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0.1 Introduction

In graphs paths determine connectivity. Yet even in infinite graphs, all paths

are finite. This causes significant trouble when trying to generalize theorems

from finite to infinite graphs, sometimes explicitly as for Hamilton cycles and

Euler tours and sometimes subtly as for the tree packing theorem. To remedy

this, [16] defined a topological space on a locally finite graph and its ends, the

so called Freudenthal compactification, and worked with topological arcs in this

space instead of paths. This method proved quite successful for problems like

the ones mentioned above, as both their original article and successive research

demonstrate. For instance, while [16] already tackled the Euler tour problem,

[37] gives a tree-packing theorem and [8] some results on Hamilton cycles.

Since the topological spaces obtained from graphs have some common prop-

erties, this also sparked some interest in general classes including these, like

those considered in [49] and later [23]. Topological spaces with some graphic

properties have been studied by topologists for much longer, see for example [9],

but they can also be of help for combinatorial aims.

An example of this important for this thesis is [5]. There the goal is to

represent infinite graphic matroids via graph-like spaces. However, cycles of

infinite matroids can have arbitrary cardinality, so not all of them can be

represented via images of S1. Thus they introduce so called pseudo-lines whose

edges can be arranged like any linear order, like the long line whose edges are

arranged like ω1. Similar long arcs have been considered by topologists as linearly

ordered topological spaces, see for example [30].

Despite some differences in these path-like topological notions, proofs of

combinatorial statements in them are often parallel. This raises the question

whether it is possible to find some more combinatorial structure in which these

proofs can be done for different notions simultaneously. Such a structure, which

we call path spaces, is the topic of this dissertation. The main idea is abstracting

from topological arcs to their induced linear orders. These sorts of sets of linear

orders can then be axiomatized in such a way that many definitions and results

from graph theory still make sense here. The role that compactness plays in

proofs about topological paths is replaced by an axiom which makes sure that the

intersection of two paths is closed in the order topology. One further advantage

of this approach is that some definitions, like that of torsos, become much easier

when we do not need to worry about specifying a topology.

After some short preliminaries in Section 0.2, we give our definition of path
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spaces and list some examples in Section 0.3. In Section 0.4 we then develop

a basic toolkit of definitions for working with path spaces and in Section 0.4.1

we focus in on minors. Our goal in the remainder of the dissertation is then

to prove results about them, in particular to translate many graph theorems

to path spaces. This will happen over the course of four chapters, which can

be read mostly independently . We will only sketch their contents here, since

they each begin with their own more substantial introduction. Each chapter also

concludes with an outlook on further research.

Chapter 1 deals with general connectivity theory, in particular we prove two

duality theorems. The first is a version of Menger’s theorem, the second is about

the number of paths starting and ending in the same set.

Chapter 2 is about a version of tree decompositions for path spaces; we give

decompositions into blocks as well as along separators of order two and prove a

grid theorem.

Chapter 3 is about the structure of separations of path spaces. We show how

to distinguish profiles in path spaces and investigate its flowers.

Chapter 4 considers ubiquity. We show that minor-like embeddings of finite,

planar graphs are ubiquitous.

0.2 Preliminaries

Let us first note that when talking about graphs we mostly use the notation of

[14] except that we write Rm,n for the m× n grid. Now we will delve into some

more particular topics. These are not necessary for every chapter and can be

consulted when needed.

0.2.1 Separation systems

We will start by introducing separation systems; the relevant definitions are taken

from [13]. Recall that a separation of a graph is a pair (A,B) with A∪B = V (G)

such that there is no edge between A and B. If we leave out the condition

about the edges and work on an arbitrary set, this defines the more general

vertex separations. Either way, these separations have a natural order given by

(A,B) ≤ (C,D) if and only if A ⊆ C and D ⊆ B. Note that if (A,B) ≤ (C,D)

then also (D,C) ≤ (B,A). These characteristics suffice for general framework

for identifying cohesive substructures.
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A separation system is a triple (S,≤,∗ ), where (S,≤) is a partial order and
∗ is an involution on S such that s ≤ t if and only if t∗ ≤ s∗ for all s, t ∈ S.

We call the elements of S (oriented) separations and sets of the form {s, s∗} for

s ∈ S unoriented separations. For s ∈ S we call s∗ the inverse of s.

A separation s is called small if s ≤ s∗, trivial if there exists a separation

t such that s < t and s < t∗ and degenerate if s = s∗. Note that every trivial

separation is small. In a separation system of separations of a graph G, the

small separations are those of the form (A, V (G)) for some A ⊆ V (G), but they

need not necessarily be trivial depending on the surrounding separation system.

(V (G), V (G)) is the only degenerate separation of a graph G.

A pair of unoriented separations is nested if they contain comparable elements

and a pair of oriented separations (s, t) is nested if the unoriented separation

containing s is nested with the one containing t. If two (unoriented) separations

are not nested, we say that they cross. A separation in some separation system

is good if it is nested with all other separations of that system and neither it nor

its inverse is small. Suprema of chains of good separations are good unless they

are small or cosmall.

Lemma 0.2.1. Let C be a chain of good separations in a separation system S.

Then the supremum of C is nested with every separation of S.

Proof. Let s be the supremum of C and let t be a separation which is not small

or cosmall. Without loss of generality t is comparable with every separation

in C. If t ≤ c for some c ∈ C, then clearly also t ≤ s and we are done. So

we may assume that t is an upper bound for C and thus s ≤ t since s is the

supremum.

A partial orientation of a separation system S is a subset of S meeting

each unoriented separation at most once. It is an orientation of S if it meets

each unoriented separation exactly once. A partial orientation is consistent if it

contains no separations s 6= t such that s∗ < t. Given a separation system S we

write O(S) for the consistent orientations of S. In graphs consistent orientations

are induced by many cohesive substructures, for example clique minors or more

generally highly connected sets.

We call a set of separations T ⊆ S regular if it contains no small separations

and nested if all pairs of separations contained in it are nested. A tree set is a

nested separation system containing no trivial or degenerate elements.

The following special case of [13, Lemma 4.1] will be useful.
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Lemma 0.2.2. Let S be a regular tree set and P a consistent partial orientation

of S. Then P extends to a consistent orientation and for any maximal element

of P there is a unique consistent orientation extending P in which that element

is maximal.

Tree sets are the main structure we are looking for in abstract separation

systems, since they correspond to tree decompositions in graphs, as we will

detail later. To actually construct them, however, we need an additional tool. If

there are two crossing separations which we would like in our tree set, to find

replacements for one or the other a natural choice would be a supremum or

infimum, if it exists. In graphs (or more generally for vertex separations) it is

easy to define a supremum of two separations (A,B) and (C,D) as (A∪C,B∩D)

and an infimum analogously. To ensure that such a separation is actually in

our system, in graphs we usually work with the set of all separations whose

order, defined as the size of separator, is at most some natural number k. This

motivates the following definitions.

A separation system S together with binary functions ∨ and ∧ on S is called

a universe if s ∨ t is the supremum of s, t ∈ S and s ∧ t is their infimum. A

submodular universe consist of a universe U together with a function from U into

N∪{∞}. (denoted as |u| for u ∈ U) such that |r| = |r∗| and |r∨s|+|r∧s| ≤ |r|+|s|
for all r, s ∈ U .1 We call |s| the order of s and if s has order k, we call it a

k-separation. In a submodular universe the separation system of separations

of order at most k contains the supremum or the infimum of any pair of its

separations, solving the problem discussed before. Given two separations v and

w in a universe, we call the (up to) eight separations obtained by applying ∨
and ∧ to some orientation of v and some orientation of w their corners.

0.2.2 Graph-like spaces

Next we proceed to the graph-like spaces of [5]. They define a graph-like space as a

topological space G together with a vertex set V , an edge set E and a continuous

map tGe : [0, 1] 7→ G for every e ∈ E satisfying the following conditions:

1. V and (0, 1)× E are disjoint.

2. The underlying set of G is V ∪ (0, 1)× E.

3. {tGe (0), tGe (1)} ⊆ V for every e ∈ E.

1The source allows real values here, but we do not
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4. {tGe (x);x ∈ (0, 1)} ⊆ (0, 1)× {e} for every e ∈ E

5. te(G) restricted to (0, 1) is an open map for every e ∈ E.

6. For v, w ∈ V there exist disjoint open subsets U,U ′ of G such that v ∈ U ,

w ∈ U ′ and V (G) ⊆ U ∪ U ′.

We write V (G) for the vertex set of G and E(G) for the edge set. A graph-like

subspace H of a graph-like space G is a graph-like space such that its topological

space is a subspace of that of G, its vertex and edge sets are subsets of those

of G and the map for any edge of H is the same as the map for the same

edge in G. For an edge e of G we call (0, 1) × e the set of inner points of e

and write G− e for the subspace obtained by deleting these points. We call a

compact, topologically connected graph-like subspace A of G a pseudo-line (with

endvertices x, y ∈ V (A)) if for every edge e the vertices x and y are contained in

different topological components of A− e and for every v, w ∈ V (A) there exists

some edge f such that v and w are in different topological components of G− f .

Any nontrivial pseudo-line is the closure of the set of inner points of its edges

([5, Corollary 4.7]).

A tree-like space, as defined in [28], is a compact graph-like space, such that

between any two vertices there is a unique pseudo-line. We will write LT (s, t)

for the unique pseudo-line between s and t in a tree-like space T . Call t ∈ V (T )

a limit point of T if there is a nontrivial pseudo-line containing t in which t is

not an endpoint of an edge.

0.3 Definition and examples

We need to start with some preliminary notions to set up the definition of path

spaces. Call a subset Y of a linearly ordered set X complete, if for any nonempty

Z ⊆ Y there exists a supremum and infimum in X and these are contained in Y .

We define a path as a nonempty linearly ordered set complete in itself. For a

path P with x ≤ y in P we call the closed interval from x to y with the induced

order its segment from x to y. We will call a path nontrivial if it has more than

one element. A set of paths P is called compatible if for any P,Q ∈ P the set

P ∩Q is complete in P and strongly compatible if any two segments of paths in

P are compatible. Given two paths P and Q we say that P connects to Q, if

P ∩Q = {x} where x is the maximum of P and the minimum of Q. In this case,
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we call the union of P and Q with the induced order their concatenation. The

inverse of a path is obtained by reversing its order.

Now we have enough to define path spaces (and their directed counterparts).

A set of paths is called a dipath space if is compatible and closed under segments

and concatenations. A dipath space is a path space if it is also closed under

inverses.

For defining some of the upcoming examples, we require one additional tool.

Let P be a set of paths. We can close it under segments by just adding all

segments of its paths and close it under concatenations by inductively adding in

countably many steps all concatenations of paths constructed so far. Now we

define P̂ by closing under segments and then closing under concatenations.

Lemma 0.3.1. Let P be a strongly compatible set of paths. Then P̂ is a dipath

space.

Proof. Let us first show that P̂ is closed under segments. Let Q be a segment of

some P ∈ P̂. Now P is the concatenation of finitely many P1, . . . , Pn which are

segments of paths in P. We may assume w.l.o.g. that Q meets all of these in

a nontrivial segment, otherwise we may move to a shorter concatenation. Let

Q1 be the segment of P1 which Q meets and define Qn similary. Then Q is the

concatenation of Q1, P2, . . . , Pn−1, Qn, which are all segments of paths in P , and

thus Q is contained in P̂.

Now it remains to show that P̂ is compatible. Since P is strongly compatible,

closing it under segments keeps it compatible. Thus it suffices to prove that

closing a compatible set under concatenations leaves it compatible. For this let

P1, P2, Q be three paths from a compatible set and let P be the concatenation

of P1 and P2. Let Z ⊆ P ∩Q be nonempty. Clearly there is a supremum of Z

in Q as required, namely the maximum of the suprema of Z ∩ P1 and Z ∩ P2 in

Q. Furthermore if Z does not meet P2, then the supremum of Z in P1 is the

supremum of Z in P and otherwise the supremum of Z in P2 is the supremum

of Z in P . For infima the proof proceeds analogously.

This justifies calling P̂ the directed completion of P. If we close P under

inverses before taking the directed completion then we obtain a path space P,

which we call the completion of P.

The rest of this section will provide various examples of (di)path spaces.

Since the proofs required are all straightforward and very similar, we omit most

of them.

6



The most basic examples of path spaces are of course given by finite and

infinite graphs, as mentioned in the introduction.

Example 0.3.2. Given a graph G we obtain a path space as the completion of

the set of single point orders given by each vertex of G and two point orders on

the vertices of each edge of G. Equivalently, we can also define this path space

as containing for each path P of G the linear order of V (P ) which is given by

the sequence of the vertices. Of course, each path of this path space is finite.

Conversely given any path space P with only finite paths we can define a

graph inducing it by taking the vertex set as V (P) and adding an edge vw

whenever P contains a two element path from v to w. In particular all finite

path spaces come from finite graphs.

Directed graphs induce dipath spaces in an analogous manner using the

directed completion and all dipath spaces with all paths finite arise from directed

graphs.

A more general class of examples is given by topological spaces.

Example 0.3.3. Let X be a Hausdorff space and Φ : [0, 1]→ X an arc in X.

Then Φ induces a path PΦ on its image given by the standard ordering on [0, 1].

Let A(X) be the set of all these PΦ for all arcs Φ in X (together with the trivial

path for each point). Let us now prove that A(X) is a path space. Clearly A(X)

is closed under inverses.

Let PΦ ∈ A(X) be arbitrary and let a, b be two points in the image of Φ,

w.l.o.g. different. Then by scaling the interval between their preimages, we can

obtain a new arc Ψ between a and b such that PΨ is a segment of PΦ.

Let PΦ and PΨ in A(X) be such that the maximal element of PΦ is the

minimal element of PΨ, but otherwise disjoint. By scaling and combining Φ and

Ψ we then obtain a new arc Λ, such that PΛ is the concatenation of PΦ and PΨ.

Now let PΦ and PΨ in A(X) be arbitrary. Since the images of Φ and Ψ are

compact in X and X is Hausdorff, they are also closed. Then PΦ ∩ PΨ is again

closed and also inherits compactness. Thus this set is complete, since these paths

inherit their order from [0, 1].

We could also consider the set of injective continous maps from any compact,

connected ordered topological space (see [12]) to X and obtain a path space the

same way. This still holds true if we choose an infinite cardinal κ and consider

only maps from ordered spaces of size less than κ.
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Figure 1: An illustration of Example 0.3.6. The hollow circle signifies that this
point only forms a path with the top and bottom ray, not for example with the
one indicated in blue.

Since we just saw that long arcs in topological spaces form a path space, it is

not all that surprising that pseudo-lines in graph-like spaces also do.

Example 0.3.4. Let G be a graph-like space and L a pseudo-line in G. Then L

together with an endvertex v of L induces a path QvL on the vertices of L given

by the order of L with minimal element v. Let P (G) be the set of all these QvL.

This is a path space.

Furthermore given some set o of orientations of edges of G, we can define

P o(G) as the set of all QvL such that the orientation towards v of every edge

of L is contained in o. This is a dipath space. As in the prior example we can

again choose an infinite cardinal κ and consider only those pseudo-lines of size

at most κ.

If a property is defined piecewise, as in the following example, we can impose

it on our paths and retain a path space.

Example 0.3.5. Let k ∈ {1, 2, . . . ,∞}. If M is a differentiable manifold and f

an injective, piecewise k-times (continously) differentiable curve on M , let Qf

be the image of f with the order induced by [0, 1]. Then the set of all these Qf

forms a path space.

All the classes of path spaces considered so far are in some sense topological.

We will now look at a path space which does not belong to any of them and is

slightly pathological.

Example 0.3.6. Let X = [0, 1] × {0, 1}. Let ∼ be the relation on X with

(x, a) ∼ (y, b) if we have x = y and at least one of a = b, x = 1 or x = 1 − 1
2n
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for some n ∈ N. Note that ∼ is an equivalence relation. Let X ′ be its set of

equivalence classes and f : X → X ′ the natural surjection. Let Y consist of the

images under f of the paths [0, 1]× {0} and [0, 1]× {1}. Then Y is a strongly

compatible set of paths and so P = Y is a path space. Each individual path of

Y could be represented by a topological arc, but we will now show that P is not

induced by a Hausdorff space.

More specifically, we will show that given any Hausdorff space on X in which

the two paths in Y are arcs, then so is another path not contained in P. Let

g : [0, 1]→ X be given by g(x) = f((x, 0)) for x ∈ [1− 1
2n , 1−

1
2n+1 ) with n even,

g(x) = f((x, 1)) for x ∈ [1− 1
2n , 1−

1
2n+1 ) with n odd and g(1) = f((1, 0)). Since

g is clearly injective, to show that it is an arc it is enough to show that it is

continuous. Thus we need to show that for any x ∈ [0, 1] and open neighborhood

U of g(x) there is some open interval containing x whose image is contained in

U . If x is not 1− 1
2n for some natural number n or 1, this is clear. Otherwise

the continuity of the arcs corresponding to the paths in Y shows that there are

open sets I0 and I1 in [0, 1] containing x with f [Ii × {i}] ⊆ U for i ∈ 2. Then

g(I0 ∩ I1) ⊆ U .

We have now shown that g is an arc, but the path corresponding to g is not

a concatenation of segments of the paths in Y and so it is not contained in P.

0.4 Basic notions

Here we will establish a basic set of definitions for working with (di)path spaces,

many of which generalize those for graphs. In particular, whenever we give

something a name known for graphs, it does indeed reduce to the corresponding

graph definition for finite path spaces, unless mentioned otherwise.

The ground set V (P) of a dipath space P is the union of the ground sets of

its paths. Given a (di)path space P a subspace is a subset of P that is a (di)path

space. One way to obtain such a subspace is to take the restriction P[X] of P
to a set X ⊆ V (P), which is defined as the set of all its paths whose ground set

is completely contained in X. We write P −X for P[V (P) \X].

While just omitting a set of paths from a (di)path space will usually not yield

a subspace, given a dipath space P and a set of paths Q the set of all P ∈ P
which do not share a nontrivial segment with an element of Q is a subspace of

P. Thus when we speak of deleting a set of paths from a dipath space, this is

what we mean. For path spaces we also again obtain a path space if Q is closed
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under inverses.

Now we want to translate some useful concepts from graphs. Let us start

with connectivity. Given a path space P we write x ∼ y for x, y in its ground

set if there exists some P ∈ P with minimum x and maximum y.

Lemma 0.4.1. ∼ is an equivalence relation.

Proof. It is clearly reflexive and symmetric, so let x, y, z ∈ V (P) with x ∼ y and

y ∼ z be given and let P and Q be paths witnessing this respectively. Since

P ∩Q is complete in Q, it has a maximum m. Let P ′ be the segment of P up

to m and Q′ the segment of Q starting from m. Then P ′ connects to Q′ and

their concatenation witnesses x ∼ z.

We call the equivalence classes defined by ∼ components of P and call P
connected if it has just one component. In general dipath spaces we define

components and connectedness via the completion.

Next we want to find an equivalent to degrees. Degrees will not be helpful

in every space, but they will be in the controlled spaces we will apply them

in. Given a path space P and some v ∈ V (P) we can define a relation on the

nontrivial paths of P starting at v where two paths are equivalent if there exists a

nontrivial path starting at v in P which is an initial segment of both. Clearly, this

an equivalence relation. We call its classes the outdirections at v. The number

of these directions is the outdegree of v. Similarly we can define indirections and

the indegree of v. If P is a path space, the indegree and outdegree of v are the

same and we call this the degree of v.

A circuit in our setting just consists of two independent paths. More precisely,

if P is a path from some v to some different w and Q is a path from w to v

not meeting P otherwise, then their (directed) completion is called a (directed)

circuit. Any path space containing two different nontrivial paths with the same

endpoints contains a circuit.

Lemma 0.4.2. Let P be a path space and let P,Q ∈ P be different nontrivial

paths with the same endpoints. Then P contains a circuit.

Proof. Let x be the supremum in P of all y such that the segment of P up to y

is also a segment of Q. By compatibility the segment of P up to x is then also a

segment of Q. Let R be the segment of P from x to the first point z of P on Q

after x and let S be the segment of Q between x and z. Then the completion of

R and S is a circuit.

10



We will also need some niceness properties for spaces and subsets. A dipath

space is called finitary if it is the directed completion of a finite set of paths.

Given some dipath space P, a set X ⊆ V (P) is simple if it is a finite union of

paths in P . We also say that a dipath space is simple if its ground set is simple

with respect to itself. Clearly every finitary dipath space is simple. We call a

subset X of V (P) closed if X ∩ P is complete for every P ∈ P . It is easy to see

that the set of the closed subsets of V (P) is the set of closed sets of a topology.

Since paths are closed by definition, so are finite unions of paths and thus every

simple set is closed.

Note that given two closed sets A and B, every path from A to B contains a

segment that is an A-B-path, that is a path which meets A exactly in its first

point and B exactly in its last point.

0.4.1 Minors

We also give a definitions of minors and topological minors. Given a path

space Q an IQ is a path space P with a map φ : V (P)→ V (Q) such that for

every q ∈ V (Q) the set φ−1(q) is connected in Q and such that for every path

Q ∈ Q there exists some P ∈ P such that φ restricts to an order-preserving

surjection from P to Q. If P has an IQ as a subspace, then Q is a minor of

P. For topological minors we need a bit more setup. Given an injective map

ψ : V (Q)→ V (P) between path spaces P and Q we write ψ∗ for the function

mapping each path P of P with endpoints in the image of ψ to ψ−1(P ) with

the induced order. We say that a path space P is a TQ if there is an injective

ψ : V (Q)→ V (P) such that ψ∗ satisfies the following conditions:

1. ψ∗ is injective with image Q.

2. Whenever two paths in Q are internally disjoint, so are their inverse images

under ψ∗.

3. Every path of P is a concatenation of segments of paths which ψ∗ maps

to a path of Q.

If P has a TQ as a subspace, then Q is a topological minor of Q. First, let us

verify that topological minors are minors.

Lemma 0.4.3. Every TQ is an IQ.
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Proof. Let P be a TQ with witnessing function ψ. Let X be the image of ψ.

For v ∈ V (P) we write R(v) for the set of those x ∈ X from which v can be

reached by a path of P avoiding X − x.

First we will show that R(v) is nonempty for all v ∈ V (P). If v ∈ X we have

R(v) = {v}, so assume otherwise. By the third condition there is a path P ∈ P
with both endpoints in X and v ∈ P . Let Z consist of all those z ∈ ψ∗(P ) such

that ψ(z) is less than v in P . Furthermore, let s be the supremum of Z in ψ∗(P )

and let x = ψ(s). Then the segment between v and x in P witnesses x ∈ R(v).

Indeed, if x is smaller than v in P than any point of X between them would

show that s was not an upper bound for Z, and if x is larger than v in P any

point of X between them would show that s was not the smallest upper bound.

We now fix a well-order on X and define a function φ mapping each point

of P to the least element of R(v) in that well-order. We claim that φ witnesses

that P is an IQ. First let us show that for every q ∈ V (Q) the set φ−1(q) of Q
is connected. It is enough to show that for every v ∈ φ−1(q) there is a path from

ψ(q) to x contained in P[φ−1(q)]. Since ψ(q) ∈ R(v) is witnessed by some path

P ∈ P and then also ψ(q) ∈ R(p) for every p ∈ P , it is enough to show that

there is no smaller x ∈ X with x ∈ R(p) for some p′ ∈ P . Indeed, if there was

this would be witnessed by some path Q and then a concatenation of suitable

segments of P and Q would show v ∈ R(x), a contradiction.

Finally, we need to show that for every Q ∈ Q there is some P ∈ P such

that φ restricts to an order-preserving surjection from P to Q. We claim that

P = ψ∗−1(Q) is as desired. It is enough to show that any path with both

endpoints in X which meets φ−1(q) for some q ∈ Q also contains ψ(q), since any

point of P where φ is not as desired will then give rise to a point of X which

contradicts the choice of P .

To show this, let R ∈ P with endpoints ψ(a) and ψ(b) which contains some

point of φ−1(q) for q ∈ V (Q). In particular, there is a path S ∈ P which starts

in ψ(q) and ends in its first point of R otherwise avoiding X. Concatenating

S with segments of R gives paths R1 and R2 both ending in ψ(q) and starting

in ψ(a) and ψ(b) respectively. Then the preimages of R1 and R2 under ψ∗ are

internally disjoint and thus by the second condition so are they. Thus S consists

only of ψ(q) and ψ(q) ∈ R, as was desired.

These relations are indeed transitive.
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Lemma 0.4.4. Let P,Q,R be path spaces. If R is a (topological) minor of Q
and Q is a (topological) minor of P, then R is a (topological) minor of P.

Proof. Let us first consider minors. Let φ1 be a function witnessing an IQ in P
and φ2 a function witnessing an IR in Q and let φ be the concatenation of φ1

and φ2 on the set A where this gives a value. Now φ witnesses that the induced

space on A is an IR in P.

Similarly, let ψ1 be a function witnessing a TQ in P and ψ2 a function

witnessing a TR in Q and let ψ be the concatenation of ψ1 and ψ2. Let S be

the path space induced by the image of ψ∗−1
1 ◦ ψ∗−1

2 . Then ψ witnesses that S
is a TR in P.

If we are only checking whether a graph G is a (topological) minor of a path

space, we can work with simpler equivalent definitions. We define an IG as

a path space P consisting of disjoint connected spaces (Av)v∈V (G) and paths

(Pvw)vw∈E(G)
2, where Pvw is a path from Av to Aw not meeting any other Ax

such that no two of these paths meet outside of the union of the Av. We call the

Av its branch sets. An TG is an IG with all branch sets singletons. We then

call the elements of its branch sets branch vertices.

Lemma 0.4.5. Let G be a graph and Q its corresponding path space. Then P
is an IG if and only if it is an IQ and P is a TG if and only if it is an TQ.

Proof. If P is an IG with branch sets (Av)v∈V (G) and paths (Pvw)vw∈E(G), then

we can obtain a function φ showing that P is an IQ by mapping x ∈ V (P) to

v if x ∈ Av and to y if x ∈ Pyz \ Az. If P is a TG with branch vertices av for

v ∈ Q, then the function ψ mapping every v ∈ V (G) to av witnesses that P is a

TQ.

Conversely, if P is an IQ with function φ, we can set Av for v ∈ V (G) as

φ−1(v) and choose the Pvw such that φ restricts to an order-preserving surjection

from Pvw to the path corresponding to the edge vw. If P is a TQ with function

ψ, we can set Av for v ∈ V (G) as {ψ(v)} and Pvw for vw ∈ E(G) as the unique

preimage under ψ∗ of the path defined by that edge.

0.4.2 Separations

Finally, we will define separations of path spaces. Recall that a separation of a

graph is a pair (A,B) with A ∪B = V (G) such that there is no edge between A

2Note that Pvw = Pwv , since these are the same edge.
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and B. This is equivalent to saying that there is no path from A to B avoiding

A ∩ B and we use this equivalent condition to formulate a definition for path

spaces.

Thus given a path space P a separation is a pair (A,B) of subsets of V (P)

with A ∪B = V (P) such that every path from A to B meets A ∩B. Just like

for a graphs we define its order |(A,B)| as |A ∩B|. We will call a separation of

order k a k-separation. For a separation (A,B) we call A ∩B its separator and

A and B its sides.

A separation is small or cosmall if and only if one side is the whole ground

set of P. We call such separations improper and the other separations proper.

We define P to be k-connected if it has no proper l-separation for l < k.3

As usual for separations of this form, we define the inverse (A,B)∗ of a

separation (A,B) as (B,A) and a relation ≤ between separations as follows:

(A,B) ≤ (C,D) if and only if A ⊆ C and D ⊆ B. Clearly, if (A,B) is a k-

separation, then so is (B,A). Thus ∗ is an involution on the set of k-separations.

By definition of ≤, ∗ is also order-reversing, i.e. (A,B) ≤ (C,D) if and only if

(C,D)∗ ≤ (A,B)∗. Define Sk(P) for each finite k as the set of all k-separations

of P. Then (Sk,≤,∗ ) is a separation system.

Lemma 0.4.6. Let (A,B) be a finite order separation of a path space P. Then

A is closed in P.

Proof. Let P ∈ P be arbitrary. Since P meets A ∩B only finitely often, there

is a set of finitely many segments of P covering it which only meet A ∩ B in

endpoints. Each of these segments is either completely contained in A or in B

because (A,B) is a separation. Then P ∩A is the finite union of those segments

contained in A and the finite set A ∩B ∩ P , so it is complete in P .

An essential tool for working with separations is the existence of suprema

and infima. Recall that for graphs the supremum of separations (A,B) and

(C,D) is (A∪C,B ∩D) and at least within the realm of finite order separations

this is also true for path spaces.

Lemma 0.4.7. Let (A,B) and (C,D) be finite order separations. Then (A ∪
C,B ∩D) is a finite order separation.

Proof. Since any point that is not contained in A or C must be contained in both

B and D we have (A∪C)∪ (B ∩D) = V (P). Thus, to show that (A∪C,B ∩D)

3Usually one also requires a minimum size, but here this definition is more convenient.
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is a separation, it suffices to prove that every path P from some y ∈ A ∪ C to

some z ∈ B ∩D meets (A ∪ C) ∩ (B ∩D).

Since (A∩B)∪(C∩D) is finite and P meets this set, P has a last point x in this

set. If x ∈ A∩B∩C∩D, we are done. Otherwise let P ′ be the segment of P from

x to z. Then P ′ avoids one of A∩B and C ∩D and must therefore lie completely

in D \C or B \A. Therefore, x ∈ (A∩B∩D)∪ (C ∩B∩D) = (A∪C)∩ (B∩D).

Furthermore, since (A ∪ C) ∩ (B ∩D) ⊆ (A ∩B) ∪ (C ∩D), the separation

(A ∪ C,B ∩D) has finite order.

Let P be a path space and X a closed subset of V (P). Then separations of

P induce separations of P[X], but not necessarily the other way around. There

is, however, a way to get such a correspondence.

Lemma 0.4.8. Let X be a closed set in a path space P. The set of all nonempty

restrictions of paths P ∈ P to P ∩X is a strongly compatible set of paths.

Proof. Since X is closed, this is a set of paths and it is clearly closed under

segments, so it is enough to show that it is compatible. Let P,Q ∈ P meet

X and let P ′ be the restriction of P to P ∩ X. Then we need to prove that

P ′ ∩ (Q ∩X) = P ′ ∩Q is complete in P ′. Let R ⊂ P ′ ∩Q be arbitrary. But R

is a subset of P ∩Q as well, which is complete in P . Thus R has a supremum x

in P ∩Q which agrees with the one in P . Since R ⊆ X and X is closed, x ∈ X
and thus x ∈ P ′ ∩Q. It follows that x is the desired supremum. The proof for

infima is analogous.

We call the completion of this set the torso of X (in P). Note that the

torso of X in P has P[X] as a subspace. For graphs this definition of torso

corresponds to adding an edge vw to the induced graph on X whenever there is

an X-path between v and w.4 The relative ease of giving such a definition is an

advantage of working with path spaces compared to a more topological notion,

where we would need to specify the whole topology.

Lemma 0.4.9. If (A,B) is a separation of the torso of some X ⊆ V (P), then

there is some separation (E,F ) with A ⊆ E, B ⊆ F and A ∩B = E ∩ F .

Proof. Assume that P is a path from some a ∈ A to some b ∈ B avoiding A∩B.

Then this defines a path on P ∩X from A to B in the torso of X, a contradiction.

Thus we may arrange the components of P − (A ∩B) to obtain a separation as

desired.
4This is not quite equivalent to the usual definition of torso, which is defined only for a

part of a tree decomposition, but they coincide for well-behaved decompositions.
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We will need one additional observation about the torso.

Lemma 0.4.10. Let X be a closed set in a path space P and let a, b ∈ X. If

P is a path from a to b in the torso of X, then there is some P ′ ∈ P with

V (P ′) ∩X ⊆ V (P ).

Proof. Since P is a path in the torso, it is a concatenation of paths P1, . . . , Pk,

where each Pi is restriction of some P ′i ∈ P to P ′i ∩ X. Then
⋃

1≤i≤k Pi is a

connected set which contains a and b and meets X only in points of P , completing

the proof.
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Chapter 1

Connectivity theory

1.1 Introduction

Since paths are our basic unit, the area of connectivity seems like a natural place

to start. One of the basic tools of infinite graph theory is the star-comb lemma,

stating that for every infinite vertex set U there is either an infinite comb with

teeth in U or an infinite subdivided star with leaves in U . There is also a finite

version of this lemma which considers large sets instead. In Section 1.2 we show

that both of these generalize to path spaces.

Next we consider Menger’s theorem, which is perhaps the fundamental

theorem of connectivity and has therefore been extended and generalized in

many different ways. Perhaps the most important of these is the Aharoni-Berger

theorem proven in [1], which extends Menger’s theorem to infinite sets of paths.

Of particular note for us are the generalizations of Menger’s theorem proven

for some of the topological path-like objects mentioned in the overall introduction.

For instance [7] generalizes the Aharoni-Berger theorem to the Freudenthal com-

pactification of graphs, [26] proves a version of Menger’s theorem for topological

arcs and [49] shows multiple variations of Menger’s theorem for different classes

of topological spaces.

In Section 1.3 we prove a version of Menger’s theorem for path spaces.

Theorem 1.1.1. Let G be a dipath space, A,B ⊆ V (G) and k a natural number.

Then either there is a set of size less than k meeting every A-B-path or a set of

k disjoint A-B paths.

This theorem is weaker than some of those mentioned above and in fact this
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must be the case given the counterexamples we provide later. However, it can

be applied in a wide variety of settings, including those for which no version of

Menger’s theorem existed so far, like for the pseudo-lines from the preliminaries.

In Theorem 1.4.3 we consider a similar duality theorem for the number of

disjoint paths starting and ending in the same set. The graph version of this

theorem was proved by Gallai in [24] and it corresponds to the induction start

of Mader’s S-path theorem. Since its dual object is more complicated, we do

not state it in this introduction.

The proofs of both theorems use different versions of alternating walks. For

Menger’s theorem the proof proceeds mostly as for graphs, but for Gallai’s

theorem the usual proof, seen for instance in [48], translates the graph into a

matching, which we cannot do. We instead define a new type of alternating

paths and use reachability via them to construct the required witness.

Finally, in Section 1.5 we provide some counterexamples, both those against

variations of Theorem 1.1.1 promised above as well as an example showing that

path spaces do not admit spanning trees as we know them.

1.2 Star-comb lemma

To start with we should define stars and combs. Let κ be a cardinal and U a set.

A subdivided κ-star with leaves in U is a TK1,κ with all the branch vertices of

the side of size κ contained in U . A κ-comb with teeth in U consists of a chain

of paths (Ri)i∈I together with κ disjoint
⋃
i∈I Ri-U -paths.

Proposition 1.2.1. Let l � k be natural numbers, P a connected path space

and U ⊆ V (P) a set of size at least l. Then P contains either a subdivided k-star

with leaves in U or a k-comb with teeth in U .

Proof. List l elements of U as (ui)1≤i≤l. For 1 ≤ i ≤ l inductively define finite

sets of paths Pi starting with P1 = {P1}, where P1 = {u1}. For i > 1 add

a ui-
⋃
Pi−1-path Pi to Pi−1 if ui /∈

⋃
Pi−1. Set all undefined Pi for i ∈ ω

as empty. Let T be the graph with vertex set l and an edge between natural

numbers n < m if um ∈ Pn or Pm ends in Pn. Note that T is a tree.

First consider the case that T contains a vertex n of degree k′ � k. If Pn

contains k points um for m > n, then it obviously defines a k-comb with teeth

in U . Otherwise there exist k′′ � k paths Pm for m > n ending in Pn. These

can only meet in Pn by construction. If k of them end in the same point of Pn,
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this gives a subdivided k-star with leaves in U . Otherwise k of them are disjoint,

which gives a subdivided comb with leaves in U .

Thus we may assume T has maximum degree less than k and so contains a

path n1, . . . , nk. Then clearly Pni is nonempty for all 1 ≤ i ≤ k. Construct a

path in P by inductively following each Pni until it hits Pni+1
. Adding segments

to each of the uni from the correspond Pni if necessary gives a k-comb with

teeth in U .

With a parallel proof we also get the countable equivalent.

Proposition 1.2.2. Let P be a connected path space and U ⊆ V (P) an infinite

set. Then P contains either a subdivided ℵ0-star with leaves in U or an ℵ0-comb

with teeth in U .

However, our proof method does not extend to higher cardinalities, since

after infinitely many steps the set of everything constructed so far might not be

closed.

1.3 Menger’s theorem

In this section we prove our first main result, namely Menger’s theorem for

dipath spaces. Since we want to use augmenting paths, we first need to introduce

walks.

Let P be a dipath space. A walk in P is a sequence P1, . . . , Pn of paths

of P for some natural number n such that the maximum of Pi is equal to the

minimum of Pi+1 for all i < n. In some respects we can work with walks as we

do with paths: for instance walks have a first point (the first point of P1) and

a last point (the last point of Pn) and if the last point of a walk V is the first

point of another walk W , we can concatenate them by simply appending W to

V . Also, we say that a walk V is a segment of another walk W = P1, . . . , Pn if

V has the form Qi, Pi+1, . . . , Pj−1, Qj where 1 ≤ i ≤ j ≤ n, Qi is a segment of

Pi and Qj is a segment of Pj .

If W = P1, . . . , Pn is a walk, we write Ŵ for the directed completion of

{P1, . . . , Pn}. A trail is a walk P1, . . . , Pn such that there is no nontrivial path

which is a segment of both Pi and Pj for some i 6= j.

Note that even if P arises from the set of arcs of a Hausdorff space, say, its

walks in this sense do not necessarily match the paths of that space. Indeed,

this is impossible since there may be multiple spaces with different sets of paths,
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but the same set of arcs.1 However, the simple notion of walk just defined will

suffice for our purposes.

Our proof of Theorem 1.1.1 closely follows the augmenting paths proof in [14].

That proof consists of two main parts: In the first part one shows that if for some

set of disjoint A-B-paths P there is an alternating path from A to B \
⋃
P , there

is a larger set of disjoint A-B-paths. This is shown by taking the symmetric

difference between P and the alternating path and then simply analyzing its

components. In the second part one shows that if no such alternating path

exists, there is an A-B-separator consisting of one point on each path in P.

This separator is chosen by taking the last point on each path in P where an

alternating path starting in A ends (or the first point if there is none), but

showing that this is indeed a separator takes some work.

Perhaps surprisingly, both parts can be emulated for path spaces without

major changes, as long as we use the correct definition of alternating paths. For

the first part, the following lemma helps with the analysis of the components.

Lemma 1.3.1. Let P be a connected, finitary dipath space with every indegree

and outdegree at most one. Then P is a directed path or circuit.

Proof. If P contains a directed circuit, then it must actually be a directed circuit,

since any other path meeting it would increase the degree at some point. Thus

we may assume that it does not.

Since P is finitary, it is the completion of paths P1, . . . , Pn. We will show

inductively for 1 ≤ k ≤ n that there are k of the Pi such that the directed

completion of these Pi is a dipath. For k = 1 this is trivial, so we assume k > 1.

By induction hypothesis we may assume without loss of generality that the

directed completion P1, . . . , Pk−1 is some directed path Q. Since P is connected,

there must be one of the other Pi, say, Pk, which meets Q. Because of the degree

conditions this can only mean that Pk ends where Q starts or vice versa (we

cannot have both since this would form a directed circuit). Then the directed

completion of P1, . . . , Pk is a directed path, completing the proof.

For the rest of this section, fix a dipath space P, sets A,B ⊆ V (G) and a

finite set Q of disjoint A-B-paths in G.

We call a trail P1, . . . , Pn of P an alternating path (with respect to Q) if it

satisfies the following conditions:

1Indeed, one may construct a topological star either such that there is a topological path
reaching each leaf and converging to the center or such that every path reaches only finitely
many leaves.
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1. Its first point is contained in A \ V (Q).

2. For odd i we have Pi ∈ P and Pi does not share a segment with a Q ∈ Q
or its inverse.

3. For even i the path Pi is a nontrivial segment of the inverse of a Q ∈ Q.

4. No point outside Q occurs in multiple Pi.

The application of an alternating path P1, . . . , Pn to the set Q is the directed

completion of the set consisting of the Pi for i odd and the components of each

Q ∈ Q after deleting the inverses of the Pi for i even. Note that the application

is finitary by definition.

Now we can show that alternating paths ending in B \ V (Q) actually do

improve Q just as for graphs.

Proposition 1.3.2. If there is an alternating path ending in B \ V (Q), there is

a set of disjoint A-B-paths Q′ with |Q′| > |Q|.

Proof. Let T be the application of the given alternating path W to P
Let A′ be the set of initial points of W and the paths of Q and B′ their set

of final points. Now define Q′ to be the set of components of T meeting A′ ∪B′.
Note that T has maximum indegree and outdegree one, exactly the points

of A′ have indegree zero and exactly the points of B′ have outdegree zero. By

Lemma 1.3.1 any element of Q′ is then a path starting in A′ and ending in B′.

In particular, |Q′| > |Q|.

It remains to be shown that conversely the absence of such an alternating

path implies the existence of a suitable separator.

Proposition 1.3.3. If there is no alternating path ending in B \ V (Q), there is

a choice of one point from each element of Q which meets every A-B-path.

Proof. For every Q ∈ Q let xQ be the supremum in P of all points v such that

there is an alternating path ending in v and let X be the set of all these points.

We claim that X meets every A-B-path. Let S consist of the segment of each

Q ∈ Q up to xQ.

Assume for contradiction that there is an A-B-path R avoiding X. Since

R does not include an alternating path to a point of B \ V (Q) or V (Q) \ S, it

meets S; let y be its last point in S and Z the element of Q containing y. Since

R avoids X, y 6= xZ , so there is a z on Z after y such that there is an alternating
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path W ending in z. Let z′ be the first point in W on the segment of Z between

z and y and let W ′ be the concatenation of the segment of W until z′ with the

inverse of Z between y and z′. Then W ′ is an alternating path ending in y.

Since W ′ meets V (Q) only in S and y is the last point of R on S, the segment

of R from y can meet W ′ only outside V (Q) and in y. If they only meet in y,

let W ′′ be their concatenation. Otherwise, let W ′′ be the concatenation of W ′

up to meeting the segment of R starting in y for the first time with R starting

from that meeting point.

Now W ′′ is an alternating path with respect to the set consisting of the

segment of each Q up to xQ. But if W ′′ had a first vertex on the complementary

segments, say on some path Q, it would then include an alternating path to that

point, contradicting the choice of xQ.

Now the theorem follows easily.

Theorem 1.3.4. Let P be a dipath space, A,B ⊆ V (P) and k a natural number.

Then either there is a set of size less than k meeting every A-B-path or a set of

k disjoint A-B paths.

Proof. Assume that there is no set of k disjoint A-B-paths. Then there is a

set Q of disjoint A-B-paths of maximal size. By Proposition 1.3.2 there is no

alternating path with respect to Q ending in B \ V (Q). But then there must be

a set of size |Q| < k meeting every A-B-path by Proposition 1.3.3.

While we have only looked at A-B-paths so far, the same proof will work if

we replace all occurences of ‘A-B-paths’ in Theorem 1.3.4 with ‘paths from A to

B’.

1.4 Mader’s theorem

Now we will pivot to our second subject, Mader’s theorem. Let us start by fixing

some notation. Let P be a path space and let S be a set of disjoint subsets

of V (P). We write S for
⋃
S. Since we work in an undirected setting in this

section, when we talk about segments of a path, we also mean those of its inverse.

An S-system is a set of disjoint paths each starting in some S ∈ S and ending

in some different S′ ∈ S. The corresponding dual object is defined similarly to

the one in graphs, but we need a closure condition to avoid problematic limit

behavior. A tuple (X,Y) is called an S-witness if X and all the Y ∈ Y are

22



disjoint subsets of V (P), Y ∪X is closed for every Y ∈ Y and every path between

distinct sets of S meets X or has a nontrivial segment which is a subset of some

Y ∈ Y . We will refer to X as the witness’s separator and to Y as its cover. The

order |W | of an S-witness W = (X,Y) is |X|+
∑
Y ∈Yb

|δY |
2 c, where δY is the

number of y ∈ Y with y ∈
⋃
S or for which there is a nontrivial path starting in

y otherwise avoiding Y and X.

Lemma 1.4.1. Let Q be an S-system and W = (X,Y) an S-witness. If Q ∈ Q
does not meet X, then there is Y ∈ Y with |Q ∩ δY | ≥ 2.

Proof. By definition of witness there is some Y ∈ Y such that Y contains a

nontrivial segment of Q. Let a be the infimum of Q ∩ Y in P and let b be

the supremum. Then a 6= b by choice of Y and a, b ∈ Y since Y ∪X is closed.

Further, if a ∈ S, then a ∈ δY by definition and otherwise the segment of Q up

to a witnesses that a ∈ δY . Similarly, b ∈ δY .

This immediately implies that the order of any S-witness is an upper bound

for the order of any S-system.

We call an S-system Q and an S-witness (X,Y) dual if X consists of at most

one point of every Q ∈ Q and there are bY for all Y ∈ Y such that all points of

δY − bY lie on paths of Q and |δY ∩Q− bY | is 0 for all Y ∈ Y if Q ∈ Q meets

X and 0 for all but one Y ∈ Y and at most 2 for that one Y 2 if Q ∈ Q does

not meet X.

Lemma 1.4.2. Let Q be a finite order S-system and W an S-witness. Then

they are dual if and only if they have the same order.

Proof. Let W = (X,Y). First assume that Q and W are dual witnessed by some

bY . Then we get |W | = |X|+
∑
Y ∈Yb

|δY |
2 c ≤ |X|+

∑
Y ∈Yd

|δY−bY |
2 e.

Calculating further, we obtain |W | ≤ |X| +
∑
Y ∈Y

∑
Q∈Qd

|δY ∩Q−bY |
2 e =

|X| +
∑
Q∈Q

∑
Y ∈Yd

|δY ∩Q−bY |
2 e. Using the bounds given by Q and W being

dual, we can deduce |W | ≤
∑
Q∈Q(|Q ∩X|+ (1− |Q ∩X|)) = |Q|.

Conversely, we now assume |W | = |Q|. Let Q0 be the set of Q ∈ Q avoiding

X and Q1 its complement. Let f be a function mapping each Q ∈ Q0 to some

Y ∈ Y as in Lemma 1.4.1. Clearly |X| ≥ |Q1| and |δY | ≥ 2|f−1(Y )|. But since

|Q1|+
∑
Y ∈Yb

2|f−1(Y ))|
2 c = |Q|, our assumption of |W | = |Q| implies |X| = |Q1|

and |δY | ≤ 2|f−1(Y )|+ 1.

2We could require exactly 2 here, but that would make it more cumbersome to write down
a correct bY in the proof of our main theorem.
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For each Q ∈ Q we choose a set AQ of two points from δf(Q) ∩ Q. Since

|δY | ≤ 2|f−1(Y )| + 1 for any Y ∈ Y, there is at most one point from δY not

contained in some AQ for Q ∈ f−1(Y ). Let bY be such a point if it exists and

outside of δY otherwise. Now we claim that these bY witness that W and Q are

dual. From |X| = |Q1| it is clear that X consists of at most one point from every

P ∈ Q. Furthermore by choice of bY the set δY ∩Q− bY is empty if f(Q) 6= Y

and AQ otherwise, finishing the proof.

A set S is single if it is a set of singletons of V (P) and bounded if an S-system

of size k does not exist for some k ∈ N. Now we can state the main theorem of

this section.

Theorem 1.4.3. Let S be single and bounded. Then there are a S-system and

a S-witness which are dual.

The remainder of this section is taken up with the proof of this theorem. For

this we fix a single, bounded S.

Let Q be an S-system. We will always assume without loss of generality that

the paths in Q have no inner points in
⋃
S. Given x ∈

⋃
Q we write Q(x) for

the element of Q containing x.

We call a trail P1, . . . , Pn of P alternating (with respect to Q) if it satisfies

the following conditions:

1. For odd i the path Pi does not share a segment with a Q ∈ Q or its inverse.

2. For even i the path Pi is a nontrivial segment of a Q ∈ Q or its inverse

3. No point outside Q occurs in multiple Pi.

4. There are no even i and j with Pi a segment of Q ∈ Q and Pj a segment

of its inverse.

Figure 2 shows a hopefully instructive example. We say that an alternating trail

P arrives in some x ∈
⋃
Q if x ∈ P and there is some y ∈ P before x such that

the segment from y to x in P shares no nontrivial segment with Q(x).

The augmenting property of alternating trails can be deduced from that of

alternating paths.

Lemma 1.4.4. Let Q be a finite S-system. If there is an alternating trail for

Q starting and ending in different points of S \ V (Q), there is an S-system of

greater size.
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Figure 2: An example of an alternating trail (shown in blue)

Proof. Let W be such an alternating path. Without loss of generality each

Q ∈ Q is not traversed backwards, otherwise reverse the path. Let A consist of

the first point of W and of each Q ∈ Q and similarly let B consist of their last

points. Since the first point of W does not lie on a path of Q, W is an alternating

path for A, B and Q. Then Proposition 1.3.2 gives a set Q′ of A-B-paths larger

than Q which is also an S-witness.

For the rest of this section we fix a finite S-system Q of maximum size. We

may assume without loss of generality that Q has no inner points in S. We write

U for the set of those elements of S which are not endpoints of paths in Q.

Our goal is now to construct an S-witness of order |Q|. For this we need a

separator and a cover. Once we have found a suitable separator, the elements

of its cover will be defined as the points reachable from a given starting point

via alternating trails avoiding this separator. To achieve this, we will construct

pairs (A,Z) with A a set of starting points and Z a separator recursively. The

pairs which qualify for the construction are the so called split pairs. A pair

(A,Z) of disjoint subsets of V (P) is split if there is no Z-avoiding alternating

trail between different points of A, Z consists of at most one point from every

Q ∈ Q and there is no Z-avoiding alternating trail from some a ∈ A to a Q ∈ Q
meeting Z except if a ∈ Q.

The first condition is necessary for the disjointness of the cover we want to
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construct and the second and third to keep the order of the final witness low.

Lemma 1.4.4 implies that (U, ∅) is split, which will be the start of our recursion.

When working with a split pair (A,Z), we will often be given alternating

trails with exactly one endpoint in A. To use the first condition for splitness

to gain a contradiction, we will then need to combine two such paths. It is not

clear how to do this in every case, however. For instance, two alternating trails

P and R cross if they first meet an element of Q in the same point. As we will

soon see, this is the only case where combining the two will prove troublesome.

To combat this, points where this happens will be added to the separator in

our recursion. However, we need to be a bit more selective since it may be

that a point x where two alternating trails cross cannot be reached from A via

alternating trails without passing through another such point, in which case it

would be superfluous to add x to the separator.

Specifically, if P and R are Z-avoiding, start in different points of A and P

does not cross any other Z-avoiding alternating trail starting in a diffent point

of A before R the point at which P and R first cross is called a crossing (with

respect to a given split pair (A,Z)). In particular, if P crosses any Z-avoiding

alternating trail starting in a different point of A, P contains a crossing. When

we talk about P and R witnessing a crossing x we always take them to stop

when they first reach x.

Given alternating trails P and R we write < P,R > for the union of the

ground sets of P and R together with the ground set of any Q ∈ Q met by both

P and R. Note that if (A,Z) is a split pair, P and R are Z-avoiding alternating

trails and at least one of them starts in A, then < P,R > avoids Z.

Now we can prove the first of two observations about combining alternating

trails, namely that the only thing that can go wrong is the paths crossing.

Lemma 1.4.5. Let P be an alternating trail starting at some a and R an

alternating trail starting at b, which meet each other or meet a common Q ∈ Q.

Then P and R cross or there is an alternating trail from a to b contained in

< P,R >.

Proof. We will only consider the case that P and R meet, the other case is

similar. We may assume that P and Q both end in their sole common point x.

If P and R do not meet a common Q ∈ Q, then concatenating gives the required

alternating trail. So let Q ∈ Q be the first path met by P which R also meets. If

P and R first meet Q in different points, then connecting the relevant segments

of P and R via Q again gives the required alternating trail. Thus P and R cross
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in some v.

Applied to a split pair, we get the following.

Corollary 1.4.6. Let (A,Z) be split. If P and R are Z-avoiding alternating

trails starting at different points of A and they meet each other or meet a common

Q ∈ Q, then P crosses R.

Proof. Assume that P does not cross R and let P ′ be the alternating trail

obtained from applying Lemma 1.4.5 to P and R. Note that P ′ is Z-avoiding

since P and R cannot use elements of Q which meet Z. This contradicts the

fact that (A,Z) is split.

Given a split pair (A,Z), call a Z-avoiding alternating trail acceptable (with

respect to (A,Z)) if it has no crossing before its final point. By definition at

least one of the two paths witnessing a crossing is acceptable. We write X(A,Z)

for the set of all those x ∈
⋃
Q such that there is an acceptable alternating trail

from A arriving in x, but not in any other point of Q(x)− x. This will be the

set of points added to the separator of our split pair.

Lemma 1.4.5 allows us to combine alternating trails, but only if they do not

cross. Our second key observation allows us to combine even crossing trails, as

long as we may use one of them in either direction.

Lemma 1.4.7. Let Q ∈ Q, a, b ∈ V (P) and c, d ∈ V (Q) with c 6= d. Let P an

be alternating trail from a to c and R an alternating trail from b to d, which

avoid Q− c and Q− d respectively. Then there is an alternating trail from b to a

contained in < P,R > or an alternating trail from b to c in < P,R > avoiding

Q− c.

Proof. Let v be the first point of R contained in < P,P > and let R′ be the

segment of R up to v. If v /∈
⋃
Q, then concatenating R′ and the segment of

the inverse of P from v to a gives an alternating trail as required. Otherwise,

if P first meets Q(v) in a point w 6= v, combining R′ with the segment of the

inverse of P from w to a and the segment of Q(v) between v and w gives a

suitable alternating trail. Finally, if P first meets Q(v) in v, then the segment

of P following Q(v) starting in v cannot also end in v. Thus combining R′ with

the segment of P from v to c gives an alternating trail from b to c, which is as

desired, since Q(v) must differ from Q(b) in this case.

Next we want to check that X(A,Z) contains all crossings. In fact, we will

show a slightly stronger statement.
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Lemma 1.4.8. Let (A,Z) be split and let x be a crossing. Then there is no

Z-avoiding alternating trail starting in A first meeting Q(x) in a point other

than x.

Proof. Assume for a contradiction that there is a Z-avoiding alternating trail P

starting in A and meeting Q(x) only in some y 6= x, which must then be its last

point. Let B and C witness that x is a crossing, with C acceptable, and let b

and c be their starting points.

First we will show that P must start in c. Indeed, if not by Corollary 1.4.6

P must cross C, which can happen only in x, but x /∈ P .

Now applying Lemma 1.4.7 to B and P gives a Z-avoiding alternating trail

Q starting in b. Since (A,Z) is split, Q cannot end in c, so it must end in y.

But then Q first meets Q(x) in y, but every such alternating trail must start in

c 6= b, a contradiction.

Corollary 1.4.9. Let (A,Z) be split. Then X(A,Z) contains all crossings.

In particular, Z-avoiding alternating trails which do not meet X(A,Z) before

their final point are acceptable, which will be the main use of this corollary. Now

we have enough to prove the key lemma which will help us improve a split pair.

Lemma 1.4.10. Let (A,Z) be split and let x1, x2 ∈ X(A,Z). Then there is no

Z-avoiding alternating trail starting in Q(x1) − x1 and ending in Q(x2) − x2

which does not otherwise meet these paths.

Proof. Let D be an alternating trail as in the statement. We may assume that

D does not meet any Q ∈ Q meeting X(A,Z) except for its first and last point,

otherwise we may work with an appropriate segment of D instead.

First we consider the case that x2 is not a crossing. Let C be an acceptable

alternating trail from some a ∈ A arriving in x2. Applying Lemma 1.4.7 to D

and C gives an acceptable alternating trail arriving in Q(x1)− x1 or Q(x2)− x2

by Corollary 1.4.9, a contradiction to {x1, x2} ⊆ X(A,Z).

We may thus assume that x2 is a crossing witnessed by B and C, where

C is acceptable and starts at a. Applying Lemma 1.4.7 to D and C gives a

Z-avoiding alternating trail P starting in a and first meeting Q(x1) in a point

other than x1 or first meeting Q(x2) in a point other than x2. This contradicts

Lemma 1.4.8.
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Let the set X ′(A,Z) consist of the endpoints of those Q ∈ Q containing

points of X(A,Z) except those which are contained in X(A,Z) themselves.

These will be the new starting points added to our split pair.

Lemma 1.4.11. Let Q be an S-system of maximum size and let (A,Z) be split.

Then (A ∪X ′(A,Z), Z ∪X(A,Z)) is split.

Proof. First we will show that there is no Z ∪ X(A,Z)-avoiding alternating

trail between different points of A ∪X ′(A,Z). Since (A,Z) was split, such an

alternating trail clearly cannot exist between different points of A. It also cannot

exist between A andX ′(A,Z) since it would then be acceptable by Corollary 1.4.9,

contradicting the definition of X(A,Z). Any Z ∪X(A,Z)-avoiding alternating

trail between different points of X ′(A,Z) contains an alternating trail as in

Lemma 1.4.10, a contradiction.

To complete the proof, we assume for a contradiction that there is a Z ∪
X(A,Z)-avoiding alternating trail P from some a ∈ A∪X ′(A,Z) toQ(z) for some

z ∈ Z ∪X(A,Z) with a /∈ Q(z). Any such path is acceptable by Corollary 1.4.9.

Clearly, a /∈ A, since this contradicts (A,Z) being split if z ∈ Z and the definition

of X(A,Z) if z ∈ X(A,Z). So a ∈ X ′(A,Z). Furthermore we have z /∈ X(A,Z)

since otherwise P contains an alternating trail as in Lemma 1.4.10. So z ∈ Z.

Let x be the point of X(A,Z) on Q(a) and let R be an acceptable alternating

trail from A to x. Applying Lemma 1.4.7 to R and the inverse of P gives a

Z-avoiding alternating trail B starting in A. Then B cannot end in Q(z) since

(A,Z) was split, so it must end in Q(a) and meet that path only in a. Now it

suffices to show that B is acceptable, since this will then contradict x ∈ X(A,Z).

If not, there is some crossing y 6= x contained in < P,R > and thus R meets

Q(y). But R does not contain y, so this contradicts Lemma 1.4.8.

Call a pair (A,Z) splendid if it is split, the set U = S \ V (Q) is a subset of

A, for any z ∈ Z the endpoints of Q(z) are contained in A∪Z and X(A,Z) = ∅.
We can now easily construct such a pair by recursively applying Lemma 1.4.11.

Lemma 1.4.12. A splendid pair exists.

Proof. We construct an increasing sequence of pairs (An, Zn)n∈N satisfying the

first three conditions for splendidness inductively, starting with (A0, Z0) =

(U, ∅). If (An, Zn) has been defined already, we set (An+1, Bn+1) as (An ∪
X ′(An, Zn), Zn ∪ X(An, Zn)). By Lemma 1.4.11 (An+1, Zn+1) is split. The

second and third conditions are immediate by construction.
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Since Q is finite and the Zn meet every Q ∈ Q only once, the Zn become

eventually constant. But this means that there is some n ∈ N with X(An, Zn) =

∅, so (An, Zn) is splendid.

To finish the proof, we now need to construct a witness from a splendid pair

(A,Z). As mentioned before, the separator will just be Z and the elements of

the cover will be the sets Ya(A,Z) for a ∈ A defined as the set of all y ∈ V (P)

such that there is a Z-avoiding alternating trail from a to y. If these sets are to

form a form a cover, they first need to be disjoint.

Lemma 1.4.13. Let (A,Z) be splendid and let a, b ∈ A be different. Then

Ya(A,Z) and Yb(A,Z) are disjoint.

Proof. Assume otherwise and let c ∈ Ya(A,Z)∩Yb(A,Z). Let P be a Z-avoiding

alternating trail from a to c and R a Z-avoiding alternating trail from b to c.

By Corollary 1.4.6 P contains a crossing, contradicting Corollary 1.4.9.

Proving the other conditions for a witness will not be too difficult with the

aid of the following lemma.

Lemma 1.4.14. Let (A,Z) be splendid, let P be a Z-avoiding path and let

a ∈ A be arbitrary. If P meets Ya(A,Z), then P ⊆ Ya(A,Z).

Proof. We may assume without loss of generality that the first point v of P

is contained in Ya(A,Z). We will prove the statement by induction over the

number of elements of Q met by P except its final point z. If P does not meet⋃
Q before z, then for any w ∈ P appending P up to w to an alternating trail

witnessing v ∈ Ya(A,Z) and shortcutting if necessary gives w ∈ Ya(A,Z).

Otherwise let m be the maximum of all those points where P first meets

some Q ∈ Q other than z. By the induction hypothesis the segment P ′ of P

up to m is contained in Ya(A,Z). Every Q ∈ Q met by P before z is then

also contained in Ya(A,Z) since we may simply extend a witnessing alternating

trail along Q. Let w ∈ P \ P ′ be arbitrary. If w is a point of some Q ∈ Q
except z, then Q ⊆ Ya(A,Z) and thus w ∈ Ya(A,Z). Otherwise there is some

last q ∈
⋃
Q before w. Since q ∈ Ya(A,Z) \ X(A,Z) there is an acceptable

alternating trail R from some a′ ∈ A arriving in Q(q) − q. But an extension

of R now shows q ∈ Ya′(A,Z) ∩ Ya(A,Z), so a = a′ by Lemma 1.4.13. Now

combinining R with the segment of P from q to w and shortcutting if necessary

gives w ∈ Ya(A,Z).
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We are now well equipped to prove the main theorem of this section.

Proof of Theorem 1.4.3. Let Q be an S-system of maximum order. Then by

Lemma 1.4.12 there is a splendid pair (A,Z) for Q. In this proof all alternating

trails are tacitly assumed to be Z-avoiding. Let Y ∗ be the set of all points not

contained in any Ya(A,Z) or Z and let Y consist of all the Ya(A,Z) together

with Y ∗.

We claim that W = (Z,Y) is an S-witness. By Lemma 1.4.13 the elements of

Y are disjoint. To show that for all Y ∈ Y the set Y ∪ Z is closed, let P ∈ P be

some path and let P1, . . . , Pn be a cover of P with segments of P such that each

Pi meets Z at most in its endpoints. To show that P ∩ (Y ∪ Z) is complete, it

now suffices to show that Pi −Z is either completely contained in Y or does not

meet it at all. This follows immediately by applying Lemma 1.4.14 to Z-avoiding

segments of Pi covering Pi − Z. Finally, let P be some path between different

points of S. If P meets Z, we are done. On the other hand, if P is Z-avoiding, its

initial vertex is contained in some Y ∈ Y . By Lemma 1.4.14 P is then completely

contained in Y .

It remains to be shown that Q and W are dual. Note that for every Y ∈ Y
we have δY = Y ∩ S by Lemma 1.4.14 and |Q ∩ S| ≤ 2 for every Q ∈ Q. We set

bYa(A,Z) = a and choose bY ∗ arbitrarily. Since (A,Z) is splendid, each Q ∈ Q
contains at most one element of Z.

If Q ∈ Q does not contain a point of Z, then Q is a subset of some Y ∈ Y by

Lemma 1.4.14 and we are done. Thus we may assume that Q does contain some

z ∈ Z. Let x ∈ Q ∩ S. Then x is an endpoint of Q. It is enough to show that

x is not contained in Y − bY for any Y ∈ Y. This is clear if x = z. Otherwise

x ∈ A by splendidness and thus x ∈ Yx. But bYx = x, completing the proof.

1.5 Counterexamples

Some natural-sounding alternate versions of Theorem 1.3.4 can be refuted by

simple, known counterexamples. This is also shown in [49] with very similar

examples originally given in [18] and [51].

Figure 3 shows a combination of such examples: a dominated ray, where

the first vertex a and the end d have two extra neighbors each (b, c and e, f

respectively) and b and c are also adjacent to the dominating vertex.

In this example there is no single vertex except a or d meeting every path

from a to d, but there are not even two edge-disjoint paths between them. Thus
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Figure 3: A combined counterexample to three Menger variations

a version of Menger for internally disjoint paths fails between a and d, one for

fans between {a, b} and d and one for edge-disjoint paths between {b, c} and

{e, f}.
One could also ask for a version for infinite cardinalities or even an Aharoni-

Berger-type statement, but an example from [49] shows that a cardinality version

of Theorem 1.3.4 already fails for ℵ0. For this consider the space [0, 1]2 and take

A to be the points of the form (0, 1
n ) and B those of the form (1, n−1

n ). In this

example there are n disjoint A-B-paths for every natural number n, but not

infinitely many.

One tool which is usually quite helpful in connectivity theory are spanning

trees. While we can easily define a tree as a connected path space not containing

a circuit, unfortunately not every path space contains a spanning tree, that is a

tree with the same ground set, as a subspace. This is shown by the following

example based on the infinite binary tree with every edge replaced by two

subdivided edges.

Example 1.5.1. Let S be the set of finite 0-1-sequences, S∗ the set of 0-1-

sequences of length ω and V = S ∪S∗∪ (S−∅)×2. Let P1 be the set of paths of

the graph G on S∪ (S−∅)×2 with edges of the form (s, i)s for s ∈ S, i ∈ 2 or of

the form s(s′, i) with s, s′ ∈ S, i ∈ 2 and s′ either s.0 or s.1. Extend the obvious

partial order on S to a partial order on V (G) by taking (s, 0) and (s, 1) to be

the unique direct predecessors of s. Let A be the set of all rays of G which are

ascending in this partial order and contain s.i whenever they contain (s, i). For

each a ∈ A let â be obtained from a by adding the corresponding limit sequence

from S∗ as a final point and let P2 = {â; a ∈ A}.
Let P be the completion of P1 ∪P2. Note that P is connected. Assume that

T is a spanning tree of P. Then for every nontrivial s ∈ S there is an edge of
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the 4-cycle containing (s, 0) and (s, 1) in G which is not contained in T .

We will now recursively construct a ray a ∈ A, so assume the ray has been

constructed up to some s ∈ S. Let i ∈ 2 be chosen such (s, i) is contained in

the ray (or arbitrarily if s was the first vertex). Since T is a tree, it must avoid

an edge of the 4-cycle of G containing s and s.i. We continue the ray using

whichever of the two paths from s to s.i of length two is not contained in T .

Then by construction no final segment of a is contained in T . Let x be the

final point of â. But since â is the only path containing x in P1 ∪P2, every path

from S to x shares a nontrivial final segment with â. In particular, no such path

is contained in T , a contradiction.

Finally, we want to note that the path space given by the arcs of the closed

unit disc is k-connected for every k, but given points a, b, c, d along the order

of the boundary circle, there are no disjoint paths from a to c and b to d

(corresponding to the definition of 2-linked for graphs). Thus high connectivity

does not force linkedness for paths spaces, as it does for graphs.

1.6 Outlook

While the examples given in the prior section quite strongly constrain any further

extension of Theorem 1.3.4, the situation is quite different for Theorem 1.4.3.

The first question here is whether boundedness may be dropped to get a full

analogue to Gallai’s theorem. In particular this would imply that if there are

arbitrarily many disjoint paths between points of some set S, there are also

infinitely many. Beyond that it is natural to ask whether we can make the step

from Gallai’s theorem to Mader’s theorem by allowing S to consist of finite (or

even infinite) sets. This, however, seems to require new techniques, since neither

our alternating paths approach nor emulating the induction step of [48] appear to

work. We could also again enquire whether boundedness could be dropped even

for these extensions. This does not work if we allow S to contain infinite sets,

since in the example from the previous section in which there are arbitrarily many

disjoint A-B-paths, but not infinitely many, we can set S = {A,B}. Therefore

the following two conjectures are close to the maximum we could still ask for.

Conjecture 1.6.1. Let P be a path space and S be a set of finite subsets of

V (P). Then there are an S-system and an S-witness which are dual.

Conjecture 1.6.2. Let P be a path space and S be a bounded set of subsets of

V (P). Then there are an S-system and an S-witness which are dual.

33



The star-comb lemma of Proposition 1.2.2 also suggests further research, since

the proof method used here does not easily generalize to higher cardinalities. For

infinite graphs [27] characterizes even k-connected sets of arbitrary cardinality.

Successfully generalizing that article to path spaces, even in part, would thus

be a large improvement. Questions about characterizing k-connected sets could

also be asked for dipath spaces, but might quickly become unwieldy.

Another interesting question is whether Pym’s theorem of [43] holds for path

spaces. Since we need to deal with infinite sets of paths here, a positive resolution

would probably require new techniques.

As an alternative to the theory developed here one could axiomatize the

walks instead of the paths of a space. In this way one could preserve some more

information when moving from topological spaces to ’walk spaces’ and it could

also allow one to define a product of such spaces which commutes with the

product of topological spaces.
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Chapter 2

Tree width

2.1 Introduction

While originally defined in [32] under a different name, tree decompositions of

graphs only became an active field of research when they were rediscovered by

Robertson and Seymour in the course of their graph minors project in [45]. An

important subsequent development is the theory of abstract separation systems

given in [13], where only separations and their relations are considered and all

other structure is abstracted away. We will work within this framework, but

since separation systems will become much more central in Chapter 3, we will

cover them more fully in that chapter’s introduction.

In graphs every tree decomposition induces a tree set of separations corre-

sponding to the edges of the tree and conversely from such a tree set N one

can construct a tree decomposition which induces N by having the vertices

correspond to the consistent orientations of N , the edges to the unoriented

separations and having the parts at each vertex be obtained as the intersection

of all second components of the corresponding orientation. This turns out to

be very useful, since it is often easier to construct a tree set of separations as

opposed to directly constructing a tree decomposition, especially when criteria

for the decomposition are naturally formulated in terms of separators, as for the

upcoming examples of blocks and 2-blocks.

In Section 2.2 our goal is to find an analogue of tree decompositions for path

spaces which corresponds to tree sets of separations in the same way. While

a lot of the above translates to path spaces fairly well, there is one major
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problem: even in the simplest examples, like blocks, we will have to consider

tree sets with chains of length greater than ω, which cannot represented using

trees. Fortunately, it was proven in [28] that tree sets with chains of any length

can be represented using tree-like spaces. Applying their work, we replace the

decomposition tree with a tree-like space to obtain tree-like decompositions,

which are otherwise mostly analogous to tree decompositions.

Section 2.3 covers the block decomposition, our first application, which was

known long before tree decompositions. Given its simplicity, it is perhaps not

surprising that this is mostly straightforward with the framework we established

before. A decomposition along 2-separations would be a logical next step. For

graphs such decomposition was first given in [50], again without using tree

decompositions. It has been extended to infinite graphs by [44] and to infinite

matroids by [2]. In Section 2.4 we use some of their techniques to obtain a similar

decomposition for path spaces. Applying the two decompositions constructed

so far, in Section 2.5 we extend the topological minor characterizations of tree

width one and two to path spaces. We also show that, as in graphs, highly

connected sets are necessary for large tree width.

The grid theorem, first proven in [46] as part of the graph minors project,

states that every graph of high tree width has a large grid minor. While this is

not a characterization, it does provide a qualitative minor-based criterion for

high tree width. We will prove analogously that every path space which has tree

width much greater than some k has a k × k-grid minor. Since we have already

mentioned that high tree width implies the existence of a large connected set, it

might seem advantageous to follow the proof of [19], but that article contains

some arguments which are not easily replicated in path spaces. However, there is

another proof which makes use of these highly connected sets, namely the one in

[25] based on constructing so called necklaces. Even though there were still some

problems which needed to be fixed, overall this proof is surprisingly amenable to

our generalization, as we will see in Section 2.6. In Section 2.7 we complete the

proof of the grid theorem using the prior analysis of necklaces. From our grid

theorem we then deduce in Section 2.8 that planar graphs have the Erdős-Pósa

property following the proof in [46].
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2.2 Tree-like decompositions

Recall that a tree decomposition of a graph G is a a pair (T, (Vt)t∈V (T )), where

T is a tree and Vt ⊆ V (G), satisfying the following conditions:

1.
⋃
t∈V (T ) Vt = V (G)

2. For every vw ∈ E(G) there is some t ∈ V (T ) with {v, w} ∈ Vt.

3. If a vertex x lies on the path of T between vertices s and t, then Vs∩Vt ⊆ Vx.

When we try to give a similar definition for path spaces, we encounter two

problems. The first is that the second condition explicitly mentions edges. This,

however, can be resolved rather easily by using a different condition equivalent

for graphs, namely that for each edge vw of T the set Vv ∩ Vw separates Va and

Vb for a, b in different components of T − vw.

The second is more fundamental: tree sets arising from path spaces will often

have chain of separations of arbitrary length, but trees can only represent tree

sets with no ω + 1-chains. After observing this, [28] offers a solution. Instead of

using a tree to represent a tree set, they use a tree-like space instead. We use

this idea to define our decompositions.

As for tree decompositions in graphs, the parts of our decompositions will be

obtained as an intersection of the second components of all separations belonging

to some orientation and it will be useful to have a short notation for this. For

any set o of separations of a path space we will write Po for the set
⋂

(A,B)∈oB.

We will obtain the parts of our tree decompositions from orientations in this

manner, just like for graphs. Note that by Lemma 0.4.6 these sets are closed.

A tree-like decomposition of a path space P is a pair (T, (Vt)t∈V (T )), where

T is a tree-like space and Vt ⊆ V (P), satisfying the following conditions:

1.
⋃
t∈V (T ) Vt = V (P)

2. Vs ∩ Vt ⊆ Vx for all s, t, x ∈ V (T ) with x ∈ LT (s, t)

3. For every s, t ∈ V (T ) and every edge e ∈ E(LT (s, t)) with endpoints a and

b we have that every path of P from Vs to Vt meets Va ∩ Vb.

It is proper if every empty Vt is a leaf and a limit point. We call each Vt a

part of the tree-like decomposition. The width of a tree decomposition is the

least cardinal κ such that |Vt| < κ for all t ∈ Vt. The tree width of P is the least

width of any tree-like decomposition.
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In the finite case (that is if T and P are finite) tree-like decompositions are

just tree decompositions. This is because finite tree-like spaces are just trees

and the endpoints of each edge of the graph P cannot be separated by any of

the separators, so they must be contained in a common part.

Given a tree-like decomposition D = (T, (Vt)t∈V (T )) we define a separation

S(D, e) for each oriented edge e of T from v to w as (
⋃
t∈Cv Vt,

⋃
t∈Cw Vt), where

Cv and Cw are the components of T − e containing v and w, respectively. Let

S(D) be the set of all these separations. Clearly, S(D) is a tree set.

In the following, our goal is to reverse this operation. More specifically given

a tree set N we want to construct a proper tree-like decomposition D with

S(D) = N . The basis for this decomposition will be the tree-like space given by

the following reformulation of [28, Theorem 4.15].

Theorem 2.2.1. Let N be a regular tree set. Then there is a tree-like space T

satisfying the following conditions:

1. The vertices of T are the consistent orientations of T .

2. The edges of T are the unoriented separations of N .

3. An unoriented separation e is incident with two orientations differing

exactly in e

4. For s, t ∈ N we have s < t if and only if LT (vs, vt∗) ⊆ LT (vs∗ , vt∗) ⊆
LT (vs∗ , vt), where vx for some separation x is the orientation incident with

{x, x∗} containing x.

Let us write T (N) for the tree-like space from Theorem 2.2.1 and D(N) for

the pair (T (N), (Po)o∈V (T (N))).

Proposition 2.2.2. D(N) is a tree-like decomposition of P with S(D(N)) = N .

Proof. Let us first check that D(N) is a tree-like decomposition. For the first

condition, let any x ∈ V (P) be given. The set {(A,B) : x ∈ B \A} is a partial

consistent orientation. Thus, by Lemma 0.2.2 it can be extended to a consistent

orientation ox. Then we have x ∈ Vox by definition.

For the second condition, let o, p, x ∈ O(S) with x ∈ LT (N)(o, p) and a ∈
Po ∩ Pp be given. Then a ∈ Po∪p and in particular a ∈ Px since x ⊆ o ∪ p.

Now let s, t, e, a, b be given as in the third condition and let P be a path

from Vs to Vt. Let (A,B) be the oriented separation of e contained in b. Since

e is an unoriented separation such that s and t contain different orientations
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of it, P must meet A ∩ B. Thus it is enough to show that A ∩ B is equal to

Va ∩ Vb. If z ∈ Va ∩ Vb we must also have z ∈ A ∩B, since if z /∈ A, z /∈ Va and

if z /∈ B, z /∈ Vb. Conversely let z ∈ A ∩B and (C,D) ∈ b− (A,B) be arbitrary.

Assume z /∈ D for a contradiction. Then we have neither (C,D) ≤ (A,B) nor

(C,D) ≤ (B,A). By nestedness (C,D) is thus larger than one of (A,B) or

(B,A), but this contradicts the consistency of a or b respectively.

Finally, note that for each separation n ∈ N we have S(D(N), n) = n by

construction and thus S(D(N)) = N .

Since we want the decomposition to display the connectivity of the path

space, it would be problematic for a part that lies between nonempty parts to

be empty. Fortunately, this does not happen.

Lemma 2.2.3. Let C be a chain of finite order separations in some connected

path space P, such that PC and PC∗ are nonempty. Then for any partition

(C1, C2) of C with c1 < c2 for all (c1, c2) ∈ C1×C2 the set PC1∪C∗2 is nonempty.

Proof. Let a ∈ PC∗ and b ∈ PC be given and let P be a path from a to b. Clearly,

P must meet A ∩B for every (A,B) ∈ C1. Let x(A,B) be the last vertex on P

in A ∩B and let x be the supremum on P of all the x(A,B) for (A,B) ∈ C1. By

choice of the x(A,B) we have x ∈ B for all (A,B) ∈ C1. Now it suffices to show

that x ∈ E for all (E,F ) ∈ C2.

Assume for a contradiction that x ∈ F \ E. Then P must meet E ∩ F
somewhere before x, let y be the last such point. Since y < x, there must be

some x(A,B) between them. But then x(A,B) ∈ F \ E, contradicting (A,B) <

(E,F ).

Lemma 2.2.4. If P is connected and nonempty and N consists only of finite

order separations, D(N) is proper.

Proof. By Lemma 2.2.3 LT (N)(a, b) does not contain any c with Pc empty if Pa

and Pb are nonempty. Since further N contains no trivial separation any empty

part of D(N) is a leaf and cannot have an adjacent edge, so it must be a limit

point.

We say that a set N of proper separations is closed if it contains all proper

suprema of its chains. An important example is the set of all good separations

in Sk(P), as shown in Lemma 0.2.1. We write gk(P) for this regular tree set or

just gk if P is apparent.
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Thus it will be useful to note a few properties of D(N) for N closed. For

this we first need to analyze limit separations. In graphs, since paths are finite,

the supremum of a chain (Ai, Bi)i∈I is simply (
⋃
i∈I Ai,

⋂
i∈I Bi). Since in our

setting points in the separator can converge to other points, we cannot quite

achieve this, but by applying Menger’s theorem we can still control the supremum

quite tightly.

Proposition 2.2.5. Let P be a path space and (Ai, Bi)i∈I be a nonempty chain

of separations of order ≤ k for some natural number k. Let A =
⋃
i∈I Ai and

B =
⋂
i∈I Bi. Then there is X ⊆ V (P) such that (A ∪X,B) is a separation of

order at most k which is the supremum of C.

Proof. There cannot be a set of k + 1 disjoint paths from A to B, since there

would then be some (Ai, Bi) such that Ai contains the first points of all these

paths. Let Q be a set of disjoint paths from A to B of maximal size. Without

loss of generality Q contains (the singleton of) every point of A ∩B as a path.

Clearly |Q| ≤ k. By Theorem 1.3.4 there is a set S separating A from B which

meets every Q ∈ Q exactly once. Then S ⊆ B, since if there was s ∈ S ∩ (A \B),

say meeting Q ∈ Q, it would have to be the last point of A on Q and so a segment

of Q would witness that any (Ai, Bi) with s ∈ Ai \Bi are not separations. Let

X = S \A. Then (A ∪X,B) is a separation of order at most k which is clearly

an upper bound for C. Let (E,F ) be any other upper bound for C. It now

suffices to show that (A ∪ X,B) ≤ (E,F ). Clearly, A ⊆ E and F ⊆ B. But

since all paths in Q clearly do not meet B before S, each point of S must be

contained in E, completing the proof.

We call a set of separations bounded if every separation is comparable to some

maximal element. We can now use the above result to control the unbounded

parts.

Lemma 2.2.6. Let N be closed and let o ∈ O(N) be unbounded. If N consists

only of separations of order at most k, then |Po| ≤ k. If o is not a leaf, then Po

is equal to the separator of the unique maximal separation of o.

Proof. If o is not bounded, then by Zorn’s Lemma there is a nonempty chain C

in o whose supremum (A,B) is not contained in o. If all separations in N have

order at most k, then by Proposition 2.2.5 so does (A,B). If (A,B) is improper,

then o is a leaf and if (A,B) has order at most k then |Po| ≤ |B| ≤ k.

Otherwise since o is an orientation, we have (B,A) ∈ o, implying Po ⊆ A∩B
by Proposition 2.2.5. Let (E,F ) ∈ o− (B,A) be arbitrary. By consistency we
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have (E,F ) ≤ (B,A) or (E,F ) ≤ (G,H) for some (G,H) ∈ C. This implies

that (E,F ) is not a maximal separation of o and that (E,F ) is not greater than

(B,A) and so (B,A) is the unique maximal separation of o. Further we also get

Po = A ∩B. If (A,B) has order at most k, then |Po| ≤ k.

For a part Po of D(N) its border is the set of points of Po also contained in

some other part. The following observation justifies this name.

Lemma 2.2.7. Let N be closed. Any part of D(N) that is not an unbounded

leaf is separated from its complement by its border.

Proof. By Lemma 2.2.6 we may assume that o is bounded. Since any path from

Po to its complement must meet A for some (A,B) ∈ o, it must then also meet

the separator of some maximal element of o and thus the border.

Lemma 2.2.8. Let N be closed. If o, p, v ∈ O(N) are such that v ∈ LT (N)(o, p)

and o 6= p, then Pv separates Po and Pp.

Proof. If v is a leaf, then v ∈ {o, p} and we are done. Otherwise we may

assume that v is bounded by Lemma 2.2.6. Then LT (N)(o, p) contains an edge e

corresponding to a maximal element of v. By definition of tree-like decomposition

the separator of S(D, e) is a subset of Pv separating Po and Pp.

2.3 Blocks

The blocks of a graph are usually defined as the maximal connected parts

not containing a cut vertex and their structure is described using a block tree

containing both the blocks and the cutvertices as vertices. Equivalently this can

also described via a tree decomposition with separators of size one whose parts

are 2-connected or single vertices. When generalizing this to path spaces we will

use the latter approach, since we have already defined tree-like decompositions.

To find an analogous decomposition of some fixed connected path space P,

we will proceed in three steps: first we characterize the good 1-separations of P ,

then show that any path space with no good 1-separation is 2-connected and

finally prove that any separation of such a block lifts to one of P.

Let us start by making an observation about 1-separations.

Lemma 2.3.1. Two 1-separations (A,B) and (C,D) can cross only if A ∩B =

C ∩D.
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Proof. Let (A,B) and (C,D) be two crossing 1-separations and let v be the

unique element of A ∩ B and w the unique element of C ∩ D. Assume for

a contradiction that v 6= w. Without loss of generality we may assume that

w ∈ A and v ∈ C. By Lemma 0.4.7 (A ∪ C,B ∩ D) is a separation, but

(A ∪ C) ∩ (B ∩D) = (A ∩B ∩D) ∪ (C ∩B ∩D) = ({v} ∩D) ∪ ({w} ∩B) = ∅.
Since P is connected, this implies that one of its sides is empty, which must be

B ∩D. But then (B,A) ≤ (C,D), a contradiction.

We can use this to reach our first goal and characterize the good 1-separations

of P.

Proposition 2.3.2. A proper 1-separation (A,B) of P is good if and only if A

or B contains just one component of G− (A ∩B) .

Proof. For the forward direction let C1 and C2 be two components in A and

D1 and D2 be two in B. Then moving C2 to B and D2 to A gives a separation

crossing (A,B). For the other direction, let (A,B) be a separation satisfying

the condition. By symmetry we may assume that A is the side with just one

component. We know that A ∩ B has exactly one element, call it v. Clearly

(A,B) cannot cross any separation with intersection v since A+ v must always

be contained in one side. Now Lemma 2.3.1 gives the result.

Similar to the known decomposition theorems for graphs, the sets Po for

some o ∈ O(g1) are promising candidates for our blocks: since they are not

separated by any good 1-separation we can hope that they correspond to maximal

2-connected subspaces. A first step in this direction is showing that arbitrary

1-separations (not just good ones) fail to separate them.

Corollary 2.3.3. For any o ∈ O(g1) and any 1-separation (A,B) the set Po is

completely contained in A or B.

Proof. Let v be the unique point of A ∩ B. If Po met multiple components of

G− v, let C and D be two. Then (C + v,G−C) is a 1-separation satisfying the

conditions of Proposition 2.3.2. So o must contain it or its inverse. Therefore

one of C or D cannot be contained in Po.

In particular, this implies that any connected space with no good 1-separations

is 2-connected, which was the second objective.

To show that the Po are 2-connected, we still need show that separations of

Po induce ones of P.
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Lemma 2.3.4. For any separation (A,B) of Po for some set of 1-separations o

there is some separation (E,F ) of P with A ⊆ E, B ⊆ F and A ∩B = E ∩ F .

Proof. Let (A,B) be a separation of Po and assume that P is a path from some

a ∈ A to some b ∈ B avoiding A ∩ B. Since (A,B) is a separation in Po, P

contains some point c /∈ Po. Let (C,D) ∈ o be some separation with c ∈ C \D.

Then the parts of P from a to c and from c to b both meet C ∩D, but this only

has one element, a contradiction. Therefore A ∩B separates A− (A ∩B) and

B−(A∩B) in P and we may arrange the components of G−(A∩B) not meeting

either set arbitrarily to get a separation with the required properties.

Having checked off all requirements, the desired statement is now immediate.

Corollary 2.3.5. For any o ∈ O(g1) the subspace Po is 2-connected.

Proof. Po has no proper 0-separation because this would contradict the 1-

connectivity of P by Lemma 2.3.4. Po has no proper 1-separation because

this would contradict Corollary 2.3.3 by Lemma 2.3.4.

With this result it now makes sense to callD(g1(P)) the block decomposition of

P and its parts blocks. Our last goal here is giving a more concise characterization

of the blocks. However, there is one small wrinkle here: blocks of size at most

one can be contained in other blocks. To avoid this, we will characterize the

maximal blocks instead. Since blocks never meet both sides of a 1-separation,

these are uniquely determined as the maximal such sets by construction. Using

Corollary 2.3.5, we can also show that they correspond to maximal 2-connected

subspaces, as we hoped before.

Proposition 2.3.6. The maximal blocks of P are exactly the maximal sets X

such that the induced space on X is 2-connected.

Proof. If X is a nonempty block, then the induced space on X is 2-connected

by Corollary 2.3.5. On the other hand if the space induced by some set X is

2-connected, then there is no good 1-separation in P separating vertices of X

and so X is contained in some block Y .

2.4 2-Blocks

Next we will focus on 2-separations in 2-connected spaces. For graphs it is

straightforward to construct a tree decomposition from the good 2-separations
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of the graph. While the parts of this tree decomposition will not necessarily

be 3-connected, their torsos (obtained by making the separators complete) will

either be 3-connected or cycles.

Using our results about blocks, in this section we will define a decomposition

along the 2-separations of some fixed 2-connected path space P. For this, as

in the last section, we will proceed in three steps: first we will characterize the

good 2-separations, then show that any path space with no good 2-separation

is 3-connected or a circuit and finally prove a lifting lemma to show how this

translates to the parts of our decomposition.

We start our search for a characterization of good 2-separations with a more

general observation.

Proposition 2.4.1. Let (A,B) be a proper k-separation in a k-connected path

space Q for some finite k. Then any proper l-separation (C,D) of Q[A] for l < k

has a point of A ∩B in C \D and D \ C.

Proof. Assume not. By symmetry we may assume A ∩ B ⊆ D. Since Q is

k-connected, there is a path P from C \D to D \C avoiding C ∩D. Since (C,D)

is a separation of Q[A], P must meet B. Since (A,B) is a separation of Q, it

follows that P meets A ∩ B. Let P ′ be the segment of P up to its first point

in A ∩ B. Then P ′ is contained in A \ (C ∩ D), but meets both C and D, a

contradiction.

For 2-separations we obtain the following corollary.

Corollary 2.4.2. For any proper 2-separation (A,B) the subspace P[A] is

1-connected.

Proof. Let v and w be the vertices of A∩B. If there were a proper 0-separation

(C,D) of P [A], then (C+v,D+v) would be a proper 1-separation of P [A], so by

Proposition 2.4.1 both C \D and D \C must contain w, which is impossible.

Now we can prove the desired characterization.

Proposition 2.4.3. A proper 2-separation (A,B) is good if and only if P [A] or

P[B] is 2-connected and A or B contains just one component of P − (A ∩B).

Proof. Let v and w be the vertices of A ∩ B. If both P[A] and P[B] are not

2-connected, then there are proper 1-separations (C,D) of P[A] and (E,F ) of

P[B]. By Proposition 2.4.1 we may assume that v ∈ (C \ D) ∩ (E \ F ) and

w ∈ (D \ C) ∩ (F \ E). Then (C ∪ E,D ∪ F ) is a proper 2-separation crossing
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(A,B). If both A and B contain at least two components of P − (A ∩ B)

exchanging one component from A with one from B gives a proper 2-separation

crossing (A,B).

For the other direction, assume for a contradiction that the proper 2-

separation (C,D) crosses (A,B), but (A,B) still satisfies the two conditions.

Then the second condition implies that A ∩ B 6= C ∩ D. By symmetry we

may assume that P[A] is 2-connected. Then C ∩ D must be contained in A.

Indeed, otherwise (C ∩A,D ∩A) would a separation of P[A] of order at most

1, which would have to be improper and thus A would be contained in C or D.

Furthermore C ∩D has to meet B since otherwise B would lie completely in C

or D by Corollary 2.4.2. So C ∩D must consist of one vertex v ∈ A ∩ B and

one vertex w ∈ A \B. This however contradicts Proposition 2.4.1 applied to the

separation (C ∩B,D ∩B) of B.

Note that the condition that one side should be 2-connected is only a restric-

tion if the separator leaves exactly two components, otherwise, as we prove next,

it is always satisfied.

Lemma 2.4.4. Let (A,B) be a proper 2-separation. If A contains two compo-

nents of P −A ∩B, then P[A] is 2-connected.

Proof. Let A∩B = {v, w}. Assume that (C,D) is a proper 1-separation of P [A]

with separator {x}. By Proposition 2.4.1 v and w lie on different sides of C ∩D
and neither is x. So x lies in one of the components of A − {v, w}. Let F be

some other component. Moving all the other components in A to B gives a

proper 2-separation, so by Corollary 2.4.2 the subspace defined by F ∪ {v, w}
is 1-connected. Thus there is some path from v to w in this space, which then

avoids x, a contradiction.

Proposition 2.4.3 and Lemma 2.4.4 together imply that it is sufficient to find

any proper 2-separation with a 2-connected side to prove that P has a good

2-separation.

Lemma 2.4.5. If there is a proper 2-separation (A,B) in P such that P[A] is

2-connected, then there is a good 2-separation with separator A ∩B in P.

Proof. Let v and w be the two elements of A ∩B. If (A,B) is not good, then

by Proposition 2.4.3 both A and B must contain at least two components. Let

(C,D) be the separation with all but one component from A moved to B. Then
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by Lemma 2.4.4 P[D] is 2-connected. This implies that (C,D) is good by

Proposition 2.4.3.

These tools will help us with our second step of proving that P is 3-connected

or a cycle if it does not have a good 2-separation. To achieve this we will analyze

the block decomposition of the sides of a 2-separation, following a strategy used

for infinite graphs in [44, Theorem 6]. Let us first note some properties of these

decompositions.

Just as the block decomposition of each side of a 2-separation of a 2-connected

graph is always a path, it turns out to always be a pseudo-line in our case.

Proposition 2.4.6. For any proper 2-separation (A,B) of P with A∩B = {v, w}
the block decomposition of P [A] is a pseudo-line, whose endpoints are the unique

blocks containing v and w, respectively.

Proof. First note that v is contained in just one block Vo. Indeed, if not,

then v lies in the separator of some proper 1-separation of P[A], contradicting

Proposition 2.4.1. Similarly, w is contained in just one block Vp. If there was

some vertex x of the tree-like space not on the pseudo-line between o and p,

there must be some pseudo-line from x to o. It must contain at least one edge

e not on the pseudo-line from o to p. Then the associated separation does not

separate v and w, a contradiction to Proposition 2.4.1.

Moreover, in both cases no block has more than two vertices.

Lemma 2.4.7. Let (A,B) be any proper 2-separation of P. If any block of

the block decomposition of P[A] has at least three vertices, then P has a good

2-separation.

Proof. If A has just one block then P[A] is 2-connected by Corollary 2.3.5,

so there is a good 2-separation by Lemma 2.4.5. Otherwise the two vertices

v, w ∈ A ∩B lie in different blocks Vo and Vp by Proposition 2.4.1.

First, let us assume that one of these blocks, say Vo, has at least three vertices.

Since by Corollary 2.3.5 Vo is 2-connected, by Lemma 2.4.5 it suffices to show

that there is no path from Vo to its complement not meeting the border of Vo or

v. By Lemma 2.2.6 o is bounded and thus Lemma 2.2.7 implies that any such

path cannot be contained in A and thus must meet w. But w is separated from

Vo in P[A] by the border of Vo, so this is impossible.

If any other block Vx has size at least three, then similarly it suffices to show

that the border of Vx separates Vx from its complement. If there were a path
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from Vx to its complement avoiding its border, however, it would need to meet

v or w, which the border of Vx separates from Vx, a contradiction.

Corollary 2.4.8. If P has no good 2-separation and (A,B) is a proper 2-

separation of P, then there exists a linear order of A such that every a ∈ A
separates everything below a from everything above a within P[A].

Proof. Proposition 2.4.6 gives us a linear order on the blocks of P [A]. To define

our order on A we set v as a minimum, w as a maximum and for any other

a1, a2 ∈ A we set a1 ≤ a2 if the lowest block a1 appears in is not bigger than the

lowest block a2 appears in. Let us first prove that this partial order is indeed

linear by assuming that there are different a1, a2 which first appear in the same

block Vx. Then by Lemma 2.4.7 Vx has no other points. But by Lemma 2.2.6 x

has a lower neighbor z and so Vx must meet Vz, a contradiction to the choice of

x.

It remains to be shown that a separates everything smaller than a from

everything bigger than a. But if the first block a appears in has size 1, this is

clear from Lemma 2.2.8 and if it has size 2 it follows from Lemma 2.2.6 together

with the definition of tree-like decomposition.

Using these two results, we now emulate the proof of [44, Theorem 6].

Proposition 2.4.9. If P has no good 2-separation, then it is 3-connected or a

cycle.

Proof. If P is 3-connected then we are done. So we may assume that there is a

proper 2-separation (A,B) with A ∩ B = {v, w}. Now it suffices to show that

P[A] and P[B] are paths from v to w and by symmetry we will only consider

P[A].

By Corollary 2.4.2 P[A] is 1-connected, so there is a path from v to w in

P[A]. On the other hand any path in P[A] must agree with the order from

Corollary 2.4.8 or its inverse, so we are done.

For the third and final step we now want to prove a statement similar to

Lemma 2.3.4. Just like in graphs and matroids, we cannot quite lift separations

from the parts themselves, so we use the torso instead. We have already shown

in Lemma 0.4.9 that separations of the torso lift to separations of P , but we still

need to show that for 2-separations we can preserve goodness under lifting.
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Lemma 2.4.10. For any good 2-separation (A,B) of the torso of some part Vo,

there is some good 2-separation (E,F ) of P with A∩B = E ∩F and Vo meeting

both E \ F and F \ E.

Proof. If P − (A ∩B) has at least three components, then by Lemma 2.4.4 and

Proposition 2.4.3, arranging the components such that one component meeting

A \B is alone on one side and the other components are on the other side gives

a good 2-separation fulfilling the requirements. So by Lemma 0.4.9 we may

assume that it has two components. Let (C,D) be the unique separation of P
with A ⊆ C and B ⊆ D. By Proposition 2.4.3 (A,B) has a 2-connected side,

say A. Then it suffices to show that C is 2-connected.

By Corollary 2.4.2 it is 1-connected, so by Proposition 2.4.6 it is enough to

show that A∩B is contained in the same block, which will then be the only one.

To do this, we will show that A is 2-connected in P, not just in the torso.

Let Y, Z ⊆ A be sets of size two. Then there are two disjoint Y -Z-paths P,Q

in the torso. Applying Lemma 0.4.10 to P and Q gives Y -Z-paths P ′, Q′. Then

these could meet only in some x outside of Vo, but x is separated from Vo by

some a, b ∈ Vo. But since P ′ and Q′ start and end in Vo they must then each use

both a and b. But then P and Q must also meet in a and b, contradicting the

fact that they are disjoint. Thus P ′ and Q′ are disjoint and so A is 2-connected,

completing the proof.

From this we can now deduce the desired characterization.

Theorem 2.4.11. The torsos of the parts of the 2-block decomposition of P are

3-connected or cycles.

Proof. The torso of any part Vo has no proper 0-separations or 1-separations

since this would contradict the 2-connectivity of P by Lemma 0.4.9. It also has

no good 2-separations by Lemma 2.4.10, since otherwise o would need to orient

the lifted separation. Then it is 3-connected or a cycle by Proposition 2.4.9.

Thus it makes sense to call D(g2(P)) the 2-block decomposition of P.

2.5 Spaces of low tree width

One useful application of the block and 2-block decompositions is that they make

it relatively easy to show that the forbidden minors for tree width one and two

are K3 and K4, respectively, as for graphs.
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Proposition 2.5.1. If P has tree width at least two, it contains a TK3.

Proof. Without loss of generality P is connected. Since the block decomposition

of P has width at least 2, P has a block X of size at least three. If |X| = 3, then

P[X] is a circuit, which yield the desired TK3. Otherwise P[X] contains two

disjoint nontrivial paths P and Q. Applying Theorem 1.3.4 gives two disjoint

paths between P and Q, again inducing a circuit.

Lemma 2.5.2. Any 3-connected path space of size at least four contains a TK4.

Proof. We may assume that the path space P has an infinite path P , since this

is easy for graphs. Let P1 and P2 be disjoint segments of P of size at least three.

By Theorem 1.3.4 there are disjoint paths Q1, Q2, Q3 between P1 and P2. Let x1

be whichever of the endpoints of the Qi on P1 comes between the other two in

the order and let x2 be analogous for P2. Then there are three paths R1, R2, R3

between x1 and x2 disjoint except for their endpoints. At most one of these can

have length two, so we may assume that R1 and R2 have inner points y1 and y2

respectively. After deleting x1 and x2, P is still connected, so there is a path S

from y1 to y2 avoiding x1 and x2. Let a be the last point of S on R1 and let b

be the first point on S after a contained in R2 ∪R3. Let S′ be the segment of S

from a to b. The completion of {R1, R2, R3, S
′} is then a TK4 with branch sets

x1, x2, a, b as branch vertices.

Proposition 2.5.3. If P has tree width at least three, it contains a TK4.

Proof. It suffices to prove this for 2-connected P, since we can then combine

appropriate tree-like decompositions of the blocks of the components of some

general path space.

First we consider the case that there is some torso of D(g2(P)) of size more

than three that is 3-connected. Then it contains a TK4 by Lemma 2.5.2. The

paths making up this TK4 must then come from some paths in P, which will

then form a TK4 in P , since they cannot leave their part via the same separation.

Thus by Theorem 2.4.11 we may assume that every torso of D(g2(P)) of size at

least three is a cycle.

Now we will define for each part o of D(g2(P)) of size more than three a set

of separations So. We start by fixing some x ∈ Vo. For each y ∈ Vo which is

not equal or adjacent to x we define a separation sy of the torso of Vo whose

sides are the two intervals between x and y on the cycle. Let s′y be a separation

obtained by applying Lemma 0.4.9 to sy and let So consist of all the s′y.
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Now let S be the union of all the So defined above and g2(P). We claim

that S is nested. By definition the good separations do not cross any others.

Furthermore each set So is nested since the sy were nested and points of V (P)\Vo
are always added to the side where the corresponding separator is contained.

Finally, So and Sp for o 6= p are nested because Vo is completely contained on

one side of every separation of Sp and vice versa.

Then D(S) is a tree-like decomposition of P of width at most two, completing

the proof.

This suggests the following conjecture.

Conjecture 2.5.4. If P has tree width at least k ∈ N, then there is a finite

graph G of tree width k such that P contains an IG.

If true, this would show that (for finite tree width) the finite minors of P
determine the tree width. The main theorem of the rest of this chapter, which

is a version of the grid theorem, will at least imply a qualitative version of this.

More precisely, we obtain that large enough tree width forces a minor of some

fixed tree width k ∈ N.

For this it will be useful to transform high tree width into something more

tangible. While for the particular cases above we were already able to get specific

minors, in this case we find a k-connected set, that is a set X such that for

Y,Z ⊆ X with |Y | = |Z| ≤ k there exist |Y | disjoint Y -Z-paths, which will later

be useful to find a minor of high tree width. While the proof of the corresponding

statement for graphs uses induction, it can be adapted into our setting by using

limit separations and Zorn’s Lemma. A tree set has partial width k if all nonleaf

parts have size at most k + 1.

Proposition 2.5.5. If P has no k-connected set of size at least k, then P has

tree width at most 2k − 2.

Proof. Let X be the set of all tree sets of ≤ k-separations of P of partial width

2k − 2 ordered by inclusion. This defines a partial order and since the union

of any chain is again a tree set with partial width 2k − 2, by Zorn’s Lemma X
has a maximal element T . Clearly, T 6= ∅. Furthermore T is closed under limits

since adding any limit separation preserves nestedness and does not increase

partial width.

Assume for a contradiction that T has a part D of size greater than 2k − 1.

Then T contains a separation (C,D) for some set C. If |C ∩D| < k, adding the
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≤ m-separation (C + v,D) and its inverse for some v ∈ D \C to T again gives a

tree set of partial width 2k − 2, contradicting its maximality.

Otherwise C ∩D is not k-connected, let Y and Z witness this. Theorem 1.3.4

now gives us a set S of size less than |Y | separating Y and Z. Write X1 =

(C ∩D) \ Z ∪ S and X2 = (C ∩D) \ Y ∪ S. Every component K of D \ (C ∪ S)

is already a component of D \Xi for some i ∈ {1, 2}; let sK be the separation

(Kc,K ∪Xi) for such an i and let T ′ be obtained from T by adding sK and its

inverse for all these K.

Since the sK are ≤ k- separations, to show that T ′ ∈ X it is enough to show

that part corresponding to the orientation containing all the s∗K has size at most

2k − 1. We calculate |X1 ∪X2| ≤ |(C ∩D)|+ |S| ≤ k + (k − 1) = 2k − 1. Thus

T ′ ∈ X , contradicting the maximality of T .

2.6 Necklaces

The following section is heavily based on [25]. In that article Geelen and Joeris

use necklaces to prove a generalization of the grid theorem. While we only need

the basic grid theorem, their approach seems to be the easiest to adapt to our

setting. As we will see in the following, many of the proofs can be adapted almost

verbatim. For completeness we will write out all the proofs even where they

are identical, but it may be helpful to refer to the original article for additional

motivation.

We fix a connected path space P . Given natural numbers t, s, l, n with t ≥ s
a (t, s, l, n)-necklace is a pair ((Bi)i∈Zn , Z) satisfying the following conditions:

1. The Bi are connected path spaces contained in P such that V (Bi) avoids

Z for all i ∈ Zn.

2. Z is a subset of V (P) of size l

3. V (Bi) ∪ Z is finitary for all i ∈ Zn

4. For all i, j ∈ Zn the sets Bi and Bj meet only if i− j ∈ {−1, 0, 1}

5. For each i ∈ Zn the sets Bi and Bi+1 meet in exactly t points if i 6= n and

in exactly s points if i = n

6. If i ∈ {2, . . . , n− 1} there are t disjoint Bi−1 ∩Bi-Bi ∩Bi+1-paths

7. If i ∈ {1, n} there are s disjoint Bi−1 ∩Bi-Bi ∩Bi+1-paths
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8. Given z ∈ Z and i ∈ Zn there is a path from Bi to z contained in Bi + z.

A weak (t, s, l, n)-necklace is a a pair ((Bi)i∈Zn , Z) satisfying all these conditions

but the fourth. All definitions we make for necklaces are also intended for weak

necklaces. For the sake of conciseness, we adopt the convention that when a

necklace is called N its beads are called Bi and its set of hubs Z and when it is

called N with a superscript we use these names with the same superscript added.

We call the sets Bi beads of N and the elements of Z its hubs. We write V (N)

for the union of all beads and Z. We say that x is an inner point of Bi if x ∈ Bi
and x /∈ Bj for any j 6= i. The rank of N is t+ s+ l and n is called its length.

The main difference between our definition of necklaces and the one in [25]

is that while the beads in their definition are disjoint and connected by sets of

edges of specified sizes, we instead have the beads meet in sets of those sizes.

This is necessary because path spaces need not have any edges.

A necklace N is supported by a set U if every bead of N contains a point

of U and supported by a necklace N ′ if every bead of N contains a bead of N ′.

We call N nontrivial if t ≥ 1. Call a partition of Zn into intervals (I1, . . . , Im) a

good partition (of Zn) if 1 ∈ I1 and n ∈ Im. In particular, we write P (i1, . . . , ik)

for the good partition ([1, i1 − 1], [i1, i2 − 1], . . . , [ik−1, ik − 1], [ik, n]). Given a

good partition P = (I1, . . . , Im) of Zn , the contraction of N to P is the necklace

N ′ with Z ′ = Z and with each bead B′i consisting of the union of all those Bj

with j ∈ Ii. Note that reversing the order of a necklace again gives a necklace.

A sequence y1, . . . , yn tracks N if yi is an inner point of Bi.

Lemma 2.6.1. Let m ≥ k � n be natural numbers, let N be a (t, s, l,m)-

necklace and let Y be a sequence of points in different beads of N of length k.

Then there exist a (t, s, l, n)-necklace N ′ supported by N and a subsequence of Y

tracking N ′.

Proof. Without loss of generality each yi is an inner point of a bead, otherwise

we can contract the necklace and take a subsequence to make this true. By

Erdos-Szekeres we can now find a subsequence which occurs in the same order

in N , reversing N if necessary. Now N ′ can be obtained by contracting N to

track this subsequence.

Before we continue, let us quickly review the structure of the argument from

[25]. Given a highly connected set U , we want to find a necklace of sufficient

rank and length. To start with, they construct a rank 1 necklace supported by

U . During the rest of the construction we always maintain the property of being
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supported by U . Since later arguments will only work for nontrivial necklaces,

they iterate this to find either a nontrivial necklace or a necklace which is already

as desired.

Once they have such a starting necklace, to improve it they first analyze

paths connecting nonadjacent beads, which they call long jumps. They show that

one can contract down our necklace such that there are either many or no such

jumps. In the first case, they use such paths to increase the rank of the necklace,

so one may assume that there are none. Now they use the high connectivity of

U to find more disjoint paths through the necklace than its rank provides (after

deleting the hubs) and using the structure imposed by the absence of long jumps,

these can then be used to construct a necklace of higher rank. The desired result

then follows by induction.

When generalizing this to path spaces, the first difficulty arises in the induc-

tion start ([25, Lemma 5.1]), which is there proven via induction on the number

of edges. We will instead deduce it from Proposition 1.2.1.

Lemma 2.6.2. Let m� n be natural numbers and P a connected path space.

If N is a (0, 0, 0,m)-necklace, then P contains either a (0, 0, 1, n)-necklace or a

(1, 0, 0, n)-necklace supported by N .

Proof. Let s and t be natural numbers with m � s � t � n and let B =⋃
1≤i≤nBi. We start by inductively defining sets of paths Pi for 1 ≤ i ≤ m

starting with P1 = ∅. At each step i we take Pi to be a C-D-path, where C

is the component of B ∪
⋃
Qi−1 containing B1 and D is the union of all other

components. If Pi starts in a bead meeting
⋃
Pi−1 then we add a

⋃
Pi−1-Pi-path

Qi to its beginning, trivial if possible. Now Pi is obtained by adding Pi to Pi−1.

If t elements of Pm meet one bead Bk, then let T be the subspace of
⋃
Pm

in Bk and let U be the set of those points of Bk which are endvertices of paths

Ql. Applying Proposition 1.2.1 to T and U gives either a n-comb with teeth

in U or a subdivided n-star with leaves in U . In the first case we obtain a

(1, 0, 0, n)-necklace by having each bead consist of a part of the comb’s spine,

a segment of the relevant Pi starting at the spine and the bead reached by Pi.

In the second case we obtain a (0, 0, 1, d)-necklace with the center vertex z of

the star in Z and each bead consisting of the corresponding bead of N together

with its path to z excepting z.

So we may assume that each bead meets less than t elements of Pm. Let U

be the set of all endpoints of Pi. Applying Proposition 1.2.1 to Pm and U gives

either an s-comb with teeth in U or a subdivided s-star with leaves in U . By
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our assumption we may now find an n-comb with teeth in U or a subdivided

n-star with leaves in U in which each vertex of U is contained in a different bead.

Then we obtain one of the required necklaces as before.

The construction of a nontrivial necklace in [25, Lemma 5.2] then requires

no significant changes.

Lemma 2.6.3. Let m, n and θ be natural numbers with m � n and m � θ

and let U ⊆ V (P) be a θ-connected set of size m. Then P contains a (0, 0, θ, n)-

necklace supported by U or a (1, 0, 0, n)-necklace every bead of which contains at

least θ points of U .

Proof. Let m0, . . . ,mθ be natural numbers with m = m0 � · · · � mθ � n.

Then P contains a (0, 0, 0,m0)-necklace, we choose k maximal such that P
contains a (0, 0, k,mk)-necklace supported by U . If k = θ, we are done.

Otherwise let N be a (0, 0, k,mk)-necklace supported by U and Z its set

of hubs. Since U is θ-connected, all but θ vertices of U are contained in a

single component C of P − Z. In particular, by Lemma 2.6.2 C contains a

(0, 0, 1,mk+1)-necklace or a (1, 0, 0,mk+1)-necklace. In the first case, adding Z

to this necklace gives a contradiction to the maximality of k. In the second

case, contracting N to a good partition with all intervals long enough gives a

(1, 0, 0, n)-necklace such that each bead contains at least θ points of U .

The arguments about long jumps in [25, Section 6] can also be emulated with

little trouble. An (i, j)-jump for i, j ∈ Zn in a necklace N is a path starting in

Bi and ending in Bj with no inner vertex in V (N). A long jump is an (i, j)-jump

with i− j /∈ {−1, 0, 1}. A necklace is called long-jump-free if it has no long jump

and jumpy if it has a (1, i)-jump for every index i.

Lemma 2.6.4. Let m� n be natural numbers and N a nontrivial (t, s, l,m)-

necklace. Then P has a (t, s, l, n)-necklace supported by N which is either

long-jump-free or jumpy.

Proof. Let n′ be a natural number with m � n′ � n and let m0, . . . ,mn′ be

natural numbers with m � m0 � · · · � mn′ � n. Define S to be the set of

all (i, j) with 1 ≤ i ≤ j ≤ m such that N has an (i, j)-jump. Given S′ ⊆ S we

write I(S′) = {x ∈ [1,m];x ∈ [i, j]∀(i, j) ∈ S′}). Let S′ ⊆ S be maximal such

that |I(S′)| ≥ |m|S′||. We write S′ = {(a1, b1), . . . , (ak, bk)} and I(S′) = [a, b].

If k < n′, we obtain N ′ by contracting N to a good partition with each

interval containing at least mk+1 points of I(S′). Then any long jump in N ′
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would correspond to a pair (i, j) with |I(S′ + (i, j))| ≥ mk+1, contradicting the

maximality of S′.

Now we may assume k = n′. Then without loss of generality we have

b1 > · · · > bn. Let N ′ be obtained by contracting N to P (b1, . . . , bn). Then the

pairs (ai, bi) ∈ S witness that N ′ is jumpy.

Lemma 2.6.5. Let m� n be natural numbers and let N be a nontrivial jumpy

(t, s, l,m)-necklace with s ≥ 1. Then P contains a (t+ 1, s− 1, l, n)-necklace or

a (t, s− 1, l + 1, n)-necklace.

Proof. Let Pi be the (1, i)-jump for all 3 ≤ i ≤ m− 1, let xi be its endvertex in

B1 and yi its endvertex in Bi. Without loss of generality yi is an inner vertex

of Bi, otherwise contract accordingly. We may also assume that Pi and Pj

never meet outside B1 for different 1 ≤ i, j ≤ m − 1, otherwise we extend B1

appropriately.

By definition of necklace there is a set of s disjoint Bm-B1-paths in Bi. Now

we want to extend these paths into disjoint connected, finitary subsets T1, . . . , Ts

of V (Bi) such that all the xi are contained in their union. We do this recursively:

if T1, . . . , Tn have been constructed so far and some xk is not yet contained in

any of them, we add a
⋃

1≤i≤n Ti-{xk}-path to whichever Ti it starts in.

Without loss of generality we have |I| � n for the set I = {3 ≤ i ≤ m−1;xi ∈
Ts}. Obtain T from Ts by adding all Pi with i ∈ I.

By Lemma 2.6.3 T contains a necklace N1 of rank 1 with length n1 � n.

Applying Lemma 2.6.1 gives a necklace N2 of rank 1 with length n2 � n such that

some subsequence yα1
, . . . yαn of y3, . . . , ym−1 tracks N2. Let N3 be obtained

from N by contracting to P (α1, . . . , αn) and let N4 be obtained from N3 by

replacing N3
1 with

⋃
1≤i<s Ti ∪

⋃
2≤j<α1

Bj . Then N is a (t, s− 1, l, n)-necklace.

We observe that Z2 ∩ V (N4) = ∅, Z4 ∩ V (N2) = ∅ and further that B2
i ∩B4

j

is {yαi} if i = j and empty otherwise. Let N5 be the necklace with beads

B5
i = B2

i ∪B4
i and hubs Z5 = Z2 ∪ Z4. We will prove that this is the required

necklace. The first, second, third, fifth and eighth conditions are immediate

with the observations above. For the fourth condition note that yαi is an inner

point of B2
i and of B4

i . To prove the sixth condition, it suffices to show that

yαi does not separate B2
i−1 and B2

i+1 in B2
i if these sets meet B2

i at all. This,

however, follows from the fact that yαi is not an inner point of any path in T .

The seventh condition is witnessed by T1, . . . , Ts−1.
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Corollary 2.6.6. Let m � n be natural numbers and let N be a nontrivial

necklace of rank r and length m. Then there exists a nontrivial necklace of length

n supported by N which either has rank r+1 or has rank r and is long-jump-free.

Proof. By Lemma 2.6.4 we may inductively apply Lemma 2.6.5 until the resulting

necklace is either long-jump-free or a jumpy (t′, 0, l′, n)-necklace N∗. In the first

case, we are done. In the second case, N∗ can be made into a (t′, 1, l′, n)-necklace,

which then has rank higher than N , by distributing the points of a (1, n)-jump

appropriately.

[25, Lemma 7.1] is an easy consequence of Menger’s theorem, for graphs as

for path spaces.

Lemma 2.6.7. Let k be a natural number, Q1 and Q2 be sets of k disjoint paths

and C a set of connected path spaces which has k disjoint elements such that

every Q ∈ Q1 ∪Q2 meets every C ∈ C. Then there are k disjoint paths from the

initial vertices of paths in Q1 to the final vertices of paths in Q2.

Proof. Without loss of generality C consists of k disjoint elements, otherwise

reduce it accordingly. Let A be the set of initial vertices of paths in Q1 and B

the set of final vertices of paths in Q2. By Theorem 1.3.4 it suffices to show that

no set X of less than k vertices can separate A and B. But X will always miss

some Q1 ∈ Q1, some Q2 ∈ Q2 and some C ∈ C. The union of these contains an

A-B-path.

A necklace N of length n is called linear if it is long-jump-free and has no

(1, n)-jump. In the proof of [25, Lemma 7.2] we encounter another obstacle: we

want to find a set of paths which traverses the beads in an orderly manner. To

accomplish this, they choose these paths within a minimal subgraph. We cannot

proceed in this way, but we can still make sure the paths do not behave too

badly via inductive applications of Lemma 2.6.7.

Lemma 2.6.8. Let m,n, a, b, s, t be natural numbers with m � n, a � s,

b − a � n and m − b � s and let N be a linear weak (0, 0, l,m)-necklace.

Furthermore let X ⊆ B1 and Y ⊆ Bm. Suppose P − Z contains s disjoint X-

Ba-paths, s disjoint Bb-Y -paths and t disjoint B1-Bm-paths. Then G contains

a (t, 0, l, n)-necklace N ′ supported by N with Z ′ = Z such that B′1 contains s

disjoint X-B′1 ∩B′2-paths and B′n contains s disjoint Y -B′n−1 ∩B′n-paths.

Proof. The case t ≤ 1 is trivial, so we may assume t ≥ 2. Let P ′ = P − Z.
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Let Q1 be a set of s disjoint X-Ba-paths in P ′, Q2 be a set of s disjoint

Bb-Y -paths in P ′ and Q∗ a set of t disjoint B1-Bm-paths in P ′. Since N is

linear we may assume that Q1 does not meet any Bi with i > a and Q2 does

not meet any Bi with i < b. Let Q∗1 be a subset of Q∗ of size s and let Q∗2 be its

complement. Let H be the union of all paths in Q1, Q2 and Q∗1 together with

the beads B1, . . . , Ba and Bb, . . . , Bm.

Since every path of Q1 and Q∗1 meets every Bi for i ≤ a, by Lemma 2.6.7

there exists a set Q′ of s disjoint X-Bm-paths Q′ in H. Because N is linear,

every path of Q′ meets every Bi for i ≥ b. Since the same is true for every path

in Q2, by Lemma 2.6.7 there exists a set Q′′ of s disjoint X-Y -paths in H. Let

a′ = a+ 2 and b′ = b− 2. Then the linearity of N implies that each path of Q∗2
contains a Ba′-Bb′-path avoiding H. Let Q be obtained by adding these paths

to Q′′. Let X ′ be the set of endvertices of paths of Q in X ∪Ba′ and Y ′ its set

of endvertices in Y ∪Bb′ . Then Q is a set of t disjoint X ′-Y ′-paths in P ′.
Given an X ′-Y ′-path P we write Li(P ) for the segment of P up to its first

point in Bi and Ri(P ) for the segment of P from this point.

Let c be a natural number with b−a� c� t. Fix a function α : {1, . . . , n} →
N with α(1) = a′, α(n) = b′ and α(i)− α(i− 1)� c for all 2 ≤ i ≤ n. We will

recursively construct a set Q′ of t disjoint X ′-Y ′-paths such that Rα(i)(P ) ∩
Bα(i−1) = ∅ for every P ∈ Q′ and 2 ≤ i ≤ n. We start the construction with

Q1 = Q. Now we describe how to construct Qi for 2 ≤ i ≤ n assuming Qi−1 is

already defined. Let Q1 consist of Li(P ) for every P in Qi−1. Let Q2 consist of

final segments of each P in Qi−1 starting at its last point in Bα(i)−c. Applying

Lemma 2.6.7 to Q1, Q2 and the beads from Bα(i)−c to Bi (in the path space

defined by all these) gives a set of t disjoint X ′-Y ′-paths, which we call Qi.
Every path P of Qi satisfies Rα(j)(P ) ∩Bα(j−1) = ∅ for j ≤ i. Indeed, for j < i

this is by induction, since the beads from Bα(i)−c to Bi do not meet those before

Bα(j) and for j = i this is implied by the construction, since α(i)− c� α(i− 1).

Thus Q′ = Qn is as desired.

As a corollary we get Rα(i)(P ) ∩ Bα(j) = ∅ for P ∈ Q′ and 1 ≤ j < i ≤ n,

since α(j) ≤ α(i− 1).

For 1 ≤ i ≤ n define Li = Lα(i)[Q′] and Ri similarly. Now we set B′1 =

Bα(1) ∪ L2, B′n = Bα(n) ∪ Rn and B′i = Bα(i) ∪ (Li+1 ∩ Ri) for 2 ≤ i ≤ n − 1

and claim that the necklace N ′ with the B′i as beads and Z ′ = Z as its set of

hubs is as required.

Indeed, the fourth and fifth property follow from the definition of Li and the

claim proven above, the sixth condition as well as the extra conditions required
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in the statement are witnessed by segments of the Pi and all other conditions

are immediate.

Let N be a necklace of length n and let 1 ≤ c ≤ d ≤ n. Then a [c, d]-

separation (C,D) of P is one with C ∩D = Bc ∪ Bd ∪ Z, Bi ⊂ C for i ∈ [c, d]

and Bi ⊂ D for i ∈ [1, c] ∪ [d, n]. Note that, if N is long-jump-free it has such a

separation for all c, d as above. [25, Lemma 7.3] once again requires no major

changes.

Lemma 2.6.9. Let m � n be natural numbers and let N be a nontrivial

long-jump-free necklace of rank r and length m. If there exist r + 1 disjoint

Ba-Bb-paths for all a, b ∈ Zn, then there exists a nontrivial necklace of rank r+ 1

and length n supported by N .

Proof. Let N be a (t, s, l,m)-necklace as in the statement and let c and d be

natural numbers with c� s, d− c� s+ n and m− d� s+ n. By assumption

there are r + 1 disjoint Bc-Bd-paths, in particular there is a set Q of t+ s+ 1

such paths avoiding Z. Let (C,D) be a [c, d]-separation of N . Then each Q ∈ Q
is contained in either C or D, let Q1 be the set of those contained in C and Q2

the set of those contained in D.

First we consider the case where Q1 has size greater than t. Let N∗ be the

linear weak necklace of rank l with bead sequence Bc, . . . , Bd and hub set Z.

Furthermore let X = Bc−1 ∩ Bc, Y = Bd ∩ Bd+1. Applying Lemma 2.6.8 to

these gives a (t+ 1, 0, l, n)-necklace in C supported by N∗ and thus by N with

Z ′ = Z such that B′1 contains t disjoint X-B′1 ∩ B′n-paths and B′n contains t

disjoint Y -B′n−1 ∩B′n-paths. By adding s disjoint B1 ∩Bn-X-paths through N

completely contained in D to B′1 and proceeding analogously for B′n we can turn

N ′ into a (t+ 1, s, l, n)-necklace supported by N as required.

Otherwise Q2 has size greater than s. We may assume that s < t, otherwise

we are in the first case after reindexing N . Then let N∗ be the linear weak

necklace of rank l with bead sequence Bd, . . . , Bm, B1, . . . , Bc, and hub set Z.

Furthermore let X = Bd−1 ∩Bd and Y = Bc ∩Bc+1. Applying Lemma 2.6.8 to

these gives a (s+1, 0, l, 2)-necklace supported by N∗ and thus by N with Z ′ = Z

such that B′1 contains s+1 disjoint X-B′1∩B′2-paths and B′2 contains s+1 disjoint

Y -B′2∩B′1-paths. Then the necklace with bead sequence B′1, Bc+1, . . . , Bd−1, B
′′
2

and hub set Z can be turned into a (t, s+ 1, l, n)-necklace supported by N by

contraction.
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Since [25, Theorem 7.4] only combines all the prior lemmas, our proof can

do the same.

Theorem 2.6.10. Let θ, m and n be natural numbers with m� n and m� θ.

If P has a θ-connected set U of size m, then P contains a necklace of rank θ

and length n supported by U .

Proof. Let g : N → N be a function with g(i) � g(i + 1) for 1 ≤ i ≤ θ − 1,

g(i) = n for i ≥ θ and m � g(1). By Lemma 2.6.3 we may assume that P
contains a (1, 0, 0, g(1))-necklace N such that every bead contains at least θ

elements of U , otherwise we are done.

We will now prove the theorem by constructing for 1 ≤ i ≤ θ nontrivial

necklaces N i of rank i and length g(i) supported by N . Clearly N1 = N works,

so suppose i > 1 and that Ni−1 is already defined. By Corollary 2.6.6 we may

assume that P contains a nontrivial long-jump-free necklace N∗ of rank i− 1

and length m′ � g(i), otherwise we have already found our required necklace

N i. Since every bead of N∗ contains θ vertices of U , there are θ disjoint paths

between any two beads of N∗. Lemma 2.6.9 now gives us the required necklace

N i.

2.7 Grid theorem

While in [25] Theorem 2.6.10 is used to deduce a generalization of the grid

theorem, for our purposes it is enough to deduce the usual one.

Theorem 2.7.1. Let m� k be natural numbers and P be a path space of tree

width m. Then P has has an Rk,k-minor.

Proof. Let q be a natural number with m � q � k. By Proposition 2.5.5 P
has a q-connected set of size at least q. Let r and n be a natural numbers with

q � n� r � k. By Theorem 2.6.10 there exists a (t, s, l, n)-necklace N of rank

r.

If l � k, then we can even embed a TRk,k with branch vertices only in Z

and each path using its own bead. Since s ≤ t, we may thus assume t� k.

For every 2 ≤ i ≤ n−1 we fix t disjoint Bi−1-Bi+1-paths in Bi and enumerate

them as P i1, . . . , P
i
t in such a way that P i−1

x always meets P ix and thus the P ix

for all the i form a path Px together. For every such i let Ti be the graph on

{1, . . . , k} with an edge between j and j′ if there is a P ij -P
i
j′-path in Bi which

does not meet any other P ij∗ . If there are k′ � k indices i such that Ti contains

59



a path of length k, then there are k′′ � k such indices for which these graphs

contain the same path Q of length k and such that their corresponding beads

are disjoint. We may partition this set of indices into sets S1, . . . , Sk of size at

least k, each associated with a different edge of Q, by putting every k-th index

in order into each of them. When constructing our minor the i-th row of the grid

will then correspond to Pl, where l is the i-th vertex of Q. When constructing

the IRk,k we thus take the branch sets as suitable segments of the corresponding

Pl sets and embed a path witnessing the edge of Q corresponding to Si into

every bead with an index in Si.

Thus we may assume that there are k′ � t indices i for which Ti contains

a vertex of degree at least k. Then there are some k′′ � k such indices for

which this is the same vertex r, the neighborhood contains the same k vertices

j1, . . . , jk and the beads associated to these indices are disjoint. We can embed

an IRk,k by taking appropriate segments of the Pji for 1 ≤ i ≤ k as branch

sets for the vertices of the i-th row and obtaining the disjoint paths, between

segments of Pjy and Pjz , say, by taking a path witnessing the edge from jy to r

in one of the beads corresponding to our k′′ indices and a path witnessing the

edge from r to jz in the next of these beads and connecting them via a segment

of Pr.

As for graphs we immediately get another helpful result.

Corollary 2.7.2. Let G be a finite graph. Then the class of path spaces with no

IG has bounded tree width if and only if G is planar.

Furthermore we now obtain the qualitative version of Conjecture 2.5.4

promised above.

Corollary 2.7.3. Let l� k be a natural number and let P be a path space such

that every finite minor of P has tree width at most k. Then P has tree width at

most l.

2.8 Erdős-Pósa property

In this section we apply the grid theorem once more, following [46, Section 8] to

obtain a result on the Erdős-Pósa property.

We say that a path space Q has the EP if for natural numbers k and l with

l� k any path space P contains k disjoint IQ or has a set of l points meeting

every IQ.
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The intersection graph of a family (Xi)i∈I of sets is the graph I with an edge

between i 6= j if Xi and Xj meet.

Let us first give an outline of the proof for graphs. They start with a large

graph G which does not contain k disjoint embeddings of some planar H. By the

grid theorem G then has bounded tree width and they take a tree decomposition,

say with tree T , witnessing this. For each component Ci of H, they then look at

the set Ai, which consists of the subtree of all parts meeting some embedding of

Ci for every embedding of Ci. They then make use of the fact that intersection

graphs of subtrees are chordal and prove their main lemma ([46, (8.5)]) in the

language of chordal graphs.

Lemma 2.8.1. Let G be a chordal graph and let Z1, . . . , Zm be disjoint inde-

pendent sets of G each of size k. Let x1, . . . , xm be nonnegative integers with

x1 + · · ·+ xm = k. Then there exists an independent subset X of V (G) which

for every 1 ≤ i ≤ m satisfies |X ∩ Zi| = xi.

Translated back to subtrees this means that if every Ai had many disjoint

elements, we could find a set of k elements from each Ai which are all disjoint.

This would then give k disjoint embeddings of H, a contradiction. So one may

assume that some Ai has a bounded number of elements and thus by an easy

fact for trees a bounded set of vertices of T meets every element. The union

of all the corresponding parts is then their desired bounded set meeting every

embedding of Ci and thus H.

When translating this proof to our setting, the obvious problem is that

instead of decomposition trees we have tree-like spaces and the results they cite

are not known for these. Thus we will have to check them ourselves.

Given a tree-like decomposition D = (T, (Vt)t∈V (T )) of P and a subset

X ⊆ V (P) we write D(X) for the subgraph-like space of T induced by those

parts meeting X and call it the trace of X in D. First we should check that the

traces we need form subtree-like spaces.

Lemma 2.8.2. Let D be a tree-like decomposition of P and X ⊆ V (P) connected

and simple. Then D(X) is a subtree-like space.

Proof. Let D = (T, (Vt)t∈V (T )). Clearly D(X) is connected. Since T is compact,

it is enough to show that D(X) is closed. We may assume without loss of

generality that X is a path, since a finite union of closed sets is again closed.

Thus we need to show that for t ∈ T \D(X) there is an open neighborhood of

t not meeting D(X). This is easy if t is an inner point of an edge, so we may
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assume that t is a vertex. Now it suffices to show that some edge e separates t

from D(X), since then adding an open interval of e to the component of T − e
containing t is a neighborhood as desired.

Let L be some pseudo-line in T from some s ∈ D(X) to t. We may assume

that there is a cofinal sequence of points of D(X) before t, otherwise we can

easily find an edge as desired. Then we can find a cofinal subsequence (dα)α<β of

this sequence and for each dα a choice of one xα ∈ Vdα ∩X such that (xα)α<β is

ascending or descending. Let x ∈ X be the corresponding supremum or infimum

respectively (with respect to X). To complete the proof we will show that this

implies that x ∈ Vt, contradicting t /∈ D(X). Let (A,B) ∈ t. Then it is either

also contained in a cofinal subsequence of the dα and thus B must contain a

cofinal subsequence of the xα. By Lemma 0.4.4 we must then also have x ∈ B
and since (A,B) was arbitrary, x ∈ Vt.

We next prove that the relevant intersection graphs are chordal.

Lemma 2.8.3. Let T be a tree-like space. The intersection graph of a finite

family of subtree-like spaces of T is chordal.

Proof. Assume otherwise and let T1, . . . , Tn represent an induced cycle of length

at least four. Since T2 meets both T1 and T3, but these do not meet each other,

there is an edge e of T2 separating T1 and T3. Since every Tk for 4 ≤ k ≤ n

meets Tk−1, but not T2 by induction every such Tk is contained in the component

of T − e containing T3. In particular Tn does not meet T1 contradicting our

assumption.

Finally, to show that if there are no k disjoint subtree-like spaces contained

in a set, we can find less than k vertices meeting them all, we need a bit of

preparation. First note that the intersection of any two subtree-like spaces is

either empty or again a subtree-like space. As for graphs (see for example [14]),

it is useful to first show that any family with nonempty pairwise intersections

has nonempty intersection.

Lemma 2.8.4. Let T be a tree-like space and T a set of subtree-like spaces

which pairwise meet. Then T has nonempty intersection.

Proof. Since T is compact and the T are closed in T , it is enough to check that

the intersection of any finite subset of T is nonempty. Indeed, we will prove this

by induction for any finite set X of subtree-like spaces of T which pairwise meet.
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If X has at most two elements, this is trivial, so we first consider the case where

X has three elements X1, X2, X3. Assume for a contradiction that X1 ∩X2 ∩X3

is empty. Then there exists some edge e separating the subtree-like spaces

X1 ∩ X2 and X3. Without loss of generality X1 does not contain e. But by

assumption it must meet both components of T − e, a contradiction.

Now assume X has elements X1, . . . , Xk for k ≥ 4. Let X ′i = Xi ∩Xk for

1 ≤ i ≤ k − 1. The X ′i then pairwise meet by the induction hypothesis for 3. By

the induction hypothesis for k − 1, we obtain the desired result.

For the next proof we require the fact that complements of chordal graphs

are perfect, which is a consequence of the weak perfect graph theorem of [39].

Lemma 2.8.5. Let T be a tree-like space and T a set of subtree-like spaces.

Then there are k disjoint elements of T or a set of less than k vertices meeting

every element of T .

Proof. Let G be the complement of the intersection graph of T . If G can be

colored with c < k colors, this gives a decomposition of T into classes T1, . . . , Tc
such that any two elements of each class meet. By Lemma 2.8.4 there are then

x1, . . . , xc with xi in the intersection of Ti. These c < k points then meet every

element of T .

Thus we may assume that G cannot be colored by less than k colors. By

compactness, G then has a finite subgraph H which requires k colors. But

by Lemma 2.8.3 H is a complement of a chordal graph and thus perfect. In

particular, H has a clique of size k. The k subtree-like spaces representing this

clique are then disjoint, as required.

Now we can follow the outline given in the beginning.

Theorem 2.8.6. Let G be a finite planar graph. Then IG has the EP.

Proof. W.l.o.g Let C1, . . . , Cm be the components of G. Let l� n� k +m be

natural numbers and let P be a path space. We need to show that P contains k

disjoint IG or l points meeting all IG. We may assume that P has a tree-like

decomposition D of width at most m, since otherwise by Corollary 2.7.2 it would

contain k disjoint IG. Let Ai be the set of all ICi in G.

By Lemmas 2.8.2 and 2.8.5 for each 1 ≤ i ≤ m there are either Ai1, . . . A
i
n ∈ Ai

with disjoint traces or a set Xi of size less than n meeting all traces of elements

of Ai.
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If for some i we get the second case, let Y be the union of all the parts

corresponding to Xi. Then Y meets every ICi in P and thus also every IG.

Since furthermore |Y | ≤ l, we are done.

If for every i we get the first case, then let H be the intersection graph of the

(T (Aij))1≤i≤m,1≤j≤n. By Lemma 2.8.3 H is chordal, so by Lemma 2.8.1 there

exists an independent set I which contains k elements corresponding to traces

of elements of Ai for every 1 ≤ i ≤ k. Since sets with disjoint traces are disjoint,

this implies that there are disjoint (Bij)1≤i≤m,1≤j≤k with Bij an ICi for all i, j.

Combining these gives k disjoint IG, as desired.

2.9 Outlook

Having provided decompositions along separations of order one and of order

two, a decomposition along 3-separations would be a natural next step. For

graphs [29] provides such a decomposition, which seems like it could plausibly

be translated to path spaces. This could also help resolve Conjecture 2.5.4 for

k = 4. However, it seems less clear how one could resolve the conjecture for

higher values of k or even in the general case.

For graphs, the theory of tree decompositions is strongly linked to the theory

of well-quasi orderings. Unfortunately this tool seems unhelpful for path spaces.

Because it is possible to construct a pseudo-line from any linear order, not even

the class of paths is well-quasi ordered by the minor relation.
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Chapter 3

Limit-closed separation

systems

3.1 Introduction

Tangles were first introduced by Robertson and Seymour in [47] as a witness

for high-tree width. One of the important ingredients in their graph minor

project was a tangle-tree theorem, that is a theorem giving a tree decomposition

separating all the tangles of a graph.

As it turns out these features of tangles, both being an obstruction and

admitting a tangle-tree theorem, can formulated more abstractly. This is the

core of the theory of abstract separation systems formulated in [13]. In this

setting tangle-tree theorems are now usually formulated more generally in terms

of profiles, as seen for instance in [15]. While that article gives a very general

such theorem for finite separation systems, for infinite separation systems there

is no general tangle-tree theorem.

When searching for a tangle-tree theorem for path spaces, we must thus look

to some special property of the set of separations of a path space. Unfortunately

this set is neither the inverse limit of finite minors, as would be needed for the

tools of [17], nor does every separation cross only finitely many others as would

be needed for [20].

One property which the separation system obtained from a path space does

have, however, is closure under limits. For separation systems with this property

it is possible to use maximal separations as in the finite case.
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In Section 3.2 we use this to find a tree set distinguishing profiles of an

abstract separation system using a two step process: first we consider a set of

equivalence classes of separations and find a tree set of such equivalence classes

and then choose representatives for these classes. Section 3.3 then applies this

result inductively to get a full tree of tangles for a separation system with an

order function.

To further understand these limit-closed separation systems we want to

translate the theory of flowers to this setting. First introduced in [42] specifically

for the case of 3-separations of matroids, flowers give a way to further organize

the structure of crossing separations. They were then generalized to arbitrary

orders in [3] and [10] then related them to tangles and gave a tangle-tree theorem,

in which all the nodes not containing tangles would display flowers.

In Section 3.4 we give our definition of flowers. Since our separations are not

bipartitions and we need to allow for infinite index sets our definition ends up

more complex than the ones from the literature. We also define a weakening,

pseudoflowers, which will be necessary as a limit object.

Section 3.5 shows that if there is a separation which interacts badly with a

pseudoflower, we can extend the pseudoflower to remedy this. Given a chain

of pseudoflowers Section 3.6 then constructs a limit pseudoflower. Our starting

point for this is an inverse limit, which we then carefully repair to make it a

pseudoflower. The existence of these limits then implies the existence of maximal

pseudoflowers. Section 3.7 gives a few short notes on how these maximal

pseudoflowers interact with the tree sets constructed in the beginning of the

chapter.

3.2 Equivalence classes

Given a separation system S in some universe, a profile (as defined for example

in [15]) is a consistent orientation P of S such that for s, t ∈ P we do not have

(r ∨ s)∗ ∈ P .

Let S be a separation system in some universe U and P a set of regular

profiles of S. Then we define a map fP : S → 2P via fP(s) = {P ∈ P|s∗ ∈ P}.
We consider 2P as a separation system with inclusion as the order.

Lemma 3.2.1. The map fP is a homomorphism of separation systems which

respects ∨ and ∧.
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Proof. Since profiles orient every separation, fP respects the involution. Fur-

thermore if s ≤ t and s∗ ∈ P for some profile P , then we cannot have t ∈ P by

consistency, so fP(s) ≤ fP(t). Now it suffices to prove that for s, t ∈ S with

s∨ t ∈ S an arbitrary P ∈ P contains s∨ t if and only if it contains both s and t.

The forward implication follows by consistency, the backwards one by the profile

property.

The fibers of fP are exactly the equivalence classes obtained by regarding

two separations as equivalent if they are oriented the same way by every profile

in P. Assuming a structurally submodular S comparing these classes via their

images under fP gives the same order as comparing them via their elements.

In fact, a slightly weaker condition suffices. Call S weakly P-submodular (with

respect to P) if whenever fP(s) ≤ fP(t) at least one of s∨ t and s∧ t is contained

in S.

Proposition 3.2.2. Let S be weakly P-submodular with respect to P. Then for

A,B ∈ im(fP) we have A ≤ B if and only if there are a ∈ f−1
P (A), b ∈ f−1

P (B)

with a ≤ b.

Proof. The backward direction is immediate by Lemma 3.2.1. For the forward

direction choose a ∈ f−1
P (A), b ∈ f−1

P (B). At least one of a ∧ b and a ∨ b is

contained in S by weak submodularity. If a ∧ b ∈ S, then by Lemma 3.2.1 it is

contained in f−1
P (B) and thus forms the required pair together with b. Similarly,

if a ∨ b ∈ S, then a ∨ b ∈ f−1
P (A) and it forms the required pair with a.

We want to use the transformation fP to find a distinguishing set for P . We

will proceed in two steps: First we will look for an abstract distinguishing set in

the image and then look for separations of S to represent them.

Let us start by stating our objective for the first step more formally. We will

say that A ∈ im(fP) separates P,Q ∈ P if P ∈ A and Q /∈ A or vice versa. Then

we are looking for some tree set T ⊆ im(fP) such that different elements of P
are always separated by some element of im(fP). Since structural submodularity

of S translates to im(fP), for finite P standard techniques easily show that this

condition is enough to reach our goal. If P is infinite these standard methods

are not sufficient, but there is a useful idea, seen for instance in [2], which may

help. That idea is taking only the good separations, that is those not crossed by

any other separation, for our tree set.

In the following we will show that, given certain conditions, the set T (S,P)

of good separations of im(fP) (except ∅ and P) does indeed meet our demands.
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Since T (S,P) is a tree set by definition, all that needs to be shown is that T (S,P)

separates any two distinct elements of P. When dealing with finite separation

systems, it is sometimes useful to consider maximal separations. If we want to

use this trick in the infinite case, we encounter some difficulties. First of all,

profiles may not even have maximal elements, which would render our strategy

impossible. Thus we require our profiles to be closed, meaning that any chain

in the profile has a supremum in the universe which is contained in the profile.

This ensures that each profile has a maximal element, but even these maximal

elements may not have the nice properties which we are used to, say when we

have an order function.

Thus we need one more condition, which emulates some of the additional

structure provided by an order function. We call S orderly (with respect to

P) if for any s, t ∈ S such that both {s, t} and {s∗, t∗} are subsets of (possibly

different) elements of P we have s ∨ t ∈ S and s ∧ t ∈ S.

To give an example, it will follow from Lemma 3.3.2 that the set of proper

k-separations in a k-connected path space is orderly.

Lemma 3.2.3. If S is orderly and every P ∈ P is closed, all different P,Q ∈ P
are separated by some t ∈ T (S,P).

Proof. Let C be a chain in S such that each element of C is contained in P and

not in Q which is maximal with these properties. Since P is closed, C has a

supremum s, which is contained in P . Furthermore, by consistency, we have

s /∈ Q. Now it suffices to prove that fP(s) is good. If not, there exists some

x ∈ S such that the images of s and x cross. But since S is orderly, this would

imply s ∨ x ∈ S and this separation could have been added to C.

Now let us consider the second step. Starting with a regular tree set T in

im(fP), we want to find a nested set of preimages (or equivalently one isomorphic

to T ). Once again we want to use maximal separations and so need the same

conditions as before. Closure guarantees that each equivalence class has a

maximal separation and orderliness that it is even greatest.

Lemma 3.2.4. If every P ∈ P is closed, for every t ∈ T the set f−1
P (t) has a

greatest element.

Proof. Let X = f−1
P (t) and let C be a nonempty chain in X. Since P \ t is

nonempty and each profile in that set is closed, C has a supremum s with

fP(s) ⊇ t. Conversely there cannot be any Q ∈ t with s ∈ Q, since we would
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then have C ⊆ Q by consistency, a contradiction. Thus s ∈ X. This implies

that any element of X lies below some maximal element.

Now let a and b be two maximal elements of X. Since S is orderly, a∨ b ∈ S
and then also a ∨ b ∈ X. By maximality of a and b these must then both be

equal to a ∨ b and we have a = b. Thus X only has a single maximal element

which must then be greater than all other separations.

Let m be the function mapping each t ∈ T to the greatest element of f−1
P (t).

We would like to use m to choose the representatives, however, this is not quite

possible, since for t ∈ T the separations m(t) and m(t∗) are usually not inverses.

Fortunately, this is no great obstacle. If we simply choose one of these two

possible unoriented separations, the only thing that could go wrong is that for

s ≤ t we choose m(s) and m(t∗)∗ as the representing separations. It thus suffices

to choose exactly opposite to a consistent orientation, which always exists. So

we fix a consistent orientation o of T and define the function mo by mapping

s ∈ T to m(s∗)∗ for s ∈ o and to m(s) for s /∈ o. Let T̂ be the image of T under

mo.

Corollary 3.2.5. Let S be orderly and every P ∈ P closed. Then fP restricts

to an isomorphism between T̂ and T .

Proof. Clearly, mo is the inverse map of fP restricted to the image of mo. Since

fP is a homomorphism by Lemma 3.2.1, it suffices to show that mo is, too.

So let s, t ∈ T be such that s ≤ t. We need to show that mo(s) ≤ mo(t). If

t /∈ o, we have mo(t) = m(t). Since S is orderly, we have m(t) ∨mo(s) ∈ S. By

Lemma 3.2.1 fP(m(t) ∨mo(s)) = fP(m(t)) ∪ fP(mo(s)) = t ∪ s = t. But since

m(t) is a greatest element, we must have mo(s) ≤ m(t) = mo(t). So we may

assume t ∈ o and by consistency also s ∈ o. Then we have mo(s) = m(s∗)∗ and

mo(t) = m(t∗)∗. Since S is orderly, we have m(s∗) ∨m(t∗) ∈ S and calculating

with Lemma 3.2.1 as before we get fP(m(s∗) ∨m(t∗)) = s∗. Again by choice of

m(s∗) we must have m(s∗) ≥ m(t∗) and thus mo(s) ≤ mo(t).

This completes the second step. Overall, we have now proven the following

theorem.

Theorem 3.2.6. Let S be a regular separation system orderly with respect to a

set P of closed profiles. Then there is a tree set T with the following properties:

1. Any two different elements P are distinguished by some element of T .
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2. Any element of T distinguishes some elements of P.

3. In the set P ∩T for every P ∈ P every separation lies below some maximal

separation.

3.3 Tangle-tree theorem

Since path space separations form a submodular universe, we would like build

on this work to take into account the order function.

If U is a submodular universe, a k-profile is a profile of the separation system

of all separations of U with order less than k. We say that such a k-profile P is

robust if for every s ∈ P and t ∈ U such that s∗ ∧ t and s∗ ∧ t∗ both have order

less than |s|, at least one of the two is not contained in P . When we refer to a

profile (of U) in this context we always mean a k-profile of U for some k ∈ N.

The goal of this section is to prove the following theorem.

Theorem 3.3.1. Let U be a submodular universe and let P be a collection

of regular robust closed profiles. Then there is a tree set T that efficiently

distinguishes P such that every t ∈ T efficiently distinguishes two profiles in P.

Note that the tree set T constructed in the proof of Theorem 3.3.1 additionally

has the property that for every P ∈ P, every element of T ∩ P is less than or

equal to a maximal element of T ∩ P .

We are going to recursively construct tree sets Tk whose union then efficiently

distinguishes P. To do this, let Pk be the set of profiles of order at most k

that are induced by elements of P. For the construction of a tree set Tk+1

distinguishing the elements of Pk+1 we will employ the following proof strategy

in two steps, that is common in proofs of tree-of-tangles-theorems, for example

in [15]. First, for a k-profile P ∈ Pk, Theorem 3.2.6 is applied to the set of all

k + 1-profiles in Pk+1 whose induced k-profile is P and to a carefully chosen

subuniverse of U to obtain a tree set TP . Second, it will be shown that Tk

together with all the tree sets TP is a tree set that efficiently distinguishes Pk+1.

More precisely, we are going to show by induction that for every k ∈ N there

is a tree set Tk with the following properties:

� Tk is a subset of Sk.

� Every element of Tk distinguishes two profiles in Pk efficiently.

� Tk distinguishes Pk efficiently.
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� For every Q ∈ Pk, every element of Q ∩ Tk is less than or equal to a

maximal element of Q ∩ Tk.

As the only 0-profile is the empty set we define T0 to be the empty set.

Assume that Tk is already defined and we now want to define Tk+1. For each

k-profile P ∈ Pk let QP be the set of all k + 1-profiles in Pk+1 whose induced

k-profile is P , NP the set of maximal elements of P ∩ Tk and UP the set of all

separations in U towards which all separations of NP point. Note that UP is a

universe and closed under taking infima and suprema of chains of bounded order,

and that as a result the set of k-separations of UP is structurally submodular

and closed under taking suprema of chains of bounded order. Then every profile

in QP induces a closed k + 1-profile of UP .

We will want to apply the results of the previous section, in particular

Theorem 3.2.6, to UP and the profiles of UP induced by QP . In order to do so,

we need to show that the separation system Sk of UP is orderly with respect to

QP . That follows from the following, slightly more general statement.

Lemma 3.3.2. Let U be a submodular universe, k a non-negative integer and

P a set of k + 1-profiles that all have the same induced k-profile. Then the set

of k-separations of U is orderly with respect to P.

Proof. Assume s and t are k-separations of U and P and Q are elements of P
such that {s, t} ⊆ P and {s∗, t∗} ⊆ Q. By submodularity, one of s∨ t and s∧ t is

also a k-separation, assume without loss of generality that s∨ t is a k-separation.

Then s ∨ t is also contained in P .

First consider the case that s∨t is not contained in Q. Then s∨t distinguishes

P and Q, and thus has order exactly k. Hence by submodularity also s ∧ t is a

k-separation and we are done.

So consider the case that s∨ t ∈ Q. As a separation system with a degenerate

separation does not have a profile, s is not contained in Q. Thus by consistency

s ≤ s∨ t ∈ Q implies s = (s∨ t)∗. Similarly t = (s∨ t)∗, so s = t and the lemma

holds.

Now we will show that indeed all profiles in QP can be distinguished by

separations of UP .

Lemma 3.3.3. All profiles in QP are distinguished by k-separations of UP .

Proof. Let fQP be defined as in the previous section. It suffices to show that if

r is a separation such that fQP (r) is neither ∅ nor QP , then there is an element
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Figure 4: The separation s is less than the separations n∗1 and n∗2, which is
equivalent to n1 ≤ s∗ and n2 ≤ s∗, and the separation t is additionally bigger
than n3.

of UP that has the same image under fQP as r. Let X be the set of separations

whose image under fQP is fQP (r). Several times in this proof we will use the

fact that fQP preserves infima and suprema, and in particular that X is closed

under taking suprema and infima.

If NP is empty, then r itself is a separation of UP and we are done, so assume

otherwise. By Lemma 3.2.4, X has a smallest element s. Let N be the set of all

elements n of NP such that n ≤ s∗. Define X ′ to contain all elements x ∈ X
with n ≤ x∗ for all n ∈ N . Just as in the proof of Lemma 3.2.4, the fact that

the profiles in QP are closed and Zorn’s Lemma imply that X ′ has a maximal

element t. See Fig. 4 for an illustration.

We will show that all elements of NP point towards t. In order to do so let

n be an element of NP . If there is q ∈ X such that q ≤ n∗, then s ∧ q ∈ X. By

minimality of s this implies s = s ∧ q, so s ≤ q ≤ n∗ and thus n ∈ N ′. Hence

n points towards t. The other case is where there is no such separation q, in

particular t ∧ n∗ is not a candidate for q. If t ∧ n∗ is a ≤ k-separation, then it is

contained in X. So the fact that t ∧ n∗ is not contained in X implies that it is

not a ≤ k-separation. Because P is robust and consistent, this implies that t∨ n
is a ≤ k-separation. Then t ∨ n ∈ X and all n′ ∈ N ′ point towards t ∨ n, so by

maximality of t in X ′ we have t ∨ n = t and hence n ≤ t. So also in this case n

points towards t.

So in order to distinguish the elements of QP , it suffices to distinguish their

intersections with UP . We will do that by applying Theorem 3.2.6 to the k-

separations of UP and the profiles induced by QP . Call the obtained tree set TP .

Let Tk+1 be the union of Tk and all tree sets TP where P is a k-profile contained
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in Pk.

Lemma 3.3.4. Tk+1 is a tree set that distinguishes Pk+1 efficiently, and in

which every separation distinguishes some elements of Pk+1.

Proof. Let P be a k-profile in Pk. As for every separation n in P ∩ Tk there

is an element n′ of NP such that n ≤ n′, Tk is nested with every separation

in UP and thus with TP . Also, if P and P ′ are distinct k-profiles in Pk, then

they are distinguished by some separation n of Tk, so they are also distinguished

by some separation of NP which then witnesses that every separation in TP ′ is

nested with every separation in TP . So Tk is nested. Also by construction every

element of Tk+1 distinguishes two elements of Pk+1 and thus is neither trivial

nor co-trivial nor degenerate.

In order to show that every two elements of Pk+1 are distinguished efficiently,

let P and Q be two such elements that can be distinguished. If P and Q can be

distinguished by a k − 1-separation, then they induce distinguishable elements

of Pk which are thus efficiently distinguished by some separation t of Tk. Then

t also efficiently distinguishes P and Q. So we are left with the case that P

and Q cannot be distinguished by a k-separation, which implies that they are

both k + 1-profiles and induce the same k-profile P ′. But then P and Q are

distinguished by a separation in TP ′ , and that separation distinguishes them

efficiently.

So in order to complete the proof, we only have to prove the following

statement.

Lemma 3.3.5. For every Q ∈ Pk+1, every element of Q ∩ Tk+1 is less than or

equal to a maximal element of Q ∩ Tk+1.

Proof. Let Q ∈ Pk+1 and let s ∈ Q ∩ Tk+1. If Q ∈ Pk, then Q ∩ Tk+1 = Q ∩ Tk
and we are done, so assume otherwise. So Q is a k+ 1-profile, denote its induced

k-profile by Q′. If s is not contained in TQ′ , then it is less than or equal to an

element of NQ′ , and every element of NQ′ is either maximal in Tk+1 ∩Q or less

than a separation in TQ′ . So it suffices to consider the case that s ∈ TQ′ . But

in this case by Theorem 3.2.6 s is less than or equal to a maximal element of

TQ′ ∩Q′ which then also is a maximal element of Q ∩ Tk+1.

Proof of Theorem 3.3.1. Let T be the union of all the Tk as defined in this

section. Then T is a tree set which distinguishes all distinguishable profiles

in P efficiently, and every separation in it distinguishes two elements of P
efficiently.
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3.4 Pseudoflowers

As mentioned in the introduction, we now want to translate the theory of flowers

to path spaces. Specifically the property we will use is that of Proposition 2.2.5.

Thus we call a universe of vertex separations limit-closed if for any natural

number k > 0 and chain ((Ai, Bi))i∈I of separations of order at most k this chain

has a supremum in U which has order at most k and the form (A∪X,B) where

A is the union of the Ai and B is the intersection of the B. Then the universe of

path space separations of finite order is clearly a limit-closed universe. For the

rest of this chapter we fix any such a limit-closed universe U with ground set V .

Since flowers are based on cyclic orders, we will first give some background

on cyclic orders.

3.4.1 Cyclic orders

We only give a rough outline here, additional details are given in Appendix A.1.

Of course, we start with a definition.

Definition 3.4.1. [41] A set of triples Z in S × S × S is a cyclic order of the

set S if it has the following four properties:

� (cyclic) ∀a, b, c ∈ S : (a, b, c) ∈ Z ⇒ (b, c, a) ∈ Z

� (antisymmetric) ∀a, b, c ∈ S : (a, b, c) ∈ Z ⇒ (c, b, a) /∈ Z

� (linear) ∀a, b, c ∈ S pairwise distinct : (a, b, c) /∈ Z ⇒ (c, b, a) ∈ Z

� (transitive) ∀a, b, c, d ∈ S : (a, b, c) ∈ Z ∧ (a, c, d) ∈ Z ⇒ (a, b, d) ∈ Z.

So formally a cyclic order is a different set than its underlying ground set,

but in this paper (except in the appendix) this distinction is not made. Note

that what is called a cyclic order here is sometimes (also in [41]) called a linear

cyclic order or a complete cyclic order, with a cyclic order not necessarily being

linear. The distinction is not made here as all cyclic orders under consideration

are linear.

For two elements a and b of S, the set of elements c ∈ S satisfying (a, c, b) ∈ Z
is denoted by (a, b). The sets (a, b) + a, (a, b) + b and (a, b) + a+ b are denoted

by [a, b), (a, b] and [a, b] respectively.

When necessary to resolve ambiguities, we may add the cyclic order in which

these are taken as a subscript. A subset I of S is an interval if for all s, t ∈ I
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either [s, t] ⊆ I or [t, s] ⊆ I. We call an interval non-trivial if it is neither the

empty set nor all of S. Clearly all subsets of S of the form (a, b), (a, b], [a, b) or

[a, b] are intervals of Z. Similarly to linear orders, an element s is the successor

of a in S if b /∈ [a, s] for all for all other elements b. Also, an element p is the

predecessor of a if b /∈ [p, a] for all other elements b. A neighbor of a is an element

that is a predecessor or successor of a.

The definition of a cyclic order implies that if Z is a cyclic order on a set

S and (s, s′, t) is an element of Z then s, s′ and t are pairwise distinct. ([40,

Lemma 1.4])

We will use cyclically ordered sets of a special kind as the index set of our

k-pseudoflowers:

Definition 3.4.2. Let I be a cyclically ordered set with at least two elements.

A cyclically ordered set C is a cycle completion of I if I is a subset of C, the

cyclic order on I is the one induced by C, and every non-trivial interval of I can

uniquely be written as [v, w] ∩ I for elements v, w of C \ I.

Intuitively, the cycle completion of a cyclic order arises from that cyclic order

as follows: Let I be some cyclically ordered set. If one envisions I as boxes

arranged in a circle according to the cyclic order (see also Fig. 5), then it is

possible to cut up the circle at two places without cutting through boxes, thereby

dividing the set of boxes into two intervals. If I is finite, then every one of these

“cut points” is between two boxes. So I and the set of possible cut points form

together another cyclically ordered set. If I is infinite, then not every cut point

is between two boxes, but still I and the set of possible cut points form together

a cyclically ordered set, the cycle completion of I.

Cycle completions can be formalised in several ways, and doing so via cuts,

as is done in the appendix, is only one possibility of many.

The cycle completion has several properties which we will use throughout the

article and which are intuitively clear. Also, although we did not find the exact

construction of the cycle completion described in the literature, several very

similar constructions are. For these reasons, we will only state the properties

needed in this section, and the proofs can be found in the appendix, together with

a description of how to obtain the cycle completion from similar constructions.

The first of the facts about cycle completions which we need is that cycle

completions exist and are essentially unique. In order to compare different

cyclic orders, we will use monotone maps, that is maps f between cyclic orders

where f(v) ∈ (f(u), f(w)) implies v ∈ (u,w), and isomorphisms of cyclic orders,
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Figure 5: A set (whose elements are indicated by boxes) which is cyclically
ordered (indicated by the arrangement of the boxes on a circle) and two “cutting
points” dividing the cyclically ordered set into two intervals.

bijective maps f where f(v) ∈ (f(u), f(w)) is equivalent to v ∈ (u,w). Note

that if the image of some monotone map has at least three elements, then the

preimage of every interval is also an interval.

Lemma 3.4.3 (see Lemmas A.1.13 and A.1.17). For every cyclically ordered

set I with at least two elements there is a cycle completion. If C and C ′ are two

cycle completions of I, then there is an isomorphism of cyclic orders F : C → C ′

such that the restriction of F to I is the identity.

The fact that the cycle completion of a cyclically ordered set I is unique up

to isomorphism justifies calling it “the” cycle completion of I and denoting it as

C(I). We will also call the elements of C(I) \ I cutpoints, a terminology partly

inspired by the term cut (see appendix).

Lemma 3.4.4 (see Lemma A.1.14). For a cyclically ordered set I with at least

two elements let v and w be distinct elements of C(I). Then [v, w] ∩ I is a

non-trivial interval of I.

Lemma 3.4.5 (see Lemma A.1.17). Let I and I ′ be cyclically ordered sets with

at least two elements and let f : I ′ → I be a surjective monotone map. Then

there is a unique surjective monotone map F : C(I ′)→ C(I) whose restriction

to I ′ is f .

In particular this implies that the isomorphism from Lemma 3.4.3 is unique.

Lemma 3.4.6 (see Lemma A.1.15). Let I and I ′ be cyclically ordered sets with

at least two elements. Let F : C(I ′)→ C(I) be a surjective monotone map with
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F (I ′) ⊆ I. Then for every v ∈ C(I ′) \ I there is an element w of C(I ′) such

that F−1(v) = {w}. This element w satisfies w ∈ C(I ′) \ I ′. Also F (I ′) = I.

So for every surjective monotone map F : C(I ′) → C(I) which satisfies

F (I ′) ⊆ I there is an injective monotone map f̂ : C(I) \ I → C(I ′) \ I ′ such that

for all v ∈ C(I) \ I the equation F−1(v) = {f̂(v)} holds.

Lemma 3.4.7 (see Lemma A.1.16). Let F : C(I ′) → C(I) be a surjective

monotone map with F (I ′) = I, and f̂ : C(I) \ I → C(I ′) \ I ′ the injective

monotone map with F ◦ f̂(v) = v for all v ∈ C(I) \ I. Assume that I has at

least two elements. Then for all v, w ∈ C(I) \ I, F−1([v, w]) = [f̂(v), f̂(w)] and

F−1((v, w)) = (f̂(v), f̂(w).

3.4.2 Definition and basic properties

Now we are ready to define our main object, which we call k-pseudoflower. This

definition is derived from a definition of k-flowers in matroids in [11]. A k-flower

is, essentially, a neat way to encode a collection of separations that interact

in a nice way. The definition we will give is a lot more complicated than the

original one, and there are mainly two reasons for that: First, a separation of

a matroid is a bipartition of the ground set, and thus it is possible to encode

several bipartitions in a partition of the ground set. But in our context we are

working with vertex separations, and elements of separators have to be contained

in several of the sets corresponding to partition classes. Second, we work in

infinite structures and still want to obtain maximal k-pseudoflowers. Thus we

have to make limit processes work, and as a chain of separations of order k

may have a limit separation whose order is less than k, we have to allow that

separations do not have order exactly k, but at most k. Making limit processes

work also requires to put elements of separators between petals, sometimes in

addition to putting them into petals. Also, every finite cyclic order is determined

by its cardinality, but that is not the case for infinite cyclic orders, and thus

we have to allow arbitrary cyclic orders as index sets and cannot work with an

easily described representative.

Definition 3.4.8. Let I be a set of size at least 2 with a cyclic ordering

and (Pv)v∈C(I) a family of vertex sets. Define X = V \
⋃
v∈C(I) Pv and for all

v, w ∈ C(I)\I let V (v, w) =
⋃
z∈[v,w] Pz∪X. Then (Pi)i∈C(I) is a k-pseudoflower

if

� For every v ∈ C(I) \ I we have |Pv| = k−|X|
2 ;
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� For all distinct v, w ∈ C(I) \ I the pair S(v, w) = (V (v, w), V (w, v)) is a

separation of order at most k and V (v, w) ∩ V (w, v) = Pv ∪ Pw ∪X;

� For every i ∈ I we have Pp(i) ∪ Ps(i) ⊆ Pi, where p(i) and s(i) are the

predecessor and successor of i in C(I) respectively; and

� for all i, i′ ∈ I,

if |Pi| = (k − |X|)/2 and Pi = Pi′ then i = i′. (∗)

A k-pseudoflower is finite if the index set is finite. A k-flower is a k-

pseudoflower in which all separations S(v, w) are proper separations with order

exactly k.

For v 6= w ∈ C(I) \ I the set V (v, w) is the interval set of [v, w] and the

separation S(w, v) is the interval separation of [v, w]. For a non-trivial interval

I ′ ⊆ I let v and w be the unique elements of C(I) \ I such that I ′ = I ∩ [v, w].

Then the interval set V (J) of J is V (v, w) and the interval separation S(J) of

J is S(w, v). For each index i ∈ I the petal of i is its interval set V ({i}) and

the petal separation of i is its interval separation S({i}). As is usual for maps

defined on power sets, we shorten V ({i}) and S({i}) to V (i) and S(i). Note

that V (i) = Pi ∪X for all i ∈ I. A k-pseudoflower is called a k-pseudoanemone

if the sets Pv for v ∈ C(I) \ I are all empty and a k-pseudodaisy otherwise. Note

that the number (k − |X|)/2, which is the size of the sets Pv with v ∈ C(I) \ I,

indicates how far away a k-pseudodaisy is from being a k-pseudoanemone. In this

sense it plays a very similar role to the difference between the local connectivity

of adjacent petals and the local connectivity of non-adjacent petals as used, for

example, in [4]. Also note that in a k-pseudoanemone, all the interval separations

have X as their separator. In the case where the limit-closed universe comes

from a graph G, this means that the set of petals corresponds to a partition of

the components of G−X, and that X has exactly k elements.

In a graph, k-pseudoanemones correspond to partitions of the components of

G−X. There are no infinite k-pseudodaisies in graphs, but they do exist e.g.

in graph-like spaces.

Lemma 3.4.9. Let Φ be a k-pseudoflower on index set I. Let a, b, c and d

be elements of C(I) \ I such that a, b and c are pairwise distinct and b ∈ [a, c].

Also assume that if d ∈ {a, b, c}, then d = a, and if d /∈ {a, b, c} then d ∈ [c, a].
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Figure 6: A cyclic order with two intervals. This figure depicts some of the
notation used in Lemmas 3.4.9 and 3.6.19.

Then V (a, b) ∩ V (c, d) = (Pa ∩ Pd) ∪ (Pb ∩ Pc) ∪ X and V (a, c) ∩ V (b, d) =

V (b, c) ∪ (Pa ∩ Pd).

Proof. Clearly V (a, b) ∩ V (c, d) ⊆ V (a, c) ∩ V (c, a) = Pa ∪ Pc ∪ X. Similarly

V (a, b)∩V (c, d) is a subset of Pa∪Pb∪X, Pd∪Pb∪X and Pd∪Pc∪X. Together

these subsetrelations imply

V (a, b) ∩ V (c, d)

⊆ (Pa ∪ Pb ∪X) ∩ (Pa ∪ Pc ∪X) ∩ (Pd ∪ Pb ∪X) ∩ (Pd ∪ Pc ∪X)

= (Pa ∩ Pd) ∪ (Pb ∩ Pc) ∪X.

As also (Pa ∩ Pd) ∪ (Pb ∩ Pc) ∪X ⊆ V (a, b) ∩ V (c, d), these two sets are equal.

Thus

V (a, c) ∩ V (b, d) = V (b, c) ∪ (V (a, b) ∩ V (c, d))

= V (b, c) ∪ (Pa ∩ Pd) ∪ (Pb ∩ Pc) ∪X

= V (b, c) ∪ (Pa ∩ Pd).

Corollary 3.4.10. If Pa ∩ Pd = ∅ then S(b, c) = S(a, c) ∧ S(b, d).

Lemma 3.4.11. Let (Pi)i∈C(I) be a k-flower on index set I. Then Pv ∩ Pw = ∅
for all v 6= w ∈ C(I) \ I.

Proof. By definition of a k-flower, the set Pv ∪ Pw ∪X, which equals V (v, w) ∩
V (w, v), has exactly k many elements. Also Pv and Pw both have exactly

(k − |X|)/2 many elements, so they must be disjoint.
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Figure 7: Some notation from the proof of Lemma 3.4.11.

Lemma 3.4.12. For all x ∈
⋃
v∈C(I)\I Pv the set {w ∈ C(I) \ I : x ∈ Pw} is

an interval of C(I) \ I.

Proof. Assume otherwise. Then there are pairwise distinct a, b, c, d ∈ C(I) \ I
such that b ∈ [a, c], d ∈ [c, a], x ∈ Pb ∩ Pd and x /∈ Pa ∪ Pc. But then

x ∈ V (a, c) ∩ V (c, a), which contradicts the fact that x /∈ Pa ∪ Pc ∪X.

3.4.3 Concatenations of pseudoflowers

A separation (A,B) is displayed by a k-pseudoflower if it is an interval separation

of that k-pseudoflower. We are now going to define a partial order on the set

of k-pseudoflowers which has the property that if Φ ≤ Ψ then all separations

displayed by Φ are also displayed by Ψ.

Definition 3.4.13. A k-pseudoflower Φ′ extends another k-pseudoflower Φ,

written Φ ≤ Φ′, if the sets X and X ′ coincide and there is a surjective map

F : C(I ′) → C(I) respecting the cyclic ordering such that F (I ′) = I and

V (v, w) = X ∪
⋃
z∈F−1([v,w]) P

′
z for all v, w ∈ C(I) \ I. If Φ′ extends Φ, then Φ

is a concatenation of Φ′.

Given a map F : C(I ′)→ C(I) that witnesses that Φ ≤ Φ′, by Lemma 3.4.6

there is for every v ∈ C(I) \ I a unique w ∈ C(I ′) with F (w) = v. Furthermore

w ∈ C(I ′) \ I ′, and Pv = Pw by definition of Φ ≤ Φ′. This allows us to identify

F−1(C(I ′) \ I ′) with C(I ′) \ I ′, and thus view Φ as a substructure of Φ′. (See

Section 3.6.2 for a more detailed explanation of how this identification can be

done for a whole chain of k-pseudoflowers.) Note that the witness of Φ ≤ Φ′

might not be unique, and that the identification of cutpoints depends on the
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witness. Conversely, given a finite set D of cutpoints of a k-pseudoflower Φ′ on

index set I ′, we can take the subflower Φ′(D) of Φ′ whose cutpoints correspond

to D as follows: Let I be a cyclic order with |D| many elements, and let

f̂ : C(I) \ I → D be an isomorphism of cyclic orders. Extend the inverse of f̂ to

a surjective monotone map F : C(I ′)→ C(I) with F (I ′) ⊆ I. For v ∈ C(I) \ I
there is a unique d ∈ D with F−1(v) = d, define Pv = Pd. For i ∈ I let p

and s be the predecessor and successor of i in C(I) respectively, and define

Pi =
⋃
z∈F−1([p,s]) Pz. Then (Pz)z∈C(I) is a k-pseudoflower, and F witnesses

(Pz)z∈C(I) ≤ Φ′. Note that we need this construction only for finite D, but it

works for all sets of cutpoints D that can be expressed as C(I) \ I for some

cyclically ordered set I.

Lemma 3.4.14. Let Φ be a k-pseudoflower that extends a k-flower with three

petals. Then for every z ∈ C(I) there is v ∈ C(I) \ I such that Pz ∩ Pv = ∅.
Furthermore, for every i ∈ I and all nonempty Y ⊆ Pi the set {z ∈ C(I) : Y ⊆
Pz} is a non-trivial interval of C(I).

Proof. As Φ extends a k-flower with three petals, C(I)\ I contains three distinct

elements v1, v2 and v3 and Pv1 , Pv2 and Pv3 are pairwise disjoint. By renaming

if necessary assume that z ∈ [v1, v2] and v3 ∈ [v2, v1]. Then Pz ∩ Pv3 ⊆
V (v1, v2) ∩ V (v2, v1) = Pv1 ∪ Pv2 ∪ X. As every Py with y ∈ C(I) is disjoint

from X, this implies that Pz ∩ Pv3 = ∅.
Let Y ⊆ Pi and for every y ∈ Pi let Cy be the interval of those z ∈ C(I)

with y ∈ Pz. Let v be an element of C(I) \ I such that Pi ∩ Pz = ∅. As all Cy

contain i but none contains v, the intersection of the Cy is a non-trivial interval

of C(I).

We already stated that given two k-pseudoflowers Φ ≤ Ψ, there might be

several maps witnessing the relation. It may not be obvious from the definition,

but if Φ is a sufficiently meaningful k-pseudoflower, then two witnessing maps

can only differ in very restricted ways. The rest of this section contains an

analysis of the exact ways in which they can differ.

For k-pseudoflowers Φ ≤ Φ′ such that Φ extends a k-flower with three petals

let I ′N be the set of those i ∈ I ′ such that there are witnesses of Φ ≤ Φ′ that

map i to different elements of I.

Lemma 3.4.15. Let i′ ∈ I ′N . Then the set of images of i′ under witnesses of

Φ ≤ Φ′ contains only two elements of I, and those have a common neighbor v(i′)

in C(I) that satisfies P ′i = Pv(i′).
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Proof. In order to show that P ′i′ = Pv for some v ∈ C(I) \ I, let i1 and i2 be

possible images of i′ under witnesses of Φ ≤ Φ′. Then in particular P ′i′ ⊆ Pi1

and P ′i′ ⊆ Pi2 . By Lemma 3.4.14 there is v1 ∈ C(I) \ I such that Pv1 ∩ Pi1 = ∅.
Without loss of generality v1 ∈ [i1, i2], and as i1 6= i2 there is v2 ∈ [i2, i1] \ I. So

P ′i′ ⊆ Pi1 ∩ Pi2 ⊆ V (v1, v2) ∩ V (v2, v1) = Pv1 ∪ Pv2 ∪X,

implying that P ′i′ ⊆ Pv2 and thus by the first and third conditions of k-

pseudoflowers that |P ′i′ | = |Pv2 | = (k − |X|)/2.

If there is i ∈ I with Pi = P ′i′ , then every witness F of Φ ≤ Φ′ has to map

some i′F to i, and P ′i′F
= Pi = P ′i′ then implies by (∗) that iF ′ = i′. Thus in this

case every witness of Φ ≤ Φ′ maps i′ to i, contradicting i′ ∈ I ′N .

Let F be some witness of Φ ≤ Φ′, then P ′i′ ⊆ PF (i′). By Lemma 3.4.14 there

is z1 ∈ C(I)\I such that PF (i′)∩Pz1 = ∅, and the set C := {z ∈ C(I) : P ′i′ ⊆ Pz}
is a non-trivial interval of C(I). There is z′1 ∈ C(I ′) \ I ′ with F (z′1) = z1.

Assume that there is i ∈ C ∩ I that is (in the linear order of the interval C)

neither the biggest not the smallest element of C ∩ I. Then the two neighbors

s and p of i in C(I) are also contained in C, thus Ps = Pp = P ′i′ 6= Pi. Hence

there is x ∈ Pi with x /∈ Pz for all other z ∈ C(I), and there is z2 ∈ C(I ′)

with x ∈ Pz2 . Now F (z2) = i. If i′ ∈ (z′1, z2) then F (i′) ∈ (z1, i] and otherwise

i′ ∈ (z2, z
′
1), implying F (i′) ∈ [i, z1]. Both ](z1, i]∩C and [i, z1)∩C are intervals

of C.

As F was chosen as an arbitrary witness of Φ ≤ Φ′, this implies that the subset

of C∩I contains an interval of at most two elements that contains all images of i′

under witnesses of Φ ≤ Φ′. As i′ ∈ i′N this implies that there are exactly two such

images, and that they are neighbors in I and hence have a common neighbor v(i′)

in C(I). Then v(i′) /∈ I, and P ′i′ ⊆ V (v1, v(i′)) ∩ V (v(i′), v1) = X ∪ Pv1 ∪ Pv(i′).

As P ′i′ is disjoint from X and Pv1 and is at least as big as Pv(i′), this implies

P ′i′ = Pv(i′).

Lemma 3.4.16. For every i ∈ I there is some i′ ∈ I ′ \ I ′N such that every

witness of Φ ≤ Φ′ maps i′ to i.

Proof. Let I ′i be the set of those elements of I ′ that are mapped to i by some

witness of Φ ≤ Φ′. If I ′i contains only one element, then the lemma holds, so

assume otherwise. Assume for a contradiction that all elements of I ′i are contained

in I ′N . Denote the neighbors of i in C(I) by s and p, then by Lemma 3.4.15

every element i′ ∈ I ′i satisfies either Pi′ = Ps or Pi′ = Pp, hence there are
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exactly two such elements i1 and i2. Because both i1 and i2 are contained

in I ′N , there are witnesses F1 and F2 of Φ ≤ Φ′ with F−1
j (i) = {ij}. Thus

Pi ⊆ Pi1 ∩ Pi2 = Pp ∩ Ps, so Pi = Ps = Pi1 = Pi2 , a contradiction.

Lemma 3.4.17. For every v ∈ C(I) \ I that is not of the form v(i′) for some

i′ ∈ I ′N there is a unique v′ ∈ C(I ′) \ I ′ that is mapped to v by all witnesses of

Φ ≤ Φ′.

Proof. As Φ extends a k-flower with three petals, there is i ∈ I such that

Pv ∩Pi = ∅ and v is not a neighbor of i. Denote the predecessor and successor of

i in C(I) by p and s respectively. In particular p 6= v 6= s. Let i′ be an element

of I ′ that is mapped to i by every witness that Φ ≤ Φ′ and denote its successor

in C(I ′) by s′.

Assume that there are witnesses F1 and F2 of Φ ≤ Φ′ such that F−1
1 (v) = v1

and F−1
2 (v) = v2 and v1 ∈ (s, v2). Then for j ∈ {1, 2}, F−1

j (s) ∈ [s′, vj ] and thus

V (s′, v2) ⊆ V (p, v) and V (v1, s
′) ⊆ V (v, s). Hence every element of V (v1, v2)

is contained in V (i) ∪ V (s, v) and in V (v, s). But V (v, s) ∩ (V (i) ∪ V (s, v)) =

V (i) ∪ Pv and V (v1, v2) ∩ (V (i) ∪ Pv) ⊆ V (v1, v2) ∩ V (v2, v1) = X ∪ Pv, hence

every element of V (v1, v2) is contained in X ∪ Pv. So Pî = Pv for all î ∈ [v1, v2]

and in particular there can be at most one such î.

As v1 6= v2, some such î exists. Then F2(̂i) ∈ [s, v] and, because Pî ∩ Pi =

Pv∩Pi = ∅, F1(̂i) ∈ [v, p]. So î ∈ I ′N and v(̂i) = v, contradicting the assumptions

about v.

Let F be a witness that Φ ≤ Φ′ and f the restriction of F to I ′. Let

f ′ : I ′ → I be obtained from f by choosing, for every i′ ∈ I ′N , some neighbor of

v(i′) in C(I) as the image of f ′ and mapping every other element of I ′ to its

image under f . Let F ′ : C(I ′)→ C(I) be the unique surjective map respecting

the cyclic order whose restriction to I ′ is f ′ (see Lemma 3.4.5).

Lemma 3.4.18. The map F ′ is well-defined.

Proof. It suffices to show that f ′ is surjective and respects the cyclic order. As

for every i ∈ I there is some i′ ∈ I ′ that is mapped to i by all witnesses of

Φ ≤ Φ′ and is in particular not contained in I ′N , f ′ is indeed surjective.

In order to show that f ′ respects the cyclic order, consider elements i1, i2

and i3 of I ′ such that f ′(i2) ∈ (f ′(i1), f ′(i3)). In order to show that i2 ∈ (i1, i3)

it suffices to consider the case that f ′ differs from f in at most three elements

of I, and for that it is enough to show that f ′ respects the cyclic order if it
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maps only one element of I ′ differently than f . So assume that f = f ′ except

that f ′(i1) is the successor of f(i1), the other cases are symmetric. Let i′1 be an

element of I ′ that is mapped to f ′(i1) by all witnesses of Φ ≤ Φ′. In particular

f(i′1) = f ′(i′1), and f(i1) is the predecessor of f(i′1). If f(i1) 6= f(i3), then

i2 ∈ (i1, i3) because f respects the cyclic order. Otherwise f−1(f(i1)) is an

interval of I ′ containing both i1 and i3 but neither i2 nor i′1, and f ′−1(f ′(i1)) is

an interval of I ′ containing both i1 and i′1 but neither i2 nor i3. Together with

i2 ∈ (i1, i3) this implies that i1 ∈ (i3, i
′
1) and hence that i1 ∈ (i3, i2).

Lemma 3.4.19. The map F ′ is a witness of Φ ≤ Φ′.

Proof. Let v and w be distinct elements of C(I) \ I. If F ′−1([v, w]) differs from

F−1([v, w]), then it does so in elements i of I ′N with v(i) = v or v(i) = w and

one of their neighbors. Thus

X ∪
⋃

z∈F−1([v,w])

P ′z = X ∪
⋃

z∈F ′−1([v,w])

P ′z.

3.4.4 Tangles and profiles in pseudoflowers

The theory presented in this chapter will be presented for two very similar

objects: Profiles and tangles. The main results hold for the more general object,

namely profiles. Thus they also hold for tangles, and in this case the proof

for tangles is shorter. As the term tangle is more widely known than the term

profile, the main results of this paper will be presented for both tangles and

profiles, with the main differences to be found in this subsection. In the rest

of the chapter, we will simply work with a set P of k + 1-profiles, and as every

k + 1-tangle is also a k + 1-profile the reader is free to think of a set of tangles.

Given a graph, a k-profile of that graph is defined to be a profile of Sk, the

separation system of separations whose order is less than k. So it is obvious what

the definition of a k-profile of a graph-like space, a path space or a limit-closed

universe of vertex separations should be: A profile of Sk, which for the universe is

a subsystem. Similarly, a k-tangle of a limit-closed universe of vertex separations

is a tangle of Sk.

Readers interested in the technical details might note that if the universe is

the universe of vertex separations of a graph, then this definition of a k-tangle

is not exactly the same as the definition of a k-tangle of a graph. The two
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definitions are very close, however, and every k-tangle of the universe is also a

k-tangle of the graph. Although Lemma 3.4.20 is formulated for k-tangles of

limit-closed universes of vertex separations, the proof also holds for k-tangles of

graphs.

Given a k-pseudoflower Ψ on index set I a k + 1-profile P is located by Ψ if

there is some v ∈ C(I) \ I such that either ∀w ∈ C(I) \ I − v : S(v, w) ∈ P or

∀w ∈ C(I) \ I − v : S(w, v) ∈ P .

For tangles we always have this property.

Lemma 3.4.20. Let Φ be a k-pseudoflower and let T be a k + 1-tangle. Then

T is located by Φ.

Proof. Let I be the index set of Φ and let u ∈ C(I) \ I. Let V ′ be the set

of all elements w of (C(I) \ I) − u such that S(u,w) ∈ T . If V ′ is empty or

(C(I) \ I)− u, then u witnesses that T is located by Φ, so assume otherwise. As

T is consistent, V ′ is an interval of C(I) \ I and thus of the form (u, v)∩C(I) \ I
or (u, v] ∩ C(I) \ I for some v ∈ C(I) \ I. First consider that case that V ′ is of

the form (u, v) ∩ C(I) \ I for some v ∈ C(I) \ I. Then S(u, v) is not an element

of T and thus S(v, u) ∈ T . Hence for all w ∈ (v, u) we have S(v, w) ∈ T by

consistency of T . Also for all w ∈ (u, v) we have that S(u,w) ∈ T so because also

S(v, u) ∈ T the tangle property implies S(v, w) ∈ T . So in this case we are done.

Now consider the case that V ′ is of the form (u, v] for some v ∈ C(I)\I−u. Then

S(u, v) ∈ T , so also S(w, v) ∈ T for all w ∈ [u, v) by consistency. Furthermore

for all w ∈ (v, u) we have S(u,w) /∈ T , so S(w, u) ∈ T and thus S(w, v) ∈ T by

the tangle property. So in this case we are done as well.

For general k+ 1-profiles, the statement holds with an additional assumption

that the k-pseudoflower is sufficiently large.

Lemma 3.4.21. Let Φ be a k-pseudoflower which extends a k-flower with at

least four petals and let P be a k + 1-profile. Then P is located by Ψ.

Proof. Let I be the index set of Ψ. Let s, t, x and y be elements of C(I) \ I
such that Φ({s, t, x, y}) is a k-flower with four petals and t ∈ [s, x] and y ∈ [x, s].

Then P contains an orientation of S(s, x) and an orientation of S(t, y), and by

Corollary 3.4.10 and Lemma 3.4.11 P also contains the supremum of those two

orientations. So P contains the inverse of a petal separation of Φ({s, t, x, y}),
without loss of generality assume that P contains S(t, s).
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Figure 8: S(t, s) is an interval separation of a k-pseudoflower and is contained
in a k + 1-profile P . See also Lemma 3.4.21.

In the interval [s, t] let v be the supremum of {w ∈ [s, t) \ I : S(t, w) ∈ P}.
There are three cases: v = t, S(v, x) ∈ P and S(x, v) ∈ P . In the first case we

have ∀w ∈ C(I) \ I − v : S(v, w) ∈ P and are done.

Consider the second case: v 6= t and S(v, x) ∈ P . Then S(v, w) = S(v, x) ∨
S(t, w) for all w ∈ [s, v) by Corollary 3.4.10 and Lemma 3.4.11 and thus S(v, w) ∈
P . Hence ∀w ∈ C(I) \ I − v : S(v, w) ∈ P .

In the last case, v 6= t and S(x, v) ∈ P . Again S(t, v) = S(t, s) ∨ S(x, v)

and thus S(t, v) ∈ P . If t is the successor of v in C(I) \ I, then S(t, v) ∈ P
implies that ∀w ∈ C(I) \ I − v : S(w, v) ∈ P . Otherwise let w ∈ (v, t) \ I. By

the definition of v, P does not contain S(t, w), so S(t, w) = S(t, s) ∨ S(y, w)

implies that S(y, w) is not an element of P . Thus P contains S(w, y), and

S(w, v) = S(w, y) ∨ S(x, v) implies that S(w, v) ∈ P . As this is true for all

w ∈ (v, t) \ I, ∀w ∈ C(I) \ I − v : S(w, v) ∈ P holds.

For the remainder of this chapter, instead of differentiating between tangles

and profiles, we will always work more generally with profiles located by the

relevant flowers. Since, as noted above, Lemma 3.4.20 also works for tangles of

graphs, our approach encompasses this case as well.

An equivalence class E of ≤ k-separations is displayed by a k-pseudoflower

Φ if an element of E is displayed by Φ. We are interested in k-pseudoflowers

displaying as many equivalence classes as possible. For that, we also consider

the following relation on k-pseudoflowers. Note that it is not a partial order as

it is not antisymmetric.

Definition 3.4.22. Let Φ and Φ′ be two k-pseudoflowers. Define Φ 4 Φ′ if and

86



only if every relevant separation displayed by Φ is equivalent to a separation

displayed by Φ′. If Φ 4 Φ′ 4 Φ, then the k-pseudoflowers are equivalent.

3.5 Extending pseudoflowers

Two separations properly cross if all of their corner separations are contained in

profiles of P. In this section we will start with a separation properly crossing

a petal of a pseudoflower, and our goal is to remedy this by extending the

pseudoflower.

Let Ψ be a k-pseudoflower and i a petal of Ψ with predecessor p and successor

s. A separation (C,D) properly crossing S(i) is anchored at v ∈ C(I) \ I if

(C,D) ∧ S(i) = S(v, p) and (D,C) ∧ S(i) = S(s, v).

Lemma 3.5.1. Let Φ be a k-pseudoflower distinguishing at least three elements

of P located by Φ. Let (C,D) be a separation of order k which properly crosses

some petal separation S(i) of Φ. Then there is a separation (C ′, D′) properly

crossing S(i) such that

� (C,D) ∨ S(i) = (C ′, D′) ∨ S(i) and (D,C) ∨ S(i) = (D′, C ′) ∨ S(i).

� (C ′, D′) or its inverse is anchored at some v ∈ C(I) \ I.

Proof. Let P1 ∈ P be a profile which contains both (C,D) and S(i). If Φ

distinguishes two profiles which contain both (C,D) and S(i)∗ then let P2 ∈ P
be a profile which contains both (D,C) and S(i)∗. Then some profile P3 ∈ P
which contains both (C,D) and S(i)∗ is distinguished from P2 by Φ. If Φ does

not distinguish any profiles which contain both (C,D) and S(i)∗, then let P3

be some such profile. As Φ distinguishes at least three profiles, it distinguishes

some profile P2 from both P1 and P3. Because P2 is distinguished from P1, it

contains S(i)∗. Because P2 is also distinguished from P3, it does not contain

(C,D), so it contains (D,C). In both cases, P2 contains S(i)∗ and (D,C), while

P3 contains S(i)∗ and (C,D). Furthermore Φ distinguishes P2 and P3.

Denote the predecessor of i in C(I) by p and the successor by s. As Φ

distinguishes P2 and P3, there is a cutpoint v ∈ C(I) \ I such that S(v, s)

distinguishes P2 and P3. Because both P2 and P3 contain S(i)∗, S(v, p) also

distinguishes P2 and P3, and P2 contains S(v, s) if and only if it contains S(v, p).

From here on consider the case that P3 contains S(v, p), the other case

is symmetric. Define (C ′′, D′′) = (C,D) ∨ S(v, p). Because P3 contains both

(C,D) and S(v, p) and P2 contains both S(p, v) and (D,C), the separation
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(C ′′, D′′) has order k and distinguishes P2 and P3. Then (C ′′, D′′) ∨ S(i) =

(C,D) ∨ S(v, p) ∨ S(i) = (C,D) ∨ S(i) and in particular (C ′′, D′′) ∨ S(i) is

the same as (C,D) ∧ S(i). Let P4 be a profile that contains both S(i) and

(D,C). Then (D′′, C ′′) ≤ (C,D) implies that (D′′, C ′′) is contained in P4.

The profile P3 contains both (C ′′, D′′) and S(i)∗ and the profile P4 contains

both (D′′, C ′′) and S(i), so (D′′, C ′′) ∨ S(i) is a separation of order k. Also

(D′′, C ′′) ∨ S(i) ≤ (D,C) ∨ S(i). Because V (v, p) ∪ V (s, p) = V , we have

D ∪ V (s, p) = (D ∩ V (p, v)) ∪ V (s, p). The set D ∪ V (s, p) is the left side

of (D,C) ∨ S(i) and (D ∩ V (p, v)) ∪ V (s, p) is the left side of the separation

(D′′, C ′′)∨ S(i). Also, the right side of (D,C)∨ S(i) is a subset of the right side

of (D′′, C ′′) ∨ S(i). Because these two separations have the same order, they are

equal.

Define (D′, C ′) = (D′′, C ′′) ∨ S(s, v). Just as in the previous paragraph

(C ′, D′) is a separation of order k distinguishing P2 and P3. Also (D′, C ′)∨S(i) =

(D′′, C ′′) ∨ S(i) and (C ′, D′) ∨ S(i) = (C ′′, D′′) ∨ S(i). Furthermore P1 contains

(C ′, D′) and S(i), and P3 contains (D′, C ′) and S(i)∗, so (C ′, D′) ∧ S(i) has

order k. Because S(v, p) ≤ (C ′, D′) ≤ S(v, s), also

(V (v, p)∪Ps, V (p, v)) = S(v, s)∧S(i) ≥ (C ′, D′)∧S(i) ≥ S(v, p)∧S(i) = S(v, p),

which, as (C ′, D′) ∧ S(i) has the same order as S(v, p), implies that (C ′, D′) ∧
S(i) = S(v, p). Similarly (D′, C ′) ∧ S(i) = S(s, v).

Lemma 3.5.2. Let Ψ be a k-pseudoflower and i a petal of Ψ with predecessor p

and successor s. If a k-separation (C,D) properly crossing S(i) is anchored at

v ∈ C(I)\I, then C∩Ps = ∅, D∩Pp = ∅,X ⊆ C∩D and (C∩D)\V (p, s) = Pv.

Proof. Since Ps is contained in the separator of S(i), but does not meet V (v, p)

it cannot meet C. Similarly (C,D) ∧ S(i) = S(s, v) implies that Pp does not

meet D. The third statement is immediate from the fact that X occurs in the

separators of both S(s, v) and S(v, p).

For the last equation, note that (C,D) ∧ S(i) = S(v, p) implies both C ∩
V (s, p) = V (v, p) and D ∪ V (p, s) = V (p, v). Taking the intersection gives

(C ∩D ∩ V (s, p)) ∪ (C ∩ V (s, p) ∩ V (p, s)) = V (v, p) ∩ V (p, v). Deleting V (p, s)

on both sides and simplifying gives the result.

Lemma 3.5.3. Let Φ be a k-pseudoflower distinguishing at least three elements

of P located by Φ. Let (C,D) be a separation of order k which properly crosses
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some petal separation S(i) of Φ and is anchored at v ∈ C(I) \ I. Let p be and

s be the predecessor and successor of i in C(I) respectively. Then there is an

extension Φ′ of Φ, witnessed by F , such that

� For all i′ ∈ I \ {i} there is only one element contained in F−1(i′).

� F−1(i) contains exactly three elements i1, m and i2. By switching the

names of i1, m and i2 if necessary we can assume that m is the successor

of i1 and the predecessor of i2.

� Pm = (C ∩D) \ V (s, p).

� The interval set of i1 is C ∩ V (i) and the interval set of i2 is D ∩ V (i).

� (C,D) is an interval separation of Φ′.

Proof. Let Φ′ be obtained from Φ by replacing i ∈ I with i1, m and i2 in order

and setting Pm = (C ∩D) \ V (s, p), Pi1 = C ∩ Pi and Pi2 = D ∩ Pi.
We will now prove that Φ′ is a k-pseudoflower. The third condition is trivial.

By Lemma 3.5.2 we know that C ∩ D consists of exactly Pm, X and Pv, so

|Pm| = k − |Pv| − |X| = k−|X|
2 .

Assume for a contradiction that (∗) fails. We may assume without loss of

generality that |Pi1 | =
k−|X|

2 . It follows that Pm = Pi1 and thus Pi1 ⊆ Pi2 . But

then (D,C)∨ S(i)∗ is cotrivial with witness (C,D) and therefore is contained in

every profile, contradicting the fact that S(i) properly crosses (C,D).

To show that Φ′ is a k-pseudoflower, it thus remains to show the second

condition. Let x, y ∈ C(I) be arbitrary. Because Φ was a k-pseudoflower,

w.l.o.g. y = m. Furthermore, since Pi1 and Pi2 meet only in Pm, we have

V (x,m) ∩ V (m,x) = Px ∪ Pm ∪X.

Thus it is enough to show that (V (x,m), V (m,x)) is a separation. Without

loss of generality x occurs in the interval in the interval from m to v in C(I),

the other case is analogous. Note that, as (C,D) is anchored at v, S(v, p) ≤
(C,D) ≤ S(v, s) and thus V (v, p) ⊆ C ⊆ V (v, s). So

V (x, p) ∪ C = V (x, p) ∪ (C ∩ V (i)) = V (x,m)

and similarly V (p, x) ∩ D = V (m,x). Hence S(v, p) ∨ S(C,D) = S(x,m),

implying that S(x,m) is indeed a separation.

Thus Φ′ is a k-pseudoflower. By construction, (C,D) appears as the interval

separation S(m, v).
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Figure 9: The the index i is replaced by the indices i1 and i2, creating a
new cutvertex m. This allows us to display the separation (C,D), see also
Lemma 3.5.3.

3.6 Maximal pseudoflowers

Let (Φj)j∈J be a ≤-chain of k-pseudoflowers which distinguish at least three

elements of P that are located by the Φj . In this section we will prove that there

is a k-pseudoflower which is an upper bound of the chain (Φj)j∈J . The proof

works for both k-pseudodaisies and k-pseudoanemones, but can be shortened

a lot if the Φj are k-pseudoanemones as follows: The careful construction of

the sets Pv with v ∈ VN in Section 3.6.3 becomes redundant as all those sets

are necessarily empty. For the same reason, in Section 3.6.5 there is no need

to derive the sets Pv with v ∈ C(I \ IN ) \ (I \ IN ) from their counterparts in

C(I) \ IN . Furthermore, it is possible to carry the following stronger version of

(∗) through the limit process: That no petal should be empty. This stronger

version then makes all witnesses of comparability of k-pseudoflowers unique,

making the search for a compatible choice of witnesses unnecessary. Also, the

definition of I ′ can be made easier, as it simply consists of those i ∈ I with

Pi 6= ∅, and C(I ′) is more obviously related to C. Lastly, in k-anemones the

condition of Corollary 3.4.10 that Pa ∩ Pd = ∅ always holds, which means that

the proof in Section 3.6.4 that all interval separations of the newly constructed

k-pseudoflower are indeed interval separations can be streamlined.

3.6.1 Finding compatible witnesses

The first step in constructing an upper bound of a chain of k-pseudoflowers is to

construct the index set. For that we would like to take the inverse limit of the
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index sets, and for that we need compatible witnesses of the comparability of the

k-pseudoflowers in the chain. Phrased more formally, we need for every j ≤ l ∈ J
a witness Flj of Φj ≤ Φl such that for j ≤ l ≤ m ∈ J the concatenation of Flj

with Fml is Fmj .

In Section 3.4.3 we showed that, given sufficiently large k-pseudoflowers

Φ ≤ Φ′ on index sets I and I ′, only few elements i of I ′ have several possible

images under witnesses of Φ ≤ Φ′, and that picking some possible image for

every such i gives again a witness of Φ ≤ Φ′. So defining the Flj amounts to

finding a way of making all these choices in a way that is compatible over the

whole chain of k-pseudoflowers. For that, we first show how these choices interact

in a chain of only three k-pseudoflowers.

So for the next two lemmas let Φ1 ≤ Φ2 ≤ Φ3 be k-pseudoflowers on index

sets I1, I2 and I3 respectively such that Φ1 extends a k-flower with three petals.

For some i3 ∈ I3 we are now interested in possible images of i3 under witnesses

of Φ2 ≤ Φ3, their images under witnesses of Φ1 ≤ Φ2 and how those relate to

witnesses of i3 under witnesses of Φ1 ≤ Φ3.

Lemma 3.6.1. If i3 has two possible images i1 and i′1 under Φ1 ≤ Φ3, and

there is i2 ∈ I2 whose possible witnesses under Φ1 ≤ Φ2 are also i1 and i′1, then

all witnesses of Φ2 ≤ Φ3 map i3 to i2.

Proof. By Lemma 3.4.16 there is some i′3 whose unique image under Φ2 ≤ Φ3 is

i2. Then i′3 has i1 and i′1 as possible images under Φ1 ≤ Φ3 and Pi3 = Pi′3 by

Lemma 3.4.15, so i3 = i′3.

Lemma 3.6.2. If i3 has two possible images i1 and i′1 under Φ1 ≤ Φ3, i′1

successor of i1 in I1, and i3 has two possible images i2 and i′2 under Φ2 ≤ Φ3, i′2

successor of i2 in I2, then every witness of Φ1 ≤ Φ2 maps i2 to i1 and i′2 to i′1.

Proof. See Fig. 10 for a depiction of the notation used in this proof. As a

concatenation of witnesses is again a witness, all witnesses of Φ1 ≤ Φ2 map i2 to

one of i1 and i′1, and similarly for i′2. If one element of I2 had both i1 and i′1 as

possible images under Φ1 ≤ Φ2, then by the previous lemma i3 could not have

both i2 and i′2 as possible images under Φ2 ≤ Φ3. Hence no element of I2 has

both i1 and i′1 as possible images under witnesses of Φ1 ≤ Φ2, and in particular

both i2 and i′2 have a unique image under such witnesses. Let î1 be an element

of I1 that is neither i1 nor i′1, and let î3 be an element of I3 that is mapped to

î1 by all witnesses of Φ1 ≤ Φ3.
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Figure 10: Three compatible k-pseudoflowers Φ1 ≤ Φ2 ≤ Φ3. The outer circle
depicts Φ3 and three elements of its index set, the inner circle depicts Φ1.

Assume for a contradiction that both i2 and i′2 have the same image in

I1 under witnesses of Φ1 ≤ Φ2, and that this image is i′1 (the other case is

symmetric). Let j be an element of I3 that is mapped to i2 by all witnesses

of Φ2 ≤ Φ3. As no witness of Φ2 ≤ Φ3 maps î3 to i2 or i′2 and there is some

witness that maps i3 to i′2, we have j ∈ (î3, i3). Also, by Lemma 3.4.18 (and

because j 6= i3) there is a witness of Φ1 ≤ Φ3 that maps j to i′1, i3 to i1 and î3

to î1. This implies j ∈ (i3, î3), a contradiction.

So i2 and i′2 have distinct unique images under witnesses of Φ1 ≤ Φ2. If î2

denotes the image of î3 under some witness of Φ2 ≤ Φ3, then î2 ∈ (i′2, i2) and

î1 ∈ (i′1, i1) implies that indeed all witnesses of Φ1 ≤ Φ2 map i2 to i1 and i′2 to

i′1.

Now we want to use these two lemmas to define the maps Flj . For all indices

j, l ∈ J with j ≤ l define a map flj : Il → Ij as follows: For i ∈ Il, if there are

indices j = j0 < j1 < . . . < jn = l, n ≥ 1, in J such that for in = i and for

every m ≤ n every witness of Φjm−1
≤ Φjm maps im to the same element im−1

of Im−1, then let flj(i) = i0 (first case). Otherwise there are two possible images

ij and i′j of i under witnesses of Φj ≤ Φl such that i′j is the successor of ij . In

this case let flj(i) = i′j (second case).

Lemma 3.6.3. For all j ≤ l ∈ J and all i ∈ Ij, flj(i) is well defined.

Proof. In order to show that flj(i) is well-defined, it suffices to consider the case

where flj(i) is defined via the first case. Assume that j = j0 ≤ . . . jn = l in J

and j = l0 ≤ . . . ≤ lm = l are two chains of elements of J via which flj(i) could

be defined. We will show by induction on n+m that the value of flj(i) is the
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same in both cases. If one of n and m is 0, then j = l and the claim holds, so

assume otherwise. Furthermore, if jn−1 = lm−1, then it suffices to apply the

induction hypothesis to the chains j0 ≤ . . . ≤ jn−1 and l0 ≤ . . . ≤ lm−1. So

assume that jn−1 < lm−1, the other case is symmetric. Let r be an integer such

that lr−1 ≤ jn−1 ≤ lr, and ir the image of i in Ilr under the chain of the ls. If ir

has several images under witnesses of Φjn−1
≤ Φlr , then i also has several images

under witnesses of Φjn−1
≤ Φl. So ir has a unique image is under witnesses of

Φjn−1
≤ Φlr , and that image is also the unique image of i under witnesses of

Φjn−1
≤ Φl. Then j0 ≤ . . . ≤ jn−1 ≤ lr and l0 ≤ . . . ≤ lr are chains on which,

because n+ r ≤ n+m− 1, the induction hypothesis can be applied. Thus the

lemma holds.

Lemma 3.6.4. For all j ≤ l ≤ m in J and i ∈ Im, flj ◦ fml(i) = fmj(i).

Proof. First consider the case that fmj(i) is defined via the first case. Let

j0 ≤ . . . jn be a sequence via which fmj(i) could have been defined, with

jr−1 ≤ l ≤ jr. If ir has two possible images il, i
′
l under witnesses of Φl ≤ Φjr ,

then fml(i) is one of those. Also, every witness of Φr−1 ≤ Φl maps both il and

i′l to ir−1, implying that both flj(il) and flj(i
′
l) are defined via the first case

and are equal to fmj(i). So in this case flj ◦ fml(i) = fmj(i). If ir has a unique

image il under witnesses of Φj ≤ Φr, then all witnesses of Φr−1 ≤ Φl map il to

ir−1, and thus fml(i) is defined via the first case and also flj(il) is defined via

the first case. As fmj(i) is well defined, this implies that flj ◦ fml(i) = fmj(i).

So assume that fmj(i) is defined via the second case, and that ij and i′j are

the two possible images of i under witnesses of Φj ≤ Φm. If there is il ∈ Il such

that both il and i′l are images of witnesses of Φj ≤ Φl, then by Lemma 3.6.1

every witness of Φl ≤ Φm maps i to il. Thus fmj(i) = fml(il) = fml ◦ flj(i).
So assume that there is no il ∈ Il that has ij and i′j as possible images under

witnesses of Φj ≤ Φl. By renaming assume that i′j is the successor of ij . Then

by Lemma 3.6.2 there are il and i′l in Il such that every witness of Φj ≤ Φl

maps il to ij and i′l to i′j . Also, i′l is the successor of il, and every witness of

Φl ≤ Φm maps i to il or i′l. Then fml(i) cannot be defined via the first case,

because that would imply that fmj(i) would also be defined via the first case.

So fmj(i) = i′j = flj(i
′
l) and fml(i) = i′l.

For j ≤ l ∈ J let Flj be the unique extension of flj to a surjective map

C(Il) → C(Ij) respecting the cyclic order with Flj(Il) = Ij , which exists by

Lemma 3.4.5.
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Figure 11: To the left: The maps (Flj)j≤l∈J extend the compatible maps
(flj)j≤l∈J and are therefore compatible witnesses that the k-pseudoflowers are
comparable are compatible. To the right: The maps (Πj)j∈J defined via the
projections (πj)j∈J are compatible with the maps (Flj)j≤l∈J .

Lemma 3.6.5. The maps Flj are witnesses of Φj ≤ Φl and are compatible in

the sense that for j ≤ l ≤ m ∈ J the concatenation of Flj and Fml is Fmj.

Proof. As flj can be obtained from the restriction of any witness of Φj ≤ Φl to

Il by changing the images of some elements of Ij to another image they can have

under witnesses of Φj ≤ Φl, by Lemma 3.4.19 Flj is also a witness of Φj ≤ Φl.

Furthermore the restriction of Flj ◦ Fml to Im is equal to fmj , and Flj ◦ Fml
is surjective, respects the cyclic order and satisfies Fmj(Im) = Ij . Thus, by

uniqueness of the extensions, Fmj = Flj ◦ Fml.

Corollary 3.6.6. There are witnesses Flj of Φj ≤ Φl, one for all pairs of indices

j ≤ l ∈ J , such that for all j ≤ l ≤ m ∈ J the concatenation of Flj and Fml is

Fmj.

3.6.2 Inverse limits of pseudoflowers

As we showed in the last section, there is a compatible family of witnesses Flj of

Φj ≤ Φl, one for every pair of indices j ≤ l ∈ J . For the following construction

we fix one such family. Then there is an inverse limit I of the Ij with projections

(πj)j∈J . Because all Flj respect the cyclic order, the inverse limit also has a cyclic

order which is respected by the projections. Further, because all the Flj are

surjective, so are the projections. We will construct a partition Ψ := (Pi)i∈C(I)

that is a upper bound of the chain (Φj)j∈J and is a k-pseudoflower except that

it may violate (∗). So far we can only define Pi with i ∈ I: It is the intersection

of all sets Pπj(i) with j ∈ J .
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We will now relate C(I) to the cyclically ordered sets C(Ij). By Lemma 3.4.5

every projection πj : I → Ij can be extended uniquely to a surjective map

Πj : C(I)→ C(Ij) that respects the cyclic order. For j ≤ l ∈ J , the restriction

of Flj ◦Πl to Il is πj , and hence Flj ◦Πl = Πj . By Lemma 3.4.6, the cutpoints of

the C(Ij) can be identfied with each other and with cutpoints of C(I) as follows:

Given j ≤ l ≤ n ∈ J and v ∈ C(Ij) \ Ij , let u be the unique element of Il with

Flj(u) = v and let u′ be the unique element of In with Fnl(u
′) = u. Then u′

is also the unique element of In with F (nj)(u′) = v. Also, if w is the unique

element of C(I) with Πl(w) = u, then w is the unique element of C(I) with

Πj(w) = v. So it is well-defined to identify v with w and with all cutpoints that

get mapped to v via some Flj . We do this identification for all cutpoints of all

C(Ij) and denote the set of cutpoints of C(I) that are identified with a cutpoint

of some C(Ij) by VF . Then for v ∈ VF , Pv is the same for all j ∈ J where v is

a cutpoint, so we take that vertex set also to be Pv for Ψ. Also note that, for

v, w ∈ VF , V (v, w) does not depend on the k-pseudoflower Φj with respect to

which it is defined. But V (v, w) taken in Ψ is not yet defined, and when it is we

will first have to show that it is equal to V (v, w) taken in some Φj .

In order to properly distinguish here, for cutpoints v and w of C(I) we

introduce the notation

V ′(v, w) = X ∪ Pv ∪ Pw ∪
⋃

z∈[v,w]∩(I∪VF )

Pz

and

V̂ (v, w) = X ∪
⋃

z∈[v,w]∩C(I)

Pz

while the notation V (v, w) is reserved for the case v, w ∈ VF and the value

taken in some Φj . Note that up to now, in many cases V ′ and V̂ are not yet

well-defined because Pz is not yet defined for cutpoints z /∈ VF . Those sets Pz

are going to be defined later.

For v, w ∈ VF , we can see that V ′(v, w) and V (v, w) are the same:

Lemma 3.6.7. For all distinct v, w ∈ VF we have V (v, w) \X =
⋃
z∈[v,w] Pz

where the interval is taken in I ∪ VF .

Proof. Let us first show that V (v, w) \ X is a subset of
⋃
z∈[v,w] Pz. For this,

let u ∈ V (v, w) \X. If also u ∈ V (w, v) then u ∈ Pv ∪ Pw and we are done, so
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assume that u /∈ V (w, v). If there is z ∈ VF such that u ∈ Pz, then u /∈ V (w, v)

implies that z /∈ [w, v] and thus z ∈ [v, w]. If there is no z ∈ VF such that u ∈ Pz,
then for all j ∈ J there is a unique ij ∈ Ij such that u ∈ Pij . In this case also

Flj(il) = ij for all j ≤ l ∈ J . So there is i ∈ I such that Πj(i) = ij for all j ∈ J ,

and u ∈ Pi. Again u /∈ V (v, w) implies i ∈ [v, w].

To prove the other inclusion, let j ∈ J be sufficiently large such that C(Ij)

contains v, w and z if z ∈ VF . Then Φj witnesses that Pz ⊆ V (v, w). Furthermore

all Pz are disjoint from X.

Corollary 3.6.8. X = V (G) \
⋃
z∈I∪VF Pz.

Corollary 3.6.9. For all distinct v, w ∈ VF we have V (v, w) = V ′(v, w).

Corollary 3.6.10. For all distinct v, w ∈ VF the pair (V ′(v, w), V ′(w, v)) is a

separation of order at most k with separator Pv ∪ Pw ∪X.

3.6.3 Completing the index set

Let VN be the set of cutpoints of C(I) that are not contained in VF . In this

subsection we will define the values Pz with z ∈ VN .

Lemma 3.6.11. Every v ∈ VN has a unique neighbor in C(I), which is an

element of I.

Proof. As v ∈ VN , no Πj maps v to a cutpoint. Let i be the element of I with

πj(i) = Πj(v) for all j ∈ J . If it exists, let z be a neighbor of v in C(I). For all

j ∈ J , Πj(z) is Πj(v) or one of its neighbors in C(Ij). Also no cutpoint can be

a neighbor of another cutpoint by Lemma 3.4.4, so z ∈ I and z = i. Hence if

v has a neighbor in C(I) then that neighbor is i. As i is the only element of I

with Πj(i) = Πj(v) for all j ∈ J , i is indeed a neighbor of v in C(I).

Now we want to define Pv for v ∈ VN . By Lemma 3.6.11 there is a unique

i ∈ I which is a neighbor of v in C. For every j ∈ J let uj be the predecessor

and wj the successor of Πj(i) in C(Ij). Let z ∈ VF be a cutpoint such that for

all sufficiently large j ∈ J both S(z, wj) and S(z, uj) distinguish two elements of

P. In particular, for all sufficiently large indices j, Pz is disjoint from Puj and

Pwj and thus Pz is disjoint from V (uj , wj).

If v is the predecessor of i, then let (Y,Z) be the supremum of the set

{S(z, u) : u ∈ (z, v) ∩ VF } and otherwise let (Y,Z) be the infimum of the set

{S(z, w) : w ∈ (v, z)∩VF }. In both cases (Y,Z) has order at most k because the
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Figure 12: To the left: In the case that v ∈ VN is the predecessor of its neighbor
i in C(I), the set Pv is defined via the limit of the separations S(z, uj) for some
suitable z ∈ VF .
To the right: Pv does not depend on the choice of z, see also Lemma 3.6.15.

order function is limit-closed. Define Pv := (Y ∩ Z) \ (Pz ∪X). As S(z, uj) ≤
(Y,Z) ≤ S(z, wj) for all sufficiently large j ∈ J , Y ∩ Z contains Pz. Also (Y, Z)

distinguishes two elements of P so it has order k. Hence Pv has (k − |X|)/2
many elements.

Lemma 3.6.12. Pv ⊆ V (uj , wj) for all j ∈ J .

Proof. It suffices to show the claim for all j ∈ J such that z is a cutpoint of

C(Ij). As S(z, uj) ≤ (Y, Z) ≤ S(z, wj) by definition, Y ∩ Z is contained in

V (z, wj) ∩ V (uj , z), which equals V (uj , wj) ∪ Pz by Lemma 3.4.9. As Pv is a

subset of Y ∩ Z and is disjoint from Pz, the lemma holds.

Corollary 3.6.13. Pv ⊆ Pi.

Proof. As every Φj is a k-pseudoflower, for sufficiently large j ∈ J we have

V (uj , wj) = X ∪ PΠj(i) ∪ Puj ∪ Pwj = X ∪ PΠj(i).

Because Pv is disjoint from X, this implies Pv ⊆
⋂
j∈J PΠj(i) = Pi.

Corollary 3.6.14. For i′ ∈ I, if u is a neighbor of i′ in C(I) then Pu ⊆ Pi′ .

Proof. If u ∈ VN , then i′ is the unique neighbor of u and Pu ⊆ Pi′ by Corol-

lary 3.6.13. If u ∈ VF , then Pu ⊆ PΠj(i′) for all j ∈ J for which u is a cutpoint,

also implying Pu ⊆ Pi′ .

Lemma 3.6.15. The set Pv does not depend on the choice of z.
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Proof. Let z1 and z2 be two possible choices for z, assume z1 ∈ [v, z2]. Denote

the sets defined by zn by a superscript index n. This proof is for the case that v is

the predecessor of i, the proof of the other case is symmetric. Let l be sufficiently

large that both S(z1, wl) and S(z2, ul) are defined in Φl and distinguish two

elements of P.

As S(z1, uj) ≥ S(z2, uj) for all j ≥ l, also (Y 1, Z1) ≥ (Y 2, Z2). Furthermore

for all j ≥ l,

S(z1, ul) ∨ (Y 2, Z2) ≥ S(z1, ul) ∨ S(z2, uj) = S(z1, uj).

So (Y 1, Z1) ≤ S(z1, ul) ∨ (Y 2, Z2) ≤ (Y 1, Z1) and thus the two separations are

equal. In particular P 1
v ⊆ Z1 ⊆ Z2 and P 1

v ⊆ Y 2 ∪ V (z1, ul). Because also

P 1
v ⊆ V (ul, wl), together we have

P 1
v ⊆ V (ul, wl) ∩ (Y 2 ∪ V (z1, ul)) = (V (ul, wl) ∩ Y 2) ∪ (X ∪ Pul) ⊆ Y 2

where the equality holds by Lemma 3.4.9. Hence P 1
v ⊆ Y 2 ∩ Z2. Also P 1

v ⊆
V (uj , wj) for all sufficiently large j ∈ J implies that P 1

v ∩V (z1, z2) = ∅ and thus

P 1
v = P 2

v as those two sets have the same size.

Lemma 3.6.16. (Y, Z) = (V ′(z, v), V ′(v, z)).

Proof. We are going to show the lemma in the case that v is the predecessor of

i, the other case is symmetric.

We have V ′(z, v) = Pv ∪
⋃
t∈[z,v]∩VF V (z, t) ⊆ Y . Assume there is u ∈

Y \ V ′(z, v), then u /∈ V (z, uj) for all sufficiently large j ∈ J . So u ∈ Z and thus

u ∈ Pz ∪ Pv ∪X, a contradiction. So Y = V ′(v, z).

We have V ′(v, z) ⊆ V ′(uj , z) = V (uj , z) for all sufficiently large j ∈ J and

thus V ′(v, z) ⊆ Z. Let u ∈ Z \ (X ∪ Pv) and let w ∈ I ∪ VF be some element

such that u ∈ Pw. If w ∈ [v, z], then also u ∈ V ′(v, z). Otherwise w ∈ [z, v],

so w ∈ [z, uj ] for some j ∈ J and thus u ∈ V (z, uj) ⊆ Y . In this case we have

u ∈ Y ∩ Z = Pv ∪ Pz ∪X ⊆ V ′(v, z). Thus Z ⊆ V ′(v, z), and these two sets are

equal.

Corollary 3.6.17. (V ′(z, v) ∪ Pv, V ′(v, z) ∪ Pv) is a separation with separator

Pv ∪ Pz ∪X.
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3.6.4 Interval separations are indeed k-separations

The goal of this section is to show that the interval separations of the limit we

are constructing have the properties required in the definition of pseudoflowers.

Lemma 3.6.18. For all distinct v, w ∈ VF ∪ VN we have V ′(v, w) = V̂ (v, w).

Proof. V ′(v, w) ⊆ V̂ (v, w) is clear by definition of V ′(v, w). In order to show

the reverse inclusion, let t be an element of [v, w]. and u ∈ Pt. If t ∈ {v, w} or

t ∈ I ∪ VF , then clearly Pt ⊆ V ′(v, w) ∪ Pv ∪ Pw. Otherwise t has a neighbor

i ∈ I, and i ∈ [v, w]. Then by Corollary 3.6.13, Pv ⊆ Pi ⊆ V ′(v, w).

Lemma 3.6.19. (The cyclic order is illustrated in Fig. 6). Let a, b, c and d be

elements of VF ∪ VN such that

� b ∈ [a, c] and d ∈ [c, a]

� (V ′(a, c), V ′(c, a)) is a separation with separator X ∪ Pa ∪ Pc

� (V ′(b, d), V ′(d, b)) is a separation with separator Pb ∪ Pd ∪X.

� Pa ∩ Pd = ∅.

Then (V ′(b, c), V ′(c, b)) is a separation with separator Pb ∪ Pc ∪X.

Proof. We show that

(V ′(b, c), V ′(c, b)) = (V ′(a, c), V ′(c, a)) ∧ (V ′(b, d), V ′(d, b)).

V ′(c, b) = V ′(c, a)∪V ′(d, b) and V ′(b, c) ⊆ V ′(a, c)∩V ′(b, d) clearly hold. Let u ∈
V ′(c, b)\(Pb∪Pc∪X). Because Pa∩Pd is empty, either u ∈ V ′(c, a)\(Pa∪Pc∪X)

or u ∈ V ′(d, b) \ (Pb ∪ Pd ∪X). In the first case, because (V ′(a, c), V ′(c, a)) is

a separation with separator Pa ∪ Pc ∪X, u is an element of V ′(c, a) \ V ′(a, c).
In the second case we similarly get u ∈ V ′(d, b) \ V ′(b, d). Hence in both cases

u /∈ V ′(a, c) ∩ V ′(b, d), showing that V ′(a, c) ∩ V ′(b, d) = V ′(b, c). Furthermore,

V ′(b, c) ∩ V ′(c, b) ⊆ Pb ∪ Pc ∪X, and so the inclusion must be an equality.

Lemma 3.6.20. For all distinct v, w ∈ VF ∪ VN the pair (V̂ (v, w), V̂ (w, v)) is

a separation with separator X ∪ Pv ∪ Pw.

Proof. By Lemma 3.6.18 it suffices to show that (V ′(v, w), V ′(w, v)) is a separa-

tion with the correct separator for all distinct elements v and w of VF ∪ VN . If

both v and w are contained in VF then this is true by Corollary 3.6.10. Consider
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first the case that exactly one is contained in VF , by switching the names we

may assume w ∈ VF . If w is a suitable candidate for z in the definition of

Pv, then (V ′(w, v), V ′(v, w)) is a separation with separator Pv ∪ Pw ∪ X by

Corollary 3.6.17. So assume otherwise. We will consider the case that for all

sufficiently large j ∈ J , S(w, uj) does not distinguish elements of P, the case

where S(w,wj) does not distinguish elements of P is symmetric.

Let z ∈ VF from which Pv might have been defined. Then by choice of

z there is t ∈ VF such that S(t, z) distinguishes elements of P and such that

t ∈ [v, z] if w ∈ [z, v] and t ∈ [z, v] if w ∈ [v, z]. Also (V ′(z, v), V ′(v, z)) is a

separation with separator Pz ∪ Pv ∪X by Corollary 3.6.17 and we already saw

that (V ′(w, t), V ′(t, w)) is a separation with separator Pw ∪Pt∪X. Furthermore

S(t, z) = (V ′(t, z), V ′(z, t)), and because S(t, z) distinguishes elements of P and

thus has connectivity k this implies Pt∩Pz = ∅. Now we can apply Lemma 3.6.19.

If t ∈ [v, z] then we apply Lemma 3.6.19 for a = z, b = w, c = v and d = t.

Otherwise we apply the lemma for a = t, b = v, c = w and d = z. In both cases

(V ′(w, v), V ′(v, w)) is a separation with separator Pv ∪ Pw ∪X.

Now assume that both v and w are contained in VN . Because every Φj

distinguishes at least three elements of P, by swapping the names of v and w

if necessary we may assume that there are t and u in VF such that t ∈ [v, w]

and u ∈ [t, w] and S(t, u) distinguishes elements of P. We already showed

that (V ′(v, u), V ′(u, v)) and (V ′(t, w), V ′(w, t)) are k-separations with separator

Pv ∪ Pu ∪X and Pt ∪ Pw ∪X respectively. Furthermore Pt ∩ Pu = ∅ because

S(t, u) distinguishes elements of P, thus we may apply Lemma 3.6.19 to a = u,

b = w, c = v and t = d and we are done.

3.6.5 Deletion of redundant petals

Φ is now nearly a k-pseudoflower, the only property missing is (∗). In order to

fix that, we are going to delete troublesome elements from I.

Let Y be the set of subsets of V of size (k − |X|)/2 that are of the form Pi

for some i ∈ I. In order to ensure that (∗) holds, it suffices to delete, for every

Y ∈ Y , all but one index i ∈ I with Pi = Y . For that, we first define one element

we want to keep: If there is j ∈ J and ij ∈ Ij whose petal is Y , then we want to

define iY to be an element of I with πj(iY ) = ij . If that does not exist, then we

pick iY arbitrarily with PiY = Y .

Actually if iY is defined via the first case, then iY is uniquely determined:

Lemma 3.6.21. Let Y ∈ Y and ij be an index element of some Φj whose petal
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is Y . Then there is a unique i ∈ I with πj(i) = ij , and if Pil = Y for some l ∈ J
and il ∈ Il, then πl(i) = il.

Proof. Let l ∈ J with j ≤ l. By Lemma 3.4.16 there is some il ∈ Il that is

mapped to ij by all witnesses of Φj ≤ Φl, in particular Flj(il) = ij . Thus

Pil is contained in Pij and has size at least (k − |X|)/2. But Pij also has size

(k − |X|)/2, so Pil = Pij = Y . By (∗), il is the only element of Il with Pil = Y ,

and thus il is the only element of Il with Flj(il) = ij .

So if i and i′ are elements of I with πj(i) = πj(i
′) = ij , then πl(i) = πl(i

′)

for all l ≥ j, implying that i = i′. By construction of I there is some i ∈ I with

πj(i) = ij , thus there is a unique such element.

The previous lemma implies that if there is some index ij of some Φj with

Pij = Y , then there is i ∈ I such that all indices of any Φj whose petal is Y are

the image of i under πj .

Obtain I ′ from I by deleting, for every element Y of Y, all i ∈ I − iY with

Pi = Y . Obtain C from C(I) by deleting I \ I ′ and, for all i ∈ I \ I ′, the

predecessor of i in C(I).

The following lemma implies that the elements of I ′ are close to being “dense”

in C(I):

Lemma 3.6.22. Let w and w′ be distinct elements of VF such that for some

Y ∈ Y, Pz = Y for all z ∈ [w,w′] \ I. Then for some i′ ∈ [w,w′] there is j ∈ J
with Pπj(i′) = Y or there is y ∈ Pi′ such that y /∈ Pi′′ for all i′′ ∈ I − i′.

Proof. Let j ∈ J be large enough that C(Ij) contains both w and w′. Then

there is ij ∈ [w,w′] ∩ Ij , where the interval is taken in C(Ij), and some i′ ∈ I
with πj(i

′) = ij . For the predecessor p and the successor s of ij in C(Ij),

Ps = Pp = Y . So Pi′ is a subset of Pij . If Pij = Y , then the lemma holds, so

assume otherwise. Let y be an element of Pij that is not contained in Y . Then

s and p are contained in [w,w′] and V (p, s) does not depend on whether it is

taken in (Pz)z∈C(I) or in Φj . Hence there is z ∈ [w,w′] such that y ∈ Pz, and z

has to be contained in I. So y ∈ Pz for some z ∈ [w,w′] ∩ I, implying that the

predecessor p′ and successor s′ of z in C(I) both have Y as vertex set. Then

the separating set of the separation S(z) is Y , implying that y is only contained

in Pz and in no Pi′′ with i′′ ∈ I − z.

So every element of C(I) \ C is close to some element of C:
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Lemma 3.6.23. Let z ∈ C(I) \ C. Then there is v ∈ C \ I ′ such that [z, v] is

finite, no element of [z, v) is contained in C, and Pz′ = Pv for all z′ ∈ [z, v).

Proof. If z ∈ I, then let i0 = z, otherwise let i0 be the successor of z. Recursively,

if il is defined and has a successor in I that is not contained in I ′, then define

il+1 to be that successor.

Assume for a contradiction that i2 is defined. For any distinct i, i′ ∈ I, some

projection πj maps i and i′ to different images. So there is w ∈ VF such that

w ∈ [i, i′]. Thus the common neighbor w0 of i0 and i1, and the common neighbor

w1 of i1 and i2, are both contained in VF . Now the previous lemma implies that

i1 is contained in I ′, a contradiction.

If i1 is defined, then let v be the successor of i1 in C(I). Otherwise let v

be the successor of i0 in C(I). Thus, if v is the predecessor of some element of

I, then that is also contained in I ′. For i ∈ I \ I ′, and the predecessor p and

successor s of i in C(I), Pp = Pi = Ps. In particular Pz = Pi0 = Pv, and if i1 is

defined then also Pv = Pi1 = Pw0
for the common neighbor w0 of i0 and i1 in

C(I).

Lemma 3.6.24. C is a cycle completion of I ′.

Proof. In order to show that the identity on I ′ can be extended uniquely to a

bijective monotone map from C to C(I ′) it suffices to show that all non-trivial

intervals of I ′ can be uniquely written as [v, w]∩I ′ for elements v and w of C \I ′.
In order to do so, let I ′′ be a non-trivial interval of I ′, and let i ∈ I ′ \ I ′′. Let Î

be the set of all î for which there are i1, i2 ∈ I ′′ such that the interval [i1, i2],

taken in I, contains î but not i. Then Î is an interval of I that contains I ′′ as a

subset and that does not contain i. So Î can be written as [v, w] ∩ I for unique

elements v and w of C(I) \ I. Also, I ′′ = Î ∩ I ′ = [v, w] ∩ I ′.
In order to find v and w that are contained in C, first consider v. If v is the

predecessor of some i′ ∈ I, then i′ is contained in I ′′ and thus in I ′. So v cannot

be the predecessor of an element of I \ I ′, implying that v is contained in C. But

w could indeed be contained in C(I) \C. If it is, then apply Lemma 3.6.23 to w

and obtain w′. Otherwise let w = w′. Then Î = [v, w] ∩ I ′ = [v, w′] ∩ I ′.
In order to show that v and w′ are unique, it suffices to show for any distinct

v, w ∈ C \ I ′ that [v, w] ∩ I ′ is non-empty. As in the proof of Lemma 3.6.23, if

[v, w] contains enough elements (at least 7) then it contains two elements of VF

and thus an element of I ′. Otherwise, [v, w] is finite and v is the predecessor in

C(I) of some i ∈ [v, w] ∩ I. Because v ∈ C, this implies that i ∈ I ′.

102



Let F̃ : C(I ′)→ C be a bijective monotone map whose restriction to I ′ is the

identity. This map then identifies C(I ′) with C. Denote the family (Pz)z∈C(I′)

where each Pz is equal to PF̃ (z), by Φ′. As Φ satisfies all properties of a k-

pseudoflower with the possible exception of (∗), also Φ′ satisfies all properties of

a k-pseudoflower with the possible exception of (∗).

Lemma 3.6.25. For all elements v and w of C \ I ′ we have⋃
z∈[v,w]C

Pz =
⋃

z∈[v,w]C(I)

Pz

where the intervals are taken in C and C(I), respectively.

Proof. It is clear that the left-hand side is a subset of the right-hand side. In

order to show the other direction, let u ∈ [v, w]C(I). If u ∈ C then u ∈ [v, w]C ,

so assume otherwise. Apply Lemma 3.6.23 to u and obtain z′ ∈ C \ I ′. Then

w /∈ [u, z′), as w ∈ C, so z′ ∈ [v, w]. As Pu = Pz′ , the lemma holds.

Lemma 3.6.26. Φ′ is a k-pseudoflower such that Φj ≤ Φ′ for all j ∈ J .

Proof. Recall that by F̃ , C(I ′) is identified with C. For all v, w ∈ C(I ′) \ I ′,⋃
z∈[v,w]C(I′)

Pz =
⋃

z∈[v,w]C

Pz by Lemma 3.6.25

= V ′(v, w) \X by Lemma 3.6.18

so by Lemma 3.6.20 S(v, w) taken in Φ′ is a separation with separator Pv∪Pw∪X
and also X = V \

⋃
z∈C(I′) Pz. As every Pv with v ∈ C(I)\I has size (k−|X|)/2,

this is also true for every v ∈ C(I ′) \ I ′. Hence every S(v, w) has order at most

k. If some i ∈ I ′ has a neighbor v in C(I ′), then Pv ⊆ Pi by Corollary 3.6.14.

And by definition of I ′, Φ′ satisfies (∗). Thus Φ′ is a k-pseudoflower.

In order to show that Φj ≤ Φ′ for all j ∈ J , we first show that the restriction

of πj to I ′ is surjective. For that, let ij ∈ Ij and let p and s be the predecessor

and successor of ij in C(Ij). Then p and s are contained in VF , and thus by

Lemma 3.6.22 there is i ∈ [v, w]∩ I ′, and πj(i) = ij . So the restriction of πj to I ′

with codomain Ij is a surjective monotone map, and there is a unique monotone

surjective extension Fj : C(I ′)→ C(Ij) with Fj(I
′) = (Ij).

Let v and w be distinct elements of C(Ij) \ Ij . If v ∈ C, then let v′ = v.

Otherwise there is, by Lemma 3.6.23, an element v′ ∈ C\I ′ such that [v, v′]∩C =
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v′ and Pv = Pv′ . Define w′ similarly. Then

V (v, w) = V̂ (v, w) = V̂ (v′, w′) = V (F̃−1(v′), F̃−1(w′))

so Fj witnesses that Φj ≤ Φ′.

So in this section it was shown that if (Φj)j∈J is a ≤-chain of k-pseudoflowers

which distinguish at least three elements of P that they locate, then there is a

k-pseudoflower which is an upper bound of the chain (Φj)j∈J . In particular, if

Ψ is a k-pseudoflower which distinguishes at least three elements of P that it

locates, then the set of k-pseudoflowers Φ′ with Ψ ≤ Φ′ every ≤-chain has an

upper bound. Thus the following theorem follows by Zorn’s Lemma:

Theorem 3.6.27. Let Φ be a k-pseudoflower which distinguishes at least three

elements of P that it locates. Then there is a ≤-maximal k-pseudoflower Ψ such

that Φ ≤ Ψ.

In this theorem, the condition that Φ distinguishes at least three elements

of P that it locates can be weakened to Φ distinguishing any three profiles or

tangles that it locates. As every k-pseudoflower locates every k-tangle, and every

k-pseudoflower extending a k-flower with four petals locates every k-profile, the

theorem can be specialized to the following versions:

Theorem 3.6.28. Let Φ be a k-pseudoflower which distinguishes at least three

k-profiles and extends a k-flower with four petals. Then there is a ≤-maximal

k-pseudoflower Ψ such that Φ ≤ Ψ.

Theorem 3.6.29. Let Φ be a k-pseudoflower which distinguishes at least three

k-tangles. Then there is a ≤-maximal k-pseudoflower Ψ such that Φ ≤ Ψ.

3.6.6 Existence of 4-maximal pseudoflowers

Call an element P of P closed if whenever (Sj)j∈J is a chain of elements of P ,

then its supremum (which exists because their order is bounded) is contained in

P . If P only contains closed elements, then ≤-maximal k-pseudodaisies are also

4-maximal, and thus there are 4-maximal k-pseudodaisies.

Theorem 3.6.30. Let Φ be a k-pseudoflower that is ≤-maximal and distinguishes

three elements of P that it locates. If all elements of P are closed, then Φ is also

4-maximal.
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S(v, t)
∈ P3

S(t, w)
∈ P4

W

Figure 13: Some of the notation used in the proof of Theorem 3.6.30.

Proof. See Fig. 13 for a depiction of some of the notation. Let Φ be a k-

pseudoflower that distinguishes three elements of P that it locates and which is

not 4-maximal among all k-pseudoflowers, as witnessed by Φ′. Let P1 and P2

be two elements of P which are distinguished by Φ′ but not by Φ.

By Lemma 3.4.20 there is a cutpoint v ∈ C(I)\I such that either S(v, w) ∈ P1

for all w ∈ C(I) \ I − v or S(w, v) ∈ P1 for all w ∈ C(I) \ I − v. We will assume

that S(v, w) ∈ P1 for all w ∈ C(I)\I−v, the other case is symmetric. Because Φ

distinguishes at least three elements of P there is an interval separation S(v, w)

of Φ whose inverse is contained in two elements P3 and P4 of P which are

distinguished and located by Φ. As Φ distinguishes and locates P3 and P4, and

distinguishes them from P1, there is t ∈]v, w[ such that S(v, t) distinguishes P3

and P4. By swapping the names of P3 and P4 if necessary, we may assume that

S(t, v) ∈ P3. Again by the profile property also S(t, w) distinguishes P3 and P4

with S(w, t) ∈ P4.

The k-pseudoflower Φ′ distinguishes P1, P2, P3 and P4 pairwise, so there

is an interval separation (C,D) of Φ′ which is contained in P3 but not P4 and

which distinguishes P1 and P2. By swapping the names of P1 and P2 if necessary

we may assume that (C,D) is contained in P1 and P3 and that its inverse is

contained in P2 and P4.

If v has a predecessor v′ in C(I) \ I, then (C,D) properly crosses S(v, v′)

and by Lemmas 3.5.1 and 3.5.3 there is an extension Φ′′ of Φ which distinguishes

P1 and P2. Assume for a contradiction that v has no predecessor in C(I) \ I.

Let W be the interval (w, v) \ I. If Φ is a k-pseudoanemone, then S(t, v) is

the supremum of the separations S(t, x) with x ∈W . Because P1 is closed and
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contains all S(t, x) with x ∈W but not S(t, v), Φ cannot be a k-pseudoanemone

and thus has to be a k-pseudodaisy.

For all x ∈W let Sx be the separation ((C,D) ∨ S(t, x)) ∧ S(t, v). All three

k-separations (C,D), S(t, x) and S(t, v) are contained in P3, not contained in

P4 and have order at most k, so Sx has order at most k. Denote the unique

supremum of (Sx)x∈W , which exists by limit-closedness, by (A,B). As the union

of all sets V (v, x) with x ∈W is the whole ground set V , there is some y ∈W
such that V (v, y) contains A ∩ B. But all profiles are closed, so (A,B) is still

contained in P1 and thus properly crosses S(v, y). Hence applying Lemma 3.5.2

to the concatenation of Φ on vertices v, t and y shows that A ∩ B contains a

vertex not in V (v, y), a contradiction to the choice of y.

Theorem 3.6.31. Let Φ be a k-pseudodaisy that distinguishes and locates at least

three elements of P. If every element of P is closed, then there is a 4-maximal

k-pseudoflower Ψ with Φ ≤ Ψ.

3.7 Flower tree sets

Now that we have shown the existence of maximal flowers, we want to examine

how they can help in constructing decompositions. Recall that earlier in this

chapter we introduced a function fP and then proceeded in two steps: first we

chose an abstract tree set in the image of fP and then we selected from the

fibers of fP a concrete set of separations.

In this section, whenever we speak of a maximal flower, this is meant with

respect to 4. Using our results we could now simplify the first step by starting

with the set X of all relevant separations occurring as a petal separation of a

maximal k-pseudoflower.

Lemma 3.7.1. fP(X) is a tree set which separates any different P,Q ∈ P.

Proof. Let (A,B) and (C,D) be separations of X. There is a maximal flower Φ

which has (A,B) as a petal separation. If (C,D) properly crossed (A,B), this

would contradict the maximality of Φ by Lemma 3.5.3. Thus fP(A,B) is nested

with fP(C,D). Thus fP is a tree set.

Furthermore for different P,Q ∈ P there is some (A,B) distinguishing them.

Then (A,B) is displayed by some maximal flower Φ. Since P and Q are closed,

there are petal separations (C,D) ∈ P and (E,F ) ∈ Q. These must be different,
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however, since otherwise P and Q could not orient (A,B) differently. Thus the

image of (C,D) under fP separates P and Q.

Furthermore maximal flowers can also be located in the resulting tree set.

Given a maximal flower Φ the complements of fP(A,B) for all petal separations

(A,B) of Φ extend to a unique consistent orientation, since every P ∈ P lives in

some petal. This also shows that there is no profile in the intersection of the

right sides of o. While in the finite cases, one can show that each node of the

tree set constructed corresponds to either one of our profiles or a flower, this

is not quite true for us, since there may be limit nodes which contain profiles

which are not closed and thus not contained in P

3.8 Outlook

One natural question to ask is whether all three conditions in Theorem 3.2.6,

namely closure, orderliness and regularity, are necessary. Dropping closure would

clearly require a completely different approach if it is possible, the same is

probably also true for orderliness, since Lemma 3.2.3 will not work without it.

In [22] we will show that using the notion of essential core from [13] it is possible

to drop regularity.

A similar question can be asked for Theorem 3.3.1. Here, however, it is

unclear whether the theorem holds without regularity since taking the essential

core does not preserve the property of being a universe.

There are also two additional properties which one might wish for from a tree

set as in Theorem 3.3.1. The first is being minimally distinguishing. In the finite

case this is very easy to achieve by simply dropping unnecessary separations,

but doing this in the infinite case could easily leave no separations at all. The

second property is canonicity, that is invariance under isomorphisms, discussed

for example in [15]. Our current proof strategy does not establish canonicity,

since the consistent orientation in each step is chosen canonically.

As we have seen in Section 3.7, we cannot quite achieve a tree set in which

every node contains either one of our profiles or displays a flower, analogously

to [10]. Perhaps, however, one might show that each of the nodes containing

neither contains a non-closed profile which is a limit of our set of profiles

107



Chapter 4

Ubiquity

4.1 Introduction

A graph G is called ubiquitous (with respect to subgraphs) if every graph

containing arbitrarily many disjoint copies of G also contains infinitely many

disjoint copies of G. This notion was introduced by Halin in [31], who proved

that rays have this property. However, this is not particularly common, so

interest has recently focused more on ubiquity with respect to topological minors

and minors (defined analogously), for instance in a series of articles starting with

[6].

Ubiquity, however, is not only meaningful in graphs, but also, for instance,

in topological spaces and by extension path spaces. In these settings, it becomes

more natural to slightly reformulate the definition of ubiquity. Instead of talking

about ubiquity with respect to a specific relation, one can call a class C of path

spaces ubiquitous if any path space containing arbitrarily many disjoint elements

of C contains infinitely many disjoint elements of C.
Many ubiquity proofs are like Halin’s original proof in [31] in that they build

up copies step-by-step during a recursive process. However, this approach is

problematic in path spaces since we might end up in the same limit point during

the construction of two supposedly disjoint copies. To illustrate the new method

we use instead, in Section 4.2 we first show an easier result implied by our main

theorem, namely the ubiquity of certain theta-like spaces, which we call ladders.

In particular this gives a short proof that S1 is ubiquitous in topological spaces.

The first step of our proof method is somewhat reminiscent of [6, Lemma 5.4]:
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we recursively delete all ladders whose deletion still leaves infinitely many ladders.

If this does not stop, we are done. Otherwise we fix a set of three ladders, such

that deleting any of them leaves only some finite number r of ladders. But taking

some other huge set of disjoint ladders, we show that between two of our three

ladders we can construct a set of more than r disjoint ladders not meeting the

third.

Next we will extend this proof method to prove the main theorem of this

chapter, which we state here in a slightly weaker version.

Theorem 4.1.1. Let G be a finite, planar graph. Then the class of IG is

ubiquitous.

Section 4.3 gives some prepatory lemmas for Theorem 4.1.1, before we

complete the proof in Section 4.4.

Ubiquity is also sometimes considered with respect to edge-disjointness. While

this is not immediately sensible for path spaces, in Section 4.5 we define a notion

of edge-ubiquity and show that cycles have this property. In Section 4.6 we give

some counterexamples for topological minors. In particular we show that the

class of TK5 is not ubiquitous and that there is some tree G such that TG is

not ubiquitous.

4.2 Ladders

In this section we will prove the ubiquity of a special class of path spaces called

s-ladders. While this is implied by the main theorem of this chapter, it is

instructive to isolate the main idea of our argument from the more complicated

details that arise in the general case. We also remark that the proofs in this

section do not use the full properties of path spaces: instead of compatibility

it is enough to require that every path P has a segment that is an A-B-path

whenever A,B are paths meeting P .

We start by observing a Ramsey-type property of linear orders which we will

apply quite a few times to clean up large sets of paths, possibly interacting badly.

Let k ≤ ℵ0 and l a positive natural number. An l-system is a set of l linear

orders on the same set, which we call its ground set. The size of an l-system is

the cardinality of its ground set. In this section L will always be an l-system and

X its ground set. A set is sorted in L if its order is the same up to reversing in

any element of L. For any k ≤ ℵ0 and finite l let R(k, l) be the smallest cardinal
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κ ≤ ℵ0 such that for any l-system L of size at least κ there exists some set of

size k sorted in L, if such a cardinal exists.

Let g(k) = (k − 1)2 + 1. Then the following is a consequence of the

Erdős–Szekeres theorem for finite k and follows by a well-known Ramsey-type

argument for k = ℵ0.

Lemma 4.2.1. R(k, 2) = g(k)

We can use this to deduce bounds on our Ramsey numbers.

Proposition 4.2.2. R(k, l) ≤ gl−1(k)

Proof. Clearly, R(k, 1) = k. For l ≥ 2 we prove this assertion by induction on l for

all k simultaneously. The base case is Lemma 4.2.1. Now let L be some l-system

for l > 2. Let a ∈ L be arbitrary. Since R(g(k), l − 1) ≤ gl−2(g(k)) = gl−1(k),

by the induction hypothesis there exists some set Y of size g(k) sorted in L− a.

Let b be induced by an element of L− a on Y . Using the induction hypothesis

once more, we obtain a subset Z of Y of size k sorted in {a, b}. Since Y was

sorted in L− a, the set Z is sorted in L.

In particular, all these R(k, l) exist.

We now define s-ladders for a given positive natural number s; refer to Fig. 14

for an example. Let P and Q be disjoint paths, let p and q be s-tuples consisting

of different points in order on P and Q respectively and for every 1 ≤ i ≤ s let

Li be a P -Q-path with endpoints pi and qi. If the Li are all disjoint, we call the

set {Li; 1 ≤ i ≤ s} ∪ {P,Q} an s-ladder. The Li are called its rungs and P and

Q its sides. A part of an s-ladder is either a rung or a side.

Next we apply the discussion of linear orders above to prove what will turn

out to be the key lemma of our proof.

Lemma 4.2.3. Let P be a path space, P,Q ∈ P and Q a set of at least R(sk, 2)

disjoint P -Q-paths. Then P contains a set of k disjoint s-ladders.

Proof. Let P ′ and Q′ be linear orders on Q induced by their endpoints in P and

Q respectively. Since |Q| ≥ R(sk, 2) there is a set Y of size sk sorted in P ′ and

Q′. List the elements of Y as (yi)0<i<sk. For each 1 < j < k we obtain a ladder

Lj whose rungs are the paths in Y and whose sides are the segments defined by

the endpoints of ysj and y(s+1)j−1 in P and Q respectively. Clearly, all the Lj

are disjoint.
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Q

L1

L2

L3

L4

Figure 14: An example of a 4-ladder.

We call an s-ladder redundant if there are arbitrarily many disjoint s-ladders

in P disjoint from it.

Theorem 4.2.4. s-ladders are ubiquitous in path spaces.

Proof. Assume that P contains arbitrarily many disjoint s-ladders. Recursively

delete any redundant s-ladder in P as long as there is one. It is enough to

show that this never terminates, since then we will have found an infinite set of

disjoint s-ladders. So we assume for a contradiction that the process terminates

after only finitely many steps, without loss of generality we may then assume

that P has no redundant s-ladders.

Let L1,L2 and L3 be three disjoint s-ladders in P. Since none of these is

redundant there exists some r such that there is no set of more than r disjoint

s-ladders each of which avoids at least one of L1, L2, L3. Let D be a set of

2(s+ 2)2R(s(r + 1), 2) + r disjoint s-ladders. Deleting any elements which do

not meet at least one of L1, L2 and L3 leaves a set D′ of 2(s+ 2)2R(s(r + 1), 2)

disjoint s-ladders meeting any of these. Each element of D′ then has a segment

that is an L1-L2 ∪ L3-path, let Q contain a choice of one such path for each

element. Since any s-ladder has s+ 2 parts, by the pigeonhole principle there

exists a part P of L1 and a part Q of L2 or L3, say L2, such that at least

R(s(r+ 1), 2) elements of Q are P -Q-paths. Let P be the subset of Q containing

these. By Lemma 4.2.3 there is a set of r + 1 disjoint s-ladders contained in

P ∪Q ∪ P . But these s-ladders all avoid L3, contradicting the fact that at most

r disjoint s-ladders miss any of L1, L2 and L3.
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4.3 Networks

Our goal now is to extend the proof idea of Theorem 4.2.4 to show that IG for G

finite and planar are ubiquitous. In that proof it was important that our ladders

missed exactly one of the ladders fixed before. First we will prove a lemma which

will help us reach a similar situation more generally. For this we work with a

simple connected path space, which we call network. It will be useful to first

give an alternate characterization of networks. Thus we call a finite enumeration

of paths P1 . . . Pn of a path space P passable if it covers the ground set and Pi

meets
⋃
j<i Pj for every i > 1.

Lemma 4.3.1. A path space is a network if and only if it has a passable

enumeration.

Proof. First assume that P has a passable enumeration P1, . . . , Pn. Then clearly

it is simple. To prove that it is connected, it suffices to prove that for every

k ≤ n the set
⋃
i≤k Pi is contained in a single equivalence class. This we do

by induction on k. The case k = 1 is trivial. For k > 1 we already know that⋃
i<k Pi is contained in a single equivalence class. But Pk meets this set and is

contained in a single equivalence class, so we are done.

Now let P be a network. Since P is simple there exist some Q1, . . . , Qk

covering its ground set. Since P is connected, we may choose for every (i, j) ∈
{1, . . . k}2 a Qi-Qj-path Ri,j in P. Let X be the set of all the Qi and Ri,j and

define a graph G on X by adding an edge between x1, x2 ∈ X if they meet.

Since G contains a path through all Qi and each Ri,j is adjacent to one of them,

G is connected. Thus there exists an enumeration P1 . . . Pn of its vertices, where

Pi has a neighbor in {Pj ; j < i} for every i > 1. By definition of G and choice

of Q1, . . . , Qk this enumeration is passable.

Using this enumeration, we can now simply cut off our network at the correct

point.

Lemma 4.3.2. Let P be a path space and Q a network in P. Then for any

finite set A of simple sets of P meeting Q there exists some network Q′ in Q
avoiding exactly one element of A.

Proof. By Lemma 4.3.1 Q has some passable enumeration P1, . . . , Pn. Let k be

minimal such that
⋃
i∈k+1 Pi avoids at most one element of A. If it does avoid

one, we are done, so we may assume it does not. Let A′ be the set of those A ∈ A
such that

⋃
i∈k Pi does not meet A. For each A ∈ A′ there is a

⋃
i∈k Pi-A-path
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QA that is a segment of Pk. Let A∗ be such that QA∗ is maximal among these

with respect to inclusion. Let Q′ be the subspace of Q which is the completion

of the QA for A ∈ A′ −A∗ and the Pi for i ∈ k. Then Q′ clearly avoids exactly

one element of A. But since adding the QA in any order after P1, . . . , Pk−1 gives

a passable enumeration for Q′, it is a network by Lemma 4.3.1.

Now the main difficulty remaining in extending Theorem 4.2.4 is finding a

substitute for Lemma 4.2.3. During our proof we will end up with what we call a

k, l-pregrid, namely a path space consisting of disjoint paths (Pi)i∈k and disjoint

networks (Tj)j∈l such that for all i ∈ k and j ∈ l there is a vertex in Pi ∩ Tj .
We will spend the rest of this section showing that any large enough quadratic

pregrid contains an IRn,n. Of course, this follows easily from Theorem 2.7.1, but

it can also be deduced from the graph grid theorem with relative ease. First let

us state the grid theorem which was first proven in [46]. Recall that a bramble of

a graph is a set of connected subgraphs such that any two of its elements either

meet in a vertex or are connected by an edge and its order is the smallest size

of a vertex set meeting every element of the bramble.

Theorem 4.3.3. There is a function f such that for any natural number n

every graph with a bramble of order f(n) has an Rn,n minor.

The main tool is a way to partition a path which captures its interaction

with a set of disjoint paths.

An r-partition of a path P is a tuple of segments (P1 . . . Pr) of P such that

for every 1 ≤ i < r the segment Pi either connects to Pi+1 or connects to a

segment of length two which connects to Pi+1, but such that all the segments

are disjoint except where they connect and they cover P .

Proposition 4.3.4. Let P be a path space, P ∈ P and Q a finite set of disjoint

simple sets in P. Then P has an r-partition (P1, . . . , Pr) for some natural

number r such that for each 1 ≤ i ≤ r at most one element of Q meets Pi.

Proof. We may assume V (P ) ∩ V (Q) 6= ∅, otherwise we are done. We start by

constructing a sequence v in V (P ) ∩ V (Q) recursively as follows. Let v0 be the

infimum in P of V (Q). It remains to define vn+1 for some natural number n.

Let Q ∈ Q be such that vα ∈ Q. Then we define vn+1 to be the infimum in the

segment of P starting in vn of V (Q−Q). If for some n we have defined vn to

be the supremum of V (Q) in P , we stop the construction. We claim that the

construction stops at some natural number k. Assume not. Since vn and vn+1
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for any natural number n are never contained in the same element of Q, there

are different Q and R in Q which each contain vk for infinitely many k. But

then the supremum of {vn;n ∈ ω} is contained in Q ∩R, a contradiction.

Now consider the partition into which v0, . . . , vk separate P . Each segment

P ′, say with endpoints vn and vn+1, of this partition meets Q ∈ Q only if vn ∈ Q
or vn+1 ∈ Q. Indeed, if it met some other Q ∈ Q then the infimum of V (Q) in

P ′ would have been a candidate for vn+1, a contradiction. If P ′ does not meet

two elements of Q, we are done, so assume that it does meet some Q containing

vn and Q′ containing vn+1. Then by construction P ′ meets Q′ only in vn+1. Let

x be the supremum in P ′ of points of V (Q). If there is a point on P ′ between x

and vn+1, subdividing P ′ along it ensures that each segment only meets at most

one Q ∈ Q. Otherwise, subdividing P ′ along x gives a segment of cardinality

two and a segment meeting at most one Q ∈ Q. Finally, we go through all the

segments R with |R| = 2 which meet two different elements of Q, dropping R

from the partition and replacing it by singleton segments for any points of R

not contained in any other segment (if they exist).

Proposition 4.3.5. Any f(n), f(n)-pregrid contains an IRn,n.

Proof. Let P be an f(n), f(n)-pregrid with set of paths Q and set of networks

T . Fix an r-partition as in Proposition 4.3.4 for each Q ∈ Q with respect to T
and let X be the set of all their segments together with all the components of

T −
⋃
Q for each T ∈ T . Let ψ : V (P)→ X be defined by mapping each point

contained in some Q ∈ Q to its segment in the relevant r-partition, choosing

the earlier if there are two possibilities, and mapping each other point to the

component containing it. Let G be a the graph on X with an edge whenever

there is a path between two elements of X not meeting any other element of X.

Then P contains an IG with branch sets ψ(x) for x ∈ X. Let G′ be obtained

from G by identifying for every T ∈ T all those vertices arising from T which

have a common neighborhood and let ϕ be the corresponding map from G to G′.

Then G′ is a finite graph and any IRn,n in G′ must clearly also be contained in

G.

As a consequence it is enough to show that G′ contains a bramble of order at

least f ′(n), since by Theorem 4.3.3 it and then also G will contain an IRn,n and

by transitivity so will P . For every Q ∈ Q and T ∈ T let XQ,T = ϕ(ψ(Q)∪ψ(T )).

We claim that this forms the desired bramble.

The set XQ,T is connected because T is connected. Furthermore, for Q1, Q2 ∈
Q and T1, T2 ∈ T the set XQ1,T1

meets XQ2,T2
because T1 meets Q2. It remains
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to be proven that this bramble has order f(n). Note that all the ψ(Q) for Q ∈ Q
are disjoint because the Q ∈ Q are. Similarly all the ψ(T ) for T ∈ T are disjoint

because every segment of the partitions meets only one T ∈ Q. In both cases this

remains true after applying ϕ because the only vertices arising from a common

Q ∈ Q were identified. Thus any set Y ⊆ V (G′) of order less than f ′(n) avoids

at least one ϕ(ψ(Q)) for Q ∈ Q and at least one ϕ(ψ(T )) for T ∈ T , and thus

does not meet XQ,T , completing the proof.

4.4 Grid minors

At this point one might think that slotting Proposition 4.3.5 into the argument

from Theorem 4.2.4 will be enough to show the ubiquity of IG for finite planar

G. However, we run into a difficulty during the initial choices. Recall that that

early in the proof of Theorem 4.2.4 we chose three disjoint ladders and these

ladders gaves us some maximum number r of disjoint ladders avoiding them,

which we then contradicted by constructing more. We can of course start with

some larger number k of IG instead of three ladders, but only afterwards will we

know the number r of disjoint IG avoiding them that we will have to construct.

We will then be able to construct an a, b-pregrid, where a depends only on k

and b also depends on r. Applying Proposition 4.3.5 to this will only give us

some IRn,n where n depends on a and thus not on r, which will generally not

contain r disjoint IG.

However, it would be enough to find an IRn,m where m is much bigger then

r and thus we want to prove the following statement.

Proposition 4.4.1. There are functions g : N→ N and h : N2 → N such that

for n,m ∈ N any g(n), h(n,m)-pregrid contains an IRn,m.

Note that even for graphs this statement is new and not a direct consequence

of the theory of tree width. The idea for the proof is to try to split the g(n)

paths into disjoint parts repeatedly to build an l, l-pregrid for l� m and then

apply Proposition 4.3.5 and if we get stuck and cannot find any more paths to

split we can use the extra structure this gives to construct the IRn,m by hand.

Let P be a path space containing some path P and some set of networks

T . Then we say that (P, T ) r-splits into ((Q,R), T ′) if Q and R are disjoint

segments of P , T ′ is a subset of T of size at least r and Q and R both meet

every element of T ′.
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We say that (P, T ) r-segments into ((P1, . . . , Pr), T ′) if (P1, . . . , Pr) is an

r-partition of P , T ′ ⊆ T and there is a bijection f from {1, . . . , r} to T ′ such

that for any i ∈ {1, . . . , r} the segment Pi meets f(i), but no other element of

T ′. When we just write that (P, T ) r-splits this means that there is some pair it

r-splits into and similarly for r-segmenting.

Lemma 4.4.2. Let r ∈ N and let P be a path space containing some path P

and some set of networks T which all meet P . If |T | ≥ r2, then (P, T ) r-splits

or r-segments.

Proof. We first enumerate the T ∈ T as T1, . . . , Tr2 ordered by their first point

in the order of P , which we call xi for the network Ti. Let (P1, . . . , Pr) be

the r-partition with P1 ending at the predecessor of xr if it exists or xr itself

otherwise, Pr starting at xr(r−1) and every other Pi starting at x(i−1)r and

ending at the predecessor of xir if it exists or xir itself otherwise.

If for every 1 ≤ i ≤ r − 1 there is some ir ≤ j < (i+ 1)r such that Tj only

meets Pi, then (P, T ) r-segments.

Otherwise there is some 1 ≤ i ≤ r−1 such that for every ir ≤ j < (i+1)r the

network Tj has some point yj after x(i+1)r. Let y be a point of P strictly larger

than x(i+1)r and at most yj for all the relevant j. Let Q be the segment of P up to

x(i+1)r, letR be the segment of P starting at y and let T ′ = {Tj ; ir ≤ j < (i+1)r}.
Then |T ′| = (i+ 1)r − ir = r. Thus (P, T ) r-splits.

Let g(n) = nn, s(n,m) = max(R(mng(n)g(n), g(n)), f(m)) and h(n,m) =

s(n,m)2(f(m)+g(n))

Proposition 4.4.3. For n,m ∈ N any g(n), h(n,m)-pregrid contains an IRn,m.

Proof. Without loss of generality m ≥ n. Let P be a g(n), h(n,m)-pregrid. Let

r(i) = s(n,m)2(f(m)+g(n)−i) for all i ∈ N.

For 0 ≤ i ≤ f(m) + g(n) we will inductively construct pregrids Pi with set

of networks Ti of size at least r(i) starting with P. During this construction we

will always either segment or split a path and we keep track of which paths have

been segmented.

To construct Pi+1 from Pi let P be a path of Pi which has not been segmented.

By Lemma 4.4.2 (P, Ti) either r(i+ 1)-splits or r(i+ 1)-segments. If it r(i+ 1)-

segments, we simply obtain Pi+1 by dropping all networks which do not occur

in the pair it segments into. If it r(i+ 1)-splits into ((Q,R), T ′), we obtain Pi+1

by again dropping all networks outside T ′ and also dropping P and replacing it

by Q and R.
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If we split at least f(m) times during this construction, then Pf(m)+g(n)

contains an f(m), f(m)-pregrid and so we are done by Proposition 4.3.5. So

we may assume that we have segmented at least g(n) times. Now let T ′ =

Tf(m)+g(n) and let P1, . . . , Pg(n) be paths of Pf(n)+g(n) which s(n,m)-segment

into ((Qi,1, . . . , Qi,s(n,m)), T ′).
For each 1 ≤ i ≤ nn let ≤i be the total order on T ′ defined by the unique

1 ≤ j ≤ s(n,m) for which they meet Qi,j . Since |T ′| ≥ R(mn(nn)n
n

, nn) there

is a subset S of T ′ of size mn(nn)n
n

sorted in {≤1, . . . ,≤nn}. For each S ∈ S
let GS be the graph on {1, . . . , nn} with an edge (i, j) if S contains a Pi-Pj-path

not meeting any other Pl for 1 ≤ l ≤ nn. Since S is a network, GS is connected.

Because |S| ≥ mn(nn)n
n

, there is some S ′ ⊆ S of size mn and a tree T on

{1, . . . , nn} such that T is a subgraph of GS for any S ∈ S ′.
Now T contains either a path of length n− 1 or a vertex of degree n. First

assume that T has a path with vertices i1, . . . , in. Select some S ′′ ⊆ S ′ of size m

arbitrarily. Then combining Pi1 . . . Pin with a Pij -Pij+1
-path S ∈ S ′′ for every

1 ≤ j ≤ n− 1 gives an IRn,m.

Now assume that T has a vertex i with neighbors i1 . . . , in. List S ′ as

S1 . . . Smn according to ≤1. Then combining Pi1 . . . Pin with a Pi-Pij -path and

a Pi-Pij+1
-path from Son+m together with a segment of Pi connecting them for

every 1 ≤ j ≤ n and 0 ≤ o < m gives an IRn,m.

A class C of networks is called constructible if there exist m,n ∈ N such that

any IRm,n contains an element of C. In particular the class of IG for G finite

and planar is constructible.

Theorem 4.4.4. Any constructible class of networks is ubiquitous.

Proof. Let C be a constructible class of networks. Assume that P contains

arbitrarily many disjoint elements of C. Recursively delete any redundant

element of C as long as there is one. It is enough to show that this never

terminates, since then we will have found an infinite set of disjoint elements

of C in P. So we assume for a contradiction that the process terminates after

only finitely many steps, without loss of generality we may then assume that P
contains no redundant elements of C.

Since C is constructible, there are m,n ∈ N such that every IRm,n contains

some element of C. Let A be a set of g(m) + 1 disjoint elements of C contained

in P . Since none of these is redundant there exists some r ∈ N such that at most

r disjoint elements of C in P may avoid any of the these. Since every element of

117



C is simple, there is some b ∈ N such that every element of A is covered by b of

its paths.

Let D be a set of h(m, (r + 1)n)(g(m) + 1)bg(m) + r disjoint elements of C.
Deleting any elements which do not meet an element of A leaves a set D′ ⊆ D
of size h(m, (r + 1)n)(g(m) + 1)bg(m). By Lemma 4.3.2 for each d ∈ D′ we

can find some network in d such that it avoids exactly one element of A, so

there is some D′′ ⊆ D′ of size h(m, (r + 1)n)bg(m) for which this is the same

A∗ ∈ A. Let E contain for each element of D′′ a network witnessing this.

Any A ∈ A − A∗ is covered by at most b of its paths, so we can recursively

find a set A′ of one path from each A ∈ A − A∗ and a set E′ ⊆ E of size

h(m, (r + 1)n) such that every element of A′ meets every element of E′. Now

A′ and E′ form a g(m), h(m, (r+ 1)n)-pregrid, which contains an IRm,(r+1)n H
by Proposition 4.4.3. Clearly H contains disjoint IRm,n Hi for i ∈ r + 1. For

all i ∈ r + 1 Hi contains some Ci ∈ C by choice of m and n. Since these are all

disjoint and do not meet A∗, this contradicts the choice of r.

The fact that planarity is pivotal both for our ubiquity proof and for our dis-

cussion on the Erdős-Pósa property in Section 2.8 suggests a possible connection.

This connection is provided by an infinite analogue to the Erdős-Pósa property.

A path space Q has the ω-EP if every path space P either contains infinitely

many disjoint IQ or finitely many points meeting every IQ.

Proposition 4.4.5. Let Q be a path space. If Q has the ω-EP, it is ubiquitous.

If Q has the EP and is ubiquitous, it has the ω-EP.

Proof. First assume that Q has the ω-EP. If P does not contain infinitely many

disjoint IQ, then it contains a finite set of points X meeting every IQ. In

particular, it cannot contain |X|+ 1 disjoint IQ.

Now assume that Q has the EP and is ubiquitous. If P does not contain

infinitely many disjoint IQ, then it does not contain k disjoint IQ for some finite

k. Thus it contains some set X of size l� k meeting every IQ.

Corollary 4.4.6. Let G be a finite, planar graph. Then IG has the ω-EP.

Proof. By Proposition 4.4.5 this follows from Theorems 2.8.6 and 4.4.4.

4.5 Edge ubiquity

In graphs ubiquity is considered not only with respect to total disjointness, but

also edge-disjointness. In path spaces edges are not necessary for connectivity,
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but we can still define a notion analogous to edge-disjointness. Given a path

space P we call two subspaces of P edge-disjoint if none of their paths share

a nontrivial segment. Note that this definition agrees which the usual one for

graph-like spaces.

Helpfully, in showing that cycles are edge-ubiquitous we may assume that

any two paths meet in only finitely many segments, since otherwise there are

already infinitely many disjoint cycles between them, as we will prove next.

Let P and Q be paths. We call a pair of points x and y in their intersection

segment-equivalent if the segment of P between x and y is the same as that

segment on Q. This is clearly an equivalence relation. In particular, if P

and Q are edge-disjoint, no different points in P ∩ Q are segment-equivalent.

Furthermore P and Q induce a linear order on the segment-equivalence classes,

since these are closed intervals.

Lemma 4.5.1. Let P be a path space containing paths P and Q such that P ∩Q
has infinitely many segment-equivalence classes. Then P ∪Q contains infinitely

many disjoint circuits.

Proof. Let X be the set of segment-equivalence classes of P ∩Q and let lP and

lQ be the orders P and Q respectively induce on X. Since R(ℵ0, 2) = ℵ0, there

exists an infinite subset Y of X sorted in {lP , lQ}. Find in Y a set of infinitely

many pairs whose intervals do not intersect. For each of these pairs p = {x, y} let

Cp be the network induced by the segments between x and y in P and Q. Since

x and y are not segment-equivalent, Cp contains two different paths between x

and y, so it includes a circuit. By construction, the Cp are all disjoint.

This will allow us to keep the intersection of sets of edge-disjoint cycles finite.

The following lemma will then be useful to extract paths with no inner points in

such cycles.

Lemma 4.5.2. Let P be a network and C and D simple subsets of its ground set

with finite intersection and C \D nonempty. Then P contains a C \D-D-path

or a nontrivial path from C to C ∩D not meeting D in an inner point.

Proof. Let c ∈ C \D and d ∈ D be arbitrary. Since P is connected, it contains

a path P from c to d. If P does not meet C ∩D, we are done. Otherwise let x

be the first point of C ∩D in P after c. Let P ′ be the segment of P from c to

x. If P ′ does not meet D in an inner point, we are again done. If it does, in y

say, then the part of P ′ between c and y is a network which meets C and D in

nonempty disjoint sets, so it contains a C \D-D-path.
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The finite intersection between the cycles is also useful for our equivalent of

Lemma 4.2.3, together with the classic matching theorem of Kőnig first proven

in [38].

Lemma 4.5.3. Let P be a path space and let P and Q be edge-disjoint paths in

it meeting in at most n points. Let Q be a set of 2kR(2k, 2) + 4kn edge-disjoint

P \Q-Q-paths. Then there exists a set of k edge-disjoint circuits contained in P.

Proof. If there are 2k elements of Q from some point v to P or Q, say P ,

combining them in pairs along P together with the segment of P between their

endpoints gives k edge-disjoint networks, each of which contains a circuit. So we

may assume that this never occurs and so deleting any elements of Q with an

endpoint in P ∩Q still leaves a set Q′ with at least 2kR(2k, 2) elements. Now

the graph H on the vertices of P and Q where each element of Q′ defines an edge

between its endpoints is bipartite. Since H has maximum degree less than 2k,

every vertex cover of H has at least R(2k, 2) elements and by König’s theorem

there exists a matching of that size. Let Q′′ be the corresponding subset of Q′.
Let lP and lQ be the linear orders on Q′′ given by the order of their endpoints

on P and Q respectively. Since |Q′′| ≥ R(2k, 2) there is a set X of size 2k sorted

in {lP , lQ}. Let P consist of k adjacent pairs from X. For each p ∈ P let Cp

consist of the two paths in p together with those segments of P and Q between

their endpoints. These circuits are then edge-disjoint by construction.

Call a circuit C edge-redundant if there are arbitrarily many edge-disjoint

circuits in the space obtained from P by deleting the paths of C. Now we can

once again follow the basic structure of Theorem 4.2.4.

Theorem 4.5.4. Cycles are edge-ubiquitous in path-spaces.

Proof. Assume that P contains arbitrarily many edge-disjoint circuits. Recur-

sively delete any edge-redundant circuit in P as long as there is one.

It is enough to show that this never terminates, since then we will have found

an infinite set of edge-disjoint circuits. So we assume for a contradiction that

the process terminates after only finitely many steps, without loss of generality

we may then assume that P has no edge-redundant circuits. Let C1, C2 and C3

be three edge-disjoint circuits in P. By Lemma 4.5.1 and edge-disjointness of

the Ci we may assume that the set X of all points meeting more than one of

C1, C2 and C3 is finite. Since none of these is edge-redundant there exists some

r such that at most r edge-disjoint circuits are edge-disjoint from any of them.
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Let C be a set of 4(r+ 1)R(2r+ 2, 2)(2) + 10(r+ 1)|X|+ r+ 12|X| edge-disjoint

circuits. Deleting any circuits which are edge-disjoint from C1, C2 or C3 leaves

a set C′ of 4(r + 1)R(2r + 2, 2) + 10(r + 1)|X| + 12|X| edge-disjoint circuits

not edge-disjoint from all three. Since there are at most two directions at any

vertex in a path, deleting all those elements of D′ which have a direction at a

vertex of X which is the same as one in C1, C2 or C3 still leaves a set C′′ of

4(r + 1)R(2r + 2, 2) + 10(r + 1)|X| edge-disjoint circuits. Let D = C2 ∪ C3. By

Lemma 4.5.2 each element of C′′ contains either a C1 \D-D-path or a nontrivial

path from C1 to C1 ∩D whose inner points avoid D. Let Z consist of one of

these for every element of C′′.
Let us first assume that Z contains a set Q of edge-disjoint C1 \D-D-paths

of size 4(r + 1)R(2r + 2, 2) + 8(r + 1)|X|. By the pigeonhole principle we may

assume that 2(r + 1)R(2r + 2, 2) + 4(r + 1)|X| of them are C1 \ D-C2-paths,

otherwise exchange the roles of C2 and C3. Let P be the subset of Q containing

all such paths. By Lemma 4.5.3 there is a set of r + 1 edge-disjoint circuits

contained in C1 ∪ C2 ∪ P . But these circuits all avoid C3, contradicting the fact

that at most r edge-disjoint circuits miss any of C1, C2 and C3.

So we may assume that Z contains a set R of 2(r + 1)|X| edge-disjoint

nontrivial paths from C1 to C1 ∩ D whose inner points avoid D. If there is

some R ∈ R such that the common points of R and one of the paths of C1 have

infinitely many segment-equivalence classes, then we have found infinitely many

disjoint cycles by Lemma 4.5.1. Otherwise each R ∈ R can be shortened to a

C1-C1 ∩D-path. Let R′ be the set of all these shortened elements of R. By the

pigeonhole principle R′ has a subset R′′ of size 2(r + 1) all of whose elements

have a common endpoint v in C1 ∩ D. Then combining them in pairs along

the order of C together with the segment of C between their endpoints gives

r + 1 edge-disjoint networks, each of which contains a circuit. Since these are all

edge-disjoint from D, this again contradicts the fact that at most r edge-disjoint

circuits miss any of C1, C2 and C3.

4.6 Counterexamples

To construct our counterexamples, we make use of a counterexample to Menger’s

theorem for cardinality ℵ0. We will however need certain additional properties

which the example given in Section 1.5 does not have, such as having maximal

degree three. While it is possible to modify that example to remedy this, we
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will instead give a different construction which will naturally have the required

properties.

For the construction we will work with graph-like spaces to show that these

counterexamples are not an artifact of our definition of path spaces. Of course

any such example for graph-like spaces defines a path space counterexample.

Furthermore, since we only work with the usual arcs instead of pseudo-lines, the

counterexample also covers the other main example, being the set of arcs of a

Hausdorff space.

A turbulence is an equivalence relation on N2 satisfying the following condi-

tions:

1. (a, b) is equivalent to (a, c) only if b = c.

2. Each equivalence class has size at most 2.

3. For any a 6= b there are at most finitely many x and y for which (a, x) ∼
(b, y).

For some turbulence ∼ let Γ(∼) be the graph obtained from the union of ω rays

(which we number as Ri and their edges as ei,j) by identifying ea,3b with ec,3d

along the order of the rays whenever (a, b) ∼ (c, d). We write ai for the initial

vertex of Ri Let G(∼) be the space obtained from the geometric realization of

Γ(∼) by adding an additional vertex vi for each ray Ri and additionally declaring

as open all those sets whose intersection with G(∼) is open and which contain

precisely one vi together with a tail of the corresponding Ri.

Lemma 4.6.1. Let ∼ be a turbulence. Then G(∼) is a graph-like space.

Proof. Since the geometric realization is a graph-like space, all that needs to

be shown is that for any vertices v and w of G(∼) there are disjoint open sets

containing v and w respectively and covering V (G(∼)). When constructing these

open sets, we always take less than half of any edge with only one endpoint in

the set to ensure disjointness.

If both v and w were already vertices of Γ(∼), constructing such open sets

is easy, so we may assume without loss of generality that v /∈ Γ(∼). Let R

be the Ri ending in v. Note that R has a tail not containing w since every

equivalence class of ∼ is finite. Let V be an open set arising from that tail by

adding half-edges for any edge incident with the tail.

By the third condition for a turbulence every Ri has a tail avoiding V . Taking

the union of open sets arising from all these tails together with open sets around
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every vertex not in V gives an open set W disjoint from V such that V and W

cover the vertex set.

A turbulence ∼ is called disastrous if sets of arbitrarily many Ri are still

disjoint in Γ(∼), but G(∼) does not contain infinitely many edge-disjoint arcs

each from some am to some vn.

Proposition 4.6.2. There is a disastrous turbulence.

Proof. Let g : N→ N be an increasing function such that |g−1(n)| = n for n ∈ N.

Clearly such a function exists. Let ∼ be the equivalence relation induced by

(a, b) ∼ (b, a) if g(a) 6= g(b). Since there are arbitrarily long intervals on which

g is constant, we can find arbitrarily many of the initial rays in G(∼) which

are disjoint. On the other hand, any arc f ending in some vn contains a tail

of Rn, since the image of f is homeomorphic to [0, 1] and there is an open set

containing vn and otherwise just consisting of such a tail and half-edges to it.

Then there is some m > n such that f meets all Rk for k ≥ m in ek,3n. Clearly,

there are at most finitely many edge-disjoint arcs edge-disjoint from f starting

with el,1 or ending at vl for l < m. Let f ′ be some other arc from some ai

to some vj . For some X ⊆ N and z ∈ N variable let B(X, z) be the set of all

vertices on any Rx with x ∈ X before ex,3z and A(X, z) the set of those vertices

after ex,3z. Then f ′ contains a B(N≥m, n)-A(N≥m, n)-path P . Since only pairs

which are identical except for the order are ∼-equivalent, edges in B(N≥m, n)

are identified only with edges in A([0, n− 1], n) (because n < m). But the first

edge of P must leave A(N≥m, n) and thus P must already start in a vertex of

A([0, n−1], n). Similarly, P must end in A([n+1,m], n). So P is a path starting

in A([0, n − 1], n) and ending in A([n + 1,m], n), but not meeting any Ri for

i ≥ m outside its first and last vertices and thus P must include el,n for some

l < m. Since there are only finitely many such edges, we are done.

For the rest of this section we fix some disastrous turbulence ∼ and define

X = G(∼). Now let H be some finite graph and F some subset of its edge set.

We can construct a graph-like space X(H,F ) starting with one copy Xe of X

for each edge e of F by adding ω copies of the graph with vertex set V (H) and

edge set E(H) \F and then for each edge e of F with endpoints a and b1 joining

the version of a in copy n with vn in Xe and the version of b in copy n with the

1These are chosen consistently, that is we fix an orientation of e and call its first vertex a
and its last vertex b.

123



starting vertex of Rn in Xe with an edge and then deleting the corresponding

copy of e.

Example 4.6.3. Let k ≥ 5 be odd. Then G = X(Kk, E(Kk)) obviously

contains arbitrarily many disjoint TKk. Let us first show that every TKk in G′

contains an arc in some copy of X from some vn to some am.

Since the vertices of the added Kk are the only ones at which there are at

least four directions, the branch vertices of any TKk must be such vertices. If

two branch vertices are copies of different vertices, then our TKk contains the

required arc. Thus we may assume that they are all copies of the same vertex v

and all its edges are embedded as arcs starting and ending on the same side of

some copy of X which corresponds to some e incident with the vertex v. In each

copy of X each of the k branch vertices can only be adjacent with one arc of our

copy, so at most k−1
2 edges can be embedded in each. But since there are only

k − 1 copies which we can use and Kk has k(k−1)
2 edges, this is a contradiction.

Thus the assertion is proven. But by choice of X there is no infinite edge-

disjoint set of such arcs. In particular, there is no infinite edge-disjoint set of

TKk in G.

For a finite graph G and a natural number k, we write |G|≥k for its number of

vertices of degree at least k. We call finite graphs G1 and G2 degree-incompatible

if there are i, j > 3 with |G1|≥i > 2|G2|≥i and |G2|≥j > 2|G1|≥j . An bridge e

of a connected graph G with no vertex of degree three is called troublesome if it

separates G into two components C1 and C2 such that C1 + e and C2 + e are

degree-incompatible.

We will now show that if G has a troublesome bridge, the class of TG is not

ubiquitous. Note that there are trees with a troublesome bridge, like the one in

Fig. 15.

Example 4.6.4. Let G be a graph with a troublesome bridge e. Then H =

X(G, {e}) obviously contains arbitrarily many disjoint TG. As in Example 4.6.3

it is enough to show that that every TG in H contains an arc in the sole copy

of X connecting its two sides, since then there cannot be even infinitely many

edge-disjoint TG in H by choice of X.

Let C1 and C2 be the two components of G − e. Then C1 + e and C2 + e

are degree-incompatible witnessed by some natural numbers i and j. Then the

vertices of C1 + e of degree at least i must be embedded to points of degree i in

H, so clearly into points of copies of G.
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Figure 15: A tree with the blue edge as a troublesome bridge.

We claim that at least one of them is embedded into a copy of C1. Assume

the contrary. Then by the pigeonhole principle they need to be embedded into

at least three different copies of C2. But since each of these copies is separated

from its complement by a single vertex, there must be a point of G of degree at

least three embedded into the sole copy of X. But G has no vertex of degree

exactly three and X has maximal degree three, so this is impossible.

Similarly, at least one vertex of degree at least j in C2 + e must be embedded

into a copy of C2. But since G is connected and e separates these two vertices,

we are done.

4.7 Outlook

Our results still leave many questions unanswered, chief among them perhaps if

either of the following two mutually exclusive conjectures is true.

Conjecture 4.7.1. For all finite graphs G the class IG is ubiquitous.

Conjecture 4.7.2. For a finite graph G, IG is ubiquitous if and only if G is

planar.

Solving the case of K3,3 could be a significant step towards answering this.

The structure of our proof also suggests a question about finite graphs which

could be helpful. For a graph G we ask if there is a natural number k such

that for all natural numbers l, there is some natural number m such that for

every graph H containing m disjoint IH and for every set A of k disjoint IG

in H there is some A ∈ A such that H − A contains l disjoint IH. Our proof

of Theorem 4.4.4 builds on the grid theorem answering this question in the
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affirmative for planar G, but for other G finding an answer appears to be much

harder. One could also ask whether this property is equivalent to ubiquity of

IG.

Examples 4.6.3 and 4.6.4 seem to suggest that we should not expect many

positive results for TG beyond those which follow directly from the results for

minors. For edge-ubiquity, the situation is even less clear. Our methods do

not seem to extend to anything beyond cycles at all, yet we also know of no

counterexamples beyond the ones for (standard) ubiquity.

One could also consider more infinitary objects, like embedding of infinite

graphs. For rays (either with or without end) the problem can be reduced to

graphs, since any embedding of a ray which does not have a ray as a subspace

already contains infinitely many disjoint embeddings of rays. We do not have

any more interesting results, however.

One final interesting open question is suggested by Proposition 4.4.5, namely

whether the ω-EP implies the EP. This would make Proposition 4.4.5 into a true

equivalence.
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A.1 Cyclic orders and cycle completions

The goal of this appendix is to show that cycle completions exist, are unique

and have the properties we outlined in Section 3.4.1. While there is a lot of

prior work in this area, some of which is referenced here, none of it matches our

requirements exactly, so we include these proofs for completeness.

This section starts with a short collection of basics about cyclic orders and

their connection to linear orders. In this section we often consider distinct linear

or cyclic orders on the same ground set. Because of this, and in contrast to the

rest of the paper, in this section cyclic orders and linear orders are not implicit

but introduced more formally as relations on the ground set. So a cyclic order of

a set S is a set Z ⊆ S×S×S that is cyclic, antisymmetric, linear and transitive.

The notation of ≤ is kept for a linear order, but the linear order in question

is added as an index where necessary, for example in s ≤L t for a linear order

L. Similarly, for intervals of cyclic orders, the cyclic order in question may be

indicated by an index.

Definition A.1.1. [41, Definition 1.1] Given two linear orders A and B on

disjoint ground sets, the linear order A⊕ B is the linear order defined on the

union of the ground sets of A and B by letting x ≤ y if x ≤A y or x ≤B y or

x ∈ A and y ∈ B.

Definition A.1.2. [41, Lemma 1.11, Definition 2.1, Theorem 2.3] Given a linear

order L on a set S, the cyclic order Z induced by L consists of those triples

(s, s′, t) of elements of S such that in L one of the equations s < s′ < t, s′ < t < s

and t < s < s′ holds. Given a cyclic order Z on a set S, a cut of Z is a linear

order L on S such that Z is the cyclic order induced by L.

Lemma A.1.3. [40, Theorem 3.1] For every cyclic order Z on set S and every

s in S there is a cut of Z whose smallest element is s.

Note that, by Lemma A.1.3, every non-trivial interval of a cyclic order Z is

also an interval of a cut L of Z. Also, such an interval inherits a linear order

from every cut of which it is an interval, and that linear order does not depend

on the chosen cut.

Lemma A.1.4. Let Z be a cyclic order on a set S, L a cut of Z and s, s′ and

t elements of S such that (s, s′, t) ∈ Z. If s ≤ t in L, then s < s′ < t in L.

Definition A.1.5. Given a cyclic order Z on ground set S, the cyclic order

{(t, s, r) : (r, s, t) ∈ Z} on S is the mirror of Z.
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Monotone maps have the property that preimages of intervals are again

intervals. Maps with that property are close to being monotone:

Lemma A.1.6. Let Z be a cyclic order on a set S and Z ′ a cyclic order on a

set S′. Let f : S → S′ be a map such that for all intervals I of Z ′ the set f−1(I)

is an interval of Z. Then f is a monotone map or a mirror of a monotone map.

Proof. If for all elements r, s and t of S the implication

(f(r), f(s), f(t)) ∈ Z ′ ⇒ (t, s, r) ∈ Z

holds, then f is a mirror of a monotone map. So assume that there are elements

r, s and t of S such that (f(r), f(s), f(t)) ∈ Z ′ and (r, s, t) ∈ Z. We will start

with an observation that we will refer to later in this proof. For this we consider

any u ∈ S such that (f(r), f(u), f(t)) ∈ Z ′. Then f−1([f(t), f(r)]) is an interval

of S which contains t and r but not s, so [t, r] is a subset of f−1([f(t), f(r)]).

As also u /∈ f−1([f(t), f(r)]), u /∈ [t, r] and thus (r, u, t) ∈ Z.

Now let r′, s′ and t′ be elements of S such that (f(r′), f(s′), f(t′)) ∈ Z ′. In

order to show that (r′, s′, t′) ∈ Z, first consider the case that the number n of

elements in {f(r′), f(s′), f(t′)} which are not contained in {f(r), f(s), f(t)} is

zero. Assume, by renaming if necessary, that f(r′) = f(r), f(s′) = f(s) and

f(t′) = f(t). Then by three applications of our observation, (r, s′, t) ∈ Z and

thus (s′, t′, r) ∈ Z and hence (r′, s′, t′) ∈ Z.

Next consider the case that n = 1. Assume, again by renaming if necessary,

that (f(r), f(r′), f(s)) ∈ Z ′ (see also the left cyclic order of Fig. 16). By our

observation, (r′, s, t) ∈ Z and (r′, t, r) ∈ Z and hence also (r′, s, r) ∈ Z. Then

there are three cases: Either f(s′) = f(s) and f(t′) = f(t) or f(s′) = f(t) and

f(t′) = f(r) or f(s′) = f(s) and f(t′) = f(r). In all three cases, by the case

n = 0 also (r′, s′, t′) ∈ Z.

Next consider the case that n = 2, and that one of the intervals (f(r), f(s)),

(f(s), f(t)), and (f(t), f(r)) contains both elements of {f(r′), f(s′), f(t′)} which

are not contained in {f(r), f(s), f(t)}. Assume, by renaming if necessary, that

both f(r′) and f(s′) are contained in (f(r), f(s)). In that case, the fact that

(f(r′), f(s′), f(t′)) ∈ Z ′ implies that f(r′) ∈ (f(r), f(s′)) (see also the middle

cyclic order in Fig. 16). Also, by the case n = 1, (r′, s, t), (s′, s, t) and (t, r, r′)

are all contained in Z. As f−1([f(t), f(r′)]) contains t and r′ but neither s or s′,

(r′, s, t) ∈ Z implies [t, r′] ⊆ f−1([f(t), f(r′)]). Thus s′ is not contained in [t, r′]

and hence (r′, s′, t) ∈ Z. Because (s′, s, t) and (t, r, r′) are contained in Z, also
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Figure 16: Three of the cases in the proof of Lemma A.1.6

(r′, s′, s) and (r′, s′, r) are contained in Z. By the case n = 0, also (r′, s′, t′) ∈ Z.

Next consider the case that n = 2 and none of the intervals (f(r), f(s)),

(f(s), f(t)) or (f(t), f(s)) contains two elements of {f(r′), f(s′), f(t′)}. Assume,

by renaming if necessary, that f(t′) ∈ {f(r), f(s), f(t)} and that there is u ∈
{r, s, t} such that (f(r′), f(u), f(s′)) ∈ Z ′ (see also the right cyclic order of

Fig. 16). In this case (t′, r′, u) and (u, s′, t′) are both contained in Z ′ by the case

n = 1 and thus (r′, s′, t′) is also contained in Z ′.

The only case left is the case n = 3. Assume, by renaming if necessary, that

(f(r′), f(s), f(s′)) ∈ Z ′. Then (s, s′, t′) and (s, t′, r′) are contained in Z by the

case n = 2 and thus (r′, s′, t′) ∈ Z.

Definition A.1.7 (Remark 2.3). [40] Given a cyclic order Z of a set S and a

subset S′ of S, the set of triples in Z which only contain elements of S′ is a

cyclic order on S′, the induced cyclic order on S′.

Theorem A.1.8. [41, Theorem 3.6] Let Z be a cyclic order on set S and let K

and L be distinct cuts of Z. Then there are non-empty disjoint subsets A and B

of S such that A ∪B = S, K � A = L � A, K �B = L �B, K = K � A⊕K �B
and L = K �B ⊕K �A.

One example of a construction similar to the cycle completion is the following:

The cycle completion of a cyclically ordered set I can be obtained from the

Dedekind completion of one of its cuts L by adding as many elements to the

ground set as necessary such that every element of the original ground set has a

predecessor and a successor not in the ground set and then identifying the new

smallest and biggest elements. Also constructing the pseudo-line as in [5] from

L, contracting all inner points of an edge to one point and then again identifying

the new smallest and biggest elements yields the cycle completion. Third, the

restriction of the cycle completion to the set of cuts is already described in [41].
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We will now give a precise construction which gives a linear order D(L)

starting from a linear order L and is very similar to both the Dedekind completion

of L and the pseudo-line L(L) as in [5, Definition 4.1]. Similarly to the Dedekind

completion, D(L) consists of initial segments of L and of the elements of L itself.

But here an element l of L is not identified with an initial segment of L. The

construction of D(L) can be obtained from the pseudo-line L(L) by replacing all

the intervals (0, 1)× {l} by just l. The topology of the pseudo-line is not needed

in the context of this paper.

Example A.1.9. (See also [5]) Let L be a linear order on a set S and let V (L)

be the set of initial segments of L, i.e. subsets S′ of S which satisfy that if s is

an element of S′ and t is an element of S with t < s then also t ∈ S′. The subset

relation is a natural linear order on V (L). Define a linear order on the disjoint

union of S and V (L) by letting x ≤ y if either both x and y are contained in

S and x ≤ y in L or both are contained in V (L) and x ≤ y in V (L) or x ∈ y
or y ∈ S \ x. Denote the resulting linear order on S ∪ V (L) by D(L). The

smallest element of D(L) is the empty set and the biggest element of D(L) is S.

Denote S ∪ (V (L) \ {S}) by V ′(L), the restriction of D(L) to V ′(L) by D′(L)

and the cyclic order induced by D′(L) by Z(L). For every element s of S, the

set {t ∈ S : t < s} is the predecessor and the set {t ∈ S : t ≤ s} is the successor

of s in D(L).

Every subset of D(L) has a supremum and an infimum in D(L), which can

be seen as follows: Given a subset V ′ of V (L), the set
⋃
V ′ is an initial segment

of S and is the supremum of V ′ both in D(L) � V (L) and in D(L). Similarly the

set
⋂
V ′ is the infimum of V ′ in D(L) �V (L) and D(L). So in order to show that

every subset of S ∪ V (L) has a supremum and an infimum in D(L), it suffices

to consider subsets S′ of S, and by symmetry it suffices to show that S′ has a

supremum in D(L). The set {s ∈ S|∃ t ∈ S′ : s ≤ t}, denoted by S′′, is an initial

segment of S which is an upper bound of S′. Also, no proper subset of S′′ is

an upper bound of S′. So if S′ has an upper bound in D(L) which is less than

S′′, then that upper bound is contained in S. In particular, as D(L) contains

between any two elements of S at least one element of V (L), there is at most

one upper bound of S′ which is less than S′′. Thus S′ has a supremum in D(L).

Lemma A.1.10. Let L and K be cuts of a cyclic order Z on a set S with at

least two elements such that K = (L � (S \ S′))⊕ (L � S′) for an initial segment
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S′ of L. Then the map

V ′(L)→ V ′(K), x 7→


x x ∈ S

x ∪ (S \ S′) x ∈ V ′(L) \ S, x ( S′

x \ S′ x ∈ V ′(L) \ S, S′ ⊆ x

is the unique isomorphism of Z(L) and Z(K) which preserves S.

Proof. The map F1 : V ′(L)→ V ′(L �S′)∪ V ′(L � (S \S′)) which maps elements

of S to themselves, initial segments which are properly contained in S′ to

themselves and initial segments I containing S′ to I \ S′ is an isomorphism of

the linear orders D′(L) and D′(L � S′) ⊕ D′(L � (S \ S′)). Similarly the map

F2 : V ′(K)→ V ′(L � S′) ∪ V ′(L � (S \ S′)) which maps every elements of S to

themselves, initial segments properly contained in S \S′ to themselves and initial

segments I containing S \ S′ to I ∩ S′ is an isomorphism of the linear orders

D′(K) and D′(L � (S \ S′))⊕ (L � S′). Thus the map given in the lemma, which

equals F−1
2 ◦ F1, is an isomorphism of Z(L) and Z(K).

Let F and G be two isomorphisms of Z(L) and Z(K) which preserve S.

Assume for a contradiction that there is v ∈ V ′(L) such that F (v) is less than

G(v) in D′(K). As F and G both are bijective and preserve S, F (v) and G(v)

are both contained in V ′(K) \ S. Thus there are elements s ∈ G(v) \ F (v) and

t ∈ S \G(v). Then (F (t), F (v), F (s)) equals (t, F (v), s) and is thus contained in

Z(K). Because F is monotone, this implies that (t, v, s) ∈ Z(L). But similarly

(s,G(v), t) ∈ Z(K) and thus (s, v, t) ∈ Z(L), a contradiction.

Corollary A.1.11. Let Z be a cyclic order on set S and let L and K be cuts of

Z. Then there is a unique isomorphism of Z(L) and Z(K) which preserves S.

Proof. Let S′ ⊆ S such that K = (L � (S \ S′))⊕ (L � S′) and such that S′ is an

initial segment of L. Such a set exists by Theorem A.1.8. Then the statement

follows from Lemma A.1.10.

Lemma A.1.12. Let Z be a cyclic order on a non-empty set S and let V be the

set of cuts of Z. For every cut L ∈ V denote the map V ′(L)→ S∪V which maps

every element of S to itself and every initial segment S′ to (L � (S \S′))⊕ (L �S′)

by ηL. Also denote {(ηL(a), ηL(b), ηL(c)) : (a, b, c) ∈ Z(L)} by TL. Then TL is a

cyclic order on S ∪ V which does not depend on the choice of L.

Proof. By Theorem A.1.8 the maps ηL are surjective, so they are bijections

between V ′(L) and S ∪ V. Thus every TL arises from Z(L) by renaming the
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elements of V ′(L) and thus is a cyclic order on S∪V , and ηL is an isomorphism of

Z(L) and TL. Let L and K be elements of V and let S′ be an initial segment of L

such that K = (L � (S \S′))⊕ (L �S′) (such a segment exists by Theorem A.1.8).

Denote the unique isomorphism of Z(L) and Z(K) preserving S, which exists

by Lemma A.1.10, by F . Then ηK ◦ F (s) = ηL(s) for all s ∈ S. Also, for all

initial segments I of L which are properly contained in S′,

ηK ◦ F (I) = ηK(I ∪ (S \ S′)) = (K � (S′ \ I))⊕ (K � (I ∪ (S \ S′)))

= (L � (S′ \ I))⊕ (L � (S \ S′))⊕ (L � I)

= (L � (S \ I))⊕ (L � I) = ηL(I),

and similarly for all initial segments I of L which contain S′

ηK ◦ F (I) = ηK(I \ S′) = (K � (S \ (I \ S′)))⊕ (K � (I \ S′))

= (L � (S \ I)))⊕ (L � S′)⊕ (L � (I \ S′))

= (L � (S \ I))⊕ (L � I) = ηL(I).

So ηK ◦ F = ηL and thus ηK ◦ F ◦ η−1
L is the identity. But ηK ◦ F ◦ η−1

L is

also a composition of isomorphisms of cyclic orders and thus the identity is an

isomorphism of TL and TK , so TL = TK .

Given a cyclic order Z on set S and a cut L of Z, the previous lemma shows

that TL only depends on Z and not on L. TL will be a cycle completion of Z.

From now on, denote TL by Z(Z) and its ground set by S(Z).

The next lemma shows that Z(Z) is really a cycle completion of a cyclic

order Z. As a result, cycle completions of cyclic orders exists.

Lemma A.1.13. Let Z be a cyclic order on set S. Then for every non-

trivial interval I of S there are unique elements v and w of Z(Z) \ S such that

I = [v, w] ∩ S.

Proof. Let L be a cut of Z such that I is an interval of L and such that some

element of S is bigger than all elements of I in L. By construction of D(L)

there are unique elements v and w of V ′(L) \ S such that I = [v, w]∩ S in D(L).

Then v and w are also the unique elements of V ′(L) \ S such that I = [v, w] ∩ S
in Z(L), and thus ηL(v) and ηL(w) are the unique elements of S(Z) such that

I = [ηL(v), ηL(w)] ∩ S in Z(Z).
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Given a cyclic order Z on set S, Z(Z) clearly has the property that for

distinct elements v and w of Z(Z) \ S the interval [v, w] ∩ S is non-trivial. This

property holds for cycle completions in general, as the following rephrasing of

Lemma 3.4.4 shows:

Lemma A.1.14. Let Z be a cyclic order on a set S with at least two elements

and let T on the set R be a cycle completion of Z. Then for distinct v and w in

R \ S the interval [v, w] ∩ S of S is non-trivial.

Proof. As S has at least two elements, it has a non-trivial interval and thus

there are x and y in R \ S such that [x, y] ∩ S is a non-trivial interval of S.

If [v, y] ∩ S is a trivial interval, then one of [v, y] ∩ S and [y, v] ∩ S is empty.

Suppose v 6= y. If [v, y]∩S is empty, then x /∈ [v, y], implying that v ∈ [x, y] and

[x, v] ∩ S = [x, y] ∩ S, a contradiction. Similarly, if [y, v] ∩ S is empty, then also

[x, v] ∩ S = [x, y] ∩ S, a contradiction to T being a cycle completion. Hence if

[v, y] ∩ S is a trivial interval of S then v = y.

Thus either [v, y]∩S is a non-trivial interval of S, or v = y which in particular

implies that [v, x]∩S is a non-trivial interval of S. As v 6= w, similarly [v, w]∩S
is a non-trivial interval of S.

In this paper, cycle completions are used as index sets for k-pseudoflowers, and

they are related to each other via surjective monotone maps that map only cuts

to cuts. The following lemmas establish a few basic facts about such monotone

maps. In particular the following lemma is a rephrasing of Lemma 3.4.6.

Lemma A.1.15. Let Z and Z ′ be cyclic orders on sets S and S′ with at least

two elements. Let T and T ′ be cycle completions of Z and Z ′ on sets R and R′.

Let F : R→ R′ be surjective and monotone such that F (S) ⊆ S′. Then there is

for every v′ ∈ R′ \ S′ exactly one v ∈ R with F (v) = v′, and there is for every

s′ ∈ S′ some s ∈ S with F (s) = s′.

Proof. Every interval of T with at least two elements contains at least one

element of S. As F−1(v′) does not contain elements of S, it has at most one

element. Because F is surjective, F−1(v′) contains exactly one element v.

Let t′ and q′ be the predecessor and successor of s′ in T ′. Then [t′, q′] taken

in T ′ consists of t′, q′ and s′. Let t and q be the unique elements of R such

that F (t) = t′ and F (q) = q′, and let s be an element of [t, q] taken in T which

is contained in S. As F is monotone and F (s), q′ and t′ are pairwise disjoint,

F (s) ∈ [t′, q′] in T ′. Thus F (s) = s′.
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So F naturally induces two other monotone maps: The restriction of F to S

is surjective and monotone, and g : R′ \S′ → R \S which maps every element to

its unique preimage under F is injective and monotone. In the other direction,

all surjective monotone f from Z to Z ′ are derived from a surjective monotone

map T → T ′ with F (S) ⊆ S′.

Lemma A.1.16. Let Z and Z ′ be cyclic orders on sets S and S′ respectively,

each with at least two elements, and let T and T ′ by cycle completions of Z and

Z ′ on sets R and R′ respectively. Let F : R → R′ be surjective and monotone

with F (S) ⊆ S′. Then for all elements v and w of R such that F (v) and F (w)

are distinct elements of R′ \ S′ the equations F−1((F (v), F (w))) = (v, w) and

F−1([F (v), F (w)]) = [v, w] hold.

Proof. By Lemma A.1.15, v is the only element of R which is mapped to F (v)

by F and similarly for w. So for all x ∈ R− v − w, (v, x, w) ∈ T if and only if

(F (v), F (x), F (w)) ∈ T ′ and thus the two equations hold.

Together with Lemma A.1.15, the previous lemma shows Lemma 3.4.7. With

its help, it is now possible to show the following phrasing of Lemma 3.4.5.

Lemma A.1.17. Let Z and Z ′ be cyclic orders on sets S and S′ and let T and

T ′ be cycle completions of Z and Z ′ respectively on sets R and R′. Let f : S → S′

be surjective and monotone. If S′ has at least two elements, then there is a

unique surjective monotone map F from T to T ′ such that the restriction of F

to S equals f .

Proof. For v ∈ R \ S, define F (v) as follows: If there are s and t in S such that

v ∈ [s, t] and [s, t] ∩ S ⊆ f−1(s′) for some s′ ∈ S′, then let F (v) = s′. This is

well defined as there is at most one such s′. Otherwise let s and t be elements of

S with f(s) 6= f(t) and v ∈ [s, t]. Then S1 := f([s, v]∩ S) and S2 := f([v, t]∩ S)

are intervals of S′, and they non-trivial because they are disjoint. So they can

be written uniquely as S1 = [w1, w
′
1] ∩ S′ and S2 = [w2, w

′
2] ∩ S′ for elements

w1, w
′
1, w2, w

′
2 of R′ \S′. Then w′1 = w2, and this element of R′ does not depend

on the choice of s and t. Let F (v) = w′1. In particular F (v) ∈ R′ \ S′.
In order to show that F is surjective, consider v′ ∈ R′ \ S′. Let s′ and t′ be

distinct elements of S′ with v′ ∈ [s′, t′] and let s and t be elements of S with

f(s) = s′ and f(t) = t′. Then f−1([s′, v′] ∩ S′) is a non-trivial interval of S and

thus can be written uniquely as [v, w] ∩ S for elements v and w of R \ S. As

[s, v] ∩ S ⊆ f−1([v′, t′] ∩ S′) and [v, t] ∩ S ⊆ f−1([v′, t′] ∩ S′), this implies that

F (v) = v′.
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In order to show that F is monotone, consider s, t, v ∈ R such that the triple

(F (s), F (v), F (t)) is contained in T ′. For an element r of S′, F−1(r) \ S only

contains elements of R \ S whose image under F is defined via the first case,

which implies that F−1(r) is an interval of R. So in the case where all three

elements F (s), F (t) and F (v) are contained in S′, (s, v, t) ∈ T follows from the

fact that f is monotone. As between any two elements of R′ \ S′ there is some

element of S′, in order to show (s, v, t) ∈ T it suffices to consider the case that

F (s) and F (t) are contained in S′ but F (v) is not. Again, because F−1(r) is an

interval of R for every r ∈ S′, it suffices to consider the case that both s and t

are contained in S. The fact that F (v) is not contained in S′ implies that v is

not contained in S and that F (v) is defined via the second case. In particular

if v ∈ [t, s] then F (v) ∈ [f(t), f(s)] = [F (t), F (s)], which is impossible. Hence

(s, v, t) ∈ T .

By the previous lemma, given two cycle completions of a cyclic order Z on

set S, the identity on S can be extended uniquely to a surjective monotone map

between the cycle completions, showing that cycle completions are essentially

unique. Together with the existence of cycle completions proved above this

proves Lemma 3.4.3.
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A.2 Summary

In this dissertation we introduce path spaces, an infinitary generalization of

graphs, which allows us to prove general statements for a variety of path-like

objects, including topological arcs in Hausdorff spaces. We spend the rest of the

dissertation proving results about them. This happens over the course of four

chapters.

In Chapter 1 we consider general connectivity theory. By using different

types of alternating paths, we prove two main results. The first is a version of

Menger’s theorem, showing that the maximum number disjoint of paths between

two sets is equal to the minimum size of a separator assuming the first number

is finite. The second result shows that we can find a similar duality, though with

a more complex witness, for the maximum number of disjoint paths starting and

ending in some set. This is a theorem of Gallai for graphs and corresponds to

the base case of Mader’s theorem.

In Chapter 2 we consider tree-like decompositions of path spaces, making

use of the recent theory of separation systems. We begin with a decomposition

of connected path spaces into blocks and a decomposition of 2-connected path

spaces into 2-blocks, which are parts whose torsos are 3-connected or cycles.

Then we move to general widths and use the concept of necklaces to show that

every path space of high tree width contains a large grid minor.

In Chapter 3 we note that separations systems of path spaces are limit-closed

and analyze in general limit-closed vertex separation systems. We start with a

short proof that limit-closed profiles can distinguished by a tree set. Afterward we

investigate the flowers of limit-closed separation systems and prove in particular

the existence of maximal such objects.

In Chapter 4 we consider questions of ubiquity, more specifically we ask

whether path spaces contain infinitely many disjoint copies of a certain substruc-

ture whenever they contain arbitrarily many disjoint copies. We first prove that

cycles and more generally ladder-like structures are ubiquitous and then apply

the grid theorem to show that this applies to minor embeddings of finite planar

graphs more generally. We also talk about a notion of edge-ubiquity and show

that cycles have this property.
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A.3 Zusamenfassung

Diese Dissertation führt Wegräume ein, eine Verallgemeinerung von Graphen,

die unendliche Wege zulässt. Mithilfe dieser können wir Aussagen gleichzeitig

für verschiedene wegartige Objekte beweisen, darunter topologische Bögen in

Hausdorffräumen. Im weiteren Verlauf der Dissertation zeigen wir im Laufe von

vier Kapiteln ebensolche Resultate.

In Kapitel 1 betrachten wir Zusammenhang im Allgemeinen. Wir verwenden

zwei verschiedene Arten von alternierenden Wegen, um zwei Hauptresultate

zu beweisen. Das erste ist eine Version des Satzes von Menger; wir beweisen

genauer, dass die maximale Anzahl von disjunkten Wegen zwischen zwei Mengen

gleich der minimalen Größe eines Trenners ist, wenn die erste Zahl endlich

ist. Das zweite Resultat zeigt eine ähnliche Dualität, wenn auch mit einem

komplizierteren Gegenpart, für die maximale Anzahl von disjunkten Wegen die

in einer bestimmten Menge beginnen und enden. Für Graphen ist das ein Satz

von Gallai, der dem Induktionsanfang vom Satz von Mader entspricht.

In Kapitel 2 betrachten wir baumartige Zerlegungen von Wegräumen, wobei

wir die noch junge Theorie von Separationssytemen verwenden. Zunächst kon-

struieren wir Zerlegungen von zusammenhängenden Wegräumen in ihre Blöcke

und von 2-zusammenhängenden Wegräumen in 2-Blöcke, das heißt Teile der Zer-

legung deren Torsos 3-zusammenhängend oder Kreise sind. Danach verwenden

wir Halsketten, um das zu zeigen, dass jeder Wegraum mit hoher Baumweite

einen großen Gitterminor enthält.

In Kapitel 3 bemerken wir, dass Separationssysteme von Wegräumen unter

Limites abgeschlossen sind und betrachten solche Separationssystem im Allge-

meinen. Zunächst zeigen wir, dass Profile, die unter Limites abgeschlossen sind,

durch eine geschachtelte Menge von Teilungen unterschieden werden können.

Danach betrachten wir Blumen von Separationssystemen und zeigen unter an-

derem die Existenz von maximalen Blumen unter Annahme dieser Abschlußeigen-

schaft.

In Kapitel 4 untersuchen wir Ubiquität, das heißt wir fragen ob Wegräume,

die beliebig viele disjunkte Kopien von bestimmten Unterstrukturen enthalten

auch unendlich viele solche Kopien enthalten. Wir zeigen zunächst, dass Kreise

und allgemeiner leiterartige Strukturen diese Eigenschaft haben und wenden

dann den Gittersatz an um allgemeiner die Ubiquität von Einbettungen von

endlichen, planaren Graphen als Minor zu beweisen. Weiterhin geben wir eine

Definition von Kantenubiquität und zeigen, dass Kreise dies erfüllen.
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A.4 Related publications

The only published preprint related to this thesis is [35], an unpublished expanded

version of which roughly corresponds to Chapter 1.

Chapter 2 consists of two unfinished drafts, [33] making up the first half and

[34] the second.

Similarly, Chapter 3 consists of the two drafts [22] and [21].

Finally, Chapter 4 corresponds to the draft [36].
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A.5 Contributions

Chapter 1, Chapter 2 and Chapter 4 are based on drafts of which I am sole

author. Chapter 3 is joint work with Ann-Kathrin Elm. While the research and

writing were done collaboratively, in the following I will give a rough breakdown

of our contributions to it.

To start with I wrote Section 3.1 incorporating some suggestions by Ann-

Kathrin. For Section 3.2 I first proved a version of Theorem 3.2.6 and wrote a

first draft, Ann-Kathrin introduced the idea of the function fP and rewrote and

simplified the proof using it and finally I rewrote the section again. Section 3.3

is mostly Ann-Kathrin’s work. While we came up with our definition of pseud-

oflower together, Section 3.4 is otherwise mostly her work as well (including the

accompanying appendix). I first proved an extension theorem for pseudoflowers

and wrote the first draft of Section 3.5 and Ann-Kathrin introduced the notion

of separations being anchored, improved the proof using it and wrote the current

version of the section. For Section 3.6 I had the idea of using inverse limits and

Ann-Kathrin worked out the details and wrote the section. Section 3.7 is mostly

my work. Finally, I wrote Section 3.8 based in part on a common list of bullet

points.
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