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Abstract

Linear optics corrections in circular particle accelerators have achieved remarkable per-

formance in the last years pushing the precision and accuracy of the measurement and

correction of machine parameters further. But development of accelerator technology is

not resting either and the introduction of next generation light sources and the design and

construction of new colliders and future projects constantly demand more advanced and

precise measurement methods.

This work presents the development and enhancement of three distinct optics measure-

ment methods. The first one is a more precise, more accurate and faster measurement

method of the 𝛽 function, an optics parameter that presents a direct observable for the

focusing at any given point in the machine. Constraints on the tolerances of focusing er-

rors are given for machine performance and protection reasons. This work builds on an

improvement presented in a previous work and further increases precision, accuracy and

speed. The secondmethod is a novel local observable for linear lattice imperfections, which

can be used to detect strong error sources in the machine, guiding dedicated corrections

and being independent of the optics configuration. The last method provides a new way to

describe the impact of forced particle motion on the measurement of transverse coupling.

The developments in the domain of linear optics measurements presented in this thesis

already positively impact LHC operation and machine development and are part of the

preparation for future operation of the LHC and other accelerators.
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Zusammenfassung

Im Gebiet der Korrektur linearer Optik in Ringbeschleunigern wurde in den letzten Jah-

ren beachtenswerter Fortschritt gemacht. Die Genauigkeit und Richtigkeit der Messung

und Korrektur von Maschinenparametern wurde immer weiter verbessert. Die Entwick-

lung von Beschleunigertechnologie hält jedoch nicht still und die Einführung von Licht-

quellen der nächsten Generation und Design und Bau von neuartigen Beschleunigern und

Zukunftsprojekten erfordern neue, fortschrittliche Messmethoden.

Diese Arbeit stellt die Weiterentwicklung und Verbesserung von drei unterschiedlichen

Optikmessmethoden vor. Die erste Methode ist eine genauere und schnellere Messung

der𝛽-Funktion, einemOptikparameter, der eine direkteMessgröße für die Fukussiereigen-

schaften an einembeliebigen Punkt imBeschleuniger darstellt. AusGründen des Schutzes

und der Leistungsfähigkeit derMaschine sind gewisseAnforderungen an die Fokussierung

gegeben. Die hier vorgestellte Messmethode baut auf einer vorangehenden Verbesserung

der klassischenMethode zurMessung der𝛽-Funktion auf und liefert eine bessereGenauig-
keit und k urzere Berechnungszeiten. Die zweite Methode ist eine neue lokale Observable

für lineareMaschinenfehler, die dazu benutztwerden kann, starke Fehlerquellen zu erken-

nen, wodurch eine dedizierte Korrektur gezielt durchgeführt werden kann. Außerdem ist

sie unabhängig von der genauen Maschinenkonfiguration, wodurch die Ntwendigkeit der

Messung jeder einzelnen Zwischenkonfiguration entf allt. Die letzte Methode bietet eine

neue Beschreibung des Effekts der getriebenen Schwingung der Teilchen auf die Messung

der linearen transversalen Kopplung.

DieWeiterentwicklungen im Bereich der linearen Strahloptikmessung, die in dieser Ar-

beit vorgestellt werden, erleichtern bereits den Betrieb des LHC und Maschinenentwick-

lungsstudien und sind Teil der Vorbereitungen für den zukünftigen Betrieb des LHCs und

anderer Beschleuniger.
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1

Introduction

CHAPTER 1

The goal of this PhD project is the development of linear optics measurement methods

for circular accelerators. The term optics is used because the manipulation of a charged

particle beam in an accelerator shares many characteristics with the bending and focusing

of light through lenses and other optical devices and linear refers to lattice elements with

linear magnetic field.

Linear optics corrections have achieved remarkable performance in the last years [1, 2, 3,

4, 5, 6, 7], pushing the precision and accuracy of machine parameters further. But devel-

opment of accelerator technology is not resting either and the introduction of next gen-

eration light sources and the design and construction of new colliders and future projects

constantly demand more advanced and precise measurement methods.

Data acquisition and processing, as well as the final analysis and correction procedures, is

performed on electronic devices and computers. Therefore the term method used in this

work to describe a measurement or correction procedure, usually encompasses also the

implementation of a dedicated computer algorithm.

For the largest machines – containing thousands of lattice elements – many classical mea-

surement and correction methods suffer from long execution times as the computational

complexity of the measurement and correction algorithms grows with the number of pa-

rameters, often exponentially. Therefore, the speed of the used techniques is also getting

more and more crucial for a smooth operation. Moreover, often the full potential of the

analysis can only be harvested offline in the days and weeks following the actual measure-

ment.
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1.1 Objectives of this work

In this work three distinct optics measurement methods are treated. All of these methods

take as input the Fourier analysis of turn-by-turn data of the beam centroid position, picked

up at certain measurement devices called Beam Position Monitors (BPMs). In order to get

a sufficiently strong signal, the particle beam is excited. If the excitation method induces a

forced oscillation, optics functions are changed and this effect has to be compensated. The

remainder of this chapter introduces the data acquisition and its surrounding devices, as

well as CERN and its accelerator facilities.

The first method is a more precise and faster measurement of the 𝛽 function, an optics

parameter that presents a direct observable for the focusing at any given point in the ma-

chine. Constraints on the tolerances of focusing errors are given for machine performance

and protection reasons. An improvement of the classical 𝛽 functionmeasurement was pre-

sented in a previous work. This thesis builds upon this improvement and enhances it in

terms of speed and precision.

The second method is a new local observable for linear lattice imperfections. In the LHC

precise optics correctionmethods consider a local region of the accelerator as transfer line.

Measured optics functions at the start of the segment are used as initial condition for a sim-

ulation using the best knowledge model of the accelerator. Then a fitting on the magnetic

field strengths is used to match the expected optics to the measured one. Currently this

correction method is used at certain important points in the accelerator where particularly

strict tolerances on errors are given or errors have a high impact on the optics. Local ob-

servables facilitate detecting strong local sources and permit to apply dedicated correction

steps. This work introduces for the first time a local observable for linear lattice errors.

The third topic is the revision and further development of existing methods to describe the

impact of forced particle motion on the measurement of transverse coupling. Certain lat-

tice elements interlink vertical and horizontal particle motion, an effect called transverse

coupling which has negative impact on the beam stability in the LHC. The driving device,

used to create the signal for turn-by-turn measurements influences the measurements of

certain quantities, including coupling, and this influence has to be compensated. The cur-

rent methods neglect a small local effect of this, which became apparent recently. A new

description of the modeling of the driven motion is presented in a previous work and this

thesis applies this description to the measurement of transverse coupling, showing the lo-

cal effect for the first time in theoretical considerations.
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1.2 The Large Hadron Collider

The present work has been carried out mainly at the European Organization for Nuclear

Research (CERN) during commissionning and machine development studies of the Large

HadronCollider (LHC). Therefore, this introductionwould not be complete without a brief

presentation of the used facilities.

The LHC is the world’s largest particle accelerator with a circumference of 27 km. It is

situated at the french-swiss border near Geneva as part of CERN. The initial purpose of the

LHCwas to discover the Higgs Boson and to study rare high energy events with a centre of

mass energy up to 14GeV.

The number of collision events is proportional to the luminosity

ℒ =
𝑁2𝑛𝑏𝑓
4𝜋𝜎𝑥𝜎𝑦

(1.1)

where𝑁 is the number of particles per bunch, 𝑛𝑏 the number of bunches, 𝑓 is the revolution
frequency and 𝜎𝑧 is the beam size in direction 𝑧.

Equation (1.1) assumes that the bunches collide head-on and no deteriorating effects are

present. A more realistic form of the luminosity is [8]

ℒ =
𝑁2𝑛𝑏𝑓
4𝜋𝜎𝑥𝜎𝑦

𝐹 (1.2)

where 𝐹 is a reduction factor, depending on the exact conditions of the beam and the inter-

action region such as crossing angle, offset of the beamsw.r.t. each other or the optical axis,

hourglass effect, non-Gaussian beam profiles etc. In the LHC, 𝐹 is expected to be around

0.8.

The discovery of theHiggs Bosonwas officially confirmed in 2012 [9, 10] and since then the

purpose of the LHC lies in providing luminosity for more precise measurements of Higgs

channels and other high energy particle events.

Particles that enter the LHC are accelerated in several pre-accelerators, forming the so

called injector chain[11] which is illustrated in Fig. 1.1. Protons start their journey as 𝐻−

ions in LINAC2 (LINAC4 in the future) where they are accelerated to 50MeV. They are

further accelerated in the PS Booster to 1.4GeV, in the Proton Synchroton (PS) to 25GeV
and finally to 450GeV in the Super Proton Synchrotron before they are injected into the

LHC. Heavy ions start in the LINAC3 and are then accelerated in the Low Energy Ion Ring

(LEIR) before they are injected into the PS from where they continue as described for pro-

tons.

The LHC consists of eight identical arcs for bending of the beams and eight straight sec-
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Figure 1.1:CERNhas various accelerators anddecelerators. H− ions are pre-accelerated inLINAC2

(LINAC4 in the future) and passed to PSBooster, PS, SPS and finally injected into the LHC. Image

credit: [12]

tions between the arcs which contain the experiments, injection and extraction region and

accelerating structures.

An arc consists of 23 so calledFODO cells containing two bending sections interleavedwith

a focusing and a defocusing quadrupole1. To correct for magnet imperfections, corrector

magnets are also installed in the cell. Figure 1.2 shows a schematic of an LHC FODO cell.

During long shutdown 2, from 2019 until 2021, the CERN accelerator complex undergoes

Beam 2

Beam 1

BPM

Q bend bend bend

BPM

Q bend bend bend

Figure 1.2: Schematic of an LHCFODO cell. Two bending sections, consisting of 3 bending dipoles

each are interleaved by one focusing and one defocusing quadrupole, respectively.

1The acronym FBDB for focusing-bending-defocusing-bending would be more precise but this work will

follow the common denomination.
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an extensive upgrade process preparing it already partly for the high luminosity upgrade of

LHC. In addition, the injector chain is upgraded in a separate project called LHC Injector

Upgrade (LIU) [13, 14].

1.3 Optics measurements and corrections

There are two areas for which the continued measurement and correction of optics pa-

rameters is of importance. The first is machine protection. If the nominal LHC beam hits

the wall of the beam pipe it can deal severe damage to the elements ranging from heat-

ing up superconducting elements and inducing a magnet quench to physically destroying

machine parts by melting (or even evaporating) the material.

The second area for which optics control is highly important is the machine performance.

The delivered luminosity can be reduced by optics errors. The twomain LHC experiments,

ATLAS and CMS demand a luminosity imbalance below 5%. To achieve this an optics

correction up to the percent level is needed. High quality optics also improve operational

efficiency.

1.3.1 Measurement tools and techniques

The most important technique for beam based optics measurements that is applied in the

LHC is the excitation of the particle beam. If the bunch is excited it performs a betatron

oscillation about the closed orbit with a measurable amplitude. The position of the beam

is recorded at certain positions in the accelerator at each revolution. The obtained turn-by-

turn data is then analysed as described later.

To obtain said excitation there are two methods that will be introduced in this section: a

free kick which provokes a free oscillation of the bunch and an AC-dipole which drives a

forced oscillation of the beam.

Free Kick

If the beam experiences a kick it will perform a damped free oscillation. The particle’s po-

sition at the same location turn after turn is illustrated in Fig. 1.3. Light particles like elec-

trons suffer from a strong damping because of their high synchroton radiation but heavier

particles like the protons accelerated in the LHC are damped much slower. Nevertheless

the oscillation amplitude decreases fast and notmany turns are available for high precision

measurements of the turn-by-turn signal. In order to still have as much signal as possible

the kick strength has to be as high as feasible without kicking the beam strongly enough
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to damage elements or even kick it out of the accelerator.

Furthermore the excitation by a single kick carries the risk of filamenting the phase space

and blowing up the beam emittance.

0 500 1000 1500 2000
turn

0.5

0.0

0.5
x 

[m
m

]

Figure 1.3: The particle’s turn-by-turn position for an excitation by a single kick.

AC-dipole

The other method to excite the beam that is used in LHC is a dipole connected to an alter-

nating current power amplifier. This creates a driven oscillation of the beam [15] which

can be measured in BPMs [16, 17]. The excitation amplitude is slowly ramped up for 2000

turns in order to stay in an adiabatic regime [18] held constant for 6600 turns and then again

adiabatically ramped down. The particle’s turn-by-turn position is illustrated in Fig. 1.4.

The adiabatic ramp up and down prevent a blow up of the beam emittance and since the

oscillation amplitude can be held constant, a smallermaximumamplitude is needed. Since

the driven excitation creates a forced oscillation as opposed to a free one as in the case of

a single kick, the turn-by-turn motion of the particle does not reflect the pure betatron

oscillation and this effect has to be compensated. For this compensation a good theoretical

knowledge of the driven motion is needed.

Beam Position Monitors

To record the turn-by-turn position of the beam, the LHC possesses more than 500 dual-

plane Beam Position Monitors (BPMs) [19] which are installed approximately regularly

around the ring.

As the beam passes through the monitor, it induces an electric signal which is then pro-

cessed to calculate the beam position.
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0 500 1000 1500 2000
turn

500

0

500
x 

[
m

] 100 150
turn

50
0

50

x 
[

m
]

Figure 1.4: The turn-by-turn position of an AC-dipole excitation. The driving force is ramped up,

held at flat-top and ramped down again. The small plot shows a magnified view of the start of the

ramp up.

The BPM resolution in the LHC is approximately 0.1mm [20, 21] with a pilot bunch of 1010

protons, that we use to measure the optics.

1.4 Outline of the thesis

Chapter 2 gives an introduction of the necessary theory. Starting with linear beam dy-

namics it introduces the most important terminology before passing to the more math-

ematically involved regime of normalised coordinates, adding up to the introduction of

resonance driving terms which are used to study beam optics throughout this work. This

formalism is then used to express the quantities needed in later chapters in a useful form.

Finally, the actual methods used to measure some machine parameters are described in

detail giving the reader an insight into where the newly developed methods will act. No

new discovery is presented in this chapter and it is amere summary of the theoretical foun-

dations. Only subsection 2.6.1 bears a minor amount of original work re-deriving the final

formof the forced coordinates in the used formalism, generalising it to an arbitrary position

in the ring.

Chapter 3 presents the improved𝛽 functionmeasurement. Previousmethods are presented

as well as theoretical foundations of generalised least squaresminimisation. Original stud-

ies are presented in the form of a derivation of the analytical error propagation as well as

simulation studies to assess the speed, accuracy and precision of the new method and ex-

perimental measurements carried out at the LHC.

In chapter 4 a new local observable is derived, use cases and limitations are worked out
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and simulations as well as experimental verification are presented. This chapter consists

in its entirety of original work.

The final topic is presented in chapter 5. The original work consists of the derivation of

forced coupling resonance driving terms and the comparing studies. For completeness,

methods currently used to model the effect of driven oscillation on the coupling terms are

reviewed. This revision does not represent original work.

Since this thesis treats very distinct topics, each chapter begins with a brief descriptive

block to guide the reader into the respective topic. A brief summary of the chapter’s struc-

ture is given as well as an outline of the original work presented in the chapter.

Finally, chapter 6 represents a conclusion of the thesis, summarising the treated topics and

highlighting their merit as well as an outlook of further development possibilities.
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Theoretical Foundations

CHAPTER 2

This chapter presents the basic theoretical foundations needed to develop the methods

and algorithms presented in the main part of this thesis. Therefore we need a sound

understanding of linear beam optics, optics parameters like 𝛽 function and phase and,

finally, linear transverse coupling. Only a brief summary of the vast field of accelerator

physics can be given in the scope of this thesis. The interested reader may consult some

of the great introductory works of the field, e.g. [22, 23, 24].

Also the normal form approach shall be introduced here as it is needed to calculate

optics parameters fromHamiltonian terms later on. Since this is amathematically heavy

subject, the author tried to find the optimum between brevity and rigor.

No new discoveries are presented in this chapter. It is amere summary of the necessary

theory.

2.1 Beam Optics

Verymuch like light beams, charged particle beams in an accelerator can be bent1, focused,

defocused and can be subject to effects like dispersion and chromaticity. Therefore the term

optics is generally used to describe the movement and behaviour of particle beams around

the accelerator.

This work focuses on single particle dynamics, effects between the particles of a beam will

be neglected.

2.1.1 Linear Beam Dynamics

Linear beam dynamics studies the effect of linear electromagnetic fields on the particles.

This includes primarily only drift spaces, bending magnets and (de)focusing magnets. Un-

der the presence of electromagnetic fields ⃗𝐸 and ⃗𝐵, the Lorentz force acts on the particles

1the bending of light is, of course, technically difficult to achieve
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with charge 𝑞 and velocity ⃗𝑣.
⃗𝐹 = 𝑞 ( ⃗𝐸 + ⃗𝑣 × ⃗𝐵) . (2.1)

A dipole with a constant magnetic field 𝐵𝑦 bends a particle’s trajectory into an arc of radius

𝜌
𝜌 =

𝑝
𝑞𝐵𝑦

. (2.2)

It is useful to describe the motion in a circular accelerator in a co-moving reference frame

as depicted in Fig. 2.1 where the cartesian coordinates {𝑥′, 𝑦′, 𝑧′} are transformed into a

system {𝑥, 𝑦, 𝑠} with the properties:

Δ𝑠 ∥ reference orbit

̂𝑦 = ̂𝑦′

̂𝑥 = ̂𝑦 × Δ𝑠 (2.3)

and a longitudinal coordinate 𝑠 along the reference orbit. The optical axis of the elements

bending radius 𝜌

design orbit
Δ𝑠

̂𝑥

̂𝑦

particle

reference

𝑥(𝑠)

𝑦(𝑠)

Figure 2.1: The Frenet-Serret coordinate systemwhich is moving along the design orbit of particles

in the accelerator.

is usually used as reference orbit. If there is no transverse offset of the elements, this coin-

cides with the closed orbit.

In this coordinate system the motion of a particle in a circular accelerator is described by

Hill’s differential equation:

d
2𝑧
d𝑠2 + 𝑘(𝑠)𝑧 = 0 (2.4)

where 𝑧 ∈ {𝑥, 𝑦} is the transverse coordinate and 𝑘(𝑠) is the linear magnet strength at

position 𝑠.

A solution that satisfies Eq. (2.4) in two dimensions is

𝑧(𝑠) = 𝐴𝑧(𝑠) cos (𝜑𝑧(𝑠) + 𝜑𝑧,0) (2.5)
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where the 𝑠-dependent amplitude of the oscillation can be split:

𝐴𝑧(𝑠) = √2𝐽𝑧𝛽𝑧(𝑠) . (2.6)

𝛽𝑧(𝑠) is the 𝑠-dependent part of the amplitude, called 𝛽 function. 𝐽𝑧 is the action invariant

of the particle’s motion. 𝛽(𝑠) is periodic with the circumference of the ring 𝐶.

Of special interest for a collider is the value of the 𝛽 function at the interaction point, be-

cause it defines the beam size and has a high impact on the luminosity, as follows from

Eq. (1.1). At the LHC, the 𝛽 function at the interaction point is denoted as 𝛽∗ ≡ 𝛽(𝑠IP)
whereas the smallest 𝛽 function is called 𝛽waist.

𝜑(𝑠) is called the betatron phase and satisfies the following property:

𝜑(𝑠1) − 𝜑(𝑠0) =

𝑠1

∫
𝑠0

1
𝛽(𝑠)

d𝑠 . (2.7)

The trajectories of particles with an action 𝐽 are limited by an envelope function √2𝐽𝛽 as

illustrated in Fig. 2.2. Actual 𝛽 functions are shown in Fig. 2.3.

−4

−2

0

2

4

6

0 5 10 15 20 25 30

x
[a

u]

phase advance

design orbit
particle trajectories

envelope =
√
βϵ

Figure 2.2: The trajectories of particles with action 𝐽 are shown.

Solutions of Eq. (2.4) can be expressed in matrix form

(
𝑧
𝑝𝑧
)
𝑏

= (
𝑚11 𝑚12

𝑚21 𝑚22
) (

𝑧
𝑝𝑧
)
𝑎

. (2.8)

Throughout this work, the following definition of momentum is used:

𝑝𝑧 ≡
d𝑧
d𝑠 . (2.9)
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𝛽𝑥
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Figure 2.3: TOP: The 𝛽 function around IP1. BOTTOM: The 𝛽 functions in an LHC arc, the plot

ranges from IR2 to IR3, avoiding high 𝛽 regions (IR1 and IR5) shown in the top plot. Both plots

show the LHC collision optics at 𝛽∗ = 30 cm.

The reference frame spanned by 𝑧, 𝑝𝑧 is called phase space2.

The matrix

M = (
𝑚11 𝑚12

𝑚21 𝑚22
) (2.10)

is called the transfer matrix. It describes the transformation of phase space when going

from one position 𝑠𝑎 in the lattice to another 𝑠𝑏.

At this point in an introductory text of, e.g. a thesis or a textbook on accelerator physics it

is customary to give a simple example, a basic linear lattice element like a drift space or a

quadrupole for illustration. The author chooses to present a quadrupole magnet, since the

effect of quadrupolar imperfections is dealt with in later chapters. This example is revisited

in the more complex frameworks of Hamiltonian mechanics and Lie maps to guide the

reader.

For 𝑠 inside the quadrupole 𝑘(𝑠) = 𝑘1 . The solution of Hill’s equation is

𝑧(𝑠) = cos [√𝑘(𝑠 − 𝑠0)] 𝑧0 +
1
√𝑘

sin [√𝑘(𝑠 − 𝑠0)] 𝑝𝑧,0 . (2.11)

2Sometimes the name phase space is reserved for the reference frame spanned by (𝑧, d𝑧
d𝑡
) whereas the one

spanned by (𝑧, d𝑧
d𝑠
) is called trace space. This work will, however, follow the convention stated in the main

text.
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M1
M2

M3

M𝑊

M𝑊−1

Figure 2.4: This schematic represents the accelerator lattice, consisting of consecutive maps

M1…M𝑊.

The transfer matrix of a focusing quadrupole reads

M𝑄𝐹 = (
cos√𝐾 1

√𝑘
sin√𝐾

−√𝐾 sin√𝐾 cos√𝐾
) (2.12)

where 𝐾 is the integrated magnet strength

√𝐾 =

𝑠𝑖+𝐿

∫
𝑠𝑖

√𝑘(𝑠) d𝑠 (2.13)

for a quadrupole at position 𝑠𝑖 with length 𝐿.

A purely linear accelerator can than be constructed by the composition of the transfer ma-

trices of all its elements. This composition yields a special example of the transfer matrix,

the one that transforms the phase space coordinates of a particle at a given position to the

same position in the next turn:

MOT =
𝑊
∏
𝑤=1

M𝑖 (2.14)

whereM𝑤 is the transfer matrix of the 𝑤th element, 𝑊 is the number of elements in the

accelerator and the product denotes the repeated matrix multiplication from the left. Fig-

ure 2.4 illustrates this setup. The phase advance of one turn

𝑄𝑧 ≡
1
2𝜋

𝑠0+𝐶

∫
𝑠0

d𝑠
𝛽𝑧(𝑠)

, (2.15)

normalised by 2𝜋, is called the betatron tune.

A general form of Eq. (2.10) is

⎛
⎜
⎜
⎝

√
𝛽𝑏
𝛽𝑎
(cos𝜑𝑎𝑏 + 𝛼𝑎 sin𝜑𝑎𝑏) √𝛽𝑎𝛽𝑏 sin𝜑𝑎𝑏

𝛼𝑎−𝛼𝑏
√𝛽𝑎𝛽𝑏

cos𝜑𝑎𝑏 −
𝛽+𝛼𝑎𝛼𝑏
√𝛽𝑎𝛽𝑏

sin𝜑𝑎𝑏 √
𝛽𝑎
𝛽𝑏
(cos𝜑𝑎𝑏 − 𝛼𝑏 sin𝜑𝑎𝑏)

⎞
⎟
⎟
⎠

(2.16)
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where the quantity

𝛼(𝑠) = −12
d𝛽(𝑠)
d𝑠 (2.17)

is called 𝛼 function. 𝛼, 𝛽 function and a third quantity

𝛾(𝑠) = 1 + 𝛼2(𝑠)
𝛽(𝑠)

(2.18)

are called Twiss parameters.

For convenience and later usage we introduce the following short-hand notation:

𝜑𝑧,𝑎𝑏 = 𝜑𝑧(𝑠𝑏) − 𝜑𝑧(𝑠𝑎) + 2𝜋𝑄𝑧Θ(𝑠𝑎, 𝑠𝑏) (2.19)

which is the phase advance between position 𝑠𝑎 and 𝑠𝑏, taking into account the relative

position of 𝑠𝑎 to 𝑠𝑏. If element 𝑏 lies upstream from element 𝑎, the interval wraps around
the end of the lattice definition and the tune has to be added to the phase advance. For this

the following definition is used:

Θ(𝑠𝑎, 𝑠𝑏) = {
1 if 𝑠𝑎 > 𝑠𝑏

0 else
. (2.20)

The particles motion in phase space follows a tilted ellipse which is described by

𝛾(𝑠)𝑧2(𝑠) + 2𝛼(𝑠)𝑧(𝑠)𝑝𝑧(𝑠) + 𝛽(𝑠)𝑝2𝑧(𝑠) = 2𝐽𝑧 (2.21)

where 𝐽𝑧 is called the action3. The area of the ellipse is 2𝐽𝑧𝜋.

The one turnmap in this form can be retrieved by setting 𝛽𝑎 = 𝛽𝑏, 𝛼𝑎 = 𝛼𝑏 and 𝜑𝑎𝑏 = 2𝜋𝑄:

𝑀OT = (
cos(2𝜋𝑄𝑧) + 𝛼𝑎 sin(2𝜋𝑄𝑧) 𝛽𝑎 sin(2𝜋𝑄𝑧)

−𝛾 sin(2𝜋𝑄𝑧) cos(2𝜋𝑄𝑧) − 𝛼𝑎 sin(2𝜋𝑄𝑧)
) . (2.22)

2.1.2 Courant-Snyder coordinates

If one plots the phase space of a particle at a certain position 𝑠𝑎 over many turns, it draws

an ellipse with area 2𝐽𝑧𝜋 where 𝐽𝑧 is called action. Particle motion is easier expressed in

Courant-Snyder coordinates [25, 26]

(
̂𝑧
̂𝑝𝑧
) = (

1
√𝛽𝑧

0
𝛼𝑧
√𝛽𝑧

√𝛽𝑧
)(

𝑧
𝑝𝑧
) (2.23)

3Often a quantity 𝜖part𝑧 = 2𝐽𝑧 is defined, called the single particle emittance. It must not be confused with

the beam emittance 𝜖𝑧 =
1
2
⟨𝜖part𝑧 ⟩.
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which transforms the phase space ellipse into a circlewith radius√2𝐽𝑧. The transformation

𝑥

𝑝𝑥

ℛ{ℎ+𝑥 } = ̂𝑥

ℐ {ℎ+𝑥 } = ̂𝑝𝑥

Figure 2.5: In physical coordinates the turn-by-turn movement of the particle draws an ellipse.

Transformation to Courant-Snyder coordinates turns this ellipse into a circle.

is illustrated in Figure 2.6. In the following Courant-Snyder coordinates will frequently be

abreviated by CS coordinates.

The transformation matrix in Eq. (2.23) is called T for the rest of this chapter. Applying

T to the one turn map, one can see that the one-turn evolution of the particle is now a

rotation of 2𝜋𝑄𝑧:

T MOT T
−1 = (

cos(2𝜋𝑄𝑧) − sin(2𝜋𝑄𝑧)
sin(2𝜋𝑄𝑧) cos(2𝜋𝑄𝑧)

) . (2.24)

It is often convenient to express the Courant-Snyder coordinates in their complex form:

ℎ±𝑧 ≡ ̂𝑧 ∓ 𝑖 ̂𝑝𝑧 (2.25)

and the one turn map simplifies further to a rotation about 2𝜋𝑄𝑧,

MOTℎ±𝑧 = e∓2𝜋𝑖𝑄𝑧ℎ±𝑧 . (2.26)

In a linear lattice, the particle motion in complex Courant-Snyder coordinates at turn𝑁+1
and position 𝑠 in the ring reads

ℎ±𝑧 (𝑠, 𝑁) = √2𝐽𝑧e∓𝑖[2𝑁𝜋𝑄𝑧+𝜑𝑧(𝑠)+𝜑𝑧,0] (2.27)

with 𝜑𝑧,0 being a phase offset given by initial conditions.

The formulae above assume no coupling between the transverse planes. Before we con-

tinue to dive into the depths of general normalised coordinates for non-linear optics, we
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introduce more general coordinates and maps, mixing the two planes:

⎛
⎜
⎜
⎜
⎝

𝑥
𝑝𝑥
𝑦
𝑝𝑦

⎞
⎟
⎟
⎟
⎠𝑏

=M

⎛
⎜
⎜
⎜
⎝

𝑥
𝑝𝑥
𝑦
𝑝𝑦

⎞
⎟
⎟
⎟
⎠𝑎

(2.28)

where the transfer mapM now is a 4 × 4 matrix. For convenience, the vector containing

the 4D coordinates will be called ⃗𝑧.

2.2 Hamiltonian description and Lie maps

Some preliminaries are needed to describe the particle motion using the Hamiltonian de-

scription and Lie transformations. A thorough repetition of the topic of Lie groups and Lie

algebras can not be given in the scope of this thesis, the reader may consult [27].

The general Hamiltonian of a charged particle in a circular accelerator is [24, 28]

�̂� = 𝛿
𝛽0
−(1+ℎ𝑥)

√
(𝛿 + 1

𝛽0
−
𝑞𝜑
𝑐𝑃0

)
2
− (𝑝𝑥 − 𝑎𝑥)2 − (𝑝𝑦 − 𝑎𝑦)2 −

1
𝛽20𝛾20

−(1+ℎ𝑥)𝑎𝑠 (2.29)

with the following definitions:

𝑃0 reference momentum,

𝛿 = 𝑝𝑧
𝑃0

relative longitudinal momentum deviation,

ℎ = 1
𝜌

local curvature with 𝜌 being the local curvature radius,

𝛽0, 𝛾0 relativistic factors,

𝑞 the particle’s charge,

𝜑 the electric field,

𝑎𝑥 =
𝑞
𝑃0
𝐴𝑥, 𝑎𝑦 =

𝑞
𝑃0
𝐴𝑦 the normalised transverse components of the vector potential (𝐴𝑥, 𝐴𝑦),

𝑎𝑠 =
𝑞
𝑃0
𝐴𝑠 the normalised longitudinal component of the vector potential

The Hamiltonian equations of motion [29] read

d𝑧
d𝑠 =

𝜕�̂�
𝜕𝑝𝑧

and
d𝑝𝑧
d𝑠 = −𝜕�̂�𝜕𝑧 (2.30)

for canonical variables 𝑧 and 𝑝𝑧. The previous example of a quadrupole is again used

to demonstrate this approach. The Hamiltonian for a particle moving through a single
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quadrupole is obtained from putting the corresponding vector potential

𝑎𝑠 = −𝑘12 (𝑥
2 − 𝑦2) (2.31)

𝑎𝑥 = 𝑎𝑦 = 𝜑 = 0 (2.32)

and 0 curvature (ℎ = 0):

�̂� = 𝛿
𝛽0

−
√
(𝛿 + 1

𝛽0
)
2
− 𝑝2𝑥 − 𝑝2𝑦 −

1
𝛽20𝛾20

+ 𝑘1
2 (𝑥

2 − 𝑦2) (2.33)

�̂� =
𝑝2𝑥 + 𝑝2𝑦

2 + ( 𝛿
2𝛽0𝛾0

)
2
+ 𝑘1

2 (𝑥
2 − 𝑦2) + 𝑂(2𝑛𝑑) . (2.34)

In the simple example at hand, only one on-momentum particle is considered:

�̂� = 𝑘1
2 (𝑥2 − 𝑦2) +

𝑝2𝑥 + 𝑝2𝑦
2 (2.35)

Plugging this consecutively into the Hamiltonian equations of motion, yields

d𝑥
d𝑠 =

𝜕�̂�
𝜕𝑝𝑥

= 𝑝𝑥 (2.36)

⇒ d
2𝑥
d𝑠2 =

d𝑝𝑥
d𝑠 = −𝑘1𝑥 (2.37)

which coincides with Hill’s equation, Eq. (2.4).

Poisson brackets,

[𝑓, 𝑔] = ∑
𝑧∈{𝑥,𝑦}

(
𝜕𝑓
𝜕𝑧

𝜕𝑔
𝜕𝑝𝑧

−
𝜕𝑓
𝜕𝑝𝑧

𝜕𝑔
𝜕𝑧) , (2.38)

can be used to rewrite the Hamiltonian equations:

[𝑧, �̂�] = 𝜕�̂�
𝜕𝑝𝑧

and [𝑝𝑧, �̂�] = −𝜕�̂�𝜕𝑧 . (2.39)

The Poisson brackets form aLie algebra and therefore some properties can be utilised. First,

we define a Lie operator acting on 𝑔

∶𝑓∶ 𝑔 = [𝑓, 𝑔] . (2.40)

Then we can use the exponential parameterisation of Lie groups to move away from the

origin [27] and describe the particlemotion going through an element𝑤 in the lattice using

the kick Hamiltonian of this element, which is constructed by multiplying the thin lens

Hamiltonian by the length of the element, 𝐻 = �̂�𝐿

𝑥(𝑠𝑏) = e∶𝐻∶𝑥(𝑠𝑎) , (2.41)
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with 𝐿 being the length of the element. To illustrate this, once again the quadrupole is

used. Some helpful identities, for convenience:

∶𝑔∶2 = ∶𝑔∶ ∘ ∶𝑔∶

∶𝑥2∶ 𝑓(𝑥, 𝑝𝑥) = 2𝑥
𝜕𝑓(𝑥, 𝑝𝑥)
𝜕𝑝𝑥

∶𝑝2∶ 𝑓(𝑥, 𝑝𝑥) = −2𝑝𝑥
𝜕𝑓(𝑥, 𝑝𝑥)

𝜕𝑥 . (2.42)

Now it is possible to show

𝑥(𝑠𝑏) = e∶𝐻∶𝑥(𝑠𝑎) = 𝑥(𝑠𝑎) − 𝐿𝑝𝑥(𝑠𝑎) −
1
2𝐿

2𝑘1𝑥(𝑠𝑎) +
1
6𝐿

3𝑘1𝑝𝑥(𝑠𝑎)

+ 1
24𝑘

2
1𝑥(𝑠𝑎) −

1
120𝑘

2
1𝑝𝑥(𝑠𝑎) + …

= 𝑥(𝑠𝑎) cos(𝐿√𝑘1) −
𝑝(𝑠𝑎)
𝐿√𝑘1

sin(𝐿√𝑘1) (2.43)

which agrees with the propagation through a quadrupole given in Eq. (2.11), noting that

the Hamiltonian, and therefore 𝑘, is constant inside the (ideal) quadrupole described by

the Hamiltonian Eq. (2.35). Usually, non-linear terms are collected into a non-linear map

e∶𝐻∶ , generated by the non-linear Hamiltonian and a linear transfer map (rotation in CS-

coordinates)M:

ℳ𝑤 = e∶𝐻𝑤∶M𝑤 , (2.44)

where the subscript 𝑤 denotes the map of element 𝑤 in the lattice and the particle motion

is propagated through the element by

⃗𝑧(𝑠𝑤 + 𝐿) = e∶𝐻𝑤∶M𝑤 ⃗𝑧(𝑠𝑤) (2.45)

for element 𝑤 with length 𝐿.

2.3 The normal form approach

In order to derive optics parameters from Hamiltonian terms the normal form approach –

usually encountered in treatments of non-linear optics – is useful. It is described in its full

mathematical detail in [30, 26] and more illustrative in [31, 32, 28].



Chapter 2 Theoretical Foundations 19

In the formalism of complex CS-coordinates, a transfer map can be written as

⎛
⎜
⎜
⎜
⎝

ℎ+𝑥
ℎ−𝑥
ℎ+𝑦
ℎ−𝑦

⎞
⎟
⎟
⎟
⎠𝑏

=M

⎛
⎜
⎜
⎜
⎝

ℎ+𝑥
ℎ−𝑥
ℎ+𝑦
ℎ−𝑦

⎞
⎟
⎟
⎟
⎠𝑎

(2.46)

where

M =

⎛
⎜
⎜
⎜
⎝

𝑚1
1000 𝑚1

0100 𝑚1
0010 𝑚1

0001

𝑚2
1000 𝑚2

0100 𝑚2
0010 𝑚2

0001

𝑚3
1000 𝑚3

0100 𝑚3
0010 𝑚3

0001

𝑚4
1000 𝑚4

0100 𝑚4
0010 𝑚4

0001

⎞
⎟
⎟
⎟
⎠

. (2.47)

The significance of the multi-index𝑚𝑖
𝑗𝑘𝑙𝑚 will become clear in a moment. It shall be noted

that some symmetry relation applies:

𝑚𝑗𝑘𝑙𝑚 = 𝑚∗
𝑘𝑗𝑚𝑙 (2.48)

Themap of a non-linear lattice element 𝑖 cannot be described by amatrixM𝑖 only. A higher

order map is necessary. Here the multi-index comes into play. Higher order mapsℳ are

composed of higher order polynomials:

ℎ+𝑥 (𝑠𝑏) =
∞
∑
𝑛=1

∑
𝑗+𝑘+𝑙+𝑚=𝑛

𝑚1
𝑗𝑘𝑙𝑚 (ℎ+𝑥 (𝑠𝑎))

𝑗 (ℎ−𝑥 (𝑠𝑎))
𝑘 (ℎ+𝑦 (𝑠𝑎))

𝑙 (ℎ−𝑦 (𝑠𝑎))
𝑚 . (2.49)

The transformation to Courant-Snyder coordinates flattens the phase space of linear optics

to a circle. For non-linear optics where the phase space motion is far more complicated the

normal form approach can be used to transform to a new set of coordinates, the normal

form coordinates (their exact form will be defined at the end of this section), in which the

the phase spacemotion is flattened to a circle. Figure 2.6 illustrates howparticle trajectories

inside a non-linear machine evolve in phase space, CS-space and normal form space. The

irregular shape of in phase space is tilted to a more ”upright” form in CS-space but only a

transformation to normal form space flattens the trajectory to a circle.

This map is generated by the non-linear Hamiltonian of the element. The Hamiltonian of

element 𝑤 evaluated at position 𝑠 in multipolar expansion, reads

𝐻𝑤 = −ℛ𝑒 {∑
𝑛≥2

(𝐾𝑛−1 + 𝑖𝐽𝑛−1
(𝑥 + 𝑖𝑦)𝑛

𝑛! )}
𝑤

(2.50)
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𝑥

𝑝𝑥

ℛ[ℎ+𝑥 ]

ℐ[ℎ+𝑥 ]

ℛ[𝜁+𝑥 ]

ℐ[𝜁+𝑥 ]

Figure 2.6: If non-linearities are present in the lattice, the phase space motion of the particles is

deformed and does not show the form of an ellipse any more. Transformation to Courant-Snyder

coordinates tilts the phase space but does not remove irregular deformations. Only a transformation

into normal form coordinates restores a perfect circle.

where 𝐾𝑛−1 and 𝐽𝑛−1 are normal and skew integrated multipolar field strengths,

𝐾𝑛 =
1
𝑛!
𝜕𝑛𝐵𝑦
𝜕𝑥𝑛 (2.51)

𝐽𝑛 =
1
𝑛!
𝜕𝑛𝐵𝑥
𝜕𝑥𝑛 (2.52)

i.e. a pure dipole has only 𝐾0, a pure quadrupole only 𝐾1 etc.

In complex Courant-Snyder coordinates, the Hamiltonian Eq. (2.50), evaluated at position

𝑠𝑖, can be written in the form

𝐻𝑤(𝑠𝑖) = ∑
𝑛≥2

∑
𝑗+𝑘+𝑙+𝑚=𝑛

ℎ𝑤,𝑗𝑘𝑙𝑚e𝑖[(𝑗−𝑘)𝜑𝑥,𝑤𝑖+(𝑙−𝑚)𝜑𝑦,𝑤𝑖] (ℎ+𝑥 )
𝑗 (ℎ−𝑥 )

𝑘 (ℎ+𝑦 )
𝑙 (ℎ−𝑦 )

𝑚 , (2.53)

where the Hamiltonian term ℎ𝑤,𝑗𝑘𝑙𝑚 is defined as

ℎ𝑤,𝑗𝑘𝑙𝑚 =
Ω(𝑙 + 𝑚)𝐾𝑤,𝑛−1 + 𝑖 [1 − Ω(𝑙 + 𝑚)] 𝐽𝑤,𝑛−1

𝑗! 𝑘! 𝑙!𝑚! 2𝑗+𝑘+𝑙+𝑚
𝑖𝑙+𝑚(𝛽𝑥,𝑤)

𝑗+𝑘
2 (𝛽𝑦,𝑤)

𝑙+𝑚
2 . (2.54)

The Hamiltonian of the whole lattice is denoted by

𝐻(𝑠𝑖) =
𝑊
∑
𝑤
𝐻𝑤(𝑠𝑖) . (2.55)

In Eq. (2.54) 𝛽𝑧,𝑤 is the 𝛽 function of the corresponding plane at position 𝑤 and

Ω(𝑎) = {
1 if a is even

0 if a is odd
. (2.56)

The one-turn map of an accelerator now reads

ℳOT =
𝑊
∏
𝑖=0

e∶𝐻𝑖∶M𝑖 . (2.57)
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It shall be noted that Lie maps do not, in general, commute and, in order to construct a

one-turn equivalent of the Hamiltonian, the Baker-Campbell-Hausdorff formula has to be

applied:

e∶𝐻1∶ e∶𝐻2∶ = e
∶𝐻1+𝐻2+

1
2
[𝐻1,𝐻2]+

1
12
[𝐻1,[𝐻1,𝐻2]]+…∶ , (2.58)

as opposed to Eq. (2.55) which is only a simple summation of Hamiltonian coefficients to

build one single Hamiltonian operator.

The transformation from complex Courant-Snyder coordinates to normal form coordinates

and back is performed using a generating function 𝐹:

𝜁±𝑧 = e−∶𝐹∶ℎ±𝑧 (2.59)

ℎ± = e∶𝐹∶ 𝜁±𝑧 . (2.60)

The normal form coordinates 𝜁±𝑧 can be expressed in terms of the normal form phase 𝜓 and

normal form invariant 𝐼𝑧:

𝜁±𝑧 (𝑠𝑖) = √2𝐼𝑧e𝑖[∓𝜓𝑧(𝑠𝑖)+𝜓𝑧,0] . (2.61)

Since 𝜓 and 𝐼𝑧 are canonical variables, the Poisson bracket between any of the normal form

coordinates can be calculated easily:

[(𝜁+𝑥 )
𝑛 , (𝜁−𝑥 )

𝑚] = −2𝑖 𝑛𝑚 (𝜁+𝑥 )
𝑛−1 (𝜁−𝑥 )

𝑚−1 , (2.62)

and all other combinations are zero.

2.4 Resonance driving terms

The following commutative diagram shows the transformation from the Courant-Snyder

one turn map to the normal form one turn map:

⃗𝜁(𝑁) ⃗𝜁(𝑁 + 1)

⃗ℎ(𝑁) ⃗ℎ(𝑁 + 1)

𝓜OT=e
∶⟨𝐻⟩𝜑∶𝑅

ℳOT

e−∶𝐹∶ e−∶𝐹∶ (2.63)

The motion in normal form coordinates𝓜OT consists of a pure rotation about the phase

𝜑 and the action of the phase-independent Hamiltonian ⟨𝐻⟩𝜑. The one turn rotation ad-

vances the phases by 2𝜋𝑄𝑧:
𝑅𝑧𝜓 = 𝜓 + 2𝜋𝑄𝑧 (2.64)
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and an arbitrary rotation may be defined as

𝑅(𝛼)𝜓 = 𝜓 + 𝛼 . (2.65)

The normal form coordinate of the particle at position 𝑠 and turn 𝑁 reads

𝜁±𝑧 (𝑠, 𝑁) = √2𝐼𝑧e∓𝑖[𝜓𝑧,0+𝑁𝑄𝑧+𝜓(𝑠)] . (2.66)

Since the diagram is commutative one can propagate the complex Courant-Snyder coordi-

nates from one position in the lattice to another by using the normal form approach:

ℎ±𝑧 (𝑠1) = e∶𝐹∶𝓜OTe
∶−𝐹∶ℎ±𝑧 (𝑠0) . (2.67)

From that one can derive the relation between the Hamiltonian and the generating func-

tion 𝐹:
𝐹 = 𝐻‡

1 − 𝑅 (2.68)

where 𝐻‡ denotes the phase-dependent part of 𝐻:

𝐻‡ = 𝐻 − ⟨𝐻⟩𝜑 , (2.69)

and the fraction
1

1−𝑅
denotes, in accordance with convention and abusing notation, the

matrix inverse of 1 − 𝑅. The generating function 𝐹 can be expressed in polynomial form

𝐹(𝑠𝑖) = ∑
𝑗𝑘𝑙𝑚

𝑓𝑗𝑘𝑙𝑚(𝑠𝑖) (𝜁+𝑥 )
𝑗 (𝜁−𝑥 )

𝑘 (𝜁+𝑦 )
𝑙 (𝜁−𝑦 )

𝑚
(2.70)

and Eq. (2.68) has to hold for each polynomial order seperately. Thus one can relate

𝑓𝑗𝑘𝑙𝑚(𝑠𝑖) =

𝑊
∑
𝑤
ℎ𝑤,𝑗𝑘𝑙𝑚e𝑖[(𝑗−𝑘)𝜑𝑥,𝑤𝑖+(𝑙−𝑚)𝜑𝑦,𝑤𝑖]

1 − e2𝜋𝑖[(𝑗−𝑘)𝑄𝑥+(𝑙−𝑚)𝑄𝑦]
. (2.71)

The enumerator of 𝑓𝑗𝑘𝑙𝑚 is referred to as resonance driving term4.

2.4.1 Influence of linear lattice imperfections on betatron phases

This section revises the derivation of phase advance beating and 𝛽 beating from quadrupo-

lar field errors by reproducing the steps of [33] and [34]. Only normal quadrupolar field

errors are considered. In this case the generating function 𝐹 reads

𝐹(𝑠𝑗) = 𝑓2000,𝑗 (𝜁+𝑥,𝑠𝑗)
2
+ 𝑓0200,𝑗 (𝜁−𝑥,𝑠𝑗)

2
𝑓0020,𝑗 (𝜁+𝑦,𝑠𝑗)

2
+ 𝑓0002,𝑗 (𝜁−𝑦,𝑠𝑗)

2
,

4Sometimes the whole expression 𝑓𝑗𝑘𝑙𝑚 is called resonance driving term.
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with

𝑓2000,𝑗 =

𝑊
∑
𝑤
𝛿𝐾𝑤,1𝛽𝑥,𝑤e2𝑖𝜑𝑥,𝑤𝑗

8 (1 − e4𝑖𝜋𝑄𝑥)
. (2.72)

The complex Courant-Snyder coordinates can be calculated from the normal form coordi-

nates by Eq. (2.60)

ℎ+𝑥 = 𝜁+𝑥 + ∶𝐹∶ 𝜁+𝑥 + 1
2∶𝐹∶

2 𝜁+𝑥 + 𝑂(𝑓3) . (2.73)

Using the Poisson bracket identity Eq. (2.62) one can calculate

∶𝐹∶ 𝜁+𝑥 = [𝑓0200 (𝜁−𝑥 )
2 , 𝜁+𝑥 ] = 4𝑖𝑓0200𝜁−𝑥 ,

∶𝐹∶2 𝜁+𝑥 = [𝑓2000 (𝜁+𝑥 )
2 , 4𝑖𝑓0200𝜁−𝑥 ] = − |4𝑓2000|

2 𝜁+𝑥 .

This can be used to calculate the C-S coordinate at position 𝑠𝑗 and turn 𝑁:

ℎ+𝑥 (𝑠𝑗, 𝑁) = 𝑒∶𝐹∶𝜁+𝑥 (𝑠𝑗, 𝑁)

= 𝜁+𝑥 (𝑠𝑗, 𝑁) + 4𝑖𝑓∗2000,𝑗𝜁−𝑥 (𝑠𝑗, 𝑁) +
1
2
||4𝑓2000,𝑗||

2 𝜁+𝑥 (𝑠𝑗, 𝑁) + 𝑂(𝑓3) (2.74)

which made use of the fact that 𝑓∗2000 = 𝑓0200 to simplify the expression. The 𝑂(𝑓3) term
collects all third order contributions of ℛ𝑒 {𝑓2000,𝑗} , ℐ𝑚 {𝑓2000,𝑗} and ||𝑓2000,𝑗||.

The phase of the real signal ̂𝑥𝑗 = ℛ𝑒 {ℎ+𝑥 (𝑠𝑗)} reads, up to first order,

̂𝑥𝑗 = ℛ𝑒 {(1 + 4𝑖𝑓∗2000,𝑗)√2𝐽𝑥e
−𝑖[𝑁𝑄𝑥+𝜓𝑥,0𝑗]} . (2.75)

The effect of the RDTs 𝑓𝑗𝑘𝑙𝑚,𝑖 on the phase of the main tune line is the argument of the

term in parenthesis in Eq. (2.75):

arg (1 + 4𝑖𝑓∗2000,𝑗) = atan(
−4ℛ𝑒 {𝑓2000,𝑖}

1 + 4ℐ𝑚 {𝑓2000,𝑗 + ||4𝑓2000,𝑗||
2}
)

≈ −4ℛ𝑒 {𝑓2000,𝑖} − 16ℛ𝑒 {𝑓2000,𝑖} ℐ𝑚 {𝑓2000,𝑖} . (2.76)

To get the 𝛽 function under the effect of focusing errors, one can compare the amplitude

√𝛽𝑧𝐽𝑧 of the coordinate by considering the change in 𝐽𝑧 negligible:

√2𝛽𝑥𝐽𝑥 = √2𝛽m𝑥 𝐽𝑥ℛ𝑒 {1 + 4𝑖𝑓2000,𝑖}

𝛽𝑥 = 𝛽m𝑥 (1 + 8ℐ𝑚 {𝑓2000,𝑖}) + 𝑂(𝑓2) . (2.77)

Since only 𝑓2000 appears in the phase beating the indices 2000will be suppressed from now

on. A detuningΔ𝑄𝑧 is generated by the phase independent Hamiltonian terms ℎ𝑤,𝑖𝑖𝑗𝑗. The
only quadrupolar contribution comes from the term ℎ1100. The tune in Eq. (2.75) consists
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of

𝑄𝑥 = 𝑄m
𝑥 + Δ𝑄𝑥 (2.78)

where 𝑄m
𝑥 is the model horizontal tune and

2𝜋Δ𝑄𝑥 = −
𝜕⟨𝐻⟩𝜑
𝜕𝐽𝑥

= −
𝜕2𝐽𝑥ℎ1100

𝜕𝐽𝑥
= −2ℎ1100 + 𝑂(𝐽𝑥) . (2.79)

The Hamiltonian of the whole accelerator reads

𝐻(𝑠𝑎) =
𝑊
∑
𝑤
𝐻𝑤(𝑠𝑎) (2.80)

with𝐻𝑤(𝑠𝑎) being theHamiltonian term fromEq. (2.55). The sum over𝑤 in Eq. (2.80) runs

over each element 𝑤 in the accelerator. The accumulated phase shift due to the detuning

between elements 𝑖 and 𝑗 reads:

ℎ1100,𝑖𝑗 ≡ −
sgn (𝑗 − 𝑖)

4 ∑
𝐼
𝛽m𝑤,𝑥𝛿𝐾𝑤,1 + 𝑂(𝛿𝐾2

1) . (2.81)

𝐼 is the interval [min(𝑖, 𝑗),max(𝑖, 𝑗)] and sgn(𝑥) denotes the sign function:

sgn(𝑥) =
⎧⎪
⎨
⎪
⎩

−1 if 𝑥 < 0

0 if 𝑥 = 0

1 if 𝑥 > 0

. (2.82)

The total phase advance beating is then the sum of the accumulated detuning fromHamil-

tonian terms and the phase beating from the RDTs:

Δ𝜑𝑥,𝑖𝑗 = −2ℎ1100,𝑖𝑗 − 4ℛ𝑒 {𝑓𝑗 − 𝑓𝑖} + 𝑂 (𝑓2) . (2.83)

With the following identity [31, 35]:

𝑓𝑗 = sgn(𝑗 − 𝑖)18 ∑
𝑤∈𝐼

𝛽m𝑤𝛿𝐾𝑤,1e
2𝑖𝜑m

𝑤𝑗 + 𝑓𝑖e
2𝑖𝜑m

𝑖𝑗 , (2.84)

we can eliminate𝑓𝑗 fromEq. (2.83). Here and in the followingwe consider only the horizon-

tal plane and thus we omit the index 𝑥 in the optical functions 𝜑𝑎𝑏, 𝛽𝑎 and the quadrupole

field 𝐾𝑎,1, for arbitrary indices 𝑎 and 𝑏. For compactness we rename the first part of 𝑓𝑗 to

𝐴𝑖𝑗 = sgn (𝑗 − 𝑖) 18 ∑
𝑤∈𝐼

𝛽m𝑤𝛿𝐾𝑤,1e
2𝑖𝜑m

𝑤𝑗 . (2.85)
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We can simplify the last term of Eq. (2.83) [33]:

ℛ𝑒 {𝑓𝑗 − 𝑓𝑖} = −ℛ𝑒 {𝐴𝑖𝑗} + ℛ𝑒 {e2𝑖𝜑
m
𝑖𝑗} ℐ𝑚 {𝑓𝑖} + ℐ𝑚 {e2𝑖𝜑

m
𝑖𝑗}ℛ𝑒 {𝑓𝑖} − ℛ𝑒 {𝑓𝑖}

= −ℛ𝑒 {𝐴𝑖𝑗} + (1 − 2 sin2 𝜑m
𝑖𝑗)ℛ𝑒 {𝑓𝑖} − 2 sin𝜑m

𝑖𝑗 cos𝜑m
𝑖𝑗ℐ𝑚 {𝑓𝑖} − ℛ𝑒 {𝑓𝑖}

= −ℛ𝑒 {𝐴𝑖𝑗} + ℛ𝑒 {𝑓𝑖} (−2 sin2 𝜑m
𝑖𝑗) − ℐ [𝑓𝑖] 2 sin𝜑m

𝑖𝑗 cos𝜑m
𝑖𝑗 (2.86)

Equation (2.83) now reads

Δ𝜑𝑖𝑗 = − 2ℎ1100,𝑖𝑗 − 4ℛ𝑒 {𝐴𝑖𝑗} − 8 sin2 𝜑m
𝑖𝑗ℛ𝑒 {𝑓𝑖} − 8 sin𝜑m

𝑖𝑗 cos𝜑m
𝑖𝑗ℐ𝑚 {𝑓𝑖} + 𝑂(𝑓2)

= ̄ℎ𝑖𝑗 − 8 sin2 𝜑m
𝑖𝑗ℛ𝑒 {𝑓𝑖} − 8 sin𝜑m

𝑖𝑗 cos𝜑m
𝑖𝑗ℐ𝑚 {𝑓𝑖} + 𝑂(𝑓2) . (2.87)

We simplified the equation with the definition

̄ℎ𝑖𝑗 ≡ −2ℎ1100,𝑖𝑗 − 4ℛ𝑒 {𝐴𝑖𝑗} = ∑
𝑤∈𝐼

𝛽m𝑤𝛿𝐾𝑤,1 sin2 𝜑m
𝑤𝑗 . (2.88)

Equation (2.87) will be used in chapter 3 to calculate a more precise 𝛽 function and in

chapter 4 to construct a local observable.

2.4.2 Coupling RDTs

Linear transverse coupling is the effect that the linear optics of one plane influences the

optics parameters of the other plane. This can have undesired impact on beam size and

luminosity as well as on Landau damping5.

The generating function with only skew quadrupoles reads

𝐹 = 𝑓1010𝜁+𝑥 𝜁+𝑦 + 𝑓1001𝜁+𝑥 𝜁−𝑥 + 𝑓0101𝜁−𝑥 𝜁−𝑦 + 𝑓0110𝜁−𝑥 𝜁+𝑦 . (2.89)

Following the same steps as in the previous section one gets the coupled motion:

ℎ𝑥(𝑠𝑗, 𝑁) = 𝜁+𝑥 (𝑠𝑗, 𝑁) + 2𝑖𝑓0101(𝑠𝑗)𝜁−𝑦 (𝑠𝑗, 𝑁) + 2𝑖𝑓0110(𝑠𝑗)𝜁+𝑦 (𝑠𝑗, 𝑁) (2.90)

with

𝑓0101(𝑠𝑗) =
∑
𝑤
𝐽1,𝑤√𝛽𝑥,𝑤𝛽𝑦,𝑤e𝑖[𝜑𝑤𝑗,𝑥+𝜑𝑤𝑗,𝑦]

4 (1 − e2𝜋𝑖(𝑄𝑥+𝑄𝑦))
,

𝑓0110(𝑠𝑗) =
∑
𝑤
𝐽1,𝑤√𝛽𝑥,𝑤𝛽𝑦,𝑤e𝑖[𝜑𝑤𝑗,𝑥−𝜑𝑤𝑗,𝑦]

4 (1 − e2𝜋𝑖(𝑄𝑥−𝑄𝑦))
. (2.91)

5Landau damping is a mechanism, first discovered in plasma physics[36, 37], by which larger tune spread

leads to a more stable beam.
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using equations (2.54) and (2.71). The value of the coupling resonance driving terms 𝑓1010
and 𝑓1001 and their complex conjugates determines the strength of the coupling between

the planes. If both are zero there is no coupled motion.

2.5 Calculation of optics functions

2.5.1 𝛽 function measurement

To calculate the 𝛽 function at a location 𝑠 in the machine, two methods are routinely used

in the LHC: the first calculates the 𝛽 function from the amplitude (∝ √2𝐼𝛽) and the second
one uses the phase advance. In this work only the second one is considered and the task

of chapter 3 is the improvement of this method.

In order to get the real 𝛽 function from phase, one can start with the transfer matrixM𝑖𝑗

between elements 𝑖 and 𝑗 in Eq. (2.16). The quotient of the first row elements reads

(𝑚𝑖𝑗)11
(𝑚𝑖𝑗)12

= 1
𝛽𝑖
(cot𝜑𝑖𝑗 + 𝛼𝑖) . (2.92)

Subtracting the quotient of the first row elements of the transfer matrix between elements

𝑖 and 𝑘, (𝑚𝑖𝑘)11
(𝑚𝑖𝑘)12

, yields

(𝑚𝑖𝑗)11
(𝑚𝑖𝑗)12

−
(𝑚𝑖𝑘)11
(𝑚𝑖𝑘)12

= 1
𝛽𝑖
(cot𝜑𝑖𝑗 − cot𝜑𝑖𝑘) . (2.93)

If the region between the three BPMs 𝑖, 𝑗 and 𝑘 is free of imperfections the model transfer

matrix equals the measured oneM𝑖𝑗 =Mm
𝑖𝑗 and, consequently,

1
𝛽m𝑖

(cot𝜑m
𝑖𝑗 − cot𝜑m

𝑖𝑘) =
1
𝛽𝑖
(cot𝜑𝑖𝑗 − cot𝜑𝑖𝑘)

⇒ 𝛽𝑖 =
cot𝜑𝑖𝑗 − cot𝜑𝑖𝑘
cot𝜑m

𝑖𝑗 − cot𝜑m
𝑖𝑘
𝛽m𝑖 . (2.94)

Equation (2.94) was developed in [38] and used for LEP and in run I of LHC.

For optimal operation of the machine a precise control of the 𝛽 function is needed. Firstly,

the particlesmust staywithin the boundaries of the physical aperture and at the interaction

point the beam size has to be as small as possible to increase luminosity. And secondly,

a too large deviation from the optical axis inside a higher order magnet may lead to an

undesirable feed-down of the orbit offset.
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The deviation of the 𝛽 function from its design value is called beta beating and defined as

Δ𝛽
𝛽m =

𝛽 − 𝛽m

𝛽m . (2.95)

The 𝛽 beating is often expressed in percent. As stated in the introduction, the goal is to

limit 𝛽 beating formachine protection reasons and to optimise the luminosity. The effect of

𝛽 beating is particularly problematic in strong magnetic fields where only small deviations

from the design orbit create large perturbations the particle dynamics.

2.5.2 Coupling measurement

One possible method to calculate coupling used for LHC – which is independent of BPM

calibration errors –makes use of twonearby BPMs in order to cancel out calibration factors.

It is therefore called the two BPMmethod. This method is described in this section.

Repeating the calculations of section 2.4.2 for all transverse C-S coordinates yields

ℎ+𝑥 = 𝜁+𝑥 + 2𝑖𝑓∗1010𝜁−𝑦 + 2𝑖𝑓∗1001𝜁+𝑦
ℎ+𝑦 = 𝜁+𝑦 + 2𝑖𝑓∗1010𝜁−𝑥 + 2𝑖𝑓1001𝜁+𝑥
ℎ−𝑥 = 𝜁−𝑥 − 2𝑖𝑓1010𝜁+𝑦 − 2𝑖𝑓1001𝜁−𝑦
ℎ−𝑦 = 𝜁−𝑦 − 2𝑖𝑓1010𝜁+𝑥 − 2𝑖𝑓∗1001𝜁−𝑥 . (2.96)

The Fourier transform of the coordinates reads

ℱ {ℎ±𝑧 } (𝜔) = √2𝐼𝑧e𝑖𝜑𝑧,0𝛿(𝑄𝑧 ± 𝜔) , (2.97)

where 𝛿(𝑥) denotes the Dirac delta function. Figure 2.7 shows the spectrum of ℎ+𝑥 and ℎ+𝑦
excited by an AC-dipole andwith coupling. The driven fractional tunes are𝑄𝑑

𝑥 = 0.270 and
𝑄𝑑
𝑦 = 0.322. The respectivemain lines arewell dominating the spectrumand the secondary

lines induced by coupling are clearly visible at the position of the respective other plane’s

tune. For the following it is convenient to introduce a shorthand notation for the spectral

lines ℱ {ℎ±𝑧 } (𝑛𝑥𝑄𝑥 + 𝑛𝑦𝑄𝑦):

𝐻±(𝑛𝑥, 𝑛𝑦) = ℱ {ℎ±𝑥 } (𝑛𝑥𝑄𝑥 + 𝑛𝑦𝑄𝑦)

𝑉±(𝑛𝑥, 𝑛𝑦) = ℱ {ℎ±𝑦 } (𝑛𝑥𝑄𝑥 + 𝑛𝑦𝑄𝑦) . (2.98)

If the BPM calibration is not perfect the measured𝐻 and 𝑉 lines are not proportional w.r.t.
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Figure 2.7: This example plot shows the Fourier transform of horizontal and vertical particle mo-

tion from simulations with an AC-dipole and coupling sources. The vertical and horizontal frac-

tional driven tunes are 𝑄𝑑
𝑥 = 0.270 and 𝑄𝑑

𝑦 = 0.322.

each other:

𝑥meas = 𝐶𝑥𝑥

𝑦meas = 𝐶𝑦𝑦 . (2.99)

The calibration factors 𝐶𝑥/𝑦 cancel out if one divides the spectral line by the amplitude of

the main line:

𝐴+0,𝑛𝑦 =
𝐻+(0, 𝑛𝑦)
|𝐻+(1, 0)|

𝐵+𝑛𝑥,0 =
𝑉+(𝑛𝑥, 0)
|𝑉+(0, 1)|

. (2.100)

Important for the coupling calculation are the following normalised spectral lines:

𝐴+0,1 =
𝐻+(0, 1)
|𝐻+(1, 0)|

= 2𝑖
√

𝐽𝑦
𝐽𝑥
𝑓∗1001e−𝑖𝜑𝑦 (2.101)

𝐵+1,0 =
𝑉+(1, 0)
|𝑉+(0, 1)|

= 2𝑖
√

𝐽𝑥
𝐽𝑦
𝑓1001e−𝑖𝜑𝑥 (2.102)

which contain 𝑓1001 and

𝐴+0,−1 =
𝐻+(0, −1)
|𝐻+(1, 0)|

= 2𝑖
√

𝐽𝑦
𝐽𝑥
𝑓∗1010e𝑖𝜑𝑦 (2.103)

𝐵+−1,0 =
𝑉+(−1, 0)
|𝑉+(0, 1)|

= 2𝑖
√

𝐽𝑥
𝐽𝑦
𝑓∗1010e𝑖𝜑𝑥 (2.104)

which contain 𝑓1010.
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The coupling RDTs 𝑓1010 and 𝑓1001 can then be calculated by combining Eqs (2.101) with

(2.102) and Eqs (2.103) with (2.104), respectively:

|𝑓1001| =
1
2√

||𝐴+0,1𝐵+1,0||

|𝑓1010| =
1
2√

||𝐴+0,−1𝐵+−1,0|| . (2.105)

The normalised spectral lines 𝐴0,𝑛𝑦 and 𝐵𝑛𝑥,0 are the Fourier components of the complex

coordinates. But only the projections onto the real axis can be measured. The next step is

to calculate the complex coordinates from the measured ones.

Since ℎ±𝑧 = 𝑧±𝑖𝑝𝑧 the complex coordinate can be obtained from position andmomentum.

BPMs can only measure position but using the position data from a second BPM one can

reconstruct themomentum. The propagation of complex C-S coordinates through a region

that is empty of non-linearities reads

(
̂𝑧
̂𝑝𝑧
)
𝑏

= R𝑎𝑏 (
̂𝑧
̂𝑝𝑧
)
𝑎

(2.106)

where the transfermatrixR𝑎𝑏 is a simple rotationmatrix as discussed in section 2.1.2. From

this one can reconstruct the momentum:

̂𝑝𝑧,𝑎 =
̂𝑧𝑏

cos𝜑𝑎𝑏
+ ̂𝑧𝑎 tan𝜑𝑎𝑏 (2.107)

where 𝜑𝑎𝑏 is the phase advance between the two positions 𝑠𝑎 and 𝑠𝑏. Therefore:

ℎ±𝑧 (𝑠𝑎) = ̂𝑧𝑎 − 𝑖 (
̂𝑧𝑏

cos𝜑𝑎𝑏
+ ̂𝑧𝑎 tan𝜑𝑎𝑏) = ̂𝑧𝑎(1 − 𝑖 tan𝜑𝑎𝑏) − 𝑖

̂𝑧𝑏
cos𝜑𝑎𝑏

. (2.108)

Since the Fourier transform is linear, this identity can be propagated to the spectral lines:

𝐻+(𝑛𝑥, 𝑛𝑦)𝑎 = (1 − 𝑖 tan𝜑𝑎𝑏)𝐻(𝑛𝑥, 𝑛𝑦)𝑎 −
𝑖

cos𝜑𝑎𝑏
𝐻(𝑛𝑥, 𝑛𝑦)𝑏 (2.109)

where 𝐻(𝑛𝑥, 𝑛𝑦) is the measured spectral line which is just the real projection of the com-

plex line. Under the assumption that the region between 𝑠𝑎 and 𝑠𝑏 is free from non-linea-

rities and coupling the action 𝐽𝑧 does not change between the two positions and

|𝐻(1, 0)𝑎| = |𝐻(1, 0)𝑏| = √2𝐽𝑥

|𝑉(0, 1)𝑎| = |𝑉(0, 1)𝑏| = √2𝐽𝑦 . (2.110)



30 2.5 Calculation of optics functions

This allows to express the real normalised spectral lines as

𝐴(0, 𝑛𝑦)𝑎 =
𝐻(0, 𝑛𝑦)𝑎
|𝐻(1, 0)𝑎|

=
𝐻(0, 𝑛𝑦)𝑎
|𝐻(1, 0)𝑏|

𝐵(𝑛𝑥, 0)𝑎 =
𝑉(𝑛𝑥, 0)𝑎
|𝑉(0, 1)𝑎|

=
𝑉(𝑛𝑥, 0)𝑎
|𝑉(0, 1)𝑏|

. (2.111)

This can be plugged into the reconstruction formula Eq. (2.109)

𝐻+(𝑛𝑥, 𝑛𝑦)𝑎
𝐻(1, 0)𝑎

= (1 − 𝑖 tan𝜑𝑎𝑏)𝐴(𝑛𝑥, 𝑛𝑦)𝑎 −
𝑖

cos𝜑𝑎𝑏
𝐴(𝑛𝑥, 𝑛𝑦)𝑏 (2.112)

Together with the identity

𝐻(1, 0) = 1
2 (𝐻

+(1, 0) + 𝐻−(1, 0)) = 1
2𝐻

+(1, 0) (2.113)

because 𝐻−(1, 0) = 0, one can express 𝐴+(0, 𝑛𝑦) and 𝐵+(𝑛𝑥, 0) in terms of normalised real

spectral lines

2𝐴+(𝑛𝑥, 𝑛𝑦)𝑎 = (1 − 𝑖 tan𝜑𝑎𝑏)𝐴(𝑛𝑥, 𝑛𝑦)𝑎 −
𝑖

cos𝜑𝑎𝑏
𝐴(𝑛𝑥, 𝑛𝑦)𝑏

2𝐵+(𝑛𝑥, 𝑛𝑦)𝑎 = (1 − 𝑖 tan𝜑𝑎𝑏)𝐵(𝑛𝑥, 𝑛𝑦)𝑎 −
𝑖

cos𝜑𝑎𝑏
𝐵(𝑛𝑥, 𝑛𝑦)𝑏 (2.114)

Which can now be plugged in Eq (2.105) to calculate the amplitude of the coupling RDTs

𝑓1001 and 𝑓1010. To get the phase the starting point is, again, Eqs (2.101) – (2.104). The

phases of 𝐴0.1, 𝐵1,0, 𝐴0,−1, 𝐵−1,0 contain the phases of the RDTs:

arg(𝐴0,1) = −𝑞1001 − 𝜑𝑦 +
𝜋
2

(2.115)

arg(𝐵1,0) = 𝑞1001 − 𝜑𝑥 +
𝜋
2

(2.116)

arg(𝐴0,−1) = −𝑞1010 + 𝜑𝑦 +
𝜋
2

(2.117)

arg(𝐵−1,0) = −𝑞1010 + 𝜑𝑥 +
𝜋
2

(2.118)

where the phase
𝜋
2
comes from the factor 𝑖 and the phases of the RDTs are defined as

𝑞1001 ≡ arg(𝑓1001) (2.119)

𝑞1010 ≡ arg(𝑓1010) . (2.120)

From Eq. (2.118) one gets two expressions for each RDT phase:

𝑞1001 = − arg𝐴0,1 − 𝜑𝑦 +
𝜋
2

= arg𝐵1,0 + 𝜑𝑥 −
𝜋
2

𝑞1010 = − arg𝐴0,−1 + 𝜑𝑦 +
𝜋
2

= − arg𝐵−1,0 + 𝜑𝑥 +
𝜋
2

(2.121)



Chapter 2 Theoretical Foundations 31

which can finally be used to calculate the RDTs using Eq. (2.105).

2.6 Forced motion

This section will introduce the process of optics measurements with an AC-dipole. As

stated above, the effect of the driving of the beam motion has to be compensated and the

foundation for this compensation will be explained in the following subsections.

2.6.1 Linear motion with AC dipole

In this section the C-S coordinates of the driven linear motion will be derived [17, 15].

These forced coordinates can be used to calculate the effect of the AC dipole on linear

optics parameters like betatron phase, 𝛽 function and linear transverse coupling.

At each turn an AC dipole located at position 𝑠𝑑 inflicts a kick to the beam. This kick can

be described in Courant-Snyder coordinates as

Δℎ+𝑧 (𝑁) = 𝑖𝐴𝜃𝛽(𝑠𝑑) cos(2𝜋𝑄𝑑
𝑧𝑁) (2.122)

depending on the AC dipole frequency 𝑄𝑑
𝑧 , the kick strength 𝐴𝜃 and the turn number 𝑁.

Figure 2.8 shows a schematic of the beam deflection for several turns. At a small distance

AC-dipole

Figure 2.8: Schematic of an AC-dipole kick. The deflection Δ𝑝𝑧 = 𝐴𝜃𝛽(𝑠𝑑) cos(2𝜋𝑖𝑄𝑧𝑁) changes
with turn number 𝑁.

𝜖 after the AC-dipole the C-S coordinates of the beam read

ℎ+𝑧 (𝑠𝑑 + 𝜖,𝑁 = 0) = ℎ+𝑧 (𝑠𝑑 − 𝜖) + Δℎ+𝑧 (𝑁 = 0) (2.123)

in the first turn where the AC dipole is active. This turn will be denoted with 𝑁 = 0.

Under the assumption that the kick strength of the AC-dipole is ramped up slowly enough,

this is an adiabatic process and the effect of the kicks can be added repeatedly for each turn.

The coordinates can be propagated to an arbitrary position 𝑠 in the ring to get the following
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𝑠𝑑

𝜀

Figure 2.9: Schematic showing the positions and length occuring in Eq. (2.123). The AC-dipole is

located at position 𝑠𝑑. The beam gets a kick when passing from 𝑠𝑑 − 𝜀 to 𝑠𝑑 + 𝜀.

expressions:

ℎ+𝑧 (𝑠 < 𝑠𝑑, 𝑁) = 𝑅𝑠−𝑠𝑑 [𝑅
𝑁ℎ+𝑧 (𝑠𝑑) + 𝑅𝑁Δℎ+𝑧 (0) + … + 𝑅Δℎ+𝑧 (𝑁 − 1)]

ℎ+𝑧 (𝑠 > 𝑠𝑑, 𝑁) = 𝑅𝑠−𝑠𝑑 [𝑅
𝑁ℎ+𝑧 (𝑠𝑑) + 𝑅𝑁Δℎ+𝑧 (0) + … + 𝑅Δℎ+𝑧 (𝑁 − 1) + Δℎ+𝑧 (𝑁)] ,

(2.124)

ℎ+𝑧 (𝑠 < 𝑠𝑑, 𝑁) = 𝑅𝑠−𝑠𝑑 [𝑅
𝑁ℎ+𝑧 (𝑠𝑑) +

𝑁
∑
𝑇=1

𝑅𝑇Δℎ+𝑧 (𝑁 − 𝑇)]

ℎ+𝑧 (𝑠 > 𝑠𝑑, 𝑁) = 𝑅𝑠−𝑠𝑑 [𝑅
𝑁ℎ+𝑧 (𝑠𝑑) +

𝑁
∑
𝑇=0

𝑅𝑇Δℎ+𝑧 (𝑁 − 𝑇)] , (2.125)

with 𝑅 being the rotationmap of the linear motion. For simplicity, the following definition

has been used:

𝑅𝑠−𝑠𝑑 ≡ 𝑅(𝜑(𝑠) − 𝜑(𝑠𝑑)) (2.126)

⇒𝑅𝑠−𝑠𝑑ℎ𝑥 = ℎ𝑥e
−𝑖𝜑𝑠𝑑𝑠 . (2.127)

The cosine in Eq. (2.122) can be expressed in complex form

Δℎ+𝑧 (𝑁) =
𝑖𝐴𝜃𝛽(𝑠𝑑)

2 (e2𝜋𝑖𝑄𝑑
𝑧𝑁 + e−2𝜋𝑖𝑄

𝑑
𝑧𝑁)

=
𝑖𝐴𝜃𝛽(𝑠𝑑)

2 (𝛿𝑁+ + 𝛿𝑁− ) , (2.128)

where 𝛿± is defined as

𝛿± = e±2𝜋𝑖𝑄
𝑑
𝑧 . (2.129)

Using the complex form of the cosine, the kick in Eq. (2.125) can be split into left and right

moving parts:

ℎ+𝑧 (𝑠 > 𝑠𝑑, 𝑁) =

𝑅𝑠−𝑠𝑑 [𝑅
𝑁ℎ+𝑧 (𝑠𝑑) +

𝑖𝐴𝜃𝛽(𝑠𝑑)
2 {

𝑁
∑
𝑇=0

𝑅𝑇𝛿𝑁−𝑇
+ +

𝑁
∑
𝑇=0

𝑅𝑇𝛿𝑁−𝑇
− }] . (2.130)

For the next simplification it shall be noted that

𝑛
∑
𝑖=0

𝑥𝑖 =
0
∑
𝑖=𝑛

𝑥𝑖 =
𝑛
∑
𝑗=0

𝑥𝑛−𝑗 . (2.131)
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The first transformation is a simple exchange in summation limits. The second one arises

from the change 𝑖 → 𝑗 = 𝑁 − 𝑖 and, thus, 𝑗0 = 𝑁 − 𝑖0 = 0 and 𝑗1 = 𝑁 − 𝑖1 = 0. Using this,
the sums can be brought into the form of a geometric series

𝑁
∑
𝑇=0

𝑅𝑇𝛿𝑁−𝑇
± =

𝑁
∑
𝑇=0

𝑅𝑁−𝑇𝛿𝑇±

= 𝑅𝑁
𝑁
∑
𝑇=0

(𝑅−1𝛿±)
𝑇

= 𝑅𝑁
1 − (𝑅−1𝛿±)𝑁+1

1 − 𝑅−1𝛿±
, (2.132)

and

𝑁
∑
𝑇=1

𝑅𝑇𝛿𝑁−𝑇
± = 𝑅𝑁

1 − (𝑅−1𝛿±)𝑁

1 − 𝑅−1𝛿±
. (2.133)

The two cases of Eq. (2.125) differ only in one additional exponent of 𝑅−1𝛿± and it can be

written compactly as

ℎ+𝑧 (𝑠, 𝑁) = 𝑅𝑠−𝑠𝑑𝑅
𝑁[ℎ+𝑧 (𝑠𝑑)

+
𝑖𝐴𝜃𝛽(𝑠𝑑)

2
1 − (𝑅−1𝛿+)𝑁+Θ(𝑠,𝑠𝑑)

1 − 𝑅−1𝛿+

+
𝑖𝐴𝜃𝛽(𝑠𝑑)

2
1 − (𝑅−1𝛿−)𝑁+Θ(𝑠,𝑠𝑑)

1 − 𝑅−1𝛿−
] . (2.134)

Furthermore, the terms 𝑅𝛿± can be written out:

𝑅−1𝛿± = e2𝜋𝑖(𝑄𝑧±𝑄𝑑
𝑧) = e±2𝜋𝑖𝑄

±
𝑧 , (2.135)

and

1 − e2𝑖𝛼 = −e𝑖𝛼2𝑖 sin𝛼 . (2.136)

Those identities can be used to simplify the exponentials

ℎ+𝑧 (𝑠, 𝑁) = 𝑅𝑠−𝑠𝑑𝑅
𝑁[ℎ+𝑧 (𝑠𝑑)

+
𝐴𝜃𝛽(𝑠𝑑)

4
1 − e2𝜋𝑖𝑄

+
𝑧 (𝑁+Θ(𝑠,𝑠𝑑))

e𝑖𝜋𝑄
+
𝑧 sin (𝜋𝑄+

𝑧 )

−
𝐴𝜃𝛽(𝑠𝑑)

4
1 − e−2𝜋𝑖𝑄

−
𝑧 (𝑁+Θ(𝑠,𝑠𝑑))

e𝑖𝜋𝑄
−
𝑧 sin (𝜋𝑄−

𝑧 )
] . (2.137)
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The term ℎ+𝑧 in Eq. (2.137) can be put into

̃ℎ+𝑧 (𝑠𝑑) ≡ ℎ+𝑧 (𝑠𝑑) + (
𝐴𝜃𝛽(𝑠𝑑)

4 sin (𝜋𝑄−
𝑧 )
𝜆𝑧e𝑖𝜋𝑄

−
𝑧 −

𝐴𝜃𝛽(𝑠𝑑)
4 sin (𝜋𝑄+

𝑧 )
e−𝑖𝜋𝑄

+
𝑧) . (2.138)

Now, the driven motion is seperated off:

ℎ+𝑧 (𝑠, 𝑁) = 𝑅𝑠−𝑠𝑑𝑅
𝑁[ ̃ℎ𝑧(𝑠𝑑)

+
𝐴𝜃𝛽(𝑠𝑑)

4 sin (𝜋𝑄−
𝑧 )

e−𝜋𝑖𝑄
−
𝑧 (2𝑁+2Θ(𝑠,𝑠𝑑)−1)

−
𝐴𝜃𝛽(𝑠𝑑)

4 sin (𝜋𝑄+
𝑧 )

e𝜋𝑖𝑄
+
𝑧 (2𝑁+2Θ(𝑠,𝑠𝑑)−1)] . (2.139)

and the linear rotation can be integrated into the terms:

ℎ+𝑧 (𝑠, 𝑁) = ̃ℎ𝑧(𝑠, 𝑁)

+
𝐴𝜃𝛽(𝑠𝑑)

4 sin (𝜋𝑄−
𝑧 )

e
𝑖[−2𝜋𝑁𝑄𝑧−𝜑𝑠𝑑𝑠+𝜋𝑄

−
𝑧 (2𝑁+2Θ(𝑠,𝑠𝑑)−1)]

−
𝐴𝜃𝛽(𝑠𝑑)

4 sin (𝜋𝑄+
𝑧 )

e
𝑖[2𝜋𝑁𝑄𝑧−𝜑𝑠𝑑𝑠−𝜋𝑄

+
𝑧 (2𝑁+2Θ(𝑠,𝑠𝑑)−1)] . (2.140)

Noting that

2Θ(𝑎) − 1 = sgn(𝑎), if 𝑎 ≠ 0 , (2.141)

Eq. (2.140) can be further simplified6:

ℎ+𝑧 (𝑠, 𝑁) = ̃ℎ𝑧(𝑠, 𝑁)

+
𝐴𝜃𝛽(𝑠𝑑)

4 sin (𝜋𝑄−
𝑧 )

e
𝑖[−2𝑁𝜋𝑄𝑑

𝑧−𝜑𝑠𝑑𝑠+𝜋𝑄
−
𝑧 sgn(𝑠−𝑠𝑑)]

−
𝐴𝜃𝛽(𝑠𝑑)

4 sin (𝜋𝑄+
𝑧 )

e
𝑖[2𝑁𝜋𝑄𝑑

𝑧−𝜑𝑠𝑑𝑠−𝜋𝑄
+
𝑧 sgn(𝑠−𝑠𝑑)] . (2.142)

The free motion of the beam is perturbed by two driving modes corresponding to the sum

and difference of natural tune and driven tune. Inmost applications the ac-dipole strength

is much greater than the free oscillation amplitude 𝐴𝜃𝛽(𝑠𝑑) ≫ | ̄ℎ𝑧(𝑠, 𝑁)|.

All derivations in this section have been made for ℎ+𝑧 . It shall be noted here that the nega-

6strictly speaking Eq. (2.142) is valid only for 𝑠 ≠ 𝑠𝑑 and one should carefully exclude this case in the follow-

ing. But since a measurement at the exact position of the AC Dipole is not possible in the first place this

fine detail will be ignored in this work.
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tively turning coordinate ℎ−𝑧 has the form

ℎ−𝑧 (𝑠, 𝑁) = ̃ℎ−𝑧 (𝑠, 𝑁)

+
𝐴𝜃𝛽(𝑠𝑑)

4 sin (𝜋𝑄−
𝑧 )

e
𝑖[2𝑁𝜋𝑄𝑑

𝑧+𝜑𝑠𝑑𝑠−𝜋𝑄
−
𝑧 sgn(𝑠−𝑠𝑑)]

−
𝐴𝜃𝛽(𝑠𝑑)

4 sin (𝜋𝑄+
𝑧 )

e
𝑖[−2𝑁𝜋𝑄𝑑

𝑧+𝜑𝑠𝑑𝑠+𝜋𝑄
+
𝑧 sgn(𝑠−𝑠𝑑)] . (2.143)

Subtracting the closed driven closed orbit ̃ℎ𝑧 and with the definition

𝜆𝑧 =
sin(𝜋𝑄−

𝑧 )
sin(𝜋𝑄+

𝑧 )
, (2.144)

the driven motion can be rewritten in the from

ℎ±𝑧 (𝑠, 𝑁) =
𝐴𝜃𝛽(𝑠𝑑)

4 sin (𝜋𝑄−
𝑧 )
[e±𝑖[−2𝑁𝜋𝑄𝑑

𝑧−𝜑𝑠𝑑𝑠+𝜋𝑄
−
𝑧 sgn(𝑠−𝑠𝑑)]

− 𝜆𝑧e
±𝑖[2𝑁𝜋𝑄𝑑

𝑧−𝜑𝑠𝑑𝑠−𝜋𝑄
+
𝑧 sgn(𝑠−𝑠𝑑)]] , (2.145)

which is used in other works [16, 17].

2.6.2 Compensation of linear parameters

This section briefly summarises the compensation of the driven motion for the optics pa-

rameters 𝛽, 𝛼 and 𝜑 7.

In an actualmeasurement the phase and amplitude are calculated from theFourier analysis

of the real signal.

𝐻(1, 0)free = 1
2 (𝐻

+(1, 0)free + 𝐻−(1, 0)free)

= √2𝐽𝑧𝛽 [e−𝑖𝜑(𝑠) + e𝑖𝜑(𝑠)] (2.146)

for the free motion and

𝐻(1, 0) =
𝐴𝜃𝛽(𝑠𝑑)

4 sin(𝜋𝑄−
𝑧 )

[e𝑖[−𝜑𝑠𝑑𝑠+𝜋𝑄
−
𝑧 sgn(𝑠𝑑𝑠)] − 𝜆e𝑖[𝜑𝑠𝑑𝑠+𝜋𝑄

+
𝑧 sgn(𝑠𝑑𝑠)]] (2.147)

for the driven motion. For the next steps the following trigonometric reformulation is

needed:

e𝑖(𝛼+𝛽) − 𝜆e𝑖(𝛼−𝛽) = e𝑖𝛼 (e𝑖𝛽 − 𝜆e−𝑖𝛽) . (2.148)

The sum of two oscillations with the same frequency forms a single oscillation, so the

7[16] and Ryoichi Miyamoto, private communication, Feb. 2017
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𝛽 term can be rewritten as

𝐵 = |𝐵|e𝑖𝜓 (2.149)

with

|𝐵|2 = (e𝑖𝛽 − 𝜆e−𝑖𝛽) (e−𝑖𝛽 − 𝜆e𝑖𝛽) = 1 + 𝜆2 − 2𝜆 cos 2𝛽

𝜓 = atan
ℐ𝑚 {𝐵}
ℛ𝑒 {𝐵}

= atan (1 + 𝜆
1 − 𝜆 tan 𝛽) . (2.150)

Now Eq. (2.147) can be put in this form by defining

𝛼 ≡ 𝜋𝑄𝑑
𝑧 sgn(𝑠 − 𝑠𝑑)

𝛽 ≡ 𝜋𝑄𝑧sgn(𝑠 − 𝑠𝑑) − 𝜑𝑠𝑑𝑠 (2.151)

This allows for 𝐻(1, 0) to be rewritten

𝐻(1, 0) =
𝐴𝜃𝛽(𝑠𝑑)

4 sin(𝜋𝑄−
𝑧 )√

1 + 𝜆2 − 2𝜆 cos [2𝜑𝑠𝑑𝑠 − 𝜋𝑄𝑧sgn(𝑠 − 𝑠𝑑)]

× e𝑖[𝜋𝑄
𝑑
𝑧sgn(𝑠−𝑠𝑑)+𝜓] . (2.152)

Comparing to the free case, Eq. (2.146), the driven phase is defined as

𝜑𝑑𝑠𝑑𝑠 = 𝑄𝑑
𝑧 sgn(𝑠 − 𝑠𝑑) + 𝜓

= 𝑄𝑑
𝑧 sgn(𝑠 − 𝑠𝑑) + atan (1 + 𝜆

1 − 𝜆 tan (𝜑𝑠𝑑𝑠 − 𝜋𝑄𝑧sgn(𝑠 − 𝑠𝑑))) (2.153)

which fullfils the symmetric property

(1 − 𝜆) tan (𝜑𝑑𝑠𝑑𝑠 − 𝜋𝑄𝑑
𝑧 sgn(𝑠 − 𝑠𝑑)) = (1 + 𝜆) tan (𝜑𝑠𝑑𝑠 − 𝜋𝑄𝑧sgn(𝑠 − 𝑠𝑑)) (2.154)

In order to get the driven Twiss parameters 𝛼𝑑, 𝛽𝑑 and 𝛾𝑑, the same relation between them

and the driven phase 𝜑𝑑 is imposed:

d𝜑𝑑

d𝑠 = 1
𝛽𝑑

(2.155)

Taking the derivative of Eq. (2.154) w.r.t. 𝑠 yields

(1 − 𝜆)𝜑′𝑑(𝑠)
cos2 [𝜑𝑑(𝑠) − 𝜋𝑄𝑑

𝑧 sgn(𝑠 − 𝑠𝑑)]
=

(1 + 𝜆)𝜑′(𝑠)
cos2 [𝜑(𝑠) − 𝜋𝑄𝑧sgn(𝑠 − 𝑠𝑑)]

, (2.156)

where it is assumed that all phases are w.r.t. the position of the AC-dipole 𝑠𝑑 and 𝑓′(𝑥)
denotes the derivative of the function 𝑓 with respect to 𝑥. Respectively, taking its square
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yields

(1 − 𝜆)
cos2 [𝜑𝑑(𝑠) − 𝜋𝑄𝑑

𝑧 sgn(𝑠 − 𝑠𝑑)]
+ 2𝜆 = (1 + 𝜆)2

cos2 [𝜑(𝑠) − 𝜋𝑄𝑧sgn(𝑠 − 𝑠𝑑)]
− 2𝜆 . (2.157)

Both equations can be used to cancel cos [𝜑𝑑(𝑠) − 𝜋𝑄𝑑
𝑧 sgn(𝑠 − 𝑠𝑑)]:

1
𝜑′𝑑(𝑠)

=
1 + 𝜆2 − 2𝜆 cos [2𝜑(𝑠) − 2𝜋𝑄𝑧sgn(𝑠 − 𝑠𝑑)]

1 − 𝜆2
1

𝜑′(𝑠)
(2.158)

which, finally, is the formula to compute the driven 𝛽 function:

𝛽𝑑(𝑠) =
1 + 𝜆2 − 2𝜆 cos [2𝜑(𝑠) − 2𝜋𝑄𝑧sgn(𝑠 − 𝑠𝑑)]

1 − 𝜆2 𝛽(𝑠) (2.159)

The driven 𝛼 function follows from the definition of the free 𝛼 function:

𝛼𝑑(𝑠) = 1
2
d𝛽𝑑

d𝑠

=
1 + 𝜆2 − 2𝜆 cos [2𝜑(𝑠) − 2𝜋𝑄𝑧sgn(𝑠 − 𝑠𝑑)]

1 − 𝜆2 𝛼(𝑠)

− 2𝜆 sin [2𝜑(𝑠) − 2𝜋𝑄𝑧sgn(𝑠 − 𝑠𝑑)] (2.160)

Comparing the amplitude of the drivenmotionEq. (2.152)with the amplitude of Eq. (2.146)

the driven action 𝐽𝑑𝑥 can be deduced:

√2𝐽𝑑𝑧 𝛽𝑑𝑧 (𝑠) =
𝐴𝜃√𝛽(𝑠𝑑)𝛽(𝑠)
4 sin(𝜋𝑄−

𝑧 ) √1 + 𝜆2 − 2𝜆 cos [2𝜑𝑠𝑑𝑠 − 𝜋𝑄𝑧sgn(𝑠 − 𝑠𝑑)]

⇒ 𝐽𝑑𝑧 =
𝐴2𝜃𝛽(𝑠𝑑)(1 − 𝜆2)
32 sin2(𝜋𝑄−

𝑧 )
. (2.161)

The expressions for the driven optics parameters 𝛽𝑑, 𝛼𝑑, 𝜑𝑑 and 𝐽𝑑 derived in this section

can be used to compensate for the effect of the driven motion on the measurement and

enable an easy measurement leveraging the advantages of an AC-dipole for optics mea-

surements in circular accelerators.
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CHAPTER 3

One of the most important figures of merit of optics correction is the deviation of the

real 𝛽 function from the model values, the 𝛽 beating. A deviation from the ideal values

has a negative effect on machine performance. Too high 𝛽 beating can even put machine

components in danger and a threshold for operation with physics filling scheme has to

be imposed for machine protection reasons.

Furthermore, large 𝛽 beating deteriorates other linear and especially non-linear optics
measurements and correction methods. Therefore a good control of the 𝛽 beating can be

essential for higher-order correction steps.

This chapter summarises classical 𝛽 beating methods from turn-by-turn data in sec-

tion 3.1 and describes in detail a new algorithm, the analytical N-BPM method, which

improves speed and performance by calculating analytically the error propagation in

sections 3.3 through 3.4. Accuracy and precision of the new method are assessed using

simulations of current LHC optics and design optics for the High-Luminosity upgrade of

the LHC in sections 3.5 and 3.6.

With the exception of the first two sections, which set the context of the present study

and introduce the mathematical tools, this chapter represents original work.

The content of this chapter has been published in [39].

3.1 𝛽 function measurement from turn-by-turn data

3.1.1 Three BPMmethod

The classical method to measure the 𝛽 function in hadron machines is the Three BPM

Method introduced in section 2.5.1.

With this method one can use the phase advance between three BPMs 𝑖, 𝑗, 𝑘 to calculate

the 𝛽 function of the probed BPM 𝑖. It is a model dependent approach, the greater the

difference between the model and the real accelerator the less accurate will be the result.

A good knowledge of the actual accelerator is crucial for this approach to work.
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BPM 1

𝜑12

BPM 2

𝜑23

BPM 3

𝜑12

𝜑13

𝜑13

𝜑23

Figure 3.1: A sketch of the three BPM method. The probed BPM is shown in blue. For LHC arcs

the combination with the probed BPM in the center is the most stable against phase measurement

errors.

Equation (2.94) has been developed for LEP and it has been used for optics measurements

in LEP and LHC during run I. But it has two shortcomings: it assumes that the actual

𝛽 beating is very low and it diverges for phase advances close to 𝑛𝜋, 𝑛 ∈ ℕ. The latter

makes measurements at exact 𝑛𝜋 phase advances impossible and strongly enhances phase

measurement errors near 𝑛𝜋. Unfortunately, especially in the IR phase advances are very

small and precise 𝛽 function measurements are not feasible.

Figure 3.1 displays a sketch of the Three BPMMethod. The probed BPM is shown in blue,

BPMs 𝑗 and 𝑘 are shown in red. Classically the arithmetic mean of all three adjacent cases

– as shown in the figure – were used.

In LHC arcs where the phase advance between adjacent BPMs is around 45° the combina-

tionwith the probed BPM in the center yields almost optimal results since the perturbation

from phase measurement errors is small for the occurring phase advances. The two other

cases shown in Fig. 3.1 on the other hand include the phase advance 𝜑13 = 90° which is

less optimal.

In LHC interaction regions the phase advance between consecutive BPMs does not follow

the same constraints as in the arc and values different from 45°may appear. In the final fo-

cus quadrupoles the 𝛽 function peaks are very high to deliver a strong focusing of the beams

in the interaction point1. This yields a very small phase advance in this area, rendering a

𝛽 measurement from phase impossible. At the same time a high precision of 𝛽 beating is

necessary to control 𝛽∗ and to optimise the aperture.

3.1.2 Original N-BPMmethod

To avoid cases with unsuitable phase advances or to get the optimal phase advances, BPMs

can be skipped. For an LHC arc a combination as shown in Fig. 3.2 can be used for the

non-center cases of the Three BPM method in order to have the least uncertainties in all

1cf. Fig. 2.3
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BPM 1

𝜑12

BPM 2

𝜑14

BPM 3 BPM 4

Figure 3.2: In the LHC arcs skipping one BPM for the non-center cases of the Three BPMMethod

is of advantage since the phase advance 𝜑14 is more suitable regarding error propagation.

three combinations.

A second tool that can be applied to reduce uncertainty is averaging over more combina-

tions which improves statistics and reduces statistical uncertainties. Unfortunately, sys-

tematic errors increase as more and more BPMs are skipped because of the presence of

other elements with their imperfections in between the BPMs. In order to further improve

the precision the information about statistical and systematic uncertainties can be used to

calculate a weighted mean:

𝛽(𝑠𝑖) = ∑
𝑙
𝛽𝑙(𝑠𝑖)𝑔𝑙 (3.1)

𝛽𝑙(𝑠𝑖) =
cot𝜑𝑖𝑗𝑙 − cot𝜑𝑖𝑘𝑙
cot𝜑m

𝑖𝑗𝑙 − cot𝜑m
𝑖𝑘𝑙
𝛽(𝑠𝑖)m , (3.2)

with the weights 𝑔𝑙 satisfying
∑
𝑙
𝑔𝑙 = 1 , (3.3)

and 𝑗𝑙, 𝑘𝑙 pairs of BPMs around the probed BPM.

Furthermore the 𝛽 function values calculated from different combinations are not sta-

tistically independent and correlation has to be taken into account when calculating the

weights. The N-BPMmethod [40, 41] was developed to implement this feature. It was suc-

cessfully used in the LHC during run II and for the re-analysis of run I data as well as in

the storage rings of ALBA and ESRF.

The name originates in the fact that the BPMs 𝑖, 𝑗𝑙 and 𝑘𝑙 are taken in a range of 𝑁 BPMs.

This generates 𝑛 = (𝑁 − 2)(𝑁 − 1)/2 combinations.

3.2 Generalised least squares

To get the correct estimate for the weights 𝑔𝑙 the study of some statistics is in order. The

weights can be determinedusing a least-squares optimisation. TheweightedmeanEq. (3.1)
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can be rewritten in vector notation:

⃗̂𝛽 = B ⃗𝛾 (3.4)

⃗̂𝛽 =
⎛
⎜
⎜
⎝

̂𝛽
⋮
̂𝛽

⎞
⎟
⎟
⎠

, ⃗𝛾 =
⎛
⎜
⎜
⎝

𝑔1
⋮
𝑔𝑛

⎞
⎟
⎟
⎠

, B =
⎛
⎜
⎜
⎝

⃗𝛽𝑇

⋮
⃗𝛽𝑇

⎞
⎟
⎟
⎠

, (3.5)

where each line of the equation system is just the same. The difference between measure-

ment 𝑙 and the mean value ̂𝛽 is denoted by 𝜖𝑙:

⃗𝜖 = ⃗̂𝛽 − ⃗𝛽 . (3.6)

The least square minimisation seeks a set of weights 𝑔𝑖 for which the squared errors are

minimal. Since the different 𝛽𝑙 are correlated and have a covariance matrix Cov[ ⃗𝛽] ≠
diag(𝜎21 ,… , 𝜎2𝑛) the theory of generalised least-squares estimation [42] has to be applied.

The covariance matrix of a set of random variables Ω𝑖 is defined as

Cov[Ω⃗] = E[(Ω⃗ − 𝐸[Ω⃗])(Ω⃗ − 𝐸[Ω⃗])𝑇]

= E[Ω⃗Ω⃗𝑇] − 𝐸[Ω⃗]𝐸[Ω⃗]𝑇 , (3.7)

where 𝐸[Ω⃗] is the expected value of the random variables Ω⃗. And the notation is chosen

such that the expected value of a vector is a vector of expected values of each component

and similar for matrices.

Equation (3.7) can be expressed element-wise:

(𝐶𝑜𝑣[Ω⃗])
𝑖𝑗
= 𝐸[Ω𝑖Ω𝑗] − 𝐸[Ω𝑖]𝐸[Ω𝑗] . (3.8)

3.2.1 Error Propagation

Consider a set of unperturbed phasemeasurements {𝜑1,… , 𝜑𝑛} and non-observable param-

eters {𝐾1,1,… , 𝐾1,𝑚, 𝑠1,… , 𝑠𝜈, 𝑥1,…𝑥𝜇}with corresponding errorsΔ𝜑𝛼, Δ𝐾1,𝛽, Δ𝑠𝛾, Δ𝑥𝜅. Col-
lecting all parameters into a vector

Ω⃗0 =

⎛
⎜
⎜
⎜
⎝

⃗𝜑
⃗𝐾
⃗𝑠
⃗𝑥

⎞
⎟
⎟
⎟
⎠

, ⃗ΔΩ =

⎛
⎜
⎜
⎜
⎝

⃗Δ𝜑
⃗Δ𝐾
⃗Δ𝑠
⃗Δ𝑥

⎞
⎟
⎟
⎟
⎠

. (3.9)
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Using a Taylor expansion the errors in these parameters can be propagated

𝛽𝑙(Ω⃗) = 𝛽𝑙(Ω⃗0) + 𝜕𝑖𝛽𝑙(Ω⃗0)ΔΩ𝑖 + 𝜕𝑖𝜕𝑗𝛽𝑙(Ω⃗0)ΔΩ𝑖ΔΩ𝑗 + 𝑂(ΔΩ3) , (3.10)

where the Einstein summation convention is used and the derivatives are w.r.t. Ω𝑖: 𝜕𝑖𝛽𝑙 ≡
𝜕𝛽𝑙
𝜕Ω𝑖

. The argument (Ω⃗0) is omitted in the following for the 𝛽 function and its derivatives

at the unperturbed position Ω⃗0. For the calculation of the covariance matrix, Eq. (3.10)

is truncated to second order and for convenience and readability, the two summands of

Eq. (3.8) are derived separately.

𝐸[𝛽𝑙(Ω⃗)] ≈ 𝐸 [𝛽𝑙 + 𝜕𝑖𝛽𝑙ΔΩ𝑖 + 𝜕𝑖𝜕𝑗𝛽𝑙ΔΩ𝑖ΔΩ𝑗] = 𝛽𝑙 + 𝜕𝑖𝛽𝑙𝐸[ΔΩ𝑖] + 𝜕𝑖𝜕𝑗𝛽𝑙𝐸 [ΔΩ𝑖ΔΩ𝑗] .
(3.11)

It is assumed that there are no systematic errors in the measurement instruments and so

𝐸[ΔΩ𝑖] = 0 and the middle term vanishes. One can conclude

𝐸[𝛽𝑙(Ω⃗)]𝐸[𝛽𝑚(Ω⃗)] ≈ 𝛽𝑙𝛽𝑚 + (𝛽𝑙𝜕𝑖𝜕𝑗𝛽𝑚 + 𝛽𝑚𝜕𝑖𝜕𝑗𝛽𝑙) 𝐸 [ΔΩ𝑖ΔΩ𝑗] , (3.12)

where terms proportional to the square of the variance go into the reminder 𝑂(ΔΩ3).

To calculate the term 𝐸[𝛽𝑙𝛽𝑚]more steps are needed:

𝐸 [𝛽𝑙(Ω⃗)𝛽𝑚(Ω⃗)] = 𝐸 [(𝛽𝑙 + 𝜕𝑖𝛽𝑙ΔΩ𝑖 + 𝜕𝑖𝜕𝑗𝛽𝑙ΔΩ𝑖ΔΩ𝑗)(𝛽𝑚 + 𝜕𝑖𝛽𝑚ΔΩ𝑖 + 𝜕𝑖𝜕𝑗𝛽𝑚ΔΩ𝑖ΔΩ𝑗)]

≈ 𝐸 [𝛽𝑙𝛽𝑚 + (𝛽𝑙𝜕𝑖𝛽𝑚 + 𝛽𝑚𝜕𝑖𝛽𝑙) ΔΩ𝑖 + 𝜕𝑖𝛽𝑙𝜕𝑗𝛽𝑚ΔΩ𝑖ΔΩ𝑗+

(𝛽𝑙𝜕𝑖𝜕𝑗𝛽𝑚 + 𝛽𝑚𝜕𝑖𝜕𝑗𝛽𝑙) ΔΩ𝑖ΔΩ𝑗]

= 𝛽𝑙𝛽𝑚 + 𝜕𝑖𝛽𝑙𝜕𝑗𝛽𝑚𝐸[ΔΩ𝑖ΔΩ𝑗] + (𝛽𝑙𝜕𝑖𝜕𝑗𝛽𝑚 + 𝛽𝑚𝜕𝑖𝜕𝑗𝛽𝑙) 𝐸 [ΔΩ𝑖ΔΩ𝑗] .
(3.13)

Finally, subtracting Eq. (3.12) from Eq. (3.13), yields

(Cov[ ⃗𝛽])𝑙𝑚 = 𝜕𝑖𝛽𝑙𝜕𝑗𝛽𝑚𝐸[ΔΩ𝑖ΔΩ𝑗] = 𝜕𝑖𝛽𝑙𝜕𝑗𝛽𝑚Cov[ ⃗ΔΩ]𝑖𝑗 . (3.14)

In the last step again the assumption 𝐸(ΔΩ𝑖) = 0 is made, implying

Cov[ ⃗ΔΩ]𝑖𝑗 = 𝐸 [ΔΩ𝑖] 𝐸[ΔΩ𝑗] − 𝐸 [ΔΩ𝑖ΔΩ𝑗] = 𝐸 [ΔΩ𝑖ΔΩ𝑗] . (3.15)

In matrix notation Eq. (3.14) reads

Cov [ ⃗𝛽] = T Cov [ ⃗ΔΩ] T𝑇, (3.16)

where

𝑇𝑖𝑗 =
𝜕𝛽𝑖
𝜕Ω𝑗

. (3.17)
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If the parameters Ω⃗ are uncorrelated, the covariance matrix of ⃗ΔΩ simplifies to

(Cov [ ⃗ΔΩ])
𝑖𝑗
= 0 if 𝑖 ≠ 𝑗 , (3.18)

(Cov [ ⃗ΔΩ])
𝑖𝑖
= 𝜎2𝑖 , (3.19)

⇒ 𝐸[ΔΩ𝑖ΔΩ𝑗] = 𝐸 [ΔΩ𝑖] 𝐸 [ΔΩ𝑗] if 𝑖 ≠ 𝑗 , (3.20)

and Eq. (3.14) reads

(Cov[ ⃗𝛽])𝑙𝑚 = 𝜕𝑖𝛽𝑙𝜕𝑖𝛽𝑚𝐸[ΔΩ2
𝑖 ] = 𝜕𝑖𝛽𝑙𝜕𝑖𝛽𝑚𝜎2𝑖 , (3.21)

with the variance being defined by

𝜎2𝑖 = 𝐸 [ΔΩ2
𝑖 ] . (3.22)

3.2.2 The generalised least-squares estimator

After computing the covariance matrix of 𝛽, the generalised least-squares estimator can be

calculated by solving the translated system

X−1 ⃗𝛽 = X−1B ⃗𝛾 + X−1 ⃗𝜖 (3.23)

where the translation X is such that X𝑇X = V = Cov[ ⃗𝛽]. The least-squares estimation

searches for a minimum of

‖
‖X

−1 ( ⃗𝛽 − B ⃗𝛾)‖‖
2
= ( ⃗𝛽 − B ⃗𝛾)

𝑇
V−1 ( ⃗𝛽 − B ⃗𝛾) . (3.24)

Eq. (3.24) can be solved in the index notation:

𝜕
𝜕𝑔𝑘

∑
𝑖,𝑗
(𝛽𝑖 −∑

𝑙
𝛽𝑙𝑔𝑙)𝑉−1

𝑖𝑗 (𝛽𝑗 −∑
𝑚
𝛽𝑚𝑔𝑚) = 2∑

𝑖,𝑗
𝛽𝑘𝑉−1

𝑖𝑗 (𝛽𝑗 −∑
𝑚
𝛽𝑚𝑔𝑚) = 0

⇒ ∑
𝑖,𝑗
𝑉−1
𝑖𝑗 𝛽𝑗 = ∑

𝑖,𝑗
𝑉−1
𝑖𝑗 ∑

𝑚
𝛽𝑚𝑔𝑚

⇒∑
𝑚
𝑔𝑚𝛽𝑚 =

∑
𝑖,𝑗
𝑉−1
𝑖𝑗 𝛽𝑗

∑
𝑖,𝑗
𝑉−1
𝑖𝑗

= ∑
𝑚

∑
𝑖
𝑉−1
𝑖𝑚

∑
𝑖,𝑗
𝑉−1
𝑖𝑗

𝛽𝑚 (3.25)
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where the summation index can be renamed in the numerator to highlight a solution of

the system:

𝑔𝑖(V) =
∑
𝑘
𝑉−1
𝑖𝑘

∑
𝑗,𝑘
𝑉−1
𝑗𝑘

. (3.26)

The uncertainty of the weighted average is then

𝜎2(X−1 ⃗𝛽) = ⃗𝑔𝑇V ⃗𝑔 = ∑
𝑖,𝑗
𝑔𝑖𝑉𝑖𝑗𝑔𝑗 . (3.27)

3.2.3 Error matrix for N-BPMmethod

The error matrix V can be optained from the single variances by

V = TMT−1 , (3.28)

whereM = diag(𝜎2𝜑1,… , 𝜎2𝜑𝑛) is a diagonal matrix consisting of the variances of the phases

and T is the Jacobian matrix

𝑇𝑙𝜆(𝑠𝑖) =
𝜕𝛽𝑙(𝑠𝑖)
𝜕𝜑𝜆

|||𝛿𝜑=0
, (3.29)

𝛿𝜑 = 0meaning that the derivatives are evaluated with all phase advance errors set to zero.

The correlation of statistical errors (coming from BPM noise) is

𝑇𝜑
𝑙𝜆(𝑠𝑖) =

𝜕𝛽𝑙(𝑠𝑖)
𝜕𝜑𝜆

|||𝛿𝜑=0
=

(𝛿𝜆𝑖 − 𝛿𝜆𝑗𝑙 ) sin
−2 𝜑m

𝑖𝑗𝑙 − (𝛿𝜆𝑖 − 𝛿𝜆𝑘𝑙) sin
−2 𝜑m

𝑖𝑘𝑙
cot𝜑m

𝑖𝑗𝑙 − cot𝜑m
𝑖𝑘𝑙

𝛽m(𝑠𝑖) . (3.30)

A superscript 𝜑 is placed here intentionally to highlight that the T matrix only includes

statistical errors coming from the uncertainty of the phase measurement. 𝛿𝛼𝛽 denotes the

Kronecker 𝛿. Including systematic errors, the total error matrix is

V = Vstat + Vsyst , (3.31)

where Vstat = T𝜑MT𝜑
−1

and the total uncertainty of the averaged ̂𝛽 is then given by

𝜎2 ̂𝛽 = 𝜎2stat + 𝜎2syst . (3.32)
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3.2.4 Extension of the N-BPMmethod

In the existing numerical N-BPM method only the statistical errors are calculated analyt-

ically while Vsyst and hence 𝜎2syst are evaluated from Monte Carlo simulations of lattices

with errors. For that the statistics over many simulations is gathered. Even with a highly

parallelised code on a multicore machine this procedure takes about 1 hour for a “fast”

set of 1000 simulations. Since the computation time scales linearly with the number of

simulations, this can take up to 10 hours for 104 simulations which were used in the post

processing of a measurement.

In this thesis a new method is introduced that calculates also the systematic errors ana-

lytically. On the same computer the analytical N-BPM method takes only 30 seconds to

compute the 𝛽 function for more than 500 BPMs whereas the N-BPM method takes about

one hour. It provides a fully analytical calculation of the uncertainties while the precision

of the original method depends on the number of simulations. Any source of uncertain-

ties can be taken into account if its analytical expression is known. The method does not

depend on the stability of the lattice whereas the Monte Carlo simulations fail if, for some

combinations of errors, no closed orbit can be found. This is a limiting factor when the

N-BPMmethod is used for pushed optics with very low 𝛽∗ like the HL-LHC.

3.3 Corrected 𝛽 from phase formula

Equation (2.94) assumes that no error is present in the region between the involved BPMs.

A new formula has been developed in [34] that takes quadrupolar errors into account,

𝛽(𝑠1) =
cot𝜑12 − cot𝜑13

cot𝜑m
12 − cot𝜑m

13 + ̄ℎ12 − ̄ℎ13
𝛽m(𝑠1) + 𝑂(𝛿𝐾2

1) , (3.33)

with

̄ℎ𝑖𝑗 =
∑

𝑖<𝑤<𝑗
𝛽m𝑤𝛿𝐾𝑤,1 sin2 𝜑m

𝑤𝑗

sin2 𝜑m
𝑖𝑗

. (3.34)

The sum runs over all elements𝑤 between BPMs 𝑖 and 𝑗. 𝛿𝐾𝑤,1 is the integrated quadrupo-
lar field error of element 𝑤. The definition of 𝐾𝑛 follows the MAD [43] convention. Note

that Eq. (3.34) is only defined for the case 𝑠1 < 𝑠2 < 𝑠3 i.e. the 𝛽 function is calculated at

the position of the first BPM. Since we want to use as many BPM combinations as possible

we will derive below a form of Eq. (3.33) without this constraint.

In [34] the quality of Eq. (3.33) has been assessed for the ESRF storage ring by simulating

a lattice with errors and comparing the results of Eq. (3.33) to the beta beating of the sim-

ulated lattice. In this paper the same study is repeated for the LHC and its future upgrade
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element
𝜎𝐾/𝐾1 𝜎𝑠 𝜎𝑥
[10−4] [mm] [mm]

MQ 18 1.0
MQM 12 1.0 -

MQY 11 1.0 -

MQX 4 6.0 -

MQW 15 1.0 -

MQT 75 1.0 -

MS - - 0.3
BPM - 1.0 -

Table 3.1: Estimates for the LHC gradient and misalignment errors. MQ are focusing and defocus-

ing quadrupoles, MS are sextupoles. The values of the magnet errors are derived from magnetic

measurements of [44, 45].
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Figure 3.3: Left: Difference between the real (simulated) horizontal 𝛽-functions and the ones cal-

culated by Eq. (2.94) in red and (3.33) in blue, respectively. Data are from MADX simulations of

a lattice with quadrupolar errors only. Right: The same quantities are evaluated for the case with

additional magnet misalignments. the numbers which figure after the legend label show the root

mean square of the deviation and the the peak-to-peak derivation in parenthesis.

the HL-LHC. Table 3.1 summarises those uncertainty estimates for the LHC elements that

are relevant for this study. In Figure 3.3 a comparison between Eqs. (2.94) and (3.33) is

shown in the horizontal plane. The plot shows a histogram of the deviation of the two for-

mulae from the real (i.e. simulated) 𝛽 function values. The histogram contains the values

of all the individual BPMs for one simulated lattice. The left plot shows the case with only

quadrupolar field errors whereas in the right plot also misalignment errors were included

in the lattice. The introduction of errors not taken into account in Eq. (3.34) deteriorates

the result. However Eq. (3.33) still yields a clearly better estimate.

Moreover Eq. (3.33) may be easily modified for taking into account a more realistic set of

errors – quadrupolar field errors aswell as sextupole transversemisalignments, quadrupole

longitudinal misalignments and BPM longitudinal displacements.

While the magnet misalignment errors can be approximated as effective quadrupolar field

errors and integrated in Eq. (3.34) the BPM misalignments need a different approach as
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𝐾1

𝛿𝑠

𝐾1

𝑘1𝛿𝑠 −𝑘1𝛿𝑠

Figure 3.4: The top sketch shows the displaced quadrupole (solid gray) relative to the original po-

sition (dashed). In the bottom sketch one can see the quadrupole at its original position with thin

magnets on both ends.

shown in the next paragraph.

3.3.1 Effect of transverse sextupole misalignments

The magnetic field of a sextupole displaced horizontally by Δ𝑥 reads

𝐵𝑦 =
𝐵
2 ((𝑥 + Δ𝑥)2 − 𝑦2) . (3.35)

This induces a quadrupolar field error whose strength 𝛿𝐾1 is

𝛿𝐾1 =
1

𝐵0𝜌0

𝜕𝐵𝑦
𝜕𝑥

|
|
|𝑥=𝑦=0

= 𝐵
𝐵0𝜌0

Δ𝑥 . (3.36)

This term can be used in Eq. (3.34) to include sextupole offsets in ̄ℎ𝑖𝑗.

3.3.2 Effect of longitudinal quadrupole misalignments

The effect of a longitudinal displacement 𝛿𝑠 of a quadrupole magnet can be approximated

by leaving the magnet at its original position and introducing two thin magnets at its edges

to mimic the displacement, as shown in Figure 3.4. The top part of the figure shows the

actual situation: The quadrupole is moved to the left such that it covers now the hatched

area in addition to the gray region. The bottom part illustrates the approximation method:

In the direction of the displacement there is an additional element with integrated field

strength 𝛿𝐾1 = 𝑘1𝛿𝑠 (𝑘1 being the non-integrated quadrupole strength), to simulate the

part of the quadrupole that moved into this area whereas an error −𝛿𝐾1 is placed at the

opposite end to compensate the part of the quadrupole that moved out of this area.
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3.3.3 Effect of BPMmisalignments

An error, 𝛿𝑠𝑖, in the longitudinal position of a BPM affects the evaluation of Eq. (3.33)

and Eq. (3.34) which rely on the model values of 𝛽 and 𝜑 at the nominal position of the

BPM. Using Eq. (2.7) the phase error and the resulting 𝛽 shift at the position 𝑠𝑖+𝛿𝑠𝑖 can be

approximated as

̃𝜑𝑖 ≈ 𝜑𝑖 +
1
𝛽𝑖
𝛿𝑠𝑖 , (3.37)

̃𝛽𝑖 ≈ 𝛽𝑖 +
𝜕𝛽𝑖
𝜕𝑠 𝛿𝑠𝑖 = 𝛽𝑖 − 2𝛼𝑖𝛿𝑠𝑖 , (3.38)

up to first order in 𝛿𝑠𝑖.

3.3.4 Derivation of a corrected 𝛽 from phase formula

An equation similar to Eq. (3.33) has to be re-derived by taking into account the consider-

ations of the preceding sections.

First, focusing errors, Eq. (2.87), and BPM misalignments, Eq. (3.37), are incorporated in

the phase advance 𝜑𝑖𝑗:

𝜑err
𝑖𝑗 = 𝜑m

𝑖𝑗 + ̄ℎ𝑖𝑗 − 8 sin2 𝜑m
𝑖𝑗ℛ𝑒 {𝑓𝑖} − 8 sin𝜑m

𝑖𝑗 cos𝜑m
𝑖𝑗ℐ𝑚 {𝑓𝑖} +

1
𝛽m𝑗

𝛿𝑠𝑗 −
1
𝛽m𝑖

𝛿𝑠𝑖

= 𝜑m
𝑖𝑗 + Δ𝜑𝑖𝑗 . (3.39)

Together with the 𝛽 shift of Eq. (3.38), the 𝛽 beating Eq. (2.77) and the 𝛼 beating, the quo-

tient of the first row elements of the transfer matrix, Eq. (2.92), reads

(𝑚𝑖𝑗)11
(𝑚𝑖𝑗)12

= 1
(𝛽m𝑖 − 2𝛼m𝑖 𝛿𝑠𝑖)(1 − 8ℐ𝑚 {𝑓𝑖})

(cot𝜑err
𝑖𝑗 + 𝛼𝑖(1 − 8ℐ𝑚 {𝑓𝑖} − 8ℛ𝑒 {𝑓𝑖})m) .

(3.40)

The cotangent above can be expanded in a Taylor series around 𝜑m
𝑖𝑗 :

cot𝜑err
𝑖𝑗 = cot𝜑m

𝑖𝑗 (1 − 8ℐ𝑚 {𝑓𝑖}) +
̄ℎ𝑖𝑗

sin2 𝜑m
𝑖𝑗
− 8ℛ𝑒 {𝑓𝑖} +

1
𝛽m
𝑖
𝛿𝑠𝑖 +

1
𝛽m
𝑗
𝛿𝑠𝑗

sin2 𝜑m
𝑖𝑗

(3.41)

and Eq. (3.40) can be simplified:

(𝑚𝑖𝑗)11
(𝑚𝑖𝑗)12

= 1
𝛽m𝑖 − 2𝛼m𝑖 𝛿𝑠𝑖

(cot𝜑err
𝑖𝑗 + 𝛼m𝑖 + ̄𝑔𝑖𝑗) (3.42)
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Figure 3.5: Accuracy of the horizontal 𝛽-function evaluated via Eq. (2.94) and Eq. (3.45) with the

effect of magnets and BPMmisalignments taken into account. The accuracy of Eq. (3.45) is similar

to the one of Eq. (3.33) with quadrupolar field errors only (Figure 3.3).

with

̄𝑔𝑖𝑗 = sgn(𝑖 − 𝑗)

1
𝛽m(𝑠𝑗)

𝛿𝑠𝑗 −
1

𝛽m(𝑠𝑖)
𝛿𝑠𝑖 + ∑

𝑤∈𝐼
𝛽m𝑤𝛿𝐾𝑤,1 sin2 𝜑m

𝑤𝑗

sin2 𝜑m
𝑖𝑗

, (3.43)

To get the corrected 𝛽 from phase formula one has to follow the same steps as in sec-

tion 2.5.1:

(𝑚𝑖𝑗)11
(𝑚𝑖𝑗)12

−
(𝑚𝑖𝑘)11
(𝑚𝑖𝑘)12

= 1
𝛽𝑖
(cot𝜑𝑖𝑗 − cot𝜑𝑖𝑘) −

1
(𝛽m𝑖 − 2𝛼m𝑖 )

× [cot𝜑m
𝑖𝑗 + ̄𝑔𝑖𝑗 − cot𝜑m

𝑖𝑘 − ̄𝑔𝑖𝑘] (3.44)

and the final expression for the 𝛽 function at position 𝑠𝑖 from the combination 𝑙 reads

𝛽𝑙(𝑠𝑖) ≈
cot𝜑𝑖𝑗𝑙 − cot𝜑𝑖𝑘𝑙

cot𝜑m
𝑖𝑗𝑙 − cot𝜑m

𝑖𝑘𝑙 + ̄𝑔𝑖𝑗𝑙 − ̄𝑔𝑖𝑘𝑙
[𝛽m(𝑠𝑖) − 2𝛼m(𝑠𝑖)𝛿𝑠𝑖] . (3.45)

In order to account for sextupole misalignments and quadrupole longitudinal misalign-

ments, it suffices to add the corresponding effective 𝛿𝐾1 to the sum in ̄𝑔𝑖𝑗, as described in

the previous sections. The set 𝐼 is defined in Eq. (2.82), so that an element with index𝑤 ∈ 𝐼
lies between elements 𝑖 and 𝑗 and Eqs (3.45) and (3.43) hold for every BPM combination 𝑖,
𝑗, 𝑘. By doing so, we do not need to distinguish the three cases where the probed BPM is

in the middle, left or right.

All these considerations can be put into Eq. (3.45) and used to get a more accurate 𝛽 func-

tion. To verify the validity of Eq. (3.45), its horizontal 𝛽-functions are compared to the

ones simulated by MADX along with the ones inferred from Eq. (2.94), this time including
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sextupole radial offsets and BPMs longitudinal shifts.

The result is shown in Figure 3.5. The accuracy is now as good as the one of Eq. (3.33)

when only quadrupolar field errors were introduced in the lattice, which in turn is much

greater than the old formula, Eq. (2.94).

3.4 Calculation of the correlation matrix

The Jacobian T of Eq. (3.29) can be split into blocks

T = (T𝜑 T𝐾 T𝑠) , (3.46)

for the uncertainties of phase T𝜑, quadrupole field T𝐾 and BPM misalignment T𝑠. T𝜑 is

the same of Eq. (3.30). For the quadrupolar field errors we get

𝑇𝐾
𝑙𝜆 (𝑠𝑖) =

𝜕𝛽𝑙(𝑠𝑖)
𝜕𝐾1,𝜆

|||
𝛿𝐾=0

= ∓
𝛽m(𝑠𝑖)𝛽m(𝑠𝜆)

cot𝜑m
𝑖𝑗𝑙 − cot𝜑m

𝑖𝑘𝑙
(
sin2 𝜑m

𝜆𝑗𝑙

sin2 𝜑m
𝑖𝑗𝑙

𝐴𝑖𝑗𝑙(𝜆) −
sin2 𝜑m

𝜆𝑘𝑙

sin2 𝜑m
𝑖𝑘𝑙

𝐴𝑗𝑘𝑙(𝜆)) ,

(3.47)

with

𝐴𝑖𝑗(𝜆) =
⎧

⎨
⎩

1 if 𝑖 < 𝜆 < 𝑗
−1 if 𝑗 < 𝜆 < 𝑖
0 else

. (3.48)

The contribution from the BPMmisalignment is calculated analogously:

𝑇𝑠
𝑙𝜆(𝑠𝑖) =

𝜕𝛽𝑙(𝑠𝑖)
𝜕𝑠𝜆

|||𝛿𝑠=0

= −2𝛼𝑚(𝑠𝑖)𝛿𝜆𝑖 ∓

sgn(𝑖 − 𝑗𝑙)
sin2 𝜑m

𝑖𝑗𝑙

(
𝛽m(𝑠𝑖)
𝛽m(𝑠𝑗𝑙)

𝛿𝑗𝑙𝜆 − 𝛿𝑖𝜆) −
sgn(𝑖 − 𝑘𝑙)
sin2 𝜑m

𝑖𝑘𝑙

(
𝛽m(𝑠𝑖)
𝛽m(𝑠𝑘𝑙)

𝛿𝑘𝑙𝜆 − 𝛿𝑖𝜆)

cot𝜑m
𝑖𝑗𝑙 − cot𝜑m

𝑖𝑘𝑙
.

(3.49)

In Eq. (3.47) and Eq. (3.49) the minus and plus signs refer to the horizontal and vertical

case, respectively.

3.5 Removal of bad BPM combinations

Since a phase advance 𝜑𝑖𝑗 ≈ 𝑛𝜋 results in an enhancement of phase measurement errors

and in the extreme case numerically unstable values, a filtering was introduced. Instead

of keeping a constant number of combinations as in [40] we set a threshold for bad phase
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Figure 3.6: Comparison of the 3-BPM method, the original N-BPM method and the analytical N-

BPM method (denoted as A.N-BPM) for the nominal LHC lattice at collision, with 𝛽∗ = 40 cm.

BOTTOM: histogram of the difference to the real 𝛽-function in percent. TOP: the average of the

error bars and the accuracy spread (width of a standard distribution fit to the distribution in the

bottom plot) in percent. The analytical N-BPM method has the best accuracy both in the arcs and

in the IRs. Data have been cleaned of outliers.
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Figure 3.7: Same comparison of Figure 3.6 between the threemethods for the HL-LHC 𝛽∗ = 15 cm
ATS optics. The analytical N-BPM method yields clearly better results, both in the IRs and in the

arcs. Compared to the 𝛽∗ = 40 cm optics shown in Figure 3.6, the 𝛽 function reconstruction is less

accurate: This was also demonstrated for the 𝛽∗ = 20 cm optics in [40].
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BPM method. BOTTOM: analytical N-BPM method. The 3-BPM method suffers from bad phase

advances and has many outliers. The regions of high 𝛽 beating at around 8000m and 23 000m lie
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Figure 3.9: A comparison of the error bars of the 𝛽∗ = 10 cm optics of the October 2016 MD. TOP

LEFT: histogram of the error bars of beam 1. TOP RIGHT: histogram of the error bars of beam 2.

BOTTOM: mean of the size the error bars. The mean of the analytical N-BPM method is a factor 4

more accurate than the 3 BPMmethod. The third set of values shows the mean of the error bars of

the simulations as shown in Figure 3.7 but for the whole ring.



Chapter 3 The Analytical N-BPMmethod 55

advances. A phase advance Δ𝜑 is considered bad if Δ𝜑 ∈ [𝑛𝜋 − 𝛿, 𝑛𝜋 + 𝛿] for 𝑛 ∈ ℕ and

a given threshold 𝛿. If any of the four phase advances 𝜑𝑖𝑗𝑙, 𝜑𝑖𝑘𝑙, 𝜑
m
𝑖𝑗𝑙, 𝜑

m
𝑖𝑘𝑙 in Eq. Eq. (2.94) is

bad, the corresponding BPM combination is disregarded in the calculation of the weighted

mean. This allows us to still use several combinations but skipping those which are nu-

merically unstable. The current value for the threshold is 𝛿 = 2𝜋 ⋅ 10−2. The use of fewer
combinations results in a lower computation time.

To test the analytical N-BPMmethod and compare it to the original 3-BPM and the Monte

Carlo N-BPM method, a large set of LHC lattices with 𝛽∗ = 40 cm with randomly dis-

tributed errors is generated and a measurement is simulated by tracking a single particle

via polymorphic tracking code (PTC) [46]. The random errors are created from table 3.1

and a Gaussian noise of 𝜎𝑥 = 0.1mm is applied to the BPM signal. No singular value de-

composition cleaning is applied since it would clean the artificial noise too efficiently [47].

The excitation amplitude is 0.8mm at a 𝛽 function of about 120m. The tracked particle

positions are then analyzed by the three methods (3-BPM, N-BPM and analytical N-BPM)

and the respective deviation from the real horizontal 𝛽 function is shown in the bottom

plot of Figure 3.6. The analytial N-BPM method includes the filtering of phase advances.

Especially in the IR, where neighbouring BPMs have often unsuitable phase advances, the

N-BPM and analytical N-BPMmethod yield more accurate values.

The top diagram of Figure 3.6 shows that the error of the 3-BPM method is considerable

larger, whereas the N-BPM and analytical N-BPM method are very accurate with similar

accuracies in the IR and arcs.

3.6 HL-LHC

The ATS optics [48] is the baseline choice for the HL-LHC and our optics measurement

tools have to be prepared for the challenges imposed by such an optics. In Figure 3.7 the

three methods are compared in the same way as in Figure 3.6. The excitation amplitude

was 0.8mm at a 𝛽 function of 127m. For the current HL-LHC collision optics (𝛽∗ = 15 cm)

the performance of N-BPM and analytical N-BPM method is again better than the 3-BPM

method, especially in the IRs. All three methods are, however, about a factor two more

inaccurate than for the 𝛽∗ = 40 cm optics of LHC, in agreement with Figure 7 of [40].

In the post-processing of the data taken during the LHC Machine Development measure-

ment (MD) [49] for testing the ATS principle with a 𝛽∗ = 10 cm optics, the analytical

N-BPM method was used for the first time with filtering of bad phase advances. Figure 7

demonstrates that the analytical N-BPMmethod deals well with theATSMDoptics. Monte

Carlo simulations were not possible for this optics.

Figure 3.9 shows the precision of the final results for the 𝛽∗ = 10 cm optics of both beams
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compared to the simulations of the HL-LHC lattice with 𝛽∗ = 15 cm. To ease the com-

parison the error bars are shown in the bottom plot. They are slightly larger for the real

measurement than those in simulations. We believe that the use of lower beam excitation

to ensure machine protection is behind these larger error bars. Figure 3.8 shows also that

the 3-BPMmethod hasmany outliers and error bars up to several kilometers caused by bad

phase advances. Large error bars have been excluded for the mean shown in Fig. 3.9.

The Monte Carlo simulations failed for low 𝛽∗ optics and so we were not able to use the

original N-BPM method during ATS MDs. This is another advantage of the analytical N-

BPM method that it is able to evaluate the systematic errors independently of the success

of particle tracking.

3.7 Conclusion

A newmethod for the measurement of 𝛽 and 𝛼 functions has been developed based on the

existing N-BPMmethod. A fully analytical calculation of the covariance matrix provides a

faster andmore accuratemeasurement of 𝛽 and𝛼 functions. The analyticalN-BPMmethod

also avoids the complications from failing to find closed optics that occur in the Monte

Carlo simulations needed by the existing N-BPM method. This stability with respect to

the choice of optics model makes it more suitable for low 𝛽∗ optics. Simulations show

that, together with a filtering of BPM combinations according to the phase advances, the

method is optimal for the HL-LHC upgrade.

In the last years, the analytical N-BPMmethod has been used as standard method to mea-

sure the𝛽 function inLHCbeamcommissionning andmachine development studieswhere

it has been producing a high quality analysis and contributed to the remarkable perfor-

mance of the LHC in run II. Themethod also has been used in collaborative efforts with ac-

celerators from several external institutes like SuperKEKB (KEK) and PETRA III (DESY).
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A local observable for linear

lattice imperfections

CHAPTER 4

Finding a truly local observable for perturbations of the linear beam dynamics is a

nontrivial task, contrary to the nonlinear regime, where local resonance driving terms

already exist. The phase beating between two locations depends on errors outside of this

region. However, phase advances between four nearby locations can be arranged in a

way to cancel the contributions from errors outside of this region up to first order. The

resulting local observable contains valuable information about quadrupolar lattice im-

perfections. This chapter seeks to explore this local phase beating observable and to test its

usefulness for gaining insight in the linear optics imperfections of a circular accelerator.

This chapter is entirely based on original work of the author. Section 4.1 gives a brief

introduction and motivation for the presented work. Section 4.2 presents the main part

with a rather technical derivation of the local observable. A thorough verification of the

validity and possible use cases are presented in section 4.3, using the LHC as example.

In section 4.4 actual measurement data, acquired during LHC beam commissioning,

conducted by the OMC team, is compared to the simulated results.

The content of this chapter has been published in [50].

4.1 Introduction

Special accelerator segments like the interaction regions of colliders need a precise control

of local optics which becomes a challenging task if the optics are pushed to more extreme

settings. New methods and more precise hardware are required to measure and correct

machine imperfections such as quadrupole errors. In the case of a collider the exact mea-

surement and control of the 𝛽 function at the interaction point is important for operation

of the machine and to optimise luminosity [51].

In contrast to a global correction of the phase advance, which is only valid for a certain
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optics configuration, the identification and correction of a distinct local error source would

cancel this error source for all optics configurations.

In order to locate error sources we are interested in local observables, i.e. terms that only

depend on lattice parameters and error sources in a localised region. Such a local observ-

able does not exist for linear lattice imperfections. For the non-linear ones one has been

found so far [31, 35]:

𝜒(𝑁) = ̂𝑥1(𝑁)

cos (𝜑𝑥,12 −
𝜋
2
)
+

̂𝑥3(𝑁)

cos (𝜑𝑥,23 −
𝜋
2
)

+ ̂𝑥2(𝑁) (tan (𝜑𝑥,12 −
𝜋
2 ) + tan (𝜑𝑥,23 −

𝜋
2 )) . (4.1)

𝜒(𝑁) is built with the signal of three beam position monitors at positions 𝑠1, 𝑠2, 𝑠3.

An extension of 𝜒(𝑁) into the linear regime does not seem possible since measured ampli-

tude and phase are used in a way to remove information on the linear beam dynamics.

Certain optics parameters (e.g. the 𝛽 function or coupling) can be calculated from the phase

advances between two or three BPMs [52, 17, 38] independently from BPM calibration

errors [53]. The phase advance measured from a Fourier Transform [54] turn-by-turn data

is independent of the amplitude of the signal and, thus, not affected by calibration errors.

The phase advance between two elements of an accelerator depends, in general, on all

the elements in the ring. Focusing errors are of particular interest with their first order

influence on the 𝛽 function. The impact they cause on RDTs can be seen in Eq. (2.72),

explicitly for a single error source located at position 𝑠1:

𝑓2000,𝑗 = 𝛿𝐾𝛽𝑥(𝑠1)e2𝑖[𝜑(𝑠𝑗)−𝜑(𝑠1)] (4.2)

The top plot of Figure 4.1 illustrates the effect of a single focusing error on the RDT. In

the case of a model phase advance of 𝜋 or a multiple of it, the effect is identical on both

BPMs, if the error does not occur in between them. In the other case both BPMs experience

different effects on their RDTs as shown in the bottom plot.

From Eq. (2.83) one can see that the effect on the phase advance depends, up to first order,

on global terms only in the form of ℛ𝑒 {𝑓𝑗 − 𝑓𝑖}.

Under the assumption that coupling andhigher order imperfections are negligiblewe study

the effect of quadrupolar field errors on the phase advance up to first order and construct

an observable for linear lattice imperfections that is local. For second order considerations

we find a formula for phase beating but global contributions cannot be eliminated.

The focus of this work lies on circular machines where phase advance can be measured

accurately by exciting an oscillation of the beam. Excitation methods include single kicks
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Figure 4.1: Sketch of the effect of a focus error Δ𝐾 on 𝑓2000. The error creates a phase advance

beating ∝ e2𝑖𝜑
m

. The incontinuity at the position of the source is caused by the propagation of the

phase beating around the ring. TOP: If the error lies outside the interval from BPM1 to BPM2 and

the model phase advance between the two BPMs is exactly 𝜋, the effect is the same and the phase

advance beating is unaffected by this error. BOTTOM: If the error lies in between the two BPMs no

cancellation is possible.

and driven oscillation by an AC-dipole [16] which generate a stable coherent motion of

the beam. Conceptually the local observable described in this work applies also to linear

machines1but accurate measurements of phase advances remain challenging in ths kind

of accelerator and the application of the proposed technique might not be practical. In-

stead model-based fitting methods [55] might be more suited to retrieve optics parameters

directly.

4.2 Local observable

The effect of linear lattice imperfections on the resonance driving terms (RDTs) and their

impact on the betatron phase is studied. We express the betatron motion in the language

of normal form and Courant-Snyder coordinates [30].

The phase beating due to quadrupolar field errors is given by Eq. (2.87) which is repeated

here for convenience:

Δ𝜑𝑖𝑗 = ̄ℎ𝑖𝑗 − 8 sin2 𝜑m
𝑖𝑗ℛ𝑒 {𝑓𝑖} − 8 sin𝜑m

𝑖𝑗 cos𝜑m
𝑖𝑗ℐ𝑚 {𝑓𝑖} + 𝑂(𝑓2) . (4.3)

̄ℎ𝑖𝑗 only depends on quadrupole errors inside the range [𝑖, 𝑗] and is therefore a local term.

The RDTs 𝑓𝑖 in Eq. (2.87), on the other hand, contain global contributions.

1Here, linear refers to a straight beam line as opposed to a lattice of linear magnets
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The following subsections describe the derivation of an expression for local phase beating

in two distinct cases: The first is the general case with arbitrary phase advances between

the BPMs. A combination of four BPMs is necessary to calculate a pure local term. The

second case considers only two BPMs with a phase advance of 𝜋.

4.2.1 The general case – phase advances different from 𝑛𝜋

i j k l

ϕij

ϕik

ϕil

Figure 4.2: The interval of BPMs with corresponding phase advances.

Equation (2.87) still carries a dependence on the global error distribution in the form of the

terms 𝑓𝑖. We can eliminate those terms by carefully summing up phase advances between

different pairs of BPMs.

The goal of this section is to eliminate global contributions to Eq. (2.87). This can be

achieved a careful resummation of phase advances between four BPMs.

The global termℛ𝑒 {𝑓𝑖} can be eliminated by taking a third BPM 𝑘 and divide by the respec-
tive factor:

Δ𝜑𝑖𝑗
sin2 𝜑m

𝑖𝑗
−

Δ𝜑𝑖𝑘
sin2 𝜑m

𝑖𝑘
=

̄ℎ𝑖𝑗
sin2 𝜑m

𝑖𝑗
−

̄ℎ𝑖𝑘
sin2 𝜑m

𝑖𝑘
− 8 (cot𝜑m

𝑖𝑗 − cot𝜑m
𝑖𝑘) ℐ𝑚 {𝑓𝑖} . (4.4)

Proceeding similarly with the factor in front of ℐ𝑚 {𝑓𝑖}:

Δ𝜑𝑖𝑗
sin2𝜑m

𝑖𝑗
− Δ𝜑𝑖𝑘

sin2𝜑m
𝑖𝑘

cot𝜑m
𝑖𝑗 − cot𝜑m

𝑖𝑘
=

̄ℎ𝑖𝑗
sin2𝜑m

𝑖𝑗
−

̄ℎ𝑖𝑘
sin2𝜑m

𝑖𝑘

cot𝜑m
𝑖𝑗 − cot𝜑m

𝑖𝑘
− 8ℐ𝑚 {𝑓𝑖} . (4.5)
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We can simplify the left-hand side to:

Δ𝜑𝑖𝑗

sin2𝜑m
𝑖𝑗
− Δ𝜑𝑖𝑘

sin2𝜑m
𝑖𝑘

cot𝜑m
𝑖𝑗 − cot𝜑m

𝑖𝑘
=

Δ𝜑𝑖𝑗
sin2 𝜑m

𝑖𝑗 (cot𝜑m
𝑖𝑗 − cot𝜑m

𝑖𝑘)
−

Δ𝜑𝑖𝑘
sin2 𝜑m

𝑖𝑘 (cot𝜑
m
𝑖𝑗 − cot𝜑m

𝑖𝑘)

=
Δ𝜑𝑖𝑗 sin𝜑m

𝑖𝑗 sin𝜑m
𝑖𝑘

sin2 𝜑m
𝑖𝑗 (cos𝜑m

𝑖𝑗 sin𝜑m
𝑖𝑘 − cos𝜑m

𝑖𝑘 sin𝜑
m
𝑖𝑗)

−
Δ𝜑𝑖𝑘 sin𝜑m

𝑖𝑗 sin𝜑m
𝑖𝑘

sin2 𝜑m
𝑖𝑘 (cos𝜑

m
𝑖𝑗 sin𝜑m

𝑖𝑘 − cos𝜑m
𝑖𝑘 sin𝜑

m
𝑖𝑗)

=
Δ𝜑𝑖𝑗 (sin𝜑m

𝑖𝑗 cos𝜑m
𝑗𝑘 + cos𝜑m

𝑖𝑗 sin𝜑m
𝑗𝑘)

sin𝜑m
𝑖𝑗 sin𝜑m

𝑗𝑘

−
Δ𝜑𝑖𝑘 (sin𝜑m

𝑖𝑘 cos𝜑
m
𝑗𝑘 − cos𝜑m

𝑖𝑘 sin𝜑
m
𝑗𝑘)

sin𝜑m
𝑖𝑘 sin𝜑

m
𝑗𝑘

=Δ𝜑𝑖𝑗 (cot𝜑m
𝑖𝑗 + cot𝜑m

𝑗𝑘) − Δ𝜑𝑗𝑘 (cot𝜑m
𝑗𝑘 − cot𝜑m

𝑖𝑘) . (4.6)

The rhs of Eq. (4.5) can be simplified analogously and we can rewrite it to

Δ𝜑𝑖𝑗 (cot𝜑m
𝑖𝑗 + cot𝜑m

𝑗𝑘) − Δ𝜑𝑗𝑘 (cot𝜑m
𝑗𝑘 − cot𝜑m

𝑖𝑘)

= ̄ℎ𝑖𝑗 (cot𝜑m
𝑖𝑗 + cot𝜑m

𝑗𝑘) − ̄ℎ𝑗𝑘 (cot𝜑m
𝑗𝑘 − cot𝜑m

𝑖𝑘) − ℐ𝑚 {𝑓𝑖} . (4.7)

To finally eliminate ℐ𝑚 {𝑓𝑖} we take a fourth BPM, 𝑙, and subtract

Δ𝜑𝑖𝑗 (cot𝜑m
𝑖𝑗 + cot𝜑m

𝑗𝑙 ) − Δ𝜑𝑗𝑙 (cot𝜑m
𝑗𝑙 − cot𝜑m

𝑖𝑙 )

from Eq. (4.7) and end up with

cot𝜑m
𝑗𝑙 (Δ𝜑𝑖𝑙 − Δ𝜑𝑖𝑗) + cot𝜑m

𝑗𝑘 (Δ𝜑𝑖𝑗 − Δ𝜑𝑖𝑘) − cot𝜑m
𝑘𝑖Δ𝜑𝑖𝑘 + cot𝜑m

𝑙𝑖Δ𝜑𝑖𝑙
= cot𝜑m

𝑗𝑙 ( ̄ℎ𝑖𝑙 − ̄ℎ𝑖𝑗) + cot𝜑m
𝑗𝑘 ( ̄ℎ𝑖𝑗 − ̄ℎ𝑖𝑘) − cot𝜑m

𝑘𝑖Δ𝜑𝑖𝑘 + cot𝜑m
𝑙𝑖

̄ℎ𝑖𝑙 . (4.8)

Figure 4.3 illustrates the collection of four BPMs used to construct Eq. (4.8). The left hand

side of Eq. (4.8) can be further simplified to

cot𝜑m
𝑗𝑙 (Δ𝜑𝑖𝑙 − Δ𝜑𝑖𝑗) + cot𝜑m

𝑗𝑘 (Δ𝜑𝑖𝑗 − Δ𝜑𝑖𝑘) − cot𝜑m
𝑘𝑖Δ𝜑𝑖𝑘 + cot𝜑m

𝑙𝑖Δ𝜑𝑖𝑙
= cot𝜑m

𝑗𝑙 Δ𝜑𝑗𝑙 − cot𝜑m
𝑗𝑘Δ𝜑𝑗𝑘 + cot𝜑m

𝑖𝑘Δ𝜑𝑖𝑘 − cot𝜑m
𝑖𝑙Δ𝜑𝑖𝑙 . (4.9)

Now we can rewrite Eq. (4.8) as

Φmeas
𝑖𝑗𝑘𝑙 = Φmodel

𝑖𝑗𝑘𝑙 (4.10)

by defining

Φmeas
𝑖𝑗𝑘𝑙 ≡ cot𝜑m

𝑗𝑙 Δ𝜑𝑗𝑙 − cot𝜑m
𝑗𝑘Δ𝜑𝑗𝑘 + cot𝜑m

𝑖𝑘Δ𝜑𝑖𝑘 − cot𝜑m
𝑖𝑙Δ𝜑𝑖𝑙 (4.11)
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Figure 4.3: The phase advances appearing in Eqs. (4.13) and (4.14). The phase advances 𝜑𝑖𝑗 and
𝜑𝑘𝑙 do not appear in the final form of the local observable.

and

Φmodel
𝑖𝑗𝑘𝑙 ≡ cot𝜑m

𝑗𝑙 ( ̄ℎ𝑖𝑙 − ̄ℎ𝑖𝑗) − cot𝜑m
𝑗𝑘 ( ̄ℎ𝑖𝑗 − ̄ℎ𝑖𝑘) + cot𝜑m

𝑖𝑘
̄ℎ𝑖𝑘 − cot𝜑m

𝑖𝑙
̄ℎ𝑖𝑙 . (4.12)

Those terms are truly local to the region in between the four BPMs.

The resummation yields an observable

Φmeas
𝑖𝑗𝑘𝑙 = cot𝜑m

𝑗𝑙 Δ𝜑𝑗𝑙 − cot𝜑m
𝑗𝑘Δ𝜑𝑗𝑘

+ cot𝜑m
𝑖𝑘Δ𝜑𝑖𝑘 − cot𝜑m

𝑖𝑙Δ𝜑𝑖𝑙 (4.13)

which only depends on measured phase advances between the four BPMs 𝑖, 𝑗, 𝑘 and 𝑙. Up
to first order it is equal to an analytic expression

Φmodel
𝑖𝑗𝑘𝑙 = cot𝜑m

𝑗𝑙 ( ̄ℎ𝑖𝑙 − ̄ℎ𝑖𝑗) − cot𝜑m
𝑗𝑘 ( ̄ℎ𝑖𝑗 − ̄ℎ𝑖𝑘)

+ cot𝜑m
𝑖𝑘

̄ℎ𝑖𝑘 − cot𝜑m
𝑖𝑙

̄ℎ𝑖𝑙 (4.14)

which depends only on local error sources. There are no global contributions left and the

two quantities defined in Eqs. (4.13) and (4.14) are truly local up to first order. The mea-

surement uncertainty can be propagated to Φmeas
𝑖𝑗𝑘𝑙 :

𝜎2Φ = cot2 𝜑m
𝑗𝑙 𝜎2𝜑𝑗𝑙 + cot2 𝜑m

𝑗𝑘𝜎2𝜑𝑗𝑘
+ cot2 𝜑m

𝑖𝑘𝜎2𝜑𝑖𝑘 + cot2 𝜑m
𝑖𝑙 𝜎2𝜑𝑖𝑙 . (4.15)

Equation (4.15) is used to calculate the size of the error bars in local observable plots.

A consideration of degrees of freedom suggests that three BPMs should suffice to recon-

struct the local linear optics errors. However, this reconstruction would depend on the

amplitude which, in turn, may suffer from calibration errors. The local observable pre-

sented here is independent of BPM calibration errors. Figure 4.4 illustrates the impact of

a quadrupole error on the local observable. The plot shows an LHC arc with 90° FODO
cells. Two BPMs are placed in one FODO cell, directly in front of the focusing or defocus-
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Figure 4.4: The impact of a focusing error on the local observable. The plot shows an LHC arc with

a relative error of 0.1% of the magnetic field of focusing quadrupole MQ.22R4 which is marked by

a vertical line.

ing quadrupoles, respectively. The BPMS 𝑖, 𝑗, 𝑘 and 𝑙 are chosen to be consecutive ones.

A relative field error of 0.1% was introduced at magnet MQ.22R4. Since the points corre-

sponding to a value of Φmeas
𝑖𝑗𝑘𝑙 are placed at the position 𝑠𝑖, only the three points that precede

the introduced error are affected, for which the introduced error lies in the interval [𝑠𝑖, 𝑠𝑙].
The first of the three affected points has a very small value because of the proximity of the

quadrupole to the BPM.

4.2.2 Exact multiples of 𝜋

If the model phase advance is 𝜑m
𝑖𝑗 = 𝑛𝜋, the phase advance beating between two positions,

Eq. (2.87) reduces to

Δ𝜑𝑖𝑗 = ̄ℎ𝑖𝑗 , (4.16)

which implies that Δ𝜑𝑖𝑗 is directly a local observable when 𝜑m
𝑖𝑗 = 𝑛𝜋. In this case the num-

ber of BPMs is reduced to two at positions 𝑖 and 𝑗. In general, phase advances that are

sufficiently close to multiples of 𝜋might not be present in standard operation of an accel-

erator – an exception is for example the ATS optics [48] that is now used in LHC and which

is the proposed baseline for its high luminosity upgrade –, but it would be conceivable to

prepare special optics settings for a corresponding measurement in any accelerator, given

that it allows freely changing the optics parameters. The error of the local observable in

this case,

𝜎Δ𝜑𝑖𝑗 = 𝜎𝜑𝑖𝑗 , (4.17)

is smaller than for the general local observable.
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4.2.3 Exploring the second order

The detuningHamiltonian term ℎ1100,𝑖𝑗 as well as the RDT 𝑓𝑖 have to be extended to second
order:

ℎ1100,𝑖𝑗 → ℎ(1)1100,𝑖𝑗 + ℎ(2)1100,𝑖𝑗 (4.18)

𝑓𝑖 → 𝑓(1)𝑖 + 𝑓(2)𝑖 . (4.19)

The total phase advance beating is, then,

Δ𝜑𝑖𝑗 = − 2ℎ(1)1100,𝑖𝑗 − 2ℎ(2)1100,𝑖𝑗 + 4ℛ𝑒 {𝑓(1)𝑗 − 𝑓(1)𝑖 }

+ 4ℛ𝑒 {𝑓(2)𝑗 − 𝑓(2)𝑖 }

+ 16 (ℛ𝑒 {𝑓(1)𝑗 } ℐ𝑚 {𝑓(1)𝑗 } − ℛ𝑒 {𝑓(1)𝑖 } ℐ𝑚 {𝑓(1)𝑖 })

+ 𝑂(𝐾3) . (4.20)

The same resummation techniques as for the first order will not suffice to eliminate global

RDTs 𝑓𝑖 and 𝑓𝑗. If we reformulate the third line of Eq. (4.20) as

ℛ𝑒 {𝑓𝑗} ℐ𝑚 {𝑓𝑗} − ℛ𝑒 {𝑓𝑖} ℐ𝑚 {𝑓𝑖} =
1
2ℐ𝑚 {𝑓2𝑗 } −

1
2ℐ𝑚 {𝑓2𝑖 }

= 1
2ℐ𝑚 {𝐴2𝑖𝑗 + 2𝐴𝑖𝑗𝑓𝑖e

2𝑖𝜑m
𝑖𝑗 + (e4𝑖𝜑

m
𝑖𝑗 − 1) 𝑓2𝑖 } (4.21)

we see that it is not possible to separate the global 𝑓𝑖 from the local term𝐴𝑖𝑗. This separation

was the key to be able to eliminate the global terms in the first order approximation.

For 𝜑m
𝑖𝑗 = 𝑛𝜋 a second order term can be derived analogously:

Δ𝜑𝑖𝑗 = ̄ℎ𝑖𝑗 − 2ℎ(2)1100,𝑖𝑗

+ 4ℛ𝑒 {𝑓(2)𝑗 − 𝑓(2)𝑖 } + 8ℐ𝑚 {𝐴2𝑖𝑗 + 2𝐴𝑖𝑗𝑓𝑖} . (4.22)

This term also contains the global 𝑓1 and 𝑓2 and there are no common factors that can be

exploited to eliminate them.

Therefore in this work purely local observable cannot be extracted from the second order

phase beating.
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Element 𝜎𝐾1/𝐾 [10−4]
MQ 12

MQT 75

MQM 12

MQY 11

MQW 15

MQX 1

MB 4

Table 4.1: Error distribution for the design LHC lattice at 6.5TeV with weak errors in the final

triplet in order to avoid higher order effects. 𝐾 denotes the main field component (quadrupolar

field for quadrupoles, etc).

4.3 Simulating Errors and Noise

4.3.1 General simulation setup

In order to assess the usability of the local observable we perform a series of simulations

with different quadrupole error distributions and compare the prediction of the analytical

calculations with simulated results. We base our simulations on the nominal LHC lattice

at the end of run II in 2018 with ATS optics and 𝛽∗ = 30 cm.

Figure 4.5 shows a sketch of a typical LHC arc section. BPMs are placed directly in front of

the quadrupoles of FODO cells. Additional trim quadrupoles (e.g. MQT) may be present.

Four cases will be studied: the first one is a set of expected LHC errors from magnetic

𝑖 T T 𝑗 T 𝑘 𝑙

Figure 4.5: The probed interval 𝐼𝑝 for a typical section inside an LHC arc. BPMs are represented by

rectangles. The phase advance between to consecutive BPMs is approximately 45 ∘. Used BPMs are

shown in orange, unused in gray. Blue diamonds indicate quadrupoles and trim quadrupoles. Only

BPMs and quadrupoles are shown, other elements such as corrector spool pieces and the bending

dipoles are omitted.

measurements [44, 45], shown in Tab. 4.1, in the absence of phase noise. This setup will let

us verify the equality of Eqs. (4.13) and (4.14). ThenGaussian noise of 0.7×10−3×2𝜋 rad is

added to the simulated phase advances to illustrate the behaviour in the presence of noise.

A third simulation includes an additional strong error source in one of the quadrupoles,

c.f. Tab. 4.2 to demonstrate the impact of single strong error sources and the locality of the

local observable. A last simulation setup demonstrates the visibility of quadrupolar errors

originating from feed-down of sextupoles via orbit offsets.

There are many different possible combinations of BPMs. In the following comparison

plots we will only show two of them: one that has a phase advance of 180° in one of the

phase advances appearing in Fig. 4.6 and one that avoids such a term and, additionally, the
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Element 𝛿𝐾1/𝐾 [10−4] 𝜎𝐾1/𝐾 [10−4]
MQ.22R4.B1 100 -

MQ - 12

MQT - 75

MQM - 12

MQY - 11

MQW - 15

MQX - 1

MB - 4

Table 4.2: In addition to the error distribution of Table 4.1 we introduced a single strong error

source in arc45.

45◦ 45◦ 45◦ 45◦i j k l

ϕjl

ϕjk

ϕik

ϕil

Figure 4.6: The phase advances of the combination 𝜑𝑖𝑗 = 45°, 𝜑𝑗𝑘 = 90°, 𝜑𝑘𝑙 = 45°. The phase

advance 𝜑𝑖𝑙 = 180° causes cot𝜑m
𝑗𝑙 to diverge.

2-BPM combination with 𝜑𝑖𝑗 = 180°.

In a real measurement we would consider only the combinations of closest BPMs to avoid

the accumulation of systematic errors coming from other lattice elements and therefore

we limit our study to only those combinations. The phase advance over two FODO cells

in telescopic arcs of the ATS optics is tightly matched to 𝜋. On the one hand this provides

a continuous set of combinations with similar phase advances and thus we can more eas-

ily compare the values of Φmodel
𝑖𝑗𝑘𝑙 and Φmeas

𝑖𝑗𝑘𝑙 at different positions. On the other hand this

gives rise to model phase advances close to multiples of 𝜋 for several combinations which

gives the possibility to explore these cases. Table 4.3 shows the closest combinations with

all occurring model phase advances. Reflected combinations are omitted. Model phase

advances close to 𝑛𝜋 cause the cotangent terms to diverge. They are therefore highlighted

in red. Since we still want to study these cases and avoid divergences and the resulting

numerical instabilities we impose a filter on the phase advances. Those which are closer

to 𝑛𝜋 than 10−6 × 2𝜋 are excluded. The case 45° − 90° − 45° is sketched in Fig. 4.6.

Model and measurement values are shown for the combinations 45° − 45° − 45° and

90° − 45° − 45° and 𝜑m
𝑖𝑗 = 180 ∘ in Figures 4.7 to 4.9. Since we get the phase advances of

Table 4.3 only for telescopic arcs and for the sake of readability we limit the plot region to

just one telescopic arc, the one between IR4 and IR5. For simplicity we show only results

for the horizontal plane.
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sketch of combination ϕjl − ϕjk − ϕik − ϕil

i j k l 90◦ − 45◦ − 90◦ − 135◦

i j k l 90◦ − 45◦ − 135◦ − 180◦

i j k l 135◦ − 90◦ − 135◦ − 180◦

i j k l 135◦ − 45◦ − 135◦ − 225◦

Table 4.3: Indices 𝑖, 𝑗, 𝑘, 𝑙 and phases appearingmodel phase advances for the closest combinations.

The actual model phase advances depend on the respective model settings and differ slightly from

the exact values above.

4.3.2 LHC with known field errors

The first case, Fig. 4.7, is free of noise with the quad error distribution of Tab. 4.1, with a

distribution of known LHCmagnet errors asmeasured in [44, 45]. The agreement between

analytical and measurement values is excellent, showing the validity of Eqs. (4.13), (4.14)

and (4.16).

To examine the behaviour of the local observable in the vicinity of 𝑛𝜋 we have to scan the

accelerator for availablemodel phase advances. For each BPM 𝑖we are looking for a second
one – BPM 𝑗 – that is placed at Δ𝜑𝑖𝑗 = 𝜋 ± 𝛿𝜑 downstream. 𝛿𝜑 is a threshold parameter

controlling how many local observable pairs are accepted. We chose 𝛿𝜑 = 1 × 10−3 × 2𝜋.
The telescopic arcs of the ATS optics provide the needed model phase advances.

The agreement is, as for the general case, very good in the absence of errors.

4.3.3 Phase noise

The noise to signal ratio decreases with increasing oscillation amplitude and thus with in-

creasing 𝛽 function at the BPM. In the LHC FODO cells BPMs are installed close to the

focusing and defocusing quadrupoles and those lie at 𝛽 function maxima and minima, re-

spectively. Therefore we can divide the arc BPMs in two categories, those with low 𝛽 func-
tion and those with high 𝛽 function. The 𝛽 function minima are usually around 30m and

the maxima at 180m. The phase advance uncertainties 𝜎𝜑𝑖𝑗 fall into three categories: both
BPMs have high 𝛽 function, only one of them has high 𝛽 and both have low 𝛽.

For this set of simulations we introduce phase noise which corresponds to noise values of

theLHCsignal thatwe typically achieve taking five data acquisitions and after cleaning [56]

and harmonic analysis. We group BPMs into the before mentionned categories and apply

a Gaussian error distribution to the phase values according to measurement statistics.

With the introduced phase noise the agreement decreases significantly (cf. Fig. 4.8). The

noise is of the same order of magnitude asΦmeas
𝑖𝑗𝑘𝑙 itself. Therefore the LHC arc quadrupolar

errors cannot be identified with this phase advance resolution. The combination 45° −
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Figure 4.7: This figure shows the first two combinations of Tab. 4.3 and the case 𝜑m
𝑖𝑗 = 𝜋 from

simulations. Top: the combination 45° − 45° − 45° . Center: the combination 90° − 45° − 45°. The
absolute value of the local observable in the telescopic arc (right of IP4) is four orders of magnitude

higher than in the top plot. The plots only show values where the phase advances do not differ

more than 1° from the target values displayed in Tab. 4.3 in order to ensure comparability between

the values. Additionally values with a model phase advance in 𝑛𝜋 ± 10−6 are excluded to avoid

numerical instabilities. This causes the IR to be empty of local phase advances. Note that in the

middle plot the values are four orders of magnitude higher than in the other two. This originates

from the cot𝜑m
𝑖𝑙 termswhich are high because of 𝜑m

𝑖𝑙 ≈ 𝜋.The bottomplot shows the local observable

for model phase advances of 180 ∘. In all three plots the agreement between model and simulation

is excellent.
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45°−45° shows theworst behaviour under noise because the 𝛽 function alternates between
high and low values from BPM to BPM and so within the four neighbouring BPMs there

are always two with low 𝛽 function. The case of exact 𝜋 phase advances shows the smallest

errors as only one phase advance error enters in the error propagation.

4.3.4 Single strong error source

For thenext simulation, we assume that there is a single strong error in one of the quadrupoles.

We assign 1% of relative error to MQ.22R4 to show the effect of a strong error source. Fig-

ure 4.9 shows that this error creates a visible peak in the local observable. The peak in the

local observable is situated immidiately in front of the location of the error source because

the plot shows the local observable at the position of BPM 𝑖 but the errors of the interval
(𝑠𝑖, 𝑠𝑙) enter in the calculation of the observable.

In the presence of model phase advances close to 𝑛𝜋 the values of the local observable in

the telescopic arcs are clearly enhanced (c.f. bottom plot of Fig. 4.7 and Fig. 4.8).

The simulations above show that strong quadrupolar error sources (≥ 1%) can be detected

with the local observables under the studied phase resolution. For the detection of smaller

errors a higher precision of the phase measurement would be needed. More precise BPMs

like DOROS-BPMs [57] currently installed in the LHC interaction region and a higher ex-

citation amplitude as well as the acquisition of a higher number of turns can increase the

resolution of the phase measurement.

4.3.5 Feed-down from sextupoles

As final test case we introduce orbit offset into the machine around the IPs by activating

dedicated dispersion bumps. These are used in the ATS optics to compensate dispersion

created by the crossing angles at the IPs. The transverse displacement of the beam creates

quadrupolar-like errors inside sextupoles via feed-down:

Δ𝐾1,sext = 𝛿𝑥𝐾2 (4.23)

where 𝛿𝑥 denotes horizontal offset and 𝐾2 is the strength of the sextupole. 𝐾1,sext can now

be used for the calculation of the local observable.

Figure 4.10 shows the local observable in this case. Regular bumps created by the feed-

down appear which are consistent in all three cases but less pronounced in the nearest

neighbors case. With the given noise level those bumps can be measured. The local ob-

servable is not affected by feed-down in the center of the arc because sextupoles at places

with high orbit offset are turned off. In comparison to the previous examples, Figs. 4.8 and
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Figure 4.8: Similar plots as in Fig. 4.7 but including a phase error of 0.7 × 10−3 × 2𝜋 rad for high 𝛽
function values and 1.8 × 10−3 × 2𝜋 rad for low 𝛽s. The agreement between model and simulation

and measurement is highly deteriorated. The error bars have been calculated using Eqs. (4.15)

and (4.17). The case 𝜑m
𝑖𝑗 = 𝜋 is affected less by the error since only one phase advance error is

propagated.
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Figure 4.9: The local observable with the error distribution of Tab. 4.2, including a strong error

source at MQ.22R4.B1 and phase noise of 0.7 × 10−3 × 2𝜋 rad. The position of the strong error

source is marked by a green line.
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4.9, the values of the local observable did not change in this region.

The bottom plot of Fig. 4.10 shows the changed orbit for reference. The peaks of the local

observable can be identified with the peaks in the orbit. Again the local observable is in

advance of the error source.

4.4 Experimental verification

We calculate the local observable from a measurement taken during the LHC beam com-

missioning in 2018.

The measurement can be seen in Fig. 4.11 for the combinations 45° − 45° − 45° (top plot)

and 90° − 45° − 45° (bottom plot).

We take amodel lattice where dispersion bumps are turned off in order to see the impact on

the local observable. As discussed in section 4.3, the feed-down of sextupole fields due to

the orbit offset of those bumps changes the local observable. Figure 4.11 shows in blue the

measured local observable which features similar spikes as the simulation (cf. Fig. 4.10).

In red the effect of feed-down from sextupoles via the orbit offset on the local observable

is shown. The feed down has been calculated by introducing the dispersion bump knob

into the model that was turned on during the measurement and calculating 𝛿𝐾1,sext from
Eq. (4.23). The pattern of the model values is also present in the measurement which con-

firms that their origin is indeed the feed-down. Since theΦmodel
𝑖𝑗𝑘𝑙 contains only the expected

feed-down from sextupoles and no other error sources (like normal quadrupole imperfec-

tions) the difference between model and measurement is then the actual local observable

created by those error sources. The center region of the arc is free of a high peak because,

as in the simulation, no sextupole is active at high orbit offsets.

4.5 Conclusion and Outlook

We showed the existence of a local observable for linear lattice imperfections in circular

accelerators. The locality of the observable holds up to first order in the quadrupole error

𝛿𝐾1.

Phase measurement noise is an issue with the current precision of turn-by-turn measure-

ments and a higher resolution in the measurement would be of advantage. For certain use

cases, new techniques are needed to improve the control of the machine and hardware up-

grades are a justified solution. Simulations show that strong error sources can be identified

even with current precision of LHCmeasurements as they generate distinguishable peaks.

The calculated local observable of an actual measurement shows a picture that is compati-
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blewith simulations. Feed-downof orbit offsets via sextupoles can be seen inmeasurement

data and be reproduced in simulations.

A future application of the observable to find strong local sources and to guide local error

corrections is foreseen for run III of the LHC.
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Figure 4.10: The local observable with the error distribution of Tab. 4.1 and phase noise of 0.7 ×
10−3×2𝜋 rad. Additionally the orbit has been changed by dispersion bumps. The orbit offset creates

feed-down from sextupoles.
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Figure 4.11: Plot of measurement data of the LHC commissioning 2018 at 𝛽∗ = 30 cm. The error

bars include statistical errors obtained from the phase measurement of the FFT. The effect of dis-

persion bumps on the local observable is clearly visible andmatches well the prediction. The center

region shows only a small effect from sextupoles.
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Forced Coupling Resonance

Driving Terms

CHAPTER 5

The goal of this chapter is the study of of resonance driving termswhenmeasured from

driven motion. The driving of the particle motion by an AC-dipole changes measured

quantities like the optics functions 𝛽, 𝛼 and the phase, as discussed in section 2.6.2, and

also has an impact on resonance driving terms. Recent findings suggest that the current

models describing the forced RDTs are neglecting a local effect of the AC-dipole, creating

a jump of the amplitude of the RDTs𝑓𝑗𝑘𝑙𝑚. The case of sextupolar RDTs has been studied.
In this work, coupling RDTs are calculated for the first time in view of the new findings.

Original work is presented in form of the derivation of the driven RDT 𝑓1001 and the

simulation study of the new formula, including comparisons to existing descriptions.

Sections 5.1.1 and 5.1.3 review existing work.

5.1 Driven coupled motion

Resonance driving terms are calculated from the spectral lines of the turn-by-turn data as

shown in section 2.5.2 for the coupling RDTs. Since the particle’s motion is affected by the

driving of forced oscillation by the AC-dipole, the spectrum also undergoes a change and

the measured RDTs are not equal to the free ones.

In the past, two methods were used to model the effect of the driven motion, the first is a

simple rescaling of the tune dependent denominators of the RDTs, this method will there-

fore be called the rescaling method.

The second one [17] applies the findings of a detailed study of the driven particle motion

using the equations of motion of the particle in the accelerator with an AC-dipole. This

method provides reconstruction and compensation formulae for all optics parameters, in-

cluding those that enter into the coupling terms. Thismethodwill be called formulamethod
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in the following.

Recent findings [58] show that the AC-dipole locally affects RDTs and introduces a jump

in amplitude of the RDTs at its location. Even the detailed considerations of the formula

method lack such an effect. In view of the suggestions of [58] this work presents calcu-

lations of the terms 𝑓1001 and 𝑓1010, building upon the techniques introduced in 2.6.1. A

comparison between rescalingmethod, formulamethod and the newly calculated coupling

terms is shown.

5.1.1 AC-dipole as skew quadrupole

To consider beammotion that is driven and coupled, we illustrate the effect of anAC-dipole

as coupling source by stating the analogy between their impact on the particles motion.

Throughout this chapter the following convention is used:

𝑓+ ≡ 𝑓0101 and

𝑓− ≡ 𝑓0110 . (5.1)

The RDTs in Eq. (2.91) can be reformulated:

𝑓± =
∑
𝑤
𝐽1,𝑤√𝛽𝑥,𝑤𝛽𝑦,𝑤e𝑖[𝜑𝑤𝑗,𝑥±𝜑𝑤𝑗,𝑦]−𝑖𝜋[𝑄𝑥±𝑄𝑦]

8𝑖 sin[𝜋(𝑄𝑥 ± 𝑄𝑦)]
. (5.2)

The coupled motion for a single coupling source now reads

ℎ𝑥(𝑠𝑗, 𝑁) =𝜁+𝑥 (𝑠𝑗, 𝑁)

+ 2𝑖
𝐽1,𝑤√𝛽𝑥,𝑤𝛽𝑦,𝑤

8𝑖 sin[𝜋(𝑄𝑥 + 𝑄𝑦)]
𝜁+𝑦 (𝑠𝑗, 𝑁)e𝑖[Δ𝜑

+
𝑥+2𝜋(𝑄𝑥+𝑄𝑦)Θ(𝑠𝑗,𝑠𝑤)]−𝑖𝜋[𝑄𝑥+𝑄𝑦]

+ 2𝑖
𝐽1,𝑤√𝛽𝑥,𝑤𝛽𝑦,𝑤

8𝑖 sin[𝜋(𝑄𝑥 − 𝑄𝑦)]
𝜁−𝑦 (𝑠𝑗, 𝑁)e𝑖[Δ𝜑

−
𝑥+2𝜋(𝑄𝑥−𝑄𝑦)Θ(𝑠𝑗,𝑠𝑤)]−𝑖𝜋[𝑄𝑥−𝑄𝑦] , (5.3)

with

Δ𝜑±𝑥 = 𝜑𝑥(𝑠𝑗) − 𝜑𝑥(𝑠𝑤) ± (𝜑𝑦(𝑠𝑗) − 𝜑𝑦(𝑠𝑤)) . (5.4)

The Θ(𝑠𝑗, 𝑠𝑤) terms come from the wrapping around of the phase advance. Noting that
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𝜁+𝑦 (𝑠𝑗, 𝑁) = √2𝐼𝑦e2𝜋𝑖𝑁𝑄𝑦+𝜑(𝑠𝑗) one can bring this in a form similar to Eq. (2.142)

ℎ𝑥(𝑠𝑗, 𝑁) =𝜁+𝑥 (𝑠𝑗, 𝑁)

+
𝐽1,𝑤√𝛽𝑥,𝑤𝛽𝑦,𝑤

4 sin[𝜋(𝑄𝑥 + 𝑄𝑦)]√
2𝐼𝑦e2𝜋𝑖𝑁𝑄𝑦+𝜑(𝑠𝑗)+𝑖[Δ𝜑+𝑥+2𝜋(𝑄𝑥+𝑄𝑦)sgn(𝑠𝑤−𝑠𝑗)]

+
𝐽1,𝑤√𝛽𝑥,𝑤𝛽𝑦,𝑤

4 sin[𝜋(𝑄𝑥 − 𝑄𝑦)]√
2𝐼𝑦e−2𝜋𝑖𝑁𝑄𝑦+𝜑(𝑠𝑗)+𝑖[Δ𝜑−𝑥+2𝜋(𝑄𝑥−𝑄𝑦)sgn(𝑠𝑤−𝑠𝑗)] . (5.5)

The following table summarises which quantities are analogous

AC dipole coupling

𝐴𝜃 𝐽1,𝑤√𝐼𝑦𝛽𝑦
𝜑𝑥(𝑠𝑑) 𝜑𝑦(𝑠𝑗) − 𝜑𝑦(𝑠𝑤) ∓ 𝜑𝑥(𝑠𝑤)
𝑄𝑑
𝑥 𝑄𝑦

Thus, theACdipole couples the beam’smotion to its oscillation, similar to a skewquadrupole

which couples horizontal and vertical motion.

5.1.2 Derivation of the coupled driven motion

The derivation of the coupled driven motion presented in this section follows a similar

path to the derivation of the coupled free motion, leveraging the normal form approach

as in section 2.4.2. The major difference is the presence of AC-dipole kicks, Eq. (2.122)

that appear in each turn. These kicks have to be interleaved with the particles turn-by-turn

motion in the normal form space. Figure 5.1 illustrates the procedure. The coordinates

are propagated in normal form space and transformed to physical space at 𝑠𝑑 − 𝜖, directly
in front of the AC-dipole. Then an AC-dipole kick Δℎ𝑥(𝑁) is performed and the physical

coordinate is transformed back to normal form space where it is rotated around the ring.

This process is repeated for each turn.

In the first turn, before the beam experiences the AC-dipole kick, the coordinates are those

from Eq. (2.90):

ℎ+𝑥 (𝑠𝑑 − 𝜖, 0) = e∶𝐹∶ 𝜁+𝑥 (𝑠𝑑 − 𝜖, 0)

= 𝜁+(𝑠𝑑 − 𝜖, 0) + 2𝑖𝑓∗1001𝜁+𝑦 (𝑠𝑑 − 𝜖, 0) + 2𝑖𝑓∗1010𝜁−𝑦 (𝑠𝑑 − 𝜖, 0) (5.6)

Then the particle is kicked in 𝑝 direction:

ℎ±𝑥 (𝑠𝑑 + 𝜖, 0) = ℎ±𝑥 (𝑠𝑑 − 𝜖, 0) + Δℎ±𝑥 (0)

ℎ±𝑦 (𝑠𝑑 + 𝜖, 0) = ℎ±𝑦 (𝑠𝑑 − 𝜖, 0) + Δℎ±𝑦 (0) (5.7)
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𝑥

𝑝𝑥

ℛ[𝜁+𝑥 ]

ℐ[𝜁+𝑥 ]

Figure 5.1: Two AC-dipole kicks in 𝑝𝑥 at different positions in phase space can have completely

different appearence in normal form coordinates. The transformation is not restricted to the two

dimensions depictet in this figure but can happen in all four normal form coordinates 𝜁+𝑥 , 𝜁−𝑥 , 𝜁+𝑦 , 𝜁−𝑦 .

where the superscript ± of Δℎ±𝑧 (𝑁) denotes which of ℎ+𝑧 or ℎ−𝑧 is experiencing the kick.

The following holds:

Δℎ−𝑧 = (Δℎ+𝑧 )
∗ = −Δℎ+𝑧 . (5.8)

For the transformation back to normal form space Eq. (2.59) has to be applied:

𝜁 = e∶−𝐹∶ℎ = ℎ + [−𝐹, ℎ] + 𝑂(ℎ3) (5.9)

with

𝐹 = ∑𝑓𝑗𝑘𝑙𝑚 (ℎ+𝑥 )
𝑗 (ℎ−𝑥 )

𝑘 (ℎ+𝑦 )
𝑙 (ℎ−𝑦 )

𝑚
(5.10)

when applied to ℎ±𝑧 . The normal form of the kicked particle motion now reads

𝜁+𝑥 (𝑠𝑑 + 𝜖, 0) = ℎ+𝑥 (𝑠𝑑 + 𝜖) − 2𝑖𝑓∗1001(𝑠𝑑)ℎ+𝑦 (𝑠𝑑 + 𝜖, 0) − 2𝑖𝑓∗1010(𝑠𝑑)ℎ−𝑦 (𝑠𝑑 + 𝜖, 0)

= ̃ℎ+𝑥 (𝑠𝑑 + 𝜖, 0) + Δℎ𝑥(0)

− 2𝑖𝑓∗1001(𝑠𝑑) ( ̃ℎ+𝑦 (𝑠𝑑 + 𝜖, 0) + Δℎ+𝑦 (0))

− 2𝑖𝑓∗1010(𝑠𝑑) ( ̃ℎ−𝑦 (𝑠𝑑 + 𝜖, 0) + Δℎ−𝑦 (0))

= ̃𝜁+𝑥 (𝑠𝑑 + 𝜖, 0) + Δℎ𝑥(0) − 2𝑖𝑓∗1001(𝑠𝑑)Δℎ+𝑦 (0) − 2𝑖𝑓∗1010(𝑠𝑑)Δℎ−𝑦 (0) (5.11)

where the tilde denotes undriven coordinates. Propagation to the next turn is just a simple

application of the transformation 𝑅𝑥, turning the coordinate ̃𝜁+𝑧 (𝑠, 0) into ̃𝜁+𝑧 (𝑠, 1). The op-
erator in front of Δℎ𝑧 is written out explicitly for now to avoid confusion. Its effect will be

calculated later. At turn 1, just in front of the AC-dipole, the particle’s coordinate reads

𝜁+𝑥 (𝑠𝑑 − 𝜖, 1) = 𝑅𝑥𝜁+𝑥 (𝑠𝑑 + 𝜖, 0)

= ̃𝜁+𝑥 (𝑠𝑑 − 𝜖, 1) + 𝑅𝑥Δℎ𝑥(0) − 2𝑖𝑓∗1001(𝑠𝑑)𝑅𝑥Δℎ+𝑦 (0) − 2𝑖𝑓∗1010(𝑠𝑑)𝑅𝑥Δℎ−𝑦 (0) .
(5.12)
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Before applying the AC-dipole kick it is again transformed to CS space:

ℎ+𝑥 (𝑠𝑑 − 𝜖, 1) = 𝑅𝑥𝜁+𝑥 (𝑠𝑑 + 𝜖, 0)

= ̃𝜁+𝑥 (𝑠𝑑 − 𝜖, 1) + 𝑅𝑥Δℎ𝑥(0) − 2𝑖𝑓∗1001(𝑠𝑑)𝑅𝑥Δℎ+𝑦 (0) − 2𝑖𝑓∗1010(𝑠𝑑)𝑅𝑥Δℎ−𝑦 (0)

+ 2𝑖𝑓∗1001(𝑠𝑑) ( ̃𝜁+𝑦 (𝑠𝑑 − 𝜖, 1) + 1
2𝑅𝑥Δℎ

+
𝑦 (0))

+ 2𝑖𝑓∗1010(𝑠𝑑) ( ̃𝜁−𝑦 (𝑠𝑑 − 𝜖, 1) + 1
2𝑅𝑥Δℎ

−
𝑦 (0))

+ 𝑂(𝑓2) , (5.13)

where 𝑂(𝑓2) denotes quadratic and cross terms of 𝑓1001 and 𝑓1010 and the factor
1
2
in front

of the kick terms comes from second order calculations of the Poisson bracket. A kick

Δℎ𝑥(1) is applied and this procedure can be continued to arbitrary orderN.To avoid lengthy
expressions, the driven uncoupled coordinates ℎ𝑑±𝑧 are defined as

ℎ𝑑±𝑧 = ̃ℎ±𝑧 +
𝐴𝜃𝛽(𝑠𝑑)

4 sin(𝜋𝑄−
𝑧 )
{e±𝑖[−2𝑁𝜋𝑄𝑑

𝑧−𝜑𝑠𝑑𝑠+𝜋𝑄
−
𝑧 sgn(𝑠−𝑠𝑑)]

− 𝜆𝑧e
±𝑖[2𝑁𝜋𝑄𝑑

𝑧−𝜑𝑠𝑑𝑠−𝜋𝑄
+
𝑧 sgn(𝑠−𝑠𝑑)]} (5.14)

where the sum up to turn 𝑁 has already been carried out as in section 2.6.1. Note that the

transformation from CS space to normal form space is carried out directly after the kick,

thus fixing 𝑓1001 and 𝑓1010 acting on Δℎ±𝑦 to this position, i.e. 𝑠𝑑. When calculating the CS

coordinates at arbitrary position 𝑠, on the other hand, the RDTs acting on 𝜁±𝑦 are evaluated

at the position 𝑠. Therefore the coordinate, at position 𝑠 < 𝑠𝑑 reads

ℎ+𝑥 (𝑠 < 𝑠𝑑, 𝑁) = ℎ𝑑+𝑥 (𝑠, 𝑁) + 2𝑖𝑓∗1001(𝑠)ℎ𝑑+𝑦 (𝑠, 𝑁) + 2𝑖𝑓∗1010(𝑠)ℎ𝑑−𝑦 (𝑠, 𝑁)

− 2𝑖𝑓∗1001(𝑠𝑑)
1
2

𝑁
∑
𝑇=1

𝑅𝑠−𝑠𝑑𝑅
𝑇
𝑥Δℎ+𝑦 (𝑁 − 𝑇)

− 2𝑖𝑓∗1010(𝑠𝑑)
1
2

𝑁
∑
𝑇=1

𝑅𝑠−𝑠𝑑𝑅
𝑇
𝑥Δℎ−𝑦 (𝑁 − 𝑇) ,

(5.15)

and, after the AC-dipole,

ℎ+𝑥 (𝑠 > 𝑠𝑑, 𝑁) = ℎ𝑑+𝑥 (𝑠, 𝑁) + 2𝑖𝑓∗1001ℎ𝑑+𝑦 (𝑠, 𝑁) + 2𝑖𝑓∗1010ℎ𝑑−𝑦 (𝑠, 𝑁)

− 2𝑖𝑓∗1001(𝑠𝑑)
1
2

𝑁
∑
𝑇=0

𝑅𝑥,𝑠−𝑠𝑑𝑅
𝑇
𝑥Δℎ+𝑦 (𝑁 − 𝑇)

− 2𝑖𝑓∗1010(𝑠𝑑)
1
2

𝑁
∑
𝑇=0

𝑅𝑥,𝑠−𝑠𝑑𝑅
𝑇
𝑥Δℎ−𝑦 (𝑁 − 𝑇) . (5.16)
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The rotation 𝑅𝑥,𝑠−𝑠𝑑 is caused by the transfer of 𝜁±𝑧 to the position 𝑠, before transformation

into Courant-Snyder space is performed. The term
𝑁
∑
𝑇=0

𝑅𝑇𝑥Δℎ+𝑦 (𝑁 −𝑇) can be simplified as

in section 2.6.1:

𝑁
∑
𝑇=0

𝑅𝑇𝑥Δℎ+𝑦 (𝑁 − 𝑇) = 𝑖
𝐴𝜃𝛽(𝑠𝑑)

2 {
𝑁
∑
𝑇=0

𝑅𝑥𝛿𝑁−𝑇
𝑦+ +

𝑁
∑
𝑇=0

𝑅𝑥𝛿𝑁−𝑇
𝑦− }

= 𝑖
𝐴𝜃𝛽(𝑠𝑑)

2 {𝑅𝑁𝑥
1 − (𝑅−1𝑥 𝛿𝑦+)
1 − 𝑅−1𝛿𝑦+

+ 𝑅𝑁𝑥
1 − (𝑅−1𝑥 𝛿𝑦−)
1 − 𝑅−1𝛿𝑦−

}

=
𝐴𝜃𝛽(𝑠𝑑)

4 { 1 − e2𝜋𝑖𝑁[𝑄𝑥+𝑄𝑑
𝑦]

e𝑖𝜋[𝑄𝑥+𝑄𝑑
𝑦] sin [𝜋(𝑄𝑥 + 𝑄𝑑

𝑦 )]
− 1 − e−2𝜋𝑖𝑁[𝑄

𝑑
𝑦−𝑄𝑥]

e𝑖𝜋[𝑄
𝑑
𝑦−𝑄𝑥] sin [𝜋(𝑄𝑑

𝑦 − 𝑄𝑥)]
} .

(5.17)

For the term
𝑁
∑
𝑇=0

𝑅𝑇𝑥Δℎ−𝑦 (𝑁 − 𝑇) a similar process is performed, noting that the action of

𝑅𝑁𝑥 now is

𝑅𝑁Δℎ−𝑦 = e−2𝑖𝜋𝑁𝑄𝑥Δℎ−𝑦 . (5.18)

Combining the above, the expression for the coupled driven motion becomes

ℎ+𝑥 (𝑠, 𝑁) = ℎ𝑑+𝑥 (𝑠, 𝑁) + 2𝑖𝑓∗1001ℎ𝑑+𝑦 (𝑠, 𝑁) + 2𝑖𝑓∗1010ℎ𝑑−𝑦 (𝑠, 𝑁)

− 2𝑖𝑓∗1001(𝑠𝑑)ℎ+𝑦,𝑥(𝑠, 𝑁) − 2𝑖𝑓∗1010(𝑠𝑑)ℎ−𝑦,𝑥(𝑠, 𝑁) , (5.19)

with the definition

ℎ±𝑦,𝑥(𝑠, 𝑁) =
𝐴𝜃𝛽(𝑠𝑑)

8 {e
±𝑖[−2𝑁𝜋𝑄𝑑

𝑦+𝜋(𝑄𝑑
𝑦−𝑄𝑥)sgn(𝑠−𝑠𝑑)−𝜑𝑥𝑠𝑑𝑠]

sin [𝜋(𝑄𝑑
𝑦 − 𝑄𝑥)]

− e
±𝑖[2𝑁𝜋𝑄𝑑

𝑦−𝜋(𝑄𝑑
𝑦+𝑄𝑥)sgn(𝑠−𝑠𝑑)−𝜑𝑥𝑠𝑑𝑠]

sin [𝜋(𝑄𝑑
𝑦 + 𝑄𝑥)]

} . (5.20)

In section 2.5.2 a way to measure coupling in realistic conditions is introduced. In order

to get the new driven RDT, 𝑓drv
1001, one can look at the result of a theoretical measurement

without calibration errors and with perfect knowledge of the complex signal. Under these

conditions one can get 𝑓1001 from the free motion by (cf. Eq. (2.96))

𝑓∗1001,𝑥 =
𝐻+(0, 1)
2𝑖𝑉+(0, 1)

(5.21)

𝑓1001,𝑦 =
𝑉+(1, 0)
2𝑖𝐻+(1, 0)

. (5.22)

In the driven case, on the other hand, the coordinates change ℎ±𝑧 → ℎ𝑑±𝑧 , which causes also

the generating terms to change 𝑓𝑗𝑘𝑙𝑚 → 𝑓𝑑𝑗𝑘𝑙𝑚 and, finally, the kick cross-terms pollute the
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driven motion. The easy term to calculate in Eq. (5.21) is 𝑉+(0, 1)

𝑉+(0, 1) = ℱ {ℎ+𝑦 } (𝑄𝑑
𝑦 ) = ℱ {ℎ𝑑+𝑦 } (𝑄𝑑

𝑦 )

=
𝐴𝜃𝛽(𝑠𝑑)

4 sin(𝜋𝑄−
𝑦 )

e
𝑖[−𝜑𝑦𝑠𝑑𝑠+𝜋𝑄𝑦sgn(𝑠−𝑠𝑑)] . (5.23)

𝐻+(0, 1), however, includes many terms proportional to e−𝑖𝜋𝑁𝑄𝑑
𝑦 :

𝐻+(0, 1) = 2𝑖𝑓∗1001ℱ {ℎ𝑑+𝑦 } (𝑄𝑑
𝑦 ) + 2𝑖𝑓∗1010ℱ {ℎ𝑑−𝑦 } (𝑄𝑑

𝑦 )

− 2𝑖𝑓∗1001(𝑠𝑑)ℱ {ℎ+𝑦,𝑥} (𝑄𝑑
𝑦 ) − 2𝑖𝑓∗1010(𝑠𝑑)ℱ {ℎ−𝑦,𝑥} (𝑄𝑑

𝑦 ) (5.24)

For readability the fourier transforms are listed seperately:

ℱ {ℎ𝑑+𝑦 } (𝑄𝑑
𝑦 ) =

𝐴𝜃𝛽(𝑠𝑑)
4 sin𝜋𝑄−

𝑦
e
𝑖[−𝜑𝑦𝑠𝑑𝑠+𝜋𝑄

−
𝑦 sgn(𝑠−𝑠𝑑)] ,

ℱ {ℎ𝑑−𝑦 } (𝑄𝑑
𝑦 ) =

𝜆𝑦𝐴𝜃𝛽(𝑠𝑑)
4 sin𝜋𝑄−

𝑦
e
𝑖[𝜑𝑦𝑠𝑑𝑠+𝜋𝑄

+
𝑦 sgn(𝑠−𝑠𝑑)] ,

ℱ {ℎ+𝑦,𝑥} (𝑄𝑑
𝑦 ) =

𝐴𝜃𝛽(𝑠𝑑)
8 sin [𝜋(𝑄𝑑

𝑦 − 𝑄𝑥)]
e
𝑖[−𝜑𝑥𝑠𝑑𝑠+𝜋(𝑄

𝑑
𝑦−𝑄𝑥)sgn(𝑠−𝑠𝑑)] ,

ℱ {ℎ−𝑦,𝑥} (𝑄𝑑
𝑦 ) =

𝐴𝜃𝛽(𝑠𝑑)
8 sin [𝜋(𝑄𝑑

𝑦 + 𝑄𝑥)]
e
𝑖[𝜑𝑥𝑠𝑑𝑠+𝜋(𝑄

𝑑
𝑦+𝑄𝑥)sgn(𝑠−𝑠𝑑)] . (5.25)

From this it is easy to calculate the driven coupling term, as obtained from a measurement

of the horizontal signal

𝑓drv∗
1001,𝑥 = 𝑓∗1001 + 𝑓∗1001(𝑠𝑑)

sin𝜋𝑄−
𝑦

2 sin [𝜋(𝑄𝑑
𝑦 − 𝑄𝑥)]

e
𝑖[𝜑𝑥𝑠𝑑𝑠−𝜑

𝑦
𝑠𝑑𝑠+𝜋(𝑄𝑦−𝑄𝑥)sgn(𝑠−𝑠𝑑)]

+ 𝜆𝑦𝑓∗1010e
2𝑖[𝜑𝑦𝑠𝑑𝑠+𝜋𝑄𝑦] + 𝑓∗1010(𝑠𝑑)

sin𝜋𝑄−
𝑦

2 sin [𝜋(𝑄𝑑
𝑦 + 𝑄𝑥)]

e
𝑖[𝜑𝑥𝑠𝑑𝑠+𝜑

𝑦
𝑠𝑑𝑠+𝜋(𝑄𝑦+𝑄𝑥)sgn(𝑠−𝑠𝑑)] .

(5.26)

From Eq. (5.26) it is apparent that the AC-dipole adds two effects to the difference RDT

𝑓1001 the first one,

𝑓∗1001(𝑠𝑑)
sin𝜋𝑄−

𝑦

2 sin [𝜋(𝑄𝑑
𝑦 − 𝑄𝑥)]

e
𝑖[𝜑𝑥𝑠𝑑𝑠−𝜑

𝑦
𝑠𝑑𝑠+𝜋(𝑄𝑦−𝑄𝑥)sgn(𝑠−𝑠𝑑)] (5.27)

is creating an additional source at the position of the AC-dipole, proportional to 𝑓1001 at
this position and the second one,

𝜆𝑦𝑓∗1010e
2𝑖[𝜑𝑦𝑠𝑑𝑠+𝜋𝑄𝑦] + 𝑓∗1010(𝑠𝑑)

sin𝜋𝑄−
𝑦

2 sin [𝜋(𝑄𝑑
𝑦 + 𝑄𝑥)]

e
𝑖[𝜑𝑥𝑠𝑑𝑠+𝜑

𝑦
𝑠𝑑𝑠+𝜋(𝑄𝑦+𝑄𝑥)sgn(𝑠−𝑠𝑑)] (5.28)

mixes the difference term with the sum term 𝑓1010 (as well as a second contribution pro-
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portional to 𝑓1001). The mixing-in of those terms is suppressed by the factors 𝜆𝑦 and the

denominator sin [𝜋(𝑄𝑑
𝑦 + 𝑄𝑥)], respectively.

5.1.3 Rescaling and Formula methods

For the sake of completeness, rescaling and formula methods will be stated here. The de-

tailed derivation can be looked up in the respective publications [59, 16].

The rescaling method simply rescales the coupling terms 𝑓1001 and 𝑓1010 by their expected
denominators:

𝑓drv
±,𝑥 =

sin(𝑄𝑥 ± 𝑄𝑦)
sin(𝑄𝑑

𝑥 ± 𝑄𝑦)
𝑓±

𝑓drv
±,𝑦 =

sin(𝑄𝑥 ± 𝑄𝑦)
sin(𝑄𝑥 ± 𝑄𝑑

𝑦 )
𝑓± . (5.29)

The index 𝑥/𝑦 refers to the plane inwhich the 𝑓 term ismeasured. For the formulamethod,

a complete expression for the driven RDTs can be derived:

𝑓±,𝑥 =
1

√1 − 𝜆2𝑥

sin [𝜋(𝑄𝑥 ∓ 𝑄𝑦)]
sin [𝜋(𝑄𝑑

𝑥 ∓ 𝑄𝑦)]
{e𝑖(𝜑

d,𝑥
𝑠𝑑𝑠−𝜑

𝑥
𝑠𝑑𝑠)𝑓∓ + 𝜆𝑥𝜆𝑐e

𝑖(𝜑d,𝑥
𝑠𝑑𝑠−𝜑

𝑥
𝑠𝑑𝑠)𝑓∗±

+ 2𝑖 sin(𝜋(𝑄−
𝑥 ))e

𝑖(𝜑d,𝑥
𝑠𝑑𝑠−𝜑

𝑥
𝑠𝑑𝑠)𝑓±(𝑠; 𝑠, 𝑠𝑑)

+ 2𝑖𝜆∓1𝑐 sin(𝜋(𝑄−
𝑥 ))e

𝑖(𝜑d,𝑥
𝑠𝑑𝑠+𝜑

𝑥
𝑠𝑑𝑠)𝑓∓(𝑠; 𝑠, 𝑠𝑑)} , (5.30)

for the 𝑓 terms as measured from the signal in the horizontal plane, and

𝑓±,𝑦 =
1

√1 − 𝜆2𝑦

sin [𝜋(𝑄𝑥 ∓ 𝑄𝑦)]
sin [𝜋(𝑄𝑥 ∓ 𝑄𝑑

𝑦 )]
{e𝑖(𝜑

d,𝑥
𝑠𝑑𝑠−𝜑

𝑥
𝑠𝑑𝑠)𝑓∓ + 𝜆𝑥𝜆𝑐e

𝑖(𝜑d,𝑥
𝑠𝑑𝑠−𝜑

𝑥
𝑠𝑑𝑠)𝑓∗±

+ 2𝑖 sin(𝜋(𝑄−
𝑥 ))e

𝑖(𝜑d,𝑥
𝑠𝑑𝑠−𝜑

𝑥
𝑠𝑑𝑠)𝑓±(𝑠; 𝑠, 𝑠𝑑)

+ 2𝑖𝜆∓1𝑐 sin(𝜋(𝑄−
𝑥 ))e

𝑖(𝜑d,𝑥
𝑠𝑑𝑠+𝜑

𝑥
𝑠𝑑𝑠)𝑓∓(𝑠; 𝑠, 𝑠𝑑)} , (5.31)

from measurements in the vertical plane. In order to simplify the expression, some extra
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definitions were introduced:

𝜆𝑐 =
sin [𝜋(𝑄𝑥 − 𝑄𝑦)]
sin [𝜋(𝑄𝑥 + 𝑄𝑦)]

,

𝑓∓(𝑠𝑗; 𝑠𝑎, 𝑠𝑏) =
∑

𝑤∈𝐼(𝑠𝑎,𝑠𝑏)
ℎ𝑤,∓e

𝑖[𝜑𝑥𝑤𝑗∓𝜑
𝑦
𝑤𝑗]

1 − e2𝜋𝑖[𝑄𝑥∓𝑄𝑦]
, (5.32)

where the interval 𝐼(𝑠𝑎, 𝑠𝑏) contains all elements between 𝑠𝑎 and 𝑠𝑏,

𝐼(𝑠𝑎, 𝑠𝑏) = {𝑤 ∶ 𝑠𝑎 < 𝑠𝑤 < 𝑠𝑏}, (5.33)

and for ℎ𝑤,∓ the same convention applies as for 𝑓∓. Measurements can only be performed

on the real signal. The complex signal needed for the calculation of RDTs has to be recon-

structed. This reconstruction mixes the RDTs 𝑓+ and 𝑓−, given by the following equation.

Under the assumption that adjacent BPMs are used for the reconstruction, the combined

𝑓 terms read

𝑓∓,𝑥,𝑦 =
1

√1 − 𝜆2𝑦
{e±𝑖[𝜑

d,𝑥
𝑠𝑑𝑠−𝜑

𝑥
𝑠𝑑𝑠]𝑓∓,𝑥 − 𝜆𝑦e

±[𝜑d,𝑦
𝑠𝑑𝑠−𝜑

𝑦
𝑠𝑑𝑠]𝑓±,𝑥} . (5.34)

It is important to take into account this fact when finally reconstructing the driven 𝑓 terms

from the measured ones.

5.2 Comparison of the methods for typical LHCmachine

configurations

In this section the effect of the driven motion on the measured RDTs is studied using an

LHCoptics with no other perturbations than the additional coupling sources and no higher

order multipoles active, in order to avoid feed down polluting the results. From Eq. (5.26)

one can see that the effect of the AC-dipole jump is proportional to the strength of the

RDTs at the position of the AC-dipole. This means, given a weak initial coupling around

the AC-dipole or a sufficient correction of the local coupling, the effect is expected to be

low and further coupling measurements are not impacted by it.

Given that the effect is only a minor one in the first place, repeated measurement and

correction of coupling will iteratively improve the precision of the coupling measurement.

In Figure 5.2 the case of a coupling bump in the lattice is shown. The AC-dipole is located

at 𝑠 = 9846m in a region with low coupling.

The right plot shows no effect of the AC-dipole. The formula method and the newmethod
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Figure 5.2: Comparison of the three methods with a coupling bump in the lattice. The absolute

value of coupling term 𝑓1001 is shown. The formula method and new method (called new formula)

manage to reproduce well the 𝑓1001. The naive rescaling method underestimates the 𝑓 term in the

bump. The offset between meas and the reconstructed values is due to the reconstruction of the

complex signal. The right plot shows the region in which the AC-dipole is located. There is no

jump at the location of the AC-dipole.

show a good agreement with the measured values. The rescaling method underestimates

the 𝑓 term inside the bump but outside its accuracy is also excellent. All three methods

correctly predict zero coupling outside of the closed bump. The measured values show

an offset which is due to the reconstruction of the complex signal from the momentum

Eq. (2.114) which picks up coupling sources from in between 𝑠𝑎 and 𝑠𝑏.
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Figure 5.3: Comparison of the three methods with the AC-dipole surrounded by a coupling bump.

The AC-dipole is creating a jump in the coupling term 𝑓1001 at its location. Only the new formula

is able to reproduce this jump. The position of the AC-dipole is marked by a vertical line.

Figure 5.3 now shows the picture when the AC-dipole is placed inside the bump and, thus,

being in a region with strong coupling. In this case a visible bump is expected and the
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Figure 5.4: These plots show the same comparison as Fig. 5.3 but for the HL-LHC lattice at

𝛽∗ = 15 cm with varying strengths of the skew quadrupoles which form the coupling bump. A

degradation of the performance of the new formula is observed.

agreement with the conventional methods should decrease because they do not consider

the additional source. Indeed, the new formula yields overall a better accuracy, especially

inside of the coupling bump. The jump at the position of the AC-dipole is well reproduced,

as expected from Eq. (5.26).

5.2.1 HL-LHC and stronger coupling

The HL-LHC has more challenging optics and a similar coupling source as for the LHC

simulations in the previous section creates considerably larger coupling.

Figure 5.4 shows slightly stronger coupling in the HL-LHC lattice at 𝛽∗ = 15 cm. Two cou-

pling strengths are tested. For reference, the initial setting for the first magnet in the bump

is printed in the top right corner of each plot1. The left plot shows the same initial strength

as for the LHC simulations in the previous section. The matching of the closed coupling

branch failed which resulted in non-zero coupling outside of the designated region.

Althoug still better than the conventional methods, the new formula does not achieve the

same performance as before and starts to lose its performance w.r.t. the other methods.

5.3 Conclusion

Current methods to calculated the coupling terms 𝑓1001 and 𝑓1010 in the LHC have been

revised and brought into context of recent findings. The AC-dipole creates a jump in the

RDTs at its location and this jump can be demonstrated for the coupling RDTs in simu-

lations. A study of sextupolar RDTs is presented in [58]. The calculation of a corrected

coupling RDT has been performed and its accuracy in the case of small coupling has been

1The final value depends on the matching but is still of the same order of magnitude.
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demonstrated in simulations.
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Conclusion and Outlook

CHAPTER 6

The development and enhancement of three distinct optics measurement methods have

been presented in this work. These developments improve the precision and accuracy of

optics measurements and extend our understanding of the imperfections in an accelerator.

The first method, called the Analytical N-BPM method is a more precise and faster mea-

surement of the 𝛽 function. It is based on the method previously developed and used for

LHCmeasurements during run 1, called theN-BPMmethod, that combinesmeasurements

from a set of 𝑁 neighbouring BPMs to remove statistical uncertainties. Systematic uncer-

tainties were taken into account through computationally expensive Monte-Carlo simula-

tions. The N-BPMmethod required a careful preparation for each individual optics setting

before the actualmeasurement. The analytical N-BPMmethod performs error propagation

purely from analytic calculations and can therefore be applied during the measurement

without the need of precomputing the covariance matrix. It also avoids the complications

from failing simulations, which can happen for extreme optics settings, like low 𝛽∗ optics
for example. A filtering of BPM combinations with unsuitable phase advances was also

introduced in this method, which makes it even more independent from the exact optics.

The analytical N-BPM method is now routinely used in various optics measurement and

machine development studies of various of CERN’s main accelerators, including the LHC.

It has also been used in collaborative efforts in accelerators from several external institutes

like SuperKEKB and PETRA III.

The second method is a new local observable for linear lattice imperfections. Although

such observables already exist for non-linear imperfections, in the linear case there was

none. This work presents a local observable for the linear imperfections for the first time.

This locality holds up to first order in the quadrupole error 𝛿𝐾1. The phase advance beating,
which depends on all errors in the lattice, can be rearranged in a way that eliminates global
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contributions, yielding two kinds of local observables: if the unperturbed phase advance is

a multiple of 𝜋, the phase advance beating is directly a local observable, in the general case

a combination of four nearby phasemeasurements has to be used to construct a local term.

The existence of this observable has been shown in this work. Strong error sources can be

detected using the local observable, which can be used to guide local error corrections.

Such a usage is planned for the upcoming run 3 of the LHC.

The last method describes the impact of forced particle motion on the measurement of

transverse coupling. TheAC-dipole, which is used to create the forcedmotion formeasure-

ments, creates a jump in the amplitude of the coupling RDTs. This jump does not appear in

any of the current methods to calculate forced coupling and correct for the forced motion.

In this work, forced coupling RDTs are calculated using a new framework that has recently

been developed and which accounts for this jump. The agreement for small coupling is ex-

cellent. A future usage to compensate for the driven motion using an iterative approach is

conceivable.

The introduction of next generation light sources and the design and construction of new

colliders and future projects create the demand for more advanced or novel measurement

and correction methods. More challenging optics designs require more precise measure-

ments and large lattices call for efficient algorithms and according implementation. This

work presents developments in the domain of linear optics measurements for circular ac-

celerators, improving existing methods and introducing new ones in order to prepare for

future operation of the LHC and other accelerators.
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