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Abstract

Our Universe – within its first second – evolved in a very high-energy stage, spanning at most
19 decades in energy scales from the time of primordial inflation to the epoch of Big Bang Nucle-
osynthesis (BBN) and typically involving new physics beyond the Standard Model (SM). Due to
the weakness of gravitational interactions, gravitational waves (GW) from primordial sources con-
vey information about the Universe that remains unaltered from their production time until today.
They enable access to the early Universe and to particle physics at energy scales that are unreach-
able by other means of experiments. The particle physics of the SM and beyond can source GWs
and determine the course of cosmic history; both imprint smoking-gun GW signatures.

The first part of this thesis starts by charting the landscape of primordial GW, assuming the stan-
dard ΛCDM Universe. Primary sources originate from the SMs of particle physics and cosmology
(primordial inflation and thermal plasma) and beyond the SMs (preheating, first-order phase tran-
sitions, and cosmic strings). Almost half of the landscape is compatible within the sensitivities of
the current and future-planned GW observatories. We discuss the dependence of GW signals on
the parameters controlling the sources and derive, for each source, the relation between the GW
frequency and the cosmic temperature when the GW is produced. Focusing on cosmic strings, we
analyze their network evolution and calculate the GW spectrum in detail. The semi-analytic model
allows the generalizations of string evolution in various non-trivial setups, e.g., metastable strings,
global strings, and strings that evolve in arbitrary cosmology. We also show that cosmic strings
can explain the exciting hint of stochastic GW background observed by the pulsar timing arrays.

Particle physics beyond the SM can change the course of the early evolution of the Universe with
respect to the standard radiation-dominated Universe by temporarily inducing different cosmologi-
cal eras. We list five possible schemes, ranging from matter, secondary inflation, and kination eras
and occurring either right after the primordial inflation or inside the radiation era after reheating.
The resulting non-standard expansion histories leave signatures in primordial stochastic GW back-
grounds. The spectral suppressions are caused by matter and secondary inflationary eras, while
the kination era enhances the GW signal. With the present and future generations of GW obser-
vatories, it is possible to map the Universe’s expansion history and chart the new particle-physics
parameter spaces.

In the second part, we consider the particle-physics realizations of the intermediate matter and
kination eras. The former case can be induced by heavy and unstable particles, such as moduli,
heavy scalars produced via gravitational and Higgs portals, and heavy dark photons. The next-
generation GW experiments can remarkably extend the usual BBN constraint on the lifetime of
new particles down to 10−16 sec by detecting the step-like feature in GW from cosmic strings. The
intermediate kination era is realized by the rotating axion, which we analyze in great detail. We find
for the first time a unique GW-peak signature of axion physics in the early Universe that applies in
particular to the kinetic misalignment mechanism for axion dark matter. The peak position depends
on the axion speed and decay constant. LISA, BBO, ET, and CE are sensitive to such kination era
at MeV-EeV scales. Finally, we connect the kination peak to dark matter and baryogenesis from
the rotating axions.
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Zusammenfassung

Innerhalb der ersten Sekunde seiner Existenz befand sich unser Universum in einem hochenergetis-
chen Zustand, dessen Energieskala von der Zeit primordialer Fluktuationen bis zur “Big-Bang” Nuk-
leosynthese (BBN) bis zu 19 Dekaden überspannte und in dem typischerweise neue Physik, jenseits des
Standardmodells (SM), involviert war. Aufgrund der Schwäche gravitativer Wechselwirkungen übermit-
teln Gravitationswellen (GW) primordialen Ursprungs Informationen über das Universum, die vom Zeit-
punkt ihrer Produktion bis heute unverändert blieben. Sie ermöglichen Zugang zum frühen Universum
und zu Teilchenphysik bei Energieskalen, welche mit anderen experimentellen Methoden unerreichbar
sind. Die Teilchenphysik des Standardmodells, und jenseits davon, kann Gravitationswellen hervorbrin-
gen, die kosmologische Geschichte bestimmen, und damit “Smoking-Gun” Gravitationswellensignaturen
erzeugen.

Der erste Teil dieser Arbeit beginnt damit, den Parameterraum primordialer GWs unter der An-
nahme des Standard-ΛCDM Universums zu kartieren. Primäre Quellen können aus dem Standardmod-
ell der Teilchenphysik und Kosmologie stammen (primordiale Fluktuationen und thermisches Plasma),
aber auch aus Physik jenseits des Standardmodells (“Preheating”, Phasenübergänge erster Ordnung und
kosmische “Strings”). Fast die Hälfte des Parameterraum ist mit den Empfindlichkeiten heutiger sowie
geplanter GW-Observatorien kompatibel. Wir diskutieren die Abhängigkeit der GW-Signale von den
Parametern, welche die Quellen kontrollieren, und leiten daraus für jede Quelle eine Relation zwis-
chen GW-Frequenz und der kosmischen Temperatur, zur Zeit als die GW produziert wurde, ab. Wir
konzentrieren uns auf kosmische Strings, analysieren die Evolution ihres Netzwerkes und berechnen
das Gravitationswellenspektrum im Detail. Das semi-analytische Modell erlaubt die Generalisierung der
String-Evolution in verschiedenen, nicht-trivialen Konfigurationen, z.B. für meta-stabile Strings, globale
Strings, und Strings, die sich in beliebigen Kosmologien entwickeln. Wir zeigen außerdem, dass kos-
mische Strings den aufregenden Hinweis auf einen stochastischen GW-Hintergrund, der von den ‘Pulsar
Timing Arrays’ beobachtet wurde, erklären können.

Teilchenphysik jenseits des Standardmodells kann die Entwicklung des jungen Universum dahinge-
hend verändern, dass im typischerweise strahlungsdominierten Universum zeitweise andere kosmolo-
gische Epochen induziert werden. Wir listen fünf mögliche Schemen auf, welche von Materie-, über
zweite Inflations-, zu “Kination”-Epochen reichen, und welche entweder direkt nach primordialer Infla-
tion oder während der strahlungsdominierten Epoche nach dem Prozess der Wiederaufheizung (“Reheat-
ing”) auftreten. Die resultierenden, nicht-standardmässigen Expansionsgeschichten hinterlassen Signa-
turen in stochastischen GW-Hintergründen. Eine Unterdrückung des Spektrums wird von Materie- und
zweite Inflations-Epochen verursacht, wahrend eine “Kination”-Epoche das GW-Signal verstärkt. Mit
den gegenwärtigen und zukünftigen Generationen von GW-Observatorien ist es möglich, die Expansion-
sgeschichte des Universums zu kartieren und die Parameterräume neuer Teilchenphysik zu erfassen.

Im zweiten Teil untersuchen wir die teilchenphysikalischen Realisierungen der zwischenzeitlichen
Materie- und der “Kination”-Epochen. Der erste Fall kann durch die Produktion schwerer und insta-
biler Teilchen induziert werden, wie zum Beispiel Moduli, schwere skalare Teilchen, produziert durch
gravitative Portale und Higgsportale, und schwere dunkle Photonen. Die GW-Experimente der nächsten
Generation können die üblichen BBN-Limits an die Lebensdauer neuer Teilchen auf 10−16 sec senken, in-
dem ein stufenförmiges Merkmal in GWs von kosmischen Strings detektiert wird. Eine zwischenzeitliche
“Kination”-Epoche wird durch ein rotierendes Axion realisiert, welches wir im Detail analysieren. Wir
finden, zum ersten Mal, die einzigartige Signatur eines GW-Maximums durch Axionphysik im frühen
Universum, die insbesondere auf den kinetischen “Misalignment”-Mechanismus für axionische dunkle
Materie anwendbar ist. Die Position des Maximums hängt von der Geschwindigkeit des Axions und der
Zerfallskonstante ab. LISA, BBO, ET und CE sind empfindlich für eine solche Kination-Epoche bei MeV-
EeV Skalen. Abschließend schlagen wir eine Brücke vom GW-Maximum durch “Kination” zu dunkler
Materie und Baryogenese durch rotierende Axionen.
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Chapter 1

Introduction

“The effort to understand the Universe is one of
the very few things that lifts human life a little
above the level of farce, and gives it some of the
grace of tragedy.”

— Steven Weinberg, The First Three Minutes

A decade ago, the Higgs-boson discovery at the Large Hadron Collider [6, 7] concluded the
search for Standard Model (SM) particles and confirmed our understanding of their behavior at the
TeV scale. Nonetheless, the entire picture is incomplete; some theoretical puzzles – such as the
hierarchy problem, the neutrino masses, the flavor puzzle, and the strong-CP problem – cannot be
addressed by the SM and require new particle physics beyond the Standard Model (BSM). Most of
the solutions introduce a new mass scale that would lie beyond the current collider capability (if
they are not already relying on the electroweak scale).

Embedded into our Universe’s history, the SM cannot account for many observational facts.
The flat and homogeneous Universe suggests an inflationary period emerging from the BSM sec-
tor and happening long before the presence of hot and dense plasma of the SM particles. Later, the
Universe follows the Standard Model of cosmology or the Λ-Cold-Dark-Matter (ΛCDM) model,
cf. Sec. 1.1, which needs at least the presence of Dark Matter (DM), cosmological constant (CC),
and the matter-antimatter asymmetry. In the era of precision cosmology, many experiments utilize
electromagnetic (EM) probes, e.g., the cosmic microwave background (CMB), large-scale struc-
tures, and other astrophysical observations. They strongly constrain our Universe to be dominated
by the SM thermal plasma at the Big-Bang Nucleosynthesis (BBN) scale around the energy of
MeV. Except for the limit on the inflationary scale at 1016 GeV, no EM probe of cosmology
reaches beyond this threshold.

The first direct detection at LIGO [8, 9] marked the dawn of the gravitational wave (GW)
physics era. Many future experiments with higher sensitivity will be soon running and observing
GW in various frequency bands. Due to the weakness of gravity, GW allows us to directly explore
the first second of our Universe that spans at most 19 decades in energy scales and possibly the new
physics addressing the problems of the SM. The BSM physics could either prominently source GW
or non-trivially alter the course of cosmic history, imprinting smoking-gun GW signatures. By
searching for these features, the current and future planned observatories can exclude or discover
various new particle physics; this is the main idea of this thesis.

The following section briefly reviews the Standard Models of cosmology and particle physics.
The outline of this thesis is presented in Sec. 1.2.

1.1 Standard Models of Cosmology and Particle Physics

The cosmological principle – i.e., the homogeneity and isotropy of the Universe – is consistent
with observations [10–12] and is described by the Friedmann-(Lemaître-)Robertson-Walker (FRW)
metric [13–16],

ds2 = −dt2 +
3∑
i=1

a2(t)dxidxi, (1.1)
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where t is the cosmic time, xi is the spatial coordinate, and a(t) is the scale factor describing
the Universe’s expansion. We neglect the small curvature term [17] throughout this thesis. The
evolution of the Universe described by a(t) depends on its energy contents and follows from the
Einstein equation [18], Gµν = 8πGTµν − Λgµν , where Gµν is the Einstein tensor related to the
curvature of spactime, G is the Newton’s constant, Tµν is the energy-momentum tensor of the
Universe’s components, and Λ is the cosmological constant.

At large scales, the energy content is assumed to be a perfect fluid whose Tµν is described by
its pressure and energy density, or the equation of state (EOS): ω ≡ p/ρ. The pressureless matter
(p = 0) has ω = 0; the radiation (p = ρ/3) has ω = 1/3; the cosmological constant (CC) (ρ≫ p)
has ω = −1. Let us emphasize the particular case of the so-called kination where ω = 1 is the
maximum value allowed by cauasality, i.e., the speed of perturbation (c2s ≡ ∂p/∂ρ ≤ 1) is smaller
than the light’s speed; see Chap. 4. Solving the Einstein equation with the perfect-fluid contents,
one yields the Friedmann equations,

H2 ≡
(
ȧ

a

)2

=

∑
i ρi

3M2
Pl

,
ä

a
= −

∑
i(ρi + pi/3)

6M2
Pl

, (1.2)

where H is the Hubble rate describing the expansion, we sum all energy densities and pressures
contributions. Combining the two equations or considering the energy conservation, the continuity
equation for such a fluid reads

ρ̇+ 3H(1 + ω)ρ = 0 ⇒ ρ ∝ a−3(1+ω), (1.3)

which describes how the energy density of the Universe gets diluted along the cosmological history.
Moreover, if such a fluid dominates over the total energy density of the Universe, the first Friedmann
equation yields the solution to the scale factor, a ∝ t2/3(1+ω). The matter energy density (ωm = 0)
scales as ρm ∝ a−3, and the matter-dominated era has a ∝ t2/3. The radiation (ωr = 1/3) has
ρr ∝ a−4, and a ∝ t1/2 during the radiation-dominated era. For the extreme limit of ω = −1, the
energy density does not dilute, and the CC-dominated Universe leads to an exponential expansion:
a ∝ eHt. The special case of kination (ωkin = 0) has the energy density red-shifts the fastest
ρkin ∝ a−6 and the Universe expands at the slowest rate a ∝ t1/3.

In the standard cosmological history (ΛCDM + inflation), the Universe starts with an exponen-
tial expansion, the so-called inflation. Though inflation is not required by the Standard Model (SM)
of particle physics, it solves the horizon and flatness problems of the ΛCDM cosmology [19]. The
observations constrain the inflationary scale to be at most Emax

inf ≃ 1.4 · 1016 GeV [20, 21]. After
the inflation, the Universe converts its energy budget into the hot thermal plasma of particles in the
SM. (Note that the reheating period could lead to the non-standard cosmological history, namely
the matter or kination eras, cf. Chap. 4.) The Universe is then in the radiation-dominated era. Due
to interactions, the thermal equilibrium is reached and has the energy and entropy densities,

ρr =
π2

30
g∗(T )T

4, s =
2π2

45
g∗s(T )T

3, (1.4)

where g∗(T ), g∗,s(T ) is the effective number of relativistic particle species contributing to the
energy and entropy densities of the thermal plasma. For bosons, g∗ =

∑
i gi, while g∗ = 7

8

∑
i gi

for fermions. When all of the SM particles are in equilibrium, we obtain g∗ = g∗s = 106.75.
After the electroweak (EW) phase transition, many SM particles receive a mass from the non-

zero vacuum expectation value of the Higgs field. They become non-relativistic and annihilate once
the Universe cools sufficiently. Note that the temperature of the Universe (or thermal bath) drops
with the expansion rate: T ∝ a−1g

−1/3
∗s , determined by the entropy conservation a3s = constant.

The effective number of relativistic particles decreases over time, as shown in Fig. 1.1. We take
the evolutions of g∗ and g∗,s from the fitted formulae in Ref. [22]. The sharp drop at QCD scale
(TQCD ∼ 150 MeV) is due to the condensation of quarks into baryons. The last fall is due to
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Figure 1.1: Evolution of the effec-
tive numbers of relativistic SM-particle
species, contributing to the energy and en-
tropy densities. Obtained from the fitted
formulae in Ref. [22].

the neutrino decoupling and the electron-positron annihilation. The final values – g∗(T0) = 3.36,
g∗,s(T0) = 3.94 – are of the photons and neutrinoes; their difference is due to the electron-positron
annihilation happening after the neutrino decoupling and leading the heating of photons.

At around temperature Teq ≃ 0.75 eV, the radiation bath becomes subdominant to the matter-
type energy density: baryon and cold dark matter. The Universe enters the matter domination
regime. The primordial perturbations imprinted since the time of inflation can grow and lead to
structure formations. The matter era ends with the CC (Λ) domination only when T ≃ 0.33 meV.
The Universe today expands exponentially with rate of H0 = 67.4 km s−1Mpc−1 [23].

Let us comment on two of the milestones of cosmological evolution. First, the cosmic mi-
crowave background (CMB) radiation is generated when photons decouple from the rest of the
particles and carry the direction information about the Universe around T ∼ 0.1 eV. By fitting to
observations, the energy contents of the Universe in the standard ΛCDM cosmology is

ρST,0(a) = ρr,0G[T (a), T0]
(a0
a

)4
+ ρm,0

(a0
a

)3
+ ρΛ,0, (1.5)

where r,m, and Λ denote radiation, matter, and the CC, respectively. The energy density is written
in terms of the relic density Ωi as ρi,0 = Ωi,0 (3M

2
PlH

2
0 ), where the term in bracket defines the

critical energy density today. Each of the components is measured to be Ωr,0 ≃ 5.4 × 10−5,
Ωm,0 ≃ 0.31, ΩΛ ≃ 0.69 [23]. The presence of the function

G(T, T0) ≡
[
g∗(T )

g∗(T0)

] [
g∗s(T0)

g∗s(T )

]4/3
, (1.6)

comes from the conservation of the comoving entropy.
Another milestone – the Big-Bang Nucleosynthesis (BBN) – sits earlier back in time at tem-

perature TBBN ∼ MeV or around the time ∼ 1 sec, when nuclei of the light elements (H, D, He,
Li) form for the first time. The theoretical predictions based on the standard cosmological history
are consistent with the observations of the abundances of light elements [24], suggesting that the
Universe must be in the radiation-dominated era at least at BBN.

1.2 Outline of this thesis

At most, 19 decades in energy scale lie above BBN up to the inflation scale. The standard cosmo-
logical paradigm suggests the radiation-domination era along the way; however, other scenarios
are not unlikely. For example, some energy densities beyond the Standard Model (BSM) might
dominate the total energy density of the Universe, leading to a non-standard cosmological history
that ends well before BBN. This thesis focuses on charting this pre-BBN cosmology – the pri-
mordial dark age1 or the first second of our Universe – through gravitational waves (GW) from

1This is not the late-time cosmic dark age that happened between the recombination and the reionization and can be
probed by EM waves such as Lyman-α forest, cf. review [25].
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primordial sources. Due to the weakness of the gravitational interaction, GW conveys information
about the Universe from its production time to our GW observatories today, allowing access to the
early Universe and particle physics at energy scales unreachable by other means of experiments.

In the first part of this thesis, Chap. 2 starts discussing GW from primordial sources in the form
of stochastic GW background (SGWB). We chart the landscape of primordial SGWB, populated by
prominent sources from and beyond the SM. Almost half of it is compatible with the sensitivities
of the current and future-planned GW experiments. We comment on the exciting SGWB hint from
pulsar timing arrays. Chap. 3 focuses on the cosmic-string network where we calculate the corre-
sponding GW in detail, assuming the standard cosmology and employing the semi-analytic model.
We also study the metastability effect and the global strings. Chap. 4 turns to the effect of BSM
physics that changes the course of cosmological history. We list possible schemes – ranging from
matter, secondary inflation, and kination eras – and study their imprints/features in the primordial
SGWBs. With the present and future generations of GW observatories, it is possible to map almost
the full Universe’s expansion history.

In the second part, we consider the particle-physics realizations of some attractive schemes in
Chap. 4. The intermediate matter era – induced by heavy and unstable particles – is investigated in
Chap. 5. Chaps. 6 and 7 scrutiznize the intermediate kination era from the rotating axion, which
leads to the exciting GW signatures. We devote the discussion in Chap. 6 to the model-independent
phenomenology of rotating axion (e.g., dark matter and baryogenesis) and its detectability of the
kination-induced GW signature. In Chap. 7, we list all the required ingredients in the rotating-
axion model for the successful intermediate kination era and construct the cosmological history in
terms of model parameters step-by-step. We conclude in Chap. 8 and defer all additional details to
appendices.
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PART I

Beyond the Standard Models
with Primordial Gravitational Waves
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Chapter 2

Primordial Gravitational Waves

The first direct detection of gravitational waves (GW) – predicted by Einstein as a consequence of
general relativity [26, 27] – by LIGO collaboration in 2015 [8, 9] has initiated a new era of explo-
ration of our Universe into uncharted territory. Subsequently, many observations have been made
from astrophysical sources with great precision, along with their electromagnetic (EM) counter-
parts, e.g., binaries systems of black holes and neutron stars, cf. the living review [28]. On the
other hand, GW can also be originated during the primordial Universe, across ∼ 26 decades in
energy scales from the end of primordial inflation to the first light of our Universe, e.g., [29–32].

The EM observations observe up to the scale of recombination, Trec ∼ 0.1 eV, or at best the
Big Bang Nucleosynthesis (BBN) scale, TBBN ∼ MeV, while the particle colliders probe up to
the TeV scales [12, 33]. The so-called primordial GW are produced by very high-energy physics
that any other experiment cannot test. Because the gravitational interaction is extremely weak; GW
decouples from other particles in the thermal plasma as soon as they are produced:

Γgrav

H
∼ nσv

T 2/MPl

≃ G2T 5

T 2/MPl

≃
(

T

MPl

)3

≪ 1 for the sub-Planckian Universe, (2.1)

where n ∼ T 3 is the number density of particles in thermal equilibrium, σ ∼ G2T 2 is the cross-
section of the gravitational interaction1, and v ≃ 1. Any primordial GW travels freely, up to
the cosmic expansion, and carries direct information about its generation mechanism from the
production time to our GW observatories today.

In this chapter, Sec 2.1 first reviews the primordial GW in the form of a stochastic GW back-
ground (SGWB) observed today. In Sec. 2.2, two parts of information can be learned from the
SGWB spectrum – the sources’ strength and length/time scale – allowing us to chart the landscape
of the primordial GWs, as shown in Fig. 2.1. We discuss the prime sources from the SM (of particle
physics and cosmology) in Sec. 2.3 and the beyond SM in Sec. 2.4. Sec. 2.5 review the prospects
of detection, expanding over 21 decades in frequency Finally, Sec. 2.6 comments on the exciting
hint of SGWB, observed by pulsar timing arrays and probably explained by cosmic strings.

2.1 Stochastic Gravitational-Wave Background

Consider the cosmological perturbation theory on the isotropic-homogeneous expanding Universe,
described by the Friedmann-Robertson-Walker (FRW) metric,

ds2 = −dt2 + a2(t)(δij + hij)dx
idxj , (2.2)

where the presence of scalar and vector modes are neglected, and a slight spatial tensor pertur-
bation |hij | ≪ 1 represents gravitational waves (GW), satisfying the transverse-traceless (TT)

1In standard textbook [34], the neutrino decoupling is estimated by replacing G → GF (Fermi’s constant) for the
weak interaction: Γ/H ∼ (T/MeV)3.
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conditions hii = ∂ihij = 0 and leaving hij with two propagating degrees-of-freedom, i.e., the
GW polarizations. The equation-of-motion (EOM) of the GW follows from the linearized Einstein
equation,

ḧij(x, t) + 3Hḣij(x, t)−
∇2

a2
hij(x, t) = 16πGΠTT

ij (x, t), (2.3)

where ˙(·) ≡ d(·)/dt, ∇2 ≡ ∂i∂i. GW is sourced by ΠTT
ij (x, t) the transverse-traceless part of the

anisotropic stress tensor, defined by a2Πij = Tij−pa2(δij+hij)whereTij is the spatial component
of the source’s energy-momentum tensor, and p is the homogeneous background pressure.

Let us write the above equation in terms of Fourier components for convenience. The tensor
perturbation in the TT gauge becomes

hij(x, t) =
∑

λ=+,×

∫
d3k

(2π)3
eik·xhλ(k, t)ϵλij(k̂), (2.4)

where λ represents the two polarizations, and the polariztion tensor ϵλij(k̂) is symmetric (ϵλij = ϵλji)
and TT (kiϵλij = 0 = ϵλii) conditions. Moreover, the polarization tensor also has the orthonormal
and completeness relations∑

i,j

ϵλij(k̂)ϵ
λ′
ij (k̂) = 2δλλ′ ,

∑
λ=+,×

ϵλij(k̂)ϵ
λ
lm(k̂) = PilPjm + PimPjl − PijPlm, (2.5)

where Pij(k̂) ≡ δij − k̂ik̂j is the projector on the direction orthogonal to k (Pijki = 0, PijPjl =
Pil). Similarly, the source term can be written as

ΠTT
ij (x, t) = Oijlm(k̂)

∫
d3k

(2π)3
eik·xΠlm(k, t), (2.6)

with Oijlm(k̂) ≡ Pil(k̂)Pjm(k̂)− 1
2Pij(k̂)Plm(k̂) is the TT projection and Oijlm(k̂)Πlm(k, t) =

ΠTT
ij (k, t), leading to conditions kiΠTT

ij = 0 = ΠTT
ii . The Fourier decomposition of the GW EOM

reads

ḧij(k, t) + 3Hḣij(k, t) +
k2

a2
hij(k, t) = 16πGΠTT

ij (k, t), (2.7)

A freely propagating GW (ΠTT
ij = 0) evolves differently in two limits, depending on its co-

moving wavenumber k,

hλ(k, τ) =

{
Aλ(k)
a(τ) e

ikτ + Bλ(k)
a(τ) e

−ikτ , for k ≫ aH (sub-horizon),
Aλ(k) +Bλ(k)

∫ τ dτ ′

a2(τ ′) , for k ≪ aH (super-horizon),
(2.8)

where dτ ≡ dt/a is the conformal time, Aλ and Bλ are arbitrary constants set when the source
term ΠTT

ij becomes inactive. The sub-horizon GW exhibits an oscillatory behavior with its size
being red-shifted by the cosmic expansion. The super-horizon mode stays frozen due to the first
term, and it later re-enters the horizon and starts oscillating. By observing GW today, we obtain two
parts of information: the dynamics related to the production mechanism ΠTT

ij and the kinematics
related to the expansion history of the Universe.

GW from the early Universe and relic density. — A GW production process during the early
Universe operates only within a causal patch (i.e. λGW ≤ H−1

prod), much smaller than the horizon
size today,

λGW,0

H−1
0

≤
H−1

prod

H−1
0

[
a0
ap

]
≃ Ω

−1/2
r,0

[
T0
Tp

]
≃ 2 · 10−13

[
100 GeV

Tp

]
, (2.9)
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where we use a ∼ T−1. Therefore, the primordial GW sources from many uncorrelated patches
would randomize the amplitude of hij(x, t) observed today and contribute to the so-called stochas-
tic GW background (SGWB). Since there is only one Universe, an observable is not well character-
ized by an ensemble average in the context of statistics; instead, we trade it with the spatial/temporal
average via the ergodic theorem [31]. For an isotropic, homogeneous, unpolarized, stationary, and
gaussian background, the correlation function reads,

〈
hλ(k, τ)hλ′(k

′, τ ′)
〉
=

8π5

k3
h2c(k, τ)δ

(3)(k− k′)δ(τ − τ ′)δλλ′ , (2.10)

and ⟨hij(x, τ)hij(x, τ)⟩ = 2

∫
d(log k)h2c(k, τ) (2.11)

where hc is the dimensionless characteristic strain of GW, and all statistical information is captured
due to gaussianity. The delta functions and the Dirac delta in Eq. (2.10) suggest other four prop-
erties: 1) δ(3)(k − k′) for isotropy and homogeneity, 2) δ(τ − τ ′) for stationary, and 3) δλλ′ for
unpolarization. Note that these properties are typical for primordial GW; however, there could be
deviations for a particular source that would serve as smoking-gun signatures from other stochastic
sources, e.g., [35–38].

The energy density of GW is the 00th component of the energy-momentum tensor,

ρGW =

〈
ḣij(x, t)ḣij(x, t)

〉
32πG

=

〈
h′ij(x, τ)h

′
ij(x, τ)

〉
32πGa2

. (2.12)

For the sub-horizon GW (k ≫ aH), we deduce from Eq. (2.8) that h′c
2(k, τ) ≃ k2h2c , leading to

ρGW =

∫
d(log k)

k2h2c(k, τ)

16πGa2(τ)
≡
∫
d(log k)

dρGW

d log k
, (2.13)

where the last step defines the energy density spectrum of GW. Due to h2c ∝ a−2 for sub-horizon
mode, we emphasize the most critical aspect of GW, i.e., the GW energy density of some mode k
red-shifts as radiation a−4. The relic density of SGWB observed by GW experiments with some
frequency today – corresponding to some comoving wavenumber (k/a0 = 2πf ) – reads

ΩGW,0(f) =
k2h2c(k, τ0)

16πGa20
=
ρprodGW (f)

ρtot,0

(
aprod
a0

)4

, (2.14)

where we used again that ρGW ∝ a−4. Despite its simplicity, this equation leads to many interest-
ing consequences. For instance, we can redshift the SGWB from the production time to estimate
the SGWB today from each primordial source. Moreover, this simple equation allows us to derive
signatures from non-standard cosmological effects in Chap. 4.

In this thesis, all predicted stochastic GW frequency spectra will be expressed in terms of
ΩGWh

2, which differs from the usual characterization of the GW signal in terms of the strain hc.
For comparison, we show in Fig. A.2, how the typical stochastic spectra computed in this thesis
would look like In hc units.

2.2 Landscape of Primordial SGWBs

Many early-Universe processes generate SGWB of various signal shapes and frequency ranges. In
this section, we scrutinize the plane (frequency fGW, amplitude ΩGW) where the energy-density
spectra of primordial SGWBs would reside today, regardless of the nature of their sources. The
critical aspect is that the GW propagates freely and carries direct information about its origin,
from the production time to the GW observatories today. Ultimately, the amplitude and frequency
relate to the production mechanism’s strength and time scale, respectively. The generic theoretical
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constraints on the primordial sources are discussed in Secs. 2.2.1 and 2.2.2, limiting the SGWB
landscape down to Fig. 2.1. The prime sources of primordial SGWB2 discussed in Secs. 2.3 and
2.4 populate the region widely, while the experimental prospects probe almost half of it.

| | | | | | | | |

| | | | | | | | |

| | | | | | | |

10-9 10-6 10-3 1 103 106 109 1012 1015
Temperature of the Universe

GeV
λGW
inf =H-1

λGW=
H-1

102

λGW ≃ H-1/106

Figure 2.1: The landscape of primordial SGWBs and the sensitivities of the future-planned GW observato-
ries, cf. Sec. 2.5. Assuming the standard ΛCDM cosmology, we show the SGWB spectra from the Standard
Models (primordial inflation and thermal plasma) in Sec. 2.3 and beyond SM (preheating, first-order phase
transition, cosmic strings) in Sec. 2.4. See footnote for the chosen parameters. The GW frequency today cor-
responds to its production time, shown in the above-colored lines for different sizes λGW of sources (colors
match that of spectra). The maximum amplitude is bounded by the ∆Neff constraints at BBN/CMB scales,
cf. Sec. 2.2.2.

From signals to their origins. — Due to the cosmic expansion, GW energy density today is
redshifted from the production time as radiation,

ΩGW,0 =

(
ρGW,prod

ρtot,0

)(
aprod
a0

)4

≃ Ωr,0

(
ρGW

ρtot

)
prod

, (2.15)

where the last step assumes the standard ΛCDM cosmology, and Ωr,0 = 5.38 · 10−5 [39] is the
abundance of radiation today. The last bracket suggests that the observed signal depends on the
strength of the GW generation process. The strongest source ρGW → ρtot leads to the extreme
bound ΩGW,0 ≲ 10−5 on primordial SGWB assuming the standard cosmology. Nonetheless, the
CMB/BBN observations put a more stringent constraint ΩGW,0 ≲ 10−7; see Sec. 2.2.2.

The GW frequency today relates to the source’s characteristic length scale λGW, through the
red-shift factor,

fGW = λ−1
GW

(
aprod
a0

)
≃ 10−6 Hz

(
H−1

prod

λGW

)(
Tprod

100 GeV

)
, (2.16)

2In Fig. 2.1: primordial inflation (Einf = 1016 GeV), thermal plasma (Treh = 1016 GeV), preheating (Treh =
1016 GeV, {gi} = {10−2, 10−3}), phase transition (T∗ = 150 GeV, β/H∗ = 100, α = 2), and local cosmic strings
(Gµ = 10−12).
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where we use T ∝ a−1. We can also write this relation in terms of the production time,

tprod ≃ sec

(
H−1

prod

λGW

)2(
10−11 Hz

fGW

)2

, (2.17)

where we use tprod ≃ (MeV/Tprod)
2 × sec. For higher frequencies, the SGWB is a probe of

the hotter and earlier stages of the Universe, well beyond the reach of traditional particle physics
experiments.

The frequency-temperature relations for several sources’ sizes are shown on the top panel of
Fig. 2.1. Due to causality, the horizon size at production H−1

prod is the largest possible length scale
of the source: λGW → H−1

prod. Furthermore, we can understand that the long-lasting GW sources
(e.g., primordial inflation and cosmic strings) generate SGWBs that span a broad range of frequen-
cies; many contributions at different frequencies add up. The signals from the short-lasting sources
are localized at particular frequencies associated with their production times (e.g., first-order phase
transition) or length scales (e.g., preheating and thermal GW).

2.2.1 Naive frequency limits on the landscape

The naive theoretical constraints on the highest and lowest frequencies of the SGWB can be derived
from Eq. (2.16). The lowest frequency of GW is that of those GW produced today; their source has
the largest possible size, i.e., the Hubble horizon today,

fGW,lowest = H0 ≃ 10−18 Hz. (2.18)

Despite this late-time GW production, we still call this a primordial GW from many primordial
sources that could still exist today. The highest frequency of primordial GW arises from the highest
energy scale3 Hprod ≃MPl, and the GW source of the smallest size, the Planck lengthλ−1

GW ∼MPl.
The highest possible frequency of primordial GW is

fGW,highest ≃ 1013 Hz. (2.19)

Such highest frequencies could still be reached in principle by experiments like axion helioscopes,
probing GW at 1014 Hz; see Ref. [40] for a review. Smaller-size sources could populate the ultra-
high frequency region at late times, e.g., primordial black-hole inspirals [41].

At the high-frequency end, the smallest source of the Planck length λ−1
GW ∼MPl produced GW

at the end of inflation Hmax
inf ≃ 6 · 1013GeV [20, 21] at the frequency

fGW,highest ≃ 1013 Hz. (2.20)

Such ultra-high frequencies could still be reached in principle by experiments like axion helio-
scopes, probing GW at 1014 Hz; see Ref. [40] for a review. The Planck-size sources at late times
might populate the signals beyond the above naive limit, e.g., primordial black-hole inspirals [41],
which is beyond the scope of this thesis.

2.2.2 Largest Possible Amplitude: ∆Neff bound

The amount of GW – even as a sub-component of the total energy density – can impact the Uni-
verse’s expansion rate. More precisely, any relativistic energy density beyond the ΛCDM compo-
nents can act as an effective number of neutrino relics,

Neff =
8

7

(
ρtot − ργ

ργ

)(
11

4

)4/3

, (2.21)

3The bound becomes smaller for Hprod ≲ Hplanck ≃ 6 · 1013 GeV.
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which is strongly constrained by CMB measurements [17] to Neff = 2.99+0.34
−0.33 and by BBN pre-

dictions [42, 43] to Neff = 2.90+0.22
−0.22 whereas the SM predicts Neff ≃ 3.045 [44–46]. Using

Ωγ ≃ 5.38×10−5 [39], we obtain the following bound on the primordial GW spectrum, produced
before CMB/BBN, ∫ fmax

fBBN,CMB

df

f
ΩGW(f) ≤ 5.6× 10−6∆Nν , (2.22)

where fBBN,CMB are the frequencies corresponding to the BBN/CMB scales, fmax is the highest
frequency of the GW spectrum (which might not be the same as the Planck-scale limit frequency
in Eq. (2.20)), and we set ∆Nν ≤ 0.2. Note that CMB stage-4 experiments is expected to improve
the bound or discovery region to Neff < 0.03 [47].

In Fig. 2.1, we show the ∆Neff bound on a primordial SGWB – spanning only an order of
magnitude in log(f) and located at frequencies higher than BBN/CMB scales – such that the bound
reads ΩGW ≤ 5.6 × 10−6∆Nν . Nonetheless, there are two important points when applying this
bound to a more realistic SGWB. First, the GW spectral shape matters. Let us consider two of the
most generic shapes: a flat spectra ΩGW = ΩGW,∗ for fmin < f < fmax, and a peak ΩGW(f) =
ΩGW,∗(f/fpeak)

β assuming4 the spectrum cut-off exponentially beyond fpeak. Eq. (2.22) reads

ΩGW,∗ ≤ 5.6× 10−6∆Nν ·


log−1

[
fmax

max(fref ,fmin)

]
for flat spectrum,

β

[
1−

(
fref
fpeak

)β]−1

for peak,
(2.23)

where fref is the GW frequency corresponding to CMB/BBN scales, and the constraint for the
peaked spectrum is dominated by fpeak. Because of these multiplicative factors, the ∆Neff bound
on the realistic SGWB can be slightly stronger or weaker than the naive bound shown in Fig. 2.1.

Second, the integral cut-off matters. For example, the BBN frequency of inflationary SGWB is
sensitive to the horizon size of temperature TBBN ∼ MeV, much larger than those of local cosmic
strings, which is boosted by a factor 106 for string tension Gµ = 10−12, as we shall see later.
Precisely, the BBN-scale frequencies for SGWB from primordial inflation and local cosmic strings
of tension Gµ read

f infBBN ≃ 1.8× 10−11 Hz, f csBBN ≃ 8.9× 10−5 Hz
(
10−11

Gµ

)1/2

. (2.24)

We emphasize that the ∆Neff bound applies to GW, already existing by the time of Neff mea-
surements. For example, the astrophysical GW with a strong signal is not bounded because GW is
produced late. On the challenging ultra-high-frequency range [40], the current probes far weaker
than the BBN bound could potentially constrain the primordial black-hole binaries, cf. Ref. [41]
and references therein.

After charting the landscape of primordial SGWB, the following section reviews prime sources5

from SM (of particle physics and cosmology) and beyond SM physics, illustrated in Fig. 2.1. We
assume that the Universe is in the radiation-dominated era right after the primordial inflation, the
standard cosmological history. The presence of non-standard eras imprints interesting signatures
on SGWB, discussed in Chap. 4.

2.3 From Standard Models of Particle Physics and Cosmology

In the standard (ΛCDM) cosmological model, there is an early period of primordial inflation fol-
lowed by a radiation-dominated Universe due to the thermal plasma of SM particles (the matter

4One would expect also that β ≤ 3 due to causality. However, some sources of SGWB lead to a sharp peak, e.g., the
scalar-induced SGWB; see Ref. [48]

5See, for examples, Refs. [49, 50] for excellent derivations of SGWB from arbitrary sources.
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domination and cosmological constant eras arise at very late times). These two necessary ingredi-
ents in the SM of particle physics and cosmology generate a SGWB, shown in Fig. 2.1. We shall
see that these two signals are probes of the Universe at the highest scales: the inflationary scale
and the reheating scale.

2.3.1 Primordial Inflation

The quantum fluctuations of some comoving scale k during inflation classicalize upon horizon
exit (k > aH) and stay frozen afterward. After the end of the inflation phase, the increasing
comoving horizon catches up with these modes; they re-enter (k < aH). Tensor perturbations
are particularly interesting as they correspond to SGWB [51–54], whose observation would be a
signature of inflationary models [20, 21, 55]. The irreducible SGWB today from inflationary tensor
perturbations6 of comoving wave number k = akHk, denoted by its fraction of the total energy
density, reads [31]

Ωinf
GW(k) =

k2a2k
24H2

0

Ωinf
T , (2.25)

which re-entered the cosmic horizon when the scale factor of the universe was ak and the Hubble
rate was Hk. H0 is the Hubble rate today. The first factor reflects the evolution of the perturbation
after the horizon re-entry and is known as transfer function. It could be altered by further damping
effects, e.g., the change in the number of relativistic degrees-of-freedom [22] and the free-streaming
particles [64].

The metric tensor perturbation Ωinf
T set during the inflationary stage are well-known to lead to

a nearly scale-invariant power spectrum at the horizon re-entry,

Ωinf
T ≃ 2

π2

(
Hinf

Mpl

)2( k

kp

)nt
, (2.26)

where Hinf the Hubble rate during inflation, and kp is the pivot scale used for CMB observation
kp/a0 ≃ 0.002 Mpc−1 [20] (equivalent to the GW frequency fp = 3.1× 10−18 Hz). In slow-roll
inflation, the spectral index nt is expected to be only slightly red-tilted nt ≃ −2ϵ ≃ −r/8 ≳
−0.0045, since the non-observation of primordial B-modes by BICEP/Keck Collaboration con-
strains the tensor-to-scalar ratio to be r ≲ 0.036 [21]. The presence of this red-tilt suppresses
the GW energy density by O(10%) correction in the ranges of Pulsar-Timing-Arrays (PTA) and
Earth-based interferometers. The rest of this thesis neglects this suppression and assumes nt = 0
for simplicity. Combining Eqs. (2.25) and (2.26), tensor modes entering during the radiation era
have the standard flat spectrum,

Ωinf
GW ≃ 2.9 · 10−17G(Tk)

(
Einf

1016 GeV

)4

, (2.27)

where Einf is the inflationary energy scale, G(Tk) = (g∗(Tk)/106.75)(g∗,s(Tk)/106.75)
−4/3 and

Tk is the temperature when a given mode enters the Hubble horizon. Fig. 2.1 shows the maximal
possible signature allowed by the largest inflationary scale constrained by CMB data [20, 21]. This
GW background is beyond the sensitivity of future GW observatories: LISA [65] and Einstein
Telescope [66, 67]; only Big Bang Observer [68] could be sensitive.

Frequency-temperature relation. — The inflationary GW of mode k = aH at re-entry has
the horizon-size wavelength H−1 corresponding to the frequency today,

f infGW = fHGW =
H

2π

a

a0
≃ 2.7 · 10−6 Hz

[
g∗(T )

106.75

]1/2 [g∗,s(T )
106.75

]−1/3 [ T

102 GeV

]
. (2.28)

6The scalar (density) perturbation can also source SGWB at second-order of the perturbation theory; its SGWB is
subdominant to the leading scale-invariant tensor fluctuation, unless the density perturbation is enhanced [56–63]. See
Ref. [48] for a review.
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Since many modes re-enter during cosmological history, the primordial inflation acts as a long-
lasting source of GW. The high-frequency cut-off of the spectrum corresponds to the inflationary
scale [69] kinf = ainfHinf where ainf is the scale factor at the end of inflation, and reads fmax

inf ≃
4 · 108Hz (Einf/10

16 GeV), as shown in Fig. 2.1.
Furthermore, the shape of SGWB is sensitive to cosmological history. For example, when

the total energy of the Universe is ρ ∝ a−3(1+ω) with ω being the EOS of the universe, we have
f ∝ a

−(1+3ω)/2
k ; Eq. (2.25) gives

ΩGW ∝ fβ, with β ≡ − 2

(
1− 3ω

1 + 3ω

)
, (2.29)

where the non-trivial scaling comes from a2k in Eq. (2.25), i.e., the transfer function of GW after
re-entry [70]. Modes entering the horizon during radiation (ω = 1/3), matter (ω = 0) and kination
(ω = 1) eras contribute to spectral indices β = 0,−2, and 1, respectively7. The signatures of non-
standard cosmological evolution – beyond the radiation-dominated Universe – will be the main
topic of Chap. 4.

2.3.2 Thermal Plasma

In the standard model of cosmology, primordial inflation is followed by a radiation era involving
the radiation bath of the SM particles, which interact and reach a thermal equilibrium of some
temperature T . These interactions are responsible for accelerations among particles that source
GW [72–76]. The SGWB spectra today from the thermal SM are shown in Fig. 2.2, calculated
from the full and complex formula in Ref. [73], for a given reheating temperature Treh.

h2Ωth
GW,full(f) ≃ 10−8

[
Treh

1016 GeV

] [
f

50 GHz

]3
×, (2.30)

×

{
1, for 2πf ≲ α2

1T0,
f

1600T0
nB

[
f
(
a(T0)
a(Treh)

)]∑3
i=1 dim̄

2
Di

(
ln 5

m̄Di
+ . . .

)
, for 2πf > T0,

where nB(p) is the Bose-Einstein distribution, d1 = 1, d2 = 3, d3 = 8, α ≡ g2/4π, and the
normalized Debye masses are defined by m̄1 = g1

√
11/6, m̄2 = g2

√
11/6, m̄3 = g3

√
2. The

index i runs for the SM gauge group U(1), SU(2) and SU(3).
To understand the physics, let us consider two regimes of GW: the small wavelength (p ≫ T

where p is the physical momentum of GW) and the large wavelength (p < T ) regimes, discussed
below. We will show that the order-of-magnitude estimation of the peak amplitude and spectrum
agrees well with the numerical results shown in Fig. 2.2.

Small-wavelength regime. — Particles in the thermal plasma of number density n ∼ T 3

interact and produce GW with a Planck-suppressed rate Γint ∼ αne−p/T /M2
Pl, where α ≡ g2/4π

and g is the coupling constant between particles. The thermal plasma produces only a small amount
of GW with p≫ T because the particles’ distribution functions suppress its interaction rate e−p/T .
Per one Hubble time, the number of GW emissions with rate Γint determines the fraction of energy
density in GW ρthGW extracted from the thermal plasma of ρrad

ρthGW

ρrad
(T ) ∼ Γint

H
∼
[
α

M2
Pl

]
T 3e−p/T × MPl

T 2
=

αT

MPl

e−p/T . (2.31)

Translating this into the SGWB observed today, we deduce the GW spectrum from the thermal
plasma of temperature T

Ωth
GW(f) ∼ Ωr,0

αT

MPl

e−p/T ≃ 4 · 10−9
[ α

10−2

] [ T

1016 GeV

]
e−p(f)/T , (2.32)

7For a more realistic power spectrum, i.e., by solving the full GW EOM, the non-standard cosmology alters the
behavior of the GW transfer function.The effect on the amplitude is of order O(1) [71], while the transition between
eras could feature a spectral oscillation from the change of Bessel function’s orders.
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Figure 2.2: SGWB from the SM thermal
plasma assuming the reheating at Treh. It does
not follow the usual temperature-frequency rela-
tion since GW is produced with a wavelength of
order T−1 rather than H−1. The hydrodynami-
cal fluctuations contribute to the low-frequency
GW, while the high-frequency regime is dom-
inated by microscopic particle scatterings. At
very large frequencies, the spectrum is exponen-
tially cut off as the distribution of thermalized
particles is suppressed by e−p/T .

where p(f) is the momentum associated to frequency f today. The GW spectrum indeed cut-offs
exponentially for p≫ T , as shown in Fig. 2.2. However, it becomes significant when p→ T . Our
simple estimation matches the result from the more precise method, i.e., from hard thermal loops
calculations [73, 74]. We also see that the maximum contribution comes from the hottest plasma;
the maximum is at the reheating Treh.

At first sight, it seems complicated to determine the frequency range of the GW spectrum
observed today; the result is a sum of GW produced at different temperatures, which peak around
the frequency f∗ ≃ λ−1

GW ≃ p/2π ∼ T/2π at production. By red-shifting it until today, Eq. (2.16),
all contributions point to the peak frequency

f thGW(T ) ≃ f∗
a∗
a0

≃ T0/2π ≃ 5 · 1010 Hz. (2.33)

Although the thermal plasma is a long-lasting source, its SGWB is localized at a particular fre-
quency, which is beyond the reach of planned interferometers as it resides in the region of ultra-high
frequencies targeted by other types of experiments [40].

Large-wavelength regime. — The plasma of particles also fluctuates collectively on a large
wavelength p ≪ T – so-called hydrodynamics fluctuation [77] – and sources GW production via
the transverse-traceless part of the stress tensor of the plasma, ⟨TT ⟩TT ≃ ηT , which is proportional
to the shear viscosity η ∼ T 3/g4 [78, 79], growing as the coupling constant g gets weaker. This
can be understood as the energies of particles after scatterings fluctuate slightly from the averaged
value of the plasma and settle to thermal equilibrium within the time scale determined by the size
of their couplings. The weaker the coupling, the longer the lifetime of the fluctuation. In the
weak-coupling limit, it is found that the energy density spectrum of GW per unit time is [73]

dρGW

dtd ln p
(p≪ α2T ) ∼ p3ηT

M2
Pl

, (2.34)

such that the slope of the GW spectrum is ΩGW ∝ f3, as shown in Fig. 2.2. Ref. [73] also shows
that this behavior continues up to some corrections being cut off at p ∼ T as the thermal plasma is
better described by particle scattering for α2T < p < T .

2.4 Beyond the Standard Models

The SM of particle physics and cosmology predicts SGWBs – either too small or too high in fre-
quency – which are difficult be observe. On the other hand, physics beyond the Standard Models
can lead to various sources with huge GW signals, allowing future-planned GW observatories to
probe the underlying BSM parameters. This section discusses three prime BSM sources: the pre-
heating, the first-order phase transitions, and cosmic strings.
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2.4.1 Preheating

The first BSM source of SGWB relates to how the inflationary phase – which dilutes all particles
away – gives rise to the hot Big-Bang cosmology; the (p)reheating stage supposes to convert the
energy budget of the Universe (via coupling with inflaton) into the SM particle species and the
thermal plasma [80–83]. See Refs. [84–86] for reviews. The converting channels can be either
perturbative [80, 81, 87, 88] or non-perturbative [82, 89–101]. In the latter case, particles are pro-
duced violently and out of equilibrium, leading to a large amount of GW [102–121]. The resulting
SGWB depend entirely on the structure of preheating process: the number of daughter particles,
their masses, and their couplings to the inflaton. Moreover, interactions among themselves com-
plicate the analysis and results, e.g., [120]. In this section, we follow Ref. [119] for estimating the
SGWB from preheating into the non-interacting daughter boson fields.

As an example, consider the inflationary α-attractor model where the inflaton ϕ coupled to a
set of daughter scalar fields {χi}

V (ϕ, {χi}) =
1

2
Λ4 tanh2

[
ϕ

M

]
+

1

2
g2i χ

2
iϕ

2 =
1

2
g2i χ

2
iϕ

2 +

{
ω2
∗M

2

2 for ϕ≫M
1
2 ω

2
∗ϕ

2 for ϕ≪M
, (2.35)

where the inflaton in the large-field regime slow-rolls towards the origin and eventually oscillates
in the quadratic potential with frequency ω∗ = Λ2/M . This induces the parametric growth of
{χi} fluctuation/particles in the broad resonance regime, defined by the resonance parameter: q ≡
g2ϕ2∗/ω

2
∗ with ϕ∗ being the inflaton field value when inflation ends. The daughter-field fluctuations

get pumped with inflaton energy for modes with comoving momentum ω∗ ≲ klin ≲ ω∗q
0.25 during

the linear regime and up to kp ≃ ω∗q
∼0.5, taking into account mode interactions [118]. Beyond

this point, no mode is populated, and the energy spectrum is expected to fall off. In the following,
we suppose that the energy spectrum has a smoothened plateau from the linear-regime scale ω∗ up
to kp due to the self-interaction distributing energy among all modes. Note that a precise result of
the full spectrum requires a dedicated simulation at large scales.
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Figure 2.3: SGWB from the preheating as-
suming the instantaneous reheating at Einf ≃
Treh and the inflaton coupled to four non-
interacting bosonic particles with coupling gi =
10−4, 10−3, 10−2, 10−1. The total spectrum
exhibits a stairway shape due to each daughter
particle’s contribution, neglecting the interaction
among them. The spectra are estimated from the
result in Ref. [119].

These sudden and violent particle productions produce time-dependent inhomogeneities that
lead to an anisotropic stress tensor, roughly due to the gradient energies. The authors of Ref. [119]
measure the peak momentum and amplitude of the GW spectrum, using the recent CosmoLattice
simulations [122, 123]. Suppose the Universe reheats quickly after the end of inflation at temper-
ature Treh ≃

√
ω∗M ≃ 1016 GeV, i.e., the resonance parameter is controlled by the coupling

q ≃ g2(MPl/Treh)
4, choosing M = ϕ∗ = MPl. We obtain the peak GW amplitude today by

red-shifting their result with Ωr,0,

Ωpreh
GW ≃ Ωr,0 × 10−5

( q

104

)−1.1±1.2
≃ 10−11

(
10−2

g

)(
Treh

1016 GeV

)4

. (2.36)
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The overall amplitude is suppressed for stronger coupling because a larger g means a broader reso-
nance band, and the available energy is distributed over a wider range of modes. The range of GW
frequency today – corresponding modes within ω∗ ≲ k ≲ kp – to be,

8 · 107 Hz
(

Treh
1016 GeV

)
≲ fprehGW ≲ 1010 Hz

( g

10−2

)(1016 GeV

Treh

)
. (2.37)

The high-frequency cut-off fprehGW (kp) depends on the coupling g which would be observed di-
rectly at future GW observatories; nonetheless, the future-planed experiments would be sensitive
to Treh ≲ 109GeV and require a miniscule g ≲ 10−14 for a detectable amplitude. In the presence
of many daughter fields, the SGWB of each species adds up and contributes to the stairway sig-
nature [119], as shown in Fig. 2.3 neglecting the interactions among daughters. The IR tail below
fprehGW (ω∗) falls off with f3 as expected from causality.

Finally, many other early-Universe systems abruptly produce particles, leading to a strong
SGWB. For example, gauge-field production [36, 124–128], and scalar-field fragmentation [129–
132].

2.4.2 First-Order Phase Transition

The (p)reheating stage produces the radiation bath of particles, later cooled down by the cosmic
expansion. Several phase transitions can take place; for example, the electroweak (EW) and QCD
phase transitions in the SM occur relatively smoothly [133–135], so-called crossover or the second-
order transition. Conversely, the system could be trapped in the metastable vacuum due to the
barrier separating it from the true vacuum state; this is the first-order phase transition (FOPT),
which is generic in many extensions of SM addressing many open problems, e.g., [19, 136–147].
For example, the vacuum structure could depend on the potential of some extra scalar field.

In some regions of space, the quantum transition or thermal fluctuation causes the system to
transit; bubbles of the true vacuum nucleate and expand out in the surrounding of the false vacuum
state [148, 149]. Bubble walls also drag the thermal plasma along their motions [150, 151]. Their
collisions eventually complete the phase transition. Together with fluid motions, they source GW
that would be observed in the future-planned observatories [152–154], as shown in Fig. 2.4. The
detectability of SGWB – calculating from PLS curves of SNR = 10 – is also shown on the right
panel8.
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Figure 2.4: SGWB from first-order phase transition (FOPT) assuming the GW contribution from fluid
motions and varying the transition strength α. The benchmark points correspond to β/H and temperature
T∗ at GW production shown on the right panel. The right plot shows the detectability of SGWB in several
future-planned experiments. LISA probes TeV-scale physics, while ET explores PeV-EeV scales.

8A convenient way to obtain detectability is using PTPlot tools [153].
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The peak GW amplitude observed today can be written, in a unified way, as [152–154]

ΩptGW,0(f) ≃
(
a∗
a0

)4( ρtot,∗
ρtot,0

)(
H∗
β

)m( κα

1 + α

)2

F(f, β), (2.38)

≃ Ωr,0

(
H∗
β

)m( κα

1 + α

)2

F(f, β),

where ∗ denotes the time when GW is produced, ρtot,i is the total energy density of the Universe at
time i, β−1 is the duration of the transition, α is the ratio of the vacuum energy difference over the
radiation energy density, κ is the efficiency for converting energy into GW, and we expect m = 1
for GW from long-lived fluid motion and m = 2 for GW from short-lived fluid motion or bubble
wall collisions. Here the factors involving the wall velocity vw are neglected. The spectral shape
F(k, β) has the broken power-law scaling where

Bubble walls [152, 155–160]: FB(f) ≃
3.8(f/fpeak)

2.8

1 + 2.8(f/fpeak)3.8
, (2.39)

Sound waves [150, 153, 161–168]: Fsw(f) ≃
(f/fpeak)

3[
1 + 3

4(f/fpeak)
2
]7/2 , (2.40)

Turbulence [153, 169–179]: Fturb(f) ≃
(f/fpeak)

3

[1 + (f/fpeak)]
11/3

(
1 + 2πf

H∗
a0
a∗

) . (2.41)

The IR and UV slopes read (2.8,−1), (3,−4), and
(
3,−5

3

)
for the bubble collision, the sound

wave, and the turbulence, respectively.
Since the GW production is relatively short compared to Hubble time, the spectral shape

F(f, β) peaks around the bubble size at collision, which is estimated to be a fraction of the horizon
size, λGW ∼ β−1. The peak frequency of SGWB from FOPT is

fptGW(H∗) ≃ H∗
a∗
a0

(
β

H∗

)
∼ 10−5 Hz

(
β

H∗

)(
g∗(T∗)

106.75

)1/6( T∗
102 GeV

)
, (2.42)

where we replace frequency of the horizon-size GW in Eq. 2.28. For a benchmark of β/H∗ = 102,
the frequency-temperature relation is shown for λGW = H−1/102.

2.4.3 Cosmic Strings

The exhaustive review of cosmic strings (CS) and the derivation of their precise SGWB will be dis-
cussed in Chap. 3 and App. B. In this section, we propose a back-of-envelope method for obtaining
GW spectra for both local and global cosmic strings9. This calculation could be generalized for
estimating any relic from the string network, e.g., light or heavy particles and Baryogenesis.

A cosmic string is a line-like topological defect arising after some cosmological phase transition
[181–183] and involving a certain type of spontaneous symmetry breaking (SSB), cf. Chap. 3. The
broken symmetry can be either local or global; the cosmic string is called local or global. After
SSB at some energy scale η, the network of strings forms with tension

µ ∼ η2 ×

{
1, for local,

ln(mϕ/H), for global,
(2.43)

where the global string has the extended core energy. and separates from its neighbor by a correla-
tion length L. Initially, the network of infinite strings (with length determined by the horizon size
Lform ∼ H−1

form) has the energy density, ρform∞ ∼ EL−3
form ≃ µL−2

form ∼ Gµρformtot where ρformtot is the
9Similar derivation has been considered in [180].
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Figure 2.5: SGWB from local cosmic strings
(CS) for the string tensionGµ (specified on each
colored line). The formation cut-off is indepen-
dent ofGµ due to the delayed GW emission by a
factor (Gµ)−1/2, cf. Sec. 3.2.5. Interestingly,
CS might explain the SGWB hint in the PTA
band, discussed in Sec. 2.6.

total energy density of the Universe at the time of the string-network formation. If strings do not
interact, their length scale grows L ∝ a as the Universe expands. This is the misconception about
the unacceptable cosmic-string domination ρ∞ ∝ L−2 ∝ a−2. Nonetheless, the cosmic strings
continuously lose energy by decaying or forming loops that later radiate away, including GW.

The dynamics of the string network reach the attractor behavior called scaling regime where
ρ

scaling
∞ = ξ(t)µ(t)/t2 for ξ(t) ∼ O(0.1) is the correlation length per Hubble horizon, justified

by simulations [184–193] ; see Chap. 3 for more details. The string network never dominates the
Universe because it tracks the total energy density, ρscaling

∞ ≃ µ(t)/t2 ≃ Gµρtot, regardless of the
background. The energy lost per unit volume Γ̃ is found from ρ̇∞ +2Hρ∞ = Γ̃. Requiring that Γ̃
guides the network into scaling ρ∞ → ρ

scaling
∞ , we deduce

Γ̃ = −ρscaling
∞

[
(n− 2)H − ξ̇ξ−1 − µ̇µ−1

]
(2.44)

where we assume H ∼ a−n/2 which gives H = 2/nt.
Local strings. — The string tension µ and the correlation length ξ are constant: Γ̃(t) =

−(n− 2)Hρ
scaling
∞ (t). Within one Hubble time, the network emits energy10 in the form of loops

ρemit(t) = −Γ̃/H = (n− 2)ρscaling
∞ (t) = 4(n− 2)ξµH2. (2.45)

which behaves as a gas of particles (ρemit ≃ ρloop ∼ a−3) and later decays into GW (ρGW ∼ a−4)
at the time tM ≃ t/Gµ; see App. B.4. The energy density of GW today from loops produced at
a(t) and decayed at aM is

ρtotalGW,0(a) =

[
a

aM

]3 [aM
a0

]4
ρloop(t) = 4(n− 2)ξµΩr,0H

2
0

[
1

2Gµ

] 1
2
[
t∆
t

] 3(n−4)
2n

, (2.46)

where we consider that loops are produced when the total energy density is ρ ∼ a−n and ends at
a∆, and loops decay during the subsequent radiation era. Therefore we obtain the famous scale-
invariant GW spectrum for cosmic-string in the radiation era (n = 4)

ΩGW,0 = ρGW,0/ρc,0 ≃ 1.1 · 10−10

(
ξ

0.1

)(
Gµ

10−10

)1/2

(2.47)

where we use Ωr,0 ≃ 5.38 · 10−5 [23]. This simple estimation agrees well with the precise calcu-
lation, illustrated in Fig. 2.5, from the precise method in Chap. 3.

10This estimation assumes that all energy loss goes into the relic, which might not be the case for strings losing their
energy in several channels. Moreover, simulations have found that around 90% of loops are produced with small lengths
and high velocities [194]. The energy in small loops red-shifts away, such that only 10% of the total energy loss from
the network contribute to the relic abundance.
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Global strings. — The string tension µ and the correlation length ξ experience the log depen-
dence due to the existence of Goldstone, cf. App. B.1. It is still under debate whether ξ receives
the log-dependence due to a mild violation of scaling behavior found in simulations [195–198].
However, the VOS equations – derived from the NG approximation – suggest a mild violation, less
than a factor log [1, 199]. Thus we parametrize both quantities by [200]

ξ(t) = ξ0 log
p
(mϕ

H

)
, µ(t) = µ0 log

(mϕ

H

)
, (2.48)

where ξ0, µ0 are evaluated at the time of string formation, Γ is a constant of O(1), and p = 0, 1 for
the scaling network and the log-violation of the scaling, respectively.

Unlike local strings, the global-strings loops also release energy in the form of massless gold-
stone particles, whose branching fraction is much larger than the GW emission. We denote the
efficiency of GW production as

ϵ ≡ PGW

Ptotal
≃ PGW

Pgold
≃ ΓGµ

Γgold/ log(mϕ/H)
, (2.49)

where Ptotal = Pgold+PGW ≃ Pgold, PGW = ΓGµ2, and Pgold = Γgoldη
2. See Sec. 3.6 for more

details. The second difference is that the GW emission happens shortly after the loop formation11,
i.e. tM ∼ t. Therefore, the energy density of the GW today from loops produced at a(t) reads

ρGW,0(a) =

(
aM
a0

)4( a

aM

)3

ρloop(t) ϵ(t) ≃ 8ξGµ2Ωr,0H
2
0

(
Γ

Γgold

)
log(mϕ/H), (2.50)

where we consider the radiation-dominated Universe. The GW abundance today reads

ΩGW,0 ≃ 7.9 · 10−18

(
ξ0
0.1

)[ η

1015 GeV

]4
logp+3

[
2 · 1027

( η

1015 GeV

)(mHz

f

)2
]
, (2.51)

where we assume Γ ≃ 50 and Γgold ≃ 65, p = 0, 1 is for the scaling network and the log-violation
in ξ, respectively. Here we obtain the consistent parameter dependence (e.g., µ, log) as the VOS
model in Sec. 3.6.

Frequency-temperature relation. — The GW frequency today relates to the loop’s size at
emission redshifted until today. Consider loops formed at some length scale H−1

∗ . The delayed
emission of the local strings allows the string loop to attain its size until later times12. The GW
frequency today from local strings thus is higher compared to the global-string case, which follows
the formula of the horizon-size GW sources (fHGW ≃ H∗a∗/a0) in Eq. (2.28):

f csGW(H∗) ≃ H∗
a∗
a0

×

{
1 for global,
aM
a∗

= (Gµ)−1/2 for local,
(2.52)

where we use that the delayed emission happens at aM/a∗ = (tM/t∗)
1/2 = 1/

√
Gµ. For ex-

ample, the local-string SGWB with Gµ = 10−12 has the frequency-temperature relation with
λGW = 10−6H−1 in Fig. 2.1. Interestingly, the local-string GW frequency associated to the
network-formation scale (H∗ ∝ µ, a∗/a0 ∝ µ−1/2) is fform ≃ 1011 Hz[g∗(η)/106.75]

1/6, insen-
sitive to Gµ as illustrated in Fig. 2.5.

11To justify, we consider the length evolution: l(t) = αti − (PGW + Pgold)(t− ti). The dominant emission occurs
when l(tM ) = αtI/2. Hence, we have tM/t = (α/2+PGW+Pgold)/(PGW+Pgold) ≃ 1whenPgold ≫ α≫ PGW.

12Tension makes loops decoupled from Hubble flow.
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2.5 Prospect of Detections

Fig. 2.1 shows the landscape of primordial SGWBs along with the prospects of GW experiments,
which can be classified in Tab. 2.1 by their techniques of measurements. The sensitivity curves for
LISA, ET, CE, BBO, DECIGO, LIGO, GAIA, THEIA, and AEDGE are the power-law integrated
sensitivity curves with SNR = 10, discussed in App.A. The pulsar timing-array curves are taken
from [201]; other experiments are taken from references shown in Tab. 2.1. Fig. 2.1 also shows the
hint of SGWB observed by pulsar timing arrays, cf. Sec. 2.6.

The synergy among all experiments enables us to probe almost half of the landscape popu-
lated by the primordial SGWB. Nonetheless, the high-frequency side (fGW > kHz) has no current
proposal of experiments that can beat the ∆Neff bound [40]. Interestingly, some of these tech-
niques are borrowed from the ongoing axion-search experiments. It would be an exciting direction
for future research since this high-frequency GW probes the Universe at very early times and at
extraordinarily high energies.

Observatories/Experiments Techniques

Planck/BICEP/KECK [20, 30, 32], LiteBIRD [202] CMB B-mode polarization

FIRAS/PIXIE/Voyage 2050 [203] CMB spectral (µ, y) distortion

EPTA [204], NANOGrav [205], PPTA [206], Pulsar timing arrays
SKA [207], Fermi-LAT [208]

GAIA [209], THEIA [210] Astrometry

Asteroids [211], lunar ranging [212] Radio and laser ranging

Particle-accelerator’s storage rings [213, 214] Storage-ring GW observatories

LISA [5, 65], DECIGO/BBO [68] Space-based laser interferometry
Taiji [215, 216], TainQin [217–219], µAres [220]

AEDGE [221], MARGIS/AION [222–225] Atomic interferometry

LIGO/VIRGO/KAGRA [28, 226, 227], Terrestrial laser interferometry
ET [66, 67], CE [228]

Table 2.1: List of GW experiments/observatories. Some are not shown in Fig. 2.1, and some ref-
erences are reviews on the topics. Bold-faced are currently operating or completed their missions.

2.5.1 Perspectives on Astrophysical Foregrounds

On top of the primordial sources, SGWB can also be produced by the astrophysical sources at late
times. It is crucial for studying the primordial SGWB to be able to rely on the assumption that the
astrophysical foreground can be subtracted.

LIGO/VIRGO have observed three binary black hole (BH-BH) merging events [229–231] dur-
ing the first 4-month observing run O1 in 2015, and seven additional BH-BH [232–235] as well as
one binary neutron star (NS-NS) [236] merging events during the second 9-month observing run
O2 in 2017. In the first part of the 6-month observing run O3a in 2019, the number of events is
raised to 55 events [237, 238]. After a 5-month run O3b (joined by KAGRA) in 2019-2020, the
recently released catalog lists up to 90 events [239]. Hence, one might worry about the difficulty
of distinguishing the primordial SGWB from the one generated by the astrophysical foreground.

In the BBO and ET/CE windows, the NS and BH foreground might be substracted with respec-
tive reached sensibilities ΩGW ≃ 10−15 [240] and ΩGW ≃ 10−13 [241]. In the LISA window,
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the binary white dwarf (WD-WD) foreground dominates over the NS-NS, and BH-BH foregrounds
[242–244]. The WD-WD galactic foreground, one order of magnitude higher than the WD-WD ex-
tragalactic [245], might be substracted with reached sensibility ΩGW ≃ 10−13 at LISA [246, 247].
Hence, in the optimistic case where the foreground can be subtracted and the latter sensibility
is reached, one might be able to distinguish the primordial signal from the one generated by the
astrophysical foreground, e.g., [241, 248–252].

The GW spectrum generated by the astrophysical foreground increases with frequency as f2/3
[253], which might be distinguished from the primordial sources using the spectral separation
methods [247, 254–258]. Furthermore, the assumption of an isotropic, homogeneous, unpolar-
ized, stationary, and gaussian SGWB might be violated by different sources and can be used to
distinguish them [37, 38, 259, 260].

2.6 A Hint of SGWB from Pulsars

The SGWB-hunting effort over 23 decades in frequencies may be about to pay off. Recently, PTA
collaborations (NANOGrav, EPTA, PPTA) have reported noises in the time-of-arrival signal [204–
206], which are spatially-uncorrelated and common to all pulsars and could result from SGWB.
Also, the IPTA collaboration has recently found similar results [261] by reanalyzing a joint data
set of the previous data releases, containing pulsars with 0.5 − 30 years baselines.

In the left panel of Fig. 2.6, the residual in the time-delay signal of the common-spectrum
process (or CP delay) spans over the frequency range and can be interpreted as the SGWB with
strain amplitude hc and relic abundance ΩGW

Res =

√
O(ΓHD)h2c
12π2f2yr

(
fyr
f

)3

≃ (0.45µs)h−1

[
ΩGWh

2

10−9

] 1
2
[
O(ΓHD)

0.1

] 1
2
[
2.5 nHz

f

] 5
2

, (2.53)

where fyr = 1/yr ≃ 31.7 nHz, O(ΓHD) ∼ 0.1 is a factor depending on the overlap reduction
function, assumed to follow the Hellings-Downs relation, and in the last step we use ΩGW =
2π2h2cf

2/(3H2
0 ). The right panel of Fig. 2.6 shows the 1σ, 2σ, 3σ fitted spectral shapes of hc, as-

suming hc = ACP(f/fyr)
(3/2−γCP). Notice that the NANOGrav region differs from ITPA, EPTA,

and PPTA. Because the shown NANOGrav result is fitted for the first 5 frequency bins (2.5 nHz <
f < 12 nHz), which corresponds to ≳ 99.98% of the signal-to-noise ratio [205], while the other
results fitted over total of 30 bins (nHz < f < fyr) where the other noises (e.g., white noises)
could contaminate the actual signal cf. for f > 10 nHz in Fig. 2.6. We translate these regions into
a plane of SGWB amplitude ΩGW and its spectral index β via ΩGW(f∗) = ΩGW(fyr)(f∗/fyr)

β

for β = 5− γCP in Fig. 2.7. One caveat of identifying this observation as SGWB is the inconclu-
sive result [204–206, 261] of the quadrupole (Hellings-Downs) correlation [262], the characteristic
angular correlations among pairs of pulsars which is unique to an isotropic SGWB. Newer PTA ob-
servatories will join further measurements by EPTA, PPTA, and NANOGrav: InPTA, CPTA, and
MeerKAT, to resolve this issue. The increasing precision and statistic might allow one to pinpoint
whether this signal is of astrophysical or primordial origin.

There are several explanations for SGWB that fit this result: astrophysical and primordial
sources. One prime astrophysical candidate is the background from super-massive black hole bina-
ries (SMBH), whose SGWB contribution has a spectral index of β = 2/3 [263]13. A large variety
of BSM physics are also well motivated for primordial SGWBs ranging from: topological defects
[264–266], quantum fluctuations during inflation (e.g. leading to primordial black holes) [267–
269], first-order phase transitions around temperature Tp ∼ O(MeV) [270–273], and modified
cosmological history [274]. As an example, Fig. 2.7 shows the shape of a SGWB coming from a
CS network with tension Gµ cf. Chap. 3 for more detail. We see that CS with Gµ ≃ 10(−9,−10)

13However, the amplitude has some uncertainties from the merger rates in particular.
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Figure 2.6: left: The time-delay caused by a common-spectrum process (CP) has been observed by the
PTA collaborations: NANOGrav [205], PPTA [206], and EPTA [204]. The IPTA’s second data released
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fitting with the broken power-law SGWB strain, the amplitude, and spectral index are shown for 1σ, 2σ, and
3σ confidence levels from inner to outer, respectively. Figure copied from [261].

Figure 2.7: Result of fitted SGWB assum-
ing power-law shape at the frequency f∗. The
NANOGrav 12.5 yrs result uses the first 5 bins
data and differs from the combined result of
IPTA DR2 that uses 30 bins which other noises
could highly contaminate. The colored line
shows the spectral shape of SGWB from CS
where Gµ ≃ 10(−9,−10) are preferred.

could well explain the PTA data, suggesting the existence of a phase transition around temperature
T ≃MPl

√
Gµ ≃ 1013 GeV.

2.7 Chapter Summary

Any primordial GW source operates within a limited length scale – the horizon size – which
is tremendously smaller than the horizon today; many GWs from numerous causal uncorrelated
patches contribute to the signal observed today in the form of stochastic GW background (SGWB).
The extreme weakness of the gravitational interaction allows GW to propagate freely, up to the cos-
mic expansion, and to carry direct information about the source’s strength and length/time scale.
The observed spectrum of SGWB is characterized by the relic density ΩGW and the frequency
fGW, which are simply redshifted from the production time, i.e., ρGW ∝ a−4 and fGW ∝ a−1.

By applying simple theoretical arguments in Sec. 2.2, we chart the landscape of primordial
GW in Fig. 2.1, spanning over 31 decades in frequency (10−18 Hz ≲ fGW ≲ 1013 Hz), while the
BBN/CMB-∆Neff bounds strongly constrain the GW amplitude (ΩGW ≲ 10−7). Furthermore, a
crucial aspect of primordial GW is that its frequency range is typically associated with the horizon
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size and the Universe’s temperature at the production time, cf. Eq. (2.16). This means that primor-
dial SGWB is a probe of cosmological history; the earlier the production time, the higher the GW
frequency.

As shown in Fig. 2.1, the early Universe has several prime sources of GW, classified as those
from the SM (primordial inflation and thermal plasma) in Sec. 2.3 and beyond the SM (preheating,
FOPT, and cosmic strings) in Sec. 2.4. Moreover, we can also categorize them according to the
time interval of GW production. For the short-lasting sources, SGWBs from FOPT and preheating
localize at some particular frequency. In contrast, SGWB from long-lasting sources (primordial
inflation and cosmic strings) span a broad frequency range. The thermal plasma is also a long-
lasting source, but its SGWB sits only at frequency fGW ∼ T0 (due to λ−1

GW ∼ Tprod). The
SM sources barely lead to observable SGWB in future-planned experiments as their spectra have
either too small amplitudes or too high frequencies. Nonetheless, BSM sources can typically reside
within the visible windows, and the experimental efforts in GW physics will significantly contribute
to new physics searches.

In Sec. 2.5, we list the current and planned GW experiments involving many techniques from
CMB, pulsar, astrometry, asteroid rangings, lunar rangings, laser interferometers, atomic interfer-
ometers, and storage rings of some particle accelerators. They span about 22 decades in frequency,
more than half of the primordial GW landscape. However, the ultra-high frequency range remains
untouched; the challenges and prospects of experiments in this region are reviewed in [40], in-
cluding the application of the exciting axion searches. We comment briefly on the possibility of
astrophysical foreground cleaning using several methods and properties of SGWB.

Lastly, Sec.2.6 reviews the recent hint of SGWB observed by pulsar timing arrays, compatible
with ΩGW ≃ 10−9÷−10 and a spectral index of (−1.5, 0.5). One possible explanation would be
cosmic strings with tension Gµ ∼ 10−9÷−10. Nevertheless, the smoking-gun signature of SGWB
– the quadrupolar (Hellings-Downs) relation – remains inconclusive. The next NANOGrav data
release in 2023 should deliver a decisive result.

In the next chapter, we focus on the cosmic strings whose SGWB spans a wide frequency range
with a large amplitude; this allows us to probe new particle physics. Besides, SGWBs shown in
Fig. 2.1 assume the standard cosmological history, i.e., the radiation-dominated era up to very high-
energy scales. In Chap. 4, we shall see that the non-standard cosmological history leads to many
exciting signatures. In some cases, the inflationary SGWB can also be enhanced in the observable
windows.
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Chapter 3

Cosmic Strings & Gravitational Waves
Based on
[1] Y. Gouttenoire, G. Servant and P. Simakachorn, Beyond the Standard Models with Cosmic
Strings, JCAP 07 (2020) 032, [1912.02569].

Cosmic strings (CS) act as a long-lasting source of gravitational waves (GW) from the time of
their production – presumably very early on – until today [275–293]. The resulting frequency
spectrum, therefore, encodes information from the almost entire cosmic history of our Universe
and could possibly reveal precious details about the high-energy particle physics responsible for
cosmological histories [1–4, 199, 274, 294–297], discussed as the main topic of Chap. 4.

In this chapter, we first recap the key features of CS networks, their cosmological evolution,
decay channels, and the pulsar timing array constraints on the string tension. Sec. 3.2 reviews the
computation of the SGWB from Nambu-Goto CS. We first discuss the underlying assumptions
on the small-scale structure and the loop distribution and then derive the master formula of the
GW frequency spectrum. A critical discussion concerns the non-trivial frequency-temperature
relation and how it depends on the cosmological scenario. Sec. 3.3 is devoted to deriving the loop
production efficiency beyond the scaling regime, taking into account transient effects from the
change in the equation of state of the Universe. We apply this to predict the SGWB in the standard
cosmological model in Sec. 3.4. Sec. 3.5 illustrates the possibilities for the GW spectrum to exhibit
different types of peak structures due to the presence of both a high and a low-frequency cutoff,
e.g., the metastable string network. The interesting case of global strings is discussed in Sec.3.6.6
which includes: the evolution of the network, SGWB calculation, differences from the local case,
and some comments on axion strings.

Additional details are moved to appendices, such as a simple UV completion of cosmic strings
in App. B.1, non-GW constraints on the string tension Gµ in App. B.2, a back-of-the-envelope
estimation of SGWB in App. 2.4.3, a precise step-by-step derivation of the GW spectrum as well
as the values of its slopes in App. B.3, the formulae of the various turning-point frequencies in
App. B.4, the derivation of the equations which govern the evolution of the long-string network in
the Velocity-dependent One-Scale (VOS) model in App. B.5, a discussion of the extensions to the
original VOS model in App. B.6, and the impact of the cosmology on the size of loops at formation
in App. B.7.

3.1 Recap on Cosmic Strings

Cosmic strings are extended objects of cosmological sizes1 that have been the subject of numer-
ous studies since the pioneering paper [181], see [183, 301, 302] for reviews. They can originate
as fundamental or composite objects in string theory [303–310] or as topological defects from
spontaneous symmetry breaking (SSB) in field theories. In superstring theory, strings are the fun-
damental new degrees of freedom, which are usually unstable and decay before they can stretch to

1Although the cosmological size is required for cosmic string, the string-liked solution arises and are observed in
laboratory scales as a consequence of field theory in condensed matter physics, e.g., superfluid helium [298–300].
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cosmological scales. However, the so-called F -, D-, and (p, q)-strings can grow large and could
influence significantly cosmological phenomena [306, 310–312].

3.1.1 Field-theoretic strings

In field theories, the existence of a sting-liked solution is rather generic but not automatic. It is
a classical field configuration that arises whenever there is a symmetry-breaking G → H with a
non-trivial homotopy group2 π1(G/H) ̸= Id where Id denotes the identity map, i.e. there exists
an equivalent class of maps from a circle to a non-deformable line in the vacuum manifold G/H .
For example, any theory with a broken-U(1) symmetry has a string solution since π1(U(1)) = Z.

More complex vacuum manifolds with string solutions can appear in various grand unified
theories [313–315], e.g., SO(10) → SO(5)× Z2. However, we emphasize that there is no string
solution in the Standard Model (SM) because the symmetry breaking pattern of the SM is trivial,

SU(2)L × U(1)Y → U(1)EM, (3.1)

whose corresponding homotopy group3 is

π1(SU(2)× U(1)/U(1)) ∼= π0(U(1)) ∼= Id. (3.2)

Thus no string solution is allowed in the SM, and the existence of cosmic strings requires physics
beyond the Standard Model (BSM)4.

The Abelian-Higgs model. The classic example of field theories with a string-liked solution
is the Abelian-Higgs (AH) model, a field theory with a complex scalar field ϕ charged under a
U(1) gauge interaction. Note that the symmetry can also be global. The resulting string solutions
corresponding to local and global symmetries are called local and global strings. CS corresponds
to lines where the scalar field sits on the top of its Mexican hat potential V (ϕ) and approaches its
vacuum expectation value (VEV) at a considerable distance, the Nielsen-Olesen vortex [319, 320].
When following a closed path around the string, the phase of the complex scalar field returns to its
original value after winding around the Mexican hat an integer n number of times. The energy per
unit of length, also known as the string tension reads [301]

µ ≈ 2πη2 n2 ×

{
1 for local strings,
ln
(mϕ
H

)
for global strings,

(3.3)

with η the scalar field VEV. The Hubble horizon H−1 and the string core width m−1
ϕ play the

role of IR and UV cut-offs. The logarithmic divergence of the tension of global strings is due to
a long-range interaction mediated by the massless Goldstone mode (the complex phase of ϕ). We
refer the reader to App. B.1 for more details on Abelian-Higgs cosmic strings and the string-tension
calculations.

3.1.2 Cosmic-string network formation and evolution

Kibble mechanism. The formation of cosmic strings occurs during a cosmological phase tran-
sition associated with spontaneous symmetry breaking, occurring at a temperature approximately

2Other topological defects also defined in the same way, e.g. πn(G/H) ̸= Id for n = 1, 2, 3 associate to domain
walls, monopoles, and textures, respectively.

3The calculation of a homotopy group is done via the so-called fundamental theorem: πn(G/H) ∼= πn−1(H).
4Actually, a non-topological string solution exists for the electroweak theory [316]. This is the weak-gauge coupling

limit of the so-called semi-local strings [317] whose unbroken symmetry is mixed between local and global groups. The
string configuration exists due to the gradient energy from global symmetry. However, the realistic SM parameters are
in the regime where the string solution is unstable [318].
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given by the VEV acquired by the scalar field

Tp ≃ 1011 GeV
(

Gµ

10−15

)1/2

. (3.4)

As shown in Fig. 2.5, the string formation scale can lead to an interesting GW signature: the high-
frequency cut-off. As we will discuss later, the GW frequency in Eq. (3.33) – corresponding to the
formation temperature – is

fform ≃ 206 GHz

(
0.1× 50

αΓ

)1/2 [g∗(Tform)
g∗(T0)

]1/4
, (3.5)

which is interestingly independent of Gµ.
At the time of the phase transition associated with an energy scale η, CS are randomly dis-

tributed and form a network characterized by its correlation length L, which can be defined as

L ≡
√
µ/ρ∞, (3.6)

where µ is the string tension – the energy per unit length – of the order η2, see Eq. (3.3), and ρ∞ is
the energy density of long strings. More precisely, long strings form infinite random walks [321]
which can be visualized as collections of segments of length L.

Loop chopping. Each time two segments of a long string cross, they inter-commute, with a prob-
abilityP , and form a loop. Loop formation is the primary energy-loss mechanism of the long string
network. In numerical simulations [322] and analytical modeling [323], the probability of inter-
commutation has been found to be P = 1 but in some models it can be lower. This is the case of
models with extra-dimensions [304, 324], strings with junctions [325] or peeling [326], or the case
of highly relativistic strings [327].

Scaling regime. The strings may interact strongly with the thermal plasma just after the net-
work is formed, so their motion is damped. When the damping stops, cosmic strings oscillate and
enter the phase of scaling evolution. During this phase, the network experiences two competing
dynamics:

1. Hubble stretching: the correlation length scale stretches due to the cosmic expansion, L ∼ a.

2. Fragmentation of long strings into loops: a loop is formed after each segment crossing. Right
after their formation, loops evolve independently of the network and start to decay through
gravitational radiation and particle production.

It has been known since a long time [184–188], that out of the two competing dynamics, Hubble
expansion and loop fragmentation, there is an attractor solution, called the scaling regime, where
the correlation length scales as the cosmic time,

L ∼ t. (3.7)

Note, however, that in the case of a global-string network, it has been claimed that the scaling
property in Eq. (3.7), is logarithmically violated due to the dependence of the string tension on the
Hubble horizon [195, 328–332]. More recently, an opposite conclusion has been drawn in [333].
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Number of strings. During the scaling regime, the number of strings per Hubble patch is con-
served

ρ∞H
−3

µL
= constant. (3.8)

Moreover, the energy density of the long-string network, which scales as ρ∞ ∼ µ/t2, has the same
equation-of-state as the main background cosmological fluid ρbkg ∼ a−n,

ρ∞
ρbkg

∼ an

t2
∼ constant, (3.9)

where we used a = t2/n. Hence, the long-string energy density redshifts as matter during matter
domination and as radiation during radiation domination. The scaling regime allows cosmic strings
not to dominate the energy density of the Universe, unlike other topological defects. A string
network’s scaling property was checked fifteen years ago in numerical Nambu-Goto simulations
[189–192] and more recently with larger simulations [193]. During the scaling regime, the loop
production function is scale-free, with a power-law shape, meaning that loops are produced at
any size between the Hubble horizon t and the scale ∼ ΓGµ t, below which the gravitational
backreaction has smoothened the strings and there is no further segment crossing.

A scale-invariant SGWB. An essential outcome is the scale-invariance of the Stochastic GW
Background generated by loops during the scaling regime [275–291]. Expanding from the back-
of-the-envelope estimation given in Sec. 2.4.3, we construct the GW spectrum in Sec. 3.2.3 and give
further details in App. B.3. Remarkably, the spectrum generated by loops produced during radiation
domination is flat, ∝ f0, whereas an early matter domination or an early kination-domination era
turns the spectral index from f0 to respectively f−1/3 or f1. As recently pointed out by [334],
in presence of an early matter, the slope f−1 predicted by [294, 295], is changed to f−1/3 due to
the high-k modes. We give more details on the impact of high-k modes on the GW spectrum in
the presence of a decreasing slope due to an early matter era, a second period of inflation, particle
production, thermal friction or network formation in App. B.3.7. Hence, the detection of the SGWB
from CS by LIGO [226], DECIGO, BBO [68], LISA [65], Einstein Telescope [66, 67] or Cosmic
Explorer [228] would offer an unique observation window on the equation of state of the Universe
at the time when the CS loops responsible for the detected GW are formed. In Secs. 4.3, 4.5
and 4.6, we study the possibility for probing particular non-standard cosmological scenario: long
matter/kination era, intermediate matter and intermediate inflation, respectively.

3.1.3 Decay channels of Cosmic Strings

Cosmic strings can decay in several ways, as we discuss below.

GW radiation from long strings. Because of their topological nature, straight infinitely-long
strings are stable against decay. However, small-scale structures of long wiggly strings can gener-
ate gravitational radiation. Intuitively, a highly wiggly string can act as a gas of tiny loops. The GW
emission from long strings can be neglected compared to the GW emission from loops, as loops live
much longer than a Hubble time [281, 301]. Indeed, the GW signal emitted by loops is enhanced by
many loops (continuously produced). Exceptions are strings with small inter-commutation prob-
ability and global strings where loops are short-lived due to efficient Goldstone production. In
such cases, the GW emission from long strings can give a major contribution to the SGWB [335–
339]. Nambu-Goto numerical simulations have shown that the loop energy density is at least 100
times larger than the long-string energy density [194]. Recently, NG simulations also finds that
the SGWB from the local CS network attains a spectral shape similar to the GW from loops, but
with unobservable amplitude Ωlong

GW ≃ 10−2(Gµ)2 [339]. In what follows, we only consider the
emission from loops.
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loop

kink cusp

Figure 3.1: Cartoon showing the geometry of
a kink and a cusp which are singular structures
formed on loops. The arrows denote the tangent
vectors of the string segments.

GW radiation from loops (local strings): In contrast to long strings, loops do not contain any
topological charge and are free to decay into GW. The GW radiation power is found to be [301, 340]

PGW = ΓGµ2, (3.10)

where the total GW emission efficiency Γ is determined from Nambu-Goto simulations, Γ ≃ 50
[341]. Note that the gravitational power radiated by a loop is independent of its length. This can
be understood from the quadrupole formula P = G/5(Q′′′)2 [277, 342] where the triple time
derivative of the quadrupole, Q′′′ ∝ [mass][length]2[time]−3 ∝ µ, is indeed independent of the
length. The resulting GW are emitted at frequencies [183, 343]

f̃ =
2k

l
, k ∈ Z+, (3.11)

corresponding to the proper modes k of the loop. The symbol ·̃ is used to distinguished the fre-
quency emitted at t̃ from the frequency today

f = a(t̃)/a(t0) f̃ . (3.12)

The frequency dependence of the power spectrum PGW(k) relies on the nature of the loop small-
scale structures [344, 345], e.g., kinks or cusps, cf. Fig. 3.1.

More precisely, the spectrum of the gravitational power emitted from one loop reads

P
(k)
GW = Γ(k)Gµ2, with Γ(k) ≡ Γ k−n∑∞

p=1 p
−n , n =


4/3 cusps
5/3 kinks
2 kink-kink collisions

(3.13)

where the spectral index n = 4/3 when the small-scale structure is dominated by cusps [277,
285, 346], n = 5/3 for kink domination [285], or n = 2 for kink-kink collision domination
[344, 345]. A discussion on how to read information about the small-scale structure of CS from
the GW spectrum, is given in App. B.3.7. In particular, we show that the high-frequency slope
of the GW spectrum in the presence of an early matter era, a second period inflation, particle
production or network formation, which is expected to be f−1 from the fundamental, k = 1, GW
spectrum alone, is actually given by f1−n. Immediately after a loop gets created, at time ti with a
length α ti, its length l(t̃) shrinks through emission of GW with a rate ΓGµ

l(t̃) = αti − ΓGµ(t̃− ti). (3.14)

Consequently, the string lifetime due to decay into GW is given by

τGW =
α ti
ΓGµ

. (3.15)

The superposition of the GW emitted from all the loops formed since the creation of the long-
string network generates a SGWB. Also, cusp formations can emit high-frequency, short-lasting
GW bursts [284, 285, 344, 345, 347]. If the rate of such events is lower than their frequency, they
might be subtracted from the SGWB.
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Goldstone boson radiation (global strings): For global strings, the massless Goldstone particle
production is the main decay channel. The radiation power has been estimated [301]

PGold = ΓGold η
2, (3.16)

where η is the scalar field VEV and ΓGold ≈ 65 [199, 348]. We see that the GW emission power in
Eq. (3.10) is suppressed by a factorGµwith respect to the Goldstone emission power in Eq. (3.16).
Therefore, for global strings, the loops decay into Goldstone bosons after a few oscillations before
having the time to emit much GW [301, 349]. However, as shown in Sec. 3.6, the SGWB from
global string is detectable for large values of the string scale, η ≳ 1014 GeV. Other recent studies of
GW spectrum from global strings in standard and non-standard cosmology include [199, 350–352].
A well-motivated example of a global string is the axion string coming from the breaking of aU(1)
Peccei-Quinn symmetry [195, 197, 331, 348, 353–357]. Ref. [351] shows the detectability of the
GW from the axionic network of QCD axion Dark Matter (DM) after introducing an early-matter
era that dilutes the axion DM abundance and increases the corresponding Peccei-Quinn scale η.

Massive particle radiation: When the string curvature size is larger than the string thickness, one
expects the quantum field nature of the CS, e.g., massive particle radiation (a constituent of string),
to give negligible effects. One may instead consider the CS as an infinitely thin 1-dimensional clas-
sical object with tension µ: the Nambu-Goto (NG) string. This statement, however, fails once the
string interaction is enhanced. For example, an additional scalar – coupled to the string’s scalar –
can boost the perturbative decay rate for the cubic [358] and quartic [359] couplings. The coupling
to fermions and gauge fields have also been studied, e.g., in the context of [180, 360]. These mas-
sive radiation from CS could interestingly source the non-thermal DM or Baryon Asymmetry of the
Universe [180, 195–197, 358–365]. Since this enhanced perturbative particle emission becomes
one of the main energy-loss mechanisms, it leads to the cut-off in the GW spectrum, similar to the
non-perturbative emission discussed in the next paragraph. We leave the analysis of prospects for
probing additional CS couplings and their phenomenology via GW signatures for future work5.

Moreover, due to small-scale structures on the strings, regions with curvature comparable to
the string core size can develop, and the Nambu-Goto approximation breaks down. In that case,
massive radiation can be emitted non-perturbatively during processes known as cusp annihilation
[366, 367] or kink-kink collisions [368]. We discuss non-perturbative massive-particle emission
in more details in Sec. 3.2.1.

3.1.4 Constraints on the string tension from GW emission

The observational signatures of Nambu-Goto cosmic strings are mainly gravitational. The GW
emission can be probed by current and future pulsar timing arrays and GW interferometers, while
CMB, 21 cm, and lensing observables can investigate the static gravitational field around the string;
see app. B.2 for more details on non-GW probes. The strongest constraints come from pulsar timing
array EPTA,Gµ ≲ 8×10−10 [369], and NANOGrav,Gµ ≲ 5.3×10−11 [370]. Comparison with
the theoretical predictions from the SGWB from cosmic strings leads toGµ ≲ 2×10−11 [295, 341]
or Gµ ≲ 10−10 [345], even though it can be relaxed to Gµ ≲ 5 × 10−7 [287], after taking into
account uncertainties on the loop size at formation and on the number of emitting modes. Note
that it can also be strengthened by decreasing the inter-commutation probability [289, 371, 372].

By using the EPTA sensitivity curve derived in [201], we obtain the upper bound on Gµ, one
order of magnitude higher, 2 × 10−10, instead of 2 × 10−11, cf. Fig. 3.4. This bound becomes
∼ 5 × 10−11 by using the NANOGrav sensitivity curve derived in [201]. Another significant
source of uncertainty is the nature of the GW spectrum generated by a loop, which depends on
the assumption of the small-scale loop structure (e.g., the number of cusps, kinks, and kink-kink

5Many thanks go to Bibhushan Shakya regarding this future work.
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collisions per oscillations) [289, 345]. For instance, the EPTA bound can be strengthened toGµ ≲
6.7 × 10−14 if the loops contain many kinks [345]. CS can also emit highly-energetic and short-
lasting GW bursts due to cusp formation [284, 285, 344, 345, 347]. From the non-observation of
such events with LIGO/VIRGO/KAGRA [373–375], one can constrainGµ ≲ 10−10 with the loop
distribution function from [376]. However, the constraints are completely relaxed with the loop
distribution function from [194].

Interestingly, the recent PTA observations of the red-noise process – that is common to all ob-
served pulsars – suggest the presence of SGWB within the (1–10 nHz) frequency band and with
ΩGW ∼ 10−9÷−11 [204–206, 261]. The SGWB from the simple NG CS with Gµ ∼ 10−10÷−11

explains the signal well while still satisfying other bounds. Nonetheless, the smoking-gun signature
for identifying the SGWB is still inconclusive, namely the spatial quadrupole (Hellings-Downs)
correlation [262]. The next observation runs with more pulsars should clarify the nature of these
red-noise processes. We refer the reader to Sec. 2.6 for more details on these interesting observa-
tions.

3.2 Gravitational Waves from Local Cosmic Strings

In this section, we do not consider the case of global strings where the presence of a massless
Goldstone in the spectrum implies that particle production is the main energy loss so that GW
emission is suppressed [301, 348]. However, in detail, we discuss the GW spectrum from global
strings in Sec. 3.6, which can be detectable for string scales η ≳ 1014 GeV. Other studies of the
sensitivity of next-generation observatories to GW from global strings are [199, 350–352, 357].

There has been a long debate in the community whether local cosmic strings mainly lose their
energy via GW emission or by particle production. We summarise the arguments and clarify the
underlying assumptions below.

3.2.1 Beyond the Nambu-Goto approximation

Quantum field string simulations. Field-theoretic string (Abelian-Higgs) lattice simulations
run by Hindmarsh et al. [377–379] have shown that decay into massive radiation is the primary en-
ergy loss and is sufficient to lead to scaling. Then, loops decay within one Hubble time into scalar
and gauge boson radiation before having the time to emit GW. It is suggested that the presence of
small-scale structures, kinks, and cusps at the string core size are responsible for the energy loss
in particle production. In these regions of large string curvature, the Nambu-Goto approximation,
which considers CS as infinitely thin 1-dimensional classical objects, is no longer valid.

However, Abelian-Higgs simulations run by [380–382] have claimed the opposite result, that
energy loss into massive radiation is exponentially suppressed when the loop size is large compared
to the thickness of the string.

Small-scale structure. At formation time, loops are not smooth but made of straight segments
linked by kinks [383]. Kinks are also created in pairs after each string intercommutation, see [384]
or Fig. 2.1 in [385]. The presence of straight segments linked by kinks prevents the formation of
cusps. However, backreaction from GW emission smoothens the shapes, hence allowing for the
formation of cusps [383] (see Fig. 3.1). Because of the large hierarchy between the gravitational
backreaction scale and the cosmological scale H , the effects of the gravitational backreaction on
the loop shape are not easily tractable numerically. The effects of backreaction from particle emis-
sion are shown in [384]. Nevertheless, it has been proposed since long [386] that the small-scale
structures are smoothened below the gravitational backreaction scale ∼ ΓGµt,. Particularly, based
on analytical modeling on simple loop models, it has been shown in [387, 388] that due to gravita-
tional backreaction, kinks get rounded off, become closer to cusps, and then cusps get weakened.
In earlier works, the same authors [389, 390] claimed that whether the smoothening has the time
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to occur within the loop lifetime strongly depends on the initial loop shape. In particular, for a
four-straight-segment loop, the farther from the square shape, the faster the smoothening, whereas
for more general loop shapes, the smoothening may not always occur.

To summarize the last two paragraphs, the efficiency of the energy loss into massive radiation
depends on the nature of the small-scale structure, which can be understood as a correction to the
Nambu-Goto approximation. The precise nature of the small-scale structure, its connection with
the gravitational backreaction scale, and the conflict between Nambu-Goto and Abelian Higgs sim-
ulations remain to be explained. Moreover, the value of the gravitational backreaction scale itself,
see Sec. 3.2.2 is a matter of debate. For our study, we follow the proposal of [391] for investigating
how the GW spectrum is impacted for two benchmark scenarios: when cusps dominate the small-
scale structures or when kinks dominate them. We will give more details in the next paragraph.
In App. B.3.7, we show that if the high-frequency slope of the fundamental, k = 1, GW spectrum
is f−1, as expected in presence of an early matter era or in presence of an Heaviside cut-off in
the loop formation time, then the existence of the high-k modes, turns it to f−1 → f1−n, where
n, defined in Eq. (3.13), depends on the small-scale structure. We can therefore read information
about the small-scale structure of CS from the high-frequency GW spectrum.

Massive radiation emission. In the vicinity of a cusp, the topological charge vanishes where
the string cores overlap. Hence, the corresponding portions of the string can non-perturbatively
decay into massive radiation. The length of the overlapping segment has been estimated to be

√
rl

[366, 367, 392] where r ≃ µ−1/2 is the string core size and l is the loop length. Hence, the energy
radiated per cusp formation is µ

√
rl, from which we deduce the power emitted from a loop

P part
cusp ≃ Nc

µ3/4

l1/2
, (3.17)

where Nc is the average number of cusps per oscillation, estimated to be Nc ∼ 2 [383]. Note that
the consideration of pseudo-cusps, pieces of string moving at highly relativistic velocities, might
also play a role [393, 394].

Even without the presence of cusps, Abelian-Higgs simulations [368] have shown that kink-
kink collisions produce particles with a power per loop

P part
kink ≃ Nkk

ϵ

l
, (3.18)

whereNkk is the average number of kink-kink collisions per oscillation. Values possibly as large as
Nkk ∼ O(103) have been considered in [345] or even as large as 106 for the special case of strings
with junctions [395], due to kink proliferations [396]. In contrast to the cusp case, the energy
radiated per kink-kink collision, ϵ, is independent of the loop size l, and we expect ϵ ∼ µ1/2.

Upon comparing the power of GW emission in Eq. (3.10) with either Eq. (3.17) or (3.18), one
expects gravitational production to be more efficient than particle production when loops are larger
than [391]

l ≳ lc ≡ βc
µ−1/2

(ΓGµ)2
, (3.19)

for small-scale structures dominated by cusps, and

l ≳ lk ≡ βk
µ−1/2

ΓGµ
, (3.20)

for kink-kink collision domination. βc and βk are numbers which depend on the precise refinement.
We assumeβc, βk ∼ O(1). Therefore, loops with length smaller than the critical value in Eq. (3.19)
or (3.20) are expected to decay into massive radiation before they have time to emit GW, which
means that they should be subtracted when computing the SGWB. Eqs. (3.19) and (3.20) are crucial
to determine the cutoff frequency, as we discuss in Sec. 3.2.5.

The cosmological and astrophysical consequences of the production of massive radiation and
the corresponding constraints on CS from different experiments are presented in Sec. B.2.4.
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3.2.2 Assumptions on the loop distribution

The SGWB resulting from the emission by CS loops strongly relies on the distribution of loops.
In the present section, we introduce the loop-formation efficiency and discuss the assumptions on
the loop-production rate, inspired by Nambu-Goto simulations. The loop-formation efficiency is
computed later, in Sec. 3.3.

Loop-formation efficiency. The equation of motion of a long Nambu-Goto string in a expanding
Universe implies the following evolution equation for the long string energy density, cf. Sec. B.5

dρ∞
dt

= −2H(1 + v̄2)ρ∞ − dρ∞
dt

∣∣∣∣
loop

, (3.21)

where v̄ is the long string mean velocity. The energy loss into loop formation can be expressed as
[301]

dρ∞
dt

∣∣∣∣
loop

≡ µ

∫ ∞

0
lf(l, t)dl ≡ µ

t3
C̃eff , (3.22)

with f(l, t) the number of loops created per unit of volume, per unit of time t and per unit of length
l and where we introduced the loop-formation efficiency C̃eff . The loop-formation efficiency C̃eff

is related to the notation introduced in [294, 295] by

C̃eff ≡
√
2Ceff . (3.23)

In Sec. 3.3, we compute the loop-formation efficiency Ceff as a function of the long string network
parameters v̄ and L, which themselves are solutions of the Velocity-dependent One-Scale (VOS)
equations.

Only loops produced at the horizon size contribute to the SGWB. As pointed-out a long time
ago by [186, 386] and more recently in large Nambu-Goto simulations [194], the most numerous
loops are the ones of the size of the gravitational backreaction scale

ΓGµ× t, (3.24)

which acts as a cut-off below which, small-scale structures are smoothened and such that smaller
loops cannot be produced below that scale. However, it has been claimed that only large loops
are relevant for GW [194, 284, 397]. In particular, Nambu-Goto numerical simulations realized
by Blanco-Pillado et al. [194] have shown that a fraction Fα ≃ 10% of the loops are produced
with a length equal to a fraction α ≃ 10% of the horizon size, and with a Lorentz boost factor
γ ≃

√
2. The remaining 90% of the energy lost by long strings goes into highly boosted smaller

loops whose contributions to the GW spectrum are sub-dominant. Under those assumptions, the
number of loops, contributing to the SGWB, produced per unit of time can be computed from the
total energy flow into loops in Eq. (3.22)

dn

dti
=

Fα
γµαti

dρ∞
dt

∣∣∣∣
loop

, (3.25)

with Fα = 0.1, γ =
√
2 and α = 0.1. In App. B.7.2, we discuss the possibility to define the

loop-size as a fixed fraction of the correlation length L instead of a fixed fraction of the horizon
size t. Especially, we show that the impact on the GW spectrum is negligible. The latter can be
recast as a function of the loop-formation efficiency C̃eff defined in Eq. (3.22)

dn

dti
= Fα

C̃eff(ti)

γ α t4i
. (3.26)
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This is equivalent to choosing the following monochromatic horizon-sized loop-formation function

f(l, ti) =
C̃eff

α t4i
δ(l − αti), (3.27)

where δ is the delta function. The assumptions leading to Eq. (3.26) are the ones we followed
for our study and which are also followed by [294, 295]. Our results strongly depend on these
assumptions and would be dramatically impacted if, instead, we consider the model discussed in
the next paragraph.

A second population of smaller loops. The previous assumption – that the only loops relevant
for the GW signal are the loops produced at horizon size – which is inspired by the Nambu-Goto
numerical simulations of Blanco-Pillado et al. [194, 398], conflicts with the results from Ringeval
et al. [345, 376, 399]. In the latter works, the loop production function is derived analytically
starting from the correlator of tangent vectors on long strings, within the Polchinski-Rocha model
[400–403]. In the Polchinski-Rocha model, which has been tested in Abelian-Higgs simulations
[378], the gravitational back-reaction scale, i.e., the lower cut-off of the loop production function,
is computed to be

Υ(Gµ)1+2χ × t, (3.28)

with Υ ≃ 10 and χ ∼ 0.25. Consequently, the gravitational back-reaction scale in the Polchinski-
Rocha model is significantly smaller than the usual gravitational back-reaction scale, commonly
assumed to match the gravitational radiation scale, ΓGµ t. Therefore, the model of Ringeval et al.
predicts the existence of a second population of smaller loops which enhances the GW spectrum
at high frequencies by many orders of magnitude [345]. However, as raised by [404], the model of
Ringeval et al. predicts the amount of long-string energy converted into loops to be ∼ 200 times
larger than the one computed in the numerical simulations of Blanco-Pillado et al. [194]. These
discrepancies between Polchinski-Rocha analytical modeling and Nambu-Goto numerical simula-
tions remain to be understood.
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3.2.3 The gravitational-wave spectrum

For our study, we compute the GW spectrum observed today generated from CS as follows (see
app. B.3 for a derivation)

ΩGW(f) ≡ f

ρc

∣∣∣∣dρGW

df

∣∣∣∣ =∑
k

Ω
(k)
GW(f), (3.29)

where

Ω
(k)
GW(f) =

1

ρc
· 2k
f

· Fα Γ(k)Gµ2

α(α+ ΓGµ)

∫ t0

tosc

dt̃
Ceff(ti)

t4i

[
a(t̃)

a(t0)

]5 [
a(ti)

a(t̃)

]3
Θ(ti − tosc)Θ(ti −

l∗
α
),

(3.30)with
Θ ≡ Heaviside function,

µ, G, ρc ≡ string tension, Newton constant, critical density,
a ≡ scale factor of the Universe

(we solve the full Friedmann equation for a given energy density content),
k ≡ proper mode number of the loop (effect of high-k modes are discussed in App. B.3.7.

For technical reasons, in most of our plots, we restrict to 2× 104 modes),
Γ ≡ gravitational loop-emission efficiency, (Γ ≃ 50 [398])

Γ(k) ≡ Fourier modes of Γ, dependent on the loop small-scale structures,
(Γ(k) ∝ k−4/3 for cusps, e.g., [285]),

Fα ≡ fraction of loops formed with size α (Fα ≃ 0.1), cf. Sec. 3.2.2,
Ceff ≡ loop-production efficiency, defined in Eq. (3.39),

(Ceff is a function of the long-string mean velocity v̄ and correlation length ξ,
both computed upon integrating the VOS equations, cf. Sec. 3.3)

α ≡ loop length at formation in unit of the cosmic time, (α ≃ 0.1)

(we consider a monochromatic, horizon-sized loop-formation function, cf. Sec. 3.2.2),
t̃ ≡ the time of GW emission,
f ≡ observed frequency today

(related to frequency at emission f̃ through f a(t0) = f̃ a(t̃),

related to loop length l through f̃ = 2k/l,

related to the time of loop production ti through l = αti − ΓGµ(t̃− ti)),
ti ≡ the time of loop production,

(related to observed frequency and emission time t̃ through

ti(f, t̃) =
1

α+ ΓGµ

[
2k

f

a(t̃)

a(t0)
+ ΓGµ t̃

])
,

t0 ≡ the time today,
tosc ≡ the time at which the long strings start oscillating, tosc = Max[tfric, tF ],

tF is the time of CS network formation, defined as
√
ρtot(tF ) ≡ µ where ρtot is

the Universe total energy density. In presence of friction, at high temperature,
the string motion is damped until the time tfric, computed in app. B.5.4,

l∗ ≡ lc for cusps and lk for kinks in Eq. (3.19) and Eq. (3.20)
(critical length below which the emission of massive radiation
is more efficient than the gravitational emission, cf. Sec. 3.2.1).
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Figure 3.2: GW spectrum from the scaling cosmic-string network evolving in a standard cosmology. Con-
tributions from GW emitted during radiation and matter eras are shown with red and green dashed lines
respectively. The high-frequency cut-offs correspond to either the time of formation of the network, cf.
Eq. (3.4), the time when friction-dominated dynamics become irrelevant, cf. App. B.5.4, or the time when
gravitational emission dominates over massive particle production, for either kink or cusp-dominated small-
scale structures, cf. Sec. 3.2.1. The cut-offs are described by Heaviside functions in the master formula in
Eq. (3.29). In App. B.3.7, we show that the slopes beyond the high-frequency cut-offs are given by f−1/3.
Colored regions indicate the integrated power-law sensitivity of future experiments, as described in Sec. 2.5.

A first look at the GW spectrum. Fig. 3.2 shows the GW spectrum computed with Eq. (3.29).
The multiple frequency cut-offs follow from the Heaviside functions in Eq. (3.29), subtracting loops
formed before network formation, cf. Eq. (3.4), or when thermal friction freezes the network, cf.
App. B.5.4, or subtract loops decaying via massive particle emission from cusps and kinks instead
of GW, cf. Sec. 3.2.1. We indicate separately the contributions from the emission occurring before
and after the matter-radiation equality. One can see that loops emitting during the radiation era
contribute to a flat spectrum, whereas loops emitting during the matter era lead to a slope decreasing
as f−1/3. Similarly, the high-frequency cut-offs due to particle production, thermal friction, and
network formation, but also due to the second period of inflation (discussed in Sec. 4.6), give a
slope f−1/3. In App. B.3.7, we show that the presence of high-frequency modes are responsible
for changing the slope f−1, expected from the (k = 1)-spectrum, to f−1/3.

3.2.4 Impact of the cosmology on the GW spectrum

The frequency dependence of the GW spectrum receives two contributions: a red tilt from the
redshift of the GW energy density and a blue tilt from the loop-production rate ∝ t−4

i . On the
one hand, the higher the frequency, the earlier the GW emission, so the larger the redshift of the
GW energy density and the more suppressed the spectrum. On the other hand, high frequencies
correspond to loops formed earlier, those being more numerous; this increases the GW amplitude.
Interestingly, during radiation domination, the two contributions cancel such that the spectrum is
flat.

Concretely, the GW spectrum from the master formula, Eq. (3.30), depends on GW frequency

36



as

Ωlocal
GW ∝ f−1 t̃ t−4

i a2(t̃) a3(ti) ∝ fβ, with β = 2

[
3m+ n− nm

n(2−m)

]
, (3.31)

where we assume that the formation and the emission happen when the universe is dominated by
the energy densities ρ ∝ a−n and a−m, respectively. The emission time and the loop formation
time are related to frequency via Eq. (3.32): ti, t̃M ∝ fm/(2−m). The flatness of the GW spectrum
during radiation is intimately related to the independence of the GW emission power on the loop
length. As the main topic of Chap. 4, a change in the equation of state of the Universe impacts the
GW spectrum because it modifies the two following redshift factors: the redshift of the number of
emitting loops and the redshift of the emitted GW.

For instance, when GW emission occurs during radiation (m = 4) but loop formation occurs
during matter (n = 3), the loop density redshifts faster. Then, the larger the frequency, the earlier
the loop formation, and the more suppressed the GW spectrum (as f−1 for k = 1 and as f−1/3 when
including high-k modes cf. App. B.3.7). Conversely, if loop formation occurs during kination, the
loop density redshift slower, and the GW gets enhanced at a large frequency (as f1).

Lastly, we would like to mention that Eq. (3.31) is valid for β ≥ −1. Since the SGWB from the
string network is contributed by various loop populations. Discussed in App. B.3.6, the spectrum
from a single population has the UV tail with slope−1. So if the peak contributions (at t̃ = t̃M ) lead
to β < −1, the resulting final spectrum is dominated by the UV tail of the loop population produced
at the latest time and thus has the slope of −1 for each kth mode (and −1/3 when summing higher
harmonics).

3.2.5 The frequency–temperature relation

In App. B.4, it is argued that most of loops – created at time ti – decay at much later time: t̃M ≃
(α/2ΓGµ)ti. Their coresponding GW has the frequency today f related to the loop length αti/2,(

2

f

)[
a(t̃M )

a(t0)

]
=

αti
2

⇒ f =
4

αti

[
a(t̃M )

a(t0)

]
, (3.32)

where the fundamental mode is considered here. The delay in GW emission leads to the non-
trivial relation between the GW frequency today and the temperature of the Universe when the
loops, mostly responsible for f , are formed

f ≃ (6.7× 10−2 Hz)
(

T

GeV

)(
0.1× 50× 10−11

αΓGµ

)1/2(
g∗(T )

g∗(T0)

)1/4

. (3.33)

We emphasize that Eq. (3.33) is very different from the relation obtained in the case of GW gen-
erated by a first-order cosmological phase transition. In the latter case, the emitted frequency
corresponds to the Hubble scale at Tp [31]

fFOPT ≃ (19× 10−3 mHz)
(

Tp
100 GeV

)(
g∗(Tp)

100

)1/4

. (3.34)

In the case of cosmic strings, instead of being set by the Hubble scale at the loop-formation time ti,
the emitted frequency is further suppressed by a factor (ΓGµ)−1/2, which we now explain. From
the scaling law∝ t−4

i of the loop-production function in Eq.(3.26), one can understand that the most
numerous population of emitting loops at a given time t̃ is the population of loops created at the
earliest epoch. They are the oldest loops6. Hence, a loop created at time ti contributes to the SGWB
much later, at a time given by the loop half-lifetime t̃M = α ti/2ΓGµ, cf. Eq. (3.15). Therefore, the

6Note that they are also the smallest loops, with a length given by the gravitational radiation scale ΓGµ t.
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emitted frequency is dispensed from the redshift factor a(t̃M)/a(ti) = (t̃M/ti)
1/2 ∼ (ΓGµ)−1/2,

and so, is higher. See App. B.4 and its Fig. B.5 for more details.
Another striking consequence is that the formation cut-off in Eq. (3.5) (depicted in Fig. 2.5)

is Gµ-independent. Indeed, string networks with smaller Gµ are formed at later times, but the
associated loops decay much slower. By varying Gµ, the GW frequency today remains constant
by the compensation of a smaller redshift.

The detection of a non-standard cosmology: During a cosmology change, e.g., from a matter
to a radiation-dominated era, the long-string network evolves from one scaling regime to the other.
The network’s response to the change in cosmology is quantified by the VOS equations, which are
presented in Sec. 3.3. As a result of the transient evolution towards the new scaling regime, the
turning-point frequency Eq. (B.51) associated with the change of cosmology is lower in VOS than
in the scaling network. The detection of a turning point in a GW spectrum from CS by a future
interferometer would be a smoking-gun signal for non-standard cosmology, as we shall discuss in
Chap. 4. Notably, in Fig. 4.5, we show that LISA can probe a non-standard era ending around the
QCD scale, ET/CE can probe a non-standard period ending around the TeV scale, whereas DE-
CIGO/BBO can probe the intermediate range. We show examples of a long-lasting era in Sec. 4.3.
We focus on the case of a short matter era in Sec. 4.5 and a short inflation era in Sec. 4.6, re-
spectively. In the latter case, the turning-point frequency is further decreased due to the string
stretching, which we explain in the next paragraph.

The detection of a non-standard cosmology (intermediate-inflation case): If the Universe
undergoes a period of inflation lastingNe e-folds, the correlation length of the network is stretched
outside the horizon. After inflation, the network achieves a long transient regime lasting ∼ Ne

other e-folds until the correlation length re-enters the horizon. Hence, the turning-point frequency
in the GW spectrum, cf. Eq. (4.39), receives a exp(Ne) suppression compared to Eq. (3.33) due to
the duration of the transient. We give more details in Sec. 4.6.

Cut-off frequency from particle production: As discussed in the Sec. 3.2.1, particle production
is the main decay channel of loops shorter than

l∗ = βm
µ−1/2

(ΓGµ)m
, (3.35)

wherem = 1 or 2 for loops kink-dominated or cusp-dominated, respectively, and βm ∼ O(1). The
corresponding characteristic temperature above which loops, decaying preferentially into particles,
are produced, is

T∗ ≃ β−1/2
m Γm/2

√
α (Gµ)(2m+1)/4Mpl ≃


(0.2 EeV)

√
α

0.1

√
1

βc

(
Gµ

10−15

)3/4

for kinks,

(1 GeV)
√

α

0.1

√
1

βk

(
Gµ

10−15

)5/4

for cusps.

(3.36)
We have used l∗ = α ti,H = 1/(2ti) and ρrad = 3M2

plH
2. Upon using the frequency-temperature

correspondence in Eq. (3.33), we get the cut-off frequencies due to particle production

f∗ ≃


(1 GHz)

√
1

βc

(
Gµ

10−15

)1/4

for kinks,

(31 Hz)
√

1

βk

(
Gµ

10−15

)3/4

for cusps.

(3.37)
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and which we show in most of our plots with dotted red and purple lines. Particularly, in Fig. 3.5,
we see that particle production in the cusp-dominated case would start suppressing the GW signal
in the ET/CE windows for string tension lower thanGµ ≲ 10−15. However, in the kink-dominated
case, the spectrum is only impacted at frequencies much higher than the interferometer windows.
In App. B.3.7, we show that the slope of the GW spectrum beyond the high-frequency cut-off f∗ is
given by f−1/3.

3.3 The Velocity-dependent One-Scale (VOS) Model

The master formula (3.29) crucially depends on the loop-production efficiency encoded in Ceff . In
this section, we discuss its derivation within the framework of the Velocity-dependent One-Scale
(VOS) model [405–408].

3.3.1 The loop-production efficiency

In a correlation volume L3, a segment of length L must travel a distance L before encountering
another segment. L is the correlation length of the long-string network. The collision rate, per unit
of volume, is v̄

L · 1
L3 ∼ v̄

L4 where v̄ is the long-string mean velocity. At each collision forming a
loop, the network looses a loop energy µL = ρ∞ L3. Hence, the loop-production energy rate can
be written as [184]

dρ∞
dt

∣∣∣∣
loop

= c̃ v̄
ρ∞
L
, (3.38)

where one can compute c̃ = 0.23 ± 0.04 from Nambu-Goto simulations in expanding Universe
[407]. c̃ is the only free parameter of the VOS model. Hence, the loop-formation efficiency, defined
in Eq. (3.22), can be expressed as a function of the long-string parameters, v̄ and ξ ≡ L/t,

C̃eff ≡
√
2Ceff(t) =

c̃ v̄(t)

ξ3(t)
. (3.39)

In app. B.6, we discuss how our results are changed when considering a recent extension of the
VOS model with more free parameters, fitted on Abelian-Higgs field theory numerical simulations
[409], and taking into account the emission of massive radiation. Basically, the loop-formation
efficiency Ceff is only decreased by a factor ∼ 2. In the following, we derive v̄ and ξ as solutions
of the VOS equations.

3.3.2 The VOS equations

The VOS equations describe the evolution of a network of long strings in term of the mean velocity
v̄ and the correlation length ξ = L/t [405–408]. The latter is defined through the long string energy
density ρ∞ ≡ µ/L2. Starting from the equations of motion of the Nambu-Goto string in a FRW
Universe, we can derive the so-called VOS equations (see app. B.5 for a derivation)

dL

dt
= HL (1 + v̄2) +

1

2
c̃ v̄, (3.40)

dv̄

dt
= (1− v̄2)

[
k(v̄)

L
− 2Hv̄

]
, (3.41)

where k(v̄) =
2
√
2

π
(1− v̄2)(1 + 2

√
2v̄3)

1− 8v̄6

1 + 8v̄6
, (3.42)

is the so-called momentum parameter and is a measure of the deviation from the straight string, for
which k(v̄) = 1 [408]. The first VOS equation describes the evolution of the long string correlation
length under the effect of Hubble expansion and loop chopping. The second VOS equation is
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nothing more than a relativistic generalization of Newton’s law, where the string is accelerated by
its curvature 1/L but is damped by the Hubble expansion after a typical length H−1.

Numerical simulations [189–193] have shown that a network of long strings is first subject to
a transient regime before reaching a scaling regime, in which the long string mean velocity v̄ is
constant. The correlation length grows linearly with the Hubble horizon L = ξ t. The values of
the quantities v̄ and ξ depend on the cosmological background, namely the equation of state of the
Universe. Hence, when passing from a cosmological era #1 to era #2, the network accomplishes a
transient evolution from the scaling regime #1 to the scaling regime #2. We use the VOS equations
to compute the time evolution of v̄ and ξ during cosmology change and then compute their impact
on the CS SGWB.

3.3.3 Scaling regime solution and beyond

Scaling solution vs. VOS solution: Fig. 3.3 shows the evolutions of ξ, v̄, and Ceff, from solv-
ing the VOS equations in Eq. (3.40) with three equations of state: matter, radiation and kination.
Regardless of the initial-condition choice, the network approaches a scaling solution where all pa-
rameters become constant. The energy scale of the Universe has to decrease by some 4 orders
of magnitude before reaching the scaling regime after the network formation. For a cosmological
background evolving as a ∝ t2/n with n ≥ 2, the scaling regime solution is

ξ =
n

2

√
k(v̄)[k(v̄) + c̃]

2(n− 2)
= constant, v̄ =

√
n

2

k(v̄)

[k(v̄) + c̃]

(
1− 2

n

)
= constant. (3.43)

In order to fix the notation used in our plots, we define

• (Instantaneous) scaling network: The loop-formation efficiencyCeff , defined in Eq. (3.39),
is taken at its steady state value, given by Eq. (3.43). In particular for matter, radiation and
kination domination, one has

Ceff ≃ 0.39, 5.4, 29.6 for n = 3, 4, 6. (3.44)

During a change of era #1→#2, Ceff is assumed to change instantaneously from the scaling
regime of era #1 to the scaling regime of era #2. This is the assumption adopted in [294, 295].

• VOS network: The loop-formation efficiency Ceff , defined in Eq. (3.39), is computed upon
integrating the VOS equations in Eq. (3.40). During a change of cosmology, the long-string
network experiences a transient regime.

In Fig. 3.4 and Fig. 3.5, we compare the GW spectra and the Ceff evolution, obtained with a
scaling and VOS network. They are quite similar. The main difference arises from relativistic
degrees of freedom change near the QCD confining temperature and from the matter-radiation
transition. In contrast, predictions differ significantly when considering non-standard cosmology
in Chap. 4. In Fig. 4.4, in dashed vs. solid, we compare the loop-production efficiency factor Ceff
and the corresponding GW spectra for a scaling network and a VOS network. The VOS frequency
of the turning point due to the change of cosmology is shifted to a lower frequency by a factor
∼ 22.5 with respect to the corresponding scaling frequency7. The shift results from the extra time
needed by the network’s transient evolution to the new scaling regime. In the rest of this work, we
go beyond the instantaneous scaling approximation used in [294, 295].

7The turning-point frequency can even be smaller by O(400) if, in a far-future, the precision of the order of 1% can
be reached in the measurement of the SGWB, cf. Eq. (B.51).
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Figure 3.3: Cosmic-string network evolving in the one-component Universe with energy density ρ ∼
a−n where n = 3, 4 and 6 correspond to matter, radiation and kination, respectively. The long-string-
network mean velocity v̄, the correlation length ξ and the corresponding loop-production efficiency Ceff
reach the scale-invariant solutions after the Hubble expansion rate has dropped by 2 orders of magnitude,
independently of the initial conditions.

3.4 Standard Cosmology

The SGWB from CS, cf. master formula in Eq. (3.29), depends on the cosmology through the
scale factor a. We compute the later upon integrating the Friedmann equation, Eq. (1.2), for a
given energy density ρ as in the standard ΛCDM scenario,

ρST,0(a) = ρr,0∆R(T (a), T0)

(
a

a0

)4

+ ρm,0

(
a

a0

)3

+ ρk,0

(
a

a0

)2

+ ρΛ,0, (3.45)

where r,m, k and Λ denote radiation, matter, curvature, and the cosmological constant, respec-
tively. We take ρi = Ωih

2 3M2
plH

2
0 , where H0 = 100 km/s/Mpc, Ωrh2 ≃ 4.2 × 10−5, Ωmh2 ≃

0.14, Ωk ≃ 0, ΩΛh
2 ≃ 0.31 [39]. The presence of the function

∆R =

(
g∗(T )

g∗(T0)

)(
g∗s(T0)

g∗s(T )

)4/3

, (3.46)

comes from imposing the conservation of the comoving entropy g∗s T 3 a3, where the evolutions
of g∗ and g∗,s are taken from appendix C of [22]. In the next chapter, we discuss the possibility of
adding an extra source of energy density, long matter/kination in Sec. 4.3, intermediate matter in
Sec. 4.5, intermediate inflation in Sec. 4.6, and intermediate kination in Sec. 4.7.

Fig. 3.4 shows the dependence of the spectrum on the string tension. The amplitude decreases
with Gµ due to the lower energy stored in the strings. Moreover, at lower Gµ, the loops decay
slower, and the GW is emitted later, implying a lower redshift factor and a global spectrum shift to
higher frequencies. The figure also shows how the change in SM relativistic degrees of freedom
introduces a slight red tilt which suppresses the spectrum by a factor∆−1

R ∼ 2.5 at high frequencies.
We find that the amplitude of the GW spectrum at large frequency, assuming a standard cosmology,
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Sec. 3.3.3, evolving in the standard cosmological background. Each line corresponds to string tension
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pected due to particle production, cf. Sec. 3.2.5 and thermal friction, cf. Sec. B.5.4, which depend on the
nature of the loop small-scale structures: cusp or kink-dominated. right: The zoom-in plot of the left panel
shows the effects from the change of SM degrees of freedom on the scaling and VOS networks.

is given by

ΩGWh
2 ≃ 15π∆R Ωrh

2Crad
eff Fα

(
αGµ

Γ

)1/2

≃ 6 ·10−11

[
Gµ

10−11

]1/2 [ α× 50

0.1× Γ

]1/2
, (3.47)

where Ωrh2 ≃ 4.2×10−5 is the present radiation energy density of the Universe [39]. We provide
a back-of-the-envelope estimation in App. 2.4.3 and an intuitive derivation based on the quadrupole
formula in App. B.3.5.
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Deviation from the scaling regime.

Fig. 3.5 shows how the loop-formation efficiency Ceff varies during the change of SM relativistic
degrees of freedom and the matter-radiation equality upon solving the VOS equations, cf. Sec. 3.3.
We see the associated corrections to the spectrum in Fig. 3.4, which were already pointed out in
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Figure 3.6: top: GW spectra assuming a standard cosmology. The network is formed at the temperature
specified by the string tension: TF ∼ mpl

√
Gµ. Initial conditions with a fixed initial mean velocity v̄0 (left)

and a fixed initial correlation length scale ξ0 (right) are applied. The cut-offs due to particle production, cf.
Sec. 3.2.5, and thermal friction, cf. App. B.5.4, are shown with purple, red and gray lines. bottom: The
bumps at high frequencies come from the over-production of loops right after the network formation when
ξ/v̄ are taken smaller/larger than their scaling values.

[296, 410]. The spectrum is enhanced at low frequencies because more loops are produced than
when assuming that the matter era (t > teq) is reached instantaneously, cf. Fig. 3.5.

Beyond the Nambu-Goto approximation.

Fig. 3.4 shows the possibility of a cut-off at high frequencies due to particle production for two
different assumptions regarding the loop small-scale structures: cusps or kinks domination, cf.
Sec. 3.2.1. Above these frequencies, loops decay into massive radiation before they have time to
emit GW. For kinky loops, the cut-off is outside any future-planned observational bands, while for
cuspy loops, the cut-off might be in the observed windows for Gµ ≲ 10−15.

Initial network configuration

Fig. 3.6 shows how the spectrum depends on the choice of initial conditions v̄0, ξ0. Only the region
near the high-frequency cut-off is impacted, corresponding to loops created just after the network
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formation. Such initial values lead to an overproduction of loops during the initial transient regime
and an enhancement of the spectrum. The impact of ξ0 is stronger than the one of v̄0 because the
loop-production efficiency scales as Ceff ∝ v̄/ξ3. The smaller/larger ξ0/v̄0, the higher the bump.

Note that the frequency of the bump is independent ofGµ. This can be understood upon plug-
ging the temperature when the network is formed, TF ∼ mpl

√
Gµ into the (f−T )-correspondence

formula in Eq. (3.33). Also, note that at such a high temperature, the friction of the strings with
the plasma might play a major role [411].

The high-frequency bump could be a probe of the nature of the PT in the early Universe, e.g., the
initial correlation length, or a probe of the plasma-string interaction cf. App. B.5.4. For example,
the initial correlation length would be at smaller sizes for FOPT because the field fluctuates at the
size of nucleated bubbles. In the second-order case, the scalar field tends to take VEV everywhere
when the transition happens, such that the correlation length could be much larger, cf. [412] and
references therein. This could be, in principle, motivation for high-frequency GW experiments.
However, the loops contributing to such high-frequency GW might rather decay into particles, cf.
solid purple and red line in Fig. 3.6.

In the next chapter, we will study the impact of different non-standard cosmologies on the
SGWB from cosmic strings. Each cosmological history not only yields a distinct value for the
scale factor of the Universe today, a0, thus a different amount of redshifting of gravitational waves
in Eq. (3.30), but also a distinct loop-production rate ∝ Ceff/t

4
i due to a different formation time

ti and a different loop-production efficiency Ceff . In Sec. 4.3, we assume that the radiation era was
preceded by a long period of matter domination or kination after inflation. In Sec. 4.5 and Sec. 4.6,
we assume instead some short eras of either matter domination or inflation, inside the radiation era.

3.5 Metastable Strings and Peaked GW Spectrum

In this section, we point out the possibility for the GW spectrum to exhibit a peak structure whenever
high and low-frequency cut-offs are close to each other. As discussed in the previous sections and
the next chapter, a high-frequency cut-off can arise:

• either in standard cosmology, mainly from particle production beyond the Nambu-Goto ap-
proximation, cf. blue dotted line in Fig. 3.10, whose corresponding cut-off frequency is
computed in Eq. (3.37), but also possibly from friction or network formation, cf. Fig. 3.2,

• or in non-standard cosmology, in the presence of an intermediate matter era, cf. Sec. 4.5, or
inflation era, cf. Sec. 4.6. The associated cut-off frequencies are computed in Eq. (4.21) and
Eq. (4.38), respectively.

Beyond the high-frequency cut-off, the GW spectrum is suppressed with a slope f−1/3. In App. B.3.7,
we show that the f−1/3 behavior, instead of f−1 as expected from the (k = 1)-spectrum, is due to
the presence of the high-k modes [334].

Conversely, there are also phenomena which suppress the GW spectrum at low frequency.

• Simply because such low frequencies have not been emitted yet, cf. blue line in Fig. 3.10
below 0.1 Hz, or Fig. 3.2 below f ≲ 10−7 Hz. The corresponding low-frequency cut-off is
computed in Sec. 3.5.1.

• Or the string network is metastable, as discussed in Sec. 3.5.2

In Sec. 3.5.3, we show a variety of peak spectra and compare them to peak spectra generated by
bubble collision in first-order phase transitions.
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3.5.1 Low-energy cut-off of stable strings

The lowest frequency observed today is set by the inverse size of the main population of loops
decaying today. This leads to the distinguished maximum of the standard GW spectrum around
0.1 Hz of the blue line in Fig. 3.10 or around 10−7 Hz in Fig. 3.2. As discussed in App. B.4, loops
contributing to the frequency f dominantly decay at t̃M defined by

2k

f
· a(t̃M)

a(t0)
= ΓGµ× t̃M. (3.48)

Upon setting t̃M = t0, we deduce the frequency of the low-energy cut-off of any stable string
network

f stablelow =
2

ΓGµt0
≃ (1.48 · 10−7 Hz)

(
50 · 10−11

ΓGµ

)
, (3.49)

where we have numerically adjusted the coefficient to fit with the GW spectrum. This formula
agrees with EPTA/NANOGrav constraints which bound Gµ ≲ 10−10 for f ∼ 10−9 − 10−8 Hz.

3.5.2 Low-energy cut-off of metastable strings

So far, we have only been considering a stable CS network. However, there are mechanisms which
can make the network decay, such as breaking into monopole (M ) antimonopole (M ) pairs [413–
416], Hubble-induced mass of flat direction in supersymmetric theories [417, 418], symmetry
restoration in runaway quintessential scenarios [350], or the formation of domain walls in the case
of axionic string network [351, 419–421]. The decay of the string network can imprint a low-energy
cut-off in the GW spectrum at a frequency much higher than the low-energy cut-off of stable string
networks, cf. Sec. 3.5.1.

In this work, we focus for illustration on the case of string breaking via nucleation of monopole-
antimonopole pairs. Such a metastable string network can arise from a two-stage pattern of sym-
metry breaking [416]

G→ H × U(1) → H, (3.50)

in which the first step generates monopoles, while the second one produces CS8. If the overall
vacuum manifoldG/H is simply connected, the CS (S) are topologically unstable [413, 423]. They
can break under Schwinger production of monopole-antimonopole pairs (MM̄ ), hence producing
‘dumbbells’ MSM̄ , namely segments of the string with monopoles attached at the two ends.9
If the monopoles have unconfined flux which propagates outside the strings, their acceleration
under the effect of the string tension up to ultra-relativistic velocities can lead to the emission of
ultra-high-energetic gauge radiation, possibly leading to observable ultra-high-energy cosmic rays
[431, 432] or CMB distortion [425]. If the monopoles do not carry unconfined flux, the only source
of energy loss is through GW emission, whose emitted power is of the same order of magnitude
as the one from CS loops [415] but with a spectrum extending to higher frequencies [414, 416].
More precisely, the GW power radiated by a straight dumbbell is [415]

PMSM̄
GW ≃ Γ̃Gµ2, with Γ̃ ≡ 8 ln (γ0) , (3.51)

where γ0 is the maximal Lorentz factor reached by the monopoles. We follow [416] and we set
Γ̃ ∼ 50. We note the interesting possibility for dumbbells to explain Dark Matter if their lifetime
is larger than the age of the Universe [433, 434].

8The two-stage symmetry breaking can have a large variety of breaking patterns. Many systems of hybrid defects:
e.g., monopole-string and string-wall networks, could form and lead to various GW signatures [422].

9More complex hybrid topological objects, called ZN -string, can be generated from the breaking pattern G →
H×U(1) → H×ZN [424]. They are monopoles connected toN strings and are called ‘cosmic necklaces’ forN = 2
or ‘string web’ for N ≥ 3 [425]. Their evolution is expected to be close to the scaling regime [424, 426–429] if the
energy loss due to the presence of monopoles is not too large [430].

45



The monopole-anti-monopole pair nucleation rate per unit length is [416]

Γd =
µ

2π
exp(−πκ), (3.52)

where κ ≡ m2/µ ≳ 1 is the ratio of the monopole mass m to the CS tension µ. As explained in
Sec. 3.2.2, the main sources of SGWB generated by a stable network are the loops formed with
a length l = α ti where ti is the loop formation time and α ≃ 0.1. The breaking rate growing
linearly with the string length, the later the loops are formed, the more likely they break under
MM̄ nucleation. More precisely, the loops break when the age of the Universe is equal to their
lifetime upon breaking

ti ∼ (Γd × α ti)
−1 . (3.53)

After MM̄ nucleation, the loops become dumbbells MSM̄ which shrinks under GW emission
with power given by Eq. (3.51), until they totally disappear (or at least have their length divided by
two) after a time

t̃ ≃ α ti

2Γ̃Gµ
. (3.54)

Upon plugging the large-loop-breaking time in Eq. (3.53), in the dumbbell-lifetime under GW
emission in Eq. (3.54), we obtain the age of the Universe after which no loops remain10 and after
which GW emission stops

t̃stop ∼ (Γd × Γ̃Gµ)−1/2, (3.55)
which agrees with the estimation in [416]. The frequency fbreak emitted by this population of
broken large-loops just before they disappear, at t̃stop, corresponds to the lowest frequency of the
GW spectrum, and it obeys, cf. Eq. (3.54) and Eq. (3.33),

2k

fbreak
·
a(t̃stop)

a(t0)
= ΓGµ× t̃stop. (3.56)

For string breaking during a radiation-dominated era, a(t̃stop)
a(t0)

=
(
t̃stop
teq

)1/2 ( t̃eq
t0

)2/3
, and we get

fbreak ≃ 2
(
2πzeqG Γ̃3

)−1/4
(Gµ · t0)−1/2 exp(−πκ/4). (3.57)

Taking into account the summation of higher frequency modes and the more accurate cosmolog-
ical history, we give the numerically-fitted version of the cut-off frequency due to string breaking
through monopole-anti-monopole nucleation

fbreak ≃ (1.82× 1019 Hz)
(
50

Γ̃

)3/4(10−11

Gµ

)1/2

exp(−πκ/4). (3.58)

where we have used zeq = 3360. The smaller the separation between the monopole mass and the
string tension κ = m2/µ > 1, the faster the string breaking, and the higher the cut-off frequency
fbreak.

GW signature of metastable strings The GW spectrum and their detectability from metastable
strings can be visualized in Fig. 3.7, with different monopole-mass to string-tension ratios κ ≡
m2/µ, leading to different low-frequency cut-offs in Eq. (3.58). Three possible signatures – the cut-
off, the slope, and the usual flat parts – are observable depending on the cut-off’s position. Fig. 3.8
provides the current constraints and the projected detectability of the future-planned experiments.
By decreasing κ ≲ 65, we can evade the current GW constraints from EPTA/NANOGrav on
the string tension, but also from the CMB, such that the current constraint comes from LIGO
O2, Gµ ≲ 10−6. The latter can also be relaxed if κ ≲ 40. Hence, Schwinger production of
monopole-anti-monopole pairs constitutes an interesting proposal to revive GUT strings following
the symmetry-breaking pattern SO(10) → GSM × U(1)B−L → GSM [435].

10Note that we have only considered broken loops and we have neglected the additional GW emission coming from
the broken long strings of the network.
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Figure 3.7: left: Parameter space reachable by future experiments. The cut-off could reside within the
sensitivity range (solid contour); otherwise, the slope and flat parts are observable for regions below and
above the solid contour, respectively. right: Three possible signatures of metastable strings at future-planned
GW observatories. The GW spectra correspond to the three benchmark scenarios indicated in the left plot.

Figure 3.8: Constraints from LIGO O2
and EPTA and projected sensitivities at future
planned observatories on the metastable string-
network scenario. For larger κ, the suppressed
monopole-antimonopole nucleation rate pushes
the metastable strings signature to lower fre-
quencies, cf. Eq. (3.58). Above the black
line, κ is large enough such that the metastable
strings are present today. The cut-off becomes
κ-independent, dictated by Eq. (3.49).

3.5.3 Peaked spectrum

Fig. 3.9 represents the GW spectrum from stable strings in the presence of an early long-lasting
matter era, leading to a high-frequency cut-off fHigh = f∆ in Eq. (4.21) of the next chapter. Even-
tually, a peaked spectrum can be generated when fLow ≥ fHigh. We can analytically locate the
peaked spectrum to be at amplitude and frequency

Ωpeak = ΩGW,flat(fpeak)

(
fHigh

fLow

)4/33

, fpeak =
(
f
1/3
Highf

3/2
Low

)6/11
, (3.59)

with high- and low-frequency shapes to be

ΩGW(f,Gµ, κ, T∆) =


Ωpeak

(
f
fpeak

)2/3
for f ≤ fpeak,

Ωpeak

(
f
fpeak

)−1/3
for f > fpeak.

(3.60)

The higher the ratio fLow/fHigh, the more suppressed the peak amplitude relative to the spectrum
without a peak. In the right plot in Fig. 3.9, we lower the temperature T∆ at which the matter
era ends to bring the peak spectrum within the GW interferometers windows and show in red the
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Figure 3.9: GW spectra from metastable string networks for different ratios of monopole mass to CS
tension κ ≡ m2/µ, leading to different low-frequency cut-offs fbreak (vertical gray dotted). By decreasing
κ, the different GW constraints can be relaxed. left: Upon introducing a matter era with high-frequency
cut-off f∆ (vertical red dot-dashed), we can get a peak shape when fbreak ≳ f∆. right: A rich variety of
spectral shapes can be obtained by combining cut-off from metastability to long-lasting matter era (blue),
short-lasting matter era (red) with duration r = Tstart/T∆ = 100, or particle production (dotted).

case of a short-matter era Tstart/T∆ = 100. A wide variety of spectral shapes can be obtained by
combining different cut-off effects.

Fig. 3.10 shows three types of peaks, whose precise parameter choices are detailed in Table 3.1.

I. In black dashed lines, we show GW spectra from metastable string networks, cf. Sec. 3.5.2,
in the presence of an early long-lasting matter-dominated era, cf. Sec. 4.5, for two different
metastable-to-matter cut-off-frequency ratios. The same high-frequency cut-off can also be
produced from an intermediate inflation era, cf. Sec. 4.6. The slopes are f3/2 and low
frequencies and f−1/3 are high frequencies, cf. App. B.3.7.

II. In blue lines, we show a GW spectrum from a stable network, which low-frequency cut-off is
discussed in Sec. 3.5.1. We assume the presence of cusps responsible for particle production,
leading to the high-frequency cut-off in the dotted line, cf. discussion in Sec. 3.2.5. The
slopes are f3/2 at low frequencies, and f−1/3 are high frequencies, cf. App. B.3.7.

III. In the red line, we show a GW spectrum from a first-order phase transition assuming non-
runaway bubble-walls generated by sound waves [152]. It should be distinguishable from
the peak spectrum from CS since the peak is thinner and the slopes are steeper: f3 at low
frequencies and f−4 at high frequencies (f−5/3 for turbulence). Also, the slopes of a GW
spectrum from first-order phase transitions assuming run-away bubble-walls, generated by
scalar gradient, are also steeper than the CS case [152]: f3 at low frequencies (or f1 [160])
and f−1 at high frequencies (or f−1.5 [436]).

3.6 Gravitational Waves from Global Cosmic Strings

The local CS as sources of SGWB is so far concerned. Yet, the symmetry that gets broken and gen-
erates strings can be global. A similar approach can study the global cosmic strings and calculate
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scenario lower cut-off higher cut-off

I.A. metastable strings with long-lasting matter era:
Gµ = 10−11, T∆ = 200 GeV, κ = 55

fbreak ≃ 3.2 Hz f∆ ≃ 1 Hz

I.B. metastable strings with long-lasting matter era:
Gµ = 10−11, T∆ = 10 GeV, κ = 52.5

fbreak ≃ 23 Hz f∆ ≃ 0.04 Hz

II. stable strings with standard cosmology and
particle production (cusps): Gµ = 10−17, βc = 1

f stablelow ≃ 0.15 Hz fcusp ≃ 2.9 Hz

III. first-order phase transition generated from
acoustic waves in standard cosmology [152]:
Tp = 5 TeV, α = 0.1, β = 103, vw ≃ 1

fpeak ≃ 0.41 Hz

Table 3.1: Benchmark scenarios I, II and III, described in the text. The corresponding GW spectra are
shown in Fig. 3.10.

the corresponding GW signals. The main distinction between global-string loops is that they are
short-lived, whereas loops from local strings are long-lived. This results in different GW spectra
in frequency and amplitude, as discussed in detail below.

3.6.1 The presence of a massless mode

For global string, the absence of gauge field implies the existence of a massless Goldstone mode,
with logarithmically-divergent gradient energy, discussed in App. B.1. Hence the tension µg, cf.
Eq. (3.3), reads

µg ≡ µl ln

(
H−1

δ

)
≃ µl ln (η t) , with µl ≡ 2πη2, (3.61)

where η is the scalar field VEV, µl is the tension of the would-be local string (when the gauge
coupling is switched on) and δ ∼ η−1 is the string thickness. Goldstones are efficiently produced
by loop dynamics with the power

PGold = ΓGold η
2, (3.62)
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where ΓGold ≈ 65 [348], causing loops to decay with a rate

dlg
dt

=
dE

dt

dl

dE
≡ κ ≡ ΓGold

2π ln (η t)
, (3.63)

Therefore, the string length evolving upon both GW and Goldstone bosons emission reads

lg(t) = αti − ΓGµg(t− ti)− κ(t− ti), (3.64)

which is dominated by the Goldstone emission because the rate is unsuppressed by Gµ like GW
emission.

3.6.2 Evolution of the global network

The Velocity-One-Scale equations for local strings – presented in Sec. 3.3 – can be modified by
including the additional-loss due to Goldstone production [437]

dL

dt
= HL (1 + v̄2) + F (v̄)|global , (3.65)

dv̄

dt
= (1− v̄2)

[
k(v̄)

L
− v̄

ld

]
, (3.66)

where the energy-loss coefficient F (v̄) is defined by

F (v̄)|local =
c̃v̄ + d[k0 − k(v̄)]r

2
⇒ F (v̄)|global = F (v̄)|local +

sv6

2 ln (ηt)
, (3.67)

where the constant s controlling the efficiency of the Goldstone production, is inferred from lattice
simulations to be s ≃ 70 [332]. However, the momentum operator k(v) in Eq. (3.66), is unchanged
with respect to the local case

k(v̄) = k0
1− (qv̄2)β

1 + (qv̄2)β
. (3.68)

with the simulation-calibrated parameters: k0 = 1.37, q = 2.3, β = 1.5, c̃ = 0.34, d = 0.22,
r = 1.8 [409]. Here through Eqs. (3.67) and (3.68), we follow [438] and consider the extended
VOS model based on Abelian-Higgs simulations, proposed in [409] and already discussed in
App. B.6.3. Namely, we have simply added the backreaction of Goldstone production on long
strings in Eq. (3.67). We have checked that we can neglect the thermal friction due to the contact
interaction of the particles in the plasma with the string, cf. Eq. (B.65) for which the interaction
cross-section is given by the Everett formula in [301].

In order to later compute the GW spectrum, we define the loop-formation efficiency, analog of
the local case in Eq. (3.39)

C
g
eff = c̃v̄/ξ3, (3.69)

with v̄ and ξ ≡ L/t obeying the VOS equations in Eq. (3.65) and Eq. (3.66). Due to the logarith-
mic dependence of the string tension on the cosmic time, the scaling regime is slightly violated.
Consequently, the loop-formation efficiency plotted in Fig. 3.11, never reaches a constant value.
Hence, in this study we model the network based on VOS evolution, rather than using the scaling
solutions. Only for enormous value of ln (η t) corresponding to cosmic times much larger than the
age of the Universe today, we find that the solutions to the modified VOS equations in Eqs. (3.65)
and (3.66) reach a scaling regime Ceff → 0.46, 2.24, 6.70 for matter-, radiation-, and kination-
dominated Universe, respectively. By comparing to the values found in [199], our results agree
only for the radiation case.

As shown in Fig. 3.11, the coefficient Ceff receives a correction from the logarithmically-time-
dependent string tension, that enters in the energy loss via Goldstone, Eq. (3.67). However, a mild
violation less than a factor log factor is found [1, 199], in contrast to the order-log correction found
in simulations [195–197].
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Figure 3.11: The evolution of the loop-
production efficiency Ceff , for each cosmologi-
cal background never reaches a plateau, in con-
trast to local strings in which case the scaling
regime is an attractor solution, cf. Fig. 3.5 and
right panel of Fig. 4.4. Indeed, for global strings
the scaling behavior is logarithmically violated
due to the energy loss through Goldstone produc-
tion in the VOS equations, cf. Sec. 3.6.2.

3.6.3 GW spectrum

While the back-of-the-envelope estimation can be found in App. 2.4.3, the precise GW spectrum
generated by global-string loops is given by a master formula, similar to the local case in Eq. (3.29),

Ωg
GW(f) ≡ f

ρc

∣∣∣∣dρgGW

df

∣∣∣∣ =∑
k

Ω
(k), g
GW (f), (3.70)

where

Ω
(k), g
GW (f) =

1

ρc
·2k
f
·

Fα Γ(k)Gµ2g
α(α+ ΓGµg + κ)

∫ t0

tF

dt̃
Cg
eff(t

g
i )

(tgi )
4

[
a(t̃)

a(t0)

]5 [
a(tgi )

a(t̃)

]3
Θ(tgi−tF ).s (3.71)

We have checked that we can safely neglect massive radiation. The loop formation time tgi is related
to the emission time t̃ after using lg(t̃) = 0 in Eq. (3.64)

tgi =
ΓGµg + κ

α+ ΓGµg + κ
t̃. (3.72)

The GW spectrum from global strings is shown in Fig. 3.12 and compare to the spectrum com-
puted in [199]. Concerning [199], we find a lower value for Ceff during the late matter-dominated
Universe (0.46 instead of 1.32), which implies a smaller spectral bump, while the radiation contri-
butions are considered the same. Moreover, the shapes of the spectra are different. An explanation
could be the summation over the high-frequency modes (up to k = 2 × 104 in our case), which
smoothens the spectrum. The spectrum from [199] resembles the first mode of our spectrum.

The contribution from the radiation-dominated era deviates from the scale-invariance due to
log-correction,

Ω
global
std,1sth

2 ≃ 2.5Ωrh
2Crad

eff

(
Γ

ΓGold

)
log3(ηt̃M )

(
η

MPl

)4

, (3.73)

Ω
global
std,sumh

2 ≃ 1.2 · 10−17 log3

[
(5.6 · 1030)

( η

1015 GeV

)(1 mHz

f

)2] [ η

1015 GeV

]4
, (3.74)

where the last line uses t̃M ∼ ti ∼ f2 from Eq. (3.32), and also multiplies the factor 3.6 coming
from the inclusion of higher-modes (cusp) [294]. Compared to the local-string case, we summarize
their differences in Sec. 3.6.5. As shown in Fig. 3.12, in consequence of the strong dependence
of the GW amplitude on the string scale η, only global networks above η ≳ 5× 1014 GeV can be
detected by LISA or CE, whereas EPTA or BBO/DECIGO can probe η ≳ 1014 GeV. Also, note the
logarithmic spectral tilt due to the extra log3-dependence from Eq. (3.71): two of the log-factors
come from the string tension µ and another one from the particle production rate κ in Eq. (3.63).
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There is also another mild log-dependence from the loop formation efficiency Ceff cf. Fig 3.11,
which could lead to the log4-dependence as observed in the recent field-theoretic simulations [357].

The constraints on the inflation scale, Hinf ≲ 6 × 1013 GeV, from the non-detection of the
fundamental B-mode polarization patterns in the CMB [20, 55], implies the upper bound on the
reheating temperature Treh ≲ 5× 1016 GeV, assuming instantaneous reheating. Hence, assuming
that the network is generated from a thermal phase transition, we impose η ≲ 5×1016. A stronger
restriction arises because of the direct CMB constraint on strings tensions

Gµg
∣∣
CMB = 2π

(
η

mpl

)2

log(η tCMB) ≲ 10−7 → η ≲ 1.4× 1015, (3.75)

where we use tCMB ≃ 374 kyr. Hence, we restrict to η ≲ 1015 GeV as in [199].

3.6.4 Impact of the cosmology on the GW spectrum

As same as the local case, the GW spectrum is sensitive to the expansion history of the Universe.
Global-string loops – produced and emitted GW during ρ ∼ a−n – has the spectral index from
Eq. 3.71,

Ωglobal
GW ∝ f2(

n−4
n−2) log3

[
ηt∆

(
t̃M
t∆

)]
,

∝ f2(
n−4
n−2) log3

[
(5.6× 1030)

( η

1015 GeV

)(1 mHz

f∆

)2(f∆
f

)n/(n−2)
]
, (3.76)

where f∆ is the turning-point frequency when there is a non-standard cosmological era, and we
took (n = m)-limit of the local case in Eq. (3.31) for global-string loops decay right after their
formation: ti ∼ t̃M ∝ fn/(2−n). Up to the log factor, the spectral indices for global-string loops
resemble the local case. As shown in Fig. 3.12, the log-factor mainly sources the violation of
scale-invariance during the radiation era.

Eq. (3.76) is valid as long as the slope is not smaller than −1 because the slope of −1 is the
minimum allowed by the UV tail of a single loop population; see App. B.3.6. Although Eq. (3.76)
gives a slope of −2 for the matter-dominated era, Fig. 3.12 shows that, in fact, it leads to f−1 be-
havior in low-frequency range of k = 1 spectrum. Moreover, the summation over modes provides
f−1/3. The drop to f1 behavior about f ≃ 10−12 Hz can be related to the truncation of our summa-
tion at k = 2× 105. If we extrapolate the f−1/3-behavior further, it becomes sub-dominant to the
contribution from the radiation era around f ≃ 10−8 Hz. I.e., the highest summation mode would
be 108, which is technically a time-consuming calculation. Moreover, particle physics should limit
the highest possible mode (e.g., kmax ∼ ηL) and imprint a spectrum signature. We leave this
compelling aspect for future study.
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3.6.5 Global versus local strings

Parametrically, the GW spectra from local and global CS scale as, cf. Eq. (3.47) and (3.74)

Ωlocal
GW ≃ Ωr

η

Mpl
, and Ωglobal

GW ≃ Ωr

(
η

Mpl

)4

log3 (ηti). (3.77)

In order to understand the scaling difference, let us consider the contribution to the GW spectrum
coming from loops produced at time ti. For local strings, the corresponding GW are dominantly
emitted at time t̃localM ≃ αti/(2ΓGµlocal), see Eq. (3.15), which means that GW emission occurs
(Mpl/η)

2 Hubble times after loop production. Instead, global loops decay at t̃globalM ≃ ti, so
within one Hubble time after production, even though their tension is logarithmically enhanced.
Therefore, with respect to local strings, the GW spectrum from global strings in standard radiation
cosmology is:

• suppressed by the shorter Hubble time t̃M at the time of GW emission: factor t̃globalM /t̃localM ∝
Gµlocal ∝ (η/Mpl)

2,

• suppressed by the larger GW redshift due to earlier emission:
factor

[
a
(
t̃globalM

)
/a
(
t̃localM

)]4
∝ (η/Mpl)

4,

• enhanced by the lower loop redshift factor since GW emission occurs right after loop pro-
duction: factor

[
a
(
t̃localM

)
/a
(
t̃globalM

)]3
∝ (η/Mpl)

−3,

• increased by the log-enhanced GW power emission rate: factor log2 (ηti),

• increased by the log-enhanced loop lifetime: factor log (ηti).

Additionally, the global-loop GW emission does not delay as the local case. The associated fre-
quency today is directly sensitive to the loop size at production αti. Compared to the frequency-
temperature of local strings Eq. (3.33), the global-string GW frequency from Eq. (3.32) reads

fglobal
flocal

≃
a
(
t̃globalM

)
a
(
t̃localM

) ≃
(
ΓGµ

α

)1/2

, (3.78)

which leads to

fglobal ≃ (4.7× 10−6 Hz)
(

T

GeV

)(
0.1

α

)(
g∗(Ti)

g∗(T0)

)1/4

. (3.79)

The frequency-temperature relation of global strings is independent of the string tension, in contrast
to local strings. It is therefore numerically similar to that of SGWB from a horizon-size source,
e.g., inflationary GW. SGWB from global strings has an interesting detectability for probing the
change in cosmological history, as shown in the next chapter in Fig. 4.8 of the next chapter.

3.6.6 A popular example: Axion Strings

A fascinating theory with global CS is the axion-string scenario. Discussed in more details in
Chap. 6, the minimal extension of SM with a U(1)-symmetry (so-called Peccei-Quinn symmetry)
can solve the strong CP problem by its psuedo-Nambu-Goldstone boson (pNGB) or the QCD ax-
ion [439–445]. The term axion or axion-liked-particle (ALP) has been also adopted widely for
any pNGB arising from the spontaneous symmetry breaking (SSB) of any global U(1) symme-
try. At late times, the mass of the pNGB becomes more relevant to its dynamics and leads to the
homogeneous-mode oscillation of the axion. Remarkably, this allows axion to explain the DM
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abundance through several production mechanisms, mainly the misalignment [446–448], and ki-
netic misalignment [449, 450] mechanisms.

Moreover, another production channel relies on the axion field’s inhomogeneity: axions from
the decay of topological defect from the U(1) SSB. The post-inflationary SSB leads to the axion-
string formation11 [181, 182, 195, 332, 333, 353–355, 451–453] that attains its scaling regime and
produces an axion relic abundance and a SGWB [195–198, 200, 331, 356, 357, 421, 452, 454–
456]. It is found from axion-string simulations that the ALPs from strings overproduces Dark
Matter unless [357]

f stringa ≲ 6 · 1013 GeV

(
10−18 GeV

ma

)1/4

, (3.80)

where fa is the U(1)-symmetry breaking scale, and ma is its mass. For the QCD axion, its fa −
−ma relation restricts the constraint further to be fa ≲ 1010 GeV. QCD axion cannot lead to
any observable SGWB due to its required small string tension, µ ∼ f2a , as shown in Fig. 3.12.
Nonetheless, the future-planned observatories could potentially probe the signal from ultralight
ALP DM. The presence of axion mass at late times could also give rise to the formation of domain
walls attaching to strings. The collapse of the string-wall system contributes to a relic abundance
that is of the same order as the one from strings and potentially leads to observable GW signals
[421, 456].

3.7 Chapter Summary

In standard cosmology, the GW spectrum generated by a network of Nambu-Goto cosmic strings
(mainly due to emission by loops) is nearly scale-invariant. Its potential observation by the future-
planned GW observatories would be a unique probe of new effects beyond the standard models
of particle physics and cosmology. Deriving firm conclusions is still premature as theoretical pre-
dictions of the GW spectrum from CS are subject to several large uncertainties, cf. [296] and
references therein. Still, we found that the extraordinary potential offered by future GW observato-
ries to probe high energy physics has not yet been explored, and in the later chapters of this thesis,
we are starting to scrutinize how much can be learned, even if only in the far future, after those
planned GW observatories have reached their expected long-term sensitivity and the astrophysical
foreground will have been fully understood.

This chapter presents predictions for the resulting GW spectra under several assumptions which
we have comprehensively reviewed. We integrate the recent developments and go beyond in several
directions:

• We consider the transient period between scaling regimes by computing the time evolution of
the string network parameters (long string mean velocity and correlation length) and thus the
loop-production efficiency during the evolution of the Universe, see Fig. 3.5 for the standard
cosmological history and the right panel of Fig. 4.4 for the non-standard case. Including
these transient effects results in a turning-point frequency smaller by O(20) compared to the
prediction from the scaling regime12. As a result, the energy scale of the Universe associated
with the frequency of SGWB from CS is correspondingly larger than the one predicted from
scaling networks.

• We include high-frequency cutoff effects from particle production, which can limit obser-
vations for small value of the string tension Gµ ≲ 10−15 and high-frequency cutoff from
thermal friction, see Fig. 3.2 and top left panel of Fig. 3.4, as well as a low-frequency cutoff
from unstable CS networks, see Fig. 3.9.

11The string density is greatly diluted in the pre-inflationary scenario, fa ≫ Hinf .
12The turning-point frequency can even be smaller by O(400) if, in a far-future, the precision of the order of 1% can

be reached in the measurement of the SGWB, cf. Eq. (B.51).
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• We provide the relation between the observed frequency of a given spectral feature and the
energy scale of the Universe when CS loops are formed, Eq. (3.33). Importantly, we can
expect GW signatures which associate to different physical effects, see Figs. 2.5 and 3.4: i)
the CS network formation; ii) the time when particle emissions dominate; iii) the moment
when thermal friction becomes negligible.

• We discuss how to read information about the small-scale structure of CS from the high-
frequency tail of the GW spectrum; see App. B.3.7.

• Assuming the standard cosmology, the SGWB from local CS can manifest a peaked shape
due to the metastability of the string network, as shown in Sec. 3.5.

• We derive the SGWB from global CS using a simple semi-analytic method and discuss the
comparison between local and global string networks, see Sec. 3.6.

A particular feature of SGWB from local CS is the relation between the observed frequency
and the GW production mechanism. In contrast with short-lasting cosmological sources of SGWB,
such as phase transitions, where the frequency is simply related to the Hubble radius at the time of
GW emission, for local cosmic strings, the time of the dominant GW emission is much later than the
time of loop production, by a factor ∼ 1/(Gµ), such that the observed frequency is higher due to a
smaller redshift. We stressed that a given interferometer might be sensitive to very different energy
scales, depending on the value of the string tension (the nature and duration of the non-standard
era also matter and will be discussed in the next chapter). This goes against usual paradigms. For
instance, it is customary to talk about LISA as a window on the EW scale [140, 153]. This does
not apply to GW from cosmic strings, as LISA could be a window on a BSM physics at the QCD
scale. Interestingly, the Einstein Telescope and Cosmic Explorer offer a window of observation
on the EW and TeV scales and up to 1014 GeV for the intermediate inflationary eras (see the next
chapter). We apply these findings to probe the non-standard cosmological eras in Chap. 4 and their
well-motivated particle physics scenarios in Chaps. 5, 6, and 7.

One final important aspect of cosmic strings is the massive particle radiation, which could allow
additional production mechanisms for DM and Baryon asymmetry [180, 195–197, 358–365]. On
the one hand, particle production can be probed through cosmic rays and bring complementary
non-gravitational information to the SGWB. On the other hand, the particle emission competes
with the GW generation and would leave some imprints on the SGWB from CS, e.g., [391, 457]
for the standard local cosmic strings. In some ongoing work of the author together with Bibhushan
Shakya, we show that future GW observatories could probe the couplings between CS and other
particles via the measurement of spectral cutoffs inherited from particle production.
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Chapter 4

Cosmic Archeology of Non-Standard
Cosmological Histories
Based on
[1] Y. Gouttenoire, G. Servant and P. Simakachorn, Beyond the Standard Models with Cosmic
Strings, JCAP 07 (2020) 032, [1912.02569] &
[4] Y. Gouttenoire, G. Servant and P. Simakachorn, Kination cosmology from scalar fields and
gravitational-wave signatures, [2111.01150].

As predicted by the theory of Big-Bang Nucleosynthesis (BBN), the measurement of the abun-
dances of the light elements constrains the Universe to be dominated by radiation when the temper-
ature was 1 MeV. The smoothness and flatness of the universe, and the temperature anisotropies in
the Cosmic Microwave Background (CMB), support the idea that much earlier than BBN, the uni-
verse was inflating exponentially, dominated by the energy density of a slowly-rolling scalar field.
The non-detection of the fundamental B-mode polarization patterns in the CMB suggests that the
maximal Hubble rate during inflation Hinf was 5 × 1013 GeV, which corresponds to a maximal
energy scale of 1016 GeV [20, 21, 55].

The equation of state (EOS) of the Universe between the end of inflation and the onset of BBN,
encoded by the parameter ω = p/ρ, where p and ρ are the local pressure and energy densities,
is currently unconstrained [458]. The standard paradigm assumes that the energy density of the
post-inflationary Universe is radiation-dominated, ω = 1/3, by the thermal equilibrium of the
SM particles; nonetheless, alternative cosmological histories are not unlikely. For example, the
reheating phase connecting the end of primordial inflation and the radiation-dominated Universe
could evolve with different EOS depending on the reheating mechanisms. Alternatively, some
energetic sources – related to BSM of particle physics – could dominate the SM radiation bath,
leading to the non-standard cosmological history.

The cosmological histories beyond the standard radiation-dominated Universe also modify pre-
dictions of cosmological abundances. The cosmic expansion dilutes any energy density produced
during the early Universe, and its abundance today is sensitive to the evolution of our Universe.
E.g., the relic abundances of DM and matter-antimatter asymmetry get diluted or boosted. Fur-
thermore, the evolutions of the primordial perturbations/fluctuations depend on the expansion rate,
leading to the altered small-scale structure formations, e.g., DM microhalos, axion mini clusters,
and primordial black holes. By confronting these predictions with observations, the pre-BBN cos-
mological histories could be constrained. We refer to the comprehensive review on these broad
topics [458], including an extensive list of references.

This thesis focuses on the effects of non-standard cosmological histories on the SGWB from
primordial sources. As discussed in Chap. 2, GW is freely propagating after its production and is
directly sensitive to the expansion rate of the Universe. It red-shifts as radiation ρGW ∝ a−4, and
its frequency also relates to the energy scale of the Universe at its production. Therefore, the SGWB
frequency spectrum encodes the whole history of our Universe; any deviation from the prediction
of the standard radiation-dominated Universe hints at the non-standard phase of expansion. This
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is the so-called cosmic archeology with primordial GW.
Previous works of cosmic-archeology using long-lasting GW are [1–4, 22, 70, 71, 199, 274,

294, 295, 334, 459–464]; see [5, 458] for reviews. As discussed exhaustively in this chapter, the
effect of the non-standard cosmological era imprints a smoking-gun signature – the spectral index
– that differs completely from the prediction assuming the standard radiation-dominated Universe.
For a short-lasting source, GW is produced at a specific time, and the spectrum localizes at a specific
frequency. The effect of the non-standard cosmological histories shifts the spectrum as a whole
[5, 458, 465], except the causality tail (IR tail)[462, 466].

In this chapter, Sec. 4.1 starts classifying the non-standard cosmological schemes: mainly those
happening right after inflation and the intermediate ones occurring inside the radiation era. We in-
vestigate the effect of the non-standard expansion history on the SGWB from long-lasting sources
in Sec. 4.2. A simple argument allows us to derive the shape of smoking-gun signatures and spectral
indices, depending on whether the Universe is in the matter-, kination-, or secondary inflationary
eras. In the following five sections, we discuss in detail each cosmological scheme, show precisely
the modified SGWB, and provide the prospects of detecting these features with future-planned ex-
periments. We also provide some introductory discussion about the interesting case of the kination
era in Sec. 4.4. The signature imprinted on SGWB from short-lasting sources is derived in Sec. 4.8,
where we choose the GW from FOPT as an example. The chapter is summarized in Sec. 4.9. While
we motivate the non-standard eras right after inflation by connecting them to the inflation dynamics,
we refer the reader to Chaps. 5, 6, and 7 for the particle-physics implementation of the intermediate
non-standard eras. The GW observatories can uniquely probe the heavy-unstable particles and the
axion.

4.1 Schemes of Non-Standard Cosmological Histories

Non-standard cosmological eras, where the EOS of the Universe is not radiation-like, can arise in
many schemes. In this section, we classify them by the times when these eras happen, illustrated
by the cartoon in Fig. 4.1.
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Figure 4.1: Evolutions of the total energy density of the Universe in two main classes of non-standard
cosmological histories. left: Periods of matter (scheme A) and kination (scheme B) domination right after
inflation, e.g., due to the inflaton dynamics after inflation. right: Non-standard eras happen during the ra-
diation era much after the reheating of the Universe: the intermediate matter (scheme C), the intermediate
inflation era (scheme D), and the intermediate (matter-)kination era (scheme E). The gray dashed line indi-
cates the intermediate kination with an entropy injection. The well-motivated yet non-trivial realizations of
these C, D, and E scenarios are unrelated to the inflaton dynamics.

Non-standard era right after inflation. — After the end of the inflationary stage, the Universe
evolves with EOS beyond radiation-like (ω ̸= 1/3). For example, the inflaton after inflation could
oscillate inside the power-law potential near the potential minimum. The scalar Virial theorem, cf.
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Eq. (G.141), states that the averaged energy density of the scalar field – in the power-law potential
and in the expanding Universe – redshifts as a function of scale factor a as

⟨ρΦ⟩ ∝ a−6p/(2+p) for V (Φ) ∝ Φp, (4.1)

is equivalent to the EOS: ω = (p−2)/(p+2). For p = 2, the Universe after inflation is matter-like
(scheme A), the fast-rolling field (equivalent to p → ∞) gives the stiffest EOS, or the so-called
kination era (scheme B). See Sec. 4.4 for more histories and detail on kination. While the potential
with p > 2 indeed provides the EOS that is stiffer than matter, e.g., p = 4 for radiation and p > 10
for ρ ∝ a−5, we only focus on the kination era where the effect on SGWB is maximized, as we shall
see later. We parametrize the total energy density of the Universe, which is the input for evolving
the Universe using the Friedmann equations, as

ρtot(a) =

ρstart
(
astart
a

)n
+ ρlate(a) for ρstart > ρ > ρend,

ρend G(Tend, T )
(
aend
a

)4
+ ρlate(a) for ρ < ρend,

(4.2)

where ρstart, ρend ≡ the starting and ending energy density of the non-standard cosmology,
(i.e., ρstart = ρinflation),

ρlate ≡ the standard-cosmology energy density dominating at late times,
(e.g. the standard matter density, and cosmological constant),

and the function

G(T, T0) =

[
g∗(T )

g∗(T0)

] [
g∗s(T0)

g∗s(T )

]4/3
, (4.3)

the change in the number of relativistic degrees of freedom, assuming the conservation of the
comoving entropy g∗s T 3 a3. We take the functions g∗ and g∗s from App. C of [22].

Intermediate non-standard era inside radiation era. — After the Universe is reheated and
dominated by the radiation bath, another source of energy density – sub-dominant early on – might
dominate the radiation bath. This class of non-standard eras requires this energy density to red-
shift slower than radiation. For example, the intermediate matter era ended by reheating into the
thermal bath (scheme C), the intermediate inflation (scheme D), and the intermediate kination
after the matter era with or without partially reheating (scheme E). The last scheme is an example
of generating the stiff intermediate era, which was not studied in detail until recently [3, 4, 274].
Furthermore, Chaps. 5, 6, and 7 show that these intermediate non-standard eras mostly connect
to BSM of particle physics, unrelated to the inflaton. The energy density profile is illustrated in
Fig. 4.12 and can be written as

ρtot(a) =


ρst

rad(a) + ρlate(a) for ρ > ρstart,

ρstart
(
astart
a

)n
+ ρlate(a) for ρstart > ρ > ρend,

ρendG(Tend, T )
(
aend
a

)4
+ ρlate(a) for ρ < ρend.

(4.4)

where ρstart, ρend ≡ the starting and ending energy density of the non-standard cosmology,
ρlate ≡ the standard-cosmology energy density dominating at late times,

(e.g. the standard matter density, and cosmological constant)
G(T, T0) is given in Eq.(4.2).

Bounds from the radiation-dominated era at BBN. — The successful predictions for the
primordial abundances of light elements are highly sensitive to the expansion history of the Uni-
verse. Together with the observations1, they suggested that the Universe must be in the radiation

1Combined also with CMB observations which constrain the effect of neutrinos in CMB.
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era at the time of BBN [467–470], meaning that the non-standard eras discussed above should end
at temperature T∆ ≳ TBBN ≃ 1 MeV before BBN. We define the time when the non-standard era
ends to be t∆. The constraint on the end of a non-standard era can be translated into the general
bound on the duration of each era, characterized by the number of e-folds

N ≡ log(astart/a∆). (4.5)

The following bounds suppose that the non-standard era happens at the highest energy scale, the
inflationary scale Einf ≃ 1.4 · 1016 GeV [21], even for the intermediate-era cases. For secondary
inflation, we require that the observed CMB comes from the first (primordial) stage of inflation,
derived in App. C.

Scheme A: NMD ≲ 58 +
4

3
log

(
Einf

1.4× 1016 GeV

)
,

Scheme B: NKD ≲ 29 +
2

3
log

(
Einf

1.4× 1016 GeV

)
,

Scheme C: NMD ≲ 58 +
4

3
log

(
Ereh

1.4× 1016 GeV

)
,

Scheme D: N2nd
inf ≲ 27.7 +

1

4
log

(
E2nd

Inf

TeV

)
,

Scheme E: NKD ≲ 14.6 +
1

3
log

(
Ereh

1.4× 1016 GeV

)
. (4.6)

whereEreh is the energy scale when the Universe becomes radiation-dominated right after inflation,
and E2nd

Inf is the energy scale of the intermediate inflationary era.
The rest of this chapter focuses on how each scheme of non-standard eras leads to a very dis-

tinct signature in SGWB and how the next-generation GW experiments can be tools for learning
cosmological history.

4.2 Signatures in SGWB

An exciting prospect for deciphering the pre-BBN universe history and high-energy physics – inac-
cessible by particle physics experiments – comes from the possible detection of SGWB, originating
from the primordial sources discussed in Chap. 2. We now discuss the effect of each non-standard
history scheme on the SGWB and later derive the signature (e.g., the spectral indices) using a sim-
ple argument. While we focus only on the non-standard era, let us comment on other effects from
pre-BBN-scale physics that can also leave some signatures in the SGWB.

Number of relativistic species. — The change in the number of relativistic species can mod-
ify the expansion rate of the radiation-dominated Universe; we see this concretely in the factor
G(T, T0). Physically, the thermal bath red-shifts slower due to the entropy dumped by the parti-
cle species decoupling from the thermal bath. Similar to the fast expansion during the matter and
the intermediate inflation eras, this leaves the signature in SGWB [22, 294, 295, 352, 464]. An
effect of the order of O(10%) in the SGWB spectrum requires an O(100) change in the number of
relativistic species.

Free-streaming particles. — Another effect that imprints suppression signatures on the SGWB
is the damping caused by the free-streaming particles. First pointed out by Weinberg [64], the tensor
perturbation transfers the energy of the free-streaming particles, changing their distribution. The
well-known effect is the damping due to free-streaming neutrinos, which suppresses the SGWB
amplitude by ∼ 35%, while the decoupling of photons also decreases the spectrum further by
∼ 10% [22]. Moreover, the free-streaming particles do not only damp the sub-horizon SGWB but
also induce a signature in the causality tail (IR tail) [462, 466].
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4.2.1 A simple argument

The exact spectrum of the SGWB is obtained from solving the EOM of the metric tensor perturba-
tion in Chap. 2. Nonetheless, the effect of the non-standard history on the SGWB can be captured
by a simple observation: the sub-horizon GW evolves in the same way as radiation, ρGW ∝ a−4.
The SGWB spectrum observed today and produced at H∗ (corresponding to some frequency f∗)
is,

ΩGW(f∗) =

(
ρGW,∗
ρtot,∗

)(
H∗
H0

)2(a∗
a0

)4

, (4.7)

assuming the absence of entropy injection into the thermal bath. For most of the primordial sources
discussed in Chap. 2, the GW energy density inherits a fraction of the total energy density of the
Universe at the time of production; see the next subsection for examples of inflation and cosmic
strings. Consider a production of SGWB at some time a∗/a0. The SGWB amplitude is larger than
the standard prediction if the total energy density during the non-standard era is larger at that time,
i.e.,

ΩNS
GW

ΩST
GW

=
ρNS
tot

ρSTtot
≥ 1. (4.8)

leading to the shift in the amplitude of SGWB, localizing at some frequency f∗. Interestingly, the
long-lasting GW sources – such as inflation and cosmic strings – produce GW along cosmological
history and contribute to signals over a wide range of frequencies. Each part of their spectra,
therefore, reflects the expansion history of our Universe. For GW from the short-lasting source,
the GW spectrum will shift entirely since the main contribution of the spectrum is produced at
a specific time. Nonetheless, the super-horizon modes of GW re-enter over a long cosmological
history and can also be regarded as long-lasting GW sources. We study the effect of the non-
standard era on the short-lasting GW source, particularly the FOPT, in Sec. 4.8.

Non-standard era right after inflation. — Fig. 4.2-left illustrates the evolution of the total
energy density of the Universe in the presence of the matter and kination eras right after inflation
(schemes A and B). Notice that the scale factor has already been normalized from Fig. 4.1, with the
factor today a0, so that the last bracket of Eq. (4.7) remains constant in all scenarios. The dashed
lines show the amount of GW produced along the cosmological history, assuming ρGW ∝ ρtot at
production. The GW produced during the matter (kination) era has a smaller(larger) energy density
in GW compared to the standard radiation-domination scenario. We then translate the time scale
of the Universe to the frequency of GW; the earlier the production, the higher the frequency of
GW. Fig. 4.2-right shows the effect of the non-standard eras right after inflation. The kination era
enhances the GW spectrum up to the scale at which GW is firstly produced, while the matter era
suppresses it. We can obtain the precise spectral indices – depending on the sources – using this
simple argument; see the following subsection.

Intermediate non-standard era inside radiation era. — Fig. 4.3 displays the effect of the
non-standard intermediate eras on SGWB from long-lasting sources (schemes C and E). Note that
the intermediate inflation (scheme D) will induce an effect close to the intermediate matter era.
Similar to schemes A and B, the non-standard expansion histories suppress/enhance depending on
whether the total energy density of the Universe at GW production is smaller/larger than that of the
radiation era. The distinct signature of the intermediate era is that the GW signature is only present
for some time scales or, equivalently, for some range of frequency. Interestingly, the intermediate
matter era leads to the step-like suppression, while the intermediate matter-kination era generates
the peak-like spectrum. The parts beyond the step and peak correspond to the radiation domination
before the non-standard intermediate era, reflecting the spectral index of the radiation era.
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4.2.2 Spectral indices from long-lasting sources

The previous section has shown the effects of the non-standard cosmological histories on SGWB:
the suppression and enhancement whose amounts are specified by the spectral indices. This subsec-
tion quantifies the exact spectral indices which can, fortunately, be done using the simple argument
in Eq. (4.7).

Inflation

The inflationary GW energy density is sourced by the scale-invariant tensor perturbation from
the primordial inflation; Fourier modes remain frozen until they re- enter the Hubble horizon in
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Eq. (2.26). Modes continuously re-enter the horizon, perturb the total energy density within the
horizon, and act as a long-lasting source of GW: ρGW ∝ ρtot at production.

Consider a scenario where the non-standard era (ρtot ∝ a−n) ending at scale factor a∆ and the
energy density is ρ∆. Eq. (4.7) is rewritten as

Ωinf
GW(f∗) = Ω∆

st

(
ρGW,∗
ρGW,∆

)(
a∗
a∆

)4

= Ω∆
st

(
ρtot,∗
ρtot,∆

)(
a∗
a∆

)4

= Ω∆
st

(
a∗
a∆

)4−n
, (4.9)

where the second step use ρGW ∝ ρtot, and Ω∆
st is the GW spectrum where it recovers the standard

prediction, cf. Fig. 4.2 for example. Now let us rewrite this in terms of frequency. The frequency
of inflationary GW corresponds to the horizon size at production, redshifting until today

f∗ ∼ H∗a∗/a0 = f∆

(
H∗
H∆

)(
a∗
a∆

)
= f∆

(
a∗
a∆

) 2−n
2

, (4.10)

where f∆ is the GW frequency today corresponding to the end of the non-standard era, given by

f∆ =
H∆a∆
2πa0

≃ 2.7 · 10−6 Hz
[
g∗(T∆)

106.75

] 1
2
[
g∗,s(T∆)

106.75

]− 1
3
[

T∆
102 GeV

]
. (4.11)

Trading a∗/a∆ for f∗/f∆, we obtain the spectral index of the GW spectrum from inflation,

Ωinf
GW(f∗) = Ω∆

st

(
f∗
f∆

)β
with β ≡ 2

(
n− 4

n− 2

)
. (4.12)

Indeed, the GW spectrum is scale-invariant for the radiation domination era. For the kination era
(n = 6), the spectral index is β = 1, while the matter era (n = 3) suppressed the spectrum
β = −2. For a more realistic power spectrum, i.e., by solving the full GW EOM, the non-standard
cosmology alters the behavior of the GW transfer function. The effect on the amplitude is of order
O(1) [70, 71, 459], while the transition between eras could feature a spectral oscillation from the
change of Bessel function’s orders.

Cosmic strings

Consider a cosmic-string network that forms at the end of inflation with tension given by Gµ ∼
(Eform/mpl)

2, regardless of the presence of thermal bath at Eform (the string formation happens
through non-thermal phase transition [313, 471–477]). The SGWB from strings originates mainly
from loops – produced in the scaling regime along the cosmological history – with ρloop ∝ ρtot,
cf. Chap. 3. The energy density of GW then inherits that of loops, produced at some time a∗,

ρGW

ρloop
≃

{
(a∗/aemit)

3 for local strings,

1 for global strings,
(4.13)

where the local strings have a delayed GW emission, cf. Eq. (3.15), while the global strings decay
quickly after loop formation. For global strings, the GW frequency reflects the horizon size (or
loop size) at production; the spectral index is obtained to be similar to the inflationary SGWB, up
to some log-factor due to the divergent string tension.

For local cosmic strings. — Because of the delayed decay of string loops, loops red-shifts as
a pressure-less matter (a−3) before emitting GW. Consider the GW from loops formed at time a∗,
during the non-standard era (ρtot ∝ a−n) ending at scale factor a∆ and the energy density ρ∆; the
GW emission happens at ã∗, during the era with ρtot ∝ a−m. Eq. (4.7) becomes

Ωcs
GW(f∗) = Ω∆

st

(
ρGW,∗
ρGW,∆

)(
ã∗
ã∆

)4

= Ω∆
st

(
H∗
H∆

)2(a∗ã∆
ã∗a∆

)3( a∗
a∆

)4

, (4.14)
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whereΩ∆
st is the GW spectrum where it recovers the standard prediction. The delayed GW emission

is considered, and the energy density of loops at production is ρloop ∝ ρtot. Using that (ã∗/ã∆) =
(t∗/t∆)

2/m = (a∗/a∆)
n/m, we obtain

Ωcs
GW(f∗) = Ω∆

st

(
a∗
a∆

) 3m−nm+n
m

, (4.15)

Moreover, the loop keeps its initial size H−1
∗ until GW emission starts because the tension decou-

ples it from the Hubble flow. The frequency of GW today from loops created at H∗ is non-trivial,

f∗ ∼ H∗ã∗/a0 = f∆

(
H∗
H∆

)(
ã∗
ã∆

)
= f∆

(
a∗
a∆

)n(2−m)
2m

, (4.16)

where the GW frequency is only red-shifted after the emission, and the turning-point frequency
f∆ is defined in Eq. (3.33). Trading a∗/a∆ for f∗/f∆, we obtain the spectral index of the GW
spectrum from local cosmic strings,

Ωcs
GW(f∗) = Ω∆

st

(
f∗
f∆

)β
with β ≡ 2

[
3m− nm+ n

n(2−m)

]
. (4.17)

This is the same result obtained in Chap. 3.
We now see the SGWB signature due to the non-standard cosmological history. For the in-

termediate inflationary era and matter eras, right after inflation and the intermediate one, we only
focus on the SGWB from CS. Because these eras induce suppression that would be hardly probed
for the scale-invariant SGWB from inflation2. On the other hand, the kination era enhances the
SGWB and leaves an observable signature even for the most conservative SGWB from inflation.
We shall discuss the detectability due to the kination era on all prime GW sources. Nonetheless,
we extensively derive the detectability for the intermediate kination case (scheme E) because the
kination era after inflation is subject to various theoretical constraints.

4.2.3 Detectability of spectral features

We aim to use the would-be detection of a SGWB spectrum to constrain early non-standard cos-
mological histories motivated by particle physics. Assuming the a detector (i) with sensitivity
Ω
(i)
sens(f), the detection of SGWB is claimed if

Ω(i)
sens(f) ≳ ΩGW(f), (4.18)

i.e., a GW spectrum is observable when its amplitude is large than the detector’s sensitivity. We
adopt the power-law integrated sensitivity (PLS) curves of the different experiments, cf. App. A.2,
which follow a graphical detection criterion [478]. The precise data analysis on whether the sig-
nal is detectable or whether one can reconstruct the frequency profile of SGWB requires more
dedicated techniques and algorithms, see for example [256, 479, 480].

We propose two prescriptions, based on the GW signature – deviating from the standard cos-
mology prediction – due to the non-standard era, happening at temperature T∆:

• Rx 1 (turning-point prescription): The frequency f∆ of the turning-point is where the non-
standard spectrum starts deviating from the standard prediction by some percentage of the
amplitude inside the experiment’s windows. For example, we derive the turning point f∆
with a numerically fitted coefficient for 1% and 10% deviations.

2Some inflationary theories generate a blue-tilted power spectrum that allows the observable spectral suppression
due to the matter era [460].
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• Rx 2 (spectral-index prescription): The absolute value of the observed spectral index β,
defined as ΩGW(f) ∝ fβ , is not zero (signature of the standard cosmology), and we choose
the benchmark to be the spectral index larger than ±0.15. Note that the effect of the non-
standard era leads to a spectral index larger than a benchmark value. We checked that the
choice of the precise benchmark value, e.g., 0.15, has minimal impact on the results.

In principle, both prescriptions would give the same results because the turning point is where the
spectral index changes suddenly. Unless further specified, most of the analyses in the thesis adopt
Rx 1 due to its technological convenience.

Now we shall start inspecting each scheme of the non-standard cosmological histories and
discussing their theoretical limitations and detectability at the future-planned observatories. The
particle-physics implementations for the intermediate matter era (scheme C) and kination era (scheme
E) are postponed to Chaps. 5, 6, and 7.
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Figure 4.4: Left: GW spectra from cosmic strings assuming either the scaling (dashed) or the VOS net-
work (solid), cf. Sec. 3.3.3, evolved in the presence of a non-standard era, either matter (blue) or kination-
dominated (red), before the standard radiation era. The transient VOS evolution of the long-string network
during the change of cosmology shifts the turning-point towards lower frequencies by O(25). The cut-offs
due to particle production, cf. Sec. 3.2.5, or thermal friction, cf. App. B.5.4, are shown with dotted lines.
Right: The evolution of the loop-production efficiency for each cosmological background shows that the
scaling solution is reached after a transient evolution corresponding to the Hubble rate dropping by an order
of magnitude. The slower the expansion rate a ∝ t2/n, the slower the dilution of the long-string energy
density ρ∞ ∝ a−2 and the higher the needed loop-production efficiency Ceff in order to reach the scaling
regime ρ∞ ∝ t−2.

4.3 Scheme A: Matter-Domination right after Inflation

We consider the first scenario in the non-standard cosmological histories: the matter era after in-
flation. In this case, the inflaton behaves as pressure-less matter during its oscillation around the
potential bottom – approximately quadratic. This coherent-oscillation stage might be crucial for
the reheating of the Universe [82, 83]. Remaining agnostic about the coupling between inflaton
and other particles, we treat the energy scale of inflation Einf and the end of matter era E∆ as free
parameters. We only consider the SGWB from local and global cosmic strings because the matter
has the suppressed GW signature, which renders SGWB from inflation highly unobservable. Note
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also that we will present the case of the kination right after inflation (scheme B) along with the dis-
cussion of scheme A below. Except for the difference in the slopes, the feature called the turning
point is universal for both cases.

4.3.1 Impact on the spectrum: a turning-point

The GW spectra from local cosmic strings are shown in Fig. 4.4 for long-lasting matter and kination
eras, starting before the string formation at Estart = mpl

√
Gµ and ending at Eend = E∆ = 100

GeV with duration

r ≡
(
ρstart
ρend

)1/4

≡
(
Estart
E∆

)
≃ 1011. (4.19)

For matter domination, we have the suppressed spectrum, while the kination leads to enhancement,
as discussed previously by the simple argument. Note that the duration of the kination era might be
subjected to the ∆Neff and fluctuation constraints in the next section, i.e., NKD < 11. However,
these bounds strongly depend on the inflationary scale and the size of curvature perturbation which
could be relaxed.

The turning-point frequency: — A key observable is a frequency above which the GW spec-
trum differs from the one obtained in standard cosmology. This is the so-called turning-point
frequency f∆. It corresponds to the redshifted frequency emitted by the loops created during the
change of cosmology at the temperatureT∆. In the instantaneous scaling approximation, cf. dashed
line in Fig. 4.4, the turning-point frequency f∆ is given by the (T, f)-correspondence relation

f
scaling
∆ = (4.5× 10−2 Hz)

(
T∆
GeV

)(
0.1× 50× 10−11

αΓGµ

)1/2(
g∗(T∆)

g∗(T0)

)1/4

. (4.20)

However, the deviation from the scaling regime during the change of cosmology, cf. Sec. 3.3.3,
implies a shift to lower frequencies of the (T, f)-correspondence, by a factor ∼ 22.5, cf. solid vs
dashed lines in Fig. 4.4. The correct (T, f)-correspondence when applied to a change of cosmol-
ogy is

fVOS
∆ = (2× 10−3 Hz)

(
T∆
GeV

)(
0.1× 50× 10−11

αΓGµ

)1/2(
g∗(T∆)

g∗(T0)

)1/4

. (4.21)

We fit the numerical factor in Eq. (4.21) (but also in Eq. (4.39)) by imposing3 the non-standard-
cosmology spectrum ΩNS to deviate from the standard-cosmology one ΩST by 10% at the turning-
point frequency (Rx 1), ∣∣∣∣ΩNS(f∆)− ΩST(f∆)

ΩST(f∆)

∣∣∣∣ ≃ 10%. (4.22)

We are conservative here. Choosing 1% instead of 10% would lead to a frequency shift of the order
of O(400), cf. Eq. (B.51). Note that our Eq. (4.21) is numerically very similar to the one in [294–
296] although an instantaneous change of the loop-production efficiency Ceff at T∆ is assumed in
[294–296]. This can be explained if in Ref. [294–296], the criterion in Eq. (4.22) is smaller than
the percent level.

4.3.2 Detectability

Turning points due to the matter or kination after inflation, cf. Eq. (4.21), are plotted in the left
panel of Fig. 4.5, for different values of Gµ and temperatures T∆ at the end of the non-standard
era. We show the shift to lower frequencies by a factor ∼ 22.5 due to the deviation from the

3The coefficient in Eq. (4.21) has been fitted upon considering the matter case ΩNS = Ωmatter. Note that the turning-
point in the kination case is slightly higher frequency by a factor of order 1, cf. Fig. 4.4.
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Figure 4.5: left: Straight solid and dashed lines are a collection of VOS and scaling turning points, given by
Eq. (4.21) and Eq. (3.33) respectively, for general non-standard cosmologies ending at temperature T∆. The
displayed spectra assume a standard cosmology. Each spectrum corresponds to string tension Gµ = 10x,
where a number on each line specifies x. right: We show the turning-points, given by Eq. (4.39), for
intermediate inflation lasting for Ne e-folds and taking place at the energy scale Einf . The dotted lines in
the two panels show the cut-off frequencies due to particle productions, cf. Sec. 3.2.5, and thermal friction,
cf. Sec. B.5.4, for each value of Gµ.

scaling regime during the change of cosmology. With the solid purple and red lines, we show the
expected cut-off frequencies above which the GW spectrum is expected to be suppressed due to
the domination of massive particle production over gravitational emission in the benchmark cases
where the small-scale loop structures are dominated either by cusps or kinks. Hereby, we show the
possibility of losing information about the cosmological evolution when the turning points are at
higher frequencies than the particle-production cut-off.

In Fig. 4.6, we show the detectability of a turning point at frequency f∆, corresponding to a
change of cosmology taking place at the temperature T∆, in the plane Gµ − T∆, f∆ − T∆, and
Gµ − f∆. We compare the turning-point formula, defined in Eq. (4.21) in the VOS regime with
the one defined in eq (3.33) in the scaling regime. We see that LISA, BBO/DECIGO and ET/CE
can probe non-standard eras ending below T∆ ≃ 10 GeV, 1 TeV and 100 TeV, respectively. Particle
production limits the observation for Gµ ≲ 10−15. Some of these plots were already presented in
[294, 295] (for long matter and kination era), assuming that the scaling regime holds during the
change of cosmology. Our plots turn out to be similar due to their different choice of precision in
the determination of the turning point frequency, see criterion in Eq. (4.22).

Furthermore, the right panel of Fig. 4.5 also shows the turning points for the intermediate
inflationary case (scheme D), cf. Eq. (4.39), for different inflation scales Einf and e-fold numbers
Ne. Due to the stretching of the correlation length outside the horizon and the necessity to wait
for it re-enters to reach the scaling regime, the longer the inflation, the lower the turning-point
frequency. See Sec. 4.6 for further detail.

4.3.3 Global string as a probe of non-standard cosmology

The impact of non-standard cosmology on the GW spectra of global strings is shown in Fig. 4.7.
The frequency of the turning point corresponding to a change of cosmology at a temperature T∆
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Figure 4.6: top: Comparison between the detectability of the turning-points in Gµ− T∆ planes assuming
a scaling network (left) with the one assuming the full VOS evolution (right), cf. Sec. 3.3.3, evolved in non-
inflationary-non-standard-eras. Gray dotted lines are turning points for given frequencies, cf. Eq. (3.33)
for scaling network and Eq. (4.21) for VOS network. bottom: Detectability of turning points in the planes
f∆ −T∆ andGµ− f∆ assuming a VOS network. Limitations from particle production (see Sec. 3.2.5) and
bounds from EPTA are also included.

is given by Eq. (3.79). We report here a numerically-fitted version

f
glob
∆ ≃ Hz

(
T

GeV

)(
0.1

α

)(
g∗(T )

g∗(T0)

)1/4

×

{
8.9× 10−7 for 10%
7.0× 10−8 for 1%

, (4.23)

where the detection criterion is defined as in Eq. (4.22). In contrast to local strings, the global string
decays quickly into particles and does not experience the delayed GW emission. In this case, the
turning point is independent of the string tension and is sensitive to the Universe at higher energy
scales. We now consider the reach of global strings for probing a non-standard cosmology. Fig. 4.8
shows the detectability of the turning-points by future GW experiments. Due to the string-scale
independence, the global-string detectability collapses onto a line.
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4.4 Scheme B: Kination-Domination right after Inflation

The kination era has recently been at the center of attention because any relic density of the Uni-
verse gets amplified. The above simple argument has shown that the SGWB receives a significant
enhancement that would allow the current and next-generation GW observatories to probe the par-
ticle physics related to the kination era. In this section, we first introduce the reader to the kination
era; however, only the kination right after inflation (scheme B) is focused on. Due to some the-
oretical limitations, we shall see that there cannot be any spectral enhancement observable in the
planned experiments. The intermediate (matter-)kination (scheme E) will be discussed in detail in
Sec. 4.7 along with its compelling GW signatures, which could be a unique probe of axion physics
as we shall see later in Chaps. 6 and 7.

4.4.1 A Brief Introduction to Kination

The term kination was introduced for the first-time4 in [482] for describing a homogenous scalar
field whose kinetic energy dominates the total energy of the Universe. The corresponding EOS is
ω = p

ρ = KE−PE
KE+PE ≃ 1, where p is the pressure, ρ denotes the energy density, and KE and PE

denote kinetic and potential energy density, respectively. For example, the inflaton potential be-
comes steep; the inflaton fast-rolling ends the inflationary stage and induces a kination EOS.[483],

4Actually, the presence of kination dates back to the exotic cosmological model by Zel’dovich [481] if we consider
the generalized definition of the kination: a cosmological epoch with EOS ω = 1.
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illustrated as scheme B in Fig. 4.1 and type (i) scenario in Fig. 4.9.
Kination has the maximal EOS allowed by causality, i.e., the speed of perturbations or the sound

speed (c2s = ∂p/∂ρ = 1) becomes the light’s speed. Due to the cosmic expansion, its energy den-
sity red-shits the fastest ρ ∝ a−6, where a is the scale factor of the Universe, while the Universe
expands at the slowest rate, a ∝ t1/3. Any kination era at early times ends by becoming subdom-
inant to the radiation bath without the need for decay5. Such a slow expansion rate has various
phenomenological consequences, for example: reheating after inflation [485–491], electroweak
baryogenesis [482, 492], the enhancement of DM relics [484, 493–503], matter perturbations and
small-scale structure formation [504, 505], GW signals from inflation [70, 71, 459, 461, 506–511],
GW from both local and global cosmic strings [1, 3, 4, 199, 274, 294, 295, 350, 352], and GW
from phase transitions [4, 5, 458, 462, 512]. Before moving on to the kination and GW signature,
we comment on other ideas about a non-scalar-field kination era.

Kination beyond the fast-rolling scalar. — The small-scale anisotropic stress in the coarse-
grained homogenous expanding background has the energy density ∝ a−6 [513, 514]. Pointed
out in [515, 516], the remnant fluid after a strong first-order phase transition also produces the
kination-liked anisotropy. I.e., the intermediate kination era after the second-stage inflation – from
a supercooling phase transition – as shown in type (iii) scenario in Fig. 4.9. The EOS evolution
after bubble collisions would require a dedicated study, and we shall not consider kination after
secondary inflation in this work.

The kination in the rest of this thesis focuses on two schemes in Fig. 4.1:

• Scheme B: Inflation → Kination → Radiation (type i in Fig. 4.9)

• Scheme E: Inflation → Radiation → Matter → Kination → Radiation
without and without entropy injection (type ii.1 & ii.2 in Fig. 4.9)

For scheme E, we shall see the necessity of the prior matter era in Sec. 4.7.
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Figure 4.9: Possible cosmological histories involving a period of kination.

4.4.2 Some UV completions

In the literature, two classes of models predict a stiff EOS, ω > 1/3, following primordial inflation.
Steep oscillatory potential. — Models where the inflaton ends up oscillating in a steep poten-

tial, V (ϕ) ∝ ϕp with p > 4 [482, 483, 517] has stiff EOS but hardly lasts longer than a few e-folds
[518–521].

Steep non-oscillatory potential. — Quintessential inflation models [522, 523] where the infla-
ton potential has a sudden drop responsible for the fast-rolling scalar field after the end of inflation.

5Though the kination-decaying scenario can be considered [484].
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On both sides of the drop, the inflaton potential features two asymptotically flat regions – the infla-
tionary plateau and the quintessence tail – in which the scalar field slow-rolls and generates both
primordial inflation and the late dark energy with a unified description. The first problem of this
model is the super-Planckian field excursion. Indeed, during a period of kinetic energy domination,
a canonically-normalized scalar field ϕ varies over O(MPl) during each e-fold of kination

ϕ̈+ 3Hϕ̇ = 0 with H =

√
ϕ̇2/2

3M2
pl

⇒ ∆ϕ ≃
√
6MplNKD, with NKD ≡ ∆ log a, (4.24)

which is a no-go if one takes seriously the swampland distance conjecture [524–526]. One way
to circumvent this is by considering non-canonical kinetic terms, as in α-attractor models. See
App. D. The second problem relates to the reheating of the Universe because the kination does
not feature the coherent oscillations that can lead to the usual reheating or preheating mechanism.
Extra ingredients are required: either additional non-minimal couplings or extra fields. We do not
discuss this further as a myriad of models have been discussed in the literature and defer to App. D,
reporting status with references on model-buildings related to the scenario of kination following
inflation. In the following subsection, we present the GW signature from inflation and cosmic
strings and discuss theoretical constraints on the kination after inflation, e.g., the recently realized
limitation from scalar fluctuations [527].

4.4.3 GW signatures and Neff constraints

In Sec. 4.2, we derived the spectral indices for inflationary and cosmic-string SGWB. We saw that
the kination greatly enhanced their detectability, especially boosting the inflationary one into the
observable range. However, a large GW relic – produced before BBN and CMB – contributes to
the energy density of the extra relativistic species and is strongly constrained by the ∆Neff from
BBN and CMB observations, cf. Eq. (2.22).

SGWB from inflation. — As illustrated in the left panel of Fig. 4.10, the kination after infla-
tion boosts the SGWB at high-frequency ranges. At the same time, the flat behavior appears at low
frequencies, corresponding to the radiation domination at late times. The position of the turning
point in Eq. (4.54) is controlled by the inflationary scale Hinf ≃ E2

inf/Mpl and the reheating tem-
perature TRH, defined when the kination era ends. Nonetheless, this large enhancement leads to
no observability due to the ∆Neff bounds in Eq. (2.22), as shown on the right panel of Fig. 4.10.
The ∆Neff bound is roughly interpreted that the largest GW amplitude, which also has the highest
frequency corresponded to the end of inflation,

fmax ≃ 9.6 · 1011 Hz
[
g∗(TRH)

106.75

] 1
6
[
g∗,s(TRH)

106.75

]− 1
3
[

Hinf

1013 GeV

] 2
3
[

1 TeV
TRH

] 1
3

. (4.25)

In App. F.2, we show that ∆Neff bound on inflationary GW leads to the following upper bound on
the duration of kination, which applies for both schemes B and E in Fig. 4.1,

NKD,∆Neff
≲ 11.9 + log

(
5 · 1013 GeV

Hinf

)
. (4.26)

The ∆Neff bound excludes the region where the too-long kination leads to a too-large GW signal.
All future planned experiments cannot beat this bound, so we expect no discovery of the enhanced
signal from a kination era right after inflation. Nonetheless, this region will be potentially probed by
the high-frequency (HF) experiments discussed in [40]. In Fig. 4.10, we show how HF experiments
– operating at 10 MHz and 10 GHz with sensitivity h2Ωmin

sens = 10−10 – will be able to probe the
parameter space beyond the BBN bound. We also find that HF experiments operating at 1 kHz, 1
MHz, and 1 GHz need at least h2Ωmin

sens ≲ 10−14, 10−11, and 10−8, respectively – for making a
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Figure 4.10: Ability of future GW experiments to probe a kination era right after inflation (scheme B) via
the spectral enhancement on the inflationary SGWB, assuming an inflation scaleHinf = E2

inf/
√
3MPl. The

∆Neff bound – shown in red, cf. Eq. (4.26) – prevents all discoveries of the planned experiments, even for the
highest allowed inflationary scaleHinf,Planck ≃ 6·1013 GeV. Above the black dotted lines of the right panel,
the high-frequency (HF) experiments – operating at a given frequency and the sensitivity Ωsens,min on the
left panel – could probe the kination’s enhancement. Alternatively, the pale spectra on the left panel – with
a specific value of the number of kination-efolds NKD– satisfy the BBN bound for a given Hinf . However,
these spectra are unphysical due to the scalar fluctuation bound, NKD ≲ 11 for ρ/δρ (Hinf) ≲ 109÷10 cf.
Eq. (4.29) and Ref. [132], as shown as the green lines on the left panel. By imposingNKD ≲ 11 (relaxed in
some inflation model), the spectra in the right panel can never violate the ∆Neff bound.

discovery. For experiments operating at ≳ THz range, the cut-off frequency in Eq. (4.25) is smaller
such that they cannot probe the GW signal.

Let us briefly comment on the arbitrary stiff era and the corresponding constraint from ∆Neff .
A similar analysis was performed for an arbitrary stiff era in [71], considering LIGO and LISA
prospects. The conclusion was that only ω ≃ 1/2 could still lead to signals at LISA while not
being excluded by BBN, but they would correspond to a very low-energy stiff era below a GeV. In
App. E, we provide analogues of Fig. 4.10 for a stiff era with ω = 1/2 and ω = 2/3. For ω = 1/2,
there is no ∆Neff bound; LISA, ET, and BBO can probe the enhanced GW signal from inflation.
The high-frequency experiments would not bring additional insight due to the gentle slope of the
signal. For ω = 2/3, the ∆Neff bound prevents LISA’s detectability, while there is a potential for
ET and BBO.

SGWB from cosmic strings. — Similar to the inflationary SGWB, the kination era greatly en-
hances GW from cosmic strings, where the turning-point frequency for local strings is determined
by Eq. (4.21). The example spectra are shown in Fig. 4.11 for different kination durations. Inter-
estingly, a short kination period can generate a bump in the spectrum. In the left panel of Fig. 4.11,
the network has no time to reach the scaling regime. Particularly, on the right panel of Fig. 4.11, we
show how the efficiency of the loop production grows with the duration of the kination era, without
reaching its scaling value Ceff = 29.6, cf. Eq. (3.44). The bump increases for a longer kination
epoch since the network gets closer to its scaling solution. However, this high-frequency bump may
not be observable due to the high-frequency cutoff from particle production, cf. solid purple and
red lines in the left panel of Fig. 4.11. In any case, the turning point of the spectrum might reside
within the observable window without violating the ∆Neff bound due to the particle production
cut-off. The prospect of detecting the turning point is the same as the matter era after inflation, as
shown in Fig. 4.6. The turning-point signature in the global-string SGWB is presented in Fig. 4.8.
The formation of the cosmic-string network during the kination era and before the reheating might
be non-trivial and probably relies on the non-thermal phase transition [313, 471–477]. We leave
the investigation of the cosmic-string formation during the kination era for future works.
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Figure 4.11: left: GW spectrum from the local cosmic-string network evolved in the presence of a short
kination era after inflation. The peak at high frequencies generated by loops created just after the network
formation (see Fig. 3.6) is enhanced by the effect of the kination era. The cut-offs due to particle production,
cf. Sec. 3.2.5, and thermal friction, cf. App. B.5.4, are shown with purple, red, and gray lines. right: The
corresponding evolution of the loop-production efficiency shows that the scaling regime is never reached for
short kination eras.

4.4.4 Constraints from Scalar Fluctuations

So far, the strongest bound on the kination duration comes from the requirement of radiation era
at the time of BBN. However, the scalar fluctuations in the early Universe could lead to a stronger
bound as the fluctuation’s growth depends on the Universe’s expansion history. For example, an
extended matter era can lead to the non-linear behavior of fluctuations [528–530] or enhanced
formation of primordial black holes [531]. Similarly, the fluctuations of the massless field, which
behave as radiation, grow during the kination era and could eventually dominate over the zero-
mode, which scales as a−6. One probable source of the fluctuations is the adiabatic curvature
perturbation Φ that induces the fluctuation in the density of the homogeneous free-axion field. One
can show that the EOM of the fluctuation from the freely-moving scalar satisfies (see Ref. [132]
for a precise derivation)

ϕ′′k + 2Hϕ′k + k2ϕk = −4Φ′
kϕ

′
zero, (4.27)

where k is the comoving momentum (k = akphys), ·′ ≡ d/dτ = a(t) · d/dt for t, τ are physical
and conformal times, respectively. The non-vanishing scalar’s speed sources the kth-mode axion
fluctuation with help from the adiabatic fluctuation of the same mode Φk. Approximating the
kth-mode fluctuation as a harmonic oscillator of mass k, its energy density is δρk ∼ k2physϕ

2
k =

(k/a)2ϕ2k. By averaging the EOM over many oscillations, the approximated energy density reads

δρ(k) ∼ Φ2ϕ̇2zero = Φ2ρzero
∣∣
k=aH

, (4.28)

where we use Φ′
k ∼ kΦ in the second step, and the energy density of the freely-moving field is

ρzero = ϕ̇2zero. The ratio between energy densities in fluctuation and zero-mode tracks the power
spectrum of the curvature perturbation

δρ

ρzero
(k) = Φ2(k) ≃ 10−9÷−10, (4.29)
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where we assume the scale-invariant curvature perturbation at the level of CMB observation [20].
Assuming that the fluctuation with energy density δρ is generated at the end of inflation, it domi-

nates the zero-mode of energy density ρ after the kination era expands byNKD ≃ log(ρinf/δρinf)/2.
For instance, the scalar might fluctuate as the same order as the curvature fluctuation – ρ/δρ ∼
109÷10 which leads to Nmax

KD ∼ 11 [132]. For a suppressed fluctuation, the bound on kination
duration can be relaxed for some particular inflation models. Fig. 4.10 shows that the theoretical
kination-constraint from fluctuation is stronger than the usually-considered ∆Neff bound. These
exciting implications of the fluctuation from the kination-like field will be discussed in [527].

4.5 Scheme C: Intermediate Matter Era

A matter-like energy density that is sub-dominant early on can dominate the SM radiation bath due
to its slower red-shifting and lead to the matter domination era. Nonetheless, it must decay and
injects energy/entropy into the thermal bath because the radiation-dominated Universe at BBN is
required. One of the motivating scenarios for the intermediate matter era is the heavy particles or
some oscillating moduli field that later decay into the radiation bath; see Chap. 5 for various UV
completions and references therein. The faster expansion rate during the intermediate matter era, cf.
Fig. 4.12, imprints the step-like suppression, as discussed in Sec. 4.2. Due to spectral suppression,
this section only focuses on the large and highly observable SGWB from cosmic strings.
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Figure 4.12: Evolution of the total energy density (left) and the temperature (right), assuming an inter-
mediate matter era. Tinj and ainj are the temperature and scale factor when the entropy injection from a
constant decay becomes effective, cf. Fig. 2 in [532]. Abbreviations: St for standard, and M for matter.

4.5.1 GW signature: a step-like suppression

The GW spectra from local cosmic strings on the left panel of Fig. 4.13 show that an interme-
diate matter era red-tilts the spectrum. The turning-point frequency in Eq. (4.21) determines the
point of red-tilt, similar to the matter era right after inflation (scheme A). However, the spectrum
in the intermediate matter scenario recovers a flat scaling at higher frequencies, corresponding to
loops produced during the radiation era preceding the matter era. This flat part has its amplitude
suppressed – compared to the later radiation era – because the intermediate matter ends with the
entropy injection and dilutes any earlier-existing GW. The step size between two flat parts is sup-
pressed by the duration r of the matter era

r =
Tstart
T∆

, (4.30)

where T∆ = Tend is the temperature of the Universe when the matter era ends. If the future-planned
experiment observes the turning point and the step size, we can precisely imply the energy scale
and the duration of the intermediate matter era.
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Note also that the intermediate matter era changes the dynamics of the string network, i.e.,
the loop formation becomes less efficient and further suppresses the GW amplitude, as seen in the
difference between VOS and scaling spectra. In the right panel of Fig. 4.13, we show that a short
intermediate matter era, r = 2 or r = 10, cannot bring the string network into the scaling regime
of the matter era (Ceff = 0.39), cf. Eq. (3.44).

Fig. 4.14 shows the sensitivity of future GW experiments for probing the the intermedaite mat-
ter era – starting at the temperature r T∆ and ending at the temperature T∆. Matter eras as short
as r = 2 and ending at temperature as large as 100 TeV could be probed by GW interferometers.
We assume that an early-matter era is detectable if the spectral index is smaller than −0.15, cf.
spectral-index prescription (Rx 2) in Sec. 4.2.3.

We refer the reader to Chap. 5 for model-independent constraints on the abundance and lifetime
of heavy and unstable particles, giving rise to such a non-standard intermediate matter era. We
shall see that the next-generation GW observatories can largely extend the constraint on lifetime
(τGW−CS ≳ 10−16 s) beyond the usually-considered BBN bound (τBBN ≳ 0.1 s).

10-9 10-6 10-3 1 103 106

10-12

10-11

10-10

f (Hz)

�
G
W
h
2

Intermediate matter

(G� = 10-11, � = 50, � = 0.1)

VOS

scaling

part. prod.
(cusp)

T� = 100 GeV

r = Tstart/T�

Standard

r = 2

r =
10

r
=
1
0
1
0

SK
A

LI
SA

B
B
O

D
EC
IG
O

ET C
E

10
-9

10
-5

10
-1

10
3

10
7

10
11

0

1

2

3

4

5

6

energy scale E (GeV)

C
e
ff

TΔ = 100 GeV, v0 = 0, ξ0 = 1

Standard

r = 2

r = 10

r = 1010

T
=
1
0
0
G
e
V

T
=
1
M
e
V

T
e
q
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4.6 Scheme D: Intermediate Inflationary Era

Consider a short inflationary period – happening much later than another inflation at a higher scale
that solves the flatness and horizon problems. The e-foldings of the cosmic expansion parametrize
its duration,

Ne ≡ log

(
astart
aend

)
, (4.31)

smaller than Ne ≲ 20 ≪ 60, in order not to alter the predictions from the first inflation era
regarding the CMB power spectrum, cf. App. C for the precise condition. We define the energy
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Figure 4.14: The colored regions show the
detectability of the spectral suppression, cf.
spectral-index prescription (Rx 2) in Sec. 4.2.3,
due to a NS intermediate matter era with dura-
tion r = Tstart/T∆, assuming scaling and VOS
networks, cf. Sec. 3.3.3. Limitation from parti-
cle production, cf. Sec. 3.2.5, is shown in purple.

density profile as, cf. Fig. 4.15

ρtot(a) =


ρst

rad(a) + ρlate(a) for ρ > ρinf,

ρinf = E4
inf for ρ = ρinf,

ρinf∆R(Tend, T )
(
aend
a

)4
+ ρlate(a) for ρ < ρinf,

(4.32)

where ρinf is the total energy density of the Universe during inflation and Einf ≡ ρ
1/4
inf is the corre-

sponding energy scale. The function ∆R is defined in (4.3).
Indeed, the second-stage or the multiple-stage inflation can arise due to the non-trivial scalar

dynamics in many inflationary theories [83, 533–544], leading to many phenomenological con-
sequences. For example, many phases of expanding and shrinking Hubble horizon – dubbed the
rollercoaster cosmology [545] – would alleviate some constraints on the O(60)-efold single in-
flation scenario. The curvature perturbation from this scenario also possesses many scales corre-
sponding to each inflationary stage that might appear in the small-scale CMB observations. Be-
sides, many reheating between each inflation produces relic particles that hardly dilute due to short
inflationary stages and affect particle-production mechanisms during the early times. We leave this
exciting aspect of probing the multi-stage inflation with primordial SGWB for future work.

On the high-energy particle physics side, disconnected from the inflaton dynamics, such a short
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inflationary period can be generated by a highly supercooled first-order phase transition. It was
stressed that nearly-conformal scalar potentials naturally lead to such short, withNe ∼ 1−15 [546–
548]. Those are well-motivated in new strongly interacting composite sectors arising at the TeV
scale, as invoked to address the Higgs hierarchy problem, and were first studied in a holographic
approach [141, 549] (see also the review [153]). As the results on the scaling of the bounce action
for tunneling and on the dynamics of the phase transitions do essentially not depend on the absolute
energy scale, but only on the shallow shape of the scalar potential describing the phase transition,
those studies can thus be extended to a large class of confining phase transitions arising at any scale.
In this section, we shall consider the energy scale and duration as free parameters6.

This section focuses again on the SGWB from cosmic strings, whose amplitude lies in the
sensitivity windows, even when the intermediate inflation imprint a significant spectral suppres-
sion. Unlike the intermediate matter era, the secondary inflation not only dilutes the earlier-existing
SGWB but also seriously affects the dynamics of the string network and GW production, as we shall
see below and in Fig. 4.16.
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Figure 4.15: Evolution of the total en-
ergy density assuming the presence of an
intermediate inflationary era characterised
by the energy density ρinf, for two differ-
ent durations (number of efolds), Ne,1 and
Ne,2.
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of the horizon by the rapid expansion, and
loop formation stops, thus L ∼ a. Af-
ter inflation, during radiation, the correla-
tion length starts to re-enter the horizon and
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4.6.1 The intermediate inflation & the cosmic-string network

Let us review the chronology of the network in the presence of an intermediate-inflation period
(see Fig. 4.16) to derive the frequency-temperature relation in Eq. (4.39). Assuming the network
during the early radiation era has already been produced and reached the scaling regime before the
secondary inflation starts, the correlation length scale is of order (0.1)t or equivalently

LstartHstart ∼ O(0.1), (4.33)

where L is the correlation length of strings, and H is the Hubble rate. When inflation begins, it
stretches cosmic strings beyond the horizon within a few e-foldings,

L ∝ a leading to LH ≫ 1. (4.34)

6An example of probing a model with the intermediate inflation using SGWB from cosmic strings has been shown
in Ref. [50].
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Indeed, during inflation, the loop-production efficiency Ceff ∝ ξ−3 is severely suppressed, cf.
Fig. 4.17, by stretching the correlation length ξ beyond the Hubble horizon, and loop production
freezes [297]. Later, the late-time energy density takes over inflation, but the network is still in the
stretching regime L ∝ a, i.e.,

LH ∝ t(2−n)/n during the era with ρ ∝ an. (4.35)

For n > 2, the Hubble horizon will eventually catch up with the string length, allowing them to
re-enter and initiate the loop production. We consider the case where the Universe is radiation-
dominated after the inflation period and define the temperature Tre of the Universe when the long-
string correlation length L re-enters the horizon

LreHre = 1, (4.36)

where Lre and Hre are the correlation length and Hubble rate at the re-entering time. We can use
Eq. (4.35) to evolve the correlation length, starting from the start of inflation up to the re-entering
time

1 = LreHre =

(
tre
tend

)−1/2

LendHend ≃
(
Tre
Tend

)
eNe(0.1), (4.37)

where we assume the radiation era t ∝ T−2 after the end of inflation, use LstartHstart ∼ O(0.1),
and introduce the numberNe of inflation e-folds. Finally, we obtain the re-entering temperature in
terms of the number of e-folds Ne and the inflationary energy scale Einf as

Tre ≃
Einf

(0.1) g
1/4
∗ (Tre) exp(Ne)

. (4.38)

Crucially, the network must wait for another Ne foldings for the correlation length to re-enter the
horizon before it can reach the scaling regime and produce GW again. The simple argument in
Sec. 4.2, which considers only the effect of non-trivial expansion rate, does not apply to this current
scenario; the turning-point relation of the cosmic-string SGWB in Eq. (4.21) is now sensitive to
the energy scale when the strings re-enter the horizon, instead of the secondary inflation’s scale.

After plugging Eq. (4.38) into the VOS turning-point formula Eq. (4.21), with T∆ = Tre, and
adjusting the numerical factor with the GW spectrum computed numerically, we obtain the relation
between the turning-point frequency and the inflation parameters Ne and Einf ,

f2nd−inf
∆ = (1.5× 10−4 Hz)

(
Tre

GeV

)(
0.1× 50× 10−11

αΓGµ

)1/2(
g∗(Tre)

g∗(T0)

)1/4

. (4.39)

Note that the numerical factor in Eq. (4.39) comes from the demanded precision of 10% deviation,
cf. Eq. (4.22). It can be lower by a factor ∼ 300 if the 1% precision is applied, as shown in
Eq. (B.52).

4.6.2 GW signature: a step-like suppression

Fig. 4.17 shows how the fast expansion during inflation suppresses the GW spectrum for frequencies
above a turning-point frequency f∆ which depends on the number of e-folds. The SGWB spectrum
exhibits a step-like feature for a short inflation duration, similar to the intermediate matter era.
However, the inflation duration also changes the turning-point frequency, unlike in the matter case;
the larger the number of e-folds, the lower f∆. Fig. 4.18 shows how a sufficiently long period of
intermediate inflation can lead to SGWB with peak shapes in the future GW interferometer bands.
We emphasize that the signatures in the GW spectrum from CS in the presence of a non-standard
matter-dominated era, short inflation, and particle production look similar. Therefore, the question
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Figure 4.17: Top: GW spectra from cosmic strings assuming either the scaling or the VOS network evolved
in a non-standard intermediate inflation era. Inflation directly affects the VOS parameters by stretching the
strings beyond the horizon. The transition between the f−1/3 scaling after the turning point, to the f−1

scaling at even larger frequencies, is an artefact due to total number of modes k being fixed to 2 × 104,
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more details. Bottom: The loop-production is suppressed and only becomes significant again when the
correlation length re-enters the horizon. Limitations due to particle production, cf. Sec. 3.2.5, are shown
with dotted lines.

of how disentangling each effect from one another deserves further studies. In Sec. 4.6.3, we
provide the dictionary between the intermediate matter and inflationary eras.

Interestingly, in contrast with the SGWB which is dramatically impacted by an intermediate
period of inflation, the short-lasting GW burst signals [284, 285, 344, 345, 347] remain preserved
if the correlation length re-enters the horizon at a redshift higher than ∼ 5×104 [550]. Indeed, the
bursts generated by the small-scale structures have higher frequencies and are emitted later than
the SGWB, cf. Fig. 2 in [345].

4.6.3 Cosmic-string GW degeneracy: intermediate matter & inflationary eras

The intermediate matter and inflationary eras lead to similar spectral-suppression signatures in
SGWB from cosmic strings. Suppose an SGWB is detected with a step-like suppression at high
frequencies. It is interesting to ask where the degeneracy between their parameter lies for describing
the spectral signatures – the turning point and the step height.

Turning-point. — By equating the turning-point formulae for intermediate matter in Eq. (4.21)
and inflationary eras in Eq. (4.39), we obtain the relation between the energy scales of the two
scenarios and the duration of inflation,

condition #1: Einf ≃ exp(Ne) T∆ g
1/4
∗ (T∆)×

{
1.33 for 10 % precision
0.8 for 1 % precision

, (4.40)

where the precision means the deviation from the spectrum assuming the standard cosmology.
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Figure 4.20: Prospective constraints on an intermediate inflationary stage if a GW interferometer detects a
SGWB from CS with tension Gµ. The freezing of the long-string network due to stretching the correlation
length outside the horizon allows for probing large inflationary scale Einf for a large number of efolds Ne.
Colored regions correspond to the turning points with amplitude higher than each power-law-sensitivity
curve, cf. turning-point prescription (Rx 1) in Sec. 4.2.3. Red and purple dashed lines are limitations from
particle production, cf. Sec. 3.2.5.

Step-height. — The intermediate matter and inflation imprint a step-like feature, whose sup-
pressed flat plateau corresponds to the radiation era before each non-standard era. We can quantify
its amount by comparing its amplitude to the spectrum assuming the radiation domination,

ΩGW,ST
ΩGW,NS

(f ≫ f∆) =
ΩpGW,ST
ΩpGW,NS

(
ap
a0

)4
∣∣∣∣∣
ST

(
a0
ap

)4
∣∣∣∣∣
NS

=

(
astart
aend

)4
∣∣∣∣∣
ST

(
aend
astart

)4
∣∣∣∣∣
NS

, (4.41)

where the superscript “p" denotes when GW of frequency f is produced, and the condition f ≫ f∆
ensures that we consider the suppressed flat plateau. In the last step, the total mismatch between
the standard and non-standard scenarios is from the start astart to the end aend of the non-standard
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era. Since we know how the Universe evolves during the non-standard era, we deduce

(
aend
astart

)∣∣∣∣
NS

=


(
ρstart
ρend

)1/3
≃
(
Tend
Tstart

)4/3
≃ r4/3 for int. matter era,

exp(Ne) for int. inflationary era,
(4.42)

and
(
aend
astart

)∣∣∣∣
ST

=


(
ρstart
ρend

)1/4
≃
(
Tend
Tstart

)
≃ r for int. matter era,

1 for int. inflationary era,
(4.43)

where we use that the total energy density before and after the inflationary era is constant. Thus
the suppression of the GW spectrum due to intermediate matter and inflationary eras is given by

ΩGW,ST
ΩGW,NS

(f ≫ f∆) =

r
4/3 for int. matter era,

exp(4Ne) for int. inflationary era.
(4.44)

The two non-standard scenarios provide a degenerate step height if

condition #2: r ≃ exp(3Ne). (4.45)

4.6.4 Detectability and constraints

In Figs. 4.19 and 4.20, we show the constraints on the intermediate inflation scenario in the planes
Einf − Ne, Gµ − Einf, and Gµ − Ne, respectively. We follow the turning-point prescription (Rx
1), defined in Sec. 4.2.3, which constrains a non-standard cosmology by using the detectability
of the turning-point frequency in Eq. (4.39). The longer the intermediate inflation; the later the
correlation length re-enters the horizon; the latter the long-string network goes back to the scaling
regime; the lower the frequency of the turning point; and the larger the inflationary scale, which
can be probed. The detection of a GW spectrum generated by CS by future GW observatories
would allow to probe an inflationary energy scale Einf between 10−2 GeV and 1013 GeV assuming
a number of e-folds Ne ≲ 20.

4.7 Scheme E: Intermediate kination

This section focuses on the intermediate kination from a scalar field, unrelated to the inflation
dynamics. One of the simplest yet non-trivial scenarios is when a scalar field leads to the matter
domination era (e.g., oscillation in quadratic potential) and later the kination domination. The
particle-physics realizations of the matter-kination era naturally arise in axion physics7, as we shall
see in Chaps. 6 and 7. The preceding matter era brings the energy density of the Universe above
the radiation energy density, enabling a period of kination that redshifts faster than radiation. The
longer the matter era dominates, the longer kination lasts.

Already discussed in Sec. 4.2, the intermediate matter-kination era imprints an interesting peak
signature in SGWB of the long-lasting sources. We shall consider SGWB from the primordial
inflation, local, and global cosmic strings. The intermediate kination era enhances the GW only
some frequency range, allowing it to satisfy the ∆Neff which kills the whole discovery band for the
kination right after inflation in scheme B. Let us now consider which information can be extracted
from such a peaked SGWB and discuss the detectability within windows of GW observatories.

7The pre-kination period beyond the matter era could also be realized in a more complex model, e.g., involving the
non-canonical scalar field. This is the main goal of the work in progress [551].
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A matter-kination era. — The cosmological history is described by the total energy density
of the Universe

ρ(a) = ρr,0G[T (a), T0]

(
a

a0

)4

+ ρm,0

(
a

a0

)3

+ ρΛ,0 + ρϕ(a), (4.46)

where the functionG(T, T0) is defined in Eq. (4.3). The first three terms of Eq. (4.46) follow from
the ΛCDM assumption, while ρϕ is the scalar field energy density that generates the non-standard
matter and kination eras.
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Figure 4.21: Scalar field dynamics that generate a matter-kination era inside the radiation epoch. The solid
orange line shows where the entropy injection is absent or happens before the scalar domination. For the
orange dashed line, the entropy injection occurs after scalar domination and suppresses the kination duration.
fa denotes the radius of the circular orbit of the field spinning with velocity θ̇, discussed in Chap. 6 and 7.

The cosmological evolution is sketched in Fig. 4.21; it starts with the SM radiation domination,
while the scalar field ϕ is frozen and contributes to a subdominant cosmological constant. After the
expansion rate becomes small, it can start to oscillate and behaves as pressure-less matter, leading
to the matter era. Later, its kinetic energy dominates and generates the kination EOS. In the most
model-independent way, the total energy density of the Universe is described by the following
quantities that can be related to the model-dependent quantities in Chaps. 6 and 7:

• ρradosc – Energy density of the background radiation at the oscillation onset aosc,

• ρosc – Energy density of the scalar field at oscillation,

• ρKD – Energy density of the scalar field when the kination era starts,

For convenience, we define the energy scale at each event by ρi ≡ E4
i .

The non-standard matter era starts at the so-called time of scalar domination, a = adom when
the scalar field energy density is

ρdom = ρosc

(
aosc
adom

)3

= ρosc

(
ρosc
ρradosc

)3

. (4.47)

It lasts until kination starts at a = aKD after some e-folds,

exp(NMD) ≡
aKD

adom
=

(
ρdom
ρKD

)1/3

, (4.48)

and kination ends when the radiation bath dominates again at a = a∆

ρ∆ =
ρ2KD

min(ρdom, ρdamp)
, (4.49)
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with the duration of kination, given by the e-folding number,

eNKD ≡ a∆
aKD

=

[
min(ρdom, ρdamp)

ρKD

]1/6
, (4.50)

where ρdamp is the energy density of radiation after the entropy injection. The transfer of energy is
inevitable in the particle physics implementations, considered Chap. 7, and shortens the duration
of kination, see orange dashed line in Fig. 6.2.

Absence of entropy injection. — The longest kination era is obtained when the Universe
evolves adiabatically during the whole matter-kination era; no entropy injects during the matter-
kination era and, therefore, ρdamp > ρdom. In that case, ρ∆ = ρdom (adom/a∆)

4 together with
Eq. (4.47) and (4.49) imply

NKD = NMD/2. (4.51)

Except when explicitly specified, we assume Eq. (4.51) to hold in our plots. Finally, the matter-
kination scenario can be described, in the most model-independent way, simply by the newly de-
fined parameters: the energy scale of the kination era EKD = ρ

1/4
KD and the duration of kination era

NKD. The total energy density of the Universe reads,

ρtot(a) ≃ E4
KD ×



exp(12NKD)
(

a
aM

)4
, for a < aM < a,(

a
aKD

)3
, for aM < a < aKD,(

aKD
a

)6
, for aKD < a < a∆,

exp(−6NKD)
(
a∆
a

)4
, for a > a∆,

(4.52)

where the Universe evolves chronologically in radiation, matter, kination, and radiation eras, from
top to bottom rows.

4.7.1 GW signature: a peak (triangular spectrum)

The signature of the matter-kination era contains a red tilt from the matter era and a blue tilt from
the kination era. The shape of this spectrum is unique and very different from any other predictions
of stochastic GW signals of cosmological origins. For instance, the peak that results from a FOPT
is very narrow as the source is active at a specific temperature [153], while here, the matter-kination
era is responsible for the peak lasts for several efolds. Another primary source is cosmic strings,
whose spectrum has a different shape and gets a peak-like structure from the intermediate kination,
depending on the precise cosmological history. If such cosmic strings are present, a multiple-peak
structure may arise. Finally, another source of enhanced SGWB may come from the couplings of
the inflaton. A well-known example is axion inflation which may lead to an enhanced signal due to
parametric resonance effects induced by the inflaton coupling to gauge fields [125]. The spectral
shape of this signal is also very different from what we predict from a short kination era.

Now we shall discuss the peak signature in SGWB – from inflation, local cosmic strings, and
global cosmic strings – and their detectability. Since these sources could arise independently, their
co-existence would lead to an exciting multiple-peak GW signal.

Inflationary SGWB

The spectral index of SGWB from inflation in Eq. (4.12) changes its sign: the high-frequency slope
-2 is associated with the matter era, while the low-frequency slope +1 is related to the kination era.
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The GW spectrum in the presence of the matter-kination era reads

ΩGW,0h
2(f) = Ωst

GW(f∆)h
2 ×


1 ; f < f∆ (late-time radiation),
(f/f∆) ; f∆ < f < fKD (kination),
(fKD/f∆) (fKD/f)

2 ; fKD < f < fdom (matter),
(fKD/f∆) (fKD/fdom)

2 ; fdom < f (early-time radiation),

(4.53)

where the GW abundance assuming the standard radiation-dominated cosmology Ωst
GW is given by

Eq. (2.27), and f∆, fKD (peak frequency), fdom are the characteristic frequencies corresponding
to the modes re-entering the horizon right after the end of the kination era, at the beginning of the
kination era, and at the end of the matter era, respectively. They are defined as:

f∆ =
H∆a∆
2πa0

≃ 2.7 · 10−6 Hz
[
g∗(T∆)

106.75

] 1
2
[
g∗,s(T∆)

106.75

]− 1
3
[

T∆
102 GeV

]
, (4.54)

fKD =
HKDaKD
2πa0

= f∆e
2NKD ≃ 1.1 · 10−3Hz G

1
4 (T∆)

[
ρ
1/4
KD

10 TeV

][
eNKD/2

10

]
, (4.55)

where the e-folding of the kination era is eNKD ≡ (ρKD/ρ∆)
1/6. This peak frequency fKD thus con-

tains information about the energy scale and the duration of the kination era. The peak amplitude
at fKD is

ΩGW,KDh
2 = h2Ωst

GW(f∆)

(
fKD

f∆

)
= Ωst

GWh
2(f∆)e

2NKD

≃ 2.8 · 10−13

[
g∗(T∆)

106.75

] [
g∗,s(T∆)

106.75

]− 4
3
[

Einf

1016 GeV

]4 [e2NKD

e10

]
, (4.56)

and is enhanced by the duration of the kination era. Finally, the frequency corresponding to the
start of the matter era is

fdom =
Hdomadom

2πa0
= fKD

(
ρdom
ρKD

)1/6

. (4.57)

The amplitude difference between flat parts from radiation eras before and after the matter-kination
era is

ΩGW(f > fdom)

ΩGW(f < f∆)
=

(
fKD

f∆

)(
fKD

fdom

)2

=

(
1

ρ∆
· ρ

2
KD

ρdom

)1/3

≤ 1. (4.58)

The above equality is satisfied when no entropy dilution occurs during the whole completion of the
matter domination era and ρ∆ = ρ2KD/ρdom, cf. Eq. (4.49). Otherwise, the amount of dilution is
imprinted in the difference between the amplitudes of the two flat parts of the spectrum.

Detectability. — The resulting typical spectra are plotted in the right panel of Fig. 4.22 for
three benchmark points reported in the left panel and corresponding to different choices of kination
energy scales and kination durations. A large parameter space allows the peak from the matter-
kination era to be probed by LISA [65], BBO [68], ET [66, 67], CE [228], and SKA [207], where
we have used the integrated power-law sensitivity curves8 of [1]. Note that a kination era lasting
more than ∼ 12 e-folds is not viable as a too large energy density in GW violates the ∆Neff bound,
see Eq. (2.22). Fig. 4.23 shows that the longer duration of the kination era enhances the detectability
of the peak signature.

8We denote a signal to be detectable when its amplitude surpasses the power-law sensitivity curve for a given signal-
to-noise ratio (SNR). We note that the SNR formula given in [1] is an approximated one which works within the limit
of large detector noise. The generic formula can be found in [466, 552, 553]. We have checked that the two formulae
agree for the power-law sensitivity curves with SNR ≲ 10 used in this paper.
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The peak signature we are exploring should be distinguished from GW peaked signals produced
by cosmological first-order phase transitions, e.g., [140, 153], or by the network of cosmic strings
[1, 351]. Another scenario with large primordial GW from inflation is axion inflation [125, 126].
This signal’s spectral shape differs from what we predict from an intermediate matter-kination era.

Gravitational waves from primordial inflation
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Figure 4.22: Left: Detectability of the irreducible GW background from inflation with energy scale Einf ,
enhanced by a period of matter-kination lasting for (2NKD + NKD) efolds with no entropy injection, cf.
Eq. (4.51). The kination era starts at energy scale EKD and ends when the temperature of the Universe
is T∆ (gray dotted lines). The observable windows of the peak signal are shown in the colored regions.
BBN constrains the late kination eras (gray) and the duration of kination (red-hatched) (see Sec. 4.4.4).
The QCD axion that allows a kination era could be DM along the solid-gray lines for the conventional and
ZN QCD-axion models, assuming kinetic misalignment (see Sec. 6.4). The smaller the inflation scale, the
weaker the GW amplitude. The black dashed lines show the prospects for the detectability by hypothetical
high-frequency experiments operating at 10 kHz and 1 MHz with sensitivity h2Ωsens = 10−10. Right: GW
spectra corresponding to the benchmark points shown in the left panel. Dashed lines show the peak position
for the matter-kination era from the QCD axion DM.

Local strings SGWB

The intermediate matter-kination era affects the SGWB from local cosmic strings by changing its
slope, cf. Eq. (4.17), from +1 (for loops produced during kination) to -1/3 (for loops produced
during matter). The estimation for the peak frequency becomes non-trivial, unlike the inflationary
SGWB case, due to the delayed decay of the string loops, cf. Chap. 3. Besides, another signature
also arises- the secondary peak- from loops produced deep inside the earlier radiation era and decay
only during the matter kination era.
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Figure 4.23: Observability regions when varying the inflation scale for two kination durations, NKD = 5

(left) and NKD = 10 (right). Planck2018 data [20, 55] implies the upper bound Einf ≲ 1.6 × 1016 GeV

(purple-hatched).

Peak frequency. — Local-string loops produced at the start of kination tKD could decay long
after the end of a short kination era at t∆. The condition for the GW emission at t̃KD

M to take place
during the late-radiation era is

1 <
t̃KD
M

t∆
≃
(

α

2ΓGµ

)(
aKD

a∆

)3

⇒ NKD <
1

3
log

(
α

2ΓGµ

)
, (4.59)

where we used Eq. (3.15) to relate GW emission times t̃xM and loop production times tx. For
t̃KD
M > t∆, the peak frequency fKD follows from Eq. (3.32)

fKD = f∆

[
a(t̃KD

M )

a(t̃∆M )

](
t∆
tKD

)
= f∆

(
t∆
tKD

)1/2

= f∆

(
ρKD

ρ∆

)1/4

, (4.60)

where we used Eq. (3.15) once again. For t̃KD
M < t∆, the peak frequency fKD is

fKD = f∆

[
a(t̃KD

M )

a(t∆)

] [
a(t∆)

a(t̃∆M )

](
t∆
tKD

)
= f∆

(
2ΓGµ

α

)1/6(ρKD

ρ∆

)1/3

. (4.61)

From the expression for f∆ in Eq. (4.21), we deduce the frequency of the peak signature of the
presence of a matter-kination era in the GW spectrum from local strings

fKD ≃


1.8 · 103 Hz

[
0.1×50×10−11

αΓGµ

] 1
2
[

EKD
105 GeV

]
for NKD < 1

3 log
(

α
2ΓGµ

)
,

6.1 · 102 Hz
[
0.1
α

] 2
3

[
50×10−11

ΓGµ

] 1
3
[

EKD
105 GeV

] [
exp(NKD/2)

10

]
for NKD > 1

3 log
(

α
2ΓGµ

)
.

(4.62)

Peak amplitude. — The amplitude at the peak is obtained from Eq. (4.17)

ΩGW,KD ≃ 1

2.5
ΩGW,st(10f∆)

(
fKD
10f∆

)
, (4.63)

where the factor 2.5 accounts for the change of relativistic degrees of freedom9, and we multiply the
factor 10 to f∆, which is fitted well with the peak from numerical simulations, in order to account
for VOS evolution and mode summation. An analytical estimate of the GW amplitude ΩGW,st(f)
emitted by local strings in standard cosmology is given by Eq. (3.47).

9Precisely, Eq. (3.31) has a factor of
(
g∗(T )
g∗(T0)

)(
g∗s(T0)
g∗s(T )

)4/3

, which goes to 2.5−1 in high-temperature limit.
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Detectability. — The peak signature of a matter-kination era in the GW spectrum from local
cosmic strings is potentially observable by future observatories, as shown in Fig. 4.24. As the GW
spectrum from local CS assuming standard cosmology is already at the observable level, even a
few e-folds of the kination era can induce the smoking-gun peak signature. On the top panel, we
show the string tension of Gµ ∼ 10−11 [264, 265], which could explain hints from NANOGrav
12.5 years [205], PPTA 15 years [206] and EPTA 24 years [204]. The planned observatories cannot
probe a large parameter space (white), but ultra-high frequency experiments could do so. We expect
the ability to probe such a high-energy kination era to get reduced by other cut-offs, i.e., friction
and particle production in Chap. 3. We leave the dedicated study for further work. In Fig. 4.25, a
few e-folds of kination render GW signal from strings of tension Gµ ≃ 10−19 observable, but at
the price of having kination ending after BBN.

Second kination peak at high-frequency. — The delayed decay of local string loops intro-
duces another spectral enhancement at a high frequency; see the top left panel in Fig. 4.24. In
contrast to the main peak from loops produced at the start of kination, the smaller second peak cor-
responds to loops created deep inside the earlier radiation era. Eq. (4.17) tells us that the spectral
index changes sign between loops from radiation which decay in matter era, β = −1/2, and those
decay during kination era, β = 1/4. So the second peak corresponds to loops produced during the
radiation era and decay right at the start of the kination era, i.e.

t̃KDII
M = tKD ⇒ tKDII =

2ΓGµ

α
tKD, (4.64)

where we applied Eq. (3.15) to relate GW emission times t̃xM and loop production times tx. The
visibility of the second peak depends on the separation with respect to the first biggest kination
peak, which we can derive from Eq. (3.32)

fKDII

fKD
=

[
a(t̃KDII

M )

a(t̃KD
M )

](
tKD

tKDII

)
=

[
a(tKD)

a(t̃KD
M )

](
α

2ΓGµ

)
, (4.65)

where the first bracket depends on the two limits of NKD, as in Eq. (4.62). Here we report the
separation between two kination peaks

fKDII

fKD
=


104

(
α× 50× 10−11

0.1×ΓGµ

)1/2
exp(NKD/2) for NKD < 1

3 log
(

α
2ΓGµ

)
,

2.15× 105
(
α× 50× 10−11

0.1×ΓGµ

)2/3
for NKD > 1

3 log
(

α
2ΓGµ

)
.

(4.66)

Eq. (4.66) underestimates the two-peak separation in Fig. 4.24 by approximately one order of mag-
nitude because the EOS change only impacts the network evolution, which results in correcting
the loop formation and, thus, the position of the most prominent peak. It takes a few e-folds for
the network to adapt to the change of cosmology, which moves the first biggest peak to a lower
frequency than naively expected, same as the factor O(0.1) in Eq. (4.21). On the other hand, the
position of the smallest peak depends only on the loop’s emission time and is not affected by the
time the network adapts to a change in the cosmological era. Before moving to the global strings,
let us emphasize that the second peak will not be seen in the global string spectrum. This peak is
linked to delayed GW emission of local strings, while global loops decay almost instantaneously
after formation.

Global strings

The short-lived global strings emit GW right after loop production, much earlier than for local
strings. As a consequence, GW redshift for a longer time, at fixed loop-formation time ti, and the
frequency observed today is lowered by a factor equal η/Mpl, see Eq. (3.78). Hence, for fixed

88



Gravitational waves from local cosmic strings
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Figure 4.24: The GW background from local strings with tension Gµ is enhanced by a period of matter-
kination lasting for (2NKD + NKD) efolds, cf. Eq. (4.51). The kination era starts at energy scale EKD

and ends when the temperature of the Universe is T∆ (dashed lines). Left panel: In the coloured regions,
the peak is observable. BBN constrains late kination eras (gray) and long kination eras (red-hatched) (see
Sec. 4.4.4). The black dashed lines show the detectability prospects of hypothetical HF experiments oper-
ating at 10 kHz, 1 MHz, and 1 GHz frequencies with sensitivity h2Ωsens = 10−10. The QCD axion that
allows a kination era could be DM along the solid-gray lines for the conventional and ZN QCD-axion mod-
els, assuming kinetic misalignment (see Sec. 6.4). Right panel: The GW spectra correspond to benchmark
points in the left panel. Note the second peak at high-frequency for the green line, which comes from loops
produced during the radiation era and decaying at the start of kination, cf. Eq. (4.66).

string scale η, the peak signature from the matter-kination era from global strings sits at a lower
frequency than in the local-string case.

Due to PTA constraints Gµ ≲ 10−11 [369, 554], we only consider local strings with scale
η ≲ 3×1012 GeV. In contrast, the scale of global strings is only bounded by the largest inflationary
scale η ≲ 1016 GeV. Hence, in our plots, the peak frequencies from global and local strings can
only be compared if we consider that the string scales η, which we consider for both are different.

Peak frequency. — The peak GW frequency fKD from loops that formed at the start of the
kination era tKD is written, via Eq. (3.32), in terms of the frequency f∆ corresponding to the end
of kination at time t∆,

fKD = f∆

[
a(t̃KD

M )

a(t̃∆M )

](
t∆
tKD

)
, (4.67)

where t̃xM and tx are the emission and loop-production times, respectively. Applying a ∝ t1/3 ∝
ρ1/6 during kination and a ∝ t1/2 ∝ ρ1/4 during radiation era, the peaked frequency for global
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Gravitational waves from local cosmic strings

Figure 4.25: Detectability of the GW peak for varying string tension Gµ. The longer the matter-kination
era, the higher the peak signature, allowing strings with smaller tension Gµ to be probed.

strings is

fKD = f∆

[
a(t̃KD

M )

a(t∆)

] [
a(t∆)

a(t̃∆M )

](
t∆
tKD

)
= f∆

(
ρKD

ρ∆

)1/3

, (4.68)

where we apply t̃xM ≃ tx for global strings, see Eq. (3.72). Acquiring f∆ from Eq. (3.79), we obtain
the peak frequency from the presence of a matter-kination era in the global-string GW spectrum

fKD ≃ (0.9 Hz)

(
0.1

α

)(
EKD

105 GeV

)[
exp(NKD/2)

10

]
, (4.69)

where the numerically-fitted f∆ is used to account for the transition between two scaling regimes
of the string network.

Peak amplitude. — From the relation in Eq. (3.76), the GW amplitude at the peak is

ΩGW,KD ≃ ΩGW,st(10f∆)

(
fKD

10f∆

)
L, (4.70)

where the factor 10f∆ fits well with the peak from numerical simulations, accounting for VOS
evolution and mode summation and where L = O(1) is a ratio of log factors.10 An analytical
estimate of the GW amplitude ΩGW,st(f) emitted by global strings in standard cosmology is given
by Eq. (3.74). In terms of the kination parameters, we have

ΩKD
GW ≃ 1.2 · 10−18

[ η

1015 GeV

]4
e2NKD log3

[
2.2 · 1018

[ η

1015 GeV

] [ α
0.1

]2 [109 GeV

EKD

]2]
(4.71)

Detectability. — Fig. 4.26 shows the detectability of GW produced by global strings and
enhanced by the intermediate matter-kination era. The spectra shown on the right panel correspond
to the benchmark points in the contour plot on the left panel. The GW amplitude scales as η4 up
to the log suppression; therefore, the string tension η must be significant for detectability. The
spectral index corresponding to loops formed during the matter era goes like f−1/3 due to the
summation of higher harmonics, instead of f−1 in the spectrum of the only fundamental Fourier

10L ≡

{
log3

[
(5.6×1030)

(
η

1015 GeV

)(
1 mHz
10f∆

)2( 10f∆
fKD

)3/2
]

log3
[
(5.6×1030)

(
η

1015 GeV

)(
1 mHz
10f∆

)2
]

}
.
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mode [1, 334, 352]. The drop at some high frequency is an artifact because we only sum up to
5× 105 modes.

GW from strings could experience a high-frequency cut-off due to the friction effect. This
could shift the spectral peak if the friction cut-off has a frequency lower than the matter-kination
era’s peak. We leave the dedicated study for future work. On the other hand, the spectrum could
exhibit the low-frequency cut-off (black dotted lines in Fig. 4.26) if the CS network manifests the
metastability similar to [1, 435, 555] in the context of local strings. The contour plot in Fig. 4.26-
left shows the compromise between the enhancement of the GW signal and the BBN bound when
the kination duration is increased.

A common origin for matter-kination era and GW source: axion strings. — An intriguing
possibility is if the physics responsible for kination induced by a spinning axion and the physics
responsible for the cosmic strings have a common origin. A U(1)-breaking phase transition gener-
ates cosmic strings at early times, and the dynamics of the axion at later times generate a kination
era. In this paper, we consider models (Sec. 7.1) where the radial mode of the complex scalar
field obtains a large VEV at early times during inflation, so all topological defects are diluted away.
However, in alternative constructions [551], the U(1) could be broken after inflation. This can lead
to the formation of a cosmic string network. A few efolds of kination for large fa values would then
be compatible with global strings with considerable tension and a detectable GW signal. For this
class of models, the axion could generate the multiple-peak GW signals from both inflation and
cosmic strings. We discuss the detectability of the axion-string GW enhanced by kination from
spinning axion in Fig. 6.6 in Sec. 6.4.3.

4.7.2 Multiple-peak signature: inflation + local cosmic strings

Three types of peaks. The physics explaining the presence of the cosmic strings is generally
unrelated to the inflationary sector. In the presence of multiple SGWB, the intermediate matter-
kination era can lead to a multiple-peak GW signal which the synergy of future detectors could
probe.

1. Peak signature of matter-kination era in inflationary GW, cf. Eq. (4.55).

2. Peak signature of matter-kination era in SGWB from local CS, cf. Eq. (4.62).

3. Peak in SGWB from local CS due to the transition between radiation and later matter era
around the temperature 0.75 eV, and whose frequency reads [1]

f cs
low ≃ 1.48 · 10−7 Hz

(
50× 10−11

ΓGµ

)
. (4.72)

The inflationary peak (1) can be easily distinguished from the CS peaks (2 and 3), which are broader
because the CS network takes time to react to the change of cosmology [1]. In this section, we point
out the possibility of a two-peak spectrum (two matter-kination peaks) and a three-peak spectrum
(two matter-kination peaks + one radiation-matter peak at lower frequency, Eq. (4.72)).

Peaks separation. We could observe either two (left panel) or three peaks (right panel) de-
pending on the separation between each peak, which are estimated from Eqs. (4.55), (4.62), and
(4.72)

f cs
peak

f cs
low

≃ 1.2 · 109
[
EKD

10 TeV

] [
ΓGµ

50× 10−11

] 1
2
[
0.1

α

] 1
2

, (4.73)

f cs
peak

f inf
peak

≃ 1.6 · 105
[

10

eNKD/2

] [
0.1× 50× 10−11

αΓGµ

] 1
2

, (4.74)

f inf
peak

f cs
low

≃ 7 · 103
[
EKD

10 TeV

][
eNKD/2

10

] [
ΓGµ

50× 10−11

]
, (4.75)
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Gravitational waves from global cosmic strings
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Figure 4.26: The GW spectrum from global strings with tension η is enhanced by a period of matter-
kination lasting for (2NKD +NKD) efolds, cf. Eq. (4.51). The kination era starts at energy scale EKD and
ends when the temperature of the Universe is T∆ (dashed lines). Left panel: In the coloured regions, the
peak is observable. BBN constrains late kination eras (gray) and long kination eras (red-hatched). The peak
is described by Eq. (4.69) and (4.71). The black dashed lines show the detectability prospects of hypothetical
HF experiments operating at 10 kHz, 1 MHz, and 1 GHz frequencies with sensitivity h2Ωsens = 10−10.
The QCD axion that allows a kination era could be DM along the solid-gray lines for the conventional and
ZN QCD-axion models, assuming kinetic misalignment (see Sec. 6.4). Right panel: The GW spectra
correspond to benchmark points in the left panel. The effect of metastable strings cut the spectrum at a low
frequency, as shown by the black dashed line for a network decay at T ∼ 100 MeV.

Figure 4.27: The longer kination era enhances the peak, allowing strings with smaller string scale η to be
probed.
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Gravitational waves from inflation and local cosmic strings

Figure 4.28: Two-peak (left) and three-peak (right) GW spectra from inflation and local CS network. We
assume the maximum inflationary scale allowed by CMB data Einf = 1.6× 1016 GeV [20, 55].

where we have assumed for simplicity that loops from kination era decay in the radiation era,
NKD < log(α/2ΓGµ)/3. For multiple observable peaks, the separations should be slight but not
overlapping.

Detectability of two peaks. — The combined GW spectra are shown in Fig. 4.28. LISA and
ET/CE can observe the two-peak spectrum in synergy.

Detectability of three peaks. — The lowest-frequency peak in the CS spectrum receives no
boost from kination but requires a large Gµ for its observability in the PTA range. However, the
flat part of CS in Eq. (3.47) could dominate over the boosted inflationary peak, Eq. (4.56). The
ratio between them is

Ωinf
peak

Ωcs
flat

≈ 0.8× 10−3

(
Einf

1016 GeV

)4(0.1× 10−11

αGµ

)1/2(
Γ

50

)1/2 [exp(NKD/2)

10

]4
. (4.76)

ForNKD = 5 andEinf = 1.6×1016 GeV, the string network with tensionGµ ≲ 10−15 allows the
inflationary peak to emerge. However, as shown in Fig. 4.28-right, the simultaneous observation
of the three peaks could be possible with the help of HF experiments [40].

Gravitational waves from inflation and global cosmic strings

Figure 4.29: Left: In the presence of GW from both inflation and global strings, as well as a matter-
kination era, the signal can have either one or two peaks. Right: Two-peak GW spectra from inflation at the
maximum inflation scale allowed by CMB data Einf = 1.6 × 1016 GeV [20, 55] and from global strings
with energy scale η = 2× 1014 GeV.
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Multiple-peak signature: inflation + global cosmic strings

Peaks separation. — The separation between the matter-kination peak in SGWB from global
string and primordial inflation can be read out from Eqs. (4.55) and (4.62)

f infKD

fglobKD

≃ (1.2 × 10−2)G1/4(T∆)
( α

0.1

)
. (4.77)

Interestingly, the peak separation is independent of the matter-kination parameters. The reason
is that global-string loops decay right after their production. So the GW frequency reflects the
horizon size directly at that time, similar to the inflationary GW.

Detectability of two peaks. — The visibility of each peak depends on their respective height,
determined by the string scale η and the inflationary scale Einf . The matter-kination peak in
the global-string spectrum, Eq. (4.71), is visible if its amplitude exceeds the inflation shoulder,
Eq. (4.56),

1 <
Ωglob
GW

Ωinf
GW

∣∣∣∣∣
fglobKD

=
Ωglob
GW,KD

Ωinf
GW,KD

(
f infKD

fglobKD

)2 (4.78)

= 6.4 · 102
[ η

1015 GeV

]4
G− 3

2 (T∆)

[
0.1

α

]2 [1016 GeV

Einf

]4
Flog(η15),

where

Flog(η) ≡ log3

[
(2.2 × 1018)

( η

1015 GeV

)( α

0.1

)2(109 GeV

EKD

)2
]

Conversely, the matter-kination peak signature in the primordial inflationary GW is visible if its
amplitude exceeds the global-string blue-tilted part,

1 >
Ωglob
GW

Ωinf
GW

∣∣∣∣∣
f infKD

=

Ωglob
GW,KD

(
f infKD

fglobKD

)
Ωinf
GW,KD

(4.79)

= 1.1 · 10−3
[ η

1015 GeV

]4
G− 3

4 (T∆)
[ α
0.1

] [1016 GeV

Einf

]4
Flog(η15)

Both conditions in Eq. (4.78) and (4.79) must be satisfied for a visible two-peak signature, as
illustrated in the white region of Fig. 4.29. Otherwise, only one peak is visible, either from global
strings (red region) or from inflation (blue region). Fig. 4.29 only depends logarithmically on
EKD, the white region moving to lower Einf by only 10% when EKD increases by three orders-of-
magnitude.

4.8 Effect on SGWB from First-Order Phase Transitions

In the previous sections, we have shown that the presence of a non-standard cosmological history
leads to many signatures in SGWB from the two main long-lasting sources: primordial inflation
or cosmic strings. Any GW signal whose production period lasts longer than the duration of the
non-standard era will receive a spectral distortion. This section will first show that this is also the
case for super-horizon Fourier modes of GW from short-lasting sources such as a cosmological
first-order phase transition (FOPT). Moreover, we later show that the amplitude of the GW peak
is reduced whenever the FOPT is produced during the non-standard era, focussing on the matter-
kination scenario (scheme E). One can generalize the analysis provided here to other short-lasting
SGWB sources, e.g., the preheating and the leading contribution to thermal GW.
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Figure 4.30: Spectral distortion of GW produced from a FOPT occurring before the matter-kination era
(Top left), during a matter era which is followed by a kination era (Top right), and during a kination era
(Bottom). To observe a triangular shape would be a smoking-gun of the scenarios studied in this work. The
present figure does not show the peak suppression and the overall frequency blue-shift when the PT takes
place during the non-standard era (e.g., middle and bottom panel here), and which we reserve for Fig. 4.31
and Fig. 4.32. Hdom, HKD, and H∆ are the comoving Hubble scales (H ≡ aH) at the beginning of the
matter era, at the transition to the kination era, and at the end of the kination era, respectively. The angular
wavenumber k is related to the linear frequency f by k = 2πf .

Spectral distortion

We consider a FOPT driven by a scalar field initially at thermal equilibrium with the radiation
component. Depending on the amount of supercooling, GW is either sourced by the collision
of bubble walls or by fluids motions, e.g., [152–154]. The peak amplitude of the GW can be
formulated as

h2ΩGW(k)
∣∣
t0
≃ h2

(
ap
a0

)4( ρtot,p
ρtot,0

)(
Hp

β

)m( κα

1 + α+ γ

)2

F(k, β), (4.80)

where ρtot,i is the total energy density of the Universe at time i, Tp andHp are the temperature and
Hubble scale at the time of GW production, β−1 is the duration of the transition, α is the ratio of
the vacuum energy difference over the radiation energy density, κ is the conversion coefficient and
F(k, β) is the spectral shape. We expect m = 1 for GW from long-lived fluid motion and m = 2
for GW from short-lived fluid motion or bubble wall collisions. Since our focus is on the effects
from the matter-kination era, we have neglected factors involving the wall velocity vw. The factor
γ is the ratio of the energy density of the new sector, the spinning axion in our case, to that of
radiation

γ ≡ ρNS/ρrad. (4.81)
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The case γ = 0 corresponds to the FOPT occurring during the standard radiation era. Additionally,
the peak frequency is shifted with respect to the standard scenario by

fNS = fST

(
a0
apHp

)
ST

(
apHp

a0

)
NS

. (4.82)

Super-horizon modes are sensitive to the EOS. Due to causality, the IR slope of GW spectrum
from FOPT is expected to scale as ΩGW ∝ k3 during radiation domination [556–558]. However,
in generic background with EOS ω, we expect the spectral index of super-Hubble Fourier modes
to be [462] (see also [559–561])

ΩGW(k) ∝

 k3, for k ≳ Hp,

k
1+15ω
1+3ω , for k ≲ Hp,

(4.83)

where Hp =
ap
a0
Hp is the comoving Hubble radius at the time of the PT. Therefore, during the

matter and kination era, the slopes become k1 and k4 for superhorizon modes. To understand the
scaling, it is possible to apply the argument in Sec. 4.2. The contribution from the superhorizon
modes of GW continuously re-enters the horizon after the production process ceases. However,
the slope from the mode – re-entering during the radiation era – has a k3 slope. Therefore, the
correction due to the non-standard era is added to this scaling, i.e., the red and blue tilts from
the matter and kination era. The resulting spectral shape is shown in Fig. 4.30. Assuming on
the intermediate matter-kination case (scheme E), we recognize the same triangular shape as the
imprint in GW from primordial inflation and cosmic strings, cf. Sec. 4.7.1.

Uniform shift of the spectrum

Usually, a matter era is followed by a heated radiation era which implies a violation of entropy
conservation, see, e.g., [532]. Instead, if the matter era is followed by a kination era, as considered
in this paper, cf. Fig. 4.31, there is no entropy injection, which implies(

ap
a0

)
NS

=

(
ap
a0

)
ST

. (4.84)

As we will see later in Eq. (4.90), (4.91) and (4.84), we deduce the displacement of the GW peak
amplitude and frequency if emission occurs during the matter-kination era

ΩNS
GW

ΩST
GW

=

(
ρNS
p,tot

ρSTp,tot

)[
(1 + α)ST

(1 + α+ γ)NS

]2
=

(
ρSTp,tot

ρNS
p,tot

)
, (4.85)

fNS

fST
=

(
HNS

p

HST
p

)
=

(
ρNS
p,tot

ρSTp,tot

)1/2

, (4.86)

where we have assumed unchanged α, κ, and β/Hp.11 We see that if the PT occurs during the
non-standard era, ρNS

p,tot > ρSTp,tot, the amplitude of the GW peak is suppressed. Its frequency is
blue-shifted, concerning the one assuming a standard cosmological history, which is in agreement
with previous literature [458, 465, 512, 559]. In contrast, if the spinning axion energy density is
sub-dominant at the time of GW production, γ → 0 in Eq. (4.81), then there is no modification of
the GW peak position concerning the standard scenario.

Due to the absence of entropy injection, cf. Eq. (4.84), the amplitude Ωpeak
GW and frequency fp

of the peak are dispensed from the additional suppression factor 1/D4/3 and redshift factor 1/D,
respectively, where D ≡ Safter

Sbefore
≥ 1 is the usual dilution factor, e.g. [562].

11α ≡ ∆V
ρrad(Tp)

, where ∆V is the vacuum energy difference, is left unchanged if Tp is unchanged. κ ≡ ρsource
ρrad

where

ρsource is the energy density of the GW source, is intrinsically independent of the background. β/Hp ≡ T
Γ
∂Γ
∂T

∣∣∣
Tp

where

Γ is the tunneling rate, is left unchanged if Γ(T ) is unchanged.
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Figure 4.31: The left panel compares the evolution of the total energy density of the Universe in the
kination-matter scenario (colored) and the one in the standard cosmological history (black). The black
dashed line is the expected energy density in GW produced during a thermal FOPT at some temperature
Tp. Since β/Hp is independent of the EOS of the Universe, the colliding bubbles during the new-sector
domination are smaller in size, and the GW production is suppressed. The right panel shows the amplitude
suppression (green and orange lines) and blue-shift (gray dashed lines) of the GW peak when the FOPT
takes place during the matter-kination era, cf. Eq. (4.90) and (4.91), with respect to the standard radiation-
dominated history (black line). The maximum suppression, shown in red, occurs when the PT occurs at the
onset of the kination era.

A shift of the GW peak position, more precisely. — We consider a kination-matter era with
energy scale at the onset of kinationEKD ≡ ρ

1/4
KD and withNKD efolds of kinations, as in Fig. 4.31.

Using Eq. (4.47) and (4.49), we obtain the corresponding temperatures of the radiation bath at the
onset of matter, at the onset of kination, and at the end of kination, respectively

Tdom =

(
30

π2g∗(Tdom)

)1/4

EKD exp

(
3

2
NKD

)
, (4.87)

TKD =

(
30

π2g∗(TKD)

)1/4

EKD exp

(
−1

2
NKD

)
, (4.88)

T∆ =

(
30

π2g∗(T∆)

)1/4

EKD exp

(
−3

2
NKD

)
. (4.89)

The amplitude of the GW peak in the presence of a kination-matter era reads

ΩNS
GW

ΩST
GW

=



1 for Tp < T∆,(
g∗(TKD)g∗(T∆)

g2∗(Tp)

)(
T∆
Tp

)2
for TKD > Tp ≥ T∆,(

Tp
TKD

)
exp(−2NKD) for Tdom > Tp ≥ TKD,

1 for Tp ≥ Tdom,

(4.90)

while its frequency is

fNS

fST
=



1 for Tp < T∆,(
g2∗(Tp)

g∗(TKD)g∗(T∆)

)1/2 ( Tp
T∆

)
for TKD > Tp ≥ T∆,(

TKD
Tp

)1/2
exp(NKD) for Tdom > Tp ≥ TKD,

1 for Tp ≥ Tdom.

(4.91)

The largest modification occurs when the PT takes place at the start of the kination era, Tp = TKD,
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for which the peak amplitude and frequency are given by

ΩNS
GW

ΩST
GW

∣∣∣∣
KD

= exp(−2NKD), and
fNS

fST

∣∣∣∣
KD

= exp(NKD), (4.92)

The right panel of Fig. 4.31 shows the peak position of the modified GW spectrum in the presence
of the kination-matter era, compared to the one assuming a standard cosmological history. The
GW amplitude in the standard cosmological history (black line) is approximately constant with
varying Tp, i.e. ΩGW,ST ∝ (ap/a0)

4 ρp,tot ∝ constant, while the peak frequency grows linearly
with the temperature fST ∝ apHp ∝ Tp. In contrast, during the kination and matter eras, the peak
amplitude ΩNS

GW scales with the peak frequency as f−1
NS and f2NS, respectively.
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Figure 4.32: Hp and Hdom are the Hubble
scales at the time of GW production and at the
onset of the matter-kination era, respectively.
Super-horizon modes (i.e. emitted with a fre-
quency f∗ < H/2π), are sensitive to the EOS
of the Universe as stated in Eq. (4.83) (blue-
ish lines). Here for Hp < Hdom, the PT takes
place during the non-standard era (either mat-
ter or kination) so its peak amplitude is sup-
pressed and blue-shifted as stated by Eq. (4.85)
and Eq. (4.86) (red-ish lines). The GW spectrum
in standard radiation cosmology is computed ac-
cording to [154].

Origin of the peak suppression. — The NS-to-standard GW density ratio in Eq. (4.85) can
be rewritten as the ratio of Hubble horizon

ΩNS
GW

ΩST
GW

=

(
ρSTp,tot

ρNS
p,tot

)
=

(
HST

p

HNS
p

)2

. (4.93)

At fixed β/Hp, the bubble size at collision is smaller during kination or matter era, implying a
smaller GW amplitude. Finally, the overall impact of the matter-kination era on the short-lasting
sources such as FOPT is shown in Fig. 4.32.

4.9 Chapter Summary

This chapter investigates primordial SGWB’s ability to chart cosmological histories. As the Uni-
verse above the BBN scale is unconstrained, we consider two classes of non-standard scenarios –
beyond the usually-assumed radiation-dominated Universe: the non-standard eras right after infla-
tion and inside the radiation era, which are divided further into five schemes depending on their
EOS. The corresponding effects on the SGWB of long-lasting sources are smoking-gun signatures
derived from a simple argument. The matter and inflationary eras suppress the spectrum, while the
kination boosts the SGWB energy density.

Assuming the standard radiation cosmology, the SGWB from the primordial inflation – at the
highest inflationary scale allowed by observations – is barely observable by the future-planned
observatories. Therefore, discovering any spectral suppression from the matter or the secondary
inflation will remain uncharted. The kination era right after inflation enhances the relic GW too
much and is strongly constrained by the ∆Neff bound. No enhancement feature can be probed;
only the ultra-high frequency experiments beyond the ET band could do so. On the other hand,
SGWB from cosmic strings has a far greater opportunity.
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Cosmic archeology with gravitational waves from local cosmic strings
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Figure 4.33: left: Sensitivity to the energy scaleE∆ of the Universe at the end of any non-inflationary non-
standard era for each future GW interferometer. The connection to E∆ is given by the observation of the
turning-point frequency defined in Eq. (B.51). The width of the bands includes varying the string tension
for Gµ < 10−10. The dotted, dashed and solid lines correspond to different observational prescriptions
defined in Sec. 4.2.3. right: Sensitivity to the energy scale Einf of an intermediate inflationary era for each
future GW interferometer as well as for future radio telescope SKA. The connection to Einf is given by
the observation of the turning-point frequency defined in Eq. (B.52). The width of the band also includes
varying the number of efolds of inflation Ne up to 20.

Reach of different observatories at a glance (local cosmic strings). — Our analysis shows
it is impossible to associate a given new physics energy scale with a given frequency band of
observation. By probing the turning point in the spectrum, a given frequency band is associated
with different energy scales, depending on the nature and duration of the non-standard era and the
value of the string tension. Still, Fig. 4.33 compares the reach of each experiment on the energy
scale of the non-standard era. The precise numbers depend on the definition of the observable used
to probe the non-standard physics. For any non-inflationary non-standard era (left plot), we use the
turning-point frequency in Eq. (B.51). It depends sensitively on the precision of the measurement.
A realistic value is ∼ 10%; we also show results for the idealistic case of 1% for comparison.
These plots include a variation of Gµ. In Fig. 4.33-right, we show the case of an intermediate
inflationary era, which depends very sensitively on the number of efolds. In contrast to other non-
standard cosmologies, the turning point frequency does not depend on the duration. The left plot
applies to any non-standard era with the equation of state ρ ∼ a−n with any n between 3 and
6, regardless of the duration of this non-standard era. Interestingly, radio telescope SKA can be
sensitive to a low-scale inflationary era. Note that the bands in Fig. 4.33 are calculated by neglecting
particle production, which will affect mostly ET and CE, cf. Figs. 4.6 and 4.19. The lower bound
on T∆ and Einf should be weaker by one order of magnitude for ET and CE if there is a cutoff
from particle production. For global cosmic strings, the turning point in Fig. 4.8 directly relates
to the temperature at the end of the non-standard phase, regardless of its tension, thanks to the
fast-decaying loops.

Another important question will be how to distinguish between a stage of matter era, infla-
tionary expansion, and the effect of particle productions. All lead to a suppression of the SGWB
and lead to similar spectra. Interestingly, particle production by cosmic string networks can be
probed through cosmic rays and bring complementary non-gravitational information to the SGWB
[563, 564]. Besides, the complementarity between different GW instruments will be crucial as the
detection of the low-frequency peak of the spectrum (due to the transition from the standard radia-
tion to the standard matter era) can enable to probe of the string tension and break the degeneracy
between different spectral predictions. The possibility of reconstructing the spectral shape of an
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SGWB was analyzed in [479] using LISA data only. In the case of a SGWB generated by CS,
which can span more than twenty decades in frequency, it will be crucial to use data from different
interferometers (and even from radio telescopes) to probe the full spectrum.

Interestingly, we investigate the intermediate kination era inside the standard radiation era –
unrelated to the dynamics of inflaton – which has not been studied so far in the literature, except
in the papers of the thesis’ author and another coincident work [3, 4, 274]. In this scheme, the
kination happens after the matter era and for a short period, allowing the observable enhanced
spectra of SGWB from primordial inflation, and local and global cosmic strings without violating
∆Neff bound. A striking feature – a peaked spectrum – carries the information of the energy scale
and duration of the kination era. Consider the inflationary GW from the highest inflation scale as
an example. ET and CE can chart the intermediate kination era at energy scale 106÷9 GeV, while
LISA probes 101÷5 GeV. In the presence of many long-lasting sources, there is a possibility to
observe multiple-peak signatures within a range of one experiment.

Lastly, we also discuss the effects of non-standard eras on the SGWB from short-lasting sources
such as the FOPT. The expansion rate beyond that of the radiation era shifts the spectrum as a
whole since the GW has been produced all at once. The exception is only for the super-horizon
contribution, seen in the causality tail of the spectrum, which acts as a long-lasting source and can
be imprinted with a similar feature discussed above.

So far, we discuss the intermediate non-standard cosmological histories without much motiva-
tion for their origins. The second part of this thesis studies the intermediate matter era from the
unstable particles and the intermediate kination era from the spinning axion. In both cases, GW
observatories greatly extend the discovery/constraint bands on particle-physics parameter spaces.
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Chapter 5

Intermediate Matter-Domination Era:
Heavy-Unstable Particles
Based on
[2] Y. Gouttenoire, G. Servant and P. Simakachorn, BSM with Cosmic Strings: Heavy, up to EeV
mass, Unstable Particles, JCAP 07 (2020) 016, [1912.03245].

The existence of massive particles X , with mass mX ≫ TeV, is a generic prediction of many
well-motivated extensions of the Standard Model (SM) of particle physics, such as Grand Unified
Theories, extra-dimensional models inspired by String Theory or supersymmetric constructions.
Suppose such particles are stable and still present in our Universe today. In that case, they can con-
tribute to the dark matter, in which case a variety of detection strategies has been explored depend-
ing on their mass range and the nature of their interactions. On the other hand, unstable particles
beyond the Standard Model (BSM) are very difficult to probe experimentally. The best chances
are through their effects on cosmological observables. The strongest limits come from Big-Bang
Nucleosynthesis (BBN) since any heavy relic which decays after BBN would ruin the predicted
abundances of light elements. From BBN, one obtains general model-independent bounds in the
plane (τX , mXYX) where τX is their lifetime, mX their mass and mXYX is their would-be con-
tribution to the total energy density of the Universe today if they had not decayed [565–568]. We
can therefore infer indirect information on their couplings through the constraints on their lifetime
and the efficiency of their production mechanism in the early Universe. In the present chapter, we
show how a sizeable new region unexplored so far in the (τX ,mXYX) plane can be probed using
future GW observatories.

Our starting assumption is that these particles can temporarily dominate the energy density
of the Universe and therefore induce a period of matter domination within the radiation era after
post-inflationary reheating, so-called the intermediate matter era. This leads to a modified cosmic
expansion compared to the vanilla single radiation era. Interestingly, such modified cosmological
history can be probed if, during this period, there is an active GW source, in which case the resulting
GW spectrum would imprint any modification of the equation of state of the Universe. Particularly
well-motivated are the long-lasting GW production from cosmic-string (CS) networks, discussed
in Chap. 3, whose scale-invariant GW spectrum would signal any deviation1. Moreover, we ac-
count for the extra time needed by the long-string network to respond to the change of cosmology,
inducing a shift by one or two orders of magnitude of the turning-point frequency characterizing
the non-standard matter era.

In this chapter, we assume the presence of a heavy, unstable, and cold particle X dominating
the energy density of the Universe at the temperature Tdom and decaying at the temperature Tdec.
The success of BBN in a standard radiation-dominated Universe currently provides the most robust
constraint on such a scenario, Tdec ≳ 1 MeV. Our key point is that observing a flat GW spectrum
from local CS would extend the BBN constraints on heavy relics by far. All assumptions relevant

1The inflationary SGWB also exhibits similar signature, but its amplitude is too weak to be probed by most of the
observatories.
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to our conclusions are discussed in Chap. 3 (based on Ref. [1]), where we refine and extend the
work of [294, 295] beyond the scaling regime during the change of cosmology. We also consider
the recent discussion on the effect of particle production on the SGWB [391].

In Sec. 5.1, we compute the GW spectrum in the presence of an intermediate matter era. We
then derive the improvement by many orders of magnitude of the current model-independent BBN
constraints on the abundance and lifetime of a particle, cf. Fig. 5.3, that can be inferred from
the detection of GW produced by CS. In Sec. 5.3, we provide unprecedented exclusion bounds
on four particle-physics models leading to an early matter domination era: oscillating scalar mod-
uli in supersymmetric theories, secluded scalar sectors which are only gravitationally produced,
scalars produced through the Higgs portal, and massive dark photons. At the very end, we also
study the scenario where the dark photon mass and the cosmic string network are generated by the
spontaneous breaking of the same U(1) symmetry.
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Figure 5.1: SGWB generated by the gravitational decay of cosmic strings compared to the reach of different
GW interferometers. We show the impact of a long (red) or a short (blue) intermediate matter era, starting
at the temperature rT∆ and ending at T∆ = 10 MeV or T∆ = 10 TeV. Black lines show the results obtained
assuming standard cosmological evolution. The dashed-lines assume that the scaling regime switches on
instantaneously during the change of cosmology whereas the solid lines incorporate the transient behavior,
solution of the VOS equations, as discussed in Chap. 3. Limitations due to particle production assuming that
cusps dominate the small-scale structures are shown with dotted lines [1]. The dotted vertical lines indicate
the relation in Eq. (5.1) between the temperature T∆ and the frequency f∆ of the turning point, where the
matter-era-tilted spectrum meets the radiation-era-flat spectrum.

5.1 The imprints of an early era of matter domination

5.1.1 Modified spectral index

The part of the spectrum coming from loops produced and emitting during radiation is flat since
there is an exact cancellation between the red-tilted redshift factor and the blue-tilted loop number
density. However, in the case of a matter era, a mismatch induces a slope f−1 for the fundamental
mode and f−1/3 when higher modes are included, cf. Eq. (3.31) and App. B.3.7. The impact of a
non-standard matter era is shown in Fig. 5.1.

The GW frequency detected today f∆ of the turning point between the end of the matter dom-
ination and the beginning of the radiation domination can be related to the temperature of the Uni-
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verse T∆ when the change of cosmology occurs via the analytic relation Eq. (3.33) in Sec. 3.2.5.
However, the turning point that would be seen in experiments shifts from Eq. (3.33) due to the
transient regime of the network adapting to a change of cosmology. As an illustration, Fig. 5.1
compares the spectrum computed by assuming that the scaling regime is reached instantaneously
during the change of cosmology with the full solution of the VOS equations. It shows that the
turning point frequency, which is a signature of the evolution of cosmology from matter to radia-
tion, is over-estimated by more than one order of magnitude in the scaling approximation. From
Eq. (B.51) in appendix, we quote

f∆ = (2× 10−3 Hz)
(
T∆
GeV

)(
0.1× 50× 10−11

αΓGµ

)1/2(
g∗(T∆)

g∗(T0)

)1/4

. (5.1)

An extensive discussion of this frequency-temperature relation as provided in Sec. 3.2.5 and
App. B.4. The above formula entirely relies on the assumptions that the back-reaction scale is ΓGµ
as claimed by Blanco-Pillado et al. [345, 376, 399] and not much lower as claimed by Ringeval et
al. [194, 398].

5.1.2 The reach of GW interferometers

GW spectra from CS for two values of Gµ = 10−15, 10−11 are plotted in Fig. 5.1, together with
the power-law sensitivity curves of NANOGrav [370], EPTA [569], SKA [207], LIGO [226], DE-
CIGO, BBO [68], LISA [65], Einstein Telescope [66, 67] and Cosmic Explorer [228]. Only EPTA,
NANOGrav, and LIGO O1/O2 (not visible on the plots) are current constraints, the other being pro-
jected sensitivities of future projects. The power-law integrated sensitivity curves are computed in
[1] with a signal-to-noise ratio SNR=10 and an observation time of 10 years. At lower string ten-
sionGµ, the GW power emission per loop is smaller; hence the amplitude is suppressed. Also, for
lower values of Gµ, loops decay more slowly, and GW is emitted later, implying a lower red-shift
factor and a global shift of the spectrum towards higher frequency.

The strongest constraints come from pulsar timing array EPTA, Gµ ≲ 8 × 10−10 [369], and
NANOGrav, Gµ ≲ 5.3× 10−11 [370], therefore we limit ourselves to Gµ < 10−11. Our analysis
is based on the assumption that the astrophysical foreground can be subtracted. The GW spectrum
generated by the astrophysical foreground increases with frequency as f2/3 [253], differently from
the GW spectrum generated by CS during radiation (flat) or during matter (f−1).

5.1.3 How to detect a matter era with a GW interferometer

For a first qualitative analysis, we start with two simple prescriptions for detecting a matter era
from the measurement of a SGWB from CS by a GW interferometer:

• Rx 1 (turning-point prescription): The turning point, namely the frequency at which the
spectral index of the GW spectrum changes, corresponding to the transition from the matter
to the radiation era, defined in Eq. (5.1), must be inside the interferometer window, as shown
for instance in Fig. 5.1.

• Rx 2 (spectra-index prescription): The measured spectral index must be smaller than −0.2,
namely β < −0.2 where ΩGWh

2 ∝ fβ .

We compare the two prescriptions in Fig. 5.2. The prescription Rx 1 is more conservative but
enough to measure the particle’s lifetime. In our study, we use the prescription Rx 1 and, in Fig. 5.4,
we show how to extend the constraints with Rx 2.

We note here that the presence of the turning point and the changed spectral index at high
frequencies would be similar in the case of a long intermediate inflationary era instead of an in-
termediate matter era. Disentangling the two effects deserves further studies. Interestingly, high-
frequency burst signals due to cusp formation could be a way-out [1]. In the analysis of this paper,
we interpret the suppression of the GW spectrum as due to an intermediate matter era.
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Figure 5.2: left: SGWB forGµ = 10−11 assuming that a heavy cold particle dominates the energy density
of the Universe at the temperature Tdom and decays at the temperature T∆ = Tdec. right: Considering the
particular case of the Einstein Telescope, we illustrate how the constraints on the abundance and lifetime of
a heavy relic depend on the choice of the prescription, Rx 1 or Rx 2 defined in Sec. 5.1.3.

5.2 Model-independent constraints on particle physics parameters

A matter-dominated era may result from an oscillating scalar field [517], such as a moduli field, or
a relativistic plasma with a non-vanishing tensor bulk viscosity [459], or simply a massive particle
dominating the energy density of the Universe. A matter-dominated era may be motivated by the
possibility of enhancing structure growth at small scales since density perturbations start to grow
linearly earlier [528, 570], hence boosting the dark matter indirect detection signals [571, 572], or
the possibility to enhance the primordial black holes production [573–575].

We suppose an early-matter era is caused by the energy density of a cold particle X , i.e. X
is non-relativistic and is decoupled chemically and kinetically from the visible sector. The energy
density mXnX of X dominates over the energy density of the SM radiation, with entropy sSM, at
the temperature Tdom

Tdom =
4

3
mXYX , YX ≡ nX/sSM. (5.2)

Then, the cold relic decays when its lifetime τX is equal to the age of the Universe, corresponding
to the temperature

Tdec = 1 GeV
(

80

gSM

)1/4(2.7× 10−7 s
τX

)1/2

. (5.3)

Note that the above relation between Tdec and τX only assumes that the decay is followed by a
radiation-dominated era and is independent of the previous thermal history of the Universe. Tdec
is sometimes referred, mistakenly though [576], as the reheating temperature following the decay.
We propose to use the third generation of GW interferometers to constrain cold relics responsible
for early-matter domination. The constraints we will derive rely on the following assumptions:

1) A SGWB from CS with tension Gµ is measured by a GW interferometer i.

2) The cold particle is abundant enough to lead to a matter-dominated era before it decays

Tdom > Tdec , (5.4)

where Tdom and Tdec satisfy Eqs. (5.2) and (5.3).
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Figure 5.3: Constraints on the lifetime τX and would-be abundance mXYX of a heavy unstable particle
inducing an early-matter era, assuming the observation of a SGWB from CS by a GW interferometer, cf.
Sec. 5.2. We compare the new prospects with the current limits inferred from BBN [566–568]. We assume
the detectability of the turning point in the GW spectrum at the frequency f∆, induced by the decay of the
particle at Tdec = T∆, cf. turning-point description Rx 1 in Sec. 5.1.3. Limitation due to particle production
in the cusp-domination case – discussed in Sec. 3.2.1 – are shown in purple.

3) The prescription Rx 1 of Sec. 5.1.3 is used, i.e. the turning point in the GW spectrum is in
the observation window of the detector and

ΩGW (f∆(Tdec, Gµ), Gµ)h
2 > Ω(i)

sensh
2, (5.5)

where ΩGW (f, Gµ)h2 is the predicted scale-invariant GW spectrum from Eq. (3.47), and
Ω
(i)
sensh2 is the power-law sensitivity curve of the detector i.

Fig. 5.3 shows these new constraints in comparison with the current complementary constraints
from BBN, usually represented in the plane (τX , mXYX) [566–568]. We can translate the sensitiv-
ity of each interferometer to probe the particle lifetime into typical mass windows, assuming some
decay width. This is illustrated in Fig. 5.4 with a Planck-suppressed decay width ΓX ∝ m3

X/M
2
pl.
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Figure 5.4: Reach of future GW interferometers on the mass of a heavy particle decaying through a Planck
suppressed operator, ΓX ∝ m3

X/M
2
pl, supposing that it is sufficiently produced to induce a matter era

before the decay. We compare the turning-point prescription (Rx 1) and the spectral-index prescription (Rx
2) discussed in Sec. 5.1.3. In Sec. 5.3, we study three different production mechanisms of such particle
with Planck suppressed decay width: scalar oscillating moduli produced after supersymmetry breaking in
Sec. 5.3.1, scalar particle gravitationally produced at the end of inflation in Sec. 5.3.2, or scalar particle
produced via thermal freeze-in assuming a Higgs-mixing in Sec. 5.3.3.

5.3 Benchmark models

5.3.1 Oscillating scalar moduli

String theory vacua feature moduli fields that characterize the size and shape of the compactification
manifold. From a 4D effective field theory perspective, they are fields with flat potential, e.g.,
axions or dilatons. After supersymmetry (SUSY) breaking, one expects moduli fields to acquire a
mass of the order of the gravitino mass scale for the lightest [577], e.g., m3/2 ∼ TeV for low-scale
SUSY. As soon as the Hubble rate satisfies H ≲ mϕ, the scalar field starts coherent oscillations,
and its energy density redshifts as matter. We assume that the onset of oscillations occurs during
radiation domination, at the temperature Tosc

π2g∗T
4
osc

90M2
pl

≡ m2
ϕ (5.6)

where we fix the number of relativistic degrees of freedom to the fiducial value g∗ = 106.75. Then,
the moduli start dominating the energy density of the Universe at the temperature, cf. Eq. (5.2)

Tdom =
4

3

ρoscϕ
sosc

≡
1
2m

2
ϕϕ

2
0

2π2

45 g∗T
3
osc

, (5.7)

where ϕ0 is the vacuum expectation value of the moduli field when it starts to oscillate. For con-
creteness, we consider moduli fields which interact with the visible sector via Planck-suppressed
operators and hence have decay widths of order

Γϕ ≃ c

8π
·
m3
ϕ

M2
pl

, (5.8)

where Mpl ≃ 2.4 × 10−18 GeV and c is a model-dependent factor which we suppose to be in the
range 10−2 ≲ c ≲ 102. For TeV-scale moduli mass, the moduli lifetime is long, τϕ ≃ Γ−1

ϕ ∼
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105 s, and the decay occurs much after BBN. Imposing that the energy density of the moduli decay
products, ρϕ, is smaller than a fraction 10−14 of the total entropy density of the Universe in order to
preserve the predictions of BBN, cf. Fig. 5.3 and [566–568], one constrains the vacuum expectation
value of the moduli field, just after it starts oscillating, to be, cf. Fig. 5.5

BBN is preserved for TeV-scale moduli: ϕ0 ≲ 10−12 Mpl. (5.9)

A large moduli VEV is expected from the dependence of the moduli potential on the inflaton VEV
[578–581], except if the scalar moduli field lies at a point of enhanced symmetry where the induced
minimum at late times coincides with the minimum at earlier times [582]. However, even in the case
where the moduli VEV after SUSY breaking remains small, one expects moduli to be copiously
produced both through thermal [583–585] and gravitational production, cf. Sec. 5.3.2 and [586,
587], hence violating the bound in Eq. (5.9).
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Figure 5.5: Constraints on a moduli field oscillating in the early Universe around its minima with initial
amplitude ϕ0 and mass mϕ, from the non-observation of its signature in the GW spectrum from CS with
tension Gµ = 10−11. In stringy UV completions, the lightest moduli field is related to the gravitino scale
mX ∼ m3/2 [577]. The BBN constraints are taken from [566–568]. We use the turning-point prescription
(Rx 1) discussed in Sec. 5.1.3. Constraints are tightened when considering the spectral-index prescription
(Rx 2), as illustrated in Fig. 5.4.

The scalar moduli problem is similar to the gravitino problem [588], both are copiously pro-
duced relics, with weak-scale mass and Planck-suppressed decay rate, spoiling the BBN predic-
tions. An important difference is that during inflation, the energy density is diluted in the fermionic
case but is frozen in the scalar case as long as H ≫ mϕ. Hence, as opposed to the gravitino case,
only a low-scale (weak-scale) inflation can exponentially dilute the scalar field and solve the moduli
problem [589]. Other proposed solutions are to increase the moduli mass up tomϕ ∼ O(103)m3/2,
cf. Fig. 5.5 and [590], or to form substructures (modular stars) which enhances the decay [591, 592],
or to produce gauge fields from the tachyonic instability [593].

A pragmatic approach to solve the moduli problem is to break SUSY at a much larger scale,
at the expense of large fine-tuning, like in so-called High-scale SUSY [594] or Split SUSY [595].
A larger SUSY breaking scale improves gauge coupling unification [596], is compatible with the
Higgs at 125 GeV [597] and is free from the main difficulties encountered by low-scale SUSY
such as large flavor and CP violation [598]. In Split and High-scale SUSY, a 125 GeV Higgs is
compatible with a SUSY breaking scale as large as 108 GeV and 1012 GeV respectively [597].
Moduli fields with masses of the same order would then induce an early matter era, leading to
detectable features in the GW background.
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As shown in Fig. 5.5, the observation of a SGWB from CS with one of the next generation
GW interferometers would provide constraints on moduli masses up to ≲ 1010 GeV, well above
the current ≲ 100 TeV currently probed by BBN. Hence, GW from CS would be a promising tool
to investigate superstring theories if detected.

In addition to being naturally motivated in SUSY constructions, moduli fields have interest-
ing cosmological consequences: Afflect-Dine baryogenesis [580, 599], non-thermal production of
Wino-DM [581, 600, 601], formation of oscillons or Q-balls [592], the required entropy injection
to allow thermal DM much heavier than the standard unitarity bound ∼ 100 TeV [532] or to re-
vive Grand-Unified-Theory-scale QCD axion DM [602], see Ref. [603] for a review on the moduli
problem and its cosmological implications.

5.3.2 Scalar particles produced gravitationally

In the previous subsection, Sec. 5.3.1, we considered a model of gravitationally-only interacting
particle whose abundance is given by the misalignment mechanism after SUSY breaking. Instead,
we now consider the possibility of producing such a particle, gravitationally only, at the end of
inflation. In the following subsection, Sec. 5.3.3, we also consider the possibility of a thermal
production via freeze-in through a Higgs mixing in the case of the conformal scalar ξ = 1/6 where
the gravitational production is too small to lead to early matter domination.

A massive particle can be gravitationally produced at the end of the inflation due to the non-
adiabatic change of its curvature-induced mass from deep de Sitter to deep radiation-domination
[83, 485, 604–606], hence possibly leading to heavy dark matter WIMPzillas [607–611]. Our
interest here is not to explain DM but to predict a non-standard matter era in the early Universe.
If coupled non-conformally to gravity and if the condition of non-adiabaticity, mX ≲ Hinf , is
satisfied, then the particle χ will be produced abundantly, potentially leading to an early matter
domination. The lagrangian is

S =

∫
d4x

√
−g
[
1

2

(
M2

P − ξχ2
)
R− 1

2
gµν∂µχ∂νχ− 1

2
m2
χχ

2

]
, (5.10)

with ξ the non-minimal coupling to gravity. We consider the cases ξ = 0 (minimal coupling) and
ξ = 1/6 (conformal coupling). We suppose that the scalar χ decays gravitationally through Planck
suppressed operators

Γχ ≃ 1

8π

m3
χ

M2
P

. (5.11)

A too light scalar would spoil the BBN prediction. The comoving number density, Yχ ≡ nχ/s, of
a minimal scalar, ξ = 0, after gravitational production is [610]

Y ξ=0
χ ≃

H2
rehHinf

s


96

Hinf

mχ

mχ

Hinf
< 1,

0.76
Hinf

mχ
e−2mχ/Hinf

mχ

Hinf
> 1,

(5.12)

whereHinf andHreh are the Hubble factors at the end of inflation and reheating. We have checked
that particle production caused by the oscillations of the inflaton during preheating, potentially
relevant when Hinf ≲ mχ ≲ mϕ where mϕ is the inflaton mass [611–615], is not strong enough
to ignite early matter domination before BBN.

For our study, we fix the inflation scale Hinf = 1013 GeV close to its upper bound value
6 × 1013 GeV from the non-detection of the fundamental B-mode polarization patterns in the
CMB [20, 55]. If produced sufficiently, the scalar field can lead to an early-matter domination
era. In Fig. 5.6, we show the GW constraints on the χ scalar particle, which is non-conformally
coupled to gravity. We see that for reheating temperature larger than 107 GeV, the scalar field is
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(ξ = 0) decaying via a Planck suppressed oper-
ator, cf. Sec. 5.3.2, assuming the observation of
a SGWB from CS with tension Gµ = 10−11 by
third-generation GW detectors. We have fixed
the inflation scale Hinf = 1013 GeV. We use
the turning-point prescription (Rx 1) discussed
in Sec. 5.1.3. Constraints are tightened when
considering the spectral-index prescription (Rx
2), as shown in Fig. 5.4.
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Fig. 5.4.

sufficiently produced by gravitational effects at the end of inflation to dominate the energy density
of the Universe before BBN starts and be detected in GW experiments. Masses as large as 1010 GeV
can be probed.

The gravitational production of particles conformally coupled to gravity, i.e. scalars with ξ =
1/6, transverse vectors or fermions, is less efficient than for a minimal scalar, ξ = 0 [610, 614, 616–
618]. Here we give the abundance computed in [610] for a conformal scalar2

Y ξ=1/6
χ ≃

H2
rehHinf

s


0.0010

mχ

Hinf
for

mχ

Hinf
< 1,

0.0040
Hinf

mχ
e−2mχ/Hinf for

mχ

Hinf
> 1,

(5.13)

We check that the gravitational production of such particles, conformally-coupled to gravity, is not
strong enough to lead to a matter-domination era before BBN starts if the reheating temperature

2Here ‘conformal scalar’ means ‘conformally coupled to gravity’ with ξ = 1/6. In any case, the conformal symmetry
is broken via the scalar mass term.
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following inflation is below 1013 GeV. Hence, in the next section, we consider another production
mechanism by introducing a mixing with the standard model Higgs.

5.3.3 Scalar particles produced through the Higgs portal

The gravitational production of a scalar conformally-coupled to gravity (ξ = 1/6) is too small to
lead to early-matter domination. On the other hand, a mixing with the Higgs H

L ⊃ κ

2
χ2|H|2, (5.14)

can lead to a large abundance via thermal freeze-in [610]

Yχ ≃
H2

rehHinf

s


105|κ|2

64π4
T 12
max

H4
inf m

8
χ

e−2mχ/Tmaxf0

(
mχ
Tmax

)
for Treh ≪ mχ,

3|κ|2

2048π3
T 12
max

T 7
rehH

4
inf mχ

formχ ≪ Treh,

(5.15)

where Tmax = Treh (Hinf/Hreh)
1/4 and Treh are respectively the maximal temperature after infla-

tion and the reheating temperature, and f0(x) ≡ 1 + 2x + 2x2 + 4x3/3 + 2x4/3 + 4x5/15 +
4x6/45+8x7/315+2x8/315. In Fig. 5.7, we show that a reheating temperature as low as 103 GeV
(for κ = 1) can induce a matter-domination era before BBN and leave an imprint in the would-be
SGWB from CS detectable by GW interferometers. For κ = 1, masses as large as 1010 GeV can
be probed.

5.3.4 Heavy dark photons

The U(1)D dark photon: We consider a U(1)D gauge boson Vµ – the dark photon of mass mV

– kinematically coupled to the U(1)Y gauge boson of the SM [619, 620]

L ⊃ − ϵ

2cw
FYµνF

µν
D , (5.16)

where cw is the cosine of the weak angle and ϵ is the dark-SM coupling constant. The decay width
into SM, ΓV , is computed in [532]. We here report the expression for mV ≳ 2mZ

ΓV ≃
(
3× 10−8 s

)−1
( ϵ

10−9

)2 ( mV

1 TeV

)
. (5.17)

The dark photon leads to an early-matter-dominated era if it has a large energy densitymV YV ≳ 10
GeV and a long lifetime τV ∼ 10−8 s, cf. Fig. 5.3 at Gµ = 10−11. Supposing that the dark photon
abundance is close to thermal, YV ∼ 0.02, cf. Eq. (5.19), this implies ϵ ≲ 10−9. At such a low ϵ,
the dark sector and the SM sector may have never been at thermal equilibrium (cf. [621] or footnote
8 in [622]) and may have their own distinct temperature. We assume that the dark sector and the
SM have a different temperature by introducing the dark-to-SM temperature ratio [622]

r̃ ≡ T̃D
˜TSM

, (5.18)

where quantities with a ∼ on top are evaluated at some high temperature T̃ . Thus, the dark photon
abundance before its decay is given by

YV =
nV

sSM
=

45ζ(3)

2π4
g̃D
g̃SM

r̃3 ≃ 0.0169

(
g̃D
6.5

)
r̃3, (5.19)

where g̃D and g̃SM are the relativistic number of degrees of freedom in the dark sector and the
SM at temperature T̃ . Plugging Eq. (5.19) into Eq. (5.2) implies a simple relation between the

112



temperature at which the dark photon dominates the Universe Tdom and its mass mV . We choose
to be agnostic about the mechanism setting the abundances in the dark sector, and we enclose all
possibilities by introducing a dark-to-SM temperature ratio r̃3

As shown in the left panel of Fig. 5.8, low kinetic mixing ϵ, large mass mV or large dark-to-
SM temperature ratio r̃ lead to an early-matter-dominated era, triggered when Tdom ≳ Tdec. The
non-detection with a future GW interferometer of the imprint left by such a matter era in the GW
spectrum from CS would exclude the existence of the dark photon for given values of the kinetic
mixing, the dark photon mass, and the dark-to-SM temperature ratio (ϵ, mV , r̃). We show the
GW-from-CS constraints on the dark photon in the right panel of Fig. 5.8, together with existing
constraints coming from supernova SN1987 [630, 631] and beam-dump experiments [622]. Other
constraints on lighter dark photons do not appear on the plot and are summarized in the reviews
[632–634]. We also include the BBN constraint, which imposes the dark photon to decay before
τV ≲ 0.1 s [566–568] or later if the energy density fraction carried by the dark photon is smaller
than ∼ 10% [622]. Only the BBN and the GW-from-CS constraints depend on the dark-to-SM
temperature ratio r̃ which fixes the abundance of the dark photon in the early Universe.
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Figure 5.8: left: Constant dark photon lifetime τV contours. For a given dark-to-SM temperature ratio
r̃ ≡ TD/TSM, a non-standard early matter domination is induced below the corresponding orange line where
the dark photon dominates the Universe before it decays. right: Expected constraints on the dark photon mass
mV and kinetic mixing ϵ, assuming the measurement of a GW spectrum from CS with tensionGµ = 10−11

by future GW interferometers. We use the turning-point prescription (Rx 1) discussed in Sec. 5.1.3.

We can appreciate the complementarity between the well-established supernova, beam dump,
BBN constraints, and the expected constraints assuming the detection of a SGWB from CS by the
GW interferometers. Indeed, whereas supernova and beam dump do not really constrain above
mV ≳ 0.1 GeV, the detection of a SGWB from CS with a string tension Gµ ≃ 10−11 would
exclude dark photon masses up to the maximal reheating temperature mV ∼ 1016 GeV allowed by
the maximal inflation scaleHinf ≲ 6×1013 GeV [20, 55], and kinetic mixing as low as ϵ ∼ 10−18.

3The early Universe’s production of the dark photon has been studied in the literature. For a small kinetic mixing ϵ,
the abundance of the dark sector can be set non-thermally either by freeze-in [621, 623–625], or by a separate reheating
mechanism. In the latter case, the temperature asymmetry in Eq. (5.18) results from an asymmetric reheating [626–
629]. For moderate kinetic mixing ϵ ≳ 10−6

√
MDM/TeV [621], the dark sector may have been at thermal equilibrium

with the SM, but asymmetric temperatures can result from asymmetric changes in relativistic degrees of freedom [622].
On the other hand, a possibility for thermally equilibrating the U(1)D sector and the SM in the case of a small kinetic
mixing ϵwould be to introduce a dark Higgs ϕ, mixing with the SM Higgs, which once at thermal equilibrium with SM,
decays into dark photons.
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Figure 5.9: Additional constraints when the
dark photon is embedded in a DM model as
the mediator of U(1)D-charged DM (see text).
We compare the expected GW constraints from
cosmic strings with the existing constraints on
the U(1)D DM model: Supernovae bounds from
[630] and [631], direct detection bounds from
[622] and the indirect detection + CMB con-
straints are a rough estimate from [532]. Beam
dump constraints are also taken from [622]. The
unitarity bound on the DM massMDM [635] can
also be applied on the mediator mass because of
the kinematic condition mV < MDM. The uni-
tarity bound gets relaxed at small ϵ because of
the larger entropy injection following the dark
photon decay [532].

The dark photon as a dark matter mediator: An interesting motivation for the dark photon is
that it can play the role of a dark matter mediator. We can suppose that the dark sector also contains
a Dirac fermion χD charged under U(1)D, playing the role of DM [532, 622, 636–644]

L ⊃ χ̄Di /DχD −MDMχ̄DχD, (5.20)

where Dµ = ∂µ + igDVDµ is the covariant derivative with gD the U(1)D gauge coupling constant.
We suppose that the DM freezes-out by annihilating into pairs of dark photons, we impose mV <
MDM. We assume the dark photon to be non-relativistic when it decays but relativistic when it is
produced, therefore, we set g̃D = 3 + 7

8 · 4 = 6.5 in Eq. (5.19).
The unitarity bound on the DM mass MDM can be applied to the dark photon mass mV upon

assuming mV < MDM. In the standard paradigm, the unitarity bound on s-wave annihilating dirac
fermion DM is MDM ≲ 140 TeV [635, 645]. However, if long-lived and heavy, the decay of the
mediator can, by injecting entropy, dilute the DM abundance and relax the unitarity bound to [532]

MDM ≲ 140 TeV
√
D, (5.21)

whereD is the dilution factor: D ≃ Tdom/Tdec with Tdom and Tdec are as defined in Eq. (5.2) and
Eq. (5.3).

In Fig. 5.9, we add the contraints on the dark photon when the later plays the role of the mediator
of DM. They come from direct detection [622], CMB [532], indirect detection, using neutrino,
gamma-rays, positrons-electrons and anti-protons [532], as well as from unitarity [532]. They are
complemented by the GW-from-CS constraints. For ϵ ≲ 10−10, all the traditional indirect detection
constraints evaporate and the unitarity bound is pushed to larger masses due to the entropy dilution
following the dark photon decay such that the model is then currently only constrained by BBN.
It is remarkable that GW interferometers could probe this unconstrained region where ϵ < 10−10

and mV > 1 GeV. In Figs. 5.8 and 5.9, we use the turning-point prescription (Rx 1) discussed
in Sec. 5.1.3. Constraints are stronger when considering the spectral-index prescription (Rx 2), as
shown in Fig. 5.4 or in Fig. 5.2.

Scenario where the cosmic string network and the dark photon mass have the same origin:
As a last remark, we comment on the case where the spontaneous breaking of theU(1)D symmetry
would be responsible for the formation of the cosmic string network. Therefore the dark photon
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Figure 5.10: Scenario where the dark photon mass mV and the cosmic string network are generated by
the spontaneous breaking of the same U(1) symmetry, such that mV is related to the string tension µ. Pale
colors: Constraints on the dark photon parameter space assuming the mere detection of the GW spectrum
from CS by NANOGrav, LISA, ET, CE, DECIGO and BBO. Opaque colors: Constraints assuming the
detection of the turning point in the GW spectrum induced by the transition from matter to radiation when
the heavy dark photon decays. When combining Eq. (5.1) and Eq. (5.3), this last detection allows to measure
the dark photon lifetime. The constraints described in the following part of this caption are independent of
the GW emission. Pale red: The non-observation of the fundamental tensor B-modes in the CMB imposes
the stringest upper bound on the energy density scale of inflation [20], Vinf ≲ 1.6 × 1016 GeV. This
provides an upper-bound on the reheating temperature, which also must satisfy ⟨ϕD⟩ ≲ Treh in order for the
string network to be formed. Thus, we impose the CS formation to occur after the end of inflation with the
following criteria: ⟨ϕD⟩ ≲ Vinf . Pale purple: Constraints from the non-observation of line-like temperature
anisotropies in the CMB, e.g. [646], Gµ ≲ 2× 10−7. Pale sky blue: In order to prevent DM overclosure,
we must assume the U(1)D charged states to be heavier than the reheating temperature such that they are
never produced. A possibility which is constrained by the Weak Gravity Conjecture, cf. main text, thus
we impose ⟨ϕD⟩ ≲ gDMpl. The last inequality implicitly assumes ⟨ϕD⟩ ≲ Treh. Note however that such a
charged state could be unstable, e.g. if it is a dark Higgs, in which case the WGC constraint is relaxed.

mass is no longer a free parameter but is related to the string tension µ, through the Abelian-Higgs
relations [301]

µ = 2π ⟨ϕD⟩ , (5.22)
m2
V = 2g2D ⟨ϕD⟩2 , (5.23)

where ϕD is the scalar field whose vacuum expectation value ⟨ϕD⟩ breaks the U(1)D symmetry
spontaneously.

In this case, we find that most of the relevant parameter space is ruled out due to overabundance
of dark matter.4 The only viable solution would be to assume that the states charged under U(1)D
and stable under decay are heavier than the reheating temperature such that they are never produced.
The Weak Gravity Conjecture (WGC) requires the existence of a charged state with mass smaller
than [647]

mX ≲ gDMpl. (5.24)

Hence, gDMpl sets the maximal reheating temperature, above which charged states responsible for
Universe overclosure might be produced. Therefore, we should exclude the parameter space where

4The cross-section of a pair of U(1)D fermions annihilating into dark photons is given by σv ≃ πα2
D/m

2
ψ with

αD = g2D/4π. It is way too weak to prevent Universe overclosure, except if we tune the Yukawa coupling of the
fermion, λ, defined by mψ = λ ⟨ϕ⟩ /

√
2, to minimal values.
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the temperature of the U(1)D spontaneous breaking, taken as ∼ ⟨ϕD⟩, is heavier than gDMpl,
cf. pale sky blue region in right plot of Fig. 5.10. Note that the WGC does not specify if the
suggested charged state is stable under decay or not. For instance, it would be stable and overclose
the Universe if it is a U(1)D fermion but not if it is a U(1)D Higgs, which can still decay into a
dark photon pair when mϕD ≳ 2mV . Hence, the WGC constraint in our parameter space must be
taken with a grain of salt.

Assuming a natural gauge coupling value, gD = 10−1, we find that dark photons heavier than
≳ 100 PeV would be accompanied by a U(1)D cosmic string network producing a visible GW
spectrum, see the left plot of Fig. 5.10. In the case where gD = 10−4, we could probe dark photon
masses down to ≳ 100 TeV, see right plot of Fig. 5.10.

On the same plot, we superpose the constraints, shown with pale colors, coming from the
simple observation of the GW spectrum with future experiments (except NANOGrav, which is
already operating), and the constraints, shown with opaque colors, coming from the detection of
the turning point where the spectral index of the GW spectrum changes due to the decay of the
dark photon which was dominating the energy density of the Universe. The former detection would
allow measuring the dark photon mass, whereas the latter would enable accessing its lifetime.

5.4 Chapter Summary

Suppose future GW observatories have the sensitivity to detect stochastic GW backgrounds of pri-
mordial origin and measure distinct features in this spectrum. In that case, they can reveal unique
information about high-scale physics. Particularly relevant sources of GW are cosmic strings. Cos-
mic strings are almost ubiquitous in many Grand-Unified Theories. As they keep emitting GW
throughout the whole cosmological history of the Universe, the resulting spectrum covers a wide
range of frequencies. It can be detected either by space-based or ground-based observatories. An
early era of matter domination due to new heavy particles generates a clear signature in the GW
spectrum of cosmic strings.

In this study, we assume the existence of an early matter era due to the presence of a cold
particle X temporarily dominating the energy density of the Universe and decaying before the
onset of BBN. We compute its impact on the GW spectrum of CS beyond the scaling regime.
We show that detecting and interpreting such a feature in terms of a new heavy relic can lead to
unparalleled constraints in the (τX , mXYX) (lifetime, yield) plane. In Fig. 5.3, we provide model-
independent constraints which extend the usual BBN constraints on the lifetime τX by 15 orders
of magnitude for Gµ = 10−11, as we can constrain the early matter-dominated era ending when
the temperature of the Universe is between 50 TeV and 1 MeV.

Next, we show that this new search strategy will likely provide unprecedented constraints on
particle physics models. We illustrate this on minimal models of massive particles. In the first
class, the heavy particle has only gravitational interactions and decays through a Planck-suppressed
coupling, cf. Fig. 5.4. In the second class, the heavy relic is a new U(1) gauge boson that decays to
the Standard Model via kinetic mixing to U(1)Y hypercharge. We point out that supersymmetric
theories could be probed, well above the reach of present and future colliders, up to a gravitino mass
scale of 1010 GeV, due to the presence of oscillating scalar moduli fields produced after dynamical
supersymmetry breaking, cf. Fig. 5.5. Secondly, we study a simple model of a massive scalar
particle interacting only gravitationally with the Standard Model and which therefore has no chance
of being observed in collider or direct/indirect detection experiments. If non-conformally coupled
to gravity, it can be abundantly produced by gravitational effects at the end of inflation, leading to
a matter era in which stochastic gravitational-wave backgrounds from cosmic strings can uniquely
probe, cf. Fig. 5.6. Finally, we study a dark photon model kinematically coupled to the Standard
Model hypercharge, possibly embedded in the U(1)D dark-photon-mediated dark matter model.
The constraints we obtain from GW on U(1)D dark matter fall in the large mass/small kinetic
mixing ballpark, which is otherwise unreachable by any current and probably future direct/indirect
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detection and CMB constraints, cf. Fig. 5.9. At last, we consider the possibility that the dark
photon mass and the cosmic string network are generated by the spontaneous breaking of the same
U(1) symmetry and show that we can use future GW interferometers to probe dark photon masses
above 100 PeV, or even down to the TeV scale if we tune the gauge coupling to small values, see
Fig. 5.10.

These are a few minimal examples of particle physics models generating early matter eras.
There are many other well-motivated models which would deserve consideration in this respect. We
will present the corresponding constraints on axion-like particles and primordial black holes in a
separate study. Moreover, in the following two chapters, we will see that a period of the kination era
inside the radiation era follows a matter-domination era. However, the effect of kination enhances
the GW spectrum, as opposed to the suppression due to the matter era.
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Chapter 6

Intermediate Kination-Domination Era:
Rotating Axion I (model independent)
Based on
[3] Y. Gouttenoire, G. Servant and P. Simakachorn, Revealing the Primordial Irreducible Infla-
tionary Gravitational-Wave Background with a Spinning Peccei-Quinn Axion, [2108.10328] &
[4] Y. Gouttenoire, G. Servant and P. Simakachorn, Kination cosmology from scalar fields and
gravitational-wave signatures, [2111.01150].

One of the possible scenarios for the intermediate kination inside the radiation era is the matter-
kination scenario, presented in Sec. 4.7 with its smoking-gun GW signature. This section and the
next scrutinize how such a scenario can be realized in particle physics theory. As discussed in
Chap. 4, the kination era right after inflation comes from the fast-moving scalar field whose energy
density dominates that of the Universe. The intermediate kination inside the radiation era could also
invoke similar physics, i.e., some fast-moving scalar field that is subdominant and only becomes
more energetic at later times. Though it seems any scalar field might work, the key point is that
this scalar is needed to dominate over the energy density of per se radiation bath and later behaves
as kination. In other words, its equation of state must non-trivially change during its domination.

This chapter identifies the main classes of models where this happens naturally. They are linked
to axion models where the axion acquires large kinetic energy before its low-energy potential –
responsible for its mass – develops. As we shall see below, the trivial implementation involving
axion dynamics only cannot lead to the intermediate kination. However, the interplayed dynamics
between the axion – the angular mode of a complex scalar or Peccei-Quinn (PQ) field – and its
unavoidable partner – the radial mode – generate the desired sequence of events that leads to a
rotating stage along the circular orbit of the complex scalar-field potential and induce the matter-
kination era, cf. Fig. 6.1.

ϕ = fa

V(Φ) I

II

ϕini ≫ fa

Figure 6.1: Axion models naturally provide
a kination era preceded by a matter era. The
complex scalar field, whose angular component
is identified with the axion, starts at large ra-
dius, rotates down the potential, and behaves
as pressure-less matter (red trajectory "I"). It
reaches stage "II" and has the kination equation
of state when its spinning settles down to the po-
tential minimum.
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The kination era from a rotating complex-scalar field was studied in a series of papers [507–
510], in the context of self-interacting DM, where its very large rotational speed - whose origin
remains unexplained by the authors – leads to the kination right after inflation. Later, it was sug-
gested in Ref. [648] and studied thoroughly in [3, 4, 274] that the intermediate kination – following
the matter era – can be UV-completed in the spinning-axion model and allows the GW kination
signature to be a unique probe of axion physics.

We first make a short recap on axions in Sec. 6.1. Sec. 6.2 then outlines why the dynamics
carried out by the axion only cannot lead to the intermediate kination era. We convey a simple
concept of why the spinning-axion model realizes the matter-kination era in Sec. 6.3. The detailed
and dedicated discussion on the UV completion of this model is postponed to Chap. 7. In the rest of
this chapter, we focus on the phenomenology of the rotating axion: the axion DM and Baryogenesis,
and its connection to the observable GW signal from the intermediate kination.

6.1 Axion: a short recap

Axion particles are ubiquitous in extensions of the Standard Model of particle physics. They arise
as pseudo-Nambu-Goldstone bosons of a spontaneously broken globalU(1) symmetry and are typ-
ically very light compared to the symmetry-breaking energy scale fa. A particularly well-motivated
candidate is the QCD axion predicted by the Peccei-Quinn (PQ) mechanism introduced to solve
the strong CP problem in the Standard Model [439–441, 649], which is the intriguing absence of
CP-violation in the sector of strong interactions. The PQ mechanism relies on the existence of a
new complex scalar field whose vacuum expectation value fa breaks spontaneously a new broken
global U(1)PQ symmetry. Its main prediction is a new light particle, the axion, which is the angu-
lar mode of the new PQ scalar field. There has been growing interest in the axion over the years, as
it can also explain the Dark Matter of the Universe [446–448]. The axion is at the origin of an ex-
tensive experimental program and has become the most hunted particle after the Higgs discovery,
cf. [650, 651] for reviews and references therein1. For example, it is being searched by exploiting
its coupling to the photon which scales as 1/fa. Given the astrophysical constraints on fa ≳ 108

GeV, the small axion coupling makes its detection challenging [652–655].
Around the QCD epoch, the QCD axion acquires a temperature-depedent mass due to the QCD

anomaly, which is model-dependent. For the canonical QCD axion [442–445, 656, 657], the mass
is supposed to depend on temperature, e.g. from the dilute instanton gas approximation [658]

m2
a(T ) = m2

a,0min

[
1,
χ(GeV)

χ(0)

(
1 GeV

T

)α]
≡ m2

a,0Υ(T ), (6.1)

where2 χ(0) ≃ (75.6 MeV)4, χ(GeV) ≃ (2 MeV)4, α = 8.16 [658], ΛQCD ≃ 211 MeV
is the QCD scale [659], and the zero-temperature mass is m2

a,0 = χ(0)/f2a . The QCD axion
mass increases with time and becomes constant around T ≃ 160 MeV. QCD axion – heavier or
lighter than this relation – requires an extension to the canonical scenario, e.g., [660]. Due to the
observable ranges of the future and current axion experiments, a recent and interesting model is the
lighter QCD axion where the QCD axion transforms non-linearly under a ZN symmetry [661–664]
and modifies its mass to be [663](

ma

mQCD
a

)2

≃ 1√
π

√
1− z2(1 + z)N 3/2zN−1, (6.2)

wheremQCD
a is the canonical QCD axion mass, and z ≡ mu/md ≃ 0.47 [39]. Stringent bounds on

this non-canonical light QCD axion come from finite density effects, modifying the axion potential
1For the current updates on constraints and projections from axion experiments presented in an illustrative manner,

cf. repository by O’Hare.
2χ is the susceptibility of the topological charge, defined by χ(T ) ≡ m2

a(T )f
2
a and ΛQCD is the scale at which the

perturbative QCD coupling constant diverges.

120

https://cajohare.github.io/AxionLimits/


in dense astrophysical objects and, therefore, the neutron-star inspirals as well as nuclear matter
properties, altering the stellar processes [661]. Recently, strong bounds have been derived from
observations of white dwarfs [665], i.e., N ≲ 31 for fa ≲ 1016GeV.

Later, we shall also see that DM production from the rotating axion can populate the lighter
mass region. We report the final forms of canonical axion and ZN axion, which will be used
extensively in this chapter and the next:

ma ≃ µeV

[
1012 GeV

fa

]
×

{
5.7 Υ1/2(T ) for conventional QCD axion,
4.9 · N 3/4(0.47)(N−1)/2 for ZN QCD axion,

(6.3)

where Υ(T ) is the temperature-depedent function, defined in Eq. (6.1). Indeed, the axion that does
not solve the strong-CP problem can deviate from these mass relations, i.e., ma and fa are free
parameters where ma is the zero-temperature mass that could be present up to high scales.

Standard misalignment mechanism. — Due to the fast expansion rate of the Universe, the
axion would sit frozen on the potential with its initial value; a single or randomly distributed value
depends on whether the SSB of PQ symmetry happens before or after the end of inflation, re-
spectively. The expansion rate later drops below the axion’s mass, which determines the potential
gradient. It allows the axion to oscillate in the underdamped motion at temperature Tmis when
3H(Tmis) = ma(Tmis). A homogeneous scalar field oscillating near the bottom minimum, where
the potential is approximately quadratic, behaves as pressureless matter and serves as a good can-
didate for DM, i.e., the energy density goes like a−3. The axion abundance is parametrized by the
comoving axion number density Yθ = na/s where s is the entropy density [446–448],

Y mis
a =

2ma(Tmis)f
2
aθ

2
mis

2π2

45 g∗s(Tmis)T 3
mis

=

(
45

303/4π1/2

)(
g
3/4
∗ (Tmis)

g∗s(Tmis)

)(
f2a

m
1/2
a M

3/2
Pl

)
θ2mis, (6.4)

where na = ρa/ma with ρa is the axion potential energy, and the second step uses the temperature-
dependent mass relation ma(T ). The misalignment angle θmis of the axion from its minimum is
expected to be O(1) unless it is fine-tuned. The relic density of the axion can be computed from
the general formula

ρa,0
ρDM,0

=
Ωa,0h

2

ΩDM,0h2
≃ s0maYah

2

0.5745 keV/cm3
≃ 205 h2

( ma

1 eV

)(Yθ
40

)
, (6.5)

where 2s0maYθ is the axion energy density today, and s0 = 2π2g∗s(T0)T
3
0 /45 is the entropy

density today. This formula can also be applied to other production mechanisms of the axion. The
correct DM abundance is satisfied on two dashed lines of Fig. 6.5 for the temperature-dependent
and independnt masses. The conventional QCD axion explains DM for fa ≃ 1011 GeV. The above
DM production is the so-called standard misalignment mechanism, where the term standard is for
distinguishing it from other misalignments. For example, the large-angle misalignment [666], the
trapped misalignment [664], the frictional misalignment [667, 668], and, interestingly, the kinetic
misalignment [132, 449, 450] that could lead to the kination era [3, 4, 274, 648, 669].

Next, we shall see the problem of the only-axion oscillation scenario in Sec. 6.2. Though its
equation of state can be matter-kination, it cannot dominate the thermal bath and subsequently
generate the intermediate kination. This motivates us to look at its natural extension in Sec. 6.3
where the axion spins fast, leads to the intermediate kination, and is compatible with the so-called
kinetic misalignment.

6.2 No-go for intermediate kination from a real scalar field

Let us first consider the simplest realization – a real scalar field – that can lead to matter-kination
equation-of-state. However, we shall see that this set-up cannot lead to any matter-kination domi-
nation era. The successful setup will be discussed in Sec. 6.3, using a complex scalar field instead
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of the real one. Still, we suggest the interested reader go through this section and see why the real
scalar fails.

A real scalar field – oscillating in the quadratic potential – generates the matter equation-of-state
and obtains a considerable speed on average that could lead to the kination stage when the vanishing
potential vanishes at later times. Interestingly, there is a class of models in which such dynamics
are realized and interestingly related to axion physics. For example, the QCD axion mass (the
real scalar field) is well-known to be generated by non-perturbative effects around the QCD scale.
[663, 664]. At high temperature, the axion potential is unconstrained and can arise from a variety
of PQ breaking effects [663, 664, 670–673]. Based on the idea of [661, 662], Refs. [663, 664]
assume the existence of a discrete ZN shift symmetry for the axion field, where N is the number
of mirror worlds to which the axion interacts with. As soon as the non-perturbative QCD effects
from all worlds are effective at some critical temperature Tc, the axion mass receives an exponential
suppression with respect to the usual prediction [442–445, 656, 657]. The sudden suppression of
axion mass means a drop in the axion potential at Tc.

If the axion mass when T > Tc is larger than H(Tc), the axion oscillates around the potential
minimum (approximately quadratic) and obtains some speed. The axion behaves as pressure-less
matter and eventually rolls freely over the barrier of the axion potential that shrinks substantially
for T ≲ Tc. From this moment, the axion has the kination equation of state. Since a freely moving
scalar has the EOM ϕ̈+3Hϕ̇ = 0 ⇔ ϕ̇ ∝ a−3, the axion eventually gets trapped in low-T potential
corresponding to axion mass today, which would allow it to be a natural DM candidate [132, 664].

No-Go argument. — The above scenario has a primary issue for realizing the intermediate
kination; the energy density of the sector – responsible for the varying axion mass – cannot be
sub-dominant compared to that of axion after the first axion potential is turned off, leading to the
impossibility of a kination era3. Concretely, the averaged axion’s energy density splits equally into
kinetic and potential energy during the first oscillation. When the axion’s potential vanishes at Tc,
the axion rolls with half of its initial energy, and the other half goes to the sector responsible for
the varying axion mass. E.g., the thermal bath of the confining sector always has more energy than
the axion oscillations. To circumvent this problem, one has to involve a second scalar field. The
simplest and most natural realization is to consider the radial mode (the partner of the axion) of
the complex scalar field, as will be discussed in the remaining sections and chapters. Alternative
UV-completions will be presented elsewhere [551].

6.3 Complex Scalar Field Dynamics: the rotating axion

The most straightforward extension of the axion dynamics is to consider its natural partner – the
radial mode ϕ of the PQ complex-scalar field Φ ∼ ϕ exp(iθ), where θ is the angular degree-of-
freedom or the axion. The interplay between them becomes non-trivial due to another mass scale,
namely the mass of the radial modemr ≃

√
V ′(Φ)/Φwith V is the complex-field potential, which

can be much larger than the axion’s mass. Elaborating more in Chap. 7, the motion of the complex-
scalar field initiates by a large mr and, at the same time, induces the axion rotation with help of
an explicit breaking of U(1)PQ symmetry, generating gradient along axion direction4. This high-
temperature axion potential – expected due to the no global symmetry conjecture of the quantum
gravity theories [675–679] – would later become ineffective; otherwise, it would contribute to the
axion potential from QCD effect and invalidate the solution to the strong-CP problem [680, 681].
For instance, it can be the higher-dimensional operator which decouples from the dynamics when

3We thank Pablo Quilez, Raymond Co, Nicolas Fernandez, Akshay Ghalsasi, and Keisuke Harigaya for a discussion.
4Recently, Domcke et al. propose another exciting way: the axion is kicked by another complex scalar which interacts

via the anomalous mixing [674]. This extra scalar must spin at priori with some significant global charges. Later its
interaction with the axion becomes efficient in the thermal bath, so it equilibrates its charge with the rotating axion. The
immense axion speed could induce a kination era. However, the enhanced axion speed affects the radial-mode dynamics
and would lead to a non-trivial cosmological history, beyond the scope of this thesis.
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the VEV of the complex scalar field gets smaller due to Hubble expansion. The axion motion gets
excited and later rolls freely with a large speed ϕθ̇,

After this very first moment, the excitations of both radial and axion motions lead to an elliptic
orbit with a smaller radius due to the Hubble friction, as shown in stage I of Fig. 6.1. The complex
scalar field behaves as a pressureless matter if the potential is quadratic, cf. App. G.4.2. Later, the
radial oscillation would be damped by dissipating its kinetic energy to thermal bath or fluctuations
and prevented from over-closing the Universe. The remaining energy densities: the potential energy
of the complex field and the kinetic energy in the axion field, balance with each other – making
the orbit circular – and hinder the complex scalar from settling directly to its VEV after damping.
The equation of state during this time is still matter-like, i.e., ω ∝ p ∝ KE − PE = 0, and can
lead to the matter-domination era if it does not earlier do so. Note the difference from the usual
matter-like stage of the axion; the rotating axion moves in one direction and does not oscillates.
Only after the circular orbit red-shifts to the potential minimum at |Φ| ≃ fa, the axion’s kinetic
energy dominates the dynamics and induces the kination-domination era

ρKD = E4
KD ≃ f2a θ̇

2, (6.6)

that lasts for some e-foldingsNKD before becoming sub-dominant to the radiation bath. The scalar-
field energy density evolves along the sequence of events as shown in Fig. 6.2 (stepwise discussions
in Chap. 7) and leads to the matter-kination era5.
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Figure 6.2: Complex-scalar field dynam-
ics that generates a matter-kination era in-
side the radiation epoch. The solid orange
line shows when the entropy injection is ab-
sent or happens before the scalar domina-
tion, while the entropy injection occurs af-
ter scalar domination and suppresses the ki-
nation duration for the dashed orange line.
fa denotes the radius of the circular orbit of
the field spinning with velocity θ̇.

Other than the kination, the rotating axion scenario also possesses very interesting implications
for the DM production via the so-called kinetic misalignment mechanism [449, 450] or kinetic
fragmentation [129, 130, 132] and the Baryogenesis via the axiogenesis scenario [648, 669]. In the
next section, we shall discuss these in turn and connect them to the observability of the kination
GW peak. Before moving on, let us briefly comment on other similar set-ups where the spinning
complex scalar field plays an important role. The effect of the axion fluctuations is enhanced by
the motion of the axion field, which could amplify the axion relic density; this is the main idea of
the work in progress [527]. The rotating axion could lead to many effects if its couplings to other
fields are enhanced beyond what is considered in this paper, e.g., spontaneous baryogenesis [682],
axion-assisted-Schwinger effect [683], and magnetogenesis [684]. Also, the spinning complex-
scalar field is one of the key ingredients of the so-called Affleck-Dine Baryogenesis [589, 599] (cf.
[685] for a review).

Why axion but not the Affleck-Dine scalar field? — The critical difference between the
two frameworks is the position of the scalar-potential minimum. In the Affleck-Dine scenario,
the nearly-flat (or angular) direction is a flat direction in the Minimal Supersymmetric Standard
Model that is charged under baryon/lepton number – some combination of squarks and sleptons

5We comment on the impossibility in our opinion of the radiation-kination-radiation scenario (adopted in [352]).
Indeed, a spinning field inside a quartic potential leads to radiation behavior. If the trajectory is circular, the EOS
becomes kination-like once the scalar field reaches the bottom of the potential. Nevertheless, this scenario appears
unfeasible because the damping of the radial motion responsible for the circular trajectory is expected to produce particles
redshifting as radiation (or worse as matter) and to prevent the Universe from entering a kination stage.
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– and lifted due to the supersymmetry breaking effect. The potential minimum is at the origin,
conserving color and charge and leading to pressureless matter EOS until late. In the end, all the
energy of the condensate goes into the plasma. This is not the case in axion models; the potential
has a minimum at a large field value fa that defines the axion decay constant and supports the
circular orbit of axion along the flat direction. Crucially, a significant fraction of the U(1) charge in
axion models is preserved in the rotating field at the potential minimum and enables a temporary
kination equation of state. However, it is coupled to the thermal bath. The thermalization of the
scalar field only depletes the kinetic energy of radial mode cf. Chap. 7.

6.4 Rotating axion DM

As we will discuss extensively in Chap. 7, the axion could receive a kick parametrized by the
number density of Noether U(1)PQ charge: nθ = ϕ2θ̇, due to some U(1)PQ-breaking effect at
early times ∂(a3nθ)/∂t = −∂V/ϕ∂θ. Assuming the explicit-breaking term is only active until
some time tr, we obtain the resulting comoving number density of U(1) charge

Yθ(t) ≡ nθ
s

≃ a3(tr)

a3(t)
· ∂V
∂θ

(tr) ·
1

H(tr)
, (6.7)

where s is the entropy density of the Universe and which is conserved through Hubble evolution, cf.
Eq. (7.19) and Sec. 7.1.3 for more details. This conserved charge later converts into axion number
density via the axion kinetic misalignment [449, 450] or fragmentation process [129, 130, 132].

Kinetic misalignment mechanism. – After the kination starts, the energy density in the rotat-
ing axion ρθ = f2a θ̇

2/2 decreases as a−6. Its large speed allows its skipping over the potential and
delays the axions oscillation later than the usual 3H ∼ ma condition. Eventually, it drops below
the axion potential at the top of the barrier ρbarrier ≃ 2m2

af
2
a where ma is the axion mass, and the

axion gets trapped and oscillates in one of the minima. This occurs when the axion spinning speed
drops to θ̇(Ttrap) = 2ma(Ttrap). Conservation of energy ρθ = ρa implies that the yield of U(1)
charge,

Yθ = 2ρθ/(θ̇s) ≃ ϕ2θ̇/s, (6.8)

is transferred to the yield of the axion oscillation Ya = ρa/(mas). The equality Ya = Yθ however
neglects correction due to non-linear effects which can enhance the axion abundance into [449]

Ya = 2Yθ. (6.9)

The axion relic abundance can be obtained from Eq. (6.5). Moreover, the fast-moving axion skip-
ping the potential barrier is known to fragment into higher-momentum modes [129]. It is found
that the axion energy density in higher modes generated by the fragmentation is of the same order
as the zero-mode component generated from the kinetic misalignment [132].

Effectiveness of kinetic misalignment. — Whenever Y mis
a > 2Yθ, the axion relic abundance

is dominated by the standard misalignment. By comparing Eq. (6.4) with Eq. (6.5) and (6.9), we
deduce that the kinetic misalignment is the main DM production for

√
mafa ≲ 1.1× 10−9

(
g∗s(Tmis)

g
3/4
∗ (Tmis)

)(
MPl

fa

)3/2

, (6.10)

where we have taken ma(Tmis) = ma. Outside this region, the axion relic abundance cannot
relate to the rotating axion parameters using Eq. (6.8). As we shall see now, the rotating axion
parameters are traded with those of kination. This means we cannot infer any axion parameter
from the observed peak GW when Y mis

a > 2Yθ.
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6.4.1 Rotating axion DM and kination

Since theU(1)PQ charge of the rotating axion is conserved throughout the field evolution until very
late times, we can evaluate the comoving axion number density Yθ at the beginning of the kination
era

Yθ =
nθ
s

=
ϕ2θ̇

2π2

45 g∗s(T )T
3

=

(
2

θ̇KD

)[
E4

KD
2π2

45 g∗s(TKD)T 3
KD

]
. (6.11)

when the complex scalar field sits in the circular minimum ϕ = fa and the axion kinetic energy is
given by ρKD = E4

KD = f2a θ̇
2
KD/2. The thermal-bath temperature TKD when kination starts fol-

lows from ρradKD = E4
KD exp(−2NKD) and readsTKD =

(
30/π2g∗(TKD)

)1/4
EKD exp(−NKD/2).

Solving for EKD, we obtain the relation between the U(1)PQ charge and the kination era,

EKD = 0.436G3/4(TKD)

(
fa
Yθ

)
exp(3NKD/2), (6.12)

where G(T ) ≡ (g∗(T )/106.75)(g∗,s(T )/106.75)
−4/3. As we will see below, this relation allows

for a one-to-one relation between the GW peak position induced by the kination era, and the U(1)
charge Yθ. Interestingly, this result does not only apply for U(1)PQ, but also any U(1) in general.
It would be interesting to see if other particle-realization with the U(1) extension can lead to the
kination era and the exciting GW signature.

After the axion potential turns on at later times, the U(1)PQ is converted into the axion abun-
dance by the kinetic misalignment in Eq. (6.5). Therefore, the kination of energy scale in Eq. (6.13)
becomes a function of the parameters axion and its abundance

EKD ≃ 2 · 109 GeV G3/4(TKD)

(
mafa

GeV2

)(
ΩDM,0h

2

Ωa,0h2

)
exp(3NKD/2). (6.13)

The kination energy scales for both conventional QCD axion and the ZN are

EQCD
KD ≃ 107 GeVG3/4(TKD)

ΩDM,0h
2

Ωa,0h2
exp(3NKD/2). (6.14)

EZN
KD ≃ 107 GeV N

3
4 z

N−1
2 G

3
4 (TKD)

ΩDM,0h
2

Ωa,0h2
exp(3NKD/2), (6.15)

where z ≡ mu/md ≃ 0.47 [39]
The U(1) charge Yθ can be partially transferred into baryon number and lead to successful

baryogenesis as in the Affleck-Dine mechanism [599], or so-called axiogenesis mechanism [669].
We postpone the discussion of the baryon asymmetry to the next Sec. 6.5. Instead, in the present
section, we discuss the transfer of Yθ into axion coherent oscillations via the so-called kinetic
misalignment mechanism, which can explain dark matter for smaller fa than in the standard mis-
alignment mechanism [449, 450].

6.4.2 Signature of the rotating axion DM in inflationary SGWB

The abundance-kination relation (6.13) allows us to recast the GW peak signature from primordial
inflation in terms of axion parameters (fa,ma) for a given abundance – previously as (EKD, NKD)
in Eqs. (4.55), (4.56),

fKD ≃ 9.7 Hz

[
G(T∆)

G(TKD)

] 1
4
[
GeV2

mafa

] 1
3
[

Ωa,0
ΩDM,0

] 1
3
[

EKD

109 GeV

] 4
3

, (6.16)

ΩGW,KDh
2 ≃ 5.9 · 10−19

[
G(T∆)

G(TKD)

] 3
4
[

Einf

1016 GeV

]4 [ fKD

1 Hz

] [
GeV2

mafa

] [
Ωa,0

ΩDM,0

]
, (6.17)

125



which applies for generic ALP with arbitrary mass relation. For the QCD axion, the fixed axion-
mass relation, Eq. (6.3), leads to

fQCD
KD ≃ 53 Hz

[
G(T∆)

G(TKD)

] 1
4
[

Ωa,0
ΩDM,0

] 1
3
[

EKD

109 GeV

] 4
3

, (6.18)

ΩQCD
GW,KDh

2 ≃ 10−16

[
G(T∆)

G(TKD)

] 3
4
[

Einf

1016 GeV

]4 [ fKD

1 Hz

] [
Ωa,0

ΩDM,0

]
. (6.19)

The relation between observability of GW from primordial inflation and axion DM abundance is
shown in Fig 6.3. The matter-kination era generated by ALP DM with a mass ma ≲ 10−6 eV
can move the GW signal into observable windows of the future interferometers. In the specific
case of the QCD axion DM, the GW signal is enhanced only at frequencies larger than ET/CE,
which motivates high-frequency GW searches [40]. In the regions of observable GW signals, the
conventional QCD axion is overabundant, as shown in Figs. 4.22 and 6.3. In the next paragraph,
only lighter (non-conventional) QCD axion can satisfy the correct DM abundance while leading to
an observable GW peak signature.

For the non-canonical lighter QCD axion, its mass – e.g. ZN axion [661–664] – is lighter
than that of the conventional QCD axion in Eq. (6.3).

fZN
KD ≃ 57 Hz

N
1
4 z

N−1
6

[
G(T∆)

G(TKD)

] 1
4
[

Ωa,0
ΩDM,0

] 1
3
[

EKD

109 GeV

] 4
3

, (6.20)

ΩZN
GW,KDh

2 ≃ 10−16

N
3
4 z

N−1
2

[
G(T∆)

G(TKD)

] 3
4
[

Einf

1016 GeV

]4 [ fKD

1 Hz

] [
Ωa,0

ΩDM,0

]
, (6.21)

where z ≡ mu/md ≃ 0.47 [39]. The lighter the axion mass (larger N ), the larger the GW peak
amplitude for fixed fKD that resides in the observable ranges. Note that a fixed fKD means that
the same frequency corresponds to a smaller EKD for a larger N . As examples, Tab. 6.1 provides
the value of N of the spinning ZN -axion DM that each GW experiment can infer if a GW peak
signature, corresponded to benchmark spectra in Fig. 6.3.

We stressed that the QCD axion DM cannot induce an observable matter-kination GW peak,
except maybe at BBO. Because the GW enhancement from the spinning-axion kination only takes
place (i.e. Ωst < ΩKD) for

fKD ≳ 22 Hz(mafa/GeV2). (6.22)

Instead, for a given fa, most of the interesting regions lie at a smallerma region, e.g. fKD ≳ 0.1Hz
for the conventional QCD axion and fKD ≳ 10µHz for the Z31 QCD axion.

Observatories EKD (GeV) NKD N

LISA 3× 104 4 39†

BBO 3× 106 5 31

ET 108 6 25

Table 6.1: Benchmark points in Fig. 4.22 and the corresponding N -values of the non-canonical QCD axion
DM models.†The ZN QCD axion with N ≳ 31 appears to be ruled-out by finite-density effects [661, 665].

Reach of GW interferometers. From Eq. (6.17) and Fig. 6.3, we see that the GW peak ampli-
tude scales as ΩGW,KD ∝ fKD/mafa. For a given observatory with the best sensitivity Ωsens,min,
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Figure 6.3: The solid lines indicate the position of the GW peak signature in the presence of a matter-
kination generated by the rotating axion, for a fixed axion relic abundance, which is produced via kinetic
misalignment for either the QCD axion, cf. Eq. (6.19). On the right plot, the axion is overabundant above
the black solid lines. Below the dashed gray lines, the axion abundance is set by the standard misalignment
mechanism for a given fa, such that the relation between the GW-abundance relation in Eq. (6.19) and (6.18)
is not applicable. The dependence on ma and fa is shown in Fig. 6.4.

there exists a maximal value of mafa below which the peak is observable. It depends on the fre-
quency fsens,min at which the signal-to-noise ratio is the largest6. Requiring ΩGW,KD > Ωsens,min

with fKD = fsens,min in Eq. (6.17), we deduce the maximal axion mass which leads to a detectable
peak signature in the SGWB from primordial inflation

ma ≲ (0.65 µeV)

(
Einf

1016 GeV

)4( 10−12

Ωsens,min

)(
fsens,min

1 Hz

)(
109 GeV

fa

)(
Ωa,0
ΩDM,0

)
. (6.23)

The reach of future observatories in the (ma, fa) plane is shown in Fig. 6.4. For example, ET
(fsens,min ≃ 1 Hz and Ωsens,min ≃ 10−13) can probe mET

a ≲ 6.5 µeV(109 GeV/fa) for the max-
imum inflationary scale. Note that Eq. (6.23) is parallel to the ma(fa) QCD axion mass relation.

Fig. 6.4 assumes that the frequency and amplitude of the GW peak are independent, which
reflects the fact that we treat (EKD, NKD) as free parameters. As we shall see in Chap. 7, the
UV completion fixes their relation. For example, Fig. 6.5 shows that a particular set of model
parameters restricts the observability down to a subset of what is shown in Fig. 6.4.

BBN bound. The successful BBN requires that the kination era should ends above the BBN
temperature E∆ = EKDe

−3NKD/2 ≲ TBBN ∼ 1 MeV. Using Eq. (6.13), we deduce the BBN
bound on the rotating axion that leads to the kination era

ma ≲ (0.5× 10−12 eV)G−3/4(TKD)

(
109 GeV

fa

)(
Ωa,0
ΩDM,0

)
, (6.24)

which is shown as the red-hatched region in Fig. 6.4.

Minimum inflationary scale. The amplitude of the GW spectrum from primordial inflation
scales as E4

inf , see Eq. (6.17). The discovery band of a particular detector, Eq. (6.23), becomes
weaker than the BBN bound, Eq. (6.24), when the inflationary scale becomes lower than

Einf ≲ (3× 1014 GeV)

(
Ωsens,min

10−12

)(
1 Hz

fsens,min

)
. (6.25)

For instance, ET can no longer probe the SGWB from primordial inflation enhanced by a period
of kination induced by ALP DM if Einf ≲ 1013 GeV.

6This estimation is valid only when the slope of the sensitivity curve is steeper than the scaling of ΩGW. If not, the
tip of the sensitivity curve does not correspond to the largest mafa.
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Figure 6.4: Ability of future planned GW experiments to probe axion DM through its matter-kination
peak signature in inflationary SGWB, cf. Eq. (6.23). The BBN constraints, Eq. (6.24), are shown in red-
hashed. The black solid lines are different ma − fa relations corresponding to either canonical or non-
canonical, see Eq. (6.3), QCD axion. Below the black dashed lines, the axion abundance is set by standard
misalignment such that the 1-to-1 connection between the matter-kination parameters (EKD, fKD) and the
axion abundance Ωa,0 is lost, and the prediction of the GW peak signature via the kinetic misalignment,
Eqs. (6.19) and (6.18), is not applicable. We consider either a QCD axion mass dependence ma(T ) or
a constant mass ma. The axion fluctuation mentioned in Sec. 4.4.4 allows the longest kination era to be
NKD ≃ 11 and prevents the detectability bands to continue to smaller ma. Moreover, the axion fluctuation
can dominate the relic density from the zero-mode when fa ≲ 109÷10 GeV [132]. We only show fa values
larger than ∼ 108 GeV due to astrophysical constraints [652–655].
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Scalar fluctuation bound. The presence of scalar fluctuation of the order ρ/δρ ∼ 109÷10, cf.
Sec. 4.4.4, puts an upper limit on the duration of kination NKD ≲ 11. Therefore, the predicted
observable region should not include the signal that needs large NKD. Equivalently, the scalar
fluctuation bound excludes the observable region for

ma ≲
1.3 · 10−11 eV

G3/4(TKD)G1/4(T∆)

(
fsens,min

Hz

)(
109 GeV

fa

)(
e11

eN
max
KD

)2(
Ωa,0
ΩDM,0

)
, (6.26)

corresponding to the region on the left of each (NKD = 11) line in Fig. 6.4.
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Trapping before kination ends. After the start of kination, the axion speed θ̇ ∝ a−3 should not
drop below ma and gets trapped before the kination ends. Otherwise, the kination era stops earlier
than expected, and the Universe is over closed by the axion oscillation energy density. The energy
scale at the end of kination must be larger than the scale of the potential barrier; see also App. F:
ρ∆ = ρKD exp(−6NKD) ≳ m2

af
2
a , which leads to a lower bound on the axion mass

ma ≲ (2.9× 10−19 eV)G−3/2(TKD)

(
109 GeV

fa

)(
Ωa,0

ΩDM,0

)2

. (6.27)

For ALP DM, this bound is weaker than the BBN bound in Eq. (6.24).

Fragmentation before kination ends. Ref. [129] – recently confirmed by lattice simulations
[130] – shows that the zero-mode axion, that rolls fast past the oscillatory potential barrier, can lead
to its fragmentation into the axion fluctuation if it satisfies the condition 4Hf4a θ̇

3 < πΛ8
bW

−1
0 ,

where W0 is the 0th branch of the product log-function. We impose that kination does not end
because of fragmentation but because of SM radiation. It is straightforward to find the spinning
speed θ̇∆ and the Hubble parameter H∆ at the end of kination. Therefore, the kination ends by
fragmentation if

E∆ < Λb

(√
3π

4

)1/8(
MPl

fa

)1/8

W
−1/8
0 ≃ Λb. (6.28)

This leads to a similar bound as the trapping condition before kination ends in Eq. (6.27).

6.4.3 What if Axion DM generates both kination and GW?

An intriguing possibility would be if the U(1)-breaking leads to both: the cosmic-string network
and the rotating axion generating the matter-kination era and DM. I.e., The global (axion) strings
with scale η = fa, though it is not clear if this is a viable possibility7. SGWB produced by CS and
their enhancement by a pre-BBN kination era are studied in Sec. 4.7.1. Similar to the GW peak
from primordial inflation in Eq. (6.17), the peak position in the SGWB from CS can be related to
the axion abundance, using Eqs. (4.71) and (4.69),

fKD ≃ (1.83 kHz)G
3
4 (TKD)

[
0.1

α

] [
fa

1015 GeV

] [
ma

µeV

] [
ΩDM,0

Ωa,0

]
e2NKD , (6.29)

ΩKD
GW ≃ 6.57 · 10−22G

−3
4 (TKD)

[ α
0.1

] [fKD

Hz

] [
fa

1015 GeV

]3 [µeV
ma

] [
Ωa,0
ΩDM,0

]
×

log3

[
(4.17 · 1022)

[ α
0.1

] 1
2
G3(TKD)

[
Hz

fKD

] 3
2
[

fa
1015 GeV

] 1
2
[
µeV

ma

] 1
2
[

Ωa,0
ΩDM,0

] 1
2

]
.

(6.30)

Fig. 6.6 shows the axion parameter space where the peak signal from axionic strings is observable
by future detectors. As expected, the higher the fa value, the larger the peak amplitude.

Two-peak signature. — In some regions of the parameter space, future experiments could
observe two GW peaks: from the primordial inflation, cf. Fig. 6.4 and the axionic strings, cf.
Fig. 6.6, resulting from the imprint of the matter-kination era. In particular, a gray band shows
where the two peaks are distinguishable, i.e., the inter-peak distance is more than two orders of
magnitude in frequencies, cf. Eq. (4.77). This occurs when the two conditions (4.78) and (4.79)
are satisfied.

7The GW emission requires the existence of topological defects which imply the inhomogeneities. In contrast, the
matter-kination era assumes a homogeneous condensate. We leave to future work a thorough investigation of how the
presence of gradient terms in the energy density modifies the EOS of the complex scalar field. However, the rotation
scalar field supports the cosmic-string (vortex) solution, regardless of its formation mechanism [686].
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Figure 6.6: The rotating axion-DM field generating both the matter-kination era and the cosmic strings
sourcing SGWB. Colored solid lines show the observability of the resulting matter-kination enhanced GW
peak. The upper bounds on the duration of the kination eraNKD ≲ 11, discussed in Sec. 4.4.4, prevents the
detectability windows going to smaller ma. Additionally, the gray band shows the region where GW peaks
from the axionic strings and inflation coexist, assuming Einf = 1.6× 1016 GeV, cf. Eqs. (4.78) and (4.79).
The descriptions of each line, see Fig. 6.4.

6.5 Kination GW Signature & Rotating axion Baryogenesis

Another phenomenology of the rotating axion is that it provides an alternative Baryogenesis mecha-
nism, so-called axiogenesis [669, 687]8. The fast-rotating axion carries a largeU(1)-charge, which
can be transferred to the chiral asymmetry of SM quarks through SU(3)c sphaleron transitions.
Later the SU(2)L sphalerons convert this asymmetry into the baryon asymmetry. As shown in the
supplementary material of [669], when the scalar field thermalizes with the plasma, most of the
U(1) charge remains in the condensates if the scalar field VEV is much larger than the temperature
ϕ ≫ T . Only a fraction T 2

ws/f
2
a of the U(1) charge (initially Yθ ≡ nθ/s) is converted into the

baryon number, YB ≡ nB/s,

YB =
nθ
s

(
cB
T 2
ws

f2a

)
= 8× 10−11

( cB
0.1

)( Tws

130 GeV

)2(108 GeV

fa

)2(
Yθ
500

)
, (6.31)

where cB ∼ O(0.1) charaterizes the interactions between baryons and the axion, Tws is the tem-
perature when electroweak sphaleron freezes-out, which is around Tws ∼ 130 GeV for SM [689].
The current value for the yield of baryon asymmetry is given by YB = nB,0/s0 ≃ 10−10, where
the number density of baryon today is nB ≃ 2.515× 10−7cm−3 [39].

Eqs. (6.12) and (6.31) relates the baryon asymmetry to the energy scale and duration of kina-
tion,

EKD ≃ 74 TeVG3/4(TKD)
[ cB
0.1

] [ Tws

130 GeV

]2 [108 GeV

fa

] [
10−10

YB

]
exp

[
3NKD

2

]
, (6.32)

8The three Sakharov conditions for Baryogenesis [688] are satisfied: B number is violated by SM sphaleron; CP
is violated spontaneously by the rotation of the complex scalar field in one specific direction; the dynamic is far from
equilibrium due to the presence of the condensate.
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which leads to the peak signature in the inflationary SGWB, via Eqs. (4.55) and (4.56),

fKD ≃ 0.79 mHzG
1
4 (T∆)G

3
4 (TKD)

[ cB
0.1

] [ Tws

130 GeV

]2 [108 GeV

fa

] [
10−10

YB

]
e2NKD ,

(6.33)

ΩKD
GWh

2 ≃ 1.6 · 10−14

[
G(T∆)

G(TKD)

] 3
4
[

Einf

1016 GeV

]4[fKD

Hz

][
fa

108 GeV

][
0.1

cB

][
130 GeV

Tws

]2[ YB
10−10

]
.

(6.34)

Fig. 6.7 shows the kination-matter peak positions associated to the correct baryon asymmetry from
the rotating axion of a given fa.

Figure 6.7: Reach of future interferometers to
probe the GW peak signature in inflationary GW
due to the presence of a matter-kination era in-
duced by a rotating axion which also generates
the correct baryon asymmetry. We fixed cB =
0.1 and Tws = 130 GeV in Eq. (6.31).

Too much DM for Baryogenesis. — Using Eqs. (6.5) and (6.31), the axion abundance relates
to the baryon asymmetry by

Ωa
ΩDM

≃ 7006

(
0.1

cB

)(
130 GeV

Tws

)2 ( ma

1 eV

)( fa
108 GeV

)2( YB
10−10

)
. (6.35)

The QCD axion clearly overcloses the Universe for a correct baryon asymmetry, as argued in [669]:

Ωa
ΩDM

≃ 399

(
0.1

cB

)(
130 GeV

Tws

)2( fa
108 GeV

)(
YB

10−10

)
. (6.36)

Indeed, the QCD axion can solve DM and Baryogenesis altogether if the PQ-charge transfer to
the baryon asymmetry becomes more efficient. Examples are: when the electroweak sphalerons
freeze-out at a larger temperature Tws [690–693], if the weak anomaly of U(1)PQ is larger (larger
cB) [669], in the presence of the dimension-5 Weinberg operator giving a Majorana mass to the
SM neutrinos [648, 694, 695], or in the presence of supersymmetric R-parity violating couplings
[696].

6.6 Chapter Summary

This chapter presents a possible and (we believe) unique framework of the intermediate kination
era – inside the standard radiation era – in cosmological history. So far, literature treats the kination
mainly as a phenomenon coming from the dynamics after the end of inflation and before reheating
to the SM thermal bath. Our main point is that a kination era can occur completely independently
of the inflationary sector, inside the standard radiation era, and instead from the early dynamics of
an axion field. Though the axion naturally has EOS of matter-kination-matter if it undergoes two-
stage oscillation due to the varying axion mass, it cannot lead alone to an intermediate kination era
because the sector – responsible for the disappearance of the axion’s high-scale mass – necessarily
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dominates over the axion’s energy density. The most straightforward extension is to include the
axion partner, the radial mode of the PQ field. Their interplay can naturally induce a stage of
rotating axion, and the intermediate matter-kination era naturally follows, as justified in detail in
Chap. 7.

We showed in Chap.4 that the intermediate matter-kination era leads to the distinctive peaked
signature in the primordial SGWB, which would serve as a unique probe of axion physics. As the
axion is one of the prime DM candidates, from the GW signature (peak frequency and amplitude) of
the rotating axion kination we can directly infer the energy scale

√
mafa of the axion potential, cf.

Eq. (6.17). The main DM production mechanism differs from the usual misalignment mechanism
due to the dominant kinetic energy of the axion. It falls into the regime of the kinetic misalignment
[449, 450] and kinetic fragmentation [129, 130, 132]. These mechanisms open up the parameter
space of the axion with a lighter mass – than the standard scenario – for being an interesting DM
candidate. Nonetheless, the rotating axion whose mass comes from the conventional QCD effect
cannot lead to any observable signature in the conservative inflationary SGWB, except at BBO.
The detectable regions are yet widely opened for the QCD axion with lighter mass, as motivated
by the axion non-linearly realized ZN symmetry [661–664].

Furthermore, the rotating axion serves as a successful baryogenesis mechanism in the context
of the axiogenesis model, where the U(1) charge of the rotating axion transfers to the baryon
asymmetry via the strong and weak sphalerons. One possible way to probe such a scenario is the
GW signature of the spinning-axion kination, which is observable for a broad range of axion decay
constant. Finally, a particularly intriguing scenario is when the U(1)-breaking – generating the
rotating axion – also leads to the global string network whose GW emission is enhanced by the
matter-kination era induced by the rotating axion itself. The axion strings with a non-vanishing
axion speed – recently been shown to exist [686] – would entirely change the vanilla cosmic-string
paradigm, e.g., the scaling regime, the particle production, and GW emission. It will be worth
investigating such a rotating axionic string scenario in more detail.

After the general and model-independent rotating-axion discussions, the next chapter concerns
model-building and connects the energy scale EKD and duration NKD of the kination era to the
model parameters. We analyze in detail the conditions in particle-physics parameter space and
chart observable regions at GW observatories.
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Chapter 7

Intermediate Kination-Domination Era:
Rotating Axion II (model-dependent)
Based on
[4] Y. Gouttenoire, G. Servant and P. Simakachorn, Kination cosmology from scalar fields and
gravitational-wave signatures, [2111.01150].

The intermediate kination cannot arise from the only axion degree of freedom (angular direction
of some complex scalar field), as discussed in Sec. 6.2. We emphasize that its interplay with the
radial component is the crucial ingredient that induces a matter era – allowing its domination over
the SM radiation. Eventually, the field reaches the bottom of the potential, and the kination era
starts due to the axion speed. In addition to the kination era, the rotating axion persists to later
times and allows interesting phenomenology: e.g., DM and Baryogenesis, discussed in Secs. 6.4
and 6.5.

In this chapter, we consider a UV-completion of the rotating axion that can lead to the kination-
domination era, first suggested in appendixes of [648] and studied in detail in [3, 4, 274]. Our focus
is on a class of models studied in detail by Co and Harigaya et al. [449, 648, 669, 697], where their
main aims are for DM production and Baryogenesis1. We first review the model set-up and then
the evolution of a rotating complex scalar field in an expanding Universe (cf. Fig. 6.1): from the
early times during inflation when it has a large radial value ϕ≫ fa until when it reaches the zero-
temperature minimum in ϕ = fa. Sec. 7.1 discusses the necessary conditions for generating a
kination era.

As we shall see, the vital obstacle for generating a kination EOS is that the energy density in
the radial mode must be damped. The optimal case happens when this damping occurs before the
scalar field energy density dominates. A kination era may still happen otherwise but the entropy
injection will shorten its duration. In this work, two damping mechanisms can be invoked: through
non-thermal process at early times (cf. Sec. 7.2) or through thermal effects (cf. 7.3 & 7.4). The
latter case relies on the interaction of the radial mode with particles in the thermal bath. The
predictions of the duration of the kination era and the observability of GW peak signature – from
primordial inflation, local or global cosmic strings – have been provided exhaustively. All the
supportive details that enter the discussion are collected in App. G.

7.1 Complex Scalar Field Dynamics

We consider a complex scalar field Φ with a Lagrangian

L = (∂µΦ)
†∂µΦ− V (|Φ|)− Vth(|Φ| , T )− V

��U(1)(Φ)− VH(Φ), (7.1)

where V (|Φ|) is a global U(1)-symmetric potential with spontaneous symmetry breaking (SSB)
vacuum, Vth(|Φ| , T ) are the finite-temperature corrections, V

��U(1) is an explicit U(1)-breaking
1We also note that earlier works study the dynamics of a complex scalar field leading to a kination era following

inflation, by assuming the initial rotational velocity in the context of self-interacting dark matter [507–510].

133

http://arxiv.org/abs/2111.01150


term, and VH is a Hubble-dependent term driving the field VEV to large values at early time. The
complex scalar field can be parameterized by two real fields describing radial ϕ and angular θ
directions

Φ = ϕeiθ, (7.2)

where the U(1) symmetry acts as a shift symmetry for θ. We consider only the homogeneous part
of the field, such that the Lagrangian in the angular representation is

L =
1

2
ϕ̇2 +

1

2
ϕ2θ̇2 − V (|Φ|)− Vth(|Φ| , T )− V

��U(1)(Φ)− VH(Φ), (7.3)

where the first two terms denote the kinetic energy in the radial and angular modes, respectively.

7.1.1 Requirements for a kination era.

First, let us chart the big picture and list the special features of the model required for generating a
matter-kination era:

• A U(1)-conserving potential V (|Φ|) with spontaneous symmetry breaking (SSB): In our
scenario, the kination era occurs when a rotating scalar field – which dominates the energy
density of the Universe – rotates along the flat direction of its SSB minimum.

• An explicit U(1)-breaking potential V
��U(1)(Φ): The rotation of the field condensate is in-

duced by an early kick in the angular direction due to the presence of an explicit breaking
potential, similarly to the Affleck-Dine mechanism [599].

• A large initial radial field-value ϕini: For the explicit breaking of higher-order terms in the
potential to kick the scalar field, we need a mechanism (encoded in VH(Φ)) to drive the
scalar field to a considerable value in the early Universe.

• A mechanism for damping the radial mode: After the kick, the field condensate undergoes
an elliptic motion. A damping mechanism of radial mode is necessary, so a circular trajectory
is reached. Therefore, the energy density is dominated by the kinetic energy of the angular
mode when the field settles down to the SSB vacuum, resulting in a kination era. The radial
damping requires the (approximately) U(1)-conserved interaction that could arise from the
non-thermal or thermal origins.

7.1.2 U(1)-conserving potential with spontaneous symmetry breaking

Zero-temperature potential

In App. G.4.2 and G.4.4, we show that a potential shallower than quartic is needed for the scalar-
field energy density to redshift slower than radiation and to dominate the energy density of the
Universe. Therefore, we consider a nearly-quadratic potential with a flat direction at the minimum,

V (|Φ|) = m2
r |Φ|2

(
ln

|Φ|2

f2a
− 1

)
+m2

rf
2
a +

λ2

M2l−6
pl

|Φ|2l−2, (7.4)

where fa is the radial-field value at the minimum. For ϕ≫ fa, the scalar field has an equation-of-
state of matter, with the corresponding effective mass defined as

m2
r,eff ≡ d2V

d|Φ|2
= 4m2

r

(
1 + ln

|Φ|
fa

)
. (7.5)

which is field dependent. The quadratic potential in Eq. (7.4) can be generated in gravity-mediated
SUSY-broken theories, cf. App. G.1.1, with mr being equal to the gravitino mass, mr ≃ m3/2.
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Moreover, the U(1)-symmetric quartic term can also arise, but it is negligible in the limit ϕ ≲Mpl

which is considered in this paper, as shown in App. G.1.1. The logarithmic function is generated
by the running of the soft mass [698], cf. App. G.1.4 for a review. The origin of the last term in
Eq. (7.4) is discussed in App. G.1.2 and provides the third ingredient for kination, discussed in
Sec. 7.1.3.

Finite-temperature corrections

The interactions between the complex scalar and other fields at equilibrium with the thermal plasma
generate thermal corrections to the potential. For definiteness, we assume that the complex scalar
field ϕ is coupled to fermions ψ charged under some (hidden or SM) gauge sector Aµ

L ⊃ yψϕψ
†
LψR + h.c.+ g ψ̄γµψAµ. (7.6)

Depending on the fermion mass yψϕ, the thermal corrections read [699, 700]

Vth(ϕ, T ) =

{
1
2y

2
ψT

2ϕ2, for yψϕ ≲ T,

α2T 4 ln(
y2ψϕ

2

T 2 ), for yψϕ ≳ T,
(7.7)

with α ≡ g2/4π the gauge coupling constant. Two regimes are:

• Thermal mass yψϕ ≲ T : fermions are relativistic and abundant in the thermal plasma.

• Thermal-log yψϕ ≳ T : the fermions abundance is Boltzmann suppressed. The thermal
corrections are obtained from the running of the gauge coupling constant g, after integrating
out the heavy fermions [701–705].

A sketch of the thermal corrections to the zero-temperature potential is shown in Fig. 7.1.
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Figure 7.1: Sketch of the zero- and
finite-temperature potentials.

Q-ball formation. Scalar fields – moving in a potential V (ϕ) where V (ϕ)/ϕ2 has a non-trivial
minimum – have stable non-topological localized field configurations, known as Q-balls [706].
This is the case of theories with negative radiative corrections to the mass term [707]: m2 =
m2

0(1 + β ln(ϕ)), with β < 0. With a potential being flatter than quadratic, a condensate with a
sizeable rotational charge has a centrifugal force larger than the potential gradient and fragments
into higher modes [706]. Thermal-log potentials are flatter than quadratic are thus are expected
to form Q-balls [699, 708, 709]. In order to preserve the condensate, the thermal-potential in the
second line of Eq. (7.7) must be sub-dominant meaning that one of the two following conditions
must be satisfied:

{
yψ ϕ ≲ T,

2αT 2 ln
1
2

(
yψϕ
T

)
≲ mr,eff ϕ,

⇒


yψ ≲ 3.4 · 10−6

[
T

8.3×1012

] [
Mpl

ϕ

]
,

T ≲ 8.3 · 1012
[ mr,eff
108 GeV

] 1
2

[
ϕ
Mpl

] 1
2 [0.1

α

] 1
2

[
25

ln
(
yψϕ

T

)
] 1

4

.

(7.8)
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Q-ball formation is avoided either by a small Yukawa coupling yψ, cf. scenario I in Sec. 7.2, or
a small maximal plasma temperature Tmax, cf. scenario III in Sec. 7.4, and in particular outside
the red region in Fig. 7.19-top-left. In contrast, scenario II presented in Sec. 7.3 controls neither
Yukawa coupling nor the maximal plasma temperature. Both conditions in Eq. (7.8) could be
violated and Q-balls could possibly form [699, 708, 709]. We do not investigate scenario II further,
for it can not lead to any kination era.

7.1.3 Explicit U(1)-breaking potential

The general form of the explicit breaking term can be written as

V
��U(1)(Φ) = Λ4

b

∑
l

∑
k ̸=l

[(
Φ†

Mpl

)l (
Φ

Mpl

)k
+ h.c.

]
, (7.9)

where Λb is a mass scale, Mpl is the cut-off of the theory which we set equal to the Planck mass,
and l ̸= k ensures the explicit breaking of the U(1) symmetry. In this work, we will assume a
simpler form where k = 0 and consider only one value of l. As discussed in App. G.1, the origin
of Eq. (7.9) can be attributed to the interaction, in a SUSY theory, between soft-breaking terms and
the higher-dimensional superpotential

L ⊃
∫
d2θW (SΦ) + h.c., with W (SΦ) =

λ

lM l−3
pl

SlΦ, (7.10)

where SΦ is the chiral superfield containing Φ and λ = O(1). The superpotential W (SΦ) in
Eq. (7.10) also generates a positive λ2ϕ2l−2 term which insures stability at large field value and
have already included in Eq. (7.4). In App. G.1.1, we obtain

V
��U(1)(ϕ, θ) = Λ4

b

[(
Φ†

Mpl

)l
+

(
Φ

Mpl

)l]
, (7.11)

with Λ4
b = λm3/2M

3
pl, (7.12)

where the integer l corresponds both to the field order and the number of wiggles along the angular
direction, cf. Fig 7.4.

7.1.4 Equations of motion

The evolution of the homogeneous field configuration is controlled by the Klein-Gordon equation
in an expanding Universe,

Φ̈ + 3HΦ̇ +
∂

∂Φ†

(
V + V

��U(1)

)
= 0, (7.13)

whereH is the Hubble rate, and V is the total potential energy density that conservesU(1) symme-
try2. Plugging Eq. (7.11) in Eq. (7.13) and decomposing into radial and angular parts, the system
of coupled equations of motion (EOM) becomes

ϕ̈+ 3Hϕ̇+
∂V

∂ϕ
+ 2l cos [lθ] Λ3

b

(
Λb
Mpl

)(
ϕ

Mpl

)l−1

= ϕθ̇2, (7.14)

ϕθ̈ + 3Hϕθ̇ − 2l sin [lθ] Λ3
b

(
Λb
Mpl

)(
ϕ

Mpl

)l−1

= − 2ϕ̇θ̇, (7.15)

2An abuse of notation: V =
∑
i Vi includes the zero-temperature V , the finite-temperature Vth, and the higher-order

VH potentials in Eq. (7.3).
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which is simply a Keplerian motion in a rotationally-invariant potential V , in the presence of small
wiggles V

��U(1) and Hubble friction. The Friedmann equation controls the evolution of the Universe

H2 =
1

3M2
Pl

(
ρrad + ϕ̇2 + ϕ2θ̇2 + V + Vth + V

��U(1) + VH

)
, (7.16)

where ρrad is the radiation background energy density, and the scalar field has three components in
its energy density: radial and angular kinetic energies and potential energy.

Generation of the U(1) charge. The angular EOM in Eq. (7.15) can be recasted as Boltzmann
equation of the U(1) charge nθ

ṅθ + 3Hnθ = −
∂V

��U(1)

∂θ
, with nθ ≡ ϕ2θ̇. (7.17)

In App. G.4.1, we show that the field receives an angular kick at the onset of oscillation, tosc ∼
m−1
r,eff(ϕini) cf. Eq. (7.27), which for V

��U(1)(θ) in Eq. (7.11) and l ≥ 4, is given by

nθ = ϕ2iniθ̇ini

(aini
a

)3
=

(
12l

6 + q

)
Λ4
b

(
ϕini
Mpl

)l sin(lθini)

mr,eff(ϕini)

(aini
a

)3
, (7.18)

where q is related to the equation of state of the Universe H2 ∝ a−q and where mr,eff is defined
in Eq. (7.5). After few Hubble times pass from the kick, ϕ has redshifted below ϕ≪Mpl, and the
angular EOM in Eq. (7.15) becomes a charge conservation equation

d

dt

(
a3nθ

)
= 0, (7.19)

where nθ is the comoving Noether charge of the restoredU(1) symmetry. As shown in Chap. 6, the
U(1)-charge corresponds to the rotating axion and is the crucial quantity for characterizing kination
era, DM, and Baryogenesis.

Quality problem of the Peccei-Quinn solution. If the global U(1) symmetry is anomalous in
a background of SU(3)c gluons, then a second U(1)-breaking potential is generated by QCD in-
stantons around T ≃ 100 MeV [710–712]. In that case, the angular mode θ offers a solution to the
strong CP problem known as the Peccei-Quinn QCD axion [439–441, 649]. The non-detection of
the electric dipole moment of the neutron (nEDM) implies the upper bound [713–715]

θ̄0 ≲ 10−10, (7.20)

where θ̄0 is the angle value today with respect to one of the CP -preserving [716] minimum of
the QCD instanton potential. The presence of the higher dimentional U(1)-breaking potential in
Eq. (7.11) is expected to shift the CP -preserving minimum by3

∆θ ≃ l
Λ4
b

χ0

(
fa
Mpl

)l
, (7.21)

where χ0 ≡ m2
af

2
a ≃ (75.6 MeV)4 is the susceptibility of the topological charge at zero temper-

ature for the canonical QCD axion [658]. Using Eq. (7.12) with m3/2 ≃ mr, the nEDM bound in
Eq. (7.20) translates to

l λ
mrM

3
pl

χ0

(
fa
Mpl

)l
≲ 10−10. (7.22)

For mr/fa ≃ 10−2, λ = 10−4 and fa ≃ (108 GeV, 1012 GeV, 1016 GeV), the neutron EDM
bound implies the following lower bounds l ≥ (7, 12, 34).

3We calculate the shift in the axion’s potential minimum and obtain a similar condition as provided in Ref. [648]
where the authors consider a different calculation, i.e. the mass contribution from the explicit breaking term.
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7.1.5 Large initial vacuum expectation field-value

Supersymmetric theory

During the early Universe, the complex scalar field Φ can obtain a Hubble-induced negative mass
and Hubble-induced higher dimensional terms [580, 582]

VH(Φ) ≃ − cH2|Φ|2 + a
H

m3/2
Λ4
b

[(
Φ

Mpl

)l
+ h.c.

]
, a, c = O(1). (7.23)

As shown in App. G.1.2, these naturally arise in SUSY theories in the presence of a gravity-
mediated interaction in the Kähler potential

L =

∫
dθ2dθ̄2

(
a
SI + S∗

I

Mpl
|Sϕ|2 + c

|SI |2

M2
pl

|SΦ|2
)
, (7.24)

where SΦ is the chiral superfield containing Φ and SI is the chiral superfield whose F - or kinetic-
term dominates the energy density of the Universe. At early time, the radial VEV of the scalar
field is governed by the U(1)-conserving, U(1)-breaking and Hubble-induced terms in Eqs. (7.4),
(7.11) and (7.23)

V (Φ) = (m2
r,eff − cH2)|Φ|2 + Λ4

b

(
1 + a

H

mr

)[(
Φ

Mpl

)l
+ h.c.

]
+

λ2

M2n−6
pl

|Φ|2l−2. (7.25)

With c ∼ O(1) and H ≳ mr,eff , the Hubble friction 3H and the Hubble-induced mass term cH
in the EOM are comparable, such that the scalar field is nearly critically-damped [589] and rolls
exponentially fast (actually in 3/c e-folds of inflation) towards a non-trivial minimum at large field
value

ϕini = Mpl

(
√
c
mr,eff(ϕini)

λ
√
2l − 2Mpl

) 1
l−2

, (7.26)

for a ≲ c, cf. App. G.1.3. When the Hubble scale crosses its mass

Hosc ≃ mr,eff/3, (7.27)

the field starts oscillating (under-damped motion) with an initial amplitude ϕini. An oscillation
in the angular direction with initial amplitude θini ∼ O(1) is generated by the same dynamics
thanks to the Hubble-dependent U(1)-breaking terms in Eq. (7.23). We refer to App. G.1.3 for
more details on the evolution of Φ at early stages.

Long kination requires large l. Even though it is not restricted to the Peccei-Quinn QCD axion,
our study also motivates large values of l in order to maximize the amount of rotation ϵ, defined
in Eq. (7.37), resulting from the angular kick, see Eq. (7.41), and to have initial radial value ϕini
as large as possible, see Eq. (7.26). As we show in Eq. (7.34) and Eq. (7.35), the duration of the
kination era depends crucially on those quantities. The impact of the value of l on the detectability
of the GW peak signature can be seen from Fig. 7.10 to Fig. 7.12 of Sec. 7.2 or in Fig. 7.20 of
Sec. 7.4.

Random fluctuations during inflation and some issues

Without any Hubble-induced mass term from the supersymmetry, the field can be driven at a large
field value by the de Sitter (dS) fluctuations during inflation, namely the sub-horizon quantum
modes in the dS background. During each Hubble time H−1

inf , the dynamics of a real scalar field
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during inflation can be described as a superposition of quantum fluctuations δϕ ≃ Hinf/2π and
classical motion ∆ϕ ≃ V ′/3H2

inf , where Hinf is the Hubble scale during inflation. This interplay
between random walk and restoring force determines the scalar field probability distribution as a
solution to the associated Fokker-Planck equation. For aU(1)-preserving potential, the distribution
spreads as [717, 718]

〈
ϕ2
〉
=

3H4
inf

8π2m2
ϕ

[
1− exp

[
−

2m2
ϕ

3Hinf
(t− t0)

]]
N≳(Hinf/mϕ)

2

−−−−−−−−−→
3H4

inf

8π2m2
ϕ

, (7.28)

where mϕ is the mass of the real scalar field. The arrow shows when the so-called Bunch-Davies
equilibrium distribution is reached.4 The correlation length l of dS fluctuations [717], lH ∼
exp(

3H2
inf

2m2
ϕ
), can be much larger than the Hubble horizon for relatively flat potential mϕ ≪ Hinf ,

and therefore can give rise to a homogeneous condensate at a later time. The case of a complex
scalar field is treated in [719] where it is shown that the averaged radial value is equal to Eq. (7.28),
up to a factor 2

〈
ϕ2ini
〉

≃
3H4

inf

4π2m2
r,eff

, (7.29)

where mr,eff is defined in Eq. (7.5). In the presence of an explicit U(1)-breaking, the averaged
angle acquires a shift of order O(ϵ), defined in Eq. (7.37), with respect to the values of θ along the
valleys [719].5 The scalar field remains frozen at

(〈
ϕ2ini
〉
, ⟨θini⟩

)
until the time of oscillation given

by Eq. (7.27). Then, the O(ϵ) shift of ⟨θini⟩ acts as a kick in the angular direction.
In App. G.2, we show that in the absence of Hubble-size mass terms for the radial and angu-

lar modes in Eq. (7.23), quantum fluctuation during inflation leads to problematic adiabatic and
isocurvature perturbations as well as to the formation of domain walls which are not bounded by
cosmic strings. For those reasons, in this work we assume the presence of the Hubble-induced
potential in Eq. (7.23) such that the radial VEV

〈
ϕ2ini
〉

is set by Eq. (7.26) and not by Eq. (7.29).

7.1.6 Damping of the radial mode

After the complex field starts oscillating, it attains an elliptic orbit. Fig. 7.2 shows that the damping
of radial kinetic energyKϕ = ϕ̇2/2 (green lines in left & right panels) is necessary for the complex
scalar field to accomplish a circular orbit and to acquire a kination equation of state when it reaches
the bottom of its potential ϕ → fa. As motivated in the following, we consider the damping with
the rate Γ via the (approximately6) U(1)-conserved interaction which enters in the radial-mode
EOM as an additional friction term7:

ϕ̈+ (3H + Γ)ϕ̇+ V ′(ϕ) = θ̇2ϕ, and
d(a3nθ)

dt
= 0, (7.30)

4Basically, we can interpret the quantum fluctuations as due to the temperature of the dS space-time Hinf/2π such
that the scalar field gets a thermal distribution satisfying V (ϕ) ≃ H4

inf .
5The authors of [719] assume an explicit breaking of U(1) of the form V��U(1)(Φ) = λ

(
Φ3Φ† + h.c.

)
, where λ can

be either positive or negative. As a result, they find that the averaged angular amplitude is

⟨tan θini⟩ =

±
√

1− 9λH4

8π2m4
r,eff

±
√

1 + 9λH4

8π2m4
r,eff

⇒ ⟨θini⟩ ≃ (2n+ 1)
π

4
± 9H4

8π2m4
r,eff

λ,

where λ≪ m4
r,eff/H

4 by assumption, and n is an integer.
6If the wash-out of U(1) charge is suppressed, the rotation is left intact after the damping.
7Here, the friction invokes for the damping of radial mode – a partner of the axion. Recently, it has been shown

that the presence of friction can substantially modify the usual prediction and opens-up parameter spaces for axion DM
[667, 668].
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Figure 7.2: Evolution of complex field energy density without (left) and with (right) radial damping. Only
the latter case gives rise to a kination equation of state when the complex scalar field reaches the degenerate
minimum of its potential ϕ→ fa (bottom). Obtained after numerically integrating the equations of motion
in Eqs. (7.14), (7.15) and (7.16).

where we omit the explicit breaking-terms because they are only effective around the time of os-
cillation. The rate Γ can be identified as the decay or thermalization rate of a particle ϕ [81, 700].
Because the oscillation of a homogeneous scalar field is a coherent state of a scalar particle. When
the damping rate becomes the dominant friction (i.e. 3H ∼ Γ or the total energy density of the Uni-
verse is ρdamp = 3M2

PlΓ
2), the radial motion is suppressed (ϕ̇ → 0), up to the cosmic expansion,

cf. the right panel of Fig. 7.2. The field reaches the circular orbit because of the balance between
the centrifugal force and the potential gradient, cf. App. G.4.4. Furthermore, the field’s energy
density could be reduced substantially if the orbit before damping is highly elliptic, cf. App. G.4.3.

In this work, we consider two mechanisms for damping the radial mode:

1) Parametric resonance: In App. G.3.2, we discuss qualitatively the possibility that parametric
resonance could dampen the radial mode while preserving the U(1) charge nθ. However, we leave
the quantitative study of the realistic efficiency of this damping mechanism for further studies.

2) Thermalization: We assume that the complex scalar field ϕ is coupled to fermions ψ charged
under some (hidden or SM) gauge sector Aµ (KSVZ-type interactions)

L ⊃ yψϕψ
†
LψR + h.c.+ g ψ̄γµψAµ. (7.31)

As a consequence, the scalar condensate thermalizes with the thermal plasma when the decay rate
Γ into fermions8, given in Eq. (G.69) of App. G.3.1, is larger than H . Higgs interactions are
not sufficient enough, as discussed in App. G.3.1. Therefore, we focus on thermal effects from
the fermionic portal. As shown in the supplementary material of [669], as long as ϕ ≫ T , it
is energetically more favorable to keep the U(1) charge in the condensate after thermalization.
The condensate has an energy density ρϕ = ϕ2θ̇2 larger than in the one converted to plasma,
ρrad ⊃ ϕ4θ̇2/T 2. In the presence of this interaction, the scalar field dynamics can be dominated
by its thermal mass

m2
r,eff,T = m2

r,eff + y2ψT
2, (7.32)

8The damping of condensate can be viewed in another direction. The slowly moving homogeneous scalar field
changes the masses and parameters of the thermal plasma. It drives them slightly out of equilibrium, inducing the fluid
viscosity, and the damping coefficient for scalar motion [703, 720].
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after the onset of radial mode oscillation, if the Yukawa coupling yψ is larger than

yψTosc > mr,eff ⇒ yψ ≳ g
1/4
∗

√
mr,eff
Mpl

, (7.33)

where 3Hosc ≃
(
π2g∗
10

)1/2
T 2
osc/Mpl ≃ mr,eff. We consider three possible scenarios for the damp-

ing of the radial mode:

1. Scenario I. The complex scalar field is assumed to evolve in the zero-temperature potential
V (ϕ) = m2

r,eff(ϕ)ϕ
2/2, which implies a small Yukawa coupling yψ ≲

√
mr,eff/Mpl, cf.

Eq. (7.33). As shown in gray region the lower panel of Fig. 7.18, thermalization with such
small Yukawa coupling is not efficient to damp early enough the radial mode and cannot
lead to kination. Instead, we assume that radial damping occurs non-thermally via some
unknown mechanism, for which parametric resonance appears as a possible candidate, cf.
App. G.3.2. This leads to the largest prediction for the number of kination e-foldsNKD. This
is the scenario considered in the next Sec. 7.2. The longest duration of kination is obtained
in Eq. (7.57)

eNKD = e8.2 ϵ2/3
(
109 GeV

fa

)1/3(
mr,eff(ϕini)

5mr,eff(fa)

)1/3( ϕini
Mpl

)4/3

. (7.34)

2. Radial damping occurs via thermalization. Large NKD requires that thermalization occurs
before scalar field domination to prevent entropy injection. This implies a large Yukawa
coupling yψ and potentially large thermal effects. We consider two possibilities:

• Scenario II. The dynamics of the complex scalar field is controlled by its thermal
mass V (ϕ) = 1

2y
2
ψT

2ϕ2. In Sec. 7.3 we show that the thermal mass prevents a kinaton-
dominated era due to the initial angular kick ϵ being suppressed and also to the scalar
field starting oscillating earlier.

• Scenario III. The fermions responsible for the thermal corrections of the potential are
Boltzmann-suppressed when the scalar field starts oscillating. Therefore, the scalar
field evolves in its zero-temperature potential, and thermal effects do not spoil the effi-
ciency of the angular kick. This scenario is presented in Sec. 7.4. The longest period
of kination is cf. Eq. (7.112)

eNKD
∣∣
yψ=yψ,∗

= e5.1
ϵ
2
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) 2
3
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(7.35)

7.2 Scenario I: Non-Thermal Damping

When the couplings between the complex scalar condensate Φ and the thermal plasma are sup-
pressed, we can ignore the thermal corrections to the potential in Eq. (7.7). We impose the thermal
mass to be negligible at the onset of the radial mode oscillation. Focusing on the case where Φ
couples to thermal fermions through a Yukawa coupling yψ as defined in Eq. (7.6), this implies

yψTosc ≲ mr,eff(ϕini) ⇒ yψ ≲ g
1/4
∗

mr,eff(ϕini)

Mpl
, (7.36)

where we have used yψTosc ≃ 3H(T ).
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In App. G.3.1, we show that it is impossible to efficiently damp the radial mode via thermal-
ization while neglecting thermal corrections at the onset of the scalar field oscillation. Instead,
in the present section, we assume that radial damping takes place via a non-thermal mechanism
(possibly parametric resonance cf. App. G.3.2), and we consider the radial damping rate Γ to be a
free parameter.

7.2.1 Field trajectory

In Fig. 7.3, we outline the main stages of evolution of the rotating complex scalar field:

• First, the Hubble-induced and the higher-order potentials in Eq. (7.4) initially freeze the
scalar field at a large field value ϕini and at a displaced angle θini with respect to the valleys
of the potential, see Sec. 7.1.5.

• Second, the field starts oscillating when its dynamics become under-damped 3Hosc ≃ mr,eff.
Thanks to the initial kick induced by theU(1) breaking potential, see Sec. 7.1.3, the complex
scalar field obtains an elliptic motion, whose size reduces with the cosmic expansion. For a
nearly-quadratic potential, see Sec. 7.1.2, the scalar field energy density redshifts as matter
ρϕ ∝ a−3 and starts dominating the energy density of the Universe.

• Third, the oscillation along the radial direction is damped due to either parametric resonance
or thermalization in Secs. 7.3 and 7.4, while the angular motion remains, see Sec. 7.1.6.
This happens when the damping mechanism becomes more efficient than the Hubble rate,
3Hdamp ∼ Γ.

• After this stage, the field rotates coherently in a circle with a continuously reducing size.
When the orbiting field reaches the bottom of the potential, its kinetic energy dominates its
potential energy and gives rise to a kination equation of state.

The numerical computation of the whole trajectory of the scalar field from the onset of the
oscillation until the end of the kination era is shown in Figs. 7.5 and 7.7, cf. also our animation.
For further details on the field evolution, we refer the interested readers to App. G.4.

Amount of rotation. We introduce the ratio between number densities in the angular mode and
in the radial mode9

ϵ ≡ ϕ2θ̇/2

V (ϕ)/mr,eff(ϕ)
=

ϕ2iniθ̇ini/2

V (ϕ)/mr,eff(ϕ)

(aini
a

)3
. (7.37)

From using (ϕini/Mpl)
l−2 =

√
cmr,eff(ϕini)/λ

√
2l − 2Mpl, cf. Eq. (7.26), we find that the term in

the potential – dominating the scalar dynamics at the onset of the radial-mode oscillation – depends
on the value of c,

V (ϕini) =

λ
2 ϕ

2l−2
ini

M2l−6
pl

, if c > l − 1,

1
2m

2
r,eff(ϕini)ϕ

2
ini, otherwise.

(7.38)

In the first case, the scalar field redshift as, cf. App. G.4.2

ϕ ∝ a−
6

2+n , with n = 2l − 2. (7.39)
9ϵ is related to Yθ defined in Eq. (6.11) through ϵ = sYθmr,eff(ϕ)/(2V (ϕ)), where s = 2π2

45
g∗T

3. In successful
setup, the quantity ϵ is bounded by above ϵ ≲ 1, where ϵ = 1 corresponds to a field trajectory which would be already
circular at the onset of the radial mode oscillation. In that sense, ϵ can be called the U(1) charge fraction contained in
the condensate, 1 being the maximal value.
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Stages Hubble factor Field value Energy density
I. Field frozen or track large-field minimum 3H > mr,eff, Γ ϕ = ϕini ρΦ ∝ a0

II. Elliptic orbit: oscillation and rotation mr,eff ≥ 3H > Γ
ϕini > ϕ > fa ρΦ ∝ a−3

III. Circular orbit after radial damping
mr,eff, Γ > 3HIV. Rotation at potential minimum ϕ = fa ρ ∝ a−6

Figure 7.3: Different stages of evolution of the scalar field, leading to the matter-kination EOS. The side
bar on the left shows the EOS of the scalar field. We invite the interested reader to visualize our animation.

until the nearly-quadratic term ϕ2 dominates around the field value ϕquad

1

2
m2
r,eff(ϕquad)ϕ

2
quad = λ2

ϕ2l−2
quad

M2l−6
pl

. (7.40)

For ϕ < ϕquad, the quantity ϵ defined in Eq. (7.37) becomes a conserved quantity since both
numerator and denominator scale as a−3. Plugging Eq. (7.39) into Eq. (7.40), we obtain the scale
factor aquad below which ϵ becomes constant. From injecting aquad into the generatedU(1) charge
in Eq. (7.18) and then back into the definition of ϵ in Eq. (7.37), we obtain

ϵ =


1√
2

mr,eff(fa)
mr,eff(ϕini)

l sin lθini, if c > l − 1,

1√
2

√
c
l−1

mr,eff(fa)
mr,eff(ϕini)

l sin lθini, otherwise.
(7.41)

For c ∼ O(1) and sin lθini ∼ O(1), a large value of l, (for instance l ≃ 10), can easily compensate
for the ratio of mr,eff, which is only log1/2 suppressed, cf. Eq. (7.5), such that ϵ = O(1) is realis-
tic.10 Fig. 7.4 shows the size of the wiggles increasing with ϵ. The larger the wiggles, the larger
the potential gradient along the angular direction and the larger the initial kick.

Motion after the kick. In App. G.4.2, we show that after a few oscillations in a nearly-quadratic
potential, the angular velocity averaged over many oscillation periods

〈
θ̇
〉

becomes independent

10Values of ϵ larger than 1 corresponds to the field climbing up the field potential due to the centrifugal force being
larger than the mass and we expect them to be unphysical, therefore we should replace Eq. (7.41) by Min [ϵ, 1].
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Figure 7.4: Nearly-quadratic potentials with the explicit-breaking term in Eq. (7.11). The integer l corre-
sponds to both the number of wiggles and the order of ϕl. The amplitude of the angular velocity kick θ̇ini is
set by the explicit-breaking strength ϵ, defined in Eq. (7.37). The bottom-right figure shows a zoom of the
circular vacuum at ϕ = fa.

of the initial kick θ̇ini in Eq. (7.18). Instead, it converges to the attractor solution〈
θ̇
〉

≡ 1

T

∫ T

m−1
eff

θ̇(t′)dt′ = mr,eff , (7.42)

for which the quadratic potentialm2
r,effϕ

2 is exactly compensated by the centrifugal potential ϕ2θ̇2.
This is confirmed by the numerical integration of the equations of motion shown in Fig. 7.5. Even
if the stationary value of

〈
θ̇
〉

is independent of θ̇ini, it is not the case of the fraction ϵ of U(1)

charge in the condensate, see Eq. (7.41).
In App. G.4.2, Virial theorem shows that the energy density ρΦ and the radial field value ϕ,

assuming a nearly quadratic potential and averaged over oscillations, scale like

⟨ρΦ⟩ ∝ a−3, ⟨ϕ⟩ ∝ a−3/2. (7.43)

Motion due to radial damping. The damping of the radial mode ϕ̇→ 0, see Sec. 7.1.6, converts
the elliptic trajectory into a circular one. In App. G.4.3, we show that radial damping leads to a
drop in total energy of the complex scalar field Φ equal to the U(1) charge fraction ϵ defined in
Eq. (7.37)

ρafterΦ = ϵρbeforeΦ ⇒ ϕ2after = ϵϕ2before, (7.44)

where the label ‘before’ and ‘after’ denote the moments just before and after the time of damping.
The suppression factor in Eq. (7.44) comes from the conservation of the rotational energy ρθ ≡
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Figure 7.5: left: Non-averaged angular velocity θ̇(t), obtained after numerically integrating the equations
of motion in Eqs. (7.14), (7.15) and (7.16). (mr = 105 GeV,M =MPl, ϕini = 1017 GeV, θini = π/2l, ϕ̇ini =
θ̇ini = 0). The trajectory becomes more circular as the U(1) charge fraction ϵ→ 1. right: Averaged angular
velocity

〈
θ̇
〉

, cf. Eq. (7.42). After the scalar oscillation a > aosc, the trajectory becomes independent of

the values of ϵ and l and quickly converges to the attractor solution
〈
θ̇
〉
= mr,eff.

θ̇2ϕ2/2 during radial damping

ρθ = ϵV (ϕ). (7.45)

In App. G.4.3, we show that due to Eq. (7.44), the number of e-folds of kination domination receives
the suppression factor −2

3 log ϵ. The impact of ϵ on the energy density and the duration of kination
are depicted in Fig. 7.6.
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Figure 7.6: Impact of ϵ ≪ 1 on the evolution of the energy density of the complex scalar fields. We
consider two cases according to whether the radial damping occurs before (left) or after (right) the complex
scalar dominates the energy density of the Universe. In both cases, the number of e-folds of kination is
reduced by − 2

3 log ϵ. The best case scenario ϵ = 1 corresponds to a trajectory which is already circular even
before radial damping.
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Figure 7.7: Numerical results of the radial field evolutions ϕ, the angular velocity θ̇, the equation-of-state
ωΦ, and the energy density ρΦ. The complex scalar field has a matter EOS ωΦ = 0, when ϕ ≫ fa and
reaches a kination EOS ωΦ = 1, when ϕ ≃ fa. Kination ends when the radiation energy density shown
in red starts dominating the energy budget of the Universe once again. For a fixed mr, the smaller fa,
the longer the matter era, the larger the domination of the energy density of the Universe, and the longer
the kination era. Obtained after numerically integrating the equations of motion in Eqs. (7.14), (7.15) and
(7.16). (assuming mr = 106 GeV, M = MPl, ϕini = 1017 GeV, θini = π/2l, ϕ̇ini = θ̇ini = 0, ϵ = 0.4, and
Γ = 104 GeV.)

Motion towards kination. After radial damping, ϕ̇ → 0, the trajectory of the complex scalar
field is reduced to a circular orbit whose radius decreases due to the Hubble friction. From the
conservation of the U(1) charge in Eq. (7.19), a3ϕ2θ̇ = constant, we see that once ϕ → fa, the
complex scalar field reaches a kination equation of state, θ̇ ∝ a−3 and ρΦ = ϕ2θ̇2

2 ∝ a−6. More
precisely, in App. G.4.4 and [669], the evolution of the complex scalar field Φ = ϕeiθ after radial
damping ϕ̇→ 0 can be traced analytically

d lnϕ

d ln a
=

−3 log
(
ϕ2

f2

)
2 log

(
ϕ2

f2

)
+ 1

and
d ln θ̇2

d ln a
=

−6

2 log
(
ϕ2

f2

)
+ 1

, (7.46)

as well as its energy density ρΦ and equation of state ωΦ

d ln ρΦ
d ln a

=
−6 log

(
ϕ2

f2

)
2 log

(
ϕ2

f2

)
− 1 + f2

ϕ2

and ωΦ =
ϕ2 − f2a

2ϕ2 log ϕ2

f2a
− f2a + ϕ2

. (7.47)

For ϕ ≫ fa we have ϕ ∝ a−3/2, θ̇ ∝ a0, ρΦ ∝ a−3, ωΦ ≃ 0,, and for ϕ → fa we have
ϕ ∝ a0, θ̇ ∝ a−3, ρΦ ∝ a−6, ωΦ ≃ 1. These analytical results agree with the numerical
computations of the complex scalar evolution in an expanding Universe, from the oscillation onset
until the end of the kination era, shown in Fig. 7.7.
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Figure 7.8: Evolution of energy densities of SM radiation (black) and the complex scalar field in nearly-
quadratic potential (red) and quartic potential (green). A complex scalar field evolving in quartic potential
redshifts like radiation and can never generate a kination-dominated era; see App. G.4.2 and G.4.4 for the
analytical justification. Whenever it occurs after domination, ρdamp < ρdom, the radial damping heats the
thermal bath (black dashed lines), which reduces the duration of the kination era. In contrast, the kination
duration is optimized for ρdamp > ρdom. We show two fa-values, fa,I > fa,II, corresponding to two
durations of kination, NKD,I < NKD,II.

7.2.2 Cosmological history

In this section, we discuss the cosmological history of the Universe in terms of the energy density of
the scalar field ρΦ. We defer the derivations of the expressions below to App. G.4.5 (and App. G.4.3
for the factor ϵ/2). We show a sketch of the evolution of ρΦ in Fig. 7.8.

Onset of field oscillation. We assume that the Universe is initially radiation-dominated. The
complex scalar field starts to roll when

3H = mr,eff ⇒ Tosc = g
−1/4
∗

√
mr,effMpl ≤ Treh, (7.48)

and ρosc = V (ϕini),withmr,eff and ϕini given in Eq. (7.5) and (7.26), respectively. Our framework
assumes that the scalar field starts oscillating during a radiation-dominated era after reheating. The
maximum reheating temperature is of the order of the inflationary scale Einf . Hence in our plots,
we have the constraint, Tosc ≤ Einf , which can be seen as the purple upper-right region from
Fig. 7.10, to 7.12.

No second inflation. In order for the scalar field to not induce a second period of slow-roll infla-
tion, we must impose Φ to be sub-dominant at the onset of the oscillation

V (ϕini) <
m2
r,effM

2
pl

3
. (7.49)

Note that this condition guarantees that the initial radial field excursion is never superplanckian.

Matter domination. The scalar field redshifts like matter and dominates the energy density of
the Universe at

ρdom =
27mr,eff(ϕini)

2ϕ8ini
16M6

Pl

A4
ϵ and

adom
aosc

=
2M2

Pl

3ϕ2ini
A−1
ϵ (7.50)
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with

Aϵ =

ϵ, if ρdamp > ρdom,

1, if ρdamp < ρdom,
(7.51)

where ϵ is the amount of Noether charge, defined by Eq. (7.37) and whose value is dynamically
generated at the onset of oscillation, see Eq. (7.41). The impact of ϵ on the evolution of the scalar
field energy density is discussed in App. G.4.3.

Radial damping. Denoting by Γ the rate at which the radial motion is damped by some unspec-
ified mechanism, cf. Sec. 7.1.6, we obtain that the trajectory becomes circular when

ρdamp = 3M2
PlΓ

2B4
ϵ , and

adamp

adom
=

(
ρdom
ρdamp

)1/3

, (7.52)

with

Bϵ =

1, if ρdamp > ρdom,

ϵ, if ρdamp < ρdom.
(7.53)

In this section, Γ is considered as a free parameter, and we assume that damping can occur before
the onset of the matter domination, ρdamp > ρdom.

Duration of the kination era. The Universe acquires a kination equation-of-state when the field
reaches ϕ → fa, corresponding to the energy density ρKD,i = f2am

2
r,eff(fa)/2. Depending on

whether radial damping occurs before or after the onset of matter domination, we obtain

aKD,i
max(adom, adamp)

=

(
min(ρdom, ρdamp)

ρKD,i

)1/3
. (7.54)

The kination era stops when the Universe becomes radiation-dominated again. The energy scale
at which it occurs depends on whether radial damping occurs before and after the onset of matter
domination

ρKD,f =
ρ2KD,i

min(ρdom, ρdamp)
=


4f4am

4
r,eff(fa)M

6
Pl

27m2
r,eff(ϕini)ϕ

8
ini

(
1
ϵ

)4
, if ρdamp > ρdom,

f4am
4
eff(fa)

12M2
PlΓ

2
damp

(
1
ϵ

)4
, if ρdamp < ρdom.

(7.55)

The duration of the kination era NKD ≡ log aKD,f/aKD,i reads

eNKD =

(
min(ρdom, ρdamp)

ρKD,i

) 1
6

=


√

3
2

(
mr,eff(ϕini)
mr,eff(fa)

Mpl

fa

)1/3 (
ϕini
Mpl

)4/3
ϵ2/3, if ρdamp > ρdom,(

6M2
PlΓ

2
damp

f2am
2
r,eff(fa)

)1/6

ϵ2/3, if ρdamp < ρdom.

(7.56)
The first line of Eq. (7.56), corresponding to efficient radial damping before scalar field domination,
gives the longest duration of kination for the complex scalar field model studied in this work

ρdamp > ρdom ⇒ eNKD ≃e8.2 ϵ2/3
(
109 GeV

fa

)1/3(
mr,eff(ϕini)

5mr,eff(fa)

)1/3( ϕini
Mpl

)4/3

, (7.57)

where ϵ can be O(1), see Eq. (7.41). Note that for efficient thermalization, the number of matter
e-folds NMD ≡ log aKD,i/adom, cf. first line of Eq. (7.54), verifies the property

ρdamp > ρdom ⇒ NMD = 2NKD. (7.58)

The duration of the matter and kination eras are shown in Fig. 7.9.
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Figure 7.9: The duration of kination NKD,
cf. Eq. (7.56), depends on the energy
scale at the ‘effective’ start of the matter era
Min [Edom, Edamp] and at the onset of the ki-
nation era EKD = (2m2

rf
2
a )

1/4. If Edamp <
Edom, entropy injection at the time of damping
re-equilibrates the amount of matter vs radiation
in the Universe, hence the ‘Min’ function. The
largermr, the largerEdom and the longer the du-
ration of the matter-kination era. In the present
Sec. 7.2, we consider Edamp as a free parame-
ter. The maximum duration of kination compat-
ible with both BBN and the maximal inflation-
ary scale allowed by CMB data, NKD ≲ 14.6, is
computed precisely in App. F.1.

7.2.3 Gravitational-wave signature and detectability

As discussed in Sec. 4.7.1, the primary motivation for generating a kination era is enhancing the
amplitude of SGWB produced beforehand. The subsequent figures show the detectability of SGWB
produced by primordial inflation (Fig. 7.10), local strings (Fig. 7.11), and globals strings (Fig. 7.12)
in the presence of a kination era generated by scenario I: a spinning complex scalar field assum-
ing the existence of an efficient non-thermal damping mechanism that enables to neglect thermal
corrections to the potential.

Axion dark matter. One interesting point in this paper is that the axion generating the matter-
kination era and the peak GW signature could also explain DM. In Sec. 6.4, the nature of kination
– parametrized by its energy scale EKD and durationNKD – is related model-independently to the
axion parameters, namely axion mass ma and its decay constant fa. This means that the axion
parameter space could be probed easily by reading the peak position of the GW background that
gets boosted by this kination era.

This section provides the kination nature (EKD, NKD) in terms of UV-completion parame-
ters, i.e. the radial-mode mass mr and fa. Therefore we translate the detectability plots in the
UV-completion parameters into the usual axion parameter space. Let us compare the model-
independent expression of the energy scale at the end of kination, Eq. (6.13), and the model-
dependent expression, Eq. (7.55), and we also use the initial VEV in Eq. (7.26). Equating these
two expressions, the mass of radial mode is fixed when axion of mass ma contributes to the total
DM density,

mr ≃MPl

[
7.1× 109h2

[λ2(2l − 2)]
1
l−2

( ma

GeV

)(ΩDM

Ωa

)] 2(l−2)
l−6

. (7.59)

Here we see a non-trivial result, namely mr grows with ma. One might naively expect a larger
mr for smaller ma because the larger PQ-charge yield is required for the correct Ωa = maYθs0.
However, a larger charge does not mean larger mr. A yield is proportional to mr/T

3
KD. For larger

mr, the kination energy scale also increases and hence enhances TKD in the process. Applying the
newmr expression, the duration of kination in Eq. (7.56) transforms into the axion DM parameters,

eNKD ≃
√

3

2

(
MPl

fa

) 1
3
(
ϕini
MPl

) 4
3

≃
√

3

2

(
MPl

fa

) 1
3

[
7.1× 109h2(
λ
√
2l − 2

)1/2 ( ma

GeV

)(ΩDM

Ωa

)] 8
3(l−6)

.

(7.60)
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Gravitational waves from primordial inflation: Einf = 1.6× 1016 GeV

Figure 7.10: Ability of future-planned GW observatories to detect the peak signature in the SGWB from
primordial inflation with energy scale Einf of a matter-kination era induced by scenario I. In this scenario,
a kick in the angular direction of a complex scalar field is induced with a large radial value by operators of
order l and self-coupling λ, and the radial motion is assumed to be damped non-thermally. Black dashed
lines indicate where the lighter non-canonical QCD axion abundance in Eq. (6.3) is satisfied, cf. Eq. (6.5).
The left boundary is set by the kinetic misalignment mechanism, while the right one is set by the axion
quality problem (for larger mr depending on fa), cf. Eq. (7.22). Only the region between these two lines
does not over-produce DM.
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Gravitational waves from local cosmic strings

Figure 7.11: Ability of future-planned GW observatories to detect the peak signature in the SGWB from
local cosmic strings with tension Gµ of a matter-kination era induced by scenario I. In this scenario, a kick
in the angular direction of a complex scalar field is induced with a large radial value by operators of order
l = 12 and self-coupling λ, and the radial motion is assumed to be damped non-thermally. Black solid
lines indicate where the canonical QCD axion abundance is satisfied, cf. Eq. (6.5). The left boundary is
set by the kinetic misalignment mechanism, while the right one is by the standard misalignment (for small
mr with a specific fa) and by the axion quality problem (for larger mr depending on fa), cf. Eq. (7.22).
Only the region between the two lines does not over-produce DM. Dashed lines are the equivalent for lighter
non-canonical QCD axion, cf. Eq. (6.3).
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Gravitational waves from global cosmic strings

Figure 7.12: Ability of future-planned GW observatories to detect the peak signature in the SGWB from
global cosmic strings with string scale η of a matter-kination era induced by scenario I. In this scenario, a
kick in the angular direction of a complex scalar field is induced with a large radial value by operators of
order l = 12 and self-coupling λ, and the radial motion is assumed to be damped non-thermally. Black solid
lines indicate where the canonical QCD axion abundance is satisfied, cf. Eq. (6.5). The left boundary is
set by the kinetic misalignment mechanism, while the right one is by the standard misalignment (for small
mr with a specific fa) and by the axion quality problem (for larger mr depending on fa), cf. Eq. (7.22).
Only the region between the two lines does not over-produce DM. Dashed lines are the equivalent for lighter
non-canonical QCD axion, cf. Eq. (6.3).
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7.3 Scenario II: thermal damping and relativistic fermions

7.3.1 Effects of the thermal corrections

In scenario I in the previous Sec. 7.2, we have assumed the existence of an unspecified non-thermal
mechanism (maybe parametric resonance) responsible for efficiently damping the radial mode of
the scalar condensate. The advantage was that we could neglect the effect of the thermal corrections
to the potential, presented in Sec. 7.1.2, on the dynamics of the scalar field. In the current section,
we switch on the interaction with the thermal plasma by relaxing the condition of small Yukawa
coupling yψ in Eq. (7.36). The advantage is that it leads to an early thermalization of the condensate
with the plasma, which is a well-understood and efficient mechanism [669] for damping the radial
mode. The difficulty relies upon the presence of the thermal mass, which leads to a modification
of the cosmological history of the scalar field:11

• the scalar field starts oscillating earlier,

• the initial angular kick ϵ is substantially reduced,

• the scalar field redshifts like radiation until the thermal mass becomes negligible below
Tzero = mr,eff/yψ. This leads to a delay in the onset of the matter era.

We discuss those effects below, showing that they prevent the onset of the matter-kination era. A
sketch of the cosmological history in the presence of thermal effects is demonstrated in Fig. 7.13.
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Figure 7.13: Evolution of the energy density of the complex scalar field with (blue) and without (gray)
thermal mass. Due to the earlier oscillation, the thermal mass suppresses the energy density at the time of
scalar domination by a factor proportional to (mr/MPl)

2(1/yψ)
4, and so is the duration of the kination era,

see text for more details. The corresponding numerical trajectory is shown in Fig. 7.14. Not shown on this
figure is the suppression of the angular kick by the thermal mass, see Eq. (7.72).

An earlier oscillation The earlier oscillation of the condensate due to the thermal effect has been
pointed-out in [702, 721]. The field starts rolling when 3H ∼ meff,T where the effective mass, in
a radiation era is

m2
eff,T = m2

eff + y2ψT
2. (7.61)

Assuming that the thermal mass dominates, we obtain that the field starts oscillating at the temper-
ature

3Hosc = yψTosc, ⇒ Tosc = g
−1/2
∗ MPlyψ, (7.62)

11The difficulty inherent to scenario II studied in the present section is the fragmentation of the scalar condensate into
Q-balls whenever the thermal-log dominate, see Sec. 7.1.2. We do not investigate this possibility further as the present
scenario II does not lead to any matter-kination era.
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which is larger than the oscillation temperature in the zero-temperature potential, see Eq. (7.48),
for

yψ ≳ yψ,T=0 ≡ g
1/4
∗

√
mr,eff(ϕini)

Mpl
. (7.63)

An earlier oscillation due to thermal effects can be visualized in Fig. 7.14.

Figure 7.14: Evolution of scalar field energy
density with thermal mass yψT (case I in green
and II in black) and without thermal mass (case
III in yellow). After the onset of oscillation (ver-
tical dashed), the field redshifts as radiation un-
til the zero-temperature mass dominates (vertical
dotted), where it starts redshifting as matter. The
smaller yψ , the later the start of oscillation and
the earlier the start of the matter behavior. Below
the value yψ < yψ,T=0, where yψ,T=0 is defined
in Eq. (7.63), the thermal mass never plays any
role in the evolution, and the field redshifts as
a matter already at the onset of oscillation. We
normalize the scale factor a with aosc of case II.
Figure obtained after numerically integrating the
EOM of the scalar field in quadratic potential in
the presence of the thermal mass in Eq. (7.61).

A different redshift law. When dominated by its thermal mass, the complex scalar field redshifts
like radiation, see App. G.4.2

ϕ2 ∝ a−3T−1 ∝ a−2, ⇒ ρΦ ≃ 1

2
y2ψT

2ϕ2 ∝ a−4. (7.64)

On the other hand, the zero-temperature contribution redshifts slower than radiation

V (ϕ, T = 0) =
1

2
m2
r,effϕ

2 ∝ a−2. (7.65)

The thermal potential becomes sub-dominant at the temperature, scale factor, and field value

Tzero =
mr,eff(ϕzero)

yψ
,
azero
aosc

= g
−1/2
∗

y2ψMPl

mr,eff(ϕzero)
and ϕzero = ϕini

Tzero
Tosc

. (7.66)

Changes in the redshift law are also seen in our numerical simulations, cf. Fig. 7.15.

No symmetry restoration when ϕ→ fa. To generate a kination equation of state, we must check
that the complex scalar field reaches the minimum of the potential ϕ → fa after the thermal mass
becomes sub-dominant, i.e. ϕ(Tzero) ≳ fa.We checked that in the parameter space of interest, this
never occurs.

A smaller angular kick. We calculate the U(1) charge fraction in Eq. (7.37)

ϵ ≡ ϕ2θ̇/2

V (ϕ)/mr,eff(ϕ)
=

ϕ2iniθ̇ini/2

V (ϕ)/mr,eff(ϕ)

(aini
a

)3
. (7.67)
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Figure 7.15: left: In the presence of the thermal mass (dark blue), at the onset of oscillation (vertical
dashed line), the radial mode ϕ starts evolving as ⟨ϕ⟩ ∝ a−3/2T−1/2 ∝ a−1 in radiation era, until the
zero-temperature mass dominates (vertical dotted line), after which the field starts redshifting as ⟨ϕ⟩ ∝
a−3/2. Instead, when the potential is always dominated by its zero-temperature contribution (light blue), i.e.
yψ < yψ,T=0 where yψ,T=0 is defined in Eq. (7.63), the field starts redshifting as ⟨ϕ⟩ ∝ a−3/2 immediately
after the start of oscillation. right: During the period of thermal mass domination, the angular velocity θ̇
redshifts as

〈
θ̇
〉
∝ T ∝ a−1 during radiation, and then oscillates around mr,eff when the zero-temperature

mass dominates.

From using (ϕini/Mpl)
l−2 =

√
cmr,eff(ϕini)/λ

√
2l − 2Mpl, see Eq. (7.26), we find that the term

in the potential which dominates the dynamics of the scalar field at the onset of the radial mode
oscillation depends on the value of c

V (ϕini) =


λ2

ϕ2l−2
ini

M2l−6
pl

, if c > l − 1,

1
2y

2
ψT

2
oscϕ

2
ini, otherwise.

(7.68)

In the first case of the previous equation, the scalar field redshifts as, cf. App. G.4.2

ϕ ∝ a−
6

2+n , with n = 2l − 2. (7.69)

until the nearly-quadratic term ϕ2 dominates around the field value ϕquad

1

2
y2ψT

2
quadϕ

2
quad = λ2

ϕ2l−2
quad

M2l−6
pl

. (7.70)

For ϕ < ϕquad, the U(1) charge fraction ϵ becomes constant since both numerator and denomi-
nator in Eq. (7.67) scale like a−3. Plugging Eq. (7.69) into Eq. (7.70), we obtain the scale factor
aquad below which the potential is dominated by the quadratic term. From injecting aquad into the
generated U(1) charge in Eq. (7.18) and the definition of ϵ in Eq. (7.67), we obtain

ϵ =


√

g∗
2
mr,eff(fa)

y2ψMpl
l sin lθini, if c > l − 1,√

g∗c
2(l−1)

mr,eff(fa)

y2ψMpl
l sin lθini, otherwise.

(7.71)

We conclude that for a fix value of c, l and θini, the value of ϵ in the presence of a thermal mass
is suppressed by a factor g

1/2
∗ mr,eff(ϕini)

y2ψMpl
with respect to the value of ϵ without thermal mass, cf.

Eq. (7.41), which we denote ϵ0

ϵ =

(
g
1/2
∗ mr,eff(ϕini)

y2ψMpl

)
ϵ0. (7.72)

The reason of the suppression of ϵ in Eq. (7.72) can be understood from Eq. (7.67) where the
denominator V (ϕ) is enlarged by the presence of the thermal mass while the explicitU(1) breaking
potential generating the numerator θ̇ is not.
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7.3.2 Evolution of the field and its energy density

Delay of matter domination The scalar field dominates the energy density of the Universe at
the scale factor adom defined by

V (ϕzero, T = 0)

(
azero
adom

)3

= ρrad(Tzero)

(
azero
adom

)4

with ρrad =
π2

30
g∗T

4, (7.73)

where Tzero denotes the temperature, defined in Eq. (7.66), below which the zero-temperature mass
dominates over the thermal mass. We obtain

adom
azero

=
2

3

(
Mpl

ϕini

)2

A−1
ϵ , Tdom =

mr,eff(ϕzero)

yψ

3

2

(
ϕini
Mpl

)2

Aϵ, (7.74)

and

ρdom =
27g∗
16

(
mr,eff(ϕzero)

yψ

)4( ϕini
Mpl

)8

A4
ϵ , (7.75)

with Aϵ defined by

Aϵ =

ϵ, if ρdamp > ρdom,

1, if ρdamp < ρdom,
(7.76)

stands for the ϵ-suppression discussed in App. G.4.3. The value of ϵ is given by Eq. (7.71). Note
that we can rewrite Eq. (7.75) as

ρdom =

(
g
1/2
∗

m2
r,eff(ϕzero)

y2ψmr,eff(ϕini)Mpl

)2

ρdom,1 (7.77)

with ρdom, 1 being the energy density at domination, defined in Eq. (7.50), in the case of the first sce-
nario where the thermal mass can be neglected due to a small Yukawa coupling. From Eq. (7.77),
we can see that the effect of the thermal mass is to delay the onset of the matter domination by a
factor ∝ y−4

ψ in the energy density. As we will see in Eq. (7.86), the delay of the matter domination
in Eq. (7.77) together with the suppression of ϵ in Eq. (7.72) are responsible for preventing the
kination era to take place in the presence of thermal effects.

Radial damping In the presence of the Yukawa interactions with fermions ψ, cf. Eq. (7.6), the
scalar condensate thermalizes with the thermal plasma with the rate, see App. G.3.1

Γϕ ≃


for yψϕ < T :

for αT > yψϕ,
y2ψαT

2π2 ,

for αT < yψϕ,
y4ψϕ

2

π2αT
,

for yψϕ > T : bα2 Max[T, mϕ]
3

ϕ2
,

+
y2ψmϕ

8π
Θ(mϕ/2− Max [yψϕ, gT ]) .

(7.78)

with b ≃ 0.01. As shown in the supplementary material of [669], thermalization conserves the
U(1) charge ϕ2θ̇. Radial damping takes place at the energy scale and scale factor

ρdamp = 3M2
plΓ

2B4
ϵ and

adamp

adom
=

(
ρdom
ρdamp

)1/3

B−1
ϵ , (7.79)

with Bϵ =

1, if ρdamp > ρdom,

ϵ, if ρdamp < ρdom.
(7.80)
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For the sake of simplicity, in the present Sec. 7.3, we suppose that the thermal width is larger
than the fermion mass αT > yψϕ. The decay rate is given by the first line in Eq. (7.78) and we
compute

Γdamp =


3α2

4π4 g
−1/2
∗ y4ψMpl, for yψ > yψ,1,

y2ψmr,eff(fa)

8π , otherwise,
(7.81)

and

Tdamp =


α
2π

y2ψMpl

g
1/2
∗

, for yψ > yψ,1,

yψ

πg
1/4
∗

√
mr,eff(fa)Mpl, otherwise,

(7.82)

where

yψ,1 ≡ 2
g
1/4
s

α

(
mr,eff(fa)

Mpl

)1/2

. (7.83)

Duration of the kination era. The Universe acquires a kination equation-of-state when the field
reaches ϕ→ fa, corresponding to the energy density and scale factor

ρKD,i =
1

2
f2am

2
r,eff(fa) and

aKD,i
max(adom, adamp)

=

(
min(ρdom, ρdamp)

ρKD,i

)1/3
. (7.84)

The kination era stops when the Universe becomes radiation-dominated again. The energy scale
at which it occurs depends on whether radial damping occurs before and after the onset of matter
domination: ρKD,f = ρ2KD,i/min(ρdom, ρdamp). The duration of the kination eraNKD ≡ log

aKD,f
aKD,i

reads

eNKD =


√

3
2

(
g
1/2
∗
y2ψ

mr,eff(ϕzero)
mr,eff(fa)

mr,eff(ϕzero)
fa

)1/3 (
ϕini
Mpl

)4/3
ϵ2/3, if ρdamp > ρdom,(

6M2
PlΓ

2
damp

f2am
2
r,eff(fa)

)1/6

ϵ2/3, if ρdamp < ρdom.

(7.85)

Using the first lines of Eq. (7.78) and (7.82) and plugging the most optimistic value of ϵ, cf. first
line of Eq. (7.71), we obtain

eNKD = 0.74g
1/18
∗ α2/9ϵ2/3

(
Mpl

fa

)1/3(mr,eff(fa)

Mpl

)1/9(mr,eff(ϕzero)

mr,eff(fa)

)4/9( ϕini
Mpl

)8/9

×

×



(
yψ,th
yψ

)2/3
, if yψ ≳ yψ,th,(

yψ
yψ,th

)4/3
, if yψ,th ≳ yψ ≳ yψ,1,(

yψ,1
yψ,th

)4/3 ( yψ
yψ,1

)2/3
, if yψ ≲ yψ,1,

(7.86)

where yψ,1 is defined in Eq. (7.83) and where yψ,th is the Yukawa coupling above which thermal-
ization starts to occur before scalar field domination

ρdamp > ρdom ⇒ yψ > yψ,th = π2/3
g
1/6
∗

α1/3

(
mr,eff(ϕzero)

Mpl

)1/3( ϕini
Mpl

)2/3

. (7.87)
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From plugging in Eq. (7.86) the most optimistic value of ϵ, cf. first line of Eq. (7.71), we obtain

eNKD = 0.2g
1/6
∗ α2/3

(
mr,eff(fa)

fa

)1/3(mr,eff(ϕini)

mr,eff(fa)

)2/3

(l sin lθini)
2/3×

×



(
yψ,th
yψ

)2
, if yψ ≳ yψ,th,

1, if yψ,th ≳ yψ ≳ yψ,1,(
yψ,1
yψ

)2/3
, if yψ,1 ≳ yψ ≳ yψ,0,(

yψ,1
yψ,0

)2/3 ( yψ
yψ,0

)2/3
if yψ,0 ≳ yψ,

(7.88)

where yψ,0, defined in Eq. (7.63), is the Yukawa coupling below which oscillation is induced by
the zero-temperature potential. The longest duration of kination occurs for

yψ ≃ yψ,0 ⇒ eNKD = 0.4g
1/6
∗

(
mr,eff(ϕini)

fa

)1/3

(l sin lθini)
2/3 ≲ 1. (7.89)

To conclude, a period of kination-domination can not be induced by the spinning complex scalar
field, starting oscillating in a radiation-dominated Universe when the damping of the radial mode
relies on thermalization. To reduce the Yukawa coupling yψ would reduce the thermal mass but de-
lay thermalization too much. To increase yψ would make thermalization more efficient but would
increase the thermal mass too much. In the next section, we show how the inhibition of the ini-
tial rotation due to the thermal mass can be avoided when the fermion abundance is Boltzmann-
suppressed at the onset of the oscillation due to either a large Yukawa coupling yψϕosc ≳ Tosc or
a small reheating temperature Treh ≲ yψϕreh.

7.4 Scenario III: Thermal Damping & Non-Relativistic Fermions

In Sec. 7.2, the first scenario considers a small Yukawa coupling such that thermal corrections
could be neglected. However, as discussed in App. G.3.1, the difficulty is that thermalization takes
place too late, and we must rely on a different mechanism for damping the radial mode.

In the second scenario in Sec. 7.3, we have enforced radial damping through thermalization.
However, the suppression of the initial angular kick ϵ, cf. Sec. 7.3.1, and the delay of the onset of
the matter era, cf. Eq. (7.77), due to the large thermal mass at an early time, prevent the scalar field
from inducing a kination era, cf. Eq. (7.89).

In the present section, we consider a third scenario, depicted in Fig. 7.16, which turns out to
be the promising one and where radial damping occurs through thermalization. Still, the thermal
mass is absent at the onset of the radial mode oscillation due to the Boltzmann suppression of the
fermion abundance.

7.4.1 Boltzmann-suppression of the fermion abundance

The presence of the thermal mass yψT supposes the fermions ψ to be abundant in the plasma.
Instead, if their abundance is Boltzmann-suppressed, the thermal mass is set by the thermal log
potential, cf. Eq. (7.7)

mr,eff(ϕ, T ) =

{
yψT, for yψϕ ≲ T,√
2αT

2

ϕ , for yψϕ ≳ T,
(7.90)

The Boltzmann-suppression of the fermion abundance can arise in two situations:
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Figure 7.16: In scenario III of the present Sec. 7.4, we consider the fermions responsible for the thermal
mass to be Boltzmann-suppressed at the onset of the oscillation (left panel). Therefore, the thermal mass is
turned off at the time of the angular kick and the U(1) charge fraction ϵ in Eq. (7.97) can be O(1) without
any tuning of the Yukawa coupling to small values, in contrast to scenario II, cf. Sec 7.3 (right panel).
Later, when the fermions become relativistic, Yukawa interactions are efficient enough to dampen the radial
motion before the onset of the matter era.

1. At large Yukawa coupling yψ
yψϕosc > Tosc,

ϕosc =Mpl

(√
c

yψTosc

λ
√
2l−2Mpl

) 1
l−2

,

Tosc = g
−1/2
∗ yψMpl,

⇒ yψ > 21/4
√
λg

(3−l)
4

∗

(
l − 1

c

)1/4

. (7.91)

For (λ, c, l, g∗) = (1, 1, 10, 100), we obtain yψ ≃ 6.5× 10−4.

2. At small reheating temperature Treh
yψϕreh > Treh,

ϕreh =Mpl

(√
c 3Hreh

λ
√
2l−2Mpl

) 1
l−2

,

Treh = g
−1/4
∗

√
3HrehMpl.

⇒ Treh
Mpl

< y
l−2
l−4

ψ

(
g
1/4
∗√
3

) 2
l−4 (λ√2l − 2

3
√
c

) 1
l−4

.

(7.92)
For (λ, c, l, g∗, yψ) = (1, 1, 10, 100, 10−4), we obtain Treh < 1.5×1013 GeV. The upper
bound (7.92) on the reheating temperature prevents the thermal mass yψT to be active at the
time of the kick. In our work we assume the Universe to be radiation-dominated at the time
of the kick. Therefore, for consistency we must also insure that the reheating temperature is
larger than the temperature at the time of the kick

Treh > Tosc = g
−1/4
∗

√
mr,eff(ϕini)Mpl = 4.9×1012 GeV

(
100

g∗

)1/4(mr,eff(ϕini)

108 GeV

)1/2

.

(7.93)
Compatibility between Eq. (7.92) and Eq. (7.93) implies that the conditions for successful
kination are lost as soon as

g
−1/4
∗

√
mr,eff(ϕini)/Mpl > y

l−2
l−4

ψ

(
g
1/4
∗√
3

) 2
l−4 (λ√2l − 2

3
√
c

) 1
l−4

. (7.94)
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The latter condition does not add any constraint to our plots.

No thermal-log domination. When fermions are Boltzmann-suppressed, the thermal potential
is given by the thermal log potential, which is suppressed with respect to the quadratic thermal cor-
rection by (αT/yψϕ)

2. Suppose the thermal log dominates the potential at the onset of oscillation.
In that case, we expect suppression of the kick ϵ and a delay of the onset of the matter era as in sce-
nario II, cf. Sec. 7.3.1, but also the formation of Q-balls, see Sec. 7.1.2. The thermal-log potential
can be neglected whenever its associated thermal mass is smaller than the zero-temperature mass

√
2α
T 2
osc

ϕini
≲ mr,eff(ϕini) ⇒ α ≲

g
1/2
∗√
2

(
ϕini
Mpl

)
. (7.95)

where we have used mr,eff(ϕini) ≃ 3Hosc ≃ g
1/2
∗ T 2

osc/Mpl.

Consequence I: Non-suppressed angular kick. Since the thermal mass is absent at the onset
of the radial mode oscillation, the onset of oscillation occurs when the Hubble scale crosses the
zero-temperature mass

Hosc ≃ mr,eff(ϕini)/3. (7.96)

where ϕini is given by Eq. (7.26) and the fraction of U(1) charge is the same as in the scenario I,
cf. Eq. (7.41)

ϵ =


1√
2

mr,eff(fa)
mr,eff(ϕini)

l sin lθini, if c > l − 1,

1√
2

√
c
l−1

mr,eff(fa)
mr,eff(ϕini)

l sin lθini, otherwise.
(7.97)

so that values ϵ ∼ O(1) are allowed.

Consequence II: No thermal mass domination at all. After the onset of oscillation, the scalar
field ϕ ∝ a−3/2 redshifts faster than the temperature T ∝ a−1. This implies the existence of a
temperature Trel

Trel ≡ yψϕrel, (7.98)

below which the fermion are relativistic and abundant in the plasma. Using that the scalar field ϕ
reshifts as matter in a radiation-dominated Universe, we get

ϕrel = ϕini

(
Hrel

Hosc

)3/4

, (7.99)

whereHosc ≃ mr,eff(ϕini)/3,Hrel ≃ g
1/2
∗ T 2

damp/3Mpl. From Eq. (7.98) and Eq. (7.99), we obtain

Trel ≃
1

g
3/4
∗

m
3/2
r,eff(ϕini)

y2ψM
1/2
pl

(
Mpl

ϕini

)2

. (7.100)

When the fermions become relativistic, the thermal mass jumps, cf. Eq. (7.90), and will have no
impact if the thermal mass remains smaller than the zero-temperature mass yψTrel ≲ mr,eff(ϕrel).
From plugging Eq. (7.100) in the previous equation, we obtain that the scalar field evolves in its
zero-temperature potential during the whole time if

yψ ≳
1

g
3/4
∗

(
mr,eff(ϕini)

mr,eff(ϕrel)

)(
mr,eff(ϕini)

Mpl

)1/2(Mpl

ϕini

)2

. (7.101)
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7.4.2 Evolution of the field and its energy density

Delay of matter domination. If the conditions in Eq. (7.91), (7.92) and (7.101) are satisfied,
then the scalar field redshifts like matter during its whole evolution. Therefore, the situation is
similar to scenario I in Eq. (7.50) and the scalar dominates the energy density of the Universe at

ρdom =
27mr,eff(ϕini)

2ϕ8ini
16M6

Pl

A4
ϵ and

adom
aosc

=
2M2

Pl

3ϕ2ini
A−1
ϵ (7.102)

with

Aϵ =

ϵ, if ρdamp > ρdom,

1, if ρdamp < ρdom.
(7.103)

We recall that the impact of ϵ on the evolution of the scalar field energy density is discussed in
App. G.4.3.

Radial damping. The scalar field decay rate is given by Eq. (7.78) (see App. G.3.1 for more
details) which we rewrite here

Γϕ ≃


for yψϕ < T :

for αT > yψϕ,
y2ψαT

2π2 ,

for αT < yψϕ,
y4ψϕ

2

π2αT
,

for yψϕ > T : bα2 Max[T, mϕ]
3

ϕ2
,

+
y2ψmϕ

8π
Θ(mϕ/2− Max [yψϕ, gT ]) .

(7.104)

The different decay channels in Eq. (7.78) are the ones induced by scattering with virtual fermions

of the plasma ϕψth → ψth

(
Γ =

y2ψαT

2π2 or
y4ψϕ

2

π2αT

)
, tree-level decay ϕ→ ψψ

(
Γ =

y2ψmϕ
8π

)
or loop-

induced decay into gauge boson pair ϕ→ AA

(
Γ = bα2 Max[T, mϕ]

3

ϕ2

)
. In Fig. 7.17, we show the

different decay rates and compute the decay temperature for three different values of the Yukawa
coupling yψ.

For a better understanding, we now derive the expression for the maximum damping tem-
perature analytically. We suppose that the conditions introduced in Sec. 7.4.1 are satisfied such
that the fermion abundance is initially Boltzmann-suppressed at the onset of scalar field oscilla-
tion. When the fermions become relativistic at the temperature Trel ≡ yψϕrel given in Eq. (7.98),
the damping rate suddenly increases due the scattering with virtual fermions of the plasma, see
Fig. 7.17. We suppose α ≲ 1 in Eq. (7.104), such that the decay rate at Trel is controlled by
Γϕψth→ψth

= y4ψϕ
2/(π2αT ) ∝ T 2. Since Γ/H = constant, the decay through that channel only

depends on whether Γ/H > 1 at the relativistic threshold Trel. This defines the quantity yψ,∗

Γ/H
∣∣∣
T=Trel

> 1 ⇒ yψ > yψ,∗ =
1.35α1/4

g
1/16
∗

(
meff,ini

MPl

)3/8(Mpl

ϕini

)1/2

. (7.105)

We deduce the maximum damping temperature{
α ≲ 1,

yψ > yψ,∗,
⇒ Tdamp = Trel, (7.106)

with Trel given in Eq. (7.98). The damping temperature peaks for yψ = yψ,∗, see maximum of
the dashed yellow line in Fig. 7.18-top. The energy density just after damping is given by, see
Eq. (G.151), ρdamp = π2

30 g∗T
4
dampB

4
ϵ , with Bϵ = 1, ϵ if ρdamp > ρdom and ρdamp ≤ ρdom,

respectively
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Figure 7.17: The total decay rate (solid purple) of the scalar condensate in the fermion portal compared to
the Hubble scale (solid red). The decay temperature is depicted by a blue star. We show three values of yψ ,
corresponding to the three decay channels given in Eq. (7.104) and depicted in Fig. G.3 (see App. G.3.1 for
more details). From top to bottom, the dominant channel is the decay into gauge boson pairs at one loop
ϕ → AA (dotted gold), scattering with virtual fermions of the plasma ϕψth → ψth in the small thermal
width αT ≲ yψϕ (dotted purple) and large thermal width limit αT ≳ yψϕ (dotted blue). Visible on these
plots is the suppression of the decay into fermions when the later are non-relativistic (yellow region).

Preservation of theU(1) charge in the condensate. TheU(1) charge carried by the condensate
is preserved during thermalization if [669] (see also App. G.3.1)

fa ≫ Tϕ→fa , (7.107)

where Tϕ→fa is the temperature when ϕ reaches fa. Using that ϕ redshifts like matter, ϕ =

ϕini

(
T
Tosc

)3/2
, we obtain

fa
Tϕ→fa

= 0.8× 105
(

fa
108 GeV

)1/3(1010 GeV

Tosc

)(
ϕini
Mpl

)2/3

≫ 1. (7.108)

We checked that all the parameter spaces shown from Figs. 7.18 to Fig. 7.22 satisfy that condition.
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Duration of the kination era. The Universe acquires a kination equation-of-state when the field
reaches ϕ→ fa, corresponding to the energy density and scale factor

ρKD,i =
1

2
f2am

2
r,eff(fa), and

aKD,i
max(adom, adamp)

=

(
min(ρdom, ρdamp)

ρKD,i

)1/3
. (7.109)

The kination era stops when the Universe becomes radiation dominated. The energy scale at which
it occurs depends on whether radial damping occurs before and after the onset of matter domination
ρKD,f = ρ2KD,i/min(ρdom, ρdamp).

The duration of the kination era exp(NKD) ≡ aKD,f/aKD,i reads

eNKD =


√

3
2

(
mr,eff(ϕini)
mr,eff(fa)

Mpl

fa

)1/3 (
ϕini
Mpl

)4/3
ϵ2/3, if ρdamp > ρdom,(

π2

30
g∗T 4

damp

f2am
2
r,eff(fa)/2

)1/6

ϵ2/3, if ρdamp < ρdom.

(7.110)

where ϵ can be O(1) and where Tdamp is given by Eq. (7.106). In the case where yψ > yψ,∗ with
yψ,∗ given by Eq. (7.105), we obtain

eNKD =


e8.1ϵ

2
3

[
108GeV
fa

] 1
3
[
mr,eff(ϕini)
mr,eff(fa)

] [
ϕini
Mpl

] 4
3
, if ρdamp > ρdom,

e4.2 ϵ
2/3

g
1/3
∗

[
fa

108 GeV

] 1
3
[
mr,eff(fa)

fa

] 2
3
[
mr,eff(ϕini)
mr,eff(fa)

] [
10−4

yψ

] 4
3
[
Mpl

ϕini

] 4
3 if ρdamp < ρdom.

(7.111)
The maximal duration of kination is reached for yψ = yψ,∗

eNKD
∣∣
yψ=yψ,∗

= e5.1
ϵ2/3

α1/3g
1/4
∗

[
108

fa

] 1
6
[
mr,eff(fa)

fa

] 1
6
[
mr,eff(ϕini
mr,eff(fa)

] 1
2
[

0.1

ϕini/Mpl

] 2
3

. (7.112)

7.4.3 Gravitational-wave signature and detectability

We show the detectability of the SGWB produced by primordial inflation (Fig. 7.20), local strings
(Fig. 7.21), and globals strings (Figs.7.22) in the presence of a kination era generated by scenario
III: a spinning complex scalar field with thermal damping and Boltzmann-suppression of the ther-
mal corrections to the potential.

The parameter space splits into two parts separated by the blue dashed line: the Boltzmann
suppression by a considerable yψ in Eq. (7.91) and by a small reheating temperature in Eq. (7.92).
The kination duration in the former region is independent of Treh, and the inflationary or the string
scales are not bounded. On the contrary, the maximum energy scale is constrained if the Universe
reheats instantaneously in a region with a small reheating temperature. In the figures below, some
parts of the parameter space have the inflation scale and the string scale fixed at high-energy above
the Treh,max. This is allowed when a period between the end of inflation and the completion of
reheating exists. Its existence would induce the SGWB distortion at high frequencies above the
kination peak and might allow us to distinguish the large yψ from the small Treh cases.

Finally, we also show the constraints that apply for very low mr, in which the radial mode
has a large thermal abundance and long lifetime, which is excluded either by overabundance if
cosmologically stable or by late decay into photons after BBN [722]. The corresponding constraint
mr > 10 GeV(fa/10

9 GeV)2/3 is reported in the green hashed region in the plots.
These plots demonstrate that concrete scenario III, where radial damping is not assumed but

explicitly calculated via thermal effects, leads to observable signatures of an intermediate matter-
kination era.
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Figure 7.18: Number of kination e-folds when radial damping occurs via thermalization through fermion
portal. The presence of the thermal mass at the onset of the oscillation (scenario II in Sec. 7.1) suppresses
the angular kick and prevents kination (red region). Instead, at large Yukawa coupling (blue region and
condition (7.91)) or at low reheating temperature (orange region and condition (7.92)), the fermion abun-
dance is Boltzmann-suppressed and the thermal mass is absent. The NKD black contour lines follow from
Eq. (7.110), with the decay temperature Tdamp being determined numerically as shown in Fig. 7.17. We
write in red the dominant decay channel, based on Eq. (7.104). The maximal duration of kination is reached
at yψ = yψ,∗, cf. Eq. (7.105), and is given by Eq. (7.112). The thermal mass is also negligible at small
Yukawa (gray region and scenario I in Sec. 7.2), but there, the thermalization rate is too small and a circular
trajectory is not obtained before ϕ → fa. In the pale purple region, the kick at Tosc occurs before the Uni-
verse is reheated which goes beyond the scope of our study, see Eq. (7.93). We show the LHC constraints
on heavy colored fermions, mψ = yψfa ≳ TeV.
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Figure 7.19: Maximum number of kination e-folds in scenario III. In order to have matter-kination as long
as possible, we chose values of the Yukawa coupling yψ = yψ,∗ in Eq. (7.105) to maximize the duration of
kination, see Eq. (7.112). The dashed blue lines show the temperature at which the radial mode is dampened
by thermal effects. The dark blue region shows the LHC constraints mψ ≳ TeV. The vertical green dashed
line shows expected astrophysical constraints fa ≳ 108 GeV. The dark green region shows the limit of
validity of the EFT. In the purple region, the thermal-log potential dominates the onset of oscillation, which
suppresses the angular kick ϵ, delays the onset of matter era, cf. Sec. 7.3.1, and generates Q-balls, see
Sec. 7.1.2.

165



Gravitational waves from primordial inflation

Figure 7.20: Ability of future-planned GW observatories to detect the peak signature of a matter-kination
era induced by scenario III in the SGWB from inflation with energy scale Einf . Black solid lines indicate
where the canonical QCD axion DM abundance is satisfied, cf. Eq. (6.5). The left boundary is set by the
kinetic misalignment mechanism, while the right one is by the standard misalignment (for small mr with a
specific fa) and by the axion quality problem (for largermr depending on fa), cf. Eq. (7.22). Only the region
between the two lines does not over-produce DM. Dashed lines are the equivalent for lighter non-canonical
QCD axion, cf. Eq. (6.3). A dotted-dashed red line denotes the parameter space where the rotating axion
allows the correct baryon asymmetry, cf. Eq. (6.32). Gray dotted lines show the kination duration contours.
Smaller mr and λ implies larger initial scalar vev ϕini, cf. Eq. (7.26), and longer matter-kination duration.
For smaller α, the coupling yψ,∗ decreases and cannot prevent the thermal mass to dominate during the field
evolution as shown in bottom-left panel, cf. Eq. (7.101). The blue dashed line separates the large yψ region
where the kination duration is Treh-independent, from the small Treh region.
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Gravitational waves from local cosmic strings

Figure 7.21: Same as Fig. 7.20 using the SGWB from local cosmic strings with tension Gµ.

Gravitational waves from global cosmic strings

Figure 7.22: Same as Fig. 7.20 using the SGWB from global cosmic strings with string scale η.
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7.5 Chapter Summary

The potential candidate for the intermediate kination era that leads to a striking signature in SGWB
from all prime sources (Sec. 4.4) is the rotating axion, which provides exciting phenomenology
such as DM production and Baryogenesis, as discussed in Chap. 6, This chapter discusses the par-
ticle physics implementations of such intermediate kination era in one main class of axion models,
where the unavoidable partner of the axion, the radial mode of the complex scalar field, plays a
crucial role in providing a kick to the axion. While the corresponding setup where the radial mode
dynamics start at large VEV ≫ fa can be well-motivated in SUSY frameworks, for instance, one
non-trivial aspect is that the radial motion needs to be damped for successful kination.

As Ref. [4] was being completed, Refs. [3, 274] appeared, which also discusses GW from a
kination era triggered in axion models and partially overlaps with the present chapter. As we have
discussed extensively, the radial-mode damping is crucial for kination to be realized. While most
of the literature on axion cosmology typically ignores the dynamics of its radial partner and focuses
on the angular mode, the analysis in this chapter, as well as references [128, 274, 449, 450, 648,
669, 693, 697] show that the radial mode may be a key to understand the early cosmological history
in axion models, with significant consequences for the experimental program. Thermal damping
of the radial mode requires introducing new interactions of the Peccei-Quinn field. We have shown
that these interactions induce a thermal mass for the Peccei-Quinn field, thus delaying the time of
the axion kick. Together with a modified thermalization temperature, this prevents a kination era
unless the reheating temperature is sufficiently low or the Yukawa coupling yψ is large, cf. Sec. 7.4.

We have derived in detail the model’s parameter space that leads to a kination era and resulting
observable gravitational waves. Moreover, the connection between GW signature, DM production,
and Baryogenesis from the rotating axion is also established. We showed thatNKD < 6 for most of
the model’s parameter space. In Sec. 4.4 we considered the energy scale and duration of kination
as free parameters, with NKD as high as NKD < 11. It would be interesting to investigate whether
there are alternative models which can give longer kination eras.

Regarding the thermal damping mechanism of radial mode, we have used the thermaliza-
tion rate that follows from a Yukawa interaction between the scalar field and new fermions, cf.
Refs. [699, 700]. While the literature on axion cosmology is large, there is no study of the ra-
dial mode thermalization beyond references [128, 274, 449, 450, 648, 669, 693, 697], on which
we have extended by including the thermal mass effect in the radial-mode EOM. We hope our
work will motivate further investigations on these thermalization effects as they are crucial for the
early Universe physics of axion, with far-reaching observable consequences. Another option is
to assume non-thermal damping through parametric resonance. We have derived predictions in
this case, treating the damping temperature as a free parameter. It remains to be checked whether
this is indeed realizable. We have exposed the problem in App. G.3.2. This will require a careful
investigation of the coupled dynamics and back-reaction effects.

We note that if the complex scalar field belongs to a completely secluded sector, we expect the
LHC and astrophysical bounds on fa in Fig. 7.19, 7.20, 7.21, and 7.22 to be relaxed. Additionally,
theNeff bounds can be evaded if the matter domination occurs after thermalization. Low fa regions
are interesting from the point of view of GW detection, see Fig. 4.22. When the matter-kination era
occurs after the end of BBN, below 6 keV, the peak signature appears in the very low-frequency
region and could be probed by pulsar timing array experiments like SKA and NANOGrav [274].
We leave the dedicated study of the viability of this possibility for further works.

Fig. 7.23 summarizes the values of fa and of the kination energy scales that can be probed by
GW experiments in the main class of axion model considered. The key expressions and figures of
this chapter are shown in Tables 8.1. Concerning the particle physics implementations, Secs. 7.1,
7.2, 7.3 and 7.4 improve the recent study [274] in different aspects, summarized as follows:

• We compute the Noether U(1) charge ϵ (or Yθ) explicitly from a particle physics model, and
we show that it is suppressed when the thermal mass is present, see Sec. 7.3.1. The impact
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of ϵ on the kination duration is presented in Sec. 7.2.1.

• We show that the thermal mass is necessarily present at the time of the angular kick if we
require efficient thermalization. As a consequence, a period of matter-kination domination
cannot be generated, see Sec. 7.3.

• A first solution is to consider radial damping through non-thermal processes as parametric
resonance, see scenario I in Sec. 7.2, even though a more quantitative analysis would be
needed to assess this possibility.

• A second solution is to consider the possibility that the fermions inducing the thermal mass
are Boltzmann-suppressed at the angular kick when the value of ϵ is generated. See scenario
III in Sec. 7.4.

• We study the possibility of generating a matter-kination era from a spinning complex scalar
field in all the possible values of the Yukawa coupling yψ and reheating temperature Treh.
We found four different regimes, pictured by colored regions in Fig. 7.18.

As shown in Fig. 7.19, the parameter space associated with the longest matter-kination era lies
in the region fa ≲ 108 GeV and yψfa ≲ TeV, potentially already excluded by astrophysics and
LHC constraints. This motivates the study of an axion sector secluded from the SM. Also, the UV
completion requires several assumptions (on the shape of the radial mode potential, the absence
of higher-dimensional operators with l < 6, and the need for an appropriate damping mechanism
of the radial motion). It will be interesting to motivate further constructions leading to high axion
masses at early times compatible with a matter-kination era. We leave this for future work.
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Global string GW (� � 1015 GeV)
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Figure 7.23: left: Parameter space leading to observable GW peak signature in the rotating axion model,
scanning over mr and l values and the corresponding values of the axion velocity at the start of kination.
right: Detectable ranges of EKD by the future planned GW experiments, for the three GW sources: pri-
mordial inflation, local and global cosmic strings. For the fictional high-frequency experiments, we assume
detectors operating at 10 kHz and 1 MHz with Ωsensh

2 ≃ 10−10.

Field evolution Fig. 7.3 EKD = 21/4(famr)
1/2

Scenario I (non-thermal damping)
Fig. 7.9, 7.20, 7.11, 7.12 NKD Eq. (7.34)

Scenario II (thermal damping) Fig. 7.13 NKD Eq. (7.89)
Scenario III (thermal damping with non-relativistic fermions)

Fig. 7.16, 7.18, 7.19, 7.20, 7.21, 7.22 NKD Eq. (7.35)

Table 7.1: List of key relations and figures in the model-dependent analysis.
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Chapter 8

Final Remarks and Outlooks

Primordial SGWBs are tools for charting the early-Universe cosmology and the high-energy parti-
cle physics. With the landscape in Fig. 2.1 spanning almost 31 decades in frequency from 1013 Hz
to 10−18 Hz, SGWBs encapsulate information around their production times from the Planck scale
until today. The earlier the production, the smaller the horizon size, leading to the higher GW
frequency due to causality. We can trace the cosmological history using almost all SGWBs from
and beyond the SM of particle physics, except the thermal-plasma GW; see Fig. 2.2. Assuming
the standard radiation-dominated Universe, SGWBs from the SM have either too-weak amplitude
(for inflation) or too-high frequency (for thermal plasma) to be observed in future experiments.
Nonetheless, these GW observatories have excellent reach to the SGWB from BSM sources and
the effects of the non-standard cosmological histories.

The landscape’s amplitude – representing the relic density of GW today – is strongly bounded
(ΩGW ≲ 10−7) by the extra relativistic degrees-of-freedom ∆Neff . The GW experiments that
can overcome this bound populate the frequency region of fGW ≃ 10(−18,3) Hz. Recently, there
are active efforts in the ultra-high-frequency (UHF) regime fGW > kHz to improve the sensitivi-
ties beyond ∆Neff bound [40]. The idea of probing MHz − GHz SGWB with the existing axion
experiments is extremely appealing.

Cosmic strings and SGWB.

Cosmic strings are ubiquitous in BSM physics and have prominent SGWB signals due to the broad-
band spectrum and amplitude that grows with the symmetry-breaking scale. We adopt the semi-
analytic VOS model for tracing the string-network evolution and accurately calculating the loop
numbers and GW. Moreover, the SGWB calculation via this method applies to strings in non-
trivial scenarios, e.g., strings under thermal friction, metastable strings, and global strings. The
particle-production effect also generates interesting GW signatures despite its unobservability for
the conservative cosmic strings. The additional couplings between strings and other particles en-
hance particle production, render the GW signature detectable, and provide an exciting way of
dark matter production and baryogenesis. Nonetheless, there might be an issue with cosmic-ray
observation [457, 723]. We leave this for future work.

Cosmic archeology with primordial GW

For long-lasting sources (primordial inflation, cosmic strings, and the super-horizon contribution),
the shape of SGWB traces the evolution of the total energy density of the Universe, cf. Figs. 4.2 and
4.3. The suppression feature is due to matter and inflationary eras, while the kination enhances the
signal. We classify five schemes depending on sequences of the equation-of-state parameter. The
non-standard eras right after inflation usually relate to the inflaton dynamics, while the intermediate
eras arise from other late-time BSM physics.
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We first focus on the cosmic-string SGWB because the suppression signature is observable,
unlike inflationary SGWB. The turning-point frequencies of suppression and enhancement corre-
spond to the end of the non-standard era. For local cosmic strings, the turning point receives a mul-
tiplicative factor of (Gµ)−1/2 – compared to the primordial inflation and global strings (Fig. 4.8)
– due to the delayed decay of loops. For example, ET is sensitive to loops formed at the 1-100 TeV
scale, unlike the usual TeV window of LISA. The overall reach of all planned GW observatories is
shown in Fig. 4.33-left. For intermediate inflation, ET and CE are sensitive up to 1014 GeV, cf.
Fig. 4.33-right, due to the stretching regime of cosmic strings. Nonetheless, the SGWB has a sup-
pression signature, similar to the matter era. It will be interesting to disentangle their degeneracies,
e.g., using other observables generated during this secondary inflation.

The kination era after inflation enhances the SGWB from primordial inflation; however, the
∆Neff bound excludes any observable signature within the future-planned experiments, cf. Fig. 4.10,
except those in the challenging UHF regime. Furthermore, the kination is obstructed by the induced
scalar fluctuation, which could be interestingly responsible for a new dark matter production mech-
anism. We leave this issue for future study.

For the intermediate kination era, we show that it must follow a matter era, which leads to a GW-
peaked signature from both long-lasting and short-lasting sources. We express the peak position
as a function of the energy scale and duration of kination. ET and CE are windows to 10(5,9) GeV
kination for inflationary and global-string SGWB and 10(−1,6) GeV for local strings, cf. Fig. 7.23.
Moreover, multiple peak signatures could be observed when two or more GW sources are present.

Intermediate matter era from heavy and unstable particles

The intermediate matter era – ending well above the BBN scale – can be naturally induced by parti-
cles of large energy density (or yield) and short lifetime. By observing the step-like suppression in
cosmic-string SGWB, we can infer the (yield, lifetime) of the heavy and unstable particles, which
relate to the (energy scale, duration) of the matter era. For example, ET can probe the interme-
diate matter up to 100 TeV scale for Gµ = 10−11, meaning that the GW probe extends the usual
BBN bound on the particle’s lifetime by 15 orders of magnitude, cf. Fig. 5.3. We consider several
UV completions and find that cosmic-string GW is either a unique or complementary probe of the
direct/indirect detection experiments. E.g., oscillating scalar moduli fields in Fig. 5.5, a massive
scalar particle interacting only gravitationally in Fig. 5.6, a dark photon model kinematically cou-
pled to the Standard Model in Fig. 5.9, and a dark photon with a dark U(1) strings in Fig. 5.10.
The analyses for the axion-like particles and primordial black holes can be done similarly.

Intermediate kination era from the rotating axion

Unlike the kination treated so far in the literature, this kination scenario can occur independently
of the inflationary sector, inside the standard radiation era, and instead from the early dynamics of
an axion field. We emphasize that its interplay with the natural partner – the radial component of
the PQ field – is the crucial ingredient that induces a matter-kination era; the sole axion degree of
freedom cannot. The extended scenario of the kination following some other era will be considered
elsewhere.

The intermediate kination era leads to a unique GW-peak signature in SGWB from all prime
sources, serving as a unique axion physics probe. See Tab. 8.1 for the summary. Connecting to
axion DM from the kinetic misalignment and fragmentation, the peak position can directly infer
the scale

√
mafa. Nonetheless, the rotating axion signature in the inflationary SGWB from the

standard QCD axion is not observable, except at BBO. The promising observable regions are,
however, widely open for the QCD axion with lighter mass or for generic axion-like particles. The
rotating axion also serves as a baryogenesis mechanism in the axiogenesis model, which can be
tested via the GW signature of the spinning-axion kination. We find a broad range of axion decay
constant compatible with observable windows by future observatories.
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Four ingredients are required for the UV completion of the rotating axion, cf. Sec. 7.1.1. The
most significant obstacle for a kination era is that the radial motion needs to be damped. The optimal
case happens when this damping occurs before the scalar field energy density dominates; otherwise,
a kination era may still happen, but the entropy injection will shorten its duration. We consider three
possible ways of damping. The first option is to assume non-thermal damping through parametric
resonance. We have derived predictions in this case, treating the damping temperature as a free
parameter. It remains to be checked whether this is indeed realizable. The second option relies
on the thermalization rate from a Yukawa interaction between the scalar field and new fermions.
Nonetheless, these interactions induce a thermal mass for the Peccei-Quinn field, thus delaying
the time of the axion kick. Together with a modified thermalization temperature, this prevents a
kination era.

The axion kination’s last and most realistic option is the thermal damping with the sufficiently
low reheating temperature or large Yukawa coupling, cf. Fig. 7.18. These conditions allow con-
siderable interaction and sufficient damping, while the thermal potential is suppressed due to the
Boltzmann-suppressed fermions. We showed that NKD < 6 for most of the model’s parameter
space, and the summary of detectability is shown in Fig. 7.23. It would be interesting to investigate
whether there are alternative models which can give more extended kination eras.

Finally, a particularly intriguing scenario is where the U(1)-breaking – generating the rotating
axion – also leads to the global string network whose GW emission is enhanced by the matter-
kination era induced by the rotating axion itself. The axion strings with a non-vanishing axion speed
– recently been shown to exist [686] – would entirely change the vanilla cosmic-string paradigm,
e.g., the scaling regime, the particle production, and GW emission. It will be worth investigating
such a so-called rotating axionic string scenario in more detail.

GW from primordial inflation
Fig. 4.22, 4.23

fpeak Eq. (4.55)
Ωpeak Eq. (4.56)

GW from local cosmic strings
Fig. 4.24, 4.25

fpeak Eq. (4.62)
Ωpeak Eq. (4.63)

GW from global cosmic strings
Fig. 4.26, 4.27

fpeak Eq. (4.69)
Ωpeak Eq. (4.71)

GW peak and axion relic abundance
Fig. 6.3, 6.4, 6.6

EKD − Ωa,0 Eq. (6.13)
Ωpeak − Ωa,0 Eq. (6.17)

GW peak and baryon asymmetry
Fig. 6.7

EKD − YB Eq. (6.32)
Ωpeak − YB Eq. (6.34)

Table 8.1: List of key relations and figures for the intermediate kination from the rotating axion
(model-independent).
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Appendix A

Sensitivity curves of GW Detectors

We first review the notion of signal-to-noise ratio (SNR), which determines the detectability of
the GW signal at a given GW detector. We consider a graphical representation of the detector’s
sensitivity, the integrated sensitivity curve.

A.1 The signal-to-noise ratio

The total output of a detector is given by the GW signal plus the noise, h(t)+n(t) where the level
of noise n(t) is measured by its noise spectral density Sn(f) [29, 31, 552].〈

ñ∗(f)ñ(f ′)
〉
≡ δ(f − f ′)Sn(f). (A.1)

The detector sensitivity Ωsens(f) is defined as the magnitude of the SGWB energy density which
would mimic the noise spectral density Sn(f)

Ωsens(f) =
2π2

3H2
0

f3 Sn(f). (A.2)

The capability of an interferometer to detect a SGWB of energy density ΩGW(f) after an obser-
vation time T is measured by the signal-to-noise ratio (SNR)

SNR ≡

√
T

∫ fmax

fmin

df

[
ΩGW(f)

Ωsens(f)

]2
. (A.3)

We now comment on different definitions of SNR in the literature and shall see that our definition
is more pragmatic.

Issue of the different formalisms. — Here we review the generic and systematic way to
define SNR and discuss its short-coming. We consider two formulae of SNR – adopted in the GW
community. Generically, the SNR is written as the mean value to the variance of the noise output
– including both the detector noise and the stochastic noise of the signal [552]. Two formulae of
SNR below can be used:

• general formula: For any size of ΩGW [466, 552, 553]. A very large SGWB signal domi-
nates the intrinsic noise of the detector.

SNR2 = T

∫
df

ΩGW(f)2

2ΩGW(f)2 + 2ΩGW(f)Ωsens(f) + Ωsens(f)2
(A.4)

• common formula: Assuming the limit ΩGW ≪ Ωsens.

SNR2 = T

∫
df

ΩGW(f)2

Ωsens(f)2
(A.5)
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In Fig. A.1, we compare the results from these two formulae assuming a scale-invariant sensi-
tivity:

Ωsens(f) = Ωsens = constant, (A.6)

while the signal is assumed to be the power-law shape

ΩGW(f) = ΩGW,⋆

(
f

fpeak

)p
, (A.7)

which is cut-off at fpeak with the peak amplitude ΩGW,⋆. The main difference is when ΩGW ≳
O(Ωsens). The generic formula (A.4) saturates at SNR = Tfpeak, while Eq. (A.5) grows with the
ratio ΩGW/Ωsens. Indeed, the common definition of SNR in Eq. (A.5) can capture the signal’s size
compared to the sensitivity and is a more pragmatic choice, in the sense that one can quantitatively
differentiate between the detector noise and the stochastic noise from the signal.

Which SNR means discovery? — Although the common criterion relies on the approximated
SNR formula in the large detector noise limit, it has been compared with and gives the same results
as the full likelihood analysis, which yields the threshold of SNR ≃ 10. It means that the signal
can be reconstructed for the power-law SGWB spectrum with the detection probability of 97% C.L.
[479].
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Figure A.1: SNR from the generic formula (A.4) and the approximated one (A.5). The two formulae
deviate for ΩGW ≳ O(Ωsens). Also, the size of the SNR from the generic formula saturates at SNR =

Tfpeak/2.

A.2 Power-Law Integrated Sensitivity Curves

Due to its non-trivial integral over the signal’s spectrum in Eq. (A.3), the SNR calculation increases
the difficulty and computation time for predicting the detectability of some GW models, i.e., the
integral must be evaluated for every set of parameters. On the other hand, the more convenient
path – the integrated sensitivity curve – has been laid out in Ref. [478] and relies on graphical
representations. We first assume the generic shape of the spectrum and, then, calculate a function
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of GW amplitude ΩGW – the integrated sensitivity curve – corresponding to some observation
time T and to some SNR at a given detector. Any signal above this curve has SNR larger than
the benchmark value after an observation time T . There are several types of integrated sensitivity
curves in literature, depending on the initially assumed shape. E.g., the peak-integrated sensitivity
curve assumes the signal with a broken power-law shape [724]. In this section, we consider the
generic shape of a power law and derive the power-law integrated sensitivity (PLS) curves. All
results and analyses in this thesis are drawn from the PLS curves.

Assuming SGWB with a power law spectrum

ΩGW(f) = Ωβ

(
f

fref

)β
, (A.8)

with spectral index β, amplitude Ωβ and reference frequency fref , we deduce from Eq. (A.3) the
amplitude Ωβ needed to reach a given SNR after a given observation time T

Ωβ =
SNR√
T

∫ fmax

fmin

df

[
h2

h2Ωsens(f)

(
f

fref

)β]2−1/2

, (A.9)

which upon re-injecting into Eq. (A.8) gives

h2ΩGW(f) = fβ
SNR√
T

(∫ fmax

fmin

df

[
fβ

h2Ωsens(f)

]2)−1/2

. (A.10)

For a given pair (SNR, T ), one obtains a series in β of power-law integrated curves. One defines
the power-law integrated sensitivity curve ΩPI(f) as the envelope of those functions [478]

ΩPI(f) ≡ max
β

fβ SNR√
T

(∫ fmax

fmin

df

[
fβ

h2Ωsens(f)

]2)−1/2
 . (A.11)

Any SGWB signal ΩGW(f) which lies above ΩPI(f) would give a signal to noise ratio > SNR
after an observation time T .

For the purpose of our study, we computed the power-law integrated sensitivity curve ΩPI(f),
starting from the noise spectral density in [66] for ET, [228] for CE and [68] for BBO/DECIGO,
[221] for AEDGE, and [210] for GAIA/THEIA. The required SNR= 10 and the observation time is
10 years; though the sensitivity is only lost by a small factor when the observation time is reduced
by 10%. For pulsar timing arrays EPTA, NANOGrav and SKA, we directly took the sensitivity
curves from [201]. The signal-to-noise ratio can be improved by using cross-correlation between
multiple detectors, e.g. LIGO-Hanford, LIGO-Livingston, VIRGO and KAGRA in run O3, or
LIGO-India which may be operational for run O5 [725]. We computed the SNR for LIGO from
the expression [478]

SNR =

[
2T

∫ fmax

fmin

df
Γ2(f)S2

h(f)

S1
n(f)S

2
n(f)

]1/2
, (A.12)

where S1
n and S2

n are the noise spectral densities of the detectors in Hanford and in Livingston for
the runs O2, O4 or O5 and Γ(f) is the overlap function between the two LIGO detectors which
we took from [726]. The GW power spectral density Sh(f) is related to the GW energy density
through

Sh(f) =
3H2

0

2π2
· ΩGW(f)

f3
. (A.13)

We fixed the signal-to-noise ratio SNR = 10 and the observational time T = 268 days for LIGO
O2, 1 year for LIGO O4 and O5, and 10 years for other sensitivity curves.
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A.2.1 Landscape of primordial GW backgrounds in the characteristic strain hc unit

Figure A.2: This figure displays how the GW frequency spectra discussed in this thesis and shown in
ΩGWh

2 unit would look like when presented in terms of the characteristic strain hc defined in Eq. (2.11).
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Appendix B

Further Details on Cosmic Strings

B.1 Field-theoretic strings

For the completeness of the thesis, this section discusses the simple field-theoretic model of cosmic
strings, which can be either local (or gauged) or global strings. Let us start with the local string
and then put some limit on it to obtain the global-string case.

B.1.1 Abelian Higgs model

Consider a complex scalar field φ charged under gauge fields Aµ,

L = |Dµφ|2 −
1

4
FµνF

µν − 1

4
λ(|φ|2 − η2)2, (B.1)

where Dµ = ∂µ + ieAµ, Fµν = ∂µAµ − ∂νAµ, and the Mexican-hat potential is assumed. The
scalar field could receive the radiative correction that restores its symmetry at high temperatures.
At later times, the correction is suppressed and leads to the phase transition and cosmic strings
formation. Moreover, the scalarφ and the vector bosonAµ obtain massesmφ = λ1/2η, mA = eη.

The EOMs for φ and Aµ read

(∂µ − ieAµ)(∂
µ − ieAµ)φ+

λ

2
φ(φ†φ− η2) = 0, (B.2)

∂µF
µν − 2eℑ(φ†Dνφ) = 0, (B.3)

We see that the system of equations is controlled by the mass scale η and the ratio β ≡ λ2/2e2.
On top of the vacuum solution ⟨ϕ⟩ = η, a static cylindrical-symmetric field configuration exists,
namely Nielsen-Olesen vortex [319, 320]

φ = ηf(ηr) exp(inθ), Ai = −nθ̂iα(ηr)/(er), (B.4)

where n is the winding number, and the gauge field circulates around the string core with a gauge
Ar = 0. The boundary conditions for these solutions are

f(ηr), α(ηr) →

{
0, r → 0,

1, r → ∞,
(B.5)

where the symmetric and broken phases are recovered at the string’s core and at infinity, respec-
tively. For pedagogical reason, let us write the EOM in terms of f and α:

f ′′ +
f ′

r
− n2f

r2
(α− 1)2 − λ

2
f(f2 − 1) = 0, (B.6)

α′′ − α′

r
− 2e2f2(α− 1) = 0. (B.7)
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The solutions are obtained numerically1 and are shown in Fig. B.1. The gauge boson profile is
solely controlled by its massmA – the last term of its EOM, while the scalar field profile f(ηr) de-
pends on two scales: its massmφ (last term) and the gauge boson massmA (as α in the third term).
Fig. B.1 shows that the gauge-boson profile exponentially reaches its asymptotic value beyond
r > m−1

A , while the scalar profile does so when r > max(m−1
φ ,m−1

A ). In case of m−1
A > m−1

φ ,
the φ-profile behaves as 1−f(ηr) ∼ r−2, instead of exponentially decay. Because the angular gra-
dient (the third term) is effective in the small-α regime – despite r > m−1

φ – and gets screened only
when r > m−1

A . On the other hand, for m−1
A < m−1

φ , the φ-profile reaches its limit exponentially
once r > m−1

φ .
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Figure B.1: Local-string profile in the Abelian-Higgs Model. left: In regime m−1
A > m−1

φ , the φ-profile
goes exponentially to its asymptotic value when r > m−1

A due to the gauge field screening. right: In regime
m−1
A < m−1

φ , the φ-profile reaches its its asymptotic value quickly for r > m−1
φ .

The energy stored in the string’s core per unit length or the string tension2 is

µ =

∫
d2r

[
|(∇− ieA⃗)φ|2 + 1

2
(|E⃗|2 + |B⃗|2) + V (φ)

]
. (B.8)

whose leading contribution is found to be

µ ≈ 2πn2η2g(e, λ) where g(e, λ) =

{
1 form−1

A < m−1
φ ,

log(mφ/mA) form−1
A > m−1

φ .
(B.9)

The log-correction comes from the (1 − r−2) profile for r < m−1
A which leads to the slightly

diverging energy density. Contrary to the global strings, there is no screening from the gauge field,
and their energy density diverges up to the largest IR scale of the system, instead of m−1

A .

B.1.2 Global strings

The global string solution can be obtained easily by decoupling the gauge field from the Abelian-
Higgs model, i.e., setting e → 0 and m−1

A → ∞. Now there is no gauge field to cancel the
angular-gradient contribution. The field profile never goes exponentially to its asymptotic value,

1The numerical algorithm using the shooting method might find difficulties due to singularity at r → 0, but other
methods work well, e.g. the finite difference method in this link.

2The energy per unit length and the tension are not necessary the same. For wiggly strings, one finds µ > T on
average over large string’s length scale [301].
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Figure B.2: Global-string profile. The string
core sits near the origin, and the field continu-
ously reaches its VEV for r → ∞. The width
of the profile is controlled by the scalar mass:
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√
λη. Outside the core region, the profile

decreases as 1−f ∼ r−2, unlike the exponential
suppression for the local string, cf. Fig. B.1.

as shown in Fig. B.2. The energy density per length diverges as the distance grows away from the
core. Within the Hubble horizon, the global-string tension is

µ = 2πn2η2 log(H−1/m−1
φ ). (B.10)

The string tension grows with time, and so does the SGWB from global strings, as shown in
Fig. 3.12.

Thin-string effective action

Masses of the underlying fields determine the size of the core width. However, strings can be rather
small compared to the cosmological scale. An observer is unable to resolve any physics within the
core. Hence, we can consider the effective description in the zero-width limit. For local strings,
the appropriate effective action is the Nambu-Goto (NG) action [727–729], i.e. a featureless one-
dimensional object,

SNG = −µ
∫ √

−g(2)d2χ, (B.11)

where coordinates on a 2-dimensional world sheet of propagating strings are xµ(χ0, χ1), g(2) is
the 2-dimensional metric induced background metric, and µ is the string tension.

For global strings, the extended core due to the Goldstone boson satisfies the so-called Kalb-
Ramond action [303, 348], i.e. NG string plus contribution from the Goldstone field.

SKR = −µ
∫ √

−g(2)d2χ+
1

6

∫
H2d4x+ 2πη

∫
Bµνdσ

µν , (B.12)

where Bµν is the antisymmetric field representing the topological interaction between the string
and the Goldstone boson, Hµνλ = ∂µBνλ + ∂λBµν + ∂νBλµ is the field strength tensor of Bµν ,
and dσµν = ϵabxµ,axν,bd

2χ is the worldsheet area element. Here is another application of Goldstone
equivalence theorem [348].

B.2 Constraints from BBN, CMB, gravitational lensing & cosmic rays

By confronting our theoretical predictions for the GW spectrum from CS with the sensitivity curves
of EPTA [369] and NANOGrav [370] (which we take from [201]), we derived the respective bounds
Gµ ≲ 2× 10−10 (EPTA) and Gµ ≲ 5× 10−11 (NANOGrav), as discussed in Sec. 3.1.4. For this
reason, we only considered in our analysis Gµ values smaller than 5 × 10−11. In Sec. B.2.1, we
give the constraints on the string tension from a too large SGWB at CMB/BBN. They are much
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Figure B.3: Two GW spectra which saturate the
BBN bounds, assuming a VOS string network,
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weaker than the ones from Pulsar Timing Arrays (PTAs) but can become relevant in the presence
of kination.

In Sec. B.2.2 and Sec. B.2.3, bounds from gravitational lensing and direct CMB observables are
much weaker than the ones from PTAs. Still, they have the decisive advantage of being independent
of our assumptions for the theoretical prediction of the GW background. Finally, in Sec. B.2.4, we
discuss the possibility of probing CS from the particle productions in the presence of kinks and
cusps.

B.2.1 GW constraints from BBN

SGWB from cosmic strings spans a broad frequency range due to its long-lasting source. Its total
energy density present before BBN/CMB is bounded from above by the∆Neff -constraint discussed
in Sec. 2.2.2. As shown in Eq. (2.22), the integral starts from the lowest frequency, corresponding
to the emission at BBN, to the high frequency when the GW production has started. For CS, the
temperature at BBN, TBBN ≃ 1 MeV, translates via Eq. (3.33) to the frequency

fBBN ≃ 8.9× 10−5 Hz
(
0.1× 50× 10−11

αΓGµ

)1/2

. (B.13)

Fig. B.3 shows the GW spectra, which saturate the BBN bound for two different high-frequency
cut-offs. The lower the cut-off, the higher the upper bound on Gµ due to less GW present at BBN
time. Assuming the presence of the cut-off due to particle production from cusps, we obtain

BBN: h2ΩGW(f) ≲ 8.9× 10−6. (B.14)

We expect the BBN bounds to become weaker in non-standard matter or inflationary era but tighter
in the presence of an early kination era. For instance, scenarios of inflation followed by a stiff
equation of state (e.g. quintessential inflation [522]) are dramatically jeopardized by the BBN
bounds [4, 71]. Similarly, in the case of CS, we find that the maximally allowed string tension
is Gµ ≃ 3.9 × 10−15, 3.8 × 10−17, and 2.9 × 10−20 for long-lasting kination era ending at
temperature T∆ = 100 TeV, 1 TeV, and 1 GeV, respectively.

B.2.2 Gravitational lensing

The presence of energy confined within the core of CS affects the spacetime around them. The
metric near a straight CS is locally flat but globally conical [730]. Photons from a distant celestial
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object traveling in the vicinity of a CS are subject to gravitational lensing effects. The correspond-
ing constraintGµ ≲ 3× 10−7 has been derived from the search of gravitational lensing signatures
of CS in the high-resolution wide-field astronomical surveys GOODS [731] and COSMOS [732].
It has been claimed that constraints from gravitational lensing surveys at radio frequencies like
LOFAR and SKA could reach Gµ ≲ 10−9 [733].

B.2.3 Temperature anisotropies in the CMB

There are two possible effects of CS on temperature fluctuations in the CMB:

• CS moving through the line-of-sight can induce Doppler shifts on the photons coming from
the last scattering surface, known as the Kaiser-Stebbins-Gott effect [734–736], potentially
leaving line-like discontinuities in the CMB.

• A CS moving in the primordial plasma leaves surdensity perturbations, the so-called wakes
[737], possibly imprinted in the CMB temperature anisotropy. Due to the stochastic behav-
ior of the Kibble mechanism, these perturbations are decoherent and give rise to a CMB
spectrum without acoustic peaks [738].

Lattice numerical computation of the temperature anisotropy in Abelian-Higgs [646, 739], Nambu-
Goto [738, 740, 741] or global strings [742] have constrained the string tension toGµ ≲ few×10−7

[743]. Constraints of the same magnitude can be found from non-gaussianity [743–745]. Also, the
same signatures as in the CMB can be imprinted in the 21-cm power spectrum, and an experiment
with a collecting area of 104 − 106 km2 might constrain Gµ ≲ 10−10 − 10−12 [746].

B.2.4 Non-gravitational radiation

As discussed in Sec. 3.2.1, the presence of small-scale structures on local strings, cusps, and kinks,
invalidates the Nambu-Goto approximation and implies the radiation of massive particles. There-
fore, CS have been proposed as a possible mechanism for generating non-thermal DM and Baryon
Asymmetry of the Universe [180, 195–197, 358–365, 747].

At a cusp, the string can reach ultrarelativistic velocities. Therefore, CS have been pointed
[564, 723, 748–750] as a possible candidate for the detection of ultra-high energy cosmic rays
[751] above the Greisen-Zatsepin-Kuzmin (GZK) cut-off, around 1020 eV [752–754], even though
the expected flux at earth is generally too small to be detected [359, 755, 756].

More precisely, a coupling between the SM and the dark U(1)′ from which the CS result – e.g.,
a Higgs portal or a kinetic mixing – leads to effective interaction between SM particles and the
CS [757]. In that case, the formation of cusps and kinks on the string radiate SM particles [360].
The expected gamma-ray flux at the earth is too low to be observed by Fermi-LAT [758], also if
we assume that all the massive particles radiated by the CS subsequently decay into gamma-ray
[391]. However, for cusp domination and large coupling between the SM and U(1)′, the flux of
high-energy neutrino might be measured by the future experiments SKA and LOFAR for Gµ ∼
10−16÷−14 [758]. Also, the distortions in the CMB may be detected by the future telescope PIXIE
for Gµ ∼ 10−14÷−12 [758]. Finally, depending on the magnitude of the SM-U(1)′ coupling, the
BBN constraints can already exclude values of string tensions: 10−14 ≲ Gµ ≲ 10−8 [758].

Constraints from particle emission apply on an interval of values forGµ, and not as upper bound
like for gravitational emission [755]. There are more loops for longer lifetimes ∝ (ΓGµ)−1, and
we expect a larger flux of emitted particles while gravitational emission grows with Gµ. Loops
with small Gµ decay preferentially into particles, cf. sec. 3.2.1. In that case, the expected flux of
emitted particles increases with the string tension, which controls the power of the particle emis-
sion. Therefore, a value of Gµ exists for which the expected flux of emitted particles is maximal.
This is the value of Gµ when particle production is as efficient as gravitational production. For
example, for loops created at the recombination time, the value of Gµ maximizing the cosmic ray
production is 10−18 [759].
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Superconducting Cosmic Strings: Another possibility for large particle production is to couple
the CS with electromagnetic charge carriers and to spontaneously break electromagnetic gauge in-
variance inside the vortex [760]. Upon moving through cosmic magnetic fields, Superconducting
Cosmic Strings (SCS) are able to develop a large electric current I. The cusp formation on SCS is
expected to emit electromagnetic bursts [761–764], up to very high energies, set by the string ten-
sion √

µ ∼ 1013 GeV
√
Gµ/10−15, hence leading to high-energy gamma-rays [765–767]. Hence,

SCS could be an explanation for the observed gamma-ray bursts at high redshifts, which depart from
the predictions from star-formation-history [767]. However, the expected photon flux at earth is
larger in the radio band than in the gamma-ray band [768–770] (but also mostly generated by kinks
instead of cusps [771]). Thus, it has been proposed that SCS could be an explanation for the Fast-
Radio-Burst events [772–774] for string tensions in the rangeGµ ∼ 10−14÷−12 and string currents
I ∼ 10−1÷2 GeV [773]. Electromagnetic emission from SCS lead to CMB distortions [775–777].
A next-generation telescope like PIXIE [778] would exclude string tensionsGµ ∼ 10−18, for string
currents as low as I ∼ 10−8 GeV [777]. Also, electromagnetic radiation, by increasing the ion-
ization fraction of neutral hydrogen, can affect the CMB temperature and polarization correlation
functions at large angular scales, leading to the contraint I ≲ 107 GeV [779]. Note that ionization
of neutral hydrogen has been studied in [759] in the case of non-superconducting strings. Addi-
tionally, the radio emission from SCS can increase the depth of the 21 cm absorption signal, and
EDGES data excludes the SCS tension Gµ ∼ 10−13 for string currents as low at I ∼ 10 GeV.
Finally, emission of boosted charge carriers from SCS cusps moving in a cosmic magnetic field
B, has been studied in [780], and provide a possible explanation for high-energy neutrino above
1020 eV, for Gµ ∼ 10−20÷−14.

B.3 Derivation of SGWB from CS (precisely)

This section provides a pedagogical derivation for GW from the local cosmic-string network. Since
the main GW contribution comes from string loops, let us now go from the loop production until
their GW reaches the GW observatories today. Then we will see that the estimation for the SGWB
can be obtained using the quadrupole formula. Lastly, we consider the effect of higher modes and
the possibility of distinguishing small-scale structures on strings.

B.3.1 The loop production

In Sec. 3.2.2, the string network produces number density of loops of size αti at time ti with rate
dnloop
dti

= (0.1)
Ceff(ti)

α t4i
, (B.15)

where Ceff(ti) is the loop-formation efficiency. The loop number density per unit frequency reads

dnloop(f̃ , t̃)

df̃
=

[
a(ti)

a(t̃)

]3 ∑
k

(0.1)
Ceff(ti)

t4i
· 1

α (α+ ΓGµ)
· 2k
f2

[
a(t̃)

a(to)

]2
, (B.16)

where the number density of loops red-shifts as a−3 before they maximally decay. Moreover, we
consider that the GW spectrum is dominated by the largest loops formed with size equal to 10% of
the horizon [194], i.e. the monochromatic loop size distribution

Pα(α) = δ(α− 0.1). (B.17)

B.3.2 From loop production to GW emission

After its formation at ti, a loop shrinks through GW emission with a rate ΓGµ so that its length
evolves as, cf. Sec. 3.1.3

l(t) = αti − ΓGµ(t− ti), (B.18)
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where α is the length at formation in units of the horizon size. The resulting GW are emitted at a
frequency f̃ corresponding to one of the proper modes of the loop, i.e.

f̃ =
2k

l
, k ∈ Z+. (B.19)

The GW energy rate emitted by one loop through the mode k is

dE
(k)
GW

dt
= Γ(k)Gµ2, with

∑
k

Γ(k) = Γ, (B.20)

where Γ(k) =
Γ k−4/3∑∞
p=1 p

−4/3
≃ Γ k−4/3

3.60
, (B.21)

which assumes that the GW emission is dominated by cusps [277]. The GW energy density spec-
trum resulting from the emission of all the decaying loops until today is

dρGW(f̃ , t̃)

df̃
=

∫ t0

tF

dt̃
dEGW

dt̃
· dn(f̃ , t̃)

df̃
, (B.22)

where dn(f̃ , t̃)/df̃ is the number density of loops emitting GW at frequency f̃ at time t̃ and t0
is the age of the Universe today. Loops start being created at time of CS network formation tF or
after the damped evolution has stopped, cf. Sec. B.5.

B.3.3 From GW emission to detection

The GW energy density spectrum today is defined as ΩGW(f) = (f/ρc) |dρGW(f, t0)/df | . After
emission, the GW energy density redshifts as radiation, ρGW ∝ a−4, so the GW energy density
per unit of frequency redshifts as

dρGW(f, t0)

df
=
dρGW(f̃ , t̃)

df̃

(
a(t̃)

a(t0)

)3

(B.23)

where the frequency at emission f̃ red-shifts to the frequency today: f = f̃ [a(t̃)/a(t0)].

B.3.4 The master equation

Following all steps from loop production until the GW reaches the detector, GW energy density
spectrum from CS can be written pedagogically as ΩGW(f) =

∑
k Ω

k
GW(f) where

ΩkGW(f) =
1

ρc

∫ t0

tosc

dt̃

∫ 1

0
dαΘ

[
ti −

l∗
α

]
Θ(ti − tosc)

[
a(t̃)

a(t0)

]4
P

(m)
GW

[
a(ti)

a(t̃)

]3
Pα(α)

dti
df

dnloop
dti

,

(B.24)

such that the chronology of the involved processes can be understood from right to left. Loops are
formed at rate dnloop/dti at ti with a size distribution Pα(α). They dilute like a−3 due to Hubble
expansion, before emitting GW with power spectrum P

(m)
GW which subsequently redshifts like a−4.

The two Heaviside functions represent high-frequency cut-offs. The right-handed Heaviside func-
tion stands for the time tosc at which long-strings start oscillating, either just after the formation of
the long-string network or after that friction becomes negligible, cf. Sec. B.5.4. The left-handed
Heaviside function stands for the energy loss into particle production, which is more efficient than
GW emission for loops of length smaller than a characteristic length l∗, which depends on the
small-scale string structure, cf. sec 3.2.1.
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Integrating over all loop sizes α, all emission times t̃ and we sum over all loop modes m, we
deduce a ready-to-use form of the GW energy density spectrum from CS:

ΩGW(f) =
∑
k

Ω
(k)
GW(f)

=
∑
k

1

ρc

2k

f

Fα Γ(k)Gµ2

α(α+ ΓGµ)

∫ t0

tosc

dt̃
Ceff(ti)

t4i

[
a(t̃)

a(t0)

]5 [
a(ti)

a(t̃)

]3
Θ(ti − tosc)Θ(ti −

l∗
α
).

(B.25)

The time ti of formation of the loops, which emit at time t̃ and which give the detected frequency
f , can be determined from Eq. (B.18) and Eq. (B.19)

ti(f, t̃) =
1

α+ ΓGµ

[
2k

f

a(t̃)

a(t0)
+ ΓGµ t̃

]
. (B.26)

Note that the contribution coming from the higher modes are related to the contribution of the first
mode by

Ω
(k)
GW(f) = k−4/3Ω

(1)
GW(f/k). (B.27)

B.3.5 The GW spectrum from the quadrupole formula

In standard radiation-dominated Universe, the scaling behaviorΩGW ∝
√
Gµ×f0, e.g. Eq. (3.47),

can be understood qualitatively from the quadrupole formula for the power emission of GW [277,
342]

PGW ∼ Nloop
G

5

(
Q

′′′
loop

)2
, (B.28)

where the triple derivative of the quadrupole of a loop is simply the string tension

Q
′′′
loop ∼ mass × length2/time3 ∼ µ. (B.29)

During the scaling regime, the number of loops formed at time ti scales as t−3
i and red-shifts as

a−3 until time t̃ to be

Nloop ∼
(
t̃

ti

)3(
ti

t̃

)3/2
. (B.30)

Since GW redshift as radiation, their energy density today is

ΩGW ∼ Ωrad
ρGW(t̃)

ρrad(t̃)
∼ Ωrad (Gµ)

2

(
t̃

ti

)3/2
, (B.31)

where we assumed radiation-domination at t̃

ρrad(t̃) ∼ G−1 H̃2 ρrad(t̃)

ρtot(t̃)
∼ G−1 t̃−2, (B.32)

and where we used that the energy density of GW at t̃ is

ρGW(t̃) ∼
(
PGW t̃

)
/ t̃ 3. (B.33)

with the GW power PGW defined in Eq. (B.28). From Eq. (B.30), one can see that, at a fixed
formation time ti, the later the GW emission, the more numerous the loops. Hence, the dominant
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contribution to the SGWB from a given population of loops formed at ti occurs after one loop-
lifetime, cf. Eq. (3.15), at

t̃M ∼ α ti
ΓGµ

. (B.34)

Upon plugging Eq. (B.34) into Eq. (B.31), one gets

ΩGW ∝
√
Gµ× f0. (B.35)

From Eq. (B.31), the GW spectrum during radiation is set by a combination of the strength of the
GW emission from loops, (Gµ)2, and the loop-lifetime t̃M/ti, cf. Eq. (B.34). Both are set by
the triple derivative of the loop-quadrupole Q′′′

loop ∼ µ. Hence we understand that the flatness
in frequency during radiation is closely linked to the independence of the triple derivative of the
loop-quadrupole3, cf. Eq. (B.29), on the loop length, and therefore on the frequency.

B.3.6 Contributions from each loop population.

Each loop population – produced at time ti and decayed at time t̃ – contributes to the SGWB from
a cosmic-string network at different frequencies and amplitudes today (for the latter, this is true
for the non-radiation-dominated Universe). As discussed in Secs. 3.2.4 and 4.2.2, the spectrum
from each population peaks when t̃ = t̃M , and the sum of these peaks concludes in the power-law
spectrum that can infer the cosmological history, Eq. (3.31). Nonetheless, we must be cautious
because, in some cases, the observed spectral slope does not come from the sum of peaks. Each
loop population also produces the peaked GW spectrum with its UV (high-frequency) and IR (low-
frequency) tails. In this subsection, let us compute the slopes of these tails and see how they affect
the ability to track cosmological history.

UV tail. The frequency higher than the spectral peak corresponds to the GW emission at time
t̃ < t̃M . Choosing the values for ti and t̃ which makes them f -independent, the master equation in
Eq. (B.25) has the f -dependence as ΩGW ∝ f−1, that is the UV tail from each loop population. If
the peak contributions in Eq. (3.31) lead to the power-law spectrum with a slope smaller than −1,
the final spectrum from each mode k is dominated by the UV tail of the contribution produced at
the latest time and has the slope of −1.

In Fig. B.4, we see that the slope of each mode is exactly −1; however, the peak contribution in
this case also leads to a slope of−1 as the loops produced in matter era and decaying in radiation era.
Another case is when the spectrum has the high-frequency cut-offs. A more illuminating example
is shown in the case of global strings. We obtain from Eq. (3.76) that the peak contribution leads
to a spectrum with slope −2, while the resulting (k = 1) spectrum in Fig. 3.12 shows a slope
of −1 due to this UV tail. Nevertheless, this UV tail gets enhanced into −1/3 due to the higher
harmonics; see App. B.3.7.

IR tail. The low-frequency behavior is also derived from Eq. (B.25), but in the regime, t̃ > t̃M .
Unlike a freedom of t̃-value, ti is now related to t̃M , Eq. (B.34), and is f -dependent, i.e. ti ∝ f−1.
Eq. (B.25) reads

ΩGW ∝ f3(n−2)/n,

where loop population is produced during ρ ∝ a−n. This result is obvious for all plots of the
cosmic-string SGWB in the standard cosmology; the IR tail has a slope of 3/2 corresponding to
t̃ > t0 and the loop population from the radiation-domination era. For the case of loops produced
in the matter era, the IR tail has a slope of 1, as shown in Fig. 3.9.

3 In contrast, the GW spectrum generated by domain walls during radiation is not flat since in that case the triple
derivative of the wall-quadrupole depends on the emission time: Q

′′′
DW ∼ σ t̃, where σ is the wall energy per unit of

area. Hence, the energy density fraction in GW before wall annihilation [781] increases with time ΩDW
GW ∼

(
Gσt̃

)2.
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B.3.7 Impact of the high-frequency proper modes of the loop
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Figure B.4: left: Maximal mode number kmax in Eq. (B.36) beyond which the Nambu-Goto approximation
cannot be trusted. We see that in the different interferometer windows, kmax is extremely large, often much
larger than the maximal mode number tractable numerically∼ 106. right: Decomposition of a GW spectrum
under the contributions coming from the different proper modes of the loop. We can see that high-k modes
are responsible for the change of slope f−1/3 → f−1 between the physical turning point frequency f∆ and
a second, artificial, turning-point fmax, given by fmax = kmax f∆, cf. Eq. (B.45), where kmax is the total
number of modes chosen for doing the computation, here 2 × 104, 105 and 106. Except when explicitly
specified, for technical reasons we fix kmax = 2× 104 modes in all the plots of our study.

When computing the GW spectrum from CS, Eq. (3.29), we are confronted with an infinite sum
over the proper modes k of the loop. Indeed, a mode with infinitely large k becomes unphysical be-
cause it corresponds to the oscillation of infinitely large energy: Ek ∼ k/L. The highest oscillation
mode should not have energy more considerable than the energy scale of string,Ek < η, otherwise,
the infinitely thin-string approximation is violated [359]. Therefore, we obtain the highest-mode
number:

kmax = ηL ≃ η(αH−1), (B.36)

which grows as a2 in radiation-dominated Universe. At the formation time Hform ≃ η2/MPl, the
summation must be performed up to (αMPl/η) modes. The number of modes before the violation
of the Nambu-Goto approximation can be huge, as shown in the left panel of Fig. B.4. Nonetheless,
we leave the possibility to probe the time-dependent nmax for future studies.

In what follows, we study the impact of the high-frequency modes on the GW spectrum. From
Eqs. (B.19), (B.21), and (B.25), the kth-mode spectrum is related to the fundamental spectrum
k = 1 through Eq. (B.27), which we rewrite here

Ω
(k)
GW(f) = k−δ Ω

(1)
GW(f/k), (B.37)

In this study, we fix δ = 4/3 since we assume that cusps dominate the small-scale structure.
However, the results of the present section apply to any small-scale structure described by δ.

Case of a flat fundamental spectrum: If the one-mode spectrum is flat, Ω(1)
GW(f) ∝ f0, the

total spectrum is a simple rescaling of the fundamental spectrum by the Riemann zeta function

ΩGW(f) = ζ (δ) Ω
(1)
GW(f), (B.38)

where in particular, ζ(4/3) =
∑

k k
−4/3 ≃ 3.60.
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Case of a fundamental spectrum with a slope f−1: The study [334] was the first to point out
the impact of the high-frequency modes on the value of a decreasing slope. We now consider the
case where the fundamental spectrum has a slope f−1, as expected in the presence of an early
matter era, cf. Eq. (3.31) and in UV tail due to high-frequency cut-offs, cf. App. B.3.6.

The high-frequency cut-offs are described by Heaviside functions in the master formula in
Eq. (B.25), of the type Θ(ti − t∆), where ti is the cosmic time when loop formation starts. The
time t∆ can correspond to either the time of formation of the network, cf. Eq. (3.4), the time
when friction-dominated dynamics become irrelevant, cf. App. B.5.4, the time when gravitational
emission dominates over massive particle production, cf. Sec. 3.2.1, or the time when the string
correlation length re-enters the Hubble horizon after a short period of second inflation, cf. Sec. 4.6.
The slope of the k = 1 spectrum beyond the cut-off frequency follows from Eq. (B.25) after inject-
ing Eq. (B.26) and ti = t∆, where we find

Ω
(1)
GW(f) = Ω∆Θ(−f + f∆) + Ω∆

f∆
f

Θ(f − f∆) . (B.39)

The fundamental spectrum is flat until f∆ and then shows a slope f−1 beyond. The total spectrum,
summed over all the proper modes, can be obtained from Eq. (B.37) and Eq. (B.39)

ΩGW(f) =

k∆∑
k=1

Ω∆

kδ
k
f∆
f

+

kmax∑
k=k∆

Ω∆

kδ
, (B.40)

where kmax is the maximal mode, chosen arbitrarily, and k∆ is the critical mode defined such that
modes with k < k∆ have a slope f−1 whereas modes with k > k∆ have a flat slope. For a given
frequency f , the critical mode number k∆ obeys

k∆ ≃ f

f∆
. (B.41)

We now evaluate Eq. (B.40) in the large k∆ limit, while still keeping k∆ < kmax

Ω1≪k∆<kmax

GW (f) ≃ Ω∆
f∆
f
k2−δ∆ +

1

δ − 1

Ω∆

kδ−1
∆

, (B.42)

where we have used the asymptotic expansion of the Euler-Maclaurin formula for the first term and
the asymptotic expansion of the Hurwitz zeta function for the second term. Finally, after injecting
Eq. (B.41), we get

Ω1≪k∆<kmax

GW (f) ≃ δ

δ − 1
Ω∆

(
f∆
f

)δ−1

∝


f−1/3 cusps (δ = 4/3)
f−2/3 kinks (δ = 5/3)
f−1 kink-kink collisions (δ = 2)

(B.43)

We conclude that the spectral index beyond a high-frequency turning point f∆ – due to an early
matter era, a second inflation era, particle production, thermal friction domination, or the formation
of the network – is modified by the presence of the high-k modes in a way that depends on the small-
scale structure. If cusps dominate the small-scale structure, we find a slope −1/3. Therefore, we
can get information about the nature of the small structure by detecting a GW spectrum from CS
with a decreasing slope.

Impact of fixing the total number of proper modes: For technical reasons we are unavoidably
forced to choose a maximal number of modes kmax. We now study the dependence of the GW
spectrum on the choice of kmax. The evaluation of Eq. (B.40) for k∆ > kmax leads to

Ω1≪kmax<k∆
GW (f) = ζ (δ − 1) Ω∆

f∆
f
. (B.44)
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Hence, in addition to the initial physical turning point f∆, where the slope changes from flat to
f−1/3, there is a second artificial turning point fmax given by

fmax = kmax f∆, (B.45)

where the slope changes from f−1/3 to f−1. We show the different behaviors in the right panel of
Fig. B.4.

Case of a fundamental spectrum with a slope f+1: As last, we comment on the case where the
fundamental spectrum has a slope f1, as in the case of an early kination era. Repeating the same
steps as in Eq. (B.40), we obtain

ΩGW(f) = ζ (δ + 1) Ω∆
f

f∆
, (B.46)

hence the slope of the full spectrum is the same as the slope of the fundamental spectrum.

B.4 Derivation of the frequency–temperature relation

In this appendix, we compute the correspondence between an observed GW frequency f and the
temperature T of the Universe when the loops responsible for that frequency have been formed.

loop at production

loop at emission

Hubble horizon

t̃M = α
2ΓGµt∆

at ti

at t̃M

Hubble expansion

Figure B.5: Loops produced at time ti contribute to the GW spectrum much later, when they have ac-
complished half of their lifetime, at t̃M ≃ α ti/(2ΓGµ). Hence GW emitted from cosmic-string loops are
exempt from a redshift factor a(t̃M)/a(ti) so have much higher frequency than GW produced from other
sources at the same energy scale.

B.4.1 In standard cosmology

According to the scaling of the loop-formation rate dn/dti ∝ t−4
i , the main contribution to the

GW emission at time t̃ comes from the loops created at the earliest epoch. Correspondingly, loops
created at ti contribute to the spectrum as late as possible, at the main emission time t̃M. The latest
emission time is set by the loop lifetime α ti/ΓGµ, where α is the loop-length at formation in
horizon unit, cf. Eq. (3.15). Hence, a loop produced at time ti mainly contributes to the spectrum,
much later cf. Fig. B.5, at a time

t̃M ≃ α ti
2ΓGµ

, (B.47)

where the factor 1/2 is found upon maximizing the loop-formation rate dn/dti ∝ t−4
i and upon

assuming α ≫ ΓGµ. The loop length after half the loop lifetime, in Eq. (B.47), is equal to half
the length at formation α ti/2, cf. Eq. (B.18). Hence the emitted frequency is set by

α ti ≃
4

f

a(t̃M )

a(t0)
≃ 4

f

a(t̃M )

a(teq)

a(teq)

a(t0)
≃ 4

f

(
t̃M
teq

)1/2(
teq

t0

)2/3

(B.48)
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where f a(t0)/a(t̃) = 2k/l and we considered the first mode k = 1, cf. Eqs. (3.11). By merg-
ing Eq. (B.47) and (B.48), the relation between an observed frequency f and the time ti of loop
formation reads

f ≃

√
8zeq

αΓGµ

(
teq

ti

)1/2

t−1
0 , (B.49)

where the redshift at matter-radiation equality is zeq = ΩC/Ωγ ≃ 3360, and teq ≃ 51.8 kyrs and
t0 ≃ 13.8 Gyrs [39]. Finally, using entropy conservation, we obtain the frequency–temperature
correspondence for local cosmic strings:

f ≃

√
8

zeqαΓGµ

(
g∗(T )

g∗(T0)

)1/4( T
T0

)
t−1
0

≃ (6.7× 10−2 Hz)
(

T

GeV

)(
0.1× 50× 10−11

αΓGµ

)1/2(
g∗(T )

g∗(T0)

)1/4

. (B.50)

In the case of global cosmic strings, discussed in Sec. 3.6, the frequency-temperature relation is
more trivial. Since loops decay quickly after their formation, its GW contribution from those loops
depends directly on their size at production, that is, the horizon size. Therefore, the frequency-
temperature relation is numerically similar to that of inflationary GW.

B.4.2 During a change of cosmology

The derivation of Eq. (B.50) does not take into account the time-variation of loop formation Ceff .
It assumes that loops are produced and decayed during the scaling regime in the radiation era. An
observable to test the non-standard cosmology is the frequency f∆ of the turning-point defined as
the frequency at which the GW spectrum deviates from the standard-cosmology behavior and the
spectral index changes. We obtain different fitted values for this turning-point frequency depending
on the prescription. We quote below different expressions, depending on whether the GW spectrum
can be measured with a 10% precision and 1% respectively4. We compare the predictions obtained
using a scaling and VOS network:

f∆ ≃ Hz
[
T∆
GeV

] [
0.1 · 50 · 10−11

αΓGµ

]1/2 [
g∗(T∆)

g∗(T0)

]1/4
·


2× 10−3 (VOS, 10%)

45× 10−3 (scaling, 10%)

0.04× 10−3 (VOS, 1%)

15× 10−3 (scaling, 1%)

(B.51)

Therefore, the turning-point frequency is lower in VOS than in scaling by a factor ∼ 22.5 if we
define the turning-point frequency by an amplitude deviation of 10% with respect to standard cos-
mology and by a factor ∼ 375 for a deviation of 1%. The loops contributing to this part of the
spectrum have been formed at the time of cosmology change. When the cosmology changes, the
network achieves a transient evolution to reach the new scaling regime. The long-string network
needs extra time to transit from one scaling regime to the other, hence the shift in the frequency-
temperature relation of the turning point.

B.4.3 In the presence of an intermediate inflation period

The derivation of Eq. (B.50) assumes that cosmic-string loops are constantly being produced through-
out the cosmic history. It does not apply if the network experiences an intermediate era of inflation.

4This criterion compares the GW spectrum to the standard prediction and has nothing to do with the sensitivity of
GW observatories. Indeed, the required precision for detecting this deviation will depend on the signal-to-noise ratio.
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This case is discussed in Sec. 4.6.2 and the turning-point formulae are, for a given precision

f∆ ≃ Hz
[
T∆
GeV

] [
0.1 · 50 · 10−11

αΓGµ

]1/2 [
g∗(T∆)

g∗(T0)

]1/4
·

{
1.5× 10−4 (10%)

5× 10−6 (1%)
(B.52)

B.4.4 Cut-off from particle production

The cutoff frequency due to particle production is given in Sec. 3.2.5.

B.5 Derivation of the VOS equations

B.5.1 The Nambu-Goto string in an expanding Universe

The Velocity-dependent One-Scale equations (VOS) in Eq. (3.40), describe the evolution of a net-
work of long strings in term of two parameters5: the mean velocity v̄ and the correlation length
ξ = L/t, see the original papers [405–407] and [408] for a review. The set of points visited by
the Nambu-Goto string during its time evolution form a 2D manifold, called the world-sheet, de-
scribed by time-like t and space-like σ coordinates. The embedding of the 2D world-sheet in the
4D space-time is described by xµ(t, σ) where µ = 1, 2, 3, 4. The choice of the word-sheet co-
ordinates being arbitrary, and we can gauge-fix by imposing ẋ · x′ = 0 and t = τ where τ is the
conformal time of the expanding Universe, ẋ ≡ dx/dt and x′ ≡ dx/dσ. Then, the equations of
motion of the Nambu-Goto string in a FRW Universe are [784]

ẍ+ 2H(1− ẋ2)ẋ =
1

ϵ

(
x′

ϵ

)′
, (B.53)

ϵ̇+ 2H ẋ2 ϵ = 0, (B.54)

where H ≡ ȧ/a = Ha and ϵ ≡
√

x′2/(1− ẋ2) is the coordinate energy per unit of length.

B.5.2 The long-string network

The macroscopic evolution of the long string network can be described by the energy density

ρ∞ =
E

a3
=

µ

a2(τ)

∫
ϵ dσ ≡ µ

L2
, (B.55)

and the root-mean-square averaged velocity

v̄2 ≡ ⟨ẋ2⟩ =
∫
ẋ2ϵ dσ∫
ϵ dσ

, (B.56)

where we recall that µ is the CS linear mass density.

5For the superconducting strings, the VOS model can be extended with two more charge-current parameters into
Charge-VOS model [782]. Very recently, it has been shown that the current inside strings affects the scaling solution
and loop production [783], resulting in the peak-like enhancement simialr to the intermediate kination scenario.
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B.5.3 VOS 1: the correlation length

Differentiating Eq. (B.55) gives the evolution of the energy density in an expanding Universe

dρ∞
dt

=
dρ∞
dτ

· dτ
dt

=
1

a
· dρ∞
dτ

, (B.57)

=
µ

a

[
d

dτ

(
1

a2

)∫
ϵ dσ +

1

a2

∫
dϵ

dτ
dσ

]
, (B.58)

= −2
µ

a3
H
[∫

ϵ dσ +

∫
ẋ2ϵ dσ

]
, (B.59)

= −2Hρ∞ (1 + v̄2). (B.60)

Moreover, after each string crossing, the network transfers energy into loops with a rate given by
Eq. (3.38) and we get

dρ∞
dt

= −2Hρ∞ (1 + v̄2)− c̃ v̄
ρ∞
L
, (B.61)

which after using Eq. (B.55), leads to the first VOS equation

VOS 1:
dL

dt
= HL (1 + v̄2) +

1

2
c̃ v̄. (B.62)

The back-reaction on long strings from gravitational emission is suppressed with respect to the
loop-chopping loss term by O(Gµ). The case of global strings, for which the back-reaction due to
particle production may play a role, is considered in Sec. 3.6.2.

B.5.4 Thermal friction

In addition to the Hubble friction, strings can experience friction due to their interactions with
particles of the plasma, leading to the retarding force [411]

F = ρσv̄ = βT 3v̄, (B.63)

where ρ ∼ T 4 is the plasma energy density, and σ ∼ T−1 is the cross-section per unit of length.
The friction damps the string motion and suppresses the GW spectrum [785]. For gauge strings, a
well-known realisation of friction is the interaction of charged particles with the pure gauge fields
existing outside the string, the so-called Aharonov-Bohm effect [786]. In such a case, the friction
coefficient β is given by [411]

β = 2π−2ζ(3)
∑
i

gi sin
2(πνi), (B.64)

with i ≡ relativistic particle species (mi ≪ T ),

gi ≡ number of relativistic degrees of freedom of i×

{
3/4 (fermion),
1 (boson),

2π νi ≡ eiΦ ≡ phase-shift of the wave-function of particle i when transported on a
close path around the string. ei being its charge under the associated
gauge group and Φ the magnetic field flux along the string.

The friction term in the first VOS equation, Eq. (B.62), becomes

2Hv̄2 −→ v̄2

ld
≡ 2Hv̄2 +

v̄2

lf
, (B.65)
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Figure B.6: GW spectrum from CS assuming
no thermal friction (solid lines), thermal friction
only at the level of the long-string network, i.e.
upon including Eq. (B.65) in the VOS equations
(dashed lines) or thermal friction taken at the
loop-motion level, i.e. by removing GW emis-
sions anterior to tfric defined in Eq. (B.66) (dot-
ted lines). See text for more details. A standard
cosmology is assumed.

where a friction length due to particle scattering is defined by lf ≡ µ/(σ ρ) = µ/(βT 3) [405, 406],
and the associated effective friction length ld. At high temperature, the large friction prevents the
CS network to reach the scaling regime until 2H ≲ 1/lf , so after the time

tfric ≃ (2.5× 10−5)

(
106.75

g∗(tfric)

)3/2

β2 (Gµ)−2 tpl, (B.66)

≃ (1.4× 10−4)

(
g∗(tF)

106.65

)1/2( 106.75

g∗(tfric)

)3/2

β2 (Gµ)−1 tF , (B.67)

where tpl ≡
√
G, and the network formation time tF is when the energy scale of the Universe

is equal to the string tension ρ1/2tot (tF ) ≡ µ. For friction coefficient β = 1, the friction becomes
negligible at the temperatures T∗ ≃ 4 TeV for Gµ = 10−17, T∗ ≃ 400 TeV for Gµ = 10−15,
T∗ ≃ 40 PeV for Gµ = 10−13. Hence, it respectively impacts SGWB above the frequencies 20,
200, 2000 kHz, cf. Eq. (4.21), which are outside the GW interferometer windows, cf. Fig. 3.4.

In Fig. B.6, we show the impact of thermal friction on the GW spectrum from CS in two
different ways:

• Network under friction (dashed lines in Fig. B.6): the thermal friction is only taken into ac-
count at the level of the long-string network, i.e., by including the friction term in Eq. (B.65)
in the VOS equations. The GW peak at high frequency is due to the loop over-production
by the frozen network, followed by a fast relaxation (with a little oscillatory behavior) to the
scaling regime once friction becomes negligible with respect to Hubble expansion. This ap-
proach is insufficient since it assumes that ΓGµ2 still gives the GW power emitted by loops
with Γ ≃ 50. Therefore, it does not consider the damping of the oscillations of the loops
under which we expect Γ → 0.

• GW emission cut-off (dotted lines in Fig. B.6): The damping of the loop oscillations dis-
cards all GW emissions happening prior to tfric in Eq. (B.66), when thermal friction is larger
than Hubble friction. Technically, the time tosc of first loop oscillations in Eq. (3.30) is set
equal to tfric in Eq. (B.66).

In many of our plots, e.g., Fig. 3.2 and Fig. 3.4, we show the GW spectrum in the presence of
thermal friction with a gray line, computed according to the second prescription above, entitled
GW emission cut-off. Note that in most cases, the effect of friction manifests itself at very high
frequencies, outside the observability band of planned interferometers. It could, however, become
relevant if those high frequencies could be probed in future experiments.
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B.5.5 VOS 2: the mean velocity

Differentiating Eq. (B.56) gives the evolution of the averaged velocity, which constitutes the second
VOS equation

VOS 2:
dv̄

dt
= (1− v̄2)

[
k(v̄)

L
− v̄

ld

]
, (B.68)

with k(v̄) ≡
〈
(1− ẋ2) (ẋ · u)

〉
v̄ (1− v̄2)

,

where u is the unit vector aligned with the radius of curvature ∝ d2x/dσ2, and k(v̄) indicates the
degree of wiggliness of the string. More precisely, k(v̄) = 1 for a straight string and k(v̄) ≲ 1
once we add small-scale structures. We use the results from numerical simulations [407]

k(v̄) =
2
√
2

π
(1− v̄2)(1 + 2

√
2v̄3)

1− 8v̄6

1 + 8v̄6
. (B.69)

Eq. (B.68) is a relativistic generalization of Newton’s law where the string is accelerated by its
curvature 1/L but is damped by the Hubble expansion and plasma friction after a typical length
1/ld

6.

B.6 Extension of the original VOS model
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Figure B.7: left: GW spectra with different VOS modellings of the long-string network evolution. The
VOS models are either based on Nambu-Goto simulations (solid line - c̃ = 0.23) [407] or abelian-Higgs
(AH) field theory simulations (dashed line - c̃ = 0.57) [382, 788], possibly extended to include particle
production [409] (dotted line). right: The corresponding loop-production efficiency for each VOS model.

B.6.1 VOS model from Nambu-Goto simulations

In our study, the evolution of the long-string network through the VOS model is described by Eq.
(3.40). The only free parameter is the loop-chopping efficiency c̃, which is computed from Nambu-
Goto network simulations in an expanding Universe [407], to be

NG: c̃ = 0.23± 0.04. (B.70)
6Eq. (B.68) neglects the change in long string velocity v̄ due to loop formation as proposed in [787].
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scaling in radiation
dominated Universe

NG
c̃ = 0.23

AH
c̃ = 0.57

AH extended
c̃ = 0.31

(d, k0, r, q, β)

v̄ 0.66 0.62 0.59
ξ 0.27 0.57 0.36
Ceff 5.4 1.3 2.8

Table B.1: Values of mean velocity v̄, correlation length ξ, and loop-production efficiency Ceff in radiation
scaling regime with different VOS calibrations.

B.6.2 VOS model from Abelian-Higgs simulations

Abelian-Higgs (AH) field theory simulations in both expanding and flat spacetime suggest a larger
value [382, 788]

AH: c̃ = 0.57± 0.04. (B.71)

Indeed, in Abelian-Higgs simulations, no loops are produced below the string core size, so the
energy loss into loop formation is lower. Consequently, the loop-chopping efficiency must be in-
creased to maintain scaling.

B.6.3 VOS model from Abelian-Higgs simulations with particle production

In Abelian-Higgs simulations, the loops produced at the string core scale are non-linear lumps of
field, called proto-loops, which decay fast into massive radiation. Therefore, a recent work [409]
extends the VOS model by including a term in Eq. (B.62) to account for the emission of massive
radiation at the string core scale. The energy-loss function F (v) is modified as

F (v̄)|original =
c̃v̄

2
⇒ F (v̄)|extended =

c̃v̄ + d[k0 − k(v̄)]r

2
, (B.72)

and the momentum operator k(v), cf. Eq. (B.69), accounting for the amount of small-scale struc-
tures in the string, is modified to

k(v̄)|original =
2
√
2

π

1− 8v̄6

1 + 8v̄6
⇒ k(v̄)|extended = k0

1− (qv̄2)β

1 + (qv̄2)β
. (B.73)

With Abelian-Higgs simulations, one finds [409]

AH extended: c̃ = 0.31, (B.74)

as well as d = 0.26, k0 = 1.27, r = 1.66, q = 2.27, and β = 1.54. In Abelian-Higgs extended,
the loop-chopping efficiency, cf. Eq. (B.74), is smaller than the one in the original Abelian-Higgs
model, cf. Eq. (B.71). Indeed, because of the additional energy loss through massive-radiation,
less energy loss via loop-chopping is needed to maintain scaling.

In Fig. B.7, we compare the GW spectra in the different VOS models. The difference in ampli-
tude comes from the difference in the number of loops, set by Ceff . The larger the loop-chopping
efficiency c̃, the smaller the loop-formation efficiency Ceff . This counter-intuitive result can be
better understood by looking at Tab. B.1. A larger loop-chopping efficiency c̃ implies a larger loop
formation rate only during the transient regime. In the scaling regime, a larger loop-chopping effi-
ciency c̃ implies a more depleted long-string network and a larger correlation length ξ. Hence, the
long-string network is more sparse, so the rate of loop formation via string crossing is lower.
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B.7 Impact of the cosmology on the loop size at formation

B.7.1 Loop size as a fraction of the Hubble horizon

In this section, we discuss the validity of defining the loop-size at formation, li, as a constant
fraction α of the Hubble horizon size ti

Terminology I : li = α ti. (B.75)

Nambu-Goto simulations [194] suggest α ≃ 0.1. In this first prescription, we neglect the effects
of cosmology change on α. The advantage of the second prescription presented in Sec. B.7.2 is to
account analytically for these effects.

The time derivative of the length of the loop at its formation is simply

dl

dt
= α+ ΓGµ, (B.76)

which leads to the GW spectrum in Eq. (3.29). Outside the redshift factors, in this first prescription
the loop-production efficiency Ceff is the only parameter depending on the cosmology in the GW
spectrum formula.

B.7.2 Loop size as a fraction of long-string correlation length

Loops being formed by inter-commutation of long strings, the appropriate length scale setting their
size at formation should be the correlation length L of the long-string network, and not the Hubble
horizon size ti. Therefore, the loop-size at formation li in Eq. (B.75) should be replaced by the
more natural definition, pointed out first in [410]

Terminology II : li ≡ αL Li = αL ξ ti, (B.77)

where αL is the new constant loop-size parameter. The two definitions of the loop-size parameter
in Eqs. (B.75) and (B.77) are related through

α = αL ξ. (B.78)

We assume that αL is a constant independent of the equation of state of the Universe [296]. We
set its value to αL = 0.37 in order to match α = 0.1 during radiation-domination. Therefore, the
dependence of li on the change of cosmology is directly tied to ξ.

The GW spectrum formula, cf. Eq. (B.25), which depends on the time derivative of the loop
length at the production, cf. Eq. (B.16)

dl

dt
= αL

d

dt
(ξt) + ΓGµ, (B.79)

becomes

Ω
(k)
GW(f) =

1

ρc

2k

f
(0.1) Γ(k)Gµ2

∫ t0

tosc

dt̃
c̃v̄(ti)

γαL

[
1

ξ(ti)ti

]4 [ 1

αL
d
dt(ξt) + ΓGµ

]

×
[
a(t̃)

a(t0)

]5 [
a(ti)

a(t̃)

]3
Θ(ti − tosc)Θ(ti −

l∗
α
), (B.80)

where ti is the solution to

l(t) = αLξ(ti)ti − ΓGµ(t− ti). (B.81)
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Figure B.8: Comparisons of GW spectra ob-
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terminology I
αI

terminology II
αII = αLξ

ΩGW,II
ΩGW,I

=
√

αII
αI

radiation 0.1 (0.37)(0.27) 1
matter 0.1 (0.37)(0.63) 1.53

kination 0.1 (0.37)(0.15) 0.75

Table B.2: Values of loop-size parameter αI, αII ≡ ξt assuming radiation-, matter-, and kination-scaling
and ratios between their corresponding GW spectra. Note that the intermediate inflationary scenario provides
similar results to that of the matter era. The characteristic length scale ξ is constant during the scaling regime,
which makes the comparison between the two terminologies possible.

B.7.3 Impact on the GW spectrum

In Fig. B.8, we compare the impact of the two prescriptions for the loop-size at formation, defined in
Eqs. (B.75) and (B.77), on the GW spectrum. We show GW spectra assuming intermediate or long-
lasting non-standard era, or standard cosmology with various initial conditions of the cosmic-string
network. The impact of the loop-size at formation on the spectrum mainly comes from the behav-
ior ΩGW ∝

√
α, cf. Eq. (3.47). Since the actual long-string correlation scale ξ is longer/shorter

in matter-/kination-dominated Universe respectively, terminology II leads to an enhancement/sup-
pression of the spectrum. Table B.2 displays values of α and expected ratios of amplitudes from
two terminologies, for different equations of state. Because of the technical difficulties in applying
terminology II and the relatively small spectral impact, we restrict to the terminology I throughout
this work, as used in Sec. 3.2.2.

198



Appendix C

Constraint on Intermediate Inflation

In Sec. 4.6, we discuss the effect on SGWB of an intermediate inflationary period – occurring much
after the primordial inflation and unrelated to CMB and large-scale structure (LSS) observations.
This appendix quantifies the bound on such a scenario. The idea is that any perturbation leaving the
horizon during the secondary inflation is not observable in the CMB and in the LSS if the second
inflation lasts no longer than ∼ 30 efolds. Fig. C.1 shows the comoving Hubble horizon in the two-
stage inflation cosmology where the interim period is the radiation domination era; the derivation
of the bound can be understood graphically. We will follow the similar derivations for bounds
on the single-inflationary era followed by standard hot-Big-Bang cosmology and the non-standard
cosmology [789, 790].

We define the critical mode as the smallest-scale mode in the CMB power spectrum – the largest
harmonic moment l – that does not reenter the horizon during the reheating and leave the horizon
again due to the second inflation,

kcrit = arehHreh. (C.1)

We obtain the maximum e-folding NII of the secondary inflation,

aCMBHCMB = arehHreh ⇒ NII,max = − 1

12
ln

(
ρeqρ

2
CMB

M12
Pl

)
+

1

4
ln

(
ρII

M4
Pl

)
, (C.2)

where we assume the instantaneous reheating at the end of second inflation, and we use the total en-
ergy density of the Universe at matter-radiation equality ρeq = Ωm,0ρcz

3
eq. The total energy density

of the Universe corresponding to the smallest scale in CMB power spectra is found by comparing
the multipole moments of the smallest scale, lsmallest ≃ 2500, to the scale at recombination – the
highest peak of the CMB power spectrum l∗ ≃ 200 [791],

l∗
lsmallest

=
k∗
kCMB

=
a∗H∗

aCMBHCMB
=

(
ρ∗
ρCMB

)2/3

, (C.3)

ρCMB =

(
lsmallest
l∗

)3/2

ρ∗ =

(
lsmallest
l∗

)3/2

Ωm,0ρcz
3
∗ (C.4)

where we have used that the Universe is matter-dominated. Therefore, the maximum bound allowed
by the successful observation of the CMB power spectrum is

NCMB
II = 63.08 +

1

4
ln

(
ρII

M4
Pl

)
= 27.65 +

1

4
ln
( ρII

TeV4

)
. (C.5)

A similar but weaker bound from the smallest scale from LSS observation, i.e., the Lyman-α forest
probes down to k ≃ 1.4 Mpc−1, see Ref. [25] for a review and references therein. The maximum
e-foldings of the second inflation allowed by Lyman-α is

N
Ly-α
II = 65.47 +

1

4
ln

(
ρII

M4
Pl

)
= 30.04 +

1

4
ln
( ρII

TeV4

)
. (C.6)
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Lastly, we comment on the two-stage inflation with a specific case of cosmic-string domination
[543]. The Hubble horizon during string domination, (aH)−1, is constant, and the super-horizon
mode that hovers just above the horizon can reprocess the perturbations if the cosmic-string dom-
ination is long enough and impacts the density power spectrum.
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Figure C.1: Comoving horizons in the standard hot-Big-Bang cosmology and the cosmological history
with second-stage inflation. The CMB and LSS can bound the maximum e-fold number of the second
inflation by requiring that there is no observable signal corresponding to modes reprocessed by the non-
standard cosmological history, i.e., mode with k > kcrit. For simplicity, we assume the reheating to be a
radiation-dominated era, and the Universe is instantaneously reheated after the second inflation.
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Appendix D

Kination after inflation: quintessential
inflation with α-attractor

Kination has been discussed in the literature as a follow-up of inflation before reheating. Except for
the new constraint derived in Sec. 4.4.4, this appendix reviews the motivation for models of kination
following inflation for completeness. As stated in Sec. 4.4.2, it is impossible to have a kination era
from a canonical scalar field rolling down its potential without superplanckian field excursions.
On the other hand, kination arises in a popular class of inflation models called α-attractor models
which not only fit CMB data well but also link to quintessence at a late time. Besides, they can be
motivated by supergravity models. We summarise them in the following.

D.1 A sharp transition between two plateaus

α-attractor is a class of supergravity theory where kinetic terms have poles

L =
1
2(∂ϕ)

2

(1− ϕ2

6αM2
pl
)2

− V (ϕ) + Λ, α > 0. (D.1)

The use of α-attractor for quintessential inflation has been studied in [792–797]. Since the scalar
field cannot cross the poles, the field range is limited to −

√
6αMpl ≲ ϕ ≲ +

√
6αMpl. For

α ≲ 1/6, it has the great advantage to prevent super-Planckian field excursion which plagues usual
quintessential inflation scenarios.

Scalar potential. — Following [794, 795, 797], we choose the following scalar potential

V (ϕ) = V0 e
−κϕ/Mpl , (D.2)

where κ > 0, which can be motivated by supergravity [798, 799], brane inflation [800], string
theory [315, 801, 802] or gaugino condensation [803–805]. At late time, the scalar field slows
downs when reaching an infinite kinetic term at ϕ → +

√
6αMpl. We suppose the existence of an

unknown mechanism which set the cosmological constant (CC) to zero at ϕ→ +
√
6αMpl

Λ = V (
√
6αMpl) = V0 e

−κ
√
6α, (D.3)

such that the scalar field potential energy + CC reads

V (ϕ) = V0 e
−n

[
e
n

(
1− ϕ√

6αMpl

)
− 1

]
, with n ≡ κ

√
6α. (D.4)
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Upon introducing the field transformation

∂ϕ

∂φ
= 1− ϕ2

6αM2
pl

, ↔ ϕ =
√
6αMpl tanh

(
φ√

6αMpl

)
, (D.5)

we obtain a canonically normalized scalar field with potential energy

V (φ) = e−2nM4

[
e
n

(
1−tanh φ√

6αMpl

)
− 1

]
, M4 ≡ enV0. (D.6)

The poles at ϕ → ±
√
6αMpl have been sent to φ → ±∞ and the potential V (φ) features two

plateaus

V (φ) ≃


M4 exp

(
−2ne

2φ√
6αMpl

)
, when φ→ −∞,

2ne−2nM4 exp
(
− 2φ√

6αMpl

)
, when φ→ +∞.

(D.7)

This potential and the history of the Universe in the quintessential inflation scenario are shown in
Fig. D.1 and Fig. D.2 respectively.
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Figure D.1: α-attractor potential for
quintessential inflation. We took the
same parameters as in Fig. (D.2).
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inflation scenario based on the potential in Eq. (D.6) for α = 7/3 (motivated by string theory [796]) and
n = 123. We solved numerically the equation of motion of the scalar field evolving in the potential in
Eq. (D.6) in the expanding Universe. right: evolution of the equation of state ω = p/ρ of the Universe.
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D.2 Kination followed by reheating

After inflation, the Universe is dominated by the kinetic energy of the scalar field which evolves
according to Eq. (4.24)

φ = φend +

√
2

3
Mpl ln

(
t

tend

)
(D.8)

with the field position at the end of inflation estimated as

φend =

√
3α

2
Mpl ln

(√
3α

2n

)
. (D.9)

Since the inflation potential is non-oscillatory, the standard reheating can not occur through the
decay of the inflaton.

The kination era ends when the Universe becomes dominated by the energy density of the
reheated plasma. An immediate possibility for producing radiation is gravitational reheating [485,
486] in which the reheated density reads

ρgrav ≃ δ × 10−2H4
end, (D.10)

where δ is an efficiency factor that depends on the number of fields, their coupling with gravity, their
mass, and their self-coupling; see [511] for a review. However, unless we introduce a large number
δ ≳ 50 of self-interacting and non-minimally-coupled light fields, reheating through gravitational
coupling only is inconsistent with the BBN bound on GW from inflation [506, 511, 806–809].

Other reheating mechanism, which may be the one realized in the SM [810], is to introduce a
large non-minimal coupling to gravity to exploit the tachyonic instability generated by the change
of sign of the Ricci scalar during kination [487–491]. The tachyonic instability can also be gener-
ated by a thermal phase transition [797] or more generally when the inflaton crosses an enhanced
symmetry point, see instant reheating [795, 811–813] or trapping reheating [814, 815]. Another
well-known efficient reheating is curvaton reheating where a spectator field decay into SM [816–
818].
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Appendix E

GW probe of stiff era

The scalar Virial theorem in Eq. (G.141) states that the averaged energy density of the scalar field
– in the power-law potential and in the expanding Universe – redshifts as ⟨ρΦ⟩ ∝ a−6n/(2+n) for
V (Φ) ∝ Φn, which is equivalent to the EOS: ω = (n− 2)/(n+2). For n > 4, the EOS is larger
than that of radiation: ω > 1/3 and is called the stiff era.

In Chap. 4, we have studied the spectrum of inflationary GW in presence of an arbitrary EOS
and found the spectral indices to be, see Eq. (4.12)

ΩGW ∝ f−2(1−3ω)/1+3ω ∝ fβ, with β ≡ − 2

(
1− 3ω

1 + 3ω

)
. (E.1)

The energy-frequency relation is

f(ρ) = f∆

(
ρ

ρ∆

) 1+3ω
6(1+ω)

, (E.2)

where f∆ and ρ∆ are the GW frequency and the total energy density at the end of the stiff era.
Examples of inflationary GW spectra in the presence of a stiff era are shown in Fig. E.1-top. In
Fig. E.1-bottom, we show the reach of future-planned GW observatories. In contrast to the case
ω = 1 shown in Fig. 4.10, the ability of GW interferometers to probe ω = 2/3 and ω = 1/2 a stiff
era can be better than ∆Neff .

E.1 Growth of scalar fluctuation

The fluctuations of the massless field red-shifts as radiation grow during stiff era, eventually domi-
nates, ends the stage of stiff domination era. Similar to the kination case in Sec. 4.4.4 (see Ref. [132]
for a precise derivation), the stiff era ends by fluctuation after some Nstiff efolds,(

ρinf
ρreh

) 1
3(1+ω)

=

(
3MPlH

2
inf

π2g∗(Treh)T
4
reh/30

) 1
3(1+ω)

=
areh
ainf

= exp (Nstiff) < ξ−
1

3ω−1 , (E.3)

where ξ ≡ δρ/ρ is the initial fluctuation’s energy density at the end of inflation. With the curvature
perturbations observed in CMB ∼ 10−9÷−10 [20], we obtain the bound on duration of stiff era,
Nmax

stiff ∼ 11, 23, 46 for ω = 1, 2/3, 1/2, respectively. The constraint is also illustrated in Fig. E.1.
We leave a more careful study of fluctuations during the matter-kination era for future work [527].
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Figure E.1: Top: In the presence of a stiff era with EOS ω occurring right after inflation, the GW spectrum
from primordial inflation receives a blue-tilt, cf. Eq. (4.12). The dashed and solid lines correspond to the
reheating temperatures TRH = 10−1 GeV and 104 GeV, respectively. Some spectra associated with too
long kination are subject to the fluctuation constraint Eq. (E.3), which depends on the initial scalar fluctuation
[132, 527]. Bottom: Ability of the future-planned experiments to compete with the BBN bound, for probing
SGWB enhanced by post-inflation stiff era with EOS ω ending at the reheating temperature TRH. The lower
ω, the more competitive the GW interferometers concerning BBN. The stiff era on the left of the solid green
line cannot be realized due to the radiation-like fluctuation, cf. Eq. (E.3). An experiment operating at
higher frequencies loses sensitivity for smaller ω because of the smaller enhancement.
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Appendix F

Further constraints on kination

In this appendix, we derive the following upper bounds on the number of e-folds of kination:

1. The limited duration between the end of inflation/reheating and BBN, cf. App. F.1

Kination after inflation (scheme B): NKD ≲ 29 +
2

3
log

Einf

1.4× 1016 GeV
(F.1)

Intermediate kination (scheme E): NKD ≲ 14.6 +
1

3
log

Ereh

1.4× 1016 GeV
. (F.2)

2. The Neff constraint of kination-enhanced inflationary GW, cf. App. (F.2)

For scheme B and E: NKD ≲ 11.9 + log
5× 1013 GeV

Hinf
. (F.3)

3. The angular mode energy density drops below the wiggle step size of the axion potential, cf.
App. F.3

For scheme E (model-dependent): NKD ≲
1

3
ln

θ̇0
2ma

, (F.4)

for the rotating axion models leading to the intremediate kination, see Chaps. 6 and 7.

4. The Universe contains a non-vanishing vacuum energy V0, cf. Sec. F.4,

NKD ≲
1

6
log

(
ρKD

V0

)
. (F.5)

5. The growth of scalar fluctuation during kination, cf. Sec. 4.4.4

For scheme B and E: NKD ≲ 10 or 11. (F.6)

F.1 Duration between inflation/reheating and BBN

The non-detection of primordial B modes by 2021 BICEP/Keck Collaboration [21] constrains the
tensor-to-scalar ratio to be smaller than

r ≡ As
At

≲ 0.036, (F.7)

where As ≃ 2.196 × 10−9 [819] and At =
2H2

inf

πM2
pl

[820]. This implies the maximal Hubble and
energy scale at the end of inflation to be

Hinf ≲ 5× 10−13 GeV, and Einf ≡
(
3M2

plH
2
inf

)1/4
≲ 1.4× 1016 GeV. (F.8)
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The maximum reheating scale, corresponding to the extreme scenario where reheating takes place
instantaneously at the very end of inflation, is given by

Ereh ≲ 1.4× 1016 GeV. (F.9)

By using the code AlterBBN [821], it can be shown that successful BBN requires the amount
of kination energy density to be less than 92% of the radiation energy density at the temperature
T = 1 MeV [132]

ρkin ≲ 92% ρrad, at T = 1 MeV. (F.10)

We conclude that kination must end before

E∆ ≳ EBBN ≡ 1.4 MeV, (F.11)

where E∆ is the energy scale at the end of kination when ρkin = ρrad, and where we remind the
reader of our notation Ei ≡ ρ

1/4
i .

Kination right after inflation (scheme B). — A simple constraint on NKD comes from kina-
tion not lasting more than the time between the end of inflation in Eq. (F.8), and the end of BBN
in Eq. (F.11). We obtain the bound

Scheme B: NKD ≲
1

6
log

E4
inf

ρBBN
= 29 +

2

3
log

Einf

1.4× 1016 GeV
. (F.12)

Intermediate matter-kination (scheme E). — As we already discussed along Eq. (4.51), the
duration of the matter-kination is maximized when there is no entropy injection which would pro-
duce an additional radiation component. For such an adiabatic evolution, the number of e-folds of
matter and kination is related through

NMD = 2NKD, with NMD ≡ 1

3
log

ρdom
ρKD

, and NKD ≡ 1

6
log

ρKD

ρ∆
. (F.13)

In this scenario, the energy scale EKD at the onset of the kination era is given by

EKD =
√
EdomE∆, (F.14)

where Edom and E∆ are energy scales at the onset of the matter era and at the end of the kination
era The duration of the kination era can be written as

NKD =
1

3
log

Edom

E∆
. (F.15)

The longest matter-kination era allowed by CMB and BBN is when the matter era starts right after
the end of inflationEdom = Ereh and the kination ends just before the onset of BBNE∆ = EBBN.
We obtain the upper bound

Scheme E: NKD ≲ 14.6 +
1

3
log

Ereh

1.4× 1016 GeV
. (F.16)

F.2 Neff bound on inflationary GW

As we discuss in Chap. 2, the GW energy density produced prior to the onset of BBN can contribute
to the effective number of neutrino species, which leads to the bound, cf. Eq. (2.22)∫ fmax

fBBN

df

f
h2ΩGW(f) ≤ 5.6× 10−6 ∆Nν , (F.17)
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where ∆Nν ≤ 0.2 [39]. In Sec. 4.7, we have studied the impact of a kination EOS on the spectrum
of primordial GW and we have found that a period of NKD e-folds of kination leads to a blue-tilt
ΩGW ∝ f whose peak value is, cf. Eq. (4.56)

ΩGW,KD ≃ 2.8× 10−13

(
g∗(T∆)

106.75

)(
g∗,s(T∆)

106.75

)− 4
3
(

Einf

1016 GeV

)4(exp(2NKD)

e10

)
. (F.18)

The ∆Neff bound yields the maximal duration of kination, which can be seen in Fig. 4.10,

Scheme B and E: NKD ≲ 11.9 + log
5× 1013 GeV

Hinf
. (F.19)

F.3 Presence of axion wiggles

In Chaps. 6 and 7, the intermediate kination era is well-motivated by the model of rotating axion.
This is a pseudo-Nambu-Goldstone boson whose mass becomes relevant to the dynamics at later
times. Assuming the presence of an axion potential V (θ) = f2am

2
a(1 + cos θ), where ma is the

mass of the axion a ≡ θfa. The circular motion is only possible if its kinetic energy density is
larger than the top of the potential barrier

f2a θ̇
2

2
> 2f2am

2
a ⇒ θ̇ > 2ma. (F.20)

Since the axion velocity redshift as θ ∝ a−3, the kination ends by trapping in the axion wiggles
unless its duration is smaller than

Nmax
KD =

1

3
ln

θ̇0
2ma

, (F.21)

which is also shown in Fig. F.1. We obtained a similar bound from fragmentation in Eq. (6.28).
We also checked that the early wiggles from higher-dimensional U(1)-explicit breaking terms do
not lead to fragmentation.

10-10 10-8 10-6 10-4 10-2 1
0

2

4

6

8
Limitation due to

the presence of

axion wiggles at T = 0

NmaxKD = 1
3 ln

·θ0
2ma

Figure F.1: Maximal number of kination e-
folds due to the presence of axion wiggles cf.
Eq. (F.21). In the parameter space of interest, the
number of e-folds NKD is always smaller than
Nmax

KD shown here, such that the bound (F.21) is
always satisfied. Instead, we expect the duration
of kination to be dominantly constrained by the
other bounds given in Eqs. (F.1), (F.3) and (F.6)

F.4 Inflationary behavior after kination phase

So far, we have neglected the vacuum energy at the potential minimum, so the kinetic energy of a
scalar field always dominates. The non-zero potential energy can, however, lead to an inflationary
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period at later times. The kinetic energy density redshifts as a−6 and eventually becomes as small
as the vacuum energy

ω(a) =
K(a)− V0
K(a) + V0

=
ρKD(

aKD
a )6 − V0

ρKD(
aKD
a )6 + V0

=
exp(−6NKD)− V0/ρKD
exp(−6NKD) + V0/ρKD

, (F.22)

where NKD is the e-foldings of the cosmic expansion after the kination era started. For a non-zero
V0, Fig. F.2 shows that after a number of kination e-folds given by

Nmax
KD =

1

6
log

(
ρKD

V0

)
, (F.23)

the EOS decreases abruptly to ω = −1.

s
Figure F.2: The kination EOS ends when the
kinetic energy density ρϕ,KD drops below the
non-zero vacuum energy V0.
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Appendix G

More Details on Intermediate Kination
from the Rotating Axion

This appendix provides exhaustive details on the spinning-axion model buildings that led to the
intermediate kination era, discussed in Chap. 7. The origin of the potential for the complex scalar
field – motivated by Supersymmetry and providing three of the four requirements for kination –
is discussed in App. G.1. We discuss issues of the fluctuations that might constraint the model
parameters if the Hubble-induced terms of potential are absent, cf. App. G.2. Two mechanisms
for damping the radial mode are discussed in App. G.3. The last part G.4 considers the detailed
complex-scalar field evolution in the expanding Universe: both numerically and analytically.

G.1 Origin of the scalar potential

We consider a complex scalar field Φ with the Lagrangian introduced in Eq. (7.1)

L = (∂µΦ)
†∂µΦ− V (|Φ|)− Vth(|Φ|)− V

��U(1)(Φ)− VH(Φ), (G.1)

with V the global U(1)-symmetric potential with spontaneous symmetry breaking (SSB) vacuum,
Vth the thermal corrections, V

��U(1) the explicit U(1)-breaking term, and VH the Hubble-dependent
potential:

V (|Φ|) = m2
r |Φ|2

(
ln

|Φ|2

f2a
− 1

)
+m2

rf
2
a +

λ2

M2l−6
|Φ|2l−2, (G.2)

V
��U(1)(Φ) = Λ4

b

[(
Φ†

M

)l
+

(
Φ

M

)l]
, (G.3)

VH(Φ) = −cH2|Φ|2 − a
M

Mpl

H

m3/2
Λ4
b

[(
Φ†

M

)l
+

(
Φ

M

)l]
, (G.4)

and

Vth(ϕ, T ) =

{
1
2y

2
ψT

2ϕ2, for yψϕ ≲ T,

α2T 4 ln(
y2ψϕ

2

T 2 ), for yψϕ ≳ T
, (G.5)

which can be derived in SUSY framework. In the main text, we take M =Mpl.

G.1.1 Neglecting Hubble curvature

The first two terms, in Eq. (G.2) and Eq. (G.3), can be derived from the SUSY Lagrangian

L ⊃
∫
d2θd2θ̄ K(SΦ, S

∗
Φ) +

∫
d2θW (SΦ) + h.c. (G.6)
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with the Kahler potential K and the superpotential W being given by

K(SΦ, S
∗
Φ) = |SΦ|2 −

1

M
|SΦ|2

(
Sχ + S∗

χ

)
− 1

M2
|SΦ|2|Sχ|2 −

1

M4
|SΦ|4|Sχ|2, (G.7)

W (SΦ) = λ
SlΦ

lM l−3
, l ∈ N. (G.8)

where (θ, θ̄) are the Graßmannian coordinates in the superspace. SΦ is the chiral superfield con-
taining the complex scalar Φ

SΦ = Φ+
√
2θψ + θ2F. (G.9)

M is the messenger scale (e.g. the Planck scale for gravity mediation) and Sχ is a SUSY-breaking
chiral superfield

Sχ = χ+
√
2θψχ + θ2Fχ, (G.10)

which we assume to get a non-vanishing F-term VEV

⟨Sχ⟩ = θ2 ⟨Fχ⟩ with ⟨Fχ⟩ = m32Mpl, (G.11)

where m32 is the gravitino mass. From using Eq. (G.10), together with
∫
dθ2θ2 = 1, the last two

terms of the Kahler potential in Eq. (G.7) contribute to the scalar potential

V (Φ) ⊃ ⟨Fχ⟩2

M2
|Φ|2 + ⟨Fχ⟩2

M4
|Φ|4, (G.12)

while the second term of the Kahler potential in Eq. (G.7) acts as a non-holomorphic effective
superpotential ∫

d2θd2θ̄
1

M
|SΦ|2

(
Sχ + S∗

χ

)
≃
∫
d2θ

1

M
|SΦ|2 ⟨Fχ⟩+ h.c., (G.13)

and Eq. (G.8) can be replaced by

W (SΦ) =
⟨Fχ⟩
M

|SΦ|2 + λ
SlΦ

lM l−3
. (G.14)

In turn, from the equations of motion for the F-terms of SΦ and S∗
Φ

F =

(
∂K

∂Φ†∂Φ†

)−1 ∂W

∂Φ† , F ∗ =

(
∂K

∂Φ∂Φ

)−1 ∂W

∂Φ
, (G.15)

we obtain the scalar potential

V (Φ) ⊃
(

∂K

∂Φ∂Φ†

)−1 ∣∣∣∣∂W∂Φ
∣∣∣∣2 =

⟨Fχ⟩2

M2
|Φ|2 + λ ⟨Fχ⟩

Φl + h.c.

M l−2
+ |λ|2 |Φ|

2l−2

M2l−6
. (G.16)

From Eq. (G.12) and Eq. (G.16), we deduce VU(1)(Φ) and V
��U(1)(Φ) in Eq. (G.2) and Eq. (G.3)

V (|Φ|) = m2
r |Φ|2

(
ln

|Φ|2

f2a
− 1

)
+m2

rf
2
a +

|λ|2

M2l−6
|Φ|2l−2, (G.17)

V
��U(1)(Φ) = Λ4

b

[(
Φ†

M

)l
+

(
Φ

M

)l]
, (G.18)

with

m2
r =

⟨Fχ⟩2

M2
= m2

32

M2
pl

M2
, (G.19)

Λ4
b = λ ⟨Fχ⟩M2 = λm32MplM

2. (G.20)

The quartic term in Eq. (G.12) is negligible as long as |Φ| ≪M . The presence of the logarithmic
function in Eq. (G.17), which is responsible for the spontaneous breaking of the U(1) symmetry
Φ → eiαΦ, is generated radiatively [698], see App. G.1.4 for a review. The constant term in the
same equation is needed in order to tune the cosmological constant to zero.
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G.1.2 Including Hubble expansion

Let’s assume that the energy density is dominated by a complex scalar I , which can be the inflaton
during inflation or matter-dominated preheating [580, 582] or a field in equilibrium with the thermal
plasma during radiation domination [822]

H2M2
pl = ρI =


⟨F ∗

I FI⟩ , during inflation or matter-domination,

⟨∂I∗∂I⟩ , during radiation-domination,
(G.21)

where FI is the F-term of the chiral superpotential SI containing I . Our complex scalar of interest
Φ, which is a sub-dominant fraction of the energy density of the Universe ρΦ ≪ H2M2

pl, interacts
with I through gravity, which leads to the non-renormalizable Kahler potential

L ⊃
∫
dθ2dθ̄2

(
a
SI + S∗

I

Mpl
|Sϕ|2 + c

|SI |2

M2
pl

|SΦ|2
)
, a, c = O(1). (G.22)

Upon solving for the SΦ-F-term equations of motion from the total Lagrangian Eq. (G.7), (G.8)
and Eq. (G.22), in which we replace1

SI = iθσµθ̄∂µI + θ2FI , (G.23)

we find that the scalar potential receives the additional terms

V (ϕ) ⊃
−c∂I†∂I + (a2 − c)F ∗

I FI + a
Mpl

M (FI F
∗
χ + F ∗

I Fχ)

M2
pl

|Φ|2 − aλ
FI Φ

l + h.c.

MplM l−3
. (G.24)

If the dynamics occurs during radiation-domination, then ⟨∂I∗∂I⟩ dominates and the scalar po-
tential receives a negative curvature-induced mass whenever c > 0

V (ϕ) ⊃ −cH2Φ2, (G.25)

If the dynamics occurs during inflation or matter-domination, then ⟨F ∗
I FI⟩ dominates2

V (ϕ) ⊃
(
(a2 − c)H2 + am32H

)
Φ2 − a

M

Mpl

H

m3/2
Λ4
b

(
Φ

M

)l
, (G.26)

with Λb defined in Eq. (G.20). The Hubble-induced mass is negative whenever c > a2 and H ≳
m32. For M = Mpl, the latter condition is verified whenever the SUSY-breaking field χ does not
dominate the energy density of the Universe Fχ ≲ FI . We refer to [580, 582] for a discussion of
supergravity corrections, which should become important during inflation whenever I ≳Mpl.

In summary, we see that a large and negative Hubble-induced mass term is naturally generated
in models where the complex scalar field Φ couples to a field that dominates the energy density of
the Universe. This is very important for justifying the initial conditions.

G.1.3 Evolution of the scalar field in the negative Hubble-induced potential.

We recall the damped harmonic oscillator

ϕ̈+ Γϕ̇+m2ϕ = 0, (G.27)
1We remind the reader that chiral superfields in superspace read SI(y, θ) = I(y) +

√
2θψ(y) + θ2F (y) with

yµ = xµ+iθσµθ̄, which impliesSI(y, θ, θ̄) = I(x)+iθ̄σ̄µθ∂µI(x)+
1
4
θ2θ̄2□I(x)+

√
2θψ(x) = i√

2
θ2θ̄σ̄µ∂µψ(x)+

θ2F (x). In Eq. (G.23), we have neglected the fermionic component ψ, the inflaton VEV ϕ and the mass term □I .
2The term aHm32Φ

2 in Eq. (G.26) is generated by the interaction between the three non trivial terms |SΦ|2Sχ,
|SΦ|2|Sχ|2 and |SΦ|2SI in the Kahler potential.
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has three regimes according to the value of Γ

ϕ(t) =


ϕ1 exp (σ+t) + ϕ2 exp (σ−t) , for Γ2 > 4m2 (over-damped),

(ϕ1 + ϕ2Γt) exp
(−Γt

2

)
, for Γ2 = 4m2 (critically-damped),

ϕ1 cos(
√
m2 − Γ2

4 t− α) exp
(−Γt

2

)
, for Γ2 < 4m2 (under-damped),

(G.28)

where ϕ1, ϕ2, α are constants set by the initial conditions, and σ± ≡ −Γ/2 ±
√

(Γ/2)2 −m2.
Taking Γ = 3H and introducing Ne ≡ Ht, we obtain, e.g. [589]

ϕ(Ne) ≃


ϕ1e

− m2

3H2Ne for H ≫ m (over-damped),

(ϕ1 + 3ϕ2Ne) e
− 3

2
Ne for H = 2

3m (critically-damped),

ϕ1 cos(mt− α)e−
3
2
Ne for H ≪ m (under-damped).

(G.29)

Initial radial VEV. Neglecting the U(1)-breaking term and assuming a ≪
√
c in Eq. (G.26),

the potential at early time reads, cf. Eq. (G.17), Eq. (G.18) and Eq. (G.26)

V (ϕ) = (
1

2
m2

eff(T )− cH2)ϕ2 + λ2
ϕ2l−2

M2l−6
Pl

, m2
eff(T ) ≡ m2 + y2T 2, (G.30)

where we included a thermal mass y2T 2 coming from a possible interaction with the thermal bath.
We study the dynamics of the scalar field at early time by numerically integrating the field equation
of motion in the presence of the potential in Eq. (G.30). To simplify the numerical study, we
assume that the Universe is radiation-dominated, so that the temperature T is related to the Hubble
parameter H through

T 2 ≃ HMPl. (G.31)

From Eq. (G.29), we deduce that there are three stages of field evolution after which the field starts
oscillating with an amplitude ϕini in a potential with minimum ϕmin = 0.3 The resulting field
trajectory is plotted in Fig. G.1.

1.
√
cH ≫ meff : the negative Hubble-mass dominates the mass term so the fields rolls within

Ne ≃ 3/c e-folds towards the non-trivial minimum at

ϕini(H) ≃

(
M l−3

Pl

√
cH2 −m2/2−HMPly2/2

λ
√
2l − 2

)1/(l−2)

. (G.32)

2. meff ≳
√
cH: the Hubble-mass becomes sub-dominant and the time-dependent minimum

vanishes ϕmin = 0.

3. meff > 3H: the Hubble friction drops, the field becomes under-damped, V ′′(⟨ϕ⟩) > 9H2,
and starts to roll away from

ϕini(H ≃ meff) ≃ Mpl

(
√
c

meff

λ
√
2l − 2Mpl

)1/(l−2)

. (G.33)

The trajectories shown in Fig. (G.1) assume that the dynamics occur during a radiation-dominated
era. If the Hubble-induced mass is generated from the inflaton sector, the Hubble-induced mass
decreases instead during preheating and the field starts rolling away from the non trivial value in
Eq. (G.33) as soon as Max [

√
c, 3]H drops below meff .

3At early stage, we can forget about the existence of the SSB minimum at ϕ = fa ≪ ϕini.
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V(ϕ)

ϕ

 
with decreasing  

(critically-damped motion)

⟨ϕ⟩(H )
H

frozen at  
a new minimum 
develops at 

⟨ϕ⟩(H ∼ m, yT )

ϕ = 0

field oscillates 
3H < m, yT

Figure G.1: We numerically integrate the Klein-Gordon equation of motion in the presence of the negative
Hubble-induced potential in Eq. (G.30), in radiation-dominated Universe. There are three stages of field evo-
lution, which depend on the value of V ′′/H: 1) critically-damped 2) over-damped 3) under-damped. Effects
from the thermal mass become important for y >

√
m/MPl. They lead to an earlier oscillation and a larger

ϕini, compared to the zero-temperature mass alone. The field later evolves in a zero-temperature potential
at the points marked by the red crosses. We chose the values y1 =

√
10m/MPl, and y2 = 10

√
m/MPl.

Initial angular VEV. For F-term dominated Universe, cf. Eq. (G.26), the U(1) breaking term
receives Hubble-dependent corrections

V
��U(1)(Φ) ≃

(
1 + a

H

m32

)
Λ4
b

[(
Φ

Mpl

)l
+ h.c.

]
, a, c = O(1). (G.34)

Therefore, the valleys of minimum potential θmin are time-dependent. The same dynamics de-
scribed above for the radial mode also apply to the angular mode. The angular field rolls towards
a temporary valley θ0 + θH during inflation when Hinf ≳ m32, and starts rolling towards the
Hubble-independent valley θ0 when H drops below m32. In this work, we assume the initial an-
gular amplitude4

θini ∼ O(1). (G.35)

G.1.4 Nearly-quadratic potentials

In this appendix, we review the results presented in [698] which show how spontaneous symmetry
breaking can arise due to the running of the soft masses. The authors consider supersymmetric
theories coupled to N = 1 supergravity where U(1)PQ is a global symmetry of the superpotential.
They show that U(1)PQ can be broken by the logarithmic running of renormalization group equa-
tions. Their results are not specific to the Peccei-Quinn symmetry and can be generalized to other
global U(1).

The superpotential is given byW = λQ̄Qϕ, where the SU(3)c quantum numbers of the chiral
superfields are Q(3), Q̄(3̄), ϕ(1) and are singlets under SU(2)L. The fields transform under the
U(1)PQ as

(Q, Q̄) → eiα(Q, Q̄), ϕ → e−2iαϕ. (G.36)

4Note that for radiation-dominated Universe, the A-term in Eq. (G.24), at least in our analysis and in the ones of
[702, 721], seems to be Hubble-independent. We leave for further study the question of whether such Hubble-dependent
A-term is induced during radiation domination. In any case, the angular kick could be generated by random fluctuations
during inflation, see Sec. 7.1.5.
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There is a continuum of supersymmetric minima ϕ = undetermined, Q = Q̄ = 0. Supergravity
couplings lift this flat direction by inducing soft supersymmetric breaking terms characterized by
the gravitino mass m3/2

Vsoft = m3/2AλQ̄Qϕ+ h.c. +m2
3/2(gQ|Q|2 + gQ̄|Q̄|2 + gϕ|ϕ|2). (G.37)

The initial conditions for the RGE are set at the Planck scale Mpl and gQ = gQ̄ = gϕ = 1. The
effective scalar potential is

V =
∑
i

∣∣∣∣∂W∂ϕi
∣∣∣∣2 + 1

2
ΣaD

2
a + Vsoft, (G.38)

and along the supersymmetric minimum (Q, Q̄) = (0, 0), it is reduced to V (ϕ) = m2
3/2gϕ|ϕ|

2.

Renormalization group equations. Loop corrections to the couplings lead to the running [698]

de

dt
=

−2

16π2
e3, (G.39)

dλ

dt
=

λ

16π2

(
5λ2 − 16

3
e2
)
, (G.40)

dA

dt
=

5Aλ2

8π2
e3, (G.41)

dgQ
dt

=
dgQ̄
dt

=
1

3
·
dgϕ
dt

=
λ2

8π2
(
gQ + gQ̄ + gϕ +A2

)
, (G.42)

where t ≡ ln(|ϕ|/Mpl) and e is the gauge-coupling of the SU(3)c. The equation for e can be
solved analytically with e2(t) = e20/(1 +

e20
4π2 t). All the couplings g are related gQ = gQ̄ = 1

3gϕ,
hence we have dgϕ/dt = λ2

(
5gϕ + 3A2

)
/8π2. The system of first-order differential equations

above has a fixed point at 3λ2 = 2e2, where gϕ is running as

dgϕ
dt

=
e20

12π2

(
5gϕ + 3A2

1 +
e20
4π2 t

)
, (G.43)

and A is approximately constant. In the limit e20
4π2 ≪ 1, the above equation is solved analytically

by

gϕ(ϕ) ≃ (3A+ 5)

(
e20

24π2

)
ln

(
ϕ2

M2
pl

)
+ 1, (G.44)

where the approximation e20
4π2 ≪ 1 is used. Then we define scale MPQ by when the radiative

correction changes the sign of effective potential, i.e. at

gϕ(ϕ→MPQ) = 0 ≃ (3A+ 5)

(
e20

24π2

)
ln

(
M2

PQ

M2
pl

)
+ 1, (G.45)

where MPQ is related to Mpl by

M2
PQ = M2

pl exp

[(
−1

3A+ 5

)
24π2

e20

]
. (G.46)

With the definition of MPQ, the coupling gϕ is simplified to

gϕ(ϕ) = (3A+ 5)

(
e20

24π2

)
ln

(
ϕ2

M2
PQ

)
. (G.47)
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The effective potential. We obtain the effective potential that is quadratic at a large field and
has a circular SSB minimum at ϕ = fa, allowing axion to spin at late times and induce kination
domination era.

Veff = m2
3/2gϕϕ

2 ≃ m2
3/2ϕ

2

[
ln

(
ϕ2

f2a

)
− 1

]
, and fa ≡ MPQe

−1/2. (G.48)

For A = 2 and e0 = 0.8, we have fa ≃ 7× 1010 GeV.

G.2 Fluctuations in Absence of Hubble-Induced Terms

G.2.1 Adiabatic curvature perturbations

Any light scalar present during inflation receives quantum fluctuations which classicalize upon
horizon exit, e.g., [823]. When such perturbations re-enter the horizon, they source either the
adiabatic or the isocurvature power spectrum according to whether the extra specie thermalizes
with the SM. In our model, cf. Sec. 7.1, the radial mode of the complex scalar field decays into
thermal radiation and therefore contributes to the adiabatic part of the curvature perturbations.
Assuming a quadratic scalar potential with mr ≪ Hinf , the perturbation from the decaying scalar
field reads [824]

Pϕ
ζ = r2dec

(
Hinf

3πϕini

)2

, with rdec ≃
(

3ρϕ
3ρϕ + 4ρrad

)
dec

, (G.49)

where rdec is the energy density fraction carried by the scalar, evaluated at the time of radial damp-
ing. The upper bound on Pϕ

ζ corresponds to the value measured by CMB [20]

Pϕ
ζ < Ptot

ζ ≃ 2.2× 10−9. (G.50)

To constrain the model, we consider two limits.
1) Damping before domination. Assuming the extreme case in which radial damping oc-

curs right after the onset of radial mode oscillation, cf. Eq. (7.27), in order to minimize rdec, the
adiabatic curvature power spectrum reads

Pϕ
ζ =

(
ϕ2osc

ϕ2osc +
4
9M

2
Pl

)2(
Hinf

3πϕini

)2

, (G.51)

where ϕosc is the value at oscillation.

• If the initial field value is set by the stochastic-inflation process, i.e. ϕ2ini = 3H4
ini/(4π

2m2)
in Eq. (7.29), the above equation becomes

Pϕ
ζ =

(
27

64π4

)(
H6

inf

m2M4
Pl

)(
1 +

27H4
inf

16π2m2
rM

2
Pl

)−2

. (G.52)

In Fig. G.2, we show that the constraints onHinf from Eq. (G.50) and Eq. (G.52) are weaker
than the Planck constraints coming from the B-mode non-observation.

• Suppose the initial field value is driven by the negative-Hubble mass and is stabilized by
higher-order terms. In that case, the quantum fluctuation of the radial and angular fluctuation
is suppressed, see Sec. G.2.4. This is the scenario that we assume in this paper.

2) Damping when dominating. Assuming ρϕ ≫ ρrad in Eq. (G.49) leads to rdec ≃ 1 and to the
adiabatic curvature perturbations Pϕ

ζ = (Hinf/3πϕini)
2 .
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• If the initial field value is set by the stochastic-inflation process, i.e. ϕ2ini = 3H4
ini/(4π

2m2
r),

the above equation becomes

Pϕ
ζ =

(
4

27

)(
mr

Hinf

)2

. (G.53)

As shown in light blue in Fig. G.2, the constraint from Eq. (G.50) and Eq. (G.53) can be
quite limiting.

• As mentioned in the previous paragraph and as we will discuss more precisely in Sec. G.2.4,
for scenarios with Hubble-size masses, quantum fluctuations are suppressed, and the Planck
constraints are avoided.

Figure G.2: Parameter space of a thermalized
complex scalar which generates too much adia-
batic curvature perturbations. The weakest con-
straint (green) arises when damping occurs at
the onset of oscillation. As damping takes place
later, the constraint grows and reach light blue
region when damping takes place at the onset of
scalar domination. For the Hubble-induced mass
scenario, the green and light blue constraints are
avoided due to a large Hubble-sized mass dur-
ing inflation, see Sec. 7.1.5. The red line corre-
sponds to Planck constraints from B modes non-
observation [20]. The gray region corresponds
to the requirement of not generating a second in-
flation era, see Eq. (7.49).

G.2.2 Domain wall problem

Quantum fluctuations of the initial angular phase δθi and of the initial radial value δϕi lead to a
fluctuation of the final angular phase δθ at the time when the axion potential develops. This can
lead to the formation of domain walls (DW). In the absence of CS, e.g., in the pre-inflationary
PQ-breaking scenario, the DW is infinite and can not decay, so we must impose δθ ≲ O(1).

Assuming V (Φ) ∝ Φp, from U(1) charge conservation in Eq. (7.19) and from the scaling
⟨ϕ⟩ ∝ a

− 6
2+p in Eq.(G.141), we deduce the scaling of the angular velocity

Yθ = ϕ2θ̇ ∝ a−3 ⇒ θ̇ ∝ a−3(p−2)/(p+2) ∝ t−3(p−2)/2(p+2), (G.54)

where we assume a radiation-dominated Universe. The angular phase elapsed after the onset of
radial mode oscillation which we denote by ti ≃ m−1

eff (ϕi) reads

θ =

∫ t

ti

θ̇dt′ ≃ θ̇iti

(
ϕi
ϕ

)(10−p)/6
, (G.55)

The fluctuation in the angular phase can be written as

δθ

θ
=

δθ̇i

θ̇i
+
δti
ti

+

(
10− p

6

)(
ϕi
ϕ

) 10−p
6
(
δϕi
ϕi

)
. (G.56)
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From Eq. (G.109), ti ≃ m−1
eff (ϕi) and Eq. (7.5), we can write

δθ̇i

θ̇i
= (l − p)

δϕi
ϕi

+ l cot(lθi)δθi +
δti
ti
, and

δti
ti

= − δϕi/ϕi
2 (1 + log(ϕi/fa))

. (G.57)

The late time phase fluctuation in Eq. (G.56) becomes

δθ

θ
≃

[
(l − p)− 1

1 + log(ϕi/fa)
+

(
10− p

6

)(
ϕi
fa

) 10−p
6

](
δϕi
ϕi

)
+ l cot lθiδθi, (G.58)

where the last term in the squared bracket dominates for p < 10 and ϕi ≫ fa. Plugging the typical
standard deviation for a massless field during inflation, e.g. [823]

δϕi = Hinf/2π = ϕiδθi, (G.59)

we obtain the necessary condition for preventing DW formation once the axion potential switches
on

δθ ≃

[(
10− p

6

)(
ϕi
fa

)(10−p)/6
+ l cot(lθi)

](
Hinf

2πϕi

)
< 1, (G.60)

where we replaced θ ∼ O(1). The flatter the potential, the slower the redshift of the angular
velocity, and the larger the final time fluctuation δθ.

G.2.3 Isocurvature perturbations

If the axion contributes to the DM abundance then the quantum fluctuation during inflation in
Eq. (G.59) generate isocurvature perturbations [825–828]5 whose amplitude is bounded by Planck
data [20]

Piso =

〈(
Ωa
ΩDM

· δΩa
Ωa

)2
〉

< 8.69× 10−11. (G.61)

For a rotating axion, the axion abundance is set by the kinetic misalignment mechanism Ωa ∝ θ̇c,
cf. Eq. (6.8). From Eq. (G.57) and Eq. (G.59), we deduce

Piso =

(
Ωa
ΩDM

)2
〈(

δθ̇i

θ̇i

)2〉
= A

(
Ωa
ΩDM

)2(Hinf

2πϕi

)2

< 8.69× 10−11, (G.62)

where A ≡ l − p− [1 + log(ϕi/fa)]
−1 + l cot(lθi) = O(1).

G.2.4 Solution

A way to cure the three problems listed above - too large adiabatic and isocurvature perturbations
and DW overclosure - is to suppress the initial quantum fluctuations by introducing a large mass
for both the radial mode ϕ and the angular mode θ during inflation [671, 833–838].

As discussed along Eq. (7.23), Hubble size masses for ϕ and θ arise naturally in SUSY scenario

m2
ϕ = ∂2VH/∂ϕ

2 ≃ 4(l − 2)H2
inf , (G.63)

m2
θ = |ϕ|−2∂2VH/∂θ

2 ≃ H2
inf

√
l2/(l − 1). (G.64)

So, the solution to these problems is built-in in into these models. Quantum fluctuations of massive
states are blue-tilted, e.g., [823], such that the amplitude of the associated curvature perturbations
entering the Hubble horizon long after the end of inflation is expected to be negligible. This is
the scenario that we consider in this paper. Therefore we assume that the initial field value ϕi is
set by the classical minimum of the Hubble-induced SUSY potential in Sec. 7.1.5 and not by the
Bunch-Davies quantum distribution in Sec. 7.1.5.

5This problem also arises in the context of the Affleck-Dine Baryogenesis, where the inflationary perturbation leads
to the baryonic isocurvature perturbations [829–833].
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G.3 Damping of the radial motion

G.3.1 Thermalization

Fermion portal. We assume that the complex scalar field ϕ is coupled to heavy fermions ψ
charged under some (hidden or SM) gauge sector Aµ (KSVZ-type interactions)

L ⊃ yψϕψ
†
LψR + h.c.+ g ψ̄γµψAµ. (G.65)

At zero temperature, the scalar condensate decays into fermions pairs with a rate, cf. diagram
a in Fig. G.3

Γϕ→ψψ ≃
y2ψ
8π
mψ, for mϕ/2 > Max[yψϕ, gT ]. (G.66)

If the fermion mass, either from vacuum yψϕ or thermal origin gT , is larger than the scalar field
mass, then the scalar field cannot excite thermal ψ and it is dominantly depleted through scattering
with thermally-dressed fermions of the plasma, cf. diagram b in Fig. G.3, with a rate [699, 700]

Γϕψth→ψth
≃


y2ψαT

2π2 , for αT > yψϕ,

y4ψϕ
2

π2αT
, for αT < yψϕ < T,

where α ≡ g2

4π
. (G.67)

The two regimes in Eq. (G.67) depend on whether the thermal width αT - the typical relaxation
rate of the fermion density towards thermal equilibrium - is larger or smaller than the fermion zero-
temperature mass yψϕ. If the temperature is smaller than the fermion mass, T < yψϕ, the heavy
fermions are absent of the thermal plasma. In that case, the scalar field can decay into gauge bosons
through a loop of fermions [701, 703, 704], cf. diagram c in Fig. G.3

Γϕ→AA ≃ bα2T 3

ϕ2
, b ≃ 0.01, for yψϕ > T. (G.68)

For T < mϕ, we replace T in Eq. (G.68) by mϕ. The dependence on yψ in Eq. (G.68) appears in
the logarithmic running of α. So we conclude

Γϕ ≃


for yψϕ < T :

for αT > yψϕ,
y2ψαT

2π2 ,

for αT < yψϕ,
y4ψϕ

2

π2αT
,

for yψϕ > T : bα2 Max[T, mϕ]
3

ϕ2
,

+
y2ψmϕ

8π
Θ(mϕ/2− Max [yψϕ, gT ]) .

(G.69)

The scalar field keeps spinning after thermalization. The coherent oscillation is a very ordered
state. Once the oscillation energy begins to be transferred into the thermal bath, the inverse process
which creates coherent oscillation is unlikely to occur. Therefore, the thermalization of the scalar
field, when the Universe reaches the energy density

ρdamp = 3Γ2M2
pl, (G.70)

transfers all the kinetic energy of the radial mode to the plasma ϕ̇ → 0. The kinetic energy of the
angular mode, aka the U(1) charge, can also be transferred to the thermal bath, e.g. in the form
of chiral charges of SM fermions. However, as shown by the supplementary material of [669], the
creation of an asymmetric fermion abundance costs chemical potential which leads to an energy
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Figure G.3: Quantum processes responsible for the thermalization of the coherent scalar field in KSVZ
type models. The scattering rates of a, b and c are respectively given by y2ψmϕ

8π , y2ψαT

2π2 and bα2T 3

ϕ2 , cf.
Eq. (G.69). The black blobs in the middle diagram stand for the thermal field corrections to the fermion
propagator accounting for plasma effects. The decay width is obtained from the finite-temperature analogue
of Cutkosky’s rule [839].

density ϕ4θ̇2/T 2 and it turns out that it is thermodynamically favorable to keep the U(1) charge in
the condensate with energy density ϕ2θ̇2 as long as

fa ≫ Tϕ→fa , (G.71)

where Tϕ→fa is the temperature when ϕ reaches fa. We check that this condition is satisfied in
Eq. (7.108). The washout of U(1) charge due to chirality flip mediated by Yukawa interactions is
shown to be negligible if the temperature of thermalization is smaller than [669]

Tdamp ≲ 1012 GeV

(
⟨ϕ⟩

109 GeV

)2

. (G.72)

Using that the scalar field evolves in its quadratic potential as

ϕ = ϕini(T/Tosc)
3/2, Tosc = g

−1/4
∗

√
mr(ϕini)Mpl, (G.73)

we obtain that the axion rotation is preserved from wash-out from the onset of oscillation until the
final stage ϕ→ fa as long as

fa > 104 GeV
(
mr

fa

)3/5(Mpl

ϕini

)4/5

. (G.74)

The latter condition is primarily satisfied in the parameter space of our interest, and wash-out never
occurs.

Thermal corrections to the potential. The presence of the interactions in Eq. (G.65) generates
thermal corrections to the scalar potential [699, 700]

V (ϕ) = m2
rϕ

2

(
ln
ϕ2

f2a
− 1

)
+m2

rf
2
a + Vth(ϕ, T ), (G.75)

Vth(ϕ, T ) =
1

2
y2ψT

2ϕ2Θ(T − yψϕ) + aα2T 4 lnλ2ϕϕ
2/T 2Θ(yψϕ− T ), (G.76)

where a = O(1) and α ≡ g2

4π . The first Heaviside function stands for the Boltzmann suppression
of the fermion ψ abundance in the thermal plasma in the large vev limit yψϕ≫ T . In that case the
thermal corrections are given by the thermal-log potential, obtained after integrating out the heavy
fermions [701, 703–705]. At small vev value λϕ < T , the running of the gauge coupling constant
g becomes independent of ϕ, which explains the second Heaviside function.
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Impossibility to generate efficient thermalization when neglecting thermal corrections. Let’s
first assume that thermal corrections to the potential in Eq. (G.76) do not impact the scalar field
dynamics. This happens whenever the thermal mass of the scalar fields can be neglected at the
time of oscillation Tosc ∼

√
mr, effMpl, see Eq. (7.36), 6

yψTosc ≲ mr,eff , ⇒ yψ ≲

(
π2g∗
10

)1/4√
mr,eff

M,pl
. (G.77)

The duration of the kination era reads, cf. Sec. 7.2.2

eNKD ≡ aKf

aKi
=

(
Min [ρdom, ρdamp]

ρK,i

)1/6 ( ϵ
2

)2/3
, (G.78)

with

ρdom =
27V (ϕini)

4

m6
r,effM

6
pl

, ρdamp = 3Γ2M2
pl and ρK,i =

1

2
f2am

2
r,eff. (G.79)

From plugging7 Γ ≃ y2ψmϕ
8π , cf. Eq. (G.69), ϕini ≃ Mpl, which corresponds to the l → ∞ limit of

Eq. (7.26) and yψ ≲
√

mr,eff

M,pl
, cf. Eq. (G.77) we obtain

eNKD ≲ 0.3 g
1/6
∗

(
mr,eff(fa)

fa

)1/3

ϵ2/3 < 1. (G.80)

So we conclude that whenever the conditions of neglecting the thermal mass in Eq. (G.77) are
satisfied, thermalization via the fermion portal is not efficient enough to generate a kination era.

For this reason, in scenario I of Sec. 7.2, we must postulate the existence of an unknown mech-
anism other than thermalization via fermion or Higgs portal to damp the radial mode.

The thermal mass effects are considered in scenario II of Sec. 7.3. Unfortunately, the suppres-
sion of the angular kick and the delay of the matter domination prevent the onset of kination.

In scenario III in Sec. 7.4, instead of choosing a low Yukawa coupling yψ, we get rid of the
thermal effects at the onset of the radial mode oscillation by Boltzmann-suppressing the fermion
abundance.

Higgs portal. In the previous paragraph, we have considered the fermion portal. If instead the
scalar condensate thermalizes through a Higgs mixing (DFSZ-type interactions)

L ⊃ λH|ϕ|2H†H. (G.81)

The thermal mass correction to the condensate is

Vth(ϕ, T ) = λHT
2ϕ2. (G.82)

The quantum processes responsible for the thermalization of the condensate are described in [840].
In contrast to the fermion portal (denoted by ψ), in the case of the Higgs portal (denoted byH) the
thermalization rates scale as the the forth power of the thermal mass. Indeed

Γψ ∝ m2
th,ψ, and ΓH ∝ m4

th,H, (G.83)

6We backward check that this coincides with yψϕini ≲ Tosc (the first Heaviside function in Eq. (G.76)) whenever
the initial field value ϕini is sub-planckian Tosc/yψ ≳ T 2

osc/mr,eff ≃Mpl

(
10/π2g∗

)1/4
≳ ϕini.

7We checked that yψ ≲
√
mr,eff/Mpl implies yψϕdamp/Tdamp ≲ (bα2)1/3 (mr,eff/Mpl)

1/6 and Tdamp/mr,eff ≲
1, leading to Γ ≃ y2ψmϕ/8π in Eq. (G.69).
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with

m2
th,ψ = y2ψT

2, and m2
th,H = λ2HT

2. (G.84)

We conclude that the situation of the previous paragraph - imposing a small thermal mass prevents
thermalization from occurring before the start of the would-be kination era - is even worse in the
case of the Higgs portal.

The larger dependence of the damping rate on the thermal mass in the Higgs portal, in Eq. (G.83),
is the reason why we focus on the fermion portal in the main text, cf. Sec. 7.3 and Sec. 7.4.

G.3.2 Parametric resonance

In this paper, we focus on the zero-mode dynamics. However, there may be circumstances where
higher modes get produced. We now introduce the framework to study early parametric resonance,
which may occur in the UV completion and have significant consequences on the whole dynamics.
The equation of motion of a complex scalar reads

Φ̈− a−2∇2Φ+ 3HΦ̇ +
∂V

∂Φ† (G.85)

which after decomposing in polar coordinates Φ = ϕeiθ, becomes

ϕ̈− a−2∇2ϕ+ 3Hϕ̇+ V ′(ϕ) = ϕθ̇2 − a−2ϕ(∇θ)2, (G.86)
ϕθ̈ − a−2ϕ∇2θ + 3Hϕθ̇ = −2ϕ̇θ̇ + 2a−2∇ϕ∇θ. (G.87)

We can decompose (ϕ(x, t), θ(x, t)) into the superposition of a classical homogeneous mode
(ϕ(t), θ(t)) and small fluctuations (δϕ(x, t), δθ(x, t)) around it

ϕ(x, t) = ϕ(t) + δϕ(x, t) = ϕ(t) +

(∫
d3k

(2π)3
aϕk u

ϕ
k(t) e

ikx + h.c.
)
, (G.88)

θ(x, t) = θ(t) + δθ(x, t) = θ(t) +

(∫
d3k

(2π)3
aθk u

θ
k(t) e

ikx + h.c.
)
, (G.89)

with aik, a
i†
k being the annihilation and creation operators of field i[

aik, a
j†
k′

]
= (2π)3δijδ

(3)(k − k
′
), (G.90)

and the initial condition for the mode function uik at t→ −∞ is given by

uik(t) =
ei(k/a)t

a
√
2k

. (G.91)

We now treat (δϕ(x, t), δθ(x, t)) as perturbations. We expand the potential around the back-
ground solution

V ′(ϕ(x, t)) = V ′(ϕ) + V ′′(ϕ)∂ϕ+
1

2
V ′′′(ϕ)∂ϕ∂ϕ, (G.92)

such that after spatial and quantum averaging ⟨· · · ⟩ we get, e.g. [129, 648, 685].

ϕ̈+ 3Hϕ̇+ V ′(ϕ) +
1

2
V ′′′(ϕ)

〈
δϕ2
〉
= ϕθ̇2 + ϕ

〈
δθ̇2
〉
+ 2θ̇

〈
δϕδθ̇

〉
− 2

a2
ϕ ⟨∇δθ∇δθ⟩ ,

(G.93)

ϕθ̈ + 3Hϕθ̇ + 3H
〈
δϕδθ̇

〉
= −2ϕ̇θ̇ − 2

〈
δϕ̇δθ̇

〉
−
〈
δϕδθ̈

〉
+

2

a2
⟨∇δϕ∇δθ⟩ , (G.94)
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for the zero mode, and

δϕ̈+ 3Hδϕ̇+ V ′′(ϕ)δϕ+
k2

a2
δϕ = δϕθ̇2 + 2ϕθ̇δθ̇, (G.95)

δϕθ̈ + ϕδθ̈ + 3Hδϕθ̇ + 3Hϕδθ̇ +
k2

a2
δθ = −2δϕ̇θ̇ − 2ϕ̇δθ̇, (G.96)

for the higher modes, where

〈
δϕ2
〉
=

∫
d3k

(2π)3

∣∣∣uϕk ∣∣∣2 , 〈
δθ2
〉
=

∫
d3k

(2π)3

∣∣∣uθk∣∣∣2 , ⟨δθδϕ⟩ = 0. (G.97)

Since [ϕ, θ] = 0, all the quantum average of cross terms in Eq. (G.93) and (G.94) vanish and we
get

ϕ̈+ 3Hϕ̇+ V ′(ϕ) +
1

2
V ′′′(ϕ)

〈
δϕ2
〉
= ϕθ̇2 + ϕ

〈
δθ̇2
〉
− 2ϕ

〈
k2

a2
δθ2
〉
, (G.98)

ϕθ̈ + 3Hϕθ̇ = −2ϕ̇θ̇, (G.99)

We conclude that the Noether charge nθ = ϕ2θ̇ is conserved during parametric resonance. Note
that from using Eq. (G.99), Eq. (G.96) simplifies to [685]

δθ̈ + 3Hδθ̇ +
k2

a2
δθ = −2δϕ̇θ̇

ϕ
− 2ϕ̇δθ̇

ϕ
+

2ϕ̇θ̇

ϕ2
δϕ (G.100)

In order to address whether parametric resonance is a successful mechanism for damping the radial
mode ϕ̇→ 0, an important question for scenario I in Sec. 7.2 is to solve the system of Eqs. (G.95),
(G.96), (G.98) and (G.99). We leave this question for further study.

G.4 Detailed Field Evolution

G.4.1 The angular kick

The angular EOM, Eq. (7.15), can be rewritten as a Boltzmann equation for the U(1) charge nθ

ṅθ + 3Hnθ = −
∂V

��U(1)

∂θ
, with nθ ≡ ϕ2θ̇. (G.101)

which is equivalent to

d

dt

(
a3nθ

)
= −a3

∂V
��U(1)

∂θ
⇒ d

da

(
a3nθ

)
= − a2

H2

∂V
��U(1)

∂θ
. (G.102)

This equation suggests that theU(1) charge production rate is proportional to the potential gradient
in the angular direction. Numerical simulations plotted in Fig. 7.5 show that the charge generation
can possibly start even before that the field starts to roll in the radial direction at 3H ≃ mr,eff. Once
the field value ϕ drops substantially, the explicit breaking term becomes negligible, see Fig. G.4,
and the U(1) charge nθa3 becomes conserved.

We can determine the angular kick by integrating Eq. (G.102)

a3nθ(a)− a3inθ(ai) = −
∫ a

ai

dã
ã2

H

∂V
��U(1)

∂θ
=

∫ a

ai

dã
ã2

H
2lΛ4

b

(
ϕ

M

)l
sin(lθ), (G.103)

where ai is the scale factor of the Universe in the far past, where we plugged the explicit breaking
potential in Eq. (G.3). The production rate of the U(1) charge nθ behaves differently accordingly
to whether the radial mode ϕ has started rolling 3H < mr,eff or not.
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• Before oscillation: the field initially stands at ϕini, see Sec. 7.1.5. Assuming the Universe is
dominated by the background energy density ρ ∝ a−q, the corresponding charge generation
is

a3nθ(a)− a3inθ(ai) = 2lΛ4
b

(
ϕini
M

)l ∫ a

ai

dã
ã2

H
sin(lθ), (G.104)

≃ 2lΛ4
b

(
ϕini
M

)l sin(lθini)

Hinia
p/2
ini

∫ a

ai

dã ã2+q/2, (G.105)

≃ 2lΛ4
b

(
ϕini
M

)l sin(lθini)

Hinia
q/2
ini

(
2

6 + q

)(
a6+q − a6+qi

)1/2
, (G.106)

where we approximate sin(lθ) ∼ O(1) ∼ sin(lθini) and take it out of the integration. The
late-time contribution dominates the charge generation such that we have the U(1) charge
evolution

n(a) ≃
(

4l

6 + q

)
Λ4
b

(
ϕini
M

)l sin(lθini)

H
, (G.107)

and we see that the field receives a kick even before the time of oscillation with θ̇ ∝ aq/2.
The U(1) charge is maximally generated at the onset of oscillation

nθ(aosc) ≃
[

4l

6 + q

]
Λ4
b

[
ϕini
M

]l sin(lθini)

Hosc
≃
[

12l

6 + q

]
Λ4
b

[
ϕini
M

]l sin(lθini)

mr,eff
, (G.108)

and the corresponding angular velocity reads

θ̇osc ≃
(

12l

6 + q

)
Λ4
b

(
ϕini
M

)l sin(lθini)

mr,effϕ2ini
, (G.109)

• After the oscillation: gradients of the potential in angular and radial directions kick the
field into an elliptic orbit whose size redshifts over time. In App. G.4.2, we determine the
dynamics of the radial mode as a function of the shape of the U(1)-symmetric potential

V (ϕ) ∝ ϕp ⇒ ⟨ϕ⟩ ∝ a−6/(2+p). (G.110)

Assuming that the Hubble factor evolves as H ∝ a−q/2, then the U(1) charge generated
after oscillation 3H < mr,eff, in Eq. (G.103), reads

a3nθ(a)− a3oscnθ(aosc) ∼
∫ a

aosc

dã ã
(6+q)(2+p)−12l

2(2+p)
−1
. (G.111)

Depending on the values of q, p, and l, we obtain three regimes

a3nθ(a)− a3oscnθ(aosc) ∼


a

(6+q)(2+p)−12l
2(2+p) for l < (6+q)(2+p)

12 ,

log a for l = (6+q)(2+p)
12 ,

a
− 12l−(6+q)(2+p)

2(2+p) for l > (6+q)(2+p)
12 .

(G.112)

In the first and second cases, the U(1) charge continues to increase after the oscillation,
while in the third case, at large l, the U(1) charge stops being efficiently produced after a few
Hubble times and theU(1)-symmetry is restored. Assuming a radiation-dominated Universe
(q = 4), the estimated U(1)-symmetry after the oscillation demands that l is greater than
10/3 and 5 for quadratic (p = 2) and quartic (p = 4) potentials, respectively. Hence, in this
work, we consider cases l ≥ 4 to neglect explicit breaking terms at later times.
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Figure G.4: For each l, we show the ratio of the U(1)-violating potential to the U(1)-conserving one,
assuming nearly-quadratic potential, along the θ = 0 direction, which has the maximum V

��U(1). For l > 2,
the conserving potential always dominates at small field values ϕ ≪ M , and the U(1) charge, defined in
Eq. (7.19), is conserved in the subsequent evolution.

G.4.2 After the kick

The U(1)-conserving and the U(1)-breaking potentials excite the field in the radial and angular
directions, respectively. As argued in App. G.4.1, after a few Hubble times of field evolution, for
l ≥ 4, we can neglect effects coming from the U(1)-breaking terms.

Exact solution. We now derive an exact analytical solution of the complex scalar equation of
motion in a quadratic potential without Hubble friction, e.g., [841, 842]. For ϕ ≫ fa, the nearly-
quadratic potential in Eq. (7.4) is approximated to V = m2Φ†Φ/2 = m2ϕ2/2, where m is a
constant or a slowly-changing variable. The U(1)-charge conservation in Eq. (7.19), and the radial
EOM in Eq. (7.14), give

ϕ̈+ 3Hϕ̇+
∂V

∂ϕ
− Y 2

ϕ3a6
= 0, (G.113)

where Y ≡ a3ϕ2θ̇ = is the conserved comoving U(1) charge. We use a set of dimensionless
parameters

τ ≡ mt, h ≡ H

m
, u ≡

√
m

Y
a3/2ϕ, (G.114)

which simplifies the charge conservation equation to θ̇u2 = m and the EOM to

0 = u′′ +

[
1− u−4 − 3

2

(
h′ +

3

2
h2
)]

u ≃ u′′ + u− 1

u3
, (G.115)

where · · ·′ denotes the derivative w.r.t. τ , and where we considered the oscillation time scale
to be much faster than a Hubble time h → 0, which becomes true after oscillation has started
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3H ≃ mr,eff. The differential equation in Eq. (G.115) can be understood as the equation of motion
of a scalar u evolving in a potential

V(u) = u2 + u−2

2
, (G.116)

whose minimum is at u = 1, or equivalently θ̇ = m. Its corresponding constant-of-motion Eu
satisfies

dEu
dτ

≡ d

dτ

(
u′2

2
+
u2 + u−2

2

)
= 0, (G.117)

with Eu ≥ 1. The parameter Eu can be related to the energy density of the scalar field

ρΦ =
ϕ̇2

2
+
ϕ2θ̇2

2
+ V = mY Eua

−3. (G.118)

We just found that the energy density of a complex scalar field evolving in quadratic potential
redshifts as matter ρΦ ∝ a−3.

To find the exact solution to the EOM, we rewrite Eq. (G.117) as

u′2 = 2Eu − u2 − u−2 ⇒ U ′2 = −4U2 + 8EuU − 4, (G.119)

where U ≡ u2. Integrating this equation, we deduce∫
dt =

∫
dU√

−4U2 + 8EuU − 4
⇒ u(τ) =

√
(E2

u − 1)1/2 sin(2τ + ψ) + Eu. (G.120)

where ψ is a phase which depends on the initial conditions. In u-space, the orbit is a fixed-sized
ellipse, so the orbit in field space ϕ is an ellipse whose size scale as a−3/2, i.e. an ellipse that spirals
towards the origin as illustrated in Fig. 7.3 or by our animation.. The parameter Eu is related to
the orbit eccentricity and to the previously defined parameter 0 < ϵ ≤ 2 in Eq. (7.37)

m2ϕ2 = ρΦ = mnθEu ⇒ 1

Eu
=

nθ
mϕ2

=
ϵ

2
⇒ ϵ = 2/Eu. (G.121)

For Eu = 1 or ϵ = 2, the orbit is essentially circular, while for large Eu or ϵ → 0 the orbit has a
large eccentricity and starts to resemble the trajectory of a real scalar field.

We can calculate the average angular speed

θ̇ =
m

u2
=

m

(E2
u − 1)1/2 sin(2τ + ψ) + Eu

, (G.122)

by averaging over a time T = nπ, n ∈ N+, which is larger than the oscillation period but less than
the Hubble time scale〈

θ̇
〉

=
1

nπ

∫ nπ

0
dτ

m

(E2
u − 1)1/2 sin(2τ + ψ) + Eu

= m, (G.123)

where we have integrated an elliptic integral8. We find that the averaged angular velocities become
independent of the initial value θini in Eq. (G.109) and converge towards an attractor solution. This
is confirmed by the numerical integration of the equations of motion in Fig. 7.5.

8We can freely choose the phase ψ such that the sine becomes a cosine and the elliptic integral reads∫ 2π

0

dx

a+ b cosx
=

2π√
a2 − b2

.
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Exact solution (bis) : quartic potential. Even if we do not use it in our work, it may be helpful
in further studies (of axion dark matter, for example, [843]) to give the analog of Eq. (G.120)
for a quartic potential. When adding a quartic term to the potential V = 1

2m
2ϕ2 + 1

4λϕ
4, the

Eq. (G.115) becomes

u′′ + u+
4α

a3
u3 − 1

u3
= 0, with α ≡ λY/(4m3). (G.124)

We now consider ϕ≫ m/
√
λ, such that the linear term u corresponding to 1

2m
2ϕ2 can be dropped

and Eq. (G.124) becomes

ν ′′ + 4αν3 − 1

ν3
= 0 ⇒ 1

2
ν ′2 = Eν − Vν = 2Eν − 2αν4 − 1

ν2
, (G.125)

with ν ≡ a−1/2u and with ′ denoting the derivative with respect to the conformal time η ( mdt =
dτ = adη) and where we have dropped Hubble depending terms. The motion can be interpreted as
a scalar ν oscillating in a potential Vν = αν4+1/(2ν2),with the constant of motionEν = ν ′2/2+
Vν . Introducing the new variables V ≡ −ν2/

√
2 and s ≡ η

√
α, we deduce(

dV

ds

)2

= 4V 3 − 4Eν
α
V − 2

α
. (G.126)

It is known that the Weierstrass elliptic function ℘(s; g2, g3) solves the differential equation of the
form [844] (

d℘(s)

ds

)2

= 4℘3(s)− g2℘(s)− g3. (G.127)

Therefore, Eq. (G.126) has a solution as an elliptic orbit described by ℘(s; 4Eν/α, 2/α). Apply-
ing one of the properties of ℘, namely ℘(u; g2, g3) = k2 ℘(ku; g2/k

4, g3/k
6), the exact solution

to Eq. (G.125) reads

ν2 = −
√
2V = −

√
2

α
℘(η; 4αEν , 2α

2). (G.128)

Virial theorem. The Virial theorem in classical mechanics is a well-known tool, e.g., [845] for
studying the averaged behavior of a stable system. We now use it to analyze the dynamics of a
complex scalar field in a central potential during the early Universe. The EOM in Eq. (7.14) and
(7.15) can be written in terms of kinetic K and potential V energy densities as

d

dt
(K + V ) = ϕ̇

(
ϕ̈+

∂V

∂ϕ
+ ϕθ̇2 +

ϕ2

ϕ̇
θ̇θ̈

)
+ Ṫ

∂V

∂T
, (G.129)

= − (3H + Γ)ϕ̇2 − 3Hϕ2θ̇2 + Ṫ
∂V

∂T
, (G.130)

= − (6H + 2Γ)Kϕ − 6HKθ + Ṫ
∂V

∂T
, (G.131)

where Kϕ ≡ ϕ̇2/2 and Kθ ≡ ϕ2θ̇2/2 are the kinetic energy in radial and angular modes, respec-
tively. After 3H ≃ mr,eff, the field oscillates fast compared to the expansion and damping rate.
The average over many field cycles but over a time shorter than the H−1 reads

d

dt
⟨K + V ⟩ = − (6H + 2Γ) ⟨Kϕ⟩ − 6H ⟨Kθ⟩+ Ṫ

∂V

∂T
. (G.132)

We introduce the Virial parameter G, e.g. [845]

G ≡
∑
i=ϕ,θ

pi · ri = ϕ̇ϕ+ ϕ2θ̇θ, (G.133)
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where rϕ = ϕ and rθ = θ, and pi ≡ ∂L/∂ri. By taking its time derivative, we deduce

dG

dt
= ϕ̇2 + ϕ2θ̇2 + ϕϕ̈+ ϕ2θ

(
θ̈ + 2

ϕ̇

ϕ
θ̇

)
, (G.134)

= ϕ̇2 + ϕ2θ̇2 − ϕ
∂V

∂ϕ
− (3H + Γ)ϕϕ̇− 3Hϕ2θ̇θ, (G.135)

≃ 2K − ϕ
∂V

∂ϕ
, (G.136)

where we used Eq. (7.14) and (7.15) in the second step, and where we neglected the damping terms
in the last step. The Virial theorem states that whenever the system is stable, the averaged kinetic
and potential energies are related〈

dG

dt

〉
= lim

∆T→∞

G(T +∆T )−G(T )

∆T
= 0, ⇒ ⟨2K⟩ =

〈
ϕ
∂V

∂ϕ

〉
. (G.137)

which resembles the Virial theorem for a real scalar [699, 700]. For convenience, we consider
the field behavior before the damping term becomes effective and deduces the average EOM from
Eq. (G.132) and (G.137)

d

dt
⟨K + V ⟩ = −6H ⟨K⟩+ Ṫ

∂V

∂T
⇒ d

dt

〈
ϕ
∂V

∂ϕ
+ 2V

〉
= −6H

〈
ϕ
∂V

∂ϕ

〉
+ Ṫ

∂V

∂T
.

(G.138)

Monomial potential. From plugging the potential V ∝ ϕn into Eq. (G.138), we obtain

(n+ 2)
d

dt
⟨V ⟩ = −6Hn ⟨V ⟩ ⇒ d

dt
⟨ρΦ⟩ = − 6n

2 + n
H ⟨ρ⟩ ⇒ d ln ⟨ρΦ⟩

d ln a
= − 6n

2 + n
,

(G.139)

with ⟨ρΦ⟩ is the average total energy density of the field

⟨ρΦ⟩ = ⟨K + V ⟩ = (2 + n) ⟨V ⟩ /2. (G.140)

We deduce the redshift laws of ⟨ρΦ⟩ and ⟨ϕ⟩

⟨ρΦ⟩ ∝ a−
6n
2+n , and ⟨ϕ⟩ ∝ a−

6
2+n . (G.141)

For the quadratic and quartic potentials, the complex scalar field behaves like matter (ρΦ ∝ a−3,
ϕ ∝ a−3/2) and radiation (ρΦ ∝ a−4, ϕ ∝ a−1), respectively. The scaling ρΦ ∝ a−3 is confirmed
by the exact solution in Eq. (G.118). We show that, cf. Eq. (G.154), that Eq. (G.139) holds without
any average after radial damping ϕ̇→ 0.

Thermal mass. From plugging the potential V = λT 2ϕ2/2 into Eq. (G.138), we obtain

d

dt

〈
ϕ2
〉
= −3H

〈
ϕ2
〉
− Ṫ

T

〈
ϕ2
〉

⇒ ϕ2 ∝ a−3T−1 and V ∝ a−3T. (G.142)

We conclude that a scalar field dominated by its thermal mass redshifts like radiation in a radiation-
dominated Universe.
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G.4.3 The radial damping

Amount of rotation. The parameter ϵ expresses the amount of rotation generated by the explicit
breaking at the time of oscillation tosc, cf. Eq. (7.37)

ϵ =
ϕ2θ̇/2

V (ϕ)/mr,eff
, (G.143)

From Eq. (7.43), we deduce that ϵ becomes a conserved quantity through Hubble expansion dϵ/da =
0, as soon as V (ϕ) become dominated by its quadratic term. It can be rewritten in terms of the
ratio between energy densities as

ϵ =
(ρθ
V

)(mr,eff

θ̇

)
, with ρθ ≡ θ̇2ϕ2/2. (G.144)

Since
〈
θ̇
〉
= mr,eff, see Fig. 7.5, we deduce the rotational energy density to be an ϵ fraction of the

potential energy density

ρθ = ϵV (ϕ). (G.145)

Note that ϵ ≤ 1 prevents the field from spinning upward.


ϵ = ϕ2θ̇/(2ρr(ϕ)/mr,eff),

ϕ2θ̇ = constant,
θ̇after = mr,eff,

⇒ ρθ

∣∣∣
after

= ϵρr(ϕ) (G.146)

Drop of energy density during radial damping. During the radial damping ϕ̇→ 0, see Sec. 7.1.6,
the elliptic orbits becomes a circular one. During this process, the scalar field kinetic energy is
damped but the rotational kinetic energy is preserved. Therefore, after the radial damping the total
energy density of the complex scalar field drops by

ρafterΦ = ϵ ρbeforeΦ ⇒ ϕ2after = ϵ ϕ2before, (G.147)

where the second equation assumes the quadratic potential. ϕbefore is the field value just before
thermalization, and it can be computed from Eq. (G.141)

ρoscΦ

ρbeforeΦ

=

(
adamp

aosc

)3

=

(
ϕosc
ϕbefore

)2

⇒ ϕbefore =
(ρbeforeΦ )1/2

mr,eff(ϕosc)
, (G.148)

where we used that the energy density just after oscillation can be written as ρoscΦ = ϕ2oscmeff(ϕosc)
2.

In Fig. G.5, we show that the result in Eq.(G.147) is confirmed by numerical integration of the
equations of motion.

Impact on kination duration. We now study the impact of the energy drop in Eq. (G.147) on
the duration of the kination era. As shown in Fig. 7.6, we must consider two possible scenarios,
depending on whether the radial damping occurs before or after the scalar domination. For the sake
of simplicity we assume an instantaneous drop in energy density at the time of radial damping.

• Damping before domination. The energy transferred to the thermal bath is negligible.
However, the ϵ factor in the energy density in Eq. (G.147) delays the time when the scalar
field dominates the energy density of the Universe

ρ′dom = ϵ4
ρ4Φ
ρ3rad

∣∣∣∣
at oscillation

= ϵ4ρdom, (G.149)
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Figure G.5: Numerical integration of the equations of motion in Eqs. (7.14), (7.15) and (7.16). The
energy density (left) and the radial value (right) of the complex scalar field drops by a factor ϵ after the
radial damping. The larger ϵ, the larger the rotational energy density produced during the initial kick and
the smaller the energy drop during the radial damping. The extreme case ϵ = 1 corresponds to a trajectory
which is already circular right after the initial angular kick.

where ρdom is the domination energy scale without energy drop during damping (case ϵ = 1)
and where we have used Eq. (G.177).

As a consequence of the energy drop, the kination era ends earlier and is then shorter

ρKD,f =
ρ2KD,i

ρ′dom
=
ρ2KD,i

ρdom

(
1

ϵ

)4

and
aKD,f

aKD,i
=

(
ρ′dom
ρKD,i

)1/6

=

(
ρdom
ρKD,i

)1/6

ϵ2/3.

(G.150)

• Damping after domination. A substantial amount of energy is injected into the thermal
bath. For ϵ = O(0.1), the radial damping reduces the scalar energy by a factor O(10) so
that the produced SM radiation dominates the energy density. Later, the domination of the
energy density by the rotating scalar generates a second matter era at

ρ′dom = ϵ4ρdamp, (G.151)

The scale of kination ending and its duration are given by Eq. (G.150) after replacing ρdom
by ρdamp

ρKD,f =
ρ2KD,i

ρdamp

(
1

ϵ

)4

and
aKD,f

aKD,i
=

(
ρdamp

ρKD,i

)1/6

ϵ2/3. (G.152)

Note that the presence of the radiation era in between the two matter eras could leave a
distinctive imprint on the SGWB.

Too small ϵ kills the kination era. In Eqs. (G.150) and (G.152), we have seen that the kination
duration receives a suppression factor ϵ2/3. This implies the existence of a lower bound on ϵ below
which no kination era is generated

Requiring
aKD,f

aKD,i
≥ 1 ⇒ ϵ ≥

[
ρKD,i

max(ρdom, ρdamp)

]
, (G.153)

for both damping before and after the scalar domination. In Sec. 7.3, we show that the scenario II,
in which thermal corrections to the potential are present at the onset of the radial mode oscillation,
necessarily predicts a value of ϵ smaller than Eq. (G.153).
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G.4.4 After the radial damping

In this section, we reproduce the results from [669] and derive the evolution of the radial ϕ and
angular θ̇ field values, their energy density ρΦ and equation of state ωΦ, in an arbitrary U(1)-
symmetric potential V (ϕ), after that the radial mode has been damped ϕ̇/ϕ≪

√
V ′′ .

Radial evolution. In the limit ϕ̇→ 0, the radial EOM in Eq. (7.14) takes a simple form

θ̇2ϕ =
∂V

∂ϕ
⇒ θ̇2 = 2

∂V

∂ϕ2
, (G.154)

We inject it in the equation of conservation of nθ = ϕ2θ̇

d(a3nθ)

da
= 3a2ϕ2θ̇ + 2a3ϕθ̇

dϕ

da
+ a3ϕ2

dθ̇

da
, (G.155)

⇒ 0 = 3a2ϕ2θ̇ + 2a3ϕθ̇
dϕ

da
+ a3ϕ2

4ϕ

2θ̇
· dϕ
da

· ∂2V

(∂ϕ2)2
, (G.156)

⇒ a
dϕ

da
=

−3ϕθ̇2

2θ̇2 + 2ϕ2 ∂2V
(∂ϕ2)2

=
−3ϕ ∂V

∂ϕ2

2 ∂V
∂ϕ2

+ ϕ2 ∂2V
(∂ϕ2)2

, (G.157)

From which we obtain

d lnϕ

d ln a
=

−3 ∂V
∂ϕ2

2 ∂V
∂ϕ2

+ ϕ2 ∂2V
(∂ϕ2)2

. (G.158)

Angular evolution. Starting from Eq.(G.154), we can write

d ln θ̇2

d ln a
= 2

a

θ̇2
dϕ2

da
· ∂2V

(∂ϕ2)2
= 4

ϕ2

θ̇2
d lnϕ

d ln a
· ∂2V

(∂ϕ2)2
= 2

ϕ2

∂V
∂ϕ2

d lnϕ

d ln a
· ∂2V

(∂ϕ2)2
, (G.159)

where d lnϕ
d ln a is given by Eq. (G.158).

Energy density evolution. After radial damping, the kinetic energy of the radial mode vanishes
such that the energy density of the complex field reads

ρΦ =
1

2
ϕ2θ̇2 + V (ϕ) = ϕ2

∂V

∂ϕ2
+ V (ϕ). (G.160)

Taking the derivative with respect to ϕ, we get

dρΦ
dϕ

= 2ϕ
∂V

∂ϕ2
+ 2ϕ3

∂2V

(∂ϕ2)2
+
∂V

∂ϕ
= 2ϕ

(
2
∂V

∂ϕ2
+ ϕ2

∂2V

(∂ϕ2)2

)
. (G.161)

Now taking the derivative with respect to a

a
dρΦ
da

=
dρΦ
dϕ

· adϕ
da

=

[
2ϕ

(
2
∂V

∂ϕ2
+ ϕ2

∂2V

(∂ϕ2)2

)][ −3ϕ ∂V
∂ϕ2

2 ∂V
∂ϕ2

+ ϕ2 ∂2V
(∂ϕ2)2

]
= −6ϕ2

∂V

∂ϕ2
≡ −6ρθ,

(G.162)

where ρθ is the kinetic energy density of the angular field

ρθ ≡
1

2
ϕ2θ̇2 = ϕ2

∂V

∂ϕ2
, (G.163)

we deduce

d ln ρΦ
d ln a

=
−6ϕ2 ∂V

∂ϕ2

ϕ2 ∂V
∂ϕ2

+ V
. (G.164)
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Equation of state. Using ϕ̇ → 0 and Eq. (G.154), the equation of state of the complex scalar
field becomes9

ωΦ =
1
2ϕ

2θ̇2 − V
1
2ϕ

2θ̇2 + V
=

ϕ2 ∂V
∂ϕ2

− V

ϕ2 ∂V
∂ϕ2

+ V
. (G.165)

Example: Nearly-quadratic potential. This is the scenario considered in this work. The poten-
tial and its derivatives read10

V = m2ϕ2
[
log

(
ϕ2

f2

)
− 1

]
+m2f2,

∂V

∂ϕ2
= m2 log

(
ϕ2

f2

)
,

∂2V

(∂ϕ2)2
=
m2

ϕ2
. (G.166)

From using Eq. (G.158) and (G.159), we deduce the evolution of the radial and angular component
of the scalar field after radial damping

d lnϕ

d ln a
=

−3 log
(
ϕ2

f2

)
2 log

(
ϕ2

f2

)
+ 1

and
d ln θ̇2

d ln a
=

−6

2 log
(
ϕ2

f2

)
+ 1

. (G.167)

Using Eq. (G.164) and (G.165), we deduce the evolution of the complex scalar field energy density
ρΦ and its equation of state ωΦ

d ln ρΦ
d ln a

=
−6 log

(
ϕ2

f2

)
2 log

(
ϕ2

f2

)
− 1 + f2

ϕ2

and ωΦ =
ϕ2 − f2a

2ϕ2 log ϕ2

f2a
− f2a + ϕ2

. (G.168)

For ϕ≫ fa we have

ϕ ∝ a−3/2, θ̇ ∝ a0, ρΦ ∝ a−3, ωΦ ≃ 0, (G.169)

and for ϕ ≃ fa we have

ϕ ∝ a0, θ̇ ∝ a−3, ρΦ ∝ a−6, ωΦ ≃ 1. (G.170)

Example: quartic potential. For the sake of the comparison, we consider the potential

V = λ2
(
ϕ2 − f2

)2
,
∂V

∂ϕ2
= 2λ2

(
ϕ2 − f2

)
,

∂2V

(∂ϕ2)2
= 2λ2. (G.171)

Eq. (G.158) and (G.159) From using Eq. (G.158) and (G.159), we deduce the evolution of the
radial and angular component of the scalar field after radial damping

d lnϕ

d ln a
=

−3
[
ϕ2

f2a
− 1
]

3ϕ
2

f2a
− 2

and
d ln θ̇2

d ln a
=

−6ϕ
2

f2a

3ϕ
2

f2a
− 1

. (G.172)

9As a sanity check, we can use

ρ̇+ 3H(ρ+ P ) = 0 ⇒ d ln ρ

d ln a
= −3(1 + ω),

to show that Eq. (G.164) and Eq. (G.165) are consistent with each others.
10Note that is the minimum of potential is not vanishing Vmin ̸= 0, then the evolution of the energy density and EOS

becomes

d ln ρ

d ln a
=

−6 log
(
ϕ2

f2

)
2 log

(
ϕ2

f2

)
− 1 + f2

ϕ2 + Vmin
m2f2

and ωΦ =
ϕ2 − f2

a

2ϕ2 log ϕ2

f2a
− f2

a + ϕ2 − Vmin/f2
a

.

To generate a kination EOS, in this work, we assume Vmin ≪ m2f2.
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Using Eq. (G.164) and (G.165), we deduce the evolution of the complex scalar field energy density
ρΦ and equation of state ωΦ

d ln ρΦ
d ln a

=
−12ϕ

2

f2a

3ϕ
2

f2a
− 1

and ωΦ =
ϕ2 + f2a
3ϕ2 − f2a

. (G.173)

For ϕ≫ fa we have

ϕ ∝ a−1, θ̇ ∝ a−1, ρΦ ∝ a−4, ωΦ ≃ 1

3
, (G.174)

and for ϕ ≃ fa we have

ϕ ∝ a0, θ̇ ∝ a−3, ρΦ ∝ a−6, ωΦ ≃ 1. (G.175)

The evolution of ρΦ and ωΦ in nearly-quadratic and quartic potentials are shown in Fig. G.6. Only
the matter phase induced by the nearly-quadratic potential can allow the initially sub-dominantΦ to
dominate the energy density of the Universe and, later, generate a kination-dominated era. For this
reason, in this work, we focus on a nearly-quadratic potential. In Fig. 7.7, we show the evolution
of ϕ, θ̇, ρΦ and ωΦ in the nearly-quadratic potential, obtained after numerically integrating the
equations of motion in Eqs. (7.14), (7.15) and (7.16).
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Figure G.6: Evolutions of the energy density (left) and the equation-of-state (right) of the complex scalar
field, rotating in a nearly-quadratic or quartic potential after its radial motion has been damped. Both cases
lead to a kination EOS (ω = 1) when ϕ→ fa. While the quadratic potential gives a matter EOS for ϕ≫ fa,
the quartic potential gives a radiation EOS and cannot lead to any kination-domination era when ϕ → fa,
cf. Fig. 7.8.

G.4.5 Derivation of the cosmological-history relations

In this appendix, we derive the expression used in Sec. 7.2.2, neglecting the factor (ϵ/2), and for
which we refer to App. G.4.3.

Matter domination. After the field starts oscillating at 3Hosc = mr,eff, it redshifts like matter
and induces a matter-domination era as soon as it dominates the energy density of the Universe
when

ρdom ≡ V (ϕini)

(
aosc
adom

)3

≃ 3H2
oscM

2
pl

(
aosc
adom

)4

, (G.176)

where we have neglected the change of relativistic degrees of freedom in the thermal bath. We
obtain

adom
aosc

≃ M2
Plm

2
eff(ϕini)

3V (ϕini)
and ρdom =

27V 4(ϕini)

M6
Plm

6
eff(ϕini)

. (G.177)
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Radial damping. The decay of the radial mode, occuring at the rate Γ, dissipates the radial
kinetic energy when

Γ ≃ H ⇒ ρdamp = 3M2
PlΓ

2, (G.178)

after that the Universe has expanded by

adamp

adom
=

(
ρdom
ρdamp

)1/3

=

[
9V 4(ϕini)

M8
PlΓ2m6

eff(ϕini)

]1/3
. (G.179)

Start of kination (starting). The scalar field reaches the kination-liked equation of state when
the radial field-value settles down to its final VEV ϕ→ fa, when the energy density is

ρKD,i =
�
��

1

2
ϕ̇2 +

1

2
ϕ2θ̇2 + V (ϕ→ fa) ≃

1

2
ϕ2θ̇2 ⇒ ρKD,i ≃ 1

2
f2m2

eff(f), (G.180)

where the radial kinetic energy vanishes after H < Γ and where we assume the vacuum energy to
vanish at the minimum. The duration of the matter era reads

aKD,i
min(adom, adamp)

=

(
ρdamp

ρKD

)1/3

. (G.181)

End of kination. The period of kination lasts until the energy density of the scalar field drops
below that of thermal bath. The value of the radiation energy density depends on whether entropy
has been injected during the damping of the radial mode. This depends on whether radial damping
has occured after domination ρdamp < ρdom, or not. Its energy density at the end of kination era
follows the scaling law

ρrad = ρKD,f =


ρdom

(
adom
aKD,f

)4
, if ρdamp > ρdom,

ρdamp

(
adamp

aKD,f

)4
, if ρdamp < ρdom.

(G.182)

Similarly, the scalar field which has undergone a period of matter folowed by a period of kination
has the energy density

ρΦ = ρKD,f =


ρdom

(
adom
aKD,i

)3 ( aKD,i
aKD,f

)6
, if ρdamp > ρdom,

ρdamp

(
adamp

aKD,i

)3 ( aKD,i
aKD,f

)6
, if ρdamp < ρdom.

(G.183)

From the above two equations, we deduce the energy density at the end of kination ρKD,f

ρKD,f =


ρ2KD,i

ρdom
, if ρdamp > ρdom,

ρ2KD,i

ρdamp
, if ρdamp < ρdom,

(G.184)

and the duration of the kination era

aKD,f
aKD,i

=


(
ρdom
ρKD,i

)1/6
, if ρdamp > ρdom,(

ρdamp

ρKD,i

)1/6
, if ρdamp < ρdom.

(G.185)
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