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Abstract
As one of the most promising continuous wave (CW) injectors for high brightness electron
beams, ELBE superconducting radio-frequency (SRF) gun has been developed and optimized.
This gun can provide beams with good quality for the ELBE user facility. One important
aspect is to measure the transverse emittance accurately and efficiently. This thesis contributes
to the progress in this field and focuses on measuring and optimizing the transverse emittance
for ELBE SRF gun. The slit-scan, quadrupole scan, and an advanced thermal emittance
measurement method, called single shot cathode transverse momentum imaging, have been
studied and applied at this SRF gun.

A fast slit-scan emittance measurement system consisting of a continuously moving slit and
a yttrium aluminium garnet (YAG) screen has been developed. During the beamlet image
processing, the machine learning (ML) algorithms have been integrated in order to improve
the signal-to-noise ratio effectively. This is the first time to successfully apply the ML in such
diagnostic methods. The measurement speed is improved about ten times and accuracy is also
better than before. The errors of slit-scan emittance measurement, arising from slit position,
beamlet intensity, center position and root mean square (RMS) width uncertainties, have been
analyzed. The quadrupole scan emittance measurement method has been studied too. The
influence of the space charge effect on quadrupole scan results has been revealed. The error of
the quadrupole scan measurement has also been analyzed.

To compensate the transverse emittance due to space charge effect, a superconducting (SC)
solenoid is placed as close as possible to the exit of the SRF cavity. Another important part in
this thesis is the investigation and optimization of the SC solenoid. The spherical aberration
of the SC solenoid has been analyzed. In order to decrease it, a new yoke geometry of SC
solenoid for the next generation SRF gun has been designed. The multipole transverse field
modes of the solenoid caused by an axis tilt have bean analyzed by means of simulations and
experimental investigations using a formalism fitting method. The influences of the multipole
modes, especially the quadrupole and sextupole fields on transverse emittance have been
calculated. A pair of a normal quadrupole and a skew quadrupole, called correctors, have been
adopted to compensate the influence of the quadrupole field on the emittance.

The cathode intrinsic emittance can contribute a non-negligible part to the transverse emittance.
So in this thesis the cathode intrinsic emitttance is measured too. The single shot transverse
momentum imaging method has been used to measure the cathode intrinsic emittance. A
further advantage is that this method allows to determine the transverse momentum locally at
different positions on the cathode.



Kurzfassung
Supraleitende Hochfrequenz-Elektronenquellen (SRF) stellen ein besonderen Typ der Elektro-
neninjektoren für die Erzeugung von Elektronenstrahlen mit hoher Brillanz dar, die ausserdem
im kontinuierlichen Modus (CW) betrieben werden können. Eine solche SRF Gun mit hoher
Brillanz bietet das Helmholtz Zentrum Dresden Rossendorf (HZDR) für den Nutzerbetrieb an.
Ein wichtiger Aspekt ist die genaue und effiziente Messung der transversalen Emittanz. In
dieser Arbeit werden daher Messungen an Slit-Scan und Quadrupol-Scan durchgeführt. Ebenso
wird ein neuartiges Verfahren zur Messung der thermischen Emittanz an der HZDR SRF Gun,
die so genannte Single-Shot-Transversalimpulsmessung, untersucht.

Ein schnelles und verbessertes Slit-Scan-Emittanzmesssystem, das auf einem sich kontinuierlich
bewegenden Spalt und einem Leuchtschirm aus Yttrium-Aluminium-Granat (YAG) basiert,
wurde im Rahmen dieser Arbeit entwickelt. Dafür wurde erstmals ein künstlichen Intelligenz
(Machine learning) Alghorithmus in der Bildverarbeitung dieser Messmethode angewendet um
Effizienz und Genauigkeit zu erhöhen. Der Gesamtfehler der Slit-Scan-Emittanzmessung, der
sich aus den Fehlern der Position des Messspalts, der Beamlet-Intensität, der Mittelposition
und der quadratischen Mittelwertsbreite (RMS) ergibt, wurde ebenfalls ermittelt. Bei diesem
Verfahren werden die Einflüsse von Spaltbreite und Raumladungseffekt auf die Emittanz
bewertet. Das Quadrupol-Scan-Emittanz-Messverfahren wurde zusätzlich untersucht und der
Einfluss des Raumladungseffekts auf dessen Ergebnisse wurden diskutiert. Basierend auf einem
magnetischen Strahlkorrektur und einem YAG-Bildschirm wurde eine einfache Methode zur
Kalibrierung der Quadrupolstärke erfolgreich angewendet. Auch hier wurde der Messfehler des
Quadrupolscans erfasst und analysiert.

Ein wichtiges Bauteil für die Verbesserung der transversalen Emittanz repräsentiert die supralei-
tende (SC) Solenoid-Linse. Ein zentraler Teil der Dissertation ist die Untersuchung und
Optimierung dieses Solenoids. Dessen Öffnungsfehler wurde gefunden und daraufhin wurde
eine öffnungsverkleinerung durch die Optimierung der Eisenjochgeometrie durchgeführt. Mit
Hilfe von Computersimulation und experimentellen Messungen wurden die transversalen Multi-
polfelder mit einer neuen Methode ermittelt und ausgewertet. Die Ursache der Multipolfelder ist
eine verkippte Mittelachse des Solenoids. Der Einfluss der Multipolkomponenten, insbesondere
der Quadrupol- und Hexapolfelder, auf die transversale Emittanz wurden erfolgreich untersucht.
Um den ungewünschten, negativen Effekt des Solenoids zu kompensieren, wird ein Quadrupol-
Korrektorpaar, welches aus einem normalen und einem um 45° verdrehten Quadrupol besteht,
angewendet.

Die Kathodeneigenstrahlung trägt einen erheblichen Teil zur Queremission bei und wird im
Rahmen dieser Arbeit ebenfalls ermittelt und gemessen. Um die Strahlemittanz bei niedriger Pul-
sladung und die intrinsische Emittanz zu messen, wurde die Single-Shot-Transversalimpulsmessung
angewandt. Der Transversalimpuls lässt sich mit dieser geeigneten Methode an unterschiedlichen
Stellen auf der Kathode lokalisieren und bestimmen, welches ein bedeutender Vorteil dieser
Methode ist.
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Chapter 1

Introduction

Since the concept of synchrotron was first developed by Ed McMillian and Vladimir Veksler
in 1945 [1, 2], dedicated synchrotron facilities have been built to generate tunable beams of
electromagnetic radiation from the far infrared (IR) to the hard x-ray range. As a standard
value to evaluate the quality of the synchrotron facility, the term brilliance is defined as

Brilliance = photons/second
(mm2 source area)(mrad)2(0.1% bandwidth) (1.1)

giving the number of photons per second per unit bandwidth (0.1 %) passing through a unit
source area and unit solid angle [3]. The analogous figure of merit for charged particle beams is
[4]

Brightness ∝ Ip

εxεy
, (1.2)

where Ip is the peak current of the beam, εx and εy are the beam emittances in the transverse
planes and will be defined in section 2.2 of this thesis. People pursue the high brightness and
coherence synchrotron radiation sources, because they provide outstanding tools to probe the
structures and properties of materials with extreme precision in time and spatial resolution [5].
Four generations of radiation sources have been developed during the last several decades, increas-
ing the peak brilliance from 1013 B.U. (B.U. = Brilliance unit = photons/s/mm2/mrad2/0.1%
BW) on the basis of storage rings to 1033 B.U. based on free electron lasers (FEL) [6, 7, 8, 9, 10].

The FEL is based on a linear accelerator applying the interaction between the relativistic
electron beam and the radiation field as the beam is passing through a periodic magnetic
structure [11], and has transverse coherence, and extremely high temporal coherence. Generally,
the linac-based FELs consist of an electron injector, the main linear accelerator with bunch
compressors, and the undulators or wigglers. It is known that the emittance and bunch charge
play a critical role in FELs to increase the brightness. Additionally, from uncertainty principle,
the minimally achievable radiation wavelength, λmin, has a limitation coming from the beam
transverse normalized emittance, εn, as εn ≤ λminγ/(4π) [12, 13]. Here, for a good interaction
of electron and photon beams it is required that the emittance of both beams are equal, and
the emittance of the diffraction limited laser beam has been calculated from the uncertainty
principle. However, the normalized emittance can not decrease in the accelerator from the
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injector to the end. It will stay as a constant if the beam has a reversible process, or increase if
the beam goes through an irreversible process [14]. So an excellent electron injector with high
bunch charge and low emittance is necessary for FELs.

At present, direct current (DC) guns , normal conducting radio frequency (NCRF) guns and
superconducting radio frequency (SRF) guns are the main candidates for electron injectors
of FEL facilities. The DC gun can work in a reliable CW mode with high average current,
up to 65-75 mA [15, 16, 17]. But the limitation is the DC voltage applied to the acceleration
gap, up to 500 kV [18], which limits the electric field on the cathode and causes a faster beam
emittance growth compared with higher fields. Compared to DC gun, the NCRF gun has a
better performance, i.e. higher peak current, up to 100 A, higher beam energy, and lower
emittance for given bunch charge [19]. But due to the ohmic wall losses in NC cavities, the
water cooling limits the average RF power used for acceleration. The gun can only work at a
low duty-cycle pulsed mode or at lower gradient in CW mode, ∼ 0.8 MeV beam energy at gun
exit [20]. The SRF gun has significant lower RF losses in the cavity, which means that this gun
has the potential to operate at a high duty-cycle or CW mode with high accelerating gradient,
so that it has the ability to provide beams with high bunch charge [21]. However, the SRF gun
also has some challenges, such as the cavity processing, high quantum efficiency (QE) and long
lifetime photocathodes, and the risk of cavity contamination [22, 23, 24]. To reduce the risk of
cavity contamination and the cathode cooling problem in SC cavities, the hybrid gun, DC-SRF
gun, has been developed. But in this gun the limitation is still the DC voltage [24, 25].

Located at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) the radiation source ELBE operates
a linac-based FEL radiation center. This user facility is open for international researchers and
provides multiple secondary beams, both electromagnetic radiation and particles. The ELBE
linac can operate in reliable CW mode for high average output power with two superconducting
linac modules. It has two CW electron sources, a thermionic DC gun [26] and a SRF gun
[27]. The DC gun operating at 235 kV voltage delivers beams with bunch charges up to 77
pC (maximum 100 pC) at 13 MHz repetition rate and about 450 ps length serving for the
IR-FELs and other radiation production. The transverse normalized emittance is 10 mm · mrad
in this operating case. However, some new challenging applications, for instance, the neutron
time-of-flight experiments [28], high power THz experiments [29] and Thomson backscattering
experiments [30] require beams with higher bunch charge. The advantage of a higher bunch
charge is an improved signal-to-noise ratio and an increased intensity of the secondary radiation.
For that reason the SRF gun has been developed and is now routinely applied for user operations
at ELBE delivering bunches with up to 250 pC charge.

To improve the performance of the SRF gun, many efforts have been done in various fields:
the cathode QE and lifetime, laser distribution and stability, RF stability, solenoid emittance
compensation, and user beamline transport [27, 31, 32, 33, 34]. However, to access to a
better performance and beam quality, besides the former work, the beam transverse emittance
optimization is urgent. An effective and accurate emittance measurement and data analysis
system is needed. Further studies of solenoid fields and their influence on emittance are
necessary. A reliable intrinsic emittance map is helpful for the cathode research at the SRF
gun.

In this thesis, the beam transverse emittance is optimized further from decreasing the SC
solenoid spherical aberration, and correcting the multipole fields from the solenoid, especially
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the quadrupole field. A fast slit-scan transverse emittance measurement system is built. To
improve the accuracy and efficiency of the beamlet images processing, two algorithms based on
machine learning are applied. The traditional method, quadrupole scan, is also analyzed. The
single shot transverse momentum imaging is adopted to map the cathode intrinsic emittance.

The thesis is organized as the followings. Chapter 2 will introduce the basic linear concepts in
accelerator physics. The main emittance sources are analyzed in this chapter. An overview of
the SRF gun-II photo injector, including the cavity, cryomodule, RF system, cathodes, laser
system and the diagnotic beamline is given in Chapter 3. The topics about the SC solenoid field
aberrations including spherical aberration and multipole fields are analyzed in Chapter 4. The
influence of spherical aberration and multipole fields from the SC solenoid on the transverse
emittance is analyzed. To decrease the influence of spherical aberration, a new SC solenoid by
extending the yoke and radius is designed. Additionally, a compact and reliable measurement
method of solenoid fields and the simulation of this method in Comsol Multiphysics are given
in this chapter. Three transverse emittance measurement methods, including quadrupole scan,
slit-scan, and single shot transverse momentum imaging for the cathode intrinsic emittance
measurements will be analyzed in theory and simulations in Chapter 5, and the experiment
results will be given in Chapter 6. In the end, Chapter 7 will give the conclusions and outlook.



Chapter 2

Theory

2.1 Linear beam dynamics of charged particles

In a 3-D space, we need a 6-D phase space, (x, ẋ, y, ẏ, z, ż), to describe the motion of one
electron, which is determined by Newton’s second law as well known. Here the dot means
the first derivative with respect to time. However, in accelerator physics one prefers to use a
coordinate system which is easily adopted to the requirements of the design and analysis of
particle accelerator systems. Thereby the z coordinate is in beamline direction, whereas x and
y describe the transversal ones. Furthermore a central or reference trajectory and a reference
particle with the momentum p0 is defined. In a curved beamline this coordinate system is
moving so that the z component is always the tangent of the reference trajectory. In these
accompanying coordinates the motion of a particle is given by the vector

X =



x
x′

y
y′

∆z
δ


, (2.1)

where x′ = px/p0, y′ = py/p0 and δ = ∆p/p0. ∆p is the individual particle momentum difference
from p0, and ∆z specifies the relative z position with respect to the reference particle.

In this thesis the focus will be on the examination of the transverse particle dynamics. It will
be assumed that the transverse and longitudinal motions are independent, which allows us
to reduce the vector in Eq. 2.1 to four components in the further treatment. If there is no
coupling between x and y, the two directions can be considered separately and the complexity
can be further reduced.

The motion of charged particles in electromagnetic fields results from the Lorentz force. For an
electron the Lorentz force can be written as

F⃗ = eE⃗ + e(v⃗ × B⃗), (2.2)
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where e is the electrical charge, v⃗ is the electron velocity vector, E⃗ and B⃗ are the electric field
vector and the vector of the magnetic flux density, respectively. Assuming there is no electric
field (such as no cavity), and only a magnetic field with components in the transverse plane,
then the equation of motion is

m0γv2κ⃗ + e(v⃗ × B⃗) = 0, (2.3)

where γ is the Lorentz factor, m0 is the electron rest mass, and κ⃗ = (κx, κy, 0) is the local
curvature vector of the trajectory with

κx,y = 1
ρx,y

, (2.4)

where ρx,y is the local bending radius of the trajectory. In the orthogonal coordinate system,
B⃗ = (Bx, By, 0) and for linear beam dynamics, only the zero and the first order of the magnetic
fields are considered, such as:

Bx = −Bx0 + gy + O(2)
By = By0 + gx + O(2),

(2.5)

where By0 and Bx0 are the dipole fields in horizontal and vertical directions, respectively, and
g denotes the field gradient of normal quadrupole. Then with p = γm0v

κx = e

p
By = κ0x + kx + O(2)

κy = −e

p
Bx = κ0y − ky + O(2).

(2.6)

So the equations of motion in the transverse directions can be obtained:

u′′ = −(1 + κ0uu)κu + κ0, (2.7)

where u represents x or y, κ0u is κ0x or κ0y, κu is the given as κx or κx. Combining the
equations above and ignoring the high order terms, linear equation of motion or Hill equation is

u′′ + Ku = 0, (2.8)

where K = k + κ2
0x or K = −(k − κ2

0y), named the focusing function. This is a linear differential
equation and the solutions can be written as:[

u(z)
u′(z)

]
= M(z | 0)

[
u0
u′

0

]
, (2.9)

M(z | 0) =



 cos
√

Kz sin
√

Kz√
K

−
√

K sin
√

Kz cos
√

Kz

 , K > 0, focusing[
1 z

0 1

]
, K = 0, drift space cosh

√
−Kz sinh

√
−Kz√

−K√
−K sinh

√
−Kz cosh

√
−Kz

 , K < 0, defocusing

(2.10)
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In the beamline, different elements have different matrices and their impact on the beam can be
obtained by multiplication with these matrices. This method is very efficient and widely used in
the beam transport analysis and design. There exists a strong condition that the determinant
of the matrix is equal to one. This is a property coming from Eq. 2.8. Assuming that two
independent solutions u1(z) and u2(z) of Eq. 2.8 form the Wronskian

W (z) ≡ u1u′
2 − u2u′

1. (2.11)

W (z) is a constant because of W (z)′ = 0. Performing a little expansion of Eq. 2.9:[
u1 u2
u′

1 u′
2

]
z

= M (z | z0)
[

u1 u2
u′

1 u′
2.

]
z0

(2.12)

and calculating the determinant on both sides of this equation, then det(W (z)) = det(W (z0))
and

det(M) = 1, (2.13)

because W (z) is constant. The reason is that Eq. 2.8 satisfies the symplectic condition in
mathematics [35]. This rule is essential, and will be discussed again in the next section dealing
with the emittance concept.

2.2 Courant-Snyder formalism and emittance

In the Hill Eq. 2.8, the focusing function K(z) is assumed to be a periodic function. In this
case a solution can be written as:

u(z) =
√

εβ(z) cos (θ(z) + θ0) . (2.14)

This equation is the widely used Courant-Snyder formalism, and the parameters in it have their
physical meanings: β(z) is related to the amplitude of u at position z, and θ(z) is the phase
function. The quantity ε is a constant and can be calculated from the initial condition. When
Eq. 2.14 is inserted in Eq. 2.8, one obtains:

1
2

(
ββ′′ − 1

2β′2
)

− β2θ′2 + β2K = 0,

β′θ′ + βθ′′ = 0.

(2.15)

From Eq. 2.15, it is obvious that β′θ′ + βθ′′ = (βθ′)′, and then

βθ′ = constant. (2.16)

Let us normalize this constant to be 1, and θ can be obtained from the β(z) function:

θ(z) =
∫ z

0

dz′

β (z′) . (2.17)

It gives a method to determine the phase advance along the beamline at local position z and
also the local betatron oscillation wavelength is obtained by 2πθ(z). When we use Eq. 2.16 in
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the first Eq. 2.15, it shows that β(z) is only related to K and can be determined from

1
2ββ′′ − 1

4β′2 + β2K = 1. (2.18)

Return to Eq. 2.14, the first derivative is

u′ = 1
2β′

√
ε√
β

cos (θ + θ0) −
√

ε

β
sin (θ + θ0) . (2.19)

Then these two functions are defined as:

α = −1
2β′

γ = 1 + α2

β
.

(2.20)

One notes that β · γ − α2 = 1. Combining Eq. 2.15 and Eq. 2.19, one can obtain:

u2 +
(
βu′ + αu

)2 = εβ (2.21)

or equivalently
γu2 + 2αuu′ + βu′2 = ε. (2.22)

The quantities β, α, and γ are named as Courant-Snyder parameters or the Twiss parameters.
It is clear that the Eq. 2.22 is an ellipse function in the (u, u′) plane and the area of this ellipse
is defined as ε, named as emittance: ∫

ellipse
du du′ = πε. (2.23)

There is another way to derive Eq. 2.22, which is from the continuity equation in phase space.
Ref. [36] gives further information of this method.

In phase space, according to Liouville’s Theorem [35], the volume in 6-D phase space, together
with all the particles contained in the volume, is a constant. In transverse phase space, i.e.
in the 4-D phase space (x, x′, y, y′), the emittance is a constant. The emittance conservation
is ensured by Eq. 2.13 during the evolution of the beam along the beamline. However, in
(x, x′, y, y′) the transport matrix is a 4-D matrix rather than a 2-D matrix. The emittance in
4-D phase space is conserved if and only if the determinant of the whole matrix is one. As the
particles move, the shape of their ellipse evolves, but the emittance remains constant. Fig. 2.1
shows the ellipse in phase space with the coresponding Courant-Snyder parameters.

To compare the emittance of a beam with changing energy, the emittance can be replaced by
the normalized emittance, which is defined as

εn = p0
m0c

ε, (2.24)

and is independent of energy. c is the speed of the light.

In linear beam dynamics, the particles motion is determined by ε and start phase θ0. Considering
a normalized particle distribution of (u, u′), which has a uniform distribution of θ0 and Gaussian
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Fig. 2.1 Phase space ellipse. u and u′ are x and x′ or y and y′. ε is the beam geometric
emittance, α, β and γ are the Twiss parameters as the former definitions.

distribution in (u, u′):

Ψ
(
u, u′) = 1

2πεrms
exp

(
− ε

2εrms

)
= 1

2πεrms
exp

(
−γu2 + 2αuu′ + βu′2

2εrms

)

= 1
2πεrms

exp
[
−u2 + (αu + βu′)2

2βεrms

]
,

(2.25)

here εrms is named beam RMS emittance, and∫ ∞

−∞

∫ ∞

−∞
dudu′Ψ

(
u, u′) = 1. (2.26)

Then one can calculate the second moments of this distribution and obtains:〈
u2
〉

=
∫ ∞

−∞

∫ ∞

−∞
dudu′u2Ψ

(
u, u′) = βεrms〈

uu′〉 =
∫ ∞

−∞

∫ ∞

−∞
dudu′uu′Ψ

(
u, u′) = −αεrms〈

u′2
〉

=
∫ ∞

−∞

∫ ∞

−∞
dudu′u′2Ψ

(
u, u′) = γεrms,

(2.27)

where the ⟨ ⟩ is the average over the distribution. So:

ε2
rms =

〈
u2
〉〈

u′2
〉

−
〈
uu′〉2 . (2.28)
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The average of ε is:
⟨ε⟩ =

∫ ∞

−∞

∫ ∞

−∞
dudu′εΨ

(
u, u′)

= γ
〈
u2
〉

+ 2α
〈
uu′〉+ β

〈
u′2
〉

= 2εrms.

(2.29)

The beam RMS emittance is the half of the average beam emittance. Defining σu =
√

⟨u2⟩ as
the beam envelope and apply this in Eq. 2.22 yields:

d2σu(z)
dz2 + K(z)σu(z) = ε2

rms
σ3

u(z) . (2.30)

This is the first order beam envelope equation ignoring the no-linear factors influence. One
can define σ11 =

〈
u2〉, σ12 = ⟨uu′⟩, and σ22 =

〈
u′2〉. The covariance matrix of the beam in

transverse phase space can be presented as:

Σrms =
[

σ11 σ12
σ12 σ22

]
= εrms

[
β −α
−α γ

]
. (2.31)

From the definition of an ellipse in n-dimensions [36], and combining Eq. 2.22 with Eq. 2.9,
finds that the evolution of the matrix Σrms from P0 to P1 can be calculated by:

Σ1,rms = MΣ0,rmsMT , (2.32)

where M is the transport matrix from P0 to P1 and the superscript T means the transposed
matrix. Although the treatment here is in 2-D, it can be extended to 4-D and 6-D treatments
in linear beam dynamics.

2.3 Emittance sources in photo injectors

As discussed in the former section, the beam emittance is a conserved quantity in linear beam
dynamics. However, after the photoelectrons are emitted from a cathode, the beam emittance
increases during traveling through the injector due to non-linear effects. Fig. 2.2 shows the
sources and process of emittance generation from the cathode through the injector [37].

This section gives an overview of the main sources of beam emittance growth in a photo injector.
All components of the photo injectors, e.g. the photocathode, the RF cavity, as well as the
gun solenoid, contribute. In this process, from the physical processes six main sources can be
identified:

• cathode intrinsic emittance,

• RF field emittance,

• rough surface emittance

• space charge emittance,

• beam momentum spread emittance,
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Fig. 2.2 Emittance evolution from the cathode through the photo injector. In the cathode, the
material properties and the outside electric field determine the intrinsic emittance. Adding the
surface roughness, it generates the rough surface emittance. Outside the cathode, the surface
roughness and the modulated electric field causes the applied field emittance. In the range of
micrometers to the millimeters from the surface, two more additional emittance contributions,
such as the image charge emittance and the space charge emittance due to non-uniform emission
and clustering, are generated influenced by the cathode emission properties, the transverse
density modulation the rough surface, and the 3D laser shape. Also the bunch distribution
is influenced by the transverse density modulation, the cathode emission properties, and the
3D laser shape. In the further range, of millimeters and beyond, the emittances due to optical
aberrations, space charge and due to other effects arise and are determined by the bunch
distribution, the non-linear focusing and alignment errors.

• solenoid aberrations and multipole fields induced emittance.

The first four sources will be discussed in detail in this section. The last two belong to the
main investigations of this thesis and will be analyzed in detail in the Chapters 3 to 5.

2.3.1 Cathode intrinsic emittance

There are several methods to generate electrons from a cathode, such as thermionic emission
[38], field-emission [39], and photo emission [40]. In a photo injector like the ELBE SRF gun
the photo emission process is used, and the beam is generated from a metal (such as Cu, Mg)
or semiconductor material (such as Cs2Te) driven by an ultraviolet (UV) laser. The interaction
of the laser with the cathode material and the electron emission process can be described in
three steps, named Spicer’s three-step model [40]. In this model, the first step is the photon
absorbtion by electrons and the electrons jump into high-energy states. Then, the electrons at
high-energy states move to the material surface. The last step is that the electrons escape into
the vacuum if their energy is high enough. The effective work function depends on the material
work function and its reduction by the Schottky effect due to the external field. At the cathode
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surface the normalized emittance εn has no correlation term:

εn = 1
m0c

√
⟨x2⟩ ⟨p2

x⟩ − ⟨xpx⟩2 = σx

√
⟨p2

x⟩
m0c

. (2.33)

We can define the dimensionless RMS momentum

σpx =
√

⟨p2
x⟩

m0c
, (2.34)

then the normalized emittance becomes

εn = σxσpx . (2.35)

In theory, σpx can be calculated for a metal as [41]:

σpx =
√

~ω − φeff
3m0c2 , (2.36)

where ~ω is the energy of the photons, and φeff is the effective work function.

2.3.2 RF emittance

In a RF cavity, the longitudinal electric field accelerates the electrons, whereas the electric radial
component and the magnetic azimuthal component cause transverse forces on the electrons.
Thereby the strongest contribution comes from the electric field at the cavity irises. Especially
the exit iris acts as a strong defocusing lens. The time-dependence of the RF field causes
different defocusing of the individual slices in the electron bunch and therefore increases the
projected emittance by [37, 42]:

∆εn,rf = eErf

2m0c2 σ2
xσφ

√
cos2 φe +

σ2
φ

2 sin2 φe, (2.37)

where Erf is the peak electric field of the cavity on axis and φe is the relative phase of the
electron and the RF waveform when the electron arrives the exit of the cavity. σx and σφ are
the beam RMS size and the bunch length in radian unit.

2.3.3 Rough surface emittance

The practical cathodes have bumps and hollows on the surface rather than smooth surface.
These micro structures destroy the uniformity of the applied electric field on the cathode,
and increase the local field enhancement factor and introduce the unexpected transverse field.
The additional emittance resulting from these factors is the cathode rough surface emittance,
evaluated as [43]:

∆εE
roughness = σlaser

√
XgE

3m0c2 , (2.38)
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(a) (b)

Fig. 2.3 Beam with transverse uniform distribution (a) z-r 2-D distribution of space-charge
force, (b) 1-D distribution of space-charge force vs beam radius.

where σlaser is the laser spot RMS size on the cathode, Xg is the geometry factor related to the
cathode roughness, E is the electric field amplitude.

2.3.4 Space charge effect emittance

The charged particles in a beam produce their own electromagnetic field, mentioned as the
self-field. In electron injectors where the particle energy is still relatively low and the particle
density is moderate, the dominant effect comes from the average Coulomb forces caused by
the charge distribution of the beam. This effect is called the space charge effect. In order
to estimate the strength of the space charge effect, the radial force on an electron inside a
cylindrically-symmetric beam with an uniform or Gaussian [44] charge distribution can be
calculated. For the uniform distribution with the longitudinal charge density λ0, and radius a,
the force is

Fr = λ0e

2πϵ0a2 r − µ0v2λ0e

2πa2 r

= λ0e

2πϵ0a2 r(1 − β2) = λ0e

2πϵ0a2γ2 r (r 6 a),
(2.39)

Fr = λ0e

2πϵ0a2 r(1 − β2) = λ0e

2πϵ0γ2r
(r > a), (2.40)

where β and γ are the Lorentz factors. ϵ0 and µ0 are the vacuum permittivity and vacuum
permeability. Fig. 2.3 gives a radius space charge force distribution according to Eq. 2.39 and
Eq. 2.40. For a Gaussian distribution, such as:

ρ(r, z) = Q

(
√

2π)3σzσ2
r

e−z2/2σ2
z e−r2/2σ2

r , (2.41)
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(a) (b)

Fig. 2.4 Beam with transverse Gaussian distribution (a) z-r 2-D distribution of space-charge
force, (b) 1-D distribution of space-charge force vs beam radius.

the force is then

Fr = e

2πϵ0γ2
Q√
2πσz

e−z2/2σ2
z

[
1 − e−r2/2σ2

r

r

]
, (2.42)

where Q is the bunch charge, σr and σz are the beam RMS size in radial and longitudinal
directions, and the space charge force distribution is shown as Fig. 2.4. It can be seen that
the radial space charge force decreases with γ2. Thus near the cathode, the space charge effect
is more serious than out of the cavity. Some investigations on the space charge emittance
increase near the cathode due to non-uniform emission have been done at SLAC [37]. They
developed a model to study the emittance growth due to the space charge. In this model, the
beam with radius R is separated into small round beamlets with radius r0 and arranged in a
rectangular transverse pattern. The distance between the beamlets center is 4r0. The space
charge emittance is given as:

∆εn,sc = σx
4r0√
πR

√
Ip

I0
, (2.43)

where the Ip is the bunch peak current, and I0 is the characteristic current which has a value
of about 17 kA.

2.4 Simulation tools

2.4.1 ASTRA

In the thesis, one simulation tool, A Space Charge Tracking Algorithm (ASTRA) [45], is applied
to study the beam dynamics. In ASTRA, different initial distributions of the macroparticles
can be generated with various standard parameters. The users can input the external fields to
build standard elements, such as cavities, solenoids, quadrupoles, and other components. The
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grids are overlaid upon the macroparticles distribution. In most cases, the cylindrical symmetry
in the space charge calculation is used to save computing time. However, for the beam with
unsymmetric distribution, 3-D grids provide accurate results at the cost of more computing time.
Maxwell’s equations are solved in the grids based on a nonadapitve Runge-Kutta integration
of 4th order. Then the Lorentz force is adopted to every macroparticle to calculate the next
simulation time step. The users can decide to switch on and off of space charge effect in the
simulation. The 6-D parameters of the macroparticles in Cartesian coordinates and the beam
properties parameters, such as emittance, energy, energy spread, bunch duration and so on are
recorded in files for further processing.

2.4.2 COMSOL Multiphysics

In this thesis, the study of the solenoid field analysis is carried out with COMSOL Multiphysics
[46]. It is a kind of finite element analysis software used in all fields of engineering, manufacturing,
and scientific research. The module AC/DC, which can simulate low-frequency electromagnetics
and electromechanical components, is applied in the solenoid field simulation. In general, six
types of models can be selected to build the object profile, including 0-D, 1-D axisymmetric,
1-D and 2-D axisymmetric, 2-D, and 3-D. The symmetric settings can improve the calculation
efficiency. The magnetic field part in the AC/DC module can compute magnetic fields and
induced current distributions in and around coils, conductors, and magnets. The stationary,
frequency-domain, small-signal analysis and time-domain modeling are supported in 2-D and
3-D. The physics interface solves Maxwell’s equations using the magnetic vector potential.



Chapter 3

SRF photo injector at ELBE

3.1 Overview

From 2007 to 2014, the first SRF gun was developed and operated as the second CW injector
for high bunch charge [47] at ELBE radiation center. The first version of SRF gun, called
SRF gun I, was able to inject beams into the ELBE linac in the beginning of 2010 [48]. The
basic components of the gun are a 1.3 GHz fine grain niobium cavity consisting of three cells
with the TESLA cell shape and one velocity optimized half cell with a choke filter, a normal
conducting photocathode, an UV drive laser, an a normal conducting solenoid in the beamline
nearby the gun. An updated UV drive laser was installed in 2012. This laser can deliver pulses
at four repetition rates, 13 MHz for low bunch charges as well as 500, 250, and 100 kHz for
high bunch charges, which fulfills the application of FEL operation at ELBE. In 2013, the first
lasing experiment with the far-infrared FEL at ELBE was completed using the beam from SRF
gun I successfully [49]. It showed that L-band SRF guns can work in user facilities, but the
performance should be improved.

The second version of the SRF gun, called SRF gun II, was installed at ELBE in 2014. This
gun has an improved Nb cavity with higher performance and a superconducting solenoid which
is situated close to the cavity inside the gun cryomodule. At present, SRF gun II can work
stably with an acceleration gradient of 8.0 MV/m which corresponds to 20.5 MV/m peak field
on axis. The beam exits the gun with a kinetic energy of 4 MeV. Tab. 3.1 gives the main
parameters of SRF gun I and SRF gun II. After further improvements and optimizations, SRF
gun II is working with high performance and stability for THz radiation production at ELBE
since 2016 [27]. The work presented in the thesis is part of this optimization for SRF gun II.

This chapter will give a general view of SRF gun II from the following five parts: 1. cavity;
2. cryomodule; 3. RF system; 4. cathode and drive laser system; 5. diagnostic beamline and
connection to ELBE linac.
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Table 3.1 SRF gun I and SRF gun II main parameters.

Parameters Values
gun I gun II

Type of cavity ellipical 3.5 cells
Frequency 1.3 GHz

Gun operation mode CW
Beam kinetic energy at gun exit (MeV) 3.0 4.0

Acceleration gradient Eecc (MV/m) 6 8
Peak field on axis (MV/m) 16.2 20.5

Cathode field (MV/m) 7 14.5
DC bias at cathode (kV) -5

Liquid He temtuperature (K) 2
Dynamic He load at max. Eacc (W) - 10

Derive laser wave length (nm) 262
Photo cathodes Cs2Te Mg and Cs2Te

Quantum efficiency (%) 1 0.1-0.3 and 1

3.2 Cavity

As a core part of the SRF gun II, the 3.5 cell cavity was fabricated and tested in Thomas
Jefferson National Accelerator Facility (TJNAF). The final RF performance is Q0 ≈ 8 · 109

for Eacc = 14 MV/m in 2013 [50]. In May 2014, after installing in HZDR, the values are
Q0 ≈ 5 · 109 for Eacc = 10 MV/m [32]. At the half cell the field gradient is about 80% of the
peak gradient. To suppress the multipacting emission of the secondary electrons, a DC field
is usually applied on the cathode. Fig. 3.1 shows an example the on-axis DC and RF field
distributions of the cavity.

3.3 Cryomodule

The purpose of the cryomodule is to cool the superconducting Nb cavity down to 2 K and to
enable RF operation in CW mode. Fig. 3.2 shows a computer aided design (CAD) cross section
view of the cryomodule with labeled main components. The vacuum vessel of the cryomodule
is of cylindrical shape with 0.7 m diameter, 1.3 m length and the height with parts on top is
0.9 m. The helium port and the liquid nitrogen (LN) port are on the top of the cryomodule. A
LN reservior keep the thermal shielding at 77 K. A warm magnetic shield, made of µ-metal, is
used to mitigate the background magnetic field in the cryomodule. The cavity is surrounded by
superfluid helium enclosed in a titanium vessel. The helium loading power is up to 40 W (or 2
g/s), in which 7 W are static loss from the finite thermal isolation and up to 33 W are dynamic
loss from the RF. The SC solenoid is located at about 0.7 m downstream of the cathode to focus
the beam, compensate space charge force and thus reduce the transverse projected emittance.

A challenging task is to make the normal conducting photocathode work in the superconducting
environment of the cavity. A sub-cooling system is designed to solve this problem, shown as Fig.
3.3. The photocathode is cooled down with liquid nitrogen to keep it at 77 K during operation.
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Fig. 3.1 Example output of the combined DC and RF field in the cavity used for the tracking
in ASTRA: The average accelerating field was set to 8 MV/m and the DC voltage to -5 kV.
The blue curve is the RF field and red curve is the DC field.

Fig. 3.2 SRF gun II cryomodule.

The cathode is isolated from the cavity and easily exchangeable. Furthermore the cathode can
be adjustable with high precision within an positioning range of ± 0.6 mm with respect to
the cavity for the best RF focusing. Additionally, a DC bias can be applied to suppress the
multipacting which especially occurs at low gradient when the RF is ramped up.
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Fig. 3.3 Photocathode holder and cooling system.

3.4 RF system

The RF couplers of the cavity are one coaxial fundamental mode power coupler (FPC) and two
TESLA type higher order mode (HOM) dampers. The coupling factor of the FPC is fixed from
6 × 106 to 3 × 107. The coupler has two heat sources. One is from the RF loss between the
coaxial and the rectangular waveguide. The other one is the quartz glass window located in the
waveguide to keep the vacuum of coupler free of atmosphere. Some copper thermal anchors are
used between the HOM and the helium vessel in order to improve the heat conduction. Also,
the thermal conductivity between inner conductor of the coaxial line can become higher due to
the sapphire RF feedthroughs of the HOM couplers. These methods can decrease the thermal
drift during the gradient changes and improve CW capability of the cavity.

As a user facility, to guarantee the stability of timing and beam quality generated from the gun,
the RF researchers at ELBE has developed two control system [27, 51]. The first is the analog
low level RF controller to keep the amplitude and phase of RF field stable for acceleration. It is
an active feedback loop. The amplitude control loop stability can reach RMS 2 × 10−4 and the
phase stability RMS 0.01◦ between 10 Hz to 10 MHz. The second is for the synchronization
between the RF system and the derive laser to the ELBE master clock to reduce the locking
noise and jitter.

3.5 Cathode and drive laser system

A robust photocathode with high QE is critical for the beam quality and stability of injector
operation. The ELBE SRF gun II has applied three kinds of cathode materials: Cu, Mg
and Cs2Te [23]. The metal cathodes are not sensitive to the environment and the vacuum
requirement is about 10−9 Torr [52]. The work functions of Mg and Cu are 3.6 eV and 4.6 eV,
respectively [53]. Even for UV light, metal cathodes have low QE, such as 0.2% to 0.3% for
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Mg [54, 55], and in the range of 10−5 for Cu [56]. Compared to metal cathodes, semiconductor
cathodes have high QE, such as Cs2Te has up to 10% using UV light [57]. But semiconductors
require a higher quality of the vacuum, about 10−11 Torr [52]. From 2014 to 2016, the SRF gun
II used a Cu cathode. Then Mg cathodes with higher QE were used to deliver higher bunch
charges for user operation at ELBE. [27]. Since mid-2019, the Cs2Te has been used for user
beam shifts with high bunch charge [58].

The drive laser system for the SRF gun II was developed by Max Born Institute Berlin (MBI),
shown as Fig. 3.4. The infrared laser pulses are generated from the oscillator with repetition
rate of 54 MHz. The pulse selector and Pockels cells are used to couple out the laser pulses
at repetition rate of 13 MHz with 3 ps pulse FWHM length for bunch charge of 77 pC and of
10, 20, 50, 100, 250 and 500 kHz with 5 ps pulse FWHM length for high bunch charges [27].
The laser power is enlarged by the main multi-pass amplifier. After the amplifier, the infrared
laser wavelength is converted from 1048 nm to green with 524 nm by a LBO crystal, and then
to 262 nm by a BBO crystal. The output average laser power is up to 0.5 W with Gaussian
distribution in transverse and with RMS length of 2.3 ps. The distance between the laser table
to the cathode is about 13.5 m. Three sizes of apertures, 0.2 mm, 0.5 mm and 1.5 mm, can
be used to shape the laser, called beam shape aperture (BSA). The ratio of laser size on the
cathode and the aperture size is 2.5. The laser position on the cathode is remote controlled by
a mirror and about 5% of laser intensity is split to a virtual cathode with a CCD camera.

Fig. 3.4 MBI laser system for SRF gun II.
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Fig. 3.5 MBI laser flowchart.

3.6 Diagnostic beamline and connection to ELBE linac

For beam characterization a diagnostic beamline is directly connected to the SRF gun as shown
in Fig. 3.6. This beamline was designed for SRF gun I in 2008 [59], but is still being used for
SRF gun II. A number of upgrades have been performed, especially the no longer needed, heavy
normal conducting solenoid could be omitted. As mentioned before, the cathode part, cavity
and the SC solenoid are combined in the cryomodule. Nearby the gun, at screen station 1 a
retractable Faraday cup allows beam current and dark current measurements. Following the
beam direction, three quadrupoles and a 45◦ bending magnet for beam injection into the ELBE
linac are installed. In the straight direction, the slit-scan emittance measurement system is
situated which consists of the moving slit in screen station 2 and the screen in screen station 3.
A 180◦ spectrometer magnet used for the beam energy measurement is installed after the screen
station 3. Screen station 4 and 5 are in straight and 180◦ directions following the spectrometer
magnet. All screen stations are equipped with a YAG screen, a screen that produces Optical
transition radiation (OTR) and a calibration screen.

Fig. 3.6 The diagnostic beamline of ELBE SRF gun II.



Chapter 4

SC solenoid

4.1 The influence of solenoid field on transverse emittance

As a significant part of an electron injector, a solenoid provides proper focusing and preserves
the beam projected emittance. The normal-conducting injector system has a main focusing
solenoid and bucking coil to zero the longitudinal magnetic field at the cathode position. The
emittance compensation of a focusing field, such as created by a solenoid, was firstly described
by Carlsten in 1989 in simulation [60]. Then Serafini and Rosenzweig expanded this treatment
to bunch plasma frequency explaining the projected emittance oscillations for space-charge
dominated beams in 1997 [61]. Later Ferrario et al. directly observed the emittance oscillations
in experiments and confirmed this theory in 2007 [62]. Rao and Dowell have given a summary of
emittance compensation theory in reference [63]. At ELBE SRF gun group, Hannes Vennekate
studied the emittance compensation for SRF photo injectors using a SC solenoid installed
downstream the cavity in the cryomodule from 2012 to 2017 [64]. Figure 4.1 shows beam
transverse phase space changes during the emittance compensation process along the beamline.

There are three issues we should consider about the solenoid when we use it at the beamline:
chromatic aberration, spherical aberration and the anomalous multipole field of solenoid [63].
They all can increase the beam projected emittance.

4.1.1 Solenoid chromatic aberration

The solenoid’s focal strength depends on the beam energy and the on-axis radial magnetic field
component as defined in the following Eq. 4.1 which is valid in thin-lens approximation:

1
fsol

= 1
4

(
e

p

)2
B2

s Ls. (4.1)
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Fig. 4.1 Beam transverse phase space changes during the emittance compensation at the
beamline. From the cathode, the emittance is small with little divergence, and the space charge
gives different kicks to the slices during accelerating and drifting. The red, green and blue lines
represent the head, tail, and middle slices. x and x′ are the coordinate system in transverse
phase space, and z is the longitudinal direction in which the electron beam drift direction. The
ellipse shows the area of the beam phase space.

Here Ls is the effective length of the solenoid with the definition in Eq. 4.2, e is the electron
charge, and p is the beam momentum, and Bs is the maximum value of the field on axis:

Ls =
∫

B(z)2 · dz

B2
s

. (4.2)

As linear transport theory in the former section, the beam RMS matrix is:

σ ≡
(

⟨x2⟩ ⟨xx′⟩
⟨xx′⟩ ⟨x′2⟩

)
≡
(

σ11 σ12
σ12 σ22

)
. (4.3)

The transport matrix for a solenoid in thin lens approximation is:

Msol =
(

1 0
− 1

fsol
1

)
. (4.4)

After the solenoid lens, the beam RMS matrix is:

σ(s) = MsolσMT
sol =

(
1 0

− 1
fsol

1

)(
σ11 σ12
σ12 σ22

)(
1 − 1

fsol

0 1

)
, (4.5)

and becomes:

σ(s) =
(

σ11 σ12 − σ11
fsol

σ12 − σ11
fsol

σ22 + σ11
f2

sol
− 2σ12

fsol

)
. (4.6)

Considering a momentum spread δp, the derivative of σ(s) with respect to p gives

δσ(s) =

 0 σ11
f2

sol

d
dp(fsol)

σ11
f2

sol

d
dp(fsol) . . .

 δp. (4.7)
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(a) (b)

Fig. 4.2 The solenoid field normalized distribution and the emittance from chromatic aberration
with the energy spread in ASTRA simulation. In simulation, the beam RMS size is 1 mm,
beam kinetic energy is 3.5 MeV, and the solenoid focal length is 1.56 m.

That delivers the extra geometrical emittance

∆εchro =
√

det(δσ(s)) = σ11
f2

sol

d

dp
(fsol)δp; (4.8)

With equation 4.1 into Eq. 4.8 one obtains finally:

∆εchro = 2σ11(e

p
)2B2

s Ls
δp

p
= 8σ11

fsol

δp

p
. (4.9)

From Eq. 4.9, one can find that the emittance due to chromatic aberration is linear with
the momentum spread and with the beam RMS size at the entrance of the solenoid. It is
independent of the detailed solenoid field distribution, if the solenoid focal strength is the
same. The two different solenoid field distributions, shown in Fig. 4.2, where one is from
the older design and the other one is the from the new design as examples, show the same
contributions due to chromatic aberration to the normalized emittance. The new design has a
broader field distribution than the older design. The simulation is based on ASTRA code, and
the parameters are given in the figure caption.

4.1.2 Solenoid spherical aberration

Magnetic lenses can show imaging errors although the particles have a negligibly small mo-
mentum distribution. The reasons are spherical aberrations which are caused from regions of
nonlinear fields in the lens and particle rays with slopes deviate from the paraxial approximation.
The spherical aberration has a third order dependence on the radial position of the particle in
the solenoid. The spherical aberration can be calculated by extending the paraxial trajectory
equation to higher order terms, here for an axisymmetric magnetic field up to third order [4]:

r′′ + κr + κr′2r − κ

(
B′

B

)
r′r2 +

[
κ2 − 1

2κ
(
B′′)] r3 = 0. (4.10)
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In this equation, r is the radial coordinate of the particle; B′ and B′′ are the first and second
derivative of the solenoid longitudinal field respect to z; κ = ( eB0

2m0cγβ )2 = w2
L

β2c2 , B0 is the
maximum interior magnetic field of the solenoid, e and m0 give the electron charge and mass,
c is the velocity of light, β and γ are the relativistic factors. Fig. 4.3 shows the spherical
aberration effect, where r0 is the beam radius at the entrance of the solenoid and ri is the beam
size at the image plane. If one considers a beam with emittance and energy spread, ri can be

Fig. 4.3 Spherical aberrations effect.

written as [65]:

r2
i =

(
ε

r0
fsol

)2
+
(

2r0
∆γ

γ

)2
+
(
CSr3

0

)2
, (4.11)

where ε is the beam emittance, and ∆γ is the beam energy spread. Cs is the spherical aberration
coefficient and can be expressed by:

CS = 1
2

∫
B(z)′2dz∫
B(z)2dz

. (4.12)

The solenoid spherical aberration emittance can be calculated as:

∆εsph = r4
0

2
√

6fsol

√
C2

1
12 + C1C2

5 r2
0 + C2

2
8 r4

0, (4.13)

C1 = Cs

C2 = 5
64

∫
B(z)′′2dz∫
B(z)2dz

.
(4.14)
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(a) (b)

Fig. 4.4 The comparison of the SC solenoid longitudinal field first derivative (a), and the
spherical aberration emittance from ASTRA simulation (b), with new and old designs.

In the right side of Eq. 4.13, compared with the first term, the left terms are much smaller. So
the spherical aberration emittance is of fourth power in the beam RMS size at the solenoid
entrance.

To decrease the influence of spherical aberration, we optimized the yoke of the SC solenoid
at ELBE, and the solenoid longitudinal field is shown as Fig. 4.2 (a). Fig. 4.4 (a) shows
the comparison of the second derivative of the old and new design solenoid longitudinal field.
One can see that the new design decreases the magnitude of the first derivative at the ends
of the solenoid field significantly. In ASTRA simulation, the beam kinetic energy is 3.5 MeV
and the space change is ignored. At the entrance of the solenoid, the beam emittance is set
to zero with Gaussian distribution. The integral B2

z is 1.19 × 10−3 T2 · m for both old and
new design solenoid. Fig. 4.4 (b) shows the spherical aberration emittance of the two designs
at the exit of the solenoid. The parameter of the cubic fitting for the new design is about
half of the value of the old design. In our facility, the beam RMS size for 200 pC is 3 to 4
mm for Gaussian distribution and maximum gradient 20.5 MV/m with phase 55 degrees. So
the spherical aberration emittance of the new design solenoid is 0.85 mm · mrad. The fitting
coefficient decreases by 46 %.

4.2 Solenoid field measurement and analysis

4.2.1 Solenoid field analysis in theory

In the current-free region, the magnetic field must satisfy the magnetostatic equations

▽ · B = 0,

▽ × B = 0.
(4.15)
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Near the axis, the components of an axisymmetric magnetic field (the magnetic field components)
can be written as series expansions

Bz(r, z) = a0(z) + ra1(z) + 1
2r2a2(z) + · · · =

∞∑
n=0

rn

n! an(z), (4.16)

Br(r, z) = b0(z) + rb1(z) + 1
2r2b2(z) + · · · =

∞∑
n=0

rn

n! bn(z), (4.17)

Bφ(r, z) = 0. (4.18)

With the divergence equation and curl equation, one can derive that:

Bz(r, z) =
∞∑

n=0

(−1)k

4k

r2k

(k!)2

[
∂2kBz(0, z)

∂z2k

]
, (4.19)

Br(r, z) =
∞∑

n=0

(−1)k+1

4k

r2k+1

(2k + 2)(k!)2

[
∂2k+1Bz(0, z)

∂z2k+1

]
. (4.20)

The first terms in the expansions give the terms which are usually used:

Bz(r, z) = Bz(0, z) − r2

4

[
∂2Bz(0, z)

∂z2

]
+ · · · (4.21)

Br(r, z) = −r

2

[
∂Bz(0, z)

∂z

]
+ r3

16

[
∂3Bz(0, z)

∂z3

]
+ · · · . (4.22)

From Bz(r, z) equation, the n-th term in the series expansion is a kind of form:

∼ rn

2n
[(

n
2
)
!
]2 [∂nBz(0, z)

∂zn

]
. (4.23)

Ignoring constant factors, it indicates that the ratio of the adjacent terms in the series is rough:

an+2
an

∼ r2

[
∂n+2Bz(0,z)

∂zn+2

]
[

∂nBz(0,z)
∂zn

] . (4.24)

In general, this ratio needs to be less than one for the series to converge. Hence, this provides a
criterion for being ’near’ the axis:

r ≪

√√√√√
[

∂n+2BZ(0,z)
∂zn+2

]
[

∂nBZ(0,z)
∂zn

] . (4.25)

The field region in the next section satisfies this condition.

One method to find the solenoid magnetic field axis is to analyze the field near the axis based
on Eq. 4.21 and Eq. 4.22. Fig. 4.5 shows the scheme of a misaligned solenoid where the pole
angle is θ and azimuthal angle is φ. The solenoid field axis vector is k = (x, y, z). The transfer
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Fig. 4.5 Solenoid misalignment in coordinate system.

expressions are:
r =

√
x2 + y2 + z2

x = r sin φ cos θ

y = r sin φ sin θ

z = r cos φ.

(4.26)

Fig. 4.6 Solenoid misalignment in coordinate system on xz-plane.

The origin point is not always the same in the measurement coordinate system. We set the
yz-plane as the horizontal plane, and the xy and xz are vertical planes. The xy-plane, xz-plane,
and yz- plane are perpendicular to each other. Fig. 4.6 shows an example of the misaligned
solenoid with the projection in the xz-plane. The field data are collected in the measurement
planes with index 1 to i, which have a fixed angle to the normal direction of the field axis. In the
measured plane, the points with different x values have different longitudinal field derivatives,
which means that Eq. 4.21 and Eq. 4.22 cannot be used directly. However, if the plane is
located at the position where the longitudinal field has a small gradient, we can use the linear
regression method to fit the longitudinal field, such as in Eq. 4.28, and replace the Bz(0, z) in
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Eq. 4.21 and 4.22.
∆z = ∆x sin(α) (4.27)

B
′
z(0, z) = Bz(0, z) + k1∆z + k2(∆z)2 + k3(∆z)3 + · · · (4.28)

For the multipole field analysis, Walckiers described a method with coils and wires used in
CERN LHC magnetic measurement [66, 67]. They have developed fully automated instruments
and data analysis processes for the harmonic coil method to measure the multipole modes in
magnetic fields. The idea is based on Faraday’s law of induction. As the definition of magnetic
flux:

ΦB =
∫∫

A
B · dA, (4.29)

Faraday’s law of induction says that if the magnetic flux of the wire loop changes, an electro-
motive force will be produced:

E = −dΦB

dt
. (4.30)

A voltage integrator connected to the coil will be used to eliminate the time coordinate, and
the result is only related to the position of the coil. The complex 2D magnetic field is a kind of
form:

B(x + i · y) = By(z) + i · Bx(z) =
∞∑

n=1
Cn ·

(
z

Rr

)n−1
. (4.31)

Here Cn = Bn + iAn, which Bn and An represent the normal and skew multipoles of the field.
For the rectangle coils with Nt turns and length L, the magnetic flux is:

Ψ(z) = Nt · L ·
∫ R2

R1
B(z) · dz, (4.32)

R1 and R2 are the radii of the rectangle edges with respect to the rotating axis,

z = x + i · y = R · eiθ(t). (4.33)

Then
Ψ(θ = ω · t) = Re

( ∞∑
n=1

Nt · L · Rn
2 − Rn

1
n · Rn−1

r
· Cn · einθ

)
. (4.34)

To simplify the expression, let
Kn = Nt · L · Rn

2 − Rn
1

n · Rn−1
r

. (4.35)

Then
Ψn = Kn · Cn = Kn · (Bn + iAn) . (4.36)

The Fourier analysis coefficients of Φn are the multipoles of the field, such as n = 1 gives the
dipole modes, and n = 2 gives the quadrupole modes, shown in Fig. 4.7.

Although this method has high accuracy for the measurements of 2D magnetic fields, it needs a
complex control and an electric analysis system and is not convenient for an accelerator facility
without a unique field measurement laboratory. To measure the multipole modes easier without
the professional equipment, we use the formalism fitting from the Hall probe [68] data. As the



4.2 Solenoid field measurement and analysis 29

Fig. 4.7 Field lines of normal and skew dipole, quadrupole and sextupole modes field.

definition of dipole, quadrupole and sextupole from [36]:

Bdn = 0ex + Jdney

Bds = −Jdsex + 0ey

Bqn = Jqnyex + Jqnxey

Bqs = −Jqsxex + Jqsyey

Bsn = Jsnxyex + 1
2Jsn(x2 − y2)ey

Bss = −1
2Jss(x2 − y2)ex + Jssxyey,

(4.37)

Here the field coefficients are denoted by the letter J . The subscripts ’d’, ’q’ and ’s’ indicate
the dipole, quadrupole and sextupole modes, and ’n’ or ’s’ mean the normal or the skew type,
respectively. For solenoids, the transverse field is:

Bt = Jtxex + Jtyey. (4.38)

So we can rewrite the horizontal and vertical fields as form:

Bx = −Jds + Jqny + (Jt − Jqs)x + Jsnxy − 1
2Jss(x2 − y2) + . . .

By = Jdn + Jqnx + (Jt + Jqs)y + 1
2Jsn(x2 − y2) + Jssxy + . . . .

(4.39)

Both transverse magnetic field modes can be measured using a Hall magnetic sensor, and the
multipole mode coefficients can be calculated by fitting Eq. 4.39.
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4.2.2 Simulation of field mapping and analysis

To verify the feasibility of searching for the solenoid magnetic field axis and multipole fields by
this fitting method, simulations are made with COMSOL Multiphysics software. The solenoid
model consists of a coil with iron yoke, and the quadrupole fields are created by a pair of a
normal and a skew quadrupole consisting of 8 coils in an arangement as shown in Fig. 4.8.
The coordinate is a Cartesian coordinate system with the center of the solenoid coil as origin
point. The axis of the solenoid is given by the vector ez′ = (x0, y0, z0), and the pole angle is
θ and azimuthal angle is φ. If there is no misalignment, ez′ = (0, 0, 1) and θ = φ = 0. The
magnetic field data exporting from the simulation is based on the measurement coordinate
system o = (x, y, z).

Fig. 4.8 Magnet model and coordinate systems for simulation in COMSOL Multiphysics.

The first part of the simulation deals with the magnetic field mapping and data analysis in
order to simulate the determination of the offset and axis tilt angles of the misaligned solenoid.
In the simulation the solenoid current was 5 A corresponding to a peak field of 175 mT. The
quadrupole coil group was switched off. In the measurement coordinate system the magnetic
field components Bz and Br are taken in 63 planes with 12 × 13 points in each plane in the
range of [-5.5, 5.5] mm × [-6, 6] mm. The distance between planes is 5 mm and the points in
the plane are on a grid with 1 mm distance. By fitting the field components Bz and Br at
the 156 points in each plane, the field can be calculated. Then the center coordinates in these
planes deliver the solenoid magnetic field axis by a linear fitting. To guarantee the accuracy
and stability of fitting, the linear fitting is separated to two steps. The first step is to fit the
points in a range of one to two times of the effective length far from the solenoid center on
both sides. The second step is to take the average of these two lines obtained in the first step.
Fig. 4.9 shows two groups as examples of axis fitting. To understand the distribution of the
field centers along the z direction and make the model simple, it is assumed that the cylindrical
coordinate of the solenoid only has a rotation angle α with the axis perpendicular to radius
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Table 4.1 Simulation solenoid field axis settings and fit from Bz.

set axis /
(10−3, 10−3, 1)

set offset /
(mm, mm)

Bz fitting axis /
(10−3, 10−3, 1)

Bz fitting offset /
(mm, mm)

(3,-7,1) (2.878, -0.51) (4.034, -8.377, 1) (2.915, -0.522)
(3, -20, 1) (2.878, -0.51) (4.154, -24.014, 1) (2.911, -0.528)
(5, -10, 1) (2.878, -0.51) (6.866, -11.891, 1) (2.913, 0.529)
(7, -9, 1) (4, -4) (11.018, -10.569, 1) (4.045, -4.062)

(-8.5, 9, 1) (-3, 0.5) (-11.857, 10.651, 1) (-3.034, 0.512)
(4, -9, 1) (2, -2) (5.759, -10.643, 1) (2.029, -2.033)
(7, -10, 1) (3.5, -3) (10.464, -11.492, 1) (3.538, -3.028)

and longitudinal plane, similar to Fig. 4.6. Ignoring the angular component of the field, then

Bz(r, z) = B′
z(r′, z′) cos α − B′

r(r′, z′) sin α

Br(r, z) = B′
z(r′, z′) sin α + B′

r(r′, z′) cos α.
(4.40)

The longitudinal component Bz on the axis is the extremum along the radial direction and the
radial component Br is zero, so that

∂BZ(r, z)
∂r

= 0

Br(r, z) = 0.
(4.41)

Ignoring the high order terms and use Eq. 4.21 and 4.22, one can obtain that for longitudinal
component Bz:

r ≈ −
∂B′

z
∂z′

∂2B′
z

∂z′2

tan(α)
cos(α) ; (4.42)

for radial component Br:

r ≈ B′
z (0, z′)
2∂B′

z
∂z′

sin(α). (4.43)

Considering the two zero points in the second derivative of Bz on the mirror planes and one
zero point in the first differential of Bz on the center of the solenoid, it is logical that the
fitting center distribution from Bz has two peaks at the mirror planes and the fitting center
distribution from Br has one peak at the center plane position. In principle, these two methods
are equivalent, but the results from the fitting of Bz are more stable than these from Br in
the simulation, as can be seen in some examples in Tab. 4.1 and 4.2. The relative error of
fitting axis tilt from Bz is about 40% to 50% in x direction and 15% to 20% in y direction. The
relative error of offset is under 2%. This kind of fitting is a method to estimate the field axis
rather than a high accuracy measurement. For the calculation of the tilt angles one can use:

θ = arctan(y

x
)

φ = arctan(
√

x2 + y2

z
)

(4.44)



32 SC solenoid

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4.9 Solenoid field axis fitting. The axis of (a) - (d) is (0.003, -0.007, 1) and with offset of -3
mm in x direction and 0.5 mm in y direction. (a) and (b) are from Eq. 4.21 fitting. (c) and (d)
are from Eq. 4.22 fitting; The axis of (e) - (h) is (-0.0085, -0.009, 1) and with offset of -3 mm
in x direction and 0.5 mm in y direction. (e) and (f) are from Eq. 4.21 fitting. (g) and (h) are
from Eq. 4.22. The texts in every figure are the parameters from the green line fitting.
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Table 4.2 Simulation solenoid field axis settings and fit from Br.

set axis /
(10−3, 10−3, 1)

set offset /
(mm, mm)

Br fitting axis /
(10−3, 10−3, 1)

Br fitting offset /
(mm, mm)

(3,-7,1) (2.878, -0.51) (4.31, -6.581, 1) (2.915, -0.459)
(3, -20, 1) (2.878, -0.51) (4.669, -18.998, 1) (2.911, -0.474)
(5, -10, 1) (2.878, -0.51) (7.749, -9.275, 1) (2.913, -0.482)
(7, -9, 1) (4, -4) (15.699, -7.489, 1) (4.045, -3.559)

(-8.5, 9, 1) (-3, 0.5) (-13.642, 7.984, 1) (-3.034, 0.454)
(4, -9, 1) (2, -2) (6.72, -8.202, 1) (2.029, -1.796)
(7, -10, 1) (3.5, -3) (13.8, -7.989, 1) (3.538, -2.634)

In the next simulation, the solenoid is switched off and the field axis vector is ez = (0, 0, 1) for
the group of quadrupoles. The formalism fitting is helpful to reconstruct the quadrupole field
modes from Eq. 4.39. Five different current settings of the quadrupoles are used in COMSOL
Multiphysics simulation to show the accuracy of this method. In the simulation, the quadrupole
currents are arbitrary values and cannot be compared with the currents of the quadrupole
corrector coils in the real photo injector. The results of this simulation are presented in Fig.
4.10. Comparing the coefficients from settings and fitting from Eq. 4.39, one can find that
they agree with each other very well. It means that the formalism effectively determines the
multipole field modes, although it is difficult to prove the results regarding to the numerical
accuracy.

If the solenoid is misaligned, multipole field modes will be introduced, including the dipole,
quadrupole, sextupole, and higher modes. In this thesis, we only calculate up to the sextupole.
We combine the solenoid center analysis and fitting formalism to analyze its multipole modes
for different tilt cases. The solenoid field center is located at origin point when the solenoid has
no tilt and offset. The analysis is based on the parameters in Tab. 4.1.

The solenoid transverse field coefficient image agrees with that from calculation based on Eq.
4.22. The mesh size cannot be infinite in the simulation that will give some calculated noise.
The axis missing alignment can introduce the dipole , quadrupole and sextupole fields. The
dipole field is much larger than the quadrupole and sextupole fields near the solenoid axis center
scale. All the multipole modes extend linearly with the axis tilt value increasing. The dipole
mode is asymmetric with the solenoid axis center, but not for the quadrupole and sextupole
modes. All the peaks of multipole modes appear at two mirror planes or the center plane
position. Overall the dipole field is more sensitive than the others to the axis tilt, and the
quadrupole field coefficient is much larger than the sextupole coefficient at the same conditions.

4.3 SC solenoid multipole field influence

Considering that the dipole field components only kick the beam, it focus on the influence of
the quadrupole field and the sextupole field on the beam emittance in this section. The details
about it and how to correct is given in reference [63, 69].
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.10 Quadrupol field coefficients data from simulation. (a) is normal quadrupole current is
0 A, skew quadrupole is 80 A; (b) is normal quadrupole current is 80 A, skew quadrupole is 0
A; (c) is normal quadrupole current is 80 A, skew quadrupole is 40 A; (d) is normal quadrupole
current is 20 A, skew quadrupole is 40 A; (e) is normal quadrupole current is 80 A, skew
quadrupole is 80 A; (f) is normal quadrupole current is 60 A, skew quadrupole is 50 A.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4.11 Multipole fields or coefficients of solenoid field obtained for different axis tilt. (a)-(d)
are from solenoid axis with (0.003, -0.007, 1) and offset is (2.878 mm, -0.51 mm); (e)-(h) are
from solenoid axis with (-0.0085, 0.009, 1) and offset is (-3 mm, 0.5 mm).
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The transport matrix in four dimensions, (x, x′, y, y′), of a thin normal quadrupole lens and a
solenoid lens can be written as:

Msol Mquad =


cos2 KLs

sin KLs cos KLs
K sin KLs cos KLs

sin2 KLs
K

−K sin KLs cos KLs cos2 KLs −K sin2 KLs sin KLs cos KLs

− sin KLs cos KLs − sin2 KLs
K cos2 KLs

sin KLs cos KLs
K

K sin2 KLs − sin KLs cos KLs −K sin KLs cos KLs cos2 KLs




1 0 0 0
− 1

f 1 0 0
0 0 1 0
0 0 + 1

f 1

. (4.45)

In the matrix, Ls is the effective length of the solenoid defined in Eq. 4.2, and K = eB0
2mcγβ .

The normal quadrupole locates at the entrance of the solenoid with focal length f . After the
normal quadrupole and the solenoid, the beam matrix is

σ(s) = MsolMquadσ(0) (MsolMquad)T . (4.46)

Then the additional transverse emittance from the quadrupole and the solenoid becomes:

∆εn, quad + sol = βγ
σx, sol σy, sol

f
| sin 2KLs|. (4.47)

When the quadrupole field is rotated by the angle α1 with respect to a normal quadrupole, the
matrix is

Mrotquad (α1, f) =


1 0 0 0

− cos 2α1
f 1 − sin 2α1

f 0
0 0 1 0

− sin 2α1
f 0 cos 2α1

f 1

 , (4.48)

and Eq. 4.47 changes to:

∆εn, quad + sol = βγ
σx, sol σy, sol

f
| sin 2(KLs + α1)|. (4.49)

To cancel this influence on the emittance, a pair of correction quadrupoles combining a normal
quadrupole and a skew quadrupole is installed in the downstream of the solenoid at distance L,
which can rotate the beam by an angle α2

∆εn,total = βγ

∣∣∣∣σx,solσy,sol
f

sin 2 (KLs + α1) + σx,corσy,cor
fcor

sin(2α2)
∣∣∣∣ . (4.50)

From Eq. 4.50, one can find that the effect of the corrector is related to the beam RMS size at
the corrector position. Here we carried out some simulations using ASTRA and compared the
results with Eq. 4.49 and Eq. 4.50. From Fig. 4.13, it can be seen that once the the distance
between the corrector, and the solenoid and the quadrupole component of the solenoid are
fixed, if the corrector focal strength is not strong enough, it cannot compensate the influence of
the quadrupole field from the solenoid. Furthermore we have to consider the distance between
the solenoid and the corrector in practice. For the SRF gun, the corrector is located outside
the cryomodule at a distance of 0.437 m downstream of the solenoid. Fig. 4.14 shows the
simulation results for different distances. At the same parasitic quadrupole focal strength in
the solenoid and the same focal strength of the corrector, the shorter the distance, the better is
the compensation to emittance. If the distance is too far, such as the blue line in Fig. 4.14, the
distance with 0.7 m, the corrector will fail to cancel the influence of quadrupole field of the
solenoid or should apply stronger focal strength. From Eq. 4.50, it is obvious to know that the
beam size at the corrector is always smaller than that at solenoid position for the solenoid focus
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Fig. 4.12 Eq. 4.49 and beam transverse emittance from simulation in ASTRA. The quadrupole
combined with the solenoid has an effective length 0.04 m, quadrupole strength 0.5 m−2. The
beam kinetic energy is 4 MeV with RMS size of 1 mm at the entrance of the solenoid and no
energy spread. The maximum field of the solenoid is 0.171 T (Ls = 0.04 m, K = 5.786 m−1).

the beam and the corrector is located in the focal length of it. In principle, if the corrector is
located at the position beyond the focal length where the beam RMS size is as large as the
solenoid position or larger, the effect of compensation to emittance is better under the same
quadrupole strength of the corrector. However, the focal length of the solenoid is changeable
with different necessaries. In the meantime, the corrector cannot compensate the emittance
of beam between the solenoid and the corrector. Overall, the best corrector position is at the
solenoid position or as close as possible to the solenoid.

It has been reported in [70, 71] that the sextupole field could introduce an extra transverse
emittance. The sextupole emittance depends on the field’s radial second-order derivative and
effective field length. To analyze the influence of the sextupole field, one can ignore the fringe
fields and assume that the beam transverse momentum is much smaller than the longitudinal
momentum. From the Lorentz force equation, the force in x-direction is:

Fx = dpx

dt
= e (vyBz − vzBy) . (4.51)

Considering that dz = βcdt, the force becomes:

dpx

dz
= −eBy. (4.52)
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(a) (b)

(c) (d)

Fig. 4.13 Beam transverse emittance versus quadrupole angle from Eq. 4.50 and from simulation
in ASTRA. The quadrupole combined with the solenoid has an effective length of 0.04 m,
quadrupole strength 0.5 m−2, and a rotation angle of 23 degrees. The corrector quadrupole has
an effective length of 0.0627 m, located at 0.437 m downstream of the solenoid center. The
beam kinetic energy is 4 MeV with a round beam of 1 mm RMS size at the entrance of the
solenoid and no energy spread. The maximum field of the solenoid is 0.171 T (Ls = 0.04 m,
K = 5.786 m−1).
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Fig. 4.14 Beam transverse emittance from simulation in ASTRA. The quadrupole combined
with the solenoid has an effective length of 0.04 m, quadrupole strength 0.5 m−2, and rotate
the angle of 23 degrees. The beam kinetic energy is 4 MeV with round RMS 1 mm at the
entrance of the solenoid and no energy spread. The maximum field of the solenoid is 0.171 T
(Ls = 0.04 m, K = 5.786 m−1). The corrector has an effective length of 0.0627 m, and focal
length is 16 m.

The sextupole field in the y-component is [72]:

By(x, y) = 1
2

∂2By

∂x2

∣∣∣∣∣
x,y=0

(
x2 − y2

)
. (4.53)

The beam transverse momentum from the sextupole field is given as:∫ px+∆px

px

dpx = ∆px = − e

2

∫ ∞

−∞

∂2By

∂x2

∣∣∣∣∣
x,y=0

(
x2 − y2

)
dz

∆px(x, y) = − e

2
∂2By

∂x2

∣∣∣∣∣
x,y=0

Leff

(
x2 − y2

)
.

(4.54)

For the beam with upright phase space, the emittance is

εn = σxσpx

mc
, (4.55)
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where σx is the beam RMS size in x direction and σpx is the beam RMS momentum in x
direction, which can be calculated as:

σ2
px

=
∫∞

−∞ [∆px(x, y = 0)]2 ρ(x)dx∫∞
−∞ ρ(x)dx

. (4.56)

In the equation, ρ(x) is the distribution of the beam, such as a Gaussian distribution e
− x2

2σ2
x

or an uniform distribution. Then the normalized emittance from the sextupole field for beam
with Gaussian or uniform distribution is, respectively:

∆εn, sextupole =
√

3
2 σ3

x

e

mc
Leff

∂2By

∂x2

∣∣∣∣∣
x,y=0

,

∆εn, sextupole = 1
2σ3

x

e

mc
Leff

∂2By

∂x2

∣∣∣∣∣
x,y=0

.

(4.57)

From Eq. 4.57, one can see that the emittance of sextupole field increases with the cube of
beam RMS size and linear with the sextupole field effective length. If the beam RMS size is
too large or the sextupole field is large, one should consider to install a sextupole downstream
of the solenoid to cancel the influence of the sextupole field of the solenoid. The decrease of the
second order differentiation of transverse magnetic field is helpful to suppress the influence of
the sextupole field from the solenoid.



Chapter 5

Transverse Emittance Measurement

5.1 Overview

The methods which are widely used for transverse emittance measurements of electron beams can
be divided into two groups: the magnetic field scan and the mask methods. The magnetic field
scan methods, including solenoid scan, quadrupole scan, multi screen method, and tomographic
phase space mapping, are based on the beam linear transport theory and can be applied for
emittance dominated beams. The mask methods, including pepper pot method, multi-slit
method and (single) slit-scan, utilize a mask with holes or slits to split the space charge
dominated beam into small beamlets, which are then do not suffer from space charge.

The beam envelope equation is a suitable tool to define whether a beam is emittance dominated
or space charge dominated. A definition of a propper parameter is in reference [73] in the paper
by Anderson et al. For a relativistic beam in a drift space, the envelope equation is

σ′′
x = ε2

n

γ2σ3
x

+ I

γ3I0 (σx + σy) (5.1)

In this equation, σx and σy are the beam RMS size in horizontal and vertical directions. εn

is the normalized beam emittance, I is the beam peak current, and γ is the Lorentz factor
representing the beam energy. I0 gives the characteristic current, as ec

re
, about 17 kA. The two

terms on the right side represent the emittance and the space charge effects. The ratio of the
second term and the first term, R0, can be used to evaluate the influence of space charge

R0 = Iσ3
x

γI0ε2
n (σx + σy) , (5.2)

for the whole beam. This value is equivalent to another dimensionless intensity parameter in
reference χ [74]. If R0 < 1, the beam is considered to be emittance dominated. Otherwise,
the space charge dominates the beam. However, even if the beam is emittance dominated, a
remaining influence of space charge can appear unless R0 ≪ 1. The beamlets behind a pepper
pot mask or slit mask become emittance dominated.



42 Transverse Emittance Measurement

The quadrupole scan (solenoid scan is similar, except that the horizontal and vertical directions
are coupled) and the slit-scan belong to the main topics in this thesis and are analyzed in detail.
For the sake of completeness, here gives the multi screen method, the tomographic phase space
mapping and the pepper pot method are shortly introduced.

5.1.1 Multi screen method

The multi screen method is based on the linear elements, such as normal quadrupoles, and
at least three screens located at different positions in the beamline to record the size of the
beam with different statues in phase space. It is equivalent to the traditional quadrupole scan
instead of scanning one quadrupole focal strength. As Fig. 5.1 shows, the ideal situation is
that one of the screen intercepts the beam waist and the beside screens give the size of the
convergent beam and divergent beam. The quadrupoles in this process apply a sufficient and
suitable phase-advance by a fixed focal strength. The advantage of the method is the simple
operation and the flexible setup in the beamline.

Fig. 5.1 Multi screen method frame.

5.1.2 Tomographic phase space mapping

The theory of tomographic phase space mapping is similar to the approach in computed
tomography (CT). Mathematically, a n-dimensional distribution can be reconstructed from a
set of its (n-1)-dimensional projections, applying Radon transform and inversion [75]. Several
studies have been carried out to recover the beam phase space using CT, for instance 2-D phase
space [76, 77, 78, 79] and 4-D phase space [80]. As mentioned before, according to Liouville’s
theorem, the particle density remains constant in phase space in linear transport systems
without space charge effects. Assuming that there is no coupling between horizontal, vertical
and longitudinal directions, the 2-D phase space density in each direction is a constant. In
the linear beam transport, the transport matrices are affine transformations, such as rotation,
expansion, shear, translation, or combinations of these. One can rotate the beam in phase space
with a certain angle with a magnetic field, including quadrupole field and solenoid field, and
calculate the transport matrix elements. The 1-D projection of the beam shape on the screen
along the horizontal or vertical direction delivers a part of information of the beam phase space
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at a certain angle. If the angle range and number of measurement points are sufficient, the
beam phase space can be reconstructed by means of the Radon inversion transform.

Compared to quadrupole or solenoid field scan, the tomographic phase space mapping can give
the details of beam phase space distribution, even for beams suffering the linear space charge
[77]. The disadvantages of this method are the complex algorithm and the limitation due to
the rotation angle range.

5.1.3 Pepper-pot method

The pepper-pot method applies a mask with holes and a screen [81, 82]. The setup frame is
shown in Fig. 5.2. When the beam hits the mask, only the fractions of the beam at the hole
positions can go through and form a pattern of beamlet distributions on the screen. From
these distributions of beamlets and the pepper pot mask parameters, sizes and positions, one
can recover the beam phase space in four dimensions. The advantage of pepper-pot method
is that the coupled terms in the 4-D beam matrix can be determined. However, one of the
disadvantages is the comparably low resolution of the beamlet images due to the low particle
number in the beamlets. The second disadvantage is that the size and arrangement of the holes
in one mask is fixed. This causes the limitations in the beam size and emittance which can be
measured. Furthermore, the fabrication of the micrometer holes with large aspect ratio in high
accuracy is difficult.

Fig. 5.2 Peper-pot method frame.

5.2 Quadrupole scan

5.2.1 Theory

As an important element in accelerator, quadrupole magnets serve for the transport of charged
particle beams through beamlines by focusing and defocusing in transverse directions. Due to
their high efficiency for focusing of charged particle beams with relativistic velocities, magnetic
quadrupoles with current-carrying coils are widely applied in accelerators. As Fig. 5.3 (a)
shows, a quadrupole consists of two pairs of opposing magnetic poles. Fig. 5.3 (b) shows the
magnetic field distribution along the two axes, Bx is a linear function of y and By is a linear
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(a) (b)

Fig. 5.3 (a): Normal quadrupole magnet profile from simulation; (b): Quadrupole field along
with the x and y axis.

function of x. The quantity g is the field gradient of the quadrupole with

Bx = gy

By = gx.
(5.3)

Based on the magnetic gradient, quadrupole strength is defined as:

k = g

Bρ
, (5.4)

Bρ is named the magnetic rigidity of the beam. The other basic parameter, quadrupole effective
length, is defined as:

Leff =
∫

gdz

g0
or

∫
kdz

k0
, (5.5)

g0 and k0 are the maximum value of g and k. Fig. 5.4 shows the normalized field gradient
along the z axis.

In linear transport theory, the normal quadrupole matrix in 4-D can be written as [72]:

Mq =


Cf

1√
kf

Sf 0 0
−
√

kf Sf Cf 0 0
0 0 Cd

1√
kd

Sd

0 0
√

kdSd Cd


Cf = cos(

√
kf Lf ) , Sf = sin(

√
kf Lf )

Cd = cosh(
√

kdLd) , Sd = sinh(
√

kdLd)
(5.6)
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Fig. 5.4 Quadrupole magnetic field normalized gradient.

Here kf and Lf are the quadrupole strength and effective length in focusing direction, kd and
Ld are the quadrupole strength and effective length in defocusing direction. The effective length
incorporates the fringe field, but it is a constant for a certain quadrupole whatever it focuses or
defocuses. A detailed analysis shows, that there is a small difference between these two values
in different quadrupole field profiles, which will influence the quadrupole strength slightly[36].

Leff = Lf = Ld, (5.7)

keff = kf = kd. (5.8)

In thin-lens approximation, suitable where the length of the quadrupole is small compared
with the focus length (Leff ≪ f), the effective length can be set Leff → 0, while keeping the
refractive power constant, such as,

1
f

= keff Leff . (5.9)

The physical meaning of the thin-lens approximation is that the horizontal and vertical positions
of the particles input and output from the quadrupole are the same.

The quadrupole scan frame is shown as Fig. 5.5. The beam RMS size is a function of the
quadrupole focal strength. By fitting the function, one can obtain the beam parameters in
phase space. The function can be derived from transport matrix. Consider the two beam
matrices

Σq =
(

σq
11 σq

12
σq

12 σq
22

)
and Σs =

(
σs

11 σs
12

σs
12 σs

22,

)
,

the first one characterizes the beam in front of the quadrupole and the second at the screen,
σ11 = ⟨x2

i ⟩ = εβ, σ22 = ⟨x′2
i ⟩ = εγ, σ12 = σ21 = ⟨xix

′
i⟩ = −εα. β, γ and α are Twiss parameters.

The transport matrix from the quadrupole to the screen is:

M =
(

1 d
0 1

)
Mu,

Mu is the 2-D matrix of quadrupole in horizontal or vertical direction. Then:

Σs = MΣqMT. (5.10)
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Fig. 5.5 Quadrupole scan frame.

One can obtain the following equations in the thin-lens approximation:

σs
11 = (σq

11d2)k2L2
eff + (−2dσq

11 − 2d2σq
12)kLeff + σq

11 + 2dσq
12 + d2σq

22. (5.11)

And in the general case for focusing:

σs
11 =(σq

11 + d2σq
22 + 2dσq

12)C2
f − 2dσq

11 + 2d2σ2
12

Lf
(
√

kLf )Sf Cf + d2σq
11

L2
f

(
√

kLf )2S2
f

+
L2

f σq
22

(
√

kLf )2
S2

f + (2dσq
22 + 2σq

12)Lf
1√
kLf

Cf Sf − 2dσq
12S2

f

(5.12)

and defocusing:

σs
11 =(σq

11 + d2σq
22 + 2dσq

12)C2
d + 2dσq

11 + 2d2σq
12

Ld
(
√

kLd)SdCd + d2σq
11

L2
d

(
√

kLd)2S2
d

+ L2
dσq

22
(
√

kLd)2
S2

d + (2dσq
22 + 2σq

12)Ld
1√
kLd

SdCd + 2dσq
12S2

d

(5.13)

The normalized emittance can be calculated by

εn = βγdet(Σq) = βγ
√

σq
11σq

22 − σq
12

2
. (5.14)

For the thin-lens approximation, by defining the abbreviations A = σq
11d2, B = −2dσq

11 −2d2σq
12,

C = σq
11 + 2dσq

12 + d2σq
22, the Eq. 5.14 can be simplified to

εn = βγ
1
d2

√
AC − 1

4B2. (5.15)

Compared with Eq. 5.12 and Eq. 5.13, the thin-lens approximation Eq. 5.11 is much simpler
and easier for fitting. However, the thin-lens approximation is in high uncertainty, if the drift
distance is too short or the quadrupole strength is too large, which is discussed in section 5.2.2.
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Fig. 5.6 Determining the drift distance. The red and original lines are from the thin-lens
approximation and thick-lens, respectively. The original dash line is the extension of the original
line. P is the principal plane of the thin-lens approximation. But the principal plane of the
thick-lens is almost the same position in two orders approximation. I0 and I1 are the focal
plane of the thin-lens approximation and thick-lens with focal length f0 and f1, respectively. D
is the drift distance of the thin-lens approximation, and D − Leff

2 is the drift distance of the
thick-lens.

To find the quadrupole strength scan scale quickly, one can calculate the partial derivatives of
σs

11 to kLeff in Eq. 5.11 :

∂σs
11

∂(kLeff ) = 2σq
11d2kLeff − 2

(
σq

11d + σq
12d2

)
= 0, (5.16)

then
(kLeff )min = 1

d
+ σq

12
σq

11
. (5.17)

This value is related to the inherent beam parameters. It is easy to calculate the focal strength
in simulation, which gives a good reference point for the scanning. Although it is the value for
the thin-lens approximation, it is also close to this point in the general cases. But it is much
more complex to derive an expression and to calculate a value. However, when the space charge
is taken into consideration, this value will be shifted.

5.2.2 Quadrupole scan simulation

In section 5.2.1, the basic idea of quadrupole scan for emittance measurements has been
introduced. In this section, the simulation and the error analysis of this method will be given.
At the ELBE facility, the effective length of the quadrupole is 0.1 m, and in the simulation,
this value is used. The beam’s kinetic energy is 4 MeV, and the bunch charge is 200 pC.
Three aspects are discussed in this section: drift distance between the quadrupole and the
screen, beam space charge, and the equations used for fitting. The drift distance between the
quadrupole and the screen is defined as the distance from the center of the quadrupole to the
screen for thin-lens. The drift distance is from the end of the quadrupole to the screen for thick
quadrupole, shown as Fig. 5.6.
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(a) (b)

Fig. 5.7 Normalized emittance relative error vs drift distance. In (a) it ignores the space charge.
In (b) it includes the space charge. In the simulation, the bunch charge is 50 pC, at the
quadrupole position the original beam normalized emittance is 1.6506 mm ·mrad, kinetic energy
is 3.98 MeV, and beam RMS size at quadrupole position is 1.2761 mm. The relative error is
defined as (εn,cal − εn,ori)/εn,ori, where the εn,cal is normalized emittance from the quadrupole
scan, and εn,ori is the normalized emittance at the quadrupole position.

In the simulation, the influence from thin-lens approximation and space charge are considered.
From Fig. 5.7 (a), one can find that if the space charge is ignored, the emittance relative
error from thick-lens fitting is small for short drift distance and nearly independent of the
drift distance for longer drift distance. When the drift distance is shorter than 0.5 m, the
relative error is larger than 1%. The reason maybe come from the quadrupole fringe field.
For thin-lens approximation, the relative error is similar to the thick-lens, but larger than the
thick-lens, especially for the distance less than 1 m. This is because, for short drift distance,
the quadrupole needs higher k values to complete the scan, and the thin-lens condition, l ≪ d,√

kl → 0, is not satisfied anymore. The details of all the fitting are in Fig. 5.8. When the space
charge is considered in the simulation, it shows that the relative error become larger along with
the drift distance. Fig. 5.8 shows the fitting curves with and without space charge. In the
fitting curves with the thick-lens approach, the points at the right side of the minimum point
are parallel for the with and without space charge. However, the points on the left side have a
big difference, especially for large drift distances. It indicates that for a quadrupole scan, the
influence of the space charge is on the left side of the minimum points rather than the right
side. When the beam is in the left point situation, it is a more space-charge-dominated beam.
When the beam size crosses the minimum point, it is a more emittance-dominated beam. This
is consistent with the conclusion from S. G. Anderson and J. B. Rosenzweig in reference [73],
where they obtain it from the beam envelope equations.

One thing should be noticed is that the space charge destroys the symmetric of the fitting
points. Here, the symmetric means that the fitting from the left and right points are the same.
Fig. 5.9 shows the fitting curves from left and right half points. When considering the space
charge, the two curves have a noticeable difference, which results in the difference of calculated
emittance from fitting parameters.
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(a) Drift distance 0.25 m and Equ. 5.12 (b) Drift distance 0.3 m and Equ. 5.11

(c) Drift distance 0.45 m and Equ. 5.12 (d) Drift distance 0.5 m and Equ. 5.11

(e) Drift distance 0.95 m and Equ. 5.12 (f) Drift distance 1.0 m and Equ. 5.11

(g) Drift distance 1.45 m and Equ. 5.12 (h) Drift distance 1.5 m and Equ. 5.11

Fig. 5.8 In the simulation, the parameters at the quadrupole station are the same as Fig. 5.7.
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(a) (b)

Fig. 5.9 In figure (a), the simulation has no space charge; In figure (b), the simulation has space
charge.

5.2.3 Error analysis

The error of quadrupole scan has two parts. The first part is from the fitting error and the
second part is from the quadrupole focal strength error. The fitting method usually used is the
linear least squares analysis [83]. Assume that one obtains n groups of data about quadrupole
scan. σσσse is the beam RMS size on the screen with (n × 1) dimension from experiments, σσσf is
the beam RMS size on the screen with (n × 1) dimension from fitting, XXX is the matrix with
(n × 3) dimension and relative to the quadrupole focal strength, βββ is the coefficient matrix with
(3 × 1) dimension. In thin-lens approximation, βββ = [A, B, C]T . Then rewrite Eq. 5.11 as:

σσσf (βββ) = XXXβββ, (5.18)

the rest term is
RRR(βββ) = σσσse − σσσf (βββ), (5.19)

so the function should be minimized is

SSS(βββ) = ∥RRR(βββ)∥2. (5.20)

The minimum can be calculate from the derivatives of SSS(βββ) with βββ:

dSSS(βββ)
dβββ

= 0. (5.21)

Then the optimization βββ = [A, B, C]T will be obtained. The uncertainty of βββ can be given from
Jacobian matrix of the fitting and will transform to the emittance error from Eq. 5.15. This
error can be analyzed as following:

∂ε

∂A
= 1

2d4ε
C, (5.22)

∂ε

∂B
= 1

2d4ε

(
−1

2B

)
, (5.23)
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∂ε

∂C
= 1

2d4ε
A, (5.24)

∆ε2
f =

(
∂ε

∂A

)2
∆A2 +

(
∂ε

∂B

)2
∆B2 +

(
∂ε

∂C

)2
∆C2 + 2 ∂ε

∂A

∂ε

∂B
∆A · ∆B · σab

+2 ∂ε

∂A

∂ε

∂C
∆A · ∆C · σac + 2 ∂ε

∂B

∂ε

∂C
∆B · ∆C · σbc.

(5.25)

Here ε is the geometric emittance, σab, σac and σbc represent the covariance between A, B and
C each other and can be obtained from the fitting coefficients. For thick-lens equation, the
analysis is totally the same.

As mentioned in quadrupole calibration part, the quadrupole focal strength is not always the
same as the theory. The focal strength uncertainty will influence the emittance calculation.
Assume that the quadrupole strength used for calculation is kr and the real one is k0,

kr = (1 + δk)k0, (5.26)

where δk is the quadrupole strength error. Adding this factor in Eq. 5.11 and Eq. 5.15, one
can calculate the emittance error from quadrupole focal strength uncertainty is:

∆εk = δk. (5.27)

This conclusion is strictly from the thin-lens approximation fitting equation, but for thick-lens,
it is also a good approximation from simulation results. So the total quadrupole scan error is:

∆ε =
√

∆ε2
f + ∆ε2

k. (5.28)

5.3 Slit-scan and error analysis

5.3.1 Theory

The last section shows that when the beam is space charge dominated, the quadrupole scan
method will give a significant error. The other disadvantage is that quadrupole scan can only
give the value of beam emittance but not the details of the beam transverse phase space.
To observe the details of the beam transverse phase space, people develop several methods,
including slit-scan, pepper-pot, and quadrupole tomography. The slit-scan and multi-slit
techniques are widely used for measuring the transverse phase space and transverse projected
emittance of high-brightness electron beams produced by photo injectors. In these methods,
the space charge dominated beam is split into many small and emittance dominated beamlets
using one mask with one or several narrow slits and the beamlets drift from mask position to a
screen, as it is shown in Fig. 5.10. The analysis works in the same way for both kinds, single
slit-scan and multi-slit mask.

For the beamlets a linear beam transport between the slit mask and the observation screen can
be described by the transport matrix:(

xscreen
x′

screen

)
=
(

1 L
0 1

)(
xslit
x′

slit

)
(5.29)
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Fig. 5.10 Illustration of single-slit scan emittance measurement scheme.

Furthermore, the particle divergence is transferred to a position distribution. The transverse
emittance εrms is defined as:

εrms =
√

⟨x2⟩ ⟨x′2⟩ − ⟨xx′⟩2 (5.30)

A normalized transverse emittance εrms can be defined as

εrms = pz

m0c

√
⟨x2⟩ ⟨x′2⟩ − ⟨xx′⟩2 (5.31)

Here
〈
x2〉, 〈x′2〉, ⟨xx′⟩, x′ are defined based on the particle distribution ρ (x, x′):〈

x2
〉

=
∫

ρ(x − ⟨x⟩)2dxdx′,
〈
x′2
〉

=
∫

ρ
(
x′ −

〈
x′〉)2 dxdx′

〈
xx′〉 =

∫
ρ(x − ⟨x⟩)

(
x′ −

〈
x′〉) dxdx′, x′ = px

pz

(5.32)

where px is the beam horizontal momentum, pz is the beam longitudinal momentum and
approximately equal to beam total momentum here, m0 is the rest mass of an electron, c is the
speed of light. In the slit-scan case, the ⟨ ⟩ is related to an average over the beamlets and ni

is the particle intensity through the slit at i-th position. The bunch center at slit position is
⟨x⟩ =

∑
nixsi∑

ni
, and xsi is the slit coordinate at ith position. The beam size at the slit plane

is
〈
x2〉 =

∑
ni(xsi−⟨x⟩)2∑

ni
. The bunch average divergence is ⟨x′⟩ =

∑
nix

′
i∑

ni
, and x′

i is the i-th

slit position’s average divergence which can be obtained by x′
i = ⟨xsci⟩−xsi

L , here ⟨xsci⟩ is the
position of the i-th beamlet center on the screen, and L is the drift distance from the slit mask

to the screen. The i-th beamlet divergence is σ′2
i = σ2

i − d2
12

L2 , and σi is the i-th beamlet size on
the screen and d is the slit size. The quantities in Eq. 5.32 can now be expressed by the values
measured at the screen:

〈
x′2
〉

=
∑[

niσ
′2
i + ni (⟨x′

i⟩ − ⟨x′⟩)2
]

∑
ni

, (5.33)
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〈
xx′〉 =

∑
nixsi ⟨x′

i⟩∑
ni

. (5.34)

5.3.2 Beamlet image processing by machine learning

Image processing plays a vital role in the slit-scan emittance measurements. In our experiment,
the beamlet images are obtained in a given time interval from the camera while the slit is
continuously moving. Usually, tens to one hundred images will be stored for one measurement.
The first task is to select the images which contain beamlet information frome those which
contain noise only. The second task is the improvement of the images with beamlet information
by filtering the noise from the relevant beamlet signals. The traditional method is a manual
selection or a Gaussian fitting to distinguish the images with beamlet and with noise only. A
median filter and complex processing based on the two-dimensional beamlet images can decrease
the noise and improve the signal-noise ratio. Although these methods work well and decrease
the noise effectively, they are time-consuming. The success of machine learning applications in
nature images classification and filter noise [84, 85] encourage us to try it in beamlet image
analysis.

The definition of machine learning is that a computer algorithm can learn some rules automati-
cally from the already known data or experiment and can make predictions or decisions from
new experimental data or other information [86]. Until now, no single model is universal for all
data and applications. Every model is based on a particular class of dataset, and after training,
it is only suited for this kind of data. As an example for a machine learning model, an artificial
neural network is shown in Fig. 5.11 which consists of an input layer, hidden layers and an
output layer. The input data should have the same standard form in all datasets for one model,
whereas the output data can be an alloncation into categories, a value, an image, or something
else. A matrix connects the hidden layers, depending on the size with tens or thousands of
parameters, called weights, which should be learned from training. In a learning process the
values of these weights are determined by means of training datasets for which the expected
output results are given. After that, the internal parameters of the hidden layers are fixed and
stored for use in applications.

Fig. 5.11 Basic structure of an artificial network for machine learning.
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Fig. 5.12 Model of a single neuron as basic unit of a machine learning network.

5.3.3 Basic model of machine learning

At present, one of the most popular and powerful network is neuron connection network
connection, which is similar to our Neuron in the brain. Reference [87] gives an example to
explain how it works. The basic unit is a single neuron shown in Fig. 5.12. The input vector
is x = (b, x1, x2, x3)T , in which b is bias term and usually as one. The weight vector is w =
(1, w1, w2, w3)T for different input terms. The output is hw,b(x) = f

(
wT x

)
= f

(∑3
i=1 wixi + b

)
,

where f : R 7→ R is called the activation function. There are several different activation functions
which are used in neural network models, but in this thesis we have chosen the rectified linear
unit (ReLU) function:

f(x) = max{0, x}. (5.35)

A plot of the ReLU function is presented in Fig. 5.13. The ReLU function is defined in the set
of real numbers R and the output interval is (0, ∞).

It introduces how the neutral network connects and works between the hidden layers at a simple
example with three layers, as shown in Fig. 5.14. This neural network has the parameters
(w(1), b(1), w(2), b(2)). The element w

(l)
ij in w(1) denomnates the weight of the connection of the

unit j of l-th layer and unit i of l + 1-th layer. a
(l)
i is the activation (output value) of unit i in

(a) (b)

Fig. 5.13 (a) is the ReLU function, and (b) is the derivative of ReLU function.
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l-th layer. Then this neural network can be described as equations:

a
(2)
1 = f

(
w

(1)
11 x1 + w

(1)
12 x2 + w

(1)
13 x3 + b

(1)
1

)
(5.36)

a
(2)
2 = f

(
w

(1)
21 x1 + w

(1)
22 x2 + w

(1)
23 x3 + b

(1)
2

)
(5.37)

a
(2)
3 = f

(
w

(1)
31 x1 + w

(1)
32 x2 + w

(1)
33 x3 + b

(1)
3

)
(5.38)

hw,b(x) = a
(3)
1 = f

(
w

(2)
11 a

(2)
1 + w

(2)
12 a

(2)
2 + w

(2)
13 a

(2)
3 + b

(2)
1

)
. (5.39)

The supervised learning (SL) network can learn a function to map an input and output based
on the foregone input-output pairs or experiences. One input-output pair is called one case.
An input data is typically a vector or matrix. A desired output is usually named the label or
supervisory signal of the input. A dataset consist of a large number of cases, and is defined
as {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))} with n cases. One needs a function to estimate the
difference between the outputs and labels, called the cost function. There is no one unique cost
function for universal datasets, and one should define it by oneself depending on the solving
problem. One of the widely used cost functions is:

J(W, b; x, y) = 1
2 ∥hW,b(x) − y∥2 . (5.40)

To avoid overfitting, people will add a regularization term which tends to decrease the magnitude
of the weights with parameter λ, written as:

J(w, b) =
[

1
n

n∑
i=1

J
(
w, b; x(i), y(i)

)]
+ λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
w

(l)
ji

)2
. (5.41)

Fig. 5.14 Structure of a simple neural network with one hidden layer.
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To minimize the cost function J(w, b), the weights and biases will be improved as follow:

w
(l)
ij := w

(l)
ij − α

∂

∂w
(l)
ij

J(w, b)

b
(l)
i := b

(l)
i − α

∂

∂b
(l)
i

J(w, b).
(5.42)

In the Eq. 5.42, α is the learning rate which is a hyperparameter and should be adjusted
manually during training. Now we can describe the whole algorithm as the following steps:

• 1. Set the weight step δw, and bias step δb to zero (matrix or vector) for all layer l;

• 2. For i from 0 to n:

• 2a. Use backpropagation to compute ∆w(l)J(W, b; x, y) and ∆b(l)J(W, b; x, y);

• 2b. Set w(l) = w(l) + ∆w(l)J(W, b; x, y) and b(l) = b(l) + ∆b(l)J(W, b; x, y);

• 3. Update the parameters:

w(l) = w(l) − α[( 1
n∆w(l)) + λw(l)];

b(l) = b(l) − α[ 1
n∆b(l)].

Some basic concepts in training and evaluation

To make the next part more understandable, here are four basic concepts often used in the
machine learning field:

• Loss function is defined with respect to a single training case. It measures the error
between the output and the label on a single training case.

• Cost function measures the error in an entire training set and is the average of the loss
function. However, sometimes the loss function and cost function are synonymous in
papers. In the following figures, the y label, "Loss", always means the cost function.

• Epoch indicates one time passes of the entire training dataset the whole algorithm,
including one front propagation and one backpropagation, has been completed.

• Batch size means the number of cases in a training dataset utilized in one iteration.

In principle, the loss function will converge the increasing of the number of epochs. However,
there are several types of loss function value verse epochs overtraining, such as underfitting and
overfitting. Many publications from computer science have talked about this topic. Generally,
when the training and testing errors are both high, the model is said to be underfitted. There
are several reasons resulting in underfitting problems, such as the model algorithm is too simple
or the training epoch is not enough, shown as Fig. 5.15 (a). So one should boost the machine
learning algorithm in the model and enlarge the training epochs. When the training error
continues decreasing, while the testing error is increasing and the gap between each other
becomes larger, shown as Fig. 5.15 (b), the model is called overfitting. One reason for overfitting
is that the training data has a different distribution than the testing dataset, and the former is
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(a) (b)

Fig. 5.15 Underfitting (a) and overfitting (b).

much larger than the latter. The second reason is that the model is too complex with large
parameters. The third reason is that the model has an ample hypothesis space, which means
that the dataset is likely too simple for the model, and several parameter groups can fit the
training dataset. Underfitting and overfitting always happen until one completes a practical
model training and testing. Fig. 5.16 shows the relationship between the model capacity, which
usually means the features that the model can represent, and these two situations [88].

Fig. 5.16 Overfitting and Underfitting represented using model loss vs capacity.

Beamlet images classification network

A convolutional neural network is designed to classify the images with and without beamlet
signal. This is a typical two categories classification question. In the model, the input data have
one dimension with 494 values, the image intensity integration in horizontal direction. The first
convolution layer has as output 32 features with a leaky rectified-linear-unit (ReLU) function.
For the second convolution layer the output has 64 features. After this, a pooling layer and
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a sigmoid function are used. The whole connection layer is at the end, and the log-softmax
function scales the value from 0 to 1, as Eq. 5.43.

Fig. 5.17 Classification model.

LogSoftmax(xi) = log( exp(xi)∑
j exp(xj)) (5.43)

In this model, 2500 cases from experiments are used, thereof 2000 for training, and 500 for
testing. The distribution of beamlet signal and noise images are the same and both 50%.
It takes about half an hour for one hundred epochs of training and testing on the personal
computer. Fig. 5.18 (a) shows the loss during the training and testing. The loss decreases fast
into 20 epochs and becomes stable after 50 epochs. During the training, the accuracy increases
relatively fast and slightly fluctuates, less than 0.1%. In the end, the accuracy is 98.8% which
is enough for the experiments, shown as Fig. 5.18 (b).

(a) (b)

Fig. 5.18 Classification loss (a) and classification accuracy (b).
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Beamlet images machine learning filter network

The second task consists in the noise reduction of the beamlet images. The network in this
part is an auto-encoder. Mark A. Kramer first created this network type in 1991 to analyze the
complex data without restriction on the character of the nonlinearities present in the data [89].
The typical idea is to learn the features of the data with noise (encoder), then reconstruct the
data from the features (decoder) as shown in Fig. 5.19. In recent years this network has been
proven for reducing images noise in accelerator physics field [90]. The auto-encoder consists of

Fig. 5.19 Auto-encoder sketch.

two parts, the encoder, and the decoder. For the encoder, the input is the vector x ∈ Rm, and
the output is the reconstructed vector y ∈ Rn. In the simplest case, one hidden layer exists that
stores the vector in the latent space hk. The network has to learn the functions fe : Rm → Rk

and fd : Rk → Rn. In principle, the features of the inputs will be learned and stored into the
latent layer, and then the decoder layers will rebuild the signal as the output. The encoder
layers and the decoder layers are symmetric in most situations.

In the auto-encoder network used for beamlet images, shown in Fig. 5.20, the input data have
one dimension, which is the same as in the classified network. The output features of the
convolution layers in the encoder part are 16 and 32 with stride 1. The upsample layers are
both nearest, and scaling factors are 2. The latent layer has 1964 features. The output features
of the convolution layers in the decoder part are 32 and 16 with stride 2. In the end, it applies
a whole connecting layer.

The training data are from 1502 experimental beamlet images, processed using traditional filters
and manually. Fig. 5.21 shows the programmed user interface used for experimental beamlet
images. Noise signal data are taken from 107 experimental images with no beamlet signals.
The noise signals are first normalized, some examples are shown as Fig. 5.22. Some noise
images are similar to random, and some are not. The reason is the influence of the radiation
surrounding the camera, and digital noise is changeable. We randomly combined the filtered
beamlet and noise data, and constructed 167205 projection data records, in which 80 % were
used for training and 20 % for testing. The cases used for training and testing are shown as Fig.
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Fig. 5.20 Auto-encoder network structures.

5.23. The training procedure was performed in the Maxwell Computer Cluster at DESY, using

Fig. 5.21 Experimental beamlet images processing user interface.

NVIDA Tesla P100 GPU. The training time depends on the choices of the hyperparameters,
such as the batch size, learning rate, and epoch size. Also, the effect and the stability of the
network have a relationship with these hyperparameters. When the network’s structure is
defined, the next important work is to search for the best hyperparameters for the network,
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(a) (b) (c)

(d) (e) (f)

Fig. 5.22 Beamlet noise from experiments.

(a) (b) (c)

Fig. 5.23 Autoencoder dataset cases examples.
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which means, in general, that the loss of the network becomes small and stable. Usually, one
can find hints during training and testing on how to optimize these parameters. Even for the
experienced researcher, it still needs several tries to find the best parameters for the network.

The optimizer used is Adam in Pytorch [91]. To find a better latent layer size, shown as Fig.
5.24 (a), one can find that the latent layers size of 122 and 1960 are worse than layer size of
490 and 982. The loss of the latent layer size of 122 converges slower and finally stabilizes
at 6 × 10−8. The loss of the latent layer size of 1960 is fluctuating and converges slowest,
although it is close to the 122 latent layers in the end. For the latent size of 490 and 982, they
have similar loss in the end, but the 982 latent layers size converges faster in the beginning.
So the latent layers size is set as 982. The other important parameter in the network is the
learning rate. Fig. 5.24 (b) shows three different learning rate with 982 latent layers. The loss
decreases and converges faster with larger learning rate. But when the learning rate is more
than 3 × 10−5, this trend will become slow. The batch size is another important parameter.
Generally, small batch size is noisy, and offer a regularizing effect and lower generalization error.
Also, small batch size make it easier to fit one batch worth of training data in memory and
small requirement to the memory size. However, this is not a rule and depends on the dataset
features [92]. From Fig. 5.24 (c), one can find that during training, the network with smaller
batch size converges slower than that with larger batch size. But when the batch size is larger
than 3072, the loss becomes higher, and indicates the best batch size is 3072.

When the best hyperparameters are found, the network is ready to process the beamlet images
from experiments. It costs about one and a half hours with one thousand epochs, 3072 batch
size, and mean square error (MSE) loss function for training. The total number of parameters
is 2 005 887 in the network.

This network is more efficient and faster than the traditional filters, as the comparison shows in
Fig. 5.25. From the images, one can see that the traditional filters can only filter the common
noise. They cannot reduce the tilt noise, and at the same time preserve the real signal. However,
the auto-encoder filter can do both. Even the substructure of the beamlet signal can be well
reconstruct. The disadvantage of the auto-encoder filter is that it is not a universal filter. It is
suitable for the projected beamlet images only, i.e. for the one-dimensional signal in the vertical
direction. One should rebuild the dataset for different images and train the network again.

5.3.4 Slit-scan simulation

To study the slit-scan method in detail and to check the data processing method, a series
slit-scan simulations utilizing the computer code ASTRA are carried out. The basic approach
is similar to the actual slit-scan experiments, and the steps are the followings:

• 1. Generate a beam distribution with given number of particles, beam energy, emittance,
and Twiss parameters;

• 2. Cut beam into beamlets according to slit width and step width;

• 3. Drift space simulations (slit to screen) for all beamlets with particle input from cutting;

• 4.Record the particles position at the screen station;
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(a) (b)

(c)

Fig. 5.24 Loss comparison of different latent layer size under learning rate 1 × 10−5 with 1024
batch size (a). Loss comparison of different learning rate under 982 latent layers with 1024
batch size (b). Loss comparison of different batch size under 982 latent layers with learning
rate 1 × 10−5 (c).

• 5. Calculate and reconstruct the phase space of the whole beam at slit position from the
beamlet data;

• 6. Compare reconstructed phase space and emittance results with the initial data.

In this simulation, the 3-D space charge calculation method of ASTRA is applied for the part
from slit position to the screen. First, we talk about the particle number in the simulation.
Considering the time of simulation, we decided to use the smallest particle number of 0.8 million
which provides accurate results.

5.3.5 Error analysis of slit-scan

The error of slit-scan emittance measurement in our experiments has five contributions: the slit
width error (e0), the space charge error (e1), slit position recording jitter (e2), beamlet images
center and RMS size uncertainty (e3), and beam energy uncertainty (e4). It is shown as the
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(a) Auto-encoder filter (b) Gaussian fitting (c) Median fitting

(d) Butterworth filter (e) FIR filter

Fig. 5.25 Different filters comparison.

equation:
e =

√
e2

0 + e2
1 + e2

2 + e2
3 + e2

4. (5.44)

5.3.6 Beam size correction factor

Using a YAG screen, the beam RMS size can also be measured directly at the slit position.
Experimental results show that reconstructed beam sizes < x2 > from the measurement of the
beamlets are smaller than the direct results. The reason is the finite signal-to-noise ratio which
causes signal losses at the low-intensity edges of the beamlets. This effect has been identified for
the first time at the PITZ photo injector [93, 94] and a correction factor fc has been introduced:

fc = σx√
x2

, (5.45)

where σx is the beam RMS size measured at slit position, and < x2 > is the second central
moment of the beam distribution from slit can measurement. Then the (corrected) normalized
emittance can be written as:

εn,rms = σx√
⟨x2⟩

pz

m0c

√
⟨x2⟩ ⟨x′2⟩ − ⟨xx′⟩2. (5.46)

As proposed in Ref. [93, 94] this conservative approach of the slit-scan analysis has been used
in this paper and belongs to the standard slit-scan procedure at the ELBE SRF Gun. Fig. 5.26
gives the correction factor changes with bunch charge. One can find that at low bunch charge,
sometimes the factor is smaller than one due to dark current or the other noise not subtracted
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from signal mixed into the signal completely. In most situations, it is between 1 and 1.1 for
higher bunch charges.

Fig. 5.26 Correction factor along with bunch charge. The blue dash line is equal one and the
read dots are the correction factor calculated from slit scan experiment at different bunch
charge.

Fig. 5.27 shows three beamlet images with complex spot distributions obtained from ASTRA
simulation with parameters at slit position which are summarized in Tab. 5.1. The halos in
these distributions may be below the experimental noise level, and thus the measured second
central momenta could be smaller than the real ones.

5.3.7 Error due to the slit width

The influence of slit width is studied in simulation. From the slit-scan theory, the slit width
does not limit the emittance measurement results. However, in experiments, the results for low
bunch charges with low emittance are far from the simulation. One reason is the image noise,
and the other reason is the limitation of the silt width and the pixel size of the screen, which
will decrease the signal-to-noise ratio of beamlet images. In our beamline, the YAG screen pixel
size is 25.3 µm. In the simulation, the pixel size is also fixed to 25.3 µm, and the silt width is

(a) (b) (c)

Fig. 5.27 Beamlet distribution with long tail in simulation.
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Table 5.1 Slit-scan simulation beam parameters at slit position. In ASTRA simulation, the
laser spot is Gaussian distribution with 1.064 mm RMS size and cutting at 1.17 time RMS size;
gun maximum gradient is 20.5 MV/m with phase 55 degree and -5 kV DC voltage at cathode
position; the integral solenoid field is 1.388 × 10−3 T2 · m and located at 0.7 m downstream
from the cathode; the slit is located at 2.76 m downstream from the cathode.

Beam energy (MeV) 4.452
Bunch charge (pC) 100
Horizontal RMS size (mm) 0.43
Vertical RMS size (mm) 0.43
Longitudianl RMS size (mm) 1.714
Transverse normalized emittance (mm·mrad) 1.655

changed at different beam normalized emittance. The results for the emittance error are shown
in Fig. 5.28.

Fig. 5.28 Emittance error with different slit width at 0.75 meters drift distance.

Every slit with a certain width has an inherent error for different beam emittance. From fitting,
it can be written as Eq. 5.47 approximately:

e0 =
∣∣∣∣εc − ε0

ε0

∣∣∣∣ ≈ e−kεc

1 − e−kεc
(5.47)

here k is the parameter from fitting and shown in Tab. 5.2 and Fig. 5.29

5.3.8 Beamlet space charge effect

It is intuitive that once the space-charge dominated beam hit the slit and the major part is
stopped, the remaining beamlet becomes an emittance dominated beam and gets rid of space



5.3 Slit-scan and error analysis 67

Table 5.2 The factors of different slit width.

Slit width (um) k (mm · mrad−1)
10 10.93
20 9.10
50 4.85
100 2.12
150 1.19
200 0.76

Fig. 5.29 The emittance ratio of calculation and simulation with calculation emittance.

charge. However, this conclusion is incorrect because the slit cut off most of the particles, but
it does not change the particle density. The beamlets with high particle density potentially
contribute further to an emittance error.

From Eq. 5.2, a typical value is R0 = 0.1 for a beam with 200 pC and 2.1 mm RMS size at slit
position at SRF gun beam line for 1.875 mm RMS size laser spot on the cathode. Assuming
that the beam distribution is uniform at the slit position and the slit width is d, the beamlet
space charge dominance ratio can be given by:

Rb =
√

2
3π

I

γI0

(
d

εn

)2
(5.48)

When Rb << 1, the beamlet is emittance-dominated, and the influence of space charge is
negligible. However, from the experiments, sometimes it is impossible to realize this condition
due to the reception of the screen limitation. To evaluate the exact magnitude of the error from
space charge, a series slit-scan simulation considering the drift distance and space charge are
carried out with ASTRA. In the simulation, the slit width is 100 µm, and the slit step is fixed
to 100 µm, similar to the experiments. From simulation results, the space charge and the drift
distance contribute to the emittance error.
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(a) (b) (c)

Fig. 5.30 Slit scan simulation: (a) without space charge, (b) only space charge, (c) with space
charge.

Generally, when Rb 6 0.1 and the drift distance is larger than 0.5 m, the error is less than
3% and will decrease with the drift distance enlarging, independent of space charge. When
Rb > 0.1, the error from space charge enlarges with the drift distance increases, especially for
large Rb, as Fig. 5.30 (b) shows. For a short drift distance smaller than 0.5 m, the error is
more than 10% for the most cases.

However, Rb is related to beam parameters, such as bunch charge, beam spot size and bunch
length. In the simulations, we have changed the laser power, laser spot size on the cathode,
gun phase and solenoid current that all determine the aforementioned beam parameters. Fig.
5.31 shows how Rb evolves with bunch charge for laser spot radii on the cathode of 1.25 mm
and 1.875 mm. The Rb for smaller laser spot radius on the cathode is larger than for the bigger
radius for bunch charge less than 75 pC. In the high bunch charge case, larger than 100 pC,
the smaller laser spot on the cathode has smaller Rb. When Rb is less than 0.5, the error is less
than 10% as Fig. 5.30 (a) first column showns.

Fig. 5.31 along with the bunch charge at two different laser spot on the cathode.
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5.3.9 Slit position recording uncertainty

The slit control system will be described in the next chapter in detail. Since the delay time
of the whole system being is uncertain, the recorded values of slit position calculated in Eq.
6.8 have jitter. From the recording time and position, one can calculate the velocity of the
motor in each step. If assume that the setting velocity of the slit is stable and constant, one
can compare the velocity from the recording data with the setting values. Fig. 6.29 shows that
during the slit-scan, the recording time or slit position has some uncertainties, which results in
the slit step having about 0.2 % error for the setting velocity of 0.25 mm/s. To analyze the
influence of slit position jitter on emittance, it assumes that the jitter is a random value from a
uniform distribution, and the average of the jitter is ∆x. Ignoring the high order terms, the
error of emittance can be written as:

εnc
∼=
(

1 + ∆x

x

)
εn0

e2 = ∆x

x
,

(5.49)

here εnc and εn0 are the calculated and original emittance. Fig. 5.32 shows that the error result
from the position jitter is linear with the record step jitter. In our experiments, this error is
less than 0.8% in average.

Fig. 5.32 The normalized emittance from calculation versus the normalized emittance from
simulation at average 0.6% slit moving step error

5.3.10 Image noise

Although the ML filter can reduce noise efficiently, the remaining noise will influence the
beamlet position and RMS size calculation. On the other hand, the signal-to-noise ratio is
different and unknown in each beamlet image. In the experiments, one can make the slit scan
two times, one time with the beam off for background measurement. However, this means it
needs twice the time and still cannot subtract the noise one hundred percent. The influence of
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(a) (b) (c)

Fig. 5.33 One example with different cutting factors.

Table 5.3 Beamlets center, RMS and intensity details of Fig.5.33.

ML filter Median filter
Limit f Center (pixel) RMS (pixel) Limit f Center (pixel) RMS (pixel)

0 262.80 23.64 0 260.58 55.07
2.5 262.40 15.36 1 262.29 16.15
3.0 262.50 15.71 1.5 262.31 19.29

dark current on beam emittance will be discussed later in this section. To reduce the influence
of the noise on the beamlet center and RMS size calculations, these calculations are performed
twice. The first calculation uses the pixel intensities of the whole measurement range. In the
second time, the pixel intensities are used in a certain range of the beamlet RMS size times a
factor f far from the center calculated first. Usually, f is chosen between 0.5 to 5 depending on
different image conditions. Fig.5.33 and Tab. 5.3 show one example calculated with different f
factors, which indicates that the beam RMS size is more sensitive than the center position to
the value of f .

For the emittance calculation, the uncertainty is from the beamlet image intensity, the beamlet
center, and beamlet RMS size. Let δn, δc, and δσ be the averaged relative uncertainties of the
beamlet intensity, the beamlet center position, and the square of the RMS size. Assuming that
they are independent of the beamlet number i, then the i-th beamlet center and RMS size can
be written as:

ni,r = (1 ± δn) ni

x̄sci,r = (1 ± δc) x̄sci

σ2
i,r = (1 ± δσ) σ2

i .

(5.50)

Then the beamlet deviation is:

x′
i,r = 1

L
(x̄sci,r − xsi) = 1

L
(x̄sci − xsi) ± δc

L
x̄sci, (5.51)

beam center deviation is:

< x′ >r=
∑

nix
′
i,r =< x′ > ±δc

L

∑
nix̄sci =< x′ > ±δc

L
< x̄sc >, (5.52)
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the error of < x′2 > from δc:

< x′2 >r=
∑

niσ
′2
i +

∑
ni

(
x′

i,r− < x′ >r

)2

=
∑

niσ
′2
i +

∑
ni

[ 1
L

(x̄sci − xsi) ± δc

L
x̄sci− < x′ > ±δc

L
< x̄sc >

]2

=< x′2 > ±2δC

L

∑
ni
(
x′

i− < x′ >
)

(x̄sci− < x̄sc >)

, (5.53)

the error of < x′2 > from δσ:

< x′2 >r=< x′2 > ± δσ

L2 < σ2 >, (5.54)

the error of < x′2 > from δn:〈
x′2
〉

r
=
∑

ni,nσ′2
i +

∑
ni,n

(
x′

i− < x′ >r
)2

=
∑

ni,nσ′2
i ± δn

∑
niσ

′2
i +

∑
(1 ± δn) ni

(
x′

i− < x′ >r
)2

=< x′2 > ±δn < x′2 >,

(5.55)

the error of < xx′ > from δc:

< xx′ >r=
∑

nixsix
′
i,r

=
∑

nixsi

[ 1
L

(x̄sci,r − xsi) ± δc

L
x̄sci,r

]
=< xx′ > ±δc

L

∑
nixsix̄sci,

(5.56)

the error of < xx′ > from δn:

< xx′ >r=
∑

(1 ± δn) nixsix
′
i,r

< xx′ >r=< xx′ > ±δn < xx′ >,
(5.57)

the error of < x2 > from δn:

< x2 >r=< x2 > ±δn < x2 > . (5.58)

The final equation for the error of squared geometrical emittance δ(ε2) is:

∆
(
ε2
)

= 2δc

L

∣∣∣〈x2
〉 〈

x′x̄sc
〉

−
〈
xx′〉 ⟨xsx̄sc⟩
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To obtain the relative error of ε:
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Introducing: 〈
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finally, the emittance error caused by the beamlet measurement uncertainties is:

e3 =
∣∣∣∣δckc + δn + δσkσ

2

∣∣∣∣ . (5.63)

kc and kσ depend on the distribution of the beam in phase space and the relationship of the
coordinate systems at slit position and screen position. It is difficult to calculate them because
they all include the real measurement values. However, one can estimate them if it is assumed
that their magnitudes are similar as the actual emittance value and the factors kc and kσ are
equal to one. So the error from the beamlet intensity, center and RMS size jitter is linear with
the jitter magnitude as |δn + δc + δσ

2 |.

5.3.11 Energy uncertainty

Energy jitter will contribute to the error of the normalized emittance by the relativity factors
β and γ. This error can be written as:

e4 = δεn(E)
εn

= 1
β2

δ(E)
E

(5.64)

5.4 Extremely low bunch charge and cathode thermal emit-
tance measurement

5.4.1 Theory

The emittance measurement at extremely low bunch charge is essential in many cases for a
successful operation of the photo injector. This includes to measure the thermal emittance of
the photocathode, and on the other hand it is needed for low bunch charge applications, such as
Ultrafast Electron Diffraction (UED). There are three methods suitable for this measurement:
solenoid scan, single shot thermal emittance mapping, and grid scan. Here we focus on the first
two methods only.

The solenoid scan and the quadrupole scan are similar in the implementation and the data
analysis. However, one potential failure consists in the fact that the horizontal and the vertical
directions of the beam can be correlated. Then the beam spot remains not round during the
measurement and an enlarged emittiance can be measured. P. W. Huang and H. Qian at PITZ
have introduced a new thermal emittance measurement method, called single shot thermal
emittance mapping [95]. The idea of this method bases on linear beam transport theory. Fig.
5.34 shows a simplified model of the beamline components which are involved, the gun cavity, a
solenoid, and a screen. In the analysis of this model, the cavity is simply treated as a diverging
lens and the solenoid as thin focusing lens, and they are represented by the corresponding
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matrices in linear transport theory. The simple estimation is given in the following:

Fig. 5.34 Single shot thermal emittance mapping illustration.
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Then
M11 = 1 + kGL − (1 + kGL1)L2ks (5.67)

M12 = L − L1L2ks. (5.68)

here L = L1 + L2. For the cavity, for instant the SRF gun cavity, the focal strength is estimated
as [42]:

kG = dx′

dx
= eE0

2cpnz
sin(ϕ). (5.69)

The solenoid focal strength is calculated from Eq. 4.1. The beam position and RMS size square
can be written as:

x = M11x0 + M12x′
0, (5.70)〈
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with x′
0 is defined as px0/(m0c). If we set M11 equal zero, then the solenoid focal strength must

be
ks = 1 + kGL

(1 + kGL1)L2
. (5.72)

For the given value of L1 and L2, the solenoid magnetic field must be 0.2477 T, and the
corresponding current amounts about 5.5 A, which is inside the setting range. M12 amounts

M12 = L2
1 + kGL1

m0c

pz
(5.73)

At the photocathode, the transverse position and transverse momentum of the photoemission
electrons are not correlated and the thermal emittance can be expressed by

εnc

σx0
= px0

m0c
= σx(L)

M12
(5.74)
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(a) 50 fC, With space charge (b) 50 fC, Without space charge

(c) 100 fC, With space charge (d) 100 fC, Without space charge

Fig. 5.35 Solenoid working current with and without space charge in simulation. In this
simulation, the SRF Gun gradient is 8 MV/m with phase 50 degrees. The distance from
solenoid to the screen is 2.061 m. The curves are for different starting positions on the cathode
(x, y) with values in mm.

where σx0 is the RMS photoemission spot size on the cathode and σx(L) the RMS beam spot
size on the screen.

5.4.2 Single shot transverse momentum imaging simulation

Electron bunches with 50 fC and 100 fC charge with and a RMS length 2.3 ps are used in the
simulation. The distance from the cathode to the screens amounts 2.76 m for the screen in
screen station 2. In the method the precondition for exact results is that the matrix element
M11 is zero. This means that the beam position on the screen remains constant independent of
the initial beam position on the cathode. To proof that and to find the exact setting value of
the solenoid for this condition, the inital beam is given different offset values at the cathode
and the solenoid current is varied. The offset values in the simulation are less than 2 mm
because the cathode diameter is 4 mm in the experiment. At the edge of the cathode, field
nonlinearities appear, but their effect is not severe. As we can see in Fig.5.35, the solenoid
working current is equal for all beam position offset on the cathode. Using screen station 2 in
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the beamline, the solenoid current is around 5 A in the simulation. The space charge effect can
be ignored if the bunch charge is 50 fC or 100 fC or similar small, which is also proofed in the
simulation presented in Fig. 5.35.

Once the gun parameters are set, the solenoid working current can be obtained from simulation
and later from the experiment by the same method. Then M12 can be taken from the
simulation. Fig. 5.36 shows the determination of the M12 value. From the linear fitting, M12 is
0.21296 ± 0.00006 mm2/(mm · mrad).

Fig. 5.36 Single-shot mapping M12. In this simulation, the SRF Gun gradient is 8 MV/m with
phase 50 degrees. The distance from solenoid to the screen is 2.061 m and the solenoid working
current is 4.85 A.



Chapter 6

Experiment results

6.1 SC solenoid magnetic field

6.1.1 Solenoid design and motivation

As it is discussed in Chapter 4.1.2, the spherical aberration coefficient of a solenoid grows with
the square of the first derivative of the axial magnetic field. The additional emittance due to
the spherical aberration increases linearly with this coefficient. In order to reduce this effect,
we optimized the iron yoke geometry and broadened the longitudinal field distribution of the
solenoid, especially we decreased the gradient of the longitudinal edge field. This new solenoid
is intended for SRF gun III. As in the previous SRF gun, the motivation for the use of a SC
solenoid is not to obtain a high field, but a shortest possible distance to the SC cavity. Thus,
the solenoid is placed inside the gun cryomodule which requires a compact design and extremely
low thermal losses from the solenoid coil electric current. Since SRF gun III is planed to deliver
beams with lower emittance at higher bunch charges, it also needs a reduction of the spherical
aberration.

The coil body of the SC solenoid was built by Niowave Inc. The NbTi SC wire used for the
winding of the coil is a multifilament wire with Cu matrix and a 4.5:1 ratio of Cu to NbTi.
The critical temperature for superconductivity of the NbTi amounts 9.7 K. The coil has 2110
windings and the total length of the wire used is approximately 640 m. The magnet yoke is
made of soft iron, the other parts consists of Cu, Al, and nonmagnetic stainless steel. In Fig.
6.1 the solenoid design is presented. The iron yoke surrounds the SC coil and has a lengths of
120 mm, an outer diameter of 124 mm, and a boring diameter of 63.5 mm. A ring-shaped Cu
plate with inserted, u-shaped, stainless steel tube for liquid He is attached to the coil body
and serves for cooling. In the cryomodule the He tube is connected to the 2 K helium cooling
system of the RF cavity.

6.1.2 Cryomodule

For tests and the magnetic field measurement, the SC solenoid has been installed in the
cryomodule intended for SRF gun III. Fig. 6.2 shows a section of the cryomodule’s CAD design
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Fig. 6.1 Exploded CAD drawing of the SC solenoid.

with the SC solenoid, the beam tube, the cavity end group, and the He vessel housing the
RF cavity. A successful operation of the gun requires an exact alignment of the solenoid with
respect to the RF cavity axis, which concerns the two transverse coordinates x, y and the
corresponding two tilt angles. For its transverse movement the solenoid is mounted on the
platform of two combined translation stages driven by stepper motors. The adjustment of the
horizontal and vertical tilts can be done manually by appropriate screws.

The solenoid alignment procedure should be done in two main steps [96]. The first step is
performed during the gun cryomodule assembly. It has the purpose to adjust the two tilt angles,
i.e. to make sure that the axis of the solenoid is parallel to the cavity axis. The second step
is carried out after commissioning of the gun. It is a beam based alignment and required the
remote controlled horizontal and vertical motion of the solenoid. The spacing between solenoid
boring and beam tube allows a movement up to 6 mm in horizontal and vertical directions.

Whereas the SC solenoid with all related components and diagnostics were built in as it is
shown in Fig. 6.3, that was not the case for the RF cavity and the beam pipe. Instead a
vacuum-tight tube, closed at the inner end was assembled, which extends into the cryomodule
by about 300 mm and allows access from outside for the field probes (see Fig. 6.5).

After finishing the installation work, the cryomodule was sealed and vacuum pumped. Since
it was connected to the liquid He and liquid N2 cooling system of the ELBE facility and the
computerized control and monitoring system was in operation, the cryomodule was automatically
cooled down and was permanently hold in the operational state. At the solenoid temperatures
between 4.5 K and 5 K were measured up to the current target value of 8 A, i.e. the temperature
was always safely below the critical value of 9.7 K. In order to transfer away the ohmic heat
from the stepper motors, they are cooled by liquid N2.
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Fig. 6.2 CAD image of the SC solenoid installation in the SRF gun III cryomodule.

6.1.3 Measurement setup

A photograph of the magnetic field measurement system is shown in Fig. 6.4. For the 3-D
coordinate measuring of components and mechanical alignment a Quantum Max metrology
tool (mechanical measuring arm) of FARO company was used. Before closing the cryomodule,
the mechanical axis and position of the solenoid were determined by means of this measuring
tool. As a reference plane the large flange for the front-side lid (see Fig. 6.4) of the cryomodule
was chosen. The three-axis movement of the measuring probes for the magnetic field mapping
was realized by a combination of three motorized linear stages (OWIS GmbH). The stage for
the z-axis motion had a travel range of 270 mm, and thus the magnet probes were mounted
in such a position that the maximum of the the longitudinal field was located at about z =
135 mm. For the determination of the transverse coordinate origin and the longitudinal axis
adjustment again the FARO mechanical measuring arm was employed. In the transverse plane
at the starting position z = 0 mm, the transverse center point was found to be (15.28 mm, 65.50
mm). Moving the z-axis stepper motor the full range of motion of 270 mm, the measurement
axis had deviations of -0.296 mrad in the horizontal -0.407 mrad in vertical direction for the
first time, and had -0.667 mrad in the horizontal and 0.889 mrad in the vertical direction for
the second time.

The two magnetic field sensors are based on the Hall effect. The first one is a 1-D axial Hall
probe from Magnet-Physik GmbH applied to measure the longitudinal field component, as
shown in Fig. 6.7 (a). Its measurement range is from 3 mT to 3 T and the active area has 0.4
mm diameter. The second one is a 3-D Hall probe from SENIS AG with a range of ± 200 mT
and a resolution of 0.001 mT for the three field components. The active probe size is 150 µm x
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Fig. 6.3 SC solenoid installation in cryomodule.

Fig. 6.4 Superconducting solenoid measurement system.

150 µm and 50 µm in thickness. A holder was built to ensure the probe is without tilt and to
cover the probe for protection during the mapping, shown in Fig. 6.7 (b). For the measurement
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Fig. 6.5 CAD image of field measurement setup with SC solenoid, tube, and coordinate system.

of the longitudinal magnetic component with 1-D probe the range was 0 to 270 mm with a 5
mm step size and it was carried out along the mechanical solenoid axis. The mapping with the
3-D probes was performed in an area of 12 mm × 11 mm in horizontal and vertical directions,
as shown in Fig. 6.6. The center point of each plane was (15.28 mm, 65.5 mm). The step sizes
were 1 mm in the transverse plane and 5 mm in the longitudinal direction. It takes about 4.5
minutes to measure one plane, and the total time for one complete mapping was about five and
a half our. Due to the range limit of the 3-D probe, the maximum current for mapping was 5
A. The longitudinal field component was determined with currents from 1 A to 8 A.

Fig. 6.6 Illustration of the SC solenoid field mapping.

6.1.4 Longitudinal field results

The longitudinal field Bz on axis was measured with the 1-D Hall probe because of easier
data processing. The longitudinal field is much stronger than the transverse field. Thus the
comparably low effect arising from the mismatch between measurement axis and solenoid axis
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(a) (b)

Fig. 6.7 (a) 1-D hall probe; (b) 3-D hall probe and holder.

(a) (b)

Fig. 6.8 SC solenoid longitudinal field.

is ignored. Fig. 6.8 (a) shows the longitudinal field profile of Bz for currents from 1 A to 8 A.
The comparison with computed profile, presented in Fig. 6.8 (b), shows a very good agreement.
As expected, the field maximum of Bz grows linearly with the solenoid current, and the slope
coefficient is 35.232 mT/mm, shown in Fig. 6.9 (a). The effective length is measured to 50.990
mm ± 0.068 mm (defined in Eq. 4.2), and Fig. 6.9 (b) shows the results obtained for different
currents.

6.1.5 Misalignment measurement

In order to determine the magnetic field of the SC solenoid a mapping of the spatial field
distribution was performed as it is illustrated in Fig. 6.6. For this measurement the 3-D Hall
probe was applied and, given by the range limit, the maximum current for the mapping was 5
A. As it was proven to be advantageous in the simulation, the longitudinal field component
Bz was used in the analysis. To avoid any influence of the background field, the first mapping
was carried out at 0 A current, and these data were subtracted from the regular measurement
data before numerical treatment. The data analysis was performed as described in section
4.2.2. For each plane the coordinates of the extremum (maximum outside and minimum inside
the solenoid) were determined by a parabolic fitting. Then linear regressions are performed
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(a) (b)

Fig. 6.9 SC solenoid maximum longitudinal field vs current (a) and effective length vs current
(b).

(a) (b)

Fig. 6.10 SC solenoid longitudinal field axis fitting with current 4 A. Horizontal axis fitting (a)
and Vertical axis fitting (b).

in selected z ranges at the entrance and exit of the solenoid with these series of center point
coordinates which deliver two straight lines. The final values for the SC solenoid field axis tilt
and offset are the averaged values of these two straight line values. Fig. 6.10 shows a group of
measurement results at 4 A solenoid current together with the linear fitting to determine the
solenoid axis parameter (a, b) and the axis center coordinates for all the measured planes from
z = 0 mm to z =270 mm. A summary of the misalignment measurement results is presented in
Tab. 6.1.

The offset position of the solenoid can be corrected by moving the x-y stage during operation
of the SRF gun. However, the axis tilt can not be corrected afterwards. The misalignment
between magnetic field axis and measurement axis can originate from a difference between the
solenoid’s magnetic and mechanical axes, the adjustment error of the solenoid with respect to
the reference plane, the error of the measuring coordinate system with respect to the reference
plane, and the inaccuracy in the data analysis. Further sources of possible impact are the
magnetic hysteresis of the solenoid and surrounding components or a solenoid position change
due to thermal contraction during the cool-down to 4.5 K.
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Table 6.1 SC solenoid field axis measurement results.

Current / A tilt x / mrad tilt y / mrad offset x / mm offset y / mm
1 8.593 -19.043 0.062 -2.161
2 6.268 -24.781 0.489 -0.65
3 27.405 -23.357 0.042 -0.825
4 6.771 -20.754 2.514 -0.637
5 5.297 -19.178 2.878 -0.569
-3 6.884 -21.51 2.56 -0.5
-4 7.693 -23.209 2.132 -0.545
-5 9.001 -24.512 2.117 -0.499

Average 9.739 ± 7.239 -22.043 ± 2.262 1.599 ± 1.193 -0.798 ± 0.561

6.1.6 Multipole components

The multipole field analysis is based on the transverse field components which are measured
with the 3-D Hall probe. Before the evaluation procedure was applied to the measured field data,
again the measured background field was subtracted from the field mapping data. The specific
aim of the data analysis was to determine the coefficients for the multipole field components
according to Eq. 4.39 for each measurement plane. The center coordinates needed, were taken
from the previous axis measurements.

Finally, a fitting procedure, performed for each plane, delivers the coefficients. The example
presented in Fig. 6.11 belongs to the solenoid field at 5 A and the diagrams show the results as
function of the longitudinal coordinate z. Fig. 6.11 (a) compares the solenoid transverse field
coefficient Jt of the present measurement with the curve obtained from the first derivative of
the meausred axis field Bz (see Eq. 4.22). The very good agreement confirms the correctness
of the method.

Fig. 6.11 (b) shows the normal and the skew components of the parasitic dipole field. The
normal dipole component is symmetric with the center of the solenoid, but the skew dipole is
not. The entire dipole field can be written as given in the following equation:

Bd = Bdn + Bds = −Jdsex + Jdney (6.1)

The values obtained by integration along the z axis determine the strength and direction of
the dipole kick which the beam suffers. Fig. 6.12 (a) presents the same results in the form of
magnitude and phase. As can be seen, a phase change happens at the center plane position.
The integrated dipole field increases linearly with the solenoid current, as shown in Fig. 6.12
(b).

The parasitic quadrupole part, presented in Fig. 6.11 (c), is antisymmetric with respect to
the middle plane in the stronger normal component. The integrated gradient, calculated by
z-integration of the presented curves, is thus nearly zero. However, taking into consideration the
Larmor rotation of the beam coordinate frame inside the solenoid, an effect could still appear,
as it has been discussed in Chapter 4. To evaluate the entire quadrupole field, we combine the
normal and skew part as written in the following:
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(a) (b)

(c) (d)

Fig. 6.11 SC solenoid transverse field multipole coefficients. (a) Solenoid transverse field vs z;
(b) Normal and skew dipole components vs z; (c) Normal and skew quadrupole components vs
z; (d) Normal and skew sextupole components vs z.
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(a) (b)

Fig. 6.12 (a) Dipole component and phase vs z at solenoid current 5 A; (b) Dipole component
integration vs current.

Bq = Bqn + Bqs = (Jqny − Jqsx)ex + (Jqnx + Jqsy)ey (6.2)

The polar representation with magnitude and phase is shown in Fig. 6.13 (a), and Fig. 6.13 (b)
depicts the integrated gradient in dependence on the solenoid current. The slopes for positive
and negative currents of the lines in Fig. 6.13 (b) are different, which is likely caused by the
measurement errors.

(a) (b)

Fig. 6.13 Quadrupole gradient and phase vs z at solenoid current 5 A (a); Quadrupole gradient
integration vs current (b).

To cancel the influence from the parasitic quadrupole field, a group of correctors, consisting of
one normal quadrupole and one skew quadrupole, is installed downstream from the center of
the solenoid at 0.437 m distance in the SRF gun beamline. The corrector’s effective length is
0.0672 m with a gradient of 0.012 T/m/A. The power supply has a maximum current of 3 A,
and the setting range is now ± 2 A. Considering SRF gun III will be operated at a gradient of
12 MV/m, the SC solenoid current will be set up to 6 A for focusing the beam and compensate
the transverse emittance. This means that the integrated quadrupole field gradient is as high as
0.186 mT with a peak gradient of 0.048 T/m and an effective length of 0.004 m. However, the
quadrupole field phase is uncertain. Using these data, simulations were made with ASTRA. Fig.
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6.14 shows the beam transverse emittance oscillation versus the quadrupole field rotation angle
obtained in the standard x and y directions. The parasitic quadrupole field even can decrease
the original emittance because it will correct the spherical aberration of the solenoid somehow
when in the correct phase. However, it will increase the beam transverse emittance in most
cases, and it is better to cancel this field. We assume the worst case, i.e. a quadrupole field
phase of 45.8 degrees, as can be seen in Fig. 6.14, and the corrector is set to 0.5 A. Fig. 6.15
shows the beam transverse emittance oscillation as function of the corrector field phase. From
the simulation results, the correctors can cancel the influence from the parasitic quadrupole
field of the solenoid.

Fig. 6.14 Quadrupole field rotation angle vs normalized emittance obtained from ASTRA
simulation for a uniform laser distribution of 2.5 mm on the cathode. The bunch change is 500
pC. The space charge is ignored when considering the quadrupole field of the solenoid. The
beam kinetic energy is 6 MeV. The solenoid current is 6 A, the quadrupole component focal
strength is 2.21 m−2 with an effective length of 0.004 m. They location is 0.55 m far from the
cathode.

The sextupole field coefficient is smaller than the quadrupole field coefficient. The measurement
accuracy of the sextupole field coefficient is lower than that of the dipole and quadrupole fields.
The sextupole field can be written as

Bs = Bsn + Bss = [Jsnxy − 1
2Jss(x2 − y2)]ex + [12Jsn(x2 − y2) + Jssxy]ey. (6.3)

Fig. 6.16 (a) shows the sextupole field coefficient and phase along the longitudinal direction
at 5 A of the solenoid. The amplitude of the sextupole field is nearly symmetric with respect
to the center of the solenoid. The maximum values, around 0.0025 mT/mm2, appear at the
mirror planes. Also the phase changes strongly its sign at the center position and reaches the
maximum and minimum values at the mirror planes. At the edges of the solenoid, the phase
is not stable because the sextupole coefficient is too small for accurate fitting, and the noise
dominates. It is intuitive that the z integral of the sextupole field coefficient is linear with the
solenoid current. However, the results from the measurements are not, as shown Fig. 6.16 (b).
The reason may come from the fact that the sextupole component is beyond the accuracy of
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Fig. 6.15 Correctors rotation angle vs normalized emittance.

this measurement method. Therefore in Tab. 6.2, an estimation of the sextupole field strength
is given based on the measurement results.

(a) (b)

Fig. 6.16 Sextupole field coefficient and phase vs z for a solenoid current of 5 A (a); Integrated
sextupole field coefficient vs current (b).

Now we evaluate the sextupole field influence on the transverse emittance. From simulation for
SRF gun III at 500 pC bunch charge, the beam RMS size at the solenoid is around 4 mm. The
solenoid current will be set as 6 A, and the sextupole field amplitude is about 0.005 mT/mm2

with an effective length of 0.006 m. If the beam has a Gaussian distribution, the additional
normalized emittance is about 0.9 mm · mrad, and 0.52 mm · mrad in the case of an uniform
distribution. Thus, the influence is about 20 %.

An overview of all the parameters of the solenoid are shown in table 6.2. The measured values
of the main parameters satisfy the design requirements.
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Table 6.2 Summary of SC solenoid field values, misalignment and multipole field measurement
results.

Parameters Simulation Measured
Bz @ 8 A [mT] 286 282 ± 0.705
dBz
dI [mT/A] 35.7 35.232 ± 0.021

Effective Length [mm] 52.27 50.990 ± 0.068
Holder axis tilt x [mrad] 0 -0.667
Holder axis tilt y [mrad] 0 0.889
Field axis tilt x [mrad] - 9.739 ± 7.239
Field axis tilt y [mrad] - -22.043 ± 2.262
Field axis offset x [mm] - 1.599 ± 1.193
Field axis offset y [mm] - -0.798 ± 0.561
Max. integrated quadrupole field @ 5A - 0.118 ± 0.060 mT
Max. integrated sextupole field @5 A - ∼ 0.03 mT/mm

6.1.7 Magnetic field measurement error sources

The measurement uncertainties of the SC solenoid arise from four contributions: 1. not perfect
Hall probe mechanical alignment; 2. not perfect degaussing of the yoke; 3. the Hall probe
intrinsic error; 4. fitting error.

The field measurement was carried out within one week. Every complete field mapping needed
about four and one half hours. Due to a technical deficiency of the measurement system (z
movement range limit and initialization procedure) the Hall probe had to be realigned manually
by means of a marker every day. This has resulted in a longitudinal position error of the Hall
probe error below 0.8 mm, and a rotation error below 60 mrad. The solenoid longitudinal field
error from this realignment error is less than 2 %. The transverse field uncertainty from the
rotation error is less than 6 %.

The second error source is the incomplete degaussing of the yoke. The material of the yoke is a
kind of soft iron (Fe 1.1003). Although the background field is recorded, it was not measured
before every field mapping. The background field was recorded three times: before the whole
measurement period, the second was before the solenoid current was increased to 4 and later 5
A, the third time was after the solenoid field was measured at -3 A. As shown in Fig. 6.17, the
variation of the background field at the mechanical axis is about 0.125 mT. The background
field was subtracted before multipole field analysis but due to its variations there are still
uncertainties. The averaged differences of the multipole component integrals, for instance, for
the dipole fields, quadrupole field gradients and sextupole field coefficients, are 18.4 %, 30.4 %,
and 21.4 %, respectively.

The active area of the 1-D Hall probe possesses a diameter of 0.4 mm. The magnetic field value
is an average of a circle area with 0.126 mm2. The calibration of the 1-D Hall probe has 0.25 %
uncertainty [97]. The core size of the 3-D Hall probe is 0.15 × 0.1 × 0.15 mm3. Total measuring
precision is better than ± 0.1 % for the 3-D Hall probe [98]. The alignment of the inside sensor
areas in the 3-D Hall probe has an intrinsic error less than about 17.45 mrad, shown as Fig.
6.18 [98].
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(a) (b)

(c) (d)

Fig. 6.17 Background field measurement results.

Fig. 6.18 3-D probe inside alignment.

From Fig. 6.11, the fitting errors are mainly in the quadrupole gradient and sextupole field
coefficient. Comparing the average fitting error less than 1 % in simulation because of the finite
grids size in computation, the fitting errors are 2 %, 73 % and 90 % for dipole field, quadrupole
field gradient and sextupole field coefficients. The fitting error is a overall representation of the
former three errors.
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6.2 Quadrupole scan emittance measurements

Fig. 6.19 shows an overview of the diagnostic beamline and the ELBE beamline relevant for
the presented measurements. There are three quadrupoles and two screens which are suitable
for the quadrupole scan. Thus their combination allows measurements with six different drift
lengths at otherwise nearly constant beam properties. The corresponding drift distances of
each couple of quadrupole and screen are presented in Tab.6.5.

Fig. 6.19 Beamline at SRF gun and ELBE for quadrupole scan scheme.

6.2.1 Quadrupole strength calibration

Before the quadrupole scan, one should check the quadrupole focal strength. To calibrate the
quadrupole magnetic field, one steerer is set up before the quadrupole, and one screen is in the
downstream position. The beam spot position and divergence at the screen position can be
derived from transport matrixes.

Fig. 6.20 Quadrupole strength calibration setup.
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In experiments one can obtain R12 using the Eq. 6.4, then compare this value with R12 in
theory. One can find the difference between ideal conditions and reality by this method. For
thin-lens approximation,

R12 = L1 + L2 − kLeff L1L2, (6.5)
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(a) (b)

Fig. 6.21 Calibration of steerer IN2-MS 08 (a) and quadrupole IN2-MQ01 with 50 mA (b).

For thick-lens focusing,

R12 = L1
[
Cf − L2

√
kSf

]
+ 1√

k
Sf + L2Cf , (6.6)

For thick-lens defocusing,

R12 = L1
[
Cd + L2

√
kSd

]
+ 1√

k
Sd + L2Cd. (6.7)

The definitions of Cf , Sf , Cd and Sd are as Eq. 5.6.

In the experiments, the steerer IN2-MS.08 is applied. The quadrupoles including IN2-MQ.01,
the IN2-MQ.02 IN2-MQ.03 are needed to be calibrated, and the screen IN2-DV.02 gives the
position and shape of the beam. The parameters of quadrupole calibration are in the Tab. 6.3.
In the table, L1 and L2 mean the steerer to the quadrupole distance and the quadrupole to the
screen distance, respectively.

The first step is to calibrate the steerer function. One should switch off all the quadrupoles.
Then scan the steerer current and record the beam spot position on the screen. The steerer
scans scale from 60 mA to 200 mA horizontally. The drift distance from steer to screen is 2.524
m. So the divergence per mA of the beam is 2.1157 × 10−5 rad/mA, as shown Fig. 6.21 (a).
The second step is setting the quadrupole current from 50 mA to 300 mA with step 50 mA and
then repeating the first step. Fig. 6.21 (b) shows an example of steer scan when IN2-MQ.01 is
50 mA, dx = 0.0562 mm/mA. The Third step is to calculate the R12 value by Eq. 6.4. The
last step is to fit R12 with different quadrupole current using equation 6.6 fit and calculate the
quadrupole focusing parameters. Fig. 6.22 shows the fitting curves from experiments. One
can see that the measurement results from experiment have about 10% difference to the design

Table 6.3 Three quadrupole calibration beamline parameters.

IN2-MQ.01 IN2-MQ.02 IN2-MQ.03
L1 (m) 0.637 0.885 1.134
L2 (m) 1.887 1.639 1.390
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(a) (b) (c)

Fig. 6.22 Quadrupole calibration R12. IN2-MQ.01 calibration (a); IN2-MQ.02 calibration (b);
IN2-MQ.03 calibration (c).

Table 6.4 Three quadrupole k value.

IN2-MQ.01 IN2-MQ.02 IN2-MQ.03
k0 (m−2/A) 32.62 32.62 32.62

kexp (m−2/A) 29.754 33.923 36.369
kexp error (m−2/A) ± 0.417 ± 0.475 ± 0.509

value. This difference may come from the hysteresis loop change in the experiment. As we talk
about, the normalized emittance error is linear with this error and one should be carefull about
the quaddrupole calibration.

6.2.2 Quadrupole scan emittance measurement results

Once the quadrupole parameters determined, the quadrupole scan emittance measurements
were carried out. Beside the quadrupole to screen combination, the bunch charge, laser spot
size at the photocathode, and the SC solenoid field strength were varied as it is given in Tab.
6.6. The other SRF gun parameters as the RF gradient of 8.0 MV/m and the RF phase of
44.5 degrees (3.99 MeV kinetic beam energy) remained constant. After each beam parameter
change, the beam alignment with respect to the quadrupole centers were checked again. The
experiments were limited to bunch charges less than 50 pC, where the expected phase space
distributions should be have an approximately elliptical shape. Thus the evaluation approach
for the quadrupole scan should be valid and the expected space charge effect in the drift area
remains observable. Other nonlinear effects like space charge at the photocathode or solenoid

Table 6.5 The drift distance between the quadrupole and the screen.

Quad. scan No. Quadrupole No. Screen No. Drift distance (m)
#1 IN2-MQ.01 IN2-DV.02 1.137
#2 IN2-MQ.01 IN2-DV.03 1.887
#3 IN2-MQ.02 IN2-DV.02 0.889
#4 IN2-MQ.02 IN2-DV.03 1.639
#5 IN2-MQ.03 IN2-DV.02 0.64
#6 IN2-MQ.03 IN2-DV.03 1.39
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Table 6.6 Quadrupole scan parameters at ELBE SRF Gun beamline. D1: drift distance from
quadrupole to screen; D0: distance from cathode to quadrupole; σlaser: laser spot RMS size on
the cathode; Q: Bunch charge; Bs: SC solenoid peak magnetic field.

Quad. scan No. D1 (m) D0 (m) σlaser (mm) Q (pC) Bs (T)
#1 1.137 1.624 0.625 12 0.165
#1 1.137 1.624 0.9735 16 0.1755
#1 1.137 1.624 0.625 30 0.165
#1 1.137 1.624 0.9735 45 0.1755
#2 1.887 1.624 0.625 12 0.165
#2 1.887 1.624 0.9735 16 0.1755
#2 1.887 1.624 0.625 30 0.165
#2 1.887 1.624 0.9735 45 0.1755
#3 0.889 1.872 0.625 12 0.165
#3 0.889 1.872 0.9735 16 0.1755
#3 0.889 1.872 0.625 30 0.165
#3 0.889 1.872 0.9735 45 0.1755
#4 1.639 1.872 0.625 12 0.165
#4 1.639 1.872 0.9735 16 0.1755
#4 1.639 1.872 0.625 30 0.165
#4 1.639 1.872 0.9375 45 0.1755
#5 0.64 2.121 0.625 12 0.165
#5 0.64 2.121 0.9375 16 0.1755
#5 0.64 2.121 0.625 30 0.165
#5 0.64 2.121 0.9735 45 0.1755
#6 1.39 2.121 0.625 12 0.165
#6 1.39 2.121 0.9735 16 0.1755
#6 1.39 2.121 0.625 30 0.165
#6 1.39 2.121 0.9735 45 0.1755

aberrations should not superpose the results and the possible use of fixed values of the image
acquisition system in this limited bunch charge range prevented systematic errors from it.

During the measurements, the background image is subtracted from the beam images. The
beam RMS size is defined as the second momentum of the beam distribution without Gaussian
fitting. The image area for the calculation is defined from ROI (Region of Interest). Two
evaluation methods, thin-lens approximation and thick-lens are used to obtain the experimental
results. Besides the experiments, simulations with the same parameters were made, and the
results were compared with the measurement results.

Fig. 6.23 shows the results. The errors of the emittance in experiments are calculated as
mentioned in section 5.2.3. From the experiment results, one can see that the quadrupole
calibration is necessary before the quadrupole scans. The influence of space charge in the drift
space is enlarged with longer drift distances, even for a beam with about 10 pC charge. The
normalized emittance of a shorter drift distance is closer to the result from the simulation. The
trend of the experimental results in the case of calibrated quadrupoles agrees with that of the
simulation results. The difference in the results between the experiment and simulation causes
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(a) 12 pC with quadrupole calibration (b) 12 pC without quadrupole calibration

(c) 16 pC with quadrupole calibration (d) 16 pC without quadrupole calibration

(e) 30 pC with quadrupole calibration (f) 30 pC without quadrupole calibration

(g) 45 pC with quadrupole calibration (h) 45 pC without quadrupole calibration

Fig. 6.23 Quadrupole scan at ELBE SRF Gun beamline.
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from the inhomogeneous beam distribution. Two images of beam distributions on IN2-DV.02
and IN2-DV.03 without any quadrupole field, are shown in Fig. 6.26. This inhomogeneous
distribution influencse the beam RMS size calculation and enlarges the calculated beam
normalized emittance. However, along the drift length there are discontinuities in the measured
results at the change from screen 2 to screen 3. Suspected inaccuracies in screen calibration or
position values measurement proved not to be true. Thus that effect should be checked again
in future.

From the simulation results in the former section, it finds that the space charge causes the
unsymmetric fitting curve of quadrupole scan. The influence of the space charge will be enlarged
by drift distance. So it indicates that the fitting curve for shorter drift distance has better
symmetric than the longer drift distance. Fig. 6.24 shows the fitting curves by the left and
right half points of the minimum point under drift distance 0.64 m and 1.887 m. It is visual
that the unsymmetry with 1.887 m drift distance is more serious than that with 0.64 m drift
distance except for the beam with 45 pC from fitting curves. The emittance difference between
the fitting from the left side and right side of the minimum point becomes larger with the drift
distance longer, shown as Fig. 6.25.

The other influence of space charge on quadrupole scan fitting curve is the shift of the curve
from that without space charge influence, as talked about in the former section. From the
experiment data, one can find that the difference of fitting curves between the left part and right
part increases with the drift distance enlarges. However, some points, shown as the red dots in
Fig. 6.25, do not agree with this trend. This phenomenon is from the unnormal beam RMS
size in the experiments. Some unstable beam jitter maybe influences the RMS size calculation.
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(a) 12 pC with drift distance 0.64 m (b) 12 pC with drift distance 1.887 m

(c) 16 pC with drift distance 0.64 m (d) 16 pC with drift distance 1.887 m

(e) 30 pC with drift distance 0.64 m (f) 30 pC with drift distance 1.887 m

(g) 45 pC with drift distance 0.64 m (h) 45 pC with drift distance 1.887 m

Fig. 6.24 Quadrupole scan fitting curves with different part comparison.
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(a) 12 pC (b) 16 pC

(c) 30 pC (d) 45 pC

Fig. 6.25 Quadrupole scan emittance difference from left and right half fitting vs drift distance.
In the figures, the dots are from experiments and lines are from fitting. The blue dots are the
’normal’ dots and used in the linear fitting. The red dots are the ’unnormal’ dots and excluded
in the linear fitting.

(a) (b)

Fig. 6.26 Beam distribution on IN2-DV.02 (a) and IN2-DV.03 (b).
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6.3 Slit-scan emittance measurements

6.3.1 Slit-scan system setup and control system

To meet the requirements of emittance measurements at the ELBE SRF gun in connection with
its user operation, i.e. speediness and accuracy, we upgraded the slit-scan setup in the diagnostic
beamline (see Fig. 6.19). The slit mask is located at screen station 2 (IN2-DV.02), 2.76 m from
the cathode, and the screen to get the beamlet images is located at screen station 3 (IN2-DV.03),
3.51 m from the cathode. Therefore the drift distance is 0.75 m. The ultra-high-vacuum (UHV)
translation stage for the slit movement, drive motors, and control units have been replaced by
advanced systems. The slit moving velocity with the new motor is now adjustable from 0 to
25 mm/s with a step resolution of 0.625 µm. The mask has one slit with 100 µm width in a
sheet of 1 mm thickness. The screen used for measurements consists of YAG and has a size of
25.3 µm diameter. Considering a beam with 4 MeV kinetic energy, the minimum measured
RMS emittance of this system is about 0.03 mm · mrad. YAG is a scintillator material with
high photon yield, fast decay time of 7 ns [99] and a saturation threshold, depending on the Ce
doping, of about 100 fC/µm2 [100]. The camera is a Basler scout with a maximum frame rate
of 73 fps, with 659 × 494 pixels, and an analog-to-digital converter (ADC) bit depth of 12 bits.
Fig. 6.27 shows the slit mask and screen at screen station 2 and 3. The calibration screen is a
glass plate with a 1 cm cross scale for the calibration of the image scale of the cameras. The
OTR screens were not used because of the low light emission at the beam energy of the gun.
[100].

Fig. 6.27 Photograph of slit mask and screens at screen stations 1 and 2.

The control system is based on the phyMotion controller (phytron GmbH) for the slit motion
and on Labview software tools for the cameras. The data processing is based on python and
combined with control software in one Labview program to simplify the operations during the
slit-scan emittance measurement. As shown in Fig. 6.28, the motor control and camera trigger
control are two parallel loops. The beamlet images are captured while the slit is continuously
moving. In the i-th loop, the slit position Pci is recorded, typically at 10 Hz depending on the
macro pulse trigger which indicates that the beam is on. At the same time Tci, a command
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is sent to the camera to capture one image. The trigger on the moment and trigger off the
moment of the camera are recorded as Tti, Tei. During the camera exposure, the record time is
Tri. The camera exposure time is usually set as long as the macro pulse length to cover the full
pulse and to reduce the background noise from the dark current. Taking the aforementioned
into account, the exact position of the slit when the camera captures the image can be written
as

Pri =
Pci+1 − Pci

Tci+1 − Tci

· (Tri − Tci) + Pci . (6.8)

Fig. 6.28 Slit and camera control system scheme.

The time delay, coming from the PC operating system and the data exchange, is estimated to
be sub-milliseconds on average, and will influence the slit position recording precision. The
position of the slit according to Eq. 6.8 has around 0.2% jitter comparing with the slit widths
of 100 µm and 0.25 mm/s velocity. The left diagram in Fig. 6.29 presents the slit recording
position and the corresponding linear fitting line, which shows that the velocity from fitting
agrees with the setting velocity. The right diagram depicts the slit step distance recorded when
the camera captures the images. The standard deviation is 0.22 µm. The slit position recording
jitter influences the emittance calculation, as it has been discussed in the former section. This
is the only disadvantage of the fast, continuously moving slit.

6.3.2 Quadrupole corrector influence

In the former chapter, we talk about the fact that the multipole magnetic fields of the solenoid
influence the beam symmetry, which can deteriorate the beam emittance. Fig. 6.30 shows a
comparison of the beam shapes on screen IN2-DV.02 with the corrector switched off and on for
different solenoid currents. The images show that the corrector can change the beam shape
even with small currents. However, the beam spot still has a tail on the right side. This tail can
not be changed with the corrector currents. It may be caused by the inhomogeneous electron
emission of the cathode or the unknown anomalous field in the cavity.

This inhomogeneous beam shape has a strong influence on the transverse normalized emittance
of the beam. The multiple fields, especially the quadrupole field, destroy the emittance
compensation by the solenoid. The corrector can cancel the quadrupole field from the solenoid
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(a) (b)

Fig. 6.29 Slit moving step analysis. Recording values of slit position and slit velocity from
fitting (a); Slit step jitter analysis (b).

applying suitable currents. If the corrector currents are not correct, it can increase the emittance,
as analysed in the former chapter. Experimentally the variation of the normalized emittance in
dependence on the corrector currents were proved, and the results are shown in Fig. 6.31. It is
easy to see that the worst cases and the best cases are located in the opposite corners in Fig.
6.31 (a). It shows a periodic change with corrector currents. Fig. 6.31 (b) shows an alternative
presentation of the results in (a) by using the the corrector rotation angle and the corrector
focal length as axis values as calculated in the former chapter. To analyze the influence on the
phase space distribution, three examples (without corrector currents, maximum, and minimum
emitance) are shown in Fig. 6.32. From the beam spot images on the left in Fig. 6.32, it can
be seen that the corrector can decrease the unsymmetry of the beam. The more symmetric is
the beam, the smaller is its normalized emittance.

6.3.3 Beam normalized emittance versus bunch charge

The experiments were carried out with beams of different bunch charges. The SRF gun gradient
was set as 8.0 MV/m with a RF launch phase of 55 degrees. The total energy of the beam was
4.45 MeV. As discussed in the former section, to subtract the dark current, every slit-scan was
repeated twice where one scan was without beam and the other one with beam. The total
measurement time was one and a half minutes. Tab. 6.7 shows the detailed measurement errors
at four bunch charges as examples. The correction factor fc was calculated by Eq. 5.45 and the
influence of space charge, e1, was taken from the slit-scan simulation in section 5.3.8. The slit
position uncertainty from the motor system was 0.2 %. The beamlet image intensity, center and
RMS size uncertainties were mainly from the system uncertainty and image noise. In reality,
the beamlet from the beam center was to be an evaluation of average of the whole beamlets.
Fig. 6.33 shows examples of beamlet intensity, center and RMS size fluctuations at the screen
position. The energy uncertainty was around 2 % in our facility due to magnet calibration and
RF launch phase drift. The total error is calculated by Eq. 5.44. The normalized emittance for
different bunch charges is shown in Fig. 6.34.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6.30 Corrector influence on beam shape. From the first row to the fourth row, the currents
of the SC solenoid are 3.6 A, 3.65 A, 3.7 A, and 3.75 A, respectively. In the left column, the
currents of the corrector are 0 mA. The currents of the corrector in the right column are (514
mA, -494 mA), (1034 mA, -645 mA), (1034 mA, -645 mA), (928 mA, -645 mA).
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(a) (b)

Fig. 6.31 Correctors influence on beam normalized emittance. In figure (a), the dark blue point
is a missing point. The bunch charge is 100 pC, kinetic energy is 3.99 MeV, gun phase is 40
degrees, solenoid current 3.66 A. The normal quadrupole current is from -900 mA to 900 mA
and the skew quadrupole current is from -800 mA to 900 mA.

Table 6.7 Examples of measured normalized emittances, beam size correction factors fc and
errors.

Bunch charge / pC fc e0(%) e1(%) e2(%) e3(%) e4(%) et(%) εn / mm.mrad
50 1.07 1.8 7 0.2 8.8 2 19.8 1.90
100 1.06 0.0 8 0.2 5.0 2 15.2 3.65
159 1.04 0.0 5 0.2 4.9 2 12.1 4.04
200 1.11 0.0 3 0.2 2.5 2 7.7 4.29
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.32 Three types of phase space with different correctors settings. The bunch charge is
100 pC and solenoid current is 3.66 A. In figure (a) and (b), the normalized emittance is 5.68
± 0.85 mrad · mm, without correctors; in figure (c) and (d), the normalized emittance is 7.4
± 1.1 mrad · mm, the normal quadrupole current is 900 mA and skew quadrupole current is
+600 mA; in figure (e) and (f), the normalized emittance is 2.98 ± 0.45 mrad · mm, the normal
quadrupole current is -900 mA and skew quadrupole current is -800 mA; (a), (c) and (e) are
the sum of all beamlet images. The pixel size is 25.3 µm (b), (d) and (f) are the phase space of
the beam.
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(a) (b) (c)

Fig. 6.33 Beamlet intensity (a), position (b) and RMS size (c) jitter at camera position.

Fig. 6.34 Emittance vs bunch charge.

As a comparison with normalized emittance from experiments, ASTRA simulations with
different bunch charges were performed. The initial spatial beam distribution at the cathode
is defined by two effects, the QE distribution of the cathode and the transversal intensity
distribution of the laser. Two different emission conditions of the cathode have been appeared
in the experiments, and are shown in Fig. 6.35. In the first row of Fig. 6.35, the upper plot (a)
shows an inhomogeneous QE map of the cathode. With the laser of 3.75 mm diameter with
uniform distribution shown in (b), it generates a beam distribution as in (c), which is applied
in the simulation with the results showing the red line in Fig. 6.34. With a smaller laser spot
size of 2.5 mm, the homogenous part of the QE distribution could be selected and it produces a
beam with Gaussian distribution like in Fig. 6.35 (f). In Fig. 6.34, the green line presents the
emittance results of this situation. Fig. 6.35 (d) shows a well-distributed QE mapping from the
experiment. Together with an uniform laser shape as in Fig. 6.35 (e), the beam at the cathode
has then a Gaussian distribution. The cyan line in Fig. 6.34 is the result from this simulation
with a Gaussian distribution beam. In simulation and experiments the temporal distribution of
the laser was Gaussian with 2.3 ps RMS pulse length. The results from the experiments and
simulation agree well with each other.
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(a) (b) (c)

(d) (e) (f)

Fig. 6.35 Rebuild particles distribution from QE map and laser distribution.

6.3.4 The influence of dark current

Although during the slit-scan measurement, the background images including dark current were
taken and subtracted from the beamlet images, it is meaningful to evaluate the influence of
dark current. The main dark current in the SRF gun comes from the cathode and the cavity
due to field emission and consist of electron pulses with a frequency of 1.3 GHz. The typical
dark current is on order of 40 nA for Mg cathode [27] and 100 nA for Cs2Te at 8 MV/m. The
dark current during the measurements is stable at the same cathode, gun gradient, phase and
solenoid current. Fig. 6.36 shows four different examples of dark current phase space with
different conditions. Comparing the beam intensity, the influence of the dark current will be
decrease when the beam bunch charge increases. Fig. 6.38 shows three groups of phase space.
For the beam with bunch charge larger than 50 pC, the dark current intensity is negligible and
the influence on emittance is lower than 5 %, shown in Fig. 6.37.
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(a) (b)

(c) (d)

Fig. 6.36 Four different dark current phase space in different experiments.
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Fig. 6.37 Dark current influence on emittance vs bunch charge. ε0 is the beam normalized
emittance after subtracting the dark current. εw is the beam normalized emittance with dark
current.

6.4 Cathode intrinsic emittance measurements

As an essential parameter of the photocathode, its intrinsic emittance is measured in the exper-
iments. Since 2020, Cs2Te photocathodes have been used in the SRF gun II to provide beams
to ELBE for the production of coherent terahertz radiation. Here we measured the intrinsic
emittance using both, the solenoid scan method, and the single shot transverse momentum
imaging method to obtain the lateral distribution of the electron transverse momentum. The
bunch charge was chosen as low as possible, i.e. between 50 fC to 100 fC and 120 fC. The SRF
gun gradient was set to 8.0 MV/m with a RF phase of 50 degrees. To increase the SNR, the
gun was operated in CW with 100 kHz repetition rate.

The first method consists of performing the solenoid scan at different laser spot sizes on the
cathode. Three different laser spot diameters on the cathode, 0.5 mm, 1.25 mm, and 2.5 mm, are
used. Combining the laser spatial distribution and the cathode QE map, the electron emission
RMS size at the cathode is calculated as uniform distribution for all laser spot diameters..
The position of the laser spot on the cathode was at the center. The measured values of
normalized emittance versus the effective laser spot RMS size and the fitting lines obtained
at the YAG screens at IN2-DV.02 and IN2-DV.03 are shown in Fig. 6.39. From the results,
the intrinsic emittances in horizontal and vertical directions are not the same. The vertical
intrinsic emittance is about 20% to 40% higher than the horizontal one.

The second method for intrinsic emittance measurement is single shot transverse momentum
imaging. In the experiments, the first step consists in the right tuning of the solenoid strength,
i.e. to find its working current. For the solenoid working current, the beam spot position on
the screen is independent of the laser spot position on the cathode. So the procedure are the
followings: record the beam spot position on the screen while changing the solenoid current;
change the laser spot position and repeat step 1; plot the beam spot position versus the solenoid
current and find the cross point. The solenoid current at the cross point is the working current.
Fig. 6.40 shows the solenoid current scan for different laser positions on the cathode. The
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.38 Beam phase space of 5, 50 and 200 pC with and without dark current.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.39 Cathode intrinsic emittance from solenoid scan method at IN2-DV.02 and IN2-DV.03.
The figures in the left column are the results from IN2-DV.02: (a) is the cathode horizontal
intrinsic emittance; (c) is the cathode vertical intrinsic emittance; (e) is the cathode radius
intrinsic emittance. The figures in the right column are the results from IN2-DV.03: (b) is the
cathode horizontal intrinsic emittance; (f) is the cathode vertical intrinsic emittance; (f) is the
cathode radius intrinsic emittance. εr is the average of εx and εy.

solenoid working currents for the horizontal and vertical directions are almost the same, 4.4
A (0.198 T) for screen IN2-DV.02. Using this value in simulation the M12 can be calculated
to 0.212 mm2/(mm · mrad). Although for the vertical direction, the solenoid current has an
uncertainty of about 0.07 A (0.004 T) for IN2-DV.02. At the end, the beam RMS size on the
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(a) (b)

Fig. 6.40 Solenoid working current for the screen at IN2-DV.02. (a) is the horizontal position
and (b) is the vertical direction. The positions of the laser spot on the cathode are in the
brackets with unit of mm. The original position, (0, 0), is center of the QE map. The cross
point’s horizontal axis are 0.196 ± 0.003 T.

Table 6.8 Thermmal emittance comparison between solenoid scan and sigle shot thermal
emittance mapping with 1.2% QE.

Theory
10% QE

Solenoid scan Mapping
x y r x y r

Thermal emittance
(mm mmrad/mm) 0.9

1.373
±

0.060

1.616
±

0.129

1.494
±

0.092

0.976
±

0.137

1.011
±

0.142

0.995
±

0.139

screen is recorded while laser spot is scanned across the cathode, and the thermal emittance is
calculated for these different positions on the cathode. Fig. 6.41 shows the intrinsic emittance
mapping in horizontal and vertical directions at IN2-DV.02. The intrinsic emittance in radius
is calculated and compared with the QE mapping of the cathode. In principle, the position
with high QE will has high intrinsic emittance. The intrinsic emittance maps agree with the
QE map well. The left part with higher QE has higher intrinsic emittance than the right part
with lower QE.

6.4.1 The error of cathode intrinsic emittance measurement

The comparison of intrinsic emittance between the results from the solenoid scan and single
shot intrinsic emittance mapping is shown in Tab. 6.8. The results of the single shot intrinsic
emittance mapping in the table are the average of an area at the center with 1.25 mm radius.
The intrinsic emittance from the solenoid scan is between 40% to 60% larger than that from
the mapping method. In solenoid scan, the beam from the larger laser spot size on the cathode
with 2.5 mm diameter experienced more anomalous or inhomogeneous fields which enlarge the
emittance results [101]. One can see it obviously from Fig. 6.39. The laser spot diameter used
for mapping is 0.5 mm, which gives more accurate results. Both the intrinsic emittances from
the solenoid scan and frm mapping are larger than the theoretical value [63]. A possible source
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(a) (b)

(c) (d)

Fig. 6.41 Cathode intrinsic emittance mapping and QE mapping. (a), (b) and (c) are intrinsic
emittance in horizontal, vertical and radius, respectively. The distance between the solenoid
and the IN2-DV.02 is 2.011 m. The last figure is the QE map of the cathode.
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could be the roughness of the cathode. The rough surface emittance together with the strong
electric peak field of the applied RF field can increase the intrinsic emittance. The bunch charge
for intrinsic emittance measurement is in the range of 50 fC to 100 fC to avoid the influence
of space charge. However, due to this low beam current, the dark current can contribute to
the emittance result if the contribution are not separated. Thus, the dark current should
be substracted in these measurements to reduce its influence. For the single shot transverse
momentum imaging method, one error results from the uncertainty of the solenoid current
adjustment. A deviation from the working current arises a contribution of the initial beam
size on the cathode. The beam spot center movements are 0.19 mm in horizontal and 0.36
mm in vertical direction when the laser spot is moved by 1.5 mm on the cathode with the
solenoid field 0.196 T. This indicates that the M11 is less than 0.240. Considering that the
initial beam RMS size is 0.125 mm, M12 is 0.212 mm2/(mm · mrad), and the intrinsic emittance
is 1.0 mm · mrad/mm, then the error is less than 14.2 % calculated from Eq. 5.71.



Chapter 7

Conclusions and outlook

Conclusions

As the transverse emittance is an essential parameter to the photo injector, this Ph.D. work has
optimized the SRF gun II transverse emittance further based on the SC solenoid emittance com-
pensation. It contains four parts: SC solenoid field measurement and analysis, multipole fields
of the SC solenoid analysis and optimization, beam transverse emittance measurement using
fast slit-scan and quadrupole scan methods, and the cathode intrinsic emittance measurement
and mapping.

The influence of SC solenoid spherical aberration on emittance is analyzed. It strongly relays on
the beam RMS size at solenoid position with fourth power and is proportional to the spherical
aberration coefficient. To minimize this kind of influence, not only does the beam RMS size at
the solenoid position decreases by increasing the cathode and laser qualities in experiments, but
also the SC solenoid is optimized in our group. It shows that the spherical aberration coefficient
of the new design reduces by 44.4 % in this thesis. The newly designed SC solenoid fields are
obtained using a 1-D longitudinal field Hall probe and a 3-D Hall probe for transverse fields.
The newly designed SC solenoid simulation is made based on the finite element analysis software
Comsol Multiphysics to demonstrate the effectivity of the formalism fitting and evaluate the
accuracy in field analysis. The field measurement is conducted when the SC solenoid works at
the superconducting condition in the cryomodule. From the 1-D longitudinal field Hall probe
results, the longitudinal field is linear to the current with a slope of 35.232 ± 0.021 mT/A. The
effective length is 50.990 ± 0.068 mm. These parameters agree with the designed requirements.
The alignment and transverse multipole fields are analyzed based on the 3-D Hall probe data.
The center of the SC solenoid has a tilt of 9.739 ± 7.239 mrad and an offset of 1.599 ± 1.193
mm in the horizontal direction, and a tilt of -22.043 ± 2.263 mrad and an offset -0.789 ±
0.561 mm in the vertical direction. Applying the formalism fitting method, the transverse
multipole fields due to the tilt and offset are obtained. The coefficients of the dipole field and
the quadrupole gradient are proportional to the current absolute value from the measured data.
The sextupole coefficient remains low but is independent of the current. These results are a
kind of magnitude evaluation rather than high accuracy due to four primary error sources
analyzed in detail, including imperfect Hall probe mechanical alignment, imperfect degaussing
of the iron yoke, the Hall probe intrinsic error, and the fitting error. At 5 A, the integrations
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of the dipole field, quadrupole gradient, and sextupole field coefficient of the SC solenoid are
about 200 ± 40 mT·mm, 0.166 ± 0.085 mT, and 0.03 ± 0.027 mT/mm, respectively.

Furthermore, the influence of the anomalous quadrupole field in the solenoid on beam transverse
emittance is analyzed using beam linear transport theory and ASTRA simulation. The
quadrupole focal strength and the phase change the influence. According to the quadrupole
field of the SC solenoid field measurement result, it is possible to enlarge the beam transverse
emittance almost 2.5 times in the worst situation. In the experiments, the beam shape can
reflect the influence of the anomalous quadrupole field from the solenoid. It becomes asymmetric
when the quadrupole field influence is strong. The correctors have been installed in the beamline
to cancel the influence of the quadrupole field from the solenoid and correct the asymmetric
beam shape. Visible from the slit-scan emittance measurement results, the installed correctors
can clearly decrease the influence of the quadrupole field mode of the SC solenoid, especially
for the high bunch charges. The correctors can correct the beam asymmetry at appropriate
settings. The beam shape at the slit position is closer to a round spot, and the emittance
reduces by 47.5 % for 100 pC. The influence of the sextupole field on the emittance is analyzed
qualitatively, and shows that the additional emittance is linear with beam RMS size to the third
power and the second differential of the longitudinal solenoid field. For instance, in a beam
with 500 pC bunch charge and RMS size of 4.0 mm at the solenoid position, the sextupole field
of the solenoid with 5 A will increase the emittance by 16 % and 25 % higher for uniform and
Gaussian distributions.

The fast slit-scan transverse emittance measurement equipment has been constructed in the
beamline based on a continuously moving slit and a YAG screen. It takes about 90 seconds for
one measurement. The control system and data processing are programmed by Labview and
Python and combined in one user interface. The control system has two parallel subsystems,
one for the motor of the slit and the other for the camera. The beamlet images are captured
continuously during the slit moving. Two kinds of machine learning algorithms are applied to
shorten the beamlet image processing time and improve the beamlet center position and RMS
size accuracy. The first one is a classified neural network to distinguish beamlet images from
the whole captured images. The accuracy of this network is 98.2 % after training. The second
is an autoencoder neural network that can abstract the beamlet features from the images and
reconstruct the beamlet distribution in 1-D to depress the noise and increase the signal-noise
ratio. A dataset including 0.17 million beamlet images based on experiments is built, and 80 %
for training and left 20 % for evaluation. The training and evaluation work is completed on
the Maxwell HPC Cluster at DESY. It has been demonstrated that ML algorithms can work
efficiently with beamlet images for image classification and depressing image noise better than
traditional methods. Additionally, slit-scan emittance measurement simulations are made using
ASTRA to study the three factors influencing the emittance result: the slit width, drift distance,
and space charge. In general, a slit with smaller width gives a better beam emittance resolution
and minor emittance error, especially for a beam with a small emittance. An experimental
equation is concluded to evaluate the error from the slit width. It is necessary to consider the
influence of the space charge for the beamlet density to keep the same after the slit. From the
simulation results, the space charge influence on emittance measurement results will be enlarged
as the drift distance becomes long. However, for the shorter drift distance, the resolution of
the beam divergence should be higher. At the present conditions in the SRF gun diagnostic
beamline, the error of slit-scan emittance resulting from the space charge is less than 3 %. The
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other emittance error sources of the slit-scan are analyzed carefully, including the slit position
recording uncertainty, beamlet center error, RMS size uncertainty, beamlet total intensity
uncertainty, and beam energy uncertainty. To simplify the calculations, the independence of
every source is assumed in the analysis. Two coordinates located at the slit and screen positions
will be coupled due to the beamlet center, RMS, and intensity uncertainties. The emittance
error is proportional to these uncertainties ignoring the higher order small terms. Besides
these sources, the intensity loss of weak beamlets is considered by introducing a coefficient
for the beam RMS size at slit position which scales the reconstructed beam RMS size. In
most cases, this factor is larger than one. As seen from the simulation, the beamlet has a halo
and reduces the signal-to-noise ratio. This result in the rebuild beam RMS size being smaller
than the original size. At the end of this part, two kinds of beam original distributions from
experiments, one Gaussian distribution and one inhomogeneous distribution, are applied in
ASTRA simulation. The beam normalized emittance results from the slit-scan are compared
with the ASTRA original emittance, and they are coincident.

The other traditional emittance measurement method, the quadrupole scan, is analyzed. It
is necessary to calibrate the quadrupole focal strength before scanning the quadrupole and
measuring the beam RMS size. A straightforward quadrupole focal strength calibration method
without intervention is applied and works effectively in the experiments. It consists of a steerer
upstream of the quadrupole and a screen downstream. Based on the transport matrix between
the quadrupole and the screen, one can calculate R12 in theory and experiments and calibrate
the quadrupole focal strength by comparing these two terms. The results show a 10% difference
between the experiment and the design value. The next step is to record the beam RMS sizes
along different quadrupole focal strengths. Because the data analysis is based on linear beam
transport theory, it ignores the influence of the space charge in the calculation. The quadrupole
scan simulation based on ASTRA shows that the influence of space charge will be enlarged
as the drift distance becomes larger. Moreover, the space charge will destroy the fitting curve
symmetry and enlarge the emittance calculation result. Two fitting methods, thin-lens, and
thick-lens, are carried out in the quadrupole scan data analysis. The simulation results show
that the thick-lens fitting has a better performance at a small drift distance. However, the
thin-lens fitting gives a more precise emittance result for long drift distances. The errors of
quadrupole scan are from curve fitting and quadrupole focal strength uncertainty. The fitting
error is based on the covariance matrix from the fitting and the beam RMS size standard
deviation. The emittance error is linear with the quadrupole focal strength error.

The last part measures the intrinsic emittance of the Cs2Te cathode using solenoid scan and
single shot transverse momentum imaging. In theory the intrinsic emittance of Cs2Te is 0.9
mm · mrad/mm. The bunch charge during the measurements is in the range of 50 fC to 100 fC
to avoid the influence of the space charge in the solenoid scan. Three different laser spots are
used in the solenoid scan with diameters of 0.5 mm, 1.25 mm, and 2.5 mm. After linear fittings,
the intrinsic emittance at QE of 1.2 % are 1.373 ± 0.030 mm · mrad/mm in horizontal direction,
and 1.616 ± 0.129 mm · mrad/mm in vertical direction. The average intrinsic emittance is 66
% higher than that given in theory. The solenoid scan method can only measure one average
intrinsic emittance of a given area. The single shot intrinsic emittance method is applied to
map the whole cathode. At a suitable solenoid current, the term M11 in the matrix from the
cathode to the screen becomes zero. Then the beam RMS size only depends on the beam’s
initial transverse momentum. Combining the ASTRA simulation, M12 is calculated as 0.212
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mm2/(mm·mrad). The smallest size of laser spot of a diameter of 0.5 mm is adopted in the
mapping to avoid the nonlinear factors. The intrinsic emittance maps in horizontal and vertical
directions are obtained in a range of 5 mm on the cathode, similar to the QE map. The intrinsic
emittance at the cathode center position is 0.976 ± 0.137 mm ·mrad/mm in horizontal direction
and 1.011 ± 0.142 mm · mrad/mm, which is 10.6 % higher than the theory value. The error
source of this method is mainly from the uncertainty of the solenoid working current, which will
introduce an influence of M11, i.e. of the beam size at the cathode. During the measurements,
this error is less than 14.2 %.

Outlook

A group of quadrupoles has corrected the parasitic quadrupole mode of the SC solenoid, but
the effect of the sextupole field of the SC solenoid is ignored. The study of the sextupole field
influence on the transverse emittance is still insufficient. Some fundamental analysis is done
under idealized conditions. However, simulations are needed as replenishment. Furthermore,
installing a group of sextupole magnets should be considered to correct the sextupole field from
the SC solenoid if necessary.

The other part is related to the machine learning algorithms. Artificial neural networks possess
a wide potential application in beamlet images processing. It is possible to distinguish the
dark current in the beamlet images automatically. Also, such an algorithm can be used to
reconstruct the beam phase space directly from the beamlet images and calculate the beam
emittance from the phase space. For these applications, the key points are reliable data sets
and robust network structures.

It is necessary to find a method, how the corrector currents can be optimized based on the
measured beam shape automatically. At present, this work is manually performed based on the
beam roundness on the YAG screen. An automatic control system for the correctors should
be constructed to speed up the preparation of the emittance measurement and of the user
beamline settings. The cathode intrinsic emittance mapping can be combined with the QE
mapping, giving a full overview of the cathode performance during its life time.
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Appendix A

Some symbols

εx, εy beam normalized emittance in transverse planes
ε beam geometric emittance
εrms beam RMS emittance
εn beam normalized emittance or beam RMS normalized emittance
∆εn,rf beam additional normalized emittance increasing from RF field
∆εn,sc beam normalized emittance from space charge
∆εsph beam additional emittance from solenoid spherical aberration
∆εn,quad+sol beam additional emittance from the quadrupole field in the solenoid
∆εE

roughness the additional emittance from cathode surface roughness
∆εchro beam additional emittance from chromatic aberration
e basic unit of electrical charge
e the total emittance error of slit-scan
e0 the emittance error of slit-scan from slit width
e1 the emittance error of slit-scan from beamlet space charge
e2 the emittance error of slit-scan from slit position recording jitter

e3
the emittance error of slit-scan from beamlet images center and
RMS size uncertainty

e4 the emittance error of slit-scan from beam energy uncertainty
λmin the minimally achievable radiation wavelength
px, py particle transverse momentum components values in x and y directions
p0 reference particle momentum value
p particle momentum value
∆p individual particle momentum difference from p0
v particle velocity
E beam total energy
E electric field value
Eacc cavity average accelerated electric field
Ekin beam kinetic energy
Erf the peak electric field of the cavity on axis
E⃗ electric field
B⃗ magnetic flux density, named as magnetic field in thesis
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Bx, By magnetic field components in x and y directions
Bx0, By0 bending field in x and y directions
Bs solenoid longitudinal field maximum on axis
g quadrupole field gradient
k quadrupole focusing strength
k quadrupole strength
K focusing function
K solenoid strength
d drift distance from the quadrupole center to the screen
q particle charge
κ⃗ the trajectory local curvature vector
κx,y the trajectory local curvature components in x and y directions
ρx,y the local bending radius of the trajectory
β(z) beam transverse size amplitude at position z
θ(z) beam transverse size phase at position z
β, γ, α Courant-Snyder parameters or Twiss parameters
β, γ Lorentz factors
m0 electron rest mass
c speed of light
σu beam RMS size,

√
⟨u2⟩, u means x or y

σlaser laser spot RMS size
σ11 ⟨u2⟩
σ12 ⟨uu′⟩
σ22 ⟨u′2⟩
σpx beam dimensionless RMS momentum
~ω the photon energy
φeff metal effective work function
Cs solenoid spherical aberration coefficient
φe the relative phase of the electron with respect to the RF waveform
σφ bunch length in radian unit
Xg the geometry factor related to the cathode roughness
ϵ0 vacuum permittivity
µ0 vacuum permeability
λ0 bunch longitudinal charge density
a uniform beam radius
σz beam RMS longitudinal size
r0 round beamlet radius
Ip beam peak current
I0 the characteristic current
Q bunch charge
Q0 cavity quality factor
f quadrupole focusing strength
fc beam normalized emittance correction factor
fsol solenoid focusing strength
α1, α2 quadrupole field rotation angles
L drift distance from the slit to the screen
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Ls solenoid effective length
Leff quadrupole effective length
θ pole angle
φ azimuthal angle
ΦB magnetic flux
E electromotive force
J cost function
Jdn dipole field normal component coefficient
Jds dipole field skew component coefficient
Jqn quadrupole field normal component coefficient
Jqs quadrupole field skew component coefficient
Jsn sextupole field normal component coefficient
Jss sextupole field skew component coefficient
Jt solenoid transverse field component coefficient

R0
the ratio of the space charge term and the emittance term
in beam envelope equation

Rb
the ratio of the space charge term and the emittance term
in beamlet envelope equation

ni beamlet particle intensity
b bias term in network layer
w weight vector between network layers
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