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Abstract

Understanding and controlling the interaction between quasiparticles in quantum mate-

rials is still an ongoing endeavour in condensed matter physics. In this thesis the interac-

tion between phononic, electronic and excitonic degrees of freedom is investigated using

first principles and model calculations for prototype candidates of a family of correlated

materials.

In the first part of this thesis I am going to present two different cases, where the strong

coupling between electrons and phonons can be used to control the material properties in

a solid. The first example, which I am going to discuss, is SiP2. I will show that its quasi

one-dimensional structure gives rise to peculiar hybrid dimensional excitons. These are

shown to be detectable through their strong coupling to the ionic degrees of freedom,

which leads to the emergence of exciton phonon sidebands. These have been detected by

our experimental collaborators, which marks the first measurement of such low dimen-

sional exciton phonon sidebands in a bulk system and show a prime example of symme-

try engineering of the electronic degrees of freedom. For a second example I will show,

how the ionic system can be dynamically controlled via an electronic excitation which

allows to manipulate the reflectivity in the THz regime. I will identify the microscopical

coupling mechanism of this phenomenon, which arises through the strong coupling be-

tween the involved electronic and phononic states, and explain how this manifests in an

enhancement of the reflectivity of the system.

In the second part of the thesis I will present how one can understand the nature of

competing phase transitions using a combined ab-initio and model calculation approach.

I will discuss Ta2NiSe5, which is currently the most discussed candidate to host a phase

transition to an excitonic insulating state. The difficulty in understanding this transi-

tion is that it is intrinsically coupled to a structural phase transition which makes the

unique signature of the conjectured excitonic insulating groundstate elusive. Therefore,

it is necessary to understand the nature of both transitions separately and disentangle the

contribution of the two. I will discuss how an excitonic instability in this system could

arise and identify its order parameter, but then show that the actual material does not

realize it. Instead Ta2NiSe5 displays a structural instability, which leads to changes in the

electronic system that is in agreement with the experiments for this material. Thus, we

conclude that the phase transition is stemming from a structural instability rather than

an excitonic instability.



vi Zusammenfassung

Zusammenfassung

Das Verständnis und die Kontrolle von Quasiteilchen in Quantenmaterialien ist bis heute

eine Herausforderung für die aktuelle Forschung. In dieser Dissertation werde ich die

Wechselwirkung zwischen eletronischen, exzitonischen und phononischen Freiheitsgraden

mittels ab-initio und Modellrechnungen untersuchen.

In dem ersten Teil dieser Arbeit werde ich zwei verschiedene Beispiele von Systemen

präsentieren, deren Eigenschaften sich durch ihre starke Wechselwirkung zwischen Io-

nen und Elektronen manipulieren lassen. In dem ersten Projekt diskutiere ich SiP2. Dies

ist ein Kristall mit quasi-eindimensionaler Struktur, welcher Exzitonen mit einer beson-

deren hybrid-dimensionalen Struktur beheimatet. Es wird gezeigt, dass diese Struktur

erlaubt die starke Wechselwirkung dieser Teilchen mit Phononen zu messen, da dieser

stark korrelierte Exziton-Phonon Zustand als Nebenpeak zu den exzitonischen Haupt-

peaks sichtbar wird. Diese wurden von unseren experimentellen Kollegen gemessen,

was die erste Messung dieser niedrigdimensionalen Exziton-Phonon Nebenmaxima in

einem dreidimensionalen Kristall darstellt. In einem zweiten Projekt werde ich zeigen

wie das ionische System durch seine starke Kopplung zu dem elektronischen System

gezielt durch die Anregung des letzteren manipuliert werden kann. So ist es möglich

die Reflektivität des Systems mittels eines gezielten Laserpulses signifikant zu erhöhen.

Ich werde in dieser Arbeit den mikroskopische Mechanismus dieses Phänomens identi-

fizieren, zeigen welche elektronischen und ionischen Zustände dazu stark miteinander

koppeln und erklären wie dies zu der Vergrößerung der Reflektivität des Kristalls führt.

In dem zweiten Teil dieser Arbeit werde ich zeigen wie mittels eines kombinierten

Ansatzes aus ab-initio-Rechnungen, Modellrechnungen und experimentellen Daten ein

kompetitiver Phasenübergang verstanden werden kann. Ich werde den Ta2NiSe5 Kristall

diskutieren, welcher gegenwärtig der meistdiskutierte Kandidat ist um den exzitonis-

chen Isolator Zustand zu realisieren. Die Schwierigkeit bei der Suche nach diesem Zu-

stand ist, dass dieser in Ta2NiSe5 intrinsisch mit einem strukturellen Phasenübergang

gekoppelt ist. Dies macht es schwer den vermuteten exzitonisch isolierenden Zustand

eindeutig zu identifizieren. Deshalb ist es nötig beide Phasenübergänge einzelnd genau

zu verstehen, um ihre Signatur in dem kompetitiven Phasenübergang unterscheiden

zu können. Ich werde dies anhand dieses exzitonischen Isolator Kandidaten aufzeigen

und diskutieren wie solch eine exzitonische Instabilität aussehen könnte und ihren Ord-

nungsparameter identifizieren. Anschließend werde ich jedoch zeigen, dass diese exzi-

tonische Instabilität im realen Material nicht realisiert ist und stattdessen eine strukturelle

Instabilität den Phasenübergang dominiert. Diese führt zu einer Signatur, welche im Ein-

klang mit den experimentellen Messungen ist. Deshalb ist das Fazit, dass der exzitonis-

che Isolator in dem Phasenübergang in Ta2NiSe5 keine Rolle spielt.
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1 Introduction

The overarching goal of condensed matter physics is to understand and control complex

physical systems such as solids and molecules. With this we would like to be able to

create materials with tailored electronic and ionic properties on demand, which can be

used for new technological applications. Possibly the most famous example for such a

breakthrough is the invention of the transistor [1], which triggered the revolution of in-

formation technology and is now part of almost any information technology device such

as computers and smartphones. Up to date silicon is, due to its abundance in nature

and easy controllability, still the base element for most of these devices. However, the

growing demand for even more specialized devices has sparked the search for new ma-

terials. Therefore, the goal to find novel materials with highly controllable properties is

still an ongoing challenge in condensed matter physics. Some of the most interesting

candidate materials to realize such potential new breakthrough applications are for in-

stance cuprates which exhibit superconductivity at unusually high temperatures [2–4]

or perovskite crystals which can be used to produce very high efficiency solar cell mod-

ules [5,6]. In recent years, the possibility to create layered materials such as van-der Walls

single- or hetero-layers [7–11] and being able to control them via symmetry engineering,

i.e. by introducing a twist [12], have opened even more pathways to tailor the properties

of a crystal.

Often new emergent physical phenomena are described in terms of so called quasipar-

ticles. These are collective excitations which can be reframed as a single particle, but only

exist in their specific system. The most common examples for such quasiparticles in con-

densed matter systems are phonons, which are collective vibrations of the ions, or holes,

which are electron vacancies that behave similar to positrons. An example of a two com-

ponent quasiparticle is the so called exciton. It is a bound pair of an electron and a hole

and has properties comparable to an hydrogen atom. While a lot of research has been

focused on understanding how these quasiparticles emerge and what their spectroscopic

signature is, understanding and controlling the complex interaction between them still

poses an immense challenge.

From a theoretical point of view the main difficulty is the numerical complexity of the

physical problem at hand. For real systems this complexity does not allow to compute an

exact solution and many methods have been proposed to solve it approximately. These

are generally divided into two subcategories. One are so called ab-initio methods. These

are methods designed to work for any physical condensed matter system, requiring only
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the atomic species and lattice as minimal input. Arguably its most famous representant

is Density Functional Theory (DFT), which has shown immense success in describing the

properties of crystals. However, besides its generality, ab-initio methods often struggle

to describe the complex interactions between multiple (quasi-)particles and strong cor-

relation phenomena. The second common approach to overcome this issue is to build

physical models and to solve these numerically. Because these are usually tailored to

capture the physics of very specific interactions between particles in great detail while

neglecting all other interactions, they often fail to translate between systems and need

external parameters as input.

The goal of this thesis is to show how a combined approach using ab-initio simulations

and ab-initio inspired model calculations together with experimental data can be used

to understand the complex microscopic dynamics between quasiparticles and their influ-

ence on phase transitions. I will focus on the interplay between electrons, phonons and

excitons and show how such an interdisciplinary approach can be used to understand

and control these complex physical objects.

In the first part of this dissertation I will investigate how engineering crystal struc-

tures can influence the properties and interaction between the quasiparticles and how

this interaction can be tuned to manipulate the material properties. I will introduce two

materials, that exhibit a very strong interaction between the electronic and phononic sys-

tem, due to their highly anisotropic quasi one-dimensional character. I will show that this

coupling can be used in one of these crystals to control reflectivity of the system through

optical laser pumping. By selective excitation of the electronic system via such a pump,

we can tune the reflectivity of the crystal and significantly enhance it on demand. For a

second material I will show, that the coupling between excitons and phonons can be used

to detect unconventional hybrid dimensionality excitonic states, whose exotic nature has

been imprinted by the underlying lattice symmetry. This allows for the first detection of

low dimensional exciton phonon sidebands in a bulk material. These two projects are

prime examples of controlling the electronic or ionic properties of a solid, by exploiting

the strong coupling between these two channels and selectively manipulating the corre-

sponding other degree of freedom.

In the second part of this thesis I will discuss an exotic new state of matter which is

called the Excitonic Insulator (EI). In its groundstate it consists of a condensate of exci-

tonic particles. This state has been envisioned over half a decade ago as the electron-hole

analogue of the superconducting state [13–19], but never been measured. In recent years

it has gained a lot of new interest, because of the ability to create new layered or low

dimensional candidate materials [20–25]. Out of these candidate materials none has been

confirmed to host an EI, because the phase transition into the EI groundstate is usually

accompanied by another transition. These can be the formation of a charge density wave
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(CDW) [21, 26, 27] or in the case of Ta2NiSe5, which is discussed in this thesis, a struc-

tural phase transition [28–31]. Therefore, it is incredibly challenging to experimentally

disentangle these two transitions and unambigously confirm the EI. I will show in this

project how one can understand these competing phase transitions using a combination

of model calculations and ab-initio methods and show for the case of Ta2NiSe5 that this

material exhibits a predominantly lattice driven transition rather than an EI transition.

With this finding I will provide an important contribution in the controversial discussion

surrounding this material.

The dissertation is structured as follows:

• Chapter 2: In this chapter I will introduce the ab-initio methods which are used

for a majority of the calculation. I will highlight very briefly the ideas of Density

Functional Theory, the differences between some of the functionals used in this

work and introduce Many Body Theory methods, that go beyond DFT.

• Chapter 3: Here I will introduce the basic concept of electron phonon coupling and

derive the main spectroscopic feature of strongly coupled exciton-phonon states

which appear as sidebands. The following two publications I and II will highlight

examples for such strong electron and exciton phonon coupling effects: We will

show how exciton-phonon sidebands arise from hybrid dimensionality excitons in

SiP2 and how the THz reflectivity in Ta2NiSe5 can be controlled via a peculiar non-

linear electron phonon coupling process.

• Chapter 4: I will introduce the basic idea of an exciton and the concept of an ex-

citonic insulating groundstate. I will highlight its similarity to Bardeen-Cooper-

Schrieffer (BCS) theory and its spectroscopic features. Then I will discuss in the

publications III-V the controversially debated EI candidate Ta2NiSe5 and show that

its phase transition is predominantly of structural nature rather than exitonic.

• Chapter 5: The final chapter will be a comprehensive discussion of the obtained

results in light of the recent developments in the field.
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2 Methods

2.1 Density Functional Theory

Among the electronic structure theory methods Density Functional Theory (DFT) has

become one of the most successful and widespread methods. Being proposed in the 1960s

with key works from Hohenberg, Kohn and Sham [32, 33], its overwhelming success

started in the 1990s with the introduction of new accurate functionals, such as the PW91

and PBE functional [34, 35], and growing computational resources (see Fig. 2.1). Walter

Kohn has been awarded the nobel prize in chemistry in 1998 "for his development of the

density-functional theory" [36].

In the following section I am going to explain very briefly the basic concepts of Density

Functional Theory and discuss the different classes of exchange correlation functionals

which will be used in this work.

1990 2000 2010 2020
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5000
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15000

20000
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lic
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Publications per year

Fig. 2.1 Number of Density Functional Theory related publications obtained using a WebOf-
Science search with the keywords: Density Functional Theory, Density-Functional Theory
and Density-Functional-Theory (1.3.2022, 16:08). Adapted from [37]

2.1.1 Density Functional Theory Basics

We start from the standard Many-Body electronic Hamiltonian within the Born-Oppenheimer

approximation for N particles in atomic units

H =
N

∑
i=1

(− ∇
2
i

2mi
)

︸ ︷︷ ︸
kin. Energy

+
N

∑
i=1

V(ri)

︸ ︷︷ ︸
ext. potential

+
N

∑
i<j=1

Ve(ri, rj)

︸ ︷︷ ︸
el.-el. interaction

, (2.1)
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where V(r) is the so called external potential given by the ions. Ve(r1, r2) is the electron-

electron interaction potential which is commonly chosen as the Coulomb potential. Di-

rectly solving the Schrödinger equation associated with the above Hamiltonian is impos-

sible for realistic systems, because of its overwhelming numerical complexity. The main

idea of Density Functional Theory is to recast the many-body problem into a minimiza-

tion problem with respect to a single-particle density n(r) =
∫
(∏N

i=2 d3ri) |Ψ(r, r2, ..., rN)|2,

which in turn uniquely determines the groundstate wavefunction. This is proven using

the so called Hohenberg Kohn theorems which are the formal foundation of DFT [32].

They read:

Hohenberg-Kohn theorem 1

The external potential Vext (and hence the total energy), is a unique functional of the

electron density.

Hohenberg-Kohn theorem 2

A universal functional E(n) in terms of the density n can be defined for any external

potential Vext. For any given Vext the global minimum is the exact ground state energy

of that system and the groundstate density n0, that minimizes it is unique

min {E[n]} = E[n0].

The Hohenberg-Kohn theorem 1 proves that there exists a one-to-one correspondence

between the groundstate density n0 and the external potential which in turn uniquely

defines the Hamiltonian and its groundstate wavefunction. Thus, all the information

given by the full Many Body wavefunction is already encoded in the much simpler object

of the one particle density. The Hohenberg-Kohn theorem 2 proves, that this groundstate

density can be found via minimization of the Energy functional E[n]:

E[n] = T[n] + V[n] + U[n] with

T[n] = kinetic energy

V[n] = e-i interaction

U[n] = e-e interaction

(2.2)

However, it is unknown how to explicitly construct this exact energy functional. There-

fore, Kohn and Sham have proposed to simplify this problem: Instead of trying to find

the exact energy functional, one should consider the energy functional of a system of non-

interacting particles in an effective potential which has the same groundstate density as
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the interacting system [33]:

E[nKS] = TKS[nKS] + V[nKS] + UH [nKS] + UXC[nKS] with

nKS(r) = Kohn-Sham density ≡ ρ =
N

∑
i=1
|φi|2(r)

TKS[ρ] = kinetic Energy = −
n

∑
i=1

φ∗i (r)
∇2

ri

2m
φi(r)

V[ρ] = e-i interaction =
∫

d3rV(r)ρ(r)

UH [ρ] = Hartree interaction = e2
∫

d3r d3r′
ρ(r)ρ(r′)
|r− r′|

UXC[ρ] = exchange correlation functional

(2.3)

The effective potential is called the exchange correlation potential and formally includes

all exchange and correlation effects of the interacting system. In practice it is unknown

and has to be approximated. The Kohn-Sham energy functional is then minimized using

the variational principle which gives the Kohn-Sham equations that are the basic of any

DFT algorithm [33]

εiφi(r) = −
∇2

2m
φi(r) + V(r)φi(r) + e2

∫
d3r′

ρ(r)
|r− r′|φi(r) + VXC[ρ]φi(r)︸ ︷︷ ︸

δUXC
δφ∗i

. (2.4)

2.1.2 Exchange-Correlation functional

Since the foundation of Density Functional Theory in the 60s [32, 33] there has been a

plethora of different exchange correlation functionals. These can be classified by their

degree of approximations and differ in both chemical accuracy and computational work-

load. The simplest approximation to the exchange correlation functional is setting it to

zero and considering only the Hartree interaction in the Kohn-Sham equations. Of course

this is a very crude approximation and can be improved by considering corrections in

the density only (LDA), the density and its gradient correction of different orders (GGA

and metaGGA) or by including exact exchange (EXX) which requires the calculation of

the non-local Coulomb integrals entering the Fock-term. An overview of these different

classes of functionals is given by the Jacobs ladder of exchange correlation functionals

(see Fig.2.2), which shows the different classes of functionals ranked by their chemical

accuracy but also computational hardness. For each of these sub-classes there exists a zoo

of different functionals which take slightly different approaches to approximate the exact

exchange correlation functional. Over the years some of these functionals have proven

to perform very well for a variety of systems. In the following I will briefly discuss the

most relevant functionals for this work.
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Fig. 2.2 Jacobs ladder of exchange correlation functionals. The chemical accuracy increases to-
gether with the computational hardness for the different functionals along this ladder.
Adapted from [38].

The LDA and PBE Functional

The local density approximation, or often called LDA functional, is the simplest func-

tional, that is still being used. It depends only on the density ρ and approximates the ex-

change and correlation contributions with those of the homogeneous electron gas [33,39]

ELDA
XC [ρ] = ELDA

X [ρ] + ELDA
C [ρ]

=

︷ ︸︸ ︷
3
4
(

3
π
)

1
3

∫
ρ(r)

3
4 dr + ELDA

C [ρ].
(2.5)

For the correlation energy no analytical expression is known and it is parameterized us-

ing high precision Monte-Carlo data from Ceperly and Alder [39]. Many modern func-

tionals that go beyond LDA use different approaches approximating the exchange term

while still relying on the Ceperly and Alder data for the correlation part.

The simplest extension of the LDA functional is the so called generalized gradient ap-

proximation (GGA) which parameterizes the functional not only using the density ρ but

also its gradient

EGGA
XC = EGGA

XC [ρ,∇ρ]. (2.6)

There exists a variety of different GGA functionals with the Perdew-Burke-Enzerhoff

(PBE) functional [34] being the most commonly used one up to date. It is a non-empiric

functional which offers high performance while retaining a reasonable numerical accu-

racy for almost any system.
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Modified-Becke-Johnson functional

The modified-Becke-Johnson functional (mBJ) [40] is a popular meta-GGA functional,

which is an extension to the standard Becke-Johnson functional [41]. The idea of the

standard Becke-Johnson functional is to include the exact exchange contribution from

Hartree-Fock theory using a local effective potential which removes the orbital depen-

dence of the exchange interaction. This allows an approximate treatment of the exchange

in terms of the electron density [41,42]. This exchange contribution is then used together

with the LDA correlation term.

Becke and Johnson have built such a functional under the constraints of reproducing cer-

tain limits (e.g. it has to reproduce the exact uniform electron gas potential in the limit

of the density being the density of the electron gas). This functional has been the starting

point for Tran and Blaha, who modified it using a semi-empirical approach. The modified

functional is [40]

VmBJ,x,σ = c VBR(r) + (3c− 2)
1
π

√
5
12

√
2 τσ(r)
ρσ(r)

, (2.7)

where VBR(r) is the Becke-Roussel potential [42], an effective potential describing the

local exchange effect. It is completely determined by ρ,∇ρσ,∇2ρσ and the kinetic en-

ergy density τσ = ∑N
i=1∇φ∗σ,i∇φσ,i. The second term is a correction term to the Becke-

Roussel potential proposed by Becke and Johnson [41]. The mBJ functional contains a

free parameter c, that controls the strength of the effective exchange interaction of the

potential. It can either be optimized manually to fit experimental results or computed

self-consistently using the charge density and a semi-empirical formula, which has been

chosen such that it reproduces bandgaps of a range of solids well

c = α + β

(
1

Vcell

∫

cell

|∇ρ(r)|
ρ(r)

d3r
)

. (2.8)

These empirical parameters are α = −0.012 and β = 1.023 bohr−1. For c=1 the origi-

nal Becke-Johnson functional is recovered [41]. Note that in their formulation the Slater

potential has been used instead of the Becke-Roussel potential, but these two have been

shown to be quasi-identical for atoms [40, 41].

Hybrid Functionals

Hybrid functionals are considered to be among the most accurate exchange correlation

functionals for DFT calculations. They exist in different flavors but their underlying idea,

which all have in common, is that they replace part of the exchange contribution of the

standard gradient corrected functionals with the exact Hartree-Fock exchange [43–45]

EHF,x = − e2

2 ∑
nkn′k′

fnk fn′k′

∫
φ∗nk(r) φ∗n′k′(r

′) φnk(r′) φn′k′(r)
|r− r′| d3rd3r′ . (2.9)
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As such hybrid functionals are non-local objects that explicitly depend on the wavefunc-

tions and go beyond the standard formulation of DFT. The formal foundation for such

functionals has been set by Levy [46] who has generalized the Hohenberg Kohn theorems

for one particle density matrix and wavefunction based functional approaches.

In this work we will be using the range-separated hybrid functionals HSE03 and HSE06

introduced by Heyd, Scuseria and Enzerhof [47, 48], which differentiate between a short

range contribution and a long range contribution to the exchange energy. The decom-

position of the Coulomb interaction into these two contributions is done using the error

function
1

|r− r′| =
erfc(µ|r− r′|)
|r− r′| +

erf(µ|r− r′|)
|r− r′| , (2.10)

with µ being the so called range separation parameter. Using this range separation the

exchange correlation energy can be written

EHSE
XC =

1
4

EHF,SR
x (µ) +

3
4

EPBE,SR
x (µ) + EHF,LR

x (µ) + EPBE
c . (2.11)

Therefore, only 1
4 of the short range (SR) contribution of the PBE exchange is replaced

with the exact Hartree-Fock exchange, while both the long range (LR) exchange and cor-

relation contributions of the PBE functional are kept. It has been shown, that the optimal

choice for the range separation parameter µ is between 0.2 and 0.3. Usually one chooses

it to either 0.2 or 0.3 which corresponds to the so called HSE06 and HSE03 function-

als [47, 48], that I will be using in this work.

2.2 One-Particle Greens Function and the GW approximation

A systematic approach to improve on the results of DFT calculations is to employ Many

Body Perturbation Theory methods [49,50]. The basis for almost all standard Many Body

Perturbation Theory (MBPT) methods is the one-particle Greens function. For zero tem-

perature it is defined as the expectation value of the time-ordered product of creation and

annihilation operators [51]

G(1; 2) = −i〈ψN
0 |T

{
ψH(1)ψ†

H(2)
}
|ψN

0 〉 (2.12)

with

• |ψN
0 〉 being the N-particle groundstate at t = t0 and temperature T = 0K

• ψH(1), ψ†
H(2) being the (fermionic) field operators in the Heisenberg picture

• Notation i = (xi, ti) with xi being a collective space-spin variable

• T being the time ordering operator.
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In principle this definition can also be extended to include finite temperatures. This is

done by extending the definition of the time variable to complex values and defining

time ordering on the Keldysh contour [51, 52]. This is the so called Keldysh formalism,

which has been proposed to describe also non-equilibrium processes. For our purpose,

however, the zero temperature Greens function is sufficient and introducing the Keldysh

formalism would go beyond the scope of this thesis.

Physically, the Greens function describes the probability amplitude for a particle being

created at (x1, t1) to propagate to (x2, t2). The Greens function is a very powerful math-

ematical tool as it allows to compute the expectation value of any one-particle operator

Ô(t) via

O(t) =
∫

dx1dx2O(x1, x2, t)ρ(x1, x2, t). (2.13)

where ρ(x1, x2, t) is the one-particle density, which can be obtained from the Greens func-

tion

ρ(x1, x2, t1) = −iG(x1, t1; x2, t+1 ) . (2.14)

Here, t+1 is a time infinitesimally later than t. Full knowledge of the one-particle Greens

function even allows to compute the exact groundstate energy of the Many Body sys-

tem using the Galitski-Migdal formula [53]. However, the definition of the Greens func-

tion (2.12) is often not convenient for actual calculations as it incorporates the N-particle

groundstate, which is not known. Thus, one usually defines the Greens function via its

equations of motion

i
d

dt1
G(1; 2)−

∫
d3h(1; 3)G(3; 2) + i

∫
d3vc(1; 3)G2(1, 3; 2, 3+) = δ(1; 2) (2.15)

−i
d

dt2
G(1; 2)−

∫
d3G(1; 3)h(3; 2) + i

∫
d3G2(1, 3−; 2, 3)vc(3; 2) = δ(1; 2). (2.16)

Here

• h(1; 2) is the one-particle part of the Hamiltonian

• vc(1, 2) is the Coulomb interaction term

• G2(1, 2; 1′, 2′) is the 2-particle Greens-function.

These equation of motion can be easily obtained by substituting the equation of mo-

tion for the creation and annihilation operators. However, because of the two-particle

Coulomb operator, the two-particle Greens function appears in the equation of motion of

G. It is defined as [51]

G2(1, 2; 1′, 2′) = −〈ψN
0 |T

{
ψH(1)ψH(2)ψ†

H(2
′)ψ†

H(1
′)
}
|ψN

0 〉 (2.17)

and describes the two particle scattering processes such as the propagation of two elec-

trons, two holes or an electron hole pair.
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Having the two-particle Greens function in the defining equation of the one-particle

Greens function is problematic for practical calculations, because the equation of motion

for the two-particle Greens function again contains the next higher order Greens function

due to the interaction term. This is a general property and the infinite hierarchy of equa-

tions which arises is called Martin-Schwinger-Hierarchy [51, 54].

To truncate this hierarchy one introduces a quantity called self-energy, Σ, which is de-

fined as [51] ∫
d3Σ(1; 3)G(3; 2) = −i

∫
d3vc(1 : 3)G2(1, 3 : 2, 3+). (2.18)

Substituting it into the equations of motion for G(1; 2) one obtains

i
d

dt1
G(1; 2)−

∫
d3h(1; 3)G(3; 2)− i

∫
d3Σ(1; 3)G(3; 2) = δ(1; 2)

−i
d

dt2
G(1; 2)−

∫
d3G(1; 3)h(3; 2)− i

∫
d3G(1; 3)Σ(3 : 2) = δ(1; 2).

We obtain an effective single particle equation in which the self-energy plays the role of

an effective non-local potential in both space and time, which arises due to the Coulomb

interaction term. The equations of motion for the one-particle Greens function can also

be cast into an integral form and one obtains the so called Dyson equation [51, 55]

G(1; 2) = G0(1; 2) +
∫

d3d4G0(1; 3)Σ(3; 4)G(4; 2), (2.19)

where G0(1; 2) denotes the one-particle Greens function of the non-interacting system.

G0(1; 2) satisfies the same equations of motions as the interacting one-particle Greens

function (2.15, 2.16), only with vanishing self-energy.

2.2.1 Hedin’s equations and the GW approximation

Calculating the self-energy in order to obtain the one-particle Greens function is a formidable

task and generally not possible. Usually one relies on a perturbative expansion of the self-

energy operator in terms of Feynman diagrams or using a functional approach, which has

to be truncated after a certain order. Hedin’s equations recast the problem of calculating

the self-energy into a closed set of equations which allows for a very convenient way to
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apply approximations. They read [56]

G(1; 2) =
∫

d3 d4 G0(1; 3) [vH(3)δ(3; 4) + ΣXC(3; 4)] G(4; 2)

ΣXC(1; 2) = i
∫

d3 d4 G(1; 4)W(1+; 3)Γ(4, 2; 3)

W(1; 2) = v(1; 2) +
∫

d3 d4 vc(1; 3)P(3; 4)W(4; 2)

P(1; 2) = −i
∫

d3 d4 G(1; 3)G(4; 1)Γ(3, 4; 2)

Γ(1, 2; 3) = δ(1; 3)δ(2; 3) +
∫

d4 d5 d6 d7
δΣXC(1; 2)

δG(4; 5)
G(4; 6)G(7; 5)Γ(6, 7; 3)

(2.20)

where G(1; 2) is the one-particle Greens function discussed above, ΣXC(1; 2) the self-

energy from which we have stripped the Hartree contribution vH, W(1; 2) the screened

interaction, P(1; 2) the polarizability , Γ(1, 2; 3) the so called vertex function and vc(1; 2)

the Coulomb interaction. This set of equations is still exact and solving them iteratively

allows for the exact computation of the one particle Greens function and its self-energy.

This is, however, not possible in practice. Therefore, one usually truncates these equa-

tions by approximating the vertex function to

Γ(1, 2; 3) = δ(1; 3)δ(2; 3) . (2.21)

This is the so called GW approximation which effectively neglects all higher order terms

in the screened interaction. Hedin’s equations reduce to

G(1; 2) =
∫

d3 d4 G0(1; 3) [vH(3)δ(3; 4) + ΣXC(3; 4)] G(4; 2)

ΣXC(1; 2) = i G(1; 2)W(2; 1)

W(1; 2) = v(1; 2) +
∫

d3 d4 vc(1; 3)P(3; 4)W(4; 2)

P(1; 2) = −iG(1; 2)G(2; 1).

(2.22)

This also explains the name of the GW approximation as the self-energy can now be

computed as the product between one-particle Greens function G and the screened inter-

action W. In principle Hedin’s equations are now solvable using the Hartree Fock wave-

functions for G and solving the equations (2.22) iteratively. This approach is known as

scGW-method. Unfortunately this task is still numerically very demanding. Therefore,

one usually uses a different scheme which combines density functional theory and the

GW approximation.

2.2.2 GW and DFT

The idea is to perform the GW approximation starting from the DFT groundstate which

already gives a good approximation of the one-particle Greens function. The GW calcu-
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lation is then performed to correct the DFT results and should converge only after a few

iterations.

To correct the Kohn-Sham energies using the GW approximation one usually employs

the quasiparticle equation which is an equivalent formulation of the equations of motion

for the one-particle Greens function (2.15) using Lehmanns representation

h(x)ΦQP
k (x) +

∫
dx′Σ(x, x′, EQP

k )ΦQP
k (x′) = EQP

k ΦQP
k (x) . (2.23)

This equation allows to recast the above equation using the Kohn-Sham Hamiltonian as

one-particle Hamiltonian by adding and subtracting the Kohn-Sham potential [50]

[h(x) + vXC(x)]︸ ︷︷ ︸
hKS(x)

ΦQP
i +

∫
dx′
(

ΣXC(x, x′, EQP
i )− vXC(x′)δ(x, x′)

)
ΦQP

i (x′)

= EQP
i ΦQP

i (x).

(2.24)

To solve this equation one can expand the self-energy in terms of the Kohn-Sham energies

using a first order expansion

Σ(EQP
i ) = Σ(EKS

i ) +
∂E(ω)

∂ω

∣∣∣∣
EKS

i

(EQP
i − EKS

i ). (2.25)

Then one can compute the quasiparticle energy from equation (2.24) as using a first order

perturbation theory expansion [50]

EQP
i ≈ EKS

i + 〈ΦKS
i |Σ(EQP

i )− vKS|ΦKS
i 〉

= EKS
i + Zi〈ΦKS

i |ΣXC(EKS
i )− vXC|ΦKS

i 〉
(2.26)

with

Zi =

(
〈ΦKS

i |1−
∂E(ω)

∂ω

∣∣∣∣
EKS

i

|ΦKS
i 〉
)−1

. (2.27)

There exist several different flavors of the GW approximation using the DFT wavefunc-

tions as input. One can either update both the electronic wavefunctions and quasiparticle

energies at every cycle of Hedin’s equations (scGW) or keep the Kohn-Sham wavefunc-

tions as input fixed and correct only the eigen-energies using the GW approach. The

latter method has proven to be very successful at correcting the single particle spectrum

from DFT and the obtained bandgaps agree remarkably well with the experimentally

measured values [49] even for very few iterations. Even for one iteration the results are

often very good and one refers to it as the G0W0 method. However, as the Kohn-Sham

wavefunctions are kept fixed in this approach, it is important that these already give a

good approximation of the exact wavefunctions of the system under consideration.
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2.3 Bethe-Salpether Equation

In order to capture excitonic effects we need to go beyond the one particle picture. Start-

ing from the GW approximation this is commonly done using the Bethe Salpether equa-

tion (BSE) which explicitly includes excitonic two-particle propagations. The BSE is

commonly introduced using the four point reducible polarizability 4L, which is defined

as [51]
4L(1, 2; 3, 4) = G2(1, 2; 3, 4)− iG(1; 3)G(4; 2) . (2.28)

Here, G2(1, 2; 3, 4) is the two-particle Greens function introduced in equation (2.17). 4L
is the generalization of the standard two point reducible polarizability, which can be

computed as the contraction of the four point reducible polarizability via [51]

χ(1; 2) = 4L(1, 1+; 2, 2+). (2.29)

The four point reducible polarizability satisfies the Dyson-like equation [57–59]

L(1, 2; 3, 4) = L0(1, 2; 3, 4) +
∫

d5d6d7d8 L0(1, 2; 5, 6)K(5, 6, 7, 8)L(7, 8; 3, 4), (2.30)

where L0 is the non-interacting reducible polarizability defined as

L0(1, 2; 3, 4) = −iG(1; 3)G(4; 2). (2.31)

L0 describes the propagation of two non-interacting electron-hole particles. K(1,2;3,4) is

the so called interaction kernel between these two particles

K(1, 2; 3, 4) = vc(1, 3)δ(1, 2)δ(3, 4) + i
δΣXC

δG(3; 4)
. (2.32)

As the two particle equivalent of the self-energy, it contains the information of all Many

Body effects and has to be approximated. The standard approach is again to employ

for ΣXC the GW approximation (2.22) and disregard variation of the screened interaction

with the one-particle Greens function [58, 59]

δW(1; 2)
δG(3; 4)

= 0. (2.33)

With this and equation (2.22) the interaction kernel simplifies to [58, 59]

K(1, 2; 3, 4) = vc(1, 3)δ(1, 2)δ(3, 4) + W(1, 2)δ(1, 3)δ(2, 4). (2.34)

The two terms appearing in the interaction kernel are the so called exchange interaction

term, which involves the bare Coulomb interaction vc, and the direct screened interaction

term, which involves W. Even in this approximation solving the Bethe-Salpether equa-

tion is a computationally extremely intensive task and computationally not feasible for
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real materials. So one has to further reduce the computational workload by replacing the

frequency dependent screened interaction with its static component [59]

W(1; 2) =
1

2π
W(x1, x2, ω = 0)δ(t1, t2). (2.35)

This is called the static kernel approximation. This is a very drastic approximation. Nev-

ertheless, it has been shown that it works very well for semiconducting systems, but fails

for metallic systems [60]. With the static kernel approximation the frequency integration

in the Bethe-Salpether equation reduces to a simple product and the BSE reads

L(x1, x2; x3, x4, ω) =L0(x1, x2; x3, x4, ω) +
∫

dx5dx6dx7dx8 L0(x1, x2; x5, x6, ω)

K(x5, x6, x7, x8)L(x7, x8; x3, x4, ω).
(2.36)

In principle the Bethe-Salpether equation could now be solved using the standard for-

mula for Dyson-like equations

L(w) =
L0(ω)

1− L0(ω)K
, (2.37)

where I have introduced a schematic notation suppressing all spacial coordinates. In

practice, however, this equation is mapped onto the two particle eigenvalue problem [59]

(Ec,k − Ev,k) AS
vck + ∑

v′c′k′
〈vck|K|v′c′k′〉 = ES AS

vck, (2.38)

with ES being the eigenenergy of the excitonic state S and AS
v,c,k being the eigenfunction

of the excitonic state S in reciprocal space. This eigenvalue problem can now be solved

by diagonalization and the excitonic real space wavefunction reads

ΨS(re, rh) = ∑
vck

AS
vckψkc(re)ψ

∗
kv(rh). (2.39)
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3 Controlling structural phases of quantum
materials through the electron phonon
coupling

A strong coupling between electronic and ionic degrees of freedom can have a dramatic

effect on the ionic and electronic subsystems. Arguably the most famous example is the

BCS theory of superconductivity, which shows how the electron phonon coupling renor-

malizes the electron electron interaction such that it becomes attractive. This allows for

the formation of Cooper pairs, which are at the heart of the superconductive state [61,62].

Synthesizing crystals that exhibit such strong electron phonon coupling and under-

standing how their properties can be tuned via this coupling is still a research field itself

in material science. In this section, I will show that quasi one-dimensional crystals pro-

vide an optimal platform for this endeavour. These quasi one-dimensional crystals can

be realized as layered bulk materials which have an in-plane ionic structure that exhibits

the formation of one dimensional ionic chains. These one-dimensional ionic chains gov-

ern the electronic structure of the material near the band edge as the electronic states

tend to localize strongly along them, leading to a strong anisotropy. It is conceivable that

phononic displacements of the ions in these chains are expected to strongly couple to the

localized electronic states. The goal of this section is to show how this strong electron

phonon coupling can be exploited to control either the ionic or electronic properties of

the material.

I will introduce two quasi one-dimensional materials in the publications I and II. In

publication I, I will discuss SiP2, which is a layered material that has one dimensional

Phosphorus chains along which the electronic states near the bandedge localise strongly.

I will show that this leads to the formation of excitons with a peculiar hybrid dimension-

ality, i.e. the hole wavefunction being localized along the layered two dimensional planes

and the electronic wavefunction localized along the one-dimensional Phosphorus chains.

As such these excitonic particles are highly sensitive to phonon modes that displace the

Phosphorus atoms and give rise to a strong exciton phonon coupling. This mechanism

allows to detect these peculiar excitonic states in the photoluminescence and reflectivity

experiments of our collaborators at the Beihang university. In these measurements the

coupled exciton-phonon states emerge as sidepeaks to the standard excitonic spectrum.
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In Publication II, I will discuss Ta2NiSe5 (TNSe). It is a layered material that consists of

parallel Tantalum and Nickel chains that govern the electronic properties near the band-

edge. I will show that exciting these electronic states near the bandedge via a pump laser

pulse allows to selectively control the phononic states via a strong electron phonon cou-

pling mechanism and ultimately leads to a strong amplification of the THz reflectivity

of the material. The strong coupling of electronic and ionic degrees of freedom in this

material will also be important in the next section, when discussing the conjectured ex-

citonic insulating phase transition in TNSe which is accompanied by a structural phase

transition at the critical temperature.

Before presenting the results in these two publications, I will now introduce the theo-

retical basics of the electron phonon coupling mechanism and discuss its most important

effects. As there are many great textbooks and review articles on this theory I will give

only a brief overview of the topic and orientate the discussion along the textbook by Czy-

choll [63] and a review by Giustino [64]. I highly recommend reading these sources for a

more complete discussion of electron phonon coupling effects, that go beyond the scope

of this thesis.

3.1 Effects of electron phonon coupling

In electronic structure theory calculations one commonly employs the Born-Oppenheimer

approximation and separates the ionic and electronic subsystems. In this case the ionic

coordinates appear in the electronic Hamiltonian as external one particle potential V and

are considered to be frozen. This way one obtains a periodic Hamiltonian, that allows the

application of the Bloch theorem and can be solved [63]

H =
Ne

∑
i=1

pi

2m
+

Ne

∑
i=1

V(ri) + ∑
i>j

U(ri − rj). (3.1)

However, to assume that the nuclei are frozen is not correct, because they are vibrat-

ing around their equilibrium position along their phononic coordinates. This movement

from the equilibrium positions effectively disturbs the periodicity of the one particle po-

tential of the electrons and should be included in the Hamiltonian.

This is commonly done by considering the displacements u of the ions from their equi-

librium position R0. For a single ion per unitcell the ionic potential can then be written

using a sum over all unit cells as [63]

V(r) =
N

∑
n=1

v(r− (Rn0 + un) ). (3.2)

Expanding this potential of the electronic Hamiltonian in these displacements u gives
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rise to electron phonon coupling. In its most simple case this expansion is done up to first

order which leads to the electron phonon interaction potential

V(r) = V(r−Rn0)−∇V(r−Rn0) un︸ ︷︷ ︸
Vel-ph

. (3.3)

For the simplest case of one electronic state with the dispersion E(k) and only one atom

per unitcell (only acoustic phonons are possible) the Hamiltonian can then be rewritten

in second quantization as [63]

H = ∑
kσ

E(k)ckσc†
kσ +

1√
N

∑
kqλσ

g(1)λ (k, q)
(

bqλ + b†
−qλ

)
c†

k+q σckσ (3.4)

with ck,σ and c†
k,σ being the creation and annihilation operators of an electron with spin σ

and bq,λ and b†
q,λ being the creation and annihilation operators of a phononic mode λ with

momentum q. gλ(k, q) is the first order electron phonon coupling matrix element. The

Hamiltonian (3.4) describes the coupling of the electronic state to the acoustic phonons

of the system which leads to the scattering of electrons from a state k to a state k + q
under the emission (absorption) of a phonon with momentum q (−q). Such a scattering

is called intraband scattering. This model can easily be generalized to include both more

electronic states and more atoms per unit cell. If one includes more electronic bands, the

electron phonon interaction also allows for interband scattering between the electronic

states and if one includes more atoms per unitcell it allows to couple the electronic states

to optical phonons as well.

In many cases this Hamiltonian is also extended to include second order corrections in the

atomic displacements and the phononic part of the Hamiltonian. In this case we arrive

at the most general form of the electron phonon coupling Hamiltonian which reads, in-

cluding multiple electronic bands and N unitcells in the Born-van-Karman supercell, [64]

H = ∑
kσn

E(k)ckσ,nc†
kσn + ∑

qλ

h̄ωqλ(b†
qλb†

qλ +
1
2
)

+
1√
N

∑
kqλσmn

g(1)λmn(k, q)
(

bqλ + b†
−qλ

)
c†

mk+qσcnkσ

+
1
N ∑

kqq′mnλλ′
g(2)λλ′mn(k, q, q′)

(
bqλ + b†

−qλ

) (
bq′λ′ + b†

−q′λ′

)

c†
mk+q+q′σcnkσ.

(3.5)

Here, the first two terms describe the non-interacting electronic and phononic subsys-

tems. The next term is the standard first order electron phonon coupling term and the

last term is the second order electron phonon coupling term, which is also called Debye-

Waller term. It couples two phononic excitations to the electrons with corresponding
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Matrix element g(2)mnλ,λ′(k, q, q′) [64]. Solving this Hamiltonian is numerically not feasible

for realistic systems. Therefore, many simplified versions of this model have been pro-

posed over the years, with the Holstein Hamiltonian being the most simple. The Holstein

model considers only one electronic band coupled to one Einstein phonon, i.e. an optical

phonon mode, coupled via the first order coupling term [65, 66]

HH = ∑
k

E(k)ckc†
k + ∑

q
h̄ω(b†

qb†
q +

1
2
) + ∑

kq
g(1)(k, q)

(
bq + b†

−q

)
c†

k+qck. (3.6)

We will use this model when discussing the exciton phonon coupling in Publication I.

Let us now list some of the physical implications of including the electron phonon inter-

action for the properties of the electronic system:

• The momentum k is not a good quantum number anymore, because electrons with

momentum k can be scattered via phonons into a state with momentum k + q.

Therefore the electronic states with momentum k have a finite lifetime. This effect

is for instance important to correctly describe the electronic conductivity at finite

temperature [63].

• The electron phonon interaction also modifies the single particle electron states.

Using perturbation theory and assuming a quadratic dispersion of the electrons

E0 = k2

2m with effective mass m, which is valid at the band edge, one can show

that the first order correction to the electronic energies at vanishing temperature is

E(k) = E0(k) − EP − h̄k2

2m λ, where both EP and λ are proportional to the electron

phonon coupling g(q). Thus, the electron-phonon coupling renormalizes both the

electronic energy and effective mass at the band edge. Sometimes this energy shift

is called a polaronic shift [63].

• Similarly the phonon spectrum is modified if we include electron phonon coupling

terms. This energy renormalization is proportional to the electron phonon coupling

matrix elements between the electronic states and the phonon modes under investi-

gation [64]. Such an effect can be used to selectively drive specific phononic modes

with a pulse far out of resonance through the excitation of strongly coupled elec-

tronic states. This effect will be used in Publication II to control the reflectivity of

the TNSe crystal [67].

• Allowing for mobile ions we also expect a modification of the electron-electron in-

teraction, because displacing an electron will now lead to displacements of the ions

which will add to the electronic screening. This additional screening term leads to

a new effective interaction between the electrons [64], i.e. in the case of supercon-

ductivity it is essential for the description of Cooper pairs which are bound by an

attractive interaction mediated by the electron phonon coupling [61,62,64,68]. Such

a phononic dressing of the electronic interaction plays an important role also for
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other bound particles such as excitons. For strongly coupled exciton phonon sys-

tems this leads to a shift of the excitonic binding energy as well as the emergence of

exciton-phonon sidebands. I will explain this effect briefly in the following section.

An example for this effect is shown in publication I, where we have presented the

first case of such sidebands arising from low dimensional excitons embedded in a

bulk system [69].

3.2 Exciton phonon coupling

The effect of exciton phonon coupling can be easily understood from Many Body per-

turbation theory. Starting from the solution of the Bethe-Salpether equation and the bare

exciton particles one can compute the exciton propagator including electron phonon cou-

pling by treating the exciton phonon coupling as perturbation and expanding the corre-

sponding self-energy up to the first orders in this interaction. To this end it makes sense

to express the exciton-phonon interaction terms using the excitonic creation operators.

If we suppress the momentum indices q and k, the exciton annihilation operator for an

excitonic state S is defined as [68]

cS = ∑
v,c

AS∗
vc c†

vcc (3.7)

and the two particle Hamiltonian without coupling to phonons reads

H = ∑
S

ESc†
ScS, (3.8)

where ES are the excitonic eigenenergies. The perturbation term to this Hamiltonian

can be computed using the matrix elements of the Hamiltonian (3.5) with respect to the

excitonic states

〈ΨS|H(1)
ep |ΨS′〉 = ∑

λmn
〈ΨS|gλmn

(
bλ + b†

λ

)
c†

mcn|ΨS′〉

= ∑
λ

∑
mn
〈ΨS|gλmnc†

mcn|ΨS′〉
︸ ︷︷ ︸

g(1)
λSS′

(
bλ + b†

λ

)
(3.9)

and can be written as [68]

V(1)
ep = ∑

SS′λ
g(1)λSS′(bλ + b†

λ)c
†
ScS′ . (3.10)

Similarly, we can compute for the Debye-Waller term

V(2)
ep = ∑

SS′λλ′
g(2)λλ′SS′(bλ + b†

λ)(bλ′ + b†
λ′)c

†
ScS′ . (3.11)
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The exciton phonon coupling elements describe the probability of one excitonic state be-

ing scattered into another excitonic state via a phonon and are defined as [68]

g(1)λSS′ = 〈ΨS|
(

∑
mn

gλmnc†
i cj

)
|ΨS′〉 (3.12)

and

g(2)λλ′SS′ = 〈ΨS|
(

∑
m,n

g(2)λλ′mnc†
i cj

)
|ΨS′〉, (3.13)

where gmn are the standard electron phonon coupling matrix elements introduced in the

previous section. Computing these coupling elements and neglecting terms like gλnnδSS′

that do not couple different excitonic states we obtain [68]

g(1)SS′λ = ∑
vcv′c′

(AS
vc)
∗AS′

v′c′

[
g(1)λcc′δvv′ − g(1)λvv′δcc′

]

g(2)SS′λλ′ = ∑
vcv′c′

(AS
vc)
∗AS′

v′c′

[
g(2)λλ′cc′δvv′ − g(2)λλ′vv′δcc′

]
.

(3.14)

Computing the self-energy with these terms as perturbation is complicated and lengthy.

Thus, I will refer the interested reader to a publication by Antonius and Louis [68] where

this derivation is discussed in detail.

Experimentally the main feature of an exciton, which is strongly coupled to phonons, is

the emergence of a side peak feature in its spectrum [70–76]. To understand the origin of

this feature one can look at the simplest case of one exciton with vanishing momentum

interacting with one Γ-phonon with energy wp(0) = w0. To compute the energy correc-

tion due to this phonon we need to compute the diagonal part of the exciton self-energy

ΠS(w, T). It reads [68]

ΠS(w, T) =
|gSS(0, Γ)|2P±(T)
ω− ES ± w0 + iη

, (3.15)

where P+ = NB(w0, T) together +w0 and P− = 1 + NB(w0, T) with −w0 correspond

to the absorption and emission of a phonon. NB(w, T) is the Bose-Einstein distribution.

With this self-energy we can compute the excitation energy as the poles of the exciton

propagator LS, which is given by the Dyson identity

L−1
S = L−1

0,S −ΠS = ω− ES −ΠS, (3.16)

and find

w = ES ∓
w0

2
±
√
(

w0

2
)2 + |gSS|2P±(T). (3.17)

Thus, we find the appearance of sidepeaks to the main excitonic peak when the exciton

is coupled to phonons. For the case of small exciton phonon coupling we can neglect the

|gSS|2 term in the root and find the exciton phonon side peaks separated from the bare
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excitonic peak by the phonon energy. For strong exciton phonon coupling the |gSS|2 term

becomes relevant and the side peaks are shifted even stronger.



3.3 Publication I: Unconventional excitonic states with phonon sidebands ... 23

3.3 Publication I: Unconventional excitonic states with phonon

sidebands in layered silicon diphosphide

State of the Art

So far the emergence of excitonic sidebands arising from strongly coupled one or two di-

mensional exciton-phonon states have only been measured for low dimensional systems

such as Graphene nanotubes [73–76] and Transition Metal Dichalchogenide Monolay-

ers [70–72]. In this collaborative experimental effort we are investigating the emergence

of such sidebands in a novel quasi one-dimensional bulk SiP2 crystal, which has been

synthesized by our experimental collaborators at the Beihang university.

Main Findings

Using Photoluminescence and Reflectivity measurements our experimental collaborators

have investigated the excitonic spectrum of the SiP2 crystal and have been able to show

the emergence of hybrid dimensional exciton-phonon sidepeaks for the first time in a

bulk material. The phononic nature of the excitonic sidepeak is then confirmed by our

theory calculations using ab-initio methods and a generalized Holstein model which can

account for the interaction of both excitons and phonons. We were able to identify the

corresponding excitonic states and ionic modes forming this correlated state and to repro-

duce the experimental signature remarkably well. Our theory calculations also suggest

that the excitonic state has a novel hybrid dimensionality: while its electronic wavefunc-

tion is strongly localized along the one dimensional Phosphorus chains, the hole wave-

function is delocalized along the whole two-dimensional planes of the layered material.

This opens potential pathways to control composite quasiparticles via symmetry engi-

neering of the underlying crystal.

Status and Publication Details

This paper is published in Nature Materials [69]. It has a Supplementary Information that

is being published at https://static-content.springer.com/esm/art%3A10.

1038%2Fs41563-022-01285-3/MediaObjects/41563_2022_1285_MOESM1_ESM.

pdf and not contained in this thesis.

Contribution

I performed all Density Functional Theory, GW and BSE simulations and created the

corresponding figures. All authors have contributed to the analysis of the data and the

writing of the manuscript. A detailed list of the contribution of the other authors as well

can be found at the end of the publication.

https://static-content.springer.com/esm/art%3A10.1038%2Fs41563-022-01285-3/MediaObjects/41563_2022_1285_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41563-022-01285-3/MediaObjects/41563_2022_1285_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41563-022-01285-3/MediaObjects/41563_2022_1285_MOESM1_ESM.pdf


Articles
https://doi.org/10.1038/s41563-022-01285-3

1National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied 
Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China. 2Max Planck Institute for the Structure 
and Dynamics of Matter, Center for Free Electron Laser Science, Hamburg, Germany. 3Department of Physics, University of California, Berkeley, CA, USA. 
4Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 5School of Materials Science and Engineering, Peking University, 
Beijing, China. 6Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama, Japan. 7College of Materials Science and 
Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, China. 8Center for High Pressure Science 
and Technology Advanced Research, Beijing, China. 9Department of Physics, National University of Singapore, Singapore, Singapore. 10School of Materials 
Science and Engineering, Beihang University, Beijing, China. 11Center for Computational Quantum Physics, Simons Foundation, Flatiron Institute, New York, 
NY, USA. 12These authors contributed equally: Ling Zhou, Junwei Huang, Lukas Windgaetter. ✉e-mail: peizhet@buaa.edu.cn; angel.rubio@mpsd.mpg.de; 
htyuan@nju.edu.cn

An exciton, the electron–hole pair formed via Coulomb inter-
action, is an ideal platform for understanding many-body 
effects1–8. The properties of excitons strongly depend on 

the crystal structure and dimensionality of host materials9,10. Due 
to quantum confinement, the electronic properties of quasipar-
ticles (electrons, holes and excitons) in low-dimensional materi-
als can be remarkably different from those in three-dimensional 
(3D) bulk materials. The Coulomb screening in low-dimensional 
quantum-confined structures, particularly in one-dimensional (1D) 
electronic systems, is known to be weaker than that in bulk systems 
and consequently leads to larger exciton binding energy11–14 and 
other emergent excitonic phenomena10. Experimental observations 
of anisotropic excitons have been demonstrated in two-dimensional 
(2D) van der Waals (vdWs) materials in which electrons and holes 
taking part in the formation of 2D excitons are confined in the same 
monolayer15–19. Meanwhile, in 1D materials such as carbon nano-
tubes (CNTs)12,20, 1D excitonic states have also been observed in 
which constituent electrons and holes are known to be confined 
within 1D nanostructures. A unique excitonic state with hybrid 
dimensionality, which is yet elusive, such as a bound electron–hole 
pair with an electron confined along one dimension (1D-confined 
electron) and a hole confined along two dimensions (2D-confined 
hole), or vice versa, would be of great interest and highly desired in 
terms of its optical properties and interactions with other emergent 
quasiparticles.

In this work, we demonstrate the observation of an uncon-
ventional bright exciton in a layered silicon diphosphide (SiP2) 
crystal, accompanied by a correlated phonon sideband in the opti-
cal spectrum. Based on our ab initio many-body GW and GW 
plus Bethe–Salpeter equation (GW–BSE) calculations, as well as 
non-perturbative model calculations, we find that the electrons 
constituting the excitons are confined within the 1D phospho-
rus–phosphorus chains of SiP2, while the correlated holes extend 
over the 2D SiP2 atomic plane. Therefore, excitonic states in lay-
ered SiP2 are expected to exhibit hybrid dimensionality properties. 
Photoluminescence (PL) spectroscopy and reflectance contrast 
(RC) spectroscopy show that, regardless of the polarization of the 
excitation laser, the optical response of the excitonic state is always 
linearly polarized along the x direction of the SiP2 lattice and is 
accompanied by a unique sideband feature. Both the excitonic emis-
sion and the sideband feature undergo dramatic redshifts as the tem-
perature increases, in contrast to a slight temperature-dependent 
redshift of the band edge that is mainly influenced by electron–pho-
non coupling21,22. This reveals that in SiP2 the interaction of the elec-
tronic degrees of freedom with the phononic degrees of freedom is 
strongly enhanced by excitonic effects. The phonon sideband feature 
can be theoretically modelled using a non-perturbative approach to 
describe the interaction between the unconventional excitons and 
optical phonon modes. Note that reduced dimensionality normally 
leads to excitonic features that are strongly affected by extrinsic 

Unconventional excitonic states with phonon 
sidebands in layered silicon diphosphide
Ling Zhou   1,12, Junwei Huang   1,12, Lukas Windgaetter2,12, Chin Shen Ong3,4, Xiaoxu Zhao5, 
Caorong Zhang1, Ming Tang1, Zeya Li1, Caiyu Qiu1, Simone Latini   2, Yangfan Lu   6,7, Di Wu   1, 
Huiyang Gou   8, Andrew T. S. Wee   9, Hideo Hosono   6, Steven G. Louie   3,4, Peizhe Tang   2,10 ✉, 
Angel Rubio   2,11 ✉ and Hongtao Yuan   1 ✉

Complex correlated states emerging from many-body interactions between quasiparticles (electrons, excitons and phonons) 
are at the core of condensed matter physics and material science. In low-dimensional materials, quantum confinement affects 
the electronic, and subsequently, optical properties for these correlated states. Here, by combining photoluminescence, opti-
cal reflection measurements and ab initio theoretical calculations, we demonstrate an unconventional excitonic state and its 
bound phonon sideband in layered silicon diphosphide (SiP2), where the bound electron–hole pair is composed of electrons 
confined within one-dimensional phosphorus–phosphorus chains and holes extended in two-dimensional SiP2 layers. The exci-
tonic state and emergent phonon sideband show linear dichroism and large energy redshifts with increasing temperature. Our 
ab initio many-body calculations confirm that the observed phonon sideband results from the correlated interaction between 
excitons and optical phonons. With these results, we propose layered SiP2 as a platform for the study of excitonic physics and 
many-particle effects.
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environmental effects, such as disorder from the substrate and sur-
face additives10. Here we provide an investigation on the intrinsic 
excitonic behaviour in thicker, bulk-like SiP2 flakes. Such a tightly 
bound unconventional exciton in SiP2 not only can be envisioned 
as a platform for the exploration of exciton–phonon (ex–ph) cou-
pling23–28 and other many-body physics but also may lend itself to 
potential applications for anisotropic optoelectronic devices.

Crystal structure and electronic property of SiP2
Layered SiP2 is chosen as our target material because of its fol-
lowing unique characteristics. Compared with hexagonal layered 
materials such as graphene and MoS2, the cleavable SiP2 crystal 
(space group Pnma) possesses an orthorhombic layered structure 
with a huge in-plane lattice anisotropy, as schematically shown in 
Fig. 1a and experimentally confirmed by scanning transmission 
electron microscopy–annular dark-field (STEM–ADF) imaging in  
Fig. 1b–d and Supplementary Figs. 1 and 2. Remarkably, based on 
their atomic surroundings, two types of inequivalent phosphorus 
atoms PA and PB can be distinguished in the SiP2 lattice. As shown in 
Fig. 1a, PA binds to three silicon atoms, while PB binds to one silicon 
atom and the other two equivalent PB atoms. Note that the PB atoms 
along the y direction of the crystal lattice can naturally form phos-
phorus–phosphorus chains (denoted as PB–PB chains) embedded 
in the bulk SiP2 (blue shades in Fig. 1a), which play a critical role 
in realizing the quasi-1D electronic states involved in exciton for-
mation. To identify the variation in the chemical bonding environ-
ment around PA and PB atoms and the resulting unique properties of 
PB–PB chains in layered SiP2, we performed arsenic doping experi-
ments (Supplementary Information, section 2.4) and used STEM  

characterization (Supplementary Fig. 5). One can see that the doped 
arsenic atoms only selectively substitute the PB atoms inside the  
PB–PB chains (more details in Supplementary Fig. 5), indicating that 
the atomic structure containing PB–PB chains in SiP2 is distinct from 
the buckled structure in black phosphorus.

More importantly, the anisotropy induced by quasi-1D PB–PB 
chains in layered SiP2 directly results in unique electronic proper-
ties. Figure 1e shows the band structure of semiconducting bulk 
SiP2 obtained from GW calculations. We found that the conduc-
tion band edge states in the X–Γ–Z plane of the first Brillouin zone 
(BZ) are relatively flat with a large effective mass (Supplementary 
Table 1), and the corresponding charge densities are localized on 
the PB–PB chains (Fig. 1f), behaving like 1D-confined electrons. 
Importantly, in the direction along the PB–PB chains (the y direc-
tion of the crystal lattice), the electron hopping on PB atoms is 
significantly larger (bandwidth, ∼1.63 eV) than that across the 
PB–PB chains (bandwidth, ∼0.08 eV) (see details in Supplementary  
Fig. 22), confirming the 1D nature of this electronic state on the con-
duction band edge. On the other hand, the hole states at the valence 
band edge do not show the same level of anisotropy (Supplementary 
Information, section 2.2), which, compared with 1D electrons, are 
relatively extended over the whole atomic plane in a quasi-2D fash-
ion. The hybrid dimensionality of these band edge states in SiP2 
is remarkably different from those of the anisotropic 2D states in 
black phosphorus15,29,30. By analysing the calculated phonon bands 
given in Supplementary Information, section 13, we identify that 
the optical phonons localized on PB atoms and neighbouring silicon 
atoms could have a large coupling with quasi-1D electronic states in  
layered SiP2.
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Fig. 1 | Crystal structure and band structure of layered SiP2. a, Schematic layered structure of SiP2 (Pnma, group number 62). The x,y,z coordinate system is 
defined according to the crystal structure, as shown in the bottom-left corner. The blue shading highlights the PB–PB chains formed by the PB atoms along the 
y direction of the crystal lattice, which play a critical role in generating quasi-1D electronic and excitonic states. b–d, Top view (b) and cross-sectional (c,d) 
STEM–ADF images of SiP2 viewed along the y axis (c) and x axis (d). Green and cyan dashed rectangles represent the periodic lattice with ABAB stacking 
order of SiP2 layers. Scale bars, 1 nm. e, Electronic band structure of bulk SiP2 calculated from the GW method. The inset shows the first BZ of bulk SiP2. SiP2 
is a semiconductor with an indirect band gap of 2.14 eV. The valence band maximum is at the Γ point, and the conduction band minimum is located along 
the Γ–Y direction. The conduction band minimum state does not contribute to the formation of the A exciton due to the large direct interband transition 
energies at this location. f, Charge density distribution of the conduction band edge (left) and valence band edge (right) in real space. The isosurface of the 
plot is 0.02 e Å−3.
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exciton with 1D-confined electron and 2D-confined hole
Figure 2a,b presents the PL spectrum and the second derivative 
of the RC (d-RC; see Supplementary Information, section 6) of 
an SiP2 flake (228 nm) at 5.5 K, which reflects the light emission 
and absorption properties, respectively. The PL spectrum shows 
a main peak A at 2.06 eV (the lowest bright excitonic bound state 
denoted as the A exciton) and a broadened sideband feature Aʹ at 
2.01 eV. The main peak A, obtained from all SiP2 flakes measured at 
5.5 K, is consistently located at an emission energy of 2.06 ± 0.01 eV 
(here, 0.01 eV is the energy uncertainty obtained from the standard 
deviation of the emission energies of several measured SiP2 flakes; 
see Supplementary Information, section 7). Such a peak A in the 
PL spectrum matches the peak at 2.05 eV in the d-RC spectrum, 
as indicated by the red arrow (Fig. 2b). Due to the interference of 
the RC signals from the different interfaces in the SiP2 thin films 
supported by substrates (Supplementary Information, section 6), 
the phonon sideband feature is difficult to identify from the d-RC 
spectrum.

Figure 2c shows the absorbance spectra obtained from the 
GW–BSE calculation and GW calculation with the random phase 
approximation (GW–RPA). Compared with the calculated absorp-
tion spectra based on GW–BSE and GW–RPA, we confirm that 
the emission peak A at 2.12 eV originates from the recombination 

of an excitonic state, in which the electronic states for electrons 
are quasi-1D and related electronic states for holes are quasi-2D  
(Fig. 1f). As shown in Fig. 2c,d, the calculated binding energy 
of such an unconventional exciton is approximately 140 meV 
(for more details about GW–BSE calculations, see Methods 
and Supplementary Information, section 12). From the modu-
lus squared of the exciton wavefunction in real space shown in  
Fig. 3c, the observed exciton behaves like a Wannier-type exciton 
with twofold rotational symmetry, in sharp contrast to 2D excitons 
in monolayer transition-metal dichalcogenides13. More importantly, 
this exciton is embedded in a bulk layered material with an unusual 
atomic structure in contrast to those of reported pure 1D excitons 
in semiconductor nanowires31 and CNTs11,12, leading to strongly 
anisotropic Coulomb screening for 1D-confined electrons and 
2D-confined holes.

Anisotropic exciton and exciton–phonon coupling
Since the unconventional A exciton is mainly contributed by elec-
trons and holes localized along the X–Γ–Z direction in the first BZ 
(Supplementary Information, section 12.2), we use the band edge 
states at the X point as the representative k-point to explore the 
influence of electron–phonon interactions on its electronic struc-
tures and optical response. Figure 2f shows the zero-point energy 
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modes. g, The phonon density of states (DOS) for optical phonon modes, which is projected to the PB atoms in the embedded PB–PB chains (top) and their 
neighbouring silicon atoms (bottom). Insets: the PB atoms and their neighbouring silicon atoms.
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shifts of the band gap at the X point induced by all optical phonon 
modes with momentum q = 0 at zero temperature. Here, we use the 
frozen-phonon approximation32 to estimate the influence of opti-
cal phonon vibrations on the electronic states at the X point (see 
Supplementary Information, section 13.2 for more details). Since 
the electron wavefunctions of the A exciton are localized on the 
PB–PB chains, this unconventional exciton couples most strongly to 
optical phonons, whose vibrational modes are in the X–Γ–Z plane 
and involve PB atoms and neighbouring silicon atoms (Fig. 2g). 
These optical phonon modes dramatically modify the electronic 
structures of the quasi-1D states (Supplementary Information, sec-
tion 13.4), indicating significant electron–phonon coupling within 
the PB–PB chains. Comparing the results in Fig. 2f,g, one can see 
that the prominent energy shifts are from the optical phonon 
modes with eigenenergies of ∼50–60 meV. More details are given in 
Supplementary Information, sections 13.2 and 13.4.

The experimental observation of the sideband feature Aʹ also 
indicates that ex–ph interaction on the quasi-1D PB–PB chains is at 
least moderately strong (Supplementary Information, section 8).  
Therefore, we use a non-perturbative model to simulate the emer-
gence of the sideband feature Aʹ, where a ‘generalized Holstein 
Hamiltonian’ is used with inputs from first-principles calculations, 
and the self-energy effects are included beyond the first-order Fan–
Migdal diagram (Methods). In this model, we found that the fitted 

ex–ph coupling constant M of 30 meV is comparable to the relatively 
small bandwidth (or hopping, tex = −20 meV) of the unconventional 
A exciton (for the estimate of tex, see Methods and Supplementary 
Information, section 13.3). Our approach is similar to the cumulant 
method considering the ex–ph coupling within the perturbative 
limit and makes use of the exponential assumption to include the 
self-energy effects from higher-order diagrammatic terms33–35. As 
shown in Fig. 2e, the appearance of the phonon sideband peak in 
the simulated spectrum agrees with the experimental results, indi-
cating that sideband Aʹ originates from the ex–ph coupling between 
the unconventional exciton and the abovementioned optical pho-
non modes.

Figure 3a,b shows the contour plots of the PL and d-RC intensity 
of bulk SiP2 as a function of emission energy at different detection 
polarization angles θ (θ = 0° is set along the x direction), suggest-
ing that the linear dichroic absorption and PL emission have similar 
twofold symmetry characteristics (see Supplementary Information, 
sections 4 and 12 for more details). Note that the observed linearly 
polarized PL emission remains along the x direction regardless of 
the incident laser polarization direction or the sample temperature, 
as shown in Supplementary Figs. 10 and 11. Our GW–BSE calcula-
tions (Fig. 3d and Supplementary Fig. 21b) show that the absorption 
peak of the quasi-1D A exciton appears only when the polarization 
is along the x direction. The absorption signal inside the band gap 
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along the y direction is forbidden by the SiP2 crystal symmetry, 
which results in relevant optical excitonic matrix elements being 
zero (Supplementary Information, section 12.3). We also per-
formed pump-probe transient optical measurements to character-
ize the dynamics of the observed bright exciton in bulk SiP2 (see 
Supplementary Information, section 9 for more details). The life-
time for the exciton in SiP2 is as short as 250 fs, which is probably 
related to an ultrafast process that dissociates these linearly polar-
ized bound excitonic states into unbound and unpolarized states.

We further compare the energy shift of the A exciton peak with 
the energy shift of the quasiparticle band edge as the temperature 
changes. Figure 4a,b shows the temperature-dependent PL and 
d-RC spectra for bulk SiP2. As shown in Fig. 4c, the optical absorp-
tion of the band edges and the exciton peak A, and the sideband 
feature Aʹ, all exhibit clear redshifts with increasing temperature. 
The redshifts of the band edge can be fitted with the Bose–Einstein 
model (see Supplementary Information, section 7 for more details), 
suggesting that the interaction between electrons and phonons 
plays an important role in the energy shifts. The redshift of the band 
edge absorption resulting from the electron–phonon coupling21,22,36 
is approximately 20 meV at 300 K. On the other hand, the redshift of 
both peaks A and Aʹ is approximately 90 meV at 300 K, much larger 

than the energy shift of the direct band edge, indicating an addi-
tional contribution from the large coupling between the bound exci-
ton and optical phonons. Such a result is consistent with the analysis 
of temperature-dependent linewidth broadening of the peak for 
unconventional A exciton (see Supplementary Information, section 
5 for more details).

Outlook
Using optical spectroscopic measurements with the support of ab 
initio many-body calculations, we demonstrated the observation 
of an unconventional bright exciton in layered SiP2. In contrast to 
those reported 1D and 2D excitons truly confined in CNTs and 
monolayer transition-metal dichalcogenides, the bound excitonic 
states in layered SiP2 exhibit hybrid low dimensionality due to the 
intrinsic 1D and 2D nature of the constituent electrons and holes, 
respectively. Interestingly, we envision that SiP2 can host peculiar 
trion states, including a negatively charged trion (composed of two 
1D-confined electrons and one 2D-confined hole) and a positively 
charged trion (composed of one 1D-confined electron and two 
2D-confined holes). Once we couple layered SiP2 to other vdWs 
semiconductors, such as monolayer MoS2, to form heterostructures, 
the interfacial layer coupling can change the rotational symmetry 
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of the semiconducting layers and could bring optical and optoelec-
tronic functionalities via symmetry engineering at the heterointer-
faces. Through the doping modulation of carrier polarity in SiP2 
or its heterostructures, rich excitonic physics with exotic dynamic 
behaviour can be realized in this material platform, such as inter-
layer excitons and Moiré excitons with tunable dimensionality. 
Furthermore, the interaction between this unconventional bound 
exciton and the optical phonon leads to an accompanying phonon 
sideband. Since a phonon and an exciton fall within the same energy 
range from zero to several hundred meV, we speculate that such 
many-body interactions may even lead to the emergence of elemen-
tary excitations beyond the Born–Oppenheimer limit in atomic 
2D thin films or nanostructures of SiP2. Our work will provide a 
platform to further understand ex–ph coupling and other essential 
many-body physics and inspire follow-up studies and calculation 
method developments therein.
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Methods
SiP2 crystal growth with flux method. Single-crystalline samples were synthesized 
by using the tin flux method37. Silicon, phosphorus, gadolinium and tin were 
mixed at a Si:P:Gd:Sn ratio of 1:6:0.03:5 and sealed into evacuated quartz tubes. 
The mixture was slowly heated to 1,100 °C to avoid bumping phosphorous and kept 
for 48 h. Subsequently, the sample was cooled to 400 °C in 140 h and then cooled to 
room temperature by switching off the electric furnace. The tin flux was removed 
by using diluted HCl (aq). The obtained black crystals were then ultrasonicated in 
distilled water and ethanol to remove the residuals (such as phosphorous, adhered) 
on the crystal surface. This procedure was repeated until the water (or ethanol) 
became transparent enough after ultrasonication.

Sample preparation for optical measurements and STEM–ADF measurements. 
SiP2 flakes with thicknesses of 5–200 nm were prepared by mechanical exfoliation 
onto SiO2/Si wafers (300-nm-thick SiO2 layer) or fused silica substrate. The 
thickness was identified by atomic force microscopy (integrated with a WITec 
Alpha 300 Raman system) after all optical measurements were finished. SiP2 is 
stable in a nitrogen atmosphere and in vacuum and can gradually degrade when 
exposed to air within several hours. To avoid sample degradation, the whole 
sample preparation was processed in a glovebox. Atomic-resolution STEM–ADF 
imaging was performed on an aberration-corrected ARM200F equipped with a 
cold field-emission gun operating at 80 kV. The STEM–ADF images were collected 
using a half-angle range from ∼81 to 280 mrad. The convergence semi-angle of the 
probe was ∼30 mrad.

Optical measurements. Optical measurements, including the PL spectra and 
RC and Raman spectra, were performed using a confocal Raman system (WITec 
Alpha 300). Thickness-dependent PL measurements (Supplementary Information, 
section 3) were carried out at room temperature using a ×100 objective lens 
with an incident laser (laser power, 0.2 mW) focused to an ∼1 μm spot. Nitrogen 
conditions were accomplished by protecting samples using continuous nitrogen 
gas flow. Low-temperature PL and Raman measurements were performed under 
vacuum conditions with samples installed in a cryostat (Cryo Instrument of 
America RC102–CFM microscopy cryostat) using a long working distance 
×50 objective lens (laser power, 3 mW). For RC measurement, we recorded the 
subtracted reflectance of the sample normalized by the reflectance of the substrate, 
that is, RC = 1 −

Rsample
Rsub

, where Rsample represents the reflectance of the SiP2 sample 
on the silicon dioxide or quartz substrate and Rsub represents the reflectance of the 
bare substrate.

First-principles calculations. First-principles density functional theory (DFT) 
calculations were performed by using the projector-augmented wave (PAW)38,39 
method implemented in the Vienna Ab initio Simulation Package (VASP)40. The 
energy cut-off for the plane wave basis is set to 500 eV. To test the lattice constants 
to compare with the experimental value, we used the exchange-correlation 
functionals of generalized gradient approximation (GGA) with Perdew–
Burke–Ernzerhof (PBE) type, local density approximation (LDA), and the PBE 
functional with vdWs corrections to fully relax the lattice structures. The vdWs 
interactions were included by using the methods proposed by Dion et al.41 with 
the optB88-vdW functional. We found that lattice constants obtained from the 
method including the vdWs corrections are closest to the experimental values 
(Supplementary Information, sections 10 and 11), which are used in the following 
phonon bands, GW and GW–BSE calculations. During the lattice relaxations, the 
force convergence criterion was 10–3 eV Å−1, and a 9 × 21 × 7 k-point mesh was 
sampled over the BZ. For the self-consistent electronic structure calculations, we 
set the energy convergence criterion to 10–6 eV and the k-point mesh to 11 × 25 × 9 
over the whole BZ. The phonon spectrum was calculated by the PHONOPY 
package42 in the framework of density functional perturbation theory with the 
finite-displacement approach, in which a 2 × 4 × 1 supercell was employed.

Using VASP43, GW calculations44 were performed using Kohn–Sham 
DFT wavefunctions (GGA–PBE) calculated on a 4 × 16 × 4 k-point mesh 
as the initial mean field. The dielectric response function used for the fully 
frequency-dependent eigenvalue-self-consistent GW calculation is summed over 
1,240 Kohn–Sham states (corresponding to a 100 eV cut-off). The frequency 
grid is divided into a dense part ranging from 0 to 13.75 eV and a coarse grid 
tail ranging from 13.75 to 178.78 eV. The grid sampling is non-uniform with 80 
frequency grid points, resulting in step sizes ranging from 0.31 eV in the dense 
grid up to 46.35 eV in the tail45. We use multiple iterations in the GW calculation 
to update the eigenvalues of the Kohn–Sham states when calculating both Green’s 
function G and the screened interaction W while keeping the initial Kohn–Sham 
wavefunctions unchanged. Full convergence was reached after five iterations. This 
procedure results in better agreement with the experimental results because the 
standard G0W0 approach underestimates the band gap by approximately 220 meV. 
The maximally localized Wannier functions obtained from the Wannier90 
packages46,47 were used to plot the GW quasiparticle band structure (Fig. 1e). In the 
construction of the Wannier functions, the s and p orbitals of both the silicon and 
phosphorus atoms were used as initial trial wavefunctions. The GW quasiparticle 
energies and Kohn–Sham wavefunctions are used to construct the kernel of the 
BSE48,49. We employed the standard Tamm–Dancoff approximation and included 

ten conduction bands and ten valence bands during the calculation of the  
GW–BSE Hamiltonian.

Calculation of the spectral function of the phonon sidebands. To model the 
spectral function of the phonon sidebands, we solved for the dressed polaron 
Green’s function of the generalized Holstein Hamiltonian50,51, H = H0 + V, where 
H0 =

∑
q

ωqb†qbq +
∑
k

ϵkc†kck is the unperturbed single-particle Hamiltonian 

and V =
∑
k,q

Mk,qc†k+qck(bq + b†−q) is the interaction Hamiltonian. For the first 

term constituting H0, q is the crystal momentum of the phonon, b†q and bq are the 
phonon creation and annihilation operators, and ωq (which shall be taken as a 
constant independent of q) is the average phonon energy of the dominant optical 
branch responsible for ex–ph coupling. For the second term constituting H0, k is 
the centre-of-mass momentum of the exciton, c†k and ck are the exciton creation 
and annihilation operators, and ∈k is its energy dispersion. We obtain these values 
from our GW calculations. The interaction Hamiltonian, V, represents the ex–ph 
interaction, with Mk,q being the ex–ph coupling matrix element. Since there is only 
one exciton in the model Hamiltonian, its solution is independent of the statistics 
of particle1. The same solution would be obtained for any fermion or boson, such 
as electrons (which is more common), as long as the particles are free to move. 
To construct the generalized Holstein Hamiltonian, we first calculate most of its 
parameters from first-principles calculations and finally fit the ex–ph coupling 
matrix elements, Mk,q (also to be taken as a constant), to the experimental results.

First, we note that although more than one phonon mode contributes to 
the renormalization of the band gap, the dominant contributing phonon modes 
fall within the energy range of 50–60 meV (Fig. 2f and Supplementary Fig. 24). 
Since the phonon bands that project strongly onto the PB–PB chain are relatively 
flat within the X–Γ–Z plane in reciprocal space (Supplementary Fig. 23b), we 
assume the representative phonon band to have negligible phonon bandwidth, as 
in the Einstein model. Hence, we use the energy of a representative longitudinal 
optical (LO) phonon mode, ωq ≡ ωLO = 55 meV, to model the ex–ph interaction, as 
obtained from the ab initio phonon calculations. We also assumed that the exciton 
has a free-particle dispersion of a periodic 1D chain, namely, ϵk = −2tex cos(ka), 
where 4tex = −80 meV is the exciton bandwidth. The exciton hopping term, 
tex, was estimated using the hole bandwidth (4th ≈ −80 meV) and the electron 
bandwidth (4th ≈ 640 meV), which are calculated along the X–Γ–Z direction of 
the Brillouin zone from our GW calculations (Supplementary Fig. 22), with the 
formula t−1

ex = t−1
h + t−1

e . Finally, using the above parameters obtained from the 
first-principles calculations, we only fit the ex–ph parameter, Mk,q ≡ M = 30 meV, so 
that the spectral function of the calculated dressed Green’s function reproduces the 
PL spectrum shown in the optical experiments (Fig. 2e).

In the calculation of the dressed interacting polaron Green’s function, G (k,ω), 
Dyson’s identity, [G (k, ω)]−1 = [G0 (k, ω)]−1

− Σ(k, ω) is used, where G0(k,ω) 
is the free-particle Green’s function, given by G0 (k, ω) = (ω − ϵk + iη)−1 
and Σ(k,ω) is the ex–ph self-energy, which consists of an infinite sum of all 
proper self-energy diagrams. Written more explicitly, G(k,ω) can be written as a 
continued fraction,

G (k, ω) = 1
G−1
0 (k,ω)− M2

G−1
0 (k,ω−ω0)− 2M2

G−1
0 (k,ω−2ω0)− 3M2

G−1
0 (k,ω−3ω0)−…

= 1
G−1
0 (k,ω)−Σ(k,ω)

,

such that Σ(k,ω) is the second term in the denominator given by

Σ (k, ω) =
M2

G−1
0 (k, ω − ω0) − 2M2

G−1
0 (k,ω−2ω0)− 3M2

G−1
0 (k,ω−3ω0)−…

,

that when expanded in powers of M2 reproduces the Feynman diagrams of each 
order52–54. In the calculation of the self-energy, we used the momentum-averaged 
non-interacting Green’s function, as introduced by Berciu53 and extended by 
Goodvin, Berciu and Sawatzky54. In this approximation, the momentum-dependent 
non-interacting Green’s function, G0(k,ω), in the expression of the 
self-energy, was replaced by its momentum average, Ḡ0 (ω), given by 
Ḡ0 (ω) = 1

Nk

∑
k
G0 (k, ω) =

∞

∫

−∞

dϵρ0 (ϵ)G0(ϵ, ω) =
sgn(ω)

√
(ω+iη)2−4t2xct

, where Nk is 

the number of k-points and ρ0(ϵ) is the density of states. The momentum-averaged 
self-energy, ΣMA (ω), is now momentum independent, and the interacting Green’s 
function is now G (k, ω) = 1

G−1
0 (k,ω)−ΣMA(ω)

. Finally, the spectral function was 

given by the imaginary part of the interacting Green’s function, the main peak of 
which is fitted to the excitation energy of excitonic state A as obtained from  
GW–BSE calculations.

Data availability
Source data are provided with this paper. The authors declare that data generated 
or analysed during this study are provided as source data or included in the 
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Supplementary Information. Further data are available from the corresponding 
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32 3 Controlling quantum materials through the electron phonon coupling

3.4 Publication II: Fresnel-Floquet theory of light-induced

terahertz reflectivity amplification in Ta2NiSe5

State of the Art

Pump probe measurements provide a powerful platform to investigate collective exci-

tations. Several experiments have shown the possibility to induce changes in the THz

reflectivity of a material following a photo excitation [77–79]. These changes stem from

collective excitations that act as a Floquet drive to the system [79, 80]. Here, we investi-

gated Ta2NiSe5 as a quasi one-dimensional system, which shows a strong amplification

of up to 30% in the THz reflectivity after prior photoexcitation in the measurements of

our experimental collaborators (to be published soon). The goal of this paper is to under-

stand the microscopic mechanism leading to this dramatic reflectivity enhancement.

Main Findings

In this paper we show that the THz reflectivity enhancement through a 0.5 eV pump

can be understood via the strong coupling of the lowest electronic valence band states

to the phonon modes. We show, using ab-initio and model calculations, that once the

electrons are excited from the valence to the conduction bands, they couple strongly to a

4.7 THz phonon mode which leads to a time dependent renormalization of the phonon

dispersion of that mode. This squeezed phonon is then shown to act as a Floquet drive

to the system which in turn leads to the observed reflectivity enhancement. Using this

mechanism allows to dynamically control the properties of a solid through the electron-

phonon coupling. It also highlights that the electronic properties of this material might

be coupled strongly to any ionic perturbation, which will be important when discussing

the origin of the conjectured excitonic insulating phase transition in the next section.

Status and Publication Details

This paper has been published as preprint on the arXiv server [67]. It is currently under

review for Science Advances. This publication has a Supplementary Information that is

being published at https://arxiv.org/pdf/2207.08851.pdf and not contained

in this thesis.
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I performed all ab-initio Density Functional Theory calculations and created the corre-

sponding figures. All authors have contributed to the analysis of the data and the creation

of the manuscript.
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Abstract

We theoretically investigate a new pathway for terahertz parametric amplification, initiated by

above-gap optical excitation in the candidate excitonic insulator Ta2NiSe5. We show that after

electron photoexcitation, electron-phonon coupling can lead to THz parametric amplification, me-

diated by squeezed oscillations of the strongly coupled phonon. The developed theory is supported

by experimental results on Ta2NiSe5 where photoexcitation with short pulses leads to enhanced

terahertz reflectivity. We explain the key mechanism leading to parametric amplification in terms

of a simplified Hamiltonian and demonstrate the validity of the simplified model in Ta2NiSe5

using DFT ab-initio calculations. We identify a unique 4.7 THz infrared active phonon that is

preferentially coupled to the electronic bandstructure, providing a dominant contribution to the

low frequency terahertz amplification. Moreover, we show that the electron-phonon coupling is

strongly dependent on the order parameter. Our theory suggests that the pumped Ta2NiSe5 is a

gain medium which can be used to create THz amplifiers in THz communication applications.

INTRODUCTION

Motivation

Optical pump-probe experiments provide a powerful avenue to explore collective dy-

namics in correlated quantum materials. Several experiments have demonstrated dramatic

changes in the terahertz and mid-IR reflectivity following photo-excitation. In experiments

on YBa2Cu3O6.5 cuprate superconductors, parametric resonances caused by internal Joseph-

son plasma oscillations can induce extra ”edge” features in the optical reflectivity [1–3]. On

the other hand, the phonon-polariton system SiC[4] and the bulk superconductor K3C60[5, 6]

provide examples where oscillations inside these materials result in significant reflectivity en-

hancement, possibly exceeding unity. A unified interpretation of these seemingly disparate

pump induced features can be formulated in terms of Floquet theory under the assumption

that collective excitations create a system with time-periodic properties. Previous analysis

has demonstrated the existence of four types of drive induced features in reflectivity, de-

pending on the relative strength of parametric driving and dissipation[7]. Edge-like features

∗ Correspondence to: marios michael@g.harvard.edu
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occur from interference between different Floquet components of the transmission channels

when dissipation is strong compared to the oscillation amplitude. In the opposite regime,

strong amplification of reflectivity occurs when the parametric drive is not compensated by

dissipation and the material exhibits a lasing instability. In fact, such reflectivity features

can serve as reporters of a lasing instability, indicating that the effective Floquet medium

can be used as a gain medium in a laser.

Here, we develop a theory to explain the experimentally observed pump-induced terahertz

amplification of the reflectivity in layered quasi-1D semiconductor Ta2NiSe5, a potential

excitonic insulator material. An excitonic insulator phase can emerge when bound electron-

hole pairs form a condensate in a semi-metallic phase opening up a gap and causing a phase

transition to an insulating state[8]. In Ta2NiSe5, alternating chains of Ta and Ni are aligned

along the axis, forming a sheet in the ac-plane, and multiple layers are stacked along the

b-axis (see Fig. 1A). An exchange of electron between adjacent Ta and Ni chains along

the a-axis creates an exciton across the chain (along the c-axis) [9–17]. Previous studies

have reported a second order monoclinic-orthorhombic phase transition at Tc = 326 K. This

leads to an insulating gap below the critical temperature which grows to be 160 meV at low

temperatures. The pump-probe experiment demonstrates that above-gap frequency optical

excitation induces reflectivity amplification which is maximal at 4.7 THz, corresponding to

an IR-active B3u phonon mode confirmed by previous infrared measurements [14, 15]. This

turns out to be a surprising result given that the high-frequency pump cannot directly excite

the collective THz modes. We show phenomenologically and using ab-initio calculations

that this dramatic down conversion is caused by a nontrivial interplay of electron-phonon

interactions and phonon non-linearities.

The multi-step process described in this article, converting high frequency pumping

to THz amplification of reflectivity, is schematically illustrated in figure 1(a) and is out-

lined as follows: a) The pump excites electrons from the valence bands to the conduction

bands through direct dipole transitions. b) The photo-excited electrons exhibit an unusual

quadratic coupling to the 4.7 THz phonons (see Results):

Hel−ph =
∑

k

gknel,kQ
2, (1)

where Q is the IR-phonon displacement, nel,k the photo-excited electron occupation and

gk the effective electron-phonon coupling. The pump is non-resonant with the IR active

3



FIG. 1: Schematic mechanism that leads to amplification of THz optical reflectivity

following high frequency pumping. a) An ultrafast laser pulse (0.5eV, 150 fs) photoexcites

electrons through direct dipole transitions between the valence and conduction bands. The

photo-excited electrons generate pairs of phonons through the electron-phonon interaction

squeezing the phonon field (see equation (1)). b) Reflectivity amplification of pumped

Ta2NiSe5. Coherent phonon field fluctuations oscillate at twice the phonon frequency, ωph,

creating an effective THz Floquet medium. Parametric driving from the phonon

oscillations can create pairs of photons at the signal and idler frequency once stimulated by

the probe pulse. This enhances the reflectivity and also scatters counter-propagating light

oscillating at the idler frequency. c) Relative change in the reflectivity as a function of

frequency subsequent to photoexcitation. The experimental results are shown at two

different temperatures together with the theoretical fit which considers parametric

amplification by a 9.4 THz oscillating field.

terahertz phonons and thus does not directly initiate the enhanced reflectivity dynamics.

Instead, IR-phonon pair generation occurs via a Raman process caused by pump induced

changes in the electronic occupation. The result is that the expectation value of the phonon

displacement is zero, 〈Q〉 = 0, but the fluctuations are squeezed and coherently oscillate

at twice the phonon frequency, 〈Q2(t)〉 = 〈Q2〉0 + A cos(2ωpht). c) The squeezed phonon
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oscillations and phonon nonlinearities create a Floquet material oscillating at 2ωph = 9.4

THz. d) Parametric resonances due to the oscillating field occur primarily around ωph,

parametrically amplifying the reflectivity as depicted in Figure 1 (b).

The theory developed in this article addresses two inter-connected questions: 1) Can a

Floquet material oscillating at 9.4 THz provide parametric amplification similar to experi-

mental observations? 2) What is the origin of the 9.4 THz oscillation?.

Summary of results

We begin our analysis by showing that the parametrically amplified reflectivity at 4.7

THz is consistent with the presence of a coherently oscillating Raman mode at twice the

frequency, 9.4 THz. The theoretical fit captures the experimental amplification profile,

plotted in figure 1(c). A schematic Hamiltonian describing parametric amplification of the

optical reflectivity in the presence of a coherently oscillating mode at ωd = 9.4 THz is given

by:

Hampl. = X(t)a†1,ka
†
2,−k + h.c., (2)

where X(t) is a Raman mode and {a†1,k, a†2,−k} are the creation operators of photons with

opposite momentum which may be associated with different phonon-polariton bands {1, 2}
at frequencies parametrically resonant with the drive, ω1(k) + ω2(−k) = ωd. As shown

in figure 1(b), Floquet drive can generate pairs of photons at the signal frequency of the

incoming probe, ωs, and a photon oscillating at the idler frequency, ωid = ωd−ωs. Reflectivity

amplification is then caused by stimulated emission of photon pairs by the driven material.

To compute the reflection coefficient, we use degenerate Floquet perturbation theory to

construct the eigenmodes and solve the Fresnel equations at the boundary.

We then proceed to investigate the origin of the 9.4 THz oscillation. We show that

electron-phonon coupling between electronic bands involved in the photo-excitation and the

4.7 THz IR-phonon naturally leads to phonon squeezing. Phonon squeezing oscillations have

twice the frequency of the phonon and act as a Raman mode. We find that this mechanism

is generic and should apply to all IR-phonons present in the system. However, for phonon

squeezing oscillations to create an effective Floquet material that can significantly enhance

the reflectivity, the phonon needs to be both strongly coupled to the photo-excited bands

and also have a strong coupling to the electric field.
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We hence perform ab-intio calculations to determine both the magnitude of the electron

phonon coupling and the IR activity of the different phonon modes. We find that, indeed, the

4.7 THz IR-phonon is special, exhibiting strong electron-phonon coupling and appreciable IR

activity as compared to other IR-phonons in the same frequency range. Moreover, we confirm

that phonon fluctuations are responsible for the THz amplification. The theory shows that

the predicted reflectivity amplification is a reporter of a lasing instability, implying that

pumped Ta2NiSe5 could, in principle, serve as a Floquet gain medium for THz lasing.

As a final intriguing aspect, we find that the 4.7 THz mode is strongly coupled to the

elusive and hotly debated order parameter of Ta2NiSe5[9, 11, 12, 18–21], which is thought

to have some excitonic insulating character. A number of state-of-the-art experiments have

been performed to shed light on the origin of the phase transition at 326 K as well as what

role the excitonic and lattice instabilities play in this phase transition process. However,

the results show contradictory results [10, 13–18, 22–37] and the question whether Ta2NiSe5

hosts an excitonic insulator phase remains an open question. Using DFT frozen phonon

calculations, we find that the electron-phonon coupling for the 4.7 THz phonon effectively

vanishes in the high temperature orthorhombic phase. This indicates that the THz paramet-

ric amplification of reflectivity is mediated by the low temperature phase and is expected to

be sensitive to the phase transition. This interplay between the order parameter and phase

transition has been observed in pump-probe [10, 22], near infrared [26, 27], and time-resolved

ARPES experiments [18, 30, 37, 38] , and has unraveled key ingredients in the physics of

Ta2NiSe5 in addition to providing a clearer understanding of the nature of the order param-

eter. The link between the 4.7 THz phonon and the order parameter opens new avenues for

using parametric amplification as a novel method to track order parameter dynamics.
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RESULTS

Parametric amplification of reflectivity in pumped Ta2NiSe5

1. Equilibrium reflectivity

The reflectivity of a material is captured by the frequency dependent refractive index

appearing in the Maxwell equations:

(
n(ω)2ω2

c2
− k2

)
E = 0 (3)

where E is the electric field and all information about phonons and other IR active modes

is encoded in n(ω). We assume that the probe corresponds to an electromagnetic wave

reflected from the sample at normal incidence. The propagation direction is along the b-axis

of the crystal, which we refer to as the y-direction, whereas the electric field points in the

a-direction which we refer to as the z-axis. The refractive index can be directly extracted

experimentally from the complex reflection coefficient at normal incidence in an equilibrium

system[39]:

n(ω) =
1− r(ω)

1 + r(ω)
. (4)

2. Eigenstates in Floquet state

Once we have obtained the refractive index from the equilibrium reflectivity, we model

the Floquet material as experiencing a parametric drive oscillating at frequency, ωd, which

mixes signal and idler frequencies:

E(t) = eiky
(
Ese

−iωst + Eide
iωidt
)
. (5)

where ωs is the frequency of the incoming probe and ωid = ωd−ωs. Such mixing corresponds

to degenerate perturbation theory in Floquet systems and the idler component is the nearest

Floquet band contribution to ωs which is responsible for parametric instabilities [3, 40, 41].

The oscillating mode is included phenomenologically through a time-periodic contribution

to the electric permittivity:

δε(t) = 2Adrive cos(ωdt). (6)
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Using the ansatz in equation (5), the equations of motion in the Floquet state for the different

oscillating components of the electric field become:

(
n(ωs)

2ω2
s

c2
− k2

)
Es + AdrEid =0 (7a)

(
n(ωid)

2ω2
id

c2
− k2

)
Eid + AdrEs =0. (7b)

To compute the reflectivity at normal incidence, we first find the allowed k values for a given

ωs. Due to the coupling of signal and idler components, two such k values exist, associated

with two transmission channels, both of which oscillate at signal and idler frequencies. The

transmission channels correspond to eigenvectors of the Floquet equations of motion inside

the material,

Ei = tiE0e
ikiy
(
e−iωst + αie

iωidt
)
, (8)

where αi is the relative amplitude of the signal and idler component in the eigenvector of

wave-vector ki, ti is the transmission coefficient of the i-th channel and E0 the amplitude of

the incoming field.

3. Floquet-Fresnel equations

In a reflection problem, the eigenvalue equation (7) enables computation of the transmit-

ted wavevectors as a function of a fixed frequency set by the incoming light. However, the

answer is given in terms of k2
i rather than ki and the correct root is chosen such that the field

vanishes at infinity, Im{ki} > 0. The reflectivity is computed by solving the Floquet-Fresnel

equations, matching electric and magnetic fields parallel to the surface both at frequency ωs

and at frequency ωid. Inside the material we have the electric field:

Emat = E0

∑

i

tie
ikiy
(
e−iωst + αie

iωidt
)
, (9)

and for vacuum we have:

Evac =E0

(
eiωs/cy−iωst + rse

−iωs/cy−iωst
)

+

E0ride
iωidt.+iωidy.

(10)

Using the homogeneous Maxwell equations, ∇× E = −∂tB to compute the magnetic field

and matching boundary conditions at y = 0, we obtain the Fresnel equations for the driven
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system:

1 + rs =t1 + t2, (11a)

1− rs =
k1

ωs
t1 +

k2

ωs
t2, (11b)

rid =t1α1 + t2α2, (11c)

rid =
k1

ωid
t1α1 +

k2

ωid
t2α2. (11d)

To fit the data, we choose a drive at 9.4 THz and allow for small changes in the static

properties of the system such as a photo-induced conductivity stemming from photo-excited

charge carriers. The fitted parameters are given in the Materials and Methods section.

Phonon squeezing initiated by photoexcited electrons

1. Electron phonon coupling

In this section, we develop a microscopic theory of the coupling of electronic bands to

IR active phonons. In the dipolar gauge[42], the effective dipole of the phonon is linearly

coupled to the electronic dipole. For two electronic bands with an allowed dipole transition,

this coupling takes the form:

Hel−ph = Q
∑

k

λk

(
ĉ†1,kĉ2,k + ĉ†2,kĉ1,k

)
, (12)

where Q is the phonon coordinate, ĉ1 and ĉ2 the annihilation operators of the two electronic

bands and λk the electron-phonon coupling matrix element as a function of momentum

k. Using a Schrieffer-Wolff transformation, we ”integrate out” the linear electron-phonon

coupling, which is non-resonant due to the different energy scales between the IR-phonon

and the electronic transition, to reveal the resonant non-linear coupling between the electron

occupation number and the phonon squeezing operator, Q2. In the materials and methods

material, we show that this procedure leads to the effective coupling:

Hel−ph,eff. =
∑

k

λ2
k

∆k

(n1,k − n2,k)Q
2, (13)

where ∆k = E1,k − E2,k is the energy difference between the electronic states and n̂i,k =

ĉ†i,kĉi,k the number operator. The above equation applies to phonons that are coupled to
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independent pairs of electronic bands. If three or more bands are simultaneously coupled to

a specific phonon the effective electron-phonon Hamiltonian is more complicated but with

similar qualitative features, such as the coupling of electron density to the square of the

phonon coordinate.

2. Phonon squeezing

Once electrons have been photo-excited, the finite number of optically excited electrons

quenches the frequency of the phonon:

Hel−ph,eff. =
Mf(t)Q2

2
, (14)

where M is the mass of the phonon. In equation (14), the parametric driving f(t) comes

from the photo-excited distribution of electrons that is strongly coupled to the phonon:

f(t) =
∑

k

2λ2
k

M∆k

(〈n1,k〉 (t)− 〈n2,k(t)〉) , (15)

The photo-excited electron dynamics are fast and can be approximated as a delta function

in time. More generally we can approximate the photo-excited distribution as having a

characteristic life time, f(t) = f0θ(t)e
−t/tdecay , but this does not change our conclusions.

The above electron induced drive describes a Raman process that does not excite the

phonon directly (i.e. 〈Q〉 = 0). However, the squeezing operator starts oscillating at fre-

quency equal to twice the phonon frequency, as shown in the materials and methods:

(
∂2
t − (2ωph)2) 〈Q2

〉
= −4f(t)

〈
Q2
〉

0
, (16)

where 〈Q2〉0 is the equilibrium fluctuations and ωph is phonon frequency at zero momentum

which is renormalized by the coulomb force, ω2
ph = ω2

ph,0 + Z2

εε0M
.

To show that this phenomenon is related to squeezing, we expand Q2 in terms of creation

and annihilation operators, using Q = a+a†√
2Mωph

:

Q2(t) =
1

2Mωph

(
a†(t)a†(t) + a(t)a(t) + a†(t)a(t) + a(t)a†(t)

)
. (17)

Expectation values of a(t)a(t)† do not oscillate rapidly while the anomalous pairs a†(t)a†(t)

and a(t)a(t) oscillate at twice the phonon frequency. As a result a state with phonon

fluctuations, Q2, that oscillate at twice the phonon frequency implies the existence of a

condensate of phonon pairs
〈
a†(t)a†(t)

〉
6= 0.
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3. Floquet matter

Coherent oscillations of long lived modes, such as the phonon squeezing oscillations, turn

matter into Floquet matter with time-periodic properties through non-linear interactions

with the rest of the material. Following the same steps as in references [40, 43], we show in

the materials and methods how a lattice anharmonicity proportional to Q4 and squeezing

dynamics lead to the signal and idler coupling in equation (7). For this model, we find

that the signal idler coupling is proportional to the IR activity of the mode, Z, the phonon

anharmonicity, u, and the amplitude of the oscillations, B : Adrive ∝ Z2uB.

Ab-initio calculations : the 4.7 THz IR-Phonon

The above discussion is generic and in principle applies to every IR-phonon inside a given

material. In this section we use DFT calculations to determine which phonons make the

dominant contribution to the parametric amplification of reflectivity in Ta2NiSe5. We start

our discussion by identifying which valence and conduction bands are involved in photo-

absorption by evaluating the optical dipole transitions matrix elements. In Fig. 2(a), we

plot the momentum resolved optical contribution, for field polarization along the a-axis, of

each band to dipole allowed transitions within the experimentally relevant energy window

between 0.33 and 0.9 eV set by the pump parameters. For a given valence(conduction)

band and k-point, the optical contribution is defined by summing the square of the dipole

transition matrix elements associated with the transition. We find that it is the first three

conduction bands that are predominantly excited by the pump.

Turning our attention to phonons, we use ab-initio calculations to identify all IR active

phonons. In particular, we find a number of phonons in the low temperature monoclinic

phase between 4 and 5 THz shown in the supplementary material. In Fig. 2 (b) we plot the

IR activity of phonons as a function of frequency and identify the 4.7 THz phonon which,

as shown below, turns out to be the most strongly electron coupled phonon.

We compute the electron-phonon interaction between IR active phonons and electrons.

This is to identify the phonons that dominate the interaction with the photo-excited elec-

tronic bands. To accomplish this we use the method of frozen phonons. In this approach, the

electronic bands are recalculated with the lattice shifted along a phonon eigendisplacement.
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Monoclinic

Orthorhombic

a)

b) d)

c)

conduction
band 3

conduction
band 2

FIG. 2: Summary of ab-initio calculations. a) Optical matrix elements along the a-axis

calculated for the frequency region between 0.4 to 0.9 eV. The size of the circles is

proportional to the magnitude of the matrix elements and indicates which electronic

valence and conduction bands are involved in photo-absorption. b) IR activity of the most

IR active phonons; the phonon at 4.7 THz which dominates electron-phonon interactions

in that region is highlighted with the mode character shown in the inset. A complete list of

IR active phonons in this region for TNS is given in materials and methods. c) and d)

show the effect of electron-phonon coupling on the band structure in the monoclinic and

orthorhombic phase respectively. The electron-phonon coupling is captured by calculating

the electronic band-structures using DFT in the presence of either negative or positive

phonon displacement (frozen phonon approximation). The phonon 4.7 THz in the

monoclinic phase is strongly coupled to the electronic bands 2 and 3 which are highlighted

in the figure. In the high temperature orthorhombic phase the effective electron-phonon

coupling is reduced by an order of magnitude. This indicates that the electron-phonon

interaction is very sensitive to the order parameter.

To quantify the coupling strength of a specific phonon to a particular electronic band we in-

tegrate the energy changes of the band in the presence of the phonon over the Brillouin zone

as outlined in the supplementary material. We find that in the vicinity of 4.5 THz, relevant

to the experimental observables, the 4.7 THz mode has roughly an order of magnitude larger

electron-phonon coupling strength compared to the nearby phonons. In particular, as shown

in Fig. 2(c), the 2nd and 3rd conduction bands (in this paper we number the conduction
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bands from lowest to highest in energy) are significantly renormalised in the presence of the

4.7 THz phonon. Since the phonon is mostly coupled to two electronic bands, the frozen

phonon calculations are consistent with equation (13) leading to the two bands shifting in

energy by an equal and opposite amount given by:

Ek,3|〈Q〉6=0 − Ek,3|〈Q〉=0 =−
(
Ek,2|〈Q〉6=0 − Ek,2|〈Q〉=0

)

= 〈Q〉2 λ2
k

∆k

(
1− ω2

ph,0

∆2
k

) (18)

where Ek,2 and Ek,3 is energy of conduction band two and three at momentum k, and ∆k

is the energy difference of the two bands in equilibrium. Therefore, in this case, calculating

the energy shifts as a function of momentum in the frozen phonon approximation allows for

direct computation of the electron-phonon interaction.

To summarize, we use ab-initio calculations to identify the electron bands excited by

pumping and to establish the IR-active phonons in Ta2NiSe5. Subsequently, frozen phonon

calculations allowed for the identification of the phonon with the dominant electron-phonon

coupling to the excited electronic bands. This leads to the identification of the 4.7 THz

mode as responsible for the parametric amplification observed in experiments through the

mechanism outlined in previous subsections. We note that we do not exclude the possibility

of subdominant amplification in reflectivity spectra arising from other phonons at different

frequencies. In the supplementary material, we provide more details of our DFT analysis

of IR-phonons in Ta2NiSe5, the frozen phonon calculations and the calculation of optical

matrix elements.

1. Connection to the order parameter

Finally, we discuss the effects of the phase transition on the phonon squeezing process.

In figure 2, we compute the electron-phonon interaction of the 4.7 THz phonon in the low

temperature monoclinic phase while for the high temperature orthorhombic phase we com-

pute the electron-phonon interaction of the phonon adiabatically connected to the 4.7 THz

phonon eigenstate (for details on the identification of the adiabatically connected phonon

see supplementary material). The electron-phonon interaction effectively disappears in the

high temperature phase providing evidence that electron-phonon coupling is mediated by the

13



order parameter. In particular, we suggest that close to the phase transition the electron-

phonon coupling is proportional to the order parameter, λk = ΦBk, where Φ is the order

parameter and Bk a constant. This, in turn, suggests that parametric amplification can be

used as a nontrivial probe to investigate order parameter dynamics. The microscopic reason

for the strong dependence of the electron-phonon coupling to the order parameter is a very

interesting question that could reveal new insights about the nature of the order parameter

in Ta2NiSe5 and will be addressed in a subsequent publication.

DISCUSSION

We have investigated the microscopic mechanism of amplification of THz optical reflec-

tivity in Ta2NiSe5 arising from high frequency optical pumping. We showed that strong

electron-phonon coupling opens new pathways towards realizing THz parametric amplifi-

cation through high frequency pumping. Ab-initio calculations highlight the importance

of the 4.7 THz IR-active phonon which is strongly coupled to electrons allowing for the

amplification to manifest in the THz reflection spectrum.

Our theory indicates that choosing which electronic band to photoexcite selects the IR-

phonon that is most strongly coupled to that electronic band. As a result, we can use different

pumping frequencies in the same material to tune the frequency of the THz parametric

amplification through mode-selective phonon squeezing.

Finally, we showed that the electron-phonon coupling is strongly dependent on the order

parameter and becomes suppressed in the high temperature orthorhombic phase. This

suggests that THz amplification of reflectivity can be used as a new probe to order parameter

dynamics.

MATERIALS AND METHODS

Theoretical fit of the parametric reflectivity amplification in pumped Ta2NiSe5

As mentioned in the main text in equation (4), in principle the complex refractive index

can be directly computed by the complex reflectivity amplitude, r(ω). However, small

phase errors upon experimental extraction of r(ω) could lead to unphysical behaviour of the

reflectivity. To overcome this complication, we fit the data by assuming that for an insulator
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like Ta2NiSe5 the refractive index is real. As a result, we can instead use the absolute value

of |r| =
√
R and express the refractive index as:

n(ω) =
1 +
√
R

1−
√
R
. (19)

Upon parametric resonance and solving equation (7) together with the Floquet-Fresnel

boundary conditions in equation (11), assuming a purely real spectrum with no dissipa-

tion leads to highly divergent behavior on parametric resonance. As a result, we put back

dissipation by including an imaginary component to the refractive index. In the driven

case we argue that this is physical, since ndriven(ω)2 = n2(ω) + iσdriven/ω and dissipation

can arise through through a transient contribution to the conductivity by electrons excited

across the gap of the insulator. To fit the data we choose a parametric drive at ωd = 9.4

THz, drive amplitude Adrive = 7.5THz
2

c2
, overall constant renormalization of the refractive,

n2
drive = n2(ω) + δn2, with δn2 = 0.1 + 0.01i and an overall Gaussian broadening function

with standard deviation of 0.1 THz.

Electron - phonon interaction

The Hamiltonian of two electronic bands coupled by an allowed direct dipole transition

that is, in turn, coupled to a phonon is given by:

Hel =
∆

2

(
ĉ†1ĉ1 − ĉ†2ĉ2

)
+ λ

(
ĉ†1ĉ2 + ĉ†2ĉ1

)
Q, (20)

where ∆ = E1 − E2 is the difference in energy between the two bands, λ is the coupling

constant coming from the dipole-dipole interaction in the dipole gauge, Q is the phonon

coordinate and {ĉ1, ĉ2} are the annihilation operators of the two electron bands. The IR-

phonon quadratic hamiltonian is given by:

Hph = ZEQ+Mω2
ph,0

Q2

2
+

Π2

2M
,

where Π is the conjugate momentum of the phonon coordinate Q, Z the effective coupling

to the electromagnetic field, E, and ωph,0 the phonon frequency. Since the transition itself

is not resonant with the phonon mode, we decouple the linear electron phonon interaction

perturbatively using a Schrieffer-Wolff transformation. This generates an interaction be-

tween the electron-hole pair density and the fluctuations of the phonon field which can be a

15



resonant process. To perform this transformation, it is convenient to note that bilinear com-

binations of {ĉ†1, ĉ1, ĉ
†
2, ĉ2} appearing in the Hamiltonian, obey SU(2) commutation relations

by making the following identification:

Sx =
ĉ†1ĉ2 + ĉ†2ĉ1

2
, (21a)

Sy = −i ĉ
†
1ĉ2 − ĉ†2ĉ1

2
, (21b)

Sz =
ĉ†1ĉ1 − ĉ†2ĉ2

2
, (21c)

where their commutators are [Sx, Sy] = iSz and its cyclic permutations. In terms of the

spin operators, we separate the Hamiltonian into a non-interacting and an interacting part:

H0 =∆Sz +Mω2
ph,0

Q2

2
+

Π2

2M
, (22)

V =2λSxQ (23)

To remove the interacting part V to linear order in λ, we consider a unitary transformation

of the type:

U =Exp{iA}, (24)

A =αQSy + βΠSx (25)

The Schrieffer-Wolff expansion is given by:

UHtotalU
† = H0 + V − i [H0, A]− i [V,A]− 1

2
[[H0, A] , A] . (26)

The parameters α and β are found such that:

V = i [H0, A] (27)

Matching linear terms in Π and Q, leads to the parameters:

β =
α

M∆
, (28a)

−∆α + 2λ+Mω2
ph,0β = 0, (28b)

⇒α =
2λ

∆
(

1− ω2
ph,0

∆2

) , (28c)
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which confirms that this perturbation theory can be carried out as long as ωph,0 is off-

resonant with the transition energy ∆. The effective electron-phonon interaction after the

Schrieffer-Wolff transformation is given by:

Heff =− i [V,A]− 1

2
[[H0, A] , A] = − i

2
[V,A] ,

=
2λ2

∆
(

1− ω2
ph,0

∆2

)Q2Sz +
2λ2

∆
(

1− ω2
ph,0

∆2

) (Sx)2 ,
(29)

where the second term does not depend on the phonons. The residual electron phonon

interaction is thus give by:

Hel−ph,eff =
λ2

∆
(

1− ω2
ph,0

∆2

)Q2 (n1 − n2) (30)

where n1 = ĉ†1ĉ1 is the occupation number of mode 1. This implies that if either mode 1 or

mode 2 are photo-excited the phonon can be squeezed.

The linear term in the electric field, ZEQ, appearing in equation 1, is also transformed

by the Schrieffer-Wolff transformation. It gives rise to a term βZESx which provides a small

renormalization of the dipole transition amplitude between the bands and does not affect

our discussion.

The above result can be generalized to an arbitrary number of independent pairs of

electronic states. For example, for two electronic states the above result in the limit of
ω2
ph,0

∆2
k
→ 0 is generalized to:

Hel−ph,eff =
∑

k

λ2
k

∆k

Q2 (n1,k − n2,k) , (31)

This expression is the one used in the main text.

Phonon squeezing

Using a Hartree-Fock type approximation on the effective electron-phonon Hamiltonian

in equation (31), we derive an effective Hamiltonian for the phonon system only:

Hph = ZEQ+M
(
ω2

ph,0 + f(t)
) Q2

2
+

Π2

2M
(32)

where Z is the IR activity of the phonon mode, ωph,0 the bare phonon frequency and the

effective parametric drive, f(t), is given by photo-excited electron density coupled to the
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phonon mode:

f(t) =
∑

k

2λ2
k

M∆k

(〈n1,k〉 − 〈n2,k〉) , (33)

Due to the fast dynamics of electrons, f(t) acts as an impulsive delta function like parametric

drive. Such a drive is not periodic but it can linearly excite phonon fluctuations 〈Q2〉 which

will oscillate in time. To show this, we compute the equations of motion for fluctuations of

the phonon field:

∂t
〈
Q2
〉

=
〈ΠQ+QΠ〉

M
, (34a)

∂t 〈ΠQ+QΠ〉 =− 2M
(
ω2

ph,0 + f(t)
) 〈
Q2
〉

+

2
〈Π2〉
M
− 2Z 〈EQ〉 ,

(34b)

∂t
〈
Π2
〉

=−M
(
ω2

ph,0 + f(t)
)
〈(ΠQ+QΠ)〉−

Z 〈EΠ + ΠE〉 .
(34c)

At k = 0, we can use Maxwell’s equations to remove the electric field dependence, E = Z
εε0
Q.

Performing this substitution simplifies the equations of motion,

∂t
〈
Q2
〉

=
〈ΠQ+QΠ〉

M
, (35a)

∂t 〈ΠQ+QΠ〉 =− 2M
(
ω2

ph + f(t)
) 〈
Q2
〉

+ 2
〈Π2〉
M

, (35b)

∂t
〈
Π2
〉

=−M
(
ω2

ph + f(t)
)
〈(ΠQ+QΠ)〉 . (35c)

where ω2
ph = ω2

ph,0 + ω2
pl,phonon is the frequency of the phonon at k = 0 which differs from

the bare frequency by the phonon plasma frequency given by ω2
pl,phonon = Z2

εε0M
. Being

perturbative in the drive f(t), we expand the phonon fluctuations,

〈
Q2
〉

=
〈
Q2
〉

0
+
〈
Q2
〉

1
, (36)

where 〈Q2〉0 is the thermal expectation value and 〈Q2〉1 ∝ f(t). To linear order in f(t),

the equations of motion imply, 〈Π2〉1 /M = Mω2
ph 〈Q2〉1 + Mf(t) 〈Q2〉0 + O(f 2). Finally,

combining equations in (35) we find that:

(
∂2
t + 4ω2

ph

) 〈
Q2
〉

1
= −4f(t)

〈
Q2
〉

0
. (37)

This result shows that phonon fluctuations are linearly driven by photo-excitation and oscil-

late at twice the phonon frequency, 2ωph. These coherent oscillations of phonon fluctuations

behave as a Raman mode.
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Floquet matter from squeezing dynamics of phonons

Material properties such as the electric permittivity, become time-periodic in the pres-

ence of oscillating fields through interactions. Here, we demonstrate how lattice potential

anharmonicities lead to a time-periodic index of refraction:

We consider a phonon system with a Q4 anharmonicity for the IR-phonon with a Hamil-

tonian:

Hph = ZEQ+M
(
ω2

ph,0 + f(t)
) Q2

2
+

Π2

2M
+ uQ4 (38)

The equations of motion for the phonon given by the Hamiltonian in equation (38) is

(
∂2
t + γ∂t + ω2

ph,0 + 4uQ2
)
Q =

Z

M
E. (39)

Using a gaussian ansatz for the phonons, we can linearize the above equation as:

(
∂2
t + γ∂t + ω2

ph,0 + 12u
〈
Q2
〉

(t)
)
Q =

Z

M
E, (40)

where the fluctuations 〈Q2〉 = 〈Q2〉0 + A cos(2ωpht). The phonon mode appears in the

Maxwells equations as: (
1

c2
∂2
t − k2

)
E = −Z∂2

tQ. (41)

To find the effective signal idler mixing presented in equation (7), we expand the equations

of motion in signal and idler contributions:

Q = Qse
−iωst +Qide

iωidt (42)

Equation (40) becomes:

Qs

Qid


 =




Z
ω2
s+iγωs−ω2

ph
0

0 Z
ω2
id+iγωid−ω2

ph


 ·


Es

Eid


+

ZuA(
ω2
s + iγωs − ω2

ph

) (
ω2

id + iγωid − ω2
ph

)


Eid

Es


 .

(43)

Substituting equation 43 in Maxwells equation we find the equations of motion for the signal

and idler component of the electric field to be:

(
n2
eq.(ωs)

c2
ω2
s − k2

)
Es + Adrive,s(ωs, ωid)Eid =0, (44a)

(
n2
eq.(ωid)

c2
ω2
s − k2

)
Es + Adrive,id(ωs, ωid)Eid =0 (44b)
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where the signal and idler driving amplitudes, Adrive,s and Adrive,id are given by:

Adrive,s =

Z2uAω2
s(

ω2
s + iγωs − ω2

ph

) (
ω2

id + iγωid − ω2
ph

) ,
(45a)

Adrive,id =

Z2uAω2
id(

ω2
s + iγωs − ω2

ph

) (
ω2

id + iγωid − ω2
ph

) .
(45b)

[1] S. Kaiser, C. R. Hunt, D. Nicoletti, W. Hu, I. Gierz, H. Y. Liu, M. Le Tacon, T. Loew,

D. Haug, B. Keimer, and A. Cavalleri, Optically induced coherent transport far above Tc in

underdoped yba2cu3o6+δ, Phys. Rev. B 89, 184516 (2014).

[2] A. von Hoegen, M. Fechner, M. Först, N. Taherian, E. Rowe, A. Ribak, J. Porras, B. Keimer,

M. Michael, E. Demler, and A. Cavalleri, Parametrically amplified phase-incoherent super-

conductivity in YBa2Cu3O6+x (2020), arXiv:1911.08284 [cond-mat.supr-con].

[3] M. H. Michael, A. von Hoegen, M. Fechner, M. Först, A. Cavalleri, and E. Demler, Parametric

resonance of josephson plasma waves: A theory for optically amplified interlayer supercon-

ductivity in YBa2Cu3O6+x, Phys. Rev. B 102, 174505 (2020).

[4] M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, Fano resonances in pho-

tonics, Nature Photonics 11, 543 (2017).

[5] M. Budden, T. Gebert, M. Buzzi, G. Jotzu, E. Wang, T. Matsuyama, G. Meier, Y. Laplace,
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4 Excitonic Insulator

The excitonic insulator (EI) is an exotic phase of matter which has been proposed in the

1960s by Mott, Keldysh, Kohn, and Kozlov [13–19]. It is envisioned to exist in any metal

or semiconductor material which satisfies the condition that the excitonic binding en-

ergy is bigger than the electronic bandoverlap or bandgap. If this condition is met the

groundstate of the crystal becomes unstable against the spontaneous formation of exci-

tons which collectively condense into the new insulating groundstate (see Fig. 4.1).

Although the idea of the EI is over half a decade old, no material has yet been con-

firmed to host such a groundstate. Very recently the field has gained a lot of interest with

the discovery of several candidate materials [21–25, 27, 82–85]. However, confirming the

existence of the EI state poses a major experimental challenge, because the conjectured

excitonic phase transition is intrinsically coupled to other phase transitions such as the

formation of charge density waves (CDW) [21, 26, 27, 86, 87] or structural phase transi-

tions [20, 28, 29, 31]. As such, it is exceptionally difficult from an experimental point of

view to disentangle the competing phase transitions and to unambiguously identify the

signature of the EI. This is the reason why all EI candidates are still under debate and

in some cases similar experimental measurements even led to seemingly contradictory

interpretations [20, 30, 88–93] .

Therefore, to be able to tell the effects of both phase transitions apart, understanding the

crystal from a theoretical perspective is crucial and is the only way to selectively include

the relevant interaction terms.

In the following chapter I will present this discussion for the currently most debated

EI candidate material, Ta2NiSe5 (TNSe). I have investigated the material by means of a

combined approach consisting of model and ab-initio calculations as well as experimen-

tal data from our collaborators to fully understand the nature of the phase transition.

I will start this chapter by discussing the fundamental theory of the EI. First, I will in-

troduce the basic properties of excitons and then discuss a model hosting an excitonic

insulating groundstate. The goal is to understand the underlying idea of the EI and to

explain its most prominent spectroscopic features.

Afterwards, I will present a series of papers which discuss TNSe by tackling the phase

transition from different angles. The first publication, publication III, [94] will discuss

the conjectured electronic transition and identify a possible excitonic instability and its

order parameter using an extended Hubbard model. Then, the next two publications,

publication IV and V [90, 95], will investigate if such an electronic instability is realized
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Fig. 4.1 Schematics of the EI scenario. The EI can arise from a semiconducting state, when the
excitonic binding energy exceeds the electronic bandgap. Then the system becomes un-
stable against the formation of excitons which condense into the new groundstate via a
BEC mechanism. Similarly the EI state can be reached from a semimetallic state with a
small bandoverlap via a BCS like mechanism. This figure has been adapted from [81]

.

in the crystal using DFT based ab-initio calculations and time resolved ARPES (trARPES)

data. We will show that the phase transition in TNSe is predominantly lattice driven and

that the ab-initio results suggest that most experimental evidence hinting towards the

existence of an excitonic insulating state [20,31,96–100,100,101], can also be explained by

the structural instability in this material.

4.1 Basic excitonic properties

In this section I will introduce excitons and discuss their basic properties. Since there are

many great textbooks on this topic, I will follow Czycholl’s Solid State Theory book [63]

in this section and summarize the most important results.

Excitons are quasiparticles which consist of a bound electron-hole pair. The most sim-

plistic model which displays excitons consists of one valence band v and one conduction

band c which interact via an attractive Coulomb force. Such a Hamiltonian reads [63]

H = ∑
k

(
Ev(k)c†

vkcvk + Ec(k)c†
ckcck

)
+ ∑

k1,k2,k3,k4

Vk1k2k3k4 c†
vk1

c†
ck2

cck3 cvk4 . (4.1)

The first sum describes the two uncoupled bands with their dispersion relations Ev(k)
and Ec(k) and the second sum the interband coupling term. Note that we have neglected

all intraband interactions and suppressed spin in our model for simplicity. We choose a

parabolic band dispersion for the conduction and valence bands which are separated by

a bandgap G [63]

Ev(k) = −
k2

2mv
, Ec(k) =

k2

2mc
+ G, (4.2)
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mc and mv denote the effective masses of the two bands. As interaction we choose a

screened Coulomb interaction with the dielectric constant ε [63]

Vk1k2k3k4 =
∫

dr1dr2 φ∗vk1
(r1)φ

∗
ck2

(r2)
1

ε |r1 − r2|
φck3(r2)φvk4(r1). (4.3)

The groundstate of this model has only the valence band fully occupied

|Ψ0〉 = ∏
k

c†
vk|0〉, (4.4)

where |0〉 describes the vacuum state with no particles. The energy of this state is E0 =

∑k Ev(k). The simplest excited state within this model contains the excitation of one elec-

tron from the valence to the conduction band. The corresponding excited wavefunction

has the form

|ΨI〉 = ∑
kk′

Akk′c†
ckcvk′ |Ψ0〉. (4.5)

We can now compute the expansion coefficients Ak,k′ such that |ΨI〉 is an eigenstate of

the Hamiltonian in equation (4.1). After some manipulation one arrives at

∑
kk′

(
Akk′

[
E0 − E + Ec(k)− Ev(k′)

]
− ∑

k′′,k′′′
Vk′′kk′′′k′Ak′′k′′′

)
c†

ckcvk′ |Ψ0〉 = 0. (4.6)

We notice that we obtain the trivial result for this eigenvalue problem for vanishing in-

teraction, that is the energy being increased by promoting one electron from the valence

to the conduction band

E = E0 + Ec(k)− Ev(k′). (4.7)

Including the Coulomb interaction between the two bands gives rise to more interesting

solutions. If we approximate the Coulomb matrix elements neglecting the G, G′ depen-

dence of the interaction [63]

Vkk′k′′k′′′ =
4π

εΩ
1

|k′′ − k′|2 δk′′−k′,k−k′′′ , (4.8)

with Ω being the unit cell volume, one finds the following eigenvalue equation in recip-

rocal space

(E− E0 − G)Ak,k′ = (Ev(k) + Ec(k))Ak,k′ −∑
q

4π

εVq2 Ak′+q,k+q. (4.9)

This equation is equivalent to the two particle Schrödinger equation of two free charged

particles with an attractive screened Coulomb interaction and effective masses mv and



60 4 Excitonic Insulator

mc, which in real space reads [63]

(
− ∇

2
r

2mc
− ∇

2
r′

2mv
− 1

ε|r− r′|

)
ψ(r, r′) = Eψ(r.r′). (4.10)

Therefore, we can map this problem to the Hydrogen atom problem by introducing the

relative coordinates

R =
mcr + mvr′

mc + mv
, x = r− r′ (4.11)

and the effective mass µ = mvmc
mv+mc

.We find analogously to the Hydrogen problem a Ryd-

berg series for the eigenenergies of these excitons

EQ,n =
Q2

2(mv + mc)
− EB

n2 . (4.12)

Here EB denotes the exciton binding energy

EB =
µ

2ε2 (4.13)

which is the energy one needs to dissociate the exciton into unbound electron-hole pairs.

Q denotes the exciton center of mass momentum. Within this picture the exciton can be

interpreted as a bound pair of a positively charge hole and a negatively charged electron

in the valence and conduction band. Their energy is

Eex = E0 + G + EQ,n

= E0 + (G +
Q2

2(mv + mc)
− EB)

(4.14)

and the lowest excited excitonic state has the energy Eex,0 = E0 + (G − EB). Therefore,

excitonic states have a lower energy than free electron-hole pairs (see. Fig.4.2).

As a final remark I should highlight that the excitonic binding energy, which will play

an important role in the EI groundstate, is inversely proportional to the dielectric screen-

ing constant ε. This means that the excitons are more tightly bound the more unscreened

the interaction between electron and hole is. This is the reason why low dimensional sys-

tems, in which the electric field in one or more spatial directions is unscreened, exhibit

very strongly bound excitons with high excitonic binding energies.

4.2 A one dimensional Excitonic Insulator model

To understand the basic concepts of the EI, I will review the most basic model that con-

tains an excitonic insulating groundstate and highlight its most important spectroscopic

features. The idea of the EI has been introduced in a series of works by Mott, Kohn,

Keldysh, Kozlov and Maksimov [13–19]. As such the following paragraph will closely
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Fig. 4.2 Schematic illustration of the exciton level in a bandstructure.

follow the ideas of one of these references by Jerome et al. [18].

We consider a two level Hamiltonian with one valence band a and one conduction band

b interacting via a Coulomb interaction term [18, 102]

H = ∑
k

εa(k)a†
k ak + ∑

k
εb(k)b†

k bk +
1
2

V(q)ρ(q)ρ(−q) (4.15)

with V(q) = 4π
εq2 and ρ(q) = ∑k a†

k+qak + b†
k+qbk. It is convenient to tranform this Hamil-

tonian into position space and it reads [18]

H = ∑
i=a,b

∫
ψ†

i (x)εi(x)ψi(x) +
1
2

∫
dxdx′ρ(x)ρ(x′)V(x− x′) (4.16)

with

ρ(x) = ψ†
a (x)ψa(x) + ψ†

b(x)ψb(x)

V(x− x′) = Coulomb interaction =
1

|x− x′|
(4.17)

and ψa(x) and ψb(x) being the field operators of the two bands a and b with dispersion

εa(x) and εb(x). For now these dispersions are arbitrary, but shall be chosen later for

simplicity to describe either a semimetallic or a small bandgap semiconducting system

with a parabolic dispersion and a bandgap (bandoverlap) G

εb(k) =
G
2
+

k2

2ma
εa(k) = −

G
2
− k2

2mb
. (4.18)
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To analyze the spectroscopic features it is instructive to define, in similarity to the Bardeen-

Cooper-Schrieffer (BCS) theory of superconductivity, the diagonal parts of the one-particle

Greens function as [18, 103]

Ga(1, 2) = −i〈0|T
(

ψa(1)ψ†
a (2)

)
|0〉

Gb(1, 2) = −i〈0|T
(

ψb(1)ψ†
b(2)

)
|0〉

(4.19)

and also the off-diagonal parts F as

F(1, 2) = −i〈0|T
(

ψb(1)ψ†
a (2)

)
|0〉

F†(1, 2) = −i〈0|T
(

ψa(1)ψ†
b(2)

)
|0〉.

(4.20)

The latter are sometimes also called anomalous Greens functions and are expected to

be non-zero in the excitonic insulating phase. Note that I have adopted the notation

introduced in chapter 1, which means that 1 = (x1, t1) and 2 = (x2, t2) and that we are

working in the Heisenberg notation of operators. The equation of motion for the two

Greens functions Ga and Gb can be obtained as usual using the canonical commutation

relation for the fermionic field operators ψa(x) and ψb(x)

[
ψi(1), ψ†

j (2)
]
+
= δi,j δ(1, 2) , i, j = a, b (4.21)

and the Heisenberg equation of motion for operators. With these ingredients we find

[
d

dt1
− εa(1)

]
Ga(1, 2)

= δ(1, 2) + i
∫

d3V(1, 3)〈T
(
[ψ†

a (3)ψa(3) + ψ†
b(3)ψb(3)]ψa(1)ψ†

a (2)
)
〉

(4.22)

[
d

dt1
− εb(1)

]
Gb(1, 2)

= δ(1, 2) + i
∫

d3V(1, 3)〈T
(
[ψ†

a (3)ψa(3) + ψ†
b(3)ψb(3)]ψb(1)ψ†

b(2)
)
〉.

(4.23)

Using Wick’s theorem we can factorize the four operator correlation functions. Doing

this, we obtain three non-vanishing terms. Two are the standard Hartree-Fock-terms

which we will consider to be included in the one particle spectrum εa(1) and εb(1) al-

ready. Therefore we will neglect it here. The second non-vanishing term consists of the

anomalous Green’s functions F and F† [18, 104]

[
d

dt1
− εa(1)

]
Ga(1, 2) = δ(1, 2) + i

∫
d3V(1, 3)F†(1, 3)F(3, 2) (4.24)
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[
d

dt1
− εb(1)

]
Gb(1, 2) = δ(1, 2) + i

∫
d3V(1, 3)F†(3, 2)F(1, 3). (4.25)

Therefore, to compute the Green’s functions Ga and Gb we have to compute also the

equations of motion for F and F†. Performing a similar calculation as for G we obtain

[
i

d
dt1
− εb(1)

]
F(1, 2) = −i

∫
d3V(1, 3)〈T

(
ψ†

a (3)ψa(3)ψb(1)ψ†
a (2)

)
〉 (4.26)

[
i

d
dt1
− εa(1)

]
F†(1, 2) = −i

∫
d3V(1, 3)〈T

(
ψ†

b(3)ψb(3)ψa(1)ψ†
b(2)

)
〉 (4.27)

and after factorization with Wick’s theorem
[

i
d

dt1
− εb(1)

]
F(1, 2) = i

∫
d3V(1, 3)F(1, 3)Ga(3, 2) (4.28)

[
i

d
dt1
− εa(1)

]
F†(1, 2) = i

∫
d3V(1, 3)F†(1, 3)Gb(3, 2). (4.29)

Summarizing the four equations of motion for the Green’s functions, we obtain [18]

[
d

dt1
− εa(1)

]
Ga(1, 2) = δ(1, 2) + i

∫
d3V(1, 3)F†(1, 3)F(3, 2) (4.30)

[
d

dt1
− εb(1)

]
Gb(1, 2) = δ(1, 2) + i

∫
d3V(1, 3)F†(3, 2)F(1, 3) (4.31)

[
i

d
dt1
− εb(1)

]
F(1, 2)− i

∫
d3V(1, 3)F(1, 3)Ga(3, 2) = 0 (4.32)

[
i

d
dt1
− εa(1)

]
F†(1, 2)− i

∫
d3V(1, 3)F†(1, 3)Gb(3, 2) = 0 (4.33)

and notice, that these form a closed set of equations which can be solved. This is done by

Fourier transforming

G(1, 2) = ∑
k

∫ dω

2π
G(k, ω)ek(x1−x2)−ω(t1−t2), (4.34)

where we have used that G depends only on the differences of t1 and t2. Using equation

(4.34), one obtains the algebraic equations [18]

[ω− εa(k)] Ga(k, ω)− ∆†(k)F(k, ω) = 1 (4.35)

[ω− εb(k)] Gb(k, ω)− ∆(k)F†(k, ω) = 1 (4.36)
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[ω− εb(k)] F(k, ω)− ∆(k)Ga(k, ω) = 1 (4.37)

[ω− εa(k)] F†
a (k, ω)− ∆†(k)Gb(k, ω) = 1, (4.38)

where we have defined the so called Gap function in analogy to BCS theory as [18]

∆(k) = ∑
k′

∫ dω

2π
V(k− k′)F(k′, ω′). (4.39)

Solving the algerebraic equations (4.35-4.38) we obtain [18]

Ga(k, ω) =
1

ω− εa(k)− |∆(k)|2
ω−εb(k)

(4.40)

Gb(k, ω) =
1

ω− εb(k)− |∆(k)|2
ω−εa(k)

(4.41)

F(k, ω) =
∆(k)

(ω− εa(k)) (ω− εb(k))− |∆(k)|2
(4.42)

F†(k, ω) =
∆†(k)

(ω− εa(k)) (ω− εb(k))− |∆(k)|2
. (4.43)

From these we can easily read off the self-energy contribution to the Greens functions Ga

and Gb as

Σa(k, ω) =
|∆(k)|2

ω− εb(k)
(4.44)

Σb(k, ω) =
|∆(k)|2

ω− εa(k)
(4.45)

and notice, that we only get a change in the eigenvalues of the interacting system from the

non-interacting system, if the gap function is non-zero. Similarly the anomalous Green’s

functions F and F† are only non-trivial for finite ∆. Therefore, ∆ can be considered as the

order parameter of the EI transition in this model. I will discuss it in more detail later.

For now let me compute how the energy spectrum of the system changes in the EI phase.

To this end I compute the poles for the Green’s functions, which are identical for Ga and

Gb and obtain

ω±(k) =
εa(k) + εb(k)±

√
[εa(k)− εb(k)] + 4|∆(k)|2

2
. (4.46)

For a simple parabolic dispersion for the non-interacting bands a and b

εb(k) =
G
2
+

k2

2ma
εa(k) = −

G
2
− k2,

2mb
(4.47)
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Fig. 4.3 a) Conventional semimetallic phase with ∆ = 0, G = −70 meV and ms = mb. b) EI
phase for G = −70 meV and ∆ = 100meV. Due to the hybridisation between valence and
conduction bands the two states display the characteristic M-shaped bands.

where G is the bandgap, the dispersion ω± is displayed in figure 4.3. We notice two main

features in the EI phase. First the hybridisation between conduction and valence bands

can lead to the formation of flat bands, which has been considered as the characteristic

spectroscopic feature in the EI phase in ARPES measurements. Second the bandgap in

the EI phase is in first order proportional to 2∆(k), which explains why ∆ is called the

Gap function. Let us now investigate under which circumstances ∆ is non-zero, which

means that there exists an EI phase.

Gap Function

The gap function ∆k has been defined in equation (4.39) as [18]

∆(k) = ∑
k′

∫ dω

2π
V(k− k′)F(k′, ω′). (4.48)

Substituting the solution for F(k, ω) and performing the integration in ω we can simplify

it to

∆(k) = ∑
k′

V(k− k′)
∆(k′)√

2(d2(k′) + |∆((k′)|2)
, (4.49)

where we have defined d(k) = 1
2 (εb(k)− εa(k)) as the difference between conduction and

valence band energy εb and εa. To understand when the gap function becomes non-zero

it is instructive to define [18]

φ(k) =
∆(k)

2
√

d2(k) + |∆(k)|2
(4.50)

and rewrite the gap equation (4.49) as [18]

2
√

d2(k) + |∆(k)|2 φ(k) = ∑
k′

V(k− k′)φ(k′). (4.51)
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semiconductor
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Fig. 4.4 Sketch of the phase diagram adapted from [81, 105]. It shows the characteristic dome
shaped structure and falls of rapidly on the semiconducting side as G approaches the 0K
bandgap. The green dotted line highlights the zero bandgap line in the trivial phase.

For our ansatz using a parabolic dispersion for both valence and conduction bands (4.47)

this becomes

2

√
(G +

k2

µ
)2 + |∆(k)|2 φ(k) = ∑

k′
V(k− k′)φ(k′) (4.52)

with µ = mamb
ma+mb

being the reduced mass. By comparing this with the Schrödinger equa-

tion for an exciton in its lowest energy state

(
k2

2µ
+ |EB|)φ(k) = ∑

k′
V(k− k′)φ(k′) (4.53)

we can see that positive solutions for |∆(k)| exist only for excitonic binding energies EB

being greater than the Gap G [15, 18]. Therefore, this is commonly used as necessary cri-

terium for the existence of such a phase transition in theory calculations [24,25,85]. Model

calculations show that the EI phase diagram has a dome shaped structure that falls off

asymmetrically in the semiconducting and the semimetallic side [81, 105]. A sketch of

the phase diagram is shown in figure 4.4. As closing remark for this chapter I would

like to highlight again the similarity between the EI calculation, which we have just per-

formed and the BCS theory calculation. In a similar manner, the above results can also

be obtained by diagonalizing the EI Hamiltonian (4.15) using a Bogoliubov transforma-

tion [18]

α(k) = u(k)a(k)− v(k)b(k)

β(k) = v(k)∗a(k)− u∗(k)b(k).
(4.54)



4.3 Candidate Materials 67

The groundstate in the excitonic insulator phase then becomes, in similarity to BCS theory

[18],

|Ψ0〉 = ∏
k

α†(k)|0〉

= ∏
k

(
u∗(k)− v∗(k)b†(k)a(k)

)
|Φ0〉

(4.55)

with |Φ0〉 = ∏k a†(k)|0〉 being the conventional groundstate of the two band Hamilto-

nian [18] and

u(k) =

[
1
2
(1 +

d(k)√
d2(k) + |∆(k)|2

)

] 1
2

v(k) =

[
1
2
(1− d(k)√

d2(k) + |∆(k)|2
)

] 1
2 ∆(k)
|∆(k)| .

(4.56)

In this notation the excitonic nature of the groundstate becomes even more evident (equa-

tion (4.55)). We see that the new BCS-like groundstate of the system consists of electron-

hole pairs which are created from the conventional groundstate.

4.3 Candidate Materials

In the previous section we have discussed the basic ideas of the EI using a simple two

band model calculation. To realize such a system one has to identify suitable candidate

materials. We have seen that the necessary condition for a material to be excitonic in-

sulating is that its excitonic binding energy is bigger than the electronic bandgap. The

excitonic binding energy for standard bulk systems is usually of the order of few tenth of

meV and therefore one needs materials with a very small bandgap to realize an EI state.

However, it has been shown by Keldysh that the excitonic insulating state becomes ther-

modynamically unstable for binding energies too close to the bandgap if one includes

higher order Many Body effects. Therefore, it has been deemed desirable to search for

candidate materials with high excitonic binding energies and ideally spatially separated

electron and hole particles to reduce these Many Body effects.

This is the reason why the EI has become a very active field of research in the last ten years

with the introduction of layered materials bound by van der Waals forces [20, 31, 106]

and low dimensional materials such as TMD monolayers [24, 25]. These provide a much

better platform to host an EI, because the excitonic binding energy scales inverse pro-

portional with the dielectric screening EB ∝ 1
ε . This can lead to binding energies that

are a magnitude bigger than in common bulk materials, due to the reduced screening in

the out of plane direction. For layered van der Waals materials excitonic binding energies

around 100 meV have been measured [69,107,108] and these can even increase up to a few

hundred meV for monolayer materials such as the monolayer transition metal dichalco-
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genides WSe2 and MoS2 [109–113]. Furthermore, the possibility to arbitrarily stack dif-

ferent of these materials into heterostructures [7] allows for the possibility to create ex-

citonic states with electrons and holes trapped in different layers and thus separating

them spatially, while maintaining a strong Coulomb interaction between them [114,115].

Currently debated TMD candidates to host an EI are bulk MoS2 [85], where the bandgap

is controlled via pressure, or T′-MoS2 [25] and WTe2 [116] monolayers. Further poten-

tial hetero bilayer candidates have also been proposed in a systematic material study by

Gupta et al [22].

Another very new class of candidate materials to potentially host an EI are double

layer systems and Moire systems. In double layer systems two monolayers of semicon-

ducting materials are separated by a hexagonal boron nitride layer [23, 117]. This allows

to separate electron in holes in each of the two layers which naturally gives rise to very

stable excitons. The advantage of this system is that the bandgap of the double layer can

be systematically controlled through gating and therefore, upon sufficient closing of the

electronic bandgap, a phase transition to an EI insulator may be induced [23]. Addition-

ally, the single layers can be substituted with a Moire bilayer. This allows not only to

confine the electron and hole to the different layers, but also to trap the excitons in the

Moire potentials which act as a potential well for the electrons [84]. This has led to a new

very controlled way to investigate the EI in such systems [23, 84, 117].

In this thesis I will be discussing the most debated candidate material which is Ta2NiSe5

[28,29]. It falls into the class of layered van der Waals materials and is considered to have

a quasi one-dimensional character, because the bandgap dynamics in this material are

believed to be governed by in-plane parallel Tantalum and Nickel chains. The under-

lying idea of this candidate is that electrons and holes are localized along the different

chains and give rise to an excitonic insulating transition. A detailed discussion of this EI

candidate is shown in the following Publications III-V.
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4.4 Publication III: Nature of Symmetry Breaking at the

Excitonic Insulator Transition: Ta2NiSe5

State of the Art

At the time this paper has been published, TNSe had recently emerged as an excitonic

insulator candidate. While it was experimentally known that the material undergoes a

structural phase transition at the critical temperature of T=326K with the formation of

a bandgap and flat bands [20, 30, 31, 98, 106], the exact mechanism and microscopical

order parameter of the conjectured EI transition has been unknown. The goal of this

publication is to investigate if this material can host an excitonic instability and to identify

the microscopical order parameter of such a transition. For this investigation we have

taken a combined approach using an extended Hubbard model with ab-initio input in

form of Wannier-functions.

Main Findings

The main finding of this publication is that the proposed model indeed can host an exci-

tonic instability, which we have defined as the formation of a charge density that breaks

the lattice symmetries and therefore could trigger the structural transition. Such an in-

stability arises due to a symmetry forbidden hybridisation of Tantalum and Nickel states

of neighbouring one-dimensional chains, which lead to a bandgap opening similar to the

one observed in prior ARPES experiments. The hybridisation has an excitonic nature

and allows to define the order parameter of the transition. With this we have computed

the phase diagram of the instability as a function of on-site and next nearest neighbour

interaction parameters U and V. It turns out, that the phase space region of the excitonic

instability is very narrow and cRPA calculations estimating U and V for the real mate-

rial suggest that it indeed lies outside of the instability region. This suggests that more

ab-initio calculations are needed to investigate if the transition triggered by an excitonic

instability is realized in the real material.

Status and Publication Details

This paper has been published in Physical Review Letter [94]. This publication has a

Supplementary Information that is being published at https://doi.org/10.1038/

s41563-022-01285-3 and not contained in this thesis.

Contribution

I performed the ab-initio calculations (computation of bandstructure and geometry opti-

mization) and contributed to the development of the models used in this publication. All

authors have contributed to the analysis of the data and the creation of the manuscript.
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Ta2NiSe5 is one of the most promising materials for hosting an excitonic insulator ground state. While a
number of experimental observations have been interpreted in this way, the precise nature of the symmetry
breaking occurring in Ta2NiSe5, the electronic order parameter, and a realistic microscopic description of
the transition mechanism are, however, missing. By a symmetry analysis based on first-principles
calculations, we uncover the discrete lattice symmetries which are broken at the transition. We identify a
purely electronic order parameter of excitonic nature that breaks these discrete crystal symmetries and
contributes to the experimentally observed lattice distortion from an orthorombic to a monoclinic phase.
Our results provide a theoretical framework to understand and analyze the excitonic transition in Ta2NiSe5
and settle the fundamental questions about symmetry breaking governing the spontaneous formation of
excitonic insulating phases in solid-state materials.

DOI: 10.1103/PhysRevLett.124.197601

Introduction.—Spontaneous symmetry breaking is a
fundamental organizing principle for understanding the
emergence of long-range order. Identifying the underlying
symmetry breaking is thus a key step in the characterization
of the ordered phase. This can be an elusive task when the
symmetry breaking field cannot be directly tuned exper-
imentally or when different types of ordering are coupled.
The so-called excitonic insulator is a prominent example of
such an elusive state of matter. This phase [1–4] has been
identified with the spontaneous condensation of excitons
(bound electron-hole pairs) stemming from the Coulomb
attraction between electrons and holes in the conduction
and valence bands. Excitonic condensation has been
observed and intensively investigated in specially designed
devices such as bilayer quantum Hall systems [5–9] or by
photo stimulation of electron-hole pairs [10–12]. In con-
trast, spontaneous excitonic condensation in bulk materials
still remains an open question and its detection a major
challenge.
Ta2NiSe5 has been proposed as a candidate material

hosting a homogeneous excitonic condensate [13–16], i.e.,
without charge or other nonzero momentum order [17–19].
Ta2NiSe5 undergoes a structural transition from a high-
temperature orthorhombic to a low-temperature monoclinic
phase at Ts ≃ 328 K [13,20,21]. Proposed evidence for
excitonic condensation occurring simultaneously with the

structural transition includes a characteristic flattening of
the valence band close to the Γ point [14,15,22], the
opening of a gap in the electronic spectrum [16,23,24],
and coherent oscillations reminiscent of the excitation of an
amplitude mode of the condensate [25]. Due to its
characteristic chain structure Ta2NiSe5 has so far been
interpreted as a quasi one-dimensional excitonic insulator
[26,27] and Kaneko et al. [27] proposed a scenario in which
the coupling of the excitonic condensate with phonons
gives rise to a combined excitonic and structural instability.
The following symmetry considerations, however, call

into question the very notion of excitonic condensation in
the solid-state context. Condensation implies the breaking
of a continuous symmetry. In the case of excitonic con-
densation this would be the breaking of the UXð1Þ
symmetry related to the conservation of relative charge
between valence and conduction states. Bulk materials,
however, generally lack such a UXð1Þ symmetry due to the
hybridization between conduction and valence bands. The
only continuous symmetry being present is the one related to
the global charge conservationUNð1Þ. Nonetheless, internal
discrete symmetries of the solid, such as crystal symmetries,
can result in an approximate realization of the relative charge
conservation with symmetry-forbidden hybridizations in
particular regions of the Brillouin zone. Therefore, we
propose here that the spontaneous hybridization introduced
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by an excitonic instability represents a general mechanism
for breaking internal discrete symmetries rather than a
condensation phenomenon resulting from the breaking of
a continuous symmetry.
We demonstrate this concept for the case of Ta2NiSe5 by

uncovering the symmetries that are broken by an excitonic
instability. To this end, we construct a minimal yet realistic
model for Ta2NiSe5 including its electronic band structure
and electron-electron interactions from first principles. We
show the existence of an electronic instability of excitonic
origin leading to an electronic phase that breaks a set of
discrete symmetries of the high-temperature orthorombic
phase and is compatible with the low-temperature mono-
clinic structure. This analysis settles the fundamental
question of identifying which symmetries are broken at
the excitonic transition and is therefore of general relevance
to the understanding and the eventual control of such
transitions in Ta2NiSe5 and solid-state materials in general.
Crystal symmetries in Ta2NiSe5.—We perform DFT

calculations in the high-temperature orthorhombic phase,
with a ≃ 3.51 Å and b ≃ 15.79 Å being the lattice con-
stants in x and y directions of the Bravais lattice [28]. This
unit-cell is composed of two formula units with atoms

arranged in two parallel Ta-Ni-Ta chains (A andB) along the
x direction. The chains are shifted by half a lattice constant
along x and displaced along z, which results in four reflection
symmetries with planes parallel and perpendicular to the
Ta-Ni-Ta chains (σA=Bk=⊥) and one inversion symmetry point I ,
as depicted inFig. 1.Basedon theseab initio calculations,we
construct sixdxz-likemaximally localizedWannier functions
(MLWF) centered at the Ta and Ni positions, which are
shown in Fig. 1. In each Ta-Ni-Ta chain the Ta-centered dxz
orbitals, φTaðR⃗Þ, are aligned along the chains and tilted
around the x axis following the Ta-Se bonds [see Fig. 1(b)].
The Ni-centered dxz MLWFs, φNiðR⃗Þ, are also parallel to the
Ta-Ni-Ta chains, but rotated by 45° around the y axis. The Se
contributions are thus indirectly accounted for by deforming
and rotating the dxz orbitals.
The reflection symmetries act differently on the Ta-

and Ni-centered MLWFs. While the φTaðR⃗Þ MLWFs are
unaffected by all reflections, φNiðR⃗Þ change sign under
σ⊥. It follows that the intrachain Ta-Ta and Ni-Ni hop-
pings tTaTa=NiNiðR⃗Þ ¼ hφA=B

Ta=NiðR⃗ÞjĤjφA=B
Ta=Nið0Þi have oppo-

site signs. We find tð0⃗ÞTaTa ≈ −640 meV and tð0⃗ÞNiNi≈
250 meV, which are respectively mainly responsible for
the conduction and valence bands dispersions in the MZ
and ΓX directions of the Brillouin zone. These bands are
about 2.5 and 1.5 eV wide with predominant Ta (blue) and
Ni (red) character as visible in the Wannier-interpolated
band structure in Fig. 2. Conduction and valence bands
overlap along ZΓ where the bands become much less
dispersive and are mainly characterized by bonding and
antibonding splittings of the Ta- and Ni-states between the
two Ta-Ni-Ta chains.

FIG. 1. Top and side view of the Ta2NiSe5 lattice structure
including isosurfaces of Wannier wave functions localized at Ta
and Ni positions (red and blue correspond to opposite MLFW-
amplitude signs). Dashed lines (red dots) indicate reflection
(inversion) symmetries.

FIG. 2. Ab initio band structure (black lines) together with a fat-
bands representation of the Wannier model. Thick blue (red) lines
represent Ta (Ni) contributions as resulting from the Wannier
model.
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Importantly, hopping matrix elements between Ta- and
Ni-like states within the chains are not forbidden by any
symmetry. In fact, even in the orthorhombic phase we
obtain non-zero matrix elements between Ta- and Ni-
MLWFs within the same chain tTaNiðR⃗Þ. Specifically,
tTaNið0⃗Þ ≈ 36 meV which decreases with the distance Rx
along the chains. This result is universal to all tested DFT
exchange-correlation functionals [28] and shows that this
kind of Ta-Ni hybridization cannot spontaneously form due
to exciton condensation below a critical temperature
[26,27,38].
In contrast to that, we will show below that the excitonic

instability can break the crystal symmetries that constrain
Ta-Ni hybridization in the high-temperature phase. In
particular, the reflection symmetries σA=B⊥ constrain the
Ta-Ni hoppings to change sign under σA=B⊥ implying that the
Wannier Hamiltonian averaged along the x direction is
block diagonal with respect to the Ta and Ni states

Ĥðkx ¼ 0; RyÞ≡
X
Rx

ĤðRx; RyÞ ¼
 
ĥTaðRyÞ 0̂

0̂ ĥNiðRyÞ

!
:

ð1Þ

In momentum space, tTaNiðkx ¼ 0; kyÞ ¼ 0 so that the
bands along the ZΓ path have purely Ta or Ni character,
Fig. 2. Therefore, any excitonic instability resulting from a
spontaneous Ta-Ni hybridization must break the σA=B⊥
symmetry and show up along the ZΓ direction. We provide
evidence of such an instability by considering the effect of
the electron interactions in a minimal model derived from
the above symmetry analysis.
Minimal model.—We consider a two-dimensional lattice

with six atoms per unit cell. The electronic Hamiltonian

Ĥ ¼ Ĥhop þ ĤU þ ĤV ð2Þ

includes a hopping term Ĥhop, a local ĤU Coulomb
interaction term, and nearest-neighbor ĤV one. We define
Ψ†

R⃗σ
≡ ðc†1σðR⃗Þ;…; c†6σðR⃗ÞÞ, where c†jσðR⃗Þ creates an elec-

tron with spin σ in a localized orbital on the jth atom (labels
in Fig. 1) of the unit cell R⃗.

Ĥhop ¼
X
R⃗σ

X
δ⃗

Ψ†
R⃗þδ⃗σ

Tðδ⃗ÞΨR⃗σ ð3Þ

contains intracell, Tð0⃗Þ, as well as intercell, Tð�a;�bÞ,
terms. The matrix elements are chosen consistently with the
above symmetry requirement and in order to reproduce the
main features of the Wannier band structure [28].

The electrons interact through a local Hubbard-like term

ĤU ¼ U
X
R⃗

X
j

n̂j↑ðR⃗Þn̂j↓ðR⃗Þ; ð4Þ

where we assumed the same U for the six atoms, as
supported by a constrained RPA [39] analysis of the
Coulomb matrix elements (UTa ≈ 2.1 eV, UNi ≈ 2.4 eV).
The next leading terms are intrachain density-density
interactions between neighboring Ta and Ni atoms
(V ≈ 0.9 eV)

ĤV ¼ V
X
j¼1;2

X
R⃗σσ0

½n̂jσðR⃗Þ þ n̂jσðR⃗þ δ⃗xÞ�n̂5σ0 ðR⃗Þ

þ V
X
j¼3;4

X
R⃗σσ0

½n̂jσðR⃗Þ þ n̂jσðR⃗ − δ⃗xÞ�n̂6σ0 ðR⃗Þ: ð5Þ

The symmetries of the Hamiltonian are revealed by an
investigation of the intrachain Ta-Ni hybridization as a
function of the distance along x between the Ta and Ni
atoms

ΔijðxÞ ¼ hc†i ðRx; 0Þ|fflfflfflfflffl{zfflfflfflfflffl}
Ta site

cjð0; 0Þ|fflfflffl{zfflfflffl}
Ni site

i; ð6Þ

where i ¼ 1; 2ð3; 4Þ and j ¼ 5ð6Þ label the Ta and Ni
states, respectively, for the AðBÞ chain. For each chain, x is
defined by taking the Ni atom in that chain as origin, so that
x ¼ Rx ∓ a=2 (− for A and þ for B). We have dropped the
spin index as we focus on the spin-singlet case. For the A
chain, Δ15ðxÞ and Δ25ðxÞ, i.e., the hybridizations between
the lower and upper Ta with the central Ni state of the A
chain, transform as

σA⊥Δ15ðxÞ ¼ −Δ15ð−xÞ; σAkΔ15ðxÞ ¼ Δ25ðxÞ; ð7Þ

so that Δ15ðxÞ ¼ −Δ15ð−xÞ and Δ15ðxÞ ¼ Δ25ðxÞ, as
depicted in Fig. 3(a). Similarly, reflection symmetries for

(a) (b)

FIG. 3. Scheme of nearest neighbor Ta-Ni hybridization in the
symmetry invariant (a) and symmetry-broken (b) phases. Thick-
ness of the lines connecting the atoms indicates the absolute value
of the hybridization.
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the B chains imply Δ36ðxÞ ¼ −Δ36ð−xÞ and Δ46ðxÞ ¼
−Δ46ð−xÞ.
We investigate the possible breaking of the above

symmetries due to electronic interactions, by utilizing a
Hartree-Fock variational wave function allowing for a
spatially homogeneous order parameter of the form:

ϕ⃗ ¼

0
BBB@

ϕ15

ϕ25

ϕ36

ϕ46

1
CCCA; ϕij ≡ Δijða=2Þ þ Δijð−a=2Þ: ð8Þ

The four ϕij are in general independent, allowing in
principle for 16 different phases corresponding to the
different breaking patterns of the reflections and inversion
symmetries. Here, we focus on the symmetry-breaking
channel consistent with the low-temperature monoclinic
phase of Ta2NiSe5. In the monoclinic phase all reflections
are broken, while their products IA=B ¼ σA=B⊥ σA=Bk and the

inversion I ¼ IA=BT (T being the translation between the
twoNi atoms) are preserved. This constrains the components
ϕij as ϕ15 ¼ −ϕ25 and ϕ36 ¼ −ϕ46, due to preservation of
IA=B and ϕ15 ¼ ϕ46 and ϕ25 ¼ ϕ36 due to I , leading to an
order parameter of the form ϕ⃗ ¼ ϕ0ðþ1;−1;−1;þ1Þ.
The obtained zero-temperature phase diagram in theU-V

plane, Fig. 4(a), shows three distinct regions. At fixed value

of U, the order parameter ϕ0 vanishes for V smaller than a
lower critical value [V < V�

l ðUÞ] and for V larger than an
upper critical value [V > V�

uðUÞ]. In these regions the Ta-Ni
hybridizations transform in accordance with Eq. (7), as
shown in Figs. 4(b) and 4(d). These two symmetric ground
states are characterized by different electronic properties. For
V < V�

l ðUÞ [Figs. 4(b) and 4(g)] the valence and conduction
bands overlap, while forV > V�

uðUÞ [Figs. 4(d) and 4(e)] the
bands are separated by an energy gap.
In the intermediate region V�

l ðUÞ<V<V�
uðUÞ [Figs. 4(c)

and 4(f)] a solution with ϕ0 ≠ 0 is stabilized. This is the
hallmark of the excitonic instability as witnessed in Fig. 4(f)
by the emergence of a sizable hybridization between valence
and conduction bands all along the ZΓ path. Valence and
conduction bands acquire a strong Ta and Ni character,
respectively (which is absent in the symmetric phase) and the
degeneracy of the Ta-like conduction bands alongZΓ is lifted
by hybridization with Ni-like valence bands. In real space
this translates into brokenσA=B⊥ andσA=Bk symmetries yielding

finite Δ35 and Δ26, which couple the two chains, Fig. 3(b).
The upper valence band develops a mostly flat dispersion

around Γ. While this has so far been interpreted as a
distinctive signature of an homogeneous excitonic con-
densate, we show here that the interpretation is not unique.
In fact this feature is a result of a direct-to-indirect gap
insulator transition, driven by the splitting between the
hybridized bands along ZΓ, that can occur inside the

FIG. 4. (a) Order parameter at zero temperature as function of V forU ¼ 2.50 eV. Dots represent V ¼ 0.73, V ¼ 0.785, and V ¼ 0.83
corresponding to panels (b)–(d). Inset: phase diagram in U-V plane. Shaded region corresponds to the symmetry-broken phase. Dashed
line indicates a metal-insulator Lifshitz transition. (b)–(d) Ta-Ni hybridization along Ta-Ni-Ta A chain in the symmetric (b) and (d) and
symmetry-broken (c) phases. Crosses (diamonds) correspond to upper (lower) part of the Ta-Ni-Ta chain. (e)–(g) Bands along M −
Z − Γ − X corresponding to panels (b)–(d). Red (blue) corresponds to Ni (Ta) character. (h) Gap evolution inside the broken-symmetry
phase. U ¼ 2.50 eV and V ¼ 0.79, 0.77, 0.75 eV from light grey to black lines. Full (dashed) green arrows highlight the direct
(indirect) gap.
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broken-symmetry phase [Fig. 4(h)]. By decreasing V the
splitting increases, while the bottom of the conduction band
moves closer to the Fermi level. At V ¼ V�

l ðUÞ the
conduction band crosses the Fermi level and the system
undergoes a Lifshitz transition accompanied by the for-
mation of a Fermi surface in the metallic phase. We find
here that this is a first-order transition which restores the
symmetry for V < V�

l ðUÞ. If we allowed for a nonhomo-

geneous ϕ⃗ðR⃗Þ order parameter a finite momentum insta-
bility could occur near this point [40]. The symmetry-
broken phase is found only in a small region of the phase
space close to the Lifshitz transition. In this regime the
symmetric phase is characterized by a very small gap,
reinforcing the relevance of the above phase transition for
Ta2NiSe5, which in the high-temperature phase has been
reported to be a zero-gap semiconductor [16]. The sym-
metry-broken region shrinks as the HubbardU is decreased
until it disappears for U ≲ 1.25 eV for which V�

l ðUÞ and
V�
uðUÞ merge into the Lifshitz transition line. We highlight

that our constrained RPA values for U and V are in close
vicinity of the symmetry-broken region.
Structural phase transition.—The electronic configura-

tion associated with the excitonic phase is not compatible
with the symmetries of the lattice. This implies that the
electronic order parameter must have a linear coupling to
lattice modes breaking the crystal symmetry [27,41].
Hence, the excitonic transition will coexist with a structural
transition, as indeed observed experimentally. From the
pattern of the Ta-Ni hybridizations in the broken-symmetry
phase [Fig. 3(b)], one anticipates a distortion of the unit cell
in which Ta atoms from the same Ta-Ni-Ta chain are tilted
in opposite directions [arrows in Fig. 3(b)]. This corre-
sponds to a structural transition from the orthorhombic to
the monoclinic structure, which we confirm to be present
by performing a full structural relaxation within DFT [28].
The interplay between the electronic and lattice instability
is an interesting question for future investigations [42].
Conclusions.—We have performed a symmetry analysis

backed up by first-principle calculations of Ta2NiSe5, with
general implications for the excitonic transitions in solids.
While this transition has been so far understood as a
condensation phenomenon resulting from a continuous
UXð1Þ symmetry breaking [27] we show that in realistic
solids there is no such symmetry: the purely electronic
transition corresponds to the breaking of discrete sym-
metries only. Important consequences include that all
collective modes are gapped and that there is no dissipa-
tionless transport or excitonic superfluidity. We identify
explicitly all discrete symmetries relevant for the structural
phase transition in Ta2NiSe5, including the corresponding
electronic order parameters and provide clear evidence for a
transition into an excitonic insulator phase. This transition
breaks these symmetries in a manner consistent with the
experimentally observed lattice distortion into a monoclinic

phase, and the order parameter couples linearly to lat-
tice modes.
Because we find a spontaneous electronic instability for

realistic values of the interactions, our results suggest an
electronic contribution to the coupled transition [43–45].
However, a definitive confirmation of this point calls for
experimental probes which can selectively address the
electronic and lattice degrees of freedom. In the context
of iron-based superconductors, where a similar question
arises in relation to nematicity, it has proven possible to
probe the electronic component of the susceptibility asso-
ciated with the nematic instability [46,47]. Ultrafast spec-
troscopies offer another possible route [22,25,48,49] by
exploiting the very different time scales associated with
electronic and lattice degrees of freedom.
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4.5 Publication IV: Common microscopic origin of the phase

transitions in Ta2NiS5 and the excitonic insulator candidate

Ta2NiSe5

State of the Art

TNSe had recently emerged as a prime candidate to host an excitonic insulating ground-

state. Experimentally a phase transition had been measured at T=326K [28, 29] with

the formation of characteristic flat bands [30] and a semimetal to insulator transition

[20, 31, 98, 106]. While we have investigated the possibility of an excitonic instability

and identified its order parameter in publication III, it was still unclear if such an insta-

bility is realized in the actual material. Also the effect of the purely structural transition

onto the material was largely unknown, which is important to understand to disentangle

electronic and structural contributions to the phase transition. The goal of this paper is

to investigate these open questions using ab-initio methods.

Main Findings

The main finding of this work is that the transition in TNSe is predominantly structurally

driven. We show that the pure structural transition, without accounting for excitonic ef-

fects, already leads to the opening of a bandgap and band flattening similar to the exper-

imental ARPES results. We identify a soft phononic mode which is commensurate with

the structural transition and show that such a mode couples strongly to the electronic

degrees of freedom. We further investigate the origin of the phase transition and cannot

find any sign of an excitonic instability as proposed in our previous work. This leads

us to the conclusion that the phase transition is structural in nature. However, an open

question that we are investigating now is, why the soft phonon mode does not appear in

the Raman measurements [88, 96, 99–101] and what a possible stabilization mechanism

could be. Answering this question is part of a follow up project, where we propose a

phonon phonon mediated stabilization mechanism which we investigate via extensive

Molecular Dynamics calculations. This confirms the conclusions in this paper and will

be published soon.

Status and Publication Details

This paper has been published in the Nature Partner Journal (NPJ) computational materi-

als. This publication has a Supplementary Information that is being published at https:

//static-content.springer.com/esm/art%3A10.1038%2Fs41524-021-006

75-6/MediaObjects/41524_2021_675_MOESM1_ESM.pdf and not contained in this

thesis.
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Common microscopic origin of the phase transitions in
Ta2NiS5 and the excitonic insulator candidate Ta2NiSe5
Lukas Windgätter1✉, Malte Rösner 2, Giacomo Mazza3, Hannes Hübener1, Antoine Georges3,4,5,6, Andrew J. Millis6,7,
Simone Latini 1✉ and Angel Rubio 1,6,8✉

The structural phase transition in Ta2NiSe5 has been envisioned as driven by the formation of an excitonic insulating phase.
However, the role of structural and electronic instabilities on crystal symmetry breaking has yet to be disentangled. Meanwhile, the
phase transition in its complementary material Ta2NiS5 does not show any experimental hints of an excitonic insulating phase. We
present a microscopic investigation of the electronic and phononic effects involved in the structural phase transition in Ta2NiSe5
and Ta2NiS5 using extensive first-principles calculations. In both materials the crystal symmetries are broken by phonon instabilities,
which in turn lead to changes in the electronic bandstructure also observed in the experiment. A total energy landscape analysis
shows no tendency towards a purely electronic instability and we find that a sizeable lattice distortion is needed to open a
bandgap. We conclude that an excitonic instability is not needed to explain the phase transition in both Ta2NiSe5 and Ta2NiS5.

npj Computational Materials           (2021) 7:210 ; https://doi.org/10.1038/s41524-021-00675-6

INTRODUCTION
The excitonic insulator phase has been theoretically proposed in
the 1960s1–6 and is predicted to appear in semiconductors (or
semimetals) with excitonic binding energies larger than the
bandgap (or bandoverlap) of their conventional groundstate. Under
this condition, the groundstate becomes unstable against the
spontaneous formation of bound electron hole pairs, i.e. excitons.
Depending on the conventional phase being semiconducting or
semimetallic, the transition is described by a Bose–Einstein
condensation (BEC)- or a Bardeen–Cooper–Schrieffer (BCS)-like
mechanism, respectively2,4,5.
A major challenge in the experimental detection of an excitonic

insulator state in a crystal is that the excitonic transition is coupled
to other degrees of freedom, such as lattice distortions, which
make an unambiguous detection difficult. This is the reason why
several materials such as 1T-TiSe27,8 or TmSe0.45Te0.559 have not
been unambiguously confirmed to host an excitonic insulating (EI)
groundstate. These are indirect bandgap or semimetal materials
that exhibit finite momentum ordering and in the case of 1T-TiSe2,
for example, the existence of a charge density wave masks the
possible presence of an EI phase.
Very recently, also two-dimensional materials have shown

promises to host an excitonic groundstate. Experimentally, strong
evidence for the existence of EI phases has been provided both for
transition metal dichalcogenide bilayers10 and monolayers, such
as WTe2 and MoS211,12. An extensive theoretical study has
identified several candidate material combinations for hetero-
bilayers that could host an excitonic insulator by analysing the
electronic properties of a wide range of materials13. Further low-
dimensional excitonic insulator candidates are carbon nano-
tubes14, Sb nanoflakes15, double bilayer graphene16,17 and
topological systems18, such as InAs/GaSb19. In the bulk phase,

MoS2 has recently been revealed as another candidate material
since its bandgap can be tuned via pressure, yielding excitonic
binding energies larger than the quasi-particle gap, which would
allow for a transition into a possibly EI groundstate20.
We investigate bulk Ta2NiSe5 (TNSe), which is considered to be

a very promising candidate to host an excitonic condensate21,
with several experimental evidence suggesting an EI groundstate:
angle-resolved photo-electron spectroscopy (ARPES) measure-
ments have shown a characteristic band flattening near the Γ-
point upon cooling below the critical temperature22–25, a dome-
shaped bandgap–temperature phase diagram, similar to the
theoretically predicted one, has been found26, and the opening
of a gap has been measured in scanning tunnel spectroscopy
(STS)27, optics26 and ARPES24,28 experiments below the critical
temperature27. The bandgap in the low-temperature phase is
reported to be between 160 meV in optics26 and 300meV in STS
measurements27. The current literature is controversially reporting
the high-temperature phase of TNSe to be either a direct bandgap
semiconductor21,29 or a small bandoverlap semimetal24. It is,
however, agreed that there exists a structural phase transition, and
possibly a transition into an excitonic groundstate, at the critical
temperature Tc= 326 K26,30–32. The structural transition has been
reported to be from a high-temperature orthorhombic to a low-
temperature monoclinic phase30–32.
On the other hand Ta2NiS5 (TNS), a material of the same

structure of TNSe with Sulfur replacing selenium, does not exhibit
the same excitonic signatures of TNSe, such as band flattening
and bandgap opening. Indeed a structural transition at 120 K33 has
been reported without the formation of flat bands or a metal to
semiconductor transition34.
Due to the uncertainty on whether TNSe has a semimetallic or

gapped high-temperature phase, from a theoretical perspective it
is unclear which mechanism between BEC and BCS can
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be applied. In fact, experimentally there is no unambiguous
evidence that excitons are involved in the phase transition at all.
These facts indicate that, in relation to TNSe, the concept of
excitonic insulator can be source of confusion, as it has been
generally employed to refer to a phase showing a characteristic
gap opening and band flattening22,23,25,27 without direct observa-
tion of excitonic features and/or excitonic condensation.
A recent symmetry analysis of the possible electronic instabil-

ities issuing from the electron–electron interactions has shown
that the electronic phase transitions in the material should not be
ascribed to a condensation phenomenon but rather to the
electronic lowering of the discrete lattice symmetry35, which
corresponds to the breaking of a continuous U(1) symmetry
during the excitonic phase transition. This observation, together
with other recent experimental and theoretical observations24,36,
suggest a prominent role of structural instabilities in the system. In
this work, we abandon the concept of excitonic condensation and
show that the experimental features of TNSe and TNS mentioned
above can be completely explained without explicitly taking the
formation of excitons into account. We demonstrate how the
electronic and structural properties of the two crystals can be
rationalized in terms of electronic and intrinsic lattice instabilities
that drive the system from the orthorhombic to monoclinic phase.
The occurrence of such a lattice-driven instability agrees with a
prior report of Alaska Subedi36.
We present a comprehensive ab initio study using density

functional theory (DFT) for the transition from the orthorhombic to
the monoclinic phase beyond standard generalized gradient
approximation functionals. In section “Structure relaxation,” we
start by investigating the structural stability of the system and
show that at low temperature a monoclinic groundstate is
energetically favoured to the orthorhombic one, which suggests
the existence of a lattice instability. A similar analysis applied to
TNS highlights an equivalent structural transition mechanism from
an orthorhombic to a C2/c symmetric monoclinic cell.
In section “Electronic bandstructure,” we then investigate the

electronic bandstructure of both the high- and low-temperature
phase of TNSe and TNS using different exchange correlation
functionals with increasing accuracy. For TNSe, we can establish
the orthorhombic groundstate to be metallic and observe a
sizeable gap opening as well as a band flattening with the phase
transition. This shows that for this material the structural distortion
is essential for the bandgap opening observed in optics and STS
measurements and cannot be explained considering only the
electronic degrees of freedom. In section “G0W0 calculations,” we
show that a similar finding results from our many-body perturba-
tion theory-based calculations carried out at the G0W0 level.
Performing an equivalent DFT analysis for TNS shows that both
the orthorhombic and monoclinic phases are gapped systems
with parabolic electronic dispersions at Γ. This explains why a
metal to semiconductor transition and band flattening, which
have been characterized as a signature of an excitonic insulator in
TNSe, has not been observed for TNS34. We then show that
electronic heating enhances the valence band flattening and
investigate in the following section “Origin of the structural
instability” the origin of the instability observed in TNSe. We find
no evidence for an electronically driven spontaneous symmetry
breaking in the TNSe charge density upon infinitesimal lattice
distortions. In the symmetry broken lattice structure, the total
energy is, however, clearly lowered, which renders the
electron–phonon interaction the main driving mechanism for
the structural transition. In section “Phonon dispersion,” we
discuss the phononic bandstructure and single out the phononic
instabilities of the orthorhombic phase, the ones that could
possibly drive the structural transition. A detailed discussion of the
obtained phonon modes in relation with the most recent Raman
measurements shows that we are able to reproduce all phonon
peaks, except for the first two B2g modes, which exhibit a strong

broadening, which hints to a strong coupling of these modes to
other degrees of freedom. Finally, in section “Electron–phonon
coupling,” we show that the electronic dispersion is strongly
modulated by different phonon modes. In particular, it is expected
that thermal occupation of the phonon mode responsible for the
structural transition leads to a further bandgap opening.

RESULTS
Structure relaxation
TNSe is a layered material bound by van-der Waals forces. It
consists of parallel Tantalum and Nickel chains and is thus referred
to as a quasi-one-dimensional material (see Fig. 1)32. Experimen-
tally, the high-temperature phase exhibits an orthorhombic
structure, which is distorted to a monoclinic structure in the
low-temperature phase. The distortion, however, is subtle with a
change in the β angle (see Fig. 2b) of just 0.53°32 to 0.69°30.
We have performed a first-principles structure relaxation of

atomic coordinates, cell shape and cell volume for different
functionals. In all cases, the relaxation resulted in a triclinic
structure. The resulting lattice parameters are shown in Supple-
mentary Tables 1 and 5: the two functionals vdW-optB88 and
vdW-optPBE37,38, which include van der Waals corrections, result
in relaxed structures that agree well with the experimentally
measured values, while the Perdew–Burke–Ernzerhof (PBE) func-
tionals overestimates the experimentally measured interlayer
lattice parameter b by 10.5%30 (see Supplementary Tables 1 and 5).

Fig. 1 Ta2NiSe5 structure. Layered structure of the orthorhombic
phase of TNSe. The Nickel and Tantalum atoms form parallel chains
along the a-axis. a shows a 3D view of TNSe. b shows the projection
onto the a–c plane. For TNS, the Se atoms are simply replaced with
Sulfur atoms.
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As expected, this shows the importance of including van der
Waals forces when describing layered structures, such as TNSe.
The angles of the relaxed triclinic structure are α= 90.005°, β=

90.644° and γ= 89.948°. As the two angles α and γ are almost
rectangular, the triclinic cell and the corresponding monoclinic cell
are almost degenerate. Furthermore, we have checked that the
small triclinic distortion does not modify the electronic properties
compared to the exact monoclinic structure. Thus, in the
following, we refer to the fully relaxed structure as monoclinic.
The monoclinic angle β= 90.644° agrees well with the experi-
mentally measured values 90.693°30 and 90.53°32.
To obtain the relaxed geometry for the high-temperature

orthorhombic cell, we have performed the same relaxation using
the vdw-optB88 functional enforcing the orthorhombic symmetry.
The resulting lattice parameters are shown in Supplementary
Tables 2 and 4. As the relaxed structure predicted by the vdW-
optB88 functional has the best agreement with the experimentally
measured values for both the monoclinic and orthorhombic
phase, we have chosen it for all following structural calculations.
We have performed similar relaxations for the Sulfur compound:

a full relaxation using the vdW-optB88 functional, again, results in
a triclinic geometry that is almost degenerate with the monoclinic
cell. The monoclinic angle is β= 90.50°. For the orthorhombic
phase we have performed a further relaxation with fixed
symmetry. The lattice parameters for both structures are shown
in Supplementary Table 3 and agree very well with the
experimentally measured values from X-ray diffraction. This agrees
with a recent Raman study by Ye et al., which reports an
orthorhombic high-temperature phase and a structural transition
to a monoclinic phase at T= 120 K33.
Therefore, we find that in both TNSe and TNS a monoclinic

geometry is energetically favoured, which shows that a similar
lattice instability occurs in both materials. In section “Phonon
dispersion,” we extensively discuss the phononic properties of the
two materials and identify the structural instability with an
unstable B2g phonon. Although the structural change between
monoclinic and orthorhombic phase is small, the modifications for
the electronic bandstructure with the phase transition is
significant (see section “Electronic bandstructure”). This hints to
a strong coupling between electronic and lattice degrees of
freedom (see section “Electron–phonon coupling”).

Electronic bandstructure
In this section, we present a complete and systematic DFT study of
both TNSe and TNS using standard and more accurate functionals.
While we find that the fine electronic properties are sensitive to
the details of exchange and correlation, the underlying mechan-
ism of bandgap opening due to the structural phase transition is
independent of the functional choice for both TNSe and TNS. We
investigate the bandstructure of the orthorhombic and monoclinic
geometries using different exchange correlation functionals,
which include varying degrees of exact exchange. These are
ranked in chemical accuracy with the PBE functional39 being the
most inaccurate, but computationally least demanding, followed
by the modified Becke–Johnson (mBJ) functional40–42 and finally
the range separated hybrid functional HSE0343 being the most
accurate one.
The results are shown in Fig. 2. Results for the HSE06 functional

are reported in Supplementary Fig. 9 and the definition of the M–
Z–Γ–X path is given in Supplementary Note 1.
Figure 2a, b display the obtained bandstructure of TNSe: the

high-temperature orthorhombic structure exhibits a metallic
groundstate independently of the functional presented here,
while the monoclinic structure is always semiconducting. The
bandgap opening is sizeable for all the investigated functionals
and its position and value changes with the amount of exchange
and correlation included. With the PBE functional, we obtain an

indirect bandgap value of 40 meV, with the mBJ functional a direct
bandgap of 101 meV and with the HSE03 functional a direct
bandgap of 183 meV. Thus, the bandgap grows with an increasing
accuracy of the exchange and correlation functional. From Fig. 2b,
we observe that, in the monoclinic phase, TNSe has a rather flat
dispersion around Γ due to the valence band maxima being off Γ
for both the PBE and mBJ functional.
By increasing the exchange contribution included in the

functional, e.g. by tuning the mixing parameter in the hybrid
functional or the c parameter in the mBJ functional, it is possible
to further increase the bandgap. We observed that even in the
orthorhombic phase increasing the exchange contribution can
lead to a gap opening (see Supplementary Note 4 and
Supplementary Figs. 5 and 6), which is consistent with prior
studies44. The bandgap opening resulting from HSE03 agrees well
with the experimentally measured bandgap of 160 meV26. In STS
measurements, a gap of 300meV has been reported27. However,
we notice that the structure in ref. 27 shows a monoclinic
distortion with an angle β∝ 92.5°, i.e. much larger than the angle
reported in previous studies and the angle obtained in our
calculation (β≃ 90. 6°). Correcting for this difference, we find that
both the optics and scanning tunneling microscopic results are in
good agreement with our HSE03 results (see Supplementary Note
6 for more details).
Performing similar calculations for TNS, Fig. 2c, d, we identify a

major difference in the electronic behaviour of the Selenium and
Sulfur compounds. We see that, using either mBJ or HSE03 hybrid
functionals, the calculations predict a semiconducting groundstate
even for the orthorhombic geometry. The structural transition to
the monoclinic cell then leads to a further bandgap opening, with
bandgap values being around twice the size of the TNSe ones.
Therefore, in contrast to TNSe, no metal-to-insulator transition is
observed. The bandgap is direct at the Γ-point with a parabolic
dispersion towards the X direction. These findings agree well with
the theoretical and experimental reports: ARPES as well as optical
conductivity data show that TNS has a parabolic dispersion around
the Γ-point34,44 with a robust bandgap of 200meV34,44,45 and
250meV in optics46.
We stress that, while both compounds have a similar lattice

instability from orthorhombic to monoclinic geometry, in the case
of TNSe the structural instability is accompanied by a metal-to-
insulator transition, which is absent in the case of TNS. These
observations match all known experimental trends for these two
systems. In the case of the Selenium compound, the
metal–insulator transition accompanied by the flattening of
the valence band around Γ appears to be the intrinsic outcome
of the structural instability of the system and not the distinctive
signature of the excitonic insulator phase, as it has been
interpreted so far. We support this statement in the next sections
by explicitly accounting for the role of the electronic instability
and comparing the excitonic binding energy with the
bandgap value.
Given that states near the band gap have significant contribu-

tions from Ta, we have checked the validity of our results by also
including spin–orbit coupling effects and reported the related
band structure calculations in Supplementary Figs. 2–4, Supple-
mentary Note 3 and Supplementary Table 6. We find that, besides
a band splitting in the M–Z direction and a minor renormalization
of the bandgap, all our claims remain unchanged.

G0W0 calculations
While DFT calculations generally provide a good starting point for
discussing material properties, they often lack quantitative
agreement with experimental results. It is known that one needs
to add many-body corrections to obtain a quantitative agreement
with the experimental bandgaps. The standard approach that
provides accurate bandgaps is the GW method47–50. The latter is a
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many-body theory approach that consists of solving Hedin’s
equations iteratively51 while neglecting vertex corrections. There
exist various flavours of the GW approximation with the G0W0

being the most commonly used. In G0W0, one approximates the
starting wavefunctions to be the DFT ones and performs only one
cycle of Hedin’s equation to compute the self-energy and correct
the electronic state energies. As such, the G0W0 approximation
relies on the DFT wavefunctions to provide a good description of
the full many-body wavefunction and it is crucial to investigate
the starting point dependence of the G0W0 approximation. We
have performed calculations using the wavefunctions and
electronic dispersion resulting from PBE and HSE03 functional
calculations (more hybrid functional starting points are shown
Supplementary Fig. 10). The corresponding bandstructures for the

monoclinic geometry of TNSe can be seen in Fig. 3. Independently
of the starting point, the bandgap converges towards a similar
value, increasing in the PBE case, where it is commonly under-
estimated, and decreasing for the HSE03 functional. In all cases,
G0W0 predicts a bandgap between 100 and 163meV, which is in
good agreement with the experimental gap of 160meV measured
in optics26. The dispersion of the conduction bands shows similar
features with a pronounced double well shape in X–Γ–X direction.
The valence band dispersion, however, differs between the PBE
and the HSE, with the PBE one being M-shaped and the HSE one
being parabolic. This is inherited from the different initial DFT
wavefunctions and electronic dispersion.
The comparison of the electronic dispersion with recent ARPES

measurements by Baldini et al.28 shows that the dispersion

Fig. 2 Bandstructure of Ta2NiSe5 and Ta2NiS5. Band structure of TNSe and TNS for the orthorhombic and monoclinic phase. For all the
investigated exchange correlation functionals, we obtain a semimetallic groundstate for the high-temperature phase of TNSe. Only after
the structural transition to the monoclinic geometry, a bandgap of between 40 and 183meV opens. In TNS, already the orthorhombic phase
exhibits a positive bandgap for the modified Becke–Johnson and HSE03 functional, which increases during the structural transition to the
monoclinic phase. Therefore, the metal-to-insulator transition observed in TNSe is lacking for TNS. In all plots, the Fermi energy is set to 0 eV.
The self-consistently calculated c-value for TNSe is c= 1.25 and c= 1.26 for TNS in both geometries.
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obtained using the PBE functional as starting point agrees well
with the experimentally measured one, reproducing both the flat
valence band as well as the Mexican hat-shaped conduction band.
Also Tang et al.25 and Watson et al.24 report an M-shaped valence
band, which agrees well with the G0W0@PBE calculation. This
reinforces the conclusion that the band structure in the
monoclinic phase correctly accounts for the metal-to-insulator
transition. A detailed quantitative comparison to experimental
results, however, can only be achieved by including correlation
beyond the PBE functional.
We also solved the Bethe–Salpether equation (BSE) starting

from the G0W0 results52,53 to explicitly account for exciton
formation. While full convergence is not feasible with our
computational resources, we can extrapolate from our k-point-
dependent results BSE results on top of G0W0 and verify that the
excitonic binding energy is smaller than the G0W0 gap in the
monoclinic phase (see Supplementary Notes 7 and 8 and
Supplementary Figs. 13–19). This is an indication that the
condition needed for an EI phase, i.e. an exciton-binding energy
larger than the gap, is not fulfilled in TNSe for the
monoclinic phase.

The effect of electronic heating
The interpretation of an excitonic insulator as a phase consisting
of an excitonic condensate entails that an increase of temperature
above a critical value leads to the melting of the condensate and
hence to a bandgap closing. Experiments aimed at demonstrating
such a behaviour to prove the possibility of excitonic condensa-
tion in TNSe have indeed reported bandgap opening and band
flattening for increasing pump fluence25. Here we mimic the
photoexcitation with a thermal distribution of electrons and holes
and show that the variation of the bandgap and the band
flattening can be explained via a temperature increase in the same
manner as in standard semiconductors. Indeed, an increase of
temperature of the thermal distribution generates free carriers
and it has been shown that for low carrier densities the bandgap
shrinks and eventually increases again for sufficiently high
densities54,55. The mechanism behind such a bandgap variation
can be rationalized in terms of effective screening of the Coulomb
interaction which modulates the effect of bandgap opening
caused by the exchange contribution.
To approximately investigate the enhanced screening effects

due to free carriers, we have performed a set of G0W0 calculations
for different electronic temperatures. The electronic temperatures
have been set by changing the temperature in the Fermi–Dirac
function used for the occupation smearing of the Kohn–Sham
states in the self-consistent DFT calculations. This effectively leads
to a depletion of electrons in the valence bands and a finite
electronic occupancy of the conduction bands. Specifically, we
have investigated Fermi–Dirac distributions with temperatures
ranging between 0 and 8000 K. G0W0 calculations on such
thermalized groundstates can then provide bandstructures, which
include the effect of the screening due to the thermally excited
carriers. The resulting bandstructures and bandgap renormaliza-
tions are presented in Fig. 4a, b. One observes that introducing
charged carriers to the conduction bands rapidly decreases the
bandgap. It reaches its minimum around 2500 K with a bandgap
50% smaller than its equilibrium value and reopens for higher
temperatures. This behaviour is consistent with the typical
bandgap renormalization in standard semiconductors mentioned
above. The pronounced double well feature of the valence band
slightly flattens out as the Γ-point energy is shifted upwards (see
Fig. 4a) and only for electronic temperature >4000 K the
bandstructure changes significantly, which explains the upwards
trend in the bandgap for high temperatures. To reach such high
electronic temperatures with a laser, however, is experimentally
unrealistic as it would damage the material.
We remark that, even though the applied computational

procedure does not properly describe the experimental photo-
excitation of electrons into conduction bands, we could expect a
behaviour similar to the one described above upon intensive laser
pumping.

Origin of the structural instability
Having established the importance of the structural instability in
the determination of the insulating groundstate of TNSe, in this
section we discuss possible origins of the structural instability. On
general grounds, the structural instability is the result of the
complex interplay between the electronic and the lattice degrees
of freedom. The possibility of a purely electronic origin of the
structural instability, namely a charge density that spontaneously
breaks the orthorhombic symmetry at fixed ions position,
has been recently discussed in the literature. Specifically, this
possibility has been introduced at the model level in ref. 35 as the
result of an electronic interaction-driven spontaneous hybridiza-
tion between localized Wannier orbitals of different symmetry.
Moreover, experimental data from symmetry-resolved Raman
have been interpreted as signatures of quasi-critical charge

Fig. 3 G0W0 bandstructure of monoclinic Ta2NiSe5. Bandstructure
of the monoclinic geometry of TNSe after performing a G0W0
calculation starting from the DFT groundstate of TNSe using the PBE
(a) and the HSE03 hybrid functional (b). While the bandgaps are all
within a small range of 100 to 163meV, the valence band
dispersions differ depending on the functional used for the initial
wavefunctions. a has been adapted from our work in ref. 28.
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fluctuations that are active in the corresponding symmetry
channel56.
We start by recalling the mechanism behind such an electronic

instability. The mechanism can be readily understood in terms of
the energetic competition between on-site (Ta-Ta and Ni-Ni) and
the nearest neighbouring (Ta-Ni) density–density interaction that
can render the groundstate of the system to be either metallic or
insulating. In a simplified description, this energetic competition
can be well understood as a problem of two electrons in two sites
with on-site interaction U and inter-site interaction V. If the energy
of the lowest lying orbitals in the two sites are comparable, the
groundstate configuration of the problem is entirely determined
by the ratio between U and V. In the limit U≫ V, the lowest energy
configuration corresponds to the single occupation of the lowest
lying orbitals on the two sites, whereas in the opposite limit U≪ V
the most favourable configuration is the doubly occupation of the
site with the lowest energy orbital. The two configurations
become quasi-degenerate for U ~ V such that a coherent super-
position between the two configuration due to an exchange
interaction mediated by V is possible.
Assuming that in the extended system the lowest lying orbitals

in the two sites contribute to the formation of two bands close to
the Fermi level, the two configurations correspond respectively to
a metal in which both bands are partially occupied or to an
insulator in which the lowest lying band is fully occupied. The
coherent superposition, instead, indicates the possibility of a
spontaneous hybridization between the bands that leads to the
opening of an hybridization gap. As discussed in ref. 35, this can
happen only if the bands have different symmetry character and
therefore an hybridization of this type would correspond to a
charge density that breaks the orthorhombic lattice symmetry.
Calculations based on a mean-field ansatz for a realistic model of
TNSe show that the spontaneous hybridization transition can
occur in a very narrow region around U ~ 4V (see inset of Fig. 5),
where the factor four comes from the fact that there are four
neighbouring Ta atoms around each Nickel. We emphasize that
the phase diagram in the inset of Fig. 5 from ref. 35 is intended to
be qualitative as it is specifically calculated for a set of realistic
parameters corresponding to the mBJ functional and a selection
of Wannier orbitals, hence not necessarily representative for other
functionals.
The smallness of this region suggests that the electronic

instability relies on a delicate energetic balance between the
competing metallic and insulating states, which is not guaranteed
to be exactly satisfied in the real material. We therefore exploit the
present full ab initio results to test this energetic balance in the

case of TNSe and, in particular, how it is affected by the lattice
distortions that are neglected in the electronic instability
discussion above. We do so by performing bandgap calculations,
reported in Fig. 5, for different functionals on increasingly
distorted structures using the distortion parameter d. To define
the distortion parameter we linearly interpolate between the high-
symmetric orthorhombic and low-symmetric monoclinic geome-
try: we parameterized this transition with a transition vector vt
defined as the difference between the atomic configuration of the
high-symmetry and low-symmetry structure vt= vm− vo, with vm
describing the atomic configuration of the monoclinic cell and vo
describing the atomic configuration of the orthorhombic cell.

Fig. 4 Bandstructure of Ta2NiSe5 for different electronic temperatures. DFT+G0W0 calculation using different electronic smearing
temperatures. a shows the electronic dispersion with increased temperature. The obtained bandstructures agree very well with the flat bands
obtained in ARPES measurements. b shows the evolution of the bandgap with increasing electronic temperature. It decreases rapidly to 50%
of its equilibrium value at 2000 K and increases afterwards due to an increased band flattening for very high temperatures. The direct
bandgap has been measured at Γ. The figure has been adapted from our work in ref. 28.

Fig. 5 Bandgap of Ta2NiSe5 along the phase transition. Bandgap
as a function of the distortion parameter d defined in the text for
different exchange correlation functionals for TNSe: for all con-
sidered exchange functionals, we obtain a positive bandgap only for
finite distortions d, which then increases as a function of the
distortion parameter and the functional chosen. A minimal
distortion breaking all relevant lattice symmetries (d= 0.05) does
not open a bandgap, which would be expected for an electronically
driven instability (see Supplementary Note 5 and Supplementary
Fig. 8). We displayed only data points that have a finite bandgap.
Grey arrows indicates the bandgap opening due to structural
distortion and electronic correlation using different functionals. The
inset shows the phase diagram of TNSe adapted from ref. 35.
The region between dashed and solid (grey shaded) line shows the
region with an electronic instability breaking the orthorhombic
lattice symmetry towards the monoclinic. Above is the semicon-
ducting region without electronic symmetry breaking and below
the metallic region.
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Using this vector, we can linearly interpolate between the
orthorhombic and monoclinic structure via vi(d)= vo+ d ⋅ vt,
where d is the distortion parameter. The lattice vectors are
parameterized in a similar way. This means that also each of the
three lattice vectors of both geometries are linearly interpolated
using the difference between the monoclinic and orthorhombic
lattice vectors vlat,t= vlat,m− vlat,o. Hence, the interpolated lattice
vectors are vlat,i(d)= vlat,o+ d ⋅ vlat,t for each of the three lattice
vectors. If a gap opens as a result of the electronic instability only,
we could expect that an infinitesimal distortion d→ 0+ would be
sufficient to stabilize an insulating groundstate with a distorted
charge density. However, we observe that, independently of the
functional used, a finite critical value of the distortion parameter
dc is needed in order to open a gap (see Fig. 5). This means that
TNSe is indeed likely outside the region where a purely electronic
instability can be expected and that a finite distortion of the lattice
is critical to account for the metal–insulator transition. None-
theless, we observe a cooperation between electronic correlations
and lattice distortion in the opening of the gap. Indeed, by
increasing the accuracy of the functional (from PBE to HSE), which
corresponds to increasing amount of electronic exchange and
correlation, the bandgap at fixed distortion is increased and the
critical value of the distortion parameter dc needed for opening a
gap is significantly reduced.
We therefore conclude that, in relation to the simple mean-field

phase diagram with tunable U and V interaction derived for the
orthorhombic phase of TNSe, the material must be placed on the
semimetallic region of the phase diagram and that the lattice
distortions act in the same direction of the nearest neighbour
interaction V. On the other hand, based on the previous electronic
band structure results, the Sulfur compound must be placed on
the semiconducting side of the phase diagram, corresponding to a
larger effect of the interaction V.
As a further confirmation of the fact that the non-local

interaction V is responsible for the opening of the gap in these
materials, we also performed fully ab initio Hartree–Fock
calculations for TNSe, which are supposed to include a larger
contribution from non-local correlations: both the orthorhombic
and the monoclinic phase have semiconducting groundstates
with bandgaps of 436 and 836 meV, respectively (see Supple-
mentary Fig. 11).
We finally mention that despite the fact that a purely electronic

contribution is absent for TNSe we cannot exclude the system to
be close enough to an electronic instability so that quasi-critical
charge fluctuations can be present in the symmetry channel
corresponding to the breaking of the mirror symmetries that
characterizes the transition from the orthorhombic to the
monoclinic phase56. This analysis goes beyond the scope of the
present work and will be the subject of future investigations.
In the following, we focus on the possibility of having an

energetically favourable electronic instability that, however, does
not open a bandgap but instead stays in the metallic regime close
to the orthorhombic geometry. We introduce the total energy
E � E d; ρ�½ �, as a function of two coordinates. The first one, which
accounts for the lattice degrees of freedom, is the lattice distortion
d. The second coordinate of the energy functional is the
component ρ− of the electronic charge density, which corre-
sponds to a symmetry lowering from orthorhombic to monoclinic
(of ref. 35). It is defined as

ρ� ¼
Z
x2 unitcell

jρðxÞ � ρðRðxÞÞj dx; (1)

with R being the orthorhombic symmetry operators and ρ the
charge density. For the orthorhombic cmcm geometry of TNSe,
four different mirror symmetries R= {σA,o, σA,p, σB,o, σB,p} have been
identified as relevant to the orthorhombic to monoclinic transi-
tion35, where and p and o denote mirror symmetries parallel and
orthogonal to the chain direction and A and B denote the

corresponding one-dimensional chains in the unit cell. We will
focus on these mirror symmetries in the following. In this picture,
the groundstate is defined such that at d* and ρ�� the total energy
is minimal:

∂E
∂d

��
d¼d� ¼

∂E
∂ρ�

��
ρ�¼ρ��

¼ 0: (2)

If the system undergoes a spontaneous electronic instability, the
charge density breaks the orthorhombic lattice symmetry for
infinitesimal distortions and hence:

lim
d!0

ρ�ðdÞ≠ 0: (3)

The two possible scenarios for a lattice and an electronically
driven transition are shown schematically in Fig. 6. Figure 6a
shows the case of a lattice-driven phase transition. The charge
density component ρ− does not break the orthorhombic
symmetries at d= 0 and evolves smoothly towards the ground-
state of the system with increasing distortion. Figure 6b shows the
case of an electronically driven phase transition where the charge
density breaks the orthorhombic lattice symmetries. In this case,
the charge density component ρ− does not vanish at d= 0 but it
is finite instead and its value increases with increasing distortion .
In both cases of Fig. 6a, b, a finite d-distortion may still be needed
to obtain a positive bandgap.
When we perform ab initio calculations imposing the orthor-

hombic symmetries, the charge density is automatically symme-
trized so that ρ�ðd ¼ 0Þ ¼ 0 is true by construction. However, if
we compute ρ− for small lattice distortions that break the
orthorhombic symmetry, we can evaluate the limit lim

d!0
ρ�ðdÞ and

verify whether an electronic instability is present. Furthermore, an
electronic symmetry breaking should also result in a discontinuity
in the total energy for infinitesimal lattice distortion, as a phase
with a finite ρ�� has to lower the energy with respect to the
symmetric orthorhombic phase in the electronic instability
scenario. Both the computed total energy as well as ρ− for fixed
lattice distortions d are depicted in Fig. 6c, d.
Figure 6c shows that there is no discontinuity in the total

energy. For the vdw-optB88 functional, the total energy decreases
monotonously to its minimum for increasing d (see Supplemen-
tary Note 2 and Supplementary Fig. 1 for q > 0.2). For the PBE and
HSE functionals, it increases first and subsequently decreases
towards its minimum, which for the HSE03 functional is at around
d= 1.6. We attribute such a non-monotonous behaviour to the
fact that the distortion parameter d is defined with respect to the
vdw-optB88 functional structures. This means that in the phase-
space of the normal phononic mode we are not moving along the
soft phonon modes but along a direction where the orthorhombic
phase is a saddle point. Solving this issue would require a
structure relaxation using hybrid functionals to obtain the exact
soft mode coordinate, which is computationally not feasible for
TNSe. Figure 6d shows the evolution of the charge density
component ρ− for different symmetry operations defined in ref. 35.
σA,p describes the reflection symmetry parallel the Nickel chain in
the xz-plane and σA,o describes the reflection in the yz-plane
orthogonal to the chain direction and along the Tantalum atoms
(see inset in Fig. 6). For both reflection symmetries, ρ− approaches
0 for d→ 0. This reinforces the conclusion that the transition in
TNSe requires a finite lattice distortion and we do not observe a
spontaneous electronic instability.

Phonon dispersion
So far, we have investigated the electronic degrees of freedom
focusing on the effect of the lattice geometries. While we have
introduced the concept of a structural instability in the prior
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sections, we show how it is related to the lattice dynamics of the
crystal.
The phonon dispersion of the orthorhombic as well as the

monoclinic cell of TNSe are shown in Fig. 7a: the orthorhombic cell
shows two unstable optical phonon modes around the Γ-point,
characterized by imaginary frequencies (indicated as negative
values here), while the monoclinic cell shows no phonon
instabilities.
The two unstable phonon modes belong to the B1g and B2g

symmetry groups. Both unstable phonons lead to monoclinic
distortions and become stable in the monoclinic phase. The B1g
leads to a P21/m geometry and the B2g mode leads to the C2/c
symmetry. Just displacing the atoms within the unit cell and
computing the total energy of the structure shows that the P21/m
would be favoured36; however, also allowing for lattice distortions,
the C2/c symmetry is favoured with an energy difference of
14.4 meV per unit cell. This is in agreement with the full relaxation
as well as experimental findings observing a monoclinic C2/c
symmetric geometry in the low-temperature phase of TNSe32,57.
Therefore, we can identify the B2g mode as the relevant structural
instability, which drives the phase transition. The eigenvector of
this mode is displayed in the inset of Fig. 7a. It shows the
characteristic monoclinic displacement along the chain direction,
which results in a shearing of the Ta atoms around the Nickel
atom (see Fig. 7c), which has been identified as the order
parameter for the orthorhombic to monoclinic phase transition by
Kaneko et al.21. Note that a similar phonon analysis using ab initio
methods has been performed in ref. 36 and our calculations agree
with this study.
For the sake of comparison, we have performed a calculation of

the phononic spectrum at the Γ-point for both geometries of TNS.
We find one phononic instability in the orthorhombic structure,

which becomes stable in the monoclinic phase (see Supplemen-
tary Table 7). The instability has B2g symmetry and drives, similarly
to the TNSe case, the orthorhombic-to-monoclinic phase transi-
tion, which is consistent with the monoclinic groundstate being
the energetically favoured one.
To investigate the evolution of the phonon instabilities when

transforming the crystal from orthorhombic to monoclinic, we
have performed calculations on increasingly distorted structures
using the d distortion parameter introduced in the previous
section. Performing phonon calculations, we obtained the phonon
spectra and eigenvectors at the Γ-point for each of the distorted
geometries. To follow the evolution of the phonon energies
during the structural transition, we have computed the overlap
between the orthorhombic eigenvectors of the two phonon
instabilities with the phononic eigenvectors of all modes at a
given value of the distortion parameter d. The result is displayed in
Fig. 7c, d where the marker size is proportional to such overlaps.
Note that the phonon eigenvectors for a given distortion d form
an orthonormal system. Therefore, no overlap is visible at d= 0 for
the two unstable modes. As the structure is transformed to the
monoclinic cell, the different phonons start hybridizing that leads
to non-zero overlap of the unstable orthorhombic phonons and
the phonons at d ≠ 0. We observe that the two unstable phonons
are being stabilized along the phase transition and hybridize
predominantly into a pair of monoclinic phonons. The unstable
B2g has the strongest overlap with the monoclinic 3.4 and 1.9 THz
phonon modes and the unstable B1g has the strongest overlap
with the monoclinic 3.6 and 1.4 THz modes. In section
“Electron–phonon coupling,” we will show that the two mono-
clinic B2g phonons couple strongly to the electronic degrees of
freedom.

Fig. 6 Origin of the phase transition. Sketch of the energy landscape of E d; ρ�½ � along the local minima valleys for a a lattice-driven and b an
electronically driven phase transition. The green dot marks the groundstate defined via d* and ρ��. In the case of a lattice-driven phase
transition (a), the charge density component ρ− evolves smoothly from 0 to ρ�� as the lattice is distorted. In the case of an electronically driven
phase transition, the charge density breaks the orthorhombic symmetries for infinitesimal distortions. Thus, ρ− jumps discontinuously to a
finite value (green dot marked as unstable) and evolves afterwards smoothly to the groundstate. The purple line marks that even with an
electronic instability a finite d distortion may in general be needed to obtain a positive bandgap. c Total energy as a function of the lattice
distortion for the PBE, vdw-optB88 and HSE03 functional. The total energy of the respective orthorhombic geometry was taken as reference
value and set to 0. d Increase of the symmetry breaking parameter ρ− with increasing lattice distortion using the HSE03 functional. If there
was an electronic instability, both curves would have exhibited a discontinuity for infinitesimal lattice distortions d, with ρ− extrapolating to a
positive non-zero value. A linear fit of both curves is given by f σA;o ðdÞ ¼ 7:9964ð±0:0041Þ � d þ 2:2e� 4ð± 4:1e� 4Þ and
f σA;p ðdÞ ¼ 8:1658ð± 0:0120Þ � d þ 2:64e� 3ð± 0:26e� 3Þ. The inset shows the orthorhombic symmetry planes defined by Mazza et al.35.
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Further analysis of the phonon symmetries allows us to identify all
three B2g and eight Ag phonon modes of the orthorhombic and all
Ag phonon modes of the monoclinic geometry. Their comparison
with the phononic peak positions from recent experimental Raman
measurements that are sensitive to B2g and Ag symmetry
channel33,56,58,59 shows a good agreement of all monoclinic Ag
modes, except for one, and all orthorhombic Ag modes, even if our
results are at T= 0. Only the first two B2g modes, which are labelled
2 and 5 in the orthorhombic phase, and mode 5 in the monoclinic
phase show a substantial energy difference between the calculated
and the experimental results (see Figs. 8 and 9). In the most recent
Raman experiments, no soft mode is reported33,56,58–60 and the
second B2g mode (labelled 5) differs by roughly 0.7 THz from the
theoretically calculated value at T= 0 K. Note that Kim et al.56

identify mode 5 as being almost degenerate with mode 3 in the
orthorhombic phase and it evolves into mode 5 of the monoclinic
phase (see curve at 225 K), where we also see a small discrepancy
with our calculation. The two B2g modes exhibit a significant Fano-
like broadening, while all other Raman active modes have a sharp
lineshape. It is conceivable that the electronic structure methods
used here do not properly capture all coupling channels of the
phonon modes to the electronic degrees of freedom, which could
be responsible for these effects. Another possible explanation are
inelastic phonon–phonon contributions due to anharmonic effects
that are present for the two B2g modes. At the experimental
temperature, phonon anharmonicity effects are expected to play a

major role in renormalizing the phonon energies and stabilizing the
unstable modes, as has been demonstrated in other materials
exhibiting a soft mode-mediated phase transition61. This is especially
relevant for the soft modes, which would explain why a very good
agreement is observed for the other Raman modes even without
including temperature effects. The anharmonic coupling of the soft
mode to the continuum of other phononic modes could also be the
source of the broadening of the Raman peak in the region just
below 2 THz, which has been instead attributed to the coupling of
the phonon to an excitonic instability. The idea of the fundamental
role of phonon anharmonicity is supported by recent experimental
Raman measurements on TNS by Ye et al.33. Indeed it is shown that,
even though TNS undergoes a structural phase transition, no
phonon softening is observed in the Raman data around the
transition temperature at T= 120 K. As in the case of TNSe, the
authors claim that the phase transition is the result of an acoustic
mode softening, which in this case is coupled to a ferroelastic
instability rather than an excitonic instability. In contrast, our
calculations do not show softening of the acoustic modes for both
TNSe and TNS but rather soft Raman active B2g modes (see
Supplementary Fig. 7). Therefore, the lack of phonon softening in
the Raman measurements in TNS is likely the result of the
temperature stabilization of that phonon, as explained above, and
provides a further support to the structural similarities between TNS
and TNSe. A detailed investigation of the temperature effects in the
phonon spectrum to fully corroborate this argumentation will be

Fig. 7 Phonon properties of Ta2NiSe5. a TNSe phonon dispersion using the vdW-optB88 functional for the orthorhombic phase. It shows two
optical instabilities, one of which is the B2g soft mode. The inset shows the eigenvector of this mode. b Phonon dispersion of the monoclinic
phase. The two unstable modes become stable. We highlighted the phonon branches of the four optical phonons I–IV for which the coupling
to the electron bandstructure is discussed in the section “Electron–phonon coupling.” The lowest acoustical phonon in the monoclinic phase
shows an unnatural behaviour close to Γ, which is an artefact of the numerical procedure applied. c Schematic illustration of the shearing of
the Tantalum atoms around the Nickel atoms, which has also been discussed in refs. 21,36 and is a key signature of the phase transition.
d, e show the overlap of the unstable orthorhombic phonon eigenvectors with the phonon eigenvectors at different distortions d. The
position of the blue dots show the phonon eigenenergy of the corresponding mode and the size the overlap between the mode eigenvector
and the unstable orthorhombic mode B1g mode (d) and B2g mode (e) eigenvector. At d= 0, we have the orthorhombic geometry and at d= 1
the monoclinic geometry. One sees that the orthorhombic eigenvectors have maximal overlaps with the modes at 3.4 and 3.6 THz in the
monoclinic phase.
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topic of future work. In the following section, we investigate the
coupling of such B2g modes to the electronic bandstructure using a
frozen phonon approach. We found that especially phononic
modes, which displace the Tantalum and Nickel atoms along the
chain direction of the crystal, such as the orthorhombic B2g modes,
strongly modify the electronic bandstructure and hence could in
turn be renormalized.

Electron–phonon coupling
We conclude our work by demonstrating the intimate coupling
between the electronic and nuclear degrees of freedom by
highlighting the influence of specific phononic modes on the
electronic bandstructure. Time-resolved ARPES measurements by
Baldini et al. find that the gap presents oscillatory behaviour under
photoexcitation28. The authors show that the momentum
integrated photoelectron intensity is dominated by 4 frequency
components: 0.98, 2.11, 3.0, and 3.67 THz. The four frequencies can
be identified as the frequencies of Raman active phonons, and
using our phonon dispersion calculation (Fig. 7a), we can identify
the corresponding modes, with mode I at 1.1 THz, mode II at

1.9 THz, mode III at 2.9 THz and mode IV at 3.4 THz. We observe
that the modes II and IV have B2g symmetry and show the
characteristic shearing with respect to the Tantalum atoms around
the Nickel atoms, while the modes I and III that have Ag symmetry
do not exhibit this shearing. They can be identified with the peaks
1, 2, 3 and 5 in the Raman measurements of Figs. 8 and 9. Mode IV
mode can also be identified as the monoclinic counterpart of the
B2g soft mode, which is unstable in the orthorhombic geometry
(see Fig. 7e).
To quantify how strongly the above discussed phonons couple to

the electrons, we have calculated their effect on the electronic
bandstructure by displacing the atoms along the phonon eigen-
modes by an amount equal to the square root of their mean-squared
displacement at zero temperature for both the positive and negative
direction. The resulting bandstructures using the G0W0 method are
shown in Fig. 10 (see Supplementary Fig. 12 for the PBE results). We
see that the modes I and III show little influence, whereas both B2g
modes have a strong impact on the electronic structure. We stress
that both of these modes exhibit the characteristic shearing of the Ta
atoms around the Nickel atom in chain direction, which we also
observed during the structural phase transition (see Fig. 7c) . For
mode IV, the average gap between positive and negative displace-
ment is larger than the equilibrium gap. Therefore, we expect a small
increase of around 21meV of the bandgaps predicted in the previous

Fig. 8 Comparison of the Raman data from Kim et al.56 with our
theory results. Comparison of the theoretically calculated phonon
eigenenergies at T= 0 K with the Raman spectra provided by Kim
et al.56. The top panel shows the orthorhombic phonon spectrum
and the bottom panel the monoclinic phonon spectrum. Note that
peaks 3 and 5 are almost degenerate in energy and peak 5 only
appears in the B2g-channel with a much smaller amplitude than
peak 3, which appears in the Ag channel. The theory spectra are
obtained at T= 0 K and are in good agreement with Raman spectra.
Only the first two B2g modes of the orthorhombic geometry (peaks 2
and 5) differ substantially from their experimental values. This is
consistent with these peaks having a significant broadening. The
numerals in the experimental plots label the experimentally
measured peaks by Kim et al.56. We assigned those numbers to
the corresponding energies from our theory calculations by
minimizing the energy differences and following the modes across
the transition.

Fig. 9 Comparison of the Raman data from Ye et al.33 with the
theory results. Comparison of the theoretically calculated phonon
eigenenergies at T= 0 K with the Raman spectra provided by Ye
et al.33. The top panel shows the orthorhombic phonon spectrum
and the bottom panel the monoclinic phonon spectrum on a linear
scale. The theory spectra are obtained at T= 0 K and are in good
agreement with the Raman spectrum. Only the first two B2g modes
of the orthorhombic geometry differ substantially from their
experimental values. This is consistent with these peaks having a
significant broadening. The numerals in the experimental plots label
the experimentally measured peaks. We assigned those numbers to
the corresponding energies from our theory calculations by
minimizing the energy differences and following the modes across
the transition.
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Fig. 10 Frozen phonon bandstructure. PBE+G0W0 calculation using the mean-squared displacement at T= 0 K along different phonon
eigenvectors in both positive and negative direction. The bandstructure couples strongly to the B2g phonon modes II and IV at 2 and 3.4 THz,
which exhibit the characteristic shearing of the Ta atoms. The figure has been adapted from our work in ref. 28.
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section due to the coupling of this phonon to the electronic degrees
of freedom.
These results, beside confirming the strong influence of

phonons on the electronic structure, hint towards the possibility
of modulating the electronic bandgap through an external
pumping of the above phononic modes.

DISCUSSION
We have shown that the orthorhombic phase of both TNSe and TNS
is unstable at low temperatures and exhibits a soft phonon mode,
which signals the structural transition to the monoclinic phase.
Performing electronic bandstructure calculations using different

exchange correlation functionals, as well as calculations using the
G0W0 approximation, we have proven that in TNSe the structural
transition drives the metal-to-semiconducting phase transition,
with an indirect bandgap that is comparable to the experimental
results26,27, while in TNS the semiconductive electronic nature is
preserved. This demonstrates that without the structural transition
the experimentally observed gap opening at the critical tempera-
ture cannot be explained. At the same time, our ab initio results
show that no excitonic effects are necessary to explain the
experimental evidences. Furthermore, during the structural
transition a significant flattening of the valence bands is observed
which is enhanced by electronic heating leading to almost flat
bands, which are in agreement with recently measured
(pump–probe) ARPES signatures28.
The electronic heating shows that the bandgap never closes for

increasing electronic temperatures but shows the expected
renormalization effects of standard semiconductors due to the
increased carrier density.
We discussed the possible origins of the structural transition in

relation to the scenario of a purely electronic instability occurring
at fixed ion positions and concluded that a structural distortion is
required in order to observe a metal–insulator transition in TNSe.
This is supported by scans of the total energy landscape and
charge density as a function of the relevant distortion parameters,
which show no sign of an electronic instability.
Investigating the change of the electronic bandstructure for

experimentally relevant phonon modes, we found that the
electrons tend to couple stronger to the phonon modes, which
displace along the chain direction and induce the characteristic
shearing of the Ta atoms around the Ni atom. Especially the
3.4 THz phonon mode is expected to lead to a small additional
bandgap opening through the thermal occupation of this mode.
We conclude that, in the low-temperature phase, TNSe and TNS
behave as standard semiconductors.

METHODS
Computational details
All DFT and G0W0 calculations have been performed with the Vienna Ab
initio Simulation Package (VASP)62–66, and in the case of phonon
calculations, we additionally used phonopy to compute phonon disper-
sions67. For the interpolation of the G0W0 bandstructure, we have used the
wannier90 package68. All calculations have made use of the PBE
pseudopotential set generated with VASP69.
The structural relaxations have been performed on a 24 × 4 × 6 k-mesh

with an energy cutoff of 460meV. A total free energy change of 1e−6 eV
has been used as cutoff criterion, which led to forces of 2.8 meV/angstrom
per ion or less. The resulting input structures are shown in section 1 of the
Supplementary Information. The phonon dispersion calculation has been
performed using the vdw-optB88 functional and a 4 × 2 × 1 supercell with
a 4 × 4 × 3 k-mesh. The post-processing has been performed with the
phonopy package67. The calculation of the phonon spectra at Γ that are
compared to the Raman data has been performed on a 48 × 4 × 6 k-mesh
using a single unit cell. The calculation of the phonon overlaps as a

function of the distortion parameter d has been performed on a 16 × 8 × 3
k-mesh.
The electronic bandstructure calculations have been performed on a

24 × 8 × 6 k-mesh for the PBE functional and a 16 × 4 × 4 k-mesh for the
mBJ and HSE hybrid functionals and the Hartree–Fock calculation. The mBJ
functional calculated self-consistently a c value of 1.2578 for the
orthorhombic and a c-value of 1.2636 for the monoclinic phase of TNSe.
For TNS, c is 1.2620 for both structural phases. The bandstructures have
been computed along the path M= ðπa ; 0; πcÞ, Z= ð0; 0; πcÞ, Γ= (0, 0, 0) and
X= ðπa ; 0; 0Þ.
The G0W0 calculations have been performed on a 12 × 4 × 2 k-mesh with

160 frequencies ω and 1160 states with a 100meV energy cutoff. The
Wannierization has been performed with the Wannier90 package68. A
convergence study of the relevant parameters for the presented G0W0

calculation can be found in the Supplementary Note 7 and Supplementary
Figs. 13–15.
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92 4 Excitonic Insulator

4.6 Publication V: The spontaneous symmetry breaking in

Ta2NiSe5 is structural in nature

State of the Art

While the electronic groundstate properties across the phase transition [20,30,31,98,106]

in TNSe has been investigated already the role of the structural degrees of freedom was

still not well understood. The goal of this joint theoretical and experimental work is

to understand the bandgap dynamics using time resolved ARPES measurements upon

prior excitation via a pump pulse. With this setup we would like to understand the gap

response to such external perturbations.

Main Findings

Using this experimental pump probe setup we are able to show that upon prior excita-

tion the electronic bandgap responds on an ionic timescale (ps-regime) rather than an

electronic timescale (fs-regime). The bandgap at Gamma is modulated by four phononic

modes. Using DFT+GW calculations we are able to show that two of these modes couple

strongly to the electronic states at the bandedge and renormalize the bandgap strongly.

Remarkably one of these modes is the soft mode partner that drives the structural phase

transition. Furthermore, we are able to show that upon increasing the electronic temper-

ature the conjectured excitonic condensate cannot be melted, i.e. no bandgap closing is

being observed. This leads us to the same conclusion as in our purely theoretical work in

publication IV that the phase transition in TNSe is predominantly structural in nature.

Status and Publication Details

This paper has been published as preprint on the arXiv server [90] and is currently being

reviewed for publication in Physical Review X. This publication has a Supplementary

Information that is being published at https://arxiv.org/pdf/2007.02909.pdf

and not contained in this thesis.

Contribution

I performed all ab-initio calculations (Density Functional Theory and GW) and created

the corresponding figures. All authors have contributed to the analysis of the data and

the writing of the manuscript. A detailed list of all authors contributions is included in

the publication.

https://arxiv.org/pdf/2007.02909.pdf


The spontaneous symmetry breaking in Ta2NiSe5 is structural in nature

Edoardo Baldini,1 Alfred Zong,1 Dongsung Choi,2 Changmin Lee,1 Marios H. Michael,3 Lukas Windgaetter,4 Igor I.

Mazin,5 Simone Latini,4 Doron Azoury,1 Baiqing Lv,1 Anshul Kogar,1 Yao Wang,3 Yangfan Lu,6 Tomohiro

Takayama,6, 7 Hidenori Takagi,6, 7 Andrew J. Millis,8, 9 Angel Rubio,4, 9, 10 Eugene Demler,3 and Nuh Gedik1

1Department of Physics, Massachusetts Institute of Technology, 02139 Cambridge, Massachusetts, USA
2Department of Electrical Engineering & Computer Science,

Massachusetts Institute of Technology, 02139 Cambridge, Massachusetts, USA
3Department of Physics, Harvard University, 02138 Cambridge, Massachusetts, USA
4Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany

5Department of Physics and Astronomy and Center for Quantum Materials,
George Mason University, 22030 Fairfax, Virginia, USA

6Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
7Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
8Department of Physics, Columbia University, New York, NY 10027, USA

9Center for Computational Quantum Physics, The Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA
10Nano-Bio Spectroscopy Group, Departamento de F́ısica de Materiales,
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The excitonic insulator is an electronically-
driven phase of matter that emerges upon the
spontaneous formation and Bose condensation of
excitons. Detecting this exotic order in candi-
date materials is a subject of paramount impor-
tance, as the size of the excitonic gap in the
band structure establishes the potential of this
collective state for superfluid energy transport.
However, the identification of this phase in real
solids is hindered by the coexistence of a struc-
tural order parameter with the same symmetry
as the excitonic order. Only a few materials are
currently believed to host a dominant excitonic
phase, Ta2NiSe5 being the most promising. Here,
we test this scenario by using an ultrashort laser
pulse to quench the broken-symmetry phase of
this transition metal chalcogenide. Tracking the
dynamics of the materials electronic and crys-
tal structure after light excitation reveals sur-
prising spectroscopic fingerprints that are only
compatible with a primary order parameter of
phononic nature. We rationalize our findings
through state-of-the-art calculations, confirming
that the structural order accounts for most of the
electronic gap opening. Not only do our results
uncover the long-sought mechanism driving the
phase transition of Ta2NiSe5, but they also con-
clusively rule out any substantial excitonic char-
acter in this instability.

The excitonic insulator (EI) is an elusive state of mat-
ter proposed theoretically in 1965 [1–3] and expected to
exhibit many unusual properties, such as superfluid en-
ergy transport [4], electronic ferroelectricity [5], and su-
perradiant emission [6]. In several ways the EI is analo-
gous to a conventional superconductor, but pairing in an
electron-hole rather than electron-electron channel. Sim-

ilar to a superconductor, the EI is a many-body effect
beyond the scope of non-interacting electron theory. Un-
like conventional superconductivity, the EI develops en-
tirely within the electronic subsystem, driven by electron-
electron interactions based on Coulomb repulsion rather
than phonon exchange. However, the EI instability has
the same symmetry as a structural phase transition, so
the EI and structural order parameters are in general
linearly coupled and occur together [7]. Because there is
no symmetry distinction, the question whether the tran-
sition is excitonic or structural in nature is necessarily
quantitative rather than qualitative, involving compari-
son of energy scales. A phase can be classified as pre-
dominantly excitonic on the basis of two theoretically-
defined criteria: (i) the instability occurs in the elec-
tronic subsystem alone, at fixed ionic positions [1, 2],
and (ii) the symmetry breaking leads to the emergence
of a pseudo-Goldstone collective mode (phason) with a
much smaller energy than the Higgs-like mode (see Sup-
plementary Note 1) [8].

There are only a few EI candidates, of which Ta2NiSe5

is one of the most extensively studied. Above a critical
temperature TC = 328 K, this material crystallizes in a
layered orthorhombic unit cell that consists of parallel
Ta and Ni chains (Fig. 1a). At TC , a second-order phase
transition lowers the crystalline symmetry to monoclinic
and the material simultaneously undergoes a semimetal-
to-semiconductor transition [9, 10]. Of note is the break-
ing of mirror symmetry [8, 11] and the development of
spontaneous strain below TC [11, 12]. In the semicon-
ducting phase, a gap opens in the electronic structure
[9, 13] and the valence band (VB) top acquires an M-
like flat shape around the Γ point of the Brillouin zone
[10, 14]. Since this band flattening is expected from the
Bogoliubov transformation for an electron-hole pair, it
has been quoted as evidence of an electronic origin for
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FIG. 1. Ta2NiSe5 and experimental methods. a, High-temperature orthorhombic crystal structure of Ta2NiSe5 showing
the layered nature of the system along the y axis and the quasi-one dimensional Ta- and Ni chains running along the x axis. The
TaSe6 octahedra and NiSe4 tetrahedra are represented in light-blue and pink, respectively. b, Calculated electronic structure of
Ta2NiSe5 in the low-temperature monoclinic unit cell along the X-Γ-X momentum direction (parallel to the Ta and Ni chains).
The electronic structure is computed using GW calculations. A bandgap opens in the single-particle band structure and its
lower value is close to the Γ point of the Brillouin zone (see Supplementary Note 7 for the details). The VB (CB) dispersions
acquire an M-like (W-like) shape around Γ, consistent with the dispersion found in experiments. c, Schematic of the trARPES
experiment. An ultrashort near-infrared pump pulse illuminates the sample and a delayed ultraviolet probe pulse photo-ejects
electrons at different energies and momenta. The photoelectrons are finally detected in a time-of-flight analyzer. d, Schematic
of the UED experiment performed in a transmission geometry. An ultrashort near-infrared pump pulse excites the sample and
a delayed electron pulse is diffracted by the specimen and captured by a CCD detector. The specimen is in the form of an
ultrathin flake deposited on a standard TEM Cu mesh.

the phase transition of Ta2NiSe5. In this scenario, the
changes in the lattice degrees of freedom accompanying
the electronic structure reconstruction are interpreted in
terms of linear coupling of the lattice to the putative EI
order parameter [8, 15]. Nevertheless, it is crucial to re-
mark that the opening of the hybridization gap and the
M-shaped dispersion could also follow from a fundamen-
tally distinct effect, the lowering of the crystal symme-
try alone [10, 16]. Under this circumstance, the primary
order parameter would be structural in nature, with rel-
evant consequences on the fate of the EI. Such an un-
derlying complexity in Ta2NiSe5 so far has posed signif-
icant challenges to disentangling different contributions

to the gap formation in experiments performed under
equilibrium conditions. This calls for the development of
advanced nonequilibrium schemes to separate the time
dependence of the electronic and structural components
of the instability [17–20], assessing their relative impor-
tance with the support of state-of-the-art computational
methods.

Here, we present an experimental study of quench dy-
namics aimed at uncovering the nature of the phase tran-
sition in Ta2NiSe5. The ultrafast destabilization of the
order parameter is imprinted on the material’s nonequi-
librium electronic structure, which we track via time- and
angle-resolved photoemission spectroscopy (trARPES,



3

FIG. 2. Light-induced modification of the electronic structure. a,b Snapshots of the trARPES spectra along the kx
momentum direction and for kz = 0 Å−1. The data have been measured at 11 K with a probe photon energy of 10.75 eV
and an absorbed pump fluence of 0.4 mJ/cm2. (a) Snapshot before photoexcitation (t < 0). At the Γ point of the Brillouin
zone (kx = 0 Å−1), the flat anti-bonding VB is located around -0.16 eV, whereas the bonding VB appears around -0.65 eV.
(b) Snapshot measured at the maximum of the pump-probe response (t = 0.3 ps). Upon photoexcitation, the VB is depleted in
intensity and broadens significantly. Spectral weight is transfered above EF and accumulates close to Γ. c-f, Evolution of the
photoexcited state (at t = 0.3 ps) along kx at representative kz momenta, as indicated in the labels. Note that the color scale
is different from that of panels (a,b). The spectral weight above EF assumes a W-like shape consistent with the dispersion of
the CB. The VB and CB never crosses each other and thus the gap size remains finite in the whole kx-kz momentum space
around Γ. The white lines denote the energy-momentum dispersion calculated at the GW level (Fig. 1b). A rigid shift of
-84 meV has been applied to the VB to account for the underestimated gap resulting from the GW method. The calculated
dispersions have an excellent match with the experimental findings.

Fig. 1c). We observe that the electronic gap never col-
lapses upon intense photoexcitation even though the de-
pletion of the electronic states near the VB maximum is
strong; moreover, the dominant response proceeds over
a phononic rather than electronic timescale. The central
role of the crystal structure in the symmetry breaking is
confirmed by direct visualization of the lattice dynamics,
provided by ultrafast electron diffraction (UED, Fig. 1d).
Advanced first-principles calculations performed in the
realistic low-temperature unit cell clarify that the lead-
ing contribution to gap opening in Ta2NiSe5 is of struc-
tural origin, as encountered in phonon-driven displacive
transitions.

As a first step, we map the light-induced modifica-
tion of the electronic structure of Ta2NiSe5 via trARPES.
We drive the material deep in the low-temperature phase
(T = 11 K) with an intense near-infrared laser pulse that
rapidly changes the electronic distribution, in effect in-
creasing the electronic temperature (Te) to values well
above TC while keeping the lattice cold. The theoretical
estimates indicate that the carriers initially photoexcited
by the pump rapidly relax, leading to a nonequilibrium
distribution corresponding to a substantial depletion of
the VB edge states (see Supplementary Note 2). The
combination of a vacuum ultraviolet probe beam and
a time-of-flight electron analyzer allows us to access a
large portion of the Brillouin zone, elucidating how the

electronic gap reacts to photoexcitation along both kx,
the direction parallel to the chains in the orthorhombic
cell and kz, the one perpendicular to it. This feature is
crucial because the material’s electronic structure is not
purely one-dimensional, with the interchain coupling es-
tablishing a well-defined dispersion along kz [10]. If the
instability in Ta2NiSe5 was purely excitonic in nature,
our experimental protocol would lead to the observation
of a complete gap closure on an electronic timescale.

Figures 2a,b show snapshots of trARPES spectra along
kx for kz = 0 Å−1. At negative time delays (Fig. 2a),
the flat anti-bonding VB is observed around an energy
of -0.16 eV relative to the Fermi level (EF ) at the Γ
point, whereas the bonding VB appears at -0.65 eV [14].
Photoexciting electron-hole pairs with Te of several hun-
dred kelvins above TC induces a modification of the band
structure that is the strongest around 0.3-0.4 ps (Fig. 2b).
The flat VB is depleted in intensity and broadened sub-
stantially, but its peak energy remains nearly unchanged
at all momenta (see Supplementary Figure 5). This is
in stark contrast to the behavior observed in equilibrium
upon increasing the lattice temperature, which involves
a significant energy shift of the VB toward EF [10, 14].
Another important feature in the pump-probe spectrum
is found above EF , where spectral weight accumulates
around the Γ point. To investigate the nature of these
states, we acquire data at 0.3 ps with improved sensitivity
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FIG. 3. Role of the collective modes in the gap response. a, Map of the photoelectron intensity at the Γ point as
a function of energy and pump-probe delay. The data have been acquired at 14 K with a probe photon energy of 6.20 eV
and an absorbed pump fluence of 0.85 mJ/cm2. b, Excitation-density dependence rise of the photoelectron intensity response
at Γ (dotted lines). Fits to the experimental traces are overlapped in solid lines. The traces are selected at an energy of
-0.158 eV with respect to EF and averaged over an energy window of ±0.05 eV, as indicated by the dashed rectangle in
panel (a). c, Time dependence of the momentum-integrated photoelectron intensity in selected energy intervals referenced to
EF . Intensities are normalized to the average intensity I0 in the delay interval [-300,-50] fs; curves are offset for clarity and
smoothed. The energy interval over which the intensity is integrated is ±0.05 eV around the indicated energy. d, Oscillatory
component singled out from the temporal traces of panel (c) by subtracting the nonoscillatory transient. For visualization
purposes, the residuals have been multiplied by a factor of 5 and smoothed. e, Fourier transform analysis of the oscillatory
signal in (d). Four frequency components (labelled as I-IV) appear in the spectrum and they are identified as Raman-active
phonons of Ta2NiSe5. The corresponding frequencies detected in spontaneous Raman scattering [15] are indicated by orange
dots. f-g, Calculated eigenvectors of the dynamical matrix of Ta2NiSe5 corresponding to modes II and III, respectively. Violet
atoms refer to Ta, pink atoms to Ni, and blue atoms to Se. The phonon spectrum has been computed using DFT. To enhance
the visibility of the atomic motion, the amplitude is scaled by a factor of 8. h-i, Calculated electronic structure of Ta2NiSe5
displaced along the eigenvectors of the modes showed in panels (f-g). The dark blue lines refer to the electronic structure of
the initial (undisplaced, u = 0) low-temperature unit cell, whereas the light blue (organge) lines indicate the band structure
for positive (negative) displacements. The electronic structures are computed on the GW level of theory.

around EF and show them in Fig. 2c-f at representative
kz values. At kz = 0 Å−1 and an energy of ∼50 meV
(Fig. 2c), we observe an upward-dispersing band with a
characteristic W shape, which we identify as the lowest
conduction band (CB). While the exact estimate of the
final gap size is hindered by the experimental resolution,
the relevant aspect for our discussion is that the gap along
kx remains open. Direct inspection of the snapshots si-
multaneously taken at finite kz (Fig. 2d-f) confirms that

the VB and CB never cross each other throughout the
two-dimensional momentum space around Γ. We remark
that this behavior occurs in the presence of a clear sep-
aration between the electronic and lattice temperatures,
differing from the response observed when the lattice is
also transiently heated above TC [21, 22].

To elucidate whether the electronic or ionic degrees of
freedom control the dynamics, we measure the trARPES
signal with a high time resolution setup. Figure 3a dis-
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FIG. 4. Direct visualization of the structural dynamics. a, Static electron diffraction pattern of Ta2NiSe5 taken at room
temperature and with electrons at an energy of 26 kV. Inset: electron micrograph of the UED sample taken at 120 kV, showing
nanoscale needle-like morphology. Though all needles are aligned along the a-axis, their b- and c-axis differ, resulting in peaks
observed out of the [010] zone axis; some of these peaks are labeled. b, Photoinduced change of the integrated diffraction
intensity, normalized to its value before excitation. The absorbed fluence is 0.1 mJ/cm2. Intensity values are taken as the
average between (200) and (2̄00) peaks. The fitted curve (solid line) shows a fast drop with τ1 = 0.32 ± 0.18 ps and a slow
decay of τ2 = 26 ± 1 ps. c, Time evolution of the monoclinic distortion angle β, shown in panel (a), upon photoexcitation.
While the sensitivity of the UED setup is not sufficient to resolve the pump-induced change, the angle never reaches the 90◦

value associated with the orthorhombic unit cell. Qualitatively similar data were measured at 77 K and 295 K.

plays the energy distribution of the photoemission inten-
sity around Γ (integrated over ±0.05 Å−1 in the kx-kz
plane) as a function of pump-probe delay. Tracking the
evolution of the VB intensity at different pump fluences
(Fig. 3b) allows us to observe a response that is complete
within ∼0.3-0.4 ps, a timescale longer than our instru-
ment response function. This behavior is incompatible
with the very short timescale (i.e. few fs, see Supple-
mentary Note 5) that characterizes the plasma-induced
screening of the Coulomb interaction. The latter effect
plays an important role in the bandgap renormalization
of conventional semiconductors and, in the case of a
model two-band EI, it is expected to modify the excitonic
gap amplitude on timescales of 10-100 fs [23, 24]. Direct
inspection of our raw data and a combined analysis of the
VB amplitude, broadening, and peak position indicates
that plasma screening in Ta2NiSe5 provides only a small
contribution to the gap renormalization compared to the
phenomenon evolving on the slower timescale. The same
analysis suggests that the dominant process involves the
emission of optical phonons, a behavior usually observed
in materials with a gap of structural origin [17, 25, 26]. To
assess the validity of this scenario, we search for an unam-

biguous signature of strongly-coupled phonon modes in
Ta2NiSe5. Figure 3c displays the momentum-integrated
photoemission response as a function of time at repre-
sentative energies of -0.05 eV and -0.08 eV. Both curves
refer to the upper edge of the VB and show the pres-
ence of oscillations in the photoemission intensity due
to coherent phonons. Subtracting the multi-exponential
background from the data of Fig. 3c allows us to iso-
late the signal of the collective response (Fig. 3d). The
residuals reveal that the coherent phonon oscillations al-
ready emerge during the rise of the pump-probe signal,
confirming that the maximum gap response is locked to a
phononic timescale. Applying a Fourier filter to the sig-
nal of Fig. 3d yields the frequency spectrum of Fig. 3e.
The peaks (labelled as I-IV) match the frequencies of
four Raman-active phonons previously observed in other
ultrafast studies [15, 22, 27–29]. The sharp lineshape of
mode II deserves special attention, as this is a charac-
teristic fingerprint of the monoclinic phase of Ta2NiSe5

(see Supplementary Note 6). It indicates that the crys-
tal maintains the low-temperature structure even if the
electronic distribution becomes strongly nonequilibrium,
another feature incompatible with a symmetry breaking
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of purely excitonic origin.

To verify the inhibition of the monoclinic-to-
orthorhombic transition, we directly visualize the evo-
lution of the crystal structure through UED (details are
given in the Methods). Figure 4a shows a static electron
diffraction pattern of Ta2NiSe5 in the monoclinic phase,
featuring two peaks at (±2, 0, 0). In Fig. 4b, we track
the change in the diffraction intensity upon photoexci-
tation. We observe a signal that drops promptly and is
followed by a slow evolution that marks the rise of lat-
tice heating after ∼1 ps. Upon accounting for the instru-
ment response function, we find that the initial sub-ps de-
crease is resolution-limited and indicates the immediate
emission of multiple phonons (some of which revealed by
trARPES) which redistribute intensity from Bragg reflec-
tions to elsewhere in the Brillouin zone. We then monitor
how the β angle associated with the monoclinic distor-
tion reacts to the sudden increase of Te. The results show
that β remains rather constant in time (Fig. 4c), never
reaching the value of 90◦ expected for the orthorhombic
cell. Although the sensitivity offered by our UED appa-
ratus is not sufficient to resolve the small pump-induced
change of β (within a scale of 0.014◦), we can firmly es-
tablish that the structural transition never occurs at all
time delays.

The presented data show that in Ta2NiSe5 the elec-
tronic distribution changes substantially and suddenly,
the electronic gap remains open at all time delays, and
the crystal retains its monoclinic structure. These results
indicate that the material’s instability is driven mostly by
phonons and not by a pure EI order of electronic origin.

In the following, we rationalize these findings by per-
forming state-of-the-art calculations based on DFT and
its Hartree-Fock-like generalizations. As a first step, we
establish the crystal structure that is favored at low tem-
perature by relaxing the material’s unit cell. We find
that this structure is monoclinic, in agreement with pre-
vious results [10, 12, 16]. We also study how the low-
symmetry distortion reacts to an increase in Te by intro-
ducing a finite Fermi smearing in the Brillouin zone inte-
grations. We observe that the electron heating does not
remove the monoclinic distortion even at Te�TC , consis-
tent with our experimental findings of Fig. 3e and Fig. 4c.
The amplitude of the distortion is gradually reduced, al-
beit never to zero. Already at this stage, we could con-
clude that the orthorhombic-to-monoclinic transition is
primarily driven by ion dynamics, and not by excitonic
effects.

We then examine the evolution of the electronic struc-
ture as the lattice is varied between the orthorhombic
and monoclinic phases. To capture the electronic struc-
ture in the monoclinic phase, DFT alone is not suffi-
cient, as the standard functionals routinely yield severely
underestimated gaps and inaccurate band dispersions in
semiconductors. Nevertheless, this fact is not related to
any EI physics and stems from an incomplete descrip-

tion of the long-range exchange interaction in DFT [30].
One can circumvent this problem by including the lowest-
order correction in the screened electron-electron inter-
action. This is the essence of the so-called GW method,
which largely improves the description of semiconduc-
tors [31]. Importantly, this method does not account for
any ladder-diagrammatic effects (such as the EI order)
and thus can serve as a crucial test for the EI hypoth-
esis in Ta2NiSe5. We compute the material’s electronic
structure at the GW level in the monoclinic unit cell
and show the results in Fig. 1b (details are given in
the Methods and in Supplementary Note 7). We observe
that the monoclinic distortion alone profoundly affects
the electronic structure, changing it from semimetallic to
semiconducting. Specifically, a hybridization gap opens
around the Γ point, its size being half of the experimen-
tal value [9]; the change in structure also leads to large
systematic changes in band offsets, with CBs moving up
in energy with respect to VBs. Further corrections in
the description of the screening and the inclusion of the
electron-phonon coupling would likely refine the gap size
to larger values. More importantly, along kx the top-
most VB acquires an M-like flat shape and the lowest
CB develops a W-like structure, both consistent with
the experimental dispersions (as shown by the white lines
overlapped to the experimental data of Fig. 2c). These
shapes are expected when two intersecting electron and
hole bands hybridize, with the degree of flattening set by
the strength of the hybridization potential. Starting from
this electronic structure, we establish how it evolves upon
increasing Te. There are two mechanisms through which
electron heating can modify the GW gap: (i) Screening of
the long-range exchange interaction, which proceeds on
the electronic timescale set by the plasma frequency, and
(ii) the dependence of the structural distortion (involving
the monoclinic angle and the internal displacements) on
Te, an effect that evolves on phononic timescales. At our
values of Te, the former mechanism has a small impact
on the electronic structure of Ta2NiSe5, consistent with
our experimental findings (see Supplementary Note 7D).
In contrast, a small decrease in the monoclinic distor-
tion would cause a larger shrinkage of the GW gap [32].
In our trARPES data, the phononic timescale associated
with the largest gap response reinforces the idea that the
dynamics is governed by a small reduction of the struc-
tural distortion. During this time, the electron-phonon
coupling plays a key role in equilibrating the electron
and the ion subsystems. We can quantify this coupling
for each of the coherent phonons emerging in trARPES
by computing the GW band structure while statically
displacing the ions along the mode coordinates [33]. Fig-
ures 3f-i show representative results for modes II and III.
In agreement with the experiment, our calculations show
that the VB undergoes a substantial modulation around
Γ, confirming a strong deformation potential coupling be-
tween the low-energy electronic states and the atomic
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displacements. Such deformation potential coupling in-
volves, together with band offsets, strong changes in band
hybridization.

In conclusion, our joint experimental-theoretical study
excludes the scenario wherein the instability in Ta2NiSe5

has a dominant (or even substantial) EI nature. Rather,
the electronic gap in the material can be best described
as a one-electron hybridization gap driven by ion-ion
interactions, with the possible addition of a small sec-
ondary EI order. In such conditions, the phason of the
EI (if present) would be pinned at the high energy scale
of the structural gap, hindering dissipationless transport
and excitonic superfluidity even upon application of in-
tense external stimuli [8]. While our calculations (as
well as those in Ref. [16]) predict that a zone-center
soft phonon leads to a quadrupolar order below TC , only
high-resolution structural probes will clarify the lattice
dynamics responsible for the symmetry breaking. Indeed,
anharmonic effects beyond the perturbative approach can
also conspire to trigger the phase transition, making the
experimental identification of the relevant phonon more
challenging. Irrespective of the detailed mechanism at
play, we believe that our study reconciles the controver-
sial results obtained experimentally on Ta2NiSe5 since its
discovery in 1985 [34]. We envision that the strategy pre-
sented here will serve as a general protocol to establish
the role of the crystal structure in future candidate EIs.

METHODS

Sample growth and preparation

Single crystals of Ta2NiSe5 were synthesized by chem-
ical vapour transport. Elemental powders of Ta, Ni, and
Se were mixed with a stoichiometric ratio and sealed
into an evacuated quartz tube (∼1×103 Pa) with a small
amount of I2 as transport agent. The mixture was sin-
tered under a temperature gradient of 950/850◦C. After
sintering for 1 week, needle-like single crystals grew at
the cold end of the tube.

For the trARPES experiment, the single crystals were
directly glued on a copper holder using silver epoxy,
in order to ensure a good thermal contact in the
cryostat. For the UED experiments, an ultramicro-
tome fitted with a diamond blade was used to cleave
a single crystal of Ta2NiSe5 along the ac plane, pro-
ducing thin flakes with an approximate dimension of
600µm × 50 nm × 200µm. Flakes were scooped from
water onto standard transmission electron microscopy
(TEM) copper grids (300 lines/inch). The TEM grids
were clamped to a copper holder that ensures good ther-
mal contact. Sample characterization was done by a com-
mercial TEM (Tecnai G2 Spirit TWIN, FEI) with a 120-
kV electron beam energy.

Time- and angle-resolved photoemission
spectroscopy

The Ta2NiSe5 single crystals were cleaved at 10-14 K
under ultra-high-vacuum conditions (<1×10−10 torr).
Systematic trARPES data were reproduced on a total
of ten samples using two different laser schemes. The
first scheme used a setup based on an amplified Yb:KGW
laser system operating at 100 kHz (PHAROS SP-10-600-
PP, Light Conversion). Details are reported in Ref. [35].
In brief, the laser ouput (with pulses centered around
1.19 eV) was split into a pump and probe beams. The
pump beam was directed into an optical parametric am-
plifier (ORPHEUS, Light Conversion) to produce a near-
infrared pulse at 1.55 eV. The probe pulse was frequency
tripled to 3.58 eV and directed into a hollow fiber filled
with Xe gas (XUUS, KMLabs). Here, pulses centered
around 10.75 eV were obtained through nonlinear con-
version of the 3.58 eV beam. The resulting vacuum ul-
traviolet pulse was passed through a custom-built grat-
ing monochromator (McPherson OP-XCT) to minimize
pulse width broadening and enhance throughput effi-
ciency. Finally, the probe was focused onto the sample
with an in-plane polarization state perpendicular to the
Ta and Ni chains. The temporal resolution of the setup
was 230 fs, while the energy resolution was 43 meV. The
second laser scheme consisted of an amplified Ti:Sapphire
system (Wyvern, KMLabs), emitting ultrashort pulses
around 1.55 eV and at a repetition rate of 30 kHz. A
portion of the output beam was used directly as the near-
infrared pump pulse at 1.55 eV, whereas the ultraviolet
probe was obtained by frequency-quadrupling the laser
fundamental photon energy to 6.20 eV. The probe light
polarization state was set to circular. The overall time
resolution was ∼160 fs (see Supplementary Note 3), while
the energy resolution was 31 meV.

A time-of-flight analyzer (Scienta ARTOF 10k) was
used to acquire the transient band structure of Ta2NiSe5

in the two-dimensional kx-kz plane around the Γ point
of the Brillouin zone without rotating the sample or the
detector. The pump beam was incident on the sample at
an angle of ∼45◦ and its polarization could be set pre-
cisely to either S or P with respect to the incident plane.
The sample was oriented such that S polarization had
a pure in-plane electric field component perpendicular to
the chains (Ein ‖ c), while P polarization had an in-plane
component parallel to the chains (Ein ‖ a) and an out-
of-plane component perpendicular to the sample surface
(Eout ‖ b). The position of EF was carefully calibrated
for each sample by acquiring the steady-state ARPES
spectrum of an auxiliary Bi2Se3 single crystal.



8

Ultrafast electron diffraction

The 1.19 eV output of an amplified Yb:KGW laser sys-
tem (PHAROS SP-10-600-PP, Light Conversion) operat-
ing at 100 kHz was split into pump and probe branches.
The pump beam was focused onto the sample, while
the probe beam was frequency quadrupled to 4.78 eV
and focused onto a gold-coated sapphire in high vacuum
(<4×10−9 torr) to generate photoelectrons. These elec-
trons were accelerated to 26 kV in a dc field and fo-
cused with a solenoid before diffracting from Ta2NiSe5

in a transmission geometry. Diffracted electrons were
incident on an aluminum-coated phosphor screen (P-
46), whose luminescence was recorded by an intensified
charge-coupled device (iCCD PI-MAX II) operating in
shutter mode. The temporal resolution was 0.8 ps (see
Supplementary Note 3). We calculated the β angle by
fitting the positions of the (200), (-200) and (004) Bragg
peaks, which allows for the determination of the recipro-
cal unit vectors [100] and [001]. Small detector aberra-
tions resulted in a β angle of ∼90.4◦, slightly deviating
from the 90.57◦ reported previously [12]. The experi-
ments were performed at 77 K and 300 K.

First-principles calculations

All ab initio calculations were performed using the Vi-
enna Atomistic Simulation Package (VASP) implement-
ing the projected augmented wave (PAW) method [36].
The DFT structural relaxation using the vdw-opt88-
PBE functional (know to correctly describe both van
der Waals and regular interactions) resulted in the mon-
oclinic structure characteristic of the low-temperature
phase of Ta2NiSe5. The relaxation was performed on
a 24×4×6 k-mesh with a 460 eV cutoff. We obtained
the lattice parameters a = 3.517 Å, b = 12.981 Å,
and c = 15.777 Å, and unit cell angles α = 90.005◦,
β = 90.644◦, and γ = 89.948◦. Note that this struc-
ture has a small triclinic distortion, but it is very close
to the monoclinic one, as analyzed in the Supplemen-
tary Note 7. This structure agrees, within our numerical
accuracy, to the monoclinic C2/c cell measured in exper-
iments [11, 34] and in agreement with the findings of Ref.
[16].

DFT band structure calculations were performed on
a 16×4×4 k-mesh using the standard Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional [37].
Afterwards, the GW bands were calculated on top of
DFT at the G0W0 level with a 12×4×2 k-mesh. We
used a 100 eV cutoff for the calculation of the random-
phase approximation (RPA) polarizability and we in-
cluded 1086 conduction bands and 160 frequencies for the
calculation of the screened interaction. For the analysis
of the electronic temperature effect on the band struc-
ture, we performed G0W0 calculations with the parame-

ters reported above on top of DFT calculation with the
PBE functional. A Fermi smearing for different temper-
atures was set for the self-consistent cycle. This allowed
us to have a depletion of the top valence bands and fi-
nite occupation of the bottom conduction bands, which
in turns affected the G0W0 corrections as discussed in the
text. The complete electronic structure analysis is given
in Supplementary Note 7C,D.

The computation of the phonon dispersion and eigen-
modes was performed on a 4×4×3 k-mesh with a 4×2×1
supercell. The analysis of the phonon modes was per-
formed with the Phonopy package [38]. To analyze the
effect of representative phonon modes on the electronic
bands, we performed G0W0 calculations as described
above, but with the atomic positions displaced along the
phonon eigenmodes by an amount equal to ±

√
〈r2〉T=0K,

with 〈r2〉T=0K being the amplitude of the zero-point os-
cillation of this mode. Similar calculations were repeated
at different temperatures. More details are provided in
Supplementary Note 7E,F.
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a frequency of ∼3.5 THz. We analyze the eigenmodes of
the phonons emerging in our trARPES experiment using
the Phonopy package [38]. The phonon eigenvectors
are displayed in Fig. S14 and show agreement with
those analyzed previously in the literature [15]. In
particular, mode IV is the mode that originates from
the soft phonon driving the orthorhombic-to-monoclinic
transition. As such, its eigenvector involves the shear
motion of the neighboring Ta chains around the Ni chain.

F. Electronic structure in a frozen-phonon unit
cell

We also analyze the effect that phonon modes I-IV
have on the electronic band structure of Ta2NiSe5. We
perform G0W0 calculations while statically displacing
the atoms in the unit cell along specific phonon eigen-
modes. While this adiabatic method can provide in-
formation only on the electron-phonon coupling in the
electronic ground state [76], it represents a first impor-
tant step to elucidate how specific atomic motions affect
the electronic properties of Ta2NiSe5. Our results are
shown in Fig. S14, where we present the band structure
along the Γ-X and Z-M momentum directions for modes
I-IV. Note that, to enhance the visibility of the phonon-
induced changes, the energy axis is not aligned around
EF , but it is referenced to the energy of infinitely sepa-
rated atoms. We observe that the low-energy VB states
around the Γ point are more sensitive toward the dis-
placement of mode II, in agreement with our results of
Fig. 3e. Mode IV leads to an asymmetric and nonlin-
ear behavior of the band structure upon the application
of positive and the negative displacements. This behav-
ior occurs in the presence of a non-perturbative strong
electron-phonon coupling, which breaks the linear and
symmetric dependence expected from the traditional de-
formation potential theory. Finally, repeating similar cal-
culations at different temperatures (100 K and 300 K)
yields no substantial changes in our results.
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26

and M. P. Desjarlais, Phys. Rev. B 74, 033101 (2006).
[33] S. Gerber, S.-L. Yang, D. Zhu, H. Soifer, J. Sobota, S. Re-

bec, J. Lee, T. Jia, B. Moritz, C. Jia, et al., Science 357,
71 (2017).

[34] S. A. Sunshine and J. A. Ibers, Inorg. Chem. 24, 3611
(1985).

[35] C. Lee, T. Rohwer, E. J. Sie, A. Zong, E. Baldini,
J. Straquadine, P. Walmsley, D. Gardner, Y. S. Lee, I. R.
Fisher, and N. Gedik, Rev. Sci. Instrum. 91, 043102
(2020).

[36] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[37] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev.

Lett. (1996).
[38] A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).
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T. Takayama, Y.-L. Mathis, A. Rost, H. Takagi,
B. Keimer, et al., Phys. Rev. B 95, 195144 (2017).

[46] T. I. Larkin, PhD Thesis (2016).
[47] S. Mor, M. Herzog, D. Golež, P. Werner, M. Eckstein,
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5 Discussion

In this thesis I presented two different systems that exhibit strong correlation phenom-

ena between their excitonic and phononic quasiparticles. In both cases I have shown in

joint theoretical and experimental collaborations that a deep understanding of both their

electronic and ionic properties are necessary to be able to control and engineer the crystal

and to understand the nature and microscopic origin of its competing phase transition.

To achieve this I have employed state of the art ab-initio methods as well as model calcu-

lations.

In the first part of this thesis I have discussed how strong electron phonon-coupling

can be utilized to dynamically control material properties and to characterize the nature

of peculiar hybrid dimensional excitonic states.

In publication I I have shown in a combined theoretical and experimental study, how

the quasi one-dimensionality in SiP2 leads to the emergence of unconventional excitonic

states with hybrid dimensionality, i.e. the electronic wavefunction being localized along

the one dimensional Phosphorus chains of the crystal while the hole wavefunction is

localized along the whole two dimensional layer. This feature is imprinted by its un-

derlying crystal structure, which makes SiP2 a prime example of a symmetry engineered

material with the goal of controlling its electronic properties. I have shown that the ex-

citonic state is very sensitive to phononic perturbations, that displace the one dimen-

sional phosphorus chains, and that this results in a strong coupling of the exciton to such

phonons. We could confirm this strong coupling both in theoretical and experimental

Photoluminscence and Reflectivity measurements performed by our collaborators, where

it leads to the emergence of phononic sidepeaks to the main excitonic peak. These side-

peaks stemming from low dimensional excitonic states coupling to phonons have so far

only been measured in low dimensional materials such as graphene nanotubes or TMD

monolayers [70–76], where, in contrast to SiP2, the excitonic states have a clear one- or

two-dimensional structure. Therefore, this presents the first bulk example which shows

the emergence of exciton phonon sidepeaks of an exciton with hybrid dimensionality.

Due to its peculiar one-dimensional nature, SiP2 could provide a perfect platform to con-

trol even more complex excitonic states through its symmetry engineering. It is conceiv-

able that also trionic states with hybrid dimensionality could be realized in this system.

In publication II I have shown that a strong coupling between electronic and phononic

degrees of freedom can also be employed to control the optical properties of a crystal.

It has been shown by our experimental colleagues that the THz reflectivity of Ta2NiSe5
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can be significantly increased by pumping the electronic subsystem with an initial laser

pulse. To understand the underlying microscopic mechanism of the phenomenon I have

used a combined ab-initio and model approach and identified the following mechanism:

Upon exciting electronic states near the bandedge by a laser pulse the first conduction

bands are populated. These electronic bands couple via a dipole interaction strongly to a

specific 4.7 THz infrared active phonon mode and lead to coherent phonon fluctuations

at twice the phonon frequency. This fluctuation effectively transforms the crystal into

a Floquet medium, which leads to the strong amplification in THz reflectivity by up to

30%. Therefore, this non-linear coupling between the electronic and phononic states al-

lows to selectively excite specific infrared phonon modes by pumping the corresponding

electronic states to which these phonons are coupled strongly.

In the second part of this thesis I have investigated the conjectured EI state in Ta2NiSe5.

First I have introduced the basic concept of an EI and shown that it describes the forma-

tion of an exotic groundstate which has a condensate of excitonic particles at its heart.

Measuring such a state, however, is experimentally extremely challenging, because in

TNSe as in many other EI candidate materials the conjectured EI state [21,26,27] is intrin-

sically coupled to another transition, i.e. a structural phase transition [20, 28, 29, 88]. In

this work I have aimed at shining light on both competing transitions by disentangling

their effects. This approach allowed to isolate the possible excitonic signature, which is

crucial for the interpretation of the experimental data presented for this material. In the

series of publications III-V I have first investigated, if TNSe could host such an excitonic

instability and then if it is actually realized or if the transition is predominantly struc-

turally driven.

In Publication III I have defined an excitonic instability as a charge density that breaks

the lattice symmetries, which could trigger the structural phase transition in TNSe, and

identified the corresponding excitonic order parameter. I have obtained a very narrow

phase space region, that exhibits such an instability, which arises due to the hybridisation

between the lowest lying valence and conduction bands and leads to a bandgap opening

similar to the experimentally measured one. However, the phase space region is very

small and using ab-initio calculations in publication IV, I showed that this instability is

not realized: neither do I find a symmetry broken charge density nor can such a pure

electronic instability account for the metal to insulator transition in our ab-initio calcu-

lations. Instead I have found a strongly coupled soft phononic state, which leads to a

structural change that can explain the experimental evidence, such as band hybridisation

and bandgap opening. These have so far been attributed to the conjectured EI phase in

the interpretation of most of the available experiments [30, 106, 118] . Therefore, I could

show that the dominant effect is the structural phase transition and that the EI plays a

minor role. This result is reinforced by the combined theoretical and experimental work

in publication V. Here I have shown, that the time resolved ARPES measurements from
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our experimental collaborators agree very well with our theory calculations and exhibit

a time dependent bandgap modulation which is only consistent on phononic timescales.

This can be rationalized in term of a coupling to the soft mode driving the phase tran-

sition. Furthermore, our experimental collaborators have not been able to melt the ex-

citonic condensate through the optical excitation of electrons, which is expected to be

possible in a excitonic dominated phase transition.

However, the results of recent Raman spectroscopy studies still need to be understood

[88, 96, 99–101]. These do not show softening of any phonon modes in the correspond-

ing symmetry channels, but instead a strong asymmetric broadening of the relevant B2g

phonons. While the authors have interpreted this as a sign of the EI scenario, this ex-

perimental signature could also stem from phonon anharmonicities of the B2g phonons

coupling to surrounding phononic modes. It is conceivable that such an anharmonic

coupling stabilizes the soft phonon modes and leads to the observed broadening in the

experiment. To this end I have started a follow up project to analyze the phononic spec-

tra at finite temperature using Molecular Dynamics (MD) calculations to understand the

phononic and Raman spectra across the phase transition. These indeed show that the B2g

mode does not soften, but is constant in energy, which is consistent with the experimen-

tal measurements. Instead it broadens significantly approaching the critical temperature,

which we can trace back to the coupling to other phonon modes rather than an EI state. I

expect to publish these results soon. With this I believe to finally settle the controversial

discussion surrounding TNSe as an EI candidate.

Summarizing, the projects in this thesis contribute to the current research how phononic

degrees of freedom play a crucial role in excitonic and anisotropic systems. This is im-

portant to understand how crystals can be manipulated to engineer their properties ei-

ther through the excitation of electronic modes that couple strongly to specific phononic

modes or through engineering the underlying crystal symmetry. Furthermore I have

shown how to disentangle the contributions of the different effects in competing ionic

and electronic phase transitions such as the one in TNSe. Extensive theoretical simula-

tions employing combined ab-initio and model calculations provide an optimal pathway

to understand such phenomena, because only here one has total control on the interac-

tions allowed to take part in the transition while being able to describe realistic systems.

As such we were able to understand the nature of both the conjectured excitonic and

structural phase transition in Ta2NiSe5 which will be important contribution to the con-

troversial debate surrounding this material.

Outlook

In the previous section I have discussed the results presented in this dissertation, ex-

plained how they contribute to their line of research and which further investigations
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need to be taken. In this section I would like to embed this discussion into the more

general context of quantum materials and present what potential promising EI systems

might be.

The goal of the field of quantum materials is to discover phenomena that involve quasi-

particles, that behave in a possibly collective or strongly correlated way and that go be-

yond (semi-)classical physics. The most famous example for such a quantum material

are superconductors which have a condensate of Cooper pairs as their groundstate. They

emerge due to the renormalization of their electronic interaction mediated by phonons.

Superconductivity has been an active field of research for over a century [119] with more

and more materials being discovered that exhibit superconductivity at higher tempera-

tures [2–4]. Other examples for quantum materials are charge density wave (CDW) ma-

terials, which show charge ordering due to the wave-like nature of electrons. This charge

ordering ultimately leads to a modulation of the atomic lattice due to the coupling of elec-

tronic states to a phononic condensate [120,121]. A third class of intensively investigated

quantum materials are topological insulators [122, 123]. These quantum phenomena can

appear separately or in some cases even at similar temperatures giving rise to competing

phase transitions. An example for such a competing transition are CDW and supercon-

ducting states [124] which both arise due to their strong coupling to phonons.

Control of such quantum materials aims at understanding the underlying mechanisms

of these phenomena and manipulating them in a controlled fashion. The ultimate goal is

to be able to tune the properties of such quantum materials on demand. There are many

ways with which this control can be exerted. It can for instance be done by crystal engi-

neering, using heterostructures, introducing Moire potentials or applying external fields

such as magnetic fields or laser pumps [125]. The latter can selectively excite specific

quasiparticles within the system and drive phase transitions [125]. A famous example

for this effect is light induced superconductivity, which is realized by pumping specific

phonons via laser pulses [126]. Similarly superconducting states can also be tuned via

symmetry engineering of the underlying lattice. One of the most exciting research fields

exploiting this idea is twisttronics. It uses the ability to create monolayer graphene or

TMD sheets and to stack them at arbitrary angles to induce a Moire potential in the sys-

tem. Such a twisted system of graphene has been shown to exhibit a rich phase diagram

which shows signs of superconductivity and correlated insulating states [12].

In the first part of the thesis we have seen two different examples for these quantum

control mechanisms, one static via symmetry engineering and one dynamic via selective

excitation, which both rely on the strong electron phonon coupling in their crystals. With

this both fit very well into this line of research. The task of this field is now to learn and

understand how these different techniques to manipulate materials can be combined. An

example for this could be SiP2. Due to its layered nature it can be used to create heteroin-

terfaces with other materials or even host Moire physics introducing a twist. This might
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allow to imprint its quasi one-dimensionality in the heterostructures and open pathways

to induce symmetry constraints to the electronic system. A possible application could be

symmetry engineered interlayer or Moire excitons in heterostructures. Similarly it could

be used as a substrate for other materials such as superconductors to induce dimension-

ality effects which might give rise to new physical phenomena.

Closely related to the emergence of superconductivity is the EI phase, which is a con-

troversally debated topic in quantum materials research. It is formally similar to the

superconducting state, but has excitons rather than Cooper pairs at its heart. This leads

to an insulating rather than an superconducting state. Identifying an EI insulating state is

an immensely challenging task. In the case of Ta2NiSe5 it led to many experimental and

theoretical efforts, that struggle to disentangle the competing phase transition, which all

bulk candidate materials have in common. As a result, the interpretation of the experi-

mental data has not been clear in many cases, because the unique signature of an EI state

has not yet been identified. Therefore, it would be desirable to realize and understand

such an EI state in a more controlled way to fully understand its properties. I believe

that the right way to do this is to try to realize it in low dimensional systems. The reason

for this is that these have, as already hinted in chapter 4, much higher excitonic binding

energies due to their lack of screening. Thus, it should in principle be much easier to

obtain excitonic binding energies, that exceed the electronic bandgap. It would be par-

ticularly interesting if we also had control of the electronic bandgap in those systems to

be able to induce the phase transition through some external experimental parameter.

A platform that fulfills all these properties are gated double layer systems [23, 82, 84].

Here it is possible to separate electrons and holes into the two different layers which,

are commonly chosen to be graphene or TMDs. The interaction between these two par-

ticles can be tuned via the size of the separating hexagonal boron nitride (hBN) layer.

The bandgap and chemical potential of such material can be controlled via gating, which

should allow to switch between EI and conventional phase. Indeed, first experimental

setups using these techniques have shown promising results, inducing a potentially EI

groundstate which becomes exciton compressible, but charge incompressible upon clos-

ing the bandgap sufficiently [23]. In such double layer systems it is possible to contruct

even more complex geometries using twisted Moire systems. These allow to confine sin-

gle electrons and thus excitonic states to their Moire potential which acts as a potential

well [84]. Another possible experimental setup to realize the EI state in a controlled way

might be optical cavities. These could allow to control the EI phase transition through the

fluctuations of the photonic field confined in the cavity [127]. Therefore, these systems

might be very promising candidates to pinpoint a unique experimental signature of the

EI state, which can be used to identify this elusive state also in more traditional candidate

materials.
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