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Abstract

Water and ammonia have two nuclear spin isomers para and ortho that differ by the total
nuclear spin of the pair of identical hydrogen nuclei. They are essential molecules for life,
which play important roles in many aspects such as chemistry, biology, medicine, and
astrophysics. These two molecules contain the information of physics and chemistry at
the early stage of molecular clouds. People can extract this information by measuring the
ortho-para ratio, since the nuclear spin conversions between these two nuclear spin isomers
are usually slow, and they are supposed to be two different molecules. Molecular collision
is one of the most studied mechanisms resulting the nuclear spin conversion. No direct
transitions have been ever observed in isolated water and ammonia molecules. However,
the hyperfine effects like the nuclear spin-rotation and spin-spin interactions can make the
transitions happen by introducing ortho-para mixing. The main goal of this thesis is to
predict and observe the nuclear-spin-forbidden transitions of water and ammonia. This
work can be divided into two major parts, the theoretical part and the experimental part.

In the theoretical part, the first comprehensive theoretical investigation of the hyperfine
effects in H2

16O is presented, including the ortho-para transitions owing to the nuclear
spin-rotation and spin-spin interactions. This was achieved by the newly developed general
variational approach implemented in Richmol by adding the extra terms in the rovibrational
Hamiltonian from TROVE that describes the nuclear spin-rotation and spin-spin interactions.
The results suggest that the strongest ortho-para transitions intensities at room temperature
are on the order of 10−31 cm/molecule, and should be detectable in the mid-infrared ν2,
and near-infrared 2ν1 + ν2 and ν1 + ν2 + ν3 bands by current spectroscopy experiments.

In the experimental part, the broadband absorption spectra of the 3ν2 band of 14NH3
near 4 µm were recorded by a homebuilt Fourier-transform spectrometer. The Fourier
transform spectrometer is based on a mid-infrared frequency comb with the repetition rate
of 150 MHz. The frequency grid of the Fourier-transform spectrometer is set to be the
same as the repetition rate of the frequency comb to remove the instrument line shape,
resulting in a resolution of 0.00501 cm−1. Line positions, line intensities, self-broadening,
and self-shift parameters for six rovibrational lines were determined at room temperature. A
liquid-nitrogen-cooled multi-pass-cell cryostat is planned to apply to increase the sensitivity
of the Fourier transform spectrometer, and possibly observe the ortho-para transitions with
the help of optical-optical double-resonance spectroscopy with a frequency comb probe.





Zusammenfassung

Wasser und Ammoniak haben zwei Kernspinisomere para und ortho, die sich durch den
Gesamtkernspin der identischen Wasserstoffkerne unterscheiden. Es handelt sich um zwei
für das Leben unverzichtbare Moleküle, die in vielen Bereichen eine wichtige Rolle spielen,
z. B. in der Chemie, Biologie, Medizin und Astrophysik. Diese beiden Moleküle beinhalten
Informationen der Physik und Chemie im frühen Stadium der Molekülwolken. Diese In-
formationen können durch Messung des ortho-para Verhältnisses ihrer Kernspin-Isomeren
entnommen werden, da die Kernspinumwandlung zwischen zwei Kernspin-Isomeren in der
Regel langsam ist und man davon ausgeht, dass es sich um zwei verschiedene Moleküle
handelt. Die Molekülkollision ist einer der am besten untersuchten Mechanismen, der
zu Informationen über die Kernspinumwandlung führt. In isolierten Wasser- und Ammo-
niakmolekülen wurden bisher keine direkten Übergänge beobachtet. Allerdings können
die Hyperfeinstoffeffekte wie Kernspin-Rotation- und Kernspin-Spin-Wechselwirkungen
zu Übergängen führen durch die Einführung von ortho-para Mischung. Das Hauptziel
dieser Arbeit ist es, diese verbotenen Kernspinübergänge von Wasser und Ammoniak
vorherzusagen und zu beobachten. Diese Arbeit kann in zwei Hauptteile unterteilt werden,
einen theoretischen und einen experimentellen Teil.

Im theoretischen Teil wird die erste umfassende theoretische Untersuchung der
Hyperfeinstoff-Effekte in H2

16O einschließlich der ortho-para Übergänge aufgrund der
Kernspin-Rotation- und Kernspin-Spin-Wechselwirkungen präsentiert. Dies wird durch
einen neu entwickeltem allgemeinen Variationsansatz erreicht, der in Richmol implementiert
ist, indem die zusätzlichen Terme in den rovibrationalen Hamiltonian von TROVE, der die
Kernspin-Rotation und die Kernspin-Spin-Wechselwirkung beschriebt. Die Ergebnisse legen
nahe, dass die stärksten ortho-para Übergänge bei Raumtemperatur in der Größenordnung
von 10−31 cm/Molekül liegen und in den Bändern im mittleren Infrarot ν2 und im nahen
Infrarot 2ν1 + ν2 und ν1 + ν2 + ν3 in aktuellen Spektroskopieexperimenten.

Im experimentellen Teil wurden die breitbandigen Absorptionsspektren der 3ν2-Bande von
14NH3 bei 4 µm mit einem selbstgebauten Fourier-Transform-Spektrometer aufgenommen.
Das Fourier-Transformations-Spektrometer basiert auf einem Mittelinfrarot-Frequenzkamm
mit einer Wiederholrate von 150 MHz. Das Frequenzraster des Fourier-Transform-
Spektrometers ist so eingestellt, dass es der Wiederholrate des Frequenzkamms entspricht,
um die Linienform des Instruments zu entfernen, was zu einer Auflösung von 0,00501 cm−1

führt. Linienpositionen, Linienintensitäten, Selbstverbreiterung und Selbstverschiebung
Parameter für sechs Rovibrationslinien wurden bei Raumtemperatur bestimmt. Ein mit
flüssigem Stickstoff gekühlter Multi-Pass-Zellen-Kryostat soll eingesetzt werden, um die
Empfindlichkeit des Fourier-Transform-Spektrometers zu erhöhen und möglicherweise die
ortho-para-Übergänge mit Hilfe der optisch-optischen Doppelresonanzspektroskopie mit
einer Frequenzkamm-Sonde zu beobachten.
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1 Introduction
“To see a world in a grain of sand
And a heaven in a wild flower
Hold infinity in the palm of your hand
And eternity in an hour”

— William Blake

How did life form? This is one of the biggest questions that we can ask ourselves. A
complete scientific answer still eludes us, but we have already solved many pieces of the
puzzle. It all started from the Big Bang, where the first protons and neutrons condensed
from more fundamental particles called quarks. This led to mostly hydrogen and helium
nuclei in the early universe. After 380,000 years, the universe became cold and electrons
started bonding to nuclei, the first hydrogen and helium atoms were formed. For heavier
atoms such as C, N, and O, they came millions or billions of year later via fusion processes
in the core of stars and supernovae explosions. The atoms cooled down to a low temperature
and the chemical bonds formed between them, which produced the essential molecules for
life, like H2O, NH3, and CH4. With the radiation from nearby stars, chemical reactions
among them took place forming more complex organic molecules for life.

H2O and NH3 are two essential molecules for life. Structures determine functions. It
is important to study the structures of these two molecules, such as electronic structure,
vibrations, rotations, fine structure, and hyperfine structure. Among them, the molecular
hyperfine structure resulting from the nuclear spin is less studied due to more complex
calculations and weaker interactions. What kind of roles do the nuclear spins of H2O and
NH3 play in the evolution of life and the universe? How can we calculate and measure the
hyperfine structure of these two molecules? This was where this thesis started.

1.1 The brief story of nuclear spin isomers

Spin is one of the most complicated and confusing concepts in physics. Tomonaga [1] and
Gardner [2] gave a detailed description of the history of the spin and how spin “spins”. Like
mass and charge, spin is another intrinsic property of the particles. The particles can be
visualized as a spinning top (Figure 1.1) instead of a spinning planet or basketball with a
spin quantum number of 0, 1

2 ,1, 3
2 · · · . Particles with integer spins are bosons, and particles

with half-integer spins are fermions. The half-integer spins result in a peculiar property
of fermions which they return to the original state after two full rotations of the spin
axis. Dirac’s scissors trick and Möbius strip are two famous models used to demonstrate a
macroscopic object returns to its original state after two full rotations [2].

Nuclear spin isomers, also called nuclear spin modifications, exist for molecules that are
composed of identical nuclei with nonzero spin. Taking the simplest molecule hydrogen as
an example, the possible orientations of the proton spin result in two nuclear spin isomers
ortho-H2 and para-H2 with different arrangements of total nuclear spin quantum numbers
I = 1 and I = 0 as shown in Figure 1.2 a. The discovery of nuclear spin and the process
of the nuclear spin conversion in molecules is contemporaneous with the appearance of
quantum mechanics and its application to the hydrogen molecule. The concept of ortho and
para was first introduced in the observed spectrum of Clèveite gas (helium) from Runge and
Paschen [4] in 1896. They recorded two sets of spectra, the stronger one belongs to helium,
and the weaker one belongs to Parhelium which was rewritten as para-helium afterward.
Later Bohr suggested naming the former ortho-helium [5]. During this time, the internal
structure of atoms and molecules were still unclear to scientists. In 1911, Rutherfold [6]
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Figure 1.1. Pauli and Bohr watching a spinning top, reprinted from [3].

proved his postulation of the nucleus by the alpha particles scattering experiment. In
1913, Bohr [7] introduced quantization in describing the electron motion around the atomic
nucleus, which better explained the spectra of hydrogen. Nine years later, Stern and
Gerlach (1922) [8] experimentally demonstrated the space quantization with the Silver
beam in an inhomogeneous magnetic field, which acquired Stern a Nobel Prize in 1943
“for his contribution to the development of the molecular ray method and his discovery
of the magnetic moment of the proton”. But people still can not explain why helium had
two different sets of spectra, and two more puzzling experimental results were coming out
during this time. The first was the anomalous specific heat for H2, when increased the
temperature of cooled H2 from Eucken [9] in 1912. The second was the intensity alterations
with the ratio of 3:1 in the rotational spectra of H2 from Hori [10] in 1927. These confusing
experiments became the three main problems within the development of atomic physics,
molecular physics, and quantum mechanics.

The exciting things happened in 1924 and 1925 when people were getting to understand
the property of electrons. In 1924, de Broglie [11] came up with the hypothesis about the
wave-particle duality of electrons. In 1925, Pauli [12] proposed that no two electrons in
an atom can have identical sets of quantum numbers, which earned him a Nobel Prize
in 1945 “for the discovery of the Exclusion Principle, also called the Pauli Principle”. In
the same year, Uhlenbeck and Goudsmit [13] postulated the existence of a new intrinsic
property of particles that behaved like an angular momentum, which was later termed spin
by Pauli. After introducing electron spin, the two sets of helium spectra were explained
by Heisenberg [14] in 1927. The helium atom has two electrons, and the coupling between
them results in the two sets of states: singlet where the orientations of two electron spins are

2
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(a)

(b)

(c)

I=1, ortho-H2

I=1, ortho-H2O

I=3/2, ortho-NH3

I=0, para-H2

I=0, para-H2O

I=1/2, para-NH3

Figure 1.2. Nuclear spin isomers of hydrogen (a), water (b), and ammonia (c) molecules.

parallel, and triplet where they are not parallel. The singlet corresponds to the para-helium,
and the triplet corresponds to ortho-helium. Furthermore, Heisenberg generalized these
concepts to protons in H2, and predicted the existence of para-H2 and ortho-H2 [5]. The
Nobel Prize in 1932 was awarded to Werner Heisenberg “for the creation of quantum
mechanics, the application of which has, inter alia, led to the discovery of the allotropic
forms of hydrogen”, which indicated para-H2 and ortho-H2 were a big issue at that time.

In 1927, Hund [15] investigated the correlation between energy levels and the symmetry
of rotational wave functions of the hydrogen molecule. He separated the rotational levels
by the parity of the rotation quantum number J as shown in Figure 1.3. Inspired by
Heisenberg and Hund, Dennison [16] postulated hydrogen nuclei (photon) has the same half
spin as the electron in the same year. Referring to the para-helium and ortho-helium from
Heisenberg, the two nuclear spin isomers of hydrogen were named para and ortho, when the
two photon spins are antiparallel and parallel respectively, as shown in Figure 1.2 a. The
total nuclear spin quantum number of para-H2 is 0, which corresponds to the energy levels
with even rotation quantum number. And likewise, the total nuclear spin quantum number
of ortho-H2 is 1, which corresponds to the energy levels of odd rotation quantum number.
Dennison’s postulate gave a good explanation of the intensity alterations in rotational
spectra of hydrogen molecule. The statistic weight of the para-H2 and ortho-H2 is 1 and
3. This means hydrogen molecules consist of one quarter of para-H2 and three quarters of
ortho-H2 at room temperature. But at a lower temperature, the situation is different. The
big rotational constant of H2 gives rise to the big frequency intervals of energy levels. The
interval between J = 1 and J = 0 level is 174 K as shown in Figure 1.3, which is much higher
than the boiling point of liquid hydrogen (20.3 K). Thus, all the hydrogen molecules are
populated on J = 0 state (para-H2) when hydrogen molecules are cooled to 20.3 K. With
this method, Bonhoeffer and Harteck [17] successfully made the pure para-H2 in 1929. The
problem of anomalous specific heat for H2 was also solved based on Dennison’s postulate,

3
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para-H2 ortho-H2

J = 0
J = 1

J = 2

J = 3

J = 4

J = 5

0 cm-1  
(0 K)

365.118 cm-1 
(522 K)

1217.06 cm-1 
(1739 K)

1825.59 cm-1 
(2608 K)

730.236 cm-1 
(1043 K)

121.706 cm-1 
(174 K)

E
ne
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y 
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Figure 1.3. Lower rotational levels of H2 molecule with rotational constant 60.853 cm−1.
The energy levels are given in cm−1 and K relative to the J = 0 level.

since more hydrogen molecules were populated to the para state at low temperature. Till
1927, the three problems were all resolved and explained, promoting the development of
Pauli’s spin theory [18] and launching a new era in modern quantum mechanics.

1.2 The ortho-para ratio and nuclear spin conversion

The para-H2 (I = 1) and ortho-H2 (I = 0) correspond to the two sets of energy levels.
The radiative transitions between these two sets are very weak, which are considered to
be forbidden. For other polyatomic molecules containing two identical protons, like H2O
(shown in Figure 1.2 b), H2CO, and H2S, the ortho-para conversion is almost rigorously
forbidden in spectroscopy and collisions [5]. These two nuclear spin species are thought
of as two independent molecules. This also refers to NH3 (shown in Figure 1.2 c), CH3F,
CH3OH, H+

3 with ortho (I = 3/2) and para (I = 1/2) species, and CH4 with one more
meta (I = 2) besides ortho (I = 1) and para (I = 0) species.

We live in a molecular universe, where molecules are abundant and ubiquitous [20]. Many
important processes, such as the formation of stars, the evolution of galaxies, and the origin
of life, are driven by the presence of molecules. Consequently, molecules can be used to trace
these important processes. The nuclear spin isomers retain the information of chemistry and
physics at the early stage of the molecular clouds, since the conversions between different
nuclear spin isomers are usually slow in the interstellar medium, comparable to the lifetime
of the universe [5]. People can extract this information by measuring the ortho-para ratio
(OPR) of different molecules, with consideration of the collisions and chemical reactions [21–
23], especially the proton exchange reaction with H+ [24] and H+

3 [25]. H2O and NH3 are

4
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O
rth

o-
to
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tio

Ortho-H2O

Para-H2O

Figure 1.4. Nuclear spin conversion of H2O in the interstellar medium, and ap-
proximate curve for the ortho-to-para ratio in lower temperatures adapted from [19].
The background is the first infrared view image of a nearby, young, star-forming re-
gion called NGC 3324 in the Carina Nebula from the James Webb Space Telescope
(https://www.nasa.gov/webbfirstimages).

the two most important polyatomic molecules for astrophysical observation. Figure 1.4 gives
an example of OPR as a function of its equilibrium temperature for H2O. By observing
the OPR of H2O and NH3 in cometary comae, star- and planet-forming regions [26–31],
people can deduce the temperature to further investigate the chemical and physical history
of these two molecules in these regions.

Figure 1.5. The principle of laser-induced drift, reprinted from [32]. The blue-detuned
laser only excites the molecule (big red sphere on the right) moving away from the laser
and increases the size (kinetic cross-section). This molecule is slowed down by collisions
with the buffer gas (yellow sphere) because of its larger size. Whereas the molecule moving
toward the laser will not excite, and keep moving at the normal speed. This difference
causes a drift of the selected nuclear spin isomer toward the laser.

However, the real meaning of the OPR in the interstellar medium is still a topic of
controversy. Theoretical and experimental investigations of the nuclear spin conversion are
a straightforward way to better understand the OPR. Molecular collision is one of the most
studied mechanisms resulting in the nuclear spin conversion in polyatomic molecules [35, 36].
The nuclear spin conversion has been studied for several molecules, such as H2O [37, 38],
H2CO [39], CH3F [36, 40], NH3 [41], CH3OH [42, 43], C2H4 [44, 45]. Among these molecules,
the nuclear spin isomers of CH3F, C2H4 and CH3OH have been separated by laser-induced

5
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(a) (b)

Figure 1.6. Diagram of water molecule isolated in an argon matrix and encapsulated in a
fullerene cage, adapted from [33, 34].

drift method [46] (shown in Figure 1.5). Quantum relaxation theory is applied to explain the
nuclear spin conversion with involving the nuclear spin-rotation, spin-spin, and quadrupole
interactions. These intramolecular interactions mix the ortho and para states and the
collision destruct the coherence between the states. Another mechanism promoting the
nuclear spin conversion is the intermolecular interactions in the condensed phase. Nuclear
spin conversion has been observed in noble gases or para-H2 matrix (shown in Figure 1.6 a)
for H2O [33, 47–49], NH3 [50, 51], CH4 [52–54], CH3OH [55, 56]. The host matrices confine
the rotation of these guest molecules via Van der Waals force, resulting in stronger ortho-
para mixing. By extending the matrix isolation to fullerene encapsulation [57], Beduz et
al. [34] observed the ortho-para conversion of single water molecules trapped in a closed
fullerene cage (shown in Figure 1.6 b).

1.3 Quantum control of nuclear spin isomers

Molecules are complex because they combine different well-separated quantum structures
from electric structure to vibration, rotation, and hyperfine structure with reduced symmetry.
Consequently, the molecular energy covers several orders of magnitude from more than
100 THz (electric structure) to around 10 THz (vibration), around 10 GHz (rotation), and
around 10 MHz (hyperfine structure). With the Born-Oppenheimer approximation, the
electronic degrees of freedom can be decoupled from the rovibrational motion. Vibrational
and rotational motions can also be separated with the rigid-rotor approximation. These
internal structures of molecules underly many possibilities for quantum control [58, 59]
to study quantum information, quantum computers, fundamental constants measurement,
possible physics beyond the Standard model, chemical reactions, catalysis, solution processes,
and so on, even though with great experimental challenges. Since hyperfine transitions
involve flipping of the nuclear spin, they are much more stable compared to rovibrational
or electronic transitions, and suited for long-period quantum control.

Quantum control of nuclear spin species has been realized by many groups with different
methods. Kravchuk et al. [60] produced an ortho H2O beam with a purity of 93% by
a magnetic-hexapole-focuser setup. Our group [61] applied the electric deflector (shown
in Figure 1.7), acting like an “electric prism”, to produce both pure ortho- and para-
H2O. With this method, chemical reactions towards trapped diazenylium ions (NH+

2 ) are
investigated, indicating that para-H2O reacted 23% faster than ortho-H2O [62]. Direct laser
state-selectively cooling of nuclear spin isomers in one dimension has been achieved for

6
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Figure 1.7. Separation of ortho- and para-H2O with the electric deflector. The deflector
produce a strong inhomogeneous electric field, which deflects the ortho- and para-H2O
differently from their original path because of the different interactions with electric field.

calcium monomethoxide (CaOCH3) by Mitra et al. [63], reducing the temperature of around
104 molecules to 1.8 mK. More recently, Vilas [64] demonstrated the magnetic-optical
trapping (MOT) of CaOH, suggesting MOT of CaOCH3 is possible to realize.

1.4 Direct ortho-para transitions in isolated molecules

There are not strictly “forbidden transitions” if we consider the mixing of eigenfunctions
for different states due to some weak internal interactions or the high order interactions
beyond the electric dipole. The hyperfine effects such as nuclear spin-rotation, spin-spin,
and quadrupole interactions result in the ortho-para mixing, and drive the direct electric
or magnetic transitions between different nuclear spin isomers. For H2, the lifetime of the
spontaneous emission from J = 1 (ortho) to J = 0 (para) (shown in Figure 1.3) is much
longer than the lifetime of the universe [65, 66]. Polyatomic molecules, especially the
spherical-top molecules, have a faster conversion rate since the rotational levels are closer or
clustered [32]. The first observation of direct ortho-para transition was realized by Ozier et
al. [67] with shifting an ortho state close to para state under an external magnetic field. For
rotational cluster states (J = 53) of SF6, Bordé et al. [68] measured the transitions between
different nuclear spin isomers.

More recently, Kanamori et al. [69] reported the microwave transitions between ortho
and para states of an isolated disulfur dichloride (S2Cl2), a helically twisted molecule
with especially stronger larger quadrupole interaction. The observed intensities of the
forbidden transitions were 1000 times smaller than the allowed transitions nearby. This
study indicated that the spontaneous emission between the ortho and para states of S2Cl2
molecule happens once every few thousand years.
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1 Introduction

1.5 Outline of this thesis

The main objective of this thesis is to predict and observe the nuclear-spin-forbidden
transitions of water and ammonia. The first main goal is high-accuracy calculations of the
hyperfine structure including the ortho-para transitions from first principles, and predictions
of the strongest forbidden transitions to be possible observed in experiments for H2O and
NH3. The second main goal concerns the accurate measurement of the hyperfine structure
and possible forbidden ortho-para transitions in the rovibrational spectrum of H2O and
NH3 with the Fourier transform spectrometer based on the mid-infrared frequency comb
(FC). An overview of the structure of the thesis is described here.

In chapter 2, the fundamental concepts required to follow this thesis are provided. The
chapter starts with a brief description of the quantum structure of molecules from elec-
tronic structure to hyperfine structure. Then the theoretical approach to constructing the
molecular spectra from first principles is described, which includes solving the electronic
Schrödinger equations, solving the nuclear Schrödinger equation, and simulating the ab-
sorption spectra. In chapter 3, the experimental setup of the mid-infrared FC and Fourier
transform spectrometer, is presented.

In chapter 4, the first comprehensive theoretical investigation of the hyperfine effects and
ortho-para transitions in H2

16O due to the nuclear spin-rotation and spin-spin interactions
are described. We also present the details of our newly developed general variational
approach to the simulation of hyperfine effects in polyatomic molecules. Our results for
water suggest that the strongest ortho-para transitions with room-temperature intensities
on the order of 10−31 cm/molecule are about an order of magnitude larger than previously
predicted values, and should be detectable in the mid-infrared ν2, and near-infrared 2ν1 + ν2
and ν1 + ν2 + ν3 bands by current spectroscopy experiments.

In chapter 5, the broadband absorption spectra of the 3ν2 band of 14NH3 near 4 µm is
reported. The data were recorded using a mid-infrared FC coupled to a homebuilt Fourier
transform spectrometer with a resolution of 0.00501 cm−1. Line positions, line intensities,
self-broadening, and self-shift parameters for six rovibrational lines were determined at room
temperature (T = 296 K). In chapter 6, a liquid-nitrogen-cooled multi-pass-cell cryostat
and the optical-optical double-resonance spectroscopy with a FC probe are described as
further improvements on our Fourier transform spectrometer.

Finally, in chapter 7, a summary of what has been achieved and an outlook over ongoing
projects is given. In the appendices, more detailed information about the symmetry-adapted
nuclear spin functions of H2O and NH3, hyperfine interaction in rotational chiral states of
H2S can be found.

8
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2 Fundamental concepts

“If you want to find the secrets of the universe, think in terms
of energy, frequency and vibration.”

— Nikola Tesla

This chapter provides an overview of the quantum structure of molecules and theoretical
rovibrational spectroscopy. For the different quantum structures, the orders of magnitude
of various interactions are estimated by expressing as a power series of the fine structure
constant and the Born-Oppenheimer constant [5]. A general outline of the stages for
generating the rotation-vibration linelist is shown in Figure 2.1 by solving the electronic
and nuclear Schrödinger equation. The readers are directed to [70, 71] and [72, 73] for
detailed reviews of ab initio electronic structure calculations in Section 2.2, and variational
nuclear motion calculations in Section 2.3, respectively. For more details, I recommend the
textbooks [74–76].

Ab initio Electronic Structure Calculations

Potential Energy Surface Dipole Moment Surface

R
ef

ne
m

en
t

Linelist

Rovibrational Energies Rovibrational Wavefunctions

Line Positions Line Intensities

Variational Nuclear Montion Calculations

Figure 2.1. The procedure of computing a rotation-vibration linelist for a small polyatomic
molecule from first principles, adapted from [77].

2.1 Quantum structure of molecules

A molecule is a collection of electrons and nuclei obeying quantum mechanics. They are
held together by certain interactions. Each of them has a mass, an electric charge, a
magnetic dipole moment for electrons, and electric and magnetic multipole moment for
nuclei. Different interactions result in different structures. Solving the non-relativistic, time-
independent Schrödinger equation HΨ = EΨ provides a prescription to strictly determine



2 Fundamental concepts

the quantum structure. The molecular Hamiltonian is written as

H = T + V + Hes + Hh f s, (2.1)

where T is the kinetic energy operator, V is the electrostatic potential energy operator,
Hes is the electron-spin Hamiltonian, and Hh f s is the hyperfine Hamiltonian. After the
separation of translational energy, we write the internal dynamics Hamiltonian as [74]

Hint = Hrve + Hes + Hh f s

= Te + TN + Vee + VNe + VNN + Hsl + Hss′ + HJs + Hns + Hquad.
(2.2)

The eigenstates of Hrve are the starting point for calculating the molecular energies.
Under numerous approximations such as Born-Oppenheimer approximation, Hartree-Fock
approximation, harmonic oscillator approximation, and rigid rotor approximation, people
can solve approximate and separable Schrödinger equations for electron structure, vibrational
states, and rotational states. Afterward, the approximations can be corrected by using the
variational method or perturbation theory. The extra terms Hes and Hh f s are then treated
as “add-on” terms giving rise to fine structure and hyperfine structure.

All molecular interactions and quantities can be expressed by three fundamental
quantities—the elementary charge e, Planck constant h̄, the speed of light c—and the mass
of electrons m, the mass of nuclei M, and electric and magnetic multipole moment for nuclei.
Two dimensionless quantities, the fine structure constant α = e2/h̄c and Born-Oppenheimer
constant κ = (m/M)1/4, can be applied to describe the different interactions as a power
series of α and κ, as shown in Figure 2.2.

Figure 2.2. Orders of magnitude of all possible atomic and molecular interactions, reprinted
from [5].
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2.1 Quantum structure of molecules

2.1.1 Born-Oppenheimer Approximation

To solve the rovibronic Schrödinger equation, the Born-Oppenheimer approximation [78]
was introduced for separating the electronic motion from nuclear motion based on the fact
that electrons are less massive than nuclei. The rovibronic wave function Ψ is separated
into the product of electronic and nuclear components,

Ψ(r, R) = ψelec(r, R)ψnuc(R). (2.3)

Choosing a fixed nuclear configuration, the electronic Schrödinger equation is given by

Helec(r, R)ψelec(r, R) = Eelec(R)ψelec(r, R), (2.4)

with the electronic Hamiltonian

Helec = Te + Vee + VNe + VNN (2.5)

where VNN is a constant for a selected nuclear coordinate. Solving (2.4) to get the electronic
energy Eelec for a selection of nuclear geometries repeatedly gives the potential energy
surface (PES) VPES. Once the VPES is determined, we can solve the nuclear Schrödinger
equation

(TN + VPES)ψnul(R) = Enulψnul(R), (2.6)

to get the rovibrational energies of the system in the electronic state defined by PES. In
this thesis, we only consider the ground electronic state.

2.1.2 Electronic structure

Many chemical processes can be understood through considering the interactions of electrons
with nuclei, and interactions between electrons. It is important to calculate the electronic
structure, especially PES and dipole moment surface (DMS), which are crucial in calculating
the rovibrational spectrum of a molecule as shown in Figure 2.1. Many advanced methods
have been developed to solve the electronic Schrödinger equation, which are described
in Section 2.2. The DMS represents the charge distribution of a molecule as a function of
nuclear geometry. The dipole moment is defined in terms of the molecule’s response to an
applied electric field and can be calculated as the first derivative of the electronic energy
with external electric field strength ϵA according to

µA = −
(

dE
dϵA

)
(ϵA=0)

, (2.7)

which can be approximated by using the numerical finite differences

dE
dϵA
≈ E(ϵA)− E(−ϵA)

2ϵA
, (2.8)

where a small electric field is applied along the Cartesian coordinate axis A= X, Y, Z. The
DMS can be calculated as the expectation value of the dipole moment operator.

The electron energy of a hydrogen atom is used to estimate the order of magnitude of
the molecular electronic energy [5]

Welec =
mv2

2
− e2

r
= −mv2

2
= −1

2
mc2α2 = −Ry

n2 ∼ 10000 cm−1, (2.9)

11



2 Fundamental concepts

where Ry is the Rydberg constant given by 109737.31568160(21) cm−1 and α is the fine
structure constant in the cgs unit with the expression

α =
e2

h̄c
=

v
c
∼ 10−2, (2.10)

indicating that the velocity of electrons in atoms or molecules is on the order of 3000 km/s.

2.1.3 Vibrational and rotational states

The choice of a coordinate system to describe the molecular nuclear motion is important
for solving the nuclear Schrödinger equation. In a space-fixed frame, a molecule with N
atoms requires 3N Cartesian coordinates to specify the positions of the atoms without
distinguishing the three different types of molecular motion: translation, vibration, and
rotation. After removing three translational motions, molecular vibration and rotation can
be distinguished by transforming them into a suitable molecular-fix frame. The Euler angles
define the orientation of the molecule-fixed axes to the space-fixed axes, and describe the
overall rotation of the molecule. The remaining 3N− 6 coordinates correspond to vibration.
Theoretical ROVibrational Energies (TROVE) approach [72, 73] is applied to calculate the
rotation-vibration energy levels and corresponding transition intensities for a polyatomic
molecule of arbitrary structure in an isolated electronic state, as described in Section 2.3.

To better sort out the order of magnitude of the molecular vibration and rotation, the
Born-Oppenheimer constant is introduced as

κ =

(
m
M

) 1
4

∼ 10−1, (2.11)

where M is the average nuclear mass. The order of magnitude of vibrational energy is

Wvib ∼ κ2Ry ∼ 1000 cm−1, (2.12)

with the velocity of the vibrational motion on the order of Vv ∼ κ3αc ∼ 3 km/s. The order
of magnitude of rotational energy is

Wrot ∼
1
2

MV2
r ∼ κ4Ry ∼ 10 cm−1, (2.13)

for a low rotational quantum number with the velocity of the rotation motion on the order
of V2

r ∼ κ4αc ∼ 300 m/s.

2.1.4 Fine and hyperfine structure

The fine structure results from the interaction of electron spin magnetic moments with the
other magnetic moments in the molecule, such as electron spin–orbit interaction Hsl, electron
spin-electron spin interaction Hss′ , and electron spin-nuclear rotation interaction HJs. The
energies of electron spin–orbit interaction and electron spin-electron spin interaction are
both on the order of

Ws·l ∼Ws·s′ ∼ α2Ry ∼ 10 cm−1, (2.14)

and the energy of electron spin-nuclear rotation interaction is on the order of

WJ·s ∼ κ4α2Ry ∼ 10−3 cm−1 ∼ 30 MHz. (2.15)

The hyperfine fine structure arises from interactions of the magnetic and electric moments
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2.2 Electronic structure calculations

of the nuclei with the other electric and magnetic moments in the molecule. Since the parity
of 2k multipole moments go as (−1)k for electric moments and (−1)k−1for magnetic moments,
there are only even electric multipole moments and odd magnetic multipole moments [79].
For hyperfine structure, we only consider the interaction energy of nuclear magnetic dipole
moments Hns, and interaction energy of nuclear electric quadrupole moments with electric
field gradients Hquad, after neglecting the high order interactions like magnetic octupole
moment. Hns includes 4 terms which are nuclear spin-electron spin interaction HIs, nuclear
spin-electron orbit interaction HIl, nuclear spin-nuclear spin interaction HI I , and nuclear
spin-nuclear rotation interaction HI J. The energies of nuclear spin-electron spin interaction
and nuclear spin-electron orbit interaction are both on the order of

WI·s ∼WI·l ∼ κ4α2Ry ∼ 10−3 cm−1 ∼ 30 MHz, (2.16)

and the energies of nuclear spin-nuclear spin interaction and nuclear spin-nuclear rotation
interaction are both on the order of

WI·I ∼WI·J ∼ κ8α2Ry ∼ 10−7 cm−1 ∼ 3 kHz. (2.17)

In addition, the superfine and superhyperfine structures will be mentioned when the
molecules are populated to rotational cluster states, especially for XY6-type molecules [80,
81].

2.2 Electronic structure calculations

The electronic structure calculations are based on the concept of mean-field theory, where
the electronic states are represented by a set of occupied molecular orbits (MOs). Many
methods have been developed to determine the electronic structure by approximately solving
the electronic Schrödinger equation, such as configuration interaction (CI), coupled-cluster
(CC) theory, density functional theory (DFT) [82], and Möller-Plesset (MP) perturbation
theory [83]. CC method was applied in our calculation, and only CI and CC are discussed
in the following sections.

2.2.1 Hartree-Fock approximation

The Hartree-Fock (HF) approximation [84, 85], also called the self-consistent-field method,
considers finding the optimized set of spin-orbitals with the lowest energy. This is realized
by solving the HF equations with an iterative procedure based on the variational principle

EHF =
⟨ψHF|Helec|ψHF⟩
⟨ψHF|ψHF⟩

⩾ Eexact, (2.18)

where ψHF is the electronic wave function defined by the n-electron Slater determinant, see
(3.28) in [75]. The HF energy EHF provides an upper bound to the exact electronic ground
energy with the corresponding HF wave function that forms the basis of many post-HF
methods. The energy difference between the HF energy and the exact electronic energy
is called the electron correlation energy. Many methods focus on recovering the electron
correlation effects, and some of them will be discussed in the following sections.

2.2.2 Configuration interaction

The CI is the most straightforward post-HF method. The CI wave function is given by a
linear combination of Slater determinants (or configurations), describing the “excitations”

13
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from the HF “reference” determinant [70]. If all possible configurations are constructed, we
get the full configuration interaction (FCI). FCI is usually not possible due to factorially
increasing the configurations, but for very small molecules. Instead, CI expansion must be
truncated at some level of excitation, with single electron excitations called CIS and double
excitations called CISD. These truncations limit the accuracy of the calculations and cause
the size extensive problem. Modifications to CI have been developed to deal with the lack
of size extensivity, but simply CC methods are preferred [86].

2.2.3 Coupled-cluster theory

CC is commonly used as a preferred post-HF method for electric structure calculation,
see [70, 87] for a detailed review. CC constructs multi-electron wave functions using the
exponential cluster operator based on the HF method to account for electron correlation

ψCC = eTψHF, (2.19)

where the cluster operator T = ∑
µ

tµτµ is a linear combination of excitation operators τµ

multiplied by corresponding associated cluster amplitude tµ. The CC theory provides an
exact solution to the electronic Schrödinger equation in a given one-electron basis set by
including all the possible excitations in the cluster operator which is equivalent to FCI
on the same basis. Similar to CI, the cluster operator is truncated due to the expensive
calculation. By introducing the notation

T = T1 + T2 + T3 + ..., (2.20)

we produce the different levels of CC theory: CC singles theory (CCS), CC singles-and-
doubles theory (CCSD), CC singles-doubles-triples theory (CCSDT), and the additional
letters referring to higher excitations. It is usually computational infeasible if we go beyond
CCSD. A successful approximation to treat the triples contribution is CCSD(T), which
includes a triples contribution calculated by 4th and 5th order MP perturbation theory
connecting with the CCSD amplitudes [88–90].

Explicitly correlated F12 methods provide an efficient and high-accuracy way for electronic
structure by introducing an explicit dependence of the interelectronic distance R12 into the
wave function and have been applied to CI, MP perturbation theory, and CCSD [91, 92].
Currently, most quantum chemistry software packages applied the CCSD(T)-F12 method
because of the simplicity and effectiveness [93].

2.2.4 One-electron basis sets

The one-electron spin-orbitals, also known as atomic orbitals, are the fundamental bricks
for building the molecular wave function, and much progress has been made in developing
them as basis sets. Each basis set is designed for modeling a specific physical property
at the complete basis set (CBS) limit, and there is not an optimum basis set that can
employ in all scenarios. There are two types of commonly used basis functions in quantum
chemistry, which are Slater-type orbitals [94] and Gaussian-type orbitals (GTOs) [95]. In
practical calculations, GTOs are preferred due to the efficient computation in integrals.
GTOs in Cartesian coordinates are given by

Gζ,lx ,ly,lz(x,y,z) = Nxlx yly zlz e−ζr2
, (2.21)
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2.3 Theoretical ROVibrational Energies (TROVE)

where lx + ly + lz determines the type of orbital, ζ defines the radial extent of the function,
N is a normalization constant. A single Gaussian function is known as a primitive and
linear combinations or contractions of primitives are taken to form MO functions

χk = ∑
lx ,ly,lz

dk
lx ,ly,lz Gζ,lx ,ly,lz (2.22)

with the contraction coefficients dk
lx ,ly,lz . Contraction gives a more compact basis set and

two different approaches are performed, which are general contraction [96] and segmented
contraction [97].

There are a lot of Gaussian basis sets assembled with slightly different principles [98].
We only mention the correlation-consistent basis sets and their corresponding explicitly
correlated F12 basis sets. Firstly proposed by Dunning [99], the correlation-consistent
polarized valence basis sets are denoted by cc-pVXZ where basis set size increases with
X = D, T, Q, 5, 6, 7. The cc-pVXZ basis sets provide a systematic route towards the
CBS limit for correlated methods. Generally speaking, at each step up in X, functions
of different angular momentum are added in a structured manner to recover more of the
correlation energy. Some widely employed basis sets are core-valence cc-pCVXZ, weighted
core-valence cc-pwCVXZ, and augmented correlation-consistent, aug-cc-pVXZ [99–101].
For the recent advancements in explicitly correlated (F12/R12) methods [102–104], some
cc-F12/R12 optimized basis sets have been developed [105–107].

2.2.5 Additional higher-level corrections

Due to the limitations of electronic structure methods, a pure ab initio PES is challenging for
high-accuracy rovibrational energy level calculations. To achieve high accuracy, people must
consider the higher-level electron correlation beyond CC method for generating the PES
with a one-electron basis set near the CBS limit [108]. Core valence electron correlation [71],
higher-order electron correlation [109, 110], scalar relativistic effects [111] and the Born-
Huang approximation [112] are considered to be the leading high-level contributions. Despite
the expensive computation, these considerations can significantly improve the accuracy of
the calculated rotation-vibration energy levels.

2.3 Theoretical ROVibrational Energies (TROVE)

With the PES from ab initio electronic structure calculation, we can now move on to solving
the rotation-vibration Schrödinger equation. Variational methods provide a complete
treatment of the nuclear motion problem, and can achieve exceptional accuracy. Besides,
pure vibrational methods have been developed with the progress in electronic structure
theory, including the vibrational self-consistent field method, vibrational CI, and vibrational
CC theory [113, 114]. TROVE [72, 73] is a variational nuclear motion program and “black
box” for calculating the rovibrational spectra for a polyatomic molecule of the arbitrary
structure consisting of the rotation-vibration energy levels and corresponding transition
intensities. The generality of TROVE has applied to many molecular systems comprising
up to five atoms [115–122].

2.3.1 Kinetic energy operator

By diagonalizing the rovibrational Hamiltonian constructed in terms of a symmetry-
adapted basis set, we get the solution of the rotation-vibration Schrödinger equation given
by (2.6) in TROVE. The rovibrational Hamiltonian is described in the product form as
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2 Fundamental concepts

a truncated power series expansion around the equilibrium geometry or some non-rigid
flexible configurations. The expansion is usually in terms of internal coordinates defined by
users.

The molecular kinetic energy operator (KEO) with M vibrational modes can be expressed
by

TN =
1
2

M+3

∑
λ,µ=1

Π†
λ(ξ)Gλµ(ξ)Πµ + U(ξ), (2.23)

where ξ = (ξ1,ξ2, ...ξM) is the vibrational coordinate, and Π = (p1, p2, ..., pM, Jx, Jy, Jz) is the
generalized momenta with pn = −ih̄∂/∂ξn and the components of total angular moment
Jx, Jy, Jz. The kinetic energy matrix Gλµ(ξ) and the pseudopotential U(ξ) are constructed
in a recursive numerical procedure. Together with PES, they are represented as series
expansions in terms of functions of the generalized coordinates with truncation order defined
by the user.

2.3.2 Vibrational coordinates

To compute the kinetic energy operator in (2.23), it is necessary to define a molecule-
fixed axis system by satisfying the Eckart conditions [123]. The Eckart frame minimizes
rovibrational coupling by the maximum separation between vibrational and rotational
motion, consequently accelerating basis set convergence when computing rovibrational
energy levels. Two types of vibrational coordinates are usually employed in practical
calculations. The first is linearized coordinates [72]. They are in terms of Cartesian
displacements of the nuclei from their equilibrium positions in the molecule-fixed axis
system. The second is curvilinear internal coordinates [115] implemented in TROVE
recently, which improve basis set convergence of rovibrational calculations.

2.3.3 Rovibrational basis set

After the numerical construction of the rovibrational Hamiltonian, people must choose a
suitable rovibrational basis set to solve the nuclear Schrödinger equation with a variational
approach. In TROVE, the vibrational basis set is constructed as products of one-dimensional
primitive functions

|v⟩ = ∏
v
|vv⟩ = ϕv1(ξ1)ϕv2(ξ2)...ϕvM(ξM), (2.24)

where each ϕvM(ξM) depends on one internal coordinate. Functions of stretching, bending
and inversion coordinates are usually chosen. For the stretching and inversion functions,
the Numerov-Cooley method is applied to solve the 1D Schrodinger equation [124, 125].
For the bending functions, the harmonic oscillator approach is performed.

The rotational basis set |J,K,m,±⟩ in TROVE is built from the rigid-rotor functions, see
(73) and (74) in [72]. The final rovibrational basis set is then given by

|v, J,K,m,±⟩ = ∏
v
|vv⟩ × |J,K,m,±⟩. (2.25)

Symmetry plays an important role in computing the rovibrational spectra of polyatomic
molecules. Using a symmetry-adapted basis set can reduce the Hamiltonian matrix to be
block diagonal. Each block corresponds to an irreducible representation of the molecular
symmetry group [74]. This is helpful when handling the large matrices associated with the
variational calculations since each block can be diagonalized separately. The calculated
energy levels are labeled with symmetry, which is useful for computing spectra by imposing
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2.4 Simulation of absorption spectra

additional selection rules. The approach to realizing the symmetry-adapted basis set is
detailed in [73].

2.3.4 Potential energy surface refinement

The PES is the foundation of nuclear motion calculations. For larger polyatomic molecules,
the electronic structure calculation is much more expensive. To realize the “spectroscopic”
accuracy in rovibrational calculation compared with experiments, it is common for adjusting
the analytic representation of the PES based on the experimental data. The procedure
for empirical refinement was reported in [126] by applying an efficient least-squares fitting.
The principle is to treat the effect of refinement as a perturbation ∆V to ab initio PES
VPES in terms of

∆V = ∑
ijk...

∆ fijk{ξ i
1ξ

j
2ξk

3...}A, (2.26)

where ∆ fijk is the corrections to the original PES expansion parameters fijk, and the
expansion terms {ξ i

1ξ
j
2ξk

3...}A are symmetrized combinations of vibrational coordinates ξ.
The new perturbed Hamiltonian is given by

Hrv = TN + VPES + ∆V, (2.27)

and then diagonalized with a basis set of eigenfunctions from the unperturbed Hamiltonian.
Each iteration implements the previous “unperturbed” basis set in this way until a desirable
quality PES is reached.

2.4 Simulation of absorption spectra

2.4.1 Line intensities and selection rules

Electromagnetic waves can induce oscillating electric or magnetic moments in molecules,
resulting in the absorption of photons with specific frequencies satisfied by certain resonance
conditions. The amplitude of each moment is the transition moment between an initial
state i and a final state f , which is related to the line strength in the following form

S( f ← i) = gns ∑
mi ,m f

∑
A=X,Y,Z

∣∣∣⟨ϕ( f )
rv |µA|ϕ(i)

rv ⟩
∣∣∣2 , (2.28)

where gns is the nuclear spin statistical weight, µA is the electronically averaged DMS in the
space-fix axis system. With the line strength, we can determine two important parameters
in the cgs unit for rovibrational spectroscopy which are Einstein A coefficient

A f i =
64π4ν3

i f

3hg f
S( f ← i), (2.29)

and spectral line intensity

I( f ← i) =
8π3NAνi f e−Ei/kBT

(
1− e−hcνi f /kBT

)
3hcZ(T)

S( f ← i), (2.30)

where νi f = |Ei − E f | is the transition wavenumber with Ei and E f as energy term values of
initial and final states, Z(t) is the partition function.
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In order for the line strength in (2.28) not to vanish, the molecular symmetry of the
rovibrational wave functions must satisfy [74]

Γ(ϕ∗rv,j′)⊗ Γ(ϕrv,j) ⊃ Γ(µA). (2.31)

For vibrational transitions between vibrational states ϕvib,v′ and ϕvib,v′′ in an electronic
state, the selection rule is

Γ(ϕ∗vib,v′)⊗ Γ(ϕvib,v) ⊃ Γ(Tα). (2.32)

where Γ(Tα) is the symmetry species of α component of the translational normal coordinate.
For the rotational transitions, the selection rules are

∆J = 0,±1,
∆K = 0,±1.

(2.33)

2.4.2 Line profiles and absorption cross-sections

The spectra lines have characteristic widths and shapes. Doppler effect and the finite
lifetime of states are the two main important causes of line broadening. The molecules in
the gas phase are not at rest and have a distribution of speeds. For a molecule with a speed
of v moving to the direction of propagation of radiation with frequency ν f i, there will be a
shift by ν f i · (v/c) due to the Doppler effect. The cumulative effects of molecules moving
with different velocities result in the inhomogeneous broadening of the spectral lines. This
is well represented by a Gaussian profile,

fG(ν) =

√
ln2

πα2
D

exp

(
−

ln2(ν− νij)

α2
D

)
(2.34)

with the half-width at half-maximum (HWHM)

αD =
νij

c

√
2NAkTln2

M
. (2.35)

Molecular energy levels have a finite natural radiative lifetime, which results in intrinsic
or natural linewidth. Collisions between molecules reduce the lifetime of an excited state,
and the linewidth will increase by raising the pressure. This mechanism is called collisional
or pressure broadening, and it is represented by a homogeneous Lorentz profile,

fL(ν) =
1
π

γ(p, T)
γ(p, T)2 + [ν− (νji + δ(pre f )p)]2

, (2.36)

with the pressure induced line shift δ(pre f ) and the HWHM

γ(p, T) =

(
Tre f

T

)nair (
γair(pre f , Tre f )(p− psel f ) + γsel f (pre f , Tre f )psel f

)
. (2.37)

The most used approximation to the line shape is the Voigt profile, which is a convolution
of a Gaussian and Lorentz profile. Although it can simulate both thermal and collisional
effects, it cannot provide an accurate representation of the spectral line shapes [127]. Two
more effects should be considered in the line profile, velocity change due to collisions
reducing the Doppler linewidth and the speed-dependent influence on the relaxation rates.
Hartmann-Tran profile with seven parameters is a more reliable reference line profile, and
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2.4 Simulation of absorption spectra

is highly recommended [128].
For a single line f ← i, the spectral line intensity I f i is related to the corresponding

integration of absorption cross-section σf i(ν):

I f i =
∫ +∞

−∞
σf i(ν)dν. (2.38)

By introducing the normalized line profiles fν f i(ν) which is aforementioned, the absorption
cross-section can be defined as

σf i = I f i fν f i(ν). (2.39)

The absorption cross-sections are related to the experimental measured quantities trans-
mittance T and absorbance A by the Beer-Lambert law:

T =
Itr

Iin
= e−∑N

k=1 nk Lσk (2.40)

A = −log10T (2.41)

where Itr and Iin are the input and output radiation fluxes respectively, N is the number of
absorbing species, L is the optical path length, nk is the number density of absorbers of
species k, and σk is the corresponding absorption cross-section. Finally, we can generate the
synthetic spectra based on the theoretical linelist, and compare with experimental spectra
databases such as HITRAN [129], CDMS [130], JPL [131], PNNL [132], and GEISA [133].
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3 Experimental setup

“One shall stand, one shall fall.”
— Optimus Prime

The chapter serves as an overview and supplement of the experimental setup reported
in chapter 5. The experimental setup was used for measuring the absorption spectrum of
ammonia in collaboration with Ingmar Hartl’s group. The schematic diagram is shown
in Figure 3.1.
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Figure 3.1. Schematic of the experimental setup. It mainly consists four parts: Yb:fiber
frequency comb (Yb:fiber FC), DFG based mid-infrared frequency comb (MIR DFG FC),
gas circuit, and Fourier transform spectrometer. The following abbreviations are used in
these four parts. Yb:fiber FC: SA, saturable absorber; PZT, piezoelectric ceramic transducer;
QW, quarter-wave plate; POL, polarizer; YDF, Yb doped fiber; FBG, fiber Bragg grating;
TEC: thermoelectric cooler; WDM, wavelength division multiplexer; ISO, optical isolator;
DC-YDF: double-cladding YDF; BS, beam splitter; RF, radio frequency; PLL, phase-locked
loop; PD, photodiode. MIR DFG FC: HW, half-wave plate; PBS, polarization beam
splitting cube; DS, delay stage; DC, dichroic mirror; PPLN, periodically poled Lithium
Niobate; Ge, Germanium filter; HNLF, highly-nonlinear suspended-core fiber; SG, signal
generator, PID, proportional–integral–derivative controller; Lock-in, lock-in amplifier; DLA,
demodulating logarithm amplifier. Gas circuit: PG, pressure gauge; N2, nitrogen bottle;
NH3, ammonia bottle. Fourier transform spectrometer: InSb, indium antimonide detector;
TIA, transimpedance amplifier.



3 Experimental setup

3.1 Frequency comb based on mode-lock laser

Optical frequency combs (FCs) are laser sources whose spectra involve a series (∼ 105) of
discrete, equally spaced frequency lines. Figure 3.2 a illustrated the generation of a FC.
The optical waves are phase synchronized due to phase coherence between the modes of
cavity, and produce a optical pulse circulating inside the cavity [134]. The comb frequencies
are given by

fn = n fr + fo, (3.1)

here fr is the repetition rate, fo is an frequency offset originates from the carrier-to-envelop
offset phase, both fr and fo are in the range of 0.1 to 10 GHz corresponding to n = 104...106

for fn being near-infrared range. The FC can operate as an optical clockwork to connect
microwave to optical, optical to microwave, and optical to optical as shown in Figure 3.2 b.

Figure 3.2. The frequency comb to link ratio frequency to optical frequency acting as an
optical clockwork, reprinted from [135].

FCs were developed initially to measure and count the optical frequencies in terms of the
hyperfine transition frequency of Cs from SI defining constants, which are important in
precision spectroscopy, frequency metrology, and clocks [136, 137]. Three main methods
can be employed to generate the optical FC: mode-lock laser FCs [138–143], electro-optic
FCs [144–147], and microresonator FCs [148–154]. With the developments of optical FCs
in the last 20 years, diverse applications have been found, and interlaced technologies have
been utilized [135]. Nonlinear optical processes have already extended the range of FCs
across from terahertz (THz) [155, 156] and mid-infrared (MIR) domains [157, 158], and up
to ultraviolet (XUV) [140–143]. Nanoscale waveguide technology has provided a procedure
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3.2 Mid-infrared comb from difference frequency generation

to build FCs at wafer scale [148, 153], which is capable of advanced photonic integrated
circuits.

In our experiment, we utilized the mode lock laser FC based on the Ytterbium (Yb)
doped fiber for MIR FC generation. The system consists of two parts: oscillator and
amplifiers as illustrated in the Yb:fiber FC block of Figure 3.1. The oscillator was based on
a Fabry-Pérot (FP) cavity, with a semiconductor saturable absorber mirror (SA) attached to
PZT1 at one end and a fiber Bragg grating (FBG) for dispersion compensation at the other
end [159]. The mode-locking was initialized and stabilized by the SA and the nonlinear
polarization rotation (NPR) through adjusting the quarter waveplate and polarizer. The
oscillator generated around 100 mW optical pulse at 1050 nm with a repetition rate of
150 MHz and pulse duration of 60 fs. Three parts were separated and amplified from the
output of the oscillator for the optical beat (amp. 1 in Figure 3.1), the self-referencing
(amp. 2 in Figure 3.1), and the difference frequency generation (amp. 3 in Figure 3.1).
The amp. 1 was based on core-pump gain fiber, the amp. 2 and amp. 3 were based on
the double-cladding pumped gain fibers, which generate an optical pulse with 130 fs pulse
duration and 1.5 W output power by chirped pulse amplification [160].

3.1.1 Stabilization of the frequency comb

The FC structure in the frequency domain has two degrees of freedom controlled by the
repetition rate fr, and the carrier-to-envelop offset frequency fo. The stabilization of the FC
was realized by locking fr and fo separately with phase-locked loops (PLLs) [161]. Optical
heterodyne detection was applied to lock one of the comb modes to a stable continuous
wave (CW) reference laser (Coherent Mephisto) by detecting the beat note signal fbeat
whose phase was compared with RF2. The fast feedback and slow feedback from PLL2 were
accomplished respectively by PZT2 and PZT3, since both of them controlled the length of
the FP cavity, and hence the fr of the laser. A f − 2 f interferometer [162] was performed
to lock the fo by detecting the fo beat note whose phase was compared with RF3. The fast
feedback and slow feedback from PLL3 were accomplished by adjusting the current of the
pump diode and the temperature of the FBG, respectively. With both fbeat and fo locked,
the whole FC structure was fixed.

Considering that the frequency change of the CW reference laser was transferred to
the change of repetition rate because of the stabilized fbeat, the repetition rate signal
from the heterodyne detection was filtered out and utilized in the stabilization of the CW
reference laser to control the FC structure. PLL1 was performed to generate the error
signals between the fr signal and RF1. The temperature controller and the PZT1 of the
reference laser provided slow and fast feedback. The long-term stabilization of the radio
frequency generators was performed via a GPS-locked rubidium clock, which provides the
10 MHz references for RF1, RF2 and RF3.

3.2 Mid-infrared comb from difference frequency generation

Coherent MIR light sources offer the possibility to determine molecular fingerprints, which
are important in breath analysis, atmospheric measurements, astrochemistry, and astro-
physics. Nonlinear frequency conversion provides a powerful tool to generate a laser source
which the spectral range is not covered by laser gain media. Several techniques offer ways to
transfer the established laser technologies to MIR. Among them, the optical parametric os-
cillator (OPO) [158, 163, 164], optical parametric amplification (OPA) [165], and difference
frequency generation (DFG) [166–168] are widely applied.
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We performed the DFG in our experiment since the carrier-to-envelop offset was zero [168]
as schematically shown in the MIR DFG FC block of Figure 3.1. The output of amp. 3
for MIR FC generation was separated into two parts, which served as the pump pulse and
generate the signal pulse for the DFG process, respectively. The signal pulse was realized
by selecting the longest wavelength Raman soliton in a highly-nonlinear suspended-core
fiber (HNLF) [169]. The core of HNLF was around 2 µm in diameter and surrounded by
six air holes. The spectrum of the signal pulse can be tuned from 1.2 µm to 1.6 µm by
controlling the coupled power. The pump and signal pulse were combined with a dichroic
mirror and overlapped with waist diameters of 180 µm and 116 µm in a fan-out periodically
poled lithium niobate (PPLN) crystal (HCPhotonics) for generating the MIR FC. The
center wavelength of MIR frequency can be adjusted by alternating the power to the
highly nonlinear fiber, changing the lateral position of the PPLN crystal, and tuning the
pump–signal temporal overlap. The output MIR spectra ranging from 3 µm to 5.5 µm was
realized in our experiment [170].

3.2.1 Intensity noise of the mid-infrared comb

For absorption spectroscopy with MIR FC, the long-term stability of the DFG process and
the high signal-to-noise ratio (SNR) of the spectra are important. The relative intensity
noise (RIN) of MIR FC were connected strongly with the pump-signal temporal overlap
in the nonlinear crystal [170]. To realize long-term stability and low RIN, we applied a
dither-lock scheme by modulating the PZT in the delay stage with 200 nm of total path
length at 200 Hz. The detection of the MIR RIN power was performed by amplifying the
interference signal from the Fourier transform spectrometer (FTS) with a demodulating
logarithmic amplifier (DLA) [171]. In order to detect MIR power, MIR RIN, and the FTS
signal at the same time, different band-pass filters were applied for MIR power measurement
with spectral ranges from DC to 10 Hz, RIN measurement with 1 kHz to 30 kHz, and the
FTS output signal with 100 kHz to 500 kHz.

3.3 Experimental gas circuit

The experimental gas circuit is shown in Figure 3.1. A pump station (HiCube 80 Eco) was
used to remove air from the gas circuit and tuned the pressure of the gas sample in the
gas cell. The pressure measurement of the sample was achieved by two calibrated ceramic
capacitance gauges covering different pressure ranges: Pfeiffer CMR 361 from 0.1 mbar
to 1000 mbar, and Pfeiffer CMR 364 from 10−4 mbar to 1.1 mbar. Nitrogen was used to
get rid of the contamination with laboratory air by pumping the nitrogen three times to
vacuum. The ammonia sample (Linde HiQ 6.0) was loaded to the gas cell after removing
the contamination. The gas cell had two view ports with wedge CaF2 windows, which
allowed the transmission from visible to MIR and avoid the etalon effect.

3.3.1 Optical path length measurement

To retrieve the line intensities for different transitions, the optical path length through
the gas sample was measured by using low-coherence interferometry [172]. The principle
was to measure the interference signal between the reflected light from the two gas cell
windows and a reference pulse as shown in Figure 3.3. The residual 1050 nm laser from
DFG process served as the input signal and the gas cell was pumped to vacuum with
pressure less than 4× 10−4 mbar. Two fiber couplers with a 50% splitting ratio were used
for balanced detection, and the second coupler acted as the beam splitter of a Michelson
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3.4 Fourier transform spectrometer based on the mid-infrared frequency comb
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Figure 3.3. Experimental setup for lower coherence interferometer. The following abbrevia-
tions are used: FC, fiber collimator; BD, balanced detector; DLA, demodulating logarithmic
amplifier.

interferometer. The reference arm of the interferometer was reflected by the retro-reflector
in a 1 m translational stage. The interference signal was detected with an InGaAs balanced
detector (Thorlabs PDB450C) and a DLA. Four reflections are detected and a parabola fit
was used to calculate the interference signal. After measuring the optical path differences
(OPDs) between the two inside surfaces of the windows 20 times, the optical path length
was finally determined with the mean value of 35.4646 mm and the standard deviation of
0.0012 mm.

3.4 Fourier transform spectrometer based on the mid-infrared
frequency comb

FTS is based on a Michelson interferometer, and the nominal resolution of the FTS is
inversely proportional to the maximum OPD. FTS with incoherent broadband sources
such as lamps, LED, and Globars, was developed in the 1950s and has been applied in
many aspects of research [173–175]. Due to the low spatial coherence and brightness,
incoherent light sources have limitations at high resolutions, long optical paths, and high
sensitivity [176]. Long OPD is necessary to achieve high resolution, and high-resolution
FTSs, especially the nine-chamber Bruker IFS 125HR system with maximum OPD around
9.8 m, are common to find in synchrotron light sources [177]. For more details about FTS,
I recommend the textbook [176].

FCs provide advantages for FTS with high resolution, high sensitivity, and high SNR
over a broadband range owing to the high spectral brightness, and spatial and temporal
coherence [158, 163, 164, 178–181]. According to the Nyquist-Shannon sampling theorem,
the sampling frequency of the FTS should be two times higher than the FC mode spacing.
The maximum OPD should be 2c/ frep =4 m to observe 3 fringes with the nominal resolution
of 75 MHz. In order to realize 4 m OPD, we performed retro-reflectors to move both arms of
the interferometer on a 1 m long translational stage as illustrated in Figure 3.1. The Michel-
son interferometer started from the beam splitter (BS). The transmitted arm and reflected
arm are illustrated with dark pink and light pink arrows, respectively. The retroreflectors
were moved with the OPD-changed speed of 500 mm/s for spectra measurements. The
beams from both arms went through two liquid-nitrogen-cooled indium antimonide (InSb)
detector (InfraRed Associates IRA 20-00060) for balanced detection. Balanced detection is
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3 Experimental setup

a well-established technique that can efficiently suppress noise [182, 183]. The principle
of balanced detection is subtracting the currents before amplification, which suppresses
the in-phase components of the signal. The transimpedance amplifier (TIA) was used for
amplifying the interference signal with a gain to be approximately 70 dB to 100 dB. Since
the intense central fringe saturated the detection system, the gain of TIA was reduced
by a factor of 5. The interference signals were digitized by a computer-controlled data
acquisition board (National Instruments PCI-5922) with the 24 bits resolution at a low
sampling rate of 500 kSa/s, and the 16 bits resolution at a higher rate of 15 MSa/s.

3.4.1 Calibration absolute frequency with reference laser

i+1i

V
ol
ta
ge

Time

h(i)

m(i)

h(i+1)

m(i+1)

Figure 3.4. Resampling MIR interfeorogram with zeor-crossings from the HeNe laser
interferogram.

The correct calculation of the frequency information needs the interferogram to be
sampled at equidistant steps. A frequency stabilized helium-neon (HeNe) laser (SIOS SL4)
was used as a reference for calibrating the OPD with a wavelength of 632.9909178 nm
and a corresponding frequency 473612436.6MHz. The absolute frequency stability is 1
MHz over one hour. The HeNe laser was aligned with MIR FC before the gas cell. This
monochromatic HeNe laser produced a sinusoidal interferogram serving as an equidistant
grid for resampling the MIR at equal OPD intervals by determining the positions of the
zero-crossings. The simplified resampling procedure is shown in Figure 3.4. The indices of
data points before and after the first zero-crossing are denoted by i and i+1. The intensities
of the interferogram with the corresponding indices are h(i) and h(i+1), m(i) and m(i+1)
for HeNe laser and MIR FC, respectively. The equation to calculate the interpolated points
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3.4 Fourier transform spectrometer based on the mid-infrared frequency comb

at the fixed OPD step corresponding to half of the HeNe laser wavelength is given by

res = m(i)− h(i)
h(i)− h(i + 1)

(
m(i)−m(i + 1)

)
. (3.2)

The number of point to realize the resolution of fr is given by

N0 =
2c

λre f frep
=

2c
λvac frep

nHeNe

nmir
≈ 6300552, (3.3)

here nHeNe and nmir are the calculated refractive indices of air for HeNe laser and MIR
FC based on the equations in [184]. Due to the discrete sampling of the interferogram, it
is necessary to round N0 to the closest integer which is 6300552. To match the FTS grid
exactly with the repetition rate, zero-padding the interferogram and adding a frequency shift
on the FTS grid were applied to reach sub-nominal resolution [185, 186]. The zero-padding
approach was performed in the interferogram length by changing the number of points on
the interferogram. For the frequency shift approach, a multiplication was performed on the
interferogram with fixed points.
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Figure 3.5. Absorption spectra of ammonia with the MIR source at 98.90 mbar and 296
K. The upper panel shows the MIR spectrum with several tiny absorption dips. After
subtracting the spectra without gas sample, the transmittance is shown in the lower panel.

After performing the fast Fourier transform, we finally got the MIR spectra with absorp-
tion features for ammonia as shown in the upper panel of Figure 3.5. The spectra were
recorded at 98.90 mbar and 296 K. By subtracting the MIR spectra without ammonia,
we got the transmittance spectra of ammonia as shown in the lower panel of Figure 3.5.
The SNR of the spectra was low due to the relatively high noise level and short absorption
length. The numerical method to remove the regular signal on the noise level and the
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fitting procedure to retrieve the spectra parameters are described in chapter 5.
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4 The nuclear-spin-forbidden rovibrational
transitions of water from first principles∗

“If there is magic on this planet, it is contained in water.”
— Loren Eiseley

4.1 Introduction

Water is the third most abundant molecule in the universe. It is also quite unique in
that it possesses a wide range of anomalous properties, some of which may be a result of
nuclear spin symmetry breaking. It has two nuclear spin isomers, ortho, with a total nuclear
spin of hydrogen atoms I = 1, and para, with a total nuclear spin of hydrogens I = 0. In
isolated-molecule conditions the ortho and para nuclear spin isomers show tremendously
long-lasting stability to inter-conversion [38, 187], can be spatially separated [60, 61], and
exhibit distinct physical and chemical properties [34, 62]. Thus the nuclear spin isomers of
water are frequently treated as distinct molecular species.

The concept of stable nuclear spin isomers is appealing to astrophysicists, as it allows
to deduce temperatures, below 50 K, in cometary comae, star- and planet-forming re-
gions from the observations of relative abundance of ortho and para species [26, 28–31].
Some astronomical observations however reported anomalous ortho-para ratios (OPR),
corresponding to spin temperatures that are much lower than gas kinetic temperatures in
the same region [188–191]. These observations pose the intriguing question if the OPR
values could be altered as a result of internal ortho-para conversion, which can possibly
be enhanced by natural factors, such as molecular collisions [35, 36, 45], interaction with
catalytic surfaces [192], external fields [40] and radiation [37]. Low nuclear-spin tempera-
tures have been attributed to the photodesorption of water from colder icy grains [193].
However, this theory was benchmarked and disputed in a number of recent laboratory
experiments [19, 49, 194, 195]. Arguably there could be another yet unknown mechanism
of spin-non-destructive desorption of water molecules from ice.

The OPR values can change as a result of the interaction between the nuclear spins and
an induced internal magnetic field of the rotating molecule, which is called the nuclear
spin-rotation interaction. For the main water isotopologue H16

2 O, considered here, the 16O
has zero nuclear spin, and the hyperfine coupling between the spins of the protons is very
weak, providing a fundamental rationale for neglecting the ortho-para conversion in practical
applications. However, it can be significantly enhanced by accidental resonances between
the ortho and parastates, which are present in vibrationally excited bands of isolated
water. Their coupling can be amplified by external effects such as molecular collisions
and interactions with strong external fields and field gradients. The accurate modeling of
these processes may unravel previously unknown mechanisms contributing to the observed
anomalous OPR of water in space. Precise knowledge of the molecular hyperfine states and
corresponding transitions is mandatory for the understanding of such conversion mechanisms.
This information can also be important for cold-molecule precision spectroscopy relying on
controlled hyperfine transitions and hyperfine-state changing collisions [196].

Here, we report a complete linelist of rovibrational hyperfine transitions in H2
16O at room-

∗This chapter is based on the publication: “The nuclear-spin forbidden rovibrational transitions of water
from first principles” by Andrey Yachmenev, Guang Yang, Emil Zak, Sergei Yurchenko, and Jochen Küpper,
J. Chem. Phys. 156, 204307 (2022), arXiv:2203.07945 [physics]. I contributed to the theory derivation
checking, computation of the linelist, preparation of figures, and writing the results and discussion part of
the manuscript.



4 The nuclear-spin-forbidden rovibrational transitions of water from first principles

temperature that we computed using an accurate variational approach [72, 73, 115, 197]
with an empirically refined potential energy surface (PES) [198] and a high-level ab initio
spin-rotation tensor surface. The spin-spin coupling was modelled as the magnetic dipole-
dipole interaction between the two hydrogen nuclei. We show that the strongest forbidden
ortho-para transitions are on the order of 10−31 cm/molecule, which is about ten times
stronger than previously reported calculations for the same lines [187]. We also present the
details of our variational approach for computing hyperfine effects, which is general and
not restricted by the numbers and specific magnitudes of the molecules’ nuclear spins.

4.2 Theoretical details

4.2.1 Spin-rotation and spin-spin coupling

In this section we describe the implementation of the nuclear spin-rotation and spin-spin
coupling terms within the general variational framework of the nuclear motion approach
TROVE [72, 73, 115, 197]. Implementation details of the hyperfine nuclear quadrupole
coupling can be found in our previous works [199, 200].

The spin-rotation coupling is the interaction between the rotational angular momentum
J of the molecule and the nuclear spins In of different nuclei [201]

Hsr =
NI

∑
n

In ·Mn · J, (4.1)

where Mn is the second-rank spin-rotation tensor relative to the nucleus n and the sum
runs over all nuclei NI with non-zero spin. The interaction between the nuclear spins In of
different nuclei is given by the spin-spin coupling as

Hss =
NI

∑
n>n′

In ·Dn,n′ · In′ , (4.2)

where Dn,n′ is the second-rank spin-spin tensor, which is traceless and symmetric. Using
the spherical-tensor representation [79], the spin-rotation and spin-spin Hamiltonians can
be expressed as

Hsr =
1
2

NI

∑
n

2

∑
ω=0

√
2ω + 1

(
− 1√

3

)
I(1)n

·
(
(−1)ω

[
M(ω)

n ⊗ J(1)
](1)

+
[
J(1) ⊗M(ω)

n

](1)) (4.3)

and

Hss =
NI

∑
n>n′

D(2)
n,n′ ·

[
I(1)n ⊗ I(1)n′

](2)
, (4.4)

where M(ω)
n , D(2)

n,n′ , J(1), and I(1)n denote the spherical-tensor representations of operators
in (4.1) and (4.2) and the square brackets are used to indicate the tensor product of two
spherical-tensor operators. Because the spin-rotation tensor is generally not symmetric, the
second term in the sum (4.3) is added to ensure that the Hamiltonian is Hermitian.

The nuclear-spin operator In and the rotational-angular-momentum operator J are
coupled using a nearly-equal coupling scheme, i. e., I1,2 = I1 + I2, I1,3 = I1,2 + I3, . . . ,
I ≡ I1,N = I1,N−1 + IN, and F = J + I. The nuclear-spin functions |I,mI ,I⟩ depend on the
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4.2 Theoretical details

quantum numbers I and mI of the collective nuclear-spin operator I and its projection
onto the laboratory Z axis, respectively. The set of auxiliary quantum numbers I =
{I1, I1,2, I1,3, . . . , I1,N−1} for the intermediate spin angular momentum operators provide a
unique assignment of each nuclear-spin state. The total spin-rovibrational wave functions
|F,mF,u⟩ are built as symmetry-adapted linear combinations of the coupled products of the
rovibrational wave functions

∣∣J,mJ , l
〉

and the nuclear-spin functions |I,mI ,I⟩. Here, J and
F are the quantum numbers of J and F operators with mJ and mF of their Z-axis projections.
l and u denote the rovibrational and hyperfine state indices, respectively, and embrace all
quantum numbers, e. g., rotational k and vibrational quantum numbers v1,v2, . . ., that are
necessary to characterize a nuclear spin-rovibrational state.

The symmetrization postulate requires the total wavefunction of the H2O molecule to
change sign upon exchange of the protons, i. e., to transform as one of the irreducible
representations B1, B2 of its C2v(M) symmetry group. Accordingly, the ortho spin state
|I = 1⟩ of A1 symmetry can be coupled with the rovibrational states of B1 and B2 symmetries
and the para state |I = 0⟩ of B2 symmetry can be coupled with the rovibrational states of
A1 and A2 symmetries.

The matrix representations of the spin-rotation and spin-spin Hamiltonians in the basis
of the |F,mF,u⟩ functions are diagonal in F and mF, with the explicit expressions given by

⟨F,mF,u′|Hsr|F,mF,u⟩ =1
2
(−1)I+F

√
(2J + 1)(2J′ + 1)

 I′ J′ F
J I 1


×

NI

∑
n

2

∑
ω=0

Nω

(−1)ω J

 ω 1 1

J J′ J


 J 1 J
−J 0 J

−1

+ J′

 1 ω 1

J J′ J′


 J′ 1 J′

−J′ 0 J′

−1


×M(J′ l′,Jl)
ω,n ⟨I′||I(1)n ||I⟩

(4.5)

and

⟨F,mF,u′|Hss|F,mF,u⟩ =(−1)I+J′+J+F
√
(2J + 1)(2J′ + 1)

 I′ J′ F
J I 2


×

NI

∑
n>n′
D(J′ l′,Jl)

n,n′ ⟨I
′||[I(1)n ⊗ I(1)n′ ]

(2)||I⟩,

(4.6)

with the normalization constant Nω = 1, −
√

3, and
√

5 for ω = 0, 1, and 2, respectively.
The expressions for the reduced matrix elements of the nuclear-spin operators ⟨I′||I(1)n ||I⟩
and ⟨I′||[I(1)n ⊗ I(1)n′ ]

(2)||I⟩ depend on the total number of coupled spins and can be computed
using a general recursive procedure as described, for example, in [199]. Here, for the two
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equivalent hydrogen spins I1 = I2 = 1/2, the reduced matrix elements are

⟨I′||I(1)n ||I⟩ =(−1)Iδn,1+I′δn,2 I1

√
(2I + 1)(2I′ + 1)

×

 I1 I′ I1

I I1 1


 I1 1 I1

−I1 0 I1

−1

,
(4.7)

with the explicit values ⟨0||I(1)n ||0⟩= 0, ⟨1||I(1)n ||1⟩=
√

3/2, ⟨0||I(1)n ||1⟩=±
√

3/2 for n = 1
and 2, respectively, and ⟨1||I(1)n ||0⟩ = ∓

√
3/2.

The expressions for theM(J′ l′,Jl)
ω,n and D(J′ l′,Jl)

n,n′ tensors in Eqs. (4.5) and (4.6) depend on
the chosen rovibrational wave functions

∣∣J,mJ , l
〉
, which are represented by the molecu-

lar rovibrational eigenfunctions calculated with the variational approach TROVE. The
functions

∣∣J,mJ , l
〉

are linear combinations of products of vibrational wave functions
|ν⟩ = |v1,v2, . . . ,vM⟩ (M is the number of vibrational modes) and symmetric-top rota-
tional functions

|J,mJ , l⟩ = ∑
ν,k

c(J,l)
ν,k |ν⟩

∣∣J,k,mJ
〉

. (4.8)

In this basis, the M(J′ l′,Jl)
ω,n and D(J′ l′,Jl)

n,n′ tensors are

M(J′ l′,Jl)
ω,n =∑

ν′k′
∑
νk

[
c(J′,l′)

ν′k′

]∗
c(J,l)

νk (−1)k′

×
ω

∑
σ=−ω

∑
α,β=x,y,z

 J ω J′

k σ −k′

U(2)
ωσ,αβ⟨ν

′|M̄αβ,n|ν⟩
(4.9)

and

D(J′ l′,Jl)
n,n′ =∑

ν′k′
∑
νk

[
c(J′,l′)

ν′k′

]∗
c(J,l)

νk (−1)k′

×
2

∑
σ=−2

∑
α,β=x,y,z

 J 2 J′

k σ −k′

U(2)
2σ,αβ⟨ν

′|D̄αβ,nn′ |ν⟩
(4.10)

where M̄αβ,n and D̄αβ,nn′ (α, β = x,y,z) are spin-rotation and spin-spin interaction tensors in

the molecule-fixed frame and the 9× 9 constant matrix U(2)
ωσ,αβ (ω = 0, . . . ,2, σ =−ω, . . . ,ω)

defines the transformation of a general second-rank Cartesian tensor operator into its
spherical-tensor representation, see, e. g., (5.41)–(5.44) in [79].

The total Hamiltonian H is composed of a sum of the pure rovibrational Hamiltonian Hrv
and hyperfine terms Hsr and Hss. In the basis of TROVE wave functions, the rovibrational
Hamiltonian Hrv is diagonal, its elements are given by the rovibrational energies

⟨F,mF,u′|H|F,mF,u⟩ =Euδu,u′ + ⟨F,mF,u′|Hsr|F,mF,u⟩
+ ⟨F,mF,u′|Hss|F,mF,u⟩,

(4.11)

where δu,u′ = δJ,J′δl,l′δI,I′δI ,I ′ .
The above equations were implemented in the hyfor module of the Python software

package Richmol [202, 203], which uses rovibrational molecular states calculated in TROVE
as a variational basis. Alternative approaches using Watson-type effective Hamiltonians [204]
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4.2 Theoretical details

are also implemented in the Richmol package.

The hyperfine energies and wave functions are computed in a three step procedure. First,
we solve the full rovibrational problem using TROVE and obtain the rovibrational energies
and wave functions for all states with energies below a selected threshold. In the next step,
the rovibrational matrix elements of the spin-rotation and spin-spin tensors are computed in
the form given by Eqs. (4.9) and (4.10). These matrix elements are later used to build the
spin-rotation and spin-spin interaction Hamiltonians using Eqs. (4.5) and (4.6). The total
Hamiltonian is composed of the sum of a purely rovibrational part, which is diagonal and
given by the rovibrational state energies, and non-diagonal spin-rotation and spin-spin parts.
In the final step, the hyperfine energies and wave functions are obtained by diagonalizing
the total Hamiltonian.

The computation of the dipole transition intensities also proceeds in two steps. First,
the rovibrational matrix elements of the dipole moment surface are computed and cast into
a tensor form similar to (4.10),

K(J′ l′,Jl)
ω =∑

ν′k′
∑
νk

[
c(J′,l′)

ν′k′

]∗
c(J,l)

νk (−1)k′

×
ω

∑
σ=−ω

∑
α,β=x,y,z

 J ω J′

k σ −k′

U(1)
ωσ,α⟨ν′|µ̄α|ν⟩,

(4.12)

where µ̄α (α = x,y,z) is the permanent dipole moment in the molecule-fixed frame and the
3× 3 constant matrix U(1)

ωσ,α (ω = 1, σ =−ω, . . . ,ω) defines the transformation of a general
first-rank Cartesian tensor operator into its spherical-tensor representation, see, e. g., (5.4)
in [79]. In the second step, the dipole matrix elements are transformed into the basis of
hyperfine wave functions, i. e.,

K(F′,u′,F,u)
ω = ∑

I′,I ′,J′,l′
∑

I,I ,J,l

[
c(F′,u′)

I′,I ′,J′,l′
]∗

c(F,u)
I,I ,J,l(−1)I

×
√
(2J′ + 1)(2J + 1)

 J′ F′ I
F J ω

K(J′,l′,J,l)
ω δI′,IδI ′,I ,

(4.13)

where c(F,u)
I,I ,J,l are hyperfine wave function coefficients obtained by diagonalization of the

total Hamiltonian. Finally, the line strengths for transitions between hyperfine states∣∣ f 〉 = ∣∣F′,u′〉 and |i⟩ = |F,u⟩ are computed as [200]

S( f ← i) = (2F′ + 1)(2F + 1)
∣∣∣K(F′u′,Fu)

1

∣∣∣2 , (4.14)

where we sum over all degenerate mF and m′F components. The expression for the integrated
absorption coefficient of the dipole transition in units of cm/molecule reads

I( f ← i) =
8π3νi f e−hcEi/kT

(
1− e−hcνi f /kT

)
3hcZ(T)

S( f ← i), (4.15)

where νi f = |Ei − E f | is the transition wavenumber, Ei and E f are energy term values of the
initial and final states in cm−1, Z(T) is the temperature dependent partition function, h
(erg·s) is the Planck constant, c (cm/s) is the speed of light and k (erg/K) is the Boltzmann
constant.
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4 The nuclear-spin-forbidden rovibrational transitions of water from first principles

4.2.2 Electronic structure calculations

The molecule-fixed frame spin-rotation tensors M̄αβ,n (α, β = x,y,z, n = 1,2) were calculated
ab initio on a grid of 2000 different molecular geometries with electronic energies ranging
up to 30 000 cm−1 above the equilibrium energy. We used the all-electron CCSD(T)
(coupled-cluster singles, doubles, and perturbative triples) method with the augmented core-
valence correlation-consistent basis set aug-cc-pwCVTZ [101] and aug-cc-pVTZ [99, 100]
for the oxygen and hydrogen atoms, respectively. The basis sets were downloaded from the
Basis Set Exchange library [205–207]. The calculations employed second-order analytical
derivatives [208] together with the rotational London orbitals [209, 210], as implemented in
the quantum chemistry package CFOUR [211].

The electronic structure calculations used the principal axes of inertia coordinate frame.
For variational calculations another frame was employed, defined such that the x axis is
parallel to the bisector of the valence bond angle with the molecule lying in the xz plane
at all instantaneous molecular geometries. In this frame, the z axis coincides with the
molecular axis at the linear geometry. The computed spin-rotation tensors were rotated
from the principal axis of inertia to the new frame. The permutation symmetry is such,
that exchange of the two hydrogen atoms transforms M̄αβ,1 into M̄αβ,2 followed by a sign
change for non-diagonal elements (α ̸= β).

The expression for the spin-rotation tensor, as computed in CFOUR, contains multi-
plication by the inverse of the tensor of inertia, see (3) and (7) in [210]. For linear and
closely linear geometries of the molecule, the inertial tensor becomes singular, which creates
a discontinuity in the dependence of xz and zz elements of spin-rotation tensor on the
bending angle. To circumvent this problem, we have multiplied the computed spin-rotation
tensors on the right side by the corresponding inertial tensors. The resulting data for
the inertia-scaled spin-rotation tensor was parameterized through least-squares fitting,
using a power series expansions to fourth order in terms of valence bond coordinates, with
σrms ≤ 0.3 kHz for all tensor components. Later, when computing the rovibrational matrix
elements of the spin-rotation tensor, we have multiplied the inertia-scaled tensor with the
inverse moment of inertia. The divergence of the spin-rotation tensor in the vicinity of
linear geometries is exactly canceled by the basis functions chosen to satisfy the kinetic
cusp condition at the linear geometry [197, 212].

The spin-spin tensor elements were computed as magnetic dipole-dipole interaction
between two hydrogen nuclei H1 and H2,

Dαβ,12 =
µ0

4π

µ1µ2

I1 I2r3
12
(I− 3n⊗ n)αβ , (4.16)

where µ1 = µ2 = 2.79284734 are the magnetic dipole moments of H1 and H2 in units of the
nuclear magneton, I1 = I2 = 1/2 are the corresponding hydrogen nuclear spins, r12 is the
distance between the hydrogen nuclei, and n is the unit vector directed from one hydrogen
to another. The indirect spin-spin coupling constants mediated by the electronic motions
were not considered here, as they are typically two orders of magnitude smaller than the
direct constants [213].

The magnitudes of the equilibrium ab initio spin-rotation and direct spin-spin diagonal
tensor elements are about 30 and 60 kHz, respectively [214]. However, the corresponding
matrix elements have different selection rules. In particular, due to the traceless-tensor
nature of the spin-spin interaction, it can couple only states with |J − J′|= 2, see (4.6) and
(4.10). The spin-rotation interaction can in principle couple states with |J − J′| ≤ 2, where
the ortho-para interaction between states with |J − J′| ≤ 1 and |k− k′| = 1 occurs due to
antisymmetric behavior of the off-diagonal elements of the spin-rotation tensor with respect
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4.3 Results and discussion

to the proton exchange, i. e., M̄xz,1 = M̄zx,2, see (4.5) and (4.9).

4.2.3 Nuclear motion calculations

We employed TROVE to calculate the rovibrational states using the exact kinetic-energy
operator formalism recently developed for triatomic molecules [212]. This formalism is
based on the use of associated Laguerre polynomials Ll

n(x) as bending basis functions,
which ensures a correct behavior of the rovibrational wave functions at linear molecular
geometry [212]. The bisecting frame embedding was selected as a non-rigid reference frame,
with the x axis oriented parallel to the bisector of the valence bond angle and the molecule
placed in the xz plane. In this frame, the z axis coincides with the linearity axis at linear
molecular geometry. Accurate empirically refined PES of H16

2 O was employed [198].
The primitive-stretching vibrational basis functions were generated by numerically solving

the corresponding one-dimensional Schrödinger equations on a grid of 2000 points using the
Numerov-Cooley approach [124, 125]. The primitive basis functions were then symmetry-
adapted to the irreducible representations of the C2v(M) molecular symmetry group using
an automated numerical procedure [73]. The total vibrational basis set was formed as a
direct product of the symmetry-adapted stretching and bending basis functions, contracted
to include states up to a polyad 48. It was used to solve the J = 0 eigenvalue problem
for the complete vibrational Hamiltonian of H2O. A product of the J = 0 eigenfunctions
and symmetry-adapted rigid rotor wavefunctions formed the final rovibrational basis set.
The rovibrational wavefunctions

∣∣J,mJ , l
〉

for rotational excitations up to J = 40 and four
irreducible representations A1, A2, B1 and B2 were computed by diagonalizing the matrix
representation of the total rovibrational Hamiltonian Hrv in the rovibrational basis set.
More details about the variational approach and the basis-symmetrization procedure for
the case of triatomic molecules can be found in [212].

4.2.4 Line list simulations

The linelist of hyperfine rovibrational transitions for H16
2 O was computed with an energy

cutoff at 15000 cm−1 and includes transitions up to F = 39 (J = 40). To further improve
the accuracy of the linelist, after solving the pure rovibrational problem and before entering
the hyperfine calculations, the rovibrational energies Eu in (4.11) were replaced with the
high-resolution experimental IUPAC values from [215], where available. Such empirical
adjustment of the rovibrational energies have been adopted and tested, e. g., for the
production of molecular linelists as part of the ExoMol project [216]. Recently, this
approach was proven accurate for computing the ultra-weak quadrupole transitions in
water [217, 218] and carbon dioxide [219, 220], which enabled their first laboratory (H2O
and CO2) and astrophysical (CO2) detection.

The final linelist has been calculated at room temperature (T = 296 K) with the corre-
sponding partition function Z = 174.5813 [221], and a threshold of 10−36 cm/molecule for
the absorption intensity based on (4.15). The linelist stored in the ExoMol [222] format is
provided in the supplementary information.

4.3 Results and discussion

An overview of the calculated H16
2 O dipole absorption stick spectrum at T = 296 K is shown

in Figure 4.1. The forbidden ortho-para transitions are plotted as red circles. Despite being,
at least, 10 orders of magnitude weaker than the corresponding allowed transitions, for
someof the strongest ortho-para transitions the predicted absorption intensities are close to
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4 The nuclear-spin-forbidden rovibrational transitions of water from first principles

Table 4.1: Strongest predicted ortho-para transitions in H2
16O at T = 296 K with the 10−31

cm/molecule intensity cutoff.
ν′1 ν′2 ν′3 F′ J′ k′a k′c I′ E′ (cm−1) ν1 ν2 ν3 F J ka kc I E (cm−1) Freq. (cm−1) Int. (cm/molec.)
0 1 0 3 4 2 3 o 1908.016319 0 0 0 4 4 4 0 p 488.134170 1419.882149 2.26× 10−31

0 1 0 3 3 3 1 p 1907.450231 0 0 0 3 4 3 2 o 382.516901 1524.933330 1.36× 10−31

0 1 0 3 3 3 1 p 1907.450231 0 0 0 3 4 1 4 o 224.838381 1682.611850 1.12× 10−31

0 1 0 3 4 2 3 o 1908.016319 0 0 0 3 3 2 2 p 206.301430 1701.714889 1.02× 10−31

0 1 0 3 3 3 1 p 1907.450231 0 0 0 2 3 1 2 o 173.365811 1734.084420 2.05× 10−31

0 1 0 3 4 2 3 o 1908.016319 0 0 0 2 2 2 0 p 136.163927 1771.852392 3.28× 10−31

2 1 0 3 4 1 4 o 8979.657423 0 0 0 4 4 1 3 p 275.497051 8704.160372 3.36× 10−31

2 1 0 3 4 1 4 o 8979.657423 0 0 0 3 3 1 3 p 142.278493 8837.378930 1.01× 10−31

2 1 0 3 4 1 4 o 8979.657423 0 0 0 2 2 1 1 p 95.175936 8884.481487 6.41× 10−31

1 1 1 15 14 3 11 o 11067.083574 0 0 0 14 14 0 14 p 2073.514207 8993.569367 1.92× 10−31

1 1 1 15 15 2 13 p 11067.089122 0 0 0 14 13 1 12 o 2042.309821 9024.779300 2.04× 10−31

Figure 4.1. Overview of the H16
2 O dipole absorption spectrum at T = 296 K. The ortho-ortho

and para-para transitions are marked with blue circles, whereas the ortho-para transitions
are given by red circles.

the sensitivity threshold of modern cavity ring-down spectroscopic techniques [224–226].
All predicted ortho-para transitions with line intensity larger than 10−31 cm/molecule are
listed in Table 4.1. These transitions all occur in the fundamental ν2 bending and the
overtone 2ν1 + ν2 and ν1 + ν2 + ν3 bands. The off-diagonal elements of molecular-frame
spin-rotation tensor M̄αβ,n, which lead to ortho-para interaction, are highly dependent on
the bending vibrational coordinate, indicating significance of the ν2 band in ortho-para
transitions. The size of the off-diagonal spin-rotation matrix elements increases for bending
angles close to 180 ◦, i. e., the linear geometry of the molecule. This leads to an increase
in the ortho-para interaction for rovibrationa energies close to the linearity barrier at
∼8254 cm−1 above the zero-point energy. The spin-rotation coupling in these vibrationally
excited states is responsible for the ortho-para transitions. For example, the final transition
state F = 3, Jka,kc = 42,3 (ortho) with energy E = 1908.016319 cm−1 is mixed with the state
F = 3, Jka,kc = 33,1 (para) with energy E = 1907.450231 cm−1. The size of the rovibrational
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Figure 4.2. Comparison of calculated hyperfine transitions (red stems) with experimental
data (dashed lines) from [223] (a) and [214] (b-h). Different panels show hyperfine transi-
tions for different rotational bands J′k′a,k′c

← Jka,kc . The measured (calculated) zero-crossing
frequencies, in MHz, are 22235.0447 (22235.0322), 321225.6363 (321225.6311), 380197.3303
(380197.3361), 439150.7746 (439150.7857), 443018.3358 (443018.4016), 448001.0538
(448001.0359), 556935.9776 (556935.9849), 620700.9334 (620700.8889) for panels (a)–(h),
respectively.
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Figure 4.3. Absorption cross sections computed at T = 296 K for selected rotational bands,
using Gaussian lineshapes with HWHMs of 0.01 cm−1 (solid lines), 0.005 cm−1 (dashed
lines), and 0.001 cm−1 (dotted lines). The cross sections for allowed ortho-ortho and
para-para transitions are plotted with blue colour lines and cross sections for forbidden
ortho-para transitions are plotted with red colour lines.

matrix element of spin-rotation tensor, M(J′ l′,Jl)
ω,n in (4.9) for this transitions is ±0.95 kHz

and ±6.3 kHz (± for n = 1,2) for ω = 1 and 2, respectively. Note that following (4.5)
only the spin-rotation tensor with ω = 1 contributes to the ortho-para coupling. Allowed
transitions into these states from the ground state are quite strong, 2.07 × 10−20 and
3.52× 10−20 cm/molecule, respectively. Accordingly, intensity borrowing as a result of
the spin-rotation interaction of excited states leads to non-zero intensities of the two
corresponding forbidden transitions on the order of 10−31 molecule/cm. Similarly for other
of the strongest forbidden transitions listed in Table 4.1, the enhancement occurs due to
intensity borrowing effect from strongly allowed transitions with coincident near resonance
between the excited states, accompanied by a relatively large value of the spin-rotation
matrix element M(J′ l′,Jl)

ω=1,n .
Though ortho-para transitions are yet to be observed in H2O, there are several spec-

troscopic studies of the allowed hyperfine transitions in the pure rotational spectrum of
H16

2 O [214, 223, 227, 228]. We used these data to validate the accuracy of our predictions.
In Figure 4.2 the calculated transitions (stems) are compared with the available experi-
mental data (dashed lines), demonstrating an excellent agreement, within 1–4 kHz, for the
hyperfine splittings. For example, the root-mean square (rms) deviation of the predicted
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4.4 Conclusions

hyperfine splittings from experiment is 2.1 kHz in Figure 4.2 a, while for the absolute line
positions it is 12.3 kHz. The latter can be explained by the discrepancies in predictions
of the pure rotational transitions. The errors in predictions of the hyperfine splittings
can be attributed to the level of electronic structure theory, in particular the basis set,
employed in the calculations of spin-rotation tensor surface. The basis set convergence of
the equilibrium spin-rotation constants of H2O was investigated elsewhere [214]. According
to the results, the employed aug-cc-pwCVTZ basis set produces an average error of 1.3 kHz
with a maximum of 1.8 kHz for one of the off-diagonal elements, when compared with the
results obtained with the aug-cc-pwCV6Z basis set. There are several predicted splittings
in Figure 4.2 d–h that are less than 12 kHz and were not resolved in the experiment [214].
Indeed, by visual inspection of the Lamb-dip spectrum plotted in Fig. 1 of [214], which was
provided as an example of the experimental resolution achieved in that work, the transition
profiles’ full width at a half maximum is about 13 kHz.

The sensitivity and resolution required to observe the ortho-para transitions in a prospec-
tive experiment can be estimated from the simulated absorption spectrum, shown Figure 4.3
for selected wavenumber ranges with strong ortho-para transitions. Since the Doppler
linewidth would be around 0.01 cm−1 at room temperature and even much higher-resolution
spectroscopy was demonstrated [229], we used simple Gaussian line profiles with half-width
at half-maximum (HWHM) fixed at 0.01, 0.005, and 0.001 cm−1 and computed absorption
cross sections at T = 296 K using ExoCross [230] to predict the experimental spectra. The
ortho-para transitions In Figure 4.3 a,c (red) show considerable overlap with the allowed
transitions (blue) for purely rotational transitions and in the fundamental ν2 excitation
band and could only be detected with an experimental HWHM below 0.005 cm−1 at an
experimental sensitivity of 10−30 and 10−29 cm2/molecule, respectively. In Figure 4.3 b,d,
showing parts of the ν2 and ν2 + ν3 bands, the predicted ortho-para transitions are better
separated from the allowed transitions and should already be detectable at lower res-
olution, i. e., at HWHM of 0.01 cm−1, but demand a greater sensitivity of 10−30 and
10−31 cm2/molecule, respectively. Such high-sensitivity measurements of intensities on the
scale of 10−30 cm2/molecule are currently within reach, for example, using continuous wave
laser cavity ring down spectroscopy [218, 231].

4.4 Conclusions

We developed and performed comprehensive variational calculations of the room temperature
linelist of H2O with hyperfine resolution, including forbidden ortho-para transitions. The
calculations were based on accurate rovibrational energy levels and wavefunctions produced
using the variational approach TROVE. The nuclear hyperfine effects were modeled as
spin-rotation and direct spin-spin interactions, with the spin-rotation coupling surface
calculated at a high level of the electronic-structure theory. We found excellent agreement
between the calculated transition frequencies and available hyperfine-resolved spectroscopic
data of allowed transitions.

The predicted ortho-para transitions are useful for guiding future experimental spec-
troscopic studies in search of these forbidden transitions in the laboratory as well as in
astrophysical environments. Our accurate predictions of hyperfine effects complement the
spectroscopic data for water.

The variational approach we developed for computing these hyperfine effects is general.
It includes nuclear quadrupole [199, 200], spin-rotation, and spin-spin interactions, and can
be applied to other molecular systems without restrictions on the number and values of
nuclear spins.
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4.5 Supplementary material

The computed hyperfine-linelist data for H2O are available at https://doi.org/10.
5281/zenodo.6337130. The computer codes used in this work are available from git
repositories at https://github.com/Trovemaster/TROVE and https://github.
com/CFEL-CMI/richmol. The symmetry-adapted nuclear spin functions, character table
and direct product table of C2v(M) group for water are all listed in Appendix A.
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5 Self-broadening and self-shift in the 3ν2
band of ammonia from mid-infrared
frequency-comb spectroscopy ∗

“I may not have gone where I intended to go, but I think I have
ended up where I intended to be.”

— Douglas Adams

5.1 Introduction

Ammonia is one of the spectroscopically most-studied molecules due to its importance in
the atmosphere, astrophysics, chemistry, medicine and biology. Ammonia exists in a wide
range of astrophysical environments and was the first polyatomic molecule detected in the
interstellar medium [232]. It was used as one of the most accurate “molecular thermometers”
to measure the temperature of C/2001 Q4(Neat) [26], 9P/Tempel 1 [27] and other comets by
detecting the ortho-para ratio. Ammonia also formed the basis for modern laser technology
through the original demonstration of the MASER [233]. Ammonia spectra have been
extensively studied and disentangled, both in theory and experiment.

The spectra of ammonia were extensively measured from the microwave to the ultra-
violet [234–244]. Yurchenko et al. [116] calculated the spectra for ammonia covering a
large part of the infrared region using a variational approach. Recently, we calculated
hyperfine-resolved rotation-vibration line lists of ammonia [199, 245], which agree very
well with experimental results [246]. The rotation-vibration-spectroscopy data were all
critically reviewed and included in the “Measured Active Rotational-Vibrational Energy
Levels (MARVEL)” database [247]. The high-resolution transmission (HITRAN) molecular
absorption database [129] summarizes the ammonia rotation-vibration spectra, but still
has many of the transitions unassigned or absent, especially in the molecular fingerprint
region in the mid-infrared (MIR). For instance, there are only two experiments in the 4 µm
region, obtained using a Globar source [239] and a synchrotron source [240].

The development of frequency combs (FC) extended the traditional gas-phase-absorption
spectroscopy to broadband, which allows for the simultaneous detection of multiple transition
regions of multiple species in a short acquisition time [248]. Coherent MIR-FC light
sources allow to precisely measure molecular fingerprints which are useful, e. g., in breath
analysis, atmospheric measurements, and astrochemistry [248]. Taking breath analysis
for an example, ammonia sensing in exhaled human breath could be an indicator of
liver and renal diseases [249]. Nonlinear frequency conversion approaches utilizing optical
parametric oscillators (OPO) [158, 163, 164], optical parametric amplification (OPA) [165],
supercontinuum generation [250, 251], or difference frequency generation (DFG) [166, 167]
provide an alternative approach to generate optical frequencies in MIR regions which are
not covered by laser gain media. MIR FC sources based on DFG are widely used due to
their simplicity, single-pass configuration, broad tunability, and full cancellation of the
carrier-envelop offset. The combination of a MIR FC with a Fourier transform spectrometer
(FTS) offers capabilities to record spectra over a broadband range and with high resolution,

∗This chapter is based on a draft of manuscript: “Self-broadening and self-shift in the 3ν2 band of
ammonia from mid-infrared frequency-comb spectroscopy” by Guang Yang, Vinicius Silva de Oliveira,
Dominic Laumer, Christoph Heyl, Andrey Yachmenev, Ingmar Hartl and Jochen Küpper, submitted to J.
Mol. Spectrosc. (2022), arXiv:2205.04088 [physics]. I contributed to setting up the experiment, recording
and analyzing the data, and writing the manuscript.



5 Self-broadening and self-shift in the 3ν2 band of ammonia from mid-infrared
frequency-comb spectroscopy

Pump

Signal

Figure 5.1. Generic schematic of experimental setup. FC: frequency comb, HNLF: highly-
nonlinear suspended-core fiber, MIR DFG FC: DFG-based mid-infrared FC, FTS: Fourier
transform spectrometer.

high sensitivity, and especially a high signal-to-noise ratio (SNR) due to the high spectral
brightness and temporal coherence of FCs [158, 163, 164].

Here, we report the absorption spectrum of the 3ν2 band of 14NH3 near 4 µm by a
homebuilt FTS coupled to a DFG-based MIR FC covering the range 3–6 µm. We extract
the transition wavenumbers and intensities for 6 typical R branch rovibrational lines through
a multipeak Voigt fit at room temperature (296 K). We also retrieve self-broadening- and
self-shift-parameters of the pressure interactions in the gas at nine different pressures
ranging from 10.00 mbar to 700.00 mbar.

5.2 Experiment

A schematic diagram of the experimental setup is shown in Figure 5.1. It consists of three
parts: the DFG-based MIR FC source, the gas cell, and the FTS. The MIR FC source
consists of a Yb:fiber FC and a DFG setup [167, 170]. The Yb:fiber FC is mode-locked
by a saturable absorber with the repetition rate of 150 MHz and phase-locked to a CW
laser (Coherent Mephisto) with kHz-level linewidth at ∼1064 nm and frequency stability
to 1 MHz/minute. Using chirped-pulse amplification, 1.5 W average power is deliverd
in pulses of 130 fs duration with a center wavelength of 1050 nm and a bandwidth of
25 nm. The Yb:fiber FC is split into pump and signal driver of the DFG process, with
the signal generated as the longest Raman soliton from the supercontinuum process in
a highly-nonlinear suspended-core fiber [169]. By controlling the input power, we could
adjust the wavelength of the longest Raman soliton from 1.2 µm to 1.6 µm. The signal
and pump pulse are temporally overlapped in a fan-out periodically poled Lithium Niobate
(PPLN) crystal (HCPhotonics) for DFG by locking a mechanical delay-line in the pump
arm [170]. This yielded MIR radiation ranging from 3 µm to 6 µm. The MIR FC was tuned
to near 4 µm (2390 cm−1 to 2510 cm−1) and the light passed through the gas cell together
with a frequency stabilized (1 MHz/minute) HeNe laser (SIOS SL4), which was used to
calibrate the absolute freqyency of the spectroscopic signals.

Ammonia (14NH3, Linde HiQ 6.0) was contained in a 35.4646(12) mm long gas cell with
wedged CaF2 windows (30 arcmin) at 296 K. The optical path length was determined
by using low-coherence interferometry [172] with the residual 1050 nm laser from DFG
process served as the input signal, which the optical path difference (OPD) of the four
reflected light from the two gas cell windows are detected by interfering the reflection with
a reference laser. Before the measurements, the reservoir was pumped (HiCube 80 Eco)
to 3.1× 10−4 mbar, filled to 699.75 mbar of ammonia, and then pumped to 543.85 mbar,
500.01 mbar, 400.50 mbar, 300.70 mbar, 199.90 mbar, 98.90 mbar, 50.00 mbar, and
10.00 mbar, respectively. All pressures were measured using calibrated ceramic capacitance
gauges (Pfeiffer Vacuum CMR 361 and CMR 364) with a relative accuracy of 0.2%.
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5.3 Results and discussion

The two laser were both directed to our homebuilt FTS, which is based on a Michelson
interferometer with two liquid-nitrogen-cooled indium antimonide (InSb) detector (InfraRed
Associates IRA 20-00060). The interferograms of both MIR FC and HeNe laser were
acquired at 5 MSa/s sampling rate with 20 bit resolution by a computer-controlled data
acquisition board (National Instruments PCI-5922). The interferogram of the HeNe laser
was used to measure the OPD and provides steps to resample the MIR FC interferogram by
determining the positions of the zero-crossings. By matching the delay range of the FTS to
the repetation rate of the MIR FC, we overcame the resolution limitation of conventional
FTS given by the maximum delay range and removed the instrumental line shape oscillations,
which allowed a reduction of the instrument size and acquisition time [185]. The grid
spacing was equal to the comb spacing of 150 MHz, yielding a resolution of the FTS of
0.00501 cm−1. After performing a fast Fourier transform (FFT) to MIR FC interferograms,
we obtained MIR absorption spectra of ammonia at the different specified pressures. To
extract the transmittance, we first measured the reference spectra before filling ammonia
when the reservoir was under vacuum.

The top panel of Figure 5.2 a shows the raw spectrum in the range 2434 to 2459 cm−1 at
98.90 mbar and at 296 K. The recorded spectra had oscillatory background signals (black
curve in Figure 5.2 a) that not only decreased the SNR of the spectra, but also changed
the center and linewidth of the absorption line profiles. We assigned this regular signal to
etalon effects of the optical components in the experimental setup. In order to remove this
etalon signal, we used a numerical approach based on FFT analysis. Firstly, we calculated
the power spectral density (PSD) for different FFT sample frequencies of the spectra, shown
in Figure 5.2 b. The unit of sample frequencies was in cm, which exactly corresponded to
the OPD of the FTS. Then we set the FFT values for the four sample frequencies between
4.10 cm and 4.18 cm to be zero, and performed an inverse FFT, resulting in the filtered
spectrum shown in Figure 5.2 a, middle panel. Analyzing the sample frequencies of the
filtered signal, Figure 5.2 a, bottom panel, we suppose that the etalon signal most likely
comes from an Germanium (Ge) filter in the experimental setup; the length and refractive
index of the Ge filter at 4 µm are around 5 mm and 4, resulting in a 4 cm OPD that matches
the free spectral range of these oscillations. The FFT filtering might have introduced some
small errors as the filtered frequencies also included real spectral information. Nevertheless,
these errors should be smaller than profile fitting error and the approach clearly improved
the precision and SNR. In the future, the Ge filter shall be replaced by wedged optics.

5.3 Results and discussion

Direct multipeak Voigt fit for the transmittance data was performed to retrieve spectral
information. Voigt profile was still valid because the transmittance was more than 90%
for all transitions due to the low sensitivity with the short gas cell and the pressures of
gas sample were relatively high [252]. The four basic spectroscopic line parameters – the
pressure-broadening γp,t, the Doppler-broadening αD, line transition frequency νij, and the
spectral line intensity Iij – were determined from individual spectra to extract details on the
molecular motions and collisions through a non-linear least-squares fit. Since αD depends
on νij and temperature, which was 296 K here, we could reduce the Voigt fit to the three
other parameters, as shown in (5.1).

T(ν) = eIij(T)NlpathV(ν−νij,γp,t) + a0 (5.1)

Here, N is the number density of ammonia, equals to p/kbT assuming the ideal gas law,
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Figure 5.2. (a) The absorption spectra at 98.90 mbar and at room temperature (296 K).
The top panel shows the experimentally recorded original spectrum. The middle plot shows
the spectra after FFT-filtering. The bottom plot shows the residual differences of the two
upper spectra. (b) Partial Power Spectral Density (PSD) of the absorption spectrum in (a).
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5.3 Results and discussion

and lpath is the optical path length (35.4646 mm in our experiment). In addition, small
instrumental baseline a0 was added in the fit. We assumed a0 to be a constant value around
0 since the low sensitivity, more general baseline fitting process could be found from [252].
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Figure 5.3. Results of the non-linear least-squares fit of the aR(2,K) multiplet assuming
Voigt line profiles; K = 0 . . . 2 correspond to the peaks from left to right. Blue dots depict
the experimental spectrum, the red line depicts our multipeak Voigt fit. The lower panel
shows the residual difference between experiment and simulation, the noise level is around
0.001.

For the fit we chose six typical peaks with high absorption, corresponding to the aR(2,K)
and aR(3,K) multiplets in the 3ν2 band. In order to show the performance of the fit,
we show the aR(2,K) multiplet in Figure 5.3, which fit very well. The small dip at the
low-wavenumber end of the residual difference corresponds to a sP(6,1) transition in ν2 + ν4
band. From the fit, we obtained the line-transition frequencies νij, line intensities Iij, and
the pressure-broadening component γp,t, specifically the self-broadening component γself
since the gas cell only contained pure 14NH3.

We recorded and averaged 25 spectra at each of the nine different pressures ranging from
10.00 mbar to 700.00 mbar. It took around 1 minute for recording the spectra and pressures
stayed the same during the 25 measurements. Figure 5.4 shows the performance of the
global multipeak Voigt fit and the extraction of self-broadening and self-shift coefficients
for the aR(2,0) transition. For each pressure, νij, Iij and γself were determined as described
above. The mean value of Iij and γself was extracted. From a linear regression of the line
transition wavenumbers νij as a function of pressure, see Figure 5.4, the vacuum transition
wavenumber ν0

ij was determined as the y intercept and its self-shift parameter γself as the
slope k.

Line wavenumbers ν0
ij, line intensities Iij, self-broadening γself, and self-shift δself com-

ponents of the aR(2,K) and aR(3,K) multiplet in the 3ν2 band of 14NH3 are presented in
Table 5.1. Specified uncertainties for line wavenumbers and self-shifts are their standard
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Figure 5.4. Extraction of the self-broadening and self-shift parameters from the lineshape of
the aR(2,0) transition at various pressures, i. e., from top to bottom 10.00 mbar, 50.00 mbar,
98.90 mbar, 199.90 mbar, 300.70 mbar, 400.50 mbar, 500.01 mbar, 543.85 mbar, and
699.75 mbar, respectively. The black curves show the fitted Voigt profiles. For clarity,
all lines are successively offset by -0.01 from top to bottom. The bottom panel shows
the relative line transition wavenumbers (red squares) with respect to the vacuum line
transition. Error bars depict the standard deviation from the multipeak Voigt fit. The
black line is a linear fit of these transition frequencies from which the vacuum transition
wavenumber and the self-shift are derived.

46



5.4 Conclusions

Table 5.1: Line transitions, line intensities, self-broadening, and self-shift coefficients for
the 3ν2 band of 14NH3 at 296 K.

Transition ν0
ij,exp. νij,ref.

* Iij,exp. Iij,ref.
* γself,exp. γself,ref.

* δself

(R branch) (cm−1) (cm−1) (cm/molec.) (cm/molec.) (cm−1/atm) (cm−1/atm) (cm−1/atm)

aR(2,0) 2437.76258(18) 2437.7655 5.12(19)× 10−22 4.590× 10−22 0.225(13) 0.302 0.0016(5)
aR(2,1) 2438.14454(106) 2438.1475 2.35(21)× 10−22 2.078× 10−22 0.320(33) 0.396 −0.0112(28)
aR(2,2) 2439.31026(421) 2439.3148 1.70(20)× 10−22 1.372× 10−22 0.445(63) 0.496 −0.0139(110)
aR(3,1) 2454.62688(68) 2454.6298 2.26(16)× 10−22 2.323× 10−22 0.263(31) 0.36 −0.0073(18)
aR(3,2) 2455.73934(231) 2455.7392 1.93(15)× 10−22 1.963× 10−22 0.397(43) 0.448 0.0006(62)
aR(3,3) 2457.66341(317) 2457.6615 2.27(21)× 10−22 2.508× 10−22 0.464(62) 0.541 −0.0351(83)

* Data from the HITRAN 2016 database [129, 239, 253], the uncertainty range for ν0, Iij and γself are 0.0001 cm−1

to 0.001 cm−1, 10% to 20% and 2% to 5%, respectively.

deviations from the fit, the uncertainties for line intensities and self-broadenings were the
combination of statistical errors from the averaging of multiple scans and the standard
deviations from the fit. Other systematic errors such as misalignments of the HeNe laser
and MIR FC, the line mixing, the FFT fliter etc. were neglected because they were relatively
small in relation to the errors from the fit. Line-transition wavenumbers and intensities show
good agreement with the HITRAN database values [129]. Our retrieved self-broadening
parameters were around 20% smaller than in the HITRAN database, which were derived
from measurements at 10 µm [253]. Our results provide new laboratory data allowing to
improve pressure-self-broadening models.

5.4 Conclusions

We recorded the broadband absorption spectra of the 3ν2 band of ammonia (14NH3) near
4 µm using a MIR-FC-based FTS system. Spectra were background corrected by FFT-
filtering raw spectra for experimental etalon. A global multipeak Voigt fit allowed us to
determine transition wavenumbers and intensities, pressure self-broadening and self-shift
parameters at room temperature (T = 296 K) for 6 prototypical R branch rovibrational
transitions.

The recorded line wavenumbers and line intensities are in good agreement with the
HITRAN database. As no literature values were available for the self-broadening and self-
shift parameters, our new experimental data on these parameters provide useful information
about the molecular motions and collisions, which could help to improve their theoretical
modeling.

Our experimental system is capable of trace-gas detection of different molecular species
in the spectral range of 3 . . . 6 µm with a current resolution of 0.00501 cm−1. We plan to
implement a liquid-nitrogen-cooled multi-pass-cell cryostat to increase the sensitivity.
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6 Further improvements on Fourier
transform spectrometer

“Measure what is measurable, and make measurable what is not
so.”

— Galileo Galilei

6.1 Liquid-nitrogen-cooled multi-pass-cell cryostat

(a)

(b)

Figure 6.1. Third-pass and multi-pass configurations of the gas cell.

Due to the low sensitivity of and etalon signal from the Fourier transform spectrometer
(FTS), we cannot resolve the hyperfine structure, and observe the nuclear-spin-forbidden
transitions for water or ammonia. A liquid-nitrogen-cooled multi-pass-cell cryostat has been
designed to improve the sensitivity of FTS. According to the Beer-Lambert law as mentioned
in (2.40), we can improve the sensitivity of FTS by increasing the optical path length of the
gas sample and spectral absorption cross-section. For increasing the optical path length, the
third-pass roof-mirror configuration (around 1 m) and multi-pass Herriott-cell configuration
(around 10 m) will be applied as illustrated in Figure 6.1. Compared to our existing gas
cell which is 35.4646 mm long, the multi-pass configurations can increase the sensitivity by
about 2–3 orders of magnitude. For increasing the absorption cross-sections, the new gas
cell is hanging below a Dewar bottle filled with liquid nitrogen. The gas samples can be
cooled down to 77 K, which yields more molecules populated on the ground states. For
the transitions from these states, the increasing spectral absorption cross-sections increase
the sensitivity by 2–3 orders of magnitude. Another advantage of our cryostat is that the
Doppler width will decrease at low temperature, which allows us to resolve more transitions.

Figure 6.2 shows the top view of the cryostat. The wedge windows with Brewster angle
and the double-side pump will be performed to eliminate the etalon signal and make the
position of the inner cell fixed, respectively. Since there are no data about the vapor pressure
for water and ammonia at 77 K, a flexible magnetic-field-free resist heater will be circled
around the two sides of the inner cell to adjust the temperature of the gas sample. We will
also apply the similar resist heater on the flanges of inner cell windows to avoid samples
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Figure 6.2. Topview of the liquid-nitrogen-cooled multi-pass-cell cryostat.

Figure 6.3. Overview of the liquid-nitrogen-cooled multi-pass-cell cryostat.
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6.2 Doppler free spectroscopy

from solidating on the window. The total design of the cryostat is shown in Figure 6.3. The
gas cell is held inside a vacuum chamber, which is placed on an aluminum frame. To isolate
the vibration from the environment, we apply the vibration canceling rollers, and the two
pump stations will lay on silicone rubber. With the liquid-nitrogen-cooled multi-pass-cell
cryostat, we can detect the transitions with line intensities higher than 10−28 cm/molecule.

6.2 Doppler free spectroscopy

The second improvement in our FTS is the application of Doppler free spectroscopy [254].
The Doppler free spectroscopy can reveal spectra feature smaller than the Doppler width
such as hyperfine structure, Coriolis effects, and so on. Many experimental techniques have
already been developed to overcome the Doppler width limitation and achieve sub-Doppler
resolution. These techniques can be organized as follows: saturation spectroscopy, Doppler-
free multiphoton spectroscopy, spectroscopy in molecular beams, coherent spectroscopy,
and spectroscopy of ultracold molecules. Among these methods, saturation spectroscopy
is more widely used due to the simplicity of the experimental setup. The principle of
saturation spectroscopy is to select the zero velocity components of a group of molecules
in the direction of the laser beam. The selection is performed by pump and probe beam
from the same laser, propagating in opposite directions. Lamb dips will exhibit on the
Doppler-broadened line profile.

Figure 6.4. Experimental setup of the optical-optical double-resonance spectroscopy with a
frequency comb probe, reprint from [255].

The pump and probe beams can also be from two different lasers, which is called the
optical-optical double-resonance (OODR) spectroscopy [256]. The OODR spectroscopy
provides a powerful method for the assignment of highly excited energy levels by detecting
the population of ground states through V-type excitations, and excited states through
ladder-type or Λ-type excitations. Recently, Aleksandra et al. [255] firstly performed OODR
spectroscopy of methane with a frequency comb (FC) probe realizing sub-Doppler resolution.
The pump and probe beams were 3 µm CW laser and 1.67 µm FC, respectively. The two
beams were aligned and propagated together to a liquid-nitrogen-cooled gas cell as shown
in Figure 6.4. The pump laser was stabilized to the center of the addressed transition by a
Lamb-dip locking system with a reference cell. The probe was applied by shifting 1.55 µm
Er:fiber comb to cover 55 nm with Raman soliton self-frequency shift microstructured silica
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6 Further improvements on Fourier transform spectrometer

fiber. The FTS setup was similar to our system and the nominal resolution was set to
250 MHz, the same as the repetition rate of the FC. The transmittance of a V-type OODR
spectrum is shown in Figure 6.5. The inset shows the transition with sub-Doppler free
width in the 2ν3 band of methane.

Figure 6.5. V-type optical-optical double-resonance spectrum with a frequency comb probe
of the 2ν3 band for methane molecule, reprint from [255]

OODR spectroscopy with a FC probe provides a way to measure broadband spectrum
with sub-Doppler width, which allows for accurate assignment of the high excited states and
verification of the theoretical prediction. With our newly designed liquid-nitrogen-cooled
multi-pass-cell cryostat and the OODR spectroscopy with a FC probe, we can resolve the
hyperfine structure of water and ammonia, and possibly observe some isolated ortho-para
transitions.
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7 Conclusions and outlook

“The most incomprehensible fact of nature is the fact that
nature is comprehensible.”

— Albert Einstein

The main purpose of this thesis is to predict and observe the nuclear-spin-forbidden tran-
sitions of the water and ammonia molecules. I have reported the new high-accuracy
hyperfine linelist including the ortho-para transitions of the water molecule at room temper-
ature, and rovibrational spectra of the ammonia molecule measured from the mid-infrared
frequency-comb-based Fourier transform spectrometer.

The theoretical investigation of the ortho-para transitions of H2
16O is presented in chap-

ter 4, which are driven by the nuclear spin-rotation and spin-spin interactions. This
was achieved by using the hyfor module of the Python software package Richmol. The
rovibrational molecular states calculated in TROVE were treated as a variational basis.
Comparisons with several spectroscopic experiments of the allowed pure rotational hyperfine
transitions prove the accuracy of the theoretical calculation. The results suggest that the
strongest spectral line intensities of ortho-para transitions at room temperature are on the
order of 10−31 cm/molecule. Several transitions are relatively isolated from the allowed tran-
sitions, and should be possibly observed in experiments as predicted in Figure 4.3 ranging
from microwave to mid-infrared. This general approach applies to XY2-type molecules, for
example, H2S. As described in Appendix B, the linelist of hyperfine rovibrational transitions
for H2S has already been computed with an energy cutoff at 40000 cm−1, and the total
angular momentum quantum number up to F = 59. For XY3-type molecules, especially NH3,
the symmetry-adapted nuclear spin functions have been derived as shown in Appendix A,
and will be employed in Richmol soon.

Fourier transform spectrometer based on a mid-infrared frequency comb with a resolution
of 0.00501 cm−1 has been performed to measure the spectra of water and ammonia as
described in chapter 3. The broadband absorption spectra of the 3ν2 band of 14NH3 near
4 µm was recorded after numerical filtering of the etalon signal as shown in chapter 5.
This numerical approach can predict the possible optical components causing the etalon
signal by monitoring the power spectral density of the sample frequencies. Line positions,
line intensities, self-broadening, and self-shift parameters for six rovibrational lines were
determined by direct multipeak Voigt fit at room temperature. Owing to the sensitivity
limitation of the short-length gas cell, we can only resolve the transitions with spectral
line intensity stronger than 10−22 cm/molecule. A liquid-nitrogen-cooled multi-pass-cell
cryostat (Section 6.1) will be applied to increase the sensitivity of the Fourier transform
spectrometer by 4–6 orders of magnitude. Plus the optical-optical double-resonance spec-
troscopy (Section 6.2) with a frequency comb probe, the hyperfine structure can be resolved,
and the ortho-para transitions can be possibly observed.

Since the spectral line intensities of ortho-para transitions are very low as shown in Fig-
ure 4.1. It is still difficult to observe the nuclear-spin-forbidden transitions even with the
best-performance cavity-enhanced spectroscopy. The problem now moves to the enhance-
ments of the ortho-para transitions. Two approaches have been proposed and investigated.

The first approach is applying the external electric field or field gradient. For the molecules
presented in an external electric field, the Stark effect happens. This effect mixes the
ortho and para states between the ortho-para electric dipole transitions. It also enhances
the ortho-para mixing when the energy differences between ortho and para states become
smaller. These two benefits can enhance the ortho-para transitions. One order of magnitude
of enhancement has been found in our recent study. For the electric field gradient, the same
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benefits can be realized by coupling with the electric quadrupole moment. In astrophysics,
the dominant interstellar solid surface is amorphous solid water with giant electric fields
(1010–1011 V·m−1) and steep atomic-scale gradients (1020–1021 V·m−2) [257]. Because of
these giant and steep fields and field gradients, the ortho-para transitions can get great
enhancement, and the hyperfine effects should be the second mechanism of ortho-para
conversion in outer space besides the collisions. Further investigations still need to be done
by optimizing the values of the external fields or field gradients for suitable transitions.

The second approach is populating to the rotational cluster states. A good case will be
H2S. Appendix B shows the line strengths of the ortho-para transitions between the cluster
states can be 10−3 Debye2. They are on the same order of magnitude as the corresponding
ortho-ortho and para-para transitions due to the stronger ortho-para mixing among the
rotational cluster states. By the optical centrifuge, the ortho-para transitions for H2S can
be possibly observed in the rotational cluster states. In addition, the nuclear spin symmetry
breaks due to the stronger ortho-para mixing in the rotational chiral states, which provides
a way of producing nuclear-spin-polarized molecules for parity violation study.
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A Symmetry-adapted nuclear spin functions
for water and ammonia

“The root of all symmetry principles lies in the assumption that
it is impossible to observe certain basic quantities; these will be
called ‘non-observables’.”

— T. D. Lee

For the H16
2 O molecule in C2v(M) symmetry group, there are two identical protons and

one 16O nucleus. For the two protons with nuclear spin quantum number of 1/2, we denote
α for “spin-up” (| 12 , 1

2 ⟩) nuclear spin function and β for “spin-down” (| 12 ,− 1
2 ⟩) nuclear spin

function. A 16O nucleus has nuclear spin quantum number of 0, we write the nuclear spin
function as δ = |0,0⟩. The four coupled nuclear spin functions [75] are

|1,1⟩ = ααδ A1 (A.1)
|1,−1⟩ = ββδ A1 (A.2)

|1,0⟩ =
√

2
2

(αβ + βα)δ A1 (A.3)

|0,0⟩ =
√

2
2

(αβ− βα)δ B2, (A.4)

generating the representation
ΓH2O

ns = 3A1 ⊕ B2. (A.5)
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Figure A.1. Coupling scheme of nuclear spins for NH3 molecule.

The nuclear spin functions for ammonia in D3h(M) symmetry group are a little bit
complex compared to water since the ammonia molecule has three identical protons and
one N nucleus with nuclear spin quantum number of 1. To derive the total nuclear spin
functions for ammonia, we first couple the three hydrogen spins as shown in Figure A.1:

|I12 I3 IHmIH ⟩ = ∑
mI1 ,mI2 ,mI3 ,mI12

⟨I12mI12 , I3mI3 |IHmIH ⟩

⟨I1mI1 , I2mI2 |I12mI12⟩|I1mI1 , I2mI2 , I3mI3⟩,
(A.6)

here I1 = I2 = I3 =
1
2 , mI1 = mI2 = mI3 = ± 1

2 , I12 = 1,0, mI12 = 0,±1, IH = 3
2 , 1

2 , and mIH =



A Symmetry-adapted nuclear spin functions for water and ammonia

± 3
2 ,± 1

2 . We get the eight coupled nuclear spin functions of three protons by calculating
the Clebsch-Gordan coefficients:

|3
2

,
3
2
⟩ = ααα A

′
1 (A.7)

|3
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1
2
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√

3
3

(αβα + βαα + ααβ) A
′
1 (A.8)
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(ββα + αββ + βαβ) A
′
1 (A.9)
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⟩ = βββ A

′
1 (A.10)
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(2ααβ− αβα− βαα) E′(ϕa) (A.11)

|1
2

,−1
2
⟩ =
√

6
6

(αββ + βαβ− 2ββα) E′(ϕa) (A.12)
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,
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⟩ =
√

2
2

(αβα− βαα) E′(ϕb) (A.13)

|1
2

,−1
2
⟩ =
√

2
2

(αββ− βαβ) E′(ϕb). (A.14)

Then we couple the total proton spin with nuclear spin of N nucleus,

|IH IN ImI⟩ = ∑
mIH ,mIN

⟨IHmIH , INmIN |ImI⟩|IHmIH , INmIN ⟩, (A.15)

here IN = 1 and mIN = 1,0. For N nucleus, we construct γ for |1,1⟩ nuclear spin function,
δ for |1,0⟩ nuclear spin function, and ϵ for |1,−1⟩ nuclear spin function. With the same
procedure aforementioned, we get the 24 coupled nuclear spin functions for NH3 molecules:

|5
2

,
5
2
⟩ = αααγ A

′
1 (A.16)
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,
3
2
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√

5
5

(αβαγ + βααγ + ααβγ +
√

2αααδ) A
′
1 (A.17)
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√
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+
√

2βααδ +
√

2ααβδ + αααϵ)

A
′
1 (A.18)
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10

(αβαϵ + βααϵ + ααβϵ +
√

2ββαδ

+
√

2αββδ +
√

2βαβδ + βββγ)

A
′
1 (A.19)
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√

5
5

(ββαϵ + αββϵ + βαβϵ +
√

2βββδ) A
′
1 (A.20)

|5
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,−5
2
⟩ = βββϵ A

′
1 (A.21)

|3
2

,
3
2
⟩ =
√

15
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(3αααδ−
√

2αβαγ−
√

2βααγ−
√

2ααβγ) A
′
1 (A.22)

|3
2

,
1
2
⟩ =
√

5
15

(αβαδ + βααδ + ααβδ + 3
√

2αααϵ

− 2
√

2ββαγ− 2
√

2αββγ− 2
√

2βαβγ)

A
′
1 (A.23)
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(αβαδ− βααδ−
√

2αββγ +
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|1
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,−1
2
⟩ =
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6
6

(βαβδ− αββδ +
√

2αβαϵ−
√

2βααϵ) E′(ϕb), (A.39)

generating the representation
ΓNH3

ns = 12A′1 ⊕ 6E′. (A.40)

The character and direct product tables of C2v(M) and D3h(M) group are shown below.
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A Symmetry-adapted nuclear spin functions for water and ammonia

Table A.1: Character table of C2v(M) group

E E∗ (1,2) (1,2)∗

A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 -1 1
B2 1 -1 1 -1

Table A.2: Direct product table of C2v(M) group

A1 A2 B1 B2

A1 A1 A2 B1 B2

A2 A2 A1 B2 B1

B1 B1 B2 A1 A2

B2 B2 B1 A2 A1

Table A.3: Character table of D3h(M) group

E (123) (23) E∗ (123)∗ (23)∗

A′1 1 1 1 1 1 1
A′′1 1 1 1 -1 -1 -1
A′2 1 1 -1 1 1 -1
A′′2 1 1 -1 -1 -1 1
E′ 2 -1 0 2 -1 0
E′′ 2 -1 0 -2 1 0

Table A.4: Direct product table of D3h(M) group

A′1 A′′1 A′2 A′′2 E′ E′′

A′1 A′1 A′′1 A′2 A′′2 E′ E′′

A′′1 A′′1 A′1 A′′2 A′2 E′′ E′

A′2 A′2 A′′2 A′1 A′′1 E′ E′′

A′′2 A′′2 A′2 A′′1 A′1 E′′ E′

E′ E′ E′′ E′ E′′ A′1 ⊕ A′2 ⊕ E′ A′′1 ⊕ A′′2 ⊕ E′′

E′′ E′′ E′ E′′ E′ A′′1 ⊕ A′′2 ⊕ E′′ A′1 ⊕ A′2 ⊕ E′
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B Hyperfine interaction in rotational chiral
states of hydrogen sulfide

“The exception proves the rule.”
— Marcus Tullius Cicero

B.0.1 Ortho-para transitions in rotational cluster states

Like water, hydrogen sulfide has two different nuclear spin isomers, ortho-H2S and para-H2S.
Our theoretical approach can be easily extended to H2S for calculating the ortho-para
transitions as described in chapter 4. But for H2S, we care more about the high rotational
cluster states, in which the fourfold high rotational levels with different symmetry aspects
are degenerate form dynamic chirality [258–260]. The top panel of Figure B.1 shows
the rotational energy level of the ground vibrational state up to the rotational angular
moment quantum number J = 55. The energy differences EJk − Emax

Jk has been plotted for
all rotational states in the lower panel of Figure B.1, relative to the maximum energy Emax

Jk
in their J multiplet. As J increases, the energy differences between energy levels start to
decrease and the cluster states form after a certain J value.

Figure B.1. Rotaional energy level clustering in the ground vibrational state of H2S.

The linelist of hyperfine rovibrational transitions for H2S has been computed with an
energy cutoff at 40000 cm−1, and includes transitions up to F = 59 (J = 60). Line strengths
are given in the linelist instead of line intensities because of the lower population of the
rotational cluster states. The ortho-para transitions with line position cutoff at 1000 cm−1



B Hyperfine interaction in rotational chiral states of hydrogen sulfide

0 200 400 600 800 1000
Wavenumber / cm 1

10 9

10 7

10 5

10 3

10 1
Li

ne
 s

tr
en

gt
h 

/ D
eb

ye
2

normal-normal transittions
cluster-normal transittions
cluster-cluster transitions

Figure B.2. Ortho-para transitions of H16
2 S with line position cutoff at 1000 cm−1 and line

strength cutoff at 10−9 Debye2. Here we select only one set of cluster states with the lowest
energies for each J. The cluster-cluster, cluster-normal, and normal-normal ortho-para
transitions are marked with red, black, and blue circles, respectively.

and line strength cutoff at 10−9 Debye2 are plotted and shown in Figure B.2. Since the
strong ortho-para mixing in rotational cluster states, the line strengths for the ortho-para
transitions are quite high on the order of 10−3 Debye2. The red circles corresponding to the
cluster-cluster ortho-para transitions are distributed in two ranges as shown in Figure B.2.
The first range is near 0 cm−1 belonging to the internal ortho-para transitions among one
set of cluster states, and the second range are ortho-para transitions between two different
sets of cluster states. Here we select only one set of cluster states with the lowest energies
for each J, which are easier to realize in experiments by applying an optical centrifuge [260–
262]. More cluster-cluster and cluster-normal ortho-para transitions are hidden inside the
normal-normal ortho-para transitions.

Figure B.3 shows the cluster-cluster ortho-para transitions with line strength cutoff at
10−3 Debye2. The line strength of the cluster-cluster ortho-para transitions between J = 46
and J = 47 are on the same order of magnitude with the corresponding ortho-ortho and
para-para transitions. Because of this great enhancement, the ortho-para transitions for H2S
can possibly be observed in the rotational cluster states achieved by the optical centrifuge.

B.0.2 Nuclear spin density

Because of the strong ortho-para mixing in rotational chiral states, the nuclear spin symmetry
breaks. Nuclear-spin-polarized molecules can be produced with an optical centrifuge. It
will be useful for studying the parity violation in molecules [263–265]. The nuclear spin
density for H2S can be defined as

ρ = ∑
I,I′

∑
γ,γ′

aFmF l
J Iγ

∗
aFmF l

J Iγ ⟨FmF, J Iγ|δ(Ω−Ω1)I(1)0 1 + δ(Ω−Ω1)I(1)0 2)|FmF, J I′γ′⟩, (B.1)
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Figure B.3. The cluster-cluster ortho-para transitions with line strength cutoff at
10−3 Debye2. The top-left panel shows the cluster-cluster ortho-para transitions between
J = 46 and J = 47. The lower-right panel shows the corresponding ortho-ortho and para-para
transitions with the line strength on the same order of magnitude.

where Ω1 and Ω2 are the Euler angles for positions of H1 and H2 atom, aFmF l
J Iγ is the

ortho-para mixing coefficients. The hyperfine basis functions are given by

|FmF, J Iγ⟩ =
√

2F + 1 · (−1)J−I+mF

 J I F
m mI −mF

 |Jmγ⟩|ImI⟩, (B.2)

with rovibrational basis function from TROVE

|Jmγ⟩ = ∑
k

∑
v

C Jmγ
kv |Jkm⟩|v⟩, (B.3)

and the derived nuclear spin functions

|ImI⟩ =
√

2I + 1 · (−1)mI ∑
mI1 ,mI2

 I1 I2 I
mI1 mI2 −mI

 |I1,mI1⟩|I2,mI2⟩. (B.4)
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B Hyperfine interaction in rotational chiral states of hydrogen sulfide

The nuclear spin density has the final form of

ρ =
√

6 · 2J + 1
16π2 ∑

I,I′
∑
γ,γ′

∑
mI ,mI′

∑
k,k′

aFmF l
J Iγ

∗
aFmF l

J Iγ · (−1)I+I′(2F + 1)
√
(2I + 1)(2I′ + 1) J I F

m mI −mF

 J I′ F
m mI′ −mF

 I 1 I′

−mI 0 mI′


C Jmm′γγ′

kk′ D J
mk(Ω1)D J

m′k′
∗
(Ω1)(−1)I+I′−mI

I1 I I2

I′ I′1 1


+C Jmm′γγ′

kk′ D J
mk(Ω2)D J

m′k′
∗
(Ω2)(−1)2I−mI

I2 I I1

I′ I′2 1


 ,

(B.5)

where C Jmm′γγ′

kk′ = ∑
v

C Jmγ
kv
∗
C Jm′γ′

k′v′ , and D J
mk is the Wigner rotation matrix elements.
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Acronyms

CBS complete basis set.

CC coupled-cluster.

CI configuration interaction.

CW continuous wave.

DFG difference frequency generation.

DLA demodulating logarithm amplifier.

FBG fiber Bragg grating.

FC frequency comb.

FCI full configuration interaction.

FFT fast Fourier transform.

FP Fabry-Pérot.

FTS Fourier transform spectrometer.

GTO Gaussian-type orbital.

HeNe helium-neon.

HF Hartree-Fock.

HNLF highly-nonlinear suspended-core fiber.

HWHM half-width at half-maximum.

InSb indium antimonide.

KEO kinetic energy operator.

MIR mid-infrared.

MO molecular orbit.

MOT magnetic-optical trapping.

NPR nonlinear polarization rotation.

OODR optical-optical double-resonance.

OPA optical parametric amplification.

OPD optical path difference.

OPO optical parametric oscillator.



Acronyms

OPR ortho-para ratio.

PLL phase-locked loop.

PPLN periodically poled Lithium Niobate.

PSD power spectral density.

PZT piezoelectric ceramic transducer.

RF radio frequency.

RIN relative intensity noise.

SA saturable absorber.

SNR signal-to-noise ratio.

TIA transimpedance amplifier.

TROVE theoretical rovibrational energies.
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