Hemmung des Zinkfingerfaktors ZNF423 in B-Vorläuferzellen der akuten lymphatischen Leukämie des Kindesalters

Dissertation

zur Erlangung des Grades eines Doktors der Medizin
an der Medizinischen Fakultät der Universität Hamburg

vorgelegt von:

Mir Arasch Baha
Geboren in Kabul, Afghanistan

Hamburg, Oktober 2017
Angenommen von der Medizinischen Fakultät der Universität Hamburg am: 28.05.2018

Veröffentlicht mit Genehmigung der Medizinischen Fakultät der Universität Hamburg

Prüfungsausschuss, der/die Vorsitzende: Prof. Dr. Martin Horstmann

Prüfungsausschuss, zweite/r Gutachter/in: Prof. Dr. Eva Tolosa
Inhaltsverzeichnis

1 Einleitung
1.1 Akute lymphatische Leukämie im Kindesalter ... 1
1.2 Die Pathogenese der ALL .. 2
1.3 Die normale Hämatopoese .. 4
1.4 EBF1 ... 6
1.5 ZNF423 .. 6

2 Zielsetzung .. 12

3 Material und Methoden ... 13
3.1 Chemikalien .. 13
3.2 Kits ... 13
3.3 Antikörper .. 13
3.4 Geräte ... 14
3.5 Biologisches Material ... 15
 3.5.1 Bakterien .. 15
 3.5.2 Zelllinien .. 15
3.6 Medien und Reagenzien für die Zellkultur ... 15
3.7 Molekularbiologie ... 16
 3.7.1 Expressionsplasmide ... 16
 3.7.2 shRNA-Sequenzen .. 17
 3.7.3 Plasmide für Reportergeanalysen .. 18
 3.7.4 Plasmide für lentivirale Partikel ... 18
 3.7.5 Medium für die Bakterienkulturen .. 19
 3.7.6 Transformation von Bakterien ... 19
 3.7.7 Plasmidisolation ... 19
 3.7.8 Mutagenese .. 19
 3.7.9 Sequenzierung .. 20
 3.7.10 RNA-Isolation ... 20
 3.7.11 Konzentrationsbestimmung .. 21
 3.7.12 cDNA-Synthese ... 21
 3.7.13 Real time PCR .. 21
3.8 Proteinbiochemie ... 22
 3.8.1 Zelllyse ... 22
 3.8.2 Bestimmung von Proteinkonzentrationen 23
3.8.3 SDS-PAGE

3.8.4 Western Blot

3.9 Zellkultur

3.9.1 Kultivierung von adhärenen Zellen und Suspensionszelllinien

3.9.2 Einfrieren und Auftauen von Zellen

3.9.3 Reporteranalysen

3.9.4 Apoptoseassay

3.9.5 Proliferationsassay

3.9.6 Virusproduktion

3.9.7 Transduktion der Zelllinien

4 Ergebnisse

4.1 Übersicht

4.2 Vorauswahl der richtigen shRNA-Sequenz

4.3 Etablierung eines Vektorsystems für die shRNA-Sequenz

4.4 Reporterstudie und Transduktion von 697*-Zellen

4.5 ZNF423 Knockdown in verschiedenen ALL-Zelllinien

4.6 Transduktionseffizienz und Veränderungen in der Zellpopulation unter Knockdown-Bedingungen

4.6.1 REH-Zelllinie (ETV6-RUNX1)

4.6.2 SEM-Zelllinie (MLL-AF4)

4.6.3 SUP B15-Zelllinie (BCR-ABL1)

4.7 Untersuchung der Apoptose mittels Annexin V / PI Färbung

4.7.1 REH-Zelllinie (ETV6-RUNX1)

4.7.2 SEM-Zelllinie (MLL-AF4)

4.7.3 SUP-B15-Zelllinie (BCR-ABL1)

4.8 Untersuchung der Proliferation mittels BrdU-Inkorporation

4.8.1 SEM-Zelllinie (MLL-AF4)

4.8.2 SUP-B15-Zelllinie (BCR-ABL1)

5 Diskussion

5.1 Die shRNA-Sequenz shZNF423-#62 vermittelt einen ZNF423-Knockdown

5.2 ZNF423-Knockdown erhöht die CD79b-Promoteraktivität

5.3 697*-Zellen zeigen vermindertes Zellüberleben

5.4 REH-Zellen exprimieren kein messbares ZNF423 auf Proteinebene

5.5 ZNF423 beeinflusst Überleben und Wachstum von SEM-Zellen

5.6 ZNF423-Knockdown führt zur geringeren Proliferation in SUB-B15-Zellen

5.7 Abhängigkeit von ZNF423 in verschiedenen ALL-Zelllinien
1 Einleitung

Die akute lymphatische Leukämie (ALL) ist die häufigste Form der Leukämie im Kindesalter. Ursachen dieser Erkrankung sind genetische Aberrationen wie numerische Chromosomenanomalien und Translokationen, aber auch epigenetische Veränderungen können zu einer fehlregulierten Expression wichtiger Transkriptionsfaktoren und damit einhergehend zu einem Maturationsarrest führen. Ein bedeutender Transkriptionsfaktor für die B-Zell differenzierung ist EBF1, der durch eine aberrante Expression des Zinkfingerfaktors ZNF423 reprimiert werden kann. In dieser Arbeit wurden die Folgen einer RNA-Interferenz vermittelten Hemmung von ZNF423 in unterschiedlichen ALL-Zelllinien im Hinblick auf Apoptose und Proliferation untersucht.

1.1 Akute lymphatische Leukämie im Kindesalter

Die Leukämie ist eine maligne Erkrankung des blutbildenden Systems und mit 30,6 % die häufigste Krebsart bei Patienten unter 18 Jahren\(^1\). Man kann die Leukämien je nach Zelltyp unterteilen in myeloische und lymphatische Leukämien. Innerhalb der lymphatischen Leukämien können diese wiederum in B- und T-Zell-Leukämien sowie, je nach Verlaufsform, in akute und chronische Leukämien unterschieden werden.

Die akuten lymphatischen Leukämien treten besonders häufig im Kindesalter auf und machen 78 % aller Leukämien aus\(^1\). Durch moderne Therapien ist die Überlebenschance mittlerweile auf über 85 % gestiegen\(^2\). Die Nebenwirkungen dieser Behandlungen haben aber teilweise schwerwiegende Folgen wie z. B. sekundäre Tumore\(^3\). Um diese Behandlung schonender zu machen muss verstanden werden, wie diese Leukämien entstehen, um dann spezifische Therapien entwickeln zu können.

Ein Charakteristikum der ALL ist die nicht-limitierte Zellteilungs- und Proliferationsaktivität. Gleichzeitig besteht ein Differenzierungsblock.
Einleitung

und die Zellen verlieren die Fähigkeit zur Apoptose. Je nachdem, in welchem Reifungsstadium die Zellen sich befinden, kann man die B- und T-Zelleukämien weiter unterteilen. Bei der akuten B-Zell-Leukämie unterscheidet man die common-ALL, pro-B-ALL, prä-B-ALL und reife B-ALL. Jeder dieser Leukämieformen weist einen Maturationsarrest in einem unterschiedlichen Reifestadium auf.

1.2 Die Pathogenese der ALL

Das Fusionsprotein ETV6-RUNX1 entsteht durch die Translokation t(12;21) und ist mit ca. 25 % die häufigste Translokation der kindlichen ALL. Diese ereignet sich schon in utero in einem frühen Vorläufer- oder Stammzellstadium, die Erkrankung bricht jedoch erst Jahre nach der Geburt aus. Durch die Translokation wird ein Protein, bestehend aus der Proteininteraktionsdomäne von ETV6 und der Transaktivierungsdomäne von RUNX1, exprimiert, wodurch sich die Kapazität zum Selbsterhalt verändert. Die Mechanismen sind nicht genau geklärt, womöglich führt die ETV6-Domäne zu einer Veränderung der Funktion der RUNX1-Domäne von einem transkriptionellen Aktivator zu einem Repressor. Die ETV6-RUNX1-positive ALL hat mit konventionellen Therapien eine sehr gute Prognose.

Im Gegensatz hierzu sind die MLL-Translokationen (mixed lineage leukemia) mit einer schlechten Prognose verknüpft. Sie treten häufig bei Kindern unter einem Jahr (10 % aller ALL entstehen bei Kindern < 1 Jahr) auf und zeichnen sich durch eine kurze
Einleitung

Latenzzeit und hohe Aggressivität aus\(^1\). Die MLL-Translokationen führen zu Fusionsproteinen, bestehend aus dem N-terminalen MLL und einem von bislang >70 identifizierten C-terminalen Partnerproteinen\(^2\). Die Translokation t(4;11), die zum Fusionsprotein MLL-AF4 führt, ist die häufigste\(^1\) dieser Translokationen. Die Überlebensrate beträgt ca. 55 \(^%\)\(^3\). MLL-Translokationen führen zu veränderter Aktivität der HOX-Transkriptionsfaktoren, die für die Entwicklung der Blutzellen eine wichtige Rolle spielen\(^4\).

Diese großen Veränderungen reichen jedoch meist nicht aus, um das komplette Bild einer ALL hervorzurufen (\textit{Ausnahme hier wahrscheinlich die MLL-AF4 Translokation}\(^5\)). Kleinere kooperierende Mutationen führen zu empfindlichen Veränderungen innerhalb der Zelle. Solche Mutationen sind Amplifikationen, Deletionen und strukturelle Rekombinationen, die entweder als Punktmutationen vorkommen oder größere Bereiche der DNA umfassen\(^6\). Diese Mutationen betreffen Tumorsuppressorgene, sowie Gene, die den Zellzyklus regulieren\(^7\). Beispiele dafür sind das Tumorsuppressorgene p53, welches in 2 - 3 \(^%\) der kindlichen ALL inaktiviert ist\(^8\) sowie das RAS-Gen, eine GTPase, welche durch die Mutation konstitutiv aktiviert wird und in 15 - 22 \(^%\) der kindlichen ALL vorkommt\(^9\). Auch Transkriptionsfaktoren, die für die B-Zelldifferenzierung von Bedeutung sind, können durch eine Mutation zur Entstehung der ALL beitragen. In einer Studie mit 242 Patienten zeigten 40 \(^%\) der B-Progenitor-ALL-Patienten Mutationen in Genen für die B-Zelldifferenzierung\(^10\). Am häufigsten war PAX5 mit 32 \(^%\) der Fälle betroffen, aber auch in den Genen von EBF1 und IKZF1 zeigten sich Deletionen\(^10\).

Neben den genetischen Veränderungen können auch epigenetische Anomalien zur Entwicklung einer ALL beitragen. Dies sind Veränderungen, die nicht in der DNA-Sequenz zu finden sind\(^11\), sondern hauptsächlich in der Histonmodifikation oder das Methylierungsmuster der DNA\(^12\) betreffen. Während posttranslationale Veränderungen der Histone auf verschiedensten Wegen Einfluss auf die transkriptionelle Aktivität haben\(^13,14\), führen Methylierungen der DNA zur transkriptionellen Repression\(^15\). Diese Methylierungen finden meist an der C\(^5\)-Position des Cytosinrestes von Cytosin-Guanin-Dinukleotiden (CpG) statt, welche im Promoterbereich von 60 \(^%\) der humanen Gene vermehrt in Form von mindestens 200 Basenpaaren langen CpG-Inseln vorkommen\(^16,17\). Durch gezielte Methylierungen und Demethylierungen können bestimmte Transkriptionsmuster geschaffen und somit verschiedene Gene exprimiert werden. So zeigen sich in den einzelnen B-Zell-Stadien
unterschiedliche, für das Stadium typische Methylierungsmuster. Durch welche Mechanismen diese Methylierungen gesteuert werden, ist nicht genau bekannt, pathologische Methylierungsmuster können aber zur Entstehung von Krebs beitragen. Ein Beispiel hierfür ist H-RAS, eine konstitutiv aktivierte GTPase, die durch eine Hypomethylierung erhöht in der AML exprimiert wird.

1.3 Die normale Hämatopoese

Der erste Schritt der B-Zelldifferenzierung ist die Differenzierung der hämatopoetischen Stammzelle (HSC) zu frühen lymphoiden Vorläufern (ELP), die zu den lymphoiden Vorläuferzellen weiterdifferenzieren. Durch die Transkriptionsfaktoren PU.1 und Ikaros (IKZF1) wird die Entstehung der lymphoiden Vorläufer reguliert. Die weitere Differenzierung wird durch die Transkriptionsfaktoren E2A und EBF1 reguliert, die die Expression wichtiger Gene wie PAX5 und RAG1/RAG2 aktivieren. PAX5 ist essentiell für die B-Zelldifferenzierung, da es einerseits Gene für die B-Zelldifferenzierung aktiviert und gleichzeitig nicht mit der B-Zelllinie vereinbare Gene reprimiert. So sind z. B. durch PAX5 aktivierte Gene essentiell für den prä-B-Zellrezeptor (prä-BZR) und den B-Zellrezeptor (BZR)
Einleitung

Abbildung 2: Die normale B-Zelldifferenzierung in den primären lymphatischen Organen

Einleitung

1.4 EBF1

EBF1 ist essentiell in der B-Zell-Differenzierung. 1991 entdeckten Hagman et al. in Mäusen EBF1, einen Transkriptionsfaktor, der in der frühen B-Zelldifferenzierung das Gen mb-1 \((CD79a)\) reguliert\(^{34}\). Wang et al. identifizierten 2 Jahre später ein Protein mit der gleichen Sequenz in olfaktorischen Neuronen und benannten es Olf-1\(^{35}\). Welche wichtige Rolle EBF1 in der B-Zelldifferenzierung spielt, zeigte sich 1995, als die Differenzierung in EBF1-defizienten Mäusen untersucht wurde\(^{36}\). Es zeigte sich, dass diese Mäuse keine Rekombination des Immunglobulin-Locus und keine Transkription der Gene RAG1, RAG2, mb-1 \((CD79a)\), B29 \((CD79b)\), VpreB, λ5 \((IGLL1)\) und PAX5 vorweisen\(^{36}\). Diese Gene waren allesamt Zielgene des Transkriptionsfaktors EBF1 \((RAG1^{37}, RAG2^{37}, CD79a^{34}, CD79b^{38}, VpreB^{39}, IGLL1^{40}, PAX5^{37})\). Üblicherweise bindet EBF1 als Homodimer an die DNA\(^{41,42}\). In einer Studie konnte jedoch gezeigt werden, dass EBF1 eine Protein-Protein-Interaktion mit ZNF423 eingehen kann, wodurch die Transaktivierung der EBF1 Zielgene inhibiert wird\(^{43}\). In Patientenproben zeigte sich, dass leukämische Lymphoblasten im Vergleich zu den Lymphoblasten in Remission eine erhöhte ZNF423 sowie eine verminderte CD79b Expression aufweisen\(^{44}\).

1.5 ZNF423

Die Domäne 2-8 ermöglicht die Interaktion mit der DNA von ZNF423-Homodimeren, während die Domäne 9-13 die DNA-Bindungsdomäne des ZNF423-SMAD1-SMAD4-Komplexes im BMP-Signalweg darstellt\(^{45,47}\). Außerdem kann über diese Domäne eine Proteininteraktion mit PARP1 innerhalb des Signalwegs für die DNA-Reparatur stattfinden\(^{48}\). Über die Domänen 14-19 und 20-30 finden Proteininteraktionen statt: 14-
19 ist die Bindungsdomäne des SMAD1-SMAD4-Proteinkomplexes, Zinkfinger 20-30 ist die Bindungsdomäne für ZNF423 selbst oder EBF144,45,47. Die Isoform ZNF423β hat zusätzlich zur Isoform ZNF423α eine NID (NuRD-interacting domain), die es ihr ermöglicht mit dem NuRD (nucleosome remodeling and deacetylase) -Komplex zu interagieren44,49. Der NuRD-Komplex besteht aus Proteinen zur Histondeacetylierung und Chromatinstrukturierung und spielt so eine Rolle in der Genregulation49. Die unterschiedlichen Isoformen werden durch verschiedene Promotoren reguliert und sind in humanen embryonalen Stammzellen sowie in primären akuten lymphatischen Leukämien co-exprimiert44.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{diagram.png}
\caption{ZNF423 Struktur}
\end{figure}

(A) ZNF423 Protein mit seinen Zinkfingern. Der schwarze Balken ist die NuRD-interacting domain (NID), die bei der Isoform ZNF423β vorkommt. BRE = BMP-responsive elements. (B) Das ZNF423-Gen. Die grauen Balken stellen die Exons dar. Die beiden Isoformen werden von unterschiedlichen Promotoren reguliert, dargestellt in den gestrichelten Boxen. Die weiße Box stellt die regulatorische CpG-Insel dar (nach Harder et al., 201446).
Einleitung

Abbildung 4: ZNF423 Interaktionen in gesundem Gewebe

Dargestellt sind die verschiedenen Signalwege, in denen der Transkriptionsfaktor ZNF423 eine Rolle spielt. Protein-Protein-Interaktion mit den durchgängig umrandeten Faktoren, Aktivierung der Gene mit der gestrichelten Umrandung und nachfolgend aktivierte Gene mit der gepunkteten Umrandung. (nach Harder et al. 201446)

Abbildung 5: ZNF423 Regulation und Beteiligung in verschiedenen Erkrankungen
Dargestellt ist die Regulation von ZNF423 und ihre Beteiligung in verschiedenen Erkrankungen. Regulationsfaktoren in den abgerundeten Kästchen, Protein-Protein-Interaktionen mit den Faktoren in den eckigen Kästchen. (nach Harder et al.)

Stimulation die ZNF423-Expression steigt und, dass Leukämie-Zellen BMP2 erhöht exprimieren und somit selbstständig die ZNF423-Überexpression fördern44. Dies alleine führt nicht zu einer Leukämie, ist aber ein Cofaktor und verbunden mit einer schlechten Prognose bei ETV6-RUNX1 - negativen, akuten B-Zellvorläuferleukämien44.
2 Zielsetzung

Charakteristisch für die ALL im Kindesalter ist ein Maturationsarrest der B-Zellen, eine erhöhte Proliferation, sowie eine verringerte Apoptose. Ursachen können sowohl genetische als auch epigenetische Aberrationen sein, die dazu führen können, dass für die B-Zellmaturation essentielle Faktoren nicht mehr richtig funktionieren.

3 Material und Methoden

3.1 Chemikalien

Die Chemikalien für die Standardmethoden wurden bei Merck, Roth und Sigma Aldrich erworben. Alle Lösungen und Medien wurden mit doppelt deionisiertem Wasser (\(ddH_2O\)) oder mit Aqua ad injectabilia (Braun) angesetzt.

3.2 Kits

Tabelle 1 zeigt die verwendeten Kits.

Tabelle 1: Liste der verwendeten Kits

<table>
<thead>
<tr>
<th>Name des Kits</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>APC BrdU Flow Kit</td>
<td>BD Pharmingen</td>
</tr>
<tr>
<td>LightCycler® FastStart DNA Master(^\text{PLUS}) SYBR Green I</td>
<td>Roche</td>
</tr>
<tr>
<td>ProFection® Mammalian Transfection System – Calcium Phosphate</td>
<td>Promega</td>
</tr>
<tr>
<td>Direct-zol™ RNA MiniPrep</td>
<td>Zymo Research</td>
</tr>
<tr>
<td>NE-PER® Nuclear and Cytoplasmic Extraction Reagents</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Dual-Luciferase® Reporter Assay System</td>
<td>Promega</td>
</tr>
<tr>
<td>EndoFree® Plasmid Maxi Kit</td>
<td>QIAGEN</td>
</tr>
<tr>
<td>QuikChange Lightning Site-Directed Mutagenesis Kit</td>
<td>Agilent Technologies</td>
</tr>
<tr>
<td>Illustra™ PlasmidPrep Mini Spin Kit</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>BigDye® Terminator v3.1 Cycle Sequencing Kit</td>
<td>Applied Biosystems</td>
</tr>
</tbody>
</table>

3.3 Antikörper

Die verwendeten Antikörper sind unterteilt in primäre Western Blot Antikörper (Tab. 2), sekundäre Western Blot Antikörper (Tab. 3) und Antikörper für die Durchflusszytometrie (Tab. 4).

Tabelle 2: Liste der primären Antikörper für Western Blots

<table>
<thead>
<tr>
<th>Zielprotein</th>
<th>Klon</th>
<th>Spezies</th>
<th>Hersteller</th>
<th>Verdünnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flag</td>
<td>M2</td>
<td>Maus</td>
<td>Sigma Aldrich</td>
<td>1:1.000</td>
</tr>
<tr>
<td>β-Aktin</td>
<td>AC-74</td>
<td>Maus</td>
<td>Sigma Aldrich</td>
<td>1:5.000</td>
</tr>
</tbody>
</table>
Material und Methoden

<table>
<thead>
<tr>
<th>Zielprotein</th>
<th>Hersteller</th>
<th>Verdünnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAZ E-6 Maus</td>
<td>Santa Cruz Biotechn.</td>
<td>1:1.000</td>
</tr>
<tr>
<td>Lamin B1 H-90</td>
<td>Kanninchen Santa Cruz Biotechn.</td>
<td>1:1.000</td>
</tr>
</tbody>
</table>

Tabelle 3: Liste der sekundären Antikörper für Western Blots

<table>
<thead>
<tr>
<th>Zielprotein</th>
<th>Hersteller</th>
<th>Verdünnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRDye® 800 CW Donkey anti-Mouse IgG (H+L)</td>
<td>LI-COR</td>
<td>1:20.000</td>
</tr>
<tr>
<td>IRDye® 680 LT Donkey anti-Rabbit IgG (H+L)</td>
<td>LI-COR</td>
<td>1:20.000</td>
</tr>
</tbody>
</table>

Tabelle 4: Liste der verwendeten Antikörper für durchflusszytometrische Untersuchungen

<table>
<thead>
<tr>
<th>Zielprotein</th>
<th>Hersteller</th>
<th>Verdünnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annexin V-APC</td>
<td>BD Biosciences</td>
<td>1:20</td>
</tr>
<tr>
<td>BrdU-APC</td>
<td>BD Biosciences</td>
<td>1:50</td>
</tr>
</tbody>
</table>

3.4 Geräte

Tabelle 5 gibt eine Übersicht über die verwendeten Geräte.

Tabelle 5: Liste der verwendeten Geräte

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD FACS Canto</td>
<td>BD Bioscience</td>
</tr>
<tr>
<td>Odyssey CLx Infrared Imager</td>
<td>LI-COR</td>
</tr>
<tr>
<td>LightCycler® 480</td>
<td>Roche</td>
</tr>
<tr>
<td>T3000 Thermocycler</td>
<td>Biometra</td>
</tr>
<tr>
<td>NanoDrop 2000 Spectrophotometer</td>
<td>Thermo Scientific</td>
</tr>
<tr>
<td>Infinite M200</td>
<td>Tecan</td>
</tr>
<tr>
<td>SORVALL® RC 5C Plus</td>
<td>Kendro Laboratory Products</td>
</tr>
</tbody>
</table>
Material und Methoden

3.5 Biologisches Material

3.5.1 Bakterien

Für die Transformation wurden die kompetenten Bakterienstämme JM109 und DH5α genutzt. Die XL-10-Gold E. coli stammen von Agilent Technologies.

3.5.2 Zelllinien

Tabelle 6 gibt eine Übersicht über die verwendeten Zelllinien. Die Angaben stammen aus der Datenbank der Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH.

Tabelle 6: Liste der verwendeten Zelllinien

<table>
<thead>
<tr>
<th>Zelllinie</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>293T (ACC 635)</td>
<td>Adhäsente Zelllinie die ein Derivat der 293 Zelllinie (ACC 305) ist, entstammt der humanen embryonalen Niere und trägt ein Plasmid mit dem großen SV40 T-Antigen</td>
</tr>
<tr>
<td>REH (ACC 22)</td>
<td>Aus peripherem Blut etablierte humane B-Zellvorläuferleukämie, welche die Translokation t(12;21) trägt und zum ETV6-RUNX1 (TEL-AML1) Fusionsgen führt</td>
</tr>
<tr>
<td>SEM (ACC 546)</td>
<td>Aus peripherem Blut etablierte humane B-Zellvorläuferleukämie, welche die Translokation t(4;11) trägt und zum MLL-AFF1 (MLL-AF4) Fusionsgen führt</td>
</tr>
<tr>
<td>SUP-B15 (ACC 389)</td>
<td>Aus Knochenmark etablierten humane B-Zellvorläuferleukämie, welche die Translokation t(9;22)(q34;q11) trägt und zur m-BCR Variante des BCR-ABL1 Fusionsgens führt</td>
</tr>
<tr>
<td>697* (ACC 42)</td>
<td>Entspricht laut STR-Analyse der Zelllinie 697, einer aus Knochenmark etablierten humanen B-Zellvorläuferleukämie</td>
</tr>
</tbody>
</table>

3.6 Medien und Reagenzien für die Zellkultur

Tabelle 7 gibt eine Übersicht der verwendeten Medien und Reagenzien für die Zellkultur
Material und Methoden

Tabelle 7: Liste der verwendeten Medien und Reagenzien

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Hersteller</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMEM (1x)</td>
<td>Gibco/Invitrogen</td>
<td>„Dulbecco’s modified Eagle’s medium“</td>
</tr>
<tr>
<td>RPMI 1640 (1x)</td>
<td>Gibco/Invitrogen</td>
<td>„Roswell Park Memorial Institute medium“</td>
</tr>
<tr>
<td>IMDM (1x)</td>
<td>Gibco/Invitrogen</td>
<td>„Iscove’s Modified Dulbecco’s Medium“</td>
</tr>
<tr>
<td>FBS</td>
<td>Gibco/Invitrogen</td>
<td>Fetal bovine serum</td>
</tr>
<tr>
<td>DPBS (1x)</td>
<td>Gibco/Invitrogen</td>
<td>„Dulbecco’s Phosphate Buffered Saline“</td>
</tr>
<tr>
<td>L-Glutamine (100x)</td>
<td>Gibco/Invitrogen</td>
<td>200 mM</td>
</tr>
<tr>
<td>Sodium Pyruvate (100x)</td>
<td>Gibco/Invitrogen</td>
<td>100 mM</td>
</tr>
<tr>
<td>HEPES Buffer</td>
<td>Gibco/Invitrogen</td>
<td>1 M</td>
</tr>
<tr>
<td>Trypsin-EDTA (1x)</td>
<td>Gibco/Invitrogen</td>
<td>0,05 %</td>
</tr>
<tr>
<td>Opti-MEM® I (1x)</td>
<td>Gibco/Invitrogen</td>
<td>Reduced serum medium</td>
</tr>
<tr>
<td>Lipofectamine® 2000</td>
<td>Invitrogen</td>
<td>Transfektionsreagenz</td>
</tr>
<tr>
<td>Penicillin/Streptomycin</td>
<td>Gibco/Invitrogen</td>
<td>Pen.: 10.000 U/ml, Strep.: 10 mg/ml</td>
</tr>
<tr>
<td>HBSS</td>
<td>Gibco/Invitrogen</td>
<td>„Hank’s Balanced Salt Solution“</td>
</tr>
<tr>
<td>Retronectin</td>
<td>TaKaRa</td>
<td>Humanes Fibronectin-Fragment</td>
</tr>
<tr>
<td>Chloroquin</td>
<td>Sigma Aldrich</td>
<td>25 mM in PBS</td>
</tr>
</tbody>
</table>

3.7 Molekularbiologie

3.7.1 Expressionsplasmide

Tabelle 8 gibt eine Übersicht der verwendeten Expressionsplasmide. Überwiegend wurde der pLKO.1-Vektor, aber auch der pcDNA3.1(+) -Vektor verwendet.

Tabelle 8: Auflistung der Expressionsplasmide

<table>
<thead>
<tr>
<th>Plasmidname</th>
<th>Anmerkung</th>
<th>Resistenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>pLKO.1-YFP-empty</td>
<td>Leervektor, trägt eine YFP-Kassette</td>
<td>Ampicillin</td>
</tr>
</tbody>
</table>
Material und Methoden

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequenz</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>pLKO.1-YFP-scr</td>
<td>pLKO.1 mit der Sequenz shOAZ-scr, trägt eine YFP-Kassette</td>
<td></td>
</tr>
<tr>
<td>pLKO.1 -tGFP-#62</td>
<td>pLKO.1 mit der Sequenz shOAZ-#62, trägt eine tGFP-Kassette</td>
<td></td>
</tr>
<tr>
<td>pLKO.1 -tGFP-#63</td>
<td>pLKO.1 mit der Sequenz shOAZ-#63, trägt eine tGFP-Kassette</td>
<td></td>
</tr>
<tr>
<td>pLKO.1 -tGFP-#64</td>
<td>pLKO.1 mit der Sequenz shOAZ-#64, trägt eine tGFP-Kassette</td>
<td></td>
</tr>
<tr>
<td>pLKO.1 -tGFP-#66</td>
<td>pLKO.1 mit der Sequenz shOAZ-#66, trägt eine tGFP-Kassette</td>
<td></td>
</tr>
<tr>
<td>pLKO.1 -tGFP-#74</td>
<td>pLKO.1 mit der Sequenz shOAZ-#74, trägt eine tGFP-Kassette</td>
<td></td>
</tr>
<tr>
<td>pLKO.1-YFP-#62</td>
<td>pLKO.1 mit der Sequenz shOAZ-#62, trägt eine YFP-Kassette</td>
<td></td>
</tr>
<tr>
<td>pLKO.1-YFP-#63</td>
<td>pLKO.1 mit der Sequenz shOAZ-#63, trägt eine YFP-Kassette</td>
<td></td>
</tr>
<tr>
<td>pcDNA3.1(+)</td>
<td>Leervektor</td>
<td></td>
</tr>
<tr>
<td>pcDNA3.1(+).Flag-ZNF423α</td>
<td>pcDNA3.1(+) mit dem ZNF423α-Gen, welches ein FLAG-tag trägt</td>
<td></td>
</tr>
</tbody>
</table>

3.7.2 shRNA-Sequenzen

In Tabelle 9 sind die verwendeten shRNA-Sequenzen für die RNA-Interferenz aufgelistet.

Tabelle 9: Auflistung der shRNA-Sequenzen

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequenz</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>shZNF423-#62</td>
<td>CCG GGG AGT ATC CTT GCA ATC AAT GCT CGA GCA TTG ATT GCA- AGG ATA CTC CTT TTT G</td>
<td>CDS</td>
</tr>
<tr>
<td>shZNF423-#63</td>
<td>CCG GCC TGA AAC TCA CCA AGC ACA TCT CGA GAT GTG CTT GGT- GAG TTT CAG GTT TTT G</td>
<td>CDS</td>
</tr>
<tr>
<td>shZNF423-#64</td>
<td>CCG GGA ACA TTA CAT CCA ATC AAA GCT CGA GCT TTG ATT GGA- TGT AAT GTT CTT TTT G</td>
<td>3'-UTR</td>
</tr>
</tbody>
</table>
3.7.3 Plasmide für Reportergenanalysen

Tabelle 10 gibt eine Übersicht der verwendeten Plasmide für die Reportergenanalysen.

Tabelle 10: Auflistung der Plasmide für die Reportergenanalysen

<table>
<thead>
<tr>
<th>Plasmidname</th>
<th>Anmerkung</th>
<th>Resistenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>pGL3-basic</td>
<td>Leervektor</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>pGL3-control</td>
<td>Positivkontrollvektor</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>pGL3-CD79b-Promoter</td>
<td>Analysevektor</td>
<td>Ampicillin</td>
</tr>
</tbody>
</table>

3.7.4 Plasmide für lentivirale Partikel

Die Plasmide für die lentiviralen Partikel sind in Tab. 11 aufgelistet.

Tabelle 11: Auflistung der Plasmide für die Virusproduktion

<table>
<thead>
<tr>
<th>Plasmidname</th>
<th>Anmerkung</th>
<th>Resistenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMDLg-pRRE</td>
<td>Verpackungsplasmid für lentivirale Partikel, trägt das Gag-Gen und Pol-Gen</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>pRSV-Rev</td>
<td>Verpackungsplasmid für lentivirale Partikel, trägt das Rev-Gen</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>phCMV-VSV-G</td>
<td>Verpackungsplasmid für lentivirale Partikel, trägt das Env-Gen</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>pLKO.1-YFP-#62</td>
<td>Expressionsplasmid</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>pLKO.1-YFP-#63</td>
<td>Expressionsplasmid</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>pLKO.1-YFP-scr</td>
<td>Expressionsplasmid</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>pLKO.1-YFP-empty</td>
<td>Expressionsplasmid</td>
<td>Ampicillin</td>
</tr>
</tbody>
</table>
3.7.5 Medium für die Bakterienkulturen

Die kompetenten Bakterien wurden entweder in flüssigem lysogeny broth (LB)-Medium aufgenommen oder auf Agarplatten kultiviert. Das Difco LB Broth, Miller (BD) und das Difco LB Agar, Miller (BD) wurden nach Angaben des Herstellers in ddH₂O gelöst und 20 min bei 121 °C autoklaviert. Ampicillin wurde in einer Konzentration von 100 µg/ml eingesetzt.

Tabelle 12: Rezept für das SOC-Medium

<table>
<thead>
<tr>
<th>Medium</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOC-Medium</td>
<td>0,5% Hefeextrakt, 2% Trypton, 10mM NaCl, 2,5mM KCl, 10 mM MgCl₂, 10 mM MgSO₄, 20 mM Glucose</td>
</tr>
</tbody>
</table>

3.7.6 Transformation von Bakterien

Für die Transformation von Bakterien wird die Hitzeschockmethode angewandt. Die kompetenten Bakterien wurden auf Eis aufgetaut und 2 µl Plasmid wurde hinzugegeben. Nach Vermengung durch auf- und abpipettieren wurde 30 min auf Eis inkubiert. Danach folgte der Hitzeschock auf 42 °C für 45 s. Nach weiteren 2 min auf Eis gibt man 225 µl SOC-Medium hinzu und lässt es 1 h bei 37 °C und leichtem Schütteln inkubieren. Anschließend kann man die Suspension entweder auf Agarplatten ausstreichen oder zu 100 ml LB-Medium zugeben und über Nacht bei 37 °C inkubieren lassen (leichtes Schütteln beim LB-Medium). Zur Lagerung wurde 87 %iges Glycerol zugegeben und bei -80 °C gelagert.

3.7.7 Plasmidisolation

3.7.8 Mutagenese

Für die Insertion längerer Nukleotidsequenzen in ein Plasmid wurde das QuikChange Lightning Site-Directed Mutagenesis Kit von Agilent Technologies verwendet. Die Durchführung erfolgte nach Angaben des Herstellers. Für die Transformation wurden
die XL10-Gold ultrakompetenten E. coli von Agilent Technologies verwendet. Tabelle 13 gibt eine Übersicht der verwendeten „Primer“-Sequenzen wieder.

<table>
<thead>
<tr>
<th>Oligonukleotid</th>
<th>Sequenz 5’ – 3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>sh-ZNF423-#62 fwd</td>
<td>GGA AAG GAC GAA ACA CCG GGG AGT ATC CTT GCA ATC</td>
</tr>
<tr>
<td></td>
<td>AAT GCT CGA GCA- TTG ATT GCA AGG ATA CTC CTT TTT</td>
</tr>
<tr>
<td></td>
<td>TGA ATT CTC GAC CT</td>
</tr>
<tr>
<td>sh-ZNF423-#62 rv</td>
<td>AGG TCG AGA ATT CAA AAA AGG AGT ATC CTT GCA ATC</td>
</tr>
<tr>
<td></td>
<td>AAT GCT CGA GCA- TTG ATT GCA AGG ATA CTC CCC GGT</td>
</tr>
<tr>
<td></td>
<td>GTT TCG TCC TTT CC</td>
</tr>
<tr>
<td>sh-ZNF423-#63 fwd</td>
<td>GGA AAG GAC GAA ACA CCG GCC TGA AAC TCA CCA AGC</td>
</tr>
<tr>
<td></td>
<td>ACA TCT CGA GAT- GTG CTT GTT GAG TTT CAG GTT TTT</td>
</tr>
<tr>
<td></td>
<td>TGA ATT CTC GAC CT</td>
</tr>
<tr>
<td>sh-ZNF423-#63 rv</td>
<td>AGG TCG AGA ATT CAA AAA ACC TGA AAC TCA CCA AGC</td>
</tr>
<tr>
<td></td>
<td>ACA TCT CGA GAT- GTG CTT GTT GAG TTT CAG GCC GGT</td>
</tr>
<tr>
<td></td>
<td>GTT TCG TCC TTT CC</td>
</tr>
</tbody>
</table>

3.7.9 Sequenzierung

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequenz 5’ – 3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>U6_Prom. fw</td>
<td>CGA TAC AAG GCT GTT AGA GAG A</td>
</tr>
</tbody>
</table>

3.7.10 RNA-Isolation

3.7.11 Konzentrationsbestimmung

3.7.12 cDNA-Synthese

Für die cDNA-Synthese wurden 3 µg RNA in 35 µl Wasser aufgenommen. Es wurden 1 µg Random Primers (*Promega*) und 5 µl peqGOLD dNTP Mix (*Peqlab*), der je 10 mM der vier Nukleotide enthält, hinzugegeben. Nach Erhitzung für 5 min auf 70 °C und Abkühlung für 5 Minuten auf 4 °C wurden dem Ansatz 10 µl M-MLV RT 5x Puffer (*Promega*), 200 U M-MLV Reverse Transcriptase (*Promega*) und 40 U RNasin® Plus RNase Inhibitor (*Promega*) hinzugegeben. Anschließend erfolgte die Synthese für 60 min bei 37 °C. Durch Erhitzen für 5 min auf 95 °C wurde die Synthese beendet. Die cDNA wurde bei 4 °C gelagert.

3.7.13 Real time PCR

Material und Methoden

Tabelle 15: Temperaturprofil der quantitativen RT-PCR

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Name</th>
<th>Zyklen</th>
<th>Temperatur</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Denaturation</td>
<td>1</td>
<td>95 °C</td>
<td>10 min</td>
</tr>
<tr>
<td>2</td>
<td>Amplifikation</td>
<td>45</td>
<td>95 °C</td>
<td>10 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>62 °C</td>
<td>10 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>72 °C</td>
<td>10 s</td>
</tr>
<tr>
<td>3</td>
<td>Schmelzkurze</td>
<td>1</td>
<td>95 °C</td>
<td>1 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65 °C</td>
<td>15 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Endtemperatur:</td>
<td>stetiges Erhitzen bei</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>95 °C</td>
<td>0,11 °C/s</td>
</tr>
<tr>
<td>4</td>
<td>Kühlung</td>
<td>1</td>
<td>40 °C</td>
<td>30 s</td>
</tr>
</tbody>
</table>

Tabelle 16: Auflistung der verwendeten Primer für die quantitative RT-PCR

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequenz 5’ – 3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2M_qPCR</td>
<td>fw: TTC TGG CCT GGA GGC TAT C</td>
</tr>
<tr>
<td></td>
<td>rev: TCA GGA AAT TTG ACT TTC CAT TC</td>
</tr>
<tr>
<td>ZNF423_qPCR</td>
<td>fw: GCA GAC CTG ACG GAC CAC</td>
</tr>
<tr>
<td></td>
<td>rev: AGG CCA CCC AGG AGA GTT</td>
</tr>
</tbody>
</table>

3.8 Proteinbiochemie

3.8.1 Zelllyse

Für die Herstellung von Zelllysat aus der gesamten Zelle bei überexprimiertem Protein, wurde der Laemmli-Puffer \((62,5 \text{ mM Tris (pH 6,8), 2,3 }\% \text{ SDS, 10 }\% \text{ Glycerol, 0,02 }\% \text{ Bromphenolblau und 0,02 }\% \text{ Pyronin Y}) \) eingesetzt, welcher gleichzeitig als Ladepuffer für die SDS-PAGE genutzt wurde. Die Zellen wurden pelletiert \((5 \text{ min, 4300 rpm}) \) und anschließend in 1 ml Laemmli-Puffer pro \(1 \times 10^7 \) Zellen resuspendiert. Der Zellsuspension wurden 2 µl Benzonase \((\text{Sigma}) \) zugegeben und nach kurzer Inkubation mit 5 % β-Mercaptoethanol versetzt. Dann wurde das Lysat 10 min bei 95 °C erhitzt und anschließend 10 min bei 4 °C und 13000 rpm zentrifugiert. Der Überstand wurde entweder sofort für eine SDS-PAGE genutzt oder bei -80 °C gelagert. Für Zelllysate aus dem Zellkern, bei Nachweis von endogenem Protein, wurde das NE-PER® Nuclear and Cytoplasmic Extraction Reagents Kit von *Thermo Scientific*
nach Angaben des Herstellers genutzt. Für die SDS-PAGE wurde nur das Lysat aus dem Zellkern verwendet, dessen Proteinkonzentration bestimmt und 10-30 µg Protein eingesetzt. Als Ladepuffer wurde der NuPAGE® LDS Sample Buffer (4x) von Life Technologies genutzt.

3.8.2 Bestimmung von Proteinkonzentrationen

Um die Proteinkonzentration der Zellkernlysate zu bestimmen, wurden 4 µl Lysat mit ddH₂O auf 800 µl aufgefüllt. Anschließend wurde 200 µl Protein Assay Dye Reagent Concentrate (Bio-Rad) zugegeben, 5 min bei Raumtemperatur inkubiert und in einer 96-well-Platte in einem Infinite M200 (Tecan) vermessen. Eine Standardkurve mit BSA (Albumin Fraktion V, Roth) mit 5 verschiedenen Konzentrationen (0 – 10,15 µg/µl) erlaubte die Berechnung der Proteinkonzentrationen.

3.8.3 SDS-PAGE

3.8.4 Western Blot

Um die nach Größe aufgetrennten Proteine zu detektieren, wurde ein Western Blot durchgeführt. Hierfür wurden die Proteine aus dem Acrylamidgel in einer Nass-Blotkammer auf eine Nitrocellulose-Membran (Amersham™ Protran™ Premium 0,45µm NC Nitrocellulose Blotting Membrane von GE Healthcare) übertragen. Das „Blotting“ erfolgte entweder in CAPS-Puffer (10 mM CAPS mit 20 % Methanol) oder in TOWBIN-Puffer (25 mM Tris und 192 mM Glycin mit 20 % Ethanol) für 2,5 h bei 4 °C und 400 mA. Die Membran wurde danach mit Magermilchlösung (2 % Magermilchpulver (Spinnrad) in TBS-T (1,5 M NaCl, 0,5 M Tris (pH 7,3) mit 0,1 % Tween-20)) für 30 min blockiert. Nach 3-maligem Waschen für je 10 min in TBS-T inkubierte der Erstantikörper in den entsprechenden Verdünnungen (s. Tab. 2) in
Material und Methoden

Magermilchlösung (5 % Magermilchpulver in TBS-T) bei 4 °C über Nacht oder bei Raumtemperatur für 1 h. Danach wurde die Membran 3-mal je 10 min in TBS-T gewaschen, um anschließend den Zweitantikörper in der entsprechenden Verdünnung (s. Tab. 3) in Magermilchlösung (5 % Magermilchpulver in TBS-T) zuzugeben, welcher bei Raumtemperatur 45 min inkubierte. Nachdem die Membran weitere 2-mal je 10 min in TBS-T gewaschen wurde, erfolgte ein letzter Waschgang für 10 min in TBS. Die Proteinbanden wurden am Odyssey CLx Infrared Imager (LI-COR) detektiert.

3.9 Zellkultur

3.9.1 Kultivierung von adhärenten Zellen und Suspensionszelllinien

Tabelle 17: Auflistung der Medien für die Zellkultur

<table>
<thead>
<tr>
<th>Medium</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>293T Medium</td>
<td>DMEM mit 10 % FBS, 1 % L-Glutamin, 1 % Pyruvat, 2 % HEPES, 1% Pen/Strep</td>
</tr>
<tr>
<td>REH/SEM/697*</td>
<td>RPMI 1640 mit 20 % FBS</td>
</tr>
<tr>
<td>SUP-B15</td>
<td>IMDM mit 20 % FBS</td>
</tr>
<tr>
<td>Einfriermedium</td>
<td>90 % FBS + 10 % DMSO</td>
</tr>
</tbody>
</table>
3.9.2 Einfrieren und Auftauen von Zellen

Um Zellen einzufrieren wurden 5 x 10^6 bis 1 x 10^7 Zellen pelletiert (5 min, 2000 rpm) und in 1 ml Einfriermedium resuspendiert. Die Zellsuspension wurde zügig entweder bei -80 °C (Kurzzeitlagerung) oder in Flüssigstickstoff (Langzeitlagerung) gelagert. Zum Auftauen wurden die Zellen in ein 37 °C warmes Wasserbad gegeben. Nach vollständigem Auftauen wurde die Zellsuspension mit 10 ml DPBS verdünnt und anschließend pelletiert. Das Zellpellet wurde in 5 – 10 ml Medium resuspendiert und im Inkubator kultiviert.

3.9.3 Reportergenanalysen

3.9.4 Apoptoseassay

3.9.5 Proliferationsassay

3.9.6 Virusproduktion

3.9.7 Transduktion der Zelllinien

Um die Zelllinien zu transduzieren wurde am Vorabend eine 6-well-Platte mit Retronectin (TaKaRa, 48 µg/ml in DPBS) beschichtet und über Nacht im Kühlschrank inkubiert. Am folgenden Tag wurde das Retronectin entfernt und mit 2 % BSA in DPBS für 30 min blockiert. Anschließend folgte ein Waschschritt mit HBSS mit 2,5 % HEPES. In die 6-well-Platte wurden dann je Position 6×10^6 Zellen in 2 ml Medium hineingegossen, um anschließend 1 ml des Viruskontraktes, welches nach 24 h geerntet wurde, hinzuzugeben. Die 6-well-Platte wurde dann bei 2000 rpm für 1 h zentrifugiert und im Inkubator kultiviert. Am darauffolgenden Tag wurde die Prozedur wiederholt, dafür wurden die Zellen in eine neue, mit Retronectin beschichtete 6-well-Platte überführt und die konzentrierten Viruspartikel aus dem 48 h-Überstand hinzugegeben. Bei der Zelllinie SUP-B15 wurde eine doppelte multiplicity of infection verwendet. Die Transduktionseffizienz wurde an den darauffolgenden Tagen
durchflusszytometrisch überprüft. Die Messungen fanden an einem *BD FACS Canto* statt, die Auswertung erfolgte mithilfe der *BD FACS Diva* Software.
4 Ergebnisse

4.1 Übersicht

Abbildung 6: Übersicht der verschiedenen Untersuchungen in den einzelnen Zelllinien

Nach Etablierung eines Knockdown- und Vektorsystems wurden die Untersuchungen in den einzelnen Zelllinien vorgenommen. Der Knockdown wurde immer per Western Blot oder qRT-PCR dargestellt.
4.2 Vorauswahl der richtigen shRNA-Sequenz

Abbildung 7: Untersuchung der Knockdown-Effizienz durch Transfektion verschiedener shRNAs

4.3 Etablierung eines Vektorsystems für die shRNA-Sequenz

Transduktionen der ALL-Zelllinie REH mit lentiviralen Partikeln, die die Vektoren pLKO.1-tGFP-shZNF423-#62 / pLKO.1-tGFP-shZNF423-#63 / pLKO.1-YFP-shSCR / pLKO.1-YFP-empty enthielten, haben gezeigt, dass weit weniger tGFP als YFP exprimiert wurde. Die durchflusszytometrisch bestimmten Transduktionseffizienzen betrugen bei den shZNF423-Sequenzen ≤ 20 %, während die Transduktionseffizienzen der YFP-Vektoren ≥ 80 % betrugen (Daten nicht gezeigt).

Eine naheliegende Erklärung für die unterschiedliche Effizienz in der Reporterexpression waren die verschiedenen Promotoren der Reportergene. Die tGFP-Vektoren enthielten einen CMV (Zytomegalievirus)-Promoter, die YFP-Vektoren einen hPGK (humane Phosphoglyceratkinase) -Promoter. Der CMV-Promoter leitet sich vom humanen Zytomegalievirus ab, einem Vertreter aus der Gruppe der Herpes-Viren. Dieser ist einer der stärksten Promotoren und eignet sich für verschiedenste Vektorsysteme. In der Literatur ist jedoch beschrieben, dass der CMV (Zytomegalievirus)-Promoter reprimiert werden kann. Da die Transduktionseffizienz...
durchflusszytometrisch anhand von Fluoreszenzproteinen geprüft wurde, war es von Bedeutung, ein verlässliches Vektorsystem zu erstellen. Um außerdem die Kontrollvektoren und die shZNF423-Expressionsplasmide vergleichbarer zu machen, wurden die Sequenzen aus dem pLKO.1-tGFP-puro-Vektor in den pLKO.1-YFP Vektor durch gerichtete Mutagenese kloniert (s. Abb. 8). Der neue Vektor enthielt jetzt an Stelle des Fluoreszenzproteins tGFP das YFP mit dem hPGK-Promoter. Dieser Promoter gehört zur konstitutiv exprimierten Phosphoglyceratkinase und zeigt eine moderate Aktivität. Die shRNA-Sequenzen wurden weiterhin unter dem U6-Promoter transkribiert und die Plasmidgröße verringerte sich von 8405 bp auf 7155 bp.

Abbildung 8: Klonierung der shRNA-Sequenz in einen neuen Vektor

Ergebnisse

zeigte die geringste Signalintensität im Immunblot und wurde für weitere Versuche verwendet.

Abbildung 9: Untersuchung der Knockdown-Effizienz durch Transfektion der pLKO.1-YFP-Plasmide

4.4 Reportergenstudie und Transduktion von 697*-Zellen
Abbildung 10: CD79b-Promoteraktivität unter ZNF423-Knockdown

(A) Reportergenstudie mit 293T-Zellen. Die Zellen wurden an Tag 1 mit dem pGL3-CD79b-Promoter transfiziert. An Tag 2 folgte die Transfektion mit ZNF423α alleine sowie ZNF423α + shZNF423. Die Messung fand an Tag 4 im technischen Triplikat statt, die Luciferase-Aktivität ist auf die Renilla-Aktivität normalisiert. Als Positivkontrolle wurde ein konstitutiv aktiver Promoter (pGL3-control) mitgeführt, als Negativkontrolle ein Leervektor (pGL3-basic) (nicht in der Abb.) (B) Ein Teil der Zellen wurden an Tag 4 entnommen, aus ihnen wurde cDNA gewonnen und mittels einer qRT-PCR ZNF423 und B2M quantifiziert. Die Messung fand im technischen Triplikat statt, die Werte sind auf den Ansatz ohne die ZNF423α-Überexpression normalisiert. Die Fehlerindikatoren geben die Standardabweichung an. Die Signifikanzen wurden mittels Welch’s T-Test berechnet (*p ≤ 0,05; **p ≤ 0,01; ***p ≤ 0,001; n. s. nicht signifikant).

Abbildung 11 zeigt die Transduktion von 697*-Zellen durch lentivirale Partikel, die die Expressionsplasmide YFP-empty, YFP-shSCR und YFP-shZNF423-#62 enthielten. Die Transduktionseffizienz wurde ab dem vierten Tag nach Transduktion durchflusszytometrisch verfolgt, betrug ≥ 95 % und hielt sich über 5 Tage stabil. Die Prozentzahl der vitalen Zellen innerhalb der Zellsuspension wurde ebenfalls am FACS untersucht. Es hat sich gezeigt, dass bei den Zellen mit dem Leervektor YFP-empty der Anteil der vitalen Zellen innerhalb von 5 Tagen um 39 % zunahm, bei den Zellen mit dem Kontrollvектор YFP-shSCR zeigte sich eine Zunahme um 17 %. Bei den Knockdown-Zellen hingegen zeigte sich eine Abnahme um 41 %, sodass an Tag 8 nach Transduktion nur noch 59 % der Zellen als vital charakterisiert werden konnten. Abbildung 11 (C) zeigt, dass an allen 5 Untersuchungstagen ein stabiler Knockdown mit einer Effizienz von 62 % - 87 % herrschte, während die Zellen, die mit dem Kontrollplasmid YFP-shSCR transduziert waren, ähnliche oder höhere Level ZNF423 transkribierten als die Leervektorkontrolle YFP-empty.
Ergebnisse

Abbildung 11: Untersuchung der Transduktionseffizienz und Zellpopulation nach ZNF423-Knockdown in 697* Zellen

697* Zellen wurden mit lentiviralen Partikeln, die die Plasmide YFP-empty, YFP-shSCR und YFP-shZNF423-#62 enthielten, transduziert und durchflusszytometrisch untersucht. Dazu wurden 50 µl der Zellsuspension mit 450 µl DPBS vermischt und 1 Minute am BD FACS Canto bei mittlerer Flussgeschwindigkeit (72 µl / Minute) analysiert. Anhand von Forward Scatter und Side Scatter wurde ein Gate gesetzt, welches die vitalen Zellen beinhaltet. (A) Der Anteil der Zellen in diesem Gate im Verhältnis zu allen Zellen, die Messungen sind auf den ersten Messtag normalisiert. Der FACS Plot zeigt exemplarisch die Daten des Knockdowns shZNF423 an Tag 8 (vollständige Daten im Anhang) (B) Der Anteil YFP-positiver Zellen in diesem Gate wurde untersucht, die Messungen sind auf den Tag mit der höchsten Transduktionseffizienz normalisiert. Der FACS Plot zeigt exemplarisch die Daten des Knockdowns shZNF423 an Tag 8 (vollständige Daten im Anhang) (C) Außerdem wurden von Tag 4 bis Tag 8 Zellen entnommen und aus ihnen cDNA gewonnen. Die relative Quantifizierung von ZNF423 und B2M wurde per qRT-PCR durchgeführt, die Messungen fanden im technischen Triplikat statt und sind auf den Leerlektor YFP-empty normalisiert. Die Fehlerindikatoren geben die Standardabweichung an. Die Ergebnisse wurden unabhängig voneinander reproduziert. Die Signifikanzen wurden mittels Welch’s T-Test berechnet (*p ≤ 0,05; **p ≤ 0,01; ***p ≤ 0,001; n. s. nicht signifikant).
4.5 ZNF423 Knockdown in verschiedenen ALL-Zelllinien

gezeigt). Bei den SEM-Zellen konnte man sowohl auf Proteinebene als auch auf mRNA-Ebene einen effizienten Knockdown feststellen, der über 8 Tage stabil blieb, während man bei den SUP-B15-Zellen einen Knockdown erreichen konnte, dieser aber auf Dauer nicht stabil war.

Abbildung 12: ZNF423 Knockdown durch Transduktion in verschiedenen ALL-Zelllinien
Es wurden lentivirale Partikel, welche die Plasmide YFP-shZNF423-#62 und YFP-shSCR enthielten, hergestellt und die ALL-Zelllinien REH, SEM und SUP-B15 damit transduziert. (A) Sowohl an Tag 4 als auch an Tag 8 nach Transduktion wurde ein Teil der transduzierten Zellen entnommen, aus ihnen cDNA gewonnen und ZNF423 und B2M wurden mittels qRT-PCR quantifiziert. Die Messungen fanden im technischen Triplikat statt und sind auf den Kontrollvektor shSCR normalisiert. Die Fehlerindikatoren geben die Standardabweichung an. (B) Außerdem wurden an Tag 4 nach der Transduktion aus jeweils 5 x 10^6 Zellen der transduzierten Zellpopulationen sowie von den Wildtyp-Zellen Zellkernlysate hergestellt. 20 µg dieser Lysate wurden durch eine SDS-PAGE aufgetrennt und mittels anti-ZNF423 und anti-Lamin B1 sowie fluoreszenzgekoppelten Sekundärantikörpern auf einem Western Blot durch den LI-COR Odyssey Imager detektiert. Die Ergebnisse wurden mehrfach unabhängig voneinander reproduziert (n=3). Die Signifikanz wurden mittels Welch’s T-Test berechnet (*p ≤ 0,05; **p ≤ 0,01; ***p ≤ 0,001; n. s. nicht signifikant).
4.6 Transduktionseffizienz und Veränderungen in der Zellpopulation unter Knockdown-Bedingungen

Um zu überprüfen, ob die Transduktion der ALL-Zelllinien mittels lentiviraler Partikel erfolgreich und stabil war und ob ein Knockdown einen Einfluss auf das Überleben und das Wachstum der Zellpopulation hat, wurden die Zellen nach Transduktion 8 Tage lang durchflusszytometrisch verfolgt. Hierbei wurde anhand von Forward Scatter und Side Scatter ein Gate gesetzt, welches die vitalen Zellen enthielt. Abbildung 13 (A) zeigt dies exemplarisch. Anschließend wurde der Anteil der Zellen, die das Fluoreszenzprotein YFP exprimierten, in diesem Gate gemessen sowie das Verhältnis der vitalen Zellen zu allen Events im FACS bestimmt.

4.6.1 REH-Zelllinie (ETV6-RUNX1)

Abbildung 13 (B) zeigt die Daten zu den REH Zellen. Es zeigte sich, dass die Transduktion über 8 Tage stabil blieb. Bei der shZNF423 erreichte die Transduktionseffizienz am zweiten Tag ihr Maximum und hatte am achten Tag nach Transduktion eine Effizienz von 97 % des Maximums. Die Transduktionseffizienzen betrug hier zwischen 92 % - 98 % (s. Anhang). Bei der Kontrolle shSCR zeigten sich ähnliche Ergebnisse. Hier wurde das Maximum am dritten Tag nach Transduktion erreicht und an Tag 8 waren 95 % der Zellen genau so positiv wie an Tag 3. Die Transduktionseffizienzen betrugen hier zwischen 85 % - 96 % (s. Anhang).

Der Anteil der vitalen Zellen unter Knockdown-Bedingungen stieg und hielt sich anschließend stabil, sodass sich an Tag 8 nach Transduktion im Vergleich zu Tag 1 30 % mehr Zellen in dem Gate für vitale Zellen befanden. Bei den Kontrollzellen shSCR schwankte dieser Anteil über acht Tage. Zuerst fand sich eine Erhöhung um 24 %, anschließend folgte eine Abnahme, sodass an Tag 8 99 % der Zellen, die an Tag 1 vital waren, weiterhin als vital gezählt werden können.

4.6.2 SEM-Zelllinie (MLL-AF4)

Abbildung 13 (C) zeigt die Daten zu den SEM-Zellen. Hier zeigte sich, dass sich die Transduktionseffizienzen sowohl der Kontrollzellen shSCR als auch der Knockdown-Zellen shZNF423 gleich verhielten. Das Maximum wurde an Tag 2 nach Transduktion erreicht und nahm dann stetig ab. An Tag 8 nach Transduktion waren 43 % (shSCR) / 39 % (shZNF423) der Zellen, die an Tag 2 YFP-positiv waren, noch positiv. Die Transduktionseffizienzen variierten zwischen 34 % - 98 % (s. Anhang).
Abbildung 13: Untersuchung der Zellpopulation und Transduktionseffizienz nach ZNF423-Knockdown in verschiedenen ALL-Zelllinien

Ergebnisse

Beim Verhalten der Zellpopulationen hinsichtlich des Anteils der vitalen Zellen konnte gezeigt werden, dass bei den Kontrollzellen shSCR der Anteil der vitalen Zellen innerhalb der Zellpopulation keinen starken Schwankungen unterlegen war. An Tag 8 nach Transduktion waren im Vergleich zu Tag 1 92 % der Zellen vital. Bei der Knockdown-Population shZNF423 verhielt sich die Zellpopulation anders. Hier zeigte sich eine stetige Abnahme des Anteils vitaler Zellen, sodass an Tag 8 nach Transduktion 42% der Zellen für vital erklärt werden konnte.

4.6.3 SUP B15-Zelllinie (BCR-ABL1)

Abbildung 13 (D) zeigt die Daten für die SUP-B15-Zellen. Die SUP-B15-Zellen zeigten insgesamt eine schwächere Transduktionseffizienz; sie variierte zwischen 50 % - 83 % (s. Anhang). Die Kontrollzellen shSCR und die Knockdown-Zellen shZNF423 zeigten ähnliche Ergebnisse bezüglich der Stabilität der Transduktionseffizienz. Das Maximum wurde an Tag 3 (shSCR) bzw. an Tag 4 (shZNF423) erreicht und an Tag 8 nach Transduktion waren 76 % (shSCR) bzw. 70 % (shZNF423) YFP-positiv. Bei der Veränderung der Zellpopulation zeigte sich, dass die Kontrollgruppe shSCR nach 8 Tagen im Vergleich zu Tag 1 insgesamt 22 % mehr vitale Zellen hatte und über die Zeit auch keine größeren Schwankungen einsetzten. Bei den Knockdown-Zellen shZNF423 gab es starke Schwankungen vom 0,67 bis 1,2-fachen des Wertes von Tag 1. An Tag 8 waren letztlich im Vergleich zu Tag 1 91 % der Zellen weiterhin vital.

4.7 Untersuchung der Apoptose mittels Annexin V / PI Färbung

Um die Veränderungen der Zellpopulationen genauer zu analysieren, wurde zunächst die Apoptose untersucht. Mittels Färbung durch Annexin V und PI an Tag 4, Tag 6 und Tag 8 konnten früh-apoptotische (Annexin V⁺/PI⁻) sowie spät-apoptotische (Annexin V⁺/PI⁺) Zellen analysiert werden.

4.7.1 REH-Zelllinie (ETV6-RUNX1)

Abbildung 14 zeigt die Daten des Apoptose-Assays für die REH-Zellen. An Tag 4 waren in der Kontrollgruppe shSCR 23,3 % der Zellen früh-apoptotisch und 5,0 % spät-apoptotisch. 71,7 % der Zellen waren für beide Färbungen negativ. In der Knockdown-Gruppe shZNF423 war dies ähnlich, 20,1 % frühapoptotisch, 5,4 % spätapoptotisch sowie 74,2 % für beide Färbungen negativ. Somit zeigte sich an Tag 4 nach Transduktion kein Unterschied in der Apoptose zwischen Knockdown und Kontrolle.
An Tag 6 zeigten sich ähnliche Werte. 19,8 % der Zellen in der Kontrolle shSCR befanden sich in der frühen Apoptose, 5,2 % in der späten Apoptose und 74,9 % waren doppelt-negativ. In der Knockdown-Population shZNF423 waren 19,4 % in der frühen Apoptose, 5,1 % in der späten Apoptose und 75,2 % für beide Färbungen negativ. Auch an Tag 6 zeigte sich kein Unterschied in der Apoptose zwischen Kontrolle und Knockdown.
An Tag 8 waren 17,9 % der Zellen der Kontrolle in der frühen Apoptose, 5,8 % befanden sich in der späten Apoptose und 76,4 % waren vital. In der Knockdown-Population waren die Ergebnisse ähnlich und es befanden sich 18,4 % der Zellen in der frühen Apoptose, 4,2 % in der späten Apoptose und 77,0 % waren vital. An Tag 8 zeigten sich keine Unterschiede zwischen Kontrolle und Knockdown.

4.7.2 SEM-Zelllinie (MLL-AF4)

Abbildung 15 zeigt die Daten des Apoptose-Assays für die SEM-Zellen. An Tag 4 zeigte die Kontrolle shSCR 9,9 % früh-apoptotische Zellen, 11,6 % spät-apoptotische Zellen sowie 78 % vitale Zellen. Bei den Knockdown-Zellen shZNF423 zeigten sich 13,7 % in der frühen sowie 25,7 % in der späten Apoptose. 59,6 % waren vital. Unter Knockdown-Bedingungen konnte man an Tag 4 eine Induktion der frühen Apoptose auf 138 % feststellen, die späte Apoptose war auf 220 % erhöht.

An Tag 6 setzte sich der Trend fort. Die Kontrolle shSCR hatte 10,2 % früh-apoptotische Zellen, 14,4 % spät-apoptotische Zellen sowie 74,4 % Zellen, die für beide Färbbungen negativ waren. Bei den Knockdown-Zellen waren 23,3 % in der frühen Apoptose, 37,4 % in der späten Apoptose sowie 36,3 % vital. Hier zeigte sich unter den Knockdown-Bedingungen eine Erhöhung der frühen Apoptose auf 230 % sowie eine Induktion der späten Apoptose auf 260 %. Insgesamt waren unter Knockdown-Bedingungen im Vergleich zur Kontrolle weniger als die Hälfte der Zellen vital.

An Tag 8 zeigte sich, dass die Kontrolle shSCR 9 % früh-apoptotische Zellen, 19,6 % spät-apoptotische Zellen sowie 69,7 % vitale Zellen hatte. Bei den Knockdown-Zellen shZNF423 waren 21,1 % in der frühen Apoptose, 37,1 % in der späten Apoptose sowie 38,1 % vital. Auch an diesem Messtag zeigte sich, dass die Knockdown-Zellen eine höhere Apoptoseinduktion als die Kontrollzellen hatten. Die frühe Apoptose war auf 230 %, die späte auf 190 % erhöht.
Abbildung 15: Untersuchung der Apoptose in SEM-Zellen

Lentivirale Partikel, die die Plasmide YFP-shSCR und YFP-shZNF423-#62 enthielten, wurden hergestellt und damit die ALL-Zelllinie SEM zu transduzieren. An Tag 4, 6 und 8 nach der Transduktion wurde mittels eines Annexin V / PI Assays die Apoptose durchflusszytometrisch untersucht. Hierfür wurden 50 µl der Zellsuspension für 15 Minuten mit 5 µl Annexin V-APC und 5 µl PI gefärbt. Die FACS Plots zeigen im oberen linken Quadranten (Annexin+/PI-) die frühe Apoptose, im oberen rechten Quadranten (Annexin+/PI+) die späte Apoptose. Im Balkendiagramm wurde die frühe und späte Apoptose auf das Kontrollplasmid shSCR normalisiert. Die Ergebnisse wurden unabhängig voneinander reproduziert.

4.7.3 SUP-B15-Zelllinie (BCR-ABL1)

Abbildung 16 zeigt die Daten des Apoptose-Assays für die SUP-B15-Zellen. An Tag 4 zeigte die Kontrollgruppe 14,4 % der Zellen in der frühen und 16,9 % in der späten Apoptose. 66,9 % der Zellen waren vital.
Abbildung 16: Untersuchung der Apoptose in SUP-B15-Zellen

Die Knockdown-Zellen befanden sich zu 16,7 % in der frühen und zu 15,4 % in der späten Apoptose, 66,8 % waren für beide Färbungen negativ. Im Verhältnis zur Kontrolle waren unter Knockdown-Bedingungen eine Erhöhung auf 116 % in der frühen Apoptose sowie eine Minderung auf 90 % in der späten Apoptose feststellbar.
An Tag 6 waren in der Kontrollgruppe shSCR 7,6 % der Zellen spätablisch, 11,5 % frühapoptotisch und 78,6 % vital. In der Knockdown-Gruppe shZNF423 waren 9,6 % der Zellen frühapoptotisch, 10,3 % spätapoptotisch sowie 78,2 % vital. Hier zeigte sich eine erhöhte Induktion der frühen Apoptose auf 126 % in den Knockdown-Zellen, die späte Apoptose betrug im Vergleich 90 %.

An Tag 8 nach Transduktion waren 5,9 % der Kontrollzellen in der frühen sowie 7,9 % in der späten Apoptose, 82,7 % waren vital. In der Knockdown-Gruppe waren es 10 % in der frühen Apoptose, 9,4 % in der späten Apoptose sowie 78,8 % vitale Zellen. Im Verhältnis zeigte sich hier eine erhöhte Induktion der frühen Apoptose auf 170 % im Vergleich zu den Kontrollzellen sowie eine erhöhte Induktion der späten Apoptose auf 120 %.

4.8 Untersuchung der Proliferation mittels BrdU-Inkorporation
Um Unterschiede zwischen Knockdown und Kontrolle in der Proliferation feststellen zu können, wurde an Tag 7 nach Transduktion der Zellzyklus mittels BrdU-Inkorporation untersucht. Dies wurde für SEM und SUP-B15 Zellen durchgeführt.
4.8.1 SEM-Zelllinie (MLL-AF4)

Abbildung 17 zeigt die Daten des BrdU-Assays der SEM-Zellen. In den Kontrollzellen shSCR waren 9,6 % der Population apoptotisch. 47,2 % befanden sich in der G0/G1-Phase, 34,2 % in der S-Phase sowie 5,2 % in der G2/M-Phase. Bei den Knockdown-Zellen shZNF423 waren 28,8 % apoptotisch, 46,8 % waren in der G0/G1-Phase, 16,4 % in der S-Phase sowie 3,6 % in der G2/M-Phase.

Verglichen man den Anteil der Zellen in der S-Phase, zeigte sich, dass halb so viele Zellen unter Knockdown-Bedingungen in die S-Phase gingen als in der Kontrollgruppe shSCR.

Abbildung 17: BrdU-Proliferationsassay in SEM-Zellen mit ZNF423-Knockdown

4.8.2 SUP-B15-Zelllinie (BCR-ABL1)

Abbildung 18 zeigt die Daten des BrdU-Assays der SUP-B15-Zellen. Hier zeigte sich bei den Kontrollzellen, dass 15,6 % apoptotisch waren, 32,6 % in der G0/G1-Phase, 40,4 % in der S-Phase sowie 9,6 % in der G2/M-Phase. Bei den Knockdown-Zellen waren 21,4 % apoptotisch, 30,4 % in der G0/G1-Phase, 32,2 % in der S-Phase sowie 12,4 % in der G2/M-Phase.

Im Vergleich zwischen Kontrolle shSCR und Knockdown shZNF423 zeigte sich, dass beim Knockdown das 20 % weniger Zellen in die S-Phase eintritt.
5 Diskussion

5.1 Die shRNA-Sequenz shZNF423-#62 vermittelt einen ZNF423-Knockdown

Inwieweit off-target-Effekte auftreten, wurde in dieser Arbeit nicht geprüft und bleibt zu klären.

5.2 ZNF423-Knockdown erhöht die CD79b-Promoteraktivität

 Diskussion

könnte trotz fast komplettem Rückgang der mRNA-Expression weiterhin geringe Mengen ZNF423 exprimiert werden, die die nur partielle Wiederherstellung der CD79b-Promoteraktivität erklären könnte. Nichtsdestotrotz ist dies ein experimenteller Erfolg, da gezeigt werden konnte, dass durch den ZNF423 Knockdown die Promoteraktivität von für die B-Zellreifung wichtigen Genen teilweise wiederhergestellt werden konnte.

5.3 697*-Zellen zeigen vermindertes Zellüberleben

5.4 REH-Zellen exprimieren kein messbares ZNF423 auf Proteinebene

Die Zelllinie REH wurde ursprünglich für die Untersuchungen herangezogen, da sie eine erhöhte Expression von ZNF423 aufweist (Horstmann et al., unpublizierte Daten). Die Analysen dieser Arbeit zeigten jedoch, dass die REH-Zellen kein durch Western Blot detektierbares ZNF423 exprimieren. Womöglich wurde im Rahmen dieser Arbeit eine fehlannotierte Zelllinie verwendet, da auch Untersuchungen des Zellzyklus (Daten nicht gezeigt) die Daten von Horstmann et al. (unpublizierte Daten) nicht reproduzieren konnten. Dementsprechend ist auf dem Western Blot kein Unterschied zwischen Knockdown und Kontrolle zu sehen. Durch qRT-PCR konnte ein Knockdown von

5.5 **ZNF423 beeinflusst Überleben und Wachstum von SEM-Zellen**

5.6 ZNF423-Knockdown führt zur geringeren Proliferation in SUB-B15-Zellen

5.7 Abhängigkeit von ZNF423 in verschiedenen ALL-Zelllinien

5.8 RNA-Interferenz als Methode für die Gen-Inaktivierung

Die RNA-Interferenz wurde erstmals 1998 vollständig beschrieben als ein Mechanismus, bei der es durch doppelsträngige RNA zur spezifischen Gen-Inaktivierung kommt\(^68\). In relativ kurzer Zeit wurde dieser Mechanismus weiter studiert und es zeigte sich, dass die Spezifität durch kurze RNA-Stücke, die zur Ziel-mRNA komplementär sind, verliehen wird\(^69\) und, dass durch Einbringen kurzer einsträngiger RNA in Zellen experimentell eine Gen-Inaktivierung erfolgen kann\(^70\). Dies eröffnete eine neue Möglichkeit Gene zu erforschen und weitere Studien folgten, sodass der Weg der Gen-Inaktivierung durch die RNA-Interferenz weiter verbessert werden konnte. Es gibt jedoch neue Methoden die Expression von Genen zu reduzieren oder zu verhindern. Eine relativ neue Möglichkeit in das *genome editing* durch CRISPR/Cas9, welches ermöglicht spezifisch das Genom zu verändern, Gene oder Basensequenzen gezielt herauszuschneiden und so nicht nur einen Knockdown sondern einen Knockout zu vermitteln\(^71\). Auf den ersten Blick scheint diese Methode attraktiver, die Zielsetzung sollte jedoch vor Beginn der Methodenauswahl klar sein. Während bei der RNA-Interferenz der induzierte Effekt revidierbar ist, ist ein Gen-Knockout durch CRISPR/Cas9 nicht mehr rückgängig zu machen. Außerdem ist im Hinblick auf neue Therapiemöglichkeiten die partielle Gen-Inaktivierung realistischer, da durch Medikamente ein komplettes Blocken bestimmter Faktoren häufig nicht der Fall ist\(^71\). Alternativ kann man die CRISPRi (*CRISPR interference*) - Methode nutzen, mit der das Ausmaß des Gen-Knockdowns regulierbar und der Effekt reversibel ist\(^72\). Die Etablierung solcher Systeme mittels CRISPR stellt jedoch Probleme dar, da Schritte wie Einzelzellsortierung hohen Stress für die Zellen bedeutet und womöglich Primärmaterial für diese Methoden nicht geeignet wäre\(^71\). Insofern war es in dieser Arbeit wichtig eine Gen-Stilllegung durch die RNA-Interferenz zu vermitteln, um zukünftig ein effektives Werkzeug für weitere Untersuchungen in der Hand zu haben.
Diskussion

5.9 RNA-Interferenz als therapeutisches Werkzeug

5.10 Zukunftsperspektiven

6 Zusammenfassung

7 Abstract

In normal hematopoiesis the transcription factor EBF1 plays an essential role by transactivating factors important for B cell differentiation. With its zinc finger domains the zinc finger factor ZNF423 is able to sequester EBF1 and prevent the transactivation of EBF1 target genes. Usually, ZNF423 is not present in hematopoietic cells. However, aberrant expression of ZNF423 is observed after promoter hypomethylation in acute lymphocytic leukemias in childhood. Therefore, ZNF423 plays an important role in arrested differentiation of B cells, a characteristic of acute lymphatic leukemia in childhood. The poorer prognosis of ETV6-RUNX1 negative leukemia with ZNF423 expression further supports this assumption.

In this study we were able to show that a knockdown of ZNF423 by RNA interference is possible and that a knockdown affects the development of leukemic cells. In reporter gene studies, we have shown that a ZNF423 knockdown led to an increase in CD79b promoter activity and showed a decrease in the number of viable cells of the ALL 697* cell line. In addition, the MLL-AF4 positive ALL SEM cell line showed an increase in apoptosis and reduced proliferation while the BCR-ABL1 positive ALL SUP-B15 cell line showed a reduced proliferation after ZNF423 knockdown. These results suggest that ZNF423 plays a key role in the regulation of growth and apoptosis in leukemic cells.
8 Anhang

8.1 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>3'-UTR</td>
<td>3'-untranslatierte Region</td>
</tr>
<tr>
<td>7-AAD</td>
<td>7-Aminoactinomycin</td>
</tr>
<tr>
<td>ALL</td>
<td>akute lymphatische Leukämie</td>
</tr>
<tr>
<td>AML</td>
<td>akute myeloische Leukämie</td>
</tr>
<tr>
<td>APC</td>
<td>Allophycocyanin</td>
</tr>
<tr>
<td>B2M</td>
<td>β2-Mikroglobulin</td>
</tr>
<tr>
<td>BCR-ABL</td>
<td>„breakpoint cluster region“ – „Abelson murine leukemia viral oncogene homolog 1“</td>
</tr>
<tr>
<td>BMP</td>
<td>bone morphogenetic protein</td>
</tr>
<tr>
<td>Bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>BrdU</td>
<td>Bromdesoxyuridin</td>
</tr>
<tr>
<td>BRE</td>
<td>BMP-responsive elements</td>
</tr>
<tr>
<td>BSA</td>
<td>bovines Serumalbumin</td>
</tr>
<tr>
<td>BZR</td>
<td>B-Zellrezeptor</td>
</tr>
<tr>
<td>CAPS</td>
<td>Cyclohexylaminopropansulfonsäure</td>
</tr>
<tr>
<td>CD</td>
<td>cluster of differentiation</td>
</tr>
<tr>
<td>CDS</td>
<td>coding sequence</td>
</tr>
<tr>
<td>CLP</td>
<td>common lymphoid progenitor</td>
</tr>
<tr>
<td>CML</td>
<td>chronische myeloische Leukämie</td>
</tr>
<tr>
<td>CMV</td>
<td>Zytomegalievirus</td>
</tr>
<tr>
<td>CpG</td>
<td>Cytosin-Guanin-Dinukleotid</td>
</tr>
<tr>
<td>CRISPR/Cas9</td>
<td>Clustered Regularly Interspaced Short Palindromic Repeats / CRISPR-associated protein 9</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>doppelt deionisiertes Wasser</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethysulfoxid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxyribonukleotidtriphosphat</td>
</tr>
<tr>
<td>DSMZ</td>
<td>Deutsche Sammlung von Mikroorganismen und Zellkulturen</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia Coli</td>
</tr>
<tr>
<td>EBF1</td>
<td>early B-cell factor 1</td>
</tr>
<tr>
<td>ELP</td>
<td>early lymphoid progenitor</td>
</tr>
<tr>
<td>ETV6-RUNX1</td>
<td>„ETS-variant gene 6“ – „Runt-related transcription factor 1“</td>
</tr>
<tr>
<td>FACS</td>
<td>fluorescence activated cell sorting*</td>
</tr>
<tr>
<td>FSC-A</td>
<td>Forward Scatter – Area</td>
</tr>
<tr>
<td>FSC-H</td>
<td>Forward Scatter – Height</td>
</tr>
<tr>
<td>FSC-W</td>
<td>Forward Scatter – Width</td>
</tr>
<tr>
<td>HOX-Gen</td>
<td>Homeobox-Gen</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>hPGK</td>
<td>humane Phosphoglyceratkinase</td>
</tr>
<tr>
<td>HSC</td>
<td>hämatopoetische Stammzelle</td>
</tr>
<tr>
<td>LB-Medium</td>
<td>lysogeny broth-Medium</td>
</tr>
<tr>
<td>MLL</td>
<td>mixed lineage leukemia</td>
</tr>
<tr>
<td>NID</td>
<td>NuRD-interacting domaine</td>
</tr>
<tr>
<td>NK</td>
<td>natürliche Killerzellen</td>
</tr>
<tr>
<td>NuRD</td>
<td>nucleosome remodeling and deacetylase</td>
</tr>
<tr>
<td>OAZ</td>
<td>Olf1/EBF associated zinc finger protein</td>
</tr>
<tr>
<td>PARP1</td>
<td>Poly(ADP-ribose)-Polymerase 1</td>
</tr>
<tr>
<td>PI</td>
<td>Propidiumiodid</td>
</tr>
<tr>
<td>PPARγ</td>
<td>peroxisome proliferator-activated receptor γ</td>
</tr>
<tr>
<td>qRT-PCR</td>
<td>quantitative Echtzeit – Polymerase Kettenreaktion</td>
</tr>
<tr>
<td>RAR</td>
<td>retinoid acid receptor</td>
</tr>
<tr>
<td>RISC</td>
<td>RNA-induced silencing complex</td>
</tr>
<tr>
<td>Roaz</td>
<td>Rat Olf1/EBF associated zinc finger protein</td>
</tr>
<tr>
<td>RXR</td>
<td>retinoid x receptor</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulfate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>shRNA</td>
<td>short hairpin RNA</td>
</tr>
<tr>
<td>siRNA</td>
<td>short interfering RNA</td>
</tr>
<tr>
<td>SNALP</td>
<td>small nuclear acid lipid particles</td>
</tr>
<tr>
<td>SOC-Medium</td>
<td>Super optimal broth with Catabolite repression</td>
</tr>
<tr>
<td>SSC-A</td>
<td>Side Scatter – Area</td>
</tr>
<tr>
<td>SSC-H</td>
<td>Side Scatter – Height</td>
</tr>
<tr>
<td>SSC-W</td>
<td>Side Scatter – Width</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris-buffered saline</td>
</tr>
<tr>
<td>TBS-T</td>
<td>Tris-buffered saline with Tween20</td>
</tr>
<tr>
<td>tGFP</td>
<td>turbo – green fluorescent protein</td>
</tr>
<tr>
<td>TGF-β</td>
<td>transforming growth factor β</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>U</td>
<td>Unit</td>
</tr>
<tr>
<td>YFP</td>
<td>yellow fluorescent protein</td>
</tr>
<tr>
<td>Zfp423</td>
<td>murines ZNF423</td>
</tr>
<tr>
<td>Zfp521</td>
<td>murines ZNF521</td>
</tr>
<tr>
<td>ZNF423</td>
<td>Zinkfingerfaktor 423</td>
</tr>
<tr>
<td>ZNF521</td>
<td>Zinkfingerfaktor 521</td>
</tr>
</tbody>
</table>
8.2 FACS Plots

8.2.1 697*-Zelllinie

Tag 4

Tag 5

Tag 6

Tag 7

Tag 8
Abbildung 19: Transduktion der 697*-Zelllinie – Vollständige Daten zu Abb. 11 (A) und Abb. 11 (B)

697*-Zellen wurden mit lentiviralen Partikeln, die die Plasmide YFP-empty, YFP-shSCR und YFP-shZNF423-#62 enthielten, transduziert und durchflusszytometrisch untersucht. Dazu wurden 50 µl der Zellsuspension mit 450 µl DPBS vermischt und 1 Minute am BD FACS Canto bei mittlerer Flussgeschwindigkeit (72 µl / Minute) analysiert. Anhand von Forward Scatter und Side Scatter wurde ein Gate gesetzt, welches die vitalen Zellen beinhaltet, dargestellt in den linken Plots. Der Anteil YFP-positiver Zellen in diesem Gate wurde untersucht, dargestellt in den rechten Plots.
8.2.2 REH-Zelllinie

Tag 1

Tag 2

Tag 3

Tag 4
YFP-shZNF423-#62

Tag 1

Tag 2

Tag 3

Tag 4

63
Abbildung 20: Transduktion der REH-Zelllinie – Vollständige Daten zu Abb. 13 (B)

8.2.3 SEM-Zelllinie
8.2.4 SUP-B15-Zelllinie
Anhang

YFP-shSCR (Fortsetzung)

Tag 5

Tag 6

Tag 7

Tag 8
YFP-shZNF423 #62

Tag 1

Tag 2

Tag 3

Tag 4

67,1 %

79,3 %

81,3 %

82,5 %
Abbildung 22: Transduktion der SUP-B15-Zelllinie – Vollständige Daten zu Abb. 13 (D)

8.3 Abbildungsverzeichnis

Abbildung 1: Statistik über maligne Erkrankungen bei unter 18-jährigen (nach deutschem Kinderkrebs-register, Jahresbericht 2015) .. 1
Abbildung 2: Die normale B-Zelldifferenzierung in den primären lymphatischen Organen .. 5
Abbildung 3: ZNF423 Struktur ... 7
Abbildung 4: ZNF423 Interaktionen in gesundem Gewebe .. 9
Abbildung 5: ZNF423 Regulation und Beteiligung in verschiedenen Erkrankungen ... 10
Abbildung 6: Übersicht der verschiedenen Untersuchungen in den einzelnen Zelllinien ... 28
Abbildung 7: Untersuchung der Knockdown-Effizienz durch Transfektion verschiedener shRNAs 30
Abbildung 8: Umklonierung der shRNA-Sequenz in einen neuen Vektor .. 31
Abbildung 9: Untersuchung der Knockdown-Effizienz durch Transfektion der pLKO.1-YFP-Plasmide 32
Abbildung 10: CD79b-Promoteraktivität unter ZNF423-Knockdown .. 33
Abbildung 11: Untersuchung der Transduktionseffizienz und Zellpopulation nach ZNF423-Knockdown in 697*-Zellen 34
Abbildung 12: ZNF423 Knockdown durch Transduktion in verschiedenen ALL-Zelllinien ... 36
Abbildung 13: Untersuchung der Zellpopulation und Transduktionseffizienz nach ZNF423-Knockdown in verschiedenen ALL-Zelllinien ... 38
Abbildung 14: Untersuchung der Apoptose in REH-Zellen .. 40
Abbildung 15: Untersuchung der Apoptose in SEM-Zellen .. 42
Abbildung 16: Untersuchung der Apoptose in SUP-B15-Zellen .. 43
Abbildung 17: BrdU-Proliferationsassay in SEM-Zellen mit ZNF423-Knockdown .. 45
Abbildung 18: BrdU-Proliferationsassay in SUP-B15-Zellen mit ZNF423-Knockdown ... 46
Abbildung 19: Transduktion der 697*-Zelllinie – Vollständige Daten zu Abb. 11 (A) und Abb. 11 (B) 58
Abbildung 20: Transduktion der REH-Zelllinie – Vollständige Daten zu Abb. 13 (B) .. 61
Abbildung 21: Transduktion der SEM-Zelllinie – Vollständige Daten zu Abb. 13 (C) .. 65
Abbildung 22: Transduktion der SUP-B15-Zelllinie – Vollständige Daten zu Abb. 13 (D) .. 69
8.4 Tabellenverzeichnis

Tabelle 1: Liste der verwendeten Kits ... 13
Tabelle 2: Liste der primären Antikörper für Western Blots .. 13
Tabelle 3: Liste der sekundären Antikörper für Western Blots 14
Tabelle 4: Liste der verwendeten Antikörper für durchflusszytometrische Untersuchungen ... 14
Tabelle 5: Liste der verwendeten Geräte .. 14
Tabelle 6: Liste der verwendeten Zelllinien ... 15
Tabelle 7: Liste der verwendeten Medien und Reagenzien .. 16
Tabelle 8: Auflistung der Expressionsplasmide .. 16
Tabelle 9: Auflistung der shRNA-Sequenzen .. 17
Tabelle 10: Auflistung der Plasmide für die Reportergenanalysen 18
Tabelle 11: Auflistung der Plasmide für die Virusproduktion .. 18
Tabelle 12: Rezept für das SOC-Medium ... 19
Tabelle 13: Auflistung der Primersequenzen für die Mutagenese 20
Tabelle 14: Übersicht der Primersequenzen für die Sequenzierung 20
Tabelle 15: Temperaturprofil der quantitativen RT-PCR ... 22
Tabelle 16: Auflistung der verwendeten Primer für die quantitative RT-PCR 22
Tabelle 17: Auflistung der Medien für die Zellkultur ... 24
9 Literaturverzeichnis

10 Danksagung

Zuallererst möchte ich mich bei Prof. Dr. Martin Horstmann für die Aufgabenstellung und Supervision meiner experimentellen Arbeiten im Forschungsinstitut Kinderkrebs-Zentrum Hamburg bedanken.

Ein besonderer Dank gilt meiner Betreuerin Dr. Ann-Christin Puller, die mir stets mit Rat und Tat zur Seite stand und mich in jeglichem Vorhaben tatkräftig unterstützte.

Weiterhin möchte ich mich beim gesamten Team des Forschungsinstituts Kinderkrebs-Zentrum Hamburg bedanken, insbesondere bei Dr. Ina-Katrin Siekmann und Julia Strauss sowie Dr. Marcos Seoane Souto und Dr. Pablo Iglesias Vázquez. Sie wiesen mich geduldig in neue Experimentalmethoden ein und hatten immer ein offenes Ohr für Fragen.

Vielen Dank an meine Freunde: Ihr habt mit mir die Höhen dieser Arbeit genossen und mich aus den Tiefen gezogen. Ich danke Euch auch für die fachliche Unterstützung, auf Euch kann ich zählen!

Aus tiefstem Herzen danke ich meiner Familie. Ihr lehrtet mich, was Zusammenhalt und Durchhaltevermögen heißt. Besonders danke ich den besten Eltern der Welt! Was ihr alles auf euch genommen habt, damit es mir gut geht, keine Worte können das zum Ausdruck bringen, was Ihr mir bedeutet.

Zuletzt möchte ich mich bei Dir bedanken, Tanja, für die Geduld und Unterstützung die Du mitgebracht hast, ohne Dich hätte ich dieses Vorhaben wohl nie gemeistert. Ich freue mich auf unsere gemeinsame Zukunft und danke Dir von ganzem Herzen!
11 Lebenslauf

entfällt aus datenschutzrechtlichen Gründen
12 Eidesstattliche Erklärung

Ich versichere ausdrücklich, dass ich die Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des benutzten Werkes kenntlich gemacht habe.
Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachvertreter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe.
Ich erkläre mich einverstanden, dass meine Dissertation vom Dekanat der Medizinischen Fakultät mit einer gängigen Software zur Erkennung von Plagiaten überprüft werden kann.

Unterschrift: ...