Evaluierung der Magnetresonanztomographie als Schnittbildverfahren zur Graduierung subglottischer Stenosen bei Patienten mit Granulomatosse mit Poliangiitis

Dissertation
zur Erlangung des Grades eines Doktors der Medizin
an der Medizinischen Fakultät der Universität Hamburg.

vorgelegt von:
Laura-Valerie Linsenhoff
aus Heidelberg

Hamburg 2017
(wird von der Medizinischen Fakultät ausgefüllt)

Angenommen von der
Medizinischen Fakultät der Universität Hamburg am: 09.04.2018

Veröffentlicht mit Genehmigung der
Medizinischen Fakultät der Universität Hamburg.

Prüfungsausschuss, der/die Vorsitzende: PD Dr. Frank Oliver Henes

Prüfungsausschuss, zweite/r Gutachter/in: PD Dr. Christof Iking-Konert
Inhaltsverzeichnis

1. Arbeitshypothese..5
2. Einleitung..7
 2.1 Vaskulitiden - Allgemein...7
 2.2 Granulomatose mit Polyangiitis (Morbus Wegener)...8
 2.2.1 Einleitung ...8
 2.2.2 Epidemiologie ..8
 2.2.3 Ätiologie ..9
 2.2.4 Pathogenese ...9
 2.2.5 Klinische Manifestationen ...10
 2.2.6 Verlauf ..12
 2.3 Subglottische Stenose ..13
 2.3.1 Allgemein ...13
 2.3.2 Subglottische Stenose im Rahmen der GPA ..13
 2.3.3 Diagnostik ..14
 2.3.4 Therapie ..24
3. Material und Methoden ..26
 3.1 Ethikvotum und Studienpopulation ..26
 3.1.1 Positives Ethikvotum ...26
 3.1.2 Studienpopulation ..26
 3.2 Untersuchungsmodalitäten ..27
 3.2.1 MRT ..27
 3.2.2 Laryngoskopie ..31
 3.2.3 Lungenfunktions-Untersuchung ...32
 3.3 Statistische Auswertung ...32
4. Ergebnisse ..33
 4.1 Ergebnisse MRT ...33
 4.2 Ergebnisse Laryngoskopie ...34
 4.3 Vergleich der Stenosegrade zwischen MRT und Laryngoskopie34
 4.4 Vergleich MRT und Laryngoskopie mit der Spirometrie38
 4.5 Longitudinale Verläufe nach Bougierung ...39
 4.6 Graphische Darstellung individueller Verläufe ...43
5. Diskussion ..48
 5.1 Kernaussagen ...48
 5.2 Messtechnik zur Bestimmung des Stenosegrades subglottischer Stenosen in der
 MRT und ihr klinischer Stellenwert ...49
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>Gegenüberstellung der MRT mit anderen Schnittbildverfahren zur Diagnostik subglottischer Stenosen</td>
<td>52</td>
</tr>
<tr>
<td>5.4</td>
<td>Stellenwert der Spirometrie bei der Ermittlung des Stenosegrades von subglottischen Stenosen</td>
<td>54</td>
</tr>
<tr>
<td>5.5</td>
<td>Kritische Auseinandersetzung mit dem eigenen Studiendesign</td>
<td>56</td>
</tr>
<tr>
<td>5.6</td>
<td>Schlussfolgerung und Ausblick</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>Zusammenfassung</td>
<td>59</td>
</tr>
<tr>
<td>7</td>
<td>Abstract</td>
<td>61</td>
</tr>
<tr>
<td>8</td>
<td>Abkürzungsverzeichnis</td>
<td>62</td>
</tr>
<tr>
<td>9</td>
<td>Abbildungsverzeichnis</td>
<td>63</td>
</tr>
<tr>
<td>10</td>
<td>Tabellenverzeichnis</td>
<td>64</td>
</tr>
<tr>
<td>11</td>
<td>Literaturverzeichnis</td>
<td>65</td>
</tr>
<tr>
<td>12</td>
<td>Danksagung</td>
<td>71</td>
</tr>
<tr>
<td>13</td>
<td>Eidesstattliche Erklärung</td>
<td>72</td>
</tr>
</tbody>
</table>
1. Arbeitshypothese

Die Granulomatose mit Polyangiitis (GPA, ehemals Morbus Wegener/Wegenersche Granulomatose) ist eine primäre, seltene Vaskulitis der kleinen und mittelgroßen Gefäße. Sie gehört zu der Gruppe der ANCA-assoziierten Vaskulitiden (AAV) (Holle et al., 2012). Gekennzeichnet ist sie durch eine nekrotisierende Entzündung, welche zur Entstehung von granulomatösen Herden führt (Holle et al., 2012).

Am häufigsten kommt es bei dieser Multisystem-Erkrankung zu einer Beteiligung des oberen Respirationstraktes, der Lunge und der Nieren (Holle et al., 2012). In diesem Rahmen kann es auch zu einer entzündlichen Beteiligung der Subglottis mit konsekutiver Stenosierung kommen.

Die Manifestation der GPA an der Subglottis findet sich in 15-25%. Sie kann durch eine mögliche Stenosierung lebensbedrohliche Ausmaße annehmen, insbesondere, wenn sie nicht rechtzeitig erkannt und behandelt wird (Guardiani et al., 2015, Langford et al., 1996, Lebovics et al., 1992).

Für die Diagnostik der Entzündungsaktivität einer subglottischen Stenose (SGS) und die Differenzierung zwischen Narbe und aktiver Entzündung gilt bis heute die Laryngoskopie, mit gleichzeitiger Möglichkeit zur Probenentnahme sowie Durchführung dilatativer Therapien, als Methode der Wahl. Jene stellt jedoch ein invasives Verfahren dar und birgt letztendlich auch Gefahren wie Blutungen und zusätzliche Stenosierung durch Narbenbildung (Klink et al., 2013).

In einer Studie von Klink et al. wurde die Magnetresonanztomographie (MRT) bereits als nicht-invasive Untersuchungsmethode vorgestellt, welche die Möglichkeit der Detektion subglottischer Stenosen bei Patienten mit GPA und der Differenzierung von entzündlichen und narbigen Läsionen der Subglottis bietet (Klink et al., 2013).

Im Rahmen der Verlaufskontrolle der SGS und der Therapiekontrolle nach dilatativen therapeutischen Maßnahmen ist ein objektives Verfahren wünschenswert, um eine genaue und reproduzierbare Graduierung der SGS durchzuführen. Bis heute gibt es keine

Die Hypothese meiner Arbeit war es, dass mit Hilfe der MRT als objektivem Verfahren exakte und reproduzierbare Messungen des Stenosegrades der SGS ermittelt werden können, und dass diese möglicherweise besser als die Graduierungen mittels der Laryngoskopie mit den funktionellen Daten der Spirometrie korrelieren.
2. Einleitung

2.1 Vaskulitiden - Allgemein

Die CHCC-Definitionen basieren auf dem histologischen Bild, die ACR-Kriterien setzen sich aus Symptomen, Laborbefunden, histologischen und apparativen Befunden zusammen (Holle et al., 2010a).

Die Klassifikation und Nomenklatur der Vaskulitiden ist seit jeher schwierig und kontrovers (Jennette, 2013). Unterschieden wird zwischen Vaskulitiden der großen, mittelgroßen und kleinen Gefäße.

Zu den **Großgefäßvaskulitiden** gehören die Takayasu-Arteriitis und die Riesenzell-Arteriitis (auch Arteriitis temporalis), bei denen meist die Aorta, deren Abgänge und die extrakraniellen Gefäße betroffen sind (Holle et al., 2010a).

Die **Vaskulitiden der mittelgroßen Gefäße** bestehen aus der häufig Hepatitis-B-assozierten Panarteriitis nodosa, die oft mit B-Symptomatik und Polyneuropathie einhergeht. Zu dieser Gruppe gehört ebenfalls der M. Kawasaki, eine systemische Vaskulitis des Kleinkindalters, einhergehend mit hohem Fieber (Herold, 2009).

Die **Kleingefäßvaskulitiden** bestehen vor allem aus der Gruppe der ANCA-assozierten Vaskulitiden (AAV), welche die Krankheitsbilder Granulomatose mit Polyangiitis (GPA, ehemals Wegenersche Granulomatose, WG), Eosinophile Granulomatose mit Polyangiitis (EGPA, früher Churg-Strauss-Syndrom) und Mikroskopische Polyangiitis (MPA) enthalten (Jennette, 2013). Es findet sich je nach Krankheitsbild eine stärkere oder schwächere Assoziation mit ANCAs („anti-neutrophil cytoplasm antibody“/antineutrophile zytoplasmatische Antikörper) (Holle, 2015). Diese führen über eine Aktivierung...
neutrophiler Granulozyten in den Gefäßen zu den entzündlichen Veränderungen eben jener Gefäße (Holle et al., 2010a). Als weitere Gruppe zählt zu den Kleingefäßvaskulitiden die kryoglobulinämische Vaskulitis, welche sekundär bei Kollagenosen, rheumatoider Arthritis, Infektionen oder Malignomen vorkommen kann (Holle et al., 2010a).

2.2 Granulomatose mit Polyangiitis (Morbus Wegener)

2.2.1 Einleitung

Durch den Nachweis der Mitgliedschaft Dr. Friedrich Wegeners in der Nationalsozialistischen Deutschen Arbeiterpartei (NSDAP) vor und während des Zweiten Weltkrieges und durch die zusätzlichen Bestrebungen, Eponyme durch eine beschreibende oder auf Ursachen basierende Nomenklatur zu ersetzen, wurde im Jahr 2010 in einer Konsensus-Konferenz als alternativer Name die Granulomatose mit Polyangiitis (GPA) gewählt (Falk et al., 2011). Diese Empfehlung wurde vom American College of Rheumatology (ACR), der European League Against Rheumatism (EULAR) und der American Society of Nephrology (ASN) ausgesprochen. In diesem neuen Namen der Erkrankung werden nun sowohl klinische als auch histopathologische Aspekte zum Ausdruck gebracht (Falk et al., 2011, Holle et al., 2012).

2.2.2 Epidemiologie
In Deutschland liegt die jährliche Inzidenz der GPA stabil bei 8 bis 10 Neuerkrankungen/Mio. Einwohner (Reinhold-Keller et al., 2005). Die GPA ist die häufigste ANCA-assoziierte Vaskulitis in Europa (Reinhold-Keller et al., 2005). Männer und Frauen sind mit gleicher Häufigkeit betroffen, das Alter bei Diagnosestellung beträgt meist zwischen 45 und 60 Jahren (Comarmond and Cacoub, 2014). In der Kindheit und im jungen Erwachsenenalter ist die Erkrankung sehr selten (Lane et al., 2005).
2.2.3 Ätiologie
Die Ursache der Erkrankung wird als multifaktoriell angenommen (Scott and Watts, 2000). Bei genetisch prädisponierten Personen kann es durch verschiedene Trigger zum Ausbruch der Erkrankung kommen (Watts et al., 2015).
Unter *genetischen* Gesichtspunkten haben Personen mit erkrankten Verwandten ersten Grades ein erhöhtes Risiko, selbst an der GPA zu erkranken (Cartin-Ceba et al., 2012). Bei bestimmten genetischen Varianten kann von einer erhöhten Anfälligkeit für ANCA-assoziierte Vaskulitiden ausgegangen werden (Cartin-Ceba et al., 2012).

2.2.4 Pathogenese
Die GPA ist gekennzeichnet durch eine granulomatöse Entzündung und eine nekrotisierende Vaskulitis vor allem der kleinen, aber auch der mittelgroßen Gefäße (Holle et al., 2012).
Ihre Pathogenese ist komplex und beinhaltet bei ca. 80% der Patienten die Produktion von ANCAs gegen Proteinase 3 (PR3), welches bei der Aktivierung neutrophiler Granulozyten freigesetzt zu werden scheint. Bei 10% der Patienten finden sich ANCAs gegen Myeloperoxidase (Cartin-Ceba et al., 2012, Stratta et al., 2008).
Nach dem derzeitigen Stand der Forschung wird davon ausgegangen, dass die GPA auf dem Boden einer genetischen Prädisposition und bei einer mangelnden Toleranz gegenüber ANCA-Autoantigenen durch Trigger aus der Umwelt oder bei Infektionen
hervorgerufen wird (Lutalo and D'Cruz, 2014). Die Trigger führen über eine inflammatorische Reaktion zur Sekretion von Zytokinen und zur Produktion von ANCAs (Cartin-Ceba et al., 2012).

2.2.5 Klinische Manifestationen

Folgende Stadien/Phasen werden unterschieden (Hellmich et al., 2007):
- **Lokalisiertes Stadium**: Granulomatöse Entzündung des oberen und unteren Respirationstrakts, keine B-Symptomatik oder Zeichen einer systemischen Entzündung (ANCA-Titer negativ);
 5% der Patienten verbleiben in diesem Stadium, somit ist es auch als eigene Entität zu betrachten.

- **Frühsystemisches Stadium**: Systemische Vaskulitis ohne Organbedrohung, B-Symptome und ein positiver ANCA-Titer sind möglich.

- **Generalisiertes Stadium**: Schwer kranker Patient, Bedrohung der Organfunktion; pulmorenales Syndrom als klassische Manifestation der Beteiligung von Lunge und Nieren.

- **Schweres Stadium**: Organversagen, definiert über ein Nierenversagen mit einem Kreatininwert über 500 μmol/l (Holle et al., 2010a).

Als häufigste Organmanifestationen sind neben dem HNO-Trakt die Lunge, die Nieren und die Gelenke aufzuführen. Zu den seltener betroffenen Organen zählen das periphere
und das zentrale Nervensystem, die Augen und die Haut (Holle et al., 2012). In den letzten 30 Jahren ist die Häufigkeit der verschiedenen Organmanifestationen relativ stabil geblieben (Holle et al., 2012).

HNO-Trakt: In bis zu 91% findet sich eine Beteiligung des HNO-Traktes (Holle et al., 2012). Es kann zu Hörverlust, Nasenbluten, Borkenbildung und Nasenseptumperforation kommen. Im oberen Respirationstrakt können sich Obstruktionen in Form von subglottischen oder trachealen Stenosen finden (Seo and Stone, 2004). Bei Erkrankungsbeginn findet sich bei 40-50% der Patienten eine isolierte HNO-Trakt-Symptomatik mit blutiger Rhinitis oder endonasaler Borkenbildung (Holle et al., 2012).

Lunge: Bei einem in 62% der Patienten vorkommenden Befall des unteren Respirationstraktes zeigen sich unter anderem Husten, Stridor, Pleuritis, pulmonale Infiltrate/Granulome und eine pulmonale Hämorrhagie (Holle et al., 2012, Lutalo and D'Cruz, 2014).

Gelenke: In 62% finden sich durch Gelenk-Befall bedingt Arthralgien und Arthritiden (Holle et al., 2012).

Nieren: Bei der zu 50% vorkommenden renalen GPA handelt es sich um eine diffuse pauci-immune intra- und extrakapilläre Glomerulonephritis. Bei Hämaturie, Proteinurie, Zylindern in der Urin-Zytologie und einer Beeinträchtigung der Nierenfunktion (z.B. akutes/chronisches Nierenversagen, terminale Niereninsuffizienz) kann klinisch der Verdacht auf einen renalalen Befall gestellt werden (Seo and Stone, 2004). Bei etwa 10-20% der Patienten führt die Beteiligung der Niere auch heute noch zu einer terminalen Niereninsuffizienz (Holle et al., 2012).

Weitere Organe: Es kann zu einem Befall von weiteren Organsystemen kommen. Das zentrale sowie das periphere Nervensystem können betroffen sein. Hier können Kopfschmerz, Meningitis, Hirnnervenparenesen aber auch sensorische oder motorische Neuropathien auftreten (Holle and Gross, 2011). Manifestationsmöglichkeiten im Bereich der Haut sind Purpura, Ulzera und Gangrän, diese sind allerdings weder spezifisch noch
2. Einleitung

2.2.6 Verlauf

Im Gegensatz zu anderen Vaskulitiden ist die GPA nicht nur durch eine Entzündung der kleinen und mittelgroßen Gefäße gekennzeichnet, sondern auch durch die Komponente einer granulomatösen Entzündung, welche mit raumfordernden Infiltrationen und Destruktionen einhergehen kann (Holle et al., 2012). Der Beginn der Erkrankung präsentiert sich meist als lokalisierter Phase. In dieser Phase treten häufig Symptome im oberen und/oder unteren Respirationstrakt auf, ohne dass sich Manifestationen der Vaskulitis finden. Meist kommt es anschließend zu einer Generalisierung mit systemischen Vaskulitismanifestationen (Hellmich et al., 2007).

Es besteht aber auch die Möglichkeit des Verbleibens im lokализierten Stadium, was bei etwa 5-10% der Patienten geschieht. Die Diagnose bei diesen Patienten gestaltet sich besonders schwierig, da sie häufig nur beim HNO-Arzt (nicht beim Rheumatologen) vorstellig werden und zur Sicherung der Diagnose oft mehrfache Biopsien notwendig sind (Holle et al., 2012). Diese Patienten haben im Hinblick auf das Überleben eine sehr gute Prognose, es findet sich jedoch häufig ein therapierefraktärer Verlauf mit einer hohen Wahrscheinlichkeit von chronischen Organschäden wie z.B. Sattelnase, subglottischer Stenose oder Optikusatrophie (Holle et al., 2012). Gerade bei der lokalisierten Erkrankung sind daher eine möglichst frühzeitige Diagnosestellung und regelmäßige Verlaufskontrollen in ihrer Wichtigkeit nicht zu unterschätzen.

Im generalisierten Stadium findet sich beim schwer kranken Patienten eine bedrohte Organfunktion. Häufige Manifestationen sind eine Nierenbeteiligung in Form einer intra- und extrakapillären nekrotisierenden Glomerulonephritis (in ca. 50%) und eine pulmonale Kapillaritis mit alveolärer Hämorrhagie (in 10-45%), gemeinsam als pulmorenales Syndrom bezeichnet (Holle et al., 2012).
2.3 Subglottische Stenose

2.3.1 Allgemein
Erworbene subglottische Stenosen (SGS) beschreiben eine Verengung der oberen Atemwege im Bereich des Ringknorpels und/oder der oberen Trachealspangen (Gluth et al., 2003). Sie sind einerseits assoziiert mit länger andauernder Intubation oder äußerem Trauma, können andererseits im Rahmen autoimmuner Systemerkrankungen (z.B. bei GPA) auftreten und sind in ca. 20% der Fälle ohne erkennbaren Auslöser als idiopathische SGS (iSGS) einzustufen (Herrington et al., 2006). Auch eine Tracheotomie, eine Kompressionsstenose (bei Struma), Refluxösophagitis und eine „Relapsing Polychondritis“ kommen als Ursache in Frage (Laudien et al., 2008).

Bei der subglottischen Stenose handelt es sich um einen fibrotischen Reparaturprozess der Atemwege mit exzessiver Narbenbildung. Es wird angenommen, dass die Entwicklung der Stenose auf einem veränderten Ansprechen der Fibroblasten auf antifibroblastische Signale beruht (Singh et al., 2010).

Als typische Symptome treten Dyspnoe, Veränderungen der Stimme, Nasenatmung, Heiserkeit, Stridor und Husten bei Patienten mit SGS auf (Langford et al., 1996).

2.3.2 Subglottische Stenose im Rahmen der GPA
Die SGS ist eine in 15-25% auftretende, potentiell Lebensbedrohliche Manifestation der GPA, insbesondere, wenn sie nicht rechtzeitig erkannt und korrekt behandelt wird (Guardiani et al., 2015, Lebovics et al., 1992, Langford et al., 1996).

In frühen Stadien der Erkrankung können Symptome wie Husten oder Dyspnoe mild oder sogar nicht vorhanden sein. Bei fortgeschrittener Stenose können die Beschwerden stärker werden und mit einem Lebensbedrohlichen Stridor einhergehen (Gluth et al., 2003, Strange et al., 1990).

Hier kann es durch eine granulomatöse Entzündung und Vernarbung zur Verengung der oberen Atemwege kommen. Diese Verengung kann potentiell Lebensbedrohlich sein und eine Tracheotomie erfordern (Langford et al., 1996, Lebovics et al., 1992). Sie ist eine der Manifestationen, die am häufigsten mit einer rezidivierenden oder refraktären Erkrankung assoziiert ist (Holle et al., 2010b).

Eine SGS kann als Erstsymptom der Erkrankung oder als Manifestation in einem späten Stadium auftreten (Solans-Laque et al., 2008). Häufig findet sich ein Auftreten und Fortschreiten der SGS unabhängig von anderer Krankheitsaktivität. So wird in bis zu 49% der Patienten die Diagnose der SGS ohne andere Zeichen einer aktiven GPA gestellt (Langford et al., 1996). In fast 50% der GPA-Patienten beginnt die SGS, während der Patient eine systemische immunsuppressive Therapie für eine Krankheitsaktivität an anderer Stelle erhält (Roediger et al., 2008).

Der subglottische Bereich der Trachea ist aufgrund der nachfolgend aufgeführten Faktoren besonders empfindlich für eine Verengung (Gluth et al., 2003):

- Die Aussetzung des respiratorischen Epithels gegenüber Mageninhalt (Laryngopharyngealer Reflux, LPR).
- Eine dürftige Blutversorgung im Übergangsbereich zweier getrennter mikrovaskulärer Gefäßbetten.
- Durch turbulenten subglottischen Luftstrom bedingte komplexe mechanische Kräfte.

2.3.3 Diagnostik
Bislang gibt es keine standardisierten und validierten Richtlinien für die Diagnostik zur Einschätzung einer Stenose und zur Differenzierung zwischen Entzündung und Narben. Häufig basiert die Diagnostik auf Ergebnissen aus der Endoskopie und der radiologischen Bildgebung. Die Laryngoskopie wird als die zuverlässigste Untersuchungsmethode und als Goldstandard angesehen, um die Beschaffenheit der Mukosa hinsichtlich entzündlicher Veränderungen zu beurteilen. Die Endoskopie ermöglicht zusätzlich die Durchführung von Biopsien des subglottischen Bereiches, sodass histologische Erkenntnisse gewonnen werden können, und eine direkte interventionelle Therapie, wie
Endoskopische Verfahren:
Da die Endoskopie ein genaues Bild der Anatomie der Oberfläche eines Wandsegmentes liefert, ist sie optimal geeignet, mukosale oder epitheliale Läsionen zu entdecken (Jolesz et al., 1997). Es können die Lokalisation, Ausdehnung und Art der Stenose (fibrös und/oder kartilaginös) bestimmt werden (Gouveris et al., 2013). Allerdings können endoskopische Prozeduren unangenehm sein und Sedierung oder eine Anästhesie erfordern. Außerdem ist nur die Oberfläche der Schleimhaut einsehbar, Veränderungen in oder hinter der Wandung werden nicht erkannt. Diese Limitierung behindert z.B. die Einschätzung der transmuralen Ausdehnung einer Raumforderung und schränkt die Lokalisierung einer Läsion in Relation zu den Nachbarstrukturen ein (Jolesz et al., 1997).

Bei Würgereiz oder falls ein Einblick über Kehlkopf-Niveau erwünscht ist, wird eine Inspektion mittels flexibler Nasopharyngolaryngoskopie durchgeführt (s. Abb. 1). Nach örtlicher Betäubung (nasal) wird das Endoskop zwischen der unteren und mittleren Nasenmuschel eingeführt. Über den Rachenraum gelangt das Endoskop in den Larynx und ermöglicht die Aufsicht auf die Stimmlippenebene und darüber hinaus. Durch einen

Abbildung 1: Nasopharyngolaryngoskopie

(A) Schemazeichnung zur Durchführung einer Nasopharyngolaryngoskopie (Probst et al., 2008)
(B) Blick durch das Laryngoskop bei einer Patientin mit subglottischer Stenose durch GPA. Der Pfeil markiert ein Granulom auf Stenosenniveau. VC: Vocal Chord (Klink et al., 2013)

Radiologische bildgebende Verfahren:
Eine radiologische Einschätzung des Schweregrades einer subglottischen Stenose kann durch verschiedene Modalitäten erfolgen.

Konventionelle Röntgenuntersuchungen
vom Einsatz dieser Untersuchungsmodalität weitestgehend abgekommen, abgelöst wurde sie von der Computertomographie (Buschman, 1991, Muller, 2004).

Computertomographie (CT)

Durch die dreidimensionale Rekonstruktion der Bilddaten erhält man eine sog. „virtuelle Bronchoskopie (VB)“ mit endoskopartigen Bildern der Luftwege (Summers et al., 2002). Dies ist eine Technik, die immer häufiger zur Evaluierung zentraler Atemwegserkrankungen und zur Erkennung benigner und maligner Atemwegsstenosen verwendet wird (Shitrit et al., 2005).

Der Nutzen im Vergleich zur fiberoptischen Bronchoskopie (FOB) liegt in der Visualisierung der distal einer Stenose gelegenen Luftwege sowie der Möglichkeit der exakten und reproduzierbaren Vermessung einer Stenose (Summers et al., 2002).

In verschiedenen Studien konnte der Nutzen der CT und VB bei der Graduierung von Atemwegsstenosen im Vergleich zur konventionellen Endoskopie gezeigt werden. Shitrit et al. verglichen in einer prospektiven Studie die Genauigkeit der VB mit der der FOB und Lungenfunktion in der Beurteilung von Atemwegsstenosen bei lungentransplantierten Patienten und Patienten mit zentraler Atemwegsstenose. Sie fanden heraus, dass die Graduierung aus der VB besser als die Graduierung aus der FOB mit Messungen der Lungenfunktion korreliert (Shitrit et al., 2005). Auch in einer Studie von Hoppe et al. stellte sich die virtuelle Bronchoskopie im Vergleich zur flexiblen Bronchoskopie als zuverlässige nicht-invasive Methode dar, um tracheobronchiale Stenosen zu graduieren (Hoppe et al.,
Taha und Kollegen betrachteten den Nutzen und die Genauigkeit der CT im Vergleich zur Bronchoskopie in der Erkennung und Bewertung trachealer Stenosen nach Intubation bei 14 Patienten. In der Studie wurde mit Hilfe der CT eine genauere Graduierung der Stenosen im Vergleich zur Bronchoskopie erzielt. Zusätzlich war mit Hilfe der CT eine genaue Messung der Bereiche proximal und distal der Stenose möglich (Taha et al., 2009).

Magnetresonanztomographie (MRT)

Ein großer Vorteil der MRT in der Diagnostik der Trachealstenosen liegt in der Abwesenheit der Belastung durch Röntgenstrahlen. Gerade bei häufig erforderlichen Kontrollen kann man mit der MRT die hohen kumulativen Dosen umgehen, die in der CT anfallen. Jedoch braucht es längere Untersuchungszeiten, welche gerade bei Patienten mit Atemnot in Zusammenspiel mit der räumlichen Enge limitierend sein können (Muller,
Neben der Beurteilung des Stenosegrades kann die MRT auch zur Beurteilung der entzündlichen Aktivität eingesetzt werden, was sie von der Sonographie und der CT unterscheidet.

Klink et al. verglichen in ihrer Studie von 2013 die Ergebnisse aus der MRT mit der klinischen Diagnose aus der HNO in Bezug auf die subglottische inflammatorische Aktivität. In der Einschätzung, ob sich bei der Untersuchung eine aktive oder inaktive Entzündung vorfand, erreichte die MRT eine Sensitivität von 87,5% und eine Spezifität von 60,0%. So wird die MRT als eine vielversprechende Untersuchungsmethode zum Monitoring subglottischer Stenosen bei Patienten mit GPA angesehen, da neben der Graduierung der Stenose gleichzeitig auch eine Einschätzung der inflammatorischen Aktivität vorgenommen werden kann (Klink et al., 2013).

Bis heute ist die Datenlage bezüglich der Genauigkeit der MRT in der Bestimmung des Stenose-Grades bei SGS noch sehr dünn. Insbesondere fehlen Studien, die einen Vergleich zwischen SGS-Messungen in der MRT mit Befunden in der Endoskopie und Lungenfunktionsuntersuchung aufstellen (Girard et al., 2015).

Lungenfunktionsuntersuchung:

Unter Lungenfunktionsuntersuchungen versteht man Messungen, die sich mit der Durchgängigkeit des Tracheobronchialsystems befassen. Dabei geht es nicht um den Gasaustausch, der in anderen Verfahren untersucht werden kann. Die am häufigsten durchgeführte Lungenfunktionsuntersuchung ist dabei die Spirometrie (s. Abb. 2 und 3). Mit dieser Untersuchung der Atemwege können Obstruktionen, Restriktionen und Hyperreagibilität aufgezeigt werden (Crieé et al., 2015). Neben den numerisch ausgedrückten Messwerten erfolgt auch eine graphische Darstellung, meist in Form einer Fluss-Volumen-Kurve (sog. Spirogramm). Der Fluss des Atemstoms (in L/s) auf der y-Achse wird gegen das ausgeatmete Volumen (in L) auf der x-Achse aufgetragen. So lassen sich bereits durch die Form krankhafte Veränderungen erkennen und die Mitarbeit des Patienten beurteilen.

Die Spirometrie ist eine nützliche Untersuchung zur Evaluierung der Atemfunktion, da sie preisgünstig, schnell, nicht-invasiv und gut zugänglich ist (Crieé et al., 2015). Sie dient

Abbildung 2: Statische und dynamische Lungenfunktionsparameter

Standardabfolge der Bodyplethysmographie mit Bestimmung der Inspiratorischen Vitalkapazität (IVC) mit nachfolgender forciertter Spirometrie. IRV = Inspiratorisches Reservevolumen, VT = Atemzugvolumen, ERV = Exspiratorisches Reservevolumen, IC = Inspiratorische Kapazität, FRC = Funktionelle Residualkapazität, TLC = Totale Lungenkapazität, FEV1 = Einsekundenkapazität, FVC = Forcierte Vitalkapazität, PEF = Peak Expiratory Flow (Spitzenfluss), FEF = Maximale Exspiratorische Atemstromstärken (Criee et al., 2015).

Erläuterungen zur Auswertung der Spirometrie:

In der Spirometrie werden statische Lungenvolumina (z.B. IVC) und dynamische Parameter gemessen, die abhängig vom zeitlichen Verlauf sind (z.B. FEV1) (Criee et al.,...
Die wichtigsten Parameter sind die folgenden:

- **FVC (Forcierte Vitalkapazität):** Atemvolumen, welches nach einer kompletten Inspiration forciert maximal ausgeatmet werden kann.

- **IVC (Inspiratorische Vitalkapazität):** Atemvolumen, welches nach kompletter Expiration maximal eingeatmet werden kann.

- **FEV1 (Einsekundenkapazität):** Atemvolumen, welches nach maximaler Inspiration in der ersten Sekunde forciert ausgeatmet werden kann.

- **FEV1/FVC (Tiffeneau-Index):** Forciertes exspiratorisches Volumen der ersten Sekunde in Prozent der forcierten Vitalkapazität.

- **MEF 25%, 50%, 75% (Maximal Expiratory Flow):** Atemstromstärke nach Ausatmung von 25%, 50% oder 75% der FVC.

- **PEF/PIF (Peak Expiratory Flow/Peak Inspiratory Flow):** Spitzenfluss bei maximaler exspiratorischer/inspiratorischer Anstrengung. Der Spitzenfluss (PEF) ist die maximal erreichte Atemstromstärke bei forciertem Expiration, vorstellbar wie beim Ausblasen von Kerzen. Er kann an der Fluss-Volumen-Kurve abgelesen werden.

- **MIF 50% (Maximal Inspiratory Flow):** Atemstromstärke nach Einatmung von 50%.

Beginnen sollte die Interpretation der Spirometrie mit der Beurteilung der Fluss-Volumen-Kurve. Während der Expiration sollte die Kurve optimalerweise steil ansteigen und einen fast spitz zulaufenden Peak-Flow zeigen (Bezeichnung des Umkehrpunkts nach Erreichen des Spitzenflusses). Die Dauer der Expiration sollte mindestens sechs Sekunden sein, oder bis ein Plateau erreicht wird. Es sollten sich keine Artefakte wie z.B. durch Husten finden (Gonzalez and Stolz, 2016).

Bei der Betrachtung von Untersuchungen mit Verengung der oberen Atemwege fällt auf, dass es zu einer Reduzierung vor allem der inspiratorischen Flussraten und somit zu einer Abflachung der Flusskurven kommt, was auch als schachtelartiges Aussehen beschrieben wird (Langford et al., 1996) (s. Abb. 3).
Abbildung 3: Typische Lungenfunktions-Untersuchungsbefunde bei Stenosen der oberen Atemwege

Die unterbrochene Linie der Fluss-Volumen-Kurve zeigt eine normale Lungenfunktion, die durchgezogene Linie verbildlicht die Lungenfunktion eines Patienten mit extrathorakaler Stenose (Polychronopoulos et al., 2007)

Die Betrachtung der Fluss-Volumen-Kurve kann für die Einschätzung sowohl der Schwere der tracheobronchialen Stenose als auch des therapeutischen Erfolgs von Nutzen sein (Gluth et al., 2003). Durch Areale bronchialer Lumeneinschränkung, Bronchiektasen, peribronchiale Narbenbildung und Bronchomalazie kann es bei der GPA zu einer obstruktiven Erkrankung der kleinen Atemwege kommen. In diesem Fall sind die für eine chronisch-obstruktive Lungenkrankung (COPD) typischen Veränderungen zu erkennen, z.B. eine Abnahme des FEV1 (Polychronopoulos et al., 2007).
Parameter der Lungenfunktionsuntersuchungen bei obstruktiven Erkrankungen:

Kraft et al. veröffentlichten 2015 eine Studie, in der sie 25 Patienten mit idiopathischer SGS untersuchten. Sie führten zu Beginn und nach jeder Intervention in Form einer endoskopischen Inzision und Dilatation eine Spirometrie durch. Dabei beobachteten sie postoperativ eine signifikante Verbesserung von PEF, PIF, FEV1/PEF und FIF50%. Basierend auf ihren Ergebnissen schlugen sie vor, Veränderungen maximaler inspiratorischer und exspiratorischer Flussraten zur Beurteilung der Ergebnisse von endoskopischen Eingriffen zu verwenden (Kraft et al., 2015).
2.3.4 Therapie
Meist schreitet die Verengung einer SGS langsam fort, sodass die Patienten ihr Atemverhalten sukzessive anpassen können, bis ein kritischer Punkt der Stenose erreicht ist (Solans-Laque et al., 2008).
Die Therapie besteht je nach Ausprägung der Stenose, Schwere der klinischen Symptomatik und Allgemeinzustand des Patienten aus einem sorgfältigen Monitoring, einer aktivitätsadaptierten systemischen Therapie und einer rechtzeitigen Intervention (Laudien et al., 2008).
Im lokal begrenzten Stadium der GPA erfolgt eine Therapie z.B. mit Cotrimoxazol und niedrig dosiertem Prednisolon, im generalisierten Stadium werden hoch dosiertes Prednisolon und Cyclophosphamid oder Methotrexat verabreicht. Unter einer rein medikamentösen Therapie kommt es jedoch in den meisten Fällen nicht zu einer ausreichenden Verbesserung der Stenose. Da eine systemische immunsuppressive Therapie zusätzlich mit einer potentiellen Toxizität einhergeht, ist sie eher zu vermeiden (Langford et al., 1996).
Insbesondere bei SGS ohne andere Krankheitsaktivität wird eine intraläsionale Injektion langwirksamer Glukokortikoide, kombiniert mit einer mechanischen, seriellen subglottischen Dilatation (intralesional long-acting corticosteroid injection plus mechanical subglottic dilation, ILCD), empfohlen (Langford et al., 1996, Gluth et al., 2003).
Diese könne als eine sichere Alternative zur konventionellen immunsuppressiven Therapie in Fällen ohne weitere Krankheitsaktivität durchgeführt werden (Solans-Laque et al., 2008).
In Phasen der akuten systemischen Entzündung wird zu einer minimalen Manipulation der Subglottis geraten. Nach Erlangen der Kontrolle über die Entzündung können ein endoskopisches oder ein offenes Vorgehen evaluiert werden (Gluth et al., 2003).
Auch eine Exzision per Endoskopie oder Laser und eine chirurgische Resektion des stenotischen Segments, gefolgt von einer Rekonstruktion, kommen in Frage (Solans-Laque et al., 2008).
Eine chirurgische Therapie sollte reserviert bleiben für Patienten mit fixierten Läsionen in Zeiten ruhender Krankheitsaktivität (Solans-Laque et al., 2008).
Eine Inzision und Exzision der Narbenbereiche bis auf Knorpelniveau. Sie empfehlen zusätzlich eine lokale Applikation von Mitomycin C, postoperative Steroide (und/oder Immunsuppressiva) und eine Therapie mit Protonen-Pumpen-Inhibitoren für vier Wochen (Gouveris et al., 2013). In der zugrunde liegenden Studie waren zwölf Patienten mit einem Stenosegrad von 1 oder 2 eingeschlossen, davon acht mit idiopathischer Stenose und vier mit einer Stenose bei GPA.

Tritt eine Obstruktion in Phasen systemischer Entzündung auf, kann in 41% bis 52% der Patienten bei zunehmender Dyspnoe eine Tracheotomie notwendig werden (Gluth et al., 2003, Langford et al., 1996, Taylor et al., 2013).
3. Material und Methoden

3.1 Ethikvotum und Studienpopulation

3.1.1 Positives Ethikvotum
Der Antrag für eine retrospektive Auswertung der klinischen Daten, Laryngoskopien und Hals-MRT-Untersuchungen der Patienten wurde von der Ethikkommission überprüft und genehmigt.

3.1.2 Studienpopulation

Die häufigsten Symptome bei den Patienten, die sich mit Verdacht auf eine subglottische Stenose vorstellten, waren Stridor, (Belastungs-) Dyspnoe und/oder Heiserkeit.

Bei 53 dieser 62 Patienten wurde die Diagnose der GPA klinisch und histologisch bestätigt und eine Einstufung der GPA fand gemäß der Definition der Chapel Hill Consensus Conference oder nach den Kriterien des American College of Rheumatology statt (Jennette et al., 1994, Hunder et al., 1990).

Von den 53 Patienten lagen 187 Untersuchungen vor. Von diesen Untersuchungen wurden 52 Untersuchungen ausgeschlossen, da die Daten aus der Laryngoskopie (n=26), von der Lungenfunktionsuntersuchung (n=20) oder von beiden (n=6) nicht verfügbar waren oder die Zeitpunkte der verschiedenen Untersuchungsmodalitäten mehr als 10 Tage auseinander lagen.

Der Ausschluss weiterer 17 Untersuchungen erfolgte bei Patienten, die an einer Grunderkrankung wie Bronchusstenose, COPD (chronisch obstruktive Lungenerkrankung), Pneumonie oder Lungenarterienembolie litten bzw. tracheotomiert
waren. Hierbei wäre von einem maßgeblichen Einfluss auf die Ergebnisse der Lungenfunktionsuntersuchung auszugehen.

Neben 18 Patienten mit nur einer einzelnen MRT-Untersuchung haben 26 Patienten (59%) mehr als eine MRT-Untersuchung, also mindestens eine Follow up-Untersuchung, erhalten (1 Follow-up n=8; 2 Follow-up n=8; 3 Follow-up n=3; 5 Follow-up n=3; 6 Follow-up n=2, 7 Follow-up n=2).

Es erfolgte eine Anonymisierung der Patientennamen mit Hilfe von ID-Nummern (1-44), welche in der Auswertung aufgeführt werden.

3.2 Untersuchungsmodalitäten

3.2.1 MRT

3.2.1.1 MRT-Bildgebung
Die Durchführung der MRT erfolgte mit einem 1,5 Tesla MR Scanner (Avanto; Siemens
3. Material und Methoden

Medical Systems, Erlangen, Germany) mit einer maximalen Gradientenstärke von 45 mT/m und einer Spitzenanstiegsrate von 200 mT/m/s unter Verwendung einer 4-Elemente Hals Matrix-Spule. Das Studienprotokoll schloss folgende Sequenzen ein: eine axiale T1-gewichtete (T1w) und eine sagittale T2-gewichtete (T2w) Turbo Spin Echo (TSE)-Sequenz sowie eine axiale und koronare T2-gewichtete Short Tau Inversion Recovery (STIR) Sequenz. Das Protokoll beinhaltete auch Kontrastmittel-gestützte Sequenzen. Die Dauer der MRT betrug ca. 20 min (15-25 min). Detaillierte Parameter der Sequenzen werden in Tabelle 1 aufgeführt.

<table>
<thead>
<tr>
<th>Sequenz</th>
<th>Voxelgröße (mm)</th>
<th>TR (ms)</th>
<th>TE (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2 TSE sag</td>
<td>1.0 x 0.5 x 4.0</td>
<td>3820</td>
<td>116</td>
</tr>
<tr>
<td>T2 STIR cor</td>
<td>1.0 x 0.7 x 4.0</td>
<td>5520</td>
<td>50</td>
</tr>
<tr>
<td>T2 STIR tra</td>
<td>1.8 x 0.9 x 4.0</td>
<td>7360</td>
<td>56</td>
</tr>
<tr>
<td>T1 TSE tra</td>
<td>1.0 x 0.5 x 4.0</td>
<td>520</td>
<td>14</td>
</tr>
<tr>
<td>T1 TSE FS trans + Gd*</td>
<td>1.0 x 0.5 x 4.0</td>
<td>520</td>
<td>14</td>
</tr>
<tr>
<td>T1 TSE FS cor + Gd*</td>
<td>1.0 x 0.5 x 4.0</td>
<td>520</td>
<td>14</td>
</tr>
</tbody>
</table>

Tabelle 1: MRT-Protokoll
* Kontrastmittel konnte nicht immer gegeben werden, z.B. bei schlechter Nierenfunktion oder Ablehnung durch den Patienten

3.2.1.2 MRT-Auswertung

Die Messung des minimalen transversalen Durchmessers der subglottischen Luftwege erfolgte in axialen T1w-Bildern auf Ebene der maximalen Stenose im subglottischen Bereich (s. Abb. 4). Wenn keine Stenose vorlag, erfolgte eine Messung des Durchmessers auf der oberen Höhe des Krikoids, welches den kleinsten Durchmesser im subglottischen Bereich darstellt (Randestad et al., 2000). Da die Variabilität des Tracheallumens in der Normalbevölkerung sehr groß ist, ist für eine valide
Vergleichbarkeit der Messergebnisse die Berechnung eines intraindividuellen Quotienten notwendig. Als Referenz wurde daher wie in vorausgegangenen Arbeiten der Durchmesser der subkrikoidalen, nicht befallenen Trachea gemessen (Klink et al., 2013, Lakhal et al., 2007). Der Grad der subglottischen Stenose wurde ermittelt, indem der minimale transversale Durchmesser der Subglottis durch den subkrikoidalen Durchmesser der Trachea dividiert wurde (Klink et al., 2013). Da bei einem Teil der Patienten aufgrund einer eingeschränkten Nierenfunktion die MRT-Untersuchung ohne Kontrastmittelgabe erfolgt ist, wurden die Messungen in den nativen T1-gewichteten Sequenzen durchgeführt.
3. Material und Methoden

(B) MRT der Subglottis, links T1-Sequenz transversal auf Höhe der Subglottis und rechts auf Höhe des Krikoids. Blauer Pfeil: minimaler transversaler Diameter der Subglottis, Roter Pfeil: Referenz (subkrikoidale Trachea).

Zusätzlich zur absoluten Prozentzahl der Stenose im Bereich von 0-100% wurden die Werte in den Myer-Cotton-Score (MCS) umgewandelt, welcher ursprünglich als
pädiatrische Skala für subglottische Stenosen entwickelt wurde, aber seitdem in der Überwachung adulter SGS eingesetzt wird. Eine Unterteilung der Stenose in 4 Grade wird beschrieben.

1: Stenose ≤ 50
2: Stenose 51 bis 70%
3: Stenose 71 bis 99%
4: kein erkennbares Lumen oder komplette Stenose (Myer et al., 1994)

Ein Grad 0 bedeutete bei unseren Ergebnissen, dass ein Befund ohne Stenose vorlag. Die Messungen wurden von zwei Untersuchern unabhängig voneinander durchgeführt, um die Interrater-Übereinstimmung zu bestimmen.

3.2.2 Laryngoskopie

Im Anschluss oder vor der Bildgebung in der MRT wurden die Patienten an die Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie der Universität Kiel übermittelt. Dort erfolgte eine klinische Untersuchung inklusive einer flexiblen Laryngoskopie, sowie gegebenenfalls zusätzlich eine Intervention (Bougierung).

Als zusätzlicher Punkt wurden Bougierungen als Intervention zur Aufweitung der subglottischen Stenose in die Datensammlung aufgenommen. Dokumentiert wurden sowohl das Datum der Intervention als auch die maximale Aufweitung in Charrière. Bei 59% der Patienten (26/44) erfolgte mindestens eine Follow-up-Untersuchung im Verlauf der Studie (1 Follow-up n=8; 2 Follow-up n=3; 5 Follow-up n=3; 6 Follow-up n=2; 7 Follow-up n=2). Elf Patienten erhielten insgesamt 22 Bougierungen während des Follow-ups. Bei drei Patienten wurde eine einzelne Intervention durchgeführt, bei sechs Patienten wurden zwei Interventionen durchgeführt, und bei jeweils einem Patienten wurden drei oder vier
3. Material und Methoden

Interventionen durchgeführt. Das durchschnittliche Zeitintervall zwischen Intervention und Follow up-Untersuchung betrug 267 Tage (71-888 Tage).

3.2.3 Lungenfunktions-Untersuchung

Bei all unseren Patienten wurde eine Spirometrie als Teil einer kompletten Bodyplethysmographie vor oder nach der MRT-Untersuchung durchgeführt. Die Untersuchung selbst und die Datenakquise erfolgten ebenfalls im Vaskulitis-Zentrum in Bad Bramstedt.

In Anlehnung an die eingangs aufgeführte Literaturrecherche und in Rücksprache mit einem erfahreneren Kollegen aus der Pulmologie am UKE (T.O.) wurden folgende Messgrößen der Spirometrie für unsere Auswertung herangezogen (Wassermann et al., 1995, Rotman et al., 1975, Langford et al., 1996, Kraft et al., 2015).

Als veranschaulichenden Wert für die Inspiration zeichneten wir den maximalen inspiratorischen Flow MIF 50 (maximal inspiratory flow; L/s) auf.

Als exspiratorischen Wert erfassten wir den peak expiratory flow PEF (% of predicted) für die Korrelationsanalyse. Beide Parameter spiegeln das Abflachen der inspiratorischen und der exspiratorischen Phase der Fluss-Volumen-Kurve wider.

3.3 Statistische Auswertung

Basierend auf der MRT-Diagnose und der Graduierung der subglottischen Stenose wurde der ICC (intraclass correlation coefficient) mit 95% Konfidenz-Intervall verwendet, um das gesamte Intraobserver-Agreement zu bestimmen. Ein ICC >0,75 wurde als gute Übereinstimmung gewertet.
4. Ergebnisse

4.1 Ergebnisse MRT

Die Messungen der unabhängigen Auswerter führten bei Auswerter 1 zu folgenden Ergebnissen. Der mittlere minimale Durchmesser der subglottischen Luftwege betrug 7 mm ± 2 (Range 3-16 mm) im Vergleich zu 12 mm ± 1 (Range 10-17 mm) auf der Höhe der subkrikoidalen Trachea.

In der MRT wurden 112 der 118 Untersuchungen (94,9%) als positiv für eine subglottische Stenose gewertet, in sechs Untersuchungen fand sich keine Stenose (Grad 0, 5,1%). Der durchschnittliche Grad der Stenose betrug 39% (Range 0-75%). In 82 Untersuchungen wurde die Stenose als Grad 1 gewertet (69,5%), in 26 Untersuchungen als Grad 2 (22,0%) und in vier Untersuchungen fand sich ein Grad 3 (3,4%). Eine Stenose Grad 4 wurde nicht nachgewiesen. Somit fanden sich Stenosen von Grad 1 und 2 am häufigsten. Bildbeispiele unterschiedlicher Stenosegrade in der MRT werden in Abbildung 5 aufgeführt.

Abbildung 5: MRT Beispielm Bilder von Patienten mit GPA und zunehmende MC-Scores

(A) Axiale T1-gewichtete MRT eines 34 Jahre alten Patienten mit GPA ohne Nachweis einer SGS, (B) eines 47 Jahre alten Patienten mit einer Stenose von 25% (12/16mm) gewertet als MC-Score 1, (C) einer 60 Jahre alten Frau mit einer Stenose von 58% (5/12mm) gewertet als MC-Score 2, und (D) einer 60 Jahre alten Frau mit einer Stenose von 77% (3/13 mm) gewertet als MC-Score 3. Die Zahlen in Klammern sind die ermittelten Durchmesser auf Niveau der Subglottis (Stenose) und der subkrikoidalen Trachea (Referenz).

Die Messungen bei Auswerter 2 führten zu folgenden Ergebnissen.

Der mittlere minimale Durchmesser der subglottischen Luftwege betrug ebenfalls 7 mm ± 2 (Range 2-16 mm) im Vergleich zu 12 mm ± 1 (Range 10-17 mm) auf der Höhe der normalen subkrikoidalen Trachea. In der MRT wurden 112 der 118 Untersuchungen (94,9%) als positiv für eine subglottische Stenose gewertet, in sechs Untersuchungen
fand sich keine Stenose (Grad 0, 5,1%). Der durchschnittliche Grad der Stenose betrug 39% (Range 0-77%).

In 79 Untersuchungen wurde die Stenose als Grad 1 gewertet (66,9%), in 29 Untersuchungen als Grad 2 (24,6%) und in vier Untersuchungen fand sich ein Grad 3 (3,4%). Eine Stenose des Grades 4 wurde nicht nachgewiesen. Somit fanden sich Stenosen von Grad 1 und 2 ebenfalls am häufigsten.

Der ICC zeigte eine gute Übereinstimmung in der Messung des transversalen Durchmessers. Ein ICC nahe 1 wurde für Messungen des Durchmessers auf Höhe der Stenose (ICC=0,983; CI 95%: 0,969-0,991) und auf der Höhe der Referenz (ICC=0,945; CI 95%: 0,902-0,969) erreicht.

4.2 Ergebnisse Laryngoskopie

In der Laryngoskopie wurden in 105 der 118 Untersuchungen (89,0%) Stenosen diagnostiziert. In 13 Untersuchungen wurde keine Stenose detektiert (Grad 0, 11,0%). Der Stenosegrad wurde bei einer Aufteilung nach MC-Score in 73 Untersuchungen als Grad 1 (61,9%), in 24 Untersuchungen als Grad 2 (20,3%) und in acht Untersuchungen als Grad 3 (6,8%) gewertet. Eine Stenose des Grades 4 wurde nicht diagnostiziert. Somit fanden sich auch in dieser Untersuchungsmodalität am häufigsten Stenosen von Grad 1 und 2.

4.3 Vergleich der Stenosegrade zwischen MRT und Laryngoskopie

In 75 der 118 Untersuchungen fand sich eine Übereinstimmung zwischen dem Grad der Stenose in der MRT und der Laryngoskopie (63,6%). Die Korrelationen zwischen den MC-Scores in MRT und Laryngoskopie waren signifikant (r=0,434; CI: 0,158 bis 0,648; p=0,003). Eine Diskrepanz zwischen den Stenosegraden der MRT und Endoskopie fand sich jedoch in 36,4% der Untersuchungen (43/118). In der MRT wurden in 20 Fällen höhere Werte im Vergleich zur Laryngoskopie nachgewiesen. Davon lag in sieben Untersuchungen eine Differenz von zwei Graden vor. In 23 Fällen zeigte die MRT niedrigere Stenosegrade als die Laryngoskopie, dabei in drei Fällen mit einer Differenz
von zwei Grad. Die Übereinstimmung und Abweichung der Ergebnisse in der MRT und Endoskopie sind in einem Mosaikplot der Kreuztabelle illustriert (s. Abb. 6).

Abbildung 6: Mosaik-Plot zur Demonstration des Grades der Übereinstimmung zwischen MRT- und Laryngoskopie-basierten MC-Scores
Die unterschiedlichen Blautöne stehen für die verschiedenen MC-Scores in der MRT, während die jeweiligen Säulen die verschiedenen MC-Scores der Laryngoskopie aufzeigen. Die Zahlen in den Feldern repräsentieren die Anzahl der Untersuchungen. Eingekreiste Zahlen stehen für die Anzahl der Untersuchungen mit einer Übereinstimmung der MC-Scores zwischen MRT und Laryngoskopie (n=75). Sternchen stehen für die MRT Untersuchungen mit einer um zwei Grad höheren Graduierung, während die Raute für MRT Untersuchungen mit einer um zwei Grad niedrigeren Graduierung im Vergleich zur Laryngoskopie steht.

Im Folgenden sind als Beispiel übereinstimmender und abweichender Graduierungen der SGS in der MRT und Laryngoskopie drei Patienten mit jeweils zwei MRT Untersuchungen im Rahmen von Verlaufskontrollen aufgeführt (s. Abb. 7-9).
4. Ergebnisse

Abbildung 7: Verlaufskontrolle einer 59-jährigen, weiblichen Patientin (ID 10) in der MRT mit der Diagnose einer SGS

(A) Messungen jeweils einmal auf Höhe der Stenose im Bereich der Subglottis (SG) und der Referenz auf Höhe des proximalen Endes der Trachea (Ref.). In der Erstuntersuchung in der MRT wurde die Stenose mit 55% als Grad 2 gewertet. In der Endoskopie fand sich ebenfalls ein Grad 2. (B) In einer Follow up-Untersuchung fand sich nach Bougierung eine Verbesserung der Stenose in der MRT mit 38% auf Grad 1, ebenso in der Endoskopie.
Abbildung 8: Verlaufskontrolle einer 57-jährigen, weiblichen Patientin (ID 18) in der MRT mit der Diagnose einer SGS

(A) Messungen jeweils einmal auf Höhe der Stenose der Subglottis (SG) und der Referenz (Ref.). In der Erstuntersuchung in der MRT wurde die Stenose mit 71% als Grad 3 gewertet. In der Endoskopie fand sich eine Differenz, hier wurde die Stenose als Grad 2 eingestuft. (B) In einer Follow up-Untersuchung fand sich eine Verbesserung der Stenose in der MRT mit 45% auf Grad 1. In der Endoskopie hingegen wurde keine Stenose mehr diagnostiziert (Grad 0).
Abbildung 9: Verlaufskontrolle einer 43-jährigen, weiblichen Patientin (ID 15) in der MRT mit der Diagnose einer SGS

(A) Messungen jeweils einmal auf Höhe der Stenose der Subglottis (SG) und der Referenz (Ref.). In der Erstuntersuchung in der MRT wurde die Stenose mit 50% als Grad 1 eingestuft. In der Endoskopie wurde die SGS als Grad 0 gewertet. (B) In einer Follow up-Untersuchung wurde in der MRT eine Verschlechterung der SGS auf 63% nachgewiesen und es erfolgte eine Einstufung als Grad 2. In der Endoskopie wurde die Stenose als Grad 3 gewertet.

4.4 Vergleich MRT und Laryngoskopie mit der Spirometrie

Zwischen den MC-Scores, die in der MRT und in der Laryngoskopie bestimmt wurden, und den maximalen inspiratorischen und exspiratorischen Flussgeschwindigkeiten der Lungenfunktionstests konnte eine statistisch signifikante Korrelation nachgewiesen werden. Die Korrelation zwischen den MC-Scores der MRT und der PEF auf der Personen-Ebene ergab einen Koeffizienten von $r=-0.363$ (CI 95%: -0.074 bis -0.595), $p=0.016$. Für die MC-Scores der Laryngoskopie konnte in Gegenüberstellung mit der PEF ein Korrelations-Koeffizient von $r=-0.376$ ermittelt werden (CI 95%: -0.089 bis -0.605),
4. Ergebnisse

$p=0,012$. Auch für die MIF fanden sich signifikante Korrelationen sowohl für die MC-Scores der MRT: $r=-0,340$ (CI 95%: -0,048 bis -0,578), $p=0,024$ als auch für die Ergebnisse der Laryngoskopie: $r=-0,320$ (CI 95%: -0,026 bis -0,564), $p=0,034$.

Die prozentualen Stenosegrade, die nur mit Hilfe der MRT gemessen wurden, zeigten die höchste Korrelation, sowohl mit der PEF ($r=-0,441$ (CI 95%: -0,165 bis -0,652), $p=0,003$) (s. Abb. 10 A), als auch mit der MIF ($r=-0,413$ (CI 95%: -0,132 bis -0,632), $p=0,005$) (s. Abb. 10 B).

![Abbildung 10: Korrelation zwischen der MRT-basierten Graduierung der SGS in Prozent und den Lungenfunktionstests](image)

Die lineare Regressions-Linie ist mit 95%-Konfidenzintervallen eingezeichnet.

4.5 Longitudinale Verläufe nach Bougierung

Die MRT zeigte nach Bougierung eine Verbesserung des Stenosegrades (ermittelt in Prozent) in neun von 22 Follow up-Untersuchungen (40,9%), während sich die Stenose in fünf Untersuchungen (22,7%) verschlechterte und in acht Untersuchungen (36,4%) der Stenosegrad unverändert blieb. Aus der MRT abgeleitete MC-Scores ergaben eine Verbesserung der Stenosegrade in acht Verlaufskontrollen (36,4%), eine Verschlechterung in einer Verlaufskontrolle (4,5%) und keine Veränderung in 13 Verlaufskontrollen (59,1%).
Aus der Laryngoskopie abgeleitete MC-Scores hingegen ergaben eine Verbesserung der Stenose in neun Verlaufskontrollen (40,9%), eine Verschlechterung in vier Verlaufskontrollen (18,2%) und keine Veränderung in neun Verlaufskontrollen (40,9%).

In der Lungenfunktionsuntersuchung zeigte sich nach Bougierung eine Verbesserung der MIF in 12/22 Untersuchungen (54,5%) und der PEF in 14/22 Untersuchungen (63,6%). Eine Verschlechterung der MIF fiel in sieben Untersuchungen (31,8%) und der PEF in sechs Untersuchungen (27,3%) auf. In den übrigen Untersuchungen blieben MIF und PEF nach der Bougierung unverändert.

Hinsichtlich der Beurteilung von Veränderungen der Stenosen im Verlauf wurde die höchste Korrelation zwischen der Einschätzung der Stenose in Prozent in der MRT und der MIF (r=-0,8; CI 95%: -0,571 bis -0,913, p<0,0001) und dem PEF (r=-0,61; CI 95%: -0,254 bis -0,821; p=0,0025) nachgewiesen.

Aus der MRT und der Laryngoskopie abgeleitete MC-Scores korrelierten ebenfalls signifikant mit den Lungenfunktionsuntersuchungen, im Vergleich mit dem absoluten Stenose-Grad in Prozent aber weniger (MRT-ermittelter MC-Score versus MIF: r=-0,72; CI 95%: -0,428 bis -0,876; p=0,0002 und PEF: r=-0,43; CI 95%: -0,010 bis -0,721; p=0,04; Laryngoskopie-ermittelter MC-Score versus MIF: r=-0,58; CI 95%: -0,210 bis -0,805; p=0,005 und PEF: r=-0,57; CI 95%: -0,195 bis -0,799; p=0,006).

Abbildungen 11 und 12 veranschaulichen die Korrelation der Stenose-Grade in MRT und Laryngoskopie und der Lungenfunktions-Untersuchung vor und nach Bougierung.

In der graphischen Darstellung individueller Verläufe in den folgenden Abbildungen ist der Stenosegrad in der MRT (gemessen in Prozent) auf der linken äußeren Y-Achse aufgezeichnet (dunkelrote Punkte). Der MC-Score der Laryngoskopie wird auf einer 4-stufigen Skala von 0 bis 3 gemessen und ist auf der linken inneren Y-Achse eingetragen (hellrote Punkte). Der inspiratorische Spirometrie-Parameter MIF 50 bewegt sich in einem Wertebereich von 6 bis 0 (L/s), eingetragen auf der rechten inneren Y-Achse (hellblaue Punkte). Der exspiratorische Spirometrie-Parameter PEF bewegt sich in einem Wertebereich von 150 bis 0 (% of predicted), eingetragen auf der rechten äußeren Y-Achse (grünes Dreieck). Auf der X-Achse ist der zeitliche Verlauf in Monaten aufgezeichnet.
4. Ergebnisse

Abbildung 11: Beispiel der Übereinstimmung zwischen MRT und Laryngoskopie im longitudinalen Monitoring der SGS

(A) Das Diagramm zeigt Veränderungen der Stenose in MRT (%), Laryngoskopie (MC-Score) und Spirometrie (MIF, PEF) bei einer 41-jährigen Patientin mit der Diagnose einer SGS. Gezeigt werden die Erstuntersuchung und drei Folgeuntersuchungen. Eine Bougierung wurde zwischen der ersten und zweiten Folgeuntersuchung durchgeführt (B und C). (B) Bei der ersten Folgeuntersuchung zeigt die MRT eine Stenose von 61% (5 mm/13 mm; MC-Score 2). Auch in der Laryngoskopie ergibt sich ein MC-Score von 2. Die MIF betrug 2,2 L/s und die PEF 37,5%. (C) Bei der zweiten Folgeuntersuchung zeigt sich nach Bougierung (39 Charrière) in der MRT ein reduzierter Stenosegrad von 50% (7 mm/14 mm; MC-Score 1). Auch in der Laryngoskopie findet sich ein Rückgang der Stenose auf Grad 1. Entsprechend wurden in der Spirometrie Verbesserungen des MIF (3,3 L/s, grüner Pfeil) und PEF (45,5%, blauer Pfeil) nachgewiesen.
4. Ergebnisse

Abbildung 12: Beispiel der höheren Sensitivität der MRT im Vergleich mit der Laryngoskopie im longitudinalen Monitoring der SGS

(A) Das Diagramm zeigt Veränderungen der Stenose in MRT (%), Laryngoskopie (MC-Score) und Spirometrie (MIF, PEF) bei einer 61-jährigen Patientin mit der Diagnose einer SGS. Gezeigt werden auch hier die Erst- und drei Folge-Untersuchungen. Eine Bougierung wurde zwischen der ersten und zweiten Folge-Untersuchung durchgeführt (B und C). (B) Bei der ersten Folge-Untersuchung zeigt die MRT eine Stenose von 50% (6 mm/12 mm; MC-Score 1). In der Laryngoskopie ergibt sich ebenfalls ein MC-Score von 1. (C) Nach der Bougierung (32 Charrière) wurde die SGS unverändert mit einem MC-Score von 1 in MRT und Laryngoskopie gewertet, während sich in der MRT eine Verbesserung in Prozent mit einer nun nur noch verbleibenden Stenose von 25% fand (9 mm/12 mm). Diese korrelierte mit der Verbesserung der spirometrischen Parameter MIF (grüner Pfeil) und PEF (blauer Pfeil).
4. Ergebnisse

4.6 Graphische Darstellung individueller Verläufe

Im Folgenden werden die Verläufe der Stenosegrade von fünf weiteren Patienten (ID 15, 18, 41, 59, 61) in Form von Diagrammen mit der Gegenüberstellung der Untersuchungsergebnisse aus MRT, Laryngoskopie und Spirometrie aufgeführt.

Abbildung 13: Individueller Verlauf des Patienten mit der ID 15

Abbildung 15: Individueller Verlauf des Patienten mit der ID 41

Bei der ID 61 handelt es sich um eine zu Beginn der Untersuchungen 40-jährige, weibliche Patientin. Über einen Zeitraum von 45 Monaten wurden zu sechs Zeitpunkten Untersuchungen durchgeführt. Bougierungen fanden nach den Untersuchungszeitpunkten 1 und 2 statt. Nach der zweiten Bougierung findet sich in der MRT eine Verbesserung der Stenose von ca. 50% auf ca. 30%. In der Laryngoskopie findet sich nach einer anfänglichen Plateau-Phase bei Grad 1 über einen kurzfristigen Anstieg auf Grad 2 am Ende eine Verbesserung auf Grad 0. MRT und MIF zeigen einen relativ gut korrelierenden Verlauf. Insbesondere bei der fünften Untersuchung findet sich eine Verbesserung der Stenose in MRT und MIF, in der Laryngoskopie hingegen findet sich eine Verschlechterung von Grad 1 auf 2.
5. Diskussion

5.1 Kernaussagen

Die Graduierungen der subglottischen Stenose, die mit Hilfe der MRT und der Laryngoskopie bestimmt wurden, wiesen in etwa gleich hohe signifikante Korrelationen mit den inspiratorischen und exspiratorischen Flussmessungen der Spirometrie auf. Allerdings zeigten die exakten, in Prozent gemessenen Stenosegrade, die nur mit Hilfe der MRT ermittelt werden konnten, die höchste signifikante Korrelation mit den Ergebnissen der Spirometrie.

Trotz signifikanter Korrelation der Stenosegrade zwischen der MRT und der Endoskopie lag in circa einem Drittel der Untersuchungen eine Diskrepanz in der Graduierung der Stenosen vor. Hierbei zeigte sich eine ausgeglichene Anzahl an Untersuchungen mit höheren bzw. niedrigeren Stenosegraden in der MRT im Vergleich zur Laryngoskopie, so dass nicht von einer alleinigen Tendenz zur Über- oder Unterschätzung der Stenose durch eines der beiden Untersuchungsverfahren ausgegangen werden kann. Da jedoch ein unabhängiger etablierter Goldstandard zur exakten Vermessung des Stenosegrades fehlt, kann abschließend die Frage nicht sicher geklärt werden, welches der beiden Verfahren bei diskreptanten Befunden eher der „Wahrheit“ entspricht.

Unter Berücksichtigung der signifikanten Korrelationen zwischen den ermittelten Stenosegraden in der MRT und den Flussmessungen der Spirometrie sowie einer sehr guten Interrater-Übereinstimmung bei den MRT-Messungen bleibt festzuhalten, dass die
MRT eine verlässliche und präzise Messmethode für die objektive Beurteilung des Stenosegrades bei subglottischen Stenosen ist.

5.2 Messtechnik zur Bestimmung des Stenosegrades subglottischer Stenosen in der MRT und ihr klinischer Stellenwert

Bei den sechs Patienten unseres Patientenkollektivs, bei denen keine subglottische Stenose in der Bildgebung vorlag, wurde in der MRT ein durchschnittlicher minimaler transversaler Durchmesser der Subglottis von 13,3 mm (± 3 mm) ermittelt. Dieser Wert entspricht in etwa den Messwerten in der MRT in vorherigen Studien, in denen ein Mittel von 13,8 mm (± 2 mm) bei Gesunden angegeben wird (Or et al., 2013). In einer Studie von Lakhal et al. wurde mit Hilfe des Ultraschalls in gleicher Lokalisation bei Gesunden ein durchschnittlicher minimaler Durchmesser von 15 mm (± 2 mm) nachgewiesen. Der Wert liegt im Vergleich zu unseren Ergebnissen etwas höher; allerdings konnte bereits in vorherigen Studien aufgezeigt werden, dass die Messungen der Lumendurchmesser der Trachea und Subglottis in der MRT im Vergleich zum Ultraschall in der Tendenz kleiner ausfallen (Lakhal et al., 2007, Or et al., 2013).

Hinsichtlich der Robustheit des Messverfahrens subglottischer Stenosen in der MRT konnte in meiner Arbeit eine hohe Reproduzierbarkeit der Messungen demonstriert werden. Die Interrater-Übereinstimmung wies exzellente Werte von über 0,9 auf. Nach meinem Wissensstand ist dies die erste Arbeit, in der die Interrater-Übereinstimmung
hinsichtlich der Messung subglottischer Stenosen in der MRT in einem größeren Patientenkollektiv untersucht wurde.

ist die Möglichkeit der bronchskopischen Therapie der Stenose mittels Bougierung oder Stent (Hoppe et al., 2002a).

Eine weitere Limitation für die Endoskopie stellen hochgradige Stenosen dar. Hier wird der Vorschub des Endoskops bei einem hohen Stenosegrad durch die Lumeneinengung behindert, sodass keine Einsicht in den distal der Stenose gelegenen Bereich der Trachea gewährleistet ist (Solans-Laque et al., 2008). In diesen Fällen ist die Diagnostik mit Hilfe der Schnittbildgebung der Endoskopie klar überlegen.

Bis heute gibt es keine standardisierten und validierten Richtlinien für die Untersuchung und Graduierung der SGS bei Patienten mit GPA. Gängig ist eine Diagnostik basierend auf Ergebnissen der klinischen Untersuchung und Befunden aus der Bildgebung (Langford et al., 1996). Aufgrund der höheren Objektivität und Reproduzierbarkeit der Messungen könnte die MRT, insbesondere in der Verlaufs- und Therapiekontrolle subglottischer Stenosen, eine wichtige Rolle einnehmen.

5.3 Gegenüberstellung der MRT mit anderen Schnittbildverfahren zur Diagnostik subglottischer Stenosen

5. Diskussion

auch mit dem Ultraschall bestimmt. Zwischen beiden Techniken fand sich eine starke Korrelation (r=0.99, p <0.05), sodass die Sonographie als ein zuverlässiges Instrument für die Bestimmung des Durchmessers der subglottischen Atemwege bei gesunden Erwachsenen angesehen werden kann (Lakhal et al., 2007).
Als Endosonographie mit Hilfe eines gefüllten Ballons zur Überwindung der Luftbarriere zwischen Schallkopf und Trachealwand ist die Sonographie auch intraluminal im Tracheobronchialbereich einsetzbar. Derzeit ist ihre Bedeutung in der Diagnostik benigner Trachealstenosen aber insgesamt zu vernachlässigen (Muller, 2004), wobei Nobuyama und Mitarbeiter im Jahr 2011 eine interessante Studie veröffentlicht haben, in der Messungen der Atemwege zwischen der endobronchialen Sonographie und der CT verglichen wurden. Bei Patienten mit benignen und malignen Trachealstenosen fanden sich bei beiden Untersuchungsmodalitäten annähernd gleiche Messergebnisse von Länge und Durchmesser der Stenose (Nobuyama et al., 2011).

5.4 Stellenwert der Spirometrie bei der Ermittlung des Stenosegrades von subglottischen Stenosen

Während in der Endoskopie und den Schnittbildgebungen wie der MRT vornehmlich die strukturellen Komponenten einer Stenose der Subglottis untersucht werden, stellt die Spirometrie ein objektives Verfahren dar, um den Effekt der Stenose auf den Luftfluss und die respiratorische Funktion des Patienten zu erfassen (Daum et al., 1995, Nouraei et al., 2007). Der große Vorteil der Lungenfunktionsuntersuchung liegt in ihrer einfachen Durchführbarkeit, da sie sowohl kostengünstig als auch großflächig verfügbar ist.

Manche Autoren empfehlen bei bestehender Diskrepanz zwischen der klinischen Symptomatik des Patienten und den Befunden der bildgebenden Diagnostik die Durchführung einer ergänzenden Spirometrie als Hilfe, um die Entscheidung für oder gegen eine therapeutische Intervention zu treffen (Polychronopoulos et al., 2007).

Wie in der Literatur in vorherigen Arbeiten bei extrathorakalen Trachealstenosen beschrieben, so konnte auch in unserer Studie bei Patienten mit subglottischen Stenosen eine Abnahme des in- und exspiratorischen Volumenflusses in der Spirometrie nachgewiesen werden. Hieraus resultiert ein schachtelartiger Aspekt der Fluss-Volumen-
Kurve, welcher ein typisches Merkmal von Stenosen der extrathorakalen Atemwege darstellt (Empey, 1972, Rotman et al., 1975, Wassermann et al., 1995).

In der Literatur sind einzelne Arbeiten bekannt, die den diagnostischen Wert der Spirometrie bei Stenosen des Tracheobronchialsystems untersuchten. Modrykamien und Mitarbeiter untersuchten hierbei quantitative und visuelle Kriterien in der Lungenfunktionsprüfung nach ihrer Fähigkeit, eine Obstruktion der oberen Atemwege (also auch der Trachea) vorherzusagen. Als quantitative Kriterien wurden die Parameter FEV1/MEF, MEF 50%/MIF 50%, MIF 50% und FEV1/FEV0,5 und als visuelle Kriterien das Vorhandensein eines Plateaus, einer biphasischen Form und Oszillationen der Fluss-Volumen-Kurve verwendet. Insgesamt zeigten die quantitativen Parameter eine bessere Aussagekraft für die Erkennung einer Atemwegsobstruktion als die visuellen Kriterien, allerdings war die Sensitivität insgesamt niedrig. Die höchste Genauigkeit wurde mit einer Kombination der quantitativen und visuellen Kriterien erreicht; hiermit konnte eine Sensitivität von 69,4% in der Erkennung einer Obstruktion der oberen Atemwege erzielt werden (Modrykamien et al., 2009).

Es gibt hingegen auch Studien, die darauf hinweisen, dass im Rahmen subglottischer Stenosen nicht immer Veränderungen der Lungenfunktionsmessung auftreten müssen (Polychronopoulos et al., 2007). Insbesondere in frühen Krankheitsstadien, wenn die
aktive Entzündung noch keine signifikante Vernarbung und Einengung der Subglottis bedingt, kann auch eine schwere tracheobronchiale Entzündung zu lediglich subtilen Veränderungen in der Fluss-Volumen-Kurve führen (Polychronopoulos et al., 2007). Auch bei niedrigen Stenosegraden können die Fluss-Volumen-Kurven bei Patienten normal erscheinen (Polychronopoulos et al., 2007).

5.5 Kritische Auseinandersetzung mit dem eigenen Studiendesign

Durch das retrospektive Studiendesign war es ferner nicht möglich, einen direkten Vergleich zwischen den Ergebnissen der MRT und Laryngoskopie aufzustellen. Somit konnten bei divergenten Untersuchungsergebnissen die Ursachen der Unterschiede nicht abschließend geklärt werden. Zudem findet sich die methodische Problematik, dass eine renommierte Untersuchungstechnik (Laryngoskopie) mit einer neuen Methode (MRT) verglichen wird, aber streng genommen ein Goldstandard als Referenz fehlt. Setzen wir die Laryngoskopie als bisherigen „Goldstandard“ in der Diagnostik von subglottischen Stenosen mit ihren Ergebnissen auf ein Niveau von 100%, so ist es uns mit einer neuen Methode wie der MRT nicht möglich, dieses Niveau zu übertreffen. Die Ergebnisse
können entweder gleich gut oder schlechter sein.

Eine mögliche Einschränkung unserer Studie liegt in der Verwendung eines modifizierten MC-Scores für die Beurteilung der Grade der Stenose in der MRT. Dies erfolgte durch einen Vergleich des intrastenotischen Durchmessers mit dem subkrikoidalen Durchmesser als Referenz. Dieser Unterschied der Mess-Techniken zwischen MRT und Laryngoskopie könnte unsere Ergebnisse beeinflusst haben, obwohl die meisten Stenosen rund oder ellipsoid waren, was den Einfluss wiederum reduziert.

Nicht berücksichtigt wurden in unserer Studie die klinischen Symptome der Patienten. Allerdings wurden Flussmessungen der Spirometrie für die Auswertung herangezogen, die als objektive Methode zur Beurteilung der respiratorischen Beeinträchtigung angesehen werden (Shitrit et al., 2005).

Ebenfalls keine Berücksichtigung fand die Tatsache, ob die Patienten während des Untersuchungszeitraum unter einer immunsupprimierenden systemischen Therapie standen. Allerdings sollten der Krankheitsverlauf und eine eventuelle Therapie keinen Einfluss auf die Messauswertungen gehabt haben.

Als weiterer Punkt ist die Atemverschieblichkeit des Tracheobronchialbaumes zu erwähnen, die bereits in mehreren CT-Experimenten untersucht wurde (Ederle et al., 2003, Heussel et al., 2004). Zwischen Inspiration und Expiration finden sich in den Aufnahmen Unterschiede in der Form der Trachea (Muro et al., 2000). Bei der Inspiration ist die
5. Diskussion

Querschnitts-Fläche der Trachea und der Hauptbronchi im Vergleich zur Expiration signifikant höher (Ederle et al., 2003). Diese respiratorischen Veränderungen während des Atemzyklus wurden in unserer Studie nicht in Betracht gezogen. Da jedoch die Untersuchungen standardgemäß im gleichen Atemzustand durchgeführt wurden und sowohl die Subglottis als auch die proximale Trachea betroffen sind, gehen wir davon aus, dass diese Veränderungen unsere Ergebnisse nicht maßgeblich beeinflussten.

5.6 Schlussfolgerung und Ausblick
Zusammenfassend ist zu sagen, dass MRT und Laryngoskopie vergleichbare Ergebnisse in der Graduierung von SGS bei Patienten mit GPA liefern.

Invasive endoskopische Eingriffe könnten für den Fall der Verschlechterung einer Stenose und bei Symptomen aufgespart werden. In diesen Fällen bleibt die Endoskopie mit der Option zur dilatativen Intervention Mittel der Wahl.

Weiter sind in Zukunft Studien notwendig, um die klinische Relevanz der Veränderungen der Stenosegrade, die mit Hilfe der MRT-Messungen ermittelt werden, zu erforschen, um z.B. mögliche Grenzwerte für interventionelle Eingriffe festzulegen. Zudem muss untersucht werden, inwiefern die Aktivität der Entzündung der SGS, die mit Hilfe der MRT evaluiert werden kann, Einfluss auf den Verlauf und die Prognose der Stenosegrade hat.

Die dezidierte Beurteilung der lokalen Entzündungsaktivität an der Subglottis mit Hilfe der MRT war nicht Gegenstand meines Themas.
6. Zusammenfassung

In der MRT wurden in 112 der 118 Untersuchungen (95%) SGS nachgewiesen (n=82: Grad 1, n=26: Grad 2, n=4: Grad 3), in der Laryngoskopie hingegen wurde nur in 105 von 118 Untersuchungen (89%) eine Stenose ermittelt (n=73: Grad 1, n=24: Grad 2, n=8: Grad 3). In 64% der Untersuchungen lag eine Übereinstimmung der ermittelten Stenosegrade aus der MRT und Laryngoskopie vor. In 17% der Untersuchungen (n= 20) wurden höhere und in 19% der Untersuchungen (n= 23) niedrigere Stenosegrade in der MRT im Vergleich zur Laryngoskopie ermittelt. Die Myer-Cotton-Scores beider Untersuchungsmodalitäten zeigten vergleichbare Korrelationen mit der PEF (MRT: r=-0,363, p=0,016, Laryngoskopie: r=-0,376, p=0,012) und MIF (MRT: r=-0,340, p=0,024, Laryngoskopie: r=-0,320, p=0,034). Die höchste Korrelation fand sich zwischen den in der MRT ermittelten Stenosegraden in Prozent und der PEF (r=-0,441, p=0,003) und MIF (r=-0,413, p=0,005).

Messungen der Stenosegrade in Prozentgraden mit hoher Reproduzierbarkeit durchzuführen, die mit den Lungenfunktionswerten besser korrelieren. Der Einsatz der MRT in der Diagnostik und Therapiekontrolle subglottischer Stenosen bei Patienten mit GPA könnte in Zukunft dazu führen, dass die invasive Laryngoskopie vornehmlich den interventionellen Eingriffen vorbehalten bleibt.
7. Abstract

The aim of our study was to compare magnetic resonance imaging (MRI)-based and laryngoscopy-based grading of subglottic stenosis with pulmonary function tests (PFT) in patients with granulomatosis with polyangiitis (GPA).

In our retrospective study we included 118 examinations of 44 patients with GPA and suspected SGS. All patients underwent MRI, laryngoscopy and PFT. The stenosis was graded on a 4-point-scale by endoscopy and MRI using the Myer-Cotton (MC)-Score (score1: ≤50%; 2: 51-70%; 3: 71-99%; 4: 100%) and as percentage by MRI. All results were compared with peak expiratory flow (PEF) and maximum inspiratory flow (MIF) from PFT, serving as objective functional reference.

In MRI, 112/118 examinations (95%) were rated positive for SGS (n=82: grade 1; n=26: grade 2; n=4: grade 3) whereas in laryngoscopy 105/118 examinations (89%) were rated positive for SGS (n=73: grade 1; n=24: grade 2; n=8: grade 3). MRI and laryngoscopy agreed in 75 of 118 examinations (64%). MRI determined higher scores in 20 (17%) and lower scores in 23 (19%) examinations compared to laryngoscopy. MC-scores as determined by both MRI and laryngoscopy showed comparable correlations with PEF (r=-0.363, p=0.016 and r=-0.376, p=0.012, respectively) and MIF (r=-0.340, p=0.024 and r=-0.320, p=0.034, respectively). The highest correlation was found between MRI-based stenosis grading in percentage with PEF (r=-0.441, p=0.003) and MIF (r=-0.413, p=0.005).

MRI and laryngoscopy provide comparable results for grading of SGS in GPA and correlate well with PFT. MRI is an attractive non-invasive and radiation free alternative for monitoring the severity of SGS in patients with GPA. MRI complements endoscopic examinations in the follow-up of SGS, so invasive laryngoscopy may be reserved for interventional procedures.
8. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAV</td>
<td>ANCA-assoziierte Vaskulitis</td>
</tr>
<tr>
<td>ACR</td>
<td>American College of Rheumatology</td>
</tr>
<tr>
<td>ANCA</td>
<td>Anti-Neutrophil Cytoplasm Antibody/Antineutrophile Zytoplasmatische Antikörper</td>
</tr>
<tr>
<td>a.p.</td>
<td>anterior-posterior</td>
</tr>
<tr>
<td>CHCC</td>
<td>Chapel Hill Consensus Conference</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval/Konfidenzintervall</td>
</tr>
<tr>
<td>CT</td>
<td>Computertomographie</td>
</tr>
<tr>
<td>CYC</td>
<td>Cyclophosphamid</td>
</tr>
<tr>
<td>FOB</td>
<td>Fiberoptische Bronchoskopie</td>
</tr>
<tr>
<td>GC</td>
<td>Glukokortikoid, -e</td>
</tr>
<tr>
<td>GPA</td>
<td>Granulomatose mit Polyangiitis</td>
</tr>
<tr>
<td>HNO</td>
<td>Hals-Nasen-Ohren-Heilkunde</td>
</tr>
<tr>
<td>i.v.</td>
<td>Intravenös</td>
</tr>
<tr>
<td>ICC</td>
<td>Intraclass Correlation Coefficient</td>
</tr>
<tr>
<td>MCS</td>
<td>Myer-Cotton-Score</td>
</tr>
<tr>
<td>MIF</td>
<td>Maximum Inspiratory Flow</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging/Magnetresonanztomographie</td>
</tr>
<tr>
<td>MRT</td>
<td>Magnetresonanztomographie</td>
</tr>
<tr>
<td>PEF</td>
<td>Peak Expiratory Flow</td>
</tr>
<tr>
<td>PFT</td>
<td>Pulmonary Function Test/Lungenfunktions-Untersuchung</td>
</tr>
<tr>
<td>PNS</td>
<td>Peripheres Nervensystem</td>
</tr>
<tr>
<td>RIS</td>
<td>Reporting Information System</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of Interest</td>
</tr>
<tr>
<td>SGS</td>
<td>Subglottische Stenose</td>
</tr>
<tr>
<td>UKE</td>
<td>Universitätsklinikum Eppendorf</td>
</tr>
<tr>
<td>VB</td>
<td>Virtuelle Bronchoskopie</td>
</tr>
<tr>
<td>ZNS</td>
<td>Zentrales Nervensystem</td>
</tr>
</tbody>
</table>
9. Abbildungsverzeichnis

Abbildung 1: Nasopharyngolaryngoskopie ...16
Abbildung 2: Statische und dynamische Lungenfunktionsparameter20
Abbildung 3: Typische Lungenfunktions-Untersuchungsbefunde bei Stenosen der
deroberen Atemwege ..22
Abbildung 4: Schema der Messpunkte im anatomischen Schnitt und in der MRT30
Abbildung 5: MRT Beispieldiagramm von Patienten mit GPA und zunehmende MC-Scores33
Abbildung 6: Mosaik-Plot zur Demonstration des Grades der Übereinstimmung
zwischen MRT- und Laryngoskopie-basierten MC-Scores35
Abbildung 7: Verlaufskontrolle einer 59-jährigen, weiblichen Patientin (ID 10) in der MRT
mit der Diagnose einer SGS ..36
Abbildung 8: Verlaufskontrolle einer 57-jährigen, weiblichen Patientin (ID 18) in der MRT
mit der Diagnose einer SGS ..37
Abbildung 9: Verlaufskontrolle einer 43-jährigen, weiblichen Patientin (ID 15) in der MRT
mit der Diagnose einer SGS ..38
Abbildung 10: Korrelation zwischen der MRT-basierten Graduierung der SGS in Prozent
und den Lungenfunktionstests ..39
Abbildung 11: Beispiel der Übereinstimmung zwischen MRT und Laryngoskopie im
longitudinalen Monitoring der SGS ..41
Abbildung 12: Beispiel der höheren Sensitivität der MRT im Vergleich mit der
Laryngoskopie im longitudinalen Monitoring der SGS ..42
Abbildung 13: Individueller Verlauf des Patienten mit der ID 1543
Abbildung 14: Individueller Verlauf des Patienten mit der ID 1844
Abbildung 15: Individueller Verlauf des Patienten mit der ID 4145
Abbildung 16: Individueller Verlauf des Patienten mit der ID 5946
Abbildung 17: Individueller Verlauf des Patienten mit der ID 6147
10. Tabellenverzeichnis

Tabelle 1: MRT-Protokoll..28
11. Literaturverzeichnis

HOLLE, J. U., BLEY, T. & GROSS, W. L. 2010a. [Classification and therapy of vasculitis according to recommendations of the European League Against Rheumatism (EULAR)]. *Radiologe*, 50, 846-54.

pediatric larynx on CT and MR. AJNR Am J Neuroradiol, 18, 239-45.
HUNDER, G. G., AREND, W. P., BLOCH, D. A., CALABRESE, L. H., FAUCI, A. S.,
AL. 1990. The American College of Rheumatology 1990 criteria for the
Consensus Conference nomenclature of vasculitides. Clin Exp Nephrol, 17, 603-
6.
JENNETTE, J. C., FALK, R. J., ANDRASSY, K., BACON, P. A., CHURG, J., GROSS, W.
L., HAGEN, E. C., HOFFMAN, G. S., HUNDER, G. G., KALLENBERG, C. G. &
JOLESZ, F. A., LORENSEN, W. E., SHINMOTO, H., ATSUMI, H., NAKAJIMA, S.,
KAVANAUGH, P., SAIVIROONPORN, P., SELTZER, S. E., SILVERMAN, S. G.,
Roentgenol, 169, 1229-35.
KLINK, T., HOLLE, J., LAUDIEN, M., HENES, F. O., MOOSIG, F., PLATZEK, C., ADAM,
G., GROSS, W. L. & BLEY, T. A. 2013. Magnetic resonance imaging in patients
with granulomatosis with polyangiitis (Wegener's) and subglottic stenosis.
MAGMA, 26, 281-90.
function data to assess outcomes in the endoscopic management of subglottic
KUTTA, H., STEVEN, P. & PAULSEN, F. 2006. Anatomical definition of the subglottic
region. Cells Tissues Organs, 184, 205-14.
LAKHAL, K., DELPLACE, X., COTTIER, J. P., TRANQUART, F., SAUVAGNAC, X.,
Curr Rheumatol Rep, 7, 270-5.
LANGFORD, C. A., SNELLER, M. C., HALLAHAN, C. W., HOFFMAN, G. S.,
KAMMERER, W. A., TALAR-WILLIAMS, C., FAUCI, A. S. & LEOBVICS, R. S.
1996. Clinical features and therapeutic management of subglottic stenosis in
patients with Wegener's granulomatosis. Arthritis Rheum, 39, 1754-60.
[Diagnosis, therapy and current research aspects of selected chronic
inflammatory diseases with head and neck involvement]. Z Rheumatol, 67, 397-
406.
LEOVICS, R. S., HOFFMAN, G. S., LEAVITT, R. Y., KERR, G. S., TRAVIS, W. D.,
management of subglottic stenosis in patients with Wegener's granulomatosis.
Laryngoscope, 102, 1341-5.
LUTALO, P. M. & D'CRUZ, D. P. 2014. Diagnosis and classification of granulomatosis
MARGULIES, C., KREVSKY, B. & CATALANO, M. F. 1994. How accurate are

12. Danksagung

Der größte Dank gilt meinem Doktorvater PD Dr. med. Frank Oliver Henes, Oberarzt in der Abteilung für Diagnostische und Interventionelle Radiologie am UKE, für die Bereitstellung des Themas, das immer offene Ohr und die kollegiale Arbeitsweise.

Herr Henes war es auch, der die verlässlichen Kontakte zu Kollegen aus den beteiligten Fachbereichen herstellte, durch deren Zusammenwirken diese Arbeit erst möglich gemacht wurde.

Auch Herrn PD Dr. med. Martin Laudien, Oberarzt in der Abteilung für Hals-Nasen-Ohren-Heilkunde an der UKSH Kiel, bin ich für die Bereitstellung der Daten, die Denkanstöße und die kritisch-konstruktiven Anmerkungen zu Dank verpflichtet.

Ich danke auch Frau Prof. Dr. med. Julia Holle, zur Zeit der Datenakquise leitende Oberärztin der Klinik für Rheumatologie und Immunologie sowie der Vaskulitisklinik am Klinikum Bad Bramstedt, für die Bereitstellung der Daten.

Herzlichen Dank auch Herrn Dipl.-Soz. Gerhard Schön, Wissenschaftler im Institut für Medizinische Biometrie und Epidemiologie am UKE, für die Einführung in die statistische Denkweise und die umsichtige statistische Beratung.

Ein Dank gilt auch meinem Betreuer PD Dr. med. Peter Bannas, ebenfalls Oberarzt in der Abteilung für Diagnostische und Interventionelle Radiologie am UKE, für die inhaltliche und formelle Beratung.

13. Eidesstattliche Erklärung

Ich versichere ausdrücklich, dass ich die Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten Werkes kenntlich gemacht habe.

Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachvertreter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe.

Ich erkläre mich einverstanden, dass meine Dissertation vom Dekanat der Medizinischen Fakultät mit einer gängigen Software zur Erkennung von Plagiaten überprüft werden kann.

Unterschrift: ...