CPUs
for the measurements. Fig. 6 shows the relative stan-
dard deviations of f(ν0, ν0, ω0), f(ν10, ν0, ω0), λ(ν0, ω0),
and λ(ν10, ω0) against the total measurement time in
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λ f

1 orb. + SU(2) 2.13 MB 92.7 MB

3 orb. + SU(2) 44.73 MB 1946.7 MB

3 orb. w/o SU(2) 134.19 MB 5840.1 MB

TABLE I. Size of three- and four-leg vertices λ and f for 142
fermionic/bosonic frequencies. First line shows the single-
band case with SU(2) symmetry, second and third line corre-
spond to a three orbital Hubbard-Kanamori model

minutes. Apparently, in this setup, obtaining f and λ
to similar accuracy requires roughly a one hundred times
longer measurement time for f .

Further, the SBE approximation also preserves mem-
ory and disk space. The first line of Table I shows
the size of λ and f calculated above, corresponding to
the single-band Hubbard model (1). The second and
third line indicate corresponding sizes for a three-orbital
Hubbard-Kanamori Hamiltonian either with or without
SU(2) symmetry [43, 53]. Notice that the center column
corresponds to the particle-hole quantities λch/sp [cf. Ap-
pendix Eq. (A4)]. The singlet vertex λs [cf. Eq. (A5)]
is of similar size and, furthermore, the multi-orbital case
requires in general also the measurement of a triplet com-
ponent (it vanishes in the single-band case due to the
Pauli principle), which needs to be taken into account in
the derivation of the SBE decomposition [33].

PROPERTIES OF THE RESIDUAL VERTEX

The benchmarks in the previous sections confirm that
the SBE approximation recovers the two-particle physics
of DMFT and its diagrammatic extensions from weak to
strong coupling quantitatively. While at strong coupling
an analytical argument favors the SBE approximation
over the w and asymptotic approximations, one may still
doubt whether it is preferable in general.

In this section we provide numerical evidence that, for
the purpose of a parametrization of the vertex, the or-
ganizing principle of the SBE approximation should be
favored over that of the asymptotic approximation: At
all energy scales, the local vertex corrections should be
parametrized through bosonic fluctuations and their cou-
pling to the fermions, rather than through a combination
of asymptotic expressions [83]. To show this, we compute
the residual vertices (rest functions) of, respectively, the
SBE decomposition and of the vertex asymptotics and
compare them at small frequencies.

The residual vertex ϕUirr of the SBE decomposition is
defined as the set of vertex diagrams which do not con-
tain insertions of the bare interaction U [33]. On the
other hand, we refer to the residual vertex of the vertex
asymptotics as ϕas. To get at a clearer picture what ϕas

is, we pinpoint its difference to ϕUirr as follows. First,
we recall that the asymptotic approximation can be ob-
tained from the SBE approximation by combining dif-
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FIG. 7. Top: Local fermion-spin-boson coupling (ω = 0)
corresponding to DMFT calculations at U/t = 4 (left) and
U/t = 8 (right) for various temperatures. Bottom: Screened
interaction for the same parameters.

ferent high-frequency limits of the SBE diagrams as in
Eq. (8). Let us determine explicitly what is neglected in
the asymptotic approximation, for example, looking at
∇ph defined in Eq. (6a) [α = ch, sp],

∇ph,ανν′ω =λανωw
α
ωλ

α
ν′ω

=λανωw
α
ω + wαωλ

α
ν′ω − wαω

+ (λανω − 1)wαω(λαν′ω − 1).

In the asymptotic approximation the term in the last line
is neglected (that is, absorbed into ϕas). Similar terms

arise from taking the asymptotic limits of ∇ph and of
∇pp. As a result, the difference between the residual ver-
tices ϕUirr and ϕas is that the latter contains remainders
of the form R = (λ∓1)w(λ∓1). They correspond to the
boson w coupled to fermions only via the nontrivial (in-
teracting) part of the fermion-boson coupling λ. In the
following we evaluate ϕUirr and ϕas in a nontrivial pa-
rameter regime and pay special attention to the behavior
of the remainders R.
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FIG. 8. Top: Full charge vertex fch(ν, ν′, ω = 0) for U/t = 8 focused on small ν, ν′. From left to right panels correspond
to T/t = 0.4, 0.2, 0.1, and 0.05. Center and bottom: Residual vertices of the vertex asymptotics (center) and of the SBE
decomposition (bottom). The arrow indicates an ‘accidental’ cancellation of the diagonal by the vertex asymptotics, which
occurs when λsp crosses its asymptotic value 1 (see text and arrow in Fig. 7). Color schemes are consistent in each row.
Numbers in the bottom panels indicate the global minimum of ϕUirr,ch.

As the test ground we choose U/t = 8 and
perform DMFT calculations at temperatures T/t =
0.5, 0.4, 0.2, 0.1, and 0.05. This sequence is interesting in
DMFT because at high temperature the self-consistent
AIM exhibits a local moment, but crosses over into a
Fermi liquid at low temperature. This change manifests
itself in the impurity correlation functions, as can be ob-
served in the right panels of Fig. 7 which show the Hedin
vertex λsp(ν, ω = 0) and the screened interaction w(ω).

The former shows a strong enhancement in the local
moment regime at high temperature, and a similar strong
suppression in the Fermi liquid at low temperature. Ac-
tually, this is comparable to the sequence of Hedin ver-
tices shown in the insets of Fig. 2, where the interaction
was changed to switch between the two regimes. In the
present case, however, it is the peculiar temperature de-
pendence of the DMFT approximation that drives the
crossover. The latter can also be observed in the static
screened interaction wsp(ω = 0), which roughly doubles
going from T/t = 0.4 to T/t = 0.2, consistent with a
local moment ∝ β, whereas at low temperature the in-

crease of wsp(ω = 0) is markedly slower. On the other
hand, wch is tiny in comparison, and hence we can ignore
this quantity (and λch) in the following [84].

To fully characterize the setting, let us also compare
to a case of weaker coupling U/t = 4 shown in the left
panels of Fig. 7. In this case λsp(ν, ω = 0) does not show
an enhancement at high temperature. Interestingly, the
comparison to the right panels suggests that the screen-
ing of fermions from spin fluctuations, mediated by a
suppression of λsp(ν, ω = 0), is not per se a feature of
the weak coupling regime, but rather of the Fermi liquid
phase (although in the strongly correlated Fermi liquid
the mechanism may be more multifaceted than the sim-
ple Kanamori screening at weak coupling [30]).

At the same time, however, we note the qualitative dif-
ference between the Fermi liquid regimes at U/t = 4 and
U/t = 8: In the latter case λsp(ν, ω = 0) is strongly sup-
pressed at very small frequencies (see e.g. T/t = 0.05),
but it shows an enhancement for intermediate frequencies
which is not there for U/t = 4. This indicates that for
U/t = 8 only low-energetic fermions are screened from



10

spin fluctuations and reminds of the ‘onion shape’ of
the generalized charge susceptibility recently observed in
Ref. [85].

In summary, we have identified a crossover from a lo-
cal moment to a Fermi liquid phase that manifests itself
as a qualitative change in the quantities λ and w, which
are used to formulate the SBE approximation and the
asymptotic approximation. Next, we observe the behav-
ior of the residual vertices ϕUirr and ϕas at the crossover.

The bottom panels of Fig. 8 show the residual charge
vertex ϕUirr,ch(ν, ν′, ω = 0) of the SBE decomposition
for different temperatures, where the energy window for
ν and ν′ is consistent. In the local moment regime (Fermi
liquid) ϕUirr,ch increases (decreases) in absolute magni-
tude as T is lowered (see numbers in the bottom panels),
but otherwise exhibits a remarkable uniformity, show-
ing the same features, as it were, in different resolu-
tions. Indeed, in Fig. 9 we find the same behavior in
ϕUirr,sp(ν, ν′, ω = 0), albeit with the opposite sign.

As observed previously [33], ϕUirr(ω = 0) has no signif-
icant features in the two sectors where sgn(ν) = sgn(ν′),
indicating an almost perfect cancellation of the SBE di-
agrams ∇SBE with the full vertex f in these sectors. On
the other hand, there are features located in the two sec-
tors where sgn(ν) = −sgn(ν′), respectively, provided ν
and ν′ are both small. Consistently, and also at smaller
interaction [33], these features correspond to attraction
in the charge channel, ϕUirr,ch(ω = 0) < 0, and repulsion
in the spin channel, ϕUirr,sp(ω = 0) > 0.

The origin and physical nature of these features are
unknown. One may speculate that they are related to
particle-particle scatterings, because the secondary diag-
onal ν + ν′ ≈ 0 that crosses through the sectors with
sgn(ν) = −sgn(ν′) is associated with the singlet pair-
ing channel [1]. However, ϕUirr does not exhibit any
resonances for a particular frequency combination. The
simple structure of ϕUirr, which does not change qualita-
tively at the crossover from local moment regime to Fermi
liquid, suggests that it could represent two-particle cor-
relations which play a similar role in both regimes. A
candidate explanation is, hence, that ϕUirr captures, in
the strongly correlated Fermi liquid, the pre-formed local
moment.

The described phenomenology is in strong contrast
with the full vertex f ch drawn in the top panels of Fig. 8,
which exhibits both repulsive and attractive features,
with some cancellations between them for small ν and/or
ν′ that vary with the temperature. In fact, ϕUirr,ch rep-
resents in essence the attractive features of f ch, whereas
repulsive single-boson exchange contributes a resonant
structure on the diagonal ν−ν′ ≈ 0. On the other hand,
in the spin channel the repulsive contribution of ϕUirr,sp

to f sp is cancelled out completely by attractive single-
boson exchange [86], see Fig. 9. Also here, the residual
vertex ϕUirr,sp does not exhibit resonant features.

Next, we examine the residual vertex ϕas of the ver-
tex asymptotics drawn in the second row of the panels
in Fig. 8 and 9, respectively. Since this quantity corre-

sponds to a superset of the diagrams contained in ϕUirr,
it is not surprising that the features of ϕUirr can also be
observed in ϕas. However, they overlap with remainder
structures R = (λ ∓ 1)w(λ ∓ 1), as explained in the be-
ginning of this section. The remainders necessarily decay
at high frequencies, where the SBE and asymptotic ap-
proximations become equivalent, however, Figs. 8 and 9
focus on small frequencies.

A prominent remainder structure is visible on the di-
agonal of the residual charge vertex ϕas,ch in Fig. 8, both
at high and at low temperatures. We obtain an expres-
sion for this feature as follows. The remainder stemming
from the horizontal particle-hole channel is given as,

Rph,ανν′ω = (λανω − 1)wαω(λαν′ω − 1), (15)

where α = ch, sp. Since wch/U ≈ 1 is comparatively
tiny in the considered regime (cf. Fig. 7, bottom right),
Rph,ch is negligible and hence not easily visible in ϕas,ch.

However, a remainder Rph contributes to ϕas also in the
vertical particle-hole channel. This remainder arises from
the crossing relation (6b) and is not small, because the
crossing relation mixes the charge and spin flavors. Ne-
glecting a contribution from Rph,ch we obtain,

Rph,chν,ν′,ω=0 ∝ (λspν,ν′−ν − 1)wsp
ν′−ν(λspν,ν′−ν − 1). (16)

As expected, this quantity decays for large ν or ν′ where
the Hedin vertex approaches 1, however, for small ν ≈ ν′
it contributes to ϕas,ch, that is, the red features in the
second row of panels in Fig. 8.

Comparison with Fig. 7 elucidates the peculiar struc-
ture of this feature: Firstly, the screened interaction

wsp(ω) decays quickly for finite ω, hence Rph,ch displays
a strong resonance only on the diagonal of ϕas,ch. Sec-
ondly, at low temperature (e.g. T = 0.05) the Hedin ver-
tex λspν,ω=0 changes for ν ≈ ±1 from suppression (λsp < 1)

to enhancement (λsp > 1). Therefore, Rph,ch vanishes at
this point. Indeed, the red feature in ϕas,ch disappears
near ν ≈ ±1 (see arrows in Figs. 7 and 8), but reemerges
again at larger frequencies.

The described effect serves as strong evidence that in
the asymptotic approximation cancellations with the full
vertex f occur at small frequencies only accidentally. In
contrast, we have confirmed in a nontrivial setting, fea-
turing a crossover from local moment to Fermi liquid
phase, that the SBE diagrams capture the resonant fea-
tures of f even at the smallest frequencies. Therefore,
we conclude that the formal construction of the SBE de-
composition retains a physical correspondence to the full
vertex function at all energy scales.

CONCLUSIONS

We benchmarked an efficient approximation scheme
for the local vertex function of the Anderson impurity
model in terms of single-boson exchange (SBE, [33]). The
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SBE approximation is based on the proven and successful
organizing principle to parametrize two-particle correla-
tions in terms of bosonic fluctuations and their coupling
to fermions [14, 25–27, 30, 37, 87]. We presented an-
alytical arguments for the validity of the SBE approxi-
mation at weak and strong coupling and emphasized the
importance of the fermion-boson coupling (Hedin vertex)
in both limits. This quantity captures the Kanamori
screening at weak coupling and strongly enhances the
contribution of spin fluctuations to the vertex function
at strong coupling. Hence, in the latter case, setting this
quantity to its noninteracting value leads to qualitatively
wrong results. This may be of relevance for the extension
of recent diagrammatic studies of the optical conductiv-
ity [88, 89] to the strong coupling regime.

In our numerical applications to the single-band Hub-
bard model the SBE approximation recovered the two-
particle physics of DMFT and of the ladder dual fermion
approach to good quantitative accuracy. As a result,
the computational cost of evaluating correlation func-
tions of the auxiliary Anderson impurity model was re-
duced to a level comparable with the TRILEX [90] and
dual TRILEX approaches [36, 37], however, the Bethe-
Salpeter equation still needs to be solved. In the estima-

tion of the Néel temperature of DMFT the SBE approx-
imation does not reach the excellent accuracy and effi-
ciency of the strong-coupling limit (SCL) formula for the
static spin susceptibility of DMFT [91], but it has a wider
range of applicability, for example, to charge excitations
and two-particle correlations in general. These results
call for the generalization of the SBE approximation to
multi-orbital settings, where it may be applied in cases
where the computational bottleneck is the evaluation of
the vertex function of the impurity model [43, 92, 93].
The SBE approximation may also be combined with the
efficient formula for the DMFT polarization [62] and
other schemes [94] that help to reduce the computational
cost of solving the Bethe-Salpeter equation.

Our results are also of relevance to the development
of unbiased methods such as the fRG [15, 16] and par-
quet schemes [40]. We compared the SBE approximation
to a widely used parametrization of the vertex based
on its asymptotic limits [22], which are a crucial in-
gredient of recent progress in the theory of vertex cor-
rections and two-particle excitations, see, for example,
Refs. [28, 30, 31, 33, 62, 95, 96]. We showed in a non-
trivial crossover regime from a local moment phase to
the Fermi liquid that the SBE decomposition generalizes
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the vertex asymptotics in a physically meaningful way to
small frequencies. In particular, it retains the correspon-
dence to all resonant features of the full vertex function
down to the smallest energy scales. As is natural for a
high-frequency limit, the approximation based on vertex
asymptotics does not show this correspondence. There-
fore, resonant features remain in the rest function of the
vertex asymptotics, which in the case of long-ranged spin-
density wave correlations may carry a strong momentum
dependence. The rest function of the SBE decomposition
is short-ranged even in this case [31, 32] and, as a result,
its momentum dependence can be captured with only a
small number of form factors [30, 97]. It seems therefore
promising to include the SBE decomposition into state-
of-the-art fRG [98] and parquet schemes [30, 31].

Finally, we noted that, in the considered cases, the
residual vertex of the SBE decomposition has a remark-
ably simple frequency structure, which does not change
qualitatively at the crossover from the local moment
regime to the Fermi liquid, or by changing the interac-
tion. Based on this, we speculate that this vertex repre-
sents a connecting element of the two regimes, namely,
the pre-formed local moment, either screened or un-
screened, respectively. Indeed, the full two-particle in-
formation can be reconstructed from the residual ver-
tex [99], including the corresponding fingerprints of the
local moment [85]. However, further investigation is re-
quired, for example, an intriguing option is to study the
residual vertex of the SBE decomposition on the real
axis [50, 51].
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Appendix A: Impurity correlation functions

In this work we employ two different methods (DMFT
and LDFA) which both use the vertex function of the
AIM, and the aim of this work is to test efficient
parametrizations of this quantity. However, for compar-

ison we also obtain the exact vertex function from the
four-point correlation function, which is defined as,

g
(4),α
νν′ω = −1

2

∑

σi

sασ′
1σ1
sασ′

2σ2
〈cνσ1

c∗ν+ω,σ′
1
cν′+ω,σ2

c∗ν′σ′
2
〉,

(A1)

where sα are the Pauli matrices and the label α = ch, sp
denotes the charge and spin channel, respectively. The
vertex function is obtained by subtracting the discon-
nected parts and removing four Green’s function legs
from the four-point correlation function g(4),

fανν′ω =
g
(4),α
νν′ω − βgνgν+ωδνν′ + 2βgνgν′δωδα,ch

gνgν+ωgν′gν′+ω
. (A2)

The three-point correlation function is defined as,

g(3),ανω = −1

2

∑

σσ′

sασ′σ 〈cνσc∗ν+ω,σ′ραω〉, (A3)

where ρch = n↑ + n↓ and ρsp = n↑ − n↓ are the charge
and spin densities. The Hedin vertex is obtained from
g(3) as,

λανω =
g
(3),α
νω + βgν 〈n〉 δωδα,ch

gνgν+ωwαω/U
α

, (A4)

where wαω and Uα are defined below and

λsνω =
〈cν↑cω−ν,↓ρ+ω 〉
gνgω−νws

ω/U
s
. (A5)

The charge, spin, and singlet impurity susceptibilities
are defined as,

χαω =−
〈
ρα−ωρ

α
ω

〉
+ β 〈n〉 〈n〉 δωδα,ch, (A6)

χs
ω =−

〈
ρ+−ωρ

−
ω

〉
, (A7)

and ρ+ = c∗↑c
∗
↓ and ρ− = c↓c↑ describe cre-

ation/annihilation of electron pairs, respectively. The
label ‘s’ in Eq. (A7) refers to the singlet pairing channel.
The screened interaction is obtained from the suscepti-
bility as,

wα(ω) = Uα +
1

2
Uαχα(ω)Uα, (A8)

for each corresponding channel α = ch, sp, s. Finally, the
bare interaction is defined as,

U ch = +U, U sp = −U, U s = +2U. (A9)
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Summary and Outlook

As the main part of the thesis, the D-TRILEX method for single-band systems was
introduced and benchmarked for the Hubbard model on a square lattice. In conclu-
sion, we find that D-TRILEX is an efficient and balanced method that takes into
account the main nonlocal correlations of the system. Thereby, the main advan-
tages of the theory are that, on one hand, unlike other partially bosonized theories,
D-TRILEX is not affected by the Fierz ambiguity problem due to the unique choice
of the bare interaction and, on the other hand, it has a simple diagrammatic struc-
ture reminiscent of the one of the GW theory. The low computational complexity
of the method makes it a promising candidate for realistic calculations of magnetic
materials.

In our study [72], where the D-TRILEX theory was introduced, we present a
partially bosonized approximation for the full local four-point vertex of the impurity
model (3.90). This approximation allows one to express the four-point vertex in terms
of the three-point vertices and screened interaction, which drastically reduces the
computational costs of numerical calculations. With this approximation, we further
derived an action for an effective fermion-boson model (3.79). This action not only
allows one to construct single- and two-particle quantities in the framework of the
D-TRILEX approach, as it was done in [72], but can also be used in more elaborate
methods like functional renormalization group (fRG) [199–204], parquet [53, 205–
207], or diagrammatic Monte Carlo [168, 169] methods.

In [72] we showed that for a single-shot calculation the self-energy of D-TRILEX
is in good agreement with the ladder DF results for an intermediate interaction
strength. For small and large interaction strengths the results show a larger mis-
match due to the missing transversal contributions to the vertex in D-TRILEX.
Furthermore, we showed that the D-TRILEX approach provides a qualitatively good
estimation for the metal-to-Mott-insulator phase transition.

In the next work [128] we performed a comprehensive analysis of the effect of
different partially bosonized collective fluctuations on single-particle quantities. To
investigate the importance of different classes of diagrams several approaches with
different diagrammatic structures were compared. Thereby, two of the methods,
DiagMC@DF and LDF, are based on the dual action (3.36) and the methods Di-
agMC@PBDT and D-TRILEX are based on the action of the effective fermion-boson



144 Summary and Outlook

model (3.79). In the latter methods, the partially bosonized representation of the
four-point vertex is used. As the reference system, the exactly solvable impurity
model (3.59) was used, which provided the building blocks for the diagrammatic
expansion of all considered methods. For all approaches interactions up to the two-
particle level were considered.

Comparing the results of all considered methods, our first important observation
is that the irreducible part of the four-point vertex can be safely excluded for a broad
range of control parameters. Especially, in the regions where the nonlocal fluctua-
tions remain small to moderate. Further, we found that the non-ladder diagrams
appearing in both DiagMC methods have a small contribution, if the Coulomb inter-
action U is small, or they are almost completely canceled, by the diagrams describing
transverse singlet correlations, at large U . The same transverse singlet diagrams are
partially canceled by transverse particle-hole contributions at small and moderate
interaction strength. To make the discussion complete, for all interaction strengths
the longitudinal singlet contributions remain small and can be neglected. All of these
findings provide the assessment that for a broad range of parameters the longitudinal
particle-hole channel provides the main diagrammatic contribution and, therefore,
D-TRILEX with its simple diagrammatic structure provides a reasonable and promis-
ing approximation for a broad class of interacting electron systems, especially in the
case of realistic multi-orbital systems. In particular, D-TRILEX appears to provide
an accurate result in the regimes where LDF turns out to be a good approxima-
tion compared to the exact result. Moreover, we found that D-TRILEX provides
good results, compared to LDF, at moderately-correlated regimes around and even
just below the Néel temperature where the pseudo gap starts to open. However,
in the weakly-interacting Slater regime of the magnetic fluctuations [208], as was
already discussed in Section 4.1, methods based on ladder approximations tend to
underestimate the magnetic fluctuations in general. Especially, a simple method like
D-TRILEX which merely accounts for longitudinal contributions to the vertex func-
tion fails to predict the formation of the pseudogap at the correct temperature due
to a strong anharmonic behavior of collective correlations of itinerant electrons [189],
which arises near the AFM instability. In this regime, transversal diagrams become
important and have to be considered for a correct description of magnetic fluctuations
and pseudogap formation. However, by increasing the Coulomb interaction the elec-
trons become more localized resulting in a more harmonic behavior of the collective
modes. In this case, the ladder-like approximations perform more accurately.

As our final result in [128] we performed calculations using the t − t′ model,
which is considered to be the prototype model for high-temperature superconduct-
ing cuprate compounds, at 4% hole-doping. Comparing our results with exact Di-
agMC results provided by [175] we found that sc-D-TRILEX provides a very accurate
agreement for the nonlocal part of the self-energy in such a non-trivial regime and
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even precisely captures the N/AN dichotomy in the formation of a pseudogap in this
regime. In addition, however, we found that the local parts of the self-energy differ
which leads to the assumption that for this regime DMFT does not provide a good
starting point.

In [130] D-TRILEX was put to a test by applying it for the first time to a real-
istic electron-structure model from first principles. Thereby, we performed a com-
prehensive investigation of collective electronic correlations in the hole-doped InSe
monolayers. To this end, we derived a model which includes most characteristics of
the material. Performing single-shot D-TRILEX we found several coexisting insta-
bilities. The commensurate CDW ordering is found for a broad range of considered
parameters indicating the main instability in the system. Close to the CDW phase
boundary, we found that the strong spatial charge correlations have a large impact on
the DOS resulting in a formation of a pseudogap. This emphasizes the importance of
considering spatial electronic fluctuations. Furthermore, we found a FM phase inside
the CDW, which is related to a vHS in the electronic spectrum. As a final result,
we found that the effect of the electron-phonon coupling has no major impact on the
qualitative physical picture. In fact, including the coupling only results in a shift of
the phase boundaries due to an effective reduction of the local Coulomb interaction.
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