Volltextdatei(en) vorhanden
DC ElementWertSprache
dc.contributor.advisorOepen, Hans Peter (Prof. Dr.)
dc.contributor.authorLofink, Fabian
dc.date.accessioned2020-10-19T12:56:19Z-
dc.date.available2020-10-19T12:56:19Z-
dc.date.issued2013
dc.identifier.urihttps://ediss.sub.uni-hamburg.de/handle/ediss/5431-
dc.description.abstractIm Rahmen dieser Doktorarbeit wurde die magnetische Feinstruktur von Oberflächen, ultradünnen Filmen sowie nanostrukturierten Dünnschichtelementen untersucht. Um einen experimentellen Zugang zu ermöglichen beginnt diese Arbeit mit der Konstruktion und dem Aufbau eines Rasterelektronenmikroskops mit Polarisationsanalyse (SEMPA oder spin-SEM). Detailliert werden die Polarisationsmessung und -analyse, die Vermeidung experimenteller Störfaktoren, Faktoren zur Optimierung des Instruments, die Langzeitstabilität des Detektors und die Probenpräparation sowie ihre Auswirkung auf das Magnetisierungsmuster diskutiert. Dabei konnte unter anderem gezeigt werden, wie die zeitliche Änderung der Bildqualität durch Wasserstoff induzierte Oberflächenrekonstruktionen des W(001) hervorgerufen wird. Anhand der Untersuchungen des Domänenmusters des Ni(111) konnten die Stärken der SEMPA Technik eindrucksvoll demonstriert und die Ursache des komplizierten Oberflächenmusters geklärt werden. Es handelt sich dabei um das einfach verzweigte Abschlussdomänenmuster der Magnetisierungsverteilung des Volumens. Dieses konnte auch im Rahmen eines Modells anhand sogenannter quasi-Domänen schlüssig diskutiert werden. Neben den qualitativen Stärken der SEMPA Technik konnte bei der Untersuchung des Ni(111) auch sein hohes Potential zur quantitativen Analyse gezeigt werden. So wurde unter anderem die Wandbreite der V-Linien im Oberflächendomänenmuster mit (174 +- 15) nm sehr genau vermessen. Zum anderen konnte anhand eines Polarisations-Winkelhistogramms die Sechszähligkeit des Domänenmusters eindeutig nachgewiesen werden. Als Ursache hierfür wurde die magnetokristalline Anisotropie-Energie identifiziert. Weiter wurde im Rahmen der Untersuchung des Graphen-bedeckten Ni(111) gezeigt, dass die Graphenschicht die Oberfläche des Ni(111) effektiv gegen Oxidation passiviert. Ein Schwerpunkt der Arbeit liegt auf der Untersuchung des Einflusses der Geometrie auf die mikromagnetische Feinstruktur von Nanodrähten, die zur Lokalisierung einer Domänenwand mit einem definierten Knick präpariert wurden. Im Wesentlichen wurden dabei drei prinzipiell unterschiedliche Wandtypen beobachtet: die transversale Wand, die asymmetrische Wand und die Wirbelwand. Weiter hat sich gezeigt, dass die komplizierte Struktur der Drahtwände über ein recht einfaches Modell topologischer Defekte unterschiedlicher Windungszahlen recht gut beschrieben werden kann. Zudem konnte dargelegt werden, dass neben der Drahtbreite und -dicke auch der Knickwinkel einen wesentlichen Einfluss auf den Wandtyp hat. So wird bei stumpfen Winkeln eine Wirbelwand, bei spitzen eine transversale Wand favorisiert. Die asymmetrische Wand wird nur in der Nähe des Übergangsbereichs beobachtet. Als wesentliches Ergebnis dieser Untersuchung konnte ein phänomenologisches Modell zur Beschreibung der Stabilität der unterschiedlichen Wandtypen als Funktion des Knickwinkels entwickelt werden.de
dc.description.abstractIn this thesis, a study of the magnetic fine structure of surfaces, ultrathin films, and nanostructures is reported. To obtain experimental access to this question, this work begins with the design and construction of a scanning electron microscope with polarization analysis (SEMPA or spin-SEM). In detail, the polarization measurement and analysis, the avoidance of disturbing sources, factors of optimization, the longtime stability of the detector, and the sample preparation, as well as the influence of the latter on the observed domain pattern are discussed. It is shown, e.g., that a time-dependent decrease of the image quality is caused by hydrogen-induced surface reconstructions of W(001). Based on the investigations of the domain pattern of the Ni(111) surface the strengths of SEMPA could be demonstrated. The nature of the complex surface pattern was clarified as a singly branched closure domain pattern. It could be conclusively discussed in the context of a model based on so-called quasi-domains. Moreover the high potential for quantitative analysis of the SEMPA technique was shown in this study. In this context, the precise measurement of the wall width of the V-lines (174+-15 nm) should be mentioned. In addition, based on the polarization angle histogram, a six-fold symmetry in the domain pattern could clearly be observed, which is caused by magneto-crystalline anisotropy. The investigation of Graphene-covered Ni(111) revealed that the Ni(111) surface is effectively passivated against oxidation by the Graphene layer during transfer at ambient conditions. A second focus of this work is the study of the influence of geometry on the micromagnetic fine structure of bent nanowires structured from soft-magnetic material. Three different wall types were found: the transverse wall, the asymmetric wall and the vortex wall. It has been shown that the complex structure of walls in nanowires can be fairly well described based on a simple model of topological defects of different winding numbers. In addition, it could be demonstrated that the width, thickness, and bending angle of the wire have a significant influence on the domain-wall type. In case of obtuse angles the vortex wall is favored whereas in case of acute angles the transverse wall. An asymmetric wall is observed in the vicinity of the transition region. A key result of this work is a new phenomenological model, which describes the stability of the different wall types as a function of the bending angle.en
dc.language.isodede
dc.publisherStaats- und Universitätsbibliothek Hamburg Carl von Ossietzky
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectMikromagnetismusde
dc.subjectOOMMFde
dc.subjectUltra-dünne Filmede
dc.subjectSEMPAde
dc.subjectSpin-SEMde
dc.subjectNi(111)de
dc.subjectNanodrähtede
dc.subjectDomänenwändede
dc.subjectV-Liniende
dc.subjectGraphende
dc.subjectMicromagnetismen
dc.subjectOOMMFen
dc.subjectUltra-thin filmen
dc.subjectSEMPAen
dc.subjectSpin-SEMen
dc.subjectNi(111)en
dc.subjectnanowiresen
dc.subjectdomain wallsen
dc.subjectV-linesen
dc.subject.ddc530 Physik
dc.titleOberflächensensitive Abbildung magnetischer Feinstrukturen des Domänenmusters von Ni(111) und geknickter Nanodrähtede
dc.typedoctoralThesis
dcterms.dateAccepted2014-04-09
dc.rights.ccNo license
dc.rights.rshttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.bcl33.61 Festkörperphysik
dc.subject.bcl33.68 Oberflächen, Dünne Schichten, Grenzflächen
dc.subject.bcl33.75 Magnetische Materialien
dc.subject.gndMagnetismus
dc.subject.gndFerromagnetismus
dc.subject.gndRastermikroskop
dc.subject.gndPolarisationsmikroskop
dc.subject.gndElektronenmikroskop
dc.subject.gndOberflächenphysik
dc.subject.gndGrenzflächenphysik
dc.subject.gndSpin-Bahn-W
dc.type.casraiDissertation-
dc.type.dinidoctoralThesis-
dc.type.driverdoctoralThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersion
dc.type.thesisdoctoralThesis
tuhh.opus.id6773
tuhh.opus.datecreation2014-06-11
tuhh.type.opusDissertation-
thesis.grantor.departmentPhysik
thesis.grantor.placeHamburg
thesis.grantor.universityOrInstitutionUniversität Hamburg
dcterms.DCMITypeText-
tuhh.gvk.ppn789507439
dc.identifier.urnurn:nbn:de:gbv:18-67738
item.creatorOrcidLofink, Fabian-
item.advisorGNDOepen, Hans Peter (Prof. Dr.)-
item.fulltextWith Fulltext-
item.creatorGNDLofink, Fabian-
item.languageiso639-1other-
item.grantfulltextopen-
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen
Dateien zu dieser Ressource:
Datei Beschreibung Prüfsumme GrößeFormat  
Dissertation.pdf13cb5824f3ca0265e3f1f7f2980982589.77 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Diese Publikation steht in elektronischer Form im Internet bereit und kann gelesen werden. Über den freien Zugang hinaus wurden durch die Urheberin / den Urheber keine weiteren Rechte eingeräumt. Nutzungshandlungen (wie zum Beispiel der Download, das Bearbeiten, das Weiterverbreiten) sind daher nur im Rahmen der gesetzlichen Erlaubnisse des Urheberrechtsgesetzes (UrhG) erlaubt. Dies gilt für die Publikation sowie für ihre einzelnen Bestandteile, soweit nichts Anderes ausgewiesen ist.

Info

Seitenansichten

312
Letzte Woche
Letzten Monat
geprüft am 17.10.2024

Download(s)

95
Letzte Woche
Letzten Monat
geprüft am 17.10.2024
Werkzeuge

Google ScholarTM

Prüfe