Einfluß einer Überexpression von Rab5 und Annexin VI auf die Endozytose von Low-density-Lipoproteinen (LDL) und Transferrin in transfizierten Zellen

Dissertation
zur Erlangung des Grades eines Doktors der Medizin
dem Fachbereich Medizin der Universität Hamburg vorgelegt von

Patrick Linsel-Nitschke
aus Siegen
Hamburg 2000
Angenommen vom Fachbereich Medizin

Gedruckt mit Genehmigung des Fachbereichs Medizin
Der Universität Hamburg

Sprecher: Frau Prof. Dr. Dr. U. Beisiegel

Referent: Prof. Dr. F. Rinninger

Korreferent: Prof. Dr. H. Greten
Inhaltsverzeichnis

Einleitung
Rezeptor vermittelte Endozytose ... 5
- Bindung und Internalisierung von Liganden... 5
- Intrazelluläre Transportwege endozytierter Liganden............................. 8
- Endosomale Kompartimente... 9
- Rezeptor vermittelte Endozytose des Transferrins................................. 11
- Rezeptor vermittelte Endozytose der Low-Density-Lipoproteine (LDL).... 12

Rab-Proteine und ihre Rolle im Vesikeltransport.. 14
- Rab5.. 15

Die Annexine... 19
- Annexin VI... 21

Stoffwechsel der Lipoproteine.. 23
- Der LDL-Rezeptor... 25
- Andere Rezeptoren der LDL-Rezeptor-Familie.. 27

Zielsetzung... 29

Material und Methoden
- Präparation von LDL aus humanem Serum... 30
- Radioaktive Markierung von LDL... 31
- Radioaktive Markierung von Transferrin... 31
- Zellkultur.. 32
- Rekombinante DNA... 32
- Transfektion.. 35
- Selektionierung von stabil transfixierten HUH7-Zellklonen...................... 35
- Proteinbestimmung.. 36
- Immunoblot-Analyse der transfizierten Zellen... 36
- Immunfluoreszenz der transfizierten Zellen.. 37
- Antikörper für Immunfluoreszenz / Immunoblotting.............................. 38
- Bestimmung der Aufnahme von 125I-LDL.. 38
- Bestimmung des Abbaus von 125I-LDL... 39
- Bestimmung der Aufnahme von 125I-Transferrin................................. 40
Ergebnisse
- LDL-Aufnahme von CHO- und HUH7-Zellen nach Präinkubation mit LPDS .. 43
- Überexpression von Rab5 und Annexin VI durch transiente Transfektion von CHO-Zellen ... 44
- Bestimmung der Transfektionsrate durch Immunfluoreszenz.................... 46
- LDL-Aufnahme in transfizierten CHO- und HUH7-Zellen....................... 48
- LDL-Aufnahme der CHO-Zellen nach Kotransfektion von Annexin VI und Rab5 mit dem LDL-Rezeptor .. 49
- Charakterisierung von Rab5 oder Annexin VI überexprimierenden, stabil transfizierten HUH7-Zelllinien... 51
- Immunfluoreszenz des Zellklones 7.10 (Rab5)....................................... 54
- Transferrinaufnahme und Transferrin-Recycling der Klone 2.8 und 7.10....55
- 125I-LDL-Aufnahme und Abbau der Klone 2.8 und 7.10......................58

Diskussion
Experimentelles System
- Präinkubation mit LPDS stimuliert die 125I-LDL Aufnahme in CHO- und HUH7-Zellen .. 60

Transiente Transfektionen
- Überexpression von Rab5/ Annexin VI in CHO- und HUH7-Zellen durch transiente Transfektionen... 61
- Alleinige Überexpression von Rab5 oder Annexin VI in CHO- oder HUH7-Zellen zeigt keinen Effekt auf die 125I-LDL-Aufnahme............ 63
- Überexpression des LDL-Receptors in CHO-Zellen bewirkt eine Stimulation der LDL-Aufnahme ... 63
- Kotransfektion von Rab5/ Annexin VI und dem LDL-Rezeptor bewirkt eine zusätzliche Stimulation der LDL-Aufnahme............................... 64
Inhaltsverzeichnis

Stabil transfizierte Zellklone... 66
- Gesteigerte 125I-Transferrinaufnahme in stabil mit Rab5 oder Annexin VI
 transfizierten Zellen.. 67
- Gesteigerter Abbau von 125I-LDL in stabil mit Rab5 oder Annexin VI
 transfizierten Zellen... 69
Vergleichende Betrachtung Rab5 und Annexin VI.............................. 70

Zusammenfassung ... 73

Literaturverzeichnis .. 74

Danksagung ... 87

Lebenslauf ... 88

Erklärung .. 89
Einleitung

Rezeptor vermittelte Endozytose

Bindung und Internalisierung von Liganden

Einleitung

Einleitung

Zellfunktion notwendigen Makromolekülen verhindern kann. Beispielsweise wurde die temperatursensitive Drosophila-Shibire-Mutante, die nach Temperaturerhöhung paralysiert, als defektes Dynamin-Protein identifiziert (Urrutia et al. 1997).

Intrazelluläre Transportwege endozytierter Liganden

Endosomale Kompartimente

Membranproteine (LAMPs) (Kornfeld et al. 1989 und 1992). Mittels der charakteristischen Verteilung der beiden letztgenannten Proteine konnten späte Endosomen auf experimentelle Weise als LAMP- und CI-MPR-positive Strukturen identifiziert werden, während die Lysosomen keinen CI-MPR enthalten. Die späten Endosomen ähneln in ihrer Größe den Sorting-Endosomen, elektronenmikroskopisch weisen sie jedoch eine unterschiedliche Morphologie auf. Die Oberfläche der späten Endosomen weist zahlreiche Invaginationen der Membran auf, was den späten Endosomen eine gekammerte, „multivesikuläre“ Struktur verleiht (Van Deurs et al. 1993). In der Literatur findet sich daher vielfach auch der Begriff „Multi-vesicular-bodies“ (MVBs) für späte Endosomen. Der pH-Wert der späten Endosomen liegt in CHO-Zellen unter 6,0 (Yamashiro and Maxfield 1987).

Rezeptor vermittelte Endozytose des Transferrins

Einleitung

Rezeptor vermittelte Endozytose des LDL

Eines der am besten charakterisierten Systeme der Rezeptor vermittelten Endozytose ist die Aufnahme von Low-Density-Lipoproteinen (LDL) über den LDL-Rezeptor (LDL-R) (Brown und Goldstein 1986). Der LDL-R kommt auf fast
Einleitung

Auf den Stoffwechsel der Lipoproteine und die Struktur des LDL-Rezeptors soll weiter unten noch näher eingegangen werden.

Die Rezeptor vermittelte Endozytose des LDL wurde von Goldstein und Brown zunächst an humanen Fibroblasten in der Zellkultur studiert, konnte später jedoch auch in einer Vielzahl von anderen Geweben und Zelltypen beschrieben werden. In humanen Fibroblasten finden sich zwischen 50 – 80% der LDL-Rezeptoren in den Coated-pits lokalisiert, die wiederum nur ca. 2% der Zelloberfläche ausmachen (Goldstein et al. 1979). Diese Anreicherung der Rezeptoren in den coated pits erlaubt eine effektive Internalisierung des LDL.

In der perinukleären Region erfolgt schließlich durch Fusion der späten Endosomen mit den Lysosomen der endgültigen Abbau (Degradation) des endothytiierten LDL. In den Lysosomen wird die Proteinkomponente der LDL zu freien Aminosäuren degradiert, wohingegen die Cholesterinester durch die lysosomale saure Lipase zu freiem Cholesterin hydrolysiert werden. Durch noch nicht vollständig geklärte Transportmechanismen, diskutiert werden Sterol-Trägerproteine, kann das freie Cholesterin aus den Lysosomen in das Cytoplasma transportiert werden (Tabas 1995; Lange and Steck 1996).

Rab-Proteine und ihre Rolle im Vesikeltransport

In jeder tierischen Zelle findet ein ständiger Austausch von Membranbestandteilen zwischen der Plasmamembran und intrazellulären Membranen sowie zwischen den intrazellulären Membranen untereinander statt. Um die Integrität der Zellorganellen aufrecht zu erhalten, benötigt jede Zelle einen Apparat, der die Entstehung von Transportvesikeln und das

Rab5

Die Abbildung 1 zeigt in schematisierter Form die Funktion des Rab5 im Vesikeltransport.

Rab5 lagert sich an einen Vesikel aus dem Donorkompartiment an und bewegt sich mit diesem zum entsprechenden Zielkompartiment, wo das Andocken an die Zielmembran und nachfolgend die Membranfusion stattfindet. Daran anschließend findet ein Recycling statt, durch welches das Rab5-Protein über das Cytosol wieder zum Donorkompartiment zurücktransportiert wird. Innerhalb des Cytosols liegt Rab5 jeweils in der GDP-gebundenen Form vor. Ein Austausch von GDP zu GTP im Cytosol wird durch den Rab-GDP-dissociation-inhibitor (GDI) verhindert (Ullrich et al. 1994).
Um an Membranen zu binden werden die Rab-Proteine über Cysteinreste am carboxyterminalen Ende kovalent mit zwei Isoprenylgruppen verbunden. Dieser Schritt wird durch das Enzym Rab-Geranylgeranyltransferase (GGTase) katalysiert. (Mukherjee et al. 1997). Die Isoprenylierung verankert die Rab-Proteine mit den Membranen der zellulären Organellen (Pfeffer 1994). Ein
weiteres Protein, das Rab-escort-protein (REP), bindet die nicht isoprenylierten Rab-Proteine und führt sie der GGTase zu (Shen 1996).

Einleitung

Die Annexine

Als Annexine wird eine umfangreiche Gruppe von Proteinen bezeichnet, deren gemeinsame Eigenschaft die Calcium-abhängige Bindung von Phospholipiden darstellt. Neben der Phospholipidbindung weisen die

Für verschiedene Annexine wird eine Rolle bei Vorgängen der Endozytose vermutet. So dient Annexin I offenbar als Substrat für eine Tyrosinkinase, und wird bei Aufnahme des EGF-Rezeptors in die frühen Endosomen phosphoryliert. Diese Phosphorylierung dient offenbar als Signal für die Ausbildung einer internen Vesikulierung in den frühen Endosomen, wodurch die bereits erwähnten Multi-Vesicular-Bodies (MVBs) entstehen (Futter et al. 1993).

Auch Annexin II übt eine Funktion im System der frühen Endosomen aus. Annexin II findet sich in bestimmten Bereichen der Plasmamembran und in den vesikulären und tubulären Anteilen der Sorting-Endosomen bei verschiedenen Zelltypen stark angereichert (Harder et al. 1997; Harder et al.
Einleitung

AnnexinVI

Als einziges der bisher beschriebenen Annexine weist das 68kDa-große AnnexinVI-Protein durch eine Genduplikation acht Core-Domänen auf. AnnexinVI besteht also aus zwei nahezu identischen Proteinhälften, und ist somit in der Lage mit Hilfe dieser beiden Core-Domänen Calcium-abhängig Kontakte über zwei Membranen hinweg zu vermitteln (Liemann und Huber 1997).

Einleitung

Stoffwechsel der Lipoproteine

Der LDL-Rezeptor

Die Pionierarbeiten von Brown und Goldstein führten zur Identifizierung und Charakterisierung des LDL-Rezeptors. Für diese Arbeiten wurde 1985 der Nobel-Preis verliehen. Der LDL-R ist ein 839 Aminosäuren großes transmembranöses Glykoprotein das fünf charakteristische Proteindomänen besitzt:

Einleitung

Apolipoprotein B100 verantwortlich sind, während die Bindung von ApoE über den Repeat 5 vermittelt wird (Esser et al. 1988; Russell et al. 1989).

4. Die vierte Domäne wird durch ein hydrophobes Transmembransegment gebildet.

5. C-terminal folgt die intrazelluläre Domäne. Sie beinhaltet die bereits oben erwähnte Sequenz Asp-Pro-Val-Tyr (NPXY), die als Internalisierungsmotiv für die Lokalisierung des Rezeptors in den Coated-pits und das Recycling erforderlich ist (Chen et al. 1990).

Der LDL-Rezeptor wird als 120kDa Vorläuferprotein synthetisiert und innerhalb des Golgi-Apparates zum funktionsfähigen Rezeptor von 160kDa modifiziert (Cummings et al. 1983; Schneider et al. 1982).

Einleitung

(FH) resultieren, weshalb die Genetik des LDL-Rezeptors eine große klinische Bedeutung hat.

Das Ligandenspektrum des LDL-R umfaßt neben den ausschließlich ApoB100 enthaltenden LDL-Partikeln die ApoB100 und ApoE enthaltenden VLDL und IDL, sowie die ApoE enthaltenden Chylomikronen, bzw. Chylomikronen-Remnants (Jaeckle et al., 1992; Choi and Cooper, 1993).

Das Ligandenspektrum und die Gewebsverteilung der einzelnen Rezeptoren differiert erheblich vom LDL-Rezeptor. Die Rezeptoren der LDL-Rezeptor Familie sind teilweise nicht mehr nur Lipoprotein-Rezeptoren sondern multifunktionelle Rezeptoren mit einem breiten Ligandenspektrum und vielfach noch nicht verstandenen Funktionen (Wilnow et al.1999). Einige Rezeptoren sollen hier kurz erwähnt werden:

LRP (LDL-receptor-related-protein)

Nach der Synthese des 600kDa Vorläuferproteins wird dieses im Golgi-Apparat enzymatisch in zwei Untereinheiten von 85kDa und 515kDa gespalten (Herz et al.1990). Das 85kDa-Fragment enthält die cytoplasmatische Domäne und die Transmembrandomäne und ist mit dem 515kD-Fragment, das extrazellulär prozessiert wird, nicht-kovalent assoziiert. Die Funktion dieser Spaltung ist noch unklar. LRP besitzt 31 der für die Ligandenbindung verantwortlichen
Complement-type-repeats, enthält jedoch im Gegensatz zum LDL-R nicht die dritte Domäne der in O-Stellung glykosilierten Aminosäuren, sondern an Stelle dessen 6 EGF-Repeats.

Gp 330/ megalin

VLDL-Rezeptor

Dieses Protein zeigt strukturell die größte Homologie mit dem LDL-Rezeptor. Es wurde erstmals 1992 aus dem Kaninchenherz kloniert (Takahashi et al. 1992). Im Vergleich zum LDL-R zeichnet sich der VLDL-Rezeptor durch eine zusätzliche Ligandenbindungsdomäne aus und enthält somit acht Wiederholungen der Cysteinreichen 40-Aminosäuresequenz am N-
Einleitung

Zielsetzung

Präparation von LDL aus humanem Serum

Blut von freiwilligen, gesunden Spendern wurde in handelsüblichen Serumröhrchen abgenommen. Auf 1000ml Blut wurden 250µl Benzamidine hinzugefügt und das Blut wurde 45 Minuten bei Raumtemperatur in Glasröhrchen zur Gerinnung stehen gelassen. Anschließend wurden die Glasröhrchen für 30 Minuten bei 13.000 rpm zentrifugiert, so daß das Serum als Überstand abpipettiert werden konnte. Durch Überschichten des Serums mit Kaliumbromidlösung (27.75 g KBr auf 100ml Serum) wurde das Serum von der Eigendichte (1,006 g/ml) auf eine Dichte von 1,025 g/ml eingestellt. Als nächster Schritt erfolgte die Zentrifugation in einer Ultrazentrifuge für 20 Stunden bei 38.000rpm und 4°C Temperatur.

Nach dem ersten Ultrazentrifugationsschritt wurden die Zentrifugenröhrchen auf Eis gestellt und die im Überstand befindlichen VLDL und IDL-Lipoproteine mittels einer Pipette abgenommen und verworfen. Die im Boden des Röhrchens befindlichen LDL- und HDL-Lipoproteine wurden gesammelt, in einen Dialyseschlauch überführt und über Nacht dialysiert. Die so gewonnenen Lipoproteine wurden von einer Dichte von 1,025 ausgehend durch erneutes Überschichten mit Kaliumbromidlösung (36,932g/1000 ml Serum) auf eine Dichte von 1,050 g/ml eingestellt. Erneut erfolgte sodann eine Ultrazentrifugation bei 38.000rpm und 4°C für 20 Stunden. Als Ergebnis dieser Zentrifugation sammelte sich das LDL im Überstand und konnte abgenommen werden, während die im Bodensatz befindliche HDL-Fraktion verworfen wurden. Die abgenommene LDL-Fraktion mit einer Dichte von 1,050 mg/l wurde zur Aufreinigung erneut dialysiert und anschließend einer weiteren Ultrazentrifugation bei einer Dichte von 1,050 mg/l zugeführt. Das so gewonnene LDL wurde in Plastikröhrchen überführt und bis zu seiner Verwendung bei 4°C auf Eis gelagert.
Radioaktive Markierung von LDL

Vor der Verwendung für die Zellkultur-Experimente wurden jeweils der Proteingehalt der markierten LDL bestimmt (Methode modifiziert nach Lowry, siehe unten), der bei den verschiedenen Präparationen zwischen 2,0 – 3,5 mg/ml lag. Die gemessene Radioaktivität pro µg Protein lag bei etwa 1×10^5 counts per minute (cpm).

Radioaktive Markierung von Transferrin

Kommerziell erworbenes Transferrin (Sigma) wurde in PBS-Puffer auf eine Konzentration von 1mg/ml gelöst. Iodobead®-Kugeln wurden in PBS-gewaschen und bei Raumtemperatur kurz angetrocknet. Anschließend wurden die Iodobead®-Kugeln zur Transferrinlösung gegeben. Zu den Iodobead-Kugeln und der Transferrinlösung wurden dann 6µl Natrium -125Jodid (22,2Mbq) hinzugefügt und das Gemisch 30 Minuten bei Raumtemperatur inkubiert.

Anschließend wurde die Mischung auf eine mit PBS aquilibrierte PD10-Säule gegeben und zweimal eluiert. Die Proteinkonzentration der gewonnen 125I-Transferrin / PBS Lösung lag schließlich zwischen 0,5 und 0,75 mg/ml. Die spezifische Radioaktivität pro µg Transferrin lag bei etwa 80.000 counts per minute (cpm).
Zellkultur

Sämtliche Arbeiten wurden unter sterilen Bedingungen in einer sterilen Werkbank durchgeführt. Die in flüssigem Stickstoff gelagerten Zellen wurden bei 37°C aufgetaut, in 12ml Röhrchen mit je 10ml Medium überführt und anschließend 5min bei 500xg zentrifugiert. Das Zellpellet wurde in 1ml frischem Medium aufgenommen und in 225ml Zellkulturflaschen überführt, die bereits 12ml Medium enthielten. Nach ca. 48 Stunden waren die Zellen konfluent gewachsen.

Zum Zwecke der Transfektion und Inkubation mit radioaktiven Liganden wurden die Zellen nach 48 Stunden zunächst dreimal mit je 10ml PBS-Puffer gewaschen. Anschließend wurden 5ml Trypsin/EDTA Lösung zugegeben und die Zellkulturflasche so lange geschwenkt, bis sich die Zellen sichtbar vom Boden der Zellkulturflasche lösten. Die suspendierten Zellen wurden dann sofort zum Stop der Trypsin-Reaktion in ein 50ml-Röhrchen (Falcon) mit 45ml Medium überführt und bei 500xg für 5min zentrifugiert. Nach erneutem, zweimaligem Waschen mit PBS-Puffer wurden die Zellen mit Hilfe einer Neugebauer-Zählkammer in einem entsprechendem Volumen von frischem Medium resuspendiert, so daß sich eine Konzentration von 1x10^5 Zellen pro Milliliter Medium ergab. Auf eine Sechs-Schalen Platte wurden nun pro Platte 2ml Zellsuspension aufgetragen. Nach ca. 24 Stunden waren die Zellen zwischen 70-100% konfluent gewachsen, so daß die Transfektion mit den gewünschten Expressionsvektoren erfolgen konnte.

Rekombinante DNA

Die für die Transfektion verwendeten Expressionsvektoren wurden von verschiedenen Wissenschaftlern zur Verfügung gestellt oder kommerziell erworben und sollen hier kurz vorgestellt werden:

Rab5:
Material und Methoden

Expressionsvektor hum rab5 myc pFROG (Zur Verfügung gestellt von Prof. T. Jentsch, Hamburg). Literatur: (Stenmark et al., 1994).

Abbildung 2: Expressionsvektor hum rab5 myc pFROG

Der Expressionsvektor erhält die 0,75 kb lange Sequenz des humanen Rab5-Genes. An die für den N-Terminus des Rab5-Gens codierende Region wurde die DNA-Sequenz für ein myc-Protein angefügt. Das Genprodukt von hum rab5 myc pFROG ist somit ein Fusionsprotein aus dem humanen Rab5 Protein und einem myc-Protein, dem sogenannten „myc-tag“. Das myc-Protein erleichtert die Detektierbarkeit des rekombinanten Proteins z.B. in Immunfluoreszenz oder Westernblot durch entsprechende, gegen das myc-Protein gerichtete Antikörper.

Die Gensequenz für Rab5+myc-Protein wurde in den kommerziell erhältlichen Expressionsvektor pFROG (Invitrogen) als sogenanntes „insert“ eingefügt. Der Rab5-Sequenz vorgeschaltet befindet sich ein Cytomegalievirus (CMV)-Promoter, der eine hohe Replikationsrate sicherstellen soll. Ferner enthält pFROG Resistenzgene für Ampicillin und Neomycin, die eine Selektionierung von transfizierten Bakterien oder Zellen auf Antibiotika-haltigen Nährböden oder Medien erlaubt.

AnnexinVI:

Die Klonierung der AnnexinVI-Expressionsvektoren erfolgte durch Dr. T. Grewal (Hamburg). Hierzu wurde die cDNA für Ratten-AnnexinVI aus einer Genbank isoliert und nach mehreren Subklonierungen in den kommerziell erhältlichen Expressionsvektor pcDNA 3.1 (Invitrogen) inseriert (Grewal et al., in the press). An die 2,2 Kilobasen lange Sequenz des Ratten-AnnexinVI Genes wurden darüberhinaus, wie bereits für den Rab5-Expressionsvektor beschrieben, an
Material und Methoden

das C-terminale Ende Sequenzen für myc- bzw. his-Proteine angefügt, so daß
drei verschiedene Expressionsvektoren für Annexin VI entstanden.

Abbildung 3: Expressionsvektoren für Annexin VI.

Dem AnnexinVI-Gen vorgeschaltet findet sich wiederum ein CMV-Promoter,
auch der Vektor pcDNA 3.1 enthält Resistenzgene für die Antibiotika Neomycin,
Zeocyn und Ampicillin.

LDL-Rezeptor: Der Expressionsvektor pCMVhLDLR enthält die 2,7 Kilobasen
lange Sequenz des humanen LDL-Rezeptors. Der Vektor wurde von Dr. F.
Schnieders (Berlin) zur Verfügung gestellt.

Transferrin-Rezeptor: Der Vektor pcD-TFR enthält als „insert“ die Sequenz des
humanen Transferrin-Rezeptors (4kb), eingefügt in den kommerziell
erhältlichen Vektor pcD (Invitrogen). PcD-TFR wurde zur Verfügung gestellt von
Prof. T. Jentsch (Hamburg) und ist in der Literatur beschrieben (Ruddle et al.,
1984).

ß-Galactosidase: Der Expressionsvektor pCMVSPORT-ßgal wurde
kommerziell bei Gibco-BRL erworben.

Transfektion
Material und Methoden

Für die Transfektion der ausplattierten Zellen wurde pro Ansatz für eine Zellzahl von jeweils $2-3 \times 10^5$ Zellen $1 \mu g$ der entsprechenden DNA mit $6 \mu l$ Liposomen (Transfektionsreagenz FUGENE®) vermischt. Für die Kotransfektionen mit zwei verschiedenen Expressionsvektoren wurden analog hierzu jeweils $0,5 \mu g$ pro DNA eingesetzt, so daß sich ein gleiches Verhältnis DNA/ FUGENE® ergab. Entsprechend den Angaben des Herstellers wurden sodann unter sterilen Bedingungen $94 \mu l$ Zellkulturmedium ohne Zusatz von Serum mit $6 \mu l$ der Liposomen (FUGENE®-Transfektionsreagenz) in einem Eppendorf-Röhrchen vermischt. Dieser Ansatz blieb zunächst fünf Minuten bei Raumtemperatur stehen, anschließend wurde tropfenweise $6 \mu g$ der in doppelt destilliertem Wasser (Aqua bidest) gelösten DNA zugegeben. Nach weiteren 15 Minuten Inkubation bei Raumtemperatur wurden die Gesamtmenge vorsichtig und tropfenweise mit einer Pipette zu den zu transfizierenden Zellen gegeben.

Selektionierung von stabil transfizierten HUH7-Zellklonen

Proteinbestimmung

Proteinbestimmungen wurden jeweils nach den Zellkulturexperimenten zur Korrektur der gemessenen Radioaktivität auf counts per minute (cpm) pro mg

- Lösung A: 3% Natriumcarbonat, 0,15N in NaOH
- Lösung B: 2% Natriumtartrat
- Lösung C: 1% Kupfersulfatlösung
- Folin-Reagenz nach Lowry (Merck) 1:3 mit Aqua bidest verdünnt

Jede zu bestimmende Probe wurde mit Aqua bidest auf ein Volumen von 400 µl verdünnt. Parallel wurde aus einer BSA-Lösung (BSA: Bovines-Serum-Albumin) eine Verdünnungsreihe mit definierter Proteinkonzentration mit einem Endvolumen von ebenfalls 400 µl hergestellt. Eine Lösung nach Lowry wurde hergestellt (9,7ml Lösung A + 0,15ml Lösung B + 0,15ml Lösung C) und jeweils ein Milliliter zu jeder Probe zugegeben. Nach 10 Minuten wurden zu jeder Probe 125 µl Folin-Reagenz zugefügt und auf einem Handrüttler (Vortex) gut durchmischt. 30 Minuten nach Zugabe der Folin-Reagenz erfolgte am Photometer die Messung der Absorption bei 750nm. Mit Hilfe des Albuminstandards wurde dann per Dreisatzrechnung die jeweilige Proteinkonzentration für die einzelnen Proben ermittelt.

Immunoblot-Analyse der transfizierten Zellen

Zum Nachweis der Transfektionen wurden die jeweiligen Zellen 24 Stunden nach der Transfektion in 1% Triton, 50mM Tris-Puffer und 80mM NaCl solubilisiert. Jeweils 50 µg des jeweiligen Proteinextraktes wurden auf ein 10%iges SDS-Gel aufgetragen, die elektrophoretische Auftrennung erfolgte unter reduzierten Bedingungen bei 40 mA über 4 Stunden (Laemmli 1970). Im Anschluß an die Auftrennung wurden die Proteine durch Elektroblotting bei 250mA über Nacht auf eine Nitrozellulosemembran übertragen. Die Proteinbanden auf der Nitrozellulosemembran wurden nun zunächst in einer Ponceau – Protein-Färbung dargestellt. Die Nitrozellulose wurde dann
Material und Methoden

Immunfluoreszenz der transfizierten Zellen

1×10^5 Zellen wurden in 12-Schalen-Platten auf Chamberslides (Nunc), speziellen Objektträgern für die Immunfluoreszenz, ausplattiert. Die Transfektion der Zellen erfolgte wie oben beschrieben. 24 Stunden nach der Transfektion wurden die Zellen zwei mal mit eiskaltem PBS-Puffer gewaschen, die Chamberslides entnommen und bei Raumtemperatur für 30 Minuten in PBS, welches 4% Paraformaldehyd enthielt, fixiert. Nach der Fixierung wurde erneut vier mal mit PBS-Puffer gewaschen und im Anschluss erfolgte ein Waschschritt mit PBS, welches 0,5% Glycin und 0,05% Saponin enthielt. Vor der Inkubation mit den Primärantikörpern erfolgte für 15 Minuten die Inkubation in einer sogenannten Blocklösung, bestehend aus PBS mit 10% Esel-Serum, 1% BSA und 0,5% Glycin. Die Primärantikörper gegen Rab5 oder Annexin VI wurden in Block-Lösung auf 1:1000 verdünnt und die Zellen für 60 Minuten bei 37°C mit den Primärantikörpern inkubiert. Nach erneuten Waschschritten erfolgte für 45 Minuten die Inkubation mit Sekundärantikörpern. Als Sekundärantikörper wurden Cy3- oder Cy2-Konjugierte, gegen die jeweilige Spezies des Primärantikörpers gerichtete F(ab')\textsubscript{2} Immunglobulin-Fragmente verwendet, die in polarisiertem Licht fluoreszieren. Zuletzt erfolgte die Gegenfärbung der Zellkerne durch Inkubation in 100ml PBS-Puffer + 6µl des Farbstoffs DAPI (2,6-Diaminophenolindol, 1mM) für 3 Minuten, gefolgt von
Material und Methoden

mehrmals Waschen in PBS. Vor der Mikroskopie erfolgte das Eindeckeln der Chamberslides mit Hilfe von 2µl Mowiol®.

Antikörper für Immunfluoreszenz/ Immunoblotting

-Schaf- Anti- Annexin VI, polyklonal (Abimed, Darmstadt)
-Kaninchen- Anti- Annexin VI, polyklonal (Biodesign)
-Kaninchen- Anti- Annexin VI, polyklonal (zur Verfügung gestellt von Prof. C. Enrich)
-Maus – Anti- Myc, monoklonal (Dianova)
-Maus – Anti –His, monoklonal (Dianova)
-Kaninchen –Anti- LDLR, polyklonal (zur Verfügung gestellt von Dr. J. Herz)
-Cy3-konjugierte Esel- Anti- Schaf- F(ab´)2 –Immunglobulin- Fragmente (Dianova)
-Cy3-konjugierte Esel- Anti- Maus- F(ab´)2 –Immunglobulin Fragmente (Dianova)
-HRP- (Meerrettichperoxidase) gekoppelte Ziege- Anti- Kaninchen- F(ab´)2 - Immunglobulin- Fragmente (Dianova)
- HRP- gekoppelte- Kaninchen- Anti- Schaf- F(ab´)2- Fragmente (Dianova)
- HRP- gekoppelte- Kaninchen- Anti- Maus - F(ab´)2- Fragmente (Dianova)

Bestimmung der Aufnahme von 125I-LDL

Im Anschluß an die Transfektion wurden die Zellen über Nacht bei 37°C und 5%CO2 im Brutschrank inkubiert. Vor dem Aufnahme-Essay wurden die Zellen zunächst mit PBS gewaschen und anschließend für 30 Minuten bei 37°C in Serum-freien Zellkulturmedium, welches 1% BSA enthielt, vorinkubiert. Die Zellen wurden dann auf Eis gebracht und bei 4°C wurden pro Schale einer Sechs-Schalen-Platte 4-5µg 125Iod-markiertes LDL zugegeben. Um die unspezifische Aufnahme des radioaktiven LDL zu bestimmen, wurde zu einem Teil der Ansätze ein 50facher Überschuß von nicht radioaktiv markiertem, „kalten“ LDL hinzugegeben. Die Zellen wurden dann vom Eis heruntergenommen und für verschieden lange Zeiten im Brutschrank inkubiert.
Nach der Inkubation wurden die Zellen drei mal kurz hintereinander mit 4°C-kaltem PBS-Puffer sowie einmal für drei Minuten mit PBS, das 20 U/ml Heparin enthielt, gewaschen. Abschließend wurden die Zellen durch Zusatz von 1 ml 0,1M Natronlauge lysiert. Das Zelllysat wurde nach 30 Minuten Schwenken in ein Zählrohrchen überführt und die zellassozierte Radioaktivität im Gamma-Counter bestimmt. Nach der Bestimmung der Radioaktivität wurde von jeder Probe ein Aliquot von 100 µl für die Proteinbestimmung entnommen.

Bestimmung des Abbaus von\[^{125}\text{I}]-**LDL**

Bestimmung der Aufnahme von\[^{125}\text{I}]-**Transferrin**

Zur Bestimmung der Transferrin Aufnahme wurde in analoger Weise wie bei der Bestimmung der \[^{125}\text{I}]-LDL Aufnahme verfahren. Pro Schale wurden jeweils 2-3 µg \[^{125}\text{I}]od-markiertes Transferrin zum Inkubationsmedium gegeben. Auch hier wurde jeweils zu jedem dritten Ansatz eine 50-fach höhere Menge an kaltem Transferrin zur Bestimmung der spezifischen Aufnahme zugefügt. Die
Material und Methoden

Inkubation mit ^{125}I-Transferrin und die Waschschritte zum Beenden der Inkubation erfolgten jeweils auf Eis (4°C Celsius).

Bestimmung des Recyclings von ^{125}I-Transferrin

Die transfizierten Zellen wurden wie oben beschrieben für 60 Minuten mit ^{125}I-markiertem Transferrin inkubiert (37°C). Erneut wurde zu jeder dritten Probe ein 50-facher Überschuß von unmarkiertem Transferrin zugefügt. Nach der Inkubation wurden die Zellen auf Eis gestellt, das ^{125}I-Transferrin Medium wurde entfernt und die Zellen viermal mit eiskaltem PBS-Puffer gewaschen. Die Zellen wurden dann erneut bei 37°C mit serumfreien Zellkulturmedium, welches 1% BSA enthielt, im Brutschrank inkubiert. Zu verschiedenen Zeitpunkten der Inkubation wurden 100 µl Medium abgenommen und die in das Medium freigesetzte Radioaktivität, entsprechend dem rezykliertem ^{125}I-Transferrin, bestimmt.

Verwendete Geräte und Materialien:

Größere Geräte:
- Gammacounter (Packard)
- Laborzentrifuge (Eppendorf)
- Zellkulturzentrifuge (Heraeus)
- Ultrazentrifuge (Sorvall)
- Fluoreszenzmikroskop (Leitz)
- Spektralphotometer (Perkin-Elmer)
- Zellkultur-Brutschrank
- Sterile Werkbank (Hood)

LDL-Präparation:
- Kaliumbromid (Sigma)
- Benzamidin (Sigma)
- Serumröhrchen zur Blutentnahme
- Rotoren für Ultrazentrifuge (50.2-TI/60-TI; 50-TI), sowie Spacer
- „Quick-seal“-Ultrazentrifugenröhrchen sowie Schweiß- und Schneidegerät
- Dialysepuffer (10×) 450 g NaCl, 61 g TRIS, 28 g EDTA auf 5l Aqua bidest (pH=8,6)

Radioaktive Markierung von LDL und Transferrin:
- Na125-Jodid (Amersham)
Material und Methoden

- Glycinpuffer (1M Glycin, mit 1M NaOH auf pH 10 eingestellt)
- PBS-Puffer (Potassium Buffer Saline) (GIBCO)
- Jodmonochloridlösung (3.3mM JCl, 2M NaCl in 0.1 N HCl)
- PD 10 Gelchromatographie Säule, Sephadex G25 (Pharmacia)
- Holo-Transferrin, Eisen-gesättigt (Sigma)
- Iodobead®-Kugeln (Pierce)

Zellkultur:
- Nutrient Mixture F-12 (GIBCO)
- DMEM – Zellkulturmedium (GIBCO)
- 10% fetales Kälberserum (FCS), (GIBCO)
- 1x Glutaminlösung (GIBCO)
- 50ml Reagenzgefäß (FALCON)
- 225ml Zellkulturschlange (NUNC)
- PBS-Puffer (GIBCO)
- Trypsin/EDTA-Lösung (GIBCO)
- 12-Loch-Zellkulturplatten („12-wells“) (NUNC)

Transfektion:
- FUGENE 6 Transfection-Reagent (Boehringer-Mannheim)
- Eppendorf-Röhrchen (Greiner)
- Expressiovektoren und Zellen wie oben beschrieben

Proteinbestimmung:
- Natriumcarbonat (Sigma)
- Natriumtartrat (Sigma)
- Kupfersulfatlösung 1% (Sigma)
- Folin- Phenol Reagenz nach Lowry (Merck)
- Albuminstandard, reinst (BSA) (Sigma)

Western-Blotting:
- Triton X-100 1% (Sigma)
- Calciumchlorid (Merck)
- Trenngel: Acrylamidiösung: (Roth Y\%×4=Xg), 0,4g Bisacrylaml (Serva) /100ml Aqua,
Untergelpuffer (1,7M Tris-HCl, pH 9,18 mit 18%iger HCl)
- Temediösung (0,6 ml Tetramethylenendiamin (Sigma)/ 100 ml Aqua
- AP-Lösung (200 mg Ammoniumpersulphat/ 100 ml Aqua)
- Sammelgel: 5ml Acrylamidiösung (12g Acrylamid, 0,8g Bisacrylamid/ 100ml Aqua)
- 5ml Obergelpuffer (0,2M Tris-HCl mit 1N Schwefelsäure auf pH 6,14)
2ml AP-Lösung: 8ml Aqua bidest; 20µl unverdünntes Temed.
- Unterer Elektrodenpuffer: (0,42M Tris-HCl mit 18%iger HCl auf pH 9,5 eingestellt)
- Oberer Elektrodenpuffer: (0,04 M Borsäure, 0,04 M Tris-HCl; 0,1% SDS, ß-Mercaptoethanol (Serva)
- SDS-Lösung (10% Natriumdodecylsulfat in 50mM Tris-HCl)
- Proteinstandard broad molecular weight (BIORAD)
- Protran-Nitrocellulose-Membranen (Schleicher und Schüll)
- ECL-Proteindetektionssystem (Amersham)
- Coomassie-Lösung (0,1% Coomassie in Methanol/Eisessig/Aqua bidest 50: 10: 40)
- Entfärbung (Methanol/Eisessig/Aqua bidest 50: 10: 40)
- Poinceau 0,2% in 3% Trichloressigsäure (Serva)
- Blotting-Kammer (Biorad)
- Elektroblottingpuffer (20 mM Tris-HCl, 150 mM Glycin, 20% Methanol)
- Blocking-Puffer: 5% BSA in Waschpuffer A
- Waschpuffer A (10mM Tris-HCl, 86mM NaCl, 0,1% Tween 20, pH7,4)
- Waschpuffer B (10mM Tris-HCl, 86mM NaCl, 0,1% Tween ,0,3mM SDS,
- Elektrophoresekammer
- Immunfluoreszenz
 - Chamberslides (NUNC)
 - Paraformaldehyd-Lösung (Sigma)
 - Saponin
 - DAPI (2,6- Diaminophenolindol, Hoechst)
 - Deckgläser
 - Mowiol (Calbiochem)
 - Eselserum (Dianova)
 - Antikörper (siehe oben)
Ergebnisse

LDL-Aufnahme von CHO und HUH7-Zellen nach Präinkubation mit LPDS

Jeweils 10^5 Chinese-Hamster Ovary (CHO)- oder Hepatoma (HUH7) -Zellen wurden pro Vertiefung einer Sechslochplatte ausplattiert und entweder mit Zellkulturmedium, welches 10% Foetales Kälberserum (FCS) enthielt, oder mit

Überexpression von Rab5 und Annexin6 durch transiente Transfektion von CHO-Zellen

Bei der Klonierung des Expressionsvektors hum rab5 myc pFROG wurde hinter der für das humane Rab5-Protein kodierenden Sequenz am N-Terminus ein sogenannter „myc-tag“ eingefügt. Das Genprodukt dieses Vektors ist somit ein Fusionsprotein aus dem humanen Rab5 und dem myc-Protein. Das myc-Protein stellt somit ein kurzes, an das Rab5-Protein angehängtes Polypeptid dar, welches nach bisherigen Erkenntnissen die Funktion des Rab-Proteins nicht beeinträchtigt (Stenmark et al., 1994). Der Vorteil des „myc-tags" liegt in einer besseren Nachweisbarkeit durch hochspezifische, gegen das „myc-tag“ gerichtete Antikörper.
Abbildung 5 zeigt die Ergebnisse eines Western-Blots der mit Rab5 transfizierten CHO-Zellen.

Abbildung 5: Immuno-Blot Analyse von untransfizierten (wt) und mit hum rab5 myc pFROG transfizierten CHO-Zellen (rab5). Primärantikörper: anti-myc (Maus, monoklonal) Verdünnung 1:1000. Größenangabe in kDa.

Bei den als Wildtyp bezeichneten, untransfizierten Zellen ließ sich weder mit einem Antikörper gegen Rab5 selbst, noch mit einem Anti-myc-Antikörper eine erkennbare Proteinbande detektieren.

Der Zellextrakt der mit hum rab5 myc pFROG transfizierten Zellen, welche 24 Stunden nach Transfektion solubilisiert wurden, zeigte hingegen eine mit dem Anti-myc Antikörper anfärbbare, kräftige Proteinbande im Bereich von 28 kDa, der erwarteten Molekülgröße.

In analoger Weise zu den mit Rab5 transfizierten CHO-Zellen, wurden die mit den verschiedenen AnnexinVI Expressionsvektoren transfizierten CHO-Zellen im Western-Blot untersucht. Ähnlich wie bei hum rab5 myc pFROG, „dem Expressionsvektor für Rab5, wurden von Dr. Grewal zwei Expressionsvektoren für AnnexinVI kloniert, welche das AnnexinVI-Gen der Ratte und ein „myc“- bzw. ein „his“-Protein am C-terminalen Ende des AnnexinVI exprimieren (pcDNA anx6 myc; bzw pcDNA anx6 his). Für die Zellkulturexperimente wurde jedoch der
Expressionsvektor pcDNA anx6 verwendet, welcher für Ratten AnnexinVI kodiert, jedoch kein his- oder myc-Protein bildet.

Abbildung 6 zeigt eine Western-Blot Analyse von mit den drei verschiedenen AnnexinVI-Expressionsvektoren transfizierten CHO-Zellen.

Bestimmung der Transfektionsrate durch Immunfluoreszenz

In Abhängigkeit von verschiedenen Versuchsbedingungen, wie z.B. Verhältnis DNA zu Liposomen, Konfluenzrate der Zellen zum Zeitpunkt der Transfektion,
Ergebnisse

tatsächliche Transfektionsrate der CHO-Zellen nur bei etwa 10% aller Zellen eines Ansatzes liegt.

LDL-Aufnahme in transfizierten CHO- und HUH7-Zellen

Abbildung 8: Zellassoziertes 125I – LDL der transfizierten CHO- und HUH7-Zellen nach 60 min. Inkubation. pcDNA = Zellen transfiziert mit dem Vektor pcDNA 3.1 (ohne Insert) als Kontrolle; Rab5 = hum rab5 myc pFROG; anx6 = pcDNA anx6. Die Säulen repräsentieren den Mittelwert von drei Werten eines repräsentativen Experimentes.

LDL-Aufnahme der CHO-Zellen nach Kotransfektion von AnnexinVI und Rab5 mit dem LDL-Rezeptor

Abbildung 9: Immuno-Blot Analyse von untransfizierten CHO-Zellen (mock), sowie 24h nach Transfektion mit dem LDL-Rezeptor (pCMVhLDLR), AnnexinVI (pcDNAanx6), sowie Ko-Transfektion mit beiden Plasmiden. Primärantikörper: anti-human LDL-Rezeptor (Kaninchen, 1:1000), anti-his (Maus, 1:1000).
Ergebnisse

Abbildung 9 zeigt eine Western-Blot Analyse nach Kotransfektion von AnnexinVI mit dem LDL-Rezeptor. Nach der Transfektion mit dem Expressionsvektor pCMVhLDLR konnte mit einem gegen den LDL-Rezeptor gerichteten Antikörper eine deutliche Bande in der Größenordnung von 160 kDa identifiziert werden. Bei den Kontrollzellen fand sich nur ein sehr schwaches Signal im Größenbereich von 160 kDa, was darauf hindeutet, daß die endogene Expression des LDL-Rezeptors in den CHO-Wildtypzellen nur sehr schwach ist.

Zur Kotransfektion mit AnnexinVI wurden bei der Transfektion gleiche Mengen (0,5 µg) der Expressionsvektoren für AnnexinVI und dem LDL-Rezeptor mit der liposomalen Transfektionsreagenz (FUGENE®) eingesetzt. Wie die Abbildung 9 zeigt, fand sich auch nach Verwendung zweier verschiedener Plasmide zur Transfektion eine Überexpression beider Proteine (AnnnexinVI und LDL-Rezeptor).

Nach dem Nachweis der Überexpression wurden die kotransfizierten CHO-Zellen hinsichtlich ihrer LDL-Aufnahme untersucht.

PcDNA= Vektor pcDNA 3.1 ohne insert ; LDL-R = Transfektion mit LDL-Rezeptor + ß-gal; AnxVI = Annexin VI + LDL-Rezeptor; Rab5 = Rab5 + LDL-Rezeptor
Als Kontrolle dienten erneut Zellen, die mit dem Expressionsvektor pcDNA 3.1 ohne eingefügtes DNA-Fragment transfiziert wurden. Bei den mit dem humanen LDL-Rezeptor transfizierten Zellen wurde wiederum mit einem für β-Galactosidase kodierenden Expressionsvektor (SPORT-β-gal) kotransfiziert, wobei davon ausgegangen wurde, daß β-Galactosidase als „neutrales“ Protein keinen Einfluß auf die Endozytose von Liganden, bzw. die Funktion des LDL-Receptors nimmt.

CHO-Zellen, die mit dem humanen LDL-Rezeptor transfiziert wurden, zeigten eine um ca. 65% höhere Aufnahme von 125I – LDL als die Kontrollzellen. Durch die Transfektion mit dem LDL-Rezeptor wurde also hinsichtlich der LDL-Aufnahme ein ähnlicher Effekt erzielt wie durch Präinkubation mit LPDS (Abb. 4). Wurde nun statt β-Galactosidase zusätzlich zum LDL-Rezeptor mit Rab5 transfiziert, zeigte sich eine weitere Stimulation der LDL-Aufnahme von zusätzlichen 30% gegenüber den LDL-Rezeptor+ β-Galactosidase transfizierten Zellen.

Ebenso zeigte die Kotransfektion von AnnexinVI mit dem LDL-Rezeptor einen deutlichen Einfluß auf die Aufnahme von LDL. Hier kam es zu einer Stimulation der LDL-Aufnahme von ca. 90% gegenüber den LDL-Rezeptor+β-Galactosidase transfizierten Zellen.

Anders als bei der alleinigen Transfektion mit Rab5 und AnnexinVI (Abb.8) zeigte sich also unter den Bedingungen der Kotransfektion mit dem LDL-Rezeptor eine meßbare Stimulation der LDL-Aufnahme durch die Überexpression von Rab5 und AnnexinVI.

Charakterisierung von Rab5 oder AnnexinVI überexprimierenden, stabil transfizierten HUH7-Zelllinien

Um die Funktion von Rab5 und AnnexinVI weiter zu analysieren, wurden mittels Selektionierung über Antibiotika-Resistenz stabil transfizierte Zelllinien isoliert, welche Rab5 (Zellklon 7.10), bzw. AnnexinVI (Zellklon 2.8) überexprimierten.

Die Transfektion des Klonen 7.10 erfolgte mit dem Expressionsvektor hum rab5 myc pFROG. Dieses Plasmid enthält neben der Sequenz für Rab5 mit einem
Ergebnisse

angehängten „myc“-Protein auch ein Neomycin-Resistenzgen, welches die Selektionierung ermöglichte.

Die Transfektion des Klones 7.10 erfolgte mit dem Expressionsvektor hum rab5 myc pFROG. Dieses Plasmid enthält neben der Sequenz für Rab5 mit einem angehängten „myc“-Protein auch ein Neomycin-Resistenzgen, welches die Selektionierung ermöglichte.

Abbildung 11 zeigt die Ergebnisse der Western-Blot Analyse des Rab5-überexprimierenden Zellklones 7.10 im Vergleich mit HUH7-Wildtypzellen. Im Gegensatz zur Western-Blot Analyse der CHO-Zellen, ließ sich in den untransfizierten HUH7 Zellen mit dem gegen Rab5 gerichteten Antikörper eine deutliche endogene Expression detektieren, wie die kräftige Bande im Bereich von 28 kDa zeigt. Der stabil mit Rab5 transfizierte Zellklon 7.10, welcher ein Fusionsprotein von Rab5 und einem angehängten myc-Protein exprimiert, zeigt mit dem Anti-Rab5-Antikörper ebenfalls eine deutliche Bande im Bereich von 28 kDa, die noch etwas deutlicher als bei den untransfizierten Kontrollzellen erscheint. Erwartungsgemäß fand sich mit einem gegen das „myc“-Protein gerichteten Antikörper bei den untransfizierten Zellen kein Signal. Das Lysat des Klons 7.10 zeigte dahingegen eine kräftige 28 kDa-Bande, die mit dem Anti-myc-
Antikörper angefärbt werden konnte. Es kann daher gefolgert werden, daß der Klon 7.10 tatsächlich das vom Expressionsvektor hum rab5 myc pFROG kodierte Protein exprimiert.

Die Transfektion des Annexin VI überexprimierenden Klones 2.8 erfolgte mit dem Plasmid pcDNAanx6, welches für das Ratten-Annexin VI kodiert. Auch dieser Expressionsvektor enthält ein Neomycin-Resistenzgen, über welches die Selektionierung der transfizierten Zellen ermöglicht wurde. Da das in den transfizierten Zellen exprimierte Annexin VI kein angehängtes Protein besitzt, welches wie z.B. das myc-Protein beim Klon 7.10 den Antikörper-Nachweis erleichtert, erfolgte die Analyse mit drei verschiedenen Antikörpern, die gegen verschiedene Domänen des AnnexinVI-Proteins gerichtet sind.

Wie aus Abb. 12 ersichtlich wird, erkannte der gegen die N-terminale Domäne des Rinder-Annexin VI gerichtete Antikörper (mittlerer Streifen) sowohl das in den transfizierten Zellen gebildete Ratten-AnnexinVI, das sich als kräftige 68 kDa Bande darstellt, als auch das endogene, humane AnnexinVI der untransfizierten HUH7-Zellen, wie durch die vergleichsweise schwächere Bande im selben Größenbereich ersichtlich wird.

Mit dem gegen den N-Terminus des Ratten-AnnexinVI (linker Streifen), bzw. dem gegen das gesamte, native Ratten-AnnexinVI gerichteten Antikörper (rechter Streifen) wurde jeweils nur das von den transfizierten Zellen gebildete, rekombinante Protein erkannt, wie sich durch kräftige Banden zeigt.

Immunfluoreszenz des Zellklones 7.10 (Rab5)

![Immunfluoreszenz des Zellklones 7.10](image)

Ergebnisse

Neben der Western-Blot Analyse erfolgte der Nachweis der Überexpression auch mittels Immunfluoreszenz. Die Immunfluoreszenz ermöglichte darüberhinaus Aufschlüsse über die intrazelluläre Lokalisation der von den transfizierten Zellen gebildeten Proteine. Ferner konnte so untersucht werden, ob durch die Überexpression von Rab5 oder AnnexinVI morphologische Veränderungen der Zellen auftraten.

Bezüglich der Morphologie der Zellen fanden sich bei der Immunfluoreszenzmikroskopie des Klones 7.10 keine lichtmikroskopisch sichtbaren Unterschiede gegenüber HUH7-Wildtypzellen.

Von den Zellen des AnnexinVI-Klones 2.8 konnte leider keine Immunfluoreszenz durchgeführt werden, da die kultivierten Zellen nach mehreren Wochen in Kultur das Wachstum einstellten und abstarben.

Transferrinaufnahme und Transferrin-Recycling der Klone 2.8 und 7.10

Abbildung 14: Zellassoziertes 125I nach 60 Minuten Inkubation mit 125I – Transferrin (37°C). Nach Lysierung der Zellen mit 0.1N NaOH wurde die Zellassozierte Radioaktivität bestimmt und nach Proteinbestimmung in cpm/mg Zellprotein korrigiert. Jede Säule repräsentiert den Mittelwert einer Doppelbestimmung eines repräsentativen Experimentes. Wt = HUH7-Wildtyp; 7.10 = HUH7-Zellen, stabil transfi ziert mit hum rab5 myc pFROG; 2.8 = HUH7-Zellen, stabil transfi ziert mit pcDNAanx6.

Ebenso wie die Aufnahme von ^{125}I – Transferrin wurde auch das Recycling der Liganden in den stabil transfizierten Zellen untersucht.

Wie zuvor in der Literatur beschrieben, stimulierte die Überexpression von Rab 5 auch in dem hier verwendeten experimentellem System das Recycling von Transferrin. Nach 60 Minuten fand sich im Medium des Klons 7.10 (Rab5) ca. 20% mehr freigesetztes ^{125}I – Transferrin als im Medium der HUH7-Wildtypzellen. Auch bei den übrigen untersuchten Zeitpunkten lag die Recycling-Rate des Rab5-Klones höher als bei den Wildtypzellen.

Der Effekt einer AnnexinVI-Überexpression auf das Transferrin-Recycling fiel weniger deutlich aus. Zum Zeitpunkt 60 Minuten lag das in das Medium freigesetzte, recyclierte ^{125}I – Transferrin des AnnexinVI-Zellklones 2.8 nur etwa 5-10% höher als beim HUH7-Wildtyp. Zum Zeitpunkt 10 Minuten und 20 Minuten
Ergebnisse

125I – LDL-Aufnahme und Abbau der stabil transfizierten Zellklone

Die Abbildung 16 zeigt auf der linken Seite die 125I – LDL-Aufnahme nach 24-stündiger Inkubation mit radioaktivem markiertem LDL. Überraschenderweise lag das zellassozierte 125I – LDL des Rab5-Zellklones 7.10 nach 24 Stunden nicht
Ergebnisse

Gegenüber den HUH7-Wildtypzellen zeigte der Rab5-Klon 7.10 eine deutlich gesteigerte Degradation von 125I – LDL, die etwa zweimal so hoch wie beim Wildtyp lag. Auch für den AnnexinVI-Klon 2.8. fand sich eine gegenüber den Wildtypzellen um etwa 20% gesteigerte Degradation. Bemerkenswerterweise fand sich also bei beiden Klonen nach 24 Stunden eine gegenüber dem Wildtyp gesteigerte Degradation von 125I-LDL, obwohl hinsichtlich der LDL-Aufnahme keine Stimulation nachgewiesen werden konnte.
Diskussion

Präinkubation mit LPDS stimuliert die 125I-LDL Aufnahme in CHO und HUH7 Zellen

Bevor Experimente mit transfizierten Zellen begonnen wurden, sollten zu Beginn der Arbeit zunächst die zur Verfügung stehenden Zelltypen hinsichtlich der LDL-Aufnahme und endogenen LDL-Rezeptor Aktivität untersucht werden.

Im selben Experiment sollte zudem ermittelt werden, inwiefern sich die endogene LDL-Rezeptoraktivität bei den beiden Zelltypen stimulieren läßt. Zu diesem Zwecke wurde die Hälfte der verwendeten Zellen 24 Stunden vor Beginn des Aufnahmeeperimentes mit 125I-LDL mit Lipoprotein-depletiertem Serum (LPDS) inkubiert, wohingegen die andere Hälfte der Zellen mit fetalem Kälberserum (FCS), welches normale Konzentrationen der Serum Lipoproteine enthält, inkubiert wurde.

Durch einen relativen Mangel an intrazellulärem Cholesterin kommt es bei den mit LPDS inkubierten Zellen zu einer kompensatorischen Hochregulation des LDL-Rezeptors. Dieser Effekt wird über Sterol-responsive-elements (SREs) vermittelt (Goldstein and Brown 1990). Durch die höhere Zahl von LDL-Rezeptoren auf der Zelloberfläche der mit LPDS präinkubierten Zellen ist somit bei diesen Zellen eine höhere Aufnahme des 125I-LDL zu erwarten. Tatsächlich konnte diese Erwartung bestätigt werden, denn es zeigte sich, daß von den mit LPDS präeinkubierten CHO-Zellen etwa 50% mehr 125I-LDL aufgenommen wurde, wohingegen die Stimulation bei den HUH7-Zellen nur ca. 25% betrug.
Dieses Experiment war aus mehreren Gründen eine wichtige Vorraussetzung für die Folgeexperimente, in denen der Effekt einer Rab5 bzw. Annexin VI Überexpression studiert werden sollte. Zum einen konnte in diesem ersten Experiment das Funktionieren des Aufnahmeessays erprobt werden, zum Anderen konnte aber auch gezeigt werden, daß die basale ^{125}I-LDL Aufnahme in diesem System durch Änderungen der Versuchsbedingungen stimuliert werden kann.

Überexpression von Rab5 und Annexin VI in CHO-Zellen und HUH7-Zellen durch transiente Transfektionen

Es wurde zunächst ein relativ einfaches experimentelles Vorgehen gewählt, indem die kultivierten Zellen jeweils transient mit den Rab5- bzw. Annexin VI–Expressionsvektor enthaltenden Liposomen transfi ziert wurden. Die Transfektion erfolgte 24 Stunden nach dem Ausplattieren der Zellen zu einem Zeitpunkt an dem die Zellen etwa zu 70% konfluent auf den Sechs-Schalen-Platten gewachsen waren. Es konnte somit angenommen werden, daß sich noch ausreichend Zellen in Teilung befanden und die Expressionsvektoren bei der
Diskussion

Replikation in ihr Genom integrieren konnten. Der Erfolg der Transfektion wurde zunächst im Western-Blot untersucht. Hierbei fanden sich sowohl für die Rab5- als auch AnnexinVI transfizierten CHO-Zellen jeweils deutliche Banden der rekombinanten Proteine (Rab5-myc, AnnexinVI-myc, AnnexinVI-his) sowie für das Ratten-Annexin VI. Über das endogene Expressionsniveau von Rab5 kann keine Aussage getroffen werden, da der im gezeigten Western-Blot verwendete, gegen das myc-Protein verwendete Antikörper nur das in den transfizierten Zellen gebildete Fusionsprotein erkennen kann. Mit einem polyklonalen, gegen AnnexinVI gerichteten Antikörper aus dem Schaf, der auch das humane AnnexinVI erkennt (Grewal et al., in the press) ließ sich im Western-Blot kein endogenes AnnexinVI der CHO-Tellen nachweisen. Es kann daher angenommen werden, daß die Konzentration von endogenem AnnexinVI unterhalb der Nachweisgrenze liegt.

Obwohl im Western-Blot der transfizierten Zellen jeweils deutliche Banden für rekombinantes Rab5 oder AnnexinVI nachweisbar waren, mußte davon ausgegangen werden, daß mittels der liposomalen Transfektion jeweils nur ein geringer Prozentsatz der behandelten Zellen tatsächlich transfiziert wurde. Um dieses zu kontrollieren, wurde eine Immunfluoreszenzmz von transient mit Rab5 transfizierten CHO-Zellen durchgeführt (Abb.7). Tatsächlich zeigte sich lediglich eine Transfektionsrate von ca. 10%. Ob also dieser Prozentsatz an Rab5 oder AnnexinVI überexprimierenden Zellen ausreichen würde, um im Aufnahmeassay funktionelle Effekte zu sehen, blieb abzuwarten.

Ein weiteres Problem des experimentellen Ansatzes lag in den unterschiedlichen Eigenschaften der von den transfizierten Zellen gebildeten Proteine. So handelt es sich beim Genprodukt von pcDNAanx6 um das AnnexinVI-Protein der Ratte, welches allerdings eine hohe Homologie zum humanen AnnexinVI aufweist (Morgan et al. 1997). Der Expressionsvektor hum rab5 myc pFROG wiederum enthält die Gensequenz des humanen Rab5-Proteins, die transfizierten Zellen exprimieren jedoch ein Fusionsprotein von Rab5 und einem myc-Protein, so daß auch hier hinterfragt werden muß, ob die Funktion dieses rekombinanten Proteins mit dem endogenen Rab5 gleichzusetzen ist.
Alleinige Überexpression von Rab5 oder AnnexinVI in CHO- oder HUH7-Zellen zeigt keinen Effekt auf die 125I-LDL Aufnahme

Als erstes funktionelles Experiment wurden die die 125I-LDL Aufnahme der transient mit Rab5 oder Annexin VI transfizierten CHO- und HUH7-Zellen im Vergleich mit Wildtypzellen bestimmt. Eine Stimulation der LDL-Aufnahme konnte in den transfizierten Zellen nicht beobachtet werden. Im Gegenteil, während bei den CHO-Zellen die LDL-Aufnahme zwischen den Kontrollzellen und den transfizierten Zellen kaum Unterschiede aufwies, lag die LDL-Aufnahme der HUH7-Wildtypzellen höher als bei den transfizierten HUH7-Zellen.

Nach den aus der Literatur bekannten Daten lag der erwartete Effekt einer Rab5 Überexpression in einer Stimulation der Rezeptor vermittelten Endozytose. Es mußte daher analysiert werden, weshalb es in dem geschilderten Experiment nicht gelang, die Aufnahme von LDL in die transfizierten Zellen zu stimulieren. Möglicherweise war die Transfektionseffizienz zu gering um einen entsprechenden Effekt im Experiment zu beobachten. Eine zusätzliche Möglichkeit bestand in einer zu niedrigen endogenen Expression des LDL-Rezeptors in den CHO-Zellen, so daß die LDL-Aufnahme bei im Überschuß vorhandenem LDL bereits gesättigt war und durch die Transfektion nicht weiter stimuliert werden konnte.

Überexpression des LDL-Rezeptors in CHO-Zellen bewirkt eine Stimulation der LDL-Aufnahme

Es wurde daher ein neuer experimenteller Ansatz gewählt, indem zunächst durch Überexpression des LDL-Rezeptors versucht wurde, die Aufnahme des LDL in die CHO-Zellen zu steigern. Somit sollte auch überprüft werden, ob das System der transienten Transfektionen überhaupt funktionierte, bzw. ob im gewählten System die Endozytose des LDL durch Transfektionen beeinflußt werden konnte. Wie die Western-Blot Analyse der verwendeten Zellen zeigt (Abb.9), ließ sich in den untransfizierten Zellen nur eine schwache Bande für den endogenen LDL-Rezeptor detektieren. Nach Transfektion mit dem Vektor pCMVhLDLR, der für
den humanen LDL-Rezeptor codiert, fand sich dagegen eine wesentlich
därmigere Bande im Bereich von 160 kDa.

Tatsächlich lag die $^{125}\text{I}-\text{LDL}$ Aufnahme der LDL-Rezeptor transfizierten Zellen
nach 30 Minuten um etwa das Doppelte über den untransfizierten Zellen. Somit
wurde durch die Transfektion quantitativ eine ähnliche Steigerung erzielt wie
durch Präinkubation mit LPDS. Diese erfolgreiche Stimulation zeigte, daß das
System der Transfektionen trotz einer niedrigen Transfektionseffizienz
funktionierte. Wieso eine Überexpression von Rab5 nicht in der erwarteten
Stimulation der Endozytose resultierte, blieb jedoch weiter unklar.

**Kotransfektion von Rab5 und dem LDL-Rezeptor in CHO-Zellen bewirkt eine
zusätzliche Stimulation der LDL-Aufnahme**

In den folgenden Experimenten wurde daher zu Kotransfektionen von Rab5 und
dem LDL-Rezeptor übergegangen.

Auch in den bereits zitierten Arbeiten von Bucci und Stenmark (Bucci et al. 1992;
Stenmark et al. 1994), die erstmalig eine Rab5 vermittelte Stimulation der
Endozytose beschrieben, wurden Kotransfektionen von Rab5 und dem
Transferrin-Rezeptor durchgeführt. Da nicht sicher war, ob sich die
kotransfizierten Plasmide gegenseitig in ihrer Transfektion beeinflussen können,
wurden erneut Western-Blot Analysen durchgeführt. Abbildung 9 zeigt
repräsentativ hierfür einen Western-Blot von Annexin VI- und LDL-Rezeptorkotransfizierten Zellen. Auch unter den Bedingungen der Kotransfektion konnten
beide Proteine im Western-Blot detektiert werden, während bei den Kontrollen
jeweils keine oder nur sehr schwache Banden für den LDL-Rezeptor und
Annexin VI sichtbar waren. Um bei den Kotransfektionen ein jeweils gleiches
Verhältnis zwischen DNA und Liposomen zu erzielen, wurde bei den als
Vergleich in den Aufnahmeessays benötigten, LDL-Rezeptor-transfizierten Zellen
als zweite DNA eine gleiche Menge eines für β-Galactosidase kodierenden
Vektors (pCMVSPORTβ-gal) hinzugefügt. Es wurde davon ausgegangen, daß
das Genprodukt β-Galactosidase als „neutrales“, also nicht in die Endozytose
oder den LDL-Metabolismus involviertes Protein, keinen Einfluß auf die Funktion
von Rab5 oder Annexin VI hat.

Aufnahmeexperimenten mit radioaktiv markiertem LDL zeigte sich nach 30 Minuten Inkubation ähnlich wie für Rab5 eine um 40% gesteigerte LDL-Aufnahme der Annexin VI+LDL-R transfizierten CHO-Zellen gegenüber den LDL-R+ß-Gal transfizierten Kontrollzellen. Somit scheint die Überexpression von Annexin VI bei ausreichender Anzahl von LDL-Rezeptoren einen die Endozytose quantitativ regulierenden Einfluß zu haben.

Stabil transfizierte Zellklone

Zunächst wurden die isolierten Klone im Western-Blot auf die Expression von Rab5 und Annexin VI untersucht.

Mit einem gegen humanes Rab5 gerichteten, monoklonalen Antikörper konnte sowohl in den HUH7-Wildtypzellen als auch im Rab5 transfizierten Klon 7.10 Rab5 detektiert werden. Durch den gegen das Myc-Protein gerichteten Antikörper, welcher nur das rekombinante Protein der transfizierten Zellen erkennt, wurde im Western-Blot des Klons 7.10 eine deutliche Proteinbande in der selben Größenordnung wie das endogene Rab5 markiert. Eine endogene Expression von Annexin VI ließ sich in den HUH7-Wiltypzellen erneut nicht nachweisen, wohingegen beim Klon 2.8 mit drei verschiedenen Antikörpern eine

Gesteigerte 125I-Transferrinaufnahme in stabil mit Rab5 oder Annexin VI transfizierten HUH7-Zellen

bleibt, wieso lediglich die Transferrin-Aufnahme, nicht auch daß Recycling stimuliert werden konnte. Folgt man der Hypothese, daß Annexin VI vor allem an der Abknospung ("budding") der coated pits beteiligt ist, so könnte die vermehrte Aufnahme von Transferrin und LDL Folge eines vermehrten Umsatz der Coated-pits sein. Etwa weil durch vermehrte Abknospung und Bildung von Coated-vesicles vermehrt neue Coated-pits auf der Zelloberfläche gebildet werden, wodurch mehr Liganden gebunden werden können.

Gesteigerter Abbau von 125I-LDL in stabil mit Rab5 oder Annexin VI transfizierten Zellklonen

In weiteren Versuchen sollte geprüft werden, ob die mit den Rab5+LDL-Rezeptor kotransfizierten CHO-Zellen gezeigte Stimulation der LDL-Aufnahme auch in den stabil mit Rab5 transfizierten Zellklonen nachweisbar ist. Darüber hinaus sollte neben dem Effekt der Rab5-Überexpression auf die LDL- Aufnahme auch ein möglicher Effekt auf den Abbau der endozytierten Lipoproteine untersucht werden.

Im Gegensatz zu den Experimenten mit den kotransfizierten CHO-Zellen wurden für die Experimente zur LDL-Aufnahme der HUH7-Klone ein Inkubationszeitraum von 24 Stunden gewählt. Dies geschah, da parallel zur Aufnahme im selben Experiment der Abbau mitbestimmt wurde. Da in vorläufigen Experimenten nach 60 Minuten kein nennenswerter Abbau von 125I-LDL meßbar war, wurden längere Inkubationszeiten gewählt. Überraschenderweise und im Gegensatz zu den vorher geschilderten Beobachtungen lag nach 24 Stunden Inkubation die LDL-Aufnahme des Rab5 überexprimierenden Klones niedriger als die LDL-Aufnahme der HUH7-Wildtypzellen. Demgegenüber fand sich bei der Bestimmung des Abbaus ein umgekehrtes Verhältnis, denn hier fand sich im Medium des Rab5-Klones etwa doppelt so viel degradiertes Material wie bei den Wildtypzellen.

Gleichzeitig mit dem Klon 7.10 wurde auch die LDL-Aufnahme und Degradation des Annexin VI-Klones 2.8 untersucht. Auch beim Klon 2.8 zeigte sich ein ähnliches Ergebnis: Die LDL-Aufnahme der transfizierten Zellen lag nach 24 Stunden nicht höher als der Wildtyp, die Degradation von LDL war jedoch in den
Annexin VI überexprimierenden Zellen gesteigert, wenngleich jedoch nicht so ausgeprägt wie beim Rab5-Klon.

Vergleichende Betrachtung Rab5 und Annexin VI

In den zuvor geschilderten Experimenten konnte für die beiden Proteine Rab5 und Annexin VI unabhängig voneinander ein stimulatorischer Effekt auf die Aufnahme von LDL in transient transfizierten Zellen, sowie in stabil transfizierten Zellen eine gesteigerte Transferrinaufnahme und ein vermehrter Abbau von LDL gezeigt werden. Für beide Proteine ist eine Kolokalisation in frühen Endosomen von primären Hepatozyten der Rattenleber beschrieben worden (Ortega et al.)

Die beiden in dieser Arbeit untersuchten Proteine Rab5 und Annexin VI besitzen als gemeinsame Eigenschaften demnach die Lokalisation in frühen Endosomen bestimmter Zelltypen sowie eine Beteiligung an der Rezeptor-vermittelter Endozytose. Hinsichtlich ihrer Struktur, Genetik und bisher bekannten Interaktionspartnern sind sie vollkommen unterschiedlich. Die geschilderten Experimente zeigen einen quantitativen Einfluß auf die Endozytose von Transferrin und LDL. Da es sich jedoch lediglich um die Beschreibung von Effekten innerhalb eines experimentellen Systems handelt, können aus den beschriebenen Experimenten keine neuen Rückschlüsse auf die Funktionsweise der beiden Proteine gezogen werden. Es kann also nur darüber spekuliert
werden, wie die geschilderte Stimulation der Endozytose durch Überexpression von Rab5 oder Annexin VI zustande kommt.

Zusammenfassung

Literaturverzeichnis:

Gafvels, M.E., L.G. Paavola, C.O. Boyd, P.M. Nolan, F. Wittmaack, A. Chawla, M.A. Lazar, M. Bucan, B.O. Angelin and J.F. Strauss. Cloning of a complementary deoxyribonucleic acid encoding the murine homologue of the very low density lipoprotein/ apoproteinE receptor: expression pattern and assignment of the gene to mouse chromosome 19 (published erratum

Turpin, E., F. Russo-Marie, T. Dubois, C. de Paillerets, A. Alfsen and M. Bomsel. In adrenocortical tissue, annexins ii and VI are attached to clathrin

Danksagung

Ganz besonderer Dank gilt Herrn Dr. Thomas Grewal und Herrn Walter Tauscher für die exzellente Betreuung und Anleitung.

Ebenso danke ich den Mitarbeitern in der Arbeitsgruppe von Frau Prof. Beisiegel für die herzliche Aufnahme und Hilfe bei Fragen.

Meinen Eltern und nicht zuletzt Anke Diemert danke ich für ihre Geduld und moralische Unterstützung, ihnen ist diese Arbeit gewidmet.
Lebenslauf

Persönliche Daten:
Patrick Linsel-Nitschke
Geboren am 3. April 1971 in Siegen
Familienstand: ledig
Konfession: evangelisch

Schulausbildung:
1981-1986 Gymnasium Phillipinum, Marburg
1986 – 1990 Christianeum, Hamburg

Zivildienst:
1990 – 1991 Kirchengemeinde Hamburg-Nienstedten

Studium:
1991 Beginn des Medizinstudiums, Medizinische Universität zu Lübeck
1993 Ärztliche Vorprüfung
1992 1. Abschnitt der ärztlichen Prüfung
1997 2. Abschnitt der ärztlichen Prüfung
1997 –1998 Praktisches Jahr am Allgemeinen Krankenhaus Wien und am Universitätsklinikum Lübeck
1998 Ärztliche Prüfung

Dissertation:
Beginn im Mai 1998 im Labor von Prof. S. Jäckle, Medizinische Kern - und Poliklinik, Universitätsklinikum Hamburg - Eppendorf

Ärztliche Tätigkeit:
Oktober 1998 bis März 1998 als Arzt im Praktikum, Medizinische Kern- und Poliklinik, Universitätsklinikum Hamburg -Eppendorf
Seit April 2000 wissenschaftlicher Mitarbeiter, Medizinische Kern - und Poliklinik, Universitätsklinikum Hamburg - Eppendorf
Erklärung

Ich versichere ausdrücklich, daß ich die Arbeit selbständig und ohne fremde Hilfe verfaßt, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten Werkes kenntlich gemacht habe, und daß ich die Dissertation bisher nicht einem Fachvertreter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe.