Molekulare Untersuchungen zur Funktion des regulativen *Intensifier* Gens aus *Zea mays* L.

Dissertation
zur Erlangung des Doktorgrades der Naturwissenschaften
am Fachbereich Biologie der Universität Hamburg

vorgelegt von
Natascha Techen
aus Hamburg

Hamburg
Januar 2002
Genehmigt vom
Fachbereich Biologie der
Universität Hamburg
auf Antrag von Herrn Professor Dr. U. Wienand

Weitere Gutachter der Dissertation:
Herr Professor Dr. W. Schäfer

Tag der Disputation: 15. Februar 2002

Hamburg, den 01. Februar 2002
Inhaltsverzeichnis

1 EINLEITUNG................................................................. 1

1.1 ANTHOCYANE................................................................ 1

1.2 GENETIK DES ANTHOCYANBIOSYNTHESEWEGES IN ZEA MAYS L. ...................... 2

1.2.1 Das Intensifier Gen...................................................... 5

1.2.2 Das Two Hybrid System ............................................. 10

1.3 ZIELSETZUNG DER ARBEIT ........................................ 12

2 MATERIAL UND METHODEN .............................................. 13

2.1 MATERIAL ...................................................................... 13

1.1.1 Größenstandards ...................................................... 13

1.1.2 Primer ........................................................................ 13

1.1.3 Puffer und Nährmedien ............................................. 14

1.1.4 Vektoren für die Klonierung ....................................... 22

1.1.5 Mikroorganismen ....................................................... 23

1.1.6 Pflanzenmaterial ....................................................... 23

1.2 METHODEN ................................................................. 24

1.2.1 Bakterien ................................................................. 24

1.2.1.1 Anzucht von Bakterienkulturen................................. 24

1.2.1.2 Herstellung kompetenter Zellen mittels TFB-Puffern .......... 24

1.1.1.3 Transformation kompetenter Zellen mittels Hitzeschock ........ 24

1.1.1.4 Ausplattieren von Zellsuspensionen ............................ 24

1.1.2 DNA ......................................................................... 25

1.1.2.1 Plasmid-DNA-Minipräparation (Boiling Methode) ........... 25

1.1.2.2 Plasmid-DNA-Maxipräparation .................................. 25

1.1.2.3 Restriktion von DNA .............................................. 26

1.1.1.4 Auf trennung von DNA im elektrischen Feld .................. 26

1.1.1.5 Bestimmung der DNA Menge und Fragmentgröße ............. 26

1.1.3 Klonierungen ............................................................ 26

1.1.3.1 Auffüllen von 3´ zurückgesetzten Enden ....................... 26

1.1.1.2 Dephosphorylierung von DNA ................................... 27

1.1.1.3 Isolierung von Fragmenten aus Agarosegelen .................. 27

1.1.1.4 PCR Amplifikation mittels Taq-DNA Polymerase ................ 27
1.1.1.5 PCR Amplifikation mittels Pfx- oder Pfu- DNA Polymerasen.................. 28
1.1.1.6 Ligation eines DNA-Fragmentes in einen Vektor........................... 29
1.1.4 Sequenzierungen............................................................................... 30
  1.1.1.1 Plasmid-DNA-Préparation für die Sequenzierung............................ 30
  1.1.1.2 Sequenzreaktion.......................................................................... 30
1.1.5 Hefen .............................................................................................. 31
  1.1.5.1 Anzucht von Hefekulturen ......................................................... 31
  1.1.5.2 Herstellung kompetenter Hefezellen ........................................... 31
  1.1.5.3 Transformation von kompetenten Hefezellen ................................ 32
  1.1.5.4 Herstellung einer Two Hybrid cDNA Bank Dauerkultur ............... 32
  1.1.1.5 Quantitativer Nachweis der β-Galactosidase Aktivität .................. 32
  1.1.1.6 Isolierung von Gesamtproteinen aus Hefe für SDS-PAGE ............. 33
1.1.6 Proteine............................................................................................ 34
  1.1.6.1 SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE) ...................... 34
  1.1.1.2 Färbung von SDS-Polyacrylaminidgelen .................................... 34
  1.1.1.3 Western Blot................................................................................ 34
  1.1.1.4 Immunodetektion........................................................................ 35
1.1.7 Biolistische Transformation ............................................................. 35
  1.1.7.1 Goldsuspension für die Transformation von Tabak- und Maisgewebe ... 36
  1.1.1.2 Goldsuspension für die Transformation von epidermalen Zwiebelzellen....... 37
  1.1.1.3 Isolierung von Gesamtproteinen aus Pflanzenmaterial .................. 37
1.1.8 Fluoreszenzmißkroskopie ............................................................... 38

3 ERGEBNISSE............................................................................................ 39

3.1 UNTERSUCHUNGEN ZUR IN VIVO INTERAKTION DER INTENSIFIER PROTEINE......... 39

3.2 HERSTELLUNG DER TWO HYBRID EXPRESSIONSPLASMID................................. 40
  3.2.1 Herstellung der R Expressionsplasmide ........................................... 40
  3.2.2 Herstellung der R Deletions Expressionsplasmide ............................ 41
  3.2.3 Herstellung der C1 Expressionsplasmide ........................................... 44
  3.2.4 Herstellung der C1-I Expressionsplasmide ........................................ 44
  3.2.5 Herstellung der InD1 Expressionsplasmide ....................................... 47
  3.2.6 Herstellung der InXS Expressionsplasmide ....................................... 47
  3.2.7 Herstellung der In Expressionsplasmide ........................................... 50
    3.2.7.1 Herstellung des Fusionsklons aus In und InD1 .............................. 50

3.3 VORVERSUCHE...................................................................................... 56
3.3.1 Der Hefestamm YRG-2 ................................................................. 56
3.3.2 Western Blot Analysen ................................................................. 56

3.4 DAS TWO HYBRID SYSTEM ................................................................. 57

3.5 KONTROLLEN .................................................................................. 58
3.5.1 Test der AD-und BD-Fusionsproteine auf Hintergrundaktivität .............. 62
3.5.2 Test der Fusionsproteine auf Interaktion mit der BD oder AD von Gal4 ......... 69

3.6 TEST AUF IN VIVO INTERAKTION DER FUSIONSPROTEINE ............... 72
3.6.1 Transformanten mit dem BD-CI Fusionsprotein und diversen AD-Fusionsproteinen ................................................................. 74
3.6.2 Transformanten mit dem BD-CI-I Fusionsprotein und verschiedenen AD-Fusionsproteinen ................................................................. 78
3.6.3 Transformanten mit dem BD-Ins Fusionsprotein und verschiedenen AD-Fusionsproteinen ................................................................. 82
3.6.4 Transformanten mit dem BD-InFus Fusionsprotein und verschiedenen AD-Fusionsproteinen ................................................................. 86
3.6.5 Transformanten mit dem BD-InDI Fusionsprotein und verschiedenen AD-Fusionsproteinen ................................................................. 90
3.6.6 Transformanten mit dem BD-R oder dem BD-Rdel Fusionsprotein und verschiedenen AD-Fusionsproteinen ................................................................. 95
3.6.7 Transformanten mit drei Fusionsproteinen ........................................ 100
3.6.7.1 Expressionsplasmide ................................................................. 103
3.6.8 Zusammenfassung der in vivo Interaktion ........................................ 107
3.6.9 Two Hybrid cDNA Bank ................................................................. 112

3.7 UNTERSUCHUNGEN ZUR IN VIVO LOKALISATION DES INTENSIFIER GENPRODUKTES .......................................................................................................................... 113
3.7.1 Herstellung der Expressionsplasmide ............................................. 114
3.7.2 Nachweis der GFP Fusionsproteine in transient transformiertem Maisscutellumgewebe durch Fluoreszenzmikroskopie ...................... 119
3.7.3 Nachweis der GFP Fusionsproteine in transient transformierten Geweben durch Fluoreszenzmikroskopie ...................................................... 122
3.7.4 Bestimmung der Parameter für die biolistische Transformation von epidermalen Zwiebelzellen ................................................................. 126
3.7.5 Nachweis der GFP Fusionsproteine in transient transformierten Epidermiszellen der Zwiebel durch Fluoreszenzmikroskopie ...................... 126
3.7.6 Herstellung von Deletionsplasmiden ................................................................. 131
3.7.7 Herstellung des In-am-GFP Expressionsplasmids .................................................. 131
3.7.8 Herstellung des InD-carb-GFP Expressionsplasmids ............................................. 131
3.7.9 Herstellung des InD-am-GFP Expressionsplasmids ............................................. 134
3.7.10 Nachweis der Deletionsproteine in transient transformierten Epidermiszellen der Zwiebel durch Fluoreszenzmikroskopie ................................................................. 137
3.7.11 Zusammenfassung der in vivo Lokalisation .......................................................... 139

4 DISKUSSION .................................................................................................................. 141

4.1 VORBEREICHT ........................................................................................................... 141

4.2 UNTERRICHTUNGEN MIT DEM TWO HYBRID SYSTEM ....................................... 142
  4.2.1 Transkriptionsaktivierende Domäne in den myc-homologen Proteinen .......... 145
  4.2.2 Die Intensifier Proteine als mögliche Interaktionspartner des myc-homologen Proteins R ................................................................. 146
  4.2.3 Die Intensifier Proteine als mögliche Interaktionspartner der myb-homologen Proteine C1 und C1-I ................................................................. 147
  4.2.4 Homo- und Heterodimerisierung ......................................................................... 148
  4.2.5 Die Intensifier Proteine als möglicher Interaktionspartner des gebildeten Komplexes von R+C1 ........................................................................... 149

4.3 KORRELATION ZWISCHEN DER STÄRKE DER REPORTERGENEXPRESSION UND DER STÄRKE DER INTERAKTION ................................................................. 149

4.4 LOKALISATION DER INTENSIFIER PROTEINE INDI UND INFUS ....................... 153

4.5 MöGLICHE FUNKTION DES INTENSIFIER GENPRODUKTES ................................ 155

4.6 AUSBlick ................................................................................................................... 158

5 ZUSAMMENFASSUNG .................................................................................................... 161

6 LITERATUR .................................................................................................................... 163

7 ANHANG ....................................................................................................................... 169
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>Ac</td>
<td>Acetat (in chemischen Formeln)</td>
</tr>
<tr>
<td>AD</td>
<td>Aktivierungsdomäne von Gal4</td>
</tr>
<tr>
<td>ADH</td>
<td>Alkohol-Dehydrogenase</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäure</td>
</tr>
<tr>
<td>A.t.</td>
<td>Arabidopsis thaliana</td>
</tr>
<tr>
<td>3-AT</td>
<td>3-Aminotriazol</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosin-5’Triphosphat</td>
</tr>
<tr>
<td>BD</td>
<td>Bindedomäne von Gal4</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin (Rinderserumalbumin)</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>CaMV</td>
<td>Cauliflower Mosaic Virus</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CSPD</td>
<td>Disodium3-(4-methoxyspiro{1,2-dioxetane-3,2’-(5’-chboro)tricyclo[3.3.1.13,7]decan}-4-yl)phenyl-phosohat</td>
</tr>
<tr>
<td>DAP</td>
<td>Tage nach Bestäubung</td>
</tr>
<tr>
<td>dATP</td>
<td>Desoxyadenosintriphosphat</td>
</tr>
<tr>
<td>dCTP</td>
<td>Desoxycytidintriphosphat</td>
</tr>
<tr>
<td>del.</td>
<td>deletiert</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethylpyrocarbonat</td>
</tr>
<tr>
<td>DIG</td>
<td>Digoxigenin</td>
</tr>
<tr>
<td>dGTP</td>
<td>Desoxguanosintriphosphat</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonucleic Acid</td>
</tr>
<tr>
<td>dNTPs</td>
<td>Desoxynukleotide</td>
</tr>
<tr>
<td>dTTP</td>
<td>Desoxythymidintriphosphat</td>
</tr>
<tr>
<td>dUTP</td>
<td>Desoxyuridintriphosphat</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethyldiamintetraessigsäure</td>
</tr>
<tr>
<td>Gal4</td>
<td>β-Galaktosidase</td>
</tr>
<tr>
<td>GFP</td>
<td>grün floreszierendes Protein</td>
</tr>
<tr>
<td>HEPES</td>
<td>N-(2-Hydroxyethyl)piperazin-N’-(2-ethansulfonsäure)</td>
</tr>
<tr>
<td>Hg</td>
<td>Quecksilber</td>
</tr>
<tr>
<td>HIS3</td>
<td>Histidin-Gen</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-thiogalactopyranosid</td>
</tr>
<tr>
<td>Kan</td>
<td>Kanamycin</td>
</tr>
<tr>
<td>lacZ</td>
<td>β-Galaktosidase-Gen</td>
</tr>
<tr>
<td>MOPS</td>
<td>3-(N-Morpholino)propansulfonsäure</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>N</td>
<td>Kern</td>
</tr>
<tr>
<td>NLS</td>
<td>Kernlokalisierungssequenz</td>
</tr>
<tr>
<td>NTP</td>
<td>Nukleosid</td>
</tr>
<tr>
<td>OD</td>
<td>optische Dichte</td>
</tr>
<tr>
<td>ORF</td>
<td>offener Leserahmen</td>
</tr>
<tr>
<td>ONPG</td>
<td>o-Nitrophenyl-β-D-galactopyranosid</td>
</tr>
<tr>
<td>P</td>
<td>Promoter</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction (Polymerase-Kettenreaktion)</td>
</tr>
</tbody>
</table>
PEG Polyethylenglycol
PMSF Phenylmethylsulfonylfluorid
RNA Ribonucleic Acid (Ribonukleinsäure)
RNAsφ Ribonuklease
RT Raumtemperatur
s. siehe
SDS Natriumdodecylsulfat
SDS-PAGE SDS-Polyacrylamid-Gelelektrophorese
SSC Natriumchlorid-Natriumcitrat
Tab. Tabelle
TAE Tris-Aacetat-EDTA
TE Tris-EDTA
Tris Tris-(hydroxymethyl)-aminomethan
UAS upstream activating sequence
ÜNK über-Nacht-Kultur
UpM Umdrehungen pro Minute
UTR untranslatierter Bereich
UV Ultraviolettes Licht
Vol Volumen
X-Gal 5-Bromo-4-Chloro-2-indolyl-β-D-galactopyranosid
z.B. zum Beispiel

Einheiten

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Einheit</th>
<th>Abkürzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg</td>
<td>Mikrogramm</td>
<td>mg</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
<td>µl</td>
</tr>
<tr>
<td>µm</td>
<td>Mikrometer</td>
<td>µm</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäure(n)</td>
<td>AS</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
<td>bp</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
<td>cm</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
<td>g</td>
</tr>
<tr>
<td>kg</td>
<td>Kilobasen</td>
<td>kg</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
<td>kDa</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
<td>l</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
<td>M</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
<td>mg</td>
</tr>
<tr>
<td>min.</td>
<td>Minute(n)</td>
<td>min.</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
<td>ml</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
<td>mm</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
<td>mM</td>
</tr>
<tr>
<td>mol</td>
<td>Mol</td>
<td>mol</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramm</td>
<td>ng</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
<td>nm</td>
</tr>
<tr>
<td>nM</td>
<td>nanomolar</td>
<td>nM</td>
</tr>
<tr>
<td>OD</td>
<td>optische Dichte</td>
<td>OD</td>
</tr>
<tr>
<td>%</td>
<td>Prozent</td>
<td>%</td>
</tr>
<tr>
<td>psi</td>
<td>pounds per square inch</td>
<td>psi</td>
</tr>
<tr>
<td>RLU</td>
<td>relative Lichteinheiten</td>
<td>RLU</td>
</tr>
<tr>
<td>sec</td>
<td>Sekunde(n)</td>
<td>sec</td>
</tr>
<tr>
<td>Std.</td>
<td>Stunde(n)</td>
<td>Std.</td>
</tr>
<tr>
<td>UpM</td>
<td>Umdrehungen pro Minute</td>
<td>UpM</td>
</tr>
<tr>
<td>µm</td>
<td>Mikrometer</td>
<td>µm</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
<td>V</td>
</tr>
<tr>
<td>V/v</td>
<td>Volumen pro Volumen</td>
<td>V/v</td>
</tr>
<tr>
<td>w/v</td>
<td>Gewicht pro Volumen</td>
<td>w/v</td>
</tr>
</tbody>
</table>

Aminosäuren

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Namen</th>
<th>Abkürzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ala</td>
<td>Alanin</td>
</tr>
<tr>
<td>C</td>
<td>Cys</td>
<td>Cystein</td>
</tr>
<tr>
<td>D</td>
<td>Asp</td>
<td>Asparaginsäure</td>
</tr>
<tr>
<td>E</td>
<td>Glu</td>
<td>Glutaminsäure</td>
</tr>
<tr>
<td>F</td>
<td>Phe</td>
<td>Phenylalanin</td>
</tr>
<tr>
<td>G</td>
<td>Gly</td>
<td>Glycin</td>
</tr>
<tr>
<td>H</td>
<td>His</td>
<td>Histidin</td>
</tr>
<tr>
<td>I</td>
<td>Ile</td>
<td>Isoleucin</td>
</tr>
<tr>
<td>K</td>
<td>Lys</td>
<td>Lysin</td>
</tr>
<tr>
<td>L</td>
<td>Leu</td>
<td>Leucin</td>
</tr>
<tr>
<td>M</td>
<td>Met</td>
<td>Methionin</td>
</tr>
<tr>
<td>N</td>
<td>Asn</td>
<td>Asparagin</td>
</tr>
<tr>
<td>P</td>
<td>Pro</td>
<td>Prolin</td>
</tr>
<tr>
<td>Q</td>
<td>Gln</td>
<td>Glutaminsäure</td>
</tr>
<tr>
<td>R</td>
<td>Arg</td>
<td>Arginin</td>
</tr>
<tr>
<td>S</td>
<td>Ser</td>
<td>Serin</td>
</tr>
<tr>
<td>T</td>
<td>Thr</td>
<td>Threonin</td>
</tr>
<tr>
<td>V</td>
<td>Val</td>
<td>Valin</td>
</tr>
<tr>
<td>W</td>
<td>Trp</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>Y</td>
<td>Tyr</td>
<td>Tyrosin</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Anthocyane


1.2 Genetik des Anthocyanbiosyntheseweges in Zea mays L.


Shieh et al. (1993) konnten anhand zellulärer Lokalisationsstudien zeigen, daß das R Protein im Zellkern lokalisiert ist. Da das Protein mit 67 kDa zu groß ist, um passiv durch den Kernporenkomplex in den Zellkern zu gelangen, wird es durch einen energieverbrauchenden
Mechanismus aktiv importiert. Für den Im- und Export von Proteinen werden spezielle Carrier-Proteine benötigt, die als Importin bezeichnet werden (Smith et al., 1997).
Alle bekannten Importin Protein besitzen die Fähigkeit bestimmte Sequenzen der zu importierende Proteine zu erkennen. Diese Sequenzen werden als Kernlokalisierungssignale (nuclear localisation signal = NLS) bezeichnet (Hicks und Raikhel, 1995). Proteine mit Molekularmassen kleiner als 40-60 kDa können passiv in den Kern diffundieren, Proteine ab 60 kDa benötigen mindestens eine NLS für den aktiven Transport. Obwohl es keine Konsensussequenz für eukaryotische NLS gibt, zeigen sie dennoch Gemeinsamkeiten.
Typische NLS enthalten meist positive Aminosäuren wie Lysin (K), Arginin (R) und Prolin (P), die nach dem Import nicht proteolytisch entfernt werden.
Abbildung 1: Schematische Darstellung der Kernlokalisationsequenzen (NLS) N, M und C innerhalb der R Aminosäuresequenz

Im R Protein sind drei NLS (weiße Punkte) näher charakterisiert worden (Shieh et al., 1993). Die carboxyterminale NLS „C“ ist dem MAT α-2 Typ ähnlich. Die mediale NLS „M“, die in der basischen Helix-Loop-Helix Region liegt (schwarz-rosa schraffierte Box), ist vom Typ SV40. Die aminoterminale NLS ist eher ungewöhnlich, da sie mehrere Arginine enthält, die sonst so nur in wenigen viralen Proteinen zu finden ist.

Am aminoterminalen Ende befindet sich die saure Domäne (Balken über dem Protein) (Ludwig et al., 1989), die typisch für diese Klasse von Transkriptionsfaktoren ist. Am carboxyterminalen Ende befindet sich eine Region mit noch unbekannter Funktion (weiß-rosa schraffiert).

Die Zahlen geben die Position in der Aminosäuresequenz an. (N) aminoterminales Ende, (C) carboxyterminales Ende.

Studien in tierischen Systemen über die basische Helix-Loop-Helix Region zeigten, daß die basische Region für die DNA Bindung und der Helix-Loop-Helix Bereich für die Dimerisierung der Untereinheiten verantwortlich ist (Murre et al., 1989; Davis et al., 1990). Die bekannten Allele von R (R-Sn, R-S, R-Lc) und B (B-Peru, B-I) sind jedoch allein nicht ausreichend für die Produktion von Anthocyannen. Zusätzlich werden noch die Genprodukte C1 bzw. P1 benötigt.

Einleitung


\[
\begin{align*}
\text{myb:} & \quad C1 & \quad 273 \text{ AS} \\
& \quad C1-I & \quad 252 \text{ AS} \\
\text{myc:} & \quad R & \quad 610 \text{ AS}
\end{align*}
\]

Abbildung 2: myb- und myc-homologe Proteine

Die Aktivierung der Anthocyanbiosynthese in der Aleuronschicht erfolgt durch das Zusammenwirken der myb- und myc-homologen Proteine $C1$ (blau) und $R$ (rosa). In transienten Assays wurde die direkte Interaktion der $C1$ myb-Domäne (schwarz/weiß scharffiiert) mit aminoterminalen Bereich von $R$ (rosa/ blau scharffiiert) nachgewiesen (Grotewold et al., 2000). Das $R$ Protein enthält einen Bereich mit einer myc-homologen basischen Helix-loop-Helix Region (schwarz/rosa scharffiiert), die für die DNA-Bindung und Dimerisierung benötigt wird und es enthält eine carboxyterminale Region mit noch unbekannter Funktion (rosa/weiß scharffiiert). Der Balken über dem $R$ Protein markiert die saure Domäne, die typisch für diese Klasse von Transkriptionsfaktoren ist. Die transkriptionsaktivierende saure Domäne in $C1$ (schwarz/blau scharffiiert) fehlt in der Mutante $C1-I$.

Die Anzahl der Aminosäuren (AS) der Proteine ist angegeben.

Das $P$ Gen codiert ebenfalls für ein myb-homologes Protein. Es reguliert einen parallelen Anthocyanbiosyntheseweg, der zur Bildung von farbigen Phlobaphenen in den Blütenorganen führt. Im Gegensatz zu $C1$ und $Pl$ wird jedoch kein Partner benötigt und $P$ ist alleine in der Lage, die Akkumulation der Transkripte verschiedener Strukturgene zu beeinflussen (Grotewold et al.,1994).


1.2.1 Das Intensifier Gen

Das Intensifier Gen wurde von Burr et al. (1996) mittels „Transposon tagging“ kloniert und näher charakterisiert. Es wird, wie $R$ und $C1$, in dem einschichtigen Aleuron-Gewebe der Maiskörner exprimiert. Von $In$ sind bislang drei Allele aus Mais näher charakterisiert worden. Das sind neben $In$ (Burr et al., 1996), die Allele $in$ (Herrmann, 2000) und $InD$. Hierbei konnte gezeigt werden, daß das $InD$ Allel aus zwei veränderten Intensifier Genkopien besteht: $InDI$

Alle Intensifier Allele aus Mais, sowie das identifizierte Gen aus Teosinte, weisen mit neun Exons und acht Introns die gleiche Exon- und Intronstruktur auf. Der Vergleich der Exonsequenzen zwischen den Intensifier Allelen aus Mais und dem Intensifier Gen aus Teosinte weist eine Homologie von 96-100 % (Weber, 2001) auf. Die einzige Ausnahme stellt eine Transposon-Insertion (BEB) in Exon 6 der InD2 Kopie dar, welche nicht in den anderen Intensifier Allelen aus Mais und ebenfalls nicht im Intensifier Gen aus Teosinte enthalten ist. Durch diese Insertion wurde ein zusätzliches Stopp Codon eingeführt, wodurch die InD2 Kopie nicht für ein vollständiges Protein kodiert.

Es konnte gezeigt werden, daß die meisten Transskripte der Mais Allele In und InD, sowie des In Gens aus Teosinte, noch Intronsequenzen enthalten (Burr et al., 1996; Rojek, 1996; Pusch, 2000; Weber, 2001). Durch diese Intronsequenzen können Verschiebungen im Leserahmen oder es kann sogar der Abbruch der Translation erfolgen. Die Folge sind veränderte oder verkürzte Proteine, die dadurch eine andere Funktion haben könnten. Das Fehlspleißen betrifft die Introns 2, 5 und 7. Von dem In Allel werden nur etwa 0.2 % der Transkripte korrekt gespleißt (Burr et al., 1996). Von dem in Allel sollen nur Transkripte vorliegen, die zu einem stark verkürzten Protein führen Herrman (2000).

Die vollständigen putativen Proteine In und InD1 zeigen eine starke Homologie zu den verschiedenen myc-homologen Proteinen, zu denen auch B und R gehören. Diese Homologie betrifft folgende Bereiche: den aminoterminalen gelegenen Bereich, der für die Interaktion mit C1 benötigt wird und der die saure Domäne enthält; des weiteren die basische Helix-Loop-Helix Region, die für die DNA Bindung und Dimerisierung benötigt wird, sowie einen Bereich ohne bisher definierte Funktion am carboxyterminalen Ende (Abbildung 3).
Einleitung

Fortsetzung folgt
Einleitung

Die putativen Proteine In (erste Zeile) und InD1 (zweite Zeile) zeigen Homologien zu anderen myc-homologen Proteinen (grau oder schwarz unterlegt). Unter anderem zu dem R Protein (LC-R, letzte Zeile) und dem B Protein (B-Peru, dritte Zeile).

Die charakteristische basische Helix-Loop-Helix Region ist oberhalb und unterhalb des Sequenzvergleiches mit Querbalken gekennzeichnet. Hier befindet sich eine der drei charakterisierten Kernlokalisierungssequenzen des R Proteins (gemusterte Linie). Die beiden anderen NLS (fette schwarze Linien) befinden sich am aminoterminalen und carboxyterminalen Ende von R und zeigen keine hohe Homologie zu der In oder InD1 Sequenz.

In repressor-like protein [Zea mays] (U57899); InD1 (Rojek, 1996); B-Peru regulatory protein– [maize] (S16594); DEL helix-loop-helix protein - [garden snapdragon] (A42220); bHLH protein [Arabidopsis thaliana] (AAB72192); putative transcription factor [Arabidopsis thaliana] (AA09158); MYC-GP [Perilla frutescens] (BAA75514); JAF13 bHLH transcription factor [Petunia x hybrida] (AAC39455); GMYC1 protein [Gerbera hybridacea] (CA0A7615); transcription factor [Zea mays] (CAB92300); RA transcription activator - [rice] (S65802); LC-R regulatory protein [Zea mays] (P13526)

Abbildung 3: Vergleich der In und InD1 Aminosäuresequenzen mit myc-homologen Proteinen

![Körner von Mais Allelen](attachment:image1.png)

**Abbildung 4: Phänotyp von Körnern der drei Mais Allele *In*, *in* und *InD***


die zur Bildung von funktionsunfähigen Heterodimeren führen könnte (Abbildung 6, c). Als dritte Möglichkeit wäre die Interaktion mit bereits bestehenden Komplexen aus C1 und R denkbar (Abbildung 6, d). Durch diese Interaktionen könnte eine Reduktion funktioneller Komplexe aus R und C1 erfolgen und somit auch eine Reduktion der Pigmentierung.

Abbildung 5: Schematische Darstellung der Interaktion von R und C1

Durch die Interaktion des myb-homologen Genproduktes C1 mit dem myc-homologen Genprodukt R und durch die Bindung in der Promotorregion responsiver Gene (fette Linie), wird die Anthocyanbiosythese in den Körnern initiiert. C1 und R beeinflussen unter anderem die Expression der Strukturgene C2 und Whp, welche für das Schlüsselenzym Chalkonsynthase (graue Box) kodieren.

Abbildung 6: Schematische Darstellung der möglichen Interaktion von In mit R und C1

Das myc-homologe Intensifier Genprodukt (In) ist ein negativer Regulator der Anthocyanbiosythese. Aufgrund der Homologie zu dem myc-homologen Genprodukt R könnte es sowohl mit C1 als auch mit R interagieren und so für eine Reduktion funktioneller Komplexe aus C1 und R (a) sorgen. Diese Interaktion könnte ausschließlich mit C1 (b) oder mit R (c) erfolgen. Des weiteren wäre eine Interaktion mit dem gebildeten Komplex aus C1 und R (d) möglich.

1.2.2 Das Two Hybrid System

Das Two Hybrid System ist ein eukaryotisches System um die Interaktion von Protein X mit Protein Y in vivo zu detektieren. In diesem System wird das Gal4 Protein aus Hefe verwendet. Das native Gal4 Protein (AS 1-881) ist ein Transkriptionsaktivator, der für den Galaktose Katabolismus benötigt wird. Er besteht unter anderem aus zwei Aktivierungsdomänen (AS 148-196; AS 768-881) und einer N-terminalen DNA-Bindedomäne (AS 1-147), die an die
„upstream activating sequence“ (UAS) diverser Gene des Galaktose Katabolismus bindet (z.B. UAS\textsubscript{Gal1} und UAS\textsubscript{Gal4}) (Ma und Ptashne, 1987).

Die DNA-Bindedomäne (AS 1-147) und Aktivierungsdomäne (AS 761-881) können separiert werden, um Hybridproteine herzustellen (Abbildung 7). Bei der Interaktion des Proteins Y mit dem an die DNA gebundenen Protein X wird die Funktion des Gal4 weitgehend restauriert. Es folgt die Transkription von Reportergenen unter der Kontrolle von UAS\textsubscript{Gal}.

Weder das BD-Hybridprotein noch das AD-Hybridprotein sollten in der Lage sein, in Abwesenheit des Interaktionpartners, die Reportergene zu aktivieren.

**Abbildung 7: Schematische Darstellung des Two Hybrid Systems**

X und Y stehen für die Proteine, die auf eine mögliche Interaktion getestet werden sollen, sie sind mit der AD (Aktivierungsdomäne von Gal4) oder BD (DNA Bindedomäne von Gal4) fusioniert, UAS (upstream activating sequence = DNA Bindestelle der Gal4 DNA Bindedomäne)
1.3 Zielsetzung der Arbeit

Die Funktion des *Intensifier* Genproduktes ist noch nicht geklärt. Burr *et al.* (1996) vermuten, daß es sich um einen negativ regulierenden Transkriptionsfaktor (Repressor) handelt, der die Bildung von transkriptionsaktivierenden Komplexen aus den Transkriptionsfaktoren $R$ und $C1$ behindert. Hierbei stellt sich die Frage, ob und wenn ja, wie das *Intensifier* Gen mit den Genen $C1$ und $R$ interagiert. Dabei wäre zu klären, ob das *Intensifier* Genprodukt mit dem Genprodukt $C1$ interagiert (Abbildung 6, b) oder mit dem Genprodukt von $R$ interagiert (Abbildung 6, c) oder mit bereits bestehende Komplexe aus $C1$ und $R$ interagiert (Abbildung 6, d).

Um Hinweise auf die Wirkungsweise des *Intensifier* Genproduktes zu erhalten sollte untersucht werden, ob es mit einem ($C1$, $R$) oder mit beiden Proteinen ($C1+R$) interagieren kann. Dazu sollten Untersuchungen mit dem Two Hybrid System (Field und Song, 1989) durchgeführt werden. Hierbei sollten die Produkte verschiedener *Intensifier* Allele einbezogen und hinsichtlich ihrer Fähigkeit zur Interaktion verglichen werden.

Goff *et al.* (1992) konnten eine Interaktion zwischen dem $C1$ Protein und dem $R$-homologen $B$ Protein (mit einem deletierten $B$ Protein) nachweisen. Sie verwendeten ein $B$ Protein, aus welchem der Bereich mit der basischen Helix-Loop-Helix-Region entfernt wurde. Sie konnten dabei die für die Interaktion wichtigen Bereiche definieren. Ebenso solche Versuche sollten unter Einbeziehung des *Intensifier* Allele einbezogen und hinsichtlich ihrer Fähigkeit zur Interaktion verglichen werden.


2 Material und Methoden

2.1 Material

Die für Puffer und Lösungen verwendeten Chemikalien (Reinheitsgrad: zur Analyse) wurden von den Firmen Amersham Pharmacia Biotech (Freiburg), Biomol (Hamburg), Biozym (Oldenburg) Roche (Mannheim), Duchefa (Harlem, Niederlande), Merck (Darmstadt), Perkin Elmer Applied Biosystems (Weiterstadt), Promega (Madison, WI), Qiagen (Hilden), Roth (Karlsruhe), Serva (Heidelberg), Sigma (Deisenhofen), Stratagene (Heidelberg) und USB (Cleveland, USA) bezogen.

Die verwendeten Enzyme und Größenstandards wurden von den Firmen Life Technologies/ Gibco BRL (Karlsruhe), Roche (Mannheim), Eurogentec (Seraing, Belgien) und MBI Fermentas (St. Leon Roth) bezogen.

Die in dieser Arbeit verwendeten Kits (Concert™ Rapid Plasmid Miniprep, GFX™ PCR DNA and Gel Band Purification Kit) stammen von den Firmen Life Technologies/ Gibco BRL (Karlsruhe), Stratagene (Heidelberg) und Amersham Pharmacia Biotech (Freiburg).

2.1.1 Größenstandards

Die in dieser Arbeit verwendeten DNA Größenstandards waren der Marker „Smart Ladder“ (Firma Eurogentech; Seraing, Belgien) und der „DNA Molekular Weight Marker X“ (Boehringer Mannheim). Als Größenstandard für die Proteinanalysen wurde der „Protein Color Marker, Wide Range“ der Firma Sigma (Deisenhofen) verwendet.

2.1.2 Primer

Die verwendeten Primer für Sequenzierungsreaktionen und PCR wurden von der Firma Life Technologies/ Gibco BRL (Karlsruhe) bezogen. Die Liste der in dieser Arbeit verwendeten Primer kann dem Anhang entnommen werden.
2.1.3 Puffer und Nährmedien

Die Puffer und Nährmedien werden, falls nicht anders vermerkt, mit aqua bidest angesetzt.

**Antibiotikum Stammlösung**

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Substanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 mg/ml</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>50 mg/ml</td>
<td>Kanamycin</td>
</tr>
<tr>
<td>5 mg/ml</td>
<td>Tetracyclin in Wasser/ Ethanol (1:1)</td>
</tr>
</tbody>
</table>

Die Lösungen werden sterilfiltriert und in Aliquots zu 1 ml bei –20°C gelagert.

**Bjierum-Schaefer-Nilson-Puffer (Transfer-Puffer)**

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Substanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 mM</td>
<td>Tris base</td>
</tr>
<tr>
<td>39 mM</td>
<td>Glycine</td>
</tr>
<tr>
<td>20 %</td>
<td>Methanol</td>
</tr>
<tr>
<td>0,037 %</td>
<td>SDS</td>
</tr>
</tbody>
</table>

**Blockierungspuffer I**

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Substanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 %</td>
<td>Magermilchpulver</td>
</tr>
</tbody>
</table>

Das Substrat wird in 1x TBST gelöst.

**2M CaCl₂**

3,68 g / 10 ml

Die Lösung wird sterilfiltriert und in 1 ml Aliquots bei -20°C gelagert.

**Coomassie-Färbelösung**

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Substanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,25 g</td>
<td>Coomassie Brilliant Blue R 250</td>
</tr>
<tr>
<td>45 ml</td>
<td>Methanol</td>
</tr>
<tr>
<td>45 ml</td>
<td>Wasser</td>
</tr>
<tr>
<td>10 ml</td>
<td>Essigsäure (96 %ig)</td>
</tr>
</tbody>
</table>

**Detektionslösung I**

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Substanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 M</td>
<td>Luminol (3-aminophthalhydrazide)</td>
</tr>
<tr>
<td>400 M</td>
<td>p-Couumarsäure</td>
</tr>
<tr>
<td>0,1 M</td>
<td>Tris-HCl pH 8.0</td>
</tr>
</tbody>
</table>
Detektionslösung II
5,4 mM H2O2
0,1M Tris-HCl pH 8.5

DNA-Probenpuffer
0,25 % Bromophenol Blau
30 % Glycerol

10x Dropout-Lösung
300 mg/1 L-Isoleucin
1500 mg/1 L-Valin
200 mg/1 L-Adenin Hemsulfat
200 mg/1 L-Argenin HCL
300 mg/1 L-Lysin HCL
200 mg/1 L-Methionin
500 mg/1 L-Phenylalanin
2000 mg/1 L-Threonin
300 mg/1 L-Tyrosin
200 mg/1 L-Uracil

1000 mg/1 L-Leucin
200 mg/1 L-Tryptophan
200 mg/1 L-Histidin HCL Monohydrat
Je nach Bedarf werden Leucin, Tryptophan oder Histidin dem 10x Dropout nicht zugesetzt. Die Lösung wird autoklaviert.

1 M DTT (Dithiothreitol)
1,55 g DTT
Das Substrat wird in 10 ml 10 mM Natrium Acetat (pH 5.2) gelöst und nach dem Sterilfiltrieren bei −20°C gelagert.

0.5M EDTA (Ethylendiamintetraacetat)
186,1 g/1 EDTA
pH 8,0
**Material und Methoden**

**EGL Puffer**
- 0,1 M KPO4
- 1 mM EDTA
- 5 % Glycerol
- 10 mM DTT

**Entfärbelösung**
- 10 % Methanol
- 10 % Essigsäure (96 %ig)

**Ethidiumbromid**
- 1 g/100 ml Ethidiumbromid

**Hefe-Lysispuffer**
- 2 % Triton X-100
- 1 % SDS
- 100 mM NaCl
- 100 mM Tris-HCl pH 8.0
- 1 mM EDTA

**Hefe-Probenpuffer für SDS PAGE**
- 0.006M Tris-HCl pH 6.8
- 10 % Glycerol
- 2 % SDS
- 5 % β-Mercaptoethanol

Bromphenol Blau
Die Lösung wird in Aliquots von 1 ml bei –20°C gelagert.

**0.1 M IPTG (Isopropylthio-β-D-galactoside)**
- 2 g/10 ml IPTG

Die Lösung wird sterilfiltriert und in 1 ml Aliquots bei –20°C gelagert.
Material und Methoden

10x Laemmlı
144 g / l Glycine
30 g / l Tris-base
0,1 % SDS

LB-Medium
10 g / l Tryptone
5 g / l Yeast Extract
10 g / l NaCl
0,8 % Agar (für Festmedien)
pH 7,5
Die Lösung wird autoklaviert. Für die Plasmid- oder Bakterienstammselektion wird das LB-Medium mit 80 µg/ ml Ampicillin, 50 µg/ ml Kanamycin oder 30 µg/ ml Tetrazyklin versetzt.

Lösung A
10 mM Bicine (N,N-bis-(2-Hydroxyethylglycine)) pH 8,35
1 M Sorbitol
3 % Ethylenglycol
Die Lösung wird sterilfiltriert und anschließend bei -20°C gelagert.

Lösung B
200 mM Bicine (N,N-bis-(2-Hydroxyethylglycine)) pH 8,35
40 % PEG 1000
Die Lösung wird sterilfiltriert.

Lösung C
10 mM Bicine (N,N-bis-(2-Hydroxyethylglycine)) pH 8,35
150 mM NaCl
Die Lösung wird sterilfiltriert.

Lysozymlösung
10 mg / ml in Telt-Puffer
Material und Methoden

1M MgCl₂
203,3 g/l MgCl₂ x 6 H₂O
Die Lösung wird autoklaviert.

MS-Medium
MS Fertigmedium (Duchefa, #0222)
3 % Saccharose
0,8 % Agarose
pH 5,9
Die Lösung wird autoklaviert.

3M Natriumacetat
408,1 g/l Natriumacetat x 3 H₂O
pH 5,2
Die Lösung wird autoklaviert.

ONPG (o-nitrophenyl β-D-galactopyranoside)
4 mg/ml ONPG
Das Substrat wird in Z-Puffer gelöst.

Phenol - Chloroform
1 Vol. Phenol (Tris ph 7,8 – 8,0 stabilisiert)
1 Vol. Chloroform

Ponceau S
20 ml Ponceau S Konzentrat (Sigma p7767)
180 ml Wasser

Sequenzprobenpuffer
Formamid
25 mM EDTA ph 8.0
Blue Dextran
**SDS-Probenpuffer**

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Bestandteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 %</td>
<td>Bromophenol Blau</td>
</tr>
<tr>
<td>3 %</td>
<td>SDS</td>
</tr>
<tr>
<td>0.4 M</td>
<td>β-Mercaptoethanol</td>
</tr>
<tr>
<td>20 %</td>
<td>Glycerol</td>
</tr>
</tbody>
</table>

**20x SSC**

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Bestandteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>175.3 g/l</td>
<td>NaCl</td>
</tr>
<tr>
<td>88.2 g/l</td>
<td>Natriumcitrat</td>
</tr>
<tr>
<td>pH 7.0</td>
<td></td>
</tr>
</tbody>
</table>

**20x SSPE**

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Bestandteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>175.3 g/l</td>
<td>NaCl</td>
</tr>
<tr>
<td>27.6 g/l</td>
<td>NaH₂PO₄</td>
</tr>
<tr>
<td>7.4 g/l</td>
<td>EDTA</td>
</tr>
<tr>
<td>pH 7.4</td>
<td></td>
</tr>
</tbody>
</table>

**1M Na₂CO₃**

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Bestandteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>106 g/l</td>
<td>Na₂CO₃</td>
</tr>
</tbody>
</table>

**50 x TAE**

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Bestandteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>242 g/l</td>
<td>Tris base</td>
</tr>
<tr>
<td>57.1 ml</td>
<td>Essigsäure (96 %ig)</td>
</tr>
<tr>
<td>100 ml</td>
<td>0.5 M EDTA pH 8.0</td>
</tr>
</tbody>
</table>

**10x TBE**

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Bestandteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>108 g/l</td>
<td>Tris base</td>
</tr>
<tr>
<td>55 g/l</td>
<td>Borsäure</td>
</tr>
<tr>
<td>7.4 g/l</td>
<td>EDTA</td>
</tr>
</tbody>
</table>

**10x TBST**

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Bestandteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 g/l</td>
<td>Tris base</td>
</tr>
<tr>
<td>87.66 g/l</td>
<td>NaCl</td>
</tr>
<tr>
<td>5 g/l</td>
<td>TWEEN 20</td>
</tr>
</tbody>
</table>
pH 8,0

**TE**
10 mM Tris-HCl (pH 8,0)
1 mM EDTA (pH 8,0)

Die Lösung wird aus steril en Stammlösungen angesetzt.

**TELT-Puffer**
50 mM Tris (pH 8,0)
2,5 M LiCl
62,5 mM EDTA
0,4 % Triton X

**TFB-Puffer I**
30 mM Kaliumacetate (pH 5,8)
50 mM MnCl₂
100 mM RbCl
10 mM CaCl₂
15 % Glycerol

Die Lösung wird aus steril en Stammlösungen angesetzt.

**TFB-Puffer II**
10 mM MOPS
75 mM CaCl₂
10 mM NaCl
15 % Glycerol

Die Lösung wird aus steril en Stammlösungen angesetzt.

**1 M Tris-HCl**
121,1 g/l Tris base
pH einstellen (7,4/ 7,6/ 8,0)
**SD-Medium (Selektionsmedium)**

6,7 g/l Difco nitrogen base ohne Aminosäuren
182,2 g D-Sorbitol
0,8 % Agar (für Festmedien)
PfH 5,8

Die Komponenten werden in 860 ml Wasser gelöst und autoklaviert. Nach dem Autoklavieren wird 40 ml sterilfiltrierte 50 %-ige Glucose (=Dextrose) und 100 ml der 10x Dropout-Lösung zugegeben.

**YPD-Medium (Vollmedium)**

20 g/l Difco Peptone
10 g/l Yeast extract
40 mg/l L-Adenin Hemisulfat
0,8 % Agar (für Festmedien)
PfH 5,8

Die Komponenten werden in 960 ml Wasser gelöst und nach dem Autoklavieren mit 40 ml sterilfiltrierter 50 %-iger Glucose (=Dextrose) versetzt.

**Z-Puffer**

16,1 g/l $\text{Na}_2\text{HPO}_4 \times 7\text{H}_2\text{O}$
5,5 g/l $\text{NaH}_2\text{PO}_4 \times 7\text{H}_2\text{O}$
0,75 g/l KCl
0,246 g/l $\text{MgSO}_4 \times 7\text{H}_2\text{O}$
PfH 7,0

Die Lösung wird nach dem Autoklavieren bei 4°C gelagert.

**Z-Puffer (mit β-Mercaptoethanol)**

100 ml Z-Puffer
0,27 ml β-Mercaptoethanol
2.1.4 Vektoren für die Klonierung

Die in Tabelle 1 und Tabelle 2 aufgelisteten Plasmide wurden im Verlauf der Arbeit zur Klonierung und Expression verwendet.

**Tabelle 1: Klonierungs- und Expressionsvektoren**

<table>
<thead>
<tr>
<th>Vektor</th>
<th>Firma/ Referenz</th>
<th>Selektionsmarker</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMon30049-GFP</td>
<td>Monsanto; Pang et al.(1996)</td>
<td>Kan^R</td>
</tr>
<tr>
<td>pBluescript II SK+</td>
<td>Stratagene</td>
<td>Amp^R</td>
</tr>
<tr>
<td>pAD-Gal4</td>
<td>Stratagene</td>
<td>Amp^R; LEU2</td>
</tr>
<tr>
<td>pBD-Gal4</td>
<td>Stratagene</td>
<td>Amp^R; TRP1</td>
</tr>
<tr>
<td>pSV40</td>
<td>Stratagene</td>
<td>Amp^R; LEU2</td>
</tr>
<tr>
<td>p53</td>
<td>Stratagene</td>
<td>Amp^R; TRP1</td>
</tr>
<tr>
<td>pLamin C</td>
<td>Stratagene</td>
<td>Amp^R; TRP1</td>
</tr>
<tr>
<td>pGal4</td>
<td>Stratagene</td>
<td>Amp^R; LEU2</td>
</tr>
</tbody>
</table>

**Tabelle 2: Verwendete cDNAs und Fragmente**

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Bezugsquelle/ Referenz</th>
<th>Fragmentgröße in kbp</th>
<th>Selektionsmarker</th>
</tr>
</thead>
<tbody>
<tr>
<td>pC1cLC 28.1 (P1)</td>
<td>Paz-Ares et al., 1987</td>
<td>ca. 2,1</td>
<td>Amp^R</td>
</tr>
<tr>
<td>pC1cC-1 53 (P10)</td>
<td>Paz-Ares et al., 1990</td>
<td>ca. 1,1</td>
<td>Amp^R</td>
</tr>
<tr>
<td>pC2LCC46 (P37)</td>
<td>Wienand et al., 1986</td>
<td>ca. 1,5</td>
<td>Amp^R</td>
</tr>
<tr>
<td>pRLC 2.5kb (P39)</td>
<td>Ludwig et al., 1989</td>
<td>ca. 2,5</td>
<td>Amp^R</td>
</tr>
<tr>
<td>InD cDNA 2.1</td>
<td>Rojek, R., 1996</td>
<td>ca. 2,5</td>
<td>Amp^R</td>
</tr>
<tr>
<td>pBC-BNL 139 R1</td>
<td>Scheffler, B.*</td>
<td>ca. 2,3</td>
<td>Amp^R</td>
</tr>
<tr>
<td>pBC-277A #7</td>
<td>Scheffler, B.*</td>
<td>ca. 2,5</td>
<td>Amp^R</td>
</tr>
</tbody>
</table>

* Universität Hamburg, AMP1
2.1.5 Mikroorganismen

Die Bakterien- und Hefestämme wurden von der Firma Stratagene (Heidelberg) bezogen.

Tabelle 3: Verwendete Mikroorganismen

<table>
<thead>
<tr>
<th>Stamm</th>
<th>Organismus</th>
<th>Genotyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>XL1Blue</td>
<td>Bakterienstamm</td>
<td>recA1 endA1 gyrA96 thi-1 hasdR17 supE44 relA1 lac [F' proAB lacIq ZΔM15 Tn10 (Tet')]</td>
</tr>
<tr>
<td>YRG-2</td>
<td>Hefestamm</td>
<td>Matα ura3-52 his3-200 lys2-801 ade2-101 trp1-901 leu2-3 112 gal4-542 gal80-538 LYS2::UAS_GAL1- TATAGAL1-HIS3 URA3::UAS_GAL4 17mers(3x) TATACYC1-lacZ</td>
</tr>
</tbody>
</table>

2.1.6 Pflanzenmaterial

Die Verwendeten Maispflanzen wurden im Gewächshaus unter kontrollierten Bedingungen bei 16 Std. Licht (24.000-25.000 Lux), 8 Std. Dunkelheit, 24°C und 55-95% Luftfeuchte angezogen. Es wurden Pflanzen der Linien H99 (D’Halluin, 1992), A188 (Green and Philips, 1975), Q2 (Walbot, V., Stanford University, CA) und der Wildtyplinie Line C (color converted W22) verwendet.

Für die transiente Transformation von Zwiebeln wurde die Sorte der Firma Füllhorn verwendet. Sie wurden nach dem Kauf maximal 3 Wochen verwendet. Während diesem Zeitraum wurden sie im Dunkeln bei RT gelagert.
2.2 Methoden

2.2.1 Bakterien

2.2.1.1 Anzucht von Bakterienkulturen

nach Sambrook at al. (1989)


2.2.1.2 Herstellung kompetenter Zellen mittels TFB-Puffern

Mit 2 ml einer 5 ml Vorkultur (2.2.1.1) werden 100 ml Medium angeimpft und bis zum Erreichen einer OD600 von 0.3 - 0.5 wachsen gelassen. Nach dem Zentrifugieren in 50 ml Falcongefäßen für 10 min. bei 4°C mit 3000 UpM wird das 100 ml Pellet in 10 ml TFBI-Puffer I vorsichtig resuspendiert und 10 min. auf Eis inkubiert. Alle nachfolgenden Schritte erfolgen auf Eis und mit vorgekühlten Lösungen.

Nach einer Zentrifugation für 10 min. bei 4°C wird das Pellet in 4 ml TFB-Puffer II vorsichtig resuspendiert und in Aliquots zu 100 µl in flüssigem Stickstoff schockgefahren und bei -70°C gelagert.

2.2.1.3 Transformation kompetenter Zellen mittels Hitzeschock

Ein Aliquot der auf Eis aufgetauten kompetenten Zellen (2.2.1.2) wird mit 0,1 - 1 µg DNA oder einem Ligationsansatz versetzt und für 30 min. auf Eis inkubiert. Nach 2 min. Hitzeschock bei 42°C wird 1 ml Medium zugegeben. Bei einer Antibiotikaresistenz ist eine Vorinkubation für 1 Std. bei 37°C und 180 UpM im Inkubationsschüttler zu empfehlen. Die Zellsuspension wird anschließend auf Platten ausstrichen (2.2.1.4).

2.2.1.4 Ausplattieren von Zellsuspensionen

Für die Indikation der lacZ-Komplementation, werden vor dem Ausstreichen der Zellsuspension je 40 µl IPTG und X-Gal auf dem Selektionsmedium verteilt.

2.2.2 DNA

2.2.2.1 Plasmid-DNA-Minipräparation (Boiling Methode)

nach Holmes und Quigley (1981)

Aus einer (2.2.1.1) Bakterienkultur werden 1,5 ml in ein Eppendorfgefaß überführt und bei Raumtemperatur 5 min. mit 13000 UpM zentrifugiert. Der Überstand wird sorgfältig entfernt und das Pellet in 200 µl TELT-Puffer und 20 µl frisch angesetzter Lysozymlösung resuspendiert. Für die Inaktivierung von DNAsen wird der Ansatz sofort für 3 min. auf 95°C im Heizblock erhitzt. Anschließend wird der Ansatz für 5 min. im Eiswasserbad abgekühlt. Für die weitere Bearbeitung wird das Eppendorfgefaß ständig auf Eis gehalten.


2.2.2.2 Plasmid-DNA-Maxipräparation


Um Proteinverunreinigungen zu entfernen wird der zu Ansatz phenolisiert. Hierzu wird er auf ein Volumen von 0.5 - 1 ml gebracht, mit dem gleichen Volumen Phenol - Chloroform (1:1) versetzt und bis zur Bildung einer Emulsion vermischt. Nach einer Zentrifugation von 3 - 5 min. bei 15000 UpM und RT wird der wässrige Überstand ohne Interphase abgenommen und der Vorgang wiederholt. Anschließend wird das Phenol durch Extraktion mit Chloroform
entfernt und aus dem wässrigen Überstand die DNA erneut mit Isopropanol gefüllt (siehe oben).

2.2.2.3 Restriktion von DNA

Die verwendeten Restriktionsenzyme werden laut Herstellerangaben mit den entsprechenden Puffern in einem Volumen von 20-50 µl eingesetzt. Die Konzentration des verwendeten Enzmys beträgt maximal 0,1 Vol. des Ansatzes, damit die Aktivität nicht durch hohe Konzentrationen an Glycerol inhibiert wird. 0,5 –1 µg Plasmid-DNA wird 1 - 2 Std. bei den geforderten Temperaturen inkubiert. Eine Restriktion mit zwei Enzymen wird durch einen Querstrich gekennzeichnet z.B. EcoRI/MluI.

Nach der Restriktion erfolgt die Auf trennung im elektrischen Feld (2.2.2.4)

2.2.2.4 Auftrennung von DNA im elektrischen Feld

Für die Herstellung eines Agarosegels wird 1 x TAE Puffer mit Agarose aufgekocht. Nach dem Aufkochen wird die Lösung mit 5 µg/ ml Ethidiumbromid versetzt und in ein vorbereitetes Gelbett gegossen. Nachdem das Gel erhärtet ist wird es in eine mit 1 x TAE Puffer gefüllte Gelkammer gelegt. Die DNA-Probenlösung wird mit 1/ 10 Probenpuffer versetzt und in die Geltaschen pipettiert.

Für die Größenauf trennung von DNA wird je nach Gelgröße für 1 - 2 Std. eine Spannung von 80 - 120 Volt angelegt.

2.2.2.5 Bestimmung der DNA Menge und Fragmentgröße


2.2.3 Klonierungen

2.2.3.1 Auffüllen von 3´ zurückgesetzten Enden

In einem Ansatz von 20 – 30 µl erfolgt die Reaktion, mit 1/ 10 Klenow Puffer, 0,05 mM dNTPs und 1–2 Einheiten Klenow-Fragment für 30 min. bei RT.
Nach dem Auffüllen erfolgt die Auftrennung im elektrischen Feld (2.2.2.4) und die Isolierung aus dem Agarosegel (2.2.3.3)

### 2.2.3.2 Dephosphorylierung von DNA

Durch die Entfernung von Phosphat-Resten an den 5'-Enden von geschnittener DNA (2.2.2.3) wird verhindert, daß die DNA-Ligase eine Selbst-Ligation oder Concatemorisierung des linearisierten Vektors oder Fragmentes katalysiert. Mit dieser Behandlung wird der Einbau von Fremd-DNA in einen linearisierten Klonierungsvektor begünstigt und damit die Klonierungseffizienz erhöht.

Für die Behandlung werden 1-2 Einheiten der alkalischen Phosphatase CIP direkt nach einer Restriktion (2.2.2.3) in den Ansatz gegeben. Die Inkubation erfolgt für 30 min. bei 37°C mit anschließender gelektrophoretischer Auftrennung und Fragmentisolation.

Die Dephosphorylierung bereits isolierter DNA wird in einem Volumen von 20-50 µl mit 1/10 Vol. CIP-Puffer, 1-2 Einheiten CIP für 30 min. bei 37°C durchgeführt. Die Reaktion wird anschließend mittels GFX™ PCR DNA and Gel Band Purification Kit Amersham Pharmacia Biotech (Freiburg) aufgereinigt.

### 2.2.3.3 Isolierung von Fragmenten aus Agarosegelen

Die zu isolierende DNA Bande wird aus dem Agarosegel ausgeschnitten und laut Herstellerangaben mit dem GFX™ PCR DNA and Gel Band Purification Kit Amersham Pharmacia Biotech (Freiburg) aufgereinigt.

### 2.2.3.4 PCR Amplifikation mittels Taq-DNA Polymerase

gelektrophoretischer Auftrennung des Reaktionsgemisches ist der amplifizierte Bereich als Bande deutlich vor dem Hintergrund der nichtamplifizierten DNA zu erkennen.

Standardansatz für eine PCR-Reaktion:

10-40 ng Plasmid DNA (2.2.4.1)
10 pmol Primer #1
10 pmol Primer #2
mM dNTP-Mix (dATP, dCTP, dGTP, dTTP)
1/ 10 Vol. PCR-Puffer
5-10 % DMSO
2 Einheiten Taq DNA Polymerase
1,5 mM MgCl2

Der Reaktionsansatz wird in einem Volumen von 50 µl angesetzt und mit einem Tropfen Mineralöl überschichtet. Im Trio-Thermozykler der Firma Biometra (Göttingen) wird folgendes Programm verwendet:

96°C, 4 min Denaturierung
96°C, 45 sec. Denaturierung
50-65°C, 45 sec. Anhybridisierung der Primer 25-30 Zyklen
72°C, 2 min Auffüllreaktion
72°C, 10 min. Abschluß
4°C, endlos

Nach der Amplifikation erfolgt die gelektrophoretische Trennung (2.2.2.4) und Isolierung (2.2.3.3) der Bande.

**2.2.3.5 PCR Amplifikation mittels Pfx- oder Pfu- DNA Polymerasen**

In der Regel wird für eine PCR Reaktion die Taq-DNA Polymerase verwendet. Ihr fehlt jedoch eine 3´ Exonukleaseaktivität („proofreading“), wodurch falsch eingebaute Nukleotide nicht ausgetauscht werden. Ihre Fehlerquote liegt damit höher als die der Pfx- oder Pfu- DNA

Standardansatz für eine PCR-Reaktion mit der Pfx DNA Polymerase:

10-40 ng Plasmid DNA (2.2.4.1)
20 mM Primer #1
20 mM Primer #2
20 mM dNTP-Mix (dATP, dCTP, dGTP, dTTP)
1/10 Vol. PCR-Puffer
1/10 Vol. Enhancer Solution
2,5 Einheiten Pfx DNA Polymerase
37 mM MgSO₄

Standardansatz für eine PCR-Reaktion mit der Pfu DNA Polymerase:

10-40 ng Plasmid DNA (2.2.4.1)
20 mM Primer #1
20 mM Primer #2
20 mM dNTP-Mix (dATP, dCTP, dGTP, dTTP)
1/10 Vol. PCR-Puffer
2,5-5 Einheiten Pfu DNA Polymerase

Der Reaktionsansatz wird in einem Volumen von 100 µl angesetzt und mit einem Tropfen Mineralöl überschichtet. Im Trio-Thermozykler der Firma Biometra (Göttingen) wird das unter (2.2.3.4) aufgeführte Programm verwendet.

Das PCR-Produkt wird dem GFX™ PCR DNA and Gel Band Purification Kit nach Angaben des Herstellers aufgereinigt und anschließend in den Vektor ligiert (2.2.3.6).

2.2.3.6 Ligation eines DNA-Fragmentes in einen Vektor

Für die Ligation von 100 ng dephosphorylierter Vektor-DNA (2.2.3.2) mit der Fragment DNA wird die zu verwendende Menge an Fragment-DNA wie folgt berechnet:

100 ng x dreifache Länge des Fragmentes
--------------------------------------------------------------- = X ng Fragment
Länge des Vektors
Die Ligation erfolgt in einem 20 - 60 µl Ansatz mit 1/10 Vol. Ligationspuffer, 5 Einheiten T4-DNA-Ligase und Inkubation bei RT für 4 Std. oder bei 16°C über Nacht. Anschließend wird der Reaktionsansatz in kompetente Bakterienzellen transformiert (2.2.1.3).

2.2.4 Sequenzierungen

2.2.4.1 Plasmid-DNA-Präparation für die Sequenzierung

Die Präparation von Plasmid-DNA erfolgt aus einer 3-5 ml Flüssigkultur 2.2.1.1 nach Angaben des Herstellers mit dem Concert™ Rapid Plasmid Miniprep Kit der Firma Life Technologies/ Gibco BRL (Karlsruhe). Die DNA wird in 65 µl Wasser eluiert.

2.2.4.2 Sequenzreaktion

Die Sequenzierungen erfolgen nicht-radioaktiv nach der Methode von Sanger et al. (1977). Standardansatz einer Sequenzreaktion:

4 µl Big Dye Terminator Cycle Sequencing Kit mit Amply-Taq® DNA Polymerase
500 - 800 ng doppelsträngige DNA (2.2.4.1)
1,5 µl Primer (10 pmol/µl)
5 - 10 % DMSO

Der Reaktionsansatz wird in einem Volumen von 20 µl angesetzt und mit einem Tropfen Mineralöl überschichtet. Die Sequenzreaktionen werden im Trio-Thermozyklor der Firma Biometra (Göttingen) bei folgendem Programm durchgeführt.

3 min, 95° C Denaturierung
45 sec., 98° C \{ 1 Zyklus
15 sec., 50° C \}
4 min, 60° C \}
30 sec., 98° C \}
15 sec., 50° C \{ 24 Zyklen
4 min, 60° C \}

Die Sequenzierungsprodukte werden nach Herstellerangaben auf 4,5 %igen Acrylamidgelen auf dem DNA-Sequenzer 311 der Firma Perkin Elmer/ Applied Biosystems bei 2500 Volt in 1 x TBE für 4 Std. analysiert.

Die Analysen und Vergleiche von DNA- und Aminosäuresequenzen erfolgte durch die Programme Seqman und MegAlign (DNASTAR 3.5 Inc., USA), MacVector™ 4.1.4 (Scientific Imaging Systems, USA), GeneDoc 2.6.001 (Nicholas et al., 1997) und Blast 2.x (Altschul et al., 1997).

2.2.5 Hefen

2.2.5.1 Anzucht von Hefekulturen


2.2.5.2 Herstellung kompetenter Hefezellen

verändert nach Ito et al., 1983

Transformanten des Hefestammes YRG-2, wachsen in SD-Medium (Selektionsmedium) langsamer, als nicht transformierte YRG-2 Zellen im YPD-Medium (Vollmedium), daher gibe es zwei verschiedene Vorschriften für die Herstellung der Kulturen.

YRG-2 Stamm

Mit einer YRG-2 Hefekolonie werden 5 ml YPD-Medium angeimpft und über Nacht bei 30°C wachsen gelassen. Am nächsten Tag werden 100 ml YPD-Medium mit 1 ml der Vor kultur angeimpft und bei 30°C bis zu einer OD600 = 0,6 wachsen gelassen.

YRG-2 Transformanten

Mit einer Kolonie werden 5 ml SD-Medium angeimpft und 2 Tage bei 30°C wachsen gelassen. Von dieser Vor kultur werden 100 ml SD-Medium mit 1 ml der Vor kultur angeimpft und über Nacht bei 30°C bis zu einer OD600 = 0,6 wachsen gelassen.

### 2.2.5.3 Transformation von kompetenten Hefezeilen

verändert nach Ito et al., 1983

Für die Transformation werden 1-2 µg Plasmid-DNA (2.2.4.1) mit 50 µg (10 µg/µl) denaturierter Lachssperma-DNA gemischt und zu einem gefrorenen 200 µl Aliquot kompetenter Hefezeilen (2.2.5.2) gegeben. Die Zellen werden 5 min. unter starkem Schütteln bei 37°C im Thermoschüttler aufgetaut. Nach Zugabe von 1 ml Lösung B wird der Ansatz für 60 min. bei 30°C in den Schüttelinkubator (120 UpM) gegeben. Anschließend werden die Zellen 1 min. bei 3000UpM pelletiert und mit 800 µl Lösung C gewaschen. Die erneut pelletierten Zellen werden in 100 µl Lösung C resuspendiert und auf Selektionsmedium ausplattiert. Die Platten werden anschließend bei 30°C für 3-7 Tage inkubiert, bis Kolonien sichtbar werden.

### 2.2.5.4 Herstellung einer Two Hybrid cDNA Bank Dauerkultur

nach "DupLEX-A Yeast Two Hybrid System Manual Version 2.7“ OriGene Technologies

Von der cDNA werden insgesamt 40 µg in 30 Aliquots kompetente Hefezeilen (2.2.5.2) transformiert und auf 30 Platten ausplattiert. Die Platten werden anschließend bei 30°C inkubiert bis Kolonien sichtbar sind. Zum Abschwemmen der Platten wird auf jede der 30 Festmediumplatten 5 ml steriles Wasser gegeben, die Kolonien mit einem sterilen Mikroskop-Objektträger abgekratzt und in 50 ml Falcongefäße überführt. Die Zellen werden 5 min bei 3000 UpM in einer Hareus Zentrifuge pelletiert und mit der gleichen Menge Wasser gewaschen. Die Pellets werden in einem Gesamtvolumen von 50 ml Wasser aufgenommen und mit 75 %igem Glycerol bis zu einer Endkonzentration von 25 % versetzt. Die Suspension wird in 1 ml Aliquots bei −70°C gelagert.

Anschließend erfolgt die Titerbestimmung eines Aliquots und das Ausplattieren einer ausreichenden Anzahl an Transformanten auf Selektionsmedium (z.B. Histidin).

### 2.2.5.5 Quantitater Nachweis der β-Galactosidase Aktivität

verändert nach Clontech Yeast Protocols Handbook

Die β-Galactosidase spaltet β-D-Galactoside (z.B. Lactose) in Galactose und die entsprechende Alkohol-Verbindung. Unphysiologische Substrate sind z.B. X-Gal (5-Brom-4-Chlor-3-Indolyl-β-D-Galactosid) und ONPG (o-Nitrophenyl-β-D-galactosid). Sie ergeben
Material und Methoden

Nach der Hydrolyse farbige Reaktionsprodukte, die photometrisch nachzuweisen sind. Durch die Spaltung von ONPG erfolgt, je nach Stärke der β-Galactosidaseaktivität, eine mehr oder weniger starke Gelbfärbung der Lösung.

Für diesen Assay werden 5-10 ml Selektionsmedium in einem 50 ml Falconfaß mit einer Hefekolonie angeimpft und bei 30°C bis zu einer OD600 von 1 ml = 0.5-0.8 wachsen gelassen. Die genaue OD600 wird ermittelt. Die Zellen werden bei RT 5min bei 3000 UpM in einer Hareaus Zentrifuge pelletiert, in 500 μl Z-Puffer (incl. β-Mercaptoethanol) resuspendiert und anschließend zu 500 μl Glassbeads (acid washed Glassbeads 425-600 μm, Sigma) gegeben. Die Hefe zellen werden mechanisch aufgeschlossen durch 2 x 3 min. vortexen auf maximaler Stufe. Dazwischen werden die Proben für 3 min. auf Eis abgekühlt. Nach dem zweiten Vortexen wird das Volumen erhöht durch Zugabe von 500 μl Z-Puffer (incl. β-Mercaptoethanol). Ab jetzt wird der Proteinextrakt stets auf Eis gelagert. Die Proben werden bei 4°C für 10min bei 15000 UpM zentrifugiert. 900 μl des Gesamtprotein-Extrakts werden in ein neues Eppi überführt.

Um den Assay gegebenenfalls zu wiederholen werden von den 900 μl Gesamtproteinextrakt es (2.2.5.5) nur 400 μl eingesetzt. Zu 400 μl Gesamtproteinextrakt werden 400 μl Z-Puffer (incl. β-Mercaptoethanol) gegeben, mit 160 μl ONPG-Lösung versetzt und bei 30°C inkibi ert. Ist eine gelbe Färbung sichtbar (positiv Kontrolle nach ca. 3-5min), wird die Substratumssetzung durch Zugabe von 400 μl 1 M Na₂CO₃ gestoppt. Die Inkubationszeit wird in min. notiert. Da Zelltrümmer die anschließende photometrische Messung stören, werden die Proben 10 min bei RT und 14.000 UpM zentrifugiert und 1 ml des Überstandes in Küvetten überführt. Die photometrische Messung erfolgt bei 420 nm, die Werte sollten zwischen 0.02-1.0 sein um im linearen Bereich der Messung zu liegen.

Die Aktivität des Enzyms wird in relativen Einheiten gemessen, sie ergibt sich aus der Formel:

\[
\text{relative Einheiten} = \frac{[\text{OD} \, 420 \, \text{nm}] \times 1000}{[\text{OD} \, 600 \, \text{nm}] \times \text{Volumen} \times \text{Zeit der Inkubation in Minuten}}
\]

2.2.5.6 Isolierung von Gesamtproteinen aus Hefe für SDS-PAGE

Horvath and Riezman (1994)

Abhängig vom Hefestamm werden 5 ml Voll- oder Selektionsmedium angeimpft und bei 30°C bis zu einer OD600 = 0.7 wachsen gelassen. Von dieser Kultur werden 1.5 ml pelletiert und mit 1 ml Wasser gewaschen. Die Zellen werden erneut pelletiert, in 100 μl
Hefe-Probenpuffer aufgenommen und für 5 min. bei 96°C aufgekocht. Nach einer Zentrifugation bei 4°C für 5 min und 14.000 UpM wird der Überstand für die SDS-PAGE (2.2.6.1) verwendet.

2.2.6 Proteine

2.2.6.1 SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)


2.2.6.2 Färbung von SDS-Polyacrylamidgelen

Für die Färbung wird das Gel 30 - 60 min. unter leichtem Schwenken in Coomassie Brilliant Blue G-250 Lösung inkubiert. Anschließend wird für mehrere Stunden mit der Entfärbelösung entfärben, bis die Proteinbanden deutlich zu sehen sind. Um das Gel leicht zu entwässern wird der Entfärbelösung 1 ml 75 %iges Glycerol zugegeben und für weitere 10 min. inkubiert. Die vollständige Trocknung des Gels erfolgt in einem Rahmen zwischen zwei Lagen aufgespannter "Einmach-Folie".

2.2.6.3 Western Blot

Für den Western Blot werden die Acrylamidgele nach der Elektrophorese 30 min. unter leichtem Schwenken in Bjерum-Schaefer-Nilson-Puffer inkubiert und anschließend mittels des Trans-Blot auf Nitrocellulosemembranen (Hybond C) übertragen. Für den Blot werden 2 x 3 Lagen 3 MM Whatman-Papier und die Nitrocellulosemembran in Bjерum-Schaefer-Nilson-Puffer angefeuchtet.

Die Anordnung auf der Anode erfolgt in der Reihenfolge von Whatmanpapier, Nitrocellulosemembran, Acrylamidgel und Whatman-Papier. Abschließend wird die Kathode angeschlossen und bei 15 Volt 15 bis 60 min. geblottet.
Durch eine Färbung mit Ponceau S für 10 min läßt sich der Transfer der Proteine auf die Nitrocellulosemembran kontrollieren. Für die Immuno-Detektion werden die Membranen mit aqua dest. entfärbt.

**2.2.6.4 Immunodetektion**

Mit dieser Technik ist es möglich ein Protein auf einem Western Blot durch die Reaktion mit seinem spezifischen Antikörpers nachzuweisen. Um unspezifische Bindung der Antikörper zu vermeiden, wird die Membran des Western Blots 1 Std. oder über Nacht in 1 x TBST bei 4°C gelagert. (Für eine Inkubation über mehrere Tage, kann 0,5 % sodium azide zugegeben werden). Vor Inkubation mit dem ersten Antikörper wird die Membran mit 1 x TBST gewaschen. Alle Waschschritte werden in der Reihenfolge von 2 x kurz spülen, 1 x 15 min. und 2 x 5 min. bei RT in jeweils 100 ml durchgeführt. Die Inkubation mit dem 1: 10.000 verdünnten Antikörper I erfolgt 1 Std. bei Raumtemperatur. Nach dem Waschen wird mit dem 1: 3.000 verdünnten Antikörper II (gegen den Antikörper I gerichtet, mit gekoppelter Peroxydase) für 40 min bei RT inkubiert. Bei den anschließenden Waschschritten wird 4 x 5 min., statt 2 x 5 min. gewaschen. Die gekoppelte Peroxidase katalysiert unter Anwesenheit von H₂O₂ die Spaltung des Substrates Luminol wodurch Chemilumineszens entsteht.

Für die Detektion werden je 1 ml der Detektionslösungen I und II unmittelbar vor Gebrauch vermischt und sofort verwendet. Die Membran wird mit der Proteinseite 1 min. in dem Gemisch inkubiert und anschließend luftdicht in Klarsichtfolie verpackt. Für die Exposition werden Filme zwischen 30 sec. und 10 min. aufgelegt.

**2.2.7 Biolistische Transformation**

Die hergestellten Plasmide müssen zur Expression in Pflanzenmaterial eingebracht werden. Dazu wurde die Methode der biolistischen (biologisch; balistisch) Transformation verwendet, die auch als particle bombardment bezeichnet wird. Es ist eine physische Methode um DNA in Zellen einzubringen. Hierbei wird Plasmid DNA an Goldpartikel gebunden, die unter hohem Heliumdruck beschleunigt werden (2.2.7.1 oder 2.2.7.2). Im Idealfall treffen sie auf das Gewebe, durchdringen das Protoplasma und gelangen so in die Zelle ohne sie zu zerstören. Anschließend kann die an den Partikeln befindliche DNA exprimiert werden. Im Gegensatz zu anderen Methoden (Elektroporation, Lipid vermittelten Transformation) müssen die zu transformierenden Gewebe nicht vorbehandelt werden.

Der erfolgreichen Transformation dieser verschiedenen Zelltypen geht eine Optimierung der physischen Parameter der Bombardierung voraus (Sanford et al., 1993). Die Parameter mit der größten Auswirkung auf die Transformationsrate sind die Partikelgröße und Partikeldichte, das Vakuum in der Kammer und die Distanz die von den Partikeln zurücklegt werden muss, bevor sie das Gewebe treffen.

Die isolierten Maisembryonen wurden, um die Transformationsrate zu erhöhen, vor der Transformation einer osmotischen Vorbehandlung unterzogen. Durch die Inkubation auf einem osmotischem Medium findet in der Zelle eine Plasmolyse statt, wodurch das Protoplasma von der Zellwand gelöst wird. Es wird angenommen, das hierdurch die Zelle „elastischer“ wird und nicht platzt, wenn sie mit Goldpartikeln verletzt wird (Vain et al., 1993).

**2.2.7.1 Goldsuspension für die Transformation von Tabak- und Maisgewebe**

nach Montgomery et al. (1993)

40 mg Goldpartikel (Goldpowder Hereus 0.3-3um) werden in 1 ml Ethanol abs. aufgenommen und für 1-2 sec. gevortext. Nach einer kurzen Zentrifugation für 10 sec. bei 10.000 Upm werden die Goldpartikel mit 1 ml Wasser, wie oben erwähnt, gewaschen. Anschließend wird das Goldpellet wieder in 1 ml Wasser aufgenommen, für 1-2 min gevortext und in 50 µl (ca. 0.4 mg Gold/ 10 µl) Aliquots bei -20°C gelagert.

Von der Goldsuspension werden 50 µl mit 2,5 µg Reporter Plasmid DNA (1µg/ µl) oder einer 1:1 Mischung aus Reporter und Referenzplasmid versetzt und 30 sec. gevortext. Nach Zugabe von 50 µl 2,5 M CaCl₂ und 10 µl 0.1 M Spermidin wird die Suspension 10 min. gevortext. Anschließend wird die Goldsuspension für 10 sec. bei 10.000Upm pelletiert und die Goldpartikel mit 250 µl 96 %igem Ethanol gewaschen. Das Goldpellet wird in 120 µl 96 %igem Ethanol (ca 0,4 µg DNA/ 10 µl) resuspendiert (Goldpartikel).

Für die transiente Transformation von Tabak- und Maisgewebe werden die Goldpartikel durch kurzes vortexen resuspendiert und 10 µl/ Schuß homogen auf dem Macrocarrier verteilt. Die biolistische Transformation erfolgte mit der PDS 1000/ He (BioRad, München) unter folgenden Bedingungen:
Material und Methoden

2.2.7.2 Goldsuspension für die Transformation von epidermalen Zwiebelzellen

nach Unseld et al., (2001)

60 mg Goldpartikel (Goldpowder Hereus 1,6 um) werden in 1 ml 70 %igem Ethanol aufgenommen und für 10 sec. gevortext. Nach einer kurzen Zentrifugation für 1 sec. bei 10.000Upm werden die Goldpartikel 3x mit 1 ml Wasser, wie oben erwähnt, gewaschen. Anschließend wird das Goldpellet wieder in 1 ml 50 %igem Glycerol aufgenommen (ca. 0.6 mg Gold/ 10 ul) und bei -20°C gelagert.

Von der Goldsuspension werden 10 ul/ Schuss mit 5ug Plasmid DNA (1ug/ ul) 4min im 2 ml Eppi gevortext. Nach Zugabe von 10 ul 2.5M CaCl₂ und 2 ul 0.1M Spermidin wird die Suspension 3 min. gevortext. Anschließend werden die pelletierten Goldpartikel 2x mit 500 ul 70 %igem Ethanol gewaschen. Das Goldpellet wird in 10 ul 96 %igem Ethanol (ca 5ug DNA/ 10ul) resuspendiert (Goldpartikel) und bis zum Verbrauch bei -20°C gelagert.

Für die transiente Transformation von epidermalen Zwiebelzellen werden die Goldpartikel durch kurzes vortexen resuspendiert und 10 ul/ Schuß homogen auf dem Macrocarrier verteilt.

Die biolistische Transformation erfolgte mit der PDS 1000/ He (BioRad, München) unter folgenden Bedingungen:

Macrocarrer: Etage 2
Zielgeweb: Etage 5
Gasdruck: 1100psi
Vakuum: 28inch Hg

Zwiebeln der Firma Füllhorn (4-6 cm Durchmesser) werden der Länge nach halbiert, die Wurzel- und Sproßansätze und die inneren Schalen verworfen. Nach der Transformation der konkaven Seite wird die Schale mit der Schnitfläche auf 0.5% Wasseragar gelegt und 18-48 Std. bei RT im Dunkeln inkubiert.

2.2.7.3 Isolierung von Gesamtproteinen aus Pflanzenmaterial

Die Proben stets auf Eis halten. Das Pflanzenmaterial wurde mittels Schwingmühle Reetsch MM300 pulverisiert und in 200 ul EGL Extraktionspuffer aufgenommen. Anschließend
wurde der Extrakt durch zweimaliges Zentrifugieren für 10 sec. bei 2°C und 15.000 UpM von Gewebeteilen getrennt und bei –70°C gelagert.

2.2.8 Fluoreszenzmikroskopie


3 Ergebnisse

3.1 Untersuchungen zur in vivo Interaktion der Intensifier Proteine

Das Zusammenwirken der regulierenden Gene \( R, B, C1 \) und \( Pl \) beeinflußt unter anderem die Expression der Strukturgene \( C2 \) und Whp, die für das Schlüsselenzym Chalkonsynthase der Anthocyanbiosynthese kodieren. Aufgrund der Interaktion eines myc-homologen Genproduktes \( R, B \) mit einem myb-homologen Genprodukt \( C1, Pl \) entstehen Dimere, welche die Expression gewebespezifisch beeinflussen. Durch die Interaktion von \( R \) und \( C1 \) wird die Anthocyanbiosynthese in den Körnern reguliert (Abbildung 5). Dagegen regulieren die Genprodukte von \( B \) und \( Pl \) die Anthocyanbiosynthese in den restlichen Pflanzenteilen.

Das putative Protein des Mais Gens \textit{Intensifier} (Burr et al. 1996) zeigt Homologien zu dem myc-homologen Genprodukt \( R \). Liegt das \textit{Intensifier} Allel \( In \) homozygot vor, so zeigen die Maiskörner eine leuchtend rote Farbe. In Maiskörnern mit homozygotem \textit{Intensifier} Allel \( in \) werden verstärkt Anthocyane gebildet, wodurch sie eine tiefrote bis schwarze Färbung zeigen. Der Phänotyp, der durch das homozygote \textit{Intensifier} Allel \( InD \) ausgeprägt ist zeigt gegenüber dem \( In \) Phänotyp eine blaßrote Färbung. Das \textit{Intensifier} Genprodukt ist demzufolge in der Lage, die Anthocyanbiosynthese negativ zu beeinflussen.

Aufgrund der Homologie des \textit{Intensifier} Genproduktes zu den myc-homologen Genprodukten \( R, B \), stellte sich die Frage, ob es mit dem myb-homologen Genprodukt \( C1 \) interagieren kann und so für eine Reduktion funktioneller \( R + C1 \) Komplexe sorgt und somit auch für eine Reduktion der Pigmentierung. Da bekannt ist, daß die myc-homologe Genprodukte sowohl Homo- als auch Heterodimere bilden können, kann eine mögliche Interaktion des \textit{Intensifier} Genproduktes mit \( R \) anstatt \( C1 \), nicht ausgeschlossen werden. Möglicherweise erfolgt sogar eine Interaktion mit dem gesamten Komplex aus \( R \) und \( C1 \) (Abbildung 6, Seite 10).

Um zu untersuchen, ob eine Interaktion des \textit{Intensifier} Genproduktes mit \( C1 \) oder \( R \) erfolgt, wurden Two Hybrid Experimente mit den Produkten von drei verschiedenen \textit{Intensifier} Allelen durchgeführt.

Burr et al. (1996) konnten zeigen, daß die Transkripte des \( In \) Alles nur zu etwa 0,2 % korrekt gespleißt werden. Alternative Spließstellen sind für die Introns 2, 5 und 7 beschrieben worden. Herrman (2000) postuliert, daß von dem \( in \) Allel nur Transkripte vorliegen, die zu einem verkürzten Protein führen. Aus diesen Gründen wurde das vollständige Protein \( (In) \) und ein verkürztes Protein \( (InXS) \) untersucht.
Das InD Allel liegt in zwei veränderten Intensifier Genkopien vor: InD1 (Rojek, 1996) und InD2 (Pusch, 2000). Von der InD2 Kopie war bei Beginn dieser Arbeit noch kein entsprechender cDNA Klon verfügbar, so daß nur das Protein der InD1 Kopie untersucht werden konnte.

Es wurde vermutet, daß die endogene transkriptionsaktivierende Domäne von C1 eine hohe Hintergrundaktivität der Reportergene verursachen würde. Daher wurde beschlossen, zusätzlich zu C1 eine Mutante zu verwenden, die keine transkriptionsaktivierende Domäne besitzt. Es wurde erwartet, daß mit dieser Mutante, C1-I (Paz-Ares et al., 1990), keine Hintergrundaktivität festzustellen ist. Der Sequenzvergleich von C1 und C1-I befindet sich im Anhang (Abbildung 77, Seite 171).

Goff et al. (1992) konnten eine Interaktion zwischen dem C1 Protein und dem R-homologen B Protein nur mit einem deletierten B Protein nachweisen. Sie verwendeten ein B Protein, aus welchem der Bereich mit der basischen Helix-Loop-Helix-Region entfernt wurde. Aus diesem Grund wurde, für die in dieser Arbeit durchgeführten Untersuchungen, ebenfalls ein Deletionsprotein von R verwendet (Rdel.).

3.2 Herstellung der Two Hybrid Expressionsplasmide

3.2.1 Herstellung der R Expressionsplasmide
(siehe Abbildung 8)
In der 5’ Leader Sequenz der cDNA von R befand sich in ein Stopp-Codon im Leserahmen. Bei der Subklonierung der vollständigen cDNA in die Expressionsvektoren pAD und pBD, wäre durch dieses Stopp-Codon kein Fusionsprotein entstanden. Um dieses Stopp-Codon zu entfernen, wurde aus dem R cDNA Plasmid pRLC 2.5kb ausschließlich der codierende Bereich mittels PCR und Pfx-DNA Polymerase amplifiziert (2.2.3.5). Hierfür wurden der 5’ Primer Ol-14 und der 3’ Primer Ol-22 verwendet, die eine zusätzliche EcoRI und Sall Schnittstelle enthalten.

Das 2,2 kb lange PCR-Produkt wurde in die EcoRV geschnitteme (2.2.2.3) Plasmid DNA (2.2.2.2) des Vektors pZErO-2 ligiert und vollständig sequenziert (2.2.4). Diese Klonierung in den Vektor pZErO-2 wurde einer direkten Klonierung in die Vektoren pAD und pBD vorgezogen. Wären bei dem amplifizierten Fragment Fehler in der Sequenz festgestellt worden, so hätte dieser Bereich des DNA Fragmentes entfernt und durch DNA des Plasmids pRLC 2,5kb ausgetauscht werden können. Dafür wären Schnittstellen benötigt worden, die nicht in den pAD und pBD Vektoren vorkommen dürfen, sondern ausschließlich in der R cDNA. Daher war eine direkte Subklonierung des PCR Fragmentes in die pAD und pBD
Vektoren nicht möglich. In der Sequenz des PCR Fragmentes wurden keine Fehler festgestellt und es konnte subkloniert werden.

Ursprünglich sollte das Fragment mit den Enzymen *EcoRI* und *SalI* aus der DNA des pZErO-2 Klons ausgeschnitten werden und gerichtet in die *EcoRI/SalI* Schnittstelle der pAD und pBD Vektoren einkloniert werden. Die 3‘ gelegene *SalI* Schnittstelle des Fragmentes ließ sich jedoch, vermutlich aufgrund funktionsloser denaturierter *SalI* Enzyme in der verwendeten Enzymcharge, nicht schneiden. Damit trotzdem weitergearbeitet werden konnte, wurde beschlossen das PCR Fragment nur als *EcoRI* Fragment aus der Plasmid DNA (2.2.2.1) des Vektors auszuschneiden (2.2.2.3) und zu isolieren (2.2.3.3). Die 3‘ gelegene *EcoRI* Schnittstelle stammt hierbei aus dem Vektor pZErO-2. Nach der Bestimmung der DNA Menge (2.2.2.5) erfolgte die Ligation (2.2.3.6) in die *EcoRI* (2.2.2.3) geschnittene Plasmid DNA (2.2.2.2) der Expressionsvektoren pAD und pBD.

Aufgrund der ungerichteten Klonierung in die *EcoRI* Schnittstelle der pAD und pBD Expressionsvektoren ergaben sich zwei mögliche Orientierungen des Fragmentes im Vektor. Um die Orientierung festzustellen wurde aus 24 unabhängigen Bakterientransformanten die Plasmid DNA isoliert (2.2.2.1) und mit *BglII* restringiert (2.2.2.3). Die Restriktionsfragmente wurden anschliessen elektrophoretisch aufgetrennt (2.2.2.4) und anhand des verwendeten Standards bestimmt (2.2.2.5).

Positive Bakterientransformanten enthalten das subklonierte PCR Fragment, welches für das vollständige *R* Protein kodiert. Dieses *R* Protein besteht aus den Aminosäuren 1-610. Die Fusionsproteine mit der Aktivierungs- und Bindedomäne von Gal4 wurden als AD-*R* und BD-*R* bezeichnet und die korrespondierenden Expressionsplasmide als:

- pAD-*R* Plasmid # 356
- pBD-*R* Plasmid # 367

### 3.2.2 Herstellung der *R* Deletions Expressionsplasmide

siehe (Abbildung 8)

Für die Expression eines deletierten *R* Proteins, wurde der korrespondierende Bereich aus dem *R* cDNA Plasmid pRLC 2.5kb per PCR und Pfx-DNA Polymerase amplifiziert (2.2.3.5). Hierfür wurden der 5‘ Primer Ol-14 und der 3‘ Primer Ol-23 verwendet, die eine zusätzliche *EcoRI* und *SalI* Schnittstelle enthalten.

Das 1,2 kb lange PCR-Produkt wurde, wie das des 2,2 kb langen PCR Fragmentes (3.2.1), in die *EcoRV* Schnittstelle des Vektors pZErO-2 einkloniert und vollständig sequenziert. In der Sequenz des 1,2 kb langen PCR Fragmentes wurden keine Fehler festgestellt und es konnte
subkloniert werden. Die Subklonierung erfolgte, aus den gleichen Gründen, wie bei dem 2,2 kb langen PCR Fragment (3.2.1), als EcoRI Fragment.

Aufgrund der ungerichteten Klonierung in die EcoRI Schnittstelle der pAD und pBD Expressionsvektoren ergaben sich zwei mögliche Orientierungen des Fragmentes im Vektor. Um die Orientierung festzustellen wurde aus 24 unabhängigen Bakterientransformanten die Plasmid DNA isoliert (2.2.2.1) und mit BgIII restringiert (2.2.2.3). Die Restriktionsfragmente wurden anschließend elektrophoretisch aufgetrennt (2.2.2.4) und anhand des verwendeten Standards bestimmt (2.2.2.5).

Positive Bakterientransformanten enthalten das subklonierte 1,2 kb PCR Fragment, welches für das deletierte R Protein kodiert und keine basisches Helix-Loop-Helix Region enthält. Dieses R Protein besteht aus den Aminosäuren 1-388 von R.

Die Fusionsproteine mit der Aktivierungs- und Bindedomäne von Gal4 wurden als AD-Redel und BD-Redel bezeichnet und die korrespondierenden Expressionsplasmide als:

- pAD-Redel Plasmid # 378
- pBD-Redel Plasmid # 392
Eine direkte Subklonierung der cDNA von \( R \) war nicht möglich, da sich im 5' UTR ein Stop Codon (*) im Leserahmen befindet. Der kodierende Bereich von \( R \) wurde aus dem cDNA Klon pRLC2.5kb per PCR amplifiziert und die amplifizierten Fragmente wurden in die EcoRV Schnittstelle von pZero kloniert. Die Primer OI-14, OI-22 und OI-24 (grüne und rote Pfeile) enthielten zusätzliche EcoRI (E) und Sall (S) Schnittstellen. Die Sall Schnittstelle ließ sich nicht schneiden, daher wurden die Fragmente nach der Sequenzierung nur als EcoRI Fragmente isoliert. Sie wurden ungerichtet in die EcoRI Schnittstelle der Expressionsvektoren (pAD, pBD) kloniert. Die Orientierung der Fragmente in den Expressionsvektoren wurde durch eine Restriktion mit Bg/II (Bg) festgestellt. \( R \) (hellrosa) kodiert für die vollständige Aminosäuresequenz (AS 1-610). Rdel (dunkelrosa) ist ein Deletionsprodukt von \( R \) und kodiert für die Aminosäuren 1-388. Das Protein enthält keine basische-Helix-Loop Helix Region (rosa/schwarz gestreift), aber den Bereich, der für die Interaktion mit C1 benötigt wird (rosa/blau gestreift). Die Fusionsproteine wurden als AD-R, BD-R, AD-Rdel und BD-Rdel bezeichnet und enthalten die AD (Aktivierungsdomäne, gelb) oder BD (Binededomäne, grün) von Gal4. Die BD und AD Expressionsvektoren enthalten den ADH1 Promotor (P) und den ADH1 Terminator (T), des weiteren die auxotrophen Markergene LEU2 (Leu, grau) und TRP1 (Trp, hellgrau).
3.2.3 Herstellung der C1 Expressionsplasmide

(siehe Abbildung 9)

Die ca. 2 kb große C1-cDNA wurde mittels EcoRI Restriktion (2.2.2.3) aus der Plasmid DNA (2.2.2.2) pC1cLC28 ausgeschnitten und isoliert (2.2.3.3). Nach der Bestimmung der DNA Menge (2.2.2.5) erfolgte die Ligation (2.2.3.6) in die EcoRI (2.2.2.3) geschnittene Plasmid DNA (2.2.2.2) der Expressionsvektoren pAD und pBD.

Aufgrund der ungerichteten Klonierung ergaben sich zwei mögliche Orientierungen des Fragmentes im Vektor. Um die Orientierung festzustellen wurde aus 24 unabhängigen Bakterientransformanten die Plasmid DNA isoliert (2.2.2.1) und mit PstI restringiert (2.2.2.3). Die Restriktionsfragmente wurden anschließend elektrophoretisch aufgetrennt (2.2.2.4) und anhand des verwendeten Standards bestimmt (2.2.2.5).

Positive Bakterientransformanten enthalten die subklonierte cDNA, welche für das vollständige C1 Protein kodiert. Dieses C1 Protein besteht aus den Aminosäuren 1-273. Die Fusionsproteine mit der Aktivierungs- und Bindedomäne von Gal4 wurden als AD-C1 und BD-C1 bezeichnet und die korrespondierenden Expressionsplasmide als:

- pAD-C1 Plasmid # 33
- pBD-C1 Plasmid # 54

3.2.4 Herstellung der C1-I Expressionsplasmide

(siehe Abbildung 9)

Die ca. 1.1 kb große C1-I cDNA wurde mittels EcoRI Restriktion (2.2.2.3) aus der Plasmid DNA (2.2.2.2) pC1cCI53 ausgeschnitten und isoliert (2.2.3.3). Nach der Bestimmung der DNA Menge (2.2.2.5) erfolgte die Ligation (2.2.3.6) in die EcoRI (2.2.2.3) geschnittene Plasmid DNA (2.2.2.2) der Expressionsvektoren pAD und pBD.

Aufgrund der ungerichteten Klonierung ergaben sich zwei mögliche Orientierungen des Fragmentes im Vektor. Um die Orientierung festzustellen wurde aus 24 unabhängigen Bakterientransformanten die Plasmid DNA isoliert (2.2.2.1) und mit PstI restringiert (2.2.2.3). Die Restriktionsfragmente wurden anschließend elektrophoretisch aufgetrennt (2.2.2.4) und anhand des verwendeten Standards bestimmt (2.2.2.5).

Positive Bakterientransformanten enthalten die subklonierte cDNA, welche für das für das mutierte C1 Protein kodiert. Dieses C1–I Protein besteht aus den Aminosäuren 1-252 und enthält, im Gegensatz zu C1, keine funktionierende Aktivierungsdomäne. Des weiteren hat es
ausgetauschte und deletierte Aminosäuren. Die basischen Domäne, die für die Interaktion mit 
R benötigt wird, ist davon nicht betroffen.

Die Fusionsproteine mit der Aktivierungs- und Bindedomäne von Gal4 wurden als AD-Cl–I 
und BD-C1–I bezeichnet und die korrespondierenden Expressionsplasmide als:

\[
\begin{align*}
\text{pAD-Cl-I Plasmid} & \text{# 143} \\
\text{pBD-Cl-I Plasmid} & \text{# 168}
\end{align*}
\]
Klonierung in die Expressionsvektoren pAD und pBD

Abbildung 9: Schematische Darstellung der Herstellung der C1 und C1–I Expressionsplasmide

Die cDNAs von C1 (pC1cLC28) und C1–I (pC1cCI53) wurden als EcoRI Fragmente isoliert und ungerichtet in die EcoRI Schnittstelle der Expressionsvektoren (pAD, pBD) kloniert. Die Orientierung der Fragmente in den Expressionsvektoren wurde durch eine Restriktion mit PstI (Ps) festgestellt. C1 (blau) codiert für den funktionsfähigen Transkriptionsaktivator (AS 1-273). C1–I (blau kariert) ist eine Mutante von C1 (AS 1-252), die im Gegensatz zu C1 keine transkriptionsaktivierende Domäne (blau/schwarz gestreift) enthält. Der Bereich der für die Interaktion mit R ist sowohl in C1 als auch in C1–I (schwarz/weiß gestreift) vorhanden.

Die Fusionsproteine wurden als AD-C1, BD-C1, AD-C1–I und BD-C1–I bezeichnet und enthalten die AD (Aktivierungsdomeine, gelb) oder BD (Bindedomeine, grün) von Gal4. Die BD und AD Expressionsvektoren enthalten den ADH1Promotor (P) und den ADH1 Terminator (T), des weiteren die auxotrophen Markergene LEU2 (Leu, grau) und TRP1 (Trp, hellgrau).
3.2.5 **Herstellung der InD1 Expressionsplasmide**

(siehe Abbildung 10)

Die ca 2,2 kb \( InD \) cDNA wurde mittels \( EcoRI/ XhoI \) Restriktion (2.2.2.3) aus der Plasmid DNA \( InD 2.1 \) (2.2.2.2) ausgeschnitten und die Enden des Fragmentes anschließend aufgefüllt (2.2.3.1), damit sie kompatibel zu den Enden des Vektors sind. Nach der Isolierung des Fragmentes erfolgte die Bestimmung der DNA Menge und die Ligation (2.2.3.6) in die \( Smal \) (2.2.2.3) geschnittene Plasmid DNA (2.2.2.2) der Expressionsvektoren pAD und pBD.

Aufgrund der ungerichteten Klonierung ergaben sich zwei mögliche Orientierungen des Fragmentes im Vektor. Um die Orientierung festzustellen wurde aus 24 unabhängigen Bakterientransformanten die Plasmid DNA isoliert (2.2.2.1) und mit \( SalI \) restringiert (2.2.2.3). Die Restriktionsfragmente wurden anschließend elektrophoretisch aufgetrennt (2.2.2.4) und anhand des verwendeten Standards bestimmt (2.2.2.5).

Positive Bakterientransformanten enthalten die subklonierte cDNA, welche für das vollständige \( InD1 \) Protein kodiert. Dieses \( InD1 \) Protein besteht aus den Aminosäuren 1-690. Die Fusionsproteine mit der Aktivierungs- und Bindedomäne von Gal4 wurden als AD-\( InD1 \) und BD-\( InD1 \) bezeichnet und die korrespondierenden Expressionsplasmide als:

- pAD-\( InD1 \) Plasmid # 7
- pBD-\( InD1 \) Plasmid # 28

3.2.6 **Herstellung der InXS Expressionsplasmide**

(siehe Abbildung 10)

Die ca 2,2 kb große \( In \) cDNA wurde mittels \( NcoI/ EcoRI \) Restriktion aus der Plasmid DNA \( pBC277A\#7 \) (2.2.2.2) ausgeschnitten und die Enden des Fragmentes anschließend aufgefüllt (2.2.3.1), damit sie kompatibel zu den Enden des Vektors sind. Nach der Isolierung des Fragmentes erfolgte die Bestimmung der DNA Menge und die Ligation (2.2.3.6) in die \( EcoRI \) (2.2.2.3) geschnittene Plasmid DNA (2.2.2.2) der Expressionsvektoren pAD und pBD, dessen Enden ebenfalls aufgefüllt wurden.

Aufgrund der ungerichteten Klonierung ergaben sich zwei mögliche Orientierungen des Fragmentes im Vektor. Um die Orientierung festzustellen wurde aus 24 unabhängigen Bakterientransformanten die Plasmid DNA isoliert (2.2.2.1) und mit \( SalI \) restringiert (2.2.2.3). Die Restriktionsfragmente wurden anschließend elektrophoretisch aufgetrennt (2.2.2.4) und anhand des verwendeten Standards bestimmt (2.2.2.5).
Ergnisse

Positive Bakterientransformanten enthalten die subklonierte cDNA eines missgepleißten Transkriptes des *Intensifier* Allels *In*. Sie enthält u.a. Intron 2 Sequenzen, wodurch ein Stopp Codon im Leserahmen eingefügt wird. Das putative Protein dieser cDNA wird daher nur von den Exon 1 und 2 korresponierenden Sequenzen kodiert und besteht daher nur aus den Aminosäuren 1-147, anstatt der 685 AS des vollständigen *In* Proteins.

Die Fusionsproteine mit der Aktivierungs- und Bindedomäne von Gal4 wurden als AD-*InXS* und BD-*InXS* bezeichnet und die korrespondierenden Expressionsplasmide als:

- pAD-*InXS* Plasmid # 484
- pBD-*InXS* Plasmid # 489
Die cDNA von \textit{InD1} (InD 2.1) wurde mit EcoRI (E)/Xhol (X) ausgeschnitten. Das aufgefüllte Fragment wurde ungerichtet in die Smal (Sm) Schnittstelle der Expressionsvektoren pAD und pBD kloniert. Die cDNA von \textit{InXS} (pBC277A#7) wurde mit NcoI (N)/EcoRI ausgeschnitten. Das aufgefüllte Fragment wurde ungerichtet in die aufgefüllte EcoRI Schnittstelle der Expressionsvektoren pAD und pBD kloniert. Die Orientierung der Fragmente in den Expressionsvektoren wurde durch die Restriktion mit SalI (S) festgestellt. 

\textit{InD1} (orange) kodiert für das vollständige Protein (AS 1-690). Es enthält die basische-Helix-Loop-Helix Region (schwarz/orange schraffiert), die eine Homologie zu dem myc Transkriptionsfaktor \textit{R} aufweist. 

Bei der cDNA \textit{InXS} handelt es sich um die cDNA eines missgespleißten Transkripts. Sie enthält u.a. Intron 2 Sequenzen, wodurch ein Stopp Codon im Leserahmen eingefügt wird. Das putative \textit{InXS} Protein (hellgrün) dieser cDNA wird daher nur von den entsprechenden Exon 1 und 2 Sequenzen kodiert und besteht daher nur aus den Aminosäuren 1-147, anstatt der 685 AS des vollständigen \textit{In} Proteins.

Die Fusionsproteine wurden als AD-\textit{InD}, BD-\textit{InD}, AD-\textit{InXS} und BD-\textit{InXS} bezeichnet und enthalten die AD (Aktivierungsdomäne, gelb) oder BD (Bindedomäne, grün) von Gal4. Die BD und AD Expressionsvektoren enthalten den ADH1Promotor (P) und den ADH1 Terminator (T), des weiteren die auxotrophen Markergene LEU2 (Leu, grau) und TRP1 (Trp, hellgrau).
3.2.7 Herstellung der In Expressionsplasmide

Für die Herstellung der In Expressionsplasmide war kein vollständiger In cDNA Klon vorhanden. Daher wurde versucht eine In-ähnliche cDNA aus Teilen von In und InD1 herzustellen. Die Idee hierfür entstand aufgrund der hohen Homologie zwischen den Proteinen von In und InD1. Der Vergleich der Aminosäuresequenz (Abbildung 11) zeigt im aminoterminalen Proteinbereich viele konservierte und nichtkonservierte Aminosäureaustausche, der carboxyterminale Bereich ist identisch. Für das In-ähnliche Fusionsprotein sollte daher der aminoterminalen Bereich von In (In-am) mit dem carboxyterminalen Bereich von InD1 (InD-carb) zusammengeführt werden.

Für diese Fusion war eine direkte Klonierung der entsprechenden cDNA Fragmente nicht möglich, da die einzige mögliche Schnittstelle (MluI) in der cDNA von InD1 nicht vorhanden war. Andere Schnittstellen konnten nicht verwendet werden, da sie mehrmals in der Sequenz vorkommen. Aus diesen Gründen wurde beschlossen die entsprechenden Fragmente aus den cDNAs von In und InD1 per PCR zu amplifizieren und sie anschließend zu fusionieren.

3.2.7.1 Herstellung des Fusionsklons aus In und InD1

Der ca. 1,2 kb lange Bereich von In (In-am) wurde mittels PCR und Pfx-DNA Polymerase aus dem Plasmid pBC-BNL-139-RI mit den Primern Ol-27 und Ol-24 amplifiziert (2.2.3.5). Das PCR Produkt wurde in die EcoRV/SmalI geschnittene (2.2.2.3) Plasmid DNA (2.2.2.2) des Vektor pBluescript II SK+ ligiert und vollständig sequenziert (2.2.4). Das resultierende Plasmid mit dem korrekt amplifizierten In-am Fragment wurde als Plasmid #623 bezeichnet (Abbildung 12).

Der ca. 1 kb lange Bereich von InD (InD-carb) wurde mittels PCR und Pfx-DNA Polymerase aus dem Plasmid 2.1 InD mit den Primern Ol-53 und Ol-28 amplifiziert (2.2.3.5). Der 5′ Primer Ol-53 enthält eine zusätzliche MluI Schnittstelle, um die Fusion der In und InD1 Fragmente zu ermöglichen. Das PCR Produkt wurde in die EcoRV/SmalI geschnittene (2.2.2.3) Plasmid DNA (2.2.2.2) des Vektor pBluescript II SK+ ligiert und vollständig sequenziert (2.2.4). Das resultierende Plasmid mit dem korrekt amplifizierten InD-carb Fragment wurde als Plasmid #659 bezeichnet.

Für die Fusion der Fragmente wurde das In-am Fragment zunächst mittels Restriktion (2.2.2.3) mit MluI/HindIII aus der Plasmid DNA #623 ausgeschnitten und isoliert (2.2.3.3). Nach der Bestimmung der DNA Menge erfolgte die gerichtete Ligation (2.2.3.6) in die MluI/HindIII geschnittene Plasmid DNA #659 (2.2.2.2). Die HindIII Schnittstellen stammen hierbei aus dem Polylinker des Vektors pBluescript II SK+. Das resultierende Fragment,
Ergebnisse

bestehend aus In-am und InD-carb, wurde als Infus bezeichnet und ist im Plasmid #685 enthalten. Die Aminosäuresequenz befindet sich im Anhang (Abbildung 78, Seite 172).

Die Primer OL-27 und OL-28 enthielten zusätzliche BamHI Schnittstellen um die Klonierung für andere, im Rahmen dieser Arbeit durchgeführten Versuche, zu ermöglichen. Diese Schnittstellen wurden auch für die Subklonierung des Infus Fragmentes in die pAD und pBD Vektoren genutzt (Abbildung 13). Hierfür wurde das Infus Fragment mittels BamHI Restriktion (2.2.2.3) aus der Plasmid DNA #685 (2.2.2.1) ausgeschnitten. Damit die Enden kompatibel zu den Enden des Vektors sind mußten sowohl die Enden des Fragmentes als auch die Enden des Vektors aufgefüllt werden. Nach der Isolierung des Fragmentes erfolgte die Bestimmung der DNA Menge und die Ligation (2.2.3.6) in die SalI (2.2.2.3) geschnittene Plasmid DNA (2.2.2.2) der Expressionsvektoren pAD und pBD.

Aufgrund der ungerichteten Klonierung ergaben sich zwei mögliche Orientierungen des Fragmentes in den Vektoren. Um die Orientierung festzustellen wurde aus 24 unabhängigen Bakterientransformanten die Plasmid DNA isoliert (2.2.2.1) und mit PsI restringiert (2.2.2.3). Die Restriktionsfragmente wurden anschließend elektrophoretisch aufgetrennt (2.2.2.4) und anhand des verwendeten Standards bestimmt (2.2.2.5).

Positive Bakterientransformanten enthalten das subklonierte Infus Fragment, welches für die Aminosäuren 1-366 von In und für die Aminosäuren 373-690 von InD1 kodiert. Die Fusionsproteine mit der Aktivierungs- und Bindedomäne von Gal4 wurden als AD-Infus und BD-Infus bezeichnet und die korrespondierenden Expressionsplasmide als:

pAD-Infus Plasmid # 824
pBD-Infus Plasmid # 822
Ergebnisse

<table>
<thead>
<tr>
<th>Ind</th>
<th>DNA Sequenz</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>In</td>
<td>MAAGCGGGGAAAGALQSVAQSTGWTYSLRLLRCRQGALVNAEGYNGCAIRRTKTM</td>
<td>57</td>
</tr>
<tr>
<td>Ind1</td>
<td>MAAGCGGGGAAAGALQSVAQSTGWTYSLRLLRCRQGALVNAEGYNGCAIRRTKTM</td>
<td>60</td>
</tr>
<tr>
<td>In</td>
<td>TVRQPAGADGDEBTAARRSKRQOLKELYDLSLAAGSAAYDGGGGVCQPCQQOGQAAYVVF</td>
<td>114</td>
</tr>
<tr>
<td>Ind1</td>
<td>TVRQPAGADGDEBTAARRSKRQOLKELYDLSLAAGSAAYDGGGGVCQPCQQOGQAAYVVF</td>
<td>120</td>
</tr>
<tr>
<td>In</td>
<td>EPRPAALAPEDFTSTSWYLCASYCFPDAVGLGIAFAVRRHAVWLCQANKADSVF</td>
<td>174</td>
</tr>
<tr>
<td>Ind1</td>
<td>EPRPAALAPEDFTSTSWYLCASYCFPDAVGLGIAFAVRRHAVWLCQANKADSVF</td>
<td>180</td>
</tr>
<tr>
<td>In</td>
<td>FAALRSAQIOQTVACIFVGDGLIEHTTEKVEEDILEFQVRNIFVDQGHCAHIMFTTLSTG</td>
<td>234</td>
</tr>
<tr>
<td>Ind1</td>
<td>FAALRSAQIOQTVACIFVGDGLIEHTTEKVEEDILEFQVRNIFVDQGHCAHIMFTTLSTG</td>
<td>240</td>
</tr>
<tr>
<td>In</td>
<td>YSTTPTQNLHQQSOIQTGRSINLGDERNESDDDDGRIDLENNTENDSTRRHLFR</td>
<td>293</td>
</tr>
<tr>
<td>Ind1</td>
<td>YSTTPTQNLHQQSOIQTGRSINLGDERNESDDDDGRIDLENNTENDSTRRHLFR</td>
<td>299</td>
</tr>
<tr>
<td>In</td>
<td>DASAGNLSLTIGAASSGGLMLIANLTIACDEYHLRELSVDSL6SYLQDQGAEEAAAVEN</td>
<td>353</td>
</tr>
<tr>
<td>Ind1</td>
<td>DASAGNLSLTIGAASSGGLMLIANLTIACDEYHLRELSVDSL6SYLQDQGAEEAAAVEN</td>
<td>359</td>
</tr>
</tbody>
</table>

**Abbildung 11: Vergleich der Aminosäuresequenz von In und Ind1**

Durch den Vergleich der Aminosäuresequenz von In und Ind1 fallen die homologen und nichthomologen Bereiche auf. Der Hauptunterschied zwischen den beiden Proteinen liegt hierbei im aminoterminalen Bereich. Der carboxyterminale Bereich, beginnend vor der basischen Helix-Loop-Helix Region (Boxen), ist dagegen konserviert.

Die konservierten Aminosäure-Austausche sind in grün markiert, die nicht-konservierten in rot. Die Lage der MluI Schnittstelle, abgeleitet aus der In cDNA Sequenz, ist durch ein Dreieck markiert. Das Zeichen * markiert die letzte Aminosäure, die vom Exon 2 codiert wird.
Für die Herstellung der Expressionskonstrukte war kein vollständiger In cDNA Klon vorhanden. Daher wurde eine In-ähnliche cDNA aus Teilen von In (In-am) und InD1 (InD-carb) hergestellt. Die entsprechenden Bereiche wurden per PCR aus den cDNAs pBC-BNL-139-RI (In) und 2.1 InD amplifiziert und in die EcoRV (RV)/Smal (Sm) Schnittstelle des Vektors pBluescript II SK+ kloniert. Die Primer (grüne und rote Pfeile) OI-27 und OI-28 enthielten eine zusätzliche BamHI (B) Schnittstelle, der Primer OI-53 eine zusätzliche MluI (M) Schnittstelle. Nachdem die Fragmente vollständig sequenziert wurden, erfolgte die Fusion der Fragmente. Hierzu wurde das In-am Fragment mittels Restriktion mit MluI/HindIII (H) aus dem Plasmid #623 ausgeschnitten und anschließend gerichtet in die MluI HindIII Schnittstelle des Plasmids #659 mit dem InD-carb Fragment kloniert. Das resultierende Fusionsfragment, bestehend aus In-am und InD-carb, wurde als InFus bezeichnet. Die Aminosäuresequenz befindet sich im Anhang (Abbildung 78, Seite 172).
Abbildung 13: Schematische Darstellung der Herstellung der InFus Expressionsplasmide

Das InFus Fragment wurde mittels Restriktionverdau mit BamHI aus dem Plasmid #685 ausgeschnitten und die Enden des Fragmentes aufgefüllt. Das Fragment wurde anschließend ungerichtet in die aufgefüllte SalI (S) Schnittstelle der Vektoren pAD und pBD einkloniert. Die Orientierung des Fragmentes in den Vektoren wurde durch Restriktion mit PstI (Ps) festgestellt. Das subklonierte InFus kodiert für die Aminosäuren 1-366 von In (In-am) und für die Aminosäuren 373-690 von InD1 (InD-carb). Es enthält die basische-Helix-Loop-Helix Region (schwarz/orange schildartet), die eine Homologie zu dem myc Transkriptionsfaktor R aufweist.

Die Fusionsproteine wurden als AD-Fus und BD-Fus bezeichnet und enthalten die AD (Aktivierungsdomaine, gelb) oder BD (Boundedomaine, grün) von Gal4. Die BD und AD Expressionsvektoren enthalten den ADH1Promotor (P) und den ADH1 Terminator (T), des weiteren die auxotrophen Markergene LEU2 (Leu, grau) und TRP1 (Trp, hellgrau).

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Fusionsprotein</th>
<th>schematische Darstellung der Fusionsproteine</th>
</tr>
</thead>
<tbody>
<tr>
<td>pAD</td>
<td>AD</td>
<td></td>
</tr>
<tr>
<td>pBD</td>
<td>BD</td>
<td></td>
</tr>
<tr>
<td>pAD-R</td>
<td>AD-R</td>
<td></td>
</tr>
<tr>
<td>pBD-R</td>
<td>BD-R</td>
<td></td>
</tr>
<tr>
<td>pAD-Rdel</td>
<td>AD-Rdel</td>
<td></td>
</tr>
<tr>
<td>pBD-Rdel</td>
<td>BD-Rdel</td>
<td></td>
</tr>
<tr>
<td>pAD-C1</td>
<td>AD-C1</td>
<td></td>
</tr>
<tr>
<td>pBD-C1</td>
<td>BD-C1</td>
<td></td>
</tr>
<tr>
<td>pAD-C1-I</td>
<td>AD-C1-I</td>
<td></td>
</tr>
<tr>
<td>pBD-C1-I</td>
<td>BD-C1-I</td>
<td></td>
</tr>
<tr>
<td>pAD-InD1</td>
<td>AD-InD1</td>
<td></td>
</tr>
<tr>
<td>pBD-InD1</td>
<td>BD-InD1</td>
<td></td>
</tr>
<tr>
<td>pAD-InXS</td>
<td>AD-InXS</td>
<td></td>
</tr>
<tr>
<td>pBD-InXS</td>
<td>BD-InXS</td>
<td></td>
</tr>
<tr>
<td>pAD-InFus</td>
<td>AD-InFus</td>
<td></td>
</tr>
<tr>
<td>pBD-InFus</td>
<td>BD-InFus</td>
<td></td>
</tr>
<tr>
<td>pGal4</td>
<td>Gal4</td>
<td></td>
</tr>
<tr>
<td>p53</td>
<td>p53</td>
<td></td>
</tr>
<tr>
<td>pSV40</td>
<td>SV40</td>
<td></td>
</tr>
<tr>
<td>pLamin C</td>
<td>Lamin C</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 4: Übersicht der zu testenden Expressionsplasmide und ihrer Fusionsproteine

Die Tabelle zeigt eine Übersicht über die hergestellten Expressionsplasmide und die vom Hersteller mitgelieferten Kontrollen pGal4, p53, pSV40 und pLamin C. Die Fusionsproteine sind in der rechten Spalte schematisch dargestellt, wobei der gelbe Kreis das Symbol für die Aktivierungsdomaine von Gal4 (AD) und der grüne Kreis das Symbol für die DNA Bindedomaine von Gal4 (BD) ist.
Ergebnisse

3.3 Vorversuche

3.3.1 Der Hefestamm YRG-2

Der im Two Hybrid System verwendete Hefestamm YRG-2 trägt Mutationen in den Genen \( LEU2 \), \( TRP1 \) und \( HIS3 \) und kann daher die Aminosäuren Leucin, Tryptophan und Histidin nicht synthetisieren. Um festzustellen, ob der richtige Stamm für die durchzuführenden Versuche vorlag, wurde er auf seine Fähigkeit getestet, in Selektionsmedium zu wachsen, dem Leucin, Tryptophan und Histidin fehlen. Es wurde zu keinem Zeitpunkt ein Wachstum beobachtet. Erst nach Transformation von kompetenten Hefezeellen (2.2.5.3) mit der DNA der entsprechenden Expressionsplasmide lagen funktionsfähige \( LEU2 \), \( TRP1 \) und \( HIS3 \) Gene vor. Diese Transformanten konnten auf dem Selektionsmedium wachsen. Demzufolge handelt es sich bei den nichttransformierten Zellen um den richtigen Hefestamm YRG-2.

3.3.2 Western Blot Analysen

Mit Western Blot Analysen sollte getestet werden, ob in den Transformanten die Fusionsproteine synthetisiert werden. Damit sollte ausgeschlossen werden, daß der Grund für einen negativen Nachweis auf eine \textit{in vivo} Interaktion, nicht ein fehlendes Fusionsprotein ist. Für einen Vortest wurden Transformanten hergestellt, die entweder das Plasmid pGal4 (natives Gal4) oder die beiden Plasmide pAD (Aktivierungsdomäne von Gal4) und pBD (DNA Bindedomäne von Gal4) enthielten. Von diesen Transformanten und dem nicht transformierten YRG-2 Hefestamm wurden die Gesamtproteine isoliert (2.2.5.6) und elektrophoretisch aufgetrennt (2.2.6.1). Die Proteine parallel gelaufener SDS-Polyacrylamidgel wurden angefärbt (2.2.6.2) oder auf eine Nitrozellulosemembran übertragen (2.2.6.3). Die Membran wurde anschließend einer Immuno Detektion unterzogen (2.2.6.4). Für die Immunodetektion wurden monoklonale Antikörper gegen die Aktivierungsdomäne und DNA Bindedomäne verwendet. Die Analyse des Western Blots zeigte eine starke Kreuzhybridisierung der Antikörper mit Proteinen aus dem Hefestamm YRG-2. Es wurden viele Banden detektiert, die eine eindeutige Zuordnung nicht ermöglichten (Daten nicht gezeigt). Wiederholungen mit unterschiedlichen Konzentrationen des ersten und zweiten Antikörpers zeigten die gleichen Ergebnisse (Daten nicht gezeigt).

Aufgrund dieser Ergebnisse war es nicht möglich, die Fusionsproteine in weiteren Transformanten nachzuweisen. Es wurden daher keine Western Blot Analysen der im Rahmen dieser Arbeit hergestellten Transformanten, durchgeführt.
3.4 Das Two Hybrid System


Von jedem der hergestellten Hefestämme wurden zwei bis vier Transformanten auf die \( HIS3 \) Aktivierung untersucht. Dazu wurden sie auf Histidinmangelmedium ausgestrichen (2.2.5.1) und durch Wachstum identifiziert. Für den quantitativen Nachweis der \( \beta \)-Galaktosidaseaktivität wurden von den selben Transformanten Flüssigkulturen hergestellt. Aus diesen wurden die Gesamtproteine isoliert und für den Enzymassay mit dem Substrat versetzt (2.2.5.5).

Aus den für die entsprechenden Expressionplasmide erhaltenen relativen Einheiten der \( \beta \)-Galaktosidaseaktivität wurden die Mittelwerte gebildet. Der hierbei erhaltene Mittelwert von Hefetransformanten mit pGal4 Expressionsplasmid wurde gleich 100\% gesetzt. Alle übrigen gemessenen Mittelwerte eines Versuches wurden auf diesen Wert bezogen.
Abbildung 14: Two Hybrid System

Durch die Interaktion der Fusionsproteine BD-X und AD-Y in den Hefetransformanten wird die Funktion des Transkriptionsaktivators Gal4 weitgehend wiederhergestellt. Das führt zu einer Aktivierung (a) des auxotrophen Reportergens \( H\text{IS3} \) (hellgrüne Box) und zu einer Aktivierung (b) des \( lacZ \) Reportergens (grüne Box) Hefetransformanten mit interagierenden Proteinen können daher auf Histidinmangelmedium wachsen und zeigen eine \( \beta \)-Galaktosidaseaktivität. X und Y stehen für die Proteine, die auf eine mögliche Interaktion getestet werden sollen, sie sind mit der AD (Aktivierungsdomäne von Gal4) oder BD (DNA Bindedomäne von Gal4) fusioniert, UAS (upstream activating sequence = DNA Bindestelle der Gal4 DNA Bindedomäne)

### 3.5 Kontrollen

Als Kontrollen für die Two Hybrid Experimente können die Expressionsplasmide p53, pSV40, pLamin C und pGal4 (Abbildung 15) verwendet werden. Das pGal Expressionsplasmid kodiert hierbei für das vollständige native Gal4 Protein. Laut Hersteller (Stratagene) sind das native Gal4 und die in vivo interagierenden Fusionsproteine p53 und pSV40 in der Lage, die Reportergene \( H\text{IS3} \) und \( lacZ \) zu aktivieren. Hefetransformanten, die diese Proteine synthetisieren, sollten demzufolge auf Histidinmangelmedium wachsen und eine \( \beta \)-Galaktosidaseaktivität aufweisen. Diese Proteine eignen sich damit als positive Kontrollen für die Two Hybrid Experimente.
Im Gegensatz dazu sind die Fusionsproteine pSV40 und Lamin C nicht in der Lage, zu interagieren und verursachen demzufolge keine Aktivierung der Reportergene. Das gleiche gilt für die nicht-fusionierten Proteindomänen (AD und BD) von Gal4. Hefetransformanten, die diese Proteine synthetisieren, sollen demzufolge nicht auf Histidinmangelmedium wachsen und keine β-Galaktosidaseaktivität zeigen. Sie eignen sich damit als negative Kontrollen für die Two Hybrid Experimente.

Abbildung 15: Kontrollen des Two Hybrid Systems

Durch das native Gal4 (a) und die in vivo interagierenden Fusionsproteine p53 und pSV40 (b) werden die Reportergene HIS3 und lacZ aktiviert (grüne Box). Hefetransformanten, die diese Proteine synthetisieren, wachsen demzufolge auf Histidinmangelmedium und zeigen eine β-Galaktosidaseaktivität. Diese Proteine eignen sich damit als positive Kontrollen für das Two Hybrid System.

Abbildungs 15: Kontrollen des Two Hybrid Systems

Im Gegensatz dazu sind die Fusionsproteine pSV40 und Lamin C nicht in der Lage zu interagieren (c). Das gleiche gilt für die nichtfusionierten AD- (Aktivierungsdomäne) und BD- (DNA Bindedomäne) Proteine von Gal4 (d). Hefetransformanten, die diese Proteine synthetisieren, können die Reportergene HIS3 und lacZ (weiße Box) nicht aktivieren. Diese Hefetransformanten wachsen demzufolge nicht auf Histidinmangelmedium und zeigen keine β-Galaktosidaseaktivität. Sie eignen sich damit als negative Kontrollen für das Two Hybrid System.

UAS (upstream activating sequence = DNA Bindestelle der Gal4 DNA Bindedomäne)

Farbc ode: natives Gal4 (Fusion aus gelben und grünem Kreis), pSV40 (rosa Oval), p53 (gemustertes Oval), pLamin C (graues Oval), AD (Aktivierungsdomäne, gelber Kreis), BD (DNA Bindedomäne, grüner Kreis)
Um festzustellen, ob die vom Hersteller mitgelieferten Kontrollen funktionieren, wurden die entsprechenden Expressionsplasmide zunächst in den Hefestamm YRG-2 eingebracht und hinsichtlich der Expressionsplasmide selektiert (2.2.5.3).

Anschließend wurden von jeder Transformation zwei bis vier Kolonien auf die Reportergenaktivität von HIS3 untersucht (2.2.5.1).


Abbildung 16: HIS3 Reportergenaktivierung der Kontrollen


Im Gegensatz hierzu, waren die Hefetransformanten, die Lamin C und SV40 synthetisieren, nicht in der Lage auf Histidinmangelmedium zu wachsen (c, g). Die gleiche Beobachtung wurde bei Hefetransformanten gemacht, die sowohl AD als auch BD herstellen (d, h). In beiden Hefestämme wird demzufolge das HIS3 Reportergen nicht aktiviert.

(a-d) Typisches Wachstum eines ausgestrichenen Hefetransformanten auf Histidinmangelmedium.
(e-h) Schematische Darstellung der Fusionsproteine in den entsprechenden Hefetransformanten.
Der quantitative Nachweis der β-Galaktosidaseaktivität (2.2.5.5) zeigt, daß Hefetransformanten mit dem Gal4 Protein ein aktives lacZ Reportergen enthalten (Abbildung 17). Die gleiche Beobachtung wurde bei Hefetransformanten gemacht, die p53 und pSV40 Proteine synthetisieren. Diese zeigen jedoch mit nur 3% eine wesentlich niedrigere Aktivität im Vergleich zu den Transformanten mit Gal4 Protein.


Abbildung 17: lacZ Reportergenaktivierung der Kontrollen

Die Expression des Reportergens lacZ wurde bei zwei bis vier unabhängigen Transformanten durch quantitative Messung der β-Galaktosidaseaktivität festgestellt und gemittelt. Der hierbei erhaltene Wert von Hefetransformanten mit dem Gal4 Protein wurde gleich 100% gesetzt. Alle übrigen gemessenen Mittelwerte wurden auf diesen Wert bezogen.

Farbcodex: natives Gal4 (Fusion aus gelben und grünen Kreis), pSV40 (rosa Oval), p53 (gemustertes Oval), pLamin C (graues Oval), AD (Aktivierungsdomäne, gelber Kreis), BD (DNA Bindedomäne, grüner Kreis)
Aus den Untersuchungen geht hervor, daß die AD und BD Proteine alleine nicht in der Lage sind beide Reportergene zu aktivieren. Eine Genaktivierung erfolgte nur als Fusion mit den p53 und SV40 Proteinen. Sie ist damit auf die Interaktion der beiden Proteine zurückzuführen. Im Gegensatz dazu interagieren die Fusionsproteine pSV40 und Lamin C nicht, da sie nicht in der Lage sind, die beiden Reportergene zu aktivieren.
Diese Ergebnisse bestätigen hiermit, daß die untersuchten Transformanten und ihre synthetisierten Proteine geeignete Kontrollen für die anschließenden Untersuchungen darstellen. Sie wurden daher in jedem durchgeführten Experiment verwendet.

3.5.1 Test der AD-und BD-Fusionsproteine auf Hintergrundaktivität

Bevor die Interaktion von zwei Fusionsproteinen getestet werden kann, muss in einem Vorversuch festgestellt werden, ob die zu testenden Fusionsproteine BD-X oder AD-Y bereits alleine in der Lage sind die Reportergene HIS3 und lacZ zu aktivieren und so eine Hintergrundaktivität erzeugen können.

Würde mit den BD-X Fusionsproteinen allein eine Aktivierung der Reportergene beobachtet werden, so könnte das auf eine interne funktionelle Aktivierungsdomäne im Protein X hinweisen. Würde dagegen mit den AD-Y Fusionsproteinen eine Aktivierung beider Reportergene beobachtet werden, so könnte das auf eine interne funktionelle DNA Bindedomäne im Protein Y hinweisen (Abbildung 18).

Abbildung 18: Test der Fusionsproteine auf Autoaktivierung der Reportergene

Transformanten (a), die entweder nur BD-Fusionsproteine oder AD-Fusionsproteine synthetisieren, sollten in Abwesenheit eines Intaktektionspartners nicht in der Lage sein, die Reportergene (weiße Box) zu aktivieren. (b) Würde mit den BD-X Fusionsproteinen eine Aktivierung der Reportergene beobachtet, so könnte das auf eine interne funktionelle Aktivierungsdomäne (AD) im Protein X hinweisen. Würde dagegen mit den AD-Y Fusionsproteinen eine Aktivierung der Reportergene beobachtet werden, so könnte das auf eine interne funktionelle DNA Bindedomäne (BD) im Protein Y hinweisen.
Für diesen Vorversuch wurden Transformanten hergestellt die entweder nur die BD-X oder AD-Y Fusionsproteine synthetisieren (2.2.5.3). Diese Transformanten wurden zunächst auf eine Hintergrundaktivität des HIS3 untersucht (2.2.5.1) und mit dem Wachstum der positiven und negativen Kontrollen verglichen.

Die Hintergrundaktivität von HIS3 kann mittels Zugabe von 3-amino-triazol (3AT) in das Medium unterdrückt werden. Für jedes Fusionsprotein muss dazu die optimale Menge an 3AT ermittelt werden, da eine zu hohe Konzentration die später zu testende Interaktion zweier Proteine miteinander negativ beeinflussen kann. Zuwenig 3AT würde eventuell zu falsch positiven Nachweisen führen.

Um herauszufinden, ob die verschiedenen Fusionsproteine eine HIS3 Hintergrundaktivität verursachen und sich diese unterdrücken lässt, wurden die entsprechenden Transformanten auf Histidinmangelmedium, mit unterschiedlichen Konzentrationen an 3AT (0 mM, 5 mM/ 15 mM/ 45 mM/ 60 mM), angezogen (Abbildung 19).

Die Transformanten der positiven Kontrolle Gal4 zeigen ein deutliches Wachstum bei Konzentrationen von 60 mM 3AT. Transformanten der positiven Kontrolle p35 + SV40 wachsen dagegen nur, wenn kein 3AT im Medium vorhanden ist (Daten nicht gezeigt). Die Transformanten der negativen Kontrollen SV40 + Lamin C und AD + BD zeigen dagegen erwartungsgemäß überhaupt kein Wachstum auf Histidinmangelmedium.

Fast alle Transformanten, die entweder AD- oder BD-Fusionsproteine enthalten, verhalten sich wie die negativen Kontrollen und zeigen bereits kein Wachstum auf Histidinmangelmedium ohne 3AT (Daten nicht gezeigt). Zwei Ausnahmen wurden beobachtet: Transformanten die BD-R Fusionsproteine enthalten, zeigen noch ein schwaches Wachstum auf Medium mit Konzentrationen von bis zu 5 mM 3AT. Ein besseres Wachstum wurde bei Transformanten beobachtet, die BD-Rdel Fusionsproteine enthalten. Sie wachsen noch schwach auf 3AT haltigem Medium mit Konzentrationen von bis zu 45 mM 3AT.
Abbildung 19: HIS3 Reportergenaktivierung der BD-R und BD-Rdel Transformanten

(a) Die Kontrollen und die Hefetransformanten mit BD-R Fusionsprotein wurden auf Histidinmangelmedium mit unterschiedlich hohen Konzentrationen an 3AT (5-60 mM) angezogen.

(b) Die Kontrollen und die Hefetransformanten mit BD-Rdel Fusionsprotein wurden auf Histidinmangelmedium mit unterschiedlich hohen Konzentrationen an 3AT (5-60 mM) angezogen.

(c) Schematische Darstellung der ausgestrichenen Hefetransformanten

Transformanten, die BD-R Fusionsprotein (5, 6) enthielten, zeigen ein schwaches Wachstum auf 3AT haltigem Medium mit Konzentrationen von bis zu 5 mM 3AT. Ein besseres Wachstum wurde bei Transformanten beobachtet, die BD-Rdel (7, 8) Fusionsproteine enthielten. Sie wachsen noch schwach auf 3AT haltigem Medium mit Konzentrationen von bis zu 45 mM 3AT. Die Transformanten der positiven Kontrolle Gal4 (1) zeigen noch ein deutliches Wachstum bei Konzentrationen von 60 mM 3AT. Die Transformanten der negativen Kontrolle Gal4 (1) zeigten eindeutig kein Wachstum auf Histidinmangelmedium.

Die Transformanten der negativen Kontrollen SV40 + Lamin C und AD + BD zeigen dagegen erwartungsgemäß überhaupt kein Wachstum auf Histidinmangelmedium.

AD (Aktivierungsdomäne, gelber Kreis) von Gal4, BD (DNA Bindedomäne, grüner Kreis) von Gal4
Aus den Untersuchungen geht hervor, daß die Aktivierung des HIS3 Gens durch das native Gal4 Protein sehr stark ist, da die Aktivität auch durch hohe Konzentrationen von 3AT nicht vollständig gehemmt werden kann. Dagegen ist die Aktivierung von HIS3 durch die p53 + SV40 Proteine so schwach, daß bereits geringe Konzentrationen (5mM) von 3AT für eine Unterdrückung ausreichen. Die negativen Kontrollen SV40 + Lamin C und AD + BD zeigen erwartungsgemäß kein aktives HIS3 Reportergen.

Bis auf zwei Ausnahmen waren die synthetisierten BD- oder AD Fusionsproteine nicht in der Lage das HIS3 Reportergen zu aktivieren. Die Ausnahmen waren die BD-R und BD-Rdel Fusionsproteine.

Die Hintergrundexpression des Reportergens lacZ wurde durch quantitative Messung der β-Galaktosidaseaktivität (2.2.5.5) festgestellt.

Abbildung 20: lacZ Hintergrundaktivität bei Transformanten mit BD-Fusionsproteinen

Die Expression des Reportergens lacZ wurde von zwei bis vier unabhängigen Transformanten durch quantitative Messung der β-Galaktosidaseaktivität festgestellt und gemittelt. Der hierbei erhaltene Wert von Hefetransformanten mit Gal4 Protein wurde gleich 100% gesetzt. Alle übrigen gemessenen Mittelwerte wurden auf diesen Wert bezogen.


AD von Gal4 (Aktivierungsdomäne, gelber Kreis), BD von Gal4 (DNA Bindedomäne, grüner Kreis)
Ergebnisse

Abbildung 21: lacZ Hintergrundaktivität bei Transformanten mit AD-Fusionsproteinen

Die Expression des Reportergens lacZ wurde von zwei bis vier unabhängigen Transformanten durch quantitative Messung der β-Galaktosidaseaktivität festgestellt und gemittelt. Der hierbei erhaltene Wert von Hefetransformanten mit Gal4 Protein wurde gleich 100% gesetzt. Alle übrigen gemessenen Mittelwerte wurden auf diesen Wert bezogen.

Bei den AD-Transformanten wurde keine β-Galaktosidaseaktivität detektiert. Die in ihnen synthetisierten Fusionsproteine sind demzufolge nicht in der Lage, das lacZ Reporter gen zu aktivieren.

AD von Gal4 (Aktivierungsdomäne, gelber Kreis), BD von Gal4 (DNA Bindedomäne, grüner Kreis)


Entgegen den Erwartungen, wurde weder mit den BD-C1 noch mit den AD-C1 Fusionsproteinen, eine Hintergrundaktivität festgestellt. Dieses könnte auf eine veränderte Faltung des C1 Proteins, durch die Fusion mit der AD oder BD von Gal4, zurückzuführen sein.

3.5.2 Test der Fusionsproteine auf Interaktion mit der BD oder AD von Gal4


Abbildung 22: Test der Fusionsproteine auf Interaktion mit der AD oder BD von Gal4

Mit diesem Test soll festgestellt werden (a), ob eine Interaktion der Proteine X (rot) bereits nur mit der AD (Aktivierungsdomäne, gelber Kreis) von Gal4 erfolgt und dadurch die Reportergene HIS3 und lacZ aktiviert werden. Des weiteren soll festgestellt werden (b), ob eine Interaktion der Proteine Y (blau) bereits nur mit der BD (Bindedomäne, grüner Kreis) von Gal4 erfolgt und dadurch beide Reportergene aktiviert werden. Hierbei sind X und Y die auf Interaktion zu testenden Proteine.

Für diesen Versuch wurden die entsprechenden Transformanten hergestellt (2.2.5.3) und diese anschließend auf die Aktivität des HIS3 - (2.2.5.1) und lacZ-Gene (2.2.5.5) untersucht. Transformanten, die BD-R und BD-Rdel Proteine synthetisieren, zeigen sowohl Wachstum auf Histidinmangelmedium als auch eine β-Galaktosidaseaktivität (Abbildung 23, Abbildung 24). Dieses ist auf die bereits beobachtete Autoaktivierung beider Reportergene durch die Proteine BD-R und BD-Rdel zurückzuführen (Abbildung 19, Abbildung 20).

Ergebnisse

Abbildung 23: lacZ Reportergenaktivierung bei Transformanten mit der AD und diversen BD-Fusionsproteinen

Die Expression des Reportergens lacZ wurde von zwei bis vier unabhängigen Transformanten durch quantitative Messung der β-Galaktosidaseaktivität festgestellt und gemittelt. Der hierbei erhaltene Wert von Hefetransformanten mit Gal4 Protein wurde gleich 100% gesetzt. Alle übrigen gemessenen Mittelwerte wurden auf diesen Wert bezogen.

Nur die BD-R und BD-Rdel Transformanten zeigten eine β-Galaktosidaseaktivität und damit ein aktives lacZ Reportergen. Dieses ist auf die bereits beobachtete Hintergrundaktivierung von HIS3 durch die Proteine BD-R und BD-Rdel zurückzuführen.


AD von Gal4 (Aktivierungsdomain, gelber Kreis), BD von Gal4 (DNA Bindedomaine, grüner Kreis)
Abbildung 24: lacZ Reportergenaktivierung bei Transformanten mit der BD und diversen AD-Fusionsproteinen

Die Expression des Reportergens lacZ wurde von zwei bis vier unabhängigen Transformanten durch quantitative Messung der β-Galaktosidaseaktivität festgestellt und gemittelt. Der hierbei erhaltene Wert von Hefetransformanten mit Gal4 Protein wurde gleich 100% gesetzt. Alle übrigen gemessenen Mittelwerte wurden auf diesen Wert bezogen.


AD von Gal4 (Aktivierungsdomäne, gelber Kreis), BD von Gal4 (DNA Bindedomäne, grüner Kreis)
### 3.6 Test auf in vivo Interaktion der Fusionsproteine


Die untersuchten Kombinationen der Fusionsproteine sind in Tabelle 5 dargestellt.

**Tabelle 5: Durchgeführte Kombinationen für den Test auf *in vivo* Interaktion**

<table>
<thead>
<tr>
<th>pAD-Fusionsproteine</th>
<th>AD-R</th>
<th>AD-Rdel</th>
<th>AD-InXS</th>
<th>AD-InFus</th>
<th>AD-InD1</th>
<th>AD-C1</th>
<th>AD-C1-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD-R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD-Rdel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD-InXS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BD-InFus</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BD-InD1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BD-C1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BD-C1-I</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>


Dabei wurde speziell darauf geachtet, ob es Unterschiede in dem Verhalten der Proteine als BD-Fusion oder AD-Fusion gibt (Prinzip der reziproken Kombination, Abbildung 25). Möglicherweise lässt sich eine Interaktion der Proteine X und Y nur nachweisen, wenn X mit der AD fusioniert ist, aber nicht, wenn X an die BD fusioniert ist. Der Grund hierfür wäre z.B. eine veränderte Faltung des zu untersuchenden Proteins durch die Fusion mit der AD oder BD.
Abbildung 25: reziproke Kombination der Fusionsproteine X und Y

Transformanten, die gleichzeitig BD-Fusionsproteine und AD-Fusionsproteine synthetisieren werden auf die Reportergenaktivierung untersucht. Hierbei könnten Unterschiede festgestellt werden. Möglicherweise lässt sich eine Interaktion der Proteine X (rotes oval) und Y (blaues oval) nur nachweisen wenn X mit der AD (Aktivierungsdomaine, gelber Kreis) fusioniert ist, aber nicht wenn X an die BD (Bindedomaine, grüner Kreis) fusioniert ist. Der Grund hierfür wäre z. B. eine veränderte Faltung der zu untersuchenden Proteine in Fusion mit der AD oder BD.

3.6.1 Transformanten mit dem BD-C1 Fusionsprotein und diversen AD-Fusionsproteinen

(Kombinationen siehe auch Tabelle 5)

Für diesen Versuch wurden die entsprechenden Transformanten hergestellt (2.2.5.3). Diese wurden zunächst auf die Aktivität des HIS3 Reportergens untersucht (2.2.5.1). Transformanten, die zusätzlich zum BD-C1 Fusionsprotein noch AD-R, AD-Rdel, AD-InFus oder AD-InD1 synthetisieren, zeigen ein deutliches Wachstum auf Histidinmangelmedium und besitzen damit ein aktives HIS3 Reportergen (Abbildung 26). Das Ergebnis deutet darauf hin, daß die in den Hefen synthetisierten Proteine, miteinander interagieren. Alle anderen Transformanten zeigten kein Wachstum und besitzen demzufolge kein aktives HIS3 Reportergen.

Abbildung 26: HIS3 Reportergenaktivierung der Transformanten mit BD-C1 Fusionsprotein und verschiedenen AD-Fusionsproteinen

Der Hefestamm YRG-2 wurde mit den verschiedenen Kontrollplasmiden transformiert. Die Transformanten wurden anschließend hinsichtlich ihres Wachstums auf Histidinmangelmedium untersucht. Transformanten, die zusätzlich zum BD-C1 Fusionsprotein noch das AD-R (a, e), AD-Rdel (b, f), AD-InFus (c, g) oder AD-InD1 (d, h) synthetisieren, sind in der Lage, auf Histidinmangelmedium zu wachsen. Das deutet darauf hin, daß die in den Hefen synthetisierten Proteine miteinander interagieren können und dadurch das HIS3 Reportergen aktivieren.

(a-d) Typisches Wachstum eines ausgestrichenen Hefetransformanten auf Histidinmangelmedium.
(e-h) Schematische Darstellung der Fusionsproteine in den entsprechenden Hefetransformanten. AD von Gal4 (Aktivierungsdomaine, gelber Kreis), BD von Gal4 (DNA Bindedomaine, grüner Kreis)
Die Expression des Reportergens *lacZ* wurde durch quantitative Messung der β-Galaktosidase untersucht (2.2.5.5).


Bei allen anderen Transformanten wurde keine β-Galaktosidaseaktivität nachgewiesen.

Aus den Untersuchungen geht hervor, daß die Reportergene *HIS3* und *lacZ* durch die gemeinsame Expression der Fusionsproteine BD-*C1* und AD-*R* aktiviert werden. Somit ist von einer Interaktion dieser Proteine auszugehen.

Aus den Untersuchungen geht weiter hervor, daß BD-*C1* des weiteren mit AD-*Rdel*, AD-*Ind1* und AD-*Infus* interagieren kann. Eine Interaktion von BD-*C1* mit AD-*IndX5* scheint nicht zu erfolgen, da keines der beiden Reportergene aktiviert wurde. Aufgrund der Beobachtung, daß BD-*C1* ebenfalls mit AD-*C1* keine Reportergenaktivierung zur Folge hat, könnte vermutet werden, daß das C1 keine Homodimeren bilden kann.

Wird die Stärke der Aktivierung des *lacZ* Reportergens als Maß für die Stärke der Interaktion genommen, so deutet das auf eine bessere Interaktion von BD-*C1* mit AD-*R*, als BD-*C1* mit AD-*Rdel* hin. Im Vergleich hierzu, scheint die Interaktion von BD-*C1* mit AD-*Ind1* oder AD-*Infus* nur sehr schwach zu sein.
Die Expression des Reportergens *lacZ* wurde von zwei bis vier unabhängigen Transformanten durch quantitative Messung der β-Galaktosidaseaktivität festgestellt und gemittelt. Der hierbei erhaltene Wert von Hefetransformanten mit Gal4 Protein wurde gleich 100% gesetzt. Alle übrigen gemessenen Mittelwerte wurden auf diesen Wert bezogen.


AD von Gal4 (Aktivierungsdomäne, gelber Kreis), BD von Gal4 (DNA Bindedomäne, grüner Kreis)
Die Tabelle 6 und Abbildung 28 geben eine Übersicht über die hier dargestellten Ergebnisse.

**Tabelle 6: Interaktion des BD-C1 Fusionsproteins mit verschiedenen AD-Fusionsproteinen**

<table>
<thead>
<tr>
<th>AD-Fusionsproteine</th>
<th>AD-R</th>
<th>AD-Rdel</th>
<th>AD-InXS</th>
<th>AD-InFus</th>
<th>AD-InD1</th>
<th>AD-C1</th>
<th>AD-C1-I</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>BD-C1</strong></td>
<td>+++</td>
<td>+++</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>NA</td>
</tr>
</tbody>
</table>

+ Aktivierung der ReporterGene HIS3 und lacZ. Die Anzahl der + gibt die Stärke an der Expression an.
- Keine Aktivierung der ReporterGene HIS3 und lacZ
NA nicht analysiert

**Abbildung 28: Interaktion des BD-C1 Fusionsproteins mit verschiedenen AD-Fusionsproteinen**

Die BD-C1 Fusionsproteine, die mit den AD-Fusionsproteinen interagieren sind überlappend dargestellt. Fusionsproteine die nicht interagieren sind entfernt voneinander dargestellt. AD von Gal4 (Aktivierungsdomäne, gelber Kreis), BD von Gal4 (DNA Bindedomäne, grüner Kreis)

Anhand der hier dargestellten Ergebnisse stellte sich die Frage, ob mit der C1 Mutante C1-I die gleichen Interaktionspartner und Interaktionsstärken nachgewiesen werden können oder ob es Unterschiede gibt. Das C1-I Protein besitzt, im Gegensatz zu C1, keine endogene Aktivierungsdomäne.
3.6.2 Transformanten mit dem BD-C1-I Fusionsprotein und verschiedenen AD-Fusionsproteinen

(Kombinationen siehe auch Tabelle 5)

Für diesen Versuch wurden die entsprechenden Transformanten hergestellt (2.2.5.3). Diese wurden zunächst auf die Aktivität des HIS3 Reportergens untersucht (2.2.5.1).

Transformanten, die zusätzlich zum BD-C1-I Fusionsprotein noch AD-R, AD-Rdel, AD-InFus oder AD-InD1 synthetisieren, zeigten ein deutliches Wachstum auf Histidinmangelmedium und besitzen damit ein aktives His3 Reportergen (Abbildung 29). Das Ergebnis deutet darauf hin, daß die in den Hefen synthetisierten Proteine, miteinander interagieren. Alle anderen Transformanten zeigten kein Wachstum und besitzen demzufolge kein aktives HIS3 Reportergen.

Abbildung 29: HIS3 Reportergenaktivierung der Transformanten mit dem BD-C1-I Fusionsprotein und verschiedenen AD-Fusionsproteinen

Der Hefestamm YRG-2 wurde mit den verschiedenen Kontrollplasmiden transformiert. Die Transformanten wurden anschließend hinsichtlich ihres Wachstums auf Histidinmangelmedium untersucht. Transformanten, die zusätzlich zum BD-C1-I Fusionsprotein noch AD-R (a, e), AD-Rdel (b, f), AD-InFus (c, g) oder AD-InD1 (d, h) synthetisieren, sind in der Lage auf Histidinmangelmedium zu wachsen. Das deutet darauf hin, daß die in den Hefen synthetisierten Proteine miteinander interagieren können und dadurch das HIS3 Reportergen aktivieren.

(a-d) Typisches Wachstum eines ausgestrichenen Hefetransformanten auf Histidinmangelmedium.
(e-h) Schematische Darstellung der Fusionsproteine in den entsprechenden Hefetransformanten.
AD von Gal4 (Aktivierungsdomäne, gelber Kreis), BD von Gal4 (DNA Bindedomäne, grüner Kreis)
Die Expression des Reportergens lacZ wurde durch quantitative Messung der β-Galaktosidaseaktivität untersucht (2.2.5.5).

Die Messung ergab, daß die Transformanten mit aktivem HIS3 Reportergen, auch ein aktives lacZ Reportergen besitzen. In Transformanten, die zusätzlich zum BD-C1 Fusionsprotein noch AD-R oder AD-Rdel synthetisieren, wurde ebenfalls eine signifikante Aktivität der β-Galaktosidase gemessen.


Mit pBD-C1-I und pAD-Rdel wurde sogar eine noch geringere Aktivität gemessen. Mit BD-C1-I und AD-Rdel wurde im Vergleich dazu, nur etwa ein Viertel der Aktivität (22%) gemessen.

Auch die Kombination von BD-C1-I mit AD-InD1 zeigte mit nur 11% relativ zu der Aktivität von pGal4, eine reduzierte β-Galaktosidaseaktivität. Mit BD-C1 und AD-InD1 wurde dagegen eine Aktivität von 17% gemessen.

Mit BD-C1-I und AD-InFus wurden, im Vergleich zu BD-C1 und AD-InFus, keine signifikanten Unterschiede festgestellt.

Bei den AD-InXS Transformanten wurde keine β-Galaktosidaseaktivität detektiert.
Abbildung 30: lacZ Reportergenaktivierung bei Transformanten mit dem BD-C1-I Fusionsprotein und verschiedenen AD-Fusionsproteinen

Die Expression des Reportergens lacZ wurde von zwei bis vier unabhängigen Transformanten durch quantitative Messung der β-Galaktosidaseaktivität festgestellt und gemittelt. Der hierbei erhaltene Wert von Hefetransformanten mit Gal4 Protein wurde gleich 100% gesetzt. Alle übrigen gemessenen Mittelwerte wurden auf diesen Wert bezogen.

<table>
<thead>
<tr>
<th>Kontrollen</th>
<th>relative β-Galaktosidase Einheiten in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAL4</td>
<td>100</td>
</tr>
<tr>
<td>SV40 + p53</td>
<td>3</td>
</tr>
<tr>
<td>SV40 + LaminC</td>
<td>0</td>
</tr>
<tr>
<td>BD</td>
<td>0</td>
</tr>
<tr>
<td>AD</td>
<td>0</td>
</tr>
<tr>
<td>AD + BD</td>
<td>0</td>
</tr>
<tr>
<td>AD</td>
<td>0</td>
</tr>
<tr>
<td>AD-R</td>
<td>43</td>
</tr>
<tr>
<td>AD-Rdel</td>
<td>22</td>
</tr>
<tr>
<td>AD-InXS</td>
<td>0</td>
</tr>
<tr>
<td>AD-InFus</td>
<td>3</td>
</tr>
<tr>
<td>AD-InD1</td>
<td>11</td>
</tr>
</tbody>
</table>


AD von Gal4 (Aktivierungsdomäne, gelber Kreis), BD von Gal4 (DNA Bindedomäne, grüner Kreis)

Die Tabelle 7 und Abbildung 31 geben eine Übersicht über die hier vorgestellten Ergebnisse.

**Tabelle 7: Interaktion des BD-Cl-I Fusionsproteins mit verschiedenen AD-Fusionsproteinen**

<table>
<thead>
<tr>
<th>AD-Fusionsproteine</th>
<th>AD-R</th>
<th>AD-Rdel</th>
<th>AD-InXS</th>
<th>AD-InFus</th>
<th>AD-InD1</th>
<th>AD-Cl</th>
<th>AD-Cl-I</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>BD-Cl-I</strong></td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

+ Aktivierung der Reportergene HIS3 und lacZ. Die Anzahl der + gibt die Stärke an der Expression an.
- Keine Aktivierung der Reportergene HIS3 und lacZ
NA nicht analysiert

**Abbildung 31: Interaktion des BD-Cl-I Fusionsproteins mit verschiedenen AD-Fusionsproteinen**

Mit AD-InXS wurde weder mit BD-Cl noch mit BD-Cl-I eine Interaktion nachgewiesen. Dies könnte auf eine veränderte Faltung des AD-InXS zurückzuführen sein. Daher wurden Experimente durchgeführt, bei denen das BD-InXS Fusionsprotein verwendet wurde.
3.6.3 Transformanten mit dem BD-InXS Fusionsprotein und verschiedenen AD-Fusionsproteinen

(Kombinationen siehe auch Tabelle 5)

Für diesen Versuch wurden die entsprechenden Transformanten hergestellt (2.2.5.3) und anschließend auf die Aktivitäten der Reportergene HIS3 (2.2.5.1) und lacZ untersucht (2.2.5.5). Als zusätzliche positive Kontrolle wurden Transformanten verwendet, die BD-C1 und AD-R Fusionsproteine synthetisieren. Die Reportergene werden mit diesen Proteinen stärker aktiviert, als mit den zuvor als positive Kontrollen SV40 + p53. Deshalb sind diese Proteine als Kontrollen besser geeignet. Dieser Test wurde an einem Zeitpunkt durchgeführt, an dem der Fusionsklon InFus noch nicht vorlag. Er fehlt daher in dieser Analyse.

### Abbildung 32: lacZ Reportergenaktivierung bei Transformanten mit dem BD-InXS Fusionsprotein und verschiedenen AD-Fusionsproteinen

Die Expression des Reportergens lacZ wurde von zwei bis vier unabhängigen Transformanten durch quantitative Messung der β-Galaktosidaseaktivität festgestellt und gemittelt. Der hierbei erhaltene Wert von Hefetransformanten mit Gal4 Protein wurde gleich 100% gesetzt. Alle übrigen gemessenen Mittelwerte wurden auf diesen Wert bezogen.

Transformanten die BD-InXS Fusionsproteine zusammen mit einem AD-Fusionsprotein synthetisieren, zeigen keine β-Galaktosidaseaktivität. In diesen Hefestämmen wurde das lacZ Reportergen nicht aktiviert. Das deutet darauf hin, daß die in den Hefen synthetisierten Proteine nicht miteinander interagieren können.

AD von Gal4 (Aktivierungsdomäne, gelber Kreis), BD von Gal4 (DNA Bindedomäne, grüner Kreis)
Aus den Untersuchungen zur Aktivierung der Reportergene *HIS3* und *lacZ* läßt sich schließen, daß BD-InXS weder mit AD-C1, AD-CII, AD-R, AD-Rdel noch mit AD-InD1 interagieren kann. Aufgrund der Beobachtung, daß BD-InXS zusammen mit AD-InXS keine Reportergene aktiviert, kann abgeleitet werden, daß InXS keine Homodimere bilden kann.

Die Tabelle 8 und Abbildung 33 geben eine Übersicht über die hier dargestellten Ergebnisse.

**Tabelle 8: Interaktion des BD-InXS Fusionsprotein mit verschiedenen AD-Fusionsproteinen**

<table>
<thead>
<tr>
<th>AD Fusionsproteine</th>
<th>AD-R</th>
<th>AD-Rdel</th>
<th>AD-InXS</th>
<th>AD-InFus</th>
<th>AD-InD1</th>
<th>AD-C1</th>
<th>AD-C1-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD-InXS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>NA</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

+ Aktivierung der Reportergene *HIS3* und *lacZ*. Die Anzahl der + gibt die Stärke an der Expression an.
- Keine Aktivierung der Reportergene *HIS3* und *lacZ*
NA nicht analysiert

**Abbildung 33: Interaktion des BD-InXS Fusionsprotein mit verschiedenen AD-Fusionsproteinen**

Die BD-InXS Fusionsproteine, die mit den AD-Fusionsproteinen interagieren sind überlappend dargestellt. Fusionsproteine die nicht interagieren sind entfernt voneinander dargestellt. AD von Gal4 (Aktivierungsdomäne, gelber Kreis), BD von Gal4 (DNA Bindedomäne, grüner Kreis)
Das putative \textit{InXS} Protein enthält, im Vergleich zum vollständigen \textit{In} Protein mit 685 Aminosäuren, nur 147 Aminosäuren. Möglicherweise ist das \textit{InXS} Protein für eine Interaktion zu klein und enthält nicht alle hierfür benötigten Aminosäuren.

Die Interaktion der größeren Proteine \textit{InFus} und \textit{InD1} (als AD-Fusionsproteine) mit \textit{C1} und \textit{C1-I} (als BD-Fusionsproteine) konnte bereits nachgewiesen werden. Es stellte sich die Frage, ob diese Interaktion auch im reziproken Ansatz nachzuweisen ist (Abbildung 25). Hierzu wurden die Fusionsproteine BD-\textit{InFus} und BD-\textit{InD1} getestet. Des weiteren sollte hiermit untersucht werden, ob BD-\textit{InFus} oder BD-\textit{InD1} in der Lage sind, mit AD-\textit{R} zu interagieren.
3.6.4 Transformanten mit dem **BD-InFus** Fusionsprotein und verschiedenen **AD-Fusionsproteinen**

(Kombinationen siehe auch Tabelle 5)

Für diesen Versuch wurden die entsprechenden Transformanten hergestellt (2.2.5.3). Diese wurden zunächst auf die Aktivität des *HIS3* Reportergens untersucht (2.2.5.1).

Nur bei Transformanten, die zusätzlich zum **BD-InFus** Fusionsprotein noch das **AD-C1-I** Fusionsproteine synthetisieren, konnte ein aktives *HIS3* Reportergen festgestellt werden, da sie die einzigen waren, die ein Wachstum auf Histidinmangelmedium zeigten (Abbildung 26). Es wurde weder bei Transformanten mit **BD-InFus**, noch bei Transformanten mit **AD-C1** ein Wachstum beobachtet. Mit dem reziproken Ansatz dieser Kombination wurden in den unter 3.6.1 dargestellten Versuchen entgegengesetzte Ergebnisse erhalten. Dort wurde bei Transformanten, die zusätzlich zum **AD-InFus** das BD-C1 synthetisieren, ein aktives *HIS3* nachgewiesen (Abbildung 26).

**Abbildung 34: HIS3 Reportergenaktivierung der Transformanten mit BD-InFus Fusionsprotein und verschiedenen AD-Fusionsproteinen**

Der Hefestamm YRG-2 wurde mit den verschiedenen Kontrollplasmiden transformiert. Die Transformanten wurden anschließend hinsichtlich ihres Wachstums auf Histidinmangelmedium untersucht. Bei Transformanten, die zusätzlich zum **BD-InFus** noch das **AD-C1-I** synthetisieren (a, b), waren in der Lage auf Histidinmangelmedium zu wachsen und besitzen damit ein aktives *HIS3* Reportergen. Das deutet darauf hin, daß die in den Hefen synthetisierten Proteine miteinander interagieren können und dadurch das *HIS3* Reportergen aktivieren. Im reziproken Ansatz wurde dagegen bei Transformanten mit **BD-C1** und **AD-InFus** Fusionsproteinen ein aktives *HIS3* Reportergen beobachtet (Abbildung 26).

(a) Typisches Wachstum eines ausgestrichenen Hefetransformanten auf Histidinmangelmedium.
(b) Schematische Darstellung der Fusionsproteine in den entsprechenden Hefetransformanten.
AD von Gal4 (Aktivierungsdomäne, gelber Kreis), BD von Gal4 (DNA Bindedomäne, grüner Kreis)
Die Expression des Reportergens \( lacZ \) wurde von zwei bis vier unabhängigen Transformanten durch quantitative Messung der \( \beta \)-Galaktosidaseaktivität festgestellt und gemittelt. Der hierbei erhaltene Wert von Hefetransformanten mit Gal4 Protein wurde gleich 100\% gesetzt. Alle übrigen gemessenen Mittelwerte wurden auf diesen Wert bezogen.

Transformanten, die zusätzlich zum BD-InFus noch AD-C1-I synthetisieren, zeigen eine sehr geringe \( \beta \)-Galaktosidaseaktivität und damit ein aktives \( lacZ \) Reportergen. Das deutet darauf hin, daß die in den Hefen synthetisierten Proteine miteinander interagieren können. Bei den anderen Transformanten wurde keine \( \beta \)-Galaktosidaseaktivität nachgewiesen. Die in ihnen synthetisierten Fusionsproteine sind demzufolge nicht in der Lage, zu interagieren und können das \( lacZ \) Gen nicht aktivieren. Im reziproken Ansatz wurde dagegen, bei Transformanten mit \textbf{BD-C1} und \textbf{AD-InFus} Fusionsproteinen, ein aktives \( lacZ \) Reportergenbeobachtet (Abbildung 27).

Abbildung 35: \( lacZ \)-Reportergenaktivierung bei Transformanten mit BD-InFus

Fusionprotein und verschiedenen AD-Fusionsproteinen
Aus den Untersuchungen geht hervor, daß eine Interaktion von InFus sowohl mit C1 als auch mit C1-I erfolgen kann. Die Fähigkeit zu Interaktion hierbei aber davon abhängt, mit welcher Gal4 Domäne die einzelnen Proteine fusioniert sind.

Es wurden keine aktiven Reportergene bei Transformanten beobachtet, die zusätzlich zum BD-InFus noch AD-R oder AD-Rdel synthetisieren. Dies deutet darauf hin, daß BD-InFus nicht mit AD-R oder AD-Rdel interagieren kann. Des weiteren wurden keine Reportergenaktivität bei Transformanten beobachtet, die BD-InFus zusammen mit AD-InFus synthetisieren. Hieraus kann abgeleitet werden, daß InFus keine Homodimere bilden kann.

Die Tabelle 9 und Abbildung 36 geben eine Übersicht über die hier dargestellten Ergebnisse.

**Tabelle 9: Interaktion des BD-InFus Fusionsproteins mit verschiedenen AD-Fusionsproteinen**

<table>
<thead>
<tr>
<th>pAD-Fusionsproteine</th>
<th>AD-R</th>
<th>AD-Rdel</th>
<th>AD-InXS</th>
<th>AD-InFus</th>
<th>AD-InD1</th>
<th>AD-C1</th>
<th>AD-C1-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD-InFus</td>
<td>-</td>
<td>-</td>
<td>NA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

+ Aktivierung der Reportergene HIS3 und lacZ. Die Anzahl der + gibt die Stärke an der Expression an.
- Keine Aktivierung der Reportergene HIS3 und lacZ.
NA nicht analysiert

**Abbildung 36: Interaktion des BD-InFus Fusionsproteins mit verschiedenen AD-Fusionsproteinen**

Die BD-InXS Fusionsproteine, die mit den AD-Fusionsproteinen interagieren sind überlappend dargestellt. Fusionsproteine die nicht interagieren sind entfernt voneinander dargestellt. AD von Gal4 (Aktivierungsdomäne, gelber Kreis), BD von Gal4 (DNA Bindedomäne, grüner Kreis)
3.6.5 Transformanten mit dem BD-InD1 Fusionsprotein und verschiedenen AD-Fusionsproteinen

(Kombinationen siehe auch Tabelle 5)

Für diesen Versuch wurden die entsprechenden Transformanten hergestellt (2.2.5.3). Diese wurden zunächst auf die Aktivität des HIS3 Reportergens untersucht (2.2.5.1).

Bei diesem Versuch wurde bei Transformanten, die zusätzlich zum BD-InD1 Fusionsprotein das AD-C1-I synthetisieren, ein normales Wachstum auf Histidinmangelmedium beobachtet. Im Vergleich dazu zeigen Transformanten, die zusätzlich zum BD-InD1 Fusionsprotein das AD-InD1 Fusionsprotein synthetisieren, ein allgemein schlechteres Wachstum. Sie bilden wesentlich kleinere Kolonien. Vermutlich liegt nur eine schwache Aktivierung des HIS3 Gens vor, die damit eine unzureichende Histidinversorgung zur Folge hat.

Abbildung 37: HIS3 Reportergenaktivierung der Transformanten mit BD-InD1 Fusionsprotein und verschiedenen AD-Fusionsproteinen

Der Hefestamm YRG-2 wurde mit den verschiedenen Kontrollplasmiden transformiert. Die Transformanten wurden anschließend hinsichtlich ihres Wachstums auf Histidinmangelmedium untersucht. Transformanten, die zusätzlich zum BD-InD1 Fusionsprotein noch das AD-C1-I (a, c) synthetisieren zeigen ein normales Wachstum auf Histidinmangelmedium. Das Ergebnis deutet darauf hin, daß die in den Hefen synthetisierten Proteine interagieren können und dadurch das HIS3 Reportergen aktivieren. Im Vergleich dazu zeigten Transformanten, die zusätzlich zum BD-InD1 Fusionsprotein noch AD-InD1 (b, d) synthetisieren, ein allgemein schlechteres Wachstum. Sie bilden wesentlich kleinere Kolonien. Vermutlich liegt nur eine schwache Aktivierung des HIS3 Gens vor, die damit eine unzureichende Histidinversorgung zur Folge hat. Transformanten mit BD-InFus und AD-C1 besitzen kein aktives HIS3 Reportergen. Im reziproken Ansatz wurde dagegen bei Transformanten mit BD-C1 und AD-InD1 Fusionsproteinen ein aktives HIS3 beobachtet (Abbildung 26).

(a, b) Typisches Wachstum eines ausgestrichenen Hefetransformanten auf Histidinmangelmedium.
(c, d) Schematische Darstellung der Fusionsproteine in den entsprechenden Hefetransformanten.
AD von Gal4 (Aktivierungsdomäne, gelber Kreis), BD von Gal4 (DNA Bindedomäne, grüner Kreis)
Transformanten mit BD-InD1 und AD-C1 enthalten kein aktives HIS3 Reportergen. Mit dem reziproken Ansatz dieser Kombination wurde ein entgegengesetztes Ergebnisse erhalten. Dort wurde bei Transformanten, die pAD-InD1 und BD-C1 synthetisieren, ein aktives Reportergen nachgewiesen (Abbildung 26).

Die Expression des Reportergens lacZ wurde durch quantitative Messung der β-Galaktosidase untersucht (2.2.5.5).

Nur bei Transformanten, die zusätzlich zum BD-InD1 noch AD-C1-I Fusionsproteine synthetisieren, konnte eine geringe β-Galaktosidaseaktivität gemessen werden. Sie beträgt ca. 4% relativ zu der durch Gal4 hervorgerufenen Reportergenaktivität. Das deutet darauf hin, daß die in den Hefen synthetisierten Proteine miteinander interagieren können und dadurch das lacZ Reportergen aktivieren.

Bei den Transformanten, die BD-InD1 und AD-InD1 Fusionsproteine synthetisieren, wurde dagegen keine Aktivität nachgewiesen. Sie besitzen demzufolge kein aktives lacZ Reportergen. Diese Ergebnisse deuten darauf hin, daß diese Proteine nicht miteinander interagieren. Sie widersprechen damit den Ergebnissen der Untersuchungen auf die Aktivierung des HIS3 Reportergens.
Die Expression des Reportergens *lacZ* wurde bei zwei bis vier unabhängigen Transformanten durch quantitative Messung β-Galaktosidaseaktivität festgestellt und gemittelt. Der hierbei erhaltene Mittelwert von Hefetransformanten mit Gal4 Protein wurde 100% gesetzt. Alle übrigen gemessenen Mittelwerte wurden auf diesen Wert bezogen.

**Abbildung 38: lacZ-Reportergenaktivierung bei Transformanten mit BD-InD1 Fusionprotein und verschiedenen AD-Fusionsproteinen**

Transformanten, die zusätzlich zum BD-InD1 noch AD-C1-I synthetisieren, zeigen eine β-Galaktosidaseaktivität und besitzen damit ein aktives lacZ Reportergen. Das deutet darauf hin, daß die in den Hefen synthetisierten Proteine miteinander interagieren können. Alle anderen Transformanten zeigen keine β-Galaktosidaseaktivität und besitzen demzufolge kein aktives Reporterge.

Transformanten mit BD-InD1 und AD-C1 besitzen kein aktives lacZ Reporterge. Im reziproken Ansatz wurde dagegen, bei Transformanten mit **BD-C1** und **AD-InD1** Fusionsproteinen, ein aktives lacZ beobachtet (Abbildung 27).

AD (Aktivierungsdomäne, gelber Kreis), BD (DNA Bindedomäne, grüner Kreis)
Die Ergebnisse zeigen, daß das InD1 Protein sowohl mit C1 als auch mit C1-I interagieren kann. Die Fähigkeit zur Interaktion ist hierbei aber davon abhängig, mit welcher Gal4 Domäne die einzelnen Proteine fusioniert sind. Bei Transformanten, die zusätzlich zum BD-InD1 das AD-R oder AD-Rdel Fusionsprotein synthetisieren, wurde keine aktiven Reportergene festgestellt. Dies deutet darauf hin, daß InD1 nicht nicht mit R interagieren kann. Diese Beobachtungen wurden ebenfalls bei Transformanten festgestellt, die zusätzlich zum BD-InFus Protein das AD-R oder AD-Rdel Fusionsprotein synthetisieren (3.6.4).

InD1 scheint Homodimere bilden zu können, die mit dem Two Hybrid System nur schwer nachzuweisen waren. Die Ursachen für die unterschiedliche Expression der Reportergene HIS3 und lacZ könnten hierbei auf eine sehr schwachen Interaktion oder zeitlich begrenzten Interaktion der InD1 Proteine hinweisen.

Die Tabelle 10 und Abbildung 39 geben eine Übersicht über die hier dargestellten Ergebnisse.

**Tabelle 10: Interaktion des BD-InD1 Fusionsproteins mit verschiedenen AD-Fusionsproteinen**

<table>
<thead>
<tr>
<th>AD-Fusionsproteine</th>
<th>AD-R</th>
<th>AD-Rdel</th>
<th>AD-XS</th>
<th>AD-InFus</th>
<th>AD-InD1</th>
<th>AD-C1</th>
<th>AD-C1-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD-InD1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>nur HIS3</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

+ Aktivierung der Reportergene HIS3 und lacZ, Anzahl der + gibt die Stärke an
- keine Aktivierung der Reportergene HIS3 und lacZ
NA nicht analysiert
Abbildung 39: Interaktion des BD-InD1 Fusionsproteins mit verschiedenen AD-Fusionsproteinen

Die BD-InXS Fusionsproteine, die mit den AD-Fusionsproteinen interagieren sind überlappend dargestellt. Fusionsproteine die nicht interagieren sind entfernt voneinander dargestellt. AD von Gal4 (Aktivierungsdomäne, gelber Kreis), BD von Gal4 (DNA Bindedomäne, grüner Kreis)
3.6.6 Transformanten mit dem BD-R oder dem BD-Rdel Fusionsprotein und verschiedenen AD-Fusionsproteinen


Für diese Untersuchungen wurden die allein aktivierenden Fusionsproteine von BD-R und BD-Rdel verwendet (Hintergrundaktivierung, Abbildung 20). Die Tabelle 11 gibt einen kurzen Überblick über die durchgeführten Experimente. Dieser Test wurde zu einem Zeitpunkt durchgeführt, an dem der Fusionsklon InFus noch nicht vorlag. Er fehlt daher in dieser Analyse.

**Tabelle 11: Test auf in vivo Interaktion der Fusionsproteine BD-R und BD-Rdel mit verschiedenen AD-Fusionsproteinen**

<table>
<thead>
<tr>
<th>AD-Fusionsproteine</th>
<th>AD-R</th>
<th>AD-Rdel</th>
<th>AD-InXS</th>
<th>AD-InFus</th>
<th>AD-InD1</th>
<th>AD-C1</th>
<th>AD-C1-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD-R</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD-Rdel</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die durchgeführten Kombinationen sind mit einem X markiert.

Für diesen Versuch wurden die hergestellten Hefestämme verwendet, die BD-R oder BD-Rdel Fusionsproteine synthetisieren. Sie wurden mit den entsprechenden pAD-Expressionsplasmiden transformiert (2.2.5.3). Die hieraus resultierenden Transformanten wurden zunächst auf die Aktivität des HIS3 Reportergens untersucht (2.2.5.1).
Alle untersuchten Transformanten zeigten auf Histidinmangelmedium ein normales Wachstum. Die Expression des HIS3 Gens scheint durch die Anwesenheit der AD-InXS oder AD-InD1 Fusionsproteine nicht beeinflusst zu werden.

Die Expression des Reportergens lacZ wurde durch quantitative Messung der β-Galaktosidaseaktivität untersucht (2.2.5.5). Anders als in den vorrangegangenen Experimenten wurde hier der von Transformanten mit BD-R + AD erhaltenen Mittelwert gleich 100 % gesetzt (Abbildung 40, a). Alle übrigen Mittelwerte wurden auf diesen Wert bezogen.

Die β-Galaktosidaseaktivität ist bei Transformanten, die zusätzlich zum BD-R Fusionsprotein das AD-InD1 synthetisieren, signifikant reduziert. Die Aktivität beträgt 62% und ist damit um etwa 38% geringer, als die Aktivität bei Transformanten mit BD-R + AD (Abbildung 40, b).

Eine ähnliche signifikante Reduktion der β-Galaktosidaseaktivität wurde bei Transformanten beobachtet, die zusätzlich zum BD-R Fusionsprotein das AD-R synthetisieren. Die Aktivität beträgt hier 66 % und ist damit um etwa 34 % geringer, als die Aktivität bei Transformanten mit BD-R + AD (Abbildung 40, b).

Bei Transformanten die das BD-R und das AD-InXS Fusionsprotein synthetisieren wurde ebenfalls eine Reduktion der β-Galaktosidaseaktivität festgestellt. Die Aktivität beträgt hier 80 % und ist damit um etwa 20% geringer, die Aktivität bei Transformanten mit BD-R + AD (Abbildung 40, b).

Die Transformanten die zusätzlich zu dem BD-Rdel Fusionsprotein ein weiteres Fusionsprotein synthetisieren, zeigten dagegen keine signifikante Veränderungen in der β-Galaktosidaseaktivität (Abbildung 40, c).

### Abbildung 40: lacZ Reportergenaktivierung bei Transformanten mit BD-R oder BD-Rdel Fusionsproteinen und verschiedenen AD-Fusionsproteinen


Die β-Galaktosidaseaktivität ist bei Transformanten, die zusätzlich zum BD-R Fusionsprotein das AD-InD1, AD-InXS oder AD-R synthetisieren, signifikant reduziert. Das scheint darauf hinzuweisen, daß AD-InD1 und AD-InXS mit dem BD-R Fusionsprotein interagieren können. Diese Beobachtungen widersprechen damit den Ergebnissen die mit dem reziproken Ansatz erhalten wurden (Kapitel 3.6.3 und 3.6.5). Hier wurde keine Interaktion zwischen dem AD-R Fusionsprotein mit den BD-InXS und BD-InD1 Fusionsproteinen festgestellt.

AD von Gal4 (Aktivierungsdomäne, gelber Kreis), BD von Gal4 (DNA Bindedomäne, grüner Kreis)
Die Ergebnisse zeigen, daß die Hintergrundaktivität des \textit{lacZ} Reportergens durch das BD-R Fusionsprotein in Gegenwart der AD-InXS und AD-InD1 Fusionsproteine gehemmt wird. Das scheint darauf hinzuweisen, daß AD-InD1 und AD-InXS mit dem BD-R Fusionsprotein interagieren können. Diese Beobachtungen widersprechen den Ergebnissen, die mit dem reziproken Ansatz erhalten wurden (Kapitel 3.6.3 und 3.6.5). Hier wurde keine Interaktion zwischen AD-R Fusionsprotein und den BD-InXS und BD-InD1 Fusionsproteinen festgestellt.

Diese Hemmung durch die AD-InXS und AD-InD1 Fusionsproteine wurde in Kombination mit dem deletieren \textit{R} Protein (\textit{Rdel}) nicht beobachtet. Dies deutet darauf hin, daß die für eine Interaktion benötigten Aminosäuren in dem BD-Rdel Fusionsprotein nicht vorliegen.


Die Tabelle 12 und geben eine Übersicht über die hier dargestellten Ergebnisse.

\begin{center}
\textbf{Tabelle 12: Beeinflussung der $\beta$-Galaktosidaseaktivität in Transformanten mit BD-R oder BD-Rdel Fusionsproteinen und verschiedenen AD-Fusionsproteinen}
\end{center}

<table>
<thead>
<tr>
<th>AD-Fusionsproteine</th>
<th>AD-R</th>
<th>AD-Rdel</th>
<th>AD-InXS</th>
<th>AD-InFus</th>
<th>AD-InD1</th>
<th>AD-C1</th>
<th>AD-C1-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD-R</td>
<td>↓↓</td>
<td>NA</td>
<td>↓</td>
<td>NA</td>
<td>↓↓</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BD-Rdel</td>
<td>NA</td>
<td>NA</td>
<td>=</td>
<td>NA</td>
<td>=</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

\begin{tabular}{lcccccc}
\hline
\hline
\textbf{BD-R} & ↓↓ & NA & ↓ & NA & ↓↓ & NA & NA \\
\textbf{BD-Rdel} & NA & NA & = & NA & = & NA & NA \\
\hline
\end{tabular}

\begin{tabular}{l}
\text\{\textbf{\downarrow}\} \text{Die Anzahl der Pfeile gibt die Stärke der signifikanten Reduktion an.} \\
\text\{\textbf{\text{=}\} unverändert} \\
\text\{\textbf{\text{NA\}} nicht analysiert} \\
\end{tabular}
Abbildung 41: Ergebnisse der Interaktion von BD-R oder BD-Rdel mit verschiedenen AD-Fusionsproteinen

Die BD-R (a) oder BD-Rdel (b) Fusionsproteine, die mit den verschiedenen AD-Fusionsproteinen interagieren sind überlappend dargestellt. Fusionsproteine die nicht interagieren sind entfernt voneinander dargestellt. AD von Gal4 (Aktivierungsdomäne, gelber Kreis), BD von Gal4 (DNA Bindedomäne, grüner Kreis)
### 3.6.7 Transformanten mit drei Fusionsproteinen

Die Interaktion und damit Komplexbildung von R mit C1 konnte in den in dieser Arbeit dargestellten Versuchen nachgewiesen werden. Des weiteren wurde die Interaktion der *Intensifier* Proteine (*InD1, InXS*) sowohl mit C1 als auch mit R (Abbildung 42) nachgewiesen.

Abbildung 42: Interaktion von R, C1 und den *Intensifier* Proteine

Das R Protein interagiert mit den Proteinen C1 und C1-I (a). Des weiteren wurde eine Interaktion des Proteins *InD1* mit den Proteinen R, C1 und C1-I beobachtet (b). Mit dem *InXS* Protein wurde dagegen nur eine Interaktion mit dem R Protein beobachtet (c).

Es stellte sich daher die Frage, ob die *Intensifier* Proteine die Komplexbildung aus R und C1 (oder C1-I) beeinflussen können (Abbildung 43). Dieser Einfluss könnte eine veränderte Expression der Reportergene *HIS3* und *lacZ* zur Folge haben. Für diese Untersuchungen sollten Transformanten hergestellt werden, die folgende Proteine synthetisieren:

- R + C1 + *InD1* (Abbildung 43, a)
- R + C1 + *InXS* (Abbildung 43, b)
- R + C1-I + *InD1* (Abbildung 43, c)
- R + C1-I + *InXS* (Abbildung 43, d)

Dieser Test wurde zu einem Zeitpunkt durchgeführt, an dem der Fusionsklon *Infus* noch nicht vorlag. Er fehlt daher in dieser Analyse.
Ergebnisse

Abbildung 43: Beeinflussung der Komplexbildung von R und C1 durch die Intensifier Proteine

Es konnte im Rahmen dieser Arbeit gezeigt werden, daß die Intensifier Proteine (InD1, InXS) sowohl mit R als auch C1 (oder C1-I) interagieren (Abbildung 42). Daher stellte sich die Frage, ob die Intensifier Proteine (InD1, InXS) die Komplexbildung von R mit C1 (oder C1-I) beeinflussen können. Für diese Untersuchungen sollten Tranformanten hergestellt werden, die folgende Proteine synthetisieren: R + C1 + InD1 (a), R + C1 + InXS (b), R + C1-I + InD1 (c), R + C1-I + InXS (d).

In zuvor durchgeführten Experimenten konnte gezeigt werden, daß durch das BD-R Fusionsprotein eine hohe Hintergrundaktivität der Reportergene HIS3 und lacZ erfolgt (3.5.1, Seite 62). Dadurch ist es nicht möglich, die Experimente mit diesem Fusionsprotein durchzuführen. Es wurde vermutet, daß mit diesen Fusionsproteinen keine verläßlichen Aussagen über die Interaktion mit anderen Fusionsproteinen möglich sind. In den durchzuführenden Versuchen mit R, C1 (C1-I) und den Intensifier Proteinen konnten daher nur das Fusionsprotein AD-R verwendet werden, da es keine Hintergrundaktivität verursacht (3.5.1).

Des weiteren konnte in zuvor durchgeführten Experimenten eine Interaktion von C1 mit InD1, nur bei Verwendung von BD-C1 in Kombination mit AD-InD nachgewiesen werden (3.6.1, Seite 74). Dagegen wurde mit dem reziproken Ansatz keine Interaktion zwischen diesen Proteinen nachgewiesen (Abbildung 25): AD-C1 in Kombination mit BD-InD1 (3.6.5, Seite 90).
Daraus folgt, das die Experimente nur mit den folgenden Fusionsproteinen durchgeführt werden konnten:
AD-R + BD-C1 + AD-InD1 (Abbildung 44, a)
AD-R + BD-C1 + AD-InXS (Abbildung 44, b)
AD-R + BD-C1-I + AD-InD1 (Abbildung 44, c)
AD-R + BD-C1-I + AD-InXS (Abbildung 44, d)

Abbildung 44: Zu testende Kombinationen der drei Fusionsproteine

Um festzustellen, ob die Proteine des Intensifier (InD1, InXS) die Komplexbildung von R mit C1 (oder C1-I) beeinflussen können, wurden folgende Fusionsproteine verwendet:
AD-R + BD-C1 + AD-InD1 (a), AD-R + BD-C1 + AD-InXS (b), AD-R + BD-C1-I + AD-InD1 (c), AD-R + BD-C1-I + AD-InXS (d).
Andere Kombinationen der Fusionsproteine können nicht verwendet werden, da durch sie entweder eine zu hohe Hintergrundaktivität der Reportergene HIS3 und lacZ erfolgt (BD-R, 3.5.1) oder eine Interaktion nicht nachgewiesen wurde (BD-InD1 + AD-C1, 3.6.1).
AD von Gal4 (Aktivierungsdomäne, gelber Kreis), BD von Gal4 (DNA Bindedomäne, grüner Kreis)
3.6.7.1 *Expressionsplasmide*


Interagieren die synthetisierten AD- und BD-Fusionsproteine in den Transformanten, so wird das dritte auxotrophe Markergen *HIS3* aktiviert. Diese Transformanten können dadurch die Aminosäure Histidin synthetisieren. Die Selektion hierfür erfolgt in Medium, dem neben Leucin und Tryptophan auch Histidin fehlt (-Leu/ -Trp/ -His) (Abbildung 45, a).


Abbildung 45: Selektionsmedium für Transformanten mit drei Expressionsplasmiden

Die Expressionsplasmide und Fusionsproteine werden durch die selben Symbole dargestellt.
(a) Transformanten mit BD-X und AD-Y Expressionsplasmiden besitzen die aktiven auxotrophen Markergene TRP1 (weiße Box) und LEU2 (graue Box). Die Selektion, auf die Expressionsplasmide, erfolgt in Medium ohne Leucin und Tryptophan (-Leu/-Trp). Interagieren die synthetisierten Fusionsproteine BD-X und AD-Y, wird das dritte auxotrophe Markergen HIS3 (grüne Box) aktiviert. Diese Transformanten werden durch Wachstum in Medium, dem die drei Aminosäuren Leucin, Tryptophan und Histidin fehlen (-Leu/-Trp/-His), identifiziert.
(b) Auf Transformanten mit einem funktionslosen LEU2 Markergen (gestrichelte Box, LEU2) und interagierenden Protein wird in Medium selektiert, dem nur die Aminosäuren Tryptophan und Histidin fehlen (-Trp/-His).
(c) Werden die Transformanten von (b) mit einem dritten Expressionsplasmid AD-Z transformiert, erfolgt die Selektion in Medium, dem drei Aminosäuren fehlen (-Leu/-Trp/-His). Hierbei liegt der –Leu Selektionsdruck auf dem funktionsfähigen LEU2 Markergen des zusätzlichen dritten AD-Z Expressionsplasmids.

X, Y und Z stehen für die Proteine, die auf eine mögliche Interaktion getestet werden sollen, sie sind mit der AD (Aktivierungsdomäne von Gal4, gelber Kreis) oder BD (DNA Bindedomäne von Gal4, grüner Kreis) fusioniert; UAS (upstream activating sequence = DNA Bindestelle der Gal4 DNA Bindedomäne)
Um die Transformanten mit den Expressionsplasmidn pBD-C1, pAD-R und dem zusätzlichen pAD Plasmid herzustellen, mußte zunächst das LEU2 Markergen des pAD-R funktionslos gemacht werden.

Hierfür wurde die pAD-R #356 Plasmid DNA (2.2.2.1) mit EcoRV/ClaI restringiert (2.2.2.3). Dadurch wurden ca. 0,6 kb des ca 0,9 kb langen LEU2 Gens deletiert. Damit die Enden kompatibel für eine Religation waren, mußte die zurückgesetzte Clai Schnittstelle des verbliebenen Vektors aufgefüllt werden (2.2.3.1). Nach der Isolierung des geschnittenen Vektors erfolgte die Bestimmung der DNA Menge und die Ligation (2.2.3.6) der Enden.

Um die Deletion zu überprüfen wurden aus 24 unabhängigen Bakterientransformanten die Plasmid DNA isoliert (2.2.2.1) und mit HindIII restringiert (2.2.2.3). Die Restriktionsfragmente wurden anschließend elektrophoretisch aufgetrennt (2.2.2.4) und anhand des verwendeten Standards bestimmt (2.2.2.5).

Positive Bakterientransformanten enthalten das um 0,6 kb deletierte Expressionsplasmid. Dieses Expressionsplasmid wurde bezeichnet als:

\[ \text{pAD-R-} \text{LEU2 Plasmid #356-2} \]

Abbildung 46: Herstellung des funktionslosen LEU2 Markergens

Für die Herstellung des funktions unfähigen LEU2 Markergens wurde das pAD-R Plasmid #356 mit EcoRV (RV)/ClaI (Cl) restringiert. Dadurch wurden ca. 0,6 kb des ca 0,9 kb langen LEU2 Gens deletiert. Damit die Enden kompatibel für eine Ligation waren, mußte die Clai Schnittstelle des verbliebenen Vektors aufgefüllt werden. Das deletierte Vektor (grauer Rahmen) wurde identifizierte durch Restriktion mit HindIII (H).

Anschließend wurde die Plasmid DNA pAD-R-LEU2 mit pBD-C1 (oder pBD-C1-I) in den Hefestamm YRG-2 eingebracht (2.2.5.3) und die Transformanten auf –Trp/-His Medium selektiert. Die Untersuchung auf ein funktionsloses LEU2 erfolgte durch Ausstreichen der selben Transformanten auf –Leu Medium. Sie zeigten hier kein Wachstum, wodurch bestätigt wurde, daß sie kein funktionsfähiges LEU2 enthalten.
Nach diesen Vortests wurden aus diesen Hefestämmen kompetente Zellen hergestellt (2.2.5.2) und mit dem dritten Plasmid (Tabelle 13) transformiert (2.2.5.3) Aus jedem Transformationsereignis wurden drei Hefekolonien auf die Aktivierung der Reportergene \( \text{HIS}3 \) und \( \text{lacZ} \) untersucht.

Hierbei wurde davon ausgegangen, daß der Einfluss der synthetisierten \textit{Intensifier} Fusionsproteine (\( \text{AD-} \text{InD}1, \text{AD-} \text{InXS} \)) nur schwach ist, so daß die Reportergene \( \text{HIS}3 \) und \( \text{lacZ} \) noch ausreichend aktiviert werden können. Transformanten, bei denen die Aktivierung von \( \text{HIS}3 \) verhindert wird, könnten nicht detektiert werden, da sie in -Leu/-Trp/-His Medium nicht wachsen würden.

\textbf{Tabelle 13: Transformanten mit drei Fusionsproteinen}

<table>
<thead>
<tr>
<th>Hefestämme</th>
<th>AD-Fusionsprotein</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AD</td>
</tr>
<tr>
<td>(a) \text{BD-}C1 + AD-R-\text{LEU}2</td>
<td>X</td>
</tr>
<tr>
<td>(b) \text{BD-}C1-I + AD-R-\text{LEU}2</td>
<td>X</td>
</tr>
</tbody>
</table>

In den Hefestämmen (a) und (b) und wurde das dritte Fusionsprotein (AD, AD-\text{InXS} oder AD-\text{InD}1) synthethisiert. Die entsprechende Kombinationen sind mit einem X markiert.

Die Transformanten die in -Leu/-Trp/-His Medium angezogen wurden, zeigten ein normales Wachstum. Es konnte kein verändertes Wachstum, wie bei Transformanten die zusätzlich zum \( \text{AD-} \text{InD}1 \) Fusionsprotein das \( \text{BD-} \text{InD}1 \) Fusionsprotein synthetisieren (Abbildung 37, Seite 90), beobachtet werden. Die Expression des Reportergens \( \text{HIS}3 \) scheint durch die Anwesenheit von \( \text{AD-} \text{InD}1 \) oder \( \text{AD-} \text{InXS} \) nicht beeinflusst zu werden.

Die Expression des Reportergens \( \text{lacZ} \) wurde durch quantitative Messung der \( \beta \)-Galaktosidaseaktivität untersucht.

Die Ergebnisse zeigen starke Unterschiede innerhalb der analysierten Transformanten. Es wurden dabei Aktivitäten zwischen 12 % und 94 %, relativ zu der durch Gal4 hervorgerufenen Aktivität, gemessen. Hierbei handelt es sich jedoch um Transformanten, die als Kontrollen dienen sollten. Sie enthalten zusätzlich zu den AD-R und \( \text{BD-} \text{C1-I} \) Fusionsproteinen nur die Aktivierungsdomäne (AD) und nicht ein drittes Fusionsprotein.

Offensichtlich erfolgt bei Tranformanten, die drei Fusionsproteine synthetisieren, keine einheitlich Aktivierung des Reportergens \( \text{lacZ} \). Aufgrund dieser Schwankungen bei den Kontrollen, ist es nicht möglich die \( \beta \)-Galaktosidase Messdaten der Transformanten mit
AD-R, BD-C1 und den AD-InXS oder AD-InD1 Fusionsproteinen zu deuten (Daten sind dem Anhang zu entnehmen).
Für die Untersuchungen auf eine mögliche Interaktion zwischen InXS oder InD1 mit R und C1 muss daher ein anderes System verwendet werden.

3.6.8 Zusammenfassung der in vivo Interaktion

Mit dem Two Hybrid System wurde die in vivo Interaktion von InXS, InFus (Fusionsprotein aus Teilen von In und InD1, Aminosäuresequenz siehe Anhang Abbildung 78 Seite 172), InD1, C1, Cl-I, R und Rdel (verkürztes Protein, ohne basisches Helix-Loop-Helix Region), getestet. Hierzu wurden die entsprechenden cDNAs im richtigen Leserahmen sowohl an die DNA-Bindedomäne (BD) als auch Aktivierungsdomäne (AD) von Gal4 kloniert. Die hergestellten Expressionsplasmide wurden in den Hefestamm YRG-2 transformiert. Anschließend wurden die Transformanten auf die Aktivierung der Reportergene (der auxotropher Marker HIS3 und das lacZ Gen) untersucht. Bei einer Interaktion der Fusionsproteine werden beide Reportergene aktiviert. Diese Transformanten können auf Histidinmangelmedium wachsen und zeigen β-Galaktosidaseaktivität.

Die Untersuchungen ergaben, das Transformanten die nur das BD-R oder das BD-Rdel Fusionsprotein enthalten, bereits zu einer Expression der Reportergene in der Lage sind. Alle anderen Transformanten, die nur ein Fusionsprotein enthalten, zeigen keine Reportergenaktivität.

Die Transformanten, die AD-R oder AD-Rdel Fusionsproteine (nicht mit BD-R oder BD-Rdel verwechseln) in Kombination mit BD-C1 oder BD-C1-I Fusionsproteinen synthetisieren (Abbildung 47), zeigen eine sehr starke Aktivierung der Reportergene. Demzufolge scheinen diese Proteine in vivo zu interagieren.
Abbildung 47: Interaktion der Fusionsproteine \( R, R\text{del}, C1 \) und \( C1-I \)

Die Fusionsproteine AD-\( R \) und AD-\( R\text{del} \) können sowohl mit BD-C1 als auch mit BD-C1-I interagieren. Fusionsproteine, die interagieren, sind überlappend dargestellt. AD von Gal4 (Aktivierungsdomäne, gelber Kreis), BD von Gal4 (DNA Bindedomäne, grüner Kreis)

Transformanten, die \( C1 \) oder \( C1-I \) in Kombination mit \( \text{InD} \) oder \( \text{InFus} \) synthetisieren, besitzen ebenfalls aktive Reportergene. Die Fähigkeit zur Interaktion hängt aber davon ab, mit welcher Domäne des Gal4 (AD oder BD) die einzelnen Proteine fusioniert sind. Bei Transformanten mit AD-\( C1 \) in Kombination mit BD-\( \text{InD1} \) oder BD-\( \text{InFus} \) wurden keine aktiven Reportergene beobachtet. Im Gegensatz dazu wurden bei dem reziproken Ansatz, d.h. BD-\( C1 \) in Kombination mit AD-\( \text{InD1} \) oder AD-\( \text{InFus} \), eine Aktivierung der Reportergene festgestellt. Diese Aktivierung ist dabei wesentlich schwächer als bei Transformanten mit AD-\( R \) oder AD-\( R\text{del} \) in Kombination mit BD-\( C1 \) oder BD-\( C1-I \). Die Interaktion der Proteine \( C1 \) oder \( C1-I \) mit \( \text{InD} \) oder \( \text{InFus} \) ist demzufolge als geringer einzuschätzen.

Abbildung 48: Interaktion der Fusionsproteine \( \text{InD1}, \text{InFus}, C1 \) und \( C1-I \)

Die Proteine \( \text{InD1} \) und \( \text{InFus} \) können sowohl mit \( C1 \) als auch mit \( C1-I \) interagieren. Die Fähigkeit zur Interaktion hängt aber davon ab, mit welcher Domäne von Gal4 die einzelnen Proteine fusioniert sind. In Spalte (b) sind die reziproken Kombinationen von Spalte (a) gezeigt. Interagierende Fusionsproteine sind überlappend dargestellt. AD (Aktivierungsdomäne, gelber Kreis), BD (DNA Bindedomäne, grüner Kreis)
Transformanten, die zusätzlich zum AD-R oder AD-Rdel Fusionsprotein noch BD-InD1, BD-InXS oder BD-InFus Fusionsproteine synthetisieren, besitzen keine aktiven Reportergene. Das läßt vermuten, daß AD-R oder AD-Rdel Fusionsproteine nicht mit BD-InD1, BD-InXS oder BD-InFus Fusionsproteinen interagieren können. Bei dem reziproken Versuchsansatz wurden davon abweichende Ergebnisse erhalten.


Abbildung 49: Interaktion der Fusionsproteine InD1, InXS, R und Rdel

Das BD-R Fusionsprotein kann sowohl mit AD-InD1 als auch mit AD-InXS interagieren. Im reziproken Ansatz, d.h. mit den AD-R und AD-Rdel Fusionsproteinen in Kombination mit BD-InD1 oder mit BD-InXS Fusionsproteinen, wurden davon abweichende Ergebnisse erhalten. In Spalte (b) sind die reziproken Kombinationen von Spalte (a) gezeigt. Interagierende Fusionsproteine sind überlappend dargestellt.
AD von Gal4 (Aktivierungsdomäne, gelber Kreis), BD von Gal4 (DNA Bindedomäne, grüner Kreis)
In Untersuchungen mit Transformanten, welche $C1$, $InXS$ und $InFus$ Fusionsproteine zur Bildung von Homodimeren (AD-X + BD-X) enthalten, wurden keine aktiven Reportergene festgestellt. Dies deutet darauf hin, daß diese Fusionsproteine keine aktivierenden Homodimere bilden können (Abbildung 50). Von $InD1$ scheinen dagegen Homodimere gebildet werden (Abbildung 50) zu können, da bei diesen Transformanten eine sehr schwache Aktivität des $HIS3$ Reportergene nachgewiesen wurde. Eine Aktivität des zweiten Reportergens $lacZ$, wurde dagegen nicht beobachtet.

Bei Transformanten mit den allein aktivierenden BD-R Fusionsprotein in Kombination mit dem AD-R Fusionsprotein wurde eine Reduktion der Reportergenaktivität von $lacZ$ beobachtet. Das läßt vermuten, daß ein R-Dimer gebildet wird (Abbildung 50), welches die Genaktivierung durch das BD-R hemmen kann.

**Abbildung 50: Bildung von Homodimeren**

Transformanten mit $C1$, $InXS$ oder $InFus$ (als AD und BD-Fusionsproteine) zeigen keine aktiven Reportergene und können demzufolge keine aktivierenden Homodimere bilden. Von $InD1$ scheinen Homodimere gebildet zu werden, die eine unterschiedliche Expression der Reportergene $HIS3$ und $lacZ$ verursachen. Die Transformanten die BD-$InD1$ und AD-$InD1$ Fusionsproteine synthetisieren, besitzen nur ein aktives Reportergen. Im Gegensatz zu dem $HIS3$ Gen wurde, in diesen Transformanten, das $lacZ$ Reportergens nicht aktiviert.

In Transformanten mit BD-R und AD-R wurde eine Reduktion der Reportergenaktivität von $lacZ$ beobachtet. Das läßt vermuten, daß ein R-Dimer gebildet wird, welches die Genaktivierung durch das BD-R hemmen kann. AD von Gal4 (Aktivierungsdomäne, gelber Kreis), BD von Gal4 (DNA Bindedomäne, grüner Kreis)
Die Ergebnisse der Untersuchungen zur in vivo Interaktion sind in Tabelle 14 zusammengefasst.

### Tabelle 14: Tabellarische Darstellung der Ergebnisse der in vivo Interaktion der BD-Fusionsproteine mit den AD-Fusionsproteinen

<table>
<thead>
<tr>
<th>AD-Fusionsproteine</th>
<th>AD-R</th>
<th>AD-Rdel</th>
<th>AD-InXS</th>
<th>AD-InFus</th>
<th>AD-InD1</th>
<th>AD-C1</th>
<th>AD-C1-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD-R</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BD-Rdel</td>
<td>NA</td>
<td>NA</td>
<td>=</td>
<td>NA</td>
<td>=</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BD-InXS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>NA</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BD-InFus</td>
<td>-</td>
<td>-</td>
<td>NA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>BD-InD1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>nur HIS3</td>
<td>-</td>
</tr>
<tr>
<td>BD-C1</td>
<td>+++</td>
<td>+++</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>NA</td>
</tr>
<tr>
<td>BD-C1-I</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

**Farbcodierung:**

<table>
<thead>
<tr>
<th>Stärke der Aktivierung des Reportergens lacZ.</th>
<th>Redukt.</th>
<th>ca 80 %</th>
<th>ca 40 %</th>
<th>ca 20 %</th>
<th>ca 10 %</th>
<th>ca 5 %</th>
<th>0 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Aktivierung der Reportergene HIS3 und lacZ, Anzahl der + gibt die Stärke an</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- keine Aktivierung der Reportergene HIS3 und lacZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>= unverändert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA nicht analysiert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Es wurde der Einfluss verschiedener AD-Fusionsproteine auf die allein aktivierenden BD-R und BD-Rdel Fusionsproteine getestet. Ein hemmender Einfluss auf die Expression des lacZ Reportergens ist durch ein schraffiertes Feld markiert. Eine unveränderte Expression des lacZ Reportergens ist durch das Zeichen „=“ markiert.
3.6.9 Two Hybrid cDNA Bank

In den hier vorgestellten Two Hybrid Experimenten konnte eine Interaktion des \( \text{InD1} \) Proteins mit \( C1 \) und \( C1-I \) nachgewiesen werden. Diese Interaktion scheint dabei deutlich schwächer zu sein, verglichen mit der Interaktion zwischen \( R \) oder \( \text{Rdel} \) mit \( C1 \) und \( C1-I \). Dieser Unterschied könnte darauf zurückzuführen sein, daß \( C1 \) und \( C1-I \) nicht die optimalen Interaktionspartner für \( \text{InD1} \) sind.

Um weitere und eventuell bessere Interaktionspartner für \( \text{InD1} \) zu finden, wurde eine Two Hybrid cDNA Bank hergestellt. Mit dieser Two Hybrid cDNA Bank ist es möglich, die Interaktion zwischen einem bekannten Protein und einer großen Anzahl unbekannter Proteine zu testen.


Diese pAD-cDNA Plasmide wurden in kompetente Zellen des BD-\( \text{InD1} \) Hefestammes transformiert und daraus eine „Two Hybrid cDNA Bank“ Dauerkultur hergestellt (2.2.5.4).

Die Analyse der Two Hybrid cDNA Bank hinsichtlich möglicher Interaktionspartner, erfolgt mit Hilfe der Reportergene \( \text{HIS3} \) und \( \text{lacZ} \). Diese Tests konnten im Rahmen dieser Arbeit nicht mehr durchgeführt werden.
3.7 Untersuchungen zur in vivo Lokalisation des Intensifier Genproduktes

In den in dieser Arbeit vorgestellten Two Hybrid Experimenten wurde im begrenzten Umfang die Interaktion des Intensifier Genproduktes sowohl mit dem C1 Protein als auch mit dem R Protein nachgewiesen. Es ist daher vorstellbar, daß das Intensifier Genprodukt mit R um das C1 Protein konkurrieren könnten und so eine Regulation der in vivo Aktivität der Zielgene erfolgt.

Die Ergebnisse der Two Hybrid Experimente müssen nicht unbedingt der Situation in der Pflanzenzelle entsprechen. Es ist möglich, daß zwei Proteine miteinander interagieren können, diese aber in der lebenden Zelle niemals in Kontakt miteinander treten, da sie in verschiedenen Geweben, zu unterschiedlichen Zeiten oder in verschiedenen subzellularen Kompartimenten exprimiert werden.


Sequenzvergleiche der Intensifier Proteine In und InD mit R und anderen myc-homologen Proteinen belegen eine große Ähnlichkeit dieser Proteine zueinander. Speziell in dem Bereich der basischen Helix-Loop-Helix Region, in der die mediale NLS von R liegt, besteht eine hohe Homologie. Die anderen zwei NLS sind dagegen nicht in den In und InD Aminosäuresequenzen konserviert (Abbildung 3, Seite 8).

Das Vorhandensein einer möglichen NLS in den In und InD Aminosäuresequenzen deutet darauf hin, daß diese Proteine ebenfalls im Zellkern lokalisiert sein könnten. Um festzustellen, ob sie und die R Proteine im selben Kompartiment der Zelle vorliegen, wurden in vivo Lokalisationsstudien mit dem grünen fluoreszierenden Protein (GFP) als Reporterprotein durchgeführt.

Die möglichen Funktionen des Intensifier Genproduktes werden kontrovers diskutiert. Das Genprodukt hat einen regulatorischen Einfluß auf die Strukturgene C2 und Whp, die für das Schlüsselfenzym Chalkonsynthase (CHS) des Anthocyanbiosynteseweges kodieren. Ob dieser Einfluß auf der Ebene der Transkription, der post-Transkription oder auf der Ebene der Translation erfolgt ist noch nicht geklärt. Eine Lokalisation des Intensifier Genproduktes im Zellkern könnte sowohl auf einen Einfluß auf der Ebene der Transkription, als auch auf einen Einfluß auf der Ebene der post-Transkription hinweisen.
3.7.1 Herstellung der Expressionsplasmide

Die Lokalisation der Intensifier Proteine \textit{In} und \textit{InD1}, in Bezug auf den Kernimport, sollte mit zwei anderen Proteinen verglichen werden. Das \textit{Zea mays} L. Strukturen C2 (Wienand \textit{et al.}, 1986) kodiert für die Chalkonsynthase, dessen Aminosäuresequenz keine bekannten NLS enthält. Das C2 Protein ist dadurch als negative Kontrolle für die Lokalisation im Zellkern geeignet. Als positive Kontrolle dient das, bereits für die Two Hybrid Experimente verwendete und charakterisierte, kernlokalisierte R Protein (Shieh \textit{et al.}, 1993).


Für diese Fusion mussten die STOPP Codons der cDNAs der korrespondierenden Proteine entfernt werden, um einen durchgängigen Leserahmen zu erhalten. Hierfür wurden ausschließlich die kodierenden Bereiche der cDNAs von R, C2 und \textit{InD1} mittels PCR und Pfx-DNA Polymerase amplifiziert (2.2.3.5). In Tabelle 15 sind die benötigten cDNAs, Primer und die Größen der amplifizierten Fragmente aufgelistet. Die hergestellten Fragmente wurden in die \textit{EcoRV/SmaI} geschnittene (2.2.2.3) Plasmid DNA (2.2.2.2) des Vektors pBluescript II SK+ ligiert und vollständig sequenziert (2.2.4).

### Tabelle 15: Hergestellte GFP Expressionplasmide

<table>
<thead>
<tr>
<th>DNA</th>
<th>5’ Primer</th>
<th>3’ Primer</th>
<th>amp. Frag. in kb</th>
<th>Restrikt. zur Orientierung</th>
<th>resultierendes Expressionsplasmid</th>
</tr>
</thead>
<tbody>
<tr>
<td>pC2LCc46</td>
<td>Nat-OI-29</td>
<td>Nat-OI-30</td>
<td>1.5</td>
<td>SmaI</td>
<td>C2-GFP #443</td>
</tr>
<tr>
<td>pRLC2.5kb</td>
<td>Nat-OI-26</td>
<td>Nat-OI-31</td>
<td>2.2</td>
<td>BglII</td>
<td>R-GFP #577</td>
</tr>
<tr>
<td>2.1 InD</td>
<td>Nat-OI-27</td>
<td>Nat-OI-28</td>
<td>2.2</td>
<td>SmaI</td>
<td>InD1-GFP #474</td>
</tr>
</tbody>
</table>

Auflistung der für die PCR benöigten cDNAs, Primer und die Länge der amplifizierten Fragmente (amp. Frag.). Die Orientierung der Fragmente im GFP Vektor pMon30049 wurde durch Restriktion der Plasmid DNA festgestellt.

In den Sequenzen der amplifizierten Fragmente wurden keine Fehler festgestellt und die Fragmente konnten subkloniert werden.

Durch die in der PCR verwendeten Primer wurden zusätzliche BamHI Schnittstellen eingeführt. Hierdurch konnten die Fragmente mittels BamHI Restriktion aus der Plasmid DNA (2.2.2.1) des Vektor pBluescript II SK+ ausgeschnitten (2.2.2.3) und anschließend isoliert werden (2.2.3.3). Nach der Bestimmung der DNA Menge (2.2.2.5) erfolgte die Ligation (2.2.3.6) in die BamHI geschnittene (2.2.2.3) Plasmid DNA (2.2.2.2) des GFP Vektors pMon30049.

Aufgrund der ungerichteten Klonierung in den Expressionsvektor (Abbildung 51) ergaben sich zwei mögliche Orientierungen des Fragmentes im Vektor. Um diese Orientierung festzustellen wurden aus 24 unabhängigen Bakterientransformanten die Plasmid DNA isoliert (2.2.2.1) und mit SmaI oder BglII geschnitten (2.2.2.3). Die Restriktionsfragmente wurden anschließend elektrophoretisch aufgetrennt (2.2.2.4) und anhand des verwendeten Standards bestimmt (2.2.2.5).

Die resultierenden Expressionsplasmide der positiven Bakterientransformanten und die Fusionsproteine wurden als C2-GFP (Plasmid #443), R-GFP (Plasmid #577) und InD1-GFP (Plasmid # 474) bezeichnet (Tabelle 15).
Abbildung 51: Herstellung der GFP Expressionsplasmide von C2, R und InD1

Der kodierende Bereich von C2 (hellblaue Box), R (rosa Box) und InD1 (orange Box) wurde aus den entsprechenden cDNAs (pC2LCc46, pRLC2.5kb, 2.1 InD) per PCR amplifiziert. Hierfür wurden die Primer (rote und grüne Pfeile) OI-26 bis OI-31 verwendet, die eine zusätzliche BamHI (B) Schnittstelle enthalten. Die PCR Produkte wurden in die EcoRV (RV)/ Smal (Sm) Schnittstelle von pBluescript II SK+ einkloniert und vollständig sequenziert. Anschließend wurden die Fragmente mit BamHI ausgeschnitten und ungerichtet in die BamHI Schnittstelle des GFP Expressionsvektors pMon30049 kloniert. Die Orientierung der Fragmente im Vektor wurde durch Restriktion mit Smal oder BgII (Bg) festgestellt. Die resultierenden Expressionsplasmide und Fusionsproteine wurden als C2-GFP, R-GFP und InD1-GFP bezeichnet. Das GFP (GFP) steht unter der Kontrolle des verstärkten 35S CaMV Promoters (P) und ist zwischen dem Hsp70 Intron (fette Linie) und dem Nopalinsynthase Terminator (NOS) lokalisiert. Das GFP enthält das zusätzliche pflanzliche Intron ST-LS1 (rote Linie). Die für die Klonierung benötigten Schnittstellen sind in den kodierenden Bereichen und in den Vektoren markiert.
Für die Herstellung des *InFus* Expressionsplasmids wurde das bereits für die Two Hybrid Experimente verwendete Fusionskonstrukt (aus Teilen von *In* und *InD*) verwendet (Abbildung 12, Seite 53). Das ca. 2.2 kb lange *InFus* Konstrukt wurde aus der DNA (2.2.2.1) des Plasmids #685 mittels *Bam*HI Restriktion ausgeschnitten (2.2.2.3) und das entsprechende Fragment isoliert (2.2.3.3). Nach der Bestimmung der DNA Menge (2.2.2.5) erfolgte die ungerichtete Ligation (2.2.3.6) in die *Bam*HI (2.2.2.3) geschnittene Plasmid DNA (2.2.2.2) des GFP Vektors pMon30049.

Aufgrund der ungerichteten Klonierung in die *Bam*HI Schnittstelle des Expressionsvektors ergaben sich zwei mögliche Orientierungen des Fragmentes (Abbildung 52). Um diese Orientierung festzustellen wurden aus 24 unabhängigen Bakterientransformanten die Plasmid DNA isoliert (2.2.2.1) und mit *Sma*I geschnitten (2.2.2.3). Die Restriktionsfragmente wurden anschließen elektrophoretisch aufgetrennt (2.2.2.4) und anhand des verwendeten Standards bestimmt (2.2.2.5).

Das resultierende Expressionsplasmid des positiven Bakterientransformanten und das Fusionsprotein wurde als *InFus*-GFP (Plasmid # 808) bezeichnet.

![Abbildung 52: Herstellung des GFP Expressionsplasmids von *InFus*](image-url)

Für die Herstellung des *InFus* Expressionsplasmids wurde das bereits für die Two Hybrid Experimente verwendete Fusionskonstrukt *InFus* (aus Teilen von *In* und *InD*) verwendet (Abbildung 12, Seite 53). Das ca. 2.2 kb lange *InFus* Konstrukt wurde aus dem Plasmid #685 mittels *Bam*HI (B) Restriktion ausgeschnitten und ungerichtet in die *Bam*HI Schnittstelle des GFP Vektors pMon30049 einklontiert. Die Orientierung des Fragmentes im Vektor wurde durch die Restrikktion mit *Sma*I (Sm) festgestellt. Das GFP (GFP) steht unter der Kontrolle des verstärkten 35S CaMV Promoters (P) und ist zwischen dem Hsp70 Intron (fette Linie) und dem Nopalin Synthase Terminator (NOS) lokalisiert. Das GFP enthält das zusätzliche pflanzliche Intron ST-LS1 (rote Linie). Die für die Klonierung benötigten Schnittstellen sind in den kodierenden Bereichen und in den Vektoren markiert.
Um die korrekte Klonierung im richtigen Leserahmen zu gewährleisten, wurden alle im Rahmen dieser Arbeit hergestellten GFP Expressionsplasmide durch Sequenzierung der Fusionsstelle überprüft. Die resultierenden GFP Fusionsproteine sind in Abbildung 53 schematisch dargestellt.

<table>
<thead>
<tr>
<th>Expressionsplasmide</th>
<th>Fusionsproteine</th>
<th>MW in kDa</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2-GFP</td>
<td>C2-GFP</td>
<td>~ 71</td>
</tr>
<tr>
<td>R-GFP</td>
<td>R-GFP</td>
<td>~ 94</td>
</tr>
<tr>
<td>InD1-GFP</td>
<td>InD1-GFP</td>
<td>~ 102</td>
</tr>
<tr>
<td>InFus-GFP</td>
<td>InFus-GFP</td>
<td>~ 103</td>
</tr>
<tr>
<td>GFP</td>
<td>GFP</td>
<td>~ 27</td>
</tr>
</tbody>
</table>

**Abbildung 53: Schematische Darstellung der GFP Fusionsproteine**

3.7.2 Nachweis der GFP Fusionsproteine in transient transformiertem Maisscutellumgewebe durch Fluoreszenzmikroskopie

Die verschiedenen GFP Expressionsplasmide wurden mittels biolistischer Transformation (2.2.7) zunächst in Maisscutellum getestet, da es sich hierbei um embryogenes stoffwechselaktives Gewebe handelt. Des weiteren waren hierfür die optimalen Bedingungen bereits in der Arbeitsgruppe standardisiert (Brettschneider et al., 1997). Die transiente Expression der GFP Proteine ohne zusätzliches Fusionsprotein diente als Kontrolle für die erfolgreiche Transformation der Zellen.

Für jede Transformation wurden 10-15 Maisembryonen (14-26 DAP) steril isoliert, auf osmotischem Medium mit der Scutellumseite nach oben ausgelegt und vier Std. bei RT inkubiert. In direktem Anschluss erfolgte die biolistische Transformation. Nach einer 18-24 stündigen Inkubation erfolgte der Nachweis der Expression der Proteine (GFP, C2-GFP, R-GFP, InD-GFP) durch Fluoreszenzmikroskopie mit dem Zeiss Axioskop bei 50 und 100 facher Vergrößerung (2.2.8).

Die Gewebe zeigen unterschiedlich starke Fluoreszenz. Im Vergleich zum nichttransformierten Scutellumgewebe (Abbildung 54), sind mit dem GFP Protein viele und große grünliche Punkte zu sehen, die sich deutlich vom hellgrünen Hintergrund abheben (Abbildung 55).

**Abbildung 54:** nichttransformiertes Maisscutellumgewebe

Das Scutellumgewebe zeigt bei Anregung mit UV-Licht eine geringe gelbgrüne Autofluoreszenz.

Das nichttransformierte Mais Scutellumgewebe ist in 100 facher Vergrößerung dargestellt.

**Abbildung 55:** GFP exprimierendes Maisscutellumgewebe

Mais Scutellumgewebe wurde mit dem GFP Plasmid transient transformiert und anschließend auf Expression des GFP Proteins (farbige Box) untersucht. Die exprimierenden Zellen sind als leuchtend grüne Punkte zu identifizieren.

Das transformierte Mais Scutellumgewebe ist in 100 facher Vergrößerung dargestellt.
Vermutlich verteilen sich die GFP Proteine in dieser Region in der ganzen Zelle. Die teilweise verschwommenen Punkte sind Signale, die sich, aufgrund der gewölbten Form des Scutellums, ausserhalb des Fokus befinden.

Mit dem C2-GFP Fusionsprotein wurden, bezüglich der Fluoreszenzintensität und Anzahl, die gleichen Beobachtungen, wie mit dem nichtfusionierten GFP Protein gemacht.

**Abbildung 56: C2-GFP exprimierendes Maisscutellumgewebe**


Im Gegensatz hierzu wurden in R-GFP exprimierendem Maisscutellum nur sehr kleine und wenige Punkte beobachtet (Abbildung 57). Die Intensität der Fluoreszenz ist deutlich schwächer, verglichen mit den Maisscutellumgeweben in welchen die GFP oder C2-GFP Fusionproteine synthetisiert werden.

**Abbildung 57: R-GFP exprimierendes Maisscutellumgewebe**

Mais Scutellumgewebe wurde mit dem R-GFP Plasmid transient transformiert und anschließend auf das synthetisierte R-GFP Fusionsprotein (farbige Box) untersucht. Im Gegensatz zu GFP und C2-GFP sind die R-GFP exprimierenden Zellen nur als wenige und schwach leuchtende grüne Punkte zu identifizieren (A,B). Die Ursache für die geringe Größe der Signale könnte an der Lokalisation der R-GFP Fusionsprotein in der Zelle liegen. Hierbei handelt es sich um ein kernlokalisiertes Protein, die sich demzufolge nur in einem kleinen Bereich der Zelle ansammelt.

Das transformierte Mais Scutellumgewebe ist in 100 facher Vergrößerung dargestellt. (B) zeigt eine Ausschnittsvergrößerung von (A).
Die geringe Größe der Signale mit dem R-GFP Fusionsprotein könnte an der Lokalisation des R Proteins in der Zelle liegen. Es handelt sich hierbei um ein kernlokalisiertes Protein, das sich demzufolge nur in einem kleinen Bereich der Zelle ansammelt.

Auch bei wiederholten Versuchen konnten nur wenige Signale detektiert werden. Möglicherweise liegen in der Zelle Mechanismen vor, die überexprimierte R (-GFP) Proteine oder RNAs abbauen, da die Zellfunktion sonst gestört würde. Dieser Abbau könnte demzufolge detektierbares (R-) GFP Protein reduzieren und die nur selten beobachteten fluoreszierenden Punkte erklären.

In InD1-GFP exprimierendem Maisscutellum wurden ebenfalls nur sehr wenige und nackte grünen Punkte beobachtet. Offensichtlich ist das InD1-GFP Fusionsprotein nicht wie die GFP oder C2-GFP Fusionsproteine in der ganzen Zelle, sondern nur in einem Teil der Zelle vorhanden. Diese Beobachtungen entsprechen den Ergebnissen, die mit dem R-GFP Fusionsprotein gemacht wurden und weisen auf eine Kernlokalisation des InD1-GFP Fusionsproteins hin.

![Abbildung 58: InD1-GFP exprimierendes Maisscutellumgewebe](image)

Mais Scutellumwebe wurde mit dem InD1-GFP Plasmid transient transformiert und anschließend auf das synthetisierte InD1-GFP Fusionsprotein (farbige Box) untersucht. Die InD1-GFP exprimierenden Zellen sind nur als wenige und schwach leuchtende grüne Punkte zu identifizieren (A, B). Diese Beobachtungen entsprechen den Ergebnissen, die mit dem R-GFP Fusionsprotein gemacht wurden (Abbildung 57) und weisen auf eine Kernlokalisation des InD1-GFP Fusionsproteins hin.

Das transformierte Mais Scutellumgewebe ist in 100 facher Vergrößerung dargestellt. (B) zeigt eine Ausschnittsvergrößerung von (A).

Das InFus-GFP Expressionsplasmid lag erst zu einem Zeitpunkt vor, an dem die Versuche mit Maisscutellumgewebe bereits abgeschlossen waren. Das InFus-GFP Expressionsplasmid wurde daher nicht in Maisscutellumgewebe getestet.
3.7.3 Nachweis der GFP Fusionsproteine in transient transformierten Geweben durch Fluoreszenzmikroskopie


Von steril angezogenen Tabakpflanzen wurden junge Blätter abgeschnitten und auf Wasseragar ausgelegt. Von ca. 14 Tage alten Maispflanzen wurden 1,5 cm lange Blattstücke abgeschnitten und ebenfalls mit der Blattunterseite auf 8 %igem Wasseragar ausgelegt. Anschließend erfolgte die biolistische Transformation (2.2.7). Wenn nicht extra aufgeführt, gelten die gleichen Parameter für die biolistische Transformation, die für die transiente Transformation von Maisembryonen verwendet wurden.

Nach der biolistischen Transformation erfolgte der Nachweis der Expression durch Fluoreszenzmikroskopie bei 200 facher Vergrößerung (2.2.8). Bei den Mais- und Tabakblättern konnte eine hohe Autofluoreszenz durch das Chlorophyll beobachtet werden. Trotz dieser roten Hintergrundfluoreszenz konnten GFP exprimierende Zellen gut durch die grüne Fluoreszenz identifiziert werden. Um zu dokumentieren, daß es sich bei den grünen Signalen um Einzelzellen handelt, wurde das Gewebe unter Weisslicht betrachtet. Aufgrund
Ergebnisse
des Blattaufbaus wurde festgestellt, daß mehrere Zellschichten übereinander lagen und keine befriedigende Dokumentation unter Weißlicht möglich war (Daten nicht gezeigt). Aufgrund dieser Ergebnisse wurden die Blätter für die transienten Expressionanalysen nicht weiter eingesetzt.


Abbildung 59: GFP Expression in Narbenfäden von Mais


In einigen Fällen wurde eine GFP Expression in Trichomzellen beobachtet. Diese fluoreszierten nur grün, da sie aufgrund fehlender Chloroplasten, keine Autofluoreszenz zeigten. Es konnte hierbei eine GFP Protein Anhäufung im Zytoplasma und im Bereich der Zellkerne beobachtet werden. Die Trichome der Linien LC und H99 bestehen aus wenig verzweigten Zellen und ihre Transformationsrate war dadurch relativ gering. Der Bereich der GFP exprimierenden Zellen lag zudem oftmals aus der fokussierenden Ebene heraus, so dass nur ein Teil der Zelle zu dokumentieren war. Geeignete Zellen wurden deshalb nur selten
beobachtet, so dass die Narbenfäden der Linien LC und H99 für weitere Analysen ungeeignet erschienen (Abbildung 60).

**Abbildung 60: GFP Expression in Narbenfäden von Mais der Linie LC**


**Abbildung 61: GFP Expression in Narbenfäden von Mais der Linie Q2**


Damit möglichst viele Zellen untersucht und miteinander verglichen werden konnten, musste zunächst die Transformationsrate des Gewebes erhöht werden.

**Abbildung 62: GFP Expression in den Epidermiszellen der Zwiebel**

3.7.4 Bestimmung der Parameter für die biolistische Transformation von epidermalen Zwiebelzellen

Die Transformationseffizienz der Particle Gun kann durch verschiedene Parameter optimiert werden. Hierzu gehören die Goldpartikelgröße, der Druck, das Vakuum und die Abstände zwischen Berstscheibe, Stopps Netz und Probenplatte (Sanford et al., 1993). Zudem fanden sich für die Transformation von Zwiebelzellen in der Literatur verschiedene Angaben zur Herstellung der Goldpartikel und der DNA-Menge, die an die Goldpartikel gebunden wurde. Nach dem Vergleich verschiedener Literaturquellen wurde beschlossen, die Goldsuspension mit 5 µg DNA pro Schuss nach der Methode von Unseld et al. (2001) herzustellen. Zusätzlich wurden die Parameter Goldpartikelgröße (0,3 µm, 1 µm, 1,6 µm) und Abstand der Berstscheibe zum Gewebe (Etage 4 oder 5) variiert. Das Vakuum (28 inch) und der Druck (1100 psi) wurden nicht verändert.

18-24 Std. nach der biolistischen Transformation (2.2.7) wurde die epidermale Zwiebelhaut bei UV Licht betrachtet (2.2.8). Hierbei konnte mit Goldpartikeln von 1,6 µm und Etage 5 die höchste Transformationsrate (10-50 Zellen pro Zwiebelhaut) festgestellt werden (Daten nicht gezeigt). Mit diesen Bedingungen wurden anschließend alle GFP Plasmide transient exprimiert.

3.7.5 Nachweis der GFP Fusionsproteine in transient transformierten Epidermiszellen der Zwiebel durch Fluoreszenzmikroskopie

Abbildung 63: GFP Expression in den Epidermiszellen der Zwiebel

Epidermale Zwiebelzellen wurden mit dem GFP Vektor transient transformiert und anschließend auf das synthetisierte GFP Protein untersucht. Es wurde eine GFP Protein Anhäufung im Zytoplasma und im Zellkern beobachtet (A). Aufgrund der geringen Größe der GFP Proteine sind diese in der Lage passiv in den Zellkern zu diffundieren.


Im Vergleich zu dem GFP Protein zeigten Zwiebelzellen mit dem C2-GFP Fusionsprotein eine schwächere Ansammlung der Proteine im Zytoplasma. Des weiteren wurde nur eine schwache Ansammlung des C2-GFP Fusionsproteins im Bereich der Zellkerne festgestellt, deren Intensität der Fluoreszenz im Bereich des Zytoplasmas entsprach (Abbildung 64).

Abbildung 64: C2-GFP Expression in den Epidermiszellen der Zwiebel


Das Bild A zeigt die transformierten Epidermiszelle der Zwiebel bei UV-Licht, das Bild B zeigt die Zelle im Zellverband bei normalem Weißlicht. Der Zellkern ist mit einem Pfeil markiert. Das Gewebe ist in 200 facher Vergrößerung dargestellt.


Abbildung 65: R-GFP Expression in den Epidermizellen der Zwiebel


Diese Anhäufung der R-GFP Fusionsproteine im Zytoplasma ist vermutlich auf eine sehr starke R-GFP Überexpression zurückzuführen. Vermutlich sind die Proteine limitiert, die den Kerntransport vermitteln, so daß R-GFP Fusionsproteine im Zytoplasma verbleiben. Zu keinem Zeitpunkt wurde jedoch eine vergleichbare Fluoreszenz wie mit den C2-GFP Fusionsproteinen oder GFP Proteinen im Zytoplasma beobachtet.
Die *InD1*-GFP und *InFus*-GFP Fusionsproteine wurden ausschließlich im Bereich der Zellkerne nachgewiesen. In einigen Fällen wurde eine geringe Ansammlung der *InD1*-GFP und *InFus*-GFP Fusionsproteine im Zytoplasma beobachtet. Diese Fluoreszenz im Zytoplasma trat jedoch nur bei einer starken Fluoreszenz der Zellkerne auf (Daten nicht gezeigt). Die Ergebnisse entsprechen damit den Beobachtungen, die mit den *R-GFP* Fusionsproteinen gemacht wurden.

![Abbildung 66: *InD1*-GFP und *InFus*-GFP Expression in den Epidermiszellen der Zwiebel](image)

Epidermale Zwiebelzellen wurden mit den *InD1*-GFP und *InFus*-GFP Plasmiden transient transformiert und anschließend auf die synthetisierten *InD1*-GFP und *InFus*-GFP Fusionsproteine untersucht. Bei Anregung mit UV-Licht konnte eine Anhäufung der *InD1*-GFP (A) und der *InFus*-GFP (C) Proteine ausschließlich im Zellkern beobachtet werden. Da die Proteine zu groß (ca. 103 kDa) für die passive Diffusion in den Zellkern sind, könnten sie Signalsequenzen für den aktiven Transport enthalten.

Die Proteine *InD1*-GFP und *InFus*-GFP scheinen in den Zellkern transportiert zu werden. Proteine bis 40 kDa diffundieren passiv in den Zellkern, Proteine die größer sind, müssen aktiv in den Zellkern transportiert werden. Die passive Diffusion der *InD1*-GFP und *InFus*-GFP Fusionsproteine in den Zellkern kann ausgeschlossen werden, da sie mit ca. 103 kDa dafür zu groß sind.

Aufgrund der Beobachtungen daß die Fusionsproteine *InD1*-GFP und *InFus*-GFP trotz ihrer Größe in den Zellkern gelangen, wurde die Vermutung bestätigt, daß sie mindestens eine Signalsequenz für den aktiven Kerntransport enthalten. Mit der Herstellung von Deletionsproteinen wurde versucht, den hierfür verantwortlichen Bereich einzuschränken. Die entsprechenden Deletionsplasmide sollten etwa die Hälfte der *In* und *InD* kodierenden Sequenz enthalten.
3.7.6 Herstellung von Deletionsplasmiden

Für die Herstellung der Deletionsplasmide, wurden die bereits für die Two Hybrid Experimente hergestellten PCR Fragmente \textit{In}-am und \textit{InD}-carb verwendet (Abbildung 12, Seite 53). Das ca. 1,2 kb lange \textit{In}-am Fragment kodiert für den aminoterminalen Bereich des \textit{Intensifier} Proteins \textit{In} (Aminosäuren 1-366). Das ca. 1 kb lange \textit{InD}-carb Fragment kodiert für den carboxyterminalen Bereich des \textit{Intensifier} Proteins \textit{InD1} (Aminosäuren 373-690). Die Aminosäuresequenzen des carboxyterminalen Bereiches von \textit{InD1} und \textit{InFus} stimmen überein, daher musste der carboxyterminale Bereich von \textit{InFus} nicht extra analysiert werden.

3.7.7 Herstellung des \textit{In}-am-GFP Expressionsplasmids

(siehe Abbildung 67)

Das ca 1,2 kb lange \textit{In}-am Fragment wurden mittels \textit{BamHI/MluI} Restriktion (2.2.2.3) aus der Plasmid DNA #623 (2.2.2.1) ausgeschnitten. Damit die Enden des Fragmentes und des Vektors kompatibel zueinander sind, mußten sowohl die Enden des Fragmentes als auch die Enden des Vektors aufgefüllt werden. Nach der Isolierung des Fragmentes erfolgte die Bestimmung der DNA Menge und die Ligation (2.2.3.6) in die \textit{BamHI} (2.2.2.3) geschnittene Plasmid DNA (2.2.2.2) des GFP Vektors pMon30049.

Aufgrund der ungerichteten Klonierung ergaben sich zwei mögliche Orientierungen des Fragmentes im Vektor. Um die Orientierung festzustellen wurde aus 24 unabhängigen Bakterientransformanten die Plasmid DNA isoliert (2.2.2.1) und mit \textit{SmaI} restringiert (2.2.2.3). Die Restriktionsfragmente wurden anschließend elektrophoretisch aufgetrennt (2.2.2.4) und anhand des verwendeten Standards bestimmt (2.2.2.5).

Das resultierende Expressionsplasmid der positiven Bakterientransformanten und das Fusionsprotein wurde als \textit{In}-am-GFP (Plasmid #730) bezeichnet.

3.7.8 Herstellung des \textit{InD}-carb-GFP Expressionsplasmids

(siehe Abbildung 67)

Das ca 1,1 kb lange InD-carb Fragment wurde mittels BamHI Restriktion (2.2.2.3) aus der Plasmid DNA # 659 (2.2.2.1) ausgeschnitten und isoliert (2.2.3.3). Nach der Bestimmung der DNA Menge (2.2.2.5) erfolgte die ungerichtete Ligation (2.2.3.6) in die BamHI geschnittene Plasmid DNA (2.2.2.2) des GFP Vektors pMon30049.

Aufgrund der ungerichteten Klonierung ergaben sich zwei mögliche Orientierungen des Fragmentes im Vektor. Um die Orientierung festzustellen wurde aus 24 unabhängigen Bakterientransformanten die Plasmid DNA isoliert (2.2.2.1) und mit mit MluI / EcoRI restrigiert (2.2.2.3). Die Restriktionsfragmente wurden anschließen elektrophoretisch aufgetrennt (2.2.2.4) und anhand des verwendeten Standards bestimmt (2.2.2.5).

Das resultierende Expressionsplasmid der positiven Bakterientransformanten und das Fusionsprotein wurde als InD-carb-GFP (Plasmid #750) bezeichnet.
Abbildung 67: Herstellung der \textit{In}-am-GFP und \textit{InD}-carb-GFP Expressionsplasmide

Für die Herstellung der Deletionsplasmide wurden die bereits für die Two Hybrid Experimente hergestellten PCR Fragment \textit{In}-am und \textit{InD}-carb verwendet (Abbildung 12, Seite 53). Das ca. 1,2 kb lange \textit{In}-am Fragment kodiert für den aminoterminalen Bereich des \textit{Intensifier} Proteins \textit{In} (Aminosäuren 1-366). Das ca. 1 kb lange \textit{InD}-carb Fragment kodiert für den carboxyterminalen Bereich des \textit{Intensifier} Proteins \textit{InD1} (Aminosäuren 373-690).

Die Primer (grüne und rote Pfeile) OI-27 und OI-28 und OI-53 enthielten eine zusätzliche \textit{BamHI} (B) Schnittstelle, der Primer OI-53 enthielt des weiteren eine zusätzliche \textit{MluI} Schnittstelle (M). Durch den Primer OI-53 wurde ein zusätzliches ATG Triplett (grün) für den Translationsstart eingeführt.

Das \textit{In}-am Fragment wurde mittels Restriktion mit \textit{MluI/BamHI} aus dem Plasmid #623 ausgeschnitten. Damit die Enden des Fragmentes und des Vektors kompatibel zueinander waren, mußten diese aufgefüllt werden. Das Fragment wurde anschließend ungerichtet in die aufgefüllte \textit{BamHI} Schnittstelle des Vektors pMon30049 einkloniert. Die Orientierung des Fragmentes im GFP Vektor wurde durch Restriktion mit \textit{Smal} (Sm) festgestellt.

Das \textit{InD}-carb Fragment wurde mittels Restriktion mit \textit{BamHI} aus dem Plasmid #659 ausgeschnitten und ungerichtet in die \textit{BamHI} Schnittstelle des Vektors pMon30049 einkloniert. Die Orientierung des Fragmentes im GFP Vektor wurde durch Restriktion mit \textit{MluI/EcoRI} (E) festgestellt.

Die resultierenden Expressionsplasmide wurden als \textit{In}-am-GFP und \textit{InD}-carb-GFP bezeichnet.
3.7.9 Herstellung des *InD*-am-GFP Expressionsplasmids

(siehe Abbildung 68)

Ein 1,2 kb langer Bereich wurde aus dem Plasmid 2.1 InD1 mittels PCR und Pfx-DNA Polymerase (2.2.3.5) amplifiziert. Durch die verwendeten Primer Ol-27 und Ol-54 wurden zusätzliche *Bam*HI und *Mlu*I Schnittstellen eingefügt, die eine spätere Subklonierung ermöglichten. Das PCR Produkt wurde in die *EcoRV/Sma*I geschnittene (2.2.2.3) Plasmid DNA (2.2.2.2) des Vektors pBluescript II SK+ ligiert und vollständig sequenziert (2.2.4).

Das ca. 1,2 kb lange *InD*-am Fragment wurden mittels *Bam*HI/*Mlu*I Restrikction (2.2.2.3) aus der Plasmid DNA ausgeschnitten und isoliert 2.2.3.3. Damit die Enden des Fragmentes und des Vektors kompatibel zueinander sind, mußten sowohl die Enden des Fragmentes als auch die Enden des Vektors aufgefüllt werden. Nach der Isolierung des Fragmentes erfolgte die Bestimmung der DNA Menge und die Ligation (2.2.3.6) in die *Bam*HI (2.2.2.3) geschnittene Plasmid DNA (2.2.2.2) des GFP Vektors pMon30049.

Aufgrund der ungerichteten Klonierung ergaben sich zwei mögliche Orientierungen des Fragmentes im Vektor. Um die Orientierung festzustellen wurde aus 24 unabhängigen Bakterientransformanten die Plasmid DNA isoliert (2.2.2.1) und mit *Sma*I restringiert (2.2.2.3). Die Restriktionsfragmente wurden anschließend elektrophoretisch aufgetrennt (2.2.2.4) und anhand des verwendeten Standards bestimmt (2.2.2.5).

Das subklonierte PCR-Fragment kodiert für die Aminosäuren 1-372 von *InD1*. Das *InD*-am Fragment entspricht, in der Länge und der kodierenden Region, dem *In*-am Fragment (Abbildung 67). Das resultierende Expressionsplasmid der positiven Bakterientransformanten und das Fusionsprotein, wurden als *InD*-am-GFP (Plasmid #816) bezeichnet.
Ein 1,2 kb langer Bereich (*InD*-am) wurde aus der cDNA 2.1 InD per PCR amplifiziert. Hierfür wurden die Primer Ol-54 und Ol-53 (roter und grüner Pfeil) verwendet. Die Primer enthielten eine zusätzliche *BamHI* (B) und eine zusätzliche *MluI* (M) Schnittstelle, die eine spätere Subklonierung ermöglichten. Das PCR Produkt wurde in die kompatible *EcoRV* (RV)/ *SmaI* (Sm) Schnittstelle von pBluescript II SK+ einkloniert und vollständig sequenziert. Anschließend wurde das *InD*-am Fragment mittels Restriktion mit *MluI/BamHI* aus dem Vektor pBluescript II SK+ ausgeschnitten. Damit die Enden des Fragmentes und des Vektors kompatibel zueinander waren, mußten diese aufgefüllt werden. Das Fragment wurde anschließend ungerichtet in die aufgefüllte *BamHI* Schnittstelle des Vektors pMon30049 kloniert. Die Orientierung des Fragmentes im GFP Vektor wurde durch Restriktion mit *SmaI* (Sm) festgestellt.

Das resultierenden Expressionsplasmid wurden als *InD*-am-GFP bezeichnet. Das *InD*-am Fragment entspricht, in der Länge und der kodierenden Region, dem *In*-am Fragment (Abbildung 67).
Um die korrekte Klonierung im richtigen Leserahmen zu gewährleisten, wurden alle hergestellten GFP Expressionsplasmide durch Sequenzierung der Fusionsstelle überprüft. Die resultierenden GFP Fusionsproteine *In*-am-GFP, *InD*-am und *InD*-carb sind im Vergleich zu *InD*-GFP und *Infu*-GFP in Abbildung 69 schematisch dargestellt.

<table>
<thead>
<tr>
<th>Expressionsplasmide</th>
<th>Fusionsproteine</th>
<th>MW in kDa</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>InD</em>-GFP</td>
<td><em>InD1</em></td>
<td>~ 102</td>
</tr>
<tr>
<td><em>Infu</em>-GFP</td>
<td><em>Infu</em></td>
<td>~ 103</td>
</tr>
<tr>
<td><em>Infu</em></td>
<td><em>In-am</em></td>
<td></td>
</tr>
<tr>
<td></td>
<td><em>InD-carb</em></td>
<td></td>
</tr>
<tr>
<td><em>In</em>-am-GFP</td>
<td><em>In</em>-am</td>
<td>~ 69</td>
</tr>
<tr>
<td><em>InD</em>-am-GFP</td>
<td><em>InD</em>-am</td>
<td>~ 68</td>
</tr>
<tr>
<td><em>InD</em>-carb-GFP</td>
<td><em>InD</em>-carb</td>
<td>~ 61</td>
</tr>
</tbody>
</table>

Abbildung 69: Schematische Darstellung der deletierten *Intensifier* GFP-Fusionsproteine

Es konnte gezeigt werden, daß die Fusionsproteine *InD1*-GFP und *Infu*-GFP trotz einer Größe von ca. 103 kDa in den Zellkern gelangen. Damit wurde die Vermutung bestätigt, daß sie Signalsequenzen für den aktiven Kernimport enthalten. Mit der Herstellung von Deletionsproteinen wurde versucht, den hierfür verantwortlichen Bereich einzuschränken. Die Proteine sollten dazu zu etwa 50% deletiert werden.

Die resultierenden GFP Fusionsproteine *In*-am-GFP, *InD*-am und *InD*-carb sind im Vergleich zu *Infu*-GFP und *InD*-GFP dargestellt.

Die Molekulargewichte (MW) der Fusionsproteine sind in Kilo Dalton (kDa) angegeben. Die gelbe Markierung, in den *InD1, Infu* und *InD*-carb Proteinen, markiert die basische Helix-Loop-Helix Region. Hier befindet sich eine charakterisierte Kernlokalisationssequenz (Shieh et al., 1993) in der Aminosäuresequenz von *R*.
3.7.10 Nachweis der Deletionsproteine in transient transformierten Epidermiszellen der Zwiebel durch Fluoreszenzmikroskopie

Nach der biolistischen Transformation (2.2.7) erfolgte der Nachweis der Expression durch Fluoreszenzmikroskopie (2.2.8) bei 200 facher Vergrößerung.

Das InD-carb-GFP Fusionsprotein wurde vorwiegend im Bereich der Zellkerne lokalisiert (Abbildung 70). Zusätzlich wurde eine schwache Fluoreszenz des Zytoplasmas festgestellt, wenn die Zellkerne sehr stark fluoreszierten (Daten nicht gezeigt). Das InD-carb-GFP Fusionsprotein (61kDa) verhält sich damit wie die R-GFP (Abbildung 65), InD-GFP und InFus-GFP (Abbildung 66) Proteine und scheint ebenfalls im Zellkern lokalisiert zu sein.

Proteine die größer als 40 kDa sind, benötigen bestimmte Signalsequenzen für den aktiven Transport in den Zellkern. Eine passive Diffusion des InD-carb-GFP Fusionsproteins in den Zellkern kann ausgeschlossen werden, da das Protein größer als 40 kDa ist. Diese Ergebnisse weisen darauf hin, dass der InD-carb Bereich mindestens eine Signalsequenz für den aktiven Transport in den Zellkern enthält.

Abbildung 70: InD-carb-GFP Expression in den Epidermiszellen der Zwiebel

Epidermale Zwiebelzellen wurden mit dem InD-carb-GFP Expressionsplasmid transient transformiert und anschließend auf die Expression des Fusionsproteins untersucht. Bei Anregung mit UV-Licht konnte eine Ansammlung des InD-carb-GFP Fusionsproteins ausschließlich im Bereich der Zellkerne beobachtet werden. Das Fusionsprotein verhält sich damit wie die R-GFP (Abbildung 65), InD-GFP und InFus-GFP (Abbildung 66) Fusionsproteine. Da das InD-carb-GFP Fusionsprotein zu groß (ca 61 kDa) für die passive Diffusion in den Zellkern ist, könnte es Signalsequenzen für den aktiven Transport enthalten.


Transformierte Zwiebelzellen die In-am-GFP und InD-am-GFP Fusionsproteine synthetisieren zeigten, daß diese Proteine im Zytoplasma akkumulieren. Des weiteren wurde
nur eine schwache Fluoreszenz durch die In-am-GFP und InD-am-GFP Fusionsproteine im Bereich der Zellkerne festgestellt, die der Intensität der Fluoreszenz im Zytoplasma entsprach. Die schwache Fluoreszenz des Zellkerns wird vermutlich nur hervorgerufen durch das den Zellkern umgebende Zytoplasma, in welchem sich die In-am-GFP und InD-am-GFP Fusionsproteine befinden. Die In-am-GFP und InD-am-GFP Fusionsproteine haben ein Molekulargewicht von 69 kDa, wodurch sie zu groß sind um passiv in den Zellkern zu diffundieren. Sie verhalten sich wie die C2-GFP Fusionsproteine (Abbildung 64) und scheinen keine Signalsequenzen für den aktiven Kerntransport zu enthalten.

Abbildung 71: In-am-GFP und InD-am-GFP Expression in den Epidermiszellen der Zwiebel

Epidermale Zwiebelzellen wurden mit den In-am-GFP und InD-am-GFP Expressionsplasmiden transient transformiert und anschließend auf die Expression der In-am-GFP (A, B) und InD-am-GFP (C, D) Fusionsproteine untersucht. Es wurde eine schwache Ansammlung der Fusionsproteine im Zytoplasma und im Bereich des Zellkerns festgestellt (A, C). Die Fluoreszenz im Bereich des Zellkerns entsprach der Intensität des Zytoplasmas.

Die In-am-GFP und InD-am-GFP Fusionsproteine haben ein Molekulargewicht von 69 kDa, wodurch sie zu groß sind um passiv in den Zellkern zu diffundieren. Sie verhalten sich wie die C2-GFP Fusionsproteine (Abbildung 64) und scheinen keine Signalsequenzen für den aktiven Kerntransport zu enthalten.

3.7.11 Zusammenfassung der in vivo Lokalisation

In den in dieser Arbeit vorgestellten Two Hybrid Experimenten wurde die Interaktion der *Intensifier* Proteine (*InD1* und *InFus*) sowohl mit dem *C1* Protein als auch mit dem *R* Protein nachgewiesen. Es ist vorstellbar, daß die *Intensifier* Proteine mit *R* um das *C1* Protein konkurrieren könnten und so eine Regulation der *in vivo* Aktivität der Zielgene erfolgt.

Um festzustellen ob die postulierte Interaktion auch *in planta* erfolgen könnte, wurde untersucht ob diese Proteine zumindest im selben Zellkompartment (Zellkern) vorliegen. Hierzu wurden *in vivo* Lokalisationsstudien mit dem grünen fluoreszierenden Protein (GFP) als Reporterprotein durchgeführt.

Für den Vergleich mit einem experimentell nachgewiesenen kernlokalisierten Protein (Shieh *et al.*, 1993) wurde die entsprechende cDNA von *R* mit dem GFP Reportergen fusioniert (*R-GFP*). Für den Vergleich mit einem Protein, welches keine bekannten Kernlokalisierungssequenzen enthält, wurde ein GFP Fusionskonstrukt mit der cDNA von *C2* (*C2-GFP*) hergestellt (Abbildung 53). Die entsprechenden *Intensifier* cDNAs wurden ebenfalls mit dem GFP Reportergen fusioniert (*InFus-GFP, InD1-GFP*).


In transient transformierten Zwiebelzellen erfolgte eine Anhäufung des GFP Proteins, aufgrund der geringen Größe von 27 kDa, sowohl im Zellkern als auch im Zytoplasma (Abbildung 63, Seite 127). Im Vergleich zu dem GFP Protein zeigten Zwiebelzellen mit dem *C2-GFP* Fusionsprotein auch eine Ansammlung der Proteine im Zytoplasma (Abbildung 64, Seite 127). Das *C2-GFP* Fusionsprotein scheint keine Signalsequenz für den aktiven Kernimport zu enthalten und gelangt daher nicht in den Zellkern. Im Gegensatz zu den Beobachtungen mit dem *C2-GFP* Fusionsprotein wurde eine Anhäufung der *R-GFP* Fusionsproteine ausschließlich im Bereich der Zellkerne beobachtet (Abbildung 65, Seite

Die InD1-GFP und InFus-GFP Fusionsproteine wurden ausschließlich im Bereich der Zellkerne nachgewiesen (Abbildung 66, Seite 129). Hierdurch wurde die Vermutung bestätigt, daß diese Fusionsproteine Signalsequenzen für den aktiven Kernimport enthalten. Mit der Herstellung von Deletionsproteinen wurde versucht, den hierfür verantwortlichen Bereich einzuschränken. Die entsprechenden Deletionsproteine In-am-GFP, InD-am-GFP und InD-carb-GFP enthielten, ausgehend vom aminoterminalen Ende (am) oder carboxyterminalen Ende (carb), etwa die Hälfte der InFus oder InD1 Proteine (Abbildung 69).


Zusammenfassend weisen die Ergebnisse aus den in vivo Lokalisationsstudien darauf hin, daß die Intensifier Proteine in den Zellkern transportiert werden können. Dies deutet darauf hin, daß diese Proteine eine Funktion als Transkriptionsfaktoren haben könnten und auch in planta sowohl mit C1 als auch R interagieren könnten.
4 Diskussion

4.1 Vorbemerkung


Im Rahmen dieser Arbeit wurde untersucht, ob das negativ regulierende Intensifier Genprodukt ein möglicher Interaktionspartner des positiv regulierenden myc ($R$) oder des myc ($C1$) homologen Proteins sein könnte (Abb. 5, Seite 10) und dadurch die Expression der Chalkonsynthase beeinflusst. Dies könnte seine mögliche Funktion als Repressor erklären.

Anhand der durchgeführten Untersuchungen mit den im Two Hybrid System verwendeten Proteinen ($R, Rdel, C1, C1-I, InD1, InFus, InXS$) wird diskutiert, ob diese Proteine eine

Anschließend wird eine mögliche Wirkungsweise des Intensifier Genprodukts diskutiert, bezüglich der Expression der Strukturgene. Abschließend wird ein Ausblick über weitere Versuche mit dem Intensifier Genprodukt gegeben.

4.2 Untersuchungen mit dem Two Hybrid System

Für die Untersuchungen mit dem Two Hybrid System (Abbildung 7, Seite 11) wurden drei verschiedene putative Intensifier Proteine getestet: das Protein eines korrekt gespleißten Transkriptes des InD Allels (Kopie InD1) und das Protein eines nicht-korrekt gespleißten Transkriptes des In Allels (InXS). Das vollständige In Protein konnte nicht untersucht werden, da kein entsprechendes Transkript verfügbar war. Statt dessen wurde ein In-ähnliches Fusionsprotein aus Teilen von In und InD1 hergestellt. Dieses wurde als InFus bezeichnet.

Als Interaktionspartner dieser Intensifier Proteine wurden das myc-homologe R Protein und das myb-homologe C1 Protein verwendet. Es wurde vermutet, daß die endogene transkriptionsaktivierende Domäne von C1 eine hohe Hintergrundaktivität der Reportergene des Two Hybrid Systems verursachen würde. Daher wurde beschlossen, zusätzlich zu dem C1 Protein ein mutiertes Protein zu verwenden, welches keine transkriptionsaktivierende Domäne besitzt. Es wurde erwartet, daß mit diesem C1-I Protein (Paz-Ares et al., 1990) keine Hintergrundaktivität festzustellen ist. Des weiteren konnte hiermit untersucht werden, ob diese transkriptionsaktivierende Domäne für eine Interaktion mit dem Intensifier Protein essentiell ist. Dies könnte Hinweise darüber geben, ob das Intensifier Protein seine negativ regulierende Funktion durch Bindung an die transkriptionsaktivierende Domäne von C1 ausüben könnte.

Goff et al. (1992) konnten eine Interaktion zwischen dem C1 Protein und dem R-homologen B Protein nur mit einem deletierten B Protein nachweisen. Sie verwendeten ein B Protein, aus welchem der Bereich mit der basischen Helix-Loop-Helix-Region entfernt wurde. Da erwartet wurde, daß mit dem R Protein ähnliche Ergebnisse erhalten werden, wurde für die in dieser Arbeit durchgeführten Untersuchungen, ein ähnlich verkürztes Protein von R (Rdel) verwendet. Hiermit könnten Hinweise darüber erhalten werden, ob die Interaktion des
Die auf Interaktion zu testenden Proteine (\textit{R}, \textit{Rdel}, \textit{C1}, \textit{C1-I}, \textit{Ind1}, \textit{InXS}, \textit{InFus}) wurden sowohl an das carboxyterminale Ende der Aktivierungsdomäne (AD) als auch an das carboxyterminale Ende der DNA Bindedomäne (BD) von Gal4 fusioniert (Abbildung 72). In den Untersuchungen mit dem Two Hybrid System wurde speziell darauf geachtet, ob es Unterschiede in dem Verhalten der Proteine als BD-Fusion oder AD-Fusion gibt. Beispielsweise könnte sich eine Interaktion der zu testenden Proteine nur nachweisen lassen, wenn das eine Protein mit der AD und das andere Protein mit der BD fusioniert ist, aber nicht in der anderen Orientierung.
Diskussion

**myc:**

- **InD1**
  - AS 1-690
- **InXS**
  - AS 1-147
- **InFus**
  - AS 1-366 (In-am)
  - AS 373-690 (InD1-carb)
- **R**
  - AS 1-610
- **Rdel**
  - AS 1-388

**myb:**

- **C1**
  - AS 1-273
- **C1-I**
  - AS 1-252

**AD- oder BD- Fusionsproteine**

- [AD] Protein X
- [BD] Protein X

**Abbildung 72: Auf in vivo Interaktion getestete myc- und myb-homologe Proteine**

Für die Untersuchung auf eine mögliche Interaktion wurden verschiedene putative *Intensifier* Proteine getestet: das vollständige putative Protein des InD Allels (Kopie InD1) und das verkürzte putative Protein eines nicht-korr. gespleißten Transkriptes des In Allels (InXS); das vollständige putative Protein des In Allels war nicht verfügbar. Es wurde daher ein In-ähnliches Fusionsprotein (InFus) aus Teilen von In und InD1 hergestellt. Der Aminosäuresequenzvergleich von InD1, InXS und InFus befindet sich im Anhang (Abbildung 78, Seite 172). Die schwarz/orange schraffierte Region markiert die basische Helix-Loop-Helix Region in den *Intensifier* Proteinen. Die Funktion der am carboxyterminalen Ende gelegenen Region von R (rosa/weiß schraffiert), ist noch unklar. Der Balken über dem R Protein markiert die saure Domäne, die typisch für diese Klasse von Transkriptionsfaktoren ist. Dem Rdel Protein fehlt der carboxyterminale Bereich mit der basischen Helix-Loop-Helix Region (schwarz/rosa schraffiert). Das Rdel und das vollständige Protein R enthalten den Bereich (rosa/blau schraffiert), der für die Interaktion mit dem Bereich (schwarz/weiß schraffiert) von C1 oder C1-I Protein benötigt wird. Dem C1-I Protein fehlt die endogene transkriptionsaktivierende Domäne (schwarz/blau schraffiert).

Die Anzahl der Aminosäuren (AS) der Proteine ist angegeben. Die Proteine wurden sowohl an das carboxyterminale Ende der Aktivierungsdomäne (AD) als auch an das carboxyterminale Ende der DNA Bindedomäne (BD) von Gal4 fusioniert.
4.2.1 Transkriptionsaktivierende Domäne in den myc-homologen Proteinen

Bei Transformanten, welche die BD-R oder BD-Rdel Fusionsproteine enthalten, wurde eine hohe Hintergrundaktivität der Reportergene *HIS3* und *lacZ* festgestellt (Kapitel 3.5.1). Das läßt darauf schließen, daß sowohl das vollständige BD-R Fusionsprotein als auch das verkürzte BD-Rdel Fusionsprotein eine endogene transkriptionsaktivierende Domäne besitzt. Hierbei scheint die Region 253-388 für die Funktion der Domäne essentiell zu sein, da ein entsprechend verkürztes Fusionsprotein BD-R (*RdelGrotewold*), in den von Grotewold *et al.* (2000) durchgeführten Two Hybrid Experimenten, keine transkriptionsaktivierende Eigenschaft zeigte (Abbildung 73).

Abbildung 73: Vergleich der verschiedenen BD-R Fusionsproteine für die Untersuchungen mit dem Two Hybrid System


Bei Transformanten, welche die verschiedenen *Intensifier*-Proteine synthetieren (*Infus, InD1, InXS* in Fusion mit der AD oder BD), wurde keine Hintergrundaktivität der Reportergene beobachtet (Kapitel 3.5.1). Dies könnte darauf hinweisen, daß die verschiedenen *Intensifier* Proteine keine transkriptionsaktivierende Domäne enthalten oder daß durch die Fusion mit den Domänen von Gal4, eine mögliche transkriptionsaktivierende Domäne aufgrund sterischer Behinderung funktionslos wird. Die Theorie, daß die *Intensifier* Proteine keine transkriptionsaktivierende Domäne enthalten, wird erst kürzlich durchgeführte
Diskussion

transiente Expressionsstudien mit dem InD1 Protein unterstützt, bei denen die Promotoren der Strukturgene C2 und Whp des Anthocyanbiosyntheseweges untersucht wurden. Hierbei konnte gezeigt werden, daß das vollständige Protein des Intensifier Allels InD1 nicht in der Lage ist, die Expression des nachgeschalteten Reportergens zu aktivieren (Kirsch, 2002).

4.2.2 Die Intensifier Proteine als mögliche Interaktionspartner des myc-homologen Proteins R

Die Ergebnisse aus den Untersuchungen der Transformanten die zusätzlich zum AD-R oder AD-Rdel Fusionsprotein das BD-InD1 (Kapitel 3.6.5) oder das BD-InXS (Kapitel 3.6.3) Fusionsprotein synthetisieren weisen darauf hin, daß zwischen diesen Proteinen keine Interaktion erfolgt (Abbildung 49, Seite 109).

Bei dem reziproken Versuchsansatz wurden davon abweichende Ergebnisse erhalten (Kapitel 3.6.6). Durch die Verwendung von Transformanten, die das allein aktivierende BD-R Fusionsprotein enthalten, konnte gezeigt werden, daß die Aktivität des Reportergens lacZ durch die Gegenwart des AD-InXS oder AD-InD1 Fusionsproteins beeinflußt wird. Sowohl das AD-InXS als auch das AD-InD1 Fusionsprotein scheinen demzufolge mit dem BD-R Fusionsprotein zu interagieren (Abbildung 49, Seite 109) und dadurch die aktivierende Funktion des BD-R Fusionsproteins zu hemmen. Hierbei wurde mit dem AD-InXS, im Vergleich zu dem AD-InD1, eine schwächere Reduktion der durch BD-R verursachten Hintergrundaktivität des lacZ Reportergens festgestellt. Das deutet darauf hin, daß das AD-InD1, im Gegensatz zu dem AD-InXS, die aktivierende Funktion des BD-R Fusionsproteins effektiver beeinflussen kann.

Durch die Verwendung von Transformanten, die das allein aktivierende BD-Rdel Fusionsprotein enthalten, konnte gezeigt werden, daß die Aktivität des Reportergens lacZ durch die Gegenwart des AD-InXS oder AD-InD1 Fusionsproteins nicht beeinflußt wird. Hierdurch kann abgeleitet werden, daß zwischen diesen Fusionsproteinen vermutlich keine Interaktion besteht (Abbildung 49, Seite 109).

könnte die DNA Bindung des R Proteins an Promotoren gehemmt werden. Hierdurch wäre das R Protein nicht mehr in der Lage, die Expression dieser Gene zu aktivieren.

4.2.3 Die **Intensifier** Proteine als mögliche Interaktionspartner der myb-homologen Proteine C1 und C1-I

Die Ergebnisse aus den Untersuchungen der Transformanten die zusätzlich zum BD-C1 Fusionsprotein das AD-R, das AD-InD1 oder das AD-InFus Fusionsprotein synthetisieren, weisen auf eine Interaktion des BD-C1 mit diesen Proteinen hin. Im Gegensatz hierzu scheint zwischen dem BD-C1 und dem AD-InXS Fusionsprotein keine Interaktion zu erfolgen (Kapitel 3.6.1, Abbildung 28, Seite 77).

Wird die Stärke der Interaktion anhand der Expression des Reportergens *lacZ* gemessen, so scheint sie zwischen BD-C1 und AD-R am stärksten zu sein. Wesentlich schwächer scheint sie zwischen AD-InD1 und BD-C1 und am schwächsten zwischen AD-InFus und BD-C1 zu sein (Abbildung 74).

**Abbildung 74: Mögliche Interaktionsstärke einiger Fusionsproteine**

Dient die Expression des *lacZ* Reportergens als Maß für die Stärke der Interaktion, so scheint die Interaktion zwischen AD-R und BD-C1 am stärksten zu sein. Am geringsten scheint sie zwischen AD-InFus und BD-C1 zu sein. Interagierende Proteine sind übergreifend dargestellt: AD (Aktivierungsdomäne von Gal4, gelber Kreis), BD (DNA-Bindedomäne von Gal4, grüner Kreis)

Aus weiteren Untersuchungen geht hervor, daß die gleichen Proteine, die mit dem BD-C1 Fusionsprotein interagieren können, vermutlich auch mit dem BD-C1-I Protein interagieren können (Kapitel 3.6.2). Auch hier scheint die Interaktion mit AD-R am stärksten zu sein. Wesentlich schwächer scheint die Interaktion mit AD-InD1 und am schwächsten mit AD-InFus zu sein.

Dem C1-I Protein fehlt, im Gegensatz zu dem C1 Protein, die transkriptionsaktivierende Domäne am carboxyterminalen Ende. Hierdurch deuten die Ergebnisse darauf hin, daß die *Intensifier* Proteine nicht mit der transkriptionsaktivierenden Domäne von C1 interagieren, sondern mit einer anderen Region des C1 Proteins.

Der Aminosäuresequenzvergleich des InFus (ähnelt dem In Protein) und des InD1 Proteins mit anderen myc-homologen Proteinen zeigt einen stark konservierten Bereich. Dieser Bereich liegt, relativ zu der Sequenz von In, zwischen den Aminosäuren 1-228 (Abbildung 2,
Seite 5). Da dieser Bereich nicht vollständig im InXS Protein vorhanden ist, könnte dadurch eine Interaktion ausbleiben.

Aus den dargestellten Ergebnissen läßt sich eine weitere mögliche negativ regulierende Wirkungsweise des Intensifier Genproduktes ableiten: das Intensifier Genprodukt scheint sowohl mit R als auch mit C1 interagieren zu können. Möglicherweise konkurriert das Intensifier Genprodukt mit R sogar um dieselbe Interaktionsstelle im C1 Protein. Hierbei scheinen die Produkte der verschiedenen Intensifier Allele eine unterschiedlich starke Bindung mit C1 eingehen zu können. Die stärkste Interaktion scheint aber zwischen R und C1 zu bestehen.

4.2.4 Homo- und Heterodimerisierung

Die Ergebnisse aus den verschiedenen Untersuchungen mit den C1, InXS und InFus Fusionsproteinen (Kapitel 3.6.1, 3.6.3, 3.6.4) deuten darauf hin, daß diese Proteine keine aktivierenden Homodimere (z.B. AD-InXS + BD-InXS oder AD-InFus + BD-InFus) bilden können. Des weiteren scheinen ebenfalls keine aktivierenden Heterodimere aus den InXS, InFus und InD1 Fusionsproteinen gebildet zu werden (z.B. AD-InXS + BD-InFus) (3.6.3, 3.6.4, 3.6.5).

Bei den Untersuchungen zur Homodimerisierung des InD1 Fusionsproteins (AD-InD + BD-InD) wurden widersprüchliche Ergebnisse erhalten. Hier wurde die Expression nur eines der beiden Reportergene, des HIS3, festgestellt (Kapitel 3.6.5). Des weiteren scheint das HIS3 nur sehr schwach aktiviert zu werden, da bei den entsprechenden Hefezeellen ein sehr schlechtes Wachstum auf Histidinmangelmedium festgestellt wurde. Sie bildeten kleinere Kolonien im Vergleich zu der Kontrolle, die ein normales Wachstum zeigte. Diese Ergebnisse weisen darauf hin, daß das InD1 Fusionsprotein anscheinend Dimere bilden kann, diese aber mit dem Two Hybrid System nur schwer nachzuweisen sind. Die Ursache für die unterschiedliche Expression der Reportergene HIS3 und lacZ könnte hierbei an einer sehr schwachen Interaktion der InD1 Fusionsproteine oder an einer zeitlich begrenzten Interaktion der InD1 Fusionsproteine liegen. Beide Möglichkeiten würden vermutlich dazu führen, daß zu wenig funktionelle Gal4 Transkriptionsfaktoren vorliegen, die für eine konstitutive Expression der Reportergene HIS3 und lacZ benötigt werden.

Des weiteren wäre möglich, daß zwar eine starke Interaktion zwischen diesen Fusionsproteine vorliegt, diese gebildeten Dimere aber die Reportergene nicht aktivieren können. Das
Ausbleiben der Reportergenaktivierung könnte beispielsweise dadurch erfolgen, daß bei diesen Dimeren die Funktion des Gal4 nicht vollständig wiederhergestellt wird. Hinweise auf diese Möglichkeit geben die Experimente, bei denen untersucht wurde ob das R Fusionsprotein Homodimere bilden kann (AD-<i>R</i> + BD-<i>R</i>) (Kapitel 3.6.6). Hierbei wurde festgestellt, daß die durch das BD-R verursachte Hintergrundaktivität des <i>lacZ</i> Reportergens, durch die Gegenwart des AD-<i>R</i> Fusionsproteins reduziert wird.

4.2.5 Die <i>Intensifier</i> Proteine als möglicher Interaktionspartner des gebildeten Komplexes von <i>R+C1</i>

Die bisher vorgestellten Untersuchungen zeigen eine Interaktion zwischen dem <i>R</i> Fusionsprotein und dem <i>C1</i> oder <i>C1-I</i> Fusionsprotein (Abbildung 42, Seite 100). Des weiteren weisen sie auf eine Interaktion der <i>Intensifier</i> Fusionsproteine sowohl mit dem <i>C1</i> oder <i>C1-I</i> Fusionsprotein hin als auch auf eine Interaktion mit dem <i>R</i> Fusionsprotein (Abbildung 42, Seite 100). Daher stellte sich die Frage, ob die <i>Intensifier</i> Fusionsproteine die Komplexbildung zwischen dem <i>R</i> Fusionsprotein und dem <i>C1</i> oder <i>C1-I</i> Fusionsprotein beeinflussen können (Abbildung 43, Seite 101).

Bei den hierzu durchgeführten Untersuchungen (Kapitel 3.6.7) wurden starke Schwankungen der Meßdaten festgestellt. Daher ist es nicht möglich diese zu interpretieren (Messdaten siehe Anhang Tabelle 16, Seite 169).

4.3 Korrelation zwischen der Stärke der Reportergenexpression und der Stärke der Interaktion

Es sind bereits einige Hefeproteine charakterisiert worden, die myb- oder myc- ähnliche Domänen aufweisen. Dazu gehören z.B. das <i>Rap1</i> Protein, das <i>Ino4</i> Protein und das <i>Sin3</i> Protein. Das <i>Rap1</i> Protein enthält eine carboxyterminal gelegene transkriptionsaktivierende Domäne und zwei aminoterminal gelegene myb-ähnliche Subdomänen. Das <i>Rap1</i> Protein ist ein multifunktionelles Protein, welches in die Aktivierung und die Hemmung verschiedener Gene involviert ist (Graham, et al., 1999).

Das <i>Ino4</i> Protein gehört zu der Familie der basischen Helix-loop-Helix Proteine. Es kann an DNA binden und kann Heterodimere mit anderen basischen Helix-Loop-Helix Proteinen bilden. Das <i>Ino4</i> Protein ist in die Regulierung verschiedener Gene des Phospholipid-biosyntheseweges involviert (Robinson et al., 2000).

Das <i>Sin3</i> Protein enthält eine Helix-Loop-Helix Domäne, die aus vier amphipatischen Helix Motiven gebildet wird. Wang et al. (1990) vermuten, daß das <i>Sin3</i> Protein die Expression des
Endonuklease HO Gens durch direkte Protein-Protein Interaktion mit anderen Transkriptionsfaktoren und nicht durch eine DNA Bindung reguliert.

Proteine wie diese, könnten mit den in dieser Arbeit untersuchten Proteinen in Wechselwirkung treten. Sie könnten einerseits eine bestehende Interaktion stören oder andererseits eine Interaktion vermitteln und könnten somit die Expression der Reportergene beeinflussen. Die Ergebnisse der Untersuchungen mit dem Two Hybrid System sollten daher kritisch betrachtet werden.

Es kann nicht ausgeschlossen werden, daß die unterschiedliche Expression der Reportergene auf fehlende posttranskriptionelle Modifikationen oder auf eine veränderte Konformation der interagierenden Proteine zurückzuführen ist. Manche Interaktionen zwischen den Proteinen sind abhängig von posttranslationalen Modifikationen, die nicht oder nur unzureichend in Hefezellen durchgeführt werden. Diese Modifikationen treten häufig auf und beinhalten die Bildung von Disulfidbrücken, Glykosylierungen und Phosphorylierungen (Van Criereking und Beyaert, 1999).


Im folgenden wird diskutiert, wie diese Faktoren die Expression der Reportergene in den Two Hybrid Untersuchungen beeinflußt haben könnten.

Bei den Untersuchungen wurde eine starke Hintergrundaktivierung der Reportergene durch das BD-R und das BD-Rdel Fusionsprotein festgestellt (Kapitel 3.5.1). Es ist hierbei möglich, das diese Fusionsproteine alleine für die Aktivierung verantwortlich sind oder daß sie mit einem endogenen, myb-ähnlichen, aktivierenden Hefe-Faktor interagierten. Mit dem verkürzten BD-Rdel Fusionsprotein wurde, im Vergleich zu dem vollständigen BD-R Fusionsprotein, eine etwa doppelt so starke Hintergrundaktivität der Reportergene festgestellt (Kapitel 3.5.1). Diese unterschiedliche Aktivierung könnte auf verschiedene Ursachen zurückzuführen sein: das BD-R Fusionsprotein enthält zwei DNA-Bindedomänen, wobei eine aus der endogenen basischen Helix-Loop-Helix-Region und die andere von Gal4
stammt. Im Gegensatz hierzu enthält das BD-Rdel Fusionsprotein nur die DNA-Bindedomäne von Gal4. Es kann vermutet werden, daß die DNA-Bindedomäne von R die Reportergenaktivierung stört. Möglicherweise konkurrieren beide DNA-Bindedomänen um die richtige Faltung, so daß statistisch betrachtet nur in etwa 50% der Fälle eine für die Reportergenaktivierung benötigte funktionierende DNA-Bindedomäne von Gal4 vorliegt.

Des weiteren wäre denkbar, daß der nur im BD-R vorhandene carboxyterminale Bereich mit einem endogenen Hefe-Faktor interagieren kann. Diese Interaktion könnte dazu führen, daß die Bindung des BD-R Fusionsproteins an den Promotor der Reportergene gehemmt wird oder daß die endogene aktivierende Domäne im BD-R Fusionsprotein in seiner Funktion gestört wird.

Durch die Fusion mit der DNA-Binde- oder Aktivierungsdomäne von Gal4 scheint eine veränderte Konformation der auf Interaktion getesteten Proteine zu erfolgen. In einigen Fällen wurde die Interaktion nur nachgewiesen, wenn das eine Protein mit der AD von Gal4 fusioniert war und das Protein mit der BD von Gal4, aber nicht in der anderen Orientierung (Abbildung 48, Seite 108). So wurde zwischen AD-InD1 + BD-C1 eine Interaktion festgestellt (Kapitel 3.6.1), jedoch nicht zwischen BD-InD1 und AD-C1 (Kapitel 3.6.5). Das gleiche gilt für die Interaktion zwischen InFus und C1 (Kapitel 3.6.1, Kapitel 3.6.4). Im Gegensatz hierzu wurde mit dem C1-I Fusionsprotein, dem die endogene transkriptionsaktivierende Domäne fehlt, immer eine Interaktion mit dem InD1 oder InFus Fusionsprotein festgestellt (Kapitel 3.6.2, Kapitel 3.6.5, Kapitel 3.6.4).

Diese Beobachtungen lassen darauf schließen, daß die bei BD-R, im Vergleich zu BD-Rdel festgestellte reduzierte Hintergrundaktivität der Reportergene (Kapitel 3.5.1) nicht auf endogene Hefe-Faktoren, sondern auf die Konformation des Fusionsproteins zurückzuführen sein könnte. Untersuchungen von Goff et al. (1992) scheinen diese Theorie zu unterstützen. Sie verwendeten das Two Hybrid System, um die Interaktion zwischen dem C1 und dem R-homologen B Protein zu untersuchen. Sie fusionierten hierzu das B Protein, im Gegensatz zu den in dieser Arbeit durchgeführten Fusionen, an das aminoterminale Ende der DNA-Bindedomäne von Gal4 (B-BD).

So konnten sie eine Interaktion erst zwischen dem AD-C1 und B-BD Fusionsprotein feststellen, als sie ein im Bereich der basischen Helix-Loop-Helix Region deletiertes B Fusionsprotein verwendeten (Abbildung 75 b). Dieses widerspricht den in dieser Arbeit vorgestellten Experimenten, bei denen eine Interaktion zwischen BD-C1 und dem vollständigen AD-R Protein festgestellt wurde (Kapitel 3.6.1). Des weiteren konnten sie mit
Diskussion

einem, im aminoterminal verkürzten Fusionsprotein, BD-C1\textsubscript{del} (Abbildung 75 b), eine sehr starke Hintergrundaktivierung der Reportergene \textit{HIS3} und \textit{lacZ} feststellen. Dieses widerspricht ebenfalls den in dieser Arbeit vorgestellten Experimenten bei denen keine Hintergrundaktivierung des BD-\textit{C1} oder AD-\textit{C1} Proteins festgestellt wurde (Kapitel 3.5.1).

\begin{itemize}
  \item[a)] AD-\textit{C1} \hspace{1cm} BD-\textit{C1} \hspace{1cm} BD-R
  \item[b)] BD-\textit{C1}\textsubscript{del\textsubscript{Goff}} \hspace{2cm} BD-B\textsubscript{del\textsubscript{Goff}} \hspace{1cm} BD-\textit{C1}\textsubscript{Goff}
\end{itemize}

\textbf{Abbildung 75: Schematische Darstellung der verschiedenen Fusionsproteine}


Farbcodierung: Aktivierungsdomäne von Gal4 (gelbe Box), DNA-Bindedomäne von Gal4 (grüne Box) Region für die Interaktion mit \textit{C1} (rosa/blau schraffiert), Region für die Interaktion mit \textit{R} (schwarz/weiß schraffiert), endogene transkriptionsaktivierende Domäne von \textit{C1} (ist im BD-\textit{C1}\textsubscript{del\textsubscript{Goff}} Protein deletiert), carboxyterminale Region mit unbekannter Funktion (rosa/weiß gestreift), basische Helix-Loop-Helix-Region (rosa/schwarz schraffiert)

Anhand der oben aufgeführten Beobachtungen scheint das verwendete Two Hybrid System nicht die optimale Methode für eine Untersuchung zur \textit{in vivo} Interaktion zu sein. Die unter 4.2.3 aufgestellte Behauptung, daß zwischen den \( R \), \( \text{In}D1 \), \( \text{InFus} \) zu \( C1 \) oder \( C1\text{-I} \) Fusionsproteinen eine stärkere Interaktion besteht, sollte daher kritisch betrachtet werden.

\section*{4.4 Lokalisation der \textit{Intensifier} Proteine \textit{InD1} und \textit{InFus}}

Um eine Aussage darüber machen zu können, ob die Ergebnisse der Two Hybrid Experimente auf die Situation \textit{in planta} übertragbar sind, wurde untersucht, ob die untersuchten Proteine im gleichen subzellulären Kompartiment vorliegen.

Shieh \textit{et al.} (1993) führten bereits zelluläre Lokalisationsstudien mit \( R \) durch. Sie fusionierten \( R \) mit dem Reporterprotein \( \beta \)-Glucoronidase (\( R\text{-GUS} \)) und transformierten Tabak und Zwiebelzellen. Hiermit konnte gezeigt werden, daß die \( R\text{-GUS} \) Fusionsproteine aufgrund von drei Kernlokalisierungssequenzen (NLS) aktiv in den Zellkern transportiert werden.

Der Vergleich der Aminosäuresequenzen der \( \text{In} \) und \( \text{InD1} \) Proteine mit \( R \) und anderen basischen myc-homologen Proteinen zeigt u.a. eine starke Homologie im Bereich der basischen Helix-Loop-Helix Region (Abbildung 3, Seite 8), in der sich die mediale NLS des \( R \) Proteins befindet (Shieh \textit{et al.}, 1993). Aufgrund der Homologie zu der medialen NLS wurde vermutet, daß die entsprechende Sequenz in den \( \text{In} \) und dem \( \text{InD1} \) Protein ebenfalls eine Funktion als NLS aufweisen könnte. Die anderen zwei NLS des \( R \) Proteins sind dagegen nicht in der Aminosäuresequenz von \( \text{In} \) und \( \text{InD1} \) konserviert.

Um festzustellen, ob diese NLS in dem \( \text{In} \) und dem \( \text{InD1} \) Protein funktionsfähig ist, wurde sie experimentell überprüft. Die Lokalisation der \textit{Intensifier} Proteine \( \text{InFus} \) und \( \text{InD1} \), in Bezug auf den Kernimport, wurde mit zwei anderen Proteinen verglichen. Das \textit{Zea mays} L. Strukturen \( C2 \) (Wienand \textit{et al.}, 1986) kodiert für die Chalkonsynthase, dessen Aminosäuresequenz keine bekannten NLS enthält. Das \( C2 \) Protein war dadurch als negative Kontrolle für die Lokalisation im Zellkern geeignet. Als positive Kontrolle diente das, bereits für die Two Hybrid Experimente verwendete und charakterisierte, kernlokalisierte \( R \) Protein (Shieh \textit{et al.}, 1993).

Für die \textit{in vivo} Lokalisationsstudien wurden die zu testenden Proteine mit dem Reporterprotein GFP (grün fluoreszierenden Protein) fusioniert und in transient transformierten Gewebe mittels Fluoreszenzmikroskopie nachgewiesen.

Mit den durchgeführten Untersuchungen wurde gezeigt, das Tabakblätter, Maisblätter, Maisscutellum, Narbenfäden von Mais und die Zellen einer Maissuspensionskultur keine geeigneten Gewebe für die \textit{in vivo} Lokalisation darstellten. Die mehrschichtigen Gewebe
ließen keine befriedigende Dokumentation zu (Kapitel 3.7.2, Kapitel 3.7.3). Mit der optimierten Transformation von epidermalen Zwiebelzellen war dagegen eine sehr gute Dokumentation möglich (Kapitel 3.7.4). Diese Zellen sind groß, relativ transparent und liegen als einzelne Zellschicht vor. Sie wurden daher für die Studien zur in vivo Lokalisation verwendet.


Um die Region mit diesem verantwortlichen Bereich in dem InFus und dem InD1 Protein einzuzgrenzen, wurden Deletionsproteine untersucht. Sie enthielten nur etwa 50 % des aminoterminalen oder 50 % des carboxyterminalen Endes. Die Deletionsproteine, welche nur das aminoterminalen Ende enthalten, wurden nicht im Bereich der Zellkerne lokalisiert, sondern im Zytoplasma (Abbildung 71, Seite 138). Im Gegensatz hierzu wurde das Deletionsprotein, welches das carboxyterminale Ende enthält, im Bereich des Zellkerns lokalisiert (Abbildung 70, Seite 137).

Die Untersuchungen zeigen, daß sich nur im carboxyterminalen Ende des InD1 bzw. InFus Proteins mindestens eine Signalsequenz für den aktiven Transport in den Zellkern befindet. Im carboxyterminalen Bereich liegt die basische Helix-Loop-Helix Region die eine starke Homologie zu einer der drei NLS des R Proteins aufweist (Abbildung 3, Seite 8). Dies deutet darauf hin, daß diese entsprechende Sequenz in der InD1 Aminosäuresequenz eine funktionsfähige NLS sein könnte. Ob speziell diese funktionsfähig ist oder ob eine NLS an anderer Stelle vorliegt, müßte durch weitere Deletionsanalysen untersucht werden.
Diese Untersuchungen zur in vivo Lokalisation zeigen, daß das InD1 bzw. InFus Protein im selben Zellkompartment wie das R Protein vorliegt. Diese Ergebnisse unterstützen damit die durch die Untersuchungen mit dem Two Hybrid System postulierte Interaktion, zwischen dem R Protein und dem Intensifier Genprodukt.

4.5 Mögliche Funktion des Intensifier Genproduktes


Aus den früheren und den in dieser Arbeit vorgestellten Untersuchungen läßt sich der Einfluß des Intensifier Genproduktes auf die Anthocyanbiosynthese und auf den Phänotyp der Maiskörner der Allele in, In und InD (Abbildung 4, Seite 9) in einem sehr vereinfachten Modell darstellen (Abbildung 76).
**Abbildung 76: vereinfachtes Modell zum Einfluss des Intensifier Genproduktes auf die Anthocyanbiosynthese**

Die von in hergestellte Transkriptmenge ist nicht bekannt. Diese Information ist aber nicht notwendig, da postuliert wird, daß die in Transkripte nur zu einem funktionslosen Protein führen (Herrmann, 2001). In und InD werden unterschiedlich stark exprimiert und führen zu unterschiedlichen Mengen an funktionellem Protein. Dieses ist in der Lage, die Bildung von aktivierenden $R+C1$ Komplexen zu hemmen. Je weniger dieser $R+C1$ Komplexe vorliegen, desto stärker ist die Hemmung der Anthocyanbiosynthese.

Wieviel Transkripte des Intensifier Allels in vorliegen ist nicht bekannt. Diese Information scheint jedoch nicht notwendig zu sein, da Herrmann postuliert (2001), daß in diesem Phänotyp nur Transkripte vorliegen, die zu einem verkürzten Protein führen, das dem in dieser Arbeit untersuchten InXS Protein ähnlich ist. Das InXS Protein scheint nicht in der Lage zu sein, mit $C1$ interagieren zu können und konkurriert demzufolge nicht mit $R$ um $C1$. Des weiteren scheint InXS keine starke Bindung mit $R$ eingehen zu können. Dem InXS Protein fehlt die Region mit der basischen Helix-Loop-Helix Region, von der eine Funktion in der DNA-Bindung angenommen wird (Murre *et al*., 1998; Davis *et al*., 1990). Da dieser Bereich fehlt, kann vermutet werden, daß das InXS Protein nicht seine hemmende Funktion ausüben kann.

Zusammenfassend folgt daraus, daß in Gegenwart des InXS bzw. in Proteins nur funktionelle $R+C1$ Komplexe gebildet werden könnten und beide Chalkonsynthasegene ($C2$, Whp) exprimiert werden. Dieses führt zu einer starken Anhäufung der Pigmente, wodurch die violetten bis schwarzen Maiskörnern entstehen.

In dem Phänotyp In liegen, neben den nicht-korrekt gespleißten Transkripten, geringe Mengen (0,2%, Burr *et al*., 1996) korrekt gespleißter Transkripte vor. Diese Transkripte
führen zu einem vollständigen Protein, ähnlich dem in dieser Arbeit untersuchten *InFus* Protein. Dieses vollständige Protein könnte im Zellkern sowohl mit *C1* als auch mit *R* eine Bindung eingehen und vermutlich zusätzlich an die 5’UTR-Region des *Whp* Gens binden.


Die Folge wäre, daß im Vergleich zu der Situation im Phänotyp von *in*, eine geringere Menge an Chalkonsynthase vorliegt. Das würde zu einer schwächeren Aktivierung der Anthocyanbiosynthese führen. Hierdurch würden weniger Pigmente angehäuft werden und weniger stark gefärbte Maiskörner entstehen.

Das Allel *InD* besteht aus zwei Genkopien (*InD1*, *InD2*). Northern Analysen zeigten eine stärkere Transkription des Allels *InD* im Vergleich zu dem Allel *In* (Rojek, 1996). Das läßt vermuten, daß von *InD* mehr Proteine in der Zelle vorliegen, die mit *R* und *C1* eine Bindung eingehen könnten.

Daraus folgt, daß im Vergleich zu der Situation im Phänotyp von *In*, in Gegenwart des *InD* Proteins noch weniger funktionelle *R+C1* transkriptionsaktivierende Komplexe gebildet werden könnten. Das würde zu einer stärkeren Hemmung der Expression des *C2* Gens führen. Hierdurch würde eine geringere Menge an Chalkonsynthase vorliegen, was letztendlich zu weniger gefärbten Maiskörnern führt.

Durch die in dieser Arbeit vorgestellten Ergebnisse kann nicht ausgeschlossen werden, daß das myc-homologe *Intensifier* Genprodukt trotz Lokalisation im Zellkern und der möglichen Interaktion mit dem myb-homologen *C1* Protein, auch auf der posttranskriptionalen Ebene auf die Expression von *Whp* wirkt. Diese posttranskriptionale Kontrolle könnte bereits im Zellkern erfolgen und die Bereiche der RNA Prozessierung, der RNA Stabilität und des Exports aus dem Zellkern betreffen (Sullivan und Green, 1993). Hierbei könnte die Möglichkeit bestehen, daß das *Intensifier* Genprodukt im Zellkern an die (m)RNA der Chalkonsynthase bindet und dadurch schließlich die Translation der mRNA verhindert.

Ein Mais Protein, welches sowohl an DNA als auch an RNA binden kann, ist bereits näher charakterisiert worden. Heyl *et al.* (2001) führten Untersuchungen mit dem *MEM1* Protein
(maize endosperm motif binding protein) durch. Sie verwendeten für diese Untersuchungen eine Sequenz, welche in den Promotoren verschiedener spezifisch im Endosperm exprimierter Gene konserviert ist. Hiermit wurde gezeigt, daß das MEM1 Protein eine mehr als 10 fach stärkere Affinität für die RNA als für die DNA mit gleicher Sequenz hat. Das MEM1 zeigt hierbei jedoch keine Homologie zu dem Intensifier Genprodukt, sondern gehört zu einer neuen Klasse von molekularen Chaperonen. Daher bleibt fraglich, ob das myc-homologe Intensifier Genprodukt eine ähnliche Funktion besitzen könnte. Bislang sind keine Untersuchungen veröffentlicht worden, die den Aspekt der RNA-Bindung durch myc-homologe Proteine behandeln.

4.6 Ausblick

Mit der Verwendung des Two Hybrid Systems kann nicht ausgeschlossen werden, daß endogene Hefefaktoren die Interaktion zwischen den untersuchten Proteinen beeinflussen können. Hierdurch könnten falsche Rückschlüsse auf die bestehende oder ausbleibende Interaktion zwischen den untersuchten Proteinen gezogen werden.

Die durchgeführten Experimente mit dem Two Hybrid System weisen auf eine Interaktion des Intensifier Genproduktes mit dem C1 und R Protein hin. Mit dieser Methode läßt sich aber keine eindeutige Aussage darüber machen, wie stark die Affinität dieser Proteine zueinander ist. Hierbei auch bezüglich der Unterschiede zwischen dem Intensifier Genprodukt der Allele In und InD. Diese Informationen könnten helfen aufzuklären, ob bestehende funktionslose Komplexe (aus C1+Intensifier oder R+Intensifier) in funktionelle C1+R Komplexe umgewandelt werden könnten.

Um zu untersuchen, ob endogene Hefefaktoren eine Interaktion beeinflusst haben könnten und wie stark die Affinität der untersuchten Proteine zueinander ist, könnten mit aufgereinigten Proteinen „Protein Affinitäts Chromatographie“ Experimente durchgeführt werden. Bei dieser Methode wird eines der auf Interaktion zu testenden Proteine (z.B. C1) kovalent an eine Matrix, z.B. an eine Sephadexsäule gebunden. Diese vorbereitete Matrix wird mit einer Lösung inkubiert, welche das zweite Protein (z. B Intensifier Genprodukt) enthält und das Eluat anschließend auf Anwesenheit des zweiten Proteins untersucht. Bindet das erste an das zweite Protein, so sollte das Eluat weniger vom zweiten Protein enthalten, als die Ausgangslösung. Durch das Waschen der Matrix mit verschiedenen Lösungen kann festgestellt werden, wie stark diese Proteine miteinander interagieren und wie groß die Bindungskonstante ist. Hierfür könnten Lösungen verwendet werden, die ein Kompetitorprotein (z.B. R) enthalten, wodurch die gebundenen Proteine freigesetzt werden.
Mit dieser Methode ließe sich vermutlich auch feststellen, ob das Intensifier Genprodukt auch mit dem bereits gebildeten Komplex aus $R+C1$ interagieren kann. Anhand der in dieser Arbeit vorgestellten Experimente konnte über diese mögliche Interaktionen keine eindeutige Aussage gemacht werden.

Die durchgeführten Untersuchungen werfen die Frage auf, wo die Interaktion mit dem $C1$ Protein und dem $R$ Protein erfolgt. Bindet das Intensifier Genprodukt in der Promotorregion der Strukturgene und konkuriert mit dem $R$ Protein möglicherweise um die myc-Konsensussequenz oder findet die Interaktion entfernt von der DNA statt? Um zu untersuchen, ob das Intensifier Genprodukt an bestimmte DNA Sequenzen (z.B. myc-Konsensussequenz oder 5′ UTR-Region des Whp Gens) binden kann, könnten „Gel-Retentionanalysen“ durchgeführt werden. Bei dieser Methode wird das aufgereinigte Protein mit markierter DNA inkubiert. Anschließend erfolgt die Analyse durch eine Polyacrylamidelektrophorese, wobei die Wanderungsgeschwindigkeit der proteinfreien DNA mit der eines mit dem Protein komplexierten DNA-Fragmentes verglichen wird. Die Spezifität der Wechselwirkung zwischen dem Protein und des DNA Fragmentes kann durch Zugabe von unterschiedlichen Mengen an Kompetitor DNA festgestellt werden.


Im Rahmen dieser Arbeit wurde eine InD1 Two Hybrid cDNA Bank hergestellt, mit der eine große Anzahl unbekannter Proteine auf eine Interaktion mit InD1 untersucht werden können. Die Analyse dieser Bank konnte im Rahmen dieser Arbeit nicht durchgeführt werden. Würde durch die Analyse dieser Bank eine Interaktion zwischen InD1 und weiteren an der Anthocyansynthase beteiligten Proteinen (z.B. Transkriptionsfaktoren $P$, $Vp1$, siehe
Einleitung) festgestellt, könnte das auf eine Funktion des \textit{InD1} als genereller Inhibitor der Anthocyanbiosyntheseweges hinweisen.


Um eine Vorstellung von der gebildeten Proteinmenge zu bekommen, könnten \textit{in situ} Hybridisationen oder Western Blot Analysen von Maiskörnern der verschiedenen \textit{Intensifier} Allele durchgeführt werden. Hierfür sollten Antikörper verwendet werden, die nur gegen ein Oligopeptid und nicht gegen das ganze \textit{Intensifier} Genprodukt gerichtet sind. Würde das ganze Genprodukt verwendet, so wird höchstwahrscheinlich eine Kreuzhybridisierung mit anderen myc-homologen Proteinen erfolgen.
5 Zusammenfassung


Diese Annahme sollte durch Untersuchungen mit dem Two Hybrid System und Lokalisationsstudien überprüft werden.

Von dem Intensifier Gen sind drei Allele (in, In, und InD) bekannt. Von diesen ist für In und InD ein negativ regulierender Effekt nachgewiesen worden, der sich phänotypisch durch eine Farbverringerung der Maiskörner erkennen läßt.

Mit der Methode des Two Hybrid Systems wurde untersucht, ob eine Interaktion des Intensifier Genproduktes mit dem Genprodukt von C1 oder R erfolgen kann und welche Bereiche dieser Proteine dafür benötigt werden.

Hiermit wurden verschiedene Produkte von Intensifier Allelen untersucht: das Protein eines fehlgespleißten Transkriptes (InXS) und das Protein des InD Allels (InD1). Da kein vollständiges Protein des In Allels verfügbar war, wurde ein In-ähnliches Fusionsprotein (InFus) aus Teilen von In und InD1 hergestellt. Als Interaktionspartner wurden das vollständige (R) und das verkürzte R Protein (Rdel: ohne basische Helix-Loop-Helix Region) verwendet. Des weiteren das vollständige C1 Protein und das mutierte C1 Protein (C1-I), welches keine transkriptionsaktivierende Domäne besitzt.


In vivo Lokalisationsstudien sollten anschließend zeigen, ob das Intensifier Genprodukt auch in den Zellkern transportiert wird. Mit dieser Methode konnte in epidermalen Zwiebelzellen
Zusammenfassung

gezeigt werden, daß das *Intensifier* Genprodukt wie das *R* Protein im Zellkern lokalisiert ist. Dieses Ergebnis weist darauf hin, daß das *Intensifier* Genprodukt wahrscheinlich nicht auf der posttranskriptionellen Ebene im Zytoplasma wirkt.

Anhand der Ergebnisse der Untersuchungen mit dem Two Hybrid System und der *in vivo* Lokalisationsstudien läßt sich vermuten, daß das Produkt des *Intensifier* Gens in den Transkriptionskomplex von *C1* und *R* eingreift. Hierbei scheinen auch die in den Alleen *In* und *InD* unterschiedlich vorliegende Transkriptionsrate des *Intensifier* Gens eine Rolle zu spielen, da der negativ regulierende Effekt beim transkriptionell stark exprimierten *InD* Allel gravierender ausgeprägt ist, als beim Allel *In*. 
6 Literatur


7 Anhang

Tabelle 16: lacZ-Reporteragenaktivierung der Transformanten mit drei Proteinen

<table>
<thead>
<tr>
<th>Transf.</th>
<th>Proteine</th>
<th>β-Gal rel. Einh.</th>
<th>MW rel. Einh.</th>
<th>MW in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>y117</td>
<td>GAL4</td>
<td>40,27</td>
<td>36,64</td>
<td>100</td>
</tr>
<tr>
<td>y117</td>
<td>GAL4</td>
<td>33,02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y236</td>
<td>AD-R* + AD + BD-C1</td>
<td>23,26</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>Y237</td>
<td>AD-R* + AD + BD-C1</td>
<td>18,01</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>Y238</td>
<td>AD-R* + AD + BD-C1</td>
<td>16,54</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Y239</td>
<td>AD-R* + AD-lnXs + BD-C1</td>
<td>20,68</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>Y240</td>
<td>AD-R* + AD-lnXs + BD-C1</td>
<td>23,33</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>Y241</td>
<td>AD-R* + AD-lnXs + BD-C1</td>
<td>0,02</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Y245</td>
<td>AD-R* + AD-lnD + BD-C1</td>
<td>13,20</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Y246</td>
<td>AD-R* + AD-lnD + BD-C1</td>
<td>26,54</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>Y247</td>
<td>AD-R* + AD-lnD + BD-C1</td>
<td>25,56</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>Y248</td>
<td>AD-R* + AD + BD-C1-I</td>
<td>4,33</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Y249</td>
<td>AD-R* + AD + BD-C1-I</td>
<td>16,28</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>Y250</td>
<td>AD-R* + AD + BD-C1-I</td>
<td>34,50</td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>Y251</td>
<td>AD-R* + AD-lnXs + BD-C1-I</td>
<td>46,23</td>
<td></td>
<td>126</td>
</tr>
<tr>
<td>Y252</td>
<td>AD-R* + AD-lnXs + BD-C1-I</td>
<td>22,49</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>Y253</td>
<td>AD-R* + AD-lnXs + BD-C1-I</td>
<td>15,88</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>Y257</td>
<td>AD-R* + AD-lnD + BD-C1-I</td>
<td>8,31</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Y258</td>
<td>AD-R* + AD-lnD + BD-C1-I</td>
<td>3,88</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Y259</td>
<td>AD-R* + AD-lnD + BD-C1-I</td>
<td>2,86</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

* = Plasmid mit funktionslosem LEU Gen


Inkub.in min. = Inkubationszeit in Minuten, β-Gal = β-Galaktosidase; rel.Einh. = relative Einheiten; MW = gemittelte Wert
**Primer**

⇒ vorwärts Primer  ⇐ rückwärts Primer

**Tabelle 17: verwendete Primer**

<table>
<thead>
<tr>
<th>Primer Name</th>
<th>Sequenz 5´-3´</th>
<th>Position/Bemerkung</th>
<th>Lese-rechtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3</td>
<td>gctactgctgctgtgatctttgtgccc</td>
<td>Intron 6 von <em>In</em></td>
<td>⇐</td>
</tr>
<tr>
<td>F1</td>
<td>ccgctagtgaaatggtttccagga</td>
<td>Intron 6 von <em>In</em></td>
<td>⇒</td>
</tr>
<tr>
<td>Nat – OL- 010</td>
<td>gcgttgtgaactcactacaggga</td>
<td>5´ Ende von pAD Gal 4</td>
<td>⇒</td>
</tr>
<tr>
<td>Nat – OL- 011</td>
<td>gcacagttgaagtaactgc</td>
<td>3´ Ende von pAD Gal 4</td>
<td>⇐</td>
</tr>
<tr>
<td>Nat – OL- 012</td>
<td>tgagaagaacatgacctacagg</td>
<td>3´ Ende von pBD Gal 4</td>
<td>⇐</td>
</tr>
<tr>
<td>Nat – OL- 013</td>
<td>gaataagtgcagatcatcactcgag</td>
<td>5´ Ende von pBD Gal 4</td>
<td>⇒</td>
</tr>
<tr>
<td>Nat – OL- 014</td>
<td>cgaatcgcagataggcgcgtgtgccc</td>
<td>R-Lc 5´ Ende</td>
<td>⇒</td>
</tr>
<tr>
<td>Nat – OL- 022</td>
<td>cgtcgactgcaacccaaacactttgca</td>
<td>R-Lc 3´ Ende</td>
<td>⇐</td>
</tr>
<tr>
<td>Nat – OL- 023</td>
<td>cgtcgacctctttcagcaatcttgccgag</td>
<td>R-Lc vor der bHLH</td>
<td>⇐</td>
</tr>
<tr>
<td>Nat – OL- 024</td>
<td>gctcgagtggcgcagttgaggtgctgc</td>
<td><em>In</em> ; eine Base fehlt !</td>
<td>⇐</td>
</tr>
<tr>
<td>Nat – OL- 026</td>
<td>cggatcggatggcggctttccagttcccgagt</td>
<td>R-LC 5´ Ende</td>
<td>⇒</td>
</tr>
<tr>
<td>Nat – OL- 027</td>
<td>cggatcgcgcagcagctagctccagcccc</td>
<td><em>In (InD)</em> 5´ Ende</td>
<td>⇒</td>
</tr>
<tr>
<td>Nat – OL- 028</td>
<td>aggatcgcgtagatcgatgtagttctctgca</td>
<td><em>In (InD)</em> 3´ Ende ohne Stopp</td>
<td>⇐</td>
</tr>
<tr>
<td>Nat – OL- 029</td>
<td>aggatcgcggagagcaacacagatgggc</td>
<td>C2 5´ Ende</td>
<td>⇒</td>
</tr>
<tr>
<td>Nat – OL- 030</td>
<td>aggatgcgtggcgctccgggt</td>
<td>C2 3´ Ende ohne Stopp</td>
<td>⇐</td>
</tr>
<tr>
<td>Nat – OL- 031</td>
<td>cggatccgctctcttagctgttggcagag</td>
<td>R 3´ Ende ohne Stopp</td>
<td>⇐</td>
</tr>
<tr>
<td>Nat – OL- 036</td>
<td>gcatacetctgcttctctctctct</td>
<td>5´ GFP</td>
<td>⇐</td>
</tr>
<tr>
<td>Nat – OL- 53</td>
<td>ccatggacgtggcttggcgaacacagcagga</td>
<td><em>In</em> homolog (acgcgt)</td>
<td>⇒</td>
</tr>
<tr>
<td>Nat – OL- 54</td>
<td>cggcagcgtttggacgca</td>
<td>*3´ ga homolog zu InD</td>
<td>⇐</td>
</tr>
</tbody>
</table>

**zusätzliche Schnittstellen:**

*gaatcc = EcoRI*  
*ctcgag = XhoI*  
*cctagc = NcoI*  

*ggatcc = BamHI*  
*ctcgac = Sal I*  
*acgcgt = MluI*
Abbteilung 77: Aminosäuresequenzvergleich der Proteine C1 und C1-I

Die Region von 1-115 markiert die basische Domäne und die Region von 249 markiert die saure Domäne, die charakteristisch für myb-Onkogen Transkriptionsfaktoren sind. Das C1-I Protein enthält keine funktionelle saure Transkriptionsaktivierende Domäne.

Die konservierten Aminosäure-Austausche sind in grün markiert, die nicht-konservierten in rot.
Abbildung 78: Aminosäuresequenzvergleich der Proteine \(\text{In} \), \(\text{InD1} \), \(\text{InFus} \) und \(\text{InXS} \)

Das Protein \(\text{InFus} \) besteht aus Teilen von \(\text{In} \) (AS 1-366) und \(\text{InD1} \) (AS 373-690). Das Protein \(\text{InXS} \) besteht nur aus den ersten 147 Aminosäuren von \(\text{In} \) und enthält keine basische Helix-loop-Helix Region. Die konservierten Aminosäure-Austausche sind in grün markiert, die nicht-konservierten in rot. Die Lage der Fusionstelle aus \(\text{In-am} \) und \(\text{InD-carb} \), ist durch ein Dreieck markiert.
Abbildungsverzeichnis

Abbildung 1: Schematische Darstellung der Kernlokalisationsequenzen (NLS) N, M und C innerhalb der R Aminosäuresequenz ................................................................. 4
Abbildung 2: myb- und myc- homologe Proteine ................................................................................................................. 5
Abbildung 3: Vergleich der In und InD1 Aminosäuresequenzen mit myc-homologen Proteinen ........................................................................................................ 8
Abbildung 4: Phänotyp von Körnern der drei Mais Allele In, in und InD ................................................................. 9
Abbildung 5: Schematische Darstellung der Interaktion von R und C1 ................................................................. 10
Abbildung 6: Schematische Darstellung der möglichen Interaktion von In mit R und C1 ..... 10
Abbildung 7: Schematische Darstellung des Two Hybrid Systems ................................................................. 11
Abbildung 8: Schematische Darstellung der Herstellung der R Expressionsplasmide .......... 43
Abbildung 9: Schematische Darstellung der Herstellung der C1 und C1–I Expressionsplasmide ........................................................................................................ 46
Abbildung 10: Schematische Darstellung der Herstellung der InD1 und InXS Expressionsplasmide ........................................................................................................ 49
Abbildung 11: Vergleich der Aminosäuresequenz von In und InD1 ................................................................. 52
Abbildung 12: Schematische Darstellung der Herstellung des Fusionsklons InFus ................. 53
Abbildung 13: Schematische Darstellung der Herstellung der InFus Expressionsplasmide ... 54
Abbildung 14: Two Hybrid System ......................................................................................................................... 58
Abbildung 15: Kontrollen des Two Hybrid Systems ............................................................................................... 59
Abbildung 16: HIS3 Reportergenaktivierung der Kontrollen ......................................................................................... 60
Abbildung 17: lacZ Reportergenaktivierung der Kontrollen ....................................................................................... 61
Abbildung 18: Test der Fusionsproteine auf Autoaktivierung der Reportergene ............... 62
Abbildung 19: HIS3 Reportergenaktivierung der BD-R und BD-Rdel Transformanten ...... 64
Abbildung 20: lacZ Hintergrundaktivität bei Transformanten mit BD-Fusionsproteinen ...... 66
Abbildung 21: lacZ  Hintergrundaktivität bei Transformanten mit AD-Fusionsproteinen..... 67
Abbildung 22: Test der Fusionsproteine auf Interaktion mit der AD oder BD von Gal4 ...... 69
Abbildung 23: lacZ Reportergenaktivierung bei Transformanten mit der AD und diversen BD-Fusionsproteinen .............................................................................. 70
Abbildung 24: lacZ Reportergenaktivierung bei Transformanten mit der BD und diversen AD-Fusionsproteinen .............................................................................. 71
Abbildung 25: reziproke Kombination der Fusionsproteine X und Y ............................................. 73
Abbildung 26: HIS3 Reportergenaktivierung der Transformanten mit BD-C1 Fusionsprotein und verschiedenen AD-Fusionsproteinen .............................................................................. 74
Abbildung 27: lacZ Reporter genaktivierung bei Transformanten mit dem BD-C1 Fusionsprotein und verschiedenen AD-Fusionsproteinen ........................................ 76
Abbildung 28: Interaktion des BD-C1 Fusionsproteins mit verschiedenen AD-Fusionsproteinen .................................................................................................................. 77
Abbildung 29: HIS3 Reporter genaktivierung der Transformanten mit dem BD-C1-I Fusionsprotein und verschiedenen AD-Fusionsproteinen ........................................ 78
Abbildung 30: lacZ Reporter genaktivierung bei Transformanten mit dem BD-C1-I Fusionsprotein und verschiedenen AD-Fusionsproteinen ........................................ 80
Abbildung 31: Interaktion des BD-C1-I Fusionsproteins mit verschiedenen AD-Fusionsproteinen .................................................................................................................. 81
Abbildung 32: lacZ Reporter genaktivierung bei Transformanten mit dem BD-InXS Fusionsprotein und verschiedenen AD-Fusionsproteinen ........................................ 83
Abbildung 33: Interaktion des BD-InXS Fusionsprotein mit verschiedenen AD-Fusionsproteinen .................................................................................................................. 84
Abbildung 34: HIS3 Reporter genaktivierung der Transformanten mit BD-InFus Fusionsprotein und verschiedenen AD-Fusionsproteinen ........................................ 86
Abbildung 35: lacZ-Reporter genaktivierung bei Transformanten mit BD-InFus Fusionprotein und verschiedenen AD-Fusionsproteinen .................................................................................................................. 88
Abbildung 36: Interaktion des BD-InFus Fusionsproteins mit verschiedenen AD-Fusionsproteinen .................................................................................................................. 89
Abbildung 37: HIS3 Reporter genaktivierung der Transformanten mit BD-InD1 Fusionsprotein und verschiedenen AD-Fusionsproteinen ........................................ 90
Abbildung 38: lacZ-Reporter genaktivierung bei Transformanten mit BD-InD1 Fusionprotein und verschiedenen AD-Fusionsproteinen .................................................................................................................. 92
Abbildung 39: Interaktion des BD-InD1 Fusionsproteins mit verschiedenen AD-Fusionsproteinen .................................................................................................................. 94
Abbildung 40: lacZ Reporter genaktivierung bei Transformanten mit BD-R oder BD-Rdel Fusionsproteinen und verschiedenen AD-Fusionsproteinen .................................................................................................................. 97
Abbildung 41: Ergebnisse der Interaktion von BD-R oder BD-Rdel mit verschiedenen AD-Fusionsproteinen .................................................................................................................. 99
Abbildung 42: Interaktion von R, C1 und den Intensifier Proteine .................................................................................................................. 100
Abbildung 43: Beeinflussung der Komplexbildung von R und C1 durch die Intensifier Proteine .................................................................................................................. 101
Abbildung 44: Zu testende Kombinationen der drei Fusionsproteine .................................................................................................................. 102
Abbildung 45: Selektionsmedium für Transformanten mit drei Expressionsplasmiden

Abbildung 46: Herstellung des funktionslosen LEU2 Markergens

Abbildung 47: Interaktion der Fusionsproteine R, Rdel, C1 und C1-I

Abbildung 48: Interaktion der Fusionsproteine InD1, InFus, C1 und C1-I

Abbildung 49: Interaktion der Fusionsproteine InD1, InXS, R und Rdel

Abbildung 50: Bildung von Homodimenen

Abbildung 51: Herstellung der GFP Expressionsplasmide von C2, R und InD1

Abbildung 52: Herstellung des GFP Expressionsplasmids von InFus

Abbildung 53: Schematische Darstellung der GFP Fusionsproteine

Abbildung 54: nichttransformiertes Maisscutellumgewebe

Abbildung 55: GFP exprimierendes Maisscutellumgewebe

Abbildung 56: C2-GFP exprimierendes Maisscutellumgewebe

Abbildung 57: R-GFP exprimierendes Maisscutellumgewebe

Abbildung 58: InD1-GFP exprimierendes Maisscutellumgewebe

Abbildung 59: GFP Expression in Narbenfäden von Mais

Abbildung 60: GFP Expression in Narbenfäden von Mais der Linie LC

Abbildung 61: GFP Expression in Narbenfäden von Mais der Linie Q2

Abbildung 62: GFP Expression in den Epidermiszellen der Zwiebel

Abbildung 63: GFP Expression in den Epidermiszellen der Zwiebel

Abbildung 64: C2-GFP Expression in den Epidermiszellen der Zwiebel

Abbildung 65: R-GFP Expression in den Epidermiszellen der Zwiebel

Abbildung 66: InD1-GFP und InFus-GFP Expression in den Epidermiszellen der Zwiebel

Abbildung 67: Herstellung der In-am-GFP und InD-carb-GFP Expressionsplasmide

Abbildung 68: Herstellung des InD-am-GFP Expressionsplasmids

Abbildung 69: Schematische Darstellung der deletierten Intensifier GFP-Fusionsproteine

Abbildung 70: InD-carb-GFP Expression in den Epidermiszellen der Zwiebel

Abbildung 71: In-am-GFP und InD-am-GFP Expression in den Epidermiszellen der Zwiebel

Abbildung 72: Auf in vivo Interaktion getestete myc- und myb-homologe Proteine

Abbildung 73: Vergleich der verschiedenen BD-R Fusionsproteine für die Untersuchungen mit dem Two Hybrid System

Abbildung 74: Mögliche Interaktionsstärke einiger Fusionsproteine

Abbildung 75: Schematische Darstellung der verschiedenen Fusionsproteine
Tabellenverzeichnis

Tabelle 1: Klonierungs- und Expressionsvektoren .......................................................... 22
Tabelle 2: Verwendete cDNAs und Fragmente ............................................................... 22
Tabelle 3: Verwendete Mikroorganismen ........................................................................ 23
Tabelle 4: Übersicht der zu testenden Expressionsplasmide und ihrer Fusionsproteine ...... 55
Tabelle 5: Durchgeführte Kombinationen für den Test auf in vivo Interaktion ................ 55
Tabelle 6: Interaktion des BD-C1 Fusionsproteins mit verschiedenen AD-Fusionsproteinen 77
Tabelle 7: Interaktion des BD-C1-I Fusionsproteins mit verschiedenen AD-Fusionsproteinen .................................................................................................................. 81
Tabelle 8: Interaktion des BD-InXS Fusionsprotein mit verschiedenen AD-Fusionsproteinen .................................................................................................................. 84
Tabelle 9: Interaktion des BD-InFus Fusionsproteins mit verschiedenen AD-Fusionsproteinen .................................................................................................................. 89
Tabelle 10: Interaktion des BD-InD1 Fusionsproteins mit verschiedenen AD-Fusionsproteinen .................................................................................................................. 93
Tabelle 11: Test auf in vivo Interaktion der Fusionsproteine BD-R und BD-Rdel mit verschiedenen AD-Fusionsproteinen .................................................................................................................................. 95
Tabelle 12: Beeinflussung der β-Galaktosidaseaktivität in Transformanten mit BD-R oder BD-Rdel Fusionsproteinen und verschiedenen AD-Fusionsproteinen .................. 98
Tabelle 13: Transformanten mit drei Fusionsproteinen ..................................................... 106
Tabelle 14: Tabellarische Darstellung der Ergebnisse der in vivo Interaktion der BD-Fusionsproteine mit den AD-Fusionsproteinen ......................................................... 111
Tabelle 15: Hergestellte GFP Expressionplasmide .......................................................... 115
Tabelle 16: lacZ-Reportergenaktivierung der Transformanten mit drei Proteinen .......... 169
Tabelle 17: verwendete Primer ......................................................................................... 170
Danksagung

Hiermit möchte ich mich bei Herrn Prof. Dr. Udo Wienand bedanken, daß er mir die Gelegenheit gab das „In“teressante Thema „In“tensiv zu bearbeiten, für die „In“haltliche Beratung und das Korrekturlesen.

Bedanken möchte ich mich auch bei Prof. Dr. Schäfer, der trotz vollem Terminkalender als Zweitgutachter zur Verfügung stand.

Mein besonderer Dank gilt Dr. René Lorbiecke für sein unermüdliches Korrekturlesen, selbst zur Weihnachtzeit und für seine konstruktive Kritik beim Erstellen der schriftlichen Arbeit.

Ebenfalls möchte ich mich besonders bei Dr. Brian Scheffler bedanken, der mir die Geheimnisse des molekularbiologischen Arbeitens gezeigt hat, für seine Geduld und seine stete Diskussionsbereitschaft.

Mein Dank für die freundschaftliche Atmosphäre und wertvollen Ratschläge, gilt allen lieben Kollegen der Arbeitsgruppe AMP I, die mir das Arbeiten in dieser Abteilung ungemein erleichtert haben. Hierbei geht mein ganz besonderer Dank an meine direkten Laborkollegen Jelena Kirsch, Dr. Inka Pusch und Sylke Wahlandt, für die Zusammenarbeit und Hilfsbereitschaft immer selbstverständlich waren. Weiterhin möchte ich mich speziell bei Dr. h.c. Back Edelgard Brinkmann und Elke Peleikis für die Kuchen und Keksversorgung bedanken, sowie bei allen Schokoladensüchtigen, die regelmäßig die Notfall-Keksdose aufgefüllt haben.

Sören Witt und Dr. Stefan Scholten danke ich für die Hilfe bei der Fluoreszenzmikroskopie.

Darüber hinaus bedanke ich mich bei meinen Eltern Traute und Peter Techen, die mich während des ganzen Studiums moralisch und finanziell unterstützt haben.

Mein ganz besonders herzlicher Dank gilt Lars Schulze, der mit mir durch dick und dünn durch das Studium und diese Arbeit gegangen ist.
LEBENSLAUF

**PERSÖNLICHE DATEN**

Name: Natascha Techen  
Familienstand: ledig

**SCHULBILDUNG**

Abschluß: **allgemeine Hochschulreife**

**STUDIUM**

Okt. 1990 – Jul. 1997 Studium der Biologie an der Universität Hamburg  
Schwerpunkte: Molekularbiologie, Biochemie, Botanik  
Abschluß: Diplom bei Prof. Dr. U. Wienand  
Thema der Diplomarbeit: Expressionsanalyse des regulativen Gens *Intensifier* aus *Zea mays* L.

Sep. 1997 – Feb. 2002 **Promotion** an der Universität Hamburg bei Prof. Dr. U. Wienand  
Thema der Dissertation: Molekulare Untersuchungen zur Funktion des regulativen Gens *Intensifier* aus *Zea mays* L.

**TÄTIGKEITEN ZUR FINANZIERUNG DES STUDIUMS**

Mär. 1996 – Sep. 1997 Teilzeitkraft als wissenschaftlicher Mitarbeiter in der Arbeitsgruppe ANGEWANDTE MOLEKULARBIOLOGIE DER PFLANZEN 1 im Institut für Allgemeine Botanik, Universität Hamburg