Volltextdatei(en) vorhanden
DC ElementWertSprache
dc.contributor.advisorHinze, Michael (Prof. Dr.)
dc.contributor.authorAhmad Ali, Ahmad
dc.date.accessioned2020-10-19T13:18:09Z-
dc.date.available2020-10-19T13:18:09Z-
dc.date.issued2017
dc.identifier.urihttps://ediss.sub.uni-hamburg.de/handle/ediss/7281-
dc.description.abstractIn the first part of the thesis we show that it is possible to establish a sufficient condition for global minima of a certain class of optimal control problems of semilinear el- liptic PDEs with pointwise constraints on the state and/or the control variables provided that the nonlinearity in the PDE satisfies certain growth conditions. This sufficient condition can also give information about the uniqueness of the global solutions. Moreover, one can establish in an analogous way to the con- tinuous setting a similar condition for the variational discrete control problem. It turns out that a sequence of discrete unique global minima satisfying this condition uniformly converges strongly to the unique global minimum of the corresponding continuous control problem as the discretization parameter tends to zero. A rate of convergence for the sequence of the discrete unique global minima can be established using this sufficient condition as well. The numerical experiments show that this convergence rate is optimal. In addition, we man- aged to compute the unique global minima for several examples. In the second part of the thesis we consider optimal control problems of elliptic PDEs with stochastic coefficients. The task is to compute the expected value of the optimal controls corresponding to the different realizations of the random coefficient of the state equation utilizing the finite element Monte Carlo and multilevel Monte Carlo methods and to carry out the associated error analysis. However, the computed expected value needs not to be an optimal control in general.en
dc.language.isoenen
dc.publisherStaats- und Universitätsbibliothek Hamburg Carl von Ossietzky
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subject.ddc510 Mathematik
dc.titleOptimal control of semilinear elliptic PDEs with state constraints - numerical analysis and implementationen
dc.title.alternativeOptimale Steuerung von semilinearen elliptischen partiellen Differentialgleichungen mit Zustandsschranken - numerische Analysis und Implementierungde
dc.typedoctoralThesis
dcterms.dateAccepted2017-06-13
dc.rights.ccNo license
dc.rights.rshttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.bcl31.80 Angewandte Mathematik
dc.type.casraiDissertation-
dc.type.dinidoctoralThesis-
dc.type.driverdoctoralThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersion
dc.type.thesisdoctoralThesis
tuhh.opus.id8625
tuhh.opus.datecreation2017-07-21
tuhh.type.opusDissertation-
thesis.grantor.departmentMathematik
thesis.grantor.placeHamburg
thesis.grantor.universityOrInstitutionUniversität Hamburg
dcterms.DCMITypeText-
tuhh.gvk.ppn894982168
dc.identifier.urnurn:nbn:de:gbv:18-86259
item.languageiso639-1other-
item.creatorOrcidAhmad Ali, Ahmad-
item.grantfulltextopen-
item.creatorGNDAhmad Ali, Ahmad-
item.advisorGNDHinze, Michael (Prof. Dr.)-
item.fulltextWith Fulltext-
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat  
Dissertation.pdf1.27 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Diese Publikation steht in elektronischer Form im Internet bereit und kann gelesen werden. Über den freien Zugang hinaus wurden durch die Urheberin / den Urheber keine weiteren Rechte eingeräumt. Nutzungshandlungen (wie zum Beispiel der Download, das Bearbeiten, das Weiterverbreiten) sind daher nur im Rahmen der gesetzlichen Erlaubnisse des Urheberrechtsgesetzes (UrhG) erlaubt. Dies gilt für die Publikation sowie für ihre einzelnen Bestandteile, soweit nichts Anderes ausgewiesen ist.

Info

Seitenansichten

69
Letzte Woche
Letzten Monat
geprüft am 15.05.2021

Download(s)

18
Letzte Woche
Letzten Monat
geprüft am 15.05.2021
Werkzeuge

Google ScholarTM

Prüfe