Volltextdatei(en) vorhanden
DC ElementWertSprache
dc.contributor.advisorBraulke, Thomas (Prof. Dr.)
dc.contributor.authorDi Lorenzo, Giorgia
dc.date.accessioned2020-10-19T13:20:49Z-
dc.date.available2020-10-19T13:20:49Z-
dc.date.issued2018
dc.identifier.urihttps://ediss.sub.uni-hamburg.de/handle/ediss/7738-
dc.description.abstractLysosomes contain about 70 soluble enzymes which have to be modified with mannose 6-phosphate (M6P) residues for efficient targeting to lysosomes. The key enzyme in the formation of M6P residues is the Golgi-resident hexameric GlcNAc-1-phosphotransferase complex (α2β2γ2). The α- and β-subunits exhibit catalytic activity, whereas the function of the -subunits encoded by the GNPTG gene is unknown. Mutations in the GNPTG gene cause the lysosomal storage disorder mucolipidosis type III (MLIII) that is mainly characterized by tissue-specific missorting of lysosomal enzymes and abnormalities of bone and cartilage. The experiments performed in this thesis revealed novel insights into the role of γ-subunits of the GlcNAc-1-phosphotransferase in the pathogenesis of the MLIII disease: 1. Analysis of GnptglacZ reporter mice demonstrated tissue and cell-specific expression, e.g. in bone and cartilage cells (osteoblasts, osteoclasts and chondrocytes), the major functionally impaired cell types in MLIII disease. 2. In fibroblasts of Gnptgko mice the loss of -subunits led to reduction of GlcNAc-1-phosphotransferase activity by 40%. SILAC-based M6P secretome and lysosomal proteome analyses in Gnptgko fibroblasts revealed that the M6P formation of 11 lysosomal enzymes is dependent on γ-subunits that impairs their intracellular targeting efficiency to lysosomes. Among these enzymes arylsulfatase B (Arsb), involved in the degradation of glycosaminoglycans (GAGs), was found to be missorted in primary cultured fibroblasts, osteoblasts and chondrocytes of Gnptgko mice accompanied by the accumulation of non-degraded GAGs in lysosomes. 3. The accumulation of storage material, a typical feature of MLIII patients, was surprisingly not associated with functional impairment of Gnptgko bone and cartilage cells. Therefore no skeletal abnormalities were detected in Gnptgko mice. 4. Incubation of chondroitin/dermatan sulfates-accumulating Gnptgko fibroblasts and chondrocytes with the human recombinant M6P-containing ARSB (Naglazyme®) partially rescued the lysosomal GAG storage, thereby identifying Arsb as a critical player in lysosome homeostasis in Gnptgko cells, and most likely in the MLIII disease. This result is a proof-of-principle that the approved Naglazyme® replacement therapy significantly reduces non-degraded GAGs in cultured Gnptgko cells. Further studies are needed to evaluate the efficiency of Naglazyme® in patients with MLIII.en
dc.description.abstractLysosomes contain about 70 soluble enzymes which have to be modified with mannose 6-phosphate (M6P) residues for efficient targeting to lysosomes. The key enzyme in the formation of M6P residues is the Golgi-resident hexameric GlcNAc-1-phosphotransferase complex (α2β2γ2). The α- and β-subunits exhibit catalytic activity, whereas the function of the -subunits encoded by the GNPTG gene is unknown. Mutations in the GNPTG gene cause the lysosomal storage disorder mucolipidosis type III (MLIII) that is mainly characterized by tissue-specific missorting of lysosomal enzymes and abnormalities of bone and cartilage. The experiments performed in this thesis revealed novel insights into the role of γ-subunits of the GlcNAc-1-phosphotransferase in the pathogenesis of the MLIII disease: 1. Analysis of GnptglacZ reporter mice demonstrated tissue and cell-specific expression, e.g. in bone and cartilage cells (osteoblasts, osteoclasts and chondrocytes), the major functionally impaired cell types in MLIII disease. 2. In fibroblasts of Gnptgko mice the loss of -subunits led to reduction of GlcNAc-1-phosphotransferase activity by 40%. SILAC-based M6P secretome and lysosomal proteome analyses in Gnptgko fibroblasts revealed that the M6P formation of 11 lysosomal enzymes is dependent on γ-subunits that impairs their intracellular targeting efficiency to lysosomes. Among these enzymes arylsulfatase B (Arsb), involved in the degradation of glycosaminoglycans (GAGs), was found to be missorted in primary cultured fibroblasts, osteoblasts and chondrocytes of Gnptgko mice accompanied by the accumulation of non-degraded GAGs in lysosomes. 3. The accumulation of storage material, a typical feature of MLIII patients, was surprisingly not associated with functional impairment of Gnptgko bone and cartilage cells. Therefore no skeletal abnormalities were detected in Gnptgko mice. 4. Incubation of chondroitin/dermatan sulfates-accumulating Gnptgko fibroblasts and chondrocytes with the human recombinant M6P-containing ARSB (Naglazyme®) partially rescued the lysosomal GAG storage, thereby identifying Arsb as a critical player in lysosome homeostasis in Gnptgko cells, and most likely in the MLIII disease. This result is a proof-of-principle that the approved Naglazyme® replacement therapy significantly reduces non-degraded GAGs in cultured Gnptgko cells. Further studies are needed to evaluate the efficiency of Naglazyme® in patients with MLIII.en
dc.language.isoenen
dc.publisherStaats- und Universitätsbibliothek Hamburg Carl von Ossietzky
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectGlcNAc-1-Phosphotransferasede
dc.subjectM6Pde
dc.subjectMucolipidosede
dc.subjectγ-Untereinheitde
dc.subjectLysosomde
dc.subjectGlcNAc-1-phosphotransferaseen
dc.subjectM6Pen
dc.subjectγ-subuniten
dc.subjectmucolipidosisen
dc.subjectlysosomeen
dc.subject.ddc570 Biowissenschaften, Biologie
dc.titleRole of the γ-subunit of GlcNAc-1-phosphotransferase in the pathogenesis of mucolipidosis type IIIen
dc.title.alternativeRolle der γ-Untereinheit der GlcNAc-1-Phosphotransferase in der Pathogenese der Mucolipidose Typ IIIde
dc.typedoctoralThesis
dcterms.dateAccepted2018-06-22
dc.rights.ccNo license
dc.rights.rshttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.bcl42.13 Molekularbiologie
dc.subject.bcl42.15 Zellbiologie
dc.subject.bcl42.17 Allgemeine Physiologie
dc.subject.bcl42.20 Genetik
dc.subject.gndGlcNAc-1-Phosphotransferase
dc.type.casraiDissertation-
dc.type.dinidoctoralThesis-
dc.type.driverdoctoralThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersion
dc.type.thesisdoctoralThesis
tuhh.opus.id9194
tuhh.opus.datecreation2020-08-24
tuhh.type.opusDissertation-
thesis.grantor.departmentBiologie
thesis.grantor.placeHamburg
thesis.grantor.universityOrInstitutionUniversität Hamburg
dcterms.DCMITypeText-
dc.identifier.urnurn:nbn:de:gbv:18-91940
item.creatorGNDDi Lorenzo, Giorgia-
item.fulltextWith Fulltext-
item.languageiso639-1other-
item.grantfulltextopen-
item.creatorOrcidDi Lorenzo, Giorgia-
item.advisorGNDBraulke, Thomas (Prof. Dr.)-
Enthalten in den Sammlungen:Elektronische Dissertationen und Habilitationen
Dateien zu dieser Ressource:
Datei Beschreibung Prüfsumme GrößeFormat  
Dissertation.pdf491c60c0134a9ffa930a98d3d5f36c803.79 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Diese Publikation steht in elektronischer Form im Internet bereit und kann gelesen werden. Über den freien Zugang hinaus wurden durch die Urheberin / den Urheber keine weiteren Rechte eingeräumt. Nutzungshandlungen (wie zum Beispiel der Download, das Bearbeiten, das Weiterverbreiten) sind daher nur im Rahmen der gesetzlichen Erlaubnisse des Urheberrechtsgesetzes (UrhG) erlaubt. Dies gilt für die Publikation sowie für ihre einzelnen Bestandteile, soweit nichts Anderes ausgewiesen ist.

Info

Seitenansichten

212
Letzte Woche
Letzten Monat
geprüft am 17.07.2024

Download(s)

133
Letzte Woche
Letzten Monat
geprüft am 17.07.2024
Werkzeuge

Google ScholarTM

Prüfe