DC ElementWertSprache
dc.contributor.advisorNavarro, Julien R.G.-
dc.contributor.advisorSaake, Bodo-
dc.contributor.authorJiang, Xuehe-
dc.date.accessioned2025-04-22T11:17:34Z-
dc.date.available2025-04-22T11:17:34Z-
dc.date.issued2024-
dc.identifier.urihttps://ediss.sub.uni-hamburg.de/handle/ediss/11617-
dc.description.abstractCellulose nanofibrils (CNFs) are well-known biodegradable, renewable, and biocompatible materials that can be extracted from lignocellulosic materials via various chemical, mechanical, or enzymatic processes. Typically, CNFs obtained by mechanical processes are in aqueous media, generating viscous dispersion. The abundant numbers of hydroxy groups on their surface are a double-edged sword when utilizing CNFs: while those functions lead to some drawbacks such as hygroscopic character, instability in many organic solvents, strong interfibrillar hydrogen interactions (leading to fibril aggregation), they can also participate in many chemical modifications through specific reactions. This thesis presents a surface modification pathway for CNFs, beginning with their conversion into CNF-based macroinitiators (CNF-MI) in a single step, followed by a Cu0-mediated radical polymerization (SET-LRP) to graft polymers onto the CNF surface. The introduction of polymers onto their surface allows to change the properties and the behavior of the CNF drastically. By carefully selecting the appropriate monomers, CNF can be adapted and is suitable for many applications.en
dc.language.isoende_DE
dc.publisherStaats- und Universitätsbibliothek Hamburg Carl von Ossietzkyde
dc.relation.haspartdoi: 10.1007/s10570-022-04983-yde_DE
dc.relation.haspartdoi: 10.1021/acsami.2c20775de_DE
dc.relation.haspartdoi: 10.1021/acsanm.3c04272de_DE
dc.rightshttp://purl.org/coar/access_right/c_abf2de_DE
dc.subjectcelluloseen
dc.subjectchemistryen
dc.subjectSET-LRPen
dc.subjectnanocelluloseen
dc.subject3d printingen
dc.subject.ddc500: Naturwissenschaftende_DE
dc.titleShaping the Future: Surface-Modified Cellulose Nanofibrils (CNFs) for Multifunctional 3D-Printable Hybrid Materialsen
dc.typedoctoralThesisen
dcterms.dateAccepted2025-04-08-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/de_DE
dc.rights.rshttp://rightsstatements.org/vocab/InC/1.0/-
dc.type.casraiDissertation-
dc.type.dinidoctoralThesis-
dc.type.driverdoctoralThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionde_DE
dc.type.thesisdoctoralThesisde_DE
tuhh.type.opusDissertation-
thesis.grantor.departmentBiologiede_DE
thesis.grantor.placeHamburg-
thesis.grantor.universityOrInstitutionUniversität Hamburgde_DE
dcterms.DCMITypeText-
dc.identifier.urnurn:nbn:de:gbv:18-ediss-127501-
item.creatorOrcidJiang, Xuehe-
item.creatorGNDJiang, Xuehe-
item.languageiso639-1other-
item.fulltextWith Fulltext-
item.advisorGNDNavarro, Julien R.G.-
item.advisorGNDSaake, Bodo-
item.grantfulltextopen-
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen
Dateien zu dieser Ressource:
Datei Prüfsumme GrößeFormat  
dissertation_Jiang.pdf66c9e89eac537840bdbf2fdd2e61f66f29.56 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Info

Seitenansichten

Letzte Woche
Letzten Monat
geprüft am null

Download(s)

Letzte Woche
Letzten Monat
geprüft am null
Werkzeuge

Google ScholarTM

Prüfe